
Chapter 3
Response and Alternative Theories
in Climate Change

Introduction by Guido Visconti

The response theory applied to study climate change has its origins in a couple
of papers published by Cecil Leith in the 1970s. It is based on the Fluctuations
Dissipation Theorem (FDT) whose classical application is to the Brownian motion.
In this case, the random motion of a particle, in the fluid, is forced by the thermal
movement of themolecules. During themotion the energy of the particle is dissipated
by the viscosity of the fluid and converted to heat that contribute to maintain the
temperature of the fluid. Following the words of Leith, “In this analogy the detailed
motions of gas molecules correspond to the weather and the statistical properties of a
gas such as temperature and pressure correspond to the climate”with some additional
problems. For practical purposes climate is defined as the average of weather in
some location and this must include the mean but also the standard deviation from
the mean. Beside the mean must be carried out over some time interval and this is
a crucial point. As a matter of fact, climate changes with time so that the interval
must be long enough but not too long that would eliminate long term variations. In
statistical mechanics such a problem is circumvented by recurring to the concept
of ensemble mean. The ensemble is constituted by a large number (infinity?) of
identical systems. This concept is not very practical to define climate because it
would require studying a large number of Earths, subject to the same conditions
including forcing. There is an alternative definition of climate as the distribution
of the different variables (temperature, precipitation, etc.) with the weather being a
sample from that distribution.

The problem was solved by Leith assuming that the system recovers from a small
natural anomaly in the same way that it does from one induced by external forcing
and this leads to expressing the sensitivity of themodel (that not necessarily coincides
with that of climate) as a matrix response function. As observed in a lucid paper by
Thomas Bell some years later this matrix is of fundamental importance and in theory
can be calculated but not “easily accessible to observation”. Consequently, the only
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way to apply FDT theorem to climate was to do everything in the model, that is,
calculate the sensitivity of the model to different perturbations.

We have to consider however that the climate system, just because it is under
perturbation, is not in a steady state and it is known that fluctuations in a perturbed
system have different spectral character with respect to an unperturbed one. For these
reasons FDT is not strictly applicable to such a system and the Linear Response
Theory (LRT) was developed to solve this problem. In practice LRT boils down to
calculate the Green function for the system and then it is applied to predict the signal
from an assigned perturbation. The Green function can be calculated either from
a single General Circulation Model (GCM) or from an ensemble of such models
like those of CMIP (Coupled Model Intercomparison Project) and it is calculated
as the time derivative of the mean response to an assigned perturbation. Usually
reference is to an increase of 1% per year of CO2 or to an abrupt doubling of the
same greenhouse gas. Then the same function can be used to evaluate the climate
signal for any perturbation.

It is to note the fundamentallyLRTgives average value of theGlobalMeanSurface
Temperature (GMST) so it is fine for evaluating the signal from an assigned scenario
of greenhouse gas emission but cannot reproduce the details of a GCM run that
predicts the behavior of several climate variables and their geographical distribution.
Beside it assumes the GCM runs as reference neglecting all the philosophical and
technical problems that plagueGCMs.As amatter of fact, the results as far as temper-
ature is concerned are quite reasonable even examining the latitudinal distribution.
However, the results for precipitation are quite poor making clear that the method
has not the necessary physical details and mechanisms that produce precipitation.
However, the method remains very much suitable for all the exercises of the IPCC
(Intergovernmental Panel on Climate Change) and actually LRT has been used also
to develop a so called Stochastic Space State Model that combines emission scenario
with the climate forcing introducing some stochastic forcing in both carbon dioxide
and temperature. This produces not just the average value of temperature changes
but the temperature distribution for the different scenarios.

This application of LRT is quite interesting but at the least now cannot predict the
geographical distribution of the climate changes and so does not constitute an input
for example to evaluate regional climate change. Sometimes you got the impression
that theoretical (mathematical) work on climate change is taking revenge on several
years of honest and neglected work of the GCM practitioners. There are some people
that insist on putting climate studies in some sophisticated mathematical framework.
This follows an old habit of the physicists that believe in the old reductionist practice.
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Finding Plausible and Diverse Variants of a Climate Model.
Part 1: Establishing the Relationship Between Errors
at Weather and Climate Time Scales

https://doi.org/10.1007/s00382-019-04625-3

Abstract-Summary
In this first part, the extent to which climate biases develop at weather forecast
timescales is assessedwith two PPEs, which are based on 5-day forecasts and 10-year
simulations with a relatively coarse resolution (N96) atmosphere-only model.

The study confirms more robustly than in previous studies that investigating the
errors on weather timescales provides an affordable way to identify and filter out
model variants that perform poorly at short timescales and are likely to perform
poorly at longer timescales too.

The use of PPEs also provides additional information for model development, by
identifying parameters and processes responsible formodel errors at the two different
timescales, and systematic errors that cannot be removed by any combination of
parameter values.

Extended
In this first part, we build on ideas from previous studies to use model performance
at short timescales (here 5 days) to filter the parameter space (Rodwell and Palmer
[1]), and to use 5-day forecast errors to infer something about model errors at longer
timescales (e.g. Ma and others [2]).

In part II, we show how this result can be exploited, in an application which is
to select a number of model variants capable of providing plausible simulations of
historical climate and diverse projections of future climate change.

Introduction
This paper is the first of two aimed at designing a “small” perturbed parameter
ensemble (PPE) of plausible simulations based on a relatively expensive global
climate model that can be used in producing climate projections for adaptation
planning.

The second paper (Karmalkar and others [3]; hereafter Part II) focuses on a
methodology that uses this relationship in model performance across weather and
climate timescales to identify a small PPE of plausible simulations by screening out
parameter combinations.

Some national projections like those from the Netherlands (van den Hurk and
others [4]) or Australia (CSIRO and Bureau of Meteorology [5]) use the CMIP5
multimodel ensemble to represent modelling uncertainty, but there are advantages
to also providing a PPE derived from a single climate model.

We want to achieve this with coupled ocean–atmosphere simulations but for this
two part studywe limit ourselves to atmosphere-onlymodels to test the basic concept
of screening out poorly performing parameter combinations whilst maintaining a
diversity of credible process behaviour and future climate response.

https://doi.org/10.1007/s00382-019-04625-3
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Experimental Design and Elicitation
Design of a PPE first requires selection of a model configuration to perturb, then
eliciting prior probability distributions for the parameters to perturb as chosen by the
parameterisation experts, and finally deciding how to sample the parameters.

SHELF also allows for the elicitation to be completed after the meeting as long
as the experts understand what is required of them and have experience with one
example of a parameter already.

To elicit the plausible range for each parameter, the most important aspect is to
explain to the experts that the simulations will be evaluated against a wide range of
observational metrics so that (1) PPE members can be ruled out as implausible and
(2) the final uncertainty quantification can be based on constrained parameter ranges.

Many parameter ranges were based on the experts’ own analyses of very high
resolution process models such as Large Eddy Simulations or Cloud Resolving
Models.

Data and Methods
For TAMIP, in this study, we focus on evaluating the mean forecast error across the
16 start dates for day 2 and day 5 of the simulations.

Using the average errors across all 16 initial conditions makes the results more
robust, though it limits us to relating the TAMIP MSEs to annual mean MSEs from
the longer term ATMOS simulations.

The high correlations for surface air temperature and precipitation suggest that
the error growth of each variable is largely due to the same parameters at days 2 and
5.

The day 5 errors for outgoing shortwave radiation in the clear sky are slightly less
than the day 2 errors, but this comes from the Arctic and Antarctic where sea ice is
fixed over the 5-day forecast to its initial value, and so should be considered a feature
of the design of the TAMIP experiment.

Results
The similarity between the error patterns at the two timescales also applies for
most variables and single model variants, with only a few variables (in particular
250 hPa eastward wind and specific humidity) showing correlations close to zero for
an appreciable fraction of the ensemble.

The fraction might be reduced with smoother TAMIP patterns as described above,
but until this is tested, the distributions for these variables show that the link between
the two timescales is not robust across all parameter space, and so it cannot be
assumed that the forecast errors are indicative of the climate biases.

The negative uncentred correlation in this region reflects the development of
process errors on timescales longer than 5 days that lead to the change the sign of
the ensemble mean bias noted above.

For model tuning where the search is only across a more focussed parameter
space, there is still information in the patterns of 5-day forecast errors about the
mean climate biases.
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Discussion
The results show that this size of PPE, which is several times the number of param-
eters, offers new insights into the relationship between errors at different timescales
and the underlying processes, and is potentially valuable for model tuning and
prioritising which model errors need to be reduced by model development.

The impact of our results is discussed below in terms of the emergent relationships
between errors on the two timescales and how the influences of the parameters
affects these, followed by the implications for experimental design and then model
development.

Strong emergent relationships exist between the model errors at 5-day and 5-year
timescales, they can be exploited to inform the efficient design of a PPE suitable for
predictions across multiple timescales.

It is very likely that good performance at the 5-day timescale would also be an
important indicator of credibility of climate model projections of climate variability
and extremes, although our simulationswere not long enough to support investigation
of such links in the present paper.

Acknowledgement
A machine generated summary based on the work of Sexton, D. M. H.; Karmalkar,
A. V.; Murphy, J. M.; Williams, K. D.; Boutle, I. A.; Morcrette, C. J.; Stirling, A. J.;
Vosper, S. B. (2019 in Climate Dynamics).

Finding Plausible and Diverse Variants of a Climate Model.
Part II: Development and Validation of Methodology

https://doi.org/10.1007/s00382-019-04617-3

Abstract-Summary
Exploratory work towards developing a strategy to select variants of a state-of-the-art
but expensive climate model suitable for climate projection studies.

The strategy combines information from a set of relatively cheap, idealized
perturbed parameter ensemble (PPE) and CMIP5 multi-model ensemble (MME)
experiments, and uses two criteria as the basis to select model variants for a PPE
suitable for future projections: (a) acceptable model performance at two different
timescales, and (b) maintaining diversity in model response to climate change.

This relationship is used to filter out parts of parameter space that do not give
credible simulations of present day climate, while minimizing the impact on ranges
in forcings and feedbacks that drive model responses to climate change.

We use statistical emulation to explore the parameter space thoroughly, and
demonstrate that about 90% can be filtered out without affecting diversity in
global-scale climate change responses.

This leads to the identification of plausible parts of parameter space from which
model variants can be selected for projection studies.

https://doi.org/10.1007/s00382-019-04617-3
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Comparisons with the CMIP5 MME demonstrate that our approach can produce
a set of plausible model variants that span a relatively wide range in model response
to climate change.

Extended
This work in progress will be documented in future papers, underpinned by the proof
of concept developments described here.

Introduction
Multi-model ensembles (MMEs) comprising climate model simulations carried out
by various institutions all over the world (e.g. CMIP3, CMIP5 archive) have been
used widely to provide a range in climate change projections (Meehl et al. [6]; Taylor
et al. [7]).

As models become more sophisticated, for example, due to increases in their
horizontal and vertical resolutions to improve representation of various aspects of
climate variability and extremes (Scaife et al. [8]), creating a large ensemble for
probabilistic projections becomes increasingly expensive.

The PPE is based on the atmospheric component of the Hadley Centre Global
Environmental Model version 3 (HadGEM3-A; Hewitt et al. [9]) and is described
in detail in Part I. This paper is heuristic in the sense that we describe a set of
atmosphere-only PPE simulations and evaluation techniques capable of informing
the subsequent definition of a climate projection system, but without progressing
to the final step of evaluating our identified atmosphere model variants in coupled
(AOGCM) simulations with a dynamic ocean component.

Principles of Methodology
The selection is based on the following criteria: (1) Assessment of model perfor-
mance: The plausible variants must have satisfactory performance at Numerical
Weather Prediction (NWP; 5 days) and climate (5 or more years) timescales. (2)
Diversity in model response to climate change: The selected variants should explore
the range of forcings and feedbacks from the entire plausible sub-region of parameter
space identified in (1), as far as possible.

The seamless assessment approach, based on the idea that one can diagnose and
characterize model errors by assessing performance at different timescales ranging
from weather to climate, is very useful in this regard.

The spread in model responses to increasing GHGs is mainly determined by
uncertainties in radiative forcings and climate feedback processes (Bony et al. [10];
Webb et al. [11]).

The success of a PPE in either matching or augmenting MME ranges in relevant
aspects of climate response depends on the underlying model (Yokohata et al. [12])
and the experimental design.

Experimental Details
We used the Latin hypercube sampling technique (McKay et al. [13]), which ensures
that the prior probability of each parameter is sampled evenly over the 21-dimensional
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parameter space, to create a 250-member ensemble that allows perturbing all 21
independent parameters simultaneously.

This was determined from the model development exercise for GA4.0 (Walters
et al. [14]), and brought the total ensemble size to 251.

These AMIP-style experiments (Gates et al. [15]), which are forced at the ocean–
atmosphere interface using observed estimates of SSTs and sea ice, are suitable for
studying the impact of poorly constrained atmospheric and land surface parameters
on uncertainties in the performance and response of the model.

In order to diagnose forcings and feedbacks, the second phase of the Cloud
Feedback Model Intercomparison Project (CFMIP) proposed a set of idealized
experiments (CFMIP-2 Experimental Design; Bony et al. [16]).

PPE Results
While a majority of variables show positive relationships over land and oceans,
surface variables such as surface air temperature (tas) and downwelling longwave
radiation at the surface (rlds) have much stronger correlations over land because
cross-ensemble variations over the oceans are heavily constrained by the use of
prescribed SSTs in both experiments.

We must include: (1) variables such as temperature and precipitation that are
commonly used and important for understanding impacts of future climate change.
(2) Variables that show strong relationships between TAMIP and ATMOS errors,
which will allow us to find model variants that perform well at both time scales. (3)
Variables that have a ratio of parametric uncertainty to structural uncertainty greater
than 1, where the latter denotes the component of error that cannot be reduced by
changing parameter values (Rougier [17]).

One of the most important variables, surface air temperature (tas) was not chosen,
in spite of its TAMIP-ATMOS errors being correlated, because it shows relatively
small spread across the ensemble (see Part I).

Filtering Out Parts of Parameter Space
Although our numbers of completed ensemble members (194 for TAMIP and 80 for
ATMOS) are relatively small samples of a 21-dimensional parameter space, the Latin
Hypercube design fills the space efficiently enough to allow us to build an emulator
for the six assessment metrics at each of the two timescales to predict selected model
output variables at untried combinations of parameter values.

We determineMSE-based tolerances to rule out parts of parameter space based on
performance benchmarks relative to CMIP5, emulator predictions for model crashes
and on maintaining ranges of the diversity metrics.

To quantify uncertainty associated with internal variability, we calculated the
variance in MSE in a 16-member ATMOS ensemble of the standard version of the
model produced by varying only the initial conditions. (4) Emulator error In addition
to best-estimate predictions for the ATMOS and TAMIP MSE of untried parameter
combinations, our emulators provide estimates of the associated uncertainties.
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Plausible Model Variants: Selection and Validation
Once the parameter space is reduced to contain only acceptable and diverse variants
of the atmosphere model, the challenge is to pick a small subset of variants—called
‘plausible’, suitable for (notional) use to provide climate change projections using
the AOGCM configuration of the model.

The algorithm did have difficulty in picking model variants at the extremes of
diversity metrics, due to the presence of relatively few acceptable variants to pick
from.

The second criterion may appear counter-intuitive, since a more obvious aim
might be to pick the best performing 50 model variants (subject to spanning a range
of forcing and feedbacks), rather than variants that sample a range of performance
across each of the individual assessment metrics.

Tests showed that without the second criterion, the 50 chosen variants would not
include enough of the better performing models across each of the 12 assessment
metrics.

Emergent Properties
AMIP-style experiments, where SSTs are not allowed to adjust to changes in the
atmosphere, canpotentially result inwide variations in the netTOAradiationflux, and
provide a suitable design to expose the full consequences of atmospheric modelling
errors on this metric.

Also a risk that excessively restricting the range of acceptable values, through
comparison with a set of highly tuned multi-model results, could artificially restrict
the range of outcomes consistent with uncertainties in the large set of processes that
contribute to global energy balance (e.g., Collins et al. [18]).

Our discovery of a range of TOA net fluxes outside the CMIP5 range occurs
because the overall ranges in net TOA fluxes and albedo for the ‘acceptable’ model
variants are not reduced significantly compared to the emulated range across the full
model parameter space.

Conclusions
Themethodology—that includes (1) an assessment of model performance at weather
and climate timescales for a variety of metrics, (2) the use of benchmarking infor-
mation from structurally different models [specifically the CMIP5 multi-model
ensemble (MME)] and (3) the maintenance of diversity in forcings and feedbacks—
allows us to reduce significantly the prior parameter space specified by modelling
experts to a sub-region suitable for the selection of ensemble projection system
members.

The seamless assessment approach, in particular, shows that the large parameter
space can be efficiently explored by running the climate model in weather forecast
mode using 5 day “Transpose AMIP” (TAMIP) experiments, in conjunction with the
statistical technique of emulation.

In simulations of present day climate, the PPE explores the ranges of skill spanned
by the CMIP5 MME for most key climate variables, often with a few model variants
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better than the best performer from CMIP5 and a few variants worse than the worst
CMIP5 performer.

Discussion
The presence of strong relationships between weather and climate errors for many
variables will enable us to use inexpensive NWP hindcasts as an efficient way of pre-
screening the parameter space to exclude parts giving rise to physically unrealistic
model behavior, before investing in longer climate simulations either in atmospheric
or coupled mode.

While an initial assessment of seasonal mean errors showed strong relation-
ships with their annual mean counterparts, this does not necessarily imply that
seasonal errors could not play a useful role in refining future assessments of model
performance.

We also build emulators separately for TAMIP and ATMOS runs, but given that
there is a strong relationship betweenmodel performance across weather and climate
timescales, it may be more optimal to consider building emulators in future work
that linked the two timescales.

Acknowledgement
Amachine generated summary based on thework ofKarmalkar, AmbarishV.; Sexton,
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Multivariate Probabilistic Projections Using Imperfect Climate
Models Part I: Outline of Methodology

https://doi.org/10.1007/s00382-011-1208-9

Abstract-Summary
This method combines information from a perturbed physics ensemble, a set of
international climate models, and observations.

This is important if different sets of impacts scientists are to use these probabilistic
projections tomake coherent forecasts for the impacts of climate change, by inputting
several uncertain climate variables into their impacts models.

Unlike a single metric, multiple metrics reduce the risk of rewarding a model
variant which scores well due to a fortuitous compensation of errors rather than
because it is providing a realistic simulation of the observed quantity.

The method also has a quantity, called discrepancy, which represents the degree
of imperfection in the climate model i.e. it measures the extent to which missing
processes, choices of parameterisation schemes and approximations in the climate
model affect our ability to use outputs from climate models to make inferences about
the real system.

https://doi.org/10.1007/s00382-011-1208-9
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Discrepancy also provides a transparent way of incorporating improvements in
subsequent generations of climate models into probabilistic assessments.

The set of international climate models is used to derive some numbers for the
discrepancy term for the perturbed physics ensemble, and associated caveats with
doing this are discussed.

Introduction
Perturbed physics ensembles (PPEs) provide an alternative strategy for exploring
uncertainty in climate modelling (Murphy et al. [19]; Stainforth et al. [20]; Webb
et al. [21]; Yokohata et al. [12]), by generating ensembles where eachmember differs
from the standard version of a climate model by having a different set of values for
the model parameters.

Murphy et al. [19] used an interpolation technique so that the model variants
sampled by the PPE were used to predict the climate sensitivity and the relative
skill in simulating some observable aspects of the climate system (in that case, fields
of multiannual means of multiple climate variables) for untried points in parameter
space.

The method used by Murphy et al. [19] demonstrates several features: use of
probability to represent uncertainty; emulation, a technique in which a statistical
model is trained on a PPE and then used to predict the output of untried model
variants; using observations to constrain the probabilistic projection to higher quality
parts of parameter space.

Data
These were the model parameters, observations, model output that corresponds to
the observations and prediction variables, the true climate (of which the observations
and the model output are uncertain estimates), and the discrepancy which is a link
between the model output and the true climate.

Webb et al. [21] used the data from the first stage to choose 128 members that the
method of Murphy et al. [19] predicted to be relatively credible model variants that
spanned a wide range of parameter space and climate sensitivity.

As the spread of the PPE at larger spatial scales is generally much greater than
internal variability, the leading eigenvectors are mainly driven by the changes to
model parameters and are therefore representative of themajor changes in the physics
of the climate model across the PPE.

This is estimated from a 600-year long control integration of HadSM3, the model
variant with standard values for the parameters (Barnett et al. [22]).

Outline of the Calculations
The first stage of any Bayesian analysis is the specification of the uncertain objects
whichmake up the joint probability distribution e.g. themodel data, the observations.

The second term in the integrand is called the likelihood function of x given some
observed values and is equal to the probability of obtaining the observed values given
those values of x. The third term is the prior distribution of the values for the model
parameters.
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The general problem of predicting several model outputs constrained by several
observations requires an emulator for each element in o, and for each prediction
variable in yf.

The close relationship between the emulated and modelled values is not guaran-
teed as some PPEs sample parameter space in a way that is very different to a prior
distribution of where the best input is.

Specification of Discrepancy Distribution
In searching for points in the HadSM3 parameter space which best match the physics
of a multimodel ensemble member, it is important to base the search for analogues
on a wide range of climate variables, in order to reduce the risk that a fortuitous
match could be found through a compensation of errors.

For each multimodel ensemble, we used four different points in parameter space
from the initial 100,000, chosen randomly from the leading good fits of the initial
sample, and estimate four different best analogues.

Variations within the set of four analogues for eachmultimodel ensemble member
are small compared to variations between members, though there are examples
(e.g. when attempting to find analogues for the UIUC model), which confirm the
importance of sampling initial conditions in the optimisation of the best analogues.

Results and Discussion
For Nh = 6, 93% of the sampled values had lower probability density than the actual
observed values, indicating that the joint prior distribution, which combines climate
model data, emulators, parametric uncertainty, the discrepancy, and the choices we
make like the number of dimensions used to represent the observed quantities,
compares adequately with the actual observed values and we do not expect strong
sensitivity in the results or “surprises” as O’Hagan and Forster [23] call them.

By removing the historical discrepancy, fewer sampled points receive a relatively
high weight so that the effective sample size becomes smaller by a factor of 4; this
leads to a less smooth PDF which underestimates the range of climate sensitivity in
comparison with the full posterior distribution, and would lead to an increased risk
of poor decisions based on this PDF.

Conclusions
We have simply allowed the multimodel data to determine the relationship between
historical and future discrepancy, with the unavoidable caveat that structural errors
common to all current climate models are not included.

Webelieve that including a defensible estimate of discrepancy leads to amore real-
istic quantification of prediction uncertainties, and allows us to obtain an improved
estimate of the spread of possible future climate outcomes consistent with current
modelling technology and understanding of climate feedback processes, because we
have combined information from a PPE and a multimodel ensemble.

The final advantage is that the framework, especially the emulator, allows us to
assess the robustness of our results to a number of key methodological choices,
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including the prior distribution of model parameters, discrepancy, the set of multi-
model ensemble members, and the choice of the observational metrics used to
constrain the prediction.

Acknowledgement
A machine generated summary based on the work of Sexton, David M. H.; Murphy,
James M.; Collins, Mat; Webb, Mark J. (2011 in Climate Dynamics).

Multivariate Probabilistic Projections Using Imperfect Climate
Models. Part II: Robustness of Methodological Choices
and Consequences for Climate Sensitivity

https://doi.org/10.1007/s00382-011-1209-8

Abstract-Summary
A method for providing probabilistic climate projections, which applies a Bayesian
framework to information from a perturbed physics ensemble, a multimodel
ensemble and observations, was demonstrated in an accompanying paper.

This information allows us to account for the combined effects of more sources
of uncertainty than in any previous study of the equilibrium response to doubled
CO2 concentrations, namely parametric and structuralmodelling uncertainty, internal
variability, and observational uncertainty.

Such probabilistic projections are dependent on the climate models and observa-
tions used but also contain an element of expert judgement.

Two expert choices in the methodology involve the amount of information used
to (1) specify the effects of structural modelling uncertainty and (2) represent the
observational metrics that constrain the probabilistic climate projections.

We are therefore confident that, despite sampling sources of uncertainty more
comprehensively than previously, the improved multivariate treatment of obser-
vational metrics has narrowed the probability distribution of climate sensitivity
consistent with evidence currently available.

The main caveat is that the handling of structural uncertainty does not account for
systematic errors common to the current set of climate models and finding methods
to assess the impact of this provides a major challenge.

Introduction
Themethod in Part 1 uses a Bayesian framework based on Rougier [17] where a joint
probability distribution is constructed to contain probabilistic information about the
uncertain objects in the climate projection problem: model parameters; observations;
the true climate, consisting of the future that wewant to predict and the past whichwe
can compare with the observations; and model output, corresponding to our choice
of observed climate variables and also variables we want to predict.

https://doi.org/10.1007/s00382-011-1209-8
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By assuming that this set of structural differences are exchangeable with the
structural differences of our climate model with the real system i.e. they are effec-
tively sampled from the same distribution, we can pool these prediction errors over
the multimodel ensemble and use them to inform the mean and covariance of the
discrepancy term.

Effect of Dimensionality Used to Represent Historical Climate
ESS is a measure of how effectively the observational information restricts the prior
parameter space to regions of parameter space that are consistent with the observa-
tions used to constrain the PDF; so if all weight was assigned to one sample, ESS
would be 1 (though this would be a strong indication that the posterior PDF would
not be robust if the full sample was repeated); if all samples were assigned equal
weight, ESS would be equal to the sample size, indicating no constraint at all from
the observations.

For the observational constraint, an increase in Nh makes it harder to randomly
select a point in parameter space that is a reasonable match to the observed values
of all Nh historical eigenvectors, making the weights less evenly distributed, and so
ESS decreases.

This indicates that interactions between estimated model errors (obtained by
projecting emulated and observed values of relevant climate variables onto our Nh

eigenvectors) and the off-diagonal terms in the discrepancy covariancematrix (repre-
senting relationships between the structural component of model errors in different
variables) can play a significant role in determining variations in the weights across
parameter space, and hence the ESS.

Sensitivity Tests
We check the sensitivity of our probabilistic climate projections to a number of
subjective choices that affect the expert prior probability on the model parameters,
the discrepancy term, and number of eigenvectors of historical climate variables used
to estimate the relative likelihood of points in parameter space.

Based on these sensitivity tests, the median of the posterior PDF of climate sensi-
tivity is between 3.2 and 3.3 K, with the 5th percentile between 2.2 and 2.4 K, and the
95th percentile is between 4.1 and 4.5 K. We can make a direct comparison between
our results and those of our previous study Murphy et al. [19].

Considering first the prior PDFs, Murphy et al. [19] used a uniform sampling of
parameter space, and found a 95th percentile of the prior PDF of climate sensitivity
of 5.3 K. This compares to 5.0 K for the prior PDF in the present study, when an
equivalent uniform sampling is tried as one of our sensitivity tests.

Conclusions
To make an expert assessment about the likely range of equilibrium climate sensi-
tivity, Meehl et al. [24] used PDFs of climate sensitivities from two main categories
of study (see their Box 10.2 for details).

This is because the AR4 assessment included evidence based on observational
constraints offered by past climate change (the first category identified above), which
is not considered in our study.
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Extensions of our approach to include constraints based on historical climate
change are feasible, and offer the prospect of a transparent, quantitative and testable
synthesis of much of the evidence from both major categories assessed in AR4.

In our method, the prior knowledge can be based on expert elicitation (e.g. the
prior distribution for the model parameters), or on our judgement (e.g. that the other
climatemodels sample a distribution of climate processes not explored by the variants
of HadSM3, and so provides a meaningful way to inform the discrepancy term).
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Climate Model Errors, Feedbacks and Forcings: A Comparison
of Perturbed Physics and Multi-Model Ensembles

https://doi.org/10.1007/s00382-010-0808-0

Abstract-Summary
Ensembles of climate model simulations are required for input into probabilistic
assessments of the risk of future climate change in which uncertainties are quantified.

Model-error characteristics derived from time-averaged two-dimensional fields
of observed climate variables indicate that the perturbed physics approach is capable
of sampling a relatively wide range of different mean climate states, consistent with
simple estimates of observational uncertainty and comparable to the range of mean
states sampled by the multi-model ensemble.

The perturbed physics approach is also capable of sampling a relativelywide range
of climate forcings and climate feedbacks under enhanced levels of greenhouse gases,
again comparable with the multi-model ensemble.

Extended
The perturbed physics ensembles described here, together with others documented
elsewhere, are combinedwith a statistical emulator of themodel parameter space (see
e.g., Rougier and others 25 for an example) and a “time-scaling” technique (Harris
and others [26] which maps equilibrium to transient responses taking into account
any errors that may arise because of a mismatch between the patterns of transient
and equilibrium.

The perturbed physics approach can sample a wide range of different model
“errors” in two-dimensional time-averaged climate fields for a number of different
variables that for many variables are comparable with uncertainties in the obser-
vations and comparable with the errors in the members of the multi-model
archive.

The perturbed physics approach can sample a wide range of global-mean
feedbacks under climate change.

https://doi.org/10.1007/s00382-010-0808-0
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Introduction
The main motivation for this paper is to document the design and characteristics
of a number of perturbed physics ensembles that have been produced as part of an
extensive programme of research at theMetOfficeHadleyCentre to produce regional
climate projections (e.g. Murphy and others [27, 28]) and to contrast aspects of those
perturbed physics ensembles with corresponding multi-model ensembles.

Wemight naively assume that themulti-model ensemble containsmembers with a
wide range of different error characteristics, whereas the perturbed-physics approach
produces members with very similar baseline climates and thus very similar errors.

We know that the perturbed physics approach is capable of producing model
variants with a wide range of different feedbacks strengths under climate change
(e.g. Webb and others [21]; Sanderson and others [29]).

Question 4 is highly relevant whenwe use ensembles of climatemodel projections
to generate predictions of climate change expressed in terms of PDFs which provide
a measure the uncertainty (or credibility) in that prediction.

Climate Model Ensembles and Variables
For more complex versions of the model (e.g. using a dynamical ocean component
rather than a mixed-layer, q-flux or slab component) fewer ensemble members are
possible because of the extra resources required to spin-up model versions and run
scenario experiments.

In the design of the ensemble, an attempt was made to minimise the average of the
root mean squared error of a number of time-averaged model fields while sampling
a wide range of surface and atmospheric feedbacks under climate change.

The model versions are therefore suitable for quantifying uncertainty and exam-
ining feedbacks, etc. This ensemble uses the fully coupled version of HadCM3 but
with perturbations only to parameters in the atmosphere component (an updated
version of the ensemble described in Collins and others [18]).

For historical reasons, the sea-ice scheme in HadCM3 is contained in the atmo-
sphere component of the model and parameters in the scheme are perturbed in line
with the equivalent S-PPE-M ensemble.

Model “Errors”
In the slab-ocean multi model ensemble, S-MME, we see a similar range of land
SAT biases as in the case of the perturbed physics ensembles, but a somewhat wider
range of RMS errors.

Both SST bias and RMS errors are of a similar magnitude in slab-ocean perturbed
physics and multi model ensembles and are in many cases smaller than those errors
seen in the non-flux-adjusted CMIP3 coupled models (AO-MME).

Global mean biases in precipitation in the slab-model ensembles follow a similar
pattern to those in global land surface air temperature and SST in the different
ensembles, except that the S-MME has a relatively wider range of biases than any
of the other slab-ocean perturbed physics ensembles.
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For the surface sensible heat flux, the range of both biases and RMS errors is
generally smaller in the perturbed physics ensembles in comparison with the multi-
model ensembles.

Feedbacks and Forcings
In the case of the AO-PPE-O ensemble, with identical HadCM3 atmosphere compo-
nents but perturbations to parameters in the ocean model, there is a similarly small
spread.

Despite the fact that the volcanic forcing time series of stratospheric optical depth
is precisely the same in each member of the perturbed physics ensemble, the spread
in total negative volcanic radiative forcing is comparable with the spread in the
multi-model case in which different input forcing data are used.

LW forcing in 1995–2004 is centred around 2.4 W m−2 in both the multi-model
and perturbed-physics ensembles, with a range of 1.5–3.1 W m−2 in the AO-MME
case and a smaller range of 2.1–2.7 W m−2 in the AO-PPE-A case (in both cases the
range is greater than would be expected from natural variability).

Relating Model Errors to Feedbacks
Having examined model errors and climate change feedbacks in the multi-model and
perturbed physics ensembles, we now examine the relationships between them.

To improve models we need to know how to target research to do this, i.e., by
quantifying the relationship between error and climate feedback, wemay learnwhich
improvements to different aspects of the model simulations will lead to the most
progress in reducing uncertainty in predictions.

The only variable in which there is a reasonably high correlation between errors
and feedbacks in both perturbed physics and multi model ensembles are the biases in
the global mean cloud amount (coefficients around 0.6–0.7, see also Yokohata and
others [30]).

For the perturbed physics ensembles there are weak to moderately strong correla-
tions for a number of variables suggesting that the combination of those (and other)
variables into a single metric would be a way of constraining the climate feedback
parameter.

Discussion and Conclusions
The perturbed physics approach can sample a wide range of different model “errors”
in two-dimensional time-averaged climate fields for a number of different variables
that for many variables are comparable with uncertainties in the observations and
comparable with the errors in the members of the multi-model archive.

It is possible to produce quite different baseline climates with the perturbed
physics approach such that the ensemble-mean appears as the “best” model in
comparison with any individual ensemble member.

For regional measures, and for variables not examined here such as variability
or extremes, there may be differences between perturbed physics and multi model
ensembles which do not fit with these general conclusions.
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In our companion work on producing probabilistic climate change projections,
we combine perturbed physics and multi-model ensemble information together with
observations and estimates of uncertainty in observations to produce projects based
on as much information about the climate system as is possible (Murphy and others
[27, 28]).
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Predicting Climate Change Using Response Theory: Global
Averages and Spatial Patterns

https://doi.org/10.1007/s10955-016-1506-z

Abstract-Summary
The provision of accurate methods for predicting the climate response to anthro-
pogenic and natural forcings is a key contemporary scientific challenge.

Response theory allows one to practically compute the time-dependent measure
supported on the pullback attractor of the climate system, whose dynamics is non-
autonomous as a result of time-dependent forcings.

We assess strengths and limitations of the response theory in predicting the
changes in the globally averaged values of surface temperature and of the yearly
total precipitation, as well as in their spatial patterns.

We also show how it is possible to define accurately concepts like the inertia of
the climate system or to predict when climate change is detectable given a scenario
of forcing.

Extended
Response theory allows to practically compute such a time-dependent measure
starting from the invariant measure of a suitably chosen reference autonomous
dynamics.

Introduction
One needs to consider that the study of climate faces, on top of all the difficulties that
are intrinsic to any nonequilibrium system, the following additional aspects thatmake
it especially hard to advance its understanding: the presence of well-defined subdo-
mains—the atmosphere, the ocean, etc. —featuring extremely different physical and
chemical properties, dominating dynamical processes, and characteristic time-scales;
the complex processes coupling such subdomains; the presence of a continuously
varying set of forcings resulting from, e.g., the fluctuations in the incoming solar
radiation and the processes—natural and anthropogenic—altering the atmospheric

https://doi.org/10.1007/s10955-016-1506-z
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composition; the lack of scale separation between different processes, which requires
a profound revision of the standard methods for model reduction/projection to the
slow manifold, and calls for the unavoidable need of complex parametrization of
subgrid scale processes in numerical models; the impossibility to have detailed and
homogeneous observations of the climatic fields with extremely high-resolution in
time and in space, and the need to integrate direct and indirect measurements when
trying to reconstruct the past climate state beyond the industrial era; the fact that we
can observe only one realization of the process.

Pullback Attractor and Climate Response
After a sufficiently long time, related to the slowest time scale of the system, at
each instant the statistical properties of the ensemble of simulations do not depend
anymore on the choice of the initial conditions.

A prominent example of this procedure is given by how simulations of past and
historical climate conditions are performed in the modeling exercises such as those
demanded by the IPCC [31, 32], where time-dependent climate forcings due to
changes in greenhouse gases, volcanic eruptions, changes in the solar irradiance, and
other astronomical effects are taken into account for defining the radiative forcing to
the system.

In order to construct the time dependent measure following directly the definition
of the pullback attractor, we need to construct a different ensemble of simulations
for each choice of F(x, t).

In other terms, from the knowledge of the time dependent measure of one specific
pullback attractor, we can derive the time dependent measures of a family of pullback
attractors.

A Climate Model of Intermediate Complexity: The Planet
Simulator—PLASIM
A detailed study of the impact of changing oceanic heat transports on the dynamics
and thermodynamics of the atmosphere can be found in [33].

We remark that previous analyses have shown that using a spatial resolution
approximately equivalent to T21 allows for obtaining an accurate representation of
the major large scale features of the climate system.

While the lack of a dynamical ocean hinders the possibility of having a good
representation of the climate variability on multidecadal or longer timescales, the
climate simulated by PLASIM is definitely Earth-like, featuring qualitatively correct
large scale features and turbulent atmospheric dynamics.

We are confident of the thermodynamic consistency of ourmodel, which is crucial
for evaluating correctly the climate response to radiative forcing resulting from
changes in the opacity of the atmosphere.

Results
One expects that coarse grained (in space) quantities will have a better signal-to-
noise ratio and will allow for performing higher precision climate projection using
response theory.
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We will begin by looking into globally averaged quantities, and then address the
problem of predicting the spatial patterns of climate change.

We dedicate some additional care in studying the climate response in terms of
changes in the globally averaged surface temperature.

We would like to be able to assess when not only the projected change in the
ensemble average is distinguishable from the statistics of the control run, but, rather,
when an actual individual simulation is incompatible with the statistics of the unper-
turbed climate, because we live in one of such realizations, and not on any averaged
quantity.

The methods of response theory allow us to treat seamlessly also the problem of
predicting the climate response for (spatially) local observables.

A Critical Summary of the Results
The performance of response theory in predicting the change in the globally averaged
surface temperature and precipitation is rather good at all time horizons, with the
predicted response falling within the ensemble variability of the direct simulations
for all time horizons except for a minor discrepancy in the time window 40–60 y.
Additionally, our results confirm the presence of a strong linear link in the form of
modifiedClausius–Clapeyron relation between changes in such quantities, as already
discussed in the literature.

Response theory provides an excellent tool also for predicting the change in the
zonal mean of the surface temperature, except for an underestimation of the warming
in the very high latitude regions in the time horizons of 40–60 y. This is, in fact, the
reason for the small bias found already when looking at the prediction of the globally
averaged surface temperature.

Challenges and Future Perspectives
The ab-initio construction of the linear response operator has proved elusive because
of the difficulties associatedwith dealing effectively with both the unstable and stable
directions in the tangent space.

What is extremely interesting aboutBVs is that (1) their growth factors are strongly
dependent on the region of the phase space where the system is; and (2) the choice of
the reference normof the perturbation and of the time interval between two successive
renormalization procedures (breeding period) effects strongly the properties of the
dominant instabilities specifically active on the chosen time scales.

Of meteo-climatic relevance it has been shown that a relatively low number of
BVs is extremely effective for reconstructing the properties of the unstable space,
and that BVs contain useful information on spatially localized features, so that it
may be worth trying to construct an approximation to the Ruelle response operator
using the BVs.

Using such results in a reduced state space might provide a novel and effective
method for approaching the problem of climate response.
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Beyond Forcing Scenarios: Predicting Climate Change
Through Response Operators in a Coupled General
Circulation Model

https://doi.org/10.1038/s41598-020-65297-2

Abstract-Summary
Global ClimateModels are key tools for predicting the future response of the climate
system to a variety of natural and anthropogenic forcings.

We show how to use statistical mechanics to construct operators able to flexibly
predict climate change.

We perform our study using a fully coupledmodel—MPI-ESMv.1.2—and for the
first time we prove the effectiveness of response theory in predicting future climate
response to CO2 increase on a vast range of temporal scales, from inter-annual to
centennial, and for very diverse climatic variables.

The change in the Atlantic Meridional Overturning Circulation (AMOC) and of
the Antarctic Circumpolar Current (ACC) is accurately predicted.

We are able to predict accurately the temperature change in the North Atlantic.

Introduction
Global climate models (GCMs) are currently the most advanced tools for studying
future climate change; their future projections are key ingredients of the reports of
the Intergovernmental Panel on Climate Change (IPCC) and are key for climate
negotiations [34].

For IPCC-class GCMs, future climate projections are usually constructed by
defining a few climate forcing scenarios, given by changes in the composition of
the atmosphere and in the land use, each corresponding to a different intensity and
time modulation of the equivalent anthropogenic forcing.

No rigorous prescription exists for translating the climate change projections if
one wants to consider different time modulations of a given forcing, e.g. a faster or
slower CO2 increase.

Response Theory and Climate Change
The FDT has recently been key to inspiring the theory of emergent constraints,
which are tools for reducing the uncertainties on climate change by looking at empir-
ical relations between climate response and variability of some given observables
[35, 36].

Response theory is a generalisation of the FDT that allows one to to predict how
the statistical properties of general—near or far from equilibrium, deterministic or
stochastic—systems change as a result of forcings.

Encouragingly, response theory has recently been shown to have a great potential
for predicting climate change in multi-model ensembles of CMIP5 atmosphere–
ocean coupled GCMs outputs [37].

https://doi.org/10.1038/s41598-020-65297-2
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The response of a a slow (oceanic) climatic observable of interest has been inves-
tigated so far in relation to the change in the dynamical properties of some other
climatic observable, by constructing a linear regression between the predictand and
predictor using the properties of the natural variability of the system [38–41].

Predicting Climate Change Using the Ruelle Response Theory
We then focus on two key aspects of the large-scale ocean circulation, namely the
Atlantic Meridional Overturning Circulation (AMOC) [42, 43] and the Antarctic
Circumpolar Current (ACC) [44], and show that we can achieve excellent skill in
predicting the the slow modes of the climate response.

In current conditions, the ocean is well-known to absorb a large fraction of the
Earth’s energy imbalance due to global warming and to store it through its large
thermal inertia, up to time scales defined by the deep ocean circulation [45].

Results
Of the presence of slow oceanic time scales, the Green function significantly departs
from a simple exponential relaxation behavior, which is sometimes adopted to
describe the relaxation of the climate system to forcings [46, 47].

On short time scales, we have a reduction of AMOC, as a result of the negative
value of the Green function.

On longer time scales (>100 y), a negative feedback acts as a restoringmechanism,
associated with a positive sign in the Green function.

On decadal scales, we have a loss in the correlation between wind stress and
ACC, corresponding to the Green function turning negative after about 30 y. Beyond
these time scales, we have time-wise coherent response of the AMOC and ACC,
underlying the response of the global ocean circulation.

This has profound implications for setting the time scales of the ACC and AMOC
response.

Discussion and Conclusions
In all considered cases response theory successfully predicts the time-dependent
change.

Ruelle’s response theory provides a relatively simple yet robust and powerful set
of diagnostic and prognostic tools to study the response of climatic observables to
external forcings.

The availability of a large number of ensemble members allows for constructing
more accurate Green functions and for studying effectively the response of a broader
class of climatic observables.

A promising application is the definition of functional relations between the
response of different observables of a system to forcings, in the spirit of some recent
investigations (see, e.g. Zappa and others [48]).

Being based on a perturbative approach, response theory (linear and nonlinear)
has, by definition, only a limited range of applicability (e.g. one cannot use it to treat
arbitrarily strong forcings).
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Appendix A: Methods
The susceptibility gives a spectroscopic description of the properties of the response
of the observable, and its analysis can give interesting information on the most
relevant time scales and related processes that determine the response of the
observable.

From the Green function, one could in principle compute the susceptibility and
perform a spectral analysis of the properties of the response.

This translates into the fact that, despite the Green function and the susceptibility
being strictly connected, to obtain a satisfactory estimate for the latter require a
statistics orders of magnitude larger than for the former, and possibly different and
dedicated numerical estimation approaches [49–51].

An analysis of the susceptibility in experiments similar to what done in this
work was attempted in Ragone and others [52], but using ten times more ensemble
members.

While the analysis of the detailed frequency response of a climate model remains
a very interesting and promising topic, it has to likely wait until experiments with at
least several hundreds ensemble members will be available.
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Improving Prediction Skill of Imperfect Turbulent Models
Through Statistical Response and Information Theory

https://doi.org/10.1007/s00332-015-9274-5

Abstract-Summary
Statistical uncertainty quantification (UQ) to the response to the change in forcing
or uncertain initial data in such complex turbulent systems requires the use of imper-
fect models due to the lack of both physical understanding and the overwhelming
computational demands of Monte Carlo simulation with a large-dimensional phase
space.

The systematic development of reduced low-order imperfect statistical models
for UQ in turbulent dynamical systems is a grand challenge.

The forty mode Lorenz 96 (L-96) model which mimics forced baroclinic turbu-
lence is utilized as a test bed for the calibration and predicting phases for the hierarchy
of computationally cheap imperfect closure models both in the full phase space and
in a reduced three-dimensional subspace containing the most energetic modes.

For reduced-order model for UQ in the three-dimensional subspace for L-96, the
systematic low-order imperfect closure models coupled with the training strategy
provide the highest predictive skill over other existing methods for general forced

https://doi.org/10.1007/s00332-015-9274-5
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response yet have simple design principles based on a statistical global energy
equation.

The systematic imperfect closure models and the calibration strategies for UQ for
the L-96 model serve as a new template for similar strategies for UQ with model
error in vastly more complex realistic turbulent dynamical systems.

Introduction
A conceptual framework intermediate between detailed dynamical physical
modeling and purely statistical analysis based on empirical information theory has
been proposed (Majda and Gershgorin [53, 54]; Gershgorin and Majda [55]) to
address imperfect model fidelity and sensitivity problems.

In Majda and Gershgorin [56], a direct link by utilizing fluctuation–dissipa-
tion theorem (FDT) for complex systems together with the framework of empirical
information theory for improving imperfect models is developed.

We investigate and develop systematic strategies for improving the imperfect
model prediction skill for complex turbulent dynamical systems by employing ideas
in both the information-theoretic framework and linear response theory mentioned
above.

Following the direct link between the linear response and empirical information
theory demonstrated in Majda and Gershgorin [56] for models with equilibrium
fidelity, it is shown that they can be seamlessly combined into a precise systematic
framework to improve imperfect model sensitivity through measuring the informa-
tion error of the linear response operator in the training phase with unperturbed
statistics.

Theories for Improving Imperfect Model Prediction Skill
The information theoryoffers a least biasedmeasure for quantifying the error between
the imperfect model prediction and the truth; and the linear response theory gives
an important tool relating the model responses to stationary state statistics of the
dynamical system.

With the help of these theories (Majda and Gershgorin [53, 56]), one systematical
process to tune model parameters in a training phase to possibly achieve the optimal
model with sensitivity to all kinds of perturbations is discussed.

It is reasonable to claim that an imperfect model with precise prediction of this
linear response operator should possess uniformly good sensitivity to different kinds
of perturbations.

Considering all these good features of the linear response operator, information
barrier due to model sensitivity to perturbations can be overcome by minimizing the
information error in the imperfect model kicked response distribution relative to the
true response from observation data (Majda and Gershgorin [56]).

L-96 System as a Test Bed and Its Statistical Dynamics
To quantify these uncertainties, we are interested in resolving the statistical features
of this dynamical system, especially the first two-order moments.
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The equationswill never be closed under this process by calculating the dynamical
equations for each order moments.

Even though we derive the moment equations above from the L-96 system under
homogeneous assumption for the sake of analysis and will focus on them in the
following discussions, the moment equations are actually quite representative and
are easy to be extended to general nonlinear systems with conservative quadratic
forms.

We can focus on the simplified moment equations and investigate the statistical
properties inside this system.

Pointwise statistics by only considering the variance at each grid point, and
ignoring the correlations between different grids may not be sufficient for accurate
model predictions.

This will end up with large information barrier when only one-point statistics are
considered in the imperfect model.

Statistical Closure Methods in Full Phase Space
The imperfect model prediction skill as well as the improvement through the infor-
mation–response framework will be compared through checking the models’ ability
to capture the responses to several different types of perturbed external forcing terms.

The dynamical imperfect model using the closure method offers more precise
prediction for the nonlinear responses for both the mean and variance.

Two rows, we show themodel outputs for themean and total variance with closure
methodsGC1,GC2, andMQGcomparedwith the truth fromMonteCarlo simulation.

The model prediction skill increases as more and more detailed calibration about
the nonlinear flux are proposed from GC1 to GC2, MQG.

In the signal part, the error in the mean can be minimized to small amount for
all three models under optimal parameter; while for dispersion part, MQG and GC2
have much better prediction for the prediction in variance compared with GC1.

Low-Order Models in a Reduced Subspace
Keeping all these shortcomings inmind, we propose the following further corrections
to the reduced-order methods and refer the resulting model as the corrected model.

We are interested in checking whether these correction strategies for the reduced
methods can actually improve the model prediction skill.

In the full space case, we need to first tune the reduced model parameters in a
training phase for optimal responses.

Observing the errors in signal and dispersion part separately for the original model
in the second row, it can be found that large inherent information barrier (especially
for the mean prediction) exists for improving the model prediction skill no matter
how well we tune the parameters in the training phase.

GC2 can even offer better prediction in the reduced-order case than ROMQG
model considering that it is also cheaper in computation.
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Conclusion and Future Work
Several important points can be concluded from the theoretical analysis and numer-
ical tests using the L-96 test bed: The second-order statistical closure models outper-
form the linear FDT predictions for capturing responses to external perturbations,
especially in regimes with larger perturbations and stronger nonlinearities.

This is an important result showing that higher-order moments can be determined
by the lower-order approximations and offers important guideline for designing
imperfect closure schemes; Still accurate single-point statistics prediction is not suffi-
cient for the imperfect models to break information barriers (Majda and Gershgorin
[53, 56]; Majda and Branicki [57]).

Imperfect model prediction skill can be improved uniformly regardless of the
specific perturbation form applied; It is important for practical applications that the
information–response framework can also be applied systematically to reduced-order
models which focus on capturing the uncertainties in the dominant modes.
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Book Reading List

An Introduction to the Theory of Climate
By Monin, A.S. (1986).

During the last 20 years the study of, and the prediction of, changes in the climate
of our planet have become an urgent social imperative, addressed to scientists the
world over. The first principles on which to base such a study were formulated in
1974 in Stockholm, at the international GARP conference on the physical funda-
mentals of climate theory and climate modeling. In 1979 the World Meteorological
Organization and the International Council of Scientific Unions decided to conduct
a global program of climate research.

Please see https://www.springer.com/gp/book/9789027719355 for original
source.

Non-equilibrium Thermodynamics and the Production of Entropy
By Kleidon, A. (Ed), Lorenz, R. D. (Ed) (2005).

The present volume studies the application of concepts from non-equilibrium
thermodynamics to a variety of research topics. Emphasis is on the Maximum
Entropy Production (MEP) principle and applications to Geosphere-Biosphere
couplings. Written by leading researchers form a wide range of background, the
book proposed to give a first coherent account of an emerging field at the interface
of thermodynamics, geophysics and life sciences.

Please see https://www.springer.com/gp/book/9783540224952 for original
source.

https://www.springer.com/gp/book/9789027719355
https://www.springer.com/gp/book/9783540224952
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Theory and Practice of Climate Adaptation
By Alves, F. (Ed), Leal Filho, W. (Ed), Azeiteiro, U. (Ed) (2018).

Climate change is one of the greatest challenges of our time. As such, both the
Fifth Assessment Report (AR5) released by the Intergovernmental Panel on Climate
Change (IPCC) and the 25th Conference of the Parties (COP 25) recommendations
call for action not only from government, but also from various stakeholders. Apart
from the knowledge offered by modeling and forecasts, which allows the readers
to understand the problem and how it is likely to develop in the future, the book
highlights approaches, methods and tools that can help readers cope with the social,
economic and political problems posed by climate change.

Please see https://www.springer.com/gp/book/9783319728735 for original
source.

Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo
Theory, and Climate Dynamics
By Ghil, M., Childress, S. (1987).

The vigorous stirring of a cup of tea gives rise, as we all know, to interesting fluid
dynamical phenomena, some of which are very hard to explain. In this book our “cup
of tea” contains the currents of the Earth’s atmosphere, oceans,mantle, and fluid core.
Our goal is to understand the basic physical processes which are most important in
describing what we observe, directly or indirectly, in these complex systems. While
in many respects our understanding is measured by the ability to predict, the focus
here will be on relatively simple models which can aid our physical intuition by
suggesting useful mathematical methods of investigation.

Please see https://www.springer.com/gp/book/9780387964751 for original
source.
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