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Preface

This volume represents presentations given at the 85th annual meeting of the
Psychometric Society, that due to the pandemic of covid-19 was held virtually.
This is the first IMPS meeting held only over internet and it was given during
July 14-17, 2020. There were 230 abstracts submitted (154 oral presentations, 89
posters, and 3 symposia). The virtual meeting attracted 378 participants, 54 of
whom also participated in the virtual short course pre-conference workshop. There
were three keynote presentations, three invited presentations, eight spotlight speaker
presentations, and one dissertation award presentation.

Since the 77th meeting in Lincoln, Nebraska, Springer publishes the proceedings
volume from the annual meeting of the Psychometric Society to allow presenters at
the annual meeting to spread their ideas quickly to the wider research community,
while still undergoing a thorough review process. This is especially important
now as meeting in person was difficult in 2020. The previous eight volumes of
the meetings were received successfully, and we expect these proceedings to be
successful as well.

The authors were asked to use their presentation at the meeting as the basis
of their chapters, possibly extended with new ideas or additional information.
The result is a selection of 42 stateof- the-art chapters addressing a diverse set
of psychometric topics, including but not limited to item response theory, factor
analysis, test equating, cognitive diagnostic models, response time, IRT as well as
psychometric applications within different fields.

Umeå, Västerbottens Län, Sweden Marie Wiberg

Amsterdam, The Netherlands Dylan Molenaar

Santiago, Chile Jorge González

Evanston, IL, USA Ulf Böckenholt

Madison, WI, USA Jee-Seon Kim
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A Rotation Criterion That Encourages
a Hierarchical Factor Structure

Chen Tian and Yang Liu

1 Introduction

In Yung, Thissen, and McLeod’s terminology (1999), a hierarchical factor model
may have several layers of factors: Each manifest variable loads on exactly one of
the factors in each layer. Hierarchical factor structures are common in educational
and psychological testing. For example, the big five personality traits can be divided
into many aspects, and each aspect can further be divided into facets (e.g., Allen &
DeYoung, 2017). These relationships between personality traits, aspects, facets, and
manifest variables can be represented and analyzed using the higher-order factor
model, a special case of hierarchical factor model with proportionality constraints.
Another example is the testlet effect: Both the construct and the testlet factors
contribute to the observed responses in a compensatory fashion. In addition to
explaining the correlated errors, testlets may also explicitly represent higher-order
facets within the hierarchy of interested constructs (Cooke et al., 2007).

Despite the wide-spread usage in theorizing constructs, it remains challenging to
directly obtain hierarchical structures in Exploratory Factor Analysis (EFA) since
there lacks a suitable rotation criterion. Rotation to a partially specified target
may be used, but it requires fully specifying the positions of zero loadings in the
target matrix (Browne, 1972, 2001). For circumstances where we have limited
prior knowledge on the exact pattern of factor-item dependencies, Jennrich and
Bentler (2011) discussed rotation criterions that encourage a bifactor structure
which is the simplest hierarchical model with one general factor and one layer
of specific factors. A rotation criterion function measures the discrepancy from an
exact bifactor structure, which requires each item to load on at most one specific

C. Tian (�) · Y. Liu
University of Maryland, College Park, MD, USA
e-mail: ctian1@terpmail.umd.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 C. Tian and Y. Liu

Fig. 1 Generalizing the rotation cretirion from a bi-factor structure to a hierarchical structure

factor. One example from Jennrich and Bentler (2011) is to apply the quartimin
rotation criterion to the specific factors:

∑p

i=1

∑k
r=2

∑k
s=r+1 λ

2
irλ

2
is , where λir is

the loading of item i on factor r, p is the number of items, and k is the number of
factors.

Inspired by Jennrich and Bentler’s exploratory bifactor analysis using the
quartimin rotation criterion, the goal of this study is to propose a generalized rotation
criterion for a two-layer hierarchical structures in EFA. Fig. 1 displays an example
of such a structure: The corresponding factor loading matrix is expressed as eq. (1),
in which asterisks denote non-zero loading entries, and the columns from left to
right represent Fg and F1-F6. In the sequel, we say that a higher level factor is the
parent of an adjacent lower level factor if all the items loading on the lower level
factor also load on the higher level factor, and that two lower level factors having
the same parent are sibling factors. In Fig. 1, F1 is the parent of F3 and F4, and F2
is the parent of F5 and F6.
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2 Methods

2.1 Proposed Rotation Criterion Function

The proposed rotation criterion function should first be able to encourage a simple
structure within each layer, and this can be achieved by summing up the quartimin
criterion applied to different layers. In our case with F1 and F2 in the first level, there
is only one pair to constrain, so the corresponding term is

∑p

i=1 λ
2
i1λ

2
i2. Minimizing

this non-negative term encourages either λ2i1 or λ
2
i2 in the F1-F2 pair to be close to

0. With four factors in the second level, F3-F6, there are

(
4
2

)

= 6 pairs of factors,

and the corresponding quartimin term is
∑p

i=1 λ
2
i3λ

2
i4 + λ2i3λ

2
i5 + λ2i3λ

2
i6 + λ2i4λ

2
i5 +

λ2i4λ
2
i6 + λ2i5λ

2
i6. Summing up those terms from two layers allows us to simplify the

within-layer structure simultaneously for the two layers.
The rotation criterion should also be able to constrain the between-layer rela-

tionship to avoid items being loaded on the same second-level factor but different
first-level factors. Ideally, this constraint on the parent-child relationship can be
achieved using indicator functions. In the hierarchical structure shown in eq. (1),
we consider the product of two sums for each child factor. If F3 is a child of F1, as
shown in Fig. 1 and Eq. (1), for all the items loading on F1, the sum of their squared
loadings on F3,

∑p

i=1 I
(
λ2i1 �= 0

) ·λ2i3, should be non-zero; for all the items loading
on F2, the sum of their squared loadings on F3,

∑p

i=1 I
(
λ2i2 �= 0

) · λ2i3, should be
zero. Taking the product of these two sums encourages F3 to be the child of either
F1 or F2: In other words, it penalizes the case when F3 is the child of both F1 and
F2. Similarly, we can encourage that F1 is the only parent of F4, and F2 is the only
parent of F5 and F6.

The proposed rotation criterion function designed for a two-layer binary-split
hierarchical structure can be written in the following equation:

P (Λ) =
p∑

i=1

(
λ2i1λ

2
i2 + λ2i3λ

2
i4 + λ2i3λ

2
i5 + λ2i3λ

2
i6 + λ2i4λ

2
i5 + λ2i4λ

2
i6 + λ2i5λ

2
i6

)

+
(

p∑

i=1

I
(
λ2i1 = 0

)
· λ2i3

)

×
(

p∑

i=1

I
(
λ2i2 = 0

)
· λ2i3

)

+
(

p∑

i=1

I
(
λ2i1 = 0

)
· λ2i4

)

×
(

p∑

i=1

I
(
λ2i2 = 0

)
· λ2i4

)

+
(

p∑

i=1

I
(
λ2i1 = 0

)
· λ2i5

)

×
(

p∑

i=1

I
(
λ2i2 = 0

)
· λ2i5

)

+
(

p∑

i=1

I
(
λ2i1 = 0

)
· λ2i6

)

×
(

p∑

i=1

I
(
λ2i2 = 0

)
· λ2i6

)

(2)
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The first seven terms constrain the within-layer relationship between factors
in the same level, and the others consider the parent-child relationship between
two layers of factors. As indicated by the notation, the proposed rotation criterion
assumes the position of parent and children factors in the loading matrix: The
second and third columns should be the parent factors F1 and F2, and the fourth
to seventh columns should be the child factors F3 to F6. This rotation criterion can
be generalized to cases where one parent has more than two children by adding more
terms that control the relationship between a low-level factor and all other high-level
factors. For example, if we have three first-level factors, the between-layer term
for F3 can be generalized to

(∑p

i=1 I
(
λ2i1 = 0

) · λ2i3
)× (∑p

i=1 I
(
λ2i2 = 0

) · λ2i3
)+

(∑p

i=1 I
(
λ2i1 = 0

) · λ2i3
) × (∑p

i=1 I
(
λ2i3 = 0

) · λ2i3
) + (∑p

i=1 I
(
λ2i2 = 0

) · λ2i3
) ×

(∑p

i=1 I
(
λ2i3 = 0

) · λ2i3
)
, which ensures that F3 has only one parent. It can also

be generalized beyond two layers of factors by adding another collection of terms
constraining the children-grandchildren relationship.

2.2 Computational Techniques

The non-continuous indicator function was approximated by the smooth exponential
function such that the criterion function is differentiable as required by the optimiza-
tion algorithm. The exponential function used in this simulation is y = e−αx, with
α = 1,000,000.

The Riemannian trust-region algorithm (Liu, 2020) was used to perform the
orthogonal rotation, a second-order optimization algorithm for numerical search on
the orthogonal group, i.e., the space of rotation matrices. It converges much faster
than the gradient projection algorithm (Jennrich, 2001) with fewer iterations.

As the criterion function is sensitive to starting values and may converge to local
minima, we used multiple random starts and chose the best as the final solution. It
is a common practice for rotation criterions that are sensitive to starting values (e.g.,
Kiers, 1994; Rozeboom, 1992). In this study, we used 30 random starts and pick the
solution with the minimum resulted function value from all 30 solutions.

2.3 Simulation Design

To understand the tolerance of the criterion function to the non-perfect and diverse
EFA practices, three design factors were manipulated in the simulation study:
loading matrices having (a) different numbers of rows/items; (b) magnitude of
small errors replacing zeros; and (c) equal/unequal numbers of manifest variables
among sibling factors. This study considers hierarchical structures with binary split:
The numbers of items are 16, 32, and 64. To generate a scenario that is more
realistic than the condition with exact hierarchical patterns, slight departures from
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the exact structure were generated by substituting exact zero loadings with random
variates independently sampled from Uniform [−0.05, 0.05] or Uniform [−0.1,
0.1]. The non-zero loadings were simulated from Uniform [0.3, 1]. For the third
factor involving the balancing condition of items loading on sibling factors, we
considered three levels: balanced loading matrices with 50:50 items loading on
sibling factors (balanced), unbalanced loading matrices with 35:65 items loading on
sibling factors (unbalanced 1), and unbalanced loading matrices with 20:80 items
loading on sibling factors (unbalanced 2). Note that F3 and F4 are siblings because
their parent is F1, and F3 and F5 are not siblings because they do not have the
same parent. For the unbalanced conditions, we may have non-integer numbers of
items per factor (e.g. 16×0.2=3.4), and those numbers were rounded to the closest
integers.

An initial loading matrix with an unrecognizable structure, which mimics the
result of EFA, was the matrix to be rotated using the proposed rotation criterion.
We need to make sure the initially unrecognizable matrix is finally recognizable.
Therefore, the initial matrix was created by randomly rotating the true loading
matrix. Thirty replications were done for each of the 3×3×3 conditions. The
convergence tolerance was set to 10−5. To evaluate the results, we calculate the
scaled Frobenius-norm error between the true matrix and the rotated loading matrix
averaged across 30 replications:

1√
pk

∥
∥
∥Λ̂−Λ

∥
∥
∥
F

=

√
√
√
√

∑p

i=1

∑k
j=1

(
λ̂ij − λij

)2

pk
,

(3)

where k is the total number of factors or columns in the complete loading matrix �
and p is the number of items.

3 Results

For the 30 replications of each of the 3×3×3 conditions, all the final solutions
converged, and the mean of minimized criterion function values over 30 replications
are summarized in Table 1. The results show that when the true loading matrix has
some errors, the function value will be greater than 0 because the true value itself is
greater than 0. Holding the error range and the extent of balance constant, the more
items we have, the larger the minimized function value; holding the number of items
and the error range constant, the more balanced the true loading matrix, the larger
the minimized function value.

The scaled Frobenius-norm error was summarized in Table 2 and depicted in
Fig. 2. The values in Table 2 reflect the estimated error per entry and can be seen as
the “averaged distance” between true and estimated loading matrices, considering
the size of the matrices. Table 2 shows that holding the error range and the number
of items constant, the more unbalanced the true matrix is, the larger the distances
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Table 1 The mean of minimized criterion function values over 30 replications for all conditions

Balanced (50%) Unbalanced 1 (35%) Unbalanced 2 (20%)

16 items 0 errors 0 0 0
Unif (−0.05, 0.05) 0.007 0.006 0.005
Unif (−0.1, 0.1) 0.023 0.018 0.008

32 items 0 errors 0 0 0.001
Unif (−0.05, 0.05) 0.019 0.019 0.016
Unif (−0.1, 0.1) 0.071 0.069 0.033

64 items 0 errors 0 0 0
Unif (−0.05, 0.05) 0.043 0.043 0.043
Unif (−0.1, 0.1) 0.174 0.163 0.11

Table 2 The scaled Frobenius-norm error averaged across 30 replications for all conditions

Balanced (50%) Unbalanced 1 (35%) Unbalanced 2 (20%)

16 items 0 errors 0 0 0.042
Unif (−0.05, 0.05) 0.057 0.081 0.258
Unif (−0.1, 0.1) 0.180 0.241 0.327

32 items 0 errors 0 0 0.017
Unif (−0.05, 0.05) 0.035 0.044 0.172
Unif (−0.1, 0.1) 0.114 0.223 0.335

64 items 0 errors 0 0 0
Unif (−0.05, 0.05) 0.034 0.035 0.047
Unif (−0.1, 0.1) 0.079 0.123 0.328

Fig. 2 The scaled Frobenius-norm error averaged across 30 replications for all conditions

between true and estimated loading matrix. Holding the balance extent and the
number of items constant, the larger the errors, the larger the distances. Holding
the balance extent and the error range constant, the more items we have, which
means more pieces of information, the smaller the distances are.
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4 Discussions

This proposed function is a generalization of Jennrich and Bentler’s exploratory
bifactor analysis to a two-layer hierarchical structure, which facilitates recovering
and testing of a more complicated hierarchical structure in EFA with limited prior
knowledge about item-factor dependency. Starting from an initial matrix with an
unrecognizable structure, we can find a rotation matrix such that the rotated matrix
is as close to a matrix with the hierarchical structure as possible. Our simulation
results suggest that the proposed criterion function is generally robust to realistic
scenarios when slight to moderate departures from a perfect hierarchical structure
are present and when the matrix is moderately unbalanced. We also observe that
parameter recovery is worsened by the magnitude of imperfect factor structure and
the unbalancedness while improved as the number of items increases (Fig. 2). When
the error ranges from −0.1 to 0.1, given that the meaningful loading value ranges
from 0.3 to 1, we may have a too-small signal-to-noise ratio to recover the true
hierarchical loading matrix. The negative effect of errors was intensified when we
also have a severely unbalanced true matrix.

There are some limitations of the current study. First, the proposed rotation
criterion requires us to know exactly how many factors we have at each layer
and locks the positions of factors of a specific layer. In other words, the criterion
function implicitly assumes that the general factor lies in the first column, the two
first-level factors lie in the second and third columns, and the four second-level
factors lie in the fourth to seventh columns. The problem is that, if we reorder the
columns of a loading matrix with a perfect hierarchical structure in some ways, say,
let the general factor lie in the fourth column and a second-level factor lie in the
first column, then the function value is not zero, even though the re-ordered matrix
has a perfect hierarchical structure. An ideal criterion function should always give
a zero for matrices with the perfect hierarchical structure regardless of the ordering
of columns, which is not satisfied by the current criterion function. In our numerical
experiments, we observed local minima for the simpler bifactor structure as well, but
not as severe as the two-layer structure which has more constrains to the column-
wise relationships. Second, the proposed criterion function has many local minima.
Some initial matrices may be easily rotated to a point which does not give a zero
function value, then be further distorted when forcing the function value to be zero.
Using random starts is only a heuristic solution, and more investigation is needed.
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Comparison Between Different
Estimation Methods of Factor Models
for Longitudinal Ordinal Data

Silvia Bianconcini and Silvia Cagnone

1 Introduction

In recent years, common statistical applications have dealt with multivariate longi-
tudinal data with the purpose of measuring changes in constructs over time, such as
attitudes, opinions, performances and abilities. In this context, both the multifaceted
nature of the data and the longitudinal evolution of the underlying constructs have to
be studied jointly, and Generalised Linear and Latent Variable Models (GLLVMs)
(Dunson, 2003; Cagnone et al., 2009) represent a useful framework. GLLVMs
assume that the entire set of the responses given by an individual to a certain number
of items at different occasions, called the response pattern, can be expressed as a
function of one or more latent variables and random effects through a monotone
differentiable link function.

A potential barrier to the application of these latent variable models is the
computational challenge presented by typically large datasets. Panel studies usually
have several thousands of respondents which, when combined with multiple waves
of measurement and a large choice set, renders unfeasible existing estimation
approaches (likelihood-based and Bayesian one). Even when cross-sectional models
are used, if the observed variables are of different nature, continuous and discrete,
the estimation of these models is cumbersome. It can be carried out using a full
information maximum likelihood method via either the EM algorithm or direct
maximisation, but, in both cases, the integrals involved in the likelihood compu-
tation have no analytical solutions and need to be approximated. This problem is
more evident in presence of longitudinal data since the number of latent variables
and random effects increases proportionally to the number of observed items. In
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presence of multidimensional longitudinal data, classical quadrature techniques,
such as the adaptive Gauss Hermite, that represents the gold standard in the GLLVM
framework, is already unfeasible when four items are observed at three different
time points. Alternatively, the widely applied Laplace approximation is known to
provide inaccurate estimates in presence of discrete data.

Alternative methods that can be used to produce estimators with desired statis-
tical properties and that, in addition, simplify the estimation process, are greatly
needed. The most popular method that offers reduction in estimation complexity
is the composite likelihood approach, introduced by Lindsay in 1988 (Lindsay,
1988) and further discussed, among the others, by Varin and Vidoni (2005). The
composite likelihood estimator is obtained by maximising the univariate and/or
bivariate likelihood products that contain the greatest quantity of model parameter
information. The immediate effect of the composite likelihood estimation is the
reduction of the number of integrations required in the likelihood computation.

Another approach that has been recently proposed in the literature is the
dimension-wise quadrature, developed by Bianconcini et al. (2017). It consists in
reducing the dimension of the multidimensional integrals by truncating the Taylor
series expansion of the integrand. This makes the computation feasible also when
the number of latent variables is large. The proposed approach provides a higher
order approximation than the Laplace one but does not require any derivative
computation, hence it is very simple to implement. Furthermore, the corresponding
estimators are asymptotically as accurate as the adaptive Gauss Hermite estimators.

This paper investigates the use of pairwise likelihood methods and dimension-
wise quadratures for estimating latent variable models for multivariate longitudinal
ordinal data. A simulation study is carried out to compare the performance of these
estimators under different common empirical scenarios, and their behaviour is also
highlighted through a real data example.

2 Generalized Linear Latent Variable Models
for Longitudinal Ordinal Data

Let yt1, yt2, . . . , ytp be a vector of p ordinal observed variables at time (t, t =
1, . . . , T ) each of them with cj , j = 1, . . . , p, categories, and z1, z2, . . . , zT a
latent variable that accounts for the associations among the p items at each time
point. Let u1, u2, . . . , up be p random effects that account for the associations of
the same item at different time points. We consider the Generalized Linear Latent
Variable Models (GLLVM) approach for longitudinal data that has been discussed
by Dunson (2003) for mixed observed variables, and by Cagnone et al. (2009) in
the specific case of ordinal data. According to the GLLVM approach, we define the
joint density of the observed variables as
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f (y) =
∫

Rq

g(y | z,u)h(z,u)dzdu

where g(y | z,u) is referred to as measurement part of the model and h(z,u) as
structural part of the model. The dimension of the integral depends on the number
of observed variables and the number of time points, that is q = p + T .

The measurement part of the model is defined as a generalized linear model with
random component given by

g(y|z,u) =
T∏

t=1

p∏

j=1

g(ytj |zt , uj ) = (1)

=
T∏

t=1

p∏

j=1

cj∏

r=1

(γtj (r)(zt , uj )− γtj (r−1)(zt , uj ))
ytj (r) , r = 1, . . . , c − 1

where the first equality comes from the conditional independence assumption
between items and over time. Each conditional marginal density g(ytj |zt , uj )
follows a multinomial distribution of parameter γtj (r)(zt , uj ) that is the cumulative
probability that an individual responds to item j at time t up to category r . ytj (r) is
a dummy variable that assumes value 1 up to category r .

The systematic component defines the linear predictor

ηtj (r) = τtj (r) − λtj zt − uj

where τtj (r)’s are item, time and category-dependent thresholds and λtj ’s are item
and time-dependent factor loadings. The link between the systematic component
and the conditional means of the random component distributions is ηtj (r) =
νtj (r)(γtj (r)(zt , uj )) where νtj (r) is the link function which can be any monotonic,
differentiable function. We consider the logit link function.

As for the structural part of the model, we consider the specification given
by Cagnone et al. (2009), that is we assume that the latent variables follow an
autoregressive no stationary process of first order as follows

zt = φzt−1 + δt , (2)

where φ is the autoregressive coefficient, δt ∼ N(0, 1) and z1 ∼ N(0, σ 2
1 ).

Moreover, the joint density h(z,u) ∼ N(0,�) where

� =
[

� 0
0 �

]

.

� = diagj=1,...,p{σ 2
uj } and the inverse of � has a well known special pattern whose

expression can be found in Cagnone et al. (2009).
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3 Model Estimation

Model estimation is usually performed by using a full maximum likelihood method.
Given a sample of size n, the log-likelihood is given by:

L(θ) =
n∑

i=1

log f (yi , θ) =
n∑

i=1

log
∫

Rq

g(yi | zi ,ui )h(zi ,ui )dzidui (3)

where θ is the vector of parameters to be estimated. A problem related to the
maximization of the log-likelihood is that, in general, the multidimensional integral
in (3) is not solvable analytically.

Among the remedies proposed in the literature, numerical quadrature-based
methods represent a widespread solution to this problem and, among them, the
adaptive Gauss Hermite quadrature is considered the gold standard approach
(Rabe-Hesketh et al., 2005; Schilling & Bock, 2005). Alternatively, the Laplace
approximation avoids the integral computation and represents the easiest method to
implement (Liu & Pierce, 1994; Huber et al., 2004). The adaptive Gauss Hermite
quadrature provides more accurate estimates than the Laplace approximation, but
it is computationally unfeasible as the number of latent variables and random
effects increases. To overcome these limitations, recent solutions proposed for factor
models for longitudinal ordinal data are the pairwise likelihood approach (Vasdekis
et al., 2012) and the dimension-wise quadrature method (Bianconcini et al., 2017).

3.1 Pairwise Likelihood Approach

The pairwise likelihood estimator is obtained by maximizing bivariate likelihood
products that contain the greatest quantity of model parameter information (Lindsay,
1988; Cox & Reid, 2004). The immediate effect of the pairwise likelihood estima-
tion is the reduction of the number of integrations in the expression of the likelihood
(3). Indeed, the contribution of any given individual to the pairwise log-likelihood
is given by

pl(θ; y) =
n∑

i=1

pl(θ; yi ) (4)

with pl(θ; yi ) = ∑
t,t ′,j,j ′ log f (ytji , yt ′j ′i; θ). In particular, for the factor model

for longitudinal ordinal data described in Sect. 2, the bivariate density for a pair of
responses (ytj i , yt ′j ′i ) is given by

f (ytji , yt ′j ′i; θ) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f (ytji , yt ′j ′i , zti , zt ′i , uji , uj ′i )dztidzt ′idujiduj ′i
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=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f (ytji |zti , uji )f (yt ′j ′i |zt ′i , uj ′i )× (5)

×h(zti , zt ′i , uji , uj ′i )dztidzt ′idujiduj ′i .

The dimensional of the integrals involved in the expression of the likelihood
components is four and if j = j ′ or t = t ′ it reduces to three. Thus, the
three/four-dimensional integral can be easily approximated using a the Gauss
Hermite quadrature method.

The resulting estimators are generally consistent and asymptotically normally
distributed (Varin & Vidoni, 2005).

3.2 Dimension-Wise Quadrature Method

Let b = (z,u) denote the vector of latent variables and random effects and consider
the following representation of the marginal density function

f (y; θ) =
∫

Rq

∏p

j=1 g(yj |b)h(b)
φ(b;bmo,�mo)

φ(b;bmo,�mo)db = (6)

= |Cmo|
∫

Rq

∏p

j=1 g(yj |Cmob∗ + bmo)h(Cmob∗ + bmo)

φ(b∗; 0, I) φ(b∗; 0, I)db∗ =

= |Cmo|
∫

Rq

m(b∗)φ(b∗; 0, I)db∗ =

= |Cmo|Eφ[m(b∗)]

where bmo is the maximum of the integrand g(y | z,u)h(z,u) and �mo = CmoC′
mo

is minus the inverse of the corresponding Hessian matrix evaluated in the mode bmo.
φ(·) the normal density function.

The dimension-wise method is applied to the expected value Eφ[m(b∗)]. It is
based on the Taylor expansion of m(b∗) around 0 up to the s term as follows

m̂(b∗) =
s∑

w=1

tw (7)

where each component tw considers all the derivatives of m(b∗) taken with respect
to w latent factors, that is

tw =
∑

j1,j2,...,jw

∑

k1<k2<...<kw

1

j1!j2! . . . jw!
∂j1+j2,...,+jwm

∂b
∗j1
k1

∂b
∗j2
k2

. . . ∂b
∗jw
kw

(0)b∗j1
k1

b
∗j2
k2

. . . b
∗jw
kw

(8)
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The approximated function m̂(b∗) admits the following equivalent representation
(Bianconcini et al., 2017)

m̂(b∗) =
s∑

l=0

(−1)l
(
q − s + l − 1

l

)

ms−l (b∗) (9)

where ms−l (b∗) = m(0, · · · , b∗
k1
, 0 · · · , 0, b∗

ks−l , 0, · · · , 0). Thus, ms−l is a func-
tion of just s − l variables being all the remaining fixed to 0. Replacing Eq. (9) in
Eq. (6), we obtain the approximate density function

fa(y; θ) = |Cmo|
⎡

⎣
s−1∑

l=0

(−1)l
(
q − s + l − 1

l

)∫

Rs−l

∑

k1<...<ks−l
ms−l (b∗)×

(10)

φ(b∗
k1
) · · ·φ(b∗

ks−i )db
∗
k1
..db∗

ks−l

]
.

The dimension of the integrals in expression (10) depends on the choice of s. If s =
1, we obtain a linear combination of unidimensional integrals, if s = 2, we obtain a
linear combination of uni- and bi-dimensional integrals and so on. For small values
of s, the integrals can be easily approximated using the Gauss Hermite quadrature
method. In the extreme cases of s = 0 and s = q the solution is equivalent to the
classical Laplace and to the adaptive Gauss-Hermite quadrature ones, respectively.

The dimension-wise quadrature estimators share the same accuracy as the
adaptive Gauss-Hermite method (Bianconcini et al., 2017), but avoiding the main
computational limitations of the latter.

4 Simulation Study

The performance of the two approximation methods are compared through a
simulation study.

We consider a first scenario where the number of factors is fixed to four, that
is we assume to have observed two items at two different occasions (q = 4, p =
2, T = 2). This simple scenario allows us to also consider the Adaptive Gauss
Hermite (AGH) quadrature that is feasible with number of quadrature points nq
equal to 8 (AGH8) and 15 (AGH15). The AGH with 15 quadrature points can
be considered the benchmark providing an almost exact representation of the
function (Bianconcini et al., 2017). In this scenario, the AGH corresponds to the
dimension-wise method (DWM) with s = 4. We also estimate the classical Laplace
approximation, that corresponds to DWM with s = 0. Finally, we consider the
dimension-wise quadrature with s = 1, 2, and 3. We set sample sizes equal to
n = 200 and 1000, and, as suggested by Vasdekis et al. (2012), we consider 100
replications for each condition of the study.
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Table 1 reports the bias and Root Mean Square Error (rmse) of the parameter
estimates in the case of n = 200. The first loading is fixed to 1 for identification
reasons and measurement invariance of thresholds and loadings over time is
assumed.

As known, the Laplace approximation produces strongly biased estimates but
with generally lower rmse than AGH15. The accuracy of the DWM estimates
improves as s increases, and with similar results to AGH15 when s = 3.

The pairwise method also produces similar estimates to those of AGH15. Thus,
for finite samples (n = 200), the pairwise method and the dimension-wise with
s = 3 perform similarly. The main differences in the performance of the pairwise
and dimension-wise methods are evident in larger samples, that is for n = 1000.

Figures 1 and 2 show the density estimates for λ2 and φ, respectively.
The Laplace estimator is very inaccurate whereas the DWM estimator based on

s = 3 is the closest to the AGH15 one. The pairwise behaves in between DWMwith
s = 2 and DWMwith s = 3. It is interesting to notice that even if DWMwith s = 1
is less accurate than the same method with higher values of s and pairwise, it is far
superior to the Laplace estimator. The parameter estimators not shown here have a
similar performance.

Table 1 Results for the 4-factor model, n = 200

Pairwise Laplace DWM DWM DWM

s = 0 s = 1 s = 2 s = 3

True Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse

λ1 = 1

λ2 = 1.61 0.00 0.70 −0.67 0.67 −0.35 0.83 −0.15 0.87 0.06 0.82

φ = 0.8 −0.02 0.19 0.11 0.12 0.01 0.15 0.00 0.17 −0.05 0.18

σ 2
1 = 2 0.51 1.29 0.69 1.39 1.10 2.84 0.92 2.26 0.59 1.50

σ 2
u1

= 1 −0.12 0.71 −0.96 1.11 −0.76 1.06 −0.46 0.99 −0.13 0.75

σ 2
u2

= 1.5 0.19 0.95 −0.44 0.92 −0.52 1.22 0.20 1.28 0.50 1.62

AGH8 AGH15

s = 4 s = 4

True Bias rmse Bias rmse

λ1 = 1

λ2 = 1.61 0.03 0.76 0.05 0.78

φ = 0.8 −0.02 0.17 −0.02 0.17

σ 2
1 = 2 0.59 1.58 0.57 1.58

σ 2
u1

= 1 −0.10 0.84 −0.14 0.81

σ 2
u2

= 1.5 0.34 1.25 0.48 1.59
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Fig. 1 Densities estimation of λ2 (true value: 1.61) for the 4-factor model, n = 1000
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Fig. 2 Densities estimation of φ (true value: 0.8) for the 4-factor model, n = 1000

In Fig. 3 the values of the log-likelihood for an increasing number of quadrature
point nq, that is 3, 5, 8, 11, and 15 are reported for the analyzed methods. We can
observe that in all the cases pairwise performs worse than AGH, DWM with s = 2
and s = 3, whereas the log-likelihood values based on DWM with s = 3 and AGH
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Fig. 3 Log-likelihood for increasing number of quadrature points, 4-factor model, n = 1000

are almost identical, independently on the number of quadrature points used in the
integral approximations.

In the second simulation scenario we consider a factor model with seven factors,
that is we assume to observe three items at four different occasions (q = 7, p =
3, T = 4). In this setting the AGH is not feasible. As before, we consider sample
sizes equal to 200 and 1000, and 100 replications for each condition of the study.

The results are reported in Tables 2 and 3 for n = 200 and n = 1000,
respectively. It is interesting to notice that, in this scenario, for both small and large
sample sizes, even DWM with s = 2 outperforms the pairwise method in terms of
bias as well as rmse. The pairwise performs more similarly to DWM with s = 1.

5 Real Data Analysis

Lastly, the two different approximation techniques considered through this research
are compared using a real dataset, taken from the British Household Panel Survey
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Table 2 Results for the 7-factor model, n = 200

Laplace DWM DWM DWM
Pairwise s = 0 s = 1 s = 2 s = 3

True Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse

λ1 = 1

λ2 = 1.61 0.23 0.39 −0.32 0.35 −0.15 0.34 −0.03 0.25 0.03 0.29

λ3 = 0.66 0.05 0.20 −0.06 0.15 −0.10 0.17 −0.01 0.15 0.00 0.16

φ = 0.4 −0.04 0.11 0.08 0.13 0.02 0.11 0.00 0.01 −0.01 0.10

σ 2
1 = 2 0.01 0.59 −0.29 0.44 −0.20 0.41 −0.03 0.11 0.00 0.33

σ 2
u1

= 1 0.17 0.33 −0.32 0.50 −0.21 0.47 0.00 0.22 0.08 0.52

σ 2
u2

= 1.5 0.38 0.61 −0.18 0.51 −0.07 0.49 0.03 0.26 0.05 0.52

σ 2
u3

= 2 0.19 0.57 0.32 0.86 0.45 1.09 0.16 0.60 0.14 0.75

Table 3 Results for the 7-factor model, n = 1000

Laplace DWM DWM

Pairwise s = 0 s = 1 s = 2

True Bias rmse Bias rmse Bias rmse Bias rmse

λ1 = 1

λ2 = 1.61 0.28 0.31 −0.33 0.33 −0.19 0.22 −0.05 0.12

λ3 = 0.66 0.04 0.10 −0.06 0.09 −0.10 0.12 −0.01 0.07

φ = 0.4 −0.05 0.07 0.09 0.10 0.03 0.06 0.01 0.11

σ 2
1 = 2 −0.08 0.25 −0.29 0.33 −0.20 0.25 −0.03 0.05

σ 2
u1

= 1 0.28 0.31 −0.37 0.40 −0.26 0.32 −0.06 0.06

σ 2
u2

= 1.5 0.42 0.47 −0.21 0.30 −0.11 0.24 −0.01 0.23

σ 2
u3

= 2 0.14 0.28 0.17 0.37 0.26 0.46 0.05 0.31

(BHPS). The data are composed of an annual nationally representative sample of
approximately 10,000 individuals (5000 households) aged 16 years and over. The
main objective of the BHPS is to study social and economic changes in Britain
at individual and household levels. To analyze the data, five waves were selected
(1992, 1994, 1996, 1998, 2000), as well as three ordinal items that indicate social
and political attitudes. After eliminating the missing values, we are left with a
sample size of 3784 individuals. The manifest items that are to be analyzed are
taken from the section on values and opinions and indicate respondents views
on responsibility of the private sector, Government and trade unions for labor
conditions. The items are:

1. Private enterprise is the best way to solve the UKs economic problems [Enterp].
2. It is the Governments responsibility to provide a job for everyone who wants one

[Govern].
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3. Strong trade unions are needed to protect the working conditions and wages of
employees [TrUnion].

Permitted responses to these questions were agree strongly (AS), agree (A), not
agree/disagree (Neither A nor D), disagree (D), disagree strongly (DS). Due to the
fact that a small proportion of respondents fall into the first and last item categories,
the first two and last two categories have been collapsed; thus leaving us with three
categories for each item. Finally, the response categories of item Enterp have been
reversed.

A one factor model is fitted with the time-dependent factors (latent variables) as
an AR(1) autoregressive model. Previously, Vasdekis et al. (2012) analyzed the same
data by allowing all model item parameters that are associated with the measurement
model (thresholds and slopes) to vary across time points. The analysis proceeded
with the fitting of the models, exclusively with: equal thresholds, equal loadings,
and, finally, equal thresholds and loadings. The model with equal loadings, but
not thresholds, across time was the preferred, and we quote here the results for
this model. The model is estimated using the pairwise likelihood method and by
applying the diwension-wise quadrature with different levels of approximation (s
ranging from 0 to 3). The choice of s in the dimension-wise quadrature has been
done by increasing its value until the mean of the relative absolute differences in
parameter estimates (Av(Δ)) was sufficiently small (order 10−3). The stability in
the estimated parameters is achieved with s = 3. Hence, Table 4 gives the estimated
model parameters using the pairwise likelihood method and the dimension-wise
quadrature with s set equal to three.

As observed in the simulation study, the two methods provide similar results.
Loadings are all found to be positive and close to one-another. The large estimated
variances for the random effects are indicative of the presence of a large amount of
heterogeneity in the responses within each item over time. Heterogeneity that clearly
could not be entirely accounted for by the autoregressive model was fitted upon the
time-dependent latent variables. The latter are characterised by a strong correlation
between subsequent time-dependent factors, which is judged by the large estimated
autoregressive parameter φ equal to 0.83, with an estimated standard error equal
to 0.002, for the pairwise method, and equal to 0.896 (with standard error equal to
0.005) for the dimension-wise quadrature.

Table 4 Estimated factor loadings with standard errors in brackets for the non-stationary model
with time-specific latent variables and estimated variances for the item-specific random effects
based on pairwise likelihood and dimension-wise quadrature (s = 3) methods

Pairwise DWM

Item λj σuj λj σuj

Enterp 1.00 3.65 (0.21) 1.00 3.30 (0.15)

Govern 1.30 (0.07) 6.67 (0.37) 1.29 (0.04) 6.64 (0.33)

TrUnion 1.27 (0.07) 5.80 (0.40) 1.05 (0.03) 6.36 (0.71)
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6 Discussion

The estimation of models for longitudinal data with random components, such as
latent variable models, involve multidimensional integrations. A way to avoid the
high dimensional integrations is to base the estimation and inference on lower data
dimensions such as bivariate or trivariate. It is found that composite likelihood esti-
mation, using the bivariate marginal likelihoods, and dimension-wise quadratures
for a latent variable model with longitudinal ordinal responses, produce estimates
with desirable properties. These results are endorsed by the simulation studies.
In presence of multidimensional longitudinal data, these approximate likelihood
estimation methods also allow the fit of more realistic models to data sets with many
items and a few factors on each time dimension.

Both the simulation results and the real data application have shown the similar
performance of the pairwise approach and the dimension-wise quadrature with
s = 3. However, the latter is more advantageous than the pairwise likelihood
method, since its implementation is straightforward and does not depend on the
specified model. On the other hand, the pairwise approach becomes unfeasible in a
longitudinal setting where the latent variable model has more than one factor at each
occasion, and the matrix of the factor loadings does not have a simple structure.

Further work needs to be done to corroborate the findings of this study.
The properties of the dimension-wise based and pairwise estimators should be
investigated and compared theoretically. Furthermore, more efficient versions of
the pairwise likelihood estimation based on weighted estimators should be also
considered. The real application from the British Household Panel study has shown
the potential of the proposed methodologies to the analysis of real data sets. More
complex models for the structural part of the model and the inclusion of covariates
in the measurement model are useful additions.

References

Bianconcini, S., Cagnone, S., & Rizopoulos, D. (2017). Approximate likelihood inference in
generalized linear latent variable models based on the dimension-wise quadrature. Electronic
Journal of Statistics, 11, 4404–4423.

Cagnone, S., Moustaki, I., & Vasdekis, V. (2009). Latent variable models for multivariate
longitudinal ordinal responses. British Journal of Mathematical and Statistical Psychology,
62, 401–415.

Cox, D. R., & Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities.
Biometrika, 91, 729–737.

Dunson, D. (2003). Dynamic latent trait models for multidimensional longitudinal data. Journal of
the American Statistical Association, 98, 555–563.

Liu, Q., & Pierce, D.A. (1994). A note on Gauss-Hermite quadrature. Biometrika, 81, 624–629.
Lindsay, B. (1988). Composite likelihood methods. In N. U. Prabhu (Ed.), Statistical inference

from stochastic processes (pp. 221–239). Providence: American Mathematical Society.
Huber, P., Ronchetti, E., & Victoria-Feser, M. P. (2004). Estimation of generalized linear latent

variable models. Journal of the Royal Statistical Society, Series B, 66, 893–908.



Comparison of Estimation Methods in Factor Models 21

Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2005). Maximum likelihood estimation of limited
and discrete dependent variable models with nested random effects. Journal of Econometrics,
128, 301–323.

Schilling, S., & Bock, R. D. (2005). High-dimensional maximum marginal likelihood item factor
analysis by adaptive quadrature. Psychometrika, 70, 533–555

Varin, C., & Vidoni, P. (2005). A note on composite likelihood inference and model selection.
Biometrika, 92, 519–528.

Vasdekis, V., Cagnone, S., & Moustaki, I. (2012). A pairwise likelihood inference in latent variable
models for ordinal longitudinal responses. Psychometrika, 77, 425–441.



An Efficient Scheduling Algorithm for
Parallel Planar Rotations of Factors

Yiu-Fai Yung and W. Clay Thompson

1 Factor Rotation and Planar Rotations

1.1 General Factor Rotation Problem

A factor analysis postulates a set of latent factors that explains the correlations
among a much larger set of observed variables (Harman, 1976; Lawley & Maxwell,
1971). It usually produces an initial factor solution with a set of orthogonal factors
that define the factor space. To enhance the interpretability of factors, factor rotation
is often applied to the initial solution.

A factor rotation can be described as a process that finds a transformation of
the initial pattern matrix A to yield a rotated pattern matrix B that has a “simple
structure”—that is,

B = AT (1)

where A and B are both p × m factor pattern matrices for p variables and m

factors, and T is an m × m transformation matrix that is chosen to optimize a
simplicity function (or criterion). Various definitions of simplicity functions have
been proposed. For example, the varimax criterion (Kaiser, 1958) is popular. The
generalized Crawford-Ferguson (GCF) family of rotations (Jennrich, 1973, Eq. 48)
subsumes varimax, quartimax (see Harman, 1976) and many other rotation criteria
as special cases.
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Although closed-form analytic solutions for T are available for some classes
of rotations (for example, PROMAX, see Hendrickson & White, 1964), they are
not available for the GCF family of rotations (and, in particular, the varimax
rotation). Rather, the GCF rotations require iterative steps for obtaining an optimal
T. Theoretically, standard constrained optimization techniques such as Newton-
Raphson, conjugate gradient, and so on, can carry out these iterative steps. For
example, the gradient projection method (Jennrich, 2001, 2004) is such a method.
However, this approach has not been widely used and has been found to be inferior
to the planar rotation method (Jennrich, 2001).

1.2 Factor Rotation via Component Planar Rotations

The planar rotation method (see, e.g., Jennrich, 1970) refers to an algorithm that
optimizes the simplicities of component factor planes successively in iterative
cycles. Each component planar rotation focuses on a specific pair of factors (say,
i and j , which are both between 1 and m) and rotates the corresponding (i, j)-
plane according to the specified simplicity criterion. Analytic solutions are usually
available for rotating a component plane for two factors (Clarkson & Jennrich,
1988). A cycle of the planar orthogonal rotation consists of rotations of all
m(m − 1)/2 distinct component planes. The cycles of planar rotations repeat until
the simplicity function value cannot be improved any further (with respect to a
prespecified convergence criterion). The final rotated factor pattern is thus obtained
by accumulating component planar rotations in cycles.

The remaining of the paper is organized as follows. Section 2 describes the
problem of using parallel processing for orthogonal planar rotations. An efficient
scheduling algorithm, which is shown to be justified by the theory of 1-factorizations
of complete graphs, is proposed for dealing with any numbers of factors and threads
for computations. Some properties of the proposed algorithm are discussed. Then,
Sect. 3 demonstrates the practical performance of the proposed scheduling algorithm
and is followed by some conclusions.

2 Scheduling Parallel Orthogonal Planar Rotations

We limit ourselves to orthogonal planar rotations and use examples to demonstrate
the issues associated with scheduling parallel planar rotations. For an orthogonal
rotation of six factors, a cycle of component planar rotation maximizes the
simplicity of 15 component factor planes in sequence, as depicted schematically
by the following list:
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(2,1)
(3,1),(3,2)
(4,1),(4,2),(4,3)
(5,1),(5,2),(5,3),(5,4)
(6,1),(6,2),(6,3),(6,4),(6,5)

After each component planar rotation, the associated pairs of factor columns in
the factor pattern matrix would be updated for the next rotation. To the best of our
knowledge, all planar rotations in existing factor analysis software are carried out
one plane at a time. In contrast, multithreaded computation rotates several factor
planes simultaneously to improve efficiency. For example, the (2,1)-plane and the
(4–3)-plane can be rotated simultaneously by two processing units or threads.

But to take advantage of parallel processing, one must carefully schedule the
component planar rotations in batches to avoid potential conflicts. For example, if
the (2,1)-plane is scheduled to be rotated, then no other planes in the same batch of
parallel rotations should involve factors 1 or 2 (e.g., (3,1) or (3,2)); otherwise, there
would be a conflict in using and updating the same column of the factor pattern
matrix.

One approach that could be used to address this issue is resource serialization
via semaphores. Each factor is associated with a locking resource that indicates
when it is “in use.” A list of all possible pairs of factors (planes) is enqueued for
processing, and these tasks are dispatched by multiple processing threads. For each
plane, the thread must obtain exclusive access to two semaphores (one for each
factor), compute the planar rotation, and then release the semaphores. If a semaphore
cannot be obtained (because the factor is already in use) a thread can search through
the list of planes to find the first available rotation.

To demonstrate the use of semaphores, assume the planar rotations are ordered:
(2,1),(3,1),(3,2),(4,1),. . .,(6,1),(6,2),(6,3),(6,4),(6,5). The first processing thread
obtains the (2,1) pair. Then second processing thread obtains the (4,3) pair, because
this is the next pair in the list for which neither factor is in use. Finally, the third
processing thread obtains the (6,5) pair. After this initial batch is complete,1 the
first processing unit obtains the (3,1) pair, while the second processing unit obtains
the (4,2) pair. However, the third processing unit must remain idle, because the only
remaining pair that can be obtained, (6,5), has already been processed.

1When semaphores are used, it is not necessary to synchronize the processing threads into batches.
The discussion remains qualitatively accurate as long as the time required for a component planar
rotation exceeds the time required to manage the semaphores. This will certainly be the case for
large factor patterns.
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This processing schedule is summarized by the following schematic:

(2,1),(4,3),(6,5)
(3,1),(4,2),idle
(3,2),(4,1),idle
(5,1),(6,2),idle
(5,2),(6,1),idle
(5,3),(6,4),idle
(5,4),(6,3),idle

Thus, 7 batches of parallel processes are required to complete a cycle. Because each
of the last 6 batches contain an idle thread, this scheduling method does not utilize
the computational resources efficiently.

An efficient scheduling method should use the minimum possible number of
batches of parallel planar rotations and at the same time satisfies the following two
requirements:

Requirement 1. In any given batch of parallel rotations, each component planar
rotation should involve distinct factors.

Requirement 2. Each of the component planes is rotated exactly once in a
rotation cycle.

The proposed scheduling algorithm, which is described in Sects. 2.2, 2.3, 2.4,
and 2.5, satisfies these two requirements by generating an efficient schedule of
batches of parallel planar rotations:

(6,1),(2,5),(3,4)
(6,2),(3,1),(4,5)
(6,3),(4,2),(5,1)
(6,4),(5,3),(1,2)
(6,5),(1,4),(2,3)

The next few sections describe the rationale and the deterministic steps of the
proposed scheduling algorithm.

2.1 1-Factorizations of Complete Graphs

This section illustrates the theory behind the proposed scheduling algorithm. The
crucial analogy is to a complete (undirected) graph. A complete graph is a graph
in which every node is directly connected to every other node by a single edge. To
demonstrate, the left panel in Fig. 1 shows a complete graph K6 with 6 nodes and
15 edges (solid lines).

Consider each factor in a factor solution to be represented by a node in an
undirected graph. A pairing of two factors for a planar rotation is represented by



Parallel Planar Rotations 27

2

3

5

4

6

1 1

2

3

5

4

6

2

3

5

4

6

1

Fig. 1 The complete graph K6 (left) with a 1-factor (middle) and a 1-factorization (right)

an edge connecting two nodes. Thus the set of all possible pairs of factors for planar
rotation is represented by the complete graph. Hence, the complete graph K6 in
Fig. 1 represents all 15 planar rotations for 6 factors in a cycle of iterative rotations.

A subset of these edges can be identified so that every node in the graph is
incident to exactly one edge. This is defined as a 1-factor of a graph. The edges
of a 1-factor correspond to a batch of planar rotations that can be computed
simultaneously without any risk of resource conflict. For example, the middle
panel in Fig. 1 shows a 1-factor, which is associated with a batch of 3 parallel
planar rotations. This graph (batch) satisfies Requirement 1 for scheduling parallel
orthogonal planar rotations—that is, because no node in the middle panel is
associated with more than one edge, each component planar rotation in this batch
involves distinct factors.

Now consider dividing up all the edges of the complete graph into disjoint 1-
factors. Such a decomposition is called a 1-factorization. For example, by mentally
rotating the edges of the middle panel in Fig. 1 about the center repeatedly generates
a 1-factorization that is shown as an edge-coloring ofK6 in the right panel of Fig. 1.
This 1-factorization corresponds to 5 color-coded batches of parallel rotations of
component planes for 6 factors.

Clearly, the right panel of Fig. 1 has the same number of distinct edges as
the left panel—both are complete graphs that represent all 15 component planar
rotations in a rotation cycle. Hence, the right panel satisfies Requirement 2 for
scheduling parallel orthogonal planar rotations—that is, each of the 15 component
planes is rotated exactly once in a rotation cycle. In addition, similar to what
has been explained for the middle panel that represents a single batch of parallel
rotations, each of the 5 color-coded batches (1-factors) in the right panel also
satisfies Requirement 1.

Essentially, the 1-factorization of a complete graph (Trick, 2004) just illustrated
in the right panel of Fig. 1 represents the batches of parallel rotations of the proposed
scheduling algorithm. For theoretical details of complete graphs, see Suksompong
(2016), Trick (2004), and the references therein. Sections 2.2, , 2.3, 2.4, and 2.5
describe the deterministic steps of the proposed scheduling algorithm.
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2.2 The Proposed Scheduling Algorithm

Without loss of generality, assume that a factor solution contains an even number
of factors, m = 2r . If it does not, then a single ‘dummy factor’ can be added.
In addition, suppose for the moment that r processing threads are available for
parallel planar rotations. Cases for an odd number of factors and different number
of processing threads are covered in Sects. 2.3, 2.4, and 2.5.

The first batch of parallel rotations consists of the planes

(2r, 1), (2, 2r − 1), (3, 2r − 2), . . . , (r, r + 1). (2)

To obtain the next batch of planes for parallel rotations,

1. Replace 2r − 1 with 0
2. Add 1 (mod 2r − 1) to each index except 2r .

This process is repeated until 2r − 1 batches of parallel planar rotation have been
created.

The scheduling algorithm proposed here is considered to be an adaptation from
the theory of 1-factorizations of complete graphs, which is discussed in Sect. 2.1.
For the 6-factor (m = 6, r = 3) example in Sect. 2, we apply the proposed algorithm
to obtain those 5 (2r−1) batches of parallel rotations that complete a cycle of planar
rotations efficiently.

Define s = m/2 if the number of factors, m, is even and s = (m − 1)/2 if m is
odd. The next three sections extend the algorithm to different cases:

• More than s processing threads
• Less than s processing threads
• m being an odd number

2.3 Case with More Than s Processing Threads

Theoretically, the maximum number of processing threads that you can use to gain
computational advantage is s. Even if there are more than s processing threads
available for use, the proposed scheduling algorithm should still use only s threads.

The reason is that s is the maximum number of planes that can be constructed
from m factors such that each plane involves two distinct factors. Adding more
planes beyond s is necessarily a violation of Requirement 1.

2.4 Case with Less than s Processing Threads

With q (q < s) processing threads for parallel rotations, the proposed algorithm
begins with the schedule for s threads. The component pairs are then grouped (in
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reading order) into batches of size q. The number of batches needed for completing
a cycle of rotation is m(m − 1)/(2q) if this quotient is a whole number and
�m(m− 1)/(2q)	+1 otherwise.

This case is best illustrated by using the 6-factor example with 2 processing
threads. The algorithm begins with the same table of pairings as seen previously.
It then forms 8 (= �6×5/(2×2)	+1) batches of parallel rotations of 2 independent
factor planes:

(6,1),(2,5)
(3,4),(6,2)
(3,1),(4,5)
(6,3),(4,2)
(5,1),(6,4)
(5,3),(1,2)
(6,5),(1,4)
(2,3),idle

An idle component rotation is appended at the last batch. Both Requirements 1 and
2 are still satisfied.

2.5 Case with an Odd Number of Factors

For cases with an odd number of factors (m), a dummy factor denoted by an asterisk
(*) is added to make the total number of factors even. The batches of parallel
rotations are first constructed as usual with (m + 1)/2 threads. Once the sequence
of component planar rotations is determined, those pairs with the dummy factor are
ignored. Then the sequence of planar rotations can be fed to any number of threads
that is strictly less than (m+ 1)/2.

For example, for an orthogonal rotation with 7 factors, an 8-factor scheduling for
4 threads is first constructed as in the following:

(*,1),(2,7),(3,6),(4,5)
(*,2),(3,1),(4,7),(5,6)
(*,3),(4,2),(5,1),(6,7)
(*,4),(5,3),(6,2),(7,1)
(*,5),(6,4),(7,3),(1,2)
(*,6),(7,5),(1,4),(2,3)
(*,7),(1,6),(2,5),(3,4)

The first column involves dummy factors and therefore is ignored. The resultant
scheduling is immediately applicable to a parallel rotation with 3 threads (or more).
For cases with fewer than 3 threads, apply the serialization method described in
Sect. 2.4. Both Requirements 1 and 2 would still be satisfied.
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2.6 Practical Considerations

In practice, the proposed scheduling algorithm will not improve computational
efficiency linearly in the number of threads. There are two main reasons for this.
First, the management of parallel computations, which includes distribution of
tasks, integration of results, and memory management in threads, can offset parts
of the advantage of parallel rotations. When the number of factors or variables is
small, parallel rotations might not improve and might even degrade computational
performance. Second, because the integration of component rotation results must be
done after all threads finish, the computing time to finish a batch of parallel rotations
is determined by the slowest thread.

3 Simulated and Real Examples

3.1 A Simulated Text Mining Example

A motivation of the current research was to meet the challenge of a simulated text
mining problem raised by our colleague. The rotation problem involved 155,467
features (variables) and 300 topics (factors), which is not atypical in the field of text
mining.

Table 1 shows the computing time to finish a varimax rotation of a factor pattern
for different numbers of threads. A Unix machine was used for computations (in
February 2020) and the FACTOR procedure of SAS/STAT (SAS Institute Inc, 2018)
was used for factor rotation. Because the same sequence of component planar
rotations in cycles was used in all threaded conditions (including the 1-thread
condition), all consumed 102 cycles of planar rotations to converge to the same
result.

Under the single-thread condition, which represents the traditional application of
the planar rotation algorithm without threading, the computing time (real or CPU)
was about 5 h. With the proposed scheduling algorithm for parallel rotations, the
real time reduced approximately by half with 4 or 8 threads. Therefore, while it is
a notable performance improvement, the improvement is clearly not linear in the
number of threads.

Note that the CPU time was calculated by adding up the computing time in
threads in which parallel computations were carried out. Thus, the CPU time
was usually greater than that of the corresponding real time in the multithreading
conditions.

Table 1 Computing time for
varimax rotation of a large
factor pattern matrix

1-Thread 4-Thread 8-Thread

Real time 4 h 57m 28 s 2 h 26m 17 s 2 h 17m 58 s

CPU time 4 h 58m 24 s 5 h 40m 07 s 6 h 25m 13 s
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3.2 A Real Data Example About Human Activity Recognition
by Smartphones

Anguita, Ghio, Oneto, Parra, and Reyes-Ortiz (2013) collected data about human
activity recognized by using smartphones. Combining the training and test sam-
ples, the data set contains 10,299 observations and 563 variables, measured or
transformed, for measuring movements. The data were factor-analyzed under 12
levels of threading (1–12), with the proposed scheduling algorithm for parallel factor
rotations. The following conditions were also included:

• Number of factors (4 levels): 65, 81, 104, and 124, which were determined
by using the following factor extraction criteria, respectively: 90% common
variance explained, MAP-2 (Minimum average partial with second power; see
Glorfeld, 1995; Horn, 1965), 95% common variance explained, and MAP-4.

• Rotation criterion (2 levels): quartimax and varimax.

The MAP-2 and MAP-4 criteria explain, respectively, 92% and 97% of common
variance. The real time for completing factor rotations in various conditions was
recorded. To average out random computational noise, the computing time reported
here was an average of 10 trials. A Unix machine with six physical cores was used
to carry out all computations (in February 2020) and the FACTOR procedure of
SAS/STAT (SAS Institute Inc, 2018) was used for factor extraction and rotation.

To make the threading conditions comparable, the single-threaded rotations used
the same component planar rotation sequence as that of the multithreaded rotations.
Consequently, given the same number of factors and the same rotation criterion,
the numbers of cycles to achieve rotational convergence with different numbers
of threads were the same. For the quartimax rotation, 51, 50, 92, and 34 cycles,
respectively, were used for 65, 81, 104, and 124 factors. For the varimax rotation,
58, 40, 37, and 23 cycles, respectively, were used for 65, 81, 104, and 124 factors.

Figure 2 shows four plots of rotation time for different numbers of factors. Within
each plot, curves for varimax and quartimax rotations across different number of
threads are shown. A very clear pattern is shown in all curves. Parallel rotations
with multithreading reduce the computing time more dramatically with 2 or 3
threads. However, after 4 or 5 threads, the curves flatten out, showing no additional
improvement of computational performance.

4 Conclusions

The proposed scheduling algorithm enables parallel planar rotations of factors.
Theoretically, it allows for a performance improvement that is linear in the size of
the matrix to be rotated, up to a maximum improvement of �m/2	-fold. Practically,
performance is also determined by other factors so that linear improvement cannot
be expected.
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Fig. 2 Computing time for factor rotations

So far, only orthogonal rotation was discussed. Oblique rotation requires a few
minor additions to the algorithm. First, oblique rotation requires planar rotations
over all ordered pairs of factors. This can be accomplished by generating batches
of parallel planar rotations exactly as described above, then repeating the batches
with the factor orderings reversed (i.e., (i, j) becomes (j, i)). Also, after each batch
of oblique rotations, the factor covariance matrix must be updated (Clarkson &
Jennrich, 1988).

Rotation of dimensions has not only been used in factor analysis, but it has
also been used for rotating components in principal component analysis, canonical
variates in canonical correlation analysis, and topics in text analytics. Therefore, the
proposed scheduling algorithm applies directly to these areas too.
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Explanatory Response Time Models

Daniella Rebouças-Ju and Ying Cheng

1 Introduction

Response times have recently grown in popularity in educational assessment and, to
a lesser degree, in the psychological assessment context. Psychological testing can
provide a deeper understanding of one’s profile as well as a diagnosis to a pathology.
Hence, in low-stakes as well as high-stakes contexts, those diagnoses are given in
part based on the individual’s self-report item response data. In those instances,
data quality assurance and methods to detect aberrant response behavior become
essential to the validity of scores and consequently, of the diagnosis.

Additionally, response times (e.g., total or per page) have been proposed as an
alternative source that can be used to detect careless response behavior (Meade &
Craig, 2012). Understanding the underlying mechanisms that affect one’s working
speed, whether due to person’s or to item’s characteristics, is a crucial step to obtain
precise estimates of the working speed and allow further application of response
time modeling, such as methods to flag aberrant response behavior (e.g., Hong et al.,
2021).

In the psychological assessment context, there may a relationship between how
quickly the individual works through the survey, that is, their working speed,
and some item or person characteristics. From the subject’s side, response times
may depend on the participant’s reading ability, processing speed, experience with
computerized surveys, etc. On the item’s side, there are likely differences, for
instance, due to the sentiment of the item (e.g. reverse-coded or negatively worded
items).
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Given the relations between response times and person and item characteristics,
and the work previously developed in the field of explanatory item response theory
(De Boeck et al., 2011, 2016), in this study, we propose an explanatory framework
for modeling response times, where either person or item properties may be used as
covariates in a model predicting response times at the item level.

2 Explanatory Response Time Models

2.1 Descriptive-Only Response Time Model

Let tip be the item response times given by person p, with p = 1, ..., N , to item i,
with i = 1, ...,M . The log-transformed response times are modeled as follows:

ln tip = βi − τp + εip, (1)

τp ∼ N(0, σ 2
τ ), and εip ∼ N(0, σ 2

ε ), (2)

where τp is the working speed a respondent exhibits during the course of the
assessment, βi is the time-intensity parameter corresponding to the consumption
of time by item i, and εip is the measurement error for person p and item i with
(homogeneous) variance σ 2

ε . Note that this model is a simplified version of the
lognormal model (van der Linden, 2006), where the time discrimination parameters
are all fixed equal to 1/σ 2

ε .
In terms of a mixed-effects model, the model in Equation 1 is a random intercept-

only model with indicator variables Xik for K covariates, with k = 1, ..., K:

ln tip = τp0Xi0 +ΣK
k=1βiXik + εip, (3)

where Xi0 = −1 for all items. Xik = 1 if i = k, and Xik = 0 otherwise, with
K = M , that is, there are as many indicators as the number of items. In this model,
τp0 is a random effect with τp0 ∼ N(0, σ 2

τ ) and the βi’s are fixed effects. Thus,
each subject has its own intercept, but the slopes (item parameters) are the same for
all subjects.

2.2 Person-Explanatory Response Time Model

The person-explanatory model includes predictors of person properties, which
may account for differences in response times given, for example, biological sex,
ethnic/racial groups, or response styles. Following the descriptive model defined
in Equation 1 and considering J person predictors Zpj , j = 1, ..., J , the person-
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explanatory response time model is

ln tip = βi − τp0 + εip, εip ∼ N(0, σ 2
ε ) (4)

with τp0 = ΣJ
j=1ηjZpj + δp, δp ∼ N(0, σ 2

δ ), (5)

where ηj are the fixed effects for each person covariate, σ 2
δ is the person-specific

residual variance, and σ 2
ε is the residual variance. This is a latent regression model,

where the random intercepts τp0 are partly random and partly predicted by person
properties. Note that the descriptive model is recovered if η1 = η2 = ... = ηJ = 0,
and therefore σ 2

δ = σ 2
τ .

Similarly to the descriptive-only model, the person-explanatory response time
model can be expressed in the framework of a mixed-effects model, with Zpj as
level-2 predictors, and σ 2

δ as the between-person variance.

2.3 Item-Explanatory Response Time Model

Following the parameters defined in Equation 1 and consideringK predictors of the
item parameters, the item-explanatory response time model is

ln tip = β ′
i − τp + εip, εip ∼ N(0, σ 2

ε ), (6)

τp ∼ N(0, σ 2
τ ), (7)

and β ′
i = ΣK

k=1γkXik + ζi, with ζi ∼ N(0, σ 2
ζ ), (8)

where γk are the fixed effects for each item covariate. Thus the item parameters’
expected value corresponds to the part of Equation 8 with the item predictors, while
some error is allowed in the prediction.

Just as before, this model can be expressed in the framework of a mixed-effects
model. The item-explanatory model is a multilevel model with two levels, where the
item parameters are predicted by a set of K , K < M , covariates:

ln tip = τpXi0 + β ′
i + εip, with β

′
i = ΣK

k=1γkXik + ζi, (9)

where Xi0 = −1 for all items, Xik are the covariates predictors of item properties,
with ζi as the errors in such a prediction. Note that the latent working speed is
a random effect, as well as β ′

i are random effects that account for between-item
variability.

Model Estimation. The model parameters can be estimated through a restricted
maximum likelihood (REML) approach (Verbeke & Molenberghs, 2001). An
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alternate choice is to estimate the models in a Bayesian framework (van der Linden,
2006). For the sake of simplicity, we will use a frequentist approach in this study.

Model Comparison. Model fit indices will be used for the purposes of model
comparison. For comparing the descriptive and the person-explanatory model, we
will also use the likelihood-ratio test (LRT). Because the descriptive-only and item-
explanatory models are not nested, the LRT is not appropriate in that case. The
traditional AIC and BIC measures may be used for comparison of non-nested
models, but they are not appropriate for mixed-effects models. Therefore, for
comparison between the descriptive and the person-explanatory models we will use
the conditional AIC (cAIC; Vaida & Blanchard, 2005; Säfken et al., 2018), which
is recommended when the focus of comparison is on the clusters (persons), and
the degrees of freedom are adjusted for a finite sample. In addition, we will use
the adjusted BIC (aBIC; Cho & De Boeck, 2018; Delattre et al., 2014), where the
number of observations is equal to the number of subjects (N ), since the models
have only person-related random effects. For comparison between the descriptive
and the item-explanatory models, we will use the marginal AIC (mAIC; Vaida
& Blanchard, 2005), which is recommended when the focus of comparison is on
the population, and the aBIC, where the number of observations for the item-
explanatory model is equal to the number of subjects times the number of items
(NM), since the model has both item- and person-related random effects.

In the next section, we present a motivating example for the use of the person-
explanatory and the item-explanatory models.

3 Real Data Example

We apply the descriptive-only, the person- and the item-explanatory response time
models to a sample of high school students responding to the second Big-Five
Inventory (BFI-2) of personality (Soto & John, 2017). Students in this sample
ranged from ages 16 to 18, and were asked to fill the survey on a desktop computer in
class or on a tablet/smartphone at home. Demographic background questions were
asked at an earlier point of data collection, including questions about biological
sex, ethnicity/race, school membership, etc. For the purposes of this illustration, we
excluded a respondent’s data if their data were missing for any item’s response times
or for the predictors’ data. The final sample size was N = 205, with about 50% of
the sample Female.

Time stamps for each selected answer as well as item order presented and
observed were recorded at the item level. These time stamps were converted into
response times by recording the elapsed time between two response selections. Note
that students were allowed to change their answer selection if they changed their
mind, for example, from “Strongly Agree” to simply “Agree.” If there were any
answer changes, the response times associated with that item were summed up to
report one observed response time per item for each person.
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All models were fit using the function lmer from the package lme4 (Bates
et al., 2015) in R (R Core Team, 2020). The estimates were obtained using REML.

3.1 Descriptive-Only Model

The descriptive model included one fixed effect for each item on the questionnaire,
for a total of 60 item effects βi , and one random effect, that is, variance term for
person σ 2

τ , and the residual variance σ 2
ε .

3.2 Person-Explanatory Model and Covariates

We first fit the person-explanatory model with several predictors: biological sex,
free/reduced-lunch status, device (desktop or mobile), and some process data such
as number of clicks on a page, and similarity measures QSI and normalized length
of longest common sub-sequence (NLLCS). Similarity measures are used to express
the distance between the expected and the observed responses of text data. See
Table 1 for snippets of answers and the respective similarity measures.

The first measure is QSI = expected # of clicks/observed # of clicks, and it
ranges from 0 to 1. A score of 1 indicates (a) the student answered the items on
the same order they were presented, and (b) no answer selection was changed. A
score <1 indicates that the respondent answered at least one question out of order
(e.g., answered a later question first and then returned to answer that question), or
that, for at least one item, their selected answer was changed. The first property
can be an indication of careless responding, especially if it happens often, while the
second cannot. In fact, the second property could be an indication that the student is
engaged in the survey to the point of weighing their options and possibly changing
their minds later on.

QSI was affected more by changes to answer choices than by compliance with
item order. Thus QSI can be interpreted as an “answer efficiency” measure, where
the most efficient respondents select their answer and do not feel the need to change
it later on in the survey.

Table 1 Snippets of the observed and expected order of example responses. In bold, responses
that are out of order or changes in the selected answer. The last column presents percentile ranks
for total response times

Type Sequence QSI NLLCS % rank

Ex.1 Observed c4,e1,c6,a6,a2,e4,c3,c2,o6,n4,o1,o4,a3,a3,... 0.85 0.85 48.8th

Expected c4,e1,c3,c6,a6,a2,e4,[o5],a3,o4,c2,o6,n4,o1,...

Ex.2 Observed a4,n6,e1,e1,a1,n4,n4,n4,a3,c5,o6,o6,e5,e5,... 0.73 1.00 31.7th

Expected a4,n6,e1,a1,n4,a3,c5,o6,e5,...



40 D. Rebouças-Ju and Y. Cheng

The second similarity measure is NLLCS, a normalized value of the LLCS, that
is NLLCS = LLCS/total # of items on the survey. The length of the longest
common sub-sequence is a measure of how close one’s response sequence is to the
expected sequence. Thus, it indicates how compliant one is with the item order. This
normalized measure also varies within the [0,1] interval. A score of 1 indicates the
person complied with the order of the items fully, while a score <1 indicates that
they did not follow the order of the items for at least one of the items. Note that they
may have also changed their answers to an item, but this does not affect the NLLCS.
Thus NLLCS may be interpreted as a “compliance” measure.

Given the different characteristics between QSI and NLLCS, both measures
were considered at first. However, the correlation between the two similarity
measures was 0.79. With some evidence of multi-collinearity, the final person-
explanatory model included only biological sex and NLLCS as predictors, which
had a correlation of only −0.13. There was a total of 62 fixed effects. Note that
the estimated item parameters have a different interpretation when the person-
explanatory model is fit, but can be recovered by adding the average values of the
predictors multiplied by the estimated fixed effects.

3.3 Item-Explanatory Model and Covariates

The item-explanatory model had the number of characters in the item statement
(“Char. Count”) and an indicator for “Reverse-Coded” items as fixed effects. The
working speed parameter is a random effect centered around 0, and we estimate
variance parameters for working speed τ and the error term ε.

3.4 Model Estimation Results

Fixed Effects. Fixed effects for the descriptive models’ item parameters had a
mean of 1 and standard deviation of 0.15. Due to space limitations, item parameter
estimates are not reported here, but can be requested from the authors. The fixed
effects for the person and item properties are presented on Table 2.

The person predictors are multiplied by a factor of −1 to conform to the model’s
parametrization and interpretation of τp as a person’s working speed. The estimated
effects were 0.144 for Males and −0.735 for NLLCS. Thus, if the student is Male,
there is an increase in working speed; that is, Male students tend to work faster
through the survey than their Female counterparts.

Additionally, there is a negative relationship between NLLCS and working
speed. Thus low NLLCS scores are associated with an increase in working speed.
Hence, the degree students do not comply with the item order are associated with
working faster through the survey, after the person’s intrinsic working speed has
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Table 2 Estimated fixed
effects for the explanatory
models

Person-explanatory

Estimate Std. error Z value

Biological sex (male) 0.144 0.068 2.101

NLLCS −0.735 0.366 −2.008

Item-explanatory

Estimate Std. error Z value

(Intercept) 0.672 0.057 11.732

Char. Count 0.010 0.001 7.355

Reverse-Coded 0.134 0.025 5.344

Table 3 Estimated standard deviations for descriptive-only, person-explanatory, and item-
explanatory models

Parameter Name Descriptive Person expl. Item expl.

σε Residual 0.715 0.715 0.715

στ Working speed 0.485 0.476 0.485

σζ Item 0.101

been taken into account. Thus, NLLCS seems to indicate that students who are not
complying with item order may be working more quickly, thus spending less time
on the survey, likely due to a lack of engagement with the survey.

The estimated fixed effects for item properties in the item-explanatory model
are 0.010 for “Char. Count”, and 0.134 for “Reverse-coded” items. Note that the
effect size for “Char. Count” is large due to its very small standard error. Thus,
as expected, items with a larger number of characters require longer times to be
answered. Interestingly, reverse-coded items seem to yield longer response time than
regular items.

Random Effects. Estimated random effects are reported on Table 3. The standard
deviation for working speed (i.e., between-person variability) was 0.485 for the
descriptive-only model and the item-explanatory model, and 0.476 for the person-
explanatory model. The residual standard deviation was about 0.715 for all models.
The difference in estimated between-person variability between the descriptive and
the explanatory models indicates that person properties accounted for some (small)
portion of the variability in working speed. Finally, the between-item standard
deviation was 0.101 for the item-explanatory model.

Model Comparison. Results are reported on Table 4. Given the descriptive-only and
the person-explanatory models are nested, we perform a likelihood-ratio test (LRT).
The LRT produces a p-value <0.01 in favor of the person-explanatory model. The
cAIC is smaller for the person-explanatory model, while aBIC is smaller for the
descriptive model. Note that the descriptive model is the model with the smaller
number of parameters. Similarly, the descriptive-only and the item-explanatory
models are compared using mAIC and aBIC statistics (Table 5). The comparisons
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Table 4 Model comparison: LRT and fit indices cAIC and aBIC for the descriptive-only and the
person-explanatory response time models

Model # param. cAIC aBIC log-lik Deviance χ2 df p-value

Descriptive 62 26,919.0 27,863.7 −13,644 27,288

Person expl. 64 26,918.8 27,868.5 −13,639 27,278 9.664 2 0.008

Table 5 Model comparison: fit indices mAIC and aBIC for the descriptive-only and the item-
explanatory response time models

Model # param. mAIC aBIC

Descriptive 62 29,050.7 28,836.8

Item expl. 6 28,967.0 28,471.7

favor the item-explanatory model with both mAIC and aBIC. In this case, the item-
explanatory model is the model with the smaller number of parameters.

4 Simulation

We perform a simulation study to evaluate (a) sample size and effect size require-
ments for parameter recovery under the true model, (b) model fit comparison
between the explanatory and the descriptive models, when the person-explanatory
or the item-explanatory model is the true model.

4.1 Simulation Design

The data generating processes are summarized on Table 6 and are described in detail
in this section. We generate response time data while varying sample size N =
200, 500, 1000, and the number of itemsM = 20, 40, 60. Each simulation condition
was replicated 100 times.

Person-Explanatory Model. When the person-explanatory model is the true model,
we assume that a person’s working speed is partly random, with a between-person
error term, and partly predicted by two covariates. The first predictor, Z1, is a
continuous, Beta-distributed variable with values in [0, 1], and parameters α = 15
and β = 3. The expected value of Z1 is 0.83, and its standard deviation is 0.08. Z1
was generated to replicate the behavior of a normalized LLCS variable, as described
in the real data example. The second predictor, Z2, is a categorical, Bernoulli-
distributed variable of values 0 or 1 and with a probability of success p = 1/2. Z2
was generated to mimic the “Biological Sex” variable, where 50% of the population
is expected to be Female. The fixed effects for each covariate are η1 = −0.73 and
η2 = 0.14. The other item effects are randomly generated from N(1, 0.15). Finally,
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Table 6 Data generating
processes when the
person-explanatory (on the
left) or the item-explanatory
model (on the right) is the
true model

Person-explanatory model Item-explanatory model

Random effects Random effects

τp N(0, σ 2
τ = 0.52) τp N(0, σ 2

τ = 0.52)

εip N(0, σ 2
ε = 0.72) εip N(0, σ 2

ε = 0.72)

ζi N(0, σ 2
ζ = 0.12)

Fixed effects Fixed effects

η1 −0.73 γ1 0.01

η2 0.14 γ2 0.65

Observed variables Observed variables

Z1 Beta(15, 3) X1 N(30, 8.52)

Z2 Bernoulli(0.5) X2 Bernoulli(0.5)

the random effects are the between-person error, δp ∼ N(0, σ 2
τ = 0.52), and the

measurement error εip ∼ N(0, σ 2
ε = 0.72). A total of M + 2 fixed effects and two

variances (one random effect) are estimated.

Item-Explanatory Model. We assume that the item parameters β ′
i are predicted by

two covariates. The first predictor, X1, is a continuous variable generated from
N(30, 8.52), and the second predictor, X2, is a Bernoulli-distributed variable with
probability of success p = 1/2. The fixed effects related to each predictor are
γ1 = 0.01 and γ2 = 0.65. As described in Equation 8, the item parameters are
treated as a random effect. We generate the item error term as ζi ∼ N(0, σ 2

ζ = 0.12).
The person and error terms are generated the same as before. A total of three
variances and two fixed effects are estimated for the item-explanatory model.

Parameter Recovery. Assuming either the person-explanatory or the item-
explanatory model generates the data, we evaluate bias, and the root mean squared
error (RMSE) of the variances, and the fixed effects associated with each true
model.

Model Comparison. We evaluate model fit between the descriptive-only and the
explanatory response time models using cAIC, mAIC, and aBIC.

4.2 Simulation Results

Random effects were recovered around the true value on average and revealed good
parameter estimation precision across all simulation conditions. Just as expected,
RMSE became smaller as sample size and test length increased. The fixed effects
were mostly unbiased. However, they had a somewhat large RMSE for the person-
explanatory model, which decreased as sample sizes increased (Tables 7 and 8).

Average rates for the difference in modified fit indices between the explanatory
and the descriptive models are reported on Table 9 for when the true model is the
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Table 7 Simulation: average bias and RMSE for standard deviation and covariates effects for the
person-explanatory model

στ σε η1 η2

N M Bias RMSE Bias RMSE Bias RMSE Bias RMSE

200 20 −0.0014 0.021 −0.0021 0.007 −0.0088 0.364 −0.0109 0.062

40 −0.0018 0.021 0.0005 0.005 −0.0584 0.348 −0.0054 0.054

60 −0.0020 0.021 −0.0005 0.003 −0.0916 0.360 0.0084 0.055

500 20 −0.0007 0.014 0.0002 0.003 −0.0211 0.213 0.0012 0.036

40 0.0012 0.013 0.0001 0.003 0.0151 0.209 0.0045 0.033

60 0.0015 0.013 0.0002 0.002 −0.0176 0.190 0.0032 0.036

1000 20 0.0002 0.010 0.0002 0.003 −0.0149 0.148 0.0022 0.029

40 −0.0015 0.009 0.0001 0.002 −0.0034 0.152 0.0000 0.025

60 0.0011 0.009 −0.0002 0.002 0.0031 0.147 −0.0037 0.026

Table 8 Simulation: average bias and RMSE for standard deviation and covariates effects for the
item-explanatory model

σζ στ σε γ1 γ2

N M Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

200 20 −0.0060 0.018 0.0000 0.022 −0.0026 0.007 0.0000 0.001 −0.0111 0.047

40 −0.0024 0.012 −0.0055 0.020 −0.0006 0.005 −0.0002 0.001 0.0047 0.029

60 −0.0003 0.008 0.0032 0.017 −0.0007 0.003 0.0000 0.001 0.0050 0.023

500 20 0.0001 0.014 0.0026 0.014 −0.0009 0.004 0.0000 0.001 0.0017 0.044

40 −0.0011 0.009 0.0010 0.015 0.0007 0.003 0.0000 0.001 −0.0012 0.027

60 0.0013 0.008 0.0045 0.013 0.0006 0.003 0.0002 0.001 −0.0056 0.023

1000 20 −0.0009 0.015 −0.0037 0.010 0.0001 0.003 −0.0001 0.001 0.0091 0.038

40 −0.0030 0.011 −0.0011 0.010 0.0003 0.002 0.0000 0.001 −0.0053 0.025

60 −0.0007 0.007 −0.0003 0.011 0.0002 0.001 0.0001 0.001 −0.0062 0.022

Table 9 Simulation: average
difference in modified AIC
and BIC measures between
the explanatory and the
descriptive model, and the
power of selecting the
explanatory over the
descriptive model

Descriptive vs. person-explanatory

cAIC aBIC

N Diff. Power Diff. Power

200 0.388 0.80 −1.850 0.32

500 1.090 0.96 4.091 0.68

1000 2.485 1.00 18.701 0.96

Descriptive vs. item-explanatory

mAIC aBIC

N Diff. Power Diff. Power

200 17.164 1.00 96.257 1.00

500 15.591 1.00 110.261 1.00

1000 15.511 1.00 121.964 1.00
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person-explanatory model or the item-explanatory model. Due to space limitations,
only results for M = 20 are shown. Preliminary results show that, on average,
the mAIC and the cAIC favored the explanatory over the descriptive model. Power
was high for both the person- and the item-explanatory model cases. The aBIC
was a more conservative statistic than the cAIC, with low power for rates for small
sample sizes (N = 200) but increasing with sample size. The cAIC increased in
magnitude with increasing sample sizes, however the opposite trend was observed
for the mAIC. This indicates that the mAIC may not be an appropriate measure for
model comparison when the number of random effects differs between models.

5 Discussion

Understanding the sources of variability in response times is an essential step for
differentiating between expected and aberrant response behavior. We propose an
explanatory approach for response time modeling of psychological survey data, and
demonstrate how one may use such a framework to gain insight into the relations
between response times and person/item characteristics. Through a simulation
study, we successfully recovered model parameters under varying sample size and
test length conditions.

The person-explanatory model helps us explain the between-person variability,
which was predicted by the random intercept after taking item effects into account.
On the other hand, the item-explanatory model enabled us to explain item variability
from item properties, and to obtain a simpler, more interpretable model than the
descriptive one. In the real data analysis, the cAIC favored the person-explanatory
model, but the aBIC favored the descriptive model. Given the simulation study
results, where the aBIC had low power for small samples, the contradicting real
data analysis results may be due to the small sample size (N ≈ 200).

This study has some limitations. First, the descriptive model used in this study
was a simplified version of the lognormal model (van der Linden, 2006), and it
did not allow the items to have different variances. Our data suggests some items
or groups of items could have different variability with respect to response times;
thus, in the future, a model without such a constraint would be appropriate. Second,
the similarity measure NLLCS is a proportion, which, due to the range restriction,
may not be appropriate as a predictor in a linear regression model (Piepel, 2020).
Therefore, alternative approaches should be considered. Third, in the simulation
study comparing the descriptive and the item-explanatory models, the power of both
mAIC and aBIC were equal to 1, thus a study of the false positive rates is required in
the future. Lastly, the model comparison approach used in this study may be further
developed to include more robust methods, such as a Bayesian approach.

As we have shown in this paper, both person and item properties may help explain
variability in response times at the item level. Although not explored on this paper,
an explanatory model including both item and person covariates in the model could
reveal an even clearer picture and is the goal of future studies.
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Response Time Relationships Within
Examinees: Implications for Item
Response Time Models

Susan Embretson

1 Introduction

Due to the increased use of computerized testing, item response time (RT) data
have become increasingly available. In conjunction with this increase, many item
response theory models for using response times have been developed. The models
vary in both primary purpose and underlying assumptions. For example, some
models for response times provide person estimates that are presumed useful to
directly or indirectly augment person estimates that are based on item accuracy
(e.g., Roskam, 1997; Wang & Hanson, 2005). Other models use response time in
mixture models to improving item parameter estimates by identifying subjects who
are guessing (Meyer, 2010; Wise & DeMars, 2009; Molenaar & de Boeck, 2018).

As noted by van der Linden (2016), several item response models assume
response time and response accuracy are highly dependent processes. However,
the nature of this assumed relationship varies substantially between models; that
is, greater accuracy may be associated with either increased (e.g., Roskam, 1997) or
decreased response time (e.g., Thissen, 1983). Other models, such as hierarchical
models (e.g., van der Linden & Fox, 2016), permit separate response time and
accuracy estimates at the lower level, but allow for correlations of ability and
response time speed at the higher level.

Although a wide variety of models and purposes exist, it is not clear to what
extent response time patterns reflect the same qualities across different examinees.
For example, some examinees may spend more time on relatively difficult items
while others may spend less time on items that are difficult. In the current study,
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the relationship of item log response times to item differences in difficulty, mean
item response times, test position and cognitive complexity was examined within
subjects.

2 Method

2.1 Subjects

The examinees were 700 young adults at a military center. Examinees were
administered several tests, including the one in the current study.

2.2 Test

The Form 1 of the Spatial Learning Ability Test (SLAT; Embretson, 1997) was
administered by computer to all examinees. Both responses and response times on
the 28 SLAT items were collected. Figure 1 shows an item from SLAT. Examinees
are instructed to select the alternative that represents the stem when folded.

2.3 Variables Analyzed

Several variables were scored for each item and analyzed within subjects. These
variables included mean item response time, IRT-calibrated item difficulty (βi,
Rasch model), item position on the test, item difficulty distance from examinees’
estimated ability (i.e., θj–βi ) and item cognitive complexity. Cognitive com-
plexity was based on prior modeling of SLAT item difficulty to represent the
complexity of folding the stem to the correct answer. On Fig. 1, folding the stem

Fig. 1 An item from the
Spatial Learning Ability Test
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to the correct answer (#3) involves a rotation of the stem by 90 degrees and three
surfaces carried, as the third side shown in the correct response is not attached to the
other two sides in the stem.

3 Results

3.1 Between Person and Between Item Correlations

Initially, descriptive statistics on both between person differences (N = 700) and
item differences (N = 28) were obtained. For persons, Table 1 shows that both
trait levels and mean item response times (i.e., response time were log transformed
to lnRT) varied. However, trait level was not correlated significantly with mean
log response time. For items, Table 2 shows that item difficulty and response
time also varied substantially. The inter-correlations of these variables as well as
correlations with test position are also shown. Notice that at the item level, difficulty
and response time have a moderately strong correlation. Test position, however,
was negatively correlated with response time, indicating that less time is spent
on items at the end of the test. Finally, cognitive complexity between items was
analyzed by separately regressing item difficulty and mean item response time on
the scored variables, degrees rotation and number of surfaces carried. A strong
multiple correlation was found for item difficulty (R = .799). The item difficulty
predicted from complexity had a moderate correlation (r = .495) with mean item
lnRT as shown on Table 2.

Table 1 Descriptive statistics between persons

Correlations
Person variable Mean SD Trait RT

Trait level .489 1.071 1.000
Response time (ln) 3.175 .267 .038 1.000

Table 2 Descriptive statistics between items

Correlations
Item variable Mean SD Diff. RT Position

Difficulty (Rasch βi) .000 .667 1.000
Response time (ln) 3.014 .182 .691 1.000
Test position 14.500 8.226 .029 −.483 1.000
Item complexity .000 .508 .799 .495 .121
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Fig. 2 Within person correlations of item response time with mean item response time

3.2 Within Person Correlations

Figure 2 presents the distribution of within person correlations with mean item
response time. Although the mean correlation is positive (Mn = .323), substantial
individual differences were found (SD = .226). The correlations ranged from −.587
to .799. Thus, the data show varying patterns of response times between persons.

Figure 3 presents the distribution of within person correlations of test position
with mean item response time. Unlike the between item correlation of −.483 for
mean item response time and test position, the within person correlation mean is
nearly .000 (Mn = .120). Further, individual differences were found (SD = .247),
with correlations ranging from −.870 to .708. Thus, examinees vary in whether they
spend more or less time on items during testing.

Figure 4 presents the within person correlations of the item difficulty and
mean item response time. While the mean correlation is positive (Mean = .240),
individual differences were observed (SD = .238), with correlations ranging from
−.547 to .764. A positive correlation indicates that an examinee spends more
time on difficult items while a negative correlation implies less time. Again, this
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Fig. 3 Within person correlations of item response time with test position

distribution contrasts sharply with the strong positive correlation of item difficulty
and mean response time found between items.

Figure 5 shows the within person correlations of relative item difficulty (i.e.,
absolute distance from their estimated trait level) and item response time. Although
the mean correlation is negative (Mean = −.183), again substantial individual
differences are observed (SD= .265), with a range from−.755 to .689. The negative
correlations are found when an examinee spends more time on items near their trait
level and less time on relatively or relatively hard items.

Finally, Fig. 6 presents the within person multiple correlations of the cognitive
complexity variables with mean item response time. The multiple correlations range
from .027 to .740, with a moderate mean (Mean = .350). The correlation must be
positive but nonetheless individual differences are observed (SD = .132).

Between person correlations of the within person correlates of item response time
are shown on Table 3. It can be seen, for example, that examinees whose response
times are strongly related to mean item response time are also likely to spend more
time on difficult items (r = .739) and somewhat more time on cognitively complex
items (r = .230). Similarly, it can be seen that examinees with high trait levels are
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more likely to have positive correlations of their pattern of item response times with
overall mean item response times, item difficulty and item cognitive complexity.

4 Discussion

The diversity of correlations examinees’ pattern of item response times with the
several variables in the current study do not provide widespread support for the
assumptions of the various response time models that involve response times. That
is, examinees vary widely in the correlates of their response times with variables
such as mean item response time, item difficulty, test position, relative item difficulty
and item cognitive complexity. Some examinees may have response time patterns
that are consistent with a particular response time model, but others will not. Thus,
a single response time model is not supported by the data in this study.

The results indicate significant strategy differences between examinees. Some
examinees will devote more time to difficult items; others will devote less time.
Some examinees devote less time to items near the end of the test, others devote
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more time. Item cognitive complexity has little impact on item response time for
some examinees; other examinees will devote more time to complex items.

The results obtained on the test used in the current study the Spatial Learning
Ability Test may well generalize to many other tests. In fact, SLAT is a rela-
tively homogeneous test, which is supported by internal consistency indices (i.e.,
Cronbach’s alpha is .881). More heterogeneous tests may find even more diverse
correlations of examinees’ response times.

Given this diversity, mixture models could be important in identifying classes of
examinees with varying strategies. Item parameter calibrations may vary by class as
well as the validity of trait level interpretations. Thus, data relevant to the response
processes aspect of validity or external relationships of trait levels aspect may vary
by class.

Mixture models available for continuous variables are being developed and
should be applied. Zopluoglu (2020) developed a finite mixture item response theory
model for continuous measurement outcomes. This model could be applied in an
exploratory mode to identify latent classes of examinees with varying item response
strategies.
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Table 3 Between person correlations of within person relationships of item response times

Overall test Item response time correlations within persons
Trait level Process time MnlnRT Diffic. Distance CogComp

Trait level 1.000 .038 .312 .406 −.556 .226
Processing
time (mean
lnRT)

.038 1.000 .118 .257 −.077 .188

Correlates of item lnRT within persons
Mean lnRT .312 .118 1.000 .739 −.387 .230
Item
difficulty

.406 .257 .739 1.000 −.550 .453

Relative item
difficulty
distance

−.556 −.077 −.387 −.550 1.000 −.387

Item
cognitive
complexity
(multiple R)

.226 .188 .230 .453 −.387 1.000
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Nonlinear Latent Effects in Diagnostic
Classification Modeling Incorporating
Response Times

Xin Qiao, Manqian Liao, and Hong Jiao

1 Introduction

The hierarchical modeling framework (van der Linden, 2007) has been widely used
in the analysis of response and response time (RT) data. In this modeling framework,
responses and RTs are modeled by separate measurement models at the first level;
the correlational structures that capture the dependence between parameters from
the item response model and the RT model are specified at the second level. To
utilize RT in diagnostic classification modeling, Zhan et al. (2017) proposed the
joint diagnostic classification model (DCM) of responses and RTs, where DCMs
provide fine-grained diagnostic information on respondents’ latent attributes.

Similar to the hierarchical modeling approach, a majority of studies assume
linear relationship between RTs and person ability (e.g., Thissen, 1983). Recently,
Molenaar et al. (2015) developed the bivariate generalized linear IRT modeling
framework that allows both linear and nonlinear relations between responses
and RTs, with the focus on applications in ability tests and personality tests.
It is important to accommodate nonlinear relationships in the joint modeling of
responses and RTs to further improve the measurement precision of latent ability.
In diagnostic assessments, however, such nonlinear latent effects have not been
investigated yet. Correctly modeling the potential nonlinear relationships between
responses and RTs may improve the estimation of respondents’ mastery status of
the latent attributes.
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Therefore, the current study aims to propose joint DCMs where both linear and
nonlinear relationships between responses and RTs can be accommodated. Although
the nonlinear relations can be diverse in real settings, the current study focuses on
two common nonlinear latent effects (i.e., interaction and quadratic effects).

1.1 Nonlinear Joint Cognitive Diagnostic Modeling

In the present study, the deterministic input, noisy-and-gate (DINA; Junker &
Sijtsma, 2001; Macready & Dayton, 1977) model is adopted as the measurement
model for item responses. The lognormal model (van der Linden, 2006) is used
as the measurement model for RTs. The two models are chosen due to their wide
use in research. Then, DCMs incorporating RTs (i.e., JRT-DINA-linear, JRT-DINA-
interaction, and JRT-DINA-quadratic) are proposed.

The JRT-DINA-Linear Model. At the first level, the dichotomous item response
Ypi is modeled using the DINA model with the logit scale parameterization (e.g.,
DeCarlo, 2011):

logit
(
P
(
Ypi = 1

)) = βi + δi

K∏

k=1

α
qik
pk , (1)

where β i and δi are item intercept and item interaction parameters, respectively;
αp = (αp1, . . . ,αpK)’ denotes the attribute pattern for respondent p given all K
attributes measured; qik = 1 indicates attribute k is required to correctly answer item
i while qik = 0 otherwise. The higher-order latent structural model (de la Torre &
Douglas, 2004) is further used to account for the correlation among latent attributes:

logit
(
P
(
αpk = 1

)) = γkθp − λk, (2)

where γ k and λk are attribute-specific slope and difficulty parameters. log(Tpi) is
modeled by an extension of the lognormal RT model (van der Linden, 2006) with
the latent ability as predictor, which is written as:

log
(
Tpi

) = ζi − ξp − ρθp + εpi, (3)

where ξp can be interpreted as person speed due to idiosyncratic item-solving
processes; ζ i is interpreted as item intensity due to differences in item character-
istics; εpi is the residual term and follows a normal distribution, εpi~N(0, σεi2).
The variation in log(Tpi) is assumed to be partly due to the latent ability under-
lying the responses, θp (Thissen, 1983). At the second level, item parameters
� i = (β i, δi, ζ i)’ are assumed to follow a multivariate normal distribution. Person
parameters �p = (θp, ξp)’ are assumed to be independently and normally dis-
tributed.



Nonlinear Latent Effects in Diagnostic Classification Modeling Incorporating. . . 59

The JRT-DINA-Interaction Model. The formulation of the JRT-DINA-
interaction model is the same as the JRT-DINA-linear model, except that the former
accommodates the interaction between person speed and the latent ability in the RT
measurement model:

log
(
Tpi

) = ζi − ξp − ρ1θp − ρ2ξpθp + εpi, (4)

where ρ1 and ρ2 capture the linear and interaction effects, respectively.

The JRT-DINA-Quadratic Model. The JRT-DINA-quadratic model accommo-
dates a possible nonlinear relationship between response and response time by
assuming a quadratic effect of the latent ability in the RT measurement model:

log
(
Tpi

) = ζi − ξp − ρ1θp − ρ2θ
2
p + εpi, (5)

where ρ1 and ρ2 capture the linear and quadratic effects, respectively. When ρ2 is
set to be 0, the JRT-DINA-interaction and JRT-DINA-quadratic models reduce to
the JRT-DINA-linear model. For all three models, we set μθ = μτ = 0 and σθ 2 =
1 for scale identification purposes.

1.2 Bayesian Parameter Estimation

In the present study, JAGS (version 4.3.0; Plummer, 2015) was used to estimate
the parameters using the full Bayesian approach with Markov chain Monte Carlo
(MCMC) method. A Gibbs sampler (Gelfand & Smith, 1990) was implemented in
JAGS.

The rest of the paper is organized as follows. First, we present a real data
application of the proposed models. Then, a simulation study based on the real data
application is conducted to evaluate the parameter recovery of the proposed models.
In addition, the impact of ignoring possible nonlinear latent effects on the person
parameter estimation, the attribute and pattern classification accuracy is evaluated in
the simulation study. Lastly, the conclusions from the current study are summarized
and future directions are discussed.

2 Method

2.1 Real Data Analysis

In this study, 10 dichotomously scored items from PISA 2012 mathematics assess-
ment were used. Seven attributes were assessed: change and relationships (α1),
quantity (α2), space and shape (α3), uncertainty and data (α4), occupational (α5),
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Table 1 Q matrix for PISA
2012 mathematics assessment
items

Items α1 α2 α3 α4 α5 α6 α7

CM015Q01 0 1 0 0 1 0 0
CM015Q02D 1 0 0 0 1 0 0
CM015Q03D 1 0 0 0 1 0 0
CM020Q01 0 0 1 0 0 0 1
CM020Q02 0 0 1 0 0 0 1
CM020Q03 0 0 1 0 0 0 1
CM020Q04 0 0 1 0 0 0 1
CM038Q03T 0 0 0 1 0 1 0
CM038Q05 0 0 0 1 0 1 0
CM038Q06 0 0 0 1 0 1 0

societal (α6), and scientific (α7). The Q matrix is shown in Table 1. The natural
logarithm of the RTs was calculated for the analysis. Zero RTs were treated as
missing values which can easily be handled by our Bayesian estimation scheme.
The final sample included 1582 respondents. No missing responses existed.

The JRT-DINA-linear, JRT-DINA-interaction, and JRT-DINA-quadratic models1

were fitted to this dataset. The potential scale reduction factor (PSRF; Brooks &
Gelman, 1998) lower than 1.1 was used as the convergence criterion. The Akaike
information criterion (AIC; Akaike, 1974), the Bayesian information criterion (BIC;
Schwarz, 1978), and the deviance information criterion (DIC; Spiegelhalter et al.,
2002) were used for model selection. According to Congdon (2003), when used in
the Bayesian MCMC estimation, the AIC, the BIC and the DIC model fit indices
were specified as:

AIC = D + p, (6)

BIC = D + p (logN − 1) (7)

DIC = D + pD, (8)

where D denotes the posterior mean of the deviance; p denotes the number of
parameters; N denotes the sample size; pD is the effective number of parameters,
which can be estimated by var(D)/2 (Gelman et al., 2014), that is, half of the
posterior variance of the deviance. Smaller values of the AIC, the BIC and the DIC
indicate better model fit.

A posterior predictive model check (PPMC; Gelman et al., 2014) was conducted
to evaluate the absolute model-data fit. Posterior predictive probability (PPP) values
near 0.5 indicate adequate model-data fit, while extreme PPP values (>.95 or <.05)

1For all three models, two Markov chains were used with 15,000 iterations per chain. The first
5000 iterations in each chain were discarded as burn-in and the thin interval was set as five.
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indicate systematic differences between observed and predicted data. The current
study followed Zhan et al. (2017) to evaluate the absolute model-data fit of RA and
RT separately. The sum of the squared Pearson residuals for respondent p and item
i (Yan et al., 2003) was used as the discrepancy measure for the RA model, which
is written as:

D
(
Ypi;αp, βi, δi

) =
N∑

p=1

I∑

i=1

⎛

⎝
Ypi − P

(
Ypi = 1

)

√
P
(
Ypi = 1

) (
1 − P

(
Ypi = 1

))

⎞

⎠

2

, (9)

where P(Ypi = 1) has the same distribution as that in the Eq. 1. The sum of the
standardized error function of log(Tpi) for respondent p and item i (Marianti et al.,
2014) was used as the discrepancy measure for the RT models. For the JRT-DINA-
interaction model and the JRT-DINA-quadratic model, the discrepancy measures for
the RT model are presented as:

D
(
log Tpi; τp, ζi, εi

) =
N∑

p=1

I∑

i=1

(
εi

(
log Tpi − (

ζi − ρ1τp − ρ2τpθp
)))2

, (10)

and

D
(
log Tpi; τp, ζi, εi

) =
N∑

p=1

I∑

i=1

(
εi

(
log Tpi −

(
ζi − ρ1τp − ρ2θ

2
p

)))2
, (11)

respectively. If ρ2 reduces to zero, Eqs. 10 and 11 become the discrepancy measure
for the RT model in the JRT-DINA-linear model.

2.2 Simulation Study

Data Generation and Analysis. The simulation study was based on real data
analysis. Sample size and test length were fixed at 1000 respondents and 10 items,
respectively. Q matrix was the same as shown in Table 1. Two data generating
models were used: the JRT-DINA-quadratic and JRT-DINA-interaction models.
Under each condition, the analysis models included the true data generating model
and the JRT-DINA-linear model. True parameters were fixed as the same as those
obtained from real data analysis. Thirty replications were conducted for each data
generating model condition.

Outcome Measures. Model fit indices AIC, BIC, and DIC were examined in
terms of how often they correctly identified the true data generating model. To
evaluate parameter recovery, the bias and the mean root mean squared error (RMSE)
were computed for person parameters. The correlation between estimated and true
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person parameter values were also calculated. The attribute correct classification
accuracy (ACCR) and the pattern correct classification rate (PCCR) were computed
to examine the classification accuracy of each attribute and each attribute profile.

3 Results

3.1 Real Data Analysis

According to Table 2, the JRT-DINA-linear model was favored by the AIC and the
BIC, while the JRT-DINA-quadratic model was favored by the DIC. The PPMC
procedure showed that all the three models had adequate model-data fit.

The posterior mean of the parameter estimates for ρ1 were negative in all models
(ranging from −.172 to −1.267), which indicates that respondents with higher
ability spent more time on the items in general. In the JRT-DINA-interaction model,
the posterior mean of ρ2 was estimated to be −.789, which indicates that the
relationship between ability and log RTs is positive for fast respondents but negative
for slow respondents. In the JRT-DINA-quadratic model, the posterior mean of
ρ2 was estimated to be .172, which indicates that the relationship between latent
ability and log RTs is negative for more proficient respondents but positive for less
proficient respondents. The 95% credible intervals for the posterior means of ρ1 and
ρ2 did not cover 0, which indicates that these parameter estimates were significantly
different from 0.

Figure 1 further demonstrates the linear or nonlinear relationship between latent
ability and log RTs based on the data analysis results. Three levels of person speed
ξ were chosen: – 0.5, 0, and 0.5. Item intensity ζ was fixed at 4.473, which was
mean of the posterior means of item intensity parameter estimates based on the
JRT-DINA-quadratic model.

3.2 Simulation Study

Table 3 shows the frequencies that the AIC, BIC, and DIC identified each analysis
model as the best fitting model under two data generating model conditions,
respectively. When the JRT-DINA-interaction model was used as the data generating
model, the AIC, BIC, and DIC all predominantly favored the JRT-DINA-interaction
model over the JRT-DINA-linear model. When the JRT-DINA-quadratic model was
used as the data generating model, the AIC and BIC tended to select the JRT-
DINA-linear model, while the DIC tended to select the JRT-DINA-quadratic model.
Therefore, it is suggested that the AIC and BIC should not the used for model
comparison. In addition, the JRT-DINA-quadratic model should be preferred based
on the DIC in the real data analysis.
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Fig. 1 Relations between latent ability and log response times (in seconds)

Table 3 Frequency of
identifying each model as the
best fitting model in
simulation study

DGM AM AIC BIC DIC NP mean_pD

JDI JDI 18 19 23 2055 5813
JDL 12 11 7 2054 6367

JDQ JDQ 1 2 25 2055 7310
JDL 29 28 5 2054 10,211

Note. DGM = data generating model; AM = analysis
model; JDI = JRT-DINA-interaction; JRL = JRT-DINA-
linear; JRQ = JRT-DINA-quadratic; Deviance = poste-
rior mean of the deviance; AIC = Akaike information
criterion; BIC = Bayesian information criterion; DIC =
deviance information criterion; NP = number of parame-
ter; pD = effective parameter number

As shown in Table 4, the correlations between the true and estimated person
parameter values obtained from the joint models with nonlinear latent effects were
higher than the joint model with only a linear latent effect in both data generating
model conditions. This indicates that ignoring nonlinear latent effects led to changes
in the rank order of the respondents. Further, both the mean absolute biases and
RMSEs of the person parameter estimates were inflated when nonlinear latent
effects were neglected. This suggests that ignoring nonlinear latent effects led to
larger estimation error in the latent ability parameters.

Table 5 presents the attribute and pattern correct classification rate in the
simulation study. Pattern correct classification rate decreased when the analysis
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Table 4 Summary of person parameter recovery in simulation study

Par. DGM AM Cor. Index Min. Mean Max. SD

θ JDI JDI .811 Bias .001 .403 2.852 .360
RMSE .054 .492 2.859 .327

JDL .788 Bias .000 .433 2.787 .370
RMSE .031 .888 3.579 .653

JDQ JDQ .903 Bias .000 .307 1.528 .245
RMSE .074 .373 1.549 .223

JDL .877 Bias .000 .846 3.945 .621
RMSE .058 .421 1.741 .245

Note. Par. = parameter;DGM = data generating model; AM = analysis model; Cor. = correlation;
JDI = JRT-DINA-interaction; JRL = JRT-DINA-linear; JRQ = JRT-DINA-quadratic; Min. =
minimum; Max. = maximum; SD = standard deviation; RMSE = root mean square error; Bias
= absolute bias

Table 5 Attribute and pattern correct classification rate in simulation study

ACCR PCCR
DGM AM α1 α2 α3 α4 α5 α6 α7

JRI JRI .882 .717 .854 .868 .857 .878 .873 .438
JRL .883 .712 .851 .866 .853 .874 .870 .433

JRQ JRQ .811 .777 .905 .903 .893 .867 .881 .449
JRL .813 .766 .905 .902 .884 .864 .881 .443

Note. DGM = data generating model; AM = analysis model; JDI = JRT-DINA-interaction; JRL
= JRT-DINA-linear; JRQ = JRT-DINA-quadratic; ACCR = attribute correct classification rate;
PCCR = pattern correct classification rate

model was JRT-DINA-linear model in both data generating model conditions. In
addition, attribute correct classification rates from the JRT-DINA-linear model was
lower or equal to those from the JRT-DINA-interaction model or the JRT-DINA-
quadratic model for all attributes except attribute 1. Therefore, ignoring nonlinear
latent effects between response accuracy and RTs in the cognitive diagnostic context
may lead to inaccurate classifications of the respondents.

4 Discussion

The current study proposed two joint DCMs with nonlinear latent effects between
latent ability and RTs. Two findings from the real data analysis supported the
nonlinear relationship between the responses and RTs: (1) the DIC model fit index
favored the JRT-DINA-quadratic model; (2) the nonlinear latent effect parameters
were significantly different from 0 in both models with nonlinear latent effects based
on the 95% credible intervals of the posterior means. The follow-up simulation study
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mimicking the real data structure showed that the DIC generally supported the JRT-
DINA models with nonlinear latent effects under all manipulated conditions. Given
that Celeux et al. (2006) suggested that the DIC prefers models with nonlinear
effects, future studies that generate data according to the linear model are needed
to further validate the use of the DIC. In addition, ignoring nonlinear latent effects
led to less accurate person parameter estimates and decrease of attribute correct
classification rates and pattern correct classification rates.

In future studies, simulation studies may evaluate more factors. In addition,
other nonlinear relations may be explored using different modeling techniques.
Lastly, empirical datasets with more items and complete Q matrices should be used.
Overall, this line of research is promising and more can be achieved in the future.
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Sequential Monitoring of Aberrant
Test-Taking Behaviors Based
on Response Times

Suhwa Han and Hyeon-Ah Kang

1 Introduction

Identifying aberrant test-taking behaviors is essential to ensure valid inference
on test outcomes. Traditional ways of detecting aberrant test-taking behaviors
have been to investigate the agreement between the pattern of response scores
within a person against a postulated measurement model, which are commonly
referred to as person-fit methods. Recently, the increasing use of computers for
testing has made response time (RT) data readily available, and various person-
fit studies with respect to RTs were explored (e.g., Boughton, Smith & Ren, 2016;
Marianti, Fox, Avetisyan, Veldkamp & Tijmstra, 2014; Meijer & Sotaridona, 2006;
Sinharay, 2018, 2020; Toton & Maynes, 2019; van der Linden & Guo, 2008;
van der Linden & van Krimpen-Stoop, 2003; Qian, Staniewska, Reckase & Woo,
2016). Although many person-fit studies have demonstrated the feasibility of using
RTs for identifying aberrant test-taking behaviors, most of the existing methods
utilize parameter estimates based on entire RT vectors of individuals, limiting
their use to post-hoc analysis only. In this study, we suggest sequential procedures
that monitor examinee RTs in real time and flag abnormalities as soon as they
occur. Particularly, a cumulative sum (CUSUM) chart and a sequential generalized
likelihood ratio (SGLRT) scheme are employed to allow for online detection. The
suggested procedures can be applied to real-time detection of aberrancy for various
types of assessments from traditional computer-based assessments to online testing
and learning tools.
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2 Sequential Procedures for Detecting Aberrant Test-Taking
Behaviors

To infer aberrant examinee behaviors, the current study considers RTs only. Hence,
the log-normal response time model of van der Linden (2006) is used for the
parametric evaluation throughout the study. The model assumes a normal density
for the logarithm of the RTs:

log Ti ∼ N
(
βi − τ, α−2

i

)
, (1)

where Ti denotes the RT of an examinee for an item i; τ is a latent variable
that indicates the working speed of the examinee; αi is the time-discriminating
parameter; βi is the time intensity parameter.

2.1 CUSUM-Based Approach

The CUSUM procedure (Hawkins & Olwell, 1998; Page, 1954), which was
originally developed for statistical quality control, is one of the most commonly
used methods for tracking continuous, but possibly small, changes in the data. In
this study, we suggest two CUSUM procedures based on (i) the observable RTs,
and (ii) the estimable speed parameter.

Let Ti denote the response time of an examinee on item i. The first CUSUM pro-
cedure detects an unusual shift in the observed RTs by continuously accumulating
the deviance between the observed RT and the expected RT under the in-control
distribution:

WT
i = log Ti − E (log Ti | τ)

√
Var (log Ti)

. (2)

Based on the monitoring statistic in (2), the upper and lower CUSUM are con-
structed as

C+
i = max

{
0,Wi + C+

i−1 − d
}
, and (3)

C−
i = min

{
0,Wi + C−

i−1 + d
}
, (4)

where C+
0 = C−

0 = 0 and d is the reference value. The reference value prevents
CUSUM from being a mere accumulation of random errors in the data and thus
needs to be carefully selected to optimize its performance. In the case of normally
distributed data with a specified shift size to detect, it has been shown that the
CUSUM statistic performs optimally when d is one half the magnitude between the
target value and the out-of-control value that one wants to detect quickest (Lorden,
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1971; Moustakides, 1986). When the CUSUM statistic exceeds a threshold, h, so
called decision interval, the procedure signals a systematic change in the examinee’s
RTs, indicating a potential aberrant test-taking behavior. The decision interval is
typically chosen such that the average number of observations evaluated until
CUSUM signals out-of-control is minimized. The change point is estimated as the
earliest time point at which |Ci | > h (Siegmund & Venkatraman, 1995).

The second CUSUM procedure monitors change in the speed parameter esti-
mates, τ̂ , under the log-normal model. The monitoring statistic, Wt , sequentially
tests the null hypothesis of no change in speed (i.e., H0 : τ = E(τ̂ )) via

Wt
i = τ̂ − E(τ̂ )

SE(τ̂ )
, (5)

where τ̂ represents the most updated speed estimate. TheWt statistic is then plugged
in the CUSUM equations presented in (3) and (4). The change point estimate is
calculated in the same manner as in the first CUSUM procedure.

2.2 SGLRT-Based Approach

The optimality of CUSUM is grounded on the assumption that there is one specific
size of a shift that CUSUM is to detect, meaning that the parameter after change
is known. Such assumption is often not met when no prior information on the
likely size of the shift is available. In this case, SGLRT procedure can be a
viable alternative to CUSUM (Basseville & Nikiforov, 1993, p.14). As the name
implies, SGLRT achieves online detection by sequentially conducting a generalized
likelihood ratio test as the process moves along. The problem of the unknown post-
change parameter is addressed by employing maximum likelihood (ML) estimates
for the likelihood ratio test.

The new person-fit statistic based on SGLRT evaluates two likelihoods sequen-
tially: the likelihood under the null hypothesis of no change (i.e., H0 : τ = τ0)
against the alternative hypothesis of change (i.e., H1 : τ = τ1). Let τ0 denote the
hypothesized speed level under no aberrances. SGLRT then evaluates deviance in
the likelihoods of τ sequentially across items:

sk = log
f
(
tk | τ̂k

)

f
(
tk | τ̂0

) =
k∑

i=l
log

f
(
ti | τ̂k

)

f
(
ti | τ̂0

) , (6)

where tk refers to the vector of logarithms of RTs evaluated at evaluation point
k. SGLRT statistic at each evaluation point contains most updated information on
the degree of deviance between the two competing likelihoods. When the statistic
exceeds its appropriate critical value, the procedure concludes there has been a
change in the examinee’s operating speed. As was done in the CUSUM-based
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approaches, the change point is determined as the earliest time point at which the
statistic exceeds an appropriate threshold (Siegmund, 1985):

v̂ = inf

{

k : max
1≤i≤k log

f
(
tk | τ̂k

)

f
(
tk | τ̂0

) > h

}

. (7)

2.3 Moving Sample Strategy

To allow for the real time detection of an abnormal shift in speed, the speed
parameter has to be constantly updated to reflect a potential fluctuation in speed. A
majority of existing applications of RT models, however, assumed that an examinee
operates at a constant speed throughout the entire test. Particularly, when it comes
to person-fit methods, calculating the fit statistic under the assumption of constant
speed for all items can compromise detection power if an examinee indeed exhibited
aberrant RTs. This consequence is unsurprising given that bias can be introduced in
the speed parameter estimate from the contaminated observations. As a solution,
we suggest a moving sample strategy that can avoid the parameter contamination,
and yet, that can capture the changing speed estimate with increased sensitivity. The
scope for the usual constant speed assumption is narrowed down from the entire test
to each of the moving sample.

Figure 1 illustrates the possible sampling strategy under the scenario that
abnormal upward shift in speed occurred toward the end of testing due to test
speededness or loss of motivation. In this scenario, the expected speed (i.e., E(τ̂ )
in Wt and τ̂0 in sk) can be defined as the speed level that can be confidently said
to be from the normal state. As the procedure seeks to detect changes in the later
part of testing, we may employ a certain number of observations at the beginning
of the test as a reference sample (marked as solid blocks in the figure) and use it
throughout the sequential hypothesis testing. On the other hand, the most up-to-
date speed level can be estimated based on a moving sample of a fixed size at each
evaluation point as shown in the figure with blue diagonal patterns. As a result, the
provisional speed estimate based on moving samples can reflect the most recent
change because the sample constantly evolves by adding the most recent item into
the sample and discarding the oldest one. The detection program can initiate the
monitoring procedure as soon as it obtains the first moving sample.

3 Simulation Study

A Monte Carlo simulation study was conducted to investigate the performance of
the proposed methods. The simulation study was designed to emulate a fixed-length
large-scale educational testing situation where examinees tend to exhibit aberrant
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Fig. 1 A possible moving sampling strategy. The solid blocks represent a reference sample from
which the benchmark speed estimates (i.e., E(τ̂ ) and τ̂0) are calculated. The crosshatched blocks
represent moving samples to reflect the most recent speed level

response behaviors toward the end of testing for reasons such as test speededness
or loss of motivation. The focus of evaluation was on how accurately the proposed
methods can identify individuals whose response times go through a systematic
change and, if accurately identified, how promptly the change was signaled.

3.1 Data Generation and Simulation Design

Fictitious response time data for 1000 examinees were generated according to (1)
for each replication. Examinees’ true speed parameters, τ , were simulated to follow
N(0, 1) whereas the time discrimination parameters, αi , were assumed to follow
N(2, 0.12). The true time intensity parameters, βi , were generated from N(0, 1) to
place βi and τ on the same scale.

To simulate aberrant response times, 10% of the examinee population (i.e.,
100 examinees) was randomly selected to exhibit change in speed during the
test. A change point was assumed to occur at the 16th item, and so the aberrant
examinees’ τ was increased by adding a constant (e.g., 0.5) at the 16th item. The
study considered 3 factors: (i) test length, (ii) magnitude of change in τ (i.e., Δτ
henceforth), and (iii) number of items in the reference/moving samples (sample
size henceforth). Specifically, the simulation conditions were fully crossed by three
different test lengths (30, 40, 50 items), four different Δτ s (0.5, 0.75, 1, 1.25) and
three different sample sizes (5, 10, 15 items), yielding a total of 36 conditions. In
addition, different reference values, d, in the CUSUM procedures were tested to
find out an optimal value that maximizes detection power given the nominal Type I
error.
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3.2 Evaluation

Calculation of the proposed statistics required known item parameter values. The
study employed estimated item parameters to reflect real world settings where true
parameters are unknown. Items were calibrated based on the Bayesian estimation
procedure (Fox, Klein Entink, & Klotzke, 2017). Critical values for both the
CUSUM procedures and the SGLRT procedure were empirically obtained by gener-
ating the null distributions through Monte Carlo simulation. The study defined Type
I error as the proportion of incorrectly identified examinees out of all examinees.
Therefore, the maximum statistic was taken within each examinee and used as
a representative value to determine aberrancy. Power was defined accordingly as
the proportion of examinees who were correctly identified as aberrant. By virtue
of having sequential statistics, the procedures were evaluated on an additional
criterion: average run length (ARL). Two types of ARL were considered. ARL1,
which is defined as the number of observations between the earliest possible
detection point and the actual change point, was used to measure the promptness
of detection. The shorter the ARL1 is, the better the sequential procedure deems to
work. ARL0, on the other hand, refers to the number of observations taken from the
onset of an evaluation until false detection. ARL0 can be considered analogous to
Type I error rates in classical hypothesis testing. One would like to see longer ARL0
in the sense that the procedure was slow and conservative to make an errorneous
signal. The performance of the proposed methods was also compared with another
response-time-based person-fit statistic, namely χpf (Sinharay, 2018).

3.3 Results

Figure 2 presents power rates of the proposed statistics and χpf across the simulation
conditions. Each subplot is conditioned on the Δτ size while the three test lengths
were plotted on the X-axis. The four detection statistics and three sample sizes were
represented as distinctive point and line types, respectively. The results suggest
that the proposed statistics can achieve high power rates even with Δτ as small
as 0.5 when the sample size is sufficiently large (i.e., 15 items). The impact of the
sample size became smaller as the Δτ size increased. When Δτ was 1 or higher,
the power rates approached 1 regardless of the sample size. Comparisons across the
different detection methods revealed somewhat distinguishable performance from
each procedure. Overall, among the sequential procedures, the CUSUM procedures,
CT and Ct , outperformed the s statistic while the two CUSUM procedures showed
mixed results. For example, for Δτ = 0.5, when the sample size was 5, Ct

consistently outperformed CT while this pattern was reversed when the sample size
was 10. In all cases, the detection methods uniformly produced high power rates
as the Δτ increased. χpf performed subpar under the current simulation settings,
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Fig. 2 Power rates across different Δτ , test length and sample size conditions

particularly when Δτ was small. Longer tests led to slightly higher power rates
when the test length increased from 30 items to 40 items, but the change afterwards
was generally negligible.

Table 1 contains more detailed information on power, Type I error rates and ARL
results across the statistics for the sample size of 15 condition. The results suggest
that the sequential procedures were able to detect aberrant examinees with high
power rates while maintaining Type I error rates near the nominal level. Although
the results from the sample size of 5 and 10 conditions were omitted, we note that
Type I error rates were all well controlled regardless of simulation conditions. χpf
was found to be over conservative. The two CUSUM procedures had overall similar
performance, as alluded to earlier. However, their ARL results differed as ARL1
of Ct was relatively larger than that of CT , indicating that the τ -based CUSUM
detection was less prompt than its counterpart. In fact, it seems that the better
ARL1 in the RT-based CUSUM came at the expense of ARL0. With much smaller
ARL0’s than the other two methods, the RT-based CUSUM was quicker on average
to produce an errorneous signal. The impact of Δτ can be clearly seen again in
terms of ARL1. As Δτ increased, ARL1 became noticeably smaller, while the Type
I error rates and ARL0’s remained in a comparable range.
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Table 1 Power, Type I error and ARL for the proposed procedures for reference/moving sample
size of 15 condition

Procedure Statistic Δτ Power Type I error ARL1 ARL0

CUSUM CT 0.5 0.810 0.050 6.675 10.041

0.75 0.986 0.048 4.311 9.858

1 1 0.051 2.788 9.836

1.25 1 0.050 1.896 9.858

Ct 0.5 0.829 0.050 9.526 12.170

0.75 0.983 0.053 7.496 12.187

1 1 0.050 5.972 12.212

1.25 1 0.050 4.915 12.203

SGLRT s 0.5 0.760 0.049 9.480 12.125

0.75 0.979 0.049 7.378 12.068

1 1 0.049 5.372 12.189

1.25 1 0.049 4.296 12.108

Sinharay χpf 0.5 0.195 0.032 NA NA

(2018) 0.75 0.532 0.033 NA NA

1 0.876 0.035 NA NA

1.25 0.991 0.034 NA NA

4 Application to Process Data

One potentially useful application of the proposed methods can be made with regard
to innovative items. With the increasing emphasis on digital literacy skills, more and
more computer-based testing programs started to incorporate innovative items that
require a series of interactions with computers (e.g., clicking a button, dragging an
object). All those user-computer interactions are recorded in log-file data, which
are also known as process data. Process data provide interesting information about
examinees’ problem-solving behaviors by providing the type and sequence of entire
actions that examinees took over the course of testing. More importantly, timing
information is stored in the process data as computers automatically record each
user action with its corresponding time stamp. By utilizing the timing information
in the process data, we can deduce aberrant problem-solving behaviors.

4.1 Data

We analyzed process data from the Programme for the International Assessment of
Adult Competencies (PIACC) 2012 survey. The PIACC survey measures a range of
basic skills for adults including basic reading and numeracy competency. The survey
also measures information technology skills of individuals through the problem
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solving in technology-rich environments (PSTRE) items. The PSTRE items require
examinees to undertake a sequence of interactions with computer to access, retrieve,
and save information for the successful completion of the requested task. Each user
action was recorded with an appropriate label along with timestamp information. We
extracted the RTs for each unique action and used them as the basis of our analysis.
By treating the actions as if they are items, each unique action’s time intensity
parameter was calibrated according to the log-normal model. For the sequence of
actions for each examinee, the CUSUM-based methods were applied to describe
changes in examinee working speed. The moving sample strategy illustrated in
Fig. 1 was applied. Specifically, for each individual, a sequence of actions for their
first item was used as the reference sample, while the moving sample size was set to
contain the same number of actions as in the reference sample. Critical values were
calculated based on bootstrap simulations with the nominal level of 0.05.

4.2 Results

Figure 3 presents the charting statistics of the two CUSUM procedures for the
PSTRE items from three different examinees in the PIACC 2012 survey. The
subfigures on the left column plots the RT-based CUSUM statistics (i.e., CT ),
and the column on the right presents plots of the τ -based CUSUM statistics (i.e.,
Ct ) across the examinees’ sequence of actions. The subfigures from each row
correspond to a single examinee. Note that the two CUSUM statistics show opposite
directions because of the inverse relationship between RT and speed.

The examinee on the first row represents a person whose action sequences follow
the patterns expected from the parametric model. The CUSUM statistics of this
examinee—both RT-based and τ -based—were maintained around zero. This may
indicate that this person’s response time patterns were normal throughout the testing.
The examinees on the second and third row, on the other hand, exhibited response
times that significantly deviate from the initial state. To be specific, the upper CT

statistics for Examinee 2184 showed a constantly increasing pattern, and this person
ended up being flagged around the 50th action. In contrast, the lower CT statistics of
the examinee stayed near zero. This means that this person acted significantly slower
than expected as he/she progressed through the exam. This pattern may signify a
fatigue effect with slower reaction times. Interestingly, the examinee on the last row
exhibited a completely opposite pattern. The examinee acted just as expected at
the beginning of the test session, but acted faster and faster after half-way through
the session. This pattern may be indicative of an inattentive test-taking behavior
where in this context the examinee simply clicks around randomly without genuine
problem solving.
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Fig. 3 CUSUM charts from PSTRE items in PIACC 2012 survey for three examinees

5 Discussion

Detecting abnormal test-taking behaviors is essential in psychological measure-
ments to promote the validity of tests. As with the increasing use of RTs in
psychometric research, RTs have been found to provide a valuable source of
information in identifying aberrant behaviors, as they work as a proxy variable that
manifests test-taking strategies. The current study presented sequential procedures
that detect abnormalities in examinee RTs. The sequential procedures conduct
continuous hypothesis testing where the degree of anomaly is evaluated each time
the procedure receives a new observation. The simulation study results indicate
promising outcomes: the proposed methods detected aberrant examinees with high
detection power, even when the size of change in speed is quite small. The
application to the real-world process data showed that the presented procedures can
be useful in describing each individual’s fluctuating RTs and speed in problem-
solving items.
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A few aspects of the study should be noted for discussion. As mentioned earlier,
detection rates decreased as the reference/moving sample size decreased. This is an
expected result because measurement error increases with a smaller sample size.
When a larger τ change was imposed, however, the smallest sample condition (i.e.,
5 items within the window) performed comparable to the larger sample conditions.
Despite the seemingly obvious advantage of having a larger sample, caution should
be exercised when determining the sample size. Although a larger sample size
may be more appealing to obtain more precise estimates, a sample size that is
too large will yield monotone speed estimates across items and be less sensitive
for capturing ever-changing speed levels. In practice, an optimal sample size can
be determined as the balanced point between the measurement error and the test
length. For example, if we apply a reference/moving window size of 15 for a 20-
item test, the detection power will drop simply because the procedure does not
have enough evaluation points from which to accumulate evidence. We also note
that our proposed methods can be more useful for detecting changes that continue
for an extended duration because the methods are grounded on the principle of
the accumulation of information. Plus, the fact that the suggested moving sample
strategy relies on the reference sample at the beginning of testing makes our methods
more suitable for behaviors from a continuing cause, such as speeded responses
due to time limit or loss of motivation due to low stakes. However, our methods
can still detect cases where an abnormal pattern appeared temporarily. In this case,
the detection power may diminish because of small number of observations from
the aberrant state. Nevertheless, if the magnitude of a change is sufficiently large
despite the short duration, the procedures should be able to detect the change since
the instance of the large and abrupt change is still well reflected in the maximum
statistics within the person.

The paper concludes with implications and suggestions for future research.
Indications based on RT only may not be sufficient. By incorporating another
important source of information—response scores—into the procedure, examinee
aberration may be detected with higher detection power and lower Type I error
rates, promoting more confident decision. Another potential direction could be to
extend our methods to multiple change point problems. It is entirely possible that
examinees may change their working speed a few times during the test. Detecting
multiple change points, if any, would allow for more fine-grained descriptions on
examinee test-taking behaviors. With a recently opened era of online learning and
testing, we believe that the suggested procedures can be highly relevant and timely.
The fundamental ideas of the procedures—continuous testing and moving sample
strategy—are flexible enough to be extended to other settings. For instance, in online
learning settings where students learn a certain domain/skill through a sequence of
tasks, the proposed methods can be used to detect dormant or haphazard actions and
nudge the subjects on-site based on the detection results.
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Estimating Approximate Number Sense
(ANS) Acuity

Anne Thissen-Roe and Lewis Baker

1 Approximate Number Sense Acuity: Psychophysical
Scaling Models as Item Response Models

The Approximate Number Sense (ANS) is a psychophysical construct thought to
underlie quantity estimation, number processing, and the acquisition of number and
math concepts during childhood (Feigenson, Dehaene & Spelke, 2004; Halberda
& Feigenson, 2008). Humans (and some non-human animals) have numerosity-
selective neurons that fire in response to specific quantities, and not in response
to other quantities. This hard-wired brain response is approximate, with some
activation for neighbor quantities and overlap between different neurons (Dietrich
et al., 2016). The precision of the numerical representation increases through
childhood and into adulthood, and differs between individuals of the same age
(Halberda & Feigenson, 2008). ANS acuity can be measured through direct quantity
estimation, or through the use of speeded quantitative comparison items. We will
focus on the latter in this chapter.

As theories of ANS follow within the general psychophysical scaling tradition
of Weber and Fechner (Odic, Im, Eisinger, Ly & Halberda, 2016), metrics of
ANS acuity commonly include an “internal Weber fraction” w. This fraction is
the minimum difference between two quantities at which the greater quantity can
be reliably recognized by an individual, expressed as a fraction of the smaller
quantity. The Weber fraction w of an individual relates to the ratio r of the quantities
compared, the improper fraction of the larger over the smaller quantity, which yields
75% accurate performance by that individual (Hunt, 2007):
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w = r − 1 . (1)

Two competing mathematical models of internal sensory representations, including
ANS, yield similar estimates of w via distinct forms of an equation predicting error
rates from w, through least squares (Price, Palmer, Battista & Ansari, 2012) or by
maximum likelihood estimation (Odic, Im, Eisinger, Ly & Halberda, 2016). Both
models call for numerosity-sensitive neurons with overlapping tuning curves each
responding to an approximate quantity, assuming that the tuning curves are Gaussian
around the quantity of greatest sensitivity. The primary difference is in the spacing
of the curves as the quantities to which they are sensitive increase, and the width
of the tuning curves. The Linear Spacing Model calls for regularly spaced tuning
curves as quantities increase, with increasingly wide tuning curves. Neurons in
the Linear Spacing Model are sensitive to large quantities and are less particular
about the quantities to which they respond than their counterparts that respond
to small quantities. The Logarithmic Spacing Model calls for tuning curves of
regular spacing and equal width on a log-transformed scale of quantity. As with the
Linear Spacing Model, tuning curves for larger quantities are broader, specifically
proportional to the quantities they register.

Prior research suggests that children gradually transition to a neural repre-
sentation of numerosity consistent with the Linear Spacing Model as they learn
to recognize and use symbolic numbers. By comparison, young children (and
monkeys) tested with items that do not involve reading symbolic numbers produce
data more consistent with the Logarithmic Spacing Model (Feigenson et al., 2004;
Dehaene, 2007; Dietrich et al., 2016). An associated theory predicts that the same
neural representation of the ANS is used in both symbolic and non-symbolic
presentations in adults, albeit with an additional step wherein symbolic numbers
are recognized and associated with their quantities, which impacts item response
time. This theory predicts that regardless of item presentation, the Linear Spacing
Model will fit adult response data better than the Logarithmic Spacing Model.

When a quantitative comparison item is presented, the two models imply
mathematical functions of performance, or error rate, as a function of the internal
Weber fraction w and the ratio of quantities r. Both functions take the familiar form
of normal ogives in the inverse of w. Easier items have steeper slopes; all approach
a limit of 50% correct performance (chance performance) as 1/w goes to 0, but the
slope determines the critical location of 75% correct performance.

The Linear Spacing Model predicts:

P(correct) = Φ(
1

w
∗ (r − 1)√

r2 + 1
) (2)

and the Logarithmic Spacing Model predicts:

P(correct) = Φ(
1

w
∗ | log r|√

2
) (3)
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Fig. 1 Left side: Trace lines as a function of w. Upper panel: Trace lines of the Linear Spacing
Model as a function of the internal Weber fraction w, at three ratios of numerosity: 1.1, 1.2, and
1.5 (left to right, and light to dark). Lower panel: Trace lines of the Logarithmic Spacing Model
as a function of w; matching colors have matching ratios in all panels. Right side: Trace lines
as a function of 1/w. Upper panel: Trace lines of the Linear Spacing Model as a function of 1/w.
It is more apparent in this form that the trace lines are the upper halves of normal ogives. Lower
panel: Trace lines of the Logarithmic Spacing Model as a function of the internal Weber fraction
w. Bottom center: Comparison of slope terms of the Linear and Logarithmic Spacing Models

(Dietrich et al., 2016; Dehaene, 2007).1

This is not the usual form in which the error rate predictions are made in
the ANS literature. However, presented in this form, it is readily apparent that
the psychophysical scaling models make their predictions in the form of item
characteristic curves, and w can be estimated using the latent trait methods common
in item response theory. Trace lines for both models are presented in Fig. 1.

From the item response theory perspective, a few features are worth noting. First,
the items have only a single parameter, r, which is an observed property of the item
and does not require (or permit) calibration. Second, both models place persons and
items on the same scale, by way of the relationship between r and w.

1Although Dietrich et al. (2016) give the logarithm in Equation 3 as base 2, w estimated using that
base differ from the linear model by a constant scale factor. Dehaene (2007) does not specify a
logarithm base, but his footnote 1 implies natural logarithm, which gives a much closer match to
the linear model.
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As has been noted before, the two models make quite similar predictions of
behavior at the individual level. The trace lines shown in Fig. 1 are visually similar
between the top and bottom panels. The Logarithmic Scaling Model gives slightly
higher performance estimates, particularly for easy items. This difference has
usually not been detectable in experimental contexts involving behavioral measures
(Dietrich et al., 2016), but the fit of the two models can be compared in a sufficiently
large sample.

In essence, w is a latent trait with two associated item models, which are uniquely
grounded in psychophysical theory and modern neuroscience research. The theories
and models are not limited to ANS, but past research shows them to be applicable.
In the next section, using real-world data from two ANS scales, we compare and
relate the parameters, fit and behavior of these models to “ordinary” IRT models.

2 An Application to Data: Magnitudes

Two scales designed to measure ANS exist within the pymetrics talent-matching
platform. Each scale comprises 40 highly speeded quantitative comparison items of
a single format. The items vary considerably in difficulty, where item difficulty is
manipulated by the ratios of the paired quantities.

One scale, Fractions, measures ANS using symbolic stimuli: pairs of fractions,
as its name suggests. A user is presented with two fractions side by side, and must
choose the larger. The ratio of the two fractions is manipulated in order to increase
or decrease difficulty. The left-right position of the correct option and known
confounding variables, such as the presence of specific digits in the denominator,
are counterbalanced.

The other scale, Dots, measures ANS using non-symbolic stimuli. Specifically, a
pymetrics user is presented two side-by-side arrays of dots scattered on rectangular
fields, and must select the array with proportionally more yellow dots in a mixture
of yellow and blue. (The colors were selected such that recognizing them does not
depend on color vision; the blue is substantially darker.) The numbers of blue and
yellow dots are manipulated so as to contrive a range of ratios of proportions yellow,
parallel to the difficulty manipulation in Fractions. Automatic item generation is
used to produce item clones with the specified dot counts, with the variably-sized
blue and yellow dots distributed in a unique, non-overlapping pattern for each user.
As in Fractions, left-right position and some known confounds, such as the presence
of subitizable dot counts, are counterbalanced. In both scales, items are presented
very briefly and followed with a visual mask, in order to force users to estimate,
rather than calculating or counting.

Dots and Fractions are always administered as a single application, called
Magnitudes. See Baker and Thissen-Roe, this volume, for a more comprehensive
discussion of the construct relationship between the symbolic and non-symbolic
measures, their design, and their place in the larger pymetrics battery.
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A sample was drawn of 38,435 users of the pymetrics platform, who had
completed Magnitudes between November 2018 and August 2020, in the course
of a job application or placement inquiry. A small number of users had incomplete
records due to technical difficulties during completion. Of the sample drawn, 38,419
users had usable data for Dots, and 38,424 had usable data for Fractions. Over 89%
of users selected English as their primary language, with the remaining selecting 25
other pymetrics localizations. The sample contained 14,605 men, 11,584 women,
and 35 reporting as other, with 12,146 not disclosing.2 Applicants disclosed their
ethnicity as 12,537 White or European, 10,467 Asian, 660 Hispanic or Latino,
650 Black or African, and 2,099 as another race or ethnicity. The largest volume
of applicants reported their citizenship as Australia (13,911), the United States
(4,393) and the United Kingdom (1,932). As job applicants, all users were adults
participating in the workforce.

2.1 Least Squares Estimation of ANS

In the present work, several methods were used to estimate the level of the
underlying ANS construct in each of these individuals, separately within Dots and
Fractions.

First, an individual’s Weber fraction can be estimated using the least squares
method of Price, Palmer, Battista and Ansari (2012). For w from 0 to 1 in steps
of 0.01, the expected error rates at each ratio tested are calculated. For each
individual and each potential w, the summed squared difference between observed
and expected error is calculated, and the wwith the least summed squared difference
is selected for each individual.

This procedure has certain limitations. Most obviously, it introduces an absolute
floor3 beyond which poor performance cannot increase estimated w, because values
of w above 1 are not considered. At the time Magnitudes was designed, values of
w above 1 were not expected to appear in the user population; the extant literature
formed the basis of the hypothesized population distribution. In actual practice, a
floor effect was observed (see Fig. 2).

By a similar effect, a response pattern with perfect accuracy always results in the
theoretically implausible estimate of w equal to zero. The maximum difficulty of
the items presented constrains the next-lowest value of w which may be obtained
through this method, with all items correct except for one. In our sample, we clearly
see a gap between the perfect scores and the next-lowest scores.

2Pymetrics operates on voluntary data only, and as such demographic information is limited by
applicant disclosure.
3This boundary might be considered a ceiling, as it is the upper limit of w; however, as high values
of w go with poor performance, low ability, and low scores on traditional scales, we think of it as
a performance floor.
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Fig. 2 Left side: Observed sample distributions of w, estimated by least squares.Upper panel:
Dots. Note that aside from ceiling and floor effects, the distribution appears reasonably lognormal,
with a long right tail and no negative values. Lower panel: Fractions. Right side: Sample
distributions under a logarithmic transform, with a normal distribution for comparison.
Upper panel: Dots. Note that perfect response patterns, assigned w= 0 by the scoring algorithm,
are not shown in this panel. Lower panel: Fractions. Perfect response patterns are not shown

Despite these limitations, the least squares estimates provide usable individual
scores, as well as certain useful information regarding the population distribution of
ANS as an internal Weber fraction. Figure 2 shows the sample distributions of w,
directly and under a logarithmic transform. The estimates of w appear to conform
reasonably well to a lognormal distribution, a finding we use in our subsequent latent
trait estimation.

2.2 Latent Trait Estimation of ANS

Latent trait estimation was used to produce estimates of w under both the Linear
and Logarithmic Scaling Models, as well as several ordinary IRT models for
comparison. Calibration of item and population parameters was accomplished using
an algorithm similar to that described by Bock & Aitkin (1981), with fixed 41-point
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quadrature spanning [−5, 5]. For scoring of individuals, the Bayesian expectation a
posteriori (EAP) method was used, again with fixed 41-point quadrature.4

Following from the finding of an approximately lognormal distribution of w in
the previous section, a lognormal population prior was desirable for estimation of
the Linear and Logarithmic Scaling Models, as was logarithmic spacing in the fixed
quadrature. Accordingly, a normally distributed θ was defined such that

w = eθ (4)

As noted, both the Linear Spacing Model and the Logarithmic Spacing Model call
for only a single parameter, r, which is an observed property of the item and does not
require (or permit) calibration. On the other hand, the mean and standard deviation
of θ as it underlies w are latent parameters which need not be fixed for identification.
In fact, the standard normal distribution often used as a prior for estimation of
theta in IRT is likely inappropriate. Based on observations of the distribution of
least-squares w and its logarithm, the distribution of θ is probably not centered at
zero. Therefore, the parameters of the prior distribution, rather than the items, were
calibrated.

An immediate advantage of latent trait estimation of w over least-squares esti-
mation is the elimination of the structural floor effect. In cases of low performance,
values of w above 1 may be obtained as scores, extending out to the point at which
there are no longer sufficiently easy items to which to compare a user.

In addition, ordinary logistic IRT models were fit to the same data, using a fixed
standard normal distribution as a prior. The models fit were the three-parameter
logistic model (3PL), the two-parameter logistic model (2PL), a constrained version
of the 3PL in which the lower asymptote was fixed to 0.5, and a further constrained
3PL in which the lower asymptote was fixed to 0.5 and the discrimination parameter
was fixed to 1.

2.3 Results

Latent trait estimation permits evaluation of the fit of all six models to the available
data, and comparison of models fit to the same dataset via the Bayesian Information
Criterion (BIC). We chose the BIC over competing information criteria because
it has a severe penalty imposed on less parsimonious models, a feature particularly
important when working with large datasets. The BIC values obtained for all models
are presented in Table 1.

4In anticipation of more involved future research, the authors implemented the calibration and
scoring algorithm as a Java application, in lieu of using any of several publicly available estimation
packages which would likely have sufficed for the current study.
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Table 1 Bayesian Information Criterion (BIC) for All Latent Trait Models. The degrees of
freedom are given as k

Model k Dots BIC Fractions BIC

Linear Spacing Model 2 1,099,021.2 989,122.6

Logarithmic Spacing Model 2 1,103,894.7 998,994.4

Three-Parameter Logistic 120 987,110.0 878,570.2

Two-Parameter Logistic 80 988,630.6 879,157.4

3PL, fixed asymptote 80 986,781.8 877,991.9

3PL, location only 40 1,029,215.7 900,699.3

Several features are noteworthy. First, despite the superior theoretical grounding
of the two psychophysical models, all of the IRT models fit better to both datasets.
A likely partial explanation for this finding is that the IRT models all have more free
parameters, and are capable of adapting more to the data. To the extent that this is
the case, the IRT models may be useful in finding the causes of the misfit of the
psychophysical models. This analysis is presented in the following section.

Second, between the two psychophysical models, the Linear Spacing Model gave
a better fit to the data from both Fractions and Dots. This is consistent with the theory
given in Dehaene (2007) that calls for a single underlying system that changes its
nature with exposure to symbolic numerals. It is worth noting that we found only a
modest correlation between w from the two scales (see Baker and Thissen-Roe, this
volume), which is harder to explain under that theory.

From conversations between the authors and test-takers, we tested a variation
of the psychophysical models for Dots that assumed a misinterpretation of the
instructions. Although users are instructed to select the display with a greater
proportion of yellow dots relative to all dots in the display, many users may have
misinterpreted this to mean the greater proportion of yellow dots relative to blue
dots. We find just that: a variation of the psychophysical models for Dots that
used the ratio of yellow to blue rather than yellow to total fit considerably better,
giving BIC values of 1,065,950.0 and 1,063,244.2 for the Linear and Logarithmic
Spacing Models respectively. This suggests that many of our users are interpreting
the instructions for Dots to ask for the higher odds of yellow, rather than the higher
fraction of the total (and we ought to clarify our instructions); however, it is also
notable that to the extent that the odds ratio is used, the Logarithmic Spacing Model
fits better – even though all thirty-eight thousand users were adults in the workforce,
applying to jobs that use symbolic numbers.

Third, among the IRT models, the same pattern of fit results was observed in
both Dots and Fractions. In both cases, best fit was obtained with the constrained
three-parameter logistic model in which the lower asymptote was fixed to 0.5,
corresponding to a random draw between the two response options. Allowing the
lower asymptote to vary did not improve model fit enough to compensate for the
additional free parameters required. By contrast, the further-constrained model, in
which item discrimination was fixed to unity, performed worst of the four on both
datasets (though still better than the psychophysical models). It is apparent that some
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of the items on each scale are better measures of ANS than others; at least some of
this may be attributable to previously known confounds that were counterbalanced
rather than constrained.

Both the Linear Spacing Model and the Logarithmic Spacing Model place items
and people on a common scale of ANS acuity and item difficulty, a relationship
captured in the linear correspondence between w and r at the 75% performance
level. This relationship mirrors the relationship in the logistic IRT models between
an individual’s latent trait standing θ and an item location parameter b. It follows that
a mapping function that relates w to θ should match a mapping function between
r and b, at least in the case of the most constrained IRT model. That is, given a
function that predicts θ from w, one should be able to use the same function to
predict b from r− 1, a useful feature should any new items be constructed!

As it turns out, the mapping occasionally holds but does not reliably do so;
confounding item features and, potentially, alternate response strategies affect fitted
b parameters, which then vary from their predicted values based on the r alone. In
the cases of Dots and Fractions, the b parameters suggest that nearly all of the items
are too easy for a majority of users, easier than expected given their ratios, although
incorrect responses still occur. This effect is shown in Fig. 3.

3 Conclusion

We have shown here that psychophysical models based on Weber’s law, applied to
speeded quantitative comparison items as a measure of the Approximate Number
Sense (ANS), imply item characteristic curves. The results indicate that ANS acuity
can be estimated as a latent trait, with practical benefits relative to least squares
estimation, such as an expanded range of measurement.

In our data, the Linear Spacing Model and Logarithmic Spacing Model did not
fit as well as the more flexible, but less theoretically grounded, logistic models.
There are variations on the psychophysical models that include terms for known
confounds, such as dot size and sparsity (DeWind, Adams, Platt & Brannon,
2015). It is possible that a more complex and flexible model would enable the
psychophysical models to fit as well as the logistic models.

We were also interested in the time it takes users to respond to each pair of
quantities. In the course of the research described in this chapter, we did some
initial exploration in the direction of fitting joint response time models, specifically
using the hierarchical framework (van der Linden, 2006, 2007). However, diffusion
models (Ratcliff, 1978; Ratcliff & Smith, 2008) were a better theoretical fit
(Dehaene, 2007). For now, we leave response time modeling will to future studies.
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Fig. 3 Left panels: Latent trait estimation ofw improves on least squares estimation by permitting
measurement below the “floor” of w = 1. Latent w has a long right tail, particularly for Fractions
(lower panel). Center panels: Estimates based on the Linear Spacing Model and Logarithmic
Spacing Model are nearly perfectly correlated, but do not scale the same. The Logarithmic Spacing
Model predicts higher performance on the easy items; one might say it is less forgiving of
mistakes. Right panels: The relationship between θ and w is strong, particularly for Fractions, and
monotonic but not linear. One would expect that if one plotted r− 1 against the location parameter
for each item, it would fall along the line; instead, these items (open circles) fall below the line,
indicating that they are probably easier than the psychophysical models predict
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Differences in Symbolic and
Non-symbolic Measures of Approximate
Number Sense

Lewis Baker and Anne Thissen-Roe

1 Introduction

Researchers have shown increasing interest in the human capacity to represent
numbers and numerical information. In particular, research has focused on how
adults, children, and even some animals appear to efficiently represent the relative
numerosity of objects. The early developmental onset of relative numerosity is
apparent to any adult who has unevenly divided sweets between two children:
even relatively small inequalities are detected rapidly (and with vigor). Two
decades of research have theorized an innate cognitive process that represents
large numerosities (Xu & Spelke, 2000; Xu et al., 2005; Dehaene, 2011), with
later theories further hypothesizing an approximate number sense or system (ANS)
that innately and automatically represents the approximate, relative cardinality
of sets of objects (Halberda & Feigenson, 2008). The existence of the ANS is
supported by neurological evidence suggesting a double dissociation between verbal
knowledge and intuitive understanding of quantitative values from specific brain
damage (Dehaene & Cohen, 1997). Moreover, evidence that nonverbal infants and
animals can also estimate quantities suggests an innate, biologically based predicate
for arithmetic representation (Dehaene et al., 1998). Such a specialized process
has led to expansive research on the ANS and its potential for exposing a new
understanding of mathematical cognition.

Numerical representation attributed to the ANS has demonstrated stable individ-
ual differences across a predictable developmental trajectory, which, importantly,
appears to be predictive of future mathematics ability. Infants as young as six
months can reliably identify differences in magnitude of two groups of objects
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at a ratio 1:2, refining to a 2:3 ratio by nine months of age (Lipton & Spelke,
2003). Acuity with judgements of relative magnitude rapidly increase throughout
development, until reaching stability in early adulthood, where adults can reliably
judge a magnitude difference between 9:10 to 10:11 (Pica et al., 2004; Halberda &
Feigenson, 2008). An increasingly refined sense of quantity and ability to compare
quantities correlates with elementary school children’s acquisition of arithmetic
facts, as well as adult mathematics achievement (Fazio et al., 2016; Halberda
et al., 2008). Further research indicates that precision with ANS tasks at age 3–
4 can predict mathematics performance two and half years later (R2 = 0.352,
N = 13), but not performance in verbal reasoning (Mazzocco et al., 2011). For this
reason, ANS measures are increasing popular measures of math aptitude (Bonny &
Lourenco, 2013).

ANS acuity is often measured through speeded judgments of relative magnitude.
Participants in such tasks view two sets of objects and select which set contains
more items. This can be done using non-symbolic items, where users compare
sets of colored dots or familiar objects, or using symbolic items such as Arabic
numerals or fractions. In either method, the items must not require multiple steps
or formal operations, and must be amenable to rapid presentation and response.
Many researchers prefer non-symbolic measures of ANS acuity because of their
broad application to very young children, adults without formal education, or non-
human animals. Meanwhile, symbolic measures of ANS acuity have an advantage
of face validity, as they require a level of mathematics expertise, and may therefore
be more closely related to math achievement. However, these two measures are not
always comparable. Fazio and colleagues (2014) found that both symbolic and non-
symbolic measures correlate with math achievement in fifth graders, although the
relationship was much stronger for symbolic numbers. On the other hand, Sasanguie
and colleagues (2013) found no significant relationships between symbolic and
non-symbolic measures, while also finding that symbolic measures had a greater
correlation with performance on a curriculum-based math assessment. Other work
validates that non-symbolic magnitude comparison can predict math ability in
children; however, they fail to find predictive validity in adults (Inglis et al., 2011).
Other evidence supports a causal relationship between training children in non-
symbolic estimation and symbolic math performance, using a related non-symbolic
ANS task based on summing approximate magnitudes (Park & Brannon, 2013).

In summary, the exact relationship between symbolic and non-symbolic mea-
sures of ANS acuity is very much unknown, as is their respective contribution to
mathematics ability. To assist the academic study of these different procedures, we
leveraged a dataset of over twenty-two thousand responses to ANS acuity measures
taken from a subset of an online job assessment. The assessment included measures
of symbolic ANS (comparing fractions) and non-symbolic ANS (comparing dot
patterns), alongside three other measures of numerical reasoning, spatial reasoning
and working memory. With this data, we attempt to answer two questions. First,
how closely related are symbolic and non-symbolic measures of the approximate
number sense? And second, how are the two ANSmethods related to other measures
of mathematics ability?
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2 Method

The current study analysed data completed by job applicants through the pymetrics
platform. Pymetrics is a job matching platform that uses behavioral data and
machine learning methods to recommend applicants to roles where they best fit
(see www.pymetrics.ai). Here we analyse the results from four tests that comprise
a broader suite of 16 tests in the pymetrics battery. Each test is described in depth
below.

Participants were 27,720 job applicants to 18 distinct positions at 5 client
companies over the time period from November 2018 to June 2020. Participants
with missing data from any of the four tests outlined below were removed from
analysis. Also, only participants who played on the desktop computer app were
included (mobile apps are also available). This left 22,187 applicants for analysis.
The sample contained 8579 men, 7638 women and 14 reporting as other, with 5879
not disclosing.1 Applicants disclosed their ethnicity as 7851 White or European,
6415 Asian, 367 Hispanic or Latino, 366 Black or African, and 1334 as another
race or ethnicity. Data was collected from a global sample of applicants, with 87.1%
reporting English as their primary language (the remaining users reported a mix of
22 other languages covered by pymetrics). Participants hailed from six continents,
with the largest volume of applicants from Australia (8469), the United States
(1687) and the United Kingdom (1486). The entire 16-test battery took a median of
36min to complete. This study compares performance on 4 of these tests, outlined
below.

3 Measurements

ANS Acuity: Magnitudes. Magnitudes measures a participant’s discrimination
of relative magnitude. It was developed as a replication of Fazio et al. (2014),
with a user interface compatible with web and mobile apps. Magnitudes has
both non-symbolic and symbolic subtests, named Dots and Fractions, respectively.
Subtest order was standardized for all participants, with Dots always coming before
Fractions. Figure 1a–b illustrates the test flow for both subtests.

Each subtest contained 40 trials consisting of two side-by-side displays. In the
non-symbolic subtest, Dots, displays contained a mix of blue and yellow dots of
different sizes and randomized location. The object of the test was for users to
select which display contained a larger proportion of yellow dots. The displays were
uniquely generated images built from an algorithm that ensured non-overlapping
dots. The true ratio difference in magnitude ranged from 1.19 to 2.67 across all

1Pymetrics operates on voluntary data only, and as such demographic information is limited by
applicant disclosure.

www.pymetrics.ai


96 L. Baker and A. Thissen-Roe

Fig. 1 Test Battery. All images are single displays from the pymetrics game battery except (d),
which is a composite diagram of five sample displays. (a) Fractions. Users select the larger fraction
( 5
12 < 4

6 , a ratio difference of 1.6 : 1). (b) Dots. Users select the display with proportionally more

yellow dots ( 4
18 < 7

13 , a ratio difference of 2.42 : 1). (c) Sequences. Users type the number that
completes the pattern (xi−1 + 2 = 17). (d) Letters. Users respond when a display repeats from
n− 2 displays previous (in pink). (e–f) Shapes. Users identify which simple shape (right) can be
found in the complex shape (left); pink highlights for illustration only

trials. Trials were randomly counterbalanced by target location so that the target
was equally likely to appear on either side. The total pixel coverage of all dots were
set so that both sides always had equal colored area. Likewise, the side with the
largest surface area of yellow color was counterbalanced so as not to be predictive
of target side. Participants were given two practice trials with feedback. After that,
participants were instructed that they would complete 40 trials without stopping,
and to respond as quickly and as accurately as possible. Upon starting the test,
participants had a 5000ms response window for each trial. Stimuli were displayed
for only 1500ms to discourage counting. The next trial began 500ms following a
response or timeout. The boundary around the selected display would change colors
to indicate a registered response, but did not provide feedback for response accuracy.
Trials were randomized for each participant.

The symbolic subtest, Fractions, was similar to Dots with some notable excep-
tions. Fractions trials presented two whole number fractions. Participants were
instructed to select the fraction that was greater in magnitude. Unlike Dots, Fractions
displays would be visible for the entire 5000ms response window, as pilot testing
indicated that 1500ms was too brief for reliable responding. As with Dots, Fractions
trials were counterbalanced for target side, but also for a variety of potential
heuristics that a savvy user might use rather than estimating relative magnitudes,
following the supplemental documents provided in Fazio et al. (2016). For example,
trials were counterbalanced so users could not guess the larger fraction simply by
selecting the fraction greater than 1

2 .
Three key metrics were obtained for both Dots and Fractions. Accuracy was

measured as the overall proportion of correct answers. Response time (RT) was
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measured as the time (ms) required to complete correct trials. A third metric, w, is
the subject of Thissen-Roe and Baker, this volume. Briefly, w is the internal Weber
fraction, the estimated threshold of the Just Noticeable Difference of presented
items. The coefficient w can be calculated by least squares or latent trait methods
using its predicted relationship to correct response:

P(correct) = Φ(
1

w
∗ (r − 1)√

r2 + 1
) (1)

wherein r is the ratio of the two presented quantities (e.g., the fractions). In this
chapter, we use least squares estimation, which is the summed square of observed
performance minus expected performance, where formula (1) is the expected
performance, minimized across several groups of similarly difficult items, binned
by the four quartiles of r .

Research supports that w is a reliable, robust psychophysical measure of the
sensitivity of ANS acuity (Price et al., 2012). As w was highly correlated with
accuracy in this study (rDots:w,acc = −0.945, rFractions:w,acc = −0.946), all
analyses were conducted using only w.

Symbolic Pattern Completion: Sequences. Sequences is a symbolic pattern
completion task, a measure of numerical reasoning ability, and is modeled after
Thurstone’s Number Series Test (Thurstone, 1938). Sequence completion ability
is a robust component of quantitative reasoning subscales of general intelligence
(Carroll et al., 1993) and is correlated with academic achievement and mathematical
aptitude (Mayer et al., 1984).

In Sequences, participants view sequences of numbers with one item omitted,
as shown in Fig. 1c. Participants were instructed to fill in the missing number that
fit the pattern. Omitted numbers could appear in any location in the sequence.
Patterns were generated so that trials included the a variety of arithmetic operations,
including addition by a constant, multiplication and exponentiation. Participants had
30 s to complete each of the 20 patterns. The metrics from Sequences were overall
accuracy and average response time for correct trials.

Spatial Reasoning: Shapes Shapes assesses spatial reasoning ability. It is modeled
after Thurstone’s Gottschaldt Figures test (Thurstone, 1938), and is correlated with
mathematics achievement (Tosto et al., 2014). In this test, a number of simple shapes
are presented, along with one complex pattern (Fig. 1e–f). The task is to identify
which of the simple shapes is embedded in the complex pattern. Participants had 45 s
to complete each of the 14 trials. The metrics from Shapes were overall accuracy
and average response time for correct trials.

Working Memory: Letters Letters is an adaptation of Kirchner’s n-back test,
designed to assesses working memory ability (Kirchner, 1958). Working memory is
correlated with general mental ability (GMA) and academic achievement, including
mathematical problem solving ability (Friso-Van den Bos et al., 2013). Here it is
included as a predictor of math ability that is not domain-specific to numerical
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cognition. In Letters, users view a sequence of individually displayed letters
(Fig. 1d). The user must respond whether the letter currently seen is the same as
a letter seen two presentations previous. For example, in the sequence [L, L, T, R, T,
T], the user would respond to the fifth letter, since it appears two steps after another
“T”, but they would not respond to the sixth letter, since two steps previous was
the letter “R”. Each letter appears for 1 s followed by a 200ms ISI and 1 s fixation
cross. Sequences of letters are algorithmically generated so that there are always 10
targets within a 40 letter stream. The primary metrics of Letters were hit and false
alarm rates and their corresponding response times.

4 Results

4.1 Symbolic vs Non-symbolic ANS

The first comparison of interest is the similarity of the non-symbolic measure of
the approximate number system, Dots, and the symbolic measure, Fractions. The
two Weber fractions, w, were modestly correlated (r = 0.32, t22185 = 50.658,
p < 10−16), as were their response times (r = 0.40, t22185 = 65.199, p < 10−16).

The mean w for Fractions (μ = 0.269,median = 0.170, σ = 0.273) was
greater than the mean w for Dots (μ = 0.257,median = 0.210, σ = 0.189). A
Kolmogorov-Smirnov test indicated that the distributions significantly deviated to a
modest extent (D = 0.170, p < 10−16).

A speed-accuracy trade-off was observed for Dots (rw,rt = −0.186), indicat-
ing that slower participants had more refined estimates of magnitude in visual
comparisons. However, this trade-off did not exist for Fractions (rw,rt = 0.084).
The differences in these correlations were moderate and significant using Steiger’s
correlation comparison formulation (rdiff = −0.27, zdiff = −28.69, p < 10−11)
(Steiger, 1980).

These results indicate a modest relationship between symbolic and non-symbolic
measures of the ANS. The most noticeable difference is that participants demon-
strate a higher mean w but lower median w for Fractions versus Dots. The
distribution of w from Fractions has a longer and heavier right tail than Dots,
with more users having w greater than 1. There are a few potential reasons for
this: Fractions is more difficult (as interpreted from higher response times), and
the additional effort may lead to participants giving up. Fractions also relies on
learned skills, which may lead to relatively worse responding for participants with
less confidence in mathematics.

In a different effect, we see that users with slower average response times have
a finer w for Dots, but not for Fractions. This is a curious effect that warrants
further study in a more controlled setting. It may be that slower users for Dots
are simply fast counters. However, as the Dots displays vanish after 1.5 s, this
strategy would rely heavily on visual working memory capacity. Another possibility
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is that the underlying neurocognitive process of Dots is substantively different
than that of Fractions. Dots may be more akin to the random walk-type evidence
accumulation based on the pooling of estimates from multiple neurons, as described
by Dehaene (2007). Longer viewing might improve estimates. Meanwhile, symbolic
ANS measures like Fractions are theorized to have sequential process components,
such that merely looking at the item longer may not result in greater certainty as to
the answer without relying on elaborative thinking. This possibility could be tested
by fitting a diffusion model (Ratcliff & Smith, 2008) to data from both scales. We
leave this to future research.

4.2 Relationship of ANS to Other Measures of Math Ability

The second comparison of interest is the similarity of ANS measures to other
indicators of math performance. Table 1 shows the correlation matrix of all measures
of interest.

Sequences. Numerical reasoning as measured by Sequences was significantly
correlated with both Dots w (r = −0.304, t22185 = −47.53, p < 10−16) and
Fractions w (r = −0.445, t22185 = −74.01, p < 10−16). Furthermore, Sequences
was significantly more correlated with Fractions than with Dots (rdiff = 0.141,
zdiff = 17.33, p < 10−16).

Shapes. Spatial reasoning as measured by Shapes accuracy was significantly
correlated with both Dots w (r = 0.258, t22185 = −39.77, p < 10−16) and
Fractions w (r = 0.300, t22185 = −46.84, p < 10−16), although both correlations
were less than when comparing ANS measures to numerical reasoning. There
was a significant difference between the correlation of ANS domains and Shapes
(rdiff = 0.042, zdiff = 4.800, p < 10−6), although this difference was trivially
small.

Letters. Both Fractions and Dots were only marginally correlated with the working
memory task, Letters. Higher hit rates were associated with smaller w (rFrac =
−0.148, rDots = −0.122, t22185 < −18.16, p < 10−16). Conversely, higher false
alarm rates were associated with larger w (rFrac = 0.216, rDots = 0.215, t22185 >
31.99, p < 10−16). However, there were no practical differences between either
ANS subtest and working memory (zdiff hitrate = 2.79, p = 0.005, zdiffFArate =
0.111, p = 0.914).

Altogether, we see modest evidence that both ANS tasks predict numerical
and spatial reasoning ability, with the symbolic measure, Fractions, being more
strongly correlated with numerical reasoning, and only slightly more correlated with
spatial reasoning. Meanwhile, we see only minor relationships between measures of
working memory, without differentiation by ANS subtests. This supports a theory of
ANS as a domain-specific mathematical construct, with convergent validity between
two domain-relevant measures and far less with a related by domain-agnostic
construct.
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5 Discussion

Through collection of a large amount of behavioral data on five separate measures
relating to math achievement, we find that symbolic and non-symbolic measures
of the approximate number sense are moderately correlated, but distinct. We report
that the symbolic task was significantly more correlated with a simple numerical
reasoning measure than the non-symbolic task. There are significant relationships
between both ANS measures and spatial reasoning and working memory, with
no practical distinction between symbolic and non-symbolic ANS variants. This
agrees with previous research comparing symbolic and non-symbolic tasks and
math achievement, which found that symbolic measures better predicted school
math achievement, and through meta-analysis found a similar correlation symbolic
and non-symbolic magnitude comparison accuracy (r ∼ 0.31).

The primary contribution of this report is to provide substantial data to support
existing theories of the approximate number sense. However, it should be noted
that what these analyses provide in volume may also be detracted in control.
The pymetrics battery is offered to job applicants to complete in their own time.
Although participants are given instructions to complete the battery in a distraction-
free setting, they may still complete in the coffee shops and bus stations of the real
world, adding more noise than a laboratory. Likewise, many of the test featured
here are substantially shorter than their laboratory counterparts. This is a necessary
compromise to remove some burden from job applicants; however, laboratory
experiments with 10, if not 100 times the trials are likely to find more subtle effects
than those presented here. In exchange, the current study offers a view of tens
of thousands of participants from a broader range of demographics than typically
available to college campuses. We hope that this information may be useful for
further understanding the cognitive substrates of mathematical cognition.
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Formulas of Multilevel Reliabilities
for Tests with Ordered Categorical
Responses

Zhenqiu (Laura) Lu, Minju Hong, and Seohyun Kim

1 Introduction

Reliability is a measure of overall internal consistency of a test. It has been widely
used in statistical, psychological, educational, social and behavioral research when
data are collected by responding to items in a test or a questionnaire (Bollen,
1989; Finney & DiStefano, 2006). A high value of reliability indicates the measure
provides similar, reliable, and stable results under consistent conditions. There are
many approaches that have been proposed to estimate reliabilities. Among them,
the classical test theory (CTT) approach has been widely used, and the Cronbach
alpha is the most popular reliability. But it only measures the lower bound on the
consistency of a test (Green et al., 1977; Novick & Lewis, 1967; Sijtsma, 2009).
Another approach using structural equation modeling (SEM) has been proposed to
obtain more accurate reliabilities (Bentler, 2009; Bollen, 1989; Green &Yang, 2009;
Miller, 1995; Raykov, 1997; Raykov & Shrout, 2002). But these methods focus on
addressing continuous outcomes.

For tests with ordered categorical responses, Green and Yang (2009) proposed
a nonlinear reliability coefficient within an SEM framework, and the nonlinear
reliability has been found to be more accurate than the linear reliability that treats
categorical scores as continuous. But they only considered the items with the same
number of categories. Kim, Lu and Cohen (2020) extended their research to broader
situations and proposed a general formula for reliabilities. But these formulas are
only for single level data structure. And their research did not consider the composite

Z. Lu (�) · M. Hong
University of Georgia, Athens, GA, USA
e-mail: zlu@uga.edu

S. Kim
University of Virginia, Charlottesville, VA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 353, https://doi.org/10.1007/978-3-030-74772-5_10

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74772-5_10&domain=pdf
mailto:zlu@uga.edu
https://doi.org/10.1007/978-3-030-74772-5_10


104 Z. Lu et al.

reliability or the coefficient Omega (McDonald, 1985) and the maximal reliability
H of weighted sum (Bentler, 2007) for tests with categorical responses. So far, there
has been no research on this topic.

In order to fill the gap, the current study reviewed various approaches to reli-
abilities, extended single level reliabilities to multilevel reliabilities, and provided
closed-form formulas for multilevel nonlinear SEM reliabilities for tests with
ordered categorical responses via a multilevel confirmatory factor analysis (MCFA)
approach. Multilevel alpha was also considered.

2 Reliabilities

2.1 CTT Approach

Suppose there are J items in a test. In classical test theory (CTT), an observed score
Xj on item j (j = 1, . . . , J) is composed of two uncorrelated components, a latent
true score or trait, Tj, and an error score, εj, with mean of 0:

Xj = Tj + εj

Let X, T and ε be the sum of observed scores, of true scores, and of error scores,
respectively, across J items. Then

X = X1 +X2 + · · · +XJ =
J∑

j=1

Xj ,

and T = ∑J
j=1 Tj , ε = ∑J

j=1 εj , so we have X = T + ε.
We want to make sure how much of variance of observed score is due to the

latent true score versus the error. One measure is to use reliability. The reliability
coefficient of a test is defined as the ratio of the true variance to the total variance,
which is the sum of the true variance and the error variance. Mathematically, it is

ρ = σ 2
T

σ 2
x

,

where σ 2
T is the variance of T, and σ 2

x is the variance of X (Lord & Novick, 1968).
The reliability quantifies the proportion or ratio. It is an estimation of how much
random error might be in the scores around the true score.

Cronbach Alpha Under CTT, there are many ways to estimate reliability: test-
retest, alternative forms, split-half, Spearman-Brown prophecy formula, and the
Cronbach alpha (or coefficient Alpha). Among them, the Cronbach alpha (Cron-
bach, 1951) is the most commonly used. The Cronbach alpha is defined as
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α = J 2σxx′

σx2

where J is the total number of items, σ x
2 is the variance of observed scores of the

test X, and σxx′ is the mean of off-diagonal covariance between two parallel tests X
and X

′
. Specifically, the alpha can be calculated as

α =
J 2 ∗

∑
i

∑
j,i<j σxi ,xj
J (J−1)

2

σx2

where
∑

i

∑
j,i<j σεi ,εj is the sum of lower (or upper) off-diagonal covariance

between items i and j.

2.2 CFA Approach

However, the Cronbach alpha is only a lower bound on the internal consistency of
the test (Green et al., 1977; Novick & Lewis, 1967; Sijtsma, 2009). To get a better
estimate, another approach to reliability is the structural equation modeling (SEM)
approach. Specifically, this approach uses confirmatory factor analysis (CFA) to
estimate reliability. Tests are assumed to have underlying factorial structure (factors,
e.g., reading ability, math ability, or personality).

X∗
j = λ1j η1 + λ2j η2 + · · · + λMjηM + ej ,

where X∗
j is a continuous score for item j, M is the number of latent factors, ηm

(1 ≤ m ≤ M) are latent factors weighted by corresponding factor loadings λm, and
ej is a measurement error term. We assume errors are independent and have variance
σ 2
εj

for item j.
Suppose there are J items in the test and X∗ and T are the sum of

observed scores and of true scores, respectively. Then X∗ = ∑J
j=1X

∗
j and

T = ∑J
j=1

∑M
m=1 λmjηm. Because item scores are presented by a confirmatory

factor analysis model, the linear reliability ρlin is calculated as the ratio of true
sum score variance to observed sum score variance where the true score variance is
estimated using the CFA model above.

ρlin = σ 2
T

σ 2
X∗

=
V ar

(∑J
j=1

∑M
m=1 λmjηm

)

V ar
(∑J

j=1X
∗
j

) .

Here ρlin measures the linear proportion of observed sum score variance that is
attributed to the latent factors, η1, η2, . . . , ηM (Bollen, 1989).
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Composite Reliability/Coefficient Omega ω
If item scores have only one factor, then M = 1 and the reliability above becomes

ρlin = σ 2
T

σ 2
X∗

=
V ar

(∑J
j=1 λjη

)

V ar
(∑J

j=1X
∗
j

) .

And if we assume that latent factor have unit variance Var(η)= 1, then the reliability
ρlin is referred to as composite reliability or coefficient omega ω (McDonald, 1985)

ω =
(∑

λxj
)2

(∑
λxj

)2 + ∑
σ 2
εj

where
∑

λxj is a sum of the factor loading of item j, and
∑

σ 2
εj

is a sum of all error
variances.

Maximal Reliability H for Weighted Sum
Composite reliability represents the relation between a scale’s underlying latent
factor and its unit-weighted composite, but a scale’s unit-weighted composite
may not optimally reflect its underlying latent construct. The true score variance
estimated in factor analysis allows for heterogeneous indicator weights, so it is
reasonable to allow heterogeneous weights when creating a scale’s composite score.

X = w1X1 + w2X2 + · · · + wJXJ =
J∑

j=1

wjXj

One approach to comparing true score variance for one common factor to the
variance of a unit-weighted scale is presented as maximal reliabilityH (e.g., Bentler,
2007). When the weight vector

W =
(
λ′ψ−1λ

)−1/2
ψ−1λ,

where λ is the factor loading matrix and ψ is the residue variance matrix, then the
maximal reliability is given by

ρw′x(max) = λ′ψ−1λ

λ′ψ−1λ+ 1

By assuming that the variance of each item is 1, the standardized version of
maximal reliability for a single common factor model can be expressed as follows
(e.g., Hancock & Mueller, 2001; Geldhof et al., 2014).



Formulas of Multilevel Reliabilities for Tests with Ordered Categorical Responses 107

H =
∑ λ2xj

σ 2
εj

1 + ∑ λ2xj

σ 2
εj

=
∑ λ2xj

1−λ2xj

1 + ∑ λ2xj

1−λ2xj

= 1

1 + 1
∑ λ2xj

1−λ2xj

where λ2xj is the squared standardized factor loading of item j, and σ 2
εj

is the error
variance of item j.

3 Multilevel Reliabilities

The data collected from social and educational areas often have multilevel structure.
In these cases, multilevel reliabilities for multilevel structure were proposed.

3.1 Multilevel Confirmatory Factor Analysis (MCFA)

Muthén (2011) defined a multilevel confirmatory factor analysis (MCFA) by
assuming a one-factor model holds for both the between and the within components.
The observed value of the p-dimensional variable ygi is partitioned into three
components:

ygi = V + yBg + ywgi

where ygi is the observed value of individual i in group g, V is a grand mean, yBg
is the between-group part of the observed value, and ywgi is the within-group part
of the observed value. The multilevel CFA specifies a model at between-group level
and within-group level separately. Suppose there are h factors between groups and
m factors within groups, the between-group level CFA model is

yBg = �BgηBg + εBg

where ΛBg is a (p × h) matrix of factor loadings with elements λBg’s, ηBg is a h-
dimensional vector of factor scores with the assumption of ηBg~MN(0h,Ψ h × h), and
εBg is a p-dimensional vector of errors with the assumption of εi~MN(0p,Φp × p).
And the within-group CFA model level is defined as

ywgi = �wgηwgi + εwgi

where Λwg is a (p × m) matrix of factor loadings with elements λwg’s,
ηwgi is a m-dimensional vector of factor scores with the assumption of
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ηwgi~MN(0m,Ψ m × m ), and εwgi is a p-dimensional vector of errors with the
assumption of εi~MN(0p,Φp × p).

If there is only one factor either between-group or within-group, then the variance
of the observed variable y, σ 2

ygi
, is decomposed (Muthén, 2011) as

σ 2
ygi

= λ2Bgσ
2
ηBg + σ 2

εBg + λ2wgσ
2
ηwgi + σ 2

εwgi

= σ 2
BF + σ 2

BE + σ 2
WF + σ 2

WE

where λBg is between-group factor loadings, σ 2
ηBg is the variances of between-group

factor scores, σ 2
εBg is the variances of between-group errors, λwg is within-group

factor loadings, σ 2
ηwg is the variances of within-group factor scores, and σ 2

εwg is

the variances of within-group errors, σBF
2 is a between-level factor score variance,

σBE
2 is a between-level error variance, σWF

2 is a within-level factor score variance,
and σWE

2 is an within-level error variance.

3.2 Multilevel Reliabilities

Applying MCFA to reliability calculation, p dimensions become J items, and we
assume there is only one factor either between-group or within-group.

Multilevel Alpha The multilevel alpha is calculated as

within − group level α = J 2 ∗ σwgi,wgj
σ 2
wg

between − group level α = J 2 ∗ σBgi,Bgj
σ 2
Bg

where J is the number of items, σwgi,wgj is the average of the within-group
covariance between items i and j. σ 2

wg is the variance of the within-group part of
observed value, σBgi,Bgj is the mean of the between-group covariance between
items i and j, and σ 2

Bg is the variance of the between-group part of observed value.

Multilevel Omega And multilevel omega is obtained as

within − group level ω =
(∑

λwgj
)2

(∑
λwgj

)2 + ∑
σ 2
εwgj
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between − group level ω =
(∑

λBgj
)2

(∑
λBgj

)2 + ∑
σ 2
εBgj

where
∑
λwgj is a sum of within-group level squared factor loading of item j, and∑

σ2εwgi is a sum of within-group level error variances,
∑
λBgj is a sum of within-

group level squared factor loading of item i, and
∑

σ 2
εBgj is a sum of within-group

level error variances.

Multilevel H Maximal H is calculated by

within − group level H = 1

1 + 1
∑ λ2wgj

1−λ2wgj

between − group level H = 1

1 + 1

∑ λ2
Bgj

1−λ2
Bgj

where λ2wgj is the squared standardized within-group factor loading of item j, λ2Bgj
is the squared standardized between-group factor loading of item j.

4 Multilevel Reliability for Categories Responses

It is very common in social and behavioral sciences that items have ordered cate-
gories. When the observed data are ordinal categorical, fitting linear SEM models
using the linear estimation method is not desirable because it violates the assumption
and provides inflated chi-square estimates and attenuated factor loadings (Bollen,
1989). To address this problem, we consider the observed categorical scores (Xj) are

from underlying continuous variables (X∗
j

)
and the nonlinear relationship between

Xj and X∗
j is

Xj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cj − 1, if X∗
j ≥ vCj−1

...
...

1, if v1 ≤ X∗
j < v2

0, if X∗
j < v1.
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where Cj is the number of categories for Xj, and the νi (i = 1, 2, . . . ,Cj − 1) are the
category thresholds. If X∗

j is less then ν1, Xj is equal to 0, for v1 ≤ X∗
j < v2, Xj is

equal to 1, and if X∗
j is above νCj−1, Xj is equal to Cj − 1. If the structure of the

test is well-specified, this approach can estimate reliability more accurately than the
linear SEM approach.

Multilevel Alpha for Tests with Categorical Responses Single level alpha
for categorical responses can be calculated by using polychoric correlations if
we assume the variance of each item is 1. Reliability calculated from parallel
measures. For multilevel alpha, both within- and between-group levels reliabilities
are calculated.

Multilevel Composite Reliability for Tests with Categorical Responses Single
level composite reliabilities have been proposed by Kim, Lu and Cohen (2020) to
investigated reliability with items having the same or different numbers of ordered
categories. For multilevel composite reliabilities, the same formula can be applied at
both within- and between-group levels. Multilevel Omega for tests with categorical
responses is a simplified version for one factor models.

Multilevel Maximal Reliability for Tests with Categorical Responses There has
been no research on this topic done before. In this article, we derived the numerical

formula as follows. Suppose X and
∼
X are two parallel tests, which are two weighted

sums, X = ∑J
j=1wjXj and

∼
X = ∑J

j ′=1wj ′
∼
Xj ′ . To estimate the reliability for the

nonlinear measurement model, the correlation between X and
∼
Xis used, which is

ρ
X

∼
X

=
Cov

(

X,
∼
X

)

√

var(X)var

(∼
X

) .

The numerator for weighted sums is

Cov

(

X,
∼
X

)

= Cov

⎛

⎝
J∑

j=1

wjXj ,

J∑

j ′=1

wj ′
∼
Xj ′

⎞

⎠ =
J∑

j=1

J∑

j ′=1

wjwj ′Cov

(

Xj ,
∼
Xj ′

)

,

in which

Cov

(

Xj ,
∼
Xj ′

)

= E

(

Xj

∼
Xj ′

)

− E
(
Xj

)
E

(∼
Xj ′

)
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=
⎛

⎝
Cj−1∑

k=1

Cj ′−1
∑

l=1

�2

(
νjk , hj ′

l
; ρM

)
− (

Cj ′ − 1
)
Cj−1∑

k=1

�1
(
νjk

) − (
Cj − 1

)

×
Cj ′−1
∑

l=1

�1

(
hj ′

l

)
+ (

Cj − 1
) (
Cj ′ − 1

)
⎞

⎠

−
⎛

⎝−
Cj−1∑

k=1

�1
(
νjk

) + (
Cj − 1

)
⎞

⎠

⎛

⎝−
Cj ′−1∑

k=1

�1

(
hj ′

l

)
+ (

Cj ′ − 1
)
⎞

⎠

=
Cj−1∑

k=1

Cj ′−1
∑

l=1

Φ2

(
νjk , hj ′

l
; ρM

)
−

Cj−1∑

k=1

Φ1
(
νjk

)
Cj ′−1
∑

l=1

Φ1

(
hj ′

l

)

and

ρM =
M∑

m=1

M∑

m′=1

λmjλm′j ′ρηmηm′

The denominator is

V ar(X) = V ar

⎛

⎝
J∑

j=1

wjXj

⎞

⎠ =
J∑

j=1

J∑

j ′=1

wjwj ′Cov
(
Xj ,Xj ′

)

=
J∑

j=1

J∑

j ′=1

wjwj ′

⎛

⎝
Cj−1∑

k=1

Cj ′−1
∑

l=1

Φ2

(
νjk , hj ′

l
; ρX∗

j X
∗
j ′

)

−
Cj−1∑

k=1

Φ1
(
νjk

)
Cj ′−1
∑

l=1

Φ1

(
hj ′

l

)
⎞

⎠

Therefore the reliability is calculated from parallel measures of ordered categories
responses

ρCat =
∑J

j=1
∑J

j ′=1
wjwj ′

[
∑Cj−1

k=1
∑C

j ′ −1

l=1 Φ2

(

νjk
, h

j ′
l
; ρM

)

− ∑Cj−1
k=1 Φ1

(
νjk

)∑C
j ′ −1

l=1 Φ1

(

h
j ′
l

)]

∑J
j=1

∑J
j ′=1

wjwj ′
[
∑Cj−1

k=1
∑C

j ′ −1

l=1 Φ2

(

νjk
, h

j ′
l
; ρX∗

j
X∗
j ′

)

− ∑Cj−1
k=1 Φ1

(
νjk

)∑C
j ′ −1

l=1 Φ1

(

h
j ′
l

)]

For one factor models, the formula above can be greatly simplified. The multilevel
maximal reliability of weighted sum will apply the formula at both within-group
and between-group levels.
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5 Conclusions

This study proposed a confirmatory factor analysis approach to multilevel reliability
for tests with ordered categories item responses. It extended single level reliabilities
to multilevel reliabilities, and provided closed–form formulas for calculating various
types of multilevel nonlinear reliabilities, including the composite reliability, the
coefficient Omega, and the maximal reliability.
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Polytomous IRT Models Versus IRTree
Models for Scoring Non-cognitive Latent
Traits

Francisca Calderón and Jorge González

1 Introduction

Non-cognitive latent traits are unobservable variables related to personality char-
acteristics defined as patterns of thoughts, feelings, and behaviours (Borghans
et al., 2008). Examples of non-cognitive assessments are personality tests, opinion
surveys, and satisfaction questionnaires, among others.

Non-cognitive assessments are distinguished from the cognitive evaluations in
that for the former there is not a correct or incorrect response option. Rather,
these instruments collect information mostly using Likert type items of ordinal
categorical response (e.g., “Strongly Disagree”, “Disagree”, “Agree”, “Strongly
Agree”) yielding score data defined on a polytomous scale. Thus, respondents know
or probably have an insight about which option is “most appropriate” to answer,
depending on the context that the non-cognitive instrument is applied.

Item response theory (IRT, Lord, 1980), is a useful framework to measure latent
traits from the answers to measurement instruments. An IRT model specifies the
relation between the observable variables (i.e., item responses on a test) and non-
observable ones (i.e., latent trait). The mathematical model describes the conditional
probabilities of responses given one or more latent variables. When items are scored
in more than two categories, polytomous IRT models such as the Graded Response
Model (GRM, Samejima, 1969) and the Generalized Partial Credit Model (GPCM,
Muraki, 1992) have been usually used to measure the latent trait of interest.
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The statistical modeling of polytomous score data in non-cognitive assessments
is challenging because respondents can use different strategies or show different
tendencies to choose categories independently of the item content, leading to
response styles in their answers. Ignoring response styles can result in biased latent
trait estimates, which invalidate inferences on an individual’s construct of interest
being measured.

Under the IRT framework, IRTree models (Böckenholt, 2012; De Boeck &
Partchev, 2012; Jeon & De Boeck, 2016) have been used to analyze polytomous
items taking into account response styles. IRTree models are appealing because
of their unique ability to decompose Likert-type scale item responses into a series
of binary pseudo-item responses represented in a tree structure specified for the
response categories (Jeon & De Boeck, 2019). This decomposition allows to
model not only the main trait of interest being measured, but also additional traits
representing response style in answers. Thus, IRTree models can be considered as
part of the tool kit of models for modeling polytomous items response data.

The aim of this paper is to compare the performance of some traditional
polytomous IRT models with the more recently introduced IRTree models in the
modeling of self-report non-cognitive latent traits. Such comparison is motivated
by the fact that IRTree models allow to account for extreme response style (ERS)
effects in attitudinal measurements, while at the same time provide estimates of the
target trait. Thus, two specific goals of this research are; (i) to detect the presence of
ERS in self-report questionnaires measuring non-cognitive traits, and (ii) to compare
the target trait estimations produced by both the traditional IRT and the IRTree
approaches.

The paper is organized as follows. Two traditional polytomous IRT models, the
GRM and the GPCM are first described in Sect. 2. Next, a brief account on IRTree
is presented in Sect. 3. An application to compare the performance of both the
traditional polytomous IRT and the IRTree models is illustrated in Sect. 4. The paper
ends with conclusions and discussion in Sect. 5.

2 Traditional Polytomous IRT Models

In this section we briefly revise the basics of two traditional polytomous IRT models
that have been used to model non-cognitive latent traits.

2.1 The Graded Response Model

The GRM (Samejima, 1969) has been used to model ordered polytomous categories,
to evaluate students’ performance on items with partial credit, and for analysing
Likert-type agreement scales predominantly used in attitude or opinion surveys
(Kuhlmann et al., 2017; Weng & Cheng, 2000).
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In a first step, the GRM describes the probability that an answer is at or above
a particular ordered category given the latent trait of interest θ . Secondly, the
actual probability of responding on a particular category is computed by subtracting
adjacent probabilities estimated in the first step.

Let Xij be a random variable representing an answer of individual j to item
i taking values k = 0, . . . , mi . The probability of answering item i at or above
category k can be written as

P ∗
ik = expai (θ−bik)

1 + expai (θ−bik)
, (1)

where, ai is an item discrimination parameter, bik is the category location parameter,
and P ∗

ik is known as the cumulative probability curve.
By definition, the probability of responding at or above the lowest category is

P ∗
i0(θ) = 1 whereas the probability of responding above the highest category is

P ∗
imi

(θ) = 0, ∀θ . For others values of k, the probabilities P ∗
ik(θ) are computed by

specific dichotomizations. For instance, for an item with five categories (mi = 4),
the first dichotomization refers to category 0 versus 1–4, the second to 0–1 versus
2–4, and so on until the latest dichotomization 0–3 versus 4.

By computing the difference between adjacent cumulative probabilities, the
probability of responding on a particular category k is obtained as

Pik = Pr{Xi = k|θ} = P ∗
ik − P ∗

i(k+1). (2)

It is important to note that under this model, the cumulative probability curves are
parallel because only one ai is estimated for each item. Hence, the slope (ai) is
shared amongmi −1 category response curves. The threshold (location) parameters
represent the value on the θ -scale when the probability of responding at or above
the particular category is equal to 0.5.

2.2 The Generalized Partial Credit Model

The GPCM (Muraki, 1992) is an extension of the Partial Credit Model (PCM; Mas-
ters, 1982) which relaxes the restriction of all items having the same discrimination
parameter. The GPCMwas developed in a parallel way to developments of the PCM
by using the two-parameter logistic (2PL) model instead of the Rasch model (Dodd
et al., 1995) and is based on the assumption that the probability of choosing the k−th
category over the first category is governed by a dichotomous response model.

The probability of an answer in category k of item i is modeled as
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Pik(θ) = exp
∑k

v=1 Ziv(θ)

∑k
c=1 exp

∑c
v=1 Ziv(θ)

, (3)

with

Zik(θ) = ai(θ − bik) = ai(θ − bi + dk), (4)

where ai and bik are defined as before. Note that for this model, item-category
parameters, bik , correspond to the points on the θ scale at which the curves of
Pik−1(θ) and Pik(θ) are intersected. Also, they decompose into two parameters;
bi being the item-location parameter and dk is the category-location parameter.
To avoid indeterminacies, the following location constraint is typically imposed
(Muraki & Muraki, 2016):

mi−1∑

k=1

dk = 0 (5)

An important assumption in these models relates to the unidimensionallity of the
latent trait θ . Also, local independence is required. More details on traditional IRT
models for polytomous items can be found in Nering and Ostini (2011).

3 Non Traditional Polytomous IRT Models

In this section we describe IRTree models, which can be considered a less traditional
family of IRT models used for modeling polytomous score data.

3.1 IRTree Models

In comparison with the traditional polytomous IRT models described in the previous
section that measure only a unidimensional trait, Item response-Tree (IRTree)
models (Böckenholt, 2012; De Boeck & Partchev, 2012; Jeon & De Boeck, 2016)
make use of multiple latent traits to explain the responses to polytomous items. As
it will be explained below, a key distinguishing feature is that polytomous items
are recoded into binary pseudo-items so that the model can be estimated as a
multidimensional IRT model for binary items.

IRTree models can describe a postulated internal decision process with a tree
structure, which is composed of sub-trees, nodes and branches (Jeon & De Boeck,
2016). The categorical responses can thus be interpreted as a sequential process of
going through the tree to its end nodes. The probability of answering in a category
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Fig. 1 Tree structure for a
nested scale with 4 response
categories plus one middle
category
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is thus obtained as the product of the probabilities at each node which are modeled
using traditional binary IRT models, such as the 1PL or 2PL models.

As an example, consider the tree structure for a 5-point Likert scale (1: Strongly
disagree, 2: Disagree, 3: Neutral, 4: Agree and 5: Strongly agree) shown in Fig. 1.
Branch values are assigned according to research interests and postulated theories.
In Fig. 1, the first node has a value of 1 related to category 3 and a value of 0
related to all other categories. This value assignment indicates that the first node is
modeling the propensity to answer in the middle category. The second node has a
value of 1 related to agreement categories and a value of 0 related to disagreement
categories. Then, the second node is modeling the propensity to agree. Additionally,
the third and four nodes have a value of 1 related to extreme negative and extreme
positive categories, respectively, and a value of 0 related to the other categories.
Therefore, these nodes are modeling the propensity of responding in the extreme
categories. This is an example of what is called a nested response tree structure.
Linear structures can also be considered in which case one branch from each internal
node leads directly to an end node (a response category). Examples of other type of
tree structures can be found in Jeon and De Boeck (2016) and Böckenholt (2012).

As mentioned before, IRTree models need the polytomous items to be recoded
into several dichotomous pseudo-items. The recodification is made using the so-
called mapping matrix’s, denoted here as M∗ and whose entries are defined by

m∗
cn =

⎧
⎪⎪⎨

⎪⎪⎩

1 if n-th node is modeling the propensity to answer in category c

NA when there is no connection between category c and node n

0 otherwise

For a test instrument composed of I polytomous items, a total of I × N

dichotomous pseudo-items need to be generated. For the five categories item
example, there will be N = 4 pseudo items, one for each node in the tree
representation. The mapping matrix in this case reads as
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M∗ :=

Xi = c X
(1)
i X

(2)
i X

(3)
i X

(4)
i⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

1 0 0 1 NA
2 0 0 0 NA
3 1 NA NA NA
4 0 1 NA 0
5 0 1 NA 1

,

The values in the first column of M∗ indicates that the first node is modeling the
propensity to answer in the middle category. For this reason, a 1 is assigned for the
third row and 0 for the others. Entries in the second column are 1 for agreement
categories (c = 4, 5) and 0 for disagreement categories (c = 1, 2). Additionally,
because there is no connection between category 3 and the second node (see Fig. 1)
an entry “NA” is used for the middle category. The third and four nodes have a
value of 1 related to extreme negative (c = 1) and extreme positive (c = 5)
categories, respectively, and a value of 0 related to the other categories involved.
Note that for the third and fourth nodes, the middle category is again not related
and, consequently, the third and fourth column have also the value “NA” for c = 3.

In order to obtain an explicit expression for the probability of answering in a
category, we define two additional matrices (M and T) with entries

mcn =
{
0 if m∗

cn is 0 or NA

1 if m∗
cn is equal to 1

,

and

tcn =
{
1 if the n-th node is related to category c

0 if the n-th node is not related to category c
,

respectively. For the example item, these matrices are

M :=

Xi = c X
(1)
i X

(2)
i X

(3)
i X

(4)
i⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

1 0 0 1 0
2 0 0 0 0
3 1 0 0 0
4 0 1 0 0
5 0 1 0 1

,

and
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T :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0
1 1 1 0
1 0 0 0
1 1 0 1
1 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

If the probability at each node is modeled using a 2PL model, namely

P(X
(n)
i = mcn|θ(n)) = exp[mcnα

(n)
i (θ(n) + β

(n)
i )]

1 + exp[α(n)i (θ(n) + β
(n)
i )]

, (6)

for all i ∈ {1, . . . , I } and mcn ∈ {0, 1}, then the polytomous probability can be
written as

P(Xi = c|θ) = P(X
(1)
i = mc1, X

(2)
i = mc2, ..., X

(N)
i = mcN |θ(1), θ (2), ..., θ (N))

=
N∏

n=1

P(X
(n)
i = mcn|θ(n)p )tcn . (7)

For the example item, the probability of responding in category c of item i can then
be expressed as

P(Xi = c|θ) = P(X
(1)
i = mc1|θ(1))tc1

× P(X
(2)
i = mc2|X(1)

i , θ (2))tc2

× P(X
(3)
i = mc3|X(1)

i , X
(2)
i , θ (3))tc3

× P(X
(4)
i = mc4|X(1)

i , X
(2)
i , θ (4))tc4 (8)

Note that the latest probability term in Eq. (8) does not contain X
(3)
i in the

conditional term. This is due to the tree specification, namely, the node outcomes,
conditional on the earlier decisions and the latent variables involved, are indepen-
dent of each other.

Other variants of the model consider only one latent trait for all nodes leading to
specify an unidimensional model; node-specific item parameters or shared across
nodes; and explanatory variables at the individual and item level. A detailed
description of these and other variants of IRTree models can be found in Jeon and
De Boeck (2016).
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4 Application

In Chile, the Agency of Quality of Education1 is the governmental organization
responsible for measuring cognitive and non-cognitive aspects in the educational
system. Currently, together with the “Education Quality Measurement System” test
(Sistema de Medición de la Calidad de Educación, SIMCE, by their initials in
spanish) (Agencia de Calidad de la Educación, 2015), Chilean students, teachers
and parents, express their perceptions and attitudes towards different non-academic
aspects, through the Quality and Education Context (QEC) questionnaires (Agencia
de Calidad de la Educación, 2017). These questionnaires collect information used to
build personal and social development indicators (IDPS, for their initials in spanish).
The IDPS are indexes that provide information related to the personal and social
development of the students of an educational institution, complementary to the
results of the cognitive test and the achievement of the Learning Standards. The
QEC are administered annually on a census application and are composed of Likert-
type items.

4.1 Data

For the illustration we consider the QEC questionnaire applied to students which
include a series of questions that seek to collect their perceptions and attitudes
on Academic self-esteem and Motivation, School Climate, Participation and Civic
education, and Healthy lifestyle.

The QEC student questionnaire is composed of 210 items and each student has
around 50min to answer it. In this application we are focus only on one IDPS, the
School Climate, and more specifically, on items related with Safe-Environment. The
analyzed data set contained answers to six items measuring the degree to which 4th
grade students agree with several affirmative sentences about their teachers. Table 1
shows the items analyzed, each having a response scale with four categories: 1
strongly disagree; 2 disagree; 3 agree; 4 strongly agree.

Table 1 shows the response category distribution for each item. It can be seen
that the largest proportion of students choose the strongly agree category, which
would indicate most of the students have a “good” perception of their teacher related
to safe-environment. However, such observed frequency could be due to response
styles in their answers. To investigate it, we compare the performance between
traditional IRT models and the IRTree approach that accounts for response styles.

1www.agenciaeducacion.cl

www.agenciaeducacion.cl


Polytomous IRT Models Versus IRTree Models 121

Table 1 Six safe-environment items analyzed from student QEC 2017 and the response propor-
tion in each category

Item Do your teachers teach the following to your course? SD D A SA

1 My teachers teach us what to do if a classmate hits us 10.23 6.73 24.61 54.63

2 My teachers teach us what to do if a classmate hits
another classmate

8.33 6.89 25.79 54.90

3 My teachers teach us what to do if a classmate takes
the materials from us

8.76 9.21 27.96 49.66

4 My teachers teach us what to do when a classmate is
very upset

6.37 5.12 22.73 61.46

5 My teachers teach us that stealing is wrong 4.92 2.39 13.38 75.42

6 My teachers teach us that it is wrong to hit classmates 3.53 2.26 13.5 76.39

SD strongly disagree, D disagree, A agree, SA strongly agree

4.2 Analyses

Two traditional polytomous IRT models and two IRTree models were fitted to
the data. Model fit was assessed using the Akaike information criterion (AIC;
Akaike, 1974), and the Bayesian information criterion (BIC; Schwarz, 1978). The
reliability of the scale was evaluated using Cronbach’s alpha (Cronbach, 1951). The
dimensionality of the safe-environment construct was assessed using methods based
on eigenvalues. All the analyses were conducted using the Flexmirt (Cai, 2012), and
R (R Core Team, 2020) software.

4.3 Results

The Cronbach’s alpha coefficient was 0, 83 for the sample in study (N = 1000). The
eigenvalues analysis and a scree-plot (not shown) suggested that the items could be
adequately represented by a single dimension (Cattell, 1966; Joreskog, 2007), and
consequently a unidimensional polytomous IRT model can be fitted.

Table 2 shows model fit indices for the GRM, GPCM, and two IRTree models.
IRTree model 1 refers to a tree structure similar to the one shown in Fig. 1 but
with no middle category in their options. Consequently, a three-dimensional model
was fitted, considering a 2PL model in each node. IRTree model 2 refers to the
same tree structure as model 1 but considering node 2 and node 3 specification as
the same latent trait. In other words, both nodes represent the extreme response
style, no matter whether it is positive or negative. The IRTree model 1 shows the
best fitting, followed by IRTree model 2, the GRM and GPCM, respectively. These
results indicate that possible response styles are better accounted by the IRTree
models (Plieninger, 2020).

For the comparison of estimated latent traits, the perception that students have
towards a safe environment was the main trait of interest to be evaluated. This trait
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Table 2 Model selection

Type Model Npars Log-likehood AIC BIC

Polytomous GPCM 24 −4540.97 9129.94 9247.72

Polytomous GRM 24 −4468.68 8985.37 9103.16

IRTree model 1 (3−dim) 36 −4200.44 8476.88 8663.37

IRTree model 2 (2−dim) 24 −4247.99 8545.98 8668.68

was assumed to be modelled by the first node in the two IRTree models (model 1
and model 2), whereas the other two nodes accounted for extreme response styles.
The estimated traits using the four IRT models correlated high (over 0.9) as shown
in Table 3. The correlations between the target trait with both the extreme negative
response style (ENRS) and the extreme positive response style (EPRS) in IRTree
model 1 were −0.761 and 0.627, respectively. The large correlations would indicate
that the extreme response latent variables are not enough separated from the main
trait; which in turn would be indicative of possible bias in the measuring of the
target trait (e.g., Plieninger, 2017). The correlation between the target trait (θ1) and
the ERS (θ2) in the IRTree model 2 was 0.490. This lower correlation indicates that
the ERS component is not severely picking up on trait information as it was the
case for IRTree model 1. Thus, although model 2 does not fit better than model 1, it
allows the interpretation of the results in a less ambiguous way.

The pattern of estimated traits by each IRT model plotted against the observed
sum scores is shown in Fig. 2. It can be seen that these patterns are very similar
for the GRM and GPCM estimates, and that there are no much differences between
the estimated traits for the IRTree models and those by the traditional IRT models.
This means that latent trait estimates by IRTree models can be used as a reliable
alternative to traditional polytomous IRT models.

5 Conclusions and Discussion

Two traditional polytomous IRT models and two IRTree models were compared
in terms of model fit and the estimation of non-cognitive latent traits. The IRTree
models had a better fit than traditional polytomous IRT models, and the estimated
traits of interest produced by these non traditional polytomous IRT models were
highly correlated and aligned to the ones obtained using the GRM and the GPCM.

Given that the preliminary inspection of the analysed data showed that a large
proportion of students chose the extreme positive category, suggesting possible
response styles present in the data sample, the fact that the two IRTree models
fitted better than traditional IRT model is reassuring. Although IRTree model 1
had the best fit, the model tree specification (negative/positive ERS) does not yield
independent components and thus it captures part of the target trait. This is not the
case for the IRTree model 2 which allows to separate the target trait and the response
style component in a better way.



Polytomous IRT Models Versus IRTree Models 123

Ta
bl
e
3

C
or
re
la
tio

ns
am

on
g
es
tim

at
ed

tr
ai
ts

M
od
el

G
R
M

G
PC

M
IR
T
re
e
1(
θ 1
)

IR
T
re
e
1(
θ 2
)

IR
T
re
e
1
(θ

3
)

IR
T
re
e
2(
θ 1
)

IR
T
re
e
2(
θ 2
)

G
R
M

1

G
PC

M
0.
99
1

1

IR
T
re
e
1(
θ 1
)

0.
90
7

0.
92
3

1

IR
T
re
e
1(
θ 2
)

−0
.5
13

−0
.5
51

−0
.7
61

1

IR
T
re
e
1(
θ 3
)

0.
84
6

0.
83
2

0.
62
7

−0
.0
42

1

IR
T
re
e
2(
θ 1
)

0.
87
5

0.
88
9

0.
99
5

−0
.7
61

0.
62
7

1

IR
T
re
e
2(
θ 2
)

0.
74
0

0.
73
7

0.
52
4

0.
10
6

0.
96
2

0.
49
0

1



124 F. Calderón and J. González

Fig. 2 Correlation between latent trait estimates and the sum score. (a) GRM (uni-dimensional).
(b) GPCM (uni-dimensional). (c) IRTree model 1 (three-dimensional). (d) IRTree model 2 (two-
dimensional)

Finally, the highly correlated and aligned results with the traditional polytomous
IRT models for the estimates of the measured trait of interest (safe-environment)
allow us to conclude that the IRTree model can be safely used to estimate traits of
interest while at the same time account for response styles.
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On the Coefficient Alpha
in High-Dimensions

Kentaro Hayashi, Ke-Hai Yuan, and Regan Sato

1 Introduction

The coefficient alpha (Cronbach, 1951) remains very important as a measure of
reliability in the social sciences. Whenever a new questionnaire is developed by
psychologists, the coefficient alpha is consistently reported to demonstrate that the
measure has good reliability. Moreover, the coefficient alpha itself remains an active
research area in psychometrics (e.g., Yuan & Bentler, 2002; Zhang & Yuan, 2016).

It is well known that, under certain conditions, the coefficient alpha increases
as the number of items increase. The fact has been noted via the Spearman-Brown
formula (Brown, 1910; Spearman, 1910). This implies that as the number of items
goes to infinity, the coefficient alpha eventually approaches 1. Therefore, the issue of
reliability is closely associated with that of dimensionality of the manifest variables.

Regarding high dimensionality, there is another interesting phenomenon. It has
been known that the results from factor analysis (FA; e.g., Lawley &Maxwell, 1971)
approach those from principal component analysis (PCA; e.g., Jolliffe, 2002) as the
number of variables increase (Guttman, 1956).

In this work, we show that the coefficient alpha approaching 1 is related
to the increased closeness between FA and PCA in high dimensions. Here, the
closeness between FA and PCA includes the closeness with respect to both their
loadings and factor score (principal component). More specifically, we show that
as the dimension increases the phenomenon of the coefficient alpha approaching
1 is related to four different phenomena: (1) the closeness between FA and PCA
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loadings, (2) the inverse of the covariance matrix of the manifest variables becoming
a diagonal matrix, assuming a FA model in the population, (3) the communalities
between FA and PCA approaching each other, and (4) the factor score and the
principal component agreeing with each other.

2 Definitions and Assumptions

Suppose that there exists a p-dimensional vector of random variables, x = (x1,
. . . , xp)T , measuring the same construct. Denote the covariance matrix and the
correlation matrix of x as � and P, respectively. Then the coefficient alpha is
defined as:

α (�) = p

p − 1

(

1 − tr(�)

1Tp�1p

)

.

When the xj’s are all standardized, the alpha coefficient is defined as:

α (P) = p

p − 1

(

1 − tr(P)
1TpP1p

)

= pρ

1 + (p − 1) ρ
,

where ρ = (1pTP1p – p)/p* is the average of the p* = p(p – 1) correlation coefficients
between the distinct pairs of the items in x (Hayashi & Kamata, 2005).

Assumption 1 We assume a one-factor model holds and all the factor loadings
are positive. Also, all the elements of eigenvector corresponding to the largest
eigenvalue of the covariance matrix have a positive sign.

This assumption is necessary for the alpha coefficient to be justified. We can
make the sign of factor loadings always positive by reversing the items if
necessary.

Let the one-factor model be x = μ + λf + ε, where μ = E(x) is a p × 1 vector
of intercepts, λ is a p × 1 vector of factor loadings, f is a (scalar) latent variable,
and ε is a p × 1 vector of random errors. We assume that the mean and the variance
of the factor and the errors are E(f ) = 0, Var(f ) = 1, E(ε) = 0, and Cov(ε) = �,
where � is a diagonal matrix with positive elements (i.e., the errors are uncorrelated
with each other), respectively. Also, we assume that the factor and the errors are
uncorrelated (i.e., Cov(f, ε) = 0). Then, the covariance matrix of x is expressed as
� = λλT + �. Here, λ is defined as λ = ω1/2λ+, where λ+ is the standardized (i.e.,
||λ+||2 = 1) eigenvector corresponding to the single nonzero eigenvalue ω of � –
� (i.e., ω = ev1(� – �)).

Likewise, express the principal component analysis (PCA) loadings as
λ* = ω1

1/2λ1
*, where λ1

* (p x 1) is the standardized (i.e., ||λ1
*||2 = 1) eigenvector
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corresponding to the largest eigenvalue ω1 of � (i.e., ω1 = ev1(�)). Then,
the first principal component (PC) is obtained as f* = λ*T (x – μ). Because �

= ∑p

i=1ωiλ
∗
i λ

∗T
i , where ωi is the i-th largest eigenvalue of � and λi

* is the
corresponding standardized eigenvector, we can also express� as� = λ*λ*T + �*,
where�* =∑p

i=2ωiλ
∗
i λi

*T is not a diagonal matrix, in general, unlike the FAmodel.
Denote the i-th element of λ and λ* as λi andλ∗

i , respectively. Then the i-th
communalities based on a one-factor FA model and the corresponding PCA are
λ2i and λ

∗2
i , respectively. That is, for a one-factor model, the i-th communalities for

the FA and the PCA reduce to the squared i-th loading for the FA and the PCA,
respectively. Also, denote the i-th diagonal element of � as σ ii, and the supremum
and the infimum of σ ii, i = 1, . . . , p, as σ sup and σ inf (i.e., σ sup = supi ≥ 1(σ ii) and
σ inf = infi ≥ 1(σ ii)), respectively. Likewise, we write the i-th diagonal element of �

as ψ ii, and denote the supremum and the infimum of ψ ii as ψ sup = supi ≥ 1(ψ ii) and
ψ inf = infi ≥ 1(ψ ii), respectively.

Assumption 2 The supremum of the diagonal elements of � is finite (i.e.,
σ sup < ∞) and the infimum of the unique variances is bounded away from zero
(0 < ψ inf). Then obviously, 0 < ψinf ≤ ψii ≤ ψsup ≤ �sup < ∞.

The direct consequence of Assumption 2 is that not only the diagonal
elements of � are bounded above and also bounded away from zero, but the
inverse �−1 are also bounded above and bounded away from zero. That is,
0 < ψ sup

−1 ≤ ψ ii
−1 ≤ ψ inf

−1 < ∞. Because 0 < ψ inf ≤ σ inf, σ inf is also bounded
away from zero.

With more latent variables, Schneeweiss and Mathes (1995) and Schneeweiss
(1997) suggested to use non-centered canonical correlations to measure the close-
ness between the loadings of PCA and FA. Now, with a single factor, the non-
centered squared canonical correlation between FA loadings and PCA loadings for
the one-factor model is defined as:

ρ2
(
λ,λ∗) =

(
λT λ

)−1 (
λT λ∗) (

λ∗T λ∗)−1 (
λ∗T λ

)

=
(
λT λ∗)2

‖λ‖22
∥
∥λ∗∥∥2

2

= {
Corr

(
λ,λ∗)}2.

That is, for a one-factor model, the squared canonical correlation reduces to the
squared correlation.

Now, express � as � = �P�, where � = diag(σ ii
1/2) is the diagonal

matrix whose diagonal elements are standard deviations. Then, we can express
� = λλT + � as � = �P� = �(llT + U)�, where P = (ρij) = llT + U
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is the covariance (correlation) matrix of the standardized variables �−1x with
the standardized FA loading vector l = (li) and the standardized (diagonal) error
variance matrix U = diag(uii). Because the diagonal elements of P are all 1’s, the
diagonal elements of U are functions of l, that is, U = Ip – diag(llT ) with uii = 1 –
li2. Therefore, σ ii = λi

2 + ψ ii = (σ ii)(li2 + uii) = (σ ii){li2 + (1 – li2)}, and
ψ ii = (σ ii)(1 – li2).

Assumption 3 Let c > 0 be a small positive constant. Then, under Assumption 2,
0 < c ≤ li2 < 1.

Recall that ρ be the average correlation. Then, we can show that 0 < c ≤ li2 < 1
implies c ≤ ρ < 1. Because li’s take the same positive sign (due to Assumption
1), c ≤ li2 implies c1/2 ≤ li. Thus, c ≤ ρij = lilj. Also, due to Assumption 2,
ψ inf ≤ ψ ii = (σ ii)(1 – li2), so that li2 ≤ 1 – ψ infσ ii

−1 < 1 and li < 1. Thus,
ρij = lilj < 1. Combining both, we have c ≤ ρij < 1. Because ρ is the average
of p(p – 1)/2 distinct ρij’s, ρ has the same lower and upper bounds as those for ρij’s.
Thus, c ≤ ρ < 1 follows.

Because ψ ii = (σ ii)(1 – li2) ≤ ψ sup, we can show that li2 ≥ 1 –ψ sup(σ ii)−1 ≥ 1 –
ψ sup(σ inf)−1. If 1 –ψ sup(σ inf)−1 > 0, that is, if σ inf > ψ sup, then 0 < c* < li2, where
c* = 1 –ψ sup(σ inf)−1. However, in general, may not exist such a positive constant
c*.

3 Theorem

Now, we state our main theorem connecting the coefficient alpha and the closeness
between FA and PCA in high dimensions.

Theorem 1
(1) (FA loadings and PCA loadings) The squared non-centered correlation between

FA loadings and PCA loadings approaches 1 (i.e., ρ2(λ, λ*) = {Corr(λ,
λ*)}2 → 1) if and only if the coefficient alpha approaches 1 (i.e., α(�) → 1).

(2) (Precision matrix) The precision matrix (i.e., the inverse of the covariance
matrix �) approaches the inverse of the diagonal matrix of unique variances
(i.e., �−1 – �−1 → 0) if and only if the coefficient alpha approaches 1 (i.e.,
α(�) → 1).

(3) (Communality) The difference between the i-th communalities based on FA
and PCA approaches zero for almost all i as the number of observed variables
increases (i.e., λi2 – λi*2 → 0 as p → ∞) if and only if the coefficient alpha
approaches 1 (i.e., α(�) → 1).

(4) (Factor score and principal component) The factor score and the principal
component agree with each other (i.e., {Corr(f, f*)}2 → 1) if and only if the
coefficient alpha approaches 1 (i.e., α(�) → 1).



On the Coefficient Alpha in High-Dimensions 131

4 Preliminary Results

In this section, we present lemmas that are needed to prove Theorem 1.

Lemma 1 α(�) → 1 as p → ∞ if and only if α(P) → 1 as p → ∞.

Proof As before, � = �P�, where � is the diagonal matrix whose
elements are standard deviations. Due to Assumption 2, P = �−1��−1. Thus,
0 < σ infP ≤ � ≤ σ supP < ∞ and 0 < σ−1

sup � ≤ P ≤ σ−1
inf � < ∞.

(<=) Taking the trace on each term of the inequality σ infP ≤ � ≤ σ supP yields
(σ inf)tr(P) ≤ tr(�) ≤ (σ sup)tr(P). Because σ inf

1/2Ip ≤ � ≤ σ sup
1/2Ip, it follows

that (σ inf)(1pTP1p) ≤ 1pT�1p = 1pT�P�1p ≤ (σ sup)(1pTP1p). Thus,

α (�) = {p/ (p − 1)} {1 − tr(�) /
(
1pT �1p

)}

≥ {p/ (p − 1)} {1 − (
σsup

)
tr(P) /

(
(σinf) 1pT P1p

)}

= {p/ (p − 1)} {1 − (
σsup/σinf

)
tr(P) /

(
1pT P1p

)}

≥ 1 − (
�sup/σinf

)
tr(P) /

(
1pT P1p

)
.

Now, p/(p-1) p → 1 as p → ∞, and α(P) = {p/(p-1)}{1 – tr(P)/(1pTP1p)} → 1
implies tr(P)/(1pTP1p) → 0. Because σ sup is bounded and σ inf is bounded away
from zero, (σ sup/σ inf) is also bounded and bounded away from zero. Thus,
tr(P)/(1pTP1p) → 0 implies (σ sup/σ inf)tr(P)/(1pTP1p) → 0, and α(�) → 1 follows.

(=>) Taking the trace on each term of the inequality σ−1
sup� ≤ P ≤ σ−1

inf � yields

(σ−1
sup)tr(�) ≤ tr(P) ≤ (σ−1

inf )tr(�). Because σ−1/2
sup Ip ≤ �−1 ≤ σ

−1/2
inf Ip, it follows

that (σ−1
sup)(1p

T�1p) ≤ 1pTP1p = 1pT�−1��−11p ≤ (σ−1
inf )(1p

T�1p). Thus,

α (P) = {p/ (p − 1)} {1 − tr (P) /
(
1pT P1p

)}

≥ {p/ (p − 1)}
{
1 −

(
σ−1
inf

)
tr(�) /

((
σ−1
sup

)
1pT �1p

)}

= {p/ (p − 1)} {1 − (
σsup/σinf

)
tr(�) /

(
1pT �1p

)}

≥ 1 − (
�sup/σinf

)
tr(�) /

(
1pT �1p

)
.

As before, because (σ sup/σ inf) is bounded and bounded away from zero,
tr(�)/(1pT�1p) → 0 implies (σ sup/σ inf)tr(�)/(1pT�1p) → 0. Thus α(P) → 1
follows.

Lemma 2 Under Assumption 3, α (P) → 1 if and only if p → ∞.

Proof (<=) With Assumption 3 that 0 < c ≤ ρ < 1, it follows from α(P) = ρ{p−1 +
ρ(1 – p−1)}−1 = {1 + p−1(ρ−1 – 1)}−1 that α(P) → 1 as p → ∞ (i.e., as p−1 → 0).

(=>) α(P) = {1 + p−1(ρ−1 – 1)}−1 → 1 is equivalent to p−1(ρ−1 – 1) → 0. This
happens either when ρ → 1 or when p → ∞. By Assumption 3 (i.e., ρ < 1), p → ∞
follows.
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The following results are also needed for the proof of Theorem 1. Only the result
of Bentler and Kano (1990) was for a single factor, as other results have been stated
in the context of multi-factor model. Their proof and conditions for one-factor model
were much simpler.

Lemma 3 (Bentler & Kano, 1990; Schneeweiss & Mathes, 1995; Schneeweiss,
1997; Krijnen, 2006b): If λT�−1λ → ∞, then ρ2(λ, λ*) → 1.

Lemma 4

(1) (Krijnen, 2006a, Theorem 3): λT�−1λ → ∞ implies p → ∞.
(2) With Assumption 3, the converse of (1) also holds. That is, p → ∞ implies

λT�−1λ → ∞.
(3) (Krijnen, 2006a, Theorem 2): Let σ ii be the (i, i) element of �−1. Then,

ψ iiσ
ii → 1 for almost all i implies p → ∞.

Notes: (i) For a m-factor model, Lemma 4 (1) states that “�T�-1� → ∞ then
m/p → 0 as p → ∞.”

(ii) “For almost all i” means that “the limit holds almost everywhere on the set
of positive integers except possibly on a subset of measure zero” (Krijnen, 2006a,
p. 195).

Proof of (2)

With Assumption 2, “p → ∞ implies λT�-1λ → ∞” is equivalent to “p → ∞
implies λTλ → ∞,” which is further equivalent to “λTλ < ∞ implies p < ∞.”
Now, by Assumption 3,

∞ > λT λ = tr
(
λλT

) = tr(� − Ψ ) = tr{Δ (P − U)Δ}
≥ (�inf) tr(P − U) = (�inf) tr

(
llT

) = (�inf) tr
(
lT l

) = (�inf)
(∑p

i=1l
2
i

)

≥ (�inf) (c)(p)

with a small positive constant c. Thus, p < ∞ follows.
The Woodbury formula (See e.g., Harville, 1997, Chap. 16) is given by:

�−1 = Ψ −1 − Ψ −1λ
(
1 + λT Ψ −1λ

)−1
λT Ψ −1.

Lemma 5 (1) (Hayashi, Yuan, & Jiang, 2019): If λT�−1λ → ∞, then �−1 –
�−1 → 0.

(2) If �−1 – �−1 → 0, then λT�−1λ → ∞.

Proof of (2) �−1 – �−1 → 0 implies σ ii – ψ ii
−1 → 0 for almost all i, which

can also be expressed as ψ iiσ
ii → 1 for almost all i. Then, by Lemma 4 (3),

ψ iiσ
ii → 1 for almost all i implies p → ∞. Finally, by Lemma 4 (2), p → ∞

implies λT�−1λ → ∞.
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Lemma 6 (Bentler & Kano, 1990): If λT�−1λ → ∞ as p → ∞, then the squared
correlation between the PC f* and the factor f converges to 1, i.e., {Corr(f, f*)}2 → 1.

Lemma 7 (Bentler and Kano, 1990): (1) For a one-factor model, the PCA loading
vector can be expressed as a linear combination of the FA loading vector, as follows:

λ∗ = c (λ,�, ω1)λ,

where

c (λ,�, ω1) = ω
1/2
1

(
ω1Ip − �

)−1

√

λT
(
ω1Ip − �

)−2
λ

=
ω
1/2
1

(
Ip − ω−1

1 �
)−1

√

λT
(
Ip − ω−1

1 �
)−2

λ

(1)

with ω1 being the largest eigenvalue of �.
(2) If λT�−1λ → ∞ as p → ∞, then λ* – λ → 0. That is, c(λ,�,ω1) → Ip.

5 Proof of Theorem 1

Due to Lemma 1, our proofs can apply to either α (�) or α (P).

Proof of Part 1
(<=) By Lemma 2, α (P) → 1 implies p → ∞. Due to Lemma 4 (2), p → ∞ implies
λT�−1λ → ∞. Finally, by Lemma 3, λT�−1λ → ∞ results in ρ2(λ, λ*) → 1.

(=>) ρ2(λ, λ*) → 1 implies λ* – cλ → 0 for some non-zero constant c (due to the
Cauchy-Schwarz inequality). By Lemma 7 (1), λ* = c(λ,�,ω1)λ, where c(λ,�,ω1)
is given as in Eq. (1). The only way that the vector c(λ,�,ω1) behaves as if it were a
scalar is when the numerator converges to a constant times the identity matrix. That
is, ω1

−1� → 0. This implies ω1 → ∞. Because σ sup < ∞ due to Assumption 2,
the unbounded largest eigenvalue of � (i.e., ω1 = ev1(�) → ∞) implies p → ∞.
Thus, by Lemma 2, p → ∞ implies α(P) → 1.

Proof of Part 2
(<=) As in the necessity proof of part 1, α(P) → 1 implies λT�−1λ → ∞. By
Lemma 5 (1), λT�−1λ → ∞ results in �−1 – �−1 → 0.

(=>) By Lemma 5 (2), �−1 – �−1 → 0 implies λT�−1λ → ∞. By Lemma 4 (1),
λT�−1λ → ∞ implies p → ∞. Finally, by Lemma 2, p → ∞ results in α(P) → 1.

Proof of Part 3
(<=) By Lemma 2, α (P) → 1 implies p → ∞. Also, as in the necessity proof of
part 1, α(P) → 1 implies λT�−1λ → ∞. Now, by Lemma 7 (2), λT�−1λ → ∞ as
p → ∞ implies. λ* – λ → 0. Thus, λi*2 – λi2 → 0 for almost all i.

(=>) If λi*2 – λi2 = (λi* – λi)( λi* + λi)→ 0 for almost all i, the i-th FA loading and
the i-th PCA loading converge to each other for almost all i, except for a possible
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difference of the sign. (Due to Assumption 1, λi* and λi have the same positive
sign.) This implies ρ2(λ, λ*) → 1. Thus, applying the sufficiency proof for part 1,
α(P) → 1 follows.

Proof of Part 4
(<=) Due to the necessity proof of part 1, α (P) → 1 implies λT�−1λ → ∞ as
well as p → ∞. Thus, by Lemma 6, {Corr(f, f*)}2 → 1 follows.

(=>) Noting f ∗ = λ1
∗T (x − μ) and Var(f ) = 1,

{Corr (f, f ∗)}2 = {Cov (f, f ∗)}2/ {Var(f )Var (f ∗)}
= (

λT λ1
∗)2/

(
λ1

∗T �λ1
∗)

= {
λ1

∗T (
λλT

)
λ1

∗} /
(
λ1

∗T �λ1
∗)

= {
λ1

∗T (� −�)λ1
∗} /

(
λ1

∗T �λ1
∗)

= 1 − {
λ1

∗T �λ1
∗} /

(
λ1

∗T �λ1
∗)

≤ 1 − ψinf/ω1
∗.

Because {Corr(f, f*)}2 → 1, ω1
* → ∞. Because σ sup < ∞ due to Assumption 2,

ω1
* → ∞ implies p → ∞. Finally, due to Lemma 2, p → ∞ implies α (P) → 1.

6 Illustration with Simulated Data

We illustrate Theorem 1 with some simulated data sets. The design of the simulation
is as follows: The sample size (n) is 400 and the numbers of items (p) are 6, 12,
24, 48, and 96. For p = 6, the population factor loadings (as a column vector) are
λ6 = (0.8, 0.7, 0.6, 0.8, 0.65, 0.5)T . For p = 12, 24, 48, and 96, the population
factor loadings are λ12 = 12⊗λ6, λ24 = 14⊗λ6, λ48 = 18⊗λ6, and λ96 = 116⊗λ6,
respectively, where 1k is the k-dimensional column vector whose elements are all
1’s, and ⊗ is the Kronecker product. Based on the population factor loadings,
the population correlation matrices (P) were created. Data were simulated from
multivariate normal distributions with population mean vectors 0’s and covariance
matrices P (i.e., covariances = correlations). Twenty data sets were generated
for each value of p. For each data set, the following values were computed: (1)
the coefficient alpha, (2) the Fisher-z transformed (square root of the) squared
correlation between FA loadings and PCA loadings (see e.g., Fisher, 1915), (3) the
ratio of the average absolute off-diagonal element to the average diagonal element
of the precision matrix (i.e., the inverse of the sample correlation matrix), (4) the
average absolute difference between communalities based on FA and PCA, and (5)
the Fisher-z transformed correlation between the Bartlett factor scores and the PCs.
We employed the Fisher-z transformation because the correlation values were very
close to 1 even when the number of variables (p) were small. Furthermore, we will
use regression analysis to investigate how much (additional) variance of outcome
variables (i.e., (2) through (5) above) is explained by the number of variables (p)
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and the coefficient alpha if the coefficient alpha is included as the second predictor,
when the number of variables (p) is the only initial predictor. The sample size for
the regression analysis is equal to 100, which are the number of replications (20)
times the number of different values of p (5).

The results are shown in Tables 1 and 2. According to the results, as p increases,
the value of the coefficient alpha also increases (from 0.834 when p = 6 to 0.988
when p = 96). In relation to Theorem 1, the results shown in Tables 1 and 2 have
the following pattern.

(1) FA and PCA loadings: As the value of the coefficient alpha increases, the Fisher-
z transformed correlation between FA and PCA loadings also increases (from
z = 3.52 when alpha = 0.843 to z = 4.02 when alpha = 0.988), indicating
the greater closeness between FA and PCA loadings. This illustrates part 1 of
Theorem 1. When the number of items (p) was the only predictor, only 21.8%
of the variance for the Fisher-z transformed correlation between FA and PCA
loadings was explained (i.e., R2 = .218). However, when coefficient alpha is
added as the second predictor, the corresponding R2 increased to 50.0%, an
increment of 28.2%.

(2) Precision matrix: As the value of the coefficient alpha increased, the ratio of
the average absolute value of off-diagonal elements to the average diagonal
element of the inversed sample correlation matrix decreased (from 0.164 when
alpha = 0.843 to 0.046 when alpha = 0.988), indicating that the inversed
sample correlation matrix approached a diagonal matrix. This illustrates part
2 of Theorem 1. When the number of items (p) was the only predictor, only
43.2% of the variance for the ratio of the average absolute value of off-diagonal
elements to the average diagonal element was explained. However, when adding
coefficient alpha as the second predictor, R2 increased to 97.0%, resulting in an
increment of 53.8%.

(3) Communality: As the value of coefficient alpha increases, the average abso-
lute value of the difference between communalities based on FA and those
based on PCA decreased (from 0.0790 when alpha = 0.843 to 0.0276 when
alpha = 0.988). This illustrates part 3 of Theorem 1. When the number of
items (p) is the only predictor, only 39.3% of the variance for the average
absolute value of the differences in communalities was explained. However,
when coefficient alpha is added as the second predictor, R2 increased to 86.0%,
resulting in an increment of 46.7%.

(4) Factor score and principal component: As the value of the coefficient alpha
increases, the Fisher-z transformed correlation between the Bartlett factor
scores and the PCs increases (from z = 2.79 when alpha = 0.843 to z = 4.28
when alpha = 0.988). This illustrates part 4 of Theorem 1. When the number of
items (p) was the only predictor, 84.1% of variance for the Fisher-z transformed
correlation between the factor scores and the PCs was already explained.
However, when adding coefficient alpha as the second predictor, the R2 becomes
even higher at 97.9%, resulting in an increment of 13.8%.
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Table 1 The sample means across 20 replications for five measures

Inverse Corr. Difference
# of items (p) Alpha Z (closeness) Ratio off/diag Communality Z (scores)

6 0.8343 3.5225 0.16399 0.07895 2.7891
12 0.9067 3.8453 0.08582 0.05043 3.1911
24 0.9519 3.9518 0.05495 0.03397 3.5554
48 0.9759 3.9781 0.04553 0.02842 3.9356
96 0.9877 4.0225 0.04551 0.02759 4.2830

Note. Z (Closeness) = Fisher-z transformed (square-root of) squared correlation between FA
and PCA loadings; Inverse Corr. Ratio off/diag = ratio of average absolute off-diagonal
element to average diagonal element of the precision (inverse correlation) matrix; Difference
Communality = average absolute difference between communalities based on FA and PCA; Z
(Scores) = Fisher-z transformed correlation between factor scores and PCs, all averaged over 20
replications

Table 2 R-Squares with predictor p alone and by adding alpha

Dependent variables
Inverse Corr. Difference

Predictor(s) Z (closeness) Ratio off/diag Communality Z (scores)

# of items (p) only 0.218 0.432 0.393 0.841
# of items (p) and alpha 0.500 0.970 0.860 0.979

Note. Z (Closeness) = Fisher-z transformed (square-root of) squared correlation between FA
and PCA loadings; Inverse Corr. Ratio off/diag = ratio of average absolute off-diagonal
element to average diagonal element of the precision (inverse correlation) matrix; Difference
Communality = average absolute difference between communalities based on FA and PCA; Z
(Scores) = Fisher-z transformed correlation between factor scores and PCs

7 Discussion

We showed that the phenomenon of the coefficient alpha approaching 1 is related to
the increased closeness between FA and PCA. The relationship implies that when
the value of coefficient alpha is close to 1, we can confidently use PCA in place
of FA and trust that the results are almost the same whether we use FA or PCA.
A practical implication for this work is that we can use the value of coefficient
alpha as an index for the degree of closeness between FA and PCA. It is easier
for applied researchers to compute the coefficient alpha with popular statistical
software such as SPSS than computing the squared correlation between FA loadings
and PCA loadings. If the results are similar whether we use either FA or PCA,
then we recommend that applied researchers should use PCA rather than FA. This
is because PCA is straight-forward to compute and it only involves eigenvalue-
eigenvector decomposition. Also, unlike FA, PCA never encounters difficulties
such as non-convergence and improper solutions (also called the Heywood cases).
In addition, the solution for PCA does not require or depend on any iterative
numerical algorithms such as the quasi-Newton’s methods, except for the numerical
computations of standard linear algebra. These problems might become a concern
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for FA if the number of items becomes very large. We demonstrated that if there is a
relatively large number of items and the value of coefficient alpha is also very high,
then the results will be very close between FA and PCA. In the numerical illustration
of Sect. 6, we demonstrated that the number of items and the coefficient alpha
together can predict the degree of closeness between FA and PCA substantially
better than the number of items alone.

In our study, we focused on the relationship of coefficient alpha and FA/PCA
with high dimensional data. Theoretically, we focused on the case where the
number of items go to infinity. On the other hand, in the numerical illustration, we
demonstrated that the high level of agreement between FA and PCA as measured
by the squared correlation can occur with only about 100 items. That is, the high
level of agreement between FA and PCA seems to occur with much smaller number
of items than researchers such as in machine learning defined as high dimensions,
in which the number of variables often far exceed the number of subjects. For the
closeness between FA and PCA without reference to high dimensions, refer to e.g.,
Bentler and de Leeuw (2011). There are also numerous research on factor scores
(in)determinacy, which is beyond the scope of our work. For the topic, refer to e.g.,
Bentler and Yuan (1997).

The coefficient alpha is not the only measure for reliability. As a matter of fact,
there is a connection between the coefficient omega (cf., McDonald, 1985) and FA,
as well as between the coefficient theta (Armor, 1974) and PCA. The coefficient
omega is defined as

ω (λ,�) =
(
1Tpλ

)2

(
1Tpλ

)2 + tr(�)

.

Here, if (1Tλ)2/tr(�) → ∞, then ω(λ, �) → 1. Due to the Cauchy-Schwarz
inequality, (1Tλ)2 ≤ (p)(λTλ). Also, (1Tλ)2/tr(�) ≤ {(p)(λTλ)}{(ψ−1

inf )(p
−1)} =

(λTλ)(ψ−1
inf ), whereψ−1

inf is bounded and bounded away from zero due to Assumption
2. Thus, (1Tλ)2/tr(�) → ∞ implies λT�−1λ → ∞ (again due to Assumption 2 ).
That is, (1Tλ)2/tr(�) → ∞ implies both ω(λ, �) → 1 and λT�−1λ → ∞.

Thus, if the ratio of the square of sum of FA loadings to the sum of unique
variances goes to infinity, i.e., (1Tλ)2/tr(�) → ∞, then

(1) the coefficient omega approaches 1, i.e., ω(λ, �) → 1;
(2) the coefficient alpha approaches 1, i.e., α(�) → 1 (due to Lemma 4 (1) and

Lemma 2);
(3) the squared non-centered correlation between FA loadings and PCA loadings

approaches 1, i.e., ρ2(λ, λ*) → 1 (due to Lemma 3);
(4) the precision matrix approaches the inverse of the diagonal matrix of unique

variances, i.e.,
�−1 – �−1 → 0 (due to Lemma 5 (1));
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(5) the difference between the i-th communalities based on FA and PCA approaches
zero for almost all i as the number of observed variables increases, i.e., λi2 –
λi

*2 → 0 as p → ∞ (due to Lemma 7 (2));
(6) The factor score and the PC agree with each other, i.e., {Corr(f, f*)}2 → 1 (due

to Lemma 6).

The coefficient theta (Armor, 1974) is defined as θ (P) = {p/(p–1)}(1–1/ω1(P)),
where ω1(P) is the largest eigenvalue of the correlation matrix P. Obviously, if
ω1(P) → ∞ (as p → ∞), then θ (P) → 1. Due to Assumption 2, σ sup and σ inf are
bounded and bounded away from zero. Thus, ω1(P) → ∞ (as p → ∞) if and only if
the largest eigenvalue ω1 of � goes to infinity, i.e., ω1(�) → ∞ (as p → ∞). Here,
due to the boundedness of the supremum of the diagonal elements (i.e., σ sup < ∞)
of the covariance matrix �, ω1(P) → ∞ or ω1(�) → ∞ implies p → ∞. Also, due
to Lemma 4 (2), p → ∞ implies to λT�−1λ → ∞. Thus, if the largest eigenvalue
of either the correlation matrix or the covariance matrix goes to infinity, i.e., either
ω1(�) → ∞ or ω1(P) → ∞, then the coefficient theta approaches 1, i.e., θ (P) → 1,
and the results (2) through (6) above also hold.

One limitation for our work is that when the number of items is very large, it
may be hard for a one-factor model to hold in practice. However, we conjecture that
our results can be extended to a multi-factor case. It is noteworthy to mention that
besides Bentler and Kano (1990), all the results on the closeness between FA and
PCA were proved under a multi-factor case. For a multi-factor model, we may be
able to employ, for example, Krijnen (2004) Corollary 2a in place of our Lemma
6. We showed that the coefficient alpha approaches 1 even if limited number of
items that are nearly uncorrelated with each other are added, as long as the mean
correlation is bounded away from zero. Therefore, as long as the multi-factor model
includes a general factor, it is likely that our results still hold for a multi-factor case.
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IRT Analysis of Dimensional Structure
and Item Wording Effects

Ki Cole, Ronna Turner, and Sohee Kim

1 Introduction

The Perceived Stress Scale (PSS; Cohen & Williamson, 1988) is a widely used
measure of self-report of perceived stress. Principal components factor analysis
often results in a two-factor solution composed of either positively or negatively
directed items (Lee, 2012). Cohen and Williamson (1988) stated that the distinction
between factors was irrelevant for purposes of measuring perceived stress. In
addition to the overall directional meaning of an item, the orientation may also have
an influence on how an item operates. When a negatively worded item stem contains
a contraction, such as “not” or “no,” or a negative prefix, such as “un-,” or “non-,”
the term or prefix indicates a change in the orientation of the meaning (Swain et
al., 2008). Other times, the meaning of the item can be changed by using terms of
opposite meaning, such as “happy” and “sad”.

The purpose of this study was to investigate the potential effects item direction
and orientation on model fit, item parameters, and respondent scores by comparing
the calibrations of various multidimensional structures using the multidimensional
graded response IRT model.
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1.1 Item Wording: Directionality and Orientation

When assessing some psychological constructs, survey instruments composed of
items are used to measure the underlying latent trait. The wording of items
used in the survey are a key component for the instrument’s sound psychometric
properties, including reliability, validity, item functioning, and information. Studies
have extensively investigated the effects of wording direction – whether positive
or negative (Benson & Hocevar, 1985; DiStefano & Motl, 2009; Ebesutani et al.,
2012; Gitchel et al., 2011; Magazine et al., 1996; Matlock et al., 2016; Michaelides
et al., 2016; Mook et al., 1991; Motl & DiStefano, 2002; Tomás & Oliver, 1999;
Weems et al., 2003; Weijters & Baumgartner, 2012). Theoretically, if a respondent
answers strongly agree to a positively directed item, “I am happy,” the respondent
would answer at the exact opposite end of a Likert-type response scale, strongly
disagree, to a negatively directed item “I am sad,” assuming happy and sad are
viewed as exact opposite feelings. Having a mixture of positive and negative items
within a scale is most often used and supported by many psychometric studies
(Baumgartner & Steenkamp, 2001; Couch & Keniston, 1960; Gu et al., 2015;
Michaelides et al., 2016; Weijters & Baumgartner, 2012; Wong et al., 2003); this
design is intended to diminish response bias due to non-construct related factors,
such as item directionality. Others favor a scale of only positively worded items due
to the problematic issues that negative items may cause (Matlock et al., 2016; Wong
et al., 2003).

An additional component of the wording effect not included in the afore-
mentioned studies was the orientation of the item. Swain et al. (2008) further
characterized negative items as having a negative context due to the negative
meaning of the root-terminology, e.g., sad as opposed to happy in the previous
example, or due to negatively orienting the item using the words “not” or “no” or the
prefix “un-” or “non”. Swain et al.(2008) focused primarily on the orientation of NW
items; Weijters and Baumgartner (2012) also included the orientation of positive
items when reviewing studies of direction and orientation. Table 1 presents four
closely related items intended to measure the same construct in order to distinguish
among the four wording types.

1.2 Multidimensional Structure

Dimensionality of a dataset refers to the number of factors or constructs a dataset
is intended to measure. Sometimes the dimensions are based on content-specific

Table 1 Four items to
illustrate direction and
wording/orientation effects

Worded Oriented

Positive I am happy. (PW) I am not sad. (PO)
Negative I am sad. (NW) I am not happy. (NO)
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stimuli, and others for some non-content-specific stimulus, e.g., item directionality
(Gu et al., 2015; Michaelides et al., 2016; Wang et al., 2015; Xin & Chi, 2010).

Many times, item directionality will affect the outcome of exploratory factor
analysis resulting in two factors according to direction. Cohen and Williamson
(1988) supported the use of a single-level, unidimensional analysis even when items
loaded in this way. Hence, many apply unidimensional analysis when studying
wording effects. Others indicate that directionality and wording effects should be
taken into account (Michaelides et al., 2016; Wang et al., 2015; Xin & Chi, 2010).

Multidimensional structures may be more appropriate for modeling survey data,
considering whether to take into account construct related components or to control
for non-construct related effects. A first-order multidimensional model includes
more than one factor. A simple structure multidimensional arrangement is one in
which each item is associated with only one factor, and factors may be correlated or
uncorrelated.

A traditional bifactor model is one in which subsets of items are associated with
a single specific factor, and all items are associated with a general factor. A reduced
bifactor model is one in which all items are associated with a general factor but
only some items are associated with a specific factor. Because the general factor is
modeled to account for what all items have in common and the specific factors
account for what is distinct within subgroups of factors, the general factor and
specific factors are often assumed to be uncorrelated.

Almost all research studies that compare psychometric properties of various
model structures include the unidimensional model and traditional bifactor models
(Gignac, 2006; Gu et al., 2015; Michaelides et al., 2016; Reise et al., 2007; Wang
et al., 2015; Xin & Chi, 2010) and a simple-structure multidimensional model
(with the exception of Gu et al. (2015)). In most cases, the traditional bifactor
model consistently provided the best model-fit statistics. However, none distinguish
between items with different orientations. Wang et al. (2015), in conclusion,
recognized that some negative items were based on wording or orientation, but
they do not make the distinction in the analyses. Of those that only accounted for
positive or negatively directed items, Xin and Chi (2010) supported a model that
accounted only for negative items, while Michaelides et al. (2016) favored a model
that accounted only for positive items.

1.3 Graded Response IRT Model

Item response theory (IRT) is a modern approach to analyze item response data.
Several IRT models exist for polytomous data – the graded response (GR),
generalized partial credit (GPC), and nominal response (NR). These differ in the
assumptions of the data, whether responses are truly ordinal, and in the number of
characteristics hypothesized about each item. Polytomous IRT models are used to
estimate item and category characteristics, such as item slope and category inter-
cepts, or as traditional IRT parameters discrimination and category location. Item



144 K. Cole et al.

discrimination is a measure of how well an item distinguishes among respondents
with similar construct scores. Category location provides an indication of which
category a respondent with a specific construct score is likely to choose. Because
parameter estimates are compared across various models and for pairs of items, the
slope and intercepts are used in this study in order to utilize the standard errors of
the estimates. The GR model (Samejima, 1969) is specifically for ordinal data and
is used in this study. This model is considered an extension of the dichotomous two-
parameter logistic (2PL) IRT model; furthermore, the multidimensional GR (MGR)
model is an extension of the multidimensional 2PL model. For the MGR model, an
underlying latent construct score and each item’s discrimination is assumed to be
unique across each dimension, while the category location parameters are consistent
across dimensions for each item.

1.4 Summary

Previous research has investigated the effects of item directionality on the dimen-
sional structure of psychological and personality instruments. None (to our knowl-
edge) have also included the confounding effects of direction and orientation on the
dimensional structures of survey instruments. The research questions of this study
are,

1. What multidimensional structure(s) best model item response data to items that
have a mixture of positively and negatively directed items confounded with
wording and orientation characteristics?

2. What are the effects of modeling direction and orientation wording characteris-
tics on item parameter estimates?

3. What are the effects of modeling direction and orientation wording characteris-
tics on ability parameter estimates?

2 Method

2.1 Instrument

Perceived Stress Scale (PSS; Cohen & Williamson, 1988) contains ten items, a
combination of positively and negatively worded and oriented items. A correspond-
ing item was written in the opposite direction for each of the selected items for a
total of 20 items; participants responded to the full set of 20 items. Of those, two
were positively oriented (PO), eight were positively worded (PW), seven items were
negatively oriented (NO), and three items were negatively worded (NW). Of the ten
pairs of items, seven have a NO item matched with a PW item; one pair matches a
NW item with a PW item; two pairs match a NW item with a PO item. Item stems
are provided in Table 2.



IRT Analysis of Dimensional Structure and Item Wording Effects 145

Table 2 Descriptive statistics of responses

Negative item Positive item Item pair response
M SD M SD Agreea Disagreeb

1 Been upset because of
something that
happened
unexpectedly

2.85 0.87 Remained calm when
something happened
unexpectedly.

2.35 0.85 73.7% 26.3%

2 Felt you were unable
to control the
important things in
your life.

2.75 1.05 Felt you were able to
control the important
things in your life.

2.31 0.91 68.0% 32.0%

3 Felt nervous and
“stressed.”

3.38 1.01 Not felt nervous and
“stressed.”

2.89 1.03 86.4% 13.6%

4 Felt unsure about your
ability to handle your
personal problems.

2.45 0.97 Felt confident about
your ability to handle
your personal
problems.

2.11 0.92 59.0% 41.0%

5 Felt that things were
not going your way.

2.68 0.89 Felt that things were
going your way.

2.45 0.90 60.3% 39.7%

6 Found that you could
not cope with all the
things you had to do.

2.40 1.02 Found that you were
able to cope with all
the things you had to
do.

2.27 0.88 62.2% 37.8%

7 Been unable to control
irritations in your life.

2.80 0.98 Been able to control
irritations in your life.

2.41 0.89 59.6% 40.4%

8 Felt that you were not
on top of things.

2.71 0.94 Felt that you were on
top of things.

2.45 0.89 57.8% 42.2%

9 Been angered because
of things that were
outside of your
control.

2.84 0.93 Have not gotten angry
at things that were
outside your control.

2.71 0.97 71.5% 28.5%

10 Felt difficulties were
piling up so high that
you could not
overcome then.

2.42 1.06 Felt that you could
successfully confront
difficulties as they
occurred.

2.25 0.86 62.5% 37.5%

Note. Response options were 1 = Never, 2 = Almost Never, 3 = Sometimes, 4 = Fairly Often, 5 =
Very Often. Responses to positive were items were reverse coded so that to any item, a higher value
(maximum of 5) corresponds to a higher level of perceived stress and a lower value (minimum of
1) corresponds to a lower level of perceived stress
aResponses “Agree” if the response to each item is within ± 1 of each other
bResponses “Disagree” if the response to each item with more than ±1 of each other

2.2 Participants

Complete item responses were collected from 3176 participants after observations
were removed for missing data and/or patterns of acquiescence or inattention. The
sample was primarily female (N = 2010, 63.3%); 19.4% (N = 617) were male, and
17.3% (N = 549) did not indicate a self-selected gender. A majority of the sample
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was White (N = 2476, 78.0%); 4.9% (N = 155) self-identified as Black/African
American, and 4.7% (N = 148) identified themselves as Hispanic. The sample was
diverse in their age; 34.3% (N = 1089) were between 18 and 29 years old, 22.6%
(N = 718) were between 30 and 39 years old, 15.0% (N = 477) were between 40
and 49 years old, and 18.4% (N = 583) were 50 or older.

2.3 Analysis

The (multidimensional) graded response IRT model was used to calibrate the
dataset under various dimensional structures. One unidimensional and ten different
multidimensional structures were used. Models to compare were:

1. Unidimensional (ignoring directionality and orientation effects)
2. Multidimensional, correlated traits, with two direction-specific dimensions:

positive and negative (ignoring orientation effects)
3. Multidimensional, correlated traits, with two orientation-specific dimensions:

wording and orientation (ignoring directional effects)
4. Multidimensional, correlated traits, with four dimensions: positive wording,

positive orientation, negative wording, and negative orientation
5. Bifactor with one general factor and two direction-specific factors: positive and

negative (ignoring orientation effects)
6. Bifactor with one general factor and one direction-specific factor: positive
7. Bifactor with one general factor and one direction-specific factor: negative
8. Bifactor with one general factor and two orientation-specific factors: wording

and orientation (ignoring directional effects)
9. Bifactor with one general factor and one orientation-specific factor: wording

(items that do not use the word “not” or prefix “un-”)
10. Bifactor with one general factor and one orientation-specific factor: orientation

(items that do use the word “not” or prefix “un-”)
11. Bifactor with one general factor and four specific factors: positive wording,

positive orientation, negative wording, and negative orientation

Data calibrations were performed using the ‘mirt’ package (Chalmers, 2014)
in the R software (R Core Team, 2014) to conduct confirmatory, full-information
(maximum likelihood) multidimensional item response theory analyses. The graded
response model was used, with the quasi-Monte Carlo EM estimation procedure;
this method was chosen for its stability for models with three or more factors. To
fit the bifactor models, both the ‘bfactor()’ and ‘mirt()’ functions were used so that
comparisons to the non-bifactor multidimensional models could be made without
bias. Results were nearly equivalent, and the results section includes the output from
the data fit with the ‘bfactor()’ model.

Analyses were as follows. The model-data fit statistics were compared across
the eleven different structures to determine which models had a better data-model
fit. Item parameter estimates for items were compared across the top model-fit
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structures in order to determine the modeling effects of each structure on parameter
estimates. Comparisons were made using correlations and repeated measures
analysis. The item parameter estimates for item pairs having different direction and
orientations were compared using t-tests in order to investigate item wording and
orientation effects within top model-fit structures. Estimated trait scores across the
different structures were compared to traditional sum scores. Comparisons were
made using correlations and repeated-measures analysis.

3 Results

3.1 Descriptive Statistics

Descriptive statistics of responses within categories for items and across pairs of
positively and negatively worded items are reported in Table 2. Overall, negative
items tended to have a higher mean response, indicating a higher level of perceived
stress, than the positive item pair.

Response agreement was investigated, such that having an ‘Agree’ in responses
for a pair of items is defined as having a same response value or having an adjacent
response value for the two items. (Positive items were reverse coded such that for all
items a response of 1 corresponds to little to no perceived stress and 5 corresponds to
a very high perceived stress.) One item pair (items 1 and 11) had a negatively worded
item paired with a positively worded items. Seventy four percent of responses were
in agreement for this pair. Two item pairs were a negatively worded item paired
with a positively oriented item (item 3 and 13 and items 9 and 19). On average,
86.4% and 71.5% of respondents had agreement on items 3 and 13 and items 9
and 19, respectively. Seven item pairs were a negatively oriented item paired with a
positively worded item (items 2 and 12, 4 and 14, 5 and 15, 6 and 16, 7 and 17, 8
and 18, and 9 and 19). On average, these items tended to have lower agreement of
responses.

3.2 Model Fit

According to all the fit statistics reported in Table 3, the bifactor models with two
or four specific dimensions (M5, M8, and M11) and the four-dimensional model
(M4) had the smallest model fit index values. Furthermore, the bifactor model with
two specific factors had a better fit than the bifactor model with four factors or the
multidimensional model. In the subsequent results, we will consider and compare
estimates from both bifactor models with two specific factors, either direction-
specific factors (M5) or orientation-specific (M8) factors, the bifactor model with
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four specific factors (M11), and the multidimensional model with four dimensions
(M4).

3.3 Item Parameter Estimates

Seven sets of estimated item discrimination parameters were compared: that of the
UDmodel, between the item and the general factor for each bifactor model, between
the item and the specific factor for each bifactor model, and between the item and
the unique factor for the multidimensional model.

The unidimensional model discrimination estimate was strongly and positively
correlated with the discrimination from the multidimensional model (rU, MD = 0.95)
and the general factor of each of the bifactor models (0.93 < r < 0.96). The
unidimensional model discrimination estimate was moderately correlated with the
specific factor from the BFWO model (rU, BFWO _ S = 0.745), but had a low
correlation with the specific factor from the other bifactor models (|r| < 0.16). A
similar pattern happened for the multidimensional model discrimination estimate
with the general factors of the bifactor models (0.92 < r < 0.99), specific factor
of the BFWO model (rMD, BFWO _ S = 0.531), and specific factors of other bifactor
models (|r| < 0.25).

The discrimination estimate on the general factors from each of the
bifactor models were highly correlated (r > 0.95). The item discrimina-
tion parameters on each item related to the specific factors had a lower
correlations (rBFPN _ S, BFWO _ S = − 0.158, rBFPN _ G, BFPNWO _ G = 0.731,
rBFWO _ G, BFWO _ G = 0.016). Within a single bifactor model, the general and
specific factors had a very low correlation within the BFPN model (r = 0.010) and

Table 3 Fit statistics of seven model structures using the GR model (N = 3176)

Model Loglik GoF AIC AICC BIC SABIC

1. UD −69408.4 87794.7 139016.8 139023.3 139623.1 139305.4
2. MD PN −68749.0 86469.8 137699.9 137706.6 138312.3 137991.4
3. MD WO −69261.5 87501.5 138725.1 138731.8 139337.5 139016.6
4. MD NPWO −68536.1 86036.4 137284.2 137291.6 137927.0 137590.2
5. BF PN −68466.5 85910.8 137172.9 137182.4 137900.5 137519.2
6. BF P −68680.0 86337.9 137580.0 137587.9 138246.9 137897.4
7. BF N −68686.4 86350.7 137592.8 137600.8 138259.8 137910.2
8. BF WO −68447.3 85872.6 137134.7 137144.2 137862.3 137481.0
9. BF W −68678.3 86334.6 137578.6 137586.8 138251.7 137899.0
10. BF O −69085.1 87148.0 138388.1 138395.9 139049.0 138702.7
11. BF NPWO −68578.2 86134.3 137396.4 137405.9 138124.0 137742.7

UD Unidimensional, MD Multidimensional [first order, correlated dimensions], BF Bifactor, P
Positive, N Negative, W Wording, O Orientation
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the BFPNWO model (r = 0.159); however, the general and specific factors within
the BFWO model had a moderate correlation (r = 0.562).

Table 4 reports the mean and standard deviation (M(SD)) of the discrimination
estimate and standard errors within subsets of items based on direction and
orientation. The averages of the estimated discrimination within subsets of items
for the unidimensional model, multidimensional model, and the general factor of
the bifactor models were very similar. A repeated measures analysis was used to
test the significant differences in the item discrimination estimate across these five
models. A Greenhouse-Geisser (GG) adjustment was used due to the violation of
sphericity. The results indicated significant differences (p < .05). Post hoc analysis
with a Bonferroni adjustment indicated that the estimated discrimination from the
unidimensional model was significantly smaller than the estimated discrimination
from the multidimensional model and from the general factor from the BFWO
model (bifactor model with two orientation-specific factors). The estimated discrim-
ination from the multidimensional model was significantly greater than that on the
unidimensional model and the general factor from the BFWO. No other models had
significantly different estimates.

The differences in standard errors were also evaluated using repeated measures
analysis. A GG adjustment was used, and the results were statistically significant
(p < .05). The standard errors of the unidimensional estimate and the multidimen-
sional estimate were significantly lower than the standard error on the general factor
of the BFWO and BFNPWO models.

By design, pairs of items existed such that one item was positively worded and
one item was negatively worded. Furthermore, within 9 of the 10 pairs of items, one
item was worded without using the negative “not” or prefix “un-“ in the item stem
and one item was worded using the negative “not” or prefix “un-“. Here, paired-
samples t-tests were used to compare the estimated item discrimination within pairs
of items based on item direction or orientation within each of the five models. Item
pairs worded in the positive or negative direction did not have significantly different
estimated discriminations for any of the models. Items that were worded without
the use of “not” or “un-“tended to be more discriminating than those without. This
difference was significant (p < .003) only for the BFNP model.

3.4 Trait Score Estimates

A traditional sum score was calculated for the original first 10 items, as directed for
scoring the PSS. This was compared to the estimated trait scores from the various
model The sum score had strong positive correlation with the UD IRT score and
with the estimated score on the general factor from the bifactor models (r > .95).
The UD score was most correlated with the trait estimate on the general factor from
each of the bifactor models (r > .95). The scores on the general factors from each
bifactor model were also highly correlated (r > 0.970). Within each bifactor model,
the trait scores on the general and specific factors had low correlations (�r � < 0.235).
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The correlations between the four MD trait scores and the general dimension
score of the bifactor models were moderate to high. The correlation between the
general dimension score of the bifactor models had the highest correlation with the
estimated trait score on the negatively oriented dimension (r > 0.92), and it had the
lowest correlation with the estimated trait score on the positively oriented dimension
(0.56 < r < 0.66).

4 Discussion

The results of this study have implications to survey writers, administrators, and
scorers. Previous recommendations are inconsistent on creating instruments with a
mixture of positively and negative directed items or with items uniformly written
in a single direction. Results of this study recommend a combination of negatively
oriented and positively worded items. When items are written in the reverse, or
negated, direction, items tend to be more discriminating when direction is indicated
with the use of a contraction or negative prefix. However, items written with a
positive direction should not use contractions or negating prefixes, but instead use
positive terms and expressions. When scoring, if a single construct score is desired,
a unidimensional or BF model is preferred. If a distinction is desired across the
construct measured by different item types (direction and orientation), the MD
model with four dimensions is preferred.

Limitations of this study include the unbalanced number of items worded
or oriented in a specific direction and that only a single construct was being
measured. In the future, including a balanced number of the four item types is
recommended, along with evaluations with other instruments measuring negative
constructs, positive constructs, and neutral constructs.
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Item Level Measurement of Extreme
Response Style

Tongtong Zou and Daniel M. Bolt

1 Introduction

Response styles reflect individual variability in the use of rating scales that are
exhibited by respondents when answering survey questions (Bolt, Lu, & Kim,
2014). Among the various forms of response style heterogeneity that have been
documented, extreme response style (ERS), which is defined as a content-irrelevant
propensity to overselect the endpoints of a rating scale, is commonly observed on
self-report rating scale instruments.

In the area of item response theory, one approach to the measurement of ERS
uses a multidimensional nominal response model (MNRM) as an extension of the
traditional nominal response model (NRM; Bock, 1972, 1997) to incorporate ERS
as a continuous latent trait (Bolt & Johnson, 2009). Falk and Cai (2016) further
revised this model by adding item discrimination parameters to the response style
trait. As a result, under the Falk and Cai model items may show greater or lesser
sensitivities to a response style such as ERS.

The probability that respondent j selects category k from k = 1, . . . , K categories
of item i under the influence ofm = 1, . . . , M latent traits (including both substantive
and response styles traits) is modeled in a “divide by total” fashion, with each item
category having a unique intercept parameter cik and a slope parameter sikm for each
trait dimension m. Each item also has a unique discrimination parameter for each
dimension ai,m that applies across all categories. The general structure of the Falk
and Cai model is thus given by:
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P(Uij=k | θ1, θ2, . . . , θM)= exp(ai1 sik1 θj1+ . . .+ aiM sikM θjM+ cik)
∑K

h=1 exp(ai1 sih1 θj1+ . . .+ aiM sihM θjM + cih)

where some of the θ1, θ2, . . . , θM traits reflect intended-to-be-measured content
traits, and others are response style traits. An assumption underlying Falk and Cai’s
model is that the same level of item discrimination on response style traits applies
for all respondents regardless of their content trait levels. Such an assumption might
be called into question by tree-based models of response style, where the ERS trait is
portrayed as being invoked only at a later node in the tree-based sequential response
process. Such an occurrence should make the equal discrimination assumption
questionable as the same item should be less informative regarding ERS for a
respondent unlikely to reach such nodes. It thus might be speculated that an item
shows more discriminating power on ERS for a respondent whose content trait level
is expected to lead to a response away from the midpoint on a given item.

The present paper explores the possibility of such systematic variation of ERS
discrimination through the use of an anchoring vignette design. The appeal of a
vignette design is that it allows exploration of response style discrimination without
the need to attend to the unknown respondent content trait level. Specifically, we
can apply a psychometric model similar to the Falk and Cai model that only attends
to response style traits when fitting the empirical vignette response data. As the
vignettes are designed with known and varying expected responses, they provide a
convenient way of testing our hypothesis that items expected to produce responses
toward the middle of the rating scale should show reduced ERS discrimination. We
consider extensions of this model for self-report items in discussion.

1.1 Anchoring Vignettes

Anchoring vignettes are hypothetical scenarios rated by respondents that use the
same rating scale as for self-report items. The scenarios are designed so as to elicit
the same subjective response across respondents, implying that the same rating
should ideally be given by each respondent. For a given rating scale, vignettes
often target a particular response option on the scale, so that systematic departures
from the expected response can be clearly recognized. Responses to a set of
anchoring vignettes are theorized to reflect respondents’ personalized tendencies
to over-/under-select certain rating scale options. Unlike self-report ratings, vignette
responses have the benefit of not being influenced by an underlying content trait that
varies across respondents.

The current study uses data from 30 vignettes from the cross-national study on
conscientiousness by Mõttus et al. (2012). In their survey questionnaire, 6 different
self-report rating scales are distinguished by the usage of different labels for the
end points, with each scale having 5 score categories. Correspondingly, a total of
5 × 6 = 30 anchoring vignettes are used, resulting in five vignettes per self-report
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item. For vignettes based on the same rating scale, each of the five vignettes is
targeted toward a different rating scale category, what we refer to as the expected
response level for the vignette. As a result, each vignette can be defined by levels on
two factors, the type of rating scale and the expected response level.

Below are a few examples of vignettes from the Mottus et al. questionnaire that
were used in the present study. Among them, vignettes 1 and 2 have the same rating
scale (in this case associated with a self-report item on accountability), whereas
vignette 3 illustrates a different rating scale type (in this case associated with a self-
report item on capability). Despite applying the same rating scale, vignettes 1 and
2 are distinguished by the level of expected response. For the first vignette, Kevin
seems to be more reliable compared to Dick, thus the expected response level for
vignette 2 is higher than for vignette 1. The example vignettes are as follows:

Please rate the persons described in the short text below:

1 [Kevin] often stays at work after office-hours to recheck the finished documents. During
his ten-year employment history he has never missed a day at work or been late in
finishing an assignment

Dutiful, Scrupulous _ _ _ _ _ Unreliable, Undependable

2 Generally [Dick’s] friends trust him, but sometimes they have been really annoyed by
him. For example, [Dick] does not always return the things he has borrowed on time and
sometimes he completely forgets about his promises

Dutiful, Scrupulous _ _ _ _ _ Unreliable, Undependable

3 [Mary] runs a company she founded on her own, raises three children and takes care of
her household. In addition, she is active in sports and in community life. Despite her
wide range of activities, she has time for her parents and to go hiking with friends

Capable, efficient, competent_ _ _ _ _ Inept, unprepared

1.2 Item Response Model for Anchoring Vignette Data

Based on the assumption that the anchoring vignettes invoke the same subjective
responses across respondents, we apply a special case of Falk and Cai’s model where
self-report content trait(s) are omitted and only the ERS trait is present with its
accompanying item discrimination parameter. The probability for respondent j to
select category k from the k = 1, . . . , K categories of item i under the influence of
an ERS latent trait is thus modeled as:

P(Uij = k | θERS) = exp(aERS,i sik θERS + cik)

5∑

h=1

exp(aERS,i sih θERS + cih)
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where sik denote specified category slope parameters, aERS,i denotes an item’s dis-
crimination parameter related to the ERS trait, cik denote item category intercepts,
and θERS is the ERS trait. To define the trait as an ERS trait, we constrain sik to {1,
−0.67, −0.67, −0.67, 1} for all items i.

2 Methods

For the present paper we use only the response data of the 30 vignette items (not
the self-report rating items) collected for a total of 2965 participants from the
Mottus et al. nationwide conscientiousness study. There are five potential response
categories for each vignette, coded 1 to 5. As mentioned above, these 30 vignettes
can be grouped according to: (1) the level of the expected response (five levels
corresponding to rating categories from 1 to 5); (2) the type of rating scale (6 rating
scale types varied according to the rating scale used for self-report items).

Our methodological study consists of two parts. In the first part, we carry out a
unidimensional IRT analysis on the response data using the mirt routine (Chalmers
et al., 2018) in R. In this analysis, we fit the ERS model as shown above. We
then examine the resulting item discrimination estimates by rating scale type and
expected response level, with an expectation of reduced discrimination for items
that target the middle of the rating scale (i.e., expected response level = 3). A two-
way ANOVA using the two factors of level and rating scale type is carried out for
validation of the ERS discrimination patterns.

In the second part of the analysis, three additional constrained models are fit
along with the model described above to further examine our hypothesis. The three
constrained models are defined as follows:

(1) A restricted model where ERS discrimination varies only according to rating
scale type, where t = 1, 2, . . . , 6 denotes the type of scale:

P(Uij = k | θERS) = exp(aERS,t (i) sk θERS + cik)

5∑

h=1

exp(aERS,t (i) sh θERS + cih)

(2) A restricted model where ERS discrimination varies only according to expected
response level, where l = 1, 2, . . . , 5 denotes the expected level of vignette
response:

P(Uij = k | θERS) = exp(aERS,l(i) sk θERS + cik)

5∑

h=1

exp(aERS,l(i) sh θERS + cih)
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(3) A restricted model where ERS discrimination varies systematically with respect
to both rating scale type and level factors with additive effects for each factor.
For simplicity, we use n = t × l to index the scale and level of each vignette:

P(Un(i)j = k | θERS) = exp(aERS,t (i) aERS,l(i) sk θERS + cik)

5∑

h=1

exp(aERS,t (i) aERS,l(i) sh θERS + cih)

All four models (the original unrestricted model and the three restricted models)
were estimated using Markov chain Monte Carlo methods in WINBUGS 1.4.
Prior distributions are specified as N(0,1) for both aERS and θERS . The initial
values for all parameters are generated randomly by the program. A Gibbs
sampling procedure is used to sample from the joint posterior density of the model
parameters. To define parameter estimates, the number of burn-in iterations is set
to 4000 with an additional 1000 iterations used for the final estimation of aERS .
The Deviance Information Criterion (DIC) for each model was used for model
comparison. Meanwhile, the same two-way ANOVA analysis was also applied to
the ERS discrimination parameter estimates of the baseline model from the MCMC
procedure for comparison to the results from the mirt routine. The results are then
interpreted.

3 Results

3.1 IRT Analysis

The estimates of the item discrimination parameter aERS for all vignette items
are plotted in Fig. 1 for the six scale types by the five expected response levels.
A common pattern emerges across scale types in that the middle-level vignettes
(those expected to yield a response of “3”) have lower ERS discrimination than
vignettes with expected response levels away from “3”. Further, the ANOVA results
in Table 1 show that the level factor is significant (p < 0.001), which indicates that
there exists a relationship between an item’s ERS discrimination and the expected
response level.

3.2 Model Comparison Analysis

The item discrimination estimates aERS under the baseline model are again plotted
in Fig. 2 across different vignette levels for each of the six vignette rating scale
types. As for the mirt analysis, it can be seen that the discrimination increased as the



158 T. Zou and D. M. Bolt

Fig. 1 Estimates of aERS across vignette levels by scale type, mirt analysis

Table 1 ANOVA results of
MIRT aERS estimates

Df Sum Sq Mean Sq F-value p-value

Type 5 0.02 0.00 1.51 0.23

Level 4 0.17 0.04 17.68 0.00

Error 20 0.05 0.00

Total 29 0.24

vignette level moves away from the middle category, suggesting that the influence
of ERS is greater when the expected response level is away from the center of the
rating scale.

A two-way ANOVA was likewise applied to ERS item discrimination estimates
for the baseline model including factors for the rating scale type and level. The
results in Table 2 show that the level effect is again significant at p < 0.001, results
in line with those of the mirt analysis.

For the restricted Model 2 where item discrimination varies across the vignette
expected response levels, the estimates of aERS,l(i) (l = 1, 2, . . . , 5) along with
their standard errors are shown in Table 3. It can be seen that the ERS discrimination
indicated by the absolute value of aERS,l(i) deceases when moving away from the
two ends towards the middle category, which is the result also observed in the
baseline model.

The values of the Deviance Information Criterion (DIC) for the four models
are presented in Table 4 below. It can be seen that the model in which ERS
discrimination differs only according to level (Model 3) fits better than the restricted
version where ERS discrimination differs only according to scale type (Model 2).
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Fig. 2 Estimates of aERS across vignette levels by scale type, MCMC analysis

Table 2 ANOVA results of
MCMC aERS estimates

Df Sum Sq Mean Sq F value Pr(>F)

Type 5 0.16 0.03 1.49 0.23

Level 4 1.42 0.35 16.35 0.00

Error 20 0.43 0.02

Total 29 2.01

Table 3 aERS,l(i) estimates
of Restricted Model 2 from
MCMC analysis

Mean Std. MC error Start Sample

aERS,1 0.68 0.01 0.00 4000 1001

aERS,2 0.67 0.01 0.00 4000 1001

aERS,3 0.37 0.01 0.00 4000 1001

aERS,4 0.88 0.02 0.00 4000 1001

aERS,5 0.93 0.02 0.00 4000 1001

Table 4 DIC values for four
models

Model D Dhat pD DIC

Restricted Model 1 149,158.0 146,505.0 2653.1 151,811.0

Restricted Model 2 148,645.0 146,002.0 2642.6 151,287.0

Restricted Model 3 148,514.0 145,715.0 2799.8 151,314.0

Baseline Model 148,270.0 145,607.0 2663.1 150,934.0

Model 4, where there is an interaction between both level and rating scale type (the
baseline model), appears to fit best. Therefore, it would appear that while only level
shows a systematic effect, there is likely also some interaction between level and
rating scale type.
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4 Discussion and Conclusions

The results from both the mirt and MCMC analyses suggests that ERS discrimina-
tion is reduced for vignette items targeting the middle categories of the response
scale, which indicates that respondent tendencies in exhibiting extreme response
style may be more readily invoked when the item pushes subject responses away
from the middle of the response scale. One limitation of the current study is that it
is based strictly on vignette data. While vignettes have the appeal of allowing us to
study response style behavior without the interference of a respondent-level content
trait, the vignette conditions are less relevant to real-world measurement than a self-
report rating scale instrument. Thus a natural next step is to explore the results of
this study in relation to data involving actual self-report items. When both ERS trait
and content traits are involved, we might nevertheless hypothesize that the same
item’s ERS discrimination power will be lower for individuals with intermediate
levels of the content trait (assuming that places them on average at the middle of
the rating scale) than for individuals with higher or lower levels of the content trait
(assuming that places them on average away from the middle of the response scale).
To that end, it may be useful to develop a psychometric model that allows ERS
discrimination to vary in relation to a respondent’s content trait for self-report items.

There are some other limitations to the current analysis. Our ANOVA analyses
are applied to discrimination estimates rather than the parameters themselves.
Although the sample sizes are large, estimation error still likely has an effect. In
addition, while the vignettes were designed to be manipulated with respect to two
primary factors, it is possible that there are other aspects of the vignettes associated
the level factor that contribute to the effects found and attributed to the expected
response level. Clearly the ability to replicate these findings with other instruments
(including self-report rating scale instruments) are needed.

Despite these limitations to the current study, it appears there is likely value in
applying the current paradigm toward more formal comparisons of tree-based versus
MIRT-based modeling of response style. The current results would appear consistent
with a tree-based representation of response process in which respondents first
decide whether to select the middle category, and only at a later stage (if the middle
category is NOT chosen) decide to select an extreme response. There is likely
value in exploring further the degree to which tree-based response style models
can be made manifest in the discrimination parameter estimate variability seen in
this study. Such an evaluation may be best performed through simulation studies, or
alternatively through the type of real data studies presented by Böckenholt (2017).
While this comparison can be examined with real or simulated vignette data, it will
again find its greatest meaning when applied to self-report data.
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On the Marginal Effect Under
Partitioned Populations: Definition
and Interpretation

Eduardo Alarcón-Bustamante, Ernesto San Martín, and Jorge González

1 Introduction

In social sciences and other fields, the impact that an exogenous explanatory random
variable, X, (e.g., the score of a selection test) has on the outcome random variable,
Y , (e.g., the grade point average, GPA) is usually measured through the marginal
effect (see Geiser & Studley, 2002; DEMRE, 2016; Manzi et al., 2008; Grassau,
1956). The marginal effect quantifies the changes in the conditional expectation
with respect to changes in the values of X: if changes in X produces large (small)
changes in Y , then the effect of X will be high (low) on Y .

In predictive validity studies involving university selection tests, one of the main
goals is to characterise the marginal effect taking into account that the population
of interest is partitioned in groups or clusters (universities, countries, sex, among
others). In this context, the conditional expectation of the GPA is conditioned not
only on the test score, but also on a random variable, Z, characterising the groups.
The most common approach is to use a multiple linear regression model with
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interaction terms between the test score and the group variable Z. By taking the
difference between the marginal effect of a group of interest and one of reference,
researchers compare the impact of the test scores on the GPA between groups. As
a matter of fact, the effect that X has on the group z with respect to the reference,
z′, corresponds to the “interaction effect”, which is quantified by the corresponding
interaction regression coefficient (see Cameron & Trivedi, 2005; Cornelissen, 2005;
Powers & Xie, 1999; Norton et al., 2004; Ai & Norton, 2003; Long & Mustillo,
2018).

Formally, researchers are learning about the marginal effect of X on Y in a
partitioned population by using the regression E(Y |X,Z), typically a linear one
with some interaction terms. Thus, the analysis is separately made for each group
while the interest is to report and draw conclusions based on a global analysis. As
an example, in Miller and Frech (2000) a regression analysis is used to determine
the effect of each explanatory variables on life expectancy measures and infant
mortality for 21 OECD countries. Among the explanatory variables, the authors
consider pharmaceutical consumption indexes, per capita income and other lifestyle
factors such as tobacco use, alcohol consumption and richness of diet. Their study
focuses on both a global analysis, reporting the effects of the explanatory variables
on the outcomes, and an analysis by group, reporting the marginal effect of some
explanatory variables for four countries (France, Italy, US and Ireland). In this
paper, we will show that this type of analysis needs to be carefully improved.
The motivation being that a trend can appear when different groups are analysed
separately, and possibly disappear when they are combined. This phenomenon is
related to the Simpson’s Paradox (see Simpson, 1951; Blyth, 1972).

As a matter of fact, we combine the groups through the Law of Total Probability,
which lead to define E(Y |X) as a mixture of the corresponding conditional
expectations for each group with mixing weights depending on each group. Thus,
we compute the marginal effect of X on Y by using E(Y |X), instead of E(Y |X,Z).
We define this marginal effect as the Global Marginal Effect, which is interpreted
as the total marginal effect for partitioned populations. Although from this result it
might be intuitive that the global marginal effect is obtained as a convex combination
of the marginal effects for each group, we show that an additional term that depends
on the predictive outcomes Y ’s by X’s is also included in the definition.

The rest of the paper is organised as follows. In Sect. 2 the concept of Global
Marginal Effect is formally defined and its properties are discussed. A detailed
analysis of the function that characterise the Global Marginal Effect is also presented
in this section. An illustration showing the use of the global marginal effect in a real
data set is presented in Sect. 3. The paper ends in Sect. 4 drawing conclusions and
with a discussion.
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2 Global Marginal Effect

2.1 Definition of the Global Marginal Effect

Let us consider a population that is partitioned in groups or clusters and for which
score data (X, Y ) are observed. Let Z be a categorical random variable such that
Z = z if the statistical unit belongs to the group z for z ∈ {0, . . . ,G}. Thus,
each member of the population is characterised by a triple (Y,X,Z). By applying
the Law of Total Probability, the conditional expectation, E(Y |X), for the full
population is obtained as

E(Y |X) =
∑

z

E(Y |X,Z = z)P(Z = z|X). (1)

Equation (1) provides a global and unique conditional expectation function for the
population, which contains the information of all the groups. In particular, this
function could be characterised as a global model composed by different regression
models (one for each group). The component models are those that relate the scores
variables for each group, and a model for the categorical variable Z. The Global
Marginal Effect is accordingly obtained by taking the derivative with respect to X
in Equation (1), namely

dE(Y |X)
dX

= (2)

∑

z

dE(Y |X,Z=z)
dX

P(Z=z|X)+∑

z

E(Y |X,Z = z)
dP(Z=z|X)

dX
.

From (2), it can be seen that the Global Marginal Effect is not only the weighted
average of the marginal effects in Z = z, but it also depends on the marginal effects
observed through the categorical regression, P(Z = z|X). In particular, it follows
that if Z ⊥⊥ X, Equation (2) reduces to

dE(Y |X)
dX

=
∑

z

[
dE(Y |X,Z = z)

dX

]

P(Z = z).

Thus, the marginal effect in partitioned populations is a weighted average of the
marginal effects in Z = z, if belonging to the group Z does not depend on X.

For the case when Z �⊥⊥ X, and taking into account that
∑

z P (Z = z | X) = 1,
the Global Marginal Effect in Equation (2) can be rewritten as follows:

dE(Y |X)
dX

=
∑

z

dE(Y |X,Z = z)

dX
P(Z = z|X)+

+
∑

z �=z′
[E(Y |X,Z = z)− E(Y |X,Z = z′)]dP(Z = z|X)

dX
; (3)
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here z′ is the label of a reference group. It can be verified that the Global Marginal
Effect is invariant under the chosen reference group; for a proof, see Appendix A.1.

Equation (3) corresponds to the sum of two functions, namely

a(X) =
∑

z

dE(Y |X,Z = z)

dX
P(Z = z|X), and

b(X) =
∑

z �=z′
[E(Y |X,Z = z)− E(Y |X,Z = z′)]dP(Z = z|X)

dX
,

where a(X) is a convex combination of the marginal effects in each group with
weights being a function of X. Then, a(X) will vary according to the variations of
the weights as a function of X. The term b(X) is the sum of the differences of the
predicted Y , multiplied by the marginal effect of X on Z.

In the next section, both functions a(X) and b(X) are analysed when the
population is assumed to be partitioned in three groups. A linear and a multinomial
logistic regression model are considered for E(Y |X,Z = z) and P(Z = z|X),
respectively.

2.2 Interpretation of the Global Marginal Effect

Let us consider three groups, (i.e., z ∈ {0, 1, 2}). By using the invariant property of
the global marginal effect, without loss of generality we take z′ = 0 as the reference
group, then

dE(Y |X)
dX

=
2∑

z=0

dE(Y |X,Z = z)

dX
pz(X)+

+
2∑

z=1

[E(Y |X,Z = z)− E(Y |X,Z = 0)]dpz(X)
dX

,

where pz(X) = P(Z = z|X). If a linear function for E(Y |X,Z = z) is considered
(i.e., E(Y |X,Z = z) = δz + γzX), the marginal effect is a constant function
of X, namely γz. On the other hand, if a multinomial logistic function F(uz) =
exp{uz}/(1 + ∑2

j=1 exp{uj }), uz = αz + βzX and z ∈ {1, 2}, is used for the
prediction function, pz(X), the marginal effect of X on Z is given by

dpz(X)

dX
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pz(X)

(

βz −
2∑

j=1
βjpj (X)

)

if z ∈ {1, 2}

−
2∑

z=1
pz(X)

(

βz −
2∑

j=1
βjpj (X)

)

if z = 0
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(See Wooldridge, 2010; Greene, 2003). This marginal effect inform us about the
change in predicted probabilities due to the changes in X (Wulff, 2014).

Analysis of a(X) Note that:

a(X) =
2∑

z=0

γzpz(X),

which corresponds to a mixture of γz’s with mixing weights defined by
p0(X), p1(X), and p2(X).

For ease of exposition, let us consider the following particular case as an example

E(Y |X,Z = 1) ≥ E(Y |X,Z = 0); and E(Y |X,Z = 2) ≥ E(Y |X,Z = 0),

and γ0 > γ2 > γ1. The group 0 has the lowest predicted Y for all the values of X,
but its marginal effect, γ0, is higher than both γ1 and γ2. Hence, its “importance” in
a(X) will depends on how p0(X) varies with respect to X. This case is graphically
illustrated in Fig. 1. From the right-side panel in Fig. 1, it can be seen that p0(X)

is a decreasing function of X (i.e., for higher values of X, a lower probability of
belonging to the group 0 is found), then for lower values of X, a(X) is influenced
by γ0p0(X). In this sense, a(X) can be interpreted as a trade-off among the marginal
effects of the groups: as a function of X, it depends not only on the highest value γz
for a specific group z, but also on the size of such a group.

Analysis of b(X) In our example,

b(X) =
2∑

z=1

[(δz − δ0)+ (γz − γ0)X] (pz(X)[βz(1 − pz(X))− βjpj (X)]
)
,

X

Y

Group 0
Group 1
Group 2

X

P
(Z

=
z|

X
)

Group 0
Group 1
Group 2

Fig. 1 Example situation. The left-side panel shows E(Y |X,Z = z) = δz + γzX. The right-side
panel shows pz(X) = F(uz) for z ∈ {1, 2}, and p0(X) = 1 − ∑2

z=1 pz(X)
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with j �= z. Let us analyse the first component of b(X), namely

b1(X) = [(δ1 − δ0)+ (γ1 − γ0)X] (p1(X)[β1(1 − p1(X))− β2p2(X)]) .

When

E(Y |X,Z = 1) ≥ E(Y |X,Z = 0),

b1(X) will increase (or decrease) according to

p1(X)[β1(1 − p1(X))− β2p2(X)],

which can be written as

p1(X)[β1p0(X)− (β2 − β1)p2(X)]. (4)

Note that Equation (4) depends not only on the probability of belonging to the
group 1, but also on the probability of belonging to the group 0 and 2. In this context,
if x∗

1 is the inflection point of p1(X), which is a monotonic increasing function of
X, then for all x > x∗

1

P(Z = 1|X = x) > P(Z �= 1|X = x).

Thus, for all x > x∗
1 , b1(X) is influenced by P(Z = 1|X = x). In contrast, for all

x < x∗
1 , b1(X) is influenced by P(Z �= 1|X = x). For the other groups, the function

b(X) can be analysed analogously.
Collecting all the components of b(X) and after some algebra, it can be shown

that

b(X) =
2∑

z=1

βzpz(X)[fz(X)p0(X)+ (fz(X)− fj (X))pj (X)], (5)

where z �= j , and fz(X) = E(Y |X,Z = z) − E(Y |X,Z = 0). Then, b(X) is a
function that depends not only on the differences between the predictions of Y with
respect to a reference group, but also on the probability of being in the groups which
in turn change across X.

In summary, the Global Marginal Effect is not only a weighted average of the
marginal effects in each group, but it also considers a term accounting for the
differences between the predicted outcome weighted by the marginal effect of the
probability of belonging to the group z. Moreover, it is not a fixed value as it changes
as a function of X. In other words, the Global Marginal Effect does not reduce to a
slope, but it also considers the relevance of the predicted outcomes.
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3 Application

The university admission system in Chile includes two mandatory selection tests
(Mathematics and Language and Communication) and two elective ones (Sciences
and History, Geography and Social Sciences). Other selection factors, namely, the
Ranking and High school GPA are also considered in the selection process. A score,
in the 150–850 scale, is assigned to each selection factor, which are weighted to
obtain a unique application score.

To illustrate the interpretation of the Global Marginal Effect, we analyse the
effect of the Mathematics selection test score, X, over the GPA1 in the first year, Y ,
of selected students in the Faculty of Biological Sciences of a Chilean university. We
analyse the three undergraduate programs offered by this Faculty: Marine Biology,
Biochemistry, and Biology. The last enrolled student in each program scored 631,
631, and 623 in the Mathematics test, respectively.

To estimate the Global Marginal Effect in Equation (1), the same functions
described in Sect. 2.2 (i.e., a linear function E(Y |X,Z = z) = δz + γzX, and
a multinomial logistic model for pz(X)) were considered. By using the invariant
property of the global marginal effect, the chosen reference group was the Marine
Biology program.

3.1 Results

To have a general picture on how the Global Marginal Effect varies in terms of test
scores, study programs, and the proportion of students in each program, we used
the functions a(X) and b(X) described in the preceding section. Figure 2 shows a
graphical representation of both functions which will be analysed together with the
information provided in Table 1 that include the estimation of the marginal effects
and the proportion of students in each program.

From Table 1, it can be seen that the Marine Biology program has the largest
marginal effect and the lowest proportion of enrolled students. In contrast, the small-
est marginal effect is found for the group of students enrolled in the Biochemistry
program. The central-top panel in Fig. 2 shows the probability of belonging to each
program as a function of the Mathematics test score. From the figure, it can be
seen that higher score values are associated with higher probabilities of being in
the Biochemistry program (i.e., p1(X) is an increasing function of X). In contrast,
p0(X) (the probability of being in the Marine Biology program), is a decreasing
function for all the range of scores. Regarding the Biology program group, it can
be seen that up to a score 619 (approx.), p2(X) is an increasing function of X that
decreases for higher score values. In summary, low scores in the Mathematics test

1The scale score for the GPA is 1.0–7.0. The minimum score to pass a course is 4.0.
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Fig. 2 Functions involved in the Global Marginal Effect

Table 1 γz and the empirical
proportion of students in
undergraduate programs in
the faculty of Biological
Sciences

z Program Prop γz

0 Marine Biology 0.20 0.0096

1 Biochemistry 0.33 0.0072

2 Biology 0.47 0.0074

are associated with a higher probability to find students in the Marine Biology or
Biology Programs than students in Biochemistry. Likewise, higher scores in the
Mathematics test are associated with a higher probability to find students in the
Biochemistry than students from Marine Biology or Biology programs.

The preceding analysis is useful to inspect more deeply how the two functions
a(X) and b(X) looks like. As a matter of fact, a(X) = γ0p0(X) + γ1p1(X) +
γ2p2(X) and thus, both γ0 and γ2 have larger weights for lower values of X, while
γ1 has a larger weight for higher values of X. Considering that γ0 > γ2 > γ1, it
follows that a(X) is a decreasing function of X as it can be seen in the left-bottom
panel of Fig. 2.

Let us analyse b(X) by taking into account Equation (5), which can be rewritten
as follows:

b(X) = p0(X)(β1p1(X)f1(X)+ β2p2(X)f2(X))

+ (β1 − β2)(f1(X)− f2(X))p1(X)p2(X).

Because for low scores in the Mathematics test, p1(X) → 0, then

b(X) → β2p0(X)p2(X)f2(X).

On the other hand, for higher values of X, p0(X) → 0, p2(X) → 0, then

b(X) → 0.
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Moreover, as it is seen from the top-left panel of Fig. 2, the score range 619 <

x < 703 contains most of the students from all the programs, and thus b(X) is
influenced by p0(X), p1(X), and p2(X), which is reflected in the central-bottom
panel of Fig. 2.

The Global Marginal Effect, reported in the right-bottom panel of Fig. 2, is the
effect that the Mathematics test score has in students of the Faculty of Biology. For
the analysed data, it turns to be positive for the whole range of test scores. For lower
score values, there is a larger proportion of students belonging to a program where
the marginal effect of Mathematics test score is high. In contrast, for higher scores, a
larger proportion of students will be found for a program where the marginal effect
is low. Note that the concavity of the curve in central range of scores is due to the
fact that of both f1(X) > 0 and f2(X) > 0 (see the top-left panel in Fig. 2).

4 Conclusions and Discussion

We have introduced the concept of Global Marginal Effect which is obtained by
computing the marginal effect of X on Y by decomposing E(Y |X) with respect to
Z through the Law of Total Probability. The Global Marginal Effect is useful when
the main interest is to learn about the effect of X on Y in a partitioned population.

By means of a physiognomy of the studied population based on Fig. 2, we have
proposed a new way to analyse and interpret a marginal effect for the case of
partitioned populations. Such interpretation shows the effect of X by considering
other characteristics of the population (differences in predicted outcomes and the
size of each group) which are accordingly defined as a non-constant function of
X. Note that, although the physiognomy of the studied population considered a
particular reference group, the derived result related to the invariant property of the
global marginal effect with respect to the chosen reference group ensures that the
type of interpretation proposed generalises no matter the group chosen as reference.

The studied scenario makes sense if both X and Y are fully observed. In the
selection context, however, there is a partial observability of the outcome, whereas
the explanatory random variable is fully observed (e.g., the GPA in the university is
observed in selected students only, whereas the test scores are observed for all the
applicants). Thus, a relevant future work is to combine the results of this paper and
the ideas in Alarcón-Bustamante, San Martín and González (2020) in order to have
a whole overview of the effect that a selection test score has over the GPA in the
higher education system.
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A.1 Invariant Property of the Global Marginal Effect

Proof The global marginal effect in Equation (2) is a function that depends on
both X and Z, namely g(X,Z). Let z′ be any chosen reference group. Noting that
pz′(X) = 1 − ∑

z �=z′
pz(X), where pz(X) = P(Z = z|X) we have

g(X,Z = z′) = dE(Y |X,Z = z′)
dX

+
∑

z �=z′

[
dE(Y |X,Z = z)

dX
− dE(Y |X,Z = z′)

dX

]

pz(X)

+
∑

z �=z′

[
E(Y |X,Z = z)− E(Y |X,Z = z′)

] dpz(X)

dX

Now, suppose that another reference group, z′′ (z′ �= z′′), is chosen. Then,

g(X,Z = z′′) = dE(Y |X,Z = z′′)
dX

+
∑

z �=z′′

[
dE(Y |X,Z = z)

dX
− dE(Y |X,Z = z′′)

dX

]

pz(X)

+
∑

z �=z′′

[
E(Y |X,Z = z)− E(Y |X,Z = z′′)

] dpz(X)

dX

By subtracting both functions we obtain

g(X,Z = z′)− g(X,Z = z′′) =
[
dE(Y |X,Z = z′′)

dX
− dE(Y |X,Z = z′)

dX

][
∑

z

pz(X)− 1

]

+ [
E(Y |X,Z = z′′)− E(Y |X,Z = z′)

]
d

[
∑

z

pz(X)

]

dX

Finally, because
∑

z

pz(X) = 1, hence

[
∑

z

pz(X)− 1

]

= 0 ;
d

[
∑

z

pz(X)

]

dX
= 0

This fact implies that

g(X,Z = z′)− g(X,Z = z′′) = 0,

and therefore g(X,Z = z′) = g(X,Z = z′′), for all z′ �= z′′. ��
Remark 1 Analogously, it can be proven that g(X,Z) is invariant under the chosen
reference group when Z ⊥⊥ X.
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Range-Preserving Confidence Intervals
and Significance Tests for Scalability
Coefficients in Mokken Scale Analysis

Letty Koopman , Bonne J. H. Zijlstra , and L. Andries van der Ark

1 Introduction

Mokken scale analysis is a popular scaling method used in questionnaires and is
based on nonparametric item response theory models (see, e.g., Mokken, 1971;
Sijtsma & Molenaar, 2002; Sijtsma & Van der Ark, 2017, for an elaborate
introduction). The most popular aspect of Mokken scale analysis is scalability
coefficients, which can be used to construct questionnaires from a larger set of
items or to evaluate questionnaires that have a fixed set of items (Sijtsma &
Van der Ark, 2017). Let I denote the total number of items, indexed by i or j
(i, j = 1, 2, . . . , I ). There are three types of scalability coefficients: item-pair
scalability coefficient Hij is a normed correlation between items i and j , item
scalability coefficient Hi is a normed item–rest correlation that can be considered
a discrimination index, and total-scale coefficient H is the weighted sum of the
His across all items, for which higher values indicate a more accurate ordering of
respondents (e.g., Sijtsma & Molenaar, 2016, p. 309). The standard errors of the
three types of scalability coefficients were derived using the delta method as SEHij

,
SEHi

and SEH , respectively (Kuijpers et al., 2013). Snijders (2001) generalized
the coefficients to two-level scalability coefficients for multi-rater data, in which
multiple raters score the subjects of interest. Two-level scalability coefficients
consist of within-rater and between-rater coefficients, which provide information
on the scalability on the respondent- and the group-level, respectively (see also,
Koopman et al., 2020). Within-rater coefficients have a similar interpretation to
Mokken’s coefficients.

A Mokken scale is defined as a set of items for which
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Hij > 0 for all item-pairs (i, j),
Hi ≥ c > 0 for all items i,

(1)

where c is some positive lower bound for which c = 0.3 is often used (Mokken,
1971, p. 184). All scalability coefficients can take values from −∞ to 1. If the items
are statistically independent, the scalability coefficients equal 0; if the items are
perfectly correlated, the scalability coefficients equal 1. The strength of a scale can
be interpreted as follows:

0.3 ≤ H < 0.4 : weak scale,
0.4 ≤ H < 0.5 : medium scale,
0.5 ≤ H : strong scale.

(2)

For more information on suggested thresholds for two-level scalability coefficients,
see Snijders (2001). The actual minimum of scalability coefficients depends on
the marginal frequencies (Sijtsma & Molenaar, 2002, p. 59). Away from the
boundary, the sampling distribution of scalability coefficients is approximately
normal (Koopman et al., 2020; Mokken, 1971, pp. 166–167), but if a coefficient
is close to the boundary or the SE is large, the sampling distribution is skewed to
the left.

The point estimates of a scalability coefficient and its SE in sample data
can be combined by a normal approximation Wald-based confidence interval or
significance test (Koopman et al., 2020; Kuijpers et al., 2013). Two-sided confidence
intervals are useful to determine the strength of total-scale coefficient H with
confidence (Eq. 2), whereas one-sided significance tests are useful to test the two
criteria of a Mokken scale (Eq. 1; Koopman et al., 2021). If the sampling distribution
of the scalability coefficients is skewed, Wald-based confidence intervals and
significance tests may be biased. This can result in deteriorated coverage of the
confidence interval, inclusion of values larger than 1 in the confidence interval,
and inflated Type I error rates of the significance tests. In this chapter, we propose
a range-preserving confidence interval and significance test using a logarithmic
transformation that can be applied to all scalability coefficients, both in nonclustered
data (i.e., obtained by a simple random sampling design) and clustered data (i.e.,
obtained by a cluster sampling design). We compare the performance of the Wald-
based and range-preserving methods in terms of coverage and Type I error rate
using simulated data. Applications of the range-preserving methods in software are
demonstrated.

2 Sampling Distribution of Scalability Coefficients

The sampling distribution of both Mokken’s and Snijders’ scalability coefficients
are asymptotically normal (Mokken, 1971, pp. 166–167; Koopman et al., 2020,
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Fig. 1 Six empirical distributions of total-scale coefficient H , with Wald-based (dashed line) and
range-preserving (solid line) approximations of the sampling distribution based on the average
Ĥ and SE2

Ĥ
across the datasets. The distribution is based on 10,000 simulated datasets with 10

dichotomous items and 100 respondents

respectively). Therefore, it is common practice to use normal-theory approaches
to confidence interval estimation and significance testing. Let Ĥ denote the point
estimate of H with standard error SEĤ . Figure 1 shows six histograms of the
empirical sampling distribution of Ĥ for a range of population values forH , created
with 10,000 simulated datasets using 100 respondents and 10 dichotomous items.
For H away from the boundary of 1, the distribution is approximately normal
(as is expected according to asymptotic theory), but as H comes closer to the
boundary, the distribution becomes increasingly skewed. For skewed sampling
distributions, normal-theory approaches may be biased, in which case, range-
preserving approaches are desirable because they only take values on the possible
range of the coefficient and tend to be more accurate and reliable (Efron &
Tibshirani, 1993, Section 13.7).

Confidence interval and significance tests can be applied to the scalability coeffi-
cients by using point estimates of the item-pair coefficients Ĥij , item coefficients Ĥi ,
and total-scale coefficient Ĥ , along with SEĤij

, SEĤi
, and SEĤ , respectively. Two-

sided confidence intervals of H are appropriate to estimate whether a scale is weak,
medium, or strong (Eq. 2). One-sided significance tests (or one-sided confidence



178 L. Koopman et al.

intervals) are appropriate to evaluate the two criteria of a Mokken scale (Eq. 1;
Koopman et al., 2021). For the first criterion, the null hypothesis is Hij = 0 and the
alternative hypothesis is Hij > 0 for each item pair (i, j). For the second criterion,
the null hypothesis is Hi = c and the alternative hypothesis is Hi > c for each item
i.

2.1 Wald-Based Methods

Wald-based methods assume a normal sampling distribution. A two-sided confi-
dence interval contains two confidence limits. Let zα/2 denote the z score pertaining
to significance level α/2. Then, the two-sided (1−α)×100%Wald-based confidence
interval (denoted CI) is computed as

CI = Ĥ ± zα/2 × SEĤ . (3)

Consider a two-sided 95% CI, zα/2 ≈ 1.96. Note that the upper confidence limit
may exceed the boundary of 1, which is the maximum value of H . One-sided CIs
also exist and can be constructed by replacing zα/2 in Eq. 3 with zα and by selecting
the confidence limit of interest, which is the lower limit for Hij and Hi . For a one-
sided 95% CI zα ≈ 1.645.

The Wald-based significance test is a z test to standardize the difference between
Ĥ and the value of H under the null-hypothesis to a z score. For example, using the
null hypothesis H = c, z is computed as

z = Ĥ − c

SEĤ

. (4)

The corresponding one-sided p value can be found in the standard normal z table.
A problem with the Wald-based method is that the sampling distribution is

skewed for very high values ofH or SE, in which case the results cannot be trusted.

2.2 Range-Preserving Methods

A confidence interval is range-preserving if its values are in the possible range of the
parameter of interest. We propose a strategy to compute a range-preserving interval
and to apply a similar strategy to compute a z score, which we collectively refer
to as range-preserving methods. Range-preserving methods also apply asymptotic
normal theory, but rather than using the original estimate Ĥ , which is bounded by
1, confidence interval and z scores are computed using a transformation of Ĥ and
its SE.



Range-Preserving Intervals and Tests 179

Let g(Ĥ ) denote the transformation of Ĥ , and let log(x) denote the natural
logarithm of x. Then

g(Ĥ ) = − log(1 − Ĥ ). (5)

The range for the transformed scalability coefficient is the real space (−∞,∞).
Let g−1(Ĥ ) denote inverse of g(Ĥ ), and let exp(x) denote the exponential of x. It
follows that

g−1(g(Ĥ )) = 1 − exp(−g(Ĥ )) = Ĥ . (6)

Let g′(Ĥ ) denote the first derivative of g(Ĥ ) with respect to Ĥ . By the chain rule
(Stewart, 2008, p. 197),

g′(Ĥ ) = d

dĤ
g(Ĥ ) = 1

1 − Ĥ
. (7)

Using the delta method (Agresti, 2012, pp. 577–594), the SE of g(Ĥ ), SEg(Ĥ ), is
then approximated as

SEg(Ĥ ) ≈
√

[g′(Ĥ )]2SE2
Ĥ

= SEĤ /(1 − Ĥ ).
(8)

To obtain the range-preserving confidence interval (denoted CI∗), we first construct
a Wald-based confidence interval using the result of Eqs. 5 and 8,

CIg(Ĥ ) = g(Ĥ )± zα/2 × SEg(Ĥ )

= − log(1 − Ĥ )± zα/2 × SEĤ /(1 − Ĥ ).
(9)

Then, this interval is transformed back to the original scale of H , which reflects the
range-preserving confidence interval:

CI∗ = 1 − exp(−CIg(Ĥ ))

= 1 − exp(log(1 − Ĥ )± zα/2 × SEĤ /(1 − Ĥ )).
(10)

The range-preserving z score (denoted z∗) is computed by transforming both Ĥ and
c,

z∗ = g(Ĥ )− g(c)

SEg(Ĥ )

. (11)
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If Ĥ = 1, then the SE is estimated as SEĤ = 0, resulting in g(Ĥ ) = ∞ and an
undefined SEg(Ĥ ), z, and z

∗. In that case, we define CI∗ as [1, 1] and evaluate z and
z∗ as significant.

Similarly, confidence intervals and z scores can be computed for item pairs as
CIij and zij , and for items as CIi and zi (superscript ∗ is added for range-preserving
confidence intervals and z scores), by replacing Ĥ and SEĤ in Eqs. 3, 4, 10, and 11
with Ĥij and SEĤij

or with Ĥi and SEĤi
respectively.

Multivariate Case. The range-preserving transformation is easily generalized
to the multivariate case, which is useful to, for example, construct a variance–
covariance matrix for a set of transformed item-pair or item coefficients. Let
H = [H(1), H(2), . . . , H(k), . . . , H(K)]T denote a transposed vector containing K

scalability coefficients H(k), (k = 1, 2, . . . , K). The transformation of H is

g(H) = [g(H(1)), g(H(2)), . . . , g(H(k)), . . . , g(H(K))]T . (12)

Let G = ∂g(H)
∂HT be the Jacobian of g(H), that is, the matrix of first-order partial

derivatives with respect to H. Let
⊕

indicate the direct sum. For g(H),

G =
K⊕

k=1

1/(1 −H(k)). (13)

G is a diagonal matrix with the first derivative of g(H(k)) (Eq. 7) on the kth diagonal
element and zero on the off-diagonal elements. Let VH denote the variance–
covariance of H, V(k) the variance of H(k), and V(k,l) the covariance between H(k)

and H(l). Applying the multivariate delta method, the variance–covariance matrix
of g(H), Vg(H), is approximated by

Vg(H) ≈ GVHG (14)

Vg(H) is a diagonal matrix for which the kth diagonal element equals Vk/(1−Hk)
2

and the off-diagonal element (k, l) equals V (k, l)/[(1 − H(k))(1 − H(l))]. In data
samples, H and VH in Eqs. 12 to 14 are replaced by their estimates Ĥ and VĤ,
respectively, to get estimates g(Ĥ) and Vg(Ĥ).

2.3 Approximating the Sampling Distribution

In Fig. 1, the Wald-based and range-preserving approximations of the distribution
are plotted over the distributions. This visualization shows that when H does not
approach the boundary of 1, the approximated distributions are similar (upper
panels), but close to the boundary the range-preserving approximation (solid line)
approaches the distribution more accurately than the Wald-based approximation
(dashed line), especially in the left tail (lower panels). Note that the left tail is
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of interest because the one-sided significance tests evaluate whether Hij or Hi is
significantly larger than some hypothesized value. Hence, the left tail is compared
to the hypothesized value.

3 Simulation Study

We performed a small-scale simulation study to investigate the coverage of the two-
sided confidence interval and Type I error rate of the one-sided significance test for
the Wald-based and range-preserving methods.

Method. We simulated data for 10 dichotomous items using a two-parameter
logistic model (Birnbaum, 1968, p. 458). The difficulty parameter was fixed to
equidistant values between −1 and 1 across the items. We included the following
independent variables:

Item discrimination: The magnitude of the total-scale scalability coefficient was
manipulated by increasing ai in the two-parameter logistic model. The higher the
discrimination, the better the item can distinguish between respondents, which
results in higher scalability of the item, and thus the total scale. There were six levels
in which ai varied across items at equidistant values between 0 and 1: between 0.8
and 2, between 1 and 4, between 2 and 8, between 10 and 25, or between 25 and 75,
resulting in H = 0.07 (unscalable), 0.33 (weak), 0.52 (strong), 0.74 (very strong),
0.94 (extremely strong), and 0.98 (near unity), respectively.

Sample size: The sample size N was 100, 500, or 1,000. Although 100 respondents
is not considered sufficient for a Mokken scale analysis (Straat, Van der Ark &
Sijtsma, 2014), the difference between the methods is expected to be more distinct.

Method: The Wald-based and range-preserving methods were used to compute the
dependent variables.

We evaluated the following dependent variables, for which the population value
H was determined by using the mean of Ĥ across all replications within a condition,
assuming it was unbiased.

Coverage: The coverage of the two-sided 95% confidence interval was determined
to be the proportion of times H was included in the 95% CI or CI∗. Its value should
be close to 0.95.

Type I error rate: The Type I error rate of the one-sided significance test was
determined as the proportion of times the p value of z or z∗ was below significance
level 0.05. Its value should be close to the significance level. Statistics z and z∗ were
computed by replacing c by H in Eqs. 4 and 11.

Method was a within-subject variable, whereas item discrimination and
sample size were between-subject variables. There were 4 × 3 = 12 conditions
and for each condition 10,000 datasets were simulated. Data were simulated
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Fig. 2 Coverage rates of the two-sided confidence interval (top panels) and Type I error rates of the
one-sided significance test (bottom panels) for the Wald-based (dashed line) and range-preserving
(solid line) method. The row panels represent the sample sizeN. Each panel displays the population
values H on the horizontal axis

in R (R Development Core Team, 2017) using the function simdata() from
package mirt (Chalmers et al., 2012).1

Results. Figure 2 shows the coverage rates of CI and CI∗ and the Type I error
rates of z and z∗ for all conditions. CI∗ outperformed CI in all conditions—more
substantially for conditions where H approached its upper boundary of 1. Overall,
the coverage rates were poorer in the conditions with 100 respondents compared to
the conditions with more respondents, especially for the highest two H conditions.
In general, for the two highest H conditions, the average undercoverage of CI was
divided in 9.2% on the left side and 1.2% on the right side, indicating that the CI
had mainly undercoverage in the left tail of the distribution, whereas the right tail
was overcovered. The undercoverage of CI∗ was divided more symmetrically, with
5.3% on the left tail and 3.6% on the right tail. When looking only at the 500 and
1,000 respondents conditions, the undercoverage of CI was 5.5% in the left tail and

1Syntax files are available to download from the Open Science Framework: https://osf.io/5m827/.

https://osf.io/5m827/
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1.2% in the right tail, compared to 2.8% in both tails for CI∗. This indicates that the
tails of the sampling distribution are better approximated using the range-preserving
method compared to the Wald-based method.

The Type I error rate of z∗ was close to that of z in most conditions, but for
conditions in which H ≥ 0.74, z∗ outperformed z. For 100 respondents, the Type I
error rate of both z and z∗ was below the nominal value for the lowest H condition,
but improved with increased sample size.

Note that for the condition with 100 respondents andH = 0.98, in approximately
10% of the replications Ĥ was (very close to) 1 (i.e., Ĥ > 0.999) and SEĤ was
estimated (very close to) 0 (i.e., the mean of SEĤ = 0.0002, compared to a mean
of 0.0086 for Ĥ < 0.999). Regardless of the method, this estimation issue made it
problematic to construct accurate intervals or to perform accurate tests, resulting in
deteriorated coverage and Type I error rates for both methods.

4 Implementation in Software

The range-preserving methods are implemented in R (R Development Core Team,
2017) in the package mokken (Van der Ark, 2007, 2012). Here we give an overview
of how to get CI∗ and z∗ for Mokken’s scalability coefficients in nonclustered and
clustered data and for Snijders’ two-level scalability coefficients in multi-rater data,
using scores of 639 students nested in 30 schools on 7 items measuring their well-
being with teachers. The first column in the dataset contains a grouping variable,
which we will ignore for nonclustered computations but which we use for clustered
data. Throughout we will use the significance level α = 0.05 and a null hypothesis
for coefficients c = 0.3. Wald-based results can be obtained by replacing "RP"
by "WB" in the R code. Let R> denote the R prompt. The R script and output are
available to download from the Open Science Framework: https://osf.io/5m827/.

R> # Preliminary code:
R> # Load package, get data
R> # Set significance level and value c
R> library(mokken)
R> data(SWMD)
R> X <- SWMD[, -1] # item scores SWMD
R> groups <- SWMD[, 1] # grouping variable
R> alpha <- .05 # Significance level
R> c <- .3 # Null hypothesis value
R> ## Mokken’s scalability coefficients in nonclustered data:
R> # Point estimates, standard errors,
R> # and two-sided range-preserving confidence intervals
R> coefH(X, ci = 1 - alpha, type.ci = "RP")
R> # Range-preserving z-scores using null hypothesis c
R> coefZ(X, lowerbound = c, type.z = "RP")
R> ## Mokken’s scalability coefficients in clustered data:
R> # Point estimates, standard errors,
R> # and two-sided range-preserving confidence intervals

https://osf.io/5m827/
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R> coefH(X, ci = 1 - alpha, type.ci = "RP", level.two.var
= groups)

R> # Range-preserving z-scores using null hypothesis c
R> coefZ(X, lowerbound = c, type.z = "RP", level.two.var

= groups)
R> ## Snijders’ two-level scalability coefficients:
R> # Point estimates, standard errors,
R> # and two-sided range-preserving confidence intervals
R> MLcoefH(SWMD, ci = 1 - alpha, type.ci = "RP")
R> # Range-preserving z-scores using null hypothesis c
R> MLcoefZ(SWMD, lowerbound = c, type.z = "RP")

5 Discussion

We proposed a method to compute range-preserving confidence intervals and
significance tests, which we implemented in the R package mokken. Simulation
results showed that for H not close to 1, Wald-based and range-preserving methods
are very similar and both are useful. However, for very strong scales (H > 0.7), the
range-preserving methods return more accurate results and are preferred over the
Wald-based method, especially for the left tail of the sampling distribution (which
is used in the one-sided significance tests). The results were poorer for only 100
respondents, confirming that larger samples are desirable (Straat et al., 2014). Note
that we only investigated range-preserving methods for scalability coefficients in
nonclustered data. Whether the results are similar in clustered data and for two-level
scalability coefficients is a topic for further research.

In our method, we used (−∞, 1] as the range for H . However, the actual
minimum of scalability coefficients depends on the marginal frequencies (Sijtsma &
Molenaar, 2002, p. 59). This minimum has the undesirable property that it must be
estimated and thus varies across finite samples. We explored an alternative and more
complex logistic transformation that takes the estimated minimum into account. The
results were very similar to the results obtained using the logarithmic transformation
presented in this chapter, so we did not investigate this method any further.

A limitation of the logarithmic transformation is that the value 1 can not
be included in the interval (although values very close to 1 can), as this value
corresponds to ∞ on the transformed scale. However, 1 is a possible value for
scalability coefficients, both in the population and in data samples. Alternative
transformations that can include 1 may approximate the sampling distribution more
closely. However, this will not solve the deteriorated coverage and Type I error rates
for very high H entirely because there remain samples where the SE can not be
estimated because Ĥ = 1.
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Equating Nonequivalent Groups Using
Propensity Scores: Model
Misspecification and Sensitivity Analysis

Gabriel Wallin and Marie Wiberg

1 Introduction

Test score equating comprises statistical models and methods to make test scores
from different test forms comparable (Kolen & Brennan, 2014; González &Wiberg,
2017). Equating is therefore an essential part for an educational testing program
to ensure fairness. The statistical parameter of interest is a function that maps the
scores from one test form (e.g. the most recent administration of the test) to another
test form. The test forms to be equated will in the following be referred to as the
new test form X and the old test form Y. How this function is calculated depends
to a great extent on the data collection design that has been adopted. Generally,
testing programs employ either common test-takers or common items. The former
refers to the underlying assumption that test-takers from different administrations
are only randomly different from each other in terms of the latent trait the test
is constructed to measure. The observed test score differences between the test
groups would thus solely be due to differences in difficulty level between the
test forms. Equating methods that utilize common items on the other hand uses
a set of items common for both the new and old test form to adjust not only for
difficulty differences but also for ability differences between the test groups. The
underlying assumption is thus that the groups of test-takers are drawn from different
populations. These common items are often referred to as anchor items, and the data
collection design as nonequivalent groups with anchor test (NEAT) design (von
Davier et al., 2004). There are however testing programs that face nonequivalent
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groups but lack common items, for example the Invalsi test (Invalsi, 2013) and
the Armed Services Vocational Aptitude Battery (Quenette et al., 2006). To falsely
assume that the test groups are samples from the same population, i.e. not adjusting
for ability differences, will yield a biased estimate of the equating function that for
example can lead to unfair admission decisions to university programs. One way of
controlling for ability imbalance between the test groups when there are no anchor
items is to use background information about the test-takers. This is known as the
nonequivalent groups with covariates (NEC) design (Wiberg & Bränberg, 2015).

Background information, that from now on will be referred to as covariates, has
been used to equate test forms before. Kolen (1990), Cook et al. (1990) and Wright
and Dorans (1993) used it as a tool to balance the test groups, Liou et al. (2001) used
covariates instead of anchor items, Bränberg and Wiberg (2011) developed a linear
equating method using covariates and Hsu et al. (2002) incorporated covariates
into item response theory (IRT) true-score equating. To use covariates within a
propensity score has also been investigated in previous equating research, and
was first proposed by Livingston et al. (1990). Among the more recent studies,
Moses et al. (2010) incorporated two anchor test scores within a propensity score,
Powers (2010) used them for chained equating (CE) frequency estimation, IRT true-
score and observed-score equating, Longford (2015) used propensity scores to for
matching and Haberman (2015) used them to transform nonequivalent groups to
pseudo-equivalent groups.

This study builds on the study of Wallin and Wiberg (2019), where propensity
scores for the first time were introduced within the kernel equating (von Davier
et al., 2004) framework. Both post-stratification equating (PSE) and CE were
considered, and the underlying assumptions for using propensity scores were
for the first time formalized. In their study, they did however assume that the
functional form of the propensity score was known. Since this is never the case
in practical applications, this study investigates how sensitive the equated scores
are for misspecification of the propensity score estimation model. Specifically,
three different kinds misspecification are considered: Misspecification of the link
function, misspecification by leaving out a covariate and by missing a second-
order moment, respectively. The intention is to quantify how severe each of the
misspecifications are in terms of bias of the equated scores and the precision
of the equating function estimate. This follows the study by Waernbaum (2012)
were propensity score model misspecification were analyzed for the estimation of
causal treatment effects. The same model misspecifications as in this paper were
considered, but a different, scalar, parameter was evaluated.

The rest of the paper is structured as follows. In Sect. 2, the kernel equating
framework is briefly described. In Sect. 3, propensity scores for equating are
introduced, and in Sect. 4 a simulation study is presented. The paper is concluded
with a discussion of the results.
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2 Kernel Equating

Test scores from the new test form X are denoted by X and test scores from the
old test form Y are denoted by Y . For this study, test-takers given test form X are
thought of as a random sample from population P and test-takers given test form Y
as a random sample from population Q. As test-takers are randomly sampled from
their respective populations, X and Y are treated as random variables with sample
spaces X and Y . Their respective realizations are denoted xj , j = 1, . . . , J , and
yk , k = 1, . . . K , where number-correct scoring is assumed throughout the paper.
The equating function ϕ(x) is a mapping from X to Y , but not all such functions
are equating functions, see Kolen and Brennan (2014) for a list of requirements.
The most commonly used equating function is the equipercentile function (Braun &
Holland, 1982), defined as

ϕ(x) = G−1
Y (FX(x)), (1)

whereGY and FX denote the cumulative distribution functions (CDFs) of test score
Y and X.

Kernel equating is a semi-parametric method to estimate the equating function
ϕ(x), using both kernel smoothing techniques of the score distributions and
maximum likelihood estimation of the score probabilities. To define the kernel
equating estimator, let μX denote the mean of X, σ 2

X denote the variance of X,
let V be a continuous random variable with E(V ) = 0 and V(V ) = σ 2

V , and
a2X = σ 2

X/(σ
2
X+σ 2

V h
2
X), where hX > 0 is a smoothing parameter. Now a continuous

version of the test score variable X is introduced as

X(hX) = aX(X + hXV )+ (1 − aX)μX.

The random variable X(hX) has the same mean and variance as X, and a
corresponding continuous score variable is introduced for Y as well. The estimated
CDF of X(hX) equals

FhX(x) = P(X(hX) ≤ x) =
∑

j

r̂jK(R̂jX(x)) (2)

for which rj = P(X = xj ) is the j th X score probability, usually estimated using
a log-linear model, RjX(x) = (x − âXxj − (1 − âX)μ̂X)/âXhX, and K is the
kernel function defined by the probability distribution of V . The most common
distributional choice of V is the Gaussian distribution, and such assumption will be
made in this study as well, meaning that K will equal the standard Gaussian CDF.
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With corresponding definitions for GhY = P(Y (hY ) ≤ y), the estimated kernel
equating function equals

ϕ(x; r̂, ŝ) = Ĝ−1
hY
(F̂hX(x)),

with r̂ = (r̂1, r̂2, . . . , r̂J )
� and ŝ = (ŝ1, ŝ2, . . . , ŝK)

�.

3 Propensity Scores

This paper considers the NEC design (Wiberg & Bränberg, 2015), where the
population P sample has received test formX, the populationQ sample has received
test form Y, and the test-takers in both samples have an associated covariate vector
D = (D1, . . . , Dm) recorded. In the NEC design, these covariates serve the purpose
of controlling for ability imbalance between the test groups. The aim is to control
for all covariates that affect the relationship between (X, Y ) and the test form
assignment mechanism. This test form assigment is denoted by Z = 1 if test form
X is administered to a randomly selected test-taker, and Z = 0 if test form Y is
administered.

The variables Z, D and (X, Y ) are depicted in Fig. 1. The covariate vector D
confounds the relationship between test form assignment and test score, which
motivates the goal to control for such disturbance. It should be pointed out that
in reality, the true confounder of the Z-(X, Y ) relationship is the latent ability.
By successfully controlling for ability, it would only be the difficulty differences
between the test forms that would cause observed differences in the distributions
of X and Y . The covariates in the NEC design thus play the role of a proxy for
ability. Although rarely pointed out, the same underlying assumption is made when
using anchor items A: replace D with A in Fig. 1 and it will illustrate the NEAT
design. Anchor items are therefore, just as covariates, used as a proxy for ability.
However, since anchor items are constructed as mini-versions of the full test forms,
there is often a good reason to treat them as an ability proxy. It is reasonable to
believe that if D is going to be an equally good ability proxy as the anchor items, it
needs to include several covariates that all relate to the latent construct that the test
is constructed to measure.

Fig. 1 The nonequivalent
groups with covariates design

D

Z (X,Y )
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A practical problem arises when using more than just a few covariates since
the number of empty cells in the data matrix quickly proliferates. To be able to
use all available information, some dimension-reducing function of the covariate
vector is needed. This study considers the use of propensity scores to tackle the
dimensionality problem. The propensity score is a scalar function of the covariate
vector and is defined as e(D) = P(Z = 1|D). It is a balancing score, meaning
that if D contains all confounders of the relationship between Z and (X, Y ), it is
sufficient to control for e(D) to achieve covariate balance between the test groups.
Since it actually is the latent ability we wish to control for, the positive effect of
balancing the groups on the covariates fully depends on the quality of D as a proxy
for ability. We again emphasize that this however is no different from the underlying
assumption behind using an anchor test.

Since the propensity score is unknown, it has to be estimated. The most common
estimation method, and the one employed in this study, is logistic regression. After
retrieving the estimated propensity score for each test-taker, it is subdivided into
strata based on the percentiles, following the proposition by Rosenbaum and Rubin
(1984). All test-takers within a stratum are considered equivalent in terms of the
latent trait, and the method proposed thus creates strata for where the assumption
underlying the common test-taker approach holds.

4 Simulation Study

4.1 Equating Estimators

The simulation study considers both PSE- and CE-based estimators using propensity
scores, as they were derived and presented in Wallin and Wiberg (2019). To define
the PSE-based estimator, consider the score probabilities

rPj = P(X = xj |P),
rQj = P(X = xj |Q),

sPk = P(Y = yk|P),
sQk = P(Y = yk|Q),

(3)

where the notation P , Q and T refer to the underlying population for which the
terms are calculated on. The term T denotes the target population that the equating
function is defined on. For PSE, T = wPP + wQQ where wP and wQ denote
weights that often are set to respect the relative sample sizes, and such that 0 ≤
wP ,wQ ≤ 1, wP+wQ = 1. Following from this definition of the target population,
the test score probabilities for the target population can be calculated as

rj = P(X = xj |T ) = wP rPj + wQrQj (4)
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and

sk = P(Y = yk|T ) = wP sPk + wQsQk, (5)

As can be seen in Equations 4 and 5, there is a missing data structure by design
since the terms rQj and sPk cannot be directly estimated from the data. However, if
the propensity score is a proper ability proxy, it will be able to unbiasedly estimate
the quantities wQrQj and wP sPk . See Wallin and Wiberg (2019) for the details.
The score probability vectors r and s can thus be estimated, which leads to the PSE
estimator

ϕ(x; r̂, ŝ)PSE = Ĝ−1
hY
(F̂hX(x)), (6)

To define the CE estimator, consider the score CDFs

FHP
(x) = P(X(hX) ≤ x|P),

GHQ
(y) = P(Y (hY ) ≤ y|Q),

HheX
(e(d)) = P(e(D) ≤ e(d)|P).

HheY
(e(d)) = P(e(D) ≤ e(d)|Q),

(7)

Now gather the score probabilities in (3) in the vectors rP = (rP1, . . . , rPJ )
�

and sQ = (sQ1, . . . , sQK)
�. Further let tP = (tP1, . . . , tPJ )

� and tQ =
(tQ1, . . . , tQK)

�, where tPj = P(e(D) = e(d)|P) and tQk = P(e(D) = e(d)|Q).
Note that the score CDFs in (7) together with rP , sQ, tP and tQ all are possible
to estimate from data. For the CE estimator, the underlying assumption instead is
that there is a functional link between the X scores and the propensity scores in
population P , and a functional link between the propensity scores and the Y scores
in population Q. To get the explicit assumptions, we refer to Wallin and Wiberg
(2019).

By linking the CDFs in (7) together in a chain, the CE estimator is retrieved:

ϕ(x; r̂P , t̂P , t̂Q, ŝQ)CE = Ĝ−1
hQ
(ĤheY

(Ĥ−1
heX

(F̂hP (x)))), (8)

4.2 Simulation Design

To evaluate how sensitive the equated scores are to propensity score model misspec-
ification, the finite sample properties of the PSE and CE estimators in Equations 6
and 8 are evaluated in a simulation study where misspecification is introduced. The
results are based on 10,000 simulated test-takers and 1,000 iterations.

The data generating process (DGP) follows Wallin and Wiberg (2019) and is as
follows:
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1. Draw the covariates D1,D2 ∼ Uniform(1, 5).
2. Draw a sequence of 10,000 Bernoulli trials to generate the treatment variable

Z ∼ Bernoulli(e(D)), where

e(D) = (1 + exp(−0.36 + 1.25D1 + 1.25D2 − 0.35D2
1 − 0.35D2

2))
−1. (9)

This creates test groups of about the same size.
3. The test scores on test form X for all test-takers were calculated as

X = −6 + 4D1 + 5D2 + εX

and the test scores on test form Y for all test-takers were calculated as

Y = −9 + 3D1 + 6D2 + εY ,

where εX ∼ N (2, 1.5) and εY ∼ N (0, 1). The covariate distributions thus differ
between the test groups, and the ε terms represent difference in difficulty between
the test forms. Since only integer scores are considered, X and Y were rounded
to the nearest integer, and the upper limit we set equal to a test score of 40.

4. Calculate the observed score for each test-taker as

U = ZX + (1 − Z)Y.

5. Estimate the propensity score e(D) in Equation 9 using logistic regression.
Next, subdivide the estimated propensity score into 20 categories based on the
percentiles. This number was set to achieve covariate balance between the test
groups as measured by the Absolute Standardized Mean Difference (Austin,
2008). For each iteration and both equating estimators, there will be three
estimated propensity scores for each test-taker: one with a misspecified link
function (probit link instead of logit link), one that leaves out D2 and one that
leaves out the second-order terms.

With the DGP described above, each test-taker had a potential test score on
both test forms (the test score he/she would have got if taken test form X/Y), an
observed test score indicating which administration was actually assigned to the test-
taker, a measurement on both covariates and three estimated propensity scores. We
furthermore created two alternative versions of the covariates by subdividing them
into five equally spaced groups, in the same spirit as in Wiberg and Bränberg (2015).
The reason for doing so was to include the case where testing programs register
background information only by categories. An example is the variable age that
sometimes is recorded according to pre-specified age intervals rather than the actual
ages of the test-takers. Lastly, note that with this DGP, it is possible to calculate a
true equating function ϕ(x) since data have been generated so that each test-taker
has an observation on both test forms, which is never the case in empirical studies.
With the generated sample entities, the PSE and CE estimators are calculated as
described in Sects. 2 and 4.1.
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4.3 Evaluation Measures

To evaluate the PSE and CE estimators, the bias and standard error (SE) as described
in Wiberg and González (2016) have been calculated. Let ϕ̂(g)(xi) denote the
estimated equating function (either the PSE- och CE based estimator) for the gth
iteration, g = 1, . . . , 1000. Further let ϕ̄(xi) = 1

1000

∑1000
g=1 ϕ̂

(g)(xi), and ϕ(x)

denote the true equating function. Then the bias and SE are calculated as

Bias(ϕ̂(xi)) = 1

1000

1000∑

g=1

(ϕ̂(g)(xi)− ϕ(xi))

and

SE(ϕ̂(xi)) =

√
√
√
√
√

1

1000 − 1

1000∑

g=1

(ϕ̂(g)(xi)− ϕ̄(xi)).

4.4 Results

The results are presented for each evaluation measure separately. In Fig. 2a and 2b,
the bias of the PSE and CE estimators are presented. What immediately became
apparent is that the bias and SE for propensity score models that misspecify the link
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Fig. 2 The bias of the PSE and CE estimators, considering both categorized and uncategorized
covariates, and using a misspecified link function and a missing covariate, respectively, in the
propensity score estimation model. “Wrong link cat.” and “Missing cov cat.” refer to propensity
score models with a misspecified link function and a missing covariate, respectively, where the
covariates have been categorized. (a) The bias of the PSE estimator (b) The bias of the CE estimator
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function and that leave out the second-order term were equal. Furthermore, those
biases and SEs were equal to the biases and SEs for correctly specified models. For
this reason, the bias and SE curves for the misspecified link function also represents
the curves for the missing second-order term of the propensity score.

As seen in Fig. 2a, the bias is very small along the whole score scale for all
estimators except for the estimator that misspecifies the propensity score model by
leaving out a covariate. It is notable that it does not seem to matter if the covariates
are categorized or not, the biases for all misspecifications are very similar regardless.
The best performance is given by the estimators that misspecifies the link function
(and leaves out the second-order term). Remember that this curve (the black) also
represent the bias of a correctly specified model, meaning that the propensity score
method of balancing the test groups seems successfull for the PSE estimator.

The bias for the CE is illustrated in Fig. 2b. The pattern is similar to the PSE
results, meaning that the bias when misspecifying the link function and leaving
out the second order term is small for all score values. The difference between
categorized and uncategorized covariates is, as for the PSE case, negligible. When
leaving out a covariate however, the bias increases a lot, and is particularly large for
categorized covariates.

In Fig. 3a, the SE of the PSE estimator is shown. For all of the misspecified
models, the general trend is that the SE is larger in the tails of the score range,
which naturally occurs because of the sparse data for the highest and lowest scores.
All estimators perform similar, although the model with categorized covariates and
a misspecified link function has an increased SE in the middle segment. The SEs of
the CE estimators are similar to each other, and similar in quantity compared to the
SE values of the PSE estimators.
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Fig. 3 The SE of the PSE and CE estimators, considering both categorized and uncategorized
covariates, and using a misspecified link function and a missing covariate, respectively, in the
propensity score estimation model. “Wrong link cat.” and “Missing cov cat.” refer to propensity
score models with a misspecified link function and a missing covariate, respectively, where the
covariates have been categorized. (a) The SE of the PSE estimator (b) The SE of the CE estimator
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5 Discussion

This paper expands the study of Wallin and Wiberg (2019) by further exploring
the use of propensity scores as a tool to balance nonequivalent test groups before
equating their test scores. Since an anchor test can be both difficult and expensive
to implement, there is a clear need for other methods that can handle nonequivalent
groups. This study assumes that there are a number of covariates available, and
for such situations it is natural to want to include as many (relevant) covariates as
possible. With the appealing property of being a balancing score, the propensity
score has been successfully implemented in a number of different areas of research.
The flexibility of the propensity score however opens up many modeling options.
It is therefore crucial to assess when the propensity score manages to balance the
test groups and when it fails to do so. This study is a first step to get a further
understanding of such a question. The results are promising for the propensity score
method, since it was not very sensitive to a misspecification of the link function
and to leaving out a second-order term in the estimation. The fact that the bias
and SE for these two misspecified models were equal to the simulation bias and
SE for correctly specified models suggests that the equated scores are robust to
model misspecification of the propensity score. Leaving out an important covariate
however was negatively affecting the results, which suggests that if the propensity
score is going to be used as a proxy for ability, all important information relating
to ability needs to be incorporated for it to work as intended. The results of this
study relates to those of Waernbaum (2012), where matching estimators of causal
effects were found to be robust against model misspecification, including modeling
nonlinear relations with linear models.

For future studies, both other kinds of covariates and real testing data should be
considered, since this study only considered continuous covariates in a simulation
setting. Furthermore, there are testing programs where both an anchor test and
covariates are available. It is therefore not unlikely that the precision in the equating
can be further increased by incorporating both anchor items and covariates. It also
possible to estimate the propensity score in other ways than by logistic regression.
Which options are reasonable in an equating context is also subject for future
studies.
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Possible Factors Which May Impact
Kernel Equating of Mixed-Format Tests

Marie Wiberg and Jorge González

1 Introduction

Test forms may contain either only dichotomously scored items, or only polytomous
scored items, or a mixture of both types, which is the case in mixed-format tests (see
e.g. Ercikan et al., 1998; Kim et al., 2008, 2010; Kolen & Lee, 2014). Regardless
of how the test form is constructed, it may be necessary to compare the scores from
different test forms. Test equating is used to compare test scores from different test
forms (González & Wiberg, 2017). A number of methods have been proposed to
compare scores obtained from binary scored items of different test forms and under
different equating designs. When tests are composed of polytomously scored items,
the score data are typically analyzed using item response theory (IRT; Lord, 1980)
models such as the graded response model or the generalized partial credit model.
After modelling the items with IRT, either IRT observed-score equating or IRT true
score equating (Lord, 1980) have been used to equate the test scores. Equating of
mixed-format tests has received relatively small attention in the literature so far.
The aim of this study was to examine the impact of item discrimination, sample size
and proportion of polytomously scored items on item response theory (IRT) kernel
equating of mixed-format tests under an equivalent groups (EG) design.
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In the past decade, kernel equating (von Davier et al., 2004) has emerged as
an alternative to classical test equating methods as it provides a framework with
tools on how to evaluate the performed equating. A large amount of research about
kernel equating has focused on extending the method for new situations such as
when additional information is available (e.g. Wallin & Wiberg, 2019; Wiberg &
Bränberg, 2015) or when it is used within the local equating approach (Wiberg et
al., 2014). Regardless of the aim of the study, most research about kernel equating
has mainly focused on modelling the sum scores, i.e. scores obtained as the total
sum of correctly answered binary scored items. As a matter of fact, the initial
step of presmoothing the score distributions before conducting the equating has
mainly considered log-linear models for sum score probabilities of binary scored
items. Recently, Andersson and Wiberg (2017) proposed to incorporate IRT models
within the kernel equating framework as an alternative to the commonly used log-
linear models. Polytomous IRT models has also been incorporated within the kernel
equating framework (Andersson, 2016).

Previous research on mixed-format test equating has considered classical test
equating methods and traditional (observed-score or true-score) IRT equating meth-
ods (see e.g. Kolen & Lee, 2014). Some research has also focused on examining and
comparing the use of the EG design and the NEAT design including the composition
of the anchor test. Kim and Kolen (2006) examined different IRT linking methods
with mixed-format tests and Kim et al. (2010) found that using either anchor
tests with constructed response items in the NEAT design or in the EG design
gave lower bias than if only multiple-choice items were used in the anchor test
under the NEAT design. Lee and Lee (2014) examined how dimensionality affected
the equating by comparing unidimensional IRT and bi-factor multidimensional
equating in mixed-format tests. Wang et al. (2016) examined multidimensionality
and classification accuracy of mixed-format tests, and they found that it varied
from subject to subject, depending on the disattenuated correlation between scores
from multiple-choice and the constructed response subtests. Different psychometric
properties of equating of mixed-format tests are summarized in Kolen and Lee
(2014) including how the equating is affected by the test dimensionality and the
composition of the anchor test. They also included a comparison of unidimensional
IRT and multidimensional bi-factor IRT equating, and a section of multidimensional
IRT equating. The research in this paper is different from all these studies as none
of them explored the possibility of using kernel equating for mixed-format tests. An
advantage of using IRT kernel equating for mixed-format test is the beneficiary of
using different IRT models within the same equating framework. In addition, using
IRT kernel equating for mixed-format tests extends the kernel equating framework
by enlarging the situations in which the method can be useful.

The rest of this paper is structured as follows. First, we briefly describe IRT
kernel equating and the statistical models used. Next, a simulation study is described
followed by the results from the simulations. The paper ends with a discussion with
some concluding remarks.
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2 IRT Kernel Equating

Kernel equating (von Davier et al., 2004) comprises five steps; (1) presmoothing, (2)
estimating score probabilities, (3) continuization, (4) equating and (5) evaluating
the equating transformation. In IRT kernel equating, IRT models are used in the
presmoothing step instead of the commonly used log-linear models (Andersson
& Wiberg, 2017). The IRT models are used to smooth the data and get rid of
irregularities. It is possible to use both dichotomous and polytomous IRT models
within IRT kernel equating. In this paper we will use the two-parameter logistic
(2PL) IRT model to model dichotomously scored items and the generalized partial
credit (GPC) model to model the polytomously scored items. Let θ , ai and bi be the
ability of a test taker, and the item discrimination and difficulty parameter of item
i, respectively. The probability to answer an item i correctly with the 2PL model
(Lord, 1980) is then defined as

Pi (θ) = exp (ai (θ − bi))

1 + exp (ai (θ − bi))
.

The probability of a test taker with ability θ answering in category l of item i
using the GPCM (Muraki, 1992) is defined as

Pil (θ) = Pil
(
θ; ai, bi, di2,...dimi

) =
exp

[∑l
v=1ai (θ − bi + div)

]

∑mi

g=1 exp
[∑g

v=1ai (θ − bi + div)
] ,

where div is a threshold parameter denoting the difficulty of transition between
category l − 1 and category l for item i, mi is the number of categories for item
i, and ai and bi are the item discrimination and difficulty parameters, respectively.
Note, di1 ≡ 0 is set for model identification purposes.

These IRT models are used in the second step when estimating the score
probabilities of a randomly selected test taker in population T scoring xj on test form
X and yk on test form Y; rj = Pr (X = xj| T) and sk = Pr (Y = yk|T), respectively.
Under the IRT framework these probabilities are a function of θ , thus we denote
them as rj(θ ) and sk(θ ). As it is typically done in IRT observed-score equating, these
score probabilities are obtained using the Lord and Wingersky (1984) algorithm,
although other methods can also be used to obtain them (González et al., 2016). For
details on how the score probabilities are obtained refer to Andersson and Wiberg
(2017).

In the third step, the discrete distributions are continuized into continuous
distributions using a kernel. Define the cumulative distribution functions (CDFs)
of X and Y in T by F(x) = Pr (X ≤ x| T) and G(y) = Pr (Y ≤ y| T), respectively.
Here the Gaussian kernel was used although other kernels could have been used
(González & von Davier, 2017; Lee & von Davier, 2011). Let μX = ∑

jxjrj and σ 2
X

be the mean and variance of X in population T and define aX =
√
σ 2
X/

(
σ 2
X + h2X

)
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where hX > 0 denote the bandwidth parameter which can be selected in several ways
(Häggström & Wiberg, 2014; Wallin et al., 2018). Using the Gaussian kernel �(·),
the continuized CDF for test form X is defined as

FhX (x; r) =
∑

j

rjΦ

(
x − aXxj − (1 − aX)μX

aXhX

)

,

where r = (r1, . . . , rJ)t. Similar definitions lead toGhY (y; s) for test score Y. Next,
using the continuized score distributions the equating from test form X to test form
Y is carried out using the equating transformation function ϕY (x) = G−1

hY

(
FhX(x)

)
.

Finally, the equating transformation is evaluated using different measures (Wiberg
& González, 2016). In the simulation study we used standard errors (SE) and
percent relative error (PRE). Denote the pth moment of the distribution of test
scores Y and that of the equated scores ϕY (X) as μp(Y) = ∑

k(yk)psk and
μp(ϕY (x)) = ∑

j(ϕY (xj))prj, respectively, then the PRE is defined as

PRE(p) = 100
μp (ϕY (X))− μp(Y )

μp(Y )

(von Davier et al., 2004).
To evaluate the obtained equated scores, we also used the difference that matters

(DTM, Dorans & Feigenbaum, 1994), which was defined here as +/− 0.5 score
point difference in equated scores.

3 Simulation Study

We considered an EG design with 1500 test takers for each test form X and Y in
three cases depending on the proportion of polytomously scored items. In all three
cases, the polytomous items were scored as: 0, 1, and 2. The first case contained 20
dichotomously scored items and 20 polytomously scored items (20D/20P), and thus
the score range was 0–60. In the second case, we used 30 dichotomously scored
items and 10 polytomously scored items (10P/30D), and thus the score range was
0–50. In the third case, we used 35 dichotomously scored items and 5 polytomously
scored items (35D/5P), and thus the score range was 0–45. The dichotomously
scored items were modelled with the 2PL IRTmodel with discrimination parameters
drawn from the U(.3,1.3) distribution, whereas the difficulty parameter were drawn
from the N(0,1) distribution.

The polytomously scored items were modelled with the GPCM with slope
parameters drawn from the U(.3,1.3) distribution and with item location parameters
drawn from the N(−.5,1) (first parameter) and N(.5,1) (second parameter) distribu-
tions. To examine the condition of more discriminating items we added 0.5 to the
discrimination parameter in test form Y, thus drawing them as a ~ U(0.8,1.8). The
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Table 1 The PRE in the first 10 moments of the examined conditions

Case 1 2 3 4 5 6 7 8 9 10

20D/20P −.001 −001 .002 .011 .025 .045 .071 .103 .140 .183
Y disc −.001 −.001 .002 .010 .024 .044 .069 .101 .138 .181
500 −.001 −.001 .002 .011 .025 .045 .070 .102 .139 .181
500, Y disc −.001 −.001 .002 .010 .023 .042 .067 .097 .133 .173
30D/10P .000 .000 .003 .010 ,023 .042 .067 .099 .137 .183
Y disc −.001 .000 .006 .019 .041 .073 .114 .166 .227 .298
500 −.001 −.001 .001 .009 .023 .045 .074 .112 .157 .214
500, Y disc −.003 −.003 .002 .016 .040 .076 .124 .183 .254 .337
35D/5P −.001 −.001 .007 .023 .049 .086 .133 .191 .259 .336
Y disc −.002 .001 .013 .038 .075 .125 .188 .264 .353 .456
500 −.001 −.001 .006 .023 .049 .086 .133 .190 .257 .334
500, Y disc −.002 −.004 .005 .027 .063 .112 .174 .249 .336 .437

D Dichotomously scored items, P Polytomously scored items, Y disc Y more discriminating, 500
sample size of 500

baseline sample size case was 3000 test takers. A condition with 500 test takers
was also examined. Each condition was replicated 200 times. The Gaussian kernel
was used in the continuization step with bandwidths parameters selected using
the penalty method. The R package ltm (Rizopoulos, 2006) was used to generate
dichotomous and polytomous score responses. The R package mirt (Chalmers,
2012) was used to estimate the IRT models and the R package kequate (Andersson
et al., 2013) was used perform the IRT kernel equating.

4 Results

Table 1 display the PRE in the first 10 moments for the three cases (20D/20P,
30D/10P, 35D/5P) in the examined conditions. In general, the PRE were very low,
especially for the first four moments. The overall conclusion was that, regardless of
case and condition the PRE followed the same pattern in the first 10 moments.

Figure 1 illustrates the three cases with different proportions of polytomous items
in the different examined conditions, with equated values in the left column and SE
in the right column. It is clear from the left plots in Fig. 1 that the item discrimination
has an impact on the equated values. The impact is DTM in the upper score range
in the second condition (30D/10P) and over most of the score range in the third
case (35D/5P), i.e., that the DTM increases for fewer polytomous items. A reduced
sample size of 500 did not yield any large differences in equated values, and thus
that line is barely visible in one of the plots and nonexistent in the other plots.

The plots on the right-hand side in Fig. 1 displays the SE for the three
examined cases under the examined conditions. As expected, the SE is clearly lower
when sample size is larger – which was seen in all cases. Considering a more



204 M. Wiberg and J. González

0 10 20 30 40

0
10

20
30

40

Test score

E
qu

at
ed

 v
al

ue

3000
Y disc
500
500, Y disc

0 10 20 30 40

0.
0

1.
0

2.
0

3.
0

Test score

S
E

3000
Y disc
500
500, Y disc

0 10 20 30 40 50 60

0
20

40
60

Test score

E
qu

at
ed

 v
al

ue

0 10 20 30 40 50 60

0.
0

1.
0

2.
0

3.
0

Test score
S

E

0 10 20 30 40 50

0
10

30
50

Test score

E
qu

at
ed

 v
al

ue

0 10 20 30 40 50

0.
0

1.
0

2.
0

3.
0

Test score

S
E

Fig. 1 The first row represents the case with 20D/20P, the second row represent 30D/10P and the
third row represents 35D/5P with equated values to the left and SE to the right with respect to the
examined conditions

discriminating Y test yields on average higher SE. The SE was also higher when
more polytomous scored items were used as was the case for 20D/20P.

5 Discussion

The aim of this paper was to examine the impact of item discrimination, proportion
of polytomous items and different sample sizes on equating mixed-format tests with
IRT kernel equating. From the simulation study it was evident that the SE were
much higher when one test form had items which were more discriminating and, as
expected, when a smaller sample size was used. The equated values were however
not affected by the smaller sample size – but there were DTM in the equated values
especially in the higher score ranges when the proportion of dichotomously scored
items were higher. The fact that the degree of item discrimination has an impact on
equated values is a result in line with other research in test equating (e.g. van der
Linden & Wiberg, 2010). The found DTM in the upper score range should make
test developers really aim for test forms which have similar item discriminations.
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The SE were higher when more polytomous items were included in the test, a
result which should be examined further in the future. A possible reason might be
the larger variation of test scores as compared with the other two examined cases.
The result that DTM were larger when fewer polytomous items were included in the
test was surprising and this result should be examined further in future studies when
varying other conditions.

This research focused on the EG design, in the future research one should also
examine mixed format tests with IRT kernel equating under the NEAT design and
especially examine the impact of the anchor test length and its mixture of binary
and polytomous items as well as the item characteristics and relate it to similar
research (e.g. Kim et al., 2010; Kolen & Lee, 2014). In addition, one should examine
the size of the correlation between the test forms, and how results change if other
presmoothing models such as the Rasch or the graded response model are used.
The chosen presmoothing model could potentially influence the equated scores as
it has recently shown to have an impact on the equating (Wallin & Wiberg, 2020).
Summing up, IRT kernel equating seems to be a possible alternative when we have
mixed format tests, but more research is needed.
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Population Invariance of Equating for
Subgroups Differing in Achievement
Level

Dongmei Li and Shalini Kapoor

1 Introduction

Test equating is a widely-used methodology to ensure score comparability across
test forms that may differ slightly in difficulty. Kolen and Brennan (2014) sum-
marized desirable properties of equating proposed in the research literature. One
such property is often referred to as group or population invariance of the equating
relationship (e.g. Angoff, 1971; Dorans & Holland, 2000; Kolen, 2004), which
means that “the equating relationship is the same regardless of the group of
examinees used to conduct the equating” (Kolen & Brennan, 2004, p. 12). Dorans
(2004) pointed out that population invariance plays a central role in assessing test
equitability, i.e., the extent to which the equating relationship is invariant across
important examinee groups determines the extent to which tests are equatable.

Population invariance cannot be assumed to hold in all situations (Flanagan,
1951; Lord, 1980). Whether this property holds can be empirically checked by com-
paring equating relationships for the different groups of interest in the population.
Research has repeatedly demonstrated that equating results are reasonably invariant
to the equating sample when test forms are developed according to the same content
and statistical specifications. For example, results were similar when equating was
conducted using data from different gender, ethnicity, or ability groups (Angoff &
Cowell, 1986; Dorans & Holland, 2000; Harris & Kolen, 1986; Kolen, 2004). Yet
some research indicated that true-score equating may be more population invariant
than observed-score equating (Lord & Wingersky, 1984; van der Linden, 2000),
and other studies suggested that population invariance tended to hold less well
when equating samples had different achievement distributions (Cook & Petersen,
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1987; Yi et al., 2008). Moreover, the test population may evolve over time and
the population invariance in new subgroups may become of interest. Therefore, it
is important for testing programs to continue to evaluate the extent to which the
equating relationship is invariant in specific examinee groups of interest.

The purpose of this study was to investigate the extent to which the population
invariance property held for subgroups differing in mean achievement levels.
Specifically, the study provided an empirical investigation of the following questions
under the random groups equating design:

1. How much do equating results differ when equating is conducted using sub-
groups with known differences in their mean achievement levels as compared
with differences expected from randomly selected samples?

2. Is equipercentile equating more or less population invariant than IRT equating?

2 Methodology

2.1 Data and Subgroups

Data used in this study came from two different administrations of the ACT test
(ACT, 2020). The ACT test measures students’ college readiness in English, math,
reading, and science. It is taken by high school students for the purpose of college
admission in the United States and is also used for other purposes such as state
accountability.

In each administration, three forms were spiraled within schools to obtain
randomly equivalent groups. Sample sizes for these forms in each administration
are presented in Table 1. Subgroups were created from the total sample in each
administration as described below for the purposes of the study. Subgroups were
created at the school level so that the randomly equivalent groups within each school
were maintained.

Three subgroups with different average achievement levels were created within
each administration. First, the schools in each administration were ranked by stu-
dents’ average ACT Composite scores from low to high (ACT Composite = average
of English, reading, math, and science scores on a 1–36 scale). Then, the schools
were divided into three groups (Low, Medium, and High) with approximately equal

Table 1 Test forms and sample sizes of the total sample

Test administration 1 (269 schools) Test administration 2 (272 schools)
Forms N Forms N

Y1 9871 Y2 11,349
A 9694 C 11,432
B 9708 D 11,168
Total 29,273 Total 33,949
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Table 2 Sample sizes and descriptive statistics of composite scores by subgroups

Administration 1 Administration 2

Group N Mean SD N Mean SD
Total 29,273 18.81 5.19 33,949 18.08 4.85

Ranked 1 (low) 9811 15.94 4.03 11,322 15.79 3.95
2 (medium) 9709 18.71 4.50 11,370 18.17 4.58
3 (high) 9753 21.79 5.22 11,257 20.29 4.90

Random 1 9811 18.91 5.23 11,322 17.88 4.80
2 9709 19.35 5.37 11,370 17.75 4.81
3 9753 18.68 5.31 11,257 17.59 4.81

numbers of students in each group. Students in the “Low” group were designated
Group 1, students in the “Medium” group were designated Group 2, and students
in the “High” group were designated Group 3. These samples are referred to as the
ranked samples in this report.

Three subgroups were also created by randomly sampling schools (without
replacement) to serve as a basis for comparison with results from the three ranked
groups. First, a random number from 1 to the total number of schools in each
administration was created for each school, and then student data were sorted by
the random numbers of their schools. To get a sample of size N, student records
were selected from the first record to the Nth record in the sorted data. The process
was repeated 3 times to get three randomly selected samples. The sample size of
each random sample was the same as the sample sizes of the three groups in the
ranked samples.

Table 2 presents the sample sizes and the Composite score means and standard
deviations of the total group, the three ranked samples, and the three random groups.
As expected—considering the manner in which these groups were created—the
three ranked groups differed significantly in average achievement, and the three
random groups were all similar to the total group in both test administrations.

Table 3 shows the ethnicity distributions of the total group and each subgroup
for data from each test administration. The three ranked groups differed from each
other and from the total group, and the three random groups were similar to each
other and the total group. For example, in Administration 1, the percentage of
White examinees in the Low, Medium, and High group was 26%, 65%, and 73%,
respectively, but was very similar (57%, 57%, and 54%) in the three random groups.

2.2 Equating Analysis

Since the forms were spiraled within each school within each administration, the
groups taking each form were randomly equivalent, whether in the total samples, or
in each of the ranked or random samples. Following the random groups equating
design, equating was conducted using different samples and different statistical
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Table 3 Ethnicity distributions by group (in percent)

Ranked groups Random groups
Administration 1 Total 1 2 3 1 2 3

Black/African American 18 40 10 5 19 18 19
American Indian/Alaska native 1 1 1 0 0 0 1
White 55 26 65 73 57 57 54
Hispanic/Latino 13 18 12 9 11 12 13
Asian 3 2 2 4 2 4 2
Native Hawaiian/other Pacific Islander 1 1 1 0 1 0 1
Two or more races 7 9 7 5 6 6 7
Prefer not to respond 3 4 3 3 3 3 3
Administration 2
Black/African American 24 44 21 8 24 25 28
American Indian/Alaska Native 1 2 1 1 1 1 1
White 54 31 59 72 56 53 48
Hispanic/Latino 10 13 9 9 10 11 13
Asian 2 2 2 2 1 2 2
Native Hawaiian/Other Pacific Islander 0 0 0 0 0 0 0
Two or more races 6 6 6 5 6 6 5
Prefer not to respond 3 3 2 2 2 2 3

methods to equate each new form. In Administration 1, Form Y1 was an anchor
form, and Forms A and B were equated to Y1. In Administration 2, Form Y2 was
an anchor form, and Forms C and D were equated to Y2.

Each form was equated using the 7 different samples in each administration: the
total sample, the three ranked samples, and the three random samples. Different
statistical methods were used for equating, including equipercentile equating, IRT
true score equating, and IRT observed score equating. Cubic spline post-smoothing
with a smoothing parameter of 0.05 was used for the equipercentile equating
method, and the 3-parameter logistic model (3PL) was used for the IRT equating
methods.

2.3 Comparisons of Equating Results

Equating results were examined and compared among different equating samples
and different methods from two perspectives: the differences in conversion tables
and their impact on group means. Conversion tables are used to convert raw scores
(number of items answered correctly) to scale scores (on the 1–36 scale). Equating
results tables showed the conversion from raw scores to equated raw scores,
unrounded scale scores, and rounded scale scores. Though only the rounded scale
scores were used for score reporting, the unrounded scale scores and the equated raw
scores were also compared. These conversions were examined graphically through
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plots of the differences between different conversions in light of the Differences that
Matter (DTM) criteria (Dorans et al., 2003), that is, whether the absolute values of
the differences were smaller or larger than 0.5 score unit.

A summary statistic, the weighted root mean squared difference (WRMSD), was
also calculated for each pair of conversion tables. Let Yi1 and Yi2 be converted scores
associated with raw score i obtained from two equatings, K be the total number of
raw score points (or number of items), N be the total number of examinees in a
group, and ni be the number of students with a raw score of i. Then the WRMSD
statistic can be expressed as

WRMSD =
√
√
√
√ 1

N

K∑

i=0

ni(Yi2 − Yi1)
2.

This statistic can be aggregated across different conditions (e.g., test forms,
samples, etc.) to get an average WRMSD (AWRMSD).

To examine the impact of the differences in conversion tables on group means,
the different conversion tables from the different samples or methods for a test form
were applied to all examinees taking that form in the total group and the Low,
Medium, and High subgroups.

For both the conversion tables and the group means, the focus of comparison
was the differences between results from each of the three ranked samples and
those from the total sample, treating results from the total sample as “truth” within
each equating method. Several other comparisons were also made, including the
comparison of results from the three ranked samples and those from the three
random samples, results between each pair within the ranked and random samples,
and results between equipercentile equating and IRT equatings.

3 Results

Equipercentile equating, IRT true score equating, and IRT observed score equating
were conducted for the total sample and the three ranked samples and the three
random samples. Selected results are presented below to address the research
questions.

3.1 Comparisons Between Results Based on the Ranked
and Random Samples for Equipercentile Equating

Conversion Comparisons Using equating results from selected English forms as
an example, Fig. 1 presents the unrounded scale score conversion differences at
each raw score point between results from each subgroup and the total group for
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Fig. 1 Unrounded scale score differences between conversions obtained from each subgroup
versus those obtained from the total group for equipercentile equating

equipercentile equating. In Fig. 1, the two horizontal reference lines represent the
DTM criteria, that is, + 0.5 and - 0.5 score unit. Figures 1a and b are results for
Form A equated to Y1, and Figs. 1c and d are for Form C equated to Y2. These plots
illustrate that equating results obtained from each subgroup were slightly different
from those obtained from the total group, and that the differences for the three
ranked samples were similar in magnitude to the differences for the three random
groups. Meanwhile, the absolute values of most of the differences along the score
scale are smaller than the DTM criteria. Similar observations were made for other
subject tests, which are not presented here.

The differences between conversion tables for the equated raw, unrounded, and
rounded scale scores were summarized using the WRMSD statistic, which gives
an overall indication of the magnitude of differences across conversions. Table 4
presents a comparison of the averages and the standard deviations (SDs) of the
WRMSD statistic for the conversion differences between results from the ranked
samples and the random samples for each subject test and the averages across
subject tests for the equipercentile equating method. The averages of WRMSD were
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Table 4 WRMSD mean(SD) of equipercentile equating conversion differences for the ranked and
random groups

Equated raw Unrounded scale Rounded scale
Ranked Random Ranked Random Ranked Random

English 0.45(0.19) 0.41(0.19) 0.22(0.10) 0.19(0.09) 0.37(0.10) 0.39(0.11)
Math 0.43(0.14) 0.34(0.20) 0.24(0.08) 0.18(0.09) 0.42(0.09) 0.36(0.12)
Reading 0.25(0.09) 0.26(0.11) 0.19(0.07) 0.20(0.08) 0.38(0.10) 0.40(0.09)
Science 0.23(0.10) 0.16(0.06) 0.19(0.08) 0.13(0.04) 0.36(0.14) 0.28(0.10)
Average 0.34(0.13) 0.29(0.14) 0.21(0.08) 0.17(0.07) 0.38(0.11) 0.36(0.11)

taken across 24 values: 6 pairs of comparisons (i.e., each subgroup compared with
the total group and between each pair of the subgroups) for each of the 4 forms.

On average, the conversion differences from the ranked groups were slightly
larger than those from the random groups for all subject tests except for reading.
Across all subject tests, the rounded scale score WRMSD were very similar
between the ranked (0.38) and the random groups (0.36), indicating that equating
results using different groups that had big differences in achievement varied to a
similar extent as those using different randomly selected samples for equipercentile
equating.

Group Mean Comparisons The raw to rounded scale score conversion of each
form was applied to the groups of students taking that form in the total group. The
group means were separately calculated for students taking that form in the total
group, and those taking that form in the Low, Medium, and High subgroups. For
example, within the total group of 29,273 students in Administration 1, there were
9694 students who took Form A (as shown in Table 1), and about one third of these
students were in each of the ranked groups. Recall that for each test form, seven
different raw-to-scale score conversions were obtained for each equating method:
one based on the total group, three based on the ranked groups, and three based on
the random groups. Each of these conversions was applied to Form A raw scores
in order to calculate group means for students taking Form A in the total group
and those in the Low, Medium, and High subgroups. Group mean differences were
calculated using different pairs of conversions.

Summary statistics of the absolute group mean differences across all pairs of
equipercentile equating conversions from the ranked samples and the random sam-
ples across all forms are presented for each subject test and the Composite scores
in Table 5. In Table 5, the column “Samples” indicates whether the conversions
were obtained using the ranked or the random samples, and the column “Group”
indicates to which group of examinees the different conversions were applied. As in
other tables, the values outside the parentheses are the averages of the absolute group
mean differences across 24 different comparisons (6 pairwise comparison for each
of the 4 forms) and the values within the parentheses are the standard deviations of
the group mean differences.
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Table 5 Mean(SD) of the absolute group mean differences of equipercentile equating for the
ranked and random samples

Samples Group Composite English Math Reading Science

Ranked All 0.07(0.04) 0.10(0.06) 0.11(0.07) 0.10(0.07) 0.10(0.09)
Low 0.08(0.06) 0.10(0.07) 0.14(0.09) 0.09(0.07) 0.10(0.09)
Medium 0.07(0.04) 0.10(0.06) 0.11(0.07) 0.10(0.07) 0.10(0.09)
High 0.07(0.05) 0.10(0.06) 0.11(0.08) 0.12(0.07) 0.10(0.09)

Random All 0.09(0.07) 0.14(0.09) 0.10(0.08) 0.12(0.09) 0.06(0.04)
Low 0.07(0.05) 0.09(0.06) 0.10(0.07) 0.10(0.07) 0.07(0.05)
Medium 0.09(0.07) 0.14(0.09) 0.10(0.08) 0.13(0.09) 0.07(0.05)
High 0.11(0.09) 0.17(0.12) 0.12(0.10) 0.15(0.11) 0.06(0.05)

The values for the ranked samples in Table 5 tended to be slightly smaller than
the random samples for English and reading but tended to be slightly larger than
the random samples for math and science. The overall differences across the subject
tests (shown in the “Composite” column) were similar for the ranked and random
equating samples, indicating that equating using groups differing in achievement
levels did not result in greater impact on group means than what would be expected
from sampling error.

Comparisons Between Equipercentile and IRT Equating Similar comparisons
were made between results from the equipercentile equating method and the IRT
true score and IRT observed score equating method for the ranked and the random
samples. The IRT true score and IRT observed score equating results were very
similar, and the differences between equipercentile equating and IRT equatings were
similar for the ranked and the random samples, so only IRT true score equating
results from the ranked samples are presented below and are compared with the
equipercentile equating results.

Table 6 presents the average WRMSD differences for the comparisons involving
the three ranked groups for equipercentile equating and IRT true score equating
results. The WRMSD statistics tended to be slightly smaller for the equipercentile
equating results than for the IRT results, but on average across all subject tests,
they were very similar (0.38 for equipercentile and 0.39 for IRT), indicating that
changing the equating method had little impact on the variability of conversion
tables across the different samples.

Table 7 presents the descriptive statistics of the absolute group mean differences
across the different comparisons for equipercentile and IRT true score equating. The
values in Table 7 were very similar between equipercentile and IRT equating except
that the group mean differences of IRT true score equating tended to be slightly
higher than those of equipercentile equating for science. The Composite score
statistics were very similar between equipercentile and IRT true score equating,
indicating that equating using samples differing in achievement levels had a similar
impact on group means when comparing equipercentile and IRT equating results.
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Table 6 WRMSD mean(SD) of conversion differences of equipercentile equating and IRT true
score equating using the ranked groups

Equated raw Unrounded scale Rounded scale
Equip IRT True Equip. IRT True Equip. IRT True

English 0.45(0.19) 0.44(0.17) 0.22(0.10) 0.23(0.11) 0.37(0.10) 0.39(0.09)
Math 0.43(0.14) 0.47(0.20) 0.24(0.08) 0.22(0.10) 0.42(0.09) 0.39(0.11)
Reading 0.25(0.09) 0.28(0.13) 0.19(0.07) 0.22(0.10) 0.38(0.10) 0.37(0.12)
Science 0.23(0.10) 0.33(0.17) 0.19(0.08) 0.33(0.17) 0.36(0.14) 0.43(0.18)
Average 0.34(0.13) 0.38(0.17) 0.21(0.08) 0.25(0.12) 0.38(0.11) 0.39(0.13)

Table 7 Mean(SD) of the absolute group mean differences of equipercentile and IRT true score
equating for the ranked groups

Group Composite English Math Reading Science

Equi-percentile All 0.07(0.04) 0.10(0.06) 0.11(0.07) 0.10(0.07) 0.10(0.09)
Low 0.08(0.06) 0.10(0.07) 0.14(0.09) 0.09(0.07) 0.10(0.09)
Medium 0.07(0.04) 0.10(0.06) 0.11(0.07) 0.10(0.07) 0.10(0.09)
High 0.07(0.05) 0.10(0.06) 0.11(0.08) 0.12(0.07) 0.10(0.09)

IRT true All 0.08(0.05) 0.10(0.07) 0.10(0.07) 0.09(0.06) 0.14(0.12)
Low 0.08(0.05) 0.10(0.06) 0.11(0.08) 0.09(0.06) 0.13(0.12)
Medium 0.08(0.05) 0.09(0.06) 0.10(0.08) 0.09(0.06) 0.14(0.11)
High 0.09(0.07) 0.12(0.11) 0.13(0.12) 0.12(0.08) 0.17(0.16)

4 Conclusions and Discussion

This study evaluated the extent to which equating relationships were consistent for
subgroups differing in achievement levels using empirical data. Results showed that
the equating relationships were reasonably consistent, even for groups with large
differences in average achievement and demographics. This was apparent from the
fact that the magnitude of the differences in conversions and their impact on group
means were similar to those solely due to sampling error. The study also showed
that there were very small differences between equipercentile equating and the two
IRT equating methods in terms of their impact on the population invariance property
of equating.

Findings from this study are consistent with similar research (e.g. Harris &
Kolen, 1986) and provide additional empirical support for the group or population
invariance property of test equating for groups that differ in achievement levels. In
practice, the equating sample may be a lower or higher performing group from the
test population. Alternatively, even though the equating sample is selected to repre-
sent the whole test population, it may be higher or lower in performance compared
to different subpopulations, such as students in different states. Results from this
study and other empirical studies demonstrated that the equating relationship were
reasonably stable whether equating was conducted using a lower performing group
or a higher performing group.
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These findings can only be generalized to similar situations in which the test
forms were developed to be parallel according to detailed test specifications and
equating was conducted based on carefully implemented random groups data
collection design. Further studies can investigate population invariance in subgroups
with different sample sizes or different data collection designs. If smaller sample
sizes are used, or when the forms are less parallel, equating relationships might
be more group dependent. Equating based on the common item non-equivalent
groups design involves more statistical assumptions than equating based on the
random equivalent groups design, which might cause the equating relationship to be
less population invariant. Because of the potential differences in testing programs
in terms of test development, equating sample sizes, and equating data collection
designs, we recommend that testing programs conduct their own studies to evaluate
the population invariance property of equating for subgroups of interest.
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Comparison of Outlier Detection
Methods in NEAT Design

Chunyan Liu and Daniel Jurich

1 Introduction

von Davier et al. (2004, p.13) emphasized that “current test equating practice
requires explicit methods for separating the effects of examinee ability from the
assessment of the differences in the difficulty of the two tests”. This is accomplished
by the equating design used for data collection. The nonequivalent groups with
anchor test (NEAT) design is one of the most commonly used equating designs
(Kolen & Brennan, 2014; von Davier et al., 2004), where the two test forms share
some items in common, called anchor items. Anchor items can be used to equate
test forms or create a calibrated item bank in the framework of item response theory
(IRT). The anchor items must behave similarly for equating to function. In practice,
however, anchor items may function differently across the two test forms and should
be eliminated from the anchor item set. These items are referred to as outliers (Kolen
& Brennan, 2014) or items with item parameter drift (IPD, Goldstein, 1983; Bock et
al., 1988). Failure to pinpoint the outliers from the anchor item set may deteriorate
equating accuracy and undermine the validity of test scores (Hu et al., 2008; Huang
& Shyv, 2003). Therefore, it is critical to detect the outlier items and exclude them
from the anchor item set before conducting equating.

Within the Rasch IRT equating framework, the mean difference of the anchor
item difficulties between the two test forms are used to estimate the equating
constant or translation constant (TC, Wright & Stone, 1979, p.96). Because it is
a mean difference, the TC may be greatly impacted by the outliers in the anchor
items, especially when the number of anchor items is small or the magnitude of item
difficulty drift is large. The most commonly used outlier detection methods are the
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logit difference method (Miller et al., 2004) and the robust z statistic method (Hogg,
1979; Huynh &Meyer, 2010), which will be discussed in more detail later. For both
methods, a subjective cutoff value (e.g., 0.3 or 0.5 for the logit difference method
and 1.65 for the robust zmethod) is required to be pre-determined in order to identify
anomalous behavior of the potential outlier items. Previous research suggests that
the logit difference method tends to underestimate the number of outliers and the
robust z method with a cutoff value of 1.65 tends to overestimate the number of
outliers (Manna & Gu, 2019; Murphy et al., 2010).

A t-test approach was proposed to investigate the presence of items with
differential item functioning (DIF) by examining whether the item parameters
estimated from two independent calibrations differed significantly (Wright & Stone,
1979). Researchers have recommended a cutoff value of t = 2 for identifying DIF
items (Muraki & Engelhard, 1989; Smith & Suh, 2003). As other researchers have
noted, the problem of detecting outliers in anchor item set is essentially the same as
the problem of detecting the presence of DIF items when there are two-time points
(Donoghue & Isham, 1998; DeMars, 2004). Thus, the t-test DIF method presents a
logical approach for detecting equating outliers as well and we found no research
investigating the t-test approach in this context.

The purpose of this study is to investigate the performance of the t-test method,
the logit difference method, and the robust z statistic method in detecting outliers
in the anchor items under the Rasch framework through a simulation study. More
specifically, cutoff value of 2.0 for the t-test approach, 0.3 and 0.5 for the logit
difference method, and 2.7 (Huynh & Meyer, 2010) for the robust z method are
investigated. In addition, the simulation considered several factors, including sample
size, percentage of outlier items, and direction of item drift, and their performances
are evaluated using different criteria.

2 Data

This study used empirical data from a medical exam with 200 multiple-choice items,
of which 60 (30%) are anchor items. The item difficulties were estimated based
on the Rasch model, and linked to a pre-calibrated operational item bank through
the anchor items. The item difficulties of the anchor items were considered as true
parameters (without estimation error) and used for item manipulation to create
different simulation conditions with varying number and magnitude of outliers.

Examinee ability was randomly generated from two normal distribution,
θ~N(0, 1) and θ~N(0.2, 1). Item responses were generated for two investigated
examinee sample sizes (N = 500 and N = 3000) based on the manipulated item
difficulties and examinee ability distribution for each of the simulated conditions
described below. The Rasch item difficulties were estimated using Winsteps
(Winsteps & Rasch Measurement Software, 2019).
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3 Methods

3.1 Outlier Manipulation

The bank values of the anchor item difficulties were considered as the truth and used
to simulate different conditions. Four levels of percentages of outliers in the anchor
items were investigated: 0% (0 outliers), 10% (6 outliers), 20% (12 outliers), and
30% (18 outliers). In order to mimic a practical situation, most of the outliers were
simulated to have small item difficulty drift, and a few of them were simulated to
have medium or large drift. Therefore, 1/6 of the outliers were manipulated to be
severely drifted (the item difficulties of the outliers were added/subtracted by 1.0,
or !b = 1.0), 1/6 to be moderately drifted (!b = 0.5), and 2/3 to be mildly drifted
(!b = 0.3).

We also simulated three anchor item difficulty drift directions: positive (outliers
become more difficult), negative (outliers become easier), and mixed (some outliers
become more difficult and some become easier). Consider the condition of 30%
outliers (18 outliers) with positive drift direction as an example. For randomly
selected 18 outliers in the anchor items, the item difficulty was added by 1.0 for
three of them (1/6 of the 18 outliers), 0.5 for another three (1/6 of the 18 outliers),
and 0.3 for the rest of the 12 outliers (2/3 of the 18 outliers). Similarly, the item
difficulties were added by −1.0, −0.5, or − 0.3 for the negative drift conditions.
For the conditions with mixed drift direction, ±1.0, ±0.5, and ± 0.3 were added to
the item difficulties of randomly selected outliers.

3.2 Outlier Detection Methods

Logit Difference Method The logit difference of an anchor item (di) is calculated
as the difference of item difficulties from the item bank and from the new calibration
after scale transformation, and defined as

di = bBank,i −
(
b̂New,i + T C

)
, (1)

where bBank, i and b̂New,i represent the difficulty from the bank and from the
new calibration respectively for item i. TC is the translation constant (or equating
constant) estimated as the average difference between the bank and the new

calibration anchor item difficulties, and is defined as T C =
∑I

i=1

(
bBank,i−b̂New,i

)

I

(Wright & Stone, 1979, p.96), where I is the number of anchor items. For each of
the anchor items, if the absolute value of di is larger than a pre-determined value, the
anchor item is flagged as an outlier and removed from the anchor item set. Both 0.5
logit difference and 0.3 logit difference are considered in this study and are denoted
as LogitD_0.5 and LogitD_0.3, respectively.
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Robust z Statistic For the vector of logit differences (d) of the anchor items
obtained from Eq. (1), the robust z statistic (Hogg, 1979) is defined as

Robust z = d −Md

0.74 × IQR(d)
, (2)

where Md is the median of d, and IQR(d) indicates the inter-quartile range of d.
Huynh and Meyer (2010) claim that the robust z statistic follows a standard normal
distribution and is not affected by the existence of outliers. A cutoff value of 2.7
was recommended by Huynh and Meyer (2010) and utilized in this study. We term
this method and cutoff combination as RobustZ. An item is flagged as a potential
outlier if the absolute value of its robust z statistic is larger than 2.7. Please note
that the cutoff value of 1.65 is not considered in this study since previous research
concluded that the robust z method with cutoff of 1.65 cannot control the Type I
error in the baseline conditions where no outliers were simulated (Liu et al., 2020;
Manna & Gu, 2019).

t-test Approach In the context of DIF detection, a separate calibration t-test
approach was proposed to detect the invariance of the item parameter estimates
obtained from two independent Rasch calibrations (Thissen et al., 1992; Wright &
Stone, 1979; Smith, 1996; Smith & Suh, 2003). In this approach, the t-statistic for
item i is defined as:

ti = b̂F i − b̂Ri
√

var
(
b̂F i

)
+ var

(
b̂Ri

) (3)

where b̂F i and b̂Ri represent the item difficulties for item i estimated from the focal

group and reference group respectively, var
(
b̂F i

)
and var

(
b̂F i

)
are the estimates of

the sampling variance associated with the estimated item difficulties. The t statistic
approximately follows a standard normal distribution and a cutoff value of 2.0 was
recommended for the absolute value of t to yield a Type I error rate of 5% (Muraki
& Engelhard, 1989; Smith, 1996).

In the context of outlier detection, Eq. (3) can be modified as follows if we want
to flag items that exhibit large differences from the item difficulties in the bank,
which are considered as true item difficulties without estimation error:

ti =
bBank,i −

(
b̂New,i + T C

)

√

var
(
b̂New,i

) , (4)

where var
(
b̂New,i

)
is the associated estimate of sampling variance of b̂New,i .

For an item that does not have IPD, we expect the estimated item difficulty, or
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b̂New,i + T C, to be centered around the bank value with a variance of var
(
b̂New,i

)

and the t statistic approximately follows a standard normal distribution. However,
the estimated item difficulty for an outlier with IPD will not center around the bank
value and the item will be flagged if t is larger than a pre-determined cutoff value. In
this study, the cutoff value of 2.0 is considered and this method is denoted as t_2.0.

3.3 Simulation Procedures

The item difficulties of the 60 anchor items were considered as true parameters
and were manipulated to create different scenarios. The investigated factors include,
examinee sample size (N = 500 and 3000), group difference (TC = 0 and 0.2),
percentage of outliers (0%, 10%, 20%, and 30%), and direction of item difficulty
drift (positive, negative, and mixed). The conditions with 0% outliers are considered
as the baselines and used to evaluate the performance of these outlier detection
methods. The simulation procedures are detailed below:

1. Randomly sample N examinees from the investigated normal distribution;
2. From the anchor items, randomly select outliers with severe, moderate, and mild

item difficulty drift, and add/subtract 1.0, 0.5 or 0.3 to/from the item difficulties
of these outliers while keeping the rest of the item difficulties unchanged;

3. Simulate 0/1 responses for the 200 items based on the item difficulties from Step
2 and examinee abilities from Step 1;

4. Conduct Winsteps calibration;
5. Calculate di, Robust z, and ti for each anchor item based on the calibrated item

difficulty and estimation error from Step 4, and their difficulty from the bank;
6. Exclude the item with the largest absolute value of t, z, or logit difference if the

considered method falls above the cutoff for this item;
7. Repeat Steps 5 and 6 until no item meets the criteria for removal in Step 6;

Estimate TC for each outlier detection method based on their corresponding
final anchor item set and add it to the estimated examinee abilities from Step 4 to
get the final ability estimates;

8. Repeat Steps 2 to Step 8500 times for each of the simulated conditions.

3.4 Evaluation Criteria

Sensitivity and specificity are often considered as ways to evaluate the accuracy
of a test or a measure, especially in the medical field. Sensitivity refers to the
proportion of correctly identified true positives by the test, and specificity refers
to the proportion of correctly identified true negatives by the test (Altman & Bland,
1994). Ideally, we would like both sensitivity and specificity to be 100%. Within the
context of outlier detection, mathematically, they are defined as:
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Sensitivity = Number of flagged true outliers

Number of true outliers
× 100, (5)

and

Specificity = Number of flagged true non − outliers

Number of true non − outliers
× 100. (6)

The second criterion used to evaluate the performance of these outlier detection
methods is the bias of the estimated TC. Since each condition was repeated five
hundred times, the bias of the estimated TC is defined as

BiasT C = 1

500

500∑

r=1

ˆT Cr − T C, (7)

where ˆT Cr is the estimated translation constant obtained from rth replication and
TC is the true translation constant obtained from the true group difference.

Since the estimated TC can directly impact the examinee ability estimation, we
also compare the outlier detection methods’ performance in recovering examinee
ability. We accomplish this through the root mean square error (RMSE), which is
defined as:

RMSE
(
θ̂
)

= 1

500

500∑

r=1

√
√
√
√ 1

N

N∑

i=1

(
θ̂i,r − θi

)2
, (8)

where N is the number of test takers, θ i and θ̂i,r represent the true ability and the
estimated ability from rth replication respectively for examinee i.

4 Results

In this section, the results for the baseline conditions without outliers are presented
first, followed by the results of the simulated conditions with outliers. Our sim-
ulation results suggest that the true translation constant has little impact on the
performance of these outlier detection methods, so we only provide the results for
the conditions where the true TC = 0. In addition, the results for the conditions
with 20% of outliers (12 items) falls between the reported conditions and can be
predicted from the results. Thus, these conditions are also excluded from the paper.
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4.1 Baseline Conditions Without Outliers

Table 1 shows the results of specificity, bias of TC, and RMSE of the estimated
examinee ability for the four outlier detection methods for the baseline condition
where no outliers are simulated. The results indicate that, on average, the t_2.0
correctly identify 96% (SD = 2.8%) of the non-outliers for both sample sizes. The
specificity is almost 100% for both LogitD_0.5 and LogitD_0.3 methods, suggesting
that the Logit Difference method tends to correctly flag all non-outliers under the
baseline conditions. Finally, the specificity is about 97% for the RobustZ method
with a standard deviation about 4.0%.

Table 1 also suggests that all outlier detection methods perform similarly in
recovering the translation constant and the examinee ability under the baseline
conditions without outliers. The bias of TC is very close to zero and the RMSE
of the estimated ability is about 0.173 for all outlier detection methods, even when
the sample size is 500.

4.2 Simulated Conditions with Outliers

Sensitivity Table 2 provides the comparison of sensitivity in flagging true outliers
for these methods under different simulated conditions.

Table 2 suggests that, on average, the t_2.0 method yields a sensitivity ranging
from 76% to 84% when the sample size is 500. When the sample size is 3000,
the sensitivity is almost 100% for the t_2.0 method indicating that the t-test
approach can accurately flag almost all true outliers when the sample size is large.
Comparatively, for the LogitD methods, the sensitivity ranges from 18% to 31%
when the cutoff value is 0.5 and from 60% to 75% when the cutoff value is
0.3, which suggests that the LogitD method tends to underestimate the number
of true outliers, especially when the cutoff value is 0.5. For the RobustZ method,
the sensitivity is about 63% and 100% when the sample size is 500 and 3000
respectively for the simulated conditions with 10% outliers. However, when there
are 30% outliers, the sensitivity decreases dramatically to less than 30% when

Table 1 Performance of different outlier detection methods under baseline conditions

N t_2.0 LogitD_0.5 LogitD_0.3 RobustZ

Specificity 500 96.1 ± 2.8% 100.0 ± 0.2% 99.0 ± 1.7% 97.3 ± 3.5%
3000 96.0 ± 2.8% 100.0 ± 0.0% 100.0 ± 0.0% 97.2 ± 4.1%

Bias of TC 500 −0.0003 −0.0005 −0.0003 −0.0002
3000 0.0002 0.0004 0.0004 0.0001

RMSE
(
θ̂
)

500 0.1734 0.1733 0.1733 0.1734

3000 0.1725 0.1725 0.1725 0.1725

Note: The value after “±” is the standard deviation of specificity
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Table 2 Sensitivity in flagging true outliers under different simulated conditions

N % of Outliers Drift Direction t_2.0 LogitD_0.5 LogitD_0.3 RobustZ

500 10% Positive 80.5 ± 17.4% 26.3 ± 12.1% 65.4 ± 19.6% 64.3 ± 23.8%
Negative 80.7 ± 16.2% 26.8 ± 13.0% 64.9 ± 19.6% 62.8 ± 22.7%
Mixed 84.1 ± 15.9% 27.7 ± 12.9% 66.5 ± 18.1% 66.1 ± 22.7%

30% Positive 76.3 ± 13.0% 24.0 ± 8.8% 60.7 ± 15.4% 27.2 ± 14.6%
Negative 76.2 ± 12.8% 23.3 ± 9.1% 60.8 ± 15.6% 28.3 ± 15.9%
Mixed 83.0 ± 9.1% 31.1 ± 11.4% 69.8 ± 11.8% 52.4 ± 22.9%

3000 10% Positive 99.9 ± 1.3% 20.7 ± 7.4% 65.8 ± 22.0% 99.9 ± 1.5%
Negative 99.9 ± 1.1% 21.9 ± 8.5% 65.2 ± 21.3% 99.9 ± 1.1%
Mixed 100.0 ± 0.0% 24.8 ± 9.0% 68.2 ± 20.4% 99.9 ± 1.1%

30% Positive 100.0 ± 0.4% 17.9 ± 3.9% 65.6 ± 23.8% 29.7 ± 30.2%
Negative 100.0 ± 0.5% 17.9 ± 3.7% 61.4 ± 23.3% 30.5 ± 31.0%
Mixed 99.9 ± 0.7% 26.5 ± 8.1% 74.5 ± 15.6% 99.9 ± 0.7%

Note: The value after “±” is the standard deviation of sensitivity

Table 3 Specificity in identifying true non-outliers under different simulated conditions

N % of Outliers Drift Direction t_2.0 LogitD_0.5 LogitD_0.3 RobustZ

500 10% Positive 95.2 ± 3.0% 100.0 ± 0.3% 98.6 ± 2.3% 97.8 ± 3.7%
Negative 95.5 ± 3.0% 100.0 ± 0.3% 98.7 ± 2.2% 98.0 ± 3.3%
Mixed 95.9 ± 2.8% 100.0 ± 0.2% 98.8 ± 2.3% 98.0 ± 3.3%

30% Positive 94.5 ± 5.0% 99.9 ± 0.8% 97.3 ± 3.7% 99.4 ± 2.2%
Negative 94.7 ± 4.9% 99.9 ± 0.6% 97.3 ± 3.7% 99.3 ± 2.0%
Mixed 96.0 ± 3.6% 100.0 ± 0.2% 98.7 ± 2.5% 99.0 ± 3.3%

3000 10% Positive 95.6 ± 2.9% 100.0 ± 0.0% 100.0 ± 0.0% 97.7 ± 3.9%
Negative 95.7 ± 2.8% 100.0 ± 0.0% 100.0 ± 0.0% 97.5 ± 4.2%
Mixed 96.0 ± 2.5% 100.0 ± 0.0% 100.0 ± 0.0% 97.7 ± 3.1%

30% Positive 95.5 ± 3.4% 100.0 ± 0.0% 100.0 ± 0.2% 99.5 ± 2.2%
Negative 95.8 ± 3.3% 100.0 ± 0.0% 100.0 ± 0.0% 99.2 ± 3.3%
Mixed 95.9 ± 3.3% 100.0 ± 0.0% 100.0 ± 0.0% 97.3 ± 4.4%

Note: The value after “±” is the standard deviation of specificity

the item difficulties drift to one direction. For all outlier detection methods, the
sensitivity tends to be slightly higher when the item difficulty drift direction is
mixed.

Overall, the t_2.0 method performs very stable, and outperforms the LogitD
methods and the Robust zmethod in terms of the sensitivity of detecting true outliers
under all simulated conditions.

Specificity Table 3 provides the comparison of specificity in correctly identifying
true non-outliers for these methods under different simulated conditions.

Table 3 suggests that, on average, the t_2.0 method can correctly identify 94%–
96% of the true non-outliers for all simulated conditions. In other words, on average,
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2 ~ 3 non-outliers will be flagged as outliers by the t_2.0 method for all simulated
conditions.

Comparatively, the specificity is almost 100% for LogitD_0.5 and at least
97.3% for LogitD_0.3 method. However, the high specificity likely results from the
conservative nature of the LogitD method, as the method also yielded low sensitivity
(Table 2). The specificity for the RobustZ method is larger than 97% and 99% when
there are 10% and 30% outliers, respectively. As with LogitD, the high specificity
under the 30% outlier conditions is mainly because the RobustZ method fails to flag
the true outliers.

In general, Table 3 indicates that all outlier detection methods perform very well
in correctly identifying the non-outliers.

Bias of Translation Constant Figure 1 illustrates the bias of the estimated TC
for these outlier detection methods when the sample size is 3000 and 30% of the
anchor items are simulated to be outliers. The “No Removal” provides the bias of
the estimated TC if no outliers are removed from the anchor items before equating
and is provided for reference.

For the “Mixed” conditions or when the item difficulties randomly drift in both
directions, we can see that the TC bias is almost zero for all outlier detection
methods even when no outliers are removed. When all item difficulties drift to one
direction, we can see that (1) the bias of TC is about 0.14 for the negative drift (items
become easier) and − 0.14 for the positive drift (items become more difficult) under
the “No Removal” conditions; (2) among the four investigated outlier detection
methods, this plot indicates that the TC bias is almost zero for the t-test method
indicating that the t-test method can recover the true translation constant accurately
no matter what the item difficulty drift direction is; (3) the magnitude of the TC bias

Fig. 1 Comparison of the bias of translation constant (N = 3000 and 30% outliers)
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Fig. 2 Comparison of RMSE of the estimated abilities (N = 3000 and 30% outliers)

is about 0.09, 0.04, and 0.08 for LogitD_0.5, LogitD_0.3, and RobustZ methods
respectively; and (4) for these methods, the TC bias tends to be negative when the
drift direction is positive and positive when the drift direction is negative.

RMSE Figure 2 provides the comparison of the root mean square error of the esti-
mated examinee ability for these outlier detection methods for the same condition
(N = 3000 and 30% outliers). Again, the RMSE for the “No Removal” is provided
as a reference.

Figure 2 suggests that all outlier removal methods tend to reduce RMSE for
all simulated conditions, even though the magnitude of reduction is small for the
“Mixed” conditions relative to the no removal condition. When all item difficulties
drift to one direction (positive or negative), the direction of drift seems have little
impact on RMSE. The RMSE is about 0.220 under positive or negative drift under
the “No Removal” conditions. The t-test outperformed the other methods again,
yielding an RMSE of about 0.173 for all simulated conditions, which is comparable
to the baseline conditions provided in Table 1. However, the RMSE is about 0.194,
0.178, and 0.195 for LogitD_0.5, LogitD_0.3, and RobustZ methods respectively.

5 Conclusion and Discussion

In NEAT design, the outliers in the anchor items can deteriorate the equating
accuracy and undermine score interpretation. This study compares the performance
of four outlier detection methods (t_2.0, LogitD_0.5, LogitD_0.3, and RobustZ)
in flagging outliers through a simulation study. The investigated factors include
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examinee sample size, group difference, proportion of outliers, and item difficulty
drift direction. The t-test approach was proposed to evaluate the item difficulty
invariance among different examinee groups, but was never used to detect outliers in
anchor item equating. However, the logit difference method and the robust z method
have been widely investigated and operationally used in flagging outliers in anchor
items (He et al., 2013; Huynh & Meyer, 2010; Manna & Gu, 2019; Miller et al.,
2004; Murphy et al., 2010).

For the logit difference method, the findings were consistent with previous
research that both LogitD_0.5 and LogitD_0.3 methods tend to underestimate the
number of outliers (flagging fewer true outliers), yielding a very high specificity
(>99%) and small sensitivity in most cases (less than 30% for LogitD_0.5 and less
than 70% for LogitD_0.3). However, an important caveat is that the LogitD_0.3
method yielded a higher sensitivity because the magnitude of item difficulty drift
was simulated to be 0.3 for the mildly drifted items and most of these outliers were
undetected by the LogitD_0.5 method. The robust z method with a cutoff value of
2.7 performed very well in most simulated conditions, except when there are 30%
outlier and all items drift in one direction. This is probably because the robust z
statistic is defined as the interquartile range of the difference in item difficulties and
it doesn’t function well when there are more than 25% outliers in the anchor item
set. Comparatively, the t-test method outperformed the other methods in terms of
detecting true outliers across all simulated conditions, which may be because the
t-test method utilizes the sampling variance of the estimated item difficulties and
the other methods only compare the difference between the newly estimated item
difficulties and their corresponding bank values. More specifically, t-test method
correctly flagged roughly 80% and 100% of the true outliers when the sample size
is 500 and 3000 respectively. In addition, this method also correctly identified 95%
of the true non-outliers in all simulated conditions, which is consistent with previous
research that this approach yields a Type I error rate of 5% (Muraki & Engelhard,
1989; Smith, 1996).

One limitation of the current study is that we did not consider the content
representation of the anchor item set to the total test when removing outlier anchor
items. Kolen and Brennan (2014, p.287) suggest that the anchor item set should
be constructed to the same content and statistical specifications as the total test so
that the anchor items can adequately reflect the group differences. Previous research
found that lack of content balance in the anchor item set can have a significant
negative impact on equating (Harris, 1991; Klein & Jarjoura, 1985). Therefore,
dropping outlier items may result in an anchor item set that is not representative
of the total test, which, in turn, may negatively impact the equating results and the
validity of the test scores. In addition, we tried to manipulate the item difficulty drift
for the outlier anchor items to reflect the practical situations. That is, we simulated
only a few items that were severely or moderately drifted, whereas most items
are mildly drifted. However, there is no empirical evidence or theoretical reason
why this distribution of outliers should occur in practice. Different combinations of
percentage of outlier items might be investigated in future research.
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The importance of equating in educational measurement demands methods and
practices that ensure the validity of equated scores. This study examined various
outlier detection methods that can help practitioners identify and remove non-
invariant anchor items from the equating procedure. The current simulation study
demonstrated that the t-test approach with a cutoff value of 2.0 can accurately
detect true outliers and that removal of these outliers improved examinee ability
estimation in terms of the reduction of RSME of the estimated examinee ability.
Further research on these methods should be conducted, and application of this
approach in detecting outliers in practical situations should also be considered.
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An Illustration on the Quantile-Based
Calculation of the Standard Error
of Equating in Kernel Equating

Jorge González and Gabriel Wallin

1 Introduction

Equating methods rely on the comparison of score distributions using what is called
an equating transformation function. Let FX and GY be the score distributions of
the random variables X and Y , corresponding to the test scores on two test forms X
and Y, and defined on X and Y , respectively. The equipercentile equating function
ϕ : X �→ Y , computed as

ϕ(x) = G−1
Y (FX(x)), (1)

maps the scores from one test form into the scale of the other (Braun & Holland,
1982; González & Wiberg, 2017). The equating transformation is a functional
parameter that in practice is estimated using score data. Although various measures
for the assessment of equating functions have been proposed (Wiberg & González,
2016), the uncertainty in the estimation of the equating transformation has mainly
been measured by the standard error of equating (SEE),

SEEY (x) =
√
Var(ϕ̂(x)). (2)
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Different methods to calculate the SEE include exact formulas (see, e.g., Kolen and
Brennan, 2014, Table 7.2); the Delta method (Lord, 1982), (Braun & Holland, 1982,
p. 33), (Holland et al., 1989); and the bootstrap (Tsai et al., 2001). Another method
proposed in Liou and Cheng (1995) and later extended by Liou et al. (1997) is based
on the Bahadur’s representation of sample quantiles (Bahadur, 1966; Ghosh, 1971).
In this paper, this method will be refereed to as the Quantile-Based SEE (QB-SEE).

Liou and Cheng (1995) used the QB-SEE method and obtained results for
traditional equipercentile equating under the single group (SG), the equivalent
groups (EG), and the nonequivalent groups with anchor test (NEAT) designs. Later,
Liou et al. (1997) extended this work to include the kernel equating transformation
using Gaussian and Uniform kernels, considering only the NEAT design. These
authors did however not make any comparison between the QB-SEE and the more
traditionally used Delta method for the estimation of the SEE under the kernel
equating framework. In this paper, we aim to fill this gap.

The paper is organized as follows. In Sect. 2 we briefly revise the kernel equating
transformation and the way the SEE is calculated using the Delta method. Next,
in Sect. 3 we introduce the QB-SEE method and give the details on how it can
be used under the kernel equating framework. An illustration of the comparison
between the QB-SEE and the delta method applied to the estimated kernel equating
transformation is shown in Sect. 4. The paper ends in Sect. 5 summarizing the main
results and discussing on future research.

2 Equating and the Standard Error of Equating

In this section we briefly review the basics of kernel equating and the way the SEE
has been calculated within this framework. Next, we introduce the QB-SEE method
and show how it adapts to be used in KE.

2.1 Kernel Equating

Kernel equating (Holland & Thayer, 1989; von Davier et al., 2004) is a semipara-
metric method used to estimate the equating function (González & von Davier,
2013). The score distributions are estimated using both kernel density estimation
techniques (the nonparametric part) and maximum likelihood estimates of score
probabilities (the parametric part).

Let X(hX) be a continuized version of the discrete score random variable X,
defined as

X(hX) = aX(X + hXV )+ (1 − aX)μX,
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where V is a continuous random variable with mean 0 and variance σ 2
V , a

2
X =

σ 2
X/(σ

2
X+σ 2

V h
2
X),μX and σ 2

X are the mean and variance ofX, and hX is a smoothing
parameter. The estimated score distribution of X(hX) is obtained as

F̂hX(x) =
∑

j

r̂jK(R̂jX(x)),

where rj = Pr(X = xj ) are score probabilities, typically modelled using log-
linear models estimated by maximum likelihood, R̂jX(x) = (

x − âXxj − (1 −
âX)μ̂X

)
/âXhX, and K is a kernel defined by the distribution of V . In this paper we

will assume that V ∼ N(0, σ 2
V ) so that K = Φ, the standard normal (or Gaussian)

distribution function.
Defining sk = Pr(Y = yk), and with similar expressions for R̂kY (y), aY , and

Y (hY ), the score distribution of the continuized Y scores, ĜhY , is obtained leading
to calculate the kernel equating function as

ϕ(x, r̂, ŝ) = Ĝ−1
hY
(F̂hX(x)),

where r̂ = (r̂1, . . . , r̂J )
� and ŝ = (ŝ1, . . . , ŝK)

�.
Because r̂ and ŝ are maximum likelihood estimates, the Delta method (e.g., Rao,

1973; Lehmann, 1999), described next, has been used to estimate the uncertainty on
the estimation of ϕ.

2.2 SEE in Kernel Equating

The SEE in KE is based on the Delta method. The following theorem from von
Davier et al. (2004) formalizes the result.

Theorem 1 (Delta method for the SEE in KE)

If

(
r̂
ŝ

)
·∼ N

((
r
s

)

,Σ

)

, then

ϕ(x; r̂, ŝ) ·∼ N
(
ϕ(x; r, s), JϕΣJ�

ϕ

)
,

where

Σ =
(
Σr̂ Σr̂,ŝ

Σ�
r̂,ŝ Σŝ

)

,

and

Jϕ =
(
∂ϕ

∂r
,
∂ϕ

∂s

)

.
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When the score probabilities are obtained using maximum likelihood estimates
from log-linear models and estimated for different equating designs using a design
function, DF(r̂, ŝ), von Davier et al. (2004) showed that the asymptotic variance
obtained via the Delta method can be written as

V ar(ϕ̂) = ||JϕJDFC||2

where Jϕ is the Jacobian of the equating function, JDF is the Jacobian matrix of
the design function and C is a factor of the covariance matrix such that Σ = CC�.
From this result, the SEE for the kernel equating function is defined as

SEEY (x) = ||JϕJDFC||, (3)

which in this paper is denoted as SEEΔY (x).

3 Quantile-Based Estimation of SEE

The QB-SEE method is based on the so called Bahadur’s representation of sample
quantiles. The main result is presented in Ghosh (1971) and reproduced here.

Theorem 2 (Ghosh, 1971)
Suppose that G is once differentiable at ξp = G−1(p) with G′(ξp) > 0. If

0 < p < 1, then

ξ̂p = ξp + p − Ĝ(ξ)

G′(ξ)
+ op

(
N−1/2). (4)

Liou and Cheng (1995) used this result to derive a formula for the SEE of
the equipercentile equating transformation. After replacing p by FX and checking
regularity conditions, these authors took the variance in (4) to obtain

V ar(Ĝ−1(F (x))) = 1

G′(ϕ)2
{
Var(F̂X)+ Var(ĜY (ϕ))− 2Cov(F̂X, ĜY (ϕ))

}
.

(5)

We call the square root of this expression the QB-SEE and denote it as SEEBY (x).
In the next section we describe how the QB-SEE can be used to evaluate the kernel
equating transformation under the NEAT design. For a critical review of the NEAT
equating design see San Martín and González (2020).



Quantile-Based SEE 237

3.1 Quantile-Based SEE in KE

The sample estimates of the score distributions can be replaced by kernel estimates
in which case the QB-SEE formula becomes

SEEBY (x) = 1

G′(ϕ)

{
Var(F̂hX)+ Var(ĜhY (ϕ))− 2Cov(F̂hX , ĜhY (ϕ))

}1/2
. (6)

To derive the QB-SEE for the particular case of equating under the NEAT design, we
introduce the following additional notation: tl = Pr(A = al) are the marginal score
probabilities for the anchor random variable A, and rj |l and sk|l are the conditional
score probabilities of X and Y given A, respectively.

Following Liou et al. (1997), the variances and covariance terms in (6) can be
obtained as

Var(F̂hX) = Var

(∑

j

r̂jK(R̂jX(x))

)

≈
∑

j

∑

j ′
K
(
RJX(x)

)
K
(
Rj ′X(x)

)
Cov

[
r̂j , r̂j ′

]

=
∑

j

K2
jX

(
RJX(x)

)
Var

[
r̂j
]

+
∑∑

j �=j ′
KjX

(
RJX(x)

)
Kj ′X

(
RJX(x)

)
Cov

[
r̂j , r̂j ′

]

, (7)

where

Var
[
r̂j
] =

∑

l

{
r̂j |l[1 − r̂j |l]

(nX + 1)ĥ(al)− 1
ĥ2(al)+ ĥ(al)[1 − ĥ(al)]

nX + nY
r̂2j |l

+ r̂j |l
[
1 − r̂j |l

]
ĥ(al)

[
1 − ĥ(al)

]

[
(nX + 1)ĥ(al)− 1

]
(nX + nY )

}

−
∑∑

l �=l′
ĥ(al)ĥ(al′)

nX + nY
r̂j |ar̂j |a′

, (8)

and

Cov
[
r̂j , r̂j ′

] =
∑

a

{
ĥ(al)[1 − ĥ(al)]

nX + nY
r̂j |l r̂j ′|l − r̂j |l r̂j ′|l

(nX + 1)ĥ(al)− 1
ĥ2(al)

− r̂j |l r̂j ′|l ĥ(al)[1 − ĥ(al)]
[
(nX + 1)ĥ(al)− 1

]
(nX + nY )

}

−
∑∑

l �=l′
ĥ(al)ĥ(al′)

nX + nY
r̂j |l r̂j ′|l′

(9)

Replacing terms accordingly, similar derivations lead to obtain the variance of GY .



238 J. González and G. Wallin

Finally, the covariance term is calculated as

Cov(F̂hX , ĜhY ) ≈
∑

j

∑

k

K(RjX)K(RkY )

{∑

l

ĥ(al)[1 − ĥ(al)]
nX + nY

r̂j |l ŝk|l

−
∑∑

l �=l′
ĥ(l)ĥ(l′)
nX + nY

r̂j |l ŝk|l′
} . (10)

In all previous equations either sample estimates or presmoothed score probabilities
can be used as weights for the kernel. In the next section, the former case is
considered for illustration and to compare the SEE for KE as calculated using the
traditional delta method with the QB-SEE method

4 Illustration

4.1 Data

We use data described in Kolen and Brennan (2014). The data set consists of two
36-items test forms. Form X was administered to 1,655 examinees and form Y
was administered to 1,638 examinees. Also, 12 out of the 36 items are common
between both test forms (items 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, and 36).
The data come with the distribution of the CIPE software which is freely available
at https://education.uiowa.edu/centers/center-advanced-studies-measurement-and-
assessment/computer-programs and is also available in the equate (Albano, 2016)
and SNSequate (González, 2014) R packages.

4.2 Analyses

To investigate how SEEBY (x) is related to SEEΔY (x), we compared the SEE for KE
under the NEAT-PSE design calculated using the Delta, the QB-SEE, and Bootstrap
methods.

The SEE based on the Delta method is calculated using Equation (3), which is
implemented in SNSequate and appears as one of the output values for a call to the
ker.eq() function.

The QB-SEE is calculated using Equation (6). The variances and covariance
components of the numerator on the right hand side are obtained using Equations 7–
10, whereas the denominator corresponds to the derivative of G evaluated in the
equated score, which in this case correspond to a Gaussian kernel.

The bootstrap SEE implements the procedure described in Kolen and Brennan
(2014, Chap. 7) to compute the SEE using 500 replications.

https://education.uiowa.edu/centers/center-advanced-studies-measurement-and-assessment/computer-programs
https://education.uiowa.edu/centers/center-advanced-studies-measurement-and-assessment/computer-programs
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Fig. 1 SEE for the three compared methods

All the analyses were carried out using the R software (R Core Team, 2020) and
the code is available from the authors upon request.

4.3 Results

The SEE obtained for the three compared methods are shown graphically in Fig. 1.
Except for some score values in the lower range of the score scale, it can be seen
that all the methods yielded similar estimations of SEE for the analyzed data.

The results for all SEE methods reflect that there are few test-takers in the tails
of the score scale, as illustrated by the increased values of the SEE. The results
also suggest that the QB-SEE and the Delta method produce very similar results,
although leaning on different asymptotic results. Given that both the QB-SEE and
Delta method SEE deviate from the bootstrap SEE in the lower tail, the results also
indicate that they might be better approximations when the number of test-takers is
large, which is expected given that they both are large-sample approximations.

5 Discussion

In this paper we have revisited the result of Bahadur on the asymptotic representa-
tion of sample quantiles and its use in the derivation of what we call the QB-SEE
method of estimating the standard error of equating. The method was applied for
kernel equating transformations under the NEAT design and compared to the more
traditional Delta method of obtaining SEE. Results from a numerical illustration
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shown that the QB-SEEs are very similar to the SEEs obtained using the Delta
method, for the analyzed data set.

An advantage of the QB-SEE method is that it allows to separate sources of
uncertainty influencing the SEE, as it can be grasped from (5). A comprehensive
simulation study to assess how these variances and covariance terms vary according
to different conditions is planned for future research. Another advantage of this
method is that, in comparison to the Delta method, it does not rely on normality.
This could open room for other models and methods for presmoothing that do not
necessarily resort on the normality of parameter estimates, as it is the case of log-
linear models estimated using maximum likelihood.

Future work include other methods to estimate the variance-covariance compo-
nents in the SEE formulas and the evaluation of other kernels and other equating
designs.
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Improving the Measurement Efficiency
in Test Construction Related to Cognitive
Diagnosis Models

Ya-Hui Su and Ken-Hsien Chu

1 Introduction

Cognitive diagnosis models (CDMs) have been widely used in numerous fields.
Many studies have investigated methods of constructing cognitive diagnosis tests
(Finkelman et al., 2009, 2010; Henson & Douglas, 2005; Henson et al., 2008; Kuo
et al., 2016; Zheng & Chang, 2016). The cognitive diagnostic index (CDI; Henson
& Douglas, 2005) and attribute-level discrimination index (ADI; Henson et al.,
2008) are commonly used to assemble tests for such models. The CDI is based on
Kullback–Leibler (KL; Chang & Ying, 1996) information on all attribute patterns,
and the ADI is based on KL information on any attribute patterns that differ one
attribute. Studies have revealed that these two indices can be used for constructing
cognitive diagnosis tests when attributes have a nonhierarchical relationship. In
practice, attributes might have a hierarchical relationship, meaning some are a
prerequisite for the presence of others. Furthermore, researchers have not considered
the ratio of test length to the number of attributes (RTA) in test construction. Liu et
al. (2013) indicated that each attribute must be measured at least three times to
obtain favorable attribute correct classification rates (ACCRs).

To include attribute hierarchy and the RTA in test construction, Kuo et al. (2016)
proposed the modified CDI and ADI (i.e., MCDI and MADI). They demonstrated
that the MCDI and MADI outperformed the CDI and ADI in that they had higher
pattern correct classification rates (PCCRs) and ACCRs. However, in their study,
when attributes had a nonhierarchical structure, the CDI and ADI tended to select
items with one attribute, and the MCDI and MADI tended to select items with
one or two attributes, regardless of test length. When attributes had convergent
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and linear structures, the CDI and ADI tended to select items with four and one
attributes, respectively. The MCDI and MADI tended to select items with one to
seven attributes; however, the MADI did not select more items with attributes that
required more prior knowledge, even when the test length was increased to 30
items. Because items with numerous attributes are seldom selected in a hierarchical
structure, attributes that required more prior knowledge could not be accurately
classified. To select items with various attribute numbers and identify items for
measuring each attribute, in this study, attributes used the least were determined
to propose revised indices during test construction. When attributes were used more
than those with the least uses, items for all attributes that had been selected the least
were no longer selected.

1.1 CDM

Many CDMs have been proposed in the literature, including the deterministic
input, noisy, and gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001) model; the
deterministic input, noisy, or gate (DINO; Templin & Henson, 2006); the noisy
input, deterministic, and gate (NIDA; Junker & Sijtsma, 2001) model; the multiple
classification latent class model (Maris, 1999); the reduced reparameterized unified
model (rRUM; Roussos et al., 2007); and the log-linear CDM (Henson et al., 2009).
The present study focused only on the DINA model. A brief introduction of the
DINA model is as follows. The probability of obtaining a correct response can be
written as

P
(
Xij = 1|sj , gj , ηij

) = (
1 − sj

)ηij gj (
1−ηij ), (1)

where ηij = ∏K
k=1 αik

qjk represents that examinee i has mastered all of the required
attributes for item j; K is the total number of k attributes; sj is the slip parameter,
which denotes the probability that examinee i, who has all the required attributes,
fails to answer item j correctly; and gj is the guessing parameter, which represents
the probability that examinee i, who lacks at least one of the required attributes,
answers item j correctly.

1.2 CDI and ADI

Henson and Douglas (2005) proposed the CDI for test construction. The CDI, an
alternative to Fisher information, uses the concept of KL information (Chang &
Ying, 1996), which is defined as follows:

CDIj =
∑

u�=v
[
h(αu,αv)

−1Djuv

]

∑
u�=v

[
h(αu,αv)

−1] , (2)
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where

h (αu,αv) =
K∑

k=1

(αu − αv)
2, (3)

and

Djuv=Eαu

[

loge

[
pαu

(
Xj

)

pαv

(
Xj

)

]]

=pαu(1)loge

[
pαu(1)

pαv (1)

]

+pαu(0)loge

[
pαu(0)

pαv (0)

]

.

(4)

In Eqs. (2) to (4), αu and αv are 1 × K attribute vectors. In Eq. (4), pαu(1)
and pαu(0) are the probabilities of a correct and incorrect response given for αu,
respectively; and pαv (1) and pαv (0) are the probabilities of a correct and incorrect
response given for αv, respectively. On the basis of the KL matrix, Djuv indicates
how well αu is measured compared with αv. If item j is more useful than other
items for discriminating between two attribute patterns, αu and αv, Djuv is larger.

Although the CDI measures an item’s overall discriminative power, it is not
guaranteed to have the power to discriminate between mastery and nonmastery of
a specific attribute. To solve this limitation, Henson et al. (2008) proposed ADIj to
measure the power to discriminate between mastery and nonmastery of a specific
attribute. Let ωk1 = P(α|αk = 1) and ωk0 = P(α|αk = 0) represent the joint
probability of attribute patterns existing given that the examinee has and has not
mastered the kth attribute, respectively.Ωk1 andΩk0 are the sets of attribute pattern
pairs (αu,αv) that differ only in terms of the kth attribute. Distinguishing between
mastery and nonmastery is the most difficult when attribute patterns differ only by
one attribute. For item j, djk1 = ∑

#k1
ωk1Djuv is the power to discriminate masters

from nonmasters of the kth attribute, and djk0 = ∑
#k0

ωk0Djuv is the power to
discriminate nonmasters from masters of the kth attribute.

ADIj = dj1 + dj0

2
=

∑K
k=1 djk1 + ∑K

k=1 djk0

2K∗
j

, (5)

where Ωk1 ≡ {(αu,αv)|αuk = 1 and αvk = 0 and αum = αvm ∀ m �= k}, and
Ωk0 ≡ {(αu,αv)|αuk = 0 and αvk = 1 and αum = αvm ∀ m �= k}. The CDI and
ADI have been evaluated in the studies of Henson and Douglas (2005) and Henson
et al. (2008), respectively.

1.3 MCDI and MADI

MCDI and MADI are defined as follows:

MCDIj = wL
j w

H
j CDIj (6)
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and

MADIj = wL
j w

H
j ADIj , (7)

where CDIj and ADIj are as defined in Eqs. (2) and (5),

wL
j =

(

1 + I (rL < 3)
V∑

v=1

I
(
q∗
j = sv

)
)−1

(8)

and

wH
j =

(

1 + rH

V∑

v=1

I
(
q∗
j = sv

)
)−1

. (9)

In Eq. (8), wL
j is the weight of the RTA. In Eq. (9), wH

j is the weight of the
attribute hierarchy. Let S = {s1, . . . , sv . . . , sV} be the set of attribute patterns for
items that have been selected and q∗

j be the attribute specification of item j, which
has not been selected. When q∗

j = sv , both CDIj and ADIj are multiplied by the
weights of the RTA in Eq. (8) and the attribute hierarchy in Eq. (9); items in the
item bank that have the same attribute specifications as the selected items are given
a weight that is smaller than 1. By contrast, when q∗

j �= sv , both weights are equal
to 1, and items in the item bank that have different attribute specifications from the
selected items are given a full weight (i.e., 1).

Let the RTA be rL = I/K, where I is the test length and K is the total number of
attributes. Because Liu et al. (2013) indicated that each attribute must be measured
at least three times to obtain favorable ACCR, when rL < 3 and item j has the same
attribute specification as some of the items already selected, wL

j is given a weight

that is smaller than 1. By contrast, when rL ≥ 3, wL
j is 1. Depending on the attribute

hierarchy, Leighton et al. (2004) defined a reachability matrix R = [rmn] as a K × K
matrix, where rmn = 1 when attribute m is a prerequisite to attribute n. Let

rH =
∑

m≤n rmn
K (K + 1)

/

2

, 1 ≤ m, n ≤ K (10)

be a measure of the hierarchical relationship between attributes m and n. The
value of this index is between 0 and 1, and the index is larger with a stronger
hierarchical relationship between attributes. That is, rH is 1 when attributes have
a linear hierarchy; rH = 2K/[K(K + 1)] when attributes have a nonhierarchical
relationship.



Improving the Measurement Efficiency in Test Construction Related. . . 247

2 Method

To select items with various attribute numbers and identify items for measuring
each attribute, attributes used the least were determined to propose revised indices
during test construction. The purpose of the study was to compare the measurement
efficiency of the aforementioned indices (i.e., CDI, ADI, MCDI, and MADI) and
revised indices (i.e., rCDI and rADI) during test construction.

2.1 rCDI and rADI

Let C =
⌊
I
/

K

⌋
be the least times each attribute was used, where I is the test length,

K is the total number of attributes, and C takes the integer of I
/

K
. When attributes

are used less than those with the least uses, wH
j is used for considering attribute

hierarchy, and rCDIj = wH
j CDIj and rADIj = wH

j ADIj . When attributes are used
more than those with the least uses, items for all attributes that have been selected
the least are no longer selected. That is, rCDIj = 0 and rADIj = 0.

2.2 Simulation Design

To compare the study results with those of Kuo et al. (2016), the setting of the
simulation was similar to that of their study. The number of attributes (K) was
fixed at seven. The simulation study investigated three factors: attribute hierarchy
(six levels; nonhierarchical, unstructured convergent, unstructured divergent, con-
vergent, divergent, and linear), test construction method (seven levels; Random,
CDI, ADI, MCDI, MADI, rCDI, and rADI), and test length (three levels; 10,
20, and 30 items). Six attribute hierarchies H0, H1, . . . , and H5 in Fig. 1 were
considered to examine how the proposed indices performed when attributes had
different hierarchical relationships.

The reduced Q matrix was used for different hierarchies. When the attributes had
a nonhierarchical relationship (i.e., H0), the number of potential item types (i.e.,
items with unique attribute specifications) was equal to 2K − 1 (127 item types).
When the attributes had a linear relationship (i.e., H5), the resulting reduced Q
matrix had only seven item types. Regarding the remaining hierarchy levels, the
numbers of unique item types were 64 for H1 and H2, and 26 for H3 and H4.
For each item type, 30 items were generated to form different item banks when
attributes had different hierarchical relationships. The slip and guessing parameters
were set to .05. The number of examinee types is equal to 2K (128 attribute
patterns). For each attribute pattern, 130 examinees were generated when attributes
had different hierarchical relationships. The total number of examinees was 16,640
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Fig. 1 Attribute hierarchies in the simulation studies

for all conditions. All item responses were generated according to Eq. (1). In the
simulation study, different test lengths (i.e., 10, 20, and 30 items) were selected
sequentially from hierarchical item banks (i.e., H0, H1, . . . , and H5) based on
the various test construction methods (i.e., indices). Except for items that were
selected randomly (i.e., Random), for all algorithms, items with the largest CDI,
ADI, MCDI, MADI, rCDI, or rADI were selected. Each examinee attribute pattern
was estimated using expected a posteriori estimation. To minimize the possible
impact of Monte Carlo errors, 100 replications were considered for each condition.
Finally, the evaluation criteria, including the ACCR, PCCR, and ACCR of the kth
attribute, were computed based on 100 replications.

3 Results

Owing to spatial limitations, the results for the 10-item condition under H0 and
H5 are shown in Tables 1 and 2. The numbers of times k-attribute items were used
in the 10-item conditions under H0 and H5 are listed in Table 1. Under H0, Random
had an ACCR of 72% and PCCR of 17%; the CDI and ADI had an ACCR of 85%
and PCCR of 31%; and the MCDI, MADI, rCDI, and rADI had an ACCR of 95%
and PCCR of 70–71%. In line with previous studies, Random tended to select items
with different attribute numbers. The CDI, ADI, rCDI, and rADI tended to select
items with one attribute. The MCDI and MADI tended to select items with one or
two attributes, regardless of test length. Under H5, Random had an ACCR of 96%
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Table 1 Numbers of times k-attribute items were used in the 10-item conditions under H0 and
H5

k-attribute items
Structure Method ACCR PCCR 1 2 3 4 5 6 7

H0 Random .72 .17 0.63 1.73 2.73 2.65 1.57 0.62 0.07
CDI .85 .31 10 0 0 0 0 0 0
ADI .85 .31 10 0 0 0 0 0 0
MCDI .95 .70 7 3 0 0 0 0 0
MADI .95 .71 7 3 0 0 0 0 0
rCDI .95 .70 10 0 0 0 0 0 0
rADI .95 .70 10 0 0 0 0 0 0

H5 Random .96 .74 1.47. 1.44 1.33 1.43 1.30 1.45 1.58
CDI .86 .25 0 0 0 10 0 0 0
ADI .79 .25 10 0 0 0 0 0 0
MCDI .98 .89 1 1 2 2 2 1 1
MADI .98 .89 3 2 1 1 1 1 1
rCDI .92 .60 0 0 0 3 3 2 2
rADI .98 .88 2 2 2 1 1 1 1

Table 2 Accuracy of the various indices in correctly classifying the kth attribute in the 10-item
conditions under H0 and H5

kth attribute
Structure Method 1 2 3 4 5 6 7

H0 Random .71 .73 .73 .71 .73 .72 .73
CDI .88 .84 .87 .83 .88 .88 .81
ADI .88 .84 .87 .83 .88 .88 .81
MCDI .95 .95 .95 .95 .95 .95 .95
MADI .95 .95 .95 .95 .95 .95 .95
rCDI .95 .95 .95 .95 .95 .95 .95
rADI .95 .95 .95 .95 .95 .95 .95

H5 Random .96 .96 .95 .96 .95 .96 .97
CDI .88 .75 .87 1.00 .87 .75 .88
ADI 1.00 .87 .75 .62 .62 .75 .88
MCDI .98 .98 .99 .99 .99 .98 .98
MADI .99 .99 .99 .98 .97 .97 .98
rCDI .88 .75 .87 1.00 1.00 .99 .99
rADI .99 .99 .99 .98 .97 .97 .98

and PCCR of 74%; the CDI and ADI had an ACCR of 79%–86% and PCCR of
25%; the MCDI and MADI had an ACCR of 98% and PCCR of 89%; and the rCDI
and rADI had an ACCR of 92%–98% and PCCR of 60%–88%. In line with previous
studies, Random tended to select items with different attribute numbers. The CDI
tended to select items with four attributes, and the ADI tended to select items with
one attribute. The MCDI, MADI, and rADI tended to select items with one to
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seven attributes, and the rCDI tended to select items with four to seven attributes.
Generally, all indices had higher ACCRs and PCCRs in the 30-item conditions than
in the 10-item conditions. When the test length was 30 items, the MCDI and MADI
did not select more items with attributes that required more prior knowledge under
H5.

To reveal the efficiency of the revised indices for item selection, the accuracy
levels of the kth attribute in the 10-item conditions under H0 and H5 are listed in
Table 2. Under H0, Random had an ACCR of over 71% for each attribute; the CDI
and ADI had an ACCR of over 81% for each attribute; and the MCDI, MADI,
rCDI, and rADI had an ACCR of 95% for each attribute. Under H5, Random, CDI,
and ADI had ACCRs of over 95%, 81%, and 62%, respectively, for each attribute,
and the MCDI, MADI, rCDI, and rADI had an ACCR of 97% for each attribute.
Generally, all indices had higher ACCRs for each attribute in the 30-item conditions
than in the 10-item conditions. When attributes had a linear structure, the rCDI and
rADI outperformed the other indices in correctly classifying the seventh attribute
that required more prior knowledge than the other attributes.

4 Discussion

Although the rCDI and rADI outperformed the other indices in correctly classifying
the attribute that required more prior knowledge than the other attributes when
attributes had a linear structure, the rCDI had slightly lower ACCRs for some
attributes. Modifying the rCDI and rADI algorithms during item selection is crucial.
This study investigated the measurement efficiency of the revised indices in relation
to the DINA model. Researchers of previous studies have used numerous CDMs,
such as the DINO, the NIDA, and the rRUM. Investigating the performance of
the two revised indices in different CDMs is of great interest. In this study, item
parameters s and g were equal to .05, indicating that the test was of a high quality.
The revised indices might perform differently when s and g are large, indicating that
the test was of a low quality. To compare the results with those of Kuo et al. (2016),
the number of attributes was set to seven. In practice, an operational test might have
a different attribute structure. In the future, the performance of the revised indices
in the operational testing environment should be investigated.
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Exploring Temporal Functional
Dependencies Between Latent Skills
in Cognitive Diagnostic Models

Athul Sudheesh and Richard M. Golden

In classroom settings, we often infer changes in a student’s abilities by observing
their behavior through formative assessments (Black & Wiliam, 1998) and sum-
mative assessments. The role of these assessments are to elicit responses from the
students for the purpose of determining student knowledge states, ability factors,
and skill profiles. Formative assessments are the low-stakes assessment that involve
collecting student item responses for improving classroom student learning while
summative assessments are the high-stakes assessment events that involve collecting
student item responses for evaluating and ranking student learning achievements
at the end of an instructional unit (AERA, APA, & NCME, 2014). A recent
approach that combines the diagnostic nature of formative assessments with test
properties of the high-stakes summative assessments are Cognitive Diagnostic
Assessments (Leighton & Gierl, 2007).

Cognitive Diagnostic Assessments (CDAs) are fundamentally different from
traditional educational assessments in the way the student’s ability parameters are
estimated. A traditional educational assessment which follows Classical Test Theory
(CTT) or Item Response Theory (IRT) makes the strong assumption that a student’s
ability may be represented as a number along a one-dimensional proficiency
continuum. On the other hand, CDAs uses an alternative psychometric framework
referred to as Cognitive Diagnostic Models (CDMs) or Diagnostic Classification
Models (DCMs), which assume that a student’s ability is not represented as a
numerical value but rather as a collection of latent skills that can be either present
or absent.

More specifically, Cognitive Diagnostic Models (CDMs) are constrained latent
class models that provide diagnostic information about a subject’s skill profile
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Table 1 Sample Q Matrix. The first row of this Q-Matrix specifies that item 95 requires the
students to have the skill “Addition” to answer it correctly

ID Addition Multiplication Multiplying-decimals Pattern-finding

95 1 0 0 0

96 0 0 0 1

133 0 1 0 0

145 0 0 1 0

161 0 1 0 0

by specifying the relationship between the student’s latent skill model, test item
characteristics, and student’s responses to those items as a function of discrete latent
variables. A CDM can be formally represented as:

Pij = f
(
αi, βj , qj

)
(1)

where Pij is the probability the ith student answers the j th item correctly. The
latent skill vector for the ith student, αi = [αi1, αi2, ..., αik], is defined such
that the kth latent skill, αik = 0 or 1 represents respectively the absence or
presence of kth latent skill for ith student. The item specific parameter vector βj
specifies how the ith student’s latent skill profile αi influences the probability the ith
student answers the j th item correctly. The j th row vector in theQmatrix (Tatsuoka,
1983), qj = [

qj1,qj2, ..., qjk
]
specifies the skill requirements for answering the j th

item correctly (i.e., qjk = 1 if correctly answering the j th question requires
the kth latent skill, see Table 1).

Depending on the skill requirement conditions of the model, CDMs can be
broadly classified into compensatory, non-compensatory, and general models.
Compensatory CDMs are models which assume that some skills can act as
proxies for the absence of some other set of latent skills (i.e., a student doesn’t
require all of the skills as specified by qj to correctly answer the j th item). An
example compensatory CDM is the DINO (Deterministic Input Noisy “OR” gate)
model (Templin & Henson, 2006). Non-compensatory CDMs, on the other hand,
assume that all skills as specified by qj are required to correctly answer the j th
item. For example, the DINA (Deterministic Input Noisy “AND” gate) model is a
non-compensatory CDM (de la Torre, 2009). General models like the generalized-
DINA (GDINA) models (de la Torre, 2011) are more flexible models that make
fewer assumptions regarding how skill requirements impact mastery probability
estimation. The mathematical formulations of DINA, DINO & GDINA are listed
in Table 2.

Although traditional CDMs like these provide excellent diagnostic information
regarding a subject’s skill profile, these models often assume that every learn-
ing/assessment event is static and independent of each other. However, we know that
learning is a latent sequential dynamic process and hence to study such processes
we may require statistical models that acknowledge this longitudinal nature.
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Table 2 CDMs and their mathematical formulations. The item response probability function
(Pij ) in DINA, DINO, and GDINA specifies the probability of the ith student answering the j th
item correctly. In the DINA and DINO models, the guess parameter gj and the slip parameter sj
are the item-specific parameters of the j th item. In GDINA model, δj0 is the j th item intercept,
δjk are the main effects due to αk , δjkk′ are the two-way interaction effects due to αk and αk′
and δj12...Kj

are the Kj -way interaction effects due to α1 through αk‘j

Model Item-response probability function

DINA Pij = g
1−ηij
j

(
1 − sj

)ηij where ηij = ∏
k α

qik
ik

DINO Pij = g
1−ηij
j

(
1 − sj

)ηij where ηij = 1 − ∏
k (1 − αik)

qjk

GDINA Pij = δj0 +∑
k δjkαik +∑

k‘
∑

k δjkk‘αik‘αik + ....+ δj12L...K ·
j

∏
k αik

Latent Transition Analysis (LTA) uses a special type of statistical model to study
latent sequential dynamic processes. LTA was initially developed by Collins &
Wugalter (1992) to study stage sequential change in dynamic latent variables like
attitudes and personality traits. In a LTA model, three groups of parameters are
estimated: (1) transition probabilities, (2) latent skill mastery probability or class
membership probabilities, and (3) emission probabilities. The latent transition prob-
ability P (αt+1 |αt ) specifies the conditional probability of a student transitioning to
a future latent class state given the current latent class state. The latent skill mastery
probability P (αi |Xi) specifies the likelihood of mastering the latent skills given
the student’s item responses. The emission probability P

(
Xij = 1|αi

)
specifies

the probability, Pij , of the ith student correctly answering the jth item given their
latent skill mastery profile vector αi .

Recent approaches which combine LTA with CDMs in the context of an
educational setting include Li, Cohen, Bottge, & Templin (2016), Kaya and Leite
(2017), and Madison and Bradshaw (2018). Li et al. (2016) combined the LTA
model with a DINA model to assess the effect of instructional strategy on transition
probabilities. They found that different instructions could have similar or different
associated transition probabilities depending on the nature of the instructional
strategy. Kaya and Leite (2017) conducted simulation studies using LTA-DINA
and LTA-DINO to find the effect of item parameters and sample size on these
longitudinal models. They found that sample size didn’t affect the classification rates
for small values of item parameters (guess and slip) but had a poor classification
rate for small sample sizes when the item parameters had values greater than 0.4.
Madison and Bradshaw (2018) proposed a more generalized longitudinal CDM
called the Transition Diagnostic Classification Model (TDCM) by combining latent
transition analysis with the log-linear cognitive diagnostic model.

All these studies (Li et al., 2016, Kaya & Leite, 2017; Madison & Bradshaw,
2018) in general investigated how latent skill mastery probabilities changed from
a pre-test scenario to a post-test scenario in a multi-wave experimental design. For
computational tractability, all these models assumed that the latent skills evolved
independently. In longitudinal studies, latent skills are said to evolve independently
when the probability that a latent skill is present at the current assessment time
point is functionally dependent only upon whether or not that particular latent skill
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was present at the previous assessment time point. When one assumes that latent
skills evolve independently, one might also implicitly assume that the latent skills
within an assessment point are not correlated. While one could argue that these
assumptions might be appropriate in a multi-wave pre-test post-test longitudinal
analysis like the one conducted in the above studies, they may or may not hold for
the longitudinal assessments conducted in a semester-long course. We explore such
assumptions with this study.

In this study, we use the ASSISTment Math 2004–2005 dataset accessed via
DataShop (Koedinger et al., 2010) to investigate whether latent skill profiles
assessed at one time period are predictive of latent skill profiles at a future time
period. In addition, we also wanted to investigate the hypothesis that latent skills
evolve independently between assessment points and are not correlated within an
assessment time point.

1 Methods

1.1 Dataset Description

ASSISTment is an Online Tutoring System (OTS) developed to improve instruction
by providing instant, scaffolded feedback to students. ASSISTment Math 2004–
2005 is the data collected from 8th-grade students who took tests in the OTS once
every two weeks between September 2004 and March 2005. On an average each
student was assessed 13 times (Maximum =13, Minimum =12, Mode =13) and each
assessment time period assessed different group of latent skills where the number
of latent skills in each group was different. The data include the student’s ID, item
ID, whether their first attempt was correct, whether they used the hint provided by
the OTS, and test start and end times. The test items were annotated with 106 latent
skills by a subject matter expert.

1.2 Data Preprocessing/Design

The raw data were first grouped by the finish time to separate the assessments at
different time points. Data in each group represents the item-response of students for
a particular administration week. Each row of the item-response matrix corresponds
to whether a student has successfully answered an item, and each column represents
the item IDs. For the purpose of reliable parameter estimation, only latent skills that
were assessed more than ten times were considered. The Q matrix was generated
from the skill model annotation document that was provided with the raw dataset.
A sample of the extracted Q matrix is shown in Table 1.
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1.3 Parameter Estimation and Model Selection

The GDINA R package (Ma and de la Torre, 2020) was used to estimate the latent
skill profiles of students at four assessment time points: 1 Oct. 2004, 15 Oct. 2004,
19 Nov. 2004 & 10 Dec. 2004. The GDINA R package implements Maximum
Likelihood Estimation (MLE) via Expectation Maximization (EM) described in
Bock & Aitkin (1981), to handle the latent variable parameter estimation problem
in the presence of missing data. The item response data at each assessment point
was fitted separately to each of the DINA, DINO, and GDINA models. Then the
Bayes Factor (BF) of competing models were calculated using a BIC approximation
for each assessment time point using Equation 2 (Jarosz & Wiley, 2014; Kass &
Raftery, 1995; Raftery, 1995; Golden, 2020). For all assessment time points, we
considered GDINA as the null hypothesis H0. Raftery (1995) suggests that while
BF values in the range of 1−3 and 3−20 imply weak and positive evidence in favor
of the alternative hypothesis H1 respectively, values in the range of 20 − 150 and
values beyond 150 imply strong and very strong evidence in favor ofH1 respectively
(Jarosz & Wiley, 2014).

BF = likelihood of data given H1

likelihood of data given H0
= e0.5×(BIC0−BIC1) (2)

1.4 Correlation Analysis

The within assessment correlation analysis was conducted by first computing
the covariance matrix from the estimated latent skill mastery probability vectors
(P1, P2, ...Pn, where the j th element of Pi , pij , represents the estimated probability
of ith student mastering j th skill and n is the total number of students e.g., Fig. 1)
from DINA and then converting the covariance matrix to a correlation matrix.

To investigate the hypothesis that latent skills evolve independently between
assessment points (and hence not correlated between assessment time points),
we used a logistic regression model to predict the latent skill MAP (maximum
a posteriori) estimate vector of students at a particular time point (Ai(t) =
[αi1(t), ...αik(t)], where αik(t) specifies the presence or absence of kth skill in ith
student at time t) from the latent skill MAP estimate vector of students at a previous
time point (Ai(t − 1)). Time periods considered for this analysis include: 1 Oct. -
15 Oct., 1 Oct. - 19 Nov., 1 Oct. - 10 Dec., 15 Oct. - 19 Nov., 15 Oct. - 10 Dec. & 19
Nov. - 10 Dec. The fitted logistic regression models were further tested for model
misspecification using the RobustSE R package, which implements the Generalized
Information Matrix Test (GIMT) (White, 1982; Golden, Henley, White, & Kashner,
2016) discussed in King & Roberts (2015).
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Fig. 1 Probability of skill mastery as a function of latent skill type. In this example, the
cognitive diagnostic model estimates the probabilities of the “Addition” and “Multiplication” latent
skill to be greater than the other latent skills

2 Results

To estimate the latent skill profile of students at each of the four assessment points
considered, the GDINA R package was used to fit the data with all three DINA,
DINO and GDINA models. In this analysis, we found that the DINA model had the
lowest BIC score for each of the assessment time points but autoGDINA (fitting
CDMs on item-level basis) had the highest classification accuracy. In Bayesian
hypothesis testing, we found very strong evidence supporting the DINA model for
all time points except Oct 1. For Oct 1. assessment data, all models (GDINA, DINA
& DINO) were equally preferred. The model fit statistics of DINA, DINO, and
GDINA at different assessment time points are listed in Table 3.

In the within assessment correlation analysis, we found that the latent skills are
highly correlated regardless of the assessment time point. Figure 2 plots Pearson
product-moment correlations between latent skills within an assessment for Oct 15,
2004 and Dec 10, 2004.

In the temporal correlation analysis, we found that a considerable number of
latent skills were correlated between two assessment time points. Furthermore, we
also found an increase in the number of temporal correlations when the gap between
a pair of assessment time points is more than six weeks (i.e., we found considerably
more absolute Z scores significant (p< 0.05) when predicting 10 Dec. 2004 from 15
Oct. 2004 compared to when predicting 10 Dec. 2004 from 19 Nov. 2004). Figure 3
plots the absolute Z-score of logistic regression models predicting latent skill MAP
estimate vectors for 10 Dec. 2004 from 15 Oct. 2004.
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Table 3 Model Comparison. The model fit statistics of DINA, DINO, and GDINA at different
time points. For Bayesian hypothesis testing, GDINA was considered as the H0 at all time points

Time point Model No. of skills BIC BF
1 Oct. 2004 GDINA 4 1255.4 1

DINA 4 1255.4 1

DINO 4 1255.4 1
15 Oct. 2004 GDINA 7 3514.15 1

DINA 7 3446.89 4.03 × 1014

DINO 7 3459.37 7.85 × 1011

19 Nov. 2004 GDINA 13 37544.37 1

DINA 13 36346.39 1.37 × 10260

DINO 13 37416.64 5.44 × 1027

10 Dec. 2004 GDINA 16 264265.32 1

DINA 16 264114.55 5.48 × 1032

DINO 16 264117.86 1.04 × 1032

Fig. 2 Pearson product-moment correlation between latent skills within an assessment. The
plot on the left shows that the correlation between latent skills at assessment time point 15
October 2004 are prevalent and plot on the right shows that the correlation between latent skills at
assessment time point 10 December 2004 are more prevalent. Displayed correlations indicated by
darker dots are significant (p < 0.05). The size of the dots corresponds to their correlation strength

3 Discussion

In this study, we found that latent skills are correlated not only within assessments
but also between assessments. These findings clearly challenge common cognitive
diagnostic longitudinal modeling assumptions (e.g., Li et al., 2016; Kaya & Leite,
2017; Madison & Bradshaw, 2018). In particular, it is common in cognitive
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Fig. 3 Effects of estimated latent skills at a prior assessment time period on estimated latent
skills at a future assessment time period. The skills listed on the vertical axis were assessed at
time point 15 Oct. 2004 and the skills listed on the horizontal axis were assessed at time point 10
Dec. 2004. Displayed dots represent absolute Z-score values that were significant (p < 0.05)

diagnostic assessments to assume that one item can only assess one skill. However,
the results of the within assessment correlation analysis in this study provide
evidence against this assumption.

Furthermore, most current longitudinal CDMs assume that the growth trajectory
of each latent skill is independent of each other and measurement invariance is
present. The results of this study suggest that the assumption of independent
growth trajectories should be more carefully examined in future applications of
longitudinal assessments. Longitudinal classroom assessments heavily challenge the
measurement invariance assumption, because in a noncumulative assessment series,
students will be assessed with a different set of latent skills for each assessment.

One interesting and unexpected result was that the latent skills previously
estimated at a prior time period were more predictive of the estimated latent skills at
a future time period when the time period was six weeks rather than four weeks
or two weeks. One possible explanation might be that for this online learning
system, six weeks is an appropriate time period for reliably estimating temporal
associations between latent skill profiles estimated at different assessment periods.
An alternative explanation is that estimation of temporal associations between latent
skill profiles at different assessment periods were confounded because Razzaq et al.
(2005) notes that it is possible that students received more difficult items during the
first assessment time period.

In this study, we used item response data from an intelligent tutoring system due
to the lack of publicly available open traditional-semester-long student response
dataset. It would be interesting to replicate the findings in this study with traditional
semester/year-long course dataset. Another limitation of this analysis is that tempo-
ral dependencies were estimated using a two-stage process. First, MAP estimates of
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latent skill presence indicators at all time points were estimated. Second, logistic
regression analyses were then used to explore temporal dependencies between
estimated latent skill presence indicators at different assessment time periods as
well as degrees of association between latent skill presence indicators at a particular
assessment time period. This type of analysis ignores the presence of sampling error
associated with the MAP estimates of the latent skill presence indicators.

On the other hand, despite the deliberate omission of latent skill presence
indicator sampling error, the analysis presented here is very straightforward and
transparent which makes the results in some cases more interpretable than more
sophisticated longitudinal cognitive diagnostic modeling methods. We believe that
complementary analyses such as the one presented here are useful for identifying
qualitative features of the data generating process without making excessively
strong modeling assumptions.

These findings in this paper suggest that it may be helpful to develop longitudinal
cognitive diagnostic models that allow for more complex temporal dependencies
and possibly more complex skill hierarchies. Another future direction is the
development of algorithms to estimate longitudinal cognitive diagnostic model
parameters without the assumption of full measurement invariance.
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Sample Size for Latent Dirichlet
Allocation of Constructed-Response
Items

Jordan M. Wheeler, Allan S. Cohen, Jiawei Xiong, Juyeon Lee,
and Hye-Jeong Choi

1 Introduction

Topic models are machine learning algorithms that use a statistical framework
to cluster words and documents by deriving latent topics within the underlying
semantic space. Topic models were originally developed as an indexing technique
to aid information retrieval algorithm and have been used in many disciplines. Topic
models work by assuming that documents are a mixture over latent topics where the
latent topics are a mixture over words (Steyvers & Griffiths, 2007). Some of the
earliest topic models include Latent Semantic Analysis (LSA; Deerwester, Dumais,
Furnas, Landauer, & Harshman, 1990), probabilistic Latent Semantic Indexing
(pLSI Hofmann, 1999), and Latent Dirichlet Allocation (LDA; Blei, Ng, & Jordan,
2003).

LSA has been used in educational measurement as the basis to many automated
essay scoring algorithms due to its high human-machine score agreement (Landauer,
Foltz, & Laham, 1998). LDA has been used more recently in educational research to
measure the semantic features of a collection of essays that respond to a constructed-
response (CR) item (e.g., Buxton et al., 2014; Choi et al., 2019; Xiong, Choi,
Kim, Kwak, & Cohen, 2019). Although LDA has shown promising results, it was
originally developed for large data sets that contain a large number of latent topics.
CR items, especially short answer CR items, typically contain smaller data sets with
few words and fewer topics, causing there to be little investigation about LDA’s
statistical properties when used on CR items.

In this study, we set up a foundation to implement simulation studies using
the LDA topic model by presenting the probabilistic and generative LDA models,
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discussing how to generate data from an LDAmodel, and how to evaluate parameter
recovery along with potential issues with estimating the LDA model. Then we
present a simulation study that investigated the number of documents at varying
lengths needed to accurately recover the parameters of the LDA model. Finally, we
discuss how this LDA model can be used to enhance educators’ understandings of
essays written by students.

2 Simulations for Latent Dirichlet Allocation

This section lays out the necessary steps for conducting an LDA simulation study:
defining the model and its components, generating the simulated data, estimating
the model, and evaluating performance.

2.1 Latent Dirichlet Allocation (LDA)

The LDA model estimates three parameters from a corpus of essays: topics β,
topic proportions θ , and topic assignments z. Topics are distributions over the
vocabulary V , which is defined as all unique words across all essays. The topic
distributions express the probability of each word occurring under the given topic.
Topic proportions are distributions over the topics that expresses the proportion
of each topic used in a given essay. Topic assignments are the individual topics
assigned to each word in every essay.

LDA is considered a hierarchical mixture model. The hierarchical structure is
due to the topic distributions being corpus-wide latent parameters (i.e., upper level),
and the topic proportions and topic assignments are essay-wide latent parameters
(i.e., lower level). The mixture component of LDA is due to the topics being a
mixture of words and the essays being a mixture of the latent topics, shown by
topic distributions and a document’s topic proportions, respectively.

The latent topics identify major themes throughout the corpus. In the case of
CR items, the latent topics identify key information seen throughout all responses,
which are typical constrained by the item (Kim, Kwak, Cardozo-Gaibisso, Buxton,
& Cohen, 2017). The topic proportions cluster the essays in the corpus and
identifies which topics each student focused on. Topic proportions can be used aid
instructional prescription or to measure the effectiveness of an intervention (e.g.,
Cardozo-Gaibisso, Kim, Buxton, & Cohen, 2019; Duong, Mellom, & Hixon, 2019).

The latent topics, topic proportions, and topic assignments are estimated through
the joint posterior distribution of the LDA model defined as
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P(θ ,β, z, w|η, ν) ∝
K∏

k=1

P(βk|ν)
D∏

d=1

(

P(θd |η)
N(d)
∏

n=1

P(wd,n, zd,n|θd ,β)
)

,

(1)
where K is the number of topics, D is the number of essays, N(d) is the number of
words in essay d, and

∏K
k=1 P(βk|ν) is the topic prior distribution,

∏D
d=1 P(θd |η)

is the topic proportion prior distribution, and
∏N(d)

n=1 P(wd,n, zd,n|θd ,β) is the joint
likelihood distribution of the topic assignments, zd,n, and observed words, wd,n.
LDA assumes that the topic prior distribution and topic proportion prior distribution
follows a Dirichlet distribution with hyper-parameters ν and η, respectively.

The joint likelihood can be further defined by the product of the conditional
likelihoods as

N(d)
∏

n=1

P(wd,n, zd,n|θd ,β) =
N(d)
∏

n=1

(

P(zd,n|θd)P (wd,n|zd,n,βk)

)

, (2)

where P(zd,n|θd) is the conditional likelihood of the topic assignments,
P(wd,n|zd,n,βk) is the conditional likelihood of the observed word, and βk is the
k = zd,n topic distribution. LDA assumes that the conditional likelihood of topic
assignments and observed words follow a multinomial distribution with parameters
θ and β, respectively.

2.2 Prior Specification

The LDA model specifies the topic prior and the topic proportion prior as Dirichlet
distributions, where the hyper-parameters ν and η impact the density of the
distributions. The topic prior distribution hyper-parameter ν is a V -dimensional
vector that takes the same value for each position in the vector. Similarly, the topic
proportion distribution hyper-parameter η is a K-dimensional vector that takes the
same value for each position in the vector.

When ν and η are small (< 1), this indicates that topic distributions consist
of a few words (i.e., a few words have high probabilities and the rest have low
probabilities) and topic proportions are mainly a few topics (i.e., each essay only
uses a select few of the topics). When ν and η are large (> 1), this indicates that the
topic distributions are uniformly spread across all words in the vocabulary and that
the topic proportions are uniformly spread across all topics. Additionally, when ν
and η are equal to 1, it indicates a non-informative prior on topic distributions and
topic proportions (Blei & Jordan, 2003).
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2.3 Data Generation

The LDA model assumes a generative process for the construction of each essay.
Suppose there are D essays and K topics, β1:K . The LDA model assumes that each
essay is generated with the following process (Blei et al., 2003):

1. Choose N ∼ Poisson(λ)

2. Choose θ ∼ Dirichlet (η)

3. For each word n ∈ 1, 2, . . . , N :

i. Choose zn ∼ Multinomial(θ)

ii. Choose wn ∼ Multinomial(βk|zn)
where N is the word length of the essay, λ is the mean length of all essays in the
corpus, θ is the topic proportions of the essay, zn is the topic assignment for nth

word, wn is the generated observed word for the nth word in the essay, and βk is the
topic distribution of the assigned topic zn, that is k = zn.

The generative model described above is used to generate the simulation data.
The latent topics are generated by determining the vocabulary size, V , and the
number of topics, K . Since LDA indexes each word in the vocabulary, the actual
words do not matter. Therefore, each of the β1:K topics are independent random
samples from a Dirichlet distribution on the V − 1 simplex given the prior hyper-
parameter ν, and has a density given by

P(β1:K |ν) = Γ (ν1 + ν2 + . . . + νV )

Γ (ν1)Γ (ν2) . . . Γ (νV )

V∏

v=1

βνv−1
v , (3)

where βv is the probability of word v occurring within the given topic. The topic
proportions for each essay are generated after determining the number of topics K
and the number of essays D. Each essay’s topic proportions θ1:D are independent
random samples from a Dirichlet distribution on the K − 1 simplex given the prior
hyper-parameter η, and has a density given by

P(θ1:D|η) = Γ (η1 + η2 + . . .+ ηK)

Γ (η1)Γ (η1) . . . Γ (ηK)

K∏

k=1

θ
ηk−1
k , (4)

where θk is the proportional usage of topic k within the given essay.
The D essays are generated by giving each essay a length N(d), which is

generated from a Poisson distribution given the average length of all essays, λ.
The topic assignments for the individual words in each essay are sampled from a
multinomial distribution given the essay’s topic proportion. The joint density of the
topic assignments for a given essay is given by
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P(z1:N(d) |θd) = N(d)!
K∏

k=1

θ
|zd,k |
d,k

|zd,k|! , (5)

where θd,k is the topic proportion for topic k of essay d, and |zd,k| is the number of
times topic k is assigned to a word in essay d. The individual words in each essay
are sampled from a multinomial distribution given the word’s topic assignment and
the topic distribution of the chosen assignment. The joint density of the words in an
essay is obtained by

P(w1:N(d) |z1:N(d) ,β1:K) = N(d)!
V∏

v=1

β
|wd,v |
d,v

|wd,v|! , (6)

where βd,v is the probability of word v occurring in essay d given the topic
assignment of the word zd,v , and |wd,v| is the number of times a word v appears
in essay d for the given topic assignment.

2.4 Model Estimation

The joint posterior distribution specified in Equation (1) is intractable, but it can
be estimated through various techniques, such as collapsed Gibbs sampling and
variational Bayes inference using the Expectation-Maximization (EM) algorithm
(Griffiths & Steyvers, 2004; Hoffman, Bach, & Blei, 2010).

The collapsed Gibbs sampling method is easier to implement than variational
Bayes, but it is relatively slow. There are two main R packages used to estimate
an LDA model: topicmodels (Hornik & Grün, 2011) and lda (Chang, 2015). Both
packages have options to implement the collapsed Gibbs sampling or EM estimation
methods.

2.5 Label Switching

A common issue with Bayesian estimated models is label switching, which occurs
when latent classes switch during the estimation procedure (Cho, Cohen, & Kim,
2013). In LDA, label switching occurs when one topic switches with another. Label
switching is less of a concern in an empirical study where only the final iteration of
the estimation procedure is used; however, it is a major issue with simulation studies
since keeping track of the latent topics is not trivial.

One way to identify label switching is to calculate the cosine similarity, as shown
in Equation (7), between the estimated topics and the known generated topics.
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Fig. 1 Lattice plot for identifying label switching using the cosine similarities between the
estimated topics and the known simulated topics

cos(β̂,β) =

V∑

i=1
β̂i · βi

√
V∑

i=1
β̂i

2 ·
√

V∑

i=1
β2
i

, (7)

where β̂ is the estimated topic, β is the known generated topic, and V is the length of
the vocabulary. The cosine similarity measures the distance between the topics in the
underlying semantic space (Singhal, 2001). A cosine similarity closer to 1 indicates
the two topics are similar, meaning the estimated topic is the known generated topic.
A cosine similarity closer to 0 indicates the two topics are dissimilar, meaning the
estimated topic is not the known generated topic.

Figure 1 shows a lattice plot of the cosine similarities between each of the
estimated topics and all the known generated topics. The dark blue squares indicate
which estimated topics are the known generated topics. For example, the estimated
Topic 1 is actually the known generated Topic 5. Addressing label switching allows
for accurate evaluation of parameter recovery.
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2.6 Evaluation

The cosine similarity measure, Equation (7), is used to assess parameter recovery
of the topics and topic proportions. The root mean square error (RMSE), shown in
Equation (8), is also used to evaluate the recovery of the topic proportions of each
document.

RMSE =

√
√
√
√
√

K∑

k=1
(θ̂k − θk)2

K
(8)

A larger cosine similarity between the estimated topic and the generated topic
indicates that the LDA model successfully recovered the parameters. Additionally,
a smaller average RMSE between the estimated topic proportions and the generated
topic proportions indicates that the LDA model successfully recovered the topic
proportion parameters.

3 Simulation Study

The purpose of this study was to demonstrate how to implement an LDA simulation
and to investigate the number of essays needed to recover the latent topics and topic
proportions of each essay at varying factor levels.

3.1 Design

A total of 25 replications were used in the study and each replication considered
three factors, namely, number of topics (9 levels: 2 to 10 topics), average essay
length (10 levels: varied between 10 and 500 words), and number of essays. For
each replication, the number of topic factor levels were crossed with the average
essay length factor levels and the number of essays were increased until the LDA
model was able to accurately recover the model parameters.

Three factors were held constant throughout the entire study, namely, vocabulary
size (V = 3000 words), topic prior hyper-parameter (ν = 1), and topic proportion
prior hyper-parameter (η = 1).

The latent topics were generated for each replication but held constant throughout
the replication. For example, when the number of topics was 3, the three topics were
generated once per replication and held constant for the 10 average essay lengths.

Since the purpose of the study was to investigate the number of essays needed to
recover the topics and topic proportions an initial 50 essays were generated using the
generative process described in the previous section. An initial LDA model was fit
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to the generated data and estimated the topics and topic proportions. If the estimated
parameters did not meet three different stopping criteria, then an additional 5 essays
were generated and a new LDA model was fit to the generated data. This process
continued until all three stopping criteria were met.

The first stopping criterion was the cosine similarity between each estimated
topic and their known generated topic was greater 0.9. The second stopping criterion
was the average cosine similarity between the estimated topic proportions and their
known generate topic proportions for each essay was greater 0.9. The third stopping
criterion was the average RMSE between the estimated topic proportions and their
known generate topic proportions for each essay was less than 0.1. These three
stopping criteria ensures that the model parameters were accurately recovered.

3.2 Results

For each crossed factor, the number of essays needed to pass all three stopping
criteria and recover the model parameters were recorded. Table 1 show the average
number of essays needed across the 25 replications. The columns of the table
represents the 10 levels used for the average document length. The smallest average
essay length used was 10, which imitates a short answer CR item. The largest
average essay length used was 500, which imitates an essay response to an extended
CR item. The rows of the table represents the 9 levels used for the number of topics.
The smallest number of topics is 2 and the largest number of topic is 10.

From Table 1, it can be seen that the largest number of essays needed to
accurately recover the model parameters was 9, 500, which occurred for the 10-
topic model with an average essay length of 10. The smallest number of essays
needed to accurately recover the model parameters was 55, which occurred in four
different conditions: 2-topic model and average essay length of 200, 2-topic model

Table 1 Documents needed to recover topics and topic proportions

Average essay length (λ)

K topics 10 20 25 40 50 75 100 200 250 500

2 800 240 325 220 170 75 85 55 55 55

3 1600 800 750 600 425 240 190 85 95 55

4 2200 1700 1300 950 750 425 425 160 130 65

5 3200 2700 1900 1400 1300 1100 650 325 180 110

6 4400 3000 2500 1800 1500 950 750 350 300 150

7 5000 3700 2900 2200 2000 1500 800 375 350 190

8 6400 4000 4000 2900 2400 1800 1200 600 450 200

9 7200 5500 4500 3300 2700 1600 1600 600 550 275

10 9500 6600 5300 4100 3200 2300 1800 800 600 300
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and average essay length of 250, 2-topic model and average essay length of 500,
and 3-topic model and average essay length of 500.

The results from Table 1 have two general trends from the number of essays.
First, there is a direct relationship between the number of topics and the number of
essays needed. That is, as the number of topics increase, so do the number of essays
needed. Second, there is an inverse relationship between the average essay length
and the number of essays needed. That is, as the average essay length increases, the
number of essays needed decreases.

Intuitively, these results are expected. As the number of topics increase, so does
the granularity of the model, meaning more data is needed to accurately estimate
the parameters. Additionally, as more data becomes available within each essay the
number of essays needed to accurately estimate the parameters decreases. Although
these general relationships are expected, the results from Table 1 provide an idea
about how many essays are actually needed when conducting an empirical study
using the LDA model.

4 Discussion

In this article, a guide for simulation studies of LDA topic models was presented.
The data generating mechanism relies heavily on the assumed generative process
of LDA. The generated topics and prior hyper-parameters are held constant for all
simulated essays. Topic proportions are generated for each simulated essay. After
fitting an LDA model to the generated essays, the label switching is corrected by
computing cosine similarities between each of the estimated topics with the known
generated topics. Once the label switching issue is addressed, the LDAmodel results
are compared to the known generated topics to evaluate parameter recovery.

Unlike other topic models, such as LSA and pLSI, the LDA model is computa-
tionally expensive due to the number of parameters in the posterior distribution.
Multiple estimation algorithms, however, have been developed to reduce the
computational costs of LDA, such as the variational Bayes and collapsed Gibbs
sampling algorithms. Although these methods speed up the estimation procedure,
they remain relatively slow. Therefore, due to the computational cost of estimating
the posterior distribution, along with suggested simulation sizes from Cohen, Kane,
and Kim (2001), this study used 25 replications.

The results from the simulation study suggest that the number of essays needed
to estimate an LDA model depends on the number of latent topics and the average
length of each essay. Specifically, the number of essays needed had a direct
relationship with the number of topics and an inverse relationship with the average
essay length. These results can be used for empirical studies by suggesting the
amount of data needed to accurately estimate the latent topics and topic proportions.

Future research can use this guide to investigate other statistical properties of the
LDA model, including the investigation of prior specification, effects of vocabulary
lengths, and compare differences between estimation algorithms. The LDA model,
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along with the information presented in this study, can be used in practice to measure
the latent structure of CR items, which can be used to evaluate different aspects of
student writings, such as the effectiveness of an instructional writing intervention.
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The Asymptotic Power of the Lagrange
Multiplier Tests for Misspecified IRT
Models

Lucia Guastadisegni, Silvia Cagnone, Irini Moustaki, and Vassilis Vasdekis

1 Introduction

The power of a test is usually estimated through Monte Carlo simulation methods.
However, it can alternatively be computed asymptotically using the distribution of
the test statistic under the alternative hypothesis that depends on a noncentrality
parameter, often unknown or difficult to compute (Gudicha et al., 2017).

In this work we study the asymptotic power of two test statistics, the Lagrange
Multiplier (LM) test and the Generalized Lagrange Multiplier (LM(S)) test, to
detect measurement non-invariance under correct model specification and model
misspecification.

An item is measurement non-invariant, or biased, if it measures different abilities
for different group membership identified by an external variable (Mellenbergh,
1982, 1983). Group differences can be present only on the item intercept or
simultaneously on the item intercept and slope.

The Lagrange Multiplier test is used in the IRT context to detect measurement
non-invariance (Glas, 1998; Fox & Glas, 2005) and other types of model violations
such as local dependence, incorrect specification of the item characteristic curve and
a non normal distribution of the latent variables (Glas, 1999; Glas & Falcón, 2003;
Liu & Thissen, 2012). Despite its extensive use in IRT models, only in a few studies
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the LM test has been applied in the case of model misspecification under the null
and the alternative hypothesis (Glas & Falcón, 2003).

In order to take into account possible misspecification in the model, the LM
test can be generalized obtaining the so-called Generalized Lagrange Multiplier test
(LM(S)), whose expression involves the sandwich variance and covariance matrix
(White, 1982). In the IRT context the performance of the LM(S) test under model
misspecification has been recently analyzed by Falk and Monroe (2018) through a
elaborate simulation study.

The first objective of this paper is to present the theoretical computation of
the asymptotic power of these tests using two different approximation methods
to obtain the noncentrality parameter. The second objective is to compare the
performance of the LM and LM(S) tests through a simulation study to detect
measurement invariance under correct model specification and misspecification of
the latent variable distribution in terms of asymptotic and empirical power. The
model considered under the null and the alternative hypothesis is a classic Multiple
Indicator Multiple Causes (MIMIC) model for binary data, based on the assumption
of a normal distribution of the latent factor. The misspecification is introduced by
assuming a non normal distribution of the latent factor in the data generating model.

The paper is organized as follows; in Sect. 2 we review the theory of the LM
test and the procedures to estimate its asymptotic power, in Sect. 3 we describe the
LM(S) test and the procedures to estimate its asymptotic power and in Sect. 4 we
present a Monte Carlo simulation study. We conclude with some remarks in Sect. 5.

2 The Lagrange Multiplier Test

Consider a sample y1, . . . , yn from a model f (y, θ). Let θ0 denote the true
parameter vector, that can be divided in two subvectors θ ′

0 = (θ ′
01, θ

′
02). The

hypotheses H0 and H1 can be formalized as follows:

H0 : θ ′
02 = c vs H1 : θ ′

02 �= c, (1)

where c is a vector of constants. The LM statistic is (Engle, 1984):

LM = 1

n
S2(θ̃)A

22(θ̃)−1S2(θ̃), (2)

where θ̃
′ = (θ̃

′
1, c) denotes the restricted maximum likelihood estimates of the

parameters θ , S2 is the subset of the vector of score functions S = ∂ ln l(y,θ)
∂θ

corresponding to the parameters θ02 evaluated at θ̃ . The matrix A22 is the block

of the partitioned Fisher information matrix A = −E
[
1
n
∂2l(y,θ)
∂θ∂θ ′

]

defined as:

A22 = A22 − A21A
−1
11 A12, (3)
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evaluated at θ̃ . The partition of A into A22, A21, A11, A12 is derived from the
partition of θ ′

0 into (θ
′
01, θ

′
02). In this study, we consider the LM test computed with

the observed Hessian approach, where the Fisher information matrix in formula (2)
is replaced by the corresponding observed Hessian matrix

Â(θ) = −1

n

n∑

i=1

∂2li (yi , θ)
∂θ∂θ ′ (4)

Under a correct specified likelihood and underH0, the LM statistic is asymptotically
distributed as a χ2

r , where r are the degrees of freedom (df ) equal to the dimension
of θ02 (Silvey, 1959). When the alternative hypothesis is true but the null is tested,
the LM test statistic has an asymptotic noncentral chi-square distribution that
depends on two parameters, the df and a noncentrality parameter (Bollen, 1989).
To compute the local asymptotic power of the LM test, a standard approach is
to consider a set of local alternatives that are close to the null value for large n,
H1 : θ02 = c + ξ√

n
, where ξ is an arbitrary vector with the same dimension of θ02

(Boos & Stefanski, 2013). Under H1, the test statistic LM converges in distribution
to a χ2

r (λ) with noncentrality parameter λ equal to (Cox and Hinkley, 1979):

λ = ξ ′A22(θ0)ξ , (5)

where θ0 = (θ01, c).
The asymptotic local power is computed as P(χ2

r (λ) > χ2
r (λ, 1 − α).

2.1 Approximation Procedures for the Asymptotic Power

The asymptotic distribution of the LM test under the alternative hypothesis as
a noncentral chi-square with noncentrality parameter (5) holds when the model
defined under the set of local alternatives is true, i.e. when the model under the
null hypothesis is barely incorrect for large n (see Agresti 2002 and Reiser 2008). In
practice, it is often reasonable to adopt an alternative hypothesis for fixed and finite
n (Agresti, 2002), as H1 : θ02 = c + ξ , or to use hypotheses as (1) (Gudicha et al.,
2017). We present here two different approximation procedures for the computation
of the noncentrality parameter.

The first method extends the approximation procedure for the asymptotic power
derived by Gudicha et al. (2017) for the Likelihood-Ratio and the Wald tests to the
LM test. It can be summarized in the following steps:

1. From the model defined under the alternative hypothesis, create a large data set
(e.g. N = 10000 observations).

2. Fit the model under H0 to the data.
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3. Take the value of the LM statistic as the estimate of the noncentrality parameter
λ (Satorra, 1989; Bollen, 1989).

4. Compute the noncentrality parameter for a sample of size 1 equal to λ1 = λ
N
.

5. The noncentrality parameter for a sample of size n is λn = nλ1.

The power of the LM test can be determined by comparing the λn obtained in step
5 with the tabled values of the noncentral chi-square with df corresponding to the
number of parameters constrained underH0 and significance level α (Bollen, 1989).

We propose a second method, that is also based on some of the steps of the
procedure proposed by Gudicha et al. (2017), but the noncentrality parameter is
computed according to formula (5). The procedure can be summarized as follows:

1. From the model defined under the alternative hypothesis, create a large data data
set (e.g. N = 10000 observations).

2. Fit the model under H0 to the data.
3. Compute ξ = √

N(θ02−c) , where θ02 is the vector of the data generating values
(values under H1) of the constrained parameters and c is the vector of constants
under the null hypothesis (Reiser, 2008).

4. Compute the noncentrality parameter according to formula (5) where A22(θ0)

can be consistently estimated by the corresponding matrix Â, evaluated at θ̃ .
5. Compute the noncentrality parameter for a sample of size 1 as λ1 = λ

N
.

6. The noncentrality parameter for a sample of size n is λn = nλ1

The power is computed as before, using the noncentrality parameter computed at
point 5.

3 The Generalized Lagrange Multiplier Test

Consider a sample y1, . . . , yn from a model with true density g(y). The model
f (y; θ) is assumed to be true one for the data and differs from g(y). Under the
assumptions given in White (1982) the vector of parameter θ̂n, that maximizes the
log-likelihood function based on model f (y; θ) (Quasi-ML estimator, White 1982),
converges in probability to θ∗, the parameter vector that minimizes the Kullback-
Leibler information criterion. Moreover the variance and covariance matrix of the
Quasi-LM estimator is the sandwich variance and covariance matrix Ĉ(θ̂n) =
Â−1(θ̂n)B̂(θ̂n)Â

−1(θ̂n), where the matrix Â is defined in formula (4) and B̂ =
1
n

∑n
i=1

∂li (yi ,θ)
∂θ

∂li (yi ,θ)
∂θ

is the observed cross-product matrix (White, 1982).
Under model misspecification, the null and the alternative hypotheses are posed

in terms of θ∗. Let θ∗ be divided in two subvectors θ ′∗ = (θ ′∗1, θ ′∗2). The hypotheses
H0 and H1 can be formalized as follows:

H0 : θ ′∗2 = c vs H1 : θ ′∗2 �= c, (6)

where c is a vector of constants.
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The Generalized Lagrange Multiplier Test is defined as:

LM(S) = 1

n
S2(θ̃n)

′Â22(θ̃n)
−1Ĉ22(θ̃n)

−1
Â22(θ̃n)

−1S2(θ̃n), (7)

where θ̃n is the constrained quasi-ML estimator, Â22 is the block of the partitioned
observed Hessian matrix computed as in formula (3), evaluated at θ̃n and Ĉ22 is the
block of the matrix Ĉ corresponding to θ ′∗2, evaluated at θ̃n. Under H0 the statistic
LM(S) is distributed as a χ2

r , where r are the df equal to the dimension of θ∗2
(White, 1982). To compute the local asymptotic power of the LM(S) test, a standard
approach is to consider a set of local alternatives H1 : θ∗2 = c + ξ√

n
, where ξ is an

arbitrary vector of dimension θ∗2. Under H1, the test statistic LM(S) converges in
distribution to a χ2

r (λ), where r are the df equal to the dimension of θ∗2 and λ is
the noncentrality parameter given by Bera et al. (2020):

λ = ξ ′A22′
(B22−A21A

−1
11 B12−B21A

−1
11 A12+A21A

−1
11 B11A

−1
11 A12)

−1A22ξ (8)

where A is the Fisher information matrix and B is the expected cross-product
matrix, evaluated at θ∗.

If the model is correctly specified, the LM(S) coincides with LM test (White,
1982).

3.1 Estimation Procedure for the Noncentrality Parameter

The estimation method described in Sect. 2.1 to compute the asymptotic power
is used here to estimate the asymptotic power for the LM(S) test, with some
differences.

In step 3 of the first method, the LM(S) statistic is taken as the estimate of the
noncentrality parameter (the proof of this result can be found in Satorra 1989).

In step 4 of the second method, the noncentrality parameter is computed
according to formula (8), where the matrices A(θ∗) and B(θ∗) are consistently
estimated by Â and B̂, evaluated at θ̃n.

Moreover, the model fitted under H0 at step 2 is assumed to be misspecified.
Under correct model specification the LM(S) and the LM tests have the same
noncentrality parameter and, consequently, the same asymptotic power.

4 Simulation Study

4.1 Simulation Design

The aim of this section is to compare the different procedures described above to
estimate the asymptotic and the empirical power of the LM and LM(S) tests to detect
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measurement non-invariance by means of a simulation study. A MIMIC model
for binary data is considered. Both under correct and model misspecification, we
consider a binary group variable x because we study measurement non-invariance
only in two subgroups of population. Given n individuals and p items, under
correct model specification data are generated from the following model, where
measurement non-invariance is introduced on the intercept of the last item p through
the parameter γ1 and the group variable x:

logit (πij ) = α0j + α1j zi i = 1, . . . , n j = 1, . . . , p − 1

logit (πip) = α0p + α1pzi + γ1xi

z ∼ N(0, 1)

(9)

Under misspecification of the latent variable distribution data are generated from
the following model, where measurement non-invariance is introduced as before on
the intercept of the last item p through the parameter γ1 and the group variable x:

logit (πij ) = α0j + α1j zi i = 1, . . . , n j = 1, . . . , p − 1

logit (πip) = α0p + α1pzi + γ1xi

z ∼ SN(κ)

(10)

In this case, the latent variable z is generated from a Skew-normal (SN) with
skewness parameter κ , with the following probability density function (Azzalini,
1985):

φ(ε; κ) = 2φ(ε)�(ε; κ)
where φ and � are the standard normal density and distribution function, respec-
tively. The parameter κ can takes values from −∞ to +∞: when it is equal to 0,
the Skew-normal reduces to a Standard normal distribution. In the simulations, we
consider two values of κ , 3 and 5. When κ = 3 the mean and the variance of the
latent variable are 0.76 and 0.43, respectively, and when κ = 5, the mean and the
variance of the latent variable are 0.78 and 0.39, respectively. In both models (9) and
(10) we consider two possible effect sizes, equal to 0.2 and 0.5, for the parameter γ1.
Moreover, in both cases, the values xs are generated from a Bernoulli distribution
with success probability 0.7, the intercepts from a normal distribution with 0 mean
and Standard Deviation (SD) 0.1 and the slopes from a normal distribution with 0
mean and SD 0.5.

The following set of hypotheses is being tested:

H0 : γ1p = 0 vs H1 : γ1p �= 0,

that implies that the last item is tested for measurement invariance.
Model (9) is fitted to the data with γ1p fixed to 0. When data are gener-

ated from model (10) we are working under model misspecification. Indeed, as
mentioned before, the true latent variable has mean and variance around 0.7
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and 0.4, respectively, and its skewed. Since model (9) is fitted to the data, the
misfit is in the mean, assumed to be 0, in the variance, assumed to be 1 and in
the distribution of the latent variable, assumed to be symmetric. The following
simulation conditions are considered: number of items (p = 10) × sample size
(n = 200, 500, 1000, 5000, 10000) × Test statistic (LM,LM(S)). Due to the time
complexity, the empirical power is computed only for n = 200, 500, 1000. 200
replications are considered for each condition of the study. The empirical power p̂
is computed as p̂ = ∑Nv

l=1
I (Tl≥c)
Nv

, where Nv is the number of valid statistics out
of the number of replications, I is the indicator function, Tl is the value of the test
statistic evaluated in the l-th replication and c is the theoretical asymptotic critical
value corresponding to the 95-th percentile of the χ2

df distribution, with df equal
to the number of constrained parameter under H0. If non valid statistics occur, they
are excluded from the analysis. The asymptotic power is computed through methods
1 and 2 described in Sect. 2.1 and 3.1. The nominal level α is equal to 0.05 in all
simulations. ML estimates of the parameters are obtained with direct maximization
of the likelihood function using 21 Gauss-Hermite quadrature points. Numerical
derivatives are used to compute the Hessian and cross-product matrices.

4.2 Results

Table 1 presents the results for the LM and LM(S) tests under correct model
specification when γ1 is equal to 0.2 and 0.5 in the data generating model, p = 10,
n = 200, 500, 1000, 5000, 10000. We can notice that, in general, the differences
between the asymptotic and empirical power are small and method 1 is slightly
closer to the empirical power than method 2. For what concerns the power to detect
measurement non-invariance, the LM test has a slightly higher power compared to
the LM(S) tests under all conditions, with the exception of the case γ1 = 0.5 and for

Table 1 Asymptotic and empirical power of the LM and LM(S) tests under correct model
specification, γ1 = 0.2, 0.5, p = 10, n = 200, 500, 1000, 5000, 10000

Method 1 Method 2 Empirical

p γ1 n LM LM(S) LM LM(S) LM LM(S)

10 0.2 200 0.086 0.085 0.080 0.079 0.08 0.06

500 0.144 0.140 0.126 0.122 0.185 0.17

1000 0.241 0.234 0.204 0.198 0.26 0.25

5000 0.802 0.785 0.714 0.696 – –

10000 0.978 0.973 0.947 0.938 – –

10 0.5 200 0.240 0.222 0.229 0.211 0.285 0.235

500 0.508 0.468 0.484 0.445 0.54 0.5

1000 0.799 0.758 0.775 0.732 0.8 0.78

5000 1 1 1 1 – –

10000 1 1 1 1 – –
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Table 2 Asymptotic power of the LM and LM(S) tests under incorrect distribution of the latent
variable, γ1 = 0.2, 0.5, p = 10, n = 200, 500, 1000, 5000, 10000

Method 1 Method 2 Empirical

p ES α n LM LM(S) LM LM(S) LM LM(S)

10 0.2 3 200 0.066 0.065 0.071 0.070 0.085 0.04

500 0.091 0.089 0.104 0.101 0.11 0.075

1000 0.133 0.129 0.159 0.154 0.185 0.14

5000 0.464 0.447 0.569 0.550 – –

10000 0.753 0.734 0.854 0.839 – –

5 200 0.069 0.068 0.071 0.070 0.07 0.055

500 0.010 0.097 0.102 0.010 0.135 0.085

1000 0.151 0.146 0.157 0.151 0.145 0.135

5000 0.538 0.517 0.561 0.540 – –

10000 0.828 0.809 0.848 0.829 – –

10 0.5 3 200 0.158 0.145 0.170 0.155 0.202 0.13

500 0.325 0.292 0.353 0.317 0.41 0.34

1000 0.567 0.514 0.609 0.555 0.625 0.585

5000 0.997 0.994 0.998 0.997 – –

10000 1 1 1 1 – –

5 200 0.163 0.148 0.168 0.153 0.21 0.15

500 0.337 0.301 0.347 0.310 0.425 0.345

1000 0.585 0.529 0.601 0.544 0.61 0.57

5000 0.998 0.995 0.999 0.996

10000 1 1 1 1

large sample sizes (n = 5000, 10000), where the two tests reach the same power, as
expected from the theory.

Table 2 shows the results for the LM and LM(S) tests computed under mis-
specification of the latent variable distribution when γ1 is equal to 0.2 and 0.5 in
the data generating model, p = 10, n = 200, 500, 1000, 5000, 10000. Also in
this case the differences between the asymptotic and empirical power are small.
For what concerns the power to detect measurement non-invariance under model
misspecification, despite the fact that the LM(S) test is derived under model
misspecification, the LM test has the highest power under all conditions. The two
tests reach the same power only when γ1 = 0.5 and n = 10000. In both Tables and
for both tests, the power increases with the sample size and the effect size of the
parameter γ1 and decreases when the model is misspecified.

5 Conclusion

In this paper we presented two methods to compute the power of the LM and LM(S)
tests, based on their asymptotic distributions under the alternative hypothesis.
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Moreover, we assessed the performance of these two tests to detect measurement
non-invariance under correct model specification and misspecification of the latent
variable distribution. The simulation study highlighted that the asymptotic power,
computed through the two different approximation methods for the non-centrality
parameter, is very close to the empirical power, also under model misspecification.
Small differences between the empirical and asymptotic power have been found also
by Gudicha et al. (2017) for the Likelihood-Ratio and Wald tests and by Saris et al.
(1987) for the score test.

To compute the noncentrality parameter of the LM and LM(S) tests, we have
generated data from the model under the alternative hypothesis considering 10000
observations. Increasing this number could reduce the differences between the
empirical and asymptotic power, but it would increase the time burden to obtain
the parameter estimates and the numerical derivatives used in the noncentrality
parameter approximation procedures.

For what concerns the power of the two tests to detect measurement noninvari-
ance, the LM test has a slightly higher power compared to the LM(S) test under
most simulation conditions. The two tests reach the same power only for large
sample sizes. A similar behaviour of the power of the LM and LM(S) tests has
been found also by Falk and Monroe (2018), under correct model specification and
misspecification due to an omitted cross-loading.

From this study we can conclude that the asymptotic power can be a valid
alternative to obtain the power of a test, both under the correct model and a model
with a misspecified distribution of the latent variable since it allows us to reduced
the time complexity compared to the empirical power. Although not shown here, the
asymptotic power can be used also to find sample sizes necessary to reach a certain
power (Boos & Stefanski, 2013; Gudicha et al., 2017). However, the asymptotic
power can be computed only for certain test statistics with known noncentrality
parameter.

This work was limited only to one type of misspecification. Further analysis
should be carried out on the LM(S) test to evaluate if there might be an improvement
in its performance considering different types of model misspecification and
different estimation methods.
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Residual Analysis in Rasch Counts
Models

Naiara Caroline Aparecido dos Santos and Jorge Luis Bazán

1 Introduction

Count responses are often observed in student achievement testing data, where the
responses to the items in an assessment are correct check counts or error counts.
Rasch (1960) proposed a model for count data that is now known as the Rasch
Poisson count model (RPC).

An example of this type of data was recently shown by (Baghaei & Doebler,
2019), in a dataset of responses of 228 students to 20 blocks, where the task was
cross out the digits 2 and 7 in three lines of randomly arranged digits and letters
with a 15-second time limit for completing the task. These data were generated by
a selective attention test proposed by Beyzaee (2017). An example of a block from
the test is given in Fig. 1.

In a recent study, Santos and Bazán (2021) showed that the RPC model
presents larger residuals in some items and consequently, is not the best model
for this dataset. Additionally, overdispersion and excess zeros were observed in the
response, so models considering extensions of the RPC model must be taken into
account.
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Fig. 1 Example of a block from the seletive attention test

There are several methods for RPC model estimation (Verhelst & Kamphuis,
2009), such as conditional maximum likelihood (CML), joint maximum likelihood
(JML) and marginal maximum likelihood (MML), among others (Baghaei &
Doebler, 2019). Also, Baghaei & Doebler (2019) showed that the RPC model can
be estimated using the lme4 package (Bates et al., 2015) in R, considering it as
a generalized linear mixed model (GLMM). In this paper, we use frequentist and
Bayesian approaches to estimate the Rasch counts model as a GLMM. Thus, we
consider the gamlss and INLA packages using the R software (R Core Team,
2020). In the first case, the specific estimation method is the penalized marginal
likelihood (Rigby et al., 2019) and in the second, the estimation method considered
is integrated nested Laplace approximation (Wang et al., 2018).

Residual analysis is a useful tool for model diagnostics. It provides an overview
in terms of the quality of the model fit (McCullagh & Nelder, 1989). Swami-
nathan et al. (2006) showed that, since IRT is based on strong mathematical and
statistical assumptions, only when these assumptions are met can IRT methods
be implemented effectively to analyze data and make inferences. Given that in
IRT models the analysis of the residuals can be performed considering the test
items, a graphical visualization tool of the residuals can facilitate verification of
whether or not an item can be considered as following the proposed model. Detailed
descriptions of diagnostic tools for IRT models are shown by Sinharay (2006),
Van Rijn et al. (2016) and Bowen (2018). Additionally, the practical advantages
of using of residual analysis include the ability to (a) evaluate the impact of
misspecification on parameter estimation when the model is wrong; and (b) detect
items that do not fit the model.

In the case of Rasch models, Haberman (2009) suggested the use of generalized
residuals; and (Baghaei et al., 2019; Holling et al., 2015) considered Pearson
residuals to verify the goodness of fit of the models. In this article, we propose the
use of randomized quantile residuals (RQR) to assess the fit of model items. This
residual was proposed by (Dunn & Smyth, 1996) to handle discrete observations
and was applied to evaluate data from mixed generalized linear models (Bai,
2018). However, there is no such work for the evaluation of Rasch counts (RC)
models. Thus, implementing model verification for Rasch models is essential, so
our objective is to verify that the fitted model is able to explain the data properly.

Motivated by the previous observations, in this work we seek to extend the RPC
model considering alternative RC models for the observed response. Initially, we
consider the negative Binomial (NB) counts (Hung, 2012) and later we extend
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this model to consider excess zeros, introducing the zero-inflated Poisson (ZIP)
counts (Wang, 2010) and zero-inflated negative Binomial (ZINB) counts models.
While the NB IRT and ZIP IRT models were introduced by Hung (2012) and Wang
(2010) respectively, the ZINB IRT model is a new contribution to the psychometric
literature and includes the previous two models as particular cases. For the ZINB
model, we introduce Bayesian and frequentist estimation methods by considering
a mixed generalized linear formulation following a recent contribution by Baghaei
& Doebler (2019). Additionally, we introduce a new residual analysis considering
randomized quantile residuals, which has not been used in the psychometric
literature previously and has the advantage of employing graphs to check the
residuals.

The article is organized as follows. In Sect. 2, we introduce the Rasch Poisson
counts model and present some alternative count models to the RPC model. In
Sect. 3, we discuss the estimation methods for the models considered, including
model comparison criteria. In Sect. 4, we define residual analysis for items of the
test. An application is given in Sect. 5, illustrating the methods presented using a
real dataset. Finally, in Sect. 6, we make some concluding remarks.

2 Rasch Counts Model

The RPC model, proposed by Rasch (1960) assumes that count responses Yij of
individual i in item j of a test are conditionally independent in the personal latent
trait θi and Poisson distributed. Furthermore, it is assumed to have an additive
composition, using the log link function, expressed by:

Yij ∼ Pois(μij )

log
(
μij

) = βj + θi + tj , (1)

with θi ∼ N
(
0, σ 2

)
, i = 1, · · · , n and j = 1, · · · , J , where, μij is the expected

latent count for individual i in item j , θi is the ability of individual i (latent traits),
βj is the facility of item j , and etj is the time limit for item j (offset variable).
In case there is no time limit, tj can be fixed as zero. Additionally, the constraint
∑J

j=1 exp{tj + βj } = 1 is imposed for model identifiability (Jansen, 1997). Here,
Pois(μij ) denotes the probability mass function of the Poisson distribution with
mean μij > 0, given by:

PY (y;μij ) = μ
yij
ij e

−μij

yij ! (2)

where the mean and variance are given byE[Y ] = μ and V ar[Y ] = μ, respectively.
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2.1 Alternative Counts Distribution

The Poisson distribution has the characteristic of equidispersion (mean equal to the
variance), and may not adequately model underdispersion or overdispersion of the
response variable. Thus, to have greater flexibility in the relationship between the
mean and variance the negative Binomial, zero-inflated Poisson and zero-inflated
negative Binomial distributions are proposed as alternatives to model count data
with these characteristics.

– Negative Binomial Distribution (NBI): The probability function of the negative
Binomial distribution, denoted by NBI (μ, φ), is given by

PY (y;μ, φ) =
Γ

(

y + 1

φ

)

Γ

(
1

φ

)

Γ (y + 1)

(
φμ

1 + φμ

)y ( 1

1 + φμ

)1/φ

(3)

where μ > 0, φ > 0 is the dispersion parameter and Γ (·) is the gamma function.
The mean and variance of the NBI are E[Y ] = μ and V ar[Y ] = μ+ φμ2.

– Zero-inflated Poisson Distribution (ZIP): Let Y = 0 with probability ω and Y ∼
Pois(μ)with probability (1−ω). Then we say that Y has a zero-inflated Poisson
distribution, denoted by ZIP (μ,ω), if its probability function is given by

PY (y;μ,ω) =

⎧
⎪⎪⎨

⎪⎪⎩

ω + (1 − ω)e−μ y = 0

(1 − ω)
μye−μ

y! y = 1, 2, · · ·
(4)

where μ > 0 and 0 < ω < 1 is the probability of zeros. The mean and variance
of a ZIP random variable can be calculated by E[Y ] = (1 − ω)μ and V ar[Y ] =
μ(1 − ω)(1 + μω), respectively.

– Zero-inflated Negative Binomial Distribution (ZINBI): Let Y = 0 with probabil-
ity ω and Y ∼ NBI (μ, φ) with probability (1 − ω). Then we say that Y has a
zero-inflated negative Binomial distribution, ZINBI (μ, φ, ω), given by

PY (y;μ,ω, φ, ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ω + (1 − ω) (1 + φω)−1/φ y = 0

(1 − ω)

Γ

(

y + 1

φ

)

Γ

(
1

φ

)

Γ (y + 1)

(
φμ

1 + φμ

)y ( 1

1 + φμ

)1/φ

y = 1, 2, · · ·

(5)

where μ > 0, φ > 0 is the dispersion parameter, 0 < ω < 1 is the probability of
zeros and Γ (·) is the gamma function. The mean and variance of the ZINBI are
E[Y ] = (1 − ω)μ and V ar[Y ] = (1 − ω) [1 + (φ + ω)μ].
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In particular, the most general of these distributions is the ZINBI, while the other
distributions are special cases. More details on these models can be seen in Hung
(2012), Wang (2010), Magnus and Thissen (2017) and Pineda Gonzalez (2018).

2.2 Alternative RC Models

As an alternative to the Rasch Poisson model, we have that the Yij count responses
follow a NBI, ZIP or ZINBI distribution. For these distributions we consider
the additive composition of the Rasch model using the log-link function (Eq. 1).
Only the Rasch zero-inflated negative Binomial counts (RZINBIC) model is shown
because the other models are special cases of this model.

Yij ∼ ZINBI (μij , φ, ω)

log
(
μij

) = βj + θi + tj , (6)

with θi ∼ N
(
0, σ 2

)
, i = 1, · · · , n, j = 1, · · · , J , where, θi is the ability of

individual i, βj is the facility of item j , tj is offset variable, φ is the dispersion
parameter and ω is the probability of zeros. In addition, the same identifiability
constraints in (1) can be considered here.

3 Estimation Methods

The estimation of the parameters of the proposed models can be performed consid-
ering an equivalent formulation of these models as a GLMM. In other words, the
RC models, through their additive specification (Eq. 1), can be viewed as a GLMM
considering the latent trait θi as a random effect of individual, βj as a fixed effect
associated with items and tj as an offset variable, that is, a known constant added
to the regression equation. By considering this formulation, we propose the use of
different estimation methods. In a frequentist approach, we consider the penalized
marginal likelihood (PML), using the Rigby and Stasinopoulos (RS) algorithm from
the GAMLSS package (Rigby et al., 2019). Additionally, in a Bayesian approach and
using the GLMM formulation of the RC models, we consider an INLA approach
using the INLA package (Wang et al., 2018). Prior specification is shown in the
application. Details about the estimation methods are omitted here; more details can
be seen in Rigby et al. (2019) and Wang et al. (2018).

In order to compare alternative RPC models in the application, under the
approaches considered, we make use of some model comparison criteria. Specif-
ically, in the frequentist approach, we consider the Akaike information criterion
(AIC) and Schwartz’s Bayesian criterion (SBC) defined as AIC = GD + (2× df )

and SBC = GD+ (log(n)×df ), respectively, where df denotes the total effective
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degrees of freedom used in the model and GD = −2'(θ̂) is the fitted global
deviance (Rigby et al., 2019).

In contrast, in the Bayesian approach, we consider the deviance information
criterion (DIC), given by DIC = D̄ + pD where D̄ is the posterior mean of
the deviance of the model and pD is the effective number of parameters in the
model (Wang et al., 2018). In addition, we propose to use the Watanabe-Akaike
information criterion (WAIC) defined asWAIC = −2lppd + 2pW , where lppd is
the log pointwise predictive density and pW is the effective number of parameters.

For all the above criteria, smaller values indicate better fit.

4 Residual Analysis

Residual analysis is an important tool to assess a model’s fit to a given dataset,
where one can identify possible outliers. Among the existing residuals described in
the literature, we consider the Pearson residual, defined as:

rij = yij − Ê[Yij ]
√

V̂ [Yij ]
(7)

with rij ≈ N(0, 1), where Ê[Yij ] and V̂ [Yij ] are the estimates of the mean and
variance of Yij , respectively, considering the count distribution adopted (Cordeiro
& Simas, 2009).

Feng et al. (2017), using simulation studies, compared the quantile residual with
the Pearson residual and concluded that the distribution of the quantile residual is
better approximated by the standard normal distribution than the Pearson residual.
In addition, the authors showed that the quantile residual is the best for detecting
lack of fit. Therefore, we consider the randomized quantile residuals proposed by
(Dunn & Smyth, 1996), defined as:

qij = Φ−1 (Ui) (8)

with qij ∼ N(0, 1), where Φ(·) is the standard normal cumulative distribution
function and Ui is a uniform random variable in the interval (ai, bi] with ai =
limy→y−

i
F (y; η̂) and bi = F(yi; η̂), where F(·) is the cumulative distribution

function (cdf) of the corresponding count distribution considered and η̂ is the vector
of estimated parameters (Dunn & Smyth, 1996).

Table 1 shows how the Pearson and randomized quantile residuals are computed
for the different Rasch counts models, where dpois, dnbinom, dzip and dzinb denote
the probability mass function (pmf) for Pois, NBI, ZIP and ZINBI distributions
respectively; and cdf by ppois, pnbinom, pzip and pzinb respectively. In the Bayesian
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Table 1 Pearson and randomized quantile residuals of the different models

Models Pearson residuals Quantile residuals

Pois
yi−μ̂ij√

μ̂ij

Φ−1 (ppois(yi − 1; μ̂ij )+ ui .dpois(yi ; μ̂ij )
)

NBI
yi−μ̂ij√
μ̂ij+φ̂μ̂2

ij

Φ−1
(
pnbinom(yi − 1; μ̂ij , φ̂)+ ui .dnbinom(yi ; μ̂ij , φ̂)

)

ZIP
yi−(1−ω̂)μ̂ij√

μ̂ij (1−ω̂)(1+μ̂ij ω̂)
Φ−1 (pzip(yi − 1; μ̂ij , ω̂)+ ui .dzip(yi ; μ̂ij , ω̂)

)

ZINBI
yi−(1−ω̂)μ̂ij√

μ̂ij (1−ω̂)
[
1+(φ̂+ω̂)μ̂ij

] Φ−1
(
pzinb(yi − 1; μ̂ij , φ̂, ω̂)+ ui .dzinb(yi ; μ̂ij , φ̂, ω̂)

)

approach, we consider a plug-in estimator for both residuals using the posterior
mean of the estimated parameters.

Additionally, we have developed generic R functions that can compute the
Pearson and quantile residuals for the different counts models adopted. These
functions were implemented based on the fitting outputs of the gamlss and INLA
packages.

In the case of IRT models, we are interested in the residual analysis to test items
of the test. Therefore, we consider the Pearson and quantile residuals to estimate
the distribution of the residuals for each item j , denoted by rj and qj (Pearson
and quantile residuals, respectively). Then, for each item j , we have a vector with
n values of the Pearson residuals for the individuals r1j , · · · , rnj . Similarly, we
have a vector of n values of the quantile residuals for each item, q1j , · · · , qnj .
Thus, summary statistics for these residuals, such as the mean, standard deviation,
minimum and maximum can be reported.

In order to check the fit of a particular item, we propose the use of violin plots
(Hintze & Nelson, 1998). We recommend these plots because they displays the
distribution of the residuals along with information about the summary statistics
and density shape, providing a useful tool for residual analysis. In the R program,
these plots can be obtained using the ggplot2 package (Wickham, 2016).

5 Application

We illustrate residual analysis for the considered count models (RPC, RNBIC,
RZIPC, RZINBIC) with an application to a real dataset. We consider an analysis
of the correct verification counts obtained by applying a selective attention test
(Beyzaee, 2017) that corresponds to the responses of 228 students to 20 items with
a time limit for completing the task of 15 s, where the task is to cross out the digits
2 and 7 in three lines of randomly arranged digits and letters (Baghaei & Doebler,
2019).
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For illustration, we only show the hierarchical structure of the RZINBIC model
in the Bayesian approach. As already mentioned, the model can be perceived as a
GLMM in which the individual is considered a random effect, the item is considered
a fixed effect, and priors can be included for the parameters of interest. The priors
considered are the default priors using the INLA approach. Thus, the most general
model that can be proposed is given by

Yij | θi, βj , tj , φ, ω ∼ ZINBI (μij , φ, ω)

log(μij ) = ηij

ηij = βj + θi + tj (9)

θi | σ 2
θ

iid∼ N
(
0, σ 2

θ

)
; σ−2

θ ∼ Gamma
(
1, 10−5

)
; i = 1, · · · , n

βj
iid∼ N (0, 1000) ; j = 1, · · · , k

φ ∼ N (0, 0.2)

logit (ω) ∼ N (−1, 0.2) .

where σ−2
θ = τθ is the precision parameter and tj is a known offset variable.

In the hierarchical formulation of the model above, θi is a random effect with
hyper priors for the corresponding precision parameter. Also, priors for βj , φ e ω
are defined. Special models such as RPC, RZIPC and RNBIC can be obtained by
eliminating some lines in the above specification.

Considering the Bayesian and frequentist approaches, we adjusted the proposed
Rasch counts models using the gamlss and INLA packages, respectively. Table 2
shows the fit comparison using the model comparison criteria discussed above.
We clearly identified the RZIPC model as the one with the best fit for the data
considering all criteria.

In order to verify the fit of the items, considering the RZIPCmodel, we performed
residual analysis. We present the boxplots of these residuals by adding the lines in
the value −3 and 3. In Fig. 2 considering the frequentist approach, we can identify
three items in Pearson residuals (Fig. 2a) that present a discrepant point, items 5,
13 and 15. Considering the quantile residuals (Fig. 2b), items 4, 5, 13 and 15 are
identified. In the Bayesian approach, for Pearson residuals (Fig. 3a), items 5, 13 and
15 were identified as discrepant points (analogous to the frequentist case). Also,

Table 2 Model comparison
criteria of Rasch counts
models for selective attention
test data

Frequentist approach Bayesian approach

Models AIC SBC DIC WAIC

RPC 24639.39 26146.26 24633.84 24539.88

RNBIC 24641.39 26154.69 25052.45 25154.31

RZIPC 24542.26 25843.72 24589.59 24493.55

RZINBIC 24544.26 25852.14 24592.04 24495.15
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Fig. 2 The frequentist approach. (a) Pearson Residuals (b) Quantile Residuals
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Fig. 3 The Bayesian approach. (a) Pearson Residuals (b) Quantile Residuals
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Fig. 4 The frequentist approach. (a) Pearson Residuals. (b) Quantile Residuals

considering the quantile residuals (Fig. 3b), we identified discrepant points in items
2, 5, 9, 13, 15 and 17.

Thus, in order to clarify the distribution of these items identified as discrepancies
in both approaches, we report the distribution of the residuals of these items using
a violin plot (Figs. 4 and 5). All items depart from normality, given that in a well-
specified itemwe expect its residuals to exhibit the behavior of a normal distribution.
We also note that in quantile residuals, a greater number of items were identified
as outliers and a greater number still were identified considering the Bayesian
approach. Therefore, these results indicate that the proposed model for the data may
still not be the best.
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Fig. 5 The Bayesian approach. (a) Pearson Residuals (b) Quantile Residuals

6 Final Comments

In this paper, we fit four count IRT models considering the frequentist and Bayesian
approaches, introducing the zero-inflated negative Binomial IRT model as the
most general one. We use the Rasch counts model specification as GLMM, so all
models are fitted using the gamlss and INLA packages in R. We propose the
use of the randomized quantile residuals to check the model fit. It is known that
these residuals have better performance than Pearson residuals and are normally
distributed. Additionally, we show violin plots as an interesting graphical method to
analyze the distribution of the residuals for the items of a test.

The models studied are useful alternatives, especially when there are overdisper-
sion in the dataset, as shown in the application, where the ZIP Rasch model was
selected as the best model between the models studied but the residual analysis
showed that it models no fit still very well to the data and new proposed must
be develop on the future. Simulations studies and new applications are being
developed.
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A Bayesian Solution to Non-convergence
of Crossed Random Effects Models

Mingya Huang and Carolyn Anderson

1 Introduction

Crossed random effects models (CREMs) have become the method of choice
in studies in which every subject sees every stimulus and every stimulus is
viewed by every subject (Baayen et al., 2008). Researchers often encounter a
non-convergence problem when fitting CREMs with Maximum likelihood based
methods (MLE/REML) because of the complexity of random effects structure
and small sample sizes. A common strategy is to simplify models (i.e., using
random intercepts only). We conducted an informal survey of articles from the
Journal of Memory and Language from 2015 to 2019 citing Baayen et al. (2008)
paper, and found that 43% of these articles utilizing CREMs do not include
random slopes and/or removed them to achieve convergence. However, improper
model structure will impact the parameter estimates as well as their standard
errors. Under-parameterization of the covariance structure invalidates inference,
and over-parameterization of the covariance structure leads to inefficient estimation
(Molenberghs and Verbeke, 2000). If random slopes are removed from a level, the
variance(s) related to that level will be redistributed to other levels and therefore
result in inaccurate standard errors (Snijders, 2011). Similarly, omitting incorrect
fixed effect structures will also lead to incorrect estimates for both random and
fixed effects (Raudenbush and Bryk, 2002). To achieve valid inferences, Barr et al.
(2013) proposed the maximal model structure for confirmatory factor analysis with
every possible random effects rather than simplifying the models so long as the
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design justifies. Bates et al. (2015) also argued that the models should not be too
simple or too complex, but just right for optimal statistical inference. An advantage
of appropriate modeling of the covariance structure is that it can help explain the
random variability captured by the fixed effects.

Estimators from both MLE and REML, two typical methods fitting hierarchical
linear models, are both consistent and efficient, but these estimation methods often
fail to converge as models become more complex (Snijders, 2011). Unlike MLE
and REML, Bayesian approaches can be more flexible when dealing with complex
models such as CREMs (Snijders, 2011). Therefore, we investigated whether
using a Bayesian method is an efficient alternative that can solve non-convergence
problems.

2 Crossed-Random Effects Model (CREMs)

CREMs are used to fit the hierarchical data where units are simultaneously nested
in multiple types of clusters (Cho & Rabe-Hesketh, 2011). In psycholinguistic
research, there is usually one observation/trial per cell in a design crossed by subject
and stimuli. An example of a two-level CREM for this type of cross-classification
designs is

Yij = γ00+
∑

p

γ0pxpi +
∑

q

γq0zqj +U0i +
∑

p

Upixpi +W0j +
∑

q

Wqj zqj +Rij ,

(1)

3 Bayesian Approach

In Bayesian estimation, samples of parameter estimates are drawn from their poste-
rior distribution, which are proportional to the product of a marginal probability of
the parameter and the conditional probability of the data given the parameters. Let
θ be a vector of model parameters and Y represent data. The posterior distribution
of parameters conditional on data is

f (θ |Y ) ∝ f (Y |θ) f (θ) , (2)

where f (Y |θ) is the likelihood, and f (θ) is the prior distribution which reflects
our preceding knowledge of the parameters. We set non-informative priors for both
fixed effects (i.e., N(0, 100) which is essentially flat), and variance of the random
effects (i.e., Cauchy(0, 5)) based on recommendations from (Gelman, 2006). In
simple cases, the posterior distribution can be found analytically (e.g., proportion
from a binomial distribution), but for more complex cases, Markov Chain Monte
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Carlo (MCMC) is used to sample from the posterior. A Markov chain is a sequence
of draws of random variables for which the probability depends only on the previous
variable. The sequence of possible estimates for each parameter is known as a
“chain,” with multiple chains typically run for each parameter. We use Hamiltonian
algorithms to iteratively sample the posterior distribution, which is implemented in
the brms package (Bürkner, 2017) in R (3.6.2), that function as a wrapper for Stan
(Carpenter et al., 2017). Convergence was based on the potential scale reduction
factor (R̂), which estimates the potential decrease in the between-chains variability
relative to the within-chain variability. We expect R̂ to be close to 1 at convergence,
and Gelman and Rubin (1992) suggests 1.1 as the cutoff value. We also checked
the plots of posterior densities, trace plots, and autocorrelation plots to evaluate
convergence. The number of Markov chains was set to be 4 with 8,000 iterations per
chain where the first 4,000 iterations were warm-ups. The chains were “thinned,” a
procedure that keeps every kth sample (parameter estimate). We retained every 10th
sample, and thus the posterior is only based on 400 sample values for each chain.

4 Simulation

A simulation study with 20 replications was conducted to evaluate the performance
of MLE, REML, and Bayesian estimation of CREMs. Data were simulated from
CREMs with two or four random slopes and 20 or 50 stimuli and subjects, yielding
four conditions (Table 1). For each of the four simulated conditions, we fit an under-
specified model (only random intercepts) and the correctly specified model (used to
simulate data) using each estimation method. The simplest model fit to data in this
study was the random intercepts model,

Yij = γ00 + γ01x1i + γ10z1j + γ02x2i + γ20z2j + γ03x3i + γ30z3j + γ04x4i

+U0i +W0j + Rij . (3)

The model with two random slopes (i.e. condition 1 and 3) was

Yij = γ00 + γ01x1i + γ10z1j + γ02x2i + γ20z2j + γ03x3i + γ30z3j + γ04x4i

+U0i + U1ix1i +W0j +W1j z1j + Rij . (4)

Table 1 Summary of four
conditions of simulation
study

Conditions # Subject × # Stimuli # Random Slopes

Condition 1 20 × 20 2 slopes

Condition 2 20 × 20 4 slopes

Condition 3 50 × 50 2 slopes

Condition 4 50 × 50 4 slopes
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Table 2 Models parameters for the fixed effects (left) and distributions (right) from which random
effects were drawn for i,j=20,50 on each replication of the simulation study

Fixed effects parameters Random effects parameters

Subject-specific Stimuli-specific Subject-specific Stimuli-specific

γ0p γq0 Uri Wrj

γ00 = 1.00

γ01 = −2.00 γ10 = 2.00 U0i ∼ N(0, .16), W0i ∼ N(0, .49)

γ02 = .30 γ20 = 2.00 U1i ∼ N(0, .04), W1i ∼ N(0, .16)

γ03 = .50 γ30 = .20 U2i ∼ N(0, .36), W2i ∼ N(0, .81)

γ04 = 1.00

Rij ∼ N(0, 1.00)

For the more complex case of 4 random slopes (i.e. condition 2 and 4) was

Yij = γ00 + γ01x1i + γ10z1j + γ02x2i + γ20z2j + γ03x3i + γ30z3j + γ04x4i + U0i

+U1ix1i + U2ix2i +W0j +W1j z1j +W2j z2j + Rij . (5)

Data from models (4) and (5) were simulated for i, j=20, 50. For each replication
of the simulated models, values for xpi and zqj were drawn from the following
distributions: x1i ∼ N (0, 2.00); x2i ∼ N (0, 3.00); x3i ∼ N (0, 1.25); x4i ∼
Bernoulli (0.1); z1j ∼ N (0, 1.75); z2j ∼ N (0, 2); and z3j ∼ N (0, 2.25). The
fixed effects parameters and the distributions for random effects are given in Table 2.

5 Results

5.1 Convergence Rate

Table 3 summarized the convergence rates of each condition out of 20 replications.
All models using a Bayesian approach yield convergence rates of 100%. In Con-
dition 1 and MLE, 70% of the under-specified models converged and only 10% of
the correctly specified models converged. For REML, 82.5% of the under-specified
models converged and only 15% of the correctly specified models converged.
In Condition 2, both MLE and REML obtained 100% convergence rates for the
under-specified models; however, they both failed to converge even with different
optimizers such as NEALTHER-MEAD and BOBYQA in all replications when
trying to fit the correctly specified model. In Condition 3, the under-specified models
fit by either MLE and REML converged in all cases; however, the convergence rates
of the correctly specified model for MLE and REML were only 40% and 45%,
respectively. In Condition 4, 100% of the under-specified models converged for both
MLE and REML. However, only 20% of the correctly specified models fit by MLE
converged, and only 32.5% for REML of the correctly specified models converged.
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Table 3 Convergence rates of under-specified models (only random intercepts) and the correctly
specified models

#Subjects × # Random Model

Conditions #Stimuli slopes fit MLE REML Bayesian

Condition 1 20 × 20 2 Under-specified 70% 82.5% 100%

Correctly specified 10% 15% 100%

Condition 2 20 × 20 4 Under-specified 100% 100% 100%

Correctly specified 0% 0% 100%

Condition 3 50 × 50 2 Under-specified 100% 100% 100%

Correctly specified 40% 45% 100%

Condition 4 50 × 50 4 Under-specified 100% 100% 100%

Correctly specified 20% 32.5% 100%

With 100% convergence rates, the results indicate that a Bayesian approach is a
viable alternative of MLE/REML to deal with convergence problems. Note that
as the random effects structure of the model used to simulate data became more
complex, it was less likely for the correctly specified model to converge with
either MLE or REML. As the number of subjects and stimuli increased, the under-
specified model using MLE/REMLwas more likely to converge. In addition, REML
yielded a higher convergence rate than MLE in some conditions, suggesting REML
as a useful alternative when MLE encounters non-convergence.

5.2 Parameter Recovery

We discuss the efficiency and validity of the Bayesian parameter estimates. Tables 4
and 5 summarize the mean of Bayesian estimates, 95% credible intervals, the
scale reduction factor R̂, root mean squared error (RMSE), and bias for the 20
replications. In Table 4, the R̂s are less than 1.20, indicating convergence. The fixed
effects estimates are similar to the values used to simulate the data in both 20 × 20
and 50 × 50 cases. In contrast, the random effects estimates in the under-specified
model deviate from the values used to generate the data while the correctly specified
model yield similar variance estimates which are close to the true ones. The RMSEs
and biases are smaller in the correctly specified models. As the sample size increases
from 20 × 20 to 50 × 50, the estimated values become closer to the true values.

Similarly, in Table 5, the fixed effects estimates are close to the true values and are
more accurate in the correct model than the under-specified model. For the random
effects, the under-specified models yield the variance estimates that deviate from
the true values, but they are similar in the correct model. These results are supported
by smaller RMSEs and biases for the correctly specified model, with no discernible
pattern in the biases. Comparing Tables 4 and 5, we find that as the model become
more complex (from two to four slopes), the bias and the RMSEs for random effects
also increase. Additionally, the deviations between the estimates and true values are
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larger in the under-specified models than in the correctly-specified models in all
conditions.

Overall, for both under-specified and correctly specified models, the fixed
effect parameters were well recovered when using Bayesian estimation. However,
differences were found with respect to the 95% credible intervals for the fixed
effects. The intervals for the correctly specified models were narrower than the
ones from the under-specified model, which was even more prominent with larger
sample sizes. Similarly, the random effects variance parameters were recovered
better in the correctly-specified models. Also, only the 95% credible intervals in
the correctly specified models covered the true values used to simulate the data.
The variance estimates for under-specified models have poor performance, and
variance parameters were over-estimated such that the 95% credible intervals did
not cover the true values used to simulate the data. For correctly specified models,
the 95% credible intervals were narrowed for larger sample sizes (and given model
complexity) and were narrower for simpler models (for given sample size).

6 Conclusion

Although some previous studies have examined the convergence problems of
random effects models and promote a Bayesian approach as a solution (Eager &
Roy, 2017), none have specifically considered CREMs. This study is the first to do
so, and provides solid evidence for a Bayesian approach when fitting the CREMs to
data over MLE/REML. Comparing convergence rates of MLE/REML and Bayesian
approaches, the latter obtained 100% convergence rates (R̂s < 1.1). As the model
became more complex with more random effects, the convergence rates decreased
under MLE/REML. Furthermore, the Bayesian estimates of both fixed effects and
random effects were valid and efficient in the correctly-specified models but not in
the under-specified models. This study highlighted three important points: (1) an
improper model structure will result in inefficient estimation and invalid results (2)
for more complex random effects structures, the models using Bayesian approach
can achieve model convergence but not MLE/REML (3) using Bayesian approach
to fit the CREMs can obtain efficient estimates. Future studies will explore whether
using a Bayesian approach can select an optimal model.
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Priors in Bayesian Estimation Under
the Two-Parameter Logistic Model
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1 Introduction

The quality of Bayesian estimates lies in the appropriateness of specifications
of the priors. All Bayesian estimation methods should yield comparable item
and ability parameter estimates, especially when comparable priors are used or
when ignorance or locally-uniform priors are used. This paper was designed to
investigate this issue using the two-parameter logistic (2PL) model. Specifically,
item and ability parameter estimates from Gibbs sampling using rejection sampling
employing different specifications of priors are examined and compared with those
from marginal Bayesian estimation (MBE; Mislevy, 1986; Tsutakawa & Lin, 1986).
Adopting the presentation in the seminal paper by Swaminathan and Gifford
(1985) for Bayesian estimation under the 2PL model, priors in Gibbs sampling are
explained below using their framework instead of employing new notation.

For the 2PL model, many estimation methods can be used to obtain item and
ability parameter estimates. Item and person parameters can be estimated jointly by
maximizing the joint likelihood function. Marginal maximum likelihood estimation
using the expectation and maximization algorithm can be used to obtain item
parameter estimates (Bock & Aitkin, 1981; du Toit, 2003). In addition, joint Bayes
modal estimation (JBME) and MBE can be employed to obtain parameter estimates
under the 2PL model (e.g., Birnbaum, 1969; Kim et al., 1994; Mislevy, 1986;
Swaminathan and Gifford, 1985; Tsutakawa & Lin, 1986).
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Swaminathan and Gifford (1985) described Bayesian estimation for the 2PL
model. A number of other papers described Bayesian estimation methods for more
general item response theory models (e.g., Leonard & Novick, 1985; Mislevy,
1986; Swaminathan & Gifford, 1986; Tsutakawa & Lin, 1986). Nearly all Bayesian
methods in item response theory that are implemented in computer software obtain
parameter estimates by maximizing some form of the posterior distribution. More
recently, however, Fox (2010), Stone and Zhu (2015), and Levy and Mislevy (2016)
presented Bayesian estimation of item and ability parameters based on techniques
for the approximation of the posterior distribution. This was not entirely new as
Albert (1992) had done the same some time ago. Kim and Bolt (2007) presented an
excellent instructional material for the Markov chain Monte Carlo (MCMC) method
to estimate parameters in item response theory models. Appendix A contains
example code for Gibbs sampling (i.e., the MCMC method in OpenBUGS) used
in this study. A summary of priors and their specifications used in the earlier work
is presented in Appendix B (i.e., Appendix B Tables 4, 5 and 6, but only portions
are shown due to the page limit) in the context of the 2PL model. Papers that
presented Bayesian estimation methods for the Rasch model (e.g., Swaminathan
& Gifford, 1982; Gonzalez, 2010; Johnson & Sinharay, 2016) or for the limited set
of parameters under the 2PL model (e.g., Marcoulides, 2018) were excluded.

1.1 The 2PL Model and Priors

The 2PL model is

Pij = P(xij = 1|θi, ξj ) = 1

1 + exp[−αj (θi − βj )] , (1)

where θi is the ability parameter for person i, ξj ≡ (αj , βj ) is the set of item
parameters (i.e., αj is the discrimination parameter and βj is the difficulty parameter
for item j ), and xij is the dichotomous item response.

The posterior distribution for the 2PL model for dichotomous items can be
defined as

p(θ, ξ |x) = p(x|θ, ξ)p(θ, ξ)
p(x)

, (2)

where p(x|θ, ξ) ≡ l(θ, ξ) = ∏
i

∏
j p(xij |θi, ξj ) = ∏

i

∏
j P

xij
ij (1 − Pij )

1−xij is
the likelihood function of a set of parameters θ and ξ with item response data x,
p(θ, ξ) is the prior distribution, and p(x) = ∫ ∫

p(x|θ, ξ)p(θ, ξ)dξdθ .
Following Lindley and Smith (1972) and Novick, Lewis, and Jackson (1973),

Swaminathan and Gifford (1985) used independent priors, p(θ, ξ) = p(θ, α, β) =
p(θ)p(α)p(β). The prior for ability can have a hierarchical form as p(θ) =∏

i p(θi |μθ , φθ )p(μθ , φθ ). A normal distribution can be used as the prior for
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ability. For the identification purpose, the specification of μθ = 0 and φθ = 1
can be employed. The prior for discrimination is p(α) = ∏

j p(αj |να, ωα). The
prior for discrimination can be directly specified with a chi distribution χ(να, ωα),
where να is the degrees of freedom and ωα is a scale parameter. The prior for
difficulty can have a hierarchical form as p(β) = ∏

j p(βj |μβ, φβ)p(μβ, φβ),
where p(μβ, φβ) = p(φβ) for which p(μβ) has an improper uniform distribution
and p(φβ) has an inverse chi-square distribution with parameters νβ and λβ (i.e.,
φβ ∼ χ−2(νβ, λβ)). In their paper, the nuisance parameters, μβ and φβ , were
integrated out of the posterior distribution and then the resulting proportional
posterior distribution was maximized with the Newton-Raphson scheme to obtain
point estimates of the ability and item parameters. An iterative Birnbaum paradigm
for the joint Bayes modal estimation was used to obtain a set of ability estimates and
followed by a set of item parameter estimates until an overall convergence criterion
was met. The specification of the parameters and the hyperparameters (i.e., να , ωα ,
νβ , λβ ) can be a key issue in (hierarchical) Bayesian estimation.

Swaminathan and Gifford (1985) used the scaled chi distribution with the degrees
of freedom να and a scale parameter ωα as a prior for αj :

p(αj |να, ωα) = 1

ωνα/22(να/2)−1Γ (να/2)
e
−α2j /(2ωα)ανα−1

j . (3)

Specifically, they suggested χ(να = 10, ωα = 0.1) as a prior for αj . Using a R
package, the lower limit of the 99 per cent credibility interval is 0.464312 (i.e.,
qchi(.005, df=10) * sqrt(0.1)), and the upper limit is 1.587078 (i.e., qchi(.995,
df=10) * sqrt(0.1)). A chi distribution is not readily available in OpenBUGS or
WinBUGS.

Swaminathan and Gifford (1985, p. 392; 1982, p. 178) used the scaled inverse
chi-square distribution for φ (cf. without the script β here because the same form of
the distribution can also be applied to ability):

p(φ|ν, λ) ∝ 1

φ
1
2 ν+1

exp

[
λ

−2φ

]

, 0 < φ < ∞, λ > 0, ν > 0 (4)

(see Novick & Jackson, 1974, pp. 190–194; Isaacs, Christ, Novick, & Jackson,
1974, pp. 175–196). Such a distribution may not be directly used in available com-
puter software. In OpenBUGS, WinBUGS, as well as BUGS (e.g., Lunn, Jackson,
Best, Thomas, & Spiegelhalter, 2013, pp. 345–346), φ−1 ≡ τ ∼ dgamma(a, b)
denotes the density to be

p(τ |a, b) = baτa−1e−bτ /Γ (a) for τ > 0, a, b > 0 (5)

with mean a/b and variance a/b2. Note that for OpenBUGS it can be shown that
ν = 2a to be the prior sample size, ν/λ = a/b to be the prior mean of φ−1, and
λ/(ν − 2) = b/(a − 1) to be the prior mean of φ for ν = 2a > 2.
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In conjunction with the MCMC method for approximating the entire posterior
distribution and in the context of the computer program OpenBUGS (Spiegelhalter,
Thomas, Best, & Lunn, 2014) used in this study, either a flat prior or a proper yet
noninformative uniform hyperprior distribution for μβ can be used in addition to
employing an independent hyperprior for φβ . A proper yet noninformative uniform
prior distribution can also be used directly for βj .

The specification of the hyperparameters for the hyperprior distributions is an
important issue in the hierarchical Bayesian method. A noninformative, diffuse
hyperprior distribution can be used for each μ by specifying appropriate hyper-
parameters, and an informative hyperprior distribution can be used for each φ by
specifying appropriate hyperparameters. It should be noted that there are other forms
of the priors under the 2PL model for Gibbs sampling.

2 Methods

To compare Gibbs sampling with different priors and MBE, the Law School
Admission Test-Section 6 (LSAT6; Bock & Lieberman, 1970, p. 188) data and the
Knox Cube Test (KCT; Wright & Stone, 1979, p. 31) data were used. The LSAT6
data consisted of 1,000 examinees responses to 5 items. The original responses of
35 students to 18 items on the KCT were analyzed without any modification of data.
For Gibbs sampling, OpenBUGS was employed. It may be necessary to present the
input lines for an OpenBUGS run, and Appendix A contains such code.

Three sets of prior specifications for items are used for the OpenBUGS runs (i.e.,
GS1, GS2, and GS3). First in GS1, the informative chi prior on discrimination and
the uninformative prior on difficulty were used. Second in GS2, the informative
chi prior on discrimination and the hierarchical prior on difficulty were used. The
hierarchical prior for difficulty with a = 2.5 and b = 5 is equivalent to ν = 5 and
λ = 10 in Swaminathan & Gifford (1982) with an uninformative uniform prior for
μ. Third in GS3, the lognormal prior on discrimination and the diffuse normal prior
on difficulty were used. The lognormal prior on discrimination had mean of 0 and
standard deviation of 0.5. The normal distribution on difficulty had mean of 0 and
standard deviation of 2.

The MBE of item parameters employed the same prior specifications of GS3.
These are the prior specifications available in the computer program BILOG-MG
(Zimowski et al., 2002).

Based on the suggestions from Kim and Bolt (2007) and Kim (2001), burn-in
was set to 1000 and the next 10,000 iterations were used to construct the posterior
distributions for the OpenBUGS runs. To examine the effect of priors, different sets
of specifications with varying parameters could be used.
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3 Results

Only results from the LSAT6 data are presented here due to the page limit. Results
from the KCT data, however, are comparable to those from the LSAT6 data. Results
from the KCT are available from the authors.

Using the LSAT6 data, all four methods yielded similar results for the item and
ability estimates. Table 1 presents item parameter estimates based on the usual 2PL
model scaling (i.e., the ability estimates from the posterior metric based on the prior
with mean of zero and standard deviation of unity). GS3 results are very similar to
those from MBE because of the use of the same priors.

Intercorrelations and mean absolute deviations (MADs) between estimation
methods are presented in Table 2 for the LSAT6 data. Correlations between
estimation methods for discrimination are all high among the Gibbs sampling
methods (i.e., r > .93). GS3 has the highest correlation with MBE among the Gibbs
sampling methods as well as the smallest MAD for discrimination. Correlations
between estimation methods for difficulty (also for ability) are all near perfect
yielding r = .99. GS3 has the smallest MAD with MBE among the Gibbs sampling
methods for difficulty (also for ability).

Ability estimates and the accompanied posterior standard deviations are reported
in Table 3 for each pattern of the item responses. In the Gibbs sampling methods,
there were different posterior means for examinees with the same response pattern.
In reporting of the ability estimates, the first examinees who got the respective
response patterns were used to obtain the estimates (i.e., examinees 1, 4, 10, 12, 23,
etc.). Table 3 shows that estimates from the Gibbs sampling methods and MBE/EAP
(i.e., expected a posteriori after obtaining item parameter estimates via the method
of marginal Bayesian estimation) are similar.

Table 1 LSAT6 item parameter estimates

GS1 GS2 GS3 MBE

Item ξ̂j (p.s.d.) ξ̂j (p.s.d.) ξ̂j (p.s.d.) ξ̂j (p.s.d.)

Discrimination α̂j
1 1.09 (0.16) 1.12 (0.16) 0.90 (0.19) 0.81 (0.20)

2 0.95 (0.14) 0.94 (0.36) 0.73 (0.17) 0.75 (0.16)

3 0.99 (0.14) 0.99 (0.42) 0.83 (0.20) 0.86 (0.19)

4 0.94 (0.14) 0.94 (0.14) 0.72 (0.16) 0.72 (0.16)

5 0.98 (0.15) 1.00 (0.15) 0.77 (0.17) 0.71 (0.17)

Difficulty β̂j
1 −2.74 (0.33) −2.68 (0.30) −3.26 (0.58) −3.41 (0.72)

2 −1.12 (0.15) −1.13 (0.15) −1.40 (0.30) −1.34 (0.25)

3 −0.27 (0.08) −0.27 (0.08) −0.31 (0.11) −0.29 (0.10)

4 −1.50 (0.19) −1.48 (0.19) −1.87 (0.38) −1.80 (0.34)

5 −2.29 (0.29) −2.26 (0.28) −2.84 (0.56) −2.93 (0.60)

Note. p.s.d. = posterior standard deviation; GS = Gibbs sampling



314 S.-H. Kim et al.

Table 2 Intercorrelations and Mean Absolute Deviations between estimation methods for LSAT6

GS1 GS2 GS3 MBE

Method r (MAD) r (MAD) r (MAD) r (MAD)

Discrimination α̂j
GS1 .99 (0.01) .95 (0.20) .52 (0.22)

GS2 .93 (0.21) .42 (0.22)

GS3 .73 (0.04)

MBE

Difficulty β̂j
GS1 .99 (0.02) .99 (0.35) .99 (0.37)

GS2 .99 (0.37) .99 (0.39)

GS3 .99 (0.08)

MBE

Ability θ̂i
GS1 .99 (0.01) .99 (0.06) .99 (0.08)

GS2 .99 (0.06) .99 (0.09)

GS3 .99 (0.04)

MBE/EAP

4 Discussion

The prior distributions used in GS2 had the chi distribution for discrimination and
the hierarchical form for difficulty following (Swaminathan and Gifford, 1985).
The hyperparameter mean of the normal prior distribution for difficulty had a
noninformative uniform distribution and the inverse of the hyperparameter variance
of the normal prior had a gamma distribution. In GS2 with gamma(a = 2.5, b = 5),
the prior sample size of the gamma distribution was specified as 2(2.5) = 5 and
the prior expected value of φ−1 was 2.5/5 = 0.5 (i.e., the expected value of the
hyperparameter variance φ to be 5/1.5 = 3.33). Note that this prior specification is
equivalent to Swaminathan and Gifford’s (1985) ν = 5 and λ = 10. There are also
other ways of specifying priors for the 2PL model, instead of using priors used in
this paper, as shown in Appendix B Tables 4, 5 and 6.

When difficulty and ability are estimated together in Gibbs sampling, the ability
estimate for a specific person is not unique. The same response pattern may yield
different ability estimates, and that is not acceptable in practice. In addition, because
of employing the exchangeability concept, all ability estimates are estimated simul-
taneously and there exists some dependency in the resulting estimates. Although
estimates are not independent in general, it seems troublesome that estimating
ability even with known item parameters may yield different estimates for persons
with a specific response pattern. Hence, Gibbs sampling or some other estimation
methods based on MCMC may not be seen as viable methods for the usual item
and ability parameter estimation for the usual item response theory models for
dichotomous items that include the 2PL model.
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Table 3 LSAT6 ability estimates

GS1 GS2 GS3 MBE/EAP

Pattern Case θ̂i (p.s.d.) θ̂i (p.s.d.) θ̂i (p.s.d.) θ̂i (p.s.d.)

00000 3 −2.05 (0.72) −2.05 (0.72) −1.93 (0.79) −1.91 (0.79)

00001 6 −1.54 (0.72) −1.55 (0.72) −1.46 (0.79) −1.46 (0.80)

00010 2 −1.56 (0.71) −1.60 (0.73) −1.49 (0.79) −1.45 (0.80)

00011 11 −1.08 (0.73) −1.07 (0.72) −1.01 (0.81) −1.00 (0.80)

00100 1 −1.53 (0.72) −1.55 (0.72) −1.43 (0.79) −1.37 (0.80)

00101 1 −1.05 (0.72) −1.03 (0.72) −0.94 (0.81) −0.91 (0.80)

00110 3 −1.05 (0.72) −1.07 (0.73) −0.98 (0.81) −0.90 (0.81)

00111 4 −0.53 (0.74) −0.53 (0.74) −0.50 (0.82) −0.44 (0.82)

01000 1 −1.56 (0.72) −1.57 (0.72) −1.48 (0.79) −1.44 (0.80)

01001 8 −1.05 (0.73) −1.06 (0.73) −1.01 (0.79) −0.99 (0.80)

01010 0

01011 16 −0.55 (0.75) −0.57 (0.74) −0.56 (0.82) −0.51 (0.81)

01100 0

01101 3 −0.53 (0.75) −0.54 (0.75) −0.47 (0.82) −0.42 (0.82)

01110 2 −0.54 (0.74) −0.59 (0.75) −0.51 (0.82) −0.41 (0.82)

01111 15 −0.01 (0.79) −0.02 (0.78) −0.01 (0.84) 0.07 (0.83)

10000 10 −1.50 (0.70) −1.49 (0.72) −1.39 (0.80) −1.40 (0.80)

10001 29 −1.00 (0.73) −0.98 (0.72) −0.91 (0.80) −0.95 (0.80)

10010 14 −1.00 (0.73) −1.00 (0.73) −0.93 (0.80) −0.94 (0.80)

10011 81 −0.47 (0.75) −0.46 (0.75) −0.44 (0.82) −0.47 (0.82)

10100 3 −0.98 (0.74) −0.98 (0.74) −0.86 (0.82) −0.84 (0.81)

10100 28 −0.46 (0.75) −0.45 (0.76) −0.36 (0.83) −0.38 (0.82)

10110 15 −0.46 (0.75) −0.47 (0.75) −0.41 (0.82) −0.37 (0.82)

10111 80 0.09 (0.78) 0.10 (0.78) 0.13 (0.85) 0.11 (0.84)

11000 16 −1.00 (0.72) −0.99 (0.72) −0.93 (0.81) −0.92 (0.80)

11001 56 −0.47 (0.75) −0.48 (0.75) −0.44 (0.81) −0.46 (0.82)

11010 21 −0.50 (0.75) −0.49 (0.75) −0.47 (0.82) −0.45 (0.82)

11011 173 0.06 (0.78) 0.07 (0.77) 0.05 (0.83) 0.03 (0.83)

11100 11 −0.46 (0.75) −0.47 (0.75) −0.40 (0.83) −0.36 (0.82)

11101 61 0.09 (0.79) 0.09 (0.78) 0.12 (0.85) 0.13 (0.84)

11110 28 0.08 (0.78) 0.07 (0.78) 0.09 (0.84) 0.13 (0.84)

11111 298 0.69 (0.82) 0.68 (0.83) 0.65 (0.87) 0.65 (0.86)

Note. p.s.d.= posterior standard deviation
GS1 to GS3 estimates were from examinees 1, 4, 10, 12, 23, 24, 25, 28,
32, 33, 41, 57, 60, 62, 77, 87, 116, 130, 211, 214, 242, 257, 337, 353, 409
430, 603, 614, 675, and 703
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In this study, the 2PL model was employed without addressing the problem of
model selection, choice of link function, or model fit. Kim and Bolt (2007) contains
an excellent introductory review of these issues. Interested readers should refer to
Kim and Bolt (2007) and other general references including (Lunn et al., 2013).

Although Gibbs sampling and theMCMCmethods and some computer programs
including OpenBUGS which implemented such procedures have been available for
some time, the accuracy of the methods has not been thoroughly studied. Obviously
these techniques have been applied to some complicated modeling situations where
the traditional maximum likelihood based methods are too difficult to implement,
and hence have not been thoroughly tested and compared. Because maximum
likelihood based methods have not been implemented at all in such applications,
still we need to investigate the relevant estimation procedures. In addition, because
there are many different ways of implementing Gibbs sampling in item response
theory and many different prior distributions can be employed with many different
specifications in Bayesian estimation, the illustrative implementation of Gibbs
sampling and comparing results with other existing Bayesian and likelihood based
methods may provide measurement specialists and test developers as well as the
users of the computer programs with guidelines for using Gibbs sampling under
the 2PL model. More cumulative experience with regard to prior specifications for
Bayesain estimation is obviously needed.

Appendix A: OpenBUGS Code

model {
# 2PL model

for (i in 1:I) {
for (j in 1:J) {

logit(p[i, j]) <- alpha[j] * (theta[i] - beta[j])
x[i, j] ~ dbern(p[i, j])

}
# ability prior

theta[i] ~ dnorm(0, 1)
}

# item Priors
for (j in 1:J) {

a[j] ~ dchisqr(10)
alpha[j] <- sqrt(a[j] * 0.1)
beta[j] ~ dunif(-5, 5)

# beta[j] ~ dnorm(mub, taub) # GS2
# alpha[j] ~ dlnorm(0, 2) # GS3
# beta[j] ~ dnorm(0, 0.5) # GS3

}
# hyperpriors
# mub ~ dflat() # GS2
# taub ~ dgamma(2.5, 5) # GS2
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}
# kct data
list(I = 35, J = 18,
x = structure(.Data = c(
1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,
1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,
1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,
1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,0,
1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,
1,1,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,
1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,
1,1,1,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,
1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
), .Dim = c(35, 18))
)
# initial values (e.g., GS1)
list(
a = c(
10,10,10,10,10,10, 10,10,10,10,10,10, 10,10,10,10,10,10
),
beta = c(
0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0
),
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# mub = 0, taub = 1,

theta = c(

-0.4519851, 0.2231436, 0.2231436, -0.6931472, 0.2231436, 0.2231436,

1.2527630, 0.2231436, 0.2231436, 0.4519851, -0.2231436, -0.2231436,

0.2231436, 0.4519851, 0.9555114, 0.2231436, 0.0000000, 0.4519851,

0.0000000, 0.4519851, 0.6931472, 0.6931472, 0.6931472, 1.2527630,

-0.9555114, 0.2231436, -0.4519851, 0.2231436, 0.2231436, 0.0000000,

0.2231436, 0.4519851, -0.6931472, 0.6931472, -1.6094379

)

)

Appendix B: Summary of Priors and Specifications

Papers in Tables 4, 5 and 6 are not exhaustive. Estimation techniques in the
tables include JBME, MCMC, and MBE. The acronym BME designates Bayes
modal estimation, BE designates Bayes estimation (i.e., posterior mean), EAP
designates expected a posteriori (i.e., posterior mean via quadratures), and MAP
designates maximum a posteriori (i.e., posterior mode with known item parameters).
The types of priors can be classified into two; one without any hierarchical
structure and the other with some hierarchical structure for which parameters are
modeled with hyperpriors and hyperparameters (i.e., Hierarchical). Priors can also
be differentiated as ones with exchangeability for which the same prior will be
applied to all items in a test or a subtest (i.e., Exchangeable), others with capability
of assigning an individual prior on each parameter (i.e., Individual), and also others
obtained with information from the current data (i.e., Empirical). It should be noted
that in the tables, the names of the distributions might sound the same but could
be mathematically, trivially different. Each paper should be consulted and carefully
read before employing the priors in one’s research. Also note that several keywords
from the computer programs (e.g., SPR, TPR, FLO, AJ, BJ, PA, etc.) are used
without any explications.

There are more than six additional, relevant papers that could be included in
Tables 4, 5 and 6. The relevant papers are as follows (but without full references):
Spiegelhalter et al.’s (1996) “BUGS 0.5 Examples Volume 1”; Johnson and Albert’s
(1999) “Ordinal Data Modeling”; Curtis’s (2010) “Journal of Statistical Software,
36”; Nathesan et al.’s (2016) “Frontiers in Psychology, 7”; Luo and Ziao’s (2017)
“Educational and Psychological Measurement, Febuary 1”; and Parchev et al.’s
(2017) “CRAN Package irtoys”. The six papers mentioned in Tables 4, 5 and 6
are representative ones.
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Increasing Measurement Precision
of PISA Through Multistage Adaptive
Testing

Hyo Jeong Shin, Kentaro Yamamoto, Lale Khorramdel, and Frederic Robin

1 Introduction

With technology becoming an essential part of learning, problem solving, and daily
communication, many international large-scale assessments (ILSAs) are transition-
ing to computer. For example, the Programme for International Student Assessment
(PISA), the world’s largest ILSA, switched from a paper-based assessment (PBA)
to a primarily computer-based assessment (CBA) in the 2015 cycle, with about
90% of countries choosing CBA in 2018 and almost all selecting CBA in the 2022
cycle. Such a mode change also allows for the implementation of adaptive testing.
Adaptive testing has proven advantageous for obtaining precise measurement
of examinees compared to traditional linear tests (Wainer, 1990). In particular,
multistage adaptive tests (MST) designs “[strike] a balance among adaptability,
practicality, measurement accuracy, and control over test forms” (Zenisky et al.,
2010) and reduce measurement error at the individual and group levels (Oranje et
al., 2014). Likewise, the primary goals of implementing an MST in an ILSA are
to reduce measurement error for heterogeneous populations without overburdening
individual respondents, to control the content composition of each test form, and
to facilitate the use of different item types within specific units to best measure the
construct (Yamamoto et al., 2018; Yamamoto & Khorramdel, 2018).
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In this paper, we focus on PISA 2018 to address two research questions. First,
we present what psychometric properties were considered for introducing an MST
into PISA, focusing on the invariance of item parameters by unit order. This research
question is important because item parameters are estimated using the data collected
with the MST design where units were located in different positions across test
forms. Second, we evaluate the extent of parameter recovery and measurement
precision that can be expected from the PISA 2018 MST compared to the non-
adaptive design.

2 Experimental Study: Invariance of Item Parameters
by Unit Order

MSTs in ILSAs necessarily place items or units1 in different orders across test
forms, meaning that for an MST to be successfully implemented, psychometric
properties of items must hold, regardless of item or unit position across different
blocks (i.e., absence of item or unit position effects). Because test forms are
assembled at the unit level in PISA, the order of items within a unit does not change,
but the position of a unit across blocks does change. Therefore, possible unit order
effects have to be examined in order to proceed with the MST. This is particularly
important because item parameters for newly developed items need to be estimated
under the MST design with proper sampling weights during the main survey. In
this section, we describe how we designed an experimental study to investigate unit
order effects, and we present the results obtained from PISA 2018 field trial data
collected in 217 country-by language groups (165,000 students) and 460 candidate
reading items.

2.1 Methods

The PISA 2018 field trial used fixed and varying unit positions within 30-minute
(intact) blocks, and students were randomly assigned to one of three groups
with different unit orders. The field trial study design can be seen as a type of
randomized control trial in the sense that the treatment (unit order) was randomly
manipulated between groups of students, which allows us to examine whether the
same administered units behave differently given unit order.

1A set of items (usually ranging from two to eight items) that are designed to share similar or
identical content, stimuli, or reading passage. Note that the term “unit” used in this paper is closer
to what is called “testlet” in the measurement literature (e.g., Wainer et al., 2007). Wainer and
Kiely (1987) described “testlet” as groups of items that relate to a single topic, such as a reading
passage.
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The unit order design had three different groups: in Group 1, trend Reading
items2 are presented in a fixed unit order (FUO); in Group 2, trend and new Reading
items are presented in a variable unit order (VUO); in Group 3, new Reading items
are presented in an FUO. Each cluster consisted of multiple units, and the ordering
of the units was always fixed and consistent in FUO forms in Groups 1 and 3. In
contrast, unit order varied across the VUO forms in Group 2. For example, with
three units (A, B, C in the order of easy to hard) per cluster, the order of units in
FUO forms was always consistent as ABC, while the ordering of units in VUO
forms was one of two alternate orders, either ACB or BAC. More comprehensive
sets of ordering were possible (e.g., BCA, CAB, CBA); however, these conditions
were not considered. This decision was made because it was expected that test-
taking motivation could be negatively impacted by having the most difficult unit (C)
appear before relatively easier units (A or B). Each test form contains four clusters,
and when the test was initialized for each student, one of the permutations from
among the 16 different permutations of the four clusters (4ˆ2; e.g., 1111, 1112, . . . ,
2222) was randomly assigned.

Because all Reading items were used in both FUO and VUO forms, item
performance could be compared between FUO and VUO. Performance of items
was investigated based on the percentage correct and response times. To further
examine unit order effects, a multiple-group IRT model (Bock & Zimowski, 1997;
von Davier & Yamamoto, 2004) based on the 2PL and the generalized partial
credit model (GPCM; Muraki, 1992) was characterized with three different unit-
order groups (Group 1, Group 2, Group 3). Multiple-group IRT models enable the
estimation of item parameters that are common across different populations, as well
as unique group means and standard deviations. Let j denote a person responding
to item i, so that the pattern of response may be expressed as xj = [x1j, x2j, . . . ,
xnj] when there is a test composed of n items. Assuming conditional independence
of responses, the probability of observing the pattern xj can be written as the
multiplication of the probabilities of individual item responses Pi,

P
(
xj |θ

) =
n∏

i

Pi
(
Xi = xij |θ

)

which applies to all groups and persons, given the person attribute θ . Based on these
IRT models, items are characterized by item slopes and item locations (difficulties),
and the item parameters can either be constrained to be the same across different
groups or allowed to be unique for each group. A latent person ability, or attribute θ ,
follows a continuous distribution with a finite mean and variance in the population of
persons corresponding to group k. With the probability density function denoted as
gk(θ ), the marginal probability of response pattern xj in group k can be expressed as

2Trend items indicate the items were administered in the previous PISA cycles. In typical PISA
design, for the major domain, total item pool comprises one third of trend items and the rest of
newly developed items. Trend items provide a stable linking for the trend analysis.
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Pk
(
xj

) =
∫ ∞

−∞
P
(
xj |θ

)
gk (θ) dθ.

Then, the measurement invariance of items in each group was evaluated through
the root mean square deviation (RMSD) with a threshold of 0.15. This threshold
value is typically used for checking the item quality in operational settings (OECD,
2020) and is considered acceptable for estimating stable group statistics (Joo et al.,
2021). The RMSD statistics are calculated as follows:

RMSDg =
√∫ [

pobsg (θ)− p
exp
g (θ)

]2
fg (θ) dθ,

where g = 1, . . . , G is three different unit-order groups (Group 1, Group 2, Group
3); pobsg (θ) and pexpg (θ) are, respectively, the observed and expected probabilities
of a correct response given proficiency θ ; and fg(θ ) is the group-specific density
distribution on the students’ ability scale (Khorramdel et al., 2019; von Davier,
2005). If any significant item-by-unit order interaction existed, item parameter
estimation would be affected by the unit order, and the common item parameters
would not work for a certain group.

2.2 Results

The left panel in Fig. 1 shows the comparison of the average percentage correct
between FUO and VUO per cluster. At the cluster level, the differences in the
average percentage correct was less than 2.24 between FUO and VUO for trend
items and less than 1.16 for new items. Across clusters, this difference was 0.62 for
trend and 0.12 for new items on average. These differences were not statistically
significant, and no unit order effect appears to exist for the range of percentage
correct.

Similarly, response time spent per cluster was almost identical at the cluster
level (right panel of Fig. 1). The differences in average response time were less
than 1.33 minutes for trend items and less than 1.41 minutes for new items. Across
clusters, the average difference between VUO and FUO was 0.31 minutes for trend
items and 0.27 minutes for new items. As seen in Fig. 1, no evidence of interaction
by unit order can be found based on the response time average for trend clusters, and
deviations are nearly equally distributed above and below the dotted line (indicating
equality) for the entire range of cluster-level response times, indicating no unit order
effects overall.

Results from the multiple-group IRT model showed that there are no item-by-
unit order interactions between any comparable groups with RMSD ≥0.15. Figure
2 provides the distribution of RMSD values for trend (left panel) and new items
(right panel). The figure shows that the RMSD values for all items (displayed on
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Fig. 1 Comparison of the percentage correct (left panel) and the average cluster response time
(right panel)

Fig. 2 Distribution of RMSD values for trend items (left panel) and new items (right panel), with
the red line indicating a threshold of RMSD = 0.15

the x-axis) are far below this threshold, indicating very good item fit within all unit
order groups.

Taken together, the comparison of the percentage correct and response time
between FUO and VUO, as well as the evaluation of measurement invariance of
item parameters between FUO and VUO, suggests that bias on item parameter
estimation due to differential unit order is negligible. If the unit order had shown
to significantly impact item parameters and proficiency estimates, an MST design
could not be implemented, at least not with the same modeling approach. Therefore,
the field trial results confirmed the feasibility of introducing an MST into the main
survey, as unit order effects were insignificant.

3 Simulation Study: Parameter Recovery and Measurement
Accuracy

A simulation study was designed to evaluate the performance of the PISA 2018
MST in terms of parameter recovery and the expected gains in measurement
precision. In this simulation study, the performance of the MST design was
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evaluated and compared with two other benchmark designs, a complete design
(unrealistic) and a random design (non-adaptive, realistic), across 100 replicates.

3.1 Methods

The item pool consisted of the 245 dichotomously and polytomously (three
categories except for one item) scored Reading items, and the preliminary item
parameter estimates obtained from the PISA 2018 field trial were used as generating
values (i.e., item discriminations and difficulties). Details about the implemented
MST design in PISA 2018 can be found in Yamamoto, Shin, and Khorramdel
(2019). Note that throughout the simulation study, item selection and allocation to
units were kept consistent. Next, proficiency distributions for groups were generated
reflecting typical past PISA scores on which the scale was constructed to have a
mean of 500 and a standard deviation of 100 for the reading domain in 2000 (OECD,
2020). Given that participating populations in PISA are heterogeneous, 12 fictitious
countries that vary in performance level were considered, including one reference
group that followed the standard normal distribution. This reference group was used
to set the constraints to remove the indeterminacy of the IRT scale and allowed
all item parameters and group statistics to be estimated. For the remaining 11
groups, proficiency was assumed to be normally distributed with a common standard
deviation of 0.76 (100 on the PISA Reading scale), and the mean of the latent ability
distribution ranged from −0.29 to 1.23 (400 ~ 600 on the PISA Reading scale),
according to the preliminary results obtained from the PISA 2018 field trial. The
sample size per country was set to N = 6300, which is the standard sample size
followed by most PISA participating countries.

Three simulation conditions were considered. First, one complete dataset of item
responses was generated using these item parameters and ability distributions. This
complete design assumes that all students take all 245 items in the item pool.
Recognizing this design is not feasible for a population survey, the complete design
still provides useful information about estimation errors and sampling errors. As
a realistic benchmark, the random design was generated by converting valid item
responses in the complete design to missing when the items were not taken by
students. There can be various ways to represent non-adaptive operational PISA
designs, but given that the same number of units are administered to each student,
the random design was expected to serve as a realistic operational benchmark for
a comparison with the MST design. In this process, each student was assumed to
take a randomly selected set of units rather than a pre-determined set of assigned
units. Note that matching the student’s ability level with the item difficulty level is
not considered under this random design. Lastly, the MST design was generated by
converting valid item responses in the complete design to missing based on the pre-
determined MST design structure, including unit selection, unit assignment, and the
prespecified sum score ranges (Yamamoto, et al., 2019).
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A multiple-group IRT model (Bock & Zimowski, 1997) explained in the
previous section (2.1) was fitted for each condition. Note that there are twelve
groups with one reference group included for the simulation study. Analyses were
conducted using the mdltm software that provides marginal maximum likelihood
(MML) estimates obtained using customary expectation-maximization methods
(von Davier, 2005; Khorramdel et al., 2019). As shown in Glas (1988), Eggen and
Verhelst (2011), and Mislevy and Wu (1996), MML estimation enables valid item
calibration with MST data, both in the Rasch model and in the 2PL model for the
dichotomous and polytomous item responses in an MST design for a single domain.

Two aspects of the simulation study were reported: parameter recovery and
measurement precision. In each replication, item parameters (discrimination and
difficulties) and group statistics (group means and standard deviations) were
estimated under each condition. Concerning the parameter recovery, across 100
replicates, bias and the root mean squared error (RMSE) were calculated. Next,
the precision of the person ability estimator was evaluated using the standard
errors associated with the weighted likelihood estimates (Warm, 1989). In order
to quantify the expected gains, the proportion of standard error of the MST design
was calculated against the operational benchmark (random design). The expected
gains in precision were averaged over the PISA scale scores, ranging between 200
and 800, where sufficient sample sizes were observed.

3.2 Results

Parameter Recovery Figure 3 shows the distribution of biases and RMSEs across
245 items from each design condition. The MST design yielded absolute biases
less than 0.02 for all items, and the magnitude of biases were considered negligible,
although they showed slightly larger differences (at the third decimal point) for some
items compared to the random design. One outlier item under the MST design (top
right panel) had the generating discrimination value of 0.2 with multiple scoring
categories. This same item stood out as an outlier in the RMSE under the complete
design and the random design; thus, this item was viewed as a special case. The
MST design also performed well in terms of recovery of group statistics (means and
standard deviations). Both the MST and random design revealed biases in group
means ranging from −0.004 to 0.004. RMSE values ranged from 0.015 to 0.020
under the MST design, and this range was narrower than that of the random design.
Taken together, the MST design demonstrated an acceptable level of parameter
recovery.

Measurement Precision The MST design showed about a 4.2% precision gain
on average across 100 replicates, with a minimum gain of 3.2% up to a maximum
gain of 5.4%. Most importantly, the MST contributed to the precision of the person
ability estimator across all scale scores, particularly at the extreme performance
levels of lower than 300 and over 700 with around 10% higher accuracy. This
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Fig. 3 Bias and RMSE distributions in item parameters

especially helps improve the measurement precision of proficiency estimation when
students and countries are located at the extreme level, either high or low. Although
the expected 4.2% precision gain of the MST design appears low compared to the
expectations from PIAAC and other previous literature, it should be noted that the
MST design for PISA 2018 was chosen not only to improve measurement precision
but also to ensure a satisfactory level of model parameter recovery, controlling for
possible item position effects.

4 Discussion

The MST design in PISA was introduced to provide more accurate and efficient
measures when heterogeneous groups of students participate. Other constraints
included the number and type of items (automatically vs. human scored) needed
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to represent the full construct and subscale reporting for the major domain. With
these constraints, the MST was designed and investigated through experimental and
simulation studies.

The current study is limited to the specific PISA 2018 reading design. However,
this paper presents what important psychometric features should be considered
and met to introduce the MST design to an ILSA where item parameters are
estimated when the data is collected through the MST design. This paper also
illustrates how the MST design can be finalized through a simulation study. In
the future, more simulation studies that examine the robustness of MST designs
in PISA would be useful—for example, effects of the item-by-country interactions
and omission rates on parameter recovery. Empirically, item-by-country interactions
and omitted responses are often observed (OECD, 2020). Thus, the robustness of the
MST design could be investigated through examining the sensitivity of parameter
estimation when those factors are taken into account. Also, more flexible and
optimized test assembly can be studied through automating the assembly process
(e.g., van der Linden, 2005) and relaxing some constraints. Rather than relying on
manual effort from content experts conducted during 2018 cycle (OECD, 2020), an
automated test assembly procedure that guarantees and balances important aspects
(e.g., unit positions, contents, subscale reporting, response times) would further
warrant the utility and increase the accuracy of the MST in different domain
settings.
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Simulation Studies of Item Bias
Estimation Accuracy

Ritesh K. Malaiya and Richard M. Golden

1 Introduction

Psychometrics provides various instruments such as Item Response Theory (IRT)
and Cognitive Diagnostic Models (CDM) to measure both item-specific parameters
and examinee-specific parameters given specific items administered to examinees.
Such tools often make the assumption of item invariance which states that item-
specific parameter values are the same for different subpopulations. However,
smaller population sizes may lead to instability in item and person parameter
estimation in CDMs. This presents opportunities to study statistical methods that
quantify item parameter invariance in a CDM for large as well as smaller examinee
population sizes. This also presents an opportunity to explore item parameter
estimation methods suitable for smaller population sizes.

Although, item invariance in CDM models have been extensively studied for
large sample sizes and good model fit (Bolt & Kim, 2018; Bradshaw & Madison,
2015; Torre & Lee, 2010; Ravand et al., 2019), most of the studies of item invariance
do not account for the presence of missing data. Missing data can happen in
scenarios where every examinee is administered a sample of test items from a
larger test bank or where examinees can skip an item. In this study, the number
of examinees to whom a particular item is administered during an exam is defined
as the Item Administered Count (IAC). A typical low-stake college course may see
IACs in order of tens even for a large examinee population. This is because college-
level exams generate multiple test versions to restrict opportunities for cheating.
In such a design, a different set of exam items are distributed to each group of
examinees. Low IACs may also be obtained if an examinee does not answer all
questions. In both the scenarios, it is assumed that the probability an item is missing
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is not functionally dependent upon the item’s content, the content of other items, or
upon item and examinee parameters.

This simulation study aims to investigate item parameter invariance in the DINA
(Deterministic Input Noisy And) CDM model using data from three different data
sets having a varying amount of missing data. The original data set is sampled
with replacement multiple times to construct multiple bootstrap data sets. Each
bootstrapped data set is then split into 2 subpopulations to construct pairs of boot-
strapped subpopulations. For both subpopulation members of the bootstrap data sets,
the model parameter estimates are obtained using the Expectation-Maximization
algorithm implementation in the CDM package in R (George et al., 2016). Also, this
study proposes bagging the DINA item-specific parameters to reliably estimate item
parameters for smaller examinee populations. This parameter estimation method is
similar to the bootstrap aggregating (bagging) method proposed by Breiman (1996).

Because the bootstrap data sets are generated from the same data generating
process, violations of the item invariance modeling assumption may be detected by
comparing the statistics of the two subpopulations. The item invariance statistics
used in this study are bootstrap-AB and bagged-AB. The absolute difference
between the item parameter values of the first and the second subpopulation is
defined as the parameter bias. The parameter bias is then averaged across all the
bootstrapped data sets to calculate the Bootstrap Mean Absolute Bias (bootstrap-
AB). The item-specific bagged-AB estimator is defined as the absolute value of the
difference between the bagged DINA estimator of the first subpopulation member
and the bagged DINA estimator of the second subpopulation member.

2 Related Work

In CDMs, item invariance studies are generally performed by dividing the student
population into multiple subpopulations based on either the ability of examinees
estimated using other methods or other general properties such as gender (Bolt &
Kim, 2018; Bradshaw &Madison, 2015; Torre & Lee, 2010; Ravand et al., 2019). In
the simulation study of item invariance properties of the DINAmodel, Torre and Lee
(2010) showed that item invariance depends on model fit. To study item invariance,
they calculated Mean Absolute Bias (MAB) by averaging the absolute difference
between the true and estimated parameters across items within the same item
group. Bradshaw andMadison (2015) performed simulation studies to measure item
invariance properties of log-linear CDM over different sample sizes ranging from
500 to 10,000. They showed that scoring accuracy and presence of item invariance
improved as the sample size increases but the rate of change differed based on
different ability groups. The item invariance was measured using median absolute
bias across all items within a specific simulation condition. Both group invariance
and item invariance properties were examined. Bolt and Kim (2018) investigated
item invariance analysis for single time point exam – Fraction Subtraction Data,
longitudinal growth simulation study, and Differential Item Functioning simulation
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study. For Fraction subtraction data, they compared item parameters between
different ability groups to study the item invariance. Ravand et al. (2019) used the
global likelihood ratio test on a multi-group GDINA to investigate item parameter
invariance. The standard errors were calculated using Jackknife method over 1000
simulations. They showed that for an examinee sample size of 500 per male and
female group, not all the G-DINA item parameter estimates were invariant in the
Foreign Language test.

3 Data

The three data sets considered in this study are the ECPE (Templin & Hoffman,
2013), the TIMSS (Mullis et al., 2012) and a Social Psychology exam conducted at
the University of Texas at Dallas (UTD) (Social-UTD). Both the ECPE and TIMSS
data set used in the simulation study were imported from the CDM package in R
(George & Robitzsch, 2015). The ECPE data set has 2922 students attempting 28
items with all items administered to all students. The TIMSS data set contains 1010
Austrian fourth-grade students attempting items from a 47 item pool. These 47 items
were divided into 3 booklets and each student was given 2 booklets to attempt. The
third data set Social-UTD contains 136 students attempting items from a 239 item
pool constructed from two trials of the last exam in the semester. Each student is
administered 53 items from the 239 item pool in each exam trial. In the TIMSS data
set, 48.27% of the item response data is missing and the IAC value can range from
18 to 38. In the Social-UTD data set, 89.53% of the item response data is missing
and the IAC can range from 4 to 26. The Social-UTD represents a typical college
exam where the number of attempts received per item is comparatively very low
despite the total examinee count of 136.

4 Method

In this study, each of the three item-response data sets was represented as XI×J
having I examinees and a pool of total J items. The DINA item-specific guess
and slip parameters were estimated using two approaches. First, using Expectation-
Maximization estimation method available in the R CDM package (George et al.,
2016). Second, using the Bagging approach (Breiman, 1996) over the item-specific
parameters estimated using the R CDM package (see Sect. 4.3). A measure of the
magnitude of an item-invariance violation was obtained by estimating the bootstrap-
AB estimator (see Sect. 4.2) and the bagged-AB estimator (see Sect. 4.3). In a
typical exam, the number of examinees I in the exam may not always represent
how many times an item was administered (IAC) in that exam. For instance, in the
ECPE data set, IAC equals I because each item was administered to each examinee.
However for the TIMSS and SP-UTD dataset, IAC < I because each item was
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Fig. 1 This diagram shows how the data set X is sampled to calculate two different item
invariance metrics. M samples of examinees are drawn from the data set X consisting of I
examinees. This bootstrap data set is divided in to two M

2 size subpopulations P1 and P2. The
bootstrap-AB (Bootstrap Mean Absolute Bias) and bagged-AB (Bagged Absolute Bias) estimates
are then computed for each of the two subpopulations

administered only to a subset of examinees. Hence, item administered count (IAC)
was calculated for each item (see Sect. 4.1). IAC represents the examinee population
size specific to each item which may be different from the total examinee size in the
particular exam. Also, bootstrap-AB and bagged-AB estimators were plotted against
IAC to observe the effect of examinee population size on item invariance. To get a
large set of IAC values for each item, the bootstrap-AB and bagged-AB estimators
were calculated for different examinee sample sizesM ∈ {1 . . . I } (Fig. 1).

4.1 Bootstrapped Data Set Pairs

Calculation of both bootstrap-AB and bagged-AB estimators required bootstrapped
data set pairs for each of the ECPE, TIMSS, and SP-UTD data sets. The first
step involved sampling (with replacement) M J-dimensional row vectors from
the XI×J data set. Second, each of the bootstrapped data sets was split into 2
subpopulations. This resulted in two M

2 bootstrapped data sets which share the same
data generating process. Third, calculate IAC for each item by counting the total
number of responses the item received. Fourth, repeat steps one to three 100 times
to generate 100 pairs of bootstrapped data sets.

4.2 Bootstrap-AB Estimator

The bootstrapped data set pairs (see Sect. 4.1) were used to calculate the bootstrap-
AB for each item using the following procedure. First, the R CDM package was
used to estimate item-specific parameters for each of the 100 bootstrapped data set
pairs. Second, absolute bias was calculated by computing the absolute magnitude of
the difference between the parameter estimates for each of the two subpopulations
in each bootstrapped data set pair. This resulted in a distribution containing 100
absolute bias values for each item. Fourth, the mean of this absolute bias distribution
was calculated. This mean difference was defined as the bootstrap-AB estimator.
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4.3 Bagged Parameter Estimates and Bagged-AB Estimator

First, the average first subpopulation member was computed by averaging the
first subpopulation member from each of the bootstrapped data set pairs. These
100 item-specific parameter estimates were then averaged to obtain bagged item-
specific parameter estimates. Then, the average second subpopulation member
was computed by averaging the second subpopulation member from each of the
bootstrapped data set pairs. The absolute difference between the average first
subpopulation member and the average second subpopulation member was defined
as the bagged-AB estimator.

5 Results

In this study, the item bias distribution is investigated as a function of the Item
Administered Count (IAC) value. Each plot is divided into 4 sections representing
bootstrap-AB and bagged-AB estimators for Guess and Slip parameters for the
given data set. The values in the X-axis represents IAC values starting from 10
examinee count for each data set. The last IAC value ++ represents all the data in
the given data set. The Y-axis represents item bias for Guess and Slip probability
parameters. For the purpose of this study, an item bias value less than 0.05 is
considered as a sufficient presence of item invariance for practical purposes in an
educational context.

5.1 ECPE Data Set

Figure 2 shows the distribution of item bias values for ECPE data set. In the
bootstrap-AB section of the Fig. 2, for the starting IAC value of 10 examinees, the
mean of Guess-specific item bias values is 0.4. Given the guess parameters have a
range of [0, 1] the bootstrap-AB value of 0.4 clearly shows a lack of item invariance
across subpopulations. Also, the variation in the Guess-specific bootstrap-AB values
is large ranging from 0.2 to 0.5. As the IAC value increases the bootstrap-AB
values tend to decrease but the variation in bootstrap-AB values remains large till
40 IAC value. At 80 IAC, both the mean and variance of bootstrap-AB sees a
rapid decrease. For IAC values higher than 320, all the items show Guess-specific
bootstrap-AB values as 0.05 which is the desired criteria for item invariance in this
study. Slip-specific bootstrap-AB values are in general lower than Guess-specific
bootstrap-AB values even for smaller IAC values. Slip-specific bootstrap-AB values
reduces steadily as IAC value increases converging to 0.05 at IAC values higher than
320.
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Fig. 2 DINA Model bootstrap-AB and bagged-AB Item Bias for ECPE data set. The points are
individual bootstrap-AB item bias estimates as a function of IAC. The spread of points shows
the distribution of the bootstrap-AB item bias estimates. The line plots the mean of the item bias
distribution as a function of IAC. Item bias is dramatically reduced using the bagged-AB estimator
relative to the bootstrap-AB estimator across all IAC levels

Interestingly the bagged-AB section of the Fig. 2 shows item bias values lower
than 0.1 for most of the items for IAC values as low as 10. Guess and Slip parameters
show a similar trend in the reduction of item bias values as IAC value increases. Item
bias converges to 0.05 value for most of the items at 40 and larger IAC value.

The ECPE data set has no missing item response, however, in educational
scenarios exams may have missing item responses. Hence TIMSS and Social
Psychology data set results are reviewed in further sections to observe the effect
of IAC on various degrees of missing item response data.

5.2 TIMSS Data Set

Figure 3 represents results of item invariance tests on TIMSS data set. In the
bootstrap-AB section of the plot, results show that even for IAC values as small
as 10, some items have item bias values lower than 0.05 for both Guess and Slip
parameters. However, the count of such items is very small and the majority of items
have larger item bias values. As IAC count increases more items start to show item
invariance properties for both Guess and Slip parameters. However, even for IAC
count more than 320, bootstrap-AB value does not go below 0.05 for both Guess
and Slip parameters for some items.

Item bias values in the bagged-AB section of the plot show better results than
the DINA model even for IAC values as small as 10. A large number of items start
to have item bias values lower than 0.05 for 20 IAC value. Starting from 80 IAC
values, guess and slip parameters of all the items have item bias values lower than
0.05.



Simulation Studies of Item Bias Estimation Accuracy 341

Fig. 3 DINA Model bootstrap-AB and bagged-AB Item Bias for TIMSS data set. The points are
individual bootstrap-AB item bias estimates as a function of IAC. The spread of points shows
the distribution of the bootstrap-AB item bias estimates. The line plots the mean of the item bias
distribution as a function of IAC. Item bias is dramatically reduced using the bagged-AB estimator
relative to the bootstrap-AB estimator across all IAC levels

It may be concluded that due to the amount of missing response data in the
TIMSS data set, bootstrap-AB estimator of DINA model could not show item
invariance properties for all the items even when the IAC is greater than 320. How-
ever, bagging the item parameters estimated using the Expectation-Maximization
algorithm shows promising results for 80 or more examinees in the TIMSS data set.

5.3 Social Psychology Data Set

The Fig. 4 shows the item invariance results for the Social-UTD data set. The IAC
values for this data set ranges from 2 to 26. However, the count of items that received
less than 5 or more than 15 IAC is very small. Hence, for this study’s purposes,
only the items that have an IAC value between 5 and 15 are shown in Fig. 4. In
bootstrap-AB section of the plot, results show that even for such a small IAC range,
some of the items have the item bias value smaller than 0.05. However, most of
the items show item bias values greater than 0.5 reaching up to 1 for both Guess
and Slip parameters. This may suggest a DINA model parameter estimation using
the Expectation-Maximization is highly unstable for the data sets having a large
amount of missing item response data.

Interestingly, results for Guess and Slip parameters in the bagged-AB section
of the plot are very promising. The overall item bias values are smaller than 0.2.
And 71% have item bias values are lower than 0.05 for the IAC range of 5 to 15
examinees. These are very encouraging results given the sparsity of Social-UTD
item response data set.



342 R. K. Malaiya and R. M. Golden

Fig. 4 DINA Model bootstrap-AB and bagged-AB Item Bias for Social-UTD data set. This plot
contains data only for IAC values between 5 to 15. Item bias is dramatically reduced using the
bagged-AB estimator relative to the bootstrap-AB estimator

6 Conclusion

The results show that even though the central tendency of the lack of item invariance
reduces as IAC count increases, the spread of the item bias distribution still remains
large in the case of data sets with missing item responses for some examinees. As
per the current simulation study, more than 300 examinees attempting a particular
item are required to reliably estimate item-specific parameters in the DINA model.
This makes it infeasible to use the DINA model with standard parameter estimation
algorithm for a smaller examinee population typically seen in college courses.
However, by bagging item parameters estimated using Expectation-Maximization
in the DINA model, the item bias values are closer to 0.05 for most of the items
even for IAC values as small as 20. This shows that the bagged estimation approach
provides more evidence for item invariance even for smaller IAC values. The bagged
estimation approach also seems to be tolerant towards the amount of missing item
responses in the TIMSS and the Social-UTD data set.

The bagging method has been theoretically and empirically studied for machine
learning algorithms (Domingos, 1997; Friedman, 1997). Also, for the purpose of
improving classification accuracy and model selection, model averaging techniques
such as Boosting, Bagging, Bayesian Model Averaging has been extensively studied
in the machine learning community (Jiang et al., 2020; Posada & Buckley, 2004;
Deo, 2015). The impact of such model averaging methods for parameter estimation
on other types of CDMs needs to be studied further. The method for checking item
invariance proposed in the current study can be utilized to verify the reliability of
parameter estimation through model averaging methods. Such studies can promote
the adoption of CDM in educational courses seeing various amounts of missing item
responses in small and large examinee data sets.
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Appendix A: R Code-Snippets for Bootstrap-AB and
Bagged-AB Estimators

In this section, R code-snippets representing the methods to calculate item bias
(discussed in Sects. 4.1, 4.2, 4.3) are provided. These simplified code-snippets are
taken from specific parts of the code written for this study. The full version of the R
code is made available at the Open Science Framework repository.1

First, 100 bootstrapped data sets of the same size as original data set were
generated using the R boot package (Canty & Ripley, 2020). Then only the first M
samples from each of the 100 bootstrapped data sets were considered for parameter
estimation. These M examinee samples were further divided into 2 subpopulations
of size M

2 .

l i b r a r y ( boo t )
# g e n e r a t i n g b o o t s t r a p i n d e x e s
X. b t <− boo t ( d a t a = df .X ,

s t a t i s t i c = f u n c t i o n (X, i ) r e t u r n ( i ) ,
R = 100 , s t y p e = " i " ) ;

f o r ( i _ v a l i n 1 : nrow (X. b t ) ) {
X. i ndex <− X. b t [ i _ v a l , ] %>% g a t h e r ( )
X. i ndex <− X. i n d ex$v a l u e

# g e n e r a t i n g b o o t s t r a p p e d X
X <− df .X[X. index , ] ;

X. s <− head (X, M) ;
X. p1 . s <− X. s %>% head ( round ( dim (X. s ) [ 1 ] / 2 ) ) ;
X. p2 . s <− X. s %>% t a i l ( round ( dim (X. s ) [ 1 ] / 2 ) ) ;

}

Second, the DINA item-specific parameters were estimated using R CDM
package (George et al., 2016). These parameter estimates were further used for the
calculation of bootstrap-AB estimator, bagged-parameter estimator, and bagged-AB
estimator.

l i b r a r y (CDM)
f u n c t i o n (X. p , Q_reduced , group , Q_names ) {

# E s t im a t i n g DINA model
d f . cdm <− CDM: : d i n (X. p , Q_reduced , p r o g r e s s =FALSE ) ;

# E x t r a c t i n g i tem−s p e c i f i c s l i p p a r ame t e r
d f . s l i p <− t i b b l e ( " v a l u e " = df . c dm$s l i p $ e s t ,

" key " = Q_names ) %>%
sp r e a d ( key = " key " , v a l u e = " v a l u e " ) %>%
muta t e ( p a r ame t e r = " S l i p " ) ;

1R code is available here: https://osf.io/naj5t/

https://osf.io/naj5t/
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# E x t r a c t i n g i tem−s p e c i f i c gue s s p a r ame t e r
d f . gue s s <− t i b b l e ( " v a l u e " = df . cdm$guess$es t ,

" key " = Q_names ) %>%
sp r e a d ( key = " key " , v a l u e = " v a l u e " ) %>%
muta t e ( p a r ame t e r = " Guess " ) ;

} ;

Third, to estimate the bootstrap-AB for each item, the absolute difference
between the item-specific parameters was estimated for each bootstrap represented
by sim_no. Then the absolute difference is averaged over the bootstraps to get the
bootstrap-AB estimator.

d f %>%
group_by ( pa r ame t e r , i t ems , IAC , sim_no ) %>%

# C a l c u l a t i n g a b s o l u t e b i a s
mu ta t e ( d_abs = abs ( ‘ P a r t i t i o n 1 ‘ − ‘ P a r t i t i o n 2 ‘ ) ) %>%
group_by ( pa r ame t e r , i t ems , IAC ) %>%
summarise (

# b o o t s t r a p −AB e s t i m a t o r
MAB = mean ( d_abs ) ) ;

Fourth to estimate the bagged parameters for DINA model, average of each
item parameter value was calculated over each bootstrapped dataset pair and
sampling size. Absolute bias of this bagged parameter was then calculated between
bootstrapped data set pairs to get bagged-AB estimator. In below code, group
variable contains unique id to represent a particular subpopulation and parameter
variable represents guess or slip item parameter.

d f %>%
group_by ( group , pa r ame t e r , i t ems , s amp l i n g _ s i z e ) %>%
summarise (

# bagged i tem−s p e c i f i c p a r ame t e r e s t i m a t o r
sampl ing_mean = mean ( i t em_p a r ame t e r s ) ,

) %>%
sp r e a d ( key =" group " , v a l u e = " sampl ing_mean " ) %>%
group_by ( pa r ame t e r , i t ems , s amp l i n g _ s i z e ) %>%
muta t e (

#bagged−AB e s t i m a t o r
a b_b i a s = abs ( ‘ P a r t i t i o n 1 ‘ − ‘ P a r t i t i o n 2 ‘ ) ) ;
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Multiple Answer Multiple Choice Items:
A Problematic Item Type?

Magdalen Beiting-Parrish, Jay Verkuilen, Sydne McCluskey,
Howard Everson, and Claire Wladis

1 Introduction

1.1 Suggestions for MAMC Scoring

Multiple Answer Multiple Choice items (MAMC), also known as pick-N, multiple
mark, choose all that apply, or select all that apply questions, are frequently used
for large-scale assessments, especially for medical and graduate school entrance
examinations (Swanson et al., 2008). These are items that are written similarly to
traditional single-answer multiple choice items but they have more than one correct
answer; sometimes the amount of correct answers is specified, e.g., “pick the two
best answers”, or it can be left open-ended, e.g. “select all that apply.” Alternatively,
these can also be thought of as the examinee choosing a response vector from a
number of possible vectors. For instance, if N = 5, the number of statements the
examinees must evaluate is 5, meaning there are 25 = 32 possible response patterns,
only one of which is the keyed response. For instance, if AB is the keyed response,
the examinee could provide 32 possible responses (including the null response),
with only one keyed. The following is an exploration of two potential approaches
for scoring/analyzing MAMC items. We illustrate using two distinct ability levels
of community college students on a sample item from a pilot algebra instrument.

The process for scoring these MAMC items has been hotly debated and there has
been much discourse over whether to use a partial credit or dichotomous scoring
approach for MAMC (Ripkey & Swanson, 1996). For the partial scoring approach,
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there are multiple methods for how to design and score these items. For example,
dichotomous scoring versus partial scoring algorithms was explored on an exam for
medical students (Bauer et al., 2010). The two partial scoring methods were one
in which the examinee received a static 0.5 points if they chose at least two of the
right answers, and one in which the examinee received partial credit in relationship
to how many of the correct choices they selected (e.g. examinee selected three of
four possible choices resulted in 0.75 credit applied). The authors found that both
partial scoring methods resulted in similar psychometric information, were more
statistically reliable than single-choice options, and that they awarded more credit
overall.

Additionally, the relationship between polytomous and dichotomous scoring was
investigated on the American Chemical Society exam using a rubric for assigning
partial credit (Grunert et al., 2013). The researchers found that overall average
scores increased using the partial credit model, unsurprisingly; however, only the
middle performing students really benefitted from partial scoring. Low performers
tended not to gain much credit based on strong patterns of mistakes and high
performers already received full credit regardless of the scoring model. These results
suggest that low performance examinees require a scoring method that awards credit
for what these examinees do know that also awards credit for avoiding common
mistakes. It also suggests that assigning partial credit provides a useful way to
differentiate among different ability levels. This is particularly relevant given the
amount of time more complicated items take both to develop and to administer.

Finally, another approach examined the MAMC format through a more thought-
fully designed multiple-true-false method in which the intent was to model partial
student knowledge through the pattern of choices and endorsements these students
made as compared with traditional single-choice multiple choice items (Brassil &
Couch, 2019). The researchers found that the multiple-true-false format allowed
the scorers to better understand partial student knowledge as compared with single-
choice items. The researchers also posited that these items could provide the test
designer with increased content validity because, when properly designed, a single
item can address multiple components and false student understandings of a single
topic all within one item.

1.2 Local Dependence and Gaming Behavior in MAMC Items

The MAMC format can also induce unpredictable local dependence due to the
presence of a common item stem as well as examinees’ expectations about how item
writers are likely to create items. There is an especially strong dependency between
MAMC item choices, especially for mathematics items (Pomplun & Omar, 1997).
This is also true for items in which two of the possible choices are direct opposites
of each other; an informed examinee would know that logically, only one could be
true, creating local dependence. In addition, if the test writer does not specify how
many choices are correct (e.g. pick the best two) and leave it open-ended, this can
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lead to “gaming” on the part of the examinee as they may be unwilling to engage in
certain response patterns, especially in cases where all choices are true or none of
them are true based on the logic that the item writer would not use such a correct
answer. Local dependence greatly complicates modeling such items.

1.3 User Perception of MAMC Items

In addition to the variety of approaches to scoring these items, MAMC items can
be difficult for examinees, depending on their skill level. For example, Glasnapp
and Poggio (1994) found that young children struggle with the MAMC format, with
25% of third graders who were tested failing to understand the directions and only
marking single choices or omitting an answer choice entirely. In addition, Pomplun
and Omar (1997) found that third and fourth graders were the most likely to fail to
follow the directions for the MAMC items, but this was only 2.61% of fourth grade
mathematics students, 4.58% of third grade expository reading students, and only
1.92% of tenth graders failing to follow directions. This suggests that more novice
students struggle to answer these questions, but more advanced or experienced
students seem to be more successful with this item type. Finally, since MAMC may
be an unfamiliar item type, especially for low performance examinees, including
more thorough and comprehensive directions, along with the chance to practice the
unfamiliar item type may improve student performance (Lakin, 2014).

1.4 Examinee Responses to Novel Item Types

As mentioned above, low ability examinees tend to perform poorly on novel
item formats that do not have explicit directions or a chance for the examinee
to practice (Lakin, 2014). In general, the low ability examinees may be students
with very high math anxiety and very negative preconceived notions about their
mathematical ability (Ruff & Boes, 2014). If the student is already experiencing
strong negative emotions around the test and their overall mathematical ability, these
negative emotions can interfere with higher order thinking which can also impact
test performance (Valiente et al., 2012). In addition, these low ability students may
also experience stereotype threat in addition to math anxiety which can further stifle
higher order thinking, leading to decreased performance (Maloney et al., 2013).
Overall, these findings suggest that low ability students may struggle the most with
these MAMC items, both because they are a novel format and because of some
individual characteristics of these examinees.
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2 Method

2.1 Participants

Two samples of students were used. The first sample of participants contained 394
urban community college students who were enrolled in a Basic Arithmetic and
Algebra course (57.11%), an Elementary Algebra course (41.37%), or a Statistics
with Algebra (1.52%) course in Fall 2016. The second sample of participants
contained 628 urban community college students who were enrolled in Precalcu-
lus (24.20%), Mathematics for Elementary Education (6.05%), Mathematics for
Elementary Education with Algebra (3.82%), Analytic Geometry and Calculus
(26.6%), or Intermediate Algebra with Trigonometry (39.33%) in Spring 2018.
These two groups made up a low ability group (Fall 2016) and a high ability group
(Spring 2018).

2.2 Instrument

The instrument used for this study is the Elementary Algebra Concept Inventory
(Wladis et al., 2018). This is a pilot instrument funded through an NSF grant which
will eventually replace the current entrance exam with more efficient placement
of students in remedial or mainstream community college math classes. The Fall
2016 version of the EACI had 9 single choice multiple choice items and 13 MAMC
items. The Spring 2018 version used most of the same items but had 10 single
choice multiple choice items and 12 MAMC items. Item A (seen below) is used
here (Fig. 1).

Fig. 1 A picture of Item A as it appeared in the EACI. It has two correct keyed responses
highlighted in yellow
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2.3 Analysis Plan and Justification

A Latent Class Approach This paper suggests an alternative format for item
analysis of MAMC items using Latent Class Analysis (Masyn, 2013). Latent Class
Analysis (LCA) is a statistical analysis method in which hypothesized latent classes
can be observed through covariation that can be measured in the observed variables
of interest (McCutcheon, 1987). MAMC items were analyzed individually using
LCA with the aim of creating class profiles of latent student knowledge based
on the observed patterns of answers for foundational mathematics students (Fall
2016 sample) as compared with the LCA for more advanced mathematics students
(Spring 2018 sample). LCA helps reveal homogeneous groupings of item responses
within the items.

A Credit-Earned Approach For the purpose of the LCA, a “credit earned” approach
was employed in which students received credit for picking the correct keyed
responses and for avoiding the distractors. The idea behind this was to award
students with the most possible credit, especially since these are foundational
mathematics students who likely have at best partial knowledge of these concepts.
For example, if the keyed response was AB, a correct response would receive a
total of five points, two for selecting the keyed response and three for avoiding
the distractors. This awards low ability examinees with more credit than simple
dichotomous scoring.

Jaccard’s Distance as an Alternative Scoring Method to Number Correct
and Binary Credit This paper also explores using Jaccard’s distance as an
alternative partial scoring method for awarding partial credit to examinees for both
groups. Essentially, it can be used to measure how similar or different two words
or collections of words are from each other by comparing the letters within the two
words of interest or the combinations of words within phrases of interest (Stefanovič
& Kurasova, 2019). Jaccard distance between two sets, P, Q can be defined, using
set cardinality,

dJaccard (P,Q) = 1 − |P ∩ Q|
|P ∪ Q| (1)

The Jaccard credit function is simply the Jaccard similarity. It compares the
number of elements in the intersection between sets to the number in the union
and can easily be written as a function of the response coded as a binary vector (in
which xi is the chosen response and xkey is the keyed response):

γJaccard
(
xi, xkey

) = xTi xkey

xTi xi + xTkeyxkey − xTi xkey
(2)

Unlike the other metrics, the Jaccard metric reflects an asymmetry between
choice and non-choice. In particular, it does not give an examinee credit for avoiding
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Table 1 Credit function for
the discrete, Hamming, and
Jaccard metrics for N = 3
when A is the keyed response

Response Discrete Hamming Jaccard

∅ 0 2/3 0
A 1 1 1
B 0 1/3 0
C 0 1/3 0
AB 0 2/3 1/2
AC 0 2/3 1/2
BC 0 0 0
ABC 0 1/3 1/4

options the key does not call for; this is a particularly useful feature, particularly if
N is fairly large and the number of keyed responses is small and thus the number
of potential non-choices will dramatically outnumber the number of choices. There
are, of course, many other potential d functions (Legendre & Legendre, 2012).

In contrast to Jaccard’s distance, we also compare it with the Hamming distance.
This is typically used for two strings of characters or numbers of equal length to
calculate the number of changes needed to go from one to the other (Macleod, 1993).
In this case, Hamming distance aligns with the number correct scoring rule. Finally,
discrete distance is aligned with dichotomous scoring. In this system, the test taker
would get a 1 if they chose the correct keyed response and would get a 0 if they
chose any other answer pattern, even if the response contained the keyed response.
For the two administrations, 15.7% of the low ability students would have received a
1, if this item were scored with discrete distance, and 32.3% of high ability students
would have received a 1.

To understand the difference among these metrics we consider a simple MAMC
example where there are N = 3 choices with labels A, B, C in which the participant
can choose nothing, one, or more than one choice. In this case, possible responses
are ∅, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}, and {A,B,C}. For compactness, we will
write these more simply as∅, A, BC, etc. Assume that the keyed response is A. This
is in Table 1. As can be seen, the discrete metric only provides credit for the keyed
response. This is a clear scoring metric but loses most of the information about
the participant’s knowledge state, especially if they have incomplete knowledge
that could be revealed by the constellation of responses they did choose. Jaccard
is somewhat similar to the discrete metric but provides half credit for responses
that include A and have one incorrect choice and quarter credit for the response that
includes A and two incorrect choices. All other patterns receive 0 credit. By contrast,
the Hamming metric corresponding to total score is markedly different. Nearly all
response patterns are given some credit with many receiving 2/3 credit, including
the null response. Only failing to choose the correct response A and choosing the
incorrect responses BC receives 0 credit—a fact that occurs for all three rules, as
seems intuitive. In this context, this has the unfortunate property of giving partial
credit to most responses based on avoiding incorrect choices rather than making
correct choices.
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The three credit functions are reasonably strongly correlated, with Kendall’s
τβ near .6. Ordinally they are similar. However, Hamming always assigns higher
credit to any response pattern over Jaccard or discrete. This elevation of value is
driven primarily by zero-zero matches. As we can see, discrete and Jaccard avoid
the problem of zero-zero matches while Hamming suffers greatly from it. This
would be particularly true if N is large. In our empirical example, we will show
how important this is. As this table shows, the different credit functions assign
response patterns to equivalence classes. For instance, the discrete metric, quite
obviously, generates only two equivalence classes, while Jaccard generates four, as
does Hamming. However, the equivalence classes of Jaccard and Hamming appear
to be quite different, with Jaccard overall being much more similar to the discrete
metric. To what use should these points be put? They could be used as-is in a total
score representing fractional points. Alternatively, they could be used in an ordinal
response model, e.g., the generalized partial credit model (GPCM) or a sequential
IRT model. The Hamming metric approach would be sensible if the responses were
correlated. However, it is quite possible this is not true.

3 Results

3.1 Latent Class Analysis Results

The 13 MAMC items in the Fall 2016 version of the EACI were each treated
separately and analyzed using MPLUS (Muthén & Muthén, 2017). For Item A on
the Fall 2016 EACI, a four-class model fit best. Class 1 fit 33.16% of the respondents
and they were likely to receive credit for avoiding the distractors A, D and E and for
correctly picking choice C. Class 2 fit 18.45% of respondents with them most likely
receiving credit for avoiding distractor A, D, and E but only picking correct choice
B. Class 3 fit 26.74% of the respondents, but these participants were most likely
to receive credit for avoiding distractor D and E but not likely to receive credit
for correct responses. Finally, Class 4 represented 21.67% of the respondents; they
were likely to receive credit for avoiding distractor A and E but were not likely to
receive additional credit. Overall, it seems that the low-ability students are receiving
the majority of their credit by avoiding the distractors but are not earning credit for
choosing the correct answer pattern. Examining other items from the same dataset,
however, shows that the number of latent classes identified can differ markedly,
suggesting that the idiosyncrasies of individual items remain important.

For the Fall 2018 EACI administration, 59.87% of the participants were placed in
Class 1, which showed the examinees both being likely to receive credit for avoiding
distractors A, D, E and receiving credit for choosing the correct choices of B and C.
This suggests that the Class 1 participants are likely receiving the total amount of
points possible between the distractor avoidance and choosing correctly. Class 2 was
23.41% of respondents and represented a class in which the examinee was not likely
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Fig. 2 These diagrams show the probability of the response profiles across both the low and high
ability examinees for the LCA for item A

to receive credit for either avoiding the distractors or choosing the correct answer.
Finally, 16.72% of respondents were placed in Class 3, which was likely to receive
credit for avoiding distractors D and E but did not receive credit for anything else.
Overall, for this item, it seems that the high-ability students were able to correctly
choose the correct answer pattern, but that one class still benefitted from the credit
earned model (Fig. 2).

3.2 Jaccard’s Distance Results

Item Response Patterns In looking at Item A for the Fall 2106 administration,
more participants were likely to select the correct response pattern (15.74%);
however, choosing a single answer choice was still very likely with this sample
(59.39% of responses). Overall, the low ability sample tends to rely on single
choices, despite these being MAMC items. In looking at Item A for the Spring 2018
administration of the EACI, the most popular response pattern is the correct answer
choice BC (32.32% of the sample). Next, 41.40% of the response patterns were
again single answer choices. Overall, it seems as though the higher-ability sample is
more likely to select the right response pattern but is also fairly likely to answer with
a single choice, just like the lower-ability sample seen in the 2016 administration.

Jaccard’s Distance Results Next, Jaccard’s distance was calculated for both
administrations and this was plotted against the log frequency of each pattern (Fig.
3). Item A (2016) shows that there are a variety of different patterns for this sample
that all occurred with very small frequencies, but that the single answer choices were
extremely frequent. In looking at Item A (2018), the correct pattern happened far
more frequently, which changes the slope and width of the generated interval. This
graph also demonstrates the variety of response patterns, but it seems that the higher
ability sample are endorsing single choice patterns and there is higher frequency
endorsement of a variety of different patterns.
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Fig. 3 Log probability of the response patterns of each kind of response plotted against the
Jaccard’s coefficient

4 Conclusions and Next Steps

This paper aimed to explore two different methods of scoring and analyzing MAMC
items using two different samples of data that represented two different examinee
groups of varying ability levels. A LCA approach was used to classify learners into
different learner profiles which resulted in the lower ability examinee group tending
to receive the majority of their points through avoiding distractors. By contrast,
the high ability examinee group tended to receive credit through both choosing the
correct pattern and avoiding the distractors. Using the credit earned approach to
score these items was of strong benefit especially for the lower examinee sample
but also for the higher ability group.

Turning to the Jaccard’s distance method for scoring these MAMC items, this
showed that there were a variety of different patterns for responding to these items
and demonstrated that for both ability levels, the examinees were very likely to
choose a single choice, despite the item format. The plots of item response distances
against log probability demonstrated that there were a wide variety of response
patterns, but these varied by examinee group with the higher examinee group
having more dispersed probabilities relative to the response patterns. Overall, the
majority of the patterns with the smallest Jaccard’s distance included one or both
pieces of the keyed response, which demonstrates that these students had partial
knowledge and were endorsing partial knowledge choices. Across all groups, the
most popular choices were single-choice responses, but these frequently included
one of the correct answers. In addition, the Jaccard’s distance could easily be used
as a partial credit scoring algorithm by simply subtracting the Jaccard’s distance
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from 1 to award the partial credit. Using Jaccard’s distance also allows the examinee
to receive credit for what they do know relative to the correct response pattern such
that the test administrator/scorer can better understand the partial knowledge that
these examinees may have.

Overall, this item format seemed to be especially difficult for the low ability
sample and provoked a lot of anxiety and emotional distress for these examinees,
especially as seen through the cognitive interview results. For example, one student
said, “It’s very confusing to me. ... I don’t feel like it really gave me a clear
explanation of what it was looking for? . . . So I wasn’t sure, so I just didn’t pick
it, but I tried so I picked E.”. Overall, it seems that the lower ability group likely
has more math anxiety in general which can impact their performance on any math
exam (Maloney et al., 2013), and this item format is especially anxiety inducing,
which may have led to the low scores observed here.

Both the credit earned and Jaccard’s distance partial scoring algorithm give low
level examinees more credit than simple dichotomous scoring. Both models help
the test administrator/scorer to better understand the partial knowledge that the
examinees do have. In the current format, MAMC items seem to be difficult for
all examinees but are especially troublesome for low-ability examinees. One of the
largest issues across both ability levels was the examinees’ propensity to choose a
single choice despite the MAMC format. This may be due to a lack of familiarity
with this item type or the entrenched belief that there must be one right answer
on a Scantron format answer sheet. These items could be used for this novice
population; however, two improvements must be made to use this item format in
future research. The first improvement is to include a directions page that has an
example question that includes showing the examinee that they can mark multiple
responses on their Scantron sheet and that these math questions can have multiple
correct responses. Next, the MAMC items need to be written more formally such
that different response patterns more intentionally demonstrate shades of partial
student knowledge and address the kinds of mistakes students typically make. Since
the EACI is intended to ultimately be a pilot instrument for placing community
college students into remedial or mainstream math courses, if these items could be
designed more intentionally, this could better support educators in meeting these
students exactly where they are after being thoughtfully placed in the appropriate
course.

There are many implications for this line of inquiry. The largest is that the
Jaccard and LCA methods of item analysis could also be used for other novel item
types, such as sorting, multiple true false, or even certain kinds of matching items.
These analysis approaches could, in fact be used for any keyed response pattern that
includes more than one keyed response. This opens up the possibility of more novel
item types which can better help educators and test creators to understand the shades
of partial knowledge that students may have.
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Modified Method of Drawing Classical
ICCs Comparable to IRT-Based ICCs

Sayaka Arai and Gen Hori

1 Introduction

Classical test theory is still widely used in educational settings such as tests in
classrooms mainly because it can be applied even if the number of examinees is
small as well as its results are easy to interpret. In this study, we focus on line
graphs for analyzing the performance of test items based on classical test theory.
Hereinafter, we refer to those line graphs as classical item characteristic curves
(classical ICCs). Classical ICCs are also called “quintile item response chart” when
the examinees are divided into five groups. (cf. Kikuchi, 1999).

1.1 Classical ICCs

Classical ICCs are line graphs showing the correct answer rates to each test item for
groups of examinees divided according to the total score. In most cases, examinees
are divided into five groups. An example of a classical ICC is shown in Fig. 1.
Typically, classical ICCs are drawn as follows:

1. Examinees are divided into five groups (lower(L), lower-middle (LM), middle
(M), higher-middle (HM), and higher (H)) based on their total test scores.

2. For each item, the correct answer rates within the groups are plotted.
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Fig. 1 Classical ICC

When dividing into groups, examinees with the same score are assigned to the
same group. Therefore, sometimes it is difficult to divide them into groups of the
same size. When drawing a line graph, there is no specific rule about the lateral
coordinates of the points indicating each group. Usually, they are set at equal
intervals as in the case of drawing a bar graph.

Numerical tables containing the correct answer rates of the items within the
groups, from which classical ICCs are drawn, have been in use for a long time
(cf. Educational Testing Service, 1963). Also, classical ICCs have been in practical
use in actual testing organizations in Japan since the 1980s (Shimizu, 1983).

Several attempts have been made on improving ICCs so far. In addition to widely
used ICCs based on parametric IRT models, Ramsay (1991) introduced kernel
smoothing approaches to nonparametric item characteristic curves and Ramsay and
Wiberg (2017) proposed another method of drawing ICCs based on optimal scores.
Classical ICCs, which are the focus of this study, are drawn based on classical test
theory. The total test score used for grouping examinees is a test score calculated in
classical test theory, i.e. a simple summed score (number-right score) or a weighted
summed score, and is not the IRT ability scale.

1.2 Purpose of Study

Since classical ICCs are drawn using classical test theory, they have the same
advantages as classical test theory. They do not need to estimate the item parameters,
they can be used even for cases where the number of examinees is very small, they
can be easily drawn by simply connecting five points, and they are fairly useful
for understanding the characteristics of items. On the other hand, the limitations of
classical ICCs are that they are difficult to compare to IRT-based ICCs in a common
coordinate system and that they do not reflect group sizes even when group sizes are
not equal.

To alleviate those limitations, we propose a modified method of drawing classical
ICCs in the same coordinate system of IRT-based ICCs. By using the lateral
coordinates of the group points for representing the mean scale of the groups, we
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Fig. 2 Coordinates of group points of classical ICC

can draw classical ICCs in the same coordinate system of IRT-based ICCs reflecting
group sizes for cases where group sizes are not equal.

The rest of the paper is organized as follows. Section 2 introduces our proposed
method and calculates the mean scales of the groups which are required for
drawing modified classical ICCs using our proposed method. Section 3 evaluates our
proposed method comparing modified classical ICCs with and without information
of group sizes. Section 4 concludes the paper.

2 Proposed Method

2.1 Lateral Coordinates of Group Points

The purpose of the present work is to introduce a modified method of drawing
classical ICCs in the same coordinate system of IRT-based ICCs whose vertical
and horizontal axes show the correct answer rate and the scale. A classical ICC has
several points on it representing groups of examinees with the vertical coordinates
of the points showing the correct answer rates within the groups for the item. When
we draw classical ICCs in the coordinate system whose horizontal axis shows the
value of the scale, it is quite reasonable to set the lateral coordinates of the group
points to the mean scales of the groups. We propose a modified method of drawing
classical ICCs in which the lateral coordinates of the group points represent the
mean scales of the groups (see Fig. 2).

2.2 Score-Based Grouping and Scale-Based Grouping

To draw classical ICCs using the above proposed modified method, we need the
actual values of the mean scales of the groups, which are calculated by sorting
subjects according to their scores, dividing them into groups, estimating their scales,
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and averaging the estimated scales for each group. Such a procedure for the score-
based grouping requires the estimation of the scales while we aim to develop a
method for educators who do not have access to IRT software. Here we note that in
most cases, scores and scales are strongly correlated, hence the similarity between
the score-based grouping and the scale-based grouping, which is grouping based on
sorting according to the scales. As we will see in the following section, the analytical
calculation of the mean scales of the groups is tractable for the scale-based grouping.
In the present study, we approximate the score-based grouping by the scale-based
grouping.

2.3 Mean Scales of Groups for Scale-Based Grouping

In this section, we calculate analytically the mean scales of the groups for the scale-
based grouping, that is, we group the examinees based on sorting according to their
scales and calculate the mean scale for each group. Such groups correspond to
intervals of the scale and the mean scales of the groups are calculated by integration
on the intervals. We calculate the mean scales for a general case where the group
sizes are not necessarily equal.

We denote the number of the groups by K , the number of the examinees in the
k-th group by Nk , and the total number of the examinees by N = ∑K

k=1Nk . The
ratio of the k-th group is then Nk/N and the k-th cumulative ratio is

∑k
l=1Nl/N .

The scale θ is distributed according to the standard normal distribution,

θ ∼ N(0, 1), φ(θ) = 1√
2π

exp

(

−θ2

2

)

.

Then the thresholds of the scale dividing the groups are calculated from the
cumulative ratios as,

tk = Φ−1

(
k∑

l=1

Nl

N

)

, k = 1, . . . , K − 1, (1)

using the inverse of the standard normal distribution function,

Φ(θ) =
∫ θ

−∞
φ(z)dz.

We put t0 = −∞ and tK = ∞ for notational convenience. Using the thresholds, the
mean scale of the k-th group is defined as,



Modified Method of Drawing Classical ICCs Comparable to IRT-Based ICCs 363

Table 1 The values of the mean scales of five equal groups

μ1 μ2 μ3 μ4 μ5

−1.400 −0.532 0.000 0.532 1.400

μk =

∫ tk

tk−1

θ · φ(θ)dθ
∫ tk

tk−1

φ(θ)dθ

,

where the numerator is calculated as

∫ tk

tk−1

θ · 1√
2π

exp

(

−θ2

2

)

dθ =
[

− 1√
2π

exp

(

−θ2

2

)]tk

tk−1

= −(φ(tk)−φ(tk−1)),

while the denominator is Φ(tk)−Φ(tk−1) which leads to

μk = − φ(tk)− φ(tk−1)

Φ(tk)−Φ(tk−1)
, k = 1, . . . , K. (2)

With the mean scales of groups μk calculated from the group sizes using (1) and
(2) being the lateral coordinates of the group points, we draw our proposed modified
classical ICC (Fig. 3). In most cases, the group sizes are nearly equal to each other.
The values of the mean scales of five equal groups (N1 = N2 = N3 = N4 =
N5 = 0.2) are given in Table 1. We can calculate the functions φ(x), Φ(x) and
Φ−1(x) appeared in (1) and (2) using functions of standard spreadsheet softwares.
The appendix illustrates how to draw our proposed modified classical ICCs using a
standard spreadsheet software.

3 Evaluation

3.1 Performance Index

To evaluate the performance of our proposed method, we define the following
performance index,

1

K

K∑

k=1

|pirt(μk)− pprop(μk)|, (3)

which takes a smaller value when a modified classical ICC is closer to a correspond-
ing IRT-based ICC, meaning that our proposed method is effective.
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Fig. 3 Modified classical ICC with approximation by scale-based grouping

In the following sections, we compare two variations of our proposed method,
which we denote “prop1” and “prop2,” to show that our proposed method reflects
the information of group size properly in drawing modified classical ICCs.

– Proposed method 1 (prop1) : We setNk = 1

K
for all the groups, that is, we ignore

information of group sizes.
– Proposed method 2 (prop2) : We set Nk to actual group sizes.

We note that we can not compare conventional classical ICCs with our modified
classical ICCs because conventional classical ICCs do not have any specifications
for the lateral coordinates of their group points. Instead, we compared modified
classical ICCs based on equal groups assumption (prop1) and ones based on
actual group sizes (prop2) to show that our proposed method properly reflects the
information of group sizes.

3.2 Simulation 1: Examples of Modified Classical ICCs

We conducted simulation 1 to illustrate examples of modified classical ICCs using
generated response patterns to an example test with 20 items whose characteristics
are given by the three-parameter logistic model (3PLM) with item parameters shown
in Table 2. These parameters are randomly selected from the 100 items used in
Hanson and Béguin (2002).
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Table 2 Item parameters (simulation 1)

Parameters Parameters

Item a b c Item a b c

item1 0.642 −2.522 0.187 item47 1.012 0.421 0.288

item7 0.614 0.037 0.172 item55 0.561 −1.865 0.240

item13 0.839 1.514 0.170 item57 1.665 −0.036 0.109

item14 0.998 1.744 0.057 item61 0.804 −2.283 0.192

item22 0.799 −1.621 0.141 item65 0.892 −0.334 0.211

item36 0.620 −1.208 0.191 item67 0.891 0.157 0.162

item37 0.994 0.189 0.242 item69 1.206 −0.463 0.269

item40 1.715 1.592 0.096 item73 1.613 0.686 0.096

item45 0.953 −0.190 0.212 item81 0.965 −1.862 0.152

item46 1.022 −0.116 0.158 item93 0.893 0.496 0.100

We assumed that the examinees’ true score θ follows the standard normal
distribution, θ ∼ N(0, 1), and generated a single set of 100 examinees’ response
patterns using R package “lazy.irt” (Mayekawa, 2018). The test scores (number-
right scores) of 100 examinees were calculated based on the response patterns.
The correlation coefficient between the test score and the true scale θ was strong
(= 0.897), supporting our approximation of score-based grouping by scale-based
grouping.

We sorted examinees according to the test scores and divided them into five
groups , that is, we set K = 5. The numbers of examinees in the groups were
23, 22, 24, 16, and 15, respectively. Since we assigned examinees with the same
score to the same group, the number of examinees in each group was not exactly 20.

Examples of modified classical ICCs drawn using our proposed method are
shown in Fig. 4. As it can be seen from Fig. 4, for some items, the modified classical
ICCs are close to the IRT-based ICC (e.g., item 57 and item 61) while for other
items, the correct answer rates in each group were not arranged in order (e.g., item
47, item 69, etc.). Although they do not look appropriate, such cases appear where
the number of examinees in each group is small.

The values of the performance index (3) of prop1 and prop2 for all the items
are given in Table 3. Prop2 performed better for 12 items while prop1 performed
better for eight items. Among six items (37, 40, 45, 47, 57, and 65) that differed
greatly (more than 0.02) in the values of the performance index, prop2 performed
better for five items while prop1 performed better for one item. There was no clear
relationship between the performance of the proposed methods and item parameters.
The average values of the performance index for prop1 and prop2 were 0.076
and 0.071, respectively. On average, prop2 performed slightly better than prop1
exploiting the information of group sizes.
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Fig. 4 Examples of modified classical ICCs

Table 3 Performance index (simulation 1)

Item prop1 prop2 Item prop1 prop2 Item prop1 prop2

item1 0.037 0.032 item40 0.096 0.069 item65 0.109 0.085

item7 0.081 0.096 item45 0.137 0.115 item67 0.074 0.078

item13 0.066 0.054 item46 0.101 0.091 item69 0.118 0.112

item14 0.050 0.062 item47 0.114 0.092 item73 0.090 0.081

item22 0.053 0.054 item55 0.043 0.044 item81 0.044 0.043

item36 0.084 0.091 item57 0.019 0.046 item93 0.095 0.080

item37 0.095 0.061 item61 0.022 0.025
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3.3 Simulation 2: Evaluation of Proposed Method

We conducted simulation 2 to investigate the difference in performance between
prop1 and prop2 changing the settings such as the number of items and the number
of examinees. Simulation 2 is based on the repetition of simulation 1 with randomly
selected items and averaging the results for each setting.

We considered two factors (a) the number of examinees (100 and 500) and (b)
the number of items (20, 40, and 60) resulting in six settings (2 × 3 = 6) in total as
shown in Table 4. For each setting, we repeated trials that are the same as simulation
1 with the number of items and the number of examinees changed. For each trial, a
specific number of items are randomly selected from the same set of 100 items used
in simulation 1. We repeated the trials 100 times for each setting and averaged the
performance index.

The results are shown in Fig. 5 where the left-hand axis shows the average values
of the performance index (3) of prop1 and prop2 and the right-hand axis shows
the correlation coefficients between the test score (number-right score) and the true
score θ for the six settings. In all the settings, the correlation coefficient was greater
than 0.89 and prop2 outperformed prop1.

We see that the values of the performance index become smaller for a larger
number of examinees. Also, the difference between prop1 and prop2 becomes
smaller for a larger number of items. Particularly, the average values of the
performance index of prop1 and prop2 are almost the same when the number of
items is 80 (settings 3 and 6). These are considered to be because the effect of the
group size differences becomes relatively smaller for a larger number of examinees
as well as a higher resolution of the score due to a larger number of items.

3.4 Practical Example

This section presents the performance of our proposed method in practice using
real data of a mathematics test administered in a university (Hori, 2009). The test
consisted of 25 items and the number of examinees was 402. The data were analyzed
based on the two-parameter logistic model (2PLM). The item discrimination a

ranged from 0.40 to 1.67 and the item difficulty b ranged from -2.19 to 3.99. The

Table 4 Six settings in
simulation 2

Setting # of examinees # of items

1 100 20

2 100 40

3 100 80

4 500 20

5 500 40

6 500 80
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Fig. 5 Comparison of performance index and correlation coefficient

correlation coefficient between the test score (number-right score) and the true score
θ was very strong (= 0.993). We sorted examinees according to the test scores and
divided them into five groups (L, LM, M, HM, H). The numbers of examinees in
the groups were 95, 89, 58, 82, and 78, respectively.

Modified classical ICCs drawn using our proposed method are shown in Fig. 6.
The values of the performance index of prop1 and prop2 for all the items were
plotted in Fig. 7. Prop2 performed better for 19 items, prop1 performed better for
five items, and values of the performance index were almost the same for one
remaining item.

As it can be seen in Fig. 6, the modified classical ICCs resemble the 2PLM IRT-
based ICCs carrying the features of the curves such as slopes and locations. In Fig. 7,
the items are sorted in ascending order of the item difficulty b. We see from Fig. 7
that prop1 performs better for items with low difficulties (items 1–4) while prop2
performs better for items with high difficulties (items 5–23) whereas both methods
show almost the same performance for items with very high difficulties (items 24
and 25).

4 Conclusion

We proposed a modified method of drawing classical ICCs in the same coordinate
system of IRT-based ICCs. We evaluated our proposed method using numerical
simulation that compared modified classical ICCs based on equal groups assumption
(prop1) and ones based on actual group sizes (prop2). The results showed that
the classical ICCs drawn by prop2 was shown to be closer to the corresponding
IRT-based ICC than ones drawn by prop1 and indicated that our proposed method
properly reflects the information of group sizes. Through simulation 2, it was shown
that prop2 is more effective when the number of items is small.

The main advantage of our proposed method is that it connects the analysis based
on the classical test theory to the one based on IRT. Although the modified classical
ICCs do not represent the IRT-based ICCs directly, they resemble some features of
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Fig. 6 Modified classical ICCs for real data

the IRT-based ICCs, which allows us to interpret the item characteristics based on
IRT even in situations where the number of examinees is limited and therefore only
classical ICCs are applicable.

The present study has two limitations. First, we did not compare conventional
classical ICCs to our modified classical ICCs because there is no specification for
lateral coordinates of group points in conventional classical ICCs, which made
a straightforward comparison in our simulations impossible. Second, we did not
indicate how small the performance index should be, which we leave to our
future study including analysis on the distribution of the performance index. In
the present study, we used number-right scores as the test scores, which can be
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extended to weighted summed scores as well as optimal scores (Ramsay & Wiberg,
2017; Wiberg, Ramsay, & Li, 2019). Our future study includes the analysis and
simulations based on those extended test scores.

Appendix

This appendix illustrates how to draw our proposed modified classical ICCs
using a standard spreadsheet software. The figure below gives an example using
Microsoft Excel in which columns C and D display the ratios and cumulative
ratios of the groups calculated from the group size data entered in column B.
According to (1), the first threshold t1 in cell E2 is calculated from the first
cumulative ratioN1/N in cell D2 using a spreadsheet function NORM.S.INV(D2)
that calculates Φ−1(N1/N), which is then copied to cells E3-E5 for calcula-
tion of other thresholds t2, t3, and t4. According to (2), the first mean scale1

μ1 = −φ(t1)/Φ(t1) in cell F2 is calculated from the first threshold t1 in
cell E2 as -NORM.S.DIST(E2,FALSE)/NORM.S.DIST(E2,TRUE) where
NORM.S.DIST(X,FALSE) and NORM.S.DIST(X,TRUE) calculate φ(x) and
Φ(x), respectively. The second mean scale μ2 = −(φ(t2)−φ(t1))/(Φ(t2)−Φ(t1))

in cell F3 is calculate from the first and second thresholds t1 and t2 in cells E2 and
E3 as

-(NORM.S.DIST(E3,FALSE)-NORM.S.DIST(E2,FALSE))
/(NORM.S.DIST(E3,TRUE)-NORM.S.DIST(E2,TRUE)),

which is copied to cells F4 and F5 for calculation of the mean scales μ3 and μ4. The
last mean scale2 μ5 = φ(t4)/(1−Φ(t4)) in cell F6 is calculated from the last thresh-

1Note that φ(t0) = 0 and Φ(t0) = 0 hold since we put t0 = −∞.
2Note that φ(t5) = 0 and Φ(t5) = 1 hold since we put t5 = ∞.
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Fig. A.1 A modified classical ICC drawn using a spreadsheet software

old t4 in cell E5 as NORM.S.DIST(E5,FALSE)/(1-NORM.S.DIST(E5,TRUE)).
The modified classical ICC is drawn by selecting the values of the mean scales and
the correct answer rates in F2-G6 and inserting a scatter plot with connecting lines
(Fig. A.1).
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Ontological and Methodological Barriers
to the Incorporation of Event Data
in Psychometric Models

Tiago Caliço

The increased use of information technologies in education, and particularly
educational assessment, has led to the collection of large data sets documenting
the actions taken by users of digital platforms in the pursuit of common learning
goals, such as navigating a learning management system or completing a digital
assessment. Such data are understood to be of interest to research and development
in educational assessment, as they have the potential to be evidentiary sources
in support of an assessment’s validity argument. More crucially, the analysis of
data collected on students’ task-solving behavior opens the door to the creation
of tasks, scoring procedures, and measurement models that focus on task-solving
strategies and approaches, rather than on the narrower facet of correctness (Levy,
2012). These data, commonly referred to as “process data”, simultaneously hold
the potential to fundamentally reconceive the form, focus, practice and use of
educational assessments, while challenging the limits of well-established and
understood methodological approaches and psychometric methods (Levy, 2020).

However, as every other emergent discipline, research on such behavioral data
does not yet benefit from the existence of agreed upon methods, tools or even
terminology. Conceptual uncertainty reflects the need to rehearse methods taken
from disciplines such as Computer Science, Artificial Intelligence, or Machine
Learning, and evaluate their appropriateness to address questions specific to educa-
tional assessment and psychometrics. However, the lack of an agreed upon minimal
definition of what constitutes “process data”, what distinguishes them from other
data and what that implies for the design and use of assessments is a barrier to
building a shared knowledge base, as well as expectations about what “process data”
are and how they should be used.
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In this paper I argue for necessary, but likely not sufficient, conditions for the
advancement of research on the use of behavioral data captured in the context
of digital assessments. I reason from the standpoint that the overabundance of
terminology in the field is an indicator of conceptual confusion and a hindrance
to knowledge accumulation. In the next section I illustrate how the proliferation of
terms is at the same time the product of methodological exploration and a reflection
of the absence of an ontological foundation. I then propose a general ontology that
can easily accommodate behavioral data generated in the context of any educational
assessment. In the second and final section, necessary conditions for productive
knowledge building and sharing are proposed.

1 Ontological Difficulties: What Is Meant by “Process
Data?”

One of the fundamental challenges to the advancement of research on the use of
process data is the lack of a clear and well-understood conceptual framework, or
ontology, to which practitioners with different methodological backgrounds can
refer. The word ontology can be used in a broad or restricted sense. In its broader
sense, ontology is the branch of philosophy that focuses on the study of the nature
and structure of elements of reality. Put another way, ontology studies which
elements, or attributes, belong to any given entity because of that entity’s very nature
(Guarino, Oberle, & Staab, 2009). Of more interest is its restricted sense, commonly
used in Computer Science: a way to formally describe which entities compose a
system, how they relate to each other, which of these entities and relations are
relevant to particular purposes, and how they should be modeled.

A good example of an ontology in the latter sense is the Conceptual Assessment
Framework (CAF), proposed by Mislevy, Steinberg, and Almond (2003) on their
work on Evidence Centered Design (ECD). The CAF posits that there are five
main components that constitute an assessment’s design: a competency model, an
assembly model, a task model, a presentation model, and, critically, evidence iden-
tification and accumulation models. Each of these models provide an abstraction
layer, or representation, of artifacts or processes in an assessment blueprint that can
be realized in different ways. The existence of a competency model in the CAF
prescribes, or reflects, the fact that any assessment begins with a description of what
is to be assessed. The theoretical framework which guides that work is beyond the
scope of the CAF.

It is this high level of generality at which ECD describes assessment development
and deployment cycles that makes it a powerful tool for practitioners with different
theoretical backgrounds to productively communicate their experiences and build
a common knowledge base. The CAF achieves this goal by abstracting away from
individual assessment design practices and collecting those aspects that are common
across all instances into a single, general, yet well-defined representation.
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Research into process data lacks this ontological clarity and therefore requires
specialized conceptual and methodological tools. What uniquely distinguishes
such data from more conventional data sets, such as scored item response data?
Do process data fit into currently established assessment practices, particularly
regarding methods for evidence identification and accumulation? What in process
data is germane for assessment purposes and must therefore by judiciously collected
and modeled, and what is merely epiphenomenal? The answers to questions such as
these will guide the procedures to building an ontology of so-called “process data”:
a general definition of what data on the behavior of test takers engaged with a digital
assessments are, in terms of their constituent parts, interplay with other data sources,
and analytic use. In the following subsection I present several terms commonly used
to refer to such data and explore how they reflect an incomplete understanding of
the nature of “process data” while simultaneously providing important clues on its
unique nature and use.

1.1 Terminological Overabundance as Evidence
of an Emerging Understanding

Because the data commonly referred to as process data are usually of a more
complex nature than conventional educational data sets, it is no surprise that
inchoative attempts at their definition hinge on research teams’ choice of analytic
tools, intended uses of the analyses, or data generation mechanisms. The following
examples are intended not only to demonstrate how the terminological proliferation
came into being but also present good illustrations of the breadth of scope of the
content domains and intended use, as well as analytic approaches used in digital
assessments, all of which depend in some manner on insights from event data for
their value proposition. The interested reader is encouraged to consult the references
in this section.

The most commonly used term to refer to these data is of course “process
data,” which can simultaneously, and ambiguously, refer to the domain to which
one wishes to make inferences and the observed data generation process. For
example, H. Liu, Liu, and Li (2018) analyzed a “process data file” generated in
an interactive problem-solving task in order to make inferences about students’
cognitive processes by using a multilevel mixture IRTmodel. However, if the goal of
collecting data on how test-takers interact with an assessment is to make inferences
about cognitive processes, no data set by itself will be sufficient. What may provide
insights about cognitive processes is the judicious and principled integration of a
cognitive model, task specification, behavioral data capture, and its use through
appropriate evidence identification and accumulation models.

More recently, there seems to be a move to use the more empirical and less
aspirational term “response process data” (Ercikan, 2017; Ercikan, Guo, & He,
2020; Levy, 2020), possibly in an attempt to convey that the data reflect, at best,
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the observed response process and not necessarily the latent cognitive process that
generated the observed behavior. In either case, the term itself still does not provide
clear clues about what such data are, in terms of their nature, content, internal
and external relations, or structure. What, if anything, can be inferred from the
term is that these are data about observed behavior, which may, under some set
of circumstances, provide evidence about unobservable cognitive processes.

Some authors favor terms that reflect the method used to interact with the
assessment. One such example is “keystroke data” (von Davier & Mislevy, 2016). It
would be expected that, in assessments dependent on keyboards as the main method
of interaction, the term “keystroke” would be a substitute for “event”. That is the
case of the research reported in DeMark and Behrens (2004), in which students
had to configure computer network equipment by issuing commands in a simulated
terminal. Almond, Deane, Quinlan, Wagner, and Sydorenko (2012) also report on
the use of keystroke data to derive inferences about a task that in the modern day is
almost exclusively done through a computer keyboard: writing.

A related example is the use of the term “click-stream data” (Owen, Ramirez,
Salmon, & Halverson, 2014), as pointing devices are still a privileged method
of interaction with computer interfaces. In Mohan, Bergner, and Halpin (2020),
students’ interactions with a learning management system were analyzed in an
effort to elicit evidence of collaborative problem solving. The authors referred to
records of these interactions as “click-stream data”. Such examples are an attempt
to denote a qualitative aspect of process data, that they are the product of recording
a specific kind of behavior: the actions taken by the user of a computer system’s
interface in the pursuit of an educational goal. The term does lack in generality
however, as in the case of certain simulation applications, the interface may not be a
general-purpose computer interface. Take the research reported in Koenig, Lee, and
Iseli (2016a,b), in which Navy pilots are trained and assessed on specific tasks by
means of a rather complex fac-simile simulator of the interface used in real-world
tasks. Even though the actions taken by these students cannot be considered logs
of keyboard or mouse use, clearly they have something in common with such data
in their ability to provide insights about task-solving behavior in the context of an
appropriate interface.

Other terms denote the perspective of monitoring a system’s behavior. That is
the case of the term “telemetry” (Chung, 2015). As the Greek root of the name
indicates, telemetry is the remote monitoring of a system’s performance. The
system may be subject to the inputs of one or more human agents, but it may
also operate autonomously. The purpose of telemetry is to document the system’s
performance over time and compare it to known operational parameters. The
goal in educational assessment is simultaneously broader and more precise. When
recording the interactions of a student (the agent) with a digital assessment (the
system), it is the behavior of the student that is of interest, whilst the performance
of the system itself is assumed to be known or always within parameters. That is not
to say the collection of data on the operation of a digital assessment should focus
exclusively on the behavior of its human agents at the expense of collecting other
information that can inform the system’s validation and improvement. Rather, the
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point is that by using the term telemetry, the focus shifts from the student’s behavior
to the more general documentation of the system’s performance.

Some researchers focus on particular facets, or attributes, of process data. The
term “timing data” is one such example. One of many possible attributes of the
actions taken within an interactive computer system is the moment of occurrence.
Usually this attribute is recorded as either a time stamp, or as the cumulative elapsed
time since the beginning of the task and the moment in which the action occurred.
Analyses on the time elapsed between actions can potentially inform test developers
and users on test- or task-taking strategies. In He, Davier, and Han (2018), event
data from two large-scale survey assessments were used to derive feature variables
that could be used to sort students into task-solving types. Some of those variables
focused exclusively on aspects related to time, such as total time spent on an item,
or elapsed time before a specific action was taken. Similarly, Lee and Haberman
(2015) distinguished between “timing” and “process” data in their exploration of
how examinees behave in a large-scale international language assessment. It is
however a rather specific perspective on behavioral data, as it focuses on elapsed
time between student actions, or cumulative time spent in a particular item. One
can therefore argue that “timing data” are not a category of data per se, but rather
a specific perspective on behavioral data, which is of little use without the context
that other aspects of the captured behavioral data provide.

Finally, a good example of how the field has tentatively conveyed meaning
through sometimes imprecise terms, is the use of the term “log data”, and the
rather vague “log data analyses”. Usually, the performance of a computer system
is documented in logs, which may be serialized in files. However, it is important
to make a distinction between the conceptual entity (the log and its constituent
parts) and its operationalization. Simply, there is a difference between the method
“multiple linear regression” and its implementation as a computer routine, like
the lm() function in the R programming language. Although the latter could
not exist without the former, the concept itself can exist and be reasoned about
without referring to any particular implementation. Conversely, records of students’
behaviors can be collected, stored and transmitted through a multitude of methods,
of which individual computer files are but one. The term “log” is ambiguous on its
definition of the data’s nature. What should be minimally expected of a log [file]
and how does that relate to other data and evidentiary sources?

1.2 Towards a General Approach

From the brief review above it is possible to conclude that several of the terms
currently used in the literature touch on different aspects of the nature and use of
behavioral assessment data, but rather than describing and distinguishing them from
more conventional assessment data, these terms focus on aspects of data generation,
intended use or analytic method. Amore general and descriptive approach is needed,
and in fact achievable. It is my belief that researchers should refer to behavioral data



378 T. Caliço

collected in the context of digital assessments using terminology that is descriptive,
rather than aspirational, general, and precise.

The focus on data collection in any digital assessment is the student’s interaction
with the interface with the goal of completing a well-defined (set of) goal(s).
The interaction consists of discrete actions, which can be executed using distinct
means, from a simple mouse and keyboard, to touch-sensitive screens, or interfaces
that approximate real-world circumstances. The actions have at the minimum the
properties of order and identity. That is to say, for every action, at the very
minimum it is necessary to know when it was executed in relation to proceeding
and succeeding actions, and what that action was. In almost every application,
student actions will be identified and marked with a time stamp that fulfills the
order requirement while providing more granular information, as well as with a
varying array of descriptive attributes that provide essential semantics to the action.
For example, the actions “clicking on a response choice” and “scrolling on a page”
will share the minimal properties of identification and moment of occurrence, but
will also have action-specific attributes, such as selected option, or final position of
the scroll.

2 Moving Forward: Necessary Conditions for Building
Shared Knowledge in Process Data Research

What are therefore the necessary conditions for effective, unambiguous, and
productive knowledge sharing in the field of process data? As a motivating example,
consider the data set at the base of the seminal work reported in Tatsuoka (1985),
and its impact on the advancement of Diagnostic Classification Models (DCM) in
the past 15 years. Without this well-know and easily accessible data set, much of
the literature on DCMs would have been harder to produce and to evaluate. The
existence of a “gold-standard” data set not only promoted novel investigations, it
simplified its evaluation in relation to previous efforts.

The importance and utility of Tatsuoka’s data set stem from four main char-
acteristics. The first is its ontological clarity: the data set is easy to understand,
as it records scored answers to items. The only ontological entities are “item”,
“student”, “response” and “correctness”. The second characteristic is simplicity of
serialization. Because the data set is essentially a two-dimensional array, simple
and informal serializations, such as comma-delimited files, were sufficient to
economically share it. The third characteristic is freedom, or openness. The data
set is popular not only because its contents were made available for free, but also
because its form was unencumbered by licensing or patent considerations. Finally,
the data set was not only easy to understand and share, its generation mechanism
was well understood. The theoretical framework underpinning the items’ design was
extensively documented, and therefore it was possible to establish the conditions
in which its use was defensible. These four characteristics compose the basis for
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necessary conditions for productive knowledge sharing on process data and its role
in educational assessment.

General purpose data ontology. The first condition is a general-purpose data
ontology that is general enough to accommodate a vast array of assessment
applications, while being flexible enough to incorporate unique aspects of any
particular application. The field of Business Process Mining (BPM, van der Aalst,
2011) provides an ontology that can be adapted to educational process data. BPM
focuses on the extraction of actionable information on the way business and
industrial processes are executed, with the goals of improving efficiency, checking
conformance to established parameters, improving process design, or analyzing how
individual agents differ in their approach to process execution.

Its data ontology builds on four basic entities: events, traces, logs and attributes,
which can be generalized to any kind of process, so long as its execution is done
through a computer system that facilitates the process execution while unobtrusively
recording the actions of all participating agents. A data ontology that is this
general, while precise, is the first conceptual tool for practitioners to build a
common knowledge base without sacrificing attention to specific analytic goals,
or operational choices. Importantly, the core concept in the BPM data ontology, the
event, covers all the important facets identified in Sect. 1. An event is the atomic
element that constitutes the log of any process execution. It is a digital translation
of an action taken by an agent, human or software logic, engaged in the process’
execution. It is multidimensional in the sense that it has several attributes: identity,
moment of execution, and event-specific characteristics that expand its semantics.

Applications of the BPM data ontology, as well as of its analytic methods, can be
found in fields as diverse as software development (C. Liu, van Dongen, Assy, & van
der Aalst, 2018), emergency room administration (Mannhardt, de Leoni, Reijers,
van der Aalst, & Toussaint, 2018), or processing traffic violation fines (Mannhardt,
de Leoni, Reijers, & van der Aalst, 2017). The BPM ontology provides the minimal
conceptual apparatus to reason precisely about “process data”.

General purpose data serialization. Once a data ontology is established, it is
necessary to operationalize it in some physical format that is suitable for economic
transmission. That is to say, it is necessary to have a data serialization. Unlike
tabular data such as the Tatsuoka data set, event data are multidimensional and
nested. Each event exists in the context of a unique process execution. One or more
agents may be involved in its execution, for example, in the case of collaborative
problem solving. More crucially, each event class holds its own set of attributes.
Clearly a simple tabular representation is inadequate, a more formal and complex
format is required.

Although some research exists proposing relatively general data serialization
formats for the purpose of sharing process data (e.g., Hao, Smith, Mislevy, von
Davier, & Bauer, 2016), one should be careful to avoid solutions that impose
licensing constraints, such as patented and proprietary data formats. Recall that
the Tatsuoka data set is commonly made available through a simple and free data



380 T. Caliço

serialization format. Meaningful progress in the sharing of educational assessment
event data requires the same degree of freedom, without limiting researchers by
having to pay an implicit “data format tax” to the owners of the patents on any
specific serialization. Recall that something being made available without there
being an explicit charge does not necessarily imply the freedom from commercial
licensing terms, or that fees will not be applied in the future, when a proprietary
format becomes the de facto standard in the field.

Fortunately, the field of BPM also offers a solution to this problem, in the form of
the Extensible Event Stream (XES) data format (IEEE, 2016). This format, adopted
as the standard for event data by the Institute of Electrical and Electronics Engineers,
establishes the minimal structure for any event log as well as the means to define
and expand the semantics of its components.

General purpose, analytic tools. Data sets are of little use without analytic tools,
specifically software. It is a common practice for commercial software developers
to encourage the use of their products by tying them to proprietary data formats. The
use of free and open-source data formats such as XES encourage the development
of analytic tools, proprietary or open-source, by providing a level playing field.
Consider the developments in CDM modeling and analysis in the past 10 years
alone, in which commercial tools such as Mplus (Muthén & Muthén, 2017), or
the open-source R package CDM (George, Robitzsch, Kiefer, Groß, & Ünlü, 2016),
benefited from the existence of a free data format. The XES format has the potential
to foster this type of innovation, simplifying data exploration and its inclusion as
an evidentiary source in psychometric models. By leveling the playing field with a
general data format, researchers can focus on creating tools that simplify common
analytic tasks (e.g., computing response times), thereby freeing resources for more
foundational research.

Freely available, high-quality “gold-standard” data sets. Finally, high-quality
data sets must be made available to the general research community. The existence
of a common data format simplifies this goal but is not sufficient by itself. Regu-
latory and economic considerations complicate data sharing. First, data collection
is an expensive and involved process, that occurs in the context of commercial
testing, government surveys, or research development. There are few incentives
for commercial entities to share event data, as they constitute a competitive edge.
Government may have a role in this regard, as event data are now routinely collected
in the context of survey assessments such as the National Assessment of Educational
Progress (NAEP). The regulatory context may condition data sharing, due to privacy
concerns, although these may be addressed through rigorous implementation of data
anonymization and other data security procedures.

The field would benefit from the availability of event data sets that reflect a wide
variety of assessment practices, such as survey, high-stakes, games- and simulation-
based assessments. Such data sets must be complemented with access to their
respective student and task models, as well as the specific items that originated the
data, providing the necessary context for interpreting results.
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3 Conclusion

The first necessary condition for the building of a shared repository of knowledge
is the establishment of common terminology. Ontologies are a way to abstract and
systematize the essential elements of any field of inquiry, carving out a conceptual
space by identifying core elements of interest, characterizing their essential features
and establishing basic interrelations. Research on the use of behavioral data gener-
ated through digital assessments is still lacking this basic level of systematization. A
clear data ontology for event data will open the way for more fruitful foundational
research, collaboration, dissemination, and methodological advancement. Simple,
yet powerful, ontologies already exist that can be easily adapted and extended to the
field of educational testing. Their adoption, alongside principles of openness and
collaboration, have the potential to positively impact developments in the field while
avoiding risks of market capture by incumbents or technological fragmentation.

It should be noted, however, that the four minimal conditions presented in this
paper are not sufficient for there to be meaningful progress in the assessment
and psychometrics fields in what relates to the principled use of behavioral data.
Although interactive, digital assessments may provide an opportunity to dramati-
cally broaden the nature and scope of what constitutes an educational assessment,
they bring their own unique challenges, while reframing old ones. From a practical
standpoint, the integration of multidisciplinary teams is of critical importance. Like
any other form of assessment, digital assessments can only fulfill their promise when
there is a tight coordination between all involved experts. For psychometricians
this means that it is necessary to be fluent in concepts and technologies related
to Computer Science, in particular data generation and capture. Leaving decisions
about instrumentation exclusively to team members who are responsible for their
implementation will more often than not result in expensive collection efforts that
return data of little to no inferential value.

From a socioeconomic standpoint, other conditions must be met so that data and
knowledge can flow relatively unencumbered. Issues of student privacy, as well as of
economical equity and fairness, when sharing event data must be urgently addressed
in a serious and deliberate manner. Learning and assessment data generated in
digital platforms have an inherent monetary value, as they can guide product
development and competitiveness. Who gets to extract and benefit from that value
is an ethical issue which, particularly in the case of public education, can not be
trivially addressed and must be weighed against legitimate business interests. This
issue is more pressing as the cost of developing high-quality digital assessments
may surpass that of more traditional forms.
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Psychometrics for Forensic Fingerprint
Comparisons

Amanda Luby, Anjali Mazumder, and Brian Junker

1 Introduction

“Forensic science” is a broad field that consists of many different scientific
disciplines that are used in a legal context. These scientific disciplines range from
highly objective, such as single-source DNA analysis, to highly subjective, such
as bite mark analysis. Forensic science relies on forensic examiners, who are
responsible for determining whether a piece of evidence left at a crime scene came
from a particular source. Depending on the type of evidence, this process may be
nearly automatic and consistent across examiners or vary considerably depending
on the examiner performing the analysis. For many disciplines, examiners report
their results as an expert opinion of one of three outcomes: the suspect is the source
of the evidence (known as an identification or individualization),1 the suspect is
not the source of the evidence (known as an exclusion), or that the analysis was
inconclusive (Stern, 2017).

This work focuses on fingerprint evidence, in which a forensic examiner
compares a latent fingerprint (e.g. from a crime scene) to one or more reference

1An ‘individualization’ is an ‘identification’ to the global exclusion of all others (OSAC,
2017). Following Ulery et al. (2011), we use ‘individualization’ and do not distinguish between
‘individualization’ and ‘identification’.
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prints to determine whether they came from the same source or not. The standard
operating procedure for analyzing fingerprint evidence is a series of steps known
as ACE-V (Analysis, Comparison, Evaluation, Verification), but each step in the
ACE-V process is a complex task involving many different factors (see, e.g., OSAC,
2019 for details), and forensic examiners may vary in their approach to the ACE-
V process. They may have different standards for the quality or clarity of latent
fingerprint needed to perform an analysis, may select different fingerprint features
(called minutiae) on which to base a comparison, and may have different thresholds
for the degree of similarity required to declare an individualization (or exclusion).

The current approach to characterizing uncertainty in examiner decisions has
focused on the calculation of aggregated error rates across all examiners and
identification tasks. This approach is not ideal for comparing examiner performance,
as examiner decisions are not always unanimous, and error rates are likely to
vary across identification tasks depending on the difficulty of the comparison. The
variation in examiner decisions alongside the variation in task difficulty makes this
application conducive for Item Response Theory (IRT) and related psychometric
models (Kerkhoff et al., 2015; Luby et al., 2020).

However, standard IRT approaches must be adapted for this type of data. First,
responses are not keyed as ‘correct’ or ‘incorrect’ by the test provider. While we
may infer that an individualization of a same-source print is ‘correct’, and an
exclusion of a same-source print is ‘incorrect’ (and vice-versa for different-source
prints), it is unclear how ‘inconclusive’ responses should be treated. For example,
an inconclusive on a low-quality print may be considered the ‘correct’ decision, but
an inconclusive on a high-quality print may be considered an ‘incorrect’ decision
since a potential individualization or exclusion was missed. Second, fingerprint
comparisons consist of a series of sequential steps. Collapsing the decisions made
at each of these steps into a single response ignores the conditional structure of the
responses and results in the loss of information about variation at each step of the
process. We propose the use of the Item Response Trees framework (IRTrees, De
Boeck & Partchev, 2012) as a solution to these issues.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the
FBI Black Box Study (Ulery et al., 2011), which is the source of the data used
throughout the paper. In Sect. 3, we introduce the IRTrees framework and a model
for the fingerprint comparison task. Results are briefly described in Sect. 4, and
limitations and future work are discussed in Sect. 5.

2 Data

The FBI Black Box study (Ulery et al., 2011) was the first large-scale study
performed to assess the accuracy and reliability of fingerprint examiners’ decisions
in the United States. One-hundred and sixty nine latent print examiners were
recruited for the study, and each participant was assigned roughly 100 items from
a pool of 744. Each item consisted of a latent print (fingerprint of unknown source
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lifted from, e.g., a crime scene) and a reference print (fingerprint of known source
taken under idealized conditions). The latent prints were designed to include a range
of features and quality similar to those seen in casework and to be representative of
searches from an automated fingerprint identification system.

The study provided an estimate of the aggregated false positive rate (0.1%) and
false negative rate (7.5%) in casework. In addition, each recorded response to an
item consists of results from the following decisions:

1. Latent evaluation: the examiner’s evaluation of whether the crime scene print is
of No Value, Value for Exclusion Only, or Value for Individualization.

2. Source decision: the examiner’s decision of whether the pair of prints is an
Exclusion (different sources), Individualization (same source), or Inconclusive.

3. If inconclusive, one of:

– Close: The correspondence of features is supportive of the conclusion that
the two impressions originated from the same source, but not to the extent
sufficient for individualization

– Insufficient Information: Potentially corresponding areas are present, but there
is insufficient information present.

– No Overlap: No overlapping areas between the latent and reference print

4. If exclusion, one of:

– Pattern: The exclusion determination could be made on fingerprint pattern
class (the overall shape of the fingerprint ridges) and did not require the use
of minutiae (the small details in the fingerprint).

– Minutiae: The exclusion determination required the use of minutiae .

5. Difficulty (Five-point scale)

Note that due to conflicting responses in the latent evaluation stage, we do not
distinguish between value for individualization and value for exclusion only for
this analysis, and treat the latent evaluation as a binary response (Has value vs No
value) instead. We also base our analysis on OSAC (2019), and pool the Insufficient
Information and No Overlap inconclusives into one category.

While the study emphasized estimating casework error rates and therefore
focused on the source decision, important trends in examiner behavior are also
present in the other decisions. For example, latent print examiners vary in their
tendencies towards ‘no-value’ and ‘inconclusive decisions’. Figure 1 shows the
distribution of the number of inconclusive and no value decisions reported by each
examiner. Although most examiners report between 20–40 inconclusives and 15–35
‘no value’ responses, some examiners report as much as 60 or as few as 5.

Furthermore, there are some items which examiners largely agree on, and other
items where there is substantial disagreement. Figure 2 shows an example of one
high-disagreement item (left) and one low-disagreement item (right). Each column
represents one of the sub-decisions made for each item assessment: (1) latent
evaluation, (2) source decision, and (3) reason for the decision. We note that, even
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Fig. 1 Number of inconclusive and no value decisions reported by each examiner

Fig. 2 An illustration of how examiners responded to a high-disagreement item (left) and low-
disagreement item (right) for each of three sub-decisions (latent value, source decision, reason for
decision)

for the item on the right for which examiners largely agreed, there is still some
disagreement in both the source decision and the reason.

By modeling these responses explicitly, we can assess individual differences
among examiners in their tendencies to make latent evaluations, source decisions,
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and reasons for decisions. Similarly, we can measure the variation among items for
each stage in the decision-making process.

3 Item Response Trees

Item Response Trees (IRTrees, De Boeck & Partchev, 2012) use decision trees to
describe hypothesized cognitive processes, where the leaves are the final observed
outcome. The IRTree formulation can represent a wide variety of response formats
and response processes, easily adapted for binary responses, unipolar scales, bipolar
scales, and Likert responses (Jeon & De Boeck, 2016). In the forensic science
setting, IRTrees are useful for representing the sequential decision-making process
explicitly (Luby et al., 2020).

Figure 3 illustrates a basic IRTree model for a response with three possible
outcome categories (e.g. Y = 1, 2, 3), where Y ∗

1 and Y ∗
2 are nodes constructed to

represent internal decisions that lead to each of three outcomes. If Yij denotes the
response of participant i (i = 1, . . . , I ) to item j (j = 1, . . . , J ), Y ∗

1ij denotes the
choice of left or right branch at Y ∗

1 for person i at item j .
The probability of choosing the left branch at node 1 (Y ∗

1 in Fig. 3) can be
modeled using standard IRT models. We use the Rasch model at binary nodes for
interpretability and computational convenience: P(Y ∗

kij = 1) = logit−1(θki − bkj ),
where θki denotes the latent trait involved with choosing the left branch at node k
for person i and bkj is the corresponding Rasch parameter for item j . In a standard
Rasch model for correct/incorrect outcomes, the item parameters (bj ) correspond
to the difficulty of the item, where higher values of bj decrease the probability
that Yij = 1. When IRTree branch decisions do not correspond to incorrect/correct
choices, the item parameters represent an “item tendency” towards one branch over
the other rather than difficulty.

The model for the probability of choosing the left branch at Y ∗
2 is similar, except

it is conditional on Y ∗
1 being equal to zero (i.e. we model P(Y ∗

2ij = 1|Y ∗
1ij = 0)

instead of P(Y2ij = 1)). The probability of each observed response (Outcome 1, 2,
or 3) is then the product of the probabilities of the internal branches leading to each
leaf in the tree (Fig. 3 right).

Fig. 3 Example IRTree model tree structure (left) and outcome probabilities (right)
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3.1 Model for Fingerprint Comparisons

We use an IRTree model (Fig. 4) constructed using the OSAC Process Map (OSAC,
2019). The constructed IRTree is a necessary simplification of the process map
based on the available data in the Black Box study. There are many decisions
represented in the Process Map, but there is no way to reconstruct many decisions
based on the responses that were recorded in the Black Box study. We also note that
not every examiner uses the Process Map for every decision, and that processes may
vary by agency.

Each node is parameterized using a Rasch model with bkj = β0k + β1kXj + εkj ,
where Xj = 1 if item j is a true same-source pair and 0 if item j is a different-
source pair.

We take a Bayesian approach to estimation, which allows us to estimate posterior
distributions for all participant and item parameters simultaneously. The IRTree
model was implemented in Stan (Stan Development Team, 2018a,b) using R (R
Core Team, 2013). Multivariate normal distributions were chosen for θ and b. Other
parameter distributions were chosen based on recommended priors for efficiency,
and all code is publicly available.2

θ i ∼ MVN5(0, σθLθL
′
θσθ ),

Lθ ∼ LKJ(4),

σb ∼ Half − Cauchy(0, 2.5),

bj ∼ MVN5(βXj , σbLbL
′
bσb),

Lb ∼ LKJ(4),

σb ∼ Half − Cauchy(0, 2.5),

βk ∼ N(0, 5).

Fig. 4 The OSAC Process Map IRTree. Nodes are colored to match the corresponding plots in
Fig. 5

2github.com/aluby/imps2020

http://github.com/aluby/imps2020
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Here Xj is the column vector (1, Xj )
′, β = (β1, . . . ,β5) is the 5 × 2 matrix whose

kth row is (β0k, β1k), and σb is a 5 × 5 diagonal matrix with σ1b, . . . , σ5b as the
diagonal entries; σθ in the previous line is defined similarly. The Stan modeling
language does not rely on conjugacy, so the Cholesky factorizations (Lθ and Lb)
are modeled instead of the covariance matrices for computational efficiency.

4 Results

The IRTree model introduced in Sect. 3.1 is complex and results in 5 parameters per
person and per item, in addition to hyperparameters. We focus on two aspects of the
results of the model: (1) the magnitude and uncertainty of participant parameters
and (2) using item parameters to generate an “answer key”.

4.1 Participant Parameters

For each of the 169 participants (indexed by i), the IRTree model estimates
five parameters: a ‘no value’ tendency (θ1i), a ‘pattern exclusion’ tendency (θ2i),
a ‘match’ tendency (θ3i), an ‘individualization’ tendency (θ4i), and a ‘minutiae
exclusion’ tendency (θ5i). Each of these θ estimates correlates with an observed
outcome (e.g. θ1i correlates with percent of No Value decisions) but also accounts
for the corresponding item tendencies. For example, θ1 represents the tendency of an
examiner to choose no value after accounting for the subset of items that they were
shown. Figure 5 shows the five θ estimates for each examiner (with 95% posterior
intervals) as compared to each examiner’s proficiency estimate from a Rasch model
fitted to scored data.

First, we note that estimated proficiency under a Rasch model is not sufficient
for understanding examiner behavior. As outlined in Sects. 1 and 2, fingerprint
comparisons are a complex task consisting of a series of steps. Any mapping
from the original responses to a binary response necessarily results in the loss of
information. Furthermore, there is no designated ‘answer key’ for the Black Box
items, and it is unclear how ‘inconclusive’ or ‘no value’ responses should be treated.

Figure 5 demonstrates that even though the IRTree does not require any
responses to be scored as correct or incorrect, θ4 and θ5 (and to some extent the
other parameters) are still correlated with proficiency from a Rasch model. That
is, we can still identify examiners who often correctly individualize or exclude
(corresponding to more positive θ4 and θ5 estimates), as well as those who make
more false individualizations and exclusions (corresponding to more negative θ4
and θ5 estimates).
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Fig. 5 Number of inconclusive and no value decisions reported by each examiner

Furthermore, the ‘match’ tendency estimates (θ3) are the least extreme in
magnitude of all of the θ estimates. Examiners are therefore unlikely to disagree
on whether a pair of fingerprints is more likely a ‘match’ or a ‘non-match’(the Y ∗

3
split of the IRTree model in Fig. 4), but do disagree on the level of certainty in such
a decision (i.e. individualization vs close, Y4 or minutiae exclusion vs inconclusive,
Y5). This is consistent with previous work that examiners ‘willingness to respond’
drives much of the disagreement (Dror & Langenburg, 2019).

Finally, we note that there is substantial variation in the ‘no value’ tendency
θ1. We observe a slight negative correlation between θ1 and proficiency from a
scored model, and that examiners with negative θ1 estimates (less likely to rate
items as no value), tend to have positive θ4 and θ5 estimates (more likely to rate
items as individualization or minutiae exclusion), providing a link between some
of the ‘willingness to respond’ parameters. The posterior intervals for θ1 are also
noticeably smaller than, e.g., individualization tendency (θ4), likely due to more
observations at earlier nodes in the IRTree.

4.2 Generating an ‘Answer Key’ from Item Parameters

Using the parameter estimates from each item, we can also estimate the probability
of observing each response for a hypothetical “unbiased” examiner. For example, a
completely unbiased examiner would have θk = 0 for all k nodes in the IRTree,
resulting in responses that are totally driven by the item parameters. If such an
examiner responded to all 744 items in the FBI “Black Box” study, we can calculate
the predicted response to each item. These results could be used as an “answer key”
to identify potentially problematic responses since correct and incorrect responses
are not keyed by the FBI.
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Fig. 6 Each participant’s observed score under the IRTree answer key compared to their observed
score under the modal answer key. Perfect correspondence is indicated by the dashed line

Table 1 compares the IRTree answer key described above to a modal answer key,
where the expected answer to each item is determined by the most popular response
to that item. We see that the answer keys largely agree, with both keys labeling
very few items as Pattern Exclusion or Close inconclusive. The most disagreement
between the answer keys occurs when the modal answer key predicted a No Value
or an Other Inconclusive and the IRTree model obtained a different label (the first
and fourth column, respectively), and when the IRTree model labeled an item with
an Other Inconclusive (the fourth row).

While Table 1 compares the two answer keys across items, we can also compare
the results of the answer keys across participants. Figure 6 shows the observed score
(% Correct) for each participant under the IRTree Answer Key and Modal Answer
Key. If there was perfect correspondence across the two answer keys, all points
would be located on the dashed diagonal line. While some participants receive
slightly higher or lower scores under the IRTree answer key than they do under the
modal answer key, the scores do not change substantially or in a systematic way. For
this setting, we prefer the IRTree framework since the expected responses account
for patterns in examiner behavior. For a further discussion of IRTree-generated
answer keys and their relationship with other methods such as cultural consensus
theory, see Luby (2019).

5 Discussion

The current approach to characterizing uncertainty in forensic decision-making
is largely focused on estimating aggregated error rates across examiners and
identification tasks. We have proposed a new approach using IRTrees to account
for differences in examiner behavior at different points in their decision-making
process, and how estimated parameters can be used to generate an answer key to
identify potentially problematic responses. Although there are many items with
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substantial variation in the responses, most items were found to have a clear
expected answer. Examiners should receive feedback not only when they make a
false identification or exclusion, but also when mistaken ‘inconclusive’ or ‘no value’
decisions are made. In order to provide such feedback, expected answers must first
be generated.

There are, however, limitations to the types of analyses we can perform with
this data, particularly in explanatory modeling. For example, rich survey data was
collected alongside responses in the Black Box study (e.g. type of training, years of
experience, etc.) but survey responses were not linked to test responses to maintain
the confidentiality of participants. Furthermore, unlike traditional IRT applications,
there are also privacy concerns regarding the items themselves. Each item consists
of a pair of images of fingerprints, which by nature are identifiable and cannot be
publicly released. This complicates explanatory modeling for participants and for
items.

Following the Black Box study, there was a series of follow-up studies performed
using the same set of participants, and we plan to expand our analyses to include
these results. The first was a ‘repeatability’ study (Ulery et al., 2012), in which 72
participants of the original Black Box study were asked to re-analyze 25 questions
seven months after the original study, which provides a unique opportunity to
validate conclusions on truly out-of-sample data. The ‘White Box’ study (Ulery
et al., 2014) asked examiners to annotate features, image clarity, and correspon-
dences between latent and reference images when making their determinations. This
additional information could be incorporated into a psychometric model to better
understand variation in examiner thresholds for making latent evaluation and source
decisions.

In addition to research studies, forensic examiners also participate in annual
proficiency tests, for which psychometric modeling can also be used (Luby &
Kadane, 2018). While current proficiency tests are generally perceived to be easy
with high-quality images (Gardner et al., 2020), they can be misinterpreted in legal
contexts (Garrett & Mitchell, 2017). IRT-like models should be adopted for all
proficiency testing. This would allow for the standardization of examiner scores
across multiple years, adjusting for exams that were easier or harder than other
exams. Research is also currently being conducted on blind proficiency tests (see
Mejia et al. (2020) for overview), in which participants are unaware that they
are being tested. This process is more complicated to implement than standard
‘open’ proficiency tests, as items need to be integrated within regular casework.
Psychometrics could provide the methods for validating such tests and comparing
results to open proficiency tests.

While we have focused on fingerprint identification throughout this paper,
forensic science is a broad term used to describe many scientific fields, each of
which relies at least partially on human decision-making. Psychometric models
could be applied to each of these scientific areas to better understand the variability
in examiner decision-making and potential impacts on final case outcomes.

Forensic science is an area ripe for psychometrics due to variation and uncer-
tainty among forensic examiners, as well as the varying quality of evidence and
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corresponding difficulty in the analysis task. However, there are also challenges
including privacy concerns for participants and for items, responses that are not
keyed as correct or incorrect, and the sequential structure of forensic decision-
making that must be accounted for. Through complex psychometric modeling, along
with domain expertise, we can better understand variation in forensic decision-
making and factors that impact that variation.
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After Thematic Analysis: Introducing
the Fuzzy Thematic Network Analysis
in Psychological Research

Hojjatollah Farahani, Parviz Azadfallah, and Kazhal Rashidi

1 Introduction

Qualitative researches have a growing and increasing application and popularity in
the past decade (Bryman & Burgess, 1994; Denzin & Lincoln, 1994). Thematic
analyses can be usefully and effectively aided by and presented as thematic
networks. Thematic analysis is a web-like illustration (networks) that summarize
the main themes which are extracted from a text. The themes are conceptualized
through coding process.

1.1 Structure of a Thematic Network (TN)

Thematic networks are simply used as a way of organizing a thematic analysis
of qualitative data. Thematic analyses are to unearth the significant themes in a
transcription, and the purpose of thematic networks is to facilitate the structuring
and interpreting of these themes. A thematic network starts from the Basic Themes
and moves toward a Global Theme (Fig. 1). Braun and Clarke (2006, 2012) describe
the thematic networks as follows:
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Organizing 
Theme

Organizing 
Theme

Basic Theme

Global ThemeBasic Theme

Basic Theme

Basic Theme

Fig. 1 Structure of a thematic net work

• Basic Themes this is the most basic or lowest-order theme that is extracted from
the textual data. Basic Themes are simple premises characteristic of the data, and
on their own they describe so little about the text or group of texts as a whole.

• Organizing Themes this is a middle-order theme that organizes the Basic
Themes into categories of similar issues. They are clusters of significations that
summarize the principal assumptions of a group of Basic Themes, so they are
more abstract and more revealing of what is going on in the texts.

• Global Themes super-ordinate themes encapsulating the principal metaphors
in the text as a whole. These are then represented as web-like maps depicting
the salient themes at each of the three levels, and illustrating the relationships
between them.

Each Global Theme is the core of a thematic network; therefore, an analysis may
result in more than one thematic network.

1.2 After Thematic Network

In summary, thematic network is a conceptual and interpretive network which is
driven from a text such as a transcription of some patients’ interviews. What we
are introducing here is a method which helps researchers to deepen and expand the
obtained results of a thematic network using fuzzy set theory. Although, thematic
network analysis and fuzzy set theory are not new, this combination of them are
a new direction which can be of interests to all mind researchers and open a new
horizon and direction for them. This combination is called here Fuzzy Thematic
Network Analysis (FTNA). This method which is based on Mamdani’s method
described in detail in next section.
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2 Fuzzy Thematic Network Analysis (FTNA)

The Polish philosopher Jan Lukasiewicz (1878–1956) was the first to propose
a systematic alternative of the bivalued logic (Aristotle’s logic) introducing in
the early 1900s a three valued logic by adding the term “Possible” between
“True” and “False” (Lejewski & Lukasiewicz, 1967). Eventually, an entire notation
and axiomatic system was developed by him and he hoped to derive modern
mathematics from this development. Later he also extended his logic and proposed
four and five valued Logics. Finally, this conclusion came out and he believed that
axiomatically nothing could prevent the derivation of an infinite valued Logic. But it
was not until relatively recently that an infinite-valued Logic was introduced (Zadeh,
1973), called Fuzzy Logic (FL) by Lotfi. A fuzzy inference system is an inferential
system which is based on fuzzy set theory. A fuzzy inference system is a method of
the process of formulating the network for a given input to an output using fuzzy
logic set theory (Ross, 2010). There is a final decision about given data at the end
of this mapping or network. This method combines fuzzy inference system and
a thematic network for obtaining a reasonable result (Fig. 2). This type of fuzzy
inference systems was introduced by Mamdani (1976) and then extended. Mamdani
fuzzy inference was first introduced as a method for fuzzy controller systems. In the
article, we use five-input, five-rule and single-output fuzzy inference system (FIS)
FTNA is of a 3-stage procedure which is described as follows:

Stage 1 The thematic network obtained from a thematic analysis is given to 5–20
experts and ask them to assign a score to each themes of the network.

Stage2 We ask the experts to assert the rules which describe the relation among
the themes in the best way. The amount of the relationships is asserted based on
linguistic themes such as high, low . . . . We aggregate them using max- operator.

Stage3 Applying Fuzzy Inference Fuzzy inference is the process of formulating
the mapping from a given input to an output using fuzzy set theory. In the paper,
we use five-input, five-rule and single-output fuzzy inference system (FIS) for
evaluation of life satisfaction.

Pre-processing Input data are collected from the experts who evaluated the
thematic network in a point scale. Then the weights are determined for the edges by
them. All inputs are multiplied by their weights and average values are calculated.
We need to define five IF-THEN rules for the problem.

Rule 2
Input A (0 -10)

If A is high, then B is good

If A is low, then B is poor
Output B (0 - 10)

Rule 1

Σ

Fig. 2 An illustration of a simple FIS
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Fig. 3 Triangular Graph of MF of x1

(a) Fuzzificating the input themes. In this step we determine the degree of inputs
which they belong to each of the appropriate fuzzy sets via membership
functions (MF). Simply, a membership function (MF) is a plot or curve that
defines the feature of a fuzzy set by assigning the related membership degree to
each element. It depicts each point in the input space to a membership value in
interval [0, 1]. There are many membership functions such as Triangular, trape-
zoidal, Gaussian, Bell-shaped and so on. For example, triangular membership
defined as follows. In this equation a, b and c are the parameters of the MF.
(Fig. 3)

f (x ; a , b , c) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 x ≤ a

x−a
b−a ≤ x ≤ b

c−x
c−b b ≤ x ≤ c

0 C ≤ x

(b) Using the fuzzy operator in the antecedent

After the inputs are fuzzified, the degree which each part of the antecedent is
satisfied for each rule. If the antecedent of a given rule has more than one part,
the fuzzy operator is applied to obtain one number that represents the result of the
antecedent for that rule.This number is then applied to the output function. The
input to the fuzzy operator is two or more membership values from fuzzified input
themes. The output is a single truth value. We used “AND” and probabilistic “OR”
operators. The probabilistic “OR” operator is defined as follows:

Probor (a, b) = a + b − ab
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(c) Implication from the antecedent to the consequent

Before applying the implication method, every rule is weighted. Every rule has
a weight (a number between 0 and 1), which is applied to the number given by the
antecedent. In our system, all rules have the same weight and thus have no effect
at all on the implication process. After assigning a proper weight to each rule, the
implication method is implemented.

(d) Aggregating the consequents across the rules

Because decisions are based on the testing of all of the rules in a FIS, the rules
must be combined for making a decision. Aggregation is the process by which the
fuzzy sets that represent the outputs of each rule are combined into a single fuzzy
set.

(e) Defuzzification

The input for the defuzzification process is a fuzzy set (the aggregate output fuzzy
set) and the output is a single number. We use the Center of Gravity Defuzzification
(CoGD) method for the defuzzification.

3 Practical Example

In a qualitative research which has done with us the thematic network was obtained.
(Fig. 4)

The thematic network obtained from a thematic analysis is given to at least 20
experts and ask them to assign a score between 0–100 to each themes of the network
(Table 1).

We asked the experts to assert the rules which describe the relation among
the themes in the best way. The amount of the relationships is asserted based on
linguistic themes such as high, low . . . . We aggregate them using max- operator.

(x1)Hope

(x2)Social welfare

(x3)Income

(x5)Adjustment (y)Life sa�sfac�on

(x4)Acceptance

Fig. 4 Thematic network for Life satisfaction
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Table 1 The result of the
Stage 1

Themes Mean SD

Hope 92.68 1.24
Social welfare 91.23 1.63
Income 88.06 2.79
Acceptance 90.27 1.61
Adjustment 88.5 2.08

If (x2 is not “sufficient”) and (x3 is not “sufficient”) and (x4 is “effective”) and (x5 is “rational”) then (y is “good”)

x2 = 59.4 x3 = 59.4 x4 = 58.9 x5 = 49.6 y = 51.9

Fig. 5 The implication process for the IF-THEN rule in the example

Input data are collected from 20 experts who evaluated the thematic network
of life satisfaction in 0–100-point scale. Then the weights are determined for the
edges by them. All inputs are multiplied by their weights and average values are
calculated. We defined five IF-THEN rules for this problem. For example consider
this rule:

IF social welfare is not “Sufficient” and Income is not
“Sufficient” and Acceptance is “Effective” and Adjustment is
“Rational” THEN Life satisfaction(y) is “Good”.

The inputs must be fuzzified according to linguistic sets. For example: How
effective is “acceptance” in life? If this input is estimated by 60 points in (0–
100) scale, the membership degree of the “very effective” linguistic set is 0.4. We
use following membership functions for the input data. For each themes we used
different membership functions from triangular to Bell-shaped ones. (Fig. 5)

Using the implication process we tested all rules and found the fuzzy output
for each of them. Then, we aggregated them for making a combined decision and
defuzzification the final result.

We used the Center of Gravity Defuzzification (CoGD) method for the defuzzi-
fication. (Figs. 6 and 7)

The crisp value of the aggregated defuzzificated fuzzy output based on fuzzy
thematic network analysis is about 52.
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Fig. 6 The aggregation Process for all rules

Fig. 7 The defuzzification
process

4 Conclusion

Thematic Analysis is a qualitative method. We introduce this method based on the
fuzzy theory for providing the rules of the relationships of the themes by interview-
ing with psychologists having experience in the field. This method is integrating
the precision of quantitative methods into the depth of qualitative methods. This
integration can be of interest to all psychologists and mind researchers. This paper
introduced this new and interesting method and applied a numerical example for
testing the degree of accuracy of them using fuzzy set theory. This method can
be a turning point in a new methodology which is called it here semi-qualitative
methodology.
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Psychometric Models for a New State
Science Assessment Aligned to the Next
Generation Science Standards

Jing Chen, Jonghwan Lee, Paul Nichols, and M. Christina Schneider

1 Introduction

Unlike traditional unidimensional science standards, the Next Generation Science
Standards (NGSS; NGSS Lead States, 2013) emphasize three distinct dimensions:
Disciplinary Core Ideas (DCIs), Science and Engineering Practices (SEPs), and
Crosscutting Concepts (CCCs). These dimensions are combined to form perfor-
mance expectations that reflect the inherent complexity in scientific understanding
and reasoning. The complexity of the standards and the new task types they require
poses significant challenges for psychometric modeling (Gorin & Mislevy, 2013).

The explicit dimensionality in the construct as defined by the NGSS impacts the
choice of measurement models for an NGSS assessment. Meanwhile, to measure
the NGSS, performance tasks are designed to elicit responses that are more aligned
with the targeted reasoning and higher cognitive skills. These tasks often include
contextualized and multidimensional items to measure real-world problem-solving
skills, which may violate the assumptions of traditional psychometric models
(Martineau, 2017). The psychometric challenges introduced by the NGSS require
appropriate models to assess the dimensionality and to estimate item and person
parameters.

The goal of this study is to identify an appropriate measurement model for an
NGSS-aligned state summative science assessment. The assessment was recently
created to align to the state’s college and career ready standards for science designed
around NGSS’ three-dimensional science learning. Because of the multidimensional
nature of the assessment, the most appropriate measurement model that could
be supported by learning theories, capture the patterns within the data, and be
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feasible to use in an operational setting was investigated. The following sections
provide more details about the science assessment and its pilot administration, the
dimensionality analyses and results, and a discussion of the findings.

2 Science Pilot Overview

This study was conducted based on data from a pilot test of a new state science
assessment administered in Grade 5 and Grade 8 in Spring 2019. The assessment is
based on performance tasks, which are phenomena-based scenarios with multiple
items to elicit responses that show students’ understanding of the DCIs, SEPs,
and CCCs. The items are minimally two dimensional. A variety of technology-
enhanced item types are used that allow students to show their thinking more fully.
For example, the drag-and-drop technology-enhanced item type requires students
to drag and drop items into groups. Within each group, students can rank items by
dragging and dropping them into place.

Each grade-level pilot test had two test forms (Form A and Form B) that each
consisted of two tasks and several items. The two forms at Grade 5 had 11 and 14
items, respectively, and the two forms at Grade 8 had 17 and 18 items, respectively.
All items were scored dichotomously. The pilot test was intentionally short to reduce
the time students spent away from the classroom.

The student sample for this study was a convenience sample based on schools’
availability and willingness to participate. Table 1 presents the total number of
students who took the test by grade and form. The student sample’s demographic
information (including sex and ethnicity) presented in Table 2 suggests that the
sample had demographic characteristics similar to the state’s general student
population at these two grade levels. The differences in percentages between the
sample and the general population are all smaller than 5%. In addition, because the
two forms at each grade were randomly administered to students within the same
school, students were comparable across the forms in terms of their demographics.

Table 1 Pilot sample Number of Students
Grade Form A Form B Total number of students

5 2739 2495 5234
8 3081 2770 5851
Total 11,085
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Table 2 Demographic information: Pilot sample vs. general population of the state

Pilot sample General population

Grade 5 Grade 8 Grade 5 Grade 8
Demographic variable N % N % N % N %
Sex Female 2351 48.5 2531 48.9 11,789 48.8 11,579 48.9

Male 2501 51.5 2641 51.1 12,375 51.2 12,117 51.1
Ethn-icity AIANa 68 1.4 82 1.6 307 1.3 320 1.4

Asian 144 3.0 111 2.1 664 2.7 638 2.7
Black 181 3.7 193 3.7 1603 6.6 1654 7.0
Hispanic 899 18.5 941 18.2 4886 20.2 4660 19.7
White 3380 69.7 3674 71.0 15,666 64.8 15,513 65.5
Two or more races 169 3.5 160 3.1 1038 4.3 911 3.8

Total 4841 100.0 5161 100.0 24,164 100.0 23,696 100.0

Note: Around 10% of the students did not have demographic information available and were
excluded from Table 2. However, their responses were included in all other analyses
aAIAN: American Indian or Alaskan Native

Table 3 Study datasets

N Number of tasks Number of items Total score points

Grade 5 Form A 2739 2 11 11
Grade 5 Form B 2495 2 14 14
Grade 8 Form A 3081 2 18 18
Grade 8 Form B 2770 2 17 17

3 Dimensionality Analysis

3.1 Description of Four Datasets and Three IRT Models

Four datasets were used in the analyses, one for each form and grade. Table 3
provides the number of students who took the form, the number of tasks and items,
and the total score points for each form.

Three IRT models based on content specifications were fit to the data to
compare the model fitness and investigate the dimensionality of the assessment:
1) a unidimensional IRT model, 2) a three-dimensional IRT model, and 3) a testlet
model. Figure 1 shows a graphic illustration of each model. All the analyses were
conducted using the R mirt package (Chalmers, 2012).

3.2 Unidimensional IRT Model (Model 1)

First, unidimensional models were applied to fit the data. Three unidimensional
models were examined to determine the best fit: Rasch one-parameter logistic (1PL;
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Fig. 1 Graphic illustrations of IRT Models 1, 2, and 3

Rasch, 1960), two-parameter logistic (2PL; Birnbaum, 1968), and three-parameter
logistic (3PL; Lord, 1980). The equations for each model are presented below.

P
(
Uij = 1|θj , bi

) = eθj−bi
1 + eθj−bi

(1PL)



Psychometric Models for a New State Science Assessment Aligned to the Next. . . 411

P
(
Uij = 1|θj , bi

) = eai(θj−bi)

1 + eai(θj−bi)
(2PL)

P
(
Uij = 1|θj , bi

) = ci + (1 − ci)
eai(θj−bi)

1 + eai(θj−bi)
(3PL)

where θ j, bi, ai and ci are the person, item difficulty, discrimination, and guessing
parameters, respectively.

To evaluate model fit, Akaike’s Information Criterion (AIC; Akaike, 1973) and
the Bayesian Information Criterion (BIC; Schwarz, 1978) were consulted. The
better-fitting model is the one with a lower AIC or BIC value. BIC penalizes model
complexity more heavily than AIC, which may result in an inconsistent model
preference. Table 4 presents the fitting results from the Rasch, 2PL, and 3PL models
for each test form. The lowest AIC and BIC values for each dataset are bolded.
Though the 3PL model fits the data best for two of the four forms as indicated by the
lowest AIC and BIC values, the model has a convergence problem for Grade 8 Form
B, and the BIC value indicates that the 2PL model fit better than the 3PL model for
the dataset from Grade 5 Form A. Lack of convergence is an indication that the data
do not fit the model well because there are too many poorly fitting observations.
The 2PL model generally fits much better than the 1PL model. Though it fits the
data slightly worse than the 3PL model in some cases, it does not have the same
convergence problem as the 3PL model. Thus, a 2PL model was preferred and was
selected as Model 1 for the study analyses.

3.3 Three-Dimensional IRT Model (Model 2)

Second, a three-dimensional IRT model (Model 2) was applied to fit the data. This
model assumes the underlying domains as DCIs, SEPs, and CCCs. This three-

Table 4 Model-fit comparison between unidimensional 1PL, 2PL, and 3PL models

Form A Form B

Grade Model AIC BIC AIC BIC
5 Rasch 1PL 23265.85 23337.02 38991.28 39078.74

2PL 23152.84 23283.33 38504.10 38667.36
3PL 23136.74 23332.48 38327.11 38572.01

8 Rasch 1PL 55042.77 55157.40 51828.75 51935.45
2PL 53889.39 54106.58 50425.67 50627.22
3PL 53341.93 53667.72 NAa NAa

Note: The highlighted data indicate the best-fit model
aNA indicates that the model did not converge
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dimensional model is the multidimensional extension of the 2PL model (Reckase,
2009). The form of the model is given by

P
(
Uij = 1|θj , ai, di

) = e
aiθ

′
j +di

1 + e
aiθ

′
j +di

where a is a 1 × m vector of item discrimination parameters and θ is a 1 × m vector
of person coordinates with m indicating the number of dimensions in the coordinate
space (i.e., m is 3 in this case). The intercept term, d, is a scalar. The exponent of
e in this model can be expanded to show how the elements of the a and θ vectors
interact.

aiθ
′
j + di = ai1θj1 + ai2θj2 + · · · + aimθjm + di

The latent traits of this three-dimensional model were set to be correlated because
students’ abilities in these dimensions are expected to be related to some extent. The
empirical results also suggest that the model fits the data better when the latent traits
are set to be correlated.

3.4 Testlet Model (Model 3)

A 2PL testlet model (Bradlow et al., 1999) was also applied to fit the data.
Because the pilot test was composed of testlet-based items, which may violate
the local independence assumption of IRT models, a testlet model was applied to
the data to examine the testlet effect. The testlet model assumes a single primary
dimension (i.e., general knowledge and abilities in science) and several uncorrelated
specific dimensions according to testlets (i.e., tasks) after accounting for the primary
dimension. For a testlet model, an item’s slope for the specific dimension is
constrained to equal the item’s slope for the general dimension (Cai, 2010). The
2PL testlet model is given as

Pj (θi) = 1

1 + e−aj (θi−bj−γid(j))′

where pj(θ i) is the probability of a correct response to item j for examinee i, θ i
is examinee i’s latent ability, aj and bj are the item discrimination and difficulty
parameters, and γ id(j) is a person-specific testlet effect that is assumed to follow a
distribution N(0, σ2γid(j)).
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Table 5 Model-fit comparison between Models 1, 2, and 3

Form A Form B

Grade Model description Model # AIC BIC AIC BIC
5 Unidimensional 1 23152.8 23283.3 38504.1 38667.4

3D (SEP, CCC, DCI) 2 23074.4 23317.6 38206.9 38481.0
Testlet model 3 23127.6 23269.9 38464.3 38639.3

8 Unidimensional 1 53889.4 54106.6 50425.7 50627.2
3D (SEP, CCC, DCI) 2 53147.3 53521.4 49821.7 50159.6
Testlet model 3 53479.6 53708.8 50399.7 50613.1

3.5 IRT Model-Fit Comparisons

Model fit among Models 1, 2, and 3 was compared. Each model was applied to the
four datasets. Table 5 presents the model-fit comparison results for all four datasets.
The lowest AIC and BIC statistics are bolded. All the AIC and BIC statistics suggest
that Model 2 fits the data best with the exception of the BIC statistics for Grade 5
FormA. Overall, Model 2 (three-dimensional IRTmodel) provides the best fit across
all four datasets.

3.6 Item Fit Statistics

Overall, the three-dimensional IRT model (Model 2) fit the data better than the
other two models. To further examine the fitness of the three-dimensional model,
the chi-squared-based item-level fit index (S-X2; Orlando & Thissen, 2000, 2003)
was evaluated to see if the model fits the data well at the individual item level. Item
fit statistics from the 2PL unidimensional model were used as a baseline for the
comparison. The results from the chi-square-based item-level goodness-of-fit tests
suggest that more items have bad fit (i.e., p-value <0.05) from the three-dimensional
model than from the unidimensional model. For example, four items on Grade
8 Form B showed poor fit to the unidimensional model. However, for the three-
dimensional model, these four items and five additional items showed poor model
fit. Similar patterns were discovered for the other forms.

All four items that did not fit well to the unidimensional model were technology-
enhanced items that required students to enter a short response that is scored as
either correct or incorrect. It is possible that students rely on different abilities to
respond to these items compared to the abilities measured by the multiple-choice
items. A close look of the items by content experts is needed to identify the potential
causes of item misfit.
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3.7 Local Dependency Among Items Within a Task

Although the testlet model fits slightly better than the unidimensional model, the
extent to which the local independence assumption is violated was examined using a
popular local independence statistic, Yen’s Q3 index. Index values greater than 0.20
indicate a degree of local dependence that should be examined by test developers
(Chen & Thissen, 1997). Among the 435 item pairs across forms, only two pairs
of items had a residual correlation greater than 0.20, suggesting that local item
independence generally holds for all forms.

4 Discussion

In general, based on the pilot test data, the model fit statistics suggest that the three-
dimensional IRT model that aligns with the DCI, SEP, and CCC dimensions (Model
2) provides slightly better overall fit than the unidimensional model (Model 1) and
the testlet model (Model 3). However, the fit of the three-dimensional model at the
item level is poor. Another issue to consider for this model is that the NGSS dimen-
sions may not be conceptualized in the same manner that test score dimensionality
has been conceptualized, which may create some confusion (Martineau, 2017). The
use of the term “dimensionality” in NGSS may be better described as “complex”
performance (Dunbar et al., 1991), which involves knowledge and skills across a
number of domains or subjects.

Local independence is a fundamental assumption of unidimensional models.
Fitting a unidimensional model in the presence of local dependencies may result
in biased item parameters and standard errors of measurement (Yen, 1993). The
American Institute of Research (AIR) applied a Rasch testlet model (Wang &
Wilson, 2005) to calibrate NGSS-aligned science assessments for multiple states
(Rijmen, 2018). However, for the new science assessment used in this study, the
local independency assumption still generally holds and the testlet model only
provides slightly better fit than the unidimensional model.

It is important to note that the data used in this study were collected from a pilot
test, so the quality of some items may be low. These items may impact the model
fitness results. Students’ low motivation for the pilot test may also have affected
the quality of the data. The relatively short test length compared to a regular state
assessment limited the number of items to be administered for each dimension.
All these factors may cause the structure of the pilot data to not strongly resemble
the structure of data from operational assessments. It will be worth conducting the
dimensionality analysis again using data from the operational test to identify the
most appropriate measurement model for the assessment.

Unidimensional IRT models are widely used in testing programs. In contrast,
MIRT models are rarely implemented in any state testing program due to its
complexity. They require a large sample size to obtain accurate parameter estimates
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and take a much longer estimation time, which pose challenges in an operational
setting. The sample size of an operational test will be much larger than the sample
size of this study that used pilot data. Applying a multidimensional model will
significantly increase computation time. Implementing MIRT models in operation
will likely be a new practice for most vendors working with states. The need
for more complex measurement models needs to be further evaluated. Data from
the operational test will be collected to further evaluate the need of using MIRT
models and examine the robustness of the unidimensional model under various test
conditions in future studies.
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Diagnostic Classification Using
a Polytomous Measure of Korean
Organizational Commitment

Jungwon Rachael R. Ahn and Leah Feuerstahler

1 Introduction

Diagnostic classification models (DCMs; Rupp et al., 2010) use individuals’
responses on a series of items to estimate whether individual respondents possess
or lack one or more latent attributes. To date, most DCMs have been developed in
the context of dichotomous item responses. As such, many applications of DCMs to
rating scale data have dichotomized polytomous responses in order to use existing
dichotomous DCMs (e.g., Johnson et al., 2013; Su, 2013; cited in Ma & de la
Torre, 2016). However, the process of dichotomization leads to a loss of information
and may make meaningful interpretations difficult (Chen & de la Torre, 2018).
Other DCMs have been developed to directly model polytomous Likert scale data,
including the nominal response diagnostic model (NRDM; Templin et al., 2008),
the partial-credit DINA model (PC-DINA; de la Torre, 2010), and the sequential
DCM (Ma & de la Torre, 2016). However, these polytomous DCMs tend to require
large sample sizes to accurately estimate the large number of parameters defined by
these models (Liu & Jiang, 2020).

1.1 Recent Polytomous DCMs

Recently, several DCMs for polytomous responses have been proposed that apply
different modeling processes and estimation methods (Chen & de la Torre, 2018;
Culpepper, 2019; Liu & Jiang, 2018, 2020). Chen and de la Torre’s general
polytomous diagnosis model (GPDM) was developed by combining a general
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DCM model for dichotomous responses with an item-splitting process similar
to the graded response model (Samejima, 1969). Culpepper (2019) proposed an
exploratory diagnostic model (DM) for ordinal data that does not require a pre-
defined latent structure. Culpepper’s exploratory DM extends Chen and de la Torre’s
confirmatory GPDM to the exploratory setting, using a cumulative probit link and
Bayesian variable selection techniques to estimate the latent structure. Liu and Jiang
(2018) developed the ordinal response diagnostic model (ORDM) and the modified
ORDM (MORDM) by applying constraints to the NRDM (Templin et al., 2008).
The ORDM constrains the NRDM by specifying an overall main effect parameter
for each item that is shared across the item’s response options. The MORDM
applies further constraints to the intercept parameters of the ORDM, forcing the
same set of the intercept parameters for each response option to be shared across
items within the same trait. Lastly, Liu and Jiang (2020) proposed the rating scale
diagnostic model (RSDM) which further modifies the MORDM by constraining
both the intercept and main effect parameters for each response option to be shared
across items within the same trait. Liu and Jiang used Bayesian estimation with a
variant of Markov chain Monte Carlo (MCMC) estimation in stan (Carpenter et al.,
2017) to estimate parameters for all the three models. They concluded that all the
models performed as well as the traditional NRDM but with fewer parameters.

The present study examines the usefulness of the MORDM in modeling
responses to a survey of organizational commitment in Korean workers. The
application of the model to another ordinal dataset with similar properties to Liu
and Jiang’s study (e.g., latent structure, number of items, sample size) contributes
to evaluating the usefulness of the model.

2 MORDM

The MORDM defines the probability of an individual in latent class c selecting
response option m, m = 0, . . . , M − 1, on item i as follows:

P (Xi = m | αc) =
exp

∑m
l=0

[
λ0,i + ∑V

v=1λ0,lvwiv + λTi h (αc, qi)
]

∑M−1
s exp

∑s
l=0

[
λ0,i + ∑V

v=1λ0,lvwiv + λTi h (αc, qi)
]

where M is the number of response options, αc = {α1, . . . ,αk} is the attribute
profile for class c, and k is the total number of attributes. In addition, λ0, i is an
item intercept parameter, wiv is an indicator variable of whether item i measures
attribute combination v, and λ0,mv are step parameters for each response option that
are shared across all items that measure attribute set v. Finally, the term λTi h (αc, qi)

adds a parameter for each unique attribute and combination of attributes required
by item i. Specifically, a parameter is included in the expression only if the
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item requires that (combination of) attribute(s) and the examinee possesses that
(combination of) attribute(s).

The MORDM is a divide-by-total model that takes a function of the sum of terms
corresponding to a certain response option over the sum of these expressions over
all response options. Compared to the NRDM, the MORDM reduces the number
of parameters drastically by constraining step parameters to be shared within each
attribute set and by requiring the overall main effect parameter to be shared across
response options in each item. For example, for the data analyzed in this study, the
NRDM requires 80 item parameters, whereas the MORDM requires only 24 item
parameters, reducing the number of parameters by 70%.

3 Analysis of Data

The data used in this study reflect organizational commitment (OC) in Korean bank
employees and were originally analyzed by Ahn and Lee (2018). Ahn and Lee
conceptualized and validated the construct of OC reflecting organizational culture
in Korea, addressing the problems of the three-component model of OC (Allen
& Meyer, 1990) commonly used in organizational research. The data analyzed
in the current study are a subset of Ahn and Lee’s data and include eight items
from 519 individuals, of which four questions ask about employees’ affective
commitment (AC; Ahn & Lee, 2018) and four other questions ask about continuance
commitment (CC; Allen & Meyer, 1990). Each item was validated to measure
the intended attribute with item complexity equal to one (Ahn & Lee, 2018). AC
measures employees’ loyalty to their organizations in terms of a positive emotional
bond to the organizations, whereas CC measures “maintaining employment”, that
is, organizational commitment motivated by considering the costs that might be
accrued by turnover rather than a mindset of commitment. All the items allowed
responses of 1 (Strongly Disagree) through 5 (Strongly Agree). Table 1 presents
the item-attribute relationship and frequencies of each response option. Overall, the
response data is negatively skewed with most responses occurring in the highest two
categories.

3.1 Specification of the MORDM

Based on Table 1, each item represents only one attribute, either AC or CC.
Therefore, the fitted model does not require any terms corresponding to higher-order
interactions. In this case, the MORDM simplifies to the following form:

P (Xi = m|αc) = exp
∑m

l=0

[
λ0,i + λ0,lvwiv + λ1,ih (αc, qi)

]

∑M−1
s exp

∑s
l=0

[
λ0,i + λ0,lvwiv + λ1,ih (αc, qi)

] ,
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where v represent an attribute and h (αc, qi) equals one if an examinee possesses
the attribute and zero otherwise. Therefore, fitting this model requires only 24 item
parameters: eight item intercepts λ0, i, eight item main effect parameters λ1, i, and
four step parameters λ0,mv for each of the two attributes.

3.2 Fitting the Model

Following Liu and Jiang’s procedure, a two-dimensional MORDM was specified
with the stan software (Carpenter et al., 2017) using the default algorithm. Stan is
open-source software for Bayesian analysis using a variant of MCMC sampling of
the joint posterior distribution (Gelman et al., 2015). The priors were set to N(0, 20)
for each item parameter, and Dirichlet(2) for each of the four attribute profiles (i.e.,
combinations of possessing/lacking AC and CC). Four chains of 3000 iterations
per chain were run with random starting values, generating 6000 posterior samples
after discarding the first 1500 for burn-in for each chain. Parameter estimates and
standard errors were obtained as the mean and standard deviation of the 6000
posterior samples for each parameter. To assess the convergence of parameters, the
R̂ statistic (Gelman & Rubin, 1992) was used. R̂ < 1.1 suggests that all chains
are approximating the same posterior distribution regardless of the initial arbitrary
starting values of the chains. However, R̂ < 1.1 for every item parameter is not
a sufficient condition for inferring convergence (Gelman, 1996). If the posterior
samples are highly autocorrelated within a chain (as typically they are), this can lead
to slower exploration of the posterior distribution, indicating the need for additional
posterior samples (Geyer, 2011). Therefore, the effective number of samples, neff ,
for each parameter was also examined. The ratio neff /S was used to gauge the extent
of autocorrelation, where S indicates the number of posterior samples. Values of
neff /S greater than 0.1 imply negligible autocorrelations among samples (Gelman et
al., 2013, Sec 11.5).

Model fit was assessed in terms of the root mean square error of approximation
(RMSEA) item fit (Robitzsch et al., 2020) and posterior prediction model checking
(PPMC; Guttman, 1967). Liu and Jiang did not discuss or apply any item fit
measures to the MORDM and few papers have evaluated the performance of
item fit statistics in the context of polytomous DCMs. Thus, RMSEA item fit and
PPMC were used to evaluate item fit in this study. The former is commonly used
to evaluate item fit in DCMs for dichotomized or non-ordered polytomous data
(Kunina-Habenicht et al., 2009), and the latter is commonly used to evaluate the
fit of Bayesian models. All analyses were conducted in R.

3.3 RMSEA Item-Fit

For item i, RMSEA item fit is calculated as follows (Robitzsch et al., 2020):
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RMSEAi =
√
√
√
√

∑

m

∑

c
π (θc)

(

Pi (θc)− nimc

Nic

)2

where π(θc) is the estimated proportion of examinees with attribute combination θc,
nimc is the expected number of respondents with attribute combination θc responding
in category m to item i, Nic is the total expected number of examinees with attribute
combination θc responding to item i, and all other notation is as previously defined.
In words, the RMSEA compares the observed and model-predicted item response
frequencies, weighted by the proportion of respondents in each latent class. To
calculate the RMSEA, maximum a priori (MAP) estimates of the attribute profile
for each examinee were calculated based on the posterior mean of item parameter
estimates and observed data. It has been suggested that RMSEA < .05 indicates
good fit, RMSEA < .10 indicates moderate fit, and RMSEA > .10 indicates poor fit
(Kunina-Habenicht et al., 2009).

3.4 Posterior Prediction Model Checking

In the present study, posterior predictive modeling checking (PPMC) was used to
further evaluate RMSEA item fit for the observed data. We evaluated the degree
of plausibility for each item’s RMSEA under perfect model fit by simulating the
model-based posterior predictive distribution for each item’s RMSEA. For this,
6000 new data sets (yrep, ωs ) were simulated based on the 6000 draws from the
posterior distribution of the fitted model P(ωs | y), where ωs represents parameter
estimates from draw s, s = 1, . . . , 6000, of the posterior distribution. Then, from
each ωs and corresponding (yrep, ωs ), MAP estimates of individuals’ latent classes
and the corresponding item fit RMSEAs were estimated to construct a posterior
predictive distribution of the RMSEA for each item. This process resulted in 6000
new draws from the joint posterior distribution P(yrep, ωs|y). Lastly, a posterior
predictive p-value (PPP), a tail posterior probability of an item’s replicated RMSEA
distribution from the model, was obtained by its comparison with the observed
item’s RMSEA from the data. The PPP, a Bayesian p-value, is different than a
classical p-value in that it is properly used as a diagnostic rather than as part of
a formal test, and can be calculated as follows:

PPPi = P
(
RMSEAi

(
yrep, ωs

) ≥ RMSEAi (y,ω)
)
.

PPP values will be clustered around .5 under perfect model fit, and values close to
0 or 1 indicate misfit (Sinharay, 2003).
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4 Results

The MCMC algorithm resulted in 6000 draws from the posterior distribution for
each parameter. The model converged as the highest R̂ equaled 1.004 (<1.1), and all
neff /S ratios were > 0.1 indicating negligible autocorrelations among samples.

4.1 Item Parameters

In total, 28 item parameters were estimated under the MORDM, including 24 item
parameters and four class probabilities corresponding to the four combinations
of possessing or not possessing AC and CC. Out of 519 bank employees, 83
(16%) were classified as having neither commitment, 138 (27%) as possessing AC
only, 44 (8.5%) as possessing CC only, and 254 (49%) as possessing both types
of commitments. In other words, the model estimated that 76% of respondents
possess AC, whereas only 8.5% possess CC only, a smaller proportion than that
proportion estimated to have neither commitment. The estimated distribution of
attribute profiles is consistent with the results of Ahn and Lee’s study. In particular,
Ahn and Lee found that the concept of CC is difficult to establish as an aspect
of organizational commitment in Korean organizational culture, where unity and
loyalty toward groups are emphasized. Table 2 presents the item parameter estimates
and associated standard errors for this fitted model.

Items with larger λ0, i values imply that individuals lacking the requisite attribute
will have an increased probability of endorsing a higher response option than items
with smaller λ0,i values. Items with larger λ1, i, values imply greater differences
in the probability of a response in each category for individuals possessing versus
lacking the requisite attribute. Note that the item step parameters λ0, m are shared
across items that measure the same attribute.

Table 2 Item parameter estimates and standard errors

Items λ0, i (SE) λ0, m = 1 (SE) λ′
0, m = 2 (SE) λ′

0, m = 3 (SE) λ′
0, m = 4 (SE) λ1, i (SE)

1 8.90 (0.15) −6.40 (0.15) −0.01 (0.00) −0.26 (0.00) −2.78 (0.00) 2.64 (0.00)
2 9.73 (0.15) * * * * 3.10 (0.00)
3 9.73 (0.15) * * * * 2.15 (0.00)
4 8.67 (0.15) * * * * 1.83 (0.00)
5 9.02 (0.16) −6.76 (0.16) −0.02 (0.00) −0.58 (0.00) −1.85 (0.00) 2.04 (0.00)
6 8.52 (0.16) * * * * 2.61 (0.00)
7 7.89 (0.16) * * * * 1.31 (0.00)
8 7.76 (0.16) * * * * 1.76 (0.00)

Note. λ0, i,: intercept parameters, λ′: step parameters, λ1, i: main effect parameters. “*” indicates
that the item shares the same values of the step parameters with the cell above it
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Fig. 1 Response option curves for AC items

Figures 1 and 2 present the estimated probability of a response in each category
for all eight items. In each plot, the lines with squares represent the probability
that an individual with the requisite attribute will select each response option, and
the lines with diamonds represent these probabilities for that an individual lacking
the requisite attribute. Overall, the plots suggest that individuals with the requisite
attribute are highly likely to endorse the Agree or Strongly Agree categories, whereas
the category probabilities are more spread out for individuals lacking the requisite
attribute.

4.2 Fit Indices

The RMSEAs and PPP values are displayed in Table 3. Item fit RMSEAs were
calculated based on MAP estimates of each individual’s latent class. According
to the previously stated cutoffs, seven items showed poor fit, and only item 8
showed moderate fit. These results suggest that the MORDM does not adequately
represent the response process underlying these data. The PPMC results reinforced
this conclusion as the PPP values for the first seven items equaled 0. Item 8 had a
PPP value of 0.08, which is closer to zero than is typically recommended (Sinharay,
2003).
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Fig. 2 Response option curves for CC items

Table 3 RMSEA item fit indices and PPP values

Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8

RMSEA 0.18 0.17 0.14 0.15 0.14 0.15 0.12 0.09
PPP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08

5 Discussion

This study applied the newly developed MORDM to data reflecting organizational
commitment in Korean bank employees and evaluated model-data fit with the
RMSEA (Robitzsch et al., 2020) and PPMC (Guttman, 1967) measures. Although
the MORDM led to reasonable parameter estimates and a plausible attribute profile
distribution, both types of fit indices indicated poor model-data fit. Although these
results suggest that theMORDM is not appropriate for these data, they also highlight
several avenues for future research.

One interpretation of these results is that the MORDM may not be flexible
enough to adequately describe these data. Namely, the simplifying assumptions
made by the MORDM may not be realistic for these data. For example, it may be
that models which freely estimate different main effects for each step parameter (Liu
& Jiang, 2020) are more appropriate for these data. Not only this, but other model
modifications may also lead to a better representation of the response process. Based
on the distribution of data in Table 1, it may be appropriate to collapse the lowest
two response categories. Particularly for the items measuring AC, the first response
category (Strongly disagree) was endorsed in less than 1% of respondents, and there
may not be enough information in these data to meaningfully distinguish between
the Strongly disagree and Disagree responses. Finally, it may be that dichotomous
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latent attributes are inadequate to describe the latent structure of these data. Models
with more than two latent classes per attribute or models with continuous latent
traits may be necessary to describe the underlying response processes. Although
this study did not compare the MORDM to any alternative models, this is a natural
next step in understanding the structure of these data.

Another interpretation of these results is that the fit indices are not performing
as expected for this model. For instance, the RMSEA may be overly sensitive to
small deviations of fit in the model and may signal misfit even when deviations
from perfect fit are inconsequential. One clear limitation of the RMSEA fit statistic
is that it uses point estimates of the latent class attributes. Although the PPMC of the
RMSEA better accounts for the variability in latent class probabilities, it still relies
on point estimates of the latent classes for each iteration. A thorough evaluation of fit
indices applied to DCMs for ordered polytomous data would improve the usefulness
of these models for applied researchers.

One major limitation of the current study is that it applies only one model
to one data set. However, the challenges encountered in modeling these data
suggest directions for future research on DCMs using both real and simulated
data. One future direction is to develop more computationally efficient estimation
methods to fit these models. Although MCMC is a flexible estimation method, it
is computationally intensive and may be impractical when working with larger data
sets (Huo & de la Torre, 2014). The application of faster estimation methods such as
the EM algorithmmay make these models more accessible to applied researchers. In
addition, more research is needed to evaluate which DCMs for ordered polytomous
responses best balance model flexibility with model parsimony. As new DCMs are
developed, we encourage researchers to simultaneously evaluate the appropriateness
of fit indices for these models.
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An Empirical Study of Developing
Automated Scoring Engine Using
Supervised Latent Dirichlet Allocation

Jiawei Xiong, Jordan M. Wheeler, Hye-Jeong Choi, Juyeon Lee,
and Allan S. Cohen

1 Introduction

1.1 Constructed Response Items and Its Scoring

Each item in an educational test has its well-designed purpose such as assessing an
examinee’s reading skills, inference abilities, or writing efficiencies. Constructed
response (CR) items are believed to be more effective than multiple choice
items in measurement (Chan & Kennedy, 2002; Nickerson, 1989) and have been
applied across various areas in both high- and low-stakes assessments. Constructed
responses may be scored by human raters or through an automated essay scoring
algorithm. Conventional human rater scoring typically requires a rubric that clearly
defines scoring procedures to maximize the reliability and ensure the validity and
fairness of the final scores (Hogan & Murphy, 2007). Sometimes, several groups
of raters are involved to avoid individual scoring bias. The ratings from different
raters, however, could be subjective due to the variation and discrepancies in rater
training from one testing time to another (Ercikan et al., 1998). To minimize the
differences between individual raters, this process usually requires high quality rater
training and monitoring of the score accuracy. Consequently, the associated time and
expense involved in the scoring process are two of the primary problems in human
scoring.

Compared with human raters, the automated essay scoring algorithms have
attracted many researchers due to its stable scoring results and economical property.
Accuracy and reliability of automated scores for writing assessments have been
found to have high agreement with human raters (Attali, 2004; Landauer, Laham,
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Rehder, & Schreiner, 1997; Nichols, 2004; Sebrechts, Bennett, & Rock, 1991).
Traditional automated essay scoring algorithms depend on carefully designed
linguistic features of the response content to evaluate the composition (Dzikovska,
Nielsen, & Brew, 2012; Livingston, 2009). Although they make reliable scores in
application, some of the statistical latent semantic features in the responses may not
be well recognized by the scoring algorithms and therefore cannot replace human
raters in its current rubric design (Dikli, 2006; Liu et al., 2014).

1.2 Topic Models and Supervised Latent Dirichlet Allocation

Topic models provide a tool for mining textual data in an effort to detect the
latent semantic structures. Topic modeling approaches based on Latent Dirichlet
Allocation (Blei, Ng, & Jordan, 2003) were originally established to evaluate the
text of large corpora.

The supervised Latent Dirichlet Allocation (sLDA; Mcauliffe & Blei, 2008)
model is commonly used in text analysis. It includes a dependent variable as the
supervisor for the topic modeling. In the context of analyzing constructed responses,
a variable such as the rubric-based scores of examinees’ answers can be used for
the supervisor. As an example, sLDA has been used for detecting the latent topic
structure from a corpus of CR answers on two social study tests (Xiong, Choi, Kim,
Kwak, & Cohen, 2019).

This study uses sLDA as a statistical model to detect the latent semantic structure
of empirical data from an English and Language Arts assessment. Different n-
grams were used as tokens to build distinct sLDA models. Response length was
used as additional covariate to the topic proportions in the final sLDA model.
Finally, a comparison and discussion is presented among the performance of
the models.

2 Methods

2.1 Supervised Latent Dirichlet Allocation

Parameter Estimation. sLDA is different from the unsupervised LDA model
in that it jointly models the text with the associated supervisor label to estimate
appropriate latent topics which can predict the label for future documents. The label
could be various response types such as real values or ordered class.

Suppose there are K topics β1:K in the documents. With the Dirichlet parameter
α, response parameter η and σ 2, the sLDA model generalizes the document and
response label in the following steps (Mcauliffe & Blei, 2008):
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1. The topic proportions θ |α are drawn from Dir(α).
2. The topic assignments zn|θ are drawn fromMult (θ).
3. The word wn|zn is drawn from each topic zn, where β1:K followsMult (βzn).
4. The response variable y|z1:N, η, σ 2 is then drawn from N(η′z̄, σ 2).

where the z̄ here is defined as 1
N

∑N
n=1 zn.

The response label used in this study has 5 ordered categories and an exponential
dispersion link was used. The natural parameter ζ and dispersion parameter σ were
used in the canonical link function under the generalized linear model. Therefore,
the response variable has the following distribution under the general version of
sLDA (Mcauliffe & Blei, 2008).

p(y|z1:N, η, δ) = h(y, δ)exp{η
′(z̄y)− A(η′z̄)

δ
} (1)

where η′z̄ is the linear predictor and is set to be identical to the parameter ζ ; h(y, δ)
is the base measure; y is a sufficient statistic; and A(η′z̄) is the log-normalizer. A
variation expectation-maximization (EM) algorithm from LDA (Blei, Ng, & Jordan,
2003) can be used to estimate sLDA model parameters and yields an expected
response given a new document as:

E[Y |w1:N, α, β1:K, η, δ] ≈ Eq [μ(η′z̄)] (2)

where μ(η′z̄) = EGLM [Y |ζ = η′z̄] follows the exponential family properties.

N-gram models. Different n-grams were used as tokens in building up the various
sLDA models. In this study we estimated four sLDA models using four different
n-gram sizes, namely, unigram, bigram, trigram, and mixgram models, where
the mixgram model used a combination of unigrams and bigrams. Each model’s
performance was compared over real data. The response length was also included
in each of the four models as a covariate. These four grams were evaluated in terms
of accuracy to predict the response label in sLDA.

2.2 Data

Description. The data used in this study were written responses from a narrative
writing extended response (ER) item in an English American Literature assessment
administered to high school examinees (n = 1,273). The human rater scores are
used as the supervisor variable for each document. The scores for this item were
ordered categorically and summarized in Table 1.

Preparation. Students’ responses to the ER item were cleaned and the effective
documents were used in the sLDA model. The effective documents are non-empty
documents and contain at least 10 words. The data cleaning process includes
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Table 1 Extended CR item
score categories

0 1 2 3 4

Count 351 221 273 318 109

Table 2 Descriptive
statistics before and after data
preparation

Effective Total Unique
documents words words

Before
preparation

1,070 312,226 11,752

After
preparation

1,061 131,659 6,544

removal of non-alphanumeric symbols, switching upper case letters to lower case,
stemming of words and removal of stop words. Table 2 shows descriptive statistics
for the valid number of words before and after the data cleaning process. The valid
number of words drastically declined, however, only 9 effective documents were
dropped.

2.3 Evaluation Criteria

Classification Accuracy. The classification accuracy (CA) is used for evaluating
classification results in many machine learning classifiers (Kotsiantis, Zaharakis, &
Pintelas, 2007). It is defined as the fraction of correct predictions from the model.
For a classifier with N classes, a N × N confusion matrix is created and a CA
measure is calculated by:

CA =
∑N

i

∑N
j nij (i=j)

∑N
i

∑N
j nij

(3)

where the nij means the counts of the ith row and j th column in the matrix. In this
study, the accuracy of the predicted scores by sLDA for the human raters’ scores
was of primary interest.

Quadratic-Weighted Kappa. The classical Kappa coefficient (Cohen, 1960) has
been used to indicate the agreement between two ratings. Landis and Koch (1977)
proposed divisions on the Kappa coefficient and verified they are useful by giving
the following suggested intervals: poor (≤0.00), slight (0.00–0.20), fair (0.21–
0.40), moderate (0.41–0.60), substantial (0.61–0.80), almost perfect (0.81–1.00).
The quadratic-weighted kappa (QWK; Fleiss & Cohen, 1973), which varies from 0
(trivial agreement between ratings) to 1 (complete agreement between ratings), was
then developed to quantify the amount of agreement among multiple raters. For a
given N ×N confusion matrix, the QWK score can be represented as:
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Kw =
∑

i

∑
j wijPij − ∑

i

∑
j wijPi.Pj.

1 − ∑
i

∑
j wijPi.Pj.

(4)

where wij = 1 − (i−j)2
(N−1)2

are the quadratic weights and Pi.and Pj.are marginal
probabilities of the ith row and j th column of the matrix, respectively.

In machine learning, the QWK is typically used to measure the agreement
between a human rater’s label and an algorithm’s prediction on the same obser-
vation. This paper adopted a determinant QWK threshold of 0.70 which suggests
high human machine score agreement (Williamson, Xi, & Breyer, 2012).

3 Results

3.1 Topic Numbers Selection

One important step in fitting a sLDA model is to determine the number of topics.
More topics do not always indicate better model accountability and precision.
There are many model selection methods, such as the log-likelihood, deviance
information criterion and harmonic mean (Griffiths & Steyvers, 2004; Wallach,
Murray, Salakhutdinov, & Mimno, 2009; Xiong et al., 2019). However, there is no
standard method of selecting the number of topics in advance. Since the ultimate
goal of the sLDA is prediction, this study considered the CA as a measurement
criterion of selecting the optimal number of topics.

Figure 1 presents CA results for each condition. It shows the optimal number of
topics are not identical across the different n-gram models. The CA selects three
topics for the unigram and bigram model, six topics for the trigram model, and five
topics for the mixgram model.

3.2 Classification Results

After determining the number of topics, four separate augmented n-gram sLDA
models were estimated using the sLDA topic proportions and scaled response
length. The response length is the length of an examinee’s response after data
cleaning. The sample of examinees’ responses were split into five folds (i.e.,
subsets). For each model, four of the five folds were used as the training set and
the remaining fold was used as the test set to measure the model’s performance.
This process was used repeatedly so that each fold was used as the test set once.
Figure 2 presents the accuracy and QWK scores from the 5-fold cross validation in
the four n-gram augmented models. All models reported improved accuracy when
using the response length as a covariate (Fig. 2), although some of them are better
than others.
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Table 3 Average of classification accuracy and quadratic-weighted kappa for different n-grams

Models Classification accuracy Quadratic weighted kappa

Unigram 0.702 0.880

Bigram 0.628 0.822

Trigram 0.502 0.440

Mixgram 0.656 0.822

The average CA and QWK scores from the five folds for each of the four models
are summarized in the Table 3. The unigram model shows the highest CA and QWK
and the trigram model shows the lowest CA and QWK scores. The lower CA and
QWK scores from the trigram model indicate that model might be over fitting to the
data.

3.3 Unigram Model

The classification accuracy indicated the unigram model was optimal, so the
augmented unigram sLDA was fitted to all of the response data. The results from the
multi-category sLDA model provided the following logits for each score category:

log

(
π1

π0

)

= −1.49l + 1.98θ1 + 0.93θ2 − 1.99θ3 (5)

log

(
π2

π0

)

= 2.19l + 7.09θ1 + 3.60θ2 − 2.78θ3 (6)

log

(
π3

π0

)

= 4.99l + 8.73θ1 + 3.06θ2 − 9.76θ3 (7)

log

(
π4

π0

)

= 6.53l + 7.92θ1 − 1.67θ2 − 16.65θ3 (8)

where πi(i = 0, 1, 2, 3, 4) is the probability of getting score i; l is the scaled valid
response length; and θj (j = 1, 2, 3) are the topic proportions for each response.
The overall accuracy from the unigram model is 0.69. This means on 69% of all
responses, the unigram model agrees with the human rater score. The QWK score
is 0.86, which surpasses the 0.70 threshold adopted for this study.

The confusion matrix in Table 4 shows the predictions against the human rater
scores for each score category. The cells on the diagonal show the number of cases
where the unigram model and human raters are in prefect agreement. We were
also interested in the off diagonal cells because it can provide information beyond
the model precision, such as categorical sensitivity and specificity. For example,
for documents that received a score of 3 by the human rater, the unigram model
predicts 240 correctly, which indicates a 76% sensitivity for score 3. The unigram
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Table 4 The confusion
matrix predicted by the
unigram 3-topic sLDA model

Human rater scores

Prediction 0 1 2 3 4

0 84 43 3 0 0

1 38 147 23 0 0

2 8 31 197 56 0

3 4 0 50 240 49

4 0 0 0 21 59

Table 5 Top 10 words for
each topic for the unigram
3-topic sLDA model

Topic 1 Topic 2 Topic 3

Clock 0.018 Paint 0.024 Paint 0.064

See 0.016 See 0.021 Art 0.027

Around 0.013 Know 0.014 Surrealist 0.022

Walk 0.010 Think 0.012 World 0.017

Eye 0.009 Wake 0.011 Artist 0.015

Feel 0.009 Ask 0.010 Feel 0.013

Melt 0.008 Start 0.010 Mean 0.012

Begin 0.007 Walk 0.009 Movement 0.010

Myself 0.007 Come 0.008 Time 0.010

Open 0.007 Dream 0.008 Surrealism 0.009

model classifies 49 documents into score 3 when the human-rater score equals 4, so
sensitivity for score 4 is only 55% ( 59

59+49 = 55%), which means the unigram model
is conservative on assigning high scores to responses.

Examinee’s responses can also be reflected from the unigram model topic
structures. Table 5 summarizes the top 10 words from each of the three topics in
the unigram model. Topic 1 could be identified as a topic related with narrator body
movement under the item’s scenario, while Topic 2 and Topic 3 could be identified
as different art content topics.

4 Discussion and Conclusion

This study proposed an automated scoring engine using the sLDA as the foundation.
A critical question in this study was to find the appropriate token dimension to
represent the item response. Four different n-gram tokens, namely, unigram, bigram,
trigram and mixgram were used to compare model performance. The classification
accuracy was used as criterion to select the best number of topics for each sLDA
model, and four augmented sLDA models corresponding to n-gram tokens were
built.

The results from the empirical data showed that the sLDA with unigram
performed best with the highest human-machine score agreement. The models
were tested further using the 5-fold cross-validation. Each model incorporated
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a covariate for the response length, which improved the models’ performance.
Among these four models, the unigram, bigram and mixgram models yield similar
model precision. whereas, the trigram model appeared to over-fit the data due
to the complex token dimensions. The unigram sLDA model showed the highest
classification accuracy based on a 0.880 QWK score. The overall CA from the
unigram model was 0.69. However, the score sensitivity for the perfect scores was
not ideal, which suggests the unigram model might be conservative to assign perfect
scores.

The sLDA uses a supervisor variable that estimates latent topics to help under-
stand an examinee’s writings with relation to the supervisor label. Some problems
exist such as the model dimensionality caused by over-complex tokens. Future
studies could consider word embedding, hash featuring or suchlike to overcome
the problem. The model could be further pruned to yield higher accuracy by adding
effective features in the sLDA model as well.
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Where the Choice of Model Leads Us: An
Empirical Comparison of Dyadic Data
Analysis Frameworks

Hanna Kim and Jee-Seon Kim

1 Introduction

Dyads refer to small groups of two members each, where the persons share the same
environment and actively interact with one another. Complexities arise from such
data, where the inter-personal influence of the members within a dyad is essential,
just as much as the individual, intra-personal effects. Such inter-personal effects
cannot be addressed by conventional models designed for random samples assuming
independence or for clustered data summarizing within-group influences through
group-level means and residual variances. The high degree of dependence between
the members of the same dyad, often addressed as ‘interdependence’ (Galovan et
al., 2017), reflects the mutual influence that members of a dyad share over time.

Dyadic data analysis models have been developed and used for decades, among
which the Actor-Partner Interdependence Model (APIM; Kenny, 1996) and the
Common Fate Model (CFM; Kenny & La Voie, 1985) have gained popularity
as unique approaches to modeling dyadic data. The APIM disentangles interde-
pendence as direct individual influences that members project onto their partners,
whereas the CFM synthesizes interdependence at the dyadic level.

However, choosing among the models when analyzing dyadic data is not clear-
cut. Rather, it is often a matter of theory-based decisions, considering the research
questions and data characteristics. Generally, it is recommended that the CFM be
utilized instead of the APIMwhen we assume the variables are purely dyadic (Cook,
1998) or the measures are moderately to highly correlated (r > .20) (Ledermann &
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Fig. 1 The basic
Actor-Partner
Interdependence Model

Kenny, 2012).1 Still, the appropriate level of analysis is often not easily discerned
(Cook, 1998) and the APIM is frequently used over the CFM simply as a “default”
choice in applied research (Galovan et al., 2017; Ledermann & Kenny, 2012).

Given that the choice of model may not only convey different theoretical
implications, but also produce distinct results, this study aims to compare the two
modeling frameworks in an empirical setting. We first review the models, referring
to their characteristics and use in related fields. We then provide an empirical data
analysis using theWisconsin Longitudinal Study2 to illustrate the research questions
that each model addresses and to discuss their respective strengths.

2 Overview of Dyadic Data Analysis Models

2.1 Actor-Partner Interdependence Model

The APIM (Kenny, 1996) models dyadic interdependence as a combination of
explicit and direct paths between the predictors and outcomes of members in a
dyad. These paths are called ‘actor effects’ and ‘partner effects’ as reflected in the
name, Actor-Partner Interdependence Model. Figure 1 depicts the structure of a
basic APIM with a single predictor (similarity; simH , simW ) and outcome (positive
affect; positH , positW ) for both members (husband and wife).

Actor effects (the horizontal arrows denoted as a11 and a22) show the impact of
one’s own predictor on their own outcome for each person as a typical regression

1A higher correlation of indicators is required to ensure a strong measurement model with only
one pair of indicators for a given construct. However, weak loadings cannot be compensated by
obtaining additional indicators (Ledermann & Kenny, 2012).
2Wisconsin Longitudinal Study (WLS) [graduates, siblings, and spouses]: 1957–2019 Version
13.07. [machine-readable data file] / Hauser, Robert M., William H. Sewell, and Pamela Herd.
[principal investigator(s)]. Madison, WI: University of Wisconsin-Madison, WLS. [distributor];
http://www.ssc.wisc.edu/wlsresearch/documentation/

http://www.ssc.wisc.edu/wlsresearch/documentation/%3e
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model would do. On the other hand, partner effects (the diagonal arrows denoted
as p12 and p21) assess the influence on one’s outcome coming from their partner’s
predictor level.3 It is by these partner effects that APIM captures interdependence.
Residual covariance between the residual terms of the two members’ outcomes
(cy = cov (epH , epW )) indicate any covariances not captured by the model, so that
their outcome values are still correlated after removing the variance explained by the
partner effects (Cook, 1998). The APIM also allows for a covariance between the
predictor variables (cx), reflecting the belief that the predictors of members within a
dyad are not independent.

Within APIM, we can consider the following research questions. First, we
can examine if one’s predictor level is associated with their own outcome by
estimating corresponding actor effects for both members. We can evaluate if there
is a significant difference between the actor effects by comparing models with and
without an equality constraint on the actor effects. Next, we investigate if one’s
predictor level affects their partner’s outcome level by estimating partner effects.
The difference in the partner effects can also be tested by the fit of models with
and without equality constraints (Maroufizadeh et al., 2018). Additionally, we can
compute the ratio (k) of each member’s partner effect to their actor effect to identify
the ‘dyadic pattern’ of the relationship, such as the actor-only pattern (k = 0), couple
pattern (k = 1), and the contrast pattern (k = − 1) (Kenny & Ledermann, 2010).

The APIM has been widely used in psychological studies involving families
and close relationships, and is increasingly being used to better understand intra-
and inter-personal dynamics in various fields including education and health
management.

2.2 Common Fate Model

On the other hand, the CFM (Kenny & La Voie, 1985) focuses on modeling the
interdependence as a joint process, a relationship occurring at the dyadic level rather
than as a set of separate individual paths. As its name indicates, the CFM assumes
that members in a dyad demonstrate interdependence due to a shared external factor,
namely the ‘common fate’ variable. It can be an environmental factor, a cultural
background, or even a shared experience of the members. Since interdependence
occurs due to the ‘common fate’, the outcome of interest is also analyzed at the
dyadic level. In order to form a dyadic predictor and outcome, CFM utilizes both
members’ responses as measurements of dyadic constructs. By doing so, we are able
to account for measurement errors, but at the same time, it may be more difficult to
estimate the CFM with small samples as compared to the APIM.

3Note the convention to label the partner effect of person 1 (the path of X2 to Y1) as p12, and vice
versa (Garcia et al., 2015). To whom the outcome variable belongs, in other words who receives
the partner effect, matters in naming the partner effects.
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Fig. 2 The basic Common
Fate Model

Figure 2 depicts the structure of a basic CFM with a single latent predictor
(similarity; sim∗) and outcome (positive affect; positive∗ ). The ultimate goal is
to estimate the influence of the ‘common fate’ predictor on the latent outcome,
which is called the ‘direct effect’ (d) (Loeys & Molenberghs, 2013). Covariances
between the residual variances of the manifest variables (cH = cov (esH , epH),
cW = cov (esW , ehW )) are set for each member to model the residual individual
relationships not fully explained by the dyadic direct effect. Consequently, the dyad
members do not directly impact one another but instead exact effects through the
latent factors (Maroufizadeh et al., 2018).

With CFM, we can examine if the dyadic predictor affects the outcome at
the dyadic level. This implies that interdependence occurs because both members
are affected by a common variable. Therefore, it is generally advised that CFM
be used in cases where the variables measure a truly dyadic relationship, so
that the associations between the variables can be analyzed at the dyadic level
(Ledermann & Macho, 2009). It is also recommended that the variables form a
reliable measurement model. When a CFM fails to provide good fit to the data, it
could indicate that the member’s scores are not equally affected by the dyadic effect
(Cook, 1998). It may be that the loadings on the latent variables are not equal, or that
the relationship of interest in fact cannot be well-summarized by an overall ‘direct
effect’.

3 Empirical Analysis

3.1 Research Questions

For illustration, APIM and CFM models were applied to data from the Wisconsin
Longitudinal Study (WLS) to understand how marital quality affects happiness in
married couples. The association between marital quality and happiness in married
couples (Russel & Wells, 1994), as well as the relationship of similarity between
spouses in multiple domains and the positive affect of spouses (Gaunt, 2006) have
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been reported. Based on a previous study that measured marital quality with the
similarity of outlook on life and closeness between spouses (Moorman, 2011),
we aimed to investigate the following research questions through dyadic data
analyses:

– How does marital quality affect happiness in married couples?
– Do similarity and closeness differently impact positive and negative affect?
– If significant influences exist, are they better understood as combinations of

individual influences or couple-level joint processes?

3.2 Data and Variables

The WLS tracks 10,317 Wisconsin high school graduates from 1957.4 Survey
data were collected from the graduates in 1957, 1964, 1975, 1993, 2004, and
2011, and from selected siblings in 1977, 1994, 2005, and 2011. Spouses of
the graduates (in 2004) and siblings (in 2006) were invited to participate in the
study as well. Although the WLS is a longitudinal data set, data from married
couples were collected only for a single wave, making the present study a cross-
sectional investigation. In this study, we focused on 6012 graduates and siblings
who (a) participated in the 2004 wave of the WLS, (b) completed at least a part
of the telephone interview, (c) were currently married, (d) had spouses that were
heterosexual and participated at least partially in a parallel telephone interview.5

Missing data (less than 5%) were imputed, using one of 20 multiple imputation
sets in further analyses. The variables of analysis and their descriptive statistics are
presented in Table 1.

3.3 Analysis Models and Results

APIM and CFMmodels were fit to understand how marital quality affects happiness
of married couples.6 First, single sets of indicators were used for the predictor and
outcome as in the basic form of APIM (Fig. 1) and CFM (Fig. 2), resulting in models
1–4 and 6–9. Next, multiple sets of indicators were used to form a comprehensive
APIM (Fig. 3) and CFM (Fig. 4), resulting in models 5 and 10.

4WLS Homepage, https://ssc.wisc.edu/wlsresearch/, last accessed 2020/9/1.
5This was done for the purpose of testing the difference in influences that wives had on husbands
and vice versa. One respondent was eliminated from subsequent analyses because both she and her
spouse were female.
6R (version 4.0.3; R Core Team, 2020) codes for APIM and CFM analyses can be provided upon
request.

https://ssc.wisc.edu/wlsresearch/
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Fig. 3 The Actor-Partner Interdependence Model with Multiple Indicators (Model 5). (Note.
Standardized estimates with equality constraints are in bold, insignificant estimates are marked
in grey)

Fig. 4 The Common Fate Model with Multiple Indicators (Model 10). (Note. Standardized
estimates are provided)

Model fit statistics provided in Table 2 show that the APIM with single indicators
is saturated with zero degrees of freedom unless additional constraints are applied.
In contrast, goodness of fit statistics can always be calculated for the CFM with
single indicators and no constraints. Fit statistics for Model 5 and Model 10 indicate
that the fit for more complex models with multiple indicators tends to worsen, with
APIM being relatively stable.

The parameter estimates for APIM with a single set of indicators reveal that
one’s own perception on the similarity or closeness to one’s spouse has significant
positive effects on one’s positive or negative affect (Table 3). The actor effects were
not significantly different among husbands and wives, except that wife level of
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similarity had a stronger effect on reducing negative affect compared to husband.
The positive and negative affect felt by married persons were also subjected to their
spouse perception of similarity and closeness. These partner effects were relatively
weak compared to actor effects. It is notable that wife emotion was more impacted
by husband similarity, than was husband being impacted by wife perceived level of
similarity. Such a difference did not hold for closeness, where the amount of partner
effect was not significantly different among husbands and wives.

The analysis results of CFM with single sets of indicators summarize the
interdependence between spousal perceptions and emotions into a direct effect at the
dyadic level (Table 4). Overall, the perception of married couples on their similarity
or closeness positively affects their positive and negative affect. The differences
in the effects of husbands and wives is no longer addressed and is mixed in the
direct effect of the CFM. This is suitable for modeling the relationship between
closeness and positive or negative affect (Models 8 & 9) because the spouses do
not exhibit disparate actor and partner effects. However, modeling the influence
of similarity on the positive or negative affect of married couples by CFM could
obscure the difference in the amount of impact that wives and husbands receive
from one another.

As similarity and closeness measure marital quality while positive and negative
affects reflect happiness, APIM and CFM with multiple indicators (Models 5 & 10)
were fit to jointly model the dyadic relationships among the variables. In Model
5, the actor effects were all significantly positive and mostly indifferent across
husbands and wives as in the APIMs with single indicators (Fig. 3). However,
after simultaneously accounting for the variables, some partner effects no longer
persisted, such as the effect of closeness on positive affect. As the number of
indicators increases, a joint APIM will become more complicated with added actor-
and partner effects affecting each other. Model 10 synthesizes the overall effect of
‘marital quality’ on ‘happiness’ as 0.562, which means when a couple’s marital
quality is 1 SD higher than the average couple, their happiness as a married couple
will be about 0.562 SD higher than the average (Fig. 4). As more indicators with
high reliability are added, CFM will provide stronger evidence on a composite
dyadic relationship.7

4 Discussion

In this study, we examined the two dyadic data analysis frameworks, APIM and
CFM, with respect to their conceptual focuses and empirical implications. The
illustrative example applying both APIM and CFM to the WLS data confirmed
the positive relationships between marital quality and happiness of married couples

7The reliability was 0.644 for ‘marital quality’ and 0.477 for ‘happiness’ within our empirical
example.
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found in previous studies. However, in APIM, separating out the individual impacts
on each other was emphasized, whereas CFM focused more on a composite, joint
effect at the couple-level. Depending on the dyadic relationship of interest, the
individual differences could be overlooked by only utilizing CFM. On the other
hand, when measuring dyadic constructs and jointly modeling a dyadic relationship
is required, CFM can better suit the purpose. It should be noted though that strong
measurement models based on theory are needed in order to fully benefit from the
latent structure of CFM.

The exact relationship between APIM and CFM parameters deserve theoretical
investigation, and simulation studies can help provide detailed guidance on choosing
the right dyadic data analysis model depending on the research question and
characteristics such as dyadic patterns. Future research could also examine the
impact of additional covariates or sample size, and may extend the models to cover
closely related groups of three or more members, with increasing availability of
quality data.
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Generalized Additive Modeling for
Learning Trajectories in E-Learning
Environments

Jung Yeon Park, JinHo Kim, Dries Debeer, and Wim Van den Noortgate

1 Introduction

1.1 Technology-Enhanced E-Learning

Adaptive E-learning is growing in popularity. It allows teachers to track individual
student’s learning needs and to provide timely personalized support (Klinken-
berg et al., 2011). In educational testing environments, high-stakes computerized
assessments typically do not provide feedback during the test, and the test-taker’s
proficiency is expected to be stable during the assessment. In contrast, an a priori
expectation of the adaptive E-learning environments is that the learners’ learning
performance may change in real time as the learners complete a sequence of
practice items. In addition, often timely and personalized feedback is included
in the environment (Park et al., 2019). To be specific, the individuals’ learning
(performance) trajectories may be irregularly shaped. Because there is freedom for
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each learner to access E-learning platforms and choose their own study session, the
learning trajectories may change within a single study session (i.e., while the learner
is engaged in the E-learning environments). It is also necessary to consider that the
trajectories may change between study sessions (i.e., while they are not engaged in
the E-learning environments). It is probably because the learner could experience
some constructive learning through other mechanisms or simply forget things they
learned in previous study sessions.

Therefore, it is desirable to use a statistical modeling approach that enables one to
flexibly examine the learner’s learning change. Kadengye et al. (2015) used a type of
generalized linear mixed models (GLMM) in order to estimate the learner trajectory
over time within- and between-study sessions in the E-learning environments. Park
et al. (2018) proposed using the GLMM with learner explanatory variables for the
purpose of alleviating the cold-start in adaptive learning systems – the problem
that for new learners we do not have an idea of their ability and therefore the
adaptive learning environment might not perform well until the learner completed
a substantial number of items. As an extension to those successful endeavors, this
study aims to demonstrate the potential of a different modeling approach that could
enhance the predictive capability to infer the dynamics of learners’ performance in
an E-learning environment.

1.2 Generalized Additive Mixed Model

In this study, we employ a generalized additive mixed model (GAMM; Hastie &
Tibshirani, 1990; Wood, 2017) to examine the learner trajectory in the E-learning
environments by considering the within- and between-session time trend variables.
The GAMM is an extended variant of GLMM in which a linear predictor includes
a sum of smooth functions of covariates (e.g., time). The model has the following
structure:

g (E (Yi))=Aiξ+f1 (x1i )+f2 (x2i )+f3 (x3i , x4i ) . . . , f (xi) =
∑q

j=1
bj (xi) γji

(1)

where Ai is a row of the model matrix for the parametric terms, ξ is the corre-
sponding parameter vector, fm(xi) is the m-th function of its covariate(s), xi

′
s for the

smooth terms, bj(x) is the j-th basis function, where j = 1, . . . , q, γ ji is the unknown
parameter which can include random effects, and g(.) is a link function that maps the
expected outcome E(Yi) on the right-hand-side of the equation. Because we focus
on binary outcomes, we will assume g(.) is the logit function.

As can be seen in Eq. (1), the relationship between item responses and predictor
variables in the GAMM is flexible via the semi-parametric modeling approach.
In contrast, in the GLMM this relationship is predetermined to be linear or linear
with respect to a predefined transformation of the predictor. For the choice of basis
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function, bj(x), the cubic regression spline and thin plate were explored; however,
other basis functions are also possible.

1.3 Purpose of Study

In this study, first, we investigate the applicability of a GAMM, a semi-parametric
modeling approach to examine the real-time learner performance in an item-based
E-learning environment. This study aims to consider within-session time (i.e., the
time spent while they are engaged in the learning environment) and also between-
session time (i.e., the time spent outside the learning environment) to estimate
the learning (performance) trajectories in a more precise and practical manner.
Second, we investigate whether, using this method, the learning trajectories can be
better estimated than using a GLMM. We demonstrate its applicability to log data
generated by a real-life E-learning environment.

2 Application to Real-Life Data

2.1 Statistics Online Data

A subset of the data collected from a web-based learning platform, ‘Statistics-
Online’ was used for this study. This platform was designed as an item-based,
E-learning environment to supplement the classroom learning of undergraduate
students in the Educational Sciences and the Speech Therapy & Audiology Sciences
at the University of Leuven (a.k.a. KU Leuven). Learners were allowed to log in at
the time of their choice outside the classroom-based lecture times. A total of 145
multiple-choice items from the “regression analysis” module were presented in a
random order across study sessions. Data from the 2011–2012 academic year was
used for the current analysis. Students’ responses to the items (i.e., scores) were
dichotomous (0 = incorrect answer; 1 = correct answer). In addition to the item
responses, the dataset contains timestamps recording when each student started and
finished each item. We refer to the spacing time between two consecutive study
sessions of a student as the between-session time. In this example, the between-
session time is defined by the time between two consecutive item responses that
is longer than 24 h, and the within-session time is defined by the time that the
student is logged in, excluding the between-session time. Based on this information,
we computed the amount of time spent within (‘wtime’) and between (‘btime’) the
study sessions. In particular, the ‘wtime’ indicates cumulative learning time in hours
within study sessions, and the ‘btime’ represents cumulative spacing time in days
between study sessions. Table 1 shows an example of the structure of the data. To
secure a stable and valid estimation of fitting the GAMMs, only the data of students
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Table 1 Structure of
statistics online data

Student Session Item Score wtime btime

1 1 1 1 0.000 0.000
1 1 2 1 0.002 0.000
1 1 3 1 0.005 0.000
1 1 4 1 0.008 0.000
1 1 5 1 0.009 0.000
1 . . . . . . . . . . . . . . .

1 1 20 1 0.245 0.000
1 2 21 1 0.246 119.707
1 2 22 1 0.249 119.707
1 2 16 1 0.251 119.707
1 2 23 1 0.254 119.707
1 2 24 1 0.257 119.707
1 . . . . . . . . . . . . . . .

1 2 15 1 0.400 119.707
1 3 17 1 0.401 143.821
1 3 37 1 0.403 143.821
1 3 38 1 0.406 143.821
1 3 39 0 0.411 143.821
1 3 5 1 0.414 143.821
1 . . . . . . . . . . . . . . .

1 3 43 1 0.432 143.821
1 4 44 1 0.433 167.920
1 4 6 1 0.436 167.920
1 . . . . . . . . . . . . . . .

who responded to at least five items, engaged in at least two study sessions (that
resulted in 64 learners in total) were considered for analysis.

2.2 Models and Methods

In order to infer the learner’s learning performance within study sessions after
controlling for the spacing times between study sessions, we used two models. First,
we used the GLMM with parametric terms associated with the within-session time
(wtime) and between-session time (btime) as follows:

logit
(
E
(
Ypi(t)=1

))= (
α00+θ0p

)+ (
α10+θ1p

)
wtimep(t)+

(
α20+θ2p

)
btimep(t)+βi . (2)

In the equation, α00, α10, and α20 refer to the expected initial performance, the
expected rate of performance change within sessions, and the expected effect of
the spacing time between sessions on the within-session performance, respectively.
Similarly, θ0p, θ1p, and θ2p are the random deviations of the learner p estimates for
each term related to the learning performance. Also, β i is the random effect (or item
difficulty) of item i.
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Table 2 Model fits of
GLMM and GAMM

Criterion GLMM GAMM

AIC 3641.58 3640.42
MSE 0.260 0.257

Secondly, we fit the GAMM to the data which incorporates both the within-
session and between-session times into the smooth functions as below:

logit
(
E
(
Ypi(t) = 1

)) = (
α00 + θ0p

) + f1
(
wtimep(t)

) + f2
(
wtimep(t), θ1p

)

+ f3
(
btimep(t)

) + f4
(
btimep(t), θ2p

) + βi, (3)

where fm(.) denotes the m-th smooth function, and other terms are defined as in
Eq. (2), but the effects of within-session time (i.e., f1(wtimep(t))) and between-
session time (i.e., f3(btimep(t))) are in the smooth terms. f2(wtimep(t), θ1p) and
f4(btimep(t), θ2p) indicate the learner-specific random deviations from their overall
effects. Note that if fm(.) is just a linear function, it reduces to the GLMM. To fit the
GAMMs, the bam function in the mgcv R package (Wood, 2017, 2020) was used
for this study.

For a smoothing parameter estimation, the restricted maximum likelihood
method (REML) was used. In order to evaluate and compare the model fits
and prediction accuracy between the two modeling approaches, we considered
information criterion such as the Akaike Information Criterion (AIC) as well as the
Mean Squared Error (MSE) for item responses. For the models fitted by the mgcv
R package, the AIC was computed based on the effective degrees of freedom (edf;
Wood, 2020).

2.3 Results

As seen in Table 2, results suggest that the GAMM has lower values in AIC and
MSE than the GLMM, indicating a better model-data fit. Therefore, including the
smooth functions to estimate the learners’ unique learning trajectories over time
(within- and between-study sessions) performs better than merely assuming the
linear trajectories as in the GLMM. Note that given the specific data, the gap of
model fits appeared not to be dramatically noticeable but it still implies the potential
of using the GAMM.

Table 3 shows the significance of the two smooth terms over time for within-
and between-study sessions, the learner-specific random effects for the intercept
and the slopes, and the item-specific random effect of GAMM (see Eq. 3). The
greater the effective degrees of freedom (edf), the wigglier the smooth function
becomes. Specifically, an edf > 2 indicates a highly non-linear relationship (note that
an edf = 1 indicates a linear relationship). Results of the edf values corresponding
to both within- and between-session time trends ensure that the expected logit and
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Table 3 Approximate
significance of smooth terms
of GAMM

edf X2

f1(wtimepi) 2.46 9.51*
f3(btimepi) 1.00 0.12
θ0p 40.83 399.31***
f2(wtimep(t), θ1p) 0.00 0.00
f4(btimep(t), θ2p) 0.00 0.00
β i 105.90 662.94***

Note. edf = effective degrees of freedom;
* = p < .05; *** = p < .001

Fig. 1 General time trends within and between sessions

the wtime variable is not linearly related, suggesting that the GAMM provides more
information than the GLMM in this regard.

Figure 1 visualizes the general within- and between-session learning trajectories
(wtime and btime) of an average learner where the other terms are held constant in
Eq. (3). The 95% confidence intervals indicated by the shaded region on the plots
reflect the uncertainty around the estimated smooth functions. The estimated trajec-
tory within sessions (left panel in Fig. 1) was significant. Specifically, the trajectory
appears to increase monotonically for the first fifth and seventh hours during the
course of learning, and then starts to decrease. Similarly, the confidence interval
widens as the within-session time gets longer. The general learning trajectory for
between-session time only slightly increases. As also implied by the edf value in
Table 3, the relationship between the expected logit and the btime variable appears
to be linear.

Figure 2 visualizes the learning trajectories of a randomly selected learner.
Specifically, the panel on the left shows the learner’s within-session trajectory and
the panel on the right shows his or her between-session trajectory. Note that the
two functions in this figure represent the summed effects including the intercept
and other predictors in the GAMM. The plots currently give the impression that the
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Fig. 2 An individual learner’s learning trajectories within (left) and between (right) sessions

learner’s performance is expected to increase right up to fifth hour within the study
sessions, and then gradually decreases for the next 10 h.

3 Conclusion and Implication

The present study explored the capability of a GAMM to examine learners’ real-
time performance in the E-learning environments. Smoothing splines were used
for the nonparametric functions to estimate changeable learning trajectories. This
flexible approach was compared with a more traditional approach such as a GLMM.
We demonstrated its applicability and potentiality to log data available from an
item-based, E-learning assessment for learning statistics online. We found that
the GAMM was able to estimate both linear and non-linear learning trajectories
for the within-session and between-session times. However, we acknowledge that
the data used in this study is relatively small with regard to the number of items
and learners to be able to illustrate advantages of the GAMM over the GLMM
substantially. Nevertheless, we found that the GAMM has shown methodological
values for modeling the learner trajectory and improving the response prediction,
using the semi-parametric approach based on smooth functions. As future work,
one could investigate its added values through bigger data examples that allow to
explore comprehensive and meaningful learning trajectories over a longer period of
time in similar E-learning environments.
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Students Ratings Their Open Classroom
Discussion

Diego Carrasco , Ernesto Treviño , Natalia López Hornickel ,
and Carolina Castillo

1 Introduction

Past research in civic education has positioned open classroom discussion of
political and social issues (OPD) as an essential factor for different citizenship
outcomes, including civic knowledge (Isac et al., 2014), support of egalitarian values
(Carrasco & Torres Irribarra, 2018), political efficacy (Knowles & McCafferty-
Wright, 2015), among others. At the same time, it present hostile relations with
youth alienation (Torney-Purta, 2009), authoritarianism endorsement (Hahn &
Tocci, 1990), and tolerance of corruption (Carrasco et al., 2020).

OPD is a reflective measure of the learning environment and not a classical indi-
vidual difference measure. It allows capturing students’ experience as a collective (at
the school level) through students’ perceptions as individuals. Student responses are
the source of information about their school practices, were students rate their learn-
ing environments (Carrasco & Torres Irribarra, 2018). OPD items are reference-shift
items, and if their rating response nature is ignored, the compositional models can
lead to the wrong conclusions. It is argued that compositional model specification
produce an unnecessary correction of level 2 estimates for reference shift scale
scores (Lüdtke et al., 2009). Additionally, OPD scores of schools are subject to
students’ inter-rater variability. As such, two different schools may receive the
same OPD mean score, yet the students’ OPD ratings can vary broadly (Schweig,
2016). How much students’ rating variability is tolerable? Cut off scores may not
be easily determined. Common advice in the organizational literature is to exclude
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aggregated measures with a low inter-rater agreement (> 0.70) (Lüdtke et al., 2006;
Woehr et al., 2015). However, these inter-rater agreement indexes are subject to
uncertainty, which depends on group size and intraclass correlations of the rating
scores (Lüdtke & Robitzsch, 2009). Therefore, the recommended cut scores may
not be generalizable to all scenarios.

In the present work, we address these two problems. The current manuscript
consists of five sections. Firstly, a literature review is included to situate the
problems under study. Second, a methodology section describes the observed data to
illustrate the problems here presented. Then, each problem is presented separately,
with its respective analytical strategy. Finally, a conclusion and discussion section
are included to present a summary of the presented findings and its implications for
large scale studies.

2 Referent Shift Items

Educational research uses students’ responses to assess the learning environments
students are in. According to Lüdtke et al. (2009), there are three areas where it
is possible to find student questionnaires that collect information about learning
environments, including climate research, teacher effectiveness, and students’ moti-
vational development. In this sense, using students’ responses to describe learning
environment features is a recurrent practice in educational research.

Reference shift items ask persons in a group about their perceptions concerning
a group attribute, or a context factor that affect them collectively. Then, their
responses are aggregated at the group level, assuming that group members develop
shared perceptions as a function of the attributes of the context (Lang et al., 2018).
According to Lüdtke students’ ratings represent the individual students’ perception
of these attributes, and their aggregated scores at the classroom or school level
represent shared perceptions of the learning environment, corrected for individual
idiosyncrasies (Lüdtke et al., 2006, p. 216).

The OPD scale is an example of these reference shift item scale. All of its item’s
referred to the school, including what teachers do and what students can do. For
example, ‘Teachers encourage students to make up their minds’ and ‘Students bring
up current political events for discussion in class’ are items that elicit response
referring to a learning environment feature. These are not individual differences
between students. However, researchers include OPD scores in different ways in
their models (Carrasco & Torres Irribarra, 2018), including individual scores, school
means, or by including OPD scores of students and school means, as in standard
compositional models (Caro & Lenkeit, 2012). This latter practice is troublesome
when comparing learning environments using reference shift item scales, because
the generated estimates do not directly produce the parameter of interest and may
lead to wrong conclusions (Lüdtke et al., 2009).

When students respond to reference shift items, their responses can be considered
a particular case of rater mediated measures (Engelhard &Wind, 2018). When their
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rating nature is recognized, two elements are more easily represented: the scores
reference and its rater agreement variability. Two methodological problems are
presented here in this regard. The first problem concerns what model specification is
more interpretable, when comparisons of learning environments are of interest, but
scores were generated using reference-shift item scales. The second pertains to the
varying inter-rater agreement between students from different schools. These can
vary greatly, and the sole exclusion of low agreement schools as a solution leads
to considerable loss of sample (Lüdtke et al., 2006). The present study is an effort
to respond to these two methodological challenges. In the following sections, we
describe the data we used to illustrate these two problems, and for each problem, we
propose an alternative model specification.

3 Methods

3.1 Selected Data and Measures for Illustrations

We used data from the International Civic and Citizenship Education Study
from 2016 (ICCS 2016). This study collects responses from intact classrooms,
using a two-stage sampling design, where schools are selected using a stratified
design in each participating country. These are representative samples of eighth
grade students. To illustrate the two identified problems, we use data from Italy
(problem 1), and Perú (problem 2), as these two countries are ideal examples for
the methodological challenges here discussed. The observed data includes 3450
students and 170 schools from Italy, and 5166 students and 206 schools from Perú.

Dependent variable. Civic Knowledge (yij) scores represent students’ political
sophistication that reflects their understanding of political issues. It consists of five
plausible values, generated with IRT Rasch model (Rasch, 1960) over a random
booklet design of 87 item-test. It presents an international mean of 500 points and a
standard deviation of 100 points.

Independent variables. To illustrate the presented problems, we are using two
variables. Socioeconomic Status (sesij), is a score created based on the Parents
Education level, Parents Occupation, and number of books at home, reduced via
principal components and standardized in each country. OPD scores (opdij) is a
reflective measure of the school environment. This score represents the responses
to six reference shift items (e.g., “Teachers encourage students to express their
opinions”). OPD scores are IRT scores, generated with a partial credit model
(Masters, 2016). More details of regarding the selected variables and the study
design can be found in its technical report (Schulz et al., 2018).

In the following sections, the two problems are illustrated and addressed
separately. All estimates are pseudo maximum likelihood estimates, where survey
design weights and plausible values are accommodated accordingly. Survey weights
were partitioned into students and school levels and scaled to their effective samples
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while including pseudo strata in the estimates. Plausible Values of civic knowledge
scores are treated as imputed values and estimates are generated following Rubin-
Schaffer rules (Rutkowski et al., 2010).

4 Problem 1: Wrong Inference Model

To illustrate the problem of wrong model specification, we will fit a compositional
model over civic knowledge, using the OPD scores (see Eq. 1). This model is
equivalent to a Mundlak specification (Bell et al., 2018), and is commonly used to
get compositional effects of socioeconomic status over educational outcomes (Caro
& Lenkeit, 2012). In this application of the model, yij stand for the civic knowledge
scores of student i from school j and is modeled with the overall mean α, and each
school specific intercept uoj and a random error εij. Additionally, we conditioned
yij with students OPD scores (opdij) by including its respective centered versions.
(
opdij − opd..

)
are OPD scores centered to the grand mean, while

(
opd.j − opd..

)

are school level OPD scores centered to the grand mean.

yij = α + γ cgmw

(
opdij − opd..

) + γc
(
opd.j − opd..

) + uoj + εij (1)

In this model, γ c would be interpreted as the school level effect of OPD.
However, this model does not retrieve the relationship of interest. When we want to
compare learning environments, we are interested in the difference between school
environments as a whole. This is different from γ c, which is the relationship of OPD

school scores
(
opd.j − opd..), that cannot be accounted by OPD student scores

(
opdij − opd..). Thus, γ c is a partial effect. A more appropriate parametrization

of the model, is the fully disaggregated model (Rights et al., 2019), or also called
the within-between model (Bell et al., 2018) (see Eq. 2). In this later model
γ cwcw is obtained by centering OPD scores with their respective school means(
opdij − opd.j

)
, or centering within cluster. This centering specification changes

the meaning of the between school estimate γ b. This latter estimate is not a partial
effect, but an overall relationship between school means of OPD scores, and civic
knowledge scores school random intercepts.

yij = α + γ cwcw

(
opdij − opd.j

) + γb
(
opd.j − opd..

) + uoj + εij (2)

To illustrate the risk of such a wrong model specification, we use data from Italy
from ICCS 2016, and fit both mixed model specifications. In this current application,
we have standardized OPD scores. Therefore, OPD coefficient estimates can be
interpreted as the expected change in civic knowledge scores, per one standard
deviation of OPD scores between students (Table 1).
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Table 1 Effects of students’ rating of OPD on civic knowledge

Compositional model Within-between model
Fixed effects E S.E. E S.E.

Intercept α 521.74 (4.22)*** α 521.73 (4.22)***
Open classroom discussion
Student level γ

cgm
w 20.63 (1.90)*** γ cwcw 20.63 (1.90)***

School level γ c −0.11 (8.16) γ b 20.53 (8.65)**
Random effects
var(u.j) 1174.97 (266.59)*** 1184.53 (269.11)***
var(εij) 5769.262 (202.60)*** 5767.69 (203.12)***

Note: E unstandardized estimate, S.E. standard error, var. variance component, γ cgmw OPD scores
centered to the grand mean, γ cwcw OPD scores centered within cluster. ***p < 0.001, **p < 0.01,
*p < 0.05

In the case of Italy, γ w and γ b are of similar size. Thus, this example renders
the extreme case, where the compositional model specification erases the effect of
interest. As such, the compositional model can lead to the wrong conclusion that
OPD has null effects on civic knowledge between schools (γ c = −0.11 (8.16),
p = 0.99), if and only if, γ c is interpreted as a learning environment effect.
In contrast, the recommended model specification supports the interpretation that
students who attend schools with higher OPD are expected to present higher levels
of civic knowledge (γ b = 20.53 (8.65), p < 0.001).

In this latter model, γ b capture the relationship between OPD scores and civic
knowledge, between schools. Whereas, γ c is an overcorrected estimate of the
relationship of interest (Lüdtke et al., 2009). In fact, γ c is γ b minus γ w from Eq.
2. We express this later interpretation with a diagram (Fig. 1). In Fig. 1, γ b and γ w

are of different size. This latter feature allows us to represent γ c as the remainder
of γ b if we subtract γ w from γ b. In the y axis we are depicting the location of
civic knowledge scores, a learning outcome. In the x axis we include OPD scores,
which depicts students’ ratings of a learning environment attribute. With circles
we represent the observations of three different ideal schools. From left to right,
these are a school with low, average, and high levels of OPD scores at the school
level. In the center of each circle, we have placed a black dot, which represent the
schools means of the OPD scores. The line across these black dots, represents the
between school relations between the learning outcome and the OPD scores at the
school level. In Eq. 2, the inclination of this line is capture by γ b. Finally, the line
within each circle, represents the relationship between the student’s ratings of the
learning environment, centered at the school level and civic knowledge scores. The
inclination of this line is capture by γ w. With this diagram, we express what γ c is:
the portion of the between school relation of OPD scores and the learning outcome,
minus the relationship of the student’s ratings of OPD across schools.

When γ w is of similar size to γ b, the compositional effect γ c is close to zero. In
general, γ c is an underestimate version of γ b, regardless of the relative sizes of γ b
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Fig. 1 Graphical representation of γ c = γ b − γ w

and γ w. In Table 2 we include the estimates of γ b, γ w and γ c for all participating
ICCS 2016 samples, using the disaggregated model.

In total 6 out of 24 countries, present a similar scenario of Italy. In Italy, Slovenia,
Russia, Latvia, Norway, and Belgium, there is a risk of making the conclusion that
OPD school levels are not relevant to explain civic knowledge between schools, if
γ c is wrongly interpreted as a learning environment effect.

5 Problem 2: Students Rating Agreement Variability

Group members rating agreement variability is considered a source of concern when
building aggregated scores. When different members of the same group do not show
similar rating scores regarding the level of a group attribute or context factor, then
it is difficult to consider the group mean score as a convincing representation of
the rated attribute. In this regard, a common advice found in the organizational
behavior literature is to assure a certain level of inter rater cluster agreement (rwg(j) >
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Table 2 Estimates of OPD scores relations to civic knowledge for all ICCS 2016 samples

ICCS 2016 samples γ b γ w γ c= γ b − γ w

Lithuania −0.58 (15.93) 5.42 (2.45)* −6.00 (16.66)
Italy 20.53 (8.65)* 20.63 (1.90)*** −0.10 (8.16)
Slovenia 23.30 (6.94)** 21.86 (2.01)*** 1.45 (6.90)
Finland 15.10 (8.81) 12.76 (2.96)*** 2.34 (8.68)
Latvia 28.20 (12.41)* 20.10 (2.21)*** 8.10 (12.12)
Russia 23.05 (8.67)** 14.77 (2.05)*** 8.29 (8.61)
Norway 29.93 (7.96)*** 19.86 (2.01)*** 10.07 (8.72)
Croatia 32.23 (7.23)*** 15.20 (1.82)*** 17.04 (7.57)*
Belgium 32.12 (12.68)* 12.90 (2.31)*** 19.23 (12.05)
Korea 28.74 (16.41) 7.82 (2.21)*** 20.92 (17.06)
Sweden 42.28 (9.14)*** 21.35 (2.64)*** 20.93 (9.62)*
Dominican 50.23 (10.00)*** 22.20 (1.94)*** 28.03 (9.96)**
Denmark 52.39 (9.64)*** 22.80 (1.42)*** 29.59 (9.91)**
Chinese Taipei 44.26 (11.97)*** 14.37 (1.98)*** 29.89 (12.26)*
Mexico 49.56 (12.49)*** 13.64 (2.57)*** 35.92 (12.50)**
Estonia 50.41 (8.12)*** 11.28 (1.75)*** 39.13 (8.18)***
Chile 61.39 (11.03)*** 13.78 (1.26)*** 47.61 (10.97)***
Colombia 65.02 (9.89)*** 16.43 (1.56)*** 48.59 (9.56)***
Hong Kong 71.47 (18.38)*** 12.26 (2.17)*** 59.22 (18.33)**
Bulgaria 87.02 (10.01)*** 19.73 (2.58)*** 67.29 (10.33)***
Peru 88.70 (9.96)*** 14.59 (2.02)*** 74.11 (10.15)***
NRW 97.75 (18.24)*** 13.95 (1.87)*** 83.80 (18.72)***
Netherlands 106.81 (14.97)*** 8.54 (1.82)*** 98.28 (14.75)***
Malta 129.45 (19.03)*** 19.65 (1.53)*** 109.80 (18.91)***

Note: Unstandardized estimates, standard errors in parenthesis, ***p < 0.001, **p < 0.01,
*p < 0.05. NRW North Rhine-Westphalia, Germany. Estimates are ordered by γ c size, from low to
high. Random effect estimates are omitted and are available upon request from the corresponding
author

0.70) (Woehr et al., 2015). However, the uncertainty around the agreement indexes
depends on the intraclass correlation and the clusters’ group size. As such, cut off
scores are not easily generalizable to different studies (Lüdtke & Robitzsch, 2009).
Then, how much agreement is needed among students when these are rating their
learning environment?

To illustrate the following problem, we select Perú data from ICCS 2016. This is
an ideal example because OPD scores present enough variability of students rating.
Under the standard recommendation, of discarding all schools below the rwg(j) >
0.70 threshold, we would need to discard 23 of 206 schools from the peruvian
sample. Accounting for survey design, this implies discarding 18% schools of the
projected population of schools. In turn, we propose to keep all generated scores,
and assess what is the relationship of OPD school mean scores, conditional to a
dispersion score.
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We can express the proposed model, in the following way. The civic knowledge
scores of student i from school j is represented by y ij. These scores are modelled
in a mixed model where the grand mean of yij is represented by α, each school
specific intercept is represented by uoj and random error εij when conditioned
by the included terms of the equation: socioeconomic status of each student
(sesij), and OPD realizations (θw, θb). sesij is included in the model, as in the
disaggregated model, first centered at the cluster level

(
sesij − ses.j

)
, and then

including its school means centered at the grand mean
(
ses.j − ses..

)
. OPD scores

are represented in this model as realizations of a multilevel partial credit model,
similar to the one presented by Kamata and Vaughn (2011), yet with factor loadings
fix to one, and using adjacent category logits to model item responses. Realizations
of this later latent variable model generates two orthogonal components θw and θb.
The sum of these components, θw and θb yields θp which represents the propensity
of students to report high level of OPD. θw is the propensity of students to report
a high level of OPD across schools. Thus, is centered within school score. θb
is the OPD school level generated by the response model, and is a grand mean
centered score by definition. These two components are logits scores. Thus, sesij
and OPD realizations are included in the disaggregated model as within and between
components. Coefficients in the model are depicted as w to represent within school
estimates, and as b to represent between school estimate. Additionally, we estimate
δ.j, which represents the school level standard deviation of θp. This later variable is
a dispersion score. The dispersion score is a measure of how much students vary
in their ratings in each school. Thus, schools with more disagreement (i.e. lack
of consensus), will present higher values, and schools with less disagreement (i.e.
stronger consensus) will present lower values. The proposed model is defined as:

yij = α + πw
(
sesij − ses.j

) + πb
(
ses.j − ses..

)

+ γwθw + γbθb + βb
(
δ.j − δ..

) + λbθb
(
δ.j − δ..

) + uoj + εij

(3)

In essence this model is similar to a climate strength model, where the withing
group variability of common perceptions of a group attribute is considered a
moderator of the group attribute effects (Schneider et al., 2002). However, in the
present model specification dispersion scores are in the reverse direction of a climate
strength index. As such, the interaction term needs to be interpreted accordingly.
We will call this model specification, a dispersion effect model. The parameter of
interest is γ b. γ b expresses the relationship OPD score realizations between schools,
at average values of students’ socioeconomic background, at average levels of OPD
logit scores, and at the average level of disagreement between regarding the OPD
levels. In Table 3, we fit three versions of the proposed model in a stepwise fashion.
Model 1, where only sesij and OPD logits scores are included. Model 2, where,
in addition to terms included in Model 1 the dispersion score included to assess its
main effect. AndModel 3, where the dispersion score is included, and the interaction
term between θb and

(
δ.j − δ..

)
is also included.
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Table 3 Effects of students’ rating of OPD on civic knowledge

Model 1 Model 2 Model 3
Fixed effects E p < E p < E p <

α Intercept 427.81 *** 427.83 *** 428.98 ***
Socioeconomic Index

πw student deviations 13.81 *** 13.81 *** 13.8 ***
πb school means 48.45 *** 48.31 *** 45.98 ***
Open classroom discussion

γ w student deviations 26.03 *** 26.03 *** 26.04 ***
γ b school means 81.31 *** 81.51 *** 89.58 ***
βb dispersion −2.41 −24.26
λb school means × Dispersion −237.13 **
Random effects

var(u.j) 4401.68 *** 4399.69 *** 4397.39 ***
var(εij) 1089.53 *** 1096.82 *** 1002.91 ***

Note: E unstandardized estimate, var. variance component, ***p < 0.001, **p < 0.01, *p < 0.05

In Model 1 presents a positive relationship to civic knowledge scores of the
students (γ b = 81.31 (12.24), p < 0.001). Thus, students in schools with 1 standard
deviation of more OPD are expected to present gains of 81% of standard deviations
in civic knowledge scores. When the dispersion score of students rating is included
in Model 2, we observed similar results (γ b = 81.51 (12.71), p < 0.001), while the
dispersion score alone presents small point estimate (βb = −2.41 (29.11), p= 0.93).
In Model 3, dispersion scores are allowed to condition the relationship of OPD
scores to civic knowledge. In this model γ b represents the expected change in civic
knowledge scores at average levels of students’ lack of inter-rater agreement on
OPD scores (δ.. = 0.53). In this model, the expected change in civic knowledge
scores is of similar size as in Model 1 (γ b = 89.58 (10.17), p < 0.001, CI95[69.64,
109.52]). However, the interaction term λb tells us these values are expected to be
lower when there is less agreement between students (more dispersion) regarding
how frequent OPD occurs in their schools (λb = −237.13 (73.46), p < 0.01).

For example, if OPD rating scores present 1SD above the average of dispersion
(δ.. + 1SD = 0.65), then the expected change in civic knowledge scores is of 61.12
points (γ b = 61.12 (14.70), p < 0.001, at δ.j= 0.65). Conversely, if OPD scores
rating dispersion is 1SD less than the average (δ..- 1SD = 0.41), then the expected
change in civic knowledge scores is higher, reaching 118.03 points (γ b = 118.03
(12.09), p < 0.001, at δ.j= 0. 41).

At the beginning of this section, we have stated that Peru ICCS 2016 is an ideal
example to show the advantage of the present model. Peru is one of the countries
where two conditions are met: there is enough students rating variability among
OPD realizations scores across schools, and its dispersion scores moderates the
OPD between school estimates. These conditions are not observed in all ICCS
2016 samples. In total, three out of 24 ICCS 2016 samples share these conditions
including Colombia, Peru and Italy. In the rest of the ICCS 2016 samples, where
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Fig. 2 Johnson-Neyman plot for γ b conditional to δ.j − δ.. scores

the moderation effect of the dispersion model is small, estimates from Model 1 and
Model 3 produces similar estimates of γ b. As such, the dispersion effect model is
advantageous for only some scenarios.

The dispersion effect model permits to estimate the critical point where a lack
of consensus between students from the same school compromise the estimates of
a referent-shift items scale scores. In Fig. 2, we plot the expected slope of OPD
school levels, at the observed values of the dispersion score. The black line represent
the point estimates of γ b at different dispersion score values. The curve lines that
accompany the points estimates are the 95% confidence intervals of γ b. The model
specification has the advantage that the OPD realizations and the dispersion score
are in the same scale, thus its coefficients can be interpreted in a similar manner.
Between 0.73 and 0.91 of dispersion, the estimates of γ b are compromised as its
lower confidence interval crosses zero.
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6 Conclusion and Discussion

In the present study, we have shown two methodological problems for reference
shift scale scores. The first problem consists of relying on the compositional model
specification when the relationship of interest is between schools. We illustrated
this problem with the most extreme case when the within and between effects
of the reflective measure scores are of the same size. The compositional model
overcorrects the estimate of interest (Lüdtke et al., 2009). The present problem is
easy to address by recurring to the fully disaggregated model (Rights et al., 2019),
which directly retrieves the effect of interest as a between estimate. We use observed
data from Italy (ICCS 2016) to illustrate this problem. If the compositional model
is used, the incorrect interpretation of the between level effect could lead to wrong
conclusions.

The second problem refers to students’ inter-rater variability of reference-shift
scale scores. These can vary significantly between groups of students from different
schools and may compromise the relationship under study. Organizational literature
recommends excluding groups with the low inter-rater agreement. Nevertheless,
this recommendation may incur a severe loss of sample in international large scale
studies (Rutkowski et al., 2010). Moreover, this recommended cut-off score is not
generalizable to any grouped observations, because it depends on group size and its
intraclass correlation values (Lüdtke & Robitzsch, 2009). We illustrate this problem
with data from Peru (ICCS 2016), where if the recommendation is followed, there is
a loss of 18% of projected schools in the sampling frame. For this problem, instead
of using a cut score, we use a dispersion effect model to identify where the between
school estimates of OPD are compromised, conditional to the values of lack of
agreement of students’ OPD ratings. With the proposed model, the relationship of
interest can be retrieved while also documenting its relationship to the students’
inter-rater variability.

It should be noted that dispersion scores can buffer the group attribute’s
relationship, as in climate strength models (Schneider et al., 2002). However,
there are also examples where a lack of consensus accelerate the effect of interest
(Schweig, 2016). What explains the direction of this interaction? It is an open
research question. Thus, one of the limitations of the dispersion effect model, is
that the direction of the effects of the dispersion scores is unknown, and might be
specific to the attribute under study, and to the empirical relations of the groups
under study (Schweig, 2016). In contrast, the compositional model of the between
school level estimate, is always an underestimate of a reference shift scale score.

OPD is a relevant school factor involved in many civic education outcomes.
However, its reflective nature is not always recognized by researchers (Carrasco
& Torres Irribarra, 2018), incurring in the underestimation of its expected effects.
Additionally, OPD scores are positively related to students’ socioeconomic status
at different degrees between countries (Carrasco et al., 2020), as such, multilevel
model estimates are already underestimating its “true” effect (Castellano et al.,
2014). Thus, even if the models are specified as we recommend here, its expected



474 D. Carrasco et al.

effects reported in the previous literature are downward bias (e.g., Carrasco & Torres
Irribarra, 2018; Isac et al., 2014; Knowles & McCafferty-Wright, 2015). Moreover,
is possible its effect may also be underestimated if there is an interaction with the
lack of consensus among students regarding the OPD school level as we have shown
here.

The approaches presented here are not applicable to OPD scores only, but to
any reference-shift item scale scores. This type of measures are frequently used in
education, especially in large scale assessment studies, where is common to rely
on students and or teachers’ responses to generate information about school level
attributes. To properly accumulate knowledge about learning environment factors
that uses students and teachers as informants, is imperative we use appropriate
model specifications to avoid underestimations. With this type of measures is
recommended to model the inter-rater variability effects, instead of removing cases
based on rules of thumb. Reference-shift item scale scores should be recognized as
different from latent trait type scores and treated accordingly.
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A Generalizability Study of Teach,
a Classroom Observation Tool

Diego Luna-Bazaldua , Ezequiel Molina, and Adelle Pushparatnam

1 Introduction

1.1 Teach, a Classroom Observation Tool

Research around the world shows that teachers have a critical role in promoting
student learning (Araujo et al., 2016; Azam & Kingdon, 2015; Bau & Das, 2017;
Buhl-Wiggers et al., 2017; Hanushek & Rivkin, 2010). For instance, Snilstveit
et al. (2016) showed in their cross-country review that out of all school-related
interventions in low- and middle-income countries to improve learning, the ones
that had the largest positive impacts on student learning outcomes are those
that supported teachers improve the quality of their classroom instruction with
appropriate training.

The first step to improve the quality of teacher-student interactions and teacher
effectiveness is to measure it. However, most education systems in low- and
middle-income countries do not regularly monitor teaching practices or the quality
of interactions between teachers and students in the classroom, even though it
consistently predicts a range of academic and socioemotional student outcomes
(Burchinal et al., 2008; Cadima et al., 2010; Curby et al., 2013; Hatfield et al., 2012;
Kane et al., 2011; Mashburn et al., 2008; Morris et al., 2012; Muijs et al., 2014;
Rimm-Kaufman et al., 2009). Even when education systems attempt to capture
teaching practices, most tools used in low- and middle-income countries fall short,
as they: (i) measure either the quantity or quality of teaching practices; (ii) do not
explicitly focus on teachers’ efforts to develop students’ socioemotional skills; (iii)
use tools designed for other contexts, which may include irrelevant items or fail to
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include important ones; and (iv) use tools that are neither evidence-based nor meet
basic reliability criteria (Ladics et al., 2018).

Teach was developed to address these challenges. Teach is an open access class-
room observation tool that provides a window into what goes on in the classroom
for primary classrooms grades 1 to 6. In particular, the tool provides a common
language for conceptualizing teaching in a way that is inclusive, responsive, and
which facilitates whole-child development. It does so by considering not just time
spent on learning but, more importantly, the quality of teacher practices. The Teach
framework is divided into two key components: time-on-task and quality of teaching
practices.

The analysis presented in this paper focuses on the second component measuring
the quality of teaching practices and is organized into three primary areas: classroom
culture, instruction and socioemotional skills. These areas have 9 corresponding
elements that point to 28 behaviors. The behaviors are characterized as low, medium,
or high, based on the evidence collected during the observation. These behavior
scores are translated into a 5-point scale that quantifies teaching practices.

Previous research has provided reliability and validity evidence to support the
use of Teach as an observation tool of instructional quality in the classroom (Molina
et al., 2020). Having reliability and the impact of different sources of bias in mind,
the team behind the development of this tool has focused on ensuring that the Teach
item scores consistently reflect the teacher instructional practice and that raters have
as little impact as possible in the final score. Statistical estimates show that the Teach
items reach expected levels of internal consistency for a multidimensional tool
(Molina et al., 2020). In addition, trained raters are selected to perform classroom
observations only after they show high levels of inter-rater agreement of videos with
respect to master codes.

1.2 Generalizability Theory Framework

Due to additional applications of the Teach tool, there is now the opportunity to
further explore the extent to which Teach scores are being influenced by raters
versus other sources of variation in the scores. From a psychometric perspective, the
Generalizability Theory (G Theory) framework is well-suited to capture the impact
of raters on the variation of Teach scores because its capacity to decompose multiple
sources of score variation (Brennan, 1992; Cronbach et al., 1963).

Moreover, Brennan (2000) has shown how the G Theory framework can be
used as a suitable psychometric approach to analyze the psychometric properties of
performance assessments –like Teach– that involve raters (i.e., enumerators trained
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in the use of Teach) observing persons (i.e., teachers in the classroom) performing on
a sample of tasks (i.e., Teach items). As shown by this author, when a performance
observation tool has well-defined scoring rubrics and raters are trained properly, the
effect of raters on the measurement tool scores is relatively small compared to the
potential effects from the observed person and the task. In consequence, G Theory
permits to describe the reliability of generalizations that can be made from the scores
assigned to a teacher’s performance on specific task to the teacher’s hypothetical
performance in a broad universe of admissible performance observations (Shavelson
& Webb, 1991).

In G Theory, each source of score variation (e.g., raters r, persons p, and tasks t)
and its levels are defined as facets. Therefore, an observed score of a measurement
tool like Teach can be decomposed into components or facet effects (Shavelson &
Webb, 1991). In this case, researchers could produce a r × p × t design to determine
how an observed score in the measurement tool (Xrpt) can be explained by facet
effects and their possible interactions:

Xrpt = μ grand mean
+ μr–μ rater effect
+ μp–μ person effect
+ μt–μ task effect
+ μrp–μr–μp + μ rater × person effect
+ μrt–μr–μt + μ rater × task effect
+ μpt–μp–μt + μ person × task effect
+ Xrpt–μrp–μrt–μpt + μr + μp + μt–μ residual

(1)

Under this study design, a random-effects model would allow to disentangle
variance components σ 2

* = E* (μ* – μ) for each effect. In this way, the G Theory
framework permits to calculate the variance σ 2

Xrpt
for observer scores Xrpt as

σ 2
Xrpt

= σ 2
r + σ 2

p + σ 2
t + σ 2

rp + σ 2
rt + σ 2

pt + σ 2
residual (2)

In this way, the relative magnitude of each variance component can help to
identify sources of error that could bias the observed score in the measurement tool.

With this background, to expand the documented evidence around the psycho-
metric properties of Teach, the objective of the present study was to explore sources
of variability in the Teach scores using the G Theory framework (Cronbach et al.,
1963).
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2 Methods

2.1 Participants

Data comes from various administrations of Teach across the world, including
countries located in South Asia (SAR), Sub-Saharan Africa (SSA), East Asia (EAP),
and South America (LAC). In terms of sample size by country, there were 861
elementary school classroom observations of teachers in the SSA country, 633 from
the EAP country, 565 from the SAR country, and 187 from the LAC country.
Depending on the local context of each country, additional sociodemographic
and school information was also captured during the school visit. Most data sets
included information about the school grade of the classroom observed (but in some
countries, some teachers were delivering instruction in multigrade classrooms),
subject of instruction (e.g., language, mathematics, science, and so on), language
of instruction, and school location (e.g., rural vs. non-rural settings).

The number of observers or raters varied by country; the variation depended on
the staff resources available for training and for conducting the visits to schools
and observations in classrooms. A total of 12 raters participated in the classroom
observations in the SAR country, 31 in the SSA country, 18 raters in the EAP
country, and 5 raters in the LAC country.

2.2 Instrument

Teachers were observed and rated using the Teach observation tool. The nine items
capturing the quality of teaching practices measure the extent to which the teachers
created a supportive learning environment, set positive behavioral expectations,
facilitated learning, checked students’ understanding, provided feedback, and pro-
moted critical thinking, autonomy, perseverance, and social & collaborative skills
in students. Each item was scored on a 5-point Likert scale, with larger values
indicating that the teachers demonstrated more effective behaviors related to the
nine items mentioned above.

Previous research has shown evidence of the reliability (both in terms of
internal consistency and inter-rater agreement) and the validity (in terms of content,
cognitive processes in the response process, internal structure, and score relationship
with external variables) properties of the Teach scores (Molina et al., 2020). In
this study, the data from the SAR country produced an overall Cronbach’s alpha
coefficient estimate of 0.78, 0.75 for the EAP country, 0.74 for the LAC country, and
0.69 for the SSA country. The fact that these internal consistency estimates are not
as high as in other standardized measures is expected due to the multidimensionality
of this observation tool.
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2.3 Psychometric Model and Data Analysis

The data collected in these countries was analyzed using a Generalizability model
to determine sources of variance in the Teach scores (Cronbach et al., 1963). Data
analyses were conducted and are reported separately for each country. The facets
in this study were teachers’ main effects (p), raters’ main effects (r), and items’
main effects (t). Other factors and interactions, such as the content taught during
the observation and school location, were explored as part of the study, but those
additional factors explained a minimal amount of score variance. Therefore, the G
theory model and its corresponding variance decomposition used to analyze Teach
observed scores is expressed as

σ 2
Xrpt

= σ 2
r + σ 2

p + σ 2
t + σ 2

residual (3)

The “gtheory” package (Moore, 2016) in R (R Core Team, 2019) was used to
estimate the psychometric models.

3 Results

3.1 Descriptive Statistics

Descriptive statistics for each Teach item are presented in Table 1. Consistently
across countries, teachers were rated higher in items measuring aspects linked to the
classroom culture (i.e., items 1 to 3), particularly in terms of creating a supportive
learning environment in the classroom. On the other side, the lowest average scores
tended to be reported in areas linked to teacher’s promoting social and collaborative
skills among students (item 9 in SSA and EAP countries) or providing constructive
feedback to students (item 5 in SAR and LAC countries).

3.2 Generalizability Study

The G theory model presented in Eq. (3) was used to calculate the impact of raters,
teachers, and items on the Teach scores for each country separately. As shown
in Table 2, results across countries consistently showed that items are the biggest
source of explained total score variance (from 29% in EAP country to 45% in SAR
country), followed by teachers (from 7% in SSA country to 14% in EAP country),
and then raters (from 3% in EAP country to 8% in LAC country). Residual variance
not explained by any of these three facets ranged from 38% to 53% percent of the
total score variance in Teach.
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Table 1 Descriptive statistics for the Teach items

Item SAR SSA EAP LAC
Mean SD Mean SD Mean SD Mean SD

1 4.11 1.05 3.52 0.66 3.53 0.63 3.82 0.53
2 3.54 0.78 3.23 0.80 3.32 0.85 3.27 0.77
3 3.07 1.08 3.34 0.79 3.20 0.90 3.21 0.77
4 2.60 0.99 2.98 0.99 3.33 0.92 2.88 1.03
5 1.70 0.90 2.24 1.09 2.78 1.10 2.03 0.98
6 1.96 0.94 2.28 0.90 2.85 1.19 2.56 1.21
7 2.87 0.83 2.68 0.83 2.45 0.90 2.53 0.79
8 2.04 0.60 2.07 0.55 2.31 0.82 2.11 0.39
9 1.75 1.02 1.53 0.82 1.65 1.01 2.21 1.22

Note: Item “1” refers to Supportive learning environment, “2” to Positive behavioral expectations,
“3” to Lesson facilitation, “4” to Checks for understanding, “5” to Feedback, “6” to Critical
thinking, “7” to Autonomy, “8” to Perseverance, and “9” to Social & Collaborative skills. “SAR”
refers to the country in South Asia, “SSA” to the country in Sub-Saharan Africa, “EAP” to the
country in East Asia, and “LAC” to the country in Latin America

Table 2 Facet variance for the Teach total score

Source of variance SAR SSA EAP LAC
Var % Var % Var % Var %

Item 0.710 45.3 0.446 38.5 0.364 29.2 0.366 30.6
Teachers 0.139 8.9 0.082 7.1 0.174 14.0 0.125 10.5
Rater 0.113 7.2 0.064 5.6 0.046 3.7 0.098 8.2
Residual 0.606 38.7 0.565 48.8 0.662 53.1 0.606 50.7

Note: “Var” refers to the variance explained by the facet and “%” to the percentage of variance
explained by the Facet. “SAR” refers to the country in South Asia, “SSA” to the country in Sub-
Saharan Africa, “EAP” to the country in East Asia, and “LAC” to the country in Latin America

Since there is a consistent higher proportion in variation of Teach scores
explained by the items rather than by the raters, it can be concluded that the nine
Teach items capture particular aspects of the teaching practice that differ much more
in their average score (which is consistent with the results in Table 1) than raters
differ in their average stringency when observing teachers’ classroom performance.

4 Discussion

This study adds to the current research around the psychometric properties of
Teach, a classroom observation tool that is being used around the world to help
policymakers understand what teaching practices look like in a given context, and
to identify areas in which teachers might need additional supports. In summary,
results from this cross-country study showed Teach scores on each of its items are
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mainly influenced by the item content and the teacher performance in the classroom,
with little impact by the rater on the item scores. The fact that raters represent a very
small source of the item scores residual variance confirms the benefits of performing
an appropriate training for the use of Teach before the classroom observations
take place. At the same time, these results highlight the relevance of developing
observation tools that measure the different aspects that constitute a high-quality
teaching process.

Similar to previous research documented for other teacher observation tools
(Kane & Staiger, 2012; Mashburn et al., 2014), the results here obtained show that
raters play a relatively small role in the Teach total score variance. That is, the scores
produced by the Teach observation tool are mostly the product of the teacher quality
aspects measured by each of its items and the teacher performance, rather than the
product of rater bias.

Future research will focus on examining teacher, item and rater effects in the total
score variance in additional contexts; Teach has been used in more than 20 countries
across the world at this point, so there is both opportunity and interest in identifying
whether the results here presented are consistently found in other countries. Second,
we will also complement the results here obtained with additional analyses on rater
effects using the Many Facet Rasch Measurement models (Linacre, 1989). Third,
we plan to execute longitudinal studies to determine the predictive power of Teach
and other classroom observation tools on student performance.

Regarding future directions for the field, there is a need for more empirical
evidence on the relative importance of the various elements of teaching practices
(e.g. Checking for Understanding, Perseverance, Supportive Learning Environment)
on student cognitive and socioemotional learning. In addition, there is a need for
more research on the universality (or not) of the importance of the teaching practices
that have been identified thus far in the literature.

Due to the rigorous methodology behind data collection using Teach, the main
limitation of this study is the incapacity to determine ex post how much the rater
training before the classroom visits decreased the potential rater bias. Results across
countries show that trained raters contribute very little to the variation of Teach
scores; nevertheless, not every classroom observation tool follows these training
protocols. In the future, it will be important to compare rater bias within and between
classroom observation tools. This research agenda could potentially help to improve
measurement tools, which could lead to an increase in the share of the variation
of students’ outcomes currently explained by teaching practices, as captured by
classroom observation tools.
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Appendix: Code to Estimate G Models in R Using Teach Data

The code in R presented here exemplifies the estimation of G model in R. The G
model is estimated using the gstudy() function on the set of Teach items arranged
in a single data column. Each Teach item is identified by its name. Facets explored
include item name (task, t), rater ID (rater, r) and Teacher ID (person, p).

# Call libraries that will be needed for this exercise.
library(gtheory) # For generalizability models.

### 1. After calling the data to R, models are estimated.

# G Study model with main effects

### Function gstudy() comes from the ‘gtheory’ package.
### Command “data” identifies the data set in R environment.
### Command “formula” defines in an R formula the scores and
each of the facets to analyze. Quotation marks have to be used
to define the formula when using the gstudy() function.

Gmodel1 <- gstudy(data = Data_TR_long,
formula = “as.numeric(score) ~ (1 | teachers) +

(1 | rater) + (1 | item)” )
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A
Aberrant test-taking behaviors, RT

implications and suggestions, 79
process data

charting statistics, 77, 78
PIACC survey, 76
PSTRE items, 77
timestamp information, 77

psychological measurements, 78
reference/moving window, 79
sequential procedures

CUSUM-based approach, 70–71
moving sample strategy, 72, 73
SGLRT-based approach, 71–72

simulation study
data generation, 73
evaluation, 74
power rates, 75
simulation design, 73
Type I error and ARL, 76

Absolute Standardized Mean Difference, 193
Actor effects, 440
Actor-Partner Interdependence Model (APIM),

439–441
with multiple indicators, 445

Adaptive Gauss Hermite (AGH) quadrature, 14
Agency of Quality of Education, 120
Akaike information criterion (AIC), 121, 411,

457
Alpha coefficient, 128
Alternative hypothesis, 277–278
Anchoring vignettes, 154–156
Anchor test, 191, 200
Approximate number sense (ANS)

BIC values, 87, 88
dots, 84
fractions, 84
IRT models, 88
item response theory, 83
judgements in children and adults, 94
latent trait estimation, 86–87, 90
least squares estimation, 85–86
linear spacing model, 82, 89
logarithmic spacing model, 82, 84, 89
psychophysical models, 88
symbolic and non-symbolic measures

dots, 95, 96
fractions, 96–100
letters, 97–100
pymetrics, 95
relationship, 94, 101
sequences, 97, 99, 100
shapes, 97, 99, 100

trace lines, 83
Armed Services Vocational Aptitude Battery,

188
Attribute correct classification rates (ACCRs),

243
Attribute-level discrimination index (ADI),

244–245

B
Background information, 188
Bagging method, 342
Basic themes, 400
Bayesian approach, 292, 309

crossed random effects models, 298–299,
302–306
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Bayesian information criterion (BIC) values,
87, 88, 121, 411

BFPNWO model, 149
BFWO model, 148–150
Bias, 194
British Household Panel Survey (BHPS), 17,

18, 20
Business Process Mining (BPM), 379

C
Categorical responses, 103, 104, 109–110
Category-location parameter, 116
Center of Gravity Defuzzification (CoGD)

method, 403, 404
CFM. see Common fate model
Chain, 299
Chained equating (CE) frequency estimation,

188
Classical ICCs, 359–360. see also Quintile

item response chart
evaluation

examples of modified classical ICCs,
364–366

performance index, 363–364
practical example, 367–368
of proposed method, 367

lateral coordinates of group points, 361
scale-based grouping, 361–362

mean scales of groups for, 362–363
score-based grouping, 361–362
of study, 360–361

Classical test theory (CTT), 104–105
Classification accuracy (CA), 432
Classroom observation tool, 477–478
Click-stream data, 376
Coefficient alpha

assumption, 128–130
definition, 128
FA and PCA in high dimensions, 127

coefficient omega, 137
coefficient theta, 138
communality, 130, 135
factor score and principal component,

130, 135
FA loadings and PCA loadings, 130,

135
i-th communalities, 138
lemmas and theorems, 131–134
limitation, 138
one-factor model, 128, 129, 132, 133,

138
PCA advantages over FA, 136
precision matrix, 130, 135, 137

R-squares with predictor p alone and by
adding alpha, 136

sample means across 20 replications for
five measures, 136

simulated data sets, 131–136
squared non-centered correlation, 137

Coefficient omega, 137
Cognitive diagnosis models (CDMs), 335

and ADI, 244–245
attribute correct classification rates, 243
attributes, 243
data, 337
DINA model, 244
ECPE data set, 339–340
k-attribute items, 249
Kullback–Leibler information, 243
MCDI and MADI, 245–246
method, 337–338

bagged parameter estimates and
bagged-AB estimator, 339

bootstrap-AB estimator, 338
bootstrapped data set pairs, 338

pattern correct classification rates (PCCRs),
243

rCDI and rADI, 247
simulation design, 248–249
simulation study, 336–337
social psychology data set, 341, 342
TIMSS data set, 340–341

Cognitive diagnostic assessments (CDAs)
compensatory CDMs, 254
correlation analysis, 257–258
data preprocessing/design, 256
dataset description, 256
intelligent tutoring system, 260
latent transition analysis, 255
longitudinal classroom assessments, 260
mathematical formulations, 255
non-compensatory CDMs, 254
online learning system, 260
parameter estimation and model selection,

257
Q-Matrix, 254
skill requirement conditions, 254

Common fate model (CFM), 439, 441–442
with multiple indicators, 445

Communality, 130
Component planar rotation method, 24
Computer-based assessment (CBA), 325
Conceptual Assessment Framework (CAF),

374
Conceptual uncertainty, 373
Conditional maximum likelihood (CML),

286
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Confirmatory factor analysis (CFA)
composite reliability/coefficient omega ω,

106
maximal reliability H for weighted sum,

106–107
score variance, 105

Constructed response (CR), 429–430
Conversion tables, 210
Correlation analysis, 257–258
Correlation matrix, 128
Covariance matrix, 128
Credit-earned approach, Multiple Answer

Multiple Choice items, 351
Cronbach’s alpha, 104–105, 121
Crosscutting Concepts (CCCs), 407
Crossed random effects models (CREMs), 297,

298
convergence rate, 300–301
parameter recovery, 301–306
simulation, 299–300

Cubic spline post-smoothing, 210
Cumulative probability curve, 115

D
Data generating process (DGP), 192
Data serialization, 379–380
DCMs. see Diagnostic classification models
Defuzzification, 403–405
Delta method, 179, 236, 240
Descriptive-only response time model, 36, 39
Deterministic input, noisy, and gate (DINA)

model, 244, 336, 342
Deviance information criterion (DIC),

157–159, 290
Diagnostic classification model (DCM), 57,

58, 378, 417
analysis of data, 419–422
bayesian parameter estimation, 59
MCMC method, 59
MORDM, 418–419
nonlinear joint cognitive diagnostic

modeling
JRT-DINAinteraction model, 59
JRT-DINA-linear model, 58
JRT-DINA-quadratic model, 59

nonlinear latent effects, 65
polytomous, 417–418
real data analysis

PISA 2012 mathematics assessment,
59, 60

posterior predictive model check, 60
posterior predictive probability (PPP)

values, 60

potential scale reduction factor, 60
Q matrix, 60
results, 62

simulation study
attribute and pattern correct

classification, 64, 65
best fitting model, 64
data generation and analysis, 61
latent ability and log response times, 64
model fit for PISA mathematics items,

63
outcome measures, 61–62
person parameter recovery, 64, 65

Diagnostic model (DM), 418
Diagonal elements, 129
Diagonal matrix, 128–131, 135, 137
Dichotomous scoring, 348
Difference that matters (DTM), 211

polytomous items, 205
upper score range in the second condition

(30D/10P), 203
Differential item functioning (DIF), 220
Dimension-wise method (DWM), 13–14
Direct effect, 442
Dirichlet distribution, 265
Disciplinary Core Ideas (DCIs), 407
Dispersion effect model, 472
Dots, 95, 96, 98–100
Dyadic data analysis models

actor-partner interdependence model,
440–441

analysis models and results, 443–447
common fate model (CFM), 441–442
data and variables, 443
research questions, 442–443

E
Education Quality Measurement System test,

120
E-learning environments

generalized additive mixed model
(GAMM), 454–455

models and methods, 456–457
results, 457–459
statistics online data, 455–456
technology-enhanced E-learning, 453–454

Elementary Algebra Concept Inventory
(EACI), 350, 353, 364

Equating estimators, 191–192
Equating methods, score distributions, 233
Equating transformation function, 233
Equipercentile function, 189
Equivalent groups (EG), 199, 234
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Estimation method, 191
Evidence Centered Design (ECD), 374
Explanatory response time models

AIC and BIC measures, 44
average bias and RMSE, 44
descriptive-only response time model, 36
item-explanatory response time model,

37–38
person-explanatory response time model,

36–37
real data analysis

descriptive-only, 39
fixed effects, 40, 41
item-explanatory model, 40
model comparison, 41, 42
person-explanatory model, 39–40
random effects, 41
time stamps, 38

simulation design
item-explanatory model, 43
model comparsion, 43
parameter recovery, 43
person-explanatory model, 42–43

simulation results, 43–45
Exploratory Factor Analysis (EFA), 1, 2, 4
Extensible Event Stream (XES), 380
Extreme negative response style (ENRS), 122
Extreme positive response style (EPRS), 122
Extreme response style (ERS), 114

anchoring vignettes, 154–156
ANOVA analysis, 156–160
definition, 153
DIC values, 159
IRT analysis, 157
latent trait, 155
limitation, 160
MCMC, 157
MCMC analysis, 159
mirt analysis, 158
three constrained models, 156–157
unidimensional IRT analysis, 156

F
Falk and Cai model, 153–155
FBI Black Box Study, 386
5-point Likert scale, 117
Fixed unit order (FUO), 327
Flexmirt, 121
Forensic science, 385

‘answer key’generation, 392–393
Black Box study, 395
decision-making, 393
identification, 395

Item Response Trees, 389
fingerprint comparisons, model for,

390–391
tree structure and outcome probabilities,

390
limitations, 395
modal answer key, 394
participant parameters, 391–392
psychometrics for

data, 386–389
Fractions, 96–100
FTNA. see Fuzzy thematic network analysis
Fuzzificating, 402
Fuzzy inference system (FIS), 401
Fuzzy logic (FL), 401
Fuzzy operator, 402
Fuzzy set theory, 400
Fuzzy thematic network analysis (FTNA),

401–403

G
GAMM. see Generalized additive mixed model
Gaussian distribution, 189
Generalised Linear and Latent Variable Models

(GLLVMs), 9
BHPS, 18
longitudinal ordinal data, 10–11
model estimation

dimension-wise method, 13–14
full maximum likelihood method, 12
pairwise likelihood approach, 12–13

real data analysis, 17–19
7-factor model, 18
simulation study

AGH quadrature, 14–17
DWM quadrature, 15–17
4-factor model, 15–17
Laplace estimator, 15
pairwise method, 15

Generalizability theory (G theory), 478–479
Generalized additive mixed model (GAMM),

454–455
Generalized Crawford-Ferguson (GCF) family,

23, 24
Generalized Lagrange Multiplier test, 275,

278–279
Generalized linear mixed model (GLMM),

286, 289
Generalized partial credit (GPC), 143
Generalized partial credit model (GPCM), 113,

115–116, 121, 122, 327
General mental ability (GMA), 97
General polytomous diagnosis model (GPDM),

417
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Gibbs sampling method, 267, 309, 314, 316
Global Marginal Effect, 164

definition, 165–166
functions, 169, 170
future work, 171
interaction effect, 164
interpretation of, 166–168
invariant property, 172
marine biology, biochemistry, and biology

program, 169, 170
mathematics test score, 169–171
multiple linear regression model, 163
regression analysis, 164
university admission system in Chile, 169

Global themes, 400
GPDM. see General polytomous diagnosis

model
Graded response (GR) IRT model, 143–144
Graded Response Model (GRM), 113–115,

121, 122
Grade point average (GPA), 163, 164, 169–171
Greenhouse-Geisser (GG) adjustment, 149

H
Hamming distance, 352–353
Hierarchical factor structures, 1
Human activity recognition by smartphones,

30

I
IF-THEN rules, 404
Information technologies, 373
Intelligent tutoring system, 260
Intercorrelations, two-parameter logistic

model, 313, 314
International large-scale assessments (ILSAs),

325
Invalsi test, 188
IRT model-fit comparisons, 413
Item administered count (IAC), 335, 337–339
Item bias estimation accuracy, 335

data, 337
ECPE data set, 339–340
method, 337–338

bagged parameter estimates and
bagged-AB estimator, 339

bootstrap-AB estimator, 338
bootstrapped data set pairs, 338

simulation study, 336–337
social psychology data set, 341, 342
TIMSS data set, 340–341

Item-category parameters, 116

Item-explanatory response time model, 37–38,
40, 43

Item fit statistics, 413
Item response theory (IRT) analysis, 113, 199,

286, 294, 310, 335, 386
anchoring vignettes, 155–156
dimensional structure

descriptive statistics, 147
descriptive statistics of responses, 145
graded response, 143–144
item parameter estimates, 148–149
limitations, 151
mean and standard deviation of

discrimination, 150
model fit, 147–148
models comparison, 146
multidimensional structures, 142–143
negatively oriented items, 144
negatively worded items, 144
participants, 145–146
positively oriented items, 144
positively worded items, 144
quasi-Monte Carlo EM estimation

procedure, 146
research questions, 144
trait score estimates, 149, 151

Kernel equating, 201–202
two-parameter logistic (2PL) IRT model,

201
Item response theory (IRT) true-score equating,

188
Item response time (RT) models

descriptive statistics
between items, 49
between persons, 49

mixture models, 53
person correlations

with cognitive complexity, 54
with item difficulty, 52
with mean item response time, 50
within person relationships, 54
with relative item difficulty distance, 53
with test position, 51

SLAT items, 48, 53
subjects, 48
test, 48
variables analyzed, 48–49

Item response-Tree (IRTree) models, 114
advantages, 122
AIC, 121
BIC, 121
correlation between latent trait estimates

and the sum score, 124
correlations among estimated traits, 123
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Item response-Tree (IRTree) models (cont.)
Forensic science, 389

fingerprint comparisons, model for,
390–391

tree structure and outcome probabilities,
390

internal decision process, 116
mapping matrix, 117, 118
model selection, 122
nested scale with 4 response categories plus

one middle category, 117
probability at each node, 119

Item wording
direction, 142
orientation, 142

J
Jaccard’s distance, Multiple Answer Multiple

Choice items, 351–356
Jennrich and Bentler’s exploratory bifactor

analysis, 2, 7
Joint Bayes modal estimation (JBME), 309

K
k-attribute items, 249
Kernel equating

classical test equating methods, 200
equipercentile function, 189
Gaussian distribution, 189
log-linear models, 200
semi-parametric method, 189

Keystroke data, 376
Knox Cube Test (KCT), 312
Kolmogorov-Smirnov test, 98
Kullback–Leibler information, 243

L
Lagrange Multiplier (LM) test, 275

approximation procedures, 277–278
asymptotic noncentral chi-square

distribution, 277
Latent Class Approach (LCA), Multiple

Answer Multiple Choice items, 351,
353–354

Latent Dirichlet Allocation (LDA)
corpus and identifies, 264
data generation, 266–267
Dirichlet distribution, 265
in educational research, 263
evaluation, 269
hierarchical mixture model, 264

label switching, 267–268
model estimation, 267
probabilistic and generative models, 263
simulation study

design, 269–270
results, 270–271

specification, 265
statistical properties, 263

Latent fingerprint, 385
Latent Semantic Analysis (LSA), 263
Latent transition analysis, 255
Latent variable distribution data, 280
Law of Total Probability, 164, 165, 171
Least squares estimation, 85–86
Letters, 97–100
Likelihood-Ratio, 277, 283
Likert-type agreement scales, 114
Likert-type response scale, 142
Linear estimation method, 109
Linear spacing model, 82, 89
Local dependency, 414
Location constraint, 116
Logarithmic spacing model, 82, 84, 89
Log data, 377
Logistic regression, 193
Logit difference method, 221
LogitD_0.3 methods, 229
LogitD_0.5 methods, 229
Log-linear models, 200

M
Machine learning algorithms, 263
Magnitudes, 84–85
Mapping matrix, 117, 118
Marginal Bayesian estimation (MBE), 309,

312
Marginal effect. see Global Marginal Effect
Marginal maximum likelihood estimation,

309
Marine Biology program, 169, 170
Markov chain Monte Carlo (MCMC) method,

59, 157, 298–299, 310, 312, 418
Mathematics test score, 169–171
Maximal reliability, 106–107
Maximum a priori (MAP), 422
Maximum likelihood based methods

(MLE/REML), 297, 299–301
MCMC. seeMarkov chain Monte Carlo
Mean Absolute Bias (MAB), 336
Mean absolute deviations (MAD), two-

parameter logistic model, 313,
314

Mean squared error (MSE), 457
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Membership functions (MF), 402
Mixed-format test equating, 200

and bi-factor multidimensional equating,
200

test dimensionality, 200
Mixed-format tests, 199
Model-data fit statistics, 146
Modified ADI (MADI), 245–246
Modified CDI, 245–246
Modified ORDM (MORDM), 418–419

fit indices, 424–425
fitting the model, 421
item parameters, 423–424
posterior predictive modeling checking,

422
RMSEA item fit, 421–422
specification of, 419–421

Mokken scale analysis, 175, 176, 178, 181
Mokken’s scalability coefficients, 176, 183
Monte Carlo simulation methods, 275
MORDM. seeModified ORDM
MSE. seeMean squared error
Multidimensional GR (MGR), 144
Multidimensional nominal response model

(MNRM), 153
Multidimensional structures, 142–143
Multilevel confirmatory factor analysis

(MCFA), 107–108
Multilevel partial credit model, 470
Multilevel reliabilities

categorical responses
multilevel alpha for tests with, 110
multilevel composite reliability for tests

with, 110
multilevel maximal reliability for tests

with, 110–111
multilevel alpha, 108
multilevel confirmatory factor analysis,

107–108
multilevel H, 109
multilevel omega, 108–109

Multiple Answer Multiple Choice items
(MAMC), 347

credit-earned approach, 351
instrument, 350
Jaccard’s distance, 351–356
Latent Class Approach, 351, 353–354
local dependence and gaming behavior in,

348–349
multiple-true-false method, 348
novel item types, examinee responses to,

349
participants, 350
polytomous and dichotomous scoring, 348

process for scoring, 347
user perception of, 349

Multiple Indicator Multiple Causes (MIMIC)
model, 276

Multiple linear regression model, 163
Multistage adaptive tests (MST) designs, 325

N
National Assessment of Educational Progress

(NAEP)., 380
Negative Binomial (NB) counts, 286
Negative Binomial Distribution (NBI), 288
Next Generation Science Standards (NGSS),

407
n-grams model, 431, 434
NGSS. see Next Generation Science Standards
Nominal response model (NRM), 143, 153
Non-centered canonical correlations, 129
Noncentrality parameter, 277
Non-cognitive latent traits

definition, 113
non traditional polytomous IRT models

(see Non traditional polytomous IRT
models)

traditional polytomous IRT models (see
Traditional polytomous IRT models)

Nonequivalent groups with anchor test
(NEAT), 187, 234

anchor items, 219
baseline conditions without outliers, 225
data, 220
differential item functioning (DIF), 220
evaluation criteria, 223–224
outlier detection methods, 219

logit difference method, 221
robust z statistic, 222
t-test approach, 222–223

outlier manipulation, 221
simulated conditions with outliers,

225–228
simulation procedures, 223

Nonequivalent groups with covariates (NEC)
design, 188

Non traditional polytomous IRT models
advantages, 122
AIC, 121
BIC, 121
correlation between latent trait estimates

and the sum score, 124
correlations among estimated traits, 123
internal decision process, 116
mapping matrix, 117, 118
model selection, 122
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Non traditional polytomous IRT models (cont.)
nested scale with 4 response categories plus

one middle category, 117
probability at each node, 119

Normal distribution function, 362

O
Observed test score, 187
Omitted numbers, 97
One-factor model, 128, 129, 132, 133, 138
One-parameter logistic (1PL) model,

409–411
Ontological difficulties, process data,

374–375
general approach, 377–378
terminological overabundance, 375–377

OpenBUGS, 312, 316–318
Open Science Framework, 183
Ordered categorical responses, 103, 104,

109–110
Ordinal response diagnostic model (ORDM),

418
ORDM. see Ordinal response diagnostic model
Organizational commitment (OC), 419
Organizing themes, 400

P
Pairwise likelihood method, 12–13, 15, 19
Paper-based assessment (PBA), 325
Parallel planar rotations of factors

component planar rotation method, 24
factor pattern matrices, 23, 30
factor rotation, 23
generalized Crawford-Ferguson family, 23,

24
human activity recognition by smartphones,

30
proposed scheduling algorithm

component planar rotation, 24, 25
1-factorizations of complete graphs,

26–27
parallel rotations, 28
practical considerations, 30
processing threads, 28–29
requirements, 26
resource serialization, 25

simulated text mining problem, 30
Parameter estimation, 430–431
Partial Credit Model, 115–116
Partial scoring algorithms, 348
Partitioned populations, 163–165, 171
Partner effects, 440

Pearson product-moment correlation, 259
Penalized marginal likelihood (PML), 289
Perceived Stress Scale (PSS), 141, 144
Percent relative error (PRE), 202
Person correlations, RT models

with cognitive complexity, 54
with item difficulty, 52
with mean item response time, 50
within person relationships, 54
with relative item difficulty distance, 53
with test position, 51

Person-explanatory response time model,
36–37, 39–40, 42–43

pick-N, 347
Political and social issues (OPD)

dependent variable, 465
independent variable, 465–466
referent shift items, 464–465
selected data and measures for illustrations,

465–466
students rating agreement variability,

468–472
wrong inference model, 466–468

Polytomous DCMs, 417–418
Polytomous IRT models, 143
Polytomous scoring, 348
Population invariance

data and subgroups, 208–209
equating analysis

conversion comparisons, 211–213
conversion tables, 210
equipercentile and IRT equating,

214–215
group mean comparisons, 213–214
samples and statistical methods,

209–210
score reporting, 210

ethnicity distributions, 210
gender, ethnicity, or ability groups, 207
testing programs, 208

Posterior predictive distribution, 422
Posterior predictive modeling checking

(PPMC), 421, 422
Posterior predictive probability (PPP) values,

60
Post-stratification equating (PSE), 188

bias of, 194
score probabilities, 191
SE of, 195

PPMC. see Posterior predictive modeling
checking

Precision matrix, 130
Principal component analysis (PCA), 128, 129,

141
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Priors
Bayesian estimation methods under 2PL

model
ability, 321
difficulty, 320
discrimination, 319

two-parameter logistic (2PL) model and,
310–312

Problem solving in technology-rich
environments (PSTRE) items, 77

Process data, 373
ontological difficulties, 374–375

general approach, 377–378
terminological overabundance, 375–377

research, shared knowledge in
analytic tools, 380
freely available, high-quality

“gold-standard” data sets, 380
general purpose data ontology, 379
serialization, 379–380

Programme for International Student
Assessment (PISA), 325

measurement precision, 331–332
MST design in, 332–333
parameter recovery, 331
percentage correct and average cluster

response time, 329
psychometric features, 333
RMSD values, distribution of, 329
simulation study, parameter recovery and

measurement accuracy, 329–331
unit order, invariance of item parameters

by, 326–328
Programme for the International Assessment

of Adult Competencies (PIACC)
survey, 76

Propensity scores
anchor items, 190
anchor test, 191
estimation method, 191
latent ability, 190

Proposed scheduling algorithm
component planar rotation, 24, 25
computing time for factor rotations, 32
1-factorizations of complete graphs, 26–27
practical considerations, 30
processing threads

less than, 28–29
more than, 28
odd number of factors, 29

requirements, 26
resource serialization, 25

Psychometric models
four datasets and three IRT models, 409

IRT model-fit comparisons, 413
item fit statistics, 413
local dependency, 414
science pilot overview, 408–409
testlet model, 412–413
three-dimensional IRT model, 411–412
unidimensional IRT model, 409–411

Pymetrics, 95, 101

Q
Quadratic-weighted kappa (QWK), 432–434
Quality and Education Context (QEC)

questionnaires, 120, 121
Quartimin rotation criterion, 2
Quasi-Monte Carlo EM estimation procedure,

146
Quintile item response chart, 359
QWK. see Quadratic-weighted kappa

R
Randomized quantile residuals (RQR), 286
Range-preserving confidence interval

approximation, 180–181
coverage, 181, 182
implementation in software, 183–184
item discrimination, 181
multivariate case, 180
sample size, 181
type I error rates, 181–183
z scores, 178, 179

Rasch item difficulties, 220
Rasch model, 115
Rasch Poisson count model (RPC), 285

alternative counts distribution, 288–289
alternative RC models, 289
application, 291–294
estimation methods, 289–290
methods for, 286
residual analysis, 290–291
type of data, 285

Rating scale diagnostic model (RSDM), 418
Referent shift items, 464–465
Regression analysis, 164, 455
Reliabilities

classical test theory, 104–105
confirmatory factor analysis

composite reliability/coefficient omega
ω, 106

maximal reliability H for weighted
sum, 106–107

score variance, 105
multilevel (seeMultilevel reliabilities)
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REML. see Restricted maximum likelihood
method

Residual analysis, 286
Response time (RT), 96
Restricted maximum likelihood method

(REML), 457
convergence rate, 300–301

Riemannian trust-region algorithm, 4
Rigby and Stasinopoulos (RS) algorithm, 289
RMSEA. see Root mean square error of

approximation
Root mean squared error (RMSE), 269, 301
Root mean square error of approximation

(RMSEA), 421–422
Rotation criterion function

bi-factor structure, 2
computational techniques, 4
hierarchical structure, 2
proposed rotation criterion function, 3–4
scaled Frobenius-norm error, 5, 6
simulation design, 4–5
30 replications, 5, 6

R package mokken, 183, 184
RSDM. see Rating scale diagnostic model
R (R Core Team) software, 121
R software (R Core Team), 146

S
Safe-environment items, 120, 121
Sample sizes, 208
Scalability coefficients, sampling distribution

approximation, 180–181
confidence interval and significance tests,

177–178
normal-theory approaches, 177
range-preserving confidence interval,

178–180
Wald-based methods

approximation, 180
coverage rates, 181, 182
implementation in software, 183–184
type I error rate, 181, 182
z score, 178

Scale-based grouping, 361–362
mean scales of groups for, 362–363

Scaled chi distribution, 311
Scaled Frobenius-norm error, 5, 6
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