
Chapter 5
Progress in Climate Modeling

Introduction by Guido Visconti

In the development ofmodeling the climate, two principal paths can be distinguished.
On one side the effort to increase the resolution to eliminate as much as possible the
parameterization of small-scale processes. This approach is an improvement over the
“mechanistic” view of modeling climate mainly through the use of General Circula-
tion Models (GCM). The other approach, which is born out of the theory of system
dynamics, has as objective an improvement in the theoretical basis of climate science.
A minor but promising development has to do with the direct statistical simulation
(DSS) following a suggestion made by Edward Lorenz almost sixty years ago. The
improvement in GCM is more oriented to the classical application of predicting the
future climate and its impact on the human activities while the other two approaches
have explained some specific phenomena like atmospheric jets, or El Nino but their
use as predicting tools is not in the near future.

When the resolution of a model goes down to about 1 km it is possible to
simulate deep convection, ocean eddies and land–atmosphere interactions in detail.
An improvement of this kind eliminates the necessity of parameterize small-scale
processes and in turn reduces the biases from which suffer most of the GCM results.
Preliminary results obtained at such resolution show that also the reliability of
regional climate projection is enhanced. A notable improvement has been obtained
by increasing the resolution in numerical weather predictions and a similar effect
is expected for the climate projections. However, in this case the financial burden
is such that the implementation of such techniques must be multinational using the
best technological available infrastructures. The reliance on governmental funding
may create some conflict of interest within the scientific community.

The theoretical development of climate dynamics refers exactly to those sub-grid
scale processes wementioned before which are accounted for in a stochastic manner.
The complexity of the climate system is such that theoretical studies can be carried
out only on highly idealized models (like to the Lorenz equations) or in relatively
simple systems like a very elementarymodel of the ocean current.However numerical
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experiments on such simple systems can give precious indications on the internal
variability (IV) or forced variability (FV) of the climate system. A key concept to
study such effects is the so-called pullback/snapshot (PBA) attractor. From the theory
of non-linear deterministic systems, the attractor is determined by integrating the
systems forward in time and studying where its trajectories lie in the phase space. In
the PBA approach the system is studied as an ensemble where the relevant equations
are initialized in slightly different conditions at some very distant initial time and
integrated up to the present time. Here they reveal the nature of their attractor. The
different initial conditions may represent an ensemble of climate systems which
obeys the same equations and give the results in terms of a probability distribution.
As it was mentioned at the beginning this approach has been applied to very simple
systems and hardly could contribute to predict the future climate (or study the climate
of the past) but could give important indications on the interpretation of those results.

The last development we would like to mention refers to the statistics of the fluid
motions on theEarth (oceans and the atmosphere). The core of any climatemodel is to
integrate in time the relevant equations (thermodynamics, fluid dynamics, chemistry)
up to the statistical steady state. Any further integration will reveal the statistics of
the system. This approach was not appreciated by Edward Lorenz that in his famous
1963 monograph on the general circulation of the atmosphere affirmed:

More than any other theoretical procedure, numerical integration is also subject to the crit-
icism that it yields little insight into the problem. The computed numbers are not only
processed like data but they look like data, and a study of themmay be no more enlightening
than a study of real meteorological observations. An alternative procedure which does not
suffer this disadvantage consists of deriving a new system of equations whose unknowns are
the statistics themselves.

The suggestion byLorenzwas implemented byBradMarston ofBrownUniversity
using the Direct Statistical Simulation (DSS) that however revealed a few problems
as envisaged by Lorenz in the same monograph.

[DSS] can be very effective for problems where the original equations are linear, but, in the
case of non-linear equations, the new system will inevitably contain more unknowns than
equations, and can therefore not be solved, unless additional postulates are introduced

Marston has applied DSS to study zonal jets on Earth reproducing some of their
features. As in the case of the development of the theoretical basis of climate science
this approach has a long way to go before he could find useful applications. Most
of these theoretical attempts to study climate reveal something like an inferiority
complex of the scientific community that works on these subjects. The question
is that not all sciences must necessarily use very sophisticated mathematical stuff
(consider biology!) and yet they must have the same respect. Rephrasing Richard
Lewontin: it is more interesting to explain while a mice and an elephant fall with the
same acceleration in the vacuum or to explain why they came to such different sizes?
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History Matching for Exploring and Reducing Climate Model
Parameter Space Using Observations and a Large Perturbed
Physics Ensemble

https://doi.org/10.1007/s00382-013-1896-4

Abstract-Summary
We apply an established statistical methodology called history matching to constrain
the parameter space of a coupled non-flux-adjusted climate model (the third Hadley
Centre Climate Model; HadCM3) by using a 10,000-member perturbed physics
ensemble and observational metrics.

Historymatching uses emulators (fast statistical representations of climatemodels
that include a measure of uncertainty in the prediction of climate model output) to
rule out regions of the parameter space of the climate model that are inconsistent
with physical observations given the relevant uncertainties.

Our methods rule out about half of the parameter space of the climate model even
though we only use a small number of historical observations.

We explore 2 dimensional projections of the remaining space and observe a region
whose shape mainly depends on parameters controlling cloud processes and one
ocean mixing parameter.

Constraining parameter space using easy to emulate observational metrics prior
to analysis of more complex processes is an important and powerful tool.

It can remove complex and irrelevant behaviour in unrealistic parts of parameter
space, allowing the processes in question to be more easily studied or emulated,
perhaps as a precursor to the application of further relevant constraints.

Extended
An ideal analysis, and perhaps the only way to truly quantify this uncertainty, must
involve expert judgement regarding the deficiencies in the mathematical representa-
tions of the physics in the model and the ways they might be improved in order to
capture these deficiencies in future generations ofmodels (see Goldstein and Rougier
[1], for further discussion).

Introduction
The PPE is used to inform us about the behaviour of the model in this space and, in
particular, about regions of the spacewheremodel-based projections are not predicted
to be inconsistent with current observations.

https://doi.org/10.1007/s00382-013-1896-4
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We illustrate the application of existing methodology from the statistics with
computer experiments literature to rule out regions of the parameter space of the
UK Met Office’s Third Hadley Centre Ocean–Atmosphere General Circulation
Model (HadCM3) (Pope et al. [2]; Gordon et al. [3]) containing model runs that
are inconsistent with a handful of physically important observational metrics.

We use emulators, (fast statistical representations of climate models that include
a measure of uncertainty in the prediction of climate model output), and four pre-
industrial global and hemispheric averages of climatic variables to remove over half
of the explored space.

We explore parts of HadCM3′s parameter space previously unstudied by running
models with parameter choices outside the ranges established by Murphy et al. [4].

History Matching
The Bayesian approach uses the PPE to learn about the behaviour of the model
throughout its parameter space in order to find regions of the space where model
based projections are not inconsistent with current observations.

Bayesian calibration requires a stochastic representation of the climate model,
called an emulator (Sacks et al. [5]), to be constructed and to be reliable across the
whole of parameter space.

History matching, like Bayesian calibration, requires a statistical model that
relates the climate model to reality.

Historymatching, on the other hand, allows us to use even themost simple outputs
of the climate model in order to begin ruling out regions of parameter space.

We can take simple outputs that are relatively easy to model statistically, use
them to rule out parameter space via history matching, then focus on emulating
more complex model output within NROY space, where they may be easier to model
statistically.

History Matching HadCM3
A principal motivation for history matching here, and in any application involving a
large ensemble of a climate model, is to make our emulators for key and difficult to
model quantities easier to fit and more accurate than they would be if fitted using all
data within the unconstrained parameter space.

In an analysis that goes on to provide probabilistic climate predictions such as
that in Murphy et al. [6], we would run a second ensemble within NROY space and
with twentieth century forcing, and either use history matching with more complex
constraints to further reduce NROY space or use Bayesian calibration with more
complex constraints to generate probabilistic predictions.

This can vary substantially from observations (with values across the ensemble
ranging between −5 and 33 °C) as the parameter perturbations alter the radiative
balance at the top of the atmosphere.

History Matching with Multi-model Ensembles
This allows us to derive Var[z − E[f(x)]], the denominator of our implausibility
measure (4), under the interpretation that the resulting discrepancy variance repre-
sents a tolerance to error which is consistent with using CMIP3 as representative of
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the judgements of the climate community regarding what represents an informative
climate model.

Of adopting a formal statistical model relating CMIP3 and HadCM3 to each other
and to the true climate, we are able to obtain ‘low’ and ‘high’ tolerance alternatives
for the discrepancy variance to be used in a sensitivity analysis.

If we observed a small or negative estimate for Var[U], wemay re-visit the second
order exchangeability assumption for all models in the collection, or investigate the
sensitivity of the estimate to the ensemble size.

NROY Space
In our ensemble, although changes in SAT are a result of different parameter pertur-
bations rather than increasing greenhouse gases, it is likely that the sea ice would
respond in a similarway, possibly resulting in the negative correlations foundbetween
SAT and SGRAD or SCYC.

SAT is, therefore, the dominant constraint due to the high correlations with the
other variables and because of the relatively low discrepancy and observation errors
of SAT compared with the other variables in relation to the ensemble ranges for those
variables.

Although SAT dominates and that, for SCYC and PRECIP at least, no ensemble
members that are not ruled out by SAT alone are ruled out by the additional
constraints, that does not mean that the additional variables provide no further
constraint on parameter space.

The AMOC and MHT in NROY Space
It reveals a nonlinear relationship between SAT and AMOC across the whole
parameter space, but an approximately linear relationship within NROY space.

By history matching on simpler (i.e. univariate and easier to emulate) quantities
such as global mean SAT, we have removed many ensemble members with unrealis-
tically weak control AMOC strengths and removed a substantial part of the burden
faced in emulating a complex quantity such as the AMOC time series over the whole
parameter space by just focussing on that part of the parameter space that we are
unable to easily rule out on the basis of observations.

This means that the AMOC in NROY space is, on average, more responsive to
CO2 forcing than in the ruled out space, and that the sensitivity of theAMOCdepends
on the model parameters through the SAT.

Discussion
This tolerance is set using the error on the observations and discrepancy vari-
ance information derived from CMIP3, whilst accounting for the uncertainty in our
emulator-based predictions.

The potential impact on our conclusions is assessed using a sensitivity analysis
showing that even increasing the estimated discrepancy variance by an order of
magnitude only results in around 10% less parameter space removed by history
matching.
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Complex constraints require sophisticated statistical emulators that are valid
throughout NROY space in order to impose them.

AOGCMs of different resolution can be linked statistically (Williamson et al. [7])
so that large PPEs using coarser-resolution models and a small PPE using a very
expensive model can be used together to emulate the advanced model and quantify
its parametric uncertainty in the ways we have described.

Acknowledgments
A machine generated summary based on the work of Williamson, Daniel; Goldstein,
Michael; Allison, Lesley; Blaker, Adam;Challenor, Peter; Jackson, Laura; Yamazaki,
Kuniko (2013 in Climate Dynamics).

Advances in Projection of Climate Change Impacts Using
Supervised Nonlinear Dimensionality Reduction Techniques

https://doi.org/10.1007/s00382-016-3145-0

Abstract-Summary
Due to the complexity of climate-associated processes, identification of predictor
variables from high dimensional atmospheric variables is considered a key factor for
improvement of climate change projections in statistical downscaling approaches.

The present paper adopts a new approach of supervised dimensionality reduction,
which is called “Supervised Principal Component Analysis (Supervised PCA)” to
regression-based statistical downscaling.

To capture the nonlinear variability between hydro-climatic response variables
and projectors, a kernelized version of Supervised PCA is also applied for nonlinear
dimensionality reduction.

The effectiveness of the Supervised PCA methods in comparison with some
state-of-the-art algorithms for dimensionality reduction is evaluated in relation to
the statistical downscaling process of precipitation in a specific site using two soft
computing nonlinear machine learning methods, Support Vector Regression and
Relevance Vector Machine.

Extended
Due to the complexity of climate-associated processes, the two main challenges in
developing the stochastic regression-based statistical downscaling approaches for
climate change projection are: (1) determination of the functional relationship; and
(2) identification of predictor variables from high dimensional atmospheric variables
conveying climate change information with respect to the hydro-climate variable of
interest.

Due to the complexity and nonlinearity of climate associated processes, and the
existence of nonlinear interdependency within atmospheric projectors, a kernelized

https://doi.org/10.1007/s00382-016-3145-0
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form of supervised dimensionality reduction is able to efficientlymodel the nonlinear
variability of the data.

To better manage future near and long-term surface water resources for various
purposes, especially drinkingwater use, authoritiesmust be ready tomitigate adverse
effects of rainfall shortage and surface water reduction under the impact of climate
change.

Future research can focus on improving this characteristic of Supervised PCA.

Introduction
The statistical downscaling approaches relying on developing a statistical and quanti-
tative relationship between large-scale atmospheric variables and fine scale variables
at a particular site have gainedmore popularity amonghydrologistswanting to predict
climate change impacts on hydro-climate variables.

Due to the complexity of climate-associated processes, the two main challenges
in developing the stochastic regression-based statistical downscaling approaches for
climate change projection are: (1) determination of the functional relationship; and
(2) identification of predictor variables from high dimensional atmospheric variables
conveying climate change information with respect to the hydro-climate variable of
interest.

To address the first challenge, nonlinear soft-computing data-driven regression
modeling techniques such as Artificial Neural Networks (ANN) (Tisseuil et al. [8];
Tomassetti et al. [9]), machine learning methods, including Support Vector Machine
(SVM) (Chen et al. [10]; Tripathi et al. [11]), and Sparse Bayesian learning algorithm
or Relevance Vector Machine (RVM) (Ghosh and Mujumdar [12]; Joshi et al. [13]),
have been applied to improve the downscaling of different hydro-climate variables
so as to capture the nonlinearity between hydro-climate predictands and atmospheric
predictors.

In statistical downscaling processes, projecting a dependent hydro-climate vari-
able from high-dimensional large-scale atmospheric variables leads to inadequate
results in terms of performance accuracy, due to the curse of dimensionality.

Dimensionality Reduction Methods
In a given high-dimensional data set, consider projecting a response stochastic
variable using a set of independent high-dimensional explanatory random variables.

A preprocessing step deriving an appropriate low-dimensional manifold encoding
of a high-dimension data set is crucial to reaching the best performance on learning.

Unsupervised Methods
Since the relationship between climate variables and transformed explanatory atmo-
spheric projectors is still complex and nonlinear, two soft computing nonlinear
machine learning methods Support Vector Regression (SVR), and Relevance
Vector Machine (RVM) are employed to capture the nonlinearity and evaluate
different dimensionality reduction methods in terms of response variable projection
performance.
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After selecting the best combined dimensionality-reduction andmachine-learning
method based on the performance criteria, the credibility of the model should be
validated under the impact of changing conditions (non-stationarity) arising from
global warming.

The different experiments designed to validate the performance of the combined
supervised dimensionality reduction and machine-learning models in the current
study are discussed in more detail as follows: I. Base experiment (Tr-RAN-Te-RAN)
A random selection of training and validating periods (K-fold cross-validation) is
used as a scenario for the validity of the model.

Results and Discussion
Doing so, the best-selectedmodels (Kernel Supervised PCA andRVM) are employed
on the different dimension-size of the atmospheric projectors formed based on the
six predictor domain states to compare the model performances over the study area.

After selecting the best dimensionality reduction method and demonstrating the
sensitivities and corresponding sources of uncertainty in terms of predictor sets, the
best combination of theKernel Supervised PCAand theRVMmodel formed based on
the nine surrounding-grid-cells is employed for projecting precipitation time series
for the upcoming decades.

Using the same tuned Kernel Supervised PCA model in the modeling section,
the derived transformed atmospheric projectors for the upcoming decades based
on different scenarios (in the same reduced-dimension extracted in the modeling)
are employed for precipitation projection using the best selected RVM data-mining
method.

Conclusions
To improve the performance and the predictive power of the statistical downscaling
processes with high-dimensional input data, this study has presented a supervised
nonlinear dimensionality reduction technique–Supervised PCA–for extracting prin-
cipal components in which the dependency between the response hydro-climate
variable and large-scale atmospheric projectors is maximized.

Due to the complexity and nonlinearity of climate associated processes, and the
existence of nonlinear interdependency within atmospheric projectors, a kernelized
form of supervised dimensionality reduction is able to efficientlymodel the nonlinear
variability of the data.

The Supervised PCAmethod is able to capture the complex nonlinear dependency
between target precipitation variable and the atmospheric projectors.

The proposedmethodology can be used for other hydro-climate variables and also
other regression-based statistical downscaling processes to improve the projection
accuracy of target hydro-climate variables in the future.

Acknowledgments
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The Theory of Parallel Climate Realizations

https://doi.org/10.1007/s10955-019-02445-7

Abstract-Summary
Based on the theory of “snapshot/pullback attractors”, we show that important
features of the climate change that we are observing can be understood by imagining
many replicas of Earth that are not interacting with each other.

These parallel climate realizations evolving in time can be considered as members
of an ensemble.

We argue that the contingency of our Earth’s climate system is characterized by
the multiplicity of parallel climate realizations rather than by the variability that we
experience in a time series of our observed past.

The natural measure of the snapshot attractor enables one to determine averages
and other statistical quantifiers of the climate at any instant of time.

We recall that systems undergoing climate change are not ergodic, hence temporal
averages are generically not appropriate for the instantaneous characterization of the
climate.

This can lead in certain climate-change scenarios to the coexistence of two distinct
sub-ensembles representing dramatically different climatic options.

The problem of pollutant spreading during climate change is also discussed in the
framework of parallel climate realizations.

Extended
A detailed investigation of these and similar quantities is beyond the scope of our
paper, and might be the subject of future studies.

Introductory Comments
The traditional theory of chaos in dissipative systems has taught us that on a chaotic
attractor there is a plethora of states, all compatiblewith the single equation ofmotion
of the problem belonging to a fixed set of parameters [14, 15].

The distribution of the parallel states is not arbitrary: an additional property of
attractors with chaotic properties is the existence of a unique probability measure,
the natural measure [16], which describes the distribution of the permitted states in
the phase space [14–16].

In the next Section we show that a changing climate can be described by an
extension of the traditional theory of chaotic attractors: in particular, the theory of
snapshot/pullback attractors [17, 18] appears to be an appropriate tool to handle the
problem.

Particular emphasis is put on the natural measure on snapshot attractors with
respect to which averages and other statistics can be evaluated providing a
characterization of the climate at any instant of time.

https://doi.org/10.1007/s10955-019-02445-7
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Changing Climates: Mathematical Tools
Speaking, a snapshot or pullback attractor can be considered as a unique object of
the phase space of a dissipative dynamical system with arbitrary forcing to which an
ensemble of trajectories converges within a basin of attraction.

Even if the concept of snapshot and pullback attractors is practically the same, it
is useful to remark here that a pullback attractor is defined as an object that exists
along the entire time axis (provided the dynamics remains well-defined back to the
remote past), while a snapshot attractor is a slice of this at a given, finite instant of
time (their union over all time instants thus constitutes the entire pullback attractor).

However, that if the dynamics is not defined back to the remote past, then the pull-
back attractor is also undefined, but from some time after initialization the snapshot
attractors can be practically identified.

The Theory of Parallel Climate Realizations
In order tomake the unusual concept of pullback/snapshot attractors plausible, which
might appear too much mathematically-oriented, while the concept of observed time
series is widely used, we proposed the term parallel climate realizations in [19].

The ensemble, representing the natural measure of the snapshot attractor, under-
goes a change in time due to the time-dependence of the forcing, and, as a conse-
quence, both the “mean state” (average values) and the internal variability of the
climate changes with time.

If the climate state itself is changing markedly within such a time interval, these
averages unavoidably yield statistical artefacts that may be misinterpreted as they
mix up events of the recent and more remote past.

We can say that the ensemble of parallel climate realizations is the generalization
of theGibbs distributions known fromstatistical physics for a non-equilibriumsystem
whose parameters are drifting in time.

Illustration of Parallel Climate Realizations
An investigation of the Lorenz84 model with seasonal forcing [20] was carried out
by Bódai et al. [21] from the point of view of an ensemble approach and led to the
conclusion that the snapshot attractor of the forced system appears to be chaotic in
spite of the fact that in extended regions of the forcing parameter F of the time-
independent system the attractors are periodic.

Additional issues about initialization may arise from the insufficient spinup time:
drifts corresponding to the convergence process from some state off the attractor in
deep oceanic variables may appear and are actually documented in theMPI-GE [22],
while their importance is mostly unknown in the other ensembles.

If one takes the time evolution of the atmospheric variables in different members
of such a hypothetical full ensemble, and then constructs an ocean ensemble with
each of these atmospheric realizations applied as a fixed forcing, the result will be
an extended set of OCCIPUT-type ocean ensembles.

Nonergodicity and Its Quantification
The original observation of Romeiras et al. [17], according to which a single long
trajectory traces out a pattern different from that of an ensemble stopped at a given
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instant, implies that ergodicity (in the sense of the coincidence of ensemble and
temporal averages) is not met in nonautonomous systems.

Traditional chaotic attractors are known to be ergodic [16]: sufficiently long
temporal averages coincide with averages taken with respect to sufficiently large
ensembles.

The nonergodic mismatch can be evaluated along each single realization of the
climate ensemble and depends on the realization.

Teleconnections: Analyzing Spatial Correlations
Investigating the teleconnections through the temporal correlations between a so-
called teleconnection index and another variable (e.g., temperature or precipitation)
a single correlation coefficient can be obtained.

With a sufficiently large number (N) of realizations an ensemble-based instanta-
neous correlation coefficient can be defined which provides the appropriate char-
acterization of the strength of teleconnections in the spirit of parallel climate
realizations.

The NAO teleconnection index (NAOI) is based on the difference in the
normalized sea level pressure between Iceland and the Azores.

At a given time instant, it is also possible to compute an instantaneous
teleconnection index in the spirit of parallel climate realizations.

An increasing strength of the teleconnection between a particular ENSO index
and the Indian summer precipitation has been detected in the MPI Grand Ensemble
in the twentieth century.

Ensembles in Experiments
Such experimental investigations nicely complement research based on numerical
general circulation models: the latter can, theoretically, access the full set of param-
eters but with a limited resolution which hides important subgrid-scale nonlinear
phenomena that may affect multiple scales.

Reproducing them with the same boundary conditions (forcing) most naturally
provides an ensemble of different realizations of the same process, which represents
the multitude of possibilities permitted by turbulence or chaotic-like phenomena,
i.e., parallel realizations of the minimal climate system model.

Besides climate-related aspects it is worth noting that the ensemble approach may
be the proper way to conduct fluid dynamics experiments in which non-equilibrium
(non-ergodic) processes and turbulence are involved, i.e. phenomena characterized
by inherent internal variability.

Only an ensemble statistics of these lifespans from a multitude of experiments
(that are initiated identically within measurement precision) can provide meaningful
information of these interesting intermittent phenomena, as demonstrated in e.g. [23].

Splitting of the Snapshot Attractor
An important property of the climate system is that for some range of fixed parameter
values, it also allows two coexisting usual (stationary) attractors.
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Even when initializing the ensemble entirely inside one of the basins of attraction
(that belongs to the initial parameter value), only a fraction of the ensemble may end
up on the usual attractor on which the ensemble was started.

During the returning part of the parameter drift, at the point when this usual
attractor reappears, the snapshot attractor (as an extended object) may overlap with
the basin of attraction of both of the coexisting usual attractors.

The separation of the snapshot attractor to two unconnected branches, between
which transition of trajectories is not possible, stems from the fact that the corre-
sponding stationary system is not ergodic in the sense of the existence of a unique
global asymptotic probability measure [24].

Spreading of Pollutants in a Changing Climate
As an additional utilization of an ensemble of parallel climate realizations, the
change in the intensity of atmospheric large-scale spreading of pollutants can also
be investigated in a changing climate.

The intensity of the spreading can be characterized in general by such stretching
rates [25–27].

In [27] in order to explore what the typical spreading behavior is in a changing
climate, ensemble simulations of the PlaSim and CESM climate models were used.

Of climate change, spreading simulations showed an overall decreasing trend in
the stretching rate in the ensembles of both climate models.

Temporal Aspects: An Emerging Research Direction
This is actually rather intuitive, since the statistical or dynamical relationship between
two time instants separated by a given time is not temporally invariant any more: it
depends on when within the climate change either of these instants is chosen.

To characterize the relationship between temporally separated values of a given
variable, a “workaround” is to compute the correlation coefficient between two time
instants with respect to the time-dependent natural probability measure (with respect
to temporally evolving ensemble members in practice).

It is meaningful to compute the temporal average or standard deviation of some
variable for e.g. a given decade, but then this average or standard deviation will have
its own probabilistic description as defined via the time-dependent natural measure.

The ensemble average of this interval-wise taken quantifier should not be confused
with the corresponding ensemble quantifier of a time instant within the given time
interval: while these two characterizations coincide in a stationary climate, biases
are introduced if the climate is changing.

Conclusion
The concepts of the average and the deviation from it also appear in the IPCC report
[28], but it also considers averages taken over different climate models relevant.

The differentmodels, however, describe climates of “different physics”, the differ-
ences of which do not reflect the internal variability of the climate, rather the perhaps
significant inaccuracies of the models.
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In the spirit of the article, it seems more appropriate to evaluate projections within
single models based on parallel climate histories.

We wish to briefly address the characterization of model uncertainties within a
single climate model.

Acknowledgments
A machine generated summary based on the work of Tél, T.; Bódai, T.; Drótos,
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Understanding the Links Between Climate Feedbacks,
Variability and Change Using a Two-Layer Energy Balance
Model

https://doi.org/10.1007/s00382-020-05189-3

Abstract-Summary
A simple, two-layer energy balance model (EBM) is used to investigate climate
variability in Coupled Model Intercomparison Project Phase 5 (CMIP5) models and
examine possible links between variability and climate sensitivity, and the roles of
stochastic variability, radiative feedbacks and ocean mixing.

The EBM represents global variability that, while somewhat stronger than the
CMIP5 models, simulates reasonable ratios between shorter and longer timescales.

Variability in the EBM to the range of parameters from theGlobal ClimateModels
is found to be particularly sensitive to stochastic variability, especially on interannual
time-scales.

The EBM results suggests that spread in stochastic forcing across the CMIP5
models is the single greatest factor degrading the correlation between variability
and climate sensitivity, although model to model differences in radiative forcing and
mixing into the deep ocean are also important.

They also suggest that normalizing variability in general circulation models by
stochastic forcing, uptake into the deep ocean and radiative forcing are all important
first steps to reduce factors that will otherwise confound the correlations.

Introduction
The approach taken is to develop and utilize a two-layer energy balance/feedback
model (EBM) for the climate system, to explore and understand its variability on a
range of timescales and to relate these to variability and climate change sensitivity
found in the CMIP5 GCMs.

We will use the EBM approach to explore four questions: (1) How well can
important aspects of global scale variability on timescales from interannual to multi-
decades in CMIP5models be understood and quantitatively described using a simple
two-layer EBM? (2)What relative role do radiative feedbacks play in determining the

https://doi.org/10.1007/s00382-020-05189-3
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magnitude of global variability, especially on longer timescales? (3) What parame-
ters control potential relationships between themagnitude of variability and transient
climate response (TCR) (Collins et al. [29]) and/or ECS. (4) What do differences
across GCMs in their magnitude of stochastic forcing, the strength of radiative feed-
backs and in other parameters therefore imply for the potential for constraining ECS
or TCR through observations of variability.

Model Description and Analysis Methodology
Estimates of temperature variance and stochastic forcing from the CMIP5 models
were calculated by first detrending annual mean temperatures and TOA radiation (to
remove any residual drift), then removing the annual cycle by subtracting off mean
January, mean February etc. For temperature, annual, monthly, decadal and 30-year
variances we calculated after first averaging the monthly temperature fluctuations
into annual means, then passing 10 year and 30 year running means through these
timeseries prior to the calculation of variances.

Observational estimates based on CERES (Clouds and the Earth’s Radiant Energy
System) satellite data indicate that global scale total TOA variability has a standard
deviation of around 0.62 W m−2 on monthly timescales (Trenberth et al. [30]), a
value comparable to the multi model mean (although, as with the models, some of
the observed value will likely represent the response, i.e. feedback, from surface
temperature changes).

Sensitivity of Variability in the EBM
The purpose of this is to understand how changes in these parameters affect tempera-
ture variability on different timescales before then considering how these parameters
affect correlation between variability and sensitivity.

It is important to collate the climate variability computed numerically via the
two-layer model with those represented in GCMs.

This gives us some confidence that the simple two-layer EBM both qualitatively
and quantitatively reproduces overall features of variability from interannual tomulti-
decades in comparison with CMIP5 models.

In calculations, we applied the monothetic OFAT (one-factor-at-a-time) analysis,
varying each parameter over its range and holding others at their base (i.e. CMIP5
model average) values.

Sectionweevaluate how theEBMandCMIP5variances range across the ensemble
of models, andwhat the EBM implies for the relationship between climate variability
across different timescales and climate sensitivity.

Analysis of Climate Variability and Change of CMIP5 Models
The EBM predicts a high degree of correlation (i.e. high explained variance across
themodels) between variability and ECSwith anR2 of 0.58 at interannual timescales,
and up to 0.68 for 30-year.

It can be easily understood in the case of the ECS/variability correlation: the only
factor producing spread in the ECS remains F, which plays no role in variability in
the EBM.
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The EBMpredicts that without corresponding feedbacks operating these variables
do not produce any significant correlation.

Removing the spread in γ, however, has the counter intuitive effect of decreasing
the correlation between variability and ECS.

The impact of F is easily understood: it causes spread in ECS but does not affect
variability, so reducing its spread produces greater correlation.

The puzzle is why eliminating the spread in γ reduces the correlation between
ECS and variability.

Summary and Conclusions
We use a simple 2-layer energy balance model (EBM) to ask what factors might
contribute to the spread in variability, and which factors might provide (or indeed
limit) the degree of correlation between the magnitude of unforced variability and
climate sensitivity (both ECS and TCR) across timescales from interannual to multi-
decadal.

The correlation across CMIP5 models between the GCM variances and those
simulated by the EBM are modest, with around 25% variability explained for longer
timescale (decadal and 30-year).

The EBM predicts that the correlations between sensitivity and variability should
be higher at longer timescales in the GCMs.

The EBM predicts lower correlations between variability and TCR than with
ECS, consistent with there ocean heat uptake factors affecting TCR, whereas ECS
is dependent on forcing and feedback alone.

The role of stochastic forcing in the current results is striking, as the EBMsuggests
that it could be a key ‘spoiler’ of cross GCM climate change/variability correlations.
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A Voyage Through Scales, a Missing Quadrillion and Why
the Climate is not What You Expect

https://doi.org/10.1007/s00382-014-2324-0

Abstract-Summary
Usingmodern climate data and paleodata, we voyage through 17 orders ofmagnitude
in scale explicitly displaying the astounding temporal variability of the atmosphere
from fractions of a second to hundreds of millions of years.

We identify five of these: weather, macroweather, climate, macroclimate and
megaclimate, with rough transition scales of 10 days, 50 years, 80 kyears, 0.5Myear,
and we quantify each with scaling exponents.

https://doi.org/10.1007/s00382-014-2324-0
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Mean temperature fluctuations increase up to about 5 K at 10 days (the lifetime
of planetary structures), then decrease to about 0.2 K at 50 years, and then increase
again to about 5 K at glacial-interglacial scales.

Both deterministic General Circulation Models (GCM’s) with fixed forcings
(“control runs”) and stochastic turbulence-based models reproduce weather and
macroweather, but not the climate; for this we require “climate forcings” and/or
new slow climate processes.

Averaging macroweather over periods increasing to ≈30–50 years yields appar-
ently converging values: macroweather is “what you expect”.

Macroweather averages over ≈30–50 years have the lowest variability, they yield
well defined climate states and justify the otherwise ad hoc “climate normal” period.

Moving to longer periods, these states increasingly fluctuate: just as with the
weather, the climate changes in an apparently unstable manner; the climate is not
what you expect.

Moving to time scales beyond 100 kyears, to the macroclimate regime, we find
that averaging the varying climate increasingly converges, but ultimately—at scales
beyond≈0.5Myear in themegaclimate,wediscover that the apparent point of conver-
gence itself starts to “wander”, presumably representing shifts from one climate to
another.

Introduction: Foreground or Background, Signal or Noise?
If we attempt to extendMitchell’s picture to the dissipation scales at frequencies 6 or
7 orders of magnitude higher (for millimetric spatial scale variability), the spectral
range would increase by an additional ten or so orders of magnitude.

In Mitchell’s time, this scale bound view had already led to an atmospheric
dynamics framework that emphasized the importance of numerous processes occur-
ring at well defined time scales, the quasi periodic “foreground” processes illustrated
as bumps—the signals—on Mitchell’s nearly flat background.

The purpose of this paper is therefore to stand Mitchell on his head, to invert
the roles of foreground and background—of signal and noise—to treat the spectral
continuumwith its challenging and nontrivialmultifractal scaling, as the fundamental
signal and to relegate the residual quasiperiodic processes to the role of background
processes where they belong.

Standing Mitchell on His Head: The Scaling Paradigm
By the early 1980s, following the explosion of scaling (fractal) ideas it was real-
ized that scale invariance was a very general symmetry principle often respected by
nonlinear dynamics, including many geophysical processes and turbulence.

In nonlinear dynamical systems, power laws arise when over a range of scales
there are no processes strong enough to break the scaling symmetry.

Another way of putting this is to say that the dominant dynamical processes occur
in synergy over a wide range of scales, with the resulting behaviour displaying no
characteristic size or duration.

We can express this in yet another way in terms of systems theory: H < 0 indicates
negative feedbacks occurring over a wide range of scales in a scale invariant way



Machine-Generated Summaries 171

whereas H > 0, indicates positive feedbacks occurring over a wide range (this should
not be confused with persistence and antipersistence which for Gaussian processes
refer to fluctuations growing more or less quickly than Brownian motion).

Scaling in the Weather, Macroweather and Climate Regimes
Starting with the climate regime, numerous paleo temperature series (mostly from
ice and ocean cores) have been analyzed and there is broad agreement on their scaling
nature with spectral exponents estimated in the range βc ≈ 1.3 to 2.1 over the range
fromhundreds to tens of thousands of years, (Lovejoy and Schertzer [31, 32]; Schmitt
et al. [33]; Ditlevsen et al. [34]; Pelletier [35]; Ashkenazy et al. [36]; Wunsch [37];
Huybers and Curry [38]; Blender et al. [39]; Lovejoy [40]; Rypdal and Rypdal [41]).

A seductive feature of the (anisotropic) scaling framework is that it fairly
accurately predicts the weather to macroweather transition scale τw ≈ 10 days.

The analogous calculation for the ocean using the empirical (near surface) ocean
turbulent flux ε ≈ 10−8 W/kg, yields a lifetime of ≈1 year which is indeed the scale
separating a high frequency “ocean weather” (with β > 1) from a low frequency
“macro-ocean weather” with β < 1 (Lovejoy and Schertzer [32]; at depth, ε is much
lower and the corresponding lifetimes are much longer).

Real Space Fluctuations and Analyses
The behavior of the mean fluctuation is thus <�T>≈ �tH so that if H > 0, on average
fluctuations tend to grow with scale whereas if H < 0, they tend to decrease.

While the latter is adequate for fluctuations increasingwith scale (i.e. H > 0),mean
absolute differences generally increase and so when H < 0, they do not correctly
estimate fluctuations.

Once estimated, the variation of the fluctuations with scale can be quantified
by using their statistics; the qth order structure function Sq(�t) is particularly
convenient: where “ < .

For periods longer than this, the statistics are dominated by averages of many
planetary scale structures, and these fluctuations tend to cancel out: for example
large temperature increases are typically followed (and partially cancelled) by
corresponding decreases.

The consequence is that in this macroweather regime, the average fluctuations
diminish as the time scale increases.

Discussion
Avoiding anthropogenic effects by considering the pre-1900 epoch, for GCMclimate
models, the key question is whether solar, volcanic, orbital or other climate forcings
are sufficient to arrest the H < 0 decline in macroweather fluctuations and to create
an H > 0 regime with sufficiently strong centennial, millennial variability to account
for the background variability out to glacial-interglacial scales.

Whatever the ultimate source of the growing fluctuations in the H > 0 climate
regime, a careful and complete characterization of the scaling in space as well as in
time (including possible space–time anisotropies) allows for new stochastic methods
for predicting the climate.
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the conventional but ad hoc “climate normal” period—this not only justifies the
normal but allows averages of relevant variables over it to define “climate states” and
the changes at scales �t > τc to define climate change (again, in the recent period,
this defines the scale at which anthropogenic variability starts to dominate natural
variability).

Conclusions
A far more realistic picture of atmospheric variability is obtained by standing this
scale bound picture on its head: placing the continuum processes in the fore, with
the perturbing quasiperiodic processes in the background.

The empirically substantiated picture is rather one of “unstable”, “wandering”,
high frequency weather processes (i.e. H > 0) tending—at scales beyond 10 days or
so—and primarily due to the quenching of spatial degrees of freedom (intermediate
frequency, low variability)—to macroweather processes.

True climate processes are “weather-like” (H > 0) and only emerge from
macroweather at even lower frequencies, due to new slow internal climate processes
coupled with external forcings (including in the recent period, anthropogenic
forcings).

Whatever the cause, it is an empirical fact that the emergent synergy of new
processes yieldsfluctuations that on average again growwith scale in at least a roughly
scaling manner and become dominant typically on time scales of 30–100 years
(somewhat less in the recent period) up to ≈ 100 kyears.
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A New Framework for Climate Sensitivity and Prediction:
A Modelling Perspective

https://doi.org/10.1007/s00382-015-2657-3

Abstract-Summary
The sensitivity of climate models to increasing CO2 concentration and the climate
response at decadal time-scales are still major factors of uncertainty for the
assessment of the long and short term effects of anthropogenic climate change.

While the relative slow progress on these issues is partly due to the inherent
inaccuracies of numerical climate models, this also hints at the need for stronger
theoretical foundations to the problem of studying climate sensitivity and performing
climate change predictions with numerical models.

Response theory puts the concept of climate sensitivity on firm theoretical
grounds, and addresses rigorously the problem of predictability at different time-
scales.

https://doi.org/10.1007/s00382-015-2657-3


Machine-Generated Summaries 173

These results show that performing climate change experiments with general
circulation models is a well defined problem from a physical and mathematical point
of view.

These results show that considering one single CO2 forcing scenario is enough to
construct operators able to predict the response of climatic observables to any other
CO2 forcing scenario, without the need to perform additional numerical simulations.

We also introduce a general relationship between climate sensitivity and climate
response at different time scales, thus providing an explicit definition of the inertia
of the system at different time scales.

Introduction
We follow a complementary approach to define a robust theoretical framework for
the use of GCMs in addressing the problem of climate response, sensitivity and
prediction, based upon Lucarini and Sarno [42].

The standard approach to the problem of computing the response of a climate
model to the forcing due to a increasing CO2 concentration is the following: take
a model, run it to a stationary state, increase the CO2 concentration following one
specific CO2 increase scenario, measure the increase of global surface temperature,
define on it operational measures of the sensitivity of the system.

The approach suggested here makes it possible to compare models in a new way,
showing how the equilibrium climate sensitivity is just one point of a function that
contain much more informations about the properties of the response to components
of the forcing at different time-scales.

Methods and Materials
Axiom A systems possess a Sinai-Ruelle-Bowen (SRB) invariant measure, which
guarantees (a) the asymptotic equivalence of time and ensemble averages of observ-
ables (that it is not, despite intuition, a general property of nonequilibrium systems)
and (b) the stability of the statistical properties when a weak stochastic forcing is
applied.

The use of response formulas inmost cases of physical interest is justified thanks to
theChaoticHypothesis (Gallavotti [43]), which states that chaotic systemswithmany
degrees of freedom effectively behave as Axiom A systems in terms of properties (a)
and (b) even if they do not satisfy rigorously requirements (1) and (2), at least when
considering the statistical properties of coarse-grained observables (e.g. globally or
regionally integrated quantities).

When we compute the expectation value of an observable in a numerical model
as the long-term average on a stationary state, we are in fact implicitly assuming that
the system is Axiom A-like.

Results
The long-term increase of the surface temperature for the doubling scenario (the
equilibrium climate sensitivity) is rather high if compared with what is typically
obtained with standard IPCC models, being 8.1 K against typical estimates between
1.5 and 4.5 K (IPCC [44, 45]).
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Another interesting application the possibility to estimate the time horizon on
which the mean climate change signal is distinguishable from the natural variability
of the climate system for different rates of change of the forcing.

Given the Green function of the system, we can compute the expected mean
climate change signal for forcing corresponding to different rates of change of the
CO2 concentration, and check after how many years the mean signal is larger than a
chosen number of standard deviations of the observable in the unperturbed system.

Summary and Discussion
The approach proposed here bypasses some of these mathematical issues by
exploiting formal properties of the response and allows for constructing rigorous
definitions of climate sensitivity at different time scales through the susceptibility
function.

We have provided a framework for relating the difference between transient and
equilibrium climate sensitivity to the inertia of the CS, and have shown how these
properties depend of the response of the system on all time scales.

Inaccuracies in representing specific spectral features have serious impacts on our
ability to predict climate response on the corresponding time scales, and our findings
could help understanding why, e.g., climate response at decadal time scales may be
hard to capture.

RRT provides a well defined theoretical framework and tools that allows to diag-
nose rigorously discrepancies in the properties of the frequency dependent response
of different models and to guide the design of the climate change experiments.
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Effect of AMOC Collapse on ENSO in a High Resolution
General Circulation Model

https://doi.org/10.1007/s00382-017-3756-0

Abstract-Summary
We look at changes in the El Niño Southern Oscillation (ENSO) in a high-resolution
eddy-permitting climate model experiment in which the Atlantic Meridional Circu-
lation (AMOC) is switched off using freshwater hosing.

Convergence of this transport deepens the thermocline in the eastern tropical
Pacific and increases the temperature anomaly relaxation time, causing increased
ENSO period.

The anomalous Ekman transport is caused by a surface northerly wind anomaly in
response to the meridional sea surface temperature dipole that results from switching
the AMOC off.

https://doi.org/10.1007/s00382-017-3756-0
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To a previous studywith an earlier version of themodel, which showed an increase
inENSOamplitude in anAMOCoff experiment, here the amplitude remains the same
as in the AMOC on control state.

Extended
Yu et al. [46] have suggested a link between AMO and El Niño location, stronger
AMOC leading to more central El Niño events and conversely weaker AMOC to
more eastern El Niño events, very similar to our findings.

Introduction
The AMOC off state in this simulation is stable over the 450 years duration of
the model integration (Mecking et al. [47]) which is then compared with a control
run making the study a comparatively clean assessment of the impacts of AMOC
shutdown.

We look in particular at the differences in ENSO resulting from the global climatic
changes that collapse of the AMOC can induce in the model.

There have also been studies of ENSO in hosed, weakened AMOC runs of CMIP3
era models (Timmerman et al. [48]; Dong and Sutton [49]) and in most models there
was a substantial weakening of the annual cycle in the eastern equatorial Pacific and
an increase in ENSO amplitude.

Using a stochastically forced damped oscillator model of slow ENSO dynamics
introduced by Jin [50] to qualitatively understand the response of the much more
complicated HadGEM3, we suggest the difference in ENSO amplitude between
the different models is due to the balance of changes in ENSO damping and the
magnitude of stochastic forcing.

Model setup and Experiment Design
To repeat pertinent details, the model is the Global Coupled 2.0 model (GC2)
configuration of the HadGEM3 model (Hewitt et al. [51]).

This consists of an atmosphere, ocean, sea-ice and land-surface models.
The atmosphere model is Global Atmosphere vn6.0 (GA6) (Demory et al. [52])

of the Met Office unified model at N216 horizontal resolution and 85 levels in the
vertical.

Two runs of the model are compared, a steady state control run (the AMOC is in
its usual on state in this run) and an AMOC off steady state run.

The AMOC off run is initialised after 42 years of the control run.
The AMOC off run is integrated for a total of 450 years from the start of the

salinity perturbations.
Analysis we use all 150 years of the control run and the last 300 years of the

AMOC off run to determine ENSO properties.

Results
The leading EOF in both the control and the AMOC off run is representative of the
ENSO mode.
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Relative to the control run, the AMOCoff ENSOEOF accounts for proportionally
slightly less of the total variance in SST (60 vs. 63%) although this difference, both
proportional and absolute, is within estimated error bounds.

The variance differences at each spatial location were tested for significance at
the 99% confidence level by performing a two sample f-test on the deseasonalized
spatial SST anomaly fields in both control and AMOC off runs.

Time varying properties are analyzed by projecting the leading EOF onto the time
ordered fields of deseasonlized monthly SST for both control and AMOC off runs.

There is also a shift to longer ENSO periods in the AMOC off relative to the
control run which does appear to be significantly different.

Mechanisms for Differences in ENSO
Having established that ENSO in the AMOC off run relative to the control has (1)
a similar amplitude and distribution of SST anomalies, (2) a spatial pattern shifted
eastward and (3) a longer, more regular period, we discuss mechanisms that could
result in these differences.

One sees a deepening of the thermocline in the east Pacific concentrated in the
region of large ENSO variability as expected from the changes in the wind fields and
the Ekman transport divergence.

Apart from the eastward shift in ENSO and the mean state, the other change is
the mean depth of the thermocline in the eastern equatorial Pacific.

b is difficult to estimate from regressions of east to west thermocline depth differ-
ence versus east to west temperature difference using the HadGEM3 simulations as
the model never reaches a true equilibrium between the thermocline depth difference
and the wind stress at a given time due to the different adjustment time scales (and
therefore lags) of the SST and thermocline depths in the east and west Pacific.

Discussion
All 5 models in Timmerman et al. [48] had significantly increased ENSO amplitudes
as measured by the power spectra of the SST anomalies in the Niño 3 region.

The increase of peaks without broadening in the CMIP3 model’s power spectra
suggest their ENSOs become more periodic and less damped.

CMIP5-class models show an improvement in terms of representing both the
properties of ENSO (amplitude, frequency, spatial pattern) and the physical processes
and feedbacks which are responsible for generating and maintaining the oscillation
(Bellenger et al. [53]).

From the power spectra in Timmerman et al. [48] it appears that there is no change
in ENSO period for most CMIP3 models.

As argued above, from the CMIP3model’s power spectra it seems likely that their
ENSOs become less damped and more periodic.

Conclusion
The increase in ENSO period is backed up using a simple model of ENSO as a
stochastically forced damped oscillator.
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Using the simple model, one can potentially understand the differing responses in
the slow ENSO dynamics as a competition between the decrease in damping tending
to increase amplitude and the decrease in forcing tending to decrease the amplitude.
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On the Relationship Between Atlantic Niño Variability
and Ocean Dynamics

https://doi.org/10.1007/s00382-017-3943-z

Abstract-Summary
We address the question whether the equatorial SST bias affects the ability of a
coupled global climate model to produce realistic dynamical SST variability.

We assess this by decomposing SST variability into dynamical and stochastic
components.

To compare our model results with observations, we employ empirical linear
models of dynamical SST that, based on theBjerknes feedback, use the twopredictors
sea surface height and zonal surface wind.

We find that observed dynamical SST variance shows a pronounced seasonal
cycle.

This indicates that the Atlantic Niño is a dynamical phenomenon that is related
to the Bjerknes feedback.

In the coupled model, the SST bias suppresses the summer peak in dynamical
SST variance.

Bias reduction, however, improves the representation of the seasonal cold tongue
and enhances dynamical SST variability by supplying a background state that allows
key feedbacks of the tropical ocean–atmosphere system to operate in the model.

Due to the small zonal extent of the equatorial Atlantic, the observed Bjerknes
feedback acts quasi-instantaneously during the dynamically active periods of boreal
summer and early boreal winter.

Extended
To compare our results with the evolution of the observed climate system, we use the
ERA-Interim (Dee [54]) and the Archiving, Validation, and Interpretation of Satellite
Oceanographic (AVISO) datasets.

We find that differences between ERA-Interim SST and other SST datasets are
negligibly small. (Analysis results for alternative validation datasets such as the
HadISST dataset (Rayner et al. [55]) are not shown.

https://doi.org/10.1007/s00382-017-3943-z
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We find that the Atlantic Bjerknes feedback is near-instantaneous during the
dynamically active phases of the year.

In the coupled equatorial system, the atmospherewould react to the ocean-induced
SST variability and our empirical models would pick up a statistical co-variability
between SST and u10 that would be partly reflected in our SST decomposition—
even though u10 in this idealized example was not fundamental in causing the SST
variability in the first place.

Future study will help to further our understanding of the Atlantic Niño and its
predictability.

Introduction
In a positive feedback, it relates SST and thermocline variability in the eastern ocean
basin to zonal surface wind variability in the western ocean basin (u10) and lends
growth to the Pacific (Bjerknes [56]) and Atlantic Niños (e.g. Keenlyside and Latif
[57]; Burls et al. [58]; Lübbecke and McPhaden [59]; Deppenmeier et al. [60]).

The Pacific Niño generally is the result of a free mode of interannual variability
that is driven by the Bjerknes feedback; interactions with the seasonal cycle occur,
but do not dominate ENSO SST variability.

Burls et al. [58] argue that the Atlantic Niño hence reflects a modulation of the
seasonally active Bjerknes feedback instead of an independent mode of interannual
variability.

In contrast to numerous studies that have provided evidence for a relationship
between Atlantic Niño variability and the Atlantic Bjerknes feedback, Nnamchi
et al. [61, 62] have proposed that the Atlantic Niño is essentially driven by stochastic
processes in the atmosphere rather than by dynamical ocean processes that are
potentially predictable.

Model and Methods
All ensemble members use the same wind stress forcing, but differ in their initial
conditions, which are taken from a control run at a time when the model is close to
equilibrium.

In a partially coupled model the ocean and sea ice components are forced with
observed wind stress anomalies that are added to the model’s monthly mean wind
stress climatology.

To diagnose the heat flux correction, we use the same methodology as Ding et al.
[63]: During a control integration, we nudge the first ocean level of themodel towards
the monthly climatology of observed SST with a restoring time scale of 10 days.

We note that Ding et al. [63] showed a substantial improvement in the ability
of the partially coupled model runs to reproduce observed SST variability in boreal
summer in FLX compared to STD.

Impact of the Coupled Bias on the Equatorial Atlantic
We assess SST and zonal wind biases in the tropical Atlantic for our KCM
experiments.
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Richter and Xie [64] and Richter et al. [65] have shown in different CGCMs
that the equatorial Atlantic SST bias is related to a bias in zonal surface wind in
the western equatorial Atlantic, which in turn can be traced back to precipitation
deficiencies of the models.

In agreementwithRichter et al. [66], a similar process could be atwork inCGCMs:
Spring zonalwinds that are systematically tooweak in thewestern equatorial Atlantic
could inhibit seasonal thermocline shoaling in the eastern ocean basin and hence
intense surface cooling during early boreal summer.

This behaviour is hardly altered qualitatively in the FLX experiment, indicating
that the zonal wind bias depends only weakly on eastern basin SST in the model.

SST Variance Decomposition Method
To diagnose the observed dynamical SST variance, we use observed thermocline
depth in the eastern equatorial Atlantic to model ERA-Interim SST variability in the
same region.

That our decomposition approach heavily relies on empirical linear models, but
that the resulting decomposition of the SST variance is not linear, i.e., the full SST
variance is not the sum of the stochastic and dynamical SST variance. (The basic
decomposition of the SST anomaly, however, is.) Here, we use the Bjerknes feedback
as the dynamical framework for our empirical models of dynamical SST.

This indicates either that the co-variability between our predictors is strong during
the respective month and that using either of them provides sufficient information to
produce reasonable dynamical SST; or that the removed predictor does not have a
strong impact on SST variability during this month. (2)Model adjustment keeps both
predictors in a linear combination. (3) Model adjustment increases the complexity
of the model by adding a non-linear predictor term, i.e. a quadratic term or a product
of SSH and u10.

Seasonality of Dynamical SST Variance in the tropical Atlantic
The overall similarity between the total and dynamical SST variance suggests that
the seasonal cycle of total SST variability in the tropical Atlantic is largely shaped
by the variable dynamical contribution.

The dynamical and stochastic SST variances for the model experiment FLX are
comparable to observations (blue).

The absolute minimum of dynamical SST variance occurs in May—when
observed dynamical SST variance is already high and contributes substantially to
the overall boreal summer peak.

Once the cold tongue is established, the feedbacks set in and contribute to
dynamical SST variability.

The STD SST bias decreases and our empirical models operate on comparable
conditions, resulting in dynamical SST variances in the STD experiment that are
similar to observations in boreal fall and early boreal winter.

In boreal winter, the single u10 model does not contribute to dynamical SST
variance.
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Feedback Strengths in the Tropical Atlantic
Recall that the three relationships that make up the closed Bjerknes feedback in
our framework are (1) Atl3 SST produces WAtl u10 variability, (2) WAtl u10 vari-
ability is translated into Atl3 thermocline—here: SSH—variability via equatorial
wave dynamics, and (3) Atl3 SSH positively feeds back to Atl3 SST and lends
growth to the initial SST anomaly.

We assess the degree of lag for each of the three Bjerknes relationships via a
cross-correlation analysis for each month.

In our cross-correlation analysis for each calendar month and Bjerknes feedback
element, we fix the response agent to the calendar month and correlate it sequentially
with the forcing agent of all relevant lags.

Black crosses indicate the lag for which the relationship in terms of the ACC is
strongest for the considered calendar month and Bjerknes feedback element.

Summary and Discussion
In agreement with numerous previous studies on the dynamics of the Atlantic Niño
(e.g. Zebiak [67]; Carton et al. [68]; Ding et al. [69]), we find that dynamical SST
variance contributes substantially to equatorial Atlantic SST variability in boreal
summer (May–July), the peak phase of the Atlantic Niño.

That, in contrast to May and June, the December peak of enhanced dynamical
SST variance is captured by both the FLX and STD experiments, indicating that the
KCM appears to be able to reproduce the variability associated with Okumura and
Xie [70])’s Atlantic Niño II.

While we have provided further evidence for a dynamically driven Atlantic Niño,
research is not yet clear on what exactly these dynamics are: If the Bjerknes feedback
is involved in establishing the seasonal cold tongue, which processes govern the
feedback modulation that produces the interannual variability of the Atlantic Niño?
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A Theoretical Model of Strong and Moderate El Niño Regimes

https://doi.org/10.1007/s00382-018-4100-z

Abstract-Summary
The existence of two regimes for El Niño (EN) events, moderate and strong, has
been previously shown in the GFDL CM2.1 climate model and also suggested in
observations.

Although the recent 2015–16 EN event provides a new data point consistent with
the sparse strong EN regime, it is not enough to statistically reject the null hypothesis
of a unimodal distribution based on observations alone.

https://doi.org/10.1007/s00382-018-4100-z
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We implemented this nonlinear mechanism in the recharge-discharge (RD) ENSO
model and show that it is sufficient to produce the two EN regimes, i.e. a bimodal
distribution in peak surface temperature (T) during EN events.

Using the Fokker–Planck equation, we show how the bimodal probability distri-
bution of EN events arises from the nonlinear Bjerknes feedback and also propose
that the increase in the net feedback with increasing T is a necessary condition for
bimodality in the RD model.

Extended
Despite the strong simplifications, we show that this model reproduces two EN
regimes and provides insights into the role of the stochastic forcing in El Niño
diversity and predictability.

Introduction
We focus on the latter, particularly on our proposal that strong EN events (e.g.
1982–83 and 1997–98) correspond to a separate dynamical regime associated with
nonlinearity in the Bjerknes feedback (TD16).

A theoretical model with nonlinear ocean advection (Timmermann et al. [71];
An and Jin [72]) produces strong EN in the form of “bursts” as part of complex
self-sustained nonlinear oscillations, but these only have a weak resemblance to
observations.

Although all these nonlinear mechanisms could contribute to ENSO, no study to
our knowledge has addressed the origin of strong and moderate dynamical regimes
of El Niño (warm) events.

This model focuses only on the strength of El Niño events as a first approximation
to ENSO diversity, neglecting the spatial distribution or seasonal effects, or nonlinear
processes specific to La Niña.

Despite the strong simplifications, we show that this model reproduces two EN
regimes and provides insights into the role of the stochastic forcing in El Niño
diversity and predictability.

Recharge-Discharge Model
This also includes the nonlinear radiative cloud feedback that enhances damping in
the convective regime (Lloyd et al. [73]; Bellenger et al. [53]).

Fitting the linear RD model to the nonlinear RD model run produces a weaker
effective linear damping parameter to the original from Burgers et al. [74], as
expected.

This reduced by 45% weaker damping that the Burgers et al. [74].

Fokker–Planck Equation
The Fokker–Planck (FP) equation describes the evolution of the probability distri-
bution function (PDF) of states in a stochastically-forced (“Brownian”) dynamical
system (Risken [75]), which allows us to address issues of predictability in simple
climate models by describing how the PDF evolves from an initial condition under
all possible realizations of the stochastic forcing (e.g. Hasselmann [76]).
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Using the terminology of the FP equation, the PDF evolution is governed by
the “drift”, which is the displacement, rotation, and deformation of the PDF by the
deterministic dynamics, and the “diffusion”, which is the spreading of the PDF due
to the random walk associated with the stochastic forcing.

Results
The skewness of the distribution of EN T peaks in the nonlinear model (1.47) is
larger than the observational value (1.11), whereas the linear model is lower (0.89).

An important aspect of the onset of these observed strong EN events is that, in
contrast to the “pure” (unforced) RD dynamics, in general h does not decrease as
sharply when T increases towards its peak as afterwards, during EN decline; in 1982,
h even increased right up to two months prior to the peak T. This indicates that, if
the RD model is indeed representative of the underlying dynamics, the onset of the
1982 (and probably also the other) strong EN was strongly facilitated by external
forcing (TD16).

After the observed EN peaks, the pronounced discharge process leads to large
negative h, but the associated La Niña peak T anomalies are not as large as the ones
for the EN events in the Niño 3 region.

Discussion
Other empirical methods (e.g. Burgers et al. [74]) could be adapted to consider
this nonlinearity, or the proposed model could be used to derive an estimate of the
non-linear feedback through assimilation of observations.

This model highlights the key role of the stochastic forcing, particularly the
component of the forcing on ENSO time-scales, in the growth of the strong EN
events (e.g. Levine and Jin [77]; TD16).

It is often assumed that the low-frequencypositive forcing is the result of clustering
of short-term westerly wind events, either randomly or modulated by SST (e.g.
Gebbie et al. [78]; Zavala-Garay et al. [79]; Gebbie and Tziperman [80]).

The strong La Niña following strong EN events in our nonlinear model is consis-
tent with the strong heat content discharge that is seen in observations, except that
in observations the discharge does not necessarily produce strong La Niña events.

Conclusions
In a previous study (Takahashi and Dewitte [81]), the convective SST threshold in
the eastern Pacific and the associated nonlinearity in the Bjerknes feedback provides
a parsimonious explanation for this, motivating further exploration of this possibility
suggestive with a simple theoretical model based on this mechanism.

We show that this nonlinearity is sufficient to produce the bimodal distribution
associated with strong and moderate EN regimes.

It is a parsimonious theory for the EN regimes, based on a well-known nonlinear
SST-convection relation.

It is a simpler model than, for instance, high-dimensional linear models and does
not produce exotic behavior as other nonlinear models or require special assumptions
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about the forcing, thus providing a better null hypothesis for models that exhibit two
EN regimes.

Acknowledgments
Amachine generated summary based on the work of Takahashi, Ken; Karamperidou,
Christina; Dewitte, Boris (2018 in Climate Dynamics).

Climate Change Impact Assessment on Flow Regime
by Incorporating Spatial Correlation and Scenario Uncertainty

https://doi.org/10.1007/s00704-016-1802-1

Abstract-Summary
Flooding risk is increasing in many parts of the world and may worsen under climate
change conditions.

The current statistical downscaling approaches face the difficulty of projecting
multi-site climate information for future conditions while conserving spatial infor-
mation.

The results showed different variation trends of annual peak flows (in 2080–2099)
based on different climate change scenarios and demonstrated that the hydrological
impact would be driven by the interaction between snowmelt and peak flows.

The proposed CLWRS approach is useful where there is a need for projection of
potential climate change scenarios.

Introduction
Besides precipitation patterns, the prediction of future floods relies on changes
in temperature, snowmelt, land use patterns, etc. Future climate changes can be
predicted based on the physics described by theGeneral CirculationModels (GCMs),
which simulate the interaction among atmosphere, ocean and sea.

LARS-WG was proposed by Racsko et al. [82] as a stochastic weather gener-
ator, intended to model meteorological parameters such as precipitation and solar
radiation.

Based on the above-mentioned studies, it is found that LARS-WG is effective in
simulating climate change formeteorological variables but is limited to being applied
for a single site; multi-site RainSim is capable of spatially addressing rainfall but
requires modifications to address future climate change.

The objective of this study is to propose a coupled LARS-WG and RainSim
(CLWRS) approach to quantify the changes in flood occurrences under future climate
projections for different GCMs for future time periods (i.e. 2080–2099).

Methodology
The initial purpose of LARS-WG is to obtain uncorrelated precipitation patterns
which serves as the input for RainSim through the Change Factor approach detailed
in the following section.

https://doi.org/10.1007/s00704-016-1802-1
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The output of RainSim in turn serves as the input for the reanalysis by LARS-WG
to generate meteorological data, now taking into account the spatial patterns among
multiple meteorological sites.

Step 1: Use LARS-WG to predict baseline and future meteorological conditions
LARS-WG determines the statistical properties of historical meteorological data,
and generates long records of simulated data for either future or baseline condition
(1961–1990).

Step 3: Use LARS-WG to reanalyse meteorological data based on correlated
precipitation The precipitation pattern generated from RainSim is used as the input
for the reanalysis by LARS-WG to generate the rainfall statistics.

The temperature and radiation simulated for different future scenarios by LARS-
WG along with the precipitation from RainSim are used as the input for LARS-WG.

Case Study and Data
Themeteorological data, includingmaximum temperature (Tmax), minimum temper-
ature (Tmin) and precipitation (P) for three meteorological stations are collected for
1965–2007 from Environment Canada website (Environment Canada [83]).

Other meteorological data required are the dew point temperature (Tdew) and
global radiation (R).

The hydrometric data for this case study for the period 1965–2007 were obtained
from Canadian Water Office (Environment Canada [83]).

This relationship is then used for the data sourced from Environment Canada to
obtain Tdew for the period 1965–2007.

Tdew is calculated from relative humidity (Rh), R, Tmax and Tmin which is obtained
for the period 1979–2007 CFSR data, using the formula given by Lawrence [84].

The change factor approach described in the earlier section is employed to
obtain future precipitation data for the Kootenay Watershed incorporating spatial
characteristics.

The second type is the topographic data for the Kootenay Watershed (Kite [85]).

Results and Discussion
For 100-year return period, the A1B scenario predicts an increase of flow around
11.46% (based on baseline values); A2 and B1 scenarios predict decreases of 7.27
and 8.02%, respectively.

Another important observation is the difference in change factors and their
influence in predicting peak flows.

The variation of the predicted flood peaks exhibits an increasing trend for different
return periods, mirroring the trend of 75th percentile.

For lower return periods of 5 and 10 years, decreases in peak flows at 5.98 and
3.49% are predicted; whereas, the higher return periods suggest increasing trends.

Similar to the B1 scenario, the HADCM3 predicts the highest increases in the
flowpeakswhile INCM3 andGIAOMpredictions remain conservative and FGOALS
suggest decreases.

A1B scenario which predicts increase in temperatures with lesser magnitudes,
predicted increasing flood peaks.
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Conclusion
The CLWRS framework combining LARS-WG and RainSim with SLURP model is
presented.

LARS-WG is used to facilitate the quantification of the predictions’ uncertainty
arising from emission scenarios.

Although, this variation could complicate quantifying the relationship between
changes in temperature, snowmelt and flood peaks; it would facilitate better
understanding of the Pacific Northwest.

The importance of this relationship is further emphasized by the changes in the
flood peaks predicted by the different scenarios.

As LARS-WG continues to be updated with the CMIP5 scenarios and as
more GCMs are incorporated to augment its predictive capabilities, the subsequent
evolution of the trends in scenario uncertainty desires further investigation.

This can be further extended to model and simulate temperature patterns at the
different meteorological stations.
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Book Reading List

Climate Change Modeling Methodology

by Rasch, P. J. (Ed) (2012).
The Earth’s average temperature has risen by 1.4°F over the past century, and

computer models project that it will risemuchmore over the next hundred years, with
significant impacts on weather, climate, and human society. Many climate scientists
attribute these increases to the build up of greenhouse gases produced by the burning
of fossil fuels and to the anthropogenic production of short-lived climate pollutants.
Climate Change Modeling Methodologies: Selected Entries from the Encyclopaedia
of Sustainability Science and Technology provides readers with an introduction to
the tools and analysis techniques used by climate change scientists to interpret the
role of these forcing agents on climate.

Please see https://www.springer.com/gp/book/9781461457664 for original
source.

Climate Modelling

by Lloyd, E. (Ed), Winsberg, E. (Ed) (2018).
This edited collection of works by leading climate scientists and philosophers

introduces readers to issues in the foundations, evaluation, confirmation, and appli-
cation of climate models. It engages with important topics directly affecting public

https://www.springer.com/gp/book/9781461457664
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policy, including the role of doubt, the use of satellite data, and the robustness of
models.

Please see https://www.springer.com/gp/book/9783319650579 for original
source.

Demystifying Climate Models

by Gettelman, A., Rood, R. B. (2016).
This book demystifies the models we use to simulate present and future climates,

allowing readers to better understand how to use climate model results. In order to
predict the future trajectory of the Earth’s climate, climate-system simulationmodels
are necessary.When and how dowe trust climate model predictions? The book offers
a framework for answering this question. It provides readers with a basic primer on
climate and climate change, and offers non-technical explanations for how climate
models are constructed, why they are uncertain, and what level of confidence we
should place in them. It presents current results and the key uncertainties concerning
them.

Please see https://www.springer.com/gp/book/9783662489574 for original
source.

Development and Evaluation of High Resolution Climate System Models

by Yu, R., Zhou, T., Wu, T., Xue, W., Zhou, G. (2016).
This book is based on the project “Development and Validation of High Resolu-

tion Climate System Models” with the support of the National Key Basic Research
Project under grant No. 2010CB951900. It demonstrates the major advances in the
development of new, dynamical Atmospheric General Circulation Model (AGCM)
and Ocean General Circulation Model (OGCM) cores that are suitable for high reso-
lution modeling, the improvement of model physics, and the design of a flexible,
multi-model ensemble coupling framework.

Please see https://www.springer.com/gp/book/9789811000317 for original
source.

Mathematics of Climate Modeling

by Dymnikov, V. P., Filatov, A. N. (1997).
The present monograph is dedicated to a new branch of the theory of climate,

which is titled by the authors, “Mathematical Theory of Climate.” The foundation of
this branch is the investigation of climate models by the methods of the qUalitative
theory of differential equations. In the Russian edition the book was named “Funda-
mentals of the Mathematical Theory of Climate.” Respecting the recommendations
ofWayne Yuhasz (we are truly grateful to him for this advice), we named the English
edition of the book “Mathematics of Climate Modelling.”

https://www.springer.com/gp/book/9783319650579
https://www.springer.com/gp/book/9783662489574
https://www.springer.com/gp/book/9789811000317
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Please see https://www.springer.com/gp/book/9780817639150 for original
source.

Modeling Dynamic Climate Systems

by Robinson, W. A. (2001).
The world consists of many complex systems, ranging from our own bodies to

ecosystems to economic systems.Despite their diversity, complex systemshavemany
structural and functional features in common that can be effectively modeled using
powerful, user-friendly software. As a result, virtually anyone can explore the nature
of complex systems and their dynamical behavior under a range of assumptions
and conditions. This ability to model dynamic systems is already having a powerful
influence on teaching and studying complexity. The books in this series will promote
this revolution in “systems thinking” by integrating skills of numeracy and techniques
of dynamic modeling into a variety of disciplines.

Please see https://www.springer.com/gp/book/9780387951348 for original
source.

Systems Representation of Global Climate Change Models.

by Sreenath, N. (1993).
This book bridges the gap between system theory and global climate change

research, and benefits both. A representative set of systems problems is listed indi-
cating how such cross-fertilization would enhance present understanding of global
problems while assisting the extension of systems theory. The goal is a comprehen-
sive conceptualmodel of global changewhich encompasses atmosphere, lithosphere,
ocean, biosphere and cryosphere.

Please see https://www.springer.com/gp/book/9783540198246 for original
source.

Stochastic Climate Models

by Imkeller, P. (Ed), Storch, J. v. (Ed) (2001).
The proceedings of the summer 1999 Chorin workshop on stochastic climate

models captureswell the spirit of enthusiasm of theworkshop participants engaged in
research in this exciting field. It is amazing that nearly 25 years after the formal theory
of natural climate variability generated by quasi-white-noise weather forcing was
developed, and almost 35 years after J. M. Mitchell first suggested this mechanism
as the origin of sea-surface-temperature fluctuations and climate variability, there
have arisen so many fresh perspectives and new applications of the theory.

Please see https://www.springer.com/gp/book/9783034895040 for original
source.

Models for Tropical Climate Dynamics

by Khouider, B. (2019).

https://www.springer.com/gp/book/9780817639150
https://www.springer.com/gp/book/9780387951348
https://www.springer.com/gp/book/9783540198246
https://www.springer.com/gp/book/9783034895040
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This book is a survey of the researchwork done by the author over the last 15 years,
in collaboration with various eminent mathematicians and climate scientists on the
subject of tropical convection and convectively coupledwaves. In the areas of climate
modelling and climate change science, tropical dynamics and tropical rainfall are
among the biggest uncertainties of future projections. This not only puts at risk
billions of human beings who populate the tropical continents but it is also of central
importance for climate predictions on the global scale.

Please see https://www.springer.com/gp/book/9783030177744 for original
source.
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