Lecture Notes in Mathematics 2290

Mark Pollicott
Sandro Vaienti Editors

Thermodynamic
Formalism

Société
Mathématique

© &\ Springer




Lecture Notes in Mathematics

Volume 2290

Editors-in-Chief
Jean-Michel Morel, CMLA, ENS, Cachan, France
Bernard Teissier, IMJ-PRG, Paris, France

Series Editors

Karin Baur, University of Leeds, Leeds, UK

Michel Brion, UGA, Grenoble, France

Camillo De Lellis, IAS, Princeton, NJ, USA

Alessio Figalli, ETH Zurich, Zurich, Switzerland

Annette Huber, Albert Ludwig University, Freiburg, Germany

Davar Khoshnevisan, The University of Utah, Salt Lake City, UT, USA
Ioannis Kontoyiannis, University of Cambridge, Cambridge, UK
Angela Kunoth, University of Cologne, Cologne, Germany

Ariane Mézard, IMJ-PRG, Paris, France

Mark Podolskij, University of Luxembourg, Esch-sur-Alzette, Luxembourg
Sylvia Serfaty, NYU Courant, New York, NY, USA

Gabriele Vezzosi, UniFI, Florence, Italy

Anna Wienhard, Ruprecht Karl University, Heidelberg, Germany

More information about this series at http://www.springer.com/series/304


http://www.springer.com/series/304

\—Chaire Jean-Morlet

The CIRM Jean-Morlet Series is a collection
of scientific publications centering on the themes

developed by successive holders
of the Jean Morlet Chair.

This chair has been hosted by the Centre International de
Rencontres Mathématiques (CIRM, Luminy, France) since its
creation in 2013. The Chair is named in honour of Jean Morlet
(1931-2007). He was an engineer at the French oil company Elf
(now Total) and, together with the physicist Alex Grossman,
conducted pioneering work in wavelet analysis. This theory
has since become a building block of modern mathematics. It
was at CIRM that they met on several occasions, and the center
then played host to some of the key conferences in this field.

Appointments to the Jean-Morlet Chair are made to world-
class researchers based outside France and who work in colla-
boration with local project leaders in order to conduct origi-
nal and ambitious scientific programs.The Chair is supported
financially by CIRM, Aix-Marseille Université and the City
of Marseille.

A key feature of the Chair is that it does not focus solely on
the research themes developed by Jean Morlet. The idea is to
support the freedom of pioneers in mathematical sciences and
to nurture the enthusiasm that comes from opening new ave-
nues of research.

CIRM: a beacon for international cooperation

Situated at the heart of the Parc des Calanques, an area of out-
standing natural beauty, CIRM is one of the largest conference
centers dedicated to mathematical and related sciences in the
world, with close to 3500 visitors per year. Jointly supervised
by SMF (the French Mathematical Society) and CNRS (French
National Center for Scientific Research), CIRM has been a hub
for international research in mathematics since 1981. CIRM’s
raison détre s to be a venue that fosters exchanges, pioneering
research in mathematics in interaction with other sciences
and the dissemination of knowledge to the younger scientific
community.

www.chairejeanmorlet.com

www.cirm-math.fr



Mark Pollicott * Sandro Vaienti
Editors

Thermodynamic Formalism
CIRM Jean-Morlet Chair, Fall 2019

@ Springer



Editors

Mark Pollicott Sandro Vaienti

Department of Mathematics Institute de Mathématiques de Toulon
Warwick University Toulon, France

Coventry, UK Centre de Physique Théorique de Luminy

Marseille, France

ISSN 0075-8434 ISSN 1617-9692  (electronic)
Lecture Notes in Mathematics
ISBN 978-3-030-74862-3 ISBN 978-3-030-74863-0 (eBook)

https://doi.org/10.1007/978-3-030-74863-0
Mathematics Subject Classification: 37D35, 37C35

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-030-74863-0

Il semble que la perfection soit atteinte non
quand il n’y a plus rien a ajouter, mais quand
il n’y a plus rien a retrancher
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Foreword

Bulk matter usually appears to us as solid, liquid, or gas. And some states of bulk
matter can be characterized as equilibrium states. These states have features—Ilike
temperature—which have no obvious interpretation in terms of classical mechanics.
A macroscopic theory of equilibrium states has been developed, involving some-
what obscure new quantities like entropy. This macroscopic theory of equilibrium
states is called thermodynamics.

At the end of the nineteenth century, the underlying microscopic mechanical
structure of thermodynamics was revealed by Maxwell, Boltzmann, and Gibbs:
statistical mechanics was created. It turned out that the microscopic definition of
equilibrium states involves a statistical superposition of many configurations of
particles (the volume of these configurations being related to entropy).

While the physics of statistical mechanics was clear to its founding fathers, it
must be realized that the mathematics available to them was extremely deficient
compared to what is available to us. They lacked measure theory, and the basic
ergodic theory necessary for the understanding of dynamical systems. When
these became available, the extreme mathematical richness underlying statistical
mechanics became progressively visible: the thermodynamic formalism was born.

An important element in the thermodynamic formalism is the concept of Gibbs
state. This is a mathematically local version of equilibrium states. As seen by
Sinai, Gibbs states on a one-dimensional lattice correspond to probability measures
of great interest for an important class of dynamical systems (those which are
uniformly hyperbolic). There is thus an unexpected relation between statistical
mechanics and smooth dynamics: this has many consequences. The present set of
lectures will present some aspects of the unification brought by the thermodynamic
formalism to different domains of mathematics and physics.

Bures-sur-Yvette, France David Ruelle
January 2021
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Preface

During the latter half of 2019, CIRM hosted a semester on Thermodynamic
Formalism: Applications to Probability, Geometry and Fractals (Formalisme ther-
modynamique : applications aux probabilités, a la géométrie et aux fractales). This
was under the auspices of the Jean Morlet chair programme, where the Jean Morlet
chair holder was Mark Pollicott (Warwick University) and the local coordinator
was Sandro Vaienti (University of Toulon and CPT Marseille). Luminy provided a
backdrop of great natural beauty for the diverse scientific activities. This volume
arose from minicourse notes, surveys and research articles that were a consequence
of the research workshop, summer school and conference and other scientific
activities that took place between 1st of July 2019 and the 31st of December 2019.

The name of the semester was inspired by the title of the highly influential
book Thermodynamic Formalism, by David Ruelle. The programme began with
a summer school on Thermodynamic Formalism: Modern Techniques in Smooth
Ergodic Theory (Formalisme thermodynamique : Techniques modernes en théorie
ergodique) organized by Mark Pollicott and Sandro Vaienti, which had a stimulating
mixture of short lecture courses and individual keynote speakers. The aim of the
school was to introduce participants to some of the current themes and ideas within
the broad panorama of thermodynamic formalism and, in particular, its applications
to geometry, probability theory and ergodic theory, dynamical systems, fractals,
and number theory. At the end of the semester, there was a large conference
on Thermodynamic Formalism: Dynamical Systems, Statistical Properties and
their Applications Formalisme thermodynamique : Systémes dynamiques, propriétés
statistiques et leur applications. The scientific and organizing committee consisted
of: Matthew Nicol (University of Houston), Mark Pollicott, Serge Troubetzkoy
(Aix-Marseille University), and Sandro Vaienti. This conference brought together
experts in thermodynamic formalism and specialists in related areas to review
the current state of the subject and its myriad applications. The conference was
enlivened by coinciding with a national rail strike. In addition, there was a more
focused small research workshop Thermodynamic Formalism: Ergodic Theory
and Validated Numerics Formalisme thermodynamique : Théorie ergodique et
validation numérique, which further added to the diversity of the topics.

ix



X Preface

We now briefly describe the contents of this volume. We have grouped the
chapters according to sub-areas of the subject even though they share a common use
of “thermodynamic ideas” (including specification, Gibbs measures or equilibrium
states and transfer operators).

Part I deals with two of the basic tools in the area: specification and expansive-
ness. The substantial survey by Climenhaga and Thompson on Bowen’s specifica-
tion property and its generalizations illustrates the role of this classical technique
to show uniqueness of equilibrium measures. The chapter by Troubetzkoy and
Varandas further explores the interrelationship between expansiveness and other
familiar dynamical properties.

Part II contains a chapter dedicated to thermodynamical formalism in the context
of low dimensional systems, an area where this approach has proved fruitful. The
chapter by Mayer and Urbanski gives an exposition of these ideas in the context of
complex holomorphic maps.

Part III contains chapters on probability and ergodic theory. Conze’s survey
illustrates the connections with classical ergodic theory, cocycles and recurrence.
In a similar spirit, the chapter by Péne and Saussol describes with visits to small
sets. On the other hand, the chapter by Dragicevic and Hafouta deals with stronger
statistical properties and invariance principles, and that of Ngo and Peigne deals
with random walks.

The theme of Part IV is the application of thermodynamic ideas to geometry.
The chapter by Broise-Alamichel, Parkkonen and Paulin on the rate of mixing for
equilibrium states in negative curvature and trees corresponds to a lecture course
given by the third author. The chapter by Aimino and Pollicott deals with translation
surfaces, and the chapters by Kao and Pollicott and Sharp deal with the pressure
metric on moduli spaces.

Finally, Part V contains chapters on fractal geometry. The first is illustrated by
the chapters by Falconer, Fraser and Simon. Falconer’s chapter addresses different
notions of dimension (box dimension, Hausdorff dimension and, now, intermediate
dimension). The chapter by Feng and Simon deals with iterated function schemes
and dimension estimates. Finally, the chapter of Fraser focuses on one of the
motivating examples in this area: The Bedford-McMullen carpet. Finally, Matheus’
chapter explores visible parts of fractal sets.

Acknowledgments We are grateful to the director and staff at CIRM for their help and support
throughout the programme. The semester received generous core funding by CIRM and the
University of Aix-Marseilles. There was additional funding from the city of Marseille, the two
Marseille laboratories I12M and CPT, CNRS-Peps, Labex Archimede, Labex Carmin, FRUMAM,
and ANR grants. Specific activities benefited from gratefully received targeted support from the
Clay Institute, the US National Science Foundation, the UK Engineering and Physical Sciences
Research Council, and the European Mathematical Society.

Kenilworth, UK Mark Pollicott
Marseille, France Sandro Vaienti
January 2021
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Part I
Specifications and Expansiveness



Chapter 1 )
Beyond Bowen’s Specification Property Shethie

Vaughn Climenhaga and Daniel J. Thompson

Abstract A classical result in thermodynamic formalism is that for uniformly
hyperbolic systems, every Holder continuous potential has a unique equilibrium
state. One proof of this fact is due to Rufus Bowen and uses the fact that such
systems satisfy expansivity and specification properties. In these notes, we survey
recent progress that uses generalizations of these properties to extend Bowen’s
arguments beyond uniform hyperbolicity, including applications to partially hyper-
bolic systems and geodesic flows beyond negative curvature. We include a new
criterion for uniqueness of equilibrium states for partially hyperbolic systems with
1-dimensional center.

1.1 Introduction

We survey recent progress in the study of existence and uniqueness of measures of
maximal entropy and equilibrium states in settings beyond uniform hyperbolicity
using weakened versions of specification and expansivity. Our focus is a long-
running joint project initiated by the authors in [1], and extended in a series of
papers including [2, 3]. This approach is based on the fundamental insights of Rufus
Bowen in the 1970s [4, 5], who identified and formalized three properties enjoyed
by uniformly hyperbolic systems that serve as foundations for the equilibrium state
theory: these properties are specification, expansivity, and a regularity condition
now known as the Bowen property. We relax all three of these properties in order
to study systems exhibiting various types of non-uniform structure. These notes
start by recalling the basic mechanisms of Bowen, and then gradually build up
in generality, introducing the ideas needed to move to non-uniform versions of

V. Climenhaga
Department of Mathematics, University of Houston, Houston, TX, USA
e-mail: climenha@math.uh.edu

D. J. Thompson (P<)
Department of Mathematics, Ohio State University, Columbus, OH, USA
e-mail: thompson@math.osu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 3
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4 V. Climenhaga and D. J. Thompson

Bowen’s hypotheses. The generality is motivated by, and illustrated by, examples:
we discuss applications in symbolic dynamics, to certain partially hyperbolic
systems, and to wide classes of geodesic flows with non-uniform hyperbolicity.
This survey has its roots in the authors’ 6-part minicourse at the Dynamics Beyond
Uniform Hyperbolicity conference at CIRM in May 2019.

Section 1.2 describes Bowen’s result for MMEs and the simplest case of our
generalization. It begins by recalling the basic ideas of thermodynamic formalism
(Sect. 1.2.1) and outlining Bowen’s original argument in the simplest case: the mea-
sure of maximal entropy (MME) for a shift space with specification (Sect. 1.2.2). In
Sect. 1.2.3, we introduce the main idea of our approach, the use of decompositions
to quantify the idea of “obstructions to specification”, and we give an application to
B-shifts. Moving beyond the symbolic case requires the notion of expansivity, and
in Sect. 1.2.4 we discuss the role this plays in Bowen’s argument.

Section 1.3 develops our general results for discrete-time systems. The notion
of “obstructions to expansivity” is introduced in Sect. 1.3.1, and an application to
partial hyperbolicity (the Mafié example) is described in Sect. 1.3.2. Combining the
notions of obstructions to specification and expansivity leads to the general result for
MMEs in discrete-time in Sect. 1.3.3, which is applied in Sect. 1.3.4 to the broader
class of partially hyperbolic diffeomorphisms with one-dimensional center. The
extension to equilibrium states for nonzero potential functions is given in Sect. 1.3.5.

Section 1.4 is devoted to equilibrium states for geodesic flows, with particular
emphasis on the case of non-positive curvature, which is one of the most widely
studied examples of a non-uniformly hyperbolic flow. After recalling some geomet-
ric background in Sect. 1.4.1, we give an introduction in Sect. 1.4.2 to the ideas in
the paper [3], including the main “pressure gap” criterion for uniqueness, and how to
decompose the space of orbit segments using a function A that measures curvature of
horospheres. We also outline recent results for manifolds without conjugate points
and CAT(—1) spaces. In Sect. 1.4.3, we discuss how to improve ergodicity of the
equilibrium states in non-positive curvature to the much stronger Kolmogorov X -
property. Finally, in Sect. 1.4.4, we describe our proof of Knieper’s “entropy gap”
for geodesic flow on a rank 1 non-positive curvature manifold.

To illustrate the broad utility of the specification-based approach to uniqueness,
we mention the following applications of the machinery we describe, which go well
beyond what we are able to discuss in detail in this survey.

* Measures of maximal entropy for symbolic examples: S-shifts, S-gap shifts, and
their factors [1]; certain shifts of quasi-finite type [6]; S-limited shifts [7]; shifts
with “one-sided almost specification” [8]; (—f)-shifts [9];

* Equilibrium states for symbolic examples: B-shifts in [10], their factors in [6, 11]
(in particular, [11] studies general conditions under which the “pressure gap”
condition holds); S-gap shifts in [12]; certain «-8 shifts [13]; applications to
Manneville-Pomeau and related interval maps [10].



1 Beyond Bowen’s Specification Property 5

» Diffeomorphisms beyond uniform hyperbolicity: Bonatti—Viana examples [14];
Mafié examples [15]; Katok examples [16]; certain partially hyperbolic attractors
[17].

* Geodesic flows: non-positive curvature [3]; no focal points [18, 19]; no conjugate
points [20]; CAT(—1) geodesic flows [21].

We also mention two related results: the machinery we describe has recently been
used to prove “denseness of intermediate pressures” [22]; an approach to uniqueness
(and non-uniqueness) for equilibrium states using various weak specification prop-
erties has been developed by Pavlov [23, 24] for symbolic and expansive systems.

The current literature in the field is vibrant and continually growing. The scope
of this article is restricted to the specification approach to equilibrium states, and we
largely do not address the literature beyond that. Other uses for the specification
property that we do not discuss include large deviations properties, multifractal
analysis, and universality constructions; see e.g. [25-31] (among many others).
Different variants of the specification property are sometimes more appropriate for
these arguments; various definitions are surveyed in [32, 33].

We stress that we do not address the use of other techniques to study existence
and uniqueness of equilibrium states. These approaches include transfer operator
techniques, Margulis-type constructions, symbolic dynamics, and the Patterson-
Sullivan approach. We suggest the following recent references as a starting point
to delve into the literature: [34—39]. Classic references include [40-42].

We also do not discuss the large and important area of statistical properties
for equilibrium states. If f is a C!*® Anosov diffeomorphism (or if X is an
Axiom A attractor) then the unique equilibrium state for the geometric potential
¢(x) = —log|det Df|gu(y)| is the physically relevant Sinai—-Ruelle-Bowen (SRB)
measure. This provides important motivation and application for thermodynamic
formalism, and this general setting is one of the major approaches to studying the
statistical properties of the SRB measure. References include [40, 41, 43—48].

We sometimes adopt a conversational writing style. We hope that the informal
style will be helpful for current purposes; we invite the reader to look at our original
papers, particularly [1-3] for a more precise account.

1.2 Main Ideas: Uniqueness of the Measure of Maximal
Entropy

We introduce our main ideas in the case of a discrete-time dynamical system (X, f).
In this section, we often consider the case when (X, f) is a shift space. We also
consider the general topological dynamics setting where X is a compact metric
space and f: X — X is continuous. In many of our examples of interest, X is
a smooth manifold and f is a diffeomorphism.
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1.2.1 Entropy and Thermodynamic Formalism

For a probability vector p = (py, ..., pn) € [0, 11V, where > pi = 1, the entropy
of pis H(p) = Y, —pi log p;. The following is an elementary exercise:

* maxp H(p) =logN;
« Hp)=logN ¢ pi=, foralli <« p;=p;foralli, ;.

These general principles lie at the heart of thermodynamic formalism for uniformly
hyperbolic dynamical systems, with ‘probability vector’ replaced by ‘invariant
probability measure’:

* there is a function called ‘entropy’ that we wish to maximize;
* it is maximized at a unique measure (variational principle and uniqueness);
 that measure is characterized by an equidistribution (Gibbs) property.

Now we recall the formal definitions, referring to [49-52] for further details and
properties.

Let X be a compact metric space and f: X — X a continuous map. This gives
a discrete-time topological dynamical system (X, f). Let M¢(X) denote the space
of Borel f-invariant probability measures on X.

When f exhibits some hyperbolic behavior, My (X) is typically extremely
large—an infinite-dimensional simplex—and it becomes important to identify cer-
tain “distinguished measures” in M7 (X). This includes SRB measures, measures
of maximal entropy, and more generally, equilibrium measures.

Definition 1.2.1.1 (Measure-Theoretic Kolmogorov-Sinai Entropy) Fix n €
M (X). Given a countable partition o of X into Borel sets, write

Hy(@) =Y —u(A)log u(A) = / —log u(@(x)) dp(x)

Aea

for the static entropy of a, where we write «(x) for the element of « containing x.
One can interpret H,, (o) as the expected amount of information gained by observing
which partition element a point x € X lies in. Given j < k, the corresponding

dynamical refinement of « records which elements of « the iterates f/x, ..., f¥x
lie in:
k k
k=\/rTa & =)@ ).
i=j i=j

A standard short argument shows that

Hy (o™ < Hy(ad ™) + Hy (@) = Hy(ad ™) + Hyu(ad™ ),
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so that the sequence ¢, = H, (a(’)“l) is subadditive: ¢4, < ¢ + c¢p. Thus, by
Fekete’s lemma [53], lim ‘; exists, and equals inf "';’. We can therefore define the
dynamical entropy of a with respect to f to be

e 13 1 n—1y _ : 1 n—1
hy(f, o) == nlingo nHM(O‘O )_nggnH“(“O ).

The measure-theoretic (Kolmogorov—Sinai) entropy of (X, f, i) is

hu(f) = Supa h,U-(fv (X),

where the supremum is taken over all partitions o as above for which H), (o) < oo.

The variational principle [50, Theorem 8.6] states that

sup  hu(f) = htop(X, .
HeEMy(X)

where hiop(X, f) is the topological entropy of f: X — X, which we will define
more carefully below (Definition 1.2.4.2). Now we define a central object in our
study.

Definition 1.2.1.2 (MMEs) A measure 1 € My(X) is a measure of maximal
entropy (MME) for (X, f)if hy (f) = hwp(X, f); equivalently, if b, (f) < h,(f)
for every v € My(X).

The following theorem on uniformly hyperbolic systems is classical.

Theorem 1.2.1.1 (Existence and Uniqueness) Suppose one of the following is
true.

1. (X, f = o) is a transitive shift of finite type (SFT).
2. f+ M — M is a C' diffeomorphism and X C M is a compact f-invariant
topologically transitive locally maximal hyperbolic set.!

Then there exists a unique measure of maximal entropy  for (X, f).

Remark 1.1 The unique MME can be thought of as the ‘most complex’ invariant
measure for a system, and often encodes dynamically relevant information such as
the distribution and asymptotic behavior of the set of periodic points.

n particular, this holds if X = M is compact and f is a transitive Anosov diffeomorphism.
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1.2.2 Bowen’s Original Argument: The Symbolic Case
1.2.2.1 The Specification Property in a Shift Space

Following Bowen [5], we outline a proof of Theorem 1.2.1.1 in the first case, when
(X, o) is a transitive SFT. The original construction of the MME in this setting is
due to Parry and uses the transition matrix. Bowen’s proof works for a broader class
of systems, which we now describe.

Fix a finite set A (the alphaber),leto: AN — AN be the shift mapo (xyjxz...) =
x2x3 ..., and let X c AN be closed and o-invariant: o(X) = X. Here AN (and
hence X) is equipped with the metric d(x, y) = 2~ ™iMnx#wl We refer to X as
a one-sided shift space. One could just as well consider two-sided shift spaces by
replacing N with Z (and using |n| in the definition of d); all the results below would
be the same, with natural modifications to the proofs. Note that so far we do not
assume that X is an SFT or anything of the sort.

Given x € ANV andi < J, we write x[; j] = X;jXj11---x; for the word that
appears in positions i through j. We use similar notation to denote subwords of a
word w € A* := |, A". Given w € A", we write |w| = n for the length of the
word, and [w] = {x € X : x[1,,) = w} for the cylinder it determines in X. We write

L= {we A" [w] # 4}, L= <.

n>0

and refer to L as the language of X.

Definition 1.2.2.1 The topological entropy of X is hop(X) = lim, o rll log#/L,.
We often write i(X) for brevity. The limit exists by Fekete’s lemma using the fact
that log #.£,, is subadditive, which we prove in Lemma 1.2.2.1 below.

It is a simple exercise to verify that every transitive SFT has the following
property: there is T € N such that for every v, w € Lthereisu € L with [u| <t
such that vuw € L. Iterating this, we see that

for every wl, e, w* € £ there are ul, e, e
) (1.2.2.1)
such that |u'| < 7 forall i, and whu'w?u? - uFTwk e L.

We say that a shift space whose language satisfies (1.2.2.1) has the specification
property. There are a number of different variants of specification in the literature:>
for example, one might ask that the connecting words u' € L satisfy |u'| = 7,

2The terminology in the literature for these different variants (weak specification, almost specifica-
tion, almost weak specification, transitive orbit gluing, etc.) is not always consistent, and we make
no attempt to survey or standardize it here. To keep our terminology as simple as possible, we just
use the word specification for the version of the definition which is our main focus. In places where
a different variant is considered, we take care to emphasize this.
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which implies topological mixing, not just transitivity (this stronger property holds
for mixing SFTs). The version in (1.2.2.1) is sufficient for the uniqueness argument,
which is the main goal of these notes.>

Theorem 1.2.2.1 (Shift Spaces with Specification) Ler (X, o) be a shift space
with the specification property. Then there is a unique measure of maximal entropy
on X.

In the remainder of this section, we outline the two main steps in the proof of
Theorem 1.2.2.1: proving uniqueness using a Gibbs property (Sect. 1.2.2.2), and
building a measure with the Gibbs property using specification (Sect. 1.2.2.3).4

Remark 1.2 As mentioned above, the original proof that a transitive SFT has a
unique MME is due to Parry [56]. Parry constructed the MME using eigendata
of the transition matrix for the SFT, and proved uniqueness by showing that any
MME must be a Markov measure, then showing that there is only one MME among
Markov measures.

A different proof of uniqueness in the SFT case was given by Adler and Weiss,
who gave a more flexible argument based on showing that if u is the Parry measure,
then every v L p must have smaller entropy. The argument is described in [57], with
full details in [58]. A key step in the proof is to consider an arbitrary set E C X and
relate i (E) to the number of n-cylinders intersecting E. In extending the uniqueness
result to sofic shifts (factors of SFTs), Weiss [59] clarified the crucial role of what
we refer to below as the “lower Gibbs bound” in carrying out this step. This is
essentially the proof of uniqueness that we use in all the results in this survey.

The crucial difference between Theorem 1.2.2.1 and the results of Parry, Adler,
and Weiss is the construction of the MME using the specification property rather
than eigendata of a matrix. This is due to Bowen, as is the further generalization to
non-symbolic systems and equilibrium states for non-zero potentials [5]. Thus we
often refer informally to the proof below as “Bowen’s argument”.

1.2.2.2 The Lower Gibbs Bound as the Mechanism for Uniqueness

It follows from the Shannon—McMillan—Breiman theorem that if x is an ergodic
shift-invariant measure, then for p-a.e. x we have

1
— log ulxp1,,] = hu(o) asn — oo.
n

3For other purposes, and especially in the absence of any expansivity property, the difference
between < t and = t can be quite substantial, see for example [54, 55].

4The notes at https://vaughnclimenhaga.wordpress.com/2020/06/23/specification-and- the-
measure-of-maximal-entropy/ give a slightly more detailed version of this proof.


https://vaughnclimenhaga.wordpress.com/2020/06/23/specification-and-the-measure-of-maximal-entropy/
https://vaughnclimenhaga.wordpress.com/2020/06/23/specification-and-the-measure-of-maximal-entropy/
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This can be rewritten as

1
o (/L[X[l,n]]> — 0 for u-ae. x.
n

g_”hu (o)

In other words, for u-typical x, the measure p[x[1 )] decays like e (@) in the
sense that p[x[1, 1] /e’"hﬂ(") is “subexponential in n”’. The mechanism for unique-
ness in the Parry—Adler—Weiss—Bowen argument is to produce an ergodic measure
for which this subexponential growth is strengthened to uniform boundedness and
applies for all x.

The next proposition makes this Gibbs property precise and explain how
uniqueness follows; then in Sect. 1.2.2.3 we describe how to construct such a
measure. The following argument appears in [59, Lemma 2] (see also [57, 58]);
see [60] for a version that works in the nonsymbolic setting, which we will describe
in Sect. 1.2.4.4 below.

Proposition 1.1 Ler X C AN be a shift space and | an ergodic o-invariant
measure on X. Suppose that there are K, h > 0 such that for every x € X and
n € N, we have the Gibbs bounds

K~ le™ < pulxp ] < Ke™™. (1.2.2.2)

Then h = h,(0) = hp(X, 0), and u is the unique MME for (X, o).

Proof First observe that by the Shannon—-McMillan—-Breiman theorem, the upper
bound in (1.2.2.2) gives h, (o) > h, while the lower bound gives ,(0) < ho
Moreover, summing (1.2.2.2) over all words in £, gives K “lenh < ypr < Keh,
S0 hiop(X, 0) = h.

The remainder of the proof is devoted to using the lower bound to show that

hy(o) < h = h, (o) forall v € My (X) with v # . (1.2.2.3)

This will show that p is the unique MME.

Given v € M, (X), the Lebesgue decomposition theorem gives v = tvy + (1 —
t)vp for some ¢ € [0, 1] and vi, v, € Mp(X) with vy L p and vo < p. By
ergodicity, v» = w, and thus if v # u we must have t > 0. Since h,,(0) = thy, (o) +
(1 —=1)hy, (o) and hy, (o) = h,(0) < h, we see that to prove (1.2.2.3), it suffices to
prove that h,(0) < h wheneverv L p.

SWe will encounter this general principle multiple times: many of our proofs rely on obtaining uni-
form bounds (away from 0 and co) for quantities that a priori can grow or decay subexponentially.
SThis requires ergodicity of u; one can also give a short argument directly from the definition of
h, (o) that does not need ergodicity.



1 Beyond Bowen’s Specification Property 11

Writing « for the (generating) partition into 1-cylinders, we see that for any v €
My (X) we have

nhy(0) = hy(c") = hy, (0", o )<HU(Ol )
= Z —v[w]log v[w]. (1.2.2.4)

wely,

When v L u, there is a Borel set D C X such that (D) = 1 and v(D) = 0. Since
cylinders generate the o-algebra, there is D C L(X) such that u(9,) — 1 and
v(Dy,) — 0, where u(D,) = ,u( Uwel),, [w]). We break the sum in (1.2.2.4) into
two pieces, one over D, and one over D, = L, \ D,. Observe that

3 —vfwllogvfwl = —v[w](log Vil +10gv(1)n)>

weD, weD, (D")

v[w] v[w]
(v(@n)wg) oD % L) T VD 10g VD)

< (v(Dy) log#Dy) + 1,

where the last line uses the fact that Zle —pilog p; < logk whenever p; > 0,
> pi = 1, as well as the fact that —rlogr < 1 for all # € [0,1]. A similar
computation holds for O, and together with (1.2.2.4) this gives

nhy(0) <24 v(Dy) log#D, + v(D;,) log#D5. (1.2.2.5)
Using (1.2.2.2) and summing over D, gives

wO) =) ulwl=K e ™D, = #D, < K" u(Dy),

weD,

and similarly for 9, so (1.2.2.5) gives

nhy (o) <24 v(Dy)(log K + nh 4 log u(Dy))
+ (D) (log K + nh + log (D))
=2+41log K + nh + v(Dy,) log u(Dy) + v(D;) log (D).

Rewriting this as

n(hy(o) —h) <2+41log K 4+ v(Dy) log u(Dy) + v(DY) log u(D;),
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we see that the right-hand side goes to —oo as n — oo, since v(D,) — 0 and
w(®Dy) — 1, so the left-hand side must be negative for large enough n, which
implies that #,(0) < h and completes the proof. O

1.2.2.3 Building a Gibbs Measure

Now the question becomes how to build an ergodic measure satisfying the lower
Gibbs bound. There is a standard construction of an MME for a shift space, which
proceeds as follows: let v, be any measure on X such that v,[w] = 1/#L, for every
w € L,, and then consider the measures

n—1

1 1 n—1 B
= ;afvn = ];vn ook, (1.2.2.6)

A general argument (which appears in the proof of the variational principle, see for
example [50, Theorem 8.6]) shows that any weak* limit point of the sequence p,, is
an MME. If the shift space satisfies the specification property, one can prove more.

Proposition 1.2 Let (X, o) be a shift space with the specification property, let i
be given by (1.2.2.6), and suppose that ji,; —  in the weak* topology. Then . is
o-invariant, ergodic, and there is K > 1 such that u satisfies the following Gibbs

property:

K e on®) < i 1w] < Ke_"h“’P(X)for allw e L,.
Combining Propositions 1.1 and 1.2 shows that there is a unique MME p, which is
the weak* limit of the sequence u, from (1.2.2.6). Thus to prove Theorem 1.2.2.1

it suffices to prove Proposition 1.2. We omit the full proof, and highlight only the
most important part of the associated counting estimates.

Lemma 1.2.2.1 Let (X, 0) be a shift space with the specification property, with
gap size t. Then for every n € N, we have

e ®) < g, < Qe X where Q = (T + 1)eterX), (1.2.2.7)

Proof For every m,n € N, there is an injective map L+, — Ly x L, defined by
w = (W[1,m]> Wim+1.m+n])> SO #Lymin < #L,#.L,. Iterating this gives

1 1
#L < L)Y = 1y 108# L = log# Ly,

and sending k — 00 we get hyop(X) < rll log#L,, for all n, which proves the lower
bound. For the upper bound we observe that specification gives a map £, x L, —
Lin+n+r defined by mapping (v, w) to vuwu’, where u = u(v, w) € Lwith [u| <t
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Fig. 1.1 Estimating #Ly, # Lt
vVl (U 7k[w]) /”7/\'7\ w /77/\'7\

is the ‘gluing word’ provided by the specification property, and u’ is any word of
length T — |u| that can legally follow vuw. This map may not be injective because
w can appear in different positions, but each word in £, 1, can have at most (z + 1)
preimages, since v, w are completely determined by vuwu’ and the length of u. This
shows that

#L, )k.

1
#Lm+n+r = T+ 1#‘5’"#‘5" = #Lk(nJrr) > <‘C +1

Taking logs and dividing by k(n + t) gives

1

1
# > log#L, —1 1)).
k(n + 1) Lk(n-i—r) “ o+ 'L'( og#L, og(t + ))

Sending k — o0 and rearranging gives log#.L, < log(t + 1) + (n + 7)hp(X).
Taking an exponential proves the upper bound. O

With Lemma 1.2.2.1 in hand, the idea of Proposition 1.2 is to first prove the
bounds on u[w] by estimating, for each n > |w| and k € {l,...,n — |wl|},
the number of words u € L, for which w appears in position k; see Fig. 1.1. By
considering the subwords of u lying before and after w, one sees that there are at
most (#Ly) #L,y—k—|w|) such words, as in the proof of Lemma 1.2.2.1, and thus the
bounds from that lemma give

- HFHL)HELy—k—w))
< ir

khiop(X) (n—k—|w|)hop(X)
- Qe™Mort Qe op
- enhtop(X)

v (o F[w])

— Q28_|w|htop(XaU);

averaging over k gives the upper Gibbs bound, and the lower Gibbs bound follows
from a similar estimate that uses the specification property.

Next, one can use similar arguments to produce ¢ > 0 such that, for each pair
of words v, w, there are arbitrarily large j € N such that pu([v] N o [w]) >
cpu[v]u[w]; this is once again done by counting the number of long words that
have v, w in the appropriate positions.

Since any measurable sets V and W can be approximated by unions of cylinders,
one can use this to prove that lim, u(V No ™" W) > cu(V)u(W). Considering the
case when V = W is o-invariant demonstrates that p is ergodic.
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1.2.3 Relaxing Specification: Decompositions of the Language
1.2.3.1 Decompositions

There are many shift spaces that can be shown to have a unique MME despite
not having the specification property; see Sect.1.2.3.2 below for the example
that motivated the present work. We want to consider shift spaces for which the
specification property holds if we restrict our attention to “good words”, and will
see that the uniqueness result in Theorem 1.2.2.1 can be extended to this setting
provided the collection of “good words” is “large enough” in an appropriate sense.

To make this more precise, let X be a shift space on a finite alphabet, and £ its
language. We consider the following more general version of (1.2.2.1).

Definition 1.2.3.1 A collection of words G C L has specification if there exists T €
N such that for every finite set of words wl, ... wke @G, there are ul, okl e

L with [u!| < 7 such that w'u'w?u? - . - uF 1wk e £.

The only difference between this definition and (1.2.2.1) is that here we only
require the gluing property to hold for words in G, not for all words.

Remark 1.3 In particular, G has specification if there is T € N such that for every
v,w € G, there is u € L with |u|] < 7 and vuw € G, because iterating this
property gives the one stated above. The property above, which is sufficient for our
uniqueness results, is a priori more general because the concatenated word is not
required to lie in G.

Now we need a way to say that a collection G on which specification holds is
sufficiently large.

Definition 1.2.3.2 A decomposition of the language L consists of three collections
of words C?, G, C* C L with the property that

for every w € L, there are u” € CP,v € G, u* € C* such that w = uPvu’.

Given a decomposition of £, we also consider for each M € N the collection of
words

GM = (uPvu’ € L:u? €CP,v e G u’ €C, uP|, |u’| < M).

If each GM has specification, then the set C” U C* can be thought of as the set of
obstructions to the specification property.

Definition 1.2.3.3 The entropy of a collection of words C C L is

1
h(C) = lim log#C,.
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Theorem 1.2.3.1 (Uniqueness Using a Decomposition [1]) Let X be a shift space
on a finite alphabet, and suppose that the language L of X admits a decomposition
CPGC* such that

() every collection GM has specification, and
In AP ucC®) < h(X).

Then (X, o) has a unique MME 1.

Remark 1.4 Note that £ = (Jysen GM; the sets GM play a similar role to the regular
level sets that appear in Pesin theory.” The gap size T appearing in the specification
property for GY is allowed to depend on M, just as the constants appearing in the
definition of hyperbolicity are allowed to depend on which regular level set a point
lies in. Similarly, for the unique MME & one can prove that limy_, o ,u(gM ) =1,
which mirrors a standard result for hyperbolic measures and Pesin sets.

Remark 1.5 In fact we do not quite need every w € L to admit a decomposition as
in definition 1.2.3.2. It is enough to have C?, G, C° C L such that h(L\(CPGC")) <
h(X), in addition to the conditions above [6].

We outline the proof of Theorem 1.2.3.1. The idea is to mimic Bowen’s proof
using Propositions 1.1 and 1.2 by completing the following steps.

1. Prove uniform counting bounds as in Lemma 1.2.2.1.

2. Use these to establish the following non-uniform Gibbs property for any limit
point i of the sequence of measures in (1.2.2.6): there are constants K, Ky > 1
such that forall M € Nand w € g”

K;ef\w\hmp()() < ufw] < Ke 1wihopX), (1.2.3.1)

We emphasize that the Gibbs property is non-uniform in the sense that the lower
Gibbs constant depends on M.® The upper bound that we will obtain from our
hypotheses is uniform in M. On a fixed G, we have uniform Gibbs estimates.

3. Give a similar argument for ergodicity, and then prove that the non-uniform lower
Gibbs bound in (1.2.3.1) still gives uniqueness as in Proposition 1.1.

Once the uniform counting bounds are established, the proof of (1.2.3.1) follows the
same approach as before. We do not discuss the third step at this level of generality
except to emphasize that it follows the approach given in Proposition 1.1.

7Since GM corresponds to a collection of orbit segments rather than a subset of the space, the most
accurate analogy might be to think of GM as corresponding to orbit segments that start and end in
a given regular level set.

8The constant Ky increases exponentially with the transition time in the specification property for
GM, so we do not expect any explicit relationship between M and K in general. Examples of
S-gap shifts (see Remark 1.9) can be easily constructed to make the constants K ;,[1 decay fast.
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For the counting bounds in the first step, we start by observing that the bound
#L, > "X did not require any hypotheses on the symbolic space X and thus
continues to hold. The argument for the upper bound in Lemma 1.2.2.1 can be easily
adapted to show that there is a constant Q such that#G,, < Qe X) for all n. Then
the desired upper bound for #.£, is a consequence of the following.

Lemma 1.2.3.1 Foranyr € (0, 1), there is M such that #QM > r# L, forall n.

Proof Leta; = #(Cf’ U ij)e_ihtOP(X), so that in particular Y a; < oo by (II). Since
any w € £, can be written as w = uPvu® for some u € Cf, vegGj,andw € C;
withi + j + k = n, we have

#L <HGY + > HCHHGHHC) <#GY + D Qe ™),

i+j+k=n i+j+k=n
max(i,k)>M max(i,k)>M

where the second inequality uses the upper bound #G; < QelMov™X) Since Sa; <
00, there is M such that

> @@ Qe ™ < (1 - )" ® < (1 —r)#L,,

i+j+k=n
max(i,k)>M

where the second inequality uses the lower bound #.£,, > ¢"X) Combining these
estimates gives #.£, < #gﬁ/l + (1 — r)#L,, which proves the lemma. O

The same specification argument that gives the upper bound on #G, gives a
corresponding upper bound on QQ” (with a different constant), and thus we deduce
the following consequence of Lemma 1.2.3.1.

Corollary 1.2.3.1 There are constants a, A > 0 and M € N such that
MorX) < g < AMor(X) gpg #Q,IIVI > qeMtor(X) foralln € N.

Remark 1.6 In fact, the proof of Lemma 1.2.3.1 can easily be adapted to show a
stronger result: given any y > 0 and r € (0, 1), there is M such that if D, C L,
has #D,, > ye"’“"P(X ), then #(Dy, ﬂg,’,” ) > r#D,,. These types of estimates are what
lie behind the claim in Remark 1.4 that the (non-uniform) Gibbs property implies
w(@GY) - 1as M — oo.

1.2.3.2 An Example: Beta Shifts

Given areal number 8 > 1, the corresponding B-transformation f: [0, 1) — [0, 1)
is f(x) = Bx (mod 1).Let A ={0,1,...,[B] — 1}; then every x € [0, 1) admits
acoding y = m(x) € AN defined by y, = [Bf" '(x)], and we have 7 o f =
o om, where o: AN — AN is the left shift. Observe that m(x), = a if and only if
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/ A
L | n F2(1(21)) fu@n) INTEI)

Fig. 1.2 Coding a B-transformation

f”_l(x) € I,, where the intervals I, are as shown in Fig. 1.2.2 Given n € N and
w e A", let

n

Tw) =) £ V)

k=1

be the interval in [0, 1) containing all points x for which the first n iterates are coded
by w. The figure shows an example for which f”(I(w)) is not the whole interval
[0, 1); it is worth checking some other examples and seeing if you can tell for which
words f"(I(w)) is equal to the whole interval. Observe that if § is an integer then
this is true for every word.

Definition 1.2.3.4 The B-shift Xg is the closure of the image of 7, and is o-
invariant. Equivalently, Xz is the shift space whose language L is the set of all
w € A* such that I (w) # @; thus y € AN is in Xgifand only if I(y1---y,) # 9
foralln € N.

For further background on the B-shifts, see [61-63]. We summarize the proper-
ties relevant for our purposes.

Write < for the lexicographic order on AN and observe that 7 is order-preserving.
Let z = limy »; w(x) denote the supremum of Xg in this ordering. It will be
convenient to extend < to A*, writing v < w if for n = min(|v|, |[w|) we have
Vl,n] = W[1,n]-

Remark 1.7 Observe that on A* U AN, < is only a pre-order, because there are
v # w such that v < w and w < v; this occurs whenever one of v, w is a prefix of
the other.

9Formally, I, = {x € [0, 1) : |Bx] = a},s0 I, = [g, 1)ifa=T[B]—1,and [;, “73'1) otherwise.
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Fig. 1.3 A graph representation of Xg

The B-shift can be described in terms of the lexicographic ordering, or in terms
of the following countable-state graph:

e the vertex setis No ={0,1,2,3,...};
* the vertex n has 1 4z, outgoing edges, labeled with {0, 1, ..., z,11}; the edge
labeled z,,+1 goes to n 4 1, and the rest go to the ‘base’ vertex 0.

Figure 1.3 shows (part of) the graph when z = 2102001 .. ., as in Fig. 1.2.
Proposition 1.3 Givenn € N and w € A", the following are equivalent.

1. I(w) # @ (which is equivalent to w € L(Xp) by definition).
2. wijn X zforeveryl < j <n.
3. w labels the edges of a path on the graph that starts at the base vertex 0.

Idea of Proof Using induction, check that the following are equivalent for every
neN0<k<n,andw € A".

1. f"(I(w)) = fk(l(z[l,k]), where we write I (z[1,07) := [0, 1).

2. wija X zforevery 1 < j <n,and k is maximal such that w;,—k+1,n] = 2[1,4].

3. w labels the edges of a path on the graph that starts at the base vertex 0 and ends
at the vertex k.

Corollary 1.2.3.2 Given x € AN, the following are equivalent.

1. x € Xg.
2. o"(x) <Xz for every n.
3. x labels the edges of an infinite path of the graph starting at the vertex 0.

Exercise 1.1 Prove that Xz has the specification property if and only if z does not
contain arbitrarily long strings of Os.

In fact, Schmeling showed [64] that for Lebesgue-a.e. 8 > 1, the 8-shift Xg does
not have the specification property. Nevertheless, every S-shift has a unique MME.
This was originally proved by Hofbauer [65] and Walters [66] using techniques not
based on specification. Theorem 1.2.3.1 gives an alternate proof: writing G for the
set of words that label a path starting and ending at the base vertex, and C® for the
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set or words that label a path starting at the base vertex and never returning to it,
one quickly deduces the following.

* GC’ is a decomposition of L.

« G is the set of words labeling a path starting at the base vertex and ending
somewhere in the first M vertices; writing t for the maximum graph distance
from such a vertex to the base vertex, GY has specification with gap size 7.

* #C; =1 forevery n, and thus £(C°) = 0 < hp(Xp) = log .

This verifies the conditions of Theorem 1.2.3.1 and thus provides another proof of
uniqueness of the MME.

Remark 1.8 Because the earlier proofs of uniqueness did not pass to subshift factors
of B-shifts, it was for several years an open problem (posed by Klaus Thomsen)
whether such factors still had a unique MME. The inclusion of this problem in
Mike Boyle’s article “Open problems in symbolic dynamics” [67] was our original
motivation for studying uniqueness using non-uniform versions of the specification
property, which led us to formulate the conditions in Theorem 1.2.3.1; these can be
shown to pass to factors, providing a positive answer to Thomsen’s question [1].

Remark 1.9 Theorem 1.2.3.1 can be applied to other symbolic examples as well,
including S-gap shifts [1]. The S-gap shifts are a family of subshifts of {0, 1}%
defined by the property that the number of 0’s that appear between any two 1’s is
an element of a prescribed set S C Z. A specific example is the prime gap shift,
where S is taken to be the prime numbers. The theorem also admits an extension
to equilibrium states for nonzero potential functions along the lines described in
Sect. 1.3.5 below, which has been applied to g-shifts [10], S-gap shifts [12], shifts
of quasi-finite type [6], and «-8 shifts (which code x — o + Bx (mod 1)) [13].

1.2.3.3 Periodic Points

Itis often the case that one can prove a stronger version of specification, for example,
when X is a mixing SFT.

Definition 1.2.3.5 Say that G C L has periodic strong specification if there exists
7 € N such that for all w!, ..., wk € G, there are ul, o uk e L: such that

v:=wlu! . wku* € £, and moreover x = vvvvv --- € X.

There are two strengthenings of specification, in the sense of (1.2.2.1), here: first,
we assume that the gap size is equal to 7, not just < 7, and second, we assume that
the “glued word” can be extended periodically after adding ¢ more symbols.

If we replace specification in Theorem 1.2.3.1 with periodic strong specification
for each GY, then the counting estimates in Lemma 1.2.2.1 immediately lead to the
following estimates on the number of periodic points: writing Per, = {x € X :
o"x = x}, we have

C e X) < gper, < CehionX)
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Using this fact and the construction of the unique MME given just before Proposi-
tion 1.2, one can also conclude that the unique MME p is the limiting distribution
of periodic orbits in the following sense:

1 weak*
6y ——> L asn — oQ.
#Per, Z x H

x€Per,

This argument holds true in the classical Theorem 1.2.2.1, and for B-shifts. It also
extends beyond the symbolic setting, and a natural analogue of the argument holds
for regular closed geodesics on rank one non-positive curvature manifolds.

1.2.4 Beyond Shift Spaces: Expansivity in Bowen’s Argument

Now we move to the non-symbolic setting and describe how Bowen’s approach
works for a continuous map on a compact metric space. In particular, his assump-
tions apply to and were inspired by the case when X is a transitive locally maximal
hyperbolic set for a diffeomorphism f. First we recall some basic definitions.

1.2.4.1 Topological Entropy
Definition 1.2.4.1 Given n € N, the nth dynamical metric on X is
dn(x, y) :=max{d(f*x, f*y): 0 <k <n}. (1.2.4.1)
The Bowen ball of order n and radius € > 0 centered at x € X is
By(x,e):={y e X :dy(x,y) <e€}. (1.2.4.2)

A set E C X is called (n, €)-separated if d,,(x,y) > € forall x, y € E withx # y;
equivalently, if y ¢ B, (x, €) for all such x, y.

We define entropy in a more general way than is standard, reflecting our focus on
the space of finite-length orbit segments X x N as the relevant object of study;
this replaces the language L that we used in the symbolic setting. We interpret
(x,n) € X x N as representing the orbit segment (x, fx, f2x, ...,f”’lx). Then
the analogy is that a cylinder [w] for a word in the language corresponds to a Bowen
ball B, (x, €) associated to an orbit segment (x, n) € X x N. Given a collection of
orbit segments D C X x N, for each n € N we write

D, ={xeX:(x,n) €D}

for the collection of points that begin a length-n orbit segment in D.
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Definition 1.2.4.2 (Topological Entropy) Given a collection of orbit segments
D cC X xN, foreache > 0andn € N we write

A(D, e,n) :=max{#E : E C D, is (n, €)-separated}.

The entropy of D at scale € > 0 is
.1
h(D,e):= lim log A(D, €, n),
n—»oo n

and the entropy of D is

h(D) := lim h(D, e).
e—0

When D = Y x N for some ¥ C X, we write A(Y,e,n) = AY x N, ¢,n),
hop(Y,€) = h(Y x N, €) and hop(Y) = lime—o hop(Y, €). In particular, when
D = X x N we write hpp(X, f) = hwop(X) = h(X x N) for the topological
entropyof f: X — X.

When different orbit segments in D are given weights according to their ergodic
sum w.r.t. a given potential ¢, we obtain a notion of topological pressure, which we
will discuss in Sect. 1.3.5.

Theorem 1.2.4.1 (Variational Principle) Ler X be a compact metric space and
f: X — X a continuous map. Then

hop(X, f) = sup  hu(f).
HEMf(X)

The following construction forms one half of the proof of the variational
principle.

Proposition 1.4 (Building a Measure of Almost Maximal Entropy) With X, f
as above, fix € > 0, and for eachn € N, let E,, C X be an (n, €)-separated set.
Consider the Borel probability measures

1 1 n—1 1 n—1 ~

Uy = § Ses fn = § fEo = § o f. (1.2.4.3)

#E, n & n —
xekE, k=0 k=0

Let pin; be any subsequence that converges in the weak*-topology to a limiting
measure ji. Then u € My (X) and

1
hu(f) = lim  log#E,,.
J

aoonj
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In particular, for every § > 0O there exists u € My(X) such that h,(f) >
hiop(X,, [, 8).

Proof See [50, Theorem 8.6]. O

Corollary 1.2.4.1 Let X, f be as above, and suppose that there is § > 0 such that
hwop(X, f,8) = hwp(X, f). Then there exists a measure of maximal entropy for
(X, f). Indeed, given any sequence {E, C X}°2 | of maximal (n, 8)-separated sets,
every weak*-limit point of the sequence [ty from (1.2.4.3) is an MME.

In our applications, it will often be relatively easy to verify that hyp(X, f, ) =
hiop(X, f) for some § > 0, and so Corollary 1.2.4.1 establishes existence of a
measure of maximal entropy. Thus the real challenge is to prove uniqueness, and
this will be our focus.

1.2.4.2 Expansivity

In Bowen’s general result, the assumption that X is a shift space is replaced by the
following condition.

Definition 1.2.4.3 (Expansivity) Givenx € X and € > 0, let

Irx):={yeX:d(f"y, f"x) <eforalln >0} = m B.(x, €)
neN

be the forward infinite Bowen ball. If f is invertible, let
Io(x):={yeX:d(f"y, f"x) <eforalln >0}
be the backward infinite Bowen ball, and let
Fe(x):=TrHx)NT (x) ={y € X:d(f"y, f"x) < eforalln € Z}

be the bi-infinite Bowen ball. The system (X, f) is positively expansive at scale
€ > 0if I‘: (x) = {x} forall x € X, and (two-sided) expansive at scale ¢ > 0 if
I'e(x) = {x}. The system is (positively) expansive if there exists € > 0 such that it
is (positively) expansive at scale €.

Itis an easy exercise to check that one-sided shift spaces are positively expansive.
A system (X, f) is uniformly expanding if there are €, > > O such thatd(fy, fx) >
e*d(y, x) whenever x,y € X have d(x,y) < e. Iterating this property gives
diam B, (x, €) < ee~" for all n, and thus I‘j(x) = {x}, so (X, f) is positively
expansive.

Two-sided shift spaces can easily be checked to be (two-sided) expansive, and
we also have the following.
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Proposition 1.5 If X is a hyperbolic set for a diffeomorphism f, then (X, f) is
expansive.

Sketch of Proof Choose ¢ > 0 small enough that given any x,y € X with
d(x,y) < e, the local leaves W*(x) and W*(y) intersect in a unique point [x, y]
(we do not require that this point is in X). Write

d“(x,y) =d(x,[x,y]) and d’(x,y)=d(y,[x,y].
Passing to an adapted metric if necessary, hyperbolicity gives A > 0 such that

d(f"x, fy) = d" (x, y) if d(f*x, f¥y) < eforall0 <k <n, (1.2.4.4)

d(f7"x, fy) = Md (x, y) if d(f *x, f*y) < eforall 0 < k < n.
(1.2.4.5)

In particular, if y € I'e(x) then d“(f"x, f"y) is uniformly bounded for all n, so
d"(x,y) = 0, and similarly for d*, which implies that x = [x, y] = y.

One important consequence of expansivity is the following.
Proposition 1.6 If (X, f) is expansive at scale €, then hyop(X, f, €) = hiop(X, f).

Two Proof Ideas We outline two proofs in the positively expansive case.

One argument uses a compactness argument to show that for every 0 < § < e,
there is N € N such that By(x,€) C B(x,d) for all x € X. This implies that
Buyn(x,€) C Bp(x,98) for all x, and then one can show that the definition of
topological entropy via (n, €)-separated sets gives the same value at § as at €.

Another method, which is better for our purposes, is to observe that since e-
expansivity gives (1), Bn(x, €) = {x} for all x, one can easily show that for every
v e My(X), we have:

if B is a partition with d,-diameter < ¢, then 8 is generating for (f", v).
Given a maximal (n, €)-separated set E,, we can choose a partition S, such that

each element of 8, is contained in B, (x, €) for some x € E,, so 8, has exactly #E,
elements. Then we have

1 1 1 1
hu(f) = nh,u.(fn) = nh,u.(fnv Bn) < nHM(ﬁn) =< " IOg#En- (1.2.4.6)

Sending n — oo gives hy, (f) < hwp(X, f, €), and taking a supremum over all
n € My (X) proves that hop(X, f, €) = hiop(X, f).
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Fig. 1.4 Bookkeeping in the specification property

1.2.4.3 Specification

The following formulation of the specification property is given for a collection of
orbit segments D C X x N, and thus is not quite the classical one, but reduces
to (a version of) the classical definition when we take D = X x N. Observe that
when X is a shift space and we associate to each (x, n) the word x[1 ,) € L(X), the
following agrees with the definition from (1.2.2.1).

Definition 1.2.4.4 (Specification) A collection of orbit segments D C X x N has
the specification property at scale § > 0 if there exists T € N (the gap size or
transition time) such that for every (x1, n1), ..., (xk, ng) € D, thereexist 0 = 7 <
T, <--- < T eNandy e X such that

fT(y) € By (xi,8) and Ty — (Ti—y +nj—y) € [0, 7] forall 1 <i <Kk,

see Fig. 1.4. That is, starting from time 7; the orbit of y shadows the orbit of x;, and
moreover, writing s; = T; + n; for the time at which this shadowing ends, we have

si <Tiyg <s;i+tforalll <i <k.

We say that D has the specification property if the above holds for every § > 0.
We say that (X, f) has the specification property if X x N does. We say that D has
periodic specification if y can be chosen to be periodic with period in [sk, sk + T].

First we explain how specification (for the whole system) is established in the
uniformly hyperbolic case. Recall from (1.2.2.1) and the paragraph preceding it
that in the symbolic case, one can establish specification by verifying it in the case
k = 2 and then iterating. In the non-symbolic case, the proof of specification usually
follows this same approach, but one needs to verify a mildly stronger property for
k = 2 to allow the iteration step; one possible version of this property is formulated
in the next lemma.

Lemma 1.2.4.1 Given f: X — X, suppose that 51 > 0, 62 > 0, x € (0, 1), and
t € N are such that for every (x1,n1), (x2,n2) € X x N, therearet € {0, 1, ..., t}
andy € X such that

d(ffy, ffxr) < 81x™* forall 0 < k < ny and dp, (f™ 'y, x2) < 8.
(1.2.4.7)

Then (X, ) has the specification property at scale 53 + 61/(1 — x) with gap size t.
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Fig. 1.5 Proving specification using a one-step property

Proof Given (x1,n1), ..., (xg,ng) € X x N, we will apply (1.2.4.7) iteratively to
produce yi, ..., yr and T1, ..., Tx € N such that writing 8’ = 8, + 8;/(1 — x), we
have

Fli(yj) € By (x;,8) forall 1 <i < j <k. (1.2.4.8)

Once this is done, yi is the desired shadowing point. See Fig. 1.5 for an illustration
of the following procedure and estimates.

Along with y;, T;, we will produce s; = T; +n; and t; € {0, ..., T} such that
Ti+1 = s; + t;. Start by putting y; = x1, 71 = 0, and s1 = n. Then apply (1.2.4.7)
to (y1,s1) and (x2,n72) to get yo» € X and 1 € {0,1,..., 7} such that writing
T> = 51 + t1, we have

d(f*ya, fEy1) < 81 ¥ forall 0 < k < sy and d, (f 22, x2) < 8.
In general, once y;, s; are determined (with 7; = s; — n;), we apply (1.2.4.7) to
(yi,si) and (xj+1,n+1) togett; € {0,1,...,7} and y;11 € X such that writing
Ti+1 = s; +t;, we have
d(fFyicr, fFyi) < 81" forall0 < k < s; and dy,, (f 4 yig1, xig1) < 82
Now we can verify (1.2.4.8) by observing that forall 1 <i < j <k, we have
j—1

d (FT G T G0) D d (FT o), £T ()

=i

j—1
. 81
< Sy xS , 1.2.4.9
_; < T (12.4.9)
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(the last inequality uses the fact that s, —s; > £ —i), and also d, (f Ti(y), xi) < 82,
o)

. . . . 31
oy (i 119)) < doy Cois 190 4 o (T [Ty <824 =7

O

Proposition 1.7 If X is a topologically transitive locally maximal hyperbolic set
for a diffeomorphism f, then (X, f) has the specification property.

Proof By Lemma 1.2.4.1, it suffices to show that for every sufficiently small § > 0,
there are x € (0, 1) and T € N such that for every (x1, n1), (x2,n2) € X x N, there
aret € {0,1,..., 7} and y € X such that (1.2.4.7) holds. To prove this, let §, p > 0
be such that

» every x € X haslocal stable and unstable leaves Wy (x) and Wy’ (x) with diameter
< 6, and

» forevery x, y € X withd(x, y) < p, the intersection Wy (x) N Wy (y) is a single
point, which lies in X.

By topological transitivity and compactness, there is T € N such that for every
x,y € X thereis r € {0,1,...,t} with d(f'x,y) < p, and thus f"(W§(x)) N
Wi (y) # 0.

Using this fact, given (x1,n1), (x2,n2) € X x N,wecanletr € {0,1,...,7}
be such that f*(Wj'(f" x1)) intersects W; (x2). Choosing z in this intersection and
putting y = £~ (z), we see that y satisfies (1.2.4.7) with §; = 8, = 8, and thus
Lemma 1.2.4.1 proves the proposition. O

Remark 1.10 Uniform contraction of f along W* is not used; to prove specification
at scale &', it would suffice to know that if x, y lie on the same local stable leaf and
d(x,y) < 87, then the same is true of f(x), f(y), which still gives the second half
of (1.2.4.7). In particular, this follows as soon as ||Df|gs|| < 1. The same idea can
also be applied to obtain specification on suitable collections G C X x N, and can
be extended naturally to the continuous-time case.

We also emphasize that the exponential contraction asked for in the first half
of (1.2.4.7), which is obtained from uniform backwards contraction along W*, can
be significantly weakened. What is really essential for the argument is backwards
contraction in the local unstables by a fixed amount in each of the orbit segments
(not necessarily proportional to length), and this is enough to obtain a uniform
distance estimate analogous to (1.2.4.9). We carried out the details of this argument
in [3, §4] in the non-uniformly hyperbolic setting of rank one geodesic flow for the
family of orbit segments C(7), which are defined in this survey in Sect. 1.4.2.6.
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The following gives the corresponding result in the non-invertible case.

Proposition 1.8 Suppose that f: X — X is topologically transitive and has the
following properties.

+ Uniformly expanding: d(fx, fy) > e*d(x, y) whenever d(x, y) < 8.
* Locally onto: For every x € X, we have f(B(x,38)) D B(fx, 5).10

Then (X, f) has the specification property at scale §/(1 — e™*).

Proof 1t suffices to verify (1.2.4.7) with §; = 8, 8> = 0, and x = e™*; then we
can apply Lemma 1.2.4.1. We need the following consequence of the locally onto

property:
forevery x € X and n € N, we have f"(B,(x,8)) D B(f"x, §). (1.2.4.10)

As in the previous proposition, we use the following consequence of topological
transitivity and compactness: given § > O, there is T € N such that for
every x,y € X thereist € {0,1,...,t} with f7(x) € B(y,8). Now given
(x1,n1), (x2,n2) € X x N, thereis t € {0,1,..., 1} such that f7(f"(x1)) €
B(x2, §), and thus (1.2.4.10) gives

FIOf™ By (x1,8)) D fTB(f"x1,8) D B(f"*'x1,8) 3 xa.

Thus there is y € By, (x1,8) such that f"1%7(y) = x, which verifies (1.2.4.7);
Lemma 1.2.4.1 completes the proof. O

1.2.4.4 Bowen’s Proof Revisited

Bowen’s original uniqueness result [5], which we outlined in Sect. 1.2.2, was
actually given not for shift spaces, but for more general expansive systems.

Theorem 1.2.4.2 (Expansivity and Specification (Bowen)) Ler X be a compact
metric space and f: X — X a continuous map. Suppose that € > 4056 > 0 are
such that f has expansivity at scale € and the specification property at scale §.
Then (X, f) has a unique measure of maximal entropy.

Remark 1.11 Bowen’s original paper assumed expansivity and periodic specifica-
tion at all scales. We relax the proof mildly so that it does not use periodic orbits and
only uses specification at a fixed scale, small relative to an expansivity constant.!!
We will see examples later where this additional generality is beneficial.

101 the symbolic setting, this corresponds to X being a subshift of finite type.
'The statements in [68] used € > 288 but this must be corrected to € > 408; see [2, §5.7].
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The proof of Theorem 1.2.4.2 extends the strategy in the symbolic case:

1. establish uniform counting bounds;
2. show that the usual construction of an MME gives an ergodic Gibbs measure;
3. prove that an ergodic Gibbs measure must be the unique MME.

We must also examine the role played by expansivity.

In the symbolic setting, the first step was to prove the counting bounds on #.L,
given in (1.2.2.7). In the general setting, #., is replaced with A(X, €, n) from
Definition 1.2.4.2, and mimicking the arguments in Lemma 1.2.2.1 leads to the
estimates

Mop X169 < A (X,38,n) < QeMor XSO where Q = (7 + 1)eTor X9,
(1.2.4.11)

Observe that the lower and upper bounds in (1.2.4.11) involve the entropy of f at
different scales, a phenomenon which did not appear in (1.2.2.7). To see why this
occurs, recall that in the proof of Lemma 1.2.2.1 we used an injective map

Linyn — Lin x Ly, w = (W[1,m], Win+1,m+n]) (1.2.4.12)
as well as an at-most-(t 4 1)-to-1 map given by specification:
L XLy — Lytnie, (v, w) — vuwu'. (1.2.4.13)

In a general metric space, to generalize (1.2.4.12) one might first attempt the
following:

* fixing p > 0, let E ,f C X be a maximal (k, p)-separated set for each k € N;
* by maximality, for every x € X and k € N there is m(x) € E,f such that
x € Bi(mk(x), p);

« then consider the map E

s n — El x Ej givenby x > (70(x), Tp—m (f™x)).

The problem is that injectivity may fail: there could be z € Ej; such that B,,(z, p)
contains two distinct points x, y € E,4n, even though dy, (x, y) > diytn(x, y) > p.
This possibility can be ruled out by considering a map Enzfm — Eb, x El; note the
use of two different scales. With p = 34, this leads to the lower bound in (1.2.4.11).
See [68, §3.1] for details.

For the upper bound in (1.2.4.11), one must play a similar game with (1.2.4.13).
With E,’: as above, specification (at scale §) gives a “gluing map” v : Efy x Ef — X.
As long as p > §, the multiplicity of this map is at most t + 1 for the same reasons
as in Lemma 1.2.2.1. However, since the gluing process in specification can move
orbit segments by up to &, the image set 7(E} x EJ) can only be guaranteed to be
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(p —28, m+n+ t)-separated. Again, taking p = 36 gives (1.2.4.11); see [68, §3.2]
for details.

Remark 1.12 The reason that these issues do not arise in the symbolic setting is
that there, if § = }1 and y € By(x,9), then B,(y,8) = [yp.al = [xpnl =
By (x, ). In other words, in a shift space, each d, is an ultrametric, for which
the triangle inequality is strengthened to d,(x,z) < max{d,(x,y),d,(y,2)}. In
the non-symbolic setting, if y € B,(x,5) then the most we can say is that
B, (y,8) C Bp(x,26), and vice versa. This leads to the “changing scales” aspect
of the arguments above, which appears at several other places in the general proofs.

With the counting bounds established as in (1.2.2.7) and (1.2.4.11), the next step
in the symbolic proof was to consider measures v, giving equal weight to every
n-cylinder, and prove a Gibbs property for any limit point of the measures u, =
,11 ZZ;(I) o¥v,,. For non-symbolic systems, one replaces the collection of n-cylinders
with a maximal (n, §)-separated set, and proves the following.

Proposition 1.9 Let X be a compact metric space and f: X — X a continuous
map with the specification property at scale § > 0 and expansivity at scale €, with
€ > 406, and let p € (58, €/8]. Let E, C X be a maximal (n, p — §)-separated set
for each n, and consider the measures

1 1 n—1
L = D70 g (1.2.4.14)
#E, n=

xekE,

Then there is K > 1 such that every weak* limit point yu of the sequence i, is
f-invariant and satisfies the Gibbs property

K~ le Moo (X ) < w(By(x, p)) < K e Mhop (X f) forallx € X,n € N.
(1.2.4.15)

This statement is a mild extension of the argument in [5], which is simplified by
having periodic specification at all scales and constructing i, using periodic orbits.
Proposition 1.9 is proven, with the same level of detail on the choice of scales in [2,
§6]. For the purposes of this survey, the main point is simply that the expansivity
scale is a suitably large multiple of the specification scale. However, we state the
exact range of scales carefully for consistency with [2, §6]. See also [68] for a
proof of the lower Gibbs bound. In that paper, many of the intermediate statements
and bounds are given in terms of hwp(X, f, co), with ¢ € {1, 2,3, 4}. It is thus
crucial that hp(X, f, cp) = hwop(X, f), which is provided in this statement by the
expansivity assumption. This is the only way in which expansivity is used in the
above proposition.
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Observe that we have not yet claimed anything about ergodicity of the Gibbs
measure 4. In the symbolic case, the argument for the Gibbs property can be used
to deduce that there is ¢ > 0 and k € N such that for every v, w € Land ¢ > |v|,
there is j € [¢, £ + k) such that

pw(wlNo 7wl > cpfvlplwl.

Since any Borel set can be approximated (w.r.t. 1) by unions of cylinders, this can
be used to deduce that

lim u(V Ao W) = u(Vyu(w)
j—o00 k

for all V, W C X, which gives ergodicity. In the non-symbolic setting, one can
still mimic the Gibbs argument to produce ¢ > 0 and k € N such that for every
(x,n), (y,m) € X x Nand any £ > n, thereis j € [£, £ + k) such that

1(Bu(x, p) N [/ Bu(y, p)) = ciu(Bu(x, p))it(Bm(y, p)). (1.2.4.16)

To establish ergodicity from this one needs to approximate arbitrary Borel sets by
sets whose p-measure we control; this can be done by using a sequence of partitions
B, for which each element of 8, contains a Bowen ball B, (x, p) and is contained
inside a Bowen ball B, (x, 2p). Expansivity implies that this sequence of partitions
is generating w.r.t. u, so the rest of the argument goes through as before, and
establishes ergodicity. As we saw in the proof of Proposition 1.6, this is also enough
to guarantee that hwp(X, f,€) = hwp(X, f). We summarize our conclusions as
follows.

Proposition 1.10 Let X, f,8, u be as in Proposition 1.9. Suppose that f is
expansive at a scale greater than 408. Then | is ergodic and satisfies the Gibbs
property (1.2.4.15).

The proof that an ergodic Gibbs measure is the unique MME (Proposition 1.1)
has the following generalization to the non-symbolic setting.

Proposition 1.11 Let X be a compact metric space, f: X — X a continuous map,
and [ an ergodic f-invariant measure on X. Suppose p > 0 is such that

* f is expansive (or positively expansive) at scale 4p;
e there are K, h > 0 such that | satisfies the Gibbs bound

K~ 'e™ < w(Bu(x, p)) < Ke ™ foreveryx € X andn € N. (1.2.4.17)

Then h = h, (f) = hwp(X, f), and w is the unique MME for (X, f).
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Outline of Proof As before, one starts by using general arguments to prove that
h = h,(f) = hwp(X, f) and to reduce to the case of considering an invariant
measure v L p, for which we must show &, (f) < h,(f); this is unchanged from
the symbolic case. The next step there was to choose D C X with u(D) = 1 and
v(D) = 0, and approximate D by a union of cylinders; then similar to (1.2.4.6),
writing

nhy(f) = ho(f") = ho(f" eg ") < Hyeg™) = ) —vlwllogvlw],
wely,

(1.2.4.18)

and splitting the sum between cylinders in D, and those in 9, one eventually
proves that i, (f) < &, (f) by using the Gibbs bound u[w] > K ~le~®lop(X),

In the non-symbolic setting, the approximation of D follows just as in the
paragraph after (1.2.4.16). Moreover, we can obtain an analogue of (1.2.4.18) by
replacing agfl with a partition B, such that every element of 8, is contained in
B, (x,2p) for some point x in a maximal (n, 2p)-separated set E,. Finally, as long
as we also arrange that each element of 8, contain B, (x, p), we can use the lower

Gibbs bound to complete the proof just as in the symbolic case.

Remark 1.13 The partition B, which appears in the above proofs is called an
adapted partition for E,. Adapted partitions exist for any (n, 2p)-separated set
of maximal cardinality since the sets B, (x, p) are disjoint and the sets B, (x,2p)
cover X.

Remark 1.14 In the two-sided expansive case, the same argument works, provided
we replace d,, and B,, with their two-sided versions. That is, we consider balls in the
metric dj—, »)(x, y) = max{d(f*x, fky) : —n < k < n} in place of B,,. Then one
uses adapted partitions and proceeds as in the positively expansive case.

1.3 Non-uniform Bowen Hypotheses and Equilibrium States

In Sect. 1.3.1, we recall the role played by expansivity in Bowen’s proof of unique-
ness, and formulate a uniqueness result using a weaker version of expansivity. Then
in Sect. 1.3.2 we describe an explicit class of partially hyperbolic diffeomorphisms
where expansivity fails but this result still applies. In Sect. 1.3.3 we combine the
weakened versions of expansivity and specification to formulate our most general
result on MMEs for discrete-time systems, which we apply in Sect. 1.3.4 to a more
general partially hyperbolic setting. Finally, in Sect. 1.3.5 we describe how this
theory extends to equilibrium states for nonzero potential functions.



32 V. Climenhaga and D. J. Thompson
1.3.1 Relaxing the Expansivity Hypothesis

In this section, we describe how we relax the expansivity property. Our motivating
examples are diffeomorphisms for which expansivity fails, but for which the
failure of expansivity is “invisible” to the MME. In these examples, the failure of
expansivity is a lower entropy phenomenon, and this leaves room for us to develop
a version of Bowen’s argument for the MME.

As explained in the previous section, Bowen’s proof of uniqueness uses expan-
sivity to guarantee that certain sequences of partitions are generating with respect to
every invariant v. In fact, in every place where this property is used, it is enough to
know that this holds for all v with sufficiently large entropy.

More precisely, at the end of the proof, in (the analogue of) (1.2.4.18), it suffices
to know that o s generating for (f”, v) when v is an arbitrary MME, because
if v is not an MME then we already have h, < hj,, which was the goal. This is
also sufficient for the approximation of D by elements of the partitions 8, and thus
Proposition 1.11 remains true if we replace expansivity with the assumption that for
every MME v, we have ['c(x) = {x} for v-a.e. x.

In Proposition 1.9, the argument for ergodicity required a similar generating
property. Finally, in Proposition 1.6, it suffices to have this generating property w.r.t.
a family of measures v over which sup,, 1, (f) = hp(X, f).

With these observations in mind, we make the following definitions.

Definition 1.3.1.1 ([69]) An f-invariant measure p is almost expansive at scale €
if [e(x) = {x} for u-a.e. x; equivalently, if the non-expansive set NE(¢) = {x €
X : Te(x) # {x}} has u(NE(¢e)) = 0. Replacing I'c by Fj gives NE™ and a notion
of almost positively expansive.

Definition 1.3.1.2 ([68]) The entropy of obstructions to expansivity at scale € is

hé;P(X, fie)i=sup{h,(f):pne M?-(X) is not almost expansive at scale €}
=sup{h,(f):pn € M?(X) and w(NE(e)) > 0}.

We write hé;(p(X , f) = lime9 hé;(p(X , f, €) for the entropy of obstructions to
expansivity, without reference to scale. The entropy of obstructions to positive

expansivity hi; - is defined analogously.

From the discussion after Proposition 1.9, we see that we can replace the
assumption of expansivity with the assumption that hé;(p(X ,fip) < hop(X, f),
é;(p (X, f, p) is almost expansive, so the
Proposition goes through.!? Similarly in Propositions 1.10 and 1.11, it suffices to

assume that hi, (X, f,4p) < hiop(X, f).

since then every ergodic v with h,(f) > h

128e¢ [68, Proposition 2.7] for a detailed proof that /i, (X, f, p) = hwp(X, f) in this case.
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Now we have all the pieces for a uniqueness result using non-uniform expansiv-
ity.
Theorem 1.3.1.1 (Unique MME with Non-uniform Expansivity [68]) Let X be
a compact metric space and f: X — X a continuous map. Suppose that € > 405 >

0 are such that hé;(p (X, f,€) < hwop(X, f), and that f has the specification property
at scale 8. Then (X, f) has a unique measure of maximal entropy.

1.3.2 Derived-from-Anosov Systems

We describe a class of smooth systems for which expansivity fails but the entropy
of obstructions to expansivity is small. The following example is due to Mafié [70];
we primarily follow the discussion in [15], and refer to that paper for further details
and references.

1.3.2.1 Construction of the Maiié Example

Fix a matrix A € SL(3, Z) with simple real eigenvalues A, > 1 > Ay > Ay > 0,
and corresponding eigenspaces F**%* c R3. Let fo: T? — T2 be the hyperbolic
toral automorphism defined by A, and let 7°°° be the corresponding foliations of
T3. Define a perturbation f of fy as follows.

Fix p > p’ > 0 such that fy is expansive at scale p. Let ¢ € T3 be a fixed
point of f, and set f = fj outside of B(q, p). Inside B(g, p), perform a pitchfork
bifurcation in the center direction as shown in Fig. 1.6, in such a way that

* the foliation W¢ := % remains f-invariant, and we write E€ = T W¢,;

¢ the cones around F* and F** remain invariant and uniformly expanding for D f
and Df !, respectively, so they contain Df-invariant distributions E*** that
integrate to f-invariant foliations W**%;
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Fig. 1.6 Maiié’s construction
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e E® = E° @ E*° integrates to a foliation W¢*;
 outside of B(g, p’), we have || Df |ges|| < As < 1.

Thus f is partially hyperbolic with TT? = E* @ E° @ E* = E" & E. Observe
that

Ae(f) 1= sup{||Df | ges (|l : x € T3} > 1 (1.3.2.1)

because the center direction is expanding at g.
Now consider a diffeomorphism g: T3> — T that is C!-close to f. Such a g
remains partially hyperbolic, with

he(@) > 1> As(g) := sup{l|Df | sl - x € T2\ B(g, p)}. (1.3.2.2)

Existence of a unique MME was proved for such g by Ures [71] and by Buzzi et al.
[72], using the fact that there is a semiconjugacy from g back to the hyperbolic toral
automorphism fj. We outline an alternate proof using Theorem 1.3.1.1, which has
the benefit of extending to a class of nonzero Holder continuous potential functions
[15].

1.3.2.2 Estimating the Entropy of Obstructions

Although the map g behaves as if it is uniformly hyperbolic outside of B(q, p), the
presence of fixed points with different indices inside this ball causes expansivity
to fail. Indeed, let p denote one of the two fixed points created via the pitchfork
bifurcation, and let x be any point on the leaf of W¢ that connects p to g. Then for
every € > 0, the bi-infinite Bowen ball I'¢(x) is a non-trivial curve in W€, rather
than a single point. However, we can give a simple mild criterion on the orbit of a
point x which rules out I'¢ (x) being non-trivial, and we can argue that this criterion
is satisfied for most points in our examples.

Lemma 1.3.2.1 Let g be a partially hyperbolic diffeomorphism with a splitting
E" ® E€ ® E* such that E€ is 1-dimensional and integrable. Then there is €y > 0
such that Ty (x) C W€(x) for every x. Moreover, for every A > 0O there is € > 0
such that

1 _
lim  log|[Dg " gl > 2 = Te(x)= {x}. (1.3.2.3)
n—-oon

Sketch of Proof Following the argument for expansivity in the uniformly hyper-
bolic setting, we choose € such that whenever d(x, y) < €, we can get from x to
y by moving a distance d* along a leaf of W¥, then a distance d¢ along a leaf of
W€, then a distance d* along a leaf of W*. The argument given there shows that
if y € I'¢y(x) then we must have d*(x, y) = d“(x,y) = 0, which implies that
y € W¢x). For (1.3.2.3), we observe that if the condition on Dg™" is satisfied,
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then there are arbitrarily large n such that
IDg ™" |pecoll > ce™. (1.3.2.4)

Choosing € > O sufficiently small that |log || Dg|ge(y)ll — log [|Dglgehlll < A/2
whenever d(z, 7') < €, we see that any y € I'c(x) satisfies

d(g™"x,g"y) = ce’?d(x, y) (1.32.5)
for all n satisfying (1.3.2.4). Since n can become arbitrarily large, this implies that
d(x,y) =0.

Remark 1.15 Replacing backwards time with forwards time, the analogous result
for positive Lyapunov exponents is also true: lim }11 log | Dg"|Ee(x)ll > A implies
that T'e (x) = {x}.

For the Mafié examples, we can use (1.3.2.2) to control || Dg™" | ge(x) |l in terms of
how much time the orbit of x spends outside B(q, p); together with Lemma 1.3.2.1,
this allows us to estimate the entropy of NE(e). To formalize this, we write
X = 1T3\B(q,p) and observe that by the definition of A.(g) and A;(g) in (1.3.2.1)
and (1.3.2.2), we have

n—1
1Dg ™" [Eecoll = As(@)™"he(g)™ "D where s, (x) := > x (g *x).
k=0

It follows that

.1 _
nlggon log[|Dg ™" |ge(n)ll = —(r(x)logAs(g) + (1 —r(x))logic(g))  (1.3.2.6)
where we write
' 1 . 1 n—1 »
r(x) = lim s,(x) = lim Z x(g %),
n—oon n—-oon
k=0
Fix A € (0, —logAs(g)) andletr > O satisfy —(r log s (g)+(1—r)logA.(g)) > A.
Then Lemma 1.3.2.1 and (1.3.2.6) show that for a sufficiently small € > 0, we have
NE(e) C {x : r(x) < r}. (1.3.2.7)
Since fj is Anosov, the uniform counting bounds in (1.2.4.11) give a constant Q

such that A(X, fo, €, n) < Qe"erX-f0) for all n. Using this together with (1.3.2.7)
one can prove the following.
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Lemma 1.3.2.2 ([14, §3.4]) Writing H(t) = —tlogt — (1 — t)log(1l — t) for the
usual bipartite entropy function, the Maiié examples satisfy

haxp(8.€) < r(hiop(X. fo) +log Q) + H (2r).

Idea of Proof Given an ergodic measure p that satisfies u(NE(¢€)) and thus satisfies
lim ,11 Spx(g7"x) < r for pn-a.e. x, the Katok entropy formula [73] can be used to
show that i, () < h(C), where

C:={(x,n) €T} xN:S,x(x) <rn}. (1.3.2.8)

To estimate 2 (C), the idea is to partition an orbit segment (x,n) € C into pieces
lying entirely inside or outside of B(q, p). There can be at most rn pieces lying
outside, so the number of transition times between inside and outside is at most
2rn. The number of ways of choosing these transition times is thus at most

oy _ n! A H @I
2rn QCro)!((1 — 2r)n)! ’

where the approximation can be made more precise using Stirling’s formula or
a rougher elementary integral estimate. This contributes the H(2r) term to the
estimate; the remaining terms are roughly due to the observation that given a
pattern of transition times for which the segments lying outside B(g, p) have lengths
ki, ..., ks, the number of e-separated orbit segments in C associated to this pattern
is at most

m m
l_[ A(X’ an €, kl) 5 l—[ Qekihtup(xsf()) 5 Qmernhlop(x’f()) S (thlop(X’fO))rn’
j=1 Jj=1

since no entropy is produced by the sojourns inside B(q, p).

Since there is a semi-conjugacy from g to fo, we have hop(X, g) > hiop(X, fo)-
Thus we have h;p(g) < hiop(g) wWhenever r satisfies

r(hop(X, fo) +1log Q) + H(Q2r) < hwp(X, fo). (1.3.2.9)

Recall that » must be chosen large enough such that A(g)" A.(g)'™" < 1.
Equivalently, for a given value of r, the perturbation must be chosen small enough
for this to hold (that is, A, must be close enough to 1). Thus given fy, we can
find » small enough such that (1.3.2.9) holds, and then for any sufficiently small

perturbation the above argument guarantees that hé;(p (X, 8) < hop(X, 8).

Remark 1.16 Since I'c(x) C W€(x), which is one-dimensional, it is not hard to
show that Aop(W€(x)) = 0, and thus h¢p(Ce(x)) = 0 [15, 74]; in other words, f
is entropy expansive. Entropy expansivity implies that hwp(X, f, €) = hwop(X, f)
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[75], which for systems with (coarse) specification is sufficient for the construction
of a Gibbs measure in Proposition 1.9. However, there does not seem to be any way
to use entropy expansivity to carry out the arguments for ergodicity and uniqueness.
The issue is that we need to use Bowen balls to construct adapted partitions which
approximate Borel sets. When I'c(x) is a point, the two-sided Bowen ball at x
is a neighborhood of the point, which is key to the approximation argument. The
analysis is significantly more difficult even when "¢ (x) # {x} has a simple explicit
characterization, see Sect. 1.4.2.1 for more details in the flow case. If all we know
about I'¢ (x) is that 2(I'c(x)) = 0 it is unclear how to proceed. On the other hand,
for the Bonatti—Viana examples introduced in [76], entropy expansivity can fail
[69] even while the condition heLXp < hyop is satisfied [14]. The Bonatti—Viana
examples are 4-dimensional analogues of the Mafi¢ examples that involve two
separate perturbations and have a dominated splitting 7T* = E“ @ E* but are
not partially hyperbolic. We were able to study their thermodynamic formalism in
[14] despite these difficulties.

1.3.2.3 Specification for Maiié Examples

In order to apply Theorem 1.3.1.1 to the Mafié examples, one must investigate
the specification property. Globally, specification at all scales certainly fails. Two
approaches to deal with this are possible, and it is instructive to consider both—our
choice is to work with a coarse specification property globally, or specification at
all scales on a ‘good collection of orbit segments’.

The key ingredient we are missing from the uniformly hyperbolic case is uniform
contraction along W, which is replacing W*. We explain why we can obtain coarse
specification globally. As explained in Remark 1.10, uniform contraction is not
needed for the proof of specification; it suffices to know that

WSS (x) C By(x, 8) for all x. (1.3.2.10)

Since contraction in W< can fail for the Mafié example only in B(q, p’), one
can easily show that (1.3.2.10) continues to hold as long as § > 2p’, and thus
g has specification at these scales. Choosing o’ to be small enough relative to p,
Theorem 1.3.1.1 applies and establishes existence of a unique MME.

To see that the Mafié example does not have the specification property at all
scales, we sketch a short argument which appears in much greater generality in [77].
Observe that for sufficiently small § > 0, the forward infinite Bowen ball F;“ (@)
is the 1-dimensional local stable leaf W{*(g). Suppose that g has specification at
scale § with gap size 7, and let x be any point whose orbit never enters B(g, p).
Specification gives y € W§'(x) and 0 < k < 7 such that k) e Wgs(q).13 In

BUse specification to get y, € f"(B,(x,8))N f’k" (Bn(q,d)) for 0 < k,, < t, choose k such that
k, = k for infinitely many values of n, and let y be a limit point of the corresponding y,.
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other words, f~F(W;*(q)) intersects every local unstable leaf associated to an orbit
that avoids B(q, p). But this is impossible because the dimensions are wrong.'#

Thus, if we want a global specification property, we must work at a fixed coarse
scale, as described above. We explore the other option of returning to the ideas
from Sect. 1.2.3 and recovering specification at all scales by restricting to a “good
collection of orbit segments” in the next section.

1.3.3 The General Result for MMEs in Discrete-Time

Now we formulate a general result that combines the symbolic result using decom-
positions with Theorem 1.3.1.1 by allowing both expansivity and specification to
fail, provided the obstructions have small entropy. This allows us to cover some
new classes of examples, as we will see later, and is also important in dealing with
nonzero potential functions.

Recall from Sect. 1.2.3 that a decomposition of the language L of a shift space
consists of C”, G, C* C L such that every w € L can be written as w = uPvu’
where u? € CP, v € G, and u® € C°. As discussed in Sect. 1.2.4.1, for non-
symbolic systems we replace £ with the space of orbit segments X x N, where
(x, n) corresponds to the orbit segment x, f(x), fz(x), e, f"_l(x).

Definition 1.3.3.1 A decomposition for X x N consists of three collections
C?,G,C° C X x Ny for which there exist three functions p, g,s: X x N - Ny
such that for every (x,n) € X x N, the values p = p(x,n), g = g(x,n), and
s = s(x,n) satisfy p + g+ s = n, and

(x.p)eC’, (fPx.g)eG. (f""x.5)eC.
Given a decomposition, for each M € N we write
GM :={(x,n) e X xN: px,n) <M and s(x,n) < M}.

Theorem 1.3.3.1 (Non-uniform Bowen Hypotheses for Maps (MME Case)) Let
X be a compact metric space and f: X — X a continuous map. Suppose that
€ > 408§ > 0 are such that hé;(p(X, fr€) < hop(X, f), and that the space of orbit
segments X x N admits a decomposition C? GC* such that

(1) every collection GM has specification at scale 8, and
(1D A(CPUC?,8) < hiop(X, f).

Then (X, f) has a unique measure of maximal entropy.

4Note that f “F(W§*(q)) intersects a local leaf of W in at most finitely many points, and
thus intersects at most finitely many of the corresponding local leaves of W*; however, there are
uncountably many of these corresponding to points that never enter B(q, p).
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The proof of Theorem 1.3.3.1 requires an extension of the counting arguments for
decompositions (Sect. 1.2.3.1) to the general metric space setting, following similar
ideas to those outlined in Sect. 1.2.4.4. Furthermore, the construction of a Gibbs
measure and the proofs of ergodicity and uniqueness must be modified to reflect the
fact that uniform lower bounds can only be obtained on QM . As in Sect. 1.2.3.1,
we omit further discussion of these more technical aspects, referring to [2, 68] for
complete details.

Remark 1.17 If G has specification at all scales, then a short continuity argument
[2, Lemma 2.10] proves that every QM does as well, which establishes (I).

1.3.4 Partially Hyperbolic Systems with One-Dimensional
Center

Theorem 1.3.3.1 can be applied to a broad class of partially hyperbolic systems,
which includes the Mafié examples. This result has not previously appeared
elsewhere. We give an outline of the proof. Further details are analogous to the
case of the Mané examples, and we emphasize the key new points.

Theorem 1.3.4.1 Let f: M — M be a partially hyperbolic diffeomorphism with
TM = E"@® E€ @ E®. Assume that dim E€ = 1 and that every leaf of the foliations
W* and W* is dense in M.

Let ¢°(x) = log || Df|gex)ll, and given u € M?-(M), let A°(n) = fq)“’ du be
the center Lyapunov exponent of . Consider the quantities

h* = suplhu(f) - p € MG(M), () = 0},
h™ = sup{h,(f) 1 p € MG(M), A () < 0}

(1.3.4.1)

Suppose that h* # h™. Then f has a unique MME.

Remark 1.18 Since hiop(X, f) = max(h™,h™), the condition h™ # h~ is
equivalent to the condition that either AT < hwop(X, f) or h™ < hp(X, f). It
would be interesting to investigate how typical this condition is. The only way for
this condition to fail is if there is an ergodic MME with A¢ = 0, or if there are
(at least) two ergodic MMEs for which A€ takes both signs. See Sect. 1.3.5.4 for an
interpretation of this condition in terms of topological pressure, and an extension of
Theorem 1.3.4.1 to equilibrium states for nonzero potentials.

Remark 1.19 For 3-dimensional partially hyperbolic diffeomorphisms homotopic
to Anosov, Ures [71] showed that there is a unique measure of maximal entropy.
In this setting, Crisostomo and Tahzibi [78] gave some interesting criteria for
uniqueness (and in some case finiteness) of equilibrium states. We note that our
setting is a complementary regime to that of [79], which assumes compact center
leaves, and in which non-uniqueness of the MME is typical.
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First observe that arguments similar to those given for the Mafié example in
Lemma 1.3.2.1 and Remark 1.15 show that AL (f) < min(ht,h™), so the

exp

condition A (f) < hop(f) is satisfied whenever ht £ h™.

exp

Remark 1.20 The upper bound on hé&p for the Mafié examples in Lemma 1.3.2.2
is actually an upper bound on i in that setting, verifying that At (g) < hiep(g)
whenever the perturbation is small enough. Moreover, the leaves of W* are all dense

for these examples [80], so Theorem 1.3.4.1 applies to the Mafié examples.

The rest of the proof of Theorem 1.3.4.1 consists of finding a decomposition
C?, G, C° for X x N such that G has specification at all scales and h(C” U C*) <
hwp(X, f). We describe the general argument in the case when ht < hiop(f),
so intuitively, all of the large entropy parts of the system have negative central
Lyapunov exponents.

1.3.4.1 A Small Collection of Obstructions

We take C* = . To describe C?, we first observe that the condition AT < hiop(f)
implies that

sup{h (f) : n € My, Af(p) = 0} < hiop(f),

where the difference is that now the supremum allows non-ergodic measures as well,
and then a weak*-continuity argument gives r > 0 such that

sup(hyu () : i € My, AS(1) = —r} < hiop(f). (1.3.4.2)
We can relate the left-hand side of (1.3.4.2) to A(C?), where

CP:={(x,n) e M x N: §,0°(x) > —rn}.
One relationship between these was mentioned when we bounded h;p for the Mafié
example (though the function being summed there was different). Here we want to
go the other way and obtain an upper bound on 4 (C?). For this we observe that if
we let E,, C CF be any (n, €)-separated set, v, the equidistributed atomic measure
on E,, and u, = rll ZZ;& ff vy, then half of the proof of the variational principle
[50, Theorem 8.6] shows that any limit point of u, is f-invariant and has

hu(f) = h(C”, ).

Moreover, A () = f ¢ du(x) > —r by weak*-convergence and the definition of
C?. Together with (1.3.4.2), we conclude that £ (C?) < hiop(f).
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Fig. 1.7 A decomposition C”G of the space of orbit segments

1.3.4.2 A Good Collection with Specification
We now describe a ‘good’ collection of orbit segments G, and define a decompo-
sition. To this end, take an arbitrary orbit segment (x,n) € M x N, and remove
the longest possible element of C? from its beginning. That is, let p = p(x, n) be
maximal with the property that (x, p) € CP. Then we have
Spe(x) = —rp and Sk (x) < —rkforall p <k <n.
Subtracting the first from the second gives
Sk—p®  (fPx) = Sk (x) — Spe“(x) < —r(k — p),
which we can rewrite as
S;g°(fix) < —rjforall0 < j <n— p.
In other words, as shown in Fig. 1.7, we have!®
(fPx.n—p)eG:={(y,m):Sj¢(y) < —rjforall0 < j <m}.

Moreover, by choosing § > 0 sufficiently small that |p°(y) — ¢°(2)| < r/2
whenever d(y, z) < 8, we see thatif (y, m) € Gand z € B, (y, §), then

IDf7 | ges )|l < /2 forall 0 < j < m.

This is enough to prove the specification property for G. If E“ is integrable,
then one can simply use the proof from the uniformly hyperbolic case verbatim,

I5There is a clear analogy between what we are doing here and the notion of hyperbolic time
introduced by Alves [81], and developed by Alves, Bonatti and Viana [82].
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using (1.3.4.2) to guarantee that
Wi¥ (x) C By(x, 8) whenever (x, n) € G. (1.3.4.3)

Since questions of integrability in partial hyperbolicity can be subtle [83], we
point out that one can still establish the specification property without assuming
integrability of E°. To do this, fix & > 0 and consider the center-stable cone

K¥x) ={v+w:ve E® wekE" |w|<0|v|} CT:M,

then when establishing the “one-step specification” property in (1.2.4.7), one can
take an admissible manifold W > f"2(x,) thathas Ty,W C K“(x) ateachy € W,
and replace Wi* (x) with f~"2(W) N B(x3, 6) in the argument. As long as § > 0 is
sufficiently small, there will still be enough contraction along (x2, n2) for vectors in
K to guarantee that (1.3.4.3) holds.

1.3.5 Unique Equilibrium States

For the sake of simplicity, we have so far restricted our attention to measures of
maximal entropy. However, the entire apparatus developed above works equally
well for equilibrium states associated to “sufficiently regular” potential functions.

1.3.5.1 Topological Pressure

First we recall the notion of fopological pressure. As with topological entropy in
Sect. 1.2.4.1, we give a more general definition than is standard, defining pressure
for collections of orbit segments D C X x N; our definition reduces to the standard
one when D = X x N.

Definition 1.3.5.1 Given a continuous potential function ¢: X — R and a
collection of orbit segments D C X x N, for each e > 0 and n € N we consider the
partition sum

AD, ¢, €,n) = sup’ Z S0 L E c D, is (n, e)-separated},

xeE

where S, ¢(x) = Zz;(l) @(f*x) is the nth Birkhoff sum. The pressure of ¢ on the
collection D at scale € > 0 is

1
P(D,p,e) = nlgrolo " log A(D, ¢, €,n), (1.3.5.1)
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and the pressure of ¢ on the collection D is

P(D, p) = elg% P(D, ¢, ¢). (1.3.5.2)

As with entropy, in the case when D = Y x N we write A(Y, ¢, €, n), etc.

The variational principle for topological pressure states that

P(X,¢) = sup (hu(f)+/(pdu>. (1.3.5.3)

REM(X)

A measure that achieves the supremum is called an equilibrium state for (X, f, ¢).
As was the case with the MME, there is a standard construction from the proof

of the variational principle that establishes existence of an equilibrium state in many

cases: we have the following generalization of Proposition 1.4 and Corollary 1.2.4.1.

Proposition 1.12 (Building Approximate Equilibrium States) With X, f, ¢ as
above, fix € > 0, and for eachn € N, let E, C X be an (n, €)-separated set.
Consider the Borel probability measures

—1 n—1

I Sup() IS e, 1 k

Vp = Sxeon ', Mn = fevn = vpo fTN.
erE" eSnp(x) Z n ]; * n kZ:;)

xekE,

(1.3.5.4)

Let jin; be any subsequence that converges in the weak*-topology to a limiting
measure 1. Then u € My (X) and

1 Sn . 0(x)
h du > 1 1 § nj P
u(f)+/</? u_jgr;onj og e

er,,,.

In particular, for every § > 0 there exists u € My (X) such that h, (f) + f odu >
P(X, f,¢,$6).

Proof See [50, Theorem 9.10]. O

Corollary 1.3.5.1 Let X, f be as above, and suppose that there is § > 0 such that
P(X, @, 8) = P(X, ). Then there exists an equilibrium state for (X, f, ¢). Indeed,
given any sequence {E, C X}°°, of maximal (n, §)-separated sets, every weak*-
limit point of the sequence w,, from (1.3.5.4) is an equilibrium state.

There is an analogue of Proposition 1.6 for pressure: if (X, f) is expansive at
scale €, then P(X, ¢,€) = P(X, ¢), so Corollary 1.3.5.1 establishes existence of
an equilibrium state, as well as a way to construct one. Then the goal becomes to
prove uniqueness.
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1.3.5.2 Regularity of the Potential Function: The Bowen Property

Even for uniformly hyperbolic systems, one should not expect every continuous
potential function to have a unique equilibrium state. Indeed, for the full shift it
is possible to show that given any finite set E of ergodic measures, there is a
continuous potential function ¢ whose set of equilibrium states is precisely the
convex hull of E; see [84, p. 117] and [85, p. 52].

For expansive systems (X, f) with specification, uniqueness of the equilibrium
state can be guaranteed by the following regularity condition on the potential.

Definition 1.3.5.2 A continuous function ¢: X — R has the Bowen property at
scale € > O if there is a constant V > 0 such that for every (x,n) € X x N and
Y € By(x, €), we have [Spp(y) — Spp(x)| < V.

The following generalization of Theorems 1.2.2.1 and 1.2.4.2 is the full statement
of Bowen’s original result from [5], with the slight modification that we make the
scales explicit.

Theorem 1.3.5.1 Let X be a compact metric space and f: X — X a continuous
map. Suppose that there are € > 408 > 0 such that f is expansive or positively
expansive at scale € and has the specification property at scale 5. Then every
continuous potential function ¢ : X — R with the Bowen property at scale € has a
unique equilibrium state.

The proof of Theorem 1.3.5.1 follows the argument outlined earlier for Theo-
rems 1.2.2.1 and 1.2.4.2 in Sects. 1.2.2 and 1.2.4.4. The main difference is that now
the computations involve Birkhoff sums. For example, if we consider the symbolic
setting for a moment and recall the motivation from Sect. 1.2.2.2 for the Gibbs
bound as the mechanism for uniqueness, we see that in addition to the use of the
Shannon—McMillan—Breiman theorem in (1.2.2.2), it is natural to use the Birkhoff
ergodic theorem and get

. 1
hu(G)+/<Pdﬂ=nlggon(—10gﬂ[x[1,n]]+5n<ﬁ(x))-

For an equilibrium state, the left-hand side is P(¢), and this can be rewritten as
P(p) + lim,_, rll(log wlxpi,n1] — Sne(x)) = 0, or equivalently,

.1 mlxpi,nyl
Jim log (efnP(stngo(x)) =0.

As with the Gibbs property for the MME, uniqueness of the equilibrium state can be
guaranteed by requiring that the quantity inside the logarithm be bounded away from
0 and 00.'® Generalizing to arbitrary compact metric spaces by replacing cylinders

160bserve that this is impossible if ¢ does not satisfy the Bowen property.
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with Bowen balls, we say that a measure p has the Gibbs property for a potential ¢
at scale € if there are constants K > 0 and P € R such that for every x € X and
n € N, we have

Kl PH5e0) < (B, (x, €)) < Ke "PHSne), (1.3.5.5)

If it is known that every equilibrium measure is almost expansive at scale € (recall
Definition 1.3.1.1)—in particular, if (X, f) is expansive at scale e—and if u is an
ergodic Gibbs measure for ¢, then the analogue of Proposition 1.1 holds: we have
P =P()=h,(f)+ f ¢ du, and pu is the unique equilibrium state for (X, f, ¢).
The proof is essentially the same, although now the computations involve Birkhoff
sums.

Similarly, in the proof of the uniform counting bounds and the construction of
an ergodic Gibbs measure using the procedure in Proposition 1.12, one encounters
multiple steps where a Birkhoff sum S, ¢ (x) must be replaced with S,¢(y) for some
y in the Bowen ball around x, and the Bowen property is required at these steps to
guarantee “bounded distortion” in the estimates.

Recalling that topologically transitive locally maximal hyperbolic sets have
expansivity and specification, it is natural to ask which potential functions have
the Bowen property: how much does Theorem 1.3.5.1 extend Theorem 1.2.1.17

Proposition 1.13 If X is a locally maximal hyperbolic set for a diffeomorphism f,
then every Hélder continuous function ¢ : X — R has the Bowen property at scale
€, where € is the scale of the local product structure.

Proof Recalling the estimates (1.2.4.4) and (1.2.4.5) in the proof of Proposition 1.5,
we see that for every y € B, (x,€) andevery k € {0, 1,...,n — 1}, we have

d"(fFx, ffy) e Ve and - @ (ffx, fhy) < e e
Writing C for the Holder constant and y for the Holder exponent, we obtain

lo(f*x) — o(ffy)l < cd(frx, fry)yr
< C(2max(@" (f*x, f¥y), a* (fFx, ffyn)”

< C(2¢)Y max(e M=y g=rkry

and summing over 0 < k < n gives

n—1
1S20(x) = Spp (¥ < Y C(2€)Y max(e "7H7 M)
k=0

n—1 00
SCQREYY e 4 ek <20 2e) Y e = v
k=0 k=0
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This last quantity is finite and independent of x, y, n, which establishes the Bowen
property for ¢. O

Remark 1.21 The theorem “Holder potentials for uniformly hyperbolic systems
have unique equilibrium states” is well-entrenched enough that it is worth stressing
the following point: it is the dynamical Bowen property (bounded distortion),
rather than the metric Holder property, that is truly important here. In particular,
if we consider a non-uniformly hyperbolic system that is conjugate to a uniformly
hyperbolic one, such as the Manneville-Pomeau interval map or Katok map of the
torus, then every potential with the Bowen property continues to have a unique
equilibrium state, but there may be Holder potentials with multiple equilibrium
states. However, determining which potentials have the Bowen property may be
a nontrivial task.

1.3.5.3 The Most General Discrete-Time Result

Recalling the weakened versions of expansivity and specification used in Theo-
rem 1.3.3.1, it is natural to ask for a uniqueness result for equilibrium states that
uses a weakened version of the Bowen property. Observe that the Bowen property
can be formulated for a collection of orbit segments (rather than the entire system)
by replacing X x N in Definition 1.3.5.2 with G C X x N.

Definition 1.3.5.3 A continuous function ¢: X — R has the Bowen property at
scale € > 0 on a collection of orbit segments G C X x N if there is a constant V > 0
such that for every (x,n) € Gand y € By, (x, €), we have |S,0(y) — Spe(x)| < V.

To formulate our most general discrete-time result on uniqueness of equilibrium
states, we replace the entropy of obstructions to expansivity from Definition 1.3.1.2
with the pressure of obstructions to expansivity at scale €:

PL (¢, €) == sup {hﬂ(f) —i—/(pdu i € M5 (X) and u(NE(e) > 0}.

Theorem 1.3.5.2 ([2, Theorem 5.6]) Let X be a compact metric space, f: X —
X a homeomorphism, and ¢: X — R a continuous potential function. Suppose
that there are € > 405 > 0 such that PCJ);p(q), €) < P(p) and there exists a
decomposition (CP, G, C°) for X x N with the following properties:

(1) every collection GM has specification at scale 8,
(II) ¢ has the Bowen property on G at scale €, and
() P(CPUC’, ¢,8) < P(p).

Then (X, f, ¢) has a unique equilibrium state.

Remark 1.22 In applications to non-uniformly hyperbolic systems, it is very often
the case that there is a natural collection of orbit segments G along which the
dynamics is uniformly hyperbolic; this is the most common way of establishing
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specification for G, as we saw in Sect. 1.3.2. In this case the proof of Proposi-
tion 1.13 shows that every Holder potential ¢ has the Bowen property on G. Then
the question of uniqueness boils down to determining which Holder potentials have
the pressure gap properties (III) and Pekp (¢, €) < P(g). Itis often the case that one
or both of these conditions fails for some Holder potentials, as in the Manneville—
Pomeau example.

1.3.5.4 Partial Hyperbolicity
For partially hyperbolic systems with one-dimensional center as in Sect.1.3.4,
Theorem 1.3.5.2 can be used to extend Theorem 1.3.4.1.

Theorem 1.3.5.3 Let M, f, ¢ be as in Theorem 1.3.4.1. Given a Hélder continu-
ous potential function ¢ : M — R, consider the quantities

Pt :=sup ihu(f)—i—/(pdu tpe MM, A () = 0},
P~ :=sup ’hﬂ(f)jt/(pdu tp€ MM, A () < 0}-

If P £ P, then (M, f, ) has a unique equilibrium state.

Beyond the properties from Sect. 1.3.4, the only additional ingredient required
for Theorem 1.3.5.3 is the fact that ¢ has the Bowen property on the collection
of orbit segments G defined in (1.3.4.2), which follows from Remark 1.22 and the
hyperbolicity estimate in (1.3.4.2); then uniqueness follows from Theorem 1.3.5.2.

It is worth noting that the condition P # P~ (and thus the condition AT #£ h™)
can be formulated in terms of the topological pressure function. The function # +—
P(p + t¢°) is convex, being the supremum of the affine functions

Pyt hﬂ(f)—l—/(pdu—i-t)f(,u)

overall u € M;(M). Some of its possible shapes are shown in Fig. 1.8.

Fig. 1.8 Some possible graphs of > P (¢ + t¢°)
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Suppose there is ¢ > 0 such that P(¢ + t¢°) < P(¢), as in the third graph in
Fig. 1.8. Then given any u € M;(M) with A¢(u) > 0, we have

hy(f) ~I—/§0du = Pu(0) < Pu(t) < P(p +19°) < P(gp), (1.3.5.6)

and taking a supremum over all such u gives Pt < P(p + t¢°) < P(gp), so that
the condition of Theorem 1.3.5.3 is satisfied and (M, f, ¢) has a unique equilibrium
state, which has negative center Lyapunov exponent.

A similar argument holds if there is # < 0 such that P(¢ + t¢°) < P(¢), as in
the first graph in Fig. 1.8; (1.3.5.6) applies to all u € M“}-(M) with A¢(u) < 0, so
that P~ < P(¢) = P, and there is a unique equilibriuﬁl state, which has positive
center Lyapunov exponent.

We see that the only way to have PT = P~ is if the function t > P (¢ +t¢°) has
a global minimum at ¢+ = 0. Thus one could restate the last line of Theorem 1.3.5.3
as the conclusion that (M, f, ¢) has a unique equilibrium state if there is # # 0 such
that P(¢ +1t¢°) < P(¢). In particular, returning to Theorem 1.3.4.1, f has a unique
MME if there is ¢ # 0 such that P(t¢°) < P(0) = hiop(f).

1.4 Geodesic Flows

In this part, we focus on our geometric applications. In Sect. 1.4.1, we introduce
some geometric background, and in Sect. 1.4.2 we describe the main results and
some of the key ideas from the paper [3]. In Sect. 1.4.3, we discuss our approach
to the Kolmogorov K -property. In Sect. 1.4.4, we give the main ideas of proof for
the “pressure gap” for a wide class of potentials for geodesic flow on a rank 1 non-
positive curvature manifold.

1.4.1 Geometric Preliminaries
1.4.1.1 Overview

Let M = (M", g) be a closed connected C*° Riemannian manifold with dimension
n,and F = (f;):;cr denote the geodesic flow on the unit tangent bundle X = T'M.
The geodesic flow is defined by picking a point and a direction (i.e. an element of
T' M), and walking at unit speed along the geodesic determined by that data. More
precisely, f;(v) = ¢,(t), where ¢,: R — M is the unique unit speed geodesic with
¢y(0) = v. Geodesic flows are of central importance in the theory of dynamical
systems, and encode many important features of the geometry and topology of the
underlying manifold M. For general background on geodesic flows, we refer to
[86, 87].
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If all sectional curvatures of M are negative at every point, then F is a transitive
Anosov flow. In particular, the thermodynamic formalism is very well understood.
To go beyond negative curvature, one generally needs the tools of non-uniform
hyperbolicity. There are three further classes of manifolds that generally exhibit
some kind of non-uniformly hyperbolic behaviour: nonpositive curvature; no focal
points; and no conjugate points. The relationships are as follows:

negative curv. = nonpositive curv. = no focal points = no conjugate points.

The reverse implications all fail in general.

The definition of nonpositive curvature is easy: all sectional curvatures are < 0
at every point. No focal points and no conjugate points are defined in terms of
Jacobi fields, which we will introduce shortly, but can be understood in terms of
the growth of distance between geodesics which pass through the same point. If
we work in the universal cover M and consider arbitrary geodesics ¢, cp with
c1(0) = ¢2(0), then non-positive curvature implies that t — d(c1(¢), c2(t)) is
convex, while no focal points is equivalent to the condition that ¢ — d(c1(¢), c2(t))
be nondecreasing for all such ci, ¢, and no conjugate points is equivalent to the
condition that this function never vanish for + > 0; in other words, there is at
most one geodesic connecting any two points in M. In Sect. 1.4.2.8, we will also
briefly discuss geodesic flow on some classes of spaces beyond the Riemannian
case: namely, CAT(—1) spaces (which generalize negative curvature) and CAT(0)
spaces (which generalize non-positive curvature).

For intuition, negative curvature has the effect of spreading out geodesics which
pass through the same point (think of a saddle), while positive curvature has the
effect of bringing them back together after a finite amount of time (think of a
sphere). As described in [88], one can imagine starting with a negatively curved
surface and then “raising a bump of positive curvature”; at first the positive curvature
effect is weak enough that the geodesic flow remains Anosov, but eventually the
Anosov property is destroyed, and raising the bump far enough creates conjugate
points.

In these notes, we focus on the case of equilibrium states for manifolds with
nonpositive curvature using specification-based techniques as in [3]; this relies on
a continuous-time version of Theorem 1.3.5.2, which we formulate in Sect. 1.4.2.1.
This approach has been extended to manifolds without focal points by Chen et al.
[18, 19]."7 We also state and sketch recent results by the first-named author, Knieper
and War for the MME to surfaces with no conjugate points, and survey some relevant
recent results for CAT(—1) and CAT(0) spaces.

In the remainder of this section we collect some geometric preliminaries. Some
of the definitions are taken verbatim from [3] for notational consistency. For more
details, we recommend recent works [3, 90], and more classical references [91-93].

17 Another specification-based proof of uniqueness of the MME on surfaces without focal points
was given by Gelfert and Ruggiero [89].
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1.4.1.2 Surfaces

For purposes of exposition, we will often think about the surface case n = 2,
although our approach applies in higher dimension too. By the Gauss—Bonnet the-
orem, the sphere has no metric of nonpositive curvature, and the only such metrics
on the torus are flat everywhere; it can be easily verified that the corresponding
geodesic flows have zero topological entropy and are not topologically transitive.
Thus we are interested in studying surfaces of genus at least 2.

As a first example, we can think about a surface of genus 2 with an embedded
flat cylinder, and negative curvature elsewhere. We could also consider the case
where the flat cylinder collapses to a single closed geodesic on which the curvature
vanishes, with strictly negative curvature elsewhere. In higher dimensions, much
more complicated examples exist, such as the 3-dimensional Gromov example that
we describe in Sect. 1.4.4.

Geodesic flow in non-positive curvature is a primary example of non-uniform
hyperbolicity. The basic example of a surface containing a flat cylinder illustrates the
primary difficulty: the co-existence of trajectories displaying hyperbolic behavior
(geodesics in the negatively curved part of the surface) with trajectories displaying
non-hyperbolic behavior (geodesics in the flat cylinder). More precisely, given a
surface M of genus at least 2 with non-positive curvature, we let K : M — (—o0, 0]
be the Gaussian curvature, and 7 : T'M — M the natural projection of a tangent
vector to its footpoint. Then we define the singular set to be

Sing :={v € T'M: K(m(fiv)) =0forall t € R}. (1.4.1.1)

That is, Sing is the set of v for which the corresponding geodesic y,, experiences 0
curvature for all time. All other vectors are called regular:

Reg:=T'M\Sing={veT'M: K#@(fv)) <O0forsomer e R}. (1.4.1.2)

Although the negative curvature encountered along regular geodesics guarantees
some expansion/contraction, this may be arbitrarily weak because the geodesic can
be arranged to experience 0 curvature for a long time (e.g., wrapping round an
embedded flat cylinder) before hitting any negative curvature.

The set Sing is closed and flow-invariant, while the set Reg is open. The regular
set is nonempty because M has genus at least 2, and in fact Reg is dense in 7' M.

In higher dimensions one has a similar dichotomy between singular and regular
vectors, which we will describe in the next section. This gives a partition of 7! M
as Reg LI Sing, where Sing is closed and flow-invariant. As with surfaces, we will
restrict our attention to the case when Reg # (; this rank I assumption rules out
examples such as direct products, and is the typical situation, as demonstrated by
the higher rank rigidity theorem of Ballmann and Burns—Spatzier [94-96].
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1.4.1.3 Invariant Foliations via Horospheres

Now let the dimension of M be any n > 2. We describe invariant stable and unstable
foliations W* and W* of X = T'M that are tangent to invariant subbundles E* and
E" in TX = TT'M along which we will eventually obtain the contraction and
expansion estimates necessary to study uniqueness of equilibrium states.

We must be a little careful in defining these foliations: we cannot ask that W* (v)
is the set of w € T!'M so that d(f;v, ffw) — 0ast — oo like we can in the
uniformly hyperbolic setting. We must allow points that stay bounded distance apart
(in the universal cover) for all forward time. However, this does not work as the
definition of W* because it does not distinguish the stable from the flow direction.
To do things properly, there are two approaches.

* Local approach: Use stable and unstable orthogonal Jacobi fields to define E*
and E" locally; see Sect. 1.4.1.4 below.

* Global approach: Define stable and unstable horospheres H* and H" in the
universal cover M (this is typically done using Busemann functions) and use
these to get W%, W*.

We outline this second approach here. Given v € T'M, let ¥ € T'M be a lift of v,
and construct H*(v) as follows: for each r > 0 let

S"(B,+) = {x € M : dj(x, n(f, 7)) =r}

denote the set of points at distance r from 7 (f-v) = c3(r), and let H*(v) be the
limit of S" (v, 4+) as r — oo. This defines a hypersurface that contains the point
0. Writing W* (v) for the unit normal vector field to H®(v) on the same side as
v, the stable manifold W* (v) is the image of W*(v) under the canonical projection
T'M — T'M.

The unstable horosphere H”(v) and the unstable manifold W (v) are defined
analogously, replacing S” (v, +) with

S"(5, =) = {x € M : djj(x, n(f-, D)) =r).

The horospheres are C? manifolds, so W*(v) and W*(v) are C' manifolds, and
we can define the stable and unstable subspaces E*(v), E*(v) C T,T'M to be the
tangent spaces of W*(v), W*(v) respectively. The bundles E°, E*, which are both
globally defined in this way, are respectively called the stable and unstable bundles.
They are invariant and depend continuously on v; see [92, 97].

The following is equivalent to the standard definition of the regular set via Jacobi
fields, which we will give in the next section.

Definition 1.4.1.1 A vectorv € T'M is regular if E*(v)NE"(v) is trivial (contains
only the 0 vector in T, T M), and singular otherwise. Write Reg C T'' M for the set
of regular vectors, and Sing C T'' M for the set of singular vectors.
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On Reg, we obtain the expected splitting T,T'M = ES(v) ® E*(v) ® E°(v),
where E°(v) is the flow direction. This splitting degenerates on Sing.

Definition 1.4.1.2 The manifold M is rank 1 if Reg # (.

Finally, we define a function which is of great importance in thermodynamic
formalism. The geometric potential is the function that measures infinitesimal
volume growth in the unstable distribution:

o1 d
" (v) = — tlg% , logdet(df;|guw)) = —

log det(d win).
dt =018 et(dft| gn(v))

The potential ¢* is continuous and globally defined. When M has dimension 2, ¢* is
Holder along unstable leaves [97]. It is not known whether ¢* is Holder along stable
leaves. In higher dimensions, it is not known whether ¢* is Holder continuous on
either stable or unstable leaves. An advantage of our approach is that we sidestep
the question of Holder regularity for ¢*.

1.4.1.4 Jacobi Fields and Local Construction of Stables/Unstables

Now we give an alternate description of the stable and unstable subbundles and
foliations, which can be shown to agree with the definitions in the previous section.

A Jacobi field along a geodesic y is a vector field along y obtained by taking
a one-parameter family of geodesics that includes y and differentiating in the
parameter coordinate; equivalently, it is a vector field along y satisfying

J'(t) + RUJ @), y(0)y(t) =0, (1.4.1.3)

where R is the Riemannian curvature tensor on M and ' represents covariant
differentiation along y .

We often want to remove the variations through geodesics in the flow direction
from consideration. If J(¢) is a Jacobi field along a geodesic y and both J (¢p) and
J'(to) are orthogonal to y (tp) for some fg, then J (¢) and J'(¢) are orthogonal to y (¢)
for all ¢. Such a Jacobi field is an orthogonal Jacobi field.

A Jacobi field J(¢) along a geodesic y is parallel at 1y if J'(t9) = 0. A Jacobi
field J(¢) is parallel if it is parallel for all € R.

Definition 1.4.1.3 A geodesic y is singular if it admits a nonzero parallel orthogo-
nal Jacobi field, and regular otherwise.

If y is singular in the sense of Definition 1.4.1.3, then every y (1) € T'M is
singular in the sense of Definition 1.4.1.1, and similarly for regular.

We write J() for the space of orthogonal Jacobi fields for y; given v € T'M
there is a natural isomorphism & — Jg between T, T'M and J(y,), which has the
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property that

ldf; I = 1T OI + 1T @1 (14.1.4)

An orthogonal Jacobi field J along a geodesic y is stable if || J(¢)|| is bounded for
t > 0, and unstable if it is bounded for r < 0. The stable and the unstable Jacobi
fields each form linear subspaces of J(y), which we denote by J°(y) and J*(y),
respectively. The corresponding stable and unstable subbundles of 7T M are

E"(v) = (€ € T,(T'M) : Je € T"(y)},
ES(v) = (£ € T(T'M) : Js € T*(n)).

The bundle E€ is spanned by the vector field that generates the flow F. We also
write E = E€ @ E" and E© = E° @ E®. The subbundles have the following
properties (see [92] for details):

e dim(E") = dim(E®) =n — 1, and dim(E€) = 1;

 the subbundles are invariant under the geodesic flow;

 the subbundles depend continuously on v, see [92, 97];

e E"and E* are both orthogonal to E€;

e E" and E® intersect non-trivially if and only if v € Sing;

e E7 isintegrable to a foliation W for each o € {u, s, cs, cu}.

It is proved in [98, Theorem 3.7] that the foliation W* is minimal in the sense that
WS (v) is dense in T! M for every v € T' M. Analogously, the foliation W* is also
minimal.

1.4.2 Equilibrium States for Geodesic Flows
1.4.2.1 The General Uniqueness Result for Flows

We recall the general definitions of topological pressure, variational principle, and
equilibrium states for flows, which are analogous to the discrete-time definitions
from Sect. 1.3.5.1.

Given a compact metric space X and a continuous flow F = (f;) on X, we
write Mp(X) = (),egr My, (X) for the space of flow-invariant Borel probability
measures on X, and M%(X) C Mp(X) for the set of ergodic measures.

Fore > 0,7 > 0, and x € X, the Bowen ball of radius € and order t is

Bi(x,e) ={y e X |d(fsx, fsy) <eforall 0 <s <t}

A set E C X is (t, €)-separated if for all distinct x, y € E we have y ¢ B;(x, €).
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Given a continuous potential function ¢: X — R, we write ®(x,t) =
f(; ¢ (fsx) ds for the integral of ¢ along an orbit segment of length . We interpret
D C X x [0, 00) as a collection of finite-length orbit segments by identifying (x, t)
with the orbit segment starting at x and lasting for time ¢. Writing O := {x € X :
(x,t) € D}, the partition sums associated to D and ¢ are

AD, ¢, e, 1) = sup{ Z e E C Dy is (1, e)-separated]. (1.4.2.1)

xeE

The pressure of ¢ on the collection D is given by (1.3.5.1)—(1.3.5.2), replacing n
with 7:

1
P(D, ¢) = EIE}}) P(D, ¢, ¢€), P(D,p,e) = tgngo ; log A(D, ¢, €,1).

We continue to write P(Y, ¢) = P(Y x [0, 00), ¢) for Y C X, and often abbreviate
P(¢p) = P(X, ). The variational principle for pressure states that

P(g) = sup (hu(fl)—i-/(pdu).

HEMF(X)

A measure that achieves the supremum is an equilibrium state for (X, f, ¢). When
¢ = 0, we recover the topological entropy 4 (F'), and an equilibrium state for ¢ = 0
is called a measure of maximal entropy.

Remark 1.23 As in the discrete-time case, if the entropy map @ +— h, is upper
semi-continuous then equilibrium states exist for each continuous potential function.
Geodesic flows in non-positive curvature are entropy-expansive due to the flat strip
theorem [99]; this guarantees upper semi-continuity and thus existence.

In light of Remark 1.23, the real question is once again uniqueness. Our main tool
will be a continuous-time analogue of Theorem 1.3.5.2, which gives non-uniform
versions of specification, expansivity, and the Bowen property that are sufficient to
give uniqueness.

The main novelty compared with the discrete-time case is the expansivity
condition. For an expansive map, the set of points that stay close to x for all time is
only the point x itself. For an expansive flow, this set is an orbit segment of x. Our
set of non-expansive points for a flow is defined accordingly. For x € X and € > 0,
we let the bi-infinite Bowen ball be

Fe(x)={y e X :d(fix, fiy) < eforallt € R}.
The set of non-expansive points at scale € is (compare this to Definition 1.3.1.1)

NE(e, F) :={x € X | Te(x) € fi—s.s;(x) for any s > 0}, (1.4.2.2)
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where fla.p(x) ={fix:a <t < b}.'® The pressure of obstructions to expansivity
is

Pop(9) 1= lim Pey (9, ),
where

Phwo= s {0+ [odn e ) =1,
HEME(X)

Remark 1.24 For rank 1 geodesic flow, a simple argument using the flat strip
theorem guarantees that NE(e, F) C Sing, so we have Pelp(cp) < P(Sing, ¢).

X

Our definitions of specification and the Bowen property are completely analo-
gous to Definitions 1.2.4.4 and 1.3.5.3 from the discrete-time case. The specification
property for flows was defined by Bowen in [101], and was used to prove uniqueness
of equilibrium states by Franco [102].

Definition 1.4.2.1 A collection of orbit segments G C X x [0, 00) has the
specification property at scale § > 0 if there exists T > 0 such that for every
(x1,t1)y ..., (xk, tx) € G, thereexist 0 = T1 < Tp < --- < Ty and y € X such
that fTi(y) € By (x;, ) for all i, and moreover, writing s; = T; + t;, we have
si < Tit1 <s;+ tforalli.

We say that G has the specification property if it has the specification property at
scale 6 for every § > 0.

Definition 1.4.2.2 A continuous function ¢: X — R has the Bowen property at
scale ¢ > 0 on a collection of orbit segments G C X x [0, oo) if thereis V > 0
such that for every (x,¢) € Gand y € B;(x, €), we have |®(y,t) — O(x,1)| < V.

We say that ¢ has the Bowen property on G if there exists € > 0 such that ¢ has
the Bowen property at scale € on G.

An argument following the proof of Proposition 1.13 shows that for uniformly
hyperbolic flows, any Holder continuous function has the Bowen property. More
generally, Remark 1.22 applies here as well: if the flow is uniformly hyperbolic
along a collection of orbit segments G C X x [0, 00), then every Holder ¢ has the
Bowen property on G.

18We note that the original formulation of expansivity for flows by Bowen and Walters [100] allows
reparametrizations, which suggests that one might consider a potentially larger set in place of I'¢
for expansive flows. The main motivation for allowing reparametrizations is to give a definition
that is preserved under orbit equivalence. However, this is not relevant for our purposes. In our
setup, the natural notion of expansivity would be to ask that there exists € so that NE(e, ¥) = ¢.
This definition is sufficient for the uniqueness results, and strictly weaker than Bowen—Walters
expansivity, although it is not an invariant under orbit equivalence. See the discussion of kinematic
expansivity in [37].
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As in Definition 1.3.3.1 for discrete time, a decomposition for X x[0, 00) consists
of three collections P, G, S C X x [0, co) for which there exist three functions
P, 8, s: X x[0,00) — [0, 0o) such that for every (x, ) € X x [0, 00), the values
p=pkx,t),g=g(x,t),ands = s(x,t) satisfyr = p+ g + s, and

(x,p)eP, (fp(x),8)€G, (fp+gx),5)€S.

The conditions we are interested in depend only on the collections (P, G, S) rather
than the functions p, g, s. However, we work with a fixed choice of (p, g, s) for the
proof of the abstract theorem to apply.

One small difference from the discrete-time case is that we need to “fatten up”
% and S slightly before imposing the smallness condition in the general uniqueness
theorem. To this end, for a collection D C X x [0, c0), we define

[D]:={(x,k) e X xN: (fosx,k+s+1) € Dforsomes,t € [0, 1]}.

Theorem 1.4.2.1 (Non-uniform Bowen Hypotheses for Flows [2]) Let (X, F) be
a continuous flow on a compact metric space, and ¢: X — R be a continuous
potential function. Suppose that P;;p((p) < P(p) and X x [0,00) admits a
decomposition (P, G, S) with the following properties:

(D) G has specification;
(D) @ has the Bowen property on G;
D) P(PIUILS], @) < P(p).

Then (X, F, ¢) has a unique equilibrium state L.

Remark 1.25 The reason that in general we control the pressure of [£] U [S] rather
than the collection U S is a consequence of a technical step in the proof of the
abstract result in [2] that required a passage from continuous to discrete time. This
distinction does not matter for the A-decompositions described in the next section,
which cover all the applications we discuss here; see [103, Lemma 3.5].

1.4.2.2 Geodesic Flows in Non-positive Curvature

Now we return to the specific setting of geodesic flow in non-positive curvature. In
Sect. 1.4.2.3 we explain why the outcome from the uniformly hyperbolic situation—
a unique equilibrium state, whose support is all of X = T!M—cannot occur
unless there is a pressure gap P(Sing, ¢) < P(¢). In Sect. 1.4.2.4 we formulate
the main results on uniqueness given a pressure gap, ergodic properties of the
unique equilibrium state, and how often the pressure gap occurs. In Sect. 1.4.2.5
we describe how the notion of periodic orbit equidistribution from Sect. 1.2.3.3 is
adapted to this setting. The proof of the uniqueness result uses Theorem 1.4.2.1 and
is outlined in Sect. 1.4.2.6. The proofs regarding ergodic properties, particularly the
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Kolmogorov property, are described later in Sect. 1.4.3, and the pressure gap itself
is discussed in Sect. 1.4.4.

1.4.2.3 Uniqueness Can Fail Without a Pressure Gap

For uniformly hyperbolic flows and Holder continuous potentials, there is a unique
equilibrium state, and this equilibrium state gives positive weight to every open set;
it is fully supported. For geodesic flow in nonpositive curvature, this conclusion
cannot hold unless there is a pressure gap, which we now describe.

Since the singular set Sing is closed and flow-invariant, we can apply the
variational principle to the restriction of the flow to Sing, and obtain

P(Sing. ¢) = sup [, () +[</)du 1w e Mp(sing)].

As discussed in Remark 1.23, the geodesic flow is entropy-expansive and thus the
entropy map p +—> h,(f1) is upper semi-continuous. This guarantees that there
exists v € Mp(Sing) with b, (f1) + [ @ du = P(Sing, ).

If P(Sing, ¢) = P(¢), then v is an equilibrium state for (T'M, F, @), and even
if it happens that v is the unique equilibrium state (which can be arranged, but is not
generally expected), it is not fully supported. Thus in order to obtain the classical
conclusion of unique equilibrium state and full support, we require a pressure gap
P(Sing, ¢) < P(9).

To see that the case P(Sing, ¢) = P(¢) can actually occur, we observe that
there is a natural (f;)-invariant volume measure @y on X = T'M called the
Liouville measure. Locally, (., is the product of the Riemannian volume on M and
Haar measure on the unit sphere of dimension n — 1. Using the Ruelle-Margulis
inequality, the Pesin entropy formula, and the fact that — f @*du is the sum of the
positive Lyapunov exponents for i (where ¢“ is the geometric potential), one can
show that P(p") = 0 and that p is an equilibrium state for ¢*.

In negative curvature, ¢* is Holder and py, is the unique equilibrium state. In
non-positive curvature, however, 17 often fails to be the unique equilibrium state. '
For example, in the surface case, it is easily checked that P(Sing, ¢*) = P(p") =0,
and any closed geodesic in Sing defines two equilibrium states for ¢* (one for each
direction of travel around the geodesic).

Since a general uniqueness result for ¢ is impossible, we often turn our attention
to the one-parameter family of potentials g¢", where ¢ € R. Equilibrium states for
these potentials are geometrically relevant, and a natural question is to identify the
range of values for ¢ so that uniqueness holds.

19We mention that ;. (Reg) > 0 and that j1 [reg is known to be ergodic. Ergodicity of uz, which
is a major open problem, is thus equivalent to the question of whether w7 (Sing) = 0.
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1.4.2.4 Uniqueness Given a Pressure Gap

Our main result on uniqueness of equilibrium states for geodesic flow in non-
positive curvature is the following.

Theorem 1.4.2.2 (Uniqueness of Equilibrium States for Rank 1 Geodesic Flow
[3) Let (f;) be the geodesic flow over a closed rank 1 manifold M and let
0: T'M — R be ¢ = qo" or be Holder continuous. If ¢ satisfies the pressure

gap
P(Sing, ¢) < P(¢p), (1.4.2.3)

then ¢ has a unique equilibrium state |. This equilibrium state is hyperbolic, fully
supported, and is the weak™ limit of weighted regular closed geodesics in the sense
of Sect. 1.4.2.5 below.

Remark 1.26 Knieper used a Patterson—Sullivan type construction on the boundary
at infinity to prove uniqueness of the MME (the case ¢ = 0) and deduce the
entropy gap h(Sing) < h(T' M) from this [99]. This construction has recently been
extended to manifolds with no focal points by Fei et al. [105]. We work in the other
direction: we need to first establish the gap (see Theorem 1.4.2.4 below), and then
use this to prove uniqueness.

In Sect. 1.4.3 we discuss the following result on strengthened ergodic properties
for the equilibrium states in Theorem 1.4.2.2, due to Ben Call and the second-named
author.

Theorem 1.4.2.3 (K and Bernoulli Properties [103]) Any unique equilibrium
state provided by Theorem 1.4.2.2 has the K-property. The unique MME has the
Bernoulli property.

In dimension 2, the Margulis—Ruelle inequality gives i(Sing) = 0, from which
the pressure gap (1.4.2.3) follows when sup ¢ — inf¢ < h(X), via a soft argument
based on the variational principle. In higher dimensions we may have i (Sing) > 0
(see the Gromov example in Sect. 1.4.4), and the entropy gap h(Sing) < h(X)
established by Knieper is nontrivial. In Sect. 1.4.4 we outline a direct proof of
this gap that uses the specification property, and that generalizes to some nonzero
potentials as follows.

Theorem 1.4.2.4 (Direct Proof of Entropy/Pressure Gap) For geodesic flow on
a closed rank 1 manifold M, every continuous potential ¢ that is locally constant
on a neighbourhood of Sing satisfies the pressure gap condition (1.4.2.3).

Remark 1.27 When Sing is a finite union of periodic orbits, which is the case for
real analytic surfaces of non-positive curvature, Theorem 1.4.2.4 can be used to
prove that the pressure gap holds for a C%-open and dense set of potential functions.
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Fig. 1.9 Pressure for surfaces with non-positive curvature

For surfaces, the fact that ¢"|sing = O and h(Sing) = O implies that
P(Sing, gp") = 0 for all ¢ € R. It is an easy consequence of the Margulis—Ruelle
inequality and Pesin’s entropy formula that

P(g¢") > Oforg < 1,

and thus g¢" has a unique equilibrium state for all ¢ < 1. We obtain the classic
picture of the pressure function in non-uniform hyperbolicity, shown in Fig.1.9.
This is analogous to the familiar picture in the case of non-uniformly expanding
interval maps with indifferent fixed points, e.g., the Manneville-Pomeau map [106—
108].

1.4.2.5 Pressure and Periodic Orbits

We describe the sense in which the unique equilibrium state is the limit of periodic
orbits, analogously to Sect. 1.2.3.3. Fora < b, let Perg(a, b] denote the set of closed
regular geodesics with length in the interval (a, b].2° For each such geodesic y, let
@ (y) be the value given by integrating ¢ around y; that is, ®(y) = ®(v, |y]) =

Olyl @(fiv)dt, where v € T'M is tangent to y and |y| is the length of y. Given

T,8 > 0,let

Apegl@. T = D P,
y€Perp(T—8,T]

20Here, we are following a notation convention of Katok: when we say a geodesic, we mean
oriented geodesic, and we are considering y as a periodic orbit living in 7' M.
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For a closed geodesic y, let u,, be the normalized Lebesgue measure around the
orbit. We consider the measures

Reg 1 D(y)
= E e .
Hrs Al*ze (o, T,96) Ry
g y€ePerg(T—-6,T]

We say that regular closed geodesics weighted by ¢ equidistribute to a measure p if
. Reg .
limr—, o0 7§ = p in the weak™ topology for every § > 0.

1.4.2.6 Main Ideas of the Proof of Uniqueness

Theorem 1.4.2.2 is proved using the general result in Theorem 1.4.2.1. As observed
in Remark 1.24, we have PeJ)Zp (¢) < P(Sing, ¢), so the condition P;;P(go) < P(p)
follows immediately from the pressure gap assumption (1.4.2.3), and it remains to
find a decomposition of the space of orbit segments satisfying (I)—(III). We will do
this using a function A: X — [0, co) that measures ‘hyperbolicity’. We want this
function to be such that:

1. A vanishes on Sing;
2. X uniformly positive implies uniform hyperbolicity estimates.

There is a convenient geometrically-defined function which has the desired proper-
ties, whose definition in dimension 2 is simple: we let A(v) be the minimum of the
curvature of the stable horosphere H* (v) and the unstable horosphere H" (v).21

If v € Sing, then A(v) = 0 due to the presence of a parallel orthogonal Jacobi
field. The set {v € Reg : A(v) = 0} may be non-empty, but it has zero measure for
any invariant measure [3, Corollary 3.6].

If A(v) > n > 0, then we have various uniform estimates at the point v, for
example on the angle between E*(v) and E*(v), and on the growth of Jacobi fields
at v. Thus, the function A serves as a useful ‘measure of hyperbolicity’. In particular,
we get the following distance estimates: given n > 0 and § = §(n) > O sufficiently

21For manifolds M with Dim(M) > 2, we define A: T'M — [0, 00) as follows. Let HS, H"
be the stable and unstable horospheres for v. Let U} : Ty H® — Ty, H® be the symmetric linear
operator defined by U(v) = V, N, where N is the field of unit vectors normal to H on the same
side as v. This determines the second fundamental form of the stable horosphere H*. We define
U, : TryH" — TryH" analogously. Then U and U} depend continuously on v, U" is positive
semidefinite, U* is negative semidefinite, and U, = —U;. For v € T'M, let A% (v) be the
minimum eigenvalue of U} and let A°(v) = A*(—v). Let A(v) = min(A" (v), A* (v)).

The functions A*, A, and A are continuous since the map v — U * is continuous, and we have
A > 0. When M is a surface, the quantities A*>%(v) are just the curvatures at v of the stable and
unstable horocycles, and we recover the definition of A stated above.
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small, v € T'M, and w, w’ € W; (v), we have

4 (frw, frw') < d*(w, w')e~ o OUF=0/DdT gor a1y 4 > 0, (1.42.4)

where d* is the distance on W*. We get similar estimates for w, w’ € Wy (v).

Now we use A to define a decomposition. We give a general definition since the
procedure here applies not just to geodesic flows, but to other examples including
the partially hyperbolic systems in Sects. 1.3.2 and 1.3.4 (indeed, the decomposition
in Sect. 1.3.4.2 is of this type); see [109].

Definition 1.4.2.3 Let X be a compact metric space and F' = (f;) a continuous
flow on X. Let A: X — [0, c0) be a bounded lower semicontinuous function?? and
fix n > 0. The A-decomposition (with constant 1) of X x [0, 0o) is given by defining

1 t
B0 = [ || [ aonds <al,
0
1 P
g ={en i [Cagonds =
o Jo

and /1) /pk(f_sﬁ(x))ds > nforall p € [0, t]}
0

and then putting # = S = B(n) and G = G(n). We decompose an orbit segment
(x,t) by taking the longest initial segment in ¥ as the prefix, and the longest
terminal segment in S as the suffix:> that is,

px,t)=sup{p>0:(x,p) €eP} and s(x,t) =sup{s >0: (fi_sx,s) € S}.

The good core is what is left over; see Fig. 1.10.

For rank 1 geodesic flow, the decompositions associated to the horosphere
curvature function A have the following useful properties:

1. we can relate P([P] U[S], ¢) to P(Sing, ¢);
2. the specification and Bowen properties hold for G and ¢.

For the first of these, one can show that when n > 0 is small, P(P U S, ¢)
is close to the pressure of the set of orbit segments along which the integral of
A vanishes; this in turn can be shown to equal P(Sing, ¢). Thus the pressure gap

22This allows us to use indicator functions of open sets, which is helpful in some applications.
23We could also define the class of one-sided \-decompositions by taking the longest initial
segment in B(n), declaring what is left over to be good, and setting S = ¢, or conversely by putting
S = B(n) and P = @. This formalism is defined in [109]: the decompositions in Sect. 1.3.4.2 are
examples of one-sided A-decompositions.
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Fig. 1.10 A X-decomposition

I

assumption (1.4.2.3) gives us P([P] U [S], ¢) < P(X, ¢) for sufficiently small n,
which is (IIT) in Theorem 1.4.2.1.

For the second of these, one can in fact prove the specification property for the
larger collection

Cn) ={(v, 1) : A(v) > n, L(fiv) > n}; (1.4.2.5)

this will be useful in Sect. 1.4.4. Observe that G(n) C C(n). The proof of the
specification property is essentially the one from the uniformly hyperbolic case,
as described in Sect. 1.2.4.3. See particularly Remark 1.10, and we refer to [3, §4]
for the full proof. The key ingredient is uniformity of the local product structure
at the end points of the orbit segments. This is provided by the condition that A is
uniformly positive at these points. Then we use uniform density of unstable leaves
to transition between orbit segments. We additionally need some definite expansion
along the unstable of each orbit segment, which follows from the uniformity of A at
the endpoints.

Remark 1.28 In fact, C(n) satisfies a stronger version of specification than the one
formulated in Definition 1.4.2.1: one can replace the conclusion that the shadowing
can be accomplished
forsome0=T) < Tp <--- < T satisfying T; ;1 — T; — t; € [0, 7]
with the stronger conclusion that it can be accomplished
for every Ty < Th < --- < Ty satistying T;+1 > T; + t.
That is, we are able to take all the transition times to be exactly t, or any length at

least t that we choose. This stronger conclusion is important in both the K -property
result in Sect. 1.4.3 and the entropy gap result discussed in Sect. 1.4.4.
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Finally, for the Bowen property, the key is to use the distance estimate (1.4.2.4)
to deduce that for every (v, 1) € G(n) and w, w’ € Wj (v), we have

d*(few, frw') < d*(w, w)e ™2 forall T € [0, 1],

with a similar estimate along the unstables (going backwards from the end of the
orbit segment). Together with the local product structure, this allows the Bowen
property on G for Holder continuous potentials to be deduced from the same
argument used in Proposition 1.13.

Remark 1.29 Since it is not known whether the geometric potential ¢* is Holder
continuous, an alternate proof is required to show that it satisfies the Bowen property
on G. This is one of the hardest parts of the analysis of [3], and relies on detailed
estimates involving the Riccati equation.

Combining the ideas described above verifies the hypotheses of the abstract result
in Theorem 1.4.2.1, so that the pressure gap (1.4.2.3) yields a unique equilibrium
state.

1.4.2.7 Unique MME:s for Surfaces Without Conjugate Points

When M is merely assumed to have no conjugate points, life is substantially harder
because many of the geometric tools used in the previous section are no long
available, such as convexity of horospheres, monotonicity of the distance function,
and continuity of the stable and unstable foliations of 7'M (cf. the “dinosaur”
example of Ballmann et al. [110]).

Under the additional (strong) assumption that the flow is expansive, uniqueness
of the MME was proved by Aurélien Bosché, a student of Knieper, in his Ph.D.
thesis [111]. The following result says that at least in dimension 2, we can remove
the assumption of expansivity.

Theorem 1.4.2.5 ([20]) Let M be a closed manifold of dimension 2, with genus
> 2, equipped with a smooth Riemannian metric without conjugate points. Then the
geodesic flow on T'M has a unique measure of maximal entropy.

Remark 1.30 A higher-dimensional version of Theorem 1.4.2.5 is available [20],
but requires additional assumptions on M: existence of a ‘background’ metric with
negative curvature; the divergence property; residually finite fundamental group;
and a certain ‘entropy gap’ condition. All of these can be verified for every metric
without conjugate points on a surface of genus 2.

Theorem 1.4.2.5 is proved using a coarse-scale expansivity and specification
result. Issues of coarse scale did not arise in our non-positive curvature result, where
we obtained the specification property at arbitrarily small scales. This removed a
great deal of technicality from the analysis. We will not discuss the general coarse-
scale analogue of Theorem 1.4.2.1, since we do not use it. Instead, we state the
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special case where ¢ = 0 and G = X x [0, 00), which suffices for Theorem 1.4.2.5.
This is the continuous-time analogue of Theorem 1.3.1.1.

Theorem 1.4.2.6 ([2]) Let X be a compact metric space and (f;): X — X a
continuous flow. Suppose that € > 40§ > 0 are such that hé;(p(X, (fr),e) <

h(X, (f;)), and that the system has the specification property at scale §. Then
(X, (ft)) has a unique measure of maximal entropy.

Note that Theorem 1.4.2.6 is stated using the hypothesis of specification for the
entire system, without passing to a subcollection of orbit segments. The key tool in
proving this fact for surfaces without conjugate points is the Morse Lemma, which
states that if g, go are two metrics on M such that g has no conjugate points and
go has negative curvature, then there is a constant R > 0 such tllat if ¢, o are
geodesic segments w.r.t. g, go, respectively, in the universal cover M that agree at
their endpoints, then they remain within a distance R for along their entire length.

Since M is a surface of genus > 2, it admits a metric of negative curvature. Given
an orbit segment (v, 1) € T'M x (0, 0o) for the g-geodesic flow, let p, g be the start
and end points of some lift of the corresponding g-geodesic segment to the universal
cover. Let w € T'M x (0, oo) lift to the unique unit tangent vector that begins a
go-geodesic segment starting at p and ending at g, and let s be the go-length of this
segment. Then E: (v, t) — (w, s) defines a map from the space of g-orbit segments
to the space of go-orbit segments with the property that (v, ) and E (v, ) remain
within R for their entire lengths.

Using this correspondence, one can take a finite sequence of g-orbit segments
(v1,11), - .., (vk, 1), find go-orbit segments E (v;, t;) that remain within R, and use
the specification property for the (Anosov) go-geodesic flow to shadow these (w.r.t.
go) by a single orbit segment (y, 7). Then E7'(y,T)isa shadowing orbit (w.r.t.
g) for the original segments (x;, #;), for which the transition times are uniformly
bounded.

Writing down the details of the scales involved, one finds that the geodesic flow
for g, has specification at scale?* § = 100A3R, where A > 1 is such that A~! <
lvllg/llvllg, < A forallv e T M. (Existence of A follows from compactness.)

To apply Theorem 1.4.2.6, it remains to prove that obstructions to expansivity
at some scale € > 408 have small entropy. The problem with this is that R itself,
and especially 408 = 4000A>R, is likely much larger than the diameter of M. So
at this point, it looks like the previous paragraph is completely vacuous—any orbit
segment of the appropriate length shadows the (v;, #;) segments to within §.

The solution is to pass to a finite cover. By gluing together enough copies of
a fundamental domain for M,% one can find a finite covering manifold N whose

24In fact one can improve this estimate, but the formula is more complicated [20].

25Formally, one needs to take a finite index subgroup of my(M) that avoids all non-identity
elements corresponding to a large ball in M this is possible because 7y (M) is residually finite.
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injectivity radius is > 3. Observe that

+ the geodesic flow on T'M is a finite-to-1 factor of the geodesic flow on T'N,
so there is an entropy-preserving bijection between their spaces of invariant
measures, and in particular there is a unique MME for the geodesic flow over
M if and only if there is a unique MME over N;

» the argument for specification that we gave above still works for the geodesic
flow on N, with the same scale, because this scale comes from the Morse Lemma
and is given at the level of the universal cover.

So it only remains to argue that hé;(p (€) < hyop for the geodesic flow on N. This
is done by observing that if d(f;v, fiw) < € forall7 € R but w does not lie on
the orbit of v, then lifting to geodesics on M and using the fact that we are below
the injectivity radius of N allows us to conclude that the lifts of v, w are tangent to
distinct geodesics between the same pair of points on the ideal boundary d M. Thus
if u is any ergodic invariant measure that is not almost expansive at scale €, then p
gives full weight to the set of vectors tangent to such “non-unique geodesics”.

On the other hand, if #,, > 0, then p is a hyperbolic measure by the Margulis—
Ruelle inequality, and thus by Pesin theory, p-a.e. v has transverse stable and
unstable leaves. These leaves are the normal vector fields to the stable and unstable
horospheres, and thus these horospheres meet at a single point, meaning that the
geodesic through v is the unique geodesic between its endpoints on the ideal
boundary. By the previous paragraph, this means that p is almost expansive. It
follows that hé;(p(e) = 0 < hyop, and so there is a unique MME by the coarse-scale
result Theorem 1.4.2.6.

We remark that the proof technique sketched here does not extend to non-zero
potentials, and a theory of equilibrium states for surfaces with no conjugate points
beyond the MME case is currently not available.

1.4.2.8 Geodesic Flows on Metric Spaces

Another natural direction to extend the classical case of geodesic flow on a negative
curvature manifold is to generalize beyond the Riemannian case. The geodesic flow
on a compact locally CAT(—1) metric space is one such generalization. Here, a
geodesic is a curve that locally minimizes distance, and the flow acts on the space of
bi-infinite geodesics parametrized with unit speed. In the Riemannian case this space
is naturally identified with 7'M. The CAT(—1) property is a negative curvature
condition which roughly says that a geodesic triangle is thinner than a comparison
geodesic triangle in the model hyperbolic space with curvature —1. While one
expects these flows to exhibit similar behavior to the classical case, branching
phenomena and the lack of smooth structure are obstructions to some of the usual
techniques.

More generally, one can study geodesic flow on a compact locally CAT(0) metric
space, in which geodesic triangles are thinner than Euclidean triangles. This is a
generalization of geodesic flow in Riemannian non-positive curvature.



66 V. Climenhaga and D. J. Thompson

We survey some recent results in this direction. In the CAT(—1) case (allowing
cusps), the MME has been well-studied using the boundary at infinity approach, see
[112]. Constantine, Lafont and the second-named author studied the compact locally
CAT(—1) case using the specification approach [21], and later using a symbolic
dynamics approach [113], proving that every Holder continuous potential has a
unique equilibrium state, and obtaining many of the strong stochastic properties
one expects from the classical case (e.g., Central Limit Theorem, Bernoullicity,
Large Deviations). Broise-Alamichel, Paulin and Parkonnen [114] have extended
the equilibrium state constructions and results of Paulin et al. [34] to the CAT(—1)
case for a restricted class of potentials which includes the locally constant ones. (See
§2.4 and §3.2 of [114] for a description of this class—in the compact case treated
in [21], no such restrictions are required, as described in the introduction of [21].)
The results of [114] give detailed information in the MME case for non-compact
CAT(—1) spaces, and particularly for trees, which is the focus of their work.

The CAT(0) case has seen substantial recent advances in the MME case, notably
by Ricks [115], who has proved uniqueness of the MME by extending Knieper’s
construction. A theory of equilibrium states for translation surfaces, which is
an important class of CAT(0) examples, is currently being developed by Call,
Constantine, Erchenko, Sawyer and Work [104]. A theory of equilibrium states for
the general CAT(0) setting is currently open.

1.4.3 Kolmogorov Property for Equilibrium States
1.4.3.1 Moving Up the Mixing Hierarchy

We describe results of Ben Call and the second-named author on the Kolmogorov
and Bernoulli properties [103].

A flow-invariant measure p is said to have the Kolmogorov property, or K-
property, if every time-t map has positive entropy with respect to any non-trivial
partition &: that is, for every partition £ that does not contain a set of full measure,
and for every t # 0, we have h, (f;, &) > 0.6

Theorem 1.4.3.1 Let F = (f;) be the geodesic flow over a closed rank 1 manifold
M andlet o: T'M — R be ¢ = q¢* or be Holder continuous. If P(Sing, ¢) <
P (@), then the unique equilibrium state ., has the Kolmogorov property.

In the case ¢ = 0, the mixing property for the unique MME was known due to
work of Babillot [116]. Theorem 1.4.3.1 strengthens this. We recall the hierarchy of

26This can also be formulated in terms of the Pinsker o -algebra for yu, which can be thought of as
the biggest o-algebra with entropy 0: the measure p has the K-property if and only if the Pinsker
o-algebra for p is trivial.
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mixing properties (this is an “express train” version of the hierarchy):
Bernoulli = K = mixing of all orders = mixing = weak mixing = ergodic.

When dim(M) = 2, it was shown by Ledrappier et al. [117] that equilibrium states
are Bernoulli; their proof uses countable-state symbolic dynamics for 3-dimensional
flows. In higher dimensions, Theorem 1.4.3.1 gives the strongest known results.
The implications in the mixing hierarchy are not “if and only if”’s in general.
However, in smooth settings with some hyperbolicity, a classic strategy for proving
the Bernoulli property is to move up the hierarchy, establishing K, and then proving
that K implies Bernoulli. This approach was notably carried out by Ornstein and
Weiss [118, 119], Pesin [120], and Chernov and Haskell [121]. In particular, a
major success of Pesin theory is his proof that the Liouville measure restricted to
the regular set is Bernoulli. We refer to the recent book of Ponce and Varao [122]
for more details on this process. Here we simply mention that this approach can be
carried out for the unique MME of rank 1 geodesic flow, and this is done in [103].

Theorem 1.4.3.2 (Bernoulli Property [103]) Let (f;) be the geodesic flow over a
closed rank 1 manifold M. The unique measure of maximal entropy is Bernoulli.

1.4.3.2 Ledrappier’s Approach

The main tool in the proof of Theorem 1.4.3.1 is a fantastic result of Ledrappier
[123], which deserves to be more widely known. Ledrappier’s proof is about
one page long, and gives criteria for the K-property in terms of thermodynamic
formalism. The original result is for discrete-time systems. We state here a version
of it for flows; the proof is given in [103], and in more detail in [109].

Given a flow F = (f;) on a compact metric space X, the idea is to consider the
product flow (X x X, F x F), i.e., the flow (f; x fy)ser given by

(fs X fo)(x,y) = (fsx, fsy) fors e R. (1.4.3.1)

Theorem 1.4.3.3 (Criteria for K-Property) Let (X, F) be a flow such that f; is
asymptotically entropy expansive for all t # 0, and let ¢ be a continuous function
on X. Let (X x X, F X F) be the product flow (1.4.3.1), and define ®: X x X — R

by @ (x1, x2) = ¢(x1) + ¢ (x2).
If ® has a unique equilibrium measure in Mpxp(X x X), then the unique
equilibrium state for ¢ in M (X) has the Kolmogorov property.

The fact that (X, F, ¢) has a unique equilibrium state when (X x X, F x F, ®)
does is a consequence of the following simple lemma.

Lemma 1.4.3.1 Let u be an equilibrium state for (X, F, ). Then u X W is an
equilibrium state for (X x X, F x F, ®).
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Proof Observe that

huxu(ft X f1) = hu(f1) +h (f1)

/®d(uxu)=/wdu+/wdu-

Therefore, hyxu(fi X fi) + [ @d(u x u) = 2P(X,F,9) = P(X x X, F x
F, D). O

and

From Lemma 1.4.3.1 we see that if u, v are distinct equilibrium states for
(X,F, @), then u x u and v x v are both equilibrium states for ®. If ® has a
unique equilibrium state, then this means that 4 x © = v x v and hence u© = v;
thus, we get uniqueness of the equilibrium state downstairs, and we see that if
has a unique equilibrium state, it must have the form u x p where u is the unique
equilibrium state for ¢.

Now the main idea of Ledrappier’s argument can be stated quite quickly: By the
argument above, if ® has a unique equilibrium state, then so does ¢. Write u for
this measure; then (L X [ is the unique equilibrium state for ®. Now assume that
W is not K. Then p has a non-trivial Pinsker o -algebra. This can be used to define
another equilibrium state for ®. Contradiction.

1.4.3.3 Decompositions for Products

Given Ledrappier’s result, our strategy for proving the K property in Theo-
rem 1.4.3.1 is now clear. We want to show that the product system of two copies
of the geodesic flow has a unique equilibrium state for the class of potentials under
consideration.

So let’s find a decomposition for the product system.

Problem Lifting decompositions to products in general does not work well. One
fact we do have in our favor is that if G has good properties, then so does G x G.
However, we need G x G to arise in a decomposition for (X x X, F' x F). In general
this does not look at all promising: for example, the reader may try to do it for the
S-gap shifts as studied in [1], and will quickly see the issue.

Idea Work with a nice class of decompositions that does behave well under
products. We claim that the A-decompositions from Definition 1.4.2.3 form such a
class. To see this, suppose we have a A-decomposition (P, G, S) for a flow (X, F),
and define 1: X x X — [0, c0) by

Ax,y) =M)A. (14.3.2)
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This function inherits lower semicontinuity from A, and we can consider the A-
decomposition (P, G, S) for (X x X, F x F).

Given ((x,y),t) € G, it follows from (1.4.3.2) and boundedness of A that we
have (x, 1), (v, t) € G (with an appropriate choice of 1), and thus G C G x G. This
means that specification and the Bowen property for G can be deduced from the
corresponding properties for G.

But how big are # and S? If A = 0 on one of the coordinates, then anything is
allowed on the other. Roughly, we can show that:

PPUS, )~ P(p) + P(PUS, ¢).

Recall that P(®) = 2P(p). Thus, if we have P(PU S, ¢) < P(p), then we expect
to be able to obtain the estimate P(P U S, ®) < P(®P). This is the strategy carried
outin [103, 109].

1.4.3.4 Expansivity Issues

Specification and regularity are not the whole story; in fact, dealing with continuous
time and related expansivity issues is the most difficult point in our analysis.
Recall from (1.4.2.2) that for flows we define

NE(e, F) :={x € X | Te(x) € fi—s.s1(x) forany s > 0}.

For a product flow as in (1.4.3.1), the set I'c(x, y) always contains fj_s sx X
Ji—s.s1y- That is, we are considering a flow with a 2-dimensional center. The theory
in Sect. 1.4.2.1 does not apply directly because NE(e, F' x F') as defined for a flow
is the whole space! We have to build a new theory that uses information about

NE*(¢) :={(x,y) € X x X | Te(x,y) ¢ Si=s.51(x) X fi—s,51(y) for any s > 0}.
(1.4.3.3)

There are no new difficulties with counting estimates, but serious issues arise
when we build adapted partitions. In the discrete time case, our adapted partition
elements look like pixels and can be used to approximate sets. In the flow case, our
adapted partition elements approach a small piece of orbit, so look like thin cigars.
Collections of partition elements can thus be used to approximate flow-invariant
sets. In the ‘product of flows’ case, the best we can do is approximate sets invariant
under f; x f; for all s,t € R. This creates new technical obstacles that must be
overcome in our uniqueness proof. In particular, to run our ergodicity proof, we
need to be able to approximate sets which are invariant only under f; x f; for all
s € R. This disconnect is a fundamental additional difficulty.
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In [103], this difficulty is overcome by proving weak mixing for u using a lower
joint Gibbs estimate which gives a kind of partial mixing for sets that are flowed out
by a small time interval. This can be used to prove weak mixing of © by a spectral
argument. This is equivalent to the desired ergodicity of © x .

1.4.4 Knieper’s Entropy Gap
1.4.4.1 Entropy in the Singular Set

For the geodesic flow on a rank 1 non-positive curvature manifold, we have stated
and discussed our main results on uniqueness of equilibrium states, and the K
property for these equilibrium states. Our results hold under the hypothesis of the
pressure gap P(Sing, ¢) < P(¢). Thus, being able to verify the pressure gap is of
central importance for our results. In this section we outline the proof that the gap
holds for ¢ = 0, when it reduces to the entropy gap h(Sing) < h(X). The argument
extends easily to potentials that are locally constant on a neighbourhood of Sing, as
claimed in Theorem 1.4.2.4.

Our introduction of rank 1 manifolds in Sect.1.4.1.2 focused on examples
where Sing contains only periodic orbits and has 0 entropy, and indeed for any
surface of nonpositive curvature, one can observe that every u € M$%(Sing) has
hu(fi) < At (p) = f —p"*dp = 0 by the Margulis—Ruelle inequality, where the
last equality uses the fact that " |sing = O for surfaces. Then the variational principle
give h(Sing) = 0, and since 4 (X) > O for all surfaces of genus at least 2, the entropy
gap holds.

In higher dimensions, however, Sing can be more complicated®’ and it is not at
all clear a priori that the entropy gap should always hold. The Gromov example
described in [99, §6] demonstrates that starting in dimension 3, we may have
h(Sing) > 0. To construct this example, let My be a surface of constant negative
curvature with one infinite cusp. Now cut off the cusp and flatten the end so that it
is isometric to a flat cylinder with radius r. Take the product M1 = My x S, where
S is the circle of radius r. This defines a non-positive curvature 3-manifold with
boundary, where the boundary is a flat torus 0 M1 = d My x S. Now let My = S x My
so that oM = § x dMy. Glue M and M, along the boundaries (note that the order
of the factors is reversed) to obtain a 3-manifold M.

One can show that the regular set in 7! M consists of all vectors in 7! M whose
geodesic enters the non-flat part of both M| and M>. The singular set is then the
set of vectors whose geodesics stay entirely on one side (or in the flat cylinder). It
is not hard to see that #(Sing) > 0. In fact, by defining M, using a cut arbitrarily
high up the cusp, one can make /4 (X) — h(Sing) arbitrarily close to 0, and indeed it

27In dimension 2, it is in fact an open problem whether Sing can contain non-periodic orbits [124],
but this does not affect the argument that /(Sing) = 0.
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is not immediately obvious that this difference is non-zero. Why should there be an
entropy gap at all?

Knieper’s work in [99] proved that there is a unique MME for rank 1 geodesic
flow, and that this measure is fully supported on 7' M. This in turn implies the
entropy gap, as explained in Sect. 1.4.2.3.

Our argument in this section differs from Knieper’s by being constructive,
suitable for generalization, and (hopefully) shedding light on the mechanism that
drives the ‘entropy gap’ phenomenon. In Sect. 1.4.4.2 we present the basic idea
behind using the specification property to produce entropy in the symbolic setting,
and then in Sect. 1.4.4.3 we discuss how this approach can be extended to geodesic
flow in non-positive curvature. Full details of the argument are in [3].

1.4.4.2 Warm-Up: Shifts with Specification

The basic mechanism for using specification to produce entropy is simply to
construct exponentially many orbit segments “by hand”. This idea can be seen in
its simplest form in the following result, which has been known since the 1970s, see
[49].

Theorem 1.4.4.1 Let (X, o) be a shift space with the following strong specification
property: there is T € N such that for all v,w € L = L(X), there isu € L, such
that vuw € L. If X has more than one point, then the strong specification property
has positive entropy.

Proof Fix n € N such that there are w!, w? e £, with w! #* w?. Foreach k > 1,
define a map ®: {1,2}F — Li(n+1) by

D) = wo'w2v? .k Twlkyk,

where all the v/ have length  and the expression on the right hand side is chosen to
be in the language of X. The existence of such a word is guaranteed by the strong
specification property.

Since w! #* w?, we can see that ® is injective on {1, 2}", SO # Lk (nt1)(X) = 2k,
Taking logs, dividing by k(n + ), and sending k — oo gives

1 1
h(X) > li log 2K = log2 > 0.
( )_kgrolok(n—i-t) o8 n+rt 08s=

O

We take this basic idea further, and sketch a proof of the following result about
shifts with specification. The interest here is not so much in the statement, but rather
in the fact that the proof contains the main entropy production idea that we will use
for geodesic flow in the next section.
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Theorem 1.4.4.2 Consider a shift space (X,o) with the strong specification
property. Let Y C X be a compact invariant proper subset. Then h(Y) < h(X).

Proof We use the specification property, words in £(Y) and a single word w ¢
L(Y) to construct at least ¢”"¥)+€) words in £, (X) for large n, giving the desired
result.

Since Y # X, wecanfix w ¢ L(Y). Let ¢ be the length of w, and 7 the gap size in
the strong specification property. We fix a “window size” n > ¢ +271; given N € N,
we divide the indices {1, 2, ...,nN} into N “windows” of the form {kn + 1, kn +
2,...,(k+ 1n}for1 <k < N.In particular, given y € L,n(Y), we consider the
subwords of y that appear in each window, which have the form uk = Vikn+1, (k+1)n]
forl <k <n.

Within each window, we can perform the following ‘surgery’ to replace u* with
a word that is in £, (X) but not L(Y):

k k 1,2
US> ULy 0V WV,

where the words v', v? of length T are chosen as needed for the specification
property.

In each of the N windows of length n, we can decide whether to do surgery or
not. Given this choice, we use the specification property to create a new word of
length nN; as long as we performed at least 1 surgery, this new word lies in £(X)
but not in £(Y). In this way, from a single word y[; ,n], We can create 2V — 1
new words of length nN in £(X) \ L(Y) by varying over all the possible choices
of windows for doing this surgery procedure. Note that these words are all distinct
because within each window, we can determine whether or not we did surgery by
checking whether the word w appears.

This looks promising; however, it is too naive: we have to be careful as we vary
over y[1.,n] € L(Y). In any window we selected for surgery, we are losing all the
information on the last # 4+ 27 entries in the window. This means that up to #.L;42
distinct words could be mapped to the same word for each window we select for
surgery. If we select too many windows, the gain in new words is far outweighed by
the loss coming from this multiplicity estimate.

Fix Carry out surgery on a small proportion of the windows, and argue that the
number of new words created beats the loss of multiplicity.

More precisely, fix « > 0 small. Each surgery takes place at the boundary
between two windows, so we consider the N — 1 internal boundary points of the
N windows, i.e., the set

A=1{n,2n,3n,...,(N — 1n}.
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Assuming for convenience that N € N, we declare « N — 1 of the points in A to
be “on”,28 and denote the set of “on” points by J. Let J ‘}‘V be the set of all such J,
that is:

Y={JCA:#J=aN —1}.
Note that since a]\zlv_—kk > ; forall1 <k < aN, we have

aN-—1

H]Y — N —1 _ l_[ N —k >(1)0{N—1:ae(_aloga)N‘
aN —1 i aN —k — \«

Fix y = ypiany € Lan(Y). Given J € J§,, we carry out our surgery procedure
on the windows whose boundaries are determined by J.%° We obtain a new word
®;(y) € Lyn(X) which is definitely not in L(Y).

The set {®;(y) : J € J?‘V} is disjoint because we can recover J from ®;(y) by
looking at which windows contain the “marker” w. Given J, the maximum number
of words y € £,y (Y) that can have the same image ®;(y) is C*¥~!, where C =
#.L;42(Y) is independent of o and N. Thus if we carry out this procedure for each
word in #L,n (Y) and each J € J9,, we obtain

N -1
(U Uew)=eh (a N 1)#1:,,N(Y>,
y[l,nN]ELnN(Y) J
which gives
#L,n(X) > ae(—ozlogoz)Ne—oleogC#LnN(Y).

Taking logs, dividing by N, and sending N — oo, we see that
o
h(X)>h(¥)+ (—loga —logC).
n

If « > 0 is chosen small enough, the quantity in brackets is positive, and thus
h(X) > h(Y). m|

28The idea is that we want to split a word Y[1,nn] into @ N subwords and perform surgeries near the
points where it was split; these are the “on” points in A.

29Each such window determined by the set J has length some multiple of n. The surgery procedure
is to remove the last 7 +27 symbols from each window and replace with a word of the form v!wv?
where the words v/ are provided by the specification property to ensure that this procedure creates
aword in £,y (X).
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1.4.4.3 Entropy Gap for Geodesic Flow

Now we return our attention to the geodesic flow on X = T'M for a closed rank 1
non-positive curvature manifold M and outline the proof of the entropy gap 7(X) >
h(Sing).

We follow the same entropy production strategy described in the previous
section. The singular set Sing C X is a compact invariant proper subset. But
how should we construct orbits? We do not expect that orbit segments contained
in Sing will have the specification property. For example, orbit segments which
are contained in the interior of a flat strip definitely do not have the specification
property because of the flat geometry. If we stay e-close inside the flat strip on the
time interval [0, ¢], the amount of additional time needed to escape the flat strip
grows with 7.

So we want to use a specification argument on orbit segments without specifica-
tion, which does not immediately look promising. Let us recall what kind of orbits
do have specification: it suffices to know that both the start and end of the orbit
segment are ‘uniformly’ in the regular set.

More precisely, for any n > 0, we have the specification property on the
collection

COn) ={(x,1) :x, fix € Reg(n)},

where Reg(n) = {x : A(v) > n}. See Sect. 1.4.2.6 for the definition of A and
discussion of why the specification property holds on C(n).

In order to make use of this fact, we require a reasonable way to approximate
orbit segments in Sing by orbit segments in C(n). This will be given by a map
IT;: Sing — Reg, which can be roughly summarized by the following slogan
(which doesn’t make sense as a rigorous statement):

Move the start of (v, t) along its stable into Reg(n). Move the end along an unstable into
Reg ().

We now explain the construction that makes this idea precise. In our approximation
of (v, t), we ask that:

1. IT; (v), IT; (frv) € Reg(n).
2. there exists L so f;(IT;v) and Sing are close fors € [L, — L].

In the second property, one might hope to find L so f;(Il;v) and fiv are close
for s € [L,t — L]; however, this is too much to ask for. We can see the issue if
(v, 1) is in the middle of a flat strip; the best we can hope for is that the orbit of
I1; (v) approaches the edge of the flat strip; see Fig. 1.11, which also illustrates the
following “regularizing” procedure.

We fix ng so Reg(no) has nonempty interior. Then using density of stable and
unstable leaves, together with a compactness argument, we show the following:
There exists R > 0 such that forevery v € T'M we have both Wy (v)NReg(no) # ¥
and Wy (v) N Reg(no) # 0.
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w € Reg(n) frw € Reg(no)
v’ € Reg(mo)

Wi (v)

7 fﬂ)/

v € Sing
flat strip fiv

Fig. 1.11 The regularizing function I'l;: v > w

Using this fact, given v € Sing, choose v’ € W3 (v) N Reg(no). Then for fi (),
choose f;(w) € Wl’é(f,v’) N Reg(np). Define I1; (v) := w.

By continuity of A, we have A(w) > n for an n slightly smaller than 9. We
can argue that the function A*(f;w) is small along all of the orbit segment except
for an initial and terminal run of uniformly bounded length. This in turn implies
that d( f;w, Sing) is small, giving us condition (2). The reason A“( f;w) must be
small away from the ends of the orbit segment is that otherwise small local stable
and unstable manifolds centered here would get big too fast, contradicting that the
endpoints of the orbit segment are in stable and unstable manifolds of size R. This
is made precise by Proposition 3.13 of [3], which tells us that on a compact part of
the regular set, for fixed € and R, an e-stable/unstable manifold grows in a uniform
amount of time to cover a R-stable/unstable manifold.

In conclusion, we obtain the following properties:

Theorem 1.4.4.3 For every § > 0 and n € (0, no), there exists L > 0 such that for
everyv € Sing and t > 2L, the image w = I1,(v) has the following properties:

(1) w, fi(w) € Reg(n);

2) d(fs(w), Sing) < é foralls € [L,t — L];

(3) foreverys € [L,t — L], fs(w) and v lie in the same connected component of
B(Sing, §) :={w € T'M : d(w, Sing) < §)}.

This result is found in [3, Theorem 8.1], where the proof of (2) contains some
typos: we take this opportunity to correct these typos by providing a complete proof
here. (Most of this proof is word-for-word identical to the one in [3].)

Proof of Theorem 1.4.4.3 Let §, 1, no be as in the statement of the theorem. For
property (1), it is immediate from the definition of I1; that A(f;w) > 5. By uniform
continuity of A, we can take ¢ sufficiently small such that if v, € WE”0 (v1) and
A(v1) = no, then A(v2) > n. By Burns et al. [3, Corollary 3.14], there exists 7o > 0
such that if 1 > Tp and f;(w) € W(f;v'), then w € W[ (v'). Thus, if A(v") > no,
then A(w) > 7. Thus, item (1) of the theorem holds for any # > Tj.
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We turn our attention to item (2). Burns et al. [3, Proposition 3.4] tells us that
there are n’, T} > 0 such that

if A“(fyv) < n' forall |s| < Ty, thend(v, Sing) < §. (1.4.4.1)

Given v € Sing, we have IT°(v) = v' € Wy (v), and A(fyv) = O for all .

By continuity of A, we can take € sufficiently small such that if v, € ng (v1),
then |A*(v1) — A*(v2)| < n'/2. Applying [3, Proposition 3.13] to the compact set
{v:A*(v) > n'/2} C Reg gives T» > 0 such thatif A*(v;) > ’/2 and t > T, then
e W2, (1) D Wi(f-cv) and foWE (v1) D Wi(fvn),

Suppose for a contradiction that A" (fsv") > n'/2 for some s > T>. Applying the
previous paragraph with v; = fv’ gives fiv € fiWy(fsv') C We, (fsv"). By our
choice of €1, this gives A*( f;v) > 0, contradicting the fact that v € Sing, and we
conclude that A" (fyv') < n'/2 fors > T».

Similarly, if there is s € [T3, ¢ — T»] such that A*(fsw) > 7/, then the same
argument with v; = fyw and T =t —s gives fiv' € f_—sWi(fiw) C W (fsw),
and our choice of €] gives A*(fsv') > A (fsw) —n'/2 > 1’ /2, a contradiction since
M(fsv) < n'/2forall s > Tr. Thus \*(fsw) < n' forall s € [T, t — T»].

Applying (1.4.4.1) gives d(fsw, Sing) < é forall s € [T + T1,t — 1> — T1].
Thus, taking L = max(Ty, 71 + T»), assertions (1) and (2) follow for s > 2L.

For item (3) of the theorem, we observe that v and w can be connected by a
path u(r) that follows first W (v), then f_,(Wy (fiv")) (see Figure 1.11), and that
the arguments giving d( fyw, Sing) < § also give d(fsu(r), Sing) < & for every
s € [L,t— L] and every r. We conclude that f;v and f;w lie in the same connected
component of B(Sing, §) for every such s.

The collection {(IT;(v),?) : v € Sing} has the specification property. This is
because an orbit segment (I1,(v), t) both starts and ends in Reg(n). As discussed,
the collection C(n) of such orbit segments has the specification property.

We certainly do not expect the map I1; to preserve separation of orbits. For
example, in Fig. 1.11, we would expect a v € Sing defining a geodesic parallel to
yv (for example the arrow just above v in the picture) to be mapped to the same (or
similar) point. However, using estimates in the universal cover, which we omit here,
we can argue that IT; has bounded multiplicity on a (t, €) separated set, independent
of ¢, in the following sense.

Proposition 1.14 For every € > 0, there exists C > 0 such that if E; C Sing is a
(t, 2€)-separated set for some t > 0, then for every w € T'M, we have #{v € E, |
di(w, IT;v) <€} <C.

Now let us return to our entropy production argument. It is basically the argument
we saw in Sect. 1.4.4.2, except that we need to apply the regularizing map I1; before
applying the specification property, as shown in Fig. 1.12.
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Fig. 1.12 Gluing singular orbits

As before, consider a time window [0, nN]. Given a subset J of « N — 1 elements

from the set {n, 2n, 3n, ..., (N — 1)n}, we write £1, £, ..., £y for the lengths of
the intervals (in order) whose endpoints are determined by J.
For (vi,v2,...,v4N) € Sing"‘N, we apply the map Iy, _7 to each coordinate

and glue the resulting orbit segments in C(n) using specification (where T is the
transition time in the specification property at a suitable scale).

Run this construction over (g¢, 7, €)-separated sets for Sing in each coordinate,
and for each choice of J, we construct exponentially more orbits than there are
in Sing. The argument is analogous to our previous entropy production argument:
for « > 0 small, the growth from the (O‘]}’\,ill) term beats the loss coming from
multiplicity in the construction. In particular, we conclude that 2(X) > h(Sing).

1.4.4.4 Other Applications of Pressure Production

The argument for entropy and pressure production described above is quite flexible,
and can be used in many other contexts. For example, in [10] we used a variation on
this argument to show that for a continuous potential ¢ with the Bowen property on
the B-shift Xg,

n—1

1 .
li > pc'w’) < P(Zp. 9),
im 2 #low?) < P(Xp,9)

n—o0 g 4
i=1

where w” is the lexicographically maximal sequence in X g; this in turn established
a pressure gap condition leading to a uniqueness result, similar to the procedure
described above for geodesic flow.

Another variation of the argument can be used to prove that a unique equilibrium
state (1, coming from Bowen’s original theorem (i.e., from the assumptions of
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expansivity, specification and the Bowen property) satisfies

P(p) > sup /(pdu,
HEMf(X)

and thus that the entropy of pu, is positive.3? Such a potential is often called
hyperbolic. This idea was explored in [15, Theorem 6.1] and extended recently in
the symbolic setting in [11].
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Chapter 2 )
The Role of Continuity Shethie
and Expansiveness on Leo and Periodic
Specification Properties

Serge Troubetzkoy and Paulo Varandas

Abstract In this short note we prove that a continuous map of a compact manifold
which is locally eventually onto and is expansive satisfies the periodic specification
property. We also discuss the role of continuity as a key condition in the previous
characterization. We include several examples to illustrate the relation between these
concepts.

2.1 Introduction

There is a well known hierarchy of topological properties involving the topological
indecomposability of a dynamical system, as transitivity, topological mixing, and
the specification property, among many others. The relation between these and many
others has been addressed by Akin, Auslander and Nagar [1]. The aim of this short
note is to complement the above results, and to highlight the relation between the
locally eventually onto (a dynamical property stronger than topological mixing)
and the specification properties, and to make explicit the role of continuity on such
characterization. The specification property was first introduced by Bowen [6], for
a survey of specification-like properties we recommend the following article [13],
while for a survey of mixing properties we recommend the article [1].

First let us recall some well known results. Blokh [5] showed that for a
continuous map of the interval [0, 1] the periodic specification property is equivalent
to topological mixing (see e.g., [7, 17]). So, while for continuous interval maps the
picture is very well understood and most concepts of topological chaoticity coincide,
this is no longer true for more general metric spaces or whenever continuity breaks
down. Yet, the situation is well understood in the case of one-dimensional branched
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manifolds, where there is a characterization of transitive dynamics due to Blokh [4].
In brief terms, he established the following classification theorem: either a transitive
map f of a graph has periodic points and it can be decomposed into n connected
subgraphs with finite pairwise intersections which are cyclically permuted and f"
has the specification property, or f is aperiodic and it is just a cycle of n circles with
f" being an irrational rotation. We refer the reader to [4] for more details.

It is noticeable that while any locally eventually onto continuous map has
dense periodic sets, it may not have periodic points (cf. [1, Theorem 2.30 and
Example 2.31]). In particular, a locally eventually onto continuous map need not
satisfy the periodic specification property. Two results complement this discussion.
First, expansiveness play a key role to bridge between the specification and periodic
specification properties: a topological dynamical system satisfying the specification
property and whose natural extension is expansive satisfies the periodic specification
property (see e.g., [13, Lemma 6]). Second, Yan et al. [20, Theorem 3.1] constructed
an example of a topological mixing subshift, hence expansive, which does not even
have the specification property.

The situation is well understood in the case of continuous, open and distance
expanding maps on compact metric spaces. Indeed, since any such map satisfies the
shadowing property and periodic points are dense in the non-wandering set, these
admit a spectral decomposition theorem (see [16, Theorem 4.3.8]). Moreover, any
such map is topologically mixing map if and only it is locally eventually onto. We
refer the reader to [16, Sections 4.2 and 4.3] for more details. Similar, but slightly
weaker results are known if we drop the openness assumption, instead assume
shadowing [12].

In general, while the locally eventually onto property need not ensure the periodic
specification property, the following result shows that expansiveness can act as a
sufficient condition for it. We refer the reader to Sect. 2.2 for definitions.

Theorem 1.1 Let X be a compact and connected topological manifold. If the
topological dynamical system (X, f) is locally eventually onto and expansive then
it has the periodic specification property.

This result is no longer true if one replaces the condition of X being a compact
topological manifold by the assumption of being an arbitrary compact metric space.
We refer the reader to Example 2.4, where we present an expansive and locally
eventually onto map for which the periodic specification fails.

Note that the specification property is a topological invariant, hence we can ask
whether such a property holds for the continuous map f on (X, d) or on the metric
space (X, d’), for a equivalent metric d’. In the case of compact and connected
topological manifolds, Coven and Reddy [9] constructed adapted metrics, proving
that every expansive dynamics is indeed expanding with respect to some equivalent
metric. In particular, Theorem 1.1 is a direct consequence of the previous discussion
together with the following:

Theorem 1.2 Assume that the topological dynamical system (X, f) is expanding
and locally eventually onto. Then (X, f) has the periodic specification property.
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The latter suggests that the failure of periodic specification for distance expand-
ing maps is essentially related to the lack of periodic points (see Example 2.4), the
non-compactness of the phase space (see Example 2.6), or that the dynamics is not
mixing.

Given the previous result it is natural to ask whether any locally eventually onto
continuous map satisfies the specification property.

Remark 2.1 Tt is worth mentioning that the situation is clear for continuous
interval maps. Indeed, combining [8, Theorem B] and Blokh’s theorem (cf. [17,
Theorem 3.4]), it follows that the locally eventually onto property implies on the
following conditions, which, for interval maps, are equivalent:

(i) f?is transitive,
(i) f" is transitive for every n > 1,
(iii) f is topologically mixing,
(iv) f satisfies the specification property.

While the converse holds in the case of piecewise monotone continuous interval
maps (cf. [8, Lemma 4.1]), it fails for general continuous interval maps. In particular
there are continuous interval maps satisfying the specification property for which the
locally eventually onto property fails (see e.g., [2, Example 3]).

On the positive direction, we notice that the same strategy used in Blokh’s
theorem (cf. [17, Theorem 3.4]) can be used for conformal-like maps.

Theorem 1.3 Every locally eventually onto, continuous and conformal-like map on
a compact metric space satisfies the periodic specification property.

Remark 2.2 In the definition of topological dynamical system, the assumption that
the metric space is complete cannot be removed. Throughout N be the set of non-
negative integers (hence containing 0). There exists a metric space X C {0, 1, 2}N
such that the shift map (X, o) is locally eventually onto, it is clearly expansive, but
fails even to present periodic points [1, Example 2.31].

Our second goal concerns describing the consequences of discontinuities on
locally eventually onto maps. This is a problem dual to the one considered by Buzzi
[7], the study of the specification property for piecewise monotone interval maps.
In the case of piecewise monotone continuous interval maps f, the transitivity for
f? ensures the following “almost” locally eventually onto property: for any open
interval A and any closed interval J C (0, 1) there exists N > 1 so that f¥(A) D J
(see [2, Theorem 6]). However, while the key step in this argument explores the
density of periodic points, the classical argument that ensures the density of periodic
points for expanding maps does not apply for transitive piecewise expanding interval
maps given that dynamical balls may fail to grow to a large scale.

We shall focus on important classes of dynamical systems known as -
expansions and S-shifts (see e.g., [3]). These can be realized by geometric models
in the interval; for each 8 > 1, the 8-map is the C°°-piecewise expanding interval
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map Tg : [0, 1) — [0, 1) given by

Tg(x) = Bx — [ Bx].

However, while the previous map is always expansive, and Markov for a countable
set of parameters, Tg does not satisfy the specification property for Lebesgue almost
every parameter 8 > 1 (cf. [7]). A characterization of the set of the values of g
which lead to maps with specification can be found in [18]. The next result shows
that continuity is essential in Theorem 1.2.

Theorem 1.4 For Lebesgue almost every p € (1, +00) the map Tg:

(i) is locally eventually onto;
(ii) is expansive;
(iii) does not satisfy the specification property [7].

We complete this section with two final comments on the relation between
the specification and the locally eventually onto properties for continuous maps
in more general metric spaces. While any Anosov diffeomorphism satisfies the
specification property (see e.g. [11]), every volume preserving Anosov diffeomor-
phism is clearly not locally eventually onto. Nevertheless, on the converse direction,
locally eventually onto maps displaying non-uniform expansion often satisfy some
measure-theoretical forms of specification (we refer the reader to [14, 19] for the
precise formulations).

2.2 Definitions

Let (X, d) be a compact metric space, and f : X — X a continuous map. We refer
to (X, f) as a dynamical system.

The map f is called locally eventually onto (LEO) if for every nonempty open
set U thereisann € N := {0, 1,2, ...} such that f"(U) = X.

For integers a > b > 0 let fl¢P)(x) := {f/(x) 1a < j < b).

A family of orbit segments { 14211 (x PDVi_y is an N-spaced specification if
a; —bj_1>Nfor2 <i <n.

We say that a specification {f[“f"b/']()g)};f:1 is e-shadowed by y € X if

d(f*(y), f¥(xi)) <efora; <k <bjand1 <i <n.

We say that (X, f) has the specification property if for any ¢ > 0 there is a
constant N = N(¢) such that any N-spaced specification {f[“f’b/'](xj)}?:l is e-
shadowed by some y € X. If additionally, y can be chosen in such a way that
fPrma0tN(y) =y then (X, f) has the periodic specification property.
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The dynamical system (X, f) is positively expansive if there exists ¢ > 0, called
expansivity constant of f, such thatif x, y € X and x # y, then for some n > 0,
d(f"n(x), f*(y)) > a.

The dynamical system (X, f) is expanding if there are constants A > 1 and
80 > O such that, forall x, y,z € X,

1. d(f(x), f(y)) = Ad(x, y) whenever d(x,y) < §p and
2. B(x, 80) N f~(z) is a singleton whenever d( f (x), z) < .

A dynamical system (X, f) satisfying condition (1) if called a distance expanding
map. In any compact metrizable space, a continuous transformation is expanding if
and only if it is open, i.e., maps open sets to open sets, and distance expanding (see
[9, Lemma 1]). In [16] the authors describe the dynamical properties of such maps
and obtaining, in particular, density of periodic points, the shadowing property and
a spectral decomposition theorem (see [16, Section 4]).

The set B, (x,¢) :={y € X : d(fix, fly) < efor0 < i < n} is called a Bowen
ball.

A dynamical system (X, f) is called conformal-like if the image of every ball
is a ball. A conformal map is a map that preserves angles and orientation; in the
special case of smooth dynamics, the Jacobian of a conformal map is a positive
multiple of a rotation matrice. Hence linear conformal maps preserve balls and
are thus conformal-like but not every linear conformal-like map is conformal; for
example it could reverse orientation.

2.3 Proofs

2.3.1 Proof of Theorem 1.2

From the locally eventually onto property, for each y € X, and ¢ > 0 there is an
N(y, &) > 1 such that fNO®)(B(y, £/3)) = X. Morover, by compactness of X we
can cover X by a finite collection of balls {B(y;, £€/3)};. Let N := max; {N (y;, )}
Then since any ball B(y,¢) contains one of the B(y;,&/3) we conclude that
fN(B(y,¢)) = X forall y € X.

Now since f is continuous and expanding, the image by f™ of a Bowen ball
By (x,¢e)is B(f™(x), ), for every 0 < ¢ < §p. Combining this with the previous
paragraph yields f*N B, (x, &) = X foreach x € X and every 0 < & < §.

Fix ¢ > 0 and choose N as above. Consider an N-specification, i.e., a collection
of orbit segments {f[“.f’b.f](xj)}’}zl, with @; — b;_1 > N for 2 < i < n. Setting
mj:=bj—ajand Nj = m; + N we have shown that

SN By (f9(x7). €)) = X D By (f9 (xj41). €),
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and thus

B (f(xj), ) N f N (B (F94 (xj11), £)) # 0

hold for each 1 < j < n. Iterating this, and noticing that f is expanding, yields that

{ By (' x1), &) 0 f NN B, (F (), ) ), 2o (2.3.1)

is a nested sequence of compact sets. Any point in the intersection of these sets ¢-
shadows the specification, and thus we have shown the specification property holds.

Finally we must show that the periodic specification property holds. Fix ¢ > 0
and consider an arbitrary N-specification { f1%/-2i1(x j)}’}Z1 with N chosen as above.
We extend this to a longer N specification by choosing a,+1 = b, + N, byy1 =
ap+1+myand x4 = fY7 %+ x;. Thus my, 41 = m; and B, (fo9t xpi1,€) =
By, (f9x1, €). Therefore the chain (2.3.1) of containments extends to

{Bu, (f 1), ) 0 f NN N By (F (), @)}y

The closure of the intersection of the extended chain of containments must contain
a point fixed by fN1++Nnt1 hence the periodic specification property holds. O

2.3.2 Proof of Theorem 1.3

The strategy follows closely [7, Appendix A]. For that reason we just give a brief
sketch of the proof. Let X be a compact metric space and f : X — X be
a continuous, locally eventually onto conformal map. The key step is a uniform
control on the images of Bowen balls. Indeed, while points in n-Bowen balls are
within controlled distance to the original orbit during # iterates, it is the size of the
image the Bowen ball by iteration of f” which suggests how strong is the capability
to obtain specification.

Claim For any ¢ > 0 there exists {(¢) > 0 so that
diam(f" (B, (x, €))) > ¢(¢) foreveryn > 1and x € X.

Proof of the Claim Fix x € X. By conformality, for each n > 1 the set
S"(By(x, €)) is a ball around f"(x). Recall also that
n . .
Bpyi(x,e) = ﬂ F (B (x),8) = Bu(x, &) N fTH(B(f"(x),8))  (23.2)

j=0

and clearly B, (x, &) N f7"(B(f"(x), €)) C By(x,¢).
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In particular, by the conformality of f, for each n > 1 either: (i) the equality
Byy1(x,€) = By(x, ¢) holds, or (ii) the set B, (x, &) N f~"(B(f"(x), €)) is strictly
contained in B, (x, ¢). In the second case, there exists a point y € B,(x,¢€) so
that f"(y) ¢ B(f"(x), ¢). This shows that the ball f"(B,(x,¢)) D B(f"(x),¢),
combining with (2.3.2) yields

I (Bus1(x, 8)) = B(f"(x), ).

Altogether, this proves that for every n > 1 there exists 0 < j < n so that
J"(Bn(x,€)) = "/ (B(f’(x),¢€)).

Thus, in order to prove the claim it is enough to show that the forward image of
balls of a definite size do not degenerate: for any ¢ > 0 there exists {(¢) > 0 such
that diam( " (B(z, €))) > ¢(e) foreveryn > 1 and every z € X.

Indeed, since f is locally eventually onto, for any given z € X there exists
N(z,€) > 0such that fN@&(B(z, £)) = X; hence there exists ¢;(¢) > 0 such that
diam( f"(B(z, €))) > ¢;(e) for every n > 1. The continuity of f and compactness
of X ensures that min;cy {;(¢) > 0, proving the claim. O

We now claim that f satisfies the periodic specification property. Indeed, given
& > 0let N = N(e) > 1 be such that fN(B(x, ¢(e))) = X forevery x € X. Such
N > 1 does exists as f is locally eventually onto and X is compact. The proof of
the periodic specification property now follows as in Theorem 1.2. O

2.3.3 Proof of Theorem 1.4

Since items (ii) and (iii) are known (see e.g., [7]) we need only prove that each Tg
is locally eventually onto.

Fix B > 1 and take an arbitrary interval J C [0, 1). We claim that there exists
N > 1 so that TﬁN (J) = [0, 1). We may assume without loss of generality that
J is contained in some domain of smoothness for 7. By the mean value theorem,
Leb(Tg(J)) = BLeb(J). If Tg(J)N D1, = (¥ then Leb(Tﬂz(J)) > B2 Leb(J). Since
the diameter is bounded, a recursive argument shows that Té‘ (J)NDr, # ¥ for some
k > 1. In particular Té‘(]) D [0, a) for some a € (0, ﬁl}]. Since Tg(0) = 0, and Tg
is monotone increasing in [0, é] then there exists N > 1 so that TﬂN (J) D [0, é].
This assures that TﬂN Hy=10,1). O

2.4 Examples

We finish with some examples. The first example is a simple examples of piecewise
expanding continuous maps which need not be neither expansive nor transitive.
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Example 2.1 Consider the continuous and piecewise expanding interval map
fo 10, 31— [0, 3] given by

3x if x €10, ¢]
fo) = 1-3x+1 ifxe(}, il
3x—1  ifxe (.l

Let f : [0, 1] — [0, 1] be obtained by replication of the dynamics fy in intervals of
exponential decreasing growth accumulating 1, defined by the relation

f)=1=-2"4+2"f2"(x —14+27"), xe(l—2""1- 2—(n+1)].

and f(0) = 0, f(1) = 1. Clearly f is piecewise expanding, continuous, not
expanding nor transitive.

The next example shows that transitivity is essential to avoid unattainable
repelling points.

Example 2.2 Consider the continuous and C'-piecewise expanding interval map
f:10,1] — [0, 1] given by

3x if x €0, ]
fG)y=1-2x+3 ifxe(3, 3]
2x—1 ifxe (31

The map is not transitive as f([;, 1) = [é, 1], in other words, [é, 1] is an f-
invariant domain. Thus f is not locally eventually onto. Nevertheless, the attractor
A= mnzo S, 1] = [é, 1] and f |, is locally eventually onto.

Finally we complete this note with an example showing that locally eventually
onto is weaker than specification. We consider an example suggested by Linden-
strauss (cf. [1, Example 2.31]) of a locally eventualy onto map having no periodic
points.

Example 2.3 Consider the subshift Yo < {0, 1, 2}N consisting of the set of
sequences that admit no consecutive 0’s, let and let r : Yo — {1, 2} be given by
suppression of the 0’s in the sequences belonging to Y. Endowing the shift spaces
with the usual distances, 7 is a continuous map on a compact metric space, hence it
is uniformly continuous.

Consider a minimal subshift X C ({1, Z}N, o) and let Y = 7~ (X). Akin et al
proved that (Y, o) is locally eventually onto (cf. Example 2.31 in [1]). We claim that
(Y, o) does not satisfy the specification property. Recall that a factor of a map of a
compact space with specification satisfies specification (cf. [10, Proposition 21.4])
This does not directly apply to our situation since we do not have compactness,
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however it is not hard to prove that the commuting diagram

Y -4, Y

Ix Iz
X —s X

together with the uniform continuity of m ensures that if (Y, o) satisfies the
specification property then so does (X, o). Second, (X, o) does not satisfy the
specification property. Indeed, if (X, T') has the specification property and its natural
extension is expansive then (X, T) has the periodic specification property (see
e.g., Lemma 6 in [13]). Altogether, this proves that (Y, o) does not satisfy the
specification property, as claimed.

The following example, suggested by F. Przytycki, describes an counter example
to Theorem 1 if we do not assume that X is a topological manifold.

Example 2.4 Consider the circle S' = R/Z and the doubling map f : S! — S!
given by f(x) = 2x (mod 1). This is an expanding map (with constants A = 2
and 8 = 1), as d(f(x), f()) = 2d(x,y) and B(x, }) N f~!(z) is a singleton
whenever d(f(x), z) < é, forall x, y,z € SL.

Consider an enumeration (p;),en of the set of periodic points for f, in such a
way that their sequence of periods is non-decreasing, and choose a sequence (1) ,eN
of positive real numbers converging quickly to zero in such a way that

k=s"\{JUJ r*®Bpmm»

n>0k>0

is a non-empty compact subset of S!, and thus f(K) = K.

We furthermore suppose that the sequence (1,),en is chosen as follows. Since
the periodic points of f are equidistributed in S! (as f is semi-conjugated to the
full shift on two symbols), for any go € S! there exists 0 < o <« 1 so that

U0 £ ¥ (B(qo. ¢0)) N Per(f) # @. Set gqo = po € Per(f). As all points in S'
have dense pre-orbits we conclude that

Ko=8"\{J /¥ Bpo.con DK #9

k>0

is a Cantor set. Let ny = inf{{ > 1: py € Ko} and write g1 = p,,. Choose

0 < &1 < o such that Ukzof*k(B(qo,g“o) U B(ql,gl)) N Per(f) # . The

previous condition can be assured by noting that any periodic point which intersects
B(qo0, ¢o) U B(q1, ¢1) has combinatorics determined by either gg or g1. Then

1
ki=s"\JU r B c ko

i=0k>0
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is a Cantor set which does not contain any of the periodic points in the set {p,: 0 <
n < n1}. Proceeding recursively, we obtain a strictly decreasing sequence (&¢)¢ of
positive real numbers, a strictly increasing sequence (n¢), of positive integers and a
nested sequence (Ky), of Cantor sets such that

¢
ke =s"\{JUJ r*®Bwi

i=0k>0

contains some periodic point of f. Since the periodic points in K; N Per(f) are
dense K, we have that f(K,;) = K, for every £ > 1. By construction, the set

k=s"\JU r*®Ba e #9

i=0k>0

is a Cantor set having no periodic points and f(K) = K, as required.
Let us analyze the map g := f |k. This is clearly an expansive, and distance
expanding map. However, the following holds:

(a) g has no periodic points;
(b) g is not an open map;
(c) g isnot an expanding map (i.e. condition (2) in Sect. 2.2 fails).

Property (a) is immediate from the construction. Property (b) follows because for
every open, distance expanding map, periodic points are dense in the non-wandering
set (see Corollaries 4.2.4 and 4.2.5 in [16]). Property (c) is a consequence of
property (b), because of the equivalence between the notion of expanding with the
notion of open, distance expanding on compact metric spaces (see [9, Lemma 1]).
Moreover,

(d) g is locally eventually onto.

This property is not immediate for subshifts (see e.g., Example 2.5). In order to
prove property (d) we will prove that each map f |k, (£ > 1) is locally eventually
onto with uniform constants.

Fixany £ > lande > 0.If N = L};g%ﬂ then fV is a Markov map with 2V
full branches domains (injectivity domains), each of these with diameter larger than
2¢. In particular, fV(B(x, ¢)) = S forall x € S'. We claim that

F2d (B(x, £) N K() — K,  VxeS (2.4.1)

The inclusion C is immediate. For the converse inclusion O, without loss of
generality we can choose ¢ = 27V and thus fV | B(x,) 18 a full branch for f N
Since K/, has a dense set of the periodic points, every z € Ky is approximated by a
sequence (z), of periodic points in K. In particular, each of the points in the set
f~N({z}) N B(x, &) is an accumulation point of periodic points in K,. Since K is
compact, this assures that f_N ({zh) N B(x, ¢) € K; and proves (2.4.1). Now, as the
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Cantor sets are nested, one can use (2.4.1) to get

n n
fN(B(x,s) n ﬂl@ = (ke VxeS. Vnz1
=1 =1

This, together with the continuity of the map PSY) 5 A — fN(A) (in the
Hausdorff topology) implies that

fN<B(x,8)ﬂK)=K, vx € S'.

This proves that g = f |k is locally eventually onto.

Example 2.5 There are examples of strongly mixing subshifts which are not locally
eventually onto. Indeed, Petersen [15] constructed a zero entropy, minimal and
strongly mixing subshift K c {0, 1}V We claim that the distance expanding map
(K, o) is not locally eventually onto.

Assume, by contradiction that (K, o) is locally eventually onto. As K is
compact, for any ¢ > 0 there exists N = N(g) > 1 so that

oN(Bk(x,e)) = K forevery x € K. (2.4.2)

This implies that for any 0 < & < édiam(K ) there exist points x;,x2 € K so
that d(o™ (x1), oV (x2)) > &. Hence, if s(n, ) denote the maximal cardinality of
(n, £)-separated subsets of K, a recursive argument using (2.4.2) together with the
observation that " (B(x, n, €)) = B(c"(x), ¢) foreveryx € K,n > l ande > 0
ensures that s(kN, &) > 2% for every k > 1. Hence

1
hp(o k) = elin%)lim sup " logs(n, ¢)
—U n—o0

1 1
> lim lim sup KN logs(kN,¢e) > N log2 > 0,

=0 ko0

which leads to a contradiction. This proves that (K, o) is not locally eventually onto.

The next simple example illustrates that compactness is an essential assumption
in Theorem 1.2.

Example 2.6 The mixing and specification properties have been extensively studied
in the case of symbolic dynamics (see e.g., [13, Section 8] and references therein).
Here we give an example of a shift space, hence distance expanding, which is locally
eventually onto, has dense periodic orbits but for which the specification property
fails.

Consider the subshift Xg C NN determined by the countable graph G with
countable states N and whose allowed directed paths v — w, v, w € N are
0 — w for every w € N, and the arrows v — w with v # 0 are admissible if
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and only if w € {v — 1, v}. The cylinder sets are defined by [vo, v1, ..., v,] =
{(wo, wi, w2,...): wj = v;, YO < i < n}. The shift o : Tg — g is locally
eventually onto because

" (o, v1,...,va]) Da([1]) = £g for every cylinder [vg, v1, ..., vn].

It is a simple exercise to show that the condition o’ ([n]) N[1] = @ for every 0 <
Jj < n — 1 1is incompatible with the specification property.

In final example we prove an optimality of Theorem 1.2, in the sense that it fails
if condition (2) in the definition of expanding map is removed.

Example 2.7 Leto : {0, 1}N — {0, 1}N be the full shift, and let g : [0] — [0] be
the first return map of o to the cylinder [0]. More precisely, if T : [0] — N is the
first return time to [0] given by

T(x0, X1, X2, X3, ...) = inf{k > 1: x; = 0}
then g(-) = o7")(-). Equivalently, if xo = 0 then
8(x0, X1, X2, X3, X4, . .. ) = (Xk, Xk415 Xk425 - - - )

where k = t(xg, x1, X2, X3, . ..). After identification of the set S of all finite words
©O,1,1,1,...,1,0) with the cylinder [0,1,1,1,...,1,0] C {0, I}N, the map g
acts as a full shift SV By the previous identification, we will consider SV as a
subset of the cylinder [0] C {0, 13N, This construction is often called the “Rome
graph”.

Let ¥ C SV be the locally eventually onto subshift so that g |x: ¥ — X does
not satisfy the specification property induced by Example 2.6. Indeed, just use the
bijection

N—-S8 gvenby n+~ (0,1,1,...,1,0) (2.4.3)

-~
n

to embed the subshift g C NN onto such subshift & < SV. The possible
unbounded amount of 1’s in (2.4.3) makes the subshift ¥ C SN not closed. Now,
consider the o -invariant and compact set K C {0, 1}N obtained as the closure of the
saturated set

n—1
U Uaj({w € X: t(w) =n})
n>1 j=0
By construction and the fact that K is closed we get

K N[0] = closure(SY) = = U {01%°}
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and

n—1
KNnJ[l]l= closure(U U oj({w eX:t(w) = n}))
n>1 j=1

—(UUo" (v e 5 ) =) vt

n>1 j=1

Note that the elements in {01°°, 1°°} do not return to the cylinder [0]. Thus, using
that K \ {01°°, 1°°} is obtained by the union of the finite pieces of orbits of points
in ¥ until their first return time to X, the distance expanding map (K, o |x) does
not satisfy the specification property.

We claim that (K, o) is locally eventually onto. Dealing with the induced
topology, it is enough to prove that for any cylinder [x1, x2, ..., x,] N K # @ there
exists N > 1 so that oN([xl, x2,...,xy]) = {0, I}N. This is a consequence of the
fact that g is a Poincaré first return map of o to the global cross-section [0] and that
g is locally eventually onto (recall Example 2.6). Then Theorem 1.2 implies that the
long inverse branches condition (2) in the definition of expanding map fails.
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Chapter 3 )
Thermodynamic Formalism Shethie
and Geometric Applications

for Transcendental Meromorphic

and Entire Functions

Volker Mayer and Mariusz Urbanski

Abstract In this survey we deal with transcendental meromorphic and entire
functions. We thoroughly discuss in this context close relations between topological
pressure and conformal measures for geometric potentials. For two more special
classes of meromorphic functions, namely dynamically semi-regular and those in
the class O that have negative spectrum, we then also discuss, by means of the
appropriate transfer (or Perron-Frobenius) operator, the corresponding thermody-
namic formalism for such potentials. It holds in its full classical version. At the
end of the survey we discuss hyperbolic dimension, Bowen’s Formula, and real
analyticity of Hausdorff dimension.

3.1 Introduction

Originating from statistical physics, the dynamical theory of thermodynamic
formalism was brought to mathematics, particularly to study expanding and
hyperbolic dynamical systems, primarily by Bowen [20], Ruelle [85], Sinai [89],
and Walters [108] in the 1970s. This theory provides an excellent framework for
probabilistic description of the chaotic part of the dynamics and, in the context of
smooth (particularly conformal) expanding/hyperbolic dynamical systems, gives a
rich and detailed information about the geometry of expanding repellers, limit sets
of Kleinian groups and iterated function systems, and Julia sets of holomorphic
dynamical systems. More precisely, by establishing the existence and uniqueness
of Gibbs and equilibrium states, and studying spectral and asymptotic properties
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of corresponding Perron-Frobenius operators, it permits to show that dynamical
systems are “strongly” mixing (K-mixing, weak Bernoulli), have exponential decay
of correlations, satisfy the Invariant Principle Almost Surely, in particular satisfy
the Central Limit Theorem, and the Law of Iterated Logarithm. Furthermore, by
studying the topological pressure function of geometric potentials, particularly
its regularity properties (real analyticity, convexity), this theory gives a precise
information about the fractal geometry of Julia and limit sets. Particularly, R. Bowen
initially showed in [21] that the Hausdorff dimension of the limit set of a co—
compact quasi—Fuchsian group is given by the unique zero of the appropriate
pressure function. His result and its numerous versions commonly bear the name
of Bowen’s Formula ever since. Bowen’s results easily carry through to the case
of expanding (hyperbolic) rational functions providing a closed formula for the
Hausdorff dimension of their Julia sets. D. Ruelle, positively answering a conjecture
of D. Sullivan (see [96]-[101]), proved in [86] that this dimension depends in a real
analytic way on the function.

For hyperbolic, and even much further beyond, rational functions, and more
general distance expanding maps, the theory of thermodynamic formalism is now
well developed and established, and its systematic account can be found in [78]
(see also [49, 66, 109, 111]). The present text concerns transcendental entire and
meromorphic functions. For these classes of functions many differences and new
phenomena pop up that do not occur in the case of rational maps. The following two
properties of transcendental functions show from the outset that the outlook of these
classes is indeed totally different than the one of rational functions.

— Whereas the singularities of hyperbolic rational maps stay away form their Julia
sets, for transcendental functions one always has to deal with the singularity at
infinity.

— Transcendental functions have infinite degree.

One immediate consequence of the later fact is that for transcendental functions
there is no measure of maximal entropy, which is one of the central objects in the
theory of rational functions. Particularly for polynomials, where this measure coin-
cides with harmonic measure viewing from infinity, and also for endomorphisms
of higher dimensional projective spaces. Another consequence is that all Perron—
Frobenius, or transfer, operators of a transcendental meromorphic functions are
always defined by an infinite series. This is the reason that, even for such classical
functions as exponential ones f3(z) = X\e®, this operator taken in its most natural
sense, is not even well-defined.

K. Baranski first managed to overcome these difficulties and presented a
thermodynamical formalism for the tangent family in [6]. Expanding the ideas from
[6] led to [45], where Walters expanding maps and Baraniski maps were introduced
and studied. One important feature of the maps treated in [6] and [45] was that all
analytic inverse branches were well-defined at all points of Julia sets. This property
dramatically fails for example for entire functions as fj(z) = Ae® (there are no
well-defined inverse branches at infinity). To remedy this situation, the periodicity
of f) was exploited to project the dynamics of these functions down to the cylinder
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and the appropriate thermodynamical formalism was developed in [104] and [105].
This approach has been adopted to other periodic transcendental functions; besides
the papers cited above, see also [22-24, 47, 55, 106] and the survey [48].

The first general theory of thermodynamic formalism for transcendental mero-
morphic and entire functions was laid down in the year 2008 in [56]. Mayer and
Urbariski [58] containes a complete treatment of this approach. It handled all the
periodic functions cited above in a uniform way and went much farther beyond. The
most important key point in these two papers was to replace the standard Euclidean
metric by an appropriate Riemannian metric. Then the power series defining the
Perron—Frobenius operators of geometric potentials becomes comparable to the
Borel series and can be controlled by means of Nevanlinna’s value distribution
theory.

For a large class of transcendental entire functions whose set of singularities is
bounded, quite an optimal approach to thermodynamic formalism was laid down
and developed in [60].

It was observed in this paper that, for these entire functions, the transfer operator
entirely depends on the geometry of the logarithmic tracts, in fact on the behavior
of the boundary of the tracts near infinity. The best way to deal with the often fractal
behavior of the tracts near infinity was by adapting the concept of integral means, a
classical and powerful tool in the theory of conformal mappings.

This text provides an overview of the (geometric) thermodynamic formalism
for transcendental meromorphic and entire functions with particular emphasis
on geometric/fractal aspects such as Bowen’s Formula expressing the hyperbolic
dimension as a unique zero of a pressure function and the behavior of the latter
when the transcendental functions vary in an analytic family.

There are some several important and interesting topics closely related to the
subject matter of our exposition that will nevertheless not be treated at all or
will be merely briefly mentioned in our survey. For example, this exposition only
briefly indicates that thermodynamic formalism has been successfully developed for
random transcendental dynamical systems; see [59, 63], comp. also [107] for non—
hyperbolic random dynamics of transcendental functions. Non—hyperbolic functions
will not be in the focus of our current exposition either but we would like to
bring reader’s attention to some relevant papers that include [57, 106] and [107].
Discussing all these topics at length and detail would increase the length of our
survey substantially, making it too long, and would lead us too far beyond of what
we intended to focus on in the current survey.

We would like to thank the referee for his valuable remarks which influenced the
final version of the paper.

3.2 Notation

Frequently we have to replace Euclidean metric by some other Riemannian metric
do = y |dz|. A natural choice is the spherical metric in which case the density with
respect to Euclidean metric is y(z) = 1/(1 + |z|?). More generally, we consider
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metrics of the form

|dz|
d =d = , 7>0. 3.2.1
0(z) =do(2) L4 2]t (3.2.1)

They vary between euclidean and spherical metrics when t € [0, 2]. If such a metric
is used only away from the origin, then one can use the simpler form

dt(z) = |z| " |dz]. (3.2.2)

We denote by D, (z, r) the open disk with center z and radius r with respect metric
o. If o is the spherical metric then this disk is also denoted by D;,;(z, r) and for
the standard euclidean metric D(z, ). We also denote

Dgr =D(0, R)
and
D% =C\ D(z, R).
The symbol
A(r, R) :=Dg \ D,

is used to denote the annulus centered at O with the inner radius r and the outer
radius R.

The derivative of a function f with respect to a Riemannian metric do = y |dz|
is given by

_do(f(2)

Pl = y(f ()

4o 2) = |f (2] @) (3.2.3)

When the metric ¢ has the form (3.2.1) or (3.2.2) then do only depends on 7 and
we will identify o and 7 and write | /()| instead of | f'(z)|o. Therefore,

Ol e wd @ = S

@=L @ "

in the case of the simpler form (3.2.2). When t = 2 then we also write | f/(z) lsph-

Besides this, we use common notation such as C and C for the Euclidean plane
and the Riemann sphere respectively. Another common notation is

A < B.
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As usually, it means that the ratio A/B is bounded below and above by strictly
positive and finite constants that do not depend on the parameters involved. The
corresponding inequalities up to a multiplicative constant are denoted by

A=< B and A > B.
Also,
dist(E, F)

denotes the Euclidean distance between the sets E, F C C.

3.3 Transcendental Functions, Hyperbolicity and Expansion

We consider transcendental entire or meromorphic functions. Such a function f :
C — C can have two types of singularities: asymptotical and critical values. We
refer to [17] for the classification of the different types of singularities, known as
Iversen’s classification, denote by S(f) the closure of the set of critical values and
finite asymptotic values of f.

Transcendental functions are very general and one is led, actually forced, to
consider reasonable subclasses. The class 8 of bounded type functions consists of
all meromorphic functions for which the set S(f) is bounded. Bounded type entire
functions have been introduced and studied in [37], B is also called the Eremenko—
Lyubich class. It contains an important subclass, called Speiser class, which consists
of all meromorphic functions for which the set S(f) is finite.

3.3.1 Dynamical Preliminaries

For a general introduction of the dynamical aspects of meromorphic functions we
refer to the survey article of Bergweiler [13] and the book [49]. We collect here
some of its properties, primarily the ones we will need in the sequel. The Fatou set
of a meromorphic function f : C — C is denoted by F'( f). It is defined as usually
to be the set of all points z € C for which there exists a neighborhood U of z on
which all the iterates f k k > 1, of the function ]i are deﬁped and form a normal
family. The complement of this set is the Julia set J(f) = C \ F(f). We write

J(f)=J(fHnc.

By Picard’s theorem, there are at most two points & € C that have finite backward
orbit 07 (&) = (U,>0 f "(z0)- The set of these points is the exceptional set
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&Ey. In contrast to the case of rational maps it may happen that & C J( .
Iversen’s theorem [40, 68] asserts that every point § € &y is an asymptotic value.
Consequently, &¢ is contained in S(f). the set of critical and finite asymptotic
values of f. The post-critical set P(f) is defined to be the closure in the complex
plane C of

U £ (SH\ f(00)) .

n>0

This set can contain the whole Julia set.
Definition 3.1 If J(f) \ P(f) # ¥ then f is called tame.

The Julia set contains several dynamically important subsets. First, there is the
escaping set

I(f)={z€C; f"(z)isdefined forall n and lim f"(z) = oo}.
n—0o0

This set is not always a subset of the Julia set, it may contain Baker domains.
However, for entire functions of bounded type 7 (f) C J(f) ([37, Theorem 1]).
More important for us is the following set.

Definition 3.2 The radial (or conical) Julia set J,(f) of f is the set of points z €

J(f) such that there exist § > 0 and an unbounded sequence (n j)j‘;l of positive
integers such that the sequence (| 4 (2) |)?i1 is bounded above and the map

12U — D(f"(2),8)
is conformal, where U is the connected component of £~/ (ID(f"/ (z), §)) contain-
ing z.

There are other definitions of radial sets in the literature. While the present
definition is in the spirit of the one from [91], the radial points in [79] are defined

by means of spherical disks. Namely, z € J,” h( f)ifz € J(f) if there exist § > 0
and an unbounded sequence (n /)?11 of positive integers such that

" 2 Uj —> Dspn(f(2), 8)

is conformal where U; is the connected component of "/ (Dspn(f"(2),5))

containing z. Right from these definitions it is easy to see that J,(f) C J; h ).
Also,

() CTHOHNL). (3.3.1)
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The differences between all of these radial sets are dynamically insignificant in the
sense that they all have the same Hausdorff dimension and this dimension coincides
with the hyperbolic dimension, which we define right now.

Definition 3.3 The hyperbolic dimension of a meromorphic function f : C — ¢,
denoted by HDyyp(f), is

HDhyp(f) = sup HD(K)
K

where the supremum is taken over all hyperbolic sets K C C, i.e. over all compact
sets K C Csuch that f(K) C K and f|k is expanding. O

Lemma 3.4 HDyy,(f) = HD(J,(f)) = HDUJP" (f)). O
Proof Let K be a hyperbolic set. Then, following [78, Section 5] especially Lemma
5.1.1, there exists n > 0 such that

fipez,y injectiveand  f(D(z, 1)) D D(f(z),n) forall z € K.

This shows that K C J,(f) and thus HDyyp(f) < HD(J,(f)). Since J,(f) C
JP"(£) we also have HD(J,(f)) < HD(J;”"(f)). The conclusion comes now
from the result in [79] which says that HD(J;”" (f)) = HDhyp(f)- O

3.3.2 Hpyperbolicity and Expansion

There are several notions of hyperbolic transcendental functions in the literature
(see for example [110]). The following definition is used fairly frequently.

Definition 3.5 A meromorphic function f : C — C is called hyperbolic if and
only if
P(f) is bounded and P(f) N J(f) = 0. 3.3.1)

Notice that then f € B, i.e. it is of bounded type. The following notion has
been used by G. Stallard in [92]. Later it was considered in [56, 58] where the,
somehow misleading, name topologically hyperbolic was used. Since it is based on
the euclidean distance, let us call it Euclidean hyperbolic here.

Definition 3.6 A meromorphic function f is called E-hyperbolic if

dist(J(f),P(f)) > 0.

Clearly, a hyperbolic function is E-hyperbolic but the later notion is much more
general. For example, the function f(z) = 2 — log2 + 2z — €% is E-hyperbolic
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and has a Baker domain (see [14]). Other examples arise naturally in the context of
Newton maps. This has been observed in [12] and f(z) = z — tanz is a different
exemple of E-hyperbolic function that is not hyperbolic.

For E-hyperbolic functions every non-escaping point of the Julia set is a radial
point. Together with (3.3.1) it follows that in this case we have equality between
these type of points:

S (f) =TJHNL). (3.3.2)

For rational functions, E-hyperbolicity is equivalent to the property of being
expanding.

Definition 3.7 A meromorphic function f : C — C is called expanding if and
only if there are two constants ¢ > 0 and y > 1 such that

I @1z ey”  forall zeJ(f)\ f"(c0).

The function f(z) = z — tan z is E-hyperbolic and | /' (z)| — 1 as I f(z) — oo.
Since there are vertical lines in J (f), it follows that this function is not expanding.
Thus, contrary to the case of rational maps, E-hyperbolicity and expanding are
not equivalent for transcendental functions. It is shown in [92] that every entire
E-hyperbolic function f satisfies lim,— o [(f") (z)] — oo forall z € J r and
under some conditions the expanding property follows from E-hyperbolicity (see
Proposition 4.4 in [58]).

Example 3.8 Let0 < ¢ < 1/¢3. Then the Fatou function f(z) = z — logc 4 e % is
not hyperbolic but it is E-hyperbolic and expanding.

In order to verify this statement, we recall the classical argument that f is semi-
conjugate via w = e~ * to the map g(w) = cwe™" (see for example [82]). By the
choice of the constant 0 < ¢ < 1/¢3, the origin is an attracting fixed point of the
map g and a simple estimation allows to check that

g(D3) C Ds. (3.3.3)

Consequently, the half space {1z > —log3} is contained in a Baker domain of f
and the Julia set J(f) C {Mz < —log3}. Now, a simple estimate shows that

|f'(z)] =2 forall z with 9z < —log3.

Consequently f is expanding on its Julia set.

It remains to check that f is E-hyperbolic. The function f has no finite
asymptotic value and its critical points are ¢y = 2wik, k € Z. It follows from
(3.3.3) that there exists p > —log3 such that i f"(cx) > p for every n > 0 and
k € Z. This shows that f is indeed E-hyperbolic .
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3.3.3 Disjoint Type Entire Functions

For entire functions there is a relevant strong form of hyperbolicity called disjoint
type, the notion that first implicitly appeared in [7] and then was explicitly studied
in several papers including [80, 84]. Disjoint type functions are of bounded type.
So, let f € B be an entire function and let R > 0 such that S(f) C Dg.
Up to normalization we can assume that R = 1. Then f~!(D*) consists of
countably many mutually Jordan domains €2; with real analytic boundaries such
that f : Q; — D*is a covering map (see [37]). In terms of the [37]). In terms of the
classification of singularities, this means that f has only logarithmic singularities
over infinity. These connected components of f~!(ID*) are called tracts and the
restriction of f to any of these tracts 2 has the special form

fie; = expot; where ¢; = tj_l T H= {Z e C:N() > 0} — Q; (33.1)

is a conformal map. Later on we often assume that f has only finitely many tracts:

N
o =Je;. (3.3.2)

j=1

Notice that this is always the case if the function f has finite order. Indeed, if f has
finite order then the Denjoy—Carleman—Ahlfors Theorem (see [67, p. 313]) states
that f can have only finitely many direct singularities and so, in particular, only
finitely many logarithmic singularities over infinity.

Definition 3.9 If f € B is entire such that

S(HcD and | JQ@;ND=¢ . equivalently f~'(D*) = JQ; c D*,
r .
(3.3.3)
then f is called a disjoint type function.

This definition is not the original one but it is consistent with the disjoint type
models in Bishop’s paper [19]. The function f is then indeed of disjoint type in the
sense of [7, 80, 84]. It is well known that for every f € B the function Af, A € C*,
is of disjoint type provided A is small enough (see [8] and [80, p. 261]). Also, the
Julia set of a disjoint type entire function is a subset of its tracts and therefore only
the restriction of the function to these tracts is relevant for the study of dynamics of
such a function near the Julia set.

Besides functions of class S and B we consider the following subclass of
bounded type entire functions called class D. In this definition,

Or ={0 <Nz <4T; —4T <3z <4T} , T >0. (3.3.4)
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Definition 3.10 An entire function f : C — C belongs to class D if it is of disjoint
type, has only finitely many tracts (see (3.3.2)) and if, for every tract, the function
¢ of (3.3.1) satisfies

lp@) < Mlp@E)| forall & & € Or\ Orys, (3.3.5)

for some constant M € (0, +00) and every T > 1.

3.4 Topological Pressure and Conformal Measures

This section is devoted to two crucial objects: the topological pressure and
conformal measures. Compared to the case of rational functions, they both behave
totally differently in the context of transcendental functions. For example, since
transcendental functions have infinite degree, the topological pressure evaluated
at zero is always infinite. Also, the existence of the pressure and, even more
importantly, of conformal measures is not known in full generality for meromorphic
functions.

3.4.1 Topological Pressure

A standard argument, based on mixing properties (see Lemma 5.8 in [58]), shows
that for a E-hyperbolic meromorphic function f : C — C the following number,
which might be finite or infinite,

1
P<(1) = limsup _log S @I (3.4.1)

n—oo f" (z)=w

does not depend on the point w € J(f). However, this number may depend on the
metric T and it clearly depends on the parameter ¢ > 0.

Definition 3.11 Let f : C — C be E-hyperbolic meromorphic function. The
topological pressure of f evaluated at t > 0 with respect to the metric 7 as defined
in (3.2.1) is the (possibly infinite) number P (¢) defined by formula (3.4.1). When
T = 2, i.e. do is the spherical metric, then we also write Py () = Py (1).

Given a meromorphic function f : C — C, a number T > 0, and a parameter
t > 0, we say that the topological pressure P, (¢) exists if the number defined by
formula (3.4.1) is independent of w for some “sufficiently large” set of points w €
I(f)-

The most general result on the existence of topological pressure going beyond
E-hyperbolic functions is due to Bararnski et al. [10]. They work with spherical
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metric and call a meromorphic function f exceptional if and only if it has a (Picard)
exceptional value a in the Julia set and f has a non-logarithmic singularity over a.

Theorem 3.12 ([10]) Let f : C — C be either a meromorphic function in class S
or a non—exceptional and tame function in class B. Then the limit

. 1 ny/ —t
Pypn(0) 1= lim  log Y7 1(f") @15,
fr@)=w
exists (possibly equal to infinity) for all t > 0 and does not depend on w where w
is a good pressure starting point w € C whose precise meaning is given in [10,
Section 4].

If f is tame then every w € J(f) \ P(f) is such a good point. Also, if f € B is
E-hyperbolic, then each point w € J(f) is good. O

It is also shown in [10] that the pressure function has the usual natural properties.
Proposition 3.13 ([10]) Under the assumptions of Theorem 3.12, Psp,(0) = +00
and Pspp(2) < 0, and thus

Ogpp :=1nf{t > 0 : Pyyp(t) < 00} € [0, 2] 3.4.2)
In addition:
Pspn(t) =400 for all t < ®Ogpy and Pspp(t) < +00  for all t > Ogpy.
The resulting function

(Ogpn, 00) 3t > Pypp (1)

is non-increasing and convex, hence continuous. m]

Notice that this result does not provide any information about the behavior of the
pressure function at the critical value t = ©,),. For classical families, such as the
exponential family, the pressure at ©;,, is infinite. Curious examples of functions
that behave differently at the critical value are provided in [61]. We will come back
to such examples later in Theorem 3.37.

3.4.2 Conformal Measures and Transfer Operator

Conformal measures were first defined and introduced by Samuel Patterson in his
seminal paper [70] (see also [71]) in the context of Fuchsian groups. Dennis Sullivan
extended this concept to all Kleinian groups in [98, 99, 101]. He then, in the papers
[96, 97,A100], defined conformal measures for all rational functions of the Riemann
sphere C. He also proved their existence therein. Both Patterson and Sullivan came
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up with conformal measures in order to get an understanding of geometric measures,
i.e. Hausdorff and packing ones. Although already Sullivan noticed that there are
conformal measures for Kleinian groups that are not equal, nor even equivalent, to
any Hausdorff and packing (generalized) measure, the main purpose to deal with
them is still to understand Hausdorff and packing measures but goes beyond.

Conformal measures, in the sense of Sullivan have been studied in greater detail
in [25], where, in particular, the structure of the set of their exponents was examined.
We do this for our class of transcendental functions.

Since then conformal measures in the context of rational functions have been
studied in numerous research works. We list here only very few of them appearing
in the early stages of the development of their theory: [26, 30, 31]. Subsequently
the concept of conformal measures, in the sense of Sullivan, has been extended
to countable alphabet iterated functions systems in [52] and to conformal graph
directed Markov systems in [53]. It was furthermore extended to transcendental
meromorphic dynamics in [45, 104], and [56]. See also [58, 105], and [11]. Lastly,
the concept of conformal measures found its place also in random dynamics; we cite
only [59, 62], and [107].

Definition 3.14 Let f : C — Cbea meromorphic function. A Borel probability
measure m; on J(f) is called A| f’|” -conformal if

mi(f(E)) = fE M dm,.

for every Borel E C J(f) such that the restriction f|g is injective. The scalar A is
called the conformal factor and, if A = 1, then m; is called a 7-conformal measure.

If f has a A|f'|.-conformal measure m, and if f is E-hyperbolic then, using
Koebe’s Distortion Theorem, we get for all w € J(f) that

1= Y mU) =2 m®w,r Y 1R, (3.4.1)
zef~1(w) zef~1(w)

where for every z € f_1 (w), Uy is the connected component of f_1 (D(w, r)) con-
taining z. Consequently, the series on the right hand side of (3.4.1) is well defined.
This allows us to introduce the corresponding transfer, or Perron—Frobenius—Ruelle,
operator. Its standard definition as an operator acting on the space Cp(J(f)) of
continuous bounded functions on the Julia set J (f) is the following.

Definition 3.15 Let f : C — C be a E-hyperbolic meromorphic function. Fix
T > 0and ¢ > 0. The transfer operator of f with (geometric) potential ¢ :=
—tlog|f'(2)|¢, t > 0, is defined by

Ligw)= Y Y@= > 1f@Ie@, weJf), geCrJ(f).
f@=w f@=w
(3.4.2)
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Note that (3.4.1) does not imply boundedness of the linear operator £;. This
crucial issue will be discussed in the next section. Let us simply mention here that,
iterating the inequality (3.4.1) (which is possible if we assume f to be E-hyperbolic
) shows that we have the following relation between the pressure and the conformal
factor A:

P, (t) <logh. (3.4.3)

On the other hand, if the transfer operator, in fact its adjoint operator L7, is
well defined, then m; being a conformal measure equivalently means that m; is an
eigenmeasure of £ with eigenvalue A:

L;kmt = )\mt.

As defined, the measure m; = m; does depend on the metric 7. Given " # 7
and corresponding Riemannian metrics (see (3.2.2)), we then have

e S
dm., L1 VENT= dme 1 (6)

(3.4.4)
provided the above integral is finite. For example, this allows one to get spherical
conformal measures as soon as we have conformal measures m; for a tT-metric
with 7 < 2; this will be the case later in the results Theorems 3.25 and 3.35. Indeed,
the formula

dmsph,l‘( ) |z|(T=T
7) = ,
dmf,t fj(f) |§|(T_T )tdmr,t@)

(3.4.5)
defines a spherical conformal probability measure m;p; ;. But then it may happen
that the corresponding density (Radon-Nikodym derivative) d; /dmgpp ; in Theo-
rem 3.25 or Theorem 3.35 is no longer a bounded function.

3.4.3 Existence of Conformal Measures

As we have already said, for rational functions, Denis Sullivan proved in [98] that
every rational function admits a conformal measure with conformal factor A = 1.
For transcendental functions this is not so in full generality and this is again because
of the singularity at infinity. In general, a conformal measure is obtained by a (weak)
limit procedure and one has to make sure that the mass does not escape to infinity
when passing to the limit.

There are two particular cases where natural 7-conformal measures do exist. First
of all, there are different types of meromorphic functions for which the (normalized)
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spherical Lebesgue measure is a 2-conformal measure. This is the case for functions
f with J(f) = C and for those having a Julia set of positive area such as the
functions of the sine family. This is a result of Curtis McMullen [64]; we will come
back to it and to its generalizations in greater detail in Sect. 3.4.5.

The other particular case is formed by meromorphic functions having as their
Julia sets the real line R or a geometric circle, and thus having a natural 1-conformal
measure. Functions of this type arise among inner functions studied by Aaronson [1]
and Doering—Mané [35].

Coming now to the general case, the relation between topological pressure and
the existence of conformal measures has been studied in [11]. The hypotheses of this
paper are again those of Theorem 3.12 and thus it goes far beyond (E-) hyperbolic
functions. Theorem C of that paper contains the following general statement for the
existence of 7-conformal measures.

Theorem 3.16 ([11]) Let f : C — C be either a meromorphic function in class S
or a non-exceptional and tame function in class B. If Psp,(t) = 0 for some t > 0,
then f has a | f'|5-conformal measure, i.e. a t-conformal measure, with respect to
the spherical metric. O

For E-hyperbolic and expanding function there exists a general construction of
conformal measures. It allows us to produce conformal measures, defined with
respect to adapted t-metrics, with various conformal factors A. The proof of
Proposition 8.7 in [60] along with Section 5.3 in [58] yield the following.

Theorem 3.17 Let f : C — C be E-hyperbolic and expanding. Assume thatt > 0
and t are such that

1Ll < 400 and lim L 1(w)=0.

lw|—o00, wel(f)

Then there exist a 1| f'|".-conformal measure with ). = e*=®, o

The first hypothesis of this theorem tells us that we have a “good” well defined
bounded linear transfer operator. The second hypothesis can be used to prove
tightness of an appropriate sequence of purely atomic measure, which in turn allows
us to produce, as its weak™* limit, a desired conformal measure. Then Theorem 3.17
follows.

3.4.4 Conformal Measures on the Radial Set and Recurrence

For rational functions the behavior of conformal measures on the radial set is fairly
well understood. For example, it has been studied in [32] and in [65, Section 5], and
most of the arguments from these papers can be adapted to the transcendental case.
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Theorem 3.18 Ler m, be a A| f'|.-conformal measure of a meromorphic function
f : C — Csuchthatm;(J,(f)) > 0. Then

m(J(f)=1,

m; is ergodic, m; almost every point has a dense orbit in J(f) and m; is a unique
Al f'|L -conformal measure. More precisely, if m is a p| f'|% -conformal measure then
A= pandm = m;. m|

Proof The radial Julia set has been defined in Definition 3.2. For any z € J,(f),
let §(z) > 0 be the number 8 and let (n;) j>1 be the sequence associated to z, both
according to Definition 3.2. Define then

(8 =z € J:(f) : 8(2) =28 and sup {| /" (2)I} < 1/8},
jz1

Then

()= (3.4.1)

§>0

and, if m;(J,(f)) > 0, then m;(J,(f, )) > 0 for some § > O.
For all z € J,(f), consider the blow up mappings

f Vi@ — D(f" (). 28) . j =1,
where V;(z) is the connected component of f ="/ (D( 4 (2), 28)) containing z. Let
Uj)=Vi@n f (]D)(f"f (2), 8))
Then Koebe’s Distortion Theorem applies for the map f"/ on U;(z). In fact,
what we need is a bounded distortion for the derivatives taken with respect to the

Riemannian metric dt. This however is a straightforward consequence of Koebe’s
Theorem (see [58, Section 4.2]). Therefore

m(U;j(2) = 27" (") @17 'm (D" (2), 8)).

Now, since conformal measures are positive on all non-empty open sets relative to
J(f), we conclude that for every § > 0 there exists a constant ¢ > 0 such that

m;(D(w, §)) = ¢
for every w € J(f) N B(0, 1/8). This shows that

m(Uj(2) < 27" (f") @l (3.4.2)
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for every z € J,(f,§) and every j > 1 with comparability constants depending on
3 only.

Having this estimate we now can proceed exactly as in [65, Theorem 5.1]. If
ve is any nl|f’|L-conformal measure then (3.4.2) also holds with v, n instead of
m;, p, and with other appropriated constants depending on § only. Hence, for every
z € Jr (£, 9),

m(U;(@) _

=1 foreveryj > 1.
v (Uj(2))

Since in addition lim o diam(U(z)) = 0and all U;(z), z € J,(f, §), j = 1, have
shapes of not “too much” distorted balls, we conclude that the measures m; and v,
are equivalent (mutually absolutely continuous) on J,(f, §). Invoking, (3.4.1), we
deduce that these two measures are equivalent on J,-(f). This is not the end of the
proof yet but the interested reader is referred to the original proof in [65]. O

Recall that the Poincaré’s Recurrence Theorem asserts that, given 7 : X — X
measurable dynamical system preserving a finite measure, for every measurable
set F C X and almost every point x € F, the point 7" (x) is in F for infinitely
many n > 1. A conformal measure m is called recurrent if the conclusion
of the Poincaré recurrence theorem holds for it. In the case where the Perron—
Frobenius—Ruelle theorem holds then, due to the existence of probability invariant
measures, commonly called Gibbs states, equivalent to the conformal measure, the
later is always recurrent. By Halmos® Theorem [39], recurrence is equivalent to
conservativity which means that there does not exist a measurable wandering set of
positive measure, i.e. a measurable set W with m (W) > 0 and such that

TN Wy =9

foralln > m > 0.

Theorem 3.19 Assume that the transcendental function f : C — C has my, a
Al f'|L-conformal measure. Then

— my is recurrent and this holds if and only if m;(J-(f)) = 1 or
— my-almost every point is in I (f) or its orbit is attracted by P(f).

O

Proof 1fm:(J(f)\P(f)) = 0 then the second conclusion holds. So we may assume
from now on that m;(J(f) \ P(f)) > 0. Notice that then f is tame and thus there
exist D = D(w, r), a disk centered at some point w € J(f) and such that

D(w,2r) NP(f) = 0.
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Assume that there exists W C J(f) \ P(f) a wandering set of positive measure.
Since all omitted values are in P(f), there exists N such that

w = fND)ynw

is a wandering set of positive measure. But then W” = f~~(W’)ND is a wandering
set of positive measure contained in D. Conformality, bounded distortion, and the
fact the W” is wandering, give

mt(WH)

12 3 m(fT W) = m (W Y L) =< D)
t

n=0 n>0

> mi(fTHD)).

n>0

The series in the middle is what is usually called the Poincaré series and we see that
it is convergent for the exponent . Now, a standard application of the Borel-Cantelli
Lemma shows that a.e. z is in at most finitely many sets f~" (D) or, equivalently,
only for finitely many n we have f"(z) € D. Since this true for every such disk D,
it follows that

zeI(f) or f"(z) > P(f) form;ae.ze J(f). (3.4.3)

This also shows that m,(J-(f)) = O in this case since, as we have seen in
Theorem 3.18, if m;(J;(f)) > O then m, a.e. orbit has a dense orbit in J; which
contradicts (3.4.3) since f is a tame function.

The other possibility is that J(f) \ P(f) does not contain a wandering set of
positive measure. Then m; is conservative hence recurrent on J (f) \ P(f). Let

Ve(A) == {z € C : dist(z, A) < &},
Vi(A) :=J(f)\ Ve(A)
and consider the open set
Us =D, 1/e) N VEP(f)) . &> 0.

If ¢ > 0 is small enough, U, N J(f) # @, and then m;(U,) > 0. On the other hand,
recurrence implies that

my(Ug) = m,({z e U : f"(z) € U, for infinitely many n’s}).

The set of points z such that, for some ¢ > 0, z € U, and f"(z) € U, for infinitely
many #n’s is a subset of J.(f). Therefore, m;(J-(f)) > m;(U;) > 0 and then, by
Theorem 3.18, m;(J-(f)) = 1. Notice also that then m; is recurrent on the whole
Julia set since m;(J(f) \ J-(f)) =0. |
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Every rational function has a t-conformal measure of minimal exponent t = §;
see [25]. Shishikura [88] gave the first examples of some polynomials p for which
this exponent is maximal, i.e. §, = 2. For them the corresponding conformal
measures are not recurrent. Up to our best knowledge it is unknown whether
there exist polynomials, even rational functions, p with §, < 2 and with non-
recurrent § ,-conformal measures. However, there are such quadratic like examples;
see Avila—Lyubich [4], and the first globally defined, i.e. on the whole complex
plane, (transcendental meromorphic) functions having such behavior were produced
in [61, Theorem 1.4]. Notice that these examples are even hyperbolic and their
number ® (see Theorem 3.37) is equal to the minimal exponent §,.

Theorem 3.20 ([61]) There exist disjoint type entire functions f : C — @ of finite
order, with ® € (1, 2), that do not have any recurrent ®-conformal measure with
conformal factor A = 1. O

In fact [61, Theorem 1.4] states that these functions do not have ®-conformal
measures supported on the radial Julia set. But this is equivalent to non-recurrence
by Theorem 3.19.

3.4.5 2-Conformal Measures

We finally discuss the special case of 2-conformal measures. As already mentioned
above, for many transcendental, especially entire, functions the spherical Lebesgue
measure mpy, of the Julia set is positive and thus it is a natural 2-conformal measure.
In this case each of the following possibilities can occur:

— mypy is recurrent and mp, (J-(f)) = 1.

- mgppnZ(HHNJ(f) =1
- mpn(X ()N J(f)) =0and f"(z) — P(f) formgpp—ae. z € C.

Let us first discuss the recurrent case for which the postcritically finite map
f(z) = 2mie® is a typical example having the property that mgp,(J,(f)) = 1.
For this function, the Julia set is the whole plane. From a classical zooming and
Lebesgue density argument (see for example the proof of [37, Theorem 8]) follows
that this always holds provided that the radial set is positively charged.

Proposition 3.21 Ler f : C — C be a meromorphic function. If mspy is a 2-
conformal measure and if mgpp(J-(f)) > 0, then J(f) =C.

For the third possibility, i.e. where the escaping set is not charged but where a.e.
orbit is attracted by the post-critical set, we have some results due to Eremenko—
Lyubich [37, Section 7].
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Theorem 3.22 ([37]) Let f € B be an entire function of finite order having a finite
logarithmic singular value. Then mgp, (Z(f)) = 0 and there exists M > 0 such that

liminf | f"(z)| < M fora.e.z € C.
n—>oo

O

Given this result combined with Theorem 3.19 we see that there are several
possibilities. Assume that f satisfies the hypotheses of Theorem 3.22 and that the
Julia set of f has positive area. Then, either the spherical Lebesgue measure is
supported on the radial Julia set or a.e. orbit is attracted by the post-critical set.

As typical examples we can consider again the exponential family. As already
mentioned, f(z) = 2mie® is a recurrent example. Totally different is f(z) = e*.
Misiurewicz showed in [69] that J(f) = C and Lyubich proved in [50] that this
function is not ergodic. Consequently mp,(J,-(f)) = 0 and thus a.e. orbit is
attracted by the orbit of 0, the only finite singular value.

Plenty of entire functions have the property mgpn(Z(f) N J(f)) = 1 (and
F(f) # 0). Initially, McMullen showed in [64] that the Julia set of every function
from the sine—family o sin(z) + B, o # 0, has positive area. This result has been
generalized in many ways and to many types of entire functions; see [3, 15, 16, 90].
The authors of these papers did not really deal with Julia but with the escaping set
and, as a matter of fact, they showed that

area(Z(f)NJ(f)) > 0. 3.4.1)

Since the escaping set is invariant, it suffices now to normalize properly the spherical
Lebesgue measure restricted to Z(f) in order to get the required 2-conformal
measure that is entirely supported on the escaping set.

3.5 Perron-Frobenus—Ruelle Theorem, Spectral Gap and
Applications

The whole thermodynamic formalism relies on the transfer operator and its proper-
ties. We recall that this operator has been introduced in Definition 3.15. In fact, this
definition treats only the most relevant geometric potentials. More general potentials
Y were considered in [58]. They are obtained as a sum of a geometric potential
plus an additional Holder function. This class of potentials has its importance for
the multifractal analysis (see the Chapters 8 and 9 of [58]) of conformal measures
and their invariant versions. In the present text we restrict ourselves to geometric
potentials, so to functions of the form

Yi=—tlog|f'|+b—bof 3.5.1)
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for some appropriate function b : J(f) — R (or C). This coboundary is crucial
since it allows us to deal with different Riemannian metrics on C. We start by
investigating elementary examples to make this transparent.

We already have mentioned in the introduction that the “naive” transfer operator
is not always well defined. Let us consider the simplest entire function f(z) = Ae®
and a potential ¢ := —rlog|f’| without coboundary. Then, for all w # 0 and
parameter ¢,

Liw) = Y If@I"= > |wl™ =+

zef~Hw) zef~Hw)

In other words, this operator is just not defined. This is the point where a coboundary
b of (3.5.1) shows its significance.

We recall that the derivative of a function f with respect to a Riemannian metric
do =y |dz| is given by Formula (3.2.3). The associated geometric potential is

Y = —tlog|f'le = —tlog|f'| +tlogy —tlogy o f.

Since the Euclidean metric plainly does not work, one can try the spherical metric
do = |dz|/(1 + |z|?) which is another natural choice. Considering again f(z) =
Le®, we get

1 2\'
Ltn(w>=( Tu')’f' ) Y A+
f@=w

which, this time, is finite provided that + > 1/2. In fact then, for large w, and with
xo = log |w/Al,

dy _ dy
Lﬂwxw’/ . =w’1+x21/2’/ < 400,
R T A A L AR

but
lim L 1l(w) = +o0.
w—>00

Thus, £; is not a bounded operator.

It turns out that for the exponential family and in general for entire functions
the logarithmic metric do = 1/(1 + |z|) is best appropriate. This is a natural
choice for several reasons. For example, this point of view is used in Nevanlinna’s
value distribution theory. Also, in the dynamics of entire functions from class 8,
Eremenko—Lyubich [37] have introduced logarithmic coordinates, which now is a
standard tool. Either working in these coordinates or considering derivatives with
respect to the logarithmic metric are equivalent things.



3 Thermodynamic Formalism and Geometric Applications for. . . 119
3.5.1 Growth Conditions

The situation is different for meromorphic functions because of their behavior at
poles. If f : C — C is meromorphic and if b is a pole of multiplicity ¢, which is
nothing else than a critical point of multiplicity ¢ > 1 of f, then

If'(2)] < = f@|'"T"4 near b. (3.5.1)

lz — bla+l |z — bla(+1/)

Motivated by the exponential family Le*, we introduced in [56] and [58] some
classes of meromorphic functions for which there are relations between | f’| and
| f]. More precisely:

Definition 3.23 (Rapid Derivative Growth and Dynamical Semi-Regularity) A
meromorphic function f : C — C is said to have a rapid derivative growth if and
only if there are o, > max{0, —«} and ¥ > 0 such that

1@ = 7 A+ 2D+ | f(2)]%2) (3.5.2)

for all finite z € J(f) \ f~!(00). A E-hyperbolic and expanding meromorphic
function of finite order p which satisfies the rapid derivative growth condition is
called dynamically semi-regular.

Of course, f(z) = Ae® satisfies (3.5.2) with a» = 1 and @y = 0. The reader can
find many other families in Chapter 2 of [58] which are dynamically semi-regular.

For such functions there is a good choice of the coboundary b or, equivalently, of
the Riemannian metric. We recall that we consider metrics of the form (3.2.1) and
that we frequently use the simpler form of (3.2.2), namely dt(z) = |z|~"|dz|. This
is possible as soon as the Fatou set is not empty, which is the case for E-hyperbolic
functions, since then we can assume without loss of generality that 0 € F(f) and
then ignore what happens near the origin.

If f has balanced growth then, setting T = aj + 7,

21T < 1251 f @127 < 1 @l < 12 1f @127, ze J(H)\ f (o0,
(3.5.3)

the right hand inequality being true under the weaker condition (3.5.2). Therefore,
for a dynamically semi-regular function f, we get the estimate

Luw = Lt wesn.

|w|01271'
zef~w)

This last sum, which also is called Borel sum, is very well known in Nevanlinna
theory. The order p of f is precisely the critical exponent for this sum. Hence, if f
has finite order p and if 7t > p, then it is a convergent series and in fact one has the
crucial following property (see Proposition 3.6 in [58]).
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Proposition 3.24 If f is satisfies the rapid derivative growth condition, if 0 €
F(f), andif v € (0, ay) then, for every t > p/1, there exists M, such that

Lill(w) < M; and wli_)mOOL,]l(w) =0 , welJ(f), 3.5.4)

Once having property (3.5.4), one can develop a full thermodynamic formalism
provided that the function f is E-hyperbolic and expanding. The first issue is again
about the existence of conformal measures. It is taken care of by Theorem 3.17.
Therefore, for E-hyperbolic and expanding meromorphic functions satisfying the
hypotheses of Proposition 3.24, we have good conformal measures for all t > ©.

We recall that dynamically semi-regular functions have been introduced in Def-
inition 3.23. The following Perron—Frobenius—Ruelle Theorem is part of Theorem
1.1 in [57] and Theorem 5.15 of [58], which is true for a class of more general
potentials.

Theorem 3.25 If f : C — Cisa dynamically semi-regular meromorphic function
then, for every t > ’Tf , the following are true.

(a) The topological pressure P(t) = limy,_ oo }IL?(II)(w) exists and is independent
ofw e J(f).

(b) There exists a unique 1| f’|.-conformal measure m; and necessarily ). = e

(c) There exists a unique Gibbs state [i; of the parameter t, where being Gibbs
means that | is a Borel probability f-invariant measure absolutely continuous
with respect to m;. Moreover, the measures m; and |u; are equivalent and are
both ergodic and supported on the conical limit set of f.

(d) The Radon—Nikodym derivative ; = dus/dm; : J(f) — [0,+00) is a
continuous nowhere vanishing bounded function satisfying lim,_, oo ¥;(z) = 0.

P(t).

O

Starting from this result, much more can be said but under the stronger growth
condition (3.5.5). Namely, the Spectral Gap property along with its applications:

— The Spectral Gap [58, Theorem 6.5]

Theorem 3.26 If f is a dynamically semi-regular function and if t > 'g, then the
following are true.

(a) The number 1 is a simple isolated eigenvalue of the operator L = POy, .
Hg — Hg, where B € (0, 1] is arbitrary and Hpg is the Banach space of all
complex—valued bounded Holder continuous defined on J(f) ¢, equipped with
the corresponding Holder norm. The rest of the spectrum of L; is contained in
a disk with radius strictly smaller than 1. In particular, the operator L Hg —
Hg is quasi—compact.

(b) More precisely: there exists a bounded linear operator S : Hg — Hg such that

ZtZQl‘f‘S,
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where Q1 : Hg — Cp is a projector on the eigenspace Cp, given by the

formula
01(8) = (/gdnw) Pr

Qi1o8S=8S0Q1=0and
[18"]lg < C&"

for some constant C > 0, some constant & € (0, 1) and alln > 1.

— [58, Corollary 6.6]

Corollary 3.27 With the setting, notation, and hypothesis of Theorem 3.26 we
have, for every integer n > 1, that ' = Q1 + 8" and that z (g) converges to
(f g dm¢) p exponentially fast when n — oo. More precisely,

Hin(g) - (/gdm¢) pH = 15" (®)llp = C&"lglp . g€ Hp.
B

— Exponential Decay of Correlations [58, Theorem 6.16]

Theorem 3.28 With the setting, notation, and hypothesis of Theorem 3.26 there
exists a large class of functions V| such that for all Y, € L'(m,) and all integers
n > 1, we have that

< 0@,

‘/(‘/flOfn"/fZ)dﬂt_/‘/flth/‘/deﬂt

where & € (0, 1) comes from Theorem 3.26(b), while the big “O” constant depends
on both Y\ and V. O

— Central Limit Theorem [58, Theorem 6.17]

Theorem 3.29 With the setting, notation, and hypothesis of Theorem 3.26 there
exists a large class of functions  such that the sequence of random variables

YIZgvo fl—n[ydu
Jn
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converges in distribution, with respect to the measure [i;, to the Gauss (normal)
distribution N(0, 0'%) with some o > 0. More precisely, for everyt € R,

YIovo fl@) —n[vdu St})

Jim m({z eJ(fy: n

1 ! u?
= exp| — du.
O'«/ZTL’ [oo p( 202)

— Variational Principle [58, Theorem 6.25]

Theorem 3.30 With the setting, notation, and hypothesis of Theorem 3.26, we have
that

P(t) = sup {hu(f) —tf log|f'I1 du} ;
J(f)

where the supremum is taken over all Borel probability f-invariant ergodic mea-
sures |1 with fJ(f') log|f'|1dn > —oo. Furthermore, fJ(f) log|f'l1dus > —o0
and |u; is the only one among such measures satisfying the equality

PO =hu(H) ~t [ toglf i
J(f)

In the common terminology this means that the f-invariant measure [i; is the only
equilibrium state of the potential —t log | f1. O

In [58] appears also a stronger symmetric growth condition. It is the following
and it was used in order to get more geometric informations out of the thermody-
namical formalism. The principal application of it was to obtain a Bowen’s Formula
expressing the hyperbolic dimension as the zero of the topological pressure function.

Definition 3.31 (Balanced Growth and Dynamical Regularity) A meromorphic
function f : C — C is balanced if and only if there are ¥ > 0, a bounded function
a2 1 J(f)NC — [a,, 2] C (0,00) and o > —ar, = —infap such that

KN A+ 12D A+ F@129D) < 1/ @) < kA +1zD A+ £(2)2@)  (3.5.5)

for all finite z € J(f) \ f~'(c0). A balanced E-hyperbolic and expanding
meromorphic function of finite order p is called dynamically regular.

In this stronger symmetric condition it is important that o, is a function
since (3.5.1) shows that at poles of a meromorphic function this exponent o
does depend on the multiplicity g. Typical meromorphic functions that satisfy the
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balanced growth condition are all elliptic functions. Again, many other families
appear in Chapter 2 of [58].

3.5.2 Geometry of Tracts

For entire functions the thermodynamical formalism is known to hold in a much
larger setting than the functions that satisfy the growth conditions since we now have
a quite optimal approach of [60]. It shows that the geometry of the tracts determines
the behavior of the transfer operator. Let us briefly recall and explain this now.

As it was explained right after the Definition 3.9, in order to study the dynamics
of a disjoint type entire function f near the Julia set, only its restriction to the tracts
is relevant. Let us here consider the simplest case where f € $ has only one tract

Q. Remember that fio = A simple calculation gives

et
1ft= e
lol
in 2. This gives that

t

w3 [l

(3.5.1)
Eeexp! (w)

entirely does depend on the conformal representation ¢ of the tract and thus entirely
on the tract €2 itself. In fact, the operator £, does depend on the geometry of 2 at
infinity. In order to study the behavior of this operator, one considers the rescaled
maps

1 1

: T : Q
vr Q1 o))

o) ¢° r

where Qr, especially Q1, has been defined in (3.3.4) and where for T > 1,

Qr = ¢(Q0r).

These maps behave especially well as soon as the tract has some nice geometric
properties.

3.5.2.1 Holder Tracts

Loosely speaking, a Holder domain is the image of the unit disk by a Holder map.
But such domains are clearly bounded whereas logarithmic tracts are unbounded



124 V. Mayer and M. Urbariski

domains. Following [54], we therefore consider natural exhaustions of the tract by
Holder domains and a scaling invariant notion of Holder maps. A conformal map
h: Q1 — U iscalled (H, o)-Holder if and only if

|h(z1) — h(z2)| < HIK' (D|z1 — z2|* forall zy,z2 € Q. (3.5.2)

Definition 3.32 The tract 2 is Holder, if and only if(3.3.5) holds and the maps ¢r
are uniformly Holder, i.e. there exists (H, ) such that for every T > 1 the map ¢r
satisfies (3.5.2).

Quasidisks and John domains serve as good examples of Holder tracts.

3.5.2.2 Negative Spectrum

The boundary 0€2 of a tract is an analytic curve. However, seen from infinity such a
boundary may appear quite fractal. In order to quantify this property, we associate
to a tract a version of integral means spectrum (see [51] and [72] for the classical
case). In ordertodo so, let 2 : Q> — U be a conformal map onto a bounded domain
U and define

log [, | (r +iy)|'dy

A1) = log1/r

,re(0,1) and r e R. (3.5.3)

The integral is taken over I = [—2, —1] U [1, 2] since this corresponds to the part
of the boundary of U that is important for our purposes.

Applying this notion to the rescalings ¢r and then letting 7 — oo leads to
desired integral means of the tract €2,

Boo(t) :=limsup By, (1/T, 1), (3.54)
T—+o0

and to the associated function
boo(t) := Boo(®) —t+1 , teR. 3.5.5)

It turns out that the function b, is convex, thus continuous, with bo,(0) = 1 and
with boo(2) < 0. Consequently, the function b, has at least one zero in (0, 2] and
we can introduce a number ® € (0, 2] by the formula

O :=infl{t > 0 : boo(t) =0} = inflt > 0 : boo(t) < 0}. (3.5.6)

We only considered here the case of a single tract and the adaption for functions in
D having finitely many tracts is straightforward (see [60]).
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Definition 3.33 A function f € D has negative spectrum if and only if, for every
tract,

bo(t) <0 forall t > ©.

A relation of the Holder tracts property and the negative spectrum property is
provided by the following.

Proposition 3.34 (Proposition 5.6 in [60]) A function f € B has negative
spectrum if it has only finitely many tracts and all these tracts are Holder.

3.5.2.3 Back to the Thermodynamic Formalism and Its Applications

From now on we assume that f is a function of the class © and has negative
spectrum. Let ® be again the parameter introduced in (3.5.6).

Starting from the formula (3.5.1), one can express the transfer operator in terms
of integral means (see [60, Proposition 4.3]) in the following way:

1 , B B
£ = Qog 0D 1 [ ol 1+ 0] dy 321 P 070)

n>1

(3.5.7)

forevery t > 0 and every w € 2. The series appearing in this formula may diverge.
Nevertheless, this formula very well describes the behavior of the transfer operator.
It allows us to develop the thermodynamic formalism if the negative spectrum
assumption holds. The first step is to verify again the conclusion of Proposition 3.24
which, we recall, is crucial for establishing the existence of conformal measures.
Then one can adapt the arguments of [58] to get the following version of the Perron-
Frobenius—Ruelle Theorem ([60, Theorem 1.2]).

Theorem 3.35 Let f € D be a function having negative spectrum and let ® €
(0, 2] be the smallest zero of beo. Then, the following hold:

— Foreveryt > O, the whole thermodynamic formalism, along with its all usual
consequences holds: the Perron-Frobenius-Ruelle Theorem, the Spectral Gap
property along with its applications: Exponential Mixing, Exponential Decay of
Correlations and Central Limit Theorem.

— Foreveryt < O, the series defining the transfer operator L; diverges.
O

In many cases, by using a standard bounded distortion argument, this result and
all its consequences can be extended beyond the class of disjoint type to larger
subclasses of hyperbolic functions. For example, it does hold for all hyperbolic
functions in class S having finitely many tracts and no necessarily being of disjoint
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type. This is for example the case for functions of finite order that satisfy (3.3.5).
The later is a very general kind of quasi-symmetry condition.

Question
Is the assumption (3.3.5) necessary?

An important feature of the Holder tract property is that it is a quasiconformal
invariant notion. This has several important applications. Let us just mention one of
them.

Theorem 3.36 (Theorem 1.3 in [60]) Let M be an analytic family of entire
Sfunctions in class S. Assume that there is a function g € M that has finitely many
tracts over infinity and that all these tracts are Holder. Then every function f € M
has negative spectrum and the thermodynamic formalism holds for every hyperbolic
map from M. ]

Theorem 3.35 gives no information at the transition parameter ¢t = ©. For all
classical functions the transfer operator is divergent at ®, and thus the pressure
P(®) = +oo. This then implies that the pressure function has a zero h > ©.
Functions with a completely different behavior have been found recently in [61].

Theorem 3.37 ([61]) For every 1 < ® < 2 there exists an entire function f € B
with the following properties:

(a) The entire function f is of finite order and of disjoint type.

(b) The corresponding transfer operator has transition parameter ©.

(c) The transfer operator is convergent at © and the property (3.5.4) holds.

(d) Consequently, the Perron—Frobenius—Ruelle Theorem 3.25 and its conse-
quences hold att = ©.

(e) The topological pressure at t = O is strictly negative.

(f) Consequently, the topological pressure of f has no zero.

For the special case of ® = 2, the reader can find examples in [81].

Here are two more questions related to this section. First of all, we have seen
in Proposition 3.34 that the Holder tract property implies negative spectrum. For
some special functions, Poincaré linearizer, both properties coincide ([60, Theorem
7.8]).

Question
Are all tracts of any entire function in class 8 with negative spectrum Holder?
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For Holder tracts with corresponding Holder exponent @ € (1/2, 1] it is known
that ® < 2.

Question

What abut the general case? More precisely, if €2 is a Holder tract with
Holder exponent o € (0, 1], do we then have that ® < 27 If so, this would
be an analogue of the Jones—Makarov Theorem [41] which states that the
Hausdorff dimension of the boundary of an «-Ho6lder domain is less than two,
furthermore, less than 2 — Ca where C > 0 is a universal constant.

3.6 Hyperbolic Dimension and Bowen’s Formula

The Hausdorff dimension, and in fact all other fractal dimensions, of the Julia set
of meromorphic functions have been studied a lot. The interested reader can consult
the survey by Stallard [93]. Here we focus on the hyperbolic dimension.

3.6.1 Estimates for the Hyperbolic Dimension

We recall that the hyperbolic dimension HDnyp(f) of the function f is the
supremum of the Hausdorff dimensions of all forward invariant compact sets on
which the functions is expanding. Right from the definition,

HDnyp(f) = HD(J ().
It has recently been observed by Avila-Lyubich in [5] that there are polynomials for
which there is strict inequality between these two dimension.

Theorem 3.38 ([S]) There exists a Feigenbaum polynomial p for which
HDyy,(p) < HD(J (p)) = 2.

O

Although this result being rather exceptional for rational functions, it appears quite
often for transcendental, especially entire, functions. Stallard [92] observed this
implicitly and Urbanski—Zdunik in [104].

Theorem 3.39 ([92, 104]) There are (even hyperbolic) entire functions f of finite
order and of class S for which

HDyyp(f) < HD(J(f)) = 2.
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The equality HD(J (f)) = 2 goes back to McMullen’s result [64]. In either case, of
rational functions as well as of transcendental functions, we do not know any such
example with the Hausdorff dimension of the Julia set equal to 2. Thus:

Question
Is there an entire or meromorphic function f € $ with a logarithmic tract
over infinity and such that

HDupyp(f) <HDWJ(f)) <2 ?

While the hyperbolic dimension of a meromorphic functions is often strictly
smaller then the dimension of its Julia set. However, it can not be too small as long
as the function has a logarithmic tract over infinity. In fact Baranski, Karpifiska and
Zdunik [9] obtained the following very general result.

Theorem 3.40 ([9]) The hyperbolic dimension of the Julia set of a meromorphic
function with a logarithmic tract over infinity is greater than 1. O

For fi(z) = XLe*, Karpinska [42] showed that the hyperbolic dimension goes to
one as A goes to zero. In this sense, the above estimate is sharp. However, if the
logarithmic tracts have some regularity then one gets more information, see [54].

Theorem 3.41 ([54]) If a meromorphic map f has a logarithmic tract over infinity
and if this tract is Holder, then

HDhyp(f) >0=>1

where © is the number defined in (3.5.6). |

In this result, one can not expect strict inequality except if ® = 1. Indeed, for
every given ® € (1,2) there is an entire function f with Holder tract such that
HDpyp(f) = © (see [61]). On the other hand, the paper [54] provides a sufficient
condition, expressed in terms of the boundary of the tract, which implies strict
inequality.

The hyperbolic dimension can also be maximal. This has been shown by Rempe—
Guillen [81]. He first constructs a local version, called now model, and then
approximates it by entire functions. His approximation result is a very precise
version of Arakelyan’s approximation and is of its own interest.

Theorem 3.42 ([81]) There exists a transcendental entire function f of disjoint type
and finite order such that HDpy, (f) = 2. O
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3.6.2 Bowen’s Formula

The pressure function ¢ — P (¥) is convex, hence continuous and, when the map f
is expanding, it is also strictly decreasing. Consequently, there exists a unique zero
h of P; provided

P.(t) > 0 forsome¢t.

It goes back to Bowen’s paper [21] that this zero is of crucial importance when
studying fractal dimensions of limit and Julia sets. Bowen showed that this number &
is the Hausdorff dimension of the limit set for any co-compact quasifuchsian group.
His result extends easily to the case of of Julia sets of hyperbolic rational functions.
Since then his formula has been generalized in many various ways and it became
transparent that for transcendental functions his formula detects the hyperbolic
dimension rather than the Hausdorff dimension of the entire Julia sets.

The first result of this kind for transcendental functions is, up to our knowledge,
was obtained in [104] and [105] while the most general Bowen’s Formula for
transcendental functions is due to Barariski et al. [10]. Here again, we only formulate
a version for E-hyperbolic functions while their result holds in much bigger
generality.

Theorem 3.43 ([10]) For every E-hyperbolic meromorphic function f € B we
have Pspp(2) < 0 and

HDhyp(f) =HD(J:(f)) = inf{t >0; Pspn(t) < O} .

O

We recall that the authors showed the existence of the spherical pressure
(Theorem 3.12) and that there exists ® such that the pressure is finite for all # > ®
and infinite for all # < ©. If Py, (®) > 0, then the pressure has a smallest zero
h > © and this number % turns out to be the hyperbolic dimension. Otherwise,
so if Psp, (©) < 0, then HDpyp(f) = O and in fact such possibility does happen
(Theorem 3.37).

Other versions of Bowen’s formula, with pressure taken with respect to adapted
Riemannian metrics, still of the form (3.2.1), are contained in [56, 58, 60] and also
a version for random dynamics of transcendental functions in [59] and [107]. All
these papers contain many other results related to Bowen’s formula and formed an
important step between [104, 105] and [9].
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3.7 Real Analyticity of Fractal Dimensions

Bowen’s Formula determines the hyperbolic dimension of a given “sufficiently
hyperbolic” meromorphic function f. But

what happens to this dimension when the map f varies in an analytic family?
For rational functions, this has been explored in detail. In contrast to the case of
entire functions, the radial and Julia sets of a hyperbolic rational function coincide
and consequently also do the corresponding dimensions. Therefore, one is naturally
interested in the behavior of the map

J — HD{J (/).

In 1982, Ruelle [86] positively confirmed a conjecture of Sullivan and showed that
the Hausdorff dimension of the Julia set of hyperbolic rational functions depends
real—analytically on the map. The hyperbolicity hypothesis is essential here; see
[88, Remark 1.4 ] and also [36].

The first result on analytic variation of the hyperbolic dimension of transcenden-
tal functions is due to Urbanski and Zdunik [104] and concerns the exponential
family Ae®. Since then this property has been obtained for many families of
dynamically regular functions ([56, 91] and [58]; the last of these papers treating
also real analyticity of appropriate multifractal spectra; for entire functions in class
D see [60]). For the same kind of families, such analyticity is also true in the realm
of random dynamics; see [63].

Instead of presenting a complete overview of all relevant, sometimes quite tech-
nical, results we now describe the general framework followed by two representative
methods and results.

Similarly as the hyperbolicity hypothesis for rational functions, there are a
number of conditions, in a sense necessary, needed to expect real analytic variation
of the hyperbolic dimension in the transcendental case. They can be summarized as
follows.

— ¥ is an analytic family of meromorphic functions. The reader simply can assume
that ¥ = {fi, = Af : A € A} where f is a given meromorphic function and
A an open subset of C*. Clearly there are more general settings. For example, in
the case of entire functions in class S there is a natural notion of analytic family
due to Eremenko-Lyubich [37]; they are in particular always finite dimensional.

— The functions of # are E-hyperbolic and expanding.

— The family ¥ is structurally stable in the sense of holomorphic motions.

In most results the holomorphic motion is also assumed to have some uniform
behavior which is for example implied by a condition called bounded deformation
[58].

The last commonly used hypothesis is that the full thermodynamic formalism
applies. Here appears a crucial fact which is specific to the transcendental case.
The transfer operator of a transcendental function is usually not defined for small
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parameters ¢ > 0. Let us follow the notation used in Theorem 3.35 and call again
© the transition parameter. In fact, one must rather write ® y since this number can
depend on a particular function f from a given family 7.

— The thermodynamic formalism holds for the functions in ¥ with constant
transition parameter ® = O, , A € A.

In particular, Bowen’s Formula applies to the functions we consider here and thus
two cases appear: for f € F, either

HDpyp(f) > ® or HDpyp(f) = ©. (3.7.1)

The first analyticity result we present here is due to Skorulski—Urbanski obtained
in [91].

Theorem 3.44 ([91]) Suppose that A C C is an open set, T = {fi}ren is an
analytic family of meromorphic functions and that, for some Lo € A, f, : C — ¢
is a dynamically regular meromorphic function with HDpy (fxo) > ®fko and which
belongs to class S. Then the function

A +— HD(J(f1))

is real-analytic in some open neighborhood of Ag. O

Notice that here the main hypotheses are only imposed on the function f;,
and not on all functions in a neighborhood of it. The authors obtained this result
by associating to the globally defined functions locally defined iterated functions
systems (IFS). This is possible by employing so called nice sets whose existence in
the transcendental case is due to Doobs [34] and which have been initially brought
to complex dynamics by Rivera—Letelier in [83] and Przytycki and Rivera—Letelier
in [76]. An open connected set U C C is called nice if and only if every connected
component of f~"(U) is either contained in U or disjoint from U. If U is disjoint
from the post—singular set, then one can consider all possible holomorphic inverse
branches of iterates of f and the properties of the nice set imply that the inverse
branches that land in U for the first time define a good countable alphabet conformal
IFS in the sense of [52] and[53]. It turns out that the limit set of this IFS has
the same dimension as the hyperbolic dimension of f [91, Theorem 3.4]. Thus it
suffices to consider IFSs. The later have been extensively studied [53] providing
many useful tools, and, especially, developing the full thermodynamic formalism,
and introducing the concepts of regular, strongly regular, co-finitely regular and
irregular conformal IFSs. One of the greatest challenges to apply Theorem 3.44 is
to show that HDpyp (f3) > © fro- In terms of the associated conformal IFSs this
means that the IFS coming from fj, is strongly regular.

The common underlying strategy for establishing real analytic variation of
Hausdorff dimension of limit sets of conformal IFSs, see [56, 58, 60, 104] for ex.,
is to complexify the setting and to apply Kato—Rellich Perturbation Theorem. The
later is possible thank’s to the spectral gap property which means that exp(P(¢))
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is a leading isolated simple eigenvalue of the transfer operator and the rest of
the spectrum of this operator is contained in a disk centered at 0 whose radius is
strictly smaller than exp(P(¢)). An alternative powerful strategy is used in [63]. It
is based on Birkhoff’s approach [18] to the Perron—Frobenius Theorem via positive
cones. This method has been successfully applied in various contexts. The paper
[63] which deals with random dynamics, is based on ideas from Rugh’s paper
[87] who used complexified cones. This powerful method works well as soon as
appropriate invariant cones are found and strict contraction of the transfer operator
in the appropriate Hilbert metric has been shown. The following is a particular result
in [63].

Theorem 3.45 ([63]) Let f,(z) = ne® and leta € (3,, 1) and 0 < r < ryax,
Fmax > 0. Suppose that n1, n2, .. are i.i.d. random variables uniformly distributed
inD(a,r). Let Jy, y,,... denote the Julia set of the sequence of compositions

fmo fougoc.ofpmofy :C—C, n>1,

and let
Ji’(nla n27 .. -) = {Z S J?}]J]z,... : 1}111—1)£f|f7]n ©...0 fnl(z)| < +OO}

be the radial Julia set of {fy, o ... o fy}u=1. Then, the Hausdorff dimension
of J-(n1,n2,...) is almost surely constant and depends real-analytically on the
parameters (a, r) provided that 1y is sufficiently small. O

In contrast to the case of hyperbolic rational functions, analytic variation of the
hyperbolic dimension can fail in the class of hyperbolic entire functions of bounded
type. This has been recently proved in [61].

Theorem 3.46 ([61]) There exists a holomorphic family F = {f,, = 1 f , A € C*}
of finite order entire functions in class B such that the functions f,, » € (0, 1], are
all in the same hyperbolic component of the parameter space but the function

A = HypDim(f))

is not analytic in (0, 1]. |

In order to obtain this result, the authors exploited the dichotomy of (3.7.1). In
fact, all positive analyticity results use, sometimes implicitly like in Theorem 3.45,
the assumption HDpyp(f) > ©. Using the formula (3.5.7) for the transfer operator,
Mayer and Zdunik where able to construct in [61] entire functions for which
HDnpyp(f) = ©, so obtaining the very special case of equality in (3.7.1). Moreover,
among these functions there are some that have strictly negative pressure at ® which
is the key point not only for Theorem 3.46 but also for the absence of recurrent
conformal measures in Theorem 3.20.
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3.8 Beyond Hyperbolicity

For many kinds of non-hyperbolic holomorphic/conformal dynamical systems
various forms of thermodynamical formalism have been also successfully developed
and usually much earlier than for transcendental dynamics. This is the case for
rational functions and generalized polynomial-like mappings having certain type
of critical points in the Julia set so that the functions are no longer hyperbolic but
sufficient expansion is maintained. Most notably this is so for parabolic rational
functions, subexpanding rational functions, and most generally, for non-recurrent
rational functions and topological Collet-Eckmann rational functions; see ex.
[2,4,5,25-32, 38, 73-77, 94, 95, 102, 103], and the references therein. Note that
some of these papers such as [27, 73] and [75] for ex. deal with all rational functions,
in particular with no restrictions on critical points at all.

But there is a substantial difference with the hyperbolic case. Except perhaps
[27] and [73], the Perron—Frobenius (transfer) operator for the original system is
then virtually of no use—no change of Riemaniann metric seems to work. The
most relevant questions are then about the structure of conformal measures, most
notably, their existence, uniqueness, and atomlessness, and about Borel probability
invariant measures absolutely continuous with respect such conformal measures,
their existence, uniqueness and stochastic properties. Also, application of such
results to study the fractal structure of Julia sets.

Similarly as for non-expanding rational functions, also for non-hyperbolic
non-expanding transcendental, entire and meromorphic, functions some forms of
thermodynamic formalism have been developed. For the papers coping with critical
points in the Julia sets, which is closest to rational functions, see for ex. [44,46]. One
class of trancendental meromorphic functions deserves here special attention. These
are elliptic (doubly periodic) meromorphic functions. The first fully developed
account of thermodynamic formalism for all elliptic functions and Holder continu-
ous potentials (satisfying some additional natural hypotheses) was presented in [55].
Up to our best knowledge all other contributions to thermodynamic formalism for
elliptic functions deal with geometric potentials of the form —rlog | f’|. We would
like to mention in this context the paper [47], and, especially, the book [49], which
provides an extensive and fairly complete account of thermodynamic formalism for
many special, but quite large, classes of elliptic functions with some sufficiently
strong expanding features.

The main difficulty and main point of interest in the classes of meromorphic
functions discussed in the last paragraph were caused by critical points lying in the
Julia sets. Going beyond critical points, there are visible two directions of research.
Both of them deal with transcendental entire functions where there are logarithmic
singularities, in the form of asymptotic values, in the Julia sets.

One of them was initiated in [106] dealing with exponential functions Ae®,
where 0, the asymptotic value, was assumed to escape to infinity sufficiently
fast. The existence and uniqueness of conformal measures and the existence and
uniqueness of Borel probability invariant measures absolutely continuous with
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respect to those conformal measures were proved therein. Its follow up was the
paper [107] dealing with analogous classes of functions but iterated randomly. The
full (random) thermodynamic formalism with respect to random conformal and
invariant measures was laid down and developed therein.

The second direction of research initiated and developed in [57] aimed to analyze
the contribution of non-recurrent logarithmic singularities. Indeed, the paper [57]
by Mayer—Urbaiiski considers the class of meromorphic functions with polynomial
Schwarzian derivatives. For example the tangent family belongs to this class and
in general such functions have no critical points and they have only finitely many
logarithmic singularities. A surprising outcome of this paper was that the behavior
of invariant measures absolutely continuous with respect to conformal measures did
depend on the order of the function.

Theorem 3.47 Let [ : C > Cbea meromorphic function f of polynomial
Schwarzian derivative and assume that it is semi-hyperbolic in the following
sense:

— All the asymptotic values are finite.

— The asymptotic values that belong to the Fatou set belong to attracting compo-
nents.

— The asymptotic values that belong to the Julia set have bounded and non-
recurrent forward orbits.

Let h := HD(J(f)).

Then, a Patterson—Sullivan typ construction provides an atomless h-conformal
measure and this measure is weakly metrically exact, hence ergodic and conser-
vative. Moreover, there exists a o -finite invariant measure |1 absolutely continuous
with respect to m and this measure

0

W is finite  if and only if h>3
p+1

where p = p(f) is the order of the function f. If u is finite, then the dynamical
systems ( f, j1) it generates is metrically exact and, in consequence, its Rokhlin’s
natural extension is K-mixing. O

Notice that 3 pﬁl > 2 if and only if the order p > 2. Consequently the measure
1 is most often infinite. However, in the case of the tangent family, which is just one
specific example among others, this invariant measure can be finite.
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Chapter 4 )
Recurrent Sets for Ergodic Sums s
of an Integer Valued Function

Jean-Pierre Conze

Abstract For an ergodic measure preserving dynamical system (X, B, u, T) and
an integrable function f with values in 74, et (S, f(x) = ZZ;& f(T*x),n > 1)
be the process of ergodic sums of f. Given a finite or infinite subset £ of Z?, a
question is whether L is recurrent for the process in the sense that S, f(x) € £
infinitely often for a.e. x. We will survey various examples, for non centered or
centered functions f in dimension d = 1 or > 1. For example, for d = 1, one can
estimate the number of visits before time n to the set of squares in Z when p(f) # 0
(consequence of J. Bourgain’s result (1989)). But if £ has unbounded gaps and if
0 ¢ L, over rotations there are simple integrable centered functions f generating
“non regular” cocycles such that (S, f) does not intersect L. For a transient random
walkin Z4,d > 3, we give examples of infinite recurrent sets and infinite transient
sets.

4.1 Introduction

In what follows (X, B, w) is a probability space without atoms and T is an ergodic
measure preserving transformation acting on X. Let f be a measurable function on
X with values in R4, d > 1. Its ergodic sums under the iteration of T are

n—1

S(T. fon.x) =S, f(x) =Y f(T*x).n>1.

k=0

The sequence (S(7, f,n,x),n > 1) is a “cocycle” denoted by (7, f). We denote
by S(T, f, x), or simply S(f, x), the set {S(T, f,n,x), n > 1}. Ford = 1, we call
the cocycle (T, f) positive if f(x) > 0, fora.e.x € X.
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Unless explicitly stated, we assume that f takes its values in Z¢ and that, for any
integer a > 1, f does not take its values in a 74, for J-a.e. x.

Our aim is to discuss the following question: if £ is a subset of Z¢, do the ergodic
sums S, f (x) visit L infinitely often for a.e. x and is there a quantitative estimate?

As it is known, for the process (S, f),>1 generated by an ergodic transformation,
there is a dichotomy: it is either transient (S, f(x) — oo, for a.e. x) or recurrent
(the Z?-valued process satisfies S, f(x) = O, infinitely often, for a.e. x). In the
previous question, the set £ should be an infinite set in the transient case, while in
the recurrent case, the discussion is more about the “recurrence set” of the cocycle.

Definition 4.1 For a cocycle (T, f)with values in R4, we call r € RY a recurrent
value, if u(x : ||S(T, f,n,x) —rl| < ei.on.) =1, forall ¢ > 0. The recurrence set
is the set R(T, f) of recurrent values.

So, for f : X — 74, R(T, f) is the set of values which are visited infinitely
often.

In the recurrent case, we will see that the recurrence set is related to the “regularity”
of the cocycle (Sect.4.3). A cocycle (T, f) is transient if and only if R(T, f) is
empty. The question of recurrence into infinite sets in the sense of the next definition
is adapted to the transient case, even it can be asked for a recurrent process.

Definition 4.2 A subset £ of Z¢ is called recurrent for a cocycle (T, f) if, for a.e.
x, S(T, f,n,x) € L for infinitely many n.

Sets of Recurrence in Ergodic Theory
The question of recurrence for a subset £ of Z¢ appeared for random walks in the
sixties [30]. Some years later, it became an important topic in ergodic theory.

Definition 4.3 (Furstenberg [16]) A set of positive integers £ = {{; < £, <
... < {; < ...}iscalled a “set of recurrence” (or a recurrent sequence, or a Poincaré
set) if, for all dynamical systems (Y, A, v, S) and all subsets A € A of positive
measure, there are infinitely many £ € £ such that v(A N S7¢A) > 0.

An equivalent property is that, for every system (Y, A, v, S) and every subset A € A
with v(A) > 0, the intersection £ N {¢ : Sy € A} is infinite for a.e. y € A.

In Definition 4.2, we are interested in the question of recurrence with respect
to a given cocycle (7T, f). The answer for a given set depends on the spectral or
stochastic properties of 7. For d =1, Definition 4.3 expresses a “universal” property
of recurrence for a set £ C N, which is equivalent to recurrence in the sense of
Definition 4.2 for all positive integrable cocycles (T, f) (see below).

Let us mention also another related point of view: ergodic theorems along a
subsequence and “universally representative”’sampling schemes, a topic developed
in the 1970s and later. The pointwise ergodic theorem along recurrence times proved
by Bourgain [6] shows that the sequence of recurrence times in a set for a dynamical
system is almost surely a “universally good sequence” of summation and this can
be used as in [25].
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Our aim is merely to survey various examples. We are going to take for £
sequences of positive density or polynomial growth, sequences of ergodic sums for
another dynamical system (Y, v, S), polynomial sequences, the sequence of prime
numbers and also arbitrary strictly increasing sequences.

The content of the paper is the following. Section 4.2 concerns the case d = 1,
f fdu # 0, in relation with special maps and return times into a set. In Sect. 4.3,
we take d > 1, f integrable and centered. The relation between recurrence set, set
of essential values and “regularity” of the cocycle is discussed. Sets which are not
recurrent for some non regular cocycles, are constructed. In Sect. 4.4, for transient
cocycles defined by random walks in Z¢, d > 3, we give examples of infinite
recurrent sets and infinite transient sets.

Acknowledgments: I would like to thank V. Bergelson, Y. Coudene, Y. Guivarc’h
and E. Lesigne for fruitful discussions, as well as the referee for the very helpful
remarks.

This paper is dedicated to the memory of Michael Boshernitzan, with whom
some of the topics presented here have been discussed some years ago.

4.2 Non Centered Case ford =1

In this section, £ = {¢1 < {» < ... < £, < ...} is astrictly increasing sequence of
positive integers. We begin by preliminaries on special maps.

4.2.1 Preliminaries
4.2.1.1 Special Map Ty

With the notation of the introduction, let f : X — Z be integrable and > 1 (the
cocycle is said to be positive). The (discrete time) special map Ty is defined on

X:={(x,k), xeX,k=0,..., f(x)—1}
by Tr(x, k) :=(x,k+1), if0<k < f(x) -1, :=(Tx,0), ifk = f(x) - 1.

The probability measure i is defined on X by (A x {k}) = w(f)~! u(A), for
k>0and A C {x : k < f(x) — 1}. The space X can be identified with the subset
By = {(x,0),x € X} of X with normalized measure. The set By is the basis and
f — 1 the ceiling function of the special map 7.

For x € By, f(x) is the first return time of (x, 0) in By for T¢. The n-th return
time is S(7, f, n, x). Therefore, it holds:

T}l(x, 0) € By <= n e 8(T, f,x). (4.2.1)
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This shows that formally, for d = 1, the study of the values of the ergodic sums
for a positive cocycle reduces to that of sets of recurrence for the associated special
map.

Induced Cocycle For a dynamical system (X, 8B, u,T) and a set of positive
measure B € B, let Tp be the induced map on B, RB (x) the first return time of
xin Band RE(x) := Y12} RB(T§x) the n-th return time of x in B.

‘We have {R,i9 (x),n>1} =8(Ts, RE, x) and, since T is assumed to be ergodic,
1

lim  R5(x)=u(B)™!, forae x € B. (4.2.2)
non

If f is a measurable function on X, the induced cocycle on B is defined on B by

FTB@) = fP0) = F@) + FT0) + .4 TR0,

When f is integrable, then f? is integrable. We have the inclusion S(Tg, f2,x) C
S(T, f, x) for x € B. The special maps Ty and (T) s coincide.

4.2.1.2 Aperiodicity

Definition 4.4 Let (7, f) be any 1-dimensional cocycle (with f : X — Z). Let
us consider the coboundary multiplicative equation in ¢ € R and & measurable with
modulus 1:

h(Tx) = 2™ T p(x), forae. x. (4.2.3)

We say that (T, f) is aperiodic if (4.2.3) has no measurable solution for r € R\ Z,
and r-aperiodic if (4.2.3) has no measurable solution for r € Q \ Z.

See also Definition 4.6 for d > 1. Remark that the terminology “aperiodic” is also
associated to the equation (in 4 measurable and p constant) Th = p it p (see
[22] for non uniformly expanding Markov maps).

Let B be a set of positive measure in X. For any f a cocycle (7, f) is aperiodic
if and only if (T, fB) is aperiodic. Given ¢, there is a solution of (4.2.3) for (T, f),
if and only if there is a solution of (4.2.3) for (T, fB).

Eigenvalues of Ty The map Ty is ergodic if and only if T is ergodic. Equa-
tion (4.2.3) has a solution / if and only if ¢2™' is an eigenvalue of Ty.

It follows that T’y is weakly mixing, if and only if (7', f) is aperiodic. It is totally
ergodic, i.e., TJIE is ergodic for every k > 1, if and only if (7, f) is r-aperiodic.

Examples Cocycles (T, f) with T a Bernoulli scheme and f a function of the
first coordinate yield simple examples of aperiodic cocycles. Another examples are
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step functions over a 1-dimensional irrational rotation x — x 4+ o« mod 1 with
discontinuities satisfying some Diophantine condition with respect to « (cf. [18]).

Recall that the Kronecker factor of an ergodic dynamical system is its maximal
factor with discrete spectrum. The rational Kronecker factor is generated by the
eigenfunctions with eigenvalues roots of unity.

4213 Frompu(f)>0to f>1

For the non centered case p(f) > 0, we show how to carry back to the case f > 1.
First let us recall the proof of the known fact that, on a dynamical system, a function
with positive integral is the sum of a non negative function and a coboundary.

Lemma 4.1 Iff fdu > 0, there are h measurable, g integrable non negative with
u(g = 1) >0, such that: f = g+ Th — h. If f is integer valued, so are g and h.

Proof Let my(x) := mini<k<p Skf(x), n > 1. We have m,1(x) =
min(f (x), f(x) + my(Tx)) = fx) —m, (Tx), iftmy(Tx) < 0,= f(x) =
f&x)—m, (Tx), if m,(Tx) > 0, which implies m,1(x) = f(x) —m, (Tx).

The limit myo(x) := lim, m,(x) is a.e. finite, because S, f(x) — +oo by the
ergodic theorem. It follows: f(x) = m (Tx) — m (x) +ml (x), fora.e.x.

If m¥ (x) = O fora.e. x, then f is a coboundary. By considering the return times
on a set on which m_ is bounded, we get a contradiction with S, f (x) — 4o0.

By construction, m,(x) < f(x), which implies ms < f(x) < |f(x)|, hence
mt (x) <|f(x)|and mI, as f,is integrable. Moreover m,, (and therefore m«) has
valuesin Z as f. Putting h :=m_, g := mjo, we get the result. m]

We say that a class C of cocycles is closed by induction if, for any (T, f) in C,
the induced cocycle (Tg, f7*B) is in C for every B of positive measure. Aperiodic
cocycles or r-aperiodic cocycles are examples of such classes.

Proposition 4.1 Let C be a class of cocycles closed by induction. If L is recurrent
for every positive cocycle (T, f) in C, then L is recurrent for (T, ) in C such that
u(f) > 0.

Proof

(1) First we show that, if w(f) > O, there is a partition of X in measurable sets of
positive measure on which the induced cocycle is > 1.
By the previous lemma, we can write f = g + Th — h, where h, g have values
in ZT, the measure of the set B := (g > 1) is positive and g is integrable.
Let D :={h = j}for j > 0.Since S, f = S,g+T"h—h,itholds: S, f(x) =
Spg(x), ifx, T"x € Dj.Let C,; = T~"B N D;. By ergodicity of T', we have
Dj=U,50Crj-
On C, ;, the ergodic sums generated by f Crj(x) and g€ (x) under the action
of the induced map T¢,, i coincide, since S, f (x) = S,g(x) if x and T"x € C, ;.



148 J.-P. Conze

Now, by Rohlin lemma, up to a set of zero measure, each set C,, j can be cutin a
countable family of subsets Cy, ; ¢ of positive measure such that Rt (x) > r.
For x € C, j we have: T"x € B = {g > 1} and the induced cocycle on C; ; ¢
satisfies:

Re, ;,(0-1

gCrit(x) = g(x) + g(Tx) + ...+ g(T x) = g(I"x) > 1, forx € Cpj .

(2) Since X = U, j (C; ; ¢, it suffices to prove the result for the restriction of f to
the sets C,. ; ¢ (called simply C). For x € C, the ergodic sums of g€ and £€ for
the induced map 7¢ coincide and belong to the sets of ergodic sums of g and f
for T.
Let (T, f) inaclass C closed by induction. If £ is recurrent for positive cocycles
in C, then £ is recurrent for the induced cocycle (T¢, f €, hence for (T, -
O

4.2.2 Sequence of Positive Density

Let us assume that £ = {{1 < ¢, < ... < £, < ...} has a positive density. Let C
be a finite constant such that £,, < Cn, Vn > 1.

Lemma 4.2

(1) If a dynamical system (Y, A, v, S) is weakly mixing, it holds

1 < L2
DSty nj(:% 9dv, Ve € L*(v). “2.1)
k=1

(2) If the dynamical system has the Lebesgue spectrum property, then convergence
a.e. holds in (4.2.1) for any ¢ € L'(v).

Proof

(1) Let ¢ be in L?(v). Without loss of generality, we can assume fgodv =0
and f lp|?dv = 1. There is a set J in N of zero density such that
limy s o0, k¢J(Sk(p, ¢) = 0. Therefore, for ¢ > 0, there is N, L. such that,
for N > Ng, |J N[1,N]| < &N and |(S/(p,(p)| <e ifjgJandj > L.
Hence, we have

n
1Y S%elz<n+2 Y USHWg, )| =n+(A) + (B) + (C) with
k=1

1<k/’<k=<n
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(A=2 Y (S, ) <2en,
Le<p—reJ¢
1<k’<k<n

(By=2 Y  [S% g ) <2L}
ngék—lkze.l”
1<k’<k<n

©) =2 Y (S Wg ¢
@kfek/ef
1<k’<k<n

<2) Card{k <n: tyeJ+ )

k'<n
<2 T A )N L1 <2 TN [—brr, £y — Lol
k'<n k'<n

< 2n|J N[L, £,]]

< 2C8n2, for £,, > N, and since ¢, < Cn.

n
This implies n12 I Z S <@ '+ 20207 ?) +2(14 C)e, forn > N,.
k=1

(2) Recall that a proof is the following: for the ergodic sums along a sequence
of positive density, a maximal inequality holds; hence the set of ¢ such that
pointwise convergence holds in (4.2.1) is closed in L'(v). As this set contains
linear combinations of functions in L?(v) with orthogonal images by §”, the
result follows.

O
Theorem 4.1 Let L be a sequence of positive density and L, :== LN [1, n].
(1) If (T, f) is an aperiodic positive cocycle, then
Card(L, NS(T, f,-) L w _1
. 422
Card(L,) = HU) (4.2.2)

(2) L is recurrent for every aperiodic cocycle (T, f) such that u(f) > 0.
(3) If Ty has the Lebesgue spectrum property, then convergence a.e. holds
in(4.2.2).

Proof
(1) With § = Ty, Lemma 4.2 implies, if T is weakly mixing:

¢ 2 -
D La(T[ . 0) S ji(Bo) = ()
k=1
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Asd iy 1B(Tfe'k (x,0)) = ket lyeesr, £.0) = Card([1, £,1NLNS(T, f, x)),
the convergence (4.2.2) holds if (7, f) is aperiodic and f > 1. This implies:

I Card(L, N S(T, f,x))
im sup Card(£,) > 0, fora.e. x.

(2) By Proposition 4.1, this last property still holds if the cocycle is aperiodic and
u(f) > 0.
(3) The last statement follows from 2) in Lemma 4.2.
0

A Counter-Example for (T, f) Non Aperiodic The following construction gives a
simple example of a sequence with positive density disjoint from the set of values
of a positive non aperiodic cocycle.

Let o €]0, 1] be an irrational number and T, the irrational rotation x — x +
a mod 1 on [0, 1[. Let @ be an integer > 2, and define f by f(x) = a, for x €
[0, 1 —a[,=a+1, forx €]l —«, 1[. The special map over T, with ceiling function
fisthe rotation 7}, : x — x + y mod 1 on the unit interval, with y = a}ra.

To show it, let us start with the rotation 7}, and consider the induced map on
J1 —y,1[.Since | —y < ay < 1, theinterval ]2 — (1 +a)y, 1[ is mapped mod 1
on ]1 — y, ay|[ after a iterations, and the interval ]1 — y,2 — (1 + a)y[ is mapped
on Jay, 1[ after a + 1 iterations.

Therefore the induced map is the permutation on 1 — y, 1[ of the two sub-
intervals |1 — y, ay[ and Jay, 1[. After normalisation by y~! and translation by
1 — y’l, we obtain the isometric exchange of the sub-intervals ]0, 1 — «[ and
J1 — «, 1[ of ]0, 1[, which is the rotation by «.

Observe that 1 — 2y > 0. Let J :=]0,1 — 2y[ and y; := 1 — y. There is an
integer p > 1 such that J, Ty_1 J,ooo., T[ ptl J covers the unit interval. It follows
that in each interval of integers {kp, ..., kp + p — 1}, k > 1, there is £; such that
Tf" y1 € J: the increasing sequence £ = {{; > 1: T;" y1 € J} has positive density.
It holds T)fk (Iy1, 1D € [0, y1[, which implies LN S(Ty, f, x) = @.

Polynomial Growth

The property of recurrence with respect to an aperiodic cocycle is satisfied by classes
of sequences with polynomial growth. For conciseness reason, we will only present
an example.

Let us assume that £ = {¢] < £5 < ... < £, < ...} is such that the following
property holds:

Property 4.1 Forall h > 1, the sequences (£,4+1, —£,)n>1 are strictly increasing (for
n large enough) and with positive density, i.e., for a finite constant Cj,, €44 — £, <
Cyn,¥n > 1.
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An example is £, = n?+ Pn, With p, = O (n).

Lemmad.3 Let L=1{{; <{y <...<{, <...}beansequence of integers which
satisfies Property 4.1. If (Y, A, v, S) is weakly mixing, it holds:

1 < L?
st j(g: 0dv, Vo € L2(v). (4.2.3)
k=1

Proof By Van der Corput inequality, for N > 1, all integers H € [1, N] and all
t € R, it holds:

1 N ) 2 4 H-1 1N7h )
| ZEMF < + Z | Z ell([k+h*[k)|.
N B H =N S

Let ¢ be in L?(v) with integral 0. Denoting by ne the spectral measure of ¢, it
follows:

N

N
1 14 2 ! 1 2mwilyt 2
”NZSk(pHZ:/o'NZe K12 dny (1)
k=1 k=1
2 4 H-1 1 1 N—h
2mit (Cn—Lr)
St X[y X e an
h=1 k=1
H—1 1 N—h
2 4 1 . 1
<243 / | PTGt 2 g (1))
H - H = NiH
H-1 N
2 4 1
=+ NI P
H H h=1 N k=1

Fore > 0,let H :=1+ [25’1]. If h < H, by Lemma 4.2 there is N (k) such that
N—h N

1 1

[ > stnlig|y < g, if N > Nj. Therefore [ > %l < &+ 4e, for
k=1 k=1

N > maxy<p Nj,. O

Corollary 4.1 If L satisfies Property 4.1, it is recurrent for every aperiodic cocycle
(T, f) such that u(f) > 0.
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4.2.3 Arithmetic Sequences

Furstenberg proved in [16] that arithmetic polynomial sequences are recurrent
sequences. In 1988, J. Bourgain gave a pointwise result for these sequences, i.e.,
an ergodic theorem along polynomial sequences. Let (Y, A, v, §) be a dynamical
system.

Theorem 4.2 ([5, 6]) If P is a polynomial with integer coefficients, then, for ¢ €
n

1
L'(v),r>1, Z(p(SP(k)y) converges a.e. forn — oo.
"=
For polynomial sequences, as well as in Sect. 4.2.5, in order to apply the theorem
to our problem of values of ergodic sums, we need the positivity of the limit on A,
when ¢ = 14.

Theorem 4.3 If P is a polynomial without constant term, then, for all A € A,

1 n
lim > 145" ®y) > 0, forae. y € A. 4.2.1)
o k=1

If S is totally ergodic, in particular weakly mixing, then the limit is v(A).

Proof In the totally ergodic case, the limit is v(A) by Weyl’s equirepartition
theorem. If S is not totally ergodic, we take into account the rational spectrum of S
and the proof is as in Theorem 3.5 in [16]. O

Corollary 4.2 Let P be a polynomial of degree r with integer coefficients and
without constant term. Let ®p(f, N, x) be the number of terms less than N in
S(T, f, x) of the form P (k).

(a) If (T, f) is a positive cocyle, for a.e. x there exists a constant c(x) > 0
(depending on P) such that ®p(N, f,x) ~ c(x) N:. If (T, f) is r-aperiodic
(cf 4.2.1.1), then c(x) = u(f)~r.

(b) For a cocyle such that u(f) > 0, ®p(N, f,x) > d(x) Ni, with d(x) > 0, for
a.e. x.

Proof For (a), we apply the previous results to S = T, the special map, and
to the set A = By, the basis of the special map. The result follows then from
Theorem 4.2.3.

For (b), as in Proposition 4.1, we decompose X in a countable family of subsets
C such that the induced cocycle f€ on C is > 1 and we apply a) to € and the
induced map T¢: there is a constant c(x) > 0 such that, for a.e. x € C, the number

of terms in S(T¢, f€, x) of the form P (k) less than N is ~ ¢(x) Ni when N — oo.
For N > 1, there is T(NN, x) such that R (x) < N < Rr NHX)(x)
Therefore the number of terms in S(7', f, x) of the form P (k) less than T(N, x)

is asymptotically > c(x) T(N, x)i when N — oo.
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By (4.2.2), we have: limy Ibr(N, x) = u(C). We conclude that the number of
terms in S(7, f, x) of the form P (k) less than N is > d(x) Ni, withd(x) > 0. O

An analogous result holds when £ = P, the set of prime numbers. We use the

following result (J. Bourgain [4] for p > 1+2‘/3, M. Wierdl [31] for p > 1):if p > 1

1
and ¢ € LP(Y,v), Card{k € Pk < N} kEPXk:<N(p(Tky) converges a.e.as N —

00.

If S is totally ergodic, by Vinogradov’s equirepartition theorem, the limit is v(gp).
It follows that, if (7', f) is r-aperiodic and u(f) > 0, for a.e. x there exists d(x) > 0
such that

Card{k € PﬂS(f, T,x),k < N} >d(x) Card{k € P,k < N}, fora.e. x.

4.2.4 Arbitrary Sequences and Mixing Special Flows

Proposition 4.2 Any strictly increasing sequence of integers L = {€1 < {r <
. < &y < ...} is recurrent for a positive cocycle (T, f) such that Ty is strongly

mixing.

Proof Let (Y, A, v, S) be a strongly mixing dynamical system. By a theorem of

Blum-Hanson ([3]), it holds: limy ||]1, Z,N:?)l lpaoTt — V(A)|l2 =0, forall A € A.
If T is strongly mixing, this implies that, for the basis B of the special map T,

along a strictly increasing subsequence (N):

Ni—1
lim Y 1 (T} (x, 0) = ju(B) = u(f) ", for p-ae. x.
i=0

As 1BO(T;T" (x,0)) £ 0 & ; € S(T, f, x), this implies, for a.e. x € X:

Card({e1, £, ... £} () S(F T x)) ~ ()™ Ni.

O

Remark The set of differences of the elements of a strictly increasing sequence is
recurrent for any cocycle (7', f) such that w(f) > 0. On the contrary, as shown in
[16], if L is a lacunary increasing sequence of integers (i.e, infy 221 > 1), it is not
a set of recurrence and there is a cocycle (7, f) for which £ is not recurrent.
Examples of Mixing Special Maps

The previous proposition leads to the question of finding families of dynamical
systems (X, T') and functions f such that 7'y is strongly mixing.
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An obvious example is given by (X, A, u, T) a strongly mixing dynamical
system: for any set B € A with w(B) > 0, for all infinite sequences of positive
integers £, for a.e. x € B, the sequence R (x) of return times in B visits infinitely
often L. More interesting, we would like to find classes of cocycles (T, f) such that
the associated special map T is strongly mixing or (stronger property) a K -system.

Guivarc’h and Hardy [21] gave examples of special flows which are mixing. Let
us take a subshift of finite type with a Gibbs measure (X, T, ). By the corollary in
[21, page 96], if f is Holderian positive on ¥ and under a condition of aperiodicity,
then the special map T is mixing. The proof is related to a renewal theorem for a
stationary process satisfying a spectral gap property. Since we are considering here
functions with values in Z, we restrict to “locally constant functions” over a subshift,
i.e., functions depending on a finite number of coordinates. It follows from [21] that
any infinite subset of N is a recurrence set for the cocycle (7, f) if T is a subshift
of finite type with a Gibbs measure and f > 0 a locally constant function, under an
aperiodicity condition on (7, f).

In this direction, the question of the K-property for a special flow has been
studied by B. M. Gurevich [19, 20] and by Blanchard [2]. The following result gives
a sufficient condition for special flows T to be K and so strongly mixing.

Theorem 4.4 ([2]) Let Ty be a special flow (with discrete time) over a dynamical
system (X, B, u, T), with an integer valued ceiling function f > 1.
Suppose that f is B~ N BT measurable, where B~ and BT are two o -algebras,
respectively T-increasing and T-decreasing and such that B~ N TB™ is trivial.
Then, if the values of [ are not contained in aZ for any a > 1, the dynamical
system X, i, Tr) is a K-system.

4.2.5 Intersection of Cocycles

We consider now the question of the intersection of the sets of values of two
cocycles. This is based on J. Bourgain’s results on return times.

4.2.5.1 Return Times Theorem

Theorem 4.5 (Bourgain [8]) Ler (X, B, i, T) be a dynamical system and let g be
in L (X, n) orthogonal to the eigenfunctions of T. There exists a set Xg of full
u-measure in X such that, for x € Xy, for every dynamical system (Y, A, v, S), for
allh € L*®(v), limy 1{] Zflvzl g(T"x) h(S™y) =0, for v-almost every y.

We need a slight extension of this result to any g in L°°(X, 1) and an information
on the positivity of the limit. According to Theorem 4.5, it suffices to consider the
Kronecker factor Kr of T and to show the positivity of the limit when g > 0 is
replaced by its projection on Kr (which is > 0 a.e. on (g > 0)).
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Hence, we suppose in the following lemma that (X, B, u, T) is a rotation on a
compact abelian group, with p its Haar measure. We denote by X the dual group of
characters {x;, j € J}and by A;: T x; = A x;, the corresponding eigenvalue. By
using the ergodic decomposition of v, we can assume (¥, A, v, S) to be ergodic. We
show the positivity of the limit for x in a set of full measure in (g > 0) (independent
from the choice of the system S) and for almost all y in (2 > 0).

Lemma 4.4 Let g be a function in L*(X, jv) of the form g = Zje] CiXj-

(1) There is a set X1 of full measure in X such that, for every x € Xy, for any
dynamical system (Y, v, S) and any h in LZ(Y, V),

1 N—1
lim ,;o g(T*x) h(sky) = ,ZJ cjxjx) (T1;h)(y), forae. y €Y,
4.2.1)

where (I1;h)(y) is the projection of h on the eigenspace of eigenvalue X; in
L2(v).

(2) If g, h are non negative, there is a set Xo of full measure in (g > 0) such that
the limit in (4.2.1) is > O for all x € Xg and a.e. y € (h > 0).

Proof

(1) Let (Jp)p>1 be an increasing family of finite sets of characters whose union is
the set of all characterson X. Let g, = ) ¢jxj- We have:

Jj€Jdp
1 N—-1 1 N—-1
v 2 & TORE ) = 3 eix ol Y MhE )l
k= jedy k=0

By the ergodic theorem, there is a set D; of measure 1 of points y € Y for
which the mean between brackets converges to the projection (I1;)(y) of & on
the eigenspace of eigenvalue A ; in L?(v). The limit is 0 when £ is orthogonal to
the subspace generated in L*(v) by the eigenfunctions of eigenvalues A j- The
set D = N;D; has also full measurein Y.

Let (g — gp)* be the maximal function sup 1{, Z,I{VZ_Ol |g(Tkx) — g,,(Tkx)l.
Suppose first 7 bounded. The ergodic maximal lemma implies

1 N—-1 1 N—1
|y 2 8T 0 hS ) = ,;o gp(TXx) h(S*y)|

k=0
1 N—1
< Il l;) lg(T*x) — g, (T*x)|

< lIhlloc (8 — 8p)*(x), with [[(g — gp)"ll2 < 2Ilg — gpll2-



156 J.-P. Conze

Let (p,) be asequence such that )", [g— g, [l2 < 4+00. Then (g —gp,)*(x) —
0 for x in a set E of full u-measure.

Moreover we have (IT;4)(y) = d;¢;(y), where d; is a constant and ¢; is an
eigenfunction for S of modulus 1 with eigenvalue 1, and the series }; |d nE
converges. Therefore Zj lcjlldj| < 400 and Zjejp cjxj(x) ITh)(y) —

Zje] cjdjx;j(x)¢;j(y). Putting

N-1

1
D (T ) h(S*y) =Y cjdjx; () GO,

An(x,y) =]
N k=0 jeJ

we have forr > 1: limsupy An(x,y) < (A;) + (B;) + (C,), where

N-1
L 1 k k
(A)) = thsup|N ; g(T"x) h(S™y)

N-1

1
= v 2 & (T O RS < oo (g = gp)* ().
k=0

1 N—-1

(By) = limNsup|N ]; g,,r(Tkx)h(Sky)

— Y ¢jxj@) (M) ()| =0, fory € D,
je"l’r

and (C,) := ZJ'EJ\Jpr lcjlld;]. It follows

limsup Ay(x,y) < (A;) +0+ (C,) — O,
N

when r — +o00, if x is in the set of full u-measure £ and y in D.
If & is not bounded, but in L?(v), we use again a maximal inequality:

N—1
1 k k
Sup kE—O 1g(T"x)[ [(S" y)I

1 N—1 ' 1 N-—1 '
k 2 k N2
< (Slzlvp N kz_o lg(T"x)|7)2 (sgp N kE_O [R(S"y)7)2

< [ @12 [ (]2,
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where (gz)*, (hz)* are the maximal functions of g2 for T and h? for S, which
satisfy the (weak) ergodic maximal inequality valid for L' functions. Then we
observe that, forx € EN ((g2)* < +00), the set of & such that Ay (x,y) — 0
for a.e y contains L and is closed in L?(v) by the maximal inequality.

(2) By what precedes, the limit is unchanged if 4 is replaced by its projection
on the Kronecker factor of (¥, A, v, S) and even by its projection h on the
factor generated by the eigenfunctions with eigenvalues which appear in the
representation of g. Up to an isomorphism this factor can be viewed as a factor
of (X,8B,u,T) and h as a function on X. Now we have the Fourier series

representations on X: g(x) = Zje] cjxj(x)and h(y) = Zje] djx;(y) and
| Nl
lim D (T ) (St y) = ejdixjx - y) = /Xg(t +x) h(t + y)dr.
k=0 J

On the compact abelian group X, there is a distance invariant by translation.
Denote by B(x, §) the ball centered at x with radius § > 0. Almost every point x
in (g > 0), resp. y in (h > 0), is a Lebesgue density point in the respective sets.
It means that, for such x (resp. y), for every ¢ > 0 there is §(¢) > 0 such that
the intersection (g > 0) N B(x, 8(¢g)) (resp. (h > 0)N B(y,8(¢))) has a measure
which is a 1 — & proportion of the measure of the corresponding ball. Therefore
n(B0,8(e) N[(g>0)—x]N[(h>0)—y]) = (1 —2¢) u(B(0,8()).

Foré; = S(i), the measure of 8(0, 61)N[(g > 0)—x]N[(h > 0) — y] is positive.
If ¢ belongs to the previous set of positive measure, then g(¢ + x) ﬁ(t +y)>0.1t
follows:

fg(r+x)ﬁ(r+y>dtzf gt +x) bt +y)dt > 0.
B(0,81)

If X is the set of Lebesgue density points of X1 N (g > 0), this shows the positivity
of the limit for x € X¢ and for a.e. y in (h > 0), hence in (4 > 0). |

Corollary 4.3 Let (X, B, u, T) be an ergodic dynamical system and let B € B.
Then there is a set of full measure in X for which for every ergodic dynamical
system (Y, A, v, S) and all A € A, the following limit exists for v-a.e. y € A:

N
.1
c@x,y) =lim E 1 1g(T"x) 14 (S"y).
n=

There is By with full measure in B (not depending on (Y, A, v, S)) such that
c(x,y) > 0,Vx € By and for v-a.e. y € A. If (X, B, u,T) is weakly mixing,
then c¢(x,y) = n(B) E(141Js(y)).

Corollary 4.4 Let f : X — N be an integrable function such that f > 1. There is
a set of full measure X¢ in X such that, for every dynamical system (Y, A, v, S), for
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x € Xoandh > 1, h : Y — Nintegrable, the following limit exists:
o1
cp(x,y) = lli\r]n NCard{k < N: Sf(x) eSS, h,y))}

and is > 0 fora.e.y € (h > 0). If (T, f) is aperiodic and (Y, v, S) ergodic, then
en(x,y) = p(H v

If we assume only u(f) > 0 and v(g) > O, then Card(S(T, f,x)(\S
(S, h,y)) = o0, for p-a.e x and v-a.e. y.

4.2.6 Cocycles for T and T~!

If T and S are commuting measure preserving maps on the same space,
a question is to compare S(T, f,x) and S(S, f,x) for the same x. In this
direction, we take S = T~! and use a pointwise result of Bourgain [7] for
the means ,11 Zz;(l) f(T*x) g(T" x), m # 0,1 (a special case of the means
,11 ZZ;& FI(T*x) fo(T?x) ... fu(T™*) considered by H. Furstenberg in the study
of “multiple recurrence”).

By Bourgain [7], for a dynamical system (X,u,7T) and for f,g € L,
the means }lzz;é f(T*x) g(T~*x) converge to 0, for ae. x, when g is
orthogonal to the eigenfunctions. Therefore, denoting by f and g the projections
of f and g on the Kronecker factor, it holds: ,1122;(1) F(T*x) g(T*x) —
y iy FTh ) (T *x) — 0,

If g is an eigenfunction, the means converge by Birkhoff’s theorem and this can
be extended to the closed linear span of the eigenfunctions by using: for f, g in L2,
LSRN0 < [ )12 (82 ()12, where (f2)*, (¢2)* are

the maximal functions of f2, g2 for T and T If (e ;) is an orthonormal system of
eigenfunctions for 7', it follows: Zf(Tkx)g(T x) —> Z (fiej) (g ej).

This shows that, for a.e. x, ,11 Z f(Tkx) g(T™ kx)has a 11rn1t y (f, g, x) which
does not change if f, g are replaced by their projection on the Kronecker factor of
T. When T is weakly mixing, then y (f, g, x) = w(f) u(g). It remains to show the
positivity of the limit.

Theorem 4.6

(1) Fora.e. x € A, thNZ lA(T”x)lA(T x)>0
(2) If T is totally ergodic, forae x € A, limy | N Z 1A(T"x)1Az (T7"x) > 0.
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Proof With the previous notation, let Bp := {x : y(14, 1p,x) =0}, for D C X.
By invariance of u, we get:

e
0 =1i]{/n/ gy (x) ,,2:(:) 14(T"x) 1p(T™"x) du(x)

1 N—-1
zli]{/nN/Z_;)13D(T"x)1A(T2"x)1D(x)d,u(x). 4.2.1)

(1) For D = A, to show the positivity, for a.e. x € A, it suffices to show that
w(Ba N A) =0.By (4.2.1), this follows from Theorem 3.5 in [15].

(2) Let us consider the Kronecker factor of the dynamical system (X, u, 7). With
additive notation, it can be represented as a translation ¢ — ¢ 4 6 by an element
6 on a compact abelian group G endowed with its Haar measure A.

The map x — 2x = x + x = R(x) is a continuous endomorphisms of G, since
d(R(x), R(y)) <2d(x,y),if d is a G-invariant distance. By totally ergodicity, the
trivial character is the only character y which equals 1 on 2G (i.e.,x (g) = £1, Vg).
By duality, this implies that R is surjective. Hence it leaves the Haar measure A on
G invariant: indeed, the measure f — A2(f) = fG f(Rx)dM\(x) is invariant by
translation by 2y, Vy € G, hence by any translation because R is surjective, which
implies that A; is the Haar measure A.

Now, taking D = A€ in (4.2.1),let B := Byc = {x : lim, i Z;(l) lA(Tkx)
14¢(T % x) = 0}. We want to show that BN A is negligible. Suppose that ;«(B) > 0.
Putting B := {(P1g)(t) > 0}, we have A(B) > 0 (where P is the conditional
expectation on the Kronecker factor) and the limit (namely 0) is the same as for the
projection by P (cf. Furstenberg [15, Lemma 3.4]). This implies

1 N—1
0=lim _ / Xz(:)(mB)(t +k0) (P1a)(t + 2k0) (P14c)(t) dA (1)

= /(PlB)(H-u) (P1a)(t +2u) (P1ac)(t) du dAr(r)
= /(PlB)(t) (P1a)(t +u) (PLac)(t — u) dudi(r).

Let us show that 2B generates an open subgroup of G. We use the invariance of A
by R. The set 2B is measurable. Since B C R™'(2B) and A(R™'(2B)) = 1(2B)),
it follows A(2B) > A(B) > 0. Now 1(2 B * 1(_2 B is a continuous function not

identically 0, hence > 0 on a non empty open set contained in (2B) + (-2B) =
(2B) — (2B). This shows the claim.
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Let 7 be in B. We have: f(PlA)(t 4+ u) (P1ac)(t — u)du = 0, hence:
/(PlA)(u) (P1a)2t —u)du = /(PlA)(M)du = n(A).

Since [(P14)?w)du < [(Pla)w)du = u(A) and [(P14)*(2t — u)du <
f (P1a)(2t — u)du = u(A), we have equality in the Cauchy-Schwarz Inequality,
which implies: P14(#) = P14(2t — u), A-a.e. Therefore,

(PLa)@) =Y exx(—u)= Y cyx(w)

xEG x€G
=Y oxxQ@t—u)= " cyx2)x(—u).
x<6 xe6

Let x be such that ¢, # 0. It holds x(2¢) = ¢, /cy; hence x = 1 on the open set
(2B) — (2B). So the character  is equal to 1 on the open subgroup of G generated
by (2B) — (2B). But the quotient is finite and this implies that x is a root of unity.
By the assumption that 7 is totally ergodic, it follows that x = 1 on G. This implies
Pla = p(A), hence 0 = [(P1p)(u)du = u(B). O

Remark Theorem 4.6 is related to the following result of Cuny and Derriennic
([12]): Let f be a measurable function on an ergodic invertible dynamical system
(X, u, T). The set of points x for which the strict inequality f(T"x) < f(T"x)
holds for all n large enough is negligible.

Theorem 4.6 applied to the special map Ty implies:
Corollary 4.5 If (T, f) is positive r-aperiodic, it holds for a.e. x:

lim ;Icard([l, NIST. £.x) (ST, £.x) >0, (4.2.2)
11151111, Card([1, N1(\S(T, £.x) (ST, £.x)) > 0. (4.2.3)

Proof The set of ergodic sums (S(T1, f,n)(x),n > 1) coincides with the set of
return times of (x, 0) in the basis By for the inverse T, ' of the special map Ty.
Therefore the result follows from Theorem 4.6 above by the equivalences

(T}(x,0) € Byand T;"(x,0) € Bo) & n € S(T, f,x) [ ST, £.x),

(T} (x,0) € Byand T;"(x,0) € Bf) <> n € S(T, f,x) (| ST, £, x)".

If Tr is weakly mixing ((T, f) aperiodic), the limit is the constant ,u(Bo)z =
w(f)~%in (4.2.2)and u(f) (1 — u(f)~" > 0in (4.2.3). |
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4.3 Centered Case,d > 1

We consider now the case d > 1, f integrable and centered (centering is obviously
a necessary condition for recurrence). We start by recalling briefly some definitions
and facts about essential values and regularity of a cocycle (cf. [29]).

4.3.1 Values of a Regular Cocycle

Recurrent and Essential Values
Let (X, 8B, u, T) be adynamical system and (7, f) acocycle, where f has values
inG =2 orRY.

Essential Value Anelementv € G = GUoo is called an essential value for (T, f),
if for each open neighborhood U > v in G, for each B € $ of positive measure,
there exists n > 1 such that u(BN T "B N[ f, € U]) > 0. We denote the set of
essential values by E(T, f) and by E(T, f) := E(T, f)NG the set of finite essential
values.

For a recurrent cocycle (7, f) (i.e. such that the origin belongs to R(T, f)), the
set (T, f) is a subgroup of Z<. If f and g differs by a coboundary (f = g+Th—h,
for h measurable), then (T, f) = &E(T, g).

The recurrence set R(T, f) contains the set of finite essential values. The
converse is false as shown by the example 1 below.

In the discrete case, the set &(7, f) can be defined equivalently as E(T, f) =
N g R(Tg, f T.B ), where the intersection is taken over the family of measurable sets
of positive measure. In other words, k € Z¢ is a finite essential value of the cocycle
(T, f) if the ergodic sums for all induced cocycles (cf. 4.2.1.1) visit k infinitely
often.

A cocycle (T, f) is ergodic if the skew product from X x G to itself defined by
Ty : (x,z) > (Tx,z+ f(x)) is ergodic. Recall also the notion of “regular cocycle”.
One of the equivalent definitions is:

Definition 4.5 A cocycle (T, f) is regular if there is a closed subgroup H of G and
a measurable function # : X — G suchthat ¢ := f —u o T + u takes u-a.e. its
valuesin H and Ty, : (x, h) — (Tx, h + ¥ (x)) is ergodic for the product measure
u®AigonX x H.

Observe that for a regular cocycle the group H above is E(T, f). Clearly an ergodic
cocycle (T, f) is regular.

In general, a question is to find whether a given cocycle is regular (and not a
coboundary) or not. This depends both on 7" and f. In the hyperbolic case, one
can expect that (7, f) is regular for a “smooth” f, whereas, for T a rotation,
construction of simple functions generating non regular cocyles can be done. We



162 J.-P. Conze

will illustrate this point below and in the two following subsections. Right now, let
us mention two examples:

Example 4.1 A simple example of ergodic cocycle (7, f) is given by T an
irrational rotation and f = Lo i 1 L

Example 4.2 Let us recall the construction of a cocycle with increment +1,
oscillating between 400, hence with set of recurrence Z, but such that (7, f) =
{0} (cf. [10]).

For B,r € R, let T, be the rotation x — x + r mod 1 and ¢g, := 19,81 —
Lio,p1 © T;. Let a €]0, 1[ with unbounded partial quotients. Using results in [18],
one can show that there are 8 & aZ + Z, s ¢ Q, y of modulus 1 and ¥y measurable
of modulus 1 such that ?7i$10.61 =y T /4.

Hence ¢*"%sr is a multiplicative coboundary for every r. Equivalently, ©B.r
has values in s ~!Z, up to an additive coboundary, which implies that &(Ty, ¢g,r) C
7 N s~'Z = {0}. Moreover, one easily shows that there are values of r such that
@g,r is not an additive coboundary.

For such a value of r, the function ¢g , satisfies: E(Ty, ¢g,r) = {0, 00}, hence is
non regular.

Let us make some remarks about the question of recurrence for a given set £
in z4, If f is a coboundary, i.e., f = Tu — u, for a measurable u, S(T, f, x)
coincides with R(u) — u(x), where R(u) is the “range” of u. Nothing can be said a
priory for this range. For a regular cocycle (T, f) which is not a coboundary, if £
contains a non zero element in each non trivial subgroup of Z¢ (a non zero multiple
of every integer if d = 1), then it follows from Definition 4.5 that £ intersects the
set S(T, f, x).

Examples of non regular 1-dimensional cocycles with unbounded gaps were con-
structed by Lemariczyk [26]. (A real 1-dimensional cocycle (7', f) has unbounded
gaps, if there exists a sequence of open intervals I, such that |[,| — oo and
Skf(x) ¢ I, forallx € X,k € Z,n > 1.) We are going to construct in Sect. 4.3.3
examples in dimension d > 1 over rotations on T".

4.3.2 Hyperbolic Models

2-d Random Walks and 2-d Hyperbolic Cocycles

A random walk on Z2, reduced, centered and with a second order moment, yields
an example of recurrent regular cocycle. The same type of result should hold in
models like the planar Markov random walks studied in [23].

Analogously, regularity in the sense of Definition 4.5 for a 2-dimensional
centered cocycle over a dynamical system of hyperbolic type (like an Anosov map)
seems to hold. It would be interesting to have a proof in some generality.
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Below, using a CLT (which implies recurrence) and a Hopf argument we give
a sketch of proof for a simple model of cocycle (7, f) where T is a hyperbolic
automorphism of a 2-dimensional torus X, u is the Lebesgue measure on X and f
belongs to a space ¥ of functions from X to G = Z? defined as follows.

For f with range of values R(f) C G and for a € R(f), let dBy(a) be the
boundaries of the sets Br(a) := {x : f(x) = a}. The space ¥ consists of the
G-valued centered functions f which satisfy (for a constant C): )" . R(f) w({x -
d(x,0By(a)} <) < Cé,forall§ > 0.

We will need a notion of aperiodicity extending in dimension d > 1 the property
given in Definition 4.4 for d = 1:

Definition 4.6

(a) Let (T, f) be a cocycle, where f has values in 74 or RY. 1t is aperiodic if,
whenever f — Th + h € H, with H is a closed subgroup of RY and / a
measurable function, then H = RY,

(b) When f has values in Z¢, the cocycle (T, f) is r-aperiodic if, whenever f —
Th+h € H,with H a subgroup of 74, then H = 7¢.

Let fr(x) = 27;(1) f(TJx) denote simply the ergodic sum of f. For a function
@ on X x G, we denote the ergodic sums of ¢ for the action of the skew-product 7'y

by Sug(x, u) := 3125 (T x, u + fj(x)).

Lemma 4.5 Suppose that there is a rate of contraction A < 1 along stable leaves
for the action of T. If f is in F, for all x in a set X¢ of full measure in X, for y in
the stable leaf of x, there is N (x, y) such that f(T"x) = f(T"y), forn > N(x, y),

Proof Take § €]X, 1[. Since ZaeR(f) nw({x 1 d(x,0Bf(a)} < §) < C4 (here X is
the 2-dimensional torus), it holds by invariance of the measure:

N

w(YU U tr:d@x, 0Bs(a)) < 6" < lim € 0.

1-5
N n>N aeR(p)

Therefore, for a set X of full measure in X, for all x € X there is N (x) such that
forn > N(x) d(T"x,3Bg(a)) = 8", foralla € R(f).Let x be in Xo and y in the
stable leaf of x. If n is large enough, d(T"x, T"y) < A", so that, if 7"x belongs to
By(a) and T"y ¢ By(a), then T"x must be at a distance < A" < §" to By (a),
contrary to what precedes. This implies the result. O

Theorem 4.7 Under the aperiodicity condition 4.6 (b), the cocycle (T, f), where T
is a hyperbolic automorphism of a 2-dimensional torus X and f : X — 7? belongs
to F, is ergodic.

Proof

(1) For the functional space ¥ the Local Limit Theorem is a question, but the
simpler question of the Central Limit Theorem can be solved for instance by
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using the method of foliation and martingale as in [11]. The CLT insures the
recurrence of the process (S, f) for f with values in Z2.

Now we will use a method like Hopf’s argument for the proof of ergodicity
of the geodesic flow. Let y be in the stable leaf of x. By Lemma 4.5, we can
write f(y) — fj(x) = FT(x,y) + ej(x, y), with FT not depending on j and
ej such that there is N (x, y) a.e. finite for which ej (x,y)=0,if j > N(x, y).
It follows:

TH,v) = Ty, v+ i) = Ty, v+ £ + FFx,y) + ] (x, 1)
= (T7y, v+ fj(x) + F*(x, ), for j = N(x, y).

Taking v =u — F¥(x, y), we get for j > N(x, y):

d(T} (v, u = Frx, ), T} (x, )
=d(T/y,u+ f;(x), (T?x,u+ f;(x)) — 0.

Therefore (y, u — F*(x, y) belongs to the stable leaf of (x, u) for the action of
Ty on X x G and if ¢ is Lipschitzian with respect to the first coordinate, then
2o lo(TF(y,u = FF(x,y) — (T} (x, u))| < +oo.

The same observation holds for the unstable leaf with " !"and a function

F~(x,y).
Let & on G such that h(g) > 0 everywhere on G and deG h(g) =1.Ifgp
has compact support on X x G, there is ¢ > 0 such that |¢(x, g)| < ch(g),
VY(x, g) € X x G. The recurrence of the skew product implies: lim S,h(x, u) =
+00.

Denote by  the o-algebra of Tr-invariant sets and /i the probability 2 xdz
on X x G, where dz is the counting measure on G.

We consider an integrable function ¢(x,u) on X x Z? and denote by
L, the limit in the ergodic theorem (with S,h as denominator), Ly(x, u) =
tim > _ g (29,

n Syh(x,u) h

The formula shows that the limit is the same for the action by Tf_ Yon X xG.
To prove ergodicity, it suffices to check that L, (x, u) is a.e. constant, for every
¢ with compact support on X x G. We can assume that ¢ is Lipschitzian with
respect to x.

Let x, y be on the same stable leaf. We have, with A, = S,¢(x,u), B, =
Suh(x, ), Co = Su@(v.u + FH(x, 1)), Dy = Sah(y, u+ F*(x, y),

Su(x, u) _ Spp(y,u+ F(x,y))
Sph(x,u)  Sph(y,u+ Fr(x,y))
Ay C, Cc, D,—B, A, —Cy,

=1, - = - :
an D,,l_anH B, [+ B, |
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As | DnB By i |An
n n n

Ly(y,u+ FT(x, y)) and similarly Ly(y,u) = Ly(z,u + F~(y,z)),forx,y

(resp. y, z) on the same stable (resp. unstable) leaf.

Starting from a point xgp, one can reach any point z by traveling along stable
and unstable leaves (from xy to y, then from y to z). Thus we have: Ly (xo, u) =
Ly(z,u + FT(x0,y) + F~(y,2)). We fix xo and get Ly(xo,u + M(z)) =
Ly(z,u), with M(z) := —[F T (x0, y) + F~(y, 2)].

We have shown that the T,-invariant function L, has the form: L, (z, u) =
r(u + M(z)), for some function r. Let H, be the subgroup of periods of L,
(with respect to the second coordinate). The function f satisfies: r (v + f(z) +
M(Tz)) =r(u+ M(z)). Therefore f(z) + M(Tz) — M(z) € Hy.

If f is aperiodic (cf. Definition 4.6), then H, = G, so that L, depends only
on the first coordinate. As it is invariant, it is a constant by ergodicity of T. This
shows that the cocycle is ergodic if f is aperiodic.

C C
"ItendtoOand| " | is bounded, it follows Ly(x,u) =
D

O

4.3.3 A Cocycle Disjoint from a Sequence with Unbounded
Gaps (UGB)

For d > 1, let £ be a non empty subset of Z? with 0 ¢ £ and “unbounded gaps”
(UBG), i.e., such that for every R > O there is a ball of radius R disjoint from
L U —L (for example the set of squares ford = 1).

The construction of a cocycle such that its ergodic sums never take values in
L can be done following the method of Rohlin’s towers as in [26] for a general
aperiodic dynamical system.

Below we will construct an explicit example over a rotation. For r > 1, let
o= (o1,...,00,) € Riandlet T =T, : x - x + o mod 1 be the corresponding
rotation on the torus T". We suppose T, ergodic on T endowed with the Lebesgue
measure denoted by  (equivalently Y ;_, kia; € Z = k; = 0, Vi). We are going
to construct ¢ : TV — 74, integrable and centered, not a coboundary, for which
the cocycle generated over Ty, is recurrent and such that S(p, Ty, x), for a.e. x is
disjoint from £ c Z<.

The construction will yields examples of non regular cocycles. There are sets
L (dimension 1) with the property (UBG) which contain multiples of any integer.
So, this latter condition is sufficient to intersect the ergodic sums when (7, f) is a
regular cocycle and not a coboundary, but is not sufficient in general.

Notation |v| denotes the sup norm of an element v € R?; for x € RY, §(x) :=
inf,zq |x — z| is the distance from x to Z?. We denote by C a generic constant.

We use r-dimensional Diophantine approximations (cf. the presentation of [9]).
Recall that, for the norm |[.|, a positive integer g is called a best (simultaneous
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Diophantine) approximation denominator for «, if
S(qa) < 8(ka), Yk e {1,...,q — 1}. 4.3.1)

Let (gn)n>0 = (gn(0))n>0 denote the sequence of the best approximation denomi-
nators for « in increasing order. Then it holds for all n € N:

1

8(gne) < g, (4.3.2)
An information on the growth of g,,) is given by the inequality:
Gpa2dt1 = 2qnt+1 + qn, ¥ > 1. 4.3.3)

Let A be a subset of T" (for instance a ball of radius ;) for which there are C, ¢ > 0
such that

114 — 14 +0)|l1 <ClJt], fort € T” and |¢| small , (4.3.4)
s = TaC+ Dl = e, if ) <8(0) < 3. (4.3.5)

Let £ be UBG in Z?. We choose (a,) and (r,) resp. in 74 and N as follows:

* (a,) is such that a; = 0 and, for a constant A > 2¢~! (with ¢ the constant
in (4.3.5)),
n—1 n—1
janl > 2 Y lagl, dian, LU=L) > Y lay], forn =2;  (4.3.6)
k=1 k=1

* (rn) = (qx,) is a sub-sequence of the sequence of best approximations for o with
k, chosen such that

8(rap1)”! = max(n® |an 11| 8(ra@) " lania| T,V = 1. (43.7)
The construction of the sequence (r,) is possible according to (4.3.2).

Let 0,(x) := an 1 A(r,x mod 1) and let ¢ » (denoted also ¢) be defined by

o0

or(x) =Y (Oe(x) — Ok (x + ). (4.3.8)

k=1
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Denoting simply by T the rotation 7, and by T'v the composition v o T,, we write
Y= szl up = V}’l*l + Up + Rn, Wlth

n—1
up=0p—TOp, Va1 =) up, Ru= Y up.
p=1 p=n+1

By the first condition in (4.3.6) on (a,), we have

n—1 n—1
1S Vacilloo =11 Y 0p = T70p) oo < D lapl < 27" anl, (4.3.9)
p=1 p=1

The invariance of the Lebesgue measure under the transformations x — rix mod 1,
for rp € N* and (4.3.4) imply: |6, — 6,(. + @)|l1 < Cla,| 8(rya). Therefore
Inequality (4.3.7) implies: convergence of the series, ¢ € L' and, with C; =
C szl p*2,

IRl = 3 16, =0y 4+l <C 3 lapl8Gp@) < C1 8(ry0).
p>n+1 pzn+l
(4.3.10)

Moreover, the measure of the support D, of 6, — 6,(. + «) satisfies: u(D,) <
Cd(rpa). It follows that, for a.e. x there is N (x) such that ¢p(x) = Zjlv(x)(ek(x) —
Ok (x + a)).

Proposition 4.3

(a) Let L be a set in Z with unbounded gaps and 0 ¢ L. The function ¢ = ¢
defined by (4.3.8) is integrable centered, the cocycle (Ty, @) is recurrent and ¢
is not a coboundary. The set S(Ty, ¢, x) is disjoint from L for a.e. x.

(b) If L intersects any non trivial sub-lattice, then E(Ty, ¢) = {0, oo} and (Ty, ¢)
is a non regular cocycle.

Proof

(1) (Recurrence of (S,¢)) For d = 1, the centering of the integrable function ¢
suffices to ensure the recurrence. For d > 1, a sufficient condition for recurrence
is: ||Shell1 = o(nzli ). Let us show that it is satisfied.

By (4.3.9) and (4.3.10), for all n,t > 1, it holds ||S,¢ll1 < [Sa Vi1 +
1S, Rel1 < A1 |a;|+n é(ria). To check the above condition, we will find a non
decreasing sequence (t,) such that |a,,| < snnr;, né(r,,o) < land e, — 0.

Let us take ¢, such that |a;,| < (In n)~! né < las,+1|. By (4.3.7), we have
8(r,a) ™! > ag, 4119 = (Inn)~@+D nl*d > n, forn big enough. This shows
that (7, ¢) is a recurrent d-dimensional cocycle.
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Suppose that ¢ is a coboundary: ¢ = ¥ — ¥ o Ty, where ¥ is a measurable
function. With ¢ the positive constant in (4.3.5), for M large enough, the
measure of the set B = {x : |[{(x)] < %M} is>1— ic.

Let j be an integer. We have |S;¢| < M on the set B; := BN Taij which has
a measure > 1 — %c. From (4.3.9), it follows |Sj¢ — S; V1| < M + 2 ap|
on B;. On the other side, we have

I1Sjunlit = 11S;On — TO)

= |a,,|/ [1a(rpx mod 1) — 14 (rpx +rpjoemod 1)| dp
Tr

= |a,,|/ [1a(xmod 1) — 14(x +rpjo mod 1)| dp.
’]I‘r

There is j = j, < 8(rya)~! such that 8(jurye) € [, 31. According to (4.3.5),
we get: [|S;, (0, — T0,)|l1 > clanl, hence:

. 1
[ i [ 18,0m1di = ()l = ) clan

n

For the remainder R;, (4.3.10) implies: ||}, Rull1 < jn IRxll1 < C1jnd(rna) <
Cy.

Finally, we get a contradiction since the previous inequalities imply, with A ™! >
e foralln > 1,

M 42" ag] = (/ 1,0 = S5, Va_tldp0)
Bj,
1 1
= ([ S0+ SiyRaldi) = e lanl = 1S, Ralli = Selan] ~ C.
Bj,

We claimthatVn > 1, j > 1,Vx e X, Y| (Ok(x) — Ok (x + jcx)) gL

The proof is by induction on n. Forn = 1, 01(x) — 61(x + jo) = 0 ¢ L.
Assume that ZZ;% (Ok (x) — Ok (x + ja)) does not belong to L. Suppose now
that 22:1 (Qk (x)—6k(x+j a)) € L. Then one of the following cases occurs:

(@) 6,(x) —0,(x+ ja) = 0, hence ZZ;% (Ok(x) —O(x + ja)) 40 € £, which
is excluded by induction hypothesis;

() Y17 () — O (x + jor)) £ a, € L. hence d(ay, LU—L) < Y47} lal.
This is contrary to (4.3.6) in the construction of (a;). It shows the claim.
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@) We have Sjp(x) = Yp(Oix) — Gi(x + jo)), with M;(x) =
Sup, < N(T(fx). From 3), the sums ) ;_, (Gk(x) — Ok(x + ja)) never take
values in L. It follows, that S;¢(x), as well, never takes values in £, for a.e. x.

(5) To prove (b), observe that, if &(Ty, ¢) # {0}, then the set of finite essential
values is a non trivial lattice which intersects £ according to the assumption on
L in b). This is impossible, since the ergodic sums do not intersect L. As ¢ is
not a coboundary, it remains the case E(Ty, ¢) = {0, 0o} and the cocycle is non
regular.

O

4.4 Recurrent Sets for Random Walks

For d = 1 and non centered cocycles, Sect. 4.2 was based on results about recurrent
sets for a transformation. For d > 1, a method to show transience of a set in Z9
can be based on limit theorems in distribution like the local limit theorem if such a
result is available. This is the case for the cocycle generated by a random walk or
for some cocycles (X, T') when T has strong stochastic properties and f belongs to
a suitable functional space.

A Sufficient Condition Let L be a subset of Z<¢. If Don Doaeritlx T Suf(x) =
a} < oo, then for a.e. x, the number of visits of S, f(x) to L is finite. This is
the easy direction of Borel-Cantelli lemma and can be used when an estimate of
uix : S, f(x) = a} is known. For dynamical systems with hyperbolicity, there are
results for some integer valued functions [17], but we will restrict to the example of
random walks.

Random Walks

Let (Z,) be a random walk starting from 0: Z, = Xo + ... + X,_1, where
(Xn,n = 0) is a sequence of iid random variables with values in G = 74.d > 1,
and distribution p. If T is the shift acting on the product space @ = G% endowed
with the product measure p%, the random walk (Z,,) defines a cocycle (T, f) with
f : @ = Xo(w) and the problem of recurrence of a set £ € Z¢, studied in the
sixties, fits in the framework discussed here.

The question (cf [30]) was to find whether for the r.w. a given set £ C Z¢ is
recurrent (Z, (w) € L infinitely often for a.e. w) or transient (finite number of visits
to L for a.e. ). The problem of recurrence to 0 for the random walk is a special
case, but can be extended to an infinite set L.

For d = 1,2 recurrence (to 0) holds for a simple centered random walk and
the model is relevant of the previous section. We will consider the case when (Z,,)
is transient, d > 3, strictly aperiodic (in the sense of random walks) with a finite
second moment.
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(1) Examples of transient sets for random walks (d > 3)

Recall that if (Z,,) is a strictly aperiodic centered random walk with finite second
moment, then, for a constant C:

P(Z, = k) < Cn~2, Vk e Z¢. (4.4.11)

Let B(0, R) denote the ball of center 0 and radius R. By the law of iterated
logarithm, there is a constant ¢ > 0 such that, for a.e. w, the inequality || Z, ()| >

c(n LogLog n)% is satisfied only for finitely many values of n. Hence, for a.e. w,
there is N(w) such that || Z,(w)|| > ¢ (n LogLog n)é, forn > N(w). By (4.4.11)
this implies the sufficient condition of transience for a set £ C Z¢:

Y ™% Card(£LN B0, n? (Log Logn)?)) < +oc.

n>1

If £ satisfies: Card(L N B(0, R)) < CR“ for some constants C, «, the series
converges if —‘é + 5 < —1.The set Lis transientif @ < d — 2.

Example 4.3 Let us consider the subset

LYP = (kP (K5, - Tka1P) ki, kg € NY € 29, d > 3. (4.4.12)

For L7 we have o = ‘[f and transience holds if p > d‘i 5

(2) Examples of recurrent sets for random walks

Consider a simple (centered) random walk in Z4,d > 3.1t is transient and a
criterion of recurrence for subsets of Z¢ (called Wiener’s test for recurrence) has
been given in terms of capacity [24, 27, 30]:

For n > 1, let £, denote the set £ ({k € Z¢ : 2" < ||k|| < 2"*!} and let

Cap (L) denote its capacity. Then the set L is recurrent if and only if

sz(d72)n Cap (L) = +oo. (4.4.13)

n=1

Therefore a method to prove the recurrence of a set £ is to obtain a lower bound for
the capacity Cap (L,).

Let A C Z% be a finite set. Denote by G(.,.) the Green function of
the random walk and by E4 the escape probability function of A. It holds
ZyeAG(x,y)EA(y) = I,forx € A,and Cap (A) = ZyeA E4(y) (cf. [30]
or [27]).
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Moreover, for a simple random walk in 74, for a constant factor ¢, we have
G(x,y) <cllx — y|~¥=2, if x # y. It follows:

Card(A) = Y [Y G, NEaI<eY [ D Ilx=yI"“ P1Ea)
xeA yeA yeEA x€A,x#y
<clsup Y lx—yI7“P1 Y Ea(y) =cy(A) Cap (A)
yEAxeA,x;éy yeA
withy(A) :=sup Y [x —y[| 7“2
yeA x€A, x#y

Example 4.4 Let us consider again £ = L7,

To show recurrence using (4.4.13), a method is to estimate from below y (L),
where £, = L97 = £47 N {k: 2" < k|| < 2"+1).

We start with some remarks:

(1) In the estimation of y (A) for a finite set A, changing the norm on 74 modifies
the bounds only by a constant factor. We use the sup norm: ||x —y|| = max(|x; —
yvil,i =1,...,d) and, putting A, = 21/P we express y (L), as

/

1
sup ) .
1<rihni=d | oy max(K 1 =[] i =1 )2
Above and below, Z’ means that (0, ..., 0) is excluded in the denominator of

the sum.
(2) We will use the inequality:

[ +0)? —ul| > |t|?, Vu>0,t > —u,q > 1. 4.4.14)
(3) Observe also that if we perturb each r and k by a small perturbation: r — r+a,.,

k — k + B, the sum above is modified only up to a bounded factor. Therefore,
after replacing the coordinates [kip ] of the elements in £, by klP , we have to

bound
’ 1
vo(Ly) = sup . .
n 1<r o=l | < Tt [max(lkip — rl.p|, i=1,...,d)]42
(4.4.15)
Lemma 4.6 We have the bound
w(Le?y < c P ifp> <Cdn, ifp= d (4.4.16)
n — & y = ) —_ . e N
p— d d—2 d-—2

d-2
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Proof
(a) Using (4.4.14) and putting ¢ = p (d — 2), we get that the sum in (4.4.15), for
1 <ri <A i=1,...,d,isbounded by

/

1
Z . Ny P = d—-2
*ViJrlSTiS)»;z*Vi,i:l ’’’’’ d [max(l(rl +tl) rl |7 l 171d)]

/

Z 1

= 1 d-2
- v — -
—ri+1<ti<i,—ri,i=1,....d [max(|tl| )L ? ’d)]

/

2d
= 2 Lod
= g ;=
Oftif)\mizlwwd max(ltll ’ 14 LRI ] )

2d
= Z Z max(|t;4, i = j,...,d)’

j:1 ~~~~~ d IStiSAllsi=jw“5d

(b) A bound for the sum is given by bounding an integral:
Letq > dand L > 1. Put J(q,d) = [l...[" sup([f}wt?) dty ...dt.
Using the inequality J (g, d) < (1) 4 (2) with

sup(ta,....tq) 1
(1)—/ / / dnldn .. .dt,
sup(tzq, cth
dt ...dtg,
/ /1 sup(tq ! )

) td
Q) = / / / dtl]dtz .dtg
1 sup(f2,...,tq) t1
<(q_1)— / g—1 dty ...dtg,
1osup(t] L.l h
q

we get by iteration: J (g, d) < g ifg>d, <CqlnlL, ifg =d.
q—

It follows: yo(L97) < J(q,d) < C Py ifp> A < Cdn, ifp =
Td-2

d
d-2"

ope d,p : . d . .
Proposition 4.4 For d > 3, L%? is recurrent if 1 < p < dy> transient ifp >

d
d-2"
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Proof With po = ,%,, Lemma 4.6 implies Cap (£3") > € Card(L£3™). As

Card(£27°) is of order (27/P0)d = 21@=2) e have Y%, 272 Cap (£,) =
400, Condition (4.4.13) is satisfied and L% is recurrent for p=po= d”iz.

For p > po, transience of the set L£%P has been shown previously.

If p < po, let £ be the subset of £%? defined by

(k)P i =1,...,d), (ki, ..., ka) € N}, where £(k;)? < kP < (£(ki) 4+ 1)*,

i.e., L(kj) = [kf(’/p]. As £(kj)P = klpo(l + o(1)), we can apply Remark 3 before
Lemma 4.6 and find that £’ is recurrent as £9-P0. Therefore the set £, which
contains £, is recurrent for p < pg. O

Example 4.5 Let L = (€1 < £, < ...) be a strictly increasing sequence of integers
and let £ be the set in Z3 defined by {£ =(0,0,¢), £ € L}.

The problem of recurrence for £ can be interpreted as follows. The r.w. in Z3 is
transient, but its restriction to the two first coordinates is recurrent in Z2. Therefore,
recurrence for the set £ with respect to the r.w. is equivalent to recurrence for the
subset L of Z and the induced (non integrable) cocycle (inductionon 0 x 0 x Z C
Z3).

When £ is the set Q in Z? of the points (0, 0, £) with ¢ prime, McKean [28]
has shown that with probability 1 the standard 3-dimensional random walk visits Q
infinitely often. Erdés [13] has shown that the number of points in Q with £ < n
visited by the random walk is a.s. ~ cInInn.

Some Problems
Finally, let us mention some problems related to the topics presented in the paper.

(1) Construct (new) families of special flows which are K-flows.

(2) Show in some generality the regularity of recurrent 2-dimensional cocycles over
dynamical systems of hyperbolic type.

(3) Prove a local limit theorem for f in a space of functions with discrete values
like the space ¥ introduced in 4.3.2 when T has hyperbolic type.

(4) Extend the results about recurrent sets valid for random walks in dimension
d > 3 to more general classes of cocycles.

(5) For the billiards in the plane with Z?-periodic rectangular obstacles, the position
of the ball yields a cocycle with values in Z2. It has been shown that, generically,
the cocycle is recurrent [1] and non regular [14]. A question is to find the set of
recurrent obstacles.
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Chapter 5 )
Almost Sure Invariance Principle Shethie
for Random Distance Expanding Maps

with a Nonuniform Decay of Correlations

Davor Dragicevi¢ and Yeor Hafouta

Abstract We prove a quenched almost sure invariance principle for certain classes
of random distance expanding dynamical systems which do not necessarily exhibit
uniform decay of correlations.

5.1 Introduction

The aim of this note is to establish an almost sure invariance principle (ASIP) for
certain classes of random dynamical systems. More precisely, similarly to the setting
introduced in [16], the dynamics is formed by compositions

S = fon-14p0...90 fow 0 fo, ® € Q

of locally distance expanding maps f,, satisfying certain topological assumptions
which are driven by an invertible, measure preserving transformation o on some
probability space (€2, F, P). Then, under suitable assumptions and for Holder
continuous observables ¥, : X — R, o € Q we establish a quenched ASIP.

Namely, we prove that for P-a.e. o € €2, the random Birkhoff sums Z?;(l) Voiwo fo
can be approximated in the strong sense by a sum of Gaussian independent random

variables Z?;é Z; with the error being negligible compared to n 2. In comparison
with the previous results dealing with the ASIP for random or sequential dynamical
systems, the main novelty of our work is that we do not require that our dynamics
exhibits uniform (with respect to w) decay of correlations.
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In a more general setting and under suitable assumptions, Kifer proved in [13]
a central limit theorem (CLT) and a law of iterated logarithm (LIL). As Kifer
remarks, his arguments (see [13, Remark 4.1]) also yield an ASIP when there is
an underlying random family of o-algebras which are sufficiently fast well mixing
in an appropriate (random) sense (i.e. in the setup of [13, Theorem 2.1]). In the
context of random dynamics, Kifer’s results can be applied to random expanding
maps which admit a (random) symbolic representation. One of the main ingredients
in [13] is a certain inducing argument, an approach that we also follow in the present
paper. The main idea is that an ASIP for the original system will follow from an
ASIP for a suitably constructed induced system.

For some classical work devoted to ASIP, we refer to [3, 20]. In addition,
we stress that there are quite a few works whose aim is to establish ASIP for
deterministic dynamical systems. In this direction, we refer to the works of Field,
Melbourne and Torok [8], Melbourne and Nicol [17, 18], and more recently
to Korepanov [14, 15]. In [9], Gouézel developed a new spectral technique for
establishing ASIP, which was applied to certain classes of deterministic dynamical
systems with the property that the corresponding transfer operator exhibits a spectral
gap.

Gouézel’s method was also used in [1] to obtain the annealed ASIP for certain
classes of piecewise expanding random dynamical systems. In [6] the authors
proved for the first time (we recall that Kifer in [13] only briefly commented that his
methods also yield an ASIP) a quenched ASIP for piecewise expanding random
dynamical systems, by invoking a recent ASIP for (reverse) martingales due to
Cuny and Merlevede [5] (which was also applied in many other deterministic and
sequential setups; see for example [12]). While the type of maps f,, considered in
[6] is more general than the ones considered in the present paper, in contrast to [6]
in the present paper we do not assume a uniform decay of correlations. Moreover,
the methods used in this paper can be extended to vector-valued observables v,
(see Remark 5.1). On the other hand, it is unclear if the techniques in [6] can be
extended to the vector-valued case since the results in [5] deal exclusively with
scalar-valued observables. Finally, we mention our previous work [7], where we
have obtained a quenched ASIP for certain classes of hyperbolic random dynamical
systems. In addition, we have improved the main result from [6]. However, the
classes of dynamics we have considered again exhibit uniform decay of correlations.

Our techniques for establishing ASIP (besides the already mentioned inducing
arguments), rely on a certain adaptation of the method of Gouézel [9] which is of
independent interest. Indeed, we first need to modify Gouézel’s arguments and show
that they yield an ASIP for non-stationary sequences of random variables, which are
not necessarily bounded in some L? space.

We stress that our error term in ASIP is of order n/4+9U/P)  \where p comes
from certain L?-regularity conditions we impose for the induced system. This is
rather close to the n'/# rate for deterministic uniformly expanding systems [9], when
p — oo (although this rate was significantly improved by Korepanov [15]).
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5.2 Random Distance Expanding Maps

Let (2, F, IP) be a complete probability space. Furthermore, let o : 2 — 2 be an
invertible P-preserving transformation such that (2, F, P, o) is ergodic. Moreover,
let (X, p) be a compact metric space normalized in size so that diamX < 1 together
with the Borel o -algebra 8, and let & C Q2 x X be a measurable set (with respect to
the product o -algebra ¥ x B) such that the fibers

Eo={xeX: (w,x)e&, we

are compact. Hence (see [4, Chapter III]), it follows that the map w — &, is
measurable with respect to the Borel o -algebra induced by the Hausdorff topology
on the space K(X) of compact subspaces of X. Moreover, the map w — p(x, &) is
measurable for each x € X. Finally, the projection map 7q(w, x) = w is measurable
and it maps any ¥ x B-measurable set to an F-measurable set (see [4, Theorem
II1.23]).

Let fo: Eo — Egw, ® € 2 be a family of surjective maps such that the
map (w, x) — fu(x) is measurable with respect to the o-algebra # which is the
restriction of ¥ x B on &. Consider the skew product transformation F : & — &
given by

F(w,x) = (0w, fu(x)). (5.1)
Forw € Qandn € N, set
fh= fon-1p0...0 fo: 8w = Egne.

Let us now introduce several additional assumptions for the family f,,, ® € Q2. More
precisely, we require that:

* (topological exactness) there exist a constant £ > 0 and a random variable @
n, € N such that for P-a.e. w € Q and any x € &, we have that

g’)lw(Bw(xa &) = Esnow, 5.2)

where B, (x, r) denotes an open ball in &, centered at x with radius r;

* (pairing property) there exist random variables w > y, > l and w — D, € N
such that for P-a.e. w € € and for any x, x’ € &y, with p(x, x') < & (§ comes
from the previous assumption), we have that

D =t £ D =0 i) (5.3)

k ka,x = |fw_l({x})| <D,
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and

(i, ¥ < (Vo) p(x,x"), forl<i<k (5.4)

The above assumptions were considered in [10], and they hold true in the setup of
distance expanding maps considered in [16]. We note that all the results stated in
[16] hold true under these assumptions (see [16, Chapter 7]) and not only under the
assumptions from [16, Section 2]. For w € Q and n € N, set

n—1 n—1
Yo = l_[ Voio and Dy, , = l_[ Dgi,. (5.5)
i=0 i=0

By induction, it follows from the pairing property that for P-a.e. @ € €2 and for any
x,x € Egng, with p(x, x’) < &, we have that

' xh) = - and ()N AD = - (5.6)
where
k= koxn =107 {xH] < Doyn,
and
P(f2yis £13]) < Vi) 'px.x), forl <i <kand0<j<n. (57

Let g : & — C be a measurable function. For any w € 2, consider the function
8o =8w,): &, — C.Forany 0 < o < 1, set

Vot (80) = Inf{R > 0 [g4(x) — g (x| < Rp*(x, x") if p(x,x") < &},
and let
8wllas = l8wlloo + Vot (8w),
where || - |loo denotes the supremum norm and p%(x,x’) := (p(x,x/))a. We

emphasize that these norms are ¥-measurable (see [10, p. 199]).
Let H%S = (H%5, || - llag) denote the space of all & : &, — C such that

l7]le,e < 00. Moreover, let 7'{2()?1@ be the space of all real-valued functions in ‘7—(2‘)’5.
Take a random variable H: Q — [1, co) such that

/ In H, dP(w) < o0,
Q
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where H,, := H (w). Moreover, let ?{“’S(H ) be the set of all measurable functions
g : & — C satistying vy £ (80) < H,, for o € Q. Furthermore, for » € Q set

HAS(H) := {g: & — C : g measurable and vy £(g) < Hy)

and
Qu(H) = Hy-i\(Vo-in )% (5.8)
j=1

Since w +— In H,, is integrable, we have (see [16, Chapter 2]) that Q,(H) < o0
for P-a.e. w € Q. The following simple distortion property is a direct consequence
of (5.7).

Lemma 5.1 Take w € 2, n € Nand ¢ = (¢o, ..., ¢pn—1), where ¢; € W;QZ(H)
for0 <i <n—1.Set

n—1

Spg = Z(pj ofa{.

j=0

Furthermore, take x, x" € Egn, such that p(x,x") < & and let y;, y/, 1 <i < k be
asin (5.6). Then, for any 1 <i < k we have that

ISYo (i) — SLe(y)| < p*(x, x) Qone(H).

5.2.1 Transfer Operators

Let us take an observable ¥: & — R such that ¥ € W’S(H). We consider the
associated random Birkhoff sums

n—1

SOy = Z’ﬁa"w"fc{)f forn e Nand w € Q.
i=0

Furthermore, suppose that ¢: & — R also belongs to H*$(H). Forw € 2,z € C
and g: &, — C, we define

Lig(x) = Z e¢m(y)+zwm(y)g(y)‘ (5.1
yefo (x))
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It follows from [10, Theorem 5.4.1.] that £%: H%5 — H®S is a well-defined and
bounded linear operator for each w € Q and z € C. Moreover, the map z > L2 is
analytic for each w € Q.

Let us denote 132, simply by L,,. It follows from [16, Theorem 3.1.] that for [P-a.e.
w € 2, there exists a triplet (A, Ay, V) consisting of a positive number A, > 0, a
strictly positive function k,, € ‘7—(2‘)’S and a probability measure v, on &, so that

Lohow = ohow, (—Ea))*vaw = AoV, Volhy) =1,

and that maps w +— Ay, © — hy and @ +— v, are measurable. We can assume
without any loss of generality that A, = 1 for P-a.e. ® € Q (since otherwise we
can replace £, with £, /1,). For P-a.e. v € , let u, be a measure on &, given
by dug, = h,dv,. We recall (see [16, Lemma 3.9]) that these measures satisfy the
so-called equivariant property, i.e. we have that

folhe = fow, forP-ae w € Q. (5.2)

Moreover, these measures give rise to a measure p on 2 x & with the property that
forany A € ¥ x B,

where A, = {x € &y; (w,x) € A}. Then, p is invariant for the skew-product
transformation F given by (5.1). Moreover, u is ergodic.
Fort = (tp,...,t,—1) € R", set

Ly =L 0.0 Ll oLl
Moreover, let L] := LS)’", where 0 = (0, ..., 0) € R”. Note that
1L oo < (deg 1) - eI57%1> < D, el 59l < oo,

where 1 is the function taking constant value 1 and

deg £ := sup (/D) ({xDl.

Xeagnw

Lemma 5.2 For any P-a.e. w € Q we have that foranyn € NN T > 0, t =
(o, ..., ta1) € [T, T and g € H®?,

Vae (£5"8) < 1L Uloo (V& (8) (Veo,n) ™ + 2 Qom0 (H) (1 + T)lIglloo)-
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Consequently,

||£2}ng||a,§ =< ”—EZ)IHOO(Ua,S(g)(Vw,n)_a + (1 4+206m0,(H))(1 + T)”g”oo)
(5.3)

Proof The proof is similar to the proof of [10, Lemma 5.6.1.], but for reader’s
convenience all the details are given. The idea is to apply Lemma 5.1 for ¢ =

(@0, - - -, @n—1) given by
9j = i titjVsiy for0<j=<n-—1

Set Ay = Z'};(l) Vi O f,,{ . Firstly, by the definition of L, we have

1L glloe < llglloo L1l oo- (5.4)

In order to complete the proof of the lemma we need to approximate v, g (L£5" ).
Let x, x" € Eyn, be such that p(x, x") < & and let y1, ..., yr and yj, ..., y; be the
points in &,, satisfying (5.3) and (5.4). We can write

| LL"g(x) — L5 g (x|

® p (s o) Db (y! i AL (y,
(eSTPONTATOD g3,y — STPOPTIATOD g (y1)|

k
g=1
k ,
< 3 S0P A0 g (yy) — A0V g (31|
=1

+ Zk: |eiA,?(y(’,)g(y;)| eSTP0e) _  SIP09 | = [y + I,
q=1
In order to estimate /1, observe that forany 1 < g <k,
4700 g (yg) — €M OPg (3]
< Ig(yg)| - 700 — e A0V | (g (yg) — gy =2 Sy + .
By the mean value theorem and then by Lemma 5.1,
J1 = 2T |glloc Qornew (H) % (x, X)),

while by (5.7),

J2 < Ve e ()" (¥g, V) < Vae(8) Von) ™ p% (x, X).



184 D. Dragicevi¢ and Y. Hafouta

It follows that
I < LEA) (2T N1g oo Qoner(H) + Ve (8) (Vo) ™) p* (x, x).
Next, we estimate I. By the mean value theorem and Lemma 5.1,
15700 — SPP0D| < Quny(H) - max{eSi900) | eSiP0D) p% (x| x")

and therefore

b = 1glloo(Lo1(x) + LE1(x") Qone (H) p* (x, X)
= 2lglloo 1 L Hloo Qones (H) p* (x, X)),

yielding the first statement of the lemma and (5.3) follows from (5.4), together with
the first statement. m|

By Lemma 5.2, together with the observation that (y, ,)™* < 1, we conclude
that there exists a random variable C: 2 — [1, o0) such that for P-a.e. € €,
n € Nand forany t = (t0, t1, ..., t,—1) € [—1, 1]"*, we have that

1L, e < C 0" )| L |00 (5.5)

where ||£5;"||o,z denotes the operator norm of £L," when considered as a linear
operator from 7{2‘;5 to ﬂsz. Note that we can just take C(w) = 4(1 + Q). For
P-ae. o € Q, we define L, : HES — HEE by

Lo = Lo(8ho)/ how, g € HEE.
Moreover, forn € N, set
A S S
Clearly,
Il ¢ = L1 (ghe)/ hone, forg e H andn € N.

We need the following result which is a direct consequence of [16, Lemma 3.18.].

Lemma 5.3 There exist A > 0 and a random variable K : Q2 — (0, 00) such that
1258l < max(1,1/Quw)K (0" w)e ™ [1gllas.

forP-a.e.we Q,neNandg e H®E such that gdu, =0.
w Ew
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Applying Lemma 5.3 with the function g = 1/h, — 1, and taking into account that
L2 hey = hgng (since A, = 1), it follows from (5.5) that for P-ae. w € 2, n € N
and for any t = (to, t1, ..., t,—1) € [—1, 1]%,

1£5" o < (1 + U@)K (6" 0)C' (0" w) (5.6)

where C'(w) = C(@)[lholloc and U(w) = max(1, 1/Q0) - (1 + [[1/ hella,e)-

5.3 A Refined Version of Gouézel’s Theorem

In this section we present a more general version of Gouézel’s almost sure invariance
principle for non-stationary processes [9, Theorem 1.3.]. This result will than be
used in the next section to obtain the almost sure invariance principle for random
distance expanding maps.

Let (A1, Az, ...) be an R-valued process on some probability space (2, 7, P).
We first recall the condition that we denote (following [9]) by (H): there exist &g > 0
and C, ¢ > 0 such that for any n,m > 0, b1 < by < ... < byym+k, kK > 0 and
..., thym € Rwith |t;] < g9, we have that

b1 biyq+k—1
J. ) j+1 . ntm . Jj+1
‘E(el Zj:l tj (Z@:bi Ap)+i j=nt+11j (Zzzijc AZ))

biy -1 biyg+k—1
. j+1 . + j+1
—E(el Y tj(Zl:le Al)) ) E(el DA fj(Ze:bj+k AZ))‘

< C(l 4+ max |bj+l _ bj|)C(n+m)e,Ck.

Theorem 5.1 Suppose that (A1, Az, ...) is an R-valued centered process on the
probability space (2, F, P) that satisfies (H). Furthermore, assume that:

e there exist u > 0 and L € N such that for anyn,m € N, m > L we have that
n+m
Var( Z Aj) > um; (5.1)
j=n+1
e there exist constants p > 6 and a, C > 0 such that for any n € N we have
1
lAnllLr < ane. (5.2)

In addition, for any n,m € N the finite sequence (A;/(n + m)"/P), 1<i<nim
also satisfies condition (H) with the same constants gy, C and c.
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Then for any § > 0, there exists a coupling between (A ;) and a sequence (B;) of
independent centered normal random variables such that

n
Z(Aj_Bj) =o(n®*%) a.s., (5.3)
j=1
where
p 1
ap = + .
Pap-1n T p

Moreover, there exists a constant C > 0 such that for any n € N,

n n
|4 =124
Jj=1 j=1

n
) +8
2 Cn™ < H § :B/‘ L2 + Cnr™°, (5.4)
j=1

Finally, there exists a coupling between (A;) and a standard Brownian motion
(Wi)i=0 such that

where

n
on = H ZA/‘LZ'
j=1

Remark 5.1 The above result (together with its proof) is similar to [9, Theorem 1.3].
However, we stress that [9, Theorem 1.3] requires that the process (A1, Az, ...) is
bounded in L?, while the above Theorem 5.1 works under the assumption that (5.2)
holds. Consequently, the estimate for the error term in (5.3) is different from that
in [9, Theorem 1.3].

Note also that our condition (5.1) replaces condition (1.3) in [9, Theorem 1.3].
This, of course, makes it impossible to get a precise formula for the variance of
the approximating Gaussian random variables Z?:l Bj, as in [9]. However, in our
context we have the estimate (5.4). Observe that (5.4) together with (5.1) ensures
that

lim |5

L? _ 1
n—00 H Z?=1 Aj‘

L2
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Therefore, Theorem 5.1 yields a corresponding almost sure version of the CLT for
the sequence aln > i—1 Aj, where ay = || 3°7_; Ajll 2. As we have mentioned, a
precise formula for the variance of the approximating Gaussian random variables
in the context of [9, Theorem 1.3] was obtained in [9, Lemma 5.7]. Hence, in
our modification of the proof of [9, Theorem 1.3] we will not need an appropriate
version of [9, Lemma 5.7] (and instead we will prove (5.4) directly).

We also note that our modification of the arguments in [9] also yields a certain
convergence rate for p € (4, 6), but in order to keep our exposition as simple as
possible we have formulated the results only under the assumption that p > 6.

Finally, we remark that like in [9] we can consider processes taking values in R¢
and that Theorem 5.1 holds in this case also. We prefer to work with processes in R
to keep our exposition as simple as possible.

Proof of Theorem 5.1 We follow step by step the proof of [9, Theorem 1.3] by
making necessary adjustments. Firstly, applying [9, Proposition 4.1] with the finite
sequence (A;/(n +m)1/1’)n+15,-5n+m, we get that for each > 0 there exists C > 0
such that

n+m |
Z Aj <Cm:(+m)''?,  form,n > 0. (5.5)
Jj=n+l Lp=1

We note that although [9, Proposition 4.1] was formulated for an infinite sequence,
the proof for a finite sequence proceeds by using the same arguments. We consider
the so-called big and small blocks as introduced in [9, p.1659]. Fix 8 € (0, 1) and
e € (0,1 — B). Furthermore, let f = f(n) = |Bn]. Then, Gouézel decomposes
[2", 2"“) into a union of F = 2/ intervals (In,j)o<j<F of the same length, and F
gaps (Ju, j)o<j<F between them. In other words, we have

2", 2n+1) =hoUlhoUh ULt U...UJyr1UlyF_1.

Let us outline the construction of this decomposition. For 1 < j < F, we write
j in the form j = ,{;01 ax(/)2F with o € {0, 1}. We then take the smallest
r with the property that o, (j) # 0 and take 212" to be the length of J, j-In
addition, the length of J, ¢ is 2lenlnf Finally, the length of each interval I, ; is
2n—f _ (f + 2)2\_£nj—l.

In addition, we recall some notations from [9] which we will also use. We define
a partial order on {(n, j) : n € N, 0 < j < F(n)} by writing (n, j) < (n/, j/) if
the interval I, ; is to the left of I,y ;. Observe that a sequence ((nk, ji))x tends to
infinity if and only if ny — oco. Moreover, let

Xuji= Y A

ZEI,,YJ'



188 D. Dragicevi¢ and Y. Hafouta

and
I::UIW- and j::UJn,j.
n,j n,j

The rest of the proof will be divided (following again [9]) into six steps.
First Step We first prove the following version of [9, Proposition 5.1].

Proposition 5.1 There exists a coupling between (X, ;) and (Y, ;) such that,
almost surely, when (n, j) tends to infinity,

Z Xn’,j’ - Yn’,j' = 0(2(ﬂ+8)n/2)-
', j)=(n,j)

Here, (Y, ;) is a family of independent random variables such that Y, ; and X, j
are equally distributed. O

Before we outline the proof of Proposition 5.1, we will first introduce some
preparatory material. Let X, ; = X, j + Vy j, where the V, ;s are independent
copies of the random variable V constructed in [9, Proposition 3.8], which are
independent of everything else (enlarging our probability space if necessary). Write
X, = (Xn,j)O§j<F(n) and Xn = (Xn,j)0§j<F(n)- Then, we have the following
version of [9, Lemma 5.2].

Lemma 5.4 Let O, be a random variable distributed like X, but independent of
(X1,..., Xy—1). We have

T[((Xls "'7)2}’1717)2}1)7 (}211 "'7)2}’1717 QV!)) S C47n1 (5'6)

where 1 (-, -) is the Prokhorov metric (see [9, Definition 3.3]) and C > 0 is some
constant not depending on n. O

Proof of Lemma 5.4 The proof is carried out by repeating the proof of [9,
Lemma 5.2] with one slight modification. For reader’s convenience we provide
a complete proof.

The random process (Xi,...,X,) takes its values in RP, where D =
Yo Fm)<C 28" Moreover, each component in R of this process is one of the
Xy, j, hence it is a sum of at most 2" consecutive variables A,. On the other hand,
the interval Jj, o is a gap between (X ;) j <, and X, and its length & is CElenthn,
Let ¢ and y denote the respective characteristic functions of (X1, ..., Xp—1, Xn)
and (X1,..., Xn—1, Qn), where Q, is distributed like X, and is independent of
(X1,..., Xu—1). The assumption (H) ensures that for Fourier parameters t,, ; all
bounded by ¢, we have

_¢/pBnten

lp —yl < C(1+2MPek < Ce :
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if n is large enough. Let ¢ and 7 be the characteristic functions of, respectively,
(5(1, R )~(,,) and (f(l, R )~(n_1, Q,,): they are obtained by multiplying ¢ and y
by the characteristic function of V' is each variable. Since this function is supported
in {|¢| < &0}, we obtain, in particular, that

_ C2ﬂn+sn

Ip — 7| < Ce

n/

We then use [9, Lemma 3.5.] with N = Dand T’ = e : to obtain that

(X1, Xn)y (X1, Xne1, On))

oy /2 /2 bt
S Z Z P(le’]| Z ezsn )+eCD2£n e c2pn sn.

m=n j<F(m)

So far our arguments were identical to those in the proof of [9, Lemma 5.2]. In
the rest of the proof we will introduce the above mentioned modification of the
arguments from [9]. Using the Markov inequality, we obtain that

~ 28}1/2 728}1/2 ~
P(Xm,jl =€ ) =<e E|Xm,jl-

However, since ||A;||r < al'/P for every ! € N (and for some constant a > 0), we

have that ]Elf(m,jl < vy Summing the resulting upper bounds for IP’(lf(m,j| >

en/2 . .
e? / ), we obtain the desired result. m]

The following result follows from Lemma 5.4 exactly in the same way as [9,
Corollary 5.3] follows from [9, Lemma 5.2].

Corollary 5.1 Let R, = (Ry,;)j<F ) be distributed like X, and such that the Ry,
are independent of each other. Then there exist C > 0 and a coupling between
(X1, X2,...) and (R1, Ry, ...) such that for all (n, j),

P(|X,.; — Roj| > C4™") < C47".

We also need the following version of [9, Lemma 5.4].

Lemma 5.5 Foranyn € N, we have
”((Rn,j)0§j<F(n)v (?n,j)05j<F(n)) <Cc4™

where fn,j =Yn;j+ Vu,j O
Proof of Lemma 5.5 We follow the proof of [9, Lemma 5.4]. We define )7,2" j for0 <
i < f as follows: for 0 < k < 2/~ the random vector 9;k = (fr’; j)k2i5j<(k+1)2i

is distributed as (Xn,j)k2i5j<(k+1)2i, and y;k is independent of y;,k/ when k # k'.
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SetY! = (?,l;’j)05j<F, for 0 <i < f.By Gouézel [9, (5.7)], we have that

2/

n(@L V< Y ¥ k,(ynzk,yn2k+1)) (5.7)
k=0

for 1 < i < f. As in the proof of [9, Lemma 5.4], as a consequence of the

COl’ldlthIl (H), the difference between the characteristic functions of M & and

~ 1 n—+i
(‘yn,2k7 ;’2k+1) is at most Ce=>"""" for n large enough. Hence, by applying [9,

Lemma 3.5] with N = 2¢ and 7" = ¢2™/* we obtain that

n(y k,()/n 2k’J 2k+1))

k4+1)2i—1

( ) ~ sn/ 2811/2+1
< Y P(Xy =)+ Ce
=2

C/2£n+i

By estimating P(lf(,,, il = e2£"/2) as in the proof of Lemma 5.4, we conclude that

”(J ko (yn 2k,J 2k+1)) =< Ce_za ) (5.8)

for some 6 > 0. The conclusion of the lemma now follows from (5.7) and (5.8)
by summing over i and noting that the process (Y )0< j<F coincides with

(Rn,/)0§/<F and that (Yn’])0§/<p coincides with (Yn,/)0§/<F- |

Finally, relying on Corollary 5.1 and Lemma 5.5 , the proof of Proposition 5.1 is
completed exactly as in [9]. O

Second Step We now establish the version of [9, Lemma 5.6]. We first recall the
following result (see [22, Corollary 3] or [9, Proposition 5.5]).

Proposition 5.2 Let Yy, ..., Y,_1 be independent centered R4 -valued random
vectors. Let ¢ > 2 and set M = (Z?;(I)IEIYqu)l/q. Assume that there exists a
sequence 0 = mg < my < ... < ms = b suchthat with {y = Yy, + ...+ Yi -1

and By = Cov(gy), for any v € R? and 0 < k < s we have that

100M?2|v|> < Byv - v < 100C M?|v|?, (5.9)
where C > 1 is some constant. Then, there exists a coupling between (Yo, ..., Yp_1)
and a sequence of independent Gaussian random vectors (So, . . ., Sp—1) such that

Cov(S;) = Cov(Y;) for each j € N and

i

P Y, —S;|>Mz| <C'z71 —C'7), 5.10
05111'15313(1;) j=Sj|zMz| =Cz % +exp(=C2) (5.10)
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for all z > C'logs. Here, C’ is a positive constant which depends only of C, d
and q.

Lemma 5.6 Suppose that p > 2 + 2/B. Then for any n € N, there exists a
coupling between (Yy0, ..., Yo r(ny—1) and (S0, - . -, Su, F(n)—1), Where the S, j’s
are independent centered Gaussian random variables with Var (S, ;) = Var(Yy,j),
such that

i—1

YR max D ¥ = Sy | 2 2THRHEDpERN) o0 (5.10)
ol R E ) o S
]=

Proof of Lemma 5.6 Take g € (2, p). By (5.5), we have that
1Yo, jlle < C2U=Pm/2Enie, (5.12)

where we have used that the right end point of each I, ; does not exceed 2"*+1 and
that X, ; and Y, ; are equally distributed. It follows from (5.12) that

F—1 ;
M= (Z ||Yn,,-||‘zq)
j=0

satisfies

M < Con/pBn/a+(=pn/2.

Therefore, if ¢ is sufficiently close to p then M? is much smaller than 2", where we
have used that p > 2 4-2/8. On the other hand, by (5.1) we have

Var(Yy ;) = Var(X,,j) > u2=#n (5.13)

for some constant # > 0 which does not depend on n and j. Here we have taken
into account that the length of each I, ; is of magnitude 2(=An By (5.13) we have

F—1 F—1
Var< > Yn,j> =Y Var(Y,;) = 2", (5.14)
j=0 j=0

where ¢ > 0 is some constant.
Next, set v; = v, ; = Var(Yy, ;). Thenv; < ||Y,,,j||iq < M2, Let u; be the
largest index such that

Vo 4 ...+ vy, 1 > 100M2,
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Such index exists since Zf;ol v; is much larger than M 2 (see (5.14)). Notice now
that

Vo A+ A Vo1 S V0 A vy 2 4+ M? < 101M2,

This gives us the first block {Y, 0, ..., Yuu,—1} of consecutive Y, ;’s from the
proof of [9, Lemma 5.6] such that (5.9) holds. We can continue by forming k + 1
consecutive blocks, namely

{Yn,(), cee Yn,ul—l}, cee {Yn,uka cee Yn,uk+1—1}a
where k is the first step in the construction such that
Vypyy +...+HVF < 100M2.

Then, we add Yy u;,,, ..., Yy F to the last block {Yy,, ..., Yy u.,—1} we have
constructed. This means that we can always assume that the sum of the variances of
the random variables ¥; = ¥, ; along successive blocks is not less than 100M? and
that it doesn’t exceed 201 M. The statement of the lemma now follows by applying
Proposition 5.2 with z = 25"/2, taking into account that the number of blocks is
trivially bounded by F' = F(n).

Third Step 1t follows from the previous two steps of the proof that, when p >
2 + 2/p there exists a coupling between (A,),csr and a sequence (By),ecr of
independent centered normal random variables so that when (n, j) tends to infinity,
we have

Z (Ar — B))| = 0(2(ﬂ+s)n/2 + 2((1—ﬂ)/2+(/3+1)/17+5)n)’
C<iy j LeT

where i), ; denotes the smallest element of /,, ;. We note that we have also used the
so-called Berkes—Philipp lemma (see [3, Lemma A.1] or [9, Lemma 3.1]).

Fourth Step We now establish the version of [9, Lemma 5.8]. However, before we
do that we need the following result, which is a consequence of [19, Theorem 1]
(see also [21, Corollary B1]).

Lemma 5.7 Let Yy, ..., Yy be a finite sequence of random variables. Let v > 2 be
finite and assume that there exist constants C1, Cy > 0 such that ||Y;|» < C1 for
everyi € {1,...,d}. Moreover, assume that for any a, n € N satisfyinga +n <d,
we have that

2 1
ISanlly = Cyn2,
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where

a+n
San=Y_ Yi.

i=a+1

Then, there exists a constant K > 0 (depending only on C1, C2 and v) such that for
any a and n,

|ManllLo < Kn?, (5.15)
where
Mgy, = max{|Sz.1l, .-, [Sa.nl}

The following is the already announced version of [9, Lemma 5.8].

Lemma 5.8 We have that as (n, j) — oo,

in,j+m
max Z A¢| = 0QUI=P/ZHB/ P ey (5.16)
m<‘1nj‘ =i

S

Proof of Lemma 5.8 Let q € (2, p). Consider the finite sequence
Y = A/ Ginj + 1 DVP, k€ I,j.

Then, by (5.2) there exists a constant C; > 0 which does not depend on n and j
so that ||Yx|lLa < Ci, forany k € I, j. Moreover, by (5.5), there exists a constant
C> > 0 which does not depend on n and j so that for any relevant a and b,

a+b

> n

k=a+1

|
< Cyb2.
L4

Using the same notation as in statement of Lemma 5.7, we observe that it follows
from (5.15) that

1
MnpliLe = Kb2,

for some constant K > 0 (which depends only C1, C and g).
In particular, by setting v = (1 — 8)/2 + B/p + ¢/2, we have that

P(M; =20 < || M; 19,727 < K|I, ;172 72V,

n,jv‘ln,j n,j’lln.j
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Moreover, observe that

Z 111972274 < Z 2Bno(1—Pyng/2—vng.

n,j n

Notice that the above sum is finite if ¢ is sufficiently close to p. Applying the Borel-
Cantelli lemma yields that, as (n, j) — oo,

i,,,j+m

max | 3 Y| = o@UI-P/24B/rrom)

m<|ln.j| =i .
=lp,j

which implies that (5.16) holds (since the right end point of I, ; does not exceed
2n+1)_

Fifth Step By combining the last two steps, we derive that when k tends to infinity,

S (A — Bo)| = o B2 4 gU-PI/2HEHD ey
l<k,lel

assuming that p > 24+ 2/8.

Sixth Step Fix some n and consider the finite sequence ¥; = A;/n'/P where
i € {1,...,n}. It follows from our assumptions that (Y;); satisfies property (H)
(with constants that do not depend on n). Applying [9, Lemma 5.9] with the finite
sequence (Y;) (instead of A; there), we see that for any « > 0, there exists C = C,
(which does not depend on n) such that for any interval J C [1, n] we have

2

2
n2/PE Z Al =E Z Y;| <clJngtte. (5.17)
LeJNT LeJNg

We recall the following version of the Gal-Koksma law of large numbers, which is
a direct consequence of [19, Theorem 3] together with some routine estimates (as
those given in the proof of [19, Theorem 6]). We also note that the lemma can be
proved by an easy adaptation of the arguments in the proof of [20, Theorem Al].

Lemma 5.9 Let Y1, Ys, ... be a sequence of random variables such that with some
constantso > 1, C > 0, p > 1 and for any m, n € N we have that

m+n )
Z Y; §C((n~|—m)a—m”)~(n~|—m)ﬂ.
Jj=m+1 L2
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Then, for any § > 0 we have that P-a.s. as n — 00,

n
Z Y; = o(n®/2FV/P 1032+ ),
j=1

Relying on (5.17) and Lemma 5.9, one can now repeat the arguments appearing
after the statement of [9, Lemma 5.9] with the finite sequence (A;/k?)
(instead of (A;);), and conclude that

1
Z Ag/kpr = o(kPI?e),
U<k, teg

1<i<k

Finalizing the Proof Combining the estimates from the previous steps we get a
coupling of (A,) with independent centered normal random variables (By) such
that

3 A — B — o(kB/PHeTp 4 =P+ prey ¢

<k

Taking 8 = p/(2p — 2), we obtain (5.3). Observe that for this choice of 8 we have
p > 2+2/Bsince p > 6. When4 < p < 6 we can make a different choice of 8 and
obtain a slightly less attractive rate. To complete the proof of Theorem 5.1, it remains
to estimate the variance of the approximating Gaussian G, = Z?:l Bj. Firstly, by
applying [7, Proposition 9] with the finite sequence (Ai /20 D/p ) | <; <ont1 Teplacing
(A;);, we obtain that

S Xy Yy HL2 < C2Pn/24n/p,
', )<, ))

where (Y, ;) are given by Proposition 5.1. Since Y, j» and S,/ j» have the same
variances, we conclude that

< C2Pn/Fnlp, (5.18)

> wlo| X s

(n'.j)=@.j) . j=@.j)

L2

Take n € N, and let N, be such that 2V < n < 2N»+1 Fyrthermore, let j, be the
largest index such that the left end point of /, j, is smaller than n. In the case when
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n € Iy, j, we have

Zn:Ai— Yo Xey= > Y A+ YA

i=1 (', j")=<(Nn, jn) (', j)= (N, jn) 1€y jr i€JNy, jn
n
+ Z Aj
I=iNy, jn
n

= Z A + Z Aj

i<n,el I=iNy, jn
=11 + .

Recall next that by Gouézel [9, (5.1)] the cardinality of J N [1, 2N 1 does not
exceed C26NntD2BNa (g N, + 2), which for our specific choice of N, is at most
CnP13¢/2 (where C denotes a generic constant independent of n). Using (5.17) with
a sufficiently small « we derive that

1712 < Cal/PHPTe,
On the other hand, applying (5.5) we obtain that

1
1202 < Clly,. j,122M/P

< oM =B /24 Nalp < Cp(1=B)/2H1/p < CpB/2H1/p

where we have used that for our specific choice of 8 we have (1 — 8)/2 = 8/2 —
B/p < B/2. We conclude that there exists a constant C’ > 0 so that for any n > 1,

n
Jj=1 (', j")<(Nnu, jn) L2

The proof of (5.4) in the case when n € Iy, j, is completed now using (5.18). The
case whenn ¢ Iy, ;, is treated similarly. We first write

n
ZA,-— Z X jr = Z Ai+ Xn,,j, =N+ Dh.
i=1

', j)=<(Nn, jn) JeJ,j<n

Then the L2-norms of I; and I, are bounded exactly as in the case whenn € Iy,

nsJn?

and the proof of (5.4) is complete. Finally, the last conclusion in the statement of
the theorem follows directly from (5.3), (5.4) together with [11, Theorem 3.2A],
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[3, Lemma A.1] (seel also [9, Lemma 3.1]) and the so-called Strassen—Dudley
theorem [2, Theorem 6.9] (see also [9, Theorem 3.4]).

5.4 Main Result

The goal of this section is to establish the quenched almost sure invariance principle
for random distance expanding maps satisfying suitable conditions. This is done by
applying Theorem 5.1.

Without any loss of generality, we can suppose that our observable ¥ : & — R
is fiberwise centered, i.e. that f &, Ve due, = 0 for P-a.e. w € Q2. Indeed, otherwise

we can simply replace ¥ with ¥ given by
‘/}a)Z‘/fa)_/ 1/fa,d,ua,, we Q.
Eo

In what follows, E,(¢) will denote the expectation of a measurable ¢: &, —
R with respect to py. The proof of the following result can be obtained by
repeating the arguments from [6, Lemma 12.] and [6, Proposition 3.] (see also [13,
Theorem 2.3.])

Proposition 5.3 We have the following:

1. there exists % > 0 such that

n—oon

1 n—1 2
lim Ew< Vg O fj;) =32, forP-ae we ; (5.1)
k=0

2. X2 = 0 if and only if there exists ¢ € Li(S) such that
Y=¢—¢oF.

From now on we shall assume that ¥> > 0. For any integer L > 1 consider the set
1 n—1 . 2 1 )
AL={0eQ: Byl > VYopu,ofs) = T* V¥n=Lt.
n = 2

Then A, C Ap if L < L’ and the union of the Ay ’s has probability 1. Due to
measurability of Q,, C(w), K (»), and ® + h,,, for any Cyp > 0 and L € N the set

E = {w e Q: max{C(w), K(®), [hollco, 11/ hvllas, 1/Qw} < Co} N AL
(5.2)
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is measurable, and when Cy and L are sufficiently large we have that P(E) > 0. Fix
some large enough C¢ and L, and for o € €, let

mi(w) :=inf{n e N:o"w € E}.
For k > 1 we inductively define
my(w) ;= inf{n > my_1(w) : c"w € E}.
Due to ergodicity of PP, we have that my(w) is well-defined for P-a.e. w € 2 and

every k € N. Let us consider the associated induced system (E, g, Pg, t), where

Fre={ANE:A¢€F,Pe(A) = gggg, A€ Frand ((w) = 6™ @g forw € E.
We recall that [Pg is invariant for ¢ and in fact ergodic.

It follows from Birkhoff’s ergodic theorem that

k
lim "

(w)
n—oo n

=P(E) forP-ae. we Q, 5.3)

where
ky(w) := max{k € N : my(w) < n}.
Moreover, Kac’s lemma implies that

1

lim (@) = , forP-ae. we Q.
n—-oo n P(E)

By combining the last two equalities, we conclude that

m w
lim k(@) ( )=

n—00 n

1, forP-ae. w € Q.

ForPae. w € L, set
my(w)—1
v, = Z wajwofaj)‘
Jj=0
We assume that there exists p > 6, so that
the map w — A(w) := || ¥y |00 belongs to LP (2, F, P). 5.4)
Finally, let L,, := £ and F,, := @ forw e Q.

We are now in a position to state the main result of our paper (recall our
assumption that £2 > 0).
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Theorem 5.2 For P-a.e. w € Q2 and arbitrary § > 0, there exists a coupling
between (Y,i,, o fcf))i’ considered as a sequence of random variables on (Ey, e),
and a sequence (Zy)y of independent centered (i.e. of zero mean) Gaussian random
variables such that

=o(n™ ™), as., (5.5)

n n
Zwaiwofcf) - Zzi
i=1 i=1

where

P 1
ap, = + .
P7ap-1  p

Moreover, there exists C = C(w) > 0 so that for anyn > 1,

| :Zlvfafw ° fi

+ Cn®rtd,
L2

n n
ap+6 . . i
Lo < | Yz < | Y v S
i=1 i=1

(5.6)
Finally, there exists a coupling between (i, o f.); and a standard Brownian
motion (W;);>0 such that

1o
§
=om2% T4ty q.s.,

n

i
Z waiw © fw - Wa%y,l
i=1

where

L2

n
Ow,n = H Z 1:Z/Uicu © fcf)
i=1

Remark 5.2 Observe that a, — }‘ as p — o0o. We note that our proof also yields
convergence rate when 4 < p < 6, which has a slightly less attractive form in

terms of p. In addition, we emphasize that H Y Zi

2 depends on w but that it is
asymptotically deterministic. More precisely, it follows from (5.1) and (5.6) that

2
L2

i H Y1 Zi
im

n— 00 nzz =1

Proof of Theorem 5.2 Our strategy proceeds as follows. Firstly, we will apply
Theorem 5.1 to establish the invariance principle for the induced system. Secondly,
we extend the invariance principle to our original system. Throughout the proof,
C > 0 will denote a generic constant independent on @ and other parameters
involved in the estimates.
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For w € E (recall that E is given by (5.2)), set A, = Wp,0F) ,n € N. Obviously,
A, depends also on w but in order to make the notation as simple as possible, we do
not make this dependence explicit.

Observe that it follows from (5.4) and Birkhoff’s ergodic theorem that there
exists a random variable R: E — (0, o0) such that:

lAnllLr < R(w)n'/?  forP-ae.w € E andn € N. (5.7)

It follows easily from (5.2) and (5.1) that forany k e N,n > Landw € E,

n—1

1 1
1% Aisg ) > 22 5.8
. ar(Z ]+k)_2 (5.8)

j=0
where we have used that m, ((*(w)) > n. We conclude from (5.7) and (5.8) that the
processes (A, )neN satisfies (5.2) and (5.1), respectively.

Hence, in order to apply Theorem 5.1, we need to show that (A,),en satisfies
property (H) and, in addition, that for any n < m the finite sequence (A;/(n +
m)l/ P)y1<i<n+m also satisfies (H) (with uniform constants). In fact, we will prove
the following: the process (a,An)nen satisfies (H) for any sequence (a,),en C
(0, 1] (and with uniform constants). Let us begin by introducing some auxiliary
notations. For P a.e. w € Q and z € C, let

‘Zﬁ)g = ‘Zw(gew”’) = .ﬁw(gew”hw)/hgw, for g 7’(2‘;5.
Furthermore, for z € C andn € N, set
e o oI

It is easy to verify that

e = L0865V hy) [ hone = L35 (8he) [ hone.

Finally, forw € 2,n € Nandt = (to, 11, ..., t,—1) € R", let
‘, ~itp—1,mp (@) —my—1(w) ~ifma(@)—mi(w)  ~itg,mi(w)
L,)" =L, o...oL, oL, .
Observe that

ity—1,Mp —Mp— | — [
Li;ng — (-El 1.my(@)—my—1(w) o... oLig,mz(a)) my (w) ° Lgo’ml(w))(ghw)/hﬂlwy

(LR YO)
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forany g € 7—{2‘;5. It follows from (5.6), (5.2) and the above formula that forn € N
andr € [—1, 1]", we have that

I lae < C. (5.9)

Forw e Qand g € 7—(2‘;5, set

[yg = (/ gdﬂw)l

where 1 denotes the function which takes the constant value 1, regardless of the

space on which it is defined. Since Lg;k = sz(w) and my(w) > k, it follows from

Lemma 5.3 and (5.2) that

ILEF — M) glloe < Ce ™ gllae, (5.10)

forw € E, g € H:* and k € N.
Take now n,m,k € N, by < by < ... < bygmyk and tq, ..., thym € R with
[tj| < 1. We have that
]+1+k71

b
E, (ei27=1 ’.i(sz:Z Bo)+i Y50 (L =bj+k Bl))

—F ( t;bn+m+17bn+lL0,k $,bpt1 bll)
- Mtbn+m+l+km [bn+l+kw [er»la) bl @

where B,, = a, A,

s = (apt1, ..., apy—111, Apy12, . .., Aps—112, - .., Ap,lns o - o, Ap,y—11n),
+
and
= (ah,,+1+ktn+1a U] ah,,+2+k—ltn+l, ] abn+m+ktn+m, ] abn+m+1+k—ltn+m)-
Consequently,
bi1— +k—1
. j+1 j+l
E (el Z;l':l tj (Ze=b Bl)+l Z —n+l tj (Z@ =bj+k Bl))
Ko
_ t,bntm+1—but1 (7 0,k $.bpy1—b1
=By Lntm1tk, (L bpy1tk g, (L[bnﬂw "“w)L 1)

Ebytm+1—bnt O,

$,bny1—b1
+Eﬂtbn+m+l+km( [bn+l+kw L 1)

"n+le ™ b1y,

=11 + b.
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We claim next that

1| < Ce™™. 5.11)
Indeed, set
A= f;fijﬁ;;_h"*l, B := ?b’fﬂw— Mp,,,, and g —Lbl’”l b1y,
Then,
Al i=  sup 4] llc = LG P Y g = 10 = 1,
1 o=

and therefore
I < |A(B) o < [ Allco - 1Bgllco < [I1BElloo-
Applying (5.9) we have
lglles = C,
and thus it follows from (5.10) that
11| < || Bglloo < Ce™

We conclude that (5.11) holds.
On the other hand,

bjp1+k—1

n oy j+1 lB . nJ_rm ‘e /- B
FREII0 3N @)) -Ew(el > /(Ze_ijc l)).

We conclude that the process (B, )nen satisfies property (H) with constants that
do not depend on the sequence (a;). Thus, Theorem 5.1 yields the almost sure
invariance principle for the process (¥, 0 F))pen-

It remains to observe that the conclusion of Theorem 5.2 now follows from the
Berkes—Philipp lemma (see [3, Lemma A.1] or [9, Lemma 3.1]) and the following
lemma which together with (5.3), ensures that (5.6) holds true.

Lemma 5.10 There exists a random variable U : Q — (0, o0) such that

kn(w)—1
U,wof - Z W, 0 F)

< U(w)n''?,
o0

forP-a.e.w € Qandn € N. O
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Proof of the Lemma If n = my,(,)(w) then there is nothing to prove, and so we
assume that my, (o) (w) < n. Observe that

kn(w)—1

n—1 n—1
ZWJjwofaj)_ Z qjtjwoFa]): Z 1vbaja)ofaj)
j=0 j=0

J=Miy () (@)

My (w)+1(@)—1 My (w)+1(@)—1
= Z waja)ofaj)_ Z 1vbaja)ofaj)
J=Miy () (@) j=n

k
=V k@, © fw"(w) — Wony 0 f(Z

and thus

Kn(@)—1

im0 fI— Z vy oF/

= Wotn@iglloo + [Wonolloos

where we have used that 6/ ¢ E when my, () (@) < j < my,(w)+1(w). Hence,
the conclusion of the lemma follows directly from Birkhoff’s ergodic theorem, (5.3)
and (5.4). |
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Chapter 6 )
Limit Theorem for Reflected Random Chack for
Walks

Hoang-Long Ngo and Marc Peigné

Abstract Let &,,n € N be a sequence of i.i.d. random variables with values
in Z. The associated random walk on Z is S(n) = & + --- + &,4+1 and the
corresponding “reflected walk” on Ny is the Markov chain X = (X (n)),>0 given
by X(0) = x € Npand X(n + 1) = |X(n) + &41| for n > 0. It is well
know that the reflected walk (X (n)),>0 is null-recurrent when the &, are square
integrable and centered. In this paper, we prove that the process (X (n)),>0, properly
rescaled, converges in distribution towards the reflected Brownian motion on RT,
when E[é,%] < 4oo, E[(§, 3] < 400 and the &, are aperiodic and centered.

6.1 Introduction and Notations

Let (§,)s>1 be a sequence of Z-valued, independent and identically distributed
random variables, with common law p defined on a probability space (€2, F, P).
We denote S = (S(n)),>0 the classical random walks with steps & defined by
S(O0)=0and S(n) =&+ ...+ &, foranyn > 1.

Throughout this paper, we denote Ny the set of non-negative integers and we
consider the reflected random walk (X (n)),>0 on Ng defined by

X(n+1)=|X(n)+&41l, forn=0,

where X (0) is a Np-valued random variables. When X (0) = xP-a.s., with x € Ny,
the process (X (n)),>0 is also denoted by (X* (n)),>0. It evolves as the random walk
x + S(n) as long as it stays non negative. When x + S(n) enters the set of negative
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integers, the sign of its value is changed; the same construction thus applies starting
from |x + S(n)|, ... and so on.

The process (X* (n)),>0 is a Markov chain on Ny starting from x. Several papers
describing its stochastic behavior have been published; we refer to [17] where the
recurrence of the reflected random walk is studied under some conditions which are
nearly to be optimal. The reader may find also several references therein.

Firstly, (X" (n)),>0 has some similarities with the classical random walk on R;
for instance, a strong law of large numbers holds, namely

. X (n)
lim =0 P-as.
n—400 n

when E[|&,|] < +o00 and E[§, ] = O (see Lemma 6.3.1 in section 3). Nevertheless,
in contrast to what holds for the classical random walk on R, this does not yield
to the recurrence of (X*(n)),>0. In [17], it is proved that the process (X*(n)),>0
is null-recurrent when E[|£,]3/2] < 400 and E[£,] = 0 and that (X* (n))n>0 may
be transient when E[|£,|3/2] = +o0, even if E[|£,|>/> €] < +oo for any € > 0.
The reader can find in [12] a necessary and sufficient condition for the recurrence of
(X*(n))n>0 (see Theorem 4.6) but this condition cannot be reduced to the existence
of some moments.

Once the strong law of large number holds, it is natural to study the oscillations
of the process around its expectation. Let us state our result.

Theorem 6.1.1 Let (§,),>1 be a sequence of Z-valued i.i.d. random variables such
that

Al. E[g2] = 0? < +oo and E[(£,)%] < +o0;!
A2. E[§,]=0;
A3. The distribution of the &, is strongly aperiodic, i.e. the support of the

distribution of &, is not included in the coset of a proper subgroup of Z.

Let (X(t));>0 be the continuous time process constructed from the sequence
(X(n))n>0 by linear interpolation between the values at integer points. Then, as
n — 400, the sequence of stochastic processes (X, (t)),>1, defined by

X (1) := X(nt), n=1,0=<t=<1,

1
o./n
weakly converges in the space of continuous functions on [0, 1] to the absolute value
(|1B(@®)])¢=0 of the Brownian motion on R.

Let us insist on the fact that X* (n) coincides with x+S(n) as long as it stays non-
negative, but after it may differ drastically. The sequence of successive reflection
times of (X*(n)),>0 introduces some strong inhomogeneity on time and makes it

lén_ = max(0, —&,) denotes the negative part of &,.
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necessary to adopt a totally different approach to prove an invariance principle as
stated above.

A model which is quite similar to (X"(x)),>0 is the queuing process
(W*(n))n>0, also called the Lindley process, corresponding to the waiting times in
a single server queue. We think to (W*(n)),>0 as an absorbing random walk on No;
as W*(n), it evolves as the random walk x + S(n) as long as it stays non-negative
and, when it attempts to cross 0 and become negative, the new value is reset to 0
before continuing. We refer to [15] for precise descriptions and variations on this
process and follow the same strategy to obtain the invariance principle.

The excursions of (W* (n)),>0 and (X* (n)),>0 between two consecutively times
of absorption-reflection coincide with some parts of the trajectory of (S(n)),>0, up
to a translation; thus, their study is related to the fluctuations of (S(n)),>0. Hence,
as in [15], we introduce the sequence of strictly descending ladder epochs (£;);>0 of
the random walk (S(n)),>0 defined inductively by £9 = 0 and, forany [ > 1,

£i41 :=min{n > €; | S(n) < Sp)}.

When E[|&,]|] < 400 and E[£,,] = 0, the random variables £, £» — £1, €3 — {2, ...
are [P-a.s. finite and i.i.d. and the same property holds for the random variables
S(€1), S(2) — S(1), S(£3) — S(£2), .. .. In other words, the processes (¢;);>0 and
(S())1=0 are random walks on Ny and Z with respective distribution £(£1) and
L(S().

Let us briefly point out the main difference between (W* (n)),>0 and (X (n))n>0.
At an absorption time, the value of the process W* (n) is reset to O before continuing
as a classical random walk for a while: there is a total loss of memory of the past
after each absorption. Rather, at a reflection time, the process X*(n) equals the
absolute value of x 4+ S(n). This value is the “new” starting point of the process,
for a while, and has a great influence on the next reflection time; in other words,
the process always captures some memory of the past at any time of reflection.
This phenomenon has to be taken into account and requires a precise study of
the sub-process (X (rx))k=0 of (X (n)),>0 corresponding to these successive times
(rr)k>0 of reflection; our strategy consists in studying the spectrum of the transition
probabilities matrix R of (X (r))r>0, acting on some Banach space 8 = B, of
functions from Np to C with growth less than x“ at infinity, for some o > 0 to
be fixed. In particular, in order to apply recent results on renewal sequences [9],
we need precise estimates on the tail of distribution of the reflection times; this is
the main reason of the restrictive assumption K[ (&, 3] < +o0 instead of moment
of order 2, as we could expect. More precisely, throughout the paper, we need the
following properties to be satisfied:

(i) The operator R acts on B,.
This holds when E[|S (El)ll‘“"] < 400 and yields to the condition
IE[(E,Z_)Z"""] < 400 (see Proposition 6.1).

(i1)) The function Ny — Ny, x — x, belongs to B,; this imposes the condition
o > 1 (see Proposition 6.2).
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Eventually, we fix @« = 1 from Sect. 6.1.1 on.

Notations Throughout the text, we use the following notations. Let u = (uy)n>0
and v = (Vp)n>0 be two sequences of positive reals; we write

* u % v (or simply u < v) when u,, < cv, for some constant ¢ > 0 and n large
enough;

* uy ~ vy, whenlim,_, oo ZZ =1

* Uy X v, when limy,_s 400 (U, — v,) = 0.

6.2 Fluctuations of Random Walks and Auxiliary Estimates

6.2.1 On the Fluctuation of Random Walks

Let & be the Green function of the random walk (S(¢;));>¢, called sometimes the
“descending renewal function” of S, defined by

+00
Y PIS() = —x] if x=0,
[=0

0 otherwise.

h(x) =

The function £ is harmonic for the random walk (S()),>0 killed when it reaches
the negative half line (—o0; 0]; namely, for any x > 0,

E[h(x +§1); x + 81 > 0] = h(x).

This holds for any oscillating random walk, possible without finite second moment.

Similarly, we denote / the ascending renewal function of the random walk
(S(n))n=o (i.e. the descending renewal function of (—S(n)),>0).

Both functions 4 and & are increasing, h(0) = h©0) = 1 and h(x) =
O (x), h(x) = O(x) as x — +o0 (see [1], p. 648 and [2]).

We have also to take into account the fact that the random walk S does not always
start from the origin; hence, for any x > 0, we set ‘L’S(x) =infln>1:x4+5Sn) <
0}; it holds

[2°(x) > n] = [Ly = —x],
where L, = min(S(1),...,S(®)). The following result is a combination of

Theorem 2 and Proposition 11 in [7] and Theorem A in [13] (see also Theorems
11.6 and I1.7 in [14]).



6 Limit Theorem for Reflected Random Walks 209

Lemma 6.2.1 Forany x > 0,

1.
h
P[ts(x) >n]~cy x) as n — +o00o,
Jn
E[—Se,] :
where c1 = S Moreover; there exists a constant C1 > 0 such that for any
o221

x>0andn > 1,

h(x)
N

Plz5(x) > n] < C)

2. Foranyx,y >0,

1 h(x)h(y)

N — ~
Pt = xS =y~ T,

as n — 400,

and there exists a constant Cy > 0 such that, forany x,y > 0andn > 1,

PIr5(x) > n,x + S(n) = y] < czh(x)jl(y)

n3/2
These assertions yield a precise estimate of the probability P[5 (x) = n] itself, and
not only the tail of the distribution of 75. As a direct consequence, the sequence
of descending ladder epochs (¢;);>1 of the random walk (S(n)),>¢ satisfies some
renewal theorem [7]. Let us state these two consequences which enlighten the next
section where similar statements concerning the successive epochs of reflections of
the reflected random are proved.

Corollary 6.2.1 Forany x > 0,

PleS@) = nl~ L h(o) |
[T (x) - n] 2 (x) I’l3/2 as n — +OO,

and there exists a constant C3 > 0 such that, forany x > 0 andn > 1,

h
PleS(x) = n] < Cs ng)/cz)

Furthermore,

+00 1 1
Z]P)[Elzn]fv as n— +oo.
pard c1m \/n
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6.2.2 Conditional Limit Theorems

The following statement corresponds to Lemma 2.3 in [1]; the symbol “=" means
“weak convergence”.

Lemma 6.2.2 Assume IE(S;‘iZ) < oo and E(§;) = 0. Then, for any x > 0,

< <(SG([\n/tr3))o<t<1| min{S(1), ..., S(n)} > —x> = L(LT) asn— +oo,

where L is the Brownian meander:
In particular, for any bounded and Lipschitz continuous function ¢ : R — R,

+00
lim E |:¢ <x + S(n)) ‘ts(x) > ni| = / ¢(z)ze’12/2dz.
0

n—+00 U\/n

This Lemma is useful in the sequel to control the fluctuations of the excursions
of the process (X (n)),>0 between two successive times of reflection. In order
to control also the higher dimensional distributions of these excursions, we need
some invariance principle for random walk bridges conditioned to stay positive.
The following result corresponds in our setting to Corollary 2.5 in [5].

Lemma 6.2.3 For any bounded, Lipschitz continuous function ¢ : R — R, any
x,y>0,andanyt > s > 0,

lim E |:¢ (x + S([ns])) ‘ts(x) > [nt], x + S([nt]) = }’:|

n— 400 oa/n

400
:[) 2¢(u«/S)€XP< 2vt V) \/2 $3 (t— A)3

6.3 On the Sub-process of Reflections

We present briefly some results from [8] and [17]. The reflected times r,,, n > 0, of
the random walk (X (n)),>0 are defined by: for any x > 0,

ro=ro(x)=0 and ryp =inf{m >r, | X)) +&,41+ - +&» <O}

Notice that these random variables are No U {+oc}-valued stopping times with
respect to the filtration (G,,)n>0.

When E[|&,|] < 400 and E[§,] = 0, the random walk (S(n)),>0 is oscillating,
hence the r,,, n > 0, are all finite P-a.s. and S(n)/n converges P-a.s. towards 0. The
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strong law of large numbers is still true for the reflected random walk (X*(n))n>0
on Ny but does not derive directly.

Lemma 6.3.1 If E[|§,|] < +o0 and E[&,] = 0, then, for any x € Ny,

. Xt(n)
lim

n—+o00 n

=0 P-as.

Proof For any n > 1, there exists a (random) integer k, > 1 such thatry,, <n <
Tk, +1. It holds

X*(n) = X" (r,) + (& 41 + -+ &) = X*(rx,,) + S(n) — S(rw,),
so that

< Xt n) _ X*(ri,) n St) _ S(re,) _ max{[&il, ..., &} n Sty _ 8w,

n n n n - n n n

0

The first term on the right hand side converges P-a.s. towards O since E[|£,|] <

+00.
By the strong law of large number, the second term tends P-a.s. to 0.
. S(rk,) S(re,)
At last, the same property holds for the last term, since ‘ = ‘ X
n Tk,
Thn _ ‘ S(re,) ‘ o
n | o,

It follows from Lemma 2.3 in [16] that the sub-process of reflections (X (rx))>0 is
a Markov chain on Ny with transition probability R given by: for all x, y € Np,

0 ify=0
R(x,y) = ny (6.3.1)
Yoo U (—wyp*(w —x —y) ify=>1,
+00
where p* is the distribution of S(¢1) and U* = Z(u*)”’ denotes its potential.
n=0
Set C :=sup{y > 1 : u(—y) > 0}. The support of u* equals Z~ = ZN(—00, 0)
when C = 400, otherwise it is {—C, ..., —1}; furthermore, U*(—w) > 0 for any
w > 0. Then,R(x, y) > Oifandonlyify € S;, where S, = Ng\{0} when C = +o0
and S, = {1, ..., C} otherwise. Consequently, the set S, is the unique irreducible

and ergodic class of the Markov chain (X (7))o and this chain is aperiodic on S,.
The measure v on Ny defined by

+00 1 1
v = 3 (i) 4 ((x = 3. =0) + (= = ) )i (=),
y=1
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is, up to a multiplicative constant, the unique stationary measure for (X (r¢))r>0; its
support equals S, (see Theorem 3.6 [16]).

Notice that this measure v is finite when E[£,] = 0 and E[|S(¢1)]'/?] < 400
(and in particular when E[£,] = 0 and E[|én|3/2] < 400 [17]). In this case, we
normalize v it in such a way it is a probability measure.

6.3.1 On the Spectrum of the Transition Probabilities Matrix R

Let us recall some spectral properties of the matrix R = (R(x, y))x yen,- By
Property 2.3 in [8], the matrix R is quasi-compact on the space L*°(Np) of
bounded functions on Ny, with 1 as the unique (and simple) dominant eigenvalue;
in particular, the rest of the spectrum of R is included in a disc with radius < 1.

It is of interest in the next section to let R act on a bigger space than L (Np).
For instance, following [8], we may fix K > 1 and consider the Banach space

Lx(No) :={¢ :No = C: [l :=sup|p(x)|/K* < +o00}

x>0

endowed with the norm || - ||x. By Property 2.3 in [8], if Z K*u(x) < +oo then
x>0
R acts as a compact operator on L (Np).
In this article, we only assume that i has a finite moment of order 2 and its
negative part has moment of order 3. Consequently, we consider a smaller Banach
space B, adapted to these hypotheses and defined by: for « > 0 fixed,

Ba = ’¢ . NO — C: |¢|0{ := sup |¢()C)| <

x>0 1+ x«

+oo].

Endowed with the norm | - |, the space B, is a Banach space on C.

Proposition 6.1 Fix o > 0and assume E[é,%]—i—E[(En’)”“] < 4ooandE[§,] =0.
Then, the operator R acts on By and R(By) C L®°(Ny). Furthermore,

1. Ris compact on B, with spectral radius 1;

2. 1 is the unique eigenvalue of R with modulus 1, it is simple with corresponding
eigenspace C1;

3. the rest of the spectrum of R on By is included in a disc with radius < 1.

Let IT be the projection from B, onto the eigenspace C1 corresponding to this
spectral decomposition, i.e. such that [TR = RIT = II. In other words, there exists a
bounded operator Q on B,, with spectral radius < 1 such that R may be decomposed
as follows:

R=T+Q MNQ=QMN=0 with I()=v()L
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In the next section, we require that 8, does contain the descending and ascending
renewal functions £ and / of the random walk S. This imposes in particular that «
is greater or equal to 1.

Proof
(1) By (6.3.1), for any ¢ € B, and x > 0,

Rp(x) =D Y U*(—w)p*(w —x — y)p ()

y>1w=0
—+0o0
with U*(—w) = S PIS() = —w] = IP’[ Unzo [SUn) = —w]] < 1.
n=0

Therefore,

RO <D D p*w —x — p)d ()

y>1w=0

< (=00, =) (y)]

y=1

< | D+ ¥y (=00, =) | 1la-

y=1

By Theorem 1 in [6], the condition E[(§, 2Tl < 400 implies
E [IS(£1)|1+°‘] < +00; hence,

(1"t ((—00, —y) = ENISE)N1+E[IS(E0)]*] < +oo.
y=1

Consequently,
[Rola < IRl = (ENSEDN+E[I1SE)I'] )@l (6.32)

which proves that R acts on B, when E[(§, )2t%] < +00. More precisely, the
operator R is bounded from B, into L°°(Np) and since the canonical injection
L*°(Np) — B, is compact, the operator R is compact on By,.

Let us now check that R has spectral radius p, = 1 on B,. On the one hand,
the equality R1 = 1, with 1 € B,, yields p, > 1. On the other hands, R is a
power bounded operator on B, which readily implies p, < 1; indeed, for any
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n>1,
400 I
[R'$(x)] < D R'(x, DIRP @) < [Rploo DR (x,2) = |Rploc
z=0 z=0

which yields, combining with (6.3.2),

[R'Dla < [R'Dloc < (ENSEON+E[15€0I™] )ige-
Consequently, denoting ||R" || the norm of R" on By, it holds

sup R o = (ELISEI+E[IS(en]'*] ) < +oo.

n>0

This achieves the proof of assertion 1.
(2) Let us control the peripherical spectrum of R in B,. Let 6§ € R and ¢ € B,

such that Rp = ¢'%¢.

By (6.3.2), the function R¢ is bounded, so is ¢. Furthermore, the operator
R being positive, it holds |¢| < R|¢|. Consequently, the function |p|ec — |@|
is super-harmonic and non-negative, hence constant since the Markov chain
(X (rn))n>0 is irreducible and recurrent on this set.

Without loss of generality, we may assume |¢| = 1 on S,, i.e. ¢ (x) = '¢™)
for any x € S,, with ¢ : S, — R. Equality R¢ = ¢'?¢ may be rewritten as: for
any x € S;,

Z ei((p(y)fcp(x))R(x, y) = &0
VeSS,

Recall that R(x, y) > O for any x, y € S;; thus, by convexity, el PO —e()) —
¢'? for any x, y € S;. Thus, ¢!? = 1 and the function ¢ is harmonic on S,, hence
constant. Eventually, the function ¢ is constant on Ny: this is the consequence
of equality R (x) = el 9¢(x) = ¢(x), valid for any x € Ny, combined with the
facts that R(x, y) > O if and only if y € S, and that ¢ is constant on S;.

(3) Assertion 3 is a consequence of assertion 2 and the compactness of R on B,. O

6.3.2 A Renewal Limit Theorem for the Times of Reflections

In this section, we prove the analogous of Corollary 6.2.1 for the process (7),>0-
Let us introduce some notations and conventions.
From now on, we focus on the process (X (n)),>0 and denote

(NOEN (PN EN (X (1))n=0, (Pr)reng, 6)
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the canonical space associated to this process, that is the space of trajectories of
the Markov chain (X (n)),>0. In particular, P,, x € Np, denotes the conditional
probability with respect to the event [X(0) = x] and E, the corresponding
conditional expectation. The operator 6 is the classical shift transformation defined
by: for any (xp)i=0 € (NO)®N,

O((x1)k=0) = ((Xk+1)k>0-
Forn > land x,y > 0, set
Rn(-xa )’) = Px[rl = na X(n) = y]ﬂ

and

+0oo

Tax,y) =Y Pulre =n, X(n) = yl.
k=1

We are interested in the behavior as n — 400 of these quantities. It has been already
studied in [15] (see Lemma 7) for the Lindley process. For the reflected random
walk, the argument is more complicated since the position at time r; may vary, so
that the excursions of the random walk (X (n)),>0 between two successive reflection
times are not independent. This explain why we focus here on the reflection process
and it is of interest to express quantities R, (x, y) and X, (x, y) in terms of operators
and product of operators related to this sub-process.

We consider the linear operators R, : L*°(Ng) — L*°(Np), n > 0, defined by:
for any ¢ € L>*°(Np) and x > 0,

Rup(x) =D Ra(x, 1)) = Exlr1 = n; p(X (m))].

y=1
In particular, R,(x,y) = Ry1yj(x). The quantity X,(x, y) is also expressed in

terms of the Ry as follows:

+o0
Tu(x,y) =Y Pelrg =n, X(n) = y]
k=1

+00
=Y > Bri=jira—ri =gtk — kel = jk X(1) = ]
k=1 jittj=n

—+0o0
=3 Y R Rl (6.3.3)

k=1 j1+-+jk=n

Firstly, let us check that the R, act on B,.
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Lemma 6.3.2 There exists a positive constant C4 such that, for any n > 1 and
o >0,

E [(%-n—)2+ot]

|Rn|a < C4 n3/2

Proof For any ¢ € B, and x > 0,

[Rap ()] < D $(IPlr = n, X (n) = y]

y=1

=Y Y eWMPIS @) =n—1Lx+Sn— 1) =z.24& = -]
y=1z>0

=Y > IpMIPIT ) = n—1,x + S0 — 1) = 2]P[&, = —y — 2.
y>12z>0

Hence, by Lemma 6.2.1,

[Rup ()] _
e S 3/ZZZI¢( )|1+ ) hPlE =y - 2.

y>1z>0
Since h(x) = O(x) and h(z) = O(2),

R, a
e < s S S Pt = —y 2]

y>1z>0

< S el = —y 2]

y=1z>0

t
= lnq;l/; DD 4y — yPLE = —1]

t>1 y=1

|¢Ia 2+
= n3/2 Z ‘P& = —11,

t>1

which achieves the proof. O

Hence, Z |Ry|le < 4o00; in particular, the sequence (Zflvzl R,)n>1 converges in

n>1

By. Note that its limit equals R in B,; indeed,

D Rup(x) =Y Eilp(X (), 11 = nl = E[¢(X (r1)] = Rep (x).

n>1 n>1
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We can write R = anl R, and, foranyz € D :={z € C : |z]| < 1}, we set

R(z) =) "Ry

n>1

Proposition 6.2 Fix o > 0 and assume E[é,%]—i—E[(Sn’ )2+°‘] < +ooandE[§,] = 0.
The sequence (Ry)n>0 is an aperiodic renewal sequence of operators, i.e. it satisfies
the following properties (see [9]):

(R1). The operator R = R(1) has a simple eigenvalue at 1 and the rest of its
spectrum is contained in a disk of radius < 1.
(R2). Foranyn > 1, setr, ;= vR,1 = szl v(x)P,(r1 = n); hence,

IR, IT = r,I1,

where T1 denotes the eigenprojection of R for the eigenvalue 1.
(R3). There exists a constant C > 0 such that |R,|q < n3c/2.
(R4). Zj>n r; ~ jn with ¢ = c1v(h), where c1 is the positive constant given by
Lemma 6.2.1 and h is the descending renewal function of the random walk S.
(RS). The spectral radius of R(z) is strictly less than 1 for z € D\ {1}.

Proof (R1) is a direct consequence of Proposition 6.1.
(R2) Recall that I1¢p = v(¢)1 for any ¢ € B, . Hence, setting g, (x) := P, (r; = n),
it holds R, I1¢ = v(¢)gn, thus

MR, ¢ = v(@)T1(gn) = Y v(O)Py(r1 = m)v()1,

x>1

which is the expected result.
(R3) follows from Lemma 6.3.2.
(R4) Thanks to Lemma 6.2.1,

er:ZZu(xm[m=j]=2u(x>Px[r1zn]~c1”\(/’3 as n — 4o0.

j=zn x=1 j=n x=1

Notice that 0 < v(h) < o0 since E[|S(£1)|] < 4+0o0; indeed, 1 < h(x) = O(x)
and

x+y w
Doxv) 2 Y Y prwipt—nx =Y Yy ptwipt(-y) Y x
x>1 x>1y>1 w=x y=lw=>l1 x=(w—-y)v0
<D0 ywpt(—wpt(=y)
y=1lw>l

2
= (Z yu*(—y)) = (B[S < +oo.

y=1
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(R5) The argument is the same as the one used to control the peripherical spectrum
of R in Proposition 6.1. For any z € D\ {1}, the operators R(z) are compact on By,
with spectral radius p;, < 1.

If p. = 1, there exist & € R and ¢ € B, such that R(z)¢ = e'¢p. Hence
|| = |R(z)p| < R|¢| and since R(B,) C L*°(Np), the function |¢| is bounded on
Ny, thus constant on S;.

Without loss of generality, we may assume |¢| = 1 on S,, i.e. ¢ (x) = !¢ for
any x € S,, with ¢ : S, — R. Equality R(z)¢ = €'’ may be rewritten as: for any
xX €S,

DY IR =0 X () = y) = €7
n>1yesS,

By convexity, since Y, 3,5, Px(r1 = n; X(n) = y) = 1, we obtain: for all
n>landx,ye€s,,

Z1elP0) — (it piv ()

Setting x = y, it yields z" = €%, so that z* does not depend on 7. Finally z = 1.

Thus, p, < 1 whenz € D\ {1}. O
By (RS), for |z| < 1, the operator T'(z) := (I — R(z))~! is well defined in By;
a direct formal computation yields 7' (z) = :i(o) T,7", where the T,, are bounded

operators on 8B, defined by:

+00
To=I and T,=) Y Rj-R; for n>1.
k=1 ji+-+ji=n

The so-called renewal equation T(z) := (I — R (z))’1 is of fundamental
importance to understand the asymptotics of the 7;,, several functional analytic tools
can be brought into play. Such sequences of operators (R,),>0 and (7,),>0 have
been the object of many studies, related to renewal theory in a non-commutative
setting. We refer to the paper [9], which fits perfectly here. The following statement
is analogous of the last assertion of Corollary 6.2.1 for the reflected random walk.
Corollary 6.3.1 The sequence (/nT,)n>1 converges in By towards the operator

1
weyv(h) IL.

Proof Apply Theorem 1.4 in [9] with 8 = 1/2 and £(n) = ¢ = cjv(h). O

As a direct consequence, by equality (6.3.3), it holds

. vy
nEI—Poo V(. y) = mev(h)’
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In the next section, we have to consider and study some modifications of the
3, (x, y) which we introduce now. Foranyx > 0and0 < s <t < 1,

Sax,t,5) i=n Yy Puln = [nsl, g1 > [nel],
>0

and
+00
Sux,t,8) =02y Poln = [nsl, rn = [nt]].
=0

These quantities appear in a natural way to control the finite distribution of the
process (X, (£))n>0.

6.4 Proof of Theorem 6.1.1

From now on, we fix @ = 1; this implies that &1 € B, which is necessary from now
on (see Lemmas 6.4.2 and 6.4.4).

6.4.1 One-Dimensional Distribution
We fix a bounded and Lispchitz continuous function ¢ : R — R.
Lemma 6.4.1 Foranyt € [0, 1] and x > 0, it holds

+00
lim Ey[¢ (Xn(1)] = @ (u)
n—+00 0

2e—u/21
ot du = E[¢(|B/]],

where B is a standard Brownian motion.

X ([nt
Proof We fix t € (0,1) and decompose the expectation E |:¢ ( ([; ])>:| as
o/n

follows:

X([nt])
= o (oo )]
[nt]—1
X([nt])
~ E, ¢< );
kX:(:) g [ o./n

1=k X0 + Bt 2 0 XK) + Gt -+ a2 0]
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[nt]—1
= 3 Y m nE[s (”‘g"“at/'n““'"”);

k=0 y>0

)’+$k+120,---,y+§k+1+-~-+§[m]20]

[ntl—1

S —k
= D> D Tk y)E [qs(” (] ))|rs(y>>[m]—k}
k=0 y>0 o/n

x P [ts(y) > [nt] — k] .

Foreachk =2,...,[nt] —4and any s € [k k+1)

S —
fa(s) =1 Y Siasi(x, YE [cﬁ(y + 5l [’”D) 50) > [m]—[ns]}

= o/n
B[ > Int] = [ns1].

and f,(s) =0 on [0, 5) and [[’”}][1, t). Hence,

wlo (o0 )= [ oo ()

Now, let us set : forn > 1 and any y € Np,
an(y) = Zius) (2, )P [150) > Int] = ns]].

S —
bn(y>=E[¢ (y * (ZZ]” [”S])>|rs(y)>[m]—[ns]]

For any n > 1, it holds

> an(y) =n) Puln = [nsl i > [nt]] = Sp(x, t.5),

y>0 >0

and |b, ()| < |¢|oo- The two following lemmas allow us to control the behavior as
t

n — 400 of the integral / Jfn(s)ds; the proof of Lemma 6.4.2 is postponed to the
0

last section, the one of Lemma 6.4.3 is straightforward.

Lemma 6.4.2 Foreach0 <s <t < 1,

nllm Z (x,t,8) = n\/s(lt—s)'
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Moreover, there exists a positive constant Cs such that

14+x

En(xatas)fcsx/s(t_s)

forall 0 <s <t <1 and x € N.

Lemma 6.4.3 Let (a, (y))yeNﬁ’ (b, (y))yeN{; be arrays of real numbers for some
integer k > 1. Suppose that

e ap(y) =0y
o lim D () =4
yeN{‘)
« lim b,(y) = B forally e Nf;
n——+00
s sup  |ba(¥)| < +o00. O

k
nZl,yeNo

Then

) ggloozoan(y)bn(y) = AB.
y=

Lemmas 6.2.2, 6.4.2 and 6.4.3 combined altogether yield: for any s € (0, t),

1 o0 2
: _ _ —z7/2
nlll}rloo Jals) = /st —s) Jo Vi —s)ze dz.
Moreover,
+x A
WL < Cs 0719l =i f6).

Since f € L'[0, t], the Lebesgue dominated convergence theorem yields

| X({nt])
e[ ()]

t
lim / fuls)ds
n—+00 0

! ft ! <f+oo¢(z«/t — S)zezz/zdz> ds
T Jo /st —s) \Jo

400 2efu2/2t
= / ¢(u) du,
0

2t
where the last equation follows from the identity ([11], p. 17)
+oo ,8 \/TL’
—at =" )dt = "W (g, 8> 0 6.4.1
/0 \/texp< o t) Te (. B > 0) (6.4.1)
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and some change of variable computation. We achieve the proof of Lemma 6.4.1 by
noting that, since ¢ is Lipschitz continuous (with Lipschitz coefficient [¢]),

X X
E, [¢ ( (Int]) )} _E,[¢ (Xnu))]‘ < [$IE, H (Inrl)y _ Xn(t)H
oa/n oa/n
1
= o/ [AIE [1&fn1+11] — 0 asn — +o0.
(6.4.2)
O

6.4.2 Two-Dimensional Distributions

The convergence of the finite-dimensional distributions of (X, (¢)),>1 is more
delicate. We detail the argument for two-dimensional ones, the general case may
be treated in a similar way.

Letusfix 0 < s < t,n > 1 and denote

Kk =k(n,s) =min{k > [ns]: X(k—1) + & < 0}.

We decompose E, |:¢1 (X([\Y;S])> . <X([;t]))i| 2
o\/n o./n

(nt] -

X ([ns]) X ([nt])
> Eild ( ) $2 ( ) 1{K=k}:|
k=lnol4+1 L oa/n oa/n

-~

Ay(n)

i X ([ns]) X([nt])
quad + E, _¢1 ( 0:;; )(l)z ( ajn )1{K>[nt]}:|.

- -

Az(n)

The term A1(n) deals with the trajectories of the process X which reflect between
[ns] 4 1 and [n¢] while A, (n) concerns the others trajectories.
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6.4.2.1 Estimate of A;(n)

As in the previous section, we decompose A1 (n) as

[ns]—1  [nt] +oo

M=, 2 2002,

=0 kp=[ns] =0 y>1z>1 w>0

X ([ns]) X ([nt])
[‘“( o )"’ ( o )
n=ki,Xk)=z2+&,+1>0,....2+& +1+ +&,—2>0,

Z+§k1+1+---+€k21=w,w+§k2=—y}

[ns]—1 [nt] Ho0 24 k41 4+ &g
-3 Y Sy ymfa ()

=0 kp=[ns] =0 y>1z>1 w>0

% & <y+§k2+16—«i-/’-1--+-’§|m|> ;

=k, Xtk)=z,2+&,41>0,..., 2+ 41+ - +&,2>0,

Z+§k1+1+---+€k21=w,w+§k2=—y}

[ns]—1  [nt] +oo

Y Y 3YYY

k1=0 kp=[ns] =0 y>1z>1 w>0

E, [¢2 (y ”"2“6;,'1' ' +‘§'""> }me — k. X (k) = 2]

E, [¢1 <z ~|—§k1+16~l:/;1- . +S[ns]> ’

24+&+1 >0, ., 2+ &1+ -+ &2 >0,

Z+&+ ot =w, w &, =—y]

Using the fact that the &; are i. i. d., we obtain

Al(n)=lni122kl(x 2) % ZZE[ (X([mi/;kz)>}

k=0 z>1 =[ns] y>1 w>0
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x E[dn (Z + Sg’ji_ kl)) 1T5) > ko — k1 — 1,

Z+S(k2—k1—l)=wi|
Plt5(z) > ko —k1 — 1,2+ Stk —ky — 1) = w]P[§] = —w — yl.

Forany 2 < ki < [ns] — 6 and [ns] < k> < [nf] and any s; € [¥', ©F1) and
kz k2+1

s2 €[ ), we write
X _
) =Y B 3 35 [ (X0 D)
z>1 y>1w>0 o/n
E[¢1 <z + S([ns] — [nS1])) 12502 > [nsa] — [ns1] — 1.
o./n

z+ S([ns2] — [ns1] = 1) = w:|

x P[t5(2) > [ns2] = [nsi] = 1,2 + S(Insa] = [ns1] = 1) = w]
x P& = —w —y],

and f,(s1, s2) = O for the others values of k1, such that 0 < k; < [ns]. Hence,

s t 1
A1(n) =/ dSl/ dsy fn(51,S2)-|-0< )
0 K \/n

It follows from Lemma 6.2.3 that, for each z, w > 0,

lim E[¢1 (Z +5(lns] - [nsl])> IrS(z) > [ns2] — [ns1] — 1,

n——+00 oa/n
2+ S(nsal — [nsy] — 1) = w]

+00 u? u?
:/0 2¢1(”«/~92_s1)exp s—S1 $2—§

) , , du
2,00 \/27, (s—sD3 (s2—9)

(s2—=s1)3 (s2—s51)3

2 +00 'U2 ‘U2 ;
_\/271/0 ¢1(v) exp T =sD(s2-9) s (srsy 2V

278 (s2—51)3
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By Lemma 6.4.1,
) X([nt] = [ns2D \ ] _ +0o0 9p—u?/2(t=52)
nLHJIrloo Ey |:¢2 ( a\/n >:| - /() 2 (u) \/27'[(1‘ — ) du.

We set

an(x, y, 2, w) = n>Lppg (%, 2)
x P[75(2) > [ns2] = [ns1] = 1,2+ S(lnsa] = Insi] = 1) = w|

x Pl§1 = —w —yl,

X([nt] — [’152])) :|
o./n

» E[¢1 (z + S([Zi]/n_ [ns1])

2+ 8(ns2] = [ns1] - 1) = w}

bu(y,z, w) =E, [¢2 (

) 1T5(2) > [ns2] — [nsi]— 1,

Note that Zzzl Zyzl szo an(x,y,z,w) = s, (x, 52, s1). The behavior as n —

+o00 of the quantity ¥, (x, s, s1) is given by the following Lemma, whose proof is
postponed to the last section.

Lemma 6.4.4 Forall) <s <t < 1, it holds

- 1
lim X,(x,t,5) = .
n—-too " 2 /s (t — 5)3

Moreover, there exists a positive constant Cg such that, forall 0 < s <t < 1 and
n>0,
14x

$.(x,t,5) < Ce )
! JT\/S(I —5)3

By Lemmas 6.4.4 and 6.4.3, we get lim,,_, { o f (51, 52) = f(s1, 52) where

1 +o00 v2 U2
J(s1,52) =7-[2\/s1 /0 $1(v) exp <_2(sz—s)(s—sl)> \/(s _ s1)3(s2 _ s)3 dv

§2—S51

+o00 e—u2/2(t—s2)
X ¢2(u) du.
/o NIE
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Moreover, following the argument in the proof of Lemma 6.4.1, we can show that
the sequence (| f»|)n>1 is uniformly bounded by a function which is integrable with
respect to Lebesgue measure on [0, s] x [s, ]. Hence, using again the Lebesgue
dominated convergence theorem, we get

s t
lim A;(n) =[ dSl/ dss f(s1, 52)
n—-4o00 .

L frdsy 2
_7T2/0 «/Slf s2/ prvyexp 2027 v)(v W) Vs — 51302 — 5)3

$2—S1

+oo e—u2/2(t—s2)

X ¢2(u) dudv,
/o Jt—s2

which yields, using again (6.4.1),

2 +o00 +o0 2/2 (u+v)?
li A _ —v%/25 ;= 20-) dudv.
Jim 1(n) n\/s(t—s)/o /0 P1(v)P2(u)e e uav
(6.4.3)

6.4.2.2 Estimate of Ay(n)

We decompose Az (n) as

X ([ns]) X ([nt])
Ey [(ﬁ ()
25;”203 (o )02 )
V1=k,X(k)=y»y+€k+1ZO,-.-,y+§k+1+--~+€|m120}
+00
. Y&+ g Y+ &1+ + &
—ygk%]&[m( s ) ( o ):

y+§k+120,.-.,y+€k+1+--'+€[m|20}

x ) Palr =k, X (k) = yl.

>0



6 Limit Theorem for Reflected Random Walks 227

Since (&) is a i.i.d. sequence,

~+00
_ v+ S(ns] — k) y+ S(nt] — k).

rS(y) > [nt] — k:|
For u € (0, 5], we denote

y + S([ns] — [nu]))¢2(y + S([nr] — [nu]));

+o00
gn<u>=n22[nu|<x,y)E[¢1( iy o n

y=0
5(y) > [n1] — [nu]:|.

Now, let us compute the pointwise limit on (0, s] of the sequence (g, ),>1. We write
gn(u) as

“+00
gn(w) =1 T (x, y)
y:O

v+ S(ns] = [aul)y oy + S({nr] = ()
el (I (T )

x |5 > ) - [nu]}

x PPy, [tS(y) > [nt] — [nu]] .
We set
an (%, ¥) = N (v, )Py [5(0) > [n1] = [u] ]

and

y+ S(lns] — [nu])>¢2<y + S([nt] — [nu])> '

s N
oo iys 5(y) > [n1] [nu]].

ba () = E[ 1 (
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+00
Note that Z a,(y) = f[,,u](x, t,u). Since ¢1, ¢ are bounded and continuous on
y=0
R, it follows from Theorem 3.2 in [4] and Theorems 2.23 and 3.4 in [10] that
y + S([ns] — [nu]) /[nt] — [nu])
o+/[nt] — [nu] Jn
X b <y + S([nt] — [nu]) /[nt] — [nu]
o«/[nt] — [nu] Jn

oo e - 3/2 _ t—u
= / / d)l (y\/t - M)¢2(Z\/t — M)(t u) ye 2(s— u)y
0 0 S —Uu

o2 @ s T )
X dydz

/271(1 = ;‘:g)
ieu e

+00
B N2t —s) /0 ¢1(y o (2 )( )3/2y !0 2(s—u)

@) @)
x (e 2-9 —e 20-9 |dy'd7.

i )=, tim B[

) |25 > ne] = ]

Again, we can use the argument in the proof of Lemma 6.4.1 to show that the
sequence (g,) converges point wise to g with

1 1
w322(t = 5) Ju(s — u)?

+00 +00 B ),/2 7( —y )2 (ﬂ/)z
x / 1Y )p2(2)y e 260 (e 279 — 7 29 )dy’dz’,
0 0

gu) =

and (g,) is also dominated by a function which is integrable on [0, s] with respect
to the Lebesgue measure. Lebesgue’s dominated convergence theorem yields

| o ;
Jim A = tim Y gtk = [ g

k<[ns]
+o00 +oo
= d
7322 (1 —s)/ / Y /
(v u) y _(22/(7;\)/))2 _(«2(+;v ))2
xqm(y)asz(z)/uS_u)wzm_s) e T

1 oo / +oo / li A
73/25./2 (t—s)/o dy /0 dz’ 1 (Y)$2(2)
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(' —y')2 (/+y')2 1 y/ 2
X (e 2t=s) — @ 20-s) ) / e 2(-v) dy
0 Vol —v)3

+o0 +o0 2 S

) 1 / dy’/ dz'¢) (y/)‘ﬁ?(z/)efy/z/zs <e_(§(t}S; - e‘(zJ;S ) )
m/s(t —5) Jo 0

(6.4.4)

6.4.2.3 Conclusion

Combining (6.4.3) and (6.4.4), we may write

] X ([ns]) X ([nt])
nETooE I:d)l < oa/n >¢2< o/n >i|
3 1 /+ood //+ood /¢ ( /)¢ ( /) _y’2/2s
BENIEDY SR TR
( _@—y? _<:’+>">2>
x (e 205 e 2059
= E[¢1(IBsDg2(1B: )]

Using a similar estimate as the one in (6.4.2), we get
Jim B [fr (Xn(5)) ¢2 (Xa(0))] = El¢1 (1BsNp2(1B; D],

which concludes the convergence of (X)) in two-dimensional marginal distribution
to a reflected Brownian motion.

6.4.3 Finite Dimensional Distributions

The convergence of d-dimensional marginal distributions of (X, (¢)),>1 forany d >
2 may be done by induction on d. Let us fix n > 1,d > 3, thenreals 0 < 51 <

- < §sq and ¢y, ..., ¢g bounded and Lipschitz continuous real valued functions
defined on R.
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Let x denote the first reflection time after [ns;], i.e., x = k(n,s;) = min{k >

4 (X(nsi)
[ns1]: X(k — 1) + & < 0}. We decompose E, |:l_[¢,- < «/l >:| as
im1 o\/n

d—1 Insj+1] d
X([nsi])
oy Ex|:l_[¢i< Uf/sn );sz]

Jj=1k=[ns;]+1 i=1
4 (X (nsi)
+ Eyx [gcpi( w’; )§K>[’”d]:|-

Then we can deal with the terms

d d
X ([ns]) X ([nsi])
Ex[i]}m( o/ );sz] and Ex[i]lcm( o >;x>[nsd]}

in the same ways as we do for Aj and A», respectively.
More precisely, foreach 1 < j <d —1landk € {[ns;]+1,...,[ns;j1]}, we
write

(1o (057

Rl (X (nsi)
3055 330N I T GEVR) EERTORS

0 [>0 y>12z>1 w>0
Z2+&+1 20,2+ 841+ -+ -2 20,
&+t = w w A+ & = —y]

S rr T e (TR, )

0 [>0 y>12z>1 w>0 i1=1

Yt &ttt + s
x H ¢lz< ) in =k X (k) =z, 24 £y 2 0,
ir=j+l1 o/n

ttét o+t E& 220248+ HEa = w,w & =—y]

s d X (Insj] — ko)
Z Y Y Y E, {1‘[ ¢i2< ";i/n 2)

1=0 z>1 y>1w>0 ir=j+1
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i 2+ S(ns;1— k1)
oo
|:i£[l ! o./n

X‘TS(Z)>k—k1—1,z+S(k—k1—1):w]
xPlt5(z) >k —ki— 1,24+ Stk —k; — 1) = w|P[§] = —w — y].

Now we can use the induction hypothesis and Corollary 2.5 in [5] to deal with the
first and the second expectations.

6.4.4 Tightness

Recall that the modulus of continuity of a function f : [0, 1] — R is defined by

wyr(d) = sup Lf (@) — f(s)].

t,s€l0,1],|t—s|<d

Itis clear that wy () < wg(8). Using Theorem 7.3 in [3], the tightness of X follows
directly from the one of the classical random walk (S(n)),>0. We achieve the proof
of Theorem 6.1.1, applying Theorem 7.1 in [3].

6.5 Auxiliary Proofs

Proof of Lemma 6.4.2 By setting h,(y) = /nPy[ri > n], the Markov property
yields

in(x, t,s)=n ZEx [IP’X(,,)[rl 00" > [nt] — [ns]]; r; = [ns]]
>0
_ Wn
~ VInt] = [ns]

_ 1+ o(n)
N st —s

\/I’l ZEX [h[nt]—[ns](X(rl)); r = [ns]]

>0
)¢ (1251 Tins] (e —ns]) (%)

1

Let us prove that \/[ns]T[nS](h[m]_[,,s])(x) —> _asn —> 400. Indeed,

1
V181 Tins) (e —ns]) (X) — | = B + Baw),
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with

1
Bi(n) = |v/[151Tins) (hnr)—ns) (X) — o V)|, and

v(h)

By(n) = [ (Rpnr)—ns1) — v(R)| -

1
v (h)

By Lemma 6.2.1, it holds 0 < h,(y) < Ci1h(y), with h(y) = O(y), so that the
sequence (h,),>1 is bounded in B,. Thus, Corollary 6.3.1 yields

1
Bi(n) < (1 + x) |y/[1n51Tjns) — . Vi) —tnstla —> O as 1 — ~+oo.

o

Similarly, by Lemma 6.2.1 and the dominated convergence theorem,

lim |V(h[nt]7[m‘]) - V(h)| =0,

n—+00

so that Bo(n) — 0 asn — +o0.
O

Proof of Lemma 6.4.4 By setting h,(y) = n?’/z]P’y [r1 = n], the Markov property
yields

R (x,s,1) =n® ZIEx [IP’X(,I)[rl 00" = [nt] —[ns]];nn = [ns]]

>0
32 ~
= (] prspy2 ¥ 2 B B (X (0); 1 = (s
>0
1+ N
= s _O(Srgi/z\/[ns]Tl,,s](hlm],[m])(x).

By Corollafy 6.2.1, it holds 0 < ﬁ,, (y) < C3h(y), with h(y) = O(y), so that the
sequence (h,),>1 is bounded in B,. We conclude as above to prove Lemma 6.4.2.
O
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Chapter 7 )
The Strong Borel-Cantelli Property Shethie
in Conventional and Nonconventional

Setups

Yuri Kifer

Abstract We study the strong Borel-Cantelli property both for events and for
shifts on sequence spaces considering both a conventional and a nonconventional
setups. Namely, under certain conditions on events I'1, ['2, ... we show that with
probability one

N ¢ N ¢
(X:I—IP(F%(H))Y1 Zl—[]qu,-(m — las N — oo

n=1i=1 n=1i=1

where ¢;(n), i = 1, ..., ¢ are integer valued functions satisfying certain assump-
tions and I denotes the indicator of I'. When ¢ = 1 (called the conventional setup)
this convergence can be established under ¢-mixing conditions while when £ > 1
(called a nonconventional setup) the stronger ¥-mixing condition is required. These
results are extended to shifts T of sequence spaces where I'y,(,) is replaced by
T4 (”)C,(li) where C,(li), i =1,...,¢, n > 1is asequence of cylinder sets. As an
application we study the asymptotical behavior of maximums of certain logarithmic
distance functions and of ( multiple) hitting times of shrinking cylinders.

7.1 Introduction

The classical second Borel-Cantelli lemma states thatif 'y, I', . . . is a sequence of
independent events such that

> P, =00 (7.1.1)
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then with probability one infinitely many of events I'; occur, i.e.

o0
Z Ir, = oo almost surely (a.s.) (7.1.2)

n=1

where I is the indicator of a set (event) I'.

There is a long list of papers, starting probably with [13], providing condi-
tions which replace the independency by a weaker assumption and which still
yield (7.1.2) (see, for instance, [4] and references there). On the other hand, it was
shown in Theorem 3 of [16] that under ¢-mixing with a summable coefficient ¢ the
condition (7.1.1) yields the stronger version of the second Borel-Cantelli lemma in
the form

Sn

— 1 almost surely (a.s.) as N — 0o (7.1.3)
N

where Sy = YN | Iy, and Ey = Y0, P(T,).

The same paper [16] started another line of research, known now under the name
dynamical Borel-Cantelli lemmas, where (7.1.3) is proved for Sy = Zflv:l I, oT"
where T is a measure preserving transformation on a probability space (€2, P) and
I'y, n > 1is a sequence of measurable sets. For such Sy’s the convergence (7.1.3)
was proved, in particular, for the Gauss map T'x = i (mod 1), x € (0, 1] preserving
the Gauss measure P(I') = | nlz /, y l‘fx. This line of research became quite popular
in the last two decades. In particular, [3] proves (7.1.3) in the dynamical setup
considering T being the so called subshift of finite type on a sequence space where
'y, n > 1 is a sequence of cylinders while another series of papers dealt with
uniformly and non-uniformly hyperbolic dynamical systems as a transformation T
and with geometric balls as I';,’s (see, for instance, [7, 10] and references there).

In this paper we consider, in particular, “nonconventional” extensions of some
of the above results aiming to prove that under certain conditions (7.1.3) holds
true with Sy = Y00, ([Ti=; Ir, ) and & = 301, [Tiz; P(Tgm) where
qgi(n), i =1, ..., ¢ functions taking on positive integer values on positive integers
and satisfying certain assumptions valid, in particular, for certain polynomials
with integer coefficients. When ¢ = 1 (conventional setup) the ¢-mixing with a
summable coefficient ¢ suffices for our result, while for £ > 1 we have to impose
stronger ¥-mixing conditions.

In the dynamical systems setup we consider Sy = Zfl\lzl(]—[f:l Lo o T4 M)

and &y = YN TT°_, P(CY?) where T is the left shift on a sequence space A
with a finite or countable alphabet while C,Si), i=1,...,¢, n>1isasequence of
cylinder sets. As an application we study the asymptotic behaviors of expressions
My = maxj<u<y(minj<i<¢ ®;0) o T4 ™) where &g (w) = — In(d(w, ®)), w, & €
AN and d(., -) is the natural distance on the sequence space.

Our results extend some of the previous work in the following aspects. First,

the strong Borel-Cantelli property in the nonconventional setup £ > 1 was not
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studied before at all. Secondly, even in the conventional setup £ = 1 considering
rather general functions g(n) = q1(n) (not necessarily strictly increasing) in place
of just g(n) = n seems to be new, as well. Thirdly, we extend for shifts some
of the results from [3] considering sequence spaces with countable alphabets and
¢-mixing invariant measures rather than just subshifts of finite type with Gibbs
measures which are exponentially fast {-mixing (see [1]). This allows to apply our
results, for instance, to Gibbs-Markov maps and to Markov chains with a countable
state space satisfying the Doeblin condition since both examples are exponentially
fast ¢-mixing, see [14] and [2], respectively.

In the next section we will formulate precisely our setups and assumptions and
state our main results. In Sect. 7.3 we will prove the strong Borel-Cantelli property
for events under the ¢-mixing condition in the conventional setup £ = 1 and under
Y-mixing condition in the nonconventional setup £ > 1. In Sects.7.4 and 7.5
we extend the strong Borel-Cantelli property to shifts under the ¢-mixing when
£ = 1 and under ¥-mixing when £ > 1, respectively. In Sect.7.6 we exhibit
applications to the asymptotic behaviors of maximums along shifts of logarithmic
distance functions while in the last Sect.7.7 we apply the strong Borel-Cantelli
property to derive the asymptotics of multiple hitting times of shrinking cylinder
sets.

7.2 Preliminaries and Main Results

We start with a probability space (€2, F, P) and a two parameter family of o-
algebras ¥, indexed by pairs of integers —oco < m < n < oo and such that
Fun C Frw C Fif m" < m < n < n'. Recall that the ¢ and ¥ dependence
coefficient between two o-algebras G and H can be written in the form (see [2]),

$(G. H) = supreg, acrll B — P(A)], P(D) #£0}  (7.2.1)
= Jsup{llE(g|G) — Egllr> : g is H-measurable and ig]|z= < 1)
and
V(G H) = supreg, acrll piypeay — LI, POP(A) #0}  (7.22)
= ésup{”E(ng) — Eg|lLe : g is H-measurable and E|g| < 1},

respectively. The ¢-dependence (mixing) and the v-dependence (mixing) in the
family %, is measured by the coefficients

ok) = SUP¢(7':oo,m, 7:m+k,oo) and (k) = sup Ip(?:oo,ms Terk,OO)s
(7.2.3)
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respectively, where k = 0, 1, 2, .. .. The probability measure P is called ¢-mixing
or ¥-mixing with respect to the family of o-algebras ., if ¢(n) — Oor (1) <
oo and ¥ (n) — 0 as n — oo, respectively.

Our setup includes also functions g1 (n), g2(n), ..., ge(n) with £ > 1 taking on
nonnegative integer values on integers n > 0 and satisfying

Assumption 7.2.1 There exists a constant K > 0 such that

(1) foranyi # j, 1 <i,j < £ and every integer k the number of integers n > 0
satisfying at least one of the equations

gi(n) —gqj(m) =k and q;i(n) =k (7.2.4)

does not exceed K (when £ = 1 only the second equation in (7.2.4) should be
taken into account);
(ii) the cardinality of the set NV of all pairs n > m > 0 satisfying

max g;(n) < max g;(m) (7.2.5)
1<i<¢ 1<i<¢

does not exceed K.

Observe that Assumption 7.2.1 is satisfied if ¢;, i = 1,..., ¢ are essentially
distinct nonconstant polynomials (i.e. |g;(n) — gj(n)| — oo as n — oo for
any i # j) with integer coefficients taking on nonnegative values on nonnegative
integers. Indeed, g; (n) — g;(n) and g; (n) are nonconstant polynomials, and so the
number of n’s solving one of equations in (7.2.4) is bounded by the degree of
the corresponding polynomial. In order to show that (7.2.5) can hold true in the
polynomial case only for finitely many pairs m < n observe that there exists ng > 1
such that all polynomials g1 (n), g2(n), ..., g¢(n) are strictly increasing on [ng, 00).
Hence, if n > m > ng then (7.2.5) cannot hold true. If 0 < m < ng and n > ng then
there exists ny > ng such that for all n > n; (7.2.5) cannot hold true, as well. The
remaining case 0 < m < ng and 0 < n < ny concerns less than non; pairs m < n.

Next, we will state our result concerning sequences of events. LetI'1, 'z, ... €
be a sequence of events and each o -algebra 7,,,, 1 < m < n < oo be generated by
the events 'y, Tty ..., [y, Set also Frup = F1p for —oo <m < 0andn > 1,
Fmn =190, Q} form,n < 0and Frn 0o = 0{Tm, Tm+1, .. .}. Set

N l N ¢
Sn = Z(H Ir,) and &y = Z(n P(Ty;n)))- (7.2.6)

n=1 i=1 n=1 i=1

Theorem 7.2.2 Let ¢ and v be dependence coefficients defined by (7.2.3) for the
above o-algebras Fyyn. Assume that ¢(n), n > 0 is summable in the case { =
1 and ¥ (n), n > 0 is summable in the case £ > 1. Suppose that the functions
q1(n), ..., qe(n) satisfy Assumption 7.2.1(i) and

Ey —> 00 as N — oo. (7.2.7)
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Then, with probability one,

S
lim N =1 as N — oo. (7.2.8)
N—oo En

Next, we will present our results concerning shifts. Here 2 = AZ is the space of
sequences w = (...,w_1, Wy, ®1, ...) with terms w; from a finite or countable
alphabet A which is not a singleton with the index i running along integers
(or along natural numbers N which can also be considered requiring very minor
modifications). We assume that the basic o-algebra ¥ is generated by all cylinder
sets while the o -algebras ¥,,,, n > m are generated by the cylinder sets of the form
{w = (Wi)—0<i<oo : Wi = a; for m < i < n} for some a,, am+1,...,a, € A.
The setup includes also the left shift 7 : 2 — € acting by (Tw); = w;+1 and
a T-invariant probability measure P on (2, ¥), i.e. P(T-I") = P) for any
measurable I' C . In this setup ¢ and y-dependence coefficients defined by (7.2.3)
will be considered with respect to the family of o-algebras ,,, m < n defined
above. Without loss of generality we assume that the probability of each 1-cylinder
[a] = {w = (w))iez : wo = a} is positive, i.e. P([a]) > O for any a € A, and since
A is not a singleton we have also that sup, . 4 P([a]) < 1.

Each cylinder C is defined on an interval of integers A = [/, r],l <r,ie. C =
{w = (wi)—co<i<oo : Wi =aj, i =1,14+1,...,r}forsomeaqy,...,a € A. Given
a constant D > 0 call an interval of integers A1 = [l1, r1] to be right D-nested in
the interval of integers Ay = [lo, 2] if [I1,71] C (—o0, 2 + D), i.e.r1 < ra + D.
Such an interval A will be called D-nested in Ay if [[,r1] C (I, — D, r, + D).
The latter notion was used also in [3].

Let C,(,]), j=1,...,¢, n=1,2,...be asequence of cylinder sets defined on
intervals of integers A,, n = 1,2, ... so that C,(/), j=1,...,¢aredefinedon A,
foreachn > 1. Set

N 14 N ¢
Sv =y ([[leo o T#™) and &y =3 []PC. (7.2.9)

n=1 i=1 n=1i=1

Theorem 7.2.3 Suppose that the functions qi(n),...,qe(n) satisfy Assump-
tion 7.2.1 and

Ey > 00 as N — oo. (7.2.10)
Let C,(lj), j=1,...,¢, n > 1 be a sequence of cylinder sets defined on intervals
A, C Z as described above and D > 0 be a constant.

(i) If £ = 1 assume that the ¢-dependence coefficient is summable and that for all
m < n the interval Ay, is right D-nested in A,. Then, with probability one,

S
im "N =1 as N — . (7.2.11)
N—oo En
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(ii) If £ > 1 assume that the \r-dependence coefficient is summable and that for all
m < n the interval Ay, is D-nested in A,. Then with probability one (7.2.11)
holds true, as well.

As in most papers on the strong Borel-Cantelli property both Theorems 7.2.2
and 7.2.3 rely on the following basic result.

Theorem 7.2.4 Let Ty, "2, ... be a sequence of events such that forany N > M >
1,

N N
Y (P, NTy) = PC)PT) <c Y P(Ty) (72.12)
m,n=M n=M

where a constant ¢ > 0 does not depend on M and N. Then for each ¢ > 0 almost
surely

Sy =&y + 0EY g2 &) (7.2.13)

where

N N
M:Zhlmi&=ZHm.

n=1 n=1

In particular, if
EN—>00 as N — o©
then with probability one

Sn

lim =1 as N — oo.

N—oo En

This result (as well as the part of Theorem 7.2.2 for £ = 1 and q1(n) = n)
appears already in Theorem 3 from [16] and in a slightly more general (analytic)
form it is proved as Lemma 10 in §7 of Ch.1 from [18]. Both sources refer to [17]
as the origin of this result.

We observe that Theorem 7.2.3 extends Theorem 2.1 from [3] in several
directions. First, for £ = 1 we prove the result for arbitrary ¢-mixing probability
measures with a summable coefficient ¢ on a shift space with a countable alphabet
and not just for subshifts of finite type with Gibbs measures. Secondly, the case
£ > 1 and rather general functions g; (n) in place of just £ = 1 and g1 (n) = n were
not considered before both in the setups of Theorems 7.2.2 and 7.2.3.

A direct application of Theorem 7.2.3 yields corresponding strong Borel-
Cantelli property for dynamical systems which have symbolic representations by
means of finite or countable partitions, for instance, hyperbolic dynamical systems
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(see, for instance, [1]) where sequences of cylinders in Theorem 7.2.3 should
be replaced by corresponding sequences of elements of joins of iterates of the
partition. By a slight modification (just by considering cylinder sets defined on
intervals of nonnegative integers only) Theorem 7.2.3 remains valid for one-sided
shifts and then it can be applied to noninvertible dynamical systems having a
symbolic representation via their finite or countable partitions such as expanding
transformations, the Gauss map of the interval and more general transformations
generated by f-expansions (see [8]).

In Sect.7.6 we apply Theorem 7.2.3 to some limiting problems obtaining a
symbolic version of results from [9] which dealt with dynamical systems on R?
or manifolds and not with shifts. Namely, in the setup of Theorem 7.2.3 introduce
the distance between w = (w;);cz and @ = (®;);ez from Q by

d(w,») =exp(—ymin{i > 0: w; # &; or w_; # @w—;}), y > 0. (7.2.14)

Set
@) = — In(d(w, @)) for w,® € Q and (7.2.15)
My (@) = My 50050 = maxi<p<y minj<j<¢(Py0 o T4 (w))
for some fixed ¢-tuple @ = (@1, ..., 09), @D e Q,i=1,...,¢.

Theorem 7.2.5 Assume that the entropy of the partition into I-cylinders is finite,

ie.
— Z P([a]) In P([a]) < oo. (7.2.16)
aeA
Then, under the conditions of Theorem 7.2.3 for almost all &b, . oW e Qwith
probability one,
M - .
No®...o® ¥V ON S o (7.2.17)
InN 2¢h

where h is the Kolmogorov—Sinai entropy of the shift T on the probability space
(2, F, P) and, as in Theorem 7.2.3, if £ = 1 we assume only ¢-mixing with
a summable coefficient ¢ and if £ > 1 we assume -mixing with a summable
coefficient W (and in both cases h > 0 by Lemma 3.1 in [12] and Lemma 3.1 in
[11]).

In Sect.7.7 we demonstrate another application of Theorem 7.2.3 deriving the
asymptotical behavior of multiple hitting times of shrinking cylinders. Namely, set

4
¢, @ =minfk > 1: [[Ic,@) o T4® (@) = 1}

i=1

where w, ® € Q and C,(®) = {w = (wj)icz € R : w;j = @&; provided |i| < n}.
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Theorem 7.2.6 Assume that (7.2.16) holds true. Then under the conditions of
Theorem 7.2.3 for P x P-almost all pairs (w, ®) € Q2 X L,

1
lim  Intc, () (w) = 2¢h. (7.2.18)
n

n—oo

We observe that (7.2.18) was proved in [11] under the y-mixing assumption
assuming additionally stronger conditions than here while the ¢-mixing case was
not treated there at all. The proof of Theorem 7.2.6 here is different from [11] as it
relies on the Borel-Cantelli lemma and the strong Borel-Cantelli property which is
an adaptation to our symbolic (and nonconventional) setup of proofs from [5] and
[6]. We note that both Theorems 7.2.5 and 7.2.6 remain valid (with essentially the
same proof) for one sided shifts just by deleting 2 in (7.2.17) and (7.2.18).

7.3 Proof of Theorem 7.2.2

7.3.1 The Casel =1

Let N > M and fix an m between M and N. By Assumption 7.2.1 for each k there
exists at most K of integers n such that g(n) — g(m) = k where g(n) = q1(n). I
q(n) — g(m) = k > 1 then by the definition of the ¢-dependence coefficient

|P(Tgm) N Tqem) — PTgum) P(Tgm)| < ¢ &) P(Tgam))- (7.3.1)
Hence,
o
> |P(Cymy N Tgmy) = P(Cg(m) P(Tg)| < K P(Tyam) Y _ (k).
N>n>M, q(n)>q(m) k=1
(7.3.2)

Since the coefficient ¢ is summable and that similar inequalities hold true when
q(m) > g(n) we conclude that the condition (7.2.12) of Theorem 7.2.4 is satified
with Iy, in place of T'y, n = 1,2, ... there, and so (7.2.8) follows in the case
£ = 1 assuming (7.2.7).

7.3.2 The Casel > 1

We start with the following counting arguments concerning the functions g;, i =
1, ..., ¢ satisfying Assumption 7.2.1. Introduce

q(n) = 1;}252@ lgi(n) — qj(m)|.
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By Assumption 7.2.1(i) for each pair i # j and any k there exists at most K
nonnegative integers n such that g; (n) — g;(n) = k, and so

#{n>0:qn) =k} < K£? (7.3.3)

where # stands for “the number of ...”. We will need also the following semi-metric
between integers k, [ > 0,

3k, 1) = min |qi(k) —q; (D]
I<i,j=<t

It follows from Assumption 7.2.1(i) that for any integers m > 0 and k > 0,
#{n>0:8(m,n) =k} <2K>¢%. (7.3.4)

Indeed, the number of m’s such that g ; (m) = g; (n) — k for a fixed 7, j, n and k does
not exceed K by Assumption 7.2.1(i) and (7.3.4) follows since 1 < i, j < £.
In order to prove Theorem 7.2.2 for £ > 1 we will estimate first

|E(XnXn) = EXnEXy| = [P0 (Cgitm) N Tgy )

— PN _yTgum) P(OL_ D)) (1.3.5)

where m,n > 0 and X; = ]_[f=1 Hrqi(k). If §(m,n) = k > 1 then by Lemma 3.3 in
[11] and the definition of the 1r-dependence coefficient

|E(XmXn) — EXmEXn| <2229 (02— 1+ v (k)" —2EXuEX, (7.3.6)

where we assume, in fact, that k is large enough so that (k) < 21/ _ 1. Thus, let
ko = min{k : ¥ (k) < 2'/¢ — 1}. Then by (7.3.4) and (7.3.6),

> IE(XwXn) — EXnEXy| < cEXp (7.3.7)
N>n>M

where
¢ =2K°C(1+2°2 - A+ ¢ ko)) > Y ¥ (K)
k=ko

where we took into account that

|EX2 — (EXn)? < EXp.
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Summing in (7.3.7) in m between M an N we obtain the condition (7.2.12) of
Theorem 7.2.4 with N{_, Ty, () in place of T',, there. Hence if

o0
Y PO Tym) = 00 (7.3.8)

n=1
then Theorem 7.2.4 yields that with probability one

Sy

. —1 as N—> (7.3.9)
En

where Ey = 3,0 P _iTgim).
Since we assume (7.2.10) and not (7.3.8), it remains to show that under our
conditions,

&
M o1 as N oo (7.3.10)
En

By Lemma 3.2 from [11] we obtain when g(n) = k > 1 that

L 4
IP(O_ Tgim) = [ [PCga)l < (A + 9 (k) = D] [PCgmy)-  (7.3.11)
i=1 i=1

For g(n) = 0 we estimate the left hand side of (7.3.11) just by 1. Hence, by (7.3.3),

N 14
Ev—ENI <K+ Y (U +9@m) = D][PTuw) (73.12)
n=1,q(n)>1 i=1

N
<K+ Y (U +y@m) —1)

n=1l,q(n)>1

<KCHKEY (1+¥(gm)' -1 =C<co

n=1

for some constant C > 0, since the coefficient ¥ is summable. Dividing (7.3.12) by
Epn and taking into account (7.2.10) we obtain (7.3.10) and complete the proof of
Theorem 7.2.2.
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7.4 Proof of Theorem 7.2.3(i)

Here ¢ = 1, and so we set C,, = C,(ll) and g (n) = q1(n). Consider cylinder sets C,,
and C,;, 1 < m < n defined on intervals of integers A, = [Iy, rm]and A, = [I,,, 7]
with A, right D-nested in A, implying that r,, < r, + D. Letk = g(n) — q(m).
By Assumption 7.2.1(i) for each m and k this equality can hold true only for at
most K of n’s and by Assumption 7.2.1(ii) for no more than K of n’s we may have
q(n) < g(m). Next, we can write

rm+qm) >ry+q@m)+k—D. (7.4.1)

Assume first that
In+qn) <rm+qg@m) and r, +q®n) > rm +q@m). (7.4.2)
Let C, = l[ai,,a1,+1,...,a,,] and CA'm,,, = lat, s Aty p+1s -+ - ar,] Where we

assume that r,, > [,,,

tmn = Sman + [%(Vn — Sm,n + )] and

amp =l + (rm +qm) =y —q) + 1 =rm +q(m) —q(n) + 1.

It follows that

1 1
rn_tm,n"‘lZ[z(k_D)] and Im,n +Q(n)_rm +Q(m)2[2(k_D)]_1
(7.4.3)

Assuming that k > D44 we obtain by the definition of the ¢-dependence coefficient
that

P(T™1"C,, NnT4MC,) < P(TT1™C,, N T, ,) (7.4.4)
A 1
< P(Cn) P(Cin.n) +¢([2(k — D)] = DP(Cp).
To make the estimate (7.4.4) suitable for our purposes we recall that according
to Lemma 3.1 in [12] there exists & > 0 such that any cylinder set C defined on an
interval of integers A = [, r] satisfies
P(C) e, (7.4.5)

and so

A 1
P(Cn.n) = exp(=a(l,, (k = D)] = 1)). (7.4.6)
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In addition to (7.4.4) we can write also
P(Cn)P(Cy) < e = p(C,) < e™*® =D p(C,,) (7.4.7)
where we used that by (7.4.1),
tn—Ilh>rm—Spyn+1=r,+qn)—ry —q(m) >k —D.
Observe that by Assumption 7.2.1 there exists at most K (D + 1) of n’s for which
q(n) —q@m) = k < D, and so by (7.4.1) the second inequality in (7.4.2) may fail
only for at most K (D + 1) of n’s. For such n’s we use the trivial estimate
|P(T~1™C,, NT1MC,) — P(Cit) P(Cy)| < P(Ca). (7.4.8)
Now if
Ly +qmn) > rym + q(m) (7.4.9)

then by the definition of the ¢-dependence coefficient we can write by (7.4.1) that

|P(T~1"™C,, NT1"C,) — P(Cp)P(Cp)] (7.4.10)
=¢Un+qn) —rm —qm)P(Cp) < ¢k — D — (rp — 1n)) P(C)
but this may not suffice for our purposes when r, — I, is large. In this case we

proceed as in (7.4.4), (7.4.6) and (7.4.7) where we take C, = la;,, as,+1, - - ., ar,]
with ty = Iy + [3(ra — )] + 1. Then

tn +q(n) —ry — q(m) > [i(rn —I)1+1 and r,—1, > [i(rn — )] —1,
and so
P(T~4™C, NT~1MC,) < P(TIC,, NTIME,) (7.4.11)
< P(Cn)P(Cy) +¢([;(rn — )]+ DP(Cp)
< (e @0n=t1=D 4 g ;(rn — 1,)D) P(Cp).

Thus, when (7.4.9) holds true we use (7.4.10) if r, — [,, < k_zD and (7.4.11) when
rn— 1, > k_zD . In both cases we will obtain the estimate

|P(T~9™C,, N T=9MC,) — P(Cpy) P(Cp)| (7.4.12)
< (e t=DI=D (! (k — D)) P(Cp).
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Finally, taking into account that g(n) — g(m) = k < D can occur only for at
most K (D + 1) of n’s and for each k the equality g(n) — g(m) = k may hold true
for at most K of n’s we conclude from (7.4.4), (7.4.6)—(7.4.8), (7.4.12) and from
the summability of the coefficient ¢ that foranym =M, M +1,..., N,

N
D IP(TTMC, N TN C,) — P(Cu) P(Cy)| < cP(Cir) (7.4.13)
n=M

for some constant ¢ > 0 independent of M and N. Summing in m between M
and N we conclude that the condition (7.2.12) of Theorem 7.2.4 is satisfied with
I, = T~9"(C,, and so assuming (7.2.10) we obtain (7.2.11) completing the proof
of Theorem 7.2.3(i).

7.5 Proof of Theorem 7.2.3(ii)

Observe that if §(n, m) = k, n > m > 0 and the pair n, m does not belong to the
exceptional set AV having cardinality at most K then by Assumption 7.2.1(ii) for
some io, jo < ¢,

jp = max q;(n) = qiy(m) + k = max gi(m) + k. (7.5.1)
1<j=t I<i<t

Let C,;, and C, be cylinder sets defined on A, = [ly, ] and A, = [ln, ral,
respectively. Since C,, is D-nested in Cy,, 1, < r,, + D, and so by (7.5.1),

'm + qig(m) < ry +qjy(n) —k + D. (7.5.2)
Assume first that
In+qjo(m) <rm+qiy(m) and 1y + qjy(n) > 1 + gig(m). (7.5.3)
Let Cy = [ai,, aiy+1, - - -, an,] and Cpp = [ay,, ,» ds, y+15 - - - » Ar, ] Where

Smoan = ln + (1 +Qi0(m) — I, = Qjo) +1=rm +Qi0(m) - Qjo(n) +1, (7.5.4)
and so émn is defined on the interval [s, , r,,] of the length

fn = Smau+1 =1y +qjy(n) —rm — qiy(m) > k- D (7.5.5)
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where the last inequality follows from (7.5.2). Hence, by the definition of the -
dependence coefficient

P(Nioy (T7MC) n T4 i) (7.5.6)
< P(Nl_, (174 N T~ ™ER)))

< (L +y e @ =P pi_, T4 MCD)

where CA‘,(,{O,E is constructed as above with C,, = C{/.
We can write also that

p(mle T_qi(m)Cn(i))P(ﬂle T4 (")C,(li)) < P(Cr(:l))P(mle T—qx'(m)cr(rf))
(7.5.7)

< =@l p(f_ T=aim (D).
Since r, — I, > ry — Sm.n + 1 > k — D, it follows that under the condition (7.5.3),
|P(NE_, (774 m i) np-ameliy) (7.5.8)
_ p(anIT*qi(m)Cn(i))p(mleT*qi(n)C’(li)N
< (L+y e *® D p_ 774M D).
On the other hand, if
ln +qjo(n) > rm + giy(m), (71.5.9)

then by the definition of the iy-dependence coefficient we obtain similarly to the
above that

(N, (T~ a6 b)) (7.5.10)
_ p(nleT*qi(m)cy(’i))p(nleT*qi(n)cr(li)”
< U+ ¥+ qjo() = rm — gigm)) PO, T4y P(CD)
< (L4 y)e P, T4 D).
Let a number dg > 1 be such that

U(do) <2 =1 and k— (ry — I, +2D) > dy. (7.5.11)
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Since r, — I, = ry — I, — 2D by D-nesting, it follows by (7.4.5) and Lemma 3.3
from [11] that

\P(NL, (T D A T=atm i) (7.5.12)
— P(N{_ T4y PN T4 D))
< 22729 (k — max(ry — Ly, ' — L))
X 2= (1+ Ytk —max(rn — bn. rm — L)) 2P (O T~ 4 CD)
x P(N[_ T~ C) < 22429 (k = (ry — 1y +2D) 2 — (1 + ¢ (do)) >
x ==l p(t_ pam )y
Since the cardinality of A does not exceed K we have

o P(niZ (rT M n T D)) (7.5.13)
(n,m)eN

_ p(nleT*qi(m)cr(’i))p(nleT*qi(n)cr(li)”
<KP(Nf_, ™4y,
Next, we estimate now the remaining sum
Yo mmyen | P(Noy (T4 D N 76 D)) (7.5.14)
— PN, T4 M PN T4 WD)

For the part of the sum in n’s satisfying (7.5.3) we apply the inequality (7.5.8) which
yields the contribution to the total sum estimated using (7.3.4) by

2K (1 + Y (1)) P(NE_ T4 M) Y52 eme®k=D) (7.5.15)
= 2K 2" P(1 + ¢ (1)(1 — e )" P(N{_, T4 C).

For the parts of the sum (7.5.14) which correspond to n’s satisfying (7.5.9) but
not (7.5.11) we obtain that

e—a(rn_ln) < e—c{ke—a(ZD—dO)’ (7516)

and so taking into account (7.3.4) the summation in (7.5.14) over n’s satisfy-
ing (7.5.9) can be estimated by

2K 021+ y(1)e @@L p(nf_ T4 M) 2 e~ (7.5.17)

= 2K (1 + ¢ (1))e @GP0 (1 — =) p(nf_ T4 M Cy)).
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It remains to estimate the part of the sum (7.5.14) which corresponds to n’s
satisfying (7.5.11) where we use (7.5.12). We observe that

Yk — (ry — L, + 2D))e *n = (7.5.18)
— eZOlDI//,(k _ (rn _ ln + 2D))e—a(rn—ln+2D)

< P max(y ((k/2D), ¥ (De™ 1) < 2Py ([k/2]) + g (e 12))

since eitherr, — I, +2D > k/2 ork — (r, — I, + 2D) > k/2. Both summands in
the right hand side of (7.5.18) are summable in k (the first one by the assumption)
which gives an estimate for the part of the sum (7.5.14) corresponding to n’s
satisfying (7.5.11) in the form

CP(ﬂleT_qi(m)Cn(i)) (7.5.19)

where ¢ > 0 does not depend on m. By estimates (7.5.8), (7.5.12), (7.5.13), (7.5.15)
and (7.5.17)—(7.5.19) above we conclude that the whole sum consisting of the part
appearing in (7.5.13) plus the part displayed by (7.5.14) can be estimated by the
expression (7.5.19) with another constant ¢ > 0 independent of m. It follows that
there exists ¢ > O such that forall N > M > 1,

N
> IP(NZ, (TEm D T c)y) (7.5.20)

n,m=M
_ P(mf=1 T4 (m)cy(ri))P(mf=1 T4 (")C’(li))l

N
<& PO T"9McD).
m=M

If, in addition,
e .
Z PN, T~4M iy = o0 (7.5.21)
m=1
then by Theorem 7.2.4 we obtain that with probability one

2;11\]:1(1_[?:1 HC,(,” o T4i(m)

. — las N — oo. (7.5.22)
Sy POF T C)

It remains to show that under the condition (7.2.10) with probability one,

Zﬁl\]:l P (nle r— " C’gl))

) as N — oo. (7.5.23)
Yol Tz PG
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Observe again that
P(NE_ 7™My < P(CV) < em@tn=in), (7.5.24)
Next, we split the sum in the left hand side of (7.5.21) into two sums
1= 2o amt)=2 1 P(N{_, T~ C;))

and S = Z P(nleTiqi(n)C,(li))-

n: (rn—ln)>02( Inn

By (7.5.24),

o ¢
$) <Y n* < oo and also > []PC¥) < oo.
n=1

n:(ry *ln)>§ Inn i=1
Hence, it suffices to show that under the condition (7.2.10) with probability one,
Zn<N: (rn—[n)<2 Inn P(ﬂle qui(")cél))
) . ¢ Q) as N — oo. (7.5.25)
ZnSN: n: (ry —ln)fi Inn ni:l P(Cy")

Set g(n) = min;+; |g; (n) —q;(n)|. Observe that by Assumption 7.2.1(i) for each
k’

#{n: qgin) =k} < K£%. (7.5.26)
Consider first n’s satisfying
q(n) <rp —Ip. (7.5.27)
In this case by (7.5.24),
P(NE_ T4 Wy < gma(m) (7.5.28)

and relying on (7.5.26) we conclude that

o0
Z P(N_, T~ 5Dy < K¢? Ze—“k =K1 —e !
n:qn)<rp—I, k=0

and the same estimate holds true for 3, .-, ;. [T, P(C). Hence, the sum
over such n’s does not influence the asymptotical behavior in (7.5.23) and (7.5.25)
since the denominators there tend to co.
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It remains to consider the sums over n’s satisfying
q(n) >rp —ly. (7.5.29)

In this case we can apply Lemma 3.2 from [11] to obtain that

L
PO T4 D) =[P (7.5.30)
i=1

4
< (A +9@m — =) = 1) [P

i=1

< (1 + 9 (qn) — (ra — L))" = 1) tetm=ln),

Now observe that either r,, — I, or g(n) — (r, — I,,) is greater or equal to éq(n).
Denote by N the set of n’s for which r, — 1, > ;q(n) and by N, the set of n’s

for which g(n) — (r, — ;) > %q(n). Taking into account (7.5.26) and (7.5.29) we
obtain that

(A +Y(gm) = (rn = L))" — 1)et*ln=n (7.5.31)
neN|
<@ +y@)-—1) Z o~ 2taa(n)
neN|

< K@ +y)' -1 e 2tek

k=0

— K21+ v(1))f — D1 —e 21 < o0

Next, taking into account that 1 (k) is summable we see that

DA+ Y(gm) — (ra — 1)) — 1)eten= (7.5.32)

neN,

1
< 2 (A +yrmax(d, [gmD)" 1)

neN,

oo £

S2KED (L +y(k) — 1) =2k )" (i)(w(k))m < 00.

k=1 k=1 m=1
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Hence,

o0 14
1> (P T4y T PC))l < 00 (7.5.33)

n=1 i=1

and since ) oo, ]_[f=1 P(C,(f)) = 00, we obtain (7.5.25), and so (7.5.23), as well,
completing the proof of Theorem 7.2.3(ii).

7.6 Asymptotics of Maximums of Logarithmic Distance

Functions
In this section we will prove Theorem 7.2.5. Let @) = (cbfj)),-ez €  and
Cy (J)(/)), j=1,...,¢, n=1,2,...be asequence of cylinder sets such that

Cr(@9)) = {w = (W)icz € R: w; =@ provided |i| < r,)

where r, 1 oo asn 1 oo is a sequence of integers. Observe that by the Shannon—
McMillan—-Breiman theorem (see, for instance, [15]) for almost all @ € €2,

lim 21 In P(Ch(®)) = —h (7.6.1)

n—00 2ry,

where 4 is the Kolmogorov—Sinai entropy of the shift 7 with respect to P since the
latter measure is ergodic whether we assume ¢ or {-mixing.
Now suppose that

oo ¢ .
Z ]_[ P(Cn (@) < o0. (7.6.2)
n=1i=1
It follows from (7.5.32) that (7.6.2) implies also
OO .
> PO T74C, @) < oo (7.6.3)

n=1

which is, of course, a tautology if £ = 1. It follows from the first Borel-Cantelli
lemma that for almost all @ € 2 only finitely many events {79 w € C, (@), i =
1, ..., £} can occur. But if the latter event does not hold true then

79" o C, (@) forsome 1< j <,
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and so

d(T9 My, 3y > 77 e, CDC;)(,-)(T‘“(")a)) < yry

Y. Kifer

(7.6.4)

where the distance d (-, -) and the function ® were defined in (7.2.14) and (7.2.15). It
follows that in this case there exists Ng, @ = (d)(l), R J)(Z)) finite with probability

one and such that for all N > Ng(w),
My (@) < yr,

where My ;(w) was defined in (7.2.15). Hence,

. My s . rN
lim sup < y lim sup a.s.
N—oo N N—oo INN

Next, assume that
N ¢ .
Eng = Zl_[P(Cn(d)(’))) —o00as N - oo
n=1i=1
which by (7.5.32) implies also that
> .
Z P(ﬂf=1T_q"(n)Cn(&)(’))) = 00.

n=1

Set

Ly =max{m <n: T4™w e Cu@?) fori =1,...,£}.

It follows from Theorem 7.2.3 that under (7.6.6) for almost all w € €2,
L, s(w) — o0 as n — oo.

Observe also that

N ¢
Sn(@) =Y ([ 1,60 0 T4 (@) = SL, 50)-

n=1 i=1

(7.6.5)

(7.6.6)

(7.6.7)

(7.6.8)

By (7.4.13), (7.5.19) and (7.5.32) we can use (7.2.13) which yields that for almost

allw e Q,

0<6Ens—6L 0= 0ENEMTEYH),

(7.6.9)



7 Strong Borel-Cantelli Property 255

and so for almost all w,

8 . ~
lim e @@ _ (7.6.10)
N—o0 ((JN’(;,
Next, observe thatif m = L, z(w) then foreachi =1, ..., ¢,

d(T9 Mg, 5Dy < 7V je. CDC;)(I-)(T‘I"(’”)Q)) > Yrm,

and so M,, z(w) > yry. It follows that

My 5(w) = MLy 5(0) (@) = YTLy () (7.6.11)
and so
My InLy g
iminf V0 S Gimint ™ ) liming " EN6@) (7.6.12)
N—o0 N—oco InN~ N—ooo InN

Next, in order to complete the proof of Theorem 7.2.5, we will choose sequences
rp, n = 1,2,... for appropriate upper and lower bounds. For the upper bound
we will take r, = [12'&? Inn] for some § > 0. Then by (7.6.1) for almost all

oW, .. .,oW eQ,

4
lnl_[ P(Ch(@D)) ~ —(1+8)Inn as n— oo,

i=1

and so the series (7.6.2) converges as needed. Substituting such ry’s to (7.6.5) and
letting § — O we obtain

M ~
limsup - V@ < Vg, (7.6.13)
NP n N = 20k

Now we deal with the lower bound choosing r;, = [122;3 Inn]. Then by (7.6.1) for
almostall @V, ..., &® € Q asn — oo,

4
lnl_[ P(Ch(@D)) ~ —(1 — &) Inn, (7.6.14)

i=1
and so the series (7.6.6) diverges as needed. For such ry’s we have that

1—6
liminf '~ = (7.6.15)
N—ooco In N 20h
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and letting § — 0 the proof of Theorem 7.2.5 will be completed by (7.6.12), (7.6.13)
and (7.6.15) once we show that for almost all w € €2,

InLyg@)

liminf =1. (7.6.16)

N—oo InN
By (7.6.14) there exists a random variable n(®@) < oo a.s. such that if n > n(®)
then
3 ¢ 4
n~173) < TTPCu@?)) < n= 1739, (7.6.17)
i=1

If Ly 4(w) > n(w) then we obtain from (7.6.9) and (7.6.17) that

4 35 3
35V~ Lns@) + D) (7.6.18)
N
< ¥ (118
n=Ly s(@)+1

N N

n=n(w) n=n(w)

3 3
< o(n(w)+48N3“3)1/21n3+6(n(w)+4 N3%)).

8

Dividing these inequalities by N 431‘3, letting N — oo and taking into account that
N > Ly () by the definition, we see that

Ly,s(w)
N — 1, andso InN —InLy 5(w) — 0 as.as N — oo
implying (7.6.16) and completing the proof of Theorem 7.2.5. O

7.7 Asymptotics of Hitting Times

In this section we will prove Theorem 7.2.6 deriving first that for P x P-almost all
pairs (@, @),

1
liminf Inztc, ) > 2¢h. (7.7.1)

n—oo n
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Let Ak <n < A(k 4+ 1) for some A > 0. Then

Intey@ _ nte,@ _ Mm@

Ak+1) —  n - Ak ’
and so
Intc Int ~
liminf " = liminf = <*@ (7.7.2)
n—o00 n k— o0 k

where we alert the reader that the definition of the cylinder C, (@) here agrees with
the corresponding definition in Sect. 7.6 provided r, = n there.
Next, assume that A > (2¢4h) ! and set

~ k —a:(i ~
L(@) = U, Ni_y T4 Cr(@).

Then

ok
P(Ii(@)) < Y P(N_ T~ 1D Coi(@)) (1.7.3)
j=1

and we are going to show that for P-almost all @,

o0 ek

Z Z P(NE_, T~ Cop(@)) < 0. (7.7.4)

k=1 j=1

Indeed, applying the Shannon-McMillan-Breiman theorem we obtain that for P-
almost all @ and each ¢ > 0 there exists k(e, @) such that if k > k(&, @) then

P(Cix(w)) < exp(—k(2rh —¢€)). (7.7.5)
When ¢ = 1 we employ (7.7.5) for k > k(e, ®) and (7.4.5) for k < k(e, @) which
yields the estimate of the left hand side of (7.7.4) by
(o)
Z eke—a(ZAk—l) + Z e—k(th—s—l). (776)
1<k=<k(e,@) k=1

The first sum in (7.7.6) contains finitely many terms, and so it is bounded, while the
second sum in (7.7.6) is also bounded since 2Ah —¢ > 1 by the choice of A provided
& > 0 is small enough.
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Next, we will deal with the case ¢ > 1. First, recall the notation g(n) =
min;+; |g;(n) — qj(n)| and observe that by (7.5.6),

#{n: qn) <2xk 42} <20k + HK 2. (7.7.7)

Now we split the sum in the left hand side of (7.7.4) into two sums

S1= Z Z PN, T4 Cop(@)) (7.7.8)

k=1 j:j<ek, q(j)<2rk+2
o0 o0
<2K/¢? Z(Ak + DP(Cou(®)) < 2K > Z(Ak + e 2¢Gk=D o
k=1 k=1

where we use (7.4.5), and

$=) > P(N{_ T4 Cyp (@) (1.1.9)

k=1 j:j<ek, q(j)>24k+2

(e.¢]
< k(e, @)+ " > P(N[_ T~V Cr(@)).
k=k(e,®) j:j<ek, q(j)>2rk+2

Ifg(j) > 2Ak+2 and k > k(e, @) then employing Lemma 3.2 from [11] and (7.7.5)
above we obtain

P(N_ T4 D Cop(@)) < (1 + (1)) (P(Cox(@)))"
< (1 4+ ¥ (1) exp(—k(2rhe — e£)) (7.7.10)

where ¥ is the dependence coefficient from (7.2.3). For ¢ > 0 small enough 2Ah¢ —
el > 1 by the choice of X, and so by (7.7.9) and (7.7.10),

o
Sy < k(e, @)ek&® + Z exp(—k(2Ahe — el — 1)) < 00
k=1

which together with (7.7.8) yields (7.7.4).
Hence, by the (first) Borel-Cantelli lemma there exists K (w) = K (v, ®) < 00
a.s. such that for all k > K (w) there are no events

T9Dg € Cor(@) forall i =1,...,¢ andsome 1 < j < k.

It follows that for P-almost all w and k > K (w).

TCor (@) (a)) > Ek.
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This together with (7.7.2) yields that for P x P-almost all pairs (v, @),

In 'L’Cn (@) (a)) >

lim inf 2L (7.7.11)
n—o00 n

Since A can be chosen arbitrarily close to (2¢h)~! we obtain (7.7.1).
Next, we will prove that for P x P-almost all pairs (v, @),

In Tc, (@) (a))

lim sup < 2¢h. (7.7.12)

n—o0
Choose ¢’ > ¢ > 0 small and 8 > 0 close to (2¢h) ™! so that

1= BQRth—¢)
B(2th+¢) <1 and B(2lh + &) — | pathte 0 (7.7.13)

which implies, in particular, that 8(2¢h + ¢&') > 1.
Set

In 7¢, (@) (@)
n

I'={(w,®) € Q: limsup > 2¢h + ¢'}.

n—oo

If (w, @) € T then for infinitely many n’s,
TCp (@ (@) > nPCHFED, (7.7.14)
For n’s satisfying (7.7.14),

wéd UlstM;(mH.gr) Ni<i<e Tiq"(J)Cﬁlnn(d)) D UnSanﬂ(Z(h+s’) Ni<i<e T7Qi(])C/31nj(J))

which implies that there exists a sequence ny — oo as k — oo such that

Z l_[ ]ICﬂlnj((:)) o Tqi(j)(w) = Z l_[ HC,slnj(tD) o T‘Ii(j)(w)

1<j<ng 1<i<t 1< j<nfCli+e) 15ist

(7.7.15)

for each k. 3 y
By the Shannon—McMillan—Brgiman theorem there are Q2 C Q with P(Q2) = 1
and a random variable J finite on 2 such that for any j > J(®),

‘]7,3(2/14‘1’;) :e*(2h+§)ﬂll’lj S P(Cﬁln](d))) < e*(2h72)ﬂ1ﬂj — ]7/3(2/172)
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Hence, there are random variables k1 and k» such that for all n large enough,

n
~ — ~ 14 ~ — —
k(@' TPRIF <N (P(Cpin (@) < ka(@)n' TFEHTE), (7.7.16)
j=1

It follows that for (w, @) € T, @ € Q and all k large enough

31z jen (P(Commj (@)

Y (7.7.17)
lej5n5(25h+s’) (P(Cﬂlnj(a))))
ko (@ _ —e)— N(l—
< 2(61))’1]((1 BQth—e)=BQth+e)1-BQLI+) _ (1 0 p o oo
ki(@)
since by the choice of ¢, ¢’ and 8,
(1 —BQ2Lh —¢&) — BRLhL+N(1 — B2Lh + &)
1—BQRLh—c¢) ,
=(1—-B2¢th — B2¢th 0.
(1—8( +£)(1—ﬁ(2ﬁh+s) BQR2Lh+¢€) <
By (7.7.15) we obtain from (7.7.17) that
Z1sj5nk Hlsisé Iegm@) © T4 () (7.7.18)

> i< jen (PCpmj@))’
3, jepponser (PCpim j@))°

. —
1j=nf ) Mi<i<elcgn @ o T4 (@)

I<j=n

X oo as k — oo.

>
By (7.7.16) for all & € L,
Z (P(Cl-‘ﬂnj(d))))Z — 00 as n — 09,
1<jzn

and so by Theorem 7.2.3 for P-almost all w,

Zlgjgn Hlsigf HCﬁlnj(&J) o Tqi(/)(w)

Y — 1 as n — oo.

Zlgjgn (P(Cﬂ lﬂj(w)))
Thus, (7.7.18) can hold true only for a set of pairs (w, ®) having P x P-measure
zero, and so P x P(') = 0. Since ¢ and &' can be chosen arbitrarily close to
zero, (7.7.12) follows for P x P-almost all (w, ®), which together with (7.7.1)
completes the proof of Theorem 7.2.6.
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Chapter 8 )
Application of the Convergence Shethie
of the Spatio-Temporal Processes

for Visits to Small Sets

Francoise Péne and Benoit Saussol

Abstract The goal of this article is to point out the importance of spatio-temporal
processes in different questions of quantitative recurrence. We focus on applications
to the study of the number of visits to a small set before the first visit to another
set (question arising from a previous work by Kifer and Rapaport), the study of
high records, the study of line processes, the study of the time spent by a flow in a
small set. We illustrate these applications by results on billiards or geodesic flows.
This paper contains in particular new result of convergence in distribution of the
spatio temporal processes associated to visits by the Sinai billiard flow to a small
neighbourhood of arbitrary points in the billiard domain.

8.1 Introduction

Let (2, F, u, T) or (2, F, u, Y = (Yr)s>0) be a probability preserving dynamical
system in discrete or continuous times. Let (A;)~0 be a family of measurable
subsets of 2 with u(A;) — 0+ as ¢ — 0. Given a family (.).~0 of positive real
numbers and a family (H; ).~ of measurable normalization functions H, : A, — V
where V is a locally compact metric space endowed with its Borel o-algebra V, we
study the family of spatio-temporal point processes (Ng)g~0 on [0, +00) x V given
by

Ne(x) .= N(T, Ag, he, H) = Z 8(nh£,Hg(T"(x))) foramap T
n>1:T"(x)eA;
(8.1.1)
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or

Ng(.x) = N(Y, Ag, hg, Hg) = Z 5(;;,8,]18()/,()5))) foraflow Y.
t>0: Y, enters A,
(8.1.2)

We are interested in results of convergence in distribution of (Ng).~0 to a point
process P as ¢ — 0 with a particular focus on applications of results of such kind.
Various results of convergence of such processes to Poisson point processes have
been proved in [14, 21] for billiard maps and flows.

Let us point out the fact that these spatio-temporal processes contain a lot of
information: they do not only contain information on the visit time but they also
contain informations on the spatial position at these visit times. For these reasons,
one may extract further information from results of convergence of these processes.
Among the applications that have already been studied, let us mention:

* Study of the visits to a small neighborhood of an hyperbolic periodic point of a
transformation (see [21, Section 5], with application to Anosov maps).
Such visits occurs by clusters (once a point visits such a neighbourhood, it stays
close to the periodic point during an unbounded time before living this area). The
idea we used to study these clusters was to consider a process Ny corresponding
to the last (or first) position of the clusters.

* Convergence of a normalized Birkhoff sum processes

120/ p>1

to an a-stable process. In [25] Tyran-Kamiriska provided criteria ensuring such a
result. One of the conditions is the convergence of

Nijw = NCTAIf| > yne}, 1/nn"u £()

(for every y > 0) to some Poisson point process. The general results of [21]
combined with the criteria of [25] have been used in [14] to prove convergence
to a Lévy process for the Birkhoff sum process of Holder observable of billiards
in dispersing domains with cusps.

We won’t detail again the above applications. Our goal here is to emphasize on
further ones.

After recalling in Sect. 8.2 below the general results of convergence of spatio-
temporal point processes to Poisson point processes established in [21], we present
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in the remaining sections four other important applications of such convergence
results:

* The number of visits to (or of the time spent in) a small set before the first visit
to a second small set (motivated by Kifer and Rapaport [16]), with application to
the Sinai billiard flow with finite horizon,

e The evolution of the number of records larger than some threshold, with an
application to billiards with corners and cusps of order larger than 2,

» The Line process of random geodesics (motivated by Athreya, Lalley, Sapir and
Wroten [2]),

* The time spent by a flow in a small set, with application to the Sinai billiard flow
with finite horizon.

Appendix contains a new theorem of convergence of point processes for the Sinai
billiard flow and for neighborhoods of arbitrary positions in the billiard domain,
which is used in the examples that illustrate the applications above. Finally we also
present an application to the closest approach by the billiard flow.

8.2 Convergence Results for Transformations and Special
Flows

We set E := [0,+00) x V and we endow it with its Borel o-algebra & =
B([0, +00)) ® V. We also consider the family of measures (m;)s~0 on (V, V)
defined by

me == u(H; ' () A) (8.2.1)

and a family ‘W closed under finite unions and intersections of relatively compact
open subsets of V, that generates the o-algebra V. Let A be the Lebesgue measure
on [0, 00).

We will approximate the point process defined by (8.1.1) or (8.1.2) by a Poisson
point process on E. Given a o -finite measure n on (E, &), recall that a process N is
a Poisson point process on E of intensity 7 if

(i) Nisapointprocess (i.e. N = ), 8, withx; being E-valued random variables),

(i) For every pairwise disjoint Borel sets Bj, ..., B, C E, the random variables
N(B1), ..., N(B,) are independent Poisson random variables with respective
parameters n(By1), ..., n(By).

Let M,(E) be the space of all point measures defined on E, endowed with the
topology of vague convergence; it is metrizable as a complete separable metric
space. A family of point processes (Ng)e~0 converges in distribution to N if for
any bounded continuous function f: M,(E) — R the following convergence holds
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true
E(f(Ne)) = E(f(N), ase— 0. (8.2.2)
For a collection A of measurable subsets of 2, we define the following quantity:

A(A) = sup lu(ANB) — w(A)u(B)|. (8.2.3)
AeA,Bea (U T—17A)

We set A for the Lebesgue measure on [0, 00).

Theorem 8.2.1 (Convergence Result for Transformations [21, Theorem 2.1])
We assume that

(i) for any finite subset Wy of ‘W we have A(Hg_l‘Wo) =o(u(Ay)),
(ii) there exists a measure m on (V,V) such that for every F € W, m(0F) = 0
and limg_, ¢ [,L(Hg_l (F)|As) converges to m(F).

Then the family of point processes (Ni)e=o converges strongly' in distribution, as
e — 0, to a Poisson point process P of intensity A x m.

In particular, for every relatively compact open B C E such that (A x m)(0B) =
0, (N2(B))s=0 converges in distribution, as ¢ — 0, to a Poisson random variable
with the parameter (A x m)(B).

Let us explain roughly the strategy used in [21] to apply Theorem 8.2.1. First the
measure m appears as the limit of (,u(HS_1 ()| Ag))e>0. Second, we construct ‘W as
the union of finer and finer finite partitions of V with boundary neglectable with
respect to m. Finally we obtain (i) as a consequence of some decorrelation result
combined with the neglectability of fast returns.

Theorem 8.2.2 (Convergence Result for Special Flows [21, Theorem 2.3])
Assume (2, u, Y = (Y;);) can be represented as a special flow over a probability
preserving dynamical system (M, v, F) with a roof function t : M — (0, 400)
with M C Q and set T1 : Q — M for the projection such that T1(Y;(x)) = x for all
x € Mandall s € [0, T(x)).

Assume moreover that Y enters Ag at most once between two consecutive
visits to M and that there exists a family of measurable normalization functions
Ge : M — V such that the family of point processes (N(F, T1(Ag), he, G¢))e=0
converges in distribution, as ¢ — 0 and with respect to some probability measure
vV &K v, to a Poisson point process of intensity . x m, where m is some measure
on (V,V). Then the family of point processes (N(Y, Ag, he/E,[1], G¢ 0 T1))e=0
converges in distribution, as ¢ — 0 (with respect to any probability measure
absolutely continuous with respect to (1), to a Poisson process P of intensity A X m.

11.e. with respect to any probability measure absolutely continuous w.r.t. .
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8.3 Number of Visits to a Small Set Before the First Visit
to a Second Small Set

Suppose BS and Bg are two disjoint sets. We define the spatio-temporal process N
with A, = BOU B!, H.(x) = ¢if x € B!, £ = 0, 1, that is on [0, +00) x {0, 1}

oo 1

Ne(@) =D Suucan.o)l pe (T"x) (8.3.1)

n=1 £=0

in the case of a transformation 7" or

1
Ne(x) = Z Za(thg,f)lyt enters B! (8.3.2)

t>0 ¢=0

in the case of a flow Y. In [16] Kifer and Rapaport studied the distribution of a
(multiple) event T"x € Bgl until a (multiple) hazard 7" (x) € Bg . We stick here to
single event and hazard and define, in the case of a transformation 7',

750 (%)

Me(x) = Y 1 (T"x), (8.3.3)

n=1
where we set Tg(x) := inf{n > 1 : T"(x) € B} or, in the case of a flow Y:

Me(x) = Z ly, enters B> (8.3.4)

160,740 (x))

where we set 7g(x) := inf{t > 0 : Y;(x) € B}. The process M, counts the number
of entrances of the flow in the 1-set before its first visit to the 0-set.

In the case of a flow, it is also natural to consider the following process M,
measuring the time spent by the flow in the 1-set before its first visit to the 0-set:

50 (X)
M, (x) = / lpioYs(x)ds. (8.3.5)
0 &

In view of the study of this last process, we will consider the following process
measuring the time spent by the flow in each set:

1
L= Z Z Sthe,j.acD oY,
Bé‘

=0 . j
J=Yt:.Y, enters B/ e=0

with Dy 1= tQ\A.
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Theorem 8.3.1 Let p € (0, 1) and P be a probability measure on 2. Assume, in
the case of a flow, that lim,_,o P(B® U B})=0.

If the spatio-temporal process N, defined as in (8.3.1) or (8.3.2) converges, with
respect to P, to a PPP of intensity . x B(p) where B(p) denotes the Bernoulli mea-
sure with parameter p (for a transformation we expect p = limg_,¢ /L(Bel)/,u(Ag)),
then the process (M)e~0 has asymptotically geometric distribution, more precisely
it converges in distribution to M with P(M = k) = p*(1 — p) for any k > 0; in
particular the asymptotic value for the commitor function is

lim P(tz0 < 751) = lim P(M, =0) =1 — p.
e—0 € e e—0

In the case of a flow, if (a. T\ B! )e=0 converges in probability P to 0 and if (L¢)e>0

supported on [0, +00) x {0, 1} x Ry converges in distribution with respect to P
to a PPP Ly with intensity A X Z}:o pj(8; x m’j) where the m’j are probability

measures, then (agM;)Do converges to le\il X; where (X;); is a sequence of i.i.d.
random variables with distribution m', and independent of M where M is as above.

Proof We first observe that the mapping

J & € My([0, +00) x {0, 1}) = £([0, 7% x {1})
is continuous where 0 = sup{r > 0: £([0, 1] x {0}) = 0} is continuous at a.e.
realization & of x := PPP(A x B(p)). Indeed, £(- x {0}) and &(- x {1}) are the
realization of two homogeneous independent Poisson process hence 7V is a.s. not an
atom of £(- x {1}). Observe that, in the case of a transformation, M, = J (N;) and
in the case of a flow P(M; # J(N;)) = P(Yy € Bg U Bgl) — 0. Therefore, by the
continuous mapping theorem, (M;).~0 converges in distribution to G := J(x) as
e goes to 0.

We now compute the law of G. The first hazard 7° has an exponential distribution
with parameter 1 — p, while x'(-) := x(- x {1}) is a Poisson point process with
intensity pA, and the two are independent. Therefore, for any k € N

P(G = k) = P(x' ([0, °]) = k)

L (pnF -
=A e PV = e P = (1=

This ends the proof of the first part of the Theorem. Let us now prove the last
one. We use the fact that the mapping J : £ € M, ([0, +00) x {0, 1} x Ry) —
f[O,rO]x{l}x[O,Ko] zdE&(t, j, z) is continuous at a.e. realization & of x and conclude
the proof as above by the continuous mapping theorem and the Slutsky theorem

since agM; = 1{Y0€B?} (J(.Cg) + aSTQ\Bg)‘ O

Example 8.1 Consider the billiard flow (Y;); associated to a Sinai billiard with finite
horizon in a domain Q C T? (see Appendix for details). Let P be any probability
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measure on Q := Q x S' absolutely continuous with respect to Lebesgue. We fix
two distinct point positions qo, g1 € Q and two positive real numbers rp, r; > O.
Set B! := B(gi, rie) x St and d; =2 — 14,¢90-

Then (M;)s~0 converges in distribution with respect to P to M with P(M =

k) = p*(1 — p) forany k > O and with p =, /1"

Moreover (s’lM;)Do converges in distribution with respect to P to 2r; Zl/\i 1 Yi
where (Y;)i>1 is a sequence of i.i.d. random variables with density y
\/1)7—y ,1j0,11(y) independent of M, with M as above.
Proof Recall that the billiard flow Y preserves the normalized Lebesgue measure
won Q x S'. In view of applying Theorem 8.3.1, observe first that lim, P(Bg U
Bal) = 0and E[S_IIQ\le] < 2r1]P>(BSl), thus (SIQ\le)Do converges in probability
PtoO.

As a direct consequence of Theorem 8.6.2, the family of spatio-temporal

processes (Ng)e~0 given by (8.3.2), with h, = (d‘}:f;”f‘é;)s , converges in distribution

to a PPP of intensity A x B( dor‘éﬂ:jllrl

holds true with p = dor‘(fﬂ:jllrl . This ends the proof of the convergence of (M;)¢~0.

Due to Theorem 8.6.1, (L:)e~0 (With a, = & and h, as before) converges in
d.,«.

= doroii-éllrl

21[0,2”]()7). Thus the last conclusion

) and so the first conclusion of Theorem 8.3.1

distribution to a PPP with intensity A x Z}':O pj(8j x m';) where p; :

)7
2rj\/4r%7y
of Theorem 8.3.1 holds also true with these notations. We conclude by taking
Yi = Xi/Q2ryp).

and where m’/ has density y >

8.4 Number of High Records

We define the high records point process by

(e.¢]
Ry(u, t) = Z Skul{ foTk>max(e, f,.... foTk-1)) -
k=1

The successive times of records of an observable along an orbit are obviously
tractable from the time and values of the observations along this orbit. The following
proposition states that this is still the case for the corresponding asymptotic
distributions. This has already been noticed in [13], in particular in the context of
Extremal events. Our result is similar to the proof of [13, Theorem 3.1] from [13,
Theorem 5.1].

Proposition 8.1 Let (2,7, u,T) be a probability preserving dynamical sys-
tem and f : Q — [0,400) be a measurable function. Assume the family
(Ng = N(T, {f > &1}, he, 1/(8f)))€>0 of point processes on [0, +00) x [0, 1]
converges in distribution with respect to P to a Poisson point process of intensity A X
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m with m a probability measure on [0, 1] without any atom. Then (Rf (he, 871))£>0
converges in distribution, as ¢ — 0 to a Point process R = Y ;2| Z¢81, where
T, = Zle X;, the X; are independent standard exponential random variable
and the Zy are independent random variable having Bernoulli distribution with

respective parameters £, and the two sequences are independent.

Proof Define the mapping

Fi&= 8. € Mp([0.00) x [0, 1) > D &,
i i€l (&)

where [ (&) are the records of &, defined by those i such that for any j one has
tj <t; = v; > v;. The map F is continuous at each & such that the #;’s, and
the v;’s, are distincts. This is the case for a.e. realization & of a Poisson process
of intensity A x m. Therefore by the continuous mapping theorem R (%, el =
F(N;) convergesto x = F(PPP(A x m)).

We are left to compute the distribution. Observe that P P P(A x m) is distributed
as Zj?il 8¢y, w,) with (Ty) as in the statement and the W, are i.i.d. with distribution
m, the two sequences being independent. Let Zy = 1{w, is a record). By Resnick [23,
Proposition 4.3] the Z; are independent, have probability 1/¢, and when Z, = 1 we
keep the point Tp. O

In particular, for every ¢ > 0 the number of records exceeding the value s ~! before
the time z‘hg_l corresponds to Ry (he, e~ 1)([0, ¢]) and the conclusion of Proposi-

tion 8.1 implies that it converges to Z?/;l Z, where Z, are as in Proposition 8.1 and
where (Ny)s>0 is a standard Poisson Process independent of (Z¢)¢>1.

Example 8.2 Consider a dispersive billiard with corners and cusps of maximal order
B« > 2 as in [14]. Consider the induced system (€2, i, T') corresponding to the
successive reflection times outside a neighbourhood U of cusps and write R(x) for
the number of reflections in U starting from x. Set o« = ﬂf € (1,2).

Setting A; := {Ro T-! > s‘l}, it has been proved in [14, Lemma 4.5] that there
exists an explicit cg > 0 such that u(A;) ~ cpe® as e — 0.

The assumptions of Proposition 8.1 hold true with f = Ro T~! and h, =
w(Ag) ~ coe®. So the same assumptions hold true with &, = coe®.

Furthermore the number R, of records of R higher than n'/% before the n-th
reflection outside cusps converges to Z/jzvzl Zy where Z, are as in Proposition 8.1
and where N is a Poisson random variable of parameter ¢y and independent of

(Ze)e=1-

Proof 1t follows from the proof of [14, Lemma 4.8] that’> the family of point
processes (N(T, Ag, t(Ag), R o T~ 1)e=0 on [0, +00) x [1, +00] converges in

2Jung et al. [14, Lemma 4.8] states that this convergence is true in the set of point processes on
[0, 400) x [1, +00), but its proof can be adapted in a straightforward way to obtain our purpose
by considering not only intervals of the form (c, ¢’) but also intervals of the form (c, +00].
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""lly>0 with respect to

distribution to a PPP with intensity of density (¢, y) > ay™
the Lebesgue measure.

Therefore the assumptions of Proposition 8.1 hold true with f = R o T~! and
he = w(Ag) ~ coe®. So the same assumptions hold true with &, = coe®. This ends

the proof of the first part.
For the second one, we apply Proposition 8.1 with ¢ = na. O

8.5 Line Process of Random Geodesics

We study the line process generated by a geodesic as in [2] and recover their main
result. Let N be a compact Riemannian surface of negative curvature. The geodesic
flow (Y;); on the unit tangent bundle = T'N preserves the Liouville measure .
Let ry: T'N — N be the canonical projection (¢, v) — ¢. We denote by D(q, ¢)
the ball in N of radius . We now state the main theorem, postponing the details and
precise definitions thereafter.

Theorem 8.5.1 Fix go € N. For any a > 0, the intersection of the neighborhood
D(qo, €) with the geodesic segment Ty ({Y;(x),0 <t < as_l}), where x is taken
at random on (2, (), converges in distribution, after normalization, as ¢ — 0, to a
Homogeneous Poisson line process in the unit disk of intensity a/Area(N).

A Poisson line process in the unit disk D of the plane, of intensity « € (0, 00), is
a probabilistic process which draw lines in the disk. Each line L is parametrized by
(r,0) € [—1, 1] x [0, ] where

L={(x,y)e D:r=xcosf + ysinf},

and the parameters (r,0) are produced by a Poisson point process of intensity
~drdf on [—1, 1] x [0, w]. Equivalently, changing the parametrization to (s, ¢)
where s € 9D =: § is one point of intersection of the line with the unit circle and ¢
is the angle between the line L (directed into the disk) and the normal at s pointing
inside the disk (see Fig. 8.1), gives a Poisson point process of intensity “ 5% dsd¢

T
(the jacobian is cos ¢ and each line has two representations in this parametrization).

Fig. 8.1 Parametrization of
the line L by (r, 6) or (s, ¢)
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Fig. 8.2 A geodesic arc y q
entering the ball D(qo, €) =

@D

The intensity « in the theorem is equal to a/Area(N), therefore the intensity
in this parametrization will be ZNAr‘éa(N) cospdsdy = VU[(“TIN) cos pdsdg. The
convergence of a point process in this parametrization implies it in the original one
(by continuity of the change of parameter; see [23, Proposition 3.18]).

The exponential map exp,, is a local diffeomorphism on a neighborhood U C
T4y N of 0. Thus its inverse is well defined on D(qo, &) for & small enough so that
B(0, &) C U. We identify T,,N with RZ. SetV = § x [-7. 5] For g € D(qo.¢)
we let s.(g) = e~} expt;)1 (¢) and for g € 0D(qo, ¢) and v € T, N we denote by
¢4 (v) the angle between the normal at g pointing inside the disk and v (see Fig. 8.2).

The intersection I (x) := 7N (Y[0.4e-11(x)) N D(qo, €) consists of finitely many
geodesic arcs y; := wn(Y|;,5+¢,1(x)), where ¢; is the length of the arc; we drop
the dependence on x and ¢ for simplicity. The arcs y; are fully crossing the ball,
except possibly for the two extremities (at # = 0 or r = ae~ ') which could give an
incomplete arc. The later happens with a vanishing probability as ¢ — 0, therefore
we will ignore this eventuality. The arc y; enters the ball at the position g; with
direction v; where (gq;, v;) := Y, (x).

When ¢ — 0, the geodesic arcs y; which compose the intersection I
become more and more straight. This justifies the definition of the convergence in
distribution of I as the convergence in distribution of the point process

D (setgn o) (8.5.1)
i

Loosely speaking, we identify the images s¢(y;) with the chord of the unit disk D
originated in s¢(g;) and direction v;.

We now proceed with the proof of the theorem. Let A, C T'N be the set of
points (g, v) such that ¢ € 9 D(qo, €) and v is pointing inside the ball. We define on
A

He(g, v) = (se(q), ¢q(v)) € V. (8.5.2)

The theorem is a byproduct of the following result for the geodesic flow.
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Proposition 8.2 The process of entrances in the ball for the position for the
geodesic flow N(Y, Ag, 2e/Area(N), He) on [0, +00[ X V converges to a Poisson
point process with intensity 42 cos pdtdsde.

Proof of Theorem 8.5.1 The counting process
L) =N, Ag, 2e/Area(N), He)([0,2a/Area(N)] x -) (8.5.3)

produces a point (s, ¢) each time that the geodesic flow Y; enters in D(qo, ¢) for
some ¢ such that 2et/Area(N) < 2a/Area(N), that is t < ae~!. By Proposi-
tion 8.2 and the continuous mapping theorem the point process Li converges to a
Poisson point process of intensity Arezﬁ( N 42 cos pdsdg. By the above discussion,
in particular (8.5.1), this completes the proof of the theorem. O

We emphasize that this proof only uses the convergence stated in Proposition 8.2,
therefore it applies for more general ‘geodesic-like flows’, for instance the argument
applies immediately to billiards systems, using Theorem 8.6.2 in place of Proposi-
tion 8.2.

Proof of Proposition 8.2 The first step is to construct a Markov section for the
geodesic flow, subordinated to a finite family of disks D; C T'N. Fix some § > 0
sufficiently small. By Bowen [3] there exists a Markov section (X;); of size &,
in particular diam X; < 4 and TIN = U; Y[—s,01(X;). One can choose the disks
D; D X; in such a way that

Di C{(q.v): q € i1/ (ng,v)| > Z — 5)

where Q; are C? curve in N and ng is the normal vector to Q; at g (with g — ny
continuous). Without loss of generality we assume that go & U; Q;.

The flow (Y;) is represented by a special flow over the Poincaré section M :=
U; X;, with a C? roof function 7. Let IT be the projection onto M along the flow
in backward time. The flow (T'N, (Y;), W) projects down to a system (M, F,v),
conjugated to a subshift of finite type with a Gibbs measure of a Holder potential.
In order to apply Theorem 8.2.2 we need to check that the set A, := I1A, and
H.(x) := H.(Yy(x)) where s > 0 is the minimal time such that Y (x) € A,
fulfill the hypotheses of Theorem 8.2.1. For that we will apply [21, Proposition 3.2].
The Poincaré map F has a hyperbolic structure with an exponential rate, thus it
satisfies the setting of [21, Proposition 3.2] with any polynomial rate «, in particular
o = 4 works. Here the boundary is meant in the induced topology on M. It suffices
to prove that for some p; = 0(v(Ag)) one has (i) v(ta, < ps) = o(l) and (ii)
v((0A)P)) = 0(v(A,)), the two other assumptions being trivially satisfied in
our situation.

Measure of A.: The Liouville measure p is the product of the normalized
surface on N times the Haar measure on T!N. Its projection v to the
Poincaré section satisfies dv = ¢, cos¢drde for some normalizing constant



274 F. Péne and B. Saussol

-1
cy = (Zl in cos <pdrd<p) , where r is the curvilinear abscissa on Q; and

¢ the angle between the velocity and the normal to Q;. Moreover we have
dp = (fy; Tdv)~'dv x dt|y, where My = {(x,1): x € M,0 <t < T(x)}.

The geodesic flow preserves the measure cos ¢drde from A, C M to A,
therefore

/2
V(Ag) = CU/ cospdrdy = cv/ cospdrdy = C”[ dr/ cos pdg
Ag D(qo,¢)

3 /2

€

~ cydme.

Short returns: For any ¢ € D(qo, €), let R.(g) be the set of v € quN such that
the geodesic segment y .-1/2)(¢, v) enters again D(qo, ¢) after leaving D(qo, 2¢).
The result of [2, Lemma 5.3] ensures the existence of K > 0 such that for any
q € D(qo, ¢)

Leb(R:(q)) < Ke'~1/? = K \/Je.

Therefore, setting A, = {(g,v) € A:: v € R:(q)} we get that the two dimensional
Lebesgue measure of A, is O (¢/%). A fortiori since the projection IT preserves the
measure cos drdg we get

v(l'[ﬁlg) = CU/ cospdrde = cv/ cospdrdy = 0(?).
Hﬁg ﬁle

Let p. = |(maxt)~'e~1/2| and notice that A, N {ta, < pe} C Hﬁ(g. By the
previous estimates we get

V(Ae N (T4, < pe)) = 037,
Hence

v(Ta, < pelAe) = o(1).

This is the assumption (i).

We now prove (ii). The boundary of A, in the induced topology of M is included
in the set of I1(g, v) where v is tangent to the boundary of d D(qo, ). This defines
for each i such that X; N A, is nonempty and contains at most two C? curves in
D; of finite length (by transversality), therefore its £2-neighborhood has a measure
0(&?).

Finally, the measure dm, = (H;)4«v(-|A¢) is equal to the measure dm :=
4; cos pdsdg, since the measure cospdrdg is preserved by the inverse of the
projection IT from A, to A, and H, has constant jacobian ¢ in these coordinates.
By Theorem 8.2.1 the point process N(F, Ag, v(Ag), H) converges to a Poisson
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point process of intensity A x m. Applying Theorem 8.2.2 with h, = c,4me and
hl, = he/E,(v) we get that N(Y, A,, hl,, H,) converges to a Poisson point process
of intensity A x m. In addition,

/ rdv:cV/ rcosgodrd(p:cl,/ COS(pdtdrd(pchVOZ(TlN).
M M T

Thus, since Vol(T'N) = 27 Area(N) we get that hl, = Area(N), proving the
proposition. O

8.6 Time Spent by a Flow in a Small Set

Given a flow Y = (¥;); defined on €2 and a set A C €2, a very natural question is to
study the time spent by the flow in the set A, that is the local time L7 (A) given by
following quantity :

Lr(A):=1({te[0,T]: Y €A} .

This quantity measures the time spent by the flow Y in the set A between time 0 and
time T (the symbol L refers to the local time). We also write D4 := inf{r > 0 :
Y; ¢ A} for the duration of the present visit to the set A.

Proposition 8.3 Let J > 1 and Y = (Yi)i>0 be a flow defined on (2, F, P).
Assume that (N = N(Y, Ag, he, He)).~ converges in distribution (with respect
to P) to a PPP Ny of intensity .. x m with He(Ag) C V. = {1,...,J} x W where
m = ZJJ.:l(pj(Sj X mj), with Z/J':I pj = 1 and where m j are probability measure
on some separable metric space W. Suppose in addition that, for some a. and
each x entering in Ag, agDa, (x) = ”DagHE(x)) with lim; 0D (j, w) =: D (w)
uniformly inw € W, where ®; : W — R is continuous.

Then
L= Z 81 he HD (¥, () e Dy s (1)
t:Y,(x) enters A; >0
converges in distribution with respect to P to a PPP Ly on [0, +00) x {1, ..., J} x

Ry with intensity A x Z] 1(pjd; X (Dj)e(m))).
If moreover agDAE —> 0 setting LY )(Ag) = L7(A: N H’l({i} X W)) then,

)
(ZII{V 1 X,E”) oTLint as &€ — 0, where (N;(/))r>0 are independent Poisson
te j

=1,...,

process with parameter p; and where (X,E] ))kzl are independent sequences of
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independent identically distributed random variables with distribution (D ). (m ;)
independent of (Nt(/ )),>0

Proof Observe that, for every € > 0, L, = (Yo)«(Ne) with ¢ @ (¢, j, w) —
@, J,De(j,w)) if ¢ > 0 and with ¥ : (¢, j,w) = (¢, j, Dj(w)). Using [23,
Proposition 3.13] we prove the first statement.

P
Assume now that a; D4, — 0. Then

(agL%s = agmin(t/he, Dy =1y cw) +/ zd Le(s, 1, z))

[0.1x{j} xR+ 1€[0,T1, j=1,...7

which converges to (aSLE%E = f[(),t]x{j}XR+ z2dLo(s, i, z))telo Mimtod m]

We apply the previous result to the dispersive billiard flow in a Sinai billiard with
finite horizon.

Theorem 8.6.1 (Time Spent by the Billiard Flow in a Shrinking Ball for the
Position) Consider the billiard flow associated to a Sinai billiard with finite horizon
in a domain Q C T? (see Appendix for details). Recall that this flow preserves
the normalized Lebesgue measure on Q x S'. Let J be a positive integer. Let
q1s.-.,q5 € Q be a J pairwise distinct fixed position in the billiard domain and
1, ...,ry be J positive real numbers. We setd; = 2 ifq; ¢ 0Q andd; = 1if
gj€dQandd = ZJJ-ZI djrj and also

J

Le = Z Z ‘SA,ﬁj;“fQ),j,s*'D 10Y;(x)

- B(qj.rjs)xS
J=11:Y,(x) enters B(qj,rja)xSl >0

and

t

W ._ |°
Lt/s '_/0 l{Yv(‘)EB(quﬁ)XSl}ds'

Then, (Lg)s=0 converges strongly in distribution to a PPP Ly with intensity A X
ZJ d’;j (6 x m’j) where m’] is the distribution of r j X with X a random variable

j=1
of density y — Z arCCOS/(;)l[o,z](y) = 2\/)/ 21[0,2]())).

4-y

i N () %)

in distribution to \r; Y L, X, as ¢ — 0, where (N;"");=0
1€0,T1,j=1,....J

are independent Poisson process with parameter , where (X,EJ ))kzl is

a sequence of independent identically distributed random variables with density
X 2\/4):7)@ 170,21(x) independent of (N;);>0.

dj Area(Q)
2
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Proof of Theorem 8.6.1 Due to Theorem 8.6.2, we know that the family of pro-
cesses

J
Z Z 8 1 Do r(y)—q;
( det o0 ,nv(Y,(y»)

J=V1: (Y(y)s enters B(g;.e)x ! at time t \ 7@

converges in distribution (when y is distributed with respect to any probability
measure absolutely continuous with respect to the Lebesgue measure on M)
as ¢ — 0 to a Poisson Point Process with intensity A x mg where mq is
the probability measure on {1,...,J} x S' x S' with density (j, p,u)

J rjd; . J
iy 2d1,7, ((=p). W) Lypn, )20 Withd := 375 djr.
We will apply Proposition 8.3 with A, := U,J-=1 B(qj,erj) x S'and He(q,v) =
—') .
(j, Z;Z,v) if g € 9B(q;.rje).
Letx = (g, v) entering in B(g;, &) x S1. If the billiard flow crosses B(gy, €) x S!
before any collision with 8 Q, then

6 Di(g,.rexs51 (@, V) = 26714, V) = Do(H:(x)),

with Do(j, p.u) = 2r;(—p, u). This is always the case if ¢; ¢ dQ. But, if g, €
9 Q, it can also happen that the billiard flow collides with 8 Q ata pointq’ € B(g;, €)
before exiting B(g;, £) x S1. Then the point ¢’ is at distance in O(g?) of the tangent
line to dQ at g, and the tangent line of dQ at ¢’ makes an angle in O(¢) with the
tangent line of 0 Q at g;. In this case

e Dy, e x50 (@5 V) =2671(@q5, V) + O (2) = Do(He(x)) + O (&)

uniformly in x = (g, v) and ¢. In any case, we set a, = e land ®, = Dy + O(e).
Applying now Proposition 8.3, we infer that (£;),~0 converges strongly in

distribution to a PPP L with intensity A X ij':l 5 djr(;- (8 x (Dj)x(mj)), with
j/:l j/rj/

D;(p,u) =2r; (—/pjl) and m ; the probability measure on S ' x §1 with density
dj +
(p.w) >~ {(=P). W) " Li(p.ng )20 -

It remains to identify the distribution (D). (m ). By the transfer formula, we obtain

o0 1
/Oh(D,(p,u))dm,(p,u) 2 /Slxslg(r,( 2p, w)((=p), W) " L(p.n,;)>0) dp du

1

s
= 2/2” h(2rjcosg)cospdy
2
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s

=/2 h(2rj cosg)cospdy
0
2 y
- /0 ) arecos(-/2) () dy.

Thus we have proved that the probability distribution (D)4 ; is the distribution
of r;X with X a random variable of density y + j.arccos'(3)1j2(y) =

M |
24y [0,21()-

We can apply the last point of Proposition 8.3 since 7! D4, < 2 max irila, £
0 for any probability measure P absolutely continuous with respect to the Lebesgue
measure on Q X st. |

Appendix: Visits by the Sinai Flow to a Finite Union of Balls
in the Billiard Domain

In this appendix we are interested in spatio temporal processes for the Sinai billiard
flow with finite horizon.

Let us start by recalling the model and introducing notations. We consider a
finite family {O;, i = 1, ..., I} of convex open sets of the two-dimensional torus
T2 = R2/7?. We consider the billiard domain Q = T2 \ | J/_, 0; and call the O;
obstacles. We assume that these obstacles have C3-smooth boundary with non null
curvature and that their closures are pairwise disjoint. We consider a point particle
moving in Q in the following way: the point particle goes straight at unit speed in
0 and obeys the classical Descartes reflexion law when it collides with an obstacle.
We then define the billiard flow (Y;):er as follows. Y; (g, v) = (q:, v;) is the couple
position-velocity of the point particle at time ¢ if the particle has position ¢ and
velocity v at time 0. To avoid any confusion, we consider the billiard flow being
defined on the quotient (Q x S') /R, with R is the equivalence relation corresponding
to the identification of pre-collisional and post-collisional vectors at a reflection
time:

(g, VIR, V) & (q.v)=(q',V) or vV =v—-2(ng v)n,,

where n; is the unit normal vector to dQ at g directed inward Q if ¢ € 90,
with conventionn, = 0if ¢ ¢ dQ. This flow preserves the normalized Lebesgue
measure i on Q X st

We assume moreover that every billiard trajectory meets dQ (finite horizon
assumption).

Let us write ITg : Q x S > Qand Iy : Q x S' — S! for the canonical
projections given respectively by I1p(q, v) = g and Iy (¢, v) = v.
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Theorem 8.6.2 (Visits of the Billiard Flow to a Finite Union of Shrinking Balls
in the Billiard Domain) Let q1, ..., q; € Q be pairwise distinct positions in the
billiard domain and r1, . .., rj be positive real numbers. We setd; =2 ifq; ¢ 00
anddj =1ifg; € 9Q andd = ij-zldjrj.

Then, the family of processes

J

) N—a s
Z ( der . T q",l'[y(Y,(y)))

Area(Q)’7” rje

J=11: (Y,(y)s enters B(q;.erj) xS at time t

converges in distribution (when y is distributed with respect to any probability
measure absolutely continuous with respect to the Lebesgue measure on M) as
& — 0 to a Poisson Point Process with intensity A x mqo where mq is the
probability measure on 'V := {1,...,J} x S' x S with the density (j, p,u)
2dn (=) W L(pm, )0

Observe thatif g; € 00, the set of p € S satisfying (p, ng;) > 0 is a semicircle,
whereas it is the full circle S' when ¢ j is in the interior of Q.

This result has already been proved in [21, Theorem 4.4] for / = 1 and
Lebesgue-almost every position g;. The extension to a finite number of points is
relatively easy. The most difficult part is to treat all the possible positions in the
billiard domain.

Along the paper we provided various applications of this theorem to different
questions. We present here a result on the closest approaches to a given point in the
billiard table by the orbit of the billiard flow.

Example H.3 Consider the billiard flow associated with the Sinai billiard having
finite horizon in a domain Q C T?. Consider a fixed position go € Q. Set d =
2 — 14ey0. During each visit of the flow to B(qo, &), the closest distance to g is
given by Lo(g, v) := €| sin / (q_qB, v)| where (g, v) is the entry point.

Then the family of closest approach point process

(Ce = N(Y, B(qo, ¢) x S',de/Area(Q), e*lLo))

E>

on [0, +00) x [0, 1] converges in distribution (with respect to any probability
measure absolutely continuous with respect to the Lebesgue measure on Q x S!) to
a PPP with intensity 1.

Proof Due to Theorem 8.6.2, the family of spatio-temporal processes
(Ne := N(Y, B(qo, &) x S'. de/Area(Q), He)e=0
with H.(q,v) = (8’1qTq>,v) converges in distribution (with respect to any

probability measure absolutely continuous with respect to Lebesgue on Q x S') to
a PPP of intensity A X rizg where i1 is the probability measure on S' x S! with the
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density (p,u) 20},, ((=p), W) 1y(pn,,)>0y (Where ng, is the unit normal vector
to 0 Q at g directed inward Q if gg € 00, ng, = 0 otherwise).
Observe that

Ce = G(N,),

with G (¢, p,u) = (1, G(p, w)) where G(p,u) = (1, |sin /(—p, w)|). Thus (Ce)e>0
converges strongly in distribution to the PPP with intensity A x G.(mo) and it
remains to identify m| = G, (mg). Due to the transfer formula, we obtain

o0 1
/h(G(p,ll))dn?o(P,U) = 54 / h(|sin/(=2p, w)))
0 7 Js

Iy st

x (cos /(—p, “))+1{(p,nqj)20} dp du

1 [>
:2/ h(|sing|)cospdy

2
g 1
=/ h(sin(p)cosq)d(p:/ h(y)dy.
0 0

Proof of Theorem 8.6.2 Due to [28, Theorem 1], it is enough to prove the result for
the convergence in distribution with respect to p. Assume & > minjx q’ff"". We
use the representation of the billiard flow as a special flow over the discrete time
billiard system (M, v, F') corresponding to collision times and with t the length of
the free flight before the next collision.

Set A, = U)’zl ng ), where ng ) is the set of the configurations entering in
AY = (0N B(gj. &) x S\, ie. A is the set of (g, v) € (Q N IB(g;, £]) x S
s.t. (qqe, v) > 0. Set also A, := U/J':1 AY.

N

Set hl, := de/Area(Q) and He(q',v) = (j. % ,v)if ¢’ € 3B(qj,r;e). Here
M is the set of reflected unit vectors based on d Q, v is the probability measure with
the density proportional to (g, v) + (n(g), v), where n(q) is the unit vector normal
to dQ at g directed towards Q and F : M — M is the transformation mapping
a configuration at a collision time to the configuration corresponding to the next
collision time.

The normalizing function G, is given by G.(x) = Hg(Yr(Nm (x)(x)) with
Ag

r/({)(y) =1inf{t > 0 : Y,(y) € Ag}.

"As in the setting of Theorem 8.2.2, we write IT for the projection on M, that is
[1(g’, v) = (g, v) is the post-collision vector at the previous collision time. We take
here h; 1= V(TT(Ag)).

As for [21, Theorem 4.4], we will apply [21, Proposition 3.2] after checking its
assumptions. We define Xéj) :=1{(g,v) € 0B(gj, &) x st (q_q;, v) > 0}.
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®

(i)

Measure of the set. We have to adapt slightly the first item of the proof of [21,
Theorem 4.4] which deals with the asymptotic behaviour of v(B;) with B, :=
M(A,). Observe that B, = J7_; B with B := T(AY), i.e. B is the
set of configurations (g, v) € M such that the billiard trajectory (Y;(g)):>0
will enter B(q;, er;) before touching 9 Q0. As seen in [19, Lemma 5.1],

|QONdB(gj,rje)l _ 2mrje

ifgj € 0\ 90, v(BY) = = .
! ‘ 10 Q| 10 Q|
With exactly the same proof, we obtain that

. NaB(g;.r; 4
ifq; c00, v = CNINLIOL e

00| 10Q]
Moreover, for every distinct j, j/, Béj ) N Béj ) is contained in TT(B(x; j/,
—
Kj,j’g) U B(xj/,j, Kj,j/s)) where xj,j/ = (q/', qjq}q/'q}) and Kj,j’ =
max (1, q'zﬂ ) So, due to [19, Lemma 5.1], v(Béfj) N Béj/)) = 0(?) = o(e).
Jj4dj’
Hence we conclude that
! dme
v(Bg) ~ v(BY) ~ ,
(Be) Zl B~ ol
]_
ase — 0.
Observe that

J
N(Y, Ag, iy, He) = Y N(Y, AD, b, He) = N(Y, AL b, He)
j=1

where A} = JJ_, T-' (AL \ U - ((AY")) and that, for all
T >0,

B, [(M(Y, Ae, b, He) — N(Y, AL, R, G)) ([0, T] x V)]

T maxt ~ ~
< A(])ﬂA(j)>= D,
= 2h,(mint7)? _Z, : _/”( e 10 o(h)
JJ'J#E]

where we used the representation of Y as a special flow over (M, v, F) due
to the fact, proved in the previous item, that for any distinct labels j, j’,

v (ng 'n ng /)> = o(e). Thus it is enough to prove the convergence in
distribution of N(Y, A/, h., H.) with respect to .
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(iii)) The same argument ensures that, with respect to v, the convergence in
distribution of N(F, B, he, G¢) to P is equivalent to the convergence in
distribution of N(F, B}, he, G), with B} := T1(A}).

(iv) Note that v((3B,)*’)) = o(v(B,)), for every § > 1.

(v) Dueto Lemma 8.6.1, for every o > 1, v(tp, < ¢ ?|B¢) = o(1), where tp is
here the first time k > 1 at which Fk(~) € B.

(vi) Now let us prove that (v(G;1 (-)| Be))e>0 converges to nig as ¢ — 0.

Let us consider the measure iz on {1,...,J} x S' x S! with the density
(o pow > ri((—p).w)*.
Observe first that 7iig = fi(-|]A) with A := Ule AW and

A9 = {(pw e ' x 5" ((=p)u) = 0, (p.my) = 0

and second that v(Gg1 ()|Bg) = (-|G¢(Bg)). But

J
ﬂ(A\Ga(Ba))SX;/l He | Yo Q(Bgnmagn)
j= é J'#]

J
< ZZmaxﬂaQIrjsv U(Béj) ﬂBg(j/)) = 0(v(Be))
Jj=1 J#J’

and G¢(B;) \ A corresponds to points (p,u) € S! x S with qj € 00 with
0 < (p,u) < O(¢), thus

1 (Ge(Be) \ A) = O(e) .

This ends the proof of the convergence in distribution of the family of
measures (U(G;1(~)|BS))£>0 tomgas & — 0.
(vii) For the construction of ‘W we use [21, Proposition 3.4]. |

Thus, due to [21, Proposition 3.2], we conclude the convergence of distribution with
respect to v of (N(F, Bg, he, G¢))e~0 and so, due to (ii), of (N(F, Bg, he, Ge))eso
to a PPP # with intensity A X mg. Applying now Theorem 8.2.2, we deduce
the strong convergence in distribution of (N(F, AL, he/E,[t], He))e>0 to P
and so, due to (iii), the convergence in distribution with respect to p of
(N(F, Ag, he /Ey[T], H:))e=0 to P. Now we conclude by Zweimiiller [28,
Theorem 1] and by noticing that

he dme de

= = =h,.
Evr] [0QIE)(tr] Area(Q) ¢
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Lemma 8.6.1
Vo €(0,1), v(tp, <& ?|B:) =0(1) (8.6.1)

Proof This point corresponds to the second item of the proof of [21, Theo-
rem 4.4], which for Lebesgue-almost every point came from [19, Lemma 6.4]. To
prove (8.6.1), we write

le7]
v(tp, <& 7|Be) < Z V(F~"(B,)|Bs). (8.6.2)
k=1

Thus our goal is to bound v(F =" (B;)|Be).

Step 1: Useful Notations

We parametrize M by Uilzl {i}x(R/100;1Z)x[—7; § ] Areflected vector (¢, V) €
M is represented by (i, r, ) if g € 9I'; as curvilinear absciss rd O; and if ¢ is the
angular measure in [—m /2, 7 /2] of (n(q), v) where n(g) is the normal vector to 0 Q
atq.

For any C'-curve y in M, we write £(y) for the euclidean length in the (r, ¢)
coordinates of y. If moreover y is given in coordinates by ¢ = ¢(r), then we
also write p(y) := f y cos(¢ (r)) dr. We define the time until the next reflection in
the future by

7(q,v):=min{s >0 : g +svedQ}.

It will be useful to define Sg := {¢ = £m/2}. Recall that, for every k > 1, Fk
defines a Cl-diffeomorphism from M\S_j to M\ Sy with S_ := Ufn:O F7(Sp)
and Sy := (U~ _o F™ (So).

Step 2: Geometric Study of B, and of F(B;)
Moreover the boundary of each connected component of B (resp. F(B;)) is made
with a bounded number of C! curves of the following forms:

¢ curves of Sp, corresponding, in (r, ¢)-coordinates, to {¢p = :|:72’ }.

« C! curves of F71(Sp) (resp. F(Sp)), which have the form ¢ = ¢(r) with ¢ a
c! decreasing (resp. increasing) function satisfying minx < |¢'(r)| < maxx +
milm, where k (g) is the curvature of 9 Q at g € dQ and where 7 is the free flight
length before the next collision time.

+ if go & 3Q: C! curves, corresponding to the set of points x = (g, v) € M (resp.
F(x)) such that [TTg(x), ITo(F (x))] is tangent to 9 B(qo, ¢). These curves have
the form ¢ = ¢.(r) with ¢, a decreasing (resp. increasing) function satisfying
mink < |¢,(r)| < maxk + d(qo,;Q)_S < maxk + 30), with 7o := d(qo, Q) as
soonas e < 7.

+ if go € 8Q: C! curves, corresponding to the set of points x = (q,v) € M
(resp. F(x)) such that [TTg(x), ITo(F (x))] is tangent to d B(go, &) or such that
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Mo (F(x)) is an extremity of B(qo, &) N Q and [ITgp(x), [T (F(x))] contains
no other point of B(qo, ¢). These curves have the form ¢ = ¢.(r) with ¢, a
decreasing (resp. increasing) function satisfying minx < |¢.(r)|.
The points x = (gq,v) € M, with d(q, go) < 1 almost immediately entering
(resp. exiting) B(qo, €) x S! are contained in a union R, of two rectangles of
width O(g!/?) for the position (around gg) and of width O(e) for the velocity
direction (around the tangent vectors to d Q at gg).

In B; \ R; (resp. F(B;) \ (R U Hél(B(qo, €)))) we also have |¢.(r)| <

max K + 30 with 7o := min T as soon as & < Tzo

We say that a curve y of M satisfies assumption (C) if it is given by ¢ = ¢ (r)
with ¢ being Cl-smooth, increasing and such that mink < ¢’ < maxk + 30 We
recall the following facts.

e There exist Cp, C; > 0 and A1 > 1 such that, for every y satisfying Assumption
(C) and every integer m such that y N S_,, = @, F"y is a C'-smooth curve
satisfying assumption (C) and Cy p(F™y) = AJ' p(y) and £(y) < Co/p(Fy).

e There exist Cp > 0 and Ap > A}/ 2 such that, for every integer m, the number of
connected components of M\ S_, is less than C21%'. Moreover S_,, is made of
curves ¢ = ¢ (r) with ¢C'-smooth and strictly decreasing.

o Ify Cc M\ S_;isgivenby ¢ = ¢(r) or r = t(p) with ¢ or v increasing and c!
smooth, then Fy is C!, is given by ¢ = ¢1(r) with minx < ¢] < maxk + milm.
Moreover [, d¢ = [, do.

We observe that there exist K(’) > 0 and g9 > O such that, for every ¢ € (0, g9),

F(B;) \ R is made of a bounded number of connected components Va(i) each of
which is a strip of width at most K¢ of the following form in (r, ¢)-coordinates:

e {(rp) :rel, ¢(’)(r) << ¢(’)(r)} (with J an interval) and is delimited
by two continuous piecewise C! curves yj given by ¢ = ¢;(r) satisfying
assumption (C) and ||¢Y) — q&é’.)HOo < Kje.

 orpossibly,if go € 90, {(r, ¢) : rffa <r< r( )} with |r(’) régl < Ke.

In particular, with the previous notations, any connected component Va(i) of F(Bg)\
R, has the form (J, g 1, 7", where y(’) corresponds to the graph {y @ (u,r) =
(rup”(r) + (1 —1)¢y (1) : r € Ji} (or possibly (¥ (u, ) = (ur{’) + (1 —
u)rzg,(p) ¢ € J;i}if go € Q). Thus

Leb(EN F(By \ Ry))
2|10|

aau v (u, s)

VE € B((M), v(ENF(B:\R,)) =

dsdu

Ji x[0,1]

1
1,6
Xi: 2|8Q| v (u,s)eE

/

8
< sup £(E N 7). (8.6.3)
2901 o g
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Step 3: Scarcity of Very Quick Returns
Let us prove the existence of K; > 0 such that,

70 —s—1 é s )
Vsl Ve < o w(FNBIB) < KiGha/AD) e (8.6.4)

Letu € (0, &). We define y to be a connected component of 3, N F(Bg) N F~*(B).
The curve y satisfies Assumption (C) or is vertical. In any case, any connected
component of F(y) satisfies Assumption (C) and £(y) < Co/p(F(y)) (indeed, if
y is vertical, then £(y) < p(F(y)). It follows

— mint

€)= CoV/p(F()) = CoJCIl= p(Fry) < ChJCirt=Kpe

using first the fact that F(y) is an increasing curve contained in M \ S_; and
secondly, the fact that F*y is an increasing curve satisfying Condition (C) and
contained in B,. Since F(};,) \ S; contains at most Czki connected components,
using (8.6.3), we obtain

/

VWF Y (By)N B\ Ry) = v(F(B,)NF(B; \ R, sup szzcm/clx2 g2,

)= 2IaQI

We conclude by using the fact that v(B;) = Itggl and that v(R;) = O(e > ).

Step 4: Scarcity of Intermediate Quick Returns
We prove now that for any a > 0, there exists s, > 0 such that

gsa

Z v(B: N F"B,) = 0(v(By)). (8.6.5)

n=—aloge

Since v(B;) &~ ¢ and v(R;) = O(sg), up to adding the condition s, < 1/2, it
remains to prove (8.6.5) with v(B, N F~" B) replaced by v((B: \ R;) N F~"(B;)).

If g9 € 9Q and if ¥, is vertical, we replace it in the argument below by
the connected components of F(y,) and will conclude by noticing that; for any
measurable set A, £(¥, N F~1(A)) < CHU(F (Yu N A)).

We denote the kth homogeneity Stl‘ipl by Hy, for k # 0 and set Hy = Uj| <k, Hi
for some fixed ko. Set s := min(—alog8, 1)/3. Letk = ¢ and H® = U <x, Hi.
For any u € [0, 1], we set ., = %, N H. Each ¥, is a weakly homogeneous
unstable curve.

We cut each curve ¥, into small pieces .,; such that each F/% ., j =
0, ..., nis contained in a homogeneity strip and a connected component of M \ Sj.

1See [6] for notations and definitions.
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For x € Y ,.; we denote by r,, (x) the distance (in F"¥,) of F"(x) to the boundary
of F"Vk.u.i-

Recall that the growth lemma [6, Theorem 5.52] ensures the existence of 6 €
(0, 1), ¢ > 0 such that, for any weakly homogeneous unstable curve y one has

Ly N{rn < 8}) < c0"8 +cl(y). (8.6.6)
Therefore,
L(yu N F7"(Be) \ He)

< 3 6O = YN F T (B) + EGuk N (< €17,
|k|<ke

The first term inside the above sum is bounded by the sum >, £(Vi ki N F~"(Be))
over those i ’s such that F" (¥, ;) is of size larger than el=5 . In particular £(, ki) >
£!7%. On the other hand, by transversality
CF" (Yuk,i) N Be) < ce.
By distortion (See Lemma 5.27 in [6]) we obtain
CVuk,i N F"(Bg)) < &’ l(Vuk,i)-

Summing up over these i gives the first term inside the sum is bounded by

EGuk N {ra = €'} N F(Be)) < e U(Fuki)-
Thus

CGuk N < &' 7)) < 06! ™ + ce! U (Fp).
A final summation over k gives

CFu VF 7" (Be) \ He) < c(6* + ' )T + cket"e' ™.
This combined with (8.6.3) leads to
V(F(B: \ Re) N F"(Be)) < v(F(Be \ Re) NHe) + O(e' ) = O(*v(By)).

where we use the fact that B, \ H, is contained in a uniformly bounded union of

rectangles of horizontal width O(¢) and contained in the k- 2 = £?5-neighbourhood
of Sy. We take s, < min(s, %).
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Step 5: End of the Proof of (8.6.1)
Choosea = 1/(4 log(Ag/)\%/z). Observe that, due to (8.6.4), we have

—aloge
, K ! K
S wFETANA) < T GaapTalesel2< TL Gl
s=1 A.Z/A.lz —1 A.Z/A.lz -1
This combined with (8.6.5) leads to

g Sa
Z V(F™"B,|Bs) = 0(1). (8.6.7)
n=1

Let 0 > 1. In view of (8.6.2), it remains to control v(F~"B.|B;) for the
intermediate integers n such that e™5¢ < n < ¢7°. We approximate the set B,
by the union §5 of connected components of M \ (S_g) U Sk(e)) that intersects
Be, with k(g) = ||loge|?]. There exists C>0andf € (0, 1) such that, for any
positive integer k, the diameter of each connected component of M \ (S—x U Sy) is
less than CoF. o

Thus B, C B, and v(B, \ B;) < v ((aBS)[CW)]) — O(0%®)). But, due to [20,

Lemma 4.1], we also have
Vm > 1, ¥n > 2k(e), v (B: N F"B;) = v(Be)* +O0n"v(By)).

Since k(g) = o(¢7 %) and thus

P

Vm>1, Y v(F"B:|B) <O (51*" 4 glalm=D)—o +5’<<€>) —o(1)

n=g—%a

ase — 0,sinceo < 1, 0 e (0, 1), k(¢) = 400 and by takingm > 1+ gl This
combined with (8.6.7) and (8.6.2) ends the proof of (8.6.1). 0
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Chapter 9 )
Rate of Mixing for Equilibrium States in s
Negative Curvature and Trees

Anne Broise-Alamichel, Jouni Parkkonen, and Frédéric Paulin

Abstract In this survey based on the recent book by the three authors, we recall
the Patterson-Sullivan construction of equilibrium states for the geodesic flow on
negatively curved orbifolds or tree quotients, and discuss their mixing properties,
emphasizing the rate of mixing for (not necessarily compact) tree quotients via
coding by countable (not necessarily finite) topological shifts. We give a new
construction of numerous nonuniform tree lattices such that the (discrete time)
geodesic flow on the tree quotient is exponentially mixing with respect to the
maximal entropy measure: we construct examples whose tree quotients have an
arbitrary space of ends or an arbitrary (at most exponential) growth type.

9.1 A Patterson-Sullivan Construction of Equilibrium States

We refer to [22, Chap. 3, 6, 7] and [3, Chap. 2, 3, 4] for details and complements on
this section.
Let X be (see [3] for a more general framework)

 either a complete, simply connected Riemannian manifold M with dimension m
at least 2 and pinched sectional curvature at most —1,

* or (the geometric realisation of) a simplicial tree X whose vertex degrees are
uniformly bounded and at least 3. In this case, we respectively denote by EX
and VX the sets of vertices and edges of X. For every edge e, we denote by
o(e), t(e), e its original vertex, terminal vertex and opposite edge.

Let us fix an indifferent basepoint x,. in M orin VX.
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Recall (see for instance [2]) that a geodesic ray or line in X is an isometric
embedding from [0,+oo[ or R respectively into X, that two geodesic rays are
asymptotic if they stay at bounded distance one from the other, and that the
boundary at infinity of X is the space d.,X of asymptotic classes of geodesic
rays in X endowed with the quotient topology of the compact-open topology.
When X = M, up to a translation factor, two asymptotic geodesic rays converge
exponentially fast one to the other, and doo M is homeomorphic to the sphere S,
of dimension m — 1. When X is a tree, up to a translation factor, two asymptotic
geodesic rays coincide after a certain time, and doo M is homeomorphic to a Cantor
set.

For every x in X, the Gromov-Bourdon visual distance d, on d,cX seen from x
(inducing the topology of 0, X ) is defined by

do(g, ) = lim e2@E )= &)=d(xn)
X k) 1400 k)

where §,7 € 00X and t +— &, n, are any geodesic rays converging to
&, n respectively. The visual distances seen from two points of X are Lipschitz
equivalent.

Let I" be a discrete group of isometries of X which is nonelementary, that is,
does not preserve a subset of cardinality at most 2 in X U doc X. When X = M, this
is equivalent to I" not being virtually nilpotent. When X is a tree, we furthermore
assume that X has no nonempty proper invariant subtree (this is not an important
restriction, as one may always replace X by its unique minimal nonempty invariant
subtree), and that I' does not map an edge to its opposite one.

The limit set AT" of I is the smallest nonempty closed invariant subset of 950X
which is the complement of the orbit I'x, in its closure I"x,, in the compactification
X U dxX of X by its boundary at infinity.

Examples

(1) Let M be a symmetric space with negative curvature, e.g. the real hyperbolic
plane H2, and let I" be an arithmetic lattice in Isom(M ), e.g. ' = PSLy(Z)
acting by homographies on the upper halfplane model of HH% with constant
curvature —1 (see for instance [10], and [17] for a huge amount of exam-
ples).

3
< e—l‘
PSLy(Z)\Hz, ) k :
2 N ______ _____ ,
t
1
cq”
PGLy (F, [YD\X, -
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(2) For every prime power ¢, let X be the regular tree of degree ¢ + 1, and let
I' = PGLy(IF4[Y]), acting on X seen as the Bruhat-Tits tree X, of PGL; over
the local field ]F,,((Y’l)) (see for example [25], and [1] for a huge amount of
examples).

Note that the pictures of the quotients '\ X are very similar in the above two
special examples, in particular

* the lengths of the closed horocycle quotients in PSLQ(Z)\H?R go exponentially
to 0 (they are equal to e ' where ¢ is the distance of the horocycle quotient to the
orbifold point of order 2),

* the orders of the vertex stabilisers along a geodesic ray in X, lifting the quotient
ray PGL, (IF,[Y])\X, increase exponentially (they are equal to ¢ g" where c is
a constant and n is the distance of the vertex to the origin of the ray), see for
instance [3, §15.2].

Remark 9.1 Note that we allow torsion in I', as this is in particular important in
the tree case; we allow I'\ X to be noncompact; and we allow I" not to be a lattice.
These allowances give in the tree case the possibility to have almost any (metrisable,
compact, totally disconnect) space of ends and almost any type of asymptotic growth
of the quotient I"\ X (linear, polynomial, exponential, etc.), see [ 1] and Section 9.3.3.

Recall that I" is a @ttice in X if either the Riemannian volume Vol(F\M ) of the
quotient orbifold I"'\ M is finite, or if the graph of groups volume

1

Vol(T\X) = Z Card()

[x]el\VX

(where Iy is the stabiliser of x in I') of the quotient graph of groups I'\ X is finite.
Note the analogy, in the two special examples above, between the computation of
(most of) the volume of PSLZ(Z)\IHI%R as a converging integral of the lengths of
the closed horocycle quotients and of the volume of PGL, (F,[Y])\X, (which does
converge by a geometric mean argument).

The Phase Space Let ¢ X be the space of geodesic lines £ : R — X in X, such
that, when X is a tree, £(0) is a vertex, endowed with the Isom(X)-invariant distance
(inducing its topology) defined by

+00

de, ') = / d@), ¢ ) e *"ar
—0oQ

and with the Isom(X)-equivariant geodesic flow, which is the one-parameter group

of homeomorphisms

g il s L(s+1)}

for all £ € ¢4 X, with continuous time parameter r € R if X = M and discrete time
parameter ¢ € Z if X is a tree. We again call geodesic flow and denote by (g'); the
quotient flow on the phase space I'\¥Y X.



294 A. Broise-Alamichel et al.

Note that the map from the unit tangent bundle T'M endowed with Sasaki’s
metric to @M, which associates to a unit tangent vector v the unique geodesic
line whose tangent vector at time t+ = 0 is v, is an Isom(]rl)-equivariant bi-
Holder-continuous' homeomorphism, by which we identify the two spaces from
now on.

Potentials on the Phase Space We now introduce the supplementary data (with
physical origin) that we will consider on our phase space. Assume first that
X =M Let F : T'"M — R be _a potential, that is, a T'-invariant, bounded?
Holder-continuous real map on 7! M. Two potentials F,F* : T'"M — R are
cohomologous (see for instance [16]) if there exists al Holder-contmuous bounded,
differentiable along flow lines, I'-invariant function G : T'M — R, such that, for
everyv e T! M,

T - d ot
Fro)-Foy= ) G,

Forevery x, y € M, let us define (with the obvious convention of being 0 if x = y)
the integral of F between x and v, called the amplitude of F between x and y, to be

y o d@x.y) _ v
/ F =/ F(g'v) dt //_\.\
X 0

X y

and v is the tangent vector to the geodesic segment from x to y.

Now assume that X is a tree. Let ¢ : EX — R be a (logarithmic) system of
conductances (see for instance [29]), that is, a '-invariant, bounded real map on
EX. Two systems of conductances ¢, ¢* : EX — R are cohomologous if there
exists a I'-invariant function f : VX — R, such that for every e € EX

c(e) —cle) = f(t(e)) — f(ole)) .

For every £ € 4 X, we denote by ea“ ) = £([0, 1]) € EX the first edge followed
by ¢, and we define F : X — R as the map £ — E(ea“(ﬁ)). For every x,y € VX,
we now define the amplitude of F between x and y, to be

~ e e e
f F = Z c(e;) dt o—l»o—z»o—o—k»o
, X y

'In order to deal with noncompactness issues, a map f between two metric spaces is Holder-
continuous if there exist ¢, ¢’ > 0 and o € ]0, 1] such that for every x, y in the source space, if
d(x,y) <c thend(f(x), f(y) < dx, y)*.

2See [3, §3.2] for a weakening of this assumption.
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if (e1, ez, . . ., ex) is the geodesic edge path in X between x and y.

In both cases, we will denote by F : '\%9 X — R the function on the phase space
induced by F by taking the quotient modulo I', that we call the potential on T\ X.
Note that we make no assumption of reversibility on F'.

Cohomological Invariants Let us now introduce three cohomological invariants
of the potentials on the phase space.

The pressure of F is the physical complexity associated with the potential F
defined by

Pr = sup (hﬂ—i-/ Fdp)
w1 (g");-invariant proba on M\ X r\yx

where h, is the metric entropy> of u for the time 1 map g' of the geodesic flow.

The critical exponent of F is the weighted (by the exponential amplitudes) orbital
growth rate of the group I', defined by

o re
se=dm ,m( Y ealF).

yel, n—l<d(x«,yxs)<n

Note that the critical exponent &y of the zero potential is the usual critical exponent
of the group I' (see for instance [21]). We have §F € | — 00, 4+-00[ since

80+inff§8p 550+supf.

Note that §po, = 8F where 1 : ¥X — ¥ X is the involutive time reversal map
defined by £ +— {t > £(—1)}.

The period for the potential F of a periodic orbit & of the geodesic flow (g'); on
MNYXis [, F = f((otjﬁ) F where £ € ¢X maps to ¢ and

to =inf{t >0 : I'g't =T}

3The metric entropy & u s the upper bound, for all measurable countable partitions & of M\ X, of

1
li Hy(v---vg*
Jm g Vvt
where H, (§) = — > Fek W(E)Inpn(E) is Shannon’s entropy of the countable partition &, see

for instance [11], and the join & Vv &’ of two partitions & and &’ is the partition by the nonempty
intersections of an element of & and an element of &'.
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is the length of the periodic orbit &. The Gurevich pressure of F is the growth rate
of the exponentials of periods for F of the periodic orbits, defined by

1
29 = lim In ex /F ,
F Z P( p )

n—-4+o00 n
O te<n, ONW#)

where the sum is taken over the periodic orbits &' of (g’); on I'\¥ X with length
at most n and meeting W, where W is any relatively compact open subset of
N\¥ X meeting the nonwandering set of the geodesic flow (recall that we made
no assumption of compactness on the phase space).

Note that the above three limits exist, and are independent of the choices of x.
and W, and depend only on the cohomology class of the potential F.

The following result proved in [22, Theo.4.1 and 6.1] extends the case of the
zero potential due to Otal and Peigné [20].

Theorem 9.2 (Paulin-Pollicott-Schapira) If X = M has pinched sectional cur-
vatures with uniformly bounded derivatives,* then

PFZSFZQSLH’. o

Note that the dynamics of the geodesic flow (g'); on the phase space T\¥ X is
very chaotic. In particular, there are lots of (g'),-invariant measures on I'\¥ X. We
give two basic examples, and we will then construct, using potentials, a huge family
of such measures.

Examples

(1) If X = M, then the Liouville measure myjos on T'M = T\(T'M) is the
measure on 7'M which disintegrates, with respect to the canonical footpoint
projection T'M — ‘M, over the Riemannian measure voly of the Riemannian
orbifold M = T'\M, with conditional measures on the fibers the spherical
measures voly 1y On the (orbifold) unit tangent spheres at the points x in M:

dmpiou(v) = / dVOlTle(v) dvoly (x).

xeM

4This assumption on the derivatives was forgotten in the statements of [20, 22], but is used in the
proofs.
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(2) For every periodic orbit & of the geodesic flow (g"); on T\ X, we denote by
£y the Lebesgue measure’ (when X = M) or counting measure (when X is a
tree) of &. This is a (g’),-invariant measure on '\ X with support &.

The main class of invariant measures we will study is the following one, and the
terminology has been mostly introduced by Sinai, Ruelle, Bowen, see for instance
[24]. A (g"),-invariant probability measure p on the phase space M\¥ X is an
equilibrium state for the potential F if it realizes the upper bound defining the
pressure of F, that is, if

h,u—i-/ Fdu= Pr.
r@x

The remainder of this section is devoted to the problems of existence, unique-
ness and explicit construction of equilibrium states.

Gibbs Cocycles As for instance defined by Hamenstidt, the (normalised) Gibbs
cocycle of the potential F is the function C : 956 X X M x M — Rwhen X = M or
the function C : 950X X VX x VX — R when X is a tree, defined by the following
limit of difference of amplitudes for the renormalised potential

& &

Ceoy) = lim | (F=bp)— | (F=6p). .
y X |

9o X

where t — & is any geodesic ray converging to £. The limit does exist. The Gibbs
cocycle is I'-invariant (for the diagonal action) and locally Holder-continuous. It
does satisfy the cocycle property Ce(x,z) = Ce(x,y) + Ce(y,z) for all x,y, z.
Furthermore, there exist constants c1, ¢; > 0 (depending only on the bounds on the
potential F and on the pinching of the sectional curvature, when X = M) such that
ifd(x,y) <1,then C¢(x,y) < c1d(x, y). See [3, §3.4].

STf the length of ¢ is T and if v € T'M maps into ¢ by the canonical projection T'M — T'M,
the Lebesgue measure %, of O is the pushforward by ¢ + [g’v of the Lebesgue measure on
[0, T].
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Patterson Densities A (normalised) Patterson density of the potential F is a
I'-equivariant family (ux)xex of pairwise absolutely continuous (positive, Borel)
measures on d.c X, whose support is AT', such that

dpx

2 ©) = e~ Celx) 9.1.1)
My

Yalx = Myx and

forevery y € I', forall x, y € X, and for (almost) every £ € doX.

Patterson densities do exist and they satisfy the following Mohsen’s shadow
lemma (see for instance [3, §4.1]):

Define the shadow Oy E seen from x of
a subset E of X as the set of points
at infinity of the geodesic rays from x

OO0O0,B(yx,r) through E. Then for every x € X, if
r > 0 1is large enough, there exists « > 0
such that for every y € I', we have

yXx

1 vx -
. exp</x (F—ap)) < 1ux (O Blyx. 1) <k exp(/x (F—ap)). 9.1.2)

Gibbs Measures The Hopf parametrisation of X at x is the map from 4 X to
(000X X 00oX — Diag) x R, where R = Rif X = M and R = Z if X is a tree,
defined by

> (6_, 04, 1)

where €_, £ are the original and terminal points at infinity of the geodesic line ¢,
and ¢ is the algebraic distance along ¢ between the footpoint £(0) and the closest
point to x, on the geodesic line. It is a Holder-continuous homeomorphism (for
the previously defined distances). Up to translations on the third factor, it does not
depend on the basepoint x, and is I'-invariant, see for instance [3, §2.3 and §3.1].
The geodesic flow acts by translations on the third factor.

Let (uyx)xex and (u')xex be Patterson densities for the potentials F and F o ¢
respectively, where ¢ : ['¢ +— T'{r — £(—t)} is the time reversal on the phase space
'\¥ X. We denote by C* the Gibbs cocycle of the potential F' o t. We denote by



9 Rate of Mixing for Equilibrium States in Negative Curvature and Trees 299

dt the Lebesgue or counting measure on R. The measure on ¢ X defined using the
Hopf parametrisation at x, by

dpt, (02) dps, (£4) di

O = b (€L (e €0) + e, (er £0)))

is a o-finite nonzero measure on ¢4 X. By Eq. (9.1.1) and by the invariance of the
measure dt under translations, it is independent of the choice of basepoint x,, hence
is T-invariant and (g');-invariant. Therefore it induces a o -finite nonzero (g’);-
invariant measure on I'\¢ X, called the Gibbs measure on the phase space and
denoted by mp.

Examples

(1) When F = 0, then the Gibbs measure is called the Bowen-Margulis measure
(see for 1nstance [23])
(2) When X = M and F is the unstable Jacobian, that is, for every v € T! M

~u Jacobian of restriction of g’ to
F(v)=—— n( )
dt 1=0 strong unstable leaf W** (v)

we have the following result (see [22, §7], in particular for weaker assumptions).
When M has variable sectional curvature, the Liouville measure and the Bowen-
Margulis measure might be quite different. The following result in particular says
that the huge family of Gibbs measures interpolates between the Liouville measure
and the Bowen-Margulis measure. This sometimes provides common proofs of
properties satisfied by both the Liouville measure and the Bowen-Margulis measure.

Theorem 9.3 (Paulin-Pollicott-Schapira) If X = 1\7 has pinched sectional cur-
vatures with uniformly bounded derivatives, then FY is Holder-continuous and
bounded. IfM has a cocompact lattice and if ('), is completely conservative® for
the Liouville measure, then

MmFy, = MLiou- ]

OThat is, every wandering set has measure zero.
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The following result, due to Bowen and Ruelle when M is compact and to Otal-
Peigné [20] when F = 0, completely solves the problems of existence, uniqueness
and explicit construction of equilibrium states, see [22, §6].

Theorem 9.4 (Paulin-Pollicott-Schapira) Assume that X = M has pinched
sectional curvatures with uniformly bounded derivatives.” If the Gibbs measure m p
is finite, then mp = ”:Zﬁ” is the unique equilibrium state. Otherwise, there is no
equilibrium state. O

We refer to Sect. 9.3.2 for an analogous statement when X is a tree, whose proof
uses completely different techniques.

9.2 Basic Ergodic Properties of Gibbs Measures

We refer to [22, Chap. 3, 5, 8] and [3, Chap. 4] for details and complements on this
section.

9.2.1 The Gibbs Property

In this section, we justify the terminology of Gibbs measures used above.

For every £ € T\¥9X, say £ = FZ, for every r > 0 and for all ¢,¢" > 0, the
(Bowen or) dynamical ball B(¢;t,t,r) in the phase space '\ X centered at ¢
with parameters 7, t’, r is the image in T\& X of the set of geodesic lines in ¥X
following the lift 7 at distance less than r in the time interval [—7’, ], that is, the
image in M'\¥ X of

Bt/ ry={"e9X . sup dx(l(s),L'(s)) <r}.

se[—t,t]

The following definition of the Gibbs property is well adapted to the possible
noncompactness of the phase space '\¥ X. A (g');-invariant measure m’ on ['\¥ X
satisfies the Gibbs property for the potential F with Gibbs constant c(F) € R if for
every compact subset K of I'\ X, there exists r > 0 and cx_» > 1 such that for all
1,1 > 0 large enough, for every £ in T\¥ X with g~* ¢, g'¢ € K, we have

/ . /
1 m/(B&rr )

<Ckg..
Ckr ~ ol (F@o-ckyyar = 57

"This assumption on the derivatives was forgotten in the statements of [20, 22].
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The following result is due to [22, §3.8] when X = M and [3, §4.2] in general.

Proposition 9.5 The Gibbs measure mr satisfies the Gibbs property for F with
Gibbs constant c(F) equal to the critical exponent §. O

Let us give a sketch of its proof, which explains the decorrelation of the influence
of the two points at infinity of the geodesic lines, using the fact that the Gibbs
measure is absolutely continuous with respect to a product measure in the Hopf
parametrisation. The key geometric lemma is the following one.

Lemma 9.6 For every r > 0, there exists t, > 0 such that for all t,t' > t, and
L € 9X, we have, using the Hopf parametrisation at the footpoint £(0),

OuoyBU(—1"), 1) x OyoyBU(t),r)x 1—1,1[ C B;t,t',2r +2)
B(;t, t, ry C ﬁ((o)B(ﬁ(—t/), 2r) x ﬁg(o)B(K(t), 2ryx | —r,r[.

Let us give a proof-by-picture of the first claim, the second one being similar.
See the following picture. If a geodesic line £’ has its points at infinity £ and ¢/, in
the shadows seen from £(0) of B(¢(—t"), r) and B(£(—t'), r) respectively, then by
the properties of triangles in negatively curved spaces, if ¢ and ¢’ are large, then the
image of ¢’ is close to the union of the images of the geodesic rays from £(0) to £_
and £. The control on the time parameter in Hopf parametrisation then says that £’
is staying at bounded distance from £ in the time interval [—7’, ¢].

N
s

~

“MnNg 9000

000[(0) B(@(—l/), r)
S
~
4
~
E
S
/é
Y

We now conclude the proof of Proposition 9.5 by using the boundedness of the
Gibbs cocycles C and C* on a given compact subset K in order to control the
denominator in the formula giving 71z, and by using Mohsen’s shadow lemma (see
Eq. (9.1.2)) which estimates the Patterson measures of shadows of balls.

9.2.2 Ergodicity

In this section, we study the ergodicity property of the Gibbs measures under the
geodesic flow in the phase space.
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The Poincaré series of the potential F is

0r( =Y exp(fxm@—s)) .

yell

It depends on the basepoint x,, but its convergence or divergence does not. It
converges if s > §r and diverges for s < §f, by the definition of the critical
exponent 6.

The following result has a long history, and we refer for instance to [22, §5] and
[3, §4.2] for proofs, and proofs of its following two corollaries.

Theorem 9.7 (Hopf-Tsuji-Sullivan-Roblin) The following assertions are equiva-
lent.

(1) The Poincaré series of F diverges at the critical exponent of F : Qf (§F) = +00.
(2) The group action (900 X X doo X —Diag, u ®pux,, ') is ergodic and completely

conservative.
(3) The geodesic flow on the phase space endowed with the Gibbs measure
(T\YX,mp, (g'))) is ergodic and completely conservative. a

Corollary 9.8 If Qr(8F) = 400, then there exists a Patterson density for F,
unique up to a positive scalar. It is atomless, and the diagonal in 050X X 000X
has measure 0 for the product measure (', ® [y, O

Let us give a sketch of the very classical proof of the first claim of this corollary.

Existence Using the properties of negatively curved spaces, one can prove, denot-
ing by 2, the Dirac mass at a point x, that one can take

Wy = lim ! ) Z exp(/xyx*(i?—si)) Dy x

5i— 5;5 OF(si yer

where the atomic measure before taking the limit is, when x = x,, a probability
measure, hence has, for some sequence (s;);en in ]6F, +00[ converging to ér, a
weakstar converging subsequence in the compact space of probability measures on
the compact space X U 00 X.

Uniqueness Let (1)), be another Patterson density. Up to positive scalars, we may

assume that p,, and M;* are probability measures. Then (wy = é(,ux + W)y
is a Patterson density, u,, is absolutely continuous with respect to wy,, and by
dpix,

ergodicity, the Radon-Nikodym derivative , ™ is almost everywhere constant,

hence the probability measures i, and w,, are equal, hence p,, = M;*-
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Corollary 9.9 If mp is finite, then Qp(8F) = 400 (hence (g');) is ergodic) and
the normalised Gibbs measure mp = H:zi\l is a cohomological invariant of the
potential F. O

9.2.3 Mixing

In this section, we study the mixing property of the Gibbs measures under the
geodesic flow in the phase space. Recall that the length spectrum for the action
of I' on X is the subgroup of R (hence of Z when X is a tree) generated by
the set of lengths of the closed geodesic in I'\X (or, in dynamical terms, of
the set of lengths of periodic orbits of the geodesic flow on the phase space).
See for instance [22, §8.1] when X = M and [3, §4.4] when X is a tree
for a proof of the following result, which crucially uses the fact that the Gibbs
measure is absolutely continuous with respect to a product measure in the Hopf
parametrisation.

Theorem 9.10 (Babillot) [f the Gibbs measure mp is finite, then the following
assertions are equivalent.

(1) The Gibbs measure m is mixing under the geodesic flow (g');.

(2) The geodesic flow (g"); is topologically mixing on its nonwandering set in the
phase space.

(3) The length spectrum of T is dense in R if X = M or equal to Z if X is a
tree. ]

We summarise in the following result the known properties of the rate of mixing
of the geodesic flow in the manifold case when X = M (see [3, §9.1]), referring to
Sect. 9.3 for the tree case, whose proof turns out to be quite different.

Let « € ]0,1] and let ‘Klf‘ (Z) be the Banach space8 of bounded «-Holder-
continuous functions on a metric space Z. When X = M, we will say that
the (continuous time) geodesic flow on the phase space T'M = F\TIIVI is
exponentially mixing for the a-Holder regularity or that it has exponential decay
of a-Holder correlations for the potential F if there exist two constants ¢/, k > 0
such that for all ¢, ¢ € ‘f,f‘(TlM) and r € R, we have

[ soatwane— [ gamr [ wamr|<e e gl 1wl
T'M T'M T'M

8Recall that its norm (taking into account the possible noncompactness of Z) is given by

: [f ) — FI
o« = oo + .
flla =111 x,s;lgl d(x. y)
0<d(x, y)<l



304 A. Broise-Alamichel et al.

Theorem 9.11 Assume that X = M and that M = F\IVI is compact. Then
the geodesic flow on the phase space T'M has exponential decay of Holder
correlations if

* M is two-dimensional, by [6],

e M is1/9-pinchedand F = 0, by [7, Coro. 2.7],

¢ the potential F is the unstable Jacobian F*", so that, up to a positive scalar, m g
is the Liouville measure myiou, by [15], see also [27], [19, Coro.5] who give
more precise estimates,

e M is locally symmetric by [26], see also [14, 18] for some noncompact cases. O

Note that this gives only a very partial picture of the rate of mixing of the
geodesic flow in negative curvature, and it would be interesting to have a complete
result. Stronger results exist for the Sobolev regularity when M is a symmetric
space, ' = 0 and I" is an arithmetic lattice (the Gibbs measure then coincides,
up to a multiplicative constant, with the Liouville measure): see for instance [12,
Theorem 2.4.5], using spectral gap properties given by [5, Theorem 3.1]. But this
still does not give a complete answer.

9.3 Coding and Rate of Mixing for Geodesic Flows on Trees

We refer to [3, Chap. 5 and 9.2] for details and complements on this section.

From now on, we assume that X is (the geometric realisation of) a simplicial
tree X, and we write ¢¥X instead of 4 X. We consider the discrete group I, the
system of conductances ¢ and the associated potential F on the phase space '\¥X
as introduced in Sect. 9.1.

The study of the rate of mixing of the (discrete time) geodesic flow on
the phase space uses coding theory. But since, as explained, we make no
assumption of compactness on the phase space, and no hypothesis of being
without torsion on the group I' in the huge class of examples described in
Sect. 9.1, the coding theory requires more sophisticated tools than subshifts of
finite type.

9.3.1 Coding

Let </ be a countable discrete set, called an alphabet, and let A = (A; )i jews

be an element in {0, 1}"‘2{ x , called a rransition matrix. The (two-sided, countable

state) topological shift’ with alphabet .27 and transition matrix A is the topological

9We prefer not to use the frequent terminology of fopological Markov shift as it could be
misleading, many probability measures invariant under general topological shifts do not satisty
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dynamical system (X, o), where X, called the shift space, is the closed subset of
the topological product space 7% of A-admissible two-sided infinite sequences,
defined by
S={x=nez e L :Ynel, Ay, =1},
and o : ¥ — X is the (two-sided) shift defined by
VxeX, VneZ, (0x))y=2Xnt1-
We endow X with the distance
dx,xy=exp(—sup{neN : Vi e {-n,....n}, x; = x}).
Let us denote by Y the (countable) quotient graph'® I'\X. For every vertex or

edgex € VYU EY, we fix a lift X in VX U EX, and we define G, = I'y to be the
stabiliser of X in T.

For every e € EY, we assume that geerl

e = e¢. But there is no reason in gen- T T T T N

eral for the equality t(e) = t@ to tf(\e/) ° —e I @)

hold. We fix g € I mapping #(e) to ‘ e

t(¢) (which does exist), and we denote by L p:X > Y=I\X
: G, =Tz — I'7,, = Gy the conjuga- v

Pe e e f(e) t(e) jug

tion g g;l g 8¢ by g. on G, (noticing
that the stabiliser I'z is contained in the
stabiliser I';z)).

e
——o1(e)

Let us try to code a geodesic line in the phase space '\¥X. The natural
starting point is to write it as ['¢ for some £ € %X, that is, to choose one
of its lifts. We then have to construct a coding which is independent of the
choice of this lift. For every i € Z, let us denote by f; = £([i,i + 1])
the i-th edge followed by ¢, and by e; (also denoted by e, (¢) for later use)
its image by the canonical p : X — Y = I'\X, which seems fit to be a
natural part of the coding of ¢. Since we will need to translate through our
coding the fact that £ is geodesic, hence has no backtracking, the edge e; i
(also denoted by e;fH (£) for later use) following e; seems to have a role to play.

the Markov chain property that the probability to pass from one state to another depends only on
the previous state, not of all past states.

10The fact that the canonical projection is a morphism of graphs is the reason why we assumed I’
to be acting without mapping an edge to its inverse.
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e([i, i +11)
Il
Sl
,,,,,, e
fix ; / X Yigr p:X—>Y i+1(€) € Gr(ep
; : ¢i €1
g.".i‘ l"’gm .
t(er) inY =X

in X

Since the terminal point of f; is the original point of f; 1, the terminal point of ¢; is
naturally also the original point of e; 1. But there is no reason for the terminal point
of the choosen lift ¢; to also be the original point of the choosen lift ¢; 1. Since f;
and e; both map by p to ¢;, we may fix y; € " such that y; f; = ¢;, forevery i € Z.

Now, note that the vertex stabilizers in I" of vertices of X are in general nontrivial
(and we explained in Sect. 9.1 that it is important to allow them to become very
large in order to have numerous dynamically interesting noncompact quotients
of s1mphcla1 trees) The construction (see the above diagram) provides a natural
element g, - Yy Vi +1 8 ¢;4, Which stabilises the lifted vertex t(e,) hence belongs to

Gi(e;)- Since we made choices for the elements y;, the element g, Yy Vit +1 8 et
gives a well-defined double class ;11 (€) in pe, (Ge;)\Gi(e;)/Peiyi (Gepyy)» Which
also seems fit to be another natural piece of the coding of £.

It turns out that this construction is indeed working. We take as alphabet the
(countable) set

—’(ef hoety et € EY with1(e™) = o(e™) ]
€ pe (GG /9 4+ (Gor) with h # [1]if e+ = e~
This last assumption of conditional nontriviality of the double class codes the fact
that £ being a geodesic line, the edge f; 1 is not the opposite edge of f;, though e; 1
might be the opposite edge of ¢;. And since in the tree X, being locally geodesic
implies being geodesic, it is very reasonable that we have captured through our
coding all the geodesic properties of the geodesic lines and translated them into
symbolic terms. We take as transition matrix A over the alphabet .7 the matrix with

entries

lifet =€~

A — + = 1y = .
(€™, h,e™), (¢, W, e'™) 0 otherwise,
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which just says that we are glueing together the coding of pairs of consecutive edges
of the geodesic line. Note that since the tree is locally finite, the transition matrix
A has finitely many nonzero entries on each row and column, hence the associated
shift space % is locally compact.

We then refer to [3, §5.2] for a proof of the following result, though almost
everything is in the above picture! We denote by Fyymp : £ — R the locally

constant map which associates to ((ef, hi, eiJr))iEZ the image (e by the system
of conductances of the lift of its first edge.

Theorem 9.12 The map

o {r\gx — 3
Te = (e (0, hi(0), ¢ (0),

is a bilipschitz homeomorphism, conjugating the time 1 map of the (discrete time)
geodesic flow (g"),cz to the shift o. Furthermore,

(1) (=, 0) is topologically transitive,'!

(2) if the Gibbs measure m is finite and if the length spectrum of T is equal to 7Z,
then the probability measure P = ©,m g is mixing for the shift o on %,

(3) the measure P satisfies the Gibbs property on (X, o) with Gibbs constant §
for the potential Fsyp, 12

@) if (Zy : x — Xp)nez is the canonical random process in symbolic dynamics,
then the pair (Zy)nez, P) is not always a Markov chain. |

This last claim has lead to an erratum in the paper [13]. The pair ((Z,),ez, P) is
not a Markov chain for instance in Example (2) at the beginning of Sect. 9.1, when
X =X, and T' = PGLy(F,[Y])."?

1This comes from the assumption that there is no nontrivial proper I'-invariant subtree in X, since
then 0, X = AT, implying that the nonwandering set of the geodesic flow (g’);<z is the full phase
space I'\¥X.

12That is, with a formulation adapted to the possibility that the alphabet < may be infinite, for
every finite subset E of the alphabet <7, there exists Cr > 1 such that for all p < ¢ in Z and for
every x = (X;)nez € X such that x,, x, € E, we have

1 P(Lxp, Xpt1s -5 Xg—15Xg])
< pr Xp+ y q o,
CE e*SF(Q*IHl)Jan:,, Feymb (07 x)
where [xp, Xpi1, ..., Xg—1, Xq] is the cylinder {(y,)nez € T : if p <n < g then y, = x,}.

13 As noticed by J.-P. Serre [25], the image of almost every geodesic line of X in the quotient ray
"\ X is a broken line which makes infinitely many back-and-forths from the origin of the quotient
ray.
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9.3.2 Variational Principle for Simplicial Trees

The first corollary of the coding results in the previous section is the following
existence and uniqueness result of equilibrium states for the geodesic flow on the
phase space I'\¢X for the potential F.

Corollary 9.13 Ifmp is finite, then mp = is the unique equilibrium state for

mg
lm |

F under the geodesic flow (g"),ez on T\Y9X, and furthermore

Pr =6F. O

We only give a sketch of a proof, refering to [3, §5.4] for a complete one. We
use the coding given in Theorem 9.12 with its properties (in particular the fact that
it satisfies the Gibbs property for a symbolic potential related to the potential F).

Let (X, 0) be a topological shift, with countable alphabet .«/. A o-invariant
probability measure m on X is a weak'* Gibbs measure for amap ¢ : £ — R with
Gibbs constant c¢(m) € R if for every a € 7, there exists a constant ¢, > 1 such
that for all n € N — {0} and x in the cylinder [a] = {y = Vu)nez € £ : yo = a}
such that 6" (x) = x, we have

1 S m([-x()vl-xlv-T-v-xn*l]) < 0.
Cq eizo (P(aix)—c(m))

The following result of Buzzi is proved in [3, Appendix], with a much weaker
regularity assumption on ¢, and it concludes the proof of Corollary 9.13.

Theorem 9.14 (Buzzi) Let (X, 0) be a topological shift and ¢ : ¥ — R a
bounded Holder-continuous function. If m is a weak Gibbs measure for ¢ with
Gibbs constant c(m), then Py = c(m) and m is the unique equilibrium state for
the potential ¢. O

9.3.3 Rate of Mixing for Simplicial Trees

Let us first recall the definition of an exponential mixing rate for discrete time
dynamical systems.

There is absolutely no way to predict the probability of behaviour of the geodesic line image at a
given time in terms of its recent past probabilities (except that when it starts to go down, it has to
go down all the way to the origin).

14The terminology comes from the fact that the assumptions bear only on the periodic points of .
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Let (Z, m, T) be a dynamical system with (Z, m) a metric probability space and
T : Z — Z a (not necessarily invertible) measure preserving map. For all n € N
and ¢, ¥ € L2(m), the (well-defined) n-th correlation coefficient of ¢, r is

covnn@ )= [@o wam~ [ pam [ yan.
Z Z Z

Leta € ]O, 1]. As for the case of flows in Sect. 9.2.3, we will say that the dynamical
system (Z, m, T) is exponentially mixing for the o-Holder regularity or that it has
exponential decay of a-Hdlder correlations if there exist ¢/, k > 0 such that for all
¢, ¥ € 6y (Z)and n € N, we have

| coVim, (P, ¥ < " e 1@lla 1Yl -

Note that this property is invariant under measure preserving conjugations of
dynamical systems by bilipschitz homeomorphisms. In our case, T will be either
the time 1 map of the geodesic flow (g');ez on the phase space Z = I'\¥X or
the two-sided shift o on a two-sided topological shift space ¥ or (see below) the
one-sided shift oy on a one-sided topological shift space ¥ .

The following result is one of the new results contained in the book [3]. For every
finite subset E in I'\VX, let tg : T\¥X — N U {400} be the first positive passage
time of geodesic lines in E, that is, the map

¢+ inf{n € N— {0} : g"€(0) € E}.

The following result says that if the tree quotient contains a finite subset in which
the geodesic lines with large return times have an exponentially decreasing mass,
then the (discrete time) geodesic flow on the phase space has exponential decay
of correlations. This condition turns out to be quite easy to check on practical
examples, see for instance [3, §9.2].

Theorem 9.15 If m is finite and mixing for (g');cz, if there exist a finite subset E
inT\VXandc", k" > 0 such that

VneN, mp{eT\¥X : £0) e E,t5(0) > n}) <c’e ",

then for every a € 10, 1], the (discrete time) dynamical system (U\YX, m g, (§')sez)
is exponentially mixing for the a-Holder regularity. O

The hypothesis of Theorem 9.15 is for instance satisfied for Example (2) at the
beginning of Sect. 9.1 with X = X, and I' = PGL,(F,[Y]), taking E consisting
of the origin of the modular ray I'\X,, and using the exponential decay of the
stabilisers orders along a lift of the modular ray in X,. In this case, the quotient
graph I"'\ X has linear growth. We gave in [3, page 193] examples where the quotient
graph I'\ X has exponential growth.



310 A. Broise-Alamichel et al.

Here is an example where the quotient graph has quadratic growth, for every
even g > 2. The tree X is the regular tree of degrees g + 2. The vertex group of the
top-left vertex x, of the quotient graph is Z/ (g + 1)Z. A set E as in Theorem 9.15
consists of the three vertices at distance at most 1 from x,. The vertex group of a
vertex at distance at least 1 from x,, on the (m + 1)-th horizontal and (n + 1)-th
vertical is (Z/q"Z) x (Z/(g + 1)"7Z). The number at the beginning of each edge
represents the index of the edge group inside the vertex group of its origin.

XX 4 qil q 1 q 1 Qil
441 1 1 I 1 o
q+1 q+1 q+1 q+1 q+1
1 1 1 1 1
q+1 qg+1 qg+1 qg+1 q+1
1 1 1 1 1
q+1 q+1 q+1 q+1 q+1
1 1 1 1 ™

Recall that two growth functions f and f’, that is, two increasing maps from N
to N — {0}, are equivalent if there exist two integers ¢ > 1 and ¢’ > 0 such that for
every n € N large enough, we have f(|_i n—c']) < f'(n) < f(cn+c'). The rype
of growth of an infinite, connected, locally finite graph Y is the equivalence class
of the map n +— Card Byy (vo, n), which does not depend on the choice of a base
point v9 € VY, nor on the quasi-isometry type of Y.

It is well known (see for instance [4, 9] or [8, §6.2]) that every totally
disconnected compact metric space is homeomorphic to the boundary at infinity of
a simplicial tree with uniformly bounded degrees (possibly equal to 1 or 2), and that
any increasing positive integer sequence (a),eN With at most exponential speed
(that is, there exists k € N such that a,4+1 < ka,, for every n € N) is, up to the above
equivalence, the sequence of orders of the balls of an infinite rooted simplicial tree
with uniformly bounded degrees. Hence the following result (not contained in [3])
says that we can realize any space of ends, or any at most exponential type of growth,
in the quotient graph of an action of a group on a tree satisfying the hypothesis of
Theorem 9.15.

Proposition 9.16 For every rooted tree (7, *) with uniformly bounded degrees
such that T # {x}, there exists a simplicial tree X and a discrete group T of
automorphisms of X as in the beginning of Sect. 9.1 such that T is a lattice, '\X
is the union of  with a loop at *, and the geodesic flow (g");cz) is exponentially
mixing for the a-Holder regularity on T\YX for the zero potential. O
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Proof We refer for instance to [25, §1.5] for background on graphs of groups.

Let us fix ¢ € N large enough compared with the maximum degree d of 7. We
define a graph of groups (7 U {ex, es}, Go) with underlying graph the union of .7
with a loop glued at the root * as follows. Let G, = {1}. For every vertex v of .7 at
distance n of the root *, we define G, = Z/q"Z. For every edge e # e, ex, whose
closest vertex to the root * is at distance n from *, we define G, = Z/q"Z. For
every edge e # ey, ex, pointing away from the root, we define the monomorphism
G. — Gy(e) to be the identity, and the monomorphism G, — Gy to be the
multiplication by g map, so that the index of G, in G, is 1 and the index of G. in
Gt(e) is q.

Let I' and X be respectively the fundamental group (using the root as the
basepoint) and the Bass-Serre tree of the graph of groups (7, G,). Then the degrees
of the vertices of X are at least 3 and at most ¢ + d — 1, and for every n, we have

1
> G = d"/q" . (9.3.1)

xeV.T 1d(x,x)=n x|

Since ¢ is large compared to d, this implies that the volume of (7, G,) is finite,
hence T" is a lattice.

Since the potential is the zero potential, the Gibbs measure m( is the Bowen-
Margulis measure. Note that m is finite since I' is a lattice, by [3, Prop. 4.16].
Since we glued a loop at the root, there exists an element in I' whose translation
length is equal to 1, hence the length spectrum of I' is equal to Z. By Theorem 9.12,
this implies that m( is mixing for the geodesic flow (g¢);. If E = {x} is the singleton
in V7 consisting of the root, since ¢ is large compared to d, Eq. (9.3.1) then shows
that the hypothesis of Theorem 9.15 is satisfied, and this concludes the proof of
Proposition 9.16. O

We conclude this survey with a sketch of proof of Theorem 9.15, sending to [3,
§9.2] for a complete proof. We thank Omri Sarig for a key idea in the proof of this
theorem.

Step 1. The first step consists in passing from the geometric dynamical system to a
two-sided symbolic dynamical system, using Sect. 9.3.1.

Let .o/, A, ¥, 0, ©®, P be as given in Theorem 9.12 for the coding of the (discrete
time) geodesic flow on the phase space I'\¥X. Let 7, : ¥ — /" be the natural
projection defined by (x),cz > (xn)nen. Let

E={(e ,heYed : t(e7)=0(") € E}

which is a finite subset of the alphabet, and let 74 : ¥ — N be the first positive
passage time in & of the two-sided shift orbits, that is, the map

X = (Xp)nen > inf{n € Z — {0} : xp € &) .

The rate of mixing statement for two-sided symbolic dynamical systems, that we
will prove in Step 2, is the following one.
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Theorem 9.17 Let (o7, A, X, 0) be a locally compact transitive two-sided topo-
logical shift, and let P be a mixing o -invariant probability measure with full support
on X. Assume that

(1) for everyn € N and for every A-admissible finite sequence w = (wo, ..., Wy)
in o/, the (measure theoretic) Jacobian of the map

S AGkeny € T (B) 1 x0 = wp}

= {(keN € T+(X) : Yo = W0, ..., Yun = Wy}

defined by (xo, x1,x2,...) — (wo, ..., Wy, X1, X2, ...), With respect to the
restrictions of the pushforward measure (704.)[P, is constant;

(2) there exist a finite subset & of o/ and ¢”, k' > 0 such that for every n € N, we
have

P({xe T : xo € &and 1e(x) = n}) <’ e

Then (X, o, IP) has exponential decay of a-Hdlder correlations. O

Theorem 9.15 follows from Theorem 9.17 by using the coding given in Theo-
rem 9.12. The verification of Assertion (2) is immediate as it corresponds to the
assumption of Theorem 9.15. The one of Assertion (1) is a bit technical, using a
strengthened version of Mohsen’s shadow lemma for trees.

Step 2. The second step consists in passing from the two-sided symbolic dynamical
system to a one-sided symbolic dynamical system.

Let (X4, 04) be the one-sided topological shift with the same alphabet .27 and
same transition matrix A as the two-sided one in the statement of Theorem 9.17,
with ¥ = w4 (X) where m4 is the natural projection, and let P, = (71 ).P. Let
Tg 4+ : X4 — Nbe the first positive passage time in & of the one-sided shift orbits,
that is, the map (x,),en > inf{n € N — {0} : x, € &}. . Recall that the cylinders
in X are the subsets defined for k € N and wy, ..., wy € & by

[wo, ..., wk] ={x = (Xp)neNy € T4+ : X0 = W0, ..., Xk = Wk} -
The rate of mixing statement for one-sided symbolic dynamical system, that we

will prove in Step 3, is the following one.

Theorem 9.18 Ler (o/, A, X4, 04) be a locally compact transitive one-sided
topological shift, and let P be a mixing o -invariant probability measure with full
support on X4. Assume that

(1) for everyn € N and for every A-admissible finite sequence w = (wo, ..., Wy)
in o, the Jacobian of the map between cylinders

Sw t[wa] = [wo, ..., wyl
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defined by (xo, x1,x2,...) — (wo, ..., Wy, X1, X2, ...), With respect to the
restrictions of P4, is constant;

(2) there exist a finite subset & of &/ and c¢”, k' > 0 such that for every n € N, we
have

P (fxeZy : xoe&and tp 1 (x) = n}) <" e

Then (X4, o4, Py) has exponential decay of a-Holder correlations. O

Theorem 9.17 follows from Theorem 9.18 by a classical argument due to Sinai
and Bowen (and explained to the authors by Buzzi), saying that if the one-sided
symbolic dynamical system (X4, o4, (m4)4[P) is exponentially mixing, then so is
the two-sided symbolic dynamical system (X, o, P).

Step 3. The third and final step that we sketch is a proof of Theorem 9.18, using as
main tool a Young’s tower argument.

We implicitly throw away from X the measure zero subset of points x € X
whose orbit under the shift o does not pass infinitely many times in the open
nonempty finite union of fundamental cylinders

A():U [a] .

acd

We denote by @ : £ — Ay the first positive time passage map, which is defined

by x afrg’*(x)(x). We denote by W the set of excursions outside &, that is, the

set of A-admissible finite sequences (wo, . .., wy) in & such that wg, w, € & and
wi g Eforl <i<n-—1.
We have the following properties.

(1) The set {[a] : a € &} is a finite measurable partition of Ag. For every a € &,
the set {[w] : w € W, wg = a} is a countable measurable partition of [a].

(2) For every w € W, the first positive passage time t¢ 4 is positive on every
excursion cylinder [w], and if w, is the last letter of w, then the restriction
® |[yw): [w] — [wy] is a bijection with constant Jacobian with respect to P
(actually much less is needed in order to apply Young’s arguments).

(3) The first positive time passage map P satisfies strong dilation prop-
erties on the excursion cylinders. More precisely, for every excursion
w=(wp,...,wy) €W, for every k < n — 1, for all x,y € [w], we have
d(®(x), D(y)) = e d(x, y) and d(d’x, 6§ y)) < d(P(x), D). o

Let us fix @ € ]0, 1]. Then an adaptation of [28, Theo. 3] implies that there exists
& > 0 such that for all ¢, ¥ € € (X,), there exists ¢,y > 0 such that for every
n € N, we have

Kn

[covp, n(P, V)| <cpy e
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argument using the Principle of Uniform Boundedness due to Chazotte then

allows us to take ¢y y = ¢ [|#llo |Y¥]lo for some constant ¢’ > 0.
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Chapter 10 )
Statistical Properties s
of the Rauzy-Veech-Zorich Map

Romain Aimino and Mark Pollicott

Abstract In this note we survey some very basic statistical properties of the
Rauzy-Veech map and the Zorich acceleration. Our aim is to give a particularly
thermodynamic perspective of well known results.

10.1 Introduction

In this note we will consider the Rauzy-Veech-Zorich renormalization map for
interval exchange maps. The special case of interval exchange transformations on
two intervals simply corresponds to rotations on the unit circle, and in this case
the corresponding renormalization map reduces to the usual Farey map, and its
acceleration to the continued fraction transformation. Thus, one might naturally
view interval exchange maps on m > 3 intervals as generalizations of circle
rotations; and the renormalization map as a generalization of the classical continued
fraction transformation. It was shown by Masur and Veech that their original
renormalization map J, possesses an absolutely continuous ergodic invariant
measure, and Zorich showed that for the accelerated version .7] there is a finite
invariant measure.

A number of interesting statistical results already have already been established
for the renormalization map, and related transformations (e.g., Central Limit
Theorems and other Limit Theorems cf. [2, 4, 20]). The first aim of this paper
is to present an alternative approach to some of these results, and to give some
simple generalizations. Indeed, for dynamical systems in general there is a potential
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hierarchy of statistical properties that one may establish for such maps, beginning
with ergodicity; central limits theorems; functional central limit theorems, and
finally almost sure invariance principles. In this paper we will re-derive the central
limit theorem, the stronger functional central limit theorem, and establish the almost
sure invariance principle, from which the others then follow. A basic technique,
familiar from other non-uniformly hyperbolic settings, is to induce a hyperbolic
map % on a smaller set B in the domain of .7]. In particular, statistical properties
are typically easier to establish for .75, and these can then be lifted to the map flz.
There is a well known application of related results to Teichmiiller flows for abelian
differentials, which can be modeled in terms of suspended flows over these maps
(and their natural extensions).

One of the interesting applications of the (accelerated) Rauzy-Veech-Zorich map
is to the theory of Teichmiiller flows. In particular, a suspension semi-flow for the
(accelerated) Rauzy-Veech-Zorich map corresponds to a well known model for the
Teichmiiller flow.

Theorem 10.1.1 The transformations 9 and F; satisfy the functional central limit
theorem with respect to the natural absolutely continuous invariant probability
measure for Holder continuous observables. In particular, they satisfy the law of
the iterated logarithm and the arcsine law for Holder continuous observables. O

The second aim of this paper is to describe a “zeta function” associated to
2. This is defined by analogy with the Ruelle zeta function for Axiom A
diffeomorphisms. The poles of these zeta functions (and the residues of associated
complex functions) encapsulate dynamical information about the maps. Moreover,
when these invariants vanish then the zeta function takes a particularly trivial form.

We will initially follow Morita in studying a transfer operator associated to 7
acting on Lipschitz (or, more generally, Holder) continuous functions [20]. This
allows us to apply the method of Mackey and Tyran Kaminski [13, 14], to give a
simple and direct proof of the (Functional) Central Limit Theorem, and the method
of Philipp-Stout [22], as developed in the dynamical context by Melbourne and
Nicol [17], to show the almost everywhere invariance principles. Subsequently, we
will consider a transfer operator associated to .75 on a smaller space of analytic
functions and study the complex function d(z, s) of two variables formally defined
by

X n
d@s)=exp| =" D DI |, zseC.
n=1 Ty x=x

in terms of the periodic points .7;"x = x and the weights | det(D.7,")(x)]|.

In particular, we can apply a powerful approach of Ruelle [24] (cf also Mayer
[15, 16] for particularly readable account in specific cases related to continued frac-
tions) based on Fredholm determinants to show such functions have a meromorphic
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extension, and we can give an alternative expression for (the sum of the Lyapunov
exponents):

A= f log | det(D.73) (x)|d i (x)

for the Kontsevich-Zorich cocycle, where w, is the unique absolutely continuous
invariant probability measure for .%.

Theorem 10.1.2 The function d(z, s) is analytic on C2. We can write
~ adéi,s) ozt
ad(zl)| _,
az Iz

The methods in this note will work for other multidimensional continued fraction
type algorithms, for which the (accelerated) Rauzy-Veech-Zorich algorithm forms a

topical example.
In Sect. 10.2, we recall results on interval exchanges and their renormalizations.
In Sect. 10.3, we introduce the transfer operator on Holder continuous functions
and recall the results of Morita on its spectra. In Sect. 10.4, we prove the statistical
properties for the induced map .%. In Sect. 10.5, we derive the statistical properties
for the Zorich map Z;. In Sect. 10.6, we study the transfer operator on the
smaller space of analytic functions, and in Sect. 10.7, we use these results to study
Lyapunov exponents and d(z, s). Finally, in Sect. 10.8, we describe the connection
to Teichmiiller flows and in the last section we speculate on the connection to

pressure.

10.2 Interval Exchange Transformation

In this section we recall some of the basic constructions. We refer the reader to the
excellent surveys [31] and [33] for further details.

Interval exchange transformations 7 : [0, 1] — [0, 1] are orientation preserving
piecewise isometries of the unit interval. In the case of two intervals, this corre-
sponds to a rotation of the circle, i.e., a translation of the interval (modulo one).
More generally, assume that [ is partitioned into m intervals I, - - - , I, of lengths
M, -+, Am, respectively, upon each of which T acts isometrically. We can represent
this partition as a vector A in the standard (m — 1)-dimensional simplex

A={A=R1, -, An):0< A, -, Ap<land A +---+ Ay =1}
(Fig. 10.1).

Thus the transformation 7 is completely determined by these lengths, and by
order of the images of the original intervals. This latter information is encapsulated
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[ ]
A=A, Am)

° ° ° ° °
0 /l| /ll+/lz /l|+/lz+/l3 1
Fig. 10.1 A partition of the unit interval corresponds to a point in a simplex
by a permutation 7 on {1, ---,m}. In particular, every interval exchange trans-

formation corresponds to a pair (A, ), where A € A and m is a permutation.
Moreover, corresponding to the natural assumption that 7 doesn’t contain an
invariant subsystem, we say that 7 is irreducible if there is no 1 < / < m such
that w({1,---,1}) = {1,---,1}. We will always assume from now on that 7 is
irreducible.

The classical Keane Conjecture (proved by Masur and Veech, independently)
states that the transformation 7 is uniquely ergodic for almost all A € A. The
method of proof lead to the development of an important renormalization scheme
on such transformations, which we will briefly describe.

10.2.1 The Rauzy Class of Permutations

Given a permutation 7, let us denote by k = 77 (n) (ie., m(k) = n). A key idea of
Rauzy was to replace the permutation 7 by one of two new permutations: either

7(J) ifl<j<k 7(J) if1 <n(j) <n(m)
ar(j) := {w(m) ifj=k+1 orbr(j):={n(j)+1 ifnm)<n(j)<n
7 —1) ifk+2<j<m am)+1 ifj=k

If we start from a given permutation we do not necessarily get all permutations
by these two operations. This leads to the following definition.
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Definition 10.2.1 Given a permutation 7 the Rauzy class % consists of all permu-
tations that can be derived from 7 by repeatedly applying these two operations. O

It can be shown that belonging to the same Rauzy class is an equivalence relation.
The irreducible permutations are a union of a finite number of Rauzy classes.

Example 10.2.2 (n = 4) The irreducible permutation 7o = (} 33 {) lies in a Rauzy

class of 7 permutations. These are illustrated in the following diagram, where an

arrow labeled by a goes from 7 to aw (and an arrow labeled by b goes from 7 to
bm).

(2331) <» (4331) —a (4133
$a $b
(2313) (3733)
Ob Oa

Similarly, one can look at the Rauzy class of mp = (% % 3’1 ‘1‘) described by the
following diagram.

N b aN  Ja
(4331) (4331)
ay/ Na b,/ /Wb

We notice a symmetry with respect to the centre of the diagram.

There are excellent descriptions of this procedure in [31] to which we refer the
interested reader.

10.2.2 The Rauzy-Veech Renormalization %

Consider some given 1 < k < m. We can then apply one of the following
two operations on the vector A = (A, -+, Ap), to produce a new vector A’ =
(A}, -+, AL,): Either

Casel(hy > A ):LetA = A = (A1, -, Am—1, Am — Ak); OF

Case II()\‘k > )\m)-' Let A — )"/ = ()"11 R )"kfls )"k - )\'mv)\'mv)\'k+11 ] )"Vﬂfl)‘
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Firstly, we would like to make a particular choice of case such that vector A’ is
strictly positive. The case Ay = A, is therefore ambiguous, but atypical, and shall
be ignored. Secondly, we observe that the definition of A’ is such that it does not lie
in the simplex A. However, this will soon be corrected by rescaling.

We can define a map % from A x Z to itself (modulo some codimension one
planes, as described above, on which it is ambiguously defined). This will be a
renormalization map, in the sense that it associates a new interval exchange map to
an old one (with the same number of intervals, m). To be more precise, given 7 € #
we denote

At ={(, 7)€ Ax{m}: Ay > Ay1,,} and
A; ={(A,m) e Ax{n}:hy < )‘nflm}‘

We can define a transformation 75 : A x Z — A X Z a.e. by

P / ) (A, J»lyn:)ilz)hm—)»k) , an) ifa e A;’t_
oA, ) = ) = . _ .
||)\./||1 (Ao =1, Ak )\f’)\ma)\k+ls :)\m—l)’ bﬂ) ifr e A;
m

with k = 7~ (m), where we divide by |\'[; = > i M. so as to rescale the image
vectors to lie on the simplex A (Fig. 10.2).

Example 10.2.3 (Example 10.2.2 Revisited) Let A = (A1, X2, X3, X4). We can again

consider the Rauzy class # of 1 = (}23 ) as described above. We can then

consider, say, the restriction of the map to the simplex labelled by (133 %). Since

k = 77 (4) = 3 we have that
T (A1, 22,23, 24), (3333))

s A 1)
(l —A37 1 2)»3’1 13’ 1— A3 )s( 2)) 1f)\.4>)\,3

A2 A3—h4 M :
(1 A’ 1=hg’ 1=2yg° 17)»4’( ) lf)\4 < )\3'

Apr

Fig. 10.2 The image of half of each copy of the simplex gets mapped to a copy of the simplex
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Unfortunately, these transformations aren’t uniformly hyperbolic, as one can
readily see since some of the boundaries of the simplicies remain fixed (e.g., the
side A3 = 0 in the simplex). This will be partly remedied by replacing 7 by maps
which are “more hyperbolic”.

10.2.3 The Zorich Accelerated Renormalization 1

Following Zorich, one can consider a map .77 : A X Z — A x % defined a.e. by
T, 1) = T4 (1, ) where

n(x, ) = inflk > 0: T (h, m) € AT x % where 1 € AT)

and where we denote AT =, ., AT and A =, cp A;.
The following elegant result was proved by Zorich.

Proposition 10.2.4 (Zorich) The transformation 9 preserves a finite absolutely
continuous invariant measure [y (i.e., 1 (A X %) < —+400). Moreover, the
restriction 912 : AT — ATis ergodic (and 912 AT — A7 is ergodic). ]

Previously, Masur and Veech had shown the existence of a sigma finite -
invariant measure (g, which can be easily recovered from 1.

However, to gain more control over the distortion properties of the transforma-
tions one can induce on a smaller set, so as to get a transformation which has even
stronger properties.

10.2.4 The Induced Map 7> on a Smaller Set

Let Z = {A}, A, i € %} be the natural finite partition of A x % then we can

T
define the refinements

P, = Vz;éﬂ_kf@ ={P; N %_113,'2 n---N ﬂ_(n_l)PI-%l 1 Pj € A}

for any n > 1. Following a now standard approach we can choose ng > 1 and
B € #,,, say, to be any image of an inverse branch of .70 which is a contraction. !

TAll of these transformations are projective, i.e., matrices act linearly on vectors, followed by
normalizing. Such a transformation is contracting in the projective metric when the simplex is
mapped strictly inside itself, which happens when the matrix is strictly positive.
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Finally, we can then consider the induced map %> : B — B defined by
D(h, ) = T"*TD (0, 1) where

Ak, ) = inffk > 0: Z* (., 7) € B)

is the first return time to B. The following is immediate from the observation that
the composition of projective transformation remains projective, see Morita [20,
Lemma 3.1].

Lemma 10.2.5 The induced map 75 : B — B is a piecewise projective expanding
map of the general form

d d
2 j=1a1jh 2 j=14djh;
(A'la"'akn)}_) d LI d
20 j=1Gijhj 2 j=1 Gijhij
on each piece of the partition of smoothness of 7. O

We are now in a position to use familiar techniques for the study of hyperbolic
maps.
10.3 Transfer Operators

Let w denote the natural volume form on B. We can formally define a linear map
Z: LY(B,w) —> LY(B, w) associated to % : B — B by the identity

/ Zfgdo(x) = / f)g(Px)dw(x), where f € L'(B), g € L¥(B)
B B

and we denote x = (A, ) € B. (The existence of sucha Zf € L'(B) follows
immediately from the Riesz representation theorem.) Moreover, we can use the
change of variables formula to formally write:

F)
Z* =
T NZ pac(7H 1

In fact, a simple calculation, see Veech [28, Proposition 5.2], shows:

Lemma 10.3.1 Let A be the matrix such that y = ”f;‘“ . We can write the Jacobian

as Jac(7y)(y) = | Ax|I}". O
From this explicit formula for the Jacobian one easily sees that £ (C %B)) c

CO(B). In order to get stronger results on .7, we need to consider the operator acting
on smaller Banach spaces than C?(B). In Sect. 10.6, we will consider the operator
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acting on analytic functions. However, for the present we shall follow the more
classical approach of studying the operator acting on Holder continuous functions.

Given g > 0 and a function w : B — C, we define |[wlg = [|wlleo + |wlg
where

_ [w(x) — w(y)]
|lw|g = sup

xX#y ”x - y”ﬂ

and let CA(B) = {w : B — C: ||lw| < oo}. When 8 = 1 these are simply the
Lipschitz functions. The next result can be used to show that . preserves Holder
functions. Let 2 be the partition of smoothness of %, and let 2 = \/;’.‘:_é 9{’;@.
The following result is basically due to Morita [20]:

Lemma 10.3.2

(1) There exists C > 0 and ® > 1 such that for any n > 1 and x, y in the same
element of 2,, we have

7" x = 7"yl = CO™[lx — ylI.

(2) There exists C > 0 such that for any n > 1 and x, y lie in the same element of
2, we have

Jac(T)!
e (e e )| = €13 = g8t
Jac(F3")(y)
(3) There exists D > 1 such that for any A € 2, and any x € A we can estimate

L = o) a7 < D,

Proof These results are based on the basic observation that the first return map
9 : B — B must be of the form % (x) = ﬂln()"’”)(x) = 91"@’”)_"0 o 7" (x),
where 91"()"”)7" does not contract distances and .7,"° definitely expands them. Full

details can be found in [20, Lemma 3.4]. |

Corollary 10.3.3 The operator £ preserves the space of Holder functions, i.e.,
& : CP(B) — CP(B) is well defined. O

Many of the statistical results for 7 are related to the existence of a spectral
gap for .Z. In the case of the operator acting on analytic functions is essentially
automatic since the operator is compact (as we will see later). However, in the
present context of Holder continuous functions it remains true.

Lemma 10.3.4 The value 1 is a simple eigenvalue with a positive eigenfunction
p > 0. The rest of the spectrum is contained in a disk of radius t strictly smaller
than 1. O
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Proof The proof follows a classical approach [21]. Given g € C#(B), we can
estimate for each x € B that

1
z" < lIglloo < Dligll
(L 2)(x)] < llgll 7;,_XJE‘°(%")(” gl
Trye

by part (3) of Lemma 10.3.2. Thus ||.Z"gllcc < D||gllco- Similarly, in the special
case g = | we can see that D' < #"(1)(x) < D, forall x € B.
Given x1, xp € B, assume that y; € (92”)_1)@- (i = 1,2) are chosen in the same

inverse branch. With this convention, we write that

(L") (x1) — (£"8)(x2)

1 1 (g(y1) — g(2)
= n - n g(y ) + n :
yyzz (Jac(ﬁ; o) Jac(F )(y2>) 1 _MZ: Jac(Z3)(v2)

Note that by part (3) of Lemma 10.3.2, we have

D2 < Jac(%")(yl) < p?

3

“Jac(N) () T
and hence, we can write
1 1 - D? ‘1 (JaC(%”)(yz)N
— 0
Jac(Zy")(y1)  Jac(Z)(y2) | ~ Jac(Z)")(y2) £ Jac(73") (y1)
D*C
lx1 — xa2fl.

<
~ Jac(7)")(y2)
Thus we can bound
[(ZL"g)(x1) — (L") (x2)]

1
< D*Cliglls + ©7"liglg) X1 — x2ll
_WZ_ ez (278N #lh)

S Y2=X2

IA

D (D2C||g||oo + 'é'f) 1 — 0l
(This gives the well known Doeblin-Fortet, Marinescu-Tulcea or Lasota-Yorke
inequality for .#: there exists C > 0 such that ||.£"g|lg < C (||g||o<J + ®_”||g||,3)
foralln > Oandall g € C#(B).)

In particular, the family { 1{] 2,1:7;01 Z"1)%7_, is equicontinuous and bounded,
and thus has a uniform accumulation point p € C B(B), say, where D! < plx) <
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D, for all x € B. Clearly, £p = p is a positive eigenfunction for the eigenvalue
1. Let dua(x) = p(x)dw(x) be the corresponding invariant probability measure.
To see that 1 is a simple eigenvalue, assume that .Zp’ = p’, and then choose the
largest € > 0 that the eigenfunction p. := p + €p’ > 0. Since we can find x € B
with pe(x) = 0, it then follows from .Z p. = pe that p.(y) = 0, forall y € fﬁlx
Proceedmg inductively, we see that p (y) vanishes on the dense set y € U 09 X,
and thus p’ = €p, i.e., | is a simple eigenvalue. We can define Z . ch (B) —
Ch(B) by

—~ 1
Lwx) = Z(wp)(x).
p(x)

Then 21 =1 (and .,Ef* w2 = p2) and again the Doeblin-Fortet inequality holds
for.,iﬂ ie., ||.$"w||ﬁ < Cllwllec + © "|lw|lg. Moreover, since for any positive
w € Cﬂ(B) we have supw > supfw > sup.L“w > --- we can deduce from
the equicontinuity that there is a unique limit in the uniform norm which, using that
21 = 1, we conclude must be the constant fwdug, ie., Pw — fwduz as
n — +o0, see [21, Theorem 2.2].

Finally, to show that the rest of the spectrum of £ is contained strictly within
the unit disc it suffices to show the same for .# and, more particularly, & :
cf(B)/C — C/i(B) /C has spectral radius strictly smaller than 1. However, the
convergence of .Z"w implies that ||.Z"w + C|lcc — 0 as n — 400 and thus two
applications of the Marinescu-Tulcea inequality gives

1L wllp < C (I 2"w + Clloo + 7" [ L wlp) + O L wlip
< C(I12"w + Cllos + ©7(C + D) (Cllwlloo + wls©7"))
<1
for large enough n > 0, uniformly on the unit ball of C#(B)/C. The result follows

from the spectral radius theorem. O

As usual, the probability measure o which is the eigenprojection associated to
1 (ie., Lu> = up) is the unique absolutely continuous -invariant probability
measure on B. In particular, u; is the renormalized restriction of 1 to B.

Corollary 10.3.5

(1) The transformation 7 : B — B is exponentially mixing on Holder functions,
i.e., there exists 0 < t© < 1 and C > 0 such that for all F € L*(B) and
G e CP(B) with [ Fdp, = [ Gdusy =0,

‘/Fo%n.Gduz—/quszd,uz

< CT"IF 1y IGllg for all n = 0.
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(2) For py-almost all x = (A, w) € B we have that

N—1

1 log N
F(Z%"(x,)) = Fd 0] .

N};} (%" (x, 1)) f 2 + (sz)

Proof For the first part, we can write

/Foﬂz".Gduz—/Fd;u/Gd,uz - / <.$"(G,0) - (/ Gdug) p> Fdo.

Thus, | [ F o 75'.Gdpa [ Fdus [ Gdpa| < 1.27(Gp)— ([ Gdpua) pllsoll Fl 1 ay-
By Lemma 10.3.4, [|.£"(Gp) — ( Gdu2) plls < Ct"|G||g, since C#(B) embeds
into L>°(B), is a Banach algebra and p € CP#(B). On the other hand, IF Nl ) <
c! I F Nl 21 (uy)» Where ¢ = inf p is strictly positive.

The second part follows immediately from the first part by a standard spectral
result [10]. |

10.4 Statistical Properties for .7,

Let dus(x) = p(x)dw(x) be the unique absolutely Z-invariant probability
measure on B given by Proposition 10.2.4. This measure u is ergodic (cf. [4] or,
alternatively, by part (1) of Corollary 10.3.5) and so we can apply the Birkhoff
ergodic theorem which gives that for any f € L'(X, ) and for us-a.e. x € B we
have that

n—1
1 .

E f(fz‘/x) — /fduz, asn — +oo,
n

=0

pointwise and in L'. In this section we want to discuss various generalizations of
this basic property.

10.4.1 The Central Limit Theorem and Functional Central
Limit Theorem

A classical result for expanding dynamical systems is the Central Limit Theorem,
and the stronger Functional Central Limit Theorem.

Definition 10.4.1 We say that % satisfies the Functional Central Limit Theorem
whenever for a Holder continuous function 7 € C#(B, R) with f hdu, = 0 (not
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equal to a coboundary) there exists o > 0 such that for0 < < 1,

[ntl—1

j [nt]
Wy (1) = o ,Z_;) hoZy + (nt — [nthh o 7"
converges weakly to the Wiener measure on C([0, 1], R). m]

This is sometimes called a weak invariance principle, in reference to the topology
of convergence.

__The Central Limit Theorem could be deduced directly from the spectral results on
- in the previous section, but, with no additional work we can deduce the stronger
Functional Central Limit Theorem.

Proposition 10.4.2 The Functional Central Limit Theorem holds for 9. O
Proof By a quite general result of Mackey and Tyran-Kaminska [13, 14] (cf. also
[27)) if ho € L?(B, 2) satisfies fhod,uz =0and i”ho =0, and

2

oo 1 n—1
Dk
> ) (Zﬁ h()) duz < o,
n=1 k=0
then setting 02 = [ |ho|*d 2 gives
[nt]—1 )
wl(1) = Z hoo I3 — aw(), fort € [0, 1].

Jn

(i.e., the Functional Central Limit Theorem for /(). More generally, given a Holder
continuous function # with f hdp, = 0, we recall from Lemma 10.3.4 that there
exists 0 < 7 < 1 such that ||.$"h||,g = 0(0"), and therefore u = Zn 1 Lh
converges in Cﬂ (B).Letu =Y o2, P"h and set ho :=h—uoT +u then i”(ho)
Zh —u + Pu = 0. Since h and ho are cohomologous we can bound |w, (t) —
wg ()] < 2|lu||oo/+/n and thus deduce the Functional Central Limit Theorem for 4.
If o2 = 0, then we would have iy = 0, and so & would be equal to a coboundary,
which is not the case by assumption.

The following are standard corollaries for Holder continuous functions f using
the Continuous Mapping Theorem [8, 9] beginning with the central limit theorem.

Corollary 10.4.3 (Central Limit Theorem) Fory € R we have that

1 & ~ 1 y N
hm M2 3 X € B : (y/x) < — / e*l‘ /20 dt
n—+ NI jz:;f 2 Y V2ro
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The Central Limit Theorem (and much more besides) has already been proved by
Butetov [4] and Morita [20]. The approach of Bufetov involved studying the rate of
mixing of .%; and the method of Morita involved perturbation theory of the transfer
operator.

The following are other standard corollaries [8, 9].

Corollary 10.4.4 For y > 0 we have that

li B: 1 Xk: (y )< _ “/2 Y 7t2/20-2dt 1
Jm o yxe B mn S pGo sy = L | e
j=

Corollary 10.4.5 (Arcsine Law) For0 <y < 1 we have that

. Nu(x) 2
1 €B: < =
im o {x - y} Jr sin” " \/y

n——+00

where Ny(x) = Card{l <k<n:Y5 f(FHn> 0}. 0

Corollary 10.4.6 (Law of the Iterated Logarithm) For u>-a.e. x € B we have

2?21 f(%/x)
lim sup =
n——+oo 0+/2nloglogn

Remark 10.4.7 There are a number of other statistical results which could be
considered. For example, Morita has shown that there is a local limit theorem
and Berry-Esseen estimates for .7;. We could also consider Edgeworth expansions,
following Fernando and Liverani [6]. |

10.4.2 Almost Sure Invariance Principles

With only a little further work, we next establish a class of stronger results, from
which the preceding (and several others) can easily be deduced.
Given a Holder continuous function f : B — R with f fduy = 0 we can

associate the summation f"(x) := Z?;ol f(fix), foreachn > 1.

Definition 10.4.8 We say that 9 : B — B satisfies the Almost Sure Invariance
Principle relative to Holder continuous functions and the measure p, if for any such
function f : B — R with f fdu2 = 0 not equal to a coboundary, there exists a
sequence of random variables {S,}, possibly on a larger probability space, equal in
distribution under u, with { f"*} and there exists € > O such that S, = W,4+0(n 2 )
as n — 400, where {W;};>¢ is a Brownian motion with variance o2 >0. O
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The following result is a strengthening of Proposition 10.4.2.

Theorem 10.4.9 (Almost Sure Invariance Principle for .95) The transformation
9 : B — B satisfies the Almost Sure Invariance Principle. O

Proof The standard approach is to deduce this from an application of a result of
Philipp and Stout [22] (cf. [17] for a dynamical reformulation). In particular, we
only need to establish that the hypotheses there hold. More precisely, given a -
Holder function f : B — R with | fdu, = 0 we observe that:

(D) fe L?T3(B), for any § > 0 (since v is automatically bounded);
(2) foranyn > 1,

/ |f"Pdps = no® + 0(1)

(by expanding the Left Hand Side and bounding the cross terms using Part (1)
of Corollary 10.3.5), see [17, Proof of Corollary 2.3] for more details;
(3) forany k > 0,
E(1f = EGIVIS 7 ) vig) 757 2)
<|f = E(fIViZ) T oI’
< (Ifllg sup diam(a))**

aer

< (Ifllp®@ %)+,

(where, as usual, E(:| \/i.‘:_(} ﬂz_io@) = Zae%ﬂg M(la) fa (-)dw); and, finally,

(4) given any A; € vf.‘;(} 927" 2 and any Borel measurable set A, C B, and for
any n, k > 0, we can bound

21 0 754 g — pa(Anpa (o)

= /XAl(XAZO%kJrn)dIQ—/XAldH2-/XA2dIJ«2

= /(anAl)(XAz o Thdua _/anAldMZ/XAz o Tdus
= /[ﬁXAI —/ﬁxmduz} (XA, 0 7dpa

— /.,27" [kaAl —/ﬁ){mduz} Xard 2
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1
T N 2 2 :
< ( f ‘x" [f"xm - / f"xmduz} duz) ( f xizduz)

P 1
< Ct"|.L% xa, llpra(A2)2,

for some C > 0, using the Cauchy-Schwartz inequality, that .,S?*/Lz = up and
(again) that 0 < 7 < 1 is a bound on the modulus of the second eigenvalue of
% . Finally, we can observe that ||$ Xxaillg < Du(Ay), as in the proof of [17,
Lemma 2.4], and so the bound can be taken to be Ct".

We can then apply Theorem 7.1 in [22] (cf. Theorem A.1 in [17]) to deduce that the
Almost Sure Invariance Principle holds for 3. O

There is an immediate application of the preceding analysis to return times for
2. Given any Borel set A we denote by r4 : A — N the first return time to A,

i.e., ra(x) = inf{n > 1: 9 "x € A}. In particular, the value defined inductively
(n l)
by V) = r{" P00 + ra( g ")) is the nth return time. Using Birkhoff’s

theorem and Kac’s theorem on return times we have that

w1
lim for u-a.e. x € B.
n>too n pi(A)

For the particular choice A = B we can consider the function rg(x) = 7(x) and by
Kac’s theorem f rpduy = 1/pu1(B). It is easy to see that the variance is non-zero
and thus this leads, for example, to the following corollary:

Corollary 10.4.10 There exists o > 0 such that

. 1 N) 1 1 y _ 42 2 2
lim o {x WMoy — < } / 1207 gy
N—+0o N B w1(B) =7 V2o

fory e R. O

Remark 10.4.11 Finer results about recurrence properties and the statistical behav-
ior of return times for 7] and 7, can also be deduced from the spectral gap
(Lemma 10.3.4), see Aimino et al. [1]. |

10.5 Statistical Properties for .73

The statistical properties of 7> described above can be used to establish analogous
results for the original Zorich map .71 : A X Z — A x %, with respect to (1, by
viewing it as a suspension. More precisely, we can associate to the map % : B — B
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and the return time 7 : B — Z* a suspension space
B :={(x,k) e BxZ:0<k <ni(x)— 1}/ ~

where we idgntify (A, 7; 7(x)) and (% (A, ); 0). We can also define the natural
map .7," : B" — B" on this suspension space by

T (x, k) = (x, k+1) 1f0§i§n(x)—2
(Px,0) ifk=nk)—1.

There is a natural ﬂzﬁ-invariant measure d uy X dN/ f 7d 12, where dN corresponds
to the usual counting measure. The following result is standard.

Lemma 10.5.1 The map V : B" — A x Z defined by W (x, k) = 1% (x) is:

(1) a semi-conjugacy, i.e., 71 oW =W o T, and
(2) an isomorphism (with respect to dpy x dN/ fﬁduz anddu). |
We can deduce the almost sure invariance principle for the Zorich map 7] :
A X% — A x Z,by applying a result given in a paper of Melbourne and Nicol
[17] (which is formulated from the results of Melbourne and Torok [19]), and whose
proof is made precise by Korepanov [11]. The other statistical properties follow as
a direct consequence.
The main technical condition we require is the following:

Lemma 10.5.2 For any § > 0 we have that

o0
Z,uz {(x =0, m) e B:nkx) =kk*" < +00.
k=1

Proof By an estimate of Avila-Bufetov [2, Lemma 1], there exists C > 0 and 0 <
6 < 1 such

2 {x € B:7i(h, ) = k} < CO*, forallk > 1.

Thus Y0°, 2 {x € B: A0, ) = k} K20 < C Y00 0Kk < 400, -

We now describe a general class of function for which the results will be
established. Let f : A x Z — R be Holder continuous and satisfy f fdur = 0.
We can associate to f a function f : B — R defined u;-a.e. by

nx)—1

fe =Y f(FHx).

=0
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In particular, we have that f fduz = 0. A key property is that Birkhoff sums of f
with respect to .7, constitute a subsequence of Birkhoff sums of f with respect to
1. Thus, to obtain statistical properties for the latter, it is enough to prove them for
the former, and to have some control on the gaps between two consecutive terms
of the subsequence. This is the approach followed in [11, 19]. If, in the interests
of expediency, we make the hypothesis that the function f : B — R is Holder
continuous, then we can lift the results for .2 in Theorem 10.4.9 (with respect to
f) to those for 7] (with respect to f). More generally, we can assume that f is
Holder continuous and the associated function f satisfies a weaker “local Holder”
condition that if x and y belong to the same element of 2 with n(x) = n(y) = n,
say, then | f(x) — f(WI| S nll fligllx — y||/3. However, following [17] we can then
consider the slightly larger Banach space % with respect to the norm

il = sup sup LN 4 qup sup P 1A RO
T de2xen M(A)  AcgryeaN(A)  lx =yl
x#y

’

for which the proofs of Lemma 10.3.4 and Theorem 10.4.9 readily generalize.

To extend the almost sure invariance principle from % to 7] we need first to
check the hypotheses of the theorem of Melbourne and Torok [19]. This will prove
the almost sure invariance principle for .77 and the renormalized restriction of | to
B, and we can then use the result of Korepanov [11, Theorem 3.7] to conclude the
results for (77, u1). In particular,

(1) by the Lemma 10.5.2, we can choose § > 0 so that7 € L*%(B, u»), and
(2) by the analogue of part (2) of Corollary 10.3.5 we have that

N—-1

1 o - 1
N E A Fix) = /ndu—i— (0] <N15> , U2-a.e.x € B.
i=0

In particular, we can now conclude that the almost sure invariance principle holds
for 71 with variance 6% = o2/ [ 7id juo.

Theorem 10.5.3 (Almost Sure Invariance Principle for .77) The almost sure
invariance principle holds for &1 and 1. O

Remark 10.5.4 1t can be interesting to precise the error rates in the almost sure
invariance principle above. Even if the result of Philipp and Stout [22] used to
prove Theorem 10.4.9 does not provide very insightful bounds, it is possible, using
different methods, to prove that, for 7 and 77, we have S, = W, + o(n’) for every
X > 0, see Korepanov [12]. |

This theorem has several consequences for Holder continuous functions f,
including the analogues of Proposition 10.4.2 and Corollaries 10.4.3-10.4.6. for ..
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More precisely, we have the following results.

Proposition 10.5.5 The Functional Central Limit Theorem holds for 9. O
This completes the proof of Theorem 10.1.1.

Corollary 10.5.6 (Central Limit Theorem) For y € R we have that

1< i 1 Y 20 2
hm H1yx €B: (T x) < = / e 171207 g4
n——+o00 Jn ;f 1 y «/27'[0‘

Corollary 10.5.7 For y > 0 we have that

1 2
lim pu {xeB: , max Zf(y X)<yy = v / e 2% g

n—-o00 J/n 1<k=n Jro

Corollary 10.5.8 (Arcsine Law) For 0 <y < 1 we have that

Ny (x) 2
n_lmoom {x € . y} Jr sin” " \/y
where Ny (x) = Card{l <k<n:Yr f(F0> 0}. o

Corollary 10.5.9 (Law of the Iterated Logarithm) For pi-a.e. x € B we have

Z] 1 f(y -x)
lim sup =
n—-+00 a\/2n loglogn

From the structure of the map .77, one can deduce many other interesting
statistical properties. For instance, using Lemmata 10.3.2 and 10.5.2, we can obtain
a local large deviations principle, thanks to Melbourne and Nicol [18, Theorem 2.1]
(see also Rey-Bellet and Young [23, Theorem B]):

Theorem 10.5.10 (Local Large Deviations Principle for .71) For any Hélder
continuous function f : A X Z — R not equal to a coboundary such that
f fdur =0, there exists €y > 0 and a rate function c : (—€g, €9) — R continuous,
strictly convex, vanishing only at 0, such that for every 0 < € < €,

1
lim  logu (f" > ne) = —c(e).
n—oo n
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10.6 Transfer Operators and Analytic Functions

To take advantage of the transformation .7 being piecewise analytic, we can also
consider the transfer operator acting on a space of analytic functions. This will
prove useful in the proof of Theorem 10.1.2. Let us denote A = (Aq, -+ , Ap), & =
(&1, , &) € R™. For sufficiently small € > 0 we denote by

m
Bf ={reR": )Y rj=land|r—B| <e

€
j=1

an e-neighbourhood of B in the (hyperplane containing the) simplex and consider a
simple complexification of the form

m m
BE = )\+ise<cm:|)\—3|<e,2x,-=1,z.§j=0and|gj|ge
j=1 j=1

Let % : Béc — C" also denote the analytic extension from B to B¢ provided € > 0
is sufficiently small.

In order to show that . preserves a space of analytic functions on this space we
can use the following simple lemma.

Lemma 10.6.1 Providing € > 0 is sufficiently small we have that 92713? -
int(BéC). Moreover, for x = L + i€ € Béc we have that

1
sup
xeBE yz):: (2 (Ay))”

Proof Since the inverse branches of .75 : B — B are uniformly contracting, we
can choose € > 0 sufficiently small and 0 < 6 < 1 such that ﬂzleiR - Bg‘i.
We can show that their complexifications have a similar property with respect
to Bc. To begin, observe that the linear action of any of the positive matrices
A corresponding to an inverse branch of .7 act on both the real and imaginary
coordinates independently, and the complexification of the linear action is again a
linear action:

A1y dm) F P81 Em) > ARy, An) HEAGL - Em).
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The image under the projective action comes from dividing by (AN +
i Zj(Aé)j (i.e., the complexification of || ALA]|) to get:

AL+ iAg A
Y AN i (A8 X (AN,

(X (A6) )2
Ab (5 anyyy —AEC;(48)))

( j(AS)j)z
(Ag — AnZ A0 )

Zl,‘ (AN

ROV
2 AN+ 5w

+1i

In particular, for 8’ = (1 4+ 6)/2 and € > 0 sufficiently small we can deduce that
9271 Béc C Béc,é. This completes the proof of the first part of the lemma.

For the second part of the lemma, we first observe that uniformly in A 4-i§ € Béc
we have

1 ! 1
(AN +i 2 (A )™ (X (AR )™ (1 +l%jzji;j,§:)
1
_ L+ 0. 10.1
((z,-(AA)/Y”)( +0() (10.1)

However, from the formula of the transfer operator, we know that, as in the proof
of Lemma 10.3.4, for x € B,

1
sup (10.2)
xeB Ty y=x (> Ayi)™
Comparing (10.1) and (10.2) completes the proof. O

We can consider the Banach space H (BC) of analytic functions f : BC — C
with a continuous extension to the closure of B endowed with supremum norm
IfIl = sup BC | f(2)]. We can apply Lemma 10.6.1 to deduce that the operator
L H (Béc) — H (Béc) is well defined. In particular, that the series expression for
Zw(x) converges to an analytic function for x € Béc merely follows by complex
differentiation under summation sign.
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This leads to the following definition and result.

Definition 10.6.2 Any bounded linear operator L : B — B on a Banach space B
with norm || - || is called nuclear (of order ) if there exist:

(i) vectors u, € B (with |lu,| = 1);
(ii) bounded linear functionals /,, € B* (with ||,|| = 1); and
(iii) a sequence (p,) of complex numbers such that Z:io lpn|® < +00, with

o0
L) =) puln()u,. forallve B.
n=0

We say that L has order zero, if property holds for any o > 0. O

In particular, a nuclear operator is automatically a compact operator, for which
the non-zero eigenvalues are of finite multiplicity (and the eigenspaces and dual
spaces are of finite multiplicity).

Proposition 10.6.3 The operator £ : H(Béc) — H(Béc) is nuclear (of order
zero). O

Proof The proof follows the same lines as that in [15, 16], see also [24]. We
denote by C‘”(Béc) the Fréchet space of analytic functions on Béc, endowed with
the compact-open topology. We observe that £ : H (Béc) — C"’(Béc) is a bounded
linear operator and recall that the space C"’(Béc) is nuclear [7]. In particular, if we
compose .Z with the continuous inclusion H (Béc) — C"’(Béc), we conclude that
the operator .Z is nuclear (or order zero) [7] (cf. [16], proof of Lemma 3). |

Many of the statistical results for .75 described in the previous sections are related
to the existence of a spectral gap for .Z. In the present analytic context this is
essentially automatic since the operator is compact. Moreover, one can apply an
approach of Mayer [16, p. 12] to recover that the value 1 is a simple eigenvalue of
maximal modulus, and that eigenfunction p is real analytic.

We can recover the following:

Corollary 10.6.4 The invariant density of 7 (and thus 97) is real analytic. ]

Remark 10.6.5 Zorich [32, Theorem 1] actually proved that the invariant density
is, when restricted to a subset of the form A;; or A, a function which is rational,
positive and homogeneous of degree —m on R™. O

We can again define 2 C?(B) - C“(B) by

~ 1
Lw(x) = Z(wp)(x).
p(x)

then .21 = 1 andj*,u = u.
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10.7 Zeta Functions and Lyapunov Exponents

We now turn to the proof of Theorem 10.1.2. Recall that we can write the sum A of
the Lyapunov exponents of .7, as

A:/log|detD%(x)|dM2(x).
B

We shall describe an approach to the Lyapunov exponents using complex
functions. The connection between zeta functions and both the standard and
multidimensional continued fraction transformations was explored by Mayer in [15]
(cf. also [16]). We also refer the reader to the monograph of Baladi [3] for an account
of the theory of dynamical zeta functions and determinants for hyperbolic maps.

Definition 10.7.1 We can associate to .7 a complex function d(z,s) in two
variables defined by

X n
d(z,s) = exp —Zzn 3 ldet @0
n=1 %x:x

where we interpret the periodic points as points in the disjoint union. This converges
for |z| and Re(s) sufficiently small. m|

The function d(z, s) can be viewed as the reciprocal of a zeta function (in the
sense of Ruelle).
The main technical result on such functions is the following.

Proposition 10.7.2

(1) If |s| is sufficiently small, then d(z, s) is an entire function in z;

(2) Moreover, if we expand d(z,s) = 1 + 220:1 a,(s)z", then there exists ¢ > 0
such that |ay| = O(e=" /"7y,

(3) The zeros zg for d(z, 1) correspond to eigenvalues A = 1/z¢. In particular, 1 is

the zero of smallest modulus; and
(4) We can write

ad(1,s)

ds [s=1 _
adgz,l)lz_l —/10g|det(D92)(X)|d/L2(X)-
“ o=

Proof This follows from the method of Ruelle [24] and Grothendieck [7]. The only
additional feature is that the operator has infinitely many inverse branches but, as in
[15, 16], this presents no additional complications to the proof. O

This gives an alternative expression for Lyapunov exponent in terms of the fixed
points of powers of 7.
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Corollary 10.7.3 We can write A in terms of rapidly convergent series

Z;O:I Cn
> net b

A=

where

(1) by and cy, are explicit values (given below) using fixed points of powers of J;
and

(2) |bal = O(e

—eplt1/0m=1) —enlt1/m=1)

)and |c,| = Of(e ).

Proof By Proposition 10.7.2 we can write

_ dd(l A)|3_ _ Zn 1 n(l)
dd(z 1)|z_ Zn=1 nan(l)

Using the expansion exp(z) = 1+ Y)°, z//1! we can write that for Re(s)
sufficiently large and |z| sufficiently small

© 00k
d(z,s)=1~|—Zl' —sz 3 1deuD T @)1
=1 "

k=1 ,72]‘)(:)5

A
=1+ " > (”1) I kl > 1det(DH ()

n=1 ki+---+kj=n i=1 %kix:x
by grouping together terms with the same power of z. Thus by
0
_ - ki —s
m@=| 3 ]"[ " Z | det(D.7,") (x)]
ki+-+k=n i=1 _92 (I
and thus by part (2) of Proposition 10.7.2

i .
b, =na,(1) =n Z (1') 1_[ L Z |d¢t(D92k')()C)|71

J— ° -— 1 .
ky+--+kj=n i=1 ,Zk,x:X
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and

d 1l A . ,
n=a,()= l=r| 3 (”) H LD e DA

ki4--+kj=n i=1 lfzkix:x

The bounds on b, come directly from the bounds on a, (1) in part (2) of Proposi-
tion 10.7.2.

Using the bounds on a,(s) in part (2) of Proposition 10.7.2 applied to s small
neighbourhood of s = 1 we get bounds on ¢, = a;,(1) using Cauchy’s theorem, i.e.,
for small enough € > 0 we let

—enlt1/m=1)

1
CAGTE= V an@)f;“zds‘:me )
T 1Jlg|=e

and so the bounds on |a,(-)| also serve to bound c¢,,. |

By the estimate in Part (2) of Proposition 10.7.2 we see that for each fixed ¢ the
function d(z, t) is an entire function of order 1 in z. In particular, if {z, (¢)} are poles
of d(z, t) then by the Hadamard Weierstrauss theorem the function d(z, t) takes the
form

T T
Zn

n

where A(t), B(t) € C and each z,(t) depend analytically on ¢ by the Implicit
Function Theorem.

Remark 10.7.4 Following Zorich [32], we can also consider the largest Lyapunov
exponent 0; for these transformations. Let E;; (1 < i, j < m) denote the m x m
matrix with entries 1 on the diagonal and in the (7, j)th place and 0 otherwise, and
let P, denote the permutation matrix associated to &. Consider the matrices

A, a) = (I + L1y, )P ™) and A(w,a) = E + Ly - 1,-
We then define a matrix valued function B(A, i) on Uycp AL U A by

B, 1) = A(h, ) (AT (A, 7)) - - - (Az)m’”*l()\, 71)) .

The general definition for the (leading) Lyapunov exponent for this matrix is

1
6 = inf { /log B, m)BJi (A, ) - - BT (2, 7,)||dm} )
n> n
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Zorich [32, Theorem 4] proved the following elegant result: The Lyapunov exponent
can be written

h=-3 /A  [log(1 = 1) = Tog(1 = hpm1,)| dp1 ()
ne# """

1
= Z/ilog|detDﬁ|du1.
mnez@ Az

To complete this section, we briefly consider a related complex function. We can
formally define

S loglde DI
W=-2., WZ | det(DZ ()]
n= e 2X:.x

In particular, we observe that since n(z) = alogadt(z’t)lt:1 then by part (1) of
Proposition 10.7.2 we see that 1(z) is meromorphic in the entire complex plane
and we can write

zz),(1)

_ Z(D) ' (1)
n(z) = B(1) + Xn: (z2(1) — 2) e (A D+ [Zn(l)]2> ’

for which the poles are {z,} and the residues are u, = 283 (n > 1). Moreover,

by part (3) of Proposition 10.7.2 the poles also correspond to derivatives of
the eigenvalues of the associated transfer operator. This gives a connection to
the approach to resonances considered by Ruelle in the context of Axiom A
diffeomorphisms and is suggestive of an analogous interpretation.

Finally, we conclude with the following curiosity.

Proposition 10.7.5 Assume that u,, = 0 for every n > 1 then n(z) = 0 for all
zeC O

Of course, the conclusion of the Proposition is equivalent to ) Tfix=x

log | det(D.7") (x)|

et DI ()] = 0 foreachn > 1.

10.8 A Glimpse into Teichmiiller Flows

Thus far we have only considered the case of discrete transformations (.77, %,
etc.), but not the case for continuous flows. For completeness, we briefly describe in
this section a small piece of the relationship with Teichmiiller flows and suggest
a connection with the preceding statistical results for .77 and %5. We begin by
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recalling a well known connection between flat surfaces (or translation surfaces)
and interval exchange transformations, although we will keep our description brief
and informal and the refer the reader to one of the several excellent surveys in this
area, such as Veech [29], Viana [30, Chapter 2], Bufetov [4, Section 1.6] or Zorich
[32, Section 5] to name a few.

There is a close connection between interval exchange maps and flat metrics on
surfaces. A particularly convenient presentation of a flat surface is as a union of m
rectangles in the plane based on the intervals I; and of height /;, fori = 1,--- , m.
Thus the information we need to reconstruct the flat torus begins with

(a) Thelengths A; of the intervals [; (i = 1, --- , m);
(b) The heights h; of the rectangles i = 1, --- , m).

Since we will assume that the surface has unit area we can write that {1 + - - - +
Amhm = 1. In addition in order to attach the tops of the rectangles back to their
bottoms in the correct order we need:

(c) The permutation 7 on {1, - - - , m} which tells the change in order in which we
reattach the tops of the rectangles.

In addition, to define the flow and invariant measure it is convenient to introduce
two other coordinates (which obviously depend on those above):

(d) ao, --- ,am, which are actually dependent on the other variables by h; — a; =
hy—1(z(iy+1) — Ar=1(z(i)+1)—1 fori = 1,---,m — 1, with the convention ap =
am+1 = 0; and

(e) 6 =aj—1 —aj,fori=1,---,m

and the heights of other singularities (which lie in the sides of the rectangles)
(Fig. 10.3).

A
$------ >
/lm
o= - -3 >
| A2
I K--=---- ” EN
1 - 1
| | |
1 1 1
o hy L ks "
| | |
| | |
| | |
| | |
| | |
1 1 1
| | |
[ 2 oV ) [ Iag )
Il 12 Im

Fig. 10.3 A zippered rectangle



344 R. Aimino and M. Pollicott

This construction is usually called a zippered rectangle. Let Q24 denote
the space of all unit area (zippered) rectangles. There is a natural volume
dAy - dhpddy -+ -dSy on Qgp. Let u denote the normalized measure. A version
of the Teichmiiller flow 7; : Qg — Qg is defined locally by T; (A, h,a, ) =
(e'A, e "h,ea, ) (i.e., flattening the rectangles from above) and this preserves
the volume. There is a natural projection from 24 to the moduli space of flat
metrics .# and the corresponding semi-conjugate flow S; : .# — .4 is the
Teichmiiller flow. However, to emphasize the connection to our previous discussion
we will persist with the model flow 7;. We can consider the cross section

m
Y = !(A,h,a,n) €Qyp: Z)\,- =1
i=1

to the flow 7;. Under the natural identification on 24 corresponding to different
presentations of surfaces as rectangles: the return time function to % corresponds to
the natural extension of the map % and the return time function is simply (A, 7) =
log (1 — min{A, )\.n—lm}). This shows that the properties of the flow T; are closely
related to those of the maps related to the Rauzy-Veech map.

In particular, the Teichmiiller flow 7; is a finite-to-one factor of the natural
extension of the suspended semi-flow associated to the map .7 and the function
r,i.e., let

AXZY ={ (A, 7, u) e AXZxR:0<u=<r(i,m)
——

=X
where we identify (x, r(x)) = (9 (x), 0) and we define the semi-flow
(D) (AXRB) — (AXxRB)
locally by (%)} (x, u) = (x, u + t), subject to the identifications.
Since inducing on B C A (as described in the discrete case) gives the map

Z : B — B, we can also represent this semi flow as a suspension semiflow over
2 : B — B with respect to a related function, : B — R, i.e., let

B?={(x,u) e BxR:0<u<nrnx)}/~

where we identify (x,72(x)) = (Z(x),0) and we define (%);> : B2 — B"
locally by (%3);(x, u) = (x, u + t), subject to the identifications.
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The following lemma was established by Bufetov [4].
Lemma 10.8.1

(1) r» € LY (B, o), forevery y > 1; and
(2) if F : Q¢ — R is Holder and f : B — R is defined by f(x) :=
fOFZ(x) F(S;x)dt then there exists § > 0 such that f € L*T%(B, uy). O

Since r; is integrable, the Teichmiiller flow preserves the probability measure 1,

defined by dju,, = ([ radpa) ™" dpua x ds.
We now recall the continuous analogue of the Almost Sure Invariance Principle.

Definition 10.8.2 A flow v, : X — X with invariant probability measure u is
said to satisfy the Almost Sure Invariance Principle with respect to a probability
measure v if for a Holder function ® : X — R not equal to a coboundary such
that f ®dp = 0 there is a € > 0 and a random variable {S;};>0 and a Brownian

motion B with variance o2 such that ’ fot CD(%)ds} o seen as a random process
>

defined on (X, v), is equal in distribution to random variables {St}r>0 and S; =
B: + 0(t'/?79). O

The result for Teichmiiller flows corresponding to Theorem 10.4.9 is the
following.

Theorem 10.8.3 The Teichmiiller flow satisfies the almost sure invariance principle

with respect to the probability measure |17 seen as a measure on B2 supported on
B x {0}. O

Proof 1t suffices to show the result for the associated semi-flow (the result for the
natural extension requiring a standard argument involving changing functions by a
coboundary, see for instance [17, Lemma 3.2]). Let ® : B> — B2 be a Holder

function with ¢ (x) = fi ™ ®((F)?x))d1.

(1) r € L*B(B, uy), for some B > 1 (by part (1) of Lemma 10.8.1)

(2) ¢ € L>**3(B, u»), for some § > 0 (by part (2) of Lemma 10.8.1); and

(3) % : B — B satisfies the Almost Sure Invariance Principle (by Theo-
rem 10.4.9)

The Teichmiiller flow then satisfies the Almost Sure Invariance Principle by the
results of [19]. O

Even though the Almost Sure Invariance Principle has been proven only for the
measure (2, and not for the measure p,,, this is enough to deduce the following
corollaries for Holder continuous functions @, see Denker and Philipp [5].
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Corollary 10.8.4 (Central Limit Theorem) Fory € R we have that

lim {( ) ! /T D ((F)*(x, $))dt < } ! /y —1/20% 44
i 3 (x,8): X,s < = e
T—>+ooM2 \/T 0 2t Y \/27'[0 —00

The central limit theorem for Teichmiiller flows was proved by Bufetov [4].

Corollary 10.8.5 For y > 0 we have that

1 ! V2 Y 2/h 2
O (x,s)dt <y} = /207 qr 1
i /0 (P2, 5)) _y} Jro /_ K

Corollary 10.8.6 (Arcsine Law) For 0 <y < 1 we have that

lim ,8) -
g

. . N7 (x) _ .1
TETOO try {(x,S). r = y} = Jn sin”™" /y
where Ny (x, s) = Leb [o <t<T : [l o) (x,5)dt > 0]. 0

Corollary 10.8.7 (Law of the Iterated Logarithm) For p,,-a.e. (x, s) we have

i o PURP e
T_,+£ o/2T loglogT

Remark 10.8.8 If Korepanov’s results [11] can be extended to suspended flows,
then it would be possible to prove Theorem 10.8.3 for the invariant measure (i,,,
and then, using arguments from Melbourne and Nicol [17], to pass to the natural
extension, thus obtaining the Almost Sure Invariance Principle and all its corollaries
for the original (invertible) Teichmiiller flow defined on Q4. O

10.9 Comments on Pressure

It is natural to relate these statistical properties to classical ideas on pressure. To
accommodate the complication of having a countable-to-one map % : B — B
(and also an unbounded return time 7 : B — ZT when we look at the tower to
reconstruct .77) it is convenient to work with the Gurevich pressure (as developed
by Sarig [25], by analogy with the more familiar Gurevich entropy for countable
subshifts of finite type). Let us consider a fairly general formulation of these results.

Recall that 2 is the partition of smoothness of %, and that 2, = v?;ol T, ' 2
is its nth level refinement. For x, y € B, we denote by

s(x,y) =inf{n > 0 : x and y belong to two different elements of 2,}
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their separation time with respect to %>. Assume that ¢ : B — R is (locally)
Holder continuous, in the sense that there exists 0 < 6 < 1 and A > 0 such that
V. (0) < AG" for n > 0, where

V(@) :=sup{|¢p(x) —p ()| :x,y € B,s(x,y) = n}

(i.e., the variation of the function over elements of the nth level refinement of
the partition associated with %). In particular, Lipschitz functions satisfy these
conditions. On the other hand, more generally this condition doesn’t require ¢ to
be bounded, say.

Definition 10.9.1 To define the (Gurevich) pressure can fix any element A € 2,
for chosen value ng. We then define

1 n
P(¢) := lim log Z e®" ™)
n—>oo n
T x=xeA

where ¢" (x) := ¢(x) + ¢(F5x) + - + $(F' "' x). o

Under very modest mixing conditions (i.e., the “Big Images Property” which
applies in the case of %) we can see that the definition is independent of the choice
of ng and A. However, in general some additional assumptions are required to ensure
that the pressure is finite.

One would anticipate that the properties of P(¢) would be useful in further
studies of the properties of these maps and flows.

Remark 10.9.2 Sarig [26] has results which suggest that the map ¢ — P (¢ + 1)
is analytic for suitable Holder continuous functions ¢, i whenever the pressure is
finite and t € (—e, €). This is based on spectral properties of a suitable transfer
operator. a
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Chapter 11 )
Entropy Rigidity, Pressure Metric, and Shethie
Immersed Surfaces in Hyperbolic

3-Manifolds

Lien-Yung Kao

Abstract In this paper, we show an entropy rigidity result for immersed surfaces
in hyperbolic 3-manifolds that relates dynamic and geometric quantities including
entropy, critical exponent, and geodesic stretch. We then apply this result to 77 the
minimal hyperbolic germs (a deformation space corresponding to the quasifuchsian
space 2.7 proposed by Taubes). As a consequence, we recover the famous
Bowen rigidity theorem for quasifuchsian representations. Moreover, we construct
a Riemannian metric, i.e., the pressure metric, on the Fuchsian space .% C 7.
We also discuss relations between the pressure metric, Sander’s metric, and Weil-
Petersson metric on .%.

11.1 Introduction

Entropy rigidity problems have drawn a lot of attention since the late twentieth
century. It shows that entropy, a dynamics quantity, can characterize the geometry of
the ambient space. This phenomenon occurs in many different geometric or dynamic
settings, such as the seminal work of Bowen [1], Katok [2], Burger [3], Knieper
[4], etc. In this paper, we investigate a version of the entropy rigidity phenomenon
arising in immersed surfaces in hyperbolic 3-manifolds.

In the view of entropy rigidity results, it is natural to ask if one can use these
dynamics quantities to gauge the ambient geometric structures, such as a metric
on deformation spaces. The geometric object or the deformation space tightly
related to the immersed surfaces in hyperbolic 3-manifolds setting is the minimal
hyperbolic germ .77 of a given closed surface. This deformation space is, inspired
by minimal surfaces in hyperbolic 3-manifolds, introduced in Taubes [5]. J7
shares many features with 2.% the quasifuchsian space. Inspired by the work of
McMullen [6] and Bridgeman [7], we construct a Riemannian metric, the pressure
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metric, on the Fuchsian space .# C 7. Furthermore, the pressure metric can also
be constructed through the relationship to Manhattan curves. Relations between
Riemannian metrics on .% are also discussed. (See Sect. 11.3 for precise definitions
of terminology used above.)

To put our results in context, we shall introduce our notation. Throughout this
paper, S denotes a closed surface and M denotes a hyperbolic 3-manifold with the
hyperbolic metric #. Let f : S — M be a m1-injective immersion. We denote the
induced Riemannian metric on S by g, thatis, g = f*h.

We recall that when (N, g) is a negatively curved Riemannian manifold, each
conjugacy class [y] € [ N] corresponds to a unique closed geodesic on (N, g). In
this case, [;[y] denotes the length of a closed geodesic corresponding to [y ] with
respect to the Riemannian metric g.

Definition 11.1 (Asymptotic Geodesic Distortions) C.(f) the asymptotic
geodesic distortion of f with respect to g is defined as

> hlyl
C,(f) = limsup [yleRT ()

Tooo Y Lly]

[v1eRT(g)

where Rr(g) = {[y] € [m1S] : lg[y] < T}. Similarly, C,(f) the asymptotic
geodesic distortion of f with respect to A is given by

> hlyl

Rr(h
Cp(f) = lim sup [yleRr )

Tooo Y Lly]

[y1eRr ()

where Ry (h) := {[y] € [m1S]: Ixly] < T}. O

The following result links critical exponent, entropy and asymptotic geodesic
distortions through inequalities with rigidity features. Please see Sect.11.3 for
precise definitions.

Theorem A Let f : S — M be a 1 —injective immersion from a closed surface S
to a hyperbolic 3-manifold M, and let T" be the copy of w1 S in Isom(H?) induced by
the immersion f. Suppose I" is convex cocompact and (S, g) is negatively curved.
Then

(1) The limit-sups in Cp(f) and Cqy(f) are limits.

(@) 0 < Cn(f) =Ce(f) = L
(3) Let hyop(S) be the topological entropy of the geodesic flow on T'S and 8t be
the critical exponent , then

Ch(f) - 8r < hiop(S) < Co(f) - 8r. (11.1.1)
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(4) The first (resp. second) equality in (11.1.1) holds if and only if the marked length
spectrum of (S, g) is proportional to the marked length spectrum of (M, h), and
the proportion is the ratio hmir( 5) (resp. h,[g)r(S) ).

(5) If Ch(f) =1 or Ce(f) = 1, then S is a totally geodesic submanifold in M.

Remark 11.2 Theorem A extends several results in [8] by relaxing the embedding
condition to immersion.

In particular, when f : § — M is an embedding, inspired by Glorieux [8], we
can strengthen Theorem A and relating asymptotic geodesic distortions to geodesic
stretches. Let ¢ : T'S — TS be the geodesic flow on the unit tangent bundle
of (S, g). Geodesic stretches are dynamics quantities that introduced by Knieper
[4] which characterize how geodesics are stretched from one metric to the other
with respect to a given ¢—invariant probability measure. The precise definition of
geodesic stretch can be found in Sect. 11.4.2.

Theorem 11.3 Under the same assumptions in Theorem A and assuming f : S —
M is an embedding, then the asymptotic geodesic distortions Cy(f) and Cg(f)
match the geodesic stretches relative to ¢—invariant measures. More precisely,

Crn(f) = 1u(S, M) and Cy(f) = lyupy (S, M),

where W is some ¢—invariant measure and [y is the Bowen-Margulis measure

of ¢. O

The Manhattan curve can be regarded as the 2-dimensional generalization of the
critical exponent. Motivated by Burger [3] and Sharp [9], we adapt their argument
to our setting. Precisely, the Manhattan curve y s corresponding to the immersion
f S — M is defined as the boundary of the convex set

{@.b) eR2: Y o @hlyHbhiy) < ooy
yem S

We have the following result.

Theorem B Under the same assumption as Theorem A, then

(1) (0, 1) and (h1op(8). 0) € ;-

(2) xy is a real analytic curve.

(3) xy is strictly convex unless the marked length spectrum of (S, g) is proportional
to the marked length spectrum of (M, h).

(4) xr is a straight line if and only if the marked length spectrum of (S, g) is
proportional to the marked length spectrum of (M, h).

Using the convexity of the Manhattan curve x s, we derive an entropy rigidity
result similar to that which Bishop and Steger discovered for Fuchsian representa-
tions [10].
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Corollary 11.4 (Bishop-Steger Rigidity) Under the same assumption as Theo-
rem A, then

hl‘ap (g)

1
lim log#{y e miS : I +1 <T} <
Jim - log ly emS: Llyl+inly] } hrop(g) + 1

and the equality holds if and only if the marked length spectrum of (S, g) is
proportional to the marked length spectrum of M.

We now change gear to the applications of the above rigidity results. Roughly
speaking, the space of minimal hyperbolic germs 7 for a closed surface S is a set
of pairs (g, B) consisting of a Riemannian metric g and a symmetric two tensor B
on S. Each pair (g, B) € S can be thought of as an induced metric and a second
fundamental form of a minimal immersion of S into some hyperbolic 3-manifold.
(See precise definition in Sect. 11.3.6.)

Pointed out in Uhlenbeck [11], one can relate 7# with the character variety
Z(1(S), PSL(2, C)). Z(m1(S), PSL(2, ©)) is the space of conjugacy classes of
representations of 71(S) into PSL(2, C). Using this relation, we are interested in
the quasifuchsian spaces 2.% drawn from Z (1 (S), PSL(2, C)) into SZ. (See the
precise definitions in Sect. 11.3.6.)

With Theorem A, we recover the famous Bowen rigidity theorem for quasifuch-
sian representations [1].

Corollary 11.5 (Bowen’s Rigidity, [1]) A quasifuchsian representation p € 2.F
is Fuchsian if and only if dimyg A(I') = 1 where dimy A(T") is the Hausdorff
dimension of the limit set A(T") of T. O

By the definition of JZ, for (g,0) € % we know g is a hyperbolic metric on
S. In other words, the Teichmiiller space of S is a subspace of J#. This copy of
Teichmiiller space in S is called the Fuchsian space 7.

To study the geometry of the Fuchsian space .%, we will need to investigate a
bigger space .«7.% the almost-Fuchsian space. A pair (g, B) € S is called almost-
Fuchsian if (g, B) is close to a Fuchsian pair, in the sense that ||B||§ < 2. In
particular, Uhlenbeck [11] showed that for a hyperbolic metric (m,0) € % and a
holomorphic quadratic differential « € Q([m]) there exists a smooth path 7p(t) =
(g:,tB) € o/ % where go = m and B = Re(w). Therefore, the study on this
particular path rg (t) = (g, tB)e &% will help us to see the geometry of .# and
derive the pressure metric for .%.

The path rg C &/ defines a smooth family of Riemann metrics {g;} over S.
There are two related dynamics objects to the path, namely, /,,,(g;) the topological
entropy of the geodesic flow over (S, g;) and the Manhattan curve x; = x(go, &)-
By the structural stability of Anosov flows, we know £,,,(g;) and x, vary smoothly
along the path rp(¢) when ¢ is small.
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Given (m,0) € % and @ € Q([m]), we define the normalized intersection
number Jy, o (t) with respect to m and o by

> lltl
Ima@) = hmp(gt) - lim sup rekrom

700 Y alt]

TERT (M)

where g; is given by the path y, (f) = (g, tRew) with gg = m.

Theorem C (Intersection Number and the Pressure Metric) For (m,0) € %
and a € Q([m]), we know

(1) Jm.a(t) < 1 and the equality holds if and only t = 0.

2) jtzz I« (t)‘ 0 > 0 and is equal to zero if and only o = 0.
1=

2 . . . . .
3) ||ot||%> = 011112 Jm,a(t)‘ 0 defines a Riemannian metric for %, and which is
1=

called the pressure metric.

Notice that Sanders [12, Theorem 3.8] showed one can use /., (g;) to construct
a Riemannian metric for .%, and which is bounded below by the Weil-Petersson
metric. The following result describes a relation between Sanders’ metric || - ||s, the
pressure metric || - || p and the Weil-Petersson metric || - [[wp.

Corollary 11.6 Let (m,0) be a Fuchsian pair and a € Q([m]) be a holomorphic
quadratic differential. Then

2

d
lloll§ =) 2 huop(g0)| = llelip + 27 llelliy p.
t

=0

We remark that [12, Theorem 3.8] is an immediate consequence of Corol-
lary 11.6.

Lastly, inspired by the work of Pollicott and Sharp [13], we relate the pressure
metric and the Manhattan curve ;.

Corollary 11.7 One can define a family of metrics on the Fuchsian space % by
using the second derivatives of x;(s) for s € [0, €) for some ¢ > 0. More precisely,
for (m, 0) a Fuchsian pair and o € Q([m]), we have

2

d .
el = 42 10() LU G sH)|leel [
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11.1.1 Outline of the Paper

In Sects. 11.2 and 11.3, we will give a fair amount of related background knowledge
of dynamics and geometry. In Sect. 11.4, we will present the main dynamics rigidity
results in Proposition A and Theorem 11.3 as well as Manhattan curve results in
Theorem B. In Sect. 11.5, we will investigate the space minimal hyperbolic germs
and the construction of the pressure metrics and present the proof of Theorem C.

11.2 Background from the Thermodynamic Formalism

11.2.1 Flows and Reparametrization

Let X be a compact metric space with a continuous flow ¢ = {¢;};er on X without
any fixed point and p a ¢—invariant probability measure on X. Consider a positive
continuous function F : X — R. ¢ and define, fort > 0

t
Kk(x,1) :=/ F(¢s(x))ds,
0
and k(x,t) := —k(¢:(x),—t) for t < 0. The function « satisfies the cocycle
property
K(X,I+S) = K(.X,t) +K(¢txas)

forall x,r e Rand x € X.
Since F > 0 and X is compact, F' has a positive minimum and « (x, -) is an
increasing homeomorphism of R. We then have a map @ : X x R — R such that

a(x,k(x,t)) =x(x,a(x, 1)) =t.

forall (x,7) € X x R.

Definition 11.8 Let F : X — R be a positive continuous function. The
reparametrization of the flow ¢ by F is the flow ¢f = {¢,F }ter defined as

¢ (%) = o, (). o

11.2.2 Periods and Measures

Let O be the set of closed orbits of ¢. For t € O, let I(t) be the period of T with
respect to ¢. Then the period of T with respect to the reparametrized flow ¢ is

I(t)
/F = (67, F) =/ F(¢s(x))ds,
T 0
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where x is any point on 7 and §; is the Lebesgue measure supported by the orbit t.

Let u be a ¢p—invariant probability measure on X, F : X — R be a continuous
function, and ¢’ be the reparametrization of ¢ by F. We define F/\/L to be the
probability measure: for any continuous function G on X

— G- Fdu
F-M(G)=fX .
Jx Fdu

Then I*{\,u is a ¢ —invariant probability measure.

11.2.3 Entropy, Pressure, and Equilibrium States

We denote by hg(n) the measure-theoretic entropy of ¢ with respect to a
¢—invariant probability measure . Let .#Z? denote the set of ¢—invariant
probability measures, and C(X) denote the set of continuous functions on X.

Definition 11.9 The pressure of a function F : X — R is defined as

Py(F) := sup <h¢(m)~|—/ de).
X

me.H?

A measure m € .4 is called an equilibrium state if it realizes the equality.
We define the topological entropy of the flow ¢ by hy = P4(0), and an
equilibrium state for the function F' = 0 is called a measure of maximum entropy.
If there is no ambiguity as to which flow we refer to, such as ¢, then we might
drop the subscript ¢ and use & to denote the topological entropy, and /(i) to denote
the measure theoretic entropy of ¢ with respect to . O

The following Abramov formula relates the measure theoretic entropies of the
flow ¢ and its reparametrization ¢ .

Theorem 11.10 (Abramov Formula [14]) Suppose ¢ is a continuous flow on X
and ¢F is the reparametrization of ¢ by a positive continuous function F, then for

allw e A?

hg (1)

hyr (Fu) = .
¢ Jx Fdu

11.2.4 Anosov Flows

A C'* flow ¢; : X — X on a compact manifold X is called Anosov if there is a
continuous splitting of the unit tangent bundle 7' X = E° @ E* @ E*, where EV is
the one-dimensional bundle tangent to the flow direction, and there exists C, A > 0
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such that || D¢; |[E*|| < Ce ™ and |D¢_, |E*|| < Ce™ fort > 0. We say that
the flow is transitive if there is a dense orbit.

We know that if M is a compact negatively curved Riemannian manifold, then
the geodesic flow ¢ : T'M — T'M is a transitive Anosov flow.

Recall that a function F : X — R is called a—Holder continuous if there
exists C > 0 and o € (0, 1] such that for all x, y € X we have |F(x) — F(y)| <
C - dx(x, y)¥. In most cases, we will abbreviate «—Hdlder continuous to Holder
continuous.

Let O be the set of periodic orbits of ¢. For a continuous function F : X — R
and T € R, we define

Rr(F)y={t € 0: (8, F)<T).

Proposition 11.11 (Bowen [15]) The topological entropy hy of a transitive Anosov
flow ¢ is finite and positive. Moreover,

1
hy = lim log#{re O :1l(r) < T}.
T—soo T
If F : X — Ris a positive Holder continuous function, then
h h li ! log#Rr (F)
= = lim 0 ,
F ¢" T—oo T & g

is finite and positive. O

Recall that two Holder continuous F, G : X — R are called Livsic cohomol-
ogous if there exists a Holder continuous V : X — R which is C! in the flow
direction such that

0
Fx)-G) = ; V(g1 (x)).

0 t=0

The following theorem shows that equilibrium states can distinguish Holder contin-
uous functions up to a coboundary in the LivSic cohomology.

Theorem 11.12 (Bowen-Ruelle [16], cf. [17] Proposition 6.1) If ¢; is a transitive
Anosov flow on a compact manifold X, then for each F : X — R Holder continuous
function, there exists a unique equilibrium state mp of F. Moreover, if F and
G are Holder continuous functions such that mp = mg, then F — G is Livsic
cohomologous to a constant. O

In particular, the we also call the unique measure of maximum entropy mg of a
transitive Anosov flow ¢ the Bowen-Margulis measure and denote it by mpyy.

Theorem 11.13 (Equidistribution, Bowen [15], Cf. [17] Theorem 9.4 ) Suppose
¢ is a transitive Anosov flow on a compact manifold X. Then mpy, the Bowen-
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Margulis measure, satisfies that for any continuous function G on X

Y (8.6

1 8:,G i
/deBMIWlBM(G): lim Z (6 >= lim TeRy(1)
X

Tooo #R7(1) A=) (B 1) Tooo 3™ (6:.1)

TeR7(1)

The following Bowen’s formula links the topological entropy of the
reparametrized flow ¢ and the reparametrization function F.

Theorem 11.14 (Bowen’s Formula, Cf. [17] Proposition 6.1) If ¢ is a transitive
Anosov flow on a compact metric space X and F : X — R is a positive Holder
continuous function, then

Py(—hF) =0

if and only if h = hyr. Moreover, if h = hyr and m is an equilibrium state of —hF,
then F.m is a measure of maximal entropy of the reparametrized flow ¢ .

11.2.5 A Livsic Type Theorem

By the definition of the LivSic cohomology, the following properties are immedi-
ate:

1. If F and G are LivSic cohomologous then they have the same integral over any
¢—invariant measure.

2. The pressure Py (F) only depends on the Liv§ic cohomology class of F.

3. R (F) only depends on the LivSic cohomology class of F.

Theorem 11.15 (Nonnegative LivSic Theorem, Lopes-Thieullen [18]) Suppose
X is a compact Riemannian manifold with negative sectional curvature. Let ¢; :
T'X — T'X be the geodesic flow on T'X. Let F : T'X — R be a Holder
continuous function such that (6, F) > 0 for each ¢—closed orbit t. Then F is
cohomologous to a Holder continuous function G(x) such that G(x) > 0, Vx €
T'X.

11.2.6 Variance and Derivatives of the Pressure

Let ¢; : X — X be a transitive Anosov flow on a compact metric space X, and
C%(X) be the set of a-Holder continuous function on X.
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Definition 11.16 Suppose F € C“(X) and mF is the equilibrium state of F. For
any H, G € C%(X) with mean zero (i.e., [ Gdmp = [ Hdmp = 0), the covariance
of G and H with respect to mF is given by

T T
Cov(G, H,mp) = Tlimw ; /X </0 H(d)t(x))dt) (/0 G(d)t(x))dt) dmp(x).

Similarly, for G € C*(X) with mean zero we define the variance of G with respect
tompr as

Var(G, mp) := Cov(G, G, mFp).

The following properties are some handy formulas of the derivatives of the
pressure.

Proposition 11.17 (Proposition 4.10, 4.11 [17]) Suppose that ¢; : X — X isa
transitive Anosov flow on a compact metric space X, and F, G € C*(X). If mF is
the equilibrium state of F, then

(1) The function t — Py (F +tG) is analytic.
(2) The first derivative is given by

dPy(F +1G)
dt

= / deF.
t=0 X

3 If f Gdmp = 0, then the second derivative can be formulated as

d*Py(F +tG)

dr? = Var(G, mp).

t=0

(4) Var(G,mp) = 0 ifand only if G is LivSic cohomologous to a constant.

Corollary 11.18 (Theorem 2.2 [6]) Let vy be an smooth path in C*(X), mg =
my, be the equilibrium state of o, and Vo = ddlg’ ‘ K Then
1=

dP(Yy)
dt

= / Yodmo. (11.2.1)
t=0 ZX
Moreover, if the first derivative is zero (i.e., sz Yomo = 0) then

d*P ()
dt?

=Vax(¢0,m0)+/ VYodm. (11.2.2)
=0 =1
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11.2.7 The Pressure Metric

Let ¢; : X — X be a transitive Anosov flow on a compact metric space X. We
consider the space &?(X) of LivSic cohomology classes of pressure zero Holder
continuous functions on X, i.e.,

P(X) = {F : F e C*(X) for some o and Py(F) = 0} /~.

The tangent space of & (X) at F is
Tr P(X) = ker (DPy)(F)) = IG : G e C¥(X) for some o and/ Gdmp = 0} /~.

For G € Tr Z(X), we define the pressure metric as

_ Var(G, mp)

Gl% := .
161 = = e

Proposition 11.19 If {c/};c(—1,1) is an analytic one parameter family contained in
P(X), then

[ ¢odmy,

-2
collp = )
i¢ollp [ codme,

O

. d oo g2
where ¢y = at Cf|r=0 and ¢y = g2t 0
Proof This follows from the direct computation of the (Gateaux) second derivative
of P(¢y):

2

d
t2 P(Ct)

J = (D*P)(co)(¢o. é0) + (DP)(co) (éo)

t=0

= Var(c¢o, mCO) + / 5()dm60.

Since P(c;) = 0, we have

_ Var(co, me,) _ ,[EOdmco

s 12
lcollp == = .
—fcodmc0 fcodmc0
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11.3 Background from Geometry

In this section, we survey several facts of §—hyperbolic spaces and their group of
isometries. A good reference is the book [19] edited by Ghys and de la Harpe and
Kapovich’s book [20].

11.3.1 &-Hyperbolic Spaces

A metric space (X, d) is said to be geodesic if any two points x, y € X can be joined
be a geodesic segment [x, y] that is a naturally parametrized path from x to y whose
length is equal to d(x, y), and is called proper if all closed balls are compact.

Definition 11.20 A geodesic metric space (X, d) is called §—hyperbolic (where
8 > 0is some real number) if for any geodesic triangle in X each side of the triangle
is contained in the § —neighborhood of the union of two other sides. A metric space
(X, d) is called hyperbolic if it is §—hyperbolic for some § > 0.

It is well-known that a Pinched Hadamard manifold Mis § —hyperbolic space
where (M, 2) is a complete and simply connected Riemannian manifold with
bounded negative sectional curvature. Recall that a group G is hyperbolic if for
one (and for all) finite generating set the Cayley graph is hyperbolic. For example,
finitely generated free groups and surface groups for surfaces with genus > 1 are
hyperbolic groups. O

We say that two geodesic rays 11 : [0,00) — X and 72 : [0,00) — X are
equivalent and write 71 ~ 17 if there is a K > 0 such that for all > 0

d(t1(1), ©2(1)) < K.

It is easy to see that ~ is indeed an equivalence relation on the set of geodesic rays.
We then define the geometric boundary 00X of X by

000X 1= {[7] : 7 is a geodesic ray in X}.

Moreover, we know that when X is proper, doc X is metrizable by the visual metric
(see [21, Theorem 1.5.2]).

11.3.2 Quasi-Isometries

Definition 11.21 A function g : X — Y from a metric space (X, dx) to a metric
space (Y, dy) is called a (C, L)-quasi-isometry embedding if there is C, L > 0 such
that:



11 Entropy Rigidity, Pressure Metric, and Immersed Surfaces in Hyperbolic. . . 363

For any x, x" € X, we have
1
Cdx(xfx/) — L <dy(q(x),q(x") < C-dx(x,x")+ L.

If, in addition, there exists an approximate inverse map g : ¥ — X thatis a
(C, L)-quasi-isometric embedding such that forallx € X andy € Y

dx(qq(x),x) = L, dy(qq(y),y) < L,

then we call g a (C, L)-quasi-isometry. In this case, (X, dx) and (Y, dy) are called
quasi-isometric. O

In most cases, the quasi-isometry constants C and L do not matter, so we shall
use the words quasi-isometry and quasi-isometry embedding without specifying
constants.

Theorem 11.22 ([21], Theorem 1.6.4) Let (X,dx) and (Y,dy) be hyperbolic
spaces. Suppose the boundaries are equipped with visual metrics. Then

(1) Any quasi-isometry embedding q : X — X' extends to a bi-Holder embedding
q : 000X — 000 Y With respect to the corresponding visual metrics.

(2) Any quasi-isometry q : X — X' extends to a bi-Hdlder homeomorphism q :
000X — 0c0Y with respect to the corresponding visual metrics.

Definition 11.23 A (C, L)—quasi-geodesic is a (C, L)—quasi-isometry embed-
dingg : R — X. O

Theorem 11.24 (Morse Lemma, cf. Ch.5, Theorem 6 [19] ) Suppose X and Y
are hyperbolic spaces, and q : X — Y is a (C, L)-quasi-isometry. Then, for every
geodesic y C X, its image q(y) is a quasi-geodesic on Y and is within a bounded
distance R from a geodesic on Y. Moreover, this constant R is only depends on X,
Y, and the quasi-isometry constants C and L. O

Remark 11.25 When the space Y is a pinched Hadamard manifold, we have a
stronger result of the above theorem. Namely, every geodesic y C X its image
q(y) is a quasi-geodesic on Y and is within a bounded distance R from a unique
geodesicon Y. O

Let X be a hyperbolic space. We denote its group of isometries by Isom(X). The
following lemma connects some subgroups of Isom(X) and the hyperbolic space X.

Theorem 11.26 (gvarc-Milnor lemma, cf. Lemma 3.37 [20] ) Let X be a proper
geodesic metric space. Let G be a subgroup of Isom(X) acting properly discontin-
uously and cocompactly on X. Pick a point o € X. Then the group G is finitely
generated, for any choice of finitely generating set S of G, the map q : G — X,
given by q(y) = y(0), is a quasi-isometry. Here G is given the word metric induced
from C(G, S). m]
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11.3.3 Negatively Curved Manifolds and the Group
of Isometries

Let (X, g) be a negatively curved compact Riemannian manifold. The universal
covering (X, 2) of (X, g) is a pinched Hadamard manifold. Let I" denote the group
of deck transformations of the covering X.

Since (X, g) is negatively curved, every y € I corresponds to a unique geodesic

=X on X. Furthermore, each conjugacy class [y] € [I'] corresponds to a unique

y
closed geodesic 7,1

r;( is exactly the translation distance of y € m X (ie., lg(‘l,';() = L[yl =

infrex dg(x, y - 2)).

Recall that the marked length spectrum is a function ! : [t] — I[t] € RT which
assigns to a homotopy class [7] the length I[7].

By a famous result of Margulis [22], we know that 4, (X) the geodesic flow for
(X, g) can be characterized by the (exponential) growth rate of closed geodesics,
that is,

on X and vice versa. Moreover, the length of the closed geodesic

1
hiop(X) = lim _log#{[y] € [1iX]: LIyl < T}.

Now let us consider a compact 3—manifold M equipped with a hyperbolic metric
h. Then there exists a discrete and faithful representation p : 1M — Isom(H3)
such that M = p(mM )\IHI3 where (H3, E) is the universal covering of (M, h). For
the sake of brevity, in what follows we will denote the lifted metric of h on H3 by
h.

Let I" be a discrete subgroup of Isom(H3). Recall that The limit set A(T") is the
set of limit points I'x for any x € H?, and I is called convex cocompact if T acts
cocompactly on the convex hull Conv(A(I")) of the limit set of I".

Definition 11.27 The critical exponent r is defined as
Sr :=inf{s > 0 : Ze*sdﬂx’”) < o0},
yel

for any point x € H? and dj, is the hyperbolic distance on H?. O

The following result of Sullivan links critical exponent, Hausdorff dimension,
and entropy.

Theorem 11.28 (Sullivan [23,24]) Suppose I is a non-elementary, convex cocom-
pact, and discrete subgroup of Isom(H?), then

1
Or =dimy A(I") = hyop(M) = Tli_)moo T log#{[yl e [I']: Ixlyl < T},
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where dimy A(T") is the Hausdorff dimension of A(I'), M = F\H3 and lp(y) =
dp(0, y0), o is the origin of H?. O

11.3.4 Holder Cocycles

Let (X, g) be a compact negatively curved manifold, X be its universal covering, and
I" be the group of deck transformations of the covering X. Recall that the 771 X-action
on X is defined by y - x = ix(y)(x), where i is the isomorphismiy : 71§ — T.

Definition 11.29 A Holder cocycle is a function ¢ : w1 X X Boof — R such that

c(yoy1, x) = c(y0, y1 - X) + c(y1, x)
for any yp,y; € m1X and x € BOOJN(, and c(y, -) is Holder continuous for every
y emX. |

Given a Holder cocycle ¢ we define the periods of ¢ to be the number

lelyl:==c(y,v¥)

where y;{ is the attracting fixed point of y € w1 X\{e} on doo X.
Two cocycles ¢ and ¢’ are said to be cohomologous if there exists a Holder
continuous function U : dc X — R such that, for all y € w1 X, one has

c(y,x) =c(y,x) =U(y -x) = U(x).
One easily deduces from the definition that the set of periods of a cocycle is a

cohomological invariant.

Definition 11.30 The exponential growth rate for a Holder cocycle c is defined as

1
h¢ = lim sup T log#{[y] € [m1 X]: l[y] < T}.

T—o00

The following theorem of Ledrappier gives a precise method to construct a
Holder function F, from a Holder cocycle ¢. The main point of this construction is
that the exponential growth rate /. of the Holder cocycle is exactly the topological
entropy for the reparametrized flow ¢ .

Theorem 11.31 (Ledrappier [25]) For each Héolder cocycle ¢ : w1 X X 800)? —
R, there exists a Holder continuous function F, : T'X — R, such that, for all
y € m1 X — {e}, one has

lc[)’] Z/ F..
[v]
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The map ¢ +— F, induces a bijection between the set of cohomology classes of
R—valued Holder cocycles, and the set of Livsic cohomology classes of Holder
continuous functions from T' X to R. Moreover,

[

. 1
he =hp. = lim log#{[y]: (d1y), Fe) < T}.
T—oo T

11.3.5 Immersed Surfaces in Hyperbolic 3—-Manifolds

Let S be a differentiable surface and M be a 3-manifold, we say a differentiable
mapping f : § — M is an immersion if df, : T,S — TgM is injective for
all p € S. If, in addition, f is a homemorphism onto f(S) C M, where f(S) has
the subspace topology induced from M, we say that f is an embedding. Moreover,
if the induced homomorphism f; : 71§ — mM is injective, then we say f is
T—injective.

Throughout, we consider that M is a 3—manifold equipped with a hyperbolic
metric 4 and S is a closed surface with negative Euler characteristic. Before moving
further, we recall some terminology from differential geometry. Given an immersion
f:8— M,letg = f*h be the induced Riemannian metric on S, V the Levi-Civita
connection on (M, h), N be the unit outward normal vector field to the surface
f(S) € M, and 91 and 9 be the coordinate fields of T'S.

The second fundamental form B : TS x TS — R of f(S) is the symmetric
2-tensor on S defined by, locally,

B(9;, ;) = (8i, —Vy; N)n,

where (, ), is the hyperbolic metric & on M.

The shape operator Sy : TS — T'S is the symmetric self-adjoint endomorphism
defined by raising one index of the second fundamental form B with respect to the
metric g. The mean curvature H of the immersion f : S — M (or, of the immersed
surface (S, g)) is the trace of the shape operator. We call an immersion f : § — M
minimal if the mean curvature H vanishes identically.

Moreover, we can relate the induced Riemannian metric g and shape operator S,
by Gauss-Codazzi equations:

Ky = —1+det S, (Gauss eq.) (11.3.1)
Varx)(Sg(Y)) — Varx)Sg(X) = Sg([X, Y]). (Codazzi eq.) (11.3.2)

where X, Y € TS and [, -] is the Lie bracket on T'S.
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Remark 11.32 If f is a minimal immersion, then Gauss-Codazzi equations can be
expressed in terms of B by

1
K,=—1—_|B|>?,
¢ , 181

(Vo; B) jk = (Vy; B)ik,

where || - ||¢ is the tensor norm w.r.t. metric g and 9 and 0; are coordinate fields of
T M. Moreover, in this case the Gauss equation implies K, < —1,1i.e., (S,g) isa
negatively curved surface. O

11.3.6 Minimal Hyperbolic Germs

In this subsection, we continue the discussion under the same assumption as in the
previous subsection. Let (g, B) be a pair consisting of a Riemannian metric g and a
symmetric 2-tensor B on S.

Definition 11.33 (Minimal Hyperbolic Germ) A pair (g, B) is called a minimal
hyperbolic germ if it satisfies the following equations

Ke=—1-31IBIg,
(Vo B)jk = (Vo B)ix, (11.3.3)
B is traceless w.r.t. g.

Recall that Diff((S) is the space of orientation preserving diffeomorphisms of §
isotopic to the identity. There is a natural Diffy(S) action (i.e., by pullback) on the
space of minimal hyperbolic germs, and we are mostly interested in the following
quotient space.

Definition 11.34 The space 7 of minimal hyperbolic germs is the quotient:
¢ = {minimal hyperbolic germs}/Diffy(S).

Taubes [5] showed that 77 is a smooth manifold of dimension 12g — 12 where
g is the genus of S. The fundamental theorem of surface theory ensures that each
(g, B) € 7 can be integrated into an immersed minimal surface in a hyperbolic
3-manifold with the Riemannian metric g and the second fundamental form B.

Moreover, ¢ is closely related with Teichmiiller space. Recall that the Teich-
miiller space 7 of § is the space of conformal classes of Riemannian metrics with
curvature —1. It is clear that we can identify .7 with a subspace .% of J#. Namely,
the Fuchsian space .7 is the set

F ={(m,0) € A : m is a Reimannian metric of constant curvature — 1}.
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Let [g] be the conformal class of a Riemannian metric g on S and X = (S, [g])
be the Riemann surface associated with g. It is well-known that 7.7 the fiber of
the holomorphic cotangent bundle over X can be identified with Q (X) the space of
holomorphic quadratic differentials on X.

The following theorem of Hopf [26] helps us see the relation between .7 and

Q(X).

Theorem 11.35 (Hopf [26]) If (g, B) € JZ, then B is the real part of a (unique)
holomorphic quadratic differential o € Q(X). More precisely, if (x1,x2) = x1 +
ixo = z is a local isothermal coordinate of X and B = Bndx% + Bzzdxg +
2Bi2dx1dxs, then

a(g, B) = (B — i B12) (x1, x2)dz>. (11.3.4)

Remark 11.36 1In fact, Bj1 = — B>; because (S, g) is minimal. It is not hard to see
that, given a holomorphic quadratic differential « € Q(X), one can derivative a
symmetric 2-tensor B on S by Eq. (11.3.4) and 2||«||} = || B|[3. O

Moreover, the space ¢ admits a smooth map to 7*.7 given by
v:#—> T'7
(g, B) — (gl a(g, B)).

For any two holomorphic quadratic differentials « and 8 in Q(X), the Weil-
Petersson pairing is given by

(a,ﬁ)wp=/a'3,
S m

where m is the hyperbolic metric on S conformal to g. It’s also well-known that
this pairing defines a Kéhler metric, the Weil-Petersson metric, on the Teichmiiller
space whose geometry has been intensely studied. In the last section, we will discuss
several applications of our results related with the Weil-Petersson metric on ..

11.4 Immersed and Embedded Surfaces in Hyperbolic
3-Manifolds

Let f : S — M be a m;—injective immersion from S to a hyperbolic 3-manifold
M and T be the copy of 71S in Isom(H?) induced by the immersion f. More
precisely, let p : 1M — Isom(H?) be the discrete and faithful representation, up
to conjugacy, corresponding to M, i.e., M = p(ry M)\H3. Then I' = p(fi(715))
where f is the induced homomorphismof f : § — M.
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The standing hypotheses throughout here are: I' is a convex cocompact and (S, g)
is negatively curved where g = f*h and h is the given hyperbolic metric on M.

Notice that because (S, g) is a closed negatively curved surface, its universal
covering (s, ) is a pinched Hadamard manifold. Let I's denote the group of deck
transformations of the covering S. Then we know I's=mSandI's C Isom(g).

The following lemma is an immediate consequence of Theorems 11.22
and 11.26.

Lemma 11.37 There exists a quasi-isometry q : S — Conv(A(T)), where
Conv(A (")) is the convex hull of A(T") in H3. Moreover, q extends to a bi-Hélder
and T'—equivariant map between boundaries, and q sends the attracting limit point
7/S+ of the hyperbolic element ys € I's C Isom(g) to the attracting limit point j/;,;
of ym € I' C Isom(H?). O

Now we are ready to state and prove Theorem A. The proof of Theorem A
consists of several lemmas. In the following we indicate how one should read the
Proof of Theorem A from these lemmas.

Proof of Theorem A Assertion 1 follows Lemma 11.40. Assertions 2, 3, 4 are
consequences of Lemmas 11.38 and 11.40. Assertion 5 follows Lemma 11.39. O

Lemma 11.38 Under the same assumptions as Theorem A, the following holds.

(1) There exists a Holder continuous function F : T'S — R such that 0 < F < 1
and fr F = l[t] for all closed orbits T on TS where I,[t] is the length of
the closed geodesic in the free homotopy class containing f(t) C T'M with
respect to the hyperbolic metric h.

(2) Let pi_ppF be the equilibrium for —hpF and gy be the Bowen-Margulis
measure for the geodesic flow on T'S where

1
hp:= lim _ log#{t is a closed orbiton T'S : /F <T}.
T—oo T

T
We have C1 := f Fdpu_p.r and Cy := f Fdupy satisfy
C1dr < hyop(S) < Codr. (11.4.1)
(3) Each equality in (11.4.1) holds if and only if the marked length spectrum of S

is proportional to the marked length spectrum of M.

Proof Let ¢ denote the geodesic flow on the unit tangent bundle of (S, g).

The first step is to construct a Holder reparametrization function F : TS —
R- such that the topological entropy hr of the reparametrized flow ¢ is the
critical exponent 8 of T in H°.
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Recall the Busemann function Bf; (x,y): 9o H> x H? x H3 — R, for ne Ao H
and x, y € H? is given by

Bj(x.y) := lim dy(x. 2) — di(y. 2).

Using the quasi-isometry g given in Lemma 11.37, we define a map ¢ : 71§ x
000S — R by

c:mS X 8m§—> R
(v, &) > Bl (f(0), v~ f(o)),
foroeS.

Claim c is a Holder cocycle.

Proof of Claim: By Lemma 11.37

c(ny2, €) = Bl (f(0), (m)‘1 - flo) = B;l@wo), (s v D flo)
=B}, (f(0),v; " o) + Bl (v - £(0), (v 'y - f(0)
=c(r2,8) + Bl o) (f(0), v - f(0))
= c(y2,8) + Bl(,e) (f(0), v - f(0))

= c(y2, &) + c(y1, 28).

Therefore, ¢ is a cocycle. To see ¢ is Holder, we first notice that the boundary
map g : 005 — A(I) C dooH is bi-Holder by Lemma 11.37. Moreover, we know
that A (") embeds in dsH?> and Bf)' (x, y) is smooth on 900 H>. Therefore, c(y,-)is

Holder continuous on 0o E, and we have finished the proof of this claim.
Notice that the period c(y, yg 5= Bh vE) (f(0), y~ f(0)) = lh[y] > O for all
[y] € [71S]. Thus, I.[y] = Ix[y] for all [y] € [mr1 5], and we can easily see that
. 1
he =6r = lim log#{[y] € [m1S]: Wuly]l < T} < oo.
T—ooo T

Thus, by Theorem 11.31, there exists a positive Holder continuous maps F. on T''S
such that for all [y] € [m1S]

ey, vg) =/| IFC = lily],
Y
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and the topological entropy of the flow ¢/« is exactly the exponential growth rate of
c,i.e,hp, = he.

Notice that for the constant function 1 on TS, we have / ¢yl = f[y] 1 for all
[¥] € [m1S]. Therefore, we have the pressure of the function —# - 1 is zero where

. 1
h; = lim log#{[y]l € [m1S]: L[yl < T}
T—ooo T

is the topological entropy of the geodesic flow ¢ on T''S.
From now on we denote F, by F.
The second step is to show that

hrop(S) < / Fdugy - hr,

- -

C

where 1) is the Bowen-Margulis measure of the geodesic flow ¢ : T'S — T'§.
Note that

P(=hp-F)=0=h(u—pyF) —hF / Fdpu—npr
P(=hiop(S) - 1) =0 = h(upm) — hiop(S) - f ldupym = h(upm) — hrop(S).

where p_j,r is the equilibrium state of —AfpF. Since upy € WA by the
variational principle we have

P(-hr - F)=0= hiunsn) ~ hr [ Fdunu.
Furthermore,
e [ Fdunss = heaw) = hiop(S).
The third step is to show the inequality

/ Fdu_rpny - hr < hiop(S).

~ - -

C



372 L.-Y. Kao
We know
hiop(S) = h(—Fhy)

— hmp(S)—hF/FdM—FhF > h(M—FhF)—hF/FdM—FhF

~ -

2
= hiop(S) = hr ‘/FdM—FhF-

The fourth step is to show that 0 < C; < land0 < Cp < 1.
Because C; = [ Fdu—pn,, C2 = [ Fdupym and F is positive, it is enough to
show that F can be chosen to be smaller than or equal to 1.

Claim F < 1.

Proof of Claim: This is a consequence of Theorem 11.15. For each conjugacy

class [y] € [m1S] there exists a unique closed geodesic t};? on § such that I;[y] =

lg ('C}‘,g). Because f is mj—injective, f maps t};? to a closed curve f(rJf) on M which
is in the same free homotopy class generated by [y ]. More precisely, let t}ﬁ” denote
the closed geodesic on M in the conjugacy class [y ]. Then we know that f (t);? ) and
r)f"’ are in the same free homotopy class. Moreover, because g is the induced metric
f*h, we know that (S, g) is Riemannian isometric to (f(S), h). Thus, [, ('C)‘/g) =

In(f(z})). Therefore, V [y] € [15],

lelyl =lg(z)) = Li(f())) = I (x)") = uly].

Therefore, for all [y] € [m1 5]

f 1:1g[y]zzh[y]=/ F.
52 [v]

By Theorem 11.15, we have 1 — F is cohomologous to a nonnegative Holder
continuous function H, and H is unique up to cohomology. Thus, we have that
F~1—Hand1— H < 1. By choosing F to be | — H, we have finished the proof
of this claim.

The fifth step is to examine the equality cases.

If hiop(S) = hp [ FAdu_php, then hiop(S) = h(pu—rpy), i.e., w—ppy is the
equilibrium state of the constant function —#,,,(S) - 1. By the uniqueness part of
Theorem 11.12, we have that Fhg is cohomologous to the constant /., (S), i.e.,
F ~ " Similarly, if hiop(S) = hp - [ Fdugy. then jupy = 11y, r. Hence,
again, h;op(S) ~ F - hp. a

Lemma 11.39 If h;,,(S) = 8, then S is a totally geodesic submanifold in M. O
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Proof Notice hy.p(S) = or implies F = 1. This means that the length of each
closed geodesic on S has the same length with the corresponding closed geodesic
on M. Furthermore, we know that the closed geodesics in S are dense; that is, for
any point p € S, the set of tangent vectors v € TS such that the exponential map
exp,, tv gives a closed geodesic is dense in T}, S. Therefore, the shape operator S, is
zero when evaluating on this dense subset of vectors on 7, S. By the continuity of
the shape operator S, we have S, = 0. Therefore S is totally geodesic in M. O

Lemma 11.40 Ler upy be the Bowen-Margulis measure of the geodesic flow
¢ : T'S — T'S and W—npF be the equilibrium state for —hpF defined in
Lemma 11.38. Then

. 1 Inly]
Cy :Z/Fd;,LBMZ lim Z
Tooo #R7(8) | o) lely]

> hly]

[yleRr(g)

= lim =C,(f)
T—00 Z le[y]
[vleRr(g)
and
-1
. 1 lgly]
Cq :Z/Fdﬂ—hFF =1 lim Z §
T—00 #RT(h) [y 1Ry () lh[)/]
> hlyl
= 1im VY _op
T—00 Z Le[y]
[yleRr (h)
where

Rr(g) :={lyl € [miS]: lgly]l < T}and Rr(h) :={[y] € [m1S]: Luly]l < T}.

Proof This is a consequence of the equidistribution theorem (Theorem 11.13).
By Theorem 11.13, we have

D (8, F)

8, F .
C2 ::/FdMBM = lim Be, F) _ lim "<EY .
T—oo #R7 (1) (8¢, 1) T—o0 Z (8¢, 1)

TeR7(1)
reR7 (1)
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Notice that every closed orbit 7 of the geodesic flow ¢ on T''S corresponds to a
unique conjugacy class [y ] of 71X, and vice versa. Moreover, the period of 7 is
the length of y* on S, i.e.,

W(y™) =8, F), L(y") = (6. 1).

Since there is a one-to-one correspondence between R7 (1) and R7(g), we can
rewrite the equation above by

c '=deu — lim nly]
o BN 10 #Rr (9) lely]
[yleRr(g)
> hlyl
— lim [yleRr(g) — Cg(f)-
T—00 Z le[y]
[yleRr(g)

—

For the other equation, by Theorem 11.14, we know that Hgr = Fopu_npr.
Therefore

1 iy S(F) R, 1
I'L¢F F = F'I'L—hFF =

F [ Fdu_rn, - [ Fdu—_pp,

By Theorem 11.13, we have

1
F
DBRRCHAS

1 , 1 S 12
,bL¢F< ): lim Z i = lim - .
F T—oo #RT (F) e Re(F) (5r,, 1) T—00 Z <Sr” 1)
T'eRr(F)

Notice that for a closed geodesic 7’ of the geodesic flow ¢ : T'S —
T's, 65 L) = ff) ol F@odt = I(z) and similarly (8, F) =
fég ) F(¢;)dtr = 1(t'). By the one-to-one correspondence between closed orbit

7’ and conjugacy class [yfl], we have a one-to-one correspondence between Ry (F)
and Rr (h).



11 Entropy Rigidity, Pressure Metric, and Immersed Surfaces in Hyperbolic. . . 375

Hence, we have the following equation

/Fdﬂ—hFF - (u¢F <;>>1

-1 Z Inly]

1 l h

tm L Z lg[V] — g YIERT®)

oo BRI a1V T Y lly]
[y 1eRz (h)

Cy

11.4.1 Immersed Minimal Surfaces

Recall that f : § — M is called a minimal immersion if f is an immersion and
the mean curvature H vanishes identically. Let g = f*h denote the induced metric
on S via the immersion f. By the Gauss equation, when f : § — M is a minimal
immersion, the Gaussian curvature K, < —1.

Applying the Theorem A to this case, we have the following corollary.

Corollary 1141 Let f : S — M be a mi—injective minimal immersion from
a closed surface S to a hyperbolic 3—manifold M, and T' be the copy of m1S
in Isom(H?) induced by the immersion. Suppose T is convex cocompact. Then
assertions (1) — (5) in Theorem A are true. O

11.4.2 Embedded Surfaces in Hyperbolic 3-Manifolds

In this subsection, we assume that f : § — M is an embedding. To state our results
more precisely and to put it in context, we first introduce the geodesic stretch and
discuss the relation between the geodesic stretch and Cp, (f), Co(f).

Notice that we can lift f : § — M to an embedding between their universal
coverings, i.e., f S — M = H3. Moreover, one can easily check this lifting is
1 S-equivariant. Specifically, for each y € m1S,let ys € 'sand ypyy € T be the
corresponding element of y in the deck transformation groups I's C Isom$ and
' C Isom(H?), respectively. Then for each X € S we have

[y %)= Ffys®) =yu(f@) =y - F®).
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Using this embedding f: S — H? we can define a tangent map f : T'S > T'H3
by

f: (%o, w) — (F(0). d fag(w))

where xy € S and w is a unit vector on the tangent plane T%, S. Notice that 1S
acts on 7'S and T'H? in an obvious way. Thus f is also 7| S—equivariant. More
precisely, y - f(£. w) = (v - F(F0).d fyw)) = (F(y - x0).d fir (w) = £(y -
(X0, w)).

The following lemma depicts a key feature of the embedding f : S — M. By
Theorem 11.26, we have the following result.

Lemma 11.42 (§, dg) is quasi-isometric to (f(g), dp) C (H3, dy) where dg is the
distance on S induced by g and dy, is the hyperbolic distance on H>. O

Definition 11.43 Forallv € T!Sand ¢ > 0, we define
a(, 1) :=dy(r o f(v), 7 o f o ¢y (v))

where 77 : TS — § is the natural projection and 5 is the lift of ¢.

The following corollary is a consequence of Kingman’s sub-additive ergodic
theorem [27].

Corollary 11.44 Let i be a ¢;—invariant probability measure on T'S. Then for
n—a.e.ve T's

v, 1t
(s, M) = tim 40,

exists and defines a p—integrable function on T'S, invariant under the geodesic

flow ¢;. O

Proof To adapt Kingman’s sub-additive ergodic theorem [27] to flow case, it is
sufficient to check:

supla(v,1);ve T'S, 0<r <1} e L'(w.

We notice that (Tlg', dg) and (f(T1§), dp) are quasi-isometric because (S, dg)
and (f(S), dp) are. Therefore we have

al, 1) =dy@r of(v), 7 ofo di(v)) < Cdg(v,al(v)) +L<C+L

where C, L are the quasi-isometry constants. Hence, a(v, 1) is bounded. m]

From the above corollary, we can define the geodesic stretch as the following.
Recall that . is the set of ¢; —invariant probability measures.



11 Entropy Rigidity, Pressure Metric, and Immersed Surfaces in Hyperbolic. . . 377

Definition 11.45 The geodesic stretch 1,,(S, M) of S relativeto M and u € A ¢ is
defined as

L,(S, M) := / 1,(S, M, v)du.
T'Y

Since [ : (S dg) — (f(S) dp) is a quasi-isometry, by Theorem 11.22 we know
that f extends to a bi-Holder map between BOOS and s f (S) A(T). By the
same discussion as in Lemma 11.37, we know that f maps the attracting (resp.
repelling) fixed point )/SJr (resp. yg ) of ys € I's to the corresponding attracting
(resp. repelling) fixed point yj; (resp. yyp)of ym € T.

Moreover each conjugacy class [y] € [m1S] corresponds to a unique closed

geodesw ry on S and 'L’ on M, and rS also corresponds to the unique geodesic

rS connecting y¢ and Vs on 9508, Notlce that f(yS ) = ¥ and f(ys"’) = ySJ“ on
Boof(S) = A() C doH?, so f(r);g) is a quasi-geodesic on H3 within a bounded
Hausdorff distance from the geodesic rf,‘” on H3, where ‘L')[,VI is the geodesic on
Conv(A () Cc H? connecting y,, and yﬁ on A(T").

Now we are ready to state the main result of this section. However, because its
proof consists of several lemmas, we postpone the proof until the end of this section.

Theorem 11.46 (Theorem 11.3) Assume the same assumptions as in Theorem A,
and, additionally, assume that f : S — M is an embedding. Then the geometric
constants Cp(f) and Cy(f) in Theorem A are geodesic stretches relative to
invariant measures. More precisely,

Ch(f) =I1.(S, M),

Cg(f) = H.BM(Sa M)a
where | is a ¢—invariant measure and wpy is the Bowen-Margulis measure of the

geodesic flow ¢; on T'S. O

Remark 11.47 The invariant measure p in Cp(f) = [,(S, M) is indeed the
equilibrium state p_p, r derived in the proof of Theorem A.

Before we start proving Theorem 11.3, we shall introduce two useful lemmas.

Lemma 11.48 Suppose i € .#? and ergodic. Then there exists a sequence of
conjugacy classes {[y,]} C [m1S], i.e., closed geodesics, such that

Iy
/Fd,u_ lim [ya]

n—00 lg[yn]

where F is the reparametrization function defined in Theorem A. O
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Proof First, by the sub-additive ergodic theorem we know that for u —a.e.v € T'S

a(v,t)

lim = 1,(S, M). (11.4.2)

—00

By the Birkhoff ergodic theorem we have for it — a.e. v € T'S

t

Jim | F(¢Sv)ds=/qu. (11.4.3)

t—oo t 0

We define two sets

A:={v e T'S : vsatisfies (11.4.2)}
B ={v e T'S : v satisfies (11.4.3)}.

Since A and B are both full u-measure, we have A N B # (.

Pick v € AN B, and g, N\, 0 as n — oco. By the Anosov Closing Lemma [28],
for each ¢, there exists &, = &, (¢,) such that for v € T'S and T, = T, ) >0
satisfying Dg(¢r,(v), v) < &y, then there exists w, € T'S which generates a
periodic orbit 75 on S of period lo(t) = T, such that |T,, — T,;| < &, and
Dy (¢s(v), s (wy)) < g, forall s € [0, T,,].

Furthermore, because the geodesic flow ¢, on TS is a transitive Anosov flow
and T!Sis compact, by the Poincaré Recurrent Theorem, for each §,, given as above,
we can pick T, to be the n-th return time of the flow ¢; to the set Bs, (v), i.e.,
Dy (o1, (V), V) < 8, for each n.

Suppose tns corresponds to [y,,] € [715], then since u is ergodic, by the Birkhoff

ergodic theorem we have

1 T
Fdp = li F(¢;v)dt.
/Tls g TimmT/O (¢rv)

F
Claim | Fdu = lim S )
n—00 lg[)’n]

Proof of Claim: Notice that

1 lg(yn)_gn 1 In 1 lg(yn)+5n
F(gr) < / Fdv) < / F(év).
lg[Vn] + &n /0 ! th Jo ! lg[Vn] —&n Jo '

Because F' is Holder, we know that | F (¢;v) — F(¢;wy,)| < C-Dg(¢rv, prw,)®* <
C-e.
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When n is big enough such that I¢[y;,] > 2¢, (notice that &, \ 0 and I, (y,)
00), we have

1 In 1 lg(yn)
tn/o F(¢v) — lg[)/n]/o F(¢rwy)

_ Ll [ IF @) = F@awnldr | 2 Lglyal - en - | Fllog
- Lelyn] - Ug(yn) — €n) Lelyn] - Uglyn] — &n)

< ! (Lglynl - C - & +26n - | Flloo)
_lg[yn]_gn g " " ©

2en
<2C- &%+ NFlloo -
" lg[)’n] — &n *

So, we can now finish the proof of this claim.
Moreover, from the construction of F, V[y,] € [71S5] we have

f F = Ip[ya].
[yl

Therefore,

F l
deu— lim b F _ jim bl
n—>o0 [ [)’n] n—00 lg[yn]

O

Lemma 11.49 Let {[y,]} C [71S] be the sequence constructed in the proof of
Lemma 11.48. Then

Inlyn
Jim 1Lyl = 1,(S. M).

n—00 lg[yn

Proof We claim that

. a(wnslg[yn]) . Inlyn]
lim = lim .
n—00 lg[yn] n—00 lg[yn]

To see this, by definition,

a(Wp, lglyn]) := di(r o f o wy, 7 o f 0 Pr1y,1wn).

For such [yn] € [mS] let ‘C M denote the corresponding closed geodesics on
S and M, and rS and rM denote thelr lifting on S and Conv(A(I')), respectively.
Then we know that f (‘L’S) and ‘CM are at most Hausdorff distance R from each



380 L.-Y. Kao

other. Therefore we can choose x; € t,{” such that d; (mw;,, x;,) < R. Because dj, is
I'—invariant, f: S — H3isan embedding, and 7w ofow), and 7w ofogy, (;,,) wn project
to the same point on S, we have dj, (y,, -x,, T ofoglg(fn)wn) = dy(mofowy, x,) < R.
Hence, by the triangle inequality

dp(mofow,, Ofoglg(r,,)wn) _ilh(xn» Yn 'xnl = iih(n ofo wn»xn—)/

=y (ta) <R

+dp(yn - xp, mofo ‘Zlg(rn)wn)

By
=2R.
Therefore,
; Inlyal . Inlynl —2R -1 a(wy, lglyn])
n—00 lg[yn] n—00 lg[yn] T n—o0 lg[yn]
l 2R l
< lim nlynl + — lim h[Vn]7
n—00 lg[yn] n—00 lg[)/n]
and we can now finish the proof of this claim.
We claim
Jt .1
1S, M) = tim 41 = i bl
t—00 t n— 00 lg[yn]

To see this pick the #, as we mentioned in Lemma 11.48. Then

|a(v. 1) — a(wn, lglyaD))|
< |dn(m ofo v, ofody,v) —dy(mw ofow,,wofod,w)|
<dp(mofov,mofow,) +du(w of oy w7 ofod,v)
(quas-isometry Lemma 11.42) < C - (dg (mov, ™ owy)
+dg(m o alg(yn)w,,, T o &;tn v)) + 2L
(Anosov closing lemma) < C - (§2 + ¢) + 2L,

where C and L are the quasi-isometry constants only depending on the embedding
f:S—> M.
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Therefore,

. a(v, ty) . a(wp, lg[yn]) . nlyul
lim = lim = lim .

th—>00 1, n—>00 Le[yn] n—>00 lo[yy]

O

Proof of Theorem 11.3 1t is not hard to see the result follows Lemmas 11.48
and 11.49. O

11.4.3 The Manhattan Curve for Immersed Surfaces

In this subsection we prove Theorem B.

Proof of Theorem B We first recall that by Lemma 11.38, there exists a Holder
continuous function F : T'S — TS such that fr F = [;[7] for all closed orbit t
on T'S. Therefore, we have —alg[t] — bly[t] = fr —a — bF.

Moreover, the pressure for a Holder continuous function G over the geodesic
flow ¢; : T'S — TS can be written as

1 :
Py(G)= lim _log Y  e/C.
T—oo T L TI<T
Thus we deduce that Z e~ slT1=bhilt] g convergent if Py(—a — bF) < 0 and

T
is divergent if Py(—a — bF) > 0. Hence we can identify the Manhattan curve x ¢
with

{(a,b) € R*: Ps(—a — bF) =0} = {(a, b) € R* : Py(—bF) =a).

Therefore, we have (0, 1), (h;0p(g),0) € x7.
Recall by Proposition 11.17 that we know Py (—sF) is analytic. Moreover,

d
Py(—sF)= | —Fdu_ 0.
dsqb(s) f W_F #

Thus, by the Implicit Function Theorem, we know the solution of Py(—bF) =t is
an analytic curve, i.e., b = b(¢) is analytic. In other words, the Manhattan curve x ¢
and be parametrized and written as (¢, b(¢)) fort € R.

This implies, again by Proposition 11.17,

d
| = 0 Py(—b(t)F) = —b'(1) / Fdu_p@yr,
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and
2

0=
dt?

Py(—=b(1)F) = Var(—b' () F, p—pyp) — b" (1) f Fdu_pr-

Therefore, we have

1
b(1) = <0
— [ Fdp_pnyr

and

Var(—b'(t)F, —pyr)

b”(l‘) _
[ Fdpu—pyr

Hence, xy is strictly convex unless Var(—b'(1)F, m_pi)r) = 0, that is, F is
cohomologus to a constant.

Lastly, it is clear that y, is a straight line when F is cohomologous to a
constant. ]

Using the above theorem, we immediately have the following entropy rigidity
result, which generalizes the Bishop-Steger entropy rigidity given in [10].

Corollary 11.50 Under the same assumption as Theorem A, then

htop (&)

1
AED .= lim  log#{y € 11 S : L[y]+1 <T)<
A log {y em v+ ly] } < hiop(2) + 1

and the equality holds iff the marked length spectrum of (S, g) is proportional to the
marked length spectrum of M. O

Proof First we notice that since 1 + F' is Holder, there exists a unique so such that
Py(—so(1 + F)) =0.

Moreover, by Lemma 1 and the remark after Lemma 1 in [25], we know 5o = KD
and thus

R (1,1 € x5

hiop(8)
rop(g)+1
line connecting (0, 1) and (%, (g), 0) and the line connecting (0, 0) and (1, 1), we

know that hf,:&(fll (1, 1) sits above 21D . (1, 1). See Fig. 11.1. Hence we have

Since x s is strictly convex and the point , (1, 1) is the intersection of the

LD < hl‘op(g) .
- htap(g) +1
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Fig. 11.1 Rigidity for A1V

* hiop(g)
oty (1 1)

The second assertion is because the convexity of the Manhattan curve. More
precisely, the convexity implies that the equality holds if and only if y r is a straight
line. O

Remark 11.51 Notice that since the ambient metric # may not be a Riemannian
metric on the immersed surface f(S), Otal’s marked length spectrum theorem is not
applicable here. O

11.5 Minimal Hyperbolic Germs

Recall that .77 is the set of the isotopy classes of pairs consisting of a Riemann
metric g and a symmetric 2-tensor B on S such that the trace of B with respect to g
is zero and (g, B) satisfies the Gauss-Codazzi equations, i.e. Eq. (11.3.3).

The following corollary is an obvious consequence of Theorem A. Recall that
htop(g, B) denotes the topological entropy of the geodesic flow for the immersed
surface (S, g) with second fundamental form B.

Corollary 11.52 Let p € Z(m1(S), PSL(2, C)) be a discrete, convex cocompact
representation and suppose (g, B) € ®~(p) # @. Then there are explicit geometric
constants C1(g, B)and C2(g, B) with 0 < C1(g, B) < Ca(g, B) < 1 such that

C1(g, B) - 0p(n;8) < hiop(g, B) < Ca(g, B) - 8p(m18) < Sp(m15)

with the last inequality being a equality if and only if B is identically zero which
holds if and only if p is Fuchsian. O
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Proof Notice that (g, B) € <I>71(,0) means that there exists a mj—injective
immersion f : S — p(mS)\H? = M such that the induced metric is g and
the second fundamental form is B, where (M, h) is a convex cocompact hyperbolic
3—manifold. Therefore, by Theorem A we have

Crn(f) - Spy8) < hiop(S) < Co(f) - 8p(n15)-

Then we pick C1(g, B) = Cx(f) and C2(g, B) = C,4(f). The rightmost inequality
is because Cz(g,B) = Cy(f) =< 1, and the rigidity is the consequence of
Corollary 11.39. O

Remark 11.53 By Sullivan’s results (i.e., Theorem 11.28), we can replace the
critical exponent by the Hausdorff dimension in the above corollary. O

11.5.1 CQuasifuchsian Spaces

We call a discrete faithful representation p : m1(S) — Isom (H3) quasifuchsian if
and only if the limit set A(p(r1S)) of p(71S) is a Jordan curve and the domain of
discontinuity dsH>\ A (p(15)) is composed by two invariant, connected, simply-
connected components. 2.% denotes the set of quasifuchsian representations.

Uhlenbeck [11] pointed out that we can relate the space of minimal hyperbolic
germs ¢ with the character variety Z(rr1(S), PSL(2, C)), that is the space of
conjugacy classes of representations of 71(S) into PSL(2, C). More precisely,
Uhlenbeck [11] proved that for each data (g, B) € .7 there exists a representation
p : m1(S) — Isom (H?) = PSL(2, C) leaving this minimal immersion invariant,
i.e., there is a map

®: A — R(m(S), PSL2, C)). (11.5.1)

We notice that if p € 2.%, then elements in ®~!(p) are 71 (S)—injective
minimal immersions from S to p (71 (S))\H?>. Moreover, Uhlenbeck in [11] showed
that for p € 2.%, 1 (p) is always a non-empty set.

Corollary 11.54 Let p € 2.% be a quasifuchsian representation and (g, B) €
@‘1(,0). Then there are explicit geometric constants C1(g, B) and C,(g, B) with
0 < Ci(g, B) < Ca(g, B) such that

C1(g, B) - 0p(n18) < hiop(g, B) < Ca(g, B) - 8p(m18) < Sp(m15)

with the last equality if and only if B is identically zero which holds if and only if p
is Fuchsian. O

Using the above corollary, we can give another proof the famous Bowen’s rigidity
theorem.
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Corollary 11.55 (Bowen’s Rigidity [1]) A quasifuchsian representation p € 2.F
is Fuchsian if and only if dimyg Ar = 1. O

Proof For any (g, B) € ®~!(p), we have S is an immersed minimal surface in a
quasifuchsian manifold M = p (1 S$)\H? with the induced metric g and the second
fundamental form B. Let K (S) denote the Gaussian curvature of S in M, then by
the Gauss-Codazzi equation K (S) < —1. Therefore using the Theorem B in [2], we
have

1
— [K(S)dA\?

h ,B) > > 1
top(g, B) > ( Area(S) =
Hence the result is derived by the above lower bound of 4, (S) plus the above
corollary. O

11.5.2 Manhattan Curve for Almost-Fuchsian Space

Recall that the almost-Fuchsian space </ % is the space of minimal hyperbolic
germs (g, B) €  such that || B||, < 2. Given a hyperbolic metric m € % and a
holomorphic quadratic differential @ € Q([m]), we discuss an informative smooth
path

ra(t) = (8, 1B) C 4 F,

where g; = eXm and B = Re() satisfying ||tB||§r < 2. Notice that u; : § - R
is well-defined and smooth on ¢ (cf. [11, Theorem 4.4]). Moreover, Sanders [12]
pointed out that the entropy h;,p(g;) varies smoothly along r (¢).

Before we start proving our results, we recall several important concepts of
Anosov flows. We first notice that by the structural stability of the Anosov flow
(cf. Prop. 1 in [29] or [30]), when ¢ is small, for the geodesic flow ¢ : TS, gr) —>
T'(S, g,), there exists is a Holder continuous function such that ¢ is conjugated
to the reparametrized flow ¢t : T1(S,m) — T'(S,m) where ¢ : T'(S,m) —
T'(S,m) is the geodesic flow. Moreover, when {g;} is a smooth one parameter
family, then the structure stability theorem also indicates that {F;} form a smooth
one parameter family of Holder continuous functions on T''(S, m).

Since we shall only be interested in metrics g; close to go(= m), it suffices to
consider one parameter families given by perturbation series: for ¢ small,

2 2

. . . te ..
g =8 +t-g + 2g0+..., and F; = Fo+1t - Fp + 2Fo+...,
where g9, go, . . . are symmetric 2-tensors on TI(S, m) and Fo, Fo, ... are Holder

continuous functions on T''(S, m).



386 L.-Y. Kao

Definition 11.56 The Manhattan curve x; associated with m and g; is defined as
the boundary of the convex set

{(a,b) € R2 . Z e~ @lnlyl+blgly]) _ oo}
yem S

We can reparametrize the x; : R — R by writing it as

x:(a) ;= inf{b > 0 : Z e~ @lnlyl+Dblg [y _ o0}
yem S

Using the structural stability of Anosov flows, we can adapt Sharp’s method to
our (non-constant curvature) setting and derive the following result. The same proof
of Theorem B gives us the following result.

Theorem 11.57 We have

(1) (Oa ht)r (15 0) € Xt'
(2) x:(s) is real analytic.
(3) x:(s) is strictly convex unless t = 0 and xo(s) is a straight line.

In the following, we discuss the variation of Manhattan curves yx; when varying ¢.
For convenience, we first consider the renormalized Manhattan curve X;(s) defined
as

Fos) = X1 (s)
t = .
htop (&)
Moreover, let ¢; := —h;op(gr) F; denote the smooth path of zero pressure Holder

continuous functions. Also, we use dots to denote derivatives with respect to 7.
Lemma 11.58 We have

2

2T == s?)Varo, pey).

d t=0

Proof First, we know x; (s) satisfies Pg(—sFo— x:(s) F;) = 0, therefore j; satisfies
Py(sco + Xi(s)cr) = 0.
For a fixed s, let ¥, := sco + X;(s)c;. Notice that when z = 0, xp is a straight
line satisfying s + X:(s) = 1. So we have ¥ = co.

Moreover, we have co = —hp(m) - 1 = —1, Yo = Xoco + Xoéo and o =
X:co +2Xoco + XoCo-
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By Proposition 11.17, we have

d . ~ ~ .
0= dr Py (Y1) 0=/1ﬁ0duw0 =[X060+X000d/tc0
=
= )"Zo(s)/cod,uco +)70(S)/éodltc0~
Since [ ¢odpe, = 0 (because Py(c;) = 0) and [ codpie, < 0, we have

)"Zo(s) =0 VseR.

Furthermore,

d2 M ..
0= a2 Py () = Var(¥0, iy,) + / Vodsty,

t=0

= Var( Xo co + X0¢0s te) + / Xico+2 %o o+ Xocodie
—~— —~—

0 0

— (Fo(s))? - Var(éo, jtey) — 31 + %o f éodite,.

Notice that Py (c;) = 0, then by taking the derivative twice we know,

0 = Varcén. o)+ [ Godi,
Therefore, we have

Xo(s) = (Xo($)* — Xo(s)) Var(éo, ie,)

= (1= 9% = (1 = 9)) Var(o, f1eg) = (5 = )Var(Go, iey):

Theorem 11.59 Let h; := hyop(g:) be the topological entropy for (S, g;). Then

2
42 @] =ho(l =) = (s = sH)Var(o, f1ey)-

t=0
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Proof Tt is a direct computation that follows x; = h; - X; where h, = hiop(&r)-
More precisely, we have

2

G2 X®| =hofo() +2 Fo (Vho+ Xo ho -
t ! —— —

=0
1" 1"

0 1

11.5.3 Metrics on .F

We see from previous sections that the space of minimal hyperbolic germs ¢ for
a closed surface S shares many similar structures as the quasifuchsian space 2.7
for S. In [7] Bridgeman proved one can construct a nonnegative two (pressure) form
on 2.% such that it is the Weil-Petersson form on .%. In this section, inspired by
Bridgeman, we discuss a similar construction in our setting.

We shall note that Sanders constructs a metric on the Fuchsian space .# C
by taking the Hessian of the topological entropy along the path r(t) = (¢**/m, t B).
Moreover, this metric is bounded below by the Weil-Petersson metric on .%. At the
end of this section, we will provide many other metrics on .% using Manhattan
curves, renormalized Manhattan curves, and some other geometric quantities.
Through studying them we can construct a pressure metric as well as other metrics
on .%. Moreover, Sanders’ metric is a special case including in our construction.
We will also compare the Weil-Petersson metric, Sanders’ metric and the pressure
metric.

Recall that the fiber of the cotangent bundle of m € .# is identified with the
space of holomorphic quadratic differentials Q([m]) on the Riemann surface (S, m).
Moreover, for each @ € Q([m]) and ¢ is small the path r, () = (g;, t - Rear) induces
a path ¢; in pressure zero Holder continuous functions over T 1 (S, m), namely, ¢; =
—hyop(g:) Fy where Fy is the reparametrized function given by the structure stability
of Anosov flow. Therefore, for each « € Q([m]) can be identified with ¢y, that is,
the derivative of ¢; at t = 0.

Definition 11.60 For the path ro(t) C /% and t is small, the renormalized
intersection number Jy,, o (t) is defined as

D el

T€RT (M)

Jm,a(t) = hmp(gt) - lim sup

700 Y Iult]

T€RT (M)

where g; = e*m. O
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Theorem 11.61 We have

> Iyl

. Ry (m)
Jna@) = htop(gt) / Fidpo = htop(gt) : Thm e

=00 N llr]

TERT (M)

where [ is the Bowen-Margulis measure for the geodesic flow ¢ : T'(S, m) —
TY(S, m). O

Proof 1t follows immediately from the equidistribution property of o (cf. Theo-
rem 11.13). |

Corollary 11.62 (Theorem C (1)) We have
Ima(@) <1

and equal to 1 if and only if t = 0. O

Proof By (the proof of) [12, Theorem 3.5] we know /;,,(g) and g; are decreasing
fort > 0. Moreover, g; is decreasing implies that F; is decreasing. O

Lemma 11.63 (Theorem C (2))

d2
2 Jm,a(t) = Var(¢o, (o)
dt t=0
where ¢; := —hyop(g1) Fy and o is the Bowen-Margulis measure of the geodesic
flow T(S, m) — T'(S, m).
Proof
d? d? d? )
G na® = s [ huopteFiduo == 4, [adio = - [ G,

Moreover, Py (c;) = 0 implies

0 = Var(co, no) + f codpeo.

O

Let us recall a computational lemma from Pollicott [29, Lemma 5] and Sanders
[12, P. 12].
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Lemma 11.64 Let r (1) = (e*'m, t -Re) and for t small g = m +1go+ tzz g0 ..
We have

go(v, v) .
f -0y o = / fiodio = 2 f lall2, dVy = —27 1l 2y p,
s 2 TS s

go(v, v)
§ duo

f Fodpo = f go(v,v)dpo and / Fodpo < f
TlS TlS TlS ris 2
(115.2)

Lemma 11.65 (Theorem C (2)) For t is small, let rp(t) = (g;,tB) € AF
and F; be the Holder reparametrization function corresponding to g;. Then co is
cohomologous to 0 if and only if B = 0. O

Proof The only if part is clear. Suppose ¢o = 0. Let’s denote /0, (g;) by h;, and
notice that hp = 1 and Fy = 1. Therefore,

éo~0 < hoFy ~ —hoFy
& Fy~ —ho

Then by Lemma 11.64, we have —ﬁo = 0, and which implies #; = 1 and F; ~ 1 for
t is small. In other words, (S, g;) and (S, m) share the same marked length spectrum.
Thus, g; = m for ¢ is small; however, it is impossible unless B = 0. m]

Theorem 11.66 (Theorem C (3)) The second derivative of the normalized asymp-
totic geodesic distortion defines a metric on %, and which is called the pressure
metric and denoted by || - || p. |

Proof By Lemma 11.63, we know jtzz Jm,a(t)‘ 0 = Var(¢g, o) which is the
1=

pressure metric we defined in Sect. 11.2.7 (since co = —1).
Lastly, notice that Lemma 11.65 guarantees that

2
lellp ==, Jma()| = Var(éo. o)
dt =0
is non-degenerate, i.e., Var(cp, o) = 0 implies ¢ = 0. a

Corollary 11.67 The second derivatives of renormalized Manhattan curves defines
a family of metrics on F. ]

Proof This is because for s € (0, 1)
2

= g X®| = —sHVarlo, o) = (s — 1) - llel .
t =0
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In Sander’s paper, he showed a relation between the Sanders’ metric || - ||§
(defined by the second derivative of entropy) and the Weil-Petersson metric || - ||w p.

Theorem 11.68 (Sanders, Theorem 3.8 [12]) For « € Q([m]) and ry(t) =
(g1, tRe) € o.F we have

2
2. 2
lNalls == S hiop(8)| = 27llallyp
dt t=0
where || - ||wp is the Weil-Petersson metric on %. |
We strengthen the above result and add the pressure metric || - ||p into the

comparison. Before we write the statement we give a computational lemma.

Corollary 11.69 (Corollary 11.6) Let (m, 0) be a Fuchsian pair and a € Q([m])
be holomorphic quadratic differential. Then

d
lloll =) yhiop(g0)| = llellf + 27 llelliyp-
t

=0

Proof Let us consider ¢; := —hyop(g:,tB) - Fy = —h, F; and thus ¢o = —1. Since
Py(c;) = 0, we know that f ¢oduo = 0 where g is the Bowen-Margulis measure
of the flow ¢ : T'S,,0) — T'Sy ), i-€., me, = po and ¢o € Toy P(T1(S, m)).
Therefore, by Proposition 11.19, the pressure metric of ¢g is

Var(¢o, o) [ €odpo / )
— = = — [ coduo.
[ codpo [ codpo

Notice that hp = 1, Fp = 1, and 219 = 0, so by Lemma 11.64

2. =12
||a||p = ||CO||p =

[ Fano = [ dodno = [ 2iomv.vyduo =0,
and hence
0 < llcoll% = ho + 250/ Fodpo + ho/ Foduo
= ho + / Fodpo.

Therefore, by Lemma 11.64, we know

. . go(v, v)
ho = llall3 —f Foduo > [la|l% —/ duo
TS s 2

2 2
= ||05||p + 27 ”a”WP-
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Corollary 11.70 (Corollary 11.7) One can define a family of metrics on the
Fuchsian space % by using the Hessian of x;(s) for s € [0, €) for some ¢ > 0. O

Proof By Theorem 11.59, we get

2 . d2 _ i 2 2
Hally, == dt2Xt(S) =ho(l —s) — (s — s9)le|]p.
t=0

Furthermore, since when s = 0 by the above theorem we know ||| |§0 > (0 and
by the continuity of ||«| |§S, there exists € > 0 such that for s € [0, ¢)

2
lleel[%, > 0.
O
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Chapter 12 )
Higher Teichmiiller Theory for Surface Shethie
Groups and Shifts of Finite Type

Mark Pollicott and Richard Sharp

Abstract The Teichmiiller space of Riemann metrics on a compact oriented surface
V without boundary comes equipped with a natural Riemannian metric called the
Weil-Petersson metric. Bridgeman, Canary, Labourie and Sambarino generalised
this to Higher Teichmiiller Theory, i.e. representations of 71 (V) in SL(d, R), and
showed that their metric is analytic. In this note we will present a new equivalent
definition of the Weil-Petersson metric for Higher Teichmiiller Theory and also
give a short proof of analyticity. Our approach involves coding 71 (V) in terms of a
symbolic dynamical system and the associated thermodynamic formalism.

12.1 Introduction

Given a compact oriented surface V without boundary of genus g > 2, the classical
Teichmiiller space .7 (V) is the space of hyperbolic structures on V, i.e. Riemannian
metrics of constant curvature —1. Then .7 (V) is diffeomorphic to R%¢~6 and it
supports a number of natural metrics. One of the best known of these is the Weil—
Petersson metric, which is negatively curved but incomplete. Let I denote the
fundamental group 71 (V) of V. By the uniformisation theorem, each element of
7 (V) can be realised as Hz/p(I‘), where p : ' — PSL(2, R) is a discrete co-
compact representation of I' into PSL(2, R) = Isom™ (H?) and where the action on
H? is by Mobius transformations. In fact, Goldman [8] and Hitchin [9] showed that
7 (V) can be identified with a connected component in the representation space

Rep(T, PSL(2, R)) = Hom(T', PSL(2, R))/PSL(2, R),

where PSL(2, R) acts by conjugation. (Some modification is needed to obtain a
Hausdorff quotient space, see [2] or [7] for details. However this does not affect
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the Teichmiiller component or the Hitchin components introduced below.) Another
(homeomorphic) connected component .7/(V) is obtained through the action of an
outer automorphism of PSL(2, R) (corresponding to reversing the orientation of V).

In 1958, Weil defined the Weil-Petersson metric on Teichmiiller space, using
the Petersson inner product on modular forms. An alternative definition of the
metric was introduced by Thurston, the equivalence of which to the Weil-Petersson
metric was shown by Wolpert in 1986 [26]. In 2008, McMullen gave a more
thermodynamic formulation, using the pressure metric [16].

In recent years, particularly through the work of Bridgeman, Canary, Labourie
and Sambarino, there have been significant advances in generalizing the definition
of Weil-Petersson metric to more general classes of representation spaces. In this
broader context this metric was also called the pressure metric. In particular, in [3],
they considered representations of hyperbolic groups into the higher rank groups
SL(d,R), d = 3, and showed real analyticity of their metric on the natural
analogue of Teichmiiller space in this setting. One of the aims of the present
paper is to provide an alternative definition of Weil-Petersson metric and a simpler
proof of the analyticity result, albeit in the more restrictive setting of surface
groups.

We begin by recalling another equivalent definition of the classical Weil—
Petersson metric from [20], based on [22]. Given an analytic family of represen-
tations

(—€,€) = Rep(I', PSL(2, R)) = Hom(I", PSL(2, R))/PSL(2, R) : A = p3,
with expansion
pr. = po + p VA +o(h),

where tr(,o(l)) = 0, it suffices to define the norm of the tangent p(l). (We assume
that the familiy is non-trivial and thus € > 0 can be chosen sufficiently small that
pa # po for A £ 0.) One approach to doing this is given in Proposition 12.1 below.

For g € T, let [g] denote its conjugacy class and let ¥’ (I") denote the set of
non-trivial conjugacy classes in I". To each conjugacy classes [g] € € (') and
A € (—¢, €), we associate the length /,, ([g]) of corresponding closed geodesic in
H?/p;(T). We recall that

1
lim  log#llg] € 6(T) < Iy () < T) = 1.

The next result describes how the growth rate changes if, for a given A # 0, we
restrict to conjugacy classes [g] for which I, ([g]) is close to I, ([g]).

Proposition 12.1 ([20, 22]) For each A € (—¢,€) \ {0}, there exists 0 < a(X) < 1
such that
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a(A)

= lim lim ; log#l[g] € G Lpy(lg) < T and 1)

1—-6,14+68)¢.
5—0 T —>—00 Loy ([gD € ( * )}

(12.1.1)

Furthermore, if we define o : (—€,€) — [0, 1] by setting «(0) = 1 then the Weil—
Petersson norm is given by

oM = 1 ()
Pl T -1 a2 |y

Indeed, [22] contains a stronger asymptotic result than (1.1), but the above
statement suffices for our purpose of studying the Weil-Petersson metric.

It is natural to consider the generalisation of this approach to representations in
the higher rank group PSL(d, R) (for d > 3). As we discuss in Sect. 12.2, there
is a natural representation from PSL(2, R) to PSL(d, R) (induced by the action on
homogeneous polynomials in two variables of degree d — 1) and a representation R :
I' - PSL(d, R) is called Fuchsian if it is obtained from a representation in .7 (V)
or 7'(V) by composition. Unlike the d = 2 case, the Fuchsian representations do
not fill out a whole connected component of the representation space

Rep(T", PSL(d, R)) = Hom(I", PSL(d, R))/PSL(d, R)

but a component containing a Fuchsian representation is called a Hitchin compo-
nent. Such a component is an analytic manifold diffeomorphic to an open ball of
dimension (2g — 2) dim(PSL(d, R)) [10].

Let 7 be a Hitchin component. The natural problem of defining an analogue
of the Weil-Petersson metric on # has already been considered by Bridgeman,
Canary, Labourie and Sambarino (in the even more general setting of Gromov
hyperbolic groups) in [3]. We start by defining a numerical characteristic called the
entropy of a representation. Representations in the Hitchin component have the key
proximality property that for g € " \ {1}, the matrix R(g) (which we can think of
as lifted to SL(d, R)) has a unique simple eigenvalue A(g) which is strictly maximal
in modulus, satisfies |A(g)| > 1, and which only depends of the conjugacy class [g].
This then allows us to define the entropy, 2 (R), of a representation R € 7 by

1
h(R) = TETOO o, log (gl e ¢[I) :dr([g) =T},

where dgr([g]) = log|i(g)|. Bridgeman, Canary, Labourie and Sambarino have
shown that the entropy is analytic on 7

Theorem 12.2 (Bridgeman et al. [3]) The map h : 7€ — R is real analytic. O
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In the particular case d = 2 then, as noted above, we always have that 7(R) = 2
and the result is trivial. (This is because, in this case, we have A(g) = exp(/([g])/2),
where /([g]) is the length of the unique closed geodesic in the free homotopy class
determined by the conjugacy class [g], the claim then following from the Prime
Geodesic Theorem of Huber [11]. This is closely related to the geodesic flow
which has entropy one, the factor of two coming from the normalization.) In [3],
Bridgeman, Canary, Labourie and Sambarino introduced a generalised intersection
form and a generalised Weil-Petersson norm on 7.

Definition 12.1.1 The intersection is defined on the Hitchin component by

5 dg, (Ig))
. dro ([eD=T dg,([g]
I(Ro,R)) = lim Ro k(gD

T—-+oo #{[g] € €(T) : dr,([g]) < T}

The normalised intersection is then defined by

Given an analytic family of representations R, € 77, A € (—¢, €), with expansion
Ry = Ro+ +RM +0(),
one can define the Weil—Petersson norm of the tangent RV by

2
”R(l) ”2 _ el J(R()a Rk) )
a)"z r=0

A key property of the Weil—Petersson norm is the following.

Theorem 12.3 (Bridgeman et al. [3]) The normalised intersection J and the norm
Il - || are real analytic. |

We will present short proofs of Theorem 12.2 and Theorem 12.3 in Sect. 12.5.
Our main result is the following new equivalent definition of the Weil-Petersson
norm, which is inspired by Proposition 12.1.

Theorem 12.4 Let Ry € 5, A € (—¢, €) be a (non-constant) analytic family of
representations. Then for each A € (—¢, €) \ {0}, there exists 0 < a(X) < h(Rp)
such that

1
o() = lim lim _log#{[g]: dr,([g]) < T and

dr, (18D _ <h(Ro) s h(Ro) +8>}.
dry([g]) ~ \h(Ry) h(Ry)
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Furthermore, if we define a : (—e, €) — [0, h(Ro)] by setting «(0) = h(Ro) then
the Weil-Petersson metric is given by

IRW2 = — 4 a(r) '
h(Ro) A% |,

The approach of Bridgeman et al. in [3] is to use the thermodynamic approach
of McMullen [16] (involving the pressure metric). In the present note, we will
also use the thermodynamic approach, but we introduce two new ingredients
which help simplify the analysis. Firstly, we introduce the thermodynamics directly
via the strongly Markov structure of I" and an associated one-sided subshift of
finite type, rather than more indirectly via the construction of a flow and the
associated symbolic dynamics for that flow. Secondly, we will bypass many of the
complications associated with studying the analyticity properties of pressure using
Banach manifolds by the introduction of a suitable family of complex functions.

12.2 Representations and Proximality

In this section we discuss the generalisation of the classical Teichmiiller theory
of representations into PSL(2, R) to PSL(d,R) (for d > 3). In particular, we
discuss the Hitchin components and the associate proximality property introduced
in the introduction. We then describe the key ideas that link the geometry of the
representation space to a readily analysed dynamical system.

There is an irreducible representation of ¢ : PSL(2, R) — PSL(d, R), induced

by the natural action on the space of homogeneous polynomials of degree d — 1,

(a Z) P(X,Y) = P(aX +bY,cX +dY),
c

and representations of the form R = ¢ o p, with p : ' — PSL(2,R) in 7 (V)
or 7' (V), are called Fuchsian representations. More generally, a representation of
R : ' — PSL(d, R) is said to be in a Hitchin component 7 if it is in the same
connected component of the representation space

Rep(T", PSL(d, R)) = Hom(I", PSL(d, R))/PSL(d, R)

as a Fuchsian representation. (If d is odd there is a single Hitchin component but if
d is even there are two Hitchin components.)

For future use, we note that a representation in the Hitchin component can be
lifted to a representation over I" in SL(d, R). To see this, note first that since I" is
torsion free, a discrete faithful representation p : I' — PSL(2, R) can be lifted to
a representation p : I' — SL(2, R) [4]. Furthermore, ¢ is actually obtained from
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a representation 7 : SL(2,R) — SL(d,R) and 7 o p is a lift of ¢ o p. Finally,
Theorem 4.1 of [4] tells us that any representation in a Hitchin component also
has a lift to SL(d, R). We will use the same symbol to denote both the original and
lifted representations.

We next discuss the notion of a hyperconvex representation and describe how
it relates the boundary of the group I' to something akin to a limit set in RP4~!,
The boundary of I', denoted dT, is the well-defined topological space obtained from
the set of (one-sided) infinite geodesic paths in the Cayley graph of I' by declaring
that two paths are equivalent if they remain a bounded distance apart. In the case
where T is the fundamental group of a compact surface without boundary, 9T is
homeomorphic to S'.

We recall that a flag space .% for RY is a collection of subspaces V| C V, C

. C V4 of R? with dim(V;) = i. There is a natural linear action of each R(g) €
SL(d, R) on R¢ which induces a corresponding action on the vector subspaces, and
thus on the flags.

Definition 12.2.1 A representation of R : I' — SL(d, R) is hyperconvex if there
exist ['-equivariant (Holder) continuous maps (¢, 6) : 3T — # x % such that for
distinct x, y € . the images £(x) = (V;(x))’_, and 0(x) = (W;(x))"_, satisfy
Vix) ® Wy_i(x) =R4 fori =0,--- ,d. O

By I'-equivariance we mean that R(g)§(x) = &(gx), where R(g)§(x) is the
image under the linear action of R(g) forg € I'.

The following fundamental result of Labourie tells us that the representations in
a Hitchin component are hyperconvex.

Proposition 12.5 (Labourie [15]) If R € ¢ then R hyperconvex. O

For our purposes it suffices for us to focus on one component of & : 3 — .7,
say, and furthermore take the one dimensional subspace Vi(x) in the flag given by
&o(x) = Vi(x), say. This corresponds to a point in projective space and thus we
have a Holder continuous I'-equivariant map from aI" to RP4~1.

Let R € sZ. An important consequence of the hyperconvexity of R is that,
for each g € T \ {Ir}, the matrix R(g) € SL(d,R) is proximal, i.e. it has a
unique simple eigenvalue X(g) which is strictly maximal in modulus (and which
only depends on the conjugacy class [g]) [15, 21]. Since det R(g) = 1, we have
[L(g)| > 1. As above, we will write dg([g]) = log|A(g)| > O.

It will prove important to characterise dg([g]) in terms of the actlon that
R(g) induces on prolectlve space. We can consider the projective action R(g)
RPIY-1 — RPIT of the representation R(g) € SL(d, R) defined by R(g)[v] =
R(g)v/||R(g)vl|2 (where v € RY \ {0} is a representative element).

The proximality of R(g) ensures that R(g) : RP4~! — RP9~! has a unique
attracting fixed point &, € R P41, We can use the following simple lemma to relate
the weight dg([g]) to the action of R(g) on RpP4-1,
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Lemma 12.2.1 Ifg € ' \ {Ir} and §; € RPY! is the attracting fixed point for
R(g) : RP™!1 — RP4 then

1 ~
dr(lgl) = —  logdet(Dg, R(g)).

Proof We can consider the linear action of R(g) on R?, then the fixed point
corresponds to an eigenvector v and the result follows from a simple calculation
using that the linear action of R(g) € SL(d,R) preserves area in R?. More
precisely, &, corresponds to an eigenvector v for the maximal eigenvalue A(g), with
[X(g)| > 1, for the matrix R(g). We can assume without loss of generality that
[lvl = 1 and then for arbitrarily small § > 0 we can consider a §-neighbourhood
of v which is the product of a (d — 1)-dimensional neighbourhood in RP4~!
and a §-neighbourhood in the radial direction. The effect of the linear action of
R(g) is to replace v by A(g)v, and thus stretch the neighbourhood in the radial
direction by a factor of |L(g)|. Since R(g) has determinant one, the volume of the
(d — 1)-dimensional neighbourhood contracts by [A(g)|~!. To calculate the effect
of the projective action ﬁ(g), we need to rescale A(g)v to have norm one, which

corresponds to multiplication by the diagonal matrix diag(|)\(g)|’1, LA h.
In particular, the (d — 1)-dimensional neighbourhood in R P4~ shrinks by a factor
of approximately |A(g)|~¢, giving the result. O

12.3 Symbolic Dynamics

The structure of the group I' allows us to code it in terms of a symbolic dynamical
system, namely a subshift of finite type. We will describe this and then discuss
how the geometric information given by the numbers d ([g]) may also be encoded.
This in turn enables use to use the machinery of thermodynamic formalism to
define a form of pressure function and hence an associated metric on spaces of
representations.

As the fundamental group of a compact orientable surface without boundary of
genus g > 2, I" has the standard presentation

8
F=<a1,...,ag,b1,...,bg|l_[[a,-,bi]=1>.
i=1

We write I'g = {af—Ll, el a;,“, bfl, cee bil} for the symmetrised generating set.

The surface group I' is a particular example of a Gromov hyperbolic group and
as such it is a strongly Markov group in the sense of Ghys and de la Harpe [6],
i.e., they can be encoded using a directed graph and an edge labelling by elements
in ['g. Lemma 12.3.1 below deals with the particular case of surface groups, where

the more precise statements, including the relationship between closed paths and
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conjugacy classes, follow from the work of Adler and Flatto [1] and Series [23] on
coding the action on the boundary and the associated shift of finite type is mixing.

Lemma 12.3.1 We can associate to (I', T'g) a directed graph G = (V, E), with a
distinguished vertex x € V, and an edge labelling p : E — T'¢, such that:

(1) no edge terminates at *;
(2) there is at most one directed edge between each ordered pair of vertices;
(3) the map from the set finite paths in the graph starting at x to I \ {e} defined by

(e1,....en) > pler)---plen)

is a bijection and |p(e1) - - - p(en)| = n;

(4) after removing finitely many closed paths, the map from closed paths in G
(modulo cyclic permutation) to € (I') induced by p is a bijection and for such
a closed path (e, ..., en, e1), n is the minimum word length in the conjugacy
class of p(e1) - - - p(en); and

(5) a conjugacy class in € (') is primitive (i.e. it does not contain an element of
the form g" with g € T andn € Z \ {—1, 1}) if and only if the corresponding
closed path is not a power of a shorter path.

Furthermore, the subgraph obtained be deleting the vertex x has the aperiodicity
property that there exists N > 1 such that, given any two v, v’ € V \ {x}, there is a
directed path of length N from v to v'. O

We now introduce a dynamical system. We can associate to the directed graph G
a subshift of finite type where the states are labelled by the edges in the graph after
deleting the edges that originate in the vertex . In particular, if there are k£ such
edges then we can define a k x k matrix A by A(e, ') = 1 if ¢ follows e in the
directed graph and then define a space

+
X ={x = (xn), € {1.. ..,k}Z :A(xp, Xp41) = 1,n > 0},

where for convenience we have labelled the edges 1, .. ., k. This is a compact space
with respect to the metric

e¢]

1—58(xy,, v
d(x,y)ZZ (x )’)‘

2}’[
n=0

The shift map is the local homeomorphism o : ¥ — X defined by (o0x), = x,,41.
By Lemma 12.3.1, A is aperiodic (i.e. there exists N > 1 such that AN has all entries
positive) and, equivalently, the shift o : ¥ — X is mixing (i.e. for all open non-
empty U, V C %, there exists N > 1 such that c ™" (U) NV # & foralln > N).
The periodic orbits for o correspond exactly to the conjugacy classes in %’ (I") and
they are prime if and only if the corresponding conjugacy class is primitive.
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There is a natural surjective Holder continuous map = : ¥ — 9I' defined
by setting 7 ((x,);2) to be the equivalence class of the infinite geodesic path
(P ()2 in dT.

However, the shift o : ¥ — % only encodes information about I' as an
abstract group. In order to keep track of the additional information given by the
representation of I" in PSL(d, R) we need to introduce a Holder continuous function
r:¥—R

Definition 12.3.1 We can associate a map r : ¥ — R defined by
1 -
ra)=-, log det(Dg (x) R(8x))-

(i.e., the Jacobian of the derivative of the projective action) where E = &y ox
and where g,, = p(xp) is the generator corresponding to the first term in x =
(xn),olio € X a

Givenr : £ — Randx € ¥ we denote r" (x) := r(x)+r(ox)+---+r(@" 'x)
for n > 1. We now have the following simple but key result.

Lemma 12.3.2 The functionr : ¥ — R is Holder continuous, and if 6"x = x is a
periodic point corresponding to an element g € T then r"* (x) = dr([g]). O

Proof The Holder continuity of r follows immediately from the Holder continuity
of &y, which in turn comes from Proposition 12.5. The second part of the lemma fol-
lows from the equivariance and the observation E(ox) = R(gy,) E (x). Moreover,
that the periodic point x has an image E(x)(= &) which is fixed by R (g) and the
result follows from Lemma 12.2.1. |

The next lemma shows how the analytic dependence of the representations
translates into analytic dependence of the associated function r.

Lemma 12.3.3 For a C® family (—€,€) > A +— R, of representations, the
associated maps r) have a C® dependence. O

Proof The proof is very similar to Proposition 2.2 in [12], which is in turn based on
the classical approach of Mather, and the refinement of de la Llave-Marco-Moriyén
[5], to showing the existence of, and analytic dependence of, a conjugating (H6lder)
homeomorphism between nearby expanding maps on a manifold (i.e., structural
stability). Given this similarity, it suffices to only outline the main steps in the
proof. The main objective is to construct a natural family of (Holder) continuous
equivariant maps Z; : ¥ — RP?! that is a family of (Holder) continuous
maps satisfying Ry (gx,) Ea(x) = Ex(ox), forx € X. Givenany 0 < o < 1, we
let C*(=, RP9~1) denote the Banach manifold of a-Holder continuous functions
on ¥ taking values in the projective space RP4~!. We can now consider the
family of maps H; : C*(X,RP?"1) — C*(z,RP?!) defined by Hy(E)(x) =
Ri.(85,)E(ox), for x € ¥ with first symbol xo, and & € C*(Z,RP!). In
particular, providing 0 < o < 1 is sufficiently small then one can show that for each
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A € (—e€, €) there exists a unique continuous family E; which is a fixed point (i.e.,
H)(E;) = E,) and, moreover, the maps (—€,€) € A > E, € CY(x,RP41
are analytic. This follows from an application of the Implicit Function Theorem.
More precisely, in order to apply the Implicit Function Theorem we first observe
that we can identify the tangent space T,RP?~! at v € RPY~! with R~ We
can then consider the derivative DH;, : C*(X, R4~y — C*(=, R?~1) which can
be defined by DH,, (IT)(x) = Dg; 'TI(x), for T € C*(£,R"!) and x € X. For
0 < a < 1 sufficiently small the hyperbolic nature of R, (g;ol) ensures that the
operator (DH, — I) : C¥(%, R — €%z, R?1) is invertible. (This is more
readily seen in the case of (DH, —I) : C(%, Rdﬁl) — C(%, Rd’l) on continuous
functions, the setting of Mather’s original proof, but then the result extends to Holder
functions providing « is sufficiently small, as in the article of de la Llave-Marco-
Moriy6n [5]). It then follows from the Implicit Function Theorem that there is a
unique fixed point E; and also that this depends analytically on A € (—e¢, €). Finally,
writing ) (x) = logdet(R) (gx,))(Ex(x)) we see that this too depends analytically
on A € (—e,e€). |

12.4 Thermodynamic Formalism

In this section we discuss the thermodynamic formalism associated to the map o :
¥ — X and, subsequently, to an associated suspended semiflow. (We refer the
reader to [18] for a more detailed account.) We say that two Holder continuous
functions fi, fo : ¥ — R are cohomologous if f; — fo = u o 0 — u, for some
continuous function # : ¥ — R. Then f; and f, are cohomologous of and only if
fl'(x) = f3'(x) whenevero”x = x,n > 1.

Let .#, denote the set of o-invariant probability measures on X. For a Holder
continuous function f : ¥ — R, its pressure P(f) is defined by

P(f):= sup {ha(M)Jr/fdu},

WeM,

where A, (1) denotes the measure-theoretic entropy, and its equilibrium state i r is
the unique o-invariant probability measure for which the supremum is attained. If
f is not cohomologous to a constant then

fa(f):{/fduiue//la}

is a non-trivial closed interval and, for & € int(.# (f)),

sup{h(u):ue/flgand/fd/L:S} > 0.
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The following result is standard (see [18]).

Lemma 12.4.1 The map t — P(tf1 + f>) is real analytic on R and satisfies

/fldufz

We will also need some material about suspended semi-flows overo : ¥ — X.
Let f : ¥ — R be strictly positive and Holder continuous.

Definition 12.4.1 We define

dP(tf1~|—f2)

Efz{(x,s):er, 0<s=<fx)}/ ~,

where we have quotiented by the relation (x, f(x)) ~ (ox 0). The associated

suspended semiflow atf >/ — ¥/t > 0, is defined by o; (x s) = (x,s +1),
modulo the identifications. |

Let .# s denote the set of o/ -invariant probability measures on £/. Each m €

My takes the form dm = (du x dt)/ [ f du, where u € ., and their entropies
are related by
he (1)
h,r(m) = .
’ [ fdu

For a Hélder continuous function G : £/ — R, its equilibrium state mg is the
unique o/ -invariant probability measure for which

haf'(mG)+/deG=P(G) = sup {haf'(m)+/de}.

med_ s

Thendmg = (dug—pG)r X dt)/f fdug_p)r, where g : ¥ — Ris defined by

fx)
glx) = / G(x,s)ds.
0

In particular, o/ has a unique measure of measure of maximal entropy m for o/,
i.e. a unique measure mg such that

hyr(mg) = sup h,s(m).
me//laf



406 M. Pollicott and R. Sharp

Furthermore, A s (mo) is equal to the topological entropy
1 o
fy— 71 —_ -
hc’) := Tll)moo T log (Z:l#{a"x =x:f"x) < T}) )
n=
This measure is given by dmo = (dpu_p o ryp x d)/ I fdu_pery and we have

ho (th(af)f)

h(o!) = hyr(mo) = [ fdigons
—h(c/)f

The topological entropy is also characterised by the equation P(—h(c/)f) = 0.

We have the following analogue of Lemma 12.4.1 (see Lemma 1 of [24]).
Lemma 12.4.2 The map t — P(tG1 + G») is real analytic on R and satisfies

= / Gidmg,.
t=0

If G is not cohomologous to a constant then

dP(tGy+ Gy)
dt

I (G) = {/de ‘m e ///g'}
is a non-trivial closed interval. Furthermore,

{/det(; te R} = int(.Z, / (G)).

We use the following large deviation type result.

Lemma 12.4.3 Let f1,f» : ¥ — R be strictly positive Holder continuous
functions such that 0 € int(Z5 (f1 — f2)). Then

B(f1, f2) =

1 > 4
lim lim sup T log (Z#{gnx =x: f{'(x) <T and f2n(x) e(l1-4,1 +8)})

50 T oo — S x)

satisfies

h
ﬂ(fl,f2)=sup{f;llgu ey, /fldu=/fzdu}.

In particular, 0 < B(f1, f») < h = h(c/") and B(f1, f>) = h if and only if
f fidu_pp = f Sadu_pg, where p_py is the equilibrium state for —hfi. m]
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Proof We apply results about periodic orbits for hyperbolic flows, which also apply
to suspended semiflows over subshifts of finite type. We have that

f

o0
Z#{a”x =x: f{'(x) <Tand "2
n=1 ‘fl

(x)
(o € (1—26,1 +5)}

=#{r:l(r)§Tand/de,e(l—8,l+8)},

where 7 denotes a periodic orbit of the suspended semi-flow /! with least period
I(t), m¢ is the corresponding orbital measure (of total mass /(7)) and F : > 5 R
satisfies f Fdm; = f;'(x). (The function F may be constructed as follows. Choose
a smooth function « : [0, 1] — RT such that ¥ (0) = «(1) = 0 and fol k(s)ds =
1. Then set F(x,s) = (fa(x)/fi(x))k(s/f1(x)).) Using Kifer’s large deviations
results for hyperbolic flows [13], we have

1
lim T log#{r :l(t) < T and

T—o00

1
l(r)/de,e(l—S,l—i—(S)}

=sup{h(m):me//lafl and /de € (1—8,1~|—8)}

_ h(p) [ fadu B
_Sup{fﬁdu ‘| € My and [ fdu e(l-4,1 +8)}
= sup H(),

£e(1-5,149)

where

h(w) [ frdu }
= : > and = .
H(§) Sup{ffldu U € My an I hdu &

Since H (§) is analytic, letting § — O gives the required formula for 8( f1, f2). (The
analyticity of H follows from the fact that —H is the Legendre transform of the
pressure function t — P (¢t F).) That B(f1, f2) < h is immediate and B( f1, f2) > 0
follows from 0 € int(Z5 (f1 — f2)), since [ fodu/ [ fidu = 1 is equivalent to

f fi—fadu=0. Iff f dﬂ—hf] = f P dM—hfl then it is clear that B( f1, f2) = h.
On the other hand, if

he (1)

h=B(f1, f2) = N
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for some € ., then

he (1) _h/fl du=0= P(=hf1)

so uniqueness of equilibrium states gives i = p—yy, . This completes the proof. O

12.5 Analyticity of the Metric and the Entropy

In this section we will establish the analyticity of the metric and the entropy. We
will do this by considering certain complex functions, which provides a fairly direct
proof avoiding the use of Lemma 12.3.3. We want to establish analyticity of the
intersection form, normalised intersection form and metric by using the analytic
function n(s, Ro, R,) defined below, where R, depends analytically on A.

We begin by establishing the analyticity of individual weights dg, ([g]) as
functions of A.

Lemma 12.5.1 For each [g] € € (I), the weight dg, ([g]) € R has a real analytic
dependence on A € (—¢€,€). Moreover, we can choose an open neighbourhood
(—€,€) C U C C so that we have an analytic extension U > A +— dg, ([g]) € C
foreach [g] € €(). O

Proof We need only modify the approach in Proposition 1.1 of [12]. For each
generator go € I'g we can consider the image Xz, C RP4~! of the corresponding
1-cylinder [xo] C X, say. In particular Xg, is a compact set in RP!. Since
RP?~! is a real analytic manifold it has a (local) complexification and we can then
choose a (small) neighbourhood Ug, D X, in this complexification of RP4~!. We
will still denote by R;, (g0) ! the unique extension of the action of R(g0)~! to the
neighbourhood Uy, D Xg,. Providing the neighbourhoods Uy, are sufficiently small
we have by continuity of the extension R (g0)~! that Ry (go)’lUgO D Ug,, for
A € (—€, €), where g1 € I satisfies Rx(go)’ng0 D Xg,, since we know that the
restriction R; (go) !X g0 18 a contraction. Moreover, by continuity and by choosing
Uy, smaller, if necessary, we can assume that the inclusion Ry (g0) Uy, D Uy,
also holds for each g¢ for the complexification of R; for A lying in a suitably small
open subset C D V D (—e¢, €), say.

The key observation now is that when we extend these inclusions to conjugacy
classes of more general elements g € I' \ {Ir} without further reducing the
neighbourhood (—¢,¢) € V C C. More precisely, for each reduced word g =
8io " " 8i,_, (where g, ..., gi,_; € I'o) we have from the above construction that
Ri.(9)~'U 0 2 Ug,.wl for A € V. Moreover, writing Eg* e RP4~! for the fixed
point for Rx(gk)_l, we see that V o A — Sé‘ is analyticand V 5 A = dg, ([g]) =
—é log det(Dggx R, (g)) € Cis analytic as the sum of analytic terms. In particular,
these functions are analytic on the region V. O
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We now define a complex function using these weights.

Definition 12.5.1 We can associate to the two representations Rg, R) € 7 a
complex function

n(s, Ro. Ry) =Y dg, ([g]e **Fols)
L]

which converges for Re(s) sufficiently large. O
From now on, we shall write h(Rg) = h.

Lemma 12.5.2 The function n(s, Ro, Ry) is analytic for Re(s) > h. Moreover,
s = h is a simple pole with residue equal to

f I d,“«*/’tro
[rodu—nry

where ry, 1) correspond to Ry, R using Lemma 12.3.2. In particular, n(s, Ry, Rop)
has a simple pole at h(R;,). O

Proof We will write €' (I") C % (I') for the set of primitive conjugacy classes in I.
We can associate to Ry and R), a zeta function formally defined by

~1
¢(s,z, Ro, Ry) = l_[ (1 _ e—SdRO([g])+ZdRA([8])) , fors € C,z e R,
[gle?’(T)

which converges for Re(s) sufficiently large and |z| sufficiently small (depending
on s). We can rewrite this in terms of the shift o : ¥ — X and the functions rg, r),
as

00
1 n n
.Z.Ro.R) =e —sry (x)—zry (x) )
¢(s.z, Ro, R;) = exp (;_1 " > e

olx=x

(Here we use the fact that primitive conjugacy classes correspond to prime periodic
orbits for the shift map and then there is convergence to an analytic function
P(—Re(s)ro—zry) < 0[18].) Using the analysis of [18], we see that (s, z, Ro, R).)
converges for Re(s) > h. Furthermore, for s close to # and z close to zero,

A(s, 2)
£, 2, Ro R = | p(csrotany
where A(s, z) is non-zero and analytic and e?(=$"072") is the standard analytic
extension of the exponential of the pressure function to complex arguments
(obtained via perturbation theory applied to the maximal eigenvalue of the asso-
ciated transfer operator cf. [18]).
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It is easy to show that

]
n(s, Ro, Ry) = 9z log £ (s, z, Ro, Ry)

+ (),
0

Z=
where ¢ (s) is analytic for Re(s) > /2, while, for s close to A,

AP (—sro+zry)

9 0A(s,2)/0z|,—9 dz =0
1 .z, Ro, R = : ¢
a; OBEG L R R A(s.0) | — eP(=smoy
dp_pr, 1
[ rdpng B

o fVOdM—hro s—h

where B(s) is analytic in a neighbourhood of s = h. The final statement follows by
reversing the roles of Ry and R;. O

We have the following result (which implies Theorem 12.2)
Lemma 12.5.3 The function (—¢, €) 2 A +— h(R)) is real analytic. O

Proof We note that ¢(h(R)),0, Ry, Ry) = 0. By Lemma 5.1, the function
1/¢(s, 1), where (s, A) := (5,0, Ro, R)), has an analytic dependence on A €
(—e¢, €) for Re(s) sufficiently large. It follows from [19] that, for each A € (—¢, €),
1/¢(s, 1) has an analytic extension to a half plane Re(s) > v(X), where v(A) <
h(R)) depends continuously on A. We can therefore find a common domain 2,
containing | J___, _.{s € C:Re(s) > h(Ry)}, such that 1/¢(s, 1) is separately
analytic for s € 2 and A € (—¢, €). We may then apply Theorem 1 of [25] to
conclude that (s, A) — 1/¢(s, 1) is real analytic on Z x (—e¢, €). Finally, we can
use the Implicit Function Theorem to show that A — h(R)) is real analytic. O

In order to establish further analyticity results, we need to show that the
intersection I (Rp, R;) is equal to the residue of n(s, Rg, R;) at s = h. To do this, it
will be convenient to use the following technical result.

Lemma 12.54 Let R € J#. Then there does not exist o« > 0 such that
{dr(gD - g €T\ {Ir}} C aZ o

Proof Let g, h € T\ {1r} be two distinct elements of the group. For any N > 0
we can consider gN ,hN e TI'. The linear maps on R for the associated matrices
R(g"), R(hN) € SL(d,R) can be written in the form A(¢)Nmg + U,y and
ANy + Uy, respectively, where A(g), A(h) are the largest simple eigenvalues,
g, Tp - R? — R are the eigenprojections onto their one dimensional eigenspaces,
limsupy_, 4o Uy IN < A(g) and limsupy _, 4 o, 1UyN 1YV < a(h).

Let us now consider gV 4" e I and associated matrix R(g"Vh"). The associated
linear map will be of the form )\.(gNhN)JTgNhN + Ugnyny where A(gVh"N) is the

largest simple eigenvalue, 77,v,v : RY — R is the eigenprojection onto their one

8
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dimensional eigenspaces, and limsupy_, o [Ugvjn IV < x(gNhr"). However,
since we have the identity R(gN WYy = R(gN )R(gN ) for the matrix representations
we can also write the corresponding relationship for the linear maps:

)\.(gNhN)T[gNhN + UgNhN = (A.(gN)jTgN + UgN) ()\.(/’ZN)JThN + UhN) .
(12.5.1)

In particular, we see that as N becomes larger

A(gVhN)

) NN N Ny = 1
Jim_exp (@r(1g"h") — dr((g"D) — dr(lh D)—NETOO (gNIAAN)

= (mp, 7g)

where (7, ) is simply the cosine of the angle between the eigenvectors associated
to A(g) and A(h), respectively. However, if we assume for a contradiction that the
conclusion of the lemma does not hold, then the right hand side of (5.1) must
be of the form ", for some n € Z. However, the directions for the associated
eigenprojections form an infinite set in RP?~! and have an accumulation point.
Thus for suitable choices of g, & we can arrange that 0 < (7, 7g) < €%, leading to
a contradiction. This completes the proof of the lemma. O

Corollary 12.6 Apart from the simple pole at s = h, n(s, Ro, R)) has an analytic
extension to a neighbourhood of Re(s) > h. O

Proof Given Lemma 12.5.4, it follows from the analysis of [18] that ¢ (s, z, Ro, Ry)
has an analytic and non-zero extension to a neighbourhood of each point s = h +it,
t # 0, for |z| sufficiently small depending on s. Using again that

d
n(s, Ro, Ry) = | log(s, z, Ro, Ry) + o (s),
82 7=0

where ¢ (s) is analytic for Re(s) > h/2, we obtain the result. O

We now have the following result which characterises the intersection number of
I(Ro, Ry).

Lemma 12.5.5 We can write

f ry d,“«*/’tro

I(Rp, R)) =
(Ro, Ry) [ rodpinm,

Proof Recall from Lemma 12.5.2 that the right hand side in the statement is the
residue of (s, Ro, Ry) ats = h. In view of Corollary 12.6, we can apply the Ikehara
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Tauberian theorem to 1 (s, Rg, R)) to deduce that

f”x dt—hry T

,as T — +oo.
Jrodm—nr,

> dr(gD) ~

dgy(IgD=T

Moreover, upon taking R, = Ry, we deduce that

> dry(lgh) ~ ", as T — +oo.
dry(1gD=T

An elementary argument given in [17] shows that

dg, (gD
lim ZdRO (gh=T dRO([g]) — lim ZdRQ([g])ST dRA ([g])
T—+00 ZdRO([g])ST 1 T—+o0 ZdRO([g])ST dRo([g]) ,
so that
f r}- dlu“*/’l}’()
I(Ry, R)) = ’
(o 1) Jrodp—nr,
as required. .

We can now use the characterisation of  (Rg, R;) in terms of a complex function
to deduce the following.

Lemma 12.5.6 The function (—e, €) — R : L +— I(Ro, R)) is real analytic. |

Proof By Lemma 12.5.1, n(s, Ro, R;) has an analytic dependence on A € U. More
precisely, it is a uniformly convergent series with individually analytic terms in A €
U for Re(s) > h and thus bi-analytic for A € U. Moreover, by Hartogs’ Theorem
for functions of several complex variables [14], 1/n(s, Ro, R;) is bi-analytic for s
in a neighbourhood of & and A € U. Thus the residue of n(s, Ry, R)) at s = h
is analytic. Thus, using the residue theorem, I (Rp, R;), which is the residue of
n(s, Ro, Ry), depends analytically on A. m]

Since h(R;) and I (Rp, R;) both depend analytically on A, we have the following.
Corollary 12.7 The function (—e,€) — R : A — J(Ro, R)) is real analytic. O

32J(Ro. Ry

By differentiating twice and using that ||[R(V|? = g

o we have the
following result. -

Corollary 12.8 The function (—e, €) — R : & +— |[RW|| is real analytic. |
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12.6 Proof of Theorem 12.4

The first part of Theorem 12.4 will follow from Lemma 12.4.3 once we formulate
things appropriately. Given an analytic family of representations A +— R,, we
define strictly positive Holder continuous functions 7, : ¥ — R as in Sect. 12.3
so that if 0"x = x corresponds to a conjugacy class [g] then dg, ([g]) = r} (x),
using Lemma 12.3.2. By Lemma 12.3.3, r;, depends analytically on A. We then
have h(c) = h(Rg) and h(c™) = h(R;). We now define fo = h(Ry)ro and
fr. = h(Ry)r», so that, in particular, P(— fy) = P(—f1) = 0. Since periodic point
measures are dense in .#, it is clear that 0 € int(-% (fo — f5.)) if and only if there
exist two conjugacy classes [g] and [g] such that 2(Ro)dg,([g]) < h(Ry)dRr, ([g])
and h(Ro)dgr,([g']) > h(R))dg, ([g']) (since these correspond to measure jiq , (1
supported on two periodic orbits for which [ fo — fidio <0 < [ fo — fadui and
int(Z5 (fo — f1)) is convex). We will show that this latter condition holds provided
the representations Ro and R) are not equal up to conjugacy.

Lemma 12.6.1 If Ro and R, are not conjugate then there exist two conjugacy
classes [g] and [g'] such that we have h(Ro)dgr,([g]) < h(Ry)dg,([g]) and
h(Ro)dRr,([8']) > h(Ry)dg, ([g']). O
Proof We will prove the contrapositive. Without loss of generality, suppose that
h(Ro)dR,([g]) < h(R1)dg, ([g]) for all [g] € (), i.e. that (fo — fu)"(x) <0
whenever o”x = x. Then [(fo — fo) du < O forevery u € ;.

Now consider the real analytic map Q : [0,1] — R defined by Q(r) =
P(—fo + t(fo — f5.). This has derivative Q'(t) = f(fo — fi)du: < 0, where
W is the equilibrium state for — fo + #(fo — fi.). Since Q(0) = Q(1) = 0 we
deduce that Q(r) = O for all # € [0, 1] and then the strict convexity of pressure
implies that fy — fj is cohomologous to a constant. Since P(fy) = P(—f), the
constant must be zero and so fj (x) = f}'(x), whenever 6" x = x. This implies that
h(Ro)dR,([g]) = h(Ry)dg,([g]) for all g and hence that J(Rp, R;) = 1. It then
follows by Corollary 1.5 of [3] that the representations are equal up to conjugacy. O

Write & = h(Rp). We may now apply Lemma 12.4.3 to show that, for each
A € (—¢, €), the limit

a(A)

1
ST e T 8 {[¢]: dry([g]) < T an

dr, (L8] _ <h(Ro) s h(Ro) +5>}
dry([g]) ~ \(Ry) h(Ry)

1 = g
= lim lim sup T log (Z:l# {a"x =x: foh(x) < T and
P

=0 7500

Ji(x)
Jo (%)

= hB(fo. f1)

e(1—8,1+8)}>
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exists and satisfies 0 < a(1) < h. (Here we have used that 4(6/0) = 1.) The next
result shows that we have a strict inequality when A # 0.

Lemma 12.6.2 For A € (—¢,¢€) \ {0}, a(A) < . O

Proof By Proposition 12.4.3, we will have a(X) < & unless ffo du_g =
f fo.du—g,. The latter condition may be rewritten as

ff), d:u“*fo —1= h(ofo) _ hU(M*f()) ff), d:u“*f)h
[ fodu—y, ho ) [ fodu—g he(u_p)

Rearranging, this becomes

ha(ﬂ—fx) _ ha(,uf—fo)
ff)\dll/*fx ff)\dl’l/*f(),

which, by uniqueness of the measure of maximal entropy for o /*, forces M—fy =
. The latter equality implies that fo — f5 is cohomologous to a constant
and, since P(— fy) = P(—f,), the constant is necessarily zero. This means that
h(Ro)dR,([g]) = h(Ry)dR, ([g]) for all [g] € ¥ ("), contradicting Lemma 12.6.1.00

We now complete the proof of Theorem 12.4 by establishing the characterisation
of the Weil-Petersson metric in terms of the growth rate «(A). It is more convenient
to work with () = B(fo, fo) = «a(Ar)/h. For t € R, consider the pressure
P(—tfo— f;) and define x; (¢) by the equation P(—tfy— x1(t) fo.) = 0. We trivially
have xo(¢) = 1 — ¢ but we are interested in the function when X # 0.

Lemma 12.6.3 For each A € (—¢, €) \ {0}, the function x,(t) is well-defined and
real analytic. Furthermore,

lim x5 (t) = Foo.
t—+o00
Proof That x,(¢) is well-defined and real analytic follows from the Implicit
Function Theorem. Suppose lim,_, « x5 (#) 7 —oo. Then there exists a sequence
t, — +o00 and a constant A > 0 such that x; (¢,) > —A for all n. We have
—tn fo — xa(tn) i < —tn fo + Al fillo
and so

0= P(=tnfo— x2.(tn) f2) < P(—tn fo+ All filloo) = P(=tn fo) + All foll = —00,

asn — 00, a contradiction. A similar argument show that lim;_, _ o x5 (#) = +00.0
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We want to show that there is a unique number 0 < #; < 1 for which x; (1) =
—1. To do this, it is convenient to use the following alternative characterisation of
x.(t) in terms of the semiflow o /0. Let F, : £/ — R be a Holder continuous
function such that, for a periodic o /0-orbit ¢ corresponding to a periodic o-orbit
o"x = x, f Fy.dm; = f]'(x). (We can define F), by the same procedure we used
to define F in the proof of Lemma 12.4.3.) Here, as above, m is the associated
periodic orbit measure of total mass /() = f; (x). The functionF), also satisfies
[ Fp.dm > 0, for every m € ./, j,. We then have that x; (¢) is defined by

P(=xn(DF) =1.

It is then easy to calculate that

—1
/
Xx5.(1) = .
g [ Fxdm_y,i)F,

In particular, x; () is strictly decreasing. By Lemma 12.6.3, x, takes all real values
and so

{/ F) dm—x;(t)Fx it e R} = {/ F) dthA it e R} = int(fafo (Fy)).

However, by Lemma 12.6.1, we can find periodic o f0-orbits 7 and 7’ (corresponding
to conjugacy classes [g] and [g']) such that

1 1
l(r)/FAdmr >1 and l(r’)/FAdmr/ < 1.

Hence, in particular, for A # 0, there exists a unique #, such that X;/\ (1) = —1.
Lemma 12.6.4 We have B()) = t, + x,.(t)). O
Proof By Proposition 12.4.3, we have

he (1)

ffod’u:ue/lgand/foduszkdu}.

B(1) = sup {

Let v denote the equilibrium state of —#, fo — xa(¢1) fi.. By the definition of #;,

ff)\dv

[ fodv = / Frdm_y, i;)F, = 1.
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Thus
0= P(=tyfo— x0(6) f1) = ho () — 1 / fodv — (6 f Fdv
— ho () = (1 + 10.(0) f fodv,

so that

he (v)
f fodv

and [ fodv = [ f, dv. On the other hand, if u € #,, u # v satisfies [ fodu =
[ frdp then

L+ x0.() =

0= Pt fo— x.() f) > ho () — 1 / fodi — x.(52) f fdp

= o () — (1 + 00.(6) f fodu,

so that
he (v)
t 15 .
»+ ) > [ fodv
Combining these two observations shows that £, + x,.(f,) = B(A). |

Since A +— ry and A — h(R,) are analytic, we can write f, = fo + fo(l))\ +

féz)kz /2 4+ 0(A?). It follows from the definition of the Weil-Petersson metric in
terms of J(Rp, R;) and Lemma 12.5.5 that

2
Py,

IRV|? = :
f Jodi—y,

We may then use the calculation in the proof of Lemma 4.2 of [20] to show that

2
e

e =1(t = DRV,

=0

The next lemma establishes the final part of Theorem 12.4.

Lemma 12.6.5 The function a : (—e, €) — (0, h(Ry)] satisfies

4 %a(n)

I*B(1)
_4 = — .
r=0 h(Ro) 922 r=0

ROD|2 =
IRV o
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Proof This follows from the calculations in the proof of Theorem 4.3 of [20], once
one replaces the function D, there with (1), combined with Lemma 12.6.4. |
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Fractal Geometry



Chapter 13 )

Dimension Estimates for C! Iterated Shethie
Function Systems and C! Repellers,
a Survey

De-Jun Feng and Karoly Simon

Abstract In this note we give a survey about some of the results related to fractal
dimensions of attractors and ergodic measures of non-linear and non-conformal
Iterated Function Systems (IFS) and the repellers of expanding maps on R?. The
only new result in this note is the proof of the fact that Theorem 13.1.1 implies
Theorem 13.1.2.

13.1 Introduction

We consider attractors of Iterated Function Systems (IFS) and repellers of expanding
maps and we estimate their various fractal dimensions. The most important results
this note is focused on are as follows:

Theorem 13.1.1 ([29]) Let ¥ = {f,-}f:1 be a C' IFS on a compact subset of RY. Let
Yo={1,....00% andlet T1 : £ — A be the natural projection from the symbolic

space to the attractor A. We write dims X and dimy, p for the singularity dimension
of X and Lyapunov dimension of | (defined in Sect. 13.7.2.1). Then

(1) dimpA < dimg X. More generally, if X C X is a subshift then
dimpIT(X) < dimg X. (13.1.1)
2) Let u € E(Z,0). Then

dimp(p o TI7") < dimy_ . (13.1.2)
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Theorem 13.1.2 ([29]) Let A C R? be a repeller of the expanding C' mapping
Y and let p be an ergodic invariant measure. Let dimg+ A and dimp+ u be the

singularity dimension of A and the Lyapunov dimension of |1 respectively (defined
Sect. 13.7.2.2). Then

(1

dimg A < dimg= A. (13.1.3)
)

dimpy < dimp+ p. (13.1.4)
In Part I we give a detailed review of the classical results. In Part IT we introduce
some tools to handle the neither conformal nor linear attractors. We review earlier

results in this field. Finally we point out how part (a) of Theorem 13.1.2 follows
from part (a) of Theorem 13.1.1.

Review of Classical Results

13.2 Notation

13.2.1 Definitions of Fractal Dimensions of Sets and Measures

First we recall the definitions of the Hausdorff- box- and packing dimensions. For a
detailed discussion about their properties see Falconer’s book [11].

Definition 13.2.1

(1) Hausdorff measure and dimension. For + > 0 we define the 7-dimensional

Hausdorff measure:
o0 o0
H’(A):ali_%{inf{;Mkl’:ACLJlAk; |A;] <8”, (13.2.1)
= 1=

where | A| denotes the diameter of the set A. Then

dimy A :=inf{t:'7’(’(A) =0} = sup{t:?—(’(A) = oo}



13 Dimension Estimates for C! Iterated Function Systems and C' Repellers, a Survey 423

(2) Box dimension. Let E C RY, E # 0, bounded and let Ng(E) be the number of
8-mesh cubes that intersect E. Then the lower and upper box dimensions of E
are

log Ns(E log Ns(E
0g No ), dimp(E) := lim sup 0g Na( ).

dimg (E) := liminf
img (£) 1?361 —logé r—0 —logéd

(13.2.2)

If the limit exists then we call it the box dimension of E and we denote it by
dimB E.

(3) Packing measure and dimension. For § > 0 and E C R? we say that a finite
or countable collection of disjoint balls { B;}; of radii at most § and with centers
in E is a 8-packing of E C R?. Then for any s > 0 and § > 0 we define

o0
P5(E) := sup !Z |B;|* : {B;} is a § -packing of E }
i=1

Since Py(E) = ;in}) P35 (E) is NOT countably sub-additive, we need one more
—

step to get the s-dimensional packing measure:

(o) o0
PS(E) := inf:Z@g(E,») Ecl E,»} .
i=1 i=1
Feng, Hua and Wen [17] proved that for a compact set E C R?, if PHE) < 00
then Py (E) = P°(E). The packing dimension of the set E is

dimp(E) := inf {s : #*(E) = 0}
= sup {s : P*(E) = o0}.
Alternatively, we can define the packing dimension (see [11]) as
o
dimp(E) = inf { supdimpE; : E C | Ei {.
i i=1
It is well known (see [11]) that

dimy(E) < dimp(E) < dimpE.
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Definition 13.2.2 (Lower and Upper Hausdorff and Packing Dimensions of a
Measure) Let 1 be a Borel probability measure on RY.

dimyu := inf {dimy A : (A) > 0}, dimpu := inf {dimg A : (A) = 0},
dimpy := inf {dimp A : 1(A) > 0}, dimpu := inf {dimp A : u(A°) = 0}.
If we want to estimate these dimensions, we often use their equivalent definitions in

terms of the local densities of the measure.

Definition 13.2.3 Let 1 be a Borel measure on a metric space X. Then the lower
and upper local dimensions of ¢ at x € X are:

log u(B(x,
d(u. x) = lim inf 2EHBE 1) (13.2.3)
n—00 logr

and

1 B
d(w, x) := lim sup og (x,r)).

(13.2.4)
n—00 logr

We say that the measure p is exact dimensional if for p-almost all x the limit

o logu(B(x,r) s . .
lrlig Jogr exists and equals to a constant. This constant is denoted by d (i).
0

Let A C R? for an integer d > 1. We write M(A) for the collection of Borel
measures [

» whose support spt(i) C A and
e spt(u) is compact and
e 0< u(A) < oo.

For a proof of the following lemma see [20, p. 234]. O
Lemma 13.2.1 Let i € M(R?). Then

dimyp = essinfy~,d(p, x), dimgp = esssupxwud(,u, X) (13.2.5)

dimpp = essinfy~,d(u, x), dimpu = esssupxwﬂd(u, X). (13.2.6)

13.2.2 Singular Value Function

To study the dimension theory of non-conformal Iterated Function Systems, Fal-
coner [10] introduced the singular value functions. Let A be a d x d non-singular
matrix. The positive square roots of the eigenvalues of A” A are the singular values
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of the matrix A. We number the singular values in decreasing order: «1(A) >
a2(A) > - > ag(A) > 0. Clearly, a1 (A) = [|A| and ag(A) = ||[A~"||"". The
singular value function ¢’ (A) is defined for all > 0 by

o' (4) = | U (DA, ¢ < ds

= 13.2.7
det(A)/4, t>d. ( )

Assume that ||A|| < 1. Then it is easy to see that r +—> ¢'(A) is a continuous
and strictly decreasing function. Moreover, it is sub-multiplicative (see [10, Lemma
2.1]). Namely, for any d x d matrices A, B we have

¢*(A-B) < ¢*(A) - ¢°(B). (13.2.8)

13.3 Iterated Function Systems

First we introduce the most frequently used notation related to the iterated function
systems then we mention some tools and results of their dimension theory.

13.3.1 The Basic Notations Related to the IFSs

In general, a finite family F = {f; : Z > Z }le of strict contractions of a complete
metric space Z is called an Iterated Function System (IFS). Hutchinson [21] showed
that there exists a unique non-empty compact set A satisfying

14
A= Uf,-(A) = U fi(A). (13.3.1)
i=1

iel[e]

We say that A is the attractor of the IFS ¥ since for every z € Z the limit
lim f;, ., (2) exists and is contained in A for every infinite sequence (i1, i2, ...)
n—o0

such that iy € [£] for all k, where we used the shorthand notation
[E] = {1a7£} and ﬁl---in = ﬁlo...o‘fi”l'

The sets A; = { f,-(A)}f:1 are called cylinder or one-cylinders. In general the n-
fold iterations of the elements of ¥ applied on A are the n-cylinders { fi (A)}; -
We say that the cylinders are well separated if either

* the cylinders are disjoint (then we say that the Strong Separation Property (SSP)
holds) or
* there exists a non-empty bounded open set V such that
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() fi(v)yc Vdoralli € [¢] and
(2) fi(v)N f;(V) =@ forall distinct i, j € [£].

In this case we say that the Open Set Condition (OSC) holds.

The points of the attractor A are coded by elements of the symbolic space i =
(i1, 02, ...) € ¥ := [£]". Namely we frequently use the natural projection

M:T—> A, 06 := lim fi @), (13.3.2)

for an arbitrary z € Z. The natural projection is continuous (actually Holder
continuous) in the usual topology on X. This topology is generated by the metric

dist(i, j) := ¢~ NIl (13.3.3)

where |i A j| is the length of the commons prefix i A j of the distincti,j € X.
We write o for the left-shift on X. For an elementi = (i1,i3,...) € X we write
il, := (@1,...,ip) and forw € X, := [£]" we set [w] := {i € X :i|, = ®}. In this
note we mostly consider the case when the complete metric space mentioned above
is RY.

Definition 13.3.1 Let ¥ = { f,-}f: | be an IFS. We say that

(1) Fis a self-similar IFS (self-affine IFS) if for all i € [£] the mapping f; is a
contracting similitude (affine mapping), respectively.

(2) Fis a self-conformal IFS on a compact set Z C R4 if there exists a bounded
open convex set V D Z such that for all i € [{]

a. fi(Z2) C Z,

b. f; extends to an injective conformal mapping f; : V — V. This means that
the differential f/(z) : R? — R is a similarity mapping for all z € V,
c. I fI= suplf <L

d. The dlfferentlals are Holder continuous. That is, there exist L, 8 such that
)= ffI<L-|x— y|#,  forallx,ye V. (13.3.4)

We remark that (iv) follows from conformality and injectivity ifd > 2. O

(3) Lety > 1. Wesay that ¥ is a C¥ IFS on a compact set Z C RY
if there is an open set U D Z such that for every i € [£] := {1,..., ¢}, the
mapping f; extends to a contracting C? diffeomorphism f; : U — fi(U). In
this case we write & (F) and ¢ () for the minimal and maximal contraction rates
on Z. That is

= i D, fi) < Dy, fi) =: 1.
0<&&) ze?}gluad( fi) < welgé})émal( wfi) =:¢(F) <
(13.3.5)
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13.3.2 The Basics of the Dimension Theory of Self-Conformal
IFSs

For a very detailed treatment of the dimension theory of conformal IFS see [20].
First we would like to guess what should be the Hausdorff dimension of the attractor
A of a self-conformal IFS ¥ which satisfies the OSC.

The most natural cover of the attractor A is the cover by n-cylinders
{fw(M)}pepepr- For this cover the sum that appears in the definition (13.2.1) of
the z-dimensional Hausdorff measure (for any z > 0)is Y |fu(A)|". Since we

we[L]"
would like to obtain a heuristic and sensible guess for the H[a]usdorff dimension of
A, we assume that this cover is not only the most natural but also the most economic
covering system in the sense of minimizing the sum that appears in the definition of
the ¢#-dimensional Hausdorff measure. Then we should understand the exponential

growth rate (in n, for a fixed ¢) of the sum Y |f,(A)|". To do so, we recall that
well]"

for a self-conformal IFS the so-called Bounded Distortion Property (BDP) (see [16,

Proposition 20.1]) holds. That is, there exists C; > 1 such that

| fo(A)]

Cfl < ,
I foll

< Cy foralln > 1and w € [£]". (13.3.6)

This implies that the sum of the 7-th power of the diameter of the elements of the
most natural cover satisfies:

. 2{{;] | fo (M)
-1 we[Ll]" t
(C1 ) < % ol <l (13.3.7)
well]?

So, for a fixed # > 0 the exponential growth rates (in n) of the sums Y | fo(A)|’

well]"
and ) |IfLII" are the same. We call this common exponential growth rate the
we[l]?
pressure function P : [0, c0) — R,
. 1 !t
P() := lim log PRTAE (13.3.8)

weL]?

It can be proved that the pressure function is convex and strictly decreasing, P (0) =
log¢ > 0 and P(d) < 0 (since we assumed that the OSC holds). In this way the
pressure function P(-) has a unique zero

fo ;= P71(0).
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It is easy to see that for r < fp and ¢ > 79 the sum Y |fy (A)|" tends to infinity
well)

and zero respectively. That is, by the definition of the Hausdorff dimension, the zero

of the pressure function f, is the best heuristic guess for dimy A. In fact it follows

form the argument above that dimyg A < fp and even H(A) < oo always holds.

Theorem 13.3.1 ([4, 15, 18, 19]) Let A be the attractor of a self-conformal IFS F
and let P(-) be the pressure function defined in (13.3.8). As above we write ty for
the zero of the pressure function. That is, to = P~1(0).

(1) If the OSC holds then dimyg A = t.
(2) We have H°(A) > 0 if and only if the OSC holds.
(3) dimH A= dimB A= dimp A.
O

Part (a) of the theorem follows from the work of Bowen [4] and Ruelle [15] and part
(b) is due to Peres, Rams, Simon and Solomyak [18] and a second proof was given
by Lau, Rao and Ye [34]. Part (c) was proved by Falconer [19].

Now we consider the special case when the self-conformal IFS is even self-
similar. That is, ¥ = { f,'}f:1 and f; are similitudes with contraction ratio r; < 1. In
this case the sum of the definition of the pressure function is

Z n
3 ||fo’,||f=(2r,-’> :
well]" i=1

So, the pressure function in the self-similar case is P(f) = log (Z rl.’). Hence the
i=1
zero of the pressure function is the solution s of the equation

dor=1. (13.3.9)

This s is called the similarity dimension of the self-similar IFS F.

13.3.3 Self-Affine IFSs

Recently there has been a very intense development in the theory of self-affine IFSs.
Here we mention only the most basic classical method (which is called Falconer’s
cutting up ellipses method). This method yields a natural upper bound on the
Hausdorff dimension of the self-affine attractor. As a result of Barany, Hochman,
Rapaport and Hochman, Rapaport, it turned out that at least on the plane, this upper
bound is actually the Hausdorff dimension of the self-affine set under some mild
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conditions. See [31] and [32]. Let A; be d x d non-singular matrices with ||A;] < 1
andt; € RY fori = 1, ..., m. Then the following IFS is self-affine:

Fi={filx) =A;i -x+4}iL;. (13.3.10)

We want to estimate the dimension of the attractor A of the IFS #.
For simplicity we assume here that f; ([0, l]d) C [0, l]d for all i. After n
iterations we have m” (not necessarily different) cylinders:

fir oo £, (10,119
{ |

ioninel{l.m)®

Itis difficult to understand their relative positions, in the general case. So, in general,
we cover each cylinders individually. In our case a cylinder is a parallelepiped
fiyo---o fi ([0, l]d). Falconer [10] introduced the most natural covering system
for these cylinders. For simplicity assume that d = 3 and for a moment we also
assume that f;, o---o f;, ([0, 1]9) are boxes like in Fig. 13.1.

In this special case the figure shows that there are potentially three different
natural ways to cover the cylinder with cubes: we can cover by one cube of the

longest side (1) or by Z; cubes of side «p or by g; . Z; cubes of side a3.

The contribution of the cylinder f;, o--- o f;, ([0, 11%) to the covering sum in
the definition of the Hausdorff dimension is

. . . _ — oy
O, ... i) = mina; - ol = ~-~<x[t]aft]ﬂ = 1] a1
Y1)+1
(13.3.11)
m+1=1
m+1=2 m+1=3
a1 o
a9 Qg
Qa3 : @3
t—1
04?1 1o

Fig. 13.1 The most economic covering systems
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where oy = ar(A; ---A;,) is the k-th largest singular value of the matrix
Aj, ---A;,. This is why Falconer defined the singular value function by the
formula (13.2.7).
Letn > 1 and w = (w1,...,w,) € [£]". We consider the matrix A, :=
Ay, -+ - Ay, Like in the conformal case the best guess for the Hausdorff dimension
of the attractor is the zero of the sub-additive pressure function P : [0, o0) — R

R H 1 t
P(t) := lim log > ¢'(Aw) |- (13.3.12)

|w|=n

As in the conformal case, the function P(¢) is strictly decreasing and continuous
(see [22]). It has a unique zero P~1(0) which is called the affinity dimension of the
attractor. Similarly, as in the conformal case we have dimyg A < p-l (0). However,
in this non-conformal situation the box and Hausdorff dimensions of the attractor
can be different.

13.4 Some Elements of Thermodynamical Formalism

Assume that either both U = {U;};c; and V = {V;} jey are covers of a set X (that
is X = Ui = U V;) or both U and °V are partitions of X.
iel jeJ
e We say that V is finer than U, (U < V) if every element of V is contained in an
element of U.
e The joint refinement U v V: If U and V are both covers of X then U v V is
the cover of X the sets by {U,- nv; }iel,jeJ‘ If U and V are both partitions of X

then U v V is a partition of X with classes {U; N V;},_, jer O

In this and in the following subsections we always assume that (X, p) is a compact
metric space and 7 : X — X is a continuous transformation and we say that
(X, T) is a topological dynamical system. We write 8(X) for the Borel o-algebra
of X and M(X, T) for the set of all T-invariant Borel probability measures. That is
w(H) = M(T’IH) for all H € B(X) if u is an invariant measure. Moreover, we
denote by E(X, T') the set of invariant and ergodic measures. That is

EX,T) := {u e MX,T): (A eBX)&T 1 (A) = A) = u(A) € {0, 1}] .

In this note one of the most important examples of topological dynamical systems
is as follows:

Example 13.1 (Sylyshift) Let £ > 2 and © := [¢]V endowed with the metric
dist(i,j) == ¢Wlando : & — X, 001,i2,...) := (i2,03,...). Let X C ¥
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be compact and 0 X C X. Clearly, (X, o) is a topological dynamical system which
is called subshift. In this case for n > 1 we set

X = {il, ;i€ X}. (13.4.1)

In particular, if there is a matrix A = (a(i, j))f j=1 such that for every i =
(i1,12,...) € X we have

i € X if and anly if a (i, ix4+1) = 1 holds forall k > 1,

then we say that X is a subshift of finite type or topological Markov chain and we
write X = X4 and

San={we(l,....0}" i€y, i, =w}. (13.4.2)

13.4.1 Measure Theoretical and Topological Entropy

Definition 13.4.1 Let (X, T') be a topological dynamical system.
(1) The measure theoretic entropy of T with respect to u € M(X, T) is defined by

hu(T) = suphy (T, A)  where  hy (T, A) = lim_ H (\/T ’ﬂ)
A

and the supremum above is taken over all finite partitions A (which consists of

Borel sets) of X, and the entropy of a partition U = {Uj, ..., U,} is defined by
n

Hu(U) == — Y u(Us) log u(Up).

k=1
(2) Let B be an open cover of X. By compactness of X we can select a finite

subcover of B. The number of sets in such a minimal subcover is denoted
by N(B). We define the entropy of 8 by H(B) := log N(8). The topological
entropy of T is

1 n—1
hiop(T) : _sgpnll)nolo H(\/T cx)

0

where o ranges over all finite open covers of X. O

One can find very nice and detailed treatments of the measure theoretical and the
topological entropies in the books [13, 20] and [25]. We just mention here four
important properties. Their proofs can be found in [20, Theorem 3.4.1, Theorem
3.5.6] and [35] respectively.



432 D.-J. Feng and K. Simon

Theorem 13.4.1 Let (X, T) be a topological dynamical system. Then we have

(1) fork > 1 and p € M(X,T) we have h,(T*) = kh,(T) and hyop(T*) =
khiop(T).
(2) The Variational Principle holds:

hiop(T) = sup {hﬂ(T) u e M(X, T)} .

(3) If T is expansive (like in the case of the subshifts, see Definition 13.5.1) then
the function M(X, T) > u v+ h,(T) is upper semi-continuous.

(4) Let (X;, T;) be topological dynamical systems fori = 1, 2. Suppose w : X1 —
X7 is a continuous surjection such that the following diagram commutes:

T
X1 —— X,

X, —— Xo
)

Then

a. w.: M(X1, ) = M(X2, T») (defined by i — o =) is surjective.

b. If sup #7171 (y) < oo then
yeXo

hu(T1) = hyor-1(T2)

foreach u € M(X1, T1). |

13.4.2 Topological Pressure

The topological pressure was introduced by Ruelle [23] and studied in the general
case by Walters [24]. However, below we follow Przytycki, Urbanski’s book [20,
Section 3]. Let C(X, R) be the space of the real valued continuous functions on the
compact metric space (X, p) and let T : X — X be a continuous transformation.
For a ¢ € C(X, R) we define the topological pressure P (T, ¢) below. To do so, first
we consider covers of the compact metric space (X, p).

Definition 13.4.2 Let U be a finite open cover of the compact metric space (X, p)
andlet¢p € C(X,R). Foreveryn > 1,x € X and foraset Y C X we write

n—1 n—1
Spp(x) := Z¢ oT*(x) and S,¢(Y) := sup Z¢ oT*¥(x):xevY}.
k=0 k=0

(13.4.3)
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Then for every n > 1 we write
U =UvT'Uv...vr'—"u. (13.4.4)

Finally, we define the partition function

Z,(T, ¢, U) := inf: Z exp S,¢ (V) : Vis a subcover of‘Ll"} . (13.4.5)
VeV

Then the following limit exists (see [20, Lemma 3.2.1])
1
P(T,¢,U) = lim logZ,(T,¢p,U) (13.4.6)
n—-oon

Definition 13.4.3 (Topological Pressure) Let {7{,}>°, be a sequence of open
finite covers of the compact metric space (X, p) satisfying lim diam(U,) = 0,
n—o00

where diam(U,) := max {|U| : U € U,}. Then the following limit exists (see [20,
Lemma 3.2.4]) and we call it topological pressure

P(T.¢) = lim P(T, ¢, Up). (13.4.7)

The topological pressure does not depend on which equivalent metric we choose.
An alternative definition of the topological pressure is as follows:

Definition 13.4.4 We say that E C X is an (n, ¢)-separated set if for every
distinct x, y € E we have

pux.y) = max p(T').T'0) 2 e (13.438)

Then [20, Theorem 3.3.2] asserts that

Theorem 13.4.2 Let (X, T) be a topological dynamical system and let ¢ €
C(X,R). Let E,(¢) be an arbitrary (n, €)-separated set in X for every ¢ > 0 and
n=>1.Then

1
P(T,¢) = lim limsup log Z exp S (x)
620 noeo - S8 (&)
(13.4.9)

1
= lim liminf ~ log Z exp S (x)

e—>0 n—>o0 n
xeE,(e)

For various important properties of the topological pressure see [20, Section 3]
and [13, Section 9].



434 D.-J. Feng and K. Simon

Lemma 13.4.1 ([13, Theorem 9.7]) Let (X, T) be a topological dynamical system,
f, g € C(X,R). Then we have

(1) P(T,0) = hiop(T).

(2) f = gimplies P(T, f) < P(T, g).

(3) P(T,-) is either finite valued or constantly co.

4) If P(T,) <oothen |P(T, f)— P(T, &) = If -zl

5) If P(T, ) < oothen P(T, ") is convex.

6) P(T, f+g) <P, )+ P(T,g).

(7) P(T,c- f)<cP(T, f)ifc=land P(T,c- f) > cP(T, f)ifc <1. O

Finally, we state the very important Variational Principle for the topological
pressure:

Theorem 13.4.3 Let (X, T) be a topological dynamical system and ¢ € C(X, R).
Then

P(T, ¢) = sup {hﬂ(r) +/¢du e M(X, T)} . (13.4.10)

The measures for which the supremum in (13.4.10) is attained are called
equilibrium states for the transformation 7 and the
function ¢.

Theorem 13.4.4 ([20, Theorem 3.5.6]) Ler (X, T) be a topological dynamical
system and ¢ € C(X,R). If the function M(X,T) > w +— h,(T) is upper semi-
continuous (this holds for expansive transformations, in particular for subshifts)
then there exists an equilibrium state. O

13.5 General Distance-Expanding Open Mappings on a
Compact Metric Space

Expanding mappings on a repeller are special cases of distance-expanding open
mappings on a compact metric space. So, we start with the more general theory
first. Here we follow the book [20, Sections 4,5].

Definition 13.5.1 Let (X, p) be a compact metric space andlet 7 : X — X bea
continuous transformation. We say that (X, T') is a topological dynamical
system. Moreover, we say that (X, T) is

(1) distance-expanding if there exists n > 0 such that
pGr,y) <201 = p(T(X), T() = hp(x,y),¥x, y € A, (13.5.1)

for some A > 1.
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(2) expansive (see [20, Section 3.5]) if
38 > O such that (o (T"(x), T"(y)) <8, ¥n > 0) = x =y (13.5.2)

Such a § > 0 is called the expansive constant of T. |

If X is a subshift then the left-shift o is an expansive transformation with expansive
constant 8§ = ¢~

All distance-expanding transformations are expansive (see [20, Theorem 4.1.1]).
On the other hand, expansive mappings are distance-expanding in some compatible
metric (see [20, Section 4.6]). According to [20, Proposition 3.5.8], in the expansive
case we have

Lemma 13.5.1 If (X, T) is expansive with expansive constant § and diam(U) < §
then

P(T,¢)=P(T,¢,U). (13.5.3)
Using this, the topological pressure in the case of subshifts can be presented in the
following simpler form:

Example 13.2 Let X C ¥ := [£]V be a subshift (see Example 13.1) and ¢ €
C(X,R). Then we have

1
P(o,¢) = nlgrolo " log Z exp sup S,¢(), (13.5.4)

wex: iclwlnX

where X' was defined in (13.4.1). This implies that the pressure function P(t)
in (13.3.8) satisfies

P(t) = P(o,tp()) for (i) :=log| f; (TI(aD)I.

Let (X, T) be a distance-expanding topological dynamical system as in Defini-
tion 13.5.1. Then according to [20, Lemma 4.1.2] there exists £ > 0 such that

T(B(x,n) D B(T(x),&), VxeX, (13.5.5)

where 1 was defined in (13.5.1). Hence we obtain that the definitions below make
sense.

Definition 13.5.2 (Local Inverses) Let (X, T) be a distance-expanding, open topo-
logical dynamical system. For every x € X, we can define the local inverse T;l :
B(T(x),&) - B(x,n) of T as T71|B(T(x),g). Moreover, for every x € X, n > 1
and j € {0, 1,...,n — 1} we write x; := T/ (x). Then by Przytycki and Urbanski
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[20, Lemma 4.1.4] the composition TXBI o T;ll 0...0 TXZEI :B(T"(x),&) > X is
well defined and we set

T =Ty 0T ool 1. (13.5.6)
We have
T"A)= |J 7,74, VyeXandAcCB(.%). (13.5.7)
xeT=1(y)

13.5.1 Markov Partition for Distance Expanding Maps

As in [20, Definition 4.5.1] we set

Definition 13.5.3 (Markov Partition) Let (X, T) be a distance-expanding open
mapping on a compact space X as in part (i) of Definition 13.5.1. A finite cover
R = {R1,..., Ry} of X is said to be a Markov partition of the space X for the
mapping 7 if diam(R) < min{zn, £} and the following conditions are satisfied.

(1) Ry =IntR; foralli =1,2,..., M.
(2) IntR; NIntR; =P foralli # j.
@) IntR; NT (IntR;) #¥ = R; C T (R;) foralli,j=1,2,..., M. O

The following theorem will be essential for us:

Theorem 13.5.1 ([20, Theorem 4.5.2]) Let (X, T') be as in Definition 13.5.3. Then
there is a Markov partition for X of arbitrarily small diameters. O

Every Markov partition R generates a natural coding of the elements of X. Namely,
Definition 13.5.4 Let (X,7T) and the Markov partition R be as in Defini-
tion 13.5.3.

iJj

M
(1) We say that the M x M, 0, 1-matrix AR = (aR ) X is the transition matrix
ij=

associated to the Markov partition R if

aR:{l if It T (R)NIntR; # @

n . 13.5.8
Y 0ifIntT (R)NIntR; =2 ( )

We consider the topological Markov chain (X 4%, o), where o is the left shift
on

TR = {i:(io,il,iz,...) e{l,..., M) ak,
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(2) A sequence w = (wp,...,wy—1) € {l,...,M}" is an admissible
sequence if aka’wkH = 1 forall 0 < k < n. The collection of all such
sequences is denoted by EZ,R.

3) Letw € EZR. Then the corresponding n-cylinder is defined by

Ry = {xeX:Tk(x)eRa,k, fora110§k<n}. (13.5.9)

(4) We define the natural projectionlIl: X, & — X by

G == (75 Ry) = () Ri- (13.5.10)

k=0 k=1

Recall that a function ¢ : X — R is called Holder continuous with exponent & €
(0, 1] if there exists a constant C > 0 such that |¢ (x) — ¢ (y)| < Cp(x, y)*.
Then it was proved in [20, Section 4] that

Lemma 13.5.2 Let (X, T') and the Markov partition R be as in Definition 13.5.3.
Then I1 : ¥ 4& — X is well defined and onto. Moreover,

(1) the following diagram is commutative:

o
Tr —— Zn

X —X

T (13.5.11)

(2) I : X2 — X is a Holder continuous mapping which is injective on the set

H|1'I*I(X\ U2 T~(U;3Ry))-
3) If ¢ : X — R is Holder continuous then ¢ o I1 : X 2 — R is also Holder
continuous and the pressures coincide:

P(T,¢) = P(o, ¢ oIl). (13.5.12)

(4) Let p € &E(X 4w, 0) which is positive on the non-empty open sets. Then I1
is an isomorphism between the probability spaces: (EA'R,B(EAR), /L) and
(X, B(X), poll™

Now we consider a family of very important measures, the so-called Gibbs
measures.
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13.5.2 Gibbs Measures

Definition 13.5.5 (Gibbs Measures) Let (X, p) be a compact metric space and
we assume that (X, T') is a distance-expanding, open, continuous and topologically
transitive (there is a point whose orbit is dense) topological dynamical system and
we also assume that ¢ € C(X,R) is a Holder continuous potential. We say that
a measure [ is a Gibbs measure for the potential ¢ if there exists a
constant C > 1 such that

T (B(T"(x),
ot < METETND.E) e (13.5.13)
exp (Sp¢p (x) —nP(T, ¢))
where T, " was defined in Definition 13.5.2. If u € M(X, T') then we say that p is
an invariant Gibbs measure for the potential ¢. O

We remark that the corresponding statement holds for the n-cylinders:

Corollary 13.5.1 ([20, Remark 5.1.3]) Let (X,T) and ¢ be as in Defini-
tion (13.5.5). Moreover; let @ be an invariant Gibbs measure for the potential
¢. Let R be a Markov partition of diameter smaller than &. By Theorem 13.5.1 we
can choose such Markov partitions. Then we can find C > 1 which depends on R
such that for alln > 1 and w € EZ,R

~ R ~
-1 < #(Ro) <C, forallx € Re. (13.5.14)

T exp(Sp@p(x) —n- P(T,¢)) —

It is proved in [20, Theorem 5.3.2, Corollary 5.2.13, Proposition 1.5.1 and
Lemma 5.4.12] that

Theorem 13.5.2 Let (X, T) and ¢ be as in Definition 13.5.5. Then we have:

(1) There exist a unique invariant Gibbs measure for ¢. Let us denote it by jiy.
(2) g is ergodic and g is the unique equilibrium state for T and ¢.
(3) g = pgor o M1, O

13.6 C" Repellers

We define C" expanding maps for an » > 1 and their repellers. This definition is a
special case of the one in [16, p. 197].

Definition 13.6.1 Letr > 1, U be an open subset of R and A C U be compact.
Finally, let ¢ : U — U be a C" mapping such that y : A — A. We say that ¢ is a
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C" expanding mappingon A and AisaC’-repeller of  if conditions
(a) and (b) below hold:

(a) there exists A > 1 such that ||(D,y)v| > Aljv| forall z € A, v € R?;
(b) there exists an open neighborhood V C U of A such that

A={zeV: y"()eVforalln > 0}.

If in addition condition (c) also holds then we say that A is a topologically
mixing repeller of :

(c) If W is an open set that intersects A then A C ¥"*(W) for some n > 0. |

Remark 13.1 We remark (see [16, p. 197]) that if (a) and (b) above hold then i is a
local homeomorphism. That is, there exists ro such that for every x € A the mapping
Y| B(x,ro) 15 @ homeomorphism onto its image. Hence there exist two constants b >
a > 1 such that

B (x),ar) C Y (B(x,r)) C B(¥(x),br), Vx e A, and0 <r < ry.
(13.6.1)

In particular (A, ¥) is an open and distance-expanding mapping with a constant
1 < A < X and expansive with the constant § = 275. Hence the corresponding
results of Sect. 13.5 apply. O

13.6.1 Markov Partitions and the Corresponding Symbolic
Dynamics

Definition 13.6.2 Let v/, A and the Markov partition R as in Definition 13.5.3.
Now we use the notation of Definition 13.5.4. Let R; be a sufficiently small open
neighborhood of R; as detailed in [15, Appendix 1] and [6, Section 3]. In particular
Vg, is injective and

def.

RNR 40 RNR; #Band y(R) > R; = v(R) > R; L5 af = 1.
(13.6.2)
Now we write
n ) n .
Rig...iy = [ ) ¥/ (Ri)) and Rig_i, := (| ¥/ (Ri)). (13.6.3)

j=0 j=
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Then we define the local inverses of ip Naglely, fori,j € {1,..., M} with
a?} = 1 we define the local inverse f; ; : R; — R; ;j of ¢ by
-1
fij = (‘/f|§i) I%;- (13.6.4)
Like in [6], we can define f;,._, : Ei,, — ﬁio ,,,,, i, by
. -1
(’ﬁ |§i1.---,in) = ﬁo,i] o fi[,iz O0---0 fin—l,in = fio ,,,,, [ (1365)
o0 ~
Fori € X & the set N fio.i,....in (Ri,) consists of exactly one element. This
n=0
element is denoted by I1g(i). Then
o0 o
(RO} = () fioirin Ri)) = [ Rigr.ooin- (13.6.6)
n=1 n=1

Using that ¥ (A) = A we have

i=1 n=1 wex"

M oo M
=UN U  fel(Ra)=UAaw (13.6.7)

u=1n=1wex" 4 wo=u u=1

A
O
where A1, ..., Ay are non-empty compact set satisfying:
Au= | fur(Bo). (13.6.8)
v: aﬁt,:l

Hence, I1g : ¥ 4# — A is onto and the following diagram is commutative:

o
YR — X R

A——A

v (13.6.9)
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Remark 13.2 'We remark that

(1) it follows from [26, Proposition 2.2] that there is an integer ¢ such that

card {n;el {x}} <gq, forallx e A. (13.6.10)

Ay v

n=0

(2) The mapping IT | M is injective as we noted in Part (b) of
1-[71 ( (U 8Rl)>
i=1

Remark 13.2.
(3) By the definition of the Markov partition:

z € Riy.i, = ¥*() € Ry, forallk=0,...,n. (13.6.11)

Combining this with (13.6.4) and with the Inverse Function Theorem we get

-1

2 € Rigiy = (Dyi¥)” = Dyor, fiipy, forallk=0,....n.

(13.6.12)

From this and the chain rule we get

zeRiy iy = (D) =Dy, fio i iy foralln>1.  (13.6.13)

13.6.2 Dimension of Conformal Repellers

In this subsection we always assume (as in Definition 13.6.1) that ¢ is a topologi-
cally mixing expanding mapping on the repeller A in R?. Moreover, we also always
assume here that ¥ is a conformal mapping (see Part (ii) of Definition 13.3.1). We
express this as (A, ) is a mixing CER.

Definition 13.6.3 Let (A, ¥) be a mixing CER.

(1) Fort > 0 we define the Holder continuous function ¢; : A — A by
@ (x) := —1 - log [¥[|(x).
(2) Moreover, we define the geometric pressure function for ¢ > 0 by
P(t) := P(A, ¢1).

The function P (¢) is strictly decreasing from co to —oo. So, it has a unique zero
to = to(A, ). Thatis, P(tg) = 0.
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Theorem 13.6.1 ([20, Theorems 9.1.6, 9.14, Corollaries 9.1.11, 9.17]) Let
(A, ¥) be a mixing CER. As in Theorem 13.5.2 we write Ky, for the unique
invariant Gibbs measure for the potential ¢y,

(1) Then Py, is a geometric measure. This means that there exists a constant C > 1
such that

Py (Bx, 7))
< <

c! <C, Vx e A, Vre(01]. (13.6.14)

rio
Consequently,

log g, (B(x, 1))
&ty _— (13.6.15)

20 logr
(2) All dimensions are equal to ty:

dimy ptg, = dimp sy, = dimy A = dimg A =dimp A = 1. (13.6.16)

(3) The measures Ky » H" and P are mutually equivalent with bounded Radon-
Nikodym derivatives.
(4) Fora generalm € E(A, ) we have

h
dimgm = m (W) (13.6.17)
Am(¥)
where Am () == nl;ngo ,11 log |(f™) (x)|| for m-almost all x € X. |

Remark 13.3 We remark that the combination of part (b) of the previous theorem
and Theorem 13.5.2 yields that for a mixing CER the Hausdorff dimension of the
repeller is the supremum (actually the maximum) of the Hausdorff dimensions of
ergodic measures. O

The Neither Conformal Nor Affine Attractors and Repellers

13.7 History of Neither Conformal Nor Affine Attractors and
Repellers

Here we give a brief account about some of the developments of the field.

(1) In 1994 Falconer [6] introduced a generalization of the usual pressure. He
called it sub-additive pressure and proved that the zero of the corresponding
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sub-additive pressure formula is an upper bound on the box-dimension of an
expanding C? repeller which satisfies the so-called 1-bunched property. This
condition means that if the expansion in a certain direction is @ > 1 then the
expansion in all directions are not stronger than a?.

(2) In 1996 Barreira [2] introduced a version of non-additive pressure (which is
equivalent to Falconer’s sub-additive pressure under some conditions (see [1,
5])). Using this, he gave upper bounds on various Cantor sets of very general
geometric constructions. Moreover, he proved that the variational principle
holds for his pressure. Barreira gave conditions under which the box and the
Hausdorff dimensions are equal.

(3) In 1997 Hu [8] extended the scope of Falconer’s theorem. Namely, he
considered expanding C> maps on the plane that leave invariant the strong
unstable foliation. Under this condition he gave effective upper bound on the
box dimension of the repeller.

(4) In 1997 Zhang [14] extended Falconer’s result to C' expanding maps and
dropped the 1-bunched property but gave upper bound only for the Hausdorff
dimension of the repeller. Even used a different notion of pressure.

(5) In 2003 Barreira [3] claimed a generalization of Falconer’s theorem (above)
but the proof was incorrect.

(6) In 2007 Manning and Simon [9] gave counter examples to the previously
mentioned Barreira’s paper and proved that if the so-called one-bunched
property does not hold then it can happen that the bounded distortion does
not hold either.

(7) In 2008 Cao et al. [5] proved a variational principle result for the sub-additive
pressure.

(8) In 2009 Ban et al. [1] proved the equivalence of some seemingly different
definitions of singularity dimension.

(9) In2017 Das and Simmons [28] proved that the supremum of the dimensions of
ergodic measures may be smaller than the Hausdorff dimension of the attractor
for a self-affine carpet in three dimension. This means that the assertion of
Remark 13.3 does not hold in the non-conformal case.

(10) In 2020 Falconer and Fraser [27] investigated the L?-dimensions of measures
on the plane for certain non-conformal attractors. O

13.7.1 The Sub-additive Topological Pressure and Lyapunov
Exponents

In the non-conformal case the most important tool is the sub-additive pressure
introduced by Falconer in [6]. It was reformulated by Zhang [14], Barreira [2].
In Cao, Feng and Huang [5] it was proved that these different formulations
yield the same non-additive pressure. First recall that the “additive” topological
pressure was defined in Definition 13.4.3 and an equivalent definition was given
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in Theorem 13.4.2. This second definition is the one along which the topological
pressure is extended to the sub-additive case. Namely, in the definition of topological
pressure in formula (13.4.9), the role of the sequence of functions {S,¢ (x)}2, is
taken by a more general sequence called subadditive valuation.

Definition 13.7.1 (Sub-additive Valuation) Let (X, T') be a topological dynami-
cal system. A sub-additive valuation on X is a sequence of continuous

functions G = (g}, satisfying
gmin(x) < gn(x) + gn(T"x), Vn,m > landx € X. (13.7.1)

Clearly the sequence {Sncﬁ(x)};io=1 satisfies (13.7.1) with equality. That is, if
gn(x) = Sp¢(x) then

gmtn(x) = gn(x) + gn(T"x), Vn,m > landx € X.

Now by replacing {S,¢(x)};2, by a sub-additive valuation in the second defini-
tion (13.4.9) of the pressure we obtain the sub-additive pressure:

Definition 13.7.2 (Sub-additive Topological Pressure) Let (X, T') be a topologi-
cal dynamical system.

(1) Forann € N, ¢ > 0 and sub-additive valuation G = {g,,} 2| we define

Py(T, X, G,¢) :=sup Z exp gn(x) : E is an (n, &)-separated set } ,
xeE

(13.7.2)

where the notation of (n, ¢)-separated set was introduced in Definition 13.4.4.
(2) Then the sub-additive topological pressure of G with respect to
T is
L 1
P(T,X,G) := lim limsup log P,(T, X, G, ¢). (13.7.3)
e—0 n

n—o00

As we mentioned above, in the special case when there is a continuous function
¢ : X — R such that g,(x) = S,¢(x) we get back the classical or traditional
topological pressure. This is why from now on we call the traditional topological
pressure additive topological pressure asopposed to the more general
sub-additive topological pressure defined above.
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Example 13.3 Tt was proved in [5, p. 649] that in the special case when we consider
a subshift (X, o) the sub-additive pressure of the sub-additive valuation G can be
presented in the form (cf. Example 13.2):

P(X,0,G) = lim llog > exp( sup gn(i)> ) (13.7.4)
n—oon

weX* ie(lw]NX

Definition 13.7.3 (Lyapunov Exponent of a Sub-additive Valuation) Let (X, T')
be a topological dynamical system and let ©# € M(X, T) then the Lyapunov
exponent of the sub-additive valuation G with respect to w is

! .1
G. () := inf / gndp = lim / gndu, (13.7.5)
n n n—-oon
where the second equality follows from subadditivity. O

We remark that the inequality G, (1) < oo always holds, although G, (1) = —o0
can happen. The following variational principle was proved in [5, Theorem 1.1]:

Theorem 13.7.1 (Cao, Feng and Huang) Let (X, T) be a topological dynamical
system such that hyop(T) < 00 and let G be a sub-additive valuation. Then

P(T,X.G) =sup{hu(T) + G(w) : p € M(X, T)}. (13.7.6)

If w € M(X, T) is a measure that achieves the supremum in (13.7.6) then we say
that i is an equilibrium measure for the valuation G. It follows
from [7, Proposition 3.5] that

Proposition 13.1 If (X, T) is a subshift then there exists at least one ergodic
equilibrium measure. O

Now we consider the two most important examples where we use the Lyapunov
exponents in this note.

Example 13.4 Lets > 0and F = {f;}_, be a C' IFS with attractor A C R (recall
the definitions from Sect. 13.3.1). Moreover,}\let ¥ := [£]". Then for every s €
[0,d] the sub-additive valuation G := {E,}Zozl corresponding
to s and Fis

2(x) :=log¢* (Drignx fuin), x €3, (13.7.7)

where IT : ¥ — A is the natural projection as defined in (13.3.2) and ¢° is the
singular value function defined in (13.2.7). It follows from the definition (13.2.7) of
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the singular value function that for an ergodic measure m € &(X, T), the Lyapunov
exponent of G is

s B ’):lg\m) + ... +’):[S’]\(m) + (s — [s])’):[S]H(m), if s <d, 13.7
g*(m)_{;(M(m)+-~-+xd(m)), its=a, (7Y
where
2i(m) := lim ! / 10g (@ (Drigny fxin)) dm(x) (13.7.9)
n—-oon

isthe i-th Lyapunov exponent of the measure mforl <i <d.We
remind the reader that «; (A) was defined in Sect. 13.2.2 as the i-th singular value of
the matrix A. m|

Example 13.5 Let A C R? be the C!-repeller of an expanding map ¢ : U — U,
where U D A is an open subset of R? like in Definition 13.6.1. Then for every s €
[0,d] the sub-additive valuation G' := {g} - corresponding
to s and (A, y)is

d

g@:=—log| [] e®D:v) o iy (13.7.10)
k=d—[s]+1

=log¢*(D,y"M™"), zeA.

Then for every s € [0, d] and ergodic measure m € &(X, T) we have

Gi(m) = A (m) + -+ + Agy(m) + (s — [sDA[g)41(m),

where foreveryi =1, ...,d,
: 1 ny—1
Ai(m) = lim log (ai((Dzw ) )) dm(z) (13.7.11)
n—-oon

1
= — lim flog ad-i+1 (D:y") dm(z).

n—oo n

Lemma 13.7.1 Let (A, ¥) be as in Example 13.5 and let R be an arbitrary Markov
partition. Using the notation of Sect. 13.6.1, for every s > 0 we introduce

G = {8}, where gi(i) :=log¢® (Drig(omi) fig. i) - (13.7.12)
Then

P(Zm.0.6) = PW.A.G). (137.13)
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Proof Using (13.6.13) and the fact that for an arbitrary z = [1g (i) we have ¢z =
[g(c"i), we get that for alli € X 4» and n > 1,

2 () =1og¢* (Drig(omi) fig...in_1in) = log ¢’ ((Dn(i)ilf")_l) = g, (T ().

(13.7.14)
Hence for all m € M(X, o)
[ mwani = [ gm@um = [ gedmme.
2R IS A
This yields that by definition
@)e(m) = (6"), (Mam), m e M(Zyr,0). (13.7.15)

By Part (iv) of Theorem 13.4.1, m +— Il.m is a surjective map from M (X, o) to
M(A, f). Moreover, the combination of Part (a) of Remark 13.2 and Part (iv) of
Theorem 13.4.1 yields that

hm(o) = hom(¥), me M(Zy=,0). (13.7.16)
Now the assertion of the lemma follows directly from the combination

of (13.7.15), (13.7.16) and the variational principle for sub-additive pressure (see
Theorem 13.7.1). Namely,

P (Y. A, G") =sup{h,(¥) + (G°), (W) : v € M(A, ¥)}
= sup {An,m (W) + (G°), (Tm) : m € M(Zyr,0)}
= sup ’hm(a) +(G)e(m) :m e M (2 4%, a)]

= P(2y%.0.G).

13.7.1.1 Zhang’s Approach to the Sub-additive Topological Pressure

Let (A, ) be as in Example 13.5. Zhang [14, p.743] defined P, : [0, d] — R by

Pu(s) := P (1/[, rllg;(x)> , (13.7.17)

where P on the right hand-side is the (additive) pressure defined in (13.4.7). Zhang
proved [14, Lemma 2] that the following limit exists

lim P, (s) = inf P,(s) =: P*(s). (13.7.18)
n—oo nezZt
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It was proved in [1, Propositions 2.1 and 2.2] that for all s € [0, d],
S * : 1 A : 1 n )
P, A, G)=P(s)=Ilim P|y, g,x)]=1lm P (w ,gn),
n—oo n n—-oon
(13.7.19)

where on the left-hand side we have the sub-additive pressure defined in (13.7.3)
and the last two P stand for the additive pressure.

13.7.2 The Singularity and the Lyapunov Dimensions

First we define the singularity dimension and Lyapunov dimension for IFSs.

13.7.2.1 The Singularity and the Lyapunov Dimensions for C! IFSs

Here we always assume that ¥ = {fi}f:1 isaC'IFSand X ¢ = := [(]Visa
subshift. For every s > 0 we define the sub-additive valuation @S asin (13.7.7). We
consider the pressure function corresponding to (X, F) by

Px.7(s) = P(X,0,G"). (13.7.20)
By the definition of the topological entropy we have

Py #(0) = hiop(X) > 0. (13.7.21)
Moreover, using (13.7.4) and (13.3.5) we obtain

Px 5(s2) — Px #(s1)
§2 — 81

log&(F) < <log¢(F) <0, forall0 <s <so.

(13.7.22)

In this way the function Px #(s) is strictly decreasing, continuous, non-negative at
zero and tends to negative infinity when s tends to infinity. Hence, Py #(s) has a
unique non-negative zero.

Definition 13.7.4 The singularity dimension of X (we denote it by
dimg X) is the unique s > 0 for which

Pxg(s) = P(X,0,G") =0. (13.7.23)
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—Gi(m) Ar(m)+Ao ém)+/\3(m)

slope= —

slope= —A1(m) slope= —Az(m)

hy(o)e---- ;
// dilm;L m ‘
S
1 2 3
Fig. 13.2 The connection between Lyapunov dimension, entropy and the function s > —G5 (m)
whend =3

Definition 13.7.5 Let ¥ = { f,-}f:1 be a C' IFS. For every s > 0 we define the sub-
additive valuation G* as in (13.7.7). Moreover, let m € &(X, o). The Lyapunov
dimension of m with respect to ¥ is denoted by dimpm and is
defined (see Fig. 13.2 ) as the unique non-negative s satisfying

hn (o) + G (m) = 0. (13.7.24)

Such an s clearly exists since by definition, the function s —@; (m) is continuous
and increases from zero to infinity. If — @1 (m)y+--- ~|—'):d (m)) > hm(o) then we
can present the Lyapunov dimension in a form which may be more familiar for some
of the readers:

hi (o) + A1 (m) + - - - + Ag (m)

dimpm =k + ~
—Ak+1(m)

, (13.7.25)

where
k= max |i : =Gk (m) + -+ X (m) < hm(o)}.

By assumption, k < d.
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13.7.2.2 The Singularity and the Lyapunov Dimensions for C! Repellers

Let (A, ¥) and G° be defined as in Example 13.5. It was proved in [1, Theorem
2.4] that the function s — P (X, o, G°) is continuous and strictly decreasing, takes
positive value at 0 and strictly negative value at d. Hence this function has a unique
non-negative zero.

Definition 13.7.6 The singularity dimension of A with respect
to ¢ (denoted by dims+ A) is the unique non-negative zero of the function s
P(X,0,G").

Similarly to the IFS case we can define the Lyapunov dimension for the ergodic
measures of a C!-repeller:

Definition 13.7.7 Let m € &(A, ¢). Then the Lyapunov dimension of
m with respect to ¢ (denoted by dimp+m) is the unique non-negative s
satisfying

hm(o) + G, (m) = 0. (13.7.26)

13.8 Falconer’s Bounded Distortion Result and
Box-Dimension Estimates

Falconer [6] considered repellers satisfying the following assumptions:
Assumption 13.8.1

(1) Let (A, ¥) be a mixing c? repeller on R4,

(2) The one-bunched property holds:

H(Dxf)_IHZ D fll <1, VxeA. (13.8.1)

Then Falconer proved that

Theorem 13.8.2 ([6, Theorem 5.3 (a)]) Assume that (A, ) is a repeller satisfying
Assumption 13.8.1. Then

(1) dimgA < dimg= A.
(2) Moreover, the equality holds if A contains a non-differentiable arc. O

The proof of part (a) of this theorem contains many essential properties of the
repeller which will play an important role later. Therefore we elaborate on the steps
of this proof. The heart o