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1 Introduction

Unlike traditional unidimensional science standards, the Next Generation Science
Standards (NGSS; NGSS Lead States, 2013) emphasize three distinct dimensions:
Disciplinary Core Ideas (DCIs), Science and Engineering Practices (SEPs), and
Crosscutting Concepts (CCCs). These dimensions are combined to form perfor-
mance expectations that reflect the inherent complexity in scientific understanding
and reasoning. The complexity of the standards and the new task types they require
poses significant challenges for psychometric modeling (Gorin & Mislevy, 2013).

The explicit dimensionality in the construct as defined by the NGSS impacts the
choice of measurement models for an NGSS assessment. Meanwhile, to measure
the NGSS, performance tasks are designed to elicit responses that are more aligned
with the targeted reasoning and higher cognitive skills. These tasks often include
contextualized and multidimensional items to measure real-world problem-solving
skills, which may violate the assumptions of traditional psychometric models
(Martineau, 2017). The psychometric challenges introduced by the NGSS require
appropriate models to assess the dimensionality and to estimate item and person
parameters.

The goal of this study is to identify an appropriate measurement model for an
NGSS-aligned state summative science assessment. The assessment was recently
created to align to the state’s college and career ready standards for science designed
around NGSS’ three-dimensional science learning. Because of the multidimensional
nature of the assessment, the most appropriate measurement model that could
be supported by learning theories, capture the patterns within the data, and be
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feasible to use in an operational setting was investigated. The following sections
provide more details about the science assessment and its pilot administration, the
dimensionality analyses and results, and a discussion of the findings.

2 Science Pilot Overview

This study was conducted based on data from a pilot test of a new state science
assessment administered in Grade 5 and Grade 8 in Spring 2019. The assessment is
based on performance tasks, which are phenomena-based scenarios with multiple
items to elicit responses that show students’ understanding of the DCIs, SEPs,
and CCCs. The items are minimally two dimensional. A variety of technology-
enhanced item types are used that allow students to show their thinking more fully.
For example, the drag-and-drop technology-enhanced item type requires students
to drag and drop items into groups. Within each group, students can rank items by
dragging and dropping them into place.

Each grade-level pilot test had two test forms (Form A and Form B) that each
consisted of two tasks and several items. The two forms at Grade 5 had 11 and 14
items, respectively, and the two forms at Grade 8 had 17 and 18 items, respectively.
All items were scored dichotomously. The pilot test was intentionally short to reduce
the time students spent away from the classroom.

The student sample for this study was a convenience sample based on schools’
availability and willingness to participate. Table 1 presents the total number of
students who took the test by grade and form. The student sample’s demographic
information (including sex and ethnicity) presented in Table 2 suggests that the
sample had demographic characteristics similar to the state’s general student
population at these two grade levels. The differences in percentages between the
sample and the general population are all smaller than 5%. In addition, because the
two forms at each grade were randomly administered to students within the same
school, students were comparable across the forms in terms of their demographics.

Table 1 Pilot sample Number of Students
Grade Form A Form B Total number of students

5 2739 2495 5234
8 3081 2770 5851
Total 11,085
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Table 2 Demographic information: Pilot sample vs. general population of the state

Pilot sample General population

Grade 5 Grade 8 Grade 5 Grade 8
Demographic variable N % N % N % N %
Sex Female 2351 48.5 2531 48.9 11,789 48.8 11,579 48.9

Male 2501 51.5 2641 51.1 12,375 51.2 12,117 51.1
Ethn-icity AIANa 68 1.4 82 1.6 307 1.3 320 1.4

Asian 144 3.0 111 2.1 664 2.7 638 2.7
Black 181 3.7 193 3.7 1603 6.6 1654 7.0
Hispanic 899 18.5 941 18.2 4886 20.2 4660 19.7
White 3380 69.7 3674 71.0 15,666 64.8 15,513 65.5
Two or more races 169 3.5 160 3.1 1038 4.3 911 3.8

Total 4841 100.0 5161 100.0 24,164 100.0 23,696 100.0

Note: Around 10% of the students did not have demographic information available and were
excluded from Table 2. However, their responses were included in all other analyses
aAIAN: American Indian or Alaskan Native

Table 3 Study datasets

N Number of tasks Number of items Total score points

Grade 5 Form A 2739 2 11 11
Grade 5 Form B 2495 2 14 14
Grade 8 Form A 3081 2 18 18
Grade 8 Form B 2770 2 17 17

3 Dimensionality Analysis

3.1 Description of Four Datasets and Three IRT Models

Four datasets were used in the analyses, one for each form and grade. Table 3
provides the number of students who took the form, the number of tasks and items,
and the total score points for each form.

Three IRT models based on content specifications were fit to the data to
compare the model fitness and investigate the dimensionality of the assessment:
1) a unidimensional IRT model, 2) a three-dimensional IRT model, and 3) a testlet
model. Figure 1 shows a graphic illustration of each model. All the analyses were
conducted using the R mirt package (Chalmers, 2012).

3.2 Unidimensional IRT Model (Model 1)

First, unidimensional models were applied to fit the data. Three unidimensional
models were examined to determine the best fit: Rasch one-parameter logistic (1PL;
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Fig. 1 Graphic illustrations of IRT Models 1, 2, and 3

Rasch, 1960), two-parameter logistic (2PL; Birnbaum, 1968), and three-parameter
logistic (3PL; Lord, 1980). The equations for each model are presented below.

P
(
Uij = 1|θj , bi

) = eθj −bi

1 + eθj −bi
(1PL)
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P
(
Uij = 1|θj , bi

) = eai(θj −bi)

1 + eai(θj −bi)
(2PL)

P
(
Uij = 1|θj , bi

) = ci + (1 − ci)
eai(θj −bi)

1 + eai(θj −bi)
(3PL)

where θ j, bi, ai and ci are the person, item difficulty, discrimination, and guessing
parameters, respectively.

To evaluate model fit, Akaike’s Information Criterion (AIC; Akaike, 1973) and
the Bayesian Information Criterion (BIC; Schwarz, 1978) were consulted. The
better-fitting model is the one with a lower AIC or BIC value. BIC penalizes model
complexity more heavily than AIC, which may result in an inconsistent model
preference. Table 4 presents the fitting results from the Rasch, 2PL, and 3PL models
for each test form. The lowest AIC and BIC values for each dataset are bolded.
Though the 3PL model fits the data best for two of the four forms as indicated by the
lowest AIC and BIC values, the model has a convergence problem for Grade 8 Form
B, and the BIC value indicates that the 2PL model fit better than the 3PL model for
the dataset from Grade 5 Form A. Lack of convergence is an indication that the data
do not fit the model well because there are too many poorly fitting observations.
The 2PL model generally fits much better than the 1PL model. Though it fits the
data slightly worse than the 3PL model in some cases, it does not have the same
convergence problem as the 3PL model. Thus, a 2PL model was preferred and was
selected as Model 1 for the study analyses.

3.3 Three-Dimensional IRT Model (Model 2)

Second, a three-dimensional IRT model (Model 2) was applied to fit the data. This
model assumes the underlying domains as DCIs, SEPs, and CCCs. This three-

Table 4 Model-fit comparison between unidimensional 1PL, 2PL, and 3PL models

Form A Form B

Grade Model AIC BIC AIC BIC
5 Rasch 1PL 23265.85 23337.02 38991.28 39078.74

2PL 23152.84 23283.33 38504.10 38667.36
3PL 23136.74 23332.48 38327.11 38572.01

8 Rasch 1PL 55042.77 55157.40 51828.75 51935.45
2PL 53889.39 54106.58 50425.67 50627.22
3PL 53341.93 53667.72 NAa NAa

Note: The highlighted data indicate the best-fit model
aNA indicates that the model did not converge
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dimensional model is the multidimensional extension of the 2PL model (Reckase,
2009). The form of the model is given by

P
(
Uij = 1|θj , ai, di

) = e
aiθ

′
j +di

1 + e
aiθ

′
j +di

where a is a 1 × m vector of item discrimination parameters and θ is a 1 × m vector
of person coordinates with m indicating the number of dimensions in the coordinate
space (i.e., m is 3 in this case). The intercept term, d, is a scalar. The exponent of
e in this model can be expanded to show how the elements of the a and θ vectors
interact.

aiθ
′
j + di = ai1θj1 + ai2θj2 + · · · + aimθjm + di

The latent traits of this three-dimensional model were set to be correlated because
students’ abilities in these dimensions are expected to be related to some extent. The
empirical results also suggest that the model fits the data better when the latent traits
are set to be correlated.

3.4 Testlet Model (Model 3)

A 2PL testlet model (Bradlow et al., 1999) was also applied to fit the data.
Because the pilot test was composed of testlet-based items, which may violate
the local independence assumption of IRT models, a testlet model was applied to
the data to examine the testlet effect. The testlet model assumes a single primary
dimension (i.e., general knowledge and abilities in science) and several uncorrelated
specific dimensions according to testlets (i.e., tasks) after accounting for the primary
dimension. For a testlet model, an item’s slope for the specific dimension is
constrained to equal the item’s slope for the general dimension (Cai, 2010). The
2PL testlet model is given as

Pj (θi) = 1

1 + e−aj (θi−bj −γid(j))′

where pj(θ i) is the probability of a correct response to item j for examinee i, θ i
is examinee i’s latent ability, aj and bj are the item discrimination and difficulty
parameters, and γ id(j) is a person-specific testlet effect that is assumed to follow a
distribution N(0, σ2γid(j)).
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Table 5 Model-fit comparison between Models 1, 2, and 3

Form A Form B

Grade Model description Model # AIC BIC AIC BIC
5 Unidimensional 1 23152.8 23283.3 38504.1 38667.4

3D (SEP, CCC, DCI) 2 23074.4 23317.6 38206.9 38481.0
Testlet model 3 23127.6 23269.9 38464.3 38639.3

8 Unidimensional 1 53889.4 54106.6 50425.7 50627.2
3D (SEP, CCC, DCI) 2 53147.3 53521.4 49821.7 50159.6
Testlet model 3 53479.6 53708.8 50399.7 50613.1

3.5 IRT Model-Fit Comparisons

Model fit among Models 1, 2, and 3 was compared. Each model was applied to the
four datasets. Table 5 presents the model-fit comparison results for all four datasets.
The lowest AIC and BIC statistics are bolded. All the AIC and BIC statistics suggest
that Model 2 fits the data best with the exception of the BIC statistics for Grade 5
FormA. Overall, Model 2 (three-dimensional IRTmodel) provides the best fit across
all four datasets.

3.6 Item Fit Statistics

Overall, the three-dimensional IRT model (Model 2) fit the data better than the
other two models. To further examine the fitness of the three-dimensional model,
the chi-squared-based item-level fit index (S-X2; Orlando & Thissen, 2000, 2003)
was evaluated to see if the model fits the data well at the individual item level. Item
fit statistics from the 2PL unidimensional model were used as a baseline for the
comparison. The results from the chi-square-based item-level goodness-of-fit tests
suggest that more items have bad fit (i.e., p-value <0.05) from the three-dimensional
model than from the unidimensional model. For example, four items on Grade
8 Form B showed poor fit to the unidimensional model. However, for the three-
dimensional model, these four items and five additional items showed poor model
fit. Similar patterns were discovered for the other forms.

All four items that did not fit well to the unidimensional model were technology-
enhanced items that required students to enter a short response that is scored as
either correct or incorrect. It is possible that students rely on different abilities to
respond to these items compared to the abilities measured by the multiple-choice
items. A close look of the items by content experts is needed to identify the potential
causes of item misfit.
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3.7 Local Dependency Among Items Within a Task

Although the testlet model fits slightly better than the unidimensional model, the
extent to which the local independence assumption is violated was examined using a
popular local independence statistic, Yen’s Q3 index. Index values greater than 0.20
indicate a degree of local dependence that should be examined by test developers
(Chen & Thissen, 1997). Among the 435 item pairs across forms, only two pairs
of items had a residual correlation greater than 0.20, suggesting that local item
independence generally holds for all forms.

4 Discussion

In general, based on the pilot test data, the model fit statistics suggest that the three-
dimensional IRT model that aligns with the DCI, SEP, and CCC dimensions (Model
2) provides slightly better overall fit than the unidimensional model (Model 1) and
the testlet model (Model 3). However, the fit of the three-dimensional model at the
item level is poor. Another issue to consider for this model is that the NGSS dimen-
sions may not be conceptualized in the same manner that test score dimensionality
has been conceptualized, which may create some confusion (Martineau, 2017). The
use of the term “dimensionality” in NGSS may be better described as “complex”
performance (Dunbar et al., 1991), which involves knowledge and skills across a
number of domains or subjects.

Local independence is a fundamental assumption of unidimensional models.
Fitting a unidimensional model in the presence of local dependencies may result
in biased item parameters and standard errors of measurement (Yen, 1993). The
American Institute of Research (AIR) applied a Rasch testlet model (Wang &
Wilson, 2005) to calibrate NGSS-aligned science assessments for multiple states
(Rijmen, 2018). However, for the new science assessment used in this study, the
local independency assumption still generally holds and the testlet model only
provides slightly better fit than the unidimensional model.

It is important to note that the data used in this study were collected from a pilot
test, so the quality of some items may be low. These items may impact the model
fitness results. Students’ low motivation for the pilot test may also have affected
the quality of the data. The relatively short test length compared to a regular state
assessment limited the number of items to be administered for each dimension.
All these factors may cause the structure of the pilot data to not strongly resemble
the structure of data from operational assessments. It will be worth conducting the
dimensionality analysis again using data from the operational test to identify the
most appropriate measurement model for the assessment.

Unidimensional IRT models are widely used in testing programs. In contrast,
MIRT models are rarely implemented in any state testing program due to its
complexity. They require a large sample size to obtain accurate parameter estimates
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and take a much longer estimation time, which pose challenges in an operational
setting. The sample size of an operational test will be much larger than the sample
size of this study that used pilot data. Applying a multidimensional model will
significantly increase computation time. Implementing MIRT models in operation
will likely be a new practice for most vendors working with states. The need
for more complex measurement models needs to be further evaluated. Data from
the operational test will be collected to further evaluate the need of using MIRT
models and examine the robustness of the unidimensional model under various test
conditions in future studies.
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