
Cyber-Attack Detection
in Cyber-Physical Systems Using
Supervised Machine Learning

Prabhat Semwal and Akansha Handa

1 Introduction

The cyber-physical systems can be defined as the systems built by integrating
sensors, computers, networks, communication, and other digital monitoring compo-
nents into physicals infrastructure to control or monitor the infrastructure remotely
and autonomously [1–3]. Some real-world examples of CPS include Smart grids,
medical monitoring systems, robotics, autonomous vehicles, soil treatment plants,
and water treatment plants [4–8]. The cyber-physical infrastructure operations
include both cyber and physical aspects which make these systems vulnerable to
both cyber and physical security threats. The attack on CPS can have a huge impact
due to the diversity and scope of operations of these structures [6, 9–13]. Thus,
the cyber aspect of such CPS has been studied in many pieces of research, which
contributed their finds in detecting the cyber-attacks on CPS using machine learning
[12, 14–17]. Advancement in Machine Learning and Deep Learning models has
motivated the cybersecurity communities for leveraging these models so as to
enhance the privacy and security of CPS [18–24]. During the past decade several
models have been proposed for a diverse range of cybersecurity including malware
detection [25–28], threat hunting [29–32] and privacy protection [33].

In this paper, we have used the SWat dataset which is the data collected from
a Secure Water Treatment plant [34]. The data was collected for both normal
operational days and few days with attacks on the water treatment. The dataset
is processed and used to perform the cyber-attack detection on CPS systems
using different supervised machine learning algorithms. We have performed the
comparative analysis on the four models based on the major evaluation matrices:
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Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and the Receiver
Operating Characteristics (ROC) curve and Area Under ROC Curve (AUC).

2 Literature Review

In earlier studies, many computer scientists have proposed various approaches
to resolve cyber threat hunting problems using different techniques of machine
learning [35–39]. Cyber-attack detection is usually accomplished by grouping using
power device data or measurements [40–44]. The involvement of risks or attacks
is measured in various security and contact levels of the network. Cyber-attacks
are observed by measurements by the improved state- estimation techniques using
mode-based technique [45]. Numerous studies have presented network traffic-based
intrusion detection Ghaeini et al. [46] employ this approach on the SWaT dataset
used in our study. Similarly, [47] proposed an Enhanced SVM approach with
combined features from two machine learning techniques demonstrated a low false-
positive rate. Another paper [48] uses the Random forest Algorithm and achieves
a significant accuracy of 94.0187% for cyber-attack detection. A behavior-based
machine learning (ML) approach for the detection of any abnormal behavior or
attack that may attempt to modify the behavior of the CPS [15]. This method not
only recognizes the cyber-attack occurred on a layer of the physical process, but it
also identifies the specific attack type. In This study [49] learns how to combine
different machine learning methods with the IDS improving the accuracy of threat
identification. A prototype IDS is expected in this study. This IDS prototype is
equipped to improve accuracy in the identification of several attacks through a
combination of machine learning methods. This method not only recognizes the
cyber-attack occurred on a layer of the physical process, but it also identifies the
specific attack type. In [50] the proposed cyberattack detection system has high
detection accuracy and wide attack coverage in order to detect unrecognized attacks
using network and host system information.

3 Methodology

This section will describe the process followed to build our supervised machine
learning models which can detect the cyber-attack samples from the SWat dataset.

3.1 Dataset Processing

The Swat dataset consists of 77 features and a total of 14,995 data points, 9521
normal and 5474 attack data points. The few features like timestamp and other less
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critical features were removed to process the dataset. The label feature (Target) was
marked as 1 for attack and 0 for the normal activity data point.

3.1.1 Feature Selection

To reduce the overall dimensionality of the dataset, we performed the feature
extraction process. The best feature that can contribute to the target variable was
extracted by combining results of ExtraTreeClassifier and SelectKBest algorithms
of Scikit-learn library and are shown in Fig. 1a, b respectively.

The most common and highest-ranked features were extracted and used for all
the four-classification model. As shown in Table 1, the major operations of the water
treatment plant was used as a major feature category set and the same category of
features were used to identify the functionality of water plants at different levels
process.

LIT 301

a b

AIT 301
FIT 503

P3_STATE
FIT 502
AIT 202
PIT 502
PIT 503
AIT 502
AIT 501
PIT 501
AIT 303

LSH 601
AIT 402
AIT 201

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Fig. 1 (a) ExtraTreeClassifier (b) SelectKBest Result

Table 1 Feature category Feature name Description

FIT Sensor: Inflow into the water tank
LIT Sensor: Level transmitter
PIT Sensor: Pressure meter
LSH Alarm
AIT Sensor
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3.2 Machine Learning Classifiers

For the detection of cyber-attack samples, the KNN, SVM, Decision Tree, and
Random Forest, classifiers were trained and tested on the transformed dataset, and
results were recorded for comparative analysis.

3.2.1 KNN Model

In the KNN model, we used the processed dataset explained in Sect. 3.2.1. The KNN
was implemented with the use of the Sckilearn library and in KNN we initialize the
K = 4, but after trial and error K was finally set to 1 and the model was trained with
K = 1 on the processed dataset.

3.2.2 SVM Model

The SVM model was trained and tested on the processed dataset. For SVM, kernel
function was set to linear, and probability was set to True.

3.2.3 DT Model

Our DT Model was trained with the processed dataset. The DT model simply
designs an inverted tree structure on the base of a trained dataset and then classify a
sample by tracing the down designed tree.

3.2.4 RF Model

The RF model is like the DT model, but the RF model creates multiple decision
trees instead of only one decision tree. In our RF model, the maximum depth was
set to 2.

4 Results and Discussion

This section highlights the results achieved with different supervised machine
learning techniques in detecting cyber-attack on a CPS system and will describe
the comparative analysis results.
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4.1 Evaluation Measures

To evaluate and compare the performance of the models, we have used the
commonly used evaluation metrics. Table 2 contains a description of the used
evaluation metrics for comparative analysis.

4.2 Experiment and Results

The processed dataset with the total samples of 14,994 and selected features was
used to test all the models. All the models were trained on the processed dataset
and the results observed on the basis of evaluation metrics (Table 2) are shown in
Table 3.

4.3 Comparison of Models

In our experiment, the KNN model achieved an accuracy of 99%. The TPR received
for KNN was 99.9% and the FPR was approximately 0%. With the SVM model, we
received an accuracy of 98.7% and the average values of TPR and FPR were 99%
and 0.01% respectively. Our DT model received 99% accuracy on the processed
dataset and approximately 99% TPR and 0% FPR. Whereas, the RF model hit the
accuracy of 96% with 98% APR and 0.01% FPR. According to the three-evaluation
metrics values mentioned in Table 3, the DT model performed more effectively than
other supervised machine learning models in classifying the cyber-attack samples
in the Swat dataset.

Table 2 Description of evaluation metric used for comparative analysis

Evaluation metric Description

TPR T P
T P+FN

FPR FP
FP+TN

Accuracy T P+TN
T P+TN+FP+FN

ROC Curve Formed by plotting TPR against FPR at various threshold settings
AUC The area under the ROC curve

Table 3 Observed accuracy,
TPR and FPR values

Model Accuracy TPR FPR

KNN 99.65 99.9 0.008
SVM 98.70 99.03 0.018
DT 99.9 99.0 0.006
RF 96.3 98.6 0.013
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Fig. 2 ROC Curve for all four supervised machine learning models

4.4 ROC Curve

A ROC curve is a common graphical evaluation metric that is used for evaluating
the performance of different machine learning classifiers. It allows us to analyze the
binary classifier’s capability of distinguishing between classes [51]. It is simply a
plot of TPR and FPR at different threshold settings.

The ROC curve for classification of cyber-attack samples on a processed dataset,
for all four supervised classification models, is shown in Fig. 2. As shown in the
legend, the overall AUC value for KNN was 0.99, 0.99 for DT, 0.84 for SVM, and
0.99 for RF. The average AUC of all four models was extremely close to 1 which
depicts that all four models perform better for binary classification of cyber-attack
in a processed dataset. Although, the AUC value observed for all four models was
close to 1. However, the AUC value for both KNN and DT is almost equal to 1 with
AUC equal to 0.999 for both KNN and DT.

5 Conclusion

We were able to successfully design the four different machine learning models
to classify the cyber-attack samples accurately from the Swat dataset. The results
achieved using the critical evaluation metrics allowed us to perform effective
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comparative analysis and propose the most suitable algorithm. Using these four
supervised machine learning algorithms, we achieved an overall accuracy of 99%
with KNN, 98% with SVM, 99% with DT, and 96% with RF. On the base of all the
evaluation metrics, the DT outperforms the other classifier models with a reasonable
high accuracy of 99.9% and other almost ideal evaluation metrics.

The future work will be to evaluate the other supervised machine learning
algorithms and to experiment with the different cyber-physical system datasets.
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