
Kim-Kwang Raymond Choo
Ali Dehghantanha Editors

Handbook
of Big Data
Analytics and
Forensics

Handbook of Big Data Analytics and Forensics

Kim-Kwang Raymond Choo • Ali Dehghantanha
Editors

Handbook of Big Data
Analytics and Forensics

Editors
Kim-Kwang Raymond Choo
Department of Information Systems
and Cyber Security
The University of Texas at San Antonio
San Antonio, TX, USA

Ali Dehghantanha
Cyber Science Lab
School of Computer Science
University of Guelph
Guelph, ON, Canada

ISBN 978-3-030-74752-7 ISBN 978-3-030-74753-4 (eBook)
https://doi.org/10.1007/978-3-030-74753-4

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9208-5336
http://orcid.org/0000-0002-9294-7554
https://doi.org/10.1007/978-3-030-74753-4

Acknowledgments

This book would not have been possible without the commitment of the contributing
authors, who dedicated their time and efforts to research work and shared their
findings in this book.

We are also extremely grateful to Springer and their staff for their support in this
project. They have been most accommodating of our schedule and helping to keep
us on track.

v

Contents

Big Data Analytics and Forensics: An Overview . 1
Hossein Mohammadi Rouzbahani, Ali Dehghantanha,
and Kim-Kwang Raymond Choo

IoT Privacy, Security and Forensics Challenges: An Unmanned
Aerial Vehicle (UAV) Case Study . 7
Isis Diaz Linares, Angelife Pardo, Eric Patch, Ali Dehghantanha,
and Kim-Kwang Raymond Choo

Detection of Enumeration Attacks in Cloud Environments Using
Infrastructure Log Data . 41
Samira Eisaloo Gharghasheh and Tim Steinbach

Cyber Threat Attribution with Multi-View Heuristic Analysis 53
Dilip Sahoo

Security of Industrial Cyberspace: Fair Clustering with Linear
Time Approximation . 75
Nidhip Chikhalia and Yash Dhawan

Adaptive Neural Trees for Attack Detection in Cyber Physical
Systems . 89
Alex Chenxingyu Chen and Kenneth Wulff

Evaluating Performance of Scalable Fair Clustering Machine
Learning Techniques in Detecting Cyber Attacks in Industrial
Control Systems . 105
Akansha Handa and Prabhat Semwal

Fuzzy Bayesian Learning for Cyber Threat Hunting in Industrial
Control Systems . 117
Kassidy Marsh and Samira Eisaloo Gharghasheh

vii

viii Contents

Cyber-Attack Detection in Cyber-Physical Systems Using
Supervised Machine Learning . 131
Prabhat Semwal and Akansha Handa

Evaluation of Scalable Fair Clustering Machine Learning
Methods for Threat Hunting in Cyber-Physical Systems . 141
Dilip Sahoo and Aaruni Upadhyay

Evaluation of Supervised and Unsupervised Machine Learning
Classifiers for Mac OS Malware Detection . 159
Dilip Sahoo and Yash Dhawan

Evaluation of Machine Learning Algorithms on Internet
of Things (IoT) Malware Opcodes . 177
Adesola Anidu and Zibekieni Obuzor

Mac OS X Malware Detection with Supervised Machine
Learning Algorithms. 193
Samira Eisaloo Gharghasheh and Shahrzad Hadayeghparast

Machine Learning for OSX Malware Detection . 209
Alex Chenxingyu Chen and Kenneth Wulff

Hybrid Analysis on Credit Card Fraud Detection Using Machine
Learning Techniques . 223
Akansha Handa, Yash Dhawan, and Prabhat Semwal

Mapping CKC Model Through NLP Modelling for APT Groups
Reports . 239
Aaruni Upadhyay, Samira Eisaloo Gharghasheh, and Sanaz Nakhodchi

Ransomware Threat Detection: A Deep Learning Approach 253
Kassidy Marsh and Hamed Haddadpajouh

Scalable Fair Clustering Algorithm for Internet of Things
Malware Classification . 271
Zibekieni Obuzor and Adesola Anidu

Big Data Analytics and Forensics: An
Overview

Hossein Mohammadi Rouzbahani, Ali Dehghantanha ,
and Kim-Kwang Raymond Choo

1 Introduction

As our society becomes smarter and more digitally connected, more data will be
generated, processed, disseminated, analyzed, and stored (e.g., on cloud computing
systems). Such big data can be structured and unstructured, and are generated by
different sources (e.g., Internet of Things (IoT) devices and other information and
communications technologies – ICT) with varying formats [1]. There have been
a number of definitions for big data, and one popular definition is the 5Vs model
where the 5Vs are Volume, Velocity, Variety, Veracity and Value [2]. Volume and
velocity refer to the size and formation speed of information respectively, while
variety refers to the diversity in data format and representation type. Veracity
refers to the accuracy and reliability of data, and finally, value attempts to quantify
usefulness of the data.

In a typical smart city setting, for example, IoT devices and other systems (e.g.,
edge/fog computing devices and servers) collect and process data before sending
them to cloud-based systems via high speed communication networks [3–6]. Hence,
it is important to ensure security for both data-at-rest and data-in-transit at the

H. M. Rouzbahani (�)
Smart Cyber Physical Systems Lab, School of Engineering, University of Guelph,
Guelph, ON, Canada
e-mail: hmoham15@uoguelph.ca

A. Dehghantanha
Cyber Science Lab, School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: adehghan@uoguelph.ca

K.-K. R. Choo
Department of Information Systems and Cyber Security, The University of Texas at San Antonio,
San Antonio, TX, USA
e-mail: raymond.choo@fulbrightmail.org

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_1&domain=pdf
https://orcid.org/0000-0002-9294-7554
https://orcid.org/0000-0001-9208-5336
mailto:hmoham15@uoguelph.ca
mailto:adehghan@uoguelph.ca
mailto:raymond.choo@fulbrightmail.org
https://doi.org/10.1007/978-3-030-74753-4_1

2 H. M. Rouzbahani et al.

various devices and communication channels. Hence, we need solutions to help
us perform big data analytics, security and forensic investigation to identify and
extract relevant information, identify malicious activities and evidence of relevance,
etc. [7].

Given the current trend in artificial intelligence, machine learning and deep
learning, there have also been attempts to build on the advances in these areas
to enhance security and forensic capabilities. For example, contemporary and
emerging big data analytics approaches include generative-, discriminative- and
hybrid-based methods. Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM) are two examples of supervised learning-based methods, which
can facilitate the identification of movement pattern and human activity, as well
as mobility prediction [8–12]. RNN is also useful in IoT applications with time
dependent information, and processing series of data via internal memory. LSTM
generally is known to achieve better performance with data of long time lag, and
access to memory is protected by gates. Convolutional Neural Network (CNN) is
a supervised learning technique with various IoT applications, including those that
require large dataset for visual tasks (e.g., detecting patterns via feature extraction)
[13–16].

The procedure of detecting, collecting, storing, analyzing and presenting of
big data is also referred to as big data forensic. However, big data forensics is
challenging, particularly if we also need to preserve user privacy. These challenges
can be technical (use of strong encryption algorithms, the volume and veracity of
data to be processed, etc.), legal (e.g., evidence and privacy legislations), and due to
resources (or lack of), etc. [6, 17]. Several of these challenges will also be discussed
in this book.

2 Book Outline

We will now describe the remaining 17 chapters.
Chapter “IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial

Vehicle (UAV) Case Study” [18] reviewed the existing literature on IoT security,
privacy, and forensics. Next in Chapter “Detection of Enumeration Attacks in Cloud
Environments Using Infrastructure Log Data” [19], the authors also explained how
LSTM and CNN can be utilized to detect enumeration attacks in cloud-based
environments. Chapter “Cyber Threat Attribution with Multi-view Heuristic Analy-
sis” [20] presented a multi view heuristic analysis of malware by taking multiple
characteristics of the malware files. Chapter “Security of Industrial Cyberspace:
Fair Clustering with Linear Time Approximation” [21] presented a comparative
summary of the performance for the different algorithms used to secure industrial
cyberspace.

Then, Chapter “Adaptive Neural Trees for Attack Detection in Cyber Physical
Systems” [22] demonstrated how decision tree and neural network can be com-
bined to facilitate attack detection in Cyber Physical Systems (CPSs). In Chapter

http://dx.doi.org/10.1007/978-3-030-74753-4_2
http://dx.doi.org/10.1007/978-3-030-74753-4_3
http://dx.doi.org/10.1007/978-3-030-74753-4_4
http://dx.doi.org/10.1007/978-3-030-74753-4_5
http://dx.doi.org/10.1007/978-3-030-74753-4_6

Big Data Analytics and Forensics: An Overview 3

“Evaluating Performance of Scalable Fair Clustering Machine Learning Techniques
in Detecting Cyber Attacks in Industrial Control Systems” [23], a scalable fair
clustering algorithm was utilized to build the Fair-let Decomposition (FD) model.
Chapter “Fuzzy Bayesian Learning for Cyber Threat Hunting in Industrial Control
Systems” [24] presented a machine learning algorithm which combines fuzzy logic
with Bayesian inference to produce an optimized fuzzy model for identifying
threats. In Chapter “Cyber-Attack Detection in Cyber-Physical Systems Using
Supervised Machine Learning” [25], four different supervised learning methods –
K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT),
and Random Forest (RF) – were employed to build models to detect cyber-attack
activities on a water treatment plant.

Evaluation of scalable fair clustering machine learning methods for threat
hunting in CPSs were presented in Chapter “Evaluation of Scalable Fair Clustering
Machine Learning Methods for Threat Hunting in Cyber-Physical Systems” [26],
while two supervised and unsupervised machine learning classifiers for Mac OS
malware detection were the focus in Chapter “Evaluation of Supervised and
Unsupervised Machine Learning Classifiers for Mac OS Malware Detection” [27].
The effectiveness of different machine learning methods (e.g., Random Forest,
KNN, DT, Naïve Bayes, and SVM) on IoT malware opcodes and Mac OS X
malware detection was presented in Chapter “Evaluation of Machine Learning
Algorithms on Internet of Things (IoT) Malware Opcodes” [28] and Chapter
“Mac OS X Malware Detection with Supervised Machine Learning Algorithms”
[29], respectively. Chapter “Machine Learning for OSX Malware Detection” [30]
presented a summary of the performance for different learning-based approaches in
OSX malware detection.

Chapter “Hybrid Analysis on Credit Card Fraud Detection Using Machine
Learning Techniques” [31] compared the performance of different deep learning,
supervised, unsupervised and hybrid learning techniques in credit card fraud
detection. Chapter “Mapping CKC Model Through NLP Modelling for APT Groups
Reports” [32] introduced an automated way of processing Advanced Persistent
Threats (APT) reports to identify and map the different Cyber Kill Chain (CKC)
stages employed in the attack. Chapter “Ransomware Threat Detection: A Deep
Learning Approach” [33] utilized the performance of five different machine learning
techniques (i.e., KNN, CNN, DT, logistic regression and random forest) in ran-
somware threat detection. Chapter “Scalable Fair Clustering Algorithm for Internet
of Things Malware Classification” [34] studied the effect of scalable clustering
algorithm on accuracy, by experimenting with a IoT malware opcodes dataset.

References

1. H.M. Rouzbahani, H. Karimipour, A. Rahimnejad, A. Dehghantanha, G. Srivastava, Anomaly
detection in cyber-physical systems using machine learning, in Handbook of Big Data Privacy,
ed. by K.-K. R. Choo, A. Dehghantanha, (Springer, Cham, 2020), pp. 219–235

http://dx.doi.org/10.1007/978-3-030-74753-4_7
http://dx.doi.org/10.1007/978-3-030-74753-4_8
http://dx.doi.org/10.1007/978-3-030-74753-4_9
http://dx.doi.org/10.1007/978-3-030-74753-4_10
http://dx.doi.org/10.1007/978-3-030-74753-4_11
http://dx.doi.org/10.1007/978-3-030-74753-4_12
http://dx.doi.org/10.1007/978-3-030-74753-4_13
http://dx.doi.org/10.1007/978-3-030-74753-4_14
http://dx.doi.org/10.1007/978-3-030-74753-4_15
http://dx.doi.org/10.1007/978-3-030-74753-4_16
http://dx.doi.org/10.1007/978-3-030-74753-4_17
http://dx.doi.org/10.1007/978-3-030-74753-4_18

4 H. M. Rouzbahani et al.

2. H. Mohammadi Rouzbahani, H. Karimipour, G. Srivastava, Big data application for security
of renewable energy resources, in Handbook of Big Data Privacy, ed. by K.-K. R. Choo, A.
Dehghantanha, (Springer, Cham, 2020), pp. 237–254

3. M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep learning for IoT big data and
streaming analytics: A survey. IEEE Commun. Surv. Tutor. 20(4), 2923–2960 (2018). https://
doi.org/10.1109/COMST.2018.2844341

4. M. Conti, T. Dargahi, A. Dehghantanha, Cyber Threat Intelligence: Challenges and Opportu-
nities (Springer, Cham, 2018)

5. H. HaddadPajouh, R. Khayami, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, AI4SAFE-IoT:
An AI-powered secure architecture for edge layer of Internet of things. Neural Comput. &
Applic., 1–15 (2020, February). https://doi.org/10.1007/s00521-020-04772-3

6. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Big data and internet of things security and
forensics: Challenges and opportunities, in Handbook of Big Data and IoT Security, (Springer,
Cham, 2019), pp. 1–4

7. S. Srinivasan, Security and privacy in the computer forensics context, in 2006 International
Conference on Communication Technology, (Guilin, China, 2006, November), pp. 1–3. https:/
/doi.org/10.1109/ICCT.2006.341936

8. H.M. Rouzbahani, Z. Faraji, M. Amiri-Zarandi, H. Karimipour, AI-enabled security monitor-
ing in smart cyber physical grids, in Security of Cyber-Physical Systems, ed. by H. Karimipour,
P. Srikantha, H. Farag, J. Wei-Kocsis, (Springer, Cham, 2020), pp. 145–167

9. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An ensemble
of deep recurrent neural networks for detecting IoT cyber attacks using network traf-
fic. IEEE Internet Things J. 7(9), 8852–8859 (2020, September). https://doi.org/10.1109/
JIOT.2020.2996425

10. H.H. Pajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural network
based approach for Internet of Things malware threat hunting. Futur. Gener. Comput. Syst. 85,
88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

11. S. Homayoun et al., DRTHIS: Deep ransomware threat hunting and intelligence system
at the fog layer. Futur. Gener. Comput. Syst. 90, 94–104 (2019). https://doi.org/10.1016/
j.future.2018.07.045

12. K.C.A.N. Jahromi, S. Hashemi, A. Dehghantanha, R. Parizi, An enhanced stacked LSTM
method with no random initialization for malware threat hunting in safety and time-critical
systems. IEEE Trans. Emerg. Top. Comput. Intell. 4(5), 630–640 (2020)

13. H.M. Rouzbahani, H. Karimipour, L. Lei, An ensemble deep convolutional neural network
model for electricity theft detection in smart grids. Presented at the Future Technologies
Conference (FTC), 2020

14. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, S. Hashemi, B. Gharabaghi, G. Srivastava,
Active spectral botnet detection based on eigenvalue weighting, in Handbook of Big Data
Privacy, ed. by K.-K. R. Choo, A. Dehghantanha, (Springer, Cham, 2020), pp. 385–397

15. A. Azmoodeh, A. Dehghantanha, Big data and privacy: Challenges and opportunities, in
Handbook of Big Data Privacy, ed. by K.-K. R. Choo, A. Dehghantanha, (Springer, Cham,
2020), pp. 1–5

16. M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of Things security and forensics:
Challenges and opportunities. Futur. Gener. Comput. Syst. 78, 544–546 (2018). https://doi.org/
10.1016/j.future.2017.07.060

17. G.S. Chhabra, V.P. Singh, M. Singh, Cyber forensics framework for big data analytics in IoT
environment using machine learning. Multimed. Tools Appl. 79(23–24), 15881–15900 (2020,
June). https://doi.org/10.1007/s11042-018-6338-1

18. I. Lazo, A. Pardo, E. Patch, A. Dehghantanha, K.-K.R. Choo, IoT privacy, security and
forensics challenges: An unmanned aerial vehicle (UAV) case study, in Handbook of Big
Data Analytics and Forensics, ed. by A. Dehghantanha, K. K. R. Choo, (Springer, Cham, this
volume)

http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1007/s00521-020-04772-3
http://dx.doi.org/10.1109/ICCT.2006.341936
http://dx.doi.org/10.1109/JIOT.2020.2996425
http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1016/j.future.2018.07.045
http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1007/s11042-018-6338-1

Big Data Analytics and Forensics: An Overview 5

19. S. Gharghashe Eisaloo, T. Steinbach, Detection of enumeration attacks in cloud environments
using infrastructure log data, in Handbook of Big Data Analytics and Forensics, ed. by A.
Dehghantanha, K. K. R. Choo, (Springer, Cham, this volume)

20. D.K. Sahoo, Cyber threat attribution with multi-view heuristic analysis, in Handbook of Big
Data Analytics and Forensics, ed. by A. Dehghantanha, K. K. R. Choo, (Springer, Cham, this
volume)

21. N. Chikhalia, Y. Dhawan, Security of industrial cyberspace: Fair clustering with linear time
approximation, in Handbook of Big Data Analytics and Forensics, ed. by A. Dehghantanha, K.
K. R. Choo, (Springer, Cham, this volume)

22. C. Chen, K. Wulff, Adaptive neural trees for attack detection in cyber physical systems, in
Handbook of Big Data Analytics and Forensics, ed. by A. Dehghantanha, K. K. R. Choo,
(Springer, Cham, this volume)

23. A. Handa, P. Semwal, Evaluating performance of scalable fair clustering machine learning
techniques in detecting cyber attacks in industrial control systems, in Handbook of Big Data
Analytics and Forensics, ed. by A. Dehghantanha, K. K. R. Choo, (Springer, Cham, this
volume)

24. K. Marsha, E.G. Samira, Fuzzy Bayesian learning for cyber threat hunting in industrial control
systems, in Handbook of Big Data Analytics and Forensics, ed. by A. Dehghantanha, K. K. R.
Choo, (Springer, Cham, this volume)

25. P. Semwal, A. Handa, Cyber-attack detection in cyber-physical systems using supervised
machine learning, in Handbook of Big Data Analytics and Forensics, ed. by A. Dehghantanha,
K. K. R. Choo, (Springer, Cham, this volume)

26. D. Sahoo, A. Upadhyay, Evaluation of scalable fair clustering machine learning methods for
threat hunting in cyber-physical systems, in Handbook of Big Data Analytics and Forensics,
ed. by A. Dehghantanha, K. K. R. Choo, (Springer, Cham, this volume)

27. D. Sahoo, Y. Dhawan, Evaluation of supervised and unsupervised machine learning classifiers
for Mac OS malware detection, in Handbook of Big Data Analytics and Forensics, ed. by A.
Dehghantanha, K. K. R. Choo, (Springer, Cham, this volume)

28. A. Anidu, Z. Obuzor, Evaluation of machine learning algorithms on Internet of Things (IoT)
malware opcodes, in Handbook of Big Data Analytics and Forensics, ed. by A. Dehghantanha,
K. K. R. Choo, (Springer, Cham, this volume)

29. S.E. Gharghasheh, S. Hadayeghparast, Mac OS X malware detection with supervised machine
learning algorithms, in Handbook of Big Data Analytics and Forensics, ed. by A. Dehghan-
tanha, K. K. R. Choo, (Springer, Cham, this volume)

30. C. Chen, K. Wulff, Machine learning for OSX malware detection, in Handbook of Big Data
Analytics and Forensics, ed. by A. Dehghantanha, K. K. R. Choo, (Springer, Cham, this
volume)

31. A. Handa, Y. Dhawan, P. Semwal, Hybrid analysis on credit card fraud detection using
machine learning techniques, in Handbook of Big Data Analytics and Forensics, ed. by A.
Dehghantanha, K. K. R. Choo, (Springer, Cham, this volume)

32. A. Upadhyay, S.E. Gharghasheh, S. Nakhodchi, Mapping CKC model through NLP modelling
for APT groups reports, in Handbook of Big Data Analytics and Forensics, ed. by A.
Dehghantanha, K. K. R. Choo, (Springer, Cham, this volume)

33. K. Marsh, A. Handa, H. Haddadpajouh, Ransomware threat detection: A deep learning
approach, in Handbook of Big Data Analytics and Forensics, ed. by A. Dehghantanha, K. K.
R. Choo, (Springer, Cham, this volume)

34. Z. Obuzor, A. Anidu, Scalable fair clustering algorithm for Internet of Things malware
classification, in Handbook of Big Data Analytics and Forensics, ed. by A. Dehghantanha,
K. K. R. Choo, (Springer, Cham, this volume)

IoT Privacy, Security and Forensics
Challenges: An Unmanned Aerial Vehicle
(UAV) Case Study

Isis Diaz Linares, Angelife Pardo, Eric Patch, Ali Dehghantanha ,
and Kim-Kwang Raymond Choo

1 Introduction

Internet of Things or “IoT” can be broadly defined as the convergence of the Internet
and smart objects that communicate and interact with each other, gather information,
and analyze it to complete a task or learn from a process [1, 2]. The rapid
development of IoT devices creates an enormous amount of data transmission over
unprotected systems and introduces numerous vulnerabilities impacting forensics,
security and privacy. Many of these IoT devices lack firewalls, antivirus software
and intrusion detection systems in the programming of the product and pose multiple
risks to users [3–5].

In a study conducted by Hewlett Packard, 84% of worldwide organizations
who have adopted IoT devices have already experienced a security breach [6, 7].
Breaches can lead to data loss, data corruption, denial of access and/or complete
device takeover [8–11]. Samsung’s Open Economy report identifies the criticality
of securing every connected IoT device, approximately 7.3 billion, by 2020 [12–
15]. In the same manner, Casey encourages digital investigators to become more
familiar with IoT technology and understand the kinds of evidence they contain
involving criminal activity [2, 16–22].

One candidate for demonstrating the various facets of IoT’s underlying tech-
nologies and capabilities is drone (also referred to as unmanned aerial vehicle
(UAV)); drones are fundamentally an amalgam of every IoT technology, along

I. Diaz Linares · A. Pardo (�) · E. Patch · K.-K. R. Choo
Department of Information Systems and Cyber Security, The University of Texas at San Antonio,
San Antonio, TX, USA
e-mail: raymond.choo@fulbrightmail.org

A. Dehghantanha
Cyber Science Lab, School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: adehghan@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_2&domain=pdf
http://orcid.org/0000-0002-9294-7554
https://orcid.org/0000-0001-9208-5336
mailto:raymond.choo@fulbrightmail.org
mailto:adehghan@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_2

8 I. Diaz Linares et al.

with Cyber Physical Engineering Systems (CPES). They incorporate a network of
sensors, cameras, storage, CPUs and actuators with various network connections
including Cellular, GPS, Wi-Fi, Bluetooth, and radio frequency that enable them to
share data and control information in numerous ways that a set of vulnerabilities
and security concerns are associated to each component [23–33]. Drones [34] are
quickly becoming ubiquitous in everyday life; each year they are smaller, cheaper,
and easier to fly, making them more appealing to use. They have also proven to be
a viable solution to many tasks and have become an essential tool in areas such as
gathering data for disaster management, reconnaissance of remote areas for inspec-
tions of things such as pipelines, aerial photography/cinematography, fast shipping
delivery for companies such as Amazon, geographic mapping, crop monitoring,
building/structure safety inspection, military weapons, law enforcement, crime such
as smuggling, spying, and even assassinations.

The purpose of this chapter is to present a comparative study of the relation-
ship between the challenges connected to security, forensics, and privacy with
IoT devices. Existing literature available about IoT devices reveal considerable
overlaps with the challenges in forensics, security and privacy, but a study of their
interrelatedness has not been explored.

2 Proposed Research Methodology

The work presented in this chapter has been organized in a systematic review
to identify current research efforts about the challenges of security, privacy, and
forensics with IoT devices. The research question that guided the review was: “What
is the relationship between the challenges of security, forensics, and privacy in the
IoT environment?”

Our research method is limited to literature documenting challenges in ‘IoT’ and
only included literature published after 2000 in order to capture the most recent
trends in IoT. Relevant literature was identified through various major databases
available through the University: ACM Digital Library, IEEE Xplore/IET Electronic
Library Online, Safari Books Online, Research Direct and Semantics Scholar. The
search terms intended to identify all literature that covered security, privacy, and
forensics challenges were: “internet of things or IoT”, “challenges in security of
internet of things”, “challenges in privacy of internet of things”, “challenges in
forensics of internet of things”, “drones”, “Unmanned Aerial Vehicle”, “UAV”,
“Unmanned Aerial System”, “UAS”, “Cyber Physical Engineering Systems” and
“CPES”. The identified literature was then analyzed to determine relevance in the
research project. The title, abstract and content of the chosen papers were analyzed
to determine if they were relevant or not. Irrelevant papers were removed from
the review list in this phase. To arrive at our final selections, the publications
were analyzed to answer the research question of this paper. Software tools such
as Google Docs, Microsoft Excel and Microsoft Word were used to compile
and analyze this collection of literature. The studies were organized according

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 9

to the challenges in security, privacy and forensics in a literature review. After
validating consistency and reliability, the relevant articles and research manuscripts
were chosen in order to analyze the challenges posed to the traditional models of
forensics, security and privacy with IoT devices.

3 Results and Discussion

In this section we present a literature review divided by the characteristics of IoT
that create challenges to Forensics, Security and/or Privacy as identified by existing
literature. In addition, despite a source’s focus on only 1 of the 3 models (Forensics,
Security or Privacy), we identify whether each characteristic also affects the other 2
models. The literature review is summarized in Table 1. In Sect. 3.5 and Fig. 1 we
then demonstrate how these characteristics provided the basis for the consolidated
list of 15 common challenges related to forensics, security and privacy of IoT
devices.

3.1 Challenges That IoT Devices Introduce to the Traditional
Forensics Model

The rise of crime, encouraged by the vulnerabilities of IoT devices, calls on effective
digital forensic processes to gather forensically-sound evidence for a case under
investigation. Forensics analysis and methodologies are very new: one of the first
methodologies was proposed in 2013 and the first proposed definition of IoT
forensics was made as recently as 2015 [25]. According to McKemmish, “digital
forensics is the process of identifying, preserving, analyzing, and presenting digital
evidence in a manner that is legally acceptable” [12, 52]. It has four key elements:
Identification, Preservation, Analysis, and Presentation [12].

3.1.1 Challenges in Identification

The identification phase involves the tasks of identifying and managing possible
sources of evidence. Unlike traditional devices that contain storage media (i.e.
computers, servers, etc. [53, 54]), data collection could occur across a diverse set
of IoT devices. This can also create challenges with interoperability, compatibility
and integration, which could negatively affect data extraction, interpretation and
verification [29, 52]. This added complexity makes the mechanisms to collect and
analyze data of IoT devices even more critical [55] in a forensics investigation.

According to Oriwoh et al. and Baig et al., evidence data such as usage history
may be stored in multiple locations causing an expansion of evidence sources

10 I. Diaz Linares et al.

Ta
bl
e
1

L
ite

ra
tu

re
re

vi
ew

su
m

m
ar

y

W
ri
te
rs

A
rt
ic
le
ti
tl
e

C
ha

ra
ct
er
is
ti
c
of

Io
T
th
at

cr
ea
te
s
ch

al
le
ng

es
in

F
or
en

si
cs

Se
cu

ri
ty

P
ri
va
cy

W
at

so
n

&
D

eh
gh

an
ta

nh
a

[1
1]

D
ig

ita
lf

or
en

si
cs

:t
he

m
is

si
ng

pi
ec

e
of

th
e

In
te

rn
et

of
T

hi
ng

s
pr

om
is

e

D
at

a
st

or
ag

e
is

no
ta

cc
es

si
bl

e
(C

lo
ud

w
/o

3r
d

pa
rt

y
ag

re
em

en
to

r
ov

er
se

as
)

C
on

ti
et

al
.

[2
8]

In
te

rn
et

of
T

hi
ng

s
se

cu
ri

ty
an

d
fo

re
ns

ic
s:

C
ha

lle
ng

es
an

d
op

po
rt

un
iti

es

R
ea

l-
tim

e
an

d
au

to
no

m
ou

s
in

te
ra

ct
io

ns
be

tw
ee

n
di

ff
er

en
tn

od
es

m
ak

e
pr

es
er

va
tio

n
of

ev
id

en
ce

di
ffi

cu
lt

N
o

m
et

ad
at

a
av

ai
la

bl
e

fo
r

an
al

ys
is

su
ch

as
m

od
ifi

ed
,a

cc
es

se
d,

cr
ea

te
d

tim
e

A
bs

en
ce

of
pr

op
er

au
th

en
tic

at
io

n
m

ak
es

it
di

ffi
cu

lt
to

id
en

tif
y

re
sp

on
si

bl
e

pa
rt

ie
s

X

N
o

lo
gg

in
g

or
m

on
ito

ri
ng

sy
st

em
X

C
as

ey
,E

og
ha

n
[1

3]
T

he
va

lu
e

of
fo

re
ns

ic
pr

ep
ar

ed
ne

ss
an

d
di

gi
ta

l-
id

en
tifi

ca
tio

n
ex

pe
rt

is
e

in
sm

ar
ts

oc
ie

ty

U
nr

el
ia

bi
lit

y
of

bi
g

da
ta

du
e

to
er

ro
rs

or
om

is
si

on

B
ai

g
et

al
.[

35
]

Fu
tu

re
ch

al
le

ng
es

fo
r

sm
ar

t
ci

tie
s:

C
yb

er
-s

ec
ur

ity
an

d
di

gi
ta

lf
or

en
si

cs

V
ar

ie
ty

in
ne

tw
or

k
an

d
ap

pl
ic

at
io

n
ar

ch
ite

ct
ur

e
X

D
at

a
ex

is
ts

in
m

ul
tip

le
lo

ca
tio

ns
(e

nc
ry

pt
ed

,s
to

re
d

lo
ca

lly
or

in
th

e
C

lo
ud

)
D

if
fic

ul
tt

o
ac

qu
ir

e
de

vi
ce

/e
vi

de
nc

e
D

at
a

st
or

ag
e

is
no

ta
cc

es
si

bl
e

(C
lo

ud
w

/o
3r

d
pa

rt
y

ag
re

em
en

to
r

ov
er

se
as

)
–

m
us

tg
o

th
ro

ug
h

m
ul

tip
le

ju
ri

sd
ic

tio
ns

X

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 11

O
ri

w
oh

et
al

.
[2

7]
In

te
rn

et
of

T
hi

ng
s

Fo
re

ns
ic

s:
C

ha
lle

ng
es

an
d

ap
pr

oa
ch

es
E

xp
an

si
on

of
ev

id
en

ce
so

ur
ce

s
E

xp
an

si
on

of
m

ul
tip

le
de

vi
ce

s
to

de
vi

se
co

nc
lu

si
ve

fa
ct

s
In

cl
us

io
n

of
ev

id
en

ce
no

tl
im

ite
d

to
st

an
da

rd
fil

e
fo

rm
at

s
bu

t
de

pe
nd

en
to

n
ve

nd
or

’s
da

ta
ty

pe
s

L
ar

ge
qu

an
tit

y
of

da
ta

to
an

al
yz

e
U

nd
efi

ne
d

bo
un

da
ri

es
be

tw
ee

n
de

vi
ce

da
ta

an
d

ow
ne

rs
hi

p
X

D
at

a
m

ay
no

tb
e

re
ad

ab
le

w
/e

xi
st

in
g

to
ol

s
C

as
ey

,E
og

ha
n

[1
3]

Sm
ar

tH
om

e
Fo

re
ns

ic
s

L
im

ite
d

ac
ce

ss
to

m
et

ad
at

a
as

so
ci

at
ed

w
ith

di
gi

ta
le

vi
de

nc
e

U
sa

ge
hi

st
or

y
st

or
ed

in
m

ul
tip

le
lo

ca
tio

ns
(d

ev
ic

e,
cl

ou
d)

X
IF

T
T

T
re

ci
pe

s
ca

n
m

ak
e

pe
rs

on
s

of
in

te
re

st
hi

gh
ly

tr
ac

ka
bl

e
X

X
D

o
et

al
.[

36
]

FA
U

O
pe

n
R

es
ea

rc
h

C
ha

lle
ng

e:
D

ig
ita

lF
or

en
si

cs
Fo

re
ns

ic
R

ep
or

t

Pa
ss

w
or

ds
on

th
e

R
as

pb
ia

n
O

S
ca

n
st

ay
as

th
e

de
fa

ul
t“

ra
sp

be
rr

y”
X

X

A
rm

ir
B

uj
ar

i&
Fu

ri
ni

[2
3]

St
an

da
rd

s,
Se

cu
ri

ty
an

d
B

us
in

es
s

M
od

el
s:

K
ey

C
ha

lle
ng

es
fo

r
th

e
Io

T
sc

en
ar

io

In
te

ro
pe

ra
bi

lit
y

an
d

co
m

pa
tib

ili
ty

/in
te

gr
at

io
n

af
fe

ct
s

da
ta

ex
tr

ac
tio

n
(d

ue
to

di
ve

rs
ity

of
ob

je
ct

s)

D
at

a
le

ak
ag

e
an

d
da

ta
m

an
ip

ul
at

io
n

X
Pe

rs
on

al
in

fo
rm

at
io

n
us

ed
to

tr
ad

e
fo

r
se

rv
ic

es
(i

.e
.m

ai
la

cc
ou

nt
)

ca
n

be
ex

pl
oi

te
d

X
X

O
ri

w
oh

,
E

de
w

ed
e

[3
7]

In
te

rn
et

of
T

hi
ng

s
–

th
e

ar
gu

m
en

tf
or

Sm
ar

tF
or

en
si

cs
L

oc
at

in
g

an
d

ga
in

in
g

ac
ce

ss
to

w
id

el
y

di
sp

er
se

d
ob

je
ct

s
of

fo
re

ns
ic

s
in

te
re

st
m

ay
be

a
ch

al
le

ng
e

(O
ri

w
oh

20
13

re
fe

re
nc

e)
D

if
fic

ul
ty

to
id

en
tif

y
so

ur
ce

s
of

br
ea

ch
es

du
e

to
Io

T
’s

au
to

no
m

ou
s

sy
st

em
s

an
d

ad
ap

ta
bi

lit
y

(d
at

a
ca

n
be

ch
an

ge
d

w
ith

ou
th

um
an

in
pu

t)
X

X

V
ar

ie
ty

be
tw

ee
n

ev
id

en
ce

so
ur

ce
s

(t
im

es
ta

m
p

fo
rm

at
s,

pa
ck

et
he

ad
er

s,
et

c.
)

m
ay

ca
us

e
co

nf
us

io
n

un
til

th
ey

ar
e

un
ifi

ed
to

ac
hi

ev
e

us
ef

ul
co

rr
el

at
io

n
M

ul
tip

le
ac

ce
ss

po
in

ts
(p

hy
si

ca
la

nd
vi

rt
ua

lr
ea

lm
)

fo
r

ch
an

gi
ng

da
ta

m
ay

ca
us

e
ev

id
en

ce
ta

m
pe

ri
ng

X
X

(c
on

tin
ue

d)

12 I. Diaz Linares et al.

Ta
bl
e
1

(c
on

tin
ue

d)

W
ri
te
rs

A
rt
ic
le
ti
tl
e

C
ha

ra
ct
er
is
ti
c
of

Io
T
th
at

cr
ea
te
s
ch

al
le
ng

es
in

F
or
en

si
cs

Se
cu

ri
ty

P
ri
va
cy

A
cc

es
si

ng
de

vi
ce

an
d

al
so

ac
qu

ir
in

g
ev

id
en

ce
w

ith
ou

td
es

tr
oy

in
g

de
vi

ce
be

ca
us

e
pr

oc
es

so
rs

an
d

st
or

ag
e

ar
e

so
sm

al
l

D
ep

en
de

nc
y

in
cr

ea
se

s
on

ce
nt

ra
lh

om
e

co
nt

ro
ls

er
ve

rs
,e

xt
er

na
l

se
rv

ic
e

pr
ov

id
er

s,
ne

tw
or

k
lo

gs
,a

nd
ot

he
r

us
er

de
vi

ce
s

–
w

hi
ch

ne
ed

to
be

de
te

rm
in

ed
in

pl
an

ni
ng

st
ag

e
D

ev
ic

e
m

ay
be

lo
ca

te
d

in
di

ff
er

en
tj

ur
is

di
ct

io
ns

w
ith

va
ry

in
g

la
w

s
an

d
po

lic
ie

s
X

C
on

tin
ua

lly
ad

ju
st

s
an

d
ch

an
ge

s
fo

rm
(s

el
f-

de
st

ru
ct

io
n)

A
bs

en
ce

of
in

du
st

ry
-w

id
e

st
an

da
rd

s
fo

r
da

ta
pr

ot
oc

ol
s,

pl
at

fo
rm

s,
co

nn
ec

to
rs

,e
tc

.
K

ha
n

et
al

.[
24

]
A

C
om

pr
eh

en
si

ve
R

ev
ie

w
on

A
da

pt
ab

ili
ty

of
N

et
w

or
k

Fo
re

ns
ic

s
Fr

am
ew

or
ks

fo
r

M
ob

ile
C

lo
ud

C
om

pu
tin

g

N
et

w
or

k
fo

re
ns

ic
s

fr
am

ew
or

k
(N

FF
)

is
le

ss
re

lia
bl

e
w

he
n

th
er

e
ar

e
to

o
m

an
y

re
so

ur
ce

s
fo

r
co

m
pu

ta
tio

n
du

e
to

ir
re

le
va

nt
da

ta
an

d
tim

e-
co

ns
um

in
g

an
al

ys
is

Pe
ru

m
al

et
al

.
[2

6]
In

te
rn

et
of

T
hi

ng
s(

Io
T

)
di

gi
ta

l
fo

re
ns

ic
in

ve
st

ig
at

io
n

m
od

el
:

To
p-

do
w

n
fo

re
ns

ic
ap

pr
oa

ch
m

et
ho

do
lo

gy

Si
ze

of
th

e
ob

je
ct

s
of

fo
re

ns
ic

in
te

re
st

,r
el

ev
an

cy
,b

lu
rr

y
ne

tw
or

k
bo

un
da

ri
es

an
d

ed
ge

le
ss

ne
tw

or
ks

X

A
w

as
th

ie
ta

l.
[2

8]
W

el
co

m
e

pw
n:

A
lm

on
d

sm
ar

t
ho

m
e

hu
b

fo
re

ns
ic

s
C

ha
lle

ng
es

in
cl

ud
e

ex
tr

ac
tin

g,
ac

ce
ss

in
g,

in
te

rp
re

tin
g

an
d

ve
ri

fy
in

g
th

e
da

ta
N

o
re

m
ov

ab
le

m
ed

ia
in

Io
T

de
vi

ce
or

sm
ar

th
ub

cl
in

e3
-5

D
at

a
is

lo
st

w
he

n
de

vi
ce

is
po

w
er

ed
of

f
K

al
ai

m
an

na
n,

E
zh

il
[2

9]
Sm

ar
tD

ev
ic

e
Fo

re
ns

ic
s

–
A

cq
ui

si
tio

n,
A

na
ly

si
s

an
d

In
te

rp
re

ta
tio

n
of

D
ig

ita
l

E
vi

de
nc

es

Fo
re

ns
ic

s
ch

al
le

ng
es

in
cl

ud
e

na
tu

re
of

fil
e

sy
st

em
s,

lo
gi

ca
lm

em
or

y,
da

ta
st

ru
ct

ur
es

,a
nd

th
ir

d
pa

rt
y

ap
pl

ic
at

io
ns

th
at

ca
n

be
in

st
al

le
d

or
ac

ce
ss

ed
by

th
e

de
vi

ce

D
o

et
al

.[
25

]
C

yb
er

-p
hy

si
ca

ls
ys

te
m

s
in

fo
rm

at
io

n
ga

th
er

in
g:

A
sm

ar
th

om
e

ca
se

st
ud

y

D
if

fic
ul

ty
in

ac
ce

ss
in

g
ev

id
en

tia
ld

at
a:

3r
d

pa
rt

y
ve

nd
or

s
so

m
et

im
es

co
nt

ro
la

cc
es

s
to

th
e

da
ta

an
d

m
ay

be
un

w
ill

in
g

to
co

m
pl

y
X

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 13

R
es

ea
rc

he
rs

ha
ve

sh
ow

n
th

at
a

va
ri

et
y

of
Sm

ar
tH

om
e

de
vi

ce
s

ar
e

vu
ln

er
ab

le
to

di
ff

er
en

ta
tta

ck
s:

th
e

tr
us

tm
od

el
of

sm
ar

tl
oc

ks
co

ul
d

be
us

ed
ag

ai
ns

tt
he

sm
ar

tl
oc

k
to

al
lo

w
an

in
tr

ud
er

to
by

pa
ss

a
st

at
us

of
re

vo
ke

d
ac

ce
ss

,m
al

ic
io

us
da

ta
co

ul
d

be
tr

an
sf

er
re

d
vi

a
sm

ar
t

lig
ht

s
by

m
an

ip
ul

at
in

g
th

e
in

te
ns

ity
of

th
e

lig
ht

in
a

w
ay

th
at

a
us

er
w

ou
ld

be
un

aw
ar

e
of

th
e

m
an

ip
ul

at
io

n

X

Fo
re

ns
ic

s
an

al
ys

is
an

d
m

et
ho

do
lo

gi
es

ar
e

ve
ry

ne
w

:o
ne

of
th

e
fir

st
m

et
ho

do
lo

gi
es

w
as

pr
op

os
ed

in
20

13
an

d
th

e
fir

st
pr

op
os

ed
de

fin
iti

on
of

Io
T

fo
re

ns
ic

s
w

as
m

ad
e

as
re

ce
nt

ly
as

20
15

M
an

uf
ac

tu
re

rs
ar

e
ne

gl
ec

tin
g

to
pr

ov
id

e
co

un
te

rm
ea

su
re

s
in

m
os

t
sm

ar
th

om
e

de
vi

ce
s

to
pr

ot
ec

ta
ga

in
st

L
A

N
-b

as
ed

at
ta

ck
s

(e
x:

th
er

e
is

no
cl

ie
nt

au
th

en
tic

at
io

n)

X

E
ve

n
pa

ss
iv

e
at

ta
ck

er
s

ca
n

ga
in

ac
ce

ss
to

a
si

gn
ifi

ca
nt

am
ou

nt
of

us
er

da
ta

fr
om

sm
ar

th
om

e
de

vi
ce

s
de

sp
ite

th
e

de
vi

ce
s’

lim
ite

d
co

m
pu

tin
g

po
w

er
(i

.e
.u

sa
ge

da
ta

,l
oc

at
io

n
da

ta
)

X
X

B
ab

un
et

al
.

[3
0]

Io
T

D
ot

s:
A

D
ig

ita
lF

or
en

si
cs

Fr
am

ew
or

k
fo

r
Sm

ar
t

E
nv

ir
on

m
en

ts

N
o

co
m

m
on

st
an

da
rd

du
e

to
va

ri
et

y
of

ne
tw

or
k

pr
ot

oc
ol

s
us

ed
Io

T
de

vi
ce

s
ha

ve
lim

ite
d

po
w

er
,c

om
pu

tin
g

R
es

ou
rc

es
an

d
st

or
ag

e
ca

pa
ci

ty
D

at
a

co
lle

ct
io

n
oc

cu
rs

ac
ro

ss
a

di
ve

rs
e

se
to

f
de

vi
ce

s
so

m
ec

ha
ni

sm
to

co
lle

ct
an

d
an

al
yz

e
da

ta
is

im
po

rt
an

t
R

is
te

sk
a

St
oj

ko
sk

a
&

T
ri

vo
da

lie
v

[3
1]

A
re

vi
ew

of
In

te
rn

et
of

T
hi

ng
s

fo
r

sm
ar

th
om

e:
C

ha
lle

ng
es

an
d

so
lu

tio
ns

C
ha

lle
ng

es
in

cl
ud

e
da

ta
pr

oc
es

si
ng

is
su

es
(e

ne
rg

y,
m

em
or

y
ca

pa
ci

ty
an

d
pr

oc
es

si
ng

ca
pa

bi
lit

ie
s)

,n
et

w
or

ki
ng

an
d

in
te

ro
pe

ra
bi

lit
y

B
ig

da
ta

m
an

ag
em

en
ti

n
th

e
cl

ou
d

ca
n

af
fe

ct
da

ta
in

te
gr

ity
X

X

(c
on

tin
ue

d)

14 I. Diaz Linares et al.

Ta
bl
e
1

(c
on

tin
ue

d)

W
ri
te
rs

A
rt
ic
le
ti
tl
e

C
ha

ra
ct
er
is
ti
c
of

Io
T
th
at

cr
ea
te
s
ch

al
le
ng

es
in

F
or
en

si
cs

Se
cu

ri
ty

P
ri
va
cy

Io
T

is
vu

ln
er

ab
le

to
co

m
m

on
at

ta
ck

s
of

w
ir

el
es

s
ne

tw
or

ks
X

Z
ia

et
al

.[
32

]
A

pp
lic

at
io

n-
Sp

ec
ifi

c
D

ig
ita

l
Fo

re
ns

ic
s

In
ve

st
ig

at
iv

e
M

od
el

in
In

te
rn

et
of

T
hi

ng
s

(I
oT

)

D
ev

ic
es

ar
e

he
te

ro
ge

no
us

an
d

da
ta

so
ur

ce
m

ay
be

on
th

e
cl

ou
d

in
st

ea
d

of
on

de
vi

ce

L
ac

k
of

un
ifi

ed
st

an
da

rd
s

Id
en

tit
y

se
cu

ri
ty

,d
at

a
se

cu
ri

ty
,b

eh
av

io
r

se
cu

ri
ty

X
H

ar
dw

ar
e

lim
ita

tio
ns

in
cl

ud
e

co
m

pu
ta

tio
na

l,
en

er
gy

,m
em

or
y,

an
d

ph
ys

ic
al

.
So

ft
w

ar
e

lim
ita

tio
ns

in
cl

ud
e

em
be

dd
ed

so
ft

w
ar

e,
dy

na
m

ic
se

cu
ri

ty
pa

tc
h,

m
ob

ili
ty

,s
ca

la
bi

lit
y,

m
ul

tip
lic

ity
,a

nd
dy

na
m

ic
na

tu
re

of
ne

tw
or

ks
.

X
X

Fo
re

ns
ic

s
m

ay
be

ne
ga

tiv
el

y
im

pa
ct

ed
by

ph
ys

ic
al

ta
m

pe
ri

ng
,

w
ir

el
es

s
or

R
F

in
te

rf
er

en
ce

,r
og

ue
de

vi
ce

in
se

rt
ed

in
sa

m
e

ne
tw

or
k,

or
m

al
ic

io
us

co
de

in
je

ct
io

n

X
X

L
ac

k
of

en
cr

yp
tio

n
in

co
m

m
un

ic
at

io
n

an
d

do
w

nl
oa

di
ng

so
ft

w
ar

e
up

da
te

s
X

X

W
ri
te
rs

A
rt
ic
le
ti
tl
e

C
ha

ra
ct
er
is
ti
c
of

Io
T
th
at

cr
ea
te
s
ch

al
le
ng

es
in

se
cu

ri
ty

F
or
en

si
cs

P
ri
va
cy

Pl
ac

hk
in

ov
a

et
al

.[
33

]
E

m
er

gi
ng

T
re

nd
s

in
Sm

ar
t

H
om

e
Se

cu
ri

ty
,P

ri
va

cy
,a

nd
D

ig
ita

lF
or

en
si

cs

L
ac

k
of

ad
eq

ua
te

ac
ce

ss
ri

gh
ta

dm
in

is
tr

at
io

n
X

R
em

ot
e

A
cc

es
s

To
ol

s
X

V
ul

ne
ra

bl
e

ec
os

ys
te

m
s

(i
.e

.A
nd

ro
id

;l
ea

k
se

ns
iti

ve
da

ta
)

X
L

ac
k

of
se

cu
ri

ty
ke

ys
X

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 15

Z
ar

pe
la

o
et

al
.

[1
]

A
su

rv
ey

of
in

tr
us

io
n

de
te

ct
io

n
in

In
te

rn
et

of
T

hi
ng

s
Io

T
de

vi
ce

s
ty

pi
ca

lly
re

ly
on

re
so

ur
ce

-c
on

st
ra

in
ed

no
de

s
re

st
ri

ct
in

g
th

e
im

pl
em

en
ta

tio
n

of
ID

S
X

Se
cu

ri
ty

an
d

Pr
iv

ac
y

co
un

te
rm

ea
su

re
s

ar
e

di
ffi

cu
lt

to
im

pl
em

en
t

be
ca

us
e

co
m

po
ne

nt
s

of
Io

T
de

vi
ce

s
ha

ve
lim

ite
d

co
m

pu
tin

g
po

w
er

,
th

e
in

te
nt

of
th

e
co

nn
ec

tio
ns

be
tw

ee
n

de
vi

ce
s

is
to

sh
ar

e
da

ta
no

tt
o

av
oi

d
sh

ar
in

g
it,

an
d

th
e

sh
ee

r
qu

an
tit

y
of

co
nn

ec
tio

ns

X
X

T
he

fa
st

pr
od

uc
tiz

at
io

n
of

Io
T

(s
pe

ed
at

w
hi

ch
pr

od
uc

ts
ar

e
be

in
g

cr
ea

te
d

st
em

m
in

g
fr

om
th

e
id

ea
of

Io
T

)
X

X

Io
T

te
ch

no
lo

gy
ve

nd
or

s
ar

e
re

sp
on

si
bl

e
fo

r
re

le
as

in
g

pa
tc

he
s

to
ad

dr
es

s
vu

ln
er

ab
ili

tie
s

Io
T

se
cu

ri
ty

th
re

at
s

fa
ll

in
to

th
e

fo
llo

w
in

g
ca

te
go

ri
es

:c
op

yi
ng

da
ta

,
re

m
ov

in
g

da
ta

an
d

su
bs

tit
ut

in
g

w
ith

pu
rp

os
el

y
co

rr
up

to
r

m
al

ic
io

us
da

ta
,r

ep
la

ci
ng

fir
m

w
ar

e,
re

m
ov

in
g

se
cu

ri
ty

co
un

te
rm

ea
su

re
s,

ea
ve

sd
ro

pp
in

g,
m

an
-i

n-
th

e-
m

id
dl

e
at

ta
ck

,r
ou

tin
g

at
ta

ck
,a

nd
D

oS

X
X

Si
gn

at
ur

e-
ba

se
d

in
tr

us
io

n
de

te
ct

io
n

is
un

su
ita

bl
e

to
Io

T
(b

ec
au

se
of

lim
ite

d
co

m
pu

tin
g

po
w

er
)

Pl
ac

hk
in

ov
a

et
al

.[
33

]
E

m
er

gi
ng

T
re

nd
s

in
Sm

ar
t

H
om

e
Se

cu
ri

ty
,P

ri
va

cy
,a

nd
D

ig
ita

lF
or

en
si

cs

Sy
st

em
ad

m
in

is
tr

at
or

s
ty

pi
ca

lly
la

ck
ex

pe
rt

is
e

V
is

ito
rs

to
th

e
ho

m
e

m
ay

ha
ve

un
se

cu
re

d
ac

ce
ss

to
sm

ar
td

ev
ic

es
an

d
m

ay
im

pa
ct

us
ag

e
da

ta
X

X

D
ev

ic
es

ar
e

no
tu

se
d

by
th

e
sa

m
e

pe
op

le
in

th
e

sa
m

e
m

an
ne

r
fr

om
on

e
sm

ar
th

om
e

to
an

ot
he

r
(i

.e
.s

om
e

ho
m

es
ha

ve
pe

rs
on

s
w

ho
ar

e
m

or
e

vu
ln

er
ab

le
to

so
ci

al
en

gi
ne

er
in

g
co

nd
uc

te
d

vi
a

sm
ar

th
om

e
de

vi
ce

s)

X

T
he

re
is

no
go

ve
rn

m
en

ta
ut

ho
ri

ty
ho

ld
in

g
m

an
uf

ac
tu

re
rs

ac
co

un
ta

bl
e

fo
r

pr
ov

id
in

g
a

m
in

im
um

le
ve

lo
f

se
cu

ri
ty

pr
ot

ec
tio

n
in

sm
ar

th
om

e
de

vi
ce

s

X
X

T
he

re
ar

e
no

re
qu

ir
em

en
ts

fo
r

ho
w

us
ag

e
da

ta
is

st
or

ed
X

X
M

an
uf

ac
tu

re
rs

ar
e

no
ta

cc
ou

nt
ab

le
to

an
y

sp
ec

ifi
c

da
ta

re
te

nt
io

n
po

lic
ie

s
X

X

(c
on

tin
ue

d)

16 I. Diaz Linares et al.

Ta
bl
e
1

(c
on

tin
ue

d)

W
ri
te
rs

A
rt
ic
le
ti
tl
e

C
ha

ra
ct
er
is
ti
c
of

Io
T
th
at

cr
ea
te
s
ch

al
le
ng

es
in

F
or
en

si
cs

Se
cu

ri
ty

P
ri
va
cy

Sc
hi

ef
er

,
M

ic
ha

el
[3

8]
Sm

ar
tH

om
e

D
efi

ni
tio

n
an

d
Se

cu
ri

ty
T

hr
ea

ts
C

on
su

m
er

ed
uc

at
io

n/
kn

ow
le

dg
e:

Sm
ar

tH
om

e
de

vi
ce

s
ar

e
of

te
n

m
is

ca
te

go
ri

ze
d

be
ca

us
e

th
er

e
is

no
un

iv
er

sa
ld

efi
ni

tio
n

of
Sm

ar
t

H
om

e
U

se
of

fa
ct

or
y-

de
fa

ul
tp

as
sw

or
ds

X
X

N
on

e
or

in
su

ffi
ci

en
te

nc
ry

pt
io

n
fo

r
co

m
m

un
ic

at
io

n
X

X
A

sm
ar

th
om

e
is

on
ly

as
sa

fe
as

its
w

ea
ke

st
de

vi
ce

X
X

Si
ca

ri
et

al
.

[3
9]

Se
cu

ri
ty

,p
ri

va
cy

an
d

tr
us

ti
n

In
te

rn
et

of
T

hi
ng

s:
T

he
ro

ad
ah

ea
d

D
if

fe
re

nt
st

an
da

rd
s

am
on

g
Io

T
de

vi
ce

s

Sc
al

ab
ili

ty
of

se
cu

ri
ty

m
ea

su
re

s
L

im
ite

d
co

m
pu

tin
g

po
w

er
of

Io
T

de
vi

ce
s

X
A

la
ba

et
al

.
[4

0]
In

te
rn

et
of

T
hi

ng
s

se
cu

ri
ty

:A
su

rv
ey

C
at

eg
or

iz
es

se
cu

ri
ty

ch
al

le
ng

es
as

:p
ri

va
cy

,a
ut

ho
ri

za
tio

n,
ve

ri
fic

at
io

n,
ac

ce
ss

co
nt

ro
l,

sy
st

em
co

nfi
gu

ra
tio

n,
in

fo
rm

at
io

n
st

or
ag

e
an

d
m

an
ag

em
en

t

X

Io
T

de
vi

ce
s

ar
e

se
tu

p
on

L
ow

Po
w

er
an

d
L

os
sy

N
et

w
or

ks
(L

L
N

),
w

hi
ch

ar
e

co
ns

tr
ai

ne
d

by
lim

ite
d

pr
oc

es
si

ng
po

w
er

X

L
im

ite
d

co
m

pu
tin

g
po

w
er

of
Io

T
de

vi
ce

s
X

V
ul

ne
ra

bi
lit

y
to

ce
rt

ai
n

ty
pe

s
at

ta
ck

s:
m

an
-i

n-
th

e-
m

id
dl

e,
co

un
te

rf
ei

t
A

sh
ra

f
&

H
ab

ae
bi

[4
1]

A
ut

on
om

ic
sc

he
m

es
fo

r
th

re
at

m
iti

ga
tio

n
in

In
te

rn
et

of
T

hi
ng

s

Io
T

de
vi

ce
s

ar
e

so
di

ve
rs

e
th

at
ev

en
tu

al
ly

it
w

ill
be

so
co

m
pl

ic
at

ed
to

m
ai

nt
ai

n
se

cu
ri

ty
fo

r
ea

ch
ty

pe
of

de
vi

ce
th

at
de

vi
ce

s
ne

ed
to

be
ab

le
to

m
ai

nt
ai

n
se

cu
ri

ty
fo

r
th

em
se

lv
es

X
X

Io
T

re
lie

s
on

w
ir

el
es

s
co

m
m

un
ic

at
io

n
w

hi
ch

is
si

gn
ifi

ca
nt

ly
m

or
e

vu
ln

er
ab

le
th

an
w

ir
ed

co
m

m
un

ic
at

io
n

X

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 17

L
im

ite
d

co
m

pu
tin

g
po

w
er

of
Io

T
de

vi
ce

s
X

Io
T

de
vi

ce
s

ar
e

pa
rt

ic
ul

ar
ly

vu
ln

er
ab

le
to

D
oS

at
ta

ck
s

N
o

so
lu

tio
n

ha
s

be
en

fo
un

d
to

th
e

vu
ln

er
ab

ili
ty

to
m

an
-i

n-
th

e-
m

id
dl

e
at

ta
ck

s
E

as
ie

r
to

de
si

gn
se

cu
ri

ty
m

ea
su

re
s

fo
r

sp
ec

ifi
c

se
cu

ri
ty

is
su

es
,n

ot
fo

r
br

oa
de

r
se

cu
ri

ty
Io

T
de

vi
ce

s
of

te
n

ha
ve

a
ce

nt
ra

lp
ro

ce
ss

in
g

ro
ut

er
,w

hi
ch

ca
n

be
a

si
ng

le
po

in
to

f
fa

ilu
re

fo
r

th
e

ne
tw

or
k

X

Z
ha

ng
et

al
.

[4
2]

Io
T

Se
cu

ri
ty

:O
ng

oi
ng

C
ha

lle
ng

es
an

d
R

es
ea

rc
h

O
pp

or
tu

ni
tie

s

D
iv

er
si

ty
of

Io
T

de
vi

ce
s

X

Sc
al

ab
ili

ty
of

se
cu

ri
ty

m
ea

su
re

s
M

an
uf

ac
tu

re
r

la
ck

of
ac

co
un

ta
bi

lit
y

Im
po

ss
ib

le
to

em
pl

oy
cr

yp
to

gr
ap

hi
ca

lly
pr

e-
sh

ar
ed

ke
ys

N
o

sh
ar

ed
st

an
da

rd
s

fo
r

A
ut

he
nt

ic
at

io
n

an
d

A
ut

ho
ri

za
tio

n
X

O
bj

ec
tI

de
nt

ifi
ca

tio
n:

Io
T

de
vi

ce
s

us
e

D
N

S
w

hi
ch

is
su

sc
ep

tib
le

to
m

an
-i

n-
th

e-
m

id
dl

e
at

ta
ck

s
Sh

a
et

al
.[

43
]

O
n

se
cu

ri
ty

ch
al

le
ng

es
an

d
op

en
is

su
es

in
In

te
rn

et
of

T
hi

ng
s

Io
T

de
vi

ce
s

fu
nc

tio
n

of
f

of
lim

ite
d

re
so

ur
ce

s
su

ch
as

lim
ite

d
co

m
pu

tin
g

po
w

er
,e

ne
rg

y
su

pp
ly

an
d

m
em

or
y

X

T
he

re
ar

e
Io

T
de

vi
ce

s
on

th
e

m
ar

ke
tt

ha
ta

re
lo

w
qu

al
ity

bu
tc

an
pu

t
us

er
s

at
si

gn
ifi

ca
nt

ri
sk

ba
se

d
on

th
e

in
cr

ea
se

d
se

cu
ri

ty
vu

ln
er

ab
ili

tie
s

X

U
se

rs
ca

re
m

or
e

ab
ou

tc
on

ve
ni

en
ce

th
an

se
cu

ri
ty

X
V

ar
ie

ty
of

Io
T

de
vi

ce
s

X

(c
on

tin
ue

d)

18 I. Diaz Linares et al.

Ta
bl
e
1

(c
on

tin
ue

d)

W
ri
te
rs

A
rt
ic
le
ti
tl
e

C
ha

ra
ct
er
is
ti
c
of

Io
T
th
at

cr
ea
te
s
ch

al
le
ng

es
in

F
or
en

si
cs

Se
cu

ri
ty

P
ri
va
cy

H
ea

rt
fie

ld
et

al
.

[4
4]

A
ta

xo
no

m
y

of
cy

be
r-

ph
ys

ic
al

th
re

at
s

an
d

im
pa

ct
in

th
e

sm
ar

th
om

e

H
et

er
og

en
eo

us
te

ch
no

lo
gi

es
X

L
ac

k
of

us
er

kn
ow

le
dg

e
X

L
im

ite
d

co
m

pu
tin

g
po

w
er

of
Io

T
de

vi
ce

s
th

at
lim

its
au

th
en

tic
at

io
n

W
ir

el
es

s
co

m
m

un
ic

at
io

n
X

M
an

uf
ac

tu
re

rs
an

d
us

er
s

pr
ef

er
lo

w
er

co
st

s
de

vi
ce

s
th

an
se

cu
ri

ty
K

om
ni

no
s

et
al

.[
45

]
Su

rv
ey

in
Sm

ar
tG

ri
d

an
d

Sm
ar

tH
om

e
Se

cu
ri

ty
:I

ss
ue

s,
C

ha
lle

ng
es

an
d

C
ou

nt
er

m
ea

su
re

s

U
se

r
au

th
en

tic
at

io
n

X
X

V
ul

ne
ra

bi
lit

y
to

D
oS

at
ta

ck
s

X
R

eg
ul

at
io

n
is

no
ts

ta
nd

ar
di

ze
d

X
L

ac
k

of
au

th
or

iti
es

to
ho

ld
m

an
uf

ac
tu

re
rs

ac
co

un
ta

bl
e

fo
r

up
ho

ld
in

g
se

cu
ri

ty
st

an
da

rd
s

in
Io

T
de

vi
ce

s
X

L
in

&
B

er
gm

an
n

[4
6]

Io
T

Pr
iv

ac
y

an
d

Se
cu

ri
ty

C
ha

lle
ng

es
fo

r
Sm

ar
tH

om
e

E
nv

ir
on

m
en

ts

M
ai

n
ch

al
le

ng
es

ar
e

co
nfi

de
nt

ia
lit

y,
au

th
en

tic
at

io
n

an
d

ac
ce

ss
X

X

L
ac

k
of

us
er

kn
ow

le
dg

e
or

pr
of

es
si

on
al

re
so

ur
ce

s
X

X
V

ul
ne

ra
bi

lit
y

of
w

ir
el

es
s

co
m

m
un

ic
at

io
n

X
H

et
er

og
en

eo
us

te
ch

no
lo

gi
es

X
L

ac
k

of
co

ns
is

te
nt

so
ft

w
ar

e
pa

tc
he

s
fo

r
se

cu
ri

ty
X

L
im

ite
d

st
an

da
rd

s
am

on
g

m
an

uf
ac

tu
re

rs
fo

r
se

cu
ri

ty
m

ea
su

re
s

X
L

ac
k

of
pr

of
es

si
on

al
se

rv
ic

es
to

fo
cu

s
on

Sm
ar

tH
om

e
Se

cu
ri

ty
X

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 19

G
en

ei
at

ak
is

et
al

.[
47

]
Se

cu
ri

ty
an

d
pr

iv
ac

y
is

su
es

fo
r

an
Io

T
ba

se
d

sm
ar

th
om

e
R

es
tr

ic
te

d
co

m
pu

tin
g

po
w

er
of

Io
T

de
vi

ce
s

X

V
ul

ne
ra

bi
lit

ie
s

ca
us

ed
sp

ec
ifi

ca
lly

be
ca

us
e

of
th

e
Io

T
ar

ch
ite

ct
ur

e
X

X
H

et
er

og
en

eo
us

te
ch

no
lo

gi
es

X
L

ea
n

op
er

at
in

g
sy

st
em

s
th

at
re

qu
ir

e
fe

w
er

re
so

ur
ce

s
to

co
m

pr
om

is
e

X
X

U
se

rs
ca

n
pu

rc
ha

se
de

vi
ce

s
w

ith
m

al
w

ar
e

pr
e-

in
st

al
le

d
by

m
al

ic
io

us
ve

nd
or

s
X

A
pp

s
as

so
ci

at
ed

w
ith

sm
ar

th
om

e
de

vi
ce

s
ar

e
a

w
ea

k
po

in
ti

n
se

cu
ri

ty
X

O
ve

rr
el

ia
nc

e
on

th
e

ro
ut

er
’s

fir
ew

al
li

n
th

e
ho

m
e

ne
tw

or
k

N
ot

ra
y

et
al

.
[4

8]
A

n
ex

pe
ri

m
en

ta
ls

tu
dy

of
se

cu
ri

ty
an

d
pr

iv
ac

y
ri

sk
s

w
ith

em
er

gi
ng

ho
us

eh
ol

d
ap

pl
ia

nc
es

Se
cu

ri
ty

m
ea

su
re

s
ta

ke
n

by
m

an
uf

ac
tu

re
rs

an
d

us
er

s
ar

e
in

co
ns

is
te

nt
X

X

L
ac

k
of

us
er

kn
ow

le
dg

e
X

X
Sc

al
ab

ili
ty

of
se

cu
ri

ty
m

ea
su

re
s

X
L

im
ite

d
co

m
pu

tin
g

po
w

er
X

Po
w

er
co

ns
um

pt
io

n
re

st
ra

in
ts

X
W

hi
tta

ke
r,

Z
ac

h
[4

9]
A

ft
er

m
as

si
ve

cy
be

ra
tta

ck
,

sh
od

dy
sm

ar
td

ev
ic

e
se

cu
ri

ty
co

m
es

ba
ck

to
ha

un
t

U
se

rs
do

n’
tc

ar
e

en
ou

gh
ab

ou
ts

ec
ur

ity
X

X

M
an

uf
ac

tu
re

rs
’

us
e

of
fa

ct
or

y-
de

fa
ul

tp
as

sw
or

ds
X

X
A

ttr
ib

ut
io

n
X

U
se

rs
ke

ep
in

g
fa

ct
or

y-
de

fa
ul

tp
as

sw
or

ds
X

X

20 I. Diaz Linares et al.

Ta
bl
e
1

(c
on

tin
ue

d)

W
ri
te
rs

A
rt
ic
le
ti
tl
e

C
ha

ra
ct
er
is
ti
c
of

Io
T
th
at

cr
ea
te
s
ch

al
le
ng

es
in

F
or
en

si
cs

Se
cu

ri
ty

P
ri
va
cy

R
on

en
&

Sh
am

ir
[5

0]
E

xt
en

de
d

Fu
nc

tio
na

lit
y

A
tta

ck
s

on
Io

T
D

ev
ic

es
:T

he
C

as
e

of
Sm

ar
tL

ig
ht

s

In
te

nd
ed

fu
nc

tio
na

lit
y

of
Io

T
de

vi
ce

s
ca

us
es

vu
ln

er
ab

ili
tie

s
th

at
ba

ck
-fi

re

So
m

e
de

vi
ce

s
re

qu
ir

e
a

se
tu

p
pr

oc
es

s
w

he
re

un
en

cr
yp

te
d

pa
ss

w
or

ds
ar

e
co

m
m

un
ic

at
ed

vi
a

W
i-

Fi
X

X

L
ac

k
of

st
an

da
rd

se
cu

ri
ty

m
ea

su
re

s
us

ed
by

m
an

uf
ac

tu
re

rs
an

d
de

si
gn

er
s

X
X

Io
T

de
vi

ce
s

ar
e

so
m

et
im

es
un

ne
ce

ss
ar

ily
in

te
gr

at
ed

,c
re

at
in

g
w

ea
k

po
in

ts
w

he
re

th
es

e
ar

e
no

tn
ec

es
sa

ry
fo

r
fu

nc
tio

na
lit

y
X

X

W
ri
te
rs

A
rt
ic
le
ti
tl
e

C
ha

ra
ct
er
is
ti
c
of

Io
T
th
at

cr
ea
te
s
ch
al
le
ng

es
in

pr
iv
ac
y

Se
cu

ri
ty

F
or
en

si
cs

Pl
ac

hk
in

ov
a

et
al

.[
33

]
E

m
er

gi
ng

T
re

nd
s

in
Sm

ar
t

H
om

e
Se

cu
ri

ty
,P

ri
va

cy
,a

nd
D

ig
ita

lF
or

en
si

cs

M
an

uf
ac

tu
re

rs
of

te
n

ut
ili

ze
us

ag
e

da
ta

to
ei

th
er

se
ll

it
to

3r
d

pa
rt

ie
s

or
to

cu
st

om
iz

e
ad

ve
rt

is
in

g
to

th
e

us
er

L
op

ez
et

al
.

[5
1]

E
vo

lv
in

g
pr

iv
ac

y:
Fr

om
se

ns
or

s
to

th
e

In
te

rn
et

of
T

hi
ng

s

U
se

rs
no

lo
ng

er
ne

ed
to

ta
ke

ac
tio

ns
lik

e
se

ar
ch

in
g

fo
r

so
m

et
hi

ng
on

lin
e

to
ha

ve
th

ei
r

pr
iv

ac
y

be
at

ri
sk

be
ca

us
e

sm
ar

td
ev

ic
es

ar
e

se
ns

in
g

th
ei

r
be

ha
vi

or
s

X

D
ev

ic
e

ow
ne

rs
hi

p
be

co
m

es
un

cl
ea

r
as

Io
T

sc
al

es
L

os
s

of
pr

iv
ac

y
ca

nn
ot

be
un

do
ne

L
ac

k
of

le
gi

sl
at

io
n

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 21

with multiple access points for changing data [25, 29]. When data is stored in
various locations, risk of evidence tampering through data leakage and manipulation
become highly probable [52]. Locating and gaining access to a variety of objects of
forensics interest could pose multiple challenges for user privacy and create conflict
with jurisdiction. This heightened complexity makes it difficult to devise conclusive
facts in a forensics investigation [25].

Watson and Dehghantanha also point out that data storage may not be located on
the device but on a third-party cloud service and possibly even overseas [11, 56].
This makes it challenging to access evidential data since third-party vendors control
access and may not be willing to give access to forensics investigators [25]. If the
data or device is located overseas, varying laws and policies in different jurisdictions
could also make the acquisition of evidence problematic [27, 29]. This raises other
issues of undefined boundaries between device data and ownership [25].

3.1.2 Challenges in Analysis

The analysis phase is focused on examining and analyzing the data collected for
evidence through the use of proper forensic tools. According to Zia et al., there

Fig. 1 How the challenges in forensics, security and privacy interrelate

22 I. Diaz Linares et al.

Fig. 1 (continued)

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 23

is currently a lack of unified standards for IoT devices due to the variety of
network protocols used [29, 31]. The absence of unification with data protocols,
platforms and connectors create inefficiency and confusion throughout various
evidence sources [27]. In addition, Oriwoh states that the inclusion of evidence is
dependent on the vendor’s data types which may not be standard file formats [25].
This results in a variety of timestamp formats, packet headers, and other key data
types used for forensic evidence. This poses significant challenges to data analysis
since non-standard data types may not be readable with existing forensics tools [25].

According to Oriwoh, IoT devices have limited power, computing resources and
storage capacity [55], which cause limitations in the device’s memory capacity,
processing capabilities and interoperability [30, 56, 57]. Often times there is no
removable media available [29] nor a logging or monitoring system [28]. Due
to the limited storage and computing resources of IoT devices, challenges arise
with accessing metadata associated with digital evidence [13]. There may not be
metadata available such as dates and times for file modification, access, or creation
[28]. This then leads the forensics investigator to depend on central home control
servers, external service providers, network logs, and other devices owned by the
user [27]. Do et al. asserts that an intruder could take advantage of the vulnerabilities
that arise from the lack of secure authentication [25]. This absence of proper
authentication makes it difficult to identify responsible parties according to Conti
et al. [58].

Stojkoska et al. also claims that big data management in the cloud can affect
data integrity [57] through errors and omission, which makes the big data unreliable
and challenging to analyze [13, 25]. Khan et al. further illustrates that the network
forensics framework (NFF) is less reliable when there are too many resources for
computation due to irrelevant data and time-consuming analysis [59].

3.1.3 Challenges in Presentation

The presentation phase presents the evidence to courts through expert testimony on
the analysis of the evidence. The issues identified in the identification, preservation
and analysis phases may result in an incomplete or incorrect forensic investigation
and thus directly impact the presentation phase. Until a more effective process to
investigate IoT-related incidents is developed, criminals will benefit from the lack
of reliable and accurate evidence.

3.2 Challenges That IoT Devices Introduce to the Traditional
Security Model

Classically, the goal of Information Security has been to ensure Confidentiality,
Integrity and Availability of information, making up the popular “CIA Triad” [25].

24 I. Diaz Linares et al.

3.2.1 Challenges in Confidentiality

According to Bosworth et al. there are two ways of losing confidentiality: through
disclosure and/or observation. Disclosure can involve the user intentionally sharing
information with another user or unintentionally leaving the information unattended
and visible, such as walking away from a computer monitor that is still turned on.
Observation, on the other hand, involves an unauthorized person taking steps to
access the information. Observation does not, by definition, have to be malicious.
For example, if a user accesses his own bank account information on a public
computer and turns off the screen to step away momentarily, another user may
approach the computer and turn on the monitor without intending to compromise
the confidentiality of the bank account information but still observe the information
[25].

IoT devices face challenges stemming from the minimal features each device
can support. These devices possess limited computing power, which then limits the
authentication and encryption protocols that can be supported [39]. According to
Zhang et al., it is impractical and many times impossible to use cryptographically
pre-shared keys [42, 60]. According to Zarpelao et al., limited computing power
also makes signature-based intrusion detection unsuitable for IoT devices [1].

IoT devices rely more heavily on wireless communication (as opposed to wired
communication) [25]. This causes a significant increase in their vulnerability to
certain types of attacks, such as man-in-the-middle attacks [1, 40, 42].

Zarpelao et al. discuss that the fast productization, or fast speed at which
IoT devices are being developed and marketed, makes keeping up with security
challenges a daunting task 1. This challenge is magnified by users’ lack of expertise
and even user apathy toward prioritizing security. Lack of expertise can lead to
behaviors such as leaving manufacturer default passwords in effect, susceptibility
to social engineering conducted via IoT devices, and overreliance on the router’s
firewall in the home network [33, 38, 48, 50]. Users often value the convenience of
the features each IoT device offers higher than security [43].

3.2.2 Challenges in Integrity

The integrity of data is compromised when the data is no longer whole [25]. For
example, if a user took a video file from a little-known producer, modified the
file to remove the original producer’s information and republished the video, the
modified video file would have lost its integrity. In an IoT setting this could involve
an unauthorized user tampering with a homeowner’s smart meter to negatively
impact the electricity usage readings the meter sends to the utility company. Loss
of integrity does not have to be intentional, however. Visitors to the home can gain
unsecured access to IoT devices and by extension impact usage data and modify
settings on devices [33].

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 25

3.2.3 Challenges in Availability

As mentioned previously, IoT devices rely heavily on wireless communication. In
addition to increasing a network’s vulnerability to man-in-the-middle attacks, this
reliance also creates a significant vulnerability to Denial of Service (DoS) attacks.
An attacker could jam radio signals or time malicious message transmissions in a
way that collide with legitimate transmissions. If these transmissions collide often
enough, this attack could result in a negative impact to the availability of the service
to the authorized user [41].

Some IoT devices are battery-powered. Through the same type of attack as above,
where message transmissions collide, this can overwhelm the network and drain the
battery [41].

3.3 Challenges That Are All-Encompassing in the Traditional
Security Model

Other challenges do not fall neatly into the categories of the CIA Triad, but instead
impact two or more of the goals of the traditional security model. The diversity
of objects, for example, makes it difficult to develop adequate security measures
where a one-size-fits-all approach is impossible to employ [30, 40, 43, 46, 48]. The
sheer speed at which IoT devices are being adopted makes securing so many devices
difficult to scale [39, 41, 42].

To match the demand for IoT devices, manufacturers are quickly generating more
products, more features and more conveniences. However, manufacturers are not
consistently taking the time to create standards and protocols for ensuring their
devices are secure. There is no generally accepted expectation for manufacturers
to create patches for their software or pre-install security measures [31, 39, 42, 46].
Plachkinova et al. discuss that manufacturers are not consistent with security-related
practices such as how and where they store user information nor for how long they
store it 40. Finally, regulation has also been noticeably behind the emergence of IoT
devices, allowing manufacturers to get away with poor efforts to provide users with
security measures [33, 45].

With the absence of manufacturer accountability, individual users are left with the
responsibility of setting up their own countermeasures. However, in addition to the
lack of user expertise as mentioned above, Lin et al. discuss the lack of professional
services for the IoT that could fill the technical skills gap associated with providing
security for these devices [46].

26 I. Diaz Linares et al.

3.4 A Note on Privacy

It is important to note that as we began research, our assumption was that not
every Security challenge is also a Privacy challenge. For example, consider a
forensics investigation where a person’s day-to-day activities are examined in an
IoT environment. The investigator may access data, such as video footage captured
as the subject of the investigation walked through her house where security cameras
captured her movements. In this situation, the subject did not face a security risk.
The forensics investigator was expected to review data connected to this person
as part of the investigation. Privacy, on the other hand, was compromised as the
investigator may have seen video footage that was not directly related to the
investigation but was difficult to avoid seeing.

At a situational level, there continues to be a distinction between Security and
Privacy. However, at a category level, our analysis reveals (see Fig. 1) that every
Security challenge is also a Privacy challenge.

3.5 How the Challenges in Forensics, Security and Privacy
Interrelate

The results of the literature review highlight 15 of the most common challenges
related to forensics, security and privacy of IoT devices. These challenges are
identified in Table 2 below. Furthermore, a Venn Diagram model in Fig. 1
conceptualizes how the challenges in forensics, security and privacy interrelate.
This model illustrates the relationship between the challenges connected to security,
forensics, and privacy with IoT devices. An in-depth analysis of our findings is
further discussed in the following subsections.

To analyze the interrelation between the challenges in Forensics, Security
and Privacy, each challenge category was plotted and applied to one, two or
all three themes on a Venn Diagram (see Fig. 1) based on the characteristics
cited in the literature review. For example, Conti et al. noted that the absence
of proper authentication makes it difficult to identify responsible parties. Since
this characteristic creates a challenge for both Forensics and Security, ‘4 – Lack
of secure authentication’ was plotted between Forensics and Security. Duplicates
were removed after all the characteristics from the literature review were plotted.
If, for example, a characteristic was plotted as causing a challenge category that
applied to Security only based on a situation discussed by one author, and also
plotted as causing a challenge category that applied to Forensics only based on
a situation discussed by another author, Fig. 1 was updated to only include this
challenge category once as overlapping between Security and Forensics to reflect
the interrelation at a category level. The end result is visualized in Fig. 1.

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 27

Ta
bl
e
2

R
ef

er
en

ce
s

ca
te

go
ri

ze
d

by
fo

re
ns

ic
s,

se
cu

ri
ty

an
d

pr
iv

ac
y

ch
al

le
ng

es

C
ha

lle
ng

e#
C

ha
lle

ng
e

de
sc

ri
pt

io
n

Fo
re

ns
ic

s
Se

cu
ri

ty
Pr

iv
ac

y

1
D

at
a

st
or

ag
e

no
ta

cc
es

si
bl

e
[1

1,
36

,5
6]

2
A

ut
on

om
ou

s
ch

an
ge

s
to

da
ta

[2
7–

29
]

[2
7,

51
]

[2
7,

51
]

3
L

ac
k

of
m

et
ad

at
a

[1
3,

28
]

4
L

ac
k

of
se

cu
re

au
th

en
tic

at
io

n
[2

8,
30

,3
3,

36
,3

8,
45

,4
6]

[2
8,

30
,3

3,
36

,3
8,

40
,4

2,
45

,4
6]

[3
0,

33
,3

6,
38

,4
0,

42
,4

5,
46

]
5

U
nr

el
ia

bl
e

bi
g

da
ta

[1
,1

3,
25

,2
9,

37
,5

1]
[1

]
[1

,4
5,

51
]

6
D

at
a

in
m

an
y

lo
ca

tio
ns

[1
3,

25
,2

9,
37

,5
2,

55
,5

6]
[1

3,
37

]
[3

7,
52

]
7

D
if

fic
ul

tt
o

ac
qu

ir
e

de
vi

ce
[2

7,
29

]
8

D
iv

er
si

ty
of

ob
je

ct
s

[2
5,

41
–4

4,
46

,4
8,

52
,5

5,
56

]
[4

1–
44

,4
6,

48
]

[4
1]

9
V

ar
io

us
ju

ri
sd

ic
tio

ns
m

ay
re

su
lt

in
le

ga
lc

on
fli

ct
[2

5,
27

,2
9,

45
,4

8,
50

,5
7]

[3
3,

48
]

[2
5,

27
,2

9,
30

,5
1,

57
]

10
N

o
st

an
da

rd
s

[1
,2

3,
29

,3
0,

33
,3

6,
42

,4
6,

48
–5

0,
55

,5
6]

[1
,2

9,
30

,3
3,

39
,4

2,
44

,4
6,

48
–5

0]
[1

,4
8–

50
]

11
M

in
im

al
fe

at
ur

es
[1

,2
6,

27
,2

9,
30

,3
6,

38
–4

0,
44

,4
8,

49
,5

5–
57

,6
1]

[1
,3

0,
39

,4
0,

61
,4

8,
49

,5
6]

[1
,2

6,
30

,3
9,

40
,5

6]

12
A

dd
ed

se
cu

ri
ty

vu
ln

er
ab

ili
ty

[1
,2

3,
37

,3
8,

41
–4

4,
46

,4
8,

52
,5

6,
57

]
[1

,2
3,

37
,3

8,
41

–4
4,

46
,5

2,
56

,5
7]

[1
,3

7,
38

,5
6,

57
]

13
D

if
fic

ul
tt

o
sc

al
e

se
cu

ri
ty

m
ea

su
re

s
[1

,4
1]

[1
,3

9,
41

,4
2,

49
,5

6]
[4

1]

14
L

ac
k

of
us

er
ex

pe
rt

is
e

[4
6,

49
,5

0]
[1

,3
8,

43
,4

4,
46

,4
9,

50
]

[4
3,

44
,4

6,
49

,5
0]

15
O

th
er

[1
3]

[1
3,

46
]

[1
3,

46
]

28 I. Diaz Linares et al.

3.5.1 Forensics Only Challenge Categories

2 of the 15 challenge categories applied only to Forensics: 3 – Lack of metadata and
7 – Difficult to acquire device. Lack of metadata, such as time stamps for when data
was last accessed, modified, or captured by IoT nodes causes a significant challenge
to a forensics investigator attempting to piece together a timeline of relevant events
[28]. While this characteristic creates a challenge to Forensics, it does not create a
challenge to Security or Privacy because the lack of metadata functions similarly
against an unauthorized user with malicious intent who is working to compromise
the security or privacy of a network.

IoT nodes can be difficult to acquire as the nodes become physically smaller
through manufacturing efforts to miniaturize these nodes as the potential to
physically damage the nodes increases as their size decreases or because they are
abnormal to a digital forensics investigation [62]. If a court refuses evidence from
an alternate source, such as a home network server or cloud-based storage without
having the physical device available, a forensics investigator would find it difficult to
provide relevant data. Removing a physical device is more of an internal challenge
that physical forensics and digital forensics departments should coordinate in the
case that the device is needed by both departments for different purposes. For a
criminal looking to compromise the security and/or privacy of a home network, this
challenge category is likely to be irrelevant. The physical IoT node is not necessary
to access the data the node can captured or that it has stored if the criminal can
access the network server(s) or the cloud-based storage.

3.5.2 Security and Privacy Challenge Categories

Only 1 characteristic (within challenge category 15 – Other) applied to Security
and Privacy and relates to a lack of professional services available for the IoT
environment. Corporations can dedicate significant resources to staff, hardware and
software that works to protect their security and privacy [46]. An IoT environment
is usually built piece-by-piece without guaranteed support from each manufacturer
to protect security and privacy. Anti-malware software usually places limits on the
number of devices covered and, with the average number of devices per person
continuously increasing, even this type of service provides limited support. This
challenge understandably does not apply to Forensics. While there may be a
talent gap in the number of experienced professionals in the job market, there
is an infrastructure in place to have professionals available for digital forensics
investigations. This infrastructure does not exist for the IoT environment.

3.5.3 Privacy and Forensics Challenge Categories

Only 1 category, 1 – Data storage not accessible, applied to Privacy and Forensics.
The challenge relates specifically to 3rd party companies that control cloud-based

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 29

data storage. A forensics investigation can be significantly delayed if a 3rd party
company is unwilling to provide evidential data. For example, Amazon is involved
in a high-profile murder case where investigators believe that an Echo device
recorded evidence tied to the case [63]. The murder took place in January 2017
but Amazon has refused to release the recordings that prosecutors have requested.
In November 2018 a judge ordered Amazon to release the recordings, providing
relief to the forensics investigators involved in the case but not without having
caused a significant delay in their ability to investigate these recordings. With a
3rd party company in control of this data, privacy is also compromised. A user does
not consistently dictate what data is stored nor how long it is stored. In the case
of a court order to release information, a user also loses further control of who has
access to personal data.

3.5.4 Security, Privacy and Forensics Challenge Categories

The vast majority of categories (11 of 15) relate to all 3 themes: Forensics, Security
and Privacy. Below are some examples of these categories and how they apply to all
3 themes.

Category 2 – Autonomous changes to data, means that IoT nodes capturing data
real-time make it difficult for a forensics investigator to preserve information that
shows a clear timeline of events [58]. Instead this autonomously changing node
captures a snapshot that may not include all relevant details. Also, because data
is changed without human input, it’s difficult to identify who is responsible for a
security or privacy breach [62].

Category 4 – Lack of secure authentication makes it difficult for a forensics
investigator to identify responsible parties [58]. This also leaves a user vulnerable
to unauthorized access and use of her IoT network.

Category 5 – Unreliable big data causes a challenge to Forensics due to the large
amount of data to analyze [25]. An individual user would likewise find it challenging
to analyze the large amount of data available to determine the details of a security
or privacy breach of his IoT network.

Category 9 – Various jurisdictions may result in legal conflict creates a number
of challenges to Forensics. For example, if a crime takes place in one country but
evidential data is stored in cloud-based storage owned by a company in another
country, the two jurisdictions will need time to decide how to handle the needs
of the investigation, potentially causing significant delays to the investigation [29].
Depending on the jurisdiction, the privacy of the user may or may not be taken into
consideration as part of the decision-making process. Seen from a different angle,
this category also creates challenges based on the lack of legal authorities keeping
manufacturers accountable to taking measures to protect user security and privacy.
Not only are there insufficient legal authorities, the various jurisdictions make what
legal efforts do exist lack unified policies [33].

30 I. Diaz Linares et al.

4 Case Study

4.1 Drone Ubiquity

Drones have taken much of the world by surprise and by storm; they have
even penetrated and rejuvenated stagnant industries that are not well known for
advancements in innovation. There is a consensus from the articles reviewed for this
chapter that drones are rapidly becoming a part of everyday life and will continue
trending towards ubiquitous usage as their level of technology, capabilities, and ease
of use improves.

Drones have already gone through many iterations of technology generational
capabilities; below is a list of the technology generations [34, 64]:

• Generation 1: Basic remote-control aircraft of all forms
• Generation 2: Static design, fixed camera mount, video recording and still photos,

manual piloting control
• Generation 3: Static design, two-axis gimbals, HD video, basic safety models,

assisted piloting
• Generation 4: Transformative designs, Three-axis gimbals, 1080P HD video or

higher-value instrumentation, improved safety modes, autopilot modes.
• Generation 5: Transformative designs, 360◦ gimbals, 4 K video or higher-value

instrumentation, intelligent piloting modes.
• Generation 6: Commercial suitability, safety and regulatory standards-based

design, platform and payload adaptability, automated safety modes, intelligent
piloting models and full autonomy, airspace awareness

• Generation 7: Complete commercial suitability, fully compliant safety and
regulatory standards-based design, platform and payload interchangeability,
automated safety modes, enhanced intelligent piloting models and full autonomy,
full airspace awareness, auto action (takeoff, land, and mission execution)

Taking a note from the innovation of companies such as Amazon and their plan
to utilize drones as expedient delivery tool, criminals have started using drones for
smuggling contraband into prisons along with transporting drug packages across
international borders. This can create a major problem for authorities when trying to
investigate and interdict such activities as the pilots of the drones can easily get away
with little fear of being captured. Many modern drones have the ability to encrypt the
data that investigators would need in order to track them down. Forensics provide
essential assistance in retrieving and deciphering this data to assist in catching these
criminals. Even when deciphered by forensics, it can still be very difficult to catch
the criminals. Another utilization for drones, on the more extreme end, is using them
as weapons for warfighting and assassinations. Drones have been heavily utilized by
militaries of the world, from superpowers to third-world country freedom fighters.
They have even recently been used in an attempted assassination in Venezuela.
However, military usage is still by far the most common in the weapons category.

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 31

A very interesting future-concept of drone usage as weapons has been presented
by the Convention of Conventional Weapons; it shows the use of autonomous
drones, via advanced AI, that can be programmed to attack certain types of
targets automatically, such as specific categories of people for instance [65, 66].
They can be dropped from military aircraft by the hundreds to thousands via
the use of “mothership” drones that carry four to eight miniature attack drones.
The mothership drone has a greater distance capability and deploys the short-
range attack units when it detects the enemy is within range. The concept design
demonstrated attack drones with small shaped-charge explosives that seek out the
predefined target criteria then hone in to the head of the target and detonate, killing
them. This demonstration also pointed out what could happen when this technology
falls into the wrong hands and is hacked and reprogrammed to do their bidding.
The “bad guys” of the video steal the military drones and reprogram them to attack
students at a university who belong to an opposing political party. It is not clearly
stated how the drone knew the political agenda of the target; assumable that it
could use some form of face-recognition and seek out pre-assigned targets based
upon positive facial matches. The point is very poignant however, you could simply
program the drone to attack people of a certain skin color for instance. If such an
occurrence were to ever happen, forensics would be crucial in finding who was
responsible.

With so many potential uses for drones to do horrible and unspeakable acts, the
ability to conduct forensic analysis on them is crucial.

4.2 Drone Forensics

Drones are still relatively new to the scene overall. However, drones are not new or
an unknown entity to forensics as they are an amalgam of existing technologies
that already have well-established forensic tools and can be broken down into
component parts such as Internet of Things (IoT), Cyber Physical Engineering
System (CPES), a network of sensors, storage, CPUs and actuators with network
connections that enable them to share data and control information. All of these
components are involved in a complex, often real-time, flow of telemetry, sensor,
and environmental data in clear text and encrypted formats [55].

The main difference drone forensics have from other forms of digital forensics
is in the type of data that is collected and what portion of that data is of impor-
tance/interest. It is interesting to note that a drone itself is an instance of IoT/CPES
along with one to many CPUs, networked sensors that communicate with various
external systems. Some external systems that the drone may be communicating
with are part of a larger Unmanned Aerial System or UAS. The UAS will usually
consist of components such as a remote controller, a Ground Control Station (GCS),
and a mobile device such as a cell phone or tablet. To properly conduct forensics
that produce meaningful and useful data, drones must be broken down into their
component parts. Much of the recoverable data and metadata will be more useful

32 I. Diaz Linares et al.

when retrieved from the cooperating component parts. Often this data will prove to
be useless to forensic efforts without the data from the other component parts.

The following data types are potentially recoverable from drones and their
control devices/systems:

Owner Indemnifying Information
Drone Name
Drone Serial Number
Launch Point Location
WIFI and/or Bluetooth data
Flight Data (GPS coordinates, Waypoints, etc.)
Sensor Logs
Recorded Media (Videos, Images, EXIF data, etc.)
Mobile Phone Data (if controlled by one)
Uploaded Data
Cloud Data
Social Media Data
Operation System Data
Ground Controls System Data

Some of the most popular drones today are manufactured by DJI, one of the
largest consumer drone manufacturers from China. DJI drones have even been used
by some militaries around the world. There is a forensic tool designed specifically
for DJI Phantom Drones that is available called the Drone Open source Parser
(DROP). DROP has the ability to parse proprietary DAT files extracted from
DJI’s phantom drones. These DAT files are encrypted and encoded to prevent
unauthorized access. DROP can also extract TXT files containing highly useful
information such as GPS location(s), battery level(s), flight time(s), and other
metadata that can be correlated to control device data and identify a match
between drone and controller based on this recovered data [63]. This works well
for mainstream manufactured drones. However, there are many technologies and
methods to make drone forensics much more difficult such as the ability to 3D print
and/or build a custom-made drone with widely available component parts that are
device-agnostic that can be programmed from freely available software repositories,
potentially making the forensics process much more difficult.

Below are potential innovations and/or existing technical difficulties that can
confound the forensic process on drones:

Many drone manufacturers beyond the mainstream companies such as DJI, not all
conform to a standard.

Drones are part of a UAS, all components of a UAS, such as the drone itself
cell phone or tablet and remote controller, will need to be analyzed to obtain
meaningful and useful data.

Artificial Intelligence (AI) and machine learning to control drone swarms
autonomously

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 33

3D printing technology will enable custom, one-off/one-time-use, significantly
modified drones that do not conform to standards confounding forensic tech-
niques.

The technology that powers drones is constantly evolving giving drones more com-
plex capabilities, thus making forensic analysis more involved and/or difficult.

4.3 Drones as a Forensic Tool

There is a growing trend in utilizing drones as forensic tools themselves, taking
advantage of the unique capabilities that drones bring to the table. One of the
most interesting cases reviewed for this type of use is by the company Persistent
Surveillance Systems. A podcast put on by RadioLab, in which they interviewed
the founder and CEO of Persistent Surveillance Systems Ross McNutt, went into
great detail on what their business model provides via the use of drones. A drone
is put into the sky at approximately 18,000 ft. and flies over a target area, a city
for example, continuously for days as it snaps a 44 megapixel image of the target
area every second and transmits it back to their headquarters for processing [66, 67].
When an action of interest occurs, a crime for example, the footage is reviewed at the
scene and time of the crime and then further reviewed backwards as far as they have
record to witness what happens in that area until they can determine what events led
to the scene of the crime. For example, a police officer was assassinated in Juarez
Mexico while she stopped at a traffic light; this system was used to identify the
vehicle that the assassins used, and its path was traced back until accomplices were
identified, all the way back to the location of the crime lord’s base of operations.
This crime lord was said to be responsible for thousands of similar assassinations.
All of this was made possible by simply reviewing the history of video events 1 s
snapshot at a time [68]. The cameras at the time of this incident were 44 megapixel
cameras, they now employ drones that have 192 megapixel, full color, camera
systems found in their HawkEye II [69] (see Fig. 2).

This technology was originally developed by Ross McNutt and a team while still
in the US Military. It was developed out of a necessity to see when, where and how
Improved Explosive Devices (IEDs) were placed as traps. The system proved very
effective at identifying, locating and eventually leading to the apprehension of the
combatants who placed the IEDs.

5 Conclusion

The proliferation of the Internet of Things (IoT) has added many benefits to our
lives. However, it also brings with it many vulnerabilities, as described in the
Drone case study. The growing number of security breaches far outweigh the slow
development of solutions for IoT devices. It is paramount to public safety and

34 I. Diaz Linares et al.

Fig. 2 Drone Surveillance Forensics

crime prevention/solving that law enforcement, corrections, security and military
professionals have the knowledge, tools and level of preparedness that allows them
to conduct meaningful and successful forensic analysis on IoT devices such as
drones and their component systems.

By identifying the interrelatedness of the challenges in forensics, security and
privacy, this chapter encourages the design of safer and more secure IoT technology
to prevent misuse. It is important that policy makers, manufacturers and other
stakeholders involved direct their efforts to develop effective solutions to the current
challenges of IoT devices.

5.1 Future Research

While the number of articles reviewed show that a significant effort is being placed
in research on Forensics, Security and Privacy in an IoT environment and, on a
much broader level, for the Internet of Things, many authors echo that the research
is still in a stage of infancy. The opportunities for future research have the underlying
theme of prioritizing and improving strategies for Forensics, Security and Privacy.

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 35

5.1.1 Investigation of the Most Frequently Mentioned Challenge
Categories

Table 1 illustrates the challenge categories in the context of one or more of the 3
themes: Forensics, Security and/or Privacy. There is a clear and visible concentration
of other authors discussing topics such as category 10 – No standards, with 15
articles exploring this category. Category 3 – Lack of metadata, on the other hand,
was only discussed in 2 of the articles reviewed. Prioritizing efforts on the effects
that no standards have on the IoT environment could yield much more powerful
results than prioritizing efforts on the lack of metadata. Another area of research
would be to analyze how the top 3 challenges mentioned most frequently by the
authors in the literature review: ‘No standards’, ‘Minimal features’ and ‘Added
security vulnerability’, contribute to IoT being possible attack vectors.

5.1.2 Investigation of the Effect of One Challenge Category on Another
Category

Research efforts could benefit from a domino effect if these efforts are focused on
challenge categories that affect one or more other challenge categories. For example,
work directed to address challenge category 10 – No standards, would likely also
mitigate challenge categories such as 4 – Lack of secure authentication, 6 – Data
in many locations, 8 – Diversity of objects and 13 – Difficult to scale security
measures. For example, if manufacturers took accountability to setting standards
in pre-installing intrusion detection software, this standard would reduce the impact
on the diverse types of IoT devices in a IoT environment and the work done by the
manufacturers would help scale the security measures rather than individual users
or organizations addressing the implementation of a scalable solution.

5.1.3 Investigation of the Proposed Solutions to the Challenges of IoT
Devices

This work can further be expanded by examining current trends that seek to
resolve the vulnerabilities of IoT devices and perform a comparative analysis of
the relationship between the solutions and the challenges. Our preliminary literature
review supports this perspective. According to Khan, standards, protocols, trust
architectures and a global body for regulating IoT should be established to mitigate
the current challenges highlighted in this chapter. Gubbi proposes that the future of
IoT involve a scalable cloud framework that includes network, computation, storage
and data visualization [47]. Including both challenges and proposed solutions could
provide more insight and knowledge on how to better protect IoT users.

36 I. Diaz Linares et al.

References

1. B.B. Zarpelão, R.S. Miani, C.T. Kawakani, S.C. de Alvarenga, A survey of intrusion detection
in Internet of Things. J. Netw. Comput. Appl. 84, 25–37 (2017). https://doi.org/10.1016/
j.jnca.2017.02.009

2. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, Blockchain-enabled authentica-
tion handover with efficient privacy protection in SDN-based 5G networks. IEEE Trans. Netw.
Sci. Eng. (2019). https://doi.org/10.1109/TNSE.2019.2937481

3. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

4. M. Saharkhizan, A. Azmoodeh, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Sri-
vastava, A hybrid deep generative local metric learning method for intrusion detection, in
Handbook of Big Data Privacy, (Springer, 2020), pp. 343–357. https://doi.org/10.1007/978-
3-030-38557-6_16

5. M.M. BehradFar et al., RAT hunter: Building robust models for detecting remote access trojans
based on optimum hybrid features, in Handbook of Big Data Privacy, (Springer, 2020), pp.
371–383. https://doi.org/10.1007/978-3-030-38557-6_18

6. M. Riggins, Ubiquitous: At what costs? (Inspired eLearning, 2017), https://
inspiredelearning.com/wpcontent/uploads/2017/05/Ubiquitous_At-What-Cost.pdf

7. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88 (2020).
https://doi.org/10.1016/j.cose.2019.101629

8. I. Hamilton, A judge has ordered Amazon to hand over recordings from an Echo to help solve
a double murder case, Business Insider, 2018, https://www.businessinsider.in/a-judge-has-
ordered-amazon-tohand-over-recordings-from-an-echo-to-help-solve-a-doub, p. 66605145
(2020)

9. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Big data and internet of things security and
forensics: Challenges and opportunities, in Handbook of Big Data and IoT Security, (Springer,
2019), pp. 1–4. https://doi.org/10.1007/978-3-030-10543-3_1

10. H. HaddadPajouh, R. Khayami, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, AI4SAFE-IoT:
An AI-powered secure architecture for edge layer of Internet of things. Neural Comput. Applic.
32(20), 16119–16133 (2020). https://doi.org/10.1007/s00521-020-04772-3

11. S. Watson, A. Dehghantanha, Digital forensics: The missing piece of the Internet of
Things promise. Comput. Fraud Secur. 2016(6), 5–8 (2016). https://doi.org/10.1016/s1361-
3723(15)30045-2

12. M. E. and R. Enright, D. Palmer, N. Dawson, Samsung open economy report
13. E. Casey, The value of forensic preparedness and digital-identification expertise in smart

society. Digit. Investig. 22, 1–2 (2017). https://doi.org/10.1016/j.diin.2017.09.001
14. A. Aminnezhad, A. Dehghantanha, M.T. Abdullah, A survey on privacy issues in digital

forensics. Int. J. Cyber-Security Digit. Forensics 1(4), 311–324 (2012)
15. K.-K.R.C.A. Dehghantanha, Eda, Handbook of Big Data Privacy (Springer, Cham, 2020)
16. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, H. Karimipour, S.R. Karizno,

SLPoW: Secure and low latency proof of work protocol for blockchain in green IoT networks,
in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), (2020), pp. 1–5

17. A. Singh, K. Click, R.M. Parizi, Q. Zhang, A. Dehghantanha, K.-K.R. Choo, Sidechain
technologies in blockchain networks: An examination and state-of-the-art review. J. Netw.
Comput. Appl. 149, 102471 (2020). https://doi.org/10.1016/j.jnca.2019.102471

18. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, Q. Zhang, K.-K.R. Choo, An energy-efficient
SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans.
Serv. Comput. (2020). https://doi.org/10.1109/TSC.2020.2966970

19. D. Połap, G. Srivastava, A. Jolfaei, R.M. Parizi, Blockchain technology and neural networks
for the internet of medical things, in IEEE INFOCOM 2020 – IEEE Conference on Computer

http://dx.doi.org/10.1016/j.jnca.2017.02.009
http://dx.doi.org/10.1109/TNSE.2019.2937481
http://dx.doi.org/10.1007/978-3-030-38557-6_16
http://dx.doi.org/10.1007/978-3-030-38557-6_18
https://inspiredelearning.com/wpcontent/uploads/2017/05/Ubiquitous_At-What-Cost.pdf
http://dx.doi.org/10.1016/j.cose.2019.101629
https://www.businessinsider.in/a-judge-has-ordered-amazon-tohand-over-recordings-from-an-echo-to-help-solve-a-doub
http://dx.doi.org/10.1007/978-3-030-10543-3_1
http://dx.doi.org/10.1007/s00521-020-04772-3
http://dx.doi.org/10.1016/s1361-3723(15)30045-2
http://dx.doi.org/10.1016/j.diin.2017.09.001
http://dx.doi.org/10.1016/j.jnca.2019.102471
http://dx.doi.org/10.1109/TSC.2020.2966970

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 37

Communications Workshops (INFOCOM WKSHPS), (2020), pp. 508–513. https://doi.org/
10.1109/INFOCOMWKSHPS50562.2020.9162735

20. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, M. Aledhari,
Decentralized authentication of distributed patients in hospital networks using blockchain.
IEEE J. Biomed. Health Inform. 24(8), 2146–2156 (2020)

21. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag., 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

22. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

23. A. Bujari, M. Furini, F. Mandreoli, R. Martoglia, M. Montangero, D. Ronzani, Standards,
security and business models: Key challenges for the IoT scenario. Mob. Netw. Appl. 23(1),
147–154 (2018). https://doi.org/10.1007/s11036-017-0835-8

24. S. Khan, M. Shiraz, A.W.A. Wahab, A. Gani, Q. Han, Z.B.A. Rahman, A comprehensive
review on adaptability of network forensics frameworks for mobile cloud computing. Scien-
tificWorldJournal 2014, 547062 (2014). https://doi.org/10.1155/2014/547062

25. Q. Do, B. Martini, K.-K.R. Choo, Cyber-physical systems information gathering: A
smart home case study. Comput. Netw. 138, 1–12 (2018). https://doi.org/10.1016/
j.comnet.2018.03.024

26. S. Perumal, N.M. Norwawi, V. Raman, Internet of Things(IoT) digital forensic investigation
model: Top-down forensic approach methodology, in 2015 Fifth International Conference on
Digital Information Processing and Communications (ICDIPC), (IEEE, 2015). https://doi.org/
10.1109/icdipc.2015.7323000

27. E. Oriwoh, G. Williams, Internet of Things: The Argument for Smart Forensics. Handbook
of Research on Digital Crime, Cyberspace Security, and Information Assurance (IGI-Global
Publishing, 2014)

28. A. Awasthi, H.O.L. Read, K. Xynos, I. Sutherland, Welcome PWN: Almond smart home hub
forensics. Digit. Investig. 26, S38–S46 (2018). https://doi.org/10.1016/j.diin.2018.04.014

29. E. Kalaimannan, Smart device forensics – Acquisition, analysis and interpretation of digital
evidences, in 2015 International Conference on Computational Science and Computational
Intelligence (CSCI), (IEEE, 2015). https://doi.org/10.1109/csci.2015.58

30. L. Babun, A.K. Sikder, A. Acar, A.S. Uluagac, Iotdots: A digital forensics framework for smart
environments. arXiv Prepr. arXiv1809.00745 (2018)

31. B.L.R. Stojkoska, K.V. Trivodaliev, A review of Internet of Things for smart home: Challenges
and solutions. J. Clean. Prod. 140, 1454–1464 (2017)

32. T. Zia, P. Liu, W. Han, Application-specific digital forensics investigative model in Internet of
Things (IoT), in Proceedings of the 12th International Conference on Availability, Reliability
and Security, (ACM, 2017). https://doi.org/10.1145/3098954.3104052

33. M. Plachkinova, A. Vo, A. Alluhaidan, Emerging trends in smart home security, privacy, and
digital forensics, in Proceedings of the 22nd Americas Conference on Information Systems,
(2016)

34. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

35. Z.A. Baig et al., Future challenges for smart cities: Cyber-security and digital forensics. Digit.
Investig. 22, 3–13 (2017). https://doi.org/10.1016/j.diin.2017.06.015

36. Q. Do, B. Martini, K.-K.R. Choo, FAU Open Research Challenge: Digital Forensics – Forensic
Report (2015), p. 17

37. E. Oriwoh et al., A comprehensive review on adaptability of network forensics frameworks
for mobile cloud computing. J. Clean. Prod. 140(1), 1–12 (2018). https://doi.org/10.1145/
3098954.3104052

38. M. Schiefer, Smart home definition and security threats, in 2015 Ninth International Con-
ference on IT Security Incident Management & IT Forensics, (IEEE, 2015). https://doi.org/
10.1109/imf.2015.17

http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162735
http://dx.doi.org/10.1016/j.ipm.2020.102370
http://dx.doi.org/10.1007/s11036-017-0835-8
http://dx.doi.org/10.1155/2014/547062
http://dx.doi.org/10.1016/j.comnet.2018.03.024
http://dx.doi.org/10.1109/icdipc.2015.7323000
http://dx.doi.org/10.1016/j.diin.2018.04.014
http://dx.doi.org/10.1109/csci.2015.58
http://dx.doi.org/10.1145/3098954.3104052
http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.1016/j.diin.2017.06.015
http://dx.doi.org/10.1145/3098954.3104052
http://dx.doi.org/10.1109/imf.2015.17

38 I. Diaz Linares et al.

39. S. Sicari, A. Rizzardi, L.A. Grieco, A. Coen-Porisini, Security, privacy and trust in Internet
of Things: The road ahead. Comput. Netw. 76, 146–164 (2015). https://doi.org/10.1016/
j.comnet.2014.11.008

40. M.O.F.A. Alaba, Internet of things security: A survey (Scribd, 2017). Available [Online]:
https://www.scribd.com/document/360075916/Alaba-Othman-et-al-2017-Internet-of-things-
Survey-pdf. Accessed 16 Sep 2020

41. Q.M. Ashraf, M.H. Habaebi, Autonomic schemes for threat mitigation in Internet of Things. J.
Netw. Comput. Appl. 49, 112–127 (2015). https://doi.org/10.1016/j.jnca.2014.11.011

42. Z.-K. Zhang, M.C.Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, S. Shieh, IoT security:
Ongoing challenges and research opportunities, in 2014 IEEE 7th International Conference
on Service-Oriented Computing and Applications, (IEEE, 2014). https://doi.org/10.1109/
soca.2014.58

43. K. Sha, W. Wei, T. Andrew Yang, Z. Wang, W. Shi, On security challenges and open issues in
Internet of Things. Futur. Gener. Comput. Syst. 83, 326–337 (2018). https://doi.org/10.1016/
j.future.2018.01.059

44. R. Heartfield et al., A taxonomy of cyber-physical threats and impact in the smart home.
Comput. Secur. 78, 398–428 (2018). https://doi.org/10.1016/j.cose.2018.07.011

45. N. Komninos, E. Philippou, A. Pitsillides, Survey in smart grid and smart home security:
Issues, challenges and countermeasures. IEEE Commun. Surv. Tutorials 16(4), 1933–1954
(2014). https://doi.org/10.1109/comst.2014.2320093

46. H. Lin, N. Bergmann, IoT privacy and security challenges for smart home environments.
Information 7(3), 44 (2016). https://doi.org/10.3390/info7030044

47. D. Geneiatakis, I. Kounelis, R. Neisse, I. Nai-Fovino, G. Steri, G. Baldini, Security and privacy
issues for an IoT based smart home, in 2017 40th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), (IEEE, 2017). https:/
/doi.org/10.23919/mipro.2017.7973622

48. S. Notra, M. Siddiqi, H. Habibi Gharakheili, V. Sivaraman, R. Boreli, An experimental
study of security and privacy risks with emerging household appliances, in 2014 IEEE
Conference on Communications and Network Security, (IEEE, 2014). https://doi.org/10.1109/
cns.2014.6997469

49. Z. Whittaker, After massive cyberattack, shoddy smart device security comes back
to haunt | ZDNet (2016), https://www.zdnet.com/article/blame-the-internet-of-things-for-
causing-massive-web-outage/. Accessed 16 Sept 2020

50. E. Ronen, A. Shamir, Extended functionality attacks on IoT devices: The case of smart lights,
in 2016 IEEE European Symposium on Security and Privacy (EuroS&P), (IEEE, 2016). https:/
/doi.org/10.1109/eurosp.2016.13

51. J. Lopez, R. Rios, F. Bao, G. Wang, Evolving privacy: From sensors to the Internet of Things.
Futur. Gener. Comput. Syst. 75, 46–57 (2017). https://doi.org/10.1016/j.future.2017.04.045

52. R. McKemmish, What Is Forensic Computing? (Australian Institute of Criminology, Canberra,
1999)

53. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of the
OpenFlow v1.3 Switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3) (2018). https://
doi.org/10.1007/s11227-017-2175-7

54. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (2019), pp. 1–6

55. M. Banerjee, J. Lee, K.K.R. Choo, A blockchain future to Internet of Things security: A
position paper (Digital Communications and Networks, 2017), http://www.Sci.com/science/
article/piiS

56. J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): A vision,
architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660
(2013). https://doi.org/10.1016/j.future.2013.01.010

57. V.S. Harichandran, F. Breitinger, I. Baggili, A. Marrington, A cyber forensics needs analysis
survey: Revisiting the domain’s needs a decade later. Comput. Secur. 57, 1–13 (2016). https://
doi.org/10.1016/j.cose.2015.10.007

http://dx.doi.org/10.1016/j.comnet.2014.11.008
https://www.scribd.com/document/360075916/Alaba-Othman-et-al-2017-Internet-of-things-Survey-pdf
http://dx.doi.org/10.1016/j.jnca.2014.11.011
http://dx.doi.org/10.1109/soca.2014.58
http://dx.doi.org/10.1016/j.future.2018.01.059
http://dx.doi.org/10.1016/j.cose.2018.07.011
http://dx.doi.org/10.1109/comst.2014.2320093
http://dx.doi.org/10.3390/info7030044
http://dx.doi.org/10.23919/mipro.2017.7973622
http://dx.doi.org/10.1109/cns.2014.6997469
https://www.zdnet.com/article/blame-the-internet-of-things-for-causing-massive-web-outage/
http://dx.doi.org/10.1109/eurosp.2016.13
http://dx.doi.org/10.1016/j.future.2017.04.045
http://dx.doi.org/10.1007/s11227-017-2175-7
http://www.sci.com/science/article/piiS
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.cose.2015.10.007

IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle. . . 39

58. M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of Things security and forensics:
Challenges and opportunities. Futur. Gener. Comput. Syst. 78, 544–546 (2018). https://doi.org/
10.1016/j.future.2017.07.060

59. K. Bolouri, A. Azmoodeh, A. Dehghantanha, M. Firouzmand, Internet of Things camera
identification algorithm based on sensor pattern noise using color filter array and wavelet
transform, in Handbook of Big Data and IoT Security, (Springer, 2019), pp. 211–223. https://
doi.org/10.1007/978-3-030-10543-3_9

60. H.M. Rouzbahani, Z. Faraji, M. Amiri-Zarandi, H. Karimipour, AI-enabled security monitor-
ing in smart cyber physical grids, in Security of Cyber-Physical Systems, (Springer, Cham,
2020), pp. 145–167. https://doi.org/10.1007/978-3-030-45541-5_8

61. F. Murtagh, Big data scaling through metric mapping, in Data Science Foundations, (Chapman
and Hall/CRC, 2017), pp. 103–129. https://doi.org/10.1201/9781315367491-6

62. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

63. D.R. Clark, C. Meffert, I. Baggili, F. Breitinger, DROP (DRone Open source Parser) your
drone: Forensic analysis of the DJI Phantom III. Digit. Investig. 22, S3–S14 (2017). https://
doi.org/10.1016/j.diin.2017.06.013

64. D. Joshi, Drone technology uses and applications for commercial, industrial and military
drones in 2020 and the future, Bus. Insid., 2019

65. StratoEnergetics, Slaughterbots, 2017
66. C. Timberg, New surveillance technology can track everyone in an area for several hours at a

time, Washington Post, 2014
67. D. Kovar, J. Bollo, Drone forensics. Digital Forensics Magazine 34, 7–2018
68. WNYC Studios, Radiolab: Eye in the sky (WNYC Studios, 2015), https://

www.wnycstudios.org/podcasts/radiolab/articles/eye-sky. Accessed 16 Sept 2020
69. Persistent Surveillance Systems, Persistent surveillance systems (2016), https://www.pss-

1.com/. Accessed 16 Sept 2020

http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1007/978-3-030-10543-3_9
http://dx.doi.org/10.1007/978-3-030-45541-5_8
http://dx.doi.org/10.1201/9781315367491-6
http://dx.doi.org/10.1016/j.diin.2017.06.013
https://www.wnycstudios.org/podcasts/radiolab/articles/eye-sky
https://www.pss-1.com/

Detection of Enumeration Attacks
in Cloud Environments Using
Infrastructure Log Data

Samira Eisaloo Gharghasheh and Tim Steinbach

1 Introduction

During the past decade utilizing cloud-based environments has experienced a
significant increase in terms of diversity and scalability and this increase has
encouraged cybercriminals to target cloud-based environments [1–5]. Enumeration
refers to the process of extracting resources, machine names, and services with
setting an active connection to the target [6–9]. Considering their popularity and
potential to save organizational resources, reduce their cost and make them more
flexible, cloud environments have become an attractive target for cyber-criminals,
especially in enumeration activities [10–14]. Presently, we need more advanced and
algorithmic techniques such as machine learning and deep learning to detect cyber
threats. One of the most appropriate attack detection and identification techniques
in cloud infrastructure is based on log analysis [15, 16]. Because cloud log files are
huge in size, using threat hunting techniques without getting help from machine
learning and deep learning algorithms could be time-consuming. Deep Neural
Networks (DNNs) [17] are capable of mapping nonlinear functions [18]. Recurrent
Neural Networks (RNNs) as a type of DNNs are used to add context into word
vectors. By far the most popular RNNs are LSTMs [19–22]. They are beneficial in
Natural Language Processing (NLP) and can help in log analysis considering log
entries as text. LSTMs owing to the fact that they have memory, they can remember
the calculated value so far [21].

S. E. Gharghasheh (�)
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: samira@cybersciencelab.org

T. Steinbach
eSentire Inc., Waterloo, ON, Canada
e-mail: tim.steinbach@esentire.com

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_3&domain=pdf
mailto:samira@cybersciencelab.org
mailto:tim.steinbach@esentire.com
https://doi.org/10.1007/978-3-030-74753-4_3

42 S. E. Gharghasheh and T. Steinbach

In this paper, Long Short-Term Memory (LSTM) and Convolutional Neural
Network (CNN) was used to detect enumeration attacks on Active Amazon Web
Services (AWS) log data. We had used many to one relationship to classify log
entries. The inputs were sequences of features of each log entries and the output
were a dummy variable of 0 indicating non-malicious or 1 indicating malicious.
To access attack logs in AWS, a number of scripts had been run against it using
Application Programming Interface (API) key. A script was implemented toward
parsing the JSON format CloudTrail log data to CSV. Concerning the huge log data
size, labeling the data manually was challenging. Hence, to overcome this issue,
a labeling script was implemented with the help of some sort of time windowing
the data and deciding whether it is a malicious activity or not by the number of
activities which had been done by a single user or an IP address in that time window
and corresponding error messages occurred by that time. For evaluation measures
we used accuracy, loss, validation accuracy and validation loss.

A basic dashboard was developed to report found malicious logs and categorize
them by their running hours per day, the most called event names, top suspicious
roles, and top suspicious IP addresses. These features assist users to better monitor,
measure and be aware of threats [23].

Section 2 of this paper presents a literature review of the related works from
recent years. Section 3 contains the methodology and Sect. 4 illustrates the
visualization dashboard. Section 5 provides the results and in Sect. 6, a conclusion
is drawn.

2 Related Works

The authors in [24] used Support Vector Machines (SVM), Decision Tree, Neural
Network and Random Forest for detecting network threats on cloud computing and
achieved an accuracy of 95%, 96%, 98% and 99% respectively. Researchers in
[25] benefited from the CNN models to detect cloud-based attacks and achieved
an accuracy of 79.93% in attack detection. In [26], they used Linear Regression
(LR) and Random Forest (RF) for the purpose of anomaly detection in multi-cloud
environments. They achieved 99% detection accuracy and 93.6% categorization
accuracy. To classify cache-based applications in a cloud environment, [27] built a
deep learning model that achieved a classification rate of 98%. Ten machine learning
algorithms were used in [28] to classify web pages into Cross-Site Scripting (XSS)
and non-XSS categories. Their evaluation showed better performance in the Social
Networking Services (SNS) with the accuracy of 97.2% and False Positive Rate
(FPR) of 87%. A deep learning framework was proposed in [29] to detect cyber-
attacks in mobile cloud computing environments. They attained the highest accuracy
of 97.11% in attack detection. Machine learning algorithms were used in [30] for
anomaly detection and to defend against Advanced Persistent Threat (APT) actors’
activities. Among the supervised machine learning algorithms used in this paper,
the SVM achieved the True Positive Rate (TPR) of 95.33% and one-class SVMs

Detection of Enumeration Attacks in Cloud Environments Using Infrastructure. . . 43

achieved the TPR of 98.67%. The SVM algorithms were trained based on the normal
behaviour of the users. Moreover, in [31] they used SVM algorithms and achieved
87.8% accuracy of detecting intrusions at the network layer. In the aforesaid paper,
the detection rate accuracy reached almost 100% with a false alarm rate of 2.8%.
An APT Unsupervised Learning Detection (AULD) system was proposed in [32] to
detect suspicious domains using unsupervised machine learning algorithms. They
used Domain Name Server (DNS) log data, to extract important features. Then they
listed 1,584,225,274 DNS records among their most suspicious data.

Their proposed AULD successfully detected all the domain names used in APT
attacks. In [33], the researchers proposed a real-time intrusion detection system
using system logs. Azmoodeh et al. [34] presented a ransomware detection method
that analyzed log information of internet of thing devices and detects attacks based
on process energy consumptions within logfiles. The mentioned system was able to
categorize the log based on their severity to three levels of high, medium, and low.
Furthermore, their system raised an alert when it detected any abnormal behaviour.
In order to detect attacks based on DNS requests, [35] proposed a new deep learning-
based method. They archived an accuracy of 97.6% with a false positive rate of
2.3%. It is noteworthy that [36] put forward a deep learning method to discover
network scanning activities from Apache HTTP server access logs. They obtained
a 99.38% accuracy and 100% precision rate. Saharkhizan et al. [37] presented
a deep generative model that learns complex structure of network attack traffics
for detecting anomalies and obtained high detection rate and low false alarm.
A Distributed Denial of Service (DDoS) attack detection system using the C.4.5
algorithm was proposed in [38]. They used signature detection-based techniques to
enhance attack detection. Researchers in [39] used deep learning to detect anomalies
from system logs and they called it DeepLog. They achieved an accuracy of almost
100% in anomaly detection. An anomaly detection model based on deep neural
network structures proposed in [40]. They evaluated their models on a test dataset
and the highest area under Receiver Operating Characteristic (ROC) curve among
the tested algorithms belongs to Deep Convolutional Neural Network (DCNN) and
was 0.955. For the purpose of anomaly detection in system logs, [41] presented
the RNN model and their approach on the receiver operator characteristic curve
was 0.99 [42]. performed a deep learning anomaly detection based on the image
completion model. Their proposed algorithm attained the area under the ROC
curve of 0.95. There is limited research in detecting attacker’s enumeration and
reconnaissance activities from cloud infrastructure logs, a challenge that will be
addressed in this research.

3 Methodology

The proposed approach consists of five steps which is demonstrated in Fig. 1. First
section describes the process of running an enumeration attack on AWS to have
malicious log entries for training models. Section two describes the CloudTrail log

44 S. E. Gharghasheh and T. Steinbach

Fig. 1 An overview of the research

and parsing script. Then, the preprocessing of the dataset is explained which is
subsequently followed by a presentation of the LSTM model as the solution. Finally,
CNN is introduced as another deep neural network solution.

3.1 Running Enumeration Attack

In the interest of having malicious log entries in the type of enumeration attack logs,
different attack scripts that adopted from [43, 44] were run against AWS. For having
various IP addresses, multiple LightSail machines had been used to run attacks with
different roles and credentials. Instead of just calling the top 10 AWS services, we
were able to enumerate through each feature for all services with the help of these
tools.

3.2 Description of Dataset

The dataset which was downloaded from CloudTrail, used to train, and test the
created model that includes 89,000 malicious and 361,000 non-malicious log
entries. The script that we used for downloading log data was also used for parsing
the JSON format log file to the CSV format. Features of the dataset are described in
Table 1.

3.3 Labeling the Dataset

To label the huge dataset, we implemented a script which made use of various
rules that were adopted from eSentire’s [45] specialists. For the first step, logs were
divided into time windows. Then, the log entries in each time window were grouped
by their IP addresses. The decision for the log entry is malicious or non-malicious
made by the following rules. If one source IP is making 5 different get, list, and
describe calls and there are errors on more than 60% of the calls, that might be
malicious. A similar rule was added to the script for roles instead of IP addresses.

Detection of Enumeration Attacks in Cloud Environments Using Infrastructure. . . 45

Table 1 Feature description

No. feature Feature name Description

1 userIdentity_type Type of user who made
the call

2 userIdentity_arn Detail information about
that user

3 userIdentity_sessionContext_sessionIssuer_type Session issuer type
4 userIdentity_sessionContext_attributes_creationDate Session creation date
5 userIdentity_userName Username
6 eventTime The time of the event
7 eventSource The source for the event
8 eventName Call types on different

resources
9 awsRegion AWS region
10 sourceIPAddress IP address which made

the call
11 userAgent The user agent which

made the call
12 errorCode Error type which

occurred during the call
13 eventType AWS event type

3.4 Description of Preprocessing

Data preprocessing is a critical operation due to the impacts it has on the victory of
every data mining model. For the purposes of preprocessing in this project, a list of
actions was done which are listed as follows:

• Instead of a creation date for each log entry, we used 1 or 0 whether it had a
session date or not respectively.

• Features with unique values such as event time and source IP addresses were
dropped.

• Fill missing values with NaN.
• Shuffle the dataset to have a representative of the overall distribution of the data

in each training, test, and validation portions.
• Tokenizing the dataset and taking 2000 common words.
• Using fit_on_text from Keras to go through all the data and create a dictionary

and index words by the most used through all the data.
• With the help of texts_to_sequences from Keras, all tokens from the previous

step turned to sequences.
• To have the same size of sequences for better training the data, padding was used.

46 S. E. Gharghasheh and T. Steinbach

3.5 LSTM Model

To build the 4-layer LSTM model, we used Sequential from Tensorflow.Keras.
Four layers are as follows. One Embedding layer for embedding of the top 2000
words into a 64-dimensional embedding. One Bidirectional layer for the LSTM
layer in order to have one output as the result of sequences of words as inputs. One
Dense layer with Rectified Linear Unit (ReLU) as an activation function for this
model. And finally, another Dense layer with the activation function of Sig-moid
for defining that this model has the binary output. 0 for non-malicious and 1 as
malicious data entry. The LSTM model was compiled with ‘bina-ry_crossentropy’
as the loss function and ‘adam’ as the optimizer algorithm in preparation to reduce
the losses. The number of epochs for training the model was 10.

3.6 CNN Model

The CNN Sequential model has 6 different layers. One Embedding layer for the
same reason as discussed earlier in the LSTM model. One Conv1D layer as our
CNN layer with the ‘same’ padding function and ‘ReLU’ activation function. The
third layer is the max-pooling layer. Then in the fourth layer, we flattened the inputs.
Next, one Dense layer with the ‘ReLU’ activation function was added to the model.
Finally, for the last layer, another Dense layer with the ‘sigmoid’ activation function
was added to the model due to the fact that the binary classification is needed. The
number of epochs for training the CNN model was 2.

4 Dashboard

To have an overview of all identified malicious records as a result of the model, a
dashboard was designed and implemented. Consequently, a MySQL database with
4 different tables on a LightSail machine was created. The description of the tables
is in this fashion.

• One table for saving top 10 suspicious IP addresses with the number of log entries
they appeared.

• Another table for keeping top 10 enumeration attack event names with the
number of appearances.

• Next table for preserving 24 h a day and the number of suspicious activities per
hour.

• Last table for saving top 10 suspicious roles and their corresponding appearances
in the dataset.

Results of the dashboard for the aforesaid dataset is illustrated in Fig. 2.

Detection of Enumeration Attacks in Cloud Environments Using Infrastructure. . . 47

Fig. 2 Dashboard output

5 Resulting & Discussion

This section illustrates the results of the implemented models in categorizing the
AWS dataset. The evaluation metrics which have been studied for the models are
accuracy, loss, val_accuracy, val_loss, and their running time for each epoch.

5.1 LSTM Results

The LSTM model had remarkable results on the AWS dataset and performance
metrics for the model are 99.94% for accuracy, 0.0030 for loss, 0.0024 for val_loss,
and 99.96% for val_accuracy. The LSTM model fitted for 10 epochs that you can
see the results in Figs. 3 and 4. Running time for each epoch in this model was 80 s.

5.2 CNN Results

The results for CNN model on AWS dataset were in this fashion. Accuracy of
99.94%, loss value of 0.0029, val_loss value of 0.0026, and val_accuracy 99.96%
which indicate that the performance of the two models on AWS dataset were the
same. It is noteworthy to say that the running time for each epoch in this model
significantly decreased to just 8 s. Results details demonstrated in Figs. 5 and 6.

48 S. E. Gharghasheh and T. Steinbach

0.9996

0.9994

0.9992

0.9990

0.9988

0.9986

ac
cu

ra
cy

accuracy
val_accuracy

0.9984

0.9982

0 2 4

Epochs

6 8

Fig. 3 LSTM accuracy

0.007

0.006

0.005

0.004

0.003

0.002
0 2 4

Epochs

6 8

lo
ss

val_loss
loss

Fig. 4 LSTM loss

6 Conclusion & Future Work

Both LSTM and CNN models demonstrated high performance in anomaly detection
on the AWS dataset. The validation accuracy for the two models was the same
and was 99.96%. The validation loss for the LSTM model was better than the
CNN model with a negligible difference of 0.0002 and was 0.0024. Furthermore,

Detection of Enumeration Attacks in Cloud Environments Using Infrastructure. . . 49

0.999600

0.999575

0.999550

0.999525

0.999500

0.999475

0.999450

0.999425

0.999400

ac
cu

ra
cy

0 2 4

Epochs

6 8

accuracy
val_accuracy

Fig. 5 CNN accuracy

0.0030

0.0029

0.0028

0.0027

0.0026

0.0025

0.0024
0 2 4

Epochs
6 8

lo
ss

val_loss
loss

Fig. 6 CNN loss

the running time for each epoch in the CNN model was by far smaller than the
LSTM model and was 8 s instead of 80 s. Preprocessing the dataset played the
most important role in improving the performance of the models. Moreover, the
visualization part of this project had done by showing the most important features,
which show that threats in the logs such as IP addresses, roles, and even event names
are mostly used for enumeration attacks. Future work should consider detecting
enumeration attacks in other cloud environments such as Google Cloud Platform
(GCP) and Microsoft Azure.

50 S. E. Gharghasheh and T. Steinbach

References

1. J. Baldwin, O.M.K. Alhawi, S. Shaughnessy, A. Akinbi, A. Dehghantanha, Emerging from
the cloud: A bibliometric analysis of cloud forensics studies, in Cyber Threat Intelligence,
(Springer, Cham, 2018), pp. 311–331

2. B. Blakeley, C. Cooney, A. Dehghantanha, R. Aspin, Cloud storage forensic: hubiC as a
case-study, in 2015 IEEE 7th International Conference on Cloud Computing Technology and
Science (CloudCom), (2015), pp. 536–541

3. Y. Teing, A. Dehghantanha, K.R. Choo, CloudMe forensics: A case of big data forensic
investigation. Concurr. Comput. Pract. Exp. 30(5), e4277 (2018)

4. L.S. Thiam, T. Dargahi, A. Dehghantanha, Bibliometric analysis on the rise of cloud security,
in Handbook of Big Data and IoT Security, (Springer, Cham, 2019), pp. 329–344

5. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88 (2020).
https://doi.org/10.1016/j.cose.2019.101629

6. S. Rahalkar, Network Vulnerability Assessment: Identify Security Loopholes in Your Network’s
Infrastructure (Packt Publishing Ltd, Birmingham, 2018)

7. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

8. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag., 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

9. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (2019), pp. 1–6

10. F.M.P.D. Johnson, Robust Identity and Access Management for Cloud Systems (2020). https://
doi.org/10.7939/r3-ztwg-xm63

11. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency malware hunting: A deep recurrent neural network approach. Appl. Soft
Comput. Elsevier 96, 106630 (2020)

12. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

13. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

14. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, G. Srivastava, S. Mohan, A.M. Rababah, Cost
optimization of secure routing with untrusted devices in software defined networking. J.
Parallel Distrib. Comput. 143, 36–46 (2020)

15. A. Zomaya et al., Cloud log forensics: Foundations, state of the art, and future directions. ACM
Comput. Surv. 49(1), 7 (2016)

16. P.N. Bahrami, A. Dehghantanha, T. Dargahi, R.M. Parizi, K.-K.R. Choo, H.H.S. Javadi, Cyber
kill chain-based taxonomy of advanced persistent threat actors: Analogy of tactics, techniques,
and procedures. J. Inf. Process. Syst. 15(4), 865–889 (2019)

17. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

18. S. Selvin, R. Vinayakumar, E.A. Gopalakrishnan, . . . Google Scholar. https://
scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&q=Selvin%2C+S.%2C+Vinayakumar
%2C+R.%2C+Gopalakrishnan%2C+E.+A.%2C+Menon%2C+V.+K.%2C+%26+Soman
%2C+K.+P.+%282017%2C+September%2. p. 282017

http://dx.doi.org/10.1016/j.cose.2019.101629
http://dx.doi.org/10.1016/j.ipm.2020.102370
http://dx.doi.org/10.7939/r3-ztwg-xm63
http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1109/jiot.2020.3015382
https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&q=Selvin%2C+S.%2C+Vinayakumar%2C+R.%2C+Gopalakrishnan%2C+E.+A.%2C+Menon%2C+V.+K.%2C+%26+Soman%2C+K.+P.+%282017%2C+September%252

Detection of Enumeration Attacks in Cloud Environments Using Infrastructure. . . 51

19. C. Zhou, C. Sun, Z. Liu, F. Lau, A C-LSTM neural network for text classification. arXiv Prepr.
arXiv1511.08630 (2015)

20. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An ensemble
of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE
Internet Things J. 7(9), 8852–8859 (2020). https://doi.org/10.1109/jiot.2020.2996425

21. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for internet of things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

22. A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

23. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of the
OpenFlow v1.3 Switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3) (2018). https://
doi.org/10.1007/s11227-017-2175-7

24. H. Kim, J. Kim, Y. Kim, I. Kim, K.J. Kim, Design of network threat detection and classification
based on machine learning on cloud computing. Clust. Comput. 22(1), 2341–2350 (2019)

25. E.K. Subramanian, L. Tamilselvan, A focus on future cloud: Machine learning-based cloud
security. Serv. Oriented Comput. Appl. 13(3), 237–249 (2019)

26. T. Salman, D. Bhamare, A. Erbad, R. Jain, M. Samaka, Machine learning for anomaly detection
and categorization in multi-cloud environments, in 2017 IEEE 4th International Conference on
Cyber Security and Cloud Computing (CSCloud), (2017), pp. 97–103

27. B. Gulmezoglu, T. Eisenbarth, B. Sunar, Cache-based application detection in the cloud using
machine learning, in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, (2017), pp. 288–300

28. S. Rathore, P.K. Sharma, J.H. Park, XSSClassifier: An efficient XSS attack detection approach
based on machine learning classifier on SNSs. J. Inf. Process. Syst. 13(4), 1014–1028 (2017)

29. K.K. Nguyen, D.T. Hoang, D. Niyato, P. Wang, D. Nguyen, E. Dutkiewicz, Cyberattack
detection in mobile cloud computing: A deep learning approach, in 2018 IEEE Wireless
Communications and Networking Conference (WCNC), (2018), pp. 1–6

30. T. Schindler, Anomaly detection in log data using graph databases and machine learning to
defend advanced persistent threats. arXiv Prepr. arXiv1802.00259 (2018)

31. W. Fang, X. Tan, D. Wilbur, Application of intrusion detection technology in network safety
based on machine learning. Saf. Sci. 124, 104604 (2020)

32. G. Yan, Q. Li, D. Guo, B. Li, AULD: Large scale suspicious DNS activities detection via
unsupervised learning in advanced persistent threats. Sensors 19(14), 3180 (2019)

33. K. Reghunath, Real-time intrusion detection system for big data. Int. J. Peer Peer Netw. (IJP2P)
8(1) (2017). https://doi.org/10.5121/ijp2p.2017.8101

34. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

35. G. Yan, Q. Li, D. Guo, X. Meng, Discovering suspicious APT behaviors by analyzing DNS
activities. Sensors 20(3), 731 (2020)

36. M.B. Seyyar, F.Ö. Çatak, E. Gül, Detection of attack-targeted scans from the Apache HTTP
Server access logs. Appl. Comput. Inform. 14(1), 28–36 (2018)

37. M. Saharkhizan, A. Azmoodeh, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Sri-
vastava, A hybrid deep generative local metric learning method for intrusion detection, in
Handbook of Big Data Privacy, (Springer, 2020), pp. 343–357. https://doi.org/10.1007/978-
3-030-38557-6_16

38. M. Zekri, S. El Kafhali, N. Aboutabit, Y. Saadi, DDoS attack detection using machine learning
techniques in cloud computing environments, in 2017 3rd International Conference of Cloud
Computing Technologies and Applications (CloudTech), (2017), pp. 1–7

39. M. Du, F. Li, G. Zheng, V. Srikumar, DeepLog, in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security-CCS, vol. 17, (2017), pp. 1285–1298.
https://doi.org/10.1145/3133956.3134015

http://dx.doi.org/10.1109/jiot.2020.2996425
http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1007/s11227-017-2175-7
http://dx.doi.org/10.5121/ijp2p.2017.8101
http://dx.doi.org/10.1007/978-3-030-38557-6_16
http://dx.doi.org/10.1145/3133956.3134015

52 S. E. Gharghasheh and T. Steinbach

40. S. Naseer et al., Enhanced network anomaly detection based on deep neural networks. IEEE
Access 6, 48231–48246 (2018)

41. A. Brown, A. Tuor, B. Hutchinson, N. Nichols, Recurrent neural network attention mechanisms
for interpretable system log anomaly detection, in Proceedings of the First Workshop on
Machine Learning for Computing Systems, (2018), pp. 1–8

42. M. Haselmann, D.P. Gruber, P. Tabatabai, Anomaly detection using deep learning based
image completion, in 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), (2018), pp. 1237–1242

43. cloud-service-enum/aws_service_enum at master · NotSoSecure/cloud-service-enum ·
GitHub. https://github.com/NotSoSecure/cloud-service-enum/tree/master/aws_service_enum.
Accessed 16 Sep 2020

44. World Health Organization, et al., GitHub – toniblyx/my-arsenal-of-aws-security-tools: List
of open source tools for AWS security: defensive, offensive, auditing, DFIR, etc. https:/
/github.com/toniblyx/my-arsenal-of-aws-security-tools. Accessed 16 Sep 2020. Osteoarthr.
Cartil. 28(2), 1–43. https://doi.org/10.18420/in2017

45. eSentire | Modern threat hunting for the digital age | eSentire. https://www.esentire.com/.
Accessed 16 Sep 2020

https://github.com/NotSoSecure/cloud-service-enum/tree/master/aws_service_enum
https://github.com/toniblyx/my-arsenal-of-aws-security-tools
http://dx.doi.org/10.18420/in2017
https://www.esentire.com/

Cyber Threat Attribution
with Multi-View Heuristic Analysis

Dilip Sahoo

1 Introduction

Past decades has witnessed a considerable rise for using digitalized system for
different aspects of our modern life ranging from agriculture [1] and health [2]
to power grid [3] and transportation [4] which has motivated cyber attackers for
designing sophisticated and target -specific attacks against such infrastructures [5–
8]. In the context of cybersecurity, threat attribution is a fundamental step to find
out who is behind an attack. Ascribing a group or agency to a threat helps the
security professionals to take appropriate countermeasures to protect the individuals
and organizations. APTs are the most challenging which are on the rise for security
professionals to defend against [5, 9, 10]. The APT groups use specific TTP to
target, penetrate, and exploit organizations. Because of the sophisticated nature of
the attack strategies adopted by the APT actors, it is not easy to attribute them
against an attack [11]. A report from McAfee claims that most APT attacks are
interrelated in their nature of the attack and they have similar target organizations
[12]. The general characteristics of APTs are that they are sophisticated, targeted,
and evasive, the attack adopts to security measures, and has multiple attack vectors.

The APT attacks are evasive that use several methods to stay undetected like
using commonly accepted protocols for sending threat contents. They use custom
encryption techniques to overcome firewall detection. It is common to notice various
detection evading and code obfuscation techniques used in many malware variants.
These evasive techniques create confusion and may sidetrack the analysts while
focusing on a specific characteristic (from a single-view) of the malware.

D. Sahoo (�)
Cyber Science Lab, University of Guelph, Guelph, ON, Canada
e-mail: dilip@cybersciencelab.org

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_4

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_4&domain=pdf
mailto:dilip@cybersciencelab.org
https://doi.org/10.1007/978-3-030-74753-4_4

54 D. Sahoo

In most APT campaigns, it is noticed they launch very sophisticated attacks and
target a particular type of organization. For example, the Stuxnet campaign was
targeting centrifuges that use programmable logic controllers (PLCs) manufactured
by Siemens. Stuxnet was using an extremely sophisticated worm that exploits zero-
day vulnerabilities of windows systems [4]. These types of attacks can easily drop
and install payloads in the target system as the attacks are designed exclusively
for the target systems. It is often impossible to detect such attacks by traditional
Antivirus or Intrusion Detection Systems. In the last decade, behavioral analysis of
malware files in a sandbox environment has become popular. In this method, the
researchers observe malware behaviors like network traffic, system calls, registry
updates, etc. at runtime by executing the malware in an isolated environment.
This method is very effective against the unknown malware payloads that belong
to APTs. However, this method is a time-consuming process and not useful in
realtime detection scenarios. Also, sometimes the sophisticated malware programs
can distinguish the sandbox environment from a real environment and behave
differently.

On the other hand heuristic analysis, uses ML algorithms to train the systems
with malware behavior. Such systems can be trained on the existing known malware
file features like Opcode, Bytecode, Header details. The features can be fed to
different Machine Learning [13–15] and Deep Learning [16–19] classifiers to
perform the classification task. Heuristic analysis is effective against both unknown
and metamorphic malware detection. A major pitfall of machine learning classifiers
is that the output can get biased based on the training data. Sometimes training data
may contain biases that can result in improper outcomes and impact the overall
performance of the ML classifiers [20] To address the issue of biased prediction by
a classifier, it is important to feed the ML classifier with balanced data [21].

In the experiment, research is conducted on more than 3000 malware files from
12 APT families. A multi-view approach similar to [22, 23] is followed for the
experiment. Below are the major research contributions made as part of this work.

I. Eleven different views were created based on the extracted Opcode, Bytecode,
and Header features to look at the files under observation from different
aspects. This helps to make the system resilient against obfuscation and evasion
techniques.

II. Five different machine learning algorithms namely SVM, Decision Tree, KNN,
MLP, and Fair Clustering were evaluated with all the views.

III. A SMOTE data set was developed with balanced distributions of data samples
to reduce bias in favor of any particular class.

IV. A Multi-View prediction approach was adopted by combining the individual
predictions from the single-views based on majority class prediction and
accuracy(%).

Section 2 of this paper contains details on related work done recently for APT
threat detection. Section 3 contains a brief description of the dataset used in the
experiment. Section 4 details our experiment methodology which is followed by
our Experimentation and Results in Sect. 5. Section 6 highlights a comparison of

Cyber Threat Attribution with Multi-View Heuristic Analysis 55

our findings with related works. Section 7 presents Our concluding statements and
avenue for future work.

2 Related Work

Knowledge of the threat source increases the confidence of the security profes-
sionals during incident triaging and later with the incident response phase. It
also helps them to decide the next course of action in a time-efficient manner
due to the additional supplements of information regarding the TTP used by the
attacker groups. Due to the substantial benefits of threat source attribution, various
approaches have been taken by researchers to effectively automate the process of
cyber threat attribution [24–31].

The paper [32] combines several individually contributed papers and provides a
basic understanding of APTs along with explanations, examples, case studies on the
APT phenomenon, their characteristics, APT attack stages, and how they should be
handled. The paper discusses APT definitions considering the viewpoints and case
study reports provided by leading security organizations and government agencies.
The papers suggest that any organization should consider the APT threat seriously
due to the targeted nature and suggests different ways to efficiently protect against
APT campaign attacks.

Several types of research have been conducted to detect and prevent APT attacks.
Implementation of traffic data analysis is one of the most popular approaches
suggested by several researchers [33–35]. Trafic data analysis is conducted by
analysis of network protocols, carried operations, and data that flows through the
network. Researchers in [36] suggested a combination of traffic data analysis with
an open-source intrusion detection system that analyzes the protocols used, requests
sent, and uses filtering using black-list.

Pattern recognition is another popular approach to detect and prevent and APT
attacks. In this approach, malicious programs are considered to be similar and they
are distinguished from the benign applications by tracing their operational simi-
larities and differences. Authors in [36] suggest a single layer pattern recognition
approach. It is also common that several methods are combined to create a system
that can protect against the APT threat than the individual methods. Moon et al.
[37] and Vert et al. [38] used a combination of pattern recognition and multilayer
security for detection and protection against APT threats at different security layers.

Heuristic analysis using ML classifiers is becoming more popular than traditional
detection methods in the last decade. Authors in [39] present an interesting
approach to detect malware Application. The proposed system uses the Application
Programming Interfaces called by the malware program and technical PE features
to classify malware files. It uses the chi-square (KHI2) measure and Phi (ϕ)
coefficient for considering features by relevance. The system could accomplish
binary classification with 98% accuracy in a time-efficient manner.

56 D. Sahoo

Authors in [22] implemented a Multi-View Fuzzy Consensus Clustering Model
for Malware Threat Attribution. The suggested approach uses 12 views to attribute
the malware from five APT classes. It implements a fuzzy pattern tree, multi-
modal fuzzy classifier, and consensus clustering technique to analyze the malware
behavior. The suggested system could perform threat attribution with 95% accuracy.

3 Dataset

A dataset of 3594 malware file samples [40] belonging to 12 different APT groups
namely APT1, APT10, APT19, APT21, APT28, APT29, APT30, DarkHotel, Ener-
geticBear, EquationGroup, GorgonGroup, and Winnti was used for the experiment.
These APTs were alleged to be sponsored by five different nation-states. Each of the
malware files was processed using additional python scripts to extract details of the
Opcode, Bytecode, and Header information and to create multiple views based on
that information. Details of the data processing and view creation are discussed in
later Sects. 4.1 and 4.2. Table 1 illustrates the number of malware samples collected
against each APT group.

4 Methodology

In this section, the detailed steps taken during the experiment to implement a multi-
view-based malware attribution model are described. The Malware files for 12
different APT groups were collected and processed to create the multi-view data
samples. Later these multi-view data samples were used to attribute each malware

Table 1 APT-Malware data description

Sl no APT group name No of malware files Nation-state

1 APT1 405 China
2 APT10 244 China
3 APT19 32 China
4 APT21 106 China
5 APT28 214 Russia
6 APT29 281 Russia
7 APT30 164 China
8 DarkHotel 273 North Korea
9 EnergeticBear 132 Russia
10 EquationGroup 395 USA
11 GorgonGroup 961 Pakistan
12 Winnti 387 China

Cyber Threat Attribution with Multi-View Heuristic Analysis 57

Fig. 1 The Multi-view malware attribution system

file to an APT group. During the experiment, five Machine learning classifiers were
trained and evaluated in terms of accuracy. Finally, the best detection models for
each view were identified and implemented for malware attribution. The proposed
system consists of three important modules namely the pre-processing module, the
view extraction module, and a threat attribution module. Figure 1 illustrates the
modules and steps involved in our threat attribution experiment.

4.1 Preprocessing and View Extraction

The raw malicious files were processed using custom python scripts to extract
information on details of the Opcode, Bytecode, and Header from each of them.
This extracted information is treated as the foundation of our multi-view approach to
perform further heuristic analysis using ML classifiers. The processing and creation
of each view are described in the below Sects. 4.1.1, 4.1.2, and 4.1.3.

4.1.1 Opcode

Opcodes are the assembly instructions present in the malware executable files.
To extract the opcode information from the malware executable files, the Linux
‘Objdump’ command was used to disassemble the binary files. Then a dictionary
of all available unique opcodes was created which became the base for further
processing of Opcode based views that is referred to as Opcode_Dic. Five different
types of view samples were derived from the Opcode data extracted from the
Malware binary files namely Binary, Count, Frequency, Term Frequency-Inverse
Document Frequency (TFIDF), and Eigen Vector. For the creation of Binary, Count,

58 D. Sahoo

Frequency, and TFIDF views, the Text tokenization utility class using Keras [41]
was used. The Eigen Vector view was created following the method proposed by
Hashem et al. [42]. ML classifiers were trained with all the Opcode based views
and their performance in terms of accuracy was noted against each view. This gave
us a holistic comprehension of how different ML classifiers perform for different
views. It is worth noting that all the Opcode based views were derived from the
same Opcode information extracted from the malware files and by using different
processing techniques.

Binary

This view is named as binary due to the nature of the data values present inside
this view which is either ‘0’ or ‘1’.The Opcode Binary view sample was created
by checking whether a particular Opcode value of the Opcode_Dic is present in a
malware binary file or not. A value of ‘1’ was assigned if it is present and ‘0’ if it is
not. The Opcode_Dic is considered as the base document to be referred for creating
this view. Hence, the number of columns or features for this view remains constant
for all the malware files. The number of columns is the same as the unique number
of Opcodes present in the Opcode_Dic.

Count

In this view, the data values are represented as the count of each Opcode of the
Opcode_Dic file, that is present in malware files. Hence, in contrast to the binary
view, this view represents the actual count value of the Opcodes instead of ‘0’ and
‘1’. The number of columns is the same as the unique number of Opcodes present
in the Opcode_Dic.

Frequency

This view represents the frequency value of each Opcode from Opcode_Dic file as
a ratio of the Opcodes present in the malware files. The number of columns is the
same as the unique number of Opcodes present in the Opcode_Dic.

TFIDF

The TFIDF view represents the Term Frequency-Inverse Document Frequency score
of each Opcode present in the malware files. The number of columns is the same as
the unique number of Opcodes present in the Opcode_Dic.

Cyber Threat Attribution with Multi-View Heuristic Analysis 59

Eigen Vector

The eigenvector view uses function call graph as the signature of the program
proposed by authors in [43]. It uses the graph representation of the program and
apply the mathematical equation to detect malware.

4.1.2 Bytecode

The Bytecode sequences of the malware files were extracted using custom python
scripts. The bytecode values lie between 0 and 255. Hence, the bytecode dictionary
file was created with all the values ranging from 0 to 255 and referred to as
Bytecode_Dic. Five different sample views Binary, Count, Frequency, TFIDF, and
Eigen Vector were created from the extracted bytecode values like the Opcode views
discussed in Sect. 4.1.1. Finally, the ML classifiers were evaluated for each of the
Bytecode views.

4.1.3 Header

The header view represents the header information gathered from the malware
Portable Executable (PE) files. The header fields were extracted from the PE file
header and PE optional header sections using python libraries like: ‘pefile’ [44]
and ‘lief’ [45]. The field information like ‘Machine’, ‘SizeOfOptionalHeader’, and
‘Characteristics’ was extracted from the PE file header section of the malware PE
files. Similarly, from PE Optional header section, the fields: ‘MajorLinkerVersion’,
‘MinorLinkerVersion’, ‘SizeOfCode’ etc. were extracted. Figure 2 shows the PE file
header and PE Optional header information of a sample malware PE file. Due to the
huge variance between the raw data collected from the header section, the raw data
was later normalized using a logarithmic function. The normalized data were used
to create the final Header view.

Fig. 2 File header and Optional Header section fields of a malware PE file

60 D. Sahoo

4.2 Data Balancing Using Synthetic Minority Over-Sampling
Technique (SMOTE)

After the creation of the views, it was observed that the data samples inside the views
were not balanced. This is because certain APT groups had more malware samples
than others. For example, there were only 32 malware samples belong to APT19
(shown in Table 1) which is considerably less compared to other APT groups.
An imbalanced dataset can cause biased results and poor predictive performance,
especially for the minority class. Hence, the imbalance dataset poses a challenge
to the overall ML algorithm performance [21, 46]. To overcome the issues of the
imbalanced data in the views, the SMOTE technique was used to balance the dataset
by upsampling the minority class data. The SMOTE enhanced views were then used
to train the ML classifiers.

4.3 Machine Learning Classifier Phase

In this phase, four well-known ML classifiers namely SVM, Decision Tree, KNN,
and MLP were implemented from the open-source scikit-learn library (https://
scikit-learn.org). Also, a Fair Clustering algorithm suggested by Backurs et al.
[47] was adopted for the experiment. Each of the above-mentioned classifiers was
evaluated with all the view samples’ data explained in Sect. 4.1. The experiments
were conducted in a 13 GB RAM Windows 10 virtual machine with 2.21 GHz
64-bit intel i7 processor. Another 4 GB Ubuntu 20.04 virtual machine was used
for the extraction of Opcode information from the malware files. Python 3.6.5 and
MATLAB engine were used with jupyter notebook.

4.3.1 Support Vector Machine (SVM)

SVM is a simple algorithm that produces significant accuracy with less computa-
tional power [48]. The SVM algorithm finds hyperplane to classify N-dimensional
data where ‘N’ is the number of features in the dataset. Due to the multiclass nature
of the sample views’ data, ‘decision_function_shape’ parameter value as ‘one-vs-
one (ovo)’ was used which is a common approach followed during multi-class
classification.

4.3.2 Decision Tree

A decision tree classifier can be used for both classification and regression tasks
[49]. The feature importance and relations can be visualized clearly in a decision
tree. It uses a greedy algorithm to lower costs.

https://scikit-learn.org
https://scikit-learn.org

Cyber Threat Attribution with Multi-View Heuristic Analysis 61

4.3.3 K-Nearest Neighbour (KNN)

The KNN is an unsupervised ML algorithm that predicts the label of a new point
from the testing sample by checking the label of ‘K’ predefined training samples
which are close in distance. The value of ‘K’ was kept as K = 5 during the
experiment which is the default value and gave us an optimum result.

4.3.4 Multi-layer Perceptron (MLP)

MLP is a type of neural network which is a deep-learning-based classifier. MLP
is powerful because of multiple layers but can be a computationally expensive
classifier. During the experiment, three hidden layers with 100 nodes each were
used and the maximum number of iteration was set as 200 epochs.

4.3.5 Fair Clustering

A fair clustering approach was suggested by Backurs et al. [47] that provides
fairness as well as scalability to the clustering algorithm and runs in near-linear time.
Because of the additional benefits, it was decided to implement this approach instead
of the traditional k-median clustering algorithm. The elbow method was used to find
an optimum cluster value ‘k’ which was set to k = 20 during the experiment.

5 Experiments and Results

This section describes the details of the experiment conducted and highlights the
results. Section 5.1 describes the evaluation measures adopted for the assessment.
The experiment was conducted in two phases, in the first phase, described in Sect.
5.2, the original view data obtained from the raw malware samples were used to train
five Machine Learning classifiers (details of ML classifiers are mentioned in Sect.
4.3) and the results were analyzed. After analyzing the results obtained from the
first phase, the second phase of the experiment was conducted by feeding SMOTE
enhanced balanced datasets to the four ML classifiers that performed best during the
first phase. The details of the second phase experiment and its results are highlighted
in Sect. 5.3. Finally, Sect. 5.4 demonstrates the results obtained using a multi-view
prediction approach.

62 D. Sahoo

5.1 Evaluation measures

The threat attribution model in the experiment is a multi-class classification model
where each threat actor is considered as a class. For instance, considering the con-
fusion matrix we have obtained during our experiment from the OPCODE_TFIDF
view illustrated in Fig. 3. There are 12 different classes denoting 12 APT groups.
The multiclass classification model matrices can be understood as a set of several
binary class classification models (where there are only two classes as ‘Positive’ or
‘Negative’). For example, in our classifier, if we consider a malware file belong class
‘APT1’ then a True Positive occurs, when the malware is correctly predicted to be of
class ‘APT1’. Any other prediction will be considered to be a ‘false negative’. In the
multi-class classification, the positive and negative will depend on the true label of a
sample and can change based on the object label. It means that for a given prediction,
there will be multiple classes as ‘true negative’. For instance, while considering class
APT10, if a malware file that originally belongs to APT21 is predicted to be of any
class (i.e. APT1, APT19, APT21, . . . , Winnti) other than APT10, then it will be
considered as true negative for the class APT10.

The evaluation measures for the experiment are derived from the confusion
matrix. A common Confusion matrix represents the summary of all the predicted
results of a classifier in terms of the number of True Positives (TP), True Negatives
(TN), False Positives (FP) and False Negatives (FN). The diagonal elements in
the confusion metrics represent the correctly classified samples for each APT.
‘Accuracy’ is the number of samples correctly identified as true positive or true

APT1 372 2 3 1 1 4 3 9 0 0 2 3
APT10 1 381 1 1 3 2 0 7 0 0 4 0
APT19 0 0 400 0 0 0 0 0 0 0 0 0
APT21 0 0 0 399 1 0 0 0 0 0 0 0
APT28 0 0 0 0 392 2 1 2 0 0 2 1
APT29 0 1 1 0 3 384 0 1 0 0 4 6
APT30 1 0 0 0 0 0 396 1 0 0 1 1
DarkHotel 1 7 0 1 1 5 5 371 0 0 4 5
EnergeticBear 0 0 0 0 1 0 0 0 399 0 0 0
EquationGroup 0 0 0 0 0 0 1 0 0 399 0 0
GorgonGroup 1 1 2 0 1 4 2 4 1 0 374 10
Winnti 4 1 2 0 2 3 0 3 0 1 8 376

A
PT

1

A
PT

10

A
PT

19

A
PT

21

A
PT

28

A
PT

29

A
PT

30

D
ar
kH

ot
el

En
er
ge
tic

B
ea
r

Eq
ua
tio

nG
ro
up

G
or
go

nG
ro
up

W
in
nt
i

Fig. 3 OPCODE_TFIDF Confusion Matrix using MLP

Cyber Threat Attribution with Multi-View Heuristic Analysis 63

negative out of all items. ‘Precision’ is the number of correctly identified positive
samples out of all the positive predictions. ‘Recall’ also known as ‘True positive
rate’ or ‘Sensitivity rate’ is the number of correctly predicted positive samples out
of all the actual positives. F1-Score is the harmonic average of precision and recall
and determines the effectiveness of the identification.

TP: An APT actor with a true label as positive predicted correctly to be positive
TN: An APT actor with a true label as negative predicted correctly to be negative
FP: An APT actor with a true label as negative predicted incorrectly to be positive
FN: An APT actor with a true label as positive predicted incorrectly to be negative

Accuracy = TP + TN

TP + TN + FP + FN

Precision = TP

TP + FP

Recall = TP

TP + FN

F1 − score = 2 ∗
(

Precision ∗ Recall

Precision + Recall

)

5.1.1 Single-View Prediction vs Multi-View Prediction

The classifiers (described in Sect. 4.3) evaluated with the individual views extracted
during the preprocessing phase (described in Sect. 4.1) referred to as ‘Single-View
prediction’. Single-View predictions include assessments from Opcode, Bytecode
(binary, count, frequency, and TFIDF) and header views. Optimization of the
prediction results was done by leveraging multiple Single-View predictions. The
high-level approach is to consider the prediction from the majority of the individual
Single-View as the final Multi-View outcome. If there the majority APT actor
cannot be decided between the Single-Views (When every Single-View predicted a
different APT Class) then weightage is given to individual Single-View predictions
based on the accuracy(%). The final Multi-View predictions will be determined by
combining the individual predictions from the Single-View predictions. Figures 4
and 5 illustrates scenarios of Multi-View prediction.

64 D. Sahoo

Multi-View Prediction
Scenario-1

Fig. 4 Multi-View Prediction using majority class predicted by individual Single-View

Scenario-2

Fig. 5 Multi-View Prediction using highest accuracy class predicted by individual Single-View

Cyber Threat Attribution with Multi-View Heuristic Analysis 65

5.2 Experiment Phase-1 and Results

In this phase of the experiment, the individual Single-Views that belong to Opcode,
Bytecode (binary, count, frequency, tfidf, Eigen Vector), and Header are evaluated
with the classifiers individually. The data samples from original views were used
to evaluate the classifiers at this phase using a tenfold cross-validation technique.
It was observed that OPCODE_TFIDF view and BYTECODE_FREQUENCY
views gave the best results among other Opcode and Bytecode based views
respectively. It was noticed that SVM, DT, KNN, and MLP classifiers outperformed
the FAIR_CLUSTERING classifier in terms of accuracy. The overall accuracy
results obtained using tenfold cross-validation from the experiment phase-1 are
summarized in Table 2.

5.3 Experiment Phase-2 and Results

After analyzing the overall outcome of the experiment phase-1, the views that
provided the best accuracy under each category (i.e. Opcode, Bytecode, and Header)
are selected for the experiment phase-2. To further optimize the performance of
the classifiers, the data balancing of the selected views was done using SMOTE
technique described in Sect. 4.2. Finally, each view is evaluated with the top
4 classifiers that performed best in experiment phase-1. In this phase, a 5–10%
improvement in accuracy was observed for each view for the four classifiers
under consideration. Table 3 illustrates the summary of accuracy improvement in
experiment phase-2.

Table 2 Summary of accuracy(%) from experiment phase-1

View name Accuracy (%)
SVM DT KNN MLP FAIR_CLUSTERING

OPCODE_BINARY 77 85 82 89 49
OPCODE_COUNT 53 89 81 86 64
OPCODE_FREQUENCY 75 88 82 89 58
OPCODE_TFIDF 73 89 85 91 57
OPCODE_EIGEN_VECTOR 51 67 52 68 28
BYTECODE_BINARY 30 31 22 31 24
BYTECODE_COUNT 58 82 81 81 47
BYTECODE_FREQUENCY 83 80 81 88 54
BYTECODE_TFIDF 72 82 82 88 49
BYTECODE_EIGEN_VECTOR 44 52 30 39 35
HEADER 82 89 86 91 62

66 D. Sahoo

Ta
bl
e
3

Su
m

m
ar

y
of

im
pr

ov
em

en
to

f
ac

cu
ra

cy
in

ex
pe

ri
m

en
tp

ha
se

-2

V
ie

w
na

m
e

SV
M

ac
cu

ra
cy

(%
)

D
T

ac
cu

ra
cy

(%
)

K
N

N
ac

cu
ra

cy
(%

)
M

L
P

ac
cu

ra
cy

(%
)

O
ri

gi
na

l
SM

O
T

E
en

ha
nc

ed
O

ri
gi

na
l

SM
O

T
E

en
ha

nc
ed

O
ri

gi
na

l
SM

O
T

E
en

ha
nc

ed
O

ri
gi

na
l

SM
O

T
E

en
ha

nc
ed

O
PC

O
D

E
_T

FI
D

F
73

83
89

92
85

92
91

97
B

Y
T

E
C

O
D

E
_F

R
E

Q
U

E
N

C
Y

83
93

80
92

81
95

88
98

H
E

A
D

E
R

82
87

89
93

86
93

91
96

Cyber Threat Attribution with Multi-View Heuristic Analysis 67

Clearly, the MLP classifier prediction results were best among other classifiers
that are evaluated during the experiments. MLP is a powerful deep learning
algorithm and hence it is important to analyze performance matrices like overall
runtime and evaluation measures of individual APT class. Table 4 illustrates a
detailed APT class-wise prediction result for the views along with runtime and
overall accuracy.

5.4 Multi-View Prediction

After having the best prediction results from individual single views during
experiment phase-2, the multi-view prediction approach (as described in Sect. 5.1.1)
was adopted to further optimize the prediction performance. Table 5 shows the
prediction performance obtained with the multi-view approach using a subset of the
original data and Fig. 6 shows the confusion matrix of the multi-view prediction.
The multi-view prediction provided an accuracy of 99% which is higher than the
individual single-views observed in experiment phase-2.

6 Results Comparison

This section, an efficiency evaluation of our system is done by comparing the results
with some previously cited similar research work. Table 6 shows the comparison of
results between our experiment and other similar work.

From the results shown in Table 6, It can be seen that the experiment provides
higher accuracy than the other two presented work. The proposed system uses an
MLP classifier which is a deep learning-based algorithm and is more complex than
the classifiers used in other systems. Although the deep learning algorithms are
complex and need higher runtime they provide higher accuracy.

The system proposed by Mohamed et al. provides 98% accuracy and takes
only 0.090 s for the categorization process. However, his system only does binary
classification. In contrast, our proposed system provides 99% accuracy for a multi-
class classification for 12 different APT classes. The system by Hamed et al.
provides an overall accuracy of 95% for a multiclass classification for 5 APT classes.
The experiment by Hamed et al. uses a lesser number of APT classes then our
proposed system. Hence, it can be seen that our proposed system performs better
in terms of accuracy and is more efficient to perform the multiclass classification
task.

68 D. Sahoo

Table 4 Detail results from MLP classifier for the views of Opcode, Bytecode and Header category
that performed best during the experiment

View name Classifier APT Name Precision Recall f1-score

Run
time
(Sec)

Overall
accuracy
(%)

OPCODE_
TFIDF

MLP APT1 0.98 0.93 0.95 255.24 97

APT10 0.97 0.95 0.96
APT19 0.98 1 0.99
APT21 0.99 1 1
APT28 0.97 0.98 0.97
APT29 0.95 0.96 0.96
APT30 0.97 0.99 0.98
DarkHotel 0.93 0.93 0.93
EnergeticBear 1 1 1
EquationGroup 1 1 1
GorgonGroup 0.94 0.94 0.94
Winnti 0.94 0.94 0.94

BYTECODE_
FREQUENCY

MLP APT1 0.98 0.98 0.98 312.94 98

APT10 0.96 0.97 0.97
APT19 0.99 1 0.99
APT21 0.99 1 0.99
APT28 0.95 0.99 0.97
APT29 0.97 0.97 0.97
APT30 0.99 0.99 0.99
DarkHotel 0.97 0.98 0.97
EnergeticBear 0.99 1 1
EquationGroup 1 1 1
GorgonGroup 0.97 0.88 0.92
Winnti 0.96 0.96 0.96

VG_
HEADER

MLP APT1 0.93 0.92 0.92 160.1 96

APT10 0.92 0.94 0.93
APT19 0.97 1 0.98
APT21 0.97 0.99 0.98
APT28 0.96 0.96 0.96
APT29 0.95 0.95 0.95
APT30 0.96 0.97 0.96
DarkHotel 0.92 0.9 0.91
EnergeticBear 0.99 0.98 0.99
EquationGroup 1 1 1
GorgonGroup 0.96 0.95 0.96
Winnti 0.95 0.93 0.94

Cyber Threat Attribution with Multi-View Heuristic Analysis 69

Table 5 Overall performance Matrix of Multi-view

View name Classifier APT name Precision Recall f1-score Overall accuracy (%)

Multi_View MLP APT1 1 1 1 99
APT10 0.995 1 0.997
APT19 1 1 1
APT21 1 1 1
APT28 1 1 1
APT29 1 1 1
APT30 1 1 1
DarkHotel 1 0.996 0.998
EnergeticBear 1 1 1
EquationGroup 1 1 1
GorgonGroup 1 1 1
Winnti 1 1 1

APT1 400 0 0 0 0 0 0 0 0 0 0 0
APT10 0 227 0 0 0 0 0 1 0 0 0 0
APT19 0 0 31 0 0 0 0 0 0 0 0 0
APT21 0 0 0 86 0 0 0 0 0 0 0 0
APT28 0 0 0 0 162 0 0 0 0 0 0 0
APT29 0 0 0 0 0 254 0 0 0 0 0 0
APT30 0 0 0 0 0 0 159 0 0 0 0 0
DarkHotel 0 0 0 0 0 0 0 268 0 0 0 0
EnergeticBear 0 0 0 0 0 0 0 0 130 0 0 0
EquationGroup 0 0 0 0 0 0 0 0 0 395 0 0
GorgonGroup 0 0 0 0 0 0 0 0 0 0 278 0
Winnti 0 0 0 0 0 0 0 0 0 0 0 384

A
PT

1

A
PT

10

A
PT

19

A
PT

21

A
PT

28

A
PT

29

A
PT

30

D
ar
kH

ot
el

En
er
ge
tic

B
ea
r

Eq
ua
tio

nG
ro
up

G
or
go

nG
ro
up

W
in
nt
i

Fig. 6 Multi-View Confusion matrix

Table 6 Result comparison from similar previously cited research work

Method Classifier Classification type Accuracy

Our Method MLP Multi-Class (12 APT actor) 99%
Hamed et al. Fuzzy Classifier Multi-Class (5 APT actors) 95%
Mohamed et al. BJ-48 Binary (Malware or Benign) 98%

70 D. Sahoo

7 Conclusion and Future Work

In this work, the malware file features are extracted, analyzed, and successfully
attributed to their source APT actor with 99% accuracy. More than 3000 malware
samples that belong to 12 APT groups were used in the experiment and 11 different
views were created from the extracted features of Opcodes, Bytecodes, and Headers.
Hence, the experiment approach deals with a comprehensive analysis during the
attribution process that makes the system resilient towards the complex obfuscation
and evasion techniques, commonly used during APT campaigns. The multi-view
approach used for the threat attribution provides the final prediction by considering
the underlined results from individual single-views. It could optimize the final
prediction accuracy to 99% which is higher than the respective single-views.

Because of the complex nature of APT attacks, it is not always easy to attribute
a threat vector to its source. However, heuristic analysis using Machine Learning
algorithms can be used to automate the threat attribution process with higher
accuracy. The threat attribution results can contribute significantly to improve the
decision-making process and reduce time during an investigation.

During the experiment, malware data belong to 12 APT groups were used and
five different ML classifiers were evaluated against it. It was observed that the
performance of the ML classifiers varied with respect to different input views.
SMOTE technique was used to balance the dataset. However, the SMOTE technique
provided synthetic data samples that are different from the real data. Higher
quality real-world data can help towards creating a more reliable system. More ML
algorithms can be evaluated against the data sets to optimize the system.

Acknowledgments The author would like to thank Dr. Ali Dehghantanha and Hamed Haddad-
pajouh for their valuable review during the research work. The author would also like to express
gratitude to the creators of the malware database that was used in the experiment.

References

1. S. Nakhodchi, A. Dehghantanha, H. Karimipour, Privacy and security in smart and precision
farming: A bibliometric analysis, in Handbook of Big Data Privacy, (Springer, Cham, 2020),
pp. 305–318

2. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, M. Aledhari,
Decentralized authentication of distributed patients in hospital networks using blockchain.
IEEE J. Biomed. Heal. Inform. 24(8), 2146–2156 (2020)

3. H.M. Rouzbahani, Z. Faraji, M. Amiri-Zarandi, H. Karimipour, AI-enabled security monitor-
ing in smart cyber physical grids, in Security of Cyber-Physical Systems, (Springer, Cham,
2020), pp. 145–167. https://doi.org/10.1007/978-3-030-45541-5_8

4. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

5. S. Grooby, T. Dargahi, A. Dehghantanha, Protecting IoT and ICS platforms against advanced
persistent threat actors: Analysis of APT1, Silent Chollima and molerats, in Handbook of Big
Data and IoT Security, (Springer, Cham, 2019), pp. 225–255

http://dx.doi.org/10.1007/978-3-030-45541-5_8
http://dx.doi.org/10.1109/jiot.2020.3015382

Cyber Threat Attribution with Multi-View Heuristic Analysis 71

6. P.J. Taylor, T. Dargahi, A. Dehghantanha, Analysis of apt actors targeting IoT and big data
systems: Shell_crew, nettraveler, projectsauron, copykittens, volatile cedar and transparent
tribe as a case study, in Handbook of Big Data and IoT Security, (Springer, Cham, 2019),
pp. 257–272

7. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of the
OpenFlow v1.3 Switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3) (2018). https://
doi.org/10.1007/s11227-017-2175-7

8. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88 (2020).
https://doi.org/10.1016/j.cose.2019.101629

9. N. Pitropakis, E. Panaousis, A. Giannakoulias, G. Kalpakis, R.D. Rodriguez, P. Sarigiannidis,
An enhanced cyber attack attribution framework, in International Conference on Trust and
Privacy in Digital Business, (2018), pp. 213–228

10. P.N. Bahrami, A. Dehghantanha, T. Dargahi, R.M. Parizi, K.-K.R. Choo, H.H.S. Javadi, Cyber
kill chain-based taxonomy of advanced persistent threat actors: Analogy of tactics, techniques,
and procedures. J. Inf. Process. Syst. 15(4), 865–889 (2019)

11. Advanced Persistent Threat Groups. FireEye, https://www.fireeye.com/current-threats/
aptgroups.html. Accessed 5 July 2020

12. D. Alperovitch, Revealed: Operation Shady RAT, p. 14
13. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in

IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

14. H.H. Pajouh, R. Javidan, R. Khayami, D. Ali, K.-K.R. Choo, A two-layer dimension reduction
and two-tier classification model for anomaly-based intrusion detection in IoT backbone
networks. IEEE Trans. Emerg. Top. Comput. 99, 1 (2016)

15. E.M. Dovom, A. Azmoodeh, A. Dehghantanha, D.E. Newton, R.M. Parizi, H. Karimipour,
Fuzzy pattern tree for edge malware detection and categorization in IoT. J. Syst. Archit. 97,
1–7 (2019)

16. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

17. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An ensemble
of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE
Internet Things J. 7(9), 8852–8859 (2020). https://doi.org/10.1109/jiot.2020.2996425

18. M. Saharkhizan, A. Azmoodeh, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Sri-
vastava, A hybrid deep generative local metric learning method for intrusion detection, in
Handbook of Big Data Privacy, (Springer, Cham, 2020), pp. 343–357. https://doi.org/10.1007/
978-3-030-38557-6_16

19. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for Internet of Things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

20. H. HaddadPajouh, R. Khayami, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, AI4SAFE-IoT:
An AI-powered secure architecture for edge layer of Internet of things. Neural Comput. &
Applic. 32(20), 16119–16133 (2020). https://doi.org/10.1007/s00521-020-04772-3

21. J. Brownlee, A gentle introduction to imbalanced classification (Machine Learning
Mastery, 2019). Available online: https://machinelearningmastery.com/what-is-imbalanced-
classification/. Accessed 21 July 2020

22. H. Haddadpajouh, A. Azmoodeh, A. Dehghantanha, R.M. Parizi, MVFCC: A multi-view fuzzy
consensus clustering model for malware threat attribution. IEEE Access 8, 139188–139198
(2020)

23. H. Darabian et al., A multiview learning method for malware threat hunting: Windows, IoT
and android as case studies. World Wide Web 23(2), 1241–1260 (2020)

http://dx.doi.org/10.1007/s11227-017-2175-7
http://dx.doi.org/10.1016/j.cose.2019.101629
https://www.fireeye.com/current-threats/aptgroups.html
http://dx.doi.org/10.1109/jiot.2020.2996425
http://dx.doi.org/10.1007/978-3-030-38557-6_16
http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1007/s00521-020-04772-3
https://machinelearningmastery.com/what-is-imbalanced-classification/

72 D. Sahoo

24. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

25. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag., 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

26. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. (2020). https://
doi.org/10.1016/j.future.2020.10.007

27. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (2019), pp. 1–6

28. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency malware hunting: A deep Recurrent Neural Network approach. Appl. Soft
Comput. Elsevier 96, 106630 (2020)

29. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

30. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, Q. Zhang, K.-K.R. Choo, An energy-efficient
SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans.
Serv. Comput. 13(4), 625–638 (2020)

31. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, G. Srivastava, S. Mohan, A.M. Rababah, Cost
optimization of secure routing with untrusted devices in software defined networking. J.
Parallel Distrib. Comput. (2020). https://doi.org/10.1016/j.jpdc.2020.03.021

32. M. Ask, P. Bondarenko, J.E. Rekdal, A. Nordbø, P. Bloemerus, D. Piatkivskyi, Advanced
persistent threat (APT) beyond the hype. Project Report in IMT4582 Network Security at
GjoviN University College, vol. 2013 (2013)

33. K. Chang, D.Y.-D. Lin, Advanced persistent threat, p. 12
34. I. Ghafir et al., Detection of advanced persistent threat using machine-learning correlation

analysis. Futur. Gener. Comput. Syst. 89, 349–359 (2018)
35. Y. Su, M. Li, C. Tang, R. Shen, A framework of apt detection based on dynamic analysis,

in Proceedings of the 2015 4th National Conference on Electrical, Electronics and Computer
Engineering, (Xi’an, China, 2015), pp. 1047–1053

36. B. Binde, R. McRee, T.J. O’Connor, Assessing outbound traffic to uncover advanced persistent
threat. SANS Institute. Whitepaper, vol. 16 (2011)

37. D. Moon, H. Im, J.D. Lee, J.H. Park, MLDS: Multi-layer defense system for preventing
advanced persistent threats. Symmetry (Basel). 6(4), 997–1010 (2014)

38. G. Vert, B. Gonen, J. Brown, A theoretical model for detection of advanced persistent threat in
networks and systems using a finite angular state velocity machine (FAST-VM). Int. J. Comput.
Sci. Appl. 3(2), 63 (2014)

39. M. Belaoued, S. Mazouzi, A Chi-square-based decision for real-time malware detection using
PE-file features. J. Inf. Process. Syst. 12(4), 644–660 (2016)

40. Cyber-research, cyber-research/APTMalware (2020)
41. tf.keras.preprocessing.text.Tokenizer | TensorFlow Core v2.3.0. TensorFlow, https://

www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer. Accessed 14
Aug 2020

42. H. Hashemi, A. Azmoodeh, A. Hamzeh, S. Hashemi, Graph embedding as a new approach for
unknown malware detection. J. Comput. Virol. Hacking Tech. 13(3), 153–166 (2017)

43. J. Bai, Q. Shi, S. Mu, A malware and variant detection method using function call graph
isomorphism. Secur. Commun. Netw. 2019, 1043794 (2019)

44. E. Carrera, pefile: Python PE parsing module
45. World Health Organization, et al., PE – LIEF 0.10.0-845f675 documentation, https://

lief.quarkslab.com/doc/stable/api/python/pe.html. Accessed 14 Aug 2020. Osteoarthr. Cartil

http://dx.doi.org/10.1016/j.ipm.2020.102370
http://dx.doi.org/10.1016/j.future.2020.10.007
http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1016/j.jpdc.2020.03.021
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer
https://lief.quarkslab.com/doc/stable/api/python/pe.html

Cyber Threat Attribution with Multi-View Heuristic Analysis 73

46. B. Rocca, Handling imbalanced datasets in machine learning. Medium (2019, March
30), https://towardsdatascience.com/handling-imbalanced-datasets-in-machine-learning-
7a0e84220f28. Accessed 14 Aug 2020

47. A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vakilian, T. Wagner, Scalable fair clustering.
arXiv Prepr. arXiv1902.03519 (2019)

48. R. Gandhi, Support vector machine – Introduction to machine learning algorithms.
Medium (2018, July 5), https://towardsdatascience.com/support-vector-machine-introduction-
to-machine-learningalgorithms-934a444fca47. Accessed 14 Aug 2020

49. P. Gupta, Decision trees in machine learning -towards data science. Towards Data Science
(2017), https://towardsdatascience.com/decision-trees-inmachine-learning-641b9c4e8052

https://towardsdatascience.com/handling-imbalanced-datasets-in-machine-learning-7a0e84220f28
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learningalgorithms-934a444fca47
https://towardsdatascience.com/decision-trees-inmachine-learning-641b9c4e8052

Security of Industrial Cyberspace: Fair
Clustering with Linear Time
Approximation

Nidhip Chikhalia and Yash Dhawan

1 Introduction

Machine learning has unquestionably become one of the most potential and
powerful technology around the globe [1]. Its evolution began somewhere in 1950’s
with Turing test, to the very present intelligent systems [2]. Today, machine learning
is used to back the software intended for forecasting, estimation, and analysis [3]
Weather forecasting, insurance or mortgage estimation and predictive analytics are
only a few examples of where these complex machine learning algorithms meet the
needs of mundane users [4–7]. When these algorithms are applied in such real-life
scenarios, their precision and fairness needs to be ensured more than ever. Let us
consider an Applicant Tracking System (ATS) which automatically filters the job
applications at an organization. If the fairness of such system is not maintained,
the filtering process can become biased towards a particular group of applicants
[8–10]. Now the questions that arise are: Is the process fair? And Is the outcome
fair? The answers to these questions can only be justified by the algorithm running
behind the process. So, [11] introduces a fair variant of the classic or as mentioned
in their work, vanilla version of the K-median clustering problem. They introduce
a technique that makes sure that a protected or sensitive class has an approximately
equal representation in each cluster. The method is divided into two phases, where
the first phase divides the input pointset into small subsets called fairlets. The input
points are assigned colors and these fairlets maintains the balance of each color. In
the second phase, these fairlets are merged to form clusters and for this clustering, an
existing algorithm is used such as K-center or K-median clustering. Here, the fairlet
decomposition phase is the main part which ensures the fairness component. The

N. Chikhalia (�) · Y. Dhawan
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: nchikhal@uoguelph.ca; ydhawan@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_5

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_5&domain=pdf
mailto:nchikhal@uoguelph.ca
mailto:ydhawan@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_5

76 N. Chikhalia and Y. Dhawan

only problem faced here is the fairlet decomposition time, which is super-quadratic
compared to the number of input points.

To address this issue, [12] introduces a new method for fairlet decomposition.
This new method aims to reduce the fairlet decomposition time nearly liner to the
number of input points [13–18]. For this, they introduce an HST function which
is fed with the input points. This HST function forms a tree structure where each
node of the tree is an input point. The fairlet decomposition is then done using the
distance obtained from the HST tree and not the actual input points. The algorithm
then follows the same procedure as the original one, i.e. clustering the fairlets using
existing K-median algorithm. Both of these works demonstrate their performance
on the general datasets like census, diabetes, and bank. Our aim in this paper
is to test the algorithm developed by [11] and improved by [12] on the datasets
used to train the machine learning models for cybersecurity. These datasets are IoT
Malware Dataset and Industry Control System datasets like Secure Water Treatment
and BATADAL. Our contribution to this paper is a mechanism that compares the
output of the clustering algorithm with the original dataset in order to confirm the
correctness of the results obtained.

This work includes a literature review of a few related articles, methodology
which describes about datasets, algorithm, and our experiment in detail and then the
results obtained, and the comparisons done with the original work.

2 Literature Review

Industrial Control System (ICS) refers to a wide range of systems the monitors and
measures the control and also automate the processes in a broad range of industries
[19, 20]. ICS are of various types, such as, Distributed Control System (DCS),
Supervisory Control and Data Acquisition Systems (SCADA), Programmable Logic
Controllers (PLCs) and Safety Instrumented Systems (SIS) [21, 22]. Some of these
systems are legacy systems and were developed decades ago when the cyber threat
was not as big of a threat. But in today’s world, cyberattack are a huge threat to
ICS, and the ICS being crucial for the industry sector, it is very important to secure
it from the cyber threats [23].

Research is being conducted on using Artificial Intelligence and Machine
learning to detect and mitigate these cyber risks in the Industrial Control Systems,
[24] gives an in depth explanation of how the evolution of industrial control
system has exposed it to the new threats of cyberattacks and how these attacks or
unintentional mistakes can affect an infrastructure that is serving a huge number of
people. The researchers here demonstrates the work on VERIS community database,
and the motivation is to use the incidents described in this database to gain a better
understanding of the cyber threats on the industry. Using he Monte Carlo simulation,
the researchers aim to predict the possibility of these attacks in the future, and also
aim to make this process repeatable in order to keep predicting the threats repeatedly
for the future.

Security of Industrial Cyberspace: Fair Clustering with Linear Time Approximation 77

Karimipour and Leung [25] demonstrates a work on securing a Cyber Physical
System (CPS) like power grid from cyberattacks. The authors here specifically
targets anomaly detection and the attack vector know has False Data Injection (FDI)
where the attacker injects false data into the system such that it cannot be detected
by the conventional anomaly detection systems. The work here describes the use of
EnKF model to predict the state of the system. EnKF uses historic data to predict
the state, the existing predictors use measurement of the system to predict the state
which may not be secure enough in case of FDI. The predictor model proposed here
uses the history of the system to predict the state and identify the anomaly.

Another work [26] describes the methods of detecting crypto-ransomware in the
Internet of Things network. The authors proposes a model that monitors the power
consumption of the devices on the network and uses these consumption trends to
determine if the application is a ransomware or not. The authors use power tutor to
monitor and sample this consumption data from the android applications like Gmail,
Facebook, Google Chrome, YouTube, WhatsApp, Skype and six other recent and
active ransomware applications. The result of the proposed model is claimed by the
authors to be better than KNN, Neural Networks, SVM and Random Forest.

Karimipour et al. [27] is a work that describes an unsupervised machine learning
model that detects the cyberattacks in the large scale physical cyber space. The
proposed model aims at a scalable anomaly detection mechanism that uses statistical
correlation between the measurements in a smart power grid. Symbolic Dynamic
Functioning is used for feature extraction in order to reduce the computational
cost. The aim of the research is justified by the results obtained which shows 99%
accuracy of anomaly detection and 98% true positive rate. This work demonstrates
an unsupervised machine learning model which unlike previous works does not use
historical or previously obtained data for training.

Focusing on the works related to clustering or the fairness of the clustering, a
work by [28] focuses on improving the algorithm introduced by [11] They introduce
a concept of coresets (S), such that S is a subset of input pointset P (S ⊂ P).
Basically, the aim of the algorithm is to compute the coreset in a near linear time
and running the k -median clustering on this coreset would yield the approximate
solution for the original input points. The approach implementing HST function by
[12] can be considered complementary to the coreset computation. Also, [12] states
that both concepts can be applied together in order to reduce the computation time
and also the required memory.

Another contribution by [29] works on enforcing the fairness component to
the correlation graph clustering algorithm. The high-level aim of the paper is to
minimize the disagreements among the vertices of the graph in the same cluster. For
this they propose two techniques, one is similar to the techniques proposed by [11],
that is assigning colors to the vertices and ensuring that any cluster is not dominated
by a single color. The second technique is to set relative upper and lower bounds
for the number of vertices of any color in a cluster. Since it is a graph and not a
metric space, there is only one phase. There is no decomposition of the graph into
subgraphs. Initially it demonstrates the results with only two colors, but later they

78 N. Chikhalia and Y. Dhawan

prove with their results that the algorithm runs perfectly for more than two colors,
that is more than two values of a compulsory attribute.

Bera et al. [30] again generalizes the work of [11] Here generalization means
that the algorithm works on lp-norm objective (k-means, k-median and k-center),
the only drawback is a little loss in quality of output compared to the original work.
The proposed work allows the user to specify the sensitive attribute and also the
upper and lower bounds of the sensitive attribute in each cluster. The authors also
claim that the algorithm can perform without the sensitive attribute and still maintain
the fairness. But the fairness notion here is a little different than the original work,
here the algorithm allows more than one protected group and also the overlapping of
those groups. Also, the algorithm works opposite to the original work, in first phase
the vanilla clustering is applied, and the clusters are formed. Then in the second
phase, the points in the clusters are analyzed and re-positioned to obtain fairness.
The algorithm is tested on the same dataset as the original work and even though
the work adds a lot of functionality to the existing algorithm, the results obtained
are similar but not better.

3 Methodology

(a) Dataset

This section gives a brief on the datasets used by us for our experiment. We used
three algorithms namely IoT malware dataset, Secure Water Treatment dataset and
BATADAL.

IoT Malware Dataset
The IoT Malware dataset has been constructed using the machine opcodes. It is
comparatively small dataset and contains only 513 instances. Out of those 513, 269
indicate the machine behavior when it is operating under normal conditions and rest
245 indicate the machine under attack state. Each instance has a feature set of 236
features.

SWaT
Secure water treatment (SWaT) dataset is constructed using the data collected from
11 days of continuous operation of water treatment testbed. Out of these 11 days, for
7 days, the system was operating under normal conditions and for the rest of 4 days
the data collected was for the system conditions under attack. Historian was used to
store all the data collected from all network traffic, sensors, and actuator data. The
dataset consists of about 15,000 datapoints where each datapoint has a feature set of
78 features. Of these 15,000 datapoints, around 9500 depict the environment under
normal conditions and rest describes the environment under attack conditions [16].

BATADAL
BATADAL was constructed for Battle of Attack Detection Algorithms which is a
competition to compare the performance of the cyber-attack detection algorithms

Security of Industrial Cyberspace: Fair Clustering with Linear Time Approximation 79

in water distribution systems. This dataset is not based on real life data but is
considered as realistic because it was constructed using the data collected from the
de facto standard water distribution simulation tool namely EPANET. The dataset
consists of roughly 13,000 datapoints where 12,500 are normal scenarios and rest
500 are attack scenarios. Each datapoint has a feature set of 46 attributes [31].

(b) Feature Selection

Since all these datasets have a huge feature set and very little knowledge about
these features is available, it is hard to depict what is the function or purpose of a
feature. For our algorithm, we need a sensitive feature. [The base paper] uses gender
as the sensitive attribute from the diabetes dataset. Here we perform feature selection
on each dataset using Extra Tree Classifier to derive the sensitive attribute as well
as the best features that we can use to improve the performance of the algorithm.

Figure 1 on the left shows the top features for IoT Malware dataset. From this
dataset, for our experiment, we have used total of 7 features. Here we have used
‘mov’ as the sensitive feature and ‘label’ as the final or the seventh attribute. The
significance of the final attribute here is that it is used to measure the performance
of the algorithm.

Figure 2 on the left depicts the top 10 features for SWaT dataset. Here we have
considered top 6 features, where ‘AIT 201’ is considered as the sensitive attribute
and ‘label’ is used as the final attribute for comparison with the predicted labels
(Fig. 3).

(c) Brief description of the Algorithm

The fair variant of the classic K-means algorithms introduced by [11] takes an
input pointset P, the points p ⊂ P are assigned colors based on the sensitive attribute

addhi

cmn

ldmeqfd

stmea

adcs

subge

svc

rsbge

tstne

mov

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Fig. 1 IoT Malware dataset

80 N. Chikhalia and Y. Dhawan

MV 302

FIT 401

AIT 202

AIT 502

AIT 402

LSH 601

AIT 201

Label

PIT 501

P3_STATE

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Fig. 2 SWaT dataset

F_PU11

P_I307

P_I415

P_I280

F_PU7

S_PU11

S_PU6

label

F_PU6

ATT_FLAG

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 3 BATADAL dataset

in the pointset (For example Red and Blue). The algorithm in its first phase divides
the input points into small clusters preserving the balance of each colored input
point in the cluster. The method used for the division of these input points affects
the approximation guarantees of the final clustering algorithm.

The balance being talked about here can be defined as:

For input pointset p, balance will be

Balance (p) = min (#Red (p) /#Blue (p) , #Blue (p) /#Red (p)) ∈ [0, 1]

Security of Industrial Cyberspace: Fair Clustering with Linear Time Approximation 81

A subset p of P is said to be perfectly balanced if it has equal number of reds
and blues, balance (p) =1, while it is said to be completely unbalanced if balance
(p) = 0, where the subset is monochromatic. This phase is named as the fairlet
decomposition and the small clusters are mentioned as the fairlets.

In the second phase, these fairlets are clustered using the function (t, k) – fair
center or (t, k) – fair median where ‘t’ is the balance discussed above and ‘k’ is the
number of clusters C.

The time taken by the first phase of this algorithm is quadratic compared to
the number of inputs [12]. introduces a method of fairlet decomposition to make
the running time near-linear to the number of input points. This again divides the
first phase of the algorithm, i.e. fairlet decomposition into two parts, first it inputs
the pointset into a tree metric called HST. Here a quadtree computation of the
input points is done. In the second part the fairlet decomposition is done using the
distances in the quad tree and not the actual input points. Then it follows the same
procedure as the second phase of the algorithm to cluster the fairlets. Here it only
uses the (t, k) – fairlet median clustering.

The most important step here is embedding the input pointset into the HST tree
and constructing the γ-HST tree. For the γ-HST tree to be well separated, it is
expected to follow two conditions:

(i) The weighted distance from any node in the tree to its children are same.
(ii) For each node v, the distance between v and its children should be at most 1/γ

times the distance between v and its parent.

Once the HST tree is constructed, it is parsed in a top down manner to create
fairlets. To partition the points into (r, b) – fairlets from the nodes it is assumed
that each node v is augmented with extra information like Number of Red (Nr)
and Number of Blue (Nb) points. The Fig. 4 shows the high-level working of the
algorithm for (1,3) – fairlet decomposition with 8 blue and 4 red points.

Our contribution to this work is that we implement an existing method to verify
the precision of the algorithm by comparing the result of the clustering with the
original data. For this, we embed an attribute called ‘label’ that indicates if the input
point describes a normal or an attack environment in the system to our dataset.
It is also of importance that the algorithm doesn’t accept string inputs, hence
this indicating attribute is mapped to integers. General mapping is that the string
‘Normal’ is mapped to ‘0’ and the string ‘Attack’ is mapped to ‘1’. The position
of this attribute in the dataset is obtained manually and is hard coded in order to
create a reference for the comparison. In order to automate the process of acquiring
this attribute, we need to make sure that this attribute forms the last column of the
dataset.

Since there are only 2 groups, i.e. Attack and Normal, we assign each of the
clusters to one of the groups. For simplicity, let’s assume k = 2. This means that the
dataset will be clustered into 2 clusters, we expect one cluster to be Normal and the
other one to be Attack and assign each cluster to a different group. Using the actual
and the predicted labels, we create a confusion matrix which gives out the precision,
recall and f1 score of the algorithm for that dataset.

82 N. Chikhalia and Y. Dhawan

Fig. 4 Overview of the algorithm

(a) Experiments

Our experiment include the reimplementation of algorithm produced by [12] on
the diabetic dataset mentioned in the work. We also implemented the algorithm on
three other datasets, IoT malware dataset, Secure Water Treatment dataset (SWaT)
and Battle of Attack Detection Algorithm (BATADAL).

The original work by [12] implements the algorithm using 2 dimensions from
the diabetic dataset, the dimensions being ‘age’ and ‘time in hospital’. The sensitive
attribute here is ‘gender’.

In our implementation of the paper, we used the same dimensions and sensitive
attribute and divided into 20 clusters to obtain the similar results. Then we
implemented the algorithm with the same dataset and sensitive attribute but different
dimensions.

After experimenting with the diabetic dataset, we ran the algorithm on the IoT
Malware dataset. For this we used 7 attributes and one sensitive attribute and divided
it into 6 clusters. The 7 attributes used by us here are the top 6 features obtained
during the feature selection and the 7th attribute is ‘label’ which is used as a
reference to measure the precision of the algorithm. The sensitive attribute here
is the topmost feature ‘mov’.

Security of Industrial Cyberspace: Fair Clustering with Linear Time Approximation 83

After IoT Malware dataset, we conducted the experiment on SWaT dataset.
Here we considered top 5 features from the feature selection and ‘label’ as the 6th
attribute. We divided the algorithm into 2 clusters, assuming one would be ‘normal’
and the other would be ‘attack’. The sensitive attribute here was ‘AIT 201’.

The final dataset we used for testing the algorithm was BATADAL, which we
clustered into 4 clusters. The number of dimensions here were 7 and one sensitive
attribute being ‘s_PU6’. The setting for the attributes was the usual, first 6 attributes
being the top 6 from the feature selection and the last one being ‘label’.

The results obtained from these experiments are discussed in the next section.

4 Results and Conclusion

The goal of the algorithm introduced by [12] was to reduce the fairlet decomposition
time to near linear with respect to the number of input points. Our experiment to
reimplement the same algorithms on the same dataset with the same settings gave
us the results shown below in Figs. 5 and 6. As seen in the Fig. 6, the time for fairlet
decomposition increases linearly with the increase in number of data points which
initially was increasing quadratic to the number of input points.

This result confirms that the environment setup by us for the reimplementation
of the algorithm was functioning correctly and the desired results were obtained.
The p:q ratio for this experiment was 4:5 and the number of clusters made here

Fig. 5 Original results

84 N. Chikhalia and Y. Dhawan

Fig. 6 Results of reimplementation

Fig. 7 IoT Malware dataset time

were 20. After this confirmation, we could proceed experimenting with the other
datasets. The next experiment was on IoT malware dataset. The results we obtained
are shown below in Figs. 7 and 8. The p and q values here were chosen as 1 and 5
respectively and the dataset was divided into 6 clusters.

Security of Industrial Cyberspace: Fair Clustering with Linear Time Approximation 85

Fig. 8 IoT Malware dataset performance

Fig. 9 SWaT dataset performance

Fig. 10 SWaT dataset time

The results show that the time for fairlet decomposition of IoT Malware dataset
is not exactly linear with the number of datapoints by is near to linear. The Fig. 8
shows the performance of the algorithm over this dataset, which is not excellent
but fairly good. Next, we experiment with the SWaT dataset. Dividing it into just
two clusters, assuming one would be ‘Normal’ and the other would be ‘Attack’
environment. The p and q balance obtained for this dataset was 1 and 8 respectively.
The results obtained were excellent and are indicated in the Fig. 9. Figure 10 depicts
the Time vs Number of Datapoints graph which is almost linear.

86 N. Chikhalia and Y. Dhawan

Fig. 11 BATADAL dataset time

Fig. 12 BATADAL dataset performance

The final experiment we carried out was on the BATADAL dataset. This dataset
being artificially synthesized, was expected to give very good results. It was
clustered into 4 different clusters, where we assigned 2 clusters to ‘Normal’ and
remaining two clusters to ‘Attack’ scenario. The difficult part here was to obtain the
p and q balance which was achieved at 1 and 125 respectively. The Fig. 11 shows
the most liner time approximation obtained among all the new datasets and the Fig.
12 shows the overall performance of the algorithm over this dataset which is one of
the best one.

Hence it can be said that algorithm shows the best performance over the
BATADAL dataset. The Table 1 below gives the summary of the results obtained
from all the datasets and the comparison with the results from the original work. It
also mentions the Fairlet Decomposition Cost and the K-median Clustering cost of
each dataset.

From here, it can be concluded that the work done by [12] with an aim to reduce
the fairlet decomposition time to almost linear works for multiple algorithms. The
K-median clustering followed by it, is accurate and yields excellent results for
the datasets used to train and test the machine learning model for cybersecurity

Security of Industrial Cyberspace: Fair Clustering with Linear Time Approximation 87

Table 1 Final results

Dataset Datapoints p, q k K-median cost Fairlet decomposition cost

Diabetes (by [12]) 1000 4, 5 20 4149 2971
Diabetes (by us) 1000 4, 5 20 28,531 12,248
IoT Malware 500 1, 5 6 50.11 49.72
SWaT 5000 1, 8 2 49272.88 15650.23
BATADAL 5000 1, 125 4 186899.29 18407.95

purposes. Hence such algorithm can be used for securing the Industry Control
Systems’ cyberspace and by developing more accurate datasets like BATADAL,
the systems can be trained even better which provides another level of security.

References

1. S.M. Tahsien, H. Karimipour, P. Spachos, Machine learning based solutions for security of
Internet of Things (IoT): A survey. J. Netw. Comput. Appl. 161, 102630 (2020)

2. V. Sharma, The exciting evolution of machine learning. Vinod Sharma’s Blog (2018), https:/
/vinodsblog.com/2018/03/11/the-exciting-evolution-of-machine-learning/. Accessed 23 Apr
2020

3. H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, M. Aledhari, H. Karimipour, A survey on
internet of things security: Requirements, challenges, and solutions. Internet of Things, 100129
(2019). https://doi.org/10.1016/j.iot.2019.100129

4. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, H. Karimipour, S.R. Karizno,
SLPoW: Secure and low latency proof of work protocol for blockchain in green IoT networks,
in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), vol. 2020, pp. 1–5

5. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, Blockchain-enabled authentica-
tion handover with efficient privacy protection in SDN-based 5G networks. IEEE Trans. Netw.
Sci. Eng. (2019). https://doi.org/10.1109/TNSE.2019.2937481

6. A. Singh, K. Click, R.M. Parizi, Q. Zhang, A. Dehghantanha, K.-K.R. Choo, Sidechain
technologies in blockchain networks: An examination and state-of-the-art review. J. Netw.
Comput. Appl. 149, 102471 (2020). https://doi.org/10.1016/j.jnca.2019.102471

7. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, Q. Zhang, K.-K.R. Choo, An energy-efficient
SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans.
Serv. Comput. 13(4), 625–638 (2020)

8. D. Połap, G. Srivastava, A. Jolfaei, R.M. Parizi, Blockchain technology and neural networks
for the internet of medical things, in IEEE INFOCOM 2020 – IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), (2020), pp. 508–513. https://doi.org/
10.1109/INFOCOMWKSHPS50562.2020.9162735

9. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, M. Aledhari,
Decentralized authentication of distributed patients in hospital networks using blockchain.
IEEE J. Biomed. Heal. Inform. 24(8), 2146–2156 (2020)

10. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag., 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

11. F. Chierichetti, R. Kumar, S. Lattanzi, S. Vassilvitskii, Fair clustering through fairlets, in
Advances in Neural Information Processing Systems, (MIT Press, Cambridge, MA, 2017), pp.
5029–5037

https://vinodsblog.com/2018/03/11/the-exciting-evolution-of-machine-learning/
http://dx.doi.org/10.1016/j.iot.2019.100129
http://dx.doi.org/10.1109/TNSE.2019.2937481
http://dx.doi.org/10.1016/j.jnca.2019.102471
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162735
http://dx.doi.org/10.1016/j.ipm.2020.102370

88 N. Chikhalia and Y. Dhawan

12. A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vakilian, T. Wagner, Scalable fair clustering.
arXiv Prepr. arXiv1902.03519 (2019)

13. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

14. R.M. Parizi, S. Homayoun, A. Yazdinejad, A. Dehghantanha, K.-K.R. Choo, Integrating
privacy enhancing techniques into blockchains using sidechains, in IEEE Canadian Conference
of Electrical and Computer Engineering, CCECE 2019, (2019). https://doi.org/10.1109/
CCECE.2019.8861821

15. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (2019), pp. 1–6

16. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. 115, 619–640
(2020)

17. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency malware hunting: A deep recurrent neural network approach. Appl. Soft
Comput. J. Elsevier 96, 106630 (2020)

18. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

19. A. Al-Abassi, H. Karimipour, A. Dehghantanha, R.M. Parizi, An ensemble deep learning-based
cyber-attack detection in industrial control system. IEEE Access 8, 83965–83973 (2020)

20. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88 (2020).
https://doi.org/10.1016/j.cose.2019.101629

21. H. Karimipour, V. Dinavahi, Extended Kalman filter-based parallel dynamic state estimation.
IEEE Trans. Smart Grid 6(3), 1539–1549 (2015)

22. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of
the OpenFlow v1.3 Switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3), 1299–1320
(2018). https://doi.org/10.1007/s11227-017-2175-7

23. H. Karimipour, V. Dinavahi, Robust massively parallel dynamic state estimation of power
systems against cyber-attack. IEEE Access 6, 2984–2995 (2017)

24. S. Walker-Roberts, M. Hammoudeh, O. Aldabbas, M. Aydin, A. Dehghantanha, Threats on the
horizon: Understanding security threats in the era of cyber-physical systems. J. Supercomput.
76(4), 2643–2664 (2020)

25. H. Karimipour, H. Leung, Relaxation-based anomaly detection in cyber-physical systems using
ensemble Kalman filter. IET Cyber-Phys. Syst. Theory Appl. 5(1), 49–58 (2020)

26. H. Darabian et al., Detecting cryptomining malware: A deep learning approach for static and
dynamic analysis. J. Grid Comput. 18, 1–11 (2020)

27. H. Karimipour, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, H. Leung, A deep and scalable
unsupervised machine learning system for cyber-attack detection in large-scale smart grids.
IEEE Access 7, 80778–80788 (2019)

28. M. Schmidt, C. Schwiegelshohn, C. Sohler, Fair coresets and streaming algorithms for fair
k-means clustering. arXiv Prepr. arXiv1812.10854 (2018)

29. S. Ahmadi, S. Galhotra, B. Saha, R. Schwartz, Fair correlation clustering. arXiv:200203508
[cs, stat] (2020)

30. S. Bera, D. Chakrabarty, N. Flores, M. Negahbani, Fair algorithms for clustering, in Advances
in Neural Information Processing Systems, (MIT Press, Cambridge, MA, 2019), pp. 4954–
4965

31. Q. Lin, S. Verwer, R. Kooij, A. Mathur, Using datasets from industrial control systems for
cyber security research and education, in International Conference on Critical Information
Infrastructures Security, (2019), pp. 122–133

http://dx.doi.org/10.1109/CCECE.2019.8861821
http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1016/j.cose.2019.101629
http://dx.doi.org/10.1007/s11227-017-2175-7

Adaptive Neural Trees for Attack
Detection in Cyber Physical Systems

Alex Chenxingyu Chen and Kenneth Wulff

1 Introduction

The race to get machines or computers to think and behave like humans have gained
traction over the years, and this has provoked tremendous advancements in the field
of Artificial Intelligence (AI) [1–3] and Machine learning (ML) [4–6]. The human
brain is made up of neurons that are all connected to form a very complicated
internetwork of brain cells, and neural networks are designed to mimic the way
the brain works. Decision trees primarily build a tree structure to model a set of
sequential or hierarchical decisions that eventually lead to an outcome.

Even though artificial intelligence and machine learning are usually used inter-
changeably, there is a difference between them. Artificial intelligence focuses on
the replication of human intelligence in computers whiles machine learning deals
with the ability of a machine to learn using large datasets instead of relying on hard-
coded rules. Machine learning enhances the ability of computers to self-learn. The
two work together to improve the intelligence of the machine and to make them
behave and act more like humans [7].

The McKinsey Global Institute (MCI) reports that artificial intelligence invest-
ments are growing fast. Furthermore, it estimates that technology giants globally
spent between USD 20 billion to USD 30 billion on artificial intelligence invest-
ments in 2016. The MCI notes that machine learning as an enabling technology
received the largest share of this investment. The institute purports that machine
learning adoption outside technology is in its infancy and that this presents a massive
opportunity for growth in the machine learning field going forward [8–10].

A. C. Chen (�) · K. Wulff
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: cchen22@uoguelph.ca; kwulff@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_6

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_6&domain=pdf
mailto:cchen22@uoguelph.ca
mailto:kwulff@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_6

90 A. C. Chen and K. Wulff

Marketandmarket reveals that the machine learning space is set to grow from
USD 1.03 billion to 8.81 billion from 2016 through 2022, with a compound annual
growth rate of 44.1%. They state that the application of machine learning in various
industry verticals is set to increase exponentially as more and more companies and
industries adopt machine learning in their day to day operations. Marketandmarket
infers that advancements in technology and the proliferation of data generated in
various market segments account for some of the factors driving growth in machine
learning usage [11].

BCCResearch also states that the global machine learning market totalled USD
1.4 billion in 2017, and it is projected to reach USD 8.8 billion by 2022 at a
compound annual growth rate of 43.6%. The report concludes based on analysis
of the machine learning vendor landscape and the profiles of the major players in
the global machine learning market that adoption and use of machine learning are
going to increase year on year because of its adoption in many different solutions
and services spanning all industry vertical from energy, healthcare, finance and
telecommunications to the military [12–15].

Businesswire reports that according to the latest research, the machine learning
market is set to grow by USD 11.16 from 2020 to 2024. The report explains that
the rising adoption of cloud computing services globally in different multi-user
industries account for this growth. Businesswire states that the many benefits of
cloud computing, such as the minimal cost of computing operations, scalability,
reliability, and high resource available, encourage many enterprises to transition to
cloud computing and indirectly adopt machine learning via these machine learning-
enabled cloud services. Therefore, these offerings have become primary factors that
are key to driving the global machine learning market in the years to come [16].

The rise in machine learning adoption and patronage is primarily due to the many
benefits companies continue to accrue from the use and deployment of machine
learning in their operations. This growth has spurred the need for advancement
and to look for new machine learning methods that are novel and improve on the
traditional methods to deliver outstanding results as needs get more complex [5, 17].

In this research, we evaluate four different datasets using the adaptive neural
trees approach to determine its accuracy against these datasets. Our objective is to
ascertain, which of the datasets would generate the best outcome when processed
through the adaptive neural trees algorithm.

To understand this research, the reader needs a good understanding of machine
learning and the traditional methods available in use today because our approach
pulls from the strengths of some of these conventional methods to deliver a much
more superior outcome.

The next sections of this paper discuss the literature review, methodology, results
and discussion and conclusion and future work. The literature review addresses
other people’s work in this domain. The methodology outlines the various steps
and processes we undertook during the research to arrive at our answers. The results
of our research are detailed and reviewed in the results and discussion portion. We
discuss the conclusion and future work in the final section of the paper.

Adaptive Neural Trees for Attack Detection in Cyber Physical Systems 91

2 Literature Review

Advancing and improving the frontiers of machine learning in this big data era
have become imperative as more and more businesses incorporate machine learning
techniques and practices into their everyday operations [18–24]. This need has given
rise to research that is geared towards improving the existing methodologies to meet
the increasing need for more accurate results from complex datasets. To this end,
our research was conducted to showcase the benefits of aggregating the strengths
of Decision Trees (DT) and Neural Networks (NN) to optimize algorithmic results
from the given datasets [25–28] We do this by looking at previous work in the field
and highlight the limitations in these previous studies.

Decision trees, which are usually referred to as Classification and Regression
trees, is one of the predictive modelling methods used in machine learning.
Nevertheless, they are not the best algorithms for image classification because they
can cause overfitting. It uses a tree-like model to predict and go from observations
about an item to conclusions about the value of the target. Even with pruning,
they still do not deliver the best results when dealing with vast datasets of images.
Decision trees also suffer from variance because a small variation in the dataset
can result in a completely different tree being generated. Also, they can become
non-robust such that a small change in the training data could result in a significant
change in the tree structure and consequently affect the final prediction and render
the results unreliable for use in machine learning services [29].

Gradient Boosting Decision Trees (GBDTs), however, have been extensively
used for image labelling and in advertising systems. Training GBDTs is ineffective
and very time consuming, especially when there are deep trees and large datasets
involved. In 2018, Zei Wen et al. proposed a novel Graphics Processing Unit
(GPU) based algorithm called GPU-GBDT to enhance GBDT training. Whiles this
was great work, it had one major limitation. Their research improved efficiency
compared to existing techniques. However, it did not address the issue of accuracy,
which is critical in improving processes that rely on advancements in machine
learning to deliver essential services across many industries [30].

Feature extraction to transform unstructured data to structured data sometimes
presents large dimensionality, which could contain large amounts of irrelevant
features increasing the computational complexity for the learning algorithm, which
sometimes leads to overfitting of the training dataset [31–33]. Because most
algorithms are susceptible to irrelevant features, it has become crucial to efficiently
evaluate features and choose only the relevant ones for the learning models if
accuracy is of the essence [34].

Han Liu et al. in 2017, showed that this could be achieved by using two
approaches called filter and wrapper. The filter approach evaluates features before
the training stage and selects a subset of the features for the learning model. One
drawback of the filter method is that it assumes that features with a higher variance
may contain more useful information, which is usually not the case. The filter
method also does not consider the relationship between feature variables or feature

92 A. C. Chen and K. Wulff

and target variables, which is another drawback of the filter approach. The wrapper
methodology uses an algorithm to discover models from various feature subsets and
compare the analytical performance of the models to evaluate the resulting subset
features. The limitations of this approach are that they are discriminative and require
very high computational intensity. Also, they are prone to a high risk of overfitting,
which eventually affects their efficiency and accuracy when an enormous volume of
datasets is thrown at it [35].

Deep Neural Networks (DNNs) have transformed the machine learning field.
They are now in use in many applications across many industries, such as computer
vision, where it has delivered some fantastic results on a plethora of challenges.
However, these successes have been on the back of training data images that have
been familiar to classify. These models, however, falter in their ability to correctly
classify data when they are presented with unfamiliar objects. Unfamiliarity could
stem from images that have a different orientation, brightness, colour, or scale, just
to name a few differentiating attributes.

In December 2017, Hossein et al. were able to demonstrate that when the
“semantic generalizations” of the images were altered, the models were unable
to decipher and categorize images accurately. Their experiment was conducted
on standard image datasets such as MNIST and the modified VGG networks
trained on colour and grayscale variations of the German Traffic Sign Recognition
Benchmark (GTSRM) and the CIFAR-o dataset. They showed that altering the
familiarity or semantic generalizations of the datasets produced accurate rates that
were significantly lower than regular images, and that the results were relatively
good only when there was a significant range of variety within the training set.

Their position was that neural networks sometimes underperform because test
data is not distributed in the same way as training data, which is what happens in the
real world. Because of this, the models are unable to learn the structure of the objects
in question effectively and are, therefore, incapable of semantically differentiating
between the different object classes to compute an accurate prediction [36].

In our research, we were able to eliminate this problem by using the ImageFolder
function to read and resize the images, and by using transformers on the IoT
datasets. For the BATADAL and SWAT datasets, we avoided this conundrum by
“Upsampling” the dataset and by using the Imbalanced Dataset Sampler to balance
the dataset before training the models.

Our research improves both the efficiency and the accuracy of existing models
to deliver improved results whiles eliminating the difficulties associated with most
of the previous research papers [37–44]. As earlier stated, it also handles noise and
inaccuracies connected to other models by Upsampling and balancing the datasets
before training the models. It is simple and straightforward to set up and replicate
the results without the need for any dedicated or specialized hardware. One can spin
up instances in the Google Cloud Platform (GCP) or any other cloud platform and
conduct this experiment at a little cost to the researcher but with phenomenal results.

Adaptive Neural Trees for Attack Detection in Cyber Physical Systems 93

3 Methodology

In the methodology section, we present the data processing and training workflow
for reproducing the author’s result as well as results from the IoT [45, 46],
BATADAL and SWAT datasets. Figure 1 shows an overview of the IoT dataset
methodology. Figure 2 shows an overview of both BATADAL and SWAT dataset
methodologies.

Fig. 1 IoT dataset methodology

Fig. 2 BATADAL and SWAT dataset methodology

94 A. C. Chen and K. Wulff

3.1 Environment Setup and Dataset Download

The system used to perform the analysis was a GPU virtual machine in the Google
Cloud Platform. The operating system was Ubuntu 16.04 with four cores of virtual
CPU and an NVIDIA Tesla P100 GPU and 15 GB of RAM.

We used the Anaconda 2020.02 Linux version to set up the Python 2.7 envi-
ronment with CUDA 8.0 and PyTorch 0.3.0. Anaconda is an all-in-one installer,
which includes all the necessary python packages for data science. We used the IoT
malware, BATADAL and SWAT datasets from the Cyber Science lab.

3.2 Reproducing Author’s Results

R. Tanno et al. proposed a new machine learning algorithm called Adaptive Neural
Trees (ANT) [47], which we used to detect IoT malware and for classifying the
BATADAL and SWAT attacks.

Because the author had already provided the configuration details and how to
train the built-in MNIST dataset, we proceeded to train the model with the author’s
configuration and observed the results. Table 1 shows the configuration the author
used to produce the results in the base paper.

3.3 Adding Functions to ANT

In order to generate the accuracy, true/false positive rates, true/false negative rates,
F1 score, precision, and recall, we changed the log code to make sure it could record
the confusion matrix when it validates the model.

Table 1 Author’s
configuration

Dataset MNIST

Batch-size 256
Epoch patience 5
Epoch node 50
Epoch finetune 100
Transformer 1 × Conv3-5* + 1 × MaxPool
Router 1 × Conv3-5 + GAP + 2 × FC
Solver GAP + 2 FC layers + Softmax
Downsample frequency 1
Max depth 10
Randomization seed 1

*Conv3-5 means a 2D convolution with 3 kernels of spatial
size 5 × 5
GAP stands for Global-Average-Pooling, FC stands for Fully
Connected layer

Adaptive Neural Trees for Attack Detection in Cyber Physical Systems 95

3.4 Dataset Preprocessing

This section includes all the data processing details for the three datasets. Because
BATADAL and SWAT datasets share the same dataset structure, they will be put
into one subsection.

3.4.1 IoT Dataset

The IoT dataset file contained benign and malicious operation code text files. ANT
needs a tensor dataset, which means we needed to convert the text files into a tensor
dataset. PyTorch has a built-in function called ImageFolder, which allows the learner
to load image files as tensor datasets.

For the conversion, the first step was encoding the image. Nominal value
encoding was implemented for this project; then, we converted the encoded numbers
into a colour format. For example, add operation code had an id of 1, which was
converted into (0,0,1) for RGB colour. Then we used the PyPNG library to write the
colour code into a PNG file [48]. Because tensor datasets need a quadratic image,
and the operation code for one malware text file cannot form a quadratic image,
padding it with (0,0,0) was applied to make this possible.

The benign and malicious folders were all generated with quadratic images. The
ImageFolder function was then invoked to generate the tensor dataset. Each text
file had a different length of operation code; therefore, the image size was different
for each IoT program. However, ANT needs all data points to have the same size,
so the built-in resize function was invoked with a parameter of 40 by 40. Then
it was randomly split into three sub-datasets, namely, training dataset, validation
dataset and test dataset. After the prepossessing, the three sub-tensor datasets were
fed into ANT. Table 2 shows the configuration for the IoT dataset. Figure 3 explains
it graphically. Also, the IoT Unseen dataset was provided and tested.

Table 2 IoT training
configuration

Dataset IoT

Batch-size 512
Epoch patience 5
Epoch node 100
Epoch finetune 200
Transformer 2 × Conv3-96 + 1 × MaxPool
Router 2 × Conv3-48 + GAP + 1 × FC
Solver Linear classifier
Batch normalization Enabled
Max depth 10
Randomization seed 0

96 A. C. Chen and K. Wulff

Fig. 3 Steps to get the IoT
dataset to work

3.4.2 BATADAL and SWAT Datasets

BATADAL and SWAT datasets share some common attributes. Both are available
as a NumPy array, which means that feature transformation is not necessary.

The first step was loading the NumPy array into the program. Because the range
of numbers inside the dataset was extensive, we had to normalize them. The sklearn
built-in normalization function was invoked to perform this exercise.

Like the IoT dataset, the number of features could not be morphed into a
quadratic matrix, so it was padded with 0 to overcome this challenge. Because of
the limitations of ANT, larger matrixes were needed in order to start the training,
so Upsampling was applied to make this work. For BATADAL, the dataset was
upsampled to 28 by 28, and for the SWAT dataset, it was upsampled to 54 by 54.

Also, the BATADAL and SWAT dataset did not have validation and test datasets;
therefore, the built-in random split function was used to generate three sub-datasets:
training, testing, and validation datasets. There is another issue the IoT dataset does
not have, but BATADAL and SWAT have. It is the imbalance between normal and
attack data points. Normal data points are exceedingly more than attack points;
therefore, to prevent overfitting, the Imbalanced Dataset Sampler was utilized [49].
It solved the issue by oversampling low frequent classes and under-sampling high
frequent ones.

After the prepossessing, the three sub-tensor datasets for both BATADAL and
SWAT were fed into ANT. Table 3 shows the configuration for the BATADAL
dataset, and Table 4 shows the training configuration for the SWAT dataset. Figure 4
below illustrates the process graphically.

Adaptive Neural Trees for Attack Detection in Cyber Physical Systems 97

Table 3 IoT training
configuration based on SWAT
datase

Dataset BATADAL

Batch-size 256
Epoch patience 5
Epoch node 100
Epoch finetune 200
Transformer 1 × Conv3-96 + 1 × MaxPool
Router 1 × Conv3-48 + GAP + Sigmoid
Solver Linear classifier
Batch normalization Enabled
Max depth 10
Randomization seed 0

Table 4 SWAT training
configuration

Dataset SWAT

Batch-size 256
Epoch patience 5
Epoch node 100
Epoch finetune 200
Transformer 1 × Conv3-5 + 1 × MaxPool
Router 1 × Conv3-5 + GAP + 1 × Sigmoid
Solver Linear classifier
Downsample rate 1
Max depth 10
Randomization seed 1

Fig. 4 Steps to get the
BATADAL and SWAT
datasets to work

98 A. C. Chen and K. Wulff

4 Results and Discussion

0
0

20

40

60

80

100 200 300

Epoch

T
es

t
ac

cu
ra

cy
 (

%
)

400 500 600

ant_mnist

Fig. 5 Author’s results

T
es

t
ac

cu
ra

cy
 (

%
)

0

20

40

60

80

0 100 200 300

Epoch

400

ant_mnist

Fig. 6 Author’s reproduced results

Adaptive Neural Trees for Attack Detection in Cyber Physical Systems 99

4.1 Abbreviations

TPR – True Positive Rate
FPR – False Positive Rate
TNR – True Negative Rate
FNR – False Negative Rate

4.2 Graphical Representations of the BATADAL, IoT
and SWAT Dataset Results

This research consisted of two parts. Part one was to simulate the configuration
environment used by the author and to determine if we could replicate his results
using the same dataset. Figures 5 and 6 show that we were able to successfully
duplicate the author’s results using a similar configuration setting. The other part of
the research was to conduct experiments with the other datasets provided to measure
various attributes, as indicated in Table 5 above.

Table 5 also indicates that the BATADAL dataset produced the least accuracy
percentage of 83.60%. That notwithstanding, the BATADAL dataset had a true-
negative rate of 98.48%. The IoT and IoT unseen both produced accuracy rates of
98.04% and 99.45%; respectively, whiles the SWAT dataset delivered the highest
accuracy of 100%.

Also, both the IoT and SWAT datasets correctly identified negatives at a rate of
100%. Precision for the IoT Unseen, IoT and the SWAT datasets was 1. Additionally,
the true-positive rates for IoT, IoT Unseen and SWAT were 98.04%, 98.93% and
100%, respectively.

The false-positive rate and true-negative rate for the IoT unseen dataset is not
applicable because the unseen dataset does not have negative samples; therefore,
the FPR and TNR rates cannot be calculated. Figures 7, 8, and 9 show the graphical
representations of the BATADAL, IoT and SWAT datasets, which support the
numeral narratives in Table 5.

Table 5 Results for datasets

Dataset Accuracy (%) TPR (%) FPR (%) TNR (%) FNR (%) Precision Recall (%) F1 score
BATADAL 83.60 13.43 1.52 98.48 86.57 0.6528 13.43 0.2227

IoT Unseen 98.04 98.04 N/A NA 1.96 1 98.04 0.9901
IoT 99.45 98.93 0 100 1.07 1 98.93 0.9946
SWAT 100 100 0 100 0 1 100 1

100 A. C. Chen and K. Wulff

T
es

t
ac

cu
ra

cy
 (

%
)

0

20

40

60

80

100

0 50 100 150

Epoch

200 250 300 350

ant_batadal

Fig. 7 BATADAL dataset result

0

20

40

60

80

100

0 50 100 150

Epoch

200 250 300 350

T
es

t
ac

cu
ra

cy
 (

%
)

ant_iot

Fig. 8 IoT dataset result

Adaptive Neural Trees for Attack Detection in Cyber Physical Systems 101

0

20

40

60

80

100
T

es
t

ac
cu

ra
cy

 (
%

)

0 50 100 150
Epoch

200 250

swat_ant

Fig. 9 SWAT dataset result

5 Conclusion and Future Work

In this report, ANT had been applied to the IoT, BATADAL and SWAT datasets with
excellent results. Both IoT and SWAT datasets achieved an accuracy of 99.45%
and 100%, respectively. For IoT Unseen dataset, an accuracy of 98.04% was
achieved. Therefore, ANT would be suitable for some of the cybersecurity and threat
intelligence tasks such as malware and network attack detection both from within
and outside of an organization. As penetrating testing, malware and network attacks
become more of a social engineering issue, the ability for companies to accurately
predict and detect infiltration attacks from these sources will be a resource that will
serve any company or government well, and we hope that this work will add to the
knowledge base and advance learning in this domain.

Future work could apply the ANT to the Drone dataset and the Industrial Control
System Cyberattack dataset. Tweaking the training parameters for BATADAL in
order to get better results could also be an area of focus in the future. Also,
BATADAL and SWAT have sub-datasets that contain many more data points that
could be more extensively tested with ANT. Because of the RAM limitation, we
could not load the whole dataset into our training system at this time. The IoT
datasets do not have significant enough data points. Therefore, in future exercises,
more IoT benign and malicious operation codes could be collected in order to
improve the ANT model.

Acknowledgments Our sincere gratitude goes to Dr. Ali Dehghantanha, Ph.D., CISSP, CISM,
Assistant Professor of the School of Computer Science and Director of the Cyber Science at the

102 A. C. Chen and K. Wulff

University of Guelph and Hamed Haddadpajouh, Senior Researcher at the Cyber Science Lab.
Without their assistance and direction, this whole research exercise would not have been possible.

References

1. A.N. Jahromi et al., An improved two-hidden-layer extreme learning machine for malware
hunting. Comput. Secur. 89, 101655 (2020)

2. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Big data and internet of things security and
forensics: Challenges and opportunities, in Handbook of Big Data and IoT Security, (Springer,
Cham, 2019), pp. 1–4. https://doi.org/10.1007/978-3-030-10543-3_1

3. H.M. Rouzbahani, H. Karimipour, A. Rahimnejad, A. Dehghantanha, G. Srivastava, Anomaly
detection in cyber-physical systems using machine learning, in Handbook of Big Data Privacy,
(Springer, Cham, 2020), pp. 219–235

4. H. Karimipour, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, H. Leung, A deep and scalable
unsupervised machine learning system for cyber-attack detection in large-scale smart grids.
IEEE Access 7, 80778–80788 (2019)

5. N. Milosevic, A. Dehghantanha, K.-K.R. Choo, Machine learning aided android malware
classification. Comput. Electr. Eng. 61, 266–274 (2017)

6. W. Peters, A. Dehghantanha, R.M. Parizi, G. Srivastava, A comparison of state-of-the-art
machine learning models for OpCode-based IoT malware detection, in Handbook of Big Data
Privacy, (Springer, Cham, 2020), pp. 109–120

7. R. Raicea, Want to know how deep learning works? Here’ s a quick guide for every-
one (freeCodeCamp, 2017), https://www.freecodecamp.org/news/want-to-know-how-deep-
learning-works-heres-a-quick-guide-for-everyone-1aedeca88076/. Accessed 20 Apr 2020

8. R. Talwar, A. Koury, Artificial intelligence–the next frontier in IT security? Netw. Secur.
2017(4), 14–17 (2017)

9. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88 (2020).
https://doi.org/10.1016/j.cose.2019.101629

10. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of the
OpenFlow v1.3 Switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3) (2018). https://
doi.org/10.1007/s11227-017-2175-7

11. Marketsandmarkets.com, Machine learning market by vertical (BFSI, healthcare and life
sciences, retail, telecommunication, government and defense, manufacturing, energy and
utilities), deployment mode, service, organization size, and region – Global For

12. BCC Research, Machine learning: Global markets to 2022 (2017)
13. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of

(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

14. S. Nakhodchi, A. Dehghantanha, H. Karimipour, Privacy and security in smart and precision
farming: A bibliometric analysis, in Handbook of Big Data Privacy, (Springer, Cham, 2020),
pp. 305–318

15. S. Walker-Roberts, M. Hammoudeh, A. Dehghantanha, A systematic review of the availability
and efficacy of countermeasures to internal threats in healthcare critical infrastructure. IEEE
Access 6, 25167–25177 (2018, March). https://doi.org/10.1109/ACCESS.2018.2817560

16. Technavio Research, Global machine learning market 2020–2024 | Increasing adoption of
cloud-based offerings to boost the market growth | Technavio (Technavio Research, 2020),
https://www.businesswire.com/news/home/20200327005177/en/Global-Machine-Learnin

17. S.M. Tahsien, H. Karimipour, P. Spachos, Machine learning based solutions for security of
Internet of Things (IoT): A survey. J. Netw. Comput. Appl. 161, 102630 (2020)

http://dx.doi.org/10.1007/978-3-030-10543-3_1
https://www.freecodecamp.org/news/want-to-know-how-deep-learning-works-heres-a-quick-guide-for-everyone-1aedeca88076/
http://dx.doi.org/10.1016/j.cose.2019.101629
http://dx.doi.org/10.1007/s11227-017-2175-7
http://dx.doi.org/10.1109/ACCESS.2018.2817560
https://www.businesswire.com/news/home/20200327005177/en/Global-Machine-Learnin

Adaptive Neural Trees for Attack Detection in Cyber Physical Systems 103

18. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (2019), pp. 1–6

19. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency malware hunting: A deep recurrent neural network approach. Appl. Soft
Comput. J. Elsevier 96, 106630 (2020)

20. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

21. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

22. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. 115, 619–640
(2020)

23. R.M. Parizi, S. Homayoun, A. Yazdinejad, A. Dehghantanha, K.-K.R. Choo, Integrating
privacy enhancing techniques into blockchains using sidechains, in IEEE Canadian Conference
of Electrical and Computer Engineering, CCECE 2019, (2019). https://doi.org/10.1109/
CCECE.2019.8861821

24. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, G. Srivastava, S. Mohan, A.M. Rababah, Cost
optimization of secure routing with untrusted devices in software defined networking. J.
Parallel Distrib. Comput. 143, 36–46 (2020)

25. E.M. Dovom, A. Azmoodeh, A. Dehghantanha, D.E. Newton, R.M. Parizi, H. Karimipour,
Fuzzy pattern tree for edge malware detection and categorization in IoT. J. Syst. Archit. 97,
1–7 (2019)

26. H. Darabian et al., Detecting cryptomining malware: A deep learning approach for static and
dynamic analysis. J. Grid Comput., 1–11 (2020)

27. A. Al-Abassi, H. Karimipour, A. Dehghantanha, R.M. Parizi, An ensemble deep learning-based
cyber-attack detection in industrial control system. IEEE Access 8, 83965–83973 (2020)

28. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

29. P. Gupta, Decision trees in machine learning – Towards data science (2017), https://
towardsdatascience.com/decision-trees-in-machinelearning-641b9c4e8052

30. Z. Wen, B. He, R. Kotagiri, S. Lu, J. Shi, Efficient gradient boosted decision tree training on
GPUs, in 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
(2018), pp. 234–243

31. H. Hashemi, A. Azmoodeh, A. Hamzeh, S. Hashemi, Graph embedding as a new approach for
unknown malware detection. J. Comput. Virol. Hacking Technol. 13(3), 153–166 (2017)

32. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, S. Hashemi, B. Gharabaghi, G. Srivastava,
Active spectral botnet detection based on eigenvalue weighting, in Handbook of Big Data
Privacy, (Springer, Cham, 2020), pp. 385–397. https://doi.org/10.1007/978-3-030-38557-
6_19

33. H.H. Pajouh, R. Javidan, R. Khayami, D. Ali, K.-K.R. Choo, A two-layer dimension reduction
and two-tier classification model for anomaly-based intrusion detection in IoT backbone
networks. IEEE Trans. Emerg. Top. Comput. 7, 314–323 (2016)

34. S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, H. Karimipour, Cyber intrusion detec-
tion by combined feature selection algorithm. J. Inf. Secur. Appl. 44, 80–88 (2019)

35. H. Liu, M. Cocea, W. Ding, Decision tree learning based feature evaluation and selection for
image classification, in 2017 International Conference on Machine Learning and Cybernetics
(ICMLC), vol. 2, (2017), pp. 569–574

36. H. Hosseini, B. Xiao, M. Jaiswal, R. Poovendran, On the limitation of convolutional neural
networks in recognizing negative images, in 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA), (2017), pp. 352–358

http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.1109/CCECE.2019.8861821
https://towardsdatascience.com/decision-trees-in-machinelearning-641b9c4e8052
http://dx.doi.org/10.1007/978-3-030-38557-6_19

104 A. C. Chen and K. Wulff

37. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, H. Karimipour, S.R. Karizno,
SLPoW: Secure and low latency proof of work protocol for blockchain in green IoT networks,
in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), (2020), pp. 1–5

38. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, Blockchain-enabled authentica-
tion handover with efficient privacy protection in SDN-based 5G networks. IEEE Trans. Netw.
Sci. Eng. (2019). https://doi.org/10.1109/TNSE.2019.2937481

39. A. Singh, K. Click, R.M. Parizi, Q. Zhang, A. Dehghantanha, K.-K.R. Choo, Sidechain
technologies in blockchain networks: An examination and state-of-the-art review. J. Netw.
Comput. Appl. 149, 102471 (2020). https://doi.org/10.1016/j.jnca.2019.102471

40. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, Q. Zhang, K.-K.R. Choo, An energy-efficient
SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans.
Serv. Comput. (2020). https://doi.org/10.1109/TSC.2020.2966970

41. D. Połap, G. Srivastava, A. Jolfaei, R.M. Parizi, Blockchain technology and neural networks
for the internet of medical things, in IEEE INFOCOM 2020 – IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), (2020), pp. 508–513. https://doi.org/
10.1109/INFOCOMWKSHPS50562.2020.9162735

42. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, M. Aledhari,
Decentralized authentication of distributed patients in hospital networks using blockchain.
IEEE J. Biomed. Health Inform. 24(8), 2146–2156 (2020)

43. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag., 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

44. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

45. H. Darabian et al., A multiview learning method for malware threat hunting: Windows, IoT
and android as case studies. World Wide Web 23(2), 1241–1260 (2020)

46. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for Internet of Things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

47. R. Tanno, K. Arulkumaran, D.C. Alexander, A. Criminisi, A. Nori, Adaptive neural trees, in
36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, (2019, July),
pp. 10761–10770

48. Drj11, PyPNG documentation – PyPNG 0.0.17 documentation (Github, 2019), https://
pypng.readthedocs.io/en/latest/index.html. Accessed 20 Apr 2020

49. Ufoym, GitHub – ufoym/imbalanced-dataset-sampler: A (PyTorch) imbalanced dataset sam-
pler for oversampling low frequent classes and undersampling high frequent ones (GitHub,
2020), https://github.com/ufoym/imbalanced-dataset-sampler. Accessed 20 Apr 2020

http://dx.doi.org/10.1109/TNSE.2019.2937481
http://dx.doi.org/10.1016/j.jnca.2019.102471
http://dx.doi.org/10.1109/TSC.2020.2966970
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162735
http://dx.doi.org/10.1016/j.ipm.2020.102370
http://dx.doi.org/10.1016/j.future.2018.03.007
https://pypng.readthedocs.io/en/latest/index.html
https://github.com/ufoym/imbalanced-dataset-sampler

Evaluating Performance of Scalable Fair
Clustering Machine Learning Techniques
in Detecting Cyber Attacks in Industrial
Control Systems

Akansha Handa and Prabhat Semwal

1 Introduction

The Internet of things (IoT) devices are already being used to make important
decisions in our society [1–7]. For example, managing critical Industrial Control
Systems (ICS) like nuclear plants and other huge infrastructure with IoT devices to
crime investigation using facial recognition application [8–12]. Thus, prominence
of machine learning algorithms in such IoT and ICS ecosystems as a background
technology has led to growing concern regarding the biased decisions being made
by these algorithms [13–15]. Although, it seems if machine learning algorithms
will be used to make decisions instead of humans, the outcome will be unbiased.
However, these algorithms can be biased if the underlying training data has any sort
of discriminating factor in it. Therefore, built machine learning models can have
biased behavior and can raise multiple security concerns related to IoT devices [16–
18]. As a result, a significant amount of research has been performed to understand
the fairness factor in machine learning algorithms [13, 19–21].

Clustering is a fundamental unsupervised machine learning technique which
divides the data points into more related groups (clusters) without the knowledge
of the label of the data points which is like data analysis and data mining processes
[22–26]. As a result, Clustering has been extensively studied from a fair machine
learning perspective. The first fair unsupervised learning algorithms was explored
in the form of fair clustering which introduced the concept of fairlet decomposition
i.e. is to partition data points into a small cluster (fairlets) with the constraint of
maintaining balance in terms of defined sensitive features, such as race or gender,
and cluster those balanced fairlets into overall balanced clusters [27]. To measure

A. Handa (�) · P. Semwal
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: ahanda@uoguelph.ca; psemwal@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_7

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_7&domain=pdf
mailto:ahanda@uoguelph.ca
mailto:psemwal@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_7

106 A. Handa and P. Semwal

the fairness in clustering, they defined the balance as a ratio of the number of two

colors in each cluster. Hence, defined the balance of one cluster(S) to be min (Sr
Sb

Sb
Sr

)
where Sr and Sb are the subsets of red and blue points in S and the overall balance
of clustering to be a minimum balance of any one cluster. The proposed fairlet
decomposition algorithms are suitable for two standard clustering objectives: K-
center and K-median.

While the fairlet decomposition solution introduced fairness concept in cluster-
ing, it lacked in handling the large datasets due to quadratic running time issue
of the algorithm on performing fair let decomposition. The scalable fair clustering
provides the solution to this limitation as an approximation algorithm to compute
fairlet decomposition cost with running time in near-linear, where cost represents
the overall distance between data points and their centers at fairlet/clusters [28].
The fairlet decomposition algorithms introduced in [28], focused only on the K-
median clustering objective to avoid the issue of sensitive attributes outliers caused
by K-center.

In this paper, we use the scalable fair clustering approach to study the nearly
linear running time result of proposed fairlet decomposition (FD) algorithm. We
have defined two objectives of our experiment: first, to calculate the running time of
the FD model on the three different datasets than base paper: IOT [29, 30] ICS and
SWAT. Second, to evaluate the performance of FD model on the base of five widely
used evaluation metrics Accuracy, FPR, TPR, Precision and F1-Score, described in
Sects. 4.1 and 4.2.

The Sect. 2 of this paper presents a literature review on related academic research
papers from recent years. Section 3 describes the methodology used in this work,
Sect. 4 shows the result of our study and in Sect. 5 we draw a conclusion of our
experiment and suggest future work. The references are listed in the last section.

2 Related Works

Over the last few years, several studies have been presented exploring the IoT
and ICS systems from the security perspective [31–38] identified most common
cybersecurity threats and incidents patterns using VCDB cybersecurity dataset
and based on their findings indicated the need for reassessment of cybersecurity
standards. Sakhnini et al. [39] conducted a comprehensive survey of all research
articles and papers on the security aspect of the IoT device, such as the Smart grid.
In this survey, they illustrate the range of cyber-threats posed by a Smart grid and
future research aspect of smart grid security.

While various studies examined the security aspects of IoT and ICS systems,
others have proposed ways to detect cyber-attacks on these systems using machine
learning techniques [40–43]. Dovom et al. [44] performed the classification and
detection of malware in IoT using fuzzy and fuzzy patter (FPT) machine learning
techniques. They used operational codes of malware and benign samples of IoT

Evaluating Performance of Scalable Fair Clustering Machine Learning. . . 107

systems and established FPT can classify malware with the accuracy of 99.8%.
Similarly, [45] used the operational codes-based technique and different machine
learning techniques to detect IoT malware. There is well-established research has
been presented to detect malware or other cyber-attacks detection using machine
learning. However, such work does not investigate the accuracy of the machine
learning outcomes in terms of fairness notion.

In recent years, researchers have noted a need to study the fairness notion in
machine learning techniques and developed different types of fair machine learning
models based on both supervised and unsupervised machine learning [45, 46]. Lee
et al. [47] proposed the fairness notion by performing fair feature subset selection
algorithm capable of performing high-speed and high-accuracy classification. Grari
et al. [48] established a novel approach of gradient tree boosting with the capability
of maintaining the same level of fairness with a high accuracy rate than other Fair
classifier models. Some proposed to deal with the discriminating factor by removing
the biased data from datasets which are used to train such machine learning models.
Veale and Binns [49] proposed multiple ways to improve the fairness factor of
machine learning by addressing discriminating data such as sensitive attributes.

As supervised, the fairness notion has also been addressed in unsupervised
machine learning [26]. Most of the fair clustering studies have extended the
principle of fairness developed by [27]. Bera et al. [50] proposed a more generalized
fair clustering model that can transform any classical algorithms (k-center, k-
median, k-means) into fair algorithms with a slight decrease in the overall quality.
The developed algorithm defined l (number of protected features) >= 2 and allowed
overlapping of features to cover data points like (African-America). Also, the
improved K-median clustering cost was achieved for all three datasets (census,
bank, diabetes) than reported in [27, 28]. Abraham and Sundaram [51] proposed a
novel clustering solution, FairKM, that scaled the existing clustering solution for k-
means. They concluded the outcome of FairKM in terms of both quality and fairness
of clustering. Huang et al. [52] and Schmidt et al. [53] considered the problem of
scaling the existing fair clustering solutions for large datasets with the help of corset
solution to reduce the input data size.

In [54], fair clustering solution is scaled up to deal with multiple colors
(i.e. l > =3). Also, provided no-constant factor clustering (k-clustering) that is
suitable for any center-based k-clustering objective (K-means, K-median, K-center).
Similarly, [55] proposed a scalable approach by handling sensitive or protected
attributes for large class clustering objectives: K-center, K-means, K-median. On
the contrary [56], introduced fairness in terms of proportionality of by replacing the
notion of the sensitive attribute to make fair clusters.

The above research work incorporates the fairness notion in machine learning but
does not measure the effectiveness of fair machine learning models. The evaluation
of the machine learning models in terms of accuracy is necessary and vital to
use advanced machine learning techniques in critical systems like IoT and ICS.
This motivates our work to execute the Scalable fair clustering machine learning
technique and evaluate the performance of the fair machine learning model in terms
of both quality and fairness.

108 A. Handa and P. Semwal

3 Methodology

In this section, we illustrate the experimental study carried out to determine the
time linearity result and performance evaluation of scalable fair clustering algorithm
for three datasets: IoT, CIS and SWAT. First, we describe the process followed
to process all three datasets to extract the optimum features required for the FD
algorithm implementation and then explain the design of the FD model for the fairlet
decomposition cost runtime calculation part. Finally, we describe the steps taken to
integrate the performance assessment component into the FD model to calculate the
evaluation metrics.

3.1 IoT Dataset

The IoT dataset represents the network traffic of IoT devices. It contains samples in
the form of benign IoT traffic and traffic where malware has been executed on IoT
devices.

3.1.1 Dataset Processing & Feature Extraction

The provided dataset consisted of samples in the form of opcode files, in which each
file is either a benign sample text file or malware sample text file. Thus, each file is
processed to transform the data in text format (opcodes) into numerical data, using
the Term Frequency – Inverse Document Frequency (TF-IDF) technique. The TD-
IDF score of each benign and malware sample was used as a feature and the TD-IDF
scores for those obtained features were used as feature values. As a result, a total
of 236 features and 512 samples were extracted, where total samples contained 244
malware and 258 benign class samples.

To reduce the dimensionality of the processed dataset, feature selection was
performed using Univariate feature selection and Tree-based feature selection
method: ExtraTreeClassifier. Total five features were selected based on the highest-
ranking feature and were more common in both feature selection output. The five
features were extracted into a separate file to create the low dimensional dataset,
listed in Table 1. We will refer the dataset as “IOT” dataset.

Table 1 Description of three
datasets used for our
experiment

Dataset Dimension Number of points Sensitive attribute

IOT 4 512 V227
ICS 5 11,439 S_PU8
SWAT 5 14,994 P3_STATE

Evaluating Performance of Scalable Fair Clustering Machine Learning. . . 109

3.2 ICS Dataset

The industrial control systems are the cyber-physical systems, such as water
distribution systems, soil treatment plants, and other geographically distributed
systems controlled by computers. The ICS dataset contains the cyber-attack data
of such control systems. Many ICS datasets are already being used to analyse the
security threat to any ICS [57]. It contains the data form Intrusion detection systems,
sensors, network, SCADA operations.

3.2.1 Dataset Processing & Feature Extraction

The provided ICS dataset consists of 22 features and a total of 11,439 samples,
where overall samples were comprised of 492 attack and 10,947 normal class
samples. The dataset was processed to extract the best features for the FD model
using a feature selection method: ExtraTreeClassifier. The five most common and
top-ranked features were extracted into a csv file, in which four features were
protected feature and one feature was a sensitive, mentioned in Table 1. We will
refer the processed dataset as “ICS” dataset.

3.3 SWAT Dataset

The Secure Water Treatment Plant (SWAT) is a cyber-physical system. The SWAT
dataset is the data collected from the water treatment plant on both normal operating
days and cyber-attack days. This dataset consists of data from control systems like
sensors, alarms, water pumps [58].

3.3.1 Dataset Processing & Feature Extraction

The provided dataset consists of 77 features and 14,994 samples, with 5474 attack
and 9521 normal samples. We processed the dataset to reduce the dimensionality
of the dataset to a smaller number of protected features using Univariate feature
selection and ExtraTreeClassifier method. The highest ranked and most common
features were extracted by comparing the results of two features selection methods.
We will refer the processed SWAT dataset as “SWAT-P” dataset. The final layout of
“SWAT” dataset is described in Table 1.

110 A. Handa and P. Semwal

3.4 Fairlet Decomposition Model

The FD model used in our experiment is built by using the approximate fairlet
decomposition algorithm version of scalable fair clustering, for which practical
implementation is provided in [28]. Our FD model is designed to achieve the objec-
tive of our experiment, mentioned in the section, on the form of two components:
Fairlet decomposition cost and K-medoid.

3.4.1 Fairlet Decomposition Cost

To accomplish the time-linearity objective for all three processed datasets, as
mentioned in Sect. 1, we have used the fairlet decomposition cost part of FD
algorithm. We trained our FD model on a processed dataset and determined the
optimal values of r and b (i.e. red and blue), through trial and error, for the given
dataset. In our experiment, we achieved the same balance b = 0.5 for all three
processed datasets. Second, we divided each one of the processed datasets into
multiple sub-samples. As we achieved the same balance (0.5) for all three datasets,
we have executed the FD model on all the sub-samples of a processed dataset
with the same balance. As a result, the run time of the FD model was recorder
for performing fairlet decomposition cost for each sub-sample of a given dataset.

3.4.2 K-medoids

To achieve the second objective of our study, mentioned in Sect. 1, we have used
the K-medoid part of the FD algorithm, where K-medoid is used to cluster the (r,
b) balanced fairlets with the objective of minimizing the overall distance between
the datapoints in a cluster and points which are fairlets/clusters center (centroid
or medoids) [28, 59]. We used the K-medoid outcome the IDX vector (or cluster
indexes of each observation) to calculate the predicted label of a given dataset, where
the IDX value of each sample represents the cluster number in which a sample
is clustered. Therefore, we mapped the samples IDX values with their respective
actual class labels in order to label the IDX (cluster) as either of two class label (like
1 = benign and 0 = malware sample class) by determining the which type of class
samples have maximum weightage in a formed cluster (IDX).

For example, with cluster k = 2, the IDX (medoid) consisted of value 1 and 2
for each sample, indicating the predicted group or cluster formed on running FD
model on a processed dataset, such as IOT dataset. The formed clusters (IDX) were
labelled as benign if the maximum number of samples with IDX = 1 has actual
class label = 0 (benign) and the second cluster (IDX = 2) was labelled as malware.
As a result, created the predicted label by marking all the samples with IDX = 1 as
being and IDX = 2 as malware. Also, to evaluate the performance of FD model for

Evaluating Performance of Scalable Fair Clustering Machine Learning. . . 111

all three datasets, we have performed similar IDX mapping to compute the accuracy
and other evaluation metrics.

4 Results & Discussion

This section highlights the results achieved with the fair clustering method on three
processed datasets, listed in Table 1. First, we explain the results achieved for time
linearity objective. Second, we describe the evaluation metrics used to measure the
performance of FD model; then we list the results achieved with the FD model for
the defined evaluation metrics. Finally, we perform the performance analysis of FD
model using the results achieved for all three processed datasets.

4.1 Fairlet Decomposition Cost Result

In our experiment, we have calculated the time linearity for all three datasets by
dividing each dataset into sub-samples and running our FD model on theses sub-
samples. We calculated the run time of FD model for fairlet decomposition cost
with the optimal balance of b = 0.5 (i.e. r = 1 and b = 2) and number of clusters
k = 20 for all three datasets.

As shown in Fig. 1, the observed run time of FD model was plotted against the
number of samples and running time in seconds. For all three datasets, the FD model
performed the fair clustering at in nearly linear time format.

4.2 Evaluation Measures

In our experiment, we evaluate the performance of FD model by creating the
confusion matrix with the actual and generated predicted labels of FD model.
The most common metrics: Accuracy, TPR, FPR, Precision and F1-score were
calculated by relating the predicted outcome in the form of confusion matrix:
True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN).
Table 2 contains the description all the evaluation measure used for computing the
performance of FD model.

112 A. Handa and P. Semwal

0.16

0.14

0.12

0.1

0.0315
0.703

1.49

3.07

4.51

6.03

7.68

1.203

1.687

2.23

3.1

0.0467

0.062

0.094

0.14

0.08

0.06

0.04

0.02

0
80 160

3000 6000 9000 12000 14994

9

8

7

6

5

4

3

2

1

0

240

Number of sub-sampled points

a

c

b

Number of sub-sampled points

SWAT Dataset: (1,2) Fairlet Decomposition Cost Runtime

IOT: (1,2) Fairlet decomposition Cost Runtime ICS Dataset: (1,2) Fairlet Decomposition Cost Runtime

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

Number of sub-sampled points

320 512
2000 4000 6000 8000 11439

3.5

3

2.5

2

1.5

1

0.5

0

Fig. 1 Each figure represents the FD model running time in seconds for defined balanced and
number of clusters for datasets: (a) IOT (b) ICS and (c) SWAT

Table 2 Evaluation metrics
used for FD model
performance analysis

Evaluation metric Formula

Accuracy T P+T N
T P+T N+FP+FN

TPR/recall T P
T P+FN

FPR FP
FP+T N

Precision T P
T P+FP

F1-score 2 ∗ (precision∗recall)
(precision+recall)

4.3 FD Model Results

On running the FD model on all three datasets, with balance of 0.5, we computed
the predicted label, as described in Sect. 3.2. The accuracy achieved with IOT, ICS
and SWAT dataset is 83.48%, 95.82%, and 88.59% respectively.

Evaluating Performance of Scalable Fair Clustering Machine Learning. . . 113

Table 3 Describes the overall results achieved with FD model for IOT, ICS and SWAT datasets

Dataset Clusters (K) Accuracy TPR FPR Precision F1-score

IOT 15 83.48 77.19 10.0 88.8 82.65
ICS 10 95.82 98.92 68.57 96.78 97.83
SWAT 12 88.59 84 58.12 88.59 93.95

4.4 Result Analysis

As shown in Table 3, we evaluate the FD model based on evaluation metrics
calculated for IOT, ICS and SWAT dataset. The overall performance of FD model
is evaluated in terms of accuracy of model in clustering samples as per the defined
sensitive attribute of a given dataset. We achieved the high accuracy of fair clustering
with ICS dataset and SWAT, 95.82% and 88.59% respectively. However, the falsely
reported samples for these two datasets in terms of FPR, 68% with ICS dataset and
58.12% with SWAT dataset, are higher than IOT dataset with FPR of 10%. The
major reason for this was the data dependency of Fairlet Decomposition Model.
The ICS dataset with 492 attack and 10,947 normal samples and SWAT with 5474
attack and 9521 normal samples are highly unbalanced in terms of two classes due
to which the clustering performed by the model is somehow biased. On the other
hand, IOT dataset has balanced classification of target label (244 malware and 258
benign) therefore FD model evaluation of IOT dataset is considered more accurate
with an overall accuracy of 83.48% and a low FPR of 10%.

5 Conclusion & Future Work

In this paper, we studied about the scalable fair clustering algorithm and imple-
mented Fairlet Decomposition Model to evaluate the overall performance of the
fair clustering approach. We evaluated the performance of FD model in terms of
handling the range of datasets while maintaining run time linearity and accuracy
achieved by the FD model on three different datasets. We have observed a tradeoff
based on data provided for the evaluation. There are several challenges like defining
an appropriate version of fairness. An immediate future direction is to enhance the
performance of Fairlet Decomposition Model in term of dataset independency.

References

1. M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of Things security and forensics:
Challenges and opportunities. Futur. Gener. Comput. Syst. 78, 544–546 (2018). https://doi.org/
10.1016/j.future.2017.07.060

http://dx.doi.org/10.1016/j.future.2017.07.060

114 A. Handa and P. Semwal

2. H. HaddadPajouh, R. Khayami, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, AI4SAFE-IoT:
An AI-powered secure architecture for edge layer of Internet of things. Neural Comput. Applic.
32(20), 16119–16133 (2020). https://doi.org/10.1007/s00521-020-04772-3

3. S. Nakhodchi, A. Dehghantanha, H. Karimipour, Privacy and security in smart and precision
farming: A bibliometric analysis, in Handbook of Big Data Privacy, (Springer, Cham, 2020),
pp. 305–318

4. S. Walker-Roberts, M. Hammoudeh, A. Dehghantanha, A systematic review of the availability
and efficacy of countermeasures to internal threats in healthcare critical infrastructure. IEEE
Access 6, 25167–25177 (2018, March). https://doi.org/10.1109/ACCESS.2018.2817560

5. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

6. F. Daryabar, A. Dehghantanha, N.I. Udzir, S.B. Shamsuddin, Towards secure model for
SCADA systems, in Proceedings Title: 2012 International Conference on Cyber Security,
Cyber Warfare and Digital Forensic (CyberSec), (2012), pp. 60–64

7. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, Blockchain-enabled authentica-
tion handover with efficient privacy protection in SDN-based 5G networks. IEEE Trans. Netw.
Sci. Eng. (2019). https://doi.org/10.1109/TNSE.2019.2937481

8. D.C. Parkes, R.V. Vohra, Algorithmic and economic perspectives on fairness. arXiv Prepr.
arXiv1909.05282 (2019)

9. M.M. Ahmadian, M. Shajari, M.A. Shafiee, Industrial control system security taxonomic
framework with application to a comprehensive incidents survey. Int. J. Crit. Infrastruct. Prot.
29, 100356 (2020)

10. B.J. Santos, R.P. Tabacow, M. Barboza, T.F. Leão, E.G.P. Bock, Cyber security in health:
Standard protocols for IoT and supervisory control systems, in Cyber Security of Industrial
Control Systems in the Future Internet Environment, (IGI Global, 2020), pp. 313–329

11. S.A.I. Shouborno et al., Complete automation of an E-commerce system with internet of things,
in 2019 IEEE International Conference on Robotics, Automation, Artificial-Intelligence and
Internet-of-Things (RAAICON), pp. 81–86

12. K. Bolouri, A. Azmoodeh, A. Dehghantanha, M. Firouzmand, Internet of things camera
identification algorithm based on sensor pattern noise using color filter array and wavelet
transform, in Handbook of Big Data and IoT Security, (Springer, Cham, 2019), pp. 211–223.
https://doi.org/10.1007/978-3-030-10543-3_9

13. N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey on bias and fairness
in machine learning. arXiv Prepr. arXiv1908.09635 (2019)

14. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Performance improvement and hardware imple-
mentation of Open Flow switch using FPGA, in 2019 5th Conference on Knowledge Based
Engineering and Innovation (KBEI), (2019). https://doi.org/10.1109/KBEI.2019.8734914

15. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of the
OpenFlow v1.3 Switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3) (2018). https://
doi.org/10.1007/s11227-017-2175-7

16. H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, M. Aledhari, H. Karimipour, A survey on
internet of things security: Requirements, challenges, and solutions. Internet of Things 3,
100129 (2019)

17. A. Dehghantanha, K.-K. R. Choo (eds.), Handbook of Big Data and IoT Security (Springer,
Cham, 2019)

18. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Big data and internet of things security and
forensics: Challenges and opportunities, in Handbook of Big Data and IoT Security, (Springer,
Cham, 2019), pp. 1–4. https://doi.org/10.1007/978-3-030-10543-3_1

19. C. Dwork, M. Hardt, T. Pitassi, O. Reingold, R. Zemel, Fairness through awareness, in
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, (2012), pp.
214–226

20. D. Slack, S.A. Friedler, E. Givental, Fairness warnings and fair-MAML: Learning fairly
with minimal data, in Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency, (2020), pp. 200–209

http://dx.doi.org/10.1007/s00521-020-04772-3
http://dx.doi.org/10.1109/ACCESS.2018.2817560
http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.1109/TNSE.2019.2937481
http://dx.doi.org/10.1007/978-3-030-10543-3_9
http://dx.doi.org/10.1109/KBEI.2019.8734914
http://dx.doi.org/10.1007/s11227-017-2175-7
http://dx.doi.org/10.1007/978-3-030-10543-3_1

Evaluating Performance of Scalable Fair Clustering Machine Learning. . . 115

21. Fair algorithms for machine learning, in Proceedings of the 2017 ACM Conference on
Economics and Computation, https://dl.acm.org/doi/abs/10.1145/3033274.3084096. Accessed
18 Sep 2020

22. M.Z. Rodriguez et al., Clustering algorithms: A comparative approach. PLoS One 14(1),
e0210236 (2019)

23. L. Rokach, O. Maimon, Clustering methods, in Data Mining and Knowledge Discovery
Handbook, (Springer, New York, 2005), pp. 321–352

24. M. Ghesmoune, M. Lebbah, H. Azzag, State-of-the-art on clustering data streams. Big Data
Anal. 1(1), 13 (2016)

25. P. Berkhin, A survey of clustering data mining techniques, in Grouping Multidimensional Data,
(Springer, Berlin, 2006), pp. 25–71

26. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, S. Hashemi, B. Gharabaghi, G. Srivastava,
Active spectral botnet detection based on eigenvalue weighting, in Handbook of Big Data
Privacy, (Springer, Cham, 2020), pp. 385–397. https://doi.org/10.1007/978-3-030-38557-
6_19

27. F. Chierichetti, R. Kumar, S. Lattanzi, S. Vassilvitskii, Fair clustering through fairlets, in
Advances in Neural Information Processing Systems, (MIT Press, Cambridge, MA, 2017), pp.
5029–5037

28. A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vakilian, T. Wagner, Scalable fair clustering.
arXiv Prepr. arXiv1902.03519 (2019)

29. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

30. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for internet of things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

31. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

32. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag., 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

33. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (2019), pp. 1–6

34. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency malware hunting: A deep recurrent neural network approach. Appl. Soft
Comput. Elsevier 96, 106630 (2020)

35. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

36. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, Q. Zhang, K.-K.R. Choo, An energy-efficient
SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans.
Serv. Comput. 13(4), 625–638 (2020)

37. S. Walker-Roberts, M. Hammoudeh, O. Aldabbas, M. Aydin, A. Dehghantanha, Threats on the
horizon: Understanding security threats in the era of cyber-physical systems. J. Supercomput.
76(4), 2643–2664 (2020)

38. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, G. Srivastava, S. Mohan, A.M. Rababah, Cost
optimization of secure routing with untrusted devices in software defined networking. J.
Parallel Distrib. Comput. 143, 36–46 (2020)

39. J. Sakhnini, H. Karimipour, A. Dehghantanha, R.M. Parizi, G. Srivastava, Security aspects of
Internet of Things aided smart grids: A bibliometric survey. Internet of things, 100111 (2019)

http://dx.doi.org/10.1145/3033274.3084096
http://dx.doi.org/10.1007/978-3-030-38557-6_19
http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1016/j.ipm.2020.102370
http://dx.doi.org/10.1109/ACCESS.2020.3013541

116 A. Handa and P. Semwal

40. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

41. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An ensemble
of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE
Internet Things J. 7(9), 8852–8859 (2020). https://doi.org/10.1109/jiot.2020.2996425

42. H. Darabian et al., A multiview learning method for malware threat hunting: Windows, IoT
and android as case studies. World Wide Web 23(2), 1241–1260 (2020)

43. H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, K.R. Choo, An opcode-based
technique for polymorphic Internet of Things malware detection. Concurr. Comput. Pract. Exp.
32(6), e5173 (2020)

44. E.M. Dovom, A. Azmoodeh, A. Dehghantanha, D.E. Newton, R.M. Parizi, H. Karimipour,
Fuzzy pattern tree for edge malware detection and categorization in IoT. J. Syst. Archit. 97,
1–7 (2019)

45. F. Kamiran, T. Calders, Classifying without discriminating, in 2009 2nd International Confer-
ence on Computer, Control and Communication, (2009), pp. 1–6

46. A. Pérez-Suay, V. Laparra, G. Mateo-García, J. Muñoz-Marí, L. Gómez-Chova, G. Camps-
Valls, Fair kernel learning, in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, (2017), pp. 339–355

47. H.-M. Lee, C.-M. Chen, C.-C. Tan, An intelligent web-page classifier with fair feature-subset
selection, in Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International
Conference (Cat. No. 01TH8569), vol. 1, (2001), pp. 395–400

48. V. Grari, B. Ruf, S. Lamprier, M. Detyniecki, Fair adversarial gradient tree boosting, in 2019
IEEE International Conference on Data Mining (ICDM), (2019), pp. 1060–1065

49. M. Veale, R. Binns, Fairer machine learning in the real world: Mitigating discrimination
without collecting sensitive data. Big Data Soc. 4(2), 2053951717743530 (2017)

50. S. Bera, D. Chakrabarty, N. Flores, M. Negahbani, Fair algorithms for clustering, in Advances
in Neural Information Processing Systems, (MIT Press, Cambridge, MA, 2019), pp. 4954–
4965

51. S.S. Abraham, S.S. Sundaram, Fairness in clustering with multiple sensitive attributes. arXiv
Prepr. arXiv1910.05113 (2019)

52. L. Huang, S. Jiang, N. Vishnoi, Coresets for clustering with fairness constraints, in Advances in
Neural Information Processing Systems, (MIT Press, Cambridge, MA, 2019), pp. 7589–7600

53. M. Schmidt, C. Schwiegelshohn, C. Sohler, Fair coresets and streaming algorithms for fair
k-means clustering. arXiv Prepr. arXiv1812.10854 (2018)

54. M. Böhm, A. Fazzone, S. Leonardi, C. Schwiegelshohn, Fair clustering with multiple colors.
arXiv Prepr. arXiv2002.07892 (2020)

55. I.M.Z.E.G. Jing, Y.I.B. Ayed, Clustering with fairness constraints: A flexible and scalable
approach. CoRR (2019)

56. X. Chen, B. Fain, C. Lyu, K. Munagala, Proportionally fair clustering. arXiv Prepr.
arXiv1905.03674 (2019)

57. S. Choi, J.-H. Yun, S.-K. Kim, A comparison of ICS datasets for security research based
on attack paths, in International Conference on Critical Information Infrastructures Security,
(2018), pp. 154–166

58. J. Goh, S. Adepu, K.N. Junejo, A. Mathur, A dataset to support research in the design of secure
water treatment systems, in International Conference on Critical Information Infrastructures
Security, (2016), pp. 88–99

59. T.S. Madhulatha, Comparison between k-means and k-medoids clustering algorithms, in
International Conference on Advances in Computing and Information Technology, (2011), pp.
472–481

http://dx.doi.org/10.1109/jiot.2020.2996425

Fuzzy Bayesian Learning for Cyber
Threat Hunting in Industrial Control
Systems

Kassidy Marsh and Samira Eisaloo Gharghasheh

1 Introduction

Threat hunting is a field of cybersecurity which involves actively searching for
threats in a system or network [1–5]. It often involves detecting anomalies among
normal behavior patterns for a particular environment, which makes threat hunting a
task which machine learning models are well-suited to [6–8]. When new, advanced
machine learning algorithms are invented, cybersecurity researchers seek to apply
them to improve automated security monitoring platforms [9–11]. With any security
monitoring system, for the majority of the time there will be no threat present,
and this makes it difficult to train supervised machine learning models to detect
threats [12]. While a good system would of course be able to detect threats that have
been seen before, for automated threat detection a model needs to be able to detect
new threats [13, 14]. Hackers invent new ways to attack systems every day. Thus,
a main challenge posed by automated security monitoring is the fact that threats
are rare and therefore hard to define [15–18]. It is not sufficient to simply log the
patterns created by previous attacks and keep an eye out for them in the future.
Security monitoring systems need to be able to detect never-before-seen behavior
that is a result of an attack [19]. While identifying abnormal behavior in a system is
currently the best method for the automated detection of threats, it should be noted
that this technique typically results in very high False Positive Rates (because not
all abnormal behavior will indicate malicious activity) [20]. Due to the fact that
it is impossible to train a threat hunting model to know exactly what a particular
threat will look like, unsupervised learning [21] is preferable to supervised learning
for automated security monitoring platforms [22]. There are exceptions to this, e.g.

K. Marsh (�) · S. E. Gharghasheh
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: kmarsh08@uoguelph.ca; samira@cybersciencelab.org

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_8

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_8&domain=pdf
mailto:kmarsh08@uoguelph.ca
mailto:samira@cybersciencelab.org
https://doi.org/10.1007/978-3-030-74753-4_8

118 K. Marsh and S. E. Gharghasheh

for malware detection it is beneficial for a machine learning model to learn what
common malwares look like [23, 24]. In [25], fuzzy logic (unsupervised machine
learning) is combined with Bayesian inference in order to create an optimized
fuzzy model which is tested on a randomly generated dataset. Fuzzy logic involves
making predictions based on predefined rules which are created based on prior
knowledge about data distribution [26], while Bayesian inference tries to find the
true probability of different predictions [27]. Fuzzy Bayesian learning combines
advantages of both methods; the fuzzy model incorporates prior knowledge about
the data in question, and an iterative Bayesian method known as Markov Chain
Monte Carlo (MCMC) optimizes the parameters of the fuzzy model [28]. In this
paper, we transformed the code that was provided by [25] and use it for cyber
threat hunting [29–37]. We used three cybersecurity datasets, with one containing
opcode samples and the other two containing monitoring data. Each dataset contains
both normal and attack samples, and the success of the fuzzy Bayesian model will
be based on its ability to detect attack samples. We redesigned the base fuzzy
model for each of our three datasets. MCMC code then optimized the parameters
of each fuzzy model, and finally the optimized parameters could be loaded back
into each respective fuzzy model (creating the finalized fuzzy Bayesian model). For
evaluation measures we used accuracy, True Positive Rate (TPR), False Positive
Rate (FPR), F1 score, precision, and Area Under Curve (AUC).

This work seeks to take a novel machine learning algorithm, fuzzy Bayesian
learning, and investigate its applicability to threat hunting. As mentioned earlier,
cybersecurity researchers are always looking for new machine learning algorithms
that are better adapted to the difficult task of system anomaly detection [9, 10,
38–42]. Potential contributions for future work include details on the requirements
of a dataset to be suited for fuzzy Bayesian learning, as well as suggestions for
developing the base fuzzy model (before MCMC).

Section 2 of this paper contains a literature review on similar papers from recent
years. Section 3 details the methodology used in this work, Sect. 4 contains the
results of our experiments, and in Sect. 5 we draw conclusions and suggest future
works. Finally, references are in last section.

2 Related Works

A fuzzy probability Bayesian network (FBPN) is proposed in [43] for dynamic
risk assessment. They used this system to detect and predict risks in Industrial
Control Systems (ICSs). In this paper, for evaluating cybersecurity risk on ICSs they
developed an approximate dynamic inference method and implemented a noise filter
to achieve better results. In [44] they propose a combination of fuzzy hashing and
augmented YARA rules to attain better results in ransomware triaging (assigning
levels of threat to different types). The results showed that their approach is slightly
better for ransomware triaging than just using standard YARA rules, with an
accuracy of 98.21%. In [45], the researchers proposed an anomaly detection system

Fuzzy Bayesian Learning for Cyber Threat Hunting in Industrial Control Systems 119

by combining fuzzy c-means clustering and artificial neural networks in cloud
environments. The performance of their suggested system was 92.73% for precision,
99.12% for recall and finally 96.31% for F-value. A two-step solution for malware
detection on mobile devices by combining a Naive Bayesian model and the fuzzy
c-means algorithm has been introduced in [46] By their new method, they achieved
an accuracy of 99.9% and a faster average speed in malware detection compared
to existing models. In order to detect ransomware and determine their families, [1]
proposed a Deep Ransomware Threat Hunting and Intelligence System (DRTHIS).
They achieved an F-measure of 99.6% and a TPR of 97.2% for ransomware
classification. The authors in [47] have proposed a technique of combining the
Bayesian and Dempster-Shafer theory (BDST) to compute trust for the delivery
of packets at the node level. Additionally, they combined BDST with fuzzy theory
to compute trust for secured routing at the link level and proposed “fuzzy- based
Bayesian Dempster–Shafer trusted routing (BDSFTR)”. Considering a network
where 10% of nodes are faulty, the highest packet delivery ratio achieved for BDST
and BDSFTR was 91.6%. In [23], they have implemented fast fuzzy pattern tree
and fuzzy models to classify malware based on opcode patterns. They achieved an
accuracy of 100% on an IoT dataset using potential heuristics on a fast fuzzy pattern
tree. In [48] a novel anti-phishing method was proposed. They developed new
features using hybrid feature analysis and obtained rules to create a fuzzy model.
Using the fuzzy model, they attained an accuracy of 93% in phishing detection.
A Two-hidden-layered Extreme Learning Machine has been proposed in [49] to
detecting and analyzing malware. They achieved 99.65% accuracy in detecting
malware on the IoT dataset. In [50], a comprehensive survey on the security of IoT,
challenges and potential solutions was proposed. To avoid security threats in IoT,
they classified IoT security challenges and their equivalent solutions by the layered
architecture. A novel Non-Interactive Zero-Knowledge Proofs (NIZKP) has been
proposed in [51] for authenticating the IoT devices.

While the traditional ZKP uses graph isomorphism their approach was based on
Merkle trees. In [52], for detecting IoT malware and polymorphic malware they
combined sequential pattern mining with machine learning algorithms. They were
able to achieve more than 99% accuracy and F-measure. A deep Recurrent Neural
Network was proposed in [9] to detecting malware on the IoT. They achieve the
highest accuracy of 99.18% in malware detection with Long Short-Term Memory
(LSTM) configuration [53]. has addressed the forensic and security challenges in
the IoT environment. They also introduced the papers that proposed corresponding
solutions. A comprehensive literature review on machine learning security solutions
for the IoT and its structure has been introduced in [54]. Their survey contained all
papers regards to IoT and machine learning security solutions of IoT up to 2019.

120 K. Marsh and S. E. Gharghasheh

3 Methodology

This section will describe the process that was used to transform the code from [26]
so that the fuzzy Bayesian model could be applied to cybersecurity datasets to detect
threats. The Bayesian part of the model remained the same; its goal is to run many
iterations of MCMC in order to optimize the parameters of the base fuzzy model.
The base fuzzy model needed to be entirely redesigned to suit other datasets, due
to the rule-based nature of fuzzy logic. A description is provided for each of the
datasets used in this paper, followed by a description of the base code which was
adapted for threat hunting. Finally, the process for redesigning the base fuzzy model
and subsequent testing on cybersecurity datasets is provided.

3.1 Description of Cybersecurity Datasets

Three datasets were used to test the threat hunting abilities of the fuzzy Bayesian
model designed in [26]. The first dataset consisted of opcode samples from IoT
devices; some samples were benign (representing normal activity on the device) and
some samples were malicious (representing malware activity on the device). The
second dataset contains monitoring samples from a Secure Water Treatment (SWAT)
system that was designed for research purposes, with samples being collected during
both normal circumstances and attack circumstances (when the system is being
attacked by a hacker) [55]. The third dataset has been generated through simulation
of a C-Town water distribution system using a MATLAB toolbox [56] The dataset
mostly contains data from normal activity in the water distribution system, but also
includes samples from when the system was under attack.

3.2 Description of Base Code

The base code that was provided in [25] contains three main components for running
the fuzzy Bayesian pipeline. The first component creates the base fuzzy model using
rules that are provided in the code. After initiating the fuzzy model, the dataset of
interest is loaded, and the output value of the fuzzy model is computed for each
entry in the dataset. The input values and corresponding output values are then
saved to a MATLAB-style file. This MATLAB file is then loaded into the second
component of the pipeline, where 10,000 iterations of MCMC are performed to
obtain optimized parameters for the base fuzzy model. Each iteration of MCMC
creates a new prediction for optimized parameters, and these predictions are saved
in an outputted CSV file. Each parameter will be represented by a column in the
CSV file, and the mean can be taken from each column to obtain the optimized

Fuzzy Bayesian Learning for Cyber Threat Hunting in Industrial Control Systems 121

Fig. 1 An overview of the base code. The third component is replaced in this paper

parameters (discarding predictions near the beginning and end of MCMC of the
10,000 iterations).

The final component provided in [25] loads the optimized parameters into the
base fuzzy model and then plots the posterior distribution of the fuzzy membership
functions. The plot is obtained by computing the fuzzy output for each individual
parameter estimation that was produced by MCMC, for each membership function.
For the purpose of this paper, we were not interested in plotting the posterior
distribution of membership functions but instead sought to observe if the optimized
parameters resulted in higher accuracy of the fuzzy model. We replaced this
component with one that initializes the base fuzzy model using the mean of the
MCMC columns as the parameters, and then runs that model on the dataset to obtain
evaluation metrics.

An overview of the base code is illustrated in Fig. 1.

3.3 Designing Fuzzy Models

For the first component of the fuzzy Bayesian system, the base fuzzy model had to
be recreated for each cybersecurity dataset. Because of this, the final code for this
paper is divided into three different pipelines, one for each dataset. The difficulty of
designing fuzzy models rests within defining meaningful rules. In many cases where
fuzzy logic is employed to address real-world problems, the rules are defined and/or
optimized based on the knowledge of experts in the field(s) relating to the dataset
of interest [57]. For example, a fuzzy model for diagnosing disease in patients is
likely to perform better when incorporating a doctor’s opinion into the diagnosis.
For this paper, we have three cybersecurity datasets and for each one we wish to
look for anomalies. Due to the nature of anomaly detection, it would be difficult
to incorporate an expert’s opinion into our fuzzy model. Instead, we performed
feature selection and reduction on the datasets and investigated the distribution of
the final feature sets. The IoT dataset required additional preprocessing whereas the
BATADAL and SWAT datasets were provided in a format that could be immediately
fed into machine learning algorithms.

122 K. Marsh and S. E. Gharghasheh

3.3.1 Feature Extraction: IoT Dataset

For the IoT malware dataset, initial data was provided in the form of many
opcode samples which were labelled as benign or malicious (malicious samples
representing malware). To convert these opcode samples into a usable dataset with
features, frequently occurring patterns needed to be extracted. Each pattern is a
feature. A pattern consists of a subset of operation codes, and the frequency of
patterns in each sample become the feature values. Patterns which occur many
times in a file provide more insight for classifying samples as benign or malicious.
Therefore, the minimum frequency to be considered a pattern was set to 50 (pattern
must appear at least 50 times in a file to be recognized as a pattern), while the
length of a pattern was set to 3 (3 consecutive opcodes). This resulted in a total
number of 4122 unique patterns, and therefore a new dataset was created where
each sample/file has 4122 associated features.

3.3.2 Feature Reduction & Selection

For the BATADAL and SWAT datasets, the number of initial features were 45 and
79, respectively. For all 3 datasets, we reduced the total number of features to 2
in order to lower the overall complexity of the fuzzy model. This is because for
each input feature, the fuzzy model needs to account for 3 possible instances (fuzzy
values) for that feature: low, medium, and high. Therefore, with just two input
features, 9 fuzzy rules are required to cover each possible combination of fuzzy
values: low-low, low-medium, low-high, medium-low, medium-medium, medium-
high, high-low, high-medium, and high-high. In order to reduce 45+ features to 2
features which can still be used to make predictions about the data, an embedding
technique was used on each of the 3 datasets.

Due to the high-dimensionality of the IoT dataset that was produced in Sect.
3.3.1, univariate feature selection was used to reduce the 4122 features to a more
manageable 200. The 200 features with the highest ANOVA F-values were kept.
Following this, t-distributed Stochastic Neighbor Embedding (t-SNE) was used on
all datasets to transform each to have only 2 features. t-SNE is an algorithm that
helps with visualization of high-dimensional datasets using feature reduction [58],
which is useful for the purpose of creating rules for fuzzy logic. Several different
embedding techniques were tried on each dataset individually, and t-SNE produced
the highest amount of separability between benign and malicious data in each case.

3.3.3 Designing Fuzzy Rules Based on Distribution of Features

Once the datasets were transformed to 2 features, creating fuzzy rules to classify
samples as benign or malicious was a matter of percentages. Fuzzy models are
created with antecedents and consequents. The antecedents take input values in crisp
form and fuzzify them, then the model applies fuzzy rules. Finally, the consequents

Fuzzy Bayesian Learning for Cyber Threat Hunting in Industrial Control Systems 123

Fig. 2 Illustration of how the fuzzy rule for the low-low category would be determined. This
process would be repeated for the remaining 8 fuzzy categories (low-medium, low-high, etc.)

convert fuzzy values back into crisp values for output. Therefore, we had two
antecedents (one for each input feature) and one consequent which was labelled
“suspiciousness”, i.e. a high output value indicates the sample in question is highly
suspected to be malicious. For each of our 2 antecedents, 3 membership functions
were assigned for fuzzy values: low, medium, and high. 9 fuzzy rules were created to
account for possible combinations of the two features (see Sect. 3.3.2). To simplify
membership functions, data was normalized so that each feature was between 0 and
1. An example of a low-low sample would be one where both input features are
below 0.25.

To determine the fuzzy rules, the percentage of benign samples in each com-
bination category was compared to the percentage of malicious samples in each
matching category. For example, if 60% of malicious samples fell into the low-low
category (both features fuzzified to “low”) but only 10% of benign samples fell into
the same category, the corresponding rule would be: “If feature1 is low and feature2
is low, then suspiciousness is high”. This is illustrated in Fig. 2.

3.4 MCMC and Testing

Once the base fuzzy model was created, the base code from [25] takes over
running 10,000 iterations of MCMC to obtain optimized parameters. After MCMC,
we re-created our base fuzzy model but with the parameters of the membership
functions being replaced by those outputted from MCMC. Finally, we simply
run the optimized fuzzy model on the correlating dataset and obtain evaluation
measurements. To evaluate the performance of the fuzzy models we used accuracy,
TPR, FPR, F1 scores, precision, and AUC.

124 K. Marsh and S. E. Gharghasheh

4 Results & Discussion

This section highlights the results that we achieved after implementing an FBL
algorithm to classify 3 different cybersecurity datasets. The evaluation metrics
which were specified in Sect. 3.4 are used to evaluate performance both before and
after each fuzzy model has been optimized (although pre-optimization metrics will
only include accuracy, TPR, and FPR). Results for each dataset will be discussed in
3 different subsections, and a summary of results can be seen in Table 1. Finally, a
brief evaluation is given for the overall performance of FBL on our datasets.

4.1 IoT Dataset

The best results we received were for the IoT dataset, which is no doubt due to the
high separability of the data between classes. The high separability is in turn a result
of the fact that malware samples, even if representing different malwares which were
created by different people, tend to have a lot in common in terms of frequent opcode
patterns [52]. Therefore, when executing the technique described in Sect. 3.3.3 for
calculating percentages of benign/malicious samples in each fuzzy category, there
were strong connections between each category and a particular class. For example,
61% of benign samples fell into the low-low category whereas 0% of malicious
samples were in that category. As a result, the following rule could be created with
exceptional confidence: “If feature1 is low and feature2 is low, suspiciousness is
low”. Confidence was similarly high for all rules that were created for the IoT
dataset.

The initial performance of the fuzzy model created for the IoT dataset was
excellent, with an accuracy of 97.97%, TPR of 98.52%, and FPR of 2.58%. After
optimization of the parameters for the fuzzy membership functions, the accuracy
rose slightly to 98.15%. While the FPR decreased to 1.49%, unfortunately the TPR
also decreased to 97.80%. While a low FPR is ideal, with malware classification
we are much more concerned with achieving a TPR that is close to 100% so that
the amount of malware that goes undetected is minimal. Therefore, for the purpose

Table 1 Summary of results for final FBL model

IoT dataset SWAT dataset BATADAL dataset

Accuracy 98.15% ↑0.18% 76.43% ↑3.77% 67.39% ↓0.05%
TPR 97.80% ↓0.72% 74.43% ↓6.13% 4.47% ↓25.81%
FPR 1.49% ↓1.09% 21.21% ↓14.03% 3.49% ↓27.6%
F1 score 98.16% 77.34% 7.98%
Precision 98.52% 80.52% 37.19%
AUC 98.09% 84.63% 53.08%

Accuracy, TPR, and FPR results show the increase/decrease from the base fuzzy model

Fuzzy Bayesian Learning for Cyber Threat Hunting in Industrial Control Systems 125

of malware classification, the base fuzzy model performs better before the Bayesian
technique of MCMC is involved. However, it should be noted that MCMC did in fact
succeed at slightly increasing accuracy by reducing FPR, and there may be certain
research circumstances where a lower FPR is more important than a high TPR. F1
score, precision, and AUC metrics for the optimized model can be found in Table 1.

4.2 SWAT Dataset

Unlike the IoT dataset, where malware samples had distinct behavioral patterns
which could be used to easily identify them, the SWAT dataset was not as easy
in terms of drawing a “line” between benign and malicious samples. This is because
the malicious samples in the SWAT dataset represent activity monitoring samples
from a system when the system is under attack by a hacker. Therefore, not only
are the malicious samples exceedingly outnumbered by the benign samples, they
are only uniquely identifiable in the sense that they appear slightly out of the norm
compared to benign activity samples. The same technique for creating fuzzy rules
was used as for the IoT dataset, however there was much less confidence in the rules.
For example, 28% of benign samples may fall into the low-low category, but 20%
of malicious samples fall into that category as well. The corresponding fuzzy rule
would still be that a low-low sample has low suspiciousness, but now this will result
in some incorrect classifications.

The initial accuracy of the fuzzy model for the SWAT dataset was 72.66%, with
a TPR of 80.56% and an FPR of 35.24%. After optimization of parameters by
MCMC, accuracy increased to 76.43% and FPR was reduced to 21.21%, but TPR
was reduced to 74.43%. Unfortunately, the final results are similar to those of IoT
in the sense that while accuracy and FPR are improved, the TPR is reduced and this
is highly undesirable for a threat hunting algorithm. When threat hunting through
anomaly detection, false positives are expected [59] whereas false negatives need
to be avoided as much as possible. Once again, the FBL algorithm succeeded in
the sense that it improved the accuracy of the base fuzzy model, but at the cost of
a slightly lowered TPR which is an unacceptable consequence for threat hunting
purposes. F1 score, precision, and AUC metrics for the optimized model can be
found in Table 1.

4.3 BATADAL Dataset

Results for the BATADAL dataset were overall poor. Unfortunately, this dataset
just did not conform well to any of the techniques that were described in the
methodology. t-SNE still proved to be the best embedding technique to transform
the data into a 2-feature dataset, however there was heavy overlap in the percentages
of benign and malicious samples which fell into each fuzzy category. For example,

126 K. Marsh and S. E. Gharghasheh

for the low-low category, there may be roughly the same percentage of benign
samples in the category as there are malicious. This made it extremely difficult
to define fuzzy rules and led to several rules where the outputted fuzzy value for
suspiciousness was medium instead of high or low. As a result, the base fuzzy model
performed poorly.

The accuracy of the base fuzzy model was 67.44%, with a TPR of 30.28% and
an FPR of 31.09%. Clearly, these results are unacceptable for the purpose of threat
hunting, in particular the TPR. The 10,000 iterations of MCMC did not help the
model; using the “optimized” parameters that were outputted, accuracy was actually
reduced to 67.39%, with a TPR of 4.47% and an FPR of 3.49%. This suggests that
this dataset is simply not suited for the FBL algorithm, which is likely consequent
to the fact that this dataset is not suited for fuzzy logic.

One possible reason for the difficulty of creating a base fuzzy model for the
BATADAL dataset could be that the number of malicious samples is far too
outnumbered by the number of benign samples. There are 12,446 malicious samples
in the BATADAL dataset compared to only 492 benign. It is possible that the
collection of additional data which includes malicious samples would allow for a
more accurate fuzzy model.

4.4 Evaluation of FBL

For the purposes of threat hunting, FBL proved very effective for the IoT dataset
and moderately effective for the SWAT dataset. An accuracy of approximately 98%
was achieved for the IoT dataset, which is the same accuracy reported in [9] where
a deep Recurrent Neural Network was used to classify malware in a similar dataset.
In [60], a deep learning model is used on the same SWAT dataset and a TPR of
approximately 85% is achieved, which is higher than our 80.56% TPR (achieved
with the base fuzzy model, pre-optimization). However, the deep learning model
that is used in [60] is a Convolutional Neural Network, an algorithm which is
significantly more computationally expensive than a fuzzy model.

For both IoT and SWAT datasets, the fuzzy model on its own performed well and
in fact the Bayesian part of FBL (MCMC iterations) seemed to hurt the performance
of classifying benign and malicious samples. While accuracy rose slightly in both
cases, TPR was lowered and this is unacceptable for threat hunting purposes.
However, for both cases, MCMC increased accuracy in part by reducing FPR. There
may be scenarios where a low FPR is more important than a high TPR, in which case
FBL would be a good way to optimize a fuzzy model.

Due to poor results for the BATADAL dataset, even for the base fuzzy model,
these results were not used for evaluation of FBL.

Fuzzy Bayesian Learning for Cyber Threat Hunting in Industrial Control Systems 127

5 Conclusion & Future Work

FBL proved to be an effective algorithm for threat hunting in 2 out of 3 cybersecurity
datasets used in this work. For the BATADAL dataset, a base fuzzy model could
not be built which was capable of decent performance; this could possibly be
remedied by additional data collection which includes malicious samples. For the
IoT and SWAT datasets, the algorithm successfully took a base fuzzy model for
detecting malicious samples and optimized the parameters through 10,000 iterations
of MCMC, which slightly improved the accuracy of each model. The accuracies of
the initial fuzzy models for the IoT and SWAT datasets were 97.97% and 72.66%,
respectively. The accuracies of the optimized fuzzy models for the IoT and SWAT
datasets were 98.15% and 76.43%, respectively. Unfortunately, for both the IoT and
the SWAT dataset, the increase in accuracy came at the cost of a slightly lowered
TPR. This indicates that the algorithm is not entirely suited to threat hunting, as it
is always desirable to detect as many real threats as possible. Even the best threat
hunting algorithms are bound to have a high number of false positives, which means
the lower FPR produced by parameter optimization in this paper is not beneficent.

While the parameter optimization segment of the FBL algorithm did not seem
to assist with threat hunting, the base fuzzy models created in this paper showed
promising results for the IoT and SWAT datasets. For future work, continued
investigation should be performed on the use of fuzzy logic for threat hunting.
Furthermore, while MCMC had little effect on fuzzy model performance in this
paper, other methods which could potentially improve the TPR of threat hunting
fuzzy models should be explored.

References

1. S. Homayoun et al., Deep dive into ransomware threat hunting and intelligence at fog layer.
Futur. Gener. Comput. Syst. 90(Jan 19), 94–104 (2018)

2. A.N. Jahromi, S. Hashemi, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, An enhanced stacked
LSTM method with no random initialization for malware threat hunting in safety and time-
critical systems. IEEE Trans. Emerg. Top. Comput. Intell. 4(5), 630–640 (2020). https://
doi.org/10.1109/tetci.2019.2910243

3. M.M. BehradFar et al., RAT hunter: Building robust models for detecting remote access trojans
based on optimum hybrid features, in Handbook of Big Data Privacy, (Springer, Cham, 2020),
pp. 371–383. https://doi.org/10.1007/978-3-030-38557-6_18

4. H. Darabian et al., A multiview learning method for malware threat hunting: Windows, IoT
and android as case studies. World Wide Web 23(2), 1241–1260 (2020)

5. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88 (2020).
https://doi.org/10.1016/j.cose.2019.101629

6. S. Schmitt, F.I. Kandah, D. Brownell, Intelligent threat hunting in software-defined networking,
in 2019 IEEE International Conference on Consumer Electronics (ICCE), (2019), pp. 1–5

7. H.H. Pajouh, R. Javidan, R. Khayami, D. Ali, K.-K.R. Choo, A two-layer dimension
reduction and two-tier classification model for anomaly-based intrusion detection in IoT
backbone networks. IEEE Trans. Emerg. Top. Comput. (2016). https://doi.org/10.1109/
TETC.2016.2633228

http://dx.doi.org/10.1109/tetci.2019.2910243
http://dx.doi.org/10.1007/978-3-030-38557-6_18
http://dx.doi.org/10.1016/j.cose.2019.101629
http://dx.doi.org/10.1109/TETC.2016.2633228

128 K. Marsh and S. E. Gharghasheh

8. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

9. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for internet of things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

10. D. Karev, C. McCubbin, R. Vaulin, Cyber threat hunting through the use of an isolation forest,
in Proceedings of the 18th International Conference on Computer Systems and Technologies,
(2017), pp. 163–170

11. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, Blockchain-enabled authen-
tication handover with efficient privacy protection in SDN-based 5G networks, in IEEE
Transactions on Network Science and Engineering, (IEEE, 2019), pp. 1–1. https://doi.org/
10.1109/tnse.2019.2937481

12. H. Karimipour, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, H. Leung, A deep and scalable
unsupervised machine learning system for cyber-attack detection in large-scale smart grids.
IEEE Access 7, 80778–80788 (2019)

13. M.N.S. Miazi, M.M.A. Pritom, M. Shehab, B. Chu, J. Wei, The design of cyber threat hunting
games: A case study, in 2017 26th International Conference on Computer Communication and
Networks (ICCCN), (2017), pp. 1–6

14. H. Hashemi, A. Azmoodeh, A. Hamzeh, S. Hashemi, Graph embedding as a new approach for
unknown malware detection. J. Comput. Virol. Hacking Tech. 13(3), 153–166 (2017)

15. J. Sakhnini, H. Karimipour, A. Dehghantanha, R.M. Parizi, G. Srivastava, Security aspects of
Internet of Things aided smart grids: A bibliometric survey. Internet of things 1, 100111 (2019)

16. P.N. Bahrami, A. Dehghantanha, T. Dargahi, R.M. Parizi, K.-K.R. Choo, H.H.S. Javadi, Cyber
kill chain-based taxonomy of advanced persistent threat actors: Analogy of tactics, techniques,
and procedures. J. Inf. Process. Syst. 15(4), 865–889 (2019)

17. S. Grooby, T. Dargahi, A. Dehghantanha, Protecting IoT and ICS platforms against advanced
persistent threat actors: Analysis of APT1, Silent Chollima and molerats, in Handbook of Big
Data and IoT Security, (Springer, Berlin, 2019), pp. 225–255

18. H. Mwiki, T. Dargahi, A. Dehghantanha, K.-K.R. Choo, Analysis and triage of advanced
hacking groups targeting western countries critical national infrastructure: APT28, RED
October, and Regin, in Critical Infrastructure Security and Resilience, (Springer, Berlin, 2019),
pp. 221–244

19. A. Al-Abassi, H. Karimipour, A. Dehghantanha, R.M. Parizi, An ensemble deep learning-based
cyber-attack detection in industrial control system. IEEE Access 8, 83965–83973 (2020)

20. A. Sharma, Z. Kalbarczyk, J. Barlow, R. Iyer, Analysis of security data from a large computing
organization, in 2011 IEEE/IFIP 41st International Conference on Dependable Systems &
Networks (DSN), (2011), pp. 506–517

21. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, S. Hashemi, B. Gharabaghi, G. Srivastava,
Active spectral botnet detection based on eigenvalue weighting, in Handbook of Big Data
Privacy, (Springer, Cham, 2020), pp. 385–397. https://doi.org/10.1007/978-3-030-38557-
6_19

22. H. Karimipour, H. Leung, Relaxation-based anomaly detection in cyber-physical systems using
ensemble Kalman filter. IET Cyber-Physical Syst. Theory Appl. 5(1), 49–58 (2020)

23. E.M. Dovom, A. Azmoodeh, A. Dehghantanha, D.E. Newton, R.M. Parizi, H. Karimipour,
Fuzzy pattern tree for edge malware detection and categorization in IoT. J. Syst. Archit. 97,
1–7 (2019)

24. M. Alaeiyan, A. Dehghantanha, T. Dargahi, M. Conti, S. Parsa, A multilabel fuzzy relevance
clustering system for malware attack attribution in the edge layer of cyber-physical networks.
ACM Trans. Cyber-Physical Syst. 4(3), 1–22 (2020)

25. I. Pan, D. Bester, Fuzzy Bayesian learning. IEEE Trans. Fuzzy Syst. 26(3), 1719–1731 (2017)
26. L.A. Zadeh, Fuzzy logic. Computer (Long Beach Calif) 21, 83–93 (1988)
27. A.P. Dempster, A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B 30(2), 205–232

(1968)

http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1109/tnse.2019.2937481
http://dx.doi.org/10.1007/978-3-030-38557-6_19

Fuzzy Bayesian Learning for Cyber Threat Hunting in Industrial Control Systems 129

28. C. Andrieu, N. De Freitas, A. Doucet, M.I. Jordan, An introduction to MCMC for machine
learning. Mach. Learn. 50(1–2), 5–43 (2003)

29. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, H. Karimipour, S.R. Karizno,
SLPoW: Secure and low latency proof of work protocol for blockchain in green IoT networks,
in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), (2020), pp. 1–5

30. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, Blockchain-enabled authentica-
tion handover with efficient privacy protection in SDN-based 5G networks. IEEE Trans. Netw.
Sci. Eng. (2019). https://doi.org/10.1109/TNSE.2019.2937481

31. A. Singh, K. Click, R.M. Parizi, Q. Zhang, A. Dehghantanha, K.-K.R. Choo, Sidechain
technologies in blockchain networks: An examination and state-of-the-art review. J. Netw.
Comput. Appl. 149, 102471 (2020). https://doi.org/10.1016/j.jnca.2019.102471

32. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, Q. Zhang, K.-K.R. Choo, An energy-efficient
SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans.
Serv. Comput. (2020). https://doi.org/10.1109/TSC.2020.2966970

33. D. Połap, G. Srivastava, A. Jolfaei, R.M. Parizi, Blockchain technology and neural networks
for the internet of medical things, in IEEE INFOCOM 2020 – IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), (2020), pp. 508–513. https://doi.org/
10.1109/INFOCOMWKSHPS50562.2020.9162735

34. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, M. Aledhari,
Decentralized authentication of distributed patients in hospital networks using blockchain.
IEEE J. Biomed. Health Inform. 24(8), 2146–2156 (2020)

35. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag., 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

36. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

37. R.M. Parizi, S. Homayoun, A. Yazdinejad, A. Dehghantanha, K.-K.R. Choo, Integrating
privacy enhancing techniques into blockchains using sidechains, in IEEE Canadian Conference
of Electrical and Computer Engineering, CCECE 2019, (2019). https://doi.org/10.1109/
CCECE.2019.8861821

38. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (2019), pp. 1–6

39. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. 115, 619–640
(2020)

40. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency malware hunting: A deep recurrent neural network approach. Appl. Soft
Comput. Elsevier 96, 106630 (2020)

41. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

42. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

43. Q. Zhang, C. Zhou, Y.-C. Tian, N. Xiong, Y. Qin, B. Hu, A fuzzy probability Bayesian network
approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Trans.
Ind. Inform. 14(6), 2497–2506 (2017)

44. N. Naik, P. Jenkins, N. Savage, L. Yang, K. Naik, J. Song, Augmented YARA rules fused with
fuzzy hashing in ransomware triaging, in 2019 IEEE Symposium Series on Computational
Intelligence (SSCI), (2019), pp. 625–632

45. N. Pandeeswari, G. Kumar, Anomaly detection system in cloud environment using fuzzy
clustering based ANN. Mob. Netw. Appl. 21(3), 494–505 (2016)

http://dx.doi.org/10.1109/TNSE.2019.2937481
http://dx.doi.org/10.1016/j.jnca.2019.102471
http://dx.doi.org/10.1109/TSC.2020.2966970
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162735
http://dx.doi.org/10.1016/j.ipm.2020.102370
http://dx.doi.org/10.1109/CCECE.2019.8861821
http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1109/jiot.2020.3015382

130 K. Marsh and S. E. Gharghasheh

46. A. Razaque, Z. Xihao, W. Liangjie, M. Almiani, Y. Jararweh, M.J. Khan, Naïve Bayesian and
fuzzy C-means algorithm for mobile malware detection precision, in 2018 Fifth International
Conference on Internet of Things: Systems, Management and Security, (2018), pp. 239–243

47. D. Velusamy, G.K. Pugalendhi, Fuzzy integrated Bayesian Dempster–Shafer theory to defend
cross-layer heterogeneity attacks in communication network of Smart Grid. Inf. Sci. (NY) 479,
542–566 (2019)

48. R. AlShboul, F. Thabtah, N. Abdelhamid, M. Al-Diabat, A visualization cybersecurity method
based on features’ dissimilarity. Comput. Secur. 77, 289–303 (2018)

49. A.N. Jahromi et al., An improved two-hidden-layer extreme learning machine for malware
hunting. Comput. Secur. 89, 101655 (2020)

50. H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, M. Aledhari, H. Karimipour, A survey on
internet of things security: Requirements, challenges, and solutions. Internet of Things 3,
100129 (2019)

51. M. Walshe, G. Epiphaniou, H. Al-Khateeb, M. Hammoudeh, V. Katos, A. Dehghantanha, Non-
interactive zero knowledge proofs for the authentication of IoT devices in reduced connectivity
environments. Ad Hoc Netw. 95, 101988 (2019)

52. H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, K.R. Choo, An opcode-based
technique for polymorphic Internet of Things malware detection. Concurr. Comput. Pract. Exp.
32(6), e5173 (2020)

53. M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of Things security and forensics:
Challenges and opportunities. Futur. Gener. Comput. Syst. 78, 544–546 (2018). https://doi.org/
10.1016/j.future.2017.07.060

54. S.M. Tahsien, H. Karimipour, P. Spachos, Machine learning based solutions for security of
Internet of Things (IoT): A survey. J. Netw. Comput. Appl. 161, 102630 (2020)

55. J. Goh, S. Adepu, K.N. Junejo, A. Mathur, A dataset to support research in the design of secure
water treatment systems, in International Conference on Critical Information Infrastructures
Security, (2016), pp. 88–99

56. R. Taormina et al., Battle of the attack detection algorithms: Disclosing cyber attacks on water
distribution networks. J. Water Resour. Plan. Manag. 144(8), 4018048 (2018)

57. A. Kaufmann, Theory of expertons and fuzzy logic. Fuzzy Sets Syst. 28(3), 295–304 (1988)
58. L. van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov),

2579–2605 (2008)
59. L. Franklin, M. Pirrung, L. Blaha, M. Dowling, M. Feng, Toward a visualization-supported

workflow for cyber alert management using threat models and human-centered design, in 2017
IEEE Symposium on Visualization for Cyber Security (VizSec), (2017), pp. 1–8

60. M. Kravchik, A. Shabtai, Detecting cyber attacks in industrial control systems using convo-
lutional neural networks, in Proceedings of the 2018 Workshop on Cyber-Physical Systems
Security and Privacy, (2018), pp. 72–83

http://dx.doi.org/10.1016/j.future.2017.07.060

Cyber-Attack Detection
in Cyber-Physical Systems Using
Supervised Machine Learning

Prabhat Semwal and Akansha Handa

1 Introduction

The cyber-physical systems can be defined as the systems built by integrating
sensors, computers, networks, communication, and other digital monitoring compo-
nents into physicals infrastructure to control or monitor the infrastructure remotely
and autonomously [1–3]. Some real-world examples of CPS include Smart grids,
medical monitoring systems, robotics, autonomous vehicles, soil treatment plants,
and water treatment plants [4–8]. The cyber-physical infrastructure operations
include both cyber and physical aspects which make these systems vulnerable to
both cyber and physical security threats. The attack on CPS can have a huge impact
due to the diversity and scope of operations of these structures [6, 9–13]. Thus,
the cyber aspect of such CPS has been studied in many pieces of research, which
contributed their finds in detecting the cyber-attacks on CPS using machine learning
[12, 14–17]. Advancement in Machine Learning and Deep Learning models has
motivated the cybersecurity communities for leveraging these models so as to
enhance the privacy and security of CPS [18–24]. During the past decade several
models have been proposed for a diverse range of cybersecurity including malware
detection [25–28], threat hunting [29–32] and privacy protection [33].

In this paper, we have used the SWat dataset which is the data collected from
a Secure Water Treatment plant [34]. The data was collected for both normal
operational days and few days with attacks on the water treatment. The dataset
is processed and used to perform the cyber-attack detection on CPS systems
using different supervised machine learning algorithms. We have performed the
comparative analysis on the four models based on the major evaluation matrices:

P. Semwal (�) · A. Handa
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: psemwal@uoguelph.ca; ahanda@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_9

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_9&domain=pdf
mailto:psemwal@uoguelph.ca
mailto:ahanda@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_9

132 P. Semwal and A. Handa

Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and the Receiver
Operating Characteristics (ROC) curve and Area Under ROC Curve (AUC).

2 Literature Review

In earlier studies, many computer scientists have proposed various approaches
to resolve cyber threat hunting problems using different techniques of machine
learning [35–39]. Cyber-attack detection is usually accomplished by grouping using
power device data or measurements [40–44]. The involvement of risks or attacks
is measured in various security and contact levels of the network. Cyber-attacks
are observed by measurements by the improved state- estimation techniques using
mode-based technique [45]. Numerous studies have presented network traffic-based
intrusion detection Ghaeini et al. [46] employ this approach on the SWaT dataset
used in our study. Similarly, [47] proposed an Enhanced SVM approach with
combined features from two machine learning techniques demonstrated a low false-
positive rate. Another paper [48] uses the Random forest Algorithm and achieves
a significant accuracy of 94.0187% for cyber-attack detection. A behavior-based
machine learning (ML) approach for the detection of any abnormal behavior or
attack that may attempt to modify the behavior of the CPS [15]. This method not
only recognizes the cyber-attack occurred on a layer of the physical process, but it
also identifies the specific attack type. In This study [49] learns how to combine
different machine learning methods with the IDS improving the accuracy of threat
identification. A prototype IDS is expected in this study. This IDS prototype is
equipped to improve accuracy in the identification of several attacks through a
combination of machine learning methods. This method not only recognizes the
cyber-attack occurred on a layer of the physical process, but it also identifies the
specific attack type. In [50] the proposed cyberattack detection system has high
detection accuracy and wide attack coverage in order to detect unrecognized attacks
using network and host system information.

3 Methodology

This section will describe the process followed to build our supervised machine
learning models which can detect the cyber-attack samples from the SWat dataset.

3.1 Dataset Processing

The Swat dataset consists of 77 features and a total of 14,995 data points, 9521
normal and 5474 attack data points. The few features like timestamp and other less

Cyber-Attack Detection in Cyber-Physical Systems Using Supervised Machine. . . 133

critical features were removed to process the dataset. The label feature (Target) was
marked as 1 for attack and 0 for the normal activity data point.

3.1.1 Feature Selection

To reduce the overall dimensionality of the dataset, we performed the feature
extraction process. The best feature that can contribute to the target variable was
extracted by combining results of ExtraTreeClassifier and SelectKBest algorithms
of Scikit-learn library and are shown in Fig. 1a, b respectively.

The most common and highest-ranked features were extracted and used for all
the four-classification model. As shown in Table 1, the major operations of the water
treatment plant was used as a major feature category set and the same category of
features were used to identify the functionality of water plants at different levels
process.

LIT 301

a b

AIT 301
FIT 503

P3_STATE
FIT 502
AIT 202
PIT 502
PIT 503
AIT 502
AIT 501
PIT 501
AIT 303

LSH 601
AIT 402
AIT 201

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Fig. 1 (a) ExtraTreeClassifier (b) SelectKBest Result

Table 1 Feature category Feature name Description

FIT Sensor: Inflow into the water tank
LIT Sensor: Level transmitter
PIT Sensor: Pressure meter
LSH Alarm
AIT Sensor

134 P. Semwal and A. Handa

3.2 Machine Learning Classifiers

For the detection of cyber-attack samples, the KNN, SVM, Decision Tree, and
Random Forest, classifiers were trained and tested on the transformed dataset, and
results were recorded for comparative analysis.

3.2.1 KNN Model

In the KNN model, we used the processed dataset explained in Sect. 3.2.1. The KNN
was implemented with the use of the Sckilearn library and in KNN we initialize the
K = 4, but after trial and error K was finally set to 1 and the model was trained with
K = 1 on the processed dataset.

3.2.2 SVM Model

The SVM model was trained and tested on the processed dataset. For SVM, kernel
function was set to linear, and probability was set to True.

3.2.3 DT Model

Our DT Model was trained with the processed dataset. The DT model simply
designs an inverted tree structure on the base of a trained dataset and then classify a
sample by tracing the down designed tree.

3.2.4 RF Model

The RF model is like the DT model, but the RF model creates multiple decision
trees instead of only one decision tree. In our RF model, the maximum depth was
set to 2.

4 Results and Discussion

This section highlights the results achieved with different supervised machine
learning techniques in detecting cyber-attack on a CPS system and will describe
the comparative analysis results.

Cyber-Attack Detection in Cyber-Physical Systems Using Supervised Machine. . . 135

4.1 Evaluation Measures

To evaluate and compare the performance of the models, we have used the
commonly used evaluation metrics. Table 2 contains a description of the used
evaluation metrics for comparative analysis.

4.2 Experiment and Results

The processed dataset with the total samples of 14,994 and selected features was
used to test all the models. All the models were trained on the processed dataset
and the results observed on the basis of evaluation metrics (Table 2) are shown in
Table 3.

4.3 Comparison of Models

In our experiment, the KNN model achieved an accuracy of 99%. The TPR received
for KNN was 99.9% and the FPR was approximately 0%. With the SVM model, we
received an accuracy of 98.7% and the average values of TPR and FPR were 99%
and 0.01% respectively. Our DT model received 99% accuracy on the processed
dataset and approximately 99% TPR and 0% FPR. Whereas, the RF model hit the
accuracy of 96% with 98% APR and 0.01% FPR. According to the three-evaluation
metrics values mentioned in Table 3, the DT model performed more effectively than
other supervised machine learning models in classifying the cyber-attack samples
in the Swat dataset.

Table 2 Description of evaluation metric used for comparative analysis

Evaluation metric Description

TPR T P
T P+FN

FPR FP
FP+T N

Accuracy T P+T N
T P+T N+FP+FN

ROC Curve Formed by plotting TPR against FPR at various threshold settings
AUC The area under the ROC curve

Table 3 Observed accuracy,
TPR and FPR values

Model Accuracy TPR FPR

KNN 99.65 99.9 0.008
SVM 98.70 99.03 0.018
DT 99.9 99.0 0.006
RF 96.3 98.6 0.013

136 P. Semwal and A. Handa

1.0

1.0

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

KNeighborsClassifier, AUC=0.999
DecisionTreeClassifier, AUC=0.999

RandomForestClassifier, AUC=0.993
SVC, AUC=0.842

0.5

0.5

Flase Positive Rate

ROC Curve Analysis
T

ru
e

P
o

si
ti

ve
 R

at
e

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0.0

0.0

Fig. 2 ROC Curve for all four supervised machine learning models

4.4 ROC Curve

A ROC curve is a common graphical evaluation metric that is used for evaluating
the performance of different machine learning classifiers. It allows us to analyze the
binary classifier’s capability of distinguishing between classes [51]. It is simply a
plot of TPR and FPR at different threshold settings.

The ROC curve for classification of cyber-attack samples on a processed dataset,
for all four supervised classification models, is shown in Fig. 2. As shown in the
legend, the overall AUC value for KNN was 0.99, 0.99 for DT, 0.84 for SVM, and
0.99 for RF. The average AUC of all four models was extremely close to 1 which
depicts that all four models perform better for binary classification of cyber-attack
in a processed dataset. Although, the AUC value observed for all four models was
close to 1. However, the AUC value for both KNN and DT is almost equal to 1 with
AUC equal to 0.999 for both KNN and DT.

5 Conclusion

We were able to successfully design the four different machine learning models
to classify the cyber-attack samples accurately from the Swat dataset. The results
achieved using the critical evaluation metrics allowed us to perform effective

Cyber-Attack Detection in Cyber-Physical Systems Using Supervised Machine. . . 137

comparative analysis and propose the most suitable algorithm. Using these four
supervised machine learning algorithms, we achieved an overall accuracy of 99%
with KNN, 98% with SVM, 99% with DT, and 96% with RF. On the base of all the
evaluation metrics, the DT outperforms the other classifier models with a reasonable
high accuracy of 99.9% and other almost ideal evaluation metrics.

The future work will be to evaluate the other supervised machine learning
algorithms and to experiment with the different cyber-physical system datasets.

References

1. H. Karimipour, H. Leung, Relaxation-based anomaly detection in cyber-physical systems using
ensemble Kalman filter. IET Cyber-Phys. Syst. Theory Appl. 5(1), 49–58 (2020)

2. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of
the OpenFlow v1.3 Switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3), 1299–1320
(2018). https://doi.org/10.1007/s11227-017-2175-7

3. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88, 101629
(2020). https://doi.org/10.1016/j.cose.2019.101629

4. H. Karimipour, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, H. Leung, A deep and scalable
unsupervised machine learning system for cyber-attack detection in large-scale smart grids.
IEEE Access 7, 80778–80788 (2019)

5. H. Karimipour, V. Dinavahi, Extended Kalman filter-based parallel dynamic state estimation.
IEEE Trans. Smart Grid 6(3), 1539–1549 (2015)

6. F. Daryabar, A. Dehghantanha, N.I. Udzir, S.B. Shamsuddin, Towards secure model for
SCADA systems, in Proceedings Title: 2012 International Conference on Cyber Security,
Cyber Warfare and Digital Forensic (CyberSec), (2012), pp. 60–64

7. S. Walker-Roberts, M. Hammoudeh, A. Dehghantanha, A systematic review of the availability
and efficacy of countermeasures to internal threats in healthcare critical infrastructure. IEEE
Access 6, 25167–25177 (2018, March). https://doi.org/10.1109/ACCESS.2018.2817560

8. S. Nakhodchi, A. Dehghantanha, H. Karimipour, Privacy and security in smart and precision
farming: A bibliometric analysis, in Handbook of Big Data Privacy, (Springer, Cham, 2020),
pp. 305–318

9. S. Watson, A. Dehghantanha, Digital forensics: The missing piece of the internet of
things promise. Comput. Fraud Secur. 2016(6), 5–8 (2016). https://doi.org/10.1016/s1361-
3723(15)30045-2

10. A. Al-Abassi, H. Karimipour, H.H. Pajouh, A. Dehghantanha, R.M. Parizi, Industrial big data
analytics: Challenges and opportunities, in Handbook of Big Data Privacy, ed. by K.-K. R.
Choo, A. Dehghantanha, (Springer, Cham, 2020), pp. 37–61

11. M. Alaeiyan, A. Dehghantanha, T. Dargahi, M. Conti, S. Parsa, A multilabel fuzzy relevance
clustering system for malware attack attribution in the edge layer of cyber-physical networks.
ACM Trans. Cyber-Phys. Syst. 4(3), 1–22 (2020)

12. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An ensemble
of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE
Internet Things J. 7(9), 8852–8859 (2020). https://doi.org/10.1109/jiot.2020.2996425

13. E.M. Dovom, A. Azmoodeh, A. Dehghantanha, D.E. Newton, R.M. Parizi, H. Karimipour,
Fuzzy pattern tree for edge malware detection and categorization in IoT. J. Syst. Archit. 97,
1–7 (2019)

14. M. Kravchik, A. Shabtai, Detecting cyber attacks in industrial control systems using convo-
lutional neural networks, in Proceedings of the 2018 Workshop on Cyber-Physical Systems
Security and Privacy, (2018), pp. 72–83

http://dx.doi.org/10.1007/s11227-017-2175-7
http://dx.doi.org/10.1016/j.cose.2019.101629
http://dx.doi.org/10.1109/ACCESS.2018.2817560
http://dx.doi.org/10.1016/s1361-3723(15)30045-2
http://dx.doi.org/10.1109/jiot.2020.2996425

138 P. Semwal and A. Handa

15. K.N. Junejo, J. Goh, Behaviour-based attack detection and classification in cyber physical
systems using machine learning, in Proceedings of the 2nd ACM International Workshop on
Cyber-Physical System Security, (2016), pp. 34–43

16. J. Inoue, Y. Yamagata, Y. Chen, C.M. Poskitt, J. Sun, Anomaly detection for a water treatment
system using unsupervised machine learning, in 2017 IEEE International Conference on Data
Mining Workshops (ICDMW), (2017), pp. 1058–1065

17. M. Saharkhizan, A. Azmoodeh, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Sri-
vastava, A hybrid deep generative local metric learning method for intrusion detection, in
Handbook of Big Data Privacy, (Springer, Cham, 2020), pp. 343–357. https://doi.org/10.1007/
978-3-030-38557-6_16

18. A. Azmoodeh, A. Dehghantanha, Big data and privacy: Challenges and opportunities, in
Handbook of Big Data Privacy, (Springer, Cham, 2020), pp. 1–5. https://doi.org/10.1007/978-
3-030-38557-6_1

19. D.R. McKinnel, T. Dargahi, A. Dehghantanha, K.-K.R. Choo, A systematic literature review
and meta-analysis on artificial intelligence in penetration testing and vulnerability assessment.
Comput. Electr. Eng. 75, 175–188 (2019)

20. J.C. Cabello, H. Karimipour, A.N. Jahromi, A. Dehghantanha, R.M. Parizi, Big-data and
cyber- physical systems in healthcare: Challenges and opportunities, in Handbook of Big Data
Privacy, ed. by K.-K. R. Choo, A. Dehghantanha, (Springer, Cham, 2020)

21. M. Conti, T. Dargahi, A. Dehghantanha, Cyber threat intelligence: Challenges and opportuni-
ties, in Advances in Information Security, (Springer, 2018), pp. 1–6. https://doi.org/10.1007/
978-3-319-73951-9_1

22. StratoEnergetics, Slaughterbots (2017)
23. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, G. Srivastava, S. Mohan, A.M. Rababah, Cost

optimization of secure routing with untrusted devices in software defined networking. J.
Parallel Distrib. Comput. 143, 36–46 (2020)

24. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, Blockchain-enabled authentica-
tion handover with efficient privacy protection in SDN-based 5G networks. IEEE Trans. Netw.
Sci. Eng., 1–1 (2019). https://doi.org/10.1109/tnse.2019.2937481

25. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

26. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

27. H. Haddadpajouh, A. Azmoodeh, A. Dehghantanha, R.M. Parizi, MVFCC: A multi-view fuzzy
consensus clustering model for malware threat attribution. IEEE Access 8, 139188–139198
(2020)

28. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for internet of things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

29. A.N. Jahromi, S. Hashemi, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, An enhanced stacked
LSTM method with no random initialization for malware threat hunting in safety and time-
critical systems. IEEE Trans. Emerg. Top. Comput. Intell. 4(5), 630–640 (2020). https://
doi.org/10.1109/tetci.2019.2910243

30. S. Homayoun et al., Deep dive into ransomware threat hunting and intelligence at fog layer.
Futur. Gener. Comput. Syst. 90(Jan 19), 94–104 (2018)

31. S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, R. Khayami, Know abnormal,
find evil: Frequent pattern mining for ransomware threat hunting and intelligence. IEEE Trans.
Emerg. Top. Comput. (2017). https://doi.org/10.1109/TETC.2017.2756908

32. S. Homayoun et al., DRTHIS: Deep ransomware threat hunting and intelligence system
at the fog layer. Futur. Gener. Comput. Syst. 90, 94–104 (2019). https://doi.org/10.1016/
j.future.2018.07.045

http://dx.doi.org/10.1007/978-3-030-38557-6_16
http://dx.doi.org/10.1007/978-3-030-38557-6_1
http://dx.doi.org/10.1007/978-3-319-73951-9_1
http://dx.doi.org/10.1109/tnse.2019.2937481
http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1109/tetci.2019.2910243
http://dx.doi.org/10.1109/TETC.2017.2756908
http://dx.doi.org/10.1016/j.future.2018.07.045

Cyber-Attack Detection in Cyber-Physical Systems Using Supervised Machine. . . 139

33. A. Aminnezhad, A. Dehghantanha, M.T. Abdullah, A survey on privacy issues in digital
forensics. Int. J. Cyber-Secur. Digit. Forensics 1(4), 311–324 (2012)

34. J. Goh, S. Adepu, K.N. Junejo, A. Mathur, A dataset to support research in the design of secure
water treatment systems, in International Conference on Critical Information Infrastructures
Security, (2016), pp. 88–99

35. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Performance improvement and hardware imple-
mentation of open flow switch using FPGA, in IEEE 5th Conference on Knowledge Based
Engineering and Innovation, KBEI 2019, (2019), pp. 515–520

36. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

37. A. Singh, K. Click, R.M. Parizi, Q. Zhang, A. Dehghantanha, K.-K.R. Choo, Sidechain
technologies in blockchain networks: An examination and state-of-the-art review. J. Netw.
Comput. Appl. 149, 102471 (2020). https://doi.org/10.1016/j.jnca.2019.102471

38. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, Q. Zhang, K.-K.R. Choo, An energy-efficient
SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans.
Serv. Comput. 13(4), 625–638 (2020)

39. D. Połap, G. Srivastava, A. Jolfaei, R.M. Parizi, Blockchain technology and neural networks
for the internet of medical things, in IEEE INFOCOM 2020 – IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), (2020), pp. 508–513. https://doi.org/
10.1109/INFOCOMWKSHPS50562.2020.9162735

40. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, M. Aledhari,
Decentralized authentication of distributed patients in hospital networks using blockchain.
IEEE J. Biomed. Health Inform. 24(8), 2146–2156 (2020)

41. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag., 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

42. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

43. R.M. Parizi, S. Homayoun, A. Yazdinejad, A. Dehghantanha, K.-K.R. Choo, Integrating
privacy enhancing techniques into blockchains using sidechains, in Proceedings of the 32nd
IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 2019), (2019).
https://doi.org/10.1109/CCECE.2019.8861821

44. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (2019), pp. 1–6

45. J. Sakhnini, Security of Smart Cyber-Physical Grids: A Deep Learning Approach (2020), p. 83
46. World Health Organization et al., in HAMIDS | Proceedings of the 2nd ACM Workshop on

Cyber-Physical Systems Security and Privacy, http://10.0.4.121/2994487.2994492?casa_
token=fzc-QNOcjJkAAAAA:iKofJD9cHqHxMQjOxse0v8N4Au0fAwilQzYXDm0MO4a
XMQHng4p3NHbqHNFgnwN8AIQNI6T2K5G (acc Osteoarthr. Cartil)

47. S. Singh, S. Silakari, An ensemble approach for cyber attack detection system: A generic
framework, in 2013 14th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, (2013), pp. 79–84

48. M.T. Khorshed, N.A. Sharma, A.V. Dutt, A.B.M.S. Ali, Y. Xiang, Real time cyber attack
analysis on Hadoop ecosystem using machine learning algorithms, in 2015 2nd Asia-Pacific
World Congress on Computer Science and Engineering (APWC on CSE), (2015), pp. 1–7

49. B.W. Masduki, K. Ramli, F.A. Saputra, D. Sugiarto, Study on implementation of machine
learning methods combination for improving attacks detection accuracy on Intrusion Detection
System (IDS), in 2015 International Conference on Quality in Research (QiR), (2015),
pp. 56–64

http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.1016/j.jnca.2019.102471
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162735
http://dx.doi.org/10.1016/j.ipm.2020.102370
http://dx.doi.org/10.1109/CCECE.2019.8861821
http://10.0.4.121/2994487.2994492?casa_token=fzc-QNOcjJkAAAAA:iKofJD9cHqHxMQjOxse0v8N4Au0fAwilQzYXDm0MO4aXMQHng4p3NHbqHNFgnwN8AIQNI6T2K5G

140 P. Semwal and A. Handa

50. F. Zhang, H.A.D.E. Kodituwakku, J.W. Hines, J. Coble, Multilayer data-driven cyber-attack
detection system for industrial control systems based on network, system, and process data.
IEEE Trans. Ind. Inform. 15(7), 4362–4369 (2019)

51. A.P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning
algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

Evaluation of Scalable Fair Clustering
Machine Learning Methods for Threat
Hunting in Cyber-Physical Systems

Dilip Sahoo and Aaruni Upadhyay

1 Introduction

Recent years has witnessed a proliferation of using computerized system for
majority aspects of our today’s life [1–5], which encouraged cybercriminals to
attack these system by desining sophisticated attack patterns. The safety of our
society and infrastructure depends on keeping our mission-critical systems such
as Water distribution safe from cyber-attacks [6–10]. Many such systems work in
tandem with the Internet of Things (IoT) systems and other cyber-physical systems
that are susceptible to attacks by hostile nations and other non-state actors [11–
15]. Machine learning is increasingly being used in designing systems that can
detect such attacks through clustering which is an unsupervised machine learning
technique [16–19].

The behavior of machine learning systems is dependent on the training data
which may contain biases which may in return, result in the bias being reflected
in the outcome [20]. This problem was highlighted by Chierichetti in [21] where
they argue that the biases may still indirectly appear in results even if unprotected
attributes (such as a person’s height) are used for making decisions instead
of protected ones such as race and gender. This could happen because of the
hidden correlations that may exist between protected and unprotected attributes, for
example, average height (unprotected) is related to gender (protected) and can be
exploited as a proxy for discrimination.

D. Sahoo
Cyber Science Lab, University of Guelph, Guelph, ON, Canada
e-mail: dilip@cybersciencelab.org

A. Upadhyay (�)
MCTI, University of Guelph, Guelph, ON, Canada
e-mail: aupadhya@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_10

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_10&domain=pdf
mailto:dilip@cybersciencelab.org
mailto:aupadhya@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_10

142 D. Sahoo and A. Upadhyay

The established approach followed by the machine learning researchers to solve
this problem can be traced back to the US Supreme Court case Griggs v. Duke Power
Co. [22] that resulted in the emergence of the concept of adverse impact. Adverse
impact occurs when a practice negatively and disproportionately affects a protected
group regardless if it was indirectly or unintentionally. The “80% rule” was adopted
by the researchers as a generally accepted way to measure adverse impacts which
states that an adverse impact has occurred if “the selection rate for a certain group
is less than 80 percent of that of the group with the highest selection rate” [23].

Chierichetti applied this notion of fairness to clustering by introducing the use of
fairlets that groups together the datapoints while preserving the fairness objective.
These fairlets are then combined to form clusters by using existing k-median
algorithms. This way, fair clustering reduces biases by placing constraints on the
clusters so that the probability of a class of input data points being present in a
cluster, is strictly greater than zero. However fair clustering achieved using this
method has a super-quadratic runtime. The paper we are basing our research on [24]
presents a new implementation of this fair clustering method that runs in near-linear
time and therefore offers performance that scales with the input size.

To formally outline the problem, we must first define fair clustering and we will
use the same definition as our base paper. Consider n number of points P from the
training dataset such that each point belongs to one of two types: T1 and T2. In a
practical application, these classes can correspond to any legally protected attribute
such as gender where T1: Male and T2: Female. Let’s define the Balance of a subset
S such that S ⊆ P, assuming ST1 and ST2 represent subsets of T1 and T2 in the set S.

Balance(S) = min

{∣∣∣∣ST 1

ST2

∣∣∣∣ ,
∣∣∣∣ ST2

ST 1

∣∣∣∣
}

If we assume T1 < T2, then the clustering of P performed over (T1, T2) would
be defined as fair if for all clusters C:

Balance(C) ≥
(

T 1

T 2

)

A formal definition of k-median fair clustering can now be stated as the division
of input point set P into k clusters such that the sum of distances of each point p ∈ P
to the center of their cluster is minimum AND all clusters have a balance of at least(

T 1
T 2

)
.

Our contribution through this research is to run the k-median fair clustering
implementation of original authors [24] on 4 new Cybersecurity related datasets
and evaluate the performance and accuracy of our results. We demonstrate that our
algorithm runtime is near-linear which is the same as expected in the original paper
and so we show that the algorithm is scalable also for much bigger datasets like
SWaT. The datasets used in our experiment are referenced in [25–27].

Section 2 of this paper contains a Literature Review of the recent work done in
fair clustering. Section 3 details the methodology of our experiment and is followed

Evaluation of Scalable Fair Clustering Machine Learning Methods for Threat. . . 143

by a discussion of our Experimentation and Results in Sect. 4. A comparison of
our findings with that of the base paper is presented in Sect. 5. Our concluding
statements and avenue for future work are presented in Sect. 6.

2 Related Work

Our dependence on critical systems like electricity and water distribution systems
makes them a very lucrative target for our adversaries. Similarly, IoT networks that
are frequently integrated with such systems are a frequent target for attack and
are also used as a vector for further malware spread and launching DDoS attacks
[28–30]. Machine learning researchers have been actively exploring ways to detect
attacks on these crucial systems by utilizing machine learning techniques [31]. and
[32] are an example of the use of machine learning techniques in the detection of
threats in IoT and Water distribution systems respectively.

Due to an ever increasing adoption of IoT systems [33–38], malware detection
in these devices [39–43] has become a topic of great interest among cybersecurity
researchers [44–46] Authors in [47] highlight the new paradign of edge computing
in IoT networks and demonstrate the use of fuzzy and fast fuzzy pattern tree methods
for detecting IoT malware. Authors in [48] present an interesting approach to detect
the presence of ransomware in IoT networks by monitoring the power consumption
patterns of IoT devices. Their machine learning based approach was successfully
able to classify ransomware from non-malicious applications and produced a better
accuracy and precision rate than K-Nearest Neighbors, Support Vector Machine,
Neural Network and Random Forest methods [49]. presents a approach for detecting
intrusion in IoT networks based on two-layer dimension reduction and two-tier
classification module to detect User-To-Root (U2R) and Remote-To-Local (R2L)
attacks. The authors use the NSL-KDD dataset and demonstrate that their approach
performs better than earlier models designed to detect R2L and U2R attacks.
Attackers often employ the use of code level polymorphism to evade any opcode
based malware detection algorithms. Authors in [50] demonstrate the use of
sequential pattern mining approach to select best features to train KNN, SVM,
AdaBoost and other machine learning models and are able to detect IoT malware
with polymorphed code to escape detection.

One pitfall of using machine learning can be the appearance of bias in the
output if we are not careful. The authors in [51] present the case of a medical
center that used an algorithm, that was used to screen patients in an intensive care
program, to be racially biased against black patients. The algorithm was found to be
functioning correctly, but the bias was inadvertently introduced because it wrongly
established that black patients are healthier because they spend less on healthcare.
Bias in real-world computing applications can have serious ethical implications as
highlighted in [52]. Authors argue that any attempt at fairness, even if it is not 100%
effective, should be incorporated in our algorithms instead of waiting for a perfect
fair algorithm to emerge. The goal of the fairness algorithms should not be to have a

144 D. Sahoo and A. Upadhyay

perfect solution to the fairness problem but instead to maximize the common good
by achieving whatever fairness is attainable today.

The notion of fair clustering was first introduced in [21] who articulated the
implementation of fair clustering for both k-center and k-median objectives. They
introduced the idea of division of pointset into smaller minimal subsets (called
fairlets) that fulfill the fairness criteria while meeting the clustering objective.
They used 3 datasets (Diabetes, Bank, and Census) to evaluate their algorithm and
compare the performance and fairness of their approach to the classical k-center
and k-median algorithms. The results successfully demonstrated that traditional
k-center and k-median algorithms produced unfair clusters as compared to their
fair algorithms. However, their fair algorithm was computationally harder than the
traditional algorithms.

Several researchers have done subsequent work based on the original work in
[21]. Authors in [53] study the problem of low-cost fair clustering where the data
points can belong to multiple protected classes. Their implementation allows for
placing upper and lower bounds for any class in a cluster while maintaining fairness
for data points that may even span multiple protected classes [54]. looks at the
effects of using fairlet based approach in fair clustering and raises the important
concern of scalability of that algorithm. They propose the use of the concept of
coresets that is tailored for use in fair clustering problem to provide their own
algorithms for fair k-means clustering as an improvement on algorithms in [21].
They empirically demonstrate how coresets enable fair clustering algorithms and
improve output quality by using better albeit slower algorithms.

Several works have also emerged highlighting the usage of fair algorithms in real
applications [55]. uses the fair design for preserving privacy by adding a constraint
so that a cluster will be formed only if a lower bound on the number of points
is achieved to preserve anonymity. Authors in [56] apply the notion of fairness to
address the allocation problem where we want to distribute a limited resource to
be distributed across different clusters without bias. For example, the allocation of
housing loans based on creditworthiness across groups without a prejudice based
on race. Authors in [57] propose fairness preserving algorithms that can produce a
summary of texts (e.g. blog posts) in a way so that it fairly represents the opinion of
different social groups.

3 Methodology

This section describes the detailed steps taken to evaluate the fair clustering Machine
Learning (ML) model using four different datasets. Each of the four datasets
contained data labeled as ‘normal/good ware’ and ‘attack/malware’ which were
collected from the respective testbeds under normal and attack scenarios. The
raw datasets were first pre-processed and then feature selection and extraction
were applied to reduce overall dimensionality. Finally, the scalable fair clustering
algorithm [26] was adopted as the ML classifier for the experiment and the model

Evaluation of Scalable Fair Clustering Machine Learning Methods for Threat. . . 145

Fig. 1 Experiment workflow structure

performance was measured based on cost, runtime, and accuracy. Figure 1 illustrates
the experiment workflow structure.

3.1 Datasets Preprocessing

The preprocessing of each dataset was done in separate ways based on the type and
nature of the raw data samples. The detailed preprocessing approach for them is
described below.

3.1.1 IoT Dataset

The IoT dataset [27] had a total of 614 text files in the dataset among which 362 files
were labeled as ‘good ware’ and 252 as ‘malware’. All the text files contained the
opcode data collected from the testbed. These individual text files were processed
using Term Frequency- Inverse Document Frequency (TF-IDF) and a TF-IDF score
was assigned to each of the opcodes. After, assigning the TF-IDF score the opcodes
were treated as feature columns for the modified dataset with the column header
as the opcode names and rows as the TF-IDF score assigned to them. Each row
created corresponded to one of the text files in the raw data samples and finally,
we obtained a CSV file having a total of 236 feature columns and 512 rows after
removing anomalies. In the obtained CSV file, there were 271 ‘good ware’ and 281
‘malware’ data samples and were labeled as 0 and 1, respectively. Hence, we got
our final CSV file with all data samples in a numerical format.

146 D. Sahoo and A. Upadhyay

3.1.2 IoT_unseen Dataset

The IoT_unseen dataset [27] had a similar raw data format as the IoT dataset
described in the previous section, except there were differences in the number and
type of data samples. This dataset was used mainly for the ML model accuracy
evaluation purpose. It is worth mentioning that this dataset was not used in all
stages of experiments performed for the main IoT dataset and the rest of the datasets
because this dataset is equivalent to the IoT dataset in nature. This dataset had 51
opcode-based text files and all of them were labeled as ‘malware’. A similar TF-IDF
based processing was done again to obtain a CSV file with 51 rows against each of
the raw text files and 666 feature columns.

3.1.3 BATADAL

It is an industrial control system (ICS) dataset [26] collected during ‘Normal’ and
‘Attack’ scenarios from different sensors of the testbed. The dataset contains 12,446
‘Normal’ and 492 ‘Attack’ data samples. During data preprocessing the .npy file
was converted to CSV using ‘numpy’ library (numpy.org) and all features were
converted to numerical data.

3.1.4 SWaT_2015

SWaT_2015 data was collected from the testbed of a six-stage secure water
treatment system under ‘Normal’ and ‘Attack’ scenarios [25]. The dataset contains
1,387,095 ‘Normal’ data samples and 54,621 ‘Attack’ samples. During preprocess-
ing of this dataset, a similar approach as ‘BATADAL’ was used and the final CSV
file was obtained.

3.2 Feature Selection and Feature Extraction

For feature selection and extraction, we implemented SelectKBest with Chi2 and
ExtraTreeClassifier feature scoring method from scikit-learn (scikit-learn.org). The
fair clustering ML model [58] adopted for our experiment requires at least one
feature column as the sensitive attribute with categorical data. Hence, One of the
feature columns, from every four datasets, was decided to be taken as a sensitive
attribute and all the values present under the sensitive attribute were converted to
categorical data i.e. either 1 or 0. It is worth noting that the balance parameters
derived from the ratio of categorical values(1 or 0) in the sensitive attribute are
used to create the target fairlet decomposition clusters. Table 1 shows the sensitive
attribute name and number of other features selected for the ML model accuracy
evaluation for each dataset during the experiment.

http://numpy.org
http://scikit-learn.org

Evaluation of Scalable Fair Clustering Machine Learning Methods for Threat. . . 147

Table 1 Sensitive attribute and number of selected features for the datasets

Dataset Total number of data points Sensitive attribute No. of selected features

IoT 512 stmgeia 12
IoT_unseen 51 bnd 665
BATADAL 12,938 P_J422_code 9
BATADAL_SMOTE 24,892 P_J422_code 9
SWaT_2015 1,441,715 UV401 5

3.2.1 Upsampling Using Synthetic Minority Over-Sampling Technique
(SMOTE)

In the ‘BATADAL’ dataset, we observed a huge variance in the number of data
points between ‘Normal’ and ‘Attack’ families. To ensure that our fair clustering
ML model is not biased towards the majority class, we used SMOTE technique
to balance the majority and minority class. The new dataset after upsampling held
12,446 data points for each of the ‘Normal’ and ‘Attack’ class. The new SMOTE
enhanced BATADAL dataset is referred to as ‘BATADAL_SMOTE’. Accuracy
evaluation for the ‘BATADAL_SMOTE’ dataset was done separately to compare
it with the accuracy of the original BATADAL dataset during the experiments.

3.3 Fair Clustering ML Model Implementation

In this phase, the fair clustering ML model was fed with the extracted features
of all four datasets. All the experiments were conducted in a Windows 10 virtual
machine environment with 2.21 GHz 64-bit intel i7 processor and 4GB RAM.
Jupyter Notebook was used with python 3.6.5 and MATLAB engine.

4 Experiments and Results

This section describes the details of three individual experiments conducted and
highlights the results. The evaluation measures used to assess the results are
described first in Sect. 4.1 and then the details of conducted experiments and their
results are discussed in Sects. 4.2, 4.3 and 4.4. The first experiment has been
conducted to evaluate the performance of the ML model based on the overall cost
and runtime. In the second experiment, the model accuracy is evaluated for every
dataset. A separate experiment is done to test the effectiveness of the fair clustering
algorithm by comparing its results with the results of a relevant normal clustering
algorithm described in Sect. 4.4.

148 D. Sahoo and A. Upadhyay

4.1 Evaluation Measures

In our first experiment described in Sect. 4.2, evaluation of the near-linear behavior
and performance of the fair clustering algorithm is done by measuring the fairlet
decomposition cost, fair clustering cost, and runtime. The fairlet decomposition cost
denotes the distance between the points and their cluster centroids. Fair clustering
cost is the total algorithm cost and the runtime states the time taken in seconds to
run the clustering on a certain number of data points.

For the second and third experiments, we used commonly used machine learning
matrices which are discussed below. A Confusion matrix represents the summary
of all the predicted results of an algorithm in terms of the number of True
Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives
(FN). Indicators used to assess the results of the fair clustering algorithm in our
experiment are derived from the confusion matrix. Calculation of ‘Precision’ and
‘Recall’ is based on the binary label i.e. ‘Normal’ and ‘Attack’. ‘F1-score’ combines
precision and recall and to provide the clustering performance. ‘Accuracy’ denotes
how accurately the clustering algorithm detects the binary classes i.e. ‘Normal’ or
‘Attack’.

TP: Normal observation is predicted as normal
TN: Attack observation is predicated as an attack
FP: Attack observation is predicted as normal
FN: Normal observation is predicated as an attack

Accuracy = TP + TN

TP + TN + FP + FN

Precision = TP

TP + FP

Recall = TP

TP + FN

F1 − score = 2 ∗
(

Precision ∗ Recall

Precision + Recall

)

4.1.1 Accuracy Evaluation for Two Clusters and Multicluster Clustering

To determine the performance of the fair clustering algorithm output results in terms
of ‘Accuracy’ using two clusters(k = 2), it is assumed that all data points predicted

Evaluation of Scalable Fair Clustering Machine Learning Methods for Threat. . . 149

under one cluster(cluster-1) are ‘Normal’ and the other cluster (cluster-2) are of
‘Attack’ type. Then, it is calculated how many data points in cluster-1 are indeed
‘Normal’ and cluster-2 are indeed ‘Attack’ from the known labels. This resulted in
the confusion matrix construction where the diagonal elements represented TPs and
TNs respectively along with the off-diagonal elements as FPs and FNs.

In contrast to clustering with k = 2, we have used a different approach for
multiple clustering (k = n, where the value of n is 4,6,10,15 and 20). In the case
of multiple clustering, we assume each of the data points in a cluster as ‘Normal’
if the actual labels for most of the data points are of ‘Normal’ type. Similarly, in a
cluster, if the actual labels of majority data points are of ‘Attack’ type then every
data point belongs to that cluster is assumed as ‘Attack’ and confusion matrix was
constructed. In the multicluster clustering, the final accuracy is the average accuracy
of each cluster.

4.2 Experiment-I and Results

In Experiment-I, all datasets described in Sect. 3 except ‘IoT_unseen’ and
‘BATADAL_SMOTE’ were fed into the fair clustering algorithm. The input
dimension and balance parameters for the dataset during the experiment are
mentioned in Table 2. We did not use all features extracted for Experiment-
II accuracy evaluation in this phase of the experiment. The performance of the
algorithm was measured in terms of cost and runtime with a different number of
data samples and dimensions for all datasets. The results in Table 2 shows that the
algorithm performance varies depending on the overall dimension and size of the
dataset. It can be noticed that the IoT dataset having a high dimension with only 500
data samples took 20 seconds to complete the whole clustering process. In contrast,
the SWaT_2015 dataset with 40 times more data samples than the IoT dataset took
little more than twice the time needed for IoT.

Table 2 Performance evaluation of each of the datasets for a specific number of data samples in
terms of runtime and cost

No of clusters k = 20

Dataset Dimension Balance

Fairlet decom-
position
cost

Fair clustering
cost

Fairlet decom-
position time
(in sec)

Total time
(in sec)

IoT (500
sample)

11 0.5 50.8 56.4 0.29 20

BATADAL
(1000
sample)

6 0.33 142 205 8.4 37

SWaT_2015
(20,000
sample)

2 0.02 17,809 39,209 10 41

150 D. Sahoo and A. Upadhyay

In addition to the performance evaluation of the fair clustering algorithm, we
also checked the scalability of the fair clustering algorithm in terms of runtime for
a range of data points. All three datasets were fed into the fair clustering algorithm
with a different number of data samples more than once and the time taken to
complete the process for each sample was recorded. We then plotted the graphs
between the number of data samples Vs runtime to investigate whether the algorithm
scales in linear time. Figures 2, 3 and 4 show the graphs between the number of data
points Vs runtime for the three datasets. The results show that the plotted graphs
for SWaT_2015 and BATADAL datasets are almost a straight line with a slight
deviation for the IoT dataset.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0 100 200 300 400 500 600

(1,2)-fairlet decomposition runtime
(IOT)

Fig. 2 No of datapoints Vs Runtime (in sec) graph for IOT dataset

0
1
2
3
4
5
6
7

0 5000 10000 15000

(1,3)-fairlet decomposition runtime
(BATADAL)

Fig. 3 No of datapoints Vs Runtime (in sec) graph for BATADAL dataset

Evaluation of Scalable Fair Clustering Machine Learning Methods for Threat. . . 151

0

50

100

150

200

0 20000 40000 60000 80000 100000 120000

(1,50)-fairlet decomposition runtime
(SWaT_2015)

Fig. 4 No of datapoints Vs Runtime (in sec) graph for SWaT_2015 dataset

140

120

100

80

60

D
is

to
rt

io
n

40

20

0

2.5 5.0 7.5 10.0

The Elbow Method showing the optimal k for IOT_dataset

k
12.5 15.0 17.5

Fig. 5 Elbow method showing optimum k for IoT dataset

4.3 Experiment-II and Results

In experiment-II, all five datasets described in Table 1 are fed into the fair clustering
algorithm and the desired numbers of clusters were obtained as output. We used
the elbow method from scikit-learn to predict the optimum number of cluster(k) for
each dataset.

Figures 5, 6, 7 and 8 illustrate the optimum cluster value(k) for IoT, IoT_unseen,
BATADAL, and SWaT_2015 datasets respectively using the elbow method.

152 D. Sahoo and A. Upadhyay

20

15

2.5 5.0 7.5 10.0 12.5 15.0 17.5

10

5

0

D
is

to
rt

io
n

The Elbow Method showing the optimal k for IOT_unseen

k

Fig. 6 Elbow method showing optimum k for IoT_unseen dataset

4000000

3000000

2000000

1000000

0

2.5 5.0 7.5 10.0 12.5 15.0 17.5

D
is

to
rt

io
n

k

The Elbow Method showing the optimal k

Fig. 7 Elbow method showing optimum k for BATADAL dataset

After having an idea about the optimum cluster value for each dataset, we
decided to run each dataset with different values of ‘k’ i.e. k = 2, 4, 6, 10, 15
and 20. The performance of fair clustering algorithm is measured in terms of
‘Accuracy’, ‘Precision’, ‘Recall’, and ‘F1-score’ based on the method discussed
in Sect. 4.1.1. The results obtained from the ML model for each dataset are shown
in Table 3. IoT dataset achieved the highest accuracy of 99% with two clusters
(k = 2) and the accuracy remained slightly less with other values of cluster
numbers(k). IoT_unseen obtained an accuracy of 80% for ‘k-value’ as 2 and it

Evaluation of Scalable Fair Clustering Machine Learning Methods for Threat. . . 153

7

6

5

4

3

2

1

2.5 5.0 7.5 10.0 12.5 15.0 17.5

k

D
is

to
rt

io
n

The Elbow Method showing the optimal k1e10

Fig. 8 Elbow method showing optimum k for SWaT_2015 dataset

could obtain 100% accuracy when ‘k-value’ was 4,6,10,15 and 20. BATADAL
and BATADAL_SMOTE dataset shown a significant difference in their result.
BATADAL dataset achieved maximum accuracy of 97% compared to the maximum
accuracy of 67% for the BATADAL_SMOTE dataset. The reason behind such
difference in results of BATADAL and BATADAL_SMOTE is attributed to the
BATADAL dataset biased with majority class. The SWaT_2015 dataset reported a
maximum accuracy of 97% with ‘k-value’ as 6. Overall, the fair clustering algorithm
predicted the best results for IoT and IoT_unseen datasets among other datasets.

4.4 Experiment-III and Results

Experiment-III is conducted to evaluate the suggested fair clustering algorithm
performance in terms of ‘Accuracy’ by comparing it with the equivalent normal
clustering algorithm. The exact datasets taken for Experiment-II(with fair clustering
step) were fed into ‘kmedoids’ clustering algorithm [59] from MATLAB engine
without combining the fairlet decomposition step. The ‘Accuracy’ for all datasets
without fair clustering is recorded and then compared with the respective results
from Experiment-II. Table 4 shows the comparison of the results between fair
clustering and normal clustering with ‘k-value’ as 2.

154 D. Sahoo and A. Upadhyay

Table 3 Results obtained from fair clustering algorithm

Data set No of clusters(k) Accuracy (%) Precision (%) Recall (%) F1-score (%)

IoT 2 99 99 99 99
4 97 97 97 97
6 97 97 97 97
10 98 98 98 98
15 97 98 97 98
20 99 99 99 99

IoT_unseen 2 80 100 80 89
4 100 100 100 100
6 100 100 100 100
10 100 100 100 100
15 100 100 100 100
20 100 100 100 100

BATADAL 2 81 93 81 86
4 96 97 96 95
6 97 97 97 95
10 97 96 97 96
15 97 97 97 96
20 97 97 97 96

BATADAL_SMOTE 2 59 64 59 57
4 62 65 62 61
6 62 62 62 62
10 66 69 66 65
15 66 69 66 66
20 67 67 67 66

SWaT_2015 2 74 86 74 79
4 93 93 93 93
6 97 96 97 96
10 95 95 95 95
15 86 85 86 84
20 96 96 96 96

Table 4 Results comparison between fair clustering and normal clustering

Accuracy (%) with k = 2
Data set Fair_clustering Without Fair_clustering

IoT 99 92
IoT_unseen 80 61
BATADAL 81 82
BATADAL_SMOTE 59 57
SWaT_2015 74 74

Evaluation of Scalable Fair Clustering Machine Learning Methods for Threat. . . 155

5 Results Comparison

The research done in [58] has evaluated the performance of the suggested fair
clustering algorithm in terms of cost and runtime. However, the authors did not
provide the details of the accuracy they achieved. The results of our experiment
show that the fair clustering algorithm achieved better accuracy than the normal
clustering algorithm for every dataset except BATADAL and SWaT_2015 where
both performed almost equally.

6 Conclusion and Future Work

We successfully implemented a scalable fair clustering machine learning algorithm
and evaluated the model with different cyber-physical datasets. Our results show that
the model scales linearly with the number of input data points even for a large dataset
like SWaT_2015. The unsupervised fair clustering algorithm was run with different
cluster values (k = 2,4,6,10,15 and 20) as well as different input balance parameters
(mentioned in Table 2) which provided us with a comprehensive view of our results.
Our model achieved an accuracy of 99% with a precision of 99% and recall of
99% for IoT dataset which was best among all other datasets. While evaluating
the IoT_unseen dataset, the model accomplished classification with 100% accuracy.
Although we tried to address the majority class biasing issue in BATADAL dataset
by creating synthetic data samples, the accuracy of BATADAL_SMOTE remained
relatively lower at 67%. Overall, all our datasets exhibited high accuracy of above
95% except BATADAL_SMOTE.

For future work, the fair clustering model implemented in this paper could be
tested on other different cyber-physical systems. Due to the resource limitation of
our research environment, we could only feed up to 20,000 samples for accuracy
evaluation, but this limit can be increased to improve the model prediction capa-
bilities. While up-sampling datasets with artificial data provided a good method for
balancing the BATADAL dataset, it is not as effective as original data collected from
a real-world scenario. We expect that datasets collected from real-world systems
with higher data quality will improve the resulting outcome of our model.

References

1. S. Nakhodchi, A. Dehghantanha, H. Karimipour, Privacy and security in smart and precision
farming: A bibliometric analysis, in Handbook of Big Data Privacy, (Springer, Cham, 2020),
pp. 305–318

2. S. Walker-Roberts, M. Hammoudeh, A. Dehghantanha, A systematic review of the availability
and efficacy of countermeasures to internal threats in healthcare critical infrastructure. IEEE
Access 6, 25167–25177 (Mar. 2018). https://doi.org/10.1109/ACCESS.2018.2817560

http://dx.doi.org/10.1109/ACCESS.2018.2817560

156 D. Sahoo and A. Upadhyay

3. H.M. Rouzbahani, H. Karimipour, A. Dehghantanha, R.M. Parizi, Blockchain applications in
power systems: A bibliometric analysis, in Blockchain Cybersecurity, Trust and Privacy, ed.
by K.-K. R. Choo, A. Dehghantanha, R. M. Parizi, vol. 79, (Springer, Cham)

4. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized Blockchain-based security, IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

5. K. Bolouri, A. Azmoodeh, A. Dehghantanha, M. Firouzmand, Internet of things camera
identification algorithm based on sensor pattern noise using color filter array and wavelet
transform, in Handbook of Big Data and IoT Security, (Springer, Cham, 2019), pp. 211–223.
https://doi.org/10.1007/978-3-030-10543-3_9

6. S. Watson, A. Dehghantanha, Digital forensics: The missing piece of the internet of
things promise. Comput. Fraud Secur. 2016(6), 5–8 (2016). https://doi.org/10.1016/s1361-
3723(15)30045-2

7. F. Daryabar, A. Dehghantanha, N. I. Udzir, N. F. B. M. Sani, S. Bin Shamsuddin, Towards
secure model for SCADA systems. IEEE Xplore (2012, June 1). https://doi.org/10.1109/
CyberSec.2012.6246111

8. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Big data and internet of things security and
forensics: Challenges and opportunities, in Handbook of Big Data and IoT Security, (Springer,
Cham, 2019), pp. 1–4. https://doi.org/10.1007/978-3-030-10543-3_1

9. M. Conti, T. Dargahi, A. Dehghantanha, Cyber threat intelligence: Challenges and opportu-
nities, in Advances in Information Security, (Springer, Cham, 2018), pp. 1–6. https://doi.org/
10.1007/978-3-319-73951-9_1

10. S. Grooby, T. Dargahi, A. Dehghantanha, Protecting IoT and ICS platforms against advanced
persistent threat actors: Analysis of APT1, silent chollima and molerats, in Handbook of Big
Data and IoT Security, (Springer, Cham, 2019), pp. 225–255

11. H. Karimipour, V. Dinavahi, Robust massively parallel dynamic state estimation of power
systems against cyber-attack. IEEE Access 6, 2984–2995 (2017)

12. P.N. Bahrami, A. Dehghantanha, T. Dargahi, R.M. Parizi, K.-K.R. Choo, H.H.S. Javadi, Cyber
kill chain-based taxonomy of advanced persistent threat actors: Analogy of tactics, techniques,
and procedures. J. Inf. Process. Syst. 15(4), 865–889 (2019)

13. H. Haddadpajouh, A. Azmoodeh, A. Dehghantanha, R.M. Parizi, MVFCC: A multi-view fuzzy
consensus clustering model for malware threat attribution. IEEE Access 8, 139188–139198
(2020)

14. H. Darabian et al., A multiview learning method for malware threat hunting: Windows, IoT
and android as case studies. World Wide Web 23(2), 1241–1260 (2020)

15. A. Yazdinejad, R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, Blockchain-enabled authen-
tication handover with efficient privacy protection in SDN-based 5G networks, IEEE Trans.
Netw. Sci. Eng., pp. 1–1 (2020). https://doi.org/10.1109/TNSE.2019.2937481

16. J. Sakhnini, H. Karimipour, A. Dehghantanha, R. M. Parizi, G. Srivastava, Security aspects of
Internet of Things aided smart grids: A bibliometric survey, in Internet of Things, (2019), p.
100111. https://doi.org/10.1016/j.iot.2019.100111

17. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88, 101629
(2020). https://doi.org/10.1016/j.cose.2019.101629

18. A.N. Jahromi et al., An improved two-hidden-layer extreme learning machine for malware
hunting. Comput. Secur. 89, 101655 (2020)

19. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, S. Hashemi, B. Gharabaghi, G. Srivastava,
Active spectral botnet detection based on eigenvalue weighting, in Handbook of Big Data
Privacy, (Springer, Cham, 2020), pp. 385–397. https://doi.org/10.1007/978-3-030-38557-
6_19

20. H. Karimipour, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, H. Leung, A deep and scalable
unsupervised machine learning system for cyber-attack detection in large-scale smart grids.
IEEE Access 7, 80778–80788 (2019)

http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.1007/978-3-030-10543-3_9
http://dx.doi.org/10.1016/s1361-3723(15)30045-2
http://dx.doi.org/10.1109/CyberSec.2012.6246111
http://dx.doi.org/10.1007/978-3-030-10543-3_1
http://dx.doi.org/10.1007/978-3-319-73951-9_1
http://dx.doi.org/10.1109/TNSE.2019.2937481
http://dx.doi.org/10.1016/j.iot.2019.100111
http://dx.doi.org/10.1016/j.cose.2019.101629
http://dx.doi.org/10.1007/978-3-030-38557-6_19

Evaluation of Scalable Fair Clustering Machine Learning Methods for Threat. . . 157

21. F. Chierichetti, R. Kumar, S. Lattanzi, S. Vassilvitskii, Fair clustering through fairlets, in
Advances in Neural Information Processing Systems, (MIT Press, Cambridge, 2017), pp. 5029–
5037

22. World Health Organization et al., U.S. Reports: Griggs v. Duke Power Co., 401 U.S.
424 (Library of Congress, Washington, DC, 1971) https://www.loc.gov/item/usrep401424/.
Accessed 18 Sep 2020. Osteoarthr. Cartil

23. N. Mondragon, in What is Adverse Impact? And Why Measuring It Matters (2018, Mar-
rch 26. https://www.hirevue.com/blog/hiring/what-is-adverse-impact-and-why-measuring-it-
matters. Accessed 18 Sept 2020

24. World Health Organization, et al., A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vakilian,
and T. Wagner, in Scalable Fair Clustering, ArXiv190203519 Cs, 2019 June, Accessed 18 Sep
2020. [Online]. Available: http://arxiv.org/abs/1902.03519. Osteoarthr. Cartil

25. J. Goh, S. Adepu, K.N. Junejo, A. Mathur, A dataset to support research in the design of secure
water treatment systems, in International Conference on Critical Information Infrastructures
Security, (Springer, Cham, 2016), pp. 88–99

26. The battle of the attack detection algorithms (BATADAL) dataset. https://www.batadal.net/.
Accessed 18 Sep 2020

27. Cyber Science Lab – Malware Datasets. https://cybersciencelab.org/. Accessed 18 Sept 2020
28. S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, H. Karimipour, Cyber intrusion detec-

tion by combined feature selection algorithm. J. Inf. Secur. Appl. 44, 80–88 (2019)
29. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An ensemble

of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE
Internet Things J. 7(9), 8852–8859 (2020). https://doi.org/10.1109/jiot.2020.2996425

30. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

31. A. Al-Abassi, H. Karimipour, A. Dehghantanha, R.M. Parizi, An ensemble deep learning-based
cyber-attack detection in industrial control system. IEEE Access 8, 83965–83973 (2020)

32. A.N. Jahromi, J. Sakhnini, H. Karimpour, A. Dehghantanha, A deep unsupervised representa-
tion learning approach for effective cyber-physical attack detection and identification on highly
imbalanced data, in Proceedings of the 29th Annual International Conference on Computer
Science and Software Engineering, (2019), pp. 14–23

33. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, Q. Zhang, K.-K.R. Choo, An energy-efficient
SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans.
Serv. Comput. 13, 625 (2020)

34. D. Połap, G. Srivastava, A. Jolfae, R. M. Parizi, Blockchain technology and neural networks for
the internet of medical things. Researchers.mq.edu.au; Institute of Electrical and Electronics
Engineers (IEEE) (2020). https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162735

35. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, M. Aledhari,
Decentralized authentication of distributed patients in hospital networks using Blockchain.
IEEE J. Biomed. Heal. Inform. 24, 2146 (2020)

36. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag. 57, 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

37. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

38. R.M. Parizi, S. Homayoun, A. Yazdinejad, A. Dehghantanha, K.-K.R. Choo, Integrating pri-
vacy enhancing techniques into Blockchains using sidechains, in IEEE Canadian Conference
of Electrical and Computer Engineering (CCECE), (2019), pp. 1–4. https://doi.org/10.1109/
CCECE.2019.8861821

39. A. Yazdinejad, R. M. Parizi, G. Srivastava, A. Dehghantanha, K.-K. R. Choo, Energy
efficient decentralized authentication in internet of underwater things using blockchain,
in 2019 IEEE Globecom Workshops (GC Wkshps), (2019). https://doi.org/10.1109/
gcwkshps45667.2019.9024475

https://www.hirevue.com/blog/hiring/what-is-adverse-impact-and-why-measuring-it-matters
http://arxiv.org/abs/1902.03519
https://www.batadal.net/
https://cybersciencelab.org/
http://dx.doi.org/10.1109/jiot.2020.2996425
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162735
http://dx.doi.org/10.1016/j.ipm.2020.102370
http://dx.doi.org/10.1109/CCECE.2019.8861821
http://dx.doi.org/10.1109/gcwkshps45667.2019.9024475

158 D. Sahoo and A. Upadhyay

40. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. 115, 619 (2020)

41. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency Malware Hunting: A Deep Recurrent Neural Network Approach, vol 96
(Elsevier, 2020)

42. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

43. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Performance improvement and hardware imple-
mentation of Open Flow switch using FPGA, in 2019 5th Conference on Knowledge Based
Engineering and Innovation (KBEI) (2019). https://doi.org/10.1109/KBEI.2019.8734914

44. S.M. Tahsien, H. Karimipour, P. Spachos, Machine learning based solutions for security of
Internet of Things (IoT): A survey. J. Netw. Comput. Appl. 161, 102630 (2020)

45. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for internet of things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

46. H. Darabian et al., Detecting Cryptomining malware: A deep learning approach for static and
dynamic analysis. J. Grid Comput., 1–11 (2020)

47. E.M. Dovom, A. Azmoodeh, A. Dehghantanha, D.E. Newton, R.M. Parizi, H. Karimipour,
Fuzzy pattern tree for edge malware detection and categorization in IoT. J. Syst. Archit. 97,
1–7 (2019)

48. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

49. H.H. Pajouh, R. Javidan, R. Khayami, D. Ali, K.-K.R. Choo, A two-layer dimension reduction
and two-tier classification model for anomaly-based intrusion detection in IoT backbone
networks. IEEE Trans. Emerg. Top. Comput. 7, 314 (2016)

50. H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, K.R. Choo, An opcode-based
technique for polymorphic internet of things malware detection. Concurr. Comput. Pract. Exp.
32(6), e5173 (2020)

51. Z. Obermeyer, B. Powers, C. Vogeli, S. Mullainathan, Dissecting racial bias in an algorithm
used to manage the health of populations. Science (80-) 366(6464), 447–453 (2019)

52. J. Sylvester, E. Raff, What About Applied Fairness?, arXiv Prepr. arXiv1806.05250 (2018)
53. S. Bera, D. Chakrabarty, N. Flores, M. Negahbani, Fair algorithms for clustering, in Advances

in Neural Information Processing Systems, (2019), pp. 4954–4965. Curran Associates. https://
papers.nips.cc/paper/2019/file/fc192b0c0d270dbf41870a63a8c76c2f-Paper.pdf

54. M. Schmidt, C. Schwiegelshohn, C. Sohler, Fair coresets and streaming algorithms for fair
k-means clustering, arXiv Prepr. arXiv1812.10854 (2018)

55. C. Rösner, M. Schmidt, Privacy preserving clustering with constraints, arXiv Prepr.
arXiv1802.02497 (2018)

56. H. Elzayn et al., Fair algorithms for learning in allocation problems, in Proceedings of the
Conference on Fairness, Accountability, and Transparency, (2019), pp. 170–179

57. A. Dash, A. Shandilya, A. Biswas, K. Ghosh, S. Ghosh, A. Chakraborty, Summarizing user-
generated textual content: Motivation and methods for fairness in algorithmic summaries. Proc.
ACM Human-Comput. Interact. 3(CSCW), 1–28 (2019)

58. A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vakilian, T. Wagner, Scalable fair clustering,
arXiv Prepr. arXiv1902.03519 (2019)

59. k-medoids clustering – MATLAB kmedoids. https://www.mathworks.com/help/stats/
kmedoids.html. Accessed 18 Sep 2020

http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1109/KBEI.2019.8734914
http://dx.doi.org/10.1016/j.future.2018.03.007
https://papers.nips.cc/paper/2019/file/fc192b0c0d270dbf41870a63a8c76c2f-Paper.pdf
https://www.mathworks.com/help/stats/kmedoids.html

Evaluation of Supervised
and Unsupervised Machine Learning
Classifiers for Mac OS Malware
Detection

Dilip Sahoo and Yash Dhawan

1 Introduction

The number of attacks targeting Mac OS has considerably risen in the past couple
of years [1]. It is estimated that reported attacks have exceeded 4 million as of
2018 and another 1.8 million attacks have been reported during the first half of
2019 [2]. The first Mac malware was reported in 2004 with Renepo script worm
which disabled Mac OSX security and installed malicious toolkit [3]. Adware and
Potential Unwanted Program (PUP) resulted in a serious threat for Mac users over
the past couple of years as it resulted in security vulnerability making it more likely
to get infected by malware [4, 5]. Though the Mac platform is considered safer
than Windows it is still prone to several phishing attacks, java-based exploit, the
man in the middle attacks, and should not be considered as a bulletproof operating
system [6]. Protecting IT resources and computer hardware [7, 8] against malware
threats has become vital for corporations and individuals [9–12]. Most antivirus
(AV) software use a signature-based technique to detect the threats. A signature of
the known malware like spyware, viruses, trojans, worms is stored in a database
and if an attack occurs by them in the future then they can be detected against
their stored signatures. However, there are many drawbacks to this approach of
malware detection. Firstly, the signature-based approach is ineffective against the
new malware that is not known previously. Secondly, the metamorphic malware (a
variant of known malware) can bypass the antivirus by changing its signature [13].
Significant improvements have been done to make the AVs more effective using

D. Sahoo
Cyber Science Lab, University of Guelph, Guelph, ON, Canada
e-mail: dilip@cybersciencelab.org

Y. Dhawan (�)
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: ydhawan@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_11

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_11&domain=pdf
mailto:dilip@cybersciencelab.org
mailto:ydhawan@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_11

160 D. Sahoo and Y. Dhawan

more sophisticated analysis techniques in recent years. However, there is still the
problem of delay between the detection of new malware and updating the signature
databases to counter it. This delay can cause significant damage to corporations [14].

In the last decade, more sophisticated methods are being used by researchers for
metamorphic malware detection like dynamic and heuristic analysis. In dynamic
analysis, the behavior of the malware program is observed at runtime in an isolated
sandbox environment like a virtual box. During this process, specific behaviors
of a program like system calls, registry updates, network traffic usage, etc. are
monitored and used to classify whether the program is a benign application or
malware. However, this method can be time-consuming, and sometimes evasive
methods used by the malware can detect the analysis environment and stops the
malicious code execution or delay the execution [15]. Another main disadvantage is
that dynamic analysis cannot be used in realtime scenarios.

In contrast, the heuristic approach uses Machine learning (ML) to learn the
malicious program behaviors and can classify them as malware [16–21]. They
are easy to implement and can also effectively detect metamorphic malware. The
disadvantage of the heuristic approach is higher false positives i.e. the benign
programs incorrectly classified as malware. To overcome this issue, the machine
learning classifiers need to be trained with datasets with sufficient features and have
a balanced ratio between the majority and minority class. A dataset with a large
number of features can decrease the false positives but it can increase the overall
computation and processing time and hence it is important to analyze and reduce the
dataset dimension. There is the number of automated tools and application available
which provide tons of features to neutralize a threat before it can compromise a
system [22]. For an effective antimalware solution, many companies have adopted
the machine learning approach [23]. ML models are trained to distinguish malicious
and benign apps using supervised [14, 24–26] and unsupervised classifiers [19, 27–
29]. In the supervised learning method, a labeled dataset of malware and good
ware is used for the training of the ML classifier. After sufficient training with
labeled data, the ML model is used to classify the unseen samples. Whereas, in the
unsupervised learning method, the classification is done on observed similarities or
differences [30].

In this paper, we employed a heuristic approach using the same raw Mac OSX
dataset used by H. H. Pajouh et al. [31], and a comprehensive study was done
to evaluate different machine learning classifiers for the detection of MacOSX
based malware samples. Below are the measure research work done as part of the
experiment.

I. The experiment applied a (Term Frequency – Inverse Data Frequency) TF-ID
based text processing was done to extract 654 new features based on the calling
of application libraries.

II. A SMOTE data set was developed with balanced distributions of benign and
malware samples to reduce bias in favor of any particular class. Each of the
classifiers was evaluated using the SMOTE data and a thorough comparison
was made against the original dataset and result.

Evaluation of Supervised and Unsupervised Machine Learning Classifiers for. . . 161

III. Five different machine learning algorithms (4 Supervised and 1 Unsupervised
machine learning technique) namely Logistic regression, Random Forest, Deci-
sion Tree, Naïve Bayes, and K-nearest neighbor were evaluated and analyzed
from different aspects like accuracy, False Positive rate, processing time.

We used the commonly used matrices for the performance evaluation of the machine
learning classifiers used in the experiment i.e. True Positive Rate (TPR), False
Positive Rate (FPR), Precision, Recall, F-measure, Receiver Operating Character-
istics (ROC), and Area Under the ROC Curve (AUC). Detailed descriptions of the
evaluation measures are described in Sects. 4.1 and 4.4.

.
Section 2 of this paper contains related work from recent years. Section 3 details

the methodology used in this work, Sect. 4 discuss the results observed in the
experiment, and in Sect. 5 we provide the conclusion of our work and suggest future
work. Acknowledgment and References for our work are provided at the very end
of the paper.

2 Related Work

The threat landscape for MacOS is changing drastically as the amount of malicious
software is growing [2]. The velocity, volume, and complexity of malware are
posing numerous challenges for the antivirus companies [1]. Various supervised and
unsupervised machine learning techniques are proving to be efficient in the detection
of malware. Ransomware attacks rose drastically ever since the introduction of
cryptocurrencies through which attackers were able to receive ransom anonymously.
The majority of ransomware families have different versions and features which
makes their detection and analysis sophisticated [32–38]. To resolve this T. Dargahi
[27] research provides the first scientific taxonomy of ransomware features, aligned
with the Lockheed Martin Cyber Kill Chain (CKC) model. A comprehensive
taxonomy would assist researchers in assessing the vulnerability and attack vectors
towards intended victims. Sajad. H [39] proposed DRTHIS: Deep ransomware
threat hunting and intelligence system which can detect ransomware activities
utilizing Long Short-Term Memory (LSTM) and Convolutional Neural Network
(CNN), two deep learning techniques. In the classification of ransomware instances,
DRTHIS achieved an F-measure of 99.6% with a true positive rate of 97.2%.
DRTHIS accurately predicted the ransomware instances based on sequences of
action performed by good ware and ransomware samples to correctly classify
ransomware samples.

Fattori et al. [40] developed an AccessMiner behavioral malware protection
system that provides a high level of OS protection (around 90% with zero
false positives). It generally detects malicious samples in real-time by monitoring
interactions between applications and the Windows Operating system. Novel Active
Learning (AL) framework introduced by Nissim [41] assisted antivirus vendors

162 D. Sahoo and Y. Dhawan

in determining more malware samples than the existing AL method. It provided
an accuracy of 97% as well as provided an increased efficiency to detect novel
Windows malware. To reduce the chance of Malware evasion Mangialardo and
Duarte [42] proposed the unification of Static and Dynamic analysis using C5.0
and Random Forests (RF) algorithms with an accuracy of 93% for detecting
Linux malware. Saharkhizan et al. [43] utilized deep generative metric learning
for identifying complex shape of malware data as model space and applied it on
NSL-KDD network attack dataset and could obtain high detection rate for different
attacks against network.

Since Windows OS is used extensively, a prominent amount of research work
has been conducted as compared to OSX malware detection [44]. H.H Pajouh
proposed an OSX code inspection technique using Synthetic Minority Over-
sampling Technique (SMOTE) to improve malicious sample size in the dataset
which helped to achieve a higher malware detection accuracy of 96% and achieve
a lower false alarm rate [31]. Some other relevant research includes researcher
Pham Duy Phuc used MacOS a malware analysis framework called Mac-A-Mal
to automatically capture malware behavior at user and kernel levels. Mac-A-Mal
framework led to the discovery of 71 unknown Adware, 2 keyloggers, and 1 trojan
involved in the APT32 OceanLotus. It also provided a Heatmap correlation matrix
to analyze the correlation of different malware datasets. The model supported
static and dynamic analysis to provide a rich set of Mac malware variants that
machine learning classifiers can implement [45]. E. Walkup [46] implemented static
executable analysis for the detection of Mac malware using different supervised
classification techniques. Information gain was utilized in the dataset to select
prominent features to detect OS X malware. Our machine learning classifiers aim to
solve the gap that was observed in the above papers.

3 Methodology

This section describes the experiment workflow as shown in Fig. 1. First, we
obtained the OSX Malware Detection dataset from the cybersciencelab.org [47]
website which had 450 benign samples and 152 malware samples. The raw data
was then processed to remove the anomalies. Second, different feature selection
and feature extraction techniques were used on the processed data, and in the final
stage different machine learning classifiers were used to create a detection model.
Each step is described in detail in Sects. 3.1, 3.2, and 3.3 respectively.

Two different experiments were conducted following the above steps. The first
experiment was conducted using the actual original data that was used to train
and test different ML classifiers. In the second experiment, SMOTE data was used
which was developed using the oversampling technique. All the experiments were
conducted using Python 2.7.1, Jupyter notebook server version 6.0.1 in a Windows
7 virtual machine with intel i7 (2.20GHz) processor.

Evaluation of Supervised and Unsupervised Machine Learning Classifiers for. . . 163

Preprocessing

Feature
Selection/

Feature
Extraction

ML Classifiers Detection
Model

Fig. 1 Experiment workflow

Table 1 Variance by dimension

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

0.345 0.507 0.606 0.682 0.753 0.813 0.862 0.906 0.940 0.966 0.984 0.993 1.000

3.1 Data Preprocessing

In this step, we analyzed the MacOSX Malware Detection raw data and found
multiple anomalies were found. Each of these anomalies was removed after a
thorough inspection. Some columns were having data in both integers and in hex
format, which were converted to decimal format so that the features can be of
integer type. The null values and bad data were replaced with the mean value of the
respective columns. Later this data was converted to CSV (comma-separated values)
format and used in the next phase for the feature selection and feature extraction
process.

3.2 Feature Selection and Extraction

After the data preprocessing phase, the most relevant features were selected using
two different feature selection techniques. We used ExtraTreeClassifier [48] form
the scikit-learn library for statistical analysis of the feature importance of the dataset.
This analysis gave an idea about which features are more relevant as shown in
Fig. 2. We observed that features like LoadDYLIB, bind_size, rebase_size, and
ncmds (Descriptions are given in Table 2) have more importance relative to other
features to determine the final output and classification.

Principal Component Analysis was used to understand how many dimensions of
the data maximize the variance of the dataset. This gave us the idea that the first
eight dimensions explain approx. 90% of the variance as shown in Table 1.

Heatmap Correlation Matrix, shown in Fig. 3 was used to understand the
correlation between different features in the dataset. We observed that the features
like ncmds, sizeofcmds, noloadcmd, rebase_size, and bind_size have a greater
correlation with the output compared with other features in the dataset. Segments,
SectionsTEXT, and SectionsData have the least correlation with the output variable
(Table 2).

164 D. Sahoo and Y. Dhawan

Segments

SectionsTEXT

SectionsData

export_size

lazy_bind_size

ncmds

strsize

bind_size

rebase_size

nsyms

noloadcmd

sizeofcmds

LoadDYLIB

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Fig. 2 Feature scores obtained using ExtraTreeClassifier

Table 2 Features description of Mac OS dataset

Feature Name Type Description Data type

1 ncmds Integer No. of commands for every sample Integer Integer
2 sizeofcmds Integer Command size for every sample Integer
3 noloadcmd Integer Number of commands for every loaded

sample during execution
Integer

4 rebase_size Integer Describe the size of the rebase info Integer Integer
5 bind_size Integer Describing the size of the info to be bound

during execution
Integer

6 lazy_bind_size Integer States the size of the info to be bound during
execution

Integer

7 export_size Integer States the size of lazy binding info Integer Integer
8 nsyms Integer States the no of symbol table entries Integer Integer
9 strsize Integer States size of string table in bytes Integer
10 LoadDYLIB Integer States no of DYLIB called and load for

execution of malware
Integer

11 Segments Integer Number of total segments which consist of
every sample

Integer

12 SectionsTEXT Integer No of text segments consisting of every
sample

Integer

13 SectionsData Integer No of data segments consisting of every
sample

Integer

14 DYLIBnames String Define names of loaded DYLIB String

Description are adopted from the paper on OSX malware detection

Evaluation of Supervised and Unsupervised Machine Learning Classifiers for. . . 165

Fig. 3 Heatmap Correlation Matrix for the features

3.2.1 Feature Extraction

The column DYLIBnames in the data set has the information regarding system
libraries called by applications. Names of different libraries were stored in a comma-
separated string format. We did the text processing of the column separately and
extracted several features using TfidfVectorizer from scikit-learn (https://scikit-
learn.org). During this process, we first used ‘comma’ as the token separator to split
each library’s names from the strings in each sample and were then converted to
new feature columns. The Term Frequency – Inverse Data Frequency (TFIDF) [49]
values of these libraries were calculated and assigned to the new feature columns
for each sample. Finally, 654 new features were extracted from the DYLIBnames
column and were also used for training and testing the ML classifiers.

https://scikit-learn.org
https://scikit-learn.org

166 D. Sahoo and Y. Dhawan

Table 3 Original dataset and
the SMOTE dataset sample
distributions

Dataset Benign Malicious Total

Original 460 152 612
SMOTE 460 460 920

3.2.2 SMOTE Dataset Development

Balancing the data is crucial because an imbalanced dataset can cause biased results
in favor of the majority class [50]. Our original dataset contained 450 samples from
the benign class and 152 from malware class which was in the ratio of approx. 3
to 1. Hence, a SMOTE dataset was developed with an oversampling technique to
balance the minority class. Table 3 illustrates the data sample details for original
and SMOTE datasets.

3.3 Machine Learning Classifier Phase

Five different machine learning classifier namely LogisticRegression, Random For-
est, KNN, decision tree, and Naïve Bayes were used where KNN is an unsupervised
classifier, and rest are supervised classifiers. The ML model is trained and tested in
two stages. In the first stage, the original dataset was used along with the 654 newly
extracted features, and in the second stage, a SMOTE enhanced dataset was used to
train and test all the classifiers.

4 Experiment and Results

This section describes the results obtained from our experiments and the perfor-
mance evaluation of different ML classifiers used during the experiment. The results
were obtained using a tenfold cross-validation technique. The assessments were
done in two phases. First, the actual results from different ML classifiers were
obtained with the original dataset and in the second phase, the SMOTE dataset
was used and results were recorded. Later, more analysis was done by making
comparisons of important performance metrics like Accuracy, ROC curves, False
Positive Rate, and processing time. Finally, the results were compared with another
similar paper.

Evaluation of Supervised and Unsupervised Machine Learning Classifiers for. . . 167

4.1 Evaluation Measures

Output results of the ML classifiers can be summarised as a confusion matrix where
the diagonal elements are True Positives (TP), True Negatives (TN), and the off-
diagonal elements as False Positives (FP) and False Negatives (FN) respectively.

True positive (TP): The normal observation is predicted as normal
True Negative (TN): Anomalous observation is predicated as anomalous
False Positive (FP): Anomalous observation is predicted as normal
False Negative (FN): Normal observation is predicated as anomalous

True Positive Rate (TPR) = TP

TP + FN

False Positive Rate (FPR) = FP

TN + FP

Precision = TP

TP + FP

Recall = TPR = TP

TP + FN

F − measure = 2 ∗ Recall ∗ Precision

Recall + Precision

Accuracy = TP + TN

TP + TN + FP + FN

Here TPR, also known as Recall is the value of predicted malware classified
correctly and FPR is the value of normal data incorrectly predicted as malware.
Precision is also known as the positive predicted value, returns the rate of relevant
results. F-measure provides value that estimates the entire system performance
by combining precision and recall into a single number. Accuracy denotes how
accurately an ML classifier can classify the binary classes i.e. ‘good ware’ and
‘malware’.

168 D. Sahoo and Y. Dhawan

4.2 Evaluation of ML Classifiers

We have used different performance metrics namely: Precision, Recall, F-measure,
and Accuracy to evaluate our ML models. Table 4 shows a summary of the overall
results obtained from the two experiments i.e. using normal dataset and the SMOTE
dataset. In the first experiment, Logistic regression achieved the highest detection
rate of 0.94 in terms of testing accuracy. Random Forest and then KNN came next
and achieved an accuracy of 0.93 and 0.88 respectively.

In the second experiment, an overall increment in all parameters of the detection
result was observed for the five classifiers when the SMOTE dataset was used. Espe-
cially, for Decision Tree and Naïve Bayes, a significant increment of approx. 10%
was observed in the accuracy. In the second experiment also Logistic Regression
remained on the top with a detection accuracy of 0.96 followed by Random Forest
with 0.95, Decision Tree with 0.94, Naïve Bayes with 0.93, and KNN with 0.90.
Surprisingly, Decision Tree and Naïve Bayes outperformed KNN in terms of all
the parameters i.e. precision, Recall, F-measure, and testing accuracy during this
experiment.

4.3 False-Positive Rate Comparison

Table 5 shows the count of predicted TP, FN, FP, TN while testing each of the ML
classifiers. Then, FPR was calculated and compared for both the experiments using
original data and SMOTE data respectively. A significant reduction in FPR was
recorded for the SMOTE dataset compared to the original dataset.

Figure 4 shows the false-positive rate (FPR) comparison between the two
experiments using the above mentioned different datasets for each classifier. It was
observed that with the original dataset Random Forest had the highest false-positive

Table 4 Result summary comparing evaluation result from the Original dataset and the SMOTE
dataset

Experiment No. Classifier Precision Recall F-measure Accuracy

I. Original dataset 1 Logistic Regression 0.94 0.94 0.94 0.94
2 Random Forest 0.94 0.93 0.93 0.93
3 KNN 0.89 0.88 0.88 0.88
4 Decision Tree 0.87 0.87 0.87 0.87
5 Naïve Bayes 0.86 0.83 0.84 0.83

II. SMOTE dataset 1 Logistic Regression 0.96 0.96 0.96 0.96
2 Random Forest 0.95 0.95 0.95 0.95
3 KNN 0.91 0.9 0.89 0.90
4 Decision Tree 0.94 0.94 0.93 0.94
5 Naïve Bayes 0.94 0.93 0.93 0.93

Evaluation of Supervised and Unsupervised Machine Learning Classifiers for. . . 169

Table 5 TP, TN, FP, TN count, and FPR value for ML classifiers tested with the original dataset
and SMOTE dataset

Experiment No. Classifier TP FN FP TN FPR

I. Original data 1 Logistic Regression 91 3 4 25 0.14
2 Random Forest 94 0 8 21 0.28
3 KNN 83 11 4 25 0.14
4 Decision Tree 85 9 7 22 0.24
5 Naïve Bayes 78 16 5 24 0.17

II. SMOTE data 1 Logistic Regression 129 8 3 137 0.02
2 Random Forest 128 9 5 135 0.04
3 KNN 109 28 1 139 0.01
4 Decision Tree 126 11 7 133 0.05
5 Naïve Bayes 117 20 0 140 0.00

13.79%

27.59%

13.79%

24.14%

17.24%

2.14% 3.57%
0.71%

5.00%

0.00%
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Logistic Regression Random Forest KNN Decision Tree Naïve Bayes

Pe
rc

en
ta

ge

Classifier

FPR comparison

I.Origional II.SMOTE

Fig. 4 False alarm (FPR) comparison of the ML classifiers for Original dataset and SMOTE
dataset

rate i.e. 27.59%, followed by Decision Tree at 24.14%. For both KNN and Logistic
Regression, the FPR was relatively low at 13.79%. After running the ML classifiers
on the SMOTE dataset, there was a significant decrease in the FPR value for all the
classifiers. Naive Bayes achieved a noteworthy 0% FPR rate with SMOTE dataset.
The difference in false alarm for a small amount of data won’t be significant, but
practically the traffic over any common network is huge enough that the difference
can be observed.

170 D. Sahoo and Y. Dhawan

4.4 ROC Curve

Figures 5 and 6 shows the comparison of the Receiver Operating Characteristic
(ROC) Curve for the ML Classifiers. ROC curve [51] is one of the methods of
measuring the performance of a classification model. In this curve, the True Positive
Rate (TPR) is plotted against False Positive Rate (FPR) for the probabilities of the
classifier predictions. Then, the area under the plot is calculated. More the area under
the curve, better is the model at distinguishing between classes.

In Figs. 5 and 6, the graphs illustrate that the Logistic Regression has the highest
AUC of 0.987 and 0.993 for the original dataset and SMOTE dataset respectively,
which signifies an outstanding prediction score. AUC for RF is was recorded a
little lower than Logistic Regression at 0.971 and 0.989 for the mentioned datasets
denoting very good prediction as well. Finally, followed by KNN, Decision Tree,
and Naïve Bayes for the same datasets. It was observed that there was an increment
in AUC value for each of the ML classifiers when the SMOTE dataset was used.

4.5 Performance Evaluation

In this section performance evaluation of each classifier in terms of processing
time is discussed. Figure 7 shows the execution time comparison between the two
experiments using the original data set and SMOTE dataset. First, with the original
dataset, Logistic Regression and Naïve Bayes performed better than the rest of the

Fig. 5 ROC curve for the ML classifiers for Original dataset

Evaluation of Supervised and Unsupervised Machine Learning Classifiers for. . . 171

Fig. 6 ROC curve for the ML classifiers for SMOTE dataset

0.17

0.46

0.35

0.22
0.17

0.095

0.26

0.47

0.23

0.16

0

0.1

0.2

0.3

0.4

0.5

Logistic Regression Random Forest KNN Decision Tree Naïve Bayes

Ti
m

e
(in

 s
ec

)

Classifier

Comparison of Processing Time

I.Origional II.SMOTE

Fig. 7 performance comparison based on the execution time for the ML classifiers

algorithms, where both took 170 ms. In experiment-I, Random Forest took the
highest execution time of 460 ms. Later, with the SMOTE dataset again Logistic
Regression and Naïve Bayes performed better than other classifiers and a slight
decrease in execution time was also noted for them. For KNN an increase in the
execution time was recorded when SMOTE dataset was used, where it took 470 ms
compared to 350 ms in the first experiment. Other than KNN the execution time
either reduced or remained almost the same in the second experiment with the
SMOTE dataset.

172 D. Sahoo and Y. Dhawan

4.6 Result Comparison

Authors in [31] researched macOS malware detection using the same dataset.
They used three different SMOTE enhanced i.e. 2x_SMOTE, 3x_SMOTE, and
5x_SMOTE dataset for their experiment. However, the benign and malware sample
was always in the ratio of approx. 3:1 in the datasets like it was in the original
dataset. The sample weight of libraries was used with an occurrence probability
value for the new feature creation. Decision achieved the highest accuracy of 96%
and 4% false alarm with the 5x_SMOTE dataset. Weighted RBF-SVM achieved
91% accuracy with a 3.9% false alarm using the original dataset.

In this paper, we used SMOTE data with a balanced distribution for both benign
and malware samples in the ratio of 1:1. The library calls frequency was calculated
using TF-IDF text processing method and was used for the new feature creation.
In our experiment, the highest accuracy was obtained from Logistic regression
which was 96% with a false alarm of 2.14% using SMOTE data. Using original
data, Logistic regression achieved the highest accuracy of 94% and a false alarm of
13.79%. Overall, all the classifiers used in this paper show better detection accuracy
and a lower false-positive rate.

5 Conclusion and Future Work

In this paper, we used TF-ID based text processing to extract new features, and using
the Synthetic Minority Over-sampling Technique (SMOTE) we were able to balance
our dataset and achieve better results compared to our original dataset. We tested
our dataset with 5 machine learning classifiers (4 Supervised and 1 unsupervised
algorithm) and achieved a promising accuracy of 96% for Logistic regression and
95% for Random forest. The experiment also provided us with a lower false-positive
rate as evident in Fig. 7.

Future work would include malware detection and analysis to be further
improved by acquiring more data samples to create a better detection system.
Additional research can be done on a larger dataset to predict if the same results
are obtained or not. To acquire predictive performance ensemble machine learning
technique works well-using bagging and boosting techniques using several base
models. With Ensemble machine learning we can reduce variance, noise, and bias
as well as increases the accuracy of the model [52]. A deep learning approach can
also be used on a large malware dataset to detect complex malware and outperform
traditional machine learning algorithms [53]. This paper can be treated as a case
study for researchers working in the area of intelligent MacOS malware detection
systems on enterprise and cloud platforms.

Evaluation of Supervised and Unsupervised Machine Learning Classifiers for. . . 173

References

1. J. Stoldt, T. Uwe Trapp, Toussai, Mac malware getting serious – Security no longer optional
(Macworld, 2018, Februrary 5), https://www.macworld.com/article/3253252/mac-malware-
getting-serious-security-no-longeroptional.html. Accessed 24 Oct 2019

2. Threats to macOS users, https://securelist.com/threats-to-macos-users/93116/. Accessed 22
Oct 2019

3. Mac malware facts, https://www.eset.com/int/mac-malware-facts/. Accessed 10 May 2020
4. World Health Organization, et al., T. Reed, Mac security facts and fallacies (Malwarebytes

Labs, 2017, March 8). https://blog.malwarebytes.com/101/2017/03/mac-security-facts-and-
fallacies/. Accessed 10 May 2020. Osteoarthr. Cartil

5. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88 (2020).
https://doi.org/10.1016/j.cose.2019.101629

6. Warning as Mac malware exploits climb 270% | Computerworld, https://
www.computerworld.com/article/3262225/warning-as-mac-malware-exploits-climb-
270.html. Accessed 10 May 2020

7. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of the
OpenFlow v1.3 Switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3) (2018). https://
doi.org/10.1007/s11227-017-2175-7

8. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Performance improvement and hardware imple-
mentation of Open Flow switch using FPGA, in IEEE 5th Conference on Knowledge Based
Engineering and Innovation, KBEI 2019, (2019), pp. 515–520

9. A. Dehghantanha, K.-K. R. Choo (eds.), Handbook of Big Data and IoT Security (Springer,
Cham, 2019)

10. A. Azmoodeh, A. Dehghantanha, Big data and privacy: Challenges and opportunities, in
Handbook of Big Data Privacy, (Springer, Cham, 2020), pp. 1–5. https://doi.org/10.1007/978-
3-030-38557-6_1

11. M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of Things security and forensics:
Challenges and opportunities. Futur. Gener. Comput. Syst. 78, 544–546 (2018). https://doi.org/
10.1016/j.future.2017.07.060

12. M. Conti, T. Dargahi, A. Dehghantanha, Cyber threat intelligence: Challenges and opportu-
nities, in Advances in Information Security, (Springer, Cham, 2018), pp. 1–6. https://doi.org/
10.1007/978-3-319-73951-9_1

13. Y. Ye, T. Li, Q. Jiang, Y. Wang, CIMDS: Adapting postprocessing techniques of associative
classification for malware detection. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(3),
298–307 (2010)

14. S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, R. Khayami, Know abnormal,
find evil: Frequent pattern mining for ransomware threat hunting and intelligence. IEEE Trans.
Emerg. Top. Comput. (2017). https://doi.org/10.1109/TETC.2017.2756908

15. S.K. Sahay, A. Sharma, Grouping the executables to detect malware with high accuracy. arXiv
Prepr. arXiv1606.06908 (2016)

16. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

17. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

18. H. Haddadpajouh, A. Azmoodeh, A. Dehghantanha, R.M. Parizi, MVFCC: A multi-view fuzzy
consensus clustering model for malware threat attribution. IEEE Access 8, 139188–139198
(2020)

19. H.H. Pajouh, R. Javidan, R. Khayami, D. Ali, K.-K.R. Choo, A two-layer dimension reduction
and two-tier classification model for anomaly-based intrusion detection in IoT backbone
networks. IEEE Trans. Emerg. Top. Comput. 7(2), 314–323 (2016)

https://www.macworld.com/article/3253252/mac-malware-getting-serious-security-no-longeroptional.html
https://securelist.com/threats-to-macos-users/93116/
https://www.eset.com/int/mac-malware-facts/
https://blog.malwarebytes.com/101/2017/03/mac-security-facts-and-fallacies/
http://dx.doi.org/10.1016/j.cose.2019.101629
https://www.computerworld.com/article/3262225/warning-as-mac-malware-exploits-climb-270.html
http://dx.doi.org/10.1007/s11227-017-2175-7
http://dx.doi.org/10.1007/978-3-030-38557-6_1
http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1007/978-3-319-73951-9_1
http://dx.doi.org/10.1109/TETC.2017.2756908

174 D. Sahoo and Y. Dhawan

20. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An ensemble
of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE
Internet Things J. 7(9), 8852–8859 (2020). https://doi.org/10.1109/jiot.2020.2996425

21. A.N. Jahromi et al., An improved two-hidden-layer extreme learning machine for malware
hunting. Comput. Secur. 89, 101655 (2020)

22. P.N. Bahrami, A. Dehghantanha, T. Dargahi, R.M. Parizi, K.-K.R. Choo, H.H.S. Javadi, Cyber
kill chain-based taxonomy of advanced persistent threat actors: Analogy of tactics, techniques,
and procedures. J. Inf. Process. Syst. 15(4), 865–889 (2019)

23. How machine learning works | Kaspersky official blog, https://www.kaspersky.com/blog/
machine-learning-explained/13487/. Accessed 10 May 2020

24. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, H. Karimipour, E. Modiri, D.E. Newton,
Fuzzy pattern tree for edge malware detection and categorization in IoT zero trust distributed
computing view project naive-Bayesian-based model for interoperability among heterogeneous
Systems in Intelligent Buildings View project fuzzy pattern tree for. Art. J. Syst. Arch. 97, 1–7
(2019)

25. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for Internet of Things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

26. H. Darabian et al., A multiview learning method for malware threat hunting: Windows, IoT
and android as case studies. World Wide Web 23(2), 1241–1260 (2020)

27. T. Dargahi, A. Dehghantanha, P.N. Bahrami, M. Conti, G. Bianchi, L. Benedetto, A cyber-kill-
chain based taxonomy of crypto-ransomware features. J. Comput. Virol. Hacking Tech. 15(4),
277–305 (2019)

28. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, S. Hashemi, B. Gharabaghi, G. Srivastava,
Active spectral botnet detection based on eigenvalue weighting, in Handbook of Big Data
Privacy, (Springer, Cham, 2020), pp. 385–397. https://doi.org/10.1007/978-3-030-38557-
6_19

29. M. Alaeiyan, A. Dehghantanha, T. Dargahi, M. Conti, S. Parsa, A multilabel fuzzy relevance
clustering system for malware attack attribution in the edge layer of cyber-physical networks.
ACM Trans. Cyber-Phys. Syst. 4(3), 1–22 (2020)

30. World Health Organization, et al., E. McNulty, What’s the difference between supervised
and unsupervised learning? (Dataconomy, 2015, January 8), https://dataconomy.com/2015/01/
whats-the-difference-betweensupervised-and-unsupervised-learning/. Accessed 10 May 2020.
Osteoarthr. Cartil

31. H.H. Pajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, Intelligent OS X malware threat
detection with code inspection. J. Comput. Virol. Hacking Tech. 14(3), 213–223 (2018)

32. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (2019), pp. 1–6

33. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency malware hunting: A deep recurrent neural network approach. Appl. Soft
Comput. Elsevier 96, 106630 (2020)

34. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

35. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

36. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. 115, 619–640
(2020)

37. R.M. Parizi, S. Homayoun, A. Yazdinejad, A. Dehghantanha, K.-K.R. Choo, Integrating
privacy enhancing techniques into blockchains using sidechains, in The Annual IEEE Cana-
dian Conference on Electrical and Computer Engineering, (2019). https://doi.org/10.1109/
CCECE.2019.8861821

http://dx.doi.org/10.1109/jiot.2020.2996425
https://www.kaspersky.com/blog/machine-learning-explained/13487/
http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1007/978-3-030-38557-6_19
https://dataconomy.com/2015/01/whats-the-difference-betweensupervised-and-unsupervised-learning/
http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.1109/CCECE.2019.8861821

Evaluation of Supervised and Unsupervised Machine Learning Classifiers for. . . 175

38. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, G. Srivastava, S. Mohan, A.M. Rababah, Cost
optimization of secure routing with untrusted devices in software defined networking. J.
Parallel Distrib. Comput. (2020). https://doi.org/10.1016/j.jpdc.2020.03.021

39. S. Homayoun et al., DRTHIS: Deep ransomware threat hunting and intelligence system
at the fog layer. Futur. Gener. Comput. Syst. 90, 94–104 (2019). https://doi.org/10.1016/
j.future.2018.07.045

40. A. Fattori, A. Lanzi, D. Balzarotti, E. Kirda, Hypervisor-based malware protection with
accessminer. Comput. Secur. 52, 33–50 (2015)

41. N. Nissim, R. Moskovitch, L. Rokach, Y. Elovici, Novel active learning methods for enhanced
PC malware detection in windows OS. Expert Syst. Appl. 41(13), 5843–5857 (2014)

42. R.J. Mangialardo, J.C. Duarte, Integrating static and dynamic malware analysis using machine
learning. IEEE Lat. Am. Trans. 13(9), 3080–3087 (2015)

43. M. Saharkhizan, A. Azmoodeh, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Sri-
vastava, A hybrid deep generative local metric learning method for intrusion detection, in
Handbook of Big Data Privacy, (Springer, Cham, 2020), pp. 343–357. https://doi.org/10.1007/
978-3-030-38557-6_16

44. Operating system guide: Windows vs Mac (vs Linux), https://www.logicalincrements.com/
articles/build-pc-windows-apple-mac-linux-operating-system-os. Accessed 10 May 2020

45. D.-P. Pham, D.-L. Vu, F. Massacci, Mac-A-Mal: macOS malware analysis framework resistant
to anti evasion techniques. J. Comput. Virol. Hacking Tech. 15(4), 249–257 (2019)

46. E. Walkup, Mac malware detection via static file structure analysis. Univ. Stanf. [Online].
Available: http://cs229.stanford.edu/proj2014/Elizabeth%20Walkup%20MacMalware.pdf

47. CSL-Home – Cyber Science Lab, https://cybersciencelab.org/. Accessed 10 May 2020
48. 3.2.4.3.3. sklearn.ensemble.ExtraTreesClassifier – Scikit-learn 0.22.2 documentation,

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html.
Accessed 10 May 2020

49. How to process textual data using TF-IDF in Python (freeCodeCamp.org, 2018, June
6), https://www.freecodecamp.org/news/how-to-process-textual-data-using-tf-idf-in-
pythoncd2bbc0a94a3/. Accessed 10 May 2020

50. K. Mahendru, How to deal with imbalanced data using SMOTE (Medium, 2019, June
26), https://medium.com/analytics-vidhya/balance-your-data-using-smote-98e4d79fcddb.
Accessed 10 May 2020

51. Machine learning classifier evaluation using ROC and CAP curves, https://
towardsdatascience.com/machine-learning-classifier-evaluation-using-roc-and-cap-curves-
7db60fe6b716. Accessed 10 May 2020

52. R.R.F. DeFilippi, Boosting, bagging, and stacking – Ensemble methods with sklearn and
mlens (Medium, 2018, August 4), https://medium.com/@rrfd/boosting-bagging-and-stacking-
ensemblemethods-with-sklearn-and-mlens-a455c0c982de. Accessed 10 May 2020

53. R. Vinayakumar, M. Alazab, K.P. Soman, P. Poornachandran, S. Venkatraman, Robust
intelligent malware detection using deep learning. IEEE Access 7, 46717–46738 (2019)

http://dx.doi.org/10.1016/j.jpdc.2020.03.021
http://dx.doi.org/10.1016/j.future.2018.07.045
http://dx.doi.org/10.1007/978-3-030-38557-6_16
https://www.logicalincrements.com/articles/build-pc-windows-apple-mac-linux-operating-system-os
http://cs229.stanford.edu/proj2014/Elizabeth%20Walkup%20MacMalware.pdf
https://cybersciencelab.org/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://www.freecodecamp.org/news/how-to-process-textual-data-using-tf-idf-in-pythoncd2bbc0a94a3/
https://medium.com/analytics-vidhya/balance-your-data-using-smote-98e4d79fcddb
https://towardsdatascience.com/machine-learning-classifier-evaluation-using-roc-and-cap-curves-7db60fe6b716
https://medium.com/@rrfd/boosting-bagging-and-stacking-ensemblemethods-with-sklearn-and-mlens-a455c0c982de

Evaluation of Machine Learning
Algorithms on Internet of Things (IoT)
Malware Opcodes

Adesola Anidu and Zibekieni Obuzor

1 Introduction

With recent advancements in technology, various mobile devices, gadgets and,
applications have been designed and developed to make life easier. The power of
the internet has been harnessed in the operation of these devices to make them
smarter than ever before. Devices, gadgets connected to the internet in such a
way that information can be sent and received from the devices are popularly
referred to as the Internet of Things (IoT) devices [1–6]. These devices are being
used in various domains such as healthcare, agriculture, military, etc. [7–14]. With
various sensors deployed on these devices. Due to the increasing versatility and
popularity of these devices, they are prone to malware attacks as most of these
devices lack security protection [6, 15–18]. Kaspersky Lab. in 2016 observed
that most IoT devices tested, had unpatched vulnerabilities or default passwords
making them insecure and hence prone to malicious attacks [19]. These attacks can
be eavesdropping, spoofing attack, jamming, Denial of Service (DoS), intrusion,
and malicious software (malware) [20]. The most common of these attacks is the
malware [21].

Two main methods which are commonly used for the analysis of malware are
dynamic and static analysis [22]. In dynamic analysis, the program is run in an
emulator or instrumented hardware with to extract characteristic actions executed
by the program [23]. It is slower and less prone to code obfuscation. In static
analysis, the program binary is disassembled to extract the features [24]. There
is greater code coverage in static analysis than dynamic analysis. Some research
works have been done to combine the two methods [25]. Analysis of malware aids

A. Anidu (�) · Z. Obuzor
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: aanidu@uoguelph.ca; zobuzor@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_12

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_12&domain=pdf
mailto:aanidu@uoguelph.ca
mailto:zobuzor@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_12

178 A. Anidu and Z. Obuzor

in understanding the behavior and structure of the malware. Many features can be
extracted from the malware executables to identify malware [26]. These features
include byte n-gram feature, opcode, function-based, string-based, API calls, and
system calls [27, 28]. Byte n-gram features are sequences of n-byte extracted from
malware as a signature for recognizing malware [29]. Malware detection using this
method has yielded a high accuracy as presented by [25]. String features are features
that are based on plain text encoded in executables such as windows, library, etc.
String features are not so robust as they can be easily modified though accuracy
is better than byte n-gram and portable executables [25]. Portable executables are
features extracted from some parts of the exe file. These features show that a
file has been manipulated or infected to perform malicious activity [30]. Opcode
is an assembly language instruction used to describe the type of operation being
performed. Opcode is a mnemonic for operational code [31]. Opcodes can be used
to derive variability between malware and a benign ware. Studies have shown that
the opcodes feature extraction method is more efficient in classifying malware.
According to [25] opcodes reveal a lot of statistical differences between legitimate
software and malware. The use of opcodes has been employed in detecting and
classifying malware in android mobile devices, but little research work has been
done in its use for the detection and classification of IoT malware. A recent study by
[19] in the use of opcodes for IoT malware threat hunting using deep neural network
yielded an accuracy of 98%. In this study, we will be implementing several machine
learning classifiers to achieve higher accuracy in the classification of malware based
on the opcodes.

The next section briefly describes related works on the topic. Section 3 describes
the methodology of the study. In Sect. 4, the evaluation and experimental results
are presented. Lastly, Sect. 5 concludes the paper and presents the future research
direction.

2 Literature Review

Various methods such as machine learning approaches [32] have been employed for
malware classification and detection in devices. [33] presented a paper to explore
the possibility of using a random forest classifier for the detection of malware
in an Android device by examining the behavior of the application data. The
dataset used was generated automatically by monitoring some attributes on the
Android adb-monkey. Random Forest classifier provided an accuracy with fivefold
cross-validation of over 99.9% of the correctly classified samples. 0.0171 was
obtained as the optimal square root of the mean-squared-error. 0.002 was achieved
as the optimal out-of-bag error rate with 40 trees as minimum forest size. Two
machine learning aided approaches are presented by [27] for static analysis of
mobile applications. One is based on source code analysis using a bag of words
representation model while the other is based on permissions. Source code-based

Evaluation of Machine Learning Algorithms on Internet of Things (IoT). . . 179

method achieved an F-measure of 95.1% while the permission-based approach
achieved an F-measure of 89%.

M0Droid, a novel Android behavioral-based malware detection technique pre-
sented by [34] which comprises of a lightweight client agent and server analyzer.
A signature for each application based on the system request of the application is
generated by the server analyzer. The signature generated is normalized to improve
accuracy. Identification of malware with similarity to behavior signatures of the
already generated blacklist of malware signatures is done using Spearman’s rank
correlation coefficient. The detection rate of 60.16% with 0.4% false-negatives
and 39.43% false positives were achieved at a threshold value of 0.90 when
experiments were run using M0Droid on Genome dataset and APK submissions
of Android client agent. [35] presented an Android malware detection model based
on permission. This model has two layers. An improved random forest algorithm
was used to analyze in the first layer detection while sensitive permission rules that
match the fuzzy sets generated in the first layer detection were used for second layer
detection. The results of experiments showed that the accuracy rate is not high due
to static detection. A hybrid model based on Convolutional Neural Network (CNN)
and Deep Autoencoder (DAE) is proposed by [36]. Reconstruction of the high
dimensional features of the Android application is done to improve the accuracy
in the detection of malware and then CNN is used for the detection of Android
malware. DAE is used for the pre-training of CNN to reduce the training time.
Experiments were conducted using 10,000 benign apps and 13,000 malicious apps.
Results from experiments showed that the training time using DAE-CNN model was
reduced by 83% when compared with the serial convolutional neural network.

MalDozer an automatic framework for android malware detection using deep
learning is presented by [37]. By using the raw sequence of the app’s API method
calls, MalDozer extracts and learns the benign and malicious patterns to detect
Android malware. F1-score of 96%–99% and a false positive rate of 0.06%–2%
were achieved when MalDozer was evaluated using multiple Android malware
datasets ranging from 1 k to 33 K malware apps, and 38 K benign apps. An
Android malware characterization and detection approach using weight-adjusted
deep learning is presented by [38]. An accuracy of over 90% is obtained when
evaluated with only 237 features. Two end-to-end malware detection for android IoT
devices using deep learning is proposed by [39]. The inputs used in the proposed
method are resamples of the raw bytecodes of the classes.dex files of Android
applications. An accuracy of 93.4% and 95.8% was achieved using a dataset with
8 K benign applications and 8 k malicious applications. The proposed method
has low resource consumption, does not need manual feature engineering, is not
limited by input size, and is suitable for Android IoT devices. [40] presents a
novel framework for the detection of android malware. A multimodal deep learning
method is proposed as a model for malware detection. The performance of the
model was evaluated using 41,260 samples which confirmed that the framework
was effective for the detection of Android malware. [41] used words from an apk
is used to generate the image, which is then analyzed using Convolutional Neural

180 A. Anidu and Z. Obuzor

Network to classify whether the apk file is a malware or not. An accuracy of 92%
was achieved.

Malware analysis and classification using Support Vector Machine is presented
by [42]. The experiment was conducted on the heterogeneous malware data
retrieved from N6 platform and a classification accuracy between 94% to 95%
was obtained. Analysis of Malware behavior based on type classification using
machine learning is presented by [43]. Here a system is developed as a pre-
filtering application in which known malware are filtered from new malware thus
increasing detection. Experiments were conducted on 42,068 samples using a
random forest algorithm with 160 trees and satisfactory results were obtained. [44]
proposed the use of Hidden Markov Model for training using dynamic features
to perform malware classification. The features used are observation sequences
that are made up of system call traces. Experiments were performed on a dataset
containing behavioral profiles of 964 malware programs belonging to 7 different
malware families and 50 benign programs. An accuracy of 97% was achieved.
[45] presented the use of Artificial Neural Network for analyzing and classifying
malware. In the proposed method, the malware is presented as a 2-Dimensional
grayscale image. These images as well as their texture similarity were collected for
all available variants. Gabor Wavelet transform and GIST were employed to identify
the behavior of malicious data using global features. The experiment was conducted
using Mahenhur dataset that consists of 3131 binary samples comprising 24 unique
families. An accuracy of 96.35% was obtained in detecting and classifying malware
using feed-forward Artificial Neural Network.

Furthermore, a deep learning approach for the detection of crypto-mining
malware using dynamic and static analysis is presented by [23]. System call events
of 1500 Portable Executable (PE) were captured for dynamic analysis. An accuracy
of 95% and 99% were achieved for static and dynamic analysis respectively using
Long Short-Term Memory (LSTM), Attention-based LSTM (ATT-LSTM), and
convolutional neural networks (CNN) approaches on sequences of system call
events. [24] proposed a supervised machine learning model for malware threat
detection in Mac OS X. Kernel base Support Vector Machine in addition to a
novel, weighting measure based on application calls is used to detect the OS
X malware. A dataset consisting of 450 benign and 152 malware samples was
used to evaluate the model. Results obtained showed that the Synthetic Minority
Over-sampling Technique (SMOTE) performed better than the common supervised
machine learning algorithm with an accuracy of 96% and a false alarm of less
than 4%. An approach for dynamic malware detection based on a combination
of Process Mining and Fuzzy Logic techniques is presented by [46]. When the
two techniques are combined, a fingerprint of an application is obtained to verify
whether it belongs to a known malware family and subsequently identify the
difference in detected malware behavior and other variants of malware. Results from
experiments conducted on the dataset of 3000 trusted and malicious applications
across 12 malware families show good performance in the detection of malware and
family identification.

Evaluation of Machine Learning Algorithms on Internet of Things (IoT). . . 181

Operational Codes (OpCodes) from programs have been introduced as a reliable
feature for identifying and detecting malware using machine learning in devices.
A new malware detection method based on OpCodes in an executable file is
presented by [47]. A graph of OpCode within an executable file is generated. This
graph is subsequently embedded into the eigenspace using the Power Iteration
method. Executable files are presented as a linear combination of eigenvectors
proportionate to their respective eigenvalues. The proposed method when evaluated
using SVM and KNN has a high detection rate, low false-positive rate, and
acceptable computational complexity. Malware detection using a control flow-
based opcode behavior was presented by [48]. Executable opcode behaviors were
extracted using a control flow-based method. A control flow graph for the program
is created to determine the opcode behavior of the program from the execution paths
when the graph is traversed. Results presented showed a higher accuracy rate and
a lower false-positive rate when compared with other text-based detection methods.
[49] used the opcode sequence in detecting malicious Android applications. Binary
occurrences of k-grams were used instead of the frequency of opcode sequence.
Minimal functionalities required for a program to function were used instead of
the total number of opcode-sequences. The experiment was conducted using the
Genome Project dataset with an accuracy of 96.83% of detecting a malicious
application.

OpCodes have been combined with header information, ByteCodes, API calls,
attacker’s intent, and permissions to create a multi-view learning method for hunting
malicious programs [26].

Weights are assigned automatically to different views to increase detection in
various environments. This method is the first malware threat-hunting method that
can be implemented across different platforms. Results from experiments conducted
across IoT, Windows, and Android platforms show high accuracy with a low rate of
false positives. [50] presented N-opcode analysis for Android malware classification
and categorization. The dex files were disassembled using baksmali. During the
feature selection stage, the information gain of each feature was measured. Four
machine learning algorithms namely: Naïve Bayes, Random Forest, Partial Decision
Tree, and Support Vector Machine were employed using WEKA as the framework.
The Android Malware Genome project dataset was used. Experiments conducted on
2520 samples using up to 10-g opcode features indicated that an F-measure of 98%
can be achieved.

Furthermore, [51] used Support Vector Machine for OpCode density-based
detection of crypto-ransomware. 443 opcodes were extracted from samples using
static analysis of benign and malicious Portable Executable files. These opcodes
were represented as density histograms in the dataset. A precision of 100% was
achieved in differentiating goodware from ransomware. [52] classified ransomware
families with machine learning using the N-gram of opcodes. Opcode sequences
generated from the ransomware samples were converted to N-gram sequences. For
each N-gram sequence, Term Frequency-Inverse Document Frequency (TF-IDF)
is calculated to choose the feature N-grams which exhibit better discrimination
between families. Five machine learning algorithms were employed on the feature

182 A. Anidu and Z. Obuzor

vectors generated from the feature N-grams for ransomware classification. Results
obtained showed an accuracy of 91.43% in classifying ransomware with the
F1-measure of the ransomware family up to 99%. The accuracy of the binary
classification is 99.3%. [53] proposed an approach for detecting mobile malware
using an opcode frequency histogram. Malware is classified using a set of features
that count the frequency of a specific group of opcodes extracted from the smali
dalvik code of the particular application under analysis. The input data is presented
in the form of a histogram representing the opcodes (6 of them) within each
class. The distance between the histograms was computed. Classification analysis
was conducted using Weka. Experiments were conducted on 5560 Android trusted
application and malware applications collected from the Drebin project using six
classification algorithms namely: J48, Random Tree, LadTree, Random Forest,
NBTree, and RepTree. The results obtained showed that the proposed method
produced over 93% precision rate in the detection of mobile malware with an
accuracy of 95%.

Also, [24] used a sequential pattern mining technique to detect the most
frequent opcode sequences of malicious IoT applications. Sequential pattern mining
algorithms were used in the extraction of sub-sequences embedded in the text given
which is based upon a support value and a user-specified threshold. Sequential
pattern mining was combined with machine learning techniques to classify IoT
goodware, malware, and polymorphic malware samples. The dataset used was made
up of 269 IoT good ware and 247 malware samples. 36 features were detected
because of frequent patterns of malware opcodes and the division to transitional and
atomic types. An accuracy and F-measure of above 99% were achieved in detecting
IoT malware from benign samples using k-nearest neighbor, MLP, SVM, random
forest, Adaboost, and Decision Tree machine learning classifiers. [30] presented
a modified Two-hidden-layered Extreme Learning Machine (TELM) for malware
hunting. TELM utilizes the dependency of malware sequence elements as well
as avoidance of backpropagation when training neural networks. In comparison
with the stacked Long Short Term Memory (LSTM) and Convolutional Neural
Network (CNN), the proposed method accelerates the training and detection steps
for malware hunting. An accuracy of 99.65% was obtained in detecting samples
of IoT malware when the proposed approach was evaluated using an IoT-specific
dataset. The proposed approach can be utilized on all platforms for malware
analysis.

A lightweight classification of IoT malware using Image Recognition is proposed
by [54]. One-channel gray-scale images that were converted from binaries were
extracted. A light-weight convolutional neural network is implemented to classify
IoT malware families. Experimental results obtained show that the proposed system
can achieve 94% accuracy in classifying goodware and DDoS malware and also
accuracy of 81.8%was obtained when classifying goodware and two main malware
families. [55] presented a fuzzy and fast fuzzy pattern tree methods for malware
detection and categorization by using the programs’ OpCodes that were transmuted
into a vector space. A high degree of accuracy was achieved using a fast fuzzy
pattern tree method. Dynamic analysis of malware using run-time opcodes is

Evaluation of Machine Learning Algorithms on Internet of Things (IoT). . . 183

presented by [56]. Machine learning techniques are employed. An accuracy of
99.01% is obtained which shows that dynamic opcode analysis can be used for the
detection of malware.

Also, a multi-label fuzzy clustering system for malware attack attribution is
presented by [29]. Opcode frequencies were utilized as the feature space to classify
different malware families. An accuracy of 94.66%, 97.56%, and 94.26% was
obtained from using this classifier on identified samples from VirusShare, BIG2015
and RansomwareTracker. [19] proposed an IoT malware threat hunting using a
deep recurrent neural network-based approach. Opcodes were extracted to build the
datasets for malware and benign ware samples. For each opcode sample, feature
vector files were created. The Long Short-Term Memory (LSTM) was used to
design the deep learning structure for the detection of the IoT malware samples
based on the Opcodes’ sequence. Google Tensor Flow was used as a backend
structure and Scikit-learn as the machine learning library for evaluation. Detection
accuracy of 98% was achieved when evaluated with ARM-based IoT applications’
execution codes.[2] used Convolutional Network for detection of malware in
IoT and Internet of Battlefield Things (IoBT) using OpCodes. Selected Op-Code
sequence was used as a feature for the classification task after which a graph of
features was created for each sample. Malware classification was carried out using
deep Eigenspace learning. The approach achieved an accuracy of 98.37%in malware
detection and a precision rate of 98.59%. The approach also can mitigate against
junk code insertion attacks.

3 Methodology

This section presents an overview of the methodology used for this study. The
IoT opcode dataset used for this study was developed by researchers at the Cyber
Security Laboratory of the University of Guelph. The dataset contains the program
opcode for 268 different samples of goodware (benign) and 244 different samples
of malware stored in separate folders. These opcodes are stored as text files. The
following steps were carried out.

3.1 Feature Selection and Extraction

The IoT malware dataset is composed of 512 text files. The 512 text files will be
stored as a sequence of comma-separated values (csv) for feature extraction. This is
done by writing a program in Python programming language. The program extracts
the vocabulary of all opcodes in the dataset. This is used to create the dictionary of
words with corresponding frequency for each opcode in each of the text files. The
dictionary of words (opcodes) and their frequency is exported to Microsoft Excel.
There are 681 possible feature values for each of the text files. These 681 feature

184 A. Anidu and Z. Obuzor

Fig. 1 Column chart showing the top 25 opcodes in the dataset

values consist of 305 unique opcodes and 376 names of the application processors
embedded in each text file. Based on the new dataset created, it is observed that
opcodes LDR, MOV, BL, ADD, CMP, STR have high frequency pattern in both the
goodware and malware as seen in Fig. 1.

The number of feature values is large which is a bad thing as it gets to a
point where more features can decrease the accuracy of a model. This is known
as the curse of dimensionality. This issue can be overcome by utilizing Principal
Component Analysis (PCA) algorithm. PCA algorithm helps to compress a dataset
into a lower-dimensional feature subspace to retain the relevant information. This is
implemented using the Python library scikit-learn.

3.2 Machine Learning Classification

The machine learning classifier is employed here for classification of malware.
The five chosen classifiers are known to give excellent results when used for the
classification. The classifiers to be implemented using Python library scikit-learn
are listed below:

Random Forest Random Forest algorithm is a supervised classification algorithm
built on an ensemble of independently trained decision trees. Random Forest grows
many classification trees. They are trained using the bagging method. Feature
bagging makes the random forest more robust. Feature bagging is the process by
which the random forest algorithm randomly samples elements of the predictor
space thereby reducing the variance of the trees at the cost of equal or higher bias.

Evaluation of Machine Learning Algorithms on Internet of Things (IoT). . . 185

Support Vector Machine Support Vector Machine is a discriminative classifier
defined by a separating hyperplane. The objective of the SVM is to find a hyperplane
in N-dimensional space (N is the number of features) that distinctly classify the data
point. Hyperplanes are decision boundaries used to classify data points.

K Nearest Neighbor (KNN) It is an easy-to-implement supervised machine
learning algorithm used to solve classification problems. It assumes that similar
things are close to each other and do not need any training data points for model
generation.

Naïve Bayes This is a probabilistic machine learning model used for classification
tasks. It is based on the Bayes Theorem. They are fast and easy to implement.

Decision Tree Decision tree is used to determine a course of action. It is capable
of fitting complex datasets for classification tasks. It searches for a pair of variable-
value in the training set. It splits it in a way that will generate the best two-child
subsets. Based on optimal splitting criteria, it creates branches and leaves. This
process is called tree growing. At every node or branch, a conditional statement
classifies the data point based on a fixed threshold within a specified variable thereby
splitting the data. To make predictions, every new instance starts at the root node and
moves along the branches until it reaches the leaf node where no further branching
is possible.

4 Experimental Results

Here the results for the experiment and performance evaluation of malware detection
using Random Forest (RF), K-Nearest Neighbor (KNN), Decision Tree (DT), Naïve
Bayes (NB) and Support Vector Machine (SVM) is presented. To conduct this
experiment, the IoT opcode dataset now transformed to a csv file will be used.
The features are selected using PCA. Only the most prominent opcodes found in
both the malware and goodware sample are selected, which provides a basis for the
successful classification of the dataset.

The experiments were conducted on a laptop with Intel Core i7-8750H CPU of
2.20GH and 16GB of RAM. The experiments were run using Python programming
language on Jupyter notebook running on Microsoft Windows 7 Professional Virtual
Machine. In evaluating the efficiency of the machine learning classifiers in the
detection of malware, the following criteria will be used:

True Positive (TP) implies that a malware identified as a malicious application is
correct

True Negative (TN) implies that a goodware (benign) identified as a non-malicious
application is actually a goodware

False Positive (FP) implies that a goodware identified as a malicious application is
false

186 A. Anidu and Z. Obuzor

False Negative (FN) implies that malware is not identified as a malicious applica-
tion.

By using the criteria above, the following metrics then be computed to quantify
a given system:

Accuracy is the number of samples that is detected correctly by the classifier
divided by the number of all malware and goodware application.

Accuracy = T P + T N

T P + T N + FP + FN
(1)

Precision is the ratio of predicted malware correctly labeled malware. It is defined
as follows:

Precision = T P

T P + FP
(2)

Recall or detection is the ratio of malware samples correctly predicted. It is defined
as follows:

Recall = T P + T N

T P + FN
(3)

F-Measure is the harmonic mean of precision and recall. It is defined as follows:

F − Measure = 2 ∗ T P

2 ∗ T P + FP + FN
(4)

The machine learning models were trained with 409 randomly chosen malware
and goodware samples and were subsequently tested with 103 goodware and
malware samples. The test was done to check the accuracy of each model. Results
obtained from the model is seen in Table 1 and Fig. 2 below.

From Table 1 and Fig. 2, it can be observed that changes in the number of features
does not affect Random Forest and Decision Tree. Changes in the number of features
has little effect on the remaining classifiers. The performance of both random forest
and support vector machine classifiers across a varying number of selected features
is demonstrated as seen above.

From Table 2, the Random Forest classifier has a higher training and testing time
which increased as the number of features increased. Also, K-Nearest Neighbor has

Table 1 Accuracy Measure
of Classifiers

No of features Selected Classifiers
NB KNN RF DT SVM

10 64 98 100 99 94
20 64 97 100 99 93
30 63 95 100 99 93

Evaluation of Machine Learning Algorithms on Internet of Things (IoT). . . 187

0

20

40

60

80

100

NB KNN RF DT SVM

Accuracy of Classifiers with 10,20 and 30 features

10 features 20 features 30 features

Fig. 2 Accuracy of classifiers using 10, 20 and 30 features

Table 2 Showing the training time and testing time in seconds

Classifier No of features selected Training time (s) Testing time(s)

NB 10 0.002 0.001
20 0.002 0.001
30 0.002 0.002

KNN 10 0.002 0.006
20 0.002 0.007
30 0.002 0.012

RF 10 0.121 0.014
20 0.132 0.008
30 0.137 0.011

DT 10 0.002 0.001
20 0.003 0.001
30 0.003 0.001

SVM 10 0.004 0.001
20 0.006 0.001
30 0.006 0.001

a high testing time which increases as the number of features increases. The other
classifiers have considerable low training and testing time. From Table 3, Naïve
Bayes has the highest false-positive rate of 0.43 while Random Forest has the lowest
false positive rate of 0.

188 A. Anidu and Z. Obuzor

Table 3 TPR, FPR, Precision, Recall and F-Measure for the different number of features
selected

Classifier Number of features selected TPR FPR Precision Recall F-Measure

NB 10 0.58 0.42 0.58 0.29 0.46
20 0.58 0.42 0.58 0.58 0.56
30 0.57 0.43 0.57 0.29 0.45

KNN 10 0.96 0.04 0.96 0.96 0.98
20 0.94 0.06 0.94 0.94 0.97
30 0.92 0.08 0.92 0.91 0.95

RF 10 1.00 0 1.00 1.00 1.00
20 1.00 0 1.00 1.00 1.00
30 1.00 0 1.00 1.00 1.00

DT 10 0.99 0.01 0.99 0.99 0.99
20 0.97 0.03 0.97 0.97 0.99
30 0.97 0.03 0.97 0.97 0.99

SVM 10 0.89 0.11 0.89 0.87 0.93
20 0.88 0.12 0.88 0.86 0.93
30 0.88 0.12 0.88 0.86 0.93

5 Conclusion and Future Work

In this study, we have been able to implement the Random Forest, K-Nearest
Neighbor, Decision Tree, Naïve Bayes, and Support Vector Machine on IoT
malware dataset. Both Random Forest and Decision Tree classifiers produced high
accuracy. Random Forest has the highest accuracy of 100%, Decision Tree has an
accuracy of 99% while Naïve Bayes has a low accuracy of approximately 64%.
There was a little change in accuracy in all classifiers except Random forest and
Decision Tree when the number of features was increased. Also, the time taken
for training and testing when the number of features was increased particularly for
Random Forest.

For future research, the sequence of IoT malware opcodes can be examined to
know if there is a specific pattern for identifying goodware and malware. Also,
testing of these machine learning algorithms with a larger dataset can be explored.

References

1. S. Watson, A. Dehghantanha, Digital forensics: The missing piece of the internet of
things promise. Comput. Fraud Secur. 2016(6), 5–8 (2016). https://doi.org/10.1016/s1361-
3723(15)30045-2

2. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

http://dx.doi.org/10.1016/s1361-3723(15)30045-2

Evaluation of Machine Learning Algorithms on Internet of Things (IoT). . . 189

3. S. Walker-Roberts, M. Hammoudeh, A. Dehghantanha, A systematic review of the availability
and efficacy of countermeasures to internal threats in healthcare critical infrastructure. IEEE
Access 6, 25167–25177 (2018). https://doi.org/10.1109/ACCESS.2018.2817560

4. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized Blockchain-based security. IEEE
Internet Things J. 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

5. S. Nakhodchi, A. Dehghantanha, H. Karimipour, Privacy and security in smart and precision
farming: A bibliometric analysis, in Handbook of Big Data Privacy, (Springer, Cham, 2020),
pp. 305–318

6. M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of things security and forensics:
Challenges and opportunities. Futur. Gener. Comput. Syst. 78, 544–546 (2018). https://doi.org/
10.1016/j.future.2017.07.060

7. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, H. Karimipour, S.R. Karizno,
SLPoW: Secure and low latency proof of work protocol for Blockchain in green IoT networks,
in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), (IEEE, Antwerp,
Belgium, 2020), pp. 1–5

8. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (IEEE Waikoloa, HI, USA, 2019), pp. 1–6

9. A. Singh, K. Click, R.M. Parizi, Q. Zhang, A. Dehghantanha, K.-K.R. Choo, Sidechain
technologies in blockchain networks: An examination and state-of-the-art review. J. Netw.
Comput. Appl. 149, 102471 (2020). https://doi.org/10.1016/j.jnca.2019.102471

10. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, Q. Zhang, K.-K.R. Choo, An energy-efficient
SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans.
Serv. Comput. 13, 625 (2020)

11. D. Połap, G. Srivastava, A. Jolfaei, R.M. Parizi, Blockchain technology and neural networks
for the internet of medical things, in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), (2020), pp. 508–513. https://doi.org/
10.1109/INFOCOMWKSHPS50562.2020.9162735

12. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, M. Aledhari,
Decentralized authentication of distributed patients in hospital networks using Blockchain.
IEEE J. Biomed. Heal. Inform. 24, 2146 (2020)

13. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

14. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, Blockchain-enabled authentica-
tion handover with efficient privacy protection in SDN-based 5G networks. IEEE Trans. Netw.
Sci. Eng. 8(2), 1120–1132 (2019)

15. M. Conti, T. Dargahi, A. Dehghantanha, Cyber threat intelligence: Challenges and opportu-
nities, in Advances in Information Security, (Springer, Cham, 2018), pp. 1–6. https://doi.org/
10.1007/978-3-319-73951-9_1

16. H. HaddadPajouh, R. Khayami, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, AI4SAFE-IoT:
An AI-powered secure architecture for edge layer of internet of things. Neural Comput. Applic.
32(20), 16119–16133 (2020). https://doi.org/10.1007/s00521-020-04772-3

17. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Big data and internet of things security and
forensics: Challenges and opportunities, in Handbook of Big Data and IoT Security, (Springer,
Cham, 2019), pp. 1–4. https://doi.org/10.1007/978-3-030-10543-3_1

18. H.M. Rouzbahani, H. Karimipour, A. Rahimnejad, A. Dehghantanha, G. Srivastava, Anomaly
detection in cyber-physical systems using machine learning, in Handbook of Big Data Privacy,
(Springer, Cham, 2020), pp. 219–235

19. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for internet of things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

http://dx.doi.org/10.1109/ACCESS.2018.2817560
http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1016/j.jnca.2019.102471
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162735
http://dx.doi.org/10.1007/978-3-319-73951-9_1
http://dx.doi.org/10.1007/s00521-020-04772-3
http://dx.doi.org/10.1007/978-3-030-10543-3_1
http://dx.doi.org/10.1016/j.future.2018.03.007

190 A. Anidu and Z. Obuzor

20. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88, 101629
(2020). https://doi.org/10.1016/j.cose.2019.101629

21. H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, M. Aledhari, H. Karimipour, A survey on
Internet of Things security: Requirements, challenges, and solutions, Int. Thing. Elsevier. 14,
100129 (2019). https://doi.org/10.1016/j.iot.2019.100129

22. H. Darabian et al., Detecting Cryptomining malware: A deep learning approach for static and
dynamic analysis. J. Grid Comput. 18, 1–11 (2020)

23. H.H. Pajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, Intelligent OS X malware threat
detection with code inspection. J. Comput. Virol. Hacking Tech. 14(3), 213–223 (2018)

24. H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, K.R. Choo, An opcode-based
technique for polymorphic internet of things malware detection. Concurr. Comput. Pract. Exp.
32(6), e5173 (2020)

25. M. Zolotukhin, T. Hämäläinen, Detection of zero-day malware based on the analysis of
opcode sequences, in 2014 IEEE 11th Consumer Communications and Networking Conference
(CCNC), (IEEE Las Vegas, NV, USA, 2014), pp. 386–391

26. H. Darabian et al., A multiview learning method for malware threat hunting: Windows, IoT
and android as case studies. World Wide Web 23(2), 1241–1260 (2020)

27. N. Milosevic, A. Dehghantanha, K.-K.R. Choo, Machine learning aided android malware
classification. Comput. Electr. Eng. 61, 266–274 (2017)

28. H. Haddadpajouh, A. Azmoodeh, A. Dehghantanha, R.M. Parizi, MVFCC: A multi-view fuzzy
consensus clustering model for malware threat attribution. IEEE Access 8, 139188–139198
(2020)

29. M. Alaeiyan, A. Dehghantanha, T. Dargahi, M. Conti, S. Parsa, A multilabel fuzzy relevance
clustering system for malware attack attribution in the edge layer of cyber-physical networks.
ACM Trans. Cyber-Physical Syst. 4(3), 1–22 (2020)

30. A.N. Jahromi et al., An improved two-hidden-layer extreme learning machine for malware
hunting. Comput. Secur. 89, 101655 (2020)

31. S. Homayoun et al., DRTHIS: Deep ransomware threat hunting and intelligence system
at the fog layer. Futur. Gener. Comput. Syst. 90, 94–104 (2019). https://doi.org/10.1016/
j.future.2018.07.045

32. S.M. Tahsien, H. Karimipour, P. Spachos, Machine learning based solutions for security of
internet of things (IoT): A survey. J. Netw. Comput. Appl. 161, 102630 (2020)

33. M.S. Alam, S.T. Vuong, Random forest classification for detecting android malware, in 2013
IEEE International Conference on Green Computing and Communications and IEEE Internet
of Things and IEEE Cyber, Physical and Social Computing, (IEEE Beijing, China, 2013), pp.
663–669

34. M. Damshenas, A. Dehghantanha, K.-K.R. Choo, R. Mahmud, M0droid: An android
behavioral-based malware detection model. J. Inf. Priv. Secur. 11(3), 141–157 (2015)

35. T. Lu, S. Hou, A two-layered malware detection model based on permission for android,
in 2018 IEEE International Conference on Computer and Communication Engineering
Technology (CCET), (IEEE Beijing, China, 2018), pp. 239–243

36. W. Wang, M. Zhao, J. Wang, Effective android malware detection with a hybrid model based
on deep autoencoder and convolutional neural network. J. Ambient. Intell. Humaniz. Comput.
10(8), 3035–3043 (2019)

37. E. Karbab, M. Debbabi, A. Derhab, D. Mouheb, MalDozer: Automatic framework for android
malware detection using deep learning. Digit. Investig. 24, S48–S59 (2018)

38. W. Li, Z. Wang, J. Cai, S. Cheng, An android malware detection approach using weight-
adjusted deep learning, in 2018 International Conference on Computing, Networking and
Communications (ICNC), (IEEE Maui, HI, USA, 2018), pp. 437–441

39. A. Pektaş, T. Acarman, Deep learning for effective android malware detection using API call
graph embeddings. Soft. Comput. 24(2), 1027–1043 (2020)

http://dx.doi.org/10.1016/j.cose.2019.101629
https://doi.org/10.1016/j.iot.2019.100129
http://dx.doi.org/10.1016/j.future.2018.07.045

Evaluation of Machine Learning Algorithms on Internet of Things (IoT). . . 191

40. T. Kim, B. Kang, M. Rho, S. Sezer, E.G. Im, A multimodal deep learning method for android
malware detection using various features. IEEE Trans. Inf. Forensic. Secur. 14(3), 773–788
(2018)

41. Y.-S. Yen, H.-M. Sun, An android mutation malware detection based on deep learning using
visualization of importance from codes. Microelectron. Reliab. 93, 109–114 (2019)

42. M. Kruczkowski, E.N. Szynkiewicz, Support vector machine for malware analysis and
classification, in 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), vol. 2, (IEEE Warsaw, Poland, 2014), pp. 415–
420

43. R.S. Pirscoveanu, S.S. Hansen, T.M.T. Larsen, M. Stevanovic, J.M. Pedersen, A. Czech, Anal-
ysis of malware behavior: Type classification using machine learning, in 2015 International
Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), (IEEE
London, United Kingdom, 2015), pp. 1–7

44. M. Imran, M.T. Afzal, M.A. Qadir, Using hidden markov model for dynamic malware analysis:
First impressions, in 2015 12th International Conference on Fuzzy Systems and Knowledge
Discovery FSKD, (2015), pp. 816–821. https://doi.org/10.1109/FSKD.2015.7382048

45. A. Makandar, A. Patrot, Malware analysis and classification using artificial neural network,
in International Confererence on Trends in Automation Communications and Computing
Technology I-TACT 2015, (2016), p. 7492653. https://doi.org/10.1109/ITACT.2015.7492653

46. M.L. Bernardi, M. Cimitile, F. Martinelli, F. Mercaldo, A fuzzy-based process mining approach
for dynamic malware detection, in 2017 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), (IEEE Naples, Italy, 2017), pp. 1–8

47. H. Hashemi, A. Azmoodeh, A. Hamzeh, S. Hashemi, Graph embedding as a new approach for
unknown malware detection. J. Comput. Virol. Hacking Tech. 13(3), 153–166 (2017)

48. Y. Ding, W. Dai, S. Yan, Y. Zhang, Control flow-based opcode behavior analysis for malware
detection. Comput. Secur. 44, 65–74 (2014)

49. Q. Jerome, K. Allix, R. State and T. Engel, Using opcode-sequences to detect malicious
Android applications, in 2014 IEEE International Conference on Communications (ICC),
Sydney, (IEEE, Sydney, Australia, 2014), pp. 914–919

50. B. Kang, S.Y. Yerima, K. McLaughlin, S. Sezer, N-opcode analysis for android malware
classification and categorization, in 2016 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security), (IEEE, London, UK, 2016), pp. 1–7

51. J. Baldwin, A. Dehghantanha, Leveraging Support Vector Machine for Opcode Density Based
Detection of Crypto-Ransomware, in Cyber Threat Intelligence. Advances in Information
Security, (Cham, Springer, 2018), pp. 107–136

52. H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, A.K. Sangaiah, Classification of
ransomware families with machine learning based on N-gram of opcodes. Futur. Gener.
Comput. Syst. 90, 211–221 (2019)

53. G. Canfora, F. Mercaldo, C.A. Visaggio, Mobile malware detection using op-code frequency
histograms, in 2015 12th International Joint Conference on e-Business and Telecommunica-
tions (ICETE), vol. 4, (IEEE Colmar, France, 2015), pp. 27–38

54. J. Su, V.D. Vasconcellos, S. Prasad, S. Daniele, Y. Feng, K. Sakurai, Lightweight classification
of IoT malware based on image recognition, in 2018 IEEE 42Nd Annual Computer Software
and Applications Conference (COMPSAC), vol. 2, (IEEE Tokyo, Japan, 2018), pp. 664–669

55. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, H. Karimipour, E. Modiri, D.E. Newton,
Fuzzy pattern tree for edge malware detection and categorization in IoT zero trust distributed
computing view project naive-Bayesian-based model for interoperability among heterogeneous
Systems in Intelligent Buildings View project fuzzy pattern tree for. Art. J. Syst. Arch. 97, 1
(2019)

56. D. Carlin, P. O’Kane, S. Sezer, Dynamic analysis of malware using run-time opcodes, in Data
Analytics and Decision Support for Cybersecurity, (Springer, Cham, 2017), pp. 99–125

http://dx.doi.org/10.1109/FSKD.2015.7382048
http://dx.doi.org/10.1109/ITACT.2015.7492653

Mac OS X Malware Detection
with Supervised Machine Learning
Algorithms

Samira Eisaloo Gharghasheh and Shahrzad Hadayeghparast

1 Introduction

During recent years, a considerable utilization of digital system for all aspects of life
has been recorded which has turned these systems as gold mines for cyberattackers
[1–5]. A potentially harmful software to both networks and computers is called
malware [6–9]. The information security faces main threats by the significant
increase in the malware variants. Each day malicious software can deliver [10] up to
360,000 malware samples, which are new or changed, based on Kaspersky’s 2017
Security Report [11]. The number of OS X malware developed by cyber threat actors
is on the increase because of their fast adoption rate as well as the rise in the use of
Mac OS X devices [12]. For instance, according to the McAfee Labs Threats Report
[11], the Mac OS X malware increased by 744% from 2015 to 2016.

The detection of new types of malware as well as classifying the unknown
malware is not possible by the anti-virus systems which use signatures [10].
Machine learning is used as an effective tool for malware detection to deal with the
ever-increasing complexity and diversity of malware [13–16]. As a result, machine
learning techniques are adopted to detect new and unknown malware. To the best
of the author’s knowledge and the study presented in [12] there is a lot of research
carried out for detecting Android [17, 18] and windows [19–23] malware using
machine learning algorithms, but only a few numbers of studies have considered
OS X malware.

S. E. Gharghasheh (�) · S. Hadayeghparast
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: samira@cybersciencelab.org; shadayeg@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_13

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_13&domain=pdf
mailto:samira@cybersciencelab.org
mailto:shadayeg@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_13

194 S. E. Gharghasheh and S. Hadayeghparast

In this paper, different machine learning algorithms are adopted in order to detect
OS X malware. The various machine learning techniques used fall into five main
categories of Decision Tree, Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Ensemble and Logistic Regression. A number of new features based on
libraries are developed and added to the original OS X dataset in order to improve
the performance of the machine learning algorithms in detection. Accordingly, one
feature is created for each library and the corresponding feature value is 1 or 0
whether the library is called or not called respectively. The performance of machine
learning algorithms can be compared based on performance metrics and ROC cure.
Three of these performance metrics presented in Eqs. 1, 2 and 3 are used in this
paper [24].

T rue positive rate (T PR) = T P

T P + FP
(1)

False negtive rate (FNR) = FN

FN + T N
(2)

Accuracy = T P + T N

FN + T P + FP + T N
(3)

Where TPR is the rate that the classifier correctly predicts benign. FPR is the rate
that the malware is classified incorrectly as benign. Accuracy measures the ratio
that a classifier correctly detects benign and malware samples. True Positive (TP)
is the number of correctly classified benign. True Negative (TN) is the number of
correctly classified malware. False Positive (FP) is the number of benign incorrectly
classified as malware. False Negative (FN) is the number of malwares incorrectly
classified as benign.

The receiver operating curve known as the ROC curve is a useful means for
the evaluation of machine learning algorithms as well as making a comparison
between them. ROC curve is the measurement of TPR versus FPR [25]. The Area
Under the ROC Curve known as AUC is also an important measure for comparing
the performance of machine learning algorithms. Prediction is evaluated based on
different AUC values as follows [24]: the values of 1.0, 0.9, 0.8, 0.7, 0.6, 0.5
and under 0.5 represent perfect, excellent, good, mediocre, poor, random and poor
respectively.

This paper is organized as follows. Section 2 presents the related work in this
field. Section 3 provides the methodology. Results and discussion are presented in
Sect. 4. Finally, this paper is concluded in Sect. 5.

Mac OS X Malware Detection with Supervised Machine Learning Algorithms 195

2 Related Work

There are many studies conducted in the field of detecting malware using machine
learning and algorithms, a number of which is presented in this section [26–32].
The anomaly-based approach is used as an alternative work for detecting malware
in [24]. Among the machine learning algorithms used in this paper, the k-nearest
neighbor algorithm achieved the TPR of 84.57% in detecting the latest Android
malware. Also, a multi-layer perceptron achieved 93.03% TRP, while Random
Forest attends the TPR of 99.97 on the MalGenome dataset. Kernel-based Support
Vector Machine was used in [12] for detecting OS X malware. In addition, a new
weighting method, which uses the frequency of library calling, was presented as a
novel approach. The false alarm rate of 3.9% and detection accuracy above 91% was
achieved using the kernel based SVM and the weighting measure. An incremental
malware detection system is presented in [10] for detecting new malware as well
as classifying malware families. In the aforesaid study, new malware families are
detected by adopting the Shared Nearest Neighbor (SNN) clustering algorithm. In
addition, the authors could achieve an accuracy of 86.7% and 98.9% in the detection
of new malware and the classification of the unknown malware. Two strategies
are proposed in [17] for statistical analysis of android malware based on machine
learning. In the first approach, the permission-based classification models achieved
the F-measure of 89%. Moreover, the second approach, which is the source code-
based classification, attained an F-score of 95.1%. A dynamic analysis strategy
based on machine learning is proposed in [25]. A large-cale dataset on a real
Android device was gathered that includes 4816 and 1866 benign and malicious
applications, respectively. For this purpose, combinations of random forest classifier
and Conformal Prediction machine learning algorithms are adopted in the aforesaid
study. In order for unknown applications to be classified, Graph Community Algo-
rithms and machine learning are used in [33] for a better combination of different
Multi-scanner Antivirus detections. It is noteworthy that this study has attained an
F1-score of more than 0.87. The authors have used five machine learning algorithms
in [34] and obtained 91.43% accuracy on ransomware dataset. Moreover, the binary
classification accuracy of 99.3% and the average F1-measure of 99% is achieved
in this study. Both supervised and unsupervised machine learning algorithms along
with utilizing opcode frequency for feature vector are adopted for malware detection
in [35]. A Two-hidden-layered Extreme Learning Machine (TELM) has built in
[19] to automatically detect malware. They achieved an accuracy of 99.65% in IoT
dataset malware detection. In [21], the researchers have used deep learning methods
for cryptomining malware detection. Their analysis was both static and dynamic
which achieved an accuracy of 95% and 99% respectively. A novel taxonomy of
crypto-ransomware features and an analysis had presented in [36]. The behavior
of crypto-ransomware and efficient detection methods had been analyzed in their
paper based on the Cyber Kill Chain (CKC) framework. In order to detect malware
in the IoT dataset [37] had proposed a fuzzy and a fast fuzzy pattern tree. The
fuzzy pattern tree achieved an accuracy of 99.83% while the fast fuzzy model

196 S. E. Gharghasheh and S. Hadayeghparast

achieved an accuracy of 100%. Authors in [38] for detecting malicious applications
in IoT environment, has used sequential pattern mining method. In polymorphic IoT
malware detection they achieved an accuracy of 99%. For ransomware detection, a
Deep Ransomware Threat Hunting and Intelligence System (DRTHIS) had been
proposed in [20]. In ransomware classification, they achieved a TPR of 97.2% and
F-measure of 99.6%. Authors in [39] had used the Recurrent Neural Network (RNN)
to detect IoT malware. By applying 2-layer neurons, they achieved the highest
accuracy of 98.18%. By transmuting the device’s Operational Code (OpCode) into
a vector space, [40] had presented deep learning for malware detection on the
Internet of Battlefield Things (IoBT). Their accuracy and precision were as follows
99.68% and 98.59% respectively. In [22], to detecting ransomware attacks, they put
forward a new machine learning method. Their method had monitored the patterns
of energy consumption in applications to classify them as ransomware or non-
malicious application. Their method had achieved a precision rate of 89.19% and
a detection rate of 95.65%.

3 Methodology

This section presents the research methodology which is illustrated in Fig. 1. First,
the OS X dataset is described, and its features are defined in the dataset subsection.
In the second step, the preprocessing procedure is explained in detail. Next, the
technique used for feature selection is presented. Finally, the machine learning
algorithms used in this paper are described.

3.1 Dataset

In this paper, the OS X dataset is taken from [25], which includes 459 benign and
152 malware. This dataset is nonbiased due to the fact that the number of good wares
is three times the number of malwares. The description of features in this dataset is
provided in Table 1.

Dataset Preprocessing
Feature
Selection

Machine
Learning
Algorithms

Fig. 1 The workflow of the research

Mac OS X Malware Detection with Supervised Machine Learning Algorithms 197

Table 1 The features of OS X Dataset [12]

No. Feature Feature name Description Value type

1 Ncmds Number of commands of each sample Integer
2 sizeofcmds Size of commands of each sample Integer
3 noloadcmd Number of commands which sample will

loaded during execution
Integer

4 rebase_size Define size of the rebase information Integer
5 bind_size Define size of the information which will be

bind during execution
Integer

6 lazy_bind_size Define size of the information which will be
bind during execution

Integer

7 export_size Define the size of the lazy binding information Integer
8 nsyms Define the number of symbol table entries Integer
9 strsize Define string table size in bytes Integer
10 LoadDYLIB Define number of DYLIB which called and

load for executing of malware
Integer

11 DYLIBnames Define names of loaded DYLIB Nominal
12 Segments Number of total segments which consist in each

sample
Integer

13 SectionsTEXT Number text segments which consist in each
sample

Integer

14 SectionsData Number data segments which consist in each
sample

Integer

3.2 Preprocessing

Preprocessing of the dataset is one of the important parts of the malware detection.
In this paper, a thorough preprocessing is performed on the OS X dataset in
MATLAB which includes the following steps:

• Dropping the duplicate samples
• Correcting the missing values
• Redetermining the number of loaded DYLIB
• Feature scaling
• Creating new features for called libraries

The definition of features are taken from apple developer guideline [12].

3.2.1 Dropping the Duplicate Samples

In this step, the duplicate examples are identified and removed from the OS X
dataset. The duplicates are specified according to the similar names found in the
first column of the dataset “name”. Consequently, 23 examples are removed from
the dataset.

198 S. E. Gharghasheh and S. Hadayeghparast

3.2.2 Correcting the Missing Values

Three type of missing values are detected in this dataset including:

NANs
Presence of string data types instead of numeric values
Combination of string and numeric data types in one cell

The first two types of missing values are corrected by replacing the corresponding
cell with the previous entry in the same column. However, for the third type, the
string part is separated from the numeric part and removed.

3.2.3 Redetermining the Number of Loaded DYLIB

The number of called and loaded libraries whose names are presented in “DYLIB-
names” is demonstrated in its previous column. However, these numbers are
recalculated, and incorrect numbers are observed in some of the examples. Con-
sequently, those incorrect values are replaced with the true amount.

3.2.4 Feature Scaling

The range of features used in this dataset varies significantly. Consequently, the
features with larger numbers have more impact on the classifier model. For
achieving better accuracy, the feature values Scaled into the range of [0,1].

3.2.5 Creating New Features for Called Libraries

Creating new features based on libraries presented in “DYLIBnames” column is
proposed in this paper. For this purpose, first, the list of all libraries called and
loaded is extracted from “DYLIBnames” column. Then, one feature is created for
each library. The total number of 589 features are added to the dataset accordingly.
It is noteworthy that feature values in the new columns are 1 if the library is used by
each sample, otherwise, it is zero.

3.3 Feature Selection

For determining the features which contribute the most to classification results,
feature selection techniques are adopted. In this paper, the Chi-Square technique
is used for scoring features using Eqs. 4 and 5 as follows [12]:

Mac OS X Malware Detection with Supervised Machine Learning Algorithms 199

X2 (t, c) = N × (AD − CB)2

((A + C) × (B + D) × (A + B) × (C + D))
(4)

X2
avg(t) = Pr (ci) X2 (t, ci) (5)

Where score function is demonstrated by X2
avg(t). Where D is the frequency without

the occurrence of c or t. The times c occurs without t is denoted by C. The frequency
that t happens without c is expressed by B. The frequency of occurrence of t and c
simultaneously is denoted by A. the sample size is demonstrated by N.

3.4 Machine Learning Algorithms

Twenty-one machine learning algorithms from five main categories of Decision
Tree, SVM, KNN, Ensemble and Logistic Regression are used in this paper as
shown in Table 2.

4 Results and Discussion

The results of adopting machine learning algorithms for the detection of OS X
malware are presented and analyzed in three case studies. In case one, the libraries
used by malware and benign wares are ignored; consequently, the dataset includes
13 features excluding “DYLIBnames”. The impact of considering each library as a
new feature is investigated in the next case study. In the last case study, the most
important features are selected, and the resulted evaluation metrics and run-time are
compared with the second case study.

4.1 Case 1

Table 3 presents the performance metrics for applying machine learning algorithms.
The highest accuracy of 90.5% is obtained by Subspace KNN which is an Ensemble
classifier. According to this table, Ensemble classifiers had better performance
compare to other classifiers in terms of accuracy. Regarding TPR percentage, SVM
Coarse gaussian is ranked first with 99%. Consequently, the aforesaid classifier is
the number one for identifying benign correctly. Concerning FNR, RUSBoosted
trees which is an Ensemble classifier headed the first with 9%. Therefore, this
classifier has the best performance in detecting malware correctly.

200 S. E. Gharghasheh and S. Hadayeghparast

Ta
bl
e
2

M
ac

hi
ne

le
ar

ni
ng

al
go

ri
th

m
s

D
ec

is
io

n
T

re
e

SV
M

K
N

N
E

ns
em

bl
e

L
og

is
tic

R
eg

re
ss

io
n

C
la

ss
ifi

er
na

m
e

C
om

pl
ex

tr
ee

M
ed

iu
m

tr
ee

Si
m

pl
e

tr
ee

L
in

ea
r

Q
ua

dr
at

ic
C

ub
ic

Fi
ne

ga
us

si
an

M
ed

iu
m

ga
us

si
an

C
oa

rs
e

ga
us

si
an

Fi
ne

M
ed

iu
m

C
oa

rs
e

C
os

in
e

C
ub

ic
w

ei
gh

te
d

B
oo

st
ed

tr
ee

s
B

ag
ge

d
tr

ee
s

Su
bs

pa
ce

di
sc

ri
m

in
an

t
Su

bs
pa

ce
K

N
N

R
U

SB
oo

st
ed

tr
ee

s

L
og

is
tic

re
gr

es
si

on

Mac OS X Malware Detection with Supervised Machine Learning Algorithms 201

Table 3 Performance
metrics for Case 1

Classifier Accuracy% TPR% FNR%

Decision tree
Complex tree 88.6 92 22
Medium tree 87.6 91 22
Simple tree 80.5 86 36
SVM
Linear 80.3 95 68
Quadratic 84.2 89 31
Cubic 83.1 88 32
Fine gaussian 87.1 94 37
Medium gaussian 81.9 95 60
Coarse gaussian 77.8 99 91
KNN
Fine 89.3 92 19
Medium 83.6 92 43
Coarse 77.5 96 81
Cosine 84.7 92 40
Cubic 83.1 91 43
Weighted 86.6 92 30
Ensemble
Boosted trees 89.7 93 22
Bagged trees 89.8 94 23
Subspace discriminant 79.3 97 77
Subspace KNN 90.5 94 22
RUSBoosted trees 89.2 89 9
Logistic regression
Logistic regression 81.7 92 50

The ROC Curves for the classifiers having the highest accuracy in each group
including Complex Tree, Fine gaussian, KNN Fine, Subspace KNN and Logistic
Regression are shown in Fig. 2. As it is shown in this figure, Subspace KNN, which
had the highest accuracy among the classifiers, has also the highest AUC of 0.92.

4.2 Case 2

Table 4 presents the evaluation metrics for machine learning algorithms applied to
the OS X dataset having all the library features. Concerning accuracy, in the first
place was Subspace KNN with 94.7%. Coarse gaussian achieved TPR of 100%,
although it has the worst performance among classifiers in detecting malware.
However, this is not a good result because the aforesaid algorithm considered almost
all software as benign. As it is shown in this table, two KNN and two Ensemble
classifiers have the least FNR of 9%.

202 S. E. Gharghasheh and S. Hadayeghparast

Fig. 2 ROC Curves for Case 1

Mac OS X Malware Detection with Supervised Machine Learning Algorithms 203

Table 4 Performance
metrics for Case 2

Classifier Accuracy% TPR% FNR%

Decision tree
Complex tree 91.7 95 19
Medium tree 91.4 95 21
Simple tree 86.6 98 49
SVM
Linear 93.6 97 17
Quadratic 92.7 95 15
Cubic 92.9 95 15
Fine gaussian 91.5 97 27
Medium gaussian 89.5 98 39
Coarse gaussian 78 100 94
KNN
Fine 92.7 93 9
Medium 89.8 93 22
Coarse 85.8 99 56
Cosine 91.9 94 14
Cubic 90.2 93 19
Weighted 92.5 93 9
Ensemble
Boosted trees 93.2 96 17
Bagged trees 94.2 96 12
Subspace discriminant 93.7 98 19
Subspace KNN 94.7 96 9
RUSBoosted trees 93.4 94 9
Logistic regression
Logistic regression 81.2 82 21

The ROC Curves for Case 2 are shown in Fig. 3. The highest AUC belongs to the
Ensemble classifier called Subspace KNN with 0.99. Linear SVM, Complex tree,
Fine KNN and Logistic Regression are in the next place with 0.97, 0.93, 0.92 and
0.81 AUCs respectively.

4.3 Case 3

Bagged trees as an Ensemble classifier has the highest accuracy with 92.2%. Coarse
gaussian has classified all benign correctly having TPR 100% while it shows poor
performance in detecting malware. RUSBoosted trees are in first place in detecting
malware in FNR of 9%.

Bagged trees, weighted KNN, Linear SVM, complex Decision tree and Logistic
Regression have the AUC of 0.97,0.96, 0.94, 0.84 and 0.80 respectively. As it is
shown in this figure the highest AUC belongs to the Ensemble classifier.

204 S. E. Gharghasheh and S. Hadayeghparast

Fig. 3 ROC Curves for Case 2

Mac OS X Malware Detection with Supervised Machine Learning Algorithms 205

Table 5 Best Accuracy in
each Case study

Case 1 Case 2 Case 3

Classifier Ensemble Ensemble Ensemble
Algorithm Subspace KNN Subspace KNN Bagged trees
Accuracy 90.5 94.7 92.2

According to the results obtained in Case 1, 2, 3 considering the libraries as
independent features improve the accuracy of machine learning classifiers. The
accuracy increased by about 4% and 2% re-spectively in comparison with the Case
1 in which libraries were ig-nored. The highest accuracy in each Case study is also
demonstrated in Table 5. Moreover, Table 5 shows that Ensemble classifiers have
the best performance on OS X dataset compared to the other classi-fiers used in this
paper.

5 Conclusion

In this paper, various machine learning algorithms from five main categories of
Decision Tree, SVM, KNN, Ensemble and Logistic Regression were used for
detecting Mac OS malware. Performance metrics of accuracy, TPR and, FNR, as
well as ROC curve, were used for evaluating their performance. The Ensemble
classifies demonstrated the best performance among other classifiers having the
highest accuracies. In addition, a novel technique of developing new features based
on library calls was adopted. Three case studies were performed to investigate the
impact of the aforesaid new features. In the first case, the library calls were ignored
and the highest accuracy of 90.5% was achieved by Subspace KNN as an Ensemble
classifier. In Case 2, 589 features for library calls were added which resulted in the
accuracy of 94.7% by the same algorithm, demonstrating an increase in accuracy
by 4%. In addition, performance metrics and AUC of almost all classifiers were
increased. This result shows that taking into account the new features for library
calls improves the performance of machine learning algorithms in detection. Also,
in case 3, feature selection based on the Chi-Square technique was employed which
selected half of the features. The best accuracy decreased by about 2% which shows
that the amount of rising in the accuracy is almost linearly dependent on the number
of library features. Finally, our future work would be adopting deep learning for
detecting Mac OS malware.

206 S. E. Gharghasheh and S. Hadayeghparast

References

1. S. Nakhodchi, A. Dehghantanha, H. Karimipour, Privacy and security in smart and precision
farming: A bibliometric analysis, in Handbook of Big Data Privacy, (Springer, Cham, 2020),
pp. 305–318

2. S. Walker-Roberts, M. Hammoudeh, A. Dehghantanha, A systematic review of the availability
and efficacy of countermeasures to internal threats in healthcare critical infrastructure. IEEE
Access 6, 25167–25177 (2018 March). https://doi.org/10.1109/ACCESS.2018.2817560

3. H.M. Rouzbahani, H. Karimipour, A. Dehghantanha, R.M. Parizi, Blockchain applications in
power systems: A bibliometric analysis, in Blockchain Cybersecurity, Trust and Privacy, ed.
by K.-K. R. Choo, A. Dehghantanha, R. M. Parizi, vol. 79, (Springer, Cham)

4. M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of things security and forensics:
Challenges and opportunities. Futur. Gener. Comput. Syst. 78, 544–546 (2018). https://doi.org/
10.1016/j.future.2017.07.060

5. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88, 101629
(2020). https://doi.org/10.1016/j.cose.2019.101629

6. I. Santos, J. Devesa, F. Brezo, J. Nieves, P.G. Bringas, Opem: A static-dynamic approach
for machine-learning-based malware detection, in International Joint Conference CISIS’12-
ICEUTE 12-SOCO 12 Special Sessions, (Springer, Berlin, Heidelberg, 2013), pp. 271–280

7. H. Hashemi, A. Azmoodeh, A. Hamzeh, S. Hashemi, Graph embedding as a new approach for
unknown malware detection. J. Comput. Virol. Hacking Tech. 13(3), 153–166 (2017)

8. A. Azmoodeh, A. Dehghantanha, Big data and privacy: Challenges and opportunities, in
Handbook of Big Data Privacy, (Springer, Cham, 2020), pp. 1–5. https://doi.org/10.1007/978-
3-030-38557-6_1

9. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Big data and internet of things security and
forensics: Challenges and opportunities, in Handbook of Big Data and IoT Security, (Springer,
Cham, 2019), pp. 1–4. https://doi.org/10.1007/978-3-030-10543-3_1

10. L. Liu, B. Wang, B. Yu, Q. Zhong, Automatic malware classification and new malware
detection using machine learning. Front. Inf. Technol. Electron. Eng. 18(9), 1336–1347 (2017)

11. McAfee, McAfee Labs Threats Report: April 2017, no. April (2017), p. 49
12. H.H. Pajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, Intelligent OS X malware threat

detection with code inspection. J. Comput. Virol. Hacking Tech. 14(3), 213–223 (2018)
13. A. Demontis et al., Yes, machine learning can be more secure! a case study on android malware

detection. IEEE Trans. Depend. Secur. Comput. 16(4), 711–724 (2017)
14. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An ensemble

of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE
Internet Things J. 7(9), 8852–8859 (2020). https://doi.org/10.1109/jiot.2020.2996425

15. M. Saharkhizan, A. Azmoodeh, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Sri-
vastava, A hybrid deep generative local metric learning method for intrusion detection, in
Handbook of Big Data Privacy, (Springer International Publishing, Cham, 2020), pp. 343–
357. https://doi.org/10.1007/978-3-030-38557-6_16

16. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of the
OpenFlow v1.3 switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3), 1299 (2018).
https://doi.org/10.1007/s11227-017-2175-7

17. N. Milosevic, A. Dehghantanha, K.-K.R. Choo, Machine learning aided android malware
classification. Comput. Electr. Eng. 61, 266–274 (2017)

18. M. Damshenas, A. Dehghantanha, K.-K.R. Choo, R. Mahmud, M0droid: An android
behavioral-based malware detection model. J. Inf. Priv. Secur. 11(3), 141–157 (2015)

19. A.N. Jahromi et al., An improved two-hidden-layer extreme learning machine for malware
hunting. Comput. Secur. 89, 101655 (2020)

http://dx.doi.org/10.1109/ACCESS.2018.2817560
http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1016/j.cose.2019.101629
http://dx.doi.org/10.1007/978-3-030-38557-6_1
http://dx.doi.org/10.1007/978-3-030-10543-3_1
http://dx.doi.org/10.1109/jiot.2020.2996425
http://dx.doi.org/10.1007/978-3-030-38557-6_16
http://dx.doi.org/10.1007/s11227-017-2175-7

Mac OS X Malware Detection with Supervised Machine Learning Algorithms 207

20. S. Homayoun et al., DRTHIS: Deep ransomware threat hunting and intelligence system
at the fog layer. Futur. Gener. Comput. Syst. 90, 94–104 (2019). https://doi.org/10.1016/
j.future.2018.07.045

21. H. Darabian et al., Detecting Cryptomining malware: A deep learning approach for static and
dynamic analysis. J. Grid Comput. 18, 1–11 (2020)

22. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

23. S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, R. Khayami, Know abnormal,
find evil: Frequent pattern mining for ransomware threat hunting and intelligence. IEEE Trans.
Emerg. Top. Comput. 8, 341 (2017)

24. F.A. Narudin, A. Feizollah, N.B. Anuar, A. Gani, Evaluation of machine learning classifiers
for mobile malware detection. Soft. Comput. 20(1), 343–357 (2016)

25. H. Papadopoulos, N. Georgiou, C. Eliades, A. Konstantinidis, Android malware detection with
unbiased confidence guarantees. Neurocomputing 280, 3–12 (2018)

26. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y.
Chen, Cryptocurrency malware hunting: A deep recurrent neural network, in Applied Soft
Computing, vol 96, (Elsevier, 2020), p. 106630

27. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (IEEE, 2019), pp. 1–6

28. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

29. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized Blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

30. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. 115, 619 (2020)

31. R.M. Parizi, S. Homayoun, A. Yazdinejad, A. Dehghantanha, K.-K.R. Choo, Integrating
Privacy Enhancing Techniques into Blockchains Using Sidechains (2019). https://doi.org/
10.1109/CCECE.2019.8861821

32. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, G. Srivastava, S. Mohan, A.M. Rababah, Cost
optimization of secure routing with untrusted devices in software defined networking. J.
Parallel Distrib. Comput. 143, 36 (2020)

33. I. Martín, J.A. Hernández, S. de los Santos, Machine-learning based analysis and classification
of android malware signatures. Futur. Gener. Comput. Syst. 97, 295–305 (2019)

34. H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, A.K. Sangaiah, Classification of
ransomware families with machine learning based on N-gram of opcodes. Futur. Gener.
Comput. Syst. 90, 211–221 (2019)

35. H. Aghakhani, G. Fabio, M. Francesco, L. Martina, O. Stefano, B. Davide, V. Giovanni, K.
Christopher, When malware is Packin’Heat; limits of machine learning classifiers based on
static analysis features, in Network and Distributed Systems Security (NDSS) Symposium 2020.
(2020)

36. T. Dargahi, A. Dehghantanha, P.N. Bahrami, M. Conti, G. Bianchi, L. Benedetto, A cyber-kill-
chain based taxonomy of crypto-ransomware features. J. Comput. Virol. Hacking Tech. 15(4),
277–305 (2019)

37. E.M. Dovom, A. Azmoodeh, A. Dehghantanha, D.E. Newton, R.M. Parizi, H. Karimipour,
Fuzzy pattern tree for edge malware detection and categorization in IoT. J. Syst. Archit. 97,
1–7 (2019)

38. H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, K.R. Choo, An opcode-based
technique for polymorphic internet of things malware detection. Concurr. Comput. Pract. Exp.
32(6), e5173 (2020)

http://dx.doi.org/10.1016/j.future.2018.07.045
http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.1109/CCECE.2019.8861821

208 S. E. Gharghasheh and S. Hadayeghparast

39. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for internet of things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

40. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

http://dx.doi.org/10.1016/j.future.2018.03.007

Machine Learning for OSX Malware
Detection

Alex Chenxingyu Chen and Kenneth Wulff

1 Introduction

Attackers pay more attention to the macOS platform today because its global market
share, which jumped to 14.37% in 2019 [1] has been rising steadily since that
data was captured. According to Wikipedia, there has been a further increase of
3.58% since the start of 2019 [2]. This surge in user and corporate adoption of the
macOS operating system has come with its challenges because cybercriminals have
gradually shifted some of their attention to the macOS operating system and have
developed various malware that use numerous techniques, tactics and procedures to
attack victims and avoid detection [3].

The software security company, McAfee, reports that ransomware activity has
been resurgent this year. McAfee estimates that new ransomware grew by 118% and
that criminals have adopted new tactics and code innovations for attack execution
and systems evasion. McAfee says its systems witnessed 504 new threats every
minute in the first quarter of 2019 and predicts that the trend is likely to continue.

Other estimates from McAfee show that total macOS malware growth signifi-
cantly increased from around 200,000 in the fourth quarter of 2016 to approximately
425,000 in the third quarter of 2018 [4]. These numbers are for detected malware
only. The bigger concern for ordinary users and corporate clients alike is the damage
some of these undetected malwares may be causing. For example, in 2019, a new
malware family called CookieMiner was uncovered to be aiming at Apple users and
sending code to ultimately steal user wallets and authorizations. It was embedded
as a library in macOS and was used to send the stolen coins and credentials to an
xmrig server. Another new exploit kit, known as Spelevo, was also exposed in the

A. C. Chen (�) · K. Wulff
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: cchen22@uoguelph.ca; kwulff@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_14

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_14&domain=pdf
mailto:cchen22@uoguelph.ca
mailto:kwulff@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_14

210 A. C. Chen and K. Wulff

first quarter of 2019. Spelevo exploited a vulnerability in the Adobe Flash Player to
drop the GootKit Trojan. It exploited this code execution vulnerability and allowed
the remote attacker to execute arbitrary code [5].

According to Kaspersky Labs, the notion that ‘there are no threats or at least
no serious threats for the macOS operating system’ and by extension, its users is
a gross misconception. Kaspersky says the threat landscape is changing because
the ‘popularity of the Apple platform is growing.’ According to them, nearly six
million phishing attacks targeting macOS users were detected during the first half
of 2019. Of the six million, 11.80% were directed at corporate users. Kaspersky
state that the number of phishing attacks that ‘make use of the Apple brand name
grows by 30 – 40% per year’. According to the company, the number of malicious
and potentially unwanted programs have been on the ascendency since 2012. The
company estimates that malicious attacks targeting macOS users exceeded four
million in 2018, and reported an estimated 1.8 million such attacks in the first half
of 2019 [6].

The proliferation of these malicious software supports the notion that traditional
anti-virus or anti-malware programs have not been successful at mitigating the
spread of these malicious programs [7–11]. This has therefore called for the need
to develop new tools, techniques and strategies to help address this growing global
anathema [12, 13].

Many solutions have been proposed to deal with this growing concern of malware
attacks [14–17]. Some of the solutions have involved the use of frameworks that
use both static and dynamic analysis techniques to help detect malware [18]. The
limitation for some of these frameworks is that it is unable to detect malware that
alter their signature, behaviour or code from time to time [19].

Machine learning, which has been used to detect malware in computers running
other operating systems such as Windows [15, 20], Linux [21] and Android [22,
23] offer a reliable and promising solution for macOS users. Much work, however,
has not been undertaken in this area even though there has been a jump in macOS
usage worldwide. It is because of this that we decided to carry out this research to
help determine how different machine learning algorithms can help to deal with this
growing problem and to also contribute to the body of knowledge as researchers
find increasingly reliable methods to combat these risks.

In our research, we evaluate five different machine learning algorithms on their
ability to effectively detect macOS malware. Our objective is to determine which of
the five machine learning algorithms produces the best results.

To understand this research, the reader needs to have knowledge about machine
learning algorithms. Machine learning is a data analysis technique that uses artificial
intelligence to help systems develop the ability to automatically learn and improve
from experience without being explicitly programmed [24]. Machine learning uses
data and different techniques to build a mathematical model to predict or classify
unseen data.

In this paper, we will be using the supervised learning method to conduct our
experiments. Supervised learning algorithms build a blueprint or model based on
input and given output. The input data and the resulting output consist of training

Machine Learning for OSX Malware Detection 211

data. When a machine learning model has been trained, the data used for the training
can be used to examine the performance of the model used. The evaluation or
training data will be given to the model as input. The output that is churned out
can then be compared with real data. When two outputs match, the model is said to
have successfully classified the data [25].

The next section of this paper is dedicated to the literary review, which addresses
others’ work on this topic. Section 3 gives a breakdown of the methodology used
for the research. The main parts of Sect. 3 are data cleaning, feature transformation
and feature selection. The results are presented in Sect. 4. Finally, we talk about the
conclusion and what could be done in the future in the last section.

2 Literature Review

Malware detection has become a significant security consideration for many
computer systems today [26–30]. Malware detection techniques that work based on
signatures do an excellent job of detecting previously discovered malware but are
unable to detect polymorphic pieces of code that evolve or mutate due to changes
in their signature(s). Because of the development of this kind of malicious code
engineering, the accuracy of these detectors cannot be relied upon as they generate
a lot of false-positives and false-negatives which ultimately affect the efficacy of
systems tasked with the responsibility of uncovering these attacks and protecting the
computer infrastructures from harm and malicious intent [16, 31–33]. Researchers
have, therefore, conducted experiments to try and find an alternative solution that
can still detect these malicious pieces of code even after they change their signatures.

Using malicious executable linkable files, Kakavand et al. [21] deployed machine
learning strategies to successfully demonstrate a classification accuracy of 97% in
Linux, in 2014. They achieved this by dynamically extracting system calls using a
system call tracer named Strace to build a classification model that could efficiently
identify best feature sets and group them into benign and malware specimens.

To add to the insufficient malware detection solutions available on Linux systems
Asmitha and Vinod proposed a novel model which used machine learning to detect
malicious Executable Linkable Files. They achieved this by dynamically extracting
system calls using a tracer called Strace.

Their experiment produced a malware classification accuracy of 97%. Using
various machine learning methods, they were able to achieve an accuracy rate of
97.3% with Random Forest. AdaboostMI(J48) and J48 produced an accuracy rates
of 96.70% and 94.91% respectively. They also indicate that an increase in the feature
length significantly impact the classification accuracy because of the noise that begin
to appear in these machine learning models.

Using static analysis, Mohsen et al., in 2018, used real-world malware and
benign apps to show an average precision rate of 79.08% and a true-positive rate
of 67.00% for SVM, and an 80.50% accuracy rate for KNN with a true-positive
rate of 80.00% on Android [34]. Their research compared two machine learning

212 A. C. Chen and K. Wulff

algorithms, namely, SVM and KNN, to group Android applications as benign or
malware. The above results were based on measuring the accuracy and true-positive
rates for detecting malware on Android.

In measuring the gap between in-the-lab and in-the-wild validation scenarios,
Kevin et al., used empirical assessment of machine learning-based methods to detect
malware on Android. Their research relied on a set of features built from control
flow graphs of over 50,000 Android applications collected from varied sources.
Their research showed a stark contrast between results achieved in a lab setting
and results achieved in the real world. Using a tenfold cross-validation assessment,
they revealed that the experiments revealed a poor performance overall in detecting
malware [35].

They show that even though variations of goodware/malware ratio and classifica-
tion algorithms produce the same results, increasing the features lead to a significant
drop in the ability of these machine learning methods to detect malware on a
large scale [36]. Their research helped to identify several parameters that impact
the performance of malware at scale in the real world. In 2019, three researchers
from India achieved almost 100% accuracy for malware detection in windows
using five machine learning algorithms. The machine learning techniques they used
are Random Forest, Logistic Model Tree (LMT), NBT (Naïve Bayes Tree), J48
Graft and REPTree. Their research was based on the occurrence of operation codes
(opcodes) or instruction syllables to improve the accurate detection of advanced
unknown malware [37]. The researchers used the Fisher Score method for their
feature selection to help them to overcome code obfuscation used by advanced
malware to evade anti-malware tools. The Fisher Score method statistically helped
them to solve the maximum likelihood equation problem to uncover previously
unknown malicious pieces of code.

In their paper titled review of machine learning methods for windows malware
detection, Saima and Dushyant went beyond the traditional signature-based mal-
ware detection methods which failed at detecting unknown malware executable files
and presented a simple but efficient malware detection mechanism that was able to
detect benign and malicious executable files by extracting features from the Portable
Executable (PE) headers. Their research used the static analysis approach, and it was
able to detect malware before installation of the executable files.

The accomplished this by utilizing various machine learning techniques such as
Support Vector (SV), Decision Tree (DT), Random Forest (RF) and Gaussian Naïve
Bays (GNB) classifiers. Their experiment showed that of all the methods used, the
Random Forest classifier had the highest accuracy rate of 98.63%. The next highest
was the Ada Boost Classiffier (ADB) which achieved an accuracy rate of 97.26%.
The lowest was the BernoulliNaive Bays Classifier (BNB) with an accuracy rate of
67.12% [38].

In an effort to help stem the spread of malware due to the widespread adoption of
Internet of Things (IoT) [39–47], Ayush and Teng from the National University of
Singapore presented a distributed modular solution called EDIMA to help detect IoT
malware activity on large scale networks such as enterprise ISP networks. EDIMA

Machine Learning for OSX Malware Detection 213

uses machine learning algorithms to classify traffic packets using a vector database,
policy module and an optional sub-sampling packet module.

The feature values for benign and malicious data utilized telnet, http post and http
get categories. Using this approach, they were able to show rates of 77.78%, 88.8%
and 94.44% for Gaussian Naïve Bayes, Random Forest and k-NN respectively. Their
model shows that the test beds were mostly hardware based, which has a lot of
limitations. As indicated in their conclusion, a software-based test bed would be
more ideal [47].

In June 2019, Duy-Phuc Pham et al. published their research results, where they
used a hybrid malware analysis framework that combined both static and dynamic
analysis to help analysts detect malicious software on macOS. The framework
featured a kernel hooking module, which used various analysis techniques including
system calls and other service invocations specific to macOS to help detect malware.
They were able to use this technique through argument monitoring, process tracing,
anti-analysis detection and mitigation to uncover 71 unknown macOS malware
variants that have evaded current detection methods. Their research showed that
even though 85% of the samples detected were adware, 49% of them belonged to
the trojan/backdoor family and utilized techniques such as sleep probing to evade
detection [48]. The limitation for this framework was its ability to still detect these
malicious software codes after their signatures or modus operandi had changed.

Using application library calls, Pajouh et al., used a supervised machine learning
prototype and applied kernel base SVM in conjunction with a revolutionary
calculation to detect malware and benign applications on macOS operating systems
with a 91% accuracy and a 3.9% false alarm rate [49] in 2018. The researchers went
a step further and used Synthetic Minority Over-sampling Technique (SMOTE) to
create three synthetic datasets with distinctive distributions according to refined
variations of the dataset to investigate the impact different sample sizes will have
on malware detection accuracy ratios. The SMOTE technique achieved over 96%
detection accuracy with a false alarm rate of below 4%.

The goal of this research is to show that the Decision Tree algorithm offers
the best solution in detecting malware with a true-positive rate of 97.83% and a
false positive rate of 3.62%. We also seek to use this research to contribute to the
development and improvement of machine learning strategies for macOS malware
analyses and to add to the body of knowledge in this critical and growing space.

3 Methodology

The methodology section outlines the data processing and training workflow used
for the experiment. Figure 1 provides an overview of the various steps that we
followed to generate the results we discuss in a later section of this research paper.

214 A. C. Chen and K. Wulff

Fig. 1 Research methodology

3.1 Environment Setup and Dataset Download

The operating system we used to perform the analysis was a Windows 10 Pro,
version 18,362, with an Intel Core i7 9700k CPU. The CPU speed clock speed was
3.6GHz, and it was also fitted with 32GB of RAM.

We used the Anaconda 2019.10 Windows version to set up the Python 3.7
environment and jupyter lab.

Anaconda is an all-in-one installer, which includes all the necessary python
packages for data science.

We used the OSX malware dataset from the Cyber Science lab [49]. This dataset
includes 461 benign samples and 152 malicious samples.

3.2 Data Cleaning

First, we converted the dataset format from XLSX to CSV because the read_xlsx
function did not work on our research platform. It is normal to get data that are
incomplete, noisy or inconsistent. This is called dirty data. Inside the OSX malware

Machine Learning for OSX Malware Detection 215

Table 1 Feature list of OSX
malware dataset

Feature name Type

ncmds int
sizeofcmds int
noloadcmd int
rebase_size int
bind_size int
lazy_bind_size int
export_size int
nsyms int
strsize int
LoadDYLIB int
DYLIBnames string
Segments int
SectionsTEXT int
SectionsData int

dataset, we had one record that lacked a feature. Also, a couple of records had
inconsistent data [50].

For the missing feature, which was a numerical NaN, we replaced the missing
value with the mean of the other values. Some records had a mixture of hexadecimal
and decimal numbers, which we resolved by converting the hexadecimals to decimal
numbers. After cleaning the data, we started to perform the feature engineering
process on the dataset. This included feature transformation and feature selection,
details of which have been provided below.

3.3 Feature Transformation

Table 1 shows the feature list of the OSX malware dataset. The most feature type
is an integer. However, the DYLIBnames column had strings, which are the list of
system libraries that were used by benign or malicious applications. All the machine
learning algorithms that we chose required numerical data for training and testing.
We, therefore, needed to encode the textual data. The technique we chose to encode
the texture data was one-hot encoding [51]. This technique converts the textual data
based on features. If one library is present in a data point, that feature will be set to
one.

After converting all the data into integers, we normalized the data by using
min-max scaling, which was necessary for improving the rendition of the machine
learning algorithm [52]. The scaling limited all data into a range of (0,1). The scaling
was needed for the SVM algorithm as it could avoid the features that have higher
numeric fields dominating other features that have a smaller range.

216 A. C. Chen and K. Wulff

3.4 Feature Selection

We used the statistical test chi-squared [53], to test the relationships between
each feature and the class label. Then we chose the best 40 features for Support
Vector Machine and Naïve Bayes. We decided not to apply feature selection for
the Decision Tree, Stochastic Gradient Descent and Logistic Regression algorithms
because those algorithms can handle all features quickly. Another reason we did
not use the feature selection for the Decision Tree, Stochastic Gradient Descent
and Logistic Regression algorithms was also because when we filtered out some
features, the accuracy rate for the Decision Tree algorithm dropped. Nevertheless,
when we applied the feature selection on Naïve Bayes, the accuracy increased
considerably. After completing the feature engineering process, we started training
the algorithms.

3.5 Machine Learning Classifier Phase

The machine learning algorithm results are presented in this section. To validate
the machine learning accuracy, we used the cross-validation technique [54] with
ten runs, and computed the final results by averaging the outputs from the cross-
validations. Below is a brief description of the various machine learning algorithms
that we used for our experiment.

Decision Tree It is a supervised machine learning algorithm. It uses a bunch of rules
or guidelines to classify a data point. It divides the data into little subsets to form
a tree structure. The tree will have both decision and leaf nodes. Decision nodes
represent the rules, and the leaf nodes represent a class label [55]. We trained and
tested our machine learning model by using Gini impurity and Information gain.

SVM SVM is also a supervised machine learning algorithm. Furthermore, it can
be used for categorization and regression. SVM creates a line named decision line
between different class labels. SVM will try to maximize the margin around the
decision line [56]. Because solving SVM problems involve quadratic programming,
we decided to filter out some features to improve the training performance.

SGD SGD is a supervised machine learning algorithm. It is one of the three
common gradient descents. SGD is an algorithm that is simple but has a high-
efficiency rate. It is also very suitable for large-scale learning. For example, as the
number of OSX malware increases, high efficiency could reduce the time required
for training and let researchers apply the model faster [57].

Naïve Bayes Naïve Bayes is a machine learning algorithm based on the Bayes
theorem. It is good at classifying tasks. It assumes that all features are independent
of each other, and therefore, a change in one feature does not influence other features
[58].

Machine Learning for OSX Malware Detection 217

LR Logistic Regression is a supervised machine learning that is also used for
classification tasks. It has been widely used to identify spam emails and fraudulent
online transactions [59].

4 Results and Discussion

In this section, we calculate the performance of the malware detection algorithms.
The accuracy evaluation used one hundred cross-validation runs with the OSX
malware dataset as input. We then computed the mean of the one hundred results
as the final accuracy for that particular machine learning model. And used the
confusion matrix [60] to evaluate the details of the algorithm performance. The
following were adopted from the confusion matrix to help evaluate the classifier.

True Positive Rate (TPR) : = T rue positive

T rue positive + False negative
(1)

False Positive Rate (FPR) := False positive

T rue negative + False positive
(2)

Precision := T rue positive

T rue positive + False positive
(3)

Recall := T rue positive

T rue positive + False negative
(4)

F1 Score := 2 × Precision × Recall

P recision + Recall
(5)

The true-positive is the number of applications that the benign program marks
as normal. True-negative is the number of apps that the malware characterizes
as malicious. False-positive is the number of normal applications that are marked
as malicious. False-negative represents the number of malicious apps that were
undetected. The true-positive rate shows the percentage of successful malware
detections. The false-positive rate shows the possibility of the classifier marking
a healthy macOS program as malware. High precision means that not many benign
applications were predicted as malware. High recall means that the algorithm could
correctly detect or predict most malware.

First, we tested and compared the decision tree performance between Gini impu-
rity and Information gain. The Gini impurity criterion gave a 92% cross-validation

218 A. C. Chen and K. Wulff

Table 2 Decision tree performance comparison

Criterion TPR (%) FPR (%) Precision Recall F1 score

Information gain 97.83 3.62 0.978 0.920 0.938
Gini impurity 84.00 5.97 0.840 0.840 0.840

Table 3 Evaluation results for malware detection

Classifier Accuracy (%) TPR (%) FPR (%) Precision Recall F1 score

Decision tree 92.78 97.83 3.62 0.978 0.920 0.938
SGD 91.77 93.02 7.09 0.930 0.800 0.860
LR 89.77 89.58 5.15 0.896 0.860 0.878
SVM 88.33 96.97 1.19 0.970 0.640 0.771
Naïve Bayes 87.54 96.97 11.92 0.970 0.640 0.771

accuracy, and the Information gain produced a 93% cross-validation correctness.
Although the two methods have similar accuracy in Table 2, Information gain has
other attributes that make it a better choice than Gini impurity.

Second, we tested the Decision Tree algorithm and reported an accuracy rate of
92.78%, with a false-positive ratio of 3.62%. After that, we tested the Stochastic
Gradient Descent algorithm. The SGD algorithm also used all the feature columns.
With the default parameters, it reported a 91.77% accuracy. Its true-positive rate is
lower than the Decision Tree. It also has a higher false-positive ratio compared to
the Decision Tree algorithm. The Logistic Regression algorithm, which we tested
with default parameters and all the features, reported an overall accuracy of 89.77%.
The Support Vector Machine algorithm also used the default configuration. With
100 cross-validations, it reported an accuracy rate of 88.33%, with a slightly lower
true-positive rate than the Decision Tree algorithm but with a better false-positive
rate. After SVM, we tested Naïve Bayes with default parameters and all the feature
columns. When we applied the feature selection on Naïve Bayes with 40 features,
we had an 87.54% accuracy ratio and a 96.97% true-positive rate and an 11.92%
false-positive rate. Naïve Bayes has an excellent positive rate similar to SVM, but
with very high false positives. A summary of the results is shown in Table 3.

5 Conclusion and Future Work

This research outlined an assessment of the ability of machine learning algorithms
to detect macOS malware. The algorithms we used were the Decision Tree, Support
Vector Machine, Gaussian Naïve Bayes, Stochastic Gradient Descent and Logistic
Regression. According to the results summarized in the last section, the Decision
Tree has the highest accuracy ratio. Although the Decision Tree has a higher false-
positive rate than the Support Vector Machine algorithm, it is insignificant when you
consider the damage that can be caused by these malicious software codes. Future

Machine Learning for OSX Malware Detection 219

works can compare more machine learning algorithms to find an algorithm that has
higher accuracy and lower false-positive rates than what has been reported in this
research. Additionally, future works could gather more data points in order to get a
more accurate and well-trained model.

References

1. Statscounter, Desktop Operating System Market Share Worldwide, StatCounter Global Stats,
2019. [Online]. Available: https://gs.statcounter.com/os-market-share/desktop/worldwide/
#monthly-200901-201909. [Accessed: 11-Dec-2019].

2. Wikipedia, Usage Share of Operating Systems in Europe, Wikipedia, 2014 (2019). https://
en.wikipedia.org/wiki/Usage_share_of_operating_systems. Accessed 13 Dec 2019, p. 2019

3. McAfee, McAfee Labs Threats Report: April 2017, no. April (2017), p. 49
4. S. Watson, A. Dehghantanha, Digital forensics: the missing piece of the Internet of

Things promise. Comput. Fraud Secur. 2016(6), 5–8 (2016). https://doi.org/10.1016/s1361-
3723(15)30045-2

5. C. Beek et al., Mcafee Labs Threats Report, Technical report (McAfee, St. Clara, 2017)
6. M. Kuzin, T. Shcherbakova, T. Sidorina, V. Kamluk, Threats to macOS users | Securelist,

Securelist by Kaspersky, 2019. [Online]. Available: https://securelist.com/threats-to-macos-
users/93116/. (Accessed: 13-Dec-2019).

7. P.N. Bahrami, A. Dehghantanha, T. Dargahi, R.M. Parizi, K.-K.R. Choo, H.H.S. Javadi, Cyber
kill chain-based taxonomy of advanced persistent threat actors: analogy of tactics, techniques,
and procedures. J. Inf. Process. Syst. 15(4), 865–889 (2019)

8. M. Conti, T. Dargahi, A. Dehghantanha, Cyber threat intelligence: challenges and opportu-
nities, in Advances in Information Security, (Springer, Cham, 2018), pp. 1–6. https://doi.org/
10.1007/978-3-319-73951-9_1

9. M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of things security and forensics:
Challenges and opportunities. Futur. Gener. Comput. Syst. 78, 544–546 (2018). https://doi.org/
10.1016/j.future.2017.07.060

10. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Big data and internet of things security and
forensics: Challenges and opportunities, in Handbook of Big Data and IoT Security, (Springer,
Cham, 2019), pp. 1–4. https://doi.org/10.1007/978-3-030-10543-3_1

11. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88, 101629
(2020). https://doi.org/10.1016/j.cose.2019.101629

12. T. Dargahi, A. Dehghantanha, P.N. Bahrami, M. Conti, G. Bianchi, L. Benedetto, A cyber-kill-
chain based taxonomy of crypto-ransomware features. J. Comput. Virol. Hacking Tech. 15(4),
277–305 (2019)

13. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of the
OpenFlow v1.3 switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3), 1299 (2018).
https://doi.org/10.1007/s11227-017-2175-7

14. S. Homayoun et al., Deep dive into ransomware threat hunting and intelligence at fog layer.
Futur. Gener. Comput. Syst. 90(Jan 19), 94–104 (2018)

15. S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, R. Khayami, Know abnormal,
find evil: frequent pattern mining for ransomware threat hunting and intelligence. IEEE Trans.
Emerg. Top. Comput. 8, 341 (2017)

16. A.N. Jahromi et al., An improved two-hidden-layer extreme learning machine for malware
hunting. Comput. Secur. 89, 101655 (2020)

17. A.N. Jahromi, S. Hashemi, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, An enhanced stacked
LSTM method with no random initialization for malware threat hunting in safety and time-

https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-200901-201909
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
http://dx.doi.org/10.1016/s1361-3723(15)30045-2
http://dx.doi.org/https://securelist.com/threats-to-macos-users/93116/
http://dx.doi.org/10.1007/978-3-319-73951-9_1
http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1007/978-3-030-10543-3_1
http://dx.doi.org/10.1016/j.cose.2019.101629
http://dx.doi.org/10.1007/s11227-017-2175-7

220 A. C. Chen and K. Wulff

critical systems. IEEE Trans. Emerg. Top. Comput. Intell. 4(5), 630–640 (2020). https://
doi.org/10.1109/tetci.2019.2910243

18. H. Darabian et al., Detecting cryptomining malware: a deep learning approach for static and
dynamic analysis. J. Grid Comput. 18, 1–11 (2020)

19. H. HaddadPajouh, R. Khayami, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, AI4SAFE-IoT:
an AI-powered secure architecture for edge layer of Internet of things. Neural Comput. Applic.
32(20), 16119–16133 (2020). https://doi.org/10.1007/s00521-020-04772-3

20. H. Hashemi, A. Azmoodeh, A. Hamzeh, S. Hashemi, Graph embedding as a new approach for
unknown malware detection. J. Comput. Virol. Hacking Tech. 13(3), 153–166 (2017)

21. K.A. Asmitha, P. Vinod, A machine learning approach for linux malware detection, in
Proceedings of the 2014 International Conference on Issues and Challenges in Intel-
ligent Computing Techniques, ICICT 2014, (2014), pp. 825–830. https://doi.org/10.1109/
ICICICT.2014.6781387

22. N. Milosevic, A. Dehghantanha, K.-K.R. Choo, Machine learning aided android malware
classification. Comput. Electr. Eng. 61, 266–274 (2017)

23. K. Shaerpour, A. Dehghantanha, R. Mahmod, Trends in android malware detection. J. Digit.
Forensic Secur. Law 8(3), 2 (2013)

24. Expert.ai Team, “What is Machine Learning? A definition - Expert System | Expert.ai, Expert
System, 2019. [Online]. Available: https://www.expert.ai/blog/machine-learning-definition/.
[Accessed: 13-Dec-2019].

25. Wikipedia, Supervised Learning – Wikipedia. Wikipedia (2019). https://en.wikipedia.org/wiki/
Supervised_learning. Accessed 13 Dec 2019

26. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

27. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

28. H. Haddadpajouh, A. Azmoodeh, A. Dehghantanha, R.M. Parizi, MVFCC: a multi-view fuzzy
consensus clustering model for malware threat attribution. IEEE Access 8, 139188–139198
(2020)

29. H. Darabian et al., A multiview learning method for malware threat hunting: windows, IoT and
android as case studies. World Wide Web 23(2), 1241–1260 (2020)

30. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An Ensemble
of Deep Recurrent Neural Networks for detecting IoT cyber attacks using network traffic. IEEE
Internet Things J. 7(9), 8852–8859 (2020). https://doi.org/10.1109/jiot.2020.2996425

31. K. Kosmidis, C. Kalloniatis, “Machine learning and images for malware detection and
classification, in ACM International Conference Proceeding Series, 2017, vol. Part F132523,
pp. 1–93.

32. M. Saharkhizan, A. Azmoodeh, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Sri-
vastava, A hybrid deep generative local metric learning method for intrusion detection, in
Handbook of Big Data Privacy, (Springer, Cham, 2020), pp. 343–357. https://doi.org/10.1007/
978-3-030-38557-6_16

33. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, S. Hashemi, B. Gharabaghi, G. Srivastava,
Active spectral botnet detection based on eigenvalue weighting, in Handbook of Big Data
Privacy, (Springer, Cham, 2020), pp. 385–397. https://doi.org/10.1007/978-3-030-38557-
6_19

34. M. Kakavand, M. Dabbagh, and A. Dehghantanha, Application of machine learning algorithms
for android malware detection, in ACM International Conference Proceeding Series, 2018, pp.
32–36.

35. K. Allix, T.F. Bissyandé, Q. Jérome, J. Klein, R. State, Y. Le Traon, Empirical assessment
of machine learningbased malware detectors for android: Measuring the gap between in-the-
lab and in-the-wild validation scenarios. Empir. Softw. Eng. 21, 183. https://doi.org/10.1007/
s10664-014-9352-6

http://dx.doi.org/10.1109/tetci.2019.2910243
http://dx.doi.org/10.1007/s00521-020-04772-3
http://dx.doi.org/10.1109/ICICICT.2014.6781387
https://www.expert.ai/blog/machine-learning-definition/
https://en.wikipedia.org/wiki/Supervised_learning
http://dx.doi.org/10.1109/jiot.2020.2996425
http://dx.doi.org/10.1007/978-3-030-38557-6_16
http://dx.doi.org/10.1007/978-3-030-38557-6_19
http://dx.doi.org/10.1007/s10664-014-9352-6

Machine Learning for OSX Malware Detection 221

36. A. Yazdinejad, R. M. Parizi, A. Dehghantanha, and K. K. R. Choo, Blockchain-enabled
authentication handover with efficient privacy protection in SDN-based 5G networks, IEEE
Trans. Netw. Sci. Eng., pp. 1–1, May 2019.

37. S. Sharma, C.R. Krishna, S.K. Sahay, Detection of advanced malware by machine learning
techniques, in Soft Computing: Theories and Applications, (Springer, Singapore, 2019), pp.
333–342

38. S. Naz and D. K. Singh, Review of Machine Learning Methods for Windows Malware Detec-
tion, in 2019 10th International Conference on Computing, Communication and Networking
Technologies, ICCCNT 2019, 2019.

39. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops, GC Wkshps 2019 - Proceedings, 2019.

40. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency Malware Hunting: A Deep Recurrent Neural Network Approach, vol 96
(Elsevier, 2020)

41. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

42. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized Blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

43. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. 115, 619 (2020)

44. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, G. Srivastava, S. Mohan, A.M. Rababah, Cost
optimization of secure routing with untrusted devices in software defined networking. J.
Parallel Distrib. Comput. 143, 36 (2020)

45. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag. 57, 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

46. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Performance improvement and hardware implemen-
tation of Open Flow switch using FPGA, in 2019 IEEE 5th Conference on Knowledge Based
Engineering and Innovation, KBEI 2019, 2019, pp. 515–520.

47. A. Kumar and T. J. Lim, EDIMA: Early Detection of IoT Malware Network Activity Using
Machine Learning Techniques, in IEEE 5th World Forum on Internet of Things, WF-IoT 2019
- Conference Proceedings, 2019, pp. 289–294.

48. D.-P. Pham, D.-L. Vu, F. Massacci, Mac-A-Mal: macOS malware analysis framework resistant
to anti evasion techniques. J. Comput. Virol. Hacking Tech. 15(4), 249–257 (2019)

49. H.H. Pajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, Intelligent OS X malware threat
detection with code inspection. J. Comput. Virol. Hacking Tech. 14(3), 213–223 (2018)

50. Wikipedia, Dirty Data – Wikipedia. Wikipedia (2019). https://en.wikipedia.org/wiki/
Dirty_data. Accessed 13 Dec 2019

51. Wikipedia, One-Hot – Wikipedia. Wikipedia (2019). https://en.wikipedia.org/wiki/One-hot.
Accessed 13 Dec 2019

52. Wikipedia, Feature Scaling – Wikipedia. Wikipedia (2019). https://en.wikipedia.org/wiki/
Feature_scaling. Accessed 13 Dec 2019

53. Wikipedia, Chi-Squared Test – Wikipedia, Wikipedia (2019). https://en.wikipedia.org/wiki/
Chi-squared_test. Accessed 13 Dec 2019

54. A. S. 44, Cross Validation in Machine Learning – GeeksforGeeks. GeeksforGeeks (2017).
https://www.geeksforgeeks.org/cross-validation-machine-learning/. Accessed 13 Dec 2019

55. J. Stoldt, T. Uwe Trapp, T.C. Sehra, Decision Trees Explained Easily – Chirag Sehra –
Medium, medium.com (2018). https://medium.com/@chiragsehra42/decision-trees-explained-
easily-28f23241248. Accessed 11 Dec 2019

http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.1016/j.ipm.2020.102370
https://en.wikipedia.org/wiki/Dirty_data
https://en.wikipedia.org/wiki/One-hot
https://en.wikipedia.org/wiki/Feature_scaling
https://en.wikipedia.org/wiki/Chi-squared_test
https://www.geeksforgeeks.org/cross-validation-machine-learning/
https://medium.com/@chiragsehra42/decision-trees-explained-easily-28f23241248

222 A. C. Chen and K. Wulff

56. L. Schultebraucks, Introduction to Support Vector Machines, Available. medium.com
(2017). https://medium.com/@LSchultebraucks/introduction-to-support-vector-machines-
9f8161ae2fcb. Accessed 11 Dec 2019

57. Scikit Learn, 1.5. Stochastic Gradient Descent – Scikit-Learn 0.22 Documentation. scikit-
learn.org (2019). https://scikit-learn.org/stable/modules/sgd.html. Accessed 11 Dec 2019

58. Machinelearningplus.com, How Naive Bayes Algorithm Works ? (with example and full code),
Machinelearningplus.com, 2018. [Online]. Available: https://www.machinelearningplus.com/
predictive-modeling/how-naive-bayes-algorithm-works-with-example-and-full-code/.
Accessed 11 Dec 2019

59. A. Pant, Introduction to Logistic Regression – Towards Data Science. towards-
datascience.com (2019). https://towardsdatascience.com/introduction-to-logistic-regression-
66248243c148. Accessed 11 Dec 2019

60. S. Narkhede, Understanding Confusion Matrix – Towards Data Science.
towardsdatascience.com (2018). https://towardsdatascience.com/understanding-confusion-
matrix-a9ad42dcfd62. Accessed 13 Dec 2019

https://medium.com/@LSchultebraucks/introduction-to-support-vector-machines-9f8161ae2fcb
https://scikit-learn.org/stable/modules/sgd.html
https://www.machinelearningplus.com/predictive-modeling/how-naive-bayes-algorithm-works-with-example-and-full-code/
https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62

Hybrid Analysis on Credit Card Fraud
Detection Using Machine Learning
Techniques

Akansha Handa, Yash Dhawan, and Prabhat Semwal

1 Introduction

Most of the population prefers using a credit card over cash or debit. A credit card is
a convenient payment tool that is accepted worldwide. The number of credit cards
in circulation is phenomenal and the number of users reaches up to 679 million as
of 2018 [1]. With E-commerce becoming more and more common, there has been
a rise in credit card fraud. Every year, millions of people fall victim to credit card
fraud which results in millions of losses in the economy. In 2018, $24.26 Billion was
lost due to payment card fraud worldwide [2]. Therefore, preserving the security,
safety and privacy of financial services is necessary [3, 4]. The credit fraud can take
place in a number of ways like card lost – someone finds and uses it to perform an
online transaction, card details leaked out in public through shoulder surfing, social
engineering attack wherein the person gives out information and through numerous
other techniques [5, 6]. Other forms of attack include hijacking credit card data from
online payment forms, skimming and data breaches. One such recent major breach
has been the Capital One (Financial institute) breach which impacted 6 million
Canadian people as well as over 100 million in the US. The following breach
exposed customers PII (Personal Identifiable Information), customer credit limits,
payment histories and SIN numbers [7]. Detecting fraud for any financial institute
is an utmost priority which cannot be achieved by traditional tools and techniques.
Many financial institutes have now migrated to machine learning and deep learning
to handle credit card frauds more efficiently. In this paper, we are implementing a
novel Ensemble machine learning technique that combines several base models in
order to produce one optimal predictive model. Ensemble machine learning reduces

A. Handa (�) · Y. Dhawan · P. Semwal
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: ahanda@uoguelph.ca; ydhawan@uoguelph.ca; psemwal@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_15

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_15&domain=pdf
mailto:ahanda@uoguelph.ca
mailto:ydhawan@uoguelph.ca
mailto:psemwal@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_15

224 A. Handa et al.

variance, noise and bias as well as increases the accuracy of the model [8]. To
get optimal results we balance our dataset using sampling technique – SMOTE
(Synthetic Minority Oversampling Technique) and Cluster centroid. Basic machine
learning analysis is performed on the balanced dataset using Supervised Learning
(Logistic Regression, Random Forest and Support Vector Machine), Unsupervised
Learning (K means) and Deep Neural Networks. Following which a hybrid analysis
is performed on the Supervised learning algorithm using a bagging ensemble
technique to achieve a strong predictive model.

Section 2 of this paper contains a literature review on similar papers from recent
years. Section 3 details the methodology used in this work, Sect. 4 contains the
results of our experiments, and in Sect. 5 we draw conclusions and suggest future
work. References for our work are provided at the very end of the paper.

2 Related Works

In earlier studies, many computer scientists have proposed various approaches
[9–17] to resolve fraud transaction detection problem using different techniques
of machine learning. The remainder of this section describes the different fraud
detection models implemented by past researchers.

In 2017, J. O. Awoyemi performed a comparative study on three different
machine learning algorithms (Naive Bayes, K-nearest neighbor and logistic regres-
sion) based on TPR, TNR, FPR and FNR rates metrics. The dataset was sampled
using a hybrid sampling approach where stepwise addition and subtraction was
done on both positive and negative data points. As a result, two sets of dataset
distribution (10:90) and (34:64) were generated. The highest accuracy of 97.92%
was observed with KNN on 34:64 data distribution and KNN. Awoyemi et al. [18]
Similarly, In another comparative study, the performance of various supervised
machine learning algorithms was analyzed based on the accuracy, TPR, FRP,
specificity and G-mean. All the supervised classifiers were compared with a super
classifier which was implemented using the stacking method of ensemble learning
technique. The overall result indicated the significant performance of the stacking
classifier in detecting the fraud transaction with 95.2% accuracy. Furthermore, the
stacking classifier achieved 95% precision and 95% recall [19]. In the paper [20],
a real-time fraud detection system having three different models was introduced.
In this system, the Fraud detection model was responsible for detecting the fraud
transaction and passing the recognized fraud transaction to the other two models:
API and Data warehouse. The supervised classifiers like Logistic regression, Naive
Bayes and Super Vector Machine were selected through a literature study and their
performance in addressing the four different fraud patterns in the sampled dataset.
The highest accuracy of 91% was achieved with Super Vector Machine. In 2019,
used different sampling techniques to deal with imbalanced data problem in case of
credit card datasets. As a result, different datasets were generated: undersampled,
oversampled and one with synthetic data (using KNN). The Logistic regression,

Hybrid Analysis on Credit Card Fraud Detection Using Machine Learning Techniques 225

Decision tree and extreme gradient boosting machine learning algorithms were
trained with all three sets of datasets. The highest accuracy of 99.75% was achieved
for Logistic regression algorithms on the undersampled dataset [21].

Many researchers have proposed several fraud detection models using ensemble
machine learning. In 2018, A Mishra used various ensemble techniques like Gradi-
ent boosted tree, Random Forest and stacker classifier with few other classification
algorithms to build a machine learning model with the capability of detecting
fraud more accurately. The dataset was sampled by performing undersampling and
SMOTE as an oversampling technique. They observed that recall and accuracy
were improved for all the classifiers with the sampled dataset and gradient boosted
ensemble model was able to perform effectively on both actual and sampled dataset
[22]. In other research, the ensemble machine learning technique was used with
some supervised and unsupervised classifiers for credit card fraud detection. The
selected algorithms were applied on a highly imbalanced dataset which consisted of
only 492 fraud transactions out of 284,807 total transactions. In this research, they
concluded that the unsupervised algorithms can handle the dataset skewness more
effectively than the other two applied techniques in case of a highly imbalanced
dataset [23]. Similarly, [24] proposed an ensemble learning framework based on
the C4.5 algorithm. The original dataset was balanced using the partitioning and
clustering approach. In the partitioning step, the dataset was partitioned into training
and test set and then the majority class of the training set was randomly divided.
Further, clustering was performed on all the majority class blocks. Finally, the
nearest neighbor of the centroid of each class was combined with the minority class.
As a result, n number of balanced datasets were generated. The C4.5 algorithms
were used as base estimators and were trained in parallel on each set of the balanced
dataset. The votes of the base estimators were used to build the final classifier. The
results observed in the experiment were in the form of improved evaluation metrics:
AUC and savings rate.

3 Methodology

This section will describe the process that was followed to implement Supervised,
Unsupervised and Deep learning models and to do a hybrid analysis of all the
implemented models in detecting fraudulent transactions. To identify fraudulent
transactions effectively, the original dataset was processed. In the pre-processing
phase, feature extraction and selection were performed on the original dataset. Since
the selected dataset was highly imbalanced, we tried to reduce the skewness by using
different sampling techniques to balance the original dataset. In our experiment,
we have analyzed the performance of Supervised, Unsupervised and Deep learning
models in detecting fraudulent transactions and then we have built an ensemble
machine learning model using bagging ensemble technique.

226 A. Handa et al.

3.1 Dataset Information

The dataset for Credit Card Fraud detection is obtained from the Kaggle website
which consists of transactions made by credit cards in September 2013 by European
cardholders. The dataset consisted of 31 numerical features out of which 28
were named as v1-v28 to protect sensitive data. The remaining 3 columns were
represented as Time, Amount and Class. Feature ‘Time’ contains the seconds
elapsed between each transaction and feature ‘Amount’ is the amount of the
transactions made by credit card. Feature ‘Class’ takes only 2 values: 1 for fraud
transaction and 0 for the benign transaction [25].

3.2 Feature Selection

Feature selection is the process wherein relevant features are selected to reduce
overfitting, improve accuracy and reduce training time. For feature selection, we
used extra tree classifiers – extremely randomized trees, which extracted features on
the basis of their scoring using an ensemble learning technique [26].

3.3 Data Balancing

The machine learning algorithm does not learn well when classification categories
are not equally distributed. To efficiently train our machine learning classifier
balancing plays an important role. Common methods for adjusting the class
distribution include under sampling the majority class, oversampling minority class
or combination of both the techniques. SMOTE (Synthetic Minority Oversampling
Technique) was used to increase the number of instances for our fraud transactions
to make our dataset balance. SMOTE implements a statistical technique for
increasing the number of fraud cases by generating new instances from existing
minority cases that you supply as input. Scaling is performed to bring all features
to the same level excluding the values of time and amount as they highly vary. The
new balanced dataset consists of a very high number of instances which increases
algorithms processing speed. We performed under sampling on our dataset using the
Centroid based clustering method. Cluster centroid is an object that under samples
majority by replacing the cluster of samples by the cluster centroid of a k-means
algorithm. The majority of samples are then completely replaced by the set cluster
centroids from K means which provides us with a balanced stable dataset.

Hybrid Analysis on Credit Card Fraud Detection Using Machine Learning Techniques 227

3.4 Machine Learning Classifiers

Finally, different machine learning classifiers were used, and results were recorded.
All training and testing of models were performed on a 2.20 GHz i7 processor which
are discussed in detail below:

3.4.1 Logistic Regression

Logistic regression is also known as the log-linear classifier or maximum-entropy
classification. It states that a categorical dependent variable can be predicted from
a given set of independent variables. It uses a logistic function to model the
possibilities which describe the possible result of a trial. The algorithm behind
logistic regression uses a linear decision surface and hence cannot solve nonlinear
problems [27].

3.4.2 Decision Tree

A decision tree is a supervised Machine Learning(ML) algorithm which has an
inverted tree structure, wherein each internal (non-leaf) node represents feature
(predictor variable), the branches between the nodes represent the test outcome, and
each leaf (terminal) node represents a class label (response variable). The decision
tree classifier makes the decision based on entropy.

Entropy: It measures the uncertainty in the data. Homogeneity of sample data is
measured by Decision tree algorithms using entropy. Entropy zero means the sample
is fully homogeneous and one means it is equally divided [28].

E(S) =
c∑

i=1

−pi log2pi (1)

Equation 1 Here pi is the probability of class i, Entropy is computed as the
proportion of class i in the set.

3.4.3 Support Vector Machine

Support Vector Machine is also a supervised classifier that can be used for
classification. It separates different groups by forming decision boundaries (multi-
dimensional space that separates outs classes). We perform classification by finding
the hyperplane that differentiates our benign and fraud transactions as shown in the
Fig. 1 below:

228 A. Handa et al.

Fig. 1 Support vector
machine [29]

The plane which gives maximum margins to all the categories is labelled as a
hyperplane in SVM [30].

3.4.4 K-nearest neighbor

K-nearest neighbors (KNN) is a supervised machine learning algorithm that is used
to solve the classification problem. The results of KNN is mainly dependent on 3
factors: the distance metric used to decide the nearest neighbor, the distance rule that
is used for the classification from K-nearest neighbor and the number of neighbors
considered to classify the new sample.

KNN is largely used as a detection algorithm as it can detect fraudulent
transactions with a high rate of performance [18].

3.4.5 K-means

K-means clustering is a popular unsupervised machine learning algorithm used for
data classification. It uses a clustering technique to find groups of similar data
points aggregated together based on certain similarities. In K-means each cluster
is associated with a centroid which allocates every data point to its nearest cluster
[31]. It is a distance-based algorithm that aims to minimize the sum of distances
between the points and their respective cluster centroid as shown in Fig. 2 below.

3.4.6 Deep Neural Network

Deep neural networks are providing promising results in many fields and are
well known for binary classification. Fraud detection is a binary classification
problem wherein transaction is analyzed and classified as legitimate or fraudulent.

Hybrid Analysis on Credit Card Fraud Detection Using Machine Learning Techniques 229

Fig. 2 K-means clustering [32]

Fig. 3 Deep Neural Network
[35]

Deep learning using an Artificial neural network (ANN) is a multilayer fully
connected neural network which consists of multiple input nodes, where each node
is connected to multiple other nodes in the next layer. The model works from left to
right (as shown in Fig. 3) in which the weighted sum of its input is passed through a
non-linear activation function. Each layer of node trains on a distinct set of features
based on the previous layer’s output [33, 34].

3.5 Ensemble Classifier

Our primary goal is to reduce the number of false-positive which can be achieved by
using an ensemble learning technique. Ensemble learning is based on the principle
of combining a group of weak learners that come together to form a strong learner.

230 A. Handa et al.

As a diverse set of models provide a better result compared to a single model
[36]. Most papers have used homogenous base learners (decision trees or random
forest) to gain an optimal machine learning algorithm. Our approach is based
on heterogeneous learners wherein multiple base learning algorithms are used to
give us a strong learner. Wherein several base learners- Decision Tree, Logistic
regression, Support Vector Machine and K-nearest neighbor are used to produce
one stable predictive optimal model.

3.5.1 Bagging for Supervised Classifier

Bagging is a method of the ensemble learning which groups several machine
learning models (base learners) with different samples of the dataset to reduce
variance and overfitting in our predictive machine learning model. The original
dataset is divided into multiple data set by using sampling with replacement
techniques. By using sampling with replacement techniques, the training data is
changed for every base learner and in turn, the prediction is different for every
base learner. The Scikit-learn function is used to resample the dataset. A combined
classifier is produced by taking average prediction of all the base learner classifiers.
Predictions are based on using the max voting technique wherein the prediction
of each model is taken as a vote. The maximum predictions which we get from
the majority of the base models are used as a final prediction to create our hybrid
heterogeneous machine learning model [37].

4 Experiment & Results

In this section, we have highlighted the results achieved with different machine
learning techniques in performing fraud detection detect fraudulent transactions and
will describe the various measures used to evaluate the performance of basic and
hybrid machine learning algorithms in fraud transaction detection.

4.1 Evaluation Measures

To measure the performance of the applied machine learning method, the confusion
matrix can be used by relating the actual and predicted outcomes of a model: True
Positive (TP), True Negative (TN), false-positive (FP) and False Negative (FN)
(Table 1). These values can be used to calculate the different metrics in the machine
learning algorithm. We have used the four widely used metrics: Accuracy (ACC),
True Positive Rate (TPR), False Positive Rate (FPR), ROC and AUC as evaluation
metrics [38].

Hybrid Analysis on Credit Card Fraud Detection Using Machine Learning Techniques 231

Table 1 Confusion matrix Actual Class Predictive
True Positive False Positive
False Negative True Negative

Table 2 Observation with
supervised classifiers

Model ACC TPR FPR AUC

Logistic regression 0.75 0.52 0.54 0.98
Decision tree 0.99 0.51 0.52 0.87
Support vector machine 0.77 0.52 0.55 0.96
K-nearest neighbor 0.96 0.85 0.14 0.92

Accuracy (ACC) = T P + T N

T P + T N + FP + FN

True Positive Rate (TPR) = T P

T P + FN

False Positive Rate (FPR) = FP

FP + T N

ROC – is created by plotting a graph of TPR on Y-axis and FPR on X-axis at various
thresholds.

AUC – It is measured as an area under the ROC curve. A model with AUC equal to
1 is an ideal model.

4.2 Experiment & Results

We have used the sampled dataset with a total of 60,000 samples: 30,000 fraud
and 30,000 normal transactions, which was generated after processing the original
dataset. All the models were trained on the sampled dataset and the results were
marked based on the selected metrics.

4.2.1 Supervised Model Results

On training our supervised classifier on the sampled dataset, KNN outperformed the
other applied supervised classifiers with the highest accuracy of 99.2% (Table 2).

As discussed in Sect. 4.1, the ROC curve is a graph displaying the overall
performance of the classification model. The ROC curve for all the supervised
classifiers with AUC as the area under the ROC is presented in Figs. 4, 5, 6, and
7. As shown above RCO figures, the AUC observed for all the classifiers are almost

232 A. Handa et al.

Fig. 4 ROC and AUC – Logistic regression

Fig. 5 ROC of Decision Tree

Hybrid Analysis on Credit Card Fraud Detection Using Machine Learning Techniques 233

Fig. 6 ROC and AUC of SVM model

Fig. 7 ROC and AUC of KNN model

234 A. Handa et al.

close to the ideal value of AUC (AUC = 1). However, KNN came up as the most
powerful model in classifying fraud and normal transactions with AUC equal to 1.

4.2.2 Unsupervised Model Results

For the unsupervised models, Kmeans was trained on the sampled dataset. As shown
in Table 3, K-means was able to score only 70% accuracy in detecting fraudulent
transaction. Also, the lowest AUC was recorded for K-means (Fig. 8).

4.2.3 Deep Neural Network

In deep learning, the deep neural network was implemented on the original dataset
and achieved a high accuracy of 99.9% with Deep neural network with a highly
imbalanced dataset with a 12 low FPR of 44% (Table 4). However, the AUC metrics
was low (Fig. 9).

Table 3 Observation of
K-means model

Model Accuracy TPR FPR AUC

K-means 0.70 0.70 0.27 72

Fig. 8 ROC and AUC for K-means

Hybrid Analysis on Credit Card Fraud Detection Using Machine Learning Techniques 235

Table 4 Observation for
Deep Neural network

Model Accuracy TPR FPR AUC

Deep neural networks 0.99 0.99 0.4 0.8

Fig. 9 ROC and AUC for Deep Neural Network

4.2.4 Supervised Ensemble Model – Bagging

The hybrid model built on a supervised classifier outperforms all other machine
learning techniques. As shown in Fig. 10. The overall performance of the ensemble
model is extremely good with AUC equal to 1 and the accuracy of 99.9% and lowest
FPR of 0.01% (Table 5).

5 Conclusion

In this paper, we have performed a comparative analysis of different categories of
machine learning: supervised, unsupervised, deep learning and ensemble machine
learning in detecting fraud transactions based on their accuracy, TPR, FPR, ROC
and AUC evaluation metrics. Conclusion of this paper summarized as follows:

1. Data sampling was done to reduce the skewness of the original imbalanced
dataset.

2. The supervised classifiers: KNN, Decision Tree, SVM and Logistic Regression
were trained on the sampled dataset and the performance of these classifiers was
analyzed based on evaluation metrics.

236 A. Handa et al.

Fig. 10 ROC and AUC for supervised ensemble model

Table 5 Observations for supervised ensemble model

Model Accuracy TPR FPR AUC

Supervised ensemble-bagging 0.999 0.998 0.015 0.999

3. Implemented ANN in deep learning using the original dataset and observed that
it can effectively identify credit card fraud transactions from a highly imbalanced
like European Dataset.

4. Implemented an ensemble model by combining the selected supervised classi-
fiers to detect fraud transactions more accurately with minimum false positive
rate.

The future work will be to evaluate the transactions in real-time. We can also
implement and analyze the Boosting method of ensemble machine learning with
supervised, unsupervised and deep learning.

References

1. B. Peter, Number of credit cards and credit card holders (WalletHub), https://wallethub.com/
edu/number-of-credit-cards/25532/. Accessed 16 Sept 2020

https://wallethub.com/edu/number-of-credit-cards/25532/

Hybrid Analysis on Credit Card Fraud Detection Using Machine Learning Techniques 237

2. Credit card fraud statistics. Shift credit card processing, https://shiftprocessing.com/creditcard-
fraud-statistics/. Accessed 17 Sept 2020

3. M. Amrollahi, A. Dehghantanha, R.M. Parizi, A survey on application of big data in fin tech
banking security and privacy, in Handbook of Big Data Privacy, (Springer, Cham, 2020), pp.
319–342

4. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, Blockchain-enabled authentica-
tion handover with efficient privacy protection in SDN-based 5G networks. IEEE Trans. Netw.
Sci. Eng. (2019). https://doi.org/10.1109/TNSE.2019.2937481

5. F. C. A. of Canada, Credit card fraud (aem, 2017, January 10), https://www.canada.ca/en/
financialconsumer-agency/services/credit-fraud.html. Accessed 17 Sept 2020

6. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88 (2020).
https://doi.org/10.1016/j.cose.2019.101629

7. World Health Organization, et al., A. Ligaya, Massive security breach at Capital One exposes
data of 6 million Canadians (CTVNews, 2019, July 30), https://www.ctvnews.ca/business/
massive-security-breach-at-capital-oneexposes-data-of-6-million-canadians-1.4529639.
Accessed 17 Sept 2020. Osteoarthr. Cartil

8. R. R. F. DeFilippi, Boosting, bagging, and stacking – Ensemble methods with sklearn and
mlens (Medium, 2018, August 4), https://medium.com/@rrfd/boosting-bagging-and-stacking-
ensemblemethods-with-sklearn-and-mlens-a455c0c982de. Accessed 10 May 2020

9. A. Yazdinejad, R.M. Parizi, G. Srivastava, A. Dehghantanha, K.-K.R. Choo, Energy efficient
decentralized authentication in internet of underwater things using blockchain, in 2019 IEEE
Globecom Workshops (GC Wkshps), (2019), pp. 1–6

10. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency malware hunting: A deep recurrent neural network approach. Appl. Soft
Comput. J. Elsevier 96, 106630 (2020)

11. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

12. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

13. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. (2020). https://
doi.org/10.1016/j.future.2020.10.007

14. A. Yazdinejad, S. Kavei, S.R. Karizno, Increasing the performance of reactive routing protocol
using the load balancing and congestion control mechanism in MANET. Comput. Knowl. Eng.
2(1), 33–42 (2019). https://doi.org/10.22067/cke

15. Q. Chen, G. Srivastava, R.M. Parizi, M. Aloqaily, I. Al Ridhawi, An incentive-aware
blockchain-based solution for internet of fake media things. Inf. Process. Manag., 102370
(2020). https://doi.org/10.1016/j.ipm.2020.102370

16. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, G. Srivastava, S. Mohan, A.M. Rababah, Cost
optimization of secure routing with untrusted devices in software defined networking. J.
Parallel Distrib. Comput. 143, 36–46 (2020)

17. A. Yazdinejad, R.M. Parizi, A. Bohlooli, A. Dehghantanha, K.-K.R. Choo, A high-performance
framework for a network programmable packet processor using P4 and FPGA. J. Netw.
Comput. Appl. 156, 102564 (2020)

18. J.O. Awoyemi, A.O. Adetunmbi, S.A. Oluwadare, Credit card fraud detection using machine
learning techniques: A comparative analysis, in 2017 International Conference on Computing
Networking and Informatics (ICCNI), (2017), pp. 1–9

19. S. Dhankhad, E. Mohammed, B. Far, Supervised machine learning algorithms for credit card
fraudulent transaction detection: A comparative study, in 2018 IEEE International Conference
on Information Reuse and Integration (IRI), (2018), pp. 122–125

https://shiftprocessing.com/creditcard-fraud-statistics/
http://dx.doi.org/10.1109/TNSE.2019.2937481
https://www.canada.ca/en/financialconsumer-agency/services/credit-fraud.html
http://dx.doi.org/10.1016/j.cose.2019.101629
https://www.ctvnews.ca/business/massive-security-breach-at-capital-oneexposes-data-of-6-million-canadians-1.4529639
https://medium.com/@rrfd/boosting-bagging-and-stacking-ensemblemethods-with-sklearn-and-mlens-a455c0c982de
http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.1016/j.future.2020.10.007
http://dx.doi.org/10.22067/cke
http://dx.doi.org/10.1016/j.ipm.2020.102370

238 A. Handa et al.

20. A. Thennakoon, C. Bhagyani, S. Premadasa, S. Mihiranga, N. Kuruwitaarachchi, Real-time
credit card fraud detection using machine learning, in 2019 9th International Conference on
Cloud Computing, Data Science Engineering (Confluence), (2019, January). https://doi.org/
10.1109/CONFLUENCE.2019.8776942

21. T. Choudhury, G. Dangi, T.P. Singh, A. Chauhan, A. Aggarwal, An efficient way to detect credit
card fraud using machine learning methodologies, in 2018 Second International Conference
on Green Computing and Internet of Things, ICGCIoT 2018, (2018). https://doi.org/10.1109/
ICGCIoT.2018.8753077

22. A. Mishra, C. Ghorpade, Credit card fraud detection on the skewed data using various
classification and ensemble techniques, in 2018 IEEE International Students’ Conference on
Electrical, Electronics and Computer Science (SCEECS), (2018), pp. 1–5

23. S. Mittal, S. Tyagi, Performance evaluation of machine learning algorithms for credit card
fraud detection, in 2019 9th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), (2019), pp. 320–324

24. H. Wang, P. Zhu, X. Zou, S. Qin, An ensemble learning framework for credit card fraud
detection based on training set partitioning and clustering, in 2018 IEEE SmartWorld,
Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), (2018), pp. 94–98

25. Credit card fraud detection, https://kaggle.com/mlg-ulb/creditcardfraud. Accessed 16 Sept
2020

26. 3.2.4.3.3. sklearn.ensemble.ExtraTreesClassifier – scikit-learn 0.22.2 documentation,
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html.
Accessed 10 May 2020

27. Logistic regression in python | Python for data science (Edureka, 2019, April 16), https://
www.edureka.co/blog/logistic-regression-in-python/. Accessed 17 Sept 2020

28. Decision tree classification in python (DataCamp Community, 2018, December 28), https:/
/www.datacamp.com/community/tutorials/decision-tree-classification-python. Accessed 17
Sept 2020

29. Support vector machines: A simple explanation (KDnuggets), https://www.kdnuggets.com/
support-vector-machines-a-simple-explanation.html/. Accessed 17 Sept 2020

30. A. Yadav, Support Vector Machines (SVM). Introduction: All you need to know . . . | by Ajay
Yadav | Towards Data Science

31. K means clustering | K means clustering algorithm in python (Analytics Vidhya, 2019,
August 19), https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-
clustering/. Accessed 17 Sept 2020

32. P. Jeffcock, K-means clustering in machine learning, simplified, https://blogs.oracle.com/
bigdata/k-means-clustering-machine-learning. Accessed 17 Sept 2020

33. World Health Organization, et al., A. Dertat, Applied deep learning – Part 1: Artificial neural
networks (Medium, 2017, Ocotber 9), https://towardsdatascience.com/applied-deep-learning-
part-1-artificial-neural-networks-d7834f67a4f6. Accessed 17 Sept 2020. Osteoarthr. Cartil

34. A beginner’s guide to neural networks and deep learning – Pathmind, https://pathmind.com/
wiki/neural-network. Accessed 26 Jan 2020

35. ANN algorithm | How artificial neural network works (Analytics Vidhya, 2014, October 20),
https://www.analyticsvidhya.com/blog/2014/10/ann-work-simplified/. Accessed 17 Sept 2020

36. J. Shubham, Ensemble learning – Bagging and boosting (Medium, 2018, July 6),
https://becominghuman.ai/ensemble-learning-bagging-and-boosting-d20f38be9b1e. Accessed
17 Sept 2020

37. Ensemble learning in python (DataCamp Community, 2018, September 6), https://
www.datacamp.com/community/tutorials/ensemble-learning-python. Accessed 17 Sep 2020

38. M. Sokolova, N. Japkowicz, S. Szpakowicz, Beyond accuracy, F-score and ROC: A family
of discriminant measures for performance evaluation, in Australasian Joint Conference on
Artificial Intelligence, (2006), pp. 1015–1021

http://dx.doi.org/10.1109/CONFLUENCE.2019.8776942
http://dx.doi.org/10.1109/ICGCIoT.2018.8753077
https://kaggle.com/mlg-ulb/creditcardfraud
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://www.edureka.co/blog/logistic-regression-in-python/
https://www.datacamp.com/community/tutorials/decision-tree-classification-python
https://www.kdnuggets.com/support-vector-machines-a-simple-explanation.html/
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://blogs.oracle.com/bigdata/k-means-clustering-machine-learning
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://pathmind.com/wiki/neural-network
https://www.analyticsvidhya.com/blog/2014/10/ann-work-simplified/
https://becominghuman.ai/ensemble-learning-bagging-and-boosting-d20f38be9b1e
https://www.datacamp.com/community/tutorials/ensemble-learning-python

Mapping CKC Model Through NLP
Modelling for APT Groups Reports

Aaruni Upadhyay, Samira Eisaloo Gharghasheh, and Sanaz Nakhodchi

1 Introduction

Many business establishments still rely on outdated security measures to counter
security threats. The effectiveness of such traditional approaches has diminished
over time and that becomes even more evident when organizations face advanced
cybercriminals like APT [1–3] actors. APT attacks are carried by extremely
accomplished (possibly state-sponsored) cybercriminal teams who have doubtless
unlimited time and resources [4].

APTs are known to compromising again and again people, companies and
governments, by using various techniques and ways to realize their targets [2, 5].
“APT became famous following a New York Times exposé detailing a month’s
long attack campaign in which a Chinese military unit now known as “APT 1”
thoroughly penetrated the media organization’s networks with a series of spear-
phishing emails and a deluge of customized malware samples.” APT can appear in
two ways: APT as a factor or individuals. From one side, APT points to an extremely
accurate cyberattack. On the opposite side, the APT can even be the teams, typically
“state-sponsored or well-funded” in different methods, which they are able to fire
well-aimed attacks [3].

According to the last cyber-attacks, research in this field has been increased
tremendously [6–11]. These attacks have widespread destructive effects on their
targets [1, 12–14]. CKC is a model to make transparency for incident response team
and security analysts to have a better understanding of the incidents [4].

CKC has seven phases which includes Reconnaissance, Weaponization, Deliv-
ery, Exploitation, Installation, Command & Control(C2) and Actions on Objectives

A. Upadhyay · S. E. Gharghasheh · S. Nakhodchi (�)
School of Computer Science, Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: aupadhya@uoguelph.ca; samira@cybersciencelab.org; sanaz@cybersciencelab.org

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_16

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_16&domain=pdf
http://threatpost.com/inside-targeted-attack-new-york-times-013113/
mailto:aupadhya@uoguelph.ca
mailto:samira@cybersciencelab.org
mailto:sanaz@cybersciencelab.org
https://doi.org/10.1007/978-3-030-74753-4_16

240 A. Upadhyay et al.

(AOO). A typical cyberattack begins with information gathering on the target as
its first step (reconnaissance). The details of enemy vulnerabilities may be used
to develop a malware (weaponization) and can also be used to plan the most
undetectable way of infecting victim machines (delivery). Thereafter the attacker
wants to carry out the attack (exploitation) and gain persistence (installation). Once
these stages are successfully executed, the attacker is able to control its attack
remotely (C2) and is able to carry out its exploitation at will (AOO). On the other
hand, during the past years cybercommunity has witnessed a significant increase
of leveraging machine learning methods to provide successful approaches ranging
from malware detection [15–19] and malware hunting [20–24] to privacy [25, 26]
and intelligent cyber-analytics [27].

In this research, we present an automatic way to process the APT reports using
NLP techniques to identify and map the different CKC stages employed in the
attack. We use the Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation
(LDA) to automatically extract information related to CKC stages from the APT
reports. We then compare our results with a recent survey that classified APT groups
into different CKC stages manually. In this research we present LSI and LDA as a
faster alternative and discuss the ways to achieve better accuracy in results.

This paper organized as follows. Section 2 presents the previous work on
this field. Then Sect. 3 provides the methodology. The results are discussed and
evaluated in Sect. 4. Finally, this paper is concluded in Sect. 5.

2 Related Works

NLP models usually are using for keyword extraction, topic modeling and so
on. Since, security reports are unstructured text, NLP models are useful for data
extraction from technical reports. For example, [28] proposed SECCMiner which
is an information retrieval system to achieve useful information about APTs from
their unstructured reports. They used NLP and information retrieval methods to
extract information such as the techniques and tactics of attacks. They collected
445 APT reports with about 1.9 million words between 2008 and 2017. [29] used
Latent Semantic Analysis for capturing keywords from cyber security weblogs
with focusing on certain topics. They focused on searching blog for topics such as
cybercrime, cyber terrorism and cyber security threats. In addition, their method
also tracked prominent “conversation and topics in the blogsphere.” “a subset
of the Nielson BuzzMetrics weblog data corpus” used for the dataset and their
experiments. The keyword detection and weblog search were boost for information
retrieval. The generic detecting method proposed in [30] which used unsupervised
algorithm to learn the context of proxy server log. The Paragraph Vector learnt
feature representation with fixed-length from variable-length pieces of texts. They
implemented algorithm on MWS datasets with D3M and BOS for analyzing time-
line. They achieved 0.99 and 0.98 for f-measure of un-known drive-by-download
attacks and C2 traffic, respectively.

Mapping CKC Model Through NLP Modelling for APT Groups Reports 241

Automated model for identifying IOCs from reports based on a neural sequence
labeling used in [31]. It was an end-to-end sequence labeling for IOCs identification.
The dataset included 687 cybersecurity articles related to APT reports from 2008 to
2018. Moreover, 90.4% and 87.2% were precision and recall of their achievement
which were better than previous sequence labeling models. [32] used LDA model
for vulnerability reports on the Common Vulnerability and Exposures (CVE)
database. They implemented their models on description section of reports for
finding vulnerability types and novel trends. 39,393 CVE were considered.

Based on formation above, most of the researches have been utilized NLP models
for extraction information with different perspective although finding the attack
pattern with NLP approach is neglected. Thus, in this research, we used NLP models
such as LSI and LDA for mapping the CKC model to APT reports.

3 Methodology

In this section, the method for extracting CKC model from unstructured APT reports
is elaborated. In addition, the used dataset, collection method and pre-processing
steps for implementation are described.

3.1 Dataset

Our dataset consists of APT reports collected across several sources such as Fireeye,
McAfee, Kaspersky etc. We used [33] as our dataset with a total of 108 files for a
total of 19 APT groups.

3.2 Data Collection

Our base paper had raw reports related to APT groups up to APT33 and even more
reports have since been released. We downloaded the new reports which were APT
34, APT 37, APT 38, APT 40, APT41 and converted them to the .txt file and add
to the dataset. In addition, based on Fireeye and Mitre, there were some additional
reports that was added such as APT5, APT10, APT17, etc. The primary challenge
was that the reports were distributed across several text files. For example, there
were different 10 reports for APT1. We combined all similar APT files into a single
file so that we have one file for each APT. For the final step of consolidation,
we merged all the 19 APT files into a single TXT file with each line of the file
representing an APT group.

242 A. Upadhyay et al.

3.3 Pre-processing

LSI and LDA work on a bad of word model which involves breaking down the text
into individual words. The order of words does not matter. Also, the stop words like
“an”, “the”, “is” etc. which are very common in English language are ignored. The
next step is to ignore any words that appear only once in the document as they do not
help in semantic search. The next step involves building up a dictionary that assigns
a unique integer key to each word in the document. This index is used in the corpus
that is basically a tuple with the index as first value and frequency of that word in its
document as the second. For example, (8, 12) tells that word represented by index 8
appears 12 times in its corresponding document.

3.4 Implementation

We selected LSI and LDA which are popular models in topic modeling. LSI is
one of NLP technique for semantically analyzing relationships between “a set of
documents and the terms they contain by producing a set of concepts related to the
documents and terms.” Similar words in terms of meaning occur in similar pieces
of text is one of the assumptions of this model [34] . LDA is another model for
topic modeling in NLP which is used to classify a document to a specific topic. This
model assumes that a document mixes with several topics in it and the topics relate
with the words [35]. The main difference of these two models are their calculation,
LSI uses Singular Value Decomposition (SVD) matrix on the terms of document
however LDA based on probabilistic model.

For our search we created a text file with the APT features based on [12] which
can be seen in the Fig. 1.

We use GenSim [36] library for our implementation of LSI and LDA. The first
step involves building the LSI model object by passing it the dictionary and the
corpus object. Next is the step of performing a document similarity search on this
object by using the Gensim’s similarity module. This is done into three different
steps, first we take the input search stream and break it down into individual words.
Next, we convert it to the LSI space by passing it to the LSI model object we created
earlier. Next, we perform a similarity query against the corpus and then sort our
result in the decreasing order of similarity score.

We now use LSI and LDA to search for CKC stages inside the APT files and
create a map. For this we finalize a list of search queries that are closest to the CKC
stages.

These queries are listed in the Table 1. The results for each of search query were
recorded and used to build the below table that has a “X” for each APT group that
appeared in a search query with an accuracy >0.8. The experiment was running for
all stages using both LSI and LDA, the results of which are shown in Tables 2 and
3 below.

Mapping CKC Model Through NLP Modelling for APT Groups Reports 243

Fig. 1 APT features based on CKC model [14]

The below grid shows the CKC stages across which the different APT groups
falls according to LSI/LDA models. However, it does not show the order of
relevance of an APT group in the CKC stages. For example, looking at above table,
we cannot tell which APT group is most relevant under “social engineering” stage
of CKC model. To address this question, we built the heatmaps for both the LSI and
LDA models as shown below in Figs. 2 and 3 below.

4 Evaluation and Findings

In this section we present the evaluation of our proposed methodology. In particular,
our semantic search based on LSI and LDA algorithms is evaluated for its
effectiveness in mapping APT documents to the various CKC stages. We compare
our results with [12] and compute the evaluation parameters Precision and Recall.

The following is the details of how we calculated the Precision and Recall
parameters:

True Positive If an APT group is mapped to a CKC stage by both our method and
correspondingly in the base paper result.

False Positive If an APT group is mapped to a CKC stage by our method but not
in the base paper result.

244 A. Upadhyay et al.

Table 1 Mapping between CKC stage and search term used

CKC stage Search text

Social engineering Social engineering
Passive web-based tools Reconnaissance web tool
Abusing benign software applications vulnerabilities Software vulnerability
Subterfuge techniques Subterfuge technique
Legitimate digital certification Stolen digital certificates
Website equipping Compromised website
Malicious file attachment Malicious file attachment
Spear phishing link Spear phishing link
Compromised legitimate websites Watering hole website
Rogue DNS Rogue dns
Replicate through removable media Replicate through removable media
Rogue software Rogue software
0-day exploits 0-day exploit
Known exploits Known exploits
SQL injection SQL injection
Macros Exploitation macros
Drive by download Drive by download exploit
Credential reuse Credential reuse exploit
Modifying registry key Installation modifying registry keys
DLL search order hijacking DLL search order hijacking
DLL side loading Dll side loading attack
Startup folder Installation startup folder
Scheduling task Installation scheduling task
COM hijacking Com hijacking
Bootkit Install bootkit
Create account with valid credential Create account with valid credential
Local job scheduling Linux macos job scheduling
HTTP(s) c2 http https tunneling
FTP c2 ftp tunneling
SMTP/POP3 c2 smtp pop3 tunneling
SSH/TLS c2 ssh tls tunneling
ICMP c2 icmp tunneling
DNS c2 dns tunneling
Satellite c2 satellite tunneling
C2’s using removable media c2 removable media
Data exfiltration Data exfiltration objective
Data destruction Data destruction objective

False Negative If an APT group is not mapped to a CKC stage by our method but
is mapped correspondingly in the base paper.

True Negative If an APT group is not mapped to a CKC stage and also not mapped
correspondingly in the base paper.

Mapping CKC Model Through NLP Modelling for APT Groups Reports 245

Ta
bl
e
2

O
ur

re
su

lts
us

in
g

L
SI

m
od

el

246 A. Upadhyay et al.

Ta
bl
e
3

O
ur

re
su

lts
us

in
g

L
D

A
m

od
el

Mapping CKC Model Through NLP Modelling for APT Groups Reports 247

Fig. 2 LSI heat map

The base paper has only 8 APT groups in common to us and we calculated the
above evaluation parameters for these APT groups for both LSI and LDA methods.
Table 4 presents our evaluation results.

248 A. Upadhyay et al.

Fig. 3 LDA heat map

We then calculated Precision and Recall using the below formulae to calculate
our accuracy:

Precision = True Positive / (True Positive + False Positive)
Recall = True Positive / (True Positive + False Negative)

Mapping CKC Model Through NLP Modelling for APT Groups Reports 249

Ta
bl
e
4

L
SI

/L
D

A
ev

al
ua

tio
n

fo
r

8
A

PT
gr

ou
ps

L
SI

L
D

A
T

ru
e

po
si

tiv
es

Fa
ls

e
po

si
tiv

es
Fa

ls
e

ne
ga

tiv
es

T
ru

e
ne

ga
tiv

es
T

ru
e

po
si

tiv
es

Fa
ls

e
po

si
tiv

es
Fa

ls
e

ne
ga

tiv
es

T
ru

e
ne

ga
tiv

es

A
PT

1
7

13
5

12
6

7
6

18
A

PT
3

13
10

5
9

7
6

11
13

A
PT

12
8

15
2

12
5

8
5

19
A

PT
16

5
13

3
16

5
19

3
10

A
PT

17
9

5
7

16
7

7
9

14
A

PT
28

7
0

15
15

9
4

13
11

A
PT

29
9

5
10

13
8

5
11

13
A

PT
30

9
14

2
12

7
6

4
20

Su
m

67
75

49
10
5

54
62

62
11
8

250 A. Upadhyay et al.

Table 5 Comparison
between LSI and LDA

LSI LDA

Precision 47% 47%
Recall 58% 47%

Precision helps us tell “what proportion of positive identifications was actually
correct” while Recall helps us answer “what proportion of actual positives was
identified correctly”?

Table 5 shows the comparison of Precision and Recall for the two models. Our
Precision and Recall values were lower than our expectation and we list the below
factors that might have had an affect:

1. We have incorporated new APT reports since the base paper was written and as
such there will be new CKC stages under which APT groups will fall in. This
may have contributed to an increase in False Positives and hence bringing down
the Precision score of our result.

2. Selection of Keywords: We attempted to keep our search queries very close to
the CKC stage categories developed by the author(s) of the base paper. Perhaps
further refining our query to each CKC stage to would yield better result. For
example, searching for “phishing” instead of “social engineering” provides 18
APT groups instead of 10.

3. Limited input data: Our sources for APT reports were limited to the APT reports
available freely on the internet. We expect that the addition of more input data
from proprietary reports will increase the accuracy of our model.

4. We have only 8/19 APT groups in common with the base paper for comparison
purpose and as such a full comparison would not be possible.

5 Conclusion

APT reports track the Tactics, Techniques, and Procedures (TTPs) employed by the
APT actors in their mission. These reports frequently come in form of unstructured
text that must be parsed manually for information. Anyone looking to identify
various CKC stages within such a report would need to invest considerable time and
energy to do so. Our semantic search method using LSI/LDA for finding CKC stages
within an APT report provides a fast alternative to manual labor. Our approach for
preprocessing APT reports and running semantic search can be improved upon to
build an automatic way of CKC stage classification. For future work, other semantic
search models may be applied along with using much bigger set of input data.

Mapping CKC Model Through NLP Modelling for APT Groups Reports 251

References

1. T. Dargahi, A. Dehghantanha, P.N. Bahrami, M. Conti, G. Bianchi, L. Benedetto, A cyber-kill-
chain based taxonomy of crypto-ransomware features. J. Comput. Virol. Hacking Tech. 15(4),
277–305 (2019)

2. S. Grooby, T. Dargahi, A. Dehghantanha, Protecting IoT and ICS platforms against advanced
persistent threat actors: Analysis of APT1, silent Chollima and molerats, in Handbook of Big
Data and IoT Security, (Springer, Cham, 2019), pp. 225–255

3. H. Haddadpajouh, A. Azmoodeh, A. Dehghantanha, R.M. Parizi, MVFCC: A multi-view fuzzy
consensus clustering model for malware threat attribution. IEEE Access 8, 139188–139198
(2020)

4. H. Mwiki, T. Dargahi, A. Dehghantanha, K.-K.R. Choo, Analysis and triage of advanced
hacking groups targeting western countries critical national infrastructure: APT28, RED
October, and Regin, in Critical Infrastructure Security and Resilience, (Springer, Cham, 2019),
pp. 221–244

5. A. Yazdinejad, R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, Blockchain-enabled authentica-
tion handover with efficient privacy protection in SDN-based 5G networks IEEE Trans. Netw.
Sci. Eng. 8(2), 1120–1132 (1 April–June 2021). https://doi.org/10.1109/TNSE.2019.2937481

6. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency malware hunting: A deep recurrent neural network approach. Appl. Soft
Comput. 96, 106630 (2020 Nov 1). Elsevier.

7. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020).

8. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized Blockchain-based security. IEEE
Internet Things J., 1 (IEEE, 2020). https://doi.org/10.1109/jiot.2020.3015382

9. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. 115, 619 (2020)

10. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Performance improvement and hardware imple-
mentation of open flow switch using FPGA, in 2019 5th Conference on Knowledge Based
Engineering and Innovation (KBEI), (2019), pp. 515–520

11. A. Yazdinejad, S. Kavei, S. Razaghi Karizno, Increasing the performance of reactive routing
protocol using the load balancing and congestion control mechanism in MANET. Comput.
Knowl. Eng. 2(1), 33–42 (2019). https://doi.org/10.22067/cke

12. P.N. Bahrami, A. Dehghantanha, T. Dargahi, R.M. Parizi, K.-K.R. Choo, H.H.S. Javadi, Cyber
kill chain-based taxonomy of advanced persistent threat actors: Analogy of tactics, techniques,
and procedures. J. Inf. Process. Syst. 15(4), 865–889 (2019)

13. R. HosseiniNejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, A cyber kill chain based
analysis of remote access trojans, in Handbook of Big Data and Iot Security, (Springer, Cham,
2019), pp. 273–299

14. D. Kiwia, A. Dehghantanha, K.-K.R. Choo, J. Slaughter, A cyber kill chain based taxonomy
of banking Trojans for evolutionary computational intelligence. J. Comput. Sci. 27, 394–409
(2018)

15. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

16. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for internet of things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

17. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

http://dx.doi.org/10.1109/TNSE.2019.2937481
http://dx.doi.org/10.1109/jiot.2020.3015382
http://dx.doi.org/10.22067/cke
http://dx.doi.org/10.1016/j.future.2018.03.007

252 A. Upadhyay et al.

18. H. Darabian et al., A multiview learning method for malware threat hunting: Windows, IoT
and android as case studies. World Wide Web 23(2), 1241–1260 (2020)

19. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An ensemble
of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE
Internet Things J. 7(9), 8852–8859 (2020). https://doi.org/10.1109/jiot.2020.2996425

20. H.H. Pajouh, R. Javidan, R. Khayami, D. Ali, K.-K.R. Choo, A two-layer dimension reduction
and two-tier classification model for anomaly-based intrusion detection in IoT backbone
networks. IEEE Trans. Emerg. Top. Comput. 7, 314 (2016)

21. M. Saharkhizan, A. Azmoodeh, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Sri-
vastava, A hybrid deep generative local metric learning method for intrusion detection, in
Handbook of Big Data Privacy, (Springer, Cham, 2020), pp. 343–357. https://doi.org/10.1007/
978-3-030-38557-6_16

22. A.N. Jahromi et al., An improved two-hidden-layer extreme learning machine for malware
hunting. Comput. Secur. 89, 101655 (2020)

23. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, S. Hashemi, B. Gharabaghi, G. Srivastava,
Active spectral botnet detection based on eigenvalue weighting, in Handbook of Big Data
Privacy, (Springer, Cham, 2020), pp. 385–397. https://doi.org/10.1007/978-3-030-38557-
6_19

24. S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, R. Khayami, Know abnormal,
find evil: Frequent pattern mining for ransomware threat hunting and intelligence. IEEE Trans.
Emerg. Top. Comput. 8, 341 (2017)

25. K.-K.R.C.A. Dehghantanha, Eda, Handbook of Big Data Privacy (Springer, Cham, 2020)
26. A. Ekramifard, H. Amintoosi, A.H. Seno, A. Dehghantanha, R.M. Parizi, A systematic

literature review of integration of Blockchain and artificial intelligence, in Advances in
Information Security, (Springer, Cham, 2020), pp. 147–160. https://doi.org/10.1007/978-3-
030-38181-3_8

27. M. Conti, T. Dargahi, A. Dehghantanha, Cyber threat intelligence: Challenges and opportu-
nities, in Advances in Information Security, (Springer, Cham, 2018), pp. 1–6. https://doi.org/
10.1007/978-3-319-73951-9_1

28. A. Niakanlahiji, J. Wei, B.T. Chu, A natural language processing based trend analy-
sis of advanced persistent threat techniques, in Proceedings – 2018 IEEE International
Conference on Big Data 2018, (2019 January), pp. 2995–3000. https://doi.org/10.1109/
BigData.2018.8622255

29. F.S. Tsai, K.L. Chan, Detecting cyber security threats in weblogs using probabilistic models, in
Pacific-Asia Workshop on Intelligence and Security Informatics, (Springer, Berlin/Heidelberg,
2007), pp. 46–57

30. M. Mimura, H. Tanaka, Heavy log reader: learning the context of cyber attacks automatically
with paragraph vector, in International Conference on Information Systems Security, (Springer,
Cham, 2017), pp. 146–163

31. S. Zhou, Z. Long, L. Tan, H. Guo, Automatic identification of indicators of compromise using
neural-based sequence labelling, arXiv Prepr. arXiv1810.10156 (2018)

32. S. Neuhaus, T. Zimmermann, Security trend analysis with cve topic models. in 2010 IEEE 21st
International Symposium on Software Reliability Engineering, (IEEE, 2010), pp. 111–120

33. U. Noor, Z. Anwar, T. Amjad, K.-K.R. Choo, A machine learning-based FinTech cyber threat
attribution framework using high-level indicators of compromise. Futur. Gener. Comput. Syst.
96, 227–242 (2019)

34. S.T. Dumais, A graph analytical approach for topic detection. Annu. Rev. Inf. Sci. Technol.
38(188) (2005)

35. P. Dwivedi, NLP: Extracting the Main Topics from Your Dataset Using LDA in Min-
utes (2018). https://towardsdatascience.com/nlp-extractingthe-main-topics-from-your-dataset-
using-lda-in-minutes-21486f5aa925. Accessed 30 Nov 2019

36. R. Rehurek, Gensim: Documentation (2019). https://radimrehurek.com/gensim/
auto_examples/index.html. Accessed 01 Dec 2019

http://dx.doi.org/10.1109/jiot.2020.2996425
http://dx.doi.org/10.1007/978-3-030-38557-6_16
http://dx.doi.org/10.1007/978-3-030-38557-6_19
http://dx.doi.org/10.1007/978-3-030-38181-3_8
http://dx.doi.org/10.1007/978-3-319-73951-9_1
http://dx.doi.org/10.1109/BigData.2018.8622255
https://towardsdatascience.com/nlp-extractingthe-main-topics-from-your-dataset-using-lda-in-minutes-21486f5aa925
https://radimrehurek.com/gensim/auto_examples/index.html

Ransomware Threat Detection: A Deep
Learning Approach

Kassidy Marsh and Hamed Haddadpajouh

1 Introduction

Ransomware is a special type of computer malware which is becoming more
and more prevalent in the world of cybercrime [1]. It is estimated that in 2016
alone, more than $1 billion was paid towards ransoms which were associated with
ransomware [2]. Ransomware works by preventing access to crucial proprietary
data, and only releases access to the data upon payment of a ransom [3]. There
are two main types of ransomware: Crypto ransomware and Locker ransomware.
Locker ransomware acts by locking a user out of a device until the ransom is paid;
the actual data on the device is untouched, and as a result the data can potentially be
recovered by removing the ransomware from the device or by transferring the hard
drive to a non-infected device [4]. Due to the shortcomings of Locker ransomware
(in the eyes of the attacker, that is), Crypto ransomware is much more common [5].
Crypto ransomware involves the encryption of all files on a device, preventing their
recovery without a decryption key (which is received upon payment of ransom) [6].

To detect the presence of ransomware, a wide variety of machine learning
techniques have been employed over the years [2]. These techniques make use
of the frequent patterns in operation code that commonly appear in ransomware
applications [7]. Machine learning models can be trained to recognize patterns that
are common in ransomware files, and even distinguish between the different families
of ransomware. Several papers have been published with high success rates for
identifying ransomware files using machine learning [8–10].

K. Marsh (�)
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: kmarsh08@uoguelph.ca

H. Haddadpajouh
Cyber Science Lab, University of Guelph, Guelph, ON, Canada
e-mail: hamed@cybersciencelab.org

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_17

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_17&domain=pdf
mailto:kmarsh08@uoguelph.ca
mailto:hamed@cybersciencelab.org
https://doi.org/10.1007/978-3-030-74753-4_17

254 K. Marsh and H. Haddadpajouh

In this paper, we make use of a dataset consisting of ransomware samples that
were previously collected by Homayoun et al. [11]. We extract frequently occurring
patterns from these samples and evaluate the performance of different machine
learning models at recognizing these patterns. After being trained on the frequently
occurring patterns, the objective is that the machine learning models will classify
each ransomware sample into one of six possible ransomware families: Cerber,
CryptoWall, CTB-Locker, Locky, Sage, TeslaCrypt. We make use of five different
machine learning algorithms: K-Nearest Neighbours (KNN), Convolutional Neural
Network (CNN), Logistic Regression (LR), Random Forest (RF), and Decision Tree
(DT). CNNs are a form of deep learning and therefore have significantly higher
computational complexity compared to the other algorithms used here. Performance
of algorithms is evaluated using common metrics such as True Positive Rate (TPR),
False Positive Rate (FPR), accuracy, Receiver Operating Characteristics (ROC)
curves, and the area under the ROC curves (AUROC) [12]. Descriptions of each
of these metrics can be found in Sects. 4.1 (TPR/FPR/accuracy) and 4.2.7 (ROC
and AUROC).

This work seeks to compare the performance of these five machine learning
algorithms when classifying ransomware samples into their respective families. It
was predicted that our CNN model will outperform the other models, due to the
increased power of CNNs (it is the only deep learning model used in this paper).
However, the performance of the other algorithms is still of interest due to the
reduced complexity of these algorithms; compared to CNNs, the non-deep learning
models are extremely fast, and speed is often important in cases of ransomware
detection. Potential contributions from this paper will be a continuation of the
previous work by Homayoun et al. [11], where several machine learning models
were used to classify the same dataset of ransomware samples.

Section 2 of this paper contains a literature review on similar papers from recent
years. Section 3 details the methodology used in this work, Sect. 4 contains the
results of our experiments, and in Sect. 5 we draw conclusions and suggest future
works. Finally, references are in last section.

2 Related Works

Ransomware is a type of malware that has persisted in the cybersecurity world since
the 1980s [13]. The changing nature of ransomware attacks and the introduction of
new families of ransomware has caused signature-based identification systems to
fail at recognizing these new types of ransomware. Machine learning techniques
have been used successfully to replace such signature-based ransomware detection
systems, and certain models are capable of classifying ransomware into different
family types [14].

Several works have been presented in recent years which document successful
experiments using machine learning for ransomware classification. One recent work
used a multi-layer perceptron (MLP) model (a type of deep learning) for classifying

Ransomware Threat Detection: A Deep Learning Approach 255

ransomware samples into different families [9]. They ran extensive experiments to
select the best structure for the MLP model, and achieved a classification accuracy
of 98%.

One study found that the network traffic that is created by ransomware activities
can be used to identify the ransomware, using features of network packets such as
query type and protocol type [15]. Two classifiers were set up for analyzing traffic,
one at the flow level and the other at the individual packet level. They were able
to achieve detection accuracy of 97.2% at the packet level and 97.08% at the flow
level.

In [5], researchers attempted to detect the presence of ransomware in IoT devices
by analyzing power consumption in the devices. Using a KNN machine learning
model, they achieved an accuracy of 94.27% for classifying between ransomware
and non-malicious processes.

Another study analyzed the API call sequences that are made when ransomware
is executed, in order to differentiate between a ransomware executable and a benign
executable [16]. Using a Simple Logistic machine learning algorithm, they were
able to achieve an accuracy of 98.2%.

In another study for ransomware detection, network traffic was analyzed between
a computer infected with ransomware and a Command and Control centre [17].
Using an RF classifier, they achieve an accuracy of just under 87%.

In 2019, Hanqi Zhang [18] performed text analysis to classify ransomware
into different families. Patterns in the operation code of malware samples were
extracted using text analysis and were used as features for machine learning models.
Using these features, Hanqi Zhang [18] were able to achieve 91.43% accuracy
in classifying the Wanacry family of ransomware using a RF machine learning
model. In addition to this, 99.9% accuracy was recorded in discriminating between
ransomware and trusted software.

Similarly, an experiment was conducted using text analysis in addition to reverse
engineering [19]. In this experiment, they built datasets by performing reverse
engineering on the binary code of ransomware samples and benign file samples. The
average accuracy for all seven machine learning algorithms used in the study was
greater than 90%. The highest accuracy was 97.95%, reported for the RF algorithm.

3 Methodology

This section will describe the process that was followed to build our five machine
learning models, which are capable of classifying ransomware samples into one of
six families. The six ransomware families in our dataset are: Cerber, CryptoWall,
CTB-Locker, Locky, Sage, TeslaCrypt. We describe the process of identifying
frequently occurring patterns in ransomware samples in order to have a feature
set and feature values for each sample; we then explain how feature reduction was
used to select the best features and reduce the overall dimensionality of our dataset.

256 K. Marsh and H. Haddadpajouh

Fig. 1 Proposed methodology

Finally, we describe the design of our five machine learning models. An overview
of the methodology can be seen in Fig. 1.

3.1 Feature Selection and Extraction

The provided ransomware samples consisted of text files for each sample, where
each file is filled with operation code that would be executed by the ransomware.
Each file falls into one of six possible ransomware family categories, as described
above. For our experiments, each file is treated as a data point that needs to be
classified. The features for each data point/file consist of the frequencies of different
patterns; for example, if the first identified operation code pattern is “PUSH, PUSH,
CALL”, then the first feature value for each file will be the number of times which
“PUSH, PUSH, CALL” appears in the file.

Ransomware Threat Detection: A Deep Learning Approach 257

3.1.1 Pattern Selection

To obtain feature values for each ransomware sample, frequently occurring patterns
needed to be extracted. A pattern consists of a subset of operation codes, and the
frequency of patterns in each sample become the features values. Initially, all subsets
of length at least two which occurred more than once in a given sample were
considered as patterns. However, this resulted in thousands of unique patterns for
only the first few files, and hundreds of files needed to be processed. To reduce the
scale of our pattern selection problem, we assume that patterns which occur many
times in a file are going to provide more insight for classifying a ransomware family
as opposed to patterns which only occur twice. Following this logic, the minimum
frequency to be considered a pattern was set to 50 (pattern must appear at least
50 times in a file to be recognized as a pattern), while the length of a pattern was
limited to the range of 3–10 opcodes. This resulted in the total number of 6473
unique patterns, and therefore a new dataset was created where each sample/file has
6473 associated features. We will refer to this dataset as our “Pattern Frequencies”
dataset.

3.1.2 Upsampling

In order to account for the fact that certain ransomware families had more samples
than others, an upsampling technique was used on the “Pattern Frequencies” dataset
so that the final dataset had an equal number of samples for each ransomware family.
This would ensure that our models are not biased towards classifying samples as the
majority class (the ransomware family for which we had the most samples). After
upsampling, we had a dataset with 1050 samples, 175 for each family. We will refer
to this dataset as our “Upsampled” dataset.

3.1.3 Upsampling for CNN

CNN models are designed to handle very large datasets, and as a result the
“Upsampled” dataset does not contain enough data for optimal training of a CNN,
despite having 1050 samples. Further upsampling was performed on the dataset until
there was a total of 4000 samples per ransomware family, resulting in a final dataset
with 24,000 samples. We will refer to this dataset as “Upsampled CNN”.

3.1.4 Feature Reduction

Given that 6473 unique patterns were identified, feature reduction needed to be
performed in order to reduce the overall dimensionality of our “Upsampled” and
“Upsampled CNN” datasets. To achieve this, PCA was used. An implementation of
PCA which is provided by the open source library scikit-learn was used [20]. PCA is

258 K. Marsh and H. Haddadpajouh

a well-known machine learning technique which can reduce the number of features
for a high-dimensional dataset [21]. PCA performs a transformation on the dataset
where the features of the transformed dataset are ranked. The highest ranked feature
corresponds to the feature which can account for the most variability in the dataset,
the second ranked feature accounts for the second most variability, and so forth.
Therefore, if n features are desired for analysis, the top n ranked features can be
selected from PCA output. Through trial and error, it was determined that 50 was the
optimal number of principal components to keep for our non-deep learning models.
For our CNN model, 1024 features were kept from PCA because CNNs are well-
suited to high-dimensional datasets (see Sect. 3.2.2 for more in-depth explanation of
the input to our CNN model). We will refer to the 50-feature dataset as our “PCA”
dataset, and the 1024-feature dataset as “CNN PCA”.

3.2 Machine Learning Classifier Phase

Give different machine learning models were tested on the transformed output from
PCA. KNN, RF, DT, and LG are all commonly used machine learning algorithms
with fairly low complexities. The deep learning model, CNN, is more powerful
but has higher computational complexity. All training and testing of models was
performed on a 2.7 GHz Intel Core i5 processor.

3.2.1 KNN Model

Our KNN model was trained and tested on our “PCA” dataset, described in
Sect. 3.1.4. An implementation of KNN which is provided by the open source library
scikit-learn was used [20]. In KNN, a k value is selected, and each sample in the
testing set is labelled based on the labels of the sample’s k nearest neighbours in
the training set [22]. That is, if k is equal to 6, and the 6 training samples around a
particular testing sample are majority-labelled as class A, the testing sample will be
labelled as A. The optimal k value for KNN on our dataset, discovered through trial
and error, is 1. As a result, all testing with KNN was done with a k value of 1.

3.2.2 DT Model

Our DT model (obtained from [20]) was trained and tested on “PCA” dataset. The
DT model designs a decision tree after learning about data, and then classifying a
sample is as simple as tracing the decision tree based on sample characteristics. The
maximum depth for the DT was set to 50 (training halts after tree reaches depth
of 50).

Ransomware Threat Detection: A Deep Learning Approach 259

3.2.3 RF Model

While the DT model creates a single decision tree, RF creates a “forest” of many
decision trees. The RF model uses randomization to reduce the high variance and
overfitting that is commonly exuded by a single decision tree. Algorithm for RF was
taken from [20] and trained/tested on “PCA” dataset. The maximum number of trees
in the RF model was set to 100.

3.2.4 LG Model

Logistic regression is a special type of regression analysis that is used for discrete
classification purposes (regression is often used to estimate continuous values). Our
LG model was taken from [20] and trained/tested on “PCA” dataset.

3.2.5 CNN Model

A CNN is a type of neural network, which is a form of deep learning. Deep
learning is a subclass of machine learning which involves multiple neural networks
working together for a single classification task [23]. The use of multiple neural
networks causes deep learning algorithms to be extremely powerful, although they
can be quite computationally expensive to run. The CNN used for this experiment
is comprised of seven neural network layers, where the seventh layer is an output
layer with six nodes (corresponding to our six classes of ransomware families). An
implementation of CNN which is provided by the open source library keras was used
[24]. Our CNN model was trained and tested on our “CNN PCA” dataset, described
in Sect. 3.1.4.

CNNs were primarily invented for image classification, and so they expect each
input sample to be in two dimensions. To accomplish this with our dataset, the best
1024 features were taken from PCA, so that each sample could be reshaped into a
two-dimensional array of 32 × 32 (a common format size for images). This allows
CNN to run on our dataset as though it were a dataset of image samples, where each
image is 32 bytes by 32 bytes.

4 Experiments and Results

This section highlights the results of our experiments in which we attempt to classify
ransomware samples into their respective family types, with the use of machine
learning. We first describe the metrics used for evaluation of results, and then discuss
the actual results from our experiments. We then compare our results to those in two
similar papers, and finally discuss the ROC curves for our experiments.

260 K. Marsh and H. Haddadpajouh

4.1 Evaluation Measures

We will use metrics which are common for assessing our machine learning models,
namely: TPR, FPR, accuracy, ROC curves, and AUROCs. Descriptions for TPR,
FPR, and Accuracy can found in Eqs. (1), (2), and (3). The first three metrics will be
discussed primarily in Sect. 4.2, while the ROC curve and AUROC will be discussed
in Sect. 4.4.

4.1.1 TPR and FPR for Multi-Class Classification

Because TPR and FPR are typically calculated for binary classification (i.e. labels
are either “Positive” or “Negative”), a slightly different approach needs to be taken
for our multi-class classification problem. Our approach is to calculate TPR and FPR
for each class individually, and then take the average of each. This is accomplished
by outputting the results of our classification algorithms into confusion matrices
(where the diagonal of a matrix contains the number of true positive samples for
each class).

When viewing the results as a confusion matrix, it is possible to calculate the
number of True Positives (TPs), True Negatives (TNs), False Positives (FPs), and
False Negatives (FNs) for each class (see confusion matrix in Fig. 2). These values
can then be used to calculate TPR and FPR for each class. For each class, TPR and
FPR are calculated by denoting the class of interest as the “Positive” class, while the
other classes are considered “Negative”; this is effectively what the “one-versus-all”
approach is in machine learning when dealing with multiple class types. As such,
TPR and FPR can be calculated for each ransomware family as if they had been
classified in a one-versus-all fashion. For each ransomware family, a TP would be a
sample of that ransomware family being correctly classified. The mean TPR value
and mean FPR value can then be considered as the overall TPR and FPR.

T PR = T P/(T P + FN) (1)

FPR = FP/(FP + T N) (2)

Accuracy = (T P + T N)/(T P + FN + FP + T N) (3)

Fig. 2 Confusion matrix Predicted

Positive Negative

A
ct
ua
l Positive TP FN

Negative FP TN

Ransomware Threat Detection: A Deep Learning Approach 261

4.2 Experiments and Results

We trained and tested our non-deep learning models on the “PCA” dataset, while our
CNN model was trained and tested on the “CNN PCA” dataset; the “PCA” dataset
contained 1050 samples and the “CNN PCA” dataset contained 24,000 samples,
with an equal number of samples for each ransomware family. “PCA” contains the
top 50 features outputted by PCA, and “CNN PCA” contains the top 1024 features
outputted by PCA. A total of six different ransomware families are present in the
dataset.

4.2.1 KNN Results

When running our KNN model, the ideal k value for our dataset (discovered after
trial and error) was 1. This means that for every sample in the testing set, KNN
classifies the sample according to the class label of whichever training sample is
closest to the testing sample. Using tenfold cross validation, our model achieved an
overall accuracy of approximately 92% when performing multi-class classification
on ransomware samples. The overall TPR and FPR (based on the mean TPR and
FPR for each class individually) was approximately 90% and 2%, respectively.
Even when performing tenfold cross-validation, our KNN model requires less than
a second to run.

4.2.2 DT Results

Our DT model received an accuracy of 89% using tenfold cross-validation, for
multi-class classification. The average TPR for one-versus-all classification was
approximately 90%, and the average FPR was approximately 2%. The DT model
typically completed tenfold cross-validation just under 6 s.

4.2.3 RF Results

Our RF model received an accuracy of 92% using tenfold cross-validation, for
multi-class classification. The average TPR for one-versus-all classification was
approximately 91.5%, and average FPR was 1.5%. For this model, tenfold cross-
validation is typically completed within 30 s (varies between 20 and 30 s).

4.2.4 LG Results

Our LG model was able to achieve an accuracy of 89% for multi-class classification.
The average TPR reported for one-versus-all classification was 89%, and the

262 K. Marsh and H. Haddadpajouh

average FPR was 1.5%. Our LG model typically completed tenfold cross-validation
within 90 s.

4.2.5 CNN Results

Using tenfold cross-validation, CNN achieved an accuracy of 96%. The average
values for TPR and FPR were 95% and 1%, respectively. When performing tenfold
cross-validation, and training each CNN model for 5 epochs (5 rounds of training on
each training set), our CNN model typically required at least 30 min to run. When
setting the number of epochs to 20 for our CNN, using tenfold cross-validation we
were able to achieve 96.9% accuracy; however, tenfold cross-validation with 20
epochs per fold took more than 3 h to run (on a 2.7 GHz Intel Core i5 processor).

4.2.6 Comparison of Our Models

Clearly, our CNN model outperforms all of our other models by up to 7%. This is
likely due to the fact that CNN is a type of deep learning model and is therefore
much more powerful than the non-deep learning algorithms. The increase in power
is reflected in the increased runtime caused by CNN; on average, our CNN model
typically takes at least 30 min to perform tenfold cross-validation on the ransomware
dataset. As a result, it may be desirable to use a slightly less accurate machine
learning algorithm that is capable of fast performance. Of the non-deep learning
models, KNN is tied with RF for the second highest accuracy when classifying
ransomware families. However, KNN typically takes less than a second to run
whereas RF can take close to 30 s. As a result, if limited time is a factor, KNN is the
best of our models for classifying ransomware families with fairly high accuracy.
However, if time is not a factor, then CNN achieves the highest accuracy of our five
models.

4.2.7 ROC Curves

An ROC curve is a common metric for evaluating the performance of machine
learning classifiers, and is a great visual to see how well a particular model can
separate two different classes (it is designed for binary classification) [12]. It is a
plot of TPR against FPR at different threshold values, and the AUROC represents
the overall performance of the model (AUROC = 1 is a perfect score).

As discussed in Sect. 4.1.1, metrics involving TPR and FPR needed to be
calculated for each class individually, in a one-versus-all fashion. The ROC curves
for classification of each ransomware family, for each of our five machine learning
models, are shown in Figs. 3, 4, 5, 6, and 7. As shown in the legends, the AUROC for
each family (where it says “area = ”) is quite good for all five models (all are greater

Ransomware Threat Detection: A Deep Learning Approach 263

Fig. 3 ROC curves for KNN algorithm

Fig. 4 ROC curves for RF algorithm

264 K. Marsh and H. Haddadpajouh

Fig. 5 ROC curves for DT algorithm

Fig. 6 ROC curves for LG algorithm

Ransomware Threat Detection: A Deep Learning Approach 265

Fig. 7 ROC curves for CNN algorithm

than or equal to 0.9). It should be noted that all models have much higher accuracy
when classifying in a one-versus-all fashion as opposed to multi-class classification.

The ROC curves from the CNN model (run with 5 epochs) are shown in Fig. 7.
The AUROC values, displayed in the legend on the bottom-right of the image, are
not actually 1 but are each extremely close to 1. Once again, this is a reflection of the
fact that classifiers tend to perform better for binary classification (one-versus-all, in
our case) as opposed to multi-class classification. This makes sense, as it is simply
easier for a machine learning model to split a dataset into two different categories
as opposed to 6.

Taking the average TPR and FPR for all five models resulted in the five ROC
curves shown in Fig. 8. The average AUROC for CNN was not actually 1, but
extremely close to 1. Again, the reason we do not see an AUROC closer to 0.96
(given that CNN accuracy was 96%) is because TPR and FPR values can only be
calculated in a one-versus-all fashion.

4.3 Result Comparison

To validate our machine learning model results, we are highlighting two recent
and relevant experiments performed on classification of ransomware families using
machine learning.

266 K. Marsh and H. Haddadpajouh

Fig. 8 Average ROC curve for all five models

In [18], an approach was proposed to classify ransomware families based on
text analysis of operation codes, similar to the technique described in this paper. In
[18], sequences in the operation codes were selected from malware samples using
text analysis. The most prevalent opcode sequences were selected as features for
the dataset. A metric called Term Frequency-Inverse Document Frequency (TF-
IDF) was calculated for each feature, in order to select the best features for use
with machine learning algorithms. The five algorithms which were used for the
experiment are Decision Tree, Random forest, KNN, Naive Bayes and Gradient
Boosting Decision Tree. The best accuracy reported in this work was 91.43%, using
the Random Forest algorithm for classification of ransomware into family types.

In [11], machine learning models were built and tested on the same dataset of
ransomware samples that was used in this paper. A method similar to ours was used
to extract features from the ransomware samples: the authors used text analysis to
obtain the most frequently occurring operation code patterns. Using these patterns as
the features for each ransomware sample, several machine learning algorithms were
designed to classify the samples into their respective family types. J48, Random
Forest, Bagging and Multilayer Perceptron models were used. They were able to
achieve an accuracy of 96.5% in classifying ransomware into ransomware families.

In this paper, we achieved 96% accuracy with our CNN model using 5 epochs
per fold of cross-validation, and 96.9% accuracy using 20 epochs. While 96.9% is a
slightly higher accuracy than what was reported in [11], more than 3 h was required
to run our CNN on 20 epochs, 10 times in a row (for cross-validation).

Ransomware Threat Detection: A Deep Learning Approach 267

5 Conclusion and Future Work

We were able to successfully design five different machine learning models for
the purpose of classifying ransomware samples into their respective families. One
model, KNN, achieved an overall accuracy of 92%, with a TPR of 90% and an
FPR of 2%. KNN typically required less than a second to execute tenfold cross-
validation. Our DT model achieved accuracy of 89%, with a TPR of 90% and an
FPR of 2%. DT model typically required less than 6 s to run. RF model ran in
less than 30 s and achieved an accuracy of 92%, with a TPR of 91.5% and FPR
of 1.5%. LG model took close to 90 s to run, with an accuracy of 90%, a TPR
of 89%, and FPR of 1.5%. The deep learning model, CNN, achieved an overall
accuracy of 96% with a TPR of 95% and an FPR of 1%. 96.9% accuracy could be
achieved with CNN if it was given more than 3 h to run (using 20 epochs). CNN
typically required at least half an hour in order to execute tenfold cross-validation,
using 5 epochs. The overall AUROC value for KNN was 0.95, 0.98 for RF, 0.97 for
LR, and 0.94 for DT. The AUROC value for CNN was extremely close to 1. These
results allowed us to perform a direct comparison of two different machine learning
algorithms for classification of ransomware samples into their respective families.
While CNN clearly offers higher accuracy than the other models, it is a highly
complex algorithm which requires significant time and memory to execute. Of our
five models, KNN is tied for the second-highest accuracy while having by far the
lowest run time. The reasonably high accuracy that was achieved with KNN implies
that it is a good algorithm to use if time is of the essence. If time is no factor and/or
significant processing power is available, CNN offers very high accuracy; in fact, if
time truly is not a factor then the number of epochs (iterations over training data)
can be continually increased for CNN and the accuracy will most likely increase as
well.

For future work, it would be ideal if the machine learning models designed in this
paper could be tested on larger datasets of ransomware samples. While upsampling
techniques provide a good method for increasing the size of a dataset to improve the
performance of machine learning models, artificially creating data samples is not the
same as collecting real-world samples of ransomware files. In particular, collection
of more ransomware samples would be of great value for the CNN model because
it performs so much better when it is provided with massive datasets. Furthermore,
additional machine learning algorithms should be investigated which can achieve
similar accuracy to CNN but with less computational complexity.

References

1. I. Nadir, T. Bakhshi, Contemporary cybercrime: A taxonomy of ransomware threats &
mitigation techniques, in 2018 International Conference on Computing, Mathematics and
Engineering Technologies (iCoMET) (IEEE, Piscataway, 2018), pp. 1–7

268 K. Marsh and H. Haddadpajouh

2. O.M. Alhawi, J. Baldwin, A. Dehghantanha, Leveraging machine learning techniques for
windows ransomware network traffic detection, in Cyber Threat Intelligence (Springer, Cham,
2018), pp. 93–106

3. R. Richardson, M.M. North, Ransomware: Evolution, mitigation and prevention. Int. Manag.
Rev. 13(1), 10 (2017)

4. A. Bhardwaj, V. Avasthi, H. Sastry, G. Subrahmanyam, Ransomware digital extortion: a rising
new age threat. Indian J. Sci. Technol. 9(14), 1–5 (2016)

5. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

6. N. Scaife, H. Carter, P. Traynor, K.R. Butler, Cryptolock (and drop it): stopping ransomware
attacks on user data, in 2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS) (IEEE, Piscataway, 2016), pp. 303–312

7. H. Daku, P. Zavarsky, Y. Malik, Behavioral-based classification and identification of ran-
somware variants using machine learning, in 2018 17th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications/12th IEEE International
Conference on Big Data Science and Engineering (TrustCom/BigDataSE) (IEEE, Piscataway,
2018), pp. 1560–1564

8. M. Nar, A.G. Kakisim, N. Çarkaci, M.N. Yavuz, I. Sogukpinar, Analysis and comparison
of opcode-based malware detection approaches, in 2018 3rd International Conference on
Computer Science and Engineering (UBMK) (IEEE, Piscataway, 2018), pp. 498–503

9. R. Vinayakumar, K. Soman, K.S. Velan, S. Ganorkar, Evaluating shallow and deep networks
for ransomware detection and classification, in 2017 International Conference on Advances in
Computing, Communications and Informatics (ICACCI) (IEEE, Piscataway, 2017), pp. 259–
265

10. S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, R. Khayami, K.-K.R. Choo,
D.E. Newton, Drthis: Deep ransomware threat hunting and intelligence system at the fog layer.
Futur. Gener. Comput. Syst. 90, 94–104 (2019)

11. S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, R. Khayami, Know abnormal,
find evil: frequent pattern mining for ransomware threat hunting and intelligence. IEEE Trans.
Emerg. Top. Comput. 8, 341 (2017)

12. M. Hossin, M. Sulaiman, A review on evaluation metrics for data classification evaluations.
Int. J. Data Min. Knowl. Manag. Process 5(2), 1 (2015)

13. C. Srinivasan, Hobby hackers to billion-dollar industry: the evolution of ransomware. Comput.
Fraud Secur. 2017(11), 7–9 (2017)

14. S. Maniath, A. Ashok, P. Poornachandran, V. Sujadevi, A.P. Sankar, S. Jan, Deep learning
LSTM based ransomware detection, in 2017 Recent Developments in Control, Automation &
Power Engineering (RDCAPE) (IEEE, Piscataway, 2017), pp. 442–446

15. A.O. Almashhadani, M. Kaiiali, S. Sezer, P. O’Kane, A multi-classifier network-based crypto
ransomware detection system: A case study of locky ransomware. IEEE Access 7, 47053–
47067 (2019)

16. Z.-G. Chen, H.-S. Kang, S.-N. Yin, S.-R. Kim, Automatic ransomware detection and analysis
based on dynamic API calls flow graph, in Proceedings of the International Conference on
Research in Adaptive and Convergent Systems (2017), pp. 196–201

17. G. Cusack, O. Michel, E. Keller, Machine learning-based detection of ransomware using SDN,
in Proceedings of the 2018 ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization (2018), pp. 1–6

18. H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, A.K. Sangaiah, Classification of
ransomware families with machine learning based on n-gram of opcodes. Futur. Gener.
Comput. Syst. 90, 211–221 (2019)

19. S. Poudyal, K.P. Subedi, D. Dasgupta, A framework for analyzing ransomware using machine
learning, in 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (IEEE,
Piscataway, 2018), pp. 1692–1699

Ransomware Threat Detection: A Deep Learning Approach 269

20. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830 (2011)

21. F.P. Shah, V. Patel, A review on feature selection and feature extraction for text classifica-
tion, in 2016 International Conference on Wireless Communications, Signal Processing and
Networking (WiSPNET) (IEEE, Piscataway, 2016), pp. 2264–2268

22. Z. Deng, X. Zhu, D. Cheng, M. Zong, S. Zhang, Efficient KNN classification algorithm for big
data. Neurocomputing 195, 143–148 (2016)

23. J. Schmidhuber, Deep learning in neural networks: An overview. Neural Netw. 61, 85–117
(2015)

24. F. Chollet et al., Keras (2015). https://keras.io/getting_started/faq/#how-should-i-cite-keras

https://keras.io/getting_started/faq/#how-should-i-cite-keras

Scalable Fair Clustering Algorithm for
Internet of Things Malware Classification

Zibekieni Obuzor and Adesola Anidu

1 Introduction

Machine learning algorithms have been applied to solve various real-world prob-
lems such as malware classification and detection [1–4], malware hunting [5–7],
image processing [8], predictions, and etc. [9]. However, there are concerns that
results obtained from machine learning algorithms are not always fair [10]. This
brings the notion to investigate what it means for an algorithm to be fair and how
this fairness can be achieved when designing algorithms [10]. The interpretation of
fairness in the machine learning community is the use of disparate impact notion
of fairness [11]. This has been used by [12] in designing fair classification. Also,
[13] has also employed the same method for multi-winner voting with fairness
constraints. The first application of the disparate notion of fairness to the clustering
problem was done by [10, 14].

Clustering is a technique in machine learning that involves the grouping of data
points and classifying the data points into a specific group [15, 16]. Data points in
each group are similar to each other and differ from the data points in other clusters.
There are different clustering methods, and each may generate different clusters
using the same set of data points. The clustering algorithm is an unsupervised
learning algorithm with many real-world applications such as being used as a
preprocessing step in solving classification problems [17]. Fairness in clustering
is an instance where each cluster has approximately equal representation of each
protected class though there are instances where a point is not assigned to the nearest
cluster center [14]. Minimal sets that satisfy this fair representation are known as
fairlets. Fairlets were introduced to preserve the clustering objectives [14]. As a

Z. Obuzor (�) · A. Anidu
School of Computer Science, University of Guelph, Guelph, ON, Canada
e-mail: zobuzor@uoguelph.ca; aanidu@uoguelph.ca

© Springer Nature Switzerland AG 2021
K.-K. R. Choo, A. Dehghantanha (eds.), Handbook of Big Data Analytics
and Forensics, https://doi.org/10.1007/978-3-030-74753-4_18

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74753-4_18&domain=pdf
mailto:zobuzor@uoguelph.ca
mailto:aanidu@uoguelph.ca
https://doi.org/10.1007/978-3-030-74753-4_18

272 Z. Obuzor and A. Anidu

result, any fair clustering problem is decomposed to finding good fairlets initially,
then the existing traditional clustering algorithm is used [14]. The different distance
metrics used with the clustering method include k-means, k-median and k-center
objectives.

Big data and scalability are serious concern that should be addressed while
machine learning models are proposed for real-world applications [15, 18–22].
Scalable fair clustering is a fair variant of the k-median problem introduced by [14].
The main objective of a k-median problem is to find k centers C with each input point
assigned to one of the centers in C in a way that the average distance of data points
to the center of the cluster is minimized [23]. In the fair variant of the k-median,
the minimization of the average distance objective is the main aim while making
sure that all clusters have an “approximately equal” number of points of each class
[23]. This algorithm runs in nearly linear time which indicates an improvement over
the algorithm presented by [14] which runs in super-quadratic time. While this is
applaudable, it is important to investigate the impact of this fairness on the accuracy
of clustering a given dataset.

Previous research studies on fair clustering algorithms have emphasized on
ensuring fair clusters and improving running time [24–34]. None of these studies
has focused on the outcome of the fair clustering algorithm on accuracy. At the
time of this study, this is the first evaluation to be implemented on the accuracy of
a fair clustering algorithm. This fair clustering algorithm by [11] will be employed
in clustering and detecting malware in the Internet of Things (IoT) devices. IoT
devices have become popular and are prone to malware attacks because of the rate
at which these devices are developed [35, 36]. Malware detection can either be done
by dynamic or static analysis [37]. Dynamic analysis involves the execution of a
program in an emulator or instrumented hardware to extract characteristics actions
executed by the program [38] while static analysis involves the disassembling of
program binary to extract the features such as strings, opcodes and so on [39].

IoT malware dataset which is made up of goodware (benign) and malware
opcodes extracted by static malware analysis will be used for this experiment.
Opcodes are mnemonic for operational codes. Studies have shown that the opcodes
feature extraction method is more efficient in detecting malware. According to
[40] opcodes reveal a lot of statistical differences between legitimate software and
malware. A recent study by [41] in the use of opcodes for detection of polymorphic
IoT malware using Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Multilayer Perceptron (MLP), Adaboost, Decision Tree and Random Forest yielded
an accuracy of 99%, thus, buttressing the findings of 37. The accuracy rate of the
implementation of a fair clustering algorithm on malware opcodes for clustering
and detection of IoT malware will be compared with the most recent study on the
detection of IoT malware using opcodes presented by [41].

The next section briefly describes the research work related to the topic. Section
3 describes the methodology of the study. In Sect. 4, the experiment and results
are presented. Lastly, Sect. 5 concludes the paper and presents the future research
direction.

Scalable Fair Clustering Algorithm for Internet of Things Malware Classification 273

2 Literature Review

In this section, a review of previous research work related to the application of
machine learning algorithms for securing IoT, the use of opcodes for IoT malware
detection and, the use of clustering algorithms in malware classification/detection is
carried out.

Various machine learning based solutions [42] have been employed for securing
IoT devices. According to [42], machine learning methods have been used to detect
new attacks and can provide potential security protocols that can be utilized in
IoT devices, thus, making them more accessible and reliable. A deep and scalable
unsupervised machine learning system was presented by [17] for detecting cyber-
attack in large-scale smart grids. The system utilizes feature extraction using
symbolic dynamic filtering (SDF) for the reduction of computational load and
casual interactions between subsystems were also discovered. An accuracy of
99% was obtained as results from simulations on IEEE39, 118, and 2848 bus
systems. Jahromi et al. [43] proposed a modified Two-hidden-layered Extreme
Learning Machine (TELM) for the detection of malware. The proposed method
employs the dependency of malware sequence elements through the avoidance
of backpropagation when neural networks are trained. The method accelerates
the training and detection steps for malware hunting when compared with the
Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN). An
accuracy rate of 99.65% was achieved when tested using an IoT-specific dataset and
the method can be used on all platforms for malware analysis. Also, [26] presented
a deep learning method for detecting crypto-mining malware utilizing static and
dynamic analysis. 1500 Portable Execution (PE) which is made up of system call
events were captured for dynamic analysis. When LSTM, CNN, and Attention-
based LSTM (ATT-LSTM) approaches were implemented on sequences of system
call events, an accuracy of 95% and 99% were obtained for static and dynamic
analysis.

Also, [44] presented a novel light-weight method for the detection of DDoS
malware in the IoT environment is presented. The extraction of one-channel gray-
scale images converted from binaries is done. A light-weight convolutional neural
network is utilized for classifying the IoT malware families. An accuracy of 94.0%
was achieved in classifying goodware and DDoS malware and an accuracy of
81.8% was obtained for the classification of goodware and two main malware
families. A malware detection method using family behavior graph is presented by
[45]. Malware behaviors are represented as dependency graphs. Common behavior
graphs are extracted to represent the behavioral features of the malware family.
Malicious codes are detected using a graph matching algorithm that is dependent on
the maximum weight subgraph. Results from experiments showed that the method
has a high detection rate, low false-positive rate and can detect malware variants.
A graph-based model called the System-call Dependency Graphs (ScD-graphs)
that utilizes relations between system calls for the detection and classification of
malware is presented by [46]. Results from evaluation show that it can be used

274 Z. Obuzor and A. Anidu

for malware detection and classification. Also, a novel byte-level method for the
detection of malware using audio signal processing techniques is proposed by [47]
Conversion of the program’s bytes into meaningful audio signals is carried out,
then the construction of a machine learning music classification model from audio
signals is done using Music Information Retrieval (MIR) techniques to detect new
and unseen instances.

Furthermore, a model that detects malware using API call sequences, text mining,
and topic modeling is proposed by [48]. Results from experiments conducted
using Decision Tree and Support Vector Machine yielded good results. Behavioral
differences are used to distinguish between malware and benign programs using
data mining techniques. Results from the experiment showed that the detection
rate is 95% with 80 attributes [49]. Profile Hidden Markov Models (PHMMs) were
trained using API call sequences. Results showed that dynamic analysis produces
better results [50]. Two machine learning methods for static analysis of mobile
applications is presented by [2]. A source code-based analysis using a bag of
words representation model and permission-based approaches are presented. F-
measure of 95.1% and 89% were achieved for the source code-based method and
permissions-based method, respectively. Damshenas et al. [1] presented M0Droid,
a novel Android behavioral-based malware detection approach. A signature is
generated for each application based on the system request of the application. The
signature generated is normalized to improve accuracy. Malware identification is
done by checking the degree of similarity of behavior to the existing blacklist of
malware signatures using Spearman’s rank correlation coefficient. The detection
rate of 60.16% with 0.4% false-negatives and 39.43% false positives were achieved
at a threshold value of 0.90 when experiments were run using M0Droid on
Genome dataset and APK submissions of Android client agent. Huda et al. [51]
proposed a hybrid framework for malware detection using hybrids of Support
Vector Machine wrapper and Maximum-Relevance-Minimum-Redundancy Filter.
Application Program Interface (API) call statistics are used as features of the
malware. The performance of this proposed method is compared using binary
logistic regression. Results from experiments performed showed that the proposed
hybrid framework performs better in identifying malware.

Operational Codes (Opcodes) from programs have been introduced as a reliable
feature for identifying and detecting malware using machine learning in devices.
Header information, ByteCodes, attacker’s intent, API calls, and permissions have
been combined with opcodes to create a multi-view learning method for the
detection of malicious programs [41]. Results from experiments conducted across
various platforms such as IoT, Android, and Windows showed a high accuracy
rate with a low rate of false-positive [52]. Malware detection using a control flow-
based opcode behavior was presented by [53]. Executable opcode behaviors were
extracted using a control flow-based method. A control flow graph for the program
is created to determine the opcode behavior of the program from the execution
paths when the graph is traversed. Results presented showed a higher accuracy
rate and a lower false-positive rate when compared with other text-based detection
methods. Also [39] employed a fuzzy and fast fuzzy pattern tree method on the

Scalable Fair Clustering Algorithm for Internet of Things Malware Classification 275

program’s opcodes for categorizing and detecting malware with very high accuracy.
Hashemi et al. [54] presented a new malware detection method based on opcodes
in an executable file. A graph of opcode within an executable file is generated.
The graph is thereafter embedded into the eigenspace using the Power Iteration
method. Executable files are presented as a linear combination of eigenvectors
proportionate to their respective eigenvalues. When evaluated using SVM and
KNN, the proposed method has a high detection rate, low false-positive rate, and
acceptable computational complexity.

Furthermore, [55] proposed an IoT malware threat hunting using a deep recurrent
neural network-based approach. Opcodes were extracted to build the datasets for
malware and benign ware samples. For each opcode sample, feature vector files
were created. The LSTM was used to design the deep learning structure for the
detection of the IoT malware samples based on the opcodes’ sequence. Google
Tensor Flow was used as a backend structure and Scikit-learn as the machine
learning library for evaluation. Detection accuracy of 98% was achieved when
evaluated with ARM-based IoT applications’ execution codes. Azmoodeh et al.
[56] used Convolutional Network for detection of malware in IoT and Internet of
Battlefield Things (IoBT) using opcodes. Selected opcode sequence was used as a
feature for the classification task after which a graph of features for each sample was
created. Malware classification was carried out using deep Eigenspace learning. The
approach achieved an accuracy of 98.37% in malware detection and a precision rate
of 98.59%. Also, [41] used a sequential pattern mining technique for the detection
of the most frequent opcode sequences in malicious IoT applications. Sequential
pattern mining algorithms were used in the extraction of sub-sequences embedded
in the text given which is based upon a support value and a user-specified threshold.
Sequential pattern mining was combined with other machine learning techniques
for the classification of IoT goodware, malware, and polymorphic malware samples.
The dataset used was made up of 269 IoT good ware and 247 malware samples. 36
features were detected because of frequency in patterns of malware opcodes and
the division to transitional and atomic types. An accuracy and f-measure greater
than 99% were achieved in detecting IoT malware from benign samples using
KNN, MLP, SVM, random forest, Adaboost, and Decision Tree machine learning
classifiers.

Malware detection can also be achieved using clustering algorithms. Clustering
is an unsupervised machine learning algorithm that partitions a given dataset into
clusters/groups based on pre-defined distance measured in a manner that data points
closed to each other are in a cluster and data points in different clusters are far
from each other [57]. The use of any clustering algorithm either traditional or
modern in malware detection is based on the features extracted and the underlying
feature distribution [58]. Visaggio et al. [59] classified malware based on k-means
and Expectation Maximization (EM) clustering algorithms. The experiment was
conducted on 8000 malware samples with the number of clusters varied from 2
to 10 and the number of dimensions varied from 2 to 5. The EM performed better
than k-means. Also, the result showed that clustering can be used in detecting new
malware samples. Stamp et al. [60] also presented a paper where the Hidden Markov

276 Z. Obuzor and A. Anidu

Model (HMM) analysis and clustering techniques were used to classify malware.
The malware families were trained using HMM and the resulting models were used
to score samples for the malware families. K-means and EM clustering algorithms
were applied to cluster the malware samples based on the HMM scores. The results
obtained are comparable with when the Support Vector Machine (SVM) approach
is used. Fuzzy hashing algorithms have been utilized for malware clustering
analysis and can be used in malware similarity analysis [61]. Alaeiyan et al. [16]
presented a multi-label fuzzy clustering system for malware attack attribution. In
the proposed method, opcode frequencies were employed as feature spaces for the
classification of different malware families. Samples from VirusShare, BIG2015,
and RansomwareTracker were used to test the proposed method and an accuracy of
94.66%, 97.56%, and 94.26% were obtained, respectively.

Despite the promising results obtained from using clustering algorithms, there
are concerns that existing clustering algorithms do not exhibit fairness. Several
research works are ongoing in the field. Some of the proposed variants for fair
clustering are reviewed below.

A fair clustering problem under the k-median and k-center objectives are
formulated by [14]. In their work, they demonstrated that any fair clustering
problem can be decomposed into finding good fairlets first and then processing
using traditional clustering algorithms. The results from the experiment indicate
that traditional algorithms produce unfair clusters and that the algorithm developed
guarantees fair clusters. Another variant is the fair variant of the near neighbor
problem presented by [62]. The aim is to pre-process the points in a manner that
given any query point q, any point within the r-neighborhood of the query has
the same probability of being picked as the near neighbor. This indicates that the
Locality-Sensitive Hashing (LSH) based algorithm can also be made fair without a
loss in efficiency. The results showed that the algorithm works well in producing an
empirical distribution that is closer to the uniform distribution. Fair clustering for
multiple sensitive attributes is presented by [63]. An outline of a computational
notion of fairness is implemented with a cluster coherence objective to develop
the FairKM clustering method. The results from the experiment showed that the
clusters generated using the FairKM algorithm are significantly better for fair
representation of sensitive groups and the quality of clustering when compared to
the clusters from other fair clustering methods. Also, [64] presented an algorithm
that minimizes the classical clustering cost with the condition that there is no over-
representation of color in each cluster. Results from experiments conducted on
real-world data showed that the algorithm can find good clusters without over-
representation. Bercea et al. [65] presented a way by which fair clustering can
be established when the centers are already fixed. A 5-approximation for the fair
k-center problem with protected classes is given and r relaxed fairness notion is
proposed where bicriteria constant-factor approximations for all classical clustering
objectives k-supplier, k-center, k-median, k-means, and facility location are given.
Furthermore, a new meta-algorithm for classification is presented by [66]. A large
class of fairness constraint is taken as input considering non-disjoint sensitive
attributes. Empirical results obtained showed that the algorithm can achieve near-

Scalable Fair Clustering Algorithm for Internet of Things Malware Classification 277

perfect fairness with respect to various fairness metrics. Chen et al. [67] considered
the problem of proportional centroid clustering. Fairness for clustering n points
with k centers is defined as proportionality that means that any n/k points can form
their cluster provided there exists another center which is closer in distance for all
n/k points. Algorithms are analyzed for computation, optimization, and auditing of
proportional solutions.

3 Methodology

This section presents an overview of the steps taken in preparing the dataset,
implementing the algorithm, and evaluating the result.

3.1 Step 1: Transformation of the Dataset

As with any machine learning problem, there is a need to prepare the dataset. This
is done to transform the data into the right format. The raw dataset consists of the
program opcode for 268 different samples of goodware (benign) and 244 different
samples of malware stored as text files. The total number of text files in the raw
dataset is 512. These 512 text files must be stored as a sequence of comma-separated
values (csv).

Extraction of the vocabulary of all opcodes was done using a program written in
Python programming language. The vocabulary was used to create the dictionary
of words with corresponding frequency in each opcode in each of the text files.
The dictionary of words which is made up of the opcodes and their frequency
transformed to csv by exporting it to Microsoft Excel. There are 681 possible
features consisting of 305 unique opcodes and 376 names of the different application
processors embedded in each text file.

3.2 Step 2: Pre-processing of the Dataset

We developed a data pre-processing module to pre-process the data based on
the requirements stated in the algorithm. The feature selection is done using the
Principal Component Analysis (PCA) algorithm. The pre-processing module does
the following:

• Loads the dataset including the target column (target column contains either
“malware” or “benign”)

• Performs a feature selection using PCA for the different number of features to be
considered

278 Z. Obuzor and A. Anidu

• Replaces strings (i.e. malware and benign) within the target column with 0’s and
1’s

• Moves target column to the first column to comply with scalable fair clustering
requirement

3.3 Step 3: Run the Clustering Algorithm

The steps taken to derive k-clusters using fair clustering algorithm [23] are
summarized below:

• Computation of an approximately optimal (r, b) – fairlet decomposition which is
represented by the input point set P

• Clustering of the (r, b) -fairlets produced in the previous step into k clusters using
the k-median algorithm

• The resulting clustering is then extended to the whole dataset by assigning each
data point to the cluster that contains its fairlet center thus resulting in the final
fair clustering

3.4 Step 4: Interpret the Results

To evaluate the performance of the fair clustering algorithm in classifying the IoT
malware opcodes dataset, the following criteria were used:

Accuracy can be defined as the number of samples which is detected correctly
by the classifier divided by the total number of samples

Accuracy (%) = T P + T N

T P + T N + FP + FN
∗ 100

where

• True Positive (TP): indicates the number of true positives
• True Negative (TN): indicates the number of true negatives
• False Positive (FP): indicates the number of false positives
• False Negative (FN): indicates the number of false negatives

Precision is the ratio of predicted malware samples correctly labelled as a
malware.

Precision = T P

T P + FP

Recall is the ratio of malware samples correctly predicted

Scalable Fair Clustering Algorithm for Internet of Things Malware Classification 279

Recall = T P

T P + FN

F-Measure is the harmonic mean of recall and precision

F − Measure = 2 ∗ precision ∗ recall

precision + recall

Fairlet decomposition cost is the cost of a fairlet (cluster) using the fairlet
decomposition algorithm. Cost here denotes the total distances of the points to their
cluster/fairlet centroids.

Fairlet decomposition runtime is the time taken for the fairlet decomposition
algorithm to run in seconds.

4 Experiment

Here, the performance of the fair clustering algorithm is evaluated using the IoT
malware opcodes dataset developed by researchers at the Cybersecurity laboratory
of the University of Guelph. The dataset has 512 samples consisting of 268
goodware (benign) and 244 malware samples. Each sample consists of a list of
opcodes extracted using static malware analysis. The experiment was done using
Python 3.6, the code invokes MATLAB for the k-median clustering algorithm. For
the algorithm to work efficiently, the following parameters were computed:

• Balance: p/q which can be less than or equal to 1 (for this experiment, the balance
used is 0.8)

• p, q: two integers that define the desired cluster balance (for this experiment,
p = 4, q = 5)

• k: number of output clusters (k in k-median) (k is varied)

Initially, we tested the fair clustering algorithm to know if the running time
will be near-linear as reported. This was done by reproducing the experiment with
one of the datasets used by [23] and comparing the results. The Diabetes dataset
from the UCI Machine Learning Repository was used which represents information
and outcome of patients with Diabetes in clinical care for 10 years from 130 US
hospitals.

Figure 1 shows the result obtained from the original paper while Fig. 2 shows the
result we obtained after using the same algorithm and dataset. When compared,
it shows the result we got is comparable (nearly linear) to the result reported.
We believe the little discrepancy in runtime is due to the processor speed of the
different machines used. With the certainty of algorithm producing fair clusters, we
proceeded to use the algorithm with the IoT malware opcodes dataset.

280 Z. Obuzor and A. Anidu

8

7

6

5

4

3

2

1

0
0 20000 40000 60000

(4,5)-fairlet decomposition runtime
(Diabetes)

80000 100000 120000
Number of sub-sampled points

R
u

n
ti

m
e

(i
n

 s
ec

o
n

d
s)

Fig. 1 Base paper result using Diabetes dataset [11]

20

15

10

5

0

0 20000 40000 60000 80000 100000 120000

(4,5)-fairlet decomposition runtime
(Diabetes)

Number of sub-sampled points

R
u

n
ti

m
es

 (
in

 s
ec

o
n

d
s)

Fig. 2 Our result using Diabetes dataset

Scalable Fair Clustering Algorithm for Internet of Things Malware Classification 281

Table 1 TP, TN, FP, FN, Precision, Recall and F-Measure for each cluster

5 features 10 features 20 features 30 features

2 clusters TP 184 183 183 183
TN 202 204 205 205
FP 84 85 85 85
FN 42 40 39 39
Precision 0.6866 0.6828 0.6828 0.6828
Recall 0.8142 0.8206 0.8243 0.8243
F-Measure 0.7449 0.7454 0.7469 0.7469

5 clusters TP 69 69 220 220
TN 145 146 209 209
FP 199 199 48 48
FN 99 98 35 35
Precision 0.2575 0.2575 0.8209 0.8209
Recall 0.4107 0.4132 0.8627 0.8627
F-Measure 0.3165 0.3172 0.8413 0.8413

10 clusters TP 85 68 191 189
TN 118 192 132 132
FP 183 200 77 79
FN 126 52 112 112
Precision 0.3172 0.2537 0.7127 0.7052
Recall 0.4028 0.5667 0.6304 0.6279
F-Measure 0.3549 0.3505 0.6690 0.6643

15 clusters TP 139 229 156 232
TN 108 116 95 145
FP 129 39 112 36
FN 136 128 149 99
Precision 0.5187 0.8545 0.5821 0.8657
Recall 0.5055 0.6415 0.5115 0.7009
F-Measure 0.5120 0.7328 0.5445 0.7746

20 clusters TP 229 221 120 217
TN 124 135 128 101
FP 39 47 148 51
FN 120 109 86 143
Precision 0.8545 0.8246 0.4478 0.8097
Recall 0.6562 0.6697 0.5825 0.6028
F-Measure 0.7423 0.7391 0.5063 0.6911

5 Results

Using Table 1, the accuracy rate is computed and plotted as seen in Fig. 3. The
highlighted area in Table 1 represents the TP, TN, FN, and FP that gave the highest
accuracy rate when computed. The highest accuracy of 83.79% was obtained when
5 clusters were created using 20 and 30 features respectively as seen in Fig. 3 above.

282 Z. Obuzor and A. Anidu

0 10 20 30 40 50 60 70 80 90

2

5

10

15

20

Accuracy in %

N
um

be
r o

f C
lu

st
er

s
(k

)
(4,5)-Fairlet decomposition for IoT malware Dataset

30 features 20 features 10 features 5 features

Fig. 3 Accuracy (%) for classifying IoT malware dataset

Also, from Fig. 4 above, the cost of fairlet decomposition increased as the number
of features increased for 2, 5, and 10 clusters. However, this proportionality did not
continue as the cluster size is increased for 15 and 20 clusters. Furthermore, from
Fig. 5, the fairlet decomposition time for the dataset is nearly linear as the number
of features is increased for each cluster.

The balance for the clusters can be varied to obtain fair clusters. We used other
different balance values 0.5 and 0.25 respectively, to investigate whether there will
be an improvement in the accuracy. However, we did not notice any improvement
in accuracy. Based on the outcome, we conclude that the balance does not affect the
accuracy but the fairness of clusters.

The accuracy result obtained is low when compared to the most recent studies
about using IoT malware opcodes for classifying malware. Darabian et al. [41]
obtained an average accuracy of 99% with the different machine learning algorithms
implemented while we obtained 83.79%. This low accuracy result could be because
accuracy was not put into consideration in the algorithm rather, the fairness of
clusters, and reduction in runtime. Also, according to [68] there is a tradeoff between
fairness and accuracy. The more the fairness, the more the random-level of accuracy
which could also account for the low accuracy achieved. However, based on the
results obtained in Fig. 5, the fairlet decomposition time is nearly linear which
satisfies the objective of the fair clustering algorithm.

Scalable Fair Clustering Algorithm for Internet of Things Malware Classification 283

1.1000E+06

1.1500E+06

1.2000E+06

1.2500E+06

1.3000E+06

1.3500E+06

1.4000E+06

1.4500E+06

2 5 10 15 20

D
ec

om
po

si
tio

n
co

st

Number of Clusters (k)

(4,5)-fairlet decomposition cost for IoT malware
Dataset

5 features 10 features 20 features 30 features

Fig. 4 Graph of fairlet decomposition cost for IoT malware dataset

6 Conclusion and Future Work

The fair clustering algorithm accuracy rate for the classification of IoT malware
opcodes is low when compared to other machine learning algorithms. An accuracy
that is higher than 83.79% has been obtained using other machine learning algo-
rithms such as SVM. However, the main purpose of this fair clustering algorithm is
to reduce the fairlet decomposition time from super-quadratic time to nearly linear
time which was achieved. The main objective of the fair clustering algorithm we
reproduced was fairness in its clustering and accomplishment of this fairness in
nearly linear time. We were able to achieve this nearly linear time with the IoT
malware opcodes dataset.

In future, performance evaluation of this dataset with other variants of the fair
clustering algorithm can be done to further investigate the impact of the fairness of
algorithm on accuracy. Furthermore, this fair clustering algorithm can be combined
with other machine learning algorithms to test whether there will be an improvement
in the performance of such algorithms.

284 Z. Obuzor and A. Anidu

0

0.5

1

1.5

2

2.5

5 10 20 30

Ti
m

e
in

 s
ec

on
ds

Number of features

(4,5)-fairlet decomposition time for IoT
malware Dataset

2 clusters 5 clusters 10 clusters 15 clusters 20 clusters

Fig. 5 Graph of the decomposition time of IoT malware dataset

References

1. M. Damshenas, A. Dehghantanha, K.-K.R. Choo, R. Mahmud, M0droid: An android
behavioral-based malware detection model. J. Inf. Priv. Secur. 11(3), 141–157 (2015)

2. N. Milosevic, A. Dehghantanha, K.-K.R. Choo, Machine learning aided android malware
classification. Comput. Electr. Eng. 61, 266–274 (2017)

3. A. Azmoodeh, A. Dehghantanha, M. Conti, K.-K.R. Choo, Detecting crypto-ransomware in
IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput.
9(4), 1141–1152 (2018)

4. M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, An ensemble
of deep recurrent neural networks for detecting IoT cyber attacks using network traffic. IEEE
Internet Things J. 7(9), 8852–8859 (2020). https://doi.org/10.1109/jiot.2020.2996425

5. H.H. Pajouh, R. Javidan, R. Khayami, D. Ali, K.-K.R. Choo, A two-layer dimension reduction
and two-tier classification model for anomaly-based intrusion detection in IoT backbone
networks. IEEE Trans. Emerg. Top. Comput. 7, 314–323 (2016)

6. S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, R. Khayami, Know abnormal,
find evil: Frequent pattern mining for ransomware threat hunting and intelligence. IEEE Trans.
Emerg. Top. Comput. 6750, 1–11 (2017)

7. M. Saharkhizan, A. Azmoodeh, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Sri-
vastava, A hybrid deep generative local metric learning method for intrusion detection, in
Handbook of Big Data Privacy, (Springer, Cham, 2020), pp. 343–357. https://doi.org/10.1007/
978-3-030-38557-6_16

8. K. Bolouri, A. Azmoodeh, A. Dehghantanha, M. Firouzmand, Internet of things camera
identification algorithm based on sensor pattern noise using color filter array and wavelet
transform, in Handbook of Big Data and IoT Security, (Springer, Cham, 2019), pp. 211–223.
https://doi.org/10.1007/978-3-030-10543-3_9

http://dx.doi.org/10.1109/jiot.2020.2996425
http://dx.doi.org/10.1007/978-3-030-38557-6_16
http://dx.doi.org/10.1007/978-3-030-10543-3_9

Scalable Fair Clustering Algorithm for Internet of Things Malware Classification 285

9. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, Blockchain-enabled authentica-
tion handover with efficient privacy protection in SDN-based 5G networks. IEEE Trans. Netw.
Sci. Eng. (2019). https://doi.org/10.1109/TNSE.2019.2937481

10. S. Bera, D. Chakrabarty, N. Flores, M. Negahbani, Fair algorithms for clustering, in Advances
in Neural Information Processing Systems, (The MIT Press, Cambridge, MA, 2019), pp. 4954–
4965

11. H. HaddadPajouh, R. Khayami, A. Dehghantanha, K.-K.R. Choo, R.M. Parizi, AI4SAFE-IoT:
An AI-powered secure architecture for edge layer of Internet of things. Neural Comput. Applic.
32(20), 16119–16133 (2020). https://doi.org/10.1007/s00521-020-04772-3

12. M. Feldman, S.A. Friedler, J. Moeller, C. Scheidegger, S. Venkatasubramanian, Certifying and
removing disparate impact, in Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, (2015), pp. 259–268

13. L.E. Celis, L. Huang, N.K. Vishnoi, Multiwinner voting with fairness constraints. arXiv Prepr.
arXiv1710.10057 (2017)

14. F. Chierichetti, R. Kumar, S. Lattanzi, S. Vassilvitskii, Fair clustering through fairlets, in
Advances in Neural Information Processing Systems, (The MIT Press, Cambridge, MA, 2017),
pp. 5029–5037

15. A. Azmoodeh, A. Dehghantanha, R.M. Parizi, S. Hashemi, B. Gharabaghi, G. Srivastava,
Active spectral botnet detection based on eigenvalue weighting, in Handbook of Big Data
Privacy, (Springer, Cham, 2020), pp. 385–397. https://doi.org/10.1007/978-3-030-38557-
6_19

16. M. Alaeiyan, A. Dehghantanha, T. Dargahi, M. Conti, S. Parsa, A multilabel fuzzy relevance
clustering system for malware attack attribution in the edge layer of cyber-physical networks.
ACM Trans. Cyber-Physical Syst. 4(3), 1–22 (2020)

17. H. Karimipour, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, H. Leung, A deep and scalable
unsupervised machine learning system for cyber-attack detection in large-scale smart grids.
IEEE Access 7, 80778–80788 (2019)

18. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, P4-to-blockchain: A secure
blockchain-enabled packet parser for software defined networking. Comput. Secur. 88 (2020).
https://doi.org/10.1016/j.cose.2019.101629

19. A. Al-Abassi, H. Karimipour, A. Dehghantanha, R.M. Parizi, An ensemble deep learning-based
cyber-attack detection in industrial control system. IEEE Access 8, 83965–83973 (2020)

20. M. Amrollahi, A. Dehghantanha, R.M. Parizi, A survey on application of big data in fin tech
banking security and privacy, in Handbook of Big Data Privacy, (Springer, Cham, 2020), pp.
319–342

21. A. Azmoodeh, A. Dehghantanha, Big data and privacy: Challenges and opportunities, in
Handbook of Big Data Privacy, (Springer, Cham, 2020), pp. 1–5. https://doi.org/10.1007/978-
3-030-38557-6_1

22. J.C. Cabello, H. Karimipour, A.N. Jahromi, A. Dehghantanha, R.M. Parizi, Big-data and
cyber- physical systems in healthcare: Challenges and opportunities, in Handbook of Big Data
Privacy, ed. by K.-K. R. Choo, A. Dehghantanha, (Springer, Cham, 2020)

23. A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vakilian, T. Wagner, Scalable fair clustering.
arXiv Prepr. arXiv1902.03519 (2019)

24. A. Yazdinejad, H. HaddadPajouh, A. Dehghantanha, R.M. Parizi, G. Srivastava, M.-Y. Chen,
Cryptocurrency malware hunting: A deep recurrent neural network approach. Appl. Soft
Comput. J. Elsevier 96, 106630 (2020)

25. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020). https://
doi.org/10.1109/ACCESS.2020.3013541

26. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, H. Karimipour, G. Srivastava, M. Aledhari,
Enabling drones in the internet of things with decentralized blockchain-based security. IEEE
Internet Things J., 1 (2020). https://doi.org/10.1109/jiot.2020.3015382

27. V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey
on security and privacy of federated learning. Futur. Gener. Comput. Syst. 115, 619–640
(2020)

http://dx.doi.org/10.1109/TNSE.2019.2937481
http://dx.doi.org/10.1007/s00521-020-04772-3
http://dx.doi.org/10.1007/978-3-030-38557-6_19
http://dx.doi.org/10.1016/j.cose.2019.101629
http://dx.doi.org/10.1007/978-3-030-38557-6_1
http://dx.doi.org/10.1109/ACCESS.2020.3013541
http://dx.doi.org/10.1109/jiot.2020.3015382

286 Z. Obuzor and A. Anidu

28. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Performance improvement and hardware imple-
mentation of Open Flow switch using FPGA, in IEEE 5th Conference on Knowledge Based
Engineering and Innovation, KBEI 2019, (2019), pp. 515–520

29. A. Singh, K. Click, R.M. Parizi, Q. Zhang, A. Dehghantanha, K.-K.R. Choo, Sidechain
technologies in blockchain networks: An examination and state-of-the-art review. J. Netw.
Comput. Appl. 149, 102471 (2020). https://doi.org/10.1016/j.jnca.2019.102471

30. A. Yazdinejad, S. Kavei, S.R. Karizno, Increasing the performance of reactive routing protocol
using the load balancing and congestion control mechanism in MANET. Comput. Knowl. Eng.
2(1), 33–42 (2019). https://doi.org/10.22067/cke

31. D. Połap, G. Srivastava, A. Jolfaei, R.M. Parizi, Blockchain technology and neural networks
for the internet of medical things, in IEEE INFOCOM 2020 – IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), (2020), pp. 508–513. https://doi.org/
10.1109/INFOCOMWKSHPS50562.2020.9162735

32. A. Yazdinejad, R.M. Parizi, A. Dehghantanha, Q. Zhang, K.-K.R. Choo, An energy-efficient
SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans.
Serv. Comput. (2020). https://doi.org/10.1109/TSC.2020.2966970

33. A. Yazdinejad, G. Srivastava, R.M. Parizi, A. Dehghantanha, K.-K.R. Choo, M. Aledhari,
Decentralized authentication of distributed patients in hospital networks using blockchain.
IEEE J. Biomed. Heal. Inform. 24(8), 2146–2156 (2020)

34. A. Yazdinejad, A. Bohlooli, K. Jamshidi, Efficient design and hardware implementation of the
OpenFlow v1.3 Switch on the Virtex-6 FPGA ML605. J. Supercomput. 74(3) (2018). https://
doi.org/10.1007/s11227-017-2175-7

35. M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of Things security and forensics:
Challenges and opportunities. Futur. Gener. Comput. Syst. 78, 544–546 (2018). https://doi.org/
10.1016/j.future.2017.07.060

36. S. Watson, A. Dehghantanha, Digital forensics: The missing piece of the Internet of
Things promise. Comput. Fraud Secur. 2016(6), 5–8 (2016). https://doi.org/10.1016/s1361-
3723(15)30045-2

37. H. Darabian et al., Detecting cryptomining malware: A deep learning approach for static and
dynamic analysis. J. Grid Comput., 1–11 (2020)

38. S. Homayoun et al., DRTHIS: Deep ransomware threat hunting and intelligence system
at the fog layer. Futur. Gener. Comput. Syst. 90, 94–104 (2019). https://doi.org/10.1016/
j.future.2018.07.045

39. E.M. Dovom, A. Azmoodeh, A. Dehghantanha, D.E. Newton, R.M. Parizi, H. Karimipour,
Fuzzy pattern tree for edge malware detection and categorization in IoT. J. Syst. Archit. 97,
1–7 (2019)

40. M. Zolotukhin, T. Hämäläinen, Detection of zero-day malware based on the analysis of
opcode sequences, in 2014 IEEE 11th Consumer Communications and Networking Conference
(CCNC), (2014), pp. 386–391

41. H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, K.R. Choo, An opcode-based
technique for polymorphic Internet of Things malware detection. Concurr. Comput. Pract. Exp.
32(6), e5173 (2020)

42. S.M. Tahsien, H. Karimipour, P. Spachos, Machine learning based solutions for security of
Internet of Things (IoT): A survey. J. Netw. Comput. Appl., 102630 (2020)

43. A.N. Jahromi et al., An improved two-hidden-layer extreme learning machine for malware
hunting. Comput. Secur. 89, 101655 (2020)

44. J. Su, V.D. Vasconcellos, S. Prasad, S. Daniele, Y. Feng, K. Sakurai, Lightweight classification
of IoT malware based on image recognition, in 2018 IEEE 42Nd Annual Computer Software
and Applications Conference (COMPSAC), vol. 2, (2018), pp. 664–669

45. Y. Ding, X. Xia, S. Chen, Y. Li, A malware detection method based on family behavior graph.
Comput. Secur. 73, 73–86 (2018)

46. S.D. Nikolopoulos, I. Polenakis, A graph-based model for malware detection and classification
using system-call groups. J. Comput. Virol. Hacking Tech. 13(1), 29–46 (2017)

http://dx.doi.org/10.1016/j.jnca.2019.102471
http://dx.doi.org/10.22067/cke
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162735
http://dx.doi.org/10.1109/TSC.2020.2966970
http://dx.doi.org/10.1007/s11227-017-2175-7
http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.1016/s1361-3723(15)30045-2
http://dx.doi.org/10.1016/j.future.2018.07.045

Scalable Fair Clustering Algorithm for Internet of Things Malware Classification 287

47. M. Farrokhmanesh, A. Hamzeh, Music classification as a new approach for malware detection.
J. Comput. Virol. Hacking Tech. 15(2), 77–96 (2019)

48. G.G. Sundarkumar, V. Ravi, I. Nwogu, V. Govindaraju, Malware detection via API calls, topic
models and machine learning, in 2015 IEEE International Conference on Automation Science
and Engineering (CASE), (2015), pp. 1212–1217

49. C.-I. Fan, H.-W. Hsiao, C.-H. Chou, Y.-F. Tseng, Malware detection systems based on API log
data mining, in 2015 IEEE 39th Annual Computer Software and Applications Conference, vol.
3, (2015), pp. 255–260

50. S. Vemparala, F. Di Troia, V.A. Corrado, T.H. Austin, M. Stamo, Malware detection using
dynamic birthmarks, in Proceedings of the 2016 ACM on International Workshop on Security
and Privacy Analytics, (2016), pp. 41–46

51. S. Huda, J. Abawajy, M. Alazab, M. Abdollalihian, R. Islam, J. Yearwood, Hybrids of support
vector machine wrapper and filter based framework for malware detection. Futur. Gener.
Comput. Syst. 55, 376–390 (2016, Feburary). https://doi.org/10.1016/j.future.2014.06.001

52. H. Darabian et al., A multiview learning method for malware threat hunting: Windows, IoT
and android as case studies. World Wide Web 23(2), 1241–1260 (2020)

53. Y. Ding, W. Dai, S. Yan, Y. Zhang, Control flow-based opcode behavior analysis for malware
detection. Comput. Secur. 44, 65–74 (2014)

54. H. Hashemi, A. Azmoodeh, A. Hamzeh, S. Hashemi, Graph embedding as a new approach for
unknown malware detection. J. Comput. Virol. Hacking Tech. 13(3), 153–166 (2017)

55. H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K.R. Choo, A deep recurrent neural
network based approach for Internet of Things malware threat hunting. Futur. Gener. Comput.
Syst. 85, 88–96 (2018). https://doi.org/10.1016/j.future.2018.03.007

56. A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of
(battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1),
88–95 (2018)

57. P. Singh, P.A. Meshram, Survey of density based clustering algorithms and its variants, in 2017
International Conference on Inventive Computing and Informatics (ICICI), (2017), pp. 920–
926

58. Y. Ye, T. Li, D. Adjeroh, S.S. Iyengar, A survey on malware detection using data mining
techniques. ACM Comput. Surv. 50(3), 1–40 (2017)

59. C.A. Visaggio, P. Swathi, F. Di Troia, T.H. Austin, S. Mark, Clustering for malware classifica-
tion. J. Comput. Virol. Hacking Tech. 1, 95–107 (2017)

60. U. Narra, F.D. Troia, V.A. Corrado, T.H. Austin, M. Stamp, Clustering versus SVM for
malware detection. J. Comput. Virol. Hacking Tech. 12(4), 213–224 (2016). https://doi.org/
10.1007/s11416-015-0253-z

61. Y. Li et al., Experimental study of fuzzy hashing in malware clustering analysis, in 8th
Workshop on Cyber Security Experimentation and Test, CSET 2015, vol. 5, (2015), p. 52

62. S. Har-Peled, S. Mahabadi, Near neighbor: Who is the fairest of them all? in Advances in
Neural Information Processing Systems, (2019), pp. 13176–13187

63. S.S. Abraham, S.S. Sundaram, Fairness in clustering with multiple sensitive attributes. arXiv
Prepr. arXiv1910.05113 (2019)

64. S. Ahmadian, A. Epasto, R. Kumar, M. Mahdian, Clustering without over-representation, in
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, (2019), pp. 267–275

65. I.O. Bercea et al., On the cost of essentially fair clusterings. arXiv Prepr. arXiv1811.10319
(2018)

66. L.E. Celis, L. Huang, V. Keswani, N.K. Vishnoi, Classification with fairness constraints:
A meta-algorithm with provable guarantees, in Proceedings of the Conference on Fairness,
Accountability, and Transparency, (2019), pp. 319–328

67. X. Chen, B. Fain, C. Lyu, K. Munagala, Proportionally fair clustering. arXiv Prepr.
arXiv1905.03674 (2019)

68. A.K. Menon, R.C. Williamson, The cost of fairness in binary classification, in Conference on
Fairness, Accountability and Transparency, (2018), pp. 107–118

http://dx.doi.org/10.1016/j.future.2014.06.001
http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1007/s11416-015-0253-z

	Acknowledgments
	Contents
	Big Data Analytics and Forensics: An Overview
	1 Introduction
	2 Book Outline
	References

	IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle (UAV) Case Study
	1 Introduction
	2 Proposed Research Methodology
	3 Results and Discussion
	3.1 Challenges That IoT Devices Introduce to the Traditional Forensics Model
	3.1.1 Challenges in Identification
	3.1.2 Challenges in Analysis
	3.1.3 Challenges in Presentation

	3.2 Challenges That IoT Devices Introduce to the Traditional Security Model
	3.2.1 Challenges in Confidentiality
	3.2.2 Challenges in Integrity
	3.2.3 Challenges in Availability

	3.3 Challenges That Are All-Encompassing in the Traditional Security Model
	3.4 A Note on Privacy
	3.5 How the Challenges in Forensics, Security and Privacy Interrelate
	3.5.1 Forensics Only Challenge Categories
	3.5.2 Security and Privacy Challenge Categories
	3.5.3 Privacy and Forensics Challenge Categories
	3.5.4 Security, Privacy and Forensics Challenge Categories

	4 Case Study
	4.1 Drone Ubiquity
	4.2 Drone Forensics
	4.3 Drones as a Forensic Tool

	5 Conclusion
	5.1 Future Research
	5.1.1 Investigation of the Most Frequently Mentioned Challenge Categories
	5.1.2 Investigation of the Effect of One Challenge Category on Another Category
	5.1.3 Investigation of the Proposed Solutions to the Challenges of IoT Devices

	References

	Detection of Enumeration Attacks in Cloud Environments Using Infrastructure Log Data
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Running Enumeration Attack
	3.2 Description of Dataset
	3.3 Labeling the Dataset
	3.4 Description of Preprocessing
	3.5 LSTM Model
	3.6 CNN Model

	4 Dashboard
	5 Resulting & Discussion
	5.1 LSTM Results
	5.2 CNN Results

	6 Conclusion & Future Work
	References

	Cyber Threat Attribution with Multi-View Heuristic Analysis
	1 Introduction
	2 Related Work
	3 Dataset
	4 Methodology
	4.1 Preprocessing and View Extraction
	4.1.1 Opcode
	4.1.2 Bytecode
	4.1.3 Header

	4.2 Data Balancing Using Synthetic Minority Over-Sampling Technique (SMOTE)
	4.3 Machine Learning Classifier Phase
	4.3.1 Support Vector Machine (SVM)
	4.3.2 Decision Tree
	4.3.3 K-Nearest Neighbour (KNN)
	4.3.4 Multi-layer Perceptron (MLP)
	4.3.5 Fair Clustering

	5 Experiments and Results
	5.1 Evaluation measures
	5.1.1 Single-View Prediction vs Multi-View Prediction

	5.2 Experiment Phase-1 and Results
	5.3 Experiment Phase-2 and Results
	5.4 Multi-View Prediction

	6 Results Comparison
	7 Conclusion and Future Work
	References

	Security of Industrial Cyberspace: Fair Clustering with Linear Time Approximation
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Results and Conclusion
	References

	Adaptive Neural Trees for Attack Detection in Cyber PhysicalSystems
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Environment Setup and Dataset Download
	3.2 Reproducing Author's Results
	3.3 Adding Functions to ANT
	3.4 Dataset Preprocessing
	3.4.1 IoT Dataset
	3.4.2 BATADAL and SWAT Datasets

	4 Results and Discussion
	4.1 Abbreviations
	4.2 Graphical Representations of the BATADAL, IoT and SWAT Dataset Results

	5 Conclusion and Future Work
	References

	Evaluating Performance of Scalable Fair Clustering Machine Learning Techniques in Detecting Cyber Attacks in Industrial Control Systems
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 IoT Dataset
	3.1.1 Dataset Processing & Feature Extraction

	3.2 ICS Dataset
	3.2.1 Dataset Processing & Feature Extraction

	3.3 SWAT Dataset
	3.3.1 Dataset Processing & Feature Extraction

	3.4 Fairlet Decomposition Model
	3.4.1 Fairlet Decomposition Cost
	3.4.2 K-medoids

	4 Results & Discussion
	4.1 Fairlet Decomposition Cost Result
	4.2 Evaluation Measures
	4.3 FD Model Results
	4.4 Result Analysis

	5 Conclusion & Future Work
	References

	Fuzzy Bayesian Learning for Cyber Threat Hunting in Industrial Control Systems
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Description of Cybersecurity Datasets
	3.2 Description of Base Code
	3.3 Designing Fuzzy Models
	3.3.1 Feature Extraction: IoT Dataset
	3.3.2 Feature Reduction & Selection
	3.3.3 Designing Fuzzy Rules Based on Distribution of Features

	3.4 MCMC and Testing

	4 Results & Discussion
	4.1 IoT Dataset
	4.2 SWAT Dataset
	4.3 BATADAL Dataset
	4.4 Evaluation of FBL

	5 Conclusion & Future Work
	References

	Cyber-Attack Detection in Cyber-Physical Systems Using Supervised Machine Learning
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Dataset Processing
	3.1.1 Feature Selection

	3.2 Machine Learning Classifiers
	3.2.1 KNN Model
	3.2.2 SVM Model
	3.2.3 DT Model
	3.2.4 RF Model

	4 Results and Discussion
	4.1 Evaluation Measures
	4.2 Experiment and Results
	4.3 Comparison of Models
	4.4 ROC Curve

	5 Conclusion
	References

	Evaluation of Scalable Fair Clustering Machine Learning Methods for Threat Hunting in Cyber-Physical Systems
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Datasets Preprocessing
	3.1.1 IoT Dataset
	3.1.2 IoT_unseen Dataset
	3.1.3 BATADAL
	3.1.4 SWaT_2015

	3.2 Feature Selection and Feature Extraction
	3.2.1 Upsampling Using Synthetic Minority Over-Sampling Technique (SMOTE)

	3.3 Fair Clustering ML Model Implementation

	4 Experiments and Results
	4.1 Evaluation Measures
	4.1.1 Accuracy Evaluation for Two Clusters and Multicluster Clustering

	4.2 Experiment-I and Results
	4.3 Experiment-II and Results
	4.4 Experiment-III and Results

	5 Results Comparison
	6 Conclusion and Future Work
	References

	Evaluation of Supervised and Unsupervised Machine Learning Classifiers for Mac OS Malware Detection
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Preprocessing
	3.2 Feature Selection and Extraction
	3.2.1 Feature Extraction
	3.2.2 SMOTE Dataset Development

	3.3 Machine Learning Classifier Phase

	4 Experiment and Results
	4.1 Evaluation Measures
	4.2 Evaluation of ML Classifiers
	4.3 False-Positive Rate Comparison
	4.4 ROC Curve
	4.5 Performance Evaluation
	4.6 Result Comparison

	5 Conclusion and Future Work
	References

	Evaluation of Machine Learning Algorithms on Internet of Things (IoT) Malware Opcodes
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Feature Selection and Extraction
	3.2 Machine Learning Classification

	4 Experimental Results
	5 Conclusion and Future Work
	References

	Mac OS X Malware Detection with Supervised Machine Learning Algorithms
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Dataset
	3.2 Preprocessing
	3.2.1 Dropping the Duplicate Samples
	3.2.2 Correcting the Missing Values
	3.2.3 Redetermining the Number of Loaded DYLIB
	3.2.4 Feature Scaling
	3.2.5 Creating New Features for Called Libraries

	3.3 Feature Selection
	3.4 Machine Learning Algorithms

	4 Results and Discussion
	4.1 Case 1
	4.2 Case 2
	4.3 Case 3

	5 Conclusion
	References

	Machine Learning for OSX Malware Detection
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Environment Setup and Dataset Download
	3.2 Data Cleaning
	3.3 Feature Transformation
	3.4 Feature Selection
	3.5 Machine Learning Classifier Phase

	4 Results and Discussion
	5 Conclusion and Future Work
	References

	Hybrid Analysis on Credit Card Fraud Detection Using Machine Learning Techniques
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Dataset Information
	3.2 Feature Selection
	3.3 Data Balancing
	3.4 Machine Learning Classifiers
	3.4.1 Logistic Regression
	3.4.2 Decision Tree
	3.4.3 Support Vector Machine
	3.4.4 K-nearest neighbor
	3.4.5 K-means
	3.4.6 Deep Neural Network

	3.5 Ensemble Classifier
	3.5.1 Bagging for Supervised Classifier

	4 Experiment & Results
	4.1 Evaluation Measures
	4.2 Experiment & Results
	4.2.1 Supervised Model Results
	4.2.2 Unsupervised Model Results
	4.2.3 Deep Neural Network
	4.2.4 Supervised Ensemble Model – Bagging

	5 Conclusion
	References

	Mapping CKC Model Through NLP Modelling for APT GroupsReports
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Dataset
	3.2 Data Collection
	3.3 Pre-processing
	3.4 Implementation

	4 Evaluation and Findings
	5 Conclusion
	References

	Ransomware Threat Detection: A Deep Learning Approach
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Feature Selection and Extraction
	3.1.1 Pattern Selection
	3.1.2 Upsampling
	3.1.3 Upsampling for CNN
	3.1.4 Feature Reduction

	3.2 Machine Learning Classifier Phase
	3.2.1 KNN Model
	3.2.2 DT Model
	3.2.3 RF Model
	3.2.4 LG Model
	3.2.5 CNN Model

	4 Experiments and Results
	4.1 Evaluation Measures
	4.1.1 TPR and FPR for Multi-Class Classification

	4.2 Experiments and Results
	4.2.1 KNN Results
	4.2.2 DT Results
	4.2.3 RF Results
	4.2.4 LG Results
	4.2.5 CNN Results
	4.2.6 Comparison of Our Models
	4.2.7 ROC Curves

	4.3 Result Comparison

	5 Conclusion and Future Work
	References

	Scalable Fair Clustering Algorithm for Internet of Things Malware Classification
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Step 1: Transformation of the Dataset
	3.2 Step 2: Pre-processing of the Dataset
	3.3 Step 3: Run the Clustering Algorithm
	3.4 Step 4: Interpret the Results

	4 Experiment
	5 Results
	6 Conclusion and Future Work
	References

