
Chapter 6
Blind Super-resolution of Faces
for Surveillance

T. M. Nimisha and A. N. Rajagopalan

6.1 Introduction

Super-resolution (SR) refers to a class of techniques that derive a high resolution
image from its low resolution (LR) counterpart. A vast amount of literature exists on
SR spanning both multi and single image approaches. The classical approaches in
SR use sub-pixel motion across multiple low resolution (LR) frames. These works
[3, 11] typically assume that the blur encountered in the LR images is only due to
downsampling and that the camera is static while capturing LR frames. The only
motion addressed in these frameworks is the inter-frame motion which is used to
infer the underlying high resolution (HR) image.

Whilemulti-frame approaches supplementmissing information in one frame from
another, availability of multiple frames cannot always be assured. Single image SR
[12, 17] is a lot more ill-posed and works by hallucinating the missing data or by
exploiting patch-recurrences within an image across different scales. Of-late, many
deep learning approaches have been proposed [9, 22, 24] that address the single
image SR problem. However, all these methods assume that the blur encountered in
the LR frame is only due to downsampling action.

Estimating an HR frame directly from a single motion blurred LR frame is
highly ill-posed and is of great relevance in surveillance scenarios. Motion blur
is an inevitable phenomenon that co-occurs with long exposure photography. Blur
is considered as a nuisance in many image processing algorithms and inverting it is
a difficult proposition. Many works exist [6, 23, 40, 49] that focus on the issue of
removing motion blur due to camera shake from images. All these works aim for
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deblurring as the main goal and do not really consider resolution enhancement. SR
and deblurring are well-studied problems but are treated as independent topics. Only
a few works [33, 41, 47, 49] exist in the literature that addresses both SR and motion
deblurring.

The challenge in arriving at an SR image escalates when the underlying LR
frames have motion blur artifacts. These situations arise when the subject of interest
is far away from the camera and the subject/camera is moving. In these situations, the
observed images will be degraded both bymotion blur and the downsampling action.
Since face recognition (FR) systems are of great use nowadays and are employed as
biometric inmanyareas, amotiondistortedLRprobe image that deviates significantly
from that of the gallery image reduces recognition accuracy. This necessitates the
need for single image blind SR. The class of algorithms that estimates an HR image
from LR irrespective of artifacts due to motion blur are referred to as blind SR
algorithms. It is interesting to note that motion blur occurs due to averaging of several
warped instances of the clean frame during exposure. Thus, a single blurred LR frame
by default aggregates information from multiple clean frames. Hence, scope exists
to harness this aggregated information for deblurring as well as super-resolving.

Performing blind SR sequentially can lead to poor results. The error from the
first stage (either SR or deblurring) can propagate to the second and worsen the final
output.We propose here a blind SR framework that jointly deblurs and upsamples the
probe images to help in achieving better recognition rates for FR systems. Priorworks
that have addressed the blind SR problem [26, 33, 41, 49], for instance, assumed a
multi-frame approach. In contrast, ours is a single image blind SR specifically aimed
at improving the accuracy of face recognition systems in surveillance applications.

In this work, we explore invariant feature learning for the purpose of single image
SR frommotion blurred frames.We employ a deep learning framework for achieving
the task at hand. With the underlying idea that natural images follow a sparse distri-
bution and that a shallow dictionary can capture invariance in a sparse domain, we
attempt to generalize this invariance to deep non-linear networks. Our network con-
sists of an Encoder-Decoder pair that learns the clean high resolution data domain.
This is followed by a Generative Adversarial Network (GAN) that is trained to pro-
duce blur and resolution invariant features from LR blurred frames. The learned
representations are processed by the Decoder to get the final result. We deploy this
framework for face surveillance applications where the collected probe images are
highly distorted.

6.2 Related Works

Deblurring and SR, though two extensively studied topics, have mostly been dealt
with independently. SR frameworks assume static camera leading to LR images
affectedbydownsampling alone.Thesemethods neglect the effect ofmotion artifacts.
Similarly, deblurring approaches assume the availability of high resolution frames
and do not work well at a lower resolution. Hence, the performance of these methods
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drops considerably when the assumptions of blur/resolution do not hold. We discuss
here in brief conventional and deep learning based works on deblurring and SR.
These can be mainly classified as single image and multi-image approaches.

Super-resolution: Existing works in SR can be broadly classified into two cate-
gories (1)Multi-image approaches:Methods [3, 11] that utilize inter-frame sub-pixel
motion in the LR frames to restore the HR image and (2) Single image based: These
techniques either resort to exemplars or patch-recurrence (also termed ‘image hallu-
cination’) [12, 17] or patch-based learning [48, 50] to create the HR image. Single
image SR techniques (which is the focus of our work) employ a database of LR and
HR image pairs to learn the correspondences between LR andHR image patches [48,
50]. The patch correspondences thus learned are used during testing to map an LR
image to its most likely HR version. However, these techniques are known to hallu-
cinate HR details that may not even be present in the true HR image. Based on the
observation that patches in a natural image tend to recur within the same image, both
at the same as well as at different scales, the works in [12, 17] sought to combine the
strengths of both traditional multi-image SR as well as example-based SR. Recently,
deep learning and generative networks have also made forays into computer vision
and image processing, and their influence and impact are growing rapidly by the day.
Single image SR with deep networks [9, 22, 24] have shown remarkable results that
outperform traditional methods. Dong et al. [9] introduce a skip connection-based
network that learns residual features for SR. The work in [22] uses a GAN architec-
ture to produce photo-realistic SR outputs from a single LR frame. It is important
to note that state-of-the-art SR techniques achieve remarkable results of resolution
enhancement only when there is no motion blur in the LR input.

Deblurring: Many methods exist [7, 19, 49] that rely on information from multiple
frames captured using video or burst mode and work by harnessing the information
from these frames to solve for the underlying original (latent) image. Single image
blind deblurring is considerably more challenging as the blur kernel, as well as
the latent image, must be estimated from just one observation. Works in [6, 23,
40] perform an iterative approach to solve for the latent image and blur kernel.
Most of these methods employ priors on the underlying clean image and motion to
stabilize the optimization process. The most widely used priors are total variational
regularizer [5, 35], sparsity prior on image gradients, l1/ l2 image regularization [21],
the unnatural l0 prior [46], and the very recent dark channel prior [32] for images.
Even though such prior-based optimization schemes have shown promise, the extent
to which a prior is able to perform under general conditions is questionable [21].
Some priors (such as the sparsity prior on image gradient) even tend to favor blurry
results [23]. In a majority of situations, the final result requires judicious selection of
the prior, its weight, as well as tuning of other parameters. With the advancement in
computation and availability of large datasets, deep learning-based deblurring too has
come of age. Xu et al. [45] proposed a deep deconvolutional network for non-blind
single image deblurring (i.e, the kernel is fixed and known apriori). Schuler et al.
[39] came up with a neural architecture that mimics traditional iterative deblurring
approaches. Chakrabarti [4] trained a patch-based neural network to estimate the
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kernel at each patch and employed a traditional non-blind deblurring method in the
final step to arrive at the deblurred result. The above-mentioned methods attempt
to estimate the blur kernel using a deep network, but finally perform non-blind
deblurring outside of the network to get the deblurred result. Any error in the kernel
estimate (due to poor edge content, saturation or noise in the image) will impact
deblurring quality. Moreover, the final non-blind deblurring step typically assumes
a prior (such as sparsity on the gradient of latent image), which again necessitates a
careful selection of prior weights; else the deblurred result will be imperfect. Hence,
kernel-free approaches are verymuch desirable. Recent works [30, 31] skips the need
for kernel estimation and directly solve for the deblurred frame. But these works are
restricted to deblurring and cannot perform resolution improvement.

Blind SR from motion blurred LR images: In situations where the LR frames are
affected by motion blur, super-resolution makes little sense without compensating
for the effect of the unknown motion blur. Sroubek et al. [41] address the blind SR
problem by building a regularized energy function andminimizing it alternately with
respect to the original HR image and the cameramotion. Themethod ofMa et al. [26]
is based on the premise that the same region is not equally blurred across frames. They
propose a temporal region selection scheme to select the least blurred pixels fromeach
frame. The works in [33, 49] perform the joint tasks of alignment, deblurring, and
resolution enhancement. It should be noted that the blind SR techniques mentioned
above are allmulti-frame approaches. Single image blind SR is amuchmore involved
problem and there are at present no traditional approaches to solve it. Very recently,
Xu et al. [47] proposed a deep learning algorithm to solve the blind SR problem.
They used discriminative image prior based on GAN that semantically favors clear
high-resolution images over blurry low-resolution ones and directly regresses for the
HR image. In contrast, ours is a sparse coding-based approach and we solve for the
HR image by using an invariant feature representation.

6.3 Learning Invariant Features for Faces

Sensory data, including natural images, are sparse in nature and can be described as a
superposition of small number of atoms such as edges and surfaces [27]. Dictionary
learning methods are built on this very basis. Various image restoration tasks have
been attempted with dictionaries (including deblurring and SR). With an added con-
dition that these representations should be invariant to the blur or resolution in the
image, dictionary methods have performed these tasks individually by learning cou-
pled dictionaries [43, 48]. However, dictionaries capture only linearities in the data.
Blurring process involves non-linearities (high frequencies are suppressed more),
hence dictionary methods do not generalize across blurs.

In this chapter, we extend the notion of invariant representations to deep networks
that can capture non-linearities in the data. Generalization of dictionary methods
using deep networks to capture non-linearities is not new. The work in [44] com-
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Fig. 6.1 Illustration of proposed architecture

bines sparse coding and denoising encoders for the task of denoising and inpainting.
Deep neural networks, in general, have yielded good improvements over conven-
tional methods for various low-level image restoration problems including SR [10],
and inpainting and denoising [34, 44]. These networks are learned end-to-end by
training with lots of example-data from which the network learns the mapping to
undo distortions. We investigate the possibility of such a deep network for the task
of single image blind SR. The idea of learning invariant representations is borrowed
from our earlier work [31] with the main difference being that the problem we are
addressing here is that of a single blind SR rather than just deblurring [31].

Similar to [31], we first require a good feature representation that can capture
HR image-domain information. Autoencoders (AE) are apt for this task and have
shown great success in unsupervised learning by encoding data to a compact form
[15]. Once a good representation is learned for clean HR patches, the next step is
to produce an invariant representation (as in [43, 48]) from blurred LR data. We
propose to use a GAN for this purpose which involves training of a generator and
discriminator that competewith each other. The purpose of the generator is to confuse
the discriminator by producing clean features from blurred LR data that are similar to
the ones produced by the autoencoder so as to achieve invariance. The discriminator,
on the other hand, tries to beat the generator by identifying the clean and blurred
features.

A schematic of our proposed architecture is shown in Fig. 6.1. The main differ-
ence in architecture vis-a-vis [31] is our generator now has to perform joint SR and
deblurring. Since the input LR is of a lower dimension than theHR image, we include



124 T. M. Nimisha and A. N. Rajagopalan

fractional strided convolutions in the initial stages of the generator. The number of
these layers depends on the SR factor.

Akin to dictionary methods, our encoder-decoder architecture learns a represen-
tation in non-linear space. In dictionary approaches, an input HR patch I is sparsely
represented with the dictionary atoms DHR as I = DHRα. Our encoder-decoder
module can be equated to this but in non-linear space. The encoder can be thought
of as an inverse dictionary D−1

HR that projects the incoming HR data into a sparse
representation and decoder (DHR) reconstructs the input from the sparse represen-
tation. Generator training can be treated as learning the blur LR dictionary that
can project the blurred LR data Bl into the same sparse representation of I , i.e,
α = D−1

HR I = D−1
bLR

Bl . Once training is done, the input LR blurry image (Bl) is
passed through the generator to get an invariant feature which when projected to the
decoder yields the deblurred HR result as Î = DHRα = DHRD

−1
bLR

Bl .
Thus, by associating the feature representation learned by the autoencoder with

GAN training, our model is able to perform single image blind SR in an end-to-
end manner for face dataset. Ours is a kernel-free approach and does away with the
tedious task of modeling and selection of prior.

The main contributions of our work are as follows:

• We propose a compact end-to-end regression network that directly estimates the
clean HR image from a single blurred LR frame without the need for optimal prior
selection and weighting, as well as blur kernel estimation.

• The proposed architecture consists of an autoencoder in conjunction with a gen-
erative network for producing blur and resolution invariant features to guide the
process.

• The network has shown performance gain in FR surveillance systems and produces
good quality face reconstruction from its blurred LR counterpart.

6.4 Network Architecture

Our network consists of an AE that learns the clean HR image domain and a GAN
that generates invariant features. We train our network in two stages. We first train an
AE to learn the clean image manifold. This is followed by the training of a generator
that can produce clean features from a blurred LR image which when fed to the
decoder gives the deblurred HR output. Note that instead of combining the task of
data representation, SR, and deblurring into a single network, we relegate the task
of data-learning to the AE and use this information to guide blind SR. Details of the
architecture and the training procedure are explained next.



6 Blind Super-resolution of Faces for Surveillance 125

In
p
u
t+

n
o
is

e

Encoder

  
  

 
C

o
n

v

R
e

L
U

R
e

s
N

e
t

R
e

s
N

e
t

  
  

 
C

o
n

v

R
e

L
U

R
e

s
N

e
t

R
e

s
N

e
t

  
  

 
C

o
n

v

R
e

L
U

R
e

s
N

e
t R

e
L

U
R

e
s
N

e
t

R
e

s
N

e
t

R
e

L
U

R
e

s
N

e
t

R
e

s
N

e
t

R
e

L
U

R
e

s
N

e
t

Decoder

     
D

e
c
o

n
v

     
D

e
c
o

n
v

     
D

e
c
o

n
v

3
2
X

3
2
X

3
2

O
u
tp

u
t

Conv :Stride 2

  
  

 
C

o
n

v
R

e
L

U
  

  
 

C
o

n
v

ResNet Block

Fig. 6.2 Autoencoder architecture with residual networks

6.4.1 Encoder-Decoder

Autoencoders were proposed for the purpose of unsupervised learning [15] and have
since been extended to a variety of applications. AE projects the input data into a
low-dimensional space and recovers the input from this representation. When not
modeled properly, it is likely that the autoencoder learns to just compress the data
without learning any useful representation. Regularization using denoising encoders
[42] overcomes this issue by corrupting the data with noise and letting the network
undo this effect and get back a clean output. This ensures that the AE learns to
correctly represent clean data. Deepak et al. [34] extended this idea from mere data
representation to context representation for the task of inpainting. In effect, it learns
a meaningful representation that can capture domain information of the data.

We investigated different architectures forAEandobserved that including residual
blocks (ResNet) [14] helped in achieving faster convergence and in improving the
reconstructed output. Residual blocks help by by-passing the higher-level features
to the output while avoiding the vanishing gradient problem. The training data was
corrupted by noise (30% of the time) to ensure encoder reliability and to avoid
learning an identity map. The architecture used in our work along with the ResNet
block is shown in Fig. 6.2. A detailed description of the filter and feature map sizes
along with the stride values used are as given below.

Encoder: C5
3→8 ↓ 2 → R5(2)

8 → C5
8→16 ↓ 2 → R5(2)

16 → C3
16→32 ↓ 2 → R3

32

Decoder: R3
32 → C2

32→16 ↑ 2 → R5(2)
16 → C4

16→8 ↑ 2 → R5(2)
8 → C4

8→3 ↑ 2

where Cc
a→b ↓ d represents convolution mapping from a feature dimension of a to

b with a stride of d and filter size of c, ↓ represents down-convolution, ↑ stands for
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(a) (b) (26.1 dB) (c) (38.02 dB) (d) (34.1 dB)

Fig. 6.3 Effect of ResNet on reconstruction. a The target image. b Noisy input to the encoder-
decoder module. c Result of encoder-decoder module of Fig. 6.2. d Result obtained by removing
ResNet for the same number of iterations. PSNR values are given under the respective figures.
(Enlarge for better viewing)

up-convolution. Rb(c)
a represents the residual block which consists of a convolution

and a ReLU block with output feature size a, filter size b, while c represents the
number of repetitions of residual blocks.

Figure 6.3 shows the advantage of the ResNet block. Figure 6.3a is the target
image and Fig. 6.3c, d are the output of autoencoders with and without ResNet block
for the same number of iterations for the input noisy image in Fig. 6.3b. Note that the
one with ResNet converges faster and preserves the edges due to skip connections
that pass on the information to deeper layers.

6.4.2 GAN for Feature Mapping

The second stage of training constitutes learning a generator that can map from
the blurred LR image to clean HR features. For this purpose, we used a generative
adversarial network (introduced byGoodfellow [13] in 2014). GANs have since been
widely used for various image related tasks. It consists of two models: a Generator
(G) and a Discriminator (D) which play a two-player mini-max game. D tries to
discriminate between the samples generated by G and training data samples, while
G attempts to fool the discriminator by generating samples close to the actual data
distribution. The mini-max cost function [13] for training GANs is given by

min
G

max
D

C(G,D) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1 − D(G(z))]
whereD(x) is the probability assigned by the discriminator to the input x for discrim-
inating x as a real sample. Pdata and Pz are the respective probability distributions of
data x and the input random vector z. The main goal of [13] is to generate a class of
natural images from z.

Theoretically, GANs are well-defined, but many a time it is difficult to train them.
Often there are instability issues that results in artifacts in the generated image.Works
exsist that specifically address this issue [37, 38] and try to stabilize the training by
introducing new distance metrics [2]. One such work uses conditional GAN (Mirza
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et al. [29]) which enables GANs to accommodate extra information in the form of
conditional input. Training conditional GANs is a lot more stable than unconditional
GANs due to the additional guiding input. The inclusion of adversarial cost in the
loss function has shown great promise [18, 34]. The modified cost function [18] is
given by

min
G

max
D

Ccond(G,D) = Ex,y∼Pdata(x,y)[logD(x, y)]
+ Ex∼Pdata(x),z∼Pz(z)[log(1 − D(x,G(x, z))] (6.1)

where y is the clean target feature, x is the conditional image (the blurred input), and
z is the input random vector. In conditional GANs, the generator tries to model the
distribution of data over the joint probability distribution of x and z. When trained
without z for our task, the network learns a mapping for x to a deterministic output
y which is the corresponding clean feature.

Following [18] that uses an end-to-end network with generative model to perform
image-to-image translation, we initially attempted regressing directly to the clear
pixels using off-the-shelf generative networks. However, we observed that this lead
to erroneous results. One reason for this could be due to the high dimensionality of
data. Hence, we used the apriori-learned features (which are of a lower dimension
as compared to image space) of the autoencoder for training GAN. Training a per-
fect discriminator requires its weights to be updated simultaneously along with the
generator such that it is able to discriminate between the generated samples and data
samples. This task becomes easy and viable for the discriminator in the feature space
for two reasons:

(i) In this space, the distance between blurred LR features and its equivalent clean
HR features is higher as compared to the image space. This helps in faster train-
ing in the initial stage.

(ii) The dimensionality of the feature space is much lower as compared to that of
image space. GANs are known to be quite effective in matching distributions in
lower-dimensional spaces [8].

We train theGANusing the normal procedure but instead of asking the discrimina-
tor to discern between generated images and clean images, we ask it to discriminate
between their corresponding features. The generator (4 ×) and the discriminator
architectures are as given below.

Generator: C5
3→8 ↑ 2 → C5

8→8 → C5
8→16 ↑ 2 → C5

16→16 ↓ 2 → R5(2)
16 → C5

16→32

↓ 2 → R5(2)
32 → Ĉ3

32→32 ↓ 2 → R5(2)
32 → C3

32→128 ↓ 2 → R3(2)
128 → Ĉ3

128→32 ↑ 2

Discriminator: C5
32→32 → C5

32→32 ↓ 2 → C5
32→16 → C5

16→16 ↓ 2 → C5
16→8 →

C3
8→8 ↓ 2 → C3

8→1

Each convolution is followed by a Leaky ReLU and batch-normalization in the
discriminator, andReLU in the generator. The input stage of the generator is a stack of
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learnable upsampling filters (Deconv layers) and the number of such layers depends
on the upsampling factor. Above, we have shown a generator module for 4 × SR
factor. Ĉ indicates a skip connection from that convolution layer till the next Ĉ .
Using skip connections help in preserving the finite feature from the lower layers
while going deeper helps in reducing the blur. We also tried other models where the
generator architecture was similar to that of encoder. Such an architecture helps to
preserve details in the final output but residual blur still remains in the output. We
observed that going deeper helps in reducing blur at the expense of missing finite
details. Hence, we used a generator which goes deeper but at the same time preserves
features using skip connections.

Once the second stage is trained, we have a generator module to which we pass
the blurred LR input during the test phase. The generator produces features which
correspond to clean image features which when passed through the decoder deliver
the final deblurred HR result.

6.4.3 Loss Function

Our network is trained in two stages. In the initial phase, the encoder is trained
to learn the HR clean feature representation. For this training, we used the widely
preferred reconstruction cost. The reconstruction (MSE loss) cost is defined as the
l2 distance between the expected and observed image and is given as

Lmse = ‖De(E(I + N )) − I‖22 (6.2)

whereDe is the decoder, E the encoder, N is noise and I is the target (clean) image.
The MSE error captures overall image content but tends to prefer a blurry solution.
Hence, training only with MSE loss results in loss of edge details. To overcome
this, we used gradient loss (Lgrad) as it favors edges as discussed in [28] for video-
prediction.

Lgrad = ‖∇De(E(I + N )) − ∇ I‖22 (6.3)

where ∇ is the gradient operator. Adding the gradient loss helps in preserving edges
and recovering sharp images as compared to Lmse alone.

The second phase of training learns the invariant representation using GANs. For
training GAN we tried different combinations of cost functions and found that a
combined cost function given by λadvLadv + λ1Labs + λ2Lmse in the image and
feature spaceworked for us. Even though l2 loss is simple and easy to back-propagate,
it under-performs on sparse data. Hence,we used l1 loss for feature back-propagation,
i.e.

Labs = ‖G(B) − E(I )‖1 (6.4)

where B is the blurred LR image. The adversarial loss function Ladv (given in
Eq. (6.1)) requires that the samples output by the generator should be indistinguish-
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Fig. 6.4 Some example images from gallery (first row) and probe (second row). The kernels used
to synthesize the probe images are shown in the inset

able to the discriminator. This is a strong condition and forces the generator to produce
samples that are close to the underlying data distribution. As a result, the generator
outputs features that are close to the clean HR feature samples. Another advantage
of this loss is that it helps in faster training (especially during the initial stages) as
it provides strong gradients. Apart from adversarial and l1 cost on the feature space,
we also used MSE cost on the recovered clean image after passing the generated
features through the decoder. This helps in fine-tuning the generator to match with
the decoder.

6.4.4 Training

We trained the autoencoder using images from theCelebAdataset [25]which consists
of around 202,599 face images by resizing them to 256 × 256. We randomly picked
200K data as training set and rest as test and validation set. The inputs were randomly
corrupted with Gaussian noise (standard deviation = 0.2) 30% of the time to ensure
learning of useful data representation. We used Adam [20] with an initial learning
rate of 0.0002 and momentum 0.9 with batch-size of 16. The training took around
3 × 105 iterations to converge. The gradient cost was scaled by λ = 0.1 to ensure that
the final results are not over-sharpened.

The second stage of training involved learning a blur and resolution invariant
representation from blurred LR data. We created blurred face data by synthetically
blurring the CelebA dataset with space-invariant parametric blur kernels. We used
{l, θ} (l stands for length and θ is the angle) parametrization of the blur and produced
blur in the range l ∈ {0, 40} pixels and θ ∈ {0, 180} degrees. The input clean images
were blurred by the parametrized kernels and downsampled by factors of 2, 4, and
8 to generate the training sets for different SR factors. Each set consisted of 4 lakh
blurred LR training data. The first stage of the generator was a set of up-convolution
learnable filters that scale up the input data to 256. To improve GAN stability, we
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Fig. 6.5 Percentage recognition with a simple PCA FR system. The improvement in accuracy with
our blind SR network over other comparative methods can be clearly observed from the figure. Our
method performs well with respect to all the matching distance metrics

also used smooth labeling of blur and clean features as discussed in [1]. For around
105 iterations, the training was done with feature costs alone with λadv = 0.001 and
λ1 = 1. Fine-tuning of the generator was subsequently done by adding the MSE cost
and weighing down the adversarial cost (λ2 = 1, λ1 = 1 and λadv = 0.0001).

6.5 Experiments

We demonstrate the effectiveness of our proposed blind SR network on synthetic as
well as real images. We have subdivided the experiments into two sections. In the
first section, we quantify performance by analyzing the recognition accuracy of a
baseline FR system on the input blurred LR images prior to and after passing through
our network. We observed an improvement in accuracy after using our network. The
experimental setup for this is as follows. We took the ba and bj folders from the
FERET dataset both of which contain 200 subjects (256 × 256 dimension) with one
image per subject. We used ba as our gallery and used bj to produce the probe. The
images from bj were subjected to parametric blur and downsampled to get 64×64
probe data. A few examples from the gallery and the probe along with the kernels
used to create them are shown in Fig. 6.4. Following this, a basic FR system using
PCA was used as the baseline to calculate the percentage recognition rate.
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(20.85/0.8289) (24.795/0.8886 ) (19.33/0.7620) (20.2202/0.7817)

(21.36/0.8093) (25.92/0.8792 ) (20.8/0.7926) (23.12/0.8154)

(19.9/0.8570) (27.64/0.9359 ) (18.74/0.8070) (23.68/0.8969)
Input ↑ Our o/p [32]+[17] [30]+[22] HR GT

Fig. 6.6 Results on LFW dataset [16]: The input images were upsampled to [256 × 256]. Results
obtained by our blind SR network given in column 2. Results obtained by separately performing
deblurring and SR by conventional methods [32]+[17], and deep methods [30]+[22], are given in
column 3 and 4, respectively. The ground truth HR image is shown in the last column

The system works by first estimating the PCA basis from the clean HR gallery
images. It then projects the probe using the estimated basis and recognizes the subject
by matching the features to that of the gallery. We used three distance metrics for
matching: Euclidean, Manhattan, and Cosine. Initially, we estimated the recognition
rate on the clean probe and found that the recognitionwas on an average 84.16%only.
This was because the probe images had small expression changes from the gallery
and our FR system is a simple PCA-based model. Next, we checked the accuracy
on the blurred LR probe data and noticed that the accuracy went down from 84.16to
76.8% after blurring and downsampling. We passed these LR probes through our
trained network to get a 4 × SR and estimated the accuracy of FR on the output, the
accuracy improved to 82.5% using our blind SR model.

Since there are noworks on single blind SR for this type of a setting, we performed
comparison by independently deblurring the LR frames followed by a single image
SR framework. This we did using both conventional methods and deep learning
methods. For conventional method, we use a single image deblurring framework of
Pan et al. [32] to deblur the LR frames. This is followed by exemplar-based SR as
proposed in [17]. The accuracy obtained in this casewas quite less (75.5%). Themain
reason for the reduced accuracy could be due to the artifacts induced by deblurring
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Input ↑ Our o/p [32]+[17] [30]+[22]

Fig. 6.7 Results on Gopro dataset [30]. Faces were cropped from the blurred images provided in
the test set. Even though our network was not trained for such a real dataset, it was able to produce
comparable results to the work in [30] that was specifically trained on Gopro

which can be attributed to improper selection of prior. The second comparison was
with deep learning networks. For this, we used the network in [30] to deblur the
probes and these deblurred results were subjected to the SRResnet (proposed in
[22]) for 4× upsampling. The accuracy improved to 79.56%. From this experiment,
we can conclude that our blind SR network that performs end-to-end simultaneous
deblurring and SR can help in improving the recognition accuracy of FR systems.
The obtained accuracy using each of the matching methods along with comparisons
are provided in Fig. 6.5.

In the second section of our experiments, we show quantitative results on synthet-
ically blurred LR dataset from the LFW dataset [16]. We provide quantification in
terms of PSNR (Peak Signal to Noise Ratio) and SSIM (Structure Similarity Index).
We also provide qualitative results on a few examples from the real blurred dataset
of [36] and Gopro dataset in [30].

For the quantitative experiment in Fig. 6.6, we synthetically blurred the LFW
dataset and downsampled it to different scales. For comparison, we tried the existing
conventional and deep learning methods as before. Results in the third column of
Fig. 6.6 were obtained by deblurring the LR image with the conventional deblurring
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Fig. 6.8 Results on real blurred dataset of [36]. Input blurred face and the corresponding result
obtained by our network are shown side-by-side

work of Pan et al. [32] which was followed by exemplar-based SR method of [17]
for the specified SR factors. Similarly, the results in column four were obtained by
the deep learning-based deblurring work of [30] followed by the single image deep
learning-based SR work of [22]. The obtained PSNR and SSIM values for each of
these examples are provided under each image. Each row corresponds to a different
upsampling factor: first row (8 ×), second row (4 ×) and third row (2 ×). Note that
the training for each SR factor was done separately in our network, but the encoder
training was done only once. From the results, it is evident that a joint approach for
deblurring and SR performs much better than individually performing deblurring
and SR.

Next, we tested our network on two real blurred datasets provided in [30, 36].
Gopro dataset introduced in [30] was produced by capturing videos using a high
frame rate camera and then averaging the frames to produce realistic blurred dataset.
We manually cropped faces from their test sets and fed them to our network. Our
networkwas trainedwith synthetic parametric blur kernels as discussed in Sect. 6.4.4.
Even with this training, we obtained results (second column) comparable to that of
[30] (fourth column), which was specifically trained on Gopro. The obtained results
for visual comparison are provided in Fig. 6.7. A comparison with the traditional
method is also provided in the third column of Fig. 6.7. A qualitative result of our
method on the real blurred dataset captured by Punnapurath et al. [36] is also provided
in Fig. 6.8. Although the blur encountered in the inputs was not high, one can observe
an improvement in quality with our network.

It must be mentioned that the work in [47] also addresses blind SR problem for
face images. They achieve this by using a direct regression for the HR image from
the blurred LR using a generative loss. Our method differs from them in the network
architecture. We learn a feature representation with our network that is invariant to
the blur and resolution by making use of the generative framework. To compare with
themethod in [47], we retrained our encoder and generator module on celebA dataset
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Input Our o/p [47] Input Our o/p [47]

Fig. 6.9 Experimental setup similar to [47]. The input images were of size 64 × 64. These were
subjected to blur and downsampling to get LR inputs of size 16 × 16. They trained by cropping
faces alone but our training was by resizing. Hence, we had to crop out the face after passing through
our network to match their result. The reduction is quality in our result is due to this cropping

for the specified input–output resolution asmentioned in their paper. The inputs (HR)
were of 64× 64 and the LR blurred data were 16× 16.Wemodified our architecture
to accommodate this input size and learned the invariant features. The input image,
the result obtained by our method, and the output of [47] are shown in Fig. 6.9. Our
results are comparable to that of [47].

6.6 Conclusions

In this chapter, we proposed an end-to-end deep network for single image blind
SR using autoencoder and GAN. Instead of directly regressing for clean pixels, we
performed regression over encoder-features to arrive at an invariant representation,
which when passed through the decoder produces the desired clean HR output.
Our network is kernel-free and does not require any prior modeling. The method
shows improvement in FR accuracy even with a baseline FR system. When tested
on real datasets, our method showed improved quality when compared to decoupled
deblurring and SR.
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