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Chapter 1
Deep CNN Face Recognition: Looking at
the Past and the Future

Ankan Bansal, Rajeev Ranjan, Carlos D. Castillo, and Rama Chellappa

Abstract The need for face recognition has evolved from identifying a few hundred
people to identifying hundreds of thousands of people in the last decade. Most of
the progress in automatic face recognition has been driven by deep networks in the
past few years. In this article, we provide an overview of recent progress in this area
and discuss state-of-the-art CNN-based face recognition and verification systems.
We also present some open questions and discuss avenues for research in the coming
years.

1.1 Synonyms

– Face verification
– Face recognition
– Face identification.

1.2 Introduction

Automatic face recognition is the problem of identifying a person from an image or
a video. Due to the ubiquity of cameras and prevalence of social media networks,
automatic face recognition has applications in access control, homeland security,
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2 A. Bansal et al.

rescuing exploited children, HCI interfaces, etc. Recent years have seen significant
progress in automatic face recognition technology, largely due to improvements in
deep convolutional network designs and the availability of large datasets [1–4] and
challenging testing standards [5–8]. In this article, we summarize recent works in
automatic face recognition, focusing on methods using deep convolutional neural
networks (CNNs).

The problem of face recognition can be divided into face identification and face
verification. The standard approach for training a CNN for solving these prob-
lems includes four steps: face detection, alignment, representation, and classification
(Fig. 1.1). Identification is the problem of assigning an identity to an image from a list
of identities. From another perspective, this can be considered as trying to retrieve
the best matching face from a gallery for a given probe image. On the other hand, face
verification involves verifying whether two face images are of the same person. This
is usually performed by computing the similarity between feature representations of
the two faces. Both identification and verification have benefited immensely from
developments in deep learning algorithms and more advanced CNN architectures.

In addition to improved architectures, face recognition has seen significant
progress in the design of effective loss functions for training CNNs. Both face iden-
tification and verification aim to learn representations which have low intra-class
variations and high inter-class variations. Several loss functions have been proposed
over the past few years which encourage representations with these properties. Most
of these [9–11] modify the common softmax loss using additional constraints on the
features which lead to compact and discriminative representations of faces and thus,
performance improvements in face recognition.

However, the first few steps of any face recognition pipeline [1, 12–14] are face
detection [12, 15, 16] and fiducial landmark/key-point localization. Effective meth-
ods for face detection and key-point localization have been shown to lead to improved
recognition performance [12, 17]. Face detection and landmark localization have also
seen performance gains due to the availability of large datasets [18–21] and CNNs.
We briefly discuss some of the methods in the upcoming sections in this article.

This article is organized as follows. First, we describe some publicly available
datasets used for face recognition. Then, we discuss some recent face detection
methods and also cover common loss functions used for training face recognition
pipelines. Next, we describe and compare some recently proposed pipelines for
face verification and identification. Finally, we discuss some open questions in face
recognition.

1.3 Datasets

Deep CNNs require vast amounts of training data. Large corporations have access to
hundreds ofmillions of proprietary images anduse them to train large face recognition
networks. Taigman et al. used 500 million images of 10 million subjects for training
a CNN for face identification. Similarly, Schroff et al. used over 200 million images
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Fig. 1.1 Standard approach for training a CNN for face verification and identification

from8million people to train a face recognition networkwith 140million parameters.
However, these datasets are not publicly available. It has been shown recently [22]
that pre-training models on extremely large datasets lead to better performance on
other datasets. (Ironically, even the dataset used in [22] is not publicly available.)
Public face recognition datasets are not close to this scale. But every year, there are
larger and cleaner datasets are becoming available.

A face recognition system starts with detecting faces, then localizes landmarks
which are used to align the faces to canonical views, and then classifies the detected
faces. All three parts of the system require different levels of information and data
types. In this section, we explore some recently released public datasets targeted for
face recognition, face detection, and key-point localization.We startwith a discussion
on datasets for face recognition. We then give a brief overview of face detection
datasets and then discuss some datasets available for training key-point detection
algorithms.

Table 1.1 lists some public datasets targeted for face recognition and their proper-
ties. In-the-wild face recognition at a large scale essentially started with the release
of the Labeled Faces in-the-Wild (LFW) dataset in 2008. LFW has about 13,000
face images belonging to about 5,700 subjects. It became the standard evaluation
benchmark for several years [23] until the performance of methods began to satu-
rate and there was a need for more challenging benchmarks. Also, the prevalence
of deep CNNs necessitated the introduction of larger datasets for training. Recent
years have seen several large datasets being released to help the training of deep net-
works and to provide stronger benchmarks. Some examples of such include CelebA
[24], CASIA-WebFace [4], UMDFaces [2], MS-Celeb-1M [3], VGGFace [1], etc.
However, these are still constrained because they only contain still images of mostly
celebrities. Such photos are typically frontal and taken under bright lighting con-
ditions. However, evaluation datasets like IJB-A [6], IJB-B [7], IJB-C [8], IJB-S
[25], and Megaface [5] contain videos and images in low light conditions and profile
faces. There is a clear domain shift between the aforementioned training datasets
and these evaluation sets. To fill this gap, several video datasets have been proposed
over the years. Among these, YoutTube Faces (YTF) [26] and UMDFaces Video [17]
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Table 1.1 Recent datasets for face recognition in approximate order of number of faces available.

Face recognition

Name #faces #subjects

CFP [29] 7,000 500

DFW [30] 11,157 images 1,000

LFW [31] 13,233 5749

CelebA [24] 202,599 10,177

UMDFaces [2] 367,888 8,277

CASIA-WebFace [4] 494,414 10,575

PaSC [32] 2,802 videos 293

IJB-A [6] 5,712 images, 2,085 videos 500

YTF [26] 3,425 videos 1,595

IJB-B [7] 11,754 images, 7,011 videos 1,845

IJB-C [8] 31,334 images, 11,779 videos 3,531

VGGFace [1] 2.6M 2,622

VGGFaces2 [33] 3.31M 9,131

Megaface [5, 34] 4.7M 672K

UMDFaces Video [17] 22,075 videos 3,107

MS-Celeb-1M [3] 10M 100K

IJB-S [25] >10M 202

are currently the largest publicly available annotated video datasets. Since many of
the evaluation protocols contain, a mixture of still images and videos, training net-
works with a combination of still image datasets and video datasets should lead to
performance improvements [17]. The features learned using such datasets are more
robust than the features learned from networks trained with only still images. Sys-
tems trainedwithmixed datasets have recently been shown to achieve state-of-the-art
performance on several evaluation protocols [12, 27, 28].

We list some datasets for training and testing face detection models in Table 1.2.
The most popular and the largest training dataset is the WIDER FACE dataset [18].
It contains annotations for about 400,000 annotated faces half of which are in the
training set and the rest are in the test set. There are about 32,000 images in the
datasets. These annotations cover a large range of variations in scale, illumination,
orientation, etc. It is widely used as a standard for training models and as an eval-
uation benchmark for face detection methods. Before WIDER FACE, the standard
benchmark was FDDB [19]. It contains about 5,200 face annotations. However, due
to its small size and limited variability of the faces in FDDB, the performance of the
best-performing methods was saturating. This necessitated the need for larger and
more difficult training and test datasets, WIDER FACE being one such. Recently,
the IARPA JANUS Benchmark datasets [6–8] have also been released which con-
tain a large number of face annotations for evaluating face detection and recognition
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Table 1.2 Recent datasets for face detection with approximate number of faces and images in each

Face detection

Name #faces #images

FDDB [19] 5,171 2,846 images

MALF [35] 11,931 5,250

AFLW [21] 26,000 22,000

IJB-A [6] 5̃0,000 5,712 images, 2,085 videos

IJB-B [7] – 11,754 images, 7,011 videos

IJB-C [8] – 31,334 images, 11,779 videos

WIDER [18] 393,703 32,203

Table 1.3 Recent datasets for keypoint localization

Fiducial keypoint localization

Name #faces Properties

AFW [20] 468 (205 images) 6 landmarks

300W [37] 600 images 68 landmarks

LFPW [36] 3,000 (1,287 images) 35 landmarks

AFLW [21] 25,993 (21,997 images) 21 landmarks, gender

in completely unconstrained settings. The IJB-C [8] dataset, for example, contains
about 149,000 still images and video frames. These include about 10,000 non-face
images to test operationally relevant use cases. This dataset is the superset of previ-
ously released IJB-B [7], and IJB-A [6] datasets.

Finally, datasets which contain fiducial landmark annotations are summarized in
Table 1.3. Due to the difficulty in labeling and verifying facial keypoints in images,
there are only a few large-scale public datasets available which include such annota-
tions. The Annotated Face in-the-Wild (AFW) [20] dataset contains about 468 faces
annotated with 6 landmarks. Some of these points might be invisible due to pose and
occlusion. The 300 faces-in-the-wild dataset is a similarly sized dataset. It contains
600 images annotated with 68 facial landmarks. Half of these images are acquired
indoors and the other half outdoors. The Labeled Face Parts in-the-wild (LFPW)
[36] dataset contains about 3,000 faces labeled with 35 landmarks each. However,
the largest dataset for keypoint detection is the Annotated Facial Landmarks in-the-
Wild (AFLW) [21]. It contains 26,000 annotated faces some of which can contain
significant occlusions. There are 21 landmarks annotated for each face. However,
about 21% of all the landmarks are invisible due to extreme poses and occlusions.
Note that the UMDFaces [2] and UMDFaces Videos [17] datasets also contain anno-
tations for facial landmarks. However, these were automatically generated using a
pre-trained model. Therefore, they will contain errors and are not usually used for
training deep networks for keypoint detection.
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In addition to these, there are some3Ddatasets [38], age datasets [39, 40], attribute
datasets [24, 41], and expression datasets [24] but a discussion on them is out of the
scope of this work.

1.4 Face Detection

Face detection is the process of finding a bounding box for each face in an image.
This is often the first step in any face recognition or tracking system. Counting the
number of people in a crowded scene [42, 43] can also benefit from robust face
and head detection. Early face detection systems like the Viola–Jones detector [44]
were fast but were not effective for profile faces. Large real-world datasets like [18]
and deep CNN-based representations have led to significant improvements in face
detection performance. These CNN-based detection methods are largely robust to
pose, illumination, clutter, and scale. Most of the popular face detection methods
have been adapted from general object detectors and can be classified as either
proposal-based or single-stage detectors.

Proposal-based object detection methods start with a class-agnostic object pro-
posal generator like selective search [45], edge-boxes [46], or a region-proposal
network (RPN) [47]. These proposals are then classified into object classes by a
CNN. Examples of such object detectors include R-CNN [48], Fast R-CNN [49],
Faster R-CNN [47], and Mask R-CNN [50]. Proposal-based face detectors follow
a similar approach and generate face proposals which are then classified as face
vs non-face by a CNN. We briefly describe some proposal-based methods for face
detection next.

All-in-One Face [51] is a multi-task learning approach for simultaneous face
detection, key-point localization, pose estimation, gender recognition, age estima-
tion, smile detection, and face recognition. It builds upon Hyperface [52] by adding
more tasks in the multi-task system. The face detector in both [51, 52], can be con-
sidered a two-stage proposal-based detector. Face proposals are first generated using
selective search and are then classified as face vs non-face via one of the output
branches of the multi-task network. The use of multi-task learning encourages infor-
mation transfer across different tasks due to parameter sharing in the early layers of
the network. This leads to performance improvements for most tasks over single-task
systems. Though thesemodels can be trained end-to-end in theory, lack of availability
of a single dataset containing annotations for all tasks prevents end-to-end training
in practice.

Finding Tiny Faces [15] focuses on improving detection of small faces in an
image. It starts off by creating a coarse image pyramid (0.5x, 1x, and 2x). These
are passed through a shared CNN which predicts detection and regression template
responses at different resolutions. These templatesmodel additional context for lower
resolutions to improve small face detection. The detections from different resolutions
are merged into the original scale and the final detection output is obtained after
applying NMS.
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Fig. 1.2 Example landmark locations fromUMDFaces [2]. The figure also shows bounding boxes,
and estimated pose (yaw,pitch,roll)

Other proposal-based face detectors include [53] and supervised transformer net-
work [54]. In [53], the authors propose to train a ConvNet to estimate the 3D trans-
formation parameters which can be used to transform a pre-defined 3D mean face
model and generate face proposals and localize facial landmarks.

Unlike proposal-based detectors, single-stage object detectors do not contain an
explicit proposal generation step. Such detectors typically include a single pass
through a CNN and processing multi-scale image pyramid or multiple layers of
a CNN. Single-shot multibox detector (SSD) [55] and YOLO [56, 57] are exam-
ples of recent Single-stage object detectors. Several recent face detectors adapt these
methods. One of the most recent methods is DPSSD [12] which is described next.

DPSSD [12] adapts a standard SSD network for face detection by adding upsam-
pling layers to create an hourglass network [58]. These layers generate contextual
features and help in detecting faces at multiple scales. Anchors from six different
layers in the network are classified using a small classification networkwhich outputs
the probability of an anchor being a face and the bounding box regression offsets.
The authors of [12] show that the model achieves near state-of-the-art performance
on multiple face detection datasets.

In addition, SSH [16], CNN Cascade [59], ScaleFace [60], and S3 FD [61] are
some other single-stage face detection methods. We refer the reader to the original
papers for more details.

After a face has been detected, the step in most face recognition pipelines in facial
landmark detection and face alignment. Landmarks can be considered synonymous
with corners in an image. They usually determine the most discriminative locations
on a face. Some examples of facial landmarks are the corners of the eyes, ear lobes,
tip of the nose, corners of the mouth, etc. Fig. 1.2 shows some landmark annotations
for a few faces from the UMDFaces dataset [2]. A detailed discussion on various
key-point detection methods is out of the scope of this paper. We refer the reader to
the brief overview in [12] and a comprehensive review in [62] for a better coverage
of the topic.
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1.5 Loss Functions

The loss function is an important factor in determining the performance of deep
networks. For face recognition, most networks are trained to perform aC−way clas-
sification of faceswith the hope that the learned features can be used as discriminative
representations. Therefore, most existingworks have used the standard cross-entropy
loss with softmax for training face recognition networks. However, some variants
of softmax loss have been proposed. These variants aim to address some specific
issues associated with softmax loss. These issues include preference for high-quality
images, early saturation, lack of margin between intra- and inter-class samples, etc.
Some methods instead focus on directly optimizing the features for face verification.
Metric learning approaches optimize the features to reduce intra-class separation and
increase inter-class separation.

We start with a description of the standard cross-entropy-based softmax loss for
training a classifier. Suppose there are M training samples in a batch. Let, xi be the
i th face image in the batch with the label yi and f (xi ) be the feature representation
of the face. The feature representation is typically a deep CNN. The feature vectors
are projected into logits using weights W and bias b. The softmax loss is then given
by

LSoftmax = − 1

M

M∑

i=1

log
eW

T
yi
f (xi )+byi

∑C
j=1 e

WT
j f (xi )+b j

(1.1)

where C is the total number of classes, Wj is the j th column of the weight matrix
W and b j is the corresponding bias. Note that the bias term can be absorbed into the
weights by appending 1 to f (xi ). Now, since aTb = ‖a‖‖b‖ cos(θ), where θ is the
angle between a and b, the above equation can be re-written as

LSoftmax = − 1

M

M∑

i=1

log
e‖Wyi ‖‖ f (xi )‖ cos(θyi )

∑C
j=1 e

‖Wj‖‖ f (xi )‖ cos(θ j )
(1.2)

The network is trained with this loss till convergence. At test time, a probe face
xp is compared to a face in the gallery, xg using cosine similarity:

s = f (xp)
T f (xg)T∥∥ f (xp)

∥∥
2

∥∥ f (xg)
∥∥
2

(1.3)

Crystal Loss [9] adds the following constraint:

‖ f (xi )‖2 = α,∀i = 1, 2, ..., M (1.4)

to the objective in (1.1). The authors argue that the features obtained from networks
trained with softmax loss strongly prefer high quality/resolution images to low-
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quality images. This is apparent from the L2-norm of the features. Good quality
images have a higher norm than low-quality images. Such samples are easy to classify.
Near the origin (low L2-norm), the features fromdifferent classes are easily confused.
To solve these problems, [9] proposes to project all features to a hypersphere of a fixed
radius α. This ensures that all features have the same norm and low-resolution faces
are classified better. In addition, minimizing the softmax loss on the hypersphere is
equivalent to minimizing the cosine distance between similar faces and maximizing
it for dissimilar faces. This is the final target of a face verification system. Therefore,
training a network with Crystal loss directly benefits face verification.

A-Softmax [63] incorporates an angular margin to the softmax formulation. This
is based on the idea that at test time, we usually want dissimilar features to be angu-
larly separated (since our distance metric is cosine distance). Adding an angular mar-
gin helps in generating features which are discriminative on a hypersphere manifold.
This means that the learned features are well separated. A-Softmax starts by normal-
izing the weight vectors ‖Wj‖ = 1, ∀ j . Let, ‖ f (xi )‖ = s, then the A-Softmax loss
is give as

LSphereFace = −1

M

M∑

i=1

log
es cos(mθyi ,i )

es cos(mθyi ,i ) + ∑
j �=yi

es cos(θ j,i )
(1.5)

where m is the size of the margin and θyi ,i is in the range
[
0, π

m

]
. However, training

a CNN under this constraint is difficult. Therefore, the authors in [63] propose to
generalize cos(θyi ,i ) to a monotonic angle function ψ(θyi ,i ) which equals cos(θyi ,i )
in

[
0, π

m

]
. So, A-softmax can be written as

LSphereFace = −1

M

M∑

i=1

log
esψ(θyi ,i )

esψ(θyi ,i ) + ∑
j �=yi

es cos(θ j,i )
(1.6)

where ψ(θ) is a piecewise function:

ψ(θ) = (−1)k cos(mθ) − 2k, θ ∈
[
kπ

m
,
(k + 1)π

m

]

and k ∈ [0,m − 1]
(1.7)

Large Margin Cosine Loss [10] uses an additive margin term instead of a multi-
plicative margin as used above. In addition to fixing ‖Wj‖ = 1 by L2 normalization,
the authors propose to fix ‖ f (xi )‖ = s. This puts the learned features on a hyper-
sphere were they need to be separable in the angular space. Fixing the norm of the
features is a commonly used technique, e.g., [9]. Adding the margin in (1.2) thus
gives the formulation:



10 A. Bansal et al.

LCosFace = − 1

M

M∑

i=1

log
es(cos(θyi ,i )−m)

es(cos(θyi ,i )−m) + ∑
j �=yi

es cos(θ j,i )
(1.8)

Themarginm and the feature scale s are inter-dependent. The feature scale should
be high enough to ensure that the samples are separable for the given margin. The
additive margin helps in learning more discriminative features by forcing higher
inter-class variance and lower intra-class variance.

Additive Angular Margin Loss [11] also starts by normalizing Wyi and scaling
the feature such that
‖ f (xi )‖ = s. However, instead of directly adding an additive cosine margin as in
(1.8), [11] proposes to use an additive angular margin. This is again done with the
aim of increasing inter-class discrepancy and intra-class compactness. The proposed
loss can be written as

LArcFace = −1

M

M∑

i=1

log
es(cos(θyi ,i+m))

es(cos(θyi ,i+m)) + ∑
j �=yi

es cos(θ j,i )
(1.9)

wherem is the additive angular margin. Additionally, the authors also propose a loss
which combines SphereFace (1.5), CosFace (1.8), and the proposed ArcFace (1.9):

LCombined = − 1

M

M∑

i=1

log

(
es(cos(m1θyi ,i+m2)−m3)

es(cos(m1θyi ,i+m2)−m3) + ∑
j �=yi

es cos(θ j,i )

)
(1.10)

where m1,m2, and m3 are the corresponding margins for SphereFace [63], ArcFace
[11], and CosFace [10].

Triplet Loss [14] pushes features from different identities apart and pull features
from the same identity together. A training sample consists of a triplet of faces: an
anchor xa , a positive (same identity) face xp, and a negative (different identity) face
xn . The loss can be formulated as

LTriplet =
|T |∑

i=1

[∥∥ f (xai ) − f (xpi )
∥∥2
2 − ∥∥ f (xai ) − f (xni )

∥∥2
2 + α

]

+
(1.11)

where α is the desired margin between positive samples and negative samples, and
[z]+ = max(0, z).

Several other loss functions have been proposed for training face recognition
networks.However, space limitations do not allow amore detailed exposition of those
methods. We refer the reader to the original papers for Noisy Softmax [64], Center
Loss [65], Center Invariant Loss [66], Range Loss [67], Centralized Coordinate
Learning [68], and Ring Loss [69].
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Fig. 1.3 A face verification training and testing pipeline. A dataset of aligned faces is used to train
a deep CNN with a classification loss. At test time, features are extracted from two faces and their
similarity is computed to determine whether the two faces are of the same person

1.6 Face Verification and Identification Using CNNs

In this section, we describe some recent face recognition pipelines which utilize
some of the techniques described above. We note that both face identification and
verification can be formulated as the same problem. In identification, given a probe
image, the goal is to find the closest image from a gallery. This is achieved by com-
puting the similarities between the feature representation of the probe image and
feature representations of the gallery images. The image with the highest similarity
with the probe images is given as output. In verification, the aim is to determine if
a given pair of images belong to the same person. This is also achieved by comput-
ing the similarity between the feature representations of the two images. The basic
operation in both identification and verification is to extract a feature representation
and compare it with representations of the other image/images. Thus, identification
and verification can be considered the same task and both follow the same pipeline:
Detect, Align, Compare. We focus on methods for face verification in this section
with the understanding that similar methods can be used for face identification too.

A typical face verification training and testing pipeline is shown in Fig. 1.3. A
training set of aligned faces is used to train a deep network forC−way classification.
The layer before the classification layer is used to extract a feature representation for
a face at test time. Representations from two faces are compared using a similarity
metric. Table 1.4 gives the performance of some recent methods for face verification
on the IJB-A [6] benchmark and Table 1.5 gives performance for IJB-C [8].

DeepID [85] proposes to train a deep network on a large number of classes to
obtain discriminative features which can be used for face verification. It extracts
features from 60 face patches from different scales, different regions, and RGB
or gray channels. Each such face patch is used to train 60 ConvNets. The final
feature from each ConvNet is a 160-dimensional vector. Features for each patch
and their flipped versions are extracted using these ConvNets to give a final feature
representation of 19,200 dimension. The authors use Joint Bayesian [86] for face
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Table 1.4 IJB-A verification performance of some recent methods

True accept rate (%) @ False accept rate

Method 0.0001 0.001 0.01 0.1

GOTS [6] – 20(0.8) 41(1.4) 63(2.3)

Pose-Aware
Models [70]

– 65.2(3.7) 82.6(1.8) –

LSFS [71] – 51.4(6) 73.3(3.4) 89.5(1.3)

Pose [72] – – 78.7 91.1

VGGFace [1] – 60.4(6) 80.5(3) 93.7(1)

DCNNmanual +
metric [73]

– – 78.7(4.3) 94.7(1.1)

DCNNtpe [74] – 81.3 90.0 96.4

Chen et al. [75] – – 83.8(4.2) 96.7(0.9)

3d [76] – 72.5 88.6 –

DCNNfusion [77] – 76.0 88.9 96.8

DCNNall [51] – 78.7 89.3 96.8

All + TPE [51] – 82.3 92.2 97.6

TP [78] – – 93.9 –

NAN [79] – 88.1 94.1 97.8

FPN [80] 77.5 85.2 90.1 –

Crystal Model C
[9]

90.7(1.8) 94.7(0.4) 96.8(0.3) 98.3(0.2)

Crystal Model B
[9]

91.4(1.8) 94.9(0.5) 96.9(0.3) 98.4(0.2)

Crystal Model A
[9]

91.4(1.6) 94.8(0.6) 97.1(0.4) 98.5(0.2)

RX101l2+tpe [81] 90.9 94.3 97.0 98.4

Fast and
AccurateA [12]

91.7 95.3 96.8 98.3

Fast and
AccurateRG1 [12]

91.4 94.8 97.1 98.5

Fusion [12] 92.1 95.2 96.9 98.4

TDFF [82] 87.5(1.3) 91.9(0.6) 96.1(0.7) 98.8(0.3)

TDFF + TPE [82] 87.7(1.8) 92.1(0.5) 96.1(0.7) 98.9(0.3)

TDFF∗ [82] 95.9(1.4) 97.9(0.4) 99.1(0.2) 99.6(0.1)
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Table 1.5 IJB-C verification performance of some recent methods (* - approximate numbers from
Figure 9 in [11])

True accept rate (%) @ False accept rate

Method 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Center
loss [65]

36.0 37.6 66.1 78.1 85.3 91.2 95.3 98.2

MN-
vc [83]

– – – – 86.2 92.7 96.8 98.9

SENet50
+DCN [84]

– – – – 88.5 94.7 98.3 99.8

Fast &
Acc. A
[12]

16.5 19.5 43.6 77.6 91.9 95.6 97.8 99.0

Fast &
Acc. RG1
[12]

60.6 67.4 76.4 86.2 91.9 95.7 97.9 99.2

Fusion
[12]

54.1 55.9 69.5 86.9 92.5 95.9 97.9 99.2

ArcFace
VGG2,
R50 [11]

– – 69* 86* 92.1 – –

ArcFace
MS1MV2
R1000 [11]

– – 86* 93* 95.6 – –

verification using this feature. All neural networks are trained with softmax loss over
a training dataset containing 10,177 identities.

DeepID2 [87] combined face identification and verification signals as supervi-
sion for obtaining better feature representations. The face identification supervision
pushes features from different identities apart, while the face verification supervision
pulls features from the same identity closer. The identification supervision is the stan-
dard softmax loss,while the verification supervision is through theEuclidean distance
between the features. Features from the same identity should have a low Euclidean
distance, while features from different identities should have a high Euclidean dis-
tance. DeepID2 uses 200 ConvNets to extract features from 400 patches. To reduce
redundancy among features, the authors use a forward–backward greedy algorithm
to select only a small number of features which are concatenated to obtain a final
4000-dimensional feature representation. This is further reduces using PCA and final
verification is again done using Joint Bayesian model.

DeepFace [13] used explicit 3D modeling, starting from 2D keypoints, to apply
a piecewise affine transformation for aligning faces. This alignment starts with a
2D alignment using six fiducial keypoints. The aligned face is further warped to the
image plane of a generic 3D face shape. After the alignment, DeepFace also uses a
nine-layer deep network with 120million parameters to learn the face representation.
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The authors used a dataset of four million images from over 4,000 identities to train
this network. The deep network used in [13] contains locally connected layerswithout
weight sharing instead of the standard convolutional layers. This network is trained
with the standard softmax cross-entropy loss.

FaceNet [14] uses a triplet loss to directly optimize the embedding instead of
using the surrogate task of C−way classification. The authors claim that this leads
to greater representational efficiency and this feature embedding can improve face
verification and clustering performance. Each batch contains a set of triplets where
each triplet consists of an anchor, a hard positive, and a hard negative sample. These
are used to obtain feature embeddings which are normalized and then triplet loss
over these features is used as supervision to the CNN.

Baidu [88] follows a two-step approach for training deep networks to obtain
feature embeddings. Similar to DeepID [85] and DeepID2 [87], the first step uses
several CNNs to extract features from different patches on an aligned face. These
features are concatenated to obtain the final feature representation. Each CNN is
trained with softmax loss. The second step is metric learning. The high-dimensional
feature obtained from the first step is redundant and not efficient for face verification.
The authors propose to use metric learning using a triplet loss to reduce the feature to
low dimensions. The triplet loss ensures that the distance between the new features
is small for same identity and large for different identities. Therefore, such triplet
embedding directly optimizes for verification performance.

VGGFace [1] model uses a large dataset of over 2.6 million images from about
2,600 identities to train a CNN with softmax loss. The features obtained from this
network are embedded using a triplet loss similar to [88].

All-in-One Face [51] proposes a multi-task learning approach for face detection,
keypoint detection, pose estimation, smile detection, gender classification, age esti-
mation, and face recognition. The network contains several heads which are respon-
sible for learning different functionalities. The idea is that each modality will benefit
from other modalities. The separate heads are trained with the corresponding losses
and gradients from all heads are accumulated to train the trunk of the network. The
face recognition/feature learning branch uses a standard softmax loss.

Fast and Accurate System [12] proposes a better face detector (DPSSD) and
uses an ensemble of networks to extract features. The authors argue that a good face
detector leads to better face verification performance by avoiding false positives and
missing faces. The detected faces are aligned using facial landmarks from All-in-
One Face [51]. Each network in the ensemble is a different architecture and is trained
with a combination of three large datasets: UMDFaces [2], UMDFaces Videos [17],
and MS-Celeb-1M [3]. Crystal loss [9] is used to train all networks. The authors
also propose to do a score-level fusion, instead of feature fusion as done by previous
methods. This means that the similarity scores from all networks are computed
separately and then averaged to obtain the final similarities. Such ensembles were
also used for recognizing disguised faces [27] and face clustering [89].

ArcFace [11] uses the Additive Angular Margin Loss and the large-scale, and
cleanMS1MV2dataset to achieve state-of-the-art performance on several face recog-
nition and verification benchmarks. The MS1MV2 dataset is a refined version of the
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MS-Celebl-1M dataset and contains about 5.8M faces for 85,000 identities. ArcFace
uses the popular ResNet-100 network architecture.

Some other popular methods which we could not cover due to space limitations
include Masi et al. [76], LSFS [71], PAMs [70], Multi Pose Representations [72],
NAN [79], FacePoseNet [80], TDFF [82], and light-CNN [90].

1.7 Open Problems

Though immense progress has been made in face recognition in the past few years,
there are still several unanswered questions. In the era of deep learning, the most
important questions are related to the availability of data. With the ever-increasing
size of training datasets, it is not clear if there is a saturation point, i.e., if there is a
point at which additional data will not lead to performance improvements. Current
efforts in face recognition are focused on collecting annotated data. If we can answer
this question,wewill knowwhether these efforts are being spent in the right direction.
A related problem is the use of unlabeled data. Semi-supervised learning methods
which use a little labeled data along with large amounts of unlabeled data need to be
developed for face recognition. This is because detecting faces in the wild is easy, but
labeling them is expensive. Such semi-supervised methods will help in exploiting
this unlabeled data.

Deep networks are still mostly trained with aligned faces and need aligned faces
during testing. However, this cascade process introduces an unnecessary source of
error. Are there ways which obviate the need for alignments? Can collecting larger
datasets help? Are there better ways to align faces which do not require an additional
step? These questions are important and there are no clear answers.

Another overlooked area is the presence of biases in the datasets which leads
to recognition systems being biased. Most public datasets are of celebrities. These
images are taken by professional photographerswith good quality cameras.Networks
learn to be biased to such data. Most datasets have been collected from a pre-defined
list of people. Many of these people are Caucasian men. This introduces a gender and
racial bias in the networks. There have been very few major attempts to remove such
biases. Merler et al. [91] recently released a diversity dataset which is an important
step toward this problem. An interesting question is how do we transfer knowledge
from one kind of biased data to another such that we end up with a network which
performswell for both categories. Transfer learning and curriculum learningmethods
need to be developed for faces to enable the extension of existing methods to new
data instead of starting from scratch every time.

These questions and more need to be answered for even better face recognition
systems in the future and will give researchers something to work on for the next
few years.
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Chapter 2
Face Segmentation, Face Swapping, and
How They Impact Face Recognition

Y. Nirkin, I. Masi, Anh Tuan Tran, T. Hassner, and G. Medioni

Abstract Face swapping refers to the task of changing the appearance of a face
appearing in an image by replacing it with the appearance of a face taken from
another image, in an effort to produce an authentic-looking result. We describe a
method for face swapping that does not require training on faces being swapped
and can be easily applied even when face images are unconstrained and arbitrarily
paired. Our method offers the following contributions: (a) Instead of tailoring sys-
tems for face segmentation, as others previously proposed, we show that a standard
fully convolutional network (FCN) can achieve remarkably fast and accurate seg-
mentation, provided that it is trained on a rich enough example set. For this purpose,
we describe novel data collection and generation routines which provide challenging
segmented face examples. (b) We use our segmentations for robust face swapping
under unprecedented conditions, without requiring subject-specific data or training.
(c) Unlike previous work, our swapping is robust enough to allow for extensive quan-
titative tests. To this end, we use the Labeled Faces in theWild (LFW) benchmark and
measure how intra- and inter-subject face swapping affect face recognition.We show
that intra-subject swapped faces remain as recognizable as their sources, testifying
to the effectiveness of our method. In line with established perceptual studies, we
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Fig. 2.1 Inter-subject swapping. (Top) Bruce Willis and (Bottom) G. W. Bush’s photos swapped
using our method onto very different subjects and images. Unlike previous work [6, 27], we do not
select convenient targets for swapping or require subject-specific training and data. Are Willis and
Bush hard to recognize? We offer quantitative evidence supporting Sinha and Poggio [53] showing
that faces and context are both crucial for recognition

show that better face swapping produces less recognizable inter-subject results (see,
e.g., Fig. 2.1). This is the first time this effect was quantitatively demonstrated by
a machine vision method. Some of the material in this chapter previously appeared
in [47].

2.1 Introduction

Swapping faces means transferring facial appearance from a source photo onto a face
appearing in a target photo, replacing the target face while attempting to generate
realistic, authentic looking results. Although face swapping today is often associated
with viral Internet memes [5, 16, 49], it is actually far more important than such
practices may suggest: Face swapping can also be used for preserving privacy [6,
45], digital forensics [49] and as a potential face-specific data augmentation method
[42–44] especially in applications where training data is scarce (e.g., facial emotion
recognition [35]).

Going beyond particular applications, face swapping is also an excellent oppor-
tunity to develop and test essential face processing capabilities: When faces are
swapped between arbitrarily selected, unconstrained images, there is no guarantee
on the similarity of viewpoints [22], expressions [11], 3D face shapes [20, 56], gen-
ders [15, 34], or any other attribute that makes swapping easy [27]. In such cases,
swapping requires robust and effective methods for face alignment, segmentation,
3D shape estimation (though we will later challenge this assertion), expression esti-
mation, and more.
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We describe a face swapping method and test it in settings where no control is
assumed over the images or their pairings. We evaluate our method using extensive
quantitative tests at a scale never before attempted by other face swapping meth-
ods. These tests allow us to measure the effect face swapping has on machine face
recognition, providing insights from the perspectives of both security applications
and face perception.

Technically, we focus on face segmentation and the design of a face swapping
pipeline. Our contributions include

• Semi-supervised labeling of face segmentation.We provide a novel means of gen-
erating a rich image set with face segmentation labels, by using motion cues and
3D data augmentation. The data we collect is used to train an FCN to segment
faces faster and more accurately than existing methods.

• Face swapping pipeline.We describe an image-based face swapping pipeline and
show it to work well on images and image pairs of unprecedented difficulty.

• Quantitative tests. Despite over a decade of work and contrary to other face pro-
cessing tasks (e.g., recognition), face swapping methods were never quantitatively
tested. We offer the first quantitative evaluation protocols for intra- and inter-
subject face swapping systems.

Our qualitative results show that our swapped faces are as compelling as those
produced by others, if not more. Our quantitative tests further demonstrate that our
intra-subject face swapping has little effect on face verification accuracy: our swap-
ping does not change these images in ways which affect subject identities.

We further report inter-subject results on randomly selected pairs. These tests
require facial appearance to change, sometimes substantially, in order to naturally
blend source faces into their new surroundings. We show that images changed in this
manner are less recognizable. Though this perceptual phenomenon was described
over two decades ago by Sinha and Poggio [53] in their well-known Clinton–Gore
illusion, we are unaware of previous quantitative reports on how this applies to
machine face recognition.

For code and deep models, please see our project page.1

2.2 Related Work

2.2.1 Face Segmentation

To swap only faces, without their surrounding context or occlusions, we require
per-pixel segmentation labels. Some previous methods segment individual facial
regions (e.g., eyes, mouth) but not the entire face [40]. Others take example-based
approaches to face segmentation [54]. More recently, faces were segmented by alter-

1 https://talhassner.github.io/home/publication/2018_FG_1.

https://talhassner.github.io/home/publication/2018_FG_1
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nating between segmentation and landmark localization using deformable part mod-
els [17]. This approach reported state-at-the-art performance on theCaltechOccluded
Faces in the Wild (COFW) dataset [8].

Two recent methods proposed to segment faces using deep neural networks. The
first trained a network to simultaneously segment multiple facial regions, including
the entire face [38]. This method was used by others for face swapping [27], but this
method can be computationally expensive. More recently [52], results were reported
which outperformed the state-at-the-art on COFW [17] as well as demonstrating
real-time processing speeds by using a deconvolutional neural network.

2.2.2 Face Swapping

Methods for swapping faces were proposed as far back as 2004 [7] with fully auto-
matic techniques described nearly a decade ago [6]. These methods were originally
offered in response to privacy preservation concerns: Face swapping can be used to
obfuscate identities of subjects appearing in publicly available photos, as a substitute
to face pixelation or blurring [6, 7, 45]. Since then, however, many of their appli-
cations seem to come from recreation [27] or entertainment (e.g., Alexander et al.
[2, 14, 37, 57]).

Regardless of the application, previous face swapping systems often share several
key aspects. First, some methods restrict the target photos used for transfer. Given
an input source face, they search through large face albums to choose ones that are
easy targets for face swapping [6, 13, 27]. Such targets are those which share similar
appearance properties with the source, including facial tone, pose, expression, and
more. Though our method can be applied in similar settings, our tests focus on more
extreme conditions, where the source and target images are arbitrarily selected and
can be (often are) substantially different.

Second, most previous methods estimate the structure of the face. Some estimate
3D facial shapes [2, 6, 36], by fitting 3DMorphable Face Models (3DMM) [41, 50].
Others instead estimate dense 2D active appearance models [61]. This is presumably
done in order to correctly map textures across different individual facial shapes.

Finally, deep learning was recently used to transfer faces [29, 46], as if they were
styles transferred between images. This method, however, requires a deep network
to be trained for each source image or subject and thus can be impractical in many
applications.

2.3 Swapping Faces in Unconstrained Images

Figure 2.2 summarizes our face image swappingmethod.When swapping a face from
a source image, IS , to a target image, IT , we treat both images the same, apart from
the final stage (Fig. 2.2d). Our method first localizes 2D facial landmarks in each
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Fig. 2.2 Method overview. a Source (top) and target (bottom) input images. b Detected facial
landmarks used to establish 3D pose and facial expression for a 3D face shape (Sect. 2.3.1). c Our
segmentation of Sect. 2.3.2 (red) overlaid on the projected 3D face (gray). d Source transfered onto
target without blending, and the final results, e after blending (Sect. 2.3.3)

image (Fig. 2.2b). We use an off-the-shelf detector for this purpose [26]. Using these
landmarks, we compute 3D pose (viewpoint) and modify the 3D shape to account
for expression. These steps are discussed in Sect. 2.3.1.

We next segment faces from backgrounds and occlusions (Fig. 2.2c) using an
FCN trained to predict per-pixel face visibility (Sect. 2.3.2). We describe how we
generate rich labeled data to train our FCN. Finally, the source is efficiently warped
onto the target using the two aligned 3D face shapes as proxies and blended onto the
target (Sect. 2.3.3).

2.3.1 Fitting 3D Face Shapes

To enrich our set of examples for training the segmentation network (Sect. 2.3.2)
we explicitly model 3D face shapes. These 3D shapes are also used as proxies to
transfer textures from one face onto another, when swapping faces (Sect. 2.3.3). We
experimented with two alternative methods of obtaining these shapes.

The first, inspired by [21] uses a generic 3D face, making no attempt to fit the 3D
shape to the face in the image aside from performing pose (viewpoint) alignment.
We, however, also estimate facial expressions and modify the 3D face accordingly.

A second approach uses the recent state-at-the-art, deep method for single image
3D face reconstruction [12, 55, 56]. This method was shown to work well on uncon-
strained photos such as those considered here. To our knowledge, this is the only
method quantitatively shown to produce invariant, discriminative, and accurate 3D
shape estimations. We have released code for that method, which regresses 3DMor-
phable faceModels (3DMM) in neutral pose and expression.We extend it by aligning
3D shapes with input photos andmodifying the 3D faces to account for facial expres-
sions by using facial landmarks.



26 Y. Nirkin et al.

3D shape representation and estimation. Whether generic or regressed, we use the
popular Basel Face Model (BFM) [50] to represent faces and the 3DDFAMorphable
Model [62] for expressions.These are bothpublicly available 3DMMrepresentations.
More specifically, a 3D face shape V ⊂ R

3 is modeled by combining the following
independent generative models:

V = v̂ + WS α + WE γ . (2.1)

Here, vector v̂ is the mean face shape, computed over aligned facial 3D scans in
the Basel Faces collection and represented by the concatenated 3D coordinates of
their 3D points. When using a generic face shape, we use this average face. Matrices
WS (shape) and WE (expression) are principle components obtained from the 3D
face scans. Finally, α is a subject-specific 99D parameter vector estimated separately
for each image and γ is a 29D parameter vector for expressions. To fit 3D shapes
and expressions to an input image, we estimate these parameters along with camera
matrices.

To estimate per-subject 3D face shapes, we regress α using the deep network
of [55]. They jointly estimate 198D parameters for face shape and texture. Dropping
the texture components, we obtain α and back-project the regressed face by v̂ +
WS α, to get the estimated shape in 3D space.

Pose and expression fitting. Given a 3D face shape (generic or regressed)we recover
its pose and adjust its expression to match the face in the input image. We use the
detected facial landmarks, p = {pi } ⊂ R

2, for both purposes. To improve robustness,
future implementations are planned to regress viewpoint [1, 10, 12] and expres-
sions [11] directly using deep networks, similarly to face shape.

Specifically, we begin by solving for the pose, ignoring expression. We approxi-
mate the positions in 3D of the detected 2D facial landmarks Ṽ = {Ṽi} by

Ṽ ≈ f (̂v) + f (WS) α, (2.2)

where f (·) is a function selecting the landmark vertices on the 3D model. The
vertices of all BFM faces are registered so that the same vertex index corresponds
to the same facial feature in all faces. Hence, f need only be manually specified
once, at preprocessing. From f , we get 2D-3D correspondences, pi ↔ Ṽi , between
detected facial features and their corresponding points on the 3D shape. Similar to
previous work [19], we use these correspondences to estimate 3D pose, computing
3D face rotation, R ∈ R

3, and translation t ∈ R
3 using the EPnP solver [33].

Following pose estimation, we regress expression parameters in vector γ by for-
mulating expression estimation as a bounded linear problem:

δR

(

P(R, t)
(

f (̂v) + f (WS) α + f (WE ) γ
)

)

= δR(p),

with
∣

∣γ j

∣

∣ ≤ 3 σ j ∀ j = {1 . . . 29} (2.3)
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where δR(·) is a visibility check that removes occluded points given the head rotation
R; P(R, t) is the projection matrix, given the extrinsic parameters (R,t); and σ j is
the standard deviation of the j-th expression component in γ . This problem can be
solved using any constrained linear least-squares solver.

2.3.2 Deep Face Segmentation

Our method uses an FCN to segment the visible parts of faces from their context
and occlusions. Other methods previously tailored novel network architectures for
this task (e.g., Saito et al. [52]). We show that excellent segmentation results can be
obtained with a standard FCN, provided that it is trained on plenty of rich and varied
examples.

Obtaining enough diverse images with ground truth segmentation labels can be
hard: Saito et al. [52], for example, used manually segmented LFW faces and a
semi-automatic segmentation method [9] for this purpose. These labels were costly
to produce and limited in their variability and number. We, instead, propose a novel
means of generating numerous training examples with little manual effort and show
that a standard FCN trained on these examples outperforms state-at-the-art face
segmentation results.

Semi-supervised training data collection. We produce large quantities of segmen-
tation labeled face images by usingmotion cues in unconstrained face videos. To this
end, we process videos from the recent IARPA Janus CS2 dataset [28]. These videos
include faces of different poses, ethnicities, and ages, viewed under widely varying
conditions. Our training used the 1,275 videos of subjects not included in LFW, of
the 2,042 CS2 videos (309 subjects out of 500).

Given a video, we produce a rough, initial segmentation using a method based on
previous work [18]. Specifically, we keep a hierarchy of regions with stable region
boundaries computed with dense optical flow. Though these regions may be over- or
under-segmented, they are computed with temporal coherence and so these segments
are consistent across frames.

We use an existing face detector [26] to detect faces and facial landmarks in
each of the frames. Facial landmarks were then used to extract the face contour
and extend it to include the forehead. We chose this method over simpler landmark
detectors [58] because we need contour landmarks and more than five landmark
positions are estimated.

All the segmented regions generated above, that did not overlapwith a face contour
are then discarded. All intersecting segmented regions are further processed using
a simple interface which allows browsing the entire video, selecting partial seg-
ments [18], and adding or removing them from the face segmentation using simple
mouse clicks. Figure 2.3a shows the interface used in the semi-supervised labeling. A
selected frame is typically processed in about 5 seconds. In total, we used thismethod
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Fig. 2.3 a Interface used for semi-supervised labeling. b–cAugmented examples and segmentation
labels for occlusions due to b hands and c synthetic sunglasses

to produce 9,818 segmented face images (frames), choosing anywhere between one
to five frames per video in a little over a day of work.

Occlusion augmentation. This labeled collection is further enriched by adding syn-
thetic occlusions. To this end, we explicitly use 3D information estimated for our
example faces. Specifically, we estimate 3D face shape for our segmented faces,
using the method described in Sect. 2.3.1. We then use computer graphic (CG) 3D
models of various objects (e.g., sunglasses) to modify the faces. We project these
CG models onto the image and record their image locations as synthetic occlusions.
Each CG object added 9,500 face examples. The detector used in our system [26]
failed to accurately localize facial features on the remaining 318 faces, and so this
augmentation was not applied to them.

Finally, an additional source of synthetic occlusions follows previous work by
overlaying hand images at various positions on our example images [52]. Hand
imageswere taken from theEgoHands dataset [4]. Figure 2.3b shows a synthetic hand
augmentation and Fig. 2.3c a sunglasses augmentation, along with their resulting
segmentation labels.

2.3.3 Face Swapping and Blending

Face swapping from a source IS to target IT proceeds as follows. First, to avoid
distortions, the source and target face horizontal rotation angles are compared, if
they have a different sign and are more than 10◦ apart then the source image and its
corresponding 3D shape and segmentation are flipped horizontally. The 3D shape
associated with the source, VS , is projected down onto IS using its estimated pose,
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P(RS, tS) (Sect. 2.3.1).We then sample the source image using bilinear interpolation,
to assign 3D vertices projected onto the segmented face (Sect. 2.3.2) with intensities
sampled from the image at their projected coordinates.

The shapes for both source and target, VS and VT correspond in the indices of
their vertices. We can therefore directly transfer these sampled intensities from all
vertices vi ∈ VS to vi ∈ VT . This provides texture for the vertices corresponding to
visible regions in IS on the target 3D shape. We now render VT onto IT , using the
estimated target pose (RT , tT ), masking the rendered intensities using the target face
segmentation (see Fig. 2.2d). Finally, the rendered, source face is blended in with
the target context using an off the shelf method [51].

2.4 Experiments

We performed comprehensive experiments in order to test our method, both quali-
tatively and quantitatively. Runtimes were all measured on an Intel Core i7 4820K
computer with 32GB DDR4 RAM and an NVIDIA GeForce Titan X. Our original
implementation swapped faces at 1.3 fps using a GPU and taking slightly more time,
0.8 fps on the CPU [47]. A more recent, optimized implementation now runs at 25
fps on two CPUs. A similar speedup is expected by applying the same optimizations
to the GPU version and is left as future work.

2.4.1 Face Segmentation Evaluations

Qualitative results. Qualitative face segmentation results are provided in Figs. 2.2,
2.4, and 2.5. Results are visualized following others [52] to show segmented regions
(red) overlaying the aligned 3D face shapes, projected onto the faces (gray).

Quantitative results. We also performed quantitative tests, comparing the accu-
racy of our segmentation to existing methods. We follow the evaluation procedure
described by previouswork [17], testing the 507 face photos in theCOFWdataset [8].
Previousmethods include the regional predictive power (RPP) estimation [59], Struc-
tured Forest [25], segmentation-aware part model (SAPM) [17], recent deep meth-
ods [38, 52]. We provide results also for our method, trained without out occlusion
augmentation (Sect. 2.3.2).

Note that Structured Forest [25] and one of the deep methods [52] used respec-
tively 300 and 437 images for testing, without reporting which images were used.
Also note that results for one of the baselines [38] were computed by us, using code
released by its authors, out of the box, but optimizing for the segmentation threshold
which provided the best accuracy.

Accuracy is measured using the standard intersection over union (IOU) met-
ric, comparing predicted segmentations with manually annotated ground truth
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Fig. 2.4 Qualitative segmentation results from the COFW data set

Fig. 2.5 Qualitative segmentation results from the LFW data set
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Table 2.1 Segmentation results on the COFW dataset [8]

Method Mean IOU Global Ave(face) FPS

Struct.
Forest [25]∗

– 83.9 88.6 –

RPP [59] 72.4 – – 0.03

SAPM [17] 83.5 88.6 87.1 –

Liu et al. [38] 72.9 79.8 89.9 0.29

Saito et al. [52]∗
+GraphCut

83.9 88.7 92.7 43.2

Us (no occlusion
augmentation at
training)

81.6 87.4 93.3 48.6

Us 83.7 88.8 94.1 48.6

*These results were reported on unspecified subsets of the test set

masks [25], as well as two standard metrics [25]: global—overall percent of cor-
rectly labeled pixels—and ave(face), the average face pixel recall. Table 2.1 reports
these results along with run times. Our method is the fastest yet achieves comparable
result with the state-at-the-art. Note that we use the same GPU model as the ones
used by the most recent baseline [52] and report runtimes we measured ourselves for
other baselines [38]. All other run times were reported in previous work.

2.4.2 Qualitative Face Swapping Results

We provide face swapping examples produced on unconstrained LFW images [24]
using randomly selected targets in Figs. 2.1, 2.2, 2.6, 2.8, and 2.9. We chose these
examples to demonstrate a variety of challenging settings. In particular, these results
used source and target faces of widely different poses, occlusions, and facial expres-
sions. To our knowledge, previous work never showed results for such challenging
settings.

Figure 2.8 shows other qualitative results with multiple sources swapped onto
multiple targets using images collected from the Web.

Our method is capable of producing high-resolution results of over 512×512
pixels as demonstrated in Fig. 2.9.

In addition, Fig. 2.7 shows a qualitative comparison with a recent baseline
method [27] using the same source-target pairs. We note that this previous method
used an existing segmentation approach [38] whichwe show in Sect. 2.4.1 to perform
worse than our own. This is qualitatively evident in Fig. 2.7 by the facial hairlines.
Fig. 2.7 also provides results from the publicly available code of Kowalski [30] and
Hrastnik [23]. In both cases, the absence of a segmentation is clearly evident.
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Fig. 2.6 Qualitative LFW inter-subject face swapping results. Examples were selected to represent
extremely different poses (4, 7), genders (1, 2, 7, 8), expressions (1), ethnicities (1, 3, 6), ages (3,
4, 5, 7, 8) and occlusions (1, 4, 5)

2.4.3 Qualitative Ablation Study

We further performed qualitative ablation studies showing how the components
employed in our face swapping affects the final result. Figures 2.10 and 2.11 provide
such qualitative results for inter-subject and intra-subject face swapping: The figures
show the source face transferred onto the target face using (1) a generic 3D model
(2) the estimated 3D shape (3) a generic 3D model and face segmentation (4) the
estimated 3D shape and face segmentation.

2.4.4 Limitations of Our System

Figure 2.12 describes a few typical failure cases and their causes. As we show earlier
(Fig. 2.10), surprisingly, the differences in 3D shapes and even expressions have little
effect on the quality of the generated images. Instead, swapping errors—cases where
the output shows noticeable artifacts or else fails to look authentic—are typically
caused by a failure of one of the preprocessing components of the system, particularly
the landmark detection used for viewpoint estimation Fig. 2.12(1). We hope to solve
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Fig. 2.7 Comparison with previous face swap methods (1) Result published by Kemelmacher–
Shlizerman [27]. (2–4) Results obtained by the public implementations of Kowalski [30] and
Hrastnik [23]

these in the future by using more robust viewpoint estimation techniques, such as
direct face alignment, recently proposed [10].

Other frequent failure cases are due to severe differences in image resolutions
between the source and target views, Fig. 2.12(2). Finally, the simple blendingmethod
we use can also fail to correctly merge the source face into its new target context,
Fig. 2.12(3). The last two failure reasons could potentially be mitigated by smarter
merging methods, possibly using deep learning as a realism filter, as some have
recently proposed for face alignment [60].
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Fig. 2.8 Qualitative inter-subject face swapping results

2.5 The effects of Swapping on Recognition

Similar to previous work, we offer qualitative results demonstrating our swapped
faces (Sect. 2.4.2). Unlike others, however, we also offer extensive quantitative tests
designed to measure the effect of swapping on the perceived identity of swapped
faces. To this end, we propose two test protocols, motivated by the following
assumptions.
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Fig. 2.9 High-resolution intra-subject face swapping results

Assumption 1 Swapping faces between images of different subjects (i.e., inter-
subject swapping) changes facial context (e.g., hair, skin tone, head shape). Effective
swapping must therefore modify source faces, sometimes substantially, to blend
them naturally into their new contexts, thereby producing faces that look less like
the source subjects. Examples of inter-subject face swaps are provided throughout
this paper, but see Fig. 2.10 and for some LFW examples.

Assumption 2 If a face is swapped between two photos of the same person (intra-
subject swapping), the output of an effective swapping method should easily be
recognizable as the two photos share the same context. See examples in Fig. 2.11.

The first assumption is based on a well-known trait of human visual perception:
Face recognition requires both internal and external cues (faces and their context)
to recognize faces. This idea was claimed by a seminal work [53] and extensively
studied in the context of biological visual systems [3]. To our knowledge, it was never
explored for machine recognition systems and never quantitatively. The robustness
of our method allows us to do just that.

The second assumption is intended to verify that when the context remains the
same (the same subject) swapping does not change facial appearances in a way
which makes faces less recognizable. This ensures that the swapping method does
not introduce artifacts or changes facial appearances.

To test these assumptions, we produce modified (face swapped) versions of the
LFWbenchmark [24].We estimate how recognizable faces appear after swapping by
using a publicly available, state-of-the-art face recognition system, in lieu of a large-
scale human study. Though the recognition abilities of humans and machines may be
different, modern systems already claim human or even super-human accuracy [39].
We therefore see the use of a state-at-the-art machine system as an adequate surrogate
to human studies which often involve problems of their own [32].
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Fig. 2.10 Inter-subject face Swapping results. Qualitative ablation study

2.5.1 Face Verification System

We use the ResFace101 [43] face recognition system to test if faces remain recogniz-
able after swapping. ResFace101 obtained near-perfect verification results on LFW,
yet it was not optimized for that benchmark and tested also on IJB-A [28]. Moreover,
it was trained on synthetic face views, not unlike the ones produced by face swap-
ping. For these reasons, we expect ResFace101 to be well suited for our purposes.
Recognition is measured by 100%-EER (Equal Error Rate), accuracy (Acc.), and
normalized Area Under the Curve (nAUC). Finally, we provide ROC curves for all
our tests.
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Fig. 2.11 Intra-subject face swapping results. Qualitative ablation study

2.5.2 Inter-Subject Swapping Verification Protocols

We begin by measuring the effect of inter-subject face swapping on face verification
accuracy. To this end, we process all faces in the LFW benchmark, swapping them
onto photos of other, randomly selected subjects. We make no effort to verify the
quality of the swapped results and if swapping failed, we treat the result as any other
image.

We use the original LFW test protocol with its same/not-same subject pairs. Our
images, however, present the original faces with possibly very different contexts.
Specifically, let (I1i , I

2
i ) be the i-th LFW test image pair. We producêI1i , the swapped

version of I1i , by randomly picking another LFW subject and image from that subject
as a target, taking I1i as the source. We then do the same for I2i to obtain̂I2i .
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Fig. 2.12 Face swapping failures. (1) The most common reason for failure is facial landmark
localization errors, leading to misaligned shapes or poor expression estimation. Other, less frequent
reasons include (2) substantially different image resolutions (3) failures in blending very different
facial hues

Matching pairs of swapped images, however, can obscure changes to both images
which make the source faces equally unrecognizable: Such tests only reflect the
similarity of swapped images to each other, not to their sources. We therefore test
verification on benchmark pairs comparing original versus swapped images. This
is done twice, once on pairs (̂I1i , I

2
i ), the other on pairs (I1i ,̂I

2
i ). We then report the

average results for both trials. We refer to these tests as face preserving tests.
We also performed context preserving tests: These use benchmark image pairs

as targets rather than sources. Thus, they preserve the context of the original LFW
images, not the faces. By doing so, we can measure the effect of context on recogni-
tion. This test setup is reminiscent of the inverse mask tests performed by others in
the past [31]. Their tests were designed to measure howwell humans recognize LFW
faces if the face was cropped out without being replaced, and showed that doing so
led to a drop in recognition. Unlike them, our images contain faces of other subjects
swapped in place of the original faces, and so are more realistic.

2.5.3 Inter-Subject Swapping Results

We provide verification results for both face preserving and context preserving inter-
subject face swapping in Table 2.2 and ROC curves for the various tests in Fig. 2.13.
Our results include ablation studies, showing accuracywith a generic face and no seg-
mentation (Generic), with an estimated 3D face shape (Sect. 2.3.1) and no segmen-
tation (Est. 3D), with a generic face and segmentation (Seg.) and with an estimated
3D shape and face segmentation (Est. 3D+Seg.).

The face preserving results in Table 2.2 (bottom) are consistent with our Assump-
tion 1: The more the source face is modified, by estimating 3D shape and better
segmenting the face, the less it is recognizable as the original subject and the lower
the verification results. Using a simple generic shape and no segmentation provides
∼8% better accuracy than using our the entire pipeline. Importantly, just by estimat-
ing 3D face shapes, accuracy drops by ∼3.5% compared to using a simple generic
face shape.

Unsurprisingly, the context preserving results in Table 2.2 (top) are substantially
lower than the face preserving tests. Unlike the face preserving tests, however, the
harder we work to blend the randomly selected source faces into their contexts, the
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Table 2.2 Inter-subject face swapping. Ablation study

Method 100%-EER Acc. nAUC

Baseline
(ResFace101)

98.10±0.90 98.12±0.80 99.71±0.24

Context preserving (face swapped out)

Generic 64.58±2.10 64.56±2.22 69.94±2.24

Est. 3D 69.00±1.43 68.93±1.19 75.58±2.20

Seg. 68.93±1.98 69.00±1.93 76.06± 2.15

Est. 3D+Seg. 73.17±1.59 72.94±1.39 80.77±2.22

Face preserving (face swapped in)

Generic 92.28±1.37 92.25±1.45 97.55±0.71

Est. 3D 88.77±1.50 88.53±1.25 95.53±0.99

Seg. 89.92±1.48 89.98±1.36 96.17±0.93

Est. 3D+Seg. 86.48±1.74 86.38±1.50 93.71±1.42

Table 2.3 Intra-subject face swapping. Ablation study

Method 100%-EER Acc. nAUC

Baseline (VGGFace) 97.23±0.88 97.35±0.77 99.54±0.30

Baseline
(ResFace101)

98.10±0.90 98.12±0.80 99.71±0.24

Generic 97.02±0.98 97.02±0.97 99.53±0.31

Est. 3D 97.05±0.98 97.03±1.01 99.52±0.32

Seg. 97.12±1.09 97.08±1.07 99.53±0.31

Est. 3D+Seg. 97.12±1.09 97.12±0.99 99.52±0.31

Est. 3D+Seg. 96.65±0.85 96.63±0.92 99.45±0.29

better recognition becomes. By better blending the sources into the context, more
of the context is retained and the easier it is to verify the two images based on their
context without the face itself misleading the match.

2.5.4 Intra-Subject Swapping Verification Protocols
and Results

To test our second assumption, we again process the LFW benchmark, this time
swapping faces between different images of the same subjects (intra-subject face
swapping). Of course, all same labeled test pairs, by definition, belong to subjects
that have at least two images, and so this did not affect these pairs. Not-same pairs,
however, sometimes include images from subjects which have only a single image.
To address this, we replaced them with others for which more than one photo exists.
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Fig. 2.13 Inter-subject
swapping ROC curves.
Ablation study for the two
experiments. Baseline shown
in red
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We again run our entire evaluation twice: once, swapping the first image in
each test pairs keeping the second unchanged, and vice versa. Our results aver-
age these two trials. Results obtained using different components of our system are
provided in Table 2.3 and Fig. 2.13. These show that even under extremely different
viewing conditions, perceived subject identity remains unchanged, supporting our
Assumption 2.

In general, accuracy drops by ∼1%, with a similar nAUC compared to the use of
original LFW images. This slight drop suggests that our swapping between different
images of the same subject does not alter apparent facial identities.

2.6 Conclusions

We describe a method for swapping faces between images which is robust enough
to allow for large-scale, quantitative tests. From these tests, several key observations
emerge. (1) State-of-the-art face segmentation can be obtained with a standard seg-
mentation network, provided that the network is trained on rich and diverse examples.
(2) Collecting such examples is easy using motion cues in video and CG augmenta-
tion techniques.

As for the effects of swapping on face recognition, (3) Both face and context play
important roles in recognition. We offer quantitative support for the two decades old
claim of Sinha and Poggio [53]. (4) Better swapping leads to more facial changes
and a drop in recognition. Finally, (5), 3D face shape estimation better blends the two
faces together and so produces less recognizable faces. As these methods mature, an
important goal of future research is to provide fake detection techniques. Although
there is progress on that front, one challenging frontier remains generalized fake
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detection: Detecting fakes produced by methods that are unknown at the time the
detector is being trained [48].
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Chapter 3
Disentangled Representation Learning
and Its Application to Face Analytics

Dimitris N. Metaxas, Long Zhao, and Xi Peng

3.1 Introduction

The goal of every contemporary recognition approach is to learn robust and unam-
biguous object representations in feature space. These learned powerful disentangled
representationsmake it possible to build effective classifiers and are an active research
topic in many fields such as face analytics.

In this chapter, we present the state-of-the-art approaches for disentangled repre-
sentation learning and their application to face analytics.Most representation learning
problems use an encoder/decoder approach to achieve powerful feature embeddings
in representation space. Figure 3.1 illustrates this idea. The first mapping f (·), the
encoder, projects pixels in the image space into a representation space to achieve
low-dimensional feature embeddings, which could be 1D vectors, 2D maps, or mul-
tidimensional manifolds. Then, the second mapping g(·), the decoder, remaps the
embedded feature representation into a target space to accomplish tasks such as
classification labels, detection locations, and segmentation boundaries.

In face recognition, the encoder extracts image features which are then projected
into a one-hot vector to represent the facial class label. In face detection, the encoder
learns spatial-dependent feature maps which are followed by the decoder to generate
a region of interests for face localization. In face generation, an encoder is applied to
the image to achieve low-dimensional embeddings, which are then fed into a decoder
to recover an image that presents pixel-wise facial information.

The representation space is usually designed to be low-dimensionalwith restricted
variations The embeddings in this space are preferred to be informative, concise,
and interpretable to final targets. To address this problem, the encoder is used to
project the image space, which is high-dimensional and filled up with variations,
to the representation space, which is relatively low-dimensional and disentangled
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Image Space 1D feature vector

2D feature map

manifold

Representation
Space

Target Space

detection location; 
segmentation boundary; 

f(·) g(·)

noisy; 
high-dimensional; 
extensive variations;

low-dimensional; 
reduced variations; 
concise and interpretable;

Fig. 3.1 Illustration of the encoder/decoder approach of many recognition systems. f (·) encodes
information from the image space to achieve abstract feature embeddings in the representation space;
while g(·) aims to decode the learned feature embeddings into the target space for the desired tasks.
The representation space could consist of 1D vectors, 2D maps, or multidimensional manifolds

Table 3.1 Configurations of training datasets used to train three recently proposed face recognition
networks. A large amount of labeled subjects and images are used, which is not only very expensive
but also time-consuming

Method DeepFace FaceNet VggFace

Training datasets SFC WebFace VggFace

# of images 4.4M 200M 2.6M

# of subjects 4K 8M 2.6K

for interpretation. Learning robust and interpretable representations is a crucial and
fundamental goal in computer vision to address challenging recognition applications.

However, learning robust representations is very expensive and hard given the
need for annotations on large amounts of carefully selected data. Table 3.1 lists
training datasets used in three recently proposed face recognition systems: DeepFace
[54] developed by Google, FaceNet [51] developed by Facebook, and VggFace [42]
developed by the VGG group. We can see that 2.6 and 4.4 million labeled images are
used to train VggFace and DeepFace, respectively. An astonishing large dataset of
200 million labeled images of 8 million different subjects is used to train FaceNet.
Undoubtedly, annotating such a large amount of images is extremely expensive,
time-consuming, and tedious, whether it is done manually or semi-automatically.

The annotation cost is just one aspect of the difficulty in learning robust repre-
sentations. Table 3.2 shows that even after feeding the VGGFace network with 2.6
million labeled images, the performance is still poor. For instance, the verification
accuracy drops drastically to as low as 34.2% on profile faces (yaw <75◦), although
it achieves a high accuracy of 97.2% on frontal faces (yaw <15◦). Therefore, just
increasing the number of annotated data does not solve the problem.
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Table 3.2 Rank-1 face recognition accuracywith respect to different headpose onMultiPIEdataset.
The recognition accuracy drops significantly when the head pose changes from frontal to profile

Head pose 15◦ (%) 30◦ (%) 45◦ (%) 60◦ (%) 75◦ (%) 90◦ (%)

VggFace 97.2 96.1 92.6 84.7 62.8 34.2

0◦

30◦
60◦

90◦

Fig. 3.2 Illustration of the feature entanglement. Two subjects (in different colors) from MultiPIE
dataset are mapped into the learned representation space of VGGFace. Images in a similar head pose
are embedded closer to each other even they belong to different subjects. In other words, generic
data-driven features for face recognition might confound images of the same identity with others
in large pose conditions

It has been demonstrated in many works that the aforementioned challenges are
mainly caused by the difficulty of learning robust representations [29, 35, 48]. If we
simply categorize features in the representation space as target-related and target-
unrelated, we discover that in many applications, the latter may dominate the former
due to feature entanglement in the representation space. Figure 3.2 illustrates the
dilemma in representation learning. Two different faces (in different colors) from
MultiPIE dataset [17] are mapped into the learned representation space of VGGFace
[42]. We can see that generic data-driven features for face recognition might confuse
images of the same faces with different faces with large pose variations. In the
representation space, images of the same person may be far away from each other
due to large variations in head poses, while images of different people may be close
to each other when the head poses are similar. Therefore, in representation space,
target-unrelated factors such as head pose may dominate target-related factors such
as person identity.

A favorable representation learned from the image space should be compact, inter-
pretable, and unambiguously disentangled for the final target. However, the image
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space is usually high-dimensional and noisy. Target-unrelated features may confuse
target-related ones due to the nature of massive entanglement in the representation
space. To achieve robust representations, the encoder, which maps the image space
to the representation space, should be capable to factorize and further decouple the
latent features to split target-related and target-unrelated representations. Therefore,
learning a robust mapping from the image space to the representation space becomes
a fundamental goal of many computer vision methods.

Learning disentangled representations is a fundamental goal in many facial ana-
lytics methods. For example, in the multi-view face recognition problem [75], we
can explicitly split the latent features into facial appearance features (who is this
person) and viewpoint features (which is the angle the facial image is taken). The
disentangled representations can then be used to recognize the person’s face con-
sistently, regardless of viewpoint changes. In the face generation task [32], multiple
latent features can be implicitly learned and decoupled from each other, such as
wearing eyeglasses, having mustache, black hair. Then these decoupled features can
be reorganized together to guide the generation of a novel face image that is not
present in the training dataset. Overall, the essential idea in learning disentangled
representations is to set apart target-related and target-unrelated features. In other
words, we intend to factorize the latent representation space features into variant and
invariant categories given a task, while ignoring unrelated features.

In this chapter, we show how to develop and apply disentangled representation
learning to solve two classic but important face analytics problems: face landmark
tracking and facial attribute inference and generation. Face landmark tracking plays a
fundamental role in many computer vision tasks, such as face recognition and verifi-
cation, expression analysis, person identification, and 3D face modeling. It is also the
basic technology component for a wide range of applications like video surveillance,
emotion recognition, augmented reality on faces, etc. In the past few years, many
methods have been proposed to address this problem, with significant progress being
made toward systems that work in real-world conditions (“in the wild”). Learning
facial representations with deep neural networks is another essential yet challeng-
ing problem. It has broad applications in vision, graphics, and robotics. Generative
adversarial networks (GANs) are widely employed to address this problem. And
how to employ GANs to learn disentangled representations for faces to improve the
performance of facial attribute inference and generation is still one of the hottest
topics in this field.

The rest of the chapter is organized as follows. In Sect. 3.2, we split the iden-
tity embedding, which is invariant to facial landmark locations as the same sub-
ject are tracked, from the pose and expression embedding, which determines the
displacements of facial landmark locations frame to frame, in the bottleneck of a
recurrent encoder–decoder network [43]. The additional identity supervision signif-
icantly improves the tracking accuracy and robustness especially in large pose and
partial occlusions. In Sect. 3.3, we show how disentangled representation learning is
employed for facial attribute generation tasks with the help of Generative Adversar-
ial Networks (GANs) [16]. Especially, we introduce a variant of GANs which aims
to learn disentangled representations in a “complete” way and thus significantly
improves the generation quality.
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3.2 Application 1: Facial Landmark Tracking

In this section, we first give a brief literature review of face alignment and then
introduce RED-Net proposed by Peng et al. [43], which is one of the state-of-the-
art methods in this field. At last, we show the superior performance of RED-Net
comparing with other methods on public benchmarks.

Face alignment has a long history of research in computer vision. Here we briefly
introduce the background of face landmark detection, face landmark tracking, and
recurrent encoder–decoder neural networks.

3.2.1 Related Works

3.2.1.1 Face Landmark Detection

Recently, regression-based face landmark detection methods [2, 3, 8, 25, 53, 59, 62,
63, 68, 73, 73] have achieved significant boost in the generalization performance of
face landmark detection, compared to algorithms based on statistical models such as
active shape models [11, 39] and active appearance models [15]. Regression-based
approaches directly regress landmark locations based on features extracted from face
images. Landmark models for different points are learned either in an independent
manner or in a joint fashion [8]. When all the landmark locations are learned jointly,
implicit shape constraints are imposed because they share the same or partially the
same regressors. To compare, RED-Net performs landmark detection via both a
classification model and a regression model. It deals with face alignment in a video
by jointly optimizing the detection outputs of the same person in the video.

Additional accuracy improvement in face landmark detection performance can
be obtained by learning cascaded regression models. Regression models from earlier
cascade stages learn coarse detectors,while later cascade stages refine the result based
on early predictions. Cascaded regression helps to gradually reduce the prediction
variance, thus making the learning task easier for later stage detectors. Many meth-
ods have effectively applied cascade-like regression models for the face alignment
task [53, 63, 68]. The supervised descent method [63] learns cascades of regression
models based on SIFT features. Sun et al. [53] proposed to use three levels of neural
networks to predict landmark locations. Zhang et al. [68] studied the problem via
cascades of stacked auto-encoders which gradually refine the landmark position with
higher resolution inputs. Compared to these efforts which explicitly define cascade
structures, RED-Net learns a spatial recurrent model which implicitly incorporates
the cascade structure with shared parameters. It is also more “end-to-end” compared
to previous works that divide the learning process into multiple stages.
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3.2.1.2 Face Landmark Tracking

Most face alignment algorithms utilize temporal information by initializing the loca-
tion of landmarks with detection results from the previous frame, performing align-
ment in a tracking-by-detection fashion [61]. Asthana et al. [3] and Peng et al. [46]
proposed to learn a person-specific model using incremental learning. However,
incremental learning (or online learning) is a challenging problem [55], as the incre-
mental scheme has to be carefully designed to prevent model drifting [56]. In RED-
Net, the recurrent model is online trained to capture landmark motion correlations.

3.2.1.3 Recurrent Encoder–Decoder

Recurrent neural networks (RNNs) are widely employed in the literature of speech
recognition [38] and natural language processing [37]. They have also been recently
used in computer vision. For instance, in the tasks of image captioning [26] and
video captioning [66], RNNs are usually employed for text generation. RNNs are
also popular as a tool for action classification. As an example, Veeriah et al. [60]
use RNNs to learn complex time-series representations via high-order derivatives
of states for action recognition. Benefiting from the deep architecture, RNNs are
naturally good alternatives to Conditional Random Fields (CRFs) [71] which are
popular in image segmentation.

Encoder and decoder networks are well studied in machine translation [9] where
the encoder learns the intermediate representation and the decoder generates the
translation from the representation. It is also investigated in speech recognition [36]
and computer vision [4, 22]. Yang et al. [65] proposed to decouple identity units
and pose units in the bottleneck of the network for 3D view synthesis. However,
how to fully utilize the decoupled units for correspondence regularization [33] is
still unexplored. To address this issue, RED-Net takes the advantage of the encoder
to learn a joint representation for identity, pose, expression as well as landmarks.
The decoder translates the representation to heatmaps in order to locate the face
landmarks.

3.2.2 Our Approach: RED-Net

The task is to locate facial landmarks in sequential images using an end-to-end deep
neural network. Figure 3.3 shows an overview of the approach. The network con-
sists of a series of nonlinear and multi-layered mappings, which can be functionally
categorized as four modules. We now describe the details of each learning module.
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Fig. 3.3 Overview of RED-Net: a encoder-decoder (Sect. 3.2.2.1); b spatial recurrent learning
(Sect. 3.2.2.2); c temporal recurrent learning (Sect. 3.2.2.3); and d supervised identity disentangling
(Sect. 3.2.2.4). fenc, fdec, fsrn, ftrn, fcls are potentially nonlinear and multi-layered mappings

3.2.2.1 Encoder–Decoder

The input of the encoder-decoder is a single video frame x ∈ R
W×H×3 and the output

is a response map z ∈ R
W×H×Cz which indicates landmark locations. Cz = 7 or 68

depending on the number of landmarks to be predicted.
The encoder performs a sequence of convolution, pooling, and batch normaliza-

tion [24] to extract a low-dimensional representation e from both x and z:

e = fenc
(
x, z; θenc

)
, fenc : RW×H×C → R

We×He×Ce , (3.1)

where fenc
(·; θenc

)
denotes the encoder mapping with parameters θenc. We concate-

nate x and z along the channel dimension thus C = 3 + Cz . The concatenation is fed
into the encoder as an updated input.

Symmetrically, the decoder performs a sequence of unpooling, convolution and
batch normalization to upsample the representation code to the response map:

z = fdec(e; θdec), fdec : RWe×He×Ce → R
W×H×Cz , (3.2)

where fdec
(·; θdec

)
denotes the decoder mappingwith parameters θdec. z has the same

W × H dimension as x but Cz channels for Cz landmarks. Each channel presents
pixel-wise confidences of the corresponding landmark.

3.2.2.2 Spatial Recurrent Learning

The purpose of spatial recurrent learning is to pinpoint landmark locations in a coarse-
to-fine manner. Unlike existing approaches [53, 68] that employ multiple networks
in cascade, RED-Net accomplishes the coarse-to-fine search in a single network in
which the parameters are jointly learned in successive recurrent steps.
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Fig. 3.4 An unrolled illustration of spatial recurrent learning. The response map is pretty coarse
when the initial guess is far away from the ground truth if large pose and expression exist. It
eventually gets refined in the successive recurrent steps

The spatial recurrent learning is performed by feeding back the previous pre-
diction, stacked with the image as shown in Fig. 3.4, to eventually push the shape
prediction from an initial guess to the ground truth:

zk = fsrn
(
x, zk−1; θsrn

)
, k = 1, . . . , K (3.3)

where fsrn
(·; θsrn

)
denotes the spatial recurrent mapping with parameters θsrn. z0 is

the initial responsemap, which could be a responsemap generated by themean shape
or the output of the previous frame.

Specially, RED-Net carries out a two-step recurrent learning by setting K = 2.
The first step performs landmark detection that aims to locate 7 major facial com-
ponents (i.e., C = 7 in Eq. (3.2)). The second step performs landmark regression
that refines all 68 landmarks positions (i.e. C = 68). This detection-followed-by-
regression design [7] can largely improve the precision of landmark localization.

The landmark detection step guarantees fitting robustness especially in large pose
and partial occlusions. The encoder–decoder aims to output a binary map of Cd

channels, one for each major facial component. The detection step outputs:

zd = fdec
(
fenc(x, z0; θenc); θdec

)
, zd ∈ R

W×H×Cd , (3.4)

where the detection task can be trained using pixel-wise sigmoid cross-entropy loss
function:

�d = 1

Md

Cd∑

c=1

W∑

i=1

H∑

j=1

zci j logy
c
ij + (1 − zcij)log(1 − ycij) (3.5)
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where Md = Cd × W × H . Here zci j denotes the sigmoid output at pixel location
(i, j) in zd for the c-th landmark. yci j is the ground-truth label at the same location,
which is set to 1 to mark the presence of the corresponding landmark and 0 for the
remaining background.

Note that this loss function is different from the N-way cross-entropy loss used in
our previous conference paper [43]. It allows multiple class labels for a single pixel,
which helps to tackle the landmark overlaps.

The landmark regression step improves the fitting accuracy from the outputs of
the previous detection step. The encoder–decoder aims to output a heatmap of Cr

channels, one for each landmark. The regression step outputs:

zr = fdec
(
fenc(x, zdet; θenc); θdec

)
, zr ∈ R

W×H×Cr , (3.6)

where the regression task can be trained using pixel-wise L2 loss function:

�r = 1

Mr

Cr∑

c=1

W∑

i=1

H∑

j=1

‖zci j − yci j‖22, (3.7)

whereMr = Cd × W × H . Here, zci j denotes the heatmap value of the c-th landmark
at pixel location (i, j) in zr for the c-th landmark. yci j is the ground-truth value at the
same location, which obeys a Gaussian distribution centered at the landmark with a
pre-defined standard deviation.

Now the spatial recurrent learning (Eq. (3.3)) can be achieved by minimizing the
detection loss (Eq. (3.5)) and the regression loss (Eq. (3.7)), simultaneously:

argminθenc,θdec
�d + λ�r , (3.8)

where λ balances the loss between the two tasks. Note that the spatial recurrent
learning do not introduce new parameters but sharing the same parameters of the
encoder-decoder network, i.e. θsrn = {θenc, θdec}.

3.2.2.3 Temporal Recurrent Learning

In addition to the spatial recurrent learning, RED-Net also performs temporal recur-
rent learning to model factors, e.g., head pose, expression, and illumination, that may
change over time and affect the landmark locations significantly.

As mentioned in Sect. 3.2.2.1, the bottleneck embedding e can be decoupled into
two parts: the identity code ei and the non-identity code ep:

ei ∈ R
We×He×Ci , ep ∈ R

We×He×Cp ,Ce = Ci + Cp, (3.9)

where ei and ep model the temporal-invariant and -variant factors, respectively. We
leave ei to Sect. 3.2.2.4 for additional identity supervision, and exploit variations of
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Fig. 3.5 An unrolled illustration of temporal recurrent learning. Ci encodes temporal-invariant
factor which subjects to the same identity constraint. Cp encodes temporal-variant factors which is
further modeled in ftrn

ep via the recurrent model. Please refer to Fig. 3.5 for an unrolled illustration of the
proposed temporal recurrent learning.

Mathematically, given T successive video frames {xt ; t = 1, . . . , T }, the encoder
extracts a sequence of embeddings {eti , etp; t = 1, . . . , T }. The goal is to achieve a
nonlinear mapping ftrn, which simultaneously tracks a latent state ht and updates etp
at time t :

ht = p(etp, h
t−1; θtrn), t = 1, . . . , T

et∗p = q(ht ; θtrn), (3.10)

where p(·) and q(·) are functions of ftrn
(·; θtrn

)
with parameters θtrn. et∗p is the update

of etp.
The temporal recurrent learning is trained using T successive frames. At each

frame, the detection and regression tasks are performed for the spatial recurrent
learning. The recurrent learning is performed by minimizing Eq. (3.8) at every time
step t :

argminθenc,θdec,θtrn

T∑

t=1

�td + λ�tr , (3.11)

where θtrn denotes networkparameters of the temporal recurrent learning, e.g., param-
eters of LSTM units.
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3.2.2.4 Supervised Identity Disentangling

There is no guarantee that temporal-invariant and -variant factors can be completely
decoupled in the bottleneck by simply splitting the bottleneck representation e into
two parts. More supervised information is required to achieve the disentangling. To
address this issue, RED-Net employs a side task of face recognition using iden-
tity code ei , in addition to the temporal recurrent learning applied on non-identity
code ep.

The supervised identity disentangling is formulated as an N -way classification
problem. N is the number of unique individuals present in the training sequences. In
general, the identity code ei is associated with a one-hot encoding zi to indicate the
score of each identity:

zi = fcls(ei ; θcls), fcls : RWe×He×Ci → R
N , (3.12)

where fcls(·; θcls) is the identity classification mapping with parameters θcls. The
identity task is trained using N -way cross-entropy loss:

�cls = 1

N

N∑

n=1

znlogyn + (1 − zn)log(1 − yn), (3.13)

where zn denotes the softmax activation of the n-th element in zi . yn is the n-th
element of the identity annotation yi , which is a one-hot vector with a 1 for the
correct identity and all 0s for others.

All the three tasks, i.e., fsrn, ftrn, and fcls, are jointly learned in an end-to-end
training framework by optimizing parameters {θenc, θdec, θtrn, θcls} simultaneously.
Based on Eqs. (3.11) and (3.13), RED-Net simultaneously minimize the detection
and regression loss together with the identity loss at every time step t :

argminθenc,θdec,θtrn,θcls

T∑

t=1

�tdet + λ�treg + γ �tcls, (3.14)

where γ weights the identity constraint.

3.2.3 Experiments

In this section, we show the superior performance of RED-Net by validating its major
components and comparing with state-of-the-art methods on widely used bench-
marks. Figure 3.6 shows the fitting results of RED-Net when setting the number of
tracked landmarks to 7 and 68, respectively.
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Fig. 3.6 Examples of 7-landmark (Rows 1–6) and 68-landmark (Rows 7–10) fitting results on FM
and 300-VW. RED-Net achieves robust and accurate fittings when the tracked subjects suffer from
large pose/expression changes (Rows 1, 3, 4, 6, 10), illumination variations (Rows 2, 8) and partial
occlusions (Rows 5, 7)

3.2.3.1 Validation of Encoder–Decoder Network

The performance of two encoder–decoder variants on AFLW [28] and 300-VW [52]
are compared: (1) VGGNet-based design with symmetrical encoder and decoder,
which has been mainly investigated in our former conference paper [43]; and (2)
ResNet-based design with asymmetrical encoder, i.e., the encoder is much deeper
than the decoder. The results are reported in Table 3.3. The results show that the
ResNet-based design outperforms the VGGNet-based variant with a substantial mar-
gin in terms of fitting accuracy (mean error) and robustness (standard deviation).
Much deeper layers, as well as the proposed skipping shortcuts, contribute a lot to
the improvement. In addition, the ResNet-based encoder-decoder has a very close
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Table 3.3 Performance comparison of VGGNet-based and ResNet-based encoder–decoder Vari-
ants. Network configurations are described in Sect. ??. Rows 1–2: image-based results on AFLW;
Rows 3–4: video-based results on 300-VW

Mean (%) Std (%) Time (ms) Memory (Mb)

VGGNet-based 6.85 4.52 43.6 184

ResNet-based 6.33 3.61 54.9 257

VGGNet-based 5.16 2.57 42.5 184

ResNet-based 4.75 2.10 56.2 257

Table 3.4 Comparison of single-step detection or regressionwith the proposed recurrent detection-
followed-by-regression on AFLW. The proposed method (Last Row) has the best performance
especially in challenging settings

Common (%) Challenging (%)

Error Failure Error Failure

Single-step
detection

6.05 4.62 8.14 12.4

Single-step
regression

5.92 4.75 7.87 14.5

Recurrent
Det.+Det.

5.86 3.44 7.33 8.20

Recurrent
Det.+Reg.

5.71 3.30 6.97 8.75

computational cost to the VGGNet-based variant, e.g., the average fitting time per
image/frame and the memory usage of a trained model, which should be attributed to
the custom residual module design and the proposed asymmetrical encoder–decoder
network.

3.2.3.2 Validation of Spatial Recurrent Learning

The spatial recurrent learning is validated on the validation set of AFLW [28]. To
better investigate the benefits of spatial recurrent learning, the validation set is par-
titioned into two image groups according to the absolute value of the yaw angle:
(1) Common settings where yaw ∈ [0◦–30◦); and (2) Challenging settings where
yaw ∈ (30◦, 90◦]. The training sets are ensembles of AFLW [28], Helen [30], and
LFPW [5].

The mean fitting errors and failure rates are reported in Table 3.4. First, the results
show that the two-step recurrent learning can instantly decrease the fitting error
and failure rate, compared with either the single-step detection or regression. The
improvement is more significant in challenging settings with large pose variations.
Second, though landmark detection ismore robust in challenging settings (low failure
rate), it lacks the ability to predict precise locations (small fitting error) compared
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Table 3.5 Comparison of cascade and recurrent learning in the challenging settings of AFLW. The
latter improves accuracy with a half memory usage of the former

Mean (%) Std (%) Memory (Mb)

Cascade Det. & Reg. 6.81 4.53 468

Recurrent Det. & Reg. 6.33 3.61 257

Table 3.6 Validation of temporal recurrent learning on 300-VW. ftrn helps to improve the tracking
robustness (smaller std and lower failure rate), as well as the tracking accuracy (smaller mean error).
The improvement is more significant in challenging settings of large pose and partial occlusion as
demonstrated in Fig. 3.7

Common Challenging

Mean (%) Std (%) Fail (%) Mean (%) Std (%) Failure (%)

w/o ftrn 4.52 2.24 3.48 6.27 5.33 13.3

ftrn 4.21 1.85 1.71 5.64 3.28 5.40

to landmark regression. This fact proves the effectiveness of the proposed recurrent
detection-followed-by-regression.

The spatial recurrent learning and the cascade models that are widely used in
other methods are compared in Table 3.5. Unsurprisingly, spatial recurrent learning
can improve the fitting accuracy. The underlying reason is that the recurrent network
learns the step-by-step fitting strategy jointly, while the cascade networks learn each
step independently. It can better handle the challenging settings where the initial
guess is usually far away from the ground truth.Moreover, the recurrent networkwith
shared weights can instantly reduce the memory usage to one-half of the cascaded
model.

3.2.3.3 Validation of Temporal Recurrent Learning

The temporal recurrent learning is validated on the validation set of 300-VW [52]. To
better study the performance under different settings, the validation set is split into
two groups: (1) 9 videos in common settings that roughlymatch “Scenario 1”; and (2)
15 videos in challenging settings that roughly match “Scenario 2” and “Scenario 3”.
The common, challenging, and full sets were used for evaluation. The results with
and without temporal recurrent learning are compared in Table 3.6.

3.2.3.4 Benefits of Supervised Identity Disentangling

The supervised identity disentangling is proposed to better decouple the temporal-
variant and -invariant factors in the bottleneck of the encoder–decoder. This facilitates
the temporal recurrent training, yielding better generalization and more accurate
fittings at test time (Fig. 3.8).
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Fig. 3.7 Examples of temporal recurrent learning on 300-VW. The tracked subject undergoes
intensive pose and expression variations as well as severe partial occlusions. ftrn substantially
improves the tracking robustness (less variance) and fitting accuracy (low error), especially for
landmarks on the nose tip and mouth corners
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Fig. 3.8 Fitting accuracy of different facial components with respect to the number of training
epochs on 300-VW. The proposed supervised identity disentangling helps to achieve a more com-
plete factor decoupling in the bottleneck of the encoder–decoder, which yields better generalization
capability and more accurate fitting results
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The validation results of different facial components show similar trends: (1) The
network demonstrates better generalization capability by using additional identity
cues, which results in a more efficient training. For instance, after only ten training
epochs, the validation accuracy for landmarks located at the left eye reaches 0.84
with identity loss compared to 0.8 without identity loss. (2) The supervised identity
information can substantially boost the testing accuracy. There is an approximately
9% improvement by using the additional identity loss. It worthmentioning that, at the
very beginning of the training (<5 epochs), the network has inferior testing accuracy
with supervised identity disentangling. It is because the suddenly added identity loss
perturbs the backpropagation process. However, the testing accuracy with identity
loss increases rapidly and outperforms the one without identity loss after only a few
more training epochs.

3.3 Application 2: Learning Facial Representations
for Inference and Generation

In this section, we first give a brief introduction to the problemof facial representation
learning and GANs, and then introduce CR-GAN proposed by Tian et al. [57], which
is one of the state-of-the-art GANs in this field. At last, we show two applications of
facial representation learning: multi-view facial image generation and facial attribute
manipulation.

Learning a disentangled facial representation from a single image for further
generations is an interesting problemwith broad applications in vision, graphics, and
robotics. One of its application is to generate multi-view images from a single-view
input. Yet, it is a challenging problem since (1) computers need to “imagine” what
a given object would look like after a 3D rotation is applied; and (2) the multi-view
generations should preserve the same “identity.”

Generally speaking, previous solutions to this problem include model-driven
synthesis [6], data-driven generation [64, 75], and a combination of the both
[49, 70, 73]. Recently, generative adversarial networks (GANs) [16] have shown
impressive results in multi-view generation [58, 69].

3.3.1 Related Works

3.3.1.1 Pose-Invariant Representation Learning

Hinton et al. [21] introduced transforming auto-encoder to generate images with
view variance. Yan et al. [64] proposed Perspective Transformer Nets to find the
projection transformation. Zhou et al. [72] propose to synthesize views by appearance
flow. Very recently, GAN-based methods usually follow a single-pathway design: an
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encoder–decoder network [43] followed by a discriminator network. For example,
to normalize the viewpoint, e.g., face frontalization, they either combine encoder–
decoder with 3DMM [6] parameters [67], or use duplicates to predict global and
local details [23]. DR-GAN [58] follows the single-pathway framework to learn
identity features that are invariant to viewpoints. However, it may learn “incomplete”
representations due to the single-pathway framework. In contrast, CR-GAN can
learn complete representations using a two-pathway network,which guarantees high-
quality generations even for “unseen” inputs.

For representation learning [14, 31], early works may use Canonical Correlation
Analysis to analyze the commonality among different pose subspaces [20, 40, 44].
Recently, deep learning-based methods use synthesized images to disentangle pose
and identity factors by cross-reconstruction [45, 75], or transfer information from
pose variant inputs to a frontalized appearance [74]. However, they usually use only
labeled data, leading to a limited performance. We proposed a two-pathway network
to leverage both labeled and unlabeled data for self-supervised learning, which can
generate realistic images in challenging conditions.

3.3.1.2 Generative Adversarial Networks

Goodfellow et al. [16] introduced GANs to estimate target distribution via an adver-
sarial process. Gulrajani et al. [19] presented a more stable approach to enforce Lips-
chitz Constraint onWasserstein GAN [1]. AC-GAN [41] extended the discriminator
by containing an auxiliary decoder network to estimate class labels for the training
data. BiGANs [12, 13] try to learn an inverse mapping to project data back into
the latent space. CR-GAN [57] can also find an inverse mapping, make a balanced
minimax game when training data is limited.

These GAN-based methods usually have a single-pathway design: an encoder–
decoder network is followed by a discriminator network. The encoder (E) maps input
images into a latent space (Z ), where the embeddings are first manipulated and then
fed into the decoder (G) to generate novel views.

However, experiments conducted by CR-GAN indicate that this single-pathway
design may have a severe issue: they can only learn “incomplete” representations,
yielding limited generalization ability on “unseen” or unconstrained data. Take
Fig. 3.9 as an example. During the training, the outputs of E constitute only a sub-
space of Z since we usually have a limited number of training samples. This would
make G only “see” part of Z . During the testing, it is highly possible that E would
map an “unseen” input outside the subspace. As a result,G may produce poor results
due to the unexpected embedding.

To address this issue, CR-GAN is proposed to learnComplete Representations for
multi-view generation. The main idea is, in addition to the reconstruction path, we
introduce another generation path to create view-specific images from embeddings
that are randomly sampled from Z . Please refer to Fig. 3.10 for an illustration. The
two paths share the same G. In other words, G learned in the generation path will
guide the learning of both E and D in the reconstruction path, and vice versa. E is
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Fig. 3.9 Top: the limitation of existing GAN-based methods. They can generate good results if the
input is mapped into the learned subspace (Row 1). However, “unseen” data may be mapped out of
the subspace, leading to poor results (Row 2). Bottom: results of CR-GAN. By learning complete
representations, CR-GANcan generate realistic, identity-preserved images from a single-view input

forced to be an inverse of G, yielding complete representations that would span the
entire Z space. More importantly, the two-pathway learning can easily utilize both
labeled and unlabeled data for self-supervised learning, which can largely enrich the
Z space for natural generations.

3.3.2 Our Approach: CR-GAN

A single-pathway network, i.e., an encoder–decoder network followed by a discrim-
inator network, may have the issue of learning “incomplete” representations. As
illustrated in Fig. 3.10 left, the encoder E and decoder G can “touch” only a sub-
space of Z since we usually have a limited number of training data. This would lead
to a severe issue in testing when using “unseen” data as the input. It is highly possible
that E may map the novel input out of the subspace, which inevitably leads to poor
generations since G has never “seen” the embedding.

A toy example is used to explain this point. We use Multi-PIE [18] to train a
single-pathway network. As shown at the top of Fig. 3.9, the network can generate
realistic results on Multi-PIE (the first row), as long as the input image is mapped
into the learned subspace. However, when testing “unseen” images from IJB-A [27],
the network may produce unsatisfactory results (the second row). In this case, the
new image is mapped out of the learned subspace.
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Fig. 3.10 Left: Previous methods use a single path to learn the latent representation, but it is
incomplete in the whole space. Right: CR-GAN employs a two-pathway network combined with
self-supervised learning, which can learn complete representations

This fact motivates CR-GAN to train E and G that can “cover” the whole Z
space, so we can learn complete representations. CR-GAN achieves this goal by
introducing a separate generation path, where the generator focuses on mapping the
entire Z space to high-quality images. Fig. 3.10 illustrates the comparison between
the single-pathway and two-pathway networks.

3.3.2.1 Generation Path

The generation path trains generator G and discriminator D. Here, the encoder E
is not involved since G tries to generate from random noise. Given a view label v

and random noise z, G aims to produce a realistic image G(v, z) under view v. D is
trying to distinguish real data from G’s output, which minimizes:

E
z∼Pz

[Ds(G(v, z))] − E
x∼Px

[Ds(x)]+
λ1 E

x̂∼Px̂

[(∥∥�x̂D(x̂)
∥
∥
2 − 1)2] − λ2 E

x∼Px

[P(Dv(x) = v)], (3.15)

where Px is the data distribution and Pz is the noise uniform distribution, Px̂ is an
interpolation between pairs of points sampled fromdata distribution and the generator
distribution [19]. G tries to fool D, it maximizes:

E
z∼Pz

[Ds(G(v, z))] + λ3 E
z∼Pz

[P(Dv(G(v, z)) = v)], (3.16)

where (Dv(·), Ds(·)) = D(·) denotes pairwise outputs of the discriminator. Dv(·)
estimates the probability of being a specific view, Ds(·) describes the image quality,
i.e., how real the image is. Note that in Eq. 3.15, D learns how to estimate the correct
view of a real image [41], while G tries to produce an image with that view in order
to get a high score from D in Eq. 3.16.
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3.3.2.2 Reconstruction Path

The reconstruction path trains E and D but keeping G fixed. E tries to reconstruct
training samples, this would guarantee that E will be learned as an inverse of G,
yielding complete representations in the latent embedding space.

The output of E should be identity-preserved so themulti-view imageswill present
the same identity. We propose a cross-reconstruction task to make E disentangle the
viewpoint from the identity. More specifically, we sample a real image pair (xi , x j )

that share the same identity but different views vi and v j . The goal is to reconstruct
x j from xi . To achieve this, E takes xi as input and outputs an identity-preserved
representation z̄ together with the view estimation v̄: (v̄, z̄) = (Ev(xi ), Ez(xi )) =
E(xi ).

G takes z̄ and view v j as the input.As z̄ is expected to carry the identity information
of this person, with view v j ’s help, G should produce x̃ j , the reconstruction of x j . D
is trained to distinguish the fake image x̃ j from the real one xi . Thus, D minimizes:

E
xi ,x j∼Px

[Ds(x̃ j ) − Ds(xi )]+

λ1 E
x̂∼Px̂

[(∥∥�x̂D(x̂)
∥∥
2 − 1)2] − λ2 E

xi∼Px
[P(Dv(xi ) = vi )],

(3.17)

where x̃ j = G(v j , Ez(xi )). E helps G to generate high-quality image with view v j ,
so E maximizes:

E
xi ,x j∼Px

[Ds(x̃ j ) + λ3P(Dv(x̃ j ) = v j )−

λ4L1(x̃ j , x j ) − λ5Lv(Ev(xi ), vi )],
(3.18)

where L1 loss is utilized to enforce that x̃ j is the reconstruction of x j . Lv is the
cross-entropy loss of estimated and ground-truth views, to let E be a good view
estimator.

The two-pathway network learns complete representations: First, in the generation
path, G learns how to produce real images from any inputs in the latent space. Then,
in the reconstruction path, G retains the generative ability since it keeps unchanged.
The alternative training details of the two pathways are summarized in Algorithm 1.

3.3.3 Results: Multi-view Facial Image Generation

CR-GAN aims to learn complete representations in the embedding space, which
achieves this goal by combining the two-pathway architecture with self-supervised
learning. In this section, we show results of CR-GAN when applied to multi-view
facial image generation. We also show results which compare CR-GAN with DR-
GAN [58], and both the visual results and t-SNE visualization in the embedding
space are shown.
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Algorithm 1: Supervised training algorithm of CR-GAN
Input: Sets of view labeled images X , max number of steps T , and batch size m.
Output: Trained network E , G and D.
for t = 1 to T do

for i = 1 to m do
1. Sample z ∼ Pz and xi ∼ Px with vi ;
2. x̄ ← G(vi , z);
3. Update D by Eq. 3.15, and G by Eq. 3.16;
4. Sample x j ∼ Px with v j (where x j and xi share the same identity);
5. (v̄, z̄) ← E(xi );
6. x̃ j ← G(v j , z̄);
7. Update D by Eq. 3.17, and E by Eq. 3.18;

end
end

3.3.3.1 Experimental Settings

We evaluate CR-GAN on datasets with and without view labels. Multi-PIE [18] is a
labeled dataset collected under constrained environment. We use 250 subjects from
the first session with 9 poses within ±60◦, 20 illuminations, and 2 expressions. The
first 200 subjects are for training and the rest 50 for testing. 300wLP [73] is augmented
from 300W [50] by the face profiling approach [73], which contains view labels as
well. We employ images with yaw angles ranging from−60◦ to+60◦, and discretize
them into nine intervals.

For evaluation on unlabeled datasets, we use CelebA [32] and IJB-A [27]. CelebA
contains a large amount of celebrity images with unbalanced viewpoint distributions.
Thus, we collect a subset of 72,000 images from it, which uniformly ranging from
−60◦ to +60◦. Notice that the view labels of the images in CelebA are only utilized
to collect the subset, while no view or identity labels are employed in the training
process. We also use IJB-A which contains 5,396 images for evaluation. This dataset
is challenging since there are extensive identity and pose variations.

3.3.3.2 Multi-view Facial Image Generation

CR-GAN is employed in the following results. We use Multi-PIE and 300wLP in
supervised learning. For self-supervised learning, in addition to the above datasets,
CelebA is employed as well. Note that we don’t use view or identity labels in CelebA
during training.

Figure 3.11 shows the results generated by CR-GAN fromMulti-PIE, IJB-A, and
CelebA. CR-GAN produces desirable results. In each view, facial attributes are kept
well, and CR-GAN consistently produces natural images withmore details and fewer
artifacts. These results prove that CR-GAN handles “unseen” data well by learning
a complete representation in the embedding space.
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Fig. 3.11 Results generated by CR-GAN from Multi-PIE, IJB-A, and CelebA

3.3.3.3 Comparison with DR-GAN

Furthermore, we compare CR-GAN with DR-GAN [58]. We replace DC-GAN [47]
network architecture used in DR-GAN with WGAN-GP for a fair comparison.

We generate nine views for each image in IJB-A both using DR-GAN and CR-
GAN. Then we obtain a 128-dim feature for each view by FaceNet [51]. We evaluate
the identity similarities between the real and generated images by feeding them to
FaceNet. The squared L2 distances of the features directly corresponding to the face
similarity: faces of the same subjects have small distances, while faces of different
subjects have large distances. Table 3.7 shows the results of the average L2 distance
of CR-GAN and DR-GAN in different datasets. Our method outperforms DR-GAN
on all datasets, especially on IJB-A which contains unseen data. Figure 3.12 shows
the t-SNE visualization in the embedding space of DR-GAN and CR-GAN respec-
tively. For clarity, we only visualize ten randomly selected subjects along with nine
generated views of each. Compared with DR-GAN, CR-GAN produces tighter clus-
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Fig. 3.12 t-SNE visualization for the embedding space of CR-GAN (left) and DR-GAN (right),
with 10 subjects from IJB-A [27]. The same marker shape (color) indicates the same subject. For
CR-GAN, multi-view images of the same subject are embedded close to each other, which means
the identities are better preserved

Table 3.7 Identity similarities between real and generated images

Multi-PIE CelebA IJB-A

DR-GAN 1.073 ± 0.013 1.281 ± 0.007 1.295 ± 0.008

CR-GAN 1.018 ± 0.019 1.214 ± 0.009 1.217 ± 0.010

terings: multi-view images of the same subject are embedded close to each other. It
means the identities are better preserved.

We utilize DR-GAN and CR-GAN to generate images from random noises. In
Fig. 3.13, CR-GAN can produce images with different styles, while DR-GAN leads
to blurry results. This is because the single-pathway generator of DR-GAN learns
incomplete representations in the embedding space, which fails to handle random
inputs. Instead, CR-GAN produces favorable results with complete embeddings.

3.3.4 Results: Conditional Facial Attribute Manipulation

In this section, we show results of CR-GAN on CelebA [32] for facial attribute
manipulation. The network implementation is modified from the residual networks
in WGAN-GP [19], where E shares a similar network structure with D. 11D of
our 128D embedding vector is for binary attributes while the remaining are for
disentangled information.
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Fig. 3.13 Generating multi-view images from the random noise. a DR-GAN generates blurry
results and many artifacts. b CR-GAN generates realistic images of different styles

3.3.4.1 Single-Attribute Manipulation

For single-attribute manipulation, CR-GAN first gets the embedding through the
encoder, then generates samples by feeding G with the embedding and attribute
labels. One attribute is reversed each time. For example, if the input is male, the
female image will be produced. The generated samples with 128 × 128 resolution
are shown in Fig. 3.14. We can see that identities are disentangled and kept well in
the results.

Fig. 3.14 Single-attribute manipulation results (128 × 128). Each column shows the results by
reversing one attribute. Note that the identities are well preserved in each row
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Pale skin

Fig. 3.15 Multiple-attribute manipulation results (128 × 128). Each column reverses multiple
attributes

3.3.4.2 Multiple-attribute Manipulation

With the same settings, we further changemultiple attributes at a time. The results are
shown in Fig. 3.15.We can find that CR-GAN can generate high-quality images even
when five attributes are changed at the same time. Besides the high visual quality,
male outputs of the left female images presented in column 3 demonstrate how
CR-GAN works: the model not only changes the gender but also tries to transform
long hair into the background. The transformation indicates that D has learned that
male-style faces should always come along with short hair. This learning ability
distinguishes CR-GAN from image editing works like StarGAN [10].

3.4 Conclusion

In this chapter, we have presented the state of the art in disentanglement learningwith
application to face analytics. This is a fundamental and active research area due to the
complex nature of visual data which results in entangled features in representation
space. The data complexities are even higher in dynamic scenes and we are currently
developing new feature disentanglement methods to address them.

Acknowledgements This work was funded partly by ARO-MURI-68985NSMUR and NSF
1763523, 1747778, 1733843, 1703883 to Dimitris N. Metaxas.
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Chapter 4
Learning 3D Face Morphable Model
from In-the-Wild Images

Luan Tran and Xiaoming Liu

As a classic statistical model of 3D facial shape and albedo, 3D Morphable Model
(3DMM) is widely used in facial analysis, e.g., model fitting, and image synthesis.
Conventional 3DMM is learned from a set of 3D face scans with associated well-
controlled 2D face images, and represented by two sets of PCA basis functions.
Due to the type and amount of training data, as well as, the linear bases, the repre-
sentation power of 3DMM can be limited. To address these problems, this chapter
presents an innovative framework to learn a nonlinear 3DMM model from a large
set of in-the-wild face images, without collecting 3D face scans. Specifically, given
a face image as input, a network encoder estimates the projection, lighting, shape,
and albedo parameters. Two decoders serve as the nonlinear 3DMM to map from
the shape and albedo parameters to the 3D shape and albedo, respectively. With the
projection parameter, lighting, 3D shape, and albedo, a novel analytically- differen-
tiable rendering layer is designed to reconstruct the original input face. The entire
network is end-to-end trainable with only weak supervision. We demonstrate the
superior representation power of our nonlinear 3DMM over its linear counterpart,
and its contribution to face alignment, 3D reconstruction, and face editing.
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4.1 Introduction

The 3D Morphable Model (3DMM) is a statistical model of 3D facial shape and
texture in a space where there are explicit correspondences [4]. The morphable
model framework provides two key benefits: firstly, a point-to-point correspondence
between the reconstruction and all other models, enabling morphing, and secondly,
modeling underlying transformations between types of faces (male to female, neutral
to smile, etc.). 3DMM has been widely applied in numerous areas including, but not
limited to, computer vision [4, 61, 72], computer graphics [1, 51, 57, 58], human
behavioral analysis [2, 71] and craniofacial surgery [54].

Traditionally, 3DMM is learnt through supervision by performing dimension
reduction, typically Principal Component Analysis (PCA), on a training set of co-
captured 3D face scans and 2D images. To model highly variable 3D face shapes, a
large amount of high-quality 3D face scans is required. However, this requirement is
expensive to fulfill as acquiring face scans is very laborious, in both data capturing
and post-processing stage. The first 3DMM [4] was built from scans of 200 subjects
with a similar ethnicity/age group. They were also captured in well-controlled con-
ditions, with only neutral expressions. Hence, it is fragile to large variances in the
face identity. The widely used Basel Face Model (BFM) [42] is also built with only
200 subjects in neutral expressions. Lack of expression can be compensated using
expression bases from FaceWarehouse [11] or BD-3FE [70], which are learned from
the offsets to the neutral pose. After more than a decade, almost all existing models
use no more than 300 training scans. Such small training sets are far from adequate
to describe the full variability of human faces [9]. Until recently, with a significant
effort as well as a novel automated and robust model construction pipeline, Booth
et al. [9] build the first large-scale 3DMM from scans of ∼10,000 subjects.

Second, the texture model of 3DMM is normally built with a small number of 2D
face images co-captured with 3D scans, under well-controlled conditions. Despite
there is a considerable improvement of 3D acquisition devices in the last few years,
these devices still cannot operate in arbitrary in-the-wild conditions. Therefore, all
the current 3D facial datasets have been captured in the laboratory environment.
Hence, such models are only learnt learned to represent the facial texture in similar,
rather than in-the-wild, conditions. This substantially limits its application scenarios.

Finally, the representation power of 3DMM is limited by not only the size or
type of training data but also its formulation. The facial variations are nonlinear in
nature., Ee.g., the variations in different facial expressions or poses are nonlinear,
which violates the linear assumption of PCA-based models. Thus, a PCA model is
unable to interpret facial variations sufficiently well. This is especially true for facial
texture. For all current 3DMMmodels, their low-dimensional albedo subspace faces
the same problem of lacking facial hair, e.g., beards. To reduce the fitting error, it
compensates unexplainable texture by alternating surface normal, or shrinking the
face shape [75]. Either way, linear 3DMM-based applications often degrade their
performances when handling out-of-subspace variations.
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Fig. 4.1 Conventional 3DMM employs linear bases models for shape/albedo, which are trained
with 3D face scans and associated controlled 2D images. We propose a nonlinear 3DMM to model
shape/albedo via deep neural networks (DNNs). It can be trained from in-the-wild face images
without 3D scans, and also better reconstruct the original images due to the inherent nonlinearity

Given the barrier of 3DMM in its data, supervision and linear bases, this paper
aims to revolutionize the paradigm of learning 3DMM by answering a fundamental
question:

Whether and how can we learn a nonlinear 3D Morphable Model of face shape and albedo
from a set of in-the-wild 2D face images, without collecting 3D face scans?

If the answer were yes, this would be in sharp contrast to the conventional 3DMM
approach, and remedy all aforementioned limitations. Fortunately, we have devel-
oped approaches to offer positive answers to this question. With the recent develop-
ment of deep neural networks, we view that it is the right time to undertake this new
paradigm of 3DMM learning. Therefore, the core of this paper is regarding how to
learn this new 3DMM, what is the representation power of the model, and what is
the benefit of the model to facial analysis.

We propose a novel paradigm to learn a nonlinear 3DMM model from a large
in-the-wild 2D face image collection, without acquiring 3D face scans, by leverag-
ing the power of deep neural networks captures variations and structures in complex
face data. As shown in Fig. 4.1, starting with an observation that the linear 3DMM
formulation is equivalent to a single- layer network, using a deep network architec-
ture naturally increases the model capacity. Hence, we utilize two convolution neural
network decoders, instead of two PCA spaces, as the shape and albedo model com-
ponents, respectively. Each decoder will take a shape or albedo parameter as input
and output the dense 3D face mesh or a face skin reflectant. These two decoders are
essentially the nonlinear 3DMM.

Further, we learn the fitting algorithm to our nonlinear 3DMM, which is for-
mulated as a CNN encoder. The encoder network takes a face image as input and
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generates the shape and albedo parameters, from which two decoders estimate shape
and albedo.

The 3D face and albedo would perfectly reconstruct the input face, if the fitting
algorithm and 3DMM are well learntlearned. Therefore, we design a differentiable
rendering layer to generate a reconstructed face by fusing the 3D face, albedo, light-
ing, and the camera projection parameters estimated by the encoder. Finally, the
end-to-end learning scheme is constructed where the encoder and two decoders are
learnt learned jointly to minimize the difference between the reconstructed face and
the input face. Jointly learning the 3DMM and the model fitting encoder allows
us to leverage the large collection of in-the-wild 2D images without relying on 3D
scans.We show significantly improved shape and facial texture representation power
over the linear 3DMM. Consequently, this also benefits other tasks such as 2D face
alignment, 3D reconstruction, and face editing.

In summary, this work makes the following contributions:

• We learn a nonlinear 3DMMmodel, fully models shape, albedo, and lighting, that
has greater representation power than its traditional linear counterpart.

• Both shape and albedo are represented as 2D images, which help to maintain
spatial relations as well as leverage CNN power in image synthesis.

• We jointly learn themodel and themodel fitting algorithmviaweak supervision, by
leveraging a large collection of 2D images without 3D scans. The novel rendering
layer enables the end-to-end training.

• The new 3DMM further improves performance in related tasks: face alignment,
face reconstruction, and face editing.

4.2 Prior Work

4.2.1 Linear 3DMM

Blanz and Vetter [4] propose the first generic 3D face model learned from scan data.
They define a linear subspace to represent shape and texture using principalPrincipal
component Component analysis Analysis (PCA) and show how to fit the model to
data. Since this seminal work, there has been a large amount of effort on improv-
ing 3DMM modeling mechanism. In [4], the dense correspondence between facial
mesh is solved with a regularised regularized form of optical flow. However, this
technique is only effective in a constrained setting, where subjects share similar eth-
nicities and ages. To overcome this challenge, Patel and Smith [41] employ a Thin-
Plate Splines (TPS) warp [7] to register the meshes into a common reference frame.
Alternatively, Paysan et al. [42] use a Nonrigid nonrigid Iterative iterative Closest
closest Pointpoint [3] to directly align 3D scans. In a different direction, Amberg
et al. [2] extended Blanz and Vetter’s PCA-based model to emotive facial shapes by
adopting an additional PCA modeling of the residuals from the neutral pose. This
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results in a single linear model of both identity and expression variation of 3D facial
shape. Vlasic et al. [66] use a multilinear model to represent the combined effect of
identity and expression variation on the facial shape. Later, Bolkart and Wuhrer [6]
show how such a multilinear model can be estimated directly from the 3D scans
using a joint optimization over the model parameters and groupwise registration of
3D scans.

4.2.2 Improving Linear 3DMM

With PCA bases, the statistical distribution underlying 3DMM is Gaussian. Koppen
et al. [28] argue that single-mode Gaussian can’t cannot well represent real-world
distribution. They introduce the Gaussian Mixture 3DMM that models the global
population as a mixture of Gaussian subpopulations, each with its own mean, but
shared covariance. Booth et al. [8] aim to improve texture of 3DMM to go beyond
controlled settings by learning in-the-wild feature-based texture model. On another
direction, Tran et al. [60] learn to regress robust and discriminative 3DMM repre-
sentation, by leveraging multiple images from the same subject. However, all works
are still based on statistical PCA bases. Duong et al. [38] address the problem of
linearity in face modeling by using Deep Boltzmann Machines. However, they only
work with 2D face and sparse landmarks; and hence cannot handle faces with large-
pose variations or occlusion well. Concurrent to our work, Tewari et al. [55] learn a
(potentially non-linear) corrective model on top of a linear model. The final model
is a summation of the base linear model and the learned corrective model, which
contrasts to with our unified model. Furthermore, our model has thean advantage of
using 2D representation of both shape and albedo, which maintains spatial relations
between vertices and leverages CNN power for image synthesis. Finally, thanks for
to our novel rendering layer, we are able to employ perceptual, adversarial loss to
improve the reconstruction quality.

4.2.3 2D Face Alignment

2D Face Alignment [30, 68] can be cast as a regression problem where 2D landmark
locations are regressed directly [14]. For large-pose or occluded faces, strong priors of
3DMM face shape have been shown to be beneficial [?]. Hence, there is increasing
attention in conducting face alignment by fitting a 3D face model to a single 2D
image [24, 25, 74]. Among the prior works, iterative approaches with a cascade
of regressors tend to be preferred. At each cascade, there is a single [65] or even
two regressors [69] used to improve its prediction. Recently, Jourabloo and Liu [25]
propose a CNN architecture that enables the end-to-end training ability of their
network cascade. Contrasted to aforementionedworks that use a fixed 3DMMmodel,
ourmodel andmodel fitting are learned jointly. This results in amore powerfulmodel:
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a single-pass encoder, which is learned jointly with the model, achieves state-of-the-
art face alignment performance on AFLW2000 [74] benchmark dataset.

4.2.4 3D Face Reconstruction

Face reconstruction creates a 3D face model from an image collection [47] or even
with a single image [45, 50]. This long-standing problem draws a lot of interest
because of its wide applications. 3DMM also demonstrates its strength in face
reconstruction, especially in the monocular case. This problem is a highly under-
constrained, as with a single image, present information about the surface is limited.
Hence, 3D face reconstructionmust rely on prior knowledge like 3DMM [48]. Statis-
tical PCA linear 3DMM is themost commonly used approach. Besides 3DMMfitting
methods [5, 15, 19, 29, 56, 73], recently, Richardson et al. [46] design a refinement
network that adds facial details on top of the 3DMM-based geometry. However, this
approach can only learn 2.5D depth map, which loses the correspondence property
of 3DMM. The follow- up work by Sela et al. [50] try to overcome this weakness
by learning a correspondence map. Despite having some impressive reconstruction
results, both these methods are limited by training data synthesized from the linear
3DMMmodel. Hence, they fail to handle out-of-subspace variations, e.g., facial hair.

4.2.5 Unsupervised Learning in 3DMM

Collecting large-scale 3D scanswith detailed labels for learning 3DMMis not an easy
task. A few works try to use large-scale synthetic data as in [27, 45], but they don’t
generalize well as there still be a domain gap with real images. Tewari et al. [56] is
are among the first works attempting to learn 3DMM fitting from unlabeled images.
They use an unsupervised loss which compares projected textured facemeshwith the
original image itself. The sparse landmark alignment is also used as an auxiliary loss.
Genova et al. [18] further improve this approach by comparing reconstructed images
and original input using higher- level features from a pretrained face recognition
network. Compared to these work, our work has a different objective of learning a
nonlinear 3DMM.

4.3 The Proposed Nonlinear 3DMM

In this section, we start by introducing the traditional linear 3DMM and then present
our novel nonlinear 3DMM model.
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4.3.1 Conventional Linear 3DMM

The 3DMorphableModel (3DMM) [4] and its 2D counterpart, Activeactive Appear-
ance appearance Modelmodel [13, 31, 32], provide parametric models for synthe-
sizing faces, where faces are modeled using two components: shape and albedo (skin
reflectant). In [4], Blanz et al. propose to describe the 3D face space with PCA:

S = S̄ + G, (4.1)

where S ∈ R
3Q is a 3D face mesh with Q vertices, S̄ ∈ R

3Q is the mean shape,
α ∈ R

lS is the shape parameter corresponding to a 3D shape bases G. The shape
bases can be further split into G = [Gid ,Gexp], where Gid is trained from 3D scans
with neutral expression, andGexp is from the offsets between expression and neutral
scans.

The albedo of the face A ∈ R
3Q is defined within the mean shape S̄, which

describes the R, G, B colors of Q corresponding vertices. A is also formulated
as a linear combination of basis functions:

A = Ā + Rfi, (4.2)

where Ā is the mean albedo, R is the albedo bases, and fi ∈ R
lT is the albedo param-

eter.
The 3DMM can be used to synthesize novel views of the face. Firstly, a 3D face

is projected onto the image plane with the weak perspective projection model:

V = R ∗ S, (4.3)

g(S,m) = V2D = f ∗ Pr ∗ V + t2d = M(m) ∗
[
S
1

]
, (4.4)

where g(S,m) is the projection function leading to the 2D positions V2D of 3D

rotated vertices V, f is the scale factor, Pr =
[
1 0 0
0 1 0

]
is the orthographic projection

matrix, R is the rotation matrix constructed from three rotation angles (pitch, yaw,
roll), and t2d is the translation vector. While the project matrix M is of the size of
2 × 4, it has six degrees of freedom, which is parameterized by a 6-dim vector m.
Then, the 2D image is rendered using texture and an illumination model such as
Phong reflection model [43] or Spherical Harmonics [44].
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Fig. 4.2 Jointly learning a nonlinear 3DMM and its fitting algorithm from unconstrained 2D in-
the-wild face image collection, in a weakly supervised fashion. LS is a visualization of shading on
a sphere with lighting parameters L

4.3.2 Nonlinear 3DMM

As mentioned in Sect. 4.1, the linear 3DMM has the problems such as requiring
3D face scans for supervised learning, unable to leverage massive in-the-wild face
images for learning, and the limited representation power due to the linear bases.
We propose to learn a nonlinear 3DMMmodel using only large-scale in-the-wild 2D
face images.

4.3.2.1 Problem Formulation

In linear 3DMM, the factorization of each of the components (shape, albedo) can
be seen as a matrix multiplication between coefficients and bases. From a neural
network’s perspective, this can be viewed as a shallow network with only one fully
connected layer and no activation function. Naturally, to increase the model’s repre-
sentation power, the shallow network can be extended to a deep architecture. In this
work, we design a novel learning scheme to joint learn a deep 3DMMmodel and its
inference (or fitting) algorithm.

Specifically, as shown in Fig. 4.2, we use two deep networks to decode the shape,
albedo parameters into the 3D facial shape and albedo, respectively. To make the
framework end-to-end trainable, these parameters are estimated by an encoder net-
work, which is essentially the fitting algorithm of our 3DMM. Three deep networks
join forces for the ultimate goal of reconstructing the input face image, with the assis-
tant of a physically- based rendering layer. Figure 4.2 visualizes the architecture of
the proposed framework. Each component will be present in the following sections.

Formally, given a set of K 2D face images {Ii }Ki=1, we aim to learn an encoder E :
I→m,L, fS, fA that estimates the projectionm, lighting parameter L, shape param-
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Fig. 4.3 Three albedo representations: a Albedo value per vertex, bAlbedo as a frontal face, c UV
space 2D unwarped albedo; and d UV space 2D unwarped shape

eters fS ∈ R
lS , and albedo parameter fA ∈ R

lA , a 3D shape decoder DS: fS→S that
decodes the shape parameter to a 3D shape S ∈ R

3Q , and an albedo decoder DA:
fA→A that decodes the albedo parameter to a realistic albedo A ∈ R

3Q , with the
objective that the rendered image with m, L, S, and A can well approximate the
original image. Mathematically, the objective function is:

argmin
E,DS ,DA

K∑
i=1

∥∥∥Îi − Ii
∥∥∥
1
,

Î = R (Em(I), EL(I),DS(ES(I)),DA(EA(I))) , (4.5)

where R(m,L,S,A) is the rendering layer (Sect. 4.3.2.3).

4.3.2.2 Albedo and Shape Representation

Figure 4.3 illustrates three possible albedo representations. In traditional 3DMM,
albedo is defined per vertex (Fig. 4.3a). This representation is also adopted in recent
work such as [55, 56]. There is an albedo intensity value corresponding to each vertex
in the face mesh. Despite widely used, this representation has its limitations. Since
3D vertices are not defined on a 2D grid, this representation is mostly parameterized
as a vector, which not only loses the spatial relation of its vertices, but also prevents
it to leverage the convenience of deploying CNN on 2D albedo. In contrast, given the
rapid progress in image synthesis, it is desirable to choose a 2D image, e.g., a frontal-
view face image in Fig. 4.3b, as an albedo representation. However, frontal faces
contain little information of two sides, which would lose many albedo information
for side-view faces.

In light of these considerations, we use an unwrapped 2D texture as our texture
representation (Fig. 4.3c). Specifically, each 3D vertex v is projected onto the UV
space using cylindrical unwarp. Assuming that the face mesh has the top pointing
up the y- axis, the projection of v = (x, y, z) onto the UV space vuv = (u, v) is
computed as:

v → α1.arctan

(
x

z

)
+ β1, u → α2 · y + β2, (4.6)
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whereα1,α2,β1,β2 are constant scale and translation scalars to place the unwrapped
face into the image boundaries. Here, per-vertex albedo A ∈ R

3Q could be easily
computed by sampling from its UV space counterpart Auv ∈ R

U×V :

A(v) = Auv(vuv). (4.7)

Usually, it involves sub-pixel sampling via bilinear interpolation:

A(v) =
∑

u′∈{�u�,	u
}
v′∈{�v�,	v
}

Auv(u′, v′)(1−|u−u′|)(1−|v−v′|), (4.8)

where vuv = (u, v) is the UV space projection of v via Eq. 4.6.
Albedo information is naturally expressed in the UV space but spatial data can be

embedded in the same space as well. Here, a 3D facial mesh can be represented as a
2D image with three channels, one for each spatial dimension, x , y, and z. Figure 4.3
gives an example of this UV space shape representation Suv ∈ R

U×V .
Representing 3D face shape inUV space allows us to use aCNN for shape decoder

DS instead of using amulti-layer perceptron (MLP) as in our preliminary version [62].
Avoiding using wide fully-connected layers allows us to use a deeper network for
DS , potentially model more complex shape variations. This results in better fitting
results as being demonstrated in our experiment (Sec. spsrefsec:ablsps1dsps2d).

Also, it is worth to note that different from our preliminary version [62] where
the reference UV space, for texture, is build upon a projection of the mean shape
with neutral expression; in this version, the reference shape used has the mouth open.
This change helps the network to avoid learning a large gradient near the two lips’
borders in the vertical direction when the mouth is open.

To regress these 2D representations of shape and albedo, we can employ CNNs as
shape and albedo networks, respectively. Specifically, DS , DA are CNN constructed
by multiple fractionally- strided convolution layers. After each convolution is batch-
norm and eLU activation, except the last convolution layers of encoder and decoders.
The output layer has a tanh activation to constraint the output to be in the range of
[−1, 1].

4.3.2.3 In-Network Physically-Based Face Rendering

To reconstruct a face image from the albedo A, shape S, lighting parameter L, and
projection parameterm, we define a rendering layerR(m,L,S,A) to render a face
image from the above parameters. This is accomplished in three steps, as shown in
Fig. 4.4. Firstly, the facial texture is computed using the albedo A and the surface
normal map of the rotated shape N (V) = N (m,S). Here, following [67], we assume
distant illumination and a purely Lambertian surface reflectance. Hence, the incom-
ing radiance can be approximated using spherical harmonics (SH) basis functions
Hb : R3 → R, and controlled by coefficients L. Specifically, the texture in UV space
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Fig. 4.4 Forward and backward passes of the physically-based rendering layer

Tuv ∈ R
U×V is composed of albedo Auv and shading Cuv:

Tuv = Auv � Cuv = Auv �
B2∑
b=1

LbHb(N (m,Suv)), (4.9)

where B is the number of spherical harmonics bands. We use B = 3, which leads
to B2 = 9 coefficients in L for each of three color channels. Secondly, the 3D
shape/mesh S is projected to the image plane via Eq. 4.4. Finally, the 3D mesh
is then rendered using a Z-buffer renderer, where each pixel is associated with a
single triangle of the mesh,

Î(m, n) = R(m,L,Suv,Auv)m,n = Tuv(
∑

vi∈�uv(g,m,n)

λivi ), (4.10)

where�(g,m, n) = {v1, v2, v3} is anoperation returning three vertices of the triangle
that encloses the pixel (m, n) after projection g; �uv(g,m, n) is the same operation
with resultant vertices mapped into the referenced UV space using Eq. 4.6. In order
to handle occlusions, when a single- pixel resides in more than one triangle, the
triangle that is closest to the image plane is selected. The final location of each
pixel is determined by interpolating the location of three vertices via barycentric
coordinates {λi }3i=1.

There are alternative designs to our rendering layer. If the texture representation
is defined per vertex, as in Fig. 4.3a, one may warp the input image Ii onto the vertex
space of the 3D shape S, whose distance to the per-vertex texture representation can
form a reconstruction loss. This design is adopted by the recent work of [55, 56].
In comparison, our rendered image is defined on a 2D grid, while the alternative is
on top of the 3D mesh. As a result, our rendered image can enjoy the convenience
of applying the perceptual loss or adversarial loss, which is shown to be critical
in improving the quality of synthetic texture. Another design for rendering layer is
image warping based on the spline interpolation, as in [12]. However, this warping
is continuous: every pixel in the input will map to the output. Hence, this warping
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Fig. 4.5 Rendering with
segmentation masks. Left to
right: segmentation results,
naive rendering,
occulusion-aware rendering

operation fails in the occluded region. As a result, Cole et al. [12] limit their scope
to only synthesizing frontal-view faces by warping from normalized faces.

4.3.2.4 Occlusion-Aware Rendering

Very often, in-the-wild faces are occluded by glasses, hair, hands, etc. Trying to
reconstruct abnormal occluded regions could make the model learning more difficult
or result in an model with external occlusion baked in. Hence, we propose to use a
segmentation mask to exclude occluded regions in the rendering pipeline:

Î ← Î � M + I � (1 − M). (4.11)

As a result, these occluded regions won’t affect our optimization process. The
foreground mask M is estimated using the segmentation method given by Nirkin
et al. [39]. Examples of segmentation masks and rendering results can be found in
Fig. 4.5.

4.3.2.5 Model Learning

The entire network is end-to-end trained to reconstruct the input images, with the
loss function:

L = Lrec(Î + Llan + Lreg, (4.12)

where the reconstruction loss L rec enforces the rendered image Î to be similar to the
input I, the landmark loss Lland enforces geometry constraint, and the regularization
loss Lreg encourages plausible solutions.
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Reconstruction Loss The main objective of the network is to reconstruct the original
face via disentangle representation. Hence, we enforce the reconstructed image to
be similar to the original input image:

Li
rec = 1

|V|
∑
q∈V

||Î(q) − I(q)||2 (4.13)

where V is the set of all pixels in the images covered by the estimated face mesh.
There are different norms can be used to measure the closeness. To better handle
outliers, we adopt the robust l2,1, where the distance in the 3D RGB color space is
based on l2 and the summation over all pixels enforces sparsity based on l1-norm
[58, 59].

To improve from blurry reconstruction results of l p losses, in our preliminary
work [62], thanks for to our rendering layer, we employ adversarial loss to enhance
the image realism. However, adversarial objectives only encourage the reconstruc-
tion to be close to the real image distribution but not necessarily the input image.
Also, it’s known to be not stable to optimize. Here, we propose to use a percep-
tual loss to enforce the closeness between images Î and I, which overcomes both of
adversarial loss’s weaknesses. Besides encouraging the pixels of the output image Î
to exactly match the pixels of the input I, we encourage them to have similar feature
representations as computed by the loss network ϕ.

L f
rec = 1

|C|
∑
j∈C

1

Wj HjC j
||ϕ j (Î) − ϕ j (I)||22. (4.14)

We choose VGG-Face [40] as our ϕ to leverage its face-related features and also
because of simplicity. The loss is summed over C, a subset of layers of ϕ. Here,
ϕ j (I) is the activations of the j-th layer of ϕ when processing the image I with
dimension Wj × Hj × C j . This feature reconstruction loss is one of the perceptual
losses widely used in different image processing tasks [23].

The final reconstruction loss is a weighted sum of two terms:

Lrec = Li
rec + λ fL f

rec (4.15)

Sparse Landmark Alignment To help achieving better model fitting, which in turn
helps to improve the model learning itself, we employ the landmark alignment loss,
measuring Euclidean distance between estimated and groundtruth landmarks, as an
auxiliary task,

Llan =
∥∥∥∥M(m) ∗

[
S(:,d)

1

]
− U

∥∥∥∥
2

2

, (4.16)

where U ∈ R
2×68 is the manually labeled 2D landmark locations, d is a constant

68-dim vector storing the indexes of 68 3D vertices corresponding to the labeled 2D
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Fig. 4.6 Effect of albedo
regularizations: albedo
symmetry (Lsym) & albedo
constancy (Lcon)

landmarks. Different from traditional face alignment work where the shape bases
are fixed, our work jointly learns the base’s functions (i.e., the shape decoder DS)
as well. Minimizing the landmark loss while updating DS only moves a tiny subsets
of vertices. If the shape S is represented as a vector and DS is an MLP consisting of
fully connected layers, vertices are independent. Hence, LL only adjusts 68 vertices.
In case S is represented in the UV space and DS is a CNN, the local neighbor
region could also be modified. In both cases, updatingDS based on LL only moves a
subsets of vertices, which could lead to implausible shapes. Hence, when optimizing
the landmark loss, we fix the decoder DS and only update the encoder.

Also, note that different from some prior work [17], our network only requires
ground-truth landmarks during training. It is able to predict landmarks via m and S
during the test time.

Regularizations To ensure plausible reconstruction, we add a few regularization
terms:

Lreg = Lsym(A) + λconLcon(A) + λsmoLsmo(S). (4.17)

Albedo Symmetry: As faces are symmetry, we enforce the symmetry constraint:

Lsym = ∥∥Auv − flip(Auv)
∥∥
1 . (4.18)

Employing on 2D albedo, this constraint can be easily implemented via a hori-
zontal image flip operation flip().

AlbedoConstancy: Using symmetry constraint can help to correct the global shad-
ing. However, symmetrical details, i.e., dimples, can still be embedded in the albedo
channel. To further remove shading from the albedo channel, following Retinex the-
ory, which assumes albedo to be piecewise constant, we enforce sparsity in two
directions of its gradient, similar to [36, 53]:

Lcon =
∑

vuvj ∈Ni

ω(vuvi , vuvj )
∥∥Auv(vuvi ) − Auv(vuvj )

∥∥p

2
, (4.19)

whereNi denotes a set of 4-pixel neighborhood of pixel vuvi .With the assumption that
pixelswith the samechromaticity (i.e., c(x) = I(x)/|I(x)|) aremore likely to have the
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Fig. 4.7 Effect of shape
smoothness regularization
(Lsmo) on learned models

same albedo, we set the constant weightω(vuvi , vuvj ) = exp
(
−α

∥∥∥c(vuvi ) − c(vuvj )

∥∥∥)
,

where the color is referenced from the input image using the current estimated pro-
jection. Following [36], we set α = 15 and p = 0.8 in our experiment.

Effects of above albedo regularizations are demonstrated in Fig. 4.6. Learning
without any constraints results in the lighting is totally explained by the albedo,
meanwhile is the shading is almost constant (Fig. 4.6a). Using symmetry helps to
correct the global lighting. However, symmetric geometry details are still baked into
the albedo (Fig. 4.6b). Enforcing albedo constancy helps to further remove shading
from it (Fig. 4.6c). Combining these two regularizations helps to learn plausible
albedo and lighting, which improves the shape estimation.

Shape Smoothness: For shape component, we impose the smoothness by adding
the Laplacian regularization on the vertex locations for the set of all vertices.

Lsmo =
∑

vuvi ∈Suv

∥∥∥∥∥∥S
uv(vuvi ) − 1

|Ni |
∑

vuvj ∈Ni

Suv(vuvj )

∥∥∥∥∥∥
2

. (4.20)

Figure 4.7 shows visual comparisons between our model and its variant without
the shape smoothness constraint. Without the smoothness term, the learned shape
becomes noisy especially on two sides of the face. The reason is that, the hair region
is not completely excluded during training because of imprecise segmentation esti-
mation.

Intermediate Semi-Supervised Training Fully unsupervised training using only the
reconstruction and adversarial loss on the rendered images could lead to a degenerate
solution, since the initial estimation is far from ideal to render meaningful images.
Therefore, we introduce intermediate loss functions to guide the training in the early
iterations.

With the face profiling technique, Zhu et al. [74] expand the 300W dataset [49]
into 122, 450 imageswith fitted 3DMMshapes S̃ and projection parameters m̃. Given
S̃ and m̃, we create the pseudo- groundtruth texture T̃ by referring every pixel in the
UV space back to the input image, i.e., the backward of our rendering layer. With m̃,
S̃, T̃, we define our intermediate loss by:
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L0 = LS + λTLT + λmLm + Llan + Lreg, (4.21)

where: LS = ||S − S̃||22, LT = ||T − T̃||1, and Lm = ||m − m̃||22.
It’s also possible to provide pseudo- groundtruth to the SH coefficients L and fol-

lowedby albedoAusing least square optimizationwith a constant albedo assumption,
as has been done in [53, 67]. However, this estimation is not reliable for in-the-wild
images with occlusion regions. Also empirically, with proposed regularizations, the
model is able to explore plausible solutions for these components by itself. Hence,
we decide to refrain from supervising L and A to simplify our pipeline.

Due to the pseudo- groundtruth, using L0 may run into the risk that our solution
learns to mimic the linear model. Thus, we switch to the loss of Eq. 4.12 after L0

converges. Note that the estimated groundtruth of m̃, S̃, T̃ and the landmarks are the
only supervision used in our training, for which our learning is considered as weakly
supervised.

4.4 Improving Model Fidelity

4.4.1 Nonlinear 3DMM with Proxy and Residual

Proxy and Residual Learning Strong regularization has been shown to be critical
in ensuring the plausibility of the learned models [55]. However, the strong regu-
larization also prevents the model from recovering high-level details in either shape
or albedo. Hence, this prevents us from achieving the ultimate goal of learning a
high-fidelity 3DMM model.

In thiswork,wepropose to learn additionalproxy shape (S̃) andproxyalbedo (Ã),
on which we can apply the regularization. All presented regularizations, as in
Eq. 4.17, will now be moved to proxies:

L∗
reg = Lsym(Ã) + λconLcon(Ã) + λsmoLsmo(S̃). (4.22)

There will be no regularization applied directly to the actual shape S and albedo A,
other than a weak regularization encouraging each to be close to its proxy:

Lres = ‖�S‖1 + ‖�A‖1 =
∥∥∥S − S̃

∥∥∥
1
+

∥∥∥A − Ã
∥∥∥
1
. (4.23)

By pairing two shapes S, S̃ and two albedos A, Ã, we can render four different
output images (Fig. 4.2). Any of them can be used to compare with the original input
image. We rewrite our reconstruction loss as:

L∗
rec = Lrec(Î(S̃, Ã), I) + Lrec(Î(S̃,A), I) + Lrec(Î(S, Ã), I). (4.24)
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4x

Fig. 4.8 The proposed global–local-based network architecture

Pairing strongly regularized proxies and weakly regularized components is a crit-
ical point in our approach. Using proxies allows us to learn high-fidelity shape and
albedo without sacrificing the quality of either component. This pairing is inspired
by the observation that Shape from Shading techniques are able to recover detailed
face mesh by assuming over regularized albedo or even using the mean albedo [46].
Here, Lrec(Î(S, Ã), I) loss promotes S to recover more details as Ã is constrained
by piece-wise constant Lcon(Ã) objective. Vice versa, Lrec(Î(S̃,A), I) aims to learn
better albedo. In order for these two losses to work as desired, proxies S̃ and Ã
should perform well enough to approximate the input images by themselves. With-
out Lrec(Î(S̃, Ã), I), a valid solution that minimizes Lrec(Î(S, Ã), I) is combination
of a constant albedo proxy and noisy shape creating surface normal with dark shading
in necessary regions, i.e., eyebrows.

Another notable design choice is that we intentionally left out the loss function
on Î(S,A), even though this is theoretically is the most important objective. This is
to avoid the case that the shape S learns an in-between solution that works well with
both Ã,A and vice versa.

4.4.2 Global–Local-Based Network Architecture

While global-based models are usually robust to noise and mismatches, they are
over-constrained and do not provide sufficient flexibility to represent high-frequency
deformations as local-based models. To take the best of both worlds, we propose to
use dual-pathway networks for our shape and albedo decoders.

Here, we transfer the success of combining local and global models in image
synthesis [21, 37] to 3D facemodeling. Thegeneral architecture of a decoder is shown
in Fig. 4.8. From the latent vector, there is a global pathway focusing on inferring the
global structure and a local pathway with four small sub-networks generating details
of different facial parts, including eyes, nose, and mouth. The global pathway is built
from fractional strided convolution layers with five up-sampling steps. Meanwhile,
each sub-network in the local pathway has the similar architecture but shallower with
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only three up-sampling steps. Using different small sub-networks for each facial part
offers two benefits: (i) with less up-sampling steps, the network is better able to
represent high-frequency details in early layers; (ii) each sub-network can learn part-
specific filters, which is more computationally efficient than applying across global
face.

As shown in Fig. 4.8, to fuse two pathways’ features, we firstly integrate four
local pathways’ outputs into one single feature tensor. Different from other works
that synthesize face images with different yaw angles [26, 63, 64] with no fixed
keypoints’ locations, our 3DMM generates facial albedo as well as 3D shape in UV
space with predefined topology. Merging these local feature tensors is efficiently
done with the zero- padding operation. The max-pooling fusion strategy is also used
to reduce the stitching artifacts on the overlapping areas. Then the resultant feature
is simply concatenated with the global pathway’s feature, which has the same spatial
resolution. Successive convolution layers integrate information from both pathways
and generate the final albedo/shape (or their proxies).

4.5 Experimental Results

The experiments study three aspects of the proposed nonlinear 3DMM, in terms of
its expressiveness, representation power, and applications to facial analysis. Using
facial mesh triangle definition by Basel FaceModel (BFM) [42], we train our 3DMM
using 300W-LP dataset [74], which contains 122, 450 in-the-wild face images, in a
wide pose range from −90◦ to 90◦. Images are loosely square cropped around the
face and scale to 256 × 256. During training, images of size 224 × 224 are randomly
cropped from these images to introduce translation variations.

The model is optimized using Adam optimizer with a learning rate of 0.001 in
both training stages.We set following parameters: Q = 53, 215,U = 192, V = 224,
lS = lT = 160. λ values are set to make losses to have similar magnitudes.

4.5.1 Ablation Study

Reconstruction Loss Functions. We study effects of different reconstruction losses
on quality of the reconstructed images (Fig. 4.9). As expected, the model trained
with l2,1 loss only results in blurry reconstruction, similar to other l p loss. To make
the reconstruction more realistic, we explore other options such as gradient differ-
ence [35] or perceptual loss [23]. While adding the gradient difference loss creates
more details in the reconstruction, combining perceptual loss with l2,1 gives the best
results with high level of details and realism. For the rest of the paper, we will refer
to the model trained using this combination.
Understanding image pairing Figure 4.10 shows fitting results of our model on a 2D
face image. By using the proxy or the final components (shape or albedov), we can
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Fig. 4.9 Reconstruction
results with different loss
functions

Fig. 4.10 Image
reconstruction using proxies
and the true shape and
albedo. Our shape and
albedo can faithfully recover
details of the face

render four different reconstructed images with different quality and characteristics.
The image generated by two proxies S̃, Ã is quite blurry but is still be able to capture
major variations in the input face. By pairing S and the proxy Ã, S is enforced to
capture high level of details to bring the image closer to the input. Similarly, A is
also encouraged to capture more details by pairing with the proxy S̃. The final image
Î(S,A) inherently achieves high level of details and realism even without direct
optimization.

4.5.2 Expressiveness

Exploring feature spaceWe feed the entireCelebAdataset [34]with∼200k images to
our network to obtain the empirical distribution of our shape and texture parameters.
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Fig. 4.11 Each column
shows shape changes when
varying one element of fS , by
10 times standard deviations,
in opposite directions

Fig. 4.12 Each column
shows albedo changes when
varying one element of fA

By varying the mean parameter along each dimension proportional to its standard
deviation, we can get a sense of how each element contribute to the final shape
and texture. We sort elements in the shape parameter fS based on their differences
to the mean 3D shape. Figure 4.11 shows four examples of shape changes, whose
differences rank No.1, 40, 80, and 120 among 160 elements. Most of the top changes
are expression- related. Similarly, in Fig. 4.12, we visualize different texture changes
by adjusting only one element of fA off the mean parameter f̄A. The elements with
the same 4 ranks as the shape counterpart are selected.

Attribute Embedding To better understand different shapes and albedos instances
embedded in our two decoders, we dig into their attribute meaning. For a given
attribute, e.g., male, we feed images with that attribute {Ii }ni=1 into our encoder E to
obtain two sets of parameters {f iS}ni=1 and {f iA}ni=1. These sets represent corresponding
empirical distributions of the data in the low-dimensional spaces. Computing the
mean parameters f̄S, f̄A and feed into their respective decoders, also using the mean
lighting parameter, we can reconstruct the mean shape and texture with that attribute.
Figure 4.13 visualizes the reconstructed textured 3Dmesh related to some attributes.
Differences among attributes present in both shape and texture. Here, we can observe
the power of our nonlinear 3DMM to model small details such as “bag under eyes,”,
or “rosy cheeks,”, etc.
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Fig. 4.13 Nonlinear 3DMM
generate shape and albedo
embedded with different
attributes

Male Mustache Bags Under Eyes Old

Female Rosy Cheeks Bushy Eyebrows Smiling

Fig. 4.14 Qualitative
comparisons on texture
representation power. Our
model can better reconstruct
in-the-wild facial texture

4.5.3 Representation Power

We compare the representation power of the proposed nonlinear 3DMM versus tra-
ditional linear 3DMM.
Texture We evaluate our model’s power to represent in-the-wild facial texture on
AFLW2000-3D dataset [74]. Given a face image, also with the groundtruth geom-
etry and camera projection, we can jointly estimate an albedo parameter fA and a
lighting parameter L whose decoded texture can reconstruct the original image. To
accomplish this, we use SGD on fA andLwith the initial parameters estimated by our
encoder E . For the linear model, Zhu et al. [74] fitting results of Basel albedo using
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Origin Linear Nonlinear (basic) Nonlinear (full)

NME 0.0241 0.0146 0.0139

Fig. 4.15 Shape representation power comparison. Given a 3D shape, we optimize the feature fS
to approximate the original one

Phong illumination model [43] is used. As in Fig. 4.14, nonlinear models signifi-
cantly outperforms the Basel Face model. Despite, being close to the original image,
the basic nonlinear model (without proxy learning and global–local architecture) ’s
reconstruction results are still blurry. Using global–local-based network architecture
(“+GL”) with the same loss functions helps to bring the image closer to the input.
However, these models are still constrained by regularizations on the albedo. By
learning using proxy technique, our full model can learn more realistic albedo with
more high- frequency details on the face. This conclusion is further supported with
quantitative comparison in Fig. 4.14. We report the averaged l2,1 reconstruction error
over the face portion of each image. The full nonlinear model achieves the lowest
averaged reconstruction error among four models, 0.0363, which is a 15% error
reduction of the basic nonlinear 3DMM.

Shape Similarly, we also compare models’ power to represent real-world 3D scans.
Using ten 3D face meshes provided by [42], which share the same triangle topol-
ogy with us, we can optimize the shape parameter to generate, through the decoder,
shapes matching the groundtruth scans. The optimization objective is defined based
on vertex distances (Euclidean) as well as surface normal direction (cosine distance),
which empirically improves reconstructed meshes’ fidelity compared to optimizing
the former only. Figure 4.15 shows the visual comparisons between different recon-
structed meshes from the linear 3DMM, from our basic nonlinear 3DMM and our
full nonlinear 3DMMwith proxy and global–local architecture. Our reconstructions
closely match the face shapes details. To quantify the difference, we use NME, aver-
aged per-vertex errors between the recovered and groundtruth shapes, normalized by
inter-ocular distances. The proposed model has a significantly smaller reconstruc-
tion error than the linear model, and is also smaller than the basic nonlinear model
(0.0139 vs. 0.0146, and 0.0241 [42]).
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Input Overlay Albedo Shape Shading Input Overlay Albedo Shape Shading

Fig. 4.16 3DMM fits to faces with diverse skin color, pose, expression, lighting, facial hair, and
faithfully recovers these cues. Left half shows results fromAFLW2000 dataset, and right half shows
results from CelebA

4.5.4 Applications

Having shown the capability of our nonlinear 3DMM (i.e., two decoders), now we
demonstrate the applications of our entire network, which has the additional encoder.
Many applications of 3DMM are centered on its ability to fit to 2D face images. Our
nonlinear 3DMM can be utilized for model fitting, which decomposes a 2D face
into its shape, albedo and lighting. Figure 4.16 visualizes our 3DMM fitting results
on AFLW2000 and CelebA dataset. Our encoder estimates the shape S, albedo A
as well as lighting L and projection parameter m. We can recover personal facial
characteristics in both shape and albedo. Our albedo can present facial hair, which
is normally hard to be recovered by linear 3DMM.

4.5.4.1 Face Alignment

Face alignment is a critical step for many facial analysis tasks such as face recog-
nition [63, 64]. With enhancement in the modeling, we hope to improve this task
(Fig. 4.17). We compare face alignment performance with state-of-the-art methods,
3DDFA [74], DeFA [33], 3D-FAN [10] and PRN [16], on AFLW2000 dataset on
both 2D and 3D settings.

The accuracy is evaluated using Normalized Mean Error (NME) as the evaluation
metric with bounding box size as the normalization factor [10]. For a fair comparison
with thesemethods in terms of computational complexity, for this comparison,we use
ResNet18 [20] as our encoder. Here, 3DDFA and DeFA use the linear 3DMMmodel
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Fig. 4.17 Our face alignment results. Invisible landmarks are marked as red. We can well handle
extreme pose, lighting, and expression
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Fig. 4.18 Face alignment cumulative errors distribution curves on AFLW2000 on 2D (left) and 3D
landmarks (right). NMEs are shown in legend boxes

(BFM). Even though being trained with a larger training corpus (DeFA) or having a
cascade of CNNs iteratively refines the estimation (3DDFA), these methods are still
significantly outperformed by our nonlinear model (Fig. 4.18). Meanwhile, 3D-FAN
and PRN achieve competitive performances by by-passing the linear 3DMMmodel.
3D-FAN uses heat map representation. PRN uses the position map representation
which shares a similar spirit to our UV representation. Not only outperforms these
methods in term of regressing landmark locations (Fig. 4.18), our model also directly
provides head pose information as well as the facial albedo and environment lighting
condition.

4.5.4.2 3D Face Reconstruction

Using ourmodelDS,DA, togetherwith themodel fittingCNNE , we can decompose a
2D photograph into different components: 3D shape, albedo and lighting (Fig. 4.16).
Here we compare our 3D reconstruction results with different lines of works: linear
3DMMfitting [56], nonlinear 3DMMfitting [55] and approaches beyond 3DMM[22,
50]. Comparisons are made on CelebA dataset [34].
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Fig. 4.19 3D reconstruction comparison to Tewari et al. [56]

Fig. 4.20 3D reconstruction comparisons to nonlinear 3DMM approaches by Tewari et al. [55].
Our model can reconstruct face images with higher level of details

For linear 3DMM model, the representative work, MoFA [56], learns to regress
3DMM parameters in an unsupervised fashion. Even being trained on in-the-wild
images, it is still limited to the linear subspace, with limited power to recovering in-
the-wild texture. This results in the surface shrinkage when dealing with challenging
texture, i.e., facial hair as discussed in [55, 62].Besides, evenwith regular skin texture
their reconstruction is still blurry and has less details compared to ours (Fig. 4.19).

Themost relatedwork to our proposedmodel is Tewari et al. [55], inwhich 3DMM
bases are embedded in neural networks.With more representation power, these mod-
els can recover details that the traditional 3DMM usually can’t, i.e. make-up, facial
hair. However, the model learning process is attached with strong regularization,
which limits their ability to recover high-frequency details of the face. Our pro-
posed model enhances the learning process in both learning objective and network
architecture to allow higher-fidelity reconstructions (Fig. 4.20).

To improve 3D reconstruction quality, many approaches also try to move beyond
the 3DMM such as Richardson et al. [46], Sela et al. [50] or Tran et al. [61]. The
current state-of-the-art 3D monocular face reconstruction method by Sela et al. [50]
using a fine detail reconstruction step to help reconstructing high- fidelity meshes.
However, their first depth map regression step is trained on synthetic data generated
by the linear 3DMM. Besides domain gap between synthetic and real, it faces a
more serious problem of lacking facial hair in the low-dimensional texture. Hence,
this network’s output tends to ignore these unexplainable regions, which leads to
failure in later steps. Our network is more robust in handling these in-the-wild vari-
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Fig. 4.21 3D reconstruction comparisons to Sela et al. [50] or Tran et al. [61], which go beyond
latent representations

Fig. 4.22 Quantitative evaluation of 3D reconstruction. We obtain a low error that is comparable
to optimization based methods

ations (Fig. 4.21). The approach of Tran et al. [61] shares a similar objective with us
to be both robust and maintain high level of details in 3D reconstruction. However,
they use an over-constrained foundation, which loses the personal characteristics of
the each face mesh. As a result, the 3D shapes look similar across different sub-
jects (Fig. 4.21).

Following the same setting in [56], we also quantitatively compare our method
with prior works on 9 subjects of FaceWarehouse database [11]. Visual and quanti-
tative comparisons are shown in Fig. 4.22. We achieve on-par results with Garrido et
al. [17], an offline optimization method, while surpass all other regression methods
[46, 56, 60].
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Lighting transfer Growing mustache

Fig. 4.23 Face editing results. For lighting transfer, we transfer from of sources (first row) to
target images (first column). We have similar performance compare to [52] (last row) despite being
orders of magnitude faster (150 ms vs. 3 min per image). For mustache growing, the first collumn
shows original images, the following collumns show edited images with increasing magnitudes.
Comparing to [53] results (last row), our edited images are more realistic and identity-preserved

4.5.4.3 Face Editing

Decomposing face image into individual components gives us the ability to edit the
face by manipulating any component. Here, we show two examples of face editing.

Relighting Firstly, we show an application to replacing the lighting of a target face
image using lighting from a source face (Fig. 4.23). After estimating the lighting
parameters Lsource of the source image, we render the transfer shading using the
target shape Starget and the source lighting Lsource. This transfered shading can be
used to replace the original source shading. Also, here we use the original texture
instead of the output of our decoder to maintain image details.

Attribute Manipulation Given faces fitted by 3DMM model, we can edit images by
naive modifying one or more elements in the albedo or shape representation. More
interestingly, we can even manipulate the semantic attribute, such as growing beard,
smiling, etc. The approach is similar to learning attribute embedding in Sect. 4.5.2.
Assuming, we would like to edit appearance only. For a given attribute, e.g., beard,
we feed two sets of images with and without that attribute {Ipi }ni=1 and {Ini }ni=1 into our
encoder to obtain two average parameters f pA and f

n
A. Their difference�f A = f pA − fnA

is the direction to move from the distribution of negative images to positive ones.
By adding �f A with different magnitudes, we can generate modified images with
different degrees of changes. To achieve high-quality editingwith identity-preserved,
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the final editing result is obtained by adding the residual, the different difference
between the modified image and our reconstruction, to the original input image. This
is a critical difference to Shu et al. [53] to improve results quality (Fig. 4.23).

4.6 Conclusions

Since its debut in 1999, 3DMM has became becamo a cornerstone of facial analysis
research with applications to many problems. Despite its impact, it has drawbacks in
requiring training data of 3D scans, learning from controlled 2D images, and limited
representation power due to linear bases for both shape and texture. These drawbacks
could be formidable when fitting 3DMM to unconstrained faces, or learning 3DMM
for generic objects such as shoes. This paper demonstrates that there exists an alter-
native approach to 3DMM learning, where a nonlinear 3DMM can be learned from
a large set of in-the-wild face images without collecting 3D face scans. Further, the
model fitting algorithm can be learnt jointly with 3DMM, in an end-to-end fashion.

Our experiments cover a diverse aspects of our learnt learned model, some of
which might need the subjective judgment of the readers. We hope that both the
judgment and quantitative results could be viewed under the context that, unlike
linear 3DMM, no genuine 3D scans are used in our learning. Finally, we believe that
unsupervisedly or weak-supervisedly learning 3D models from large-scale in-the-
wild 2D images is one promising research direction. This work is one step along this
direction.
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Chapter 5
Deblurring Face Images Using Deep
Networks

Rajeev Yasarla, Federico Perazzi, and Vishal M. Patel

Image deblurring entails the recovery of an unknown true image from a blurry image.
Image deblurring is an ill-posed problem, and therefore, it is crucial to leverage
additional properties of the data to successfully recover the lost facial details in the
deblurred image. Priors such as sparsity [2, 13, 16], low-rank [14], manifold [10],
and patch similarity [22] have been proposed in the literature to obtain a regularized
solution. In recent years, deep learning-basedmethods have also gained some traction
[9, 11, 26, 30].

The inherent semantic structure of faces is an important information that can be
exploited to improve the deblurring results. In this chapter, we provide an overview
of deep CNN-based methods that make use of the facial semantic information to
deblur face images.

5.1 Deep Semantic Face Deblurring

One of the first approaches that made use of facial semantic cues via deep learning
for face deblurring was proposed in [18]. Their approach is based on the fact that face
images are highly structured and they share several key semantic components such as
mouth and eyes. As a result, the semantic information of a face can provide a strong
prior for restoration. In their approach, the authors use incorporate global semantic
priors as input and impose local structure losses to regularize the output within a
multi-scale deep convolutional neural network (CNN). In addition, the proposed
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Fig. 5.1 Semantic face deblurring network proposed in [18]. The overall approch consists of two
sub-networks: a semantic face parsing network and a multi-scale deblurring network

network was trained using the perceptual and adversarial losses to generate photo-
realistic deblurred images. Furthermore, an incremental training strategy was also
introduced to handle random blur kernels seen in practice.

Figure 5.1 gives an overview of the semantic face deblurring network proposed in
[18]. The overall approach consists of two sub-networks—a semantic face parsing
network and a multi-scale deblurring network. The face parsing network generates
the semantic labels of the input blurry image. On the other hand, the multi-scale
deblurring network uses the extracted facial semantic labels to deblur the face image.
In particular, the blurred image and semantic labels are concatenated as the input to
the first scale of the multi-scale deblurring network. The upsampled deblurred image
from the first scale, the blurred image, and the corresponding semantic labels are
then fed into the second scale of the network. Each scale of the deblurring network
receives the supervision from the pixel-wise content loss and local structural losses.
In addition, the the perceptual and adversarial losses are also imposed at the output
of the second scale.

The following pixel-wise L1 loss was used as the content loss for the face deblur-
ring network

Lc = ‖G(B, P(B)) − I‖1, (5.1)

where P and G are the face parsing and deblurring networks. Here, B and I are
blurry and ground truth clear images, respectively. To better incorporate local facial
structures such as eyes, lips, andmouth, the following local structural loss is imposed
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Ls =
K∑

i=1

‖Mk(P(B)) � (G(B, P(B)) − I )‖1, (5.2)

where Mk denotes the structural mask of the k-th component and� denotes element-
wise multiplication. In addition, the perceptual loss on the Pool2 and Pool5 layers
of the pretrained VGG-Face network was used to obtained high-quality images. The
perceptual loss is defined as follows:

L p =
∑

l

‖φl(G(B)) − φl(I )‖22, (5.3)

where φl denotes the activation at the l-th layer of the network φ. Finally, treating
the deblurring network as a generator network, a discriminator network is also con-
structed to incorporate adversarial training. The adversarial training is formulated as
solving the following min-max problem

min
G

max
D

E[log D(I )] + E[log(1 − D(G(B)))]. (5.4)

In particular, when updating the generator, the following adversarial loss is used

Ladv = − log(D(G(B))). (5.5)

The semantic face parsing network was trained using the Helen dataset [6]. On
the other hand, a set of training images were collected using the Helen dataset [6],
CMU PIE dataset [19], and CelebA dataset [8] to train the deblurring network.

Various quantitative and qualitative evaluations were conducted in [18] and it was
shown that the semantic face deblurring algorithm restores sharp images with more
facial details and performs favorably against state-of-the-art deblurring methods in
terms of restoration quality, face recognition, and execution speed. Sample results
corresponding to this method are shown in Fig. 5.2. As can be seen from this figure,
the use of facial semantic information clearly improves the deblurring performance.

5.2 Deblurring Via Structure Generation and Detail
Enhancement

Another CNN-based approach that made use of facial semantic maps for restoring
high resolution images from blurry low-resolution inputs was recently proposed in
[21]. In their approach, the restored image is formulated using a base layer and a detail
layer. The base layer is learned by using a CNN guided by facial components. On the
other hand, the detail layer is generated by an exemplar-based texture synthesis mod-
ule. First, their facial structure generation network takes the upsampled face image
and its facial semantic maps as the inputs and generates base images. Then a patch-
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Fig. 5.2 Sample results corresponding to the semantic face deblurring network [18]. a Ground
truth images. b Blurry face images. c Deblurring results without using the facial semantic maps. d
Deblurring results with the use of semantic maps

Fig. 5.3 An overview of the joint face hallucination and deblurring method proposed in [21]. Input
blurry low-resolution face image along with facial masks are used in the facial structure generation
network to produce a base image. Then, a detail enhancement algorithm is developed to estimate
the missing details in the base image using the high resolution exemplar images
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wise K-Nearest Neighbor (KNN) method is used to search between the intermediate
face image and exemplar images. As a result, one can establish the correspondences
on the HR training images, which ensures that the fine-grained facial structures from
the high resolution exemplar images are effectively extracted. Finally, the details
from these structures are transferred into the base image through an edge-aware
image filtering procedure. Figure 5.3 gives an overview of their approach. Various
properties of this method was analyzed and it was shown that this new approach per-
forms favorably against state-of-the-art face hallucination and deblurring methods
on the public benchmarks.

5.3 Uncertainty Guided Multi-stream Semantic Networks

Image restoration methods described above [18, 21] make use of prior information
in the form of semantic labels. However, these methods do not account for the class
imbalance of semantic maps corresponding to faces. Interior parts of a face like eyes,
nose, and mouth are less represented as compared to face skin, hair, and background
labels. Depending on the pose of the face, some of the interior parts may even
disappear.Without re-weighting the importance of less represented semantic regions,
the method proposed in [18] fails to reconstruct the eyes and the mouth regions
as shown in Fig. 5.4. Similar observations can also be made regarding the method
proposed in [21] (Fig. 5.4).

To address the imbalance of different semantic classes, a novel CNN architecture
called Uncertainty guided Multi-stream Semantic Networks (UMSN) was recently
proposed in [28], which learns class-specific features independently and combine
them to deblur the whole face image. Class-specific features are learned by sub-
networks trained to reconstruct a single semantic class. Nested residual learning
paths are used to improve the propagation of semantic features. Additionally, a class-
based confidence measure is proposed to train the network. The confidence measure
describes how well the network is likely to deblur each semantic class. This measure
is incorporated in the loss to train the network. Figure 5.4 shows sample results from
the UMSN network, where one can clearly see that UMSN is able to provide better
results as compared to the state-of-the-art techniques [18, 21].

5.3.1 Image Deblurring Network

A blurry face image y can be modeled as the convolution of a clean image x with a
blur kernel k, as

y = k ∗ x + η,

where∗denotes the convolution operation andη is noise.Given y, in blind deblurring,
the objective is to estimate the underlying clean face image x . 11 semantic face labels
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(a) (b) (c) (d)

Fig. 5.4 Sample deblurring results: a Blurry image. b results corresponding to [18] and to [21] (last
row); c Results corresponding to Uncertainty Guided Multi-Stream Semantic Network (UMSN); d
ground truth. Our approach recovers more details and better preserves fine structures like eyes and
hair

Fig. 5.5 An overview of the proposed UMSN network. First stage semantic networks consist of
F-Net-i . Second stage is constructed using the base network (BN), where outputs of the F-Net-i’s
are concatenated with the output of the first ResBlock layer in BN
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are grouped into 4 classes as follows: m1 = {background}, m2 = { f ace skin},
m3 = {le f t eyebrow, right eyebrow, le f t eye, right eye,
nose, upper lip, lower li p, teeth} and m4 = {hair}. Thus, the semantic class
mask of a clean image x is the union m = m1 ∪ m2 ∪ m3 ∪ m4. Similarly one can
define the semantic class masks of a blurry image m̂.

Semantic class masks for blurry image, m̂ are generated using the semantic seg-
mentation network (SN) (Fig. 5.6), and given together with the blurry image as input
to the deblurring network, UMSN. This is important in face deblurring as some parts
like face, skin, and hair are easy to reconstruct, while face parts like eyes, nose, and
mouth are difficult to reconstruct and require special attention while deblurring a
face image. This is mainly due to the fact that parts like eyes, nose, and mouth are
small in size and contain high frequency elements compared to the other compo-
nents. Different from [12] that uses edge information and [18] that feed the semantic
map to a single-stream deblurring network, this method addresses this problem by
proposing a multi-stream semantic network, in which individual branches F-net-i
learn to reconstruct different parts of the face image separately. Figure 5.5 gives an
overview of the UMSN method.

As can be seen from Fig. 5.5, the UMSN network consists of two stages. The
semantic class maps, m̂, of a blurry face image are generated using the SN network.
The semantic maps are used as the global masks to guide each stream of the first
stage network. These semantic class maps m̂ are further used to learn class-specific
residual feature maps with nested residual learning paths (NRL). In the first stage
of the network, the weights are learned to deblur the corresponding class of the face
image. In the second stage of the network, the outputs from the first stage are fused to
learn the residual maps that are added to the blurry image to obtain the final deblurred
image. The network is trained with a confidence guided class-based loss.

5.3.2 Semantic Segmentation Network (SN)

The semantic class maps m̂i of a face, are extracted using the SN network as shown
in Fig. 5.6. The residual blocks (ResBlock) are used as the building module for
the segmentation network. A ResBlock consist of a 1 × 1 convolution layer, a 3 × 3
convolution layer and two 3 × 3 convolution layers with dilation factor of 2 as shown
in Fig. 5.7.

5.3.3 Base Network (BN)

The base network is constructed using a combination of UNet [15] and DenseNet [3]
architectures with the ResBlock as the basic building block. To increase the receptive
field size, smoothed dilation convolutions are introduced in the ResBlock as shown
in Fig. 5.7. BN is a sequence of eight ResBlocks similar to the first stage semantic
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Fig. 5.6 An overview of the segmentation network. Conv l × l (p, q) contains instance normal-
ization [23], Rectified Linear Unit (ReLU), Conv (l × l)—convolutional layer with kernel of size
l × l, where p and q are the number of input and output channels, respectively

Fig. 5.7 An overview of the ResBlock. Conv l × l(p, q) contains Instance Normalization [23],
ReLU—Rectified Linear Units, Conv (l × l)—convolutional layer with kernel of size l × l, where
p and q are number of input and output channels respectively. In the right side of the figure, we
show smoothed dilation convolutions introduced in ResBlock which is similar to [25]

network as shown in Fig. 5.8. Note that all convolutional layers are densely connected
[3]. Residual-based learning is followed in estimating the deblurred image for the
base network as shown in Fig. 5.8.

5.3.4 UMSN Network

The UMSN network is a two-stage network. The first stage network is designed to
obtain deblurred outputs from the semantic class-wise blurry inputs. These outputs
are further processed by the second stage network to obtain the final deblurred image.
The first stage semantic network contains a sequence of five ResBlocks with residual
connections, as shown in Fig. 5.8. The set of all convolution layers of the first stage
network excluding the last ResBlock and Conv3 × 3 are referred to as F-Net.

The blurry image y and the semantic masks m̂i are fed to F-Net-i to obtain
the corresponding class-specific deblurred features which are concatenated with the
output of the first layer (ResBlock-Avgpool) in Base Network(BN) for constructing
the UMSN network. The Nested Residual Learning (NRL) is also used in UMSN
network where class-specific residual feature maps are learned and further used in
estimating the residual feature maps that are added to the blurry image for obtaining
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Fig. 5.8 An overview of the
first stage semantic network
(F-Net)

the final output. For example, one can observe a residual connection between the
last layer of UMSN and class-specific feature maps obtained from Conv 1 × 1 using
y and m̂. Output of this residual connection is further processed as the input to the
residual connection with the input blurry image, y. In this way, one can define NRL
and obtain the final deblurred image. A class-based loss function is proposed to train
the UMSN network.

5.3.5 Loss for UMSN

The network parameters � are learned by minimizing a loss L as follows,

�̂ = argmin� L( f�(y, m̂), x) = argmin� L(x̂, x), (5.6)

where f�(.) represents theUMSNnetwork, x̂ is the deblurred result, m̂ is the semantic
map obtained from SN. The reconstruction loss is defined as L = ‖x − x̂‖1. A face
image can be expressed as the sum of masked images using the semantic maps as

x =
M∑

i=1

mi � x,

where � is the element-wise multiplication and M is the total number of semantic
maps. As the masks are independent of one another, Eq. (5.6) can be re-written as

�̂ = argmin�

M∑

i=1

L(mi � x̂,mi � x). (5.7)

In other words, the loss is calculated for every class independent and summed up in
order to obtain the overall loss as follows:

L(x̂, x) =
M∑

i=1

L(mi � x̂,mi � x). (5.8)
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5.3.6 Uncertainty Guidance

A confidence measure is introduced for every class and use it to re-weight the con-
tribution of the loss from each class to the total loss. By introducing a confidence
measure and re-weighting the loss, one can benefit in two ways. If the network is
giving less importance to a particular class by not learning appropriate features of
it, then the Confidence Network (CN) helps UMSN to learn those class features by
estimating low confidence values and higher gradients for those classes through CN
network. Additionally, by re-weighting the contribution of loss from each class, it
counters for the imbalances in the error estimation from different classes. The loss
function can be written as

Lc(x̂, x) =
M∑

i=1

CiL(mi � x̂,mi � x) − λ log(Ci ), (5.9)

where log(Ci ) acts as a regularizer that prevents the value of Ci going to zero and
λ is a constant. The confidence measure Ci for each class are estimated by passing
mi � x̂,mi � x as inputs to CN as shown in Fig. 5.9. Ci represents how confident
UMSN is in deblurring the ith class components of the face image. Note that, Ci (∈
[0, 1]), confidencemeasure is used only in the loss functionwhile training theweights
of UMSN, and it is not used (or estimated) during inference.

Inspired by the benefits of the perceptual loss in style transfer [4, 29] and image
super-resolution [7], it is also used to train this network. Let �(.) denote the features
obtained using the VGG16model [20], then the perceptual loss is defined as follows:

Lp = ‖�(x̂) − �(x)‖22. (5.10)

The features from layer relu1_2 of a pretrained VGG-16 network [20] are used to
compute the perceptual loss. The total loss used to train UMSN is as follows:

Fig. 5.9 An overview of the confidence network (CN). x is ground truth image. x̂ is deblurred
image obtained from UMSN. m semantic maps of x
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Ltotal = Lc + λ1Lp, (5.11)

where λ1 is a constant.

5.3.7 Experimental Results

The networks were evaluated using the images provided by the authors of [18], which
consists of 8000 blurry images generated using theHelen dataset [6], and 8000 blurry
images generated using the CelebA dataset [8]. Furthermore, the network was tested
on a test dataset called PubFig, provided by the authors of [21], which contains 192
blurry images. The results were also quantitatively evaluated using the Peak-Signal-
to-Noise Ratio (PSNR) and the Structural Similarity index (SSIM) [24]. Results are
shown in Table 5.1. As can be seen from this table, the UMSN method is able to
deblur the face images much better than the previous methods including [18, 21].
This can also be clearly seen by comparing the deblurringv results on real-world
blurry images corresponding to different methods as shown in Fig. 5.10.

5.4 Conclusion

In this chapter, we provided an overview of recent face deblurring methods that
make sure of semantic facial information for restoring blurred images. Various deep
CNN-based methods were reviewed. The performance of different methods was also
compared on synthetic as well as real-world datasets.

Table 5.1 PSNR and SSIM comparision of UMSN against state-of-the-art methods

Deblurring method Helen CelebA

PSNR SSIM PSNR SSIM

Krishnan et al. [5] (CVPR’11) 19.30 0.670 18.38 0.672

Pan et al. [12] (ECCV 2014) 20.93 0.727 18.59 0.677

Shan et al. [17] (SIGGRAPH’08) 19.57 0.670 18.43 0.644

Xu et al. [27] (CVPR’13) 20.11 0.711 18.93 0.685

Cho et al. [1] (SIGGRAPH’09) 16.82 0.574 13.03 0.445

Zhong et al. [31] (CVPR’13) 16.41 0.614 17.26 0.695

Nah et al. [9] (CVPR’17) 24.12 0.823 22.43 0.832

Ziyi et al. [18] (CVPR’18) w/GAN 25.58 0.861 24.34 0.860

Ziyi et al. [18] (CVPR’18) 25.99 0.871 25.05 0.879

UMSN (ours w/Ltotal) 26.93 0.897 25.90 0.906
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(a) (b) (c) (d) (e)

Fig. 5.10 Sample results on real blurry images. a Blurry, b Xu et al. [27], c Zhong et al. [31], d
Shen et al. [18], e UMSN [28]
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Chapter 6
Blind Super-resolution of Faces
for Surveillance

T. M. Nimisha and A. N. Rajagopalan

6.1 Introduction

Super-resolution (SR) refers to a class of techniques that derive a high resolution
image from its low resolution (LR) counterpart. A vast amount of literature exists on
SR spanning both multi and single image approaches. The classical approaches in
SR use sub-pixel motion across multiple low resolution (LR) frames. These works
[3, 11] typically assume that the blur encountered in the LR images is only due to
downsampling and that the camera is static while capturing LR frames. The only
motion addressed in these frameworks is the inter-frame motion which is used to
infer the underlying high resolution (HR) image.

Whilemulti-frame approaches supplementmissing information in one frame from
another, availability of multiple frames cannot always be assured. Single image SR
[12, 17] is a lot more ill-posed and works by hallucinating the missing data or by
exploiting patch-recurrences within an image across different scales. Of-late, many
deep learning approaches have been proposed [9, 22, 24] that address the single
image SR problem. However, all these methods assume that the blur encountered in
the LR frame is only due to downsampling action.

Estimating an HR frame directly from a single motion blurred LR frame is
highly ill-posed and is of great relevance in surveillance scenarios. Motion blur
is an inevitable phenomenon that co-occurs with long exposure photography. Blur
is considered as a nuisance in many image processing algorithms and inverting it is
a difficult proposition. Many works exist [6, 23, 40, 49] that focus on the issue of
removing motion blur due to camera shake from images. All these works aim for
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deblurring as the main goal and do not really consider resolution enhancement. SR
and deblurring are well-studied problems but are treated as independent topics. Only
a few works [33, 41, 47, 49] exist in the literature that addresses both SR and motion
deblurring.

The challenge in arriving at an SR image escalates when the underlying LR
frames have motion blur artifacts. These situations arise when the subject of interest
is far away from the camera and the subject/camera is moving. In these situations, the
observed images will be degraded both bymotion blur and the downsampling action.
Since face recognition (FR) systems are of great use nowadays and are employed as
biometric inmanyareas, amotiondistortedLRprobe image that deviates significantly
from that of the gallery image reduces recognition accuracy. This necessitates the
need for single image blind SR. The class of algorithms that estimates an HR image
from LR irrespective of artifacts due to motion blur are referred to as blind SR
algorithms. It is interesting to note that motion blur occurs due to averaging of several
warped instances of the clean frame during exposure. Thus, a single blurred LR frame
by default aggregates information from multiple clean frames. Hence, scope exists
to harness this aggregated information for deblurring as well as super-resolving.

Performing blind SR sequentially can lead to poor results. The error from the
first stage (either SR or deblurring) can propagate to the second and worsen the final
output.We propose here a blind SR framework that jointly deblurs and upsamples the
probe images to help in achieving better recognition rates for FR systems. Priorworks
that have addressed the blind SR problem [26, 33, 41, 49], for instance, assumed a
multi-frame approach. In contrast, ours is a single image blind SR specifically aimed
at improving the accuracy of face recognition systems in surveillance applications.

In this work, we explore invariant feature learning for the purpose of single image
SR frommotion blurred frames.We employ a deep learning framework for achieving
the task at hand. With the underlying idea that natural images follow a sparse distri-
bution and that a shallow dictionary can capture invariance in a sparse domain, we
attempt to generalize this invariance to deep non-linear networks. Our network con-
sists of an Encoder-Decoder pair that learns the clean high resolution data domain.
This is followed by a Generative Adversarial Network (GAN) that is trained to pro-
duce blur and resolution invariant features from LR blurred frames. The learned
representations are processed by the Decoder to get the final result. We deploy this
framework for face surveillance applications where the collected probe images are
highly distorted.

6.2 Related Works

Deblurring and SR, though two extensively studied topics, have mostly been dealt
with independently. SR frameworks assume static camera leading to LR images
affectedbydownsampling alone.Thesemethods neglect the effect ofmotion artifacts.
Similarly, deblurring approaches assume the availability of high resolution frames
and do not work well at a lower resolution. Hence, the performance of these methods
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drops considerably when the assumptions of blur/resolution do not hold. We discuss
here in brief conventional and deep learning based works on deblurring and SR.
These can be mainly classified as single image and multi-image approaches.

Super-resolution: Existing works in SR can be broadly classified into two cate-
gories (1)Multi-image approaches:Methods [3, 11] that utilize inter-frame sub-pixel
motion in the LR frames to restore the HR image and (2) Single image based: These
techniques either resort to exemplars or patch-recurrence (also termed ‘image hallu-
cination’) [12, 17] or patch-based learning [48, 50] to create the HR image. Single
image SR techniques (which is the focus of our work) employ a database of LR and
HR image pairs to learn the correspondences between LR andHR image patches [48,
50]. The patch correspondences thus learned are used during testing to map an LR
image to its most likely HR version. However, these techniques are known to hallu-
cinate HR details that may not even be present in the true HR image. Based on the
observation that patches in a natural image tend to recur within the same image, both
at the same as well as at different scales, the works in [12, 17] sought to combine the
strengths of both traditional multi-image SR as well as example-based SR. Recently,
deep learning and generative networks have also made forays into computer vision
and image processing, and their influence and impact are growing rapidly by the day.
Single image SR with deep networks [9, 22, 24] have shown remarkable results that
outperform traditional methods. Dong et al. [9] introduce a skip connection-based
network that learns residual features for SR. The work in [22] uses a GAN architec-
ture to produce photo-realistic SR outputs from a single LR frame. It is important
to note that state-of-the-art SR techniques achieve remarkable results of resolution
enhancement only when there is no motion blur in the LR input.

Deblurring: Many methods exist [7, 19, 49] that rely on information from multiple
frames captured using video or burst mode and work by harnessing the information
from these frames to solve for the underlying original (latent) image. Single image
blind deblurring is considerably more challenging as the blur kernel, as well as
the latent image, must be estimated from just one observation. Works in [6, 23,
40] perform an iterative approach to solve for the latent image and blur kernel.
Most of these methods employ priors on the underlying clean image and motion to
stabilize the optimization process. The most widely used priors are total variational
regularizer [5, 35], sparsity prior on image gradients, l1/ l2 image regularization [21],
the unnatural l0 prior [46], and the very recent dark channel prior [32] for images.
Even though such prior-based optimization schemes have shown promise, the extent
to which a prior is able to perform under general conditions is questionable [21].
Some priors (such as the sparsity prior on image gradient) even tend to favor blurry
results [23]. In a majority of situations, the final result requires judicious selection of
the prior, its weight, as well as tuning of other parameters. With the advancement in
computation and availability of large datasets, deep learning-based deblurring too has
come of age. Xu et al. [45] proposed a deep deconvolutional network for non-blind
single image deblurring (i.e, the kernel is fixed and known apriori). Schuler et al.
[39] came up with a neural architecture that mimics traditional iterative deblurring
approaches. Chakrabarti [4] trained a patch-based neural network to estimate the
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kernel at each patch and employed a traditional non-blind deblurring method in the
final step to arrive at the deblurred result. The above-mentioned methods attempt
to estimate the blur kernel using a deep network, but finally perform non-blind
deblurring outside of the network to get the deblurred result. Any error in the kernel
estimate (due to poor edge content, saturation or noise in the image) will impact
deblurring quality. Moreover, the final non-blind deblurring step typically assumes
a prior (such as sparsity on the gradient of latent image), which again necessitates a
careful selection of prior weights; else the deblurred result will be imperfect. Hence,
kernel-free approaches are verymuch desirable. Recent works [30, 31] skips the need
for kernel estimation and directly solve for the deblurred frame. But these works are
restricted to deblurring and cannot perform resolution improvement.

Blind SR from motion blurred LR images: In situations where the LR frames are
affected by motion blur, super-resolution makes little sense without compensating
for the effect of the unknown motion blur. Sroubek et al. [41] address the blind SR
problem by building a regularized energy function andminimizing it alternately with
respect to the original HR image and the cameramotion. Themethod ofMa et al. [26]
is based on the premise that the same region is not equally blurred across frames. They
propose a temporal region selection scheme to select the least blurred pixels fromeach
frame. The works in [33, 49] perform the joint tasks of alignment, deblurring, and
resolution enhancement. It should be noted that the blind SR techniques mentioned
above are allmulti-frame approaches. Single image blind SR is amuchmore involved
problem and there are at present no traditional approaches to solve it. Very recently,
Xu et al. [47] proposed a deep learning algorithm to solve the blind SR problem.
They used discriminative image prior based on GAN that semantically favors clear
high-resolution images over blurry low-resolution ones and directly regresses for the
HR image. In contrast, ours is a sparse coding-based approach and we solve for the
HR image by using an invariant feature representation.

6.3 Learning Invariant Features for Faces

Sensory data, including natural images, are sparse in nature and can be described as a
superposition of small number of atoms such as edges and surfaces [27]. Dictionary
learning methods are built on this very basis. Various image restoration tasks have
been attempted with dictionaries (including deblurring and SR). With an added con-
dition that these representations should be invariant to the blur or resolution in the
image, dictionary methods have performed these tasks individually by learning cou-
pled dictionaries [43, 48]. However, dictionaries capture only linearities in the data.
Blurring process involves non-linearities (high frequencies are suppressed more),
hence dictionary methods do not generalize across blurs.

In this chapter, we extend the notion of invariant representations to deep networks
that can capture non-linearities in the data. Generalization of dictionary methods
using deep networks to capture non-linearities is not new. The work in [44] com-
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Fig. 6.1 Illustration of proposed architecture

bines sparse coding and denoising encoders for the task of denoising and inpainting.
Deep neural networks, in general, have yielded good improvements over conven-
tional methods for various low-level image restoration problems including SR [10],
and inpainting and denoising [34, 44]. These networks are learned end-to-end by
training with lots of example-data from which the network learns the mapping to
undo distortions. We investigate the possibility of such a deep network for the task
of single image blind SR. The idea of learning invariant representations is borrowed
from our earlier work [31] with the main difference being that the problem we are
addressing here is that of a single blind SR rather than just deblurring [31].

Similar to [31], we first require a good feature representation that can capture
HR image-domain information. Autoencoders (AE) are apt for this task and have
shown great success in unsupervised learning by encoding data to a compact form
[15]. Once a good representation is learned for clean HR patches, the next step is
to produce an invariant representation (as in [43, 48]) from blurred LR data. We
propose to use a GAN for this purpose which involves training of a generator and
discriminator that competewith each other. The purpose of the generator is to confuse
the discriminator by producing clean features from blurred LR data that are similar to
the ones produced by the autoencoder so as to achieve invariance. The discriminator,
on the other hand, tries to beat the generator by identifying the clean and blurred
features.

A schematic of our proposed architecture is shown in Fig. 6.1. The main differ-
ence in architecture vis-a-vis [31] is our generator now has to perform joint SR and
deblurring. Since the input LR is of a lower dimension than theHR image, we include
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fractional strided convolutions in the initial stages of the generator. The number of
these layers depends on the SR factor.

Akin to dictionary methods, our encoder-decoder architecture learns a represen-
tation in non-linear space. In dictionary approaches, an input HR patch I is sparsely
represented with the dictionary atoms DHR as I = DHRα. Our encoder-decoder
module can be equated to this but in non-linear space. The encoder can be thought
of as an inverse dictionary D−1

HR that projects the incoming HR data into a sparse
representation and decoder (DHR) reconstructs the input from the sparse represen-
tation. Generator training can be treated as learning the blur LR dictionary that
can project the blurred LR data Bl into the same sparse representation of I , i.e,
α = D−1

HR I = D−1
bLR

Bl . Once training is done, the input LR blurry image (Bl) is
passed through the generator to get an invariant feature which when projected to the
decoder yields the deblurred HR result as Î = DHRα = DHRD

−1
bLR

Bl .
Thus, by associating the feature representation learned by the autoencoder with

GAN training, our model is able to perform single image blind SR in an end-to-
end manner for face dataset. Ours is a kernel-free approach and does away with the
tedious task of modeling and selection of prior.

The main contributions of our work are as follows:

• We propose a compact end-to-end regression network that directly estimates the
clean HR image from a single blurred LR frame without the need for optimal prior
selection and weighting, as well as blur kernel estimation.

• The proposed architecture consists of an autoencoder in conjunction with a gen-
erative network for producing blur and resolution invariant features to guide the
process.

• The network has shown performance gain in FR surveillance systems and produces
good quality face reconstruction from its blurred LR counterpart.

6.4 Network Architecture

Our network consists of an AE that learns the clean HR image domain and a GAN
that generates invariant features. We train our network in two stages. We first train an
AE to learn the clean image manifold. This is followed by the training of a generator
that can produce clean features from a blurred LR image which when fed to the
decoder gives the deblurred HR output. Note that instead of combining the task of
data representation, SR, and deblurring into a single network, we relegate the task
of data-learning to the AE and use this information to guide blind SR. Details of the
architecture and the training procedure are explained next.
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Fig. 6.2 Autoencoder architecture with residual networks

6.4.1 Encoder-Decoder

Autoencoders were proposed for the purpose of unsupervised learning [15] and have
since been extended to a variety of applications. AE projects the input data into a
low-dimensional space and recovers the input from this representation. When not
modeled properly, it is likely that the autoencoder learns to just compress the data
without learning any useful representation. Regularization using denoising encoders
[42] overcomes this issue by corrupting the data with noise and letting the network
undo this effect and get back a clean output. This ensures that the AE learns to
correctly represent clean data. Deepak et al. [34] extended this idea from mere data
representation to context representation for the task of inpainting. In effect, it learns
a meaningful representation that can capture domain information of the data.

We investigated different architectures forAEandobserved that including residual
blocks (ResNet) [14] helped in achieving faster convergence and in improving the
reconstructed output. Residual blocks help by by-passing the higher-level features
to the output while avoiding the vanishing gradient problem. The training data was
corrupted by noise (30% of the time) to ensure encoder reliability and to avoid
learning an identity map. The architecture used in our work along with the ResNet
block is shown in Fig. 6.2. A detailed description of the filter and feature map sizes
along with the stride values used are as given below.

Encoder: C5
3→8 ↓ 2 → R5(2)

8 → C5
8→16 ↓ 2 → R5(2)

16 → C3
16→32 ↓ 2 → R3

32

Decoder: R3
32 → C2

32→16 ↑ 2 → R5(2)
16 → C4

16→8 ↑ 2 → R5(2)
8 → C4

8→3 ↑ 2

where Cc
a→b ↓ d represents convolution mapping from a feature dimension of a to

b with a stride of d and filter size of c, ↓ represents down-convolution, ↑ stands for
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(a) (b) (26.1 dB) (c) (38.02 dB) (d) (34.1 dB)

Fig. 6.3 Effect of ResNet on reconstruction. a The target image. b Noisy input to the encoder-
decoder module. c Result of encoder-decoder module of Fig. 6.2. d Result obtained by removing
ResNet for the same number of iterations. PSNR values are given under the respective figures.
(Enlarge for better viewing)

up-convolution. Rb(c)
a represents the residual block which consists of a convolution

and a ReLU block with output feature size a, filter size b, while c represents the
number of repetitions of residual blocks.

Figure 6.3 shows the advantage of the ResNet block. Figure 6.3a is the target
image and Fig. 6.3c, d are the output of autoencoders with and without ResNet block
for the same number of iterations for the input noisy image in Fig. 6.3b. Note that the
one with ResNet converges faster and preserves the edges due to skip connections
that pass on the information to deeper layers.

6.4.2 GAN for Feature Mapping

The second stage of training constitutes learning a generator that can map from
the blurred LR image to clean HR features. For this purpose, we used a generative
adversarial network (introduced byGoodfellow [13] in 2014). GANs have since been
widely used for various image related tasks. It consists of two models: a Generator
(G) and a Discriminator (D) which play a two-player mini-max game. D tries to
discriminate between the samples generated by G and training data samples, while
G attempts to fool the discriminator by generating samples close to the actual data
distribution. The mini-max cost function [13] for training GANs is given by

min
G

max
D

C(G,D) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1 − D(G(z))]
whereD(x) is the probability assigned by the discriminator to the input x for discrim-
inating x as a real sample. Pdata and Pz are the respective probability distributions of
data x and the input random vector z. The main goal of [13] is to generate a class of
natural images from z.

Theoretically, GANs are well-defined, but many a time it is difficult to train them.
Often there are instability issues that results in artifacts in the generated image.Works
exsist that specifically address this issue [37, 38] and try to stabilize the training by
introducing new distance metrics [2]. One such work uses conditional GAN (Mirza
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et al. [29]) which enables GANs to accommodate extra information in the form of
conditional input. Training conditional GANs is a lot more stable than unconditional
GANs due to the additional guiding input. The inclusion of adversarial cost in the
loss function has shown great promise [18, 34]. The modified cost function [18] is
given by

min
G

max
D

Ccond(G,D) = Ex,y∼Pdata(x,y)[logD(x, y)]
+ Ex∼Pdata(x),z∼Pz(z)[log(1 − D(x,G(x, z))] (6.1)

where y is the clean target feature, x is the conditional image (the blurred input), and
z is the input random vector. In conditional GANs, the generator tries to model the
distribution of data over the joint probability distribution of x and z. When trained
without z for our task, the network learns a mapping for x to a deterministic output
y which is the corresponding clean feature.

Following [18] that uses an end-to-end network with generative model to perform
image-to-image translation, we initially attempted regressing directly to the clear
pixels using off-the-shelf generative networks. However, we observed that this lead
to erroneous results. One reason for this could be due to the high dimensionality of
data. Hence, we used the apriori-learned features (which are of a lower dimension
as compared to image space) of the autoencoder for training GAN. Training a per-
fect discriminator requires its weights to be updated simultaneously along with the
generator such that it is able to discriminate between the generated samples and data
samples. This task becomes easy and viable for the discriminator in the feature space
for two reasons:

(i) In this space, the distance between blurred LR features and its equivalent clean
HR features is higher as compared to the image space. This helps in faster train-
ing in the initial stage.

(ii) The dimensionality of the feature space is much lower as compared to that of
image space. GANs are known to be quite effective in matching distributions in
lower-dimensional spaces [8].

We train theGANusing the normal procedure but instead of asking the discrimina-
tor to discern between generated images and clean images, we ask it to discriminate
between their corresponding features. The generator (4 ×) and the discriminator
architectures are as given below.

Generator: C5
3→8 ↑ 2 → C5

8→8 → C5
8→16 ↑ 2 → C5

16→16 ↓ 2 → R5(2)
16 → C5

16→32

↓ 2 → R5(2)
32 → Ĉ3

32→32 ↓ 2 → R5(2)
32 → C3

32→128 ↓ 2 → R3(2)
128 → Ĉ3

128→32 ↑ 2

Discriminator: C5
32→32 → C5

32→32 ↓ 2 → C5
32→16 → C5

16→16 ↓ 2 → C5
16→8 →

C3
8→8 ↓ 2 → C3

8→1

Each convolution is followed by a Leaky ReLU and batch-normalization in the
discriminator, andReLU in the generator. The input stage of the generator is a stack of
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learnable upsampling filters (Deconv layers) and the number of such layers depends
on the upsampling factor. Above, we have shown a generator module for 4 × SR
factor. Ĉ indicates a skip connection from that convolution layer till the next Ĉ .
Using skip connections help in preserving the finite feature from the lower layers
while going deeper helps in reducing the blur. We also tried other models where the
generator architecture was similar to that of encoder. Such an architecture helps to
preserve details in the final output but residual blur still remains in the output. We
observed that going deeper helps in reducing blur at the expense of missing finite
details. Hence, we used a generator which goes deeper but at the same time preserves
features using skip connections.

Once the second stage is trained, we have a generator module to which we pass
the blurred LR input during the test phase. The generator produces features which
correspond to clean image features which when passed through the decoder deliver
the final deblurred HR result.

6.4.3 Loss Function

Our network is trained in two stages. In the initial phase, the encoder is trained
to learn the HR clean feature representation. For this training, we used the widely
preferred reconstruction cost. The reconstruction (MSE loss) cost is defined as the
l2 distance between the expected and observed image and is given as

Lmse = ‖De(E(I + N )) − I‖22 (6.2)

whereDe is the decoder, E the encoder, N is noise and I is the target (clean) image.
The MSE error captures overall image content but tends to prefer a blurry solution.
Hence, training only with MSE loss results in loss of edge details. To overcome
this, we used gradient loss (Lgrad) as it favors edges as discussed in [28] for video-
prediction.

Lgrad = ‖∇De(E(I + N )) − ∇ I‖22 (6.3)

where ∇ is the gradient operator. Adding the gradient loss helps in preserving edges
and recovering sharp images as compared to Lmse alone.

The second phase of training learns the invariant representation using GANs. For
training GAN we tried different combinations of cost functions and found that a
combined cost function given by λadvLadv + λ1Labs + λ2Lmse in the image and
feature spaceworked for us. Even though l2 loss is simple and easy to back-propagate,
it under-performs on sparse data. Hence,we used l1 loss for feature back-propagation,
i.e.

Labs = ‖G(B) − E(I )‖1 (6.4)

where B is the blurred LR image. The adversarial loss function Ladv (given in
Eq. (6.1)) requires that the samples output by the generator should be indistinguish-
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Fig. 6.4 Some example images from gallery (first row) and probe (second row). The kernels used
to synthesize the probe images are shown in the inset

able to the discriminator. This is a strong condition and forces the generator to produce
samples that are close to the underlying data distribution. As a result, the generator
outputs features that are close to the clean HR feature samples. Another advantage
of this loss is that it helps in faster training (especially during the initial stages) as
it provides strong gradients. Apart from adversarial and l1 cost on the feature space,
we also used MSE cost on the recovered clean image after passing the generated
features through the decoder. This helps in fine-tuning the generator to match with
the decoder.

6.4.4 Training

We trained the autoencoder using images from theCelebAdataset [25]which consists
of around 202,599 face images by resizing them to 256 × 256. We randomly picked
200K data as training set and rest as test and validation set. The inputs were randomly
corrupted with Gaussian noise (standard deviation = 0.2) 30% of the time to ensure
learning of useful data representation. We used Adam [20] with an initial learning
rate of 0.0002 and momentum 0.9 with batch-size of 16. The training took around
3 × 105 iterations to converge. The gradient cost was scaled by λ = 0.1 to ensure that
the final results are not over-sharpened.

The second stage of training involved learning a blur and resolution invariant
representation from blurred LR data. We created blurred face data by synthetically
blurring the CelebA dataset with space-invariant parametric blur kernels. We used
{l, θ} (l stands for length and θ is the angle) parametrization of the blur and produced
blur in the range l ∈ {0, 40} pixels and θ ∈ {0, 180} degrees. The input clean images
were blurred by the parametrized kernels and downsampled by factors of 2, 4, and
8 to generate the training sets for different SR factors. Each set consisted of 4 lakh
blurred LR training data. The first stage of the generator was a set of up-convolution
learnable filters that scale up the input data to 256. To improve GAN stability, we
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Fig. 6.5 Percentage recognition with a simple PCA FR system. The improvement in accuracy with
our blind SR network over other comparative methods can be clearly observed from the figure. Our
method performs well with respect to all the matching distance metrics

also used smooth labeling of blur and clean features as discussed in [1]. For around
105 iterations, the training was done with feature costs alone with λadv = 0.001 and
λ1 = 1. Fine-tuning of the generator was subsequently done by adding the MSE cost
and weighing down the adversarial cost (λ2 = 1, λ1 = 1 and λadv = 0.0001).

6.5 Experiments

We demonstrate the effectiveness of our proposed blind SR network on synthetic as
well as real images. We have subdivided the experiments into two sections. In the
first section, we quantify performance by analyzing the recognition accuracy of a
baseline FR system on the input blurred LR images prior to and after passing through
our network. We observed an improvement in accuracy after using our network. The
experimental setup for this is as follows. We took the ba and bj folders from the
FERET dataset both of which contain 200 subjects (256 × 256 dimension) with one
image per subject. We used ba as our gallery and used bj to produce the probe. The
images from bj were subjected to parametric blur and downsampled to get 64×64
probe data. A few examples from the gallery and the probe along with the kernels
used to create them are shown in Fig. 6.4. Following this, a basic FR system using
PCA was used as the baseline to calculate the percentage recognition rate.
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(20.85/0.8289) (24.795/0.8886 ) (19.33/0.7620) (20.2202/0.7817)

(21.36/0.8093) (25.92/0.8792 ) (20.8/0.7926) (23.12/0.8154)

(19.9/0.8570) (27.64/0.9359 ) (18.74/0.8070) (23.68/0.8969)
Input ↑ Our o/p [32]+[17] [30]+[22] HR GT

Fig. 6.6 Results on LFW dataset [16]: The input images were upsampled to [256 × 256]. Results
obtained by our blind SR network given in column 2. Results obtained by separately performing
deblurring and SR by conventional methods [32]+[17], and deep methods [30]+[22], are given in
column 3 and 4, respectively. The ground truth HR image is shown in the last column

The system works by first estimating the PCA basis from the clean HR gallery
images. It then projects the probe using the estimated basis and recognizes the subject
by matching the features to that of the gallery. We used three distance metrics for
matching: Euclidean, Manhattan, and Cosine. Initially, we estimated the recognition
rate on the clean probe and found that the recognitionwas on an average 84.16%only.
This was because the probe images had small expression changes from the gallery
and our FR system is a simple PCA-based model. Next, we checked the accuracy
on the blurred LR probe data and noticed that the accuracy went down from 84.16to
76.8% after blurring and downsampling. We passed these LR probes through our
trained network to get a 4 × SR and estimated the accuracy of FR on the output, the
accuracy improved to 82.5% using our blind SR model.

Since there are noworks on single blind SR for this type of a setting, we performed
comparison by independently deblurring the LR frames followed by a single image
SR framework. This we did using both conventional methods and deep learning
methods. For conventional method, we use a single image deblurring framework of
Pan et al. [32] to deblur the LR frames. This is followed by exemplar-based SR as
proposed in [17]. The accuracy obtained in this casewas quite less (75.5%). Themain
reason for the reduced accuracy could be due to the artifacts induced by deblurring
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Input ↑ Our o/p [32]+[17] [30]+[22]

Fig. 6.7 Results on Gopro dataset [30]. Faces were cropped from the blurred images provided in
the test set. Even though our network was not trained for such a real dataset, it was able to produce
comparable results to the work in [30] that was specifically trained on Gopro

which can be attributed to improper selection of prior. The second comparison was
with deep learning networks. For this, we used the network in [30] to deblur the
probes and these deblurred results were subjected to the SRResnet (proposed in
[22]) for 4× upsampling. The accuracy improved to 79.56%. From this experiment,
we can conclude that our blind SR network that performs end-to-end simultaneous
deblurring and SR can help in improving the recognition accuracy of FR systems.
The obtained accuracy using each of the matching methods along with comparisons
are provided in Fig. 6.5.

In the second section of our experiments, we show quantitative results on synthet-
ically blurred LR dataset from the LFW dataset [16]. We provide quantification in
terms of PSNR (Peak Signal to Noise Ratio) and SSIM (Structure Similarity Index).
We also provide qualitative results on a few examples from the real blurred dataset
of [36] and Gopro dataset in [30].

For the quantitative experiment in Fig. 6.6, we synthetically blurred the LFW
dataset and downsampled it to different scales. For comparison, we tried the existing
conventional and deep learning methods as before. Results in the third column of
Fig. 6.6 were obtained by deblurring the LR image with the conventional deblurring
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Fig. 6.8 Results on real blurred dataset of [36]. Input blurred face and the corresponding result
obtained by our network are shown side-by-side

work of Pan et al. [32] which was followed by exemplar-based SR method of [17]
for the specified SR factors. Similarly, the results in column four were obtained by
the deep learning-based deblurring work of [30] followed by the single image deep
learning-based SR work of [22]. The obtained PSNR and SSIM values for each of
these examples are provided under each image. Each row corresponds to a different
upsampling factor: first row (8 ×), second row (4 ×) and third row (2 ×). Note that
the training for each SR factor was done separately in our network, but the encoder
training was done only once. From the results, it is evident that a joint approach for
deblurring and SR performs much better than individually performing deblurring
and SR.

Next, we tested our network on two real blurred datasets provided in [30, 36].
Gopro dataset introduced in [30] was produced by capturing videos using a high
frame rate camera and then averaging the frames to produce realistic blurred dataset.
We manually cropped faces from their test sets and fed them to our network. Our
networkwas trainedwith synthetic parametric blur kernels as discussed in Sect. 6.4.4.
Even with this training, we obtained results (second column) comparable to that of
[30] (fourth column), which was specifically trained on Gopro. The obtained results
for visual comparison are provided in Fig. 6.7. A comparison with the traditional
method is also provided in the third column of Fig. 6.7. A qualitative result of our
method on the real blurred dataset captured by Punnapurath et al. [36] is also provided
in Fig. 6.8. Although the blur encountered in the inputs was not high, one can observe
an improvement in quality with our network.

It must be mentioned that the work in [47] also addresses blind SR problem for
face images. They achieve this by using a direct regression for the HR image from
the blurred LR using a generative loss. Our method differs from them in the network
architecture. We learn a feature representation with our network that is invariant to
the blur and resolution by making use of the generative framework. To compare with
themethod in [47], we retrained our encoder and generator module on celebA dataset
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Input Our o/p [47] Input Our o/p [47]

Fig. 6.9 Experimental setup similar to [47]. The input images were of size 64 × 64. These were
subjected to blur and downsampling to get LR inputs of size 16 × 16. They trained by cropping
faces alone but our training was by resizing. Hence, we had to crop out the face after passing through
our network to match their result. The reduction is quality in our result is due to this cropping

for the specified input–output resolution asmentioned in their paper. The inputs (HR)
were of 64× 64 and the LR blurred data were 16× 16.Wemodified our architecture
to accommodate this input size and learned the invariant features. The input image,
the result obtained by our method, and the output of [47] are shown in Fig. 6.9. Our
results are comparable to that of [47].

6.6 Conclusions

In this chapter, we proposed an end-to-end deep network for single image blind
SR using autoencoder and GAN. Instead of directly regressing for clean pixels, we
performed regression over encoder-features to arrive at an invariant representation,
which when passed through the decoder produces the desired clean HR output.
Our network is kernel-free and does not require any prior modeling. The method
shows improvement in FR accuracy even with a baseline FR system. When tested
on real datasets, our method showed improved quality when compared to decoupled
deblurring and SR.
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Chapter 7
Hashing A Face

Svebor Karaman and Shih-Fu Chang

Abstract Face recognition methods have made great progress in the recent years.
These methods most of the time represent a face image as a high-dimensional
real-valued feature, often obtained using a deep network. However, comparisons
of this high-dimensional feature can be computationally expensive. Furthermore,
when dealing with large face images database this representation can lead to pro-
hibitive storage requirements. Also, in a context where the capture of the face image
is performed on a mobile device or in a separate location from the face verification
or search process, the amount of data that needs to be transmitted over the network
should be minimized.

7.1 Introduction

Face recognition methods have made great progress in the recent years. These meth-
odsmost of the time represent a face image as a high-dimensional real-valued feature,
often obtained using a deep network. However, comparisons of this high-dimensional
feature can be computationally expensive. Furthermore, when dealingwith large face
images database this representation can lead to prohibitive storage requirements.
Also, in a context where the capture of the face image is performed on a mobile
device or in a separate location from the face verification or search process, the
amount of data that needs to be transmitted over the network should be minimized.
Thus, the motivations for using hashing for face recognition can be seen as threefold

• Lower the memory consumption: hashing is a way to produce a more compact
representation, and thus one could store more face representations on a single
machine;
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• Speed-up the comparison and search time: hamming distance computation can be
performed very efficiently thanks to low-level instructions, and storing a hash code
as a bucket, hashing can be used as an indexing scheme;

• Reduce the transmission cost: using hashing, very little information needs to be
transmitted over the network, this can be, especially advantageous if the recogni-
tion system is separated from the encoding system.

In this chapter,wewill first discuss the unique challenges of hashing a face.Wewill
then review the state-of-art hashing methods that can be applied to this problem and
discuss their strengths and weaknesses. After detailing the face recognition tasks and
how they are evaluated, we discuss the datasets on which we trained and evaluated
our hashing models. Extensive experiments are conducted to measure how well
the different hashing methods explored can solve the face recognition tasks in the
compressed binary domain they induce.

There have been comprehensive surveys of compact hashing for large-scale scal-
able retrieval [29], but without addressing the unique challenges for face recognition.
There have been alternative work for efficiently searching large datasets [7] based
on quantization, but this approach does not aim to preserve the original features per-
formance. We also focus on hashing approaches due to the unique requirements of
compact coding for minimizing transmission cost.

7.2 Unique Challenges of Hashing A Face

Hashing a face representation is especially challenging as the problem of face recog-
nition can be seen as a fine-grained recognition problem, indeed all faces share similar
structure and the difference between two identities can be very subtle. Besides, differ-
ent face images of the same individual can exhibit a very high level of variations due
to change of pose or viewing angle, lighting condition, and furthermore can capture
changes of the face due to variations of expression, the application of makeup, and
also aging. An observation can be a partial observation, with parts of the face being
occluded by other persons or objects in the scene. These face images can be captured
as a single shot but also as a video, therefore, inducing motion blur and other capture
artifacts due to this medium. Also, when dealing with a video, it can be challenging
to leverage effectively the multiple frames depicting the same face.

Thus, recent face image representations tend to be highly specialized and discrim-
inative features, often heavily learned and optimized from a large amount of data,
and not generic low-level features as what many previous hashing works deal with.
Furthermore, in this chapter, our objective is to approximate or maintain as much
as possible the performance of the features being hashed, while usually, hashing
methods are only evaluated in comparison to other hashing methods.

In this chapter, our goal is to explore how different hashing methods can deal
with the challenges of the face recognition tasks in the compact binary space they
induce. The large intra-class variations and the small inter-class differences of the
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Fig. 7.1 Comparison of a PCA aligned, b random rotation based, and c Optimized Rotation based
quantization. Figure from [10]

face recognition problem creates very challenging conditions to learn a hashing
model able to produce a compact binary representation that is still effective for the
verification and recognition tasks.

We here formalize the hashing task and introduce the notations we will use
throughout this chapter. A dataset S is composed of N samples {si }i=1...N . We denote
the d-dimensional feature representation of the sample si as the row vector xi ∈ R

d ,
and X ∈ R

N×d is the feature matrix of all samples. A hashing model H maps xi
to a binary code of length b, i.e., H(xi ) = hi ∈ B

b and the full feature matrix to
H(X) = H ∈ B

N×b. Note that the binary space B will be technically either {0, 1}
or {−1, 1} for different methods but there is obviously a strict equivalence between
these two choices. We can see the hash model H as a set of b hash functions, i.e.,
H = { f j } j=1...b. The j th bit hi j of hi is obtained by applying the j th hash function
f j of H to the feature, i.e., hi j = f j (xi ).
In the literature, a large number of hashing methods were proposed to obtain such

a hash model. In the next two sections, we review the most important aspects of
hashing, and the most recent and effective hashing methods.

7.3 Strategies for Face Hashing

In this section, we briefly review and classify the hashing methods of the literature
based on whether they are data-driven in Sect. 7.3.1, linear in Sect. 7.3.2, supervised
in Sect. 7.3.3, or dealing with single image input in Sect. 7.3.4. In each of these
sections, we will review in more details the set of recent methods that are the most
relevant for the task of hashing a face representation and that we will investigate in
our experiments. We refer the reader to the survey [29] for a more complete overview
of hashing methods in general.
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7.3.1 Data-Dependent Versus Data-Independent

One of the first and a very popular hashing method is the Locality-Sensitive
Hashing [6, 9, 15, 18] data-independent method. The key idea of Locality-Sensitive
Hashing (LSH) is to define a family of hash functions that ensures that “similar”
samples are more likely to be mapped to the same hash code or bucket. One common
strategy is to sample random projections (w) and thresholds (β) to define the hash
functions as

f (x) = sgn(xw + β).

LSH is, therefore, a data-independent method with interesting asymptotic theo-
retical guarantees. This explains its popularity, and that multiple extension of this
framework have been proposed [4]. However, in practice, LSH-based approaches
need long hash codes and multiple hash tables to produce reasonable retrieval perfor-
mance. These characteristics are not well suited for our application scenario, where
we want to obtain a compact binary representation of a face feature and enable
efficient search.

To overcome these limitations, more recent hashing methods learn the hash func-
tions from the data. Principal Component Analysis (PCA) is a well-known method
to perform dimensionality reduction, and it has logically been explored as a starting
point of several hashing methods [11, 28, 30]. The method proposed in [10], named
Iterative Quantization (ITQ), proposed to minimize the quantization error obtained
when directly encoding the sign of a PCA-based projection, see Fig. 7.1. To train a
hash model generating hash code of b bits, a projection matrixW ∈ R

d×b is obtained
by taking the top b eigenvectors of the data covariance matrix XTX. The hash code
matrix H could be simply computed as H = sgn(XW), but this would correspond
to the PCA aligned quantization illustrated in Fig. 7.1a that induces many similar
samples to be encoded in different hash codes. One simple solution is to apply a
random orthogonal projectionR ∈ R

b×b as illustrated in Fig. 7.1b, however, this can
be improved with the iterative optimization process the authors proposed, as shown
in Fig. 7.1c.

Denoting V the projected data, i.e, V = XW, the ITQ optimization objective is
to minimize

Q(H,R) = ||H − VR||2F .

The optimization is performed in two alternating steps, fixingR and updatingH (the
quantization loss is minimized forH = sgn(VR)) and fixing H and updating R (the
quantization loss can be minimized by computing the SVD of the b × bmatrixHTV
asHTV = S�ŜT and let R = ŜST ). This two-step procedure is iterated (the authors
advise to use about 50 iterations) to obtain the final ITQ hash model. ITQ has been
shown to be competitive, especially compared to other PCA based hashing methods.
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Fig. 7.2 Overview of the NSH method. Figure edited from [23]

7.3.2 Linear Versus Pivots-Based Hashing

Learning the hash functions from the data, as it is done for the ITQ method [10]
detailed in the previous section, can enable selecting more effective hash functions.
However, any hashing method relying on the sign of linear projections will have
hash functions which have limited discriminative ability. Therefore, several hashing
methods have been proposed that rely on non-linear hash functions.

Specifically, the common idea of such methods is to sample the feature space to
obtain a set of pivot points.1 Then, similarities or distanceswith regards to these pivots
are exploited to define the hash functions. In this section,wedetail two recentmethods
of that type: the Neighbor-sensitive Hashing [23] and the Spherical Hashing [13]
methods.

The Neighbor-sensitive Hashing method (NSH) aims to avoid using hash bits
to capture the distances between samples that are far apart. Therefore, the authors
propose to place more separators among similar samples. Thus, somewhat counter-
intuitively the method aims to increase the distance between similar items in the
hamming space. This idea is illustrated in Fig. 7.2. The key element of the NSH
approach iswhat the authors call aNeighbor-Sensitive Transform (NST). They define
a function f̂ (dubbed a coordinate-transforming function) that is a continuous and
monotonic function that for a given distance range (ηmin, ηmax) produces “larger
gaps” in a range (ηmin, ηmax). That is the difference of distances within the range
should be bigger after applying the NST than in the original space.

In practice, the authors rely on multiple NST computed as Radial Basis Functions
using the Euclidean distance with regards to a set of pivots. The pivots are obtained
by running k-means on the training set. The hash functions are learned as random

1 Sometimes referred to as “anchor points”.
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Fig. 7.3 Overview of pivots kernelized-embedding hashing method

orthogonal projections in the embedded space defined by all pivoted transforms in an
unsupervised manner which has a complexity linear in the number of samples. NSH
is, therefore, a pivots-based kernelized-embedding hashing method, illustrated in
Fig. 7.3, similarly to the Kernel Supervised Hashing method we will discuss in 7.3.3.
We refer the reader to [23] for additional details.

The Spherical Hashing (SpH) method introduced in [13], proposes to define hash-
ing functions not as hyperplanes but as hyperspheres. More formally, the spherical
hashing function fi (x) is defined by a pivot pi ∈ R

d and a distance threshold ti ∈ R
+

as

fi (x) =
{

−1 when d(pi , x) > ti ;
+1 when d(pi , x) ≤ ti ,

where d(·, ·) denotes a distance function (either Euclidean or Cosine in the exper-
iments we have conducted) between two samples in R

d . The optimization process
of the Spherical Hashing method aims to get independent and balanced hashing
functions, it iteratively optimizes both the pivots position in space and the threshold
values. The threshold values are first estimated to have N/2 samples in each hyper-
sphere to satisfy the balancing constraints. Then pairs of pivots are pushed closer
together or further away from each other in order to have their overlapping region
to contain N/4 samples to satisfy the independence constraint. The optimization
process is illustrated in Fig. 7.4. The advantage of using hyperspheres for hashing is
that we can obtain closed regions with tight distance bounds. The reader is referred
to [23] for additional details and experiments on this method.

7.3.3 Unsupervised Versus Supervised Hashing

As we have discussed in the previous section, a data-dependent optimization proce-
dure can help obtain better hash functions. The hash functions can also be optimized
to satisfy some supervision provided on the training set. Note that, as pointed out
in [26], supervised hashing evaluation only make sense when evaluating the perfor-
mance on new classes at test time, otherwise hashing a classifier output can easily
outperforms state-of-the-art hashing methods. This is exactly what we do in all our
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Fig. 7.4 Overview of the SpH repulsive and attractive forces between pivots during the optimiza-
tion. Figure from [13]

face recognition experiments, as the training set is always disjoint from the test set.
Some semi-supervised hashing methods have also been proposed [28], where the
objective function combines supervised empirical fitness with unsupervised infor-
mation theoretic regularization.

The Kernel-based Supervised Hashing (KSH) method, one of the most popu-
lar supervised hashing method, was introduced in [20]. This method relies on the
kernel-embedding of each sample, estimated with regards to a set of m uniformly
sampled points that we refer to as anchors or pivots:P = {p j } j=1...m . More precisely,
a prediction function f̂i (·) is defined as

f̂i (x) =
m∑
j=1

κ(p j , x)ai j − β,

where κ is a kernel function and ai = [ai1, . . . , ai j , . . . , aim] and β are the coeffi-
cients and bias respectively. The corresponding hash function is defined as fi (x) =
sgn( f̂i (x)). To obtain a balanced hash function, the bias vector β is computed as
the mean of the projected features in the kernel-embedding space, so each of its
coordinate β j is estimated as

β j =
N∑
i=1

κ(p j , xi )/N .

The goal of KSH is to learn the coefficient vectors a1, . . . , ab using supervised
information. Given similar and dissimilar pairs of samples, and leveraging the one-
to-one correspondence between hamming distance and hash codes inner product, the
authors propose to train hash functions such that hash codes inner product of similar
samples are close to 1 and close to −1 for dissimilar samples. This optimization
objective is illustrated in Fig. 7.5. In practice, the optimization is performed in a
greedy manner, where each hash function parameter (namely the coefficient vector)
is learned iteratively. We refer the reader to [20] for the complete optimization pro-
cedure description. KSH has been shown to be highly competitive, especially when
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Fig. 7.5 Overview of the KSH optimization procedure. Figure from [20]

dealing with features that are not highly discriminative for the task at hand such as
generic hand-crafted features.

7.3.4 Image Versus Set/Video Hashing

Most of the hashing methods consider each sample independently. But in many
scenarios involving faces, multiple images of the same person can be provided at
once. For example, when extracting face images from a video, a template containing
all the appearances of one person in this video can be easily defined. How to leverage
efficiently a single hash code representation for that whole set of images has been
explored in [8]. The key idea is to build a set representation that is independent
of the input size. The set representation captures both local geometric properties
(computing the average, variance, minimum, and maximum of the features of all
the images in the set) and global distribution features, encoding the image features
with the VLAD approach [16]. The image features can be precomputed or can be
derived from a deep network, and in that case, the whole model can be trained in an
end-to-end fashion.

7.4 Face Recognition Tasks and Evaluation

In this section, we briefly introduce the two main tasks of face recognition: face
verification and face search. We also detail how these tasks are usually evaluated.

7.4.1 Face Verification

The verification protocol is the task of comparing two face images (or two sets of
face images) and output a score estimating whether or not the two inputs correspond
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to the same identity. The typical application of that task is access control, where a
given person’ identity needs to be verified. For example, a building with restricted
access may be connected to a database of the face images of the authorized users. To
be granted access a user needs to provide an identifier, e.g., a badge with a barcode,
that will be used to retrieve the stored face imagery to be compared with a live
acquisition of that person. That is also the use case of the “face-unlock” feature
of recent smartphones. For this task, the dataset or benchmark usually provides a
predefined list of pairs of face images (that are either a genuine match or an impostor
comparison) to be evaluated [14, 32].

7.4.2 Face Search

The task of face search is the task of finding the most similar face images in a large
database of face images. One of the typical use case would be a watch list situation,
where the database holds a list of missing or wanted persons, and queries are face
images of persons of interest.

If some probe images do not have amatch in the gallery, the task is named an open-
set identification. In that case, a good face recognition system should still retrieve the
most similar samples from the gallery but they should have a low similarity score.
Thus, a filtering approach based on the similarity score should enable flagging the
probe as having no match in the gallery.

7.4.3 Evaluation Metrics

To evaluate the face verification protocol, we will report Receiver Operating
Characteristic (ROC) curves. At a given threshold T of similarity that would deter-
mine if a pair is considered matched, we compute the True Accept Rate (TAR),
that is, the fraction of genuine comparisons that have a higher similarity S than the
threshold, and thus would correctly be accepted, and the False Accept Rate (FAR),
that is the fraction of impostor comparisons that exceed the threshold, and therefore,
would incorrectly be seen as matches.

Formally, we denote G as the set of genuine comparisons and I as the set of
impostors comparisons. Using the previous definitions and the standard notations
for the False Positives (FP), True Positives (T P), False Negatives (FN ), and True
Negatives (T N ), we can define the False Accept Rate (FAR) or False Positive Rate
as

FAR = #impostor withS > T

total #impostor
= | {x ∈ I | S(x) > T } |

| I | = FP

FP + T N
,

while the True Accept Rate (TAR), corresponding to the Recall, is computed as
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TAR = #genuine withS > T

total #genuine
= | {x ∈ G | S(x) > T } |

|G | = T P

T P + FN
.

Varying the threshold, we can plot a curve showing the trade-off between these
two measures. One can define a target value of one of these measures (e.g., FAR =
10−3) and compare different methods based on the other measure value to select the
best approach amongst multiple candidate algorithms at that operating point, i.e., the
one with the highest TAR at the target FAR value.

The search performance is evaluated using the Cumulative Matching Curve
(CMC). For each probe sample, a ranked list of the most similar samples in the
gallery is retrieved. The CMC captures the portion of probe samples for which we
have correctly retrieved a matching gallery sample up to a given rank. The retrieval
rates up to some specific rank values (e.g., 1, 5, and 10) are also often reported.

7.5 Face Datasets

In this section, we review the different datasets we will use to evaluate our hashing
models, as well as the datasets used to train either the hashing models or the deep
models which are used to extract the face features we will hash into binary codes.

7.5.1 IJB-A: IARPA Janus Benchmark A

The IJB-A [17] dataset was developed with the goal of pushing the limits of face
recognition, especially targeting the unconstrained setting.Most of these face images
and videos are captured in a non-collaborative setting thus depicting faces in a wide
variety of poses, illuminations, and expressions. This dataset has 5,712 images of
500 different subjects as well as 2,085 videos for these same subjects. The dataset
is divided into 10 splits. For each split, 333 randomly selected subjects are placed
in the training set. The remaining 167 subjects are used for the test set, with their
images randomly sampled into either the probe set or the gallery set.

7.5.2 IJB-B: IARPA Janus Benchmark B

The IJB-B [31] dataset is an extension of the IJB-A dataset. It contains 21,798 images
of 1,845 subjects and 7,011 videos. The objectives of this extension are to provide
a more uniform geographic distribution of subjects and to evaluate performance on
a much larger number of genuine (10,270) and impostor (8,000,000) comparisons
when evaluating the verification task, thus producing more meaningful TAR values
at low FAR values (0.01 or 0.001%). For the search task, the dataset provides two
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predefined galleries, as well as three different probe sets grouped based on the media
type: either still images only, video frames only or a mix of the two modalities.

One clear distinction between IJB-A and IJB-B is that IJB-B has no pre-defined
training set, thus external data must be used to train representation and hash models.
We will rely on the UMD faces (see Sect. 7.5.4) to train our hash models for this
dataset.

7.5.3 IJB-C: IARPA Janus Benchmark C

The IJB-C [22] dataset is an extension of the IJB-B dataset. It contains 31,334
images of 3,531 subjects and 11,779 videos. The additional data has been collected
with the goal of covering a wider set of occupations and geographic origins. This
dataset has two gallery sets containing respectively 1,772 and 1,759 subjects, with a
single template of about 5 images defined for each subject. There is a single probe
set of 19,593 templates, build from both still images and video frames, and one
subjectmay havemultiple probe templates. The verification protocol provides 19,557
genuine matches and 15,638,932 impostor matches, allowing a proper evaluation of
the performance at low FAR values. As for IJB-B, there is no pre-defined training
set and we will rely on the UMD faces to train our hash models for this dataset.

7.5.4 UMD Faces

The UMD Faces dataset [2] is composed of both still images and video frames. The
first part containing only still images has 367,888 annotated faces of 8,277 subjects,
divided into 3 batches. Human curated bounding boxes for faces and estimated pose
(yaw, pitch, and roll), locations of twenty-one keypoints, and gender information
generated by a pre-trained neural network are provided. The second part contains
3,735,476 annotated video frames extracted from a total of 22,075 for 3,107 subjects.
Similar estimated information is provided. The subjects have been selected to have
no overlap with the IJB-A, the IJB-B, and the IJB-C datasets. We will use this dataset
to train our hashing models when no other training set is available.

7.5.5 CASIA WebFace Dataset

The CASIA WebFace dataset [33] was the first large-scale face image dataset
released. This dataset contains 10,575 subjects (that are famous people such as actors,
politicians or other public figures) with a total of 494,414 images collected from the
web. There remain 10,548 subjects after removing subjects also present in the IJB-A
dataset. This dataset is not used to train hashing models directly but it is used to train
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some of the deep models used to extract the features (as detailed in the next section)
given as input to our hashing models.

7.6 Face Features

In this section, we detail the three different generations of features we use in our
experiments.

7.6.1 UMD Features: First Generation

The first generation of UMD features correspond to the Deep Convolutional Neural
Networks (DCNN) described in [5]. We refer to the DCNN-S network (described
in Table 7.2 of that paper) as the JC feature, while the SW feature correspond to
the DCNN-L network (described in Table 7.3 of the paper). The JC feature has 320
dimensions while the SW feature has 512 dimensions. Both networks have been
trained on the CASIA WebFace dataset [33] detailed in Sect. 7.5.5. These features
will be used for the experiments on the IJB-A dataset.

7.6.2 UMD Features: Second Generation

The second generation of features is also composed of two features that we name
JC2 and SW2. The JC2 feature corresponds to the pool feature of 320 dimensions of
the architecture described in [34]. The SW2 feature is the 512 dimensional identity
feature extracted from the “All-in-One” architecture presented in [25]. Each of these
features is further embedded into a real-valued 128 dimensional space using the
Triplet Probabilistic Embedding approach [27]. We will reference these embedded
versions of the JC2 and SW2 as EJC2 and ESW2, respectively. These features will
be used for the experiments on the IJB-B dataset.

7.6.3 UMD Features: Third Generation

From the third generation ofUMD features, we use the RAG1 feature that is extracted
from the bottleneck layer of a resNet-101 network as detailed in [24] This model
is trained on a dataset containing over 5 million of images of about 58,000 sub-
jects. These images contain a mixture of about 300,000 still images from the UMD-
Faces dataset [3], about 3.7 million still images from the curated version [19] of
the MS-Celeb-1M dataset [12] and about 1.8 million video frames from the exten-
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sion to the UMDFaces dataset [1]. Furthermore, the RAG1 feature is embedded
into a real-valued 128 dimensional space using the Triplet Probabilistic Embedding
approach [27], we will refer to this embedded version as ERAG1. These features
will be used for the experiments on the IJB-C dataset.

7.7 Face Hashing Experiments

In this section, we report multiple experiments conducted on the face verification
and face search tasks. We first detail the experimental settings on each of the datasets
used.We then report face verification and face search results for the different hashing
methods explored. We also report some more detailed analysis based on the type of
distance used in pivots-based hashing methods and the type of probe images.

7.7.1 Experimental Settings

In this section, we give the experimental settings used to train the hashing models,
to run the experiments, and to evaluate the performance on all datasets.

7.7.1.1 IJB-A

For the IJB-A dataset, we used the JC and SW features of the first generation of UMD
features introduced in Sect. 7.6.1. The features are extracted for each face image in
a template, l2-normalized and averaged to define the template feature. We train each
hash model separately on each feature on the training part of each of the 10 splits of
the dataset as detailed in Sect. 7.5.1. The Euclidean distance is used for the pivots
embedding hashing methods KSH, NSH, and SpH.

We accumulate the verification statistics and average the retrieval rates over the 10
splits of the dataset to report each method’ performance. The baseline performance
is obtained by comparing the template feature with the Euclidean distance, while
hash codes are compared using the hamming distance.

7.7.1.2 IJB-B

For the IJB-B dataset introduced in Sect. 7.5.2, we used the features of the second
generation of UMD features detailed in Sect. 7.6.2. The features are extracted and
projected with the TPE approach for each face image in a template, face images com-
ing from different frames of the same video are first averaged into a media-averaged
feature, then all media-averaged features and still images features are averaged to
define the template feature. As the IJB-B dataset has no training set, we use the UMD
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Faces dataset to train the hash models. Specifically, we train a separate model for
each hashing method on each of the three batches of the UMD Faces dataset.

We evaluate the verification task using the predefined set of comparisons. For
the baseline approach, we compare the template features using the Cosine distance,
while hash codes are compared using the hamming distance. For the verification
task, we report hashing performance by accumulating the matching statistics for the
three different models trained on each UMD faces batch. For the search task, we
report the baseline performance averaged over the two galleries. While the hashing
performance is averaged over the two galleries and the three different models trained
on each UMD faces batch.

7.7.1.3 IJB-C

For the IJB-C dataset introduced in Sect. 7.5.3, we used the features of the third
generation of UMD features detailed in Sect. 7.6.3. As for IJB-B, the features are
extracted and projected with the TPE approach for each face image in a template,
face images coming from different frames of the same video are first averaged into
a media-averaged feature, then all media-averaged features and still images features
are averaged to define the template feature. The features are not l2-normalized. As
the IJB-C dataset has no training set, we use the UMD Faces dataset to train the
hash models. We train a single hash model for each feature using all three batches of
UMD faces at once. We use the Cosine distance for the pivots embedding hashing
methods KSH, NSH, and SpH.

We evaluate the verification task using the predefined set of comparisons. For
the baseline approach, we compare the template features using the Cosine distance,
while hash codes are compared using the hamming distance. For the search task, we
report the performance averaged over the two galleries.

7.7.2 IJB-A

In this section, we report the face verification and search performance of the different
hashing methods on the IJB-A dataset.

7.7.2.1 Face Verification Results

We report the verification results obtained on the IJB-A dataset, comparing the orig-
inal feature performance with hashing results using hash codes of 64, 128, 256 or
512 bits obtained by the ITQ, KSH, NSH, and SpH hashing methods, given as input
the JC features in Fig. 7.6, or the SW features in Fig. 7.7.

The JC feature obtains a verification TAR of 0.838, 0.675 and 0.46 at FAR 10−2,
10−3 and 10−4 respectively. FromFig. 7.6,we can observe that the ITQmethod shows
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Fig. 7.6 Face verification results obtained with the JC features on the IJB-A dataset using ITQ
(top-left), KSH (top-right), NSH (bottom-left) and SpH (bottom-right)

a significant drop in the performance even when using 256 bits (with a TAR of 0.791
and 0.585 at FAR 10−2 and 10−3, respectively), note that since ITQ is based on PCA
it cannot produce results with 512 bits as the JC feature has only 320 dimensions.
The KSH performance when using hash codes of 256 and 512 bits is almost the same
as the original features and even slightly better for FAR values higher than 10−4, for
example, with 256 bits, KSH obtains a TAR of 0.850 and 0.693 at FAR 10−2 and
10−3, respectively. The KSH verification performance is already good with only 128
bits. Similarly, the NSH achieves a similar performance compared to the original
JC features when using 256 or 512 bits, with 512 bits NSH obtains a TAR of 0.829
and 0.700 at FAR 10−2 and 10−3 respectively. The SpH method seems to perform
the best for this task and using the JC features, and somewhat surprisingly seems to
outperforms the feature performance in the low FAR regime. This may come from
the spherical hash function that could better deal with impostors. The SpH hashing
with 512 bits obtains a TAR of 0.733 and 0.561 at FAR 10−3 and 10−4 respectively.

The SW feature obtains a lower verification performance than the JC feature with
a TAR of 0.816, 0.639, and 0.433 at FAR 10−2, 10−3 and 10−4, respectively. From
Fig. 7.7, when using the SW feature, similar conclusions on the hashing methods
can be drawn. As the SW feature has 512 dimensions, even ITQ can obtain results
with 512 bits. However, the performance with 512 bits is very similar to the 256 bits
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Fig. 7.7 Face verification results obtained with the SW features on the IJB-A dataset using ITQ
(top-left), KSH (top-right), NSH (bottom-left), and SpH (bottom-right)

performance,which is specifically of 0.758 and0.55TARat FAR10−2 and10−3. That
can be explained by the fact that the PCAfirst dimensions aremuchmore informative
than the last ones. KSH is able to maintain most of the feature performance with
256 bits (TAR of 0.654 at FAR 10−3) or more, and slightly outperform the original
feature performance at high FAR values. The two unsupervised pivots-based hashing
methods NSH and SpH slightly outperforms the SW feature, especially at low FAR
values. NSH with 512 bits and SpH with 512 bits achieve a TAR value of 0.545 and
0.541, respectively, at a FAR of 10−4 which is much higher than the 0.433 of the
original feature. Note that as the SW feature has a lower performance than the JC
feature, that may give more room for improvement for the hashing methods.

7.7.2.2 Face Search Results

We report the CMC curves obtained on the IJB-A dataset, comparing the original
feature performance with hashing results using hash codes of 64, 128, 256 or 512
bits obtained by the ITQ, KSH, NSH, and SpH hashing methods, given as input the
JC features in Fig. 7.8, or the SW features in Fig. 7.9.
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Fig. 7.8 Face search results obtained with the JC features on the IJB-A dataset using ITQ (top-left),
KSH (top-right), NSH (bottom-left), and SpH (bottom-right)

The JC features obtain a retrieval rate of 0.839, 0.921, and 0.944 at rank 1,
5, and 10, respectively. From Fig. 7.8, we can observe that KSH is the method
that can preserve most of the JC feature search performance, with a limited loss of
performance when using 512 bits. KSH achieves a retrieval rate of 0.823 at rank
1 and 0.938 at rank 10. The SpH method exhibits a bit more of performance loss
than KSH, but still provides a good representation when using 512 bits, achieving a
retrieval rate of 0.819 at rank 1 and 0.93 at rank 10. ITQ achieves reasonable results
when using 256 bits, with a retrieval rate of 0.891 at rank 5 and 0.921 at rank 10
but has the lowest of all compared methods rank 1 value with 0.778. Once again this
method cannot be trained to produce 512 bits with the JC feature of 320 dimensions.
The NSH method is not performing well on this search task, with a significant drop
of performance even when using 512 bits with a retrieval rate of 0.783 at rank 1 and
0.904 at rank 10.

The SW features obtain a retrieval rate of 0.832, 0.92, and 0.948 at rank 1, 5, and
10, respectively, which is similar to the JC features performance. From the results
reported in Fig. 7.9, when using the SW feature, we can see that all hashing methods
exhibit a bigger drop in the performance at rank 1 with the best method SpH with
512 bits reaching a retrieval rate of 0.792. ITQ performs the best at rank 5 and 10
(with retrieval rates of 0.9 and 0.934) followed closely by KSH (with retrieval rates
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Fig. 7.9 Face search results obtainedwith the SWfeatures on the IJB-Adataset using ITQ (top-left),
KSH (top-right), NSH (bottom-left), and SpH (bottom-right)

of 0.9 and 0.934) and SpH. The NSH method has the lowest performance at higher
ranks with the SW feature, reaching a retrieval rate of only 0.909 at rank 10.

7.7.2.3 Discussion

Overall on this IJB-A dataset, the KSH method using kernelized-embedding and
supervision is able tomaintain each feature verificationperformance and even slightly
outperform them at high FAR values. This method is also able to preserve most of the
features’ search abilities. The ITQ method is limited by its linear projection scheme
and its dependency on PCA. While its performance on the verification task is lim-
ited, it does enable reasonable performance on the search task. The two unsupervised
pivots-based hashing methods NSH and SpH can maintain or even outperform, espe-
cially at low FAR values, the original feature performance on the verification task.
The SpH method also performs well on the search task, however, the NSH method
exhibits a significant drop of performance.
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7.7.3 IJB-B

In this section, we report the face verification and search performance of the different
hashingmethods on the IJB-B dataset. For this dataset, we use the embedded features
EJC2 and ESW2 that were optimized for the Cosine distance. We, therefore, first
study the influence of the distance choice (either Euclidean or Cosine) used when
performing the pivots-based embedding in theKSH,NSH, andSpHhashingmethods.
As this dataset also provides three different probe sets based on the type of media
(still images, video frames or mixed), we will also explore how this influences the
search performance.

7.7.3.1 Distance Choice Analysis

The second generation of UMD features EJC2 and ESW2 are embedded using the
TPE approach that is optimizing the Cosine similarity between features. It is, there-
fore, worth investigating whether using the Euclidean distance (as it was done for
the IJB-A dataset) or the Cosine distance in the pivots embedding step would have
an influence on the performance of the KSH, NSH, and SpH hashing methods. We
have trained models using either the Euclidean distance or the Cosine distance for
the pivots embedding step. When using the Euclidean distance, the features are
l2-normalized for training. At test time, for the models trained with the Euclidean
distance, the features of a template are first l2-normalized before being averaged (and
the average is l2-normalized again), while they are not normalized when using the
Cosine distance. We will discuss the influence of this choice when reporting results
in the following sections.

7.7.3.2 Face Verification Results

We report here the verification results obtained on the IJB-B dataset, comparing
the original feature performance with hashing results using hash codes of 128, 256,
512 or 1024 bits obtained by the ITQ, KSH, NSH, and SpH hashing methods. We
report, in Tables 7.1 and 7.2 the results obtained with the l2-normalized features and
Euclidean distance or with unnormalized features and Cosine distance for the pivots
embedding hashing methods, for EJC2 and ESW2 respectively. The best hashing
results for each FAR value is reported in bold.

This set of results show that this second generation of features is performingmuch
better, with for the EJC2 feature a TAR of 0.927, 0.852, and 0.753 and for the ESW2
feature a TAR of 0.936, 0.869, and 0.772, at FAR values of 10−2, 10−3 and 10−4,
respectively. It is, therefore, more challenging to maintain their performance with
hashing.

The ITQmethod seems to slightly benefit from processing unnormalized features
but nevertheless, being limited to the original embedded features dimensions of 128,



156 S. Karaman and S.-F. Chang

Table 7.1 Face verification TAR performance on the IJB-B dataset with the EJC2 feature

Method Norm. Pivots
Dist.

# bits FAR =
10−1

10−2 10−3 10−4 10−5 10−6

EJC2 – – – 0.973 0.927 0.852 0.753 0.598 0.228

ITQ l2 – 128 0.950 0.857 0.744 0.588 0.422 0.197

ITQ – – 128 0.954 0.865 0.761 0.608 0.448 0.168

KSH l2 l2 128 0.945 0.852 0.724 0.544 0.366 0.166

KSH – cos 128 0.941 0.835 0.677 0.487 0.301 0.130

NSH l2 l2 128 0.943 0.85 0.703 0.523 0.352 0.158

NSH – cos 128 0.947 0.864 0.736 0.59 0.395 0.178

NSH l2 l2 512 0.95 0.886 0.786 0.648 0.47 0.177

NSH – cos 512 0.947 0.892 0.805 0.689 0.526 0.209

NSH l2 l2 1024 0.953 0.9 0.81 0.682 0.51 0.182

NSH – cos 1024 0.953 0.91 0.826 0.711 0.549 0.247

SpH l2 l2 128 0.943 0.848 0.713 0.568 0.379 0.167

SpH – cos 128 0.947 0.856 0.734 0.598 0.428 0.178

SpH l2 l2 512 0.965 0.903 0.805 0.673 0.503 0.227

SpH – cos 512 0.968 0.912 0.822 0.7 0.513 0.242

SpH l2 l2 1024 0.968 0.912 0.817 0.687 0.519 0.239

SpH – cos 1024 0.971 0.919 0.834 0.717 0.543 0.24

is not able to maintain most of the performance at the interesting operating points of
FAR 10−3 and 10−4, giving TAR values of 0.761 and 0.608 with the EJC2 feature
and 0.78 and 0.64 with the ESW2 features. Using the Cosine distance enables a
better performance of the pivots embedding hashing methods NSH and SpH. The
NSHmethod with the Cosine distance can preserve most of the performance of each
feature with 512 or 1024 bits (e.g., TAR of 0.826 and 0.711 with the EJC2 feature
and TAR of 0.847 and 0.735 with the ESW2 feature at FAR 10−3 and 10−4) while
its performance using the Euclidean distance is lower (TAR of 0.81 and 0.682 with
EJC2 and 0.831 and 0.702 with ESW2 at the same FAR values). The SpH method
with the Cosine distance can preserve most of the performance of the EJC2 feature,
with 1024 bits it obtains a TARof 0.834 and 0.717 at FAR10−3 and 10−4. It, however,
shows a drop in the performance with the ESW2 feature, with 1024 bits obtaining
a TAR of 0.815 and 0.66 at FAR 10−3 and 10−4, indicating a higher sensitivity to
the original feature space than NSH. The SpH method has also lower performance
when using the Euclidean distance, e.g., TAR of 0.687 with EJC2 and 0.609 with
ESW2 at FAR 10−4. On the contrary, the use of the Cosine distance seems to lower
the performance of the KSH method, especially for the ESW2 feature.
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7.7.3.3 Face Search Results

We report the retrieval performance obtained on the IJB-B dataset, comparing the
original feature performance with hashing results using hash codes of 128, 256, 512
or 1024 bits obtained by the ITQ, KSH, NSH, and SpH hashing methods, given as
input the EJC2 features in Table 7.3 or the ESW2 features in Table 7.4. The best
hashing results for each rank value are reported in bold. The retrieval rates at rank
1, 5, 10, and 20 are 0.839, 0.909, 0.928, and 0.944 for the EJC2 feature and 0.858,
0.922, 0.94, and 0.956 for the ESW2 feature respectively. For these results, we used
the mixed media probes of the IJB-B dataset. We will discuss the influence of the
probe type in the next section.

Once again, the performance of the pivots-based hashingmethodsNSHandSpH is
improved when using the Cosine distance. With this configuration the SpH method
is able to preserve most of the performance of the EJC2 feature, see Table 7.3,
with retrieval rates of 0.822 and 0.899 at rank 1 and 5. It also achieves a good
performance for ESW2 in Table 7.4, especially for ranks higher than 10. The NSH
method with Cosine distance performs relatively well on the EJC2 features and is
the best performing method with the ESW2 features for ranks lower than 5. As for

Table 7.2 Face verification TAR performance on the IJB-B dataset with the ESW2 feature

Method Norm. Pivots
Dist.

# bits FAR =
10−1

10−2 10−3 10−4 10−5 10−6

ESW2 – – – 0.98 0.936 0.869 0.772 0.589 0.195

ITQ l2 – 128 0.962 0.882 0.757 0.589 0.394 0.137

ITQ – – 128 0.966 0.892 0.78 0.64 0.444 0.168

KSH l2 l2 128 0.948 0.853 0.706 0.531 0.323 0.094

KSH – cos 128 0.947 0.846 0.69 0.469 0.225 0.052

KSH l2 l2 512 0.956 0.895 0.8 0.669 0.479 0.151

KSH – cos 512 0.963 0.894 0.759 0.545 0.261 0.059

NSH l2 l2 128 0.95 0.85 0.714 0.521 0.314 0.105

NSH – cos 128 0.95 0.869 0.741 0.593 0.406 0.147

NSH l2 l2 512 0.95 0.886 0.786 0.648 0.47 0.177

NSH – cos 512 0.96 0.911 0.829 0.719 0.537 0.214

NSH l2 l2 1024 0.965 0.919 0.831 0.702 0.472 0.171

NSH – cos 1024 0.966 0.925 0.847 0.735 0.542 0.203

SpH l2 l2 128 0.9602 0.868 0.723 0.538 0.306 0.103

SpH – cos 128 0.963 0.882 0.763 0.571 0.36 0.129

SpH l2 l2 512 0.974 0.903 0.781 0.605 0.319 0.089

SpH – cos 512 0.975 0.912 0.799 0.629 0.383 0.109

SpH l2 l2 1024 0.977 0.908 0.782 0.609 0.338 0.093

SpH – cos 1024 0.978 0.922 0.815 0.660 0.417 0.124
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Table 7.3 Face search retrieval rates on the IJB-B dataset with the EJC2 feature

Method Norm. Pivots
Dist.

# bits Rank 1 Rank 2 Rank 5 Rank
10

Rank
20

Rank
50

EJC2 – – – 0.839 0.874 0.909 0.928 0.944 0.964

ITQ l2 – 128 0.711 0.768 0.825 0.860 0.891 0.926

ITQ – – 128 0.730 0.784 0.837 0.871 0.899 0.931

KSH l2 l2 128 0.696 0.759 0.819 0.855 0.885 0.923

KSH – cos 128 0.670 0.730 0.794 0.836 0.873 0.912

NSH l2 l2 128 0.687 0.747 0.809 0.848 0.880 0.916

NSH – cos 128 0.714 0.772 0.829 0.861 0.891 0.925

NSH l2 l2 512 0.769 0.815 0.860 0.885 0.909 0.934

NSH – cos 512 0.790 0.831 0.869 0.892 0.912 0.933

NSH l2 l2 1024 0.795 0.837 0.876 0.899 0.919 0.941

NSH – cos 1024 0.809 0.850 0.885 0.906 0.923 0.942

SpH l2 l2 128 0.685 0.745 0.805 0.845 0.881 0.920

SpH – cos 128 0.711 0.766 0.823 0.856 0.885 0.922

SpH l2 l2 512 0.787 0.833 0.877 0.903 0.925 0.951

SpH – cos 512 0.805 0.847 0.887 0.910 0.933 0.955

SpH l2 l2 1024 0.802 0.845 0.886 0.911 0.933 0.956

SpH – cos 1024 0.822 0.861 0.899 0.921 0.938 0.960

the verification task, the performance of ITQ is slightly better using unnormalized
features but is limited due to the ability to only producing hash codes of 128 bits.
The KSH performance again decreases when using the Cosine distance. We will,
therefore, in the remainder of this chapter report only results using the unnormalized
features and the Cosine distance for pivots-based hashing methods SpH and NSH.
We will, however, use the normalized and the Euclidean distance for KSH.

7.7.3.4 Probe Type Analysis

Herewe further study the influence of the type ofmedia (still images or video frames)
on the search performance on the IJB-B dataset which, as detailed in Sect. 7.5.2,
has separate probe sets with different media sources. We report the performance
with the EJC2 feature for still images probes in Fig. 7.10, and for video frames in
Fig. 7.11. The results for mixed media were already reported in Table 7.3. Following
the previous section analysis, we use unnormalized features and the Cosine distance
for the pivots embedding step of NSH and SpH, but we use l2-normalized features
and the Euclidean distance for KSH.We can see that the video frame probes represent
a much more difficult task as the search performance is much lower than the still or
mixed probes, note the different range on the y-axis between Figs. 7.10 and 7.11. For
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both probe types, it is the SpH method that is able to better preserve the performance
of the original EJC2 features.

7.7.4 IJB-C

In this section, we report face verification and face search results with the ERAG1
feature on the IJB-C dataset.

7.7.4.1 Face Verification Results

We report the verification results on the IJB-C dataset in Fig. 7.12. We can observe
that the ERAG1 feature achieves a very high level of face verification performance,
with a TAR of 0.979, 0.958, and 0.923 at FAR values of 10−2, 10−3, and 10−4,
respectively. This high level of verification performance is very difficult to maintain
for ITQ using only 128 bits, the TAR drops significantly to 0.807 and 0.674 at FAR

Table 7.4 Face search retrieval rates on the IJB-B dataset with the ESW2 feature

Method Norm. Pivots
Dist.

# bits Rank 1 Rank 2 Rank 5 Rank
10

Rank
20

Rank
50

ESW2 – – – 0.858 0.890 0.922 0.940 0.956 0.970

ITQ l2 – 128 0.741 0.795 0.850 0.884 0.911 0.944

ITQ – – 128 0.762 0.814 0.864 0.893 0.920 0.950

KSH l2 l2 128 0.697 0.755 0.813 0.853 0.888 0.923

KSH – cos 128 0.691 0.748 0.807 0.845 0.879 0.917

KSH l2 l2 512 0.785 0.827 0.869 0.895 0.916 0.939

KSH – cos 512 0.784 0.823 0.866 0.892 0.915 0.943

NSH l2 l2 128 0.695 0.754 0.816 0.853 0.888 0.924

NSH – cos 128 0.724 0.780 0.833 0.868 0.895 0.927

NSH l2 l2 512 0.795 0.836 0.876 0.901 0.922 0.943

NSH – cos 512 0.817 0.853 0.887 0.911 0.928 0.948

NSH l2 l2 1024 0.817 0.853 0.890 0.915 0.934 0.953

NSH – cos 1024 0.833 0.868 0.901 0.922 0.938 0.954

SpH l2 l2 128 0.708 0.768 0.829 0.870 0.903 0.937

SpH – cos 128 0.741 0.796 0.851 0.883 0.913 0.946

SpH l2 l2 512 0.781 0.826 0.873 0.903 0.929 0.956

SpH – cos 512 0.811 0.850 0.890 0.917 0.939 0.961

SpH l2 l2 1024 0.793 0.835 0.878 0.907 0.933 0.960

SpH – cos 1024 0.824 0.863 0.899 0.923 0.944 0.964
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Fig. 7.10 Face search results obtained with the EJC2 features on the IJB-B dataset for the still
images probes using ITQ (top-left), KSH (top-right), NSH (bottom-left), and SpH (bottom-right)

values of 10−3 and 10−4. The NSHmethod with 1024 bits is able to preserve most of
the original feature verification performance with a TAR of 0.949 and 0.908 at FAR
values of 10−3 and 10−4. The SpHmethod saturates its performance at 512 bits, with
no or very limited improvement when using 1024 bits.

7.7.4.2 Face Search Results

We report the search results on the IJB-C dataset in Fig. 7.13.We can observe that the
ERAG1 feature achieves a very high level of face search performance, with retrieval
rates of 0.947 and 0.976 at rank 1 and 10, respectively. For this task, the ITQ hash
codes perform relatively well with the best rank 1 retrieval rate of 0.901 when all
methods are restricted to using only 128 bits. TheNSHmethods’ performance almost
saturates at 512 bits. With 1024 bits, NSH achieves a retrieval rate of 0.934 at rank
1 and 0.961 at rank 5 which is very close to the original features performance of
0.969. The SpH method performance is very good with 512 bits (retrieval rate of
0.933 at rank 1 and 0.971 at rank 10) but surprisingly drops when using 1024 bits. In
this experiment, the SpH model is trained using all UMD batches samples at once,
when training with many bits this maymake the SpH optimization more challenging.
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Fig. 7.11 Face search results obtained with the EJC2 features on the IJB-B dataset for the video
frames probes using ITQ (top-left), KSH (top-right), NSH (bottom-left), and SpH (bottom-right)

Indeed, the best model parameters selected during the optimizationwith 1024 bits are
obtained after just one iteration, while the models for other number bits are obtained
after a few hundred iterations. This also explains why the verification performance
was not improved with 1024 bits.

7.8 Open Issues

In this chapter, every hashingmethod was trained to hash each feature independently.
However, for some applications, it may be interesting to combinemultiple features to
achieve the best performance. Therefore, the question of how to fusemultiple features
in a hashing framework is worth investigating. We identify three strategies that could
be explored: (i) an early fusion where the features are concatenated and hashed as if
theywere just one feature; (ii) an intermediate fusion strategy, especially applicable to
pivots-based hashing methods, where the distances or similarities between a sample
and the pivots in the different feature spaces are aggregated; and (iii) a late fusion
strategy where each feature is hashed independently but the hamming distances
obtained in each binary space, induced by each hash model, are combined for the
final task.
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Fig. 7.12 Face verification results obtained with the ERAG1 features on the IJB-C dataset using
ITQ (top-left), KSH (top-right), NSH (bottom-left), and SpH (bottom-right)

Recently, graph-based indexing methods [21] have gain popularity due to their
high level of performance with close to logarithmic complexity to tackle the approx-
imate nearest neighbors (ANN) search problem. Therefore, it would be interesting
to explore how hashing can be combined with such approaches to enable a high level
of search performance while enabling storing a large number of database samples
thanks to the compression induced by the use of hashing.

7.9 Conclusion

In this chapter, we have addressed the problem of hashing a face, whose goal is to
build a compact binary representation of a face image that enables a high level of
performance for the face verification and face search tasks.

Extensive experiments conducted with state-of-the-art hashing methods on three
challenging face datasets let us draw interesting conclusions. If the features to be
hashed are not very discriminative, the supervised hashing method KSH can work
better for both the verification and search tasks with a limited number of bits. How-
ever, as the features are getting better, the pivots-based but unsupervised methods
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Fig. 7.13 Face search results obtained with the ERAG1 features on the IJB-C dataset for the mixed
media probes using ITQ (top-left), KSH (top-right), NSH (bottom-left), and SpH (bottom-right)

tend to outperform the others. We have also shown that the distance used when per-
forming the pivots embedding has to be chosen carefully based on how the features
to be hashed have been optimized. The NSHmethod seems to be the best for the ver-
ification task, while the SpH method achieves very compelling results on the search
task but has shown sensitivity to the type of features used.

We have shown that on the IJB-A dataset, several hashing methods can pre-
serve the face verification performance using only 256 bits, therefore, allowing a
40 × (for the JC feature) to 64 × (for the SW feature) compression factor without
loss of accuracy. As the features get better, more bits are required to preserve the
features’ performance. Yet, even on the most challenging dataset IJB-C the face ver-
ification performance is almost maintained when using 1024 bits. Overall, hashing
can be an effective way to compress a face representation while maintaining most of
the original features discriminative ability.
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Chapter 8
Evolution of Newborn Face Recognition

Pavani Tripathi, Rohit Keshari, Mayank Vatsa, and Richa Singh

Abstract Accidental new born swapping, health-care tracking, and child-abduction
cases are some of the scenarios where new born face recognition can prove to be
extremely useful. With the help of the right biometric system in place, cases of
swapping, for instance, can be evaluated much faster. In this chapter, we first discuss
the various biometricmodalities alongwith their advantages and limitations.We next
discuss the face biometrics in detail and present all the datasets available and existing
hand-crafted, learning-based, as well as deep-learning-based techniques which have
been proposed for new born face recognition. Finally, we evaluate and compare
these techniques. Our comparative analysis shows that the state-of-the-art SSF-CNN
technique achieves an average of rank-1 new born accuracy of 82.075%.

8.1 Introduction

In a recent incident in India, two children were swapped just after birth. The parents
had their doubts; however, due to lack of biometric records, their babies could not
be identified. It was only after two years and nine months, post-birth, the DNA test
proved that the children had been exchanged at the hospital [1]. Similarly, there are
cases in Russia, where the knowledge of accidental newborn swapping came to light
almost after 28 years [2]. Many such incidents are reported all around the world
[3]. Had there been systems which could evaluate biometric modalities such as ear,
fingerprint or face, the case of swapping could have been evaluated much faster.
Therefore, the development of biometric systems, which can enroll newborns, is an
imperative step towards the safety of children.
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Fig. 8.1 Illustrates the rapid development of craniofacial features within a few months

Apart from security applications, many other domains, viz. vaccination, health-
care tracking, civil-ID programs, and child abduction cases too call for designing
techniques which can perform authentic identification of newborns. For instance,
India’s Aadhaar program does not record any biometric information of children
below the age of 5 years [4]. Every infant is registered for Aadhaar using one of
the parents’ biometric modalities. The details need to be updated once the child is 5
years old and again when the child turns 15. Since, the average birth rate in India is
21.84% per year per 1000 population [5], a large portion of the population does not
get enrolled due to unavailability of technology and biometric standards pertaining
to newborns, toddlers, and young kids. Consequently, many social programs use
not-so-accurate non-biometric approaches.

In this chapter, approaches which can perform newborn recognition using bio-
metrics, especially face, are presented. We first present a review of different bio-
metric modalities, viz. fingerprint, palm print, ear, face, and iris, that have been
explored for the identification of newborns. Face being the most non-intrusive bio-
metric modality has been proven to be the most accurate and reliable modality for
recognition of newborns. However, as shown in Fig. 8.1, there is a rapid develop-
ment in the features of the baby within a few months. It is evident from the series
of images that the craniofacial features of the newborn changes a lot within 1–2
years. Hence, the chapter discusses the characteristics of newborn faces followed
by challenges involved in newborn face recognition. Section 8.2 then discusses face
databases developed for promoting research in newborn recognition. Section 8.3 dis-
cusses existing hand crafted, learning-based, and deep learning-based approaches,
that have been developed for newborn face recognition. Finally, in Sect. 8.1.2, we
show results and analysis of some of these existing techniques.
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8.1.1 Biometric Modalities for Newborns

One of the major challenges is identifying the best biometric modality for the age
group of 0–4 years. The research community has studied different biometric modal-
ities, viz. footprints, palm prints, fingerprints, iris, face, and fusion of some of these
modalities. Table 8.1 presents an account of various biometric modalities and the
respective techniques that have been developed for newborn identification.

In early days, hospitals used to capture footprints of a newborn using a predefined
process. However, scientific studies later showed that footprint cannot be used for
recognition of newborns. For instance, Shepard et al. [6] examined footprints of 51
newborns at California State’s Department of Justice. Only 10 babies were identified
by the experts using only the footprints. Similarly, Pela et al. [7] examined 1917
footprints collected by trained personnel from a hospital in Brazil. It was reported that
none of the images were sufficient for accurate identification. Based on these studies,
it was concluded that with state-of-the-art capturing techniques, it is difficult to use
footprint for identification of newborns. Thus, the American Academy of Pediatrics
and the American College of Obstetricians and Gynecologists stated that individual
hospitals may want to continue the practice of footprinting or fingerprinting, but
universal use of this practice is no longer recommended.

Research community also explored several other biometric modalities such as
fingerprint, palm print, and ear for newborn identification. Even though palm prints
and fingerprints give promising results in adult identification, they have not achieved
success in identifying newborns.Weingaertner et al. [8] and Lemes et al. [9] carefully
captured footprints and palm prints of 106 newborns at high resolution (≥1500 ppi)
using specialized sensors to improve useful biometric information content. Images
captured from only 20 newborns (about 5% of the entire captured dataset) were
deemed to be of useful quality. For 106 newborns, two images were collected at an
interval of 24 hr just after the birth, using which the experts reported 67.7% and
83% identification accuracy using footprints and palm prints, respectively. Since
many of the biometric modalities are, by their nature, contact based, therefore, they
introduce capture challenges, such as, it is difficult to hold the hands and legs of
a newborn to make them stay still. Further, sensors are not designed to capture
small fingerprints and footprints. Fields et al. [10] and Tiwari et al. [11] studied the
feasibility of ear for newborns. Fields et al. [10] manually analyzed the samples
and concluded that, visually, ears can be used to differentiate between two children.
Tiwari et al. [11] prepared a database for newborn ear to understand the effectiveness
of ear recognition for newborns. Similar to other modalities, capturing ear images
require user cooperation, and at times, due to unintentional uncooperative nature of
newborns makes acquiring ear images challenging.

Iris has shown tobevery successful for adult identification [20].However, only one
study has been conducted on iris recognition for children, that too only for toddlers
and pre-school children. Basak et al. [16] prepared a multimodal biometric database
for toddlers and pre-school children and showed the effectiveness of iris recognition
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Table 8.1 Summarizes the techniques developed for the use of different biometric modalities for
identification of newborns

Modality Authors Comments

Footprint Shepard et al. [6] Concluded that with
state-of-the-art capturing
techniques, it is difficult to use
footprint for identification of
newborns

Pela et al. [7]

Footprint & palm print Weingaertner et al. [8] It was concluded that even best
capturing techniques are
insufficient to perform
accuratenewborn identification
because it is difficult to hold
their hands and legs still

Lemes et al. [9]

Ear Fields et al. [10] Showed that there is adequate
discriminability in the ear to
distinguish identities; however,
capture, segmentation and
orientation correction is
challenging

Tiwari et al. [11]

Fingerprint Jain et al. [12] Fused predictions of input
fingerprints from various
commercial SDKs

Face Bharadwaj et al. [13] Non-deep learning as well as
deep learning- based methods
have shown that newborn face
recognition can be accurate,
friendly and cost-effective

Bharadwaj et al. [14]

Jain et al. [15]

Basak et al. [16]

Siddiqui et al. [17]

Keshari et al. [18]

Fusion Tiwari et al. [19] Fused ear and soft-biometrics
for newborn recognition

for such potential users. Since it is very difficult to capture iris for newborns, no such
study has been conducted for using iris to identify newborns.

Face recognition is one of the most popular non-contact biometric modality and
existing algorithms show high performance on identifying adult faces, particularly
in a controlled and semi-controlled environment. Nonetheless, face recognition for
newborns is not well explored and is considered an open problem due to various
challenges such as pose and emotion variation, excessive blur, and rapid development
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of the facial structure. Figure 8.1 shows how the facial features change within a
few months of birth. Such growth makes the problem arduous and interesting. In
this chapter, we discuss the use of face biometric for identification of newborns,
along with characteristics of newborn faces and challenges involved in newborn face
recognition.Wepresent a reviewof existing databases and algorithms focusing on this
research problem. Lastly, we present an experimental analysis of existing algorithms
and discuss that face recognition of newborns can be “friendly” and “cost-effective”.

8.1.2 Characteristics and Challenges of Newborn Face
Recognition

As discussed by Bharadwaj et al. [14], newborn faces are structurally different from
the adult faces and they cannot be viewed as miniature version of adult faces. Fol-
lowing studies/observations provide some characteristics of newborn faces:

1. It is believed that for adults, newborns are difficult to differentiate. Kuefner et al.
[21] reported that adults have difficulty in differentiating between child faces
compared to adult faces. They selected 31 adults who had no extensive interac-
tion with infants and collected data based on a questionnaire. They statistically
showed that there was a significant decrease when asked to recognize infants
compared to adults. On the other hand, the infant recognition accuracy drasti-
cally increased when the same experiments were conducted on 18 pre-school
teachers who were in contact with children for at least 30 hours per week. The
analysis suggests that adults maybe unable to extract biometric features from
newborn faces due to the other age effect. In another study conducted by Anas-
tasi and Rhodes [22], it was reported that both children and adults are good at
recognizing own age faces compared to other age faces.

2. Every face possess some unique facial traits and subtle differences in shape,
proportions of hard and soft tissues, and topographical contours. To understand
the applicability of face recognition for newborns, it is important to identify those
facial characteristics that lead to unique and discriminative features. For instance,
in newborns, the growth of the mandible (lower jaw) and chin is slower and
continues longer than mid-facial development, thus resulting in newborns often
being characterized by large foreheads. Hence, local facial regions of newborn
face provides evidence of identity with varying levels of confidence.

3. The nasal region of a face is generally an important point in the facial architecture
as the surrounding arches rely on it for support. The region is extensively studied
to improve the aesthetics of plastic surgery procedures. Bharadwaj et al. [14]
observed that the nasal region of newborns is shallow as compared to adults.
They also noticed that infant faces do not possess bold topographical features
as compared to adults, as shown in Fig. 8.2. Further, the craniofacial structure
of newborn faces is characterized by prominent eyes, small jaws, puffy cheeks,
and a high forehead. Moreover, there are differences in the eyebrow ridge and
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Fig. 8.2 Sample images from FG-Net database showing that the craniofacial characteristics of an
infant face are not proportionally equivalent to a miniature adult face. However, several studies have
been performed which show that faces of newborns do possess unique characteristics that could be
utilized in face recognition of newborns

the overall proportions as well. These observations indicated that the shape and
structure of infants are not miniature adult faces.

4. While planning facial reconstruction of infant patients (particularly cleft lip
patients) [23], studies have shown that race, gender, and age significantly influ-
ence the planning of the re-constructive surgery. These observations suggest that
newborn faces also posses distinguishing and characteristic facial features, that
can be utilized for newborn face recognition.

Though studies have shown that face recognition for newborns is feasible, it is
challenging to create a robust system for the same. The primary challenges that make
face recognition of newborns difficult are discussed below:

1. Bharadwaj et al. [14] refer to the newborns as unintentionally non-cooperative
users of face recognition. This is so because, while capturing the images, it
is not possible to ensure that the subject has neutral expression and shows the
frontal face due to their unpredictable behavior and elastic faces. Further, motion
blurriness might be caused due to excessive movement. Figure 8.3 presents a set
of images showcasing the variation in expressions and motion blur.

2. Another challenge that is faced by newborn face recognition is the recognition
of identical twins. In later stages of life, the twins might acquire some distinct
features, but at the time of the birth it is very challenging to distinguish one from
the other. In Fig. 8.4, one can see that it is difficult to differentiate between twins
since they do not possess the distinguishing characteristics that adult twins may
possess. In certain cases, the face of the newborn maybe covered with soft hair,
known as lanugo, especially on cheek and forehead. They shed off as the baby
ages resulting in variations in image texture.
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Fig. 8.3 Illustrates the variation in expressions and pose that occur while capturing images along
with motion blur in some images [14]

Fig. 8.4 It can be seen visually that it is difficult to differentiate between identical twins.
(http://easydoesit.org/category/announcements/, http://www.weebeedreaming.com/my-blog/top-
10-twin-sleep-tips)

3. Figure 8.1 illustrates the rapid rate at which the facial features of newborns
change. It can be visually observed that the craniofacial features vary a lot even
in a short time span of four months. This makes newborn face recognition a
challenging problem since the technique designed for newborn face recognition
must be able to understand and adapt itself to the structural differences in the
faces of newborns.

8.2 Datasets for Newborn Face Recognition

The research in this domain is mainly restricted due to the lack of publicly available
databases. Even the ones which are available to the research community are small
sample size databases. In the following subsections, we discuss the databases that
can be used for conducting face recognition research on newborn, toddlers, and
pre-school children.

http://easydoesit.org/category/announcements/
http://www.weebeedreaming.com/my-blog/top-10-twin-sleep-tips
http://www.weebeedreaming.com/my-blog/top-10-twin-sleep-tips
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Fig. 8.5 Sample images from the newborns face database [14]

8.2.1 Newborns Face Database

Bharadwaj et al. [14] proposed the Newborns Face Database that consists of more
than 1200 images pertaining to over 450 newborns from various hospitals. Each
subject has 1–10 images. Among these, images for 96 babies have been acquired in
multiple sessions ranging from one hour to a few weeks after birth. No constraint
was put on the babies, however, the authors tried to capture near frontal face images.
Figure 8.5 presents sample images from the database. It is evident from the images
that there is large variation in terms of pose and expression.

The database was further extended to include 1185 images pertaining to 204
newborns, each having 1–17 images, collected from various hospitals. The time of
capture varies from one hour to a fewweeks after birth. Siddiqui et al. [17] performed
experiments on this extended newborn face dataset.

8.2.2 Newborns, Infants, and Toddler Longitudinal Face
Database

Jain et al. [24] proposed face image database for newborns, infants and toddlers.
The database is called longitudinal because it contains images of a subject captured
during four different sessions over the course of one year. There are a total of 161
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Fig. 8.6 Presents sample face images of toddlers from the children multimodal biometric database
[16]

subjects with face images from all four sessions and ages ranging from 0 to 4 years.
However, this database is not publicly available for research.

8.2.3 Children Multimodal Biometric Database (CMDB)

Basak et al. [16] proposed a database containing 2590 face images of 141 toddlers
and pre-school children (age range of 18 months to 4 years), each having 10–20
images. Along with face images, the database also consists of iris and fingerprint
images of 100 toddlers. This database has been collected in two sessions which are
months apart. Figure 8.6 presents sample images from the database.

8.3 Existing Techniques for Newborn Face Recognition

In this section, we discuss existing face recognition techniques which have yielded
promising results. Table 8.2 presents a brief summary of the existing techniques.
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Table 8.2 Summarizes the research findings for newborn face recognition

Method Comment

Bharadwaj et al. [13] Articulated the challenges of newborn face
recognition

Bharadwaj et al. [14] Proposed a two-stage domain-specific learning
for newborn face recognition

Jain et al. [24] Proposed a newborn face database and
demonstrated the results of COTS face matcher

Basak et al. [16] Proposed a newborn and toddler face database
and evaluated existing tools and algorithms

Siddiqui et al. [17] Proposed a deep learning technique which
applies class-based penalties while learning the
filters of the convolutional network

Keshari et al. [18] Proposed SSF-CNN which focuses on learning
the “structure” and the “strength” of the
convolutional filters

8.3.1 Handcrafted Feature Extraction Methods

Bharadwaj et al. [13] were the first ones to explore face recognition of newborns.
They conducted a preliminary study on 34 newborns and concluded that automatic
face recognition of newborns is feasible. As discussed in Sect. 8.4, newborn face
recognition faces challenges due to the pose variation and blurriness in the images.
To reduce the effect of blurriness in the images, Bharadwaj et al. applied Gaussian
smoothing on the images to filter the excessivewrinkle information, while preserving
the discriminating texture information.After that, SURF [25] andLBP [26]were used
to extract facial features from the original face image and the low frequency images,
respectively. They further used χ2 distance to measure the dissimilarity between
corresponding levels of Gaussian pyramid. Weighted sum rule was applied to fuse
the three match scores.

The results of the proposed algorithmwere comparedwith other appearance based
algorithms, namely, Principal Component Analysis (PCA) [27], Linear Discriminant
Analysis (LDA) [27] and Independent Component Analysis (ICA) [28]. The results
negated the human (adult) perception that children’s faces look alike and cannot be
accurately distinguished.

8.3.2 Autoencoder Learning-Based Method

Newborn face recognition faces several challenges that arise due to their uncooper-
ative nature. In these scenarios, handcrafted feature extraction and matching tech-
niques may not be optimal for newborn face recognition. In 2016, Bharadwaj et al.
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[14] proposed a learning based feature extraction technique along with a matching
technique that explicitly encode the properties of the feature space to improve the
recognition performance.

They observed that the asymmetric development of faces of newborns results in
a unique craniofacial structure, however, the structure is not proportionally equiv-
alent to the miniature adult face. Further, they also observed that since newborns
are unconstrained users of face recognition, the acquired images suffer from large
variations in pose and expression. Based on these observations, they proposed a two-
stage learning algorithm that first learns a domain-specific representation of the face
with variable expressions using a stacked denoising autoencoder (SDAE) [29], and
then learns the representation with a problem-specific learned distance metric that
benefits from the availability of additional unlabeled problem-specific face images of
newborns to reduce the semantic gap during matching thereby improving newborn
face recognition performance.

In the first stage, a domain-specific representation of the human face with a deep
learning architecture is learned. Firstly, the input image is divided into nine over-
lapping patches. Then, separate sets of multi-layer encoders are learned for each
overlapping patch of a face image, that help enhance the depth of the encoders.
The patch encoding ensures spatial coherence of the resultant representation. Each
encoder provides the representation of a component of the face image, such as the
forehead, periocular, mouth, and chin regions. The representations thus obtained are
concatenated into a single feature vector. SDAE was trained on a large number of
domain-specific samples, i.e., face images with varying illumination and expression.

The second stage consisted of learning a problem-specific distancemetric via one-
shot similarity with 1-Class-Online-SVM. While performing matching for newborn
faces, low-level features suffer from semantic gap effect, adult to newborn faces.
Since the traditional distance metrics χ2 and Euclidean distance may not account for
the semantic gap effect, they proposed a distance metric learning technique which
can reduce the semantic gap effect in newborn face representations. Since the intra-
class variations in newborn face images are significantly high, rather than viewing
the feature manifold as a linear space, they proposed to project the samples in the
kernelized feature space which ensured a robust, non-linear and high-dimensional
representation of the distance space and provided a generalizable solution.

8.3.3 Class-Based Penalty in CNN Filter Learning

Siddiqui et al. [17] proposed a deep learning-based face recognition technique for
newborns, toddlers, and pre-school children. In their research, they presented a mod-
ification in the convolutional filter learning and imposed a class-based penalty on
the weights of the filters. They showed that class-based penalty helps in learning
class-specific discriminative features and avoids overfitting. Further, they trained
the network with residual skip connections [30] to learn higher level features with
increasing number of layers.
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Fig. 8.7 Steps involved in the proposed CNN feature extraction with class-based penalty for fil-
ter learning. For matching, the classifier is added separately depending on the identification or
verification experiments [17]

They designed their own 11-layer network using the above-mentioned approach.
In the first three layers of CNN, three filters of 7 × 7 were used, followed by max
pool with size 3 × 3 and stride size of 2. In the upcoming five layers, three filters
of size 5 × 5 were used followed by three convolution layers with filter size 3 × 3.
Finally, for classification, a fully connected layer followed by a softmax layer were
appended at the end of the network.

As discussed in the database section, newborn face recognition is a small sample
size problem. Thus, the proposed CNNwas first pretrained using the CMU-MultiPIE
[31] database. It was then finetuned by augmenting the Newborn Face Database and
theChildrenMultimodalBiometricDatabase. The networkwas trained in verification
mode and for identification, N-way verification was performed. Figure 8.7 presents
the proposed 11-layer network architecture, used for newborn face recognition.

8.3.4 Learning Structure and Strength of CNN Filters

Collecting large databases which contain biometric modalities, especially the face
of newborns, is a challenging task. Hence, all existing newborn databases contain a
small number of samples. While convolutional neural networks have achieved high
accuracies in several computer vision tasks, due to a large number of parameters,
they require large number of training samples. To overcome this limitation, Keshari
et al. [18] proposed a deep learning-based technique for newborn face recognition,
which can attain best results with small sample size databases.

The proposed Structure and Strength Filtered CNN, termed as SSF-CNN, focuses
on learning the “strength” and “structure” of the convolutional filters of the net-
work. Keshari et al. [18] hypothesized that domain-specific large databases or other
representation learning paradigms that require less training data such as dictionary
learning [32, 33], can help in learning the structure of the filter. Dictionary learn-
ing or matrix factorization can help in learning the dictionary that helps to encode
the representative features. Thus, CNN filters can be represented by dictionary to
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Fig. 8.8 Face recognition models trained on adult faces may not give good results on face recog-
nition of newborns. SSF-CNN learns strength and structure of the filters for improving the classi-
fication performance for small sample databases [18]

learn the “structure” of the domain. However, this structure may not be optimal for
problem-specific features. Hence, the strength of the filter is learned to adapt the
weights of these filters according to the problem-specific data characteristics. The
proposed architecture is presented in Fig. 8.8.

To initialize the CNN first the hierarchical dictionary filters are learned, followed
by learning the strength parameter to train the CNNmodel. The strength parameter is
‘t’ for the CNN filters ‘W’, which allows the network to assign weight for each filter
based on its structural importance. We, next, describe the approach to hierarchically
learn W, filters of the CNN model using dictionary learning followed by learning
approach for the strength parameter t.
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Learning Structure of Filters: In SSF-CNN, dictionary learning is proposed to
learn the structure of the filters. This step is divided into two parts:

1. Learn hierarchical dictionary filters and utilize trained dictionary filters for ini-
tialization of the CNN.

2. Train CNN with dictionary initialized filters.

HierarchicalDictionary Filter Learning:Through dictionary learning, sparse rep-
resentation of the input data is learned in the form of a linear combination of basic
elements. A dictionary D and the coefficient α is learned for a given input Y using
the following equation:

minD,α ‖Y − Dα‖2F , such that ‖α‖0 ≤ τ (8.1)

where, the �0-norm imposes a constraint of sparsity on the learned coefficients and
the maximum number of non-zero elements is represented by τ . Many at times, the
�0-norm is relaxed, thus, changing the dictionary learning formulation to:

minD,α ‖Y − Dα‖2F + λ||α||1 (8.2)

where λ represents a regularization parameter which controls the sparsity promoting
�1-norm. In SSF-CNN dictionary learning is used to pre-train the filters of the CNN
model in a hierarchical manner. A hierarchical dictionary learning technique is used
to initialize the CNN model. The trained dictionary atoms are used to convolve over
the input image. After convolution, feature maps are normalized according to the
activation function (e.g., ReLU) used in CNN models. The extracted feature map is
the input for the next level of the hierarchical dictionary. In this manner, the number
of dictionary layers is the same as the number of convolutional layers inCNNmodels.
The trained dictionary is organized in the two-dimensional array, where each filter is
arranged in one column. These learned filters are reshaped and convolved over the
input image to produce the feature maps for the next level of the dictionary.

Training CNN with Dictionary Initialized Filters: CNN models have multiple
covolutional and pooling layers stacked on top of each other. It typically has multiple
convolutional layers, with each layer having multiple filters. These filters are trained
using optimisers such as stochastic gradient descent [34]. Given an input image X
and a convolutional filter W, the convolution operation can be expressed as

f (X, W, b) = X ∗ W + b (8.3)

where ∗ and b represent the convolution operation and bias respectively. Two passes
namely, forward pass and backward pass are part of the training process. In the
former, the network propagates the input signal to the last classification layer. On
the other hand, in the latter, the error δlj for each layer l on node j is computed with
respect to the total cost and the weights of the CNN filters are updated accordingly.

In traditional CNN, the weights are initialized using Xavier [35], or MSRA [36]
approach and even randomly. In the proposed method, Keshari et al. initialized the



8 Evolution of Newborn Face Recognition 181

W: 8x3x3
t: 8x1x1

W: 8x3x3
Conventional Convolutional Block

Proposed Convolutional Block

Learn Parameter
Freeze Parameter
Convolution

(a)

(b)

(a) Number of Learning 
Parameters: 72
(b) Number of Learning 
Parameters: 8

LFW

Newborn

Fig. 8.9 Visually illustrates the concept of learning the “strength” of the filter which in turn reduces
the number of training parameters [18]

CNN filters using dictionary learned filters. They have shown that initialization with
dictionary learned filters have more “structure” compared to traditional initialization
techniques, especially for small sample size database. Though this type of initializa-
tion helps in finding improved filters, updating the filters in a traditional manner still
requires training of a large number of parameters. To avoid this, only a “strength”
parameter for each filter is proposed to learn, thus reducing the number of parameters
significantly.

Learning Filter Strength: Figure 8.9 visually presents the concept of learning the
strength of the filter. Theweights learned fromdictionary learning are frozen and only
the strength parameter is learned while training. For lth layer, the strength parameter
‘tl’ is learned using stochastic gradient descent method; i.e., a scalar value is learned
rather than learning the complete filter. The proposed process can be written as

f (X, W, b, t) = X ∗ (t � W) + b (8.4)
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Table 8.3 Rank-I identification accuracies (%) on Newborn Face Database

Algorithm Number of gallery images

1 2 3 4

COTS 41.0 53.6 60.1 4.6

Handcrafted feature techniques

LBP + χ2 [26] 21.1 32.5 39.5 44.7

DSIFT + χ2 [25] 31.3 41.9 48.0 53.4

Deep learning techniques

Bharadwaj et al. [14] 51.1 66.0 73.1 78.5

Siddiqui et al. [17] 58.3 63.7 74.8 80.8

Vinyals et al. [43] 59.4 63.7 68.6 72.2

Hariharan et al. [44] 65.4 73.3 79.3 85.4

Keshari et al. [18] 70.4 81.4 86.5 90.0

where, (t � W) represents element-wisemultiplication. t can be learnt using stochas-
tic gradient descent. Since |W| >> |t|, even small training data can be used to train
the network.

Learning SSF-CNN for Newborn Face Recognition: The predefined experimental
protocol limited the authors to only use images pertaining to 10 newborns for training
and rest 86 newborns for testing from the Newborn Face Database. The performance
was computed on ResNet architecture by employing the dictionary learning initial-
ization technique to learn the structure of the filters from 10 newborns, followed by
learning of strength parameter by attuning the filters. They also reported that if the
CNN model is trained from scratch, the accuracies are extremely low.

Apart from learning the “structure” of the database using dictionary learning, the
authors reported that the “structure” can also be learned from large domain-specific
databases, followed by attuning the strength parameters for the problem-specific
database. Hence, the experiments are performed with pre-trained networks (pre-
trained filters are obtained after learning from either ImageNet or Labeled Faces
in the Wild dataset (LFW) [37] and YouTube Faces (YTF) [38] databases) and use
strength parameter to attune it for newborn face recognition based on training data of
10 newborns. For this experiment, they have used variants of ResNet [30], VGG [39],
VGGFace [40], LightCNN [41], and DenseNet [42] architectures.

In [18], it is observed that learning strength of the filters improves the perfor-
mance of CNN models compared to conventional fine-tuning approach. With single
gallery image per subject, the best rank-1 accuracy of over 70% is obtained when
the proposed strength parameter is used with pre-trained VGG-Face [40], which is at
least 10% better than the conventional fine-tuning based approach. Thus, showcasing
that in real-world applications, the concept of learning structure and strength helps
in achieving improved performance.



8 Evolution of Newborn Face Recognition 183

8.4 Results and Analysis of Existing Newborn Face
Recognition Techniques

In this section, we perform a comparative analysis of existing techniques using New-
born Face Database and experimental protocol as defined in [14]. Two handcrafted
features, LBP [26] and DSIFT [25], and five feature learning-based algorithms are
used for evaluation.Wehave also used a commercial face recognition system, referred
as COTS, for evaluation and comparison. Table 8.3 shows the comparison between
these techniques discussed in this chapter for newborn face recognition. It should be
noted that some results have been reported directly from the respective papers. Our
observations are discussed below:

1. COTS versus Handcrafted Techniques: As can be observed from Table 8.3,
handcrafted features such as LBP [26] and DSIFT [25] achieve least accuracies
due to the limited representation capacity for newborn face recognition. Figure
8.10 illustrates that LBP [26] generates feature space based on the local infor-
mation irrespective of discriminative information which is required for newborn
face identification. Similarly, DSIFT [25] finds keypoints in a dense manner irre-
spective of howmuch discriminative information they provide for identification.
On the other hand, COTS performs better than handcrafted features, since the
system is trained for face recognition. However, the accuracy achieved is still
low compared to other existing techniques. Perhaps the system is trained on adult
faces, and hence it is unable to accurately adapt to newborn faces.

2. Efficacy of Learning-Based Methods: Bharadwaj et al. [14] proposed an
autoencoder-based feature representation followed by newborn face recognition
specific distance metric learning. The latter is done via one-shot similarity with
one class-online support vector machine for newborn face recognition. The pro-
posed method achieved a rank-1 identification accuracy of 51.1% with a single
gallery, a 10.1% improvement compared to COTS. This shows that learning-
based frameworks are more effective for newborn face recognition compared to
handcrafted techniques or COTS. This happens because learning-based meth-
ods allow the algorithm to capture the semantic understanding of the encoding
scheme. Siddiqui et al. [17] proposed a deep learning-based technique for new-
born face recognition. They modified the learning of the convolution filter and
imposed a class-based penalty on the weights of the filters. The class-based
penalty helped in learning class-specific discriminative features. Based on the
results, it can be concluded that learning-based methods can be developed which
can predict the most discriminative features required for accurate newborn face
recognition.

3. Deep Learning Methods for Small Sample Size Problems: Due to a large
number of parameters, deep learning methods require a large number of sample
images to train the network. With Newborn Face Database being a small sample
size database, we compare algorithms proposed by Vinyals et al. [43], Hariharan
et al. [44] andKeshari et al. [18],which are specifically designed for small sample
size databases. The results show that such methods outperform the deep learning
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(a) (b) (c) (d)

Fig. 8.10 Illustrates the visualizations of deep learning as well as handcrafted features. a Input
image. b Heat map showing the discriminative regions considered by method proposed by Keshari
et al. [18]. c LBP feature representation. d DSIFT feature representation (Best viewed in color)

method proposed by Siddiqui et al. [17]. Figure 8.10 visually illustrates that deep
learning-based methods focus on the most discriminative regions, and hence
achieve the highest accuracy. Therefore, one can say that by learning the features
focusing on the periocular, nose, and mouth region, high recognition accuracy
can be achieved. It is our assertion that zero-shot or one-shot learning techniques,
which are specially designed for newborn face recognition, can further boost the
performance since such methods exploit deep learning models for learning the
optimal features even in cases when there is one or no image of a particular
subject.

4. Effect of the gallery size on recognition accuracy: It can be noted that the
accuracy for any particular algorithm increases when the number of gallery
images increases from one to four. Figure 8.11 presents cases when state-of-
the-art method proposed by Keshari et al. [18], failed to accurately match probe
images with the gallery images. It can be observed from the same figure that this
happens because the newborn face images suffer from expression variation or
excessive blur due to unintentional uncooperative behavior of newborns. Based
on this observation, it can be concluded that increasing the number of gallery
images improves the newborn face recognition performance.

8.5 Conclusion

Designing an automatic verification/identification of newborns has become imper-
ative due to its application in various domains, such as health-care, child security,
and civil-ID programs. However, due to the unintentional uncooperative behavior of
newborns, the acquired images consist of varied expressions, while some images suf-
fer from excessive blur. These covariates make matching images of the same subject
a challenging task. Further, the asymmetrical development of the craniofacial struc-
ture of the newborns is not similar to the miniature adult face. Hence, it is imperative
to design algorithms specifically for newborn face recognition. In this chapter, we
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Fig. 8.11 Keshari et al. [18] achieved the state-of-the-art results on the Newborn Face Database,
however, the above images suffer from excess blur and expression variation. Hence, these images
were incorrectly identified

discussed various databases of newborn faces and techniques which have shown to
perform well in newborn face recognition.

It is observed that learning-based techniques perform better than algorithms
dependent on handcrafted feature representations or existing distance metrics. How-
ever, to successfully learn all the discriminative features, it is imperative to have
large databases which have images with varied expressions, pose and illumination.
In future, data fine-tuning [45] and guided-dropout [46] can be used to make the
learning algorithmmore robust to variations in the test images. Further, the synthetic
images of the newborn faces can also be generated through GANs.

Moving forward, video-based face recognition for recognizing face images per-
taining to newborns can be designed. Videos would allow to capture expression vari-
ations on various time steps and hence enable the development of techniques robust
to expression and pose variations. Algorithms such as frame selection in videos [47],
joint-feature learning [48], and fusion [49] can help improve the performance of face
recognition in realistic conditions.
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Chapter 9
Deep Feature Fusion for Face Analytics

Nishant Sankaran, Deen Dayal Mohan, Sergey Tulyakov, Srirangaraj Setlur,
and Venu Govindaraju

9.1 Introduction

Data produced from a particular source often exhibit correlations with those arising
from other sources. Common data sources include (i) sensors—that gather raw data,
(ii) feature extractors—which process the raw data from sensors to generate features
representing the original data, and (iii) evaluators—which produce a score or a mea-
sure that conveys the likelihood of the provided features belonging to an application
specific hypothesis. Fusion methods that can effectively capture the said correlations
provide the capability to arrive at more informed decisions. Feature fusion methods,
specifically, work with data produced from feature extractors and attempt to lever-
age the shared information contained within various features by generating a fused
representation that is more efficient at a particular task. Depending on the number
of sensors involved, there can be two feature fusion approaches: unimodal feature
aggregation, multi-modal feature fusion.

Unimodal feature aggregation consolidates data produced from a single source
(modality) into a robust representation which summarizes the important features of
the data (sensor) signals. It is typically used to remove noise inherently present in
the features and refine the information contained in it. A naive approach here would
be to simply average or compute the mean of the feature vectors which would result
in the desired de-noising effect. However, more nuanced approaches exist which
adaptively elicit more information from the feature vectors. Multi-modal feature
fusion captures the correlations among the multiple data sources (modalities) and
exploits it to improve performance in the target optimization task. There are primarily
two methods of multi-modal representation learning: joint representation learning
that combines unimodal features into a common space, and coordinated representa-
tion learning that discovers modality specific representations but enforces similarity
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constraints on them. Typical joint representation learning approaches stack or con-
catenate unimodal data representations and apply a logistic regression based model
or, more recently, deep neural networks that learn to fuse them into a unified trans-
formed representation that embodies characteristics of all the modalities involved.
In this chapter, we explore a unimodal feature aggregation scheme applied to the
task of face recognition (Sect. 9.2) and a multi-modal feature fusion method that has
elements of both joint representation and coordinated representation learning applied
to facial action unit recognition (Sect. 9.3).

9.2 Feature Aggregation for Face Recognition

Face recognition is the problem of classifying faces to particular identities or ver-
ifying the possibility that two given faces are of a common identity or not. Over
the past few years, face recognition has seen tremendous advances in pushing the
state-of-the-art performances to near human [18, 26] and sometimes even surpass-
ing human capabilities [17, 22]. Though these systems have demonstrated exemplary
performances leading to the community considering constrained face recognition as
generally a solved problem, unconstrained face recognition, however, presents a
different challenge.

Unconstrained face recognition attempts to address the fact that many face recog-
nition systems are deployed in settings where there is no control over the conditions
under which faces are captured with the possibility of uncooperative subjects. In the
unconstrained setting (e.g., video surveillance), the goal of face recognition systems
is to identify subjects (referred to as probe) from a media collection (referred to as
gallery) that may have been compiled previously. The probes and galleries are stored
as templates—each of which can constitute one or more face images corresponding
to a specific identity. These face images are typically generated through a pipeline
of face detection [11, 31], landmark identification [19], and finally alignment. The
aligned faces are then transformed into a discriminative representation (such as CNN
based features [24, 26]) that is compared with similar representations of other face
images to determine if the identities present in the images are the same. Several met-
rics are employed for the purpose of estimating the similarity of face representations
such as the euclidean distance, cosine proximity, and even metric learning methods
[1, 20].

Matching face templates which are comprised of only single images for the probe
and gallery each is relatively straight forward with the use of the above mentioned
similarity functions, the most common one being the cosine similarity. However, in
the unconstrained datasets like IJB-A [12] andYTF [27], face templates containmul-
tiple images, and therefore, poses a new challenge of determining how to fuse/pool
the face features to a single feature vector representative of the template. Typically,
the simplest solution is employed, i.e., naive average/max pooling [3, 4, 18] of the
features to yield the template representation. In recent works, more intelligent solu-
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tions using weighted averaging have been proposed [15, 29], where the weights are
determined by analyzing the features and evaluating their representativeness.

Here, we present a new approach for pooling features of a template trained in
the context of a face verification task. We use metadata accompanying the face
images in the template for the purpose of evaluating the importance of each feature
in the aggregation process. Metadata for face images include, but are not limited to,
the yaw, pitch, and roll of the face in the image, as well as other external details
such as the size of the face crop, positions of the landmarks, etc. The motivation
behind our approach stems from the fact that all previous approaches [15, 29] only
consider the features for determining the aggregation weights. Generally speaking,
the features are generated by a CNN or other embedding system whose optimization
criteria is to map all the face images of an identity to a single distinct cluster with
minimalwithin-class variances (to enhance discriminability) andmaximal inter-class
variances (to enhance separability). But it becomes evident that, in doing so, this very
optimization function restricts the ability of a system to exploit the variances among
the features to determine optimal relative weights for pooling. Hence, we conjecture
using additional data/metadata which is unperturbed by the optimization process
for generating discriminative features would lead to discovering better aggregation
weights.

We use CNNs described in [2, 19] to obtain the metadata and features used in
our approach. We design a Metadata-based Feature Aggregator Network (M-FAN)
which takes as input, features, metadata, and an extra parameter called seed weights
to produce a weighted feature representation for the template. The seed weights
are simply initial weight estimates provided to the network intended as a starting
point for the optimization process and the network is trained to transform these seed
weights based on the correspondingmetadata. This parameter presents the possibility
of providing the networkwith previously handcrafted weights, which it can then fine-
tune according to the metadata, thereby boosting the performance as compared to
using the handcrafted aggregation weights. We experiment the model on IJB-A and
Janus CS4 datasets and obtain compelling improvements over the previous state-of-
the-art approaches and show that the M-FAN model improves the performance of
face recognition systems traditionally using naive pooling strategies.

9.2.1 Metadata-Based Feature Aggregator Network (M-FAN)

The entire objective of the M-FANmodel is to function as a feature quality evaluator
and produce weights corresponding to the “worthiness” of the feature vector as being
a part of the template. Let fi and mi be the ith feature vector and corresponding
metadata vector in a template. We define an evaluator function hθ to be a function
of the metadata vector, parametrized by θ , producing a weight that qualifies the
provided metadata. If T denotes the template vector or the pooled features for the
template, we have
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T =
∑

i

hθ (mi ) fi (9.1)

Here, hθ could be realized as any function approximator, and in our case, it is repre-
sented by a Fully Connected Network (FCN). The above formulation ensures that the
M-FAN network does not rely on the features to make its predictions, which is cru-
cial to the performance of our model based on the following reasoning. The feature
vectors are typically generated by a face recognizer whose task is to map any and all
variations of face images for a particular subject to a single tightly bound cluster in
the feature space. It would, therefore, imply that the feature vectors corresponding
to the set of face images for a subject would have minimal variations so as to maxi-
mize discriminability for the concerned subject. Now this presents a problem for any
aggregation system that attempts to evaluate the relative “richness” of the feature
vectors in a template since they would all be extremely similar. This motivates the
intuition why the same system would need orthogonal information such as metadata,
which is not affected by the feature generation process, to yield context that can help
to discriminate between face images of a subject.

Given the template vector construction, the objective of our system then becomes
to determine the optimal set of parameters θ that minimizes our cost function defined
as

Epg =
[

Tp.Tg∥∥Tp

∥∥ ∥∥Tg
∥∥ − Ypg

]2

(9.2)

Cost =
∑

p

∑

g

Epg (9.3)

where Tp and Tg are the probe and gallery template vectors obtained using (9.1),
Ypg ∈ [0, 1] is the match label for the given probe and gallery templates, Epg is the
error in match score prediction, and as it is evident, the similarity between the two
templates is obtained using the cosine similarity.With these goals inmind, Sect. 9.2.2
presents the design of the M-FAN structure.

9.2.2 Architecture

The setup of the M-FAN architecture is illustrated in Fig. 9.1. The essence of the
model is the Fully Connected Network (FCN) that assesses the metadata and out-
puts a weight for the corresponding feature vector. In practice, the network is also
provided a set of seed weights wi (for example, setting wi = 1

n , n being the number
of images in the template) which it can use as an origin to begin the optimization
process. Consequently, the FCNblock does not explicitly produceweight predictions
as output, rather, produces parameters used to transform the seed weights. Providing
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Fig. 9.1 M-FANarchitecture. This figure shows the training setupwith theM-FANmodel deployed
as a siamese network. The Feature and Metadata extractor are the networks described in [2, 19].
The FCN is the only trainable block in the structure

seed weights produced by elaborate handcrafted functions generally improves the
ability of the model to converge on better weight predictions.

For training, the M-FAN network is built as a siamese network. The network is
provided features, metadata and seed weights for the probe template as the left input
and the same for the gallery template as the right input. The features and metadata
are obtained from the networks described in [2, 19]. The FCN block that these inputs
go through use shared weights as is typical in siamese architectures. The output of
the FCN block transforms the seed weights wi producing w′

i such that
∑

w′
i = 1,

which is then used in conjunction with the corresponding features fi to create the
template vector for each probe and gallery template. The cosine similarity loss layer
computes the distance between the templates and is optimized against the match
label. During testing, we don’t use the siamese setup, and instead, present all the
inputs for a template to the M-FAN model which produces the aggregated feature
vector.

9.2.3 Gradient Backpropagation

The error Epg defined in (9.2) can be used to derive the gradients for the parameters
θ in the FCN being optimized. The gradient for an individual probe gallery template
match is computed as

∂Epg

∂θ
= 2

√
Epg

⎡

⎣
∥∥Tp

∥∥ ∥∥Tg
∥∥ ∂Tp .Tg

∂θ
− Tp.Tg

∂‖Tp‖‖Tg‖
∂θ∥∥Tp

∥∥2 ∥∥Tg
∥∥2

⎤

⎦ (9.4)

where
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∂Tp.Tg
∂θ

= Tp.T
′
g + Tg.T

′
p (9.5)

and
∂

∥∥Tp

∥∥ ∥∥Tg
∥∥

∂θ
= ∥∥Tp

∥∥ .
∥∥Tg

∥∥′ + ∥∥Tg
∥∥ .

∥∥Tp

∥∥′
(9.6)

follows the product rule of calculus. Similarly, we obtain the gradients of the template
vector T and its norm as

T ′ =
∑

i

h′
θ (mi ) fi (9.7)

‖T ‖′ = T

‖T ‖ .T ′ (9.8)

The interesting thing to note here is that the gradients for the parameters θ are
also a function of the feature vectors fi . This has a nice effect on the overall training
procedure in that even though the FCN block never sees the feature vector for making
its predictions, its parameter updates are influenced by fi , thereby forcing it to learn
the implicit correlations between the metadata and features. Moreover, with the
presence of only a few dimensions in the input space, as compared to 100s or 1000s
when taking the face feature vector also as input, the training algorithm is able to
converge faster using fewer network parameters.

9.2.4 Batch Training

During the design of the training setup, it became clear that the network would only
be able to train on a single pair of probe and gallery templates at each iteration. This
was owing to the fact that each template may be comprised of a variable number of
face images, which implies thatmaking batches of probe and gallery templates would
be difficult. However, as mentioned in [14], networks generally converge faster and
to better minima with batch sizes >1. In order to work around this problem, we
introduced an additional input—indices ki which held the template indices in the
batch that each face image (and the corresponding features and metadata) would be
mapped to. This enabled us to group multiple sets of templates as a batch (Fig. 9.2
and to compute the aggregated template vectors using only the corresponding feature
vectors as indexed by ki .
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Fig. 9.2 Batch Processing of Templates. The template indices provided indicate which fea-
tures/metadata comprise a template

9.2.5 Experiment Setup

The CNN described in [2] produces a 128 dimensional feature vector for each face
image. Alongside that, the CNN detailed in [19] produces multiple metadata out-
puts of which we use yaw, pitch, roll, face bounding box area, gender classification
confidence, and the face detection score for our experiments. Our M-FAN model
is created with a 4 layer FCN having ReLU as activations. We group the subjects
in the datasets into 3 sets—60% for training (of which 20% is for validation) and
the rest for testing. We then used the provided template protocols to generate probe
vs gallery matches for the three sets. We train our model on the training set for a
maximum of 100 epochs with a learning rate of 0.15 with a decay rate of 0.99 every
epoch. We report results on the test set with the model that had the best perfor-
mance on the validation set. Since the network performance would be influenced by
the seed weights provided to it, we conducted 2 sets of experiments—one with the
naive average weights and the other by grouping images by their media source and
weighting it by the face detection score on each image. For the latter, we first pool
all the images corresponding to a particular media source weighted by their face
detection scores si , i.e., fm = ∑

i
exp(si )∑
j exp(s j )

fi . The weighted face detection score for

the media-pooled images is sm = ∑
i

exp(si )∑
j exp(s j )

si . In a similar manner, we aggregate

all the media-pooled features fm with their respective scores sm to get the template
vector T . We record the final weights computed for each image via this method and
use them as the seed weights for this experiment which we’ll refer to as “media
average weights”. The models we train on both these experiments are referred to as
M-FAN (naive) and M-FAN (media) respectively.

9.2.6 Results on IJB-A

Here we present the results of the M-FAN model on the IJB-A verification protocol.
IJB-A contains 5712 images and 2085 videos of 500 subjects, for an average of 11.4
images and 4.2 videos per subject. We divide the subjects in the provided training
split into training and validation (80:20 splits) and evaluate the trained model on the
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Table 9.1 IJB-A 1:1 Verification TAR (%)

Method 10−1 FAR 10−2 FAR 10−3 FAR

TE 96.40 ± 0.5 90.00 ± 1.0 81.30 ± 2.0

TA 97.90 ± 0.4 93.90 ± 1.3 83.60 ± 2.7

NAN 97.80 ± 0.3 94.10 ± 0.8 88.10 ± 1.1

M-FAN† 97.97 ± 0.3 96.34 ± 0.3 94.10 ± 0.7

M-FAN‡ 98.00 ± 0.3 96.56 ± 0.4 94.44 ± 0.5

TE: Template Embedding [20], TA: Template Adaptation [5], NAN: Neural Aggregation Network
[29], †M-FAN (naive), ‡M-FAN (media)

protocol provided in the test splits. The 1:1 verification results are evaluated using the
ROC curve and the TAR (True Accept Rate) performance is reported for different
FAR (False Accept Rate) values. We present the results reported by the previous
state-of-the-art approaches for IJB-A and compare them to our system. The results
shown in Table 9.1 clearly indicate the ability of M-FAN to capture the correlations
of the metadata and the features constituting a template and proves its utility as an
intelligent aggregation unit.

9.2.7 Results on Janus CS4

We conduct our experiments on the IARPA Janus Challenge Set 4 (CS4) dataset,
which is a superset of the IJB-A dataset [12]; the comparison between CS4 and
IJB-A sets is given in [2]. A sample of the weights predicted by M-FAN is shown
in Fig. 9.3. Table 9.2 shows the improvements in performances while using the M-
FAN model seeded with naive average weights. It is interesting to note that even
when M-FAN is provided the naive average seed weights, it is able to perform better
than the handcrafted media average weights. When it is provided the more complex
media average weights, it can improve upon its earlier performance by over 1.5%.
We also analyzed the weights predicted (during test phase) by the M-FAN model
with respect to the various metadata provided to it and plotted the results shown in
Fig. 9.4.We can see that the network has learnt to predict low aggregation weights for
any orientation that strays far from the frontal pose. Figure 9.4d depicts the weights
for various face detection (FD) scores and here too we see it assign higher confidence
to images having higher FD scores.



9 Deep Feature Fusion for Face Analytics 197

Fig. 9.3 M-FAN predictions on Janus CS4. The pooling weights are influenced by the orientation
of the face, source image size, etc

(a) Yaw vs Weights (b) Pitch vs Weights (c) Roll vs Weights (d) FDS vs Weights

Fig. 9.4 Plots showing aggregationweight predictions ofM-FANagainst variousmetadata features.
FDS indicates face detection scores
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Table 9.2 Janus CS4 1:1 Verification TAR(%)

Pooling method 10−2 FAR 10−3 FAR 10−4 FAR

Naive average 95.27 90.40 86.54

Media average 95.38 90.85 86.88

M-FAN (naive) 95.65 90.99 87.35

M-FAN (media) 95.98 92.19 88.63

9.3 Feature Enhancement for Facial Action Unit
Recognition

In recent years, methods that combine features from multiple data sources have
been gaining popularity. This can be primarily attributed to the large amount of data
produced by different multi-modal sensors. Most of the methods that try to combine
the multi-modal data, broadly fall under two major categories. Multi-view learning
methods [28], which look at finding a subspace or a shared space between the data
of multiple modalities and employ that as a unified representation. These methods
generally try to enforce a constraint that increases the similarity of features learned
by the views. On the other hand, multi-modal fusion methods [13], try to combine
features of different representations to improve performance of the overall system.

Majority of the multi-modal fusion methods try to create a unified feature space.
This is done either by mapping the current feature space to a higher dimension or
by learning a latent representation after concatenating multi-modal features. Due
to the recent advancements in new embedding methods such as [22] and complex
multi dataset training procedures for deep learning, the features produced by such
networks are highly optimal. Generating a unified representation frommultiple, such
features might require equally complex training procedures. Here we try to rethink
the premise of the necessity of having a unified representation. We theoretically and
experimentally show that learning linear transformation that increase separability
of these features in their respective feature spaces can be an alternative to existing
methods. In order to validate our claims, we apply our method to the problem of
recognition of facial action units.

Facial expressions are one of the most important nonverbal-cues in any inter-
personal communications. Facial expressions can be measured in two dimensions
popularly. The Judgmental coding system describes emotions in a latent emotion
space. The frequently used parameters in this scheme are the seven universal emo-
tions namely Anger,Fear, Disgust, Happiness, Sadness, Surprise, and Contempt. A
more elaborative way of describing emotions is using the FACS coding scheme. In
their paper [7], define FACS as a measure of different facial muscle movements
that contribute to the facial expressions either independently or in pairs. Each of
the Action Units describes a movement or contraction of the facial muscle. Thus,
they encode the anatomically visible changes rather than relying on the observers
inference of emotions. The granularity of FACS is particularly beneficial in detecting
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even the subtle controlled or uncontrolled facial behavior. For several decades, they
have been extensively used in forensics, neuro-marketing, healthcare, etc. Although
Facial Action Units Recognition is well explored in the visible light domain (VLD),
the RGB images suffer from illumination changes and can only capture the visual
changes that occur as an effect of the AUs. There are, however, some physiological
changes that the face undergoes during the occurrence of the Action Units, such as
skin temperature changes, variation in the heart rate , blood pressure, and respira-
tion rate that can’t be captured using the visible images. In contrast, the Infrared
images that allow detection of skin temperature variations and are invariant to illu-
mination changes and skin tone variation from person to person, have been shown
to be sensitive to AU movements [10]. Thus, the visible and thermal images encode
complementary aspects of facial action units.

In this chapter, we demonstrate an alternative to the existing multi-modal fusion
methods. We train a DenseNet Model on both the visible and thermal images and
generate corresponding visible and thermal features.We present an idea of enhancing
existing feature spaces by only applying scaling and translation perturbation. The
perturbation that is to be applied to each feature, is learned by the network by jointly
looking at all the feature representations. By doing so, we generate an enhanced
feature representation of the original thermal and visible features. These enhanced
features when combined, improve the overall performance of the system.

9.3.1 Multi-modal Conditional Feature Enhancement
(MCFE)

The schematic of the proposed Multi-modal Conditional Feature enhancement
(MCFE) method is shown in Fig. 9.5. MCFE consists of a feature extraction stage
followed by a feature enhancement stage. Addressing the task of facial action unit
recognition, we first train a deep CNN that learns to assign action unit labels for a
given RGB frame focused on an individual’s face. This network is optimized using a
multi-task learning framework with class weighting incorporated, to solve the issue
of class imbalance prevalent in such problems. While one network is trained on the
visible spectrum, another network is trained similarly on the thermal spectrum for
the same task. Each network learns a specific view of the task and we implement a
novel multi-modal learning solution to enhance their corresponding representations
by modeling their correlations in the shared subspace. Contrary to traditional fusion
approaches, our approach doesn’t attempt to create a unified fused representation
of the modalities that is better equipped at solving the task. Rather, in our fusion
approach, we emphasize transferring information that is uniquely learnt from the
individual modalities to other view representations with the aim of improving the
performance of each modality’s feature representation oriented towards maximizing
the combined system’s performance. This method has an advantage over traditional
fusion schemes, in that, instead of vastly increasing the search space for finding an
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Fig. 9.5 Overview of the proposed MCFE framework. The system extracts Deep features (Fv and
FT ) from paired visible and thermal images simultaneously using their corresponding DenseNet
models. Further, using the proposed approach, the enhanced features (F ′

v and F ′
T ) are produced

optimum representation that describes both modalities equally, it limits the problem
by only determining the corrections/perturbations it needs to apply to each view’s
representation guided by the accompanying views. In doing so, we enhance not only
the individual representations, but also the overall system performance which aggre-
gates the performances of the individual modalities. In the following sections, we
detail the approaches that we used for extracting action unit features and our novel
fusion approach applied to multi-modal facial action unit recognition.

9.3.2 Feature Extraction

Research in facial expression recognition can be categorized mainly on the basis
of feature extractors and classifiers. The ability of handcrafted features like SIFT
[16], HOG [6], etc., to capture the complex non-linear transformations of the face
caused by expressions are limited. CNNs on the other hand, have shown the ability to
learn optimal features for vision based tasks like handwritten character recognition,
face recognition, etc. A series of convolutional filters can extract features starting
from abstract information like edges to complex patterns like faces in the subse-
quent layers. However, with deeper structures, the gradient vanishes as it reaches
the beginning layers. Networks with short skip connections like ResNets [8] and
Highway Networks [23] prevent this by providing an alternative and easier way for
gradients to flow. Following this, DenseNet [9] was introducedwherein features from
one layer are connected to features of all the preceding layers. As a result, the lower
level abstract features are combined with the higher level granular features. Although
DenseNets learn a representation similar to the deeper models, owing to its compact
parameterization, it is less prone to over fitting, and enables feature reuse. To this end,
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we use the Densenet-121 architecture with modifications for extracting features from
both visible and thermal images. The network consists of 4 dense blocks followed
by an output layer consisting of 12 neurons for 12 classes. The sigmoid activation
is used at the final classification layer. Typically the cross entropy loss is applied at
the output layer. Consider N AU classes, then for each input, the multi-class cross
entropy cost is calculated as

C =
N∑

i=1

(y′
i log yi + (1 − y′

i )log(1 − yi )) (9.9)

In the above formulation, the individual components of loss corresponding to
each AU is given equal weight. Most of the Facial Action Unit datasets are heavily
imbalanced. Some of the action units have very low positive to negative sample
ratio, otherwise called the occurrence rate. Therefore, in order to account for the
under represented classes, the individual loss components needs to be weighted.
However, calculating the weights for each class with respect to other classes for a
multi-label classification problem can be quite complex as each data sample can
contain more than one AU class. Therefore, to overcome this problem, we use a
multi-task framework wherein a separate binary cross entropy loss is applied to each
of the N output neurons and the weights applied to the loss components are weighted
by the ratio of their respective positive and negative samples. The final output layer
of the DenseNet is split into 12 output neurons. The cost function is calculated as

bi = wi ∗ (y′
i log yi ) + 1 ∗ ((1 − y′

i )log(1 − yi )) (9.10)

The negative samples are weighted by 1 and the positive samples are weighted
by wi given as

wi = ni
pi

(9.11)

where ni is the total negative samples for AUi and pi is the total positive samples.
The final loss is calculated as the sum individual binary cross entropy losses

Ci =
N∑

i=1

bi (9.12)

Thus, the loss formulation takes into account the individual class distributions,
while still learning the correlations between the different Action Units. The network
is trained with random weight initialization instead of initializing with the typical
ImageNet classification weights.
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9.3.3 Deep Feature Enhancement

Deep multi-modal fusion has typically relied on learning the feature correlations
among the modalities by stacking a number of fully connected layers applied on a
merged representation (concatenation, sum, etc.) or by projecting each modality’s
feature space onto a common optimal subspace for the specific task. Such methods
eventually arrive at a new shared representation for fusion, but is it necessary to
construct a completely new representation? We address this question by proposing
to employ the existing feature space and design a fusion scheme that, based upon a
shared representation, learns to only modify or perturb the original features in such
a way as to improve feature separability in their existing feature spaces.

Consider k input modalities xi , i = 1, .., k and their corresponding feature repre-
sentations obtained as so

vi = f (xi ; θi ) (9.13)

where vi ∈ R
di , f may be an MLP, DNN or other feature extractors and θi are

the parameters for the corresponding modalities which may be shared. We define
a function g with parameters ∇ which transforms all the input modalities’ features
into a latent representation l ∈ R

n thus

l = g(v1, v2, ...vk; ∇) (9.14)

Based on this latent representation, we compute M transformation factors (feature
wise scaling and translation) si = [s1i , .., sMi ] and ti = [t1i , .., t Mi ] for each modality
i as below (omitting the subscript i for brevity)

s j = σ(W j
s
T
l + b j

s ) (9.15)

t j = σ(W j
t
T
l + b j

t ) (9.16)

Since the above equations are for each modality, there are k weights and biases
W j

s and b j
s corresponding to the scaling factors and k weights and biases W

j
t and b j

t

corresponding to the translation factors with j = 1, .., M and σ denoting the sigmoid
non-linearity.With these, we can constructM different variants of each feature vector
vi as:

e j
i = (s j

i � vi ) ⊕ t ji (9.17)

Finally, we choose 1 out of the M different enhanced features e j
i by predicting

importanceweights ch j
i for theM variants and running it through a softmax activation

to pick the most relevant enhanced feature vector e*i

ch j
i = so f tmax(W j

c
T
l + b j

c ) (9.18)
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Fig. 9.6 MCFE Architecture. The system takes k modality features v and proposes M variants
of element-wise scaling s and translation t parameters applied on the input features. It finally
weights the aggregation of the proposals using ch via the channel sum operation to finally arrive at
k enhanced features e∗

e*i =
M∑

j=1

ch j
i ∗ e j

i (9.19)

whereW j
c and b j

c are the k weights and biases corresponding to the choice prediction
function applied to the k modalities. This final enhanced feature representation is
presented to the classification layer for improved performance on the task being
solved. Figure 9.6 illustrates the general architecture of the proposed multi-modal
conditional feature enhancement system.

The presence of M variants of transformation factors and consequently M dif-
ferent versions of the enhanced features enables the learning algorithm to explore
a variety of improvements that can be applied to the original feature set. This is
similar in concept to the multiple paths that are present in the Inception [25] deep
network architecture, where each layer gets its data from several different views of
the previous layer’s output. The presence of such multiple paths of computation
directly improves gradient flow to the prior layers since each path would begin to
learn aspects unique to a particular view for better representing the solution space.
Additionally, the ability to select the variant that is most suitable for the given sam-
ple of multi-modal features enables conditioning the fusion methodology applied
on the features. This allows the gradients to pass through multiple parallel routes
to the latent representation mapping function g, and thus allows faster convergence
as observed in the experiments. It should be noted that the latent representation l
being learnt is different from the traditional shared representations that prior works
obtain during fusion. This is because in this formulation, l encapsulates information
relevant only to making a decision as to how to correct every modality’s feature
representation independently rather than representing a common unified subspace
which is used directly for the classification task. There are benefits for defining the
latent representation in such a manner and this will be explored in Sect. 9.3.4.
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9.3.4 Training MCFE for AU Recognition

MCFE is applied to the thermal and visible features arising out of the corresponding
thermal and RGB frames extracted as described in Sect. 9.3.2. The latent mapping
function g that operates on the two inputs, is implemented as a modified lightweight
DenseNet CNN. The latent representation l is connected to 3 separate fully connected
layers—one each for scaling, translation, and predicting choice. Upon computing
the final enhanced feature set ei* as described in Sect. 9.3.3 they are independently
connected to separate AU classification layers (one each for thermal and visible spec-
trum) composed of 12 outputs each indicating the presence of a specific action unit
for the given image. In order to orient the training of MCFE’s parameters to the final
goal of improving the overall system (thermal and visible combined) performance
and not just the individual modality’s performance, we perform a simple average of
the predictions by the thermal and visible classification layers. By combining the
predictions and optimizing against them, the network is encouraged to learn param-
eters that would enable a particular modality’s enhanced feature to compensate for
the shortcomings of the other feature.

In the naive approach, we can initialize the network with random weights. How-
ever, this would either fail to converge or provide unsatisfactory results. Intelli-
gent initializations help the network perform significantly better than traditional
approaches. We take two steps in this direction: (a) initialize the scaling layer to
produce an output of 1s and the translation layer to produce an output of 0s; and (b)
initialize the classification layers with the corresponding pre-trained weights learnt
during the feature extraction step. Performing step (a) ensures that in the initial state
of the network, the enhanced features are the same as the original features forming
an identity map

e j
i = (s j

i � vi ) ⊕ t ji
= (1 � vi ) ⊕ 0 = vi

which gives a good starting location to begin gradient descent. Since the overall
error reduces in a specific direction, there can only be an improvement to the feature
representation (or at worst can remain the same). Step (b) accomplishes the objective
of reusing the information learnt from prior training to give a good target representa-
tion that the previous layers can attempt to produce from the original representation.
One question that arises is how can we ensure that the enhanced features are indeed
only corrected versions of the original features and not entirely a new set of features
learnt by the network? We address this by freezing the classification layer weights
from training (which are already pre-initialized). This enforces a constraint on the
input to the classification layers (i.e., the enhanced features) such that it adheres to
the general feature space representation that the classification layer has been trained
to operate on. Imposing this constraint limits, the optimizer’s task to finding δs to
each individual feature so as to magnify or diminish their effect and in doing so
make the feature space more separable with respect to the given classification layer
parameters. This is a much simpler task to optimize for, than having to explore
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unconstrained combinations of feature spaces and, as we observe in the experiments,
leads to much faster convergence with strong performance gains. Additionally, with
the formulation of a single latent representation that is responsible for the compu-
tation of 3 separate quantities, it implements the information bottleneck principle
which has been shown to produce better generalizations [21] and also mirrors the
multi-task learning framework’s principle of leveraging a single representation for
accomplishing multiple disparate tasks.

9.3.5 Datasets for Experimental Analysis

We used the Multi-modal Spontaneous Emotion (MMSE) database to evaluate our
performance. MMSE contains 2D and thermal videos of 140 participants from ten
tasks, each eliciting different emotions. Among them, only four tasks were labeled
for Facial Action Units. Expert AU coders annotated each frame using the Facial
Action Coding System. The thermal sensor and the RGB camera were mounted on
top of each other and their frame rates were set to 25 fps for synchronization. In our
experiments, we used all 196, 793 visible frames and 195, 411 thermal frames. Out of
the available images, only 133, 309 paired frames were available for our multi-modal
learning experiments.

9.3.6 Experiment Settings

Pre-processing
All the input images in the dataset were aligned using the MTCNN framework [31]
based on the 49 facial landmark points provided by the MMSE dataset. Further, the
images were cropped to 170×170 and randomly rotated for data augmentation. The
presence of each action unit was labeled as +1/0. The data samples with missing
labels and faces were excluded from training.

Network Settings and Training for Feature Extraction
We adopted a three-fold cross validation protocol to train our networks. For each
experiment, we split the dataset into three subject dependent partitions using two
partitions for training and the remaining one partition for validation. Both CNNs
in our implementation are trained using the weighted cross entropy loss defined in
Eq.9.10–9.12 The models are trained with SGD as the optimizer with learning rate
initialized to 1e − 3.

Network Settings and Training for MCFE
We use DenseNet-100 × 12 architecture, which has a depth of 100 and a growth
rate of 12 for getting the latent representation from the features. Along with the
DenseNet, the network consists of three fully connected layers corresponding to
scaling,translation, and prediction, and two classification layers corresponding to
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Table 9.3 Three-Fold cross validation results on theMMSEdataset over 12 action units.Visible and
Thermal refer to the results obtained using the feature extraction method described in Sect. 9.3.2.
MFB is multi-modal factorized binary pooling described in [30]. MCFE refers to the performance
obtained by after fusion using method described in Sect. 9.3.3

MMSE Three-fold validation results

AU 1 2 4 6 7 10 12 14 15 17 23 24 Mean
F1

Visible 0.306 0.264 0.267 0.845 0.874 0.902 0.882 0.809 0.358 0.413 0.484 0.282 0.557

Thermal 0.216 0.202 0.197 0.794 0.828 0.861 0.847 0.772 0.271 0.317 0.358 0.244 0.492

MFB 0.293 0.280 0.300 0.847 0.866 0.899 0.886 0.798 0.367 0.426 0.492 0.273 0.561

MCFE 0.304 0.299 0.312 0.851 0.864 0.906 0.884 0.815 0.354 0.421 0.473 0.314 0.566

the two modalities, resulting in a total of 24M parameters. The network is trained
using Adam optimizer, with a learning rate of 0.1 and a batch size of 128 for 32
epochs.

9.3.7 Results

We show the results of our experiment in Table 9.3. We report our performance
using the F1 metrics widely used in the literature of facial action unit recognition.
For each experiment, we report the individual F1 scores of each action unit and also
the average F1 score across all action units. We report the average F1 scores across
three splits. We compare MCFE performance with a relevant state-of-the-art multi
model fusion strategy—MFB [30]. We also compare our enhanced features with the
original features from a simple sum score level fusion perspective.

From Table 9.3, we note that the fusion results of the proposed MCFE methods
outperforms MFB overall. However, we also note that even though MFB performs
slightly better on some action units, MCFE significantly outperforms MFB in the
action units which are severely under represented in the data set. It is also interesting
to note that results obtained by MCFE is without destroying the original feature
space. The improvement can be attributed to the fact that the network learned good
translation and scaling features to align the visible and thermal features so as to
improve the overall performance of the system.

9.4 Conclusion

In this chapter, we discussed about template/set-based face verification and how it
is deeply influenced by the aggregation or pooling strategy employed in generating
representative template features. We presented a unimodal feature fusion approach
of using metadata to judge the relative quality of every feature vector in a template
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for aggregation and investigate its ability to outperform related approaches. The
M-FAN feature fusion approach produced significant gains over traditional pooling
approaches on the IJB-A and Janus CS4 datasets proving its effectiveness. Moreover,
this can be easily plugged into at the end of a face recognition pipeline to optimize the
template feature generation process in order to produce improvements in the overall
performance.

Additionally, we also discussed a method of improving facial action unit recog-
nition using a novel approach to multi-modal feature fusion named MCFE. The
fusion method is an alternative to the concept of learning a joint unified representa-
tion. Through theoretical and experimental validation, we find that the deep feature
fusion method can learn the factors that help to better align the features in their
respective feature spaces to maximize separability. The method also shows that such
aligned features can be easily combined so as to improve the overall performance of
the system.
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Chapter 10
Deep Learning for Video Face
Recognition

Jiaolong Yang and Gang Hua

Abstract This chapter is concerned with face recognition based on videos or, more
generally, sets of images, using deep learning techniques. We first briefly review
some naive yet commonly used strategies pertaining to using frame-level features
extracted by deep convolutional neural networks (CNNs) for video-level face recog-
nition. Representative strategies include naive feature pooling and pairwise feature
distance computation. Then, we present a method named neural aggregation network
(NAN), which is a deep learning framework tailored for video-based representation
and recognition. NAN can automatically learn the quality of faces in a video/image
set and aggregate the frame-level deep features accordingly, yielding more discrimi-
native video-level features. We conduct experimental evaluation on three video face
recognition datasets. The results indicate that while previous deep learning-based
methods with naive pooling or pairwise distances have obtained substantial improve-
ments over traditional methods, the NAN method further outperforms them by an
appreciable margin.

10.1 Introduction

The goal of video face recognition is to recognize human identities from face video
clips or, more generally, face image sets. It has broad applications in video surveil-
lance, biometric authentication, and video retrieval, to name a few. Compared to
image-based face recognition, more information of the subjects can be exploited
from the input videos, which naturally incorporate faces of the same subject in dif-
ferent poses and illumination conditions. In recent years, video face recognition,

J. Yang
Microsoft Research, No. 5 Danling Street, Beijing 100080, China

G. Hua (B)
Microsoft Research, Redmond, Washington 98052, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
N. K. Ratha et al. (eds.), Deep Learning-Based Face Analytics, Advances in Computer
Vision and Pattern Recognition, https://doi.org/10.1007/978-3-030-74697-1_10

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74697-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-74697-1_10


210 J. Yang and G. Hua

especially in unconstrained settings (aka, “in the wild”), has caught more and more
attention from the research community [1–13].

Similar to image-based face recognition, video face recognition can be categorized
into two tasks: video face identification and video face verification. The former aims
at recognizing the identity of a probe face video/image set from a gallery video face
database where the identities are known, and the latter is to judge if two given face
videos/image sets belong to the same person or not. For both tasks, the key is to build
an appropriate representation for video face, such that it can effectively integrate the
information across different frames together, maintaining beneficial while discarding
noisy information.

Recently, tremendous success in face recognition has been achieved by the deep
learning technique [10, 11, 14–19], with performance outclassing the traditional
methods with handcrafted features, even surpassing human-level performance on
some large-scale datasets [11, 14–16]. By training on large face data, a deep con-
volutional neural network (CNN) can embed a face image into a low-dimensional
feature space where identity similarity can be effectively measured by Euclidean
distance or angular distance.

CNNs operate on still images. To apply them for video-based face recognition,
some simple strategies can be used. For example, one straightforward solution would
be directly representing the video face as a set of frame-level face features extracted
by a CNN. Such a representation comprehensively maintains the information across
all frames. To compare two video faces, one can fuse the feature matching results
across all pairs of frames between the two face videos (e.g., by taking the mean or
minimum distance). Another naive approach is conducting a certain type of pooling
(e.g., average andmax pooling) to aggregate the frame-level features together to form
a video-level representation. Due to the simplicity of the aforementioned solutions,
they have been widely adopted in recent deep face recognition works for video-based
recognition and good performance has been achieved. In later sections of this chapter,
we will introduce them in details and evaluate them in the experiments.

Despite the simplicity and wide adoption, these solutions also have some draw-
backs in terms of efficiency and effectiveness. For example, let n be the number of
video frames, then the time complexity of video face similarity computation is O(n2)
for the feature set-based representation, which is not desirable especially for large-
scale recognition. Besides, such a representation would incur O(n) space complexity
per video face example, which demands a lot of memory storage and confronts effi-
cient indexing. To make the recognition scalable to large-scale problems, it is more
desirable to come with a compact, fixed-size feature representation at the video level,
irrespective of the varied lengths of the videos. A fixed-size video-level represen-
tation would allow direct, constant-time computation of the similarity or distance
without the need for frame-to-frame matching.

Such a video face representation can be achieved by frame-feature pooling. The
naive pooling strategies such as average pooling assume that the frame features are of
equal importance. However, a video (especially a long video sequence) or an image
set may contain face images captured at various conditions of lighting, resolution,
head pose, etc. A good pooling or aggregation strategy should adaptively weigh and
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combine the frame-level features across all frames. It should favor face images that
are more discriminative (or more “memorizable”) and prevent poor face images from
jeopardizing the recognition accuracy.

To this end, we present an approach with adaptive weighting scheme to linearly
combine all frame-level features fromavideo together to forma compact anddiscrim-
inative face representation. Different from the previous methods, the frame feature
weights are neither fixed nor set by any particular heuristics. Instead, a neural net-
work is designed to automatically calculate theweights. The network is namedNeural
Aggregation Network (NAN), whose coefficients can be trained through supervised
learning in a normal face recognition training task without the need for extra super-
vision signals.

The NAN is composed of two major modules that could be trained end to end or
one by one separately. The first one is a feature embedding module which serves as a
frame-level feature extractor using a deep CNN model. The other is the aggregation
module that adaptively fuses the feature vectors of all the video frames together.
NAN inherits the main advantages of pooling techniques, including the ability to
handle arbitrary input size and producing order-invariant representations. Its key
component is inspired by the Neural Turing Machine [20] and the work of [21], both
of which applied an attention mechanism to organize the input through accessing an
external memory. This mechanism can take an input of arbitrary size and work as a
tailor emphasizing or suppressing each input element just via a weighted averaging,
and very importantly it is order independent and has trainable parameters. In NAN, a
simple network structure is designed which consists of two cascaded attention blocks
associated with this attention mechanism for face feature aggregation.

Apart from building a video-level representation, the neural aggregation network
can also serve as a subject-level feature extractor to fuse multiple data sources. For
example, one can feed it with all available images and videos, or the aggregated
video-level features of multiple videos from the same subject, to obtain a single
feature representation with fixed size. In this way, the face recognition system not
only enjoys the time and memory efficiency due to the compact representation, but
also exhibits superior performance, as we will show in our experiments. Last but not
least, NAN can serve as a general framework for learning content-adaptive pooling,
so it is applicable to other computer vision tasks as well. The NAN method first
appeared on a conference paper [13].

The reminder of this chapter is organized as follows. In Sect. 10.2, we briefly
review the traditional, non-deep-learning methods proposed for video face recogni-
tion. We will focus on some recently proposed ones. In Sect. 10.3, we review the
existing approaches using frame-level deep features extracted by CNNs for video
face recognition. In Sect. 10.4, we present the neural aggregation network, including
the network architecture and the training method. In Sect. 10.5, we experimentally
evaluate the existing approaches as well as the NAN method with both video face
verification and identification tasks, on three challenging datasets: the YouTube Face
dataset [1], the IJB-A dataset [22], and the Celebrity-1000 dataset [7]. We show
that while all deep learning-based methods perform quite well compared with transi-
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tional method, NAN consistently outperforms all the pairwise frame-feature distance
computation or naive feature pooling strategies.

10.2 Traditional Methods

Face recognition based on videos or image sets has been actively studied in the past [1,
2, 8, 23–27]. In this chapter, we are concerned with the input being an orderless set
of face images. Existing methods exploiting temporal dynamics will not be consid-
ered here. For set-based face recognition, many previous methods have attempted to
represent the set of face images with appearance subspaces or manifolds and perform
recognition via computing manifold similarity or distance [23, 26, 28–30]. These
traditional methods may work well under constrained settings but usually cannot
handle the challenging unconstrained scenarios where large appearance variations
are present.

Along a different axis, some methods try to build video-level feature representa-
tion based on local features [2, 6, 8]. For example, the PEP methods [2, 6] take a
part-based representation by extracting and clustering local features. Both appear-
ance and spatial information are taken into account in the local features. The Video
Fisher Vector Faces (VF2) descriptor [8] uses Fisher Vector coding to aggregate local
features across different video frames together to form a video-level representation.
Despite large improvements have been achieved using these methods especially for
the unconstrained scenarios, the features they use are still handcrafted and their
performances have been lagged farther behind the deep learning-based approaches.

10.3 Existing Deep Learning-based Approaches

Recently, state-of-the-art face recognition methods have been dominated by deep
convolution neural networks [10, 11, 16, 31, 32]. Let x be an input face image,
a CNN can map it to a low-dimensional feature space by interleaved linear and
non-linear transformations. This process can be denoted by

f = CNN (x). (10.1)

Given two face images x and x′, their identity (dis-)similarity can be measured

by their feature angular distance d(f, f ′) = arccos

(
< f, f ′ >

‖f‖·‖f ′‖
)
, or the Euclidean

distance d(f, f) = ‖f − f‖ with both f and f ′ normalized. The feature distance can
then be used for face verification and identification tasks.

Now consider a face video sequence or a image set X = {x1, x2, ..., xn} with n
total images. We can apply a CNN trained on single images to extract a frame-
feature set F = {f1, f2, ..., fn}. To achieve verification and identification, the key is
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Fig. 10.1 Existing deep learning-based approaches using frame-level deep features for video face
recognition. Top: matching based on pairwise frame-feature distances. Bottom: video-level feature
representation by frame feature pooling

to build a proper distance measurement function D({fi }, {f ′
j }) for two frame-feature

sets extracted from two face videos, respectively. There are some simple distance
functions commonly used by the existing deep learning approaches. They can be
classified into two categories: those based on pairwise frame-feature distances and
based on frame-feature pooling. Figure 10.1 illustrates these two categories, and we
introduce them as follows.

10.3.1 Pairwise Distance-Based Methods

The pairwise distance-based methods measure identity similarity by comprehen-
sively analyzing the distances between the frame pairs. It necessitates storing all
image features of a video, i.e., with O(n) space complexity, and usually computes
the distance with O(n2) time complexity.We list some concrete examples as follows.
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• Mean pairwise distance: The distance is computed as the mean of the pairwise
frame-feature distances:

D({fi }, {f ′
i }) = 1

n ·n′
∑
i, j

d(fi , f j ). (10.2)

Many CNN-based methods use mean pairwise distance for video face recognition.
Representative works include DeepFace [10] and FaceNet [11].

• Minimum or maximum pairwise distance: The distance can be computed by enu-
merating all the pairwise frame-feature distances and selecting the minimal or
maximum one. In other words, the video face similarity is measured based on the
most similar or dissimilar frames between the videos/image sets:

D({fi }, {f ′
i }) = min

i, j
d(fi , f j ) (10.3)

for minimum pairwise distance and

D({fi }, {f ′
i }) = max

i, j
d(fi , f j ) (10.4)

for the maximum case. However, simply taking the minimum or maximum pair-
wise distance can be vulnerable to noise or outliers, making the recognition algo-
rithm non-robust (as we will show later in the experiments, the results are clearly
worse than other distance metrics). So the minimum and maximum pairwise dis-
tances are rarely used by existingmethods. Instead, the following distance function
was proposed.

• Softmin pairwise distance: This distance function is a robust version of minimal
pairwise distance. It is computed by

D({fi }, {f ′
i }) = min

i, j

e−β·d(fi ,f j )∑
i, j e

−β·d(fi ,f j )
, (10.5)

where β is a positive scalar factor. Alternatively, one can usemultiple scalar factors
and compute the distance as

D({fi }, {f ′
i }) = min

i, j

∑
k

e−βk ·d(fi ,f j )∑
i, j e

−βk ·D(fi ,f j )
. (10.6)

The softmin pairwise distance function corresponds to the softmax similarity score
advocated in the works of [18, 33, 34]. A single β is used in [34] while multiple
are used in [18, 33]. The time complexity for computing this distance function is
O(m · n2), where m is the number of used scalar factors.

Of course, given two feature sets, many other set distance functions that can
be potentially used, such as the Hausdorff distance or the distance between two
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affine/convex hulls spanned by the feature sets. These distance metrics can be found
in some traditional face recognition methods such as [27]. Thus far, we are not aware
of existing works using these sophisticated set distance functions for deep features.

10.3.2 Pooling-Based Methods

Instead of representing the face video as a set of deep frame features, some meth-
ods conduct feature pooling over the feature set. This way, the video face is repre-
sented by a single, fixed-sized vector and the distance can be computed in constant
time: D({fi }, {f ′

i }) = d(Pool({fi}),Pool{fi}) = d(̃f, f̃ ′). The commonly used pooling
methods are average pooling and max pooling.

• Average pooling: Average pooling averages the feature vectors in the set at each
dimension, i.e.,

Pool({fi}) = f̃, with f̃(d) = 1

n

∑
i

fi(d), (10.7)

where f(d) is the element of vector f at the d-th dimension.Many existing deep face
recognition methods use average pooling technique to obtain video-level features.
Representative works include VGG-Face [16] and [31].

• Max pooling: Similarly, the feature max pooling can be expressed as

Pool({fi}) = f̃, with f̃(d) = max
i

fi(d). (10.8)

Max pooling for frame features is less common than average pooling. It is only
adopted in a few works such as [32].

10.4 Neural Aggregation Network

As mentioned previously, it is more desirable to have a compact, fixed-size feature
representation at the video level, similar to the pooling techniques. However, a good
pooling or aggregation strategy should adaptivelyweigh and combine the frame-level
features, as opposed to a naive handling such as average or max pooling. Here we
present the neural aggregation network which has a learning-based feature weighting
scheme to linearly combine the frame-level features.

Figure 10.2 shows the framework of the NAN. The network takes a set of face
images of a person as input and outputs a single feature vector as its representation
for the recognition task. It is built upon a modern deep CNNmodel for frame feature
embedding, and becomes more powerful for video face recognition by adaptively
aggregating all frames in the video into a compact vector representation.
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Fig. 10.2 The framework of Neural AggregationNetwork. All input face images {xk} are processed
by a feature embedding module with a deep CNN, yielding a set of feature vectors {fk}. These
features are passed to the aggregation module, producing a single, fixed-size vector r1 to represent
the input face images. This compact representation is used for recognition

10.4.1 Feature Embedding Module

The image embedding module of the NAN is a deep CNN, which embeds each
frame of a video to a frame-level feature representation. In theory, any deep CNN
with high-end performance can be applied here. In our implementation, we use the
GoogLeNet [35] structure equipped with Batch Normalization (BN) [36] to test the
performance of NAN. The GoogLeNet produces 128-dimension image features. We
normalized these features to be unit vectors then fed into the aggregation module,
which will be described in the following section.

10.4.2 Aggregation Module

Given a face video/image set X = {x1, x2, ..., xn} and its corresponding normalized
feature setF = {f1, f2, ..., fn} extracted by the feature embeddingmodule, the goal is
to generate a set of weights {ak}nk=1 for all the feature vectors, so that the aggregated
feature representation for the video is a linear combination of the frame features:

r =
∑
k

akfk . (10.9)

In this way, the aggregated feature vector has the same size as a single face image
feature extracted by the CNN. Note that if ak ≡ 1

n , Eq. 10.9 will degrade to naive
average pooling.

Three main principles have been considered in designing the aggregation module.
First, themodule should be able to process different numbers of images (i.e., different
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K ’s), as the video data source varies from person to person. Second, the aggregation
should be invariant to the image order, i.e., the result is unchanged when the image
sequences are reversed or reshuffled. This way, the aggregation module can handle
an arbitrary set of image or video faces without temporal information (e.g., those
collected from different Internet locations). Third, the module should be adaptive to
the input faces and has parameters trainable through supervised learning in a standard
face recognition training task.

The solution is inspired by the memory attention mechanism described in [20,
21, 37]. The idea therein is to use a neural model to read external memories through
a differentiable addressing/attention scheme. Such models are often coupled with
Recurrent Neural Networks (RNN) to handle sequential inputs/outputs [20, 21, 37].
Although an RNN structure is not needed here, its memory attention mechanism is
applicable to the aggregation task we consider here. In NAN, the frame-level face
features are treated as the memory, and feature weighting is casted as a memory
addressing procedure. Some “attention blocks” are employed in the aggregation
module to achieve this.

10.4.2.1 Attention Blocks

An attention block reads all feature vectors from the feature embedding module, and
generate linear weights for them. Specifically, let {fk} be the face feature vectors,
then an attention block filters them with a kernel q via dot product, yielding a set
of corresponding significances {ek}. They are then passed to a softmax operator
to generate positive weights {ak} with

∑
k ak = 1. These two operations can be

described by the following equations, respectively:

ek = qTfk (10.10)

ak = exp(ek)∑
j exp(e j )

. (10.11)

It can be seen that the above algorithm essentially selects one point inside of the
convex hull spanned by all the feature vectors.

In this way, the number of inputs {fk} does not affect the size of aggregation
r, which is of the same dimension as a single feature fk . Besides, the aggregation
result is invariant to the input order of fk : according to Eqs. 10.9, 10.10, and 10.11,
permuting fk and fk ′ has no effects on the aggregated representation r. Furthermore,
an attention block is modulated by the filter kernel q, which is trainable through
standard backpropagation and gradient descent.
Single attention block—Universal face feature quality measurement. The adaptive
aggregation can be by achieved by using one attention block. In this case, vector q
is the parameter to learn. It has the same size as a single feature f and serves as a
universal prior measuring the face feature quality.
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Fig. 10.3 Face images in the IJB-A dataset, sorted by their scores (values of e in Eq. 10.10) from a
single attention block trained in the face recognition task. The faces in the top, middle, and bottom
rows are sampled from the faces with scores in the highest 5%, a 10% window centered at the
median, and the lowest 5%, respectively

Table 10.1 Ablation study on the IJB-A dataset. TAR/FAR: true/false accept rate for verification.
TPIR/FPIR: true/false positive identification rate for identification

1:1 Verification TAR@FAR of: 1:N identification TPIR@FPIR of:

Method 0.001 0.01 0.01 0.1

CNN+AvgPool 0.771 0.913 0.634 0.879

NAN single
attention

0.847 0.927 0.778 0.902

NAN cascaded
attention

0.860 0.933 0.804 0.909

To test the performance, we train the network for video face verification (see
Sects. 10.4.3 and 10.5 for details) on the IJB-A dataset [22] with the extracted face
features, and Fig. 10.3 shows the sorted scores of all the faces images in the dataset.
It can be seen that after training, the network favors high-quality face images, such
as those of high resolutions and with relatively simple backgrounds. It down-weights
face images with blur, occlusion, improper exposure, and extreme poses. Table 10.1
shows that the network achieves higher accuracy than the average pooling strategy
in the verification and identification tasks.

Cascaded two attention blocks—Content-aware aggregation. Although good perfor-
mance can be achieved by the universal quality assessment, a content-aware aggre-
gation can potentially perform even better. The intuition behind is that face image
variation may be expressed differently at different geographic locations in the fea-
ture space (i.e., for different persons), and content-aware aggregation can learn to
select features that are more discriminative for the identity of the input image set. To
this end, we can employ two attention blocks in a cascaded and end-to-end fashion
described as follows.

Let q0 be the kernel of the first attention block, and r0 be the aggregated feature
with q0. We adaptively compute q1, the kernel of the second attention block, through
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Fig. 10.4 Typical examples showing the weights of the images computed by the NAN. In each
row, five face images are sampled from an image set and sorted based on their weights (numbers in
the rectangles); the rightmost bar chart shows the sorted weights of all the images in the set (heights
scaled)
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a transfer layer taking r0 as the input:

q1 = tanh(Wr0 + b), (10.12)

whereW and b are the weight matrix and bias vector of the neurons, respectively, and
tanh(x) = ex−e−x

ex+e−x imposes the hyperbolic tangent nonlinearity. The feature vector r1

generated by q1 will be the final aggregation results. Therefore, (q0,W,b) are now
the trainable parameters of the aggregation module.

We train the network on the IJB-A dataset again, and Table 10.1 shows that the
network obtained better results than using single attention block. Figure 10.4 shows
some typical examples of the weights computed by the trained network for different
videos or image sets. In all the remaining experimental results, we use the cascaded
two attention block design in the NAN (as per Fig. 10.2).

10.4.3 Network Training

The NAN network can be trained for either face verification or face identification
tasks with standard configurations.

For verification, a Siamese neural aggregation network structure [38] with two
NANs sharingweights can be employed tominimize the average contrastive loss [39]:
li, j = yi, j ||r1i − r1j ||22 + (1−yi, j )max(0,m − ||r1i − r1j ||22), where yi, j =1 if the pair
(i, j) is from the same identity and yi, j =0 otherwise. The constant m is set to 2 in
all the experiments in the next section. For identification, a fully connected layer is
added on top of NAN followed by a softmax to minimize the average classification
loss: li = − log pi,yi where yi is the target label of the i-th video instance, pi,yi =
exp(pi,yi )∑
z exp(pi,z)

, and pi,z is the z-th output of the fully connected layer.
The two modules of NAN can be trained either simultaneously in an end-to-end

fashion, or separately one by one. While millions of still images can be obtained for
training nowadays [10, 11, 16], it appears not practical to collect such amount of
distinctive face videos or sets. So, we opt for first training the CNN in the feature
embedding module on single images with the identification task, then training the
aggregation module on top of the features extracted by CNN. More details can be
found in Sect. 10.5.1.
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10.5 Experiments

This section evaluates the performance of different methods as well as the NAN
network. We will begin with introducing our training details, followed by reporting
the results on three video face recognition datasets: the IARPA Janus Benchmark A
(IJB-A) [22], the YouTube Face dataset [1], and the Celebrity-1000 dataset [7].

10.5.1 Training Details

To train the CNN, we use about 3M face images of 50K identities crawled from the
Internet to perform image-based identification. The faces are detected using the JDA
method [40], and aligned with the LBF method [41]. The input image size is 224 ×
224. After training, the CNN is fixed and we focus on analyzing the effectiveness
of different frame-feature pooling and set distance computation strategies as well as
the neural aggregation module of NAN.

The aggregationmodule of NAN is trained on each video face dataset we tested on
with standard backpropagation and an RMSProp solver [42]. An all-zero parameter
initialization is used, i.e., we start from average pooling. The batch size, learning
rate, and iteration are tuned for each dataset. As the network is quite simple and
image features are compact (128-d), the training process is quite efficient: training
on 5K video pairs with ∼1M images in total only takes less than 2 min on a CPU of
a desktop PC.

10.5.2 Methods for Evaluation

We compare the results of simple aggregation strategies such as average pooling, the
set-to-set similarity measurements leveraging pairwise frame-feature comparison,
and theNAN.Unless specified,we simply use L2 feature distance for face recognition
(all features are normalized; thus it’s equivalent to angular distance). It is possible to
combine with an extra metric learning or template adaption technique [12] to further
boost the performance on each dataset.

In these competing methods, CNN+Min L2, CNN+Max L2, CNN+Mean L2, and
CNN+SoftMin L2 measure the similarity of two video faces based on the L2 feature
distances of all frame pairs. They necessitate storing all image features of a video,
i.e., with O(n) space complexity. The first three use the minimum, maximum, and
mean pairwise distance, respectively, thus having O(n2) complexity for similarity
computation. CNN+SoftMin L2 corresponds to a SoftMax similarity score and is
described in Sect. 10.3. It has O(m ·n2) complexity for distance computation where
m is the number of scaling factor β used. In our experiments, we tested 20 combina-
tions of β’s including single or multiple values and report the best results obtained.
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CNN+MaxPool andCNN+AvePool are, respectively, max pooling and average pool-
ing along each feature dimension for aggregation. These two methods as well as the
NAN produce a 128-d feature representation for each video and compute the simi-
larity in O(1) time.

Apart from these methods for which the training and testing results are obtained
by us, we also compare with the prior art on each dataset, including both traditional-
and deep learning-based methods.

10.5.3 Results on IJB-A Dataset

The IJB-A dataset [22] contains face images and videos captured from unconstrained
environments. It features full pose variation andwidevariations in imaging conditions
thus is very challenging. There are 500 subjects with 5,397 images and 2,042 videos
in total and 11.4 images and 4.2 videos per subject on average. We detect the faces
with landmarks using STN [43] face detector, and then align the face image with
similarity transformation.

In this dataset, each training and testing instance is called a “template,” which
comprises 1 to 190 mixed still images and video frames. Since one template may
containmultiplemedias and the dataset provides themedia id for each image, another
possible aggregation strategy is first aggregating the frame features in each media
then the media features in the template [12, 44]. This strategy is also tested in this
work with CNN+AvePool and our NAN. Note that media id may not be always
available in practice.

We test the methods on both the “compare” protocol for 1:1 face verification and
the “search” protocol for 1:N face identification. For verification, the true accept
rates (TAR) versus false positive rates (FAR) are reported. For identification, the true
positive identification rate (TPIR) versus false positive identification rate (FPIR) and
the Rank-N accuracies are reported. Table 10.2 presents the numerical results of
different methods, and Fig. 10.5 shows the receiver operating characteristics (ROC)
curves for verification as well as the cumulative match characteristic (CMC) and
decision error trade-off (DET) curves for identification. The metrics are calculated
according to [22, 47] on the 10 splits.

In general, CNN+Max L2, CNN+Min L2, and CNN+MaxPool perform worst
among the naive pooling and pairwise distance-based methods. CNN+SoftMin L2

performs slightly better than CNN+MaxPool. The use of media id significantly
improves the performance of CNN+AvePool, but gives a relatively small boost to
NAN. We believe NAN already has the robustness to templates dominated by poor
images from a few media. Without the media aggregation, NAN outperforms all the
naive pooling or pairwise distance-basedmethods by appreciablemargins, especially
on the low FAR cases. For example, in the verification task, the TARs of NAN at
FARs of 0.001 and 0.01 are, respectively, 0.860 and 0.933, reducing the errors of the
best results from these methods by about 39% and 23%, respectively.
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Fig. 10.5 Average ROC (Left), CMC (Middle), and DET (Right) curves of different methods on
the IJB-A dataset over 10 test splits

With the media aggregation, the NAN achieves top performances compared to
previous methods. It has a same verification TAR at FAR=0.1 and identification
Rank-10 CMC as the method of [12], but outperforms it on all other metrics (e.g.,
0.881versus0.836 TARs at FAR=0.01, 0.817versus0.774 TPIRs at FPIR=0.01, and
0.958versus0.928 Rank-1 accuracy).

Figure 10.4 has shown some typical examples of the weighting results. NAN
exhibits the ability to choose high-quality andmore discriminative face images while
repelling poor face images.

10.5.4 Results on YouTube Face dataset

We then test the different methods on the YouTube Face (YTF) dataset [1] which is
designed for unconstrained face verification in videos. It contains 3,425 videos of
1,595 different people, and the video lengths vary from 48 to 6,070 frames with an
average length of 181.3 frames. Ten folds of 500 video pairs are available, and we
follow the standard verification protocol to report the average accuracy with cross-
validation. We again use the STN and similarity transformation to align the face
images.

The face verification results of different methods are presented in Table 10.3,
with their ROC curves shown in Fig. 10.6. Again, CNN+Max L2, CNN+Min L2,
and CNN+MaxPool perform worse than CNN+Mean L2,CNN+SoftMin L2, and
CNN+AvePool. CNN+SoftMin L2 performs best among these methods, with accu-
racy slighter higher than CNN+Mean L2 and CNN+AvePool. The NAN outperforms
all these naive pooling or pairwise distance-based methods. The gaps between NAN
and their best-performing ones are smaller compared to the results on IJB-A. This
is because the face variations in this dataset are relatively small (compare the exam-
ples in Figs. 10.7 and 10.4), thus no much beneficial information can be extracted
compared to naive average pooling or computing mean L2 distances.

Compared to the previous methods, NAN achieves a mean accuracy of 95.72%,
reducing the error of FaceNet by 12.3%. Note that FaceNet is also based on a
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Table 10.3 Verification accuracy comparison of different methods on the YTF dataset

Method Accuracy (%) AUC

LM3L [48] 81.3 ± 1.2 89.3

DDML(combined)[9] 82.3 ± 1.5 90.1

EigenPEP [6] 84.8 ± 1.4 92.6

DeepFace-single [10] 91.4 ± 1.1 96.3

DeepID2+ [17] 93.2 ± 0.2 –

Wen et al. [19] 94.9 –

FaceNet [11] 95.12 ± 0.39 –

VGG-Face [16] 97.3 –

CNN+Max. L2 91.96 ± 1.1 97.4

CNN+Min. L2 94.96 ± 0.79 98.5

CNN+Mean L2 95.30 ± 0.74 98.7

CNN+SoftMin L2 95.36 ± 0.77 98.7

CNN+MaxPool 88.36 ± 1.4 95.0

CNN+AvePool 95.20 ± 0.76 98.7

NAN 95.72 ± 0.64 98.8
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Fig. 10.6 Average ROC curves of different methods on the YTF dataset over the 10 splits
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Fig. 10.7 Typical examples on the YTF dataset showing the weights of the video frames computed
by NAN. In each row, five frames are sampled from a video and sorted based on their weights
(numbers in the rectangles); the rightmost bar chart shows the sorted weights of all the frames
(heights scaled)

GoogLeNet-style network, and it uses the average similarity of all pairs of 100
frames in each video (i.e., 10K pairs) [11]. The VGG-Face [16] achieves an accuracy
(97.3%) higher than NAN. However, that result is based on a further discriminative
metric learning on YTF, without which the accuracy is only 91.5% [16].

10.5.5 Results on Celebrity-1000 Dataset

The Celebrity-1000 dataset [7] is designed to study the unconstrained video-based
face identification problem. It contains 159,726 video sequences of 1,000 human
subjects, with 2.4M frames in total (∼15 frames per sequence). We use the provided
five facial landmarks to align the face images. Two types of protocols—open set and
close set—exist on this dataset. In the open-set protocol, 200 subjects are used for
training, while video sequences of the rest 800 subjects are used as the gallery set and
probe set at the testing stage. There are four different settings with different numbers
of probe and gallery subjects: 100, 200, 400, and 800. In the close-set protocol, the
video sequences from all 1,000 subjects are divided into a training (gallery) subset
and a testing (probe) subset. There are also four settings for close set: 100, 200, 500,
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Table 10.4 Identification performance (rank-1 accuracies, %) on the Celebrity-1000 dataset for
the close-set tests

Method Number of subjects

100 200 500 1000

MTJSR [7]
50.60 40.80 35.46 30.04

Eigen-PEP [6]
50.60 45.02 39.97 31.94

CNN+Mean L2
85.26 77.59 74.57 67.91

CNN+AvePool -
VideoAggr 86.06 82.38 80.48 74.26

CNN+AvePool -
SubjectAggr 84.46 78.93 77.68 73.41

NAN-VideoAggr
88.04 82.95 82.27 76.24

NAN-
SubjectAggr 90.44 83.33

82.27 77.17

Table 10.5 Identification performance (rank-1 accuracies, %) on the Celebrity-1000 dataset for
the open-set tests

Method Number of subjects

100 200 400 800

MTJSR [7]
46.12 39.84 37.51 33.50

Eigen-PEP [6]
51.55 46.15 42.33 35.90

CNN+Mean L2
84.88 79.88 76.76 70.67

CNN+AvePool -
SubjectAggr 84.11 79.09 78.40 75.12

NAN -
SubjectAggr 88.76 85.21 82.74 79.87

and 1000 subjects. More details about the protocols and the dataset can be found in
[7].

Close-set tests:
For the close-set protocol, we first train the network on the video sequences with
the identification loss. We take the FC layer output values as the scores and the
subject with the maximum score as the result. We also train a linear classifier for
CNN+AvePool to classify each video feature. As the features are built on video
sequences,we call this approach “VideoAggr” to distinguish it fromanother approach
to be described next. Each subject in the dataset has multiple video sequences, thus
we can build a single representation for a subject by aggregating all available images
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Fig. 10.8 The CMC curves of different methods on Celebrity-1000

in all the training (gallery) video sequences. We call this approach “SubjectAggr.”
This way, the linear classifier can be bypassed, and identification can be achieved
simply by comparing the feature L2 distances.

The results are presented in Table 10.4. Note that [6, 7] are not using deep learning
and no deep network-based method reported result on this dataset. So we mainly
compare NAN and the naive pooling or pairwise distance-based methods. It can
be seen from Table 10.4 and Fig. 10.8a that NAN consistently outperforms these
methods for both “VideoAggr” and “SubjectAggr.” Significant improvements are
achieved for the “SubjectAggr” approach. It is interesting to see that, “SubjectAggr”
leads to a clear performance drop for CNN+AvePool compared to its “VideoAggr.”
This indicates that the naive aggregation gets even worse when applied on the subject
level with multiple videos. However, our NAN can benefit from “SubjectAggr,”
yielding results consistently better than or on par with the “VideoAggr” approach
and delivers a considerable accuracy boost compared to the naive approaches. This
suggests our NAN works quite well on handling large data variations.
Open-set tests:
We then test the NAN with the close-set protocol. We first train the network on
the provided training video sequences. In the testing stage, we take the “Subjec-
tAggr” approach described before to build a highly compact face representation for
each gallery subject. Identification is perform simply by comparing the L2 distances
between aggregated face representations.

The results in both Table 10.5 and Fig. 10.8b show that the NAN significantly
reduces the error of CNN+AvePool. This again suggests that in the presence of large
face variances, the widely used strategies such as average-pooling aggregation and
the pairwise distance computation are far from optimal. In such cases, the learned
NAN model is clearly more powerful, and the aggregated feature representation by
it is more favorable for the video face recognition task.
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10.6 Conclusions

In this chapter, we summarized the existing deep learning techniques for video-based
face recognition. All these methods apply a deep CNN to extract image-level deep
features for the video/image sets, and the key for recognition is how to measure
the distance between two feature sets or how to aggregate the image-level features
to obtain a video-level feature. For this, we reviewed some naive yet commonly
used strategies, including feature pooling and pairwise feature distance computation.
As shown in the experiments, most of these simple strategies are effective and the
results are significantly better than traditional methods with handcrafted features.
We further presented the neural aggregation network for video face representation
and recognition. NAN fuses all input frames with a set of content-adaptive weights,
resulting in a compact representation that is invariant to the input frame order. The
aggregation scheme has small computation and memory footprints, but can generate
quality face representations after training. The experimental results demonstrate that
it outperforms the pairwise image feature distance computation or pooling-based
methods by a wide margin.

References

1. Wolf L, Hassner T,Maoz I (2011) Face recognition in unconstrained videoswithmatched back-
ground similarity. In: IEEE conference on computer vision and pattern recognition (CVPR),
pp 529–534

2. Li H, Hua G, Lin Z, Brandt J, Yang J (2013) Probabilistic elastic matching for pose variant
face verification. In: IEEE conference on computer vision and pattern recognition (CVPR), pp
3499–3506

3. Wolf L, Levy N (2013) The SVM-minus similarity score for video face recognition. In: IEEE
conference on computer vision and pattern recognition (CVPR), pp 3523–3530

4. Cui Z, Li W, Xu D, Shan S, Chen X (2013) Fusing robust face region descriptors via multiple
metric learning for face recognition in the wild. In: IEEE conference on computer vision and
pattern recognition (CVPR), pp 3554–3561

5. Mendez-Vazquez H, Martinez-Diaz Y, Chai Z (2013) Volume structured ordinal features with
background similarity measure for video face recognition. In: International conference on
biometrics (ICB)

6. Li H, Hua G, Shen X, Lin Z, Brandt J (2014) Eigen-PEP for video face recognition. In: Asian
conference on computer vision (ACCV), pp 17–33

7. Liu L, Zhang L, Liu H, Yan S (2014) Toward large-population face identification in uncon-
strained videos. IEEE Trans Circuits Syst Video Technol 24(11):1874–1884

8. Parkhi OM, Simonyan K, Vedaldi A, Zisserman A (2014) A compact and discriminative face
track descriptor. In: IEEE conference on computer vision and pattern recognition (CVPR), pp
1693–1700

9. Hu J, Lu J, Tan Y-P (2014) Discriminative deep metric learning for face verification in the wild.
In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1875–1882

10. Taigman Y, YangM, RanzatoM,Wolf L (2014) DeepFace: closing the gap to human-level per-
formance in face verification. In: IEEE conference on computer vision and pattern recognition
(CVPR), pp 1701–1708



10 Deep Learning for Video Face Recognition 231

11. Schroff F, Kalenichenko D, Philbin J (2015) FaceNet: a unified embedding for face recognition
and clustering. In: IEEE conference on computer vision and pattern recognition (CVPR), pp
815–823

12. CrosswhiteN,Byrne J, ParkhiOM,Stauffer C,CaoQ, ZissermanA (2016) Template adaptation
for face verification and identification. arXiv:1603.03958

13. Yang J, Ren P, Zhang D, Chen D, Wen F, Li H, Hua G (2017) Neural aggregation network
for video face recognition. In: IEEE conference on computer vision and pattern recognition
(CVPR)

14. Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000
classes. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1891–
1898

15. Lu C, Tang X (2015) Surpassing human-level face verification performance on LFW with
gaussianface. In: AAAI conference on artificial intelligence (AAAI), pp 3811–3819

16. Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. In: British machine vision
conference (BMVC), vol 1, no 3, p 6

17. Sun Y, Wang X, Tang X (2015) Deeply learned face representations are sparse, selective, and
robust. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2892–2900

18. Masi I, Rawls S, Medioni G, Natarajan P (2016) Pose-aware face recognition in the wild. In:
IEEE conference on computer vision and pattern recognition (CVPR), pp 4838–4846

19. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face
recognition. In: European conference on computer vision (ECCV), pp 499–515

20. Graves A, Wayne G, Danihelka I (2014) Neural turing machines. CoRR. arXiv:1410.5401
21. Vinyals O, Bengio S, Kudlur M (2016) Order matters: sequence to sequence for sets. In:

International conference on learning representation
22. Klare BF, Klein B, Taborsky E, Blanton A, Cheney J, Allen K, Grother P, Mah A, Burge M,

Jain AK (2015) Pushing the frontiers of unconstrained face detection and recognition: Iarpa
janus benchmark a. In: IEEE conference on computer vision and pattern recognition (CVPR),
pp 1931–1939

23. Lee K-C, Ho J, Yang, M-H, Kriegman D (2003) Video-based face recognition using proba-
bilistic appearance manifolds. In: IEEE conference on computer vision and pattern recognition
(CVPR)

24. Shakhnarovich G, Fisher JW, Darrell T (2002) Face recognition from long-term observations.
In: European conference on computer vision (ECCV), pp 851–865

25. Zhou SK, Rama C (2005) Beyond one still image: face recognition from multiple still images
or a video sequence, pp 547–575

26. Arandjelovic O, Shakhnarovich G, Fisher J, Cipolla R, Darrell T (2005) Face recognition with
image sets using manifold density divergence. In: IEEE conference on computer vision and
pattern recognition (CVPR)

27. Cevikalp H, Triggs B (2010) Face recognition based on image sets. In: IEEE conference on
computer vision and pattern recognition (CVPR), pp 2567–2573
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Chapter 11
Thermal-to-Visible Face Synthesis
and Recognition

Xing Di, He Zhang, and Vishal M. Patel

Face is one of the most widely used biometrics. One key advantage of using faces
as a biometric is that they do not require the cooperation of the test subject. Various
face recognition (FR) systems have been developed over the last two decades. Recent
advances in machine learning and computer vision methods have provided robust
systems that achieve significant gains in performance of face recognition systems [5,
19]. Deep learning methods, enabled by the vast improvements in processing hard-
ware coupled with the ubiquity of face data and algorithmic development, have led to
significant improvements in face recognition accuracy, particularly in unconstrained
scenarios [4, 5, 19, 20, 27]. Also, largely driven by social network companies,
progress in face recognition research, development, and deployment have focused
on faces collected in visible regimes of the electromagnetic spectrum.

Thermal imaging has been proposed for night-time and low-light face recognition
when external illumination is not feasible due to various collection considerations.
The infrared spectrum can be divided into a reflection-dominated region consisting
of the near-infrared (NIR) and shortwave-infrared (SWIR) bands, and an emission-
dominated thermal region consisting of themidwave infrared (MWIR) and longwave
infrared (LWIR) bands [23]. Thermal face images, while having a strong signature at
night time, are not carefully maintained in biometric-enabled watch lists and so must
be compared with visible-light face images to enable face recognition in low lighting
conditions. This introduces the additional complexity of performing cross-domain
matching (see Fig. 11.1).
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Fig. 11.1 Examples of a visible-LWIR pair [22], b visible-polarimetric pair [28], c visible-MWIR
pair [22], and d visible-NIR pair [22]

It is well known that deep learning methods are tuned to perform well on data of a
particular type on which they are trained and often lose effectiveness when presented
with data from a different domain. Domain adaptation and transfer learning methods
have been proposed to bridge this gap between data from different source and tar-
get domains [18]. Transfer learning usually involves fine-tuning a pre-trained neural
network model (that is trained on source domain data) on target domain data and
this requires availability of sufficient samples from target domain. For applications
such as thermal-to-visible face matching, there are limited databases available with
corresponding visible and thermal face imagery and, as discussed earlier, a large
modality and performance gap exists between the two domains. Furthermore, with
limited training data, training a Siamese-like network for cross-domain face verifi-
cation may result in over-fitting to the limited training samples. Hence, this kind of
cross-domain verification network may not be able to generalize well to testing sets.
In this chapter, we focus on an alternative solution for cross-domain verification.
Rather than directly learning a domain adaptive network, one can leverage a network
to synthesize visible faces first from thermal faces and then use a pre-trained face
recognition network for face verification. We provide a review of such methods [7,
8, 26, 30, 31] in this chapter.
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Fig. 11.2 Electromagnetic spectrum map: face recognition research challenges across the band.
The illustrated wavelengths are in µm

11.1 The Infrared Spectrum

As discussed earlier, most face recognition systems depend on the usage of face
images captured in the visible range of the electromagnetic spectrum, i.e., 380–
750 nm. However, in real-world scenarios (military and law enforcement), we deal
with harsh environmental conditions characterized by unfavorable lighting and pro-
nounced shadows. Such an example is a night time environment [2], where human
recognition based solely on various detectors (see Fig. 11.2).

Specifically, the infrared (IR) spectrum is comprised of the active IR and the
thermal (passive) IR band. The active IR band (0.7−2.5 µm) is divided into the NIR
(near-infrared) and the SWIR (shortwave-infrared) spectrum. The SWIR has a longer
wavelength range than NIR and is more tolerant to low levels of obscurants like fog
and smoke. Differences in appearance between images sensed in the visible and the
active IR bands are due to the properties of the object being imaged. The passive
IR band is further divided into the Midwave (MWIR) and the Longwave Infrared
(LWIR) bands. MWIR ranges from 3 to 5 µm, while LWIR ranges from 7 to 14 µm.
Both MWIR and LWIR cameras can sense temperature variations across the face
at a distance, and produce thermograms in the form of 2D images. However, while
both pertain to the thermal spectrum, they reveal different image characteristics
of the facial skin. The difference between MWIR and LWIR is that MWIR has
both reflective and emissive properties, whereas LWIR consists primarily of emitted
radiation. The importance of FR outside the visible spectrum has been recently
discussed in our previous work in [1, 3].

11.2 GAN-Based Synthesis of Visible Faces From Thermal
Faces

Thermal-to-visible synthesis is an important step of a cross-modal face matching
system. The large modality gap caused by differences in the physics of image acqui-
sition and formation processes, themeasured visible face signatures are very different
from that of the thermal face signatures. This in turn makes the cross-domain face
recognition challenging. Various methods have been developed in the literature for
bridging this gap.
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One possible solution to this problem is to improve the cross-domain face recog-
nition performance by designing novel neural network architectures that minimize
the distribution change between the domains. However, it is still of great importance
to guarantee that the human examiners can identify whether the given thermal and
the visible image share the same identity or not. Consider the thermal face images
shown in the even columns of Fig. 11.1. The corresponding visible images are also
shown in the odd columns of Fig. 11.1. As can be seen from these images, it is
extremely difficult for either human examiners or existing face recognition systems
to determine whether these images share the same identity. Hence, methods that can
automatically generate high-quality visible images from their corresponding thermal
images are needed.

11.2.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks were proposed by Goodfellow et al. in [11] to
synthesize realistic images by effectively learning the distribution of training images.
The authors adopted a game theoretic min-max optimization framework to train
two models: a generative model, G, and a discriminative model, D. The success of
GANs in synthesizing realistic images has led to researchers exploring the adversarial
loss for numerous computer vision and image processing applications such as style
transfer, image in-painting, image-to-image translation, image super-resolution, and
image restoration. Inspired by the success of these methods, many approaches have
been proposed that make use of the adversarial loss to learn the distribution of visible
face images for their accurate estimation.

In order to learn a good generator G so as to fool the learned discriminator D and
to make the discriminator D good enough to distinguish synthesized visible image
from real ground truth, the method alternatively updates G and D following the
structure proposed in [13]. Given an input polarimetric image X , conditional GAN
aims to learn amapping function to generate output image Y by solving the following
optimization problem:

min
G

max
D

EX∼pdata(X)
[log(1 − D(X,G(X)))] + EX∼pdata(X,Y )

[log D(X,Y )].
(11.1)

11.2.2 GAN-Based Synthesis Network

In a recent work [30], a unified GAN-based synthesis network was proposed that can
directly learn an end-to-end mapping between the thermal image and its correspond-
ing visible image. The proposed network contains an encoder-decoder structure,
where the learned visible features can be regarded as the output of the encoder part
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Fig. 11.3 An overview of the GAN-based image synthesis method proposed in [30]. It consists of
three modules. a Visible feature extraction module, b guidance sub-network, and c visible image
reconstruction module. Firstly, the visible feature is extracted from the raw thermal image. Then, to
make sure that the learned feature can better reconstruct the visible image, a guidance sub-network
is involved into the optimization. Finally, the guided feature is used to reconstruct the photorealistic
visible image using the combination of different losses

and input for the decoder part. To guarantee the reconstructability of the encoded
features and to make sure that the leaned features contain geometrically meaningful
information, a guidance sub-network was introduced at the end of the visible feature
extraction part. The overall network architecture is shown in Fig. 11.3.

To overcome the side effect of blurry results brought by the traditional Euclidean
loss (LE loss) and to discriminate the generated visible face images from their corre-
sponding ground truth, a GAN structure is deployed. Even though GAN’s structure
can generate more reasonable results compared to the tradition LE loss, it has been
shown that the results generated by the traditional GAN contain undesirable facial
artifacts, resulting in a less photorealistic image [30]. To address this issue and
meanwhile generate visually pleasing results, the perceptual loss is included in the
network, where the perceptual loss is evaluated on the pre-trained VGG-16 model.

As the ultimate goal of the synthesis method is to guarantee that human examiners
can identify the person given his/her synthesized face images, it is also important to
involve the discriminative information into consideration. Similar to the perceptual
loss, an identity preserving loss is also proposed that is evaluated on a certain layer
of the fine-tuned VGG-thermal model.

An encoder-decoder structure is adapted as the basis in the generator part. Basi-
cally, the generator can be divided into two parts. Firstly, a set of convolutional layers
with stride 2 combined with a set of residual blocks are regarded as visible feature
estimation part. Specifically, the residual blocks are composed of two convolutional
layers with 3 × 3 kernels and 64 feature maps followed by batch-normalization lay-
ers and Parametric Rectified Linear Unit (PReLU) as the activation function. Then,
a set of transpose convolutional layers with stride 2 are denoted as the visible image
reconstruction procedure. Tomake sure that the transformed features contain enough
semantic information, a guided sub-part is enforced in the network. Meanwhile, to
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make the generated visible face images indistinguishable from the ground truth vis-
ible face images, a CNN-based differentiable discriminator is used as a guidance to
guide the generator in generating better visual results. For the discriminator, Patch-
GANs [13] are used to discriminate whether the given images are real or fake.

The network is trained using the following loss functions: the Euclidean LE(G) loss
enforced on the recovered visible image, the LE loss enforced on the guidance part,
the adversarial loss to guarantee more sharp results, the perceptual loss to preserve
more photorealistic details, and the identity loss to preserve more distinguishable
information for the outputs. The overall loss function is defined as follows:

Lall = LE + LE(G) + λAL A + λP L P + λI L I , (11.2)

where LE denotes the Euclidean loss, LE(G) denotes the Euclidean loss on the guid-
ance sub-network, L A represents the adversarial loss, LP indicates the perceptual
loss, and L I is the identity loss. Here, λA, λP , and λI are the corresponding weights.
The LE and the adversarial losses are defined as follows:

LE , LE(G) = 1

WH

W∑

w=1

H∑

h=1

‖φG(I )w,h − Yw,h
t ‖2, (11.3)

L A = − log(φD(φG(I )c,w,h), (11.4)

where I is the input thermal image, Yt is the ground truth visible image, W × H
is the dimension of the input image, φG is the generator sub-network G, and φD is
the discriminator sub-network D. As the perceptual loss and the identity losses are
evaluated on a certain layer of the given CNNmodel, both can be defined as follows:

LP,I = 1

CiWi Hi

Ci∑

c=1

Wi∑

w=1

Hi∑

h=1

‖V (φE (I ))c,w,h − V, (Yt )
c,w,h‖2, (11.5)

where Yt is the ground truth visible image, φE is the proposed generator, V represents
a non-linear CNN transformation, and Ci ,Wi , Hi are the dimensions of a certain
high-level layer V , which differs for perceptual and identity losses.

Multiple experiments were evaluated on different experimental protocols using
the ARL polarimetric thermal dataset [30] and it was demonstrated that this method
is able to produce good quality visible images from input thermal images. A polari-
metric thermal image consists of three Stokes images: S0, S1, S2, and degree-of-
linear-polarization (DoLP) image, where S0 indicates the conventional total intensity
thermal image, S1 captures the horizontal and vertical polarization-state information,
S2 captures the diagonal polarization-state information, and DoLP describes the por-
tion of an electromagnetic wave that is linearly polarized [12]. These Stokes images
along with the visible and the polarimetric images corresponding to a subject in the
ARL dataset [12] are shown in Fig. 11.4. A polarimetric signature/image in this work
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Fig. 11.4 Sample Stokes as
well as polarimetric and
visible images corresponding
to a subject in the ARL
dataset [12]

Visible S0

DoLP

S1

S2 Polar

was defined as consisting of three Stokes images (S0, S1, S2) as its three channels,
analogous to the RGB channels in visible color imagery.

11.3 Synthesis of High-Quality Visible Faces From
Polarimetric Thermal Faces Using GANs

Though the GAN-based method described in previous section is able to effectively
synthesize photorealistic visible face images from polarimetric thermal images, the
results are still far from optimal [30]. One possible reason is that [30] concatenate the
Stokes images into a single-input sample without any additional attempts to capture
multi-channel information inherently present in the different Stokes (modalities)
images from the thermal infrared band. In order to efficiently leverage themultimodal
information provided by the polarimetric thermal images, a novel GAN-based multi-
stream feature-level fusion method for synthesizing visible images from thermal
images was recently proposed in [31].

In particular, the GAN-based method proposed in [31] consists of a generator,
a discriminator sub-network, and a deep guided sub-network (see Fig. 11.5). The
generator is composed of a multi-stream encoder-decoder network based on dense-
residual blocks, the discriminator is designed to capture features at multiple scales
for discrimination and the deep guided subnet aims to guarantee that the encoded
features contain geometric and texture information to recover the visible face. To
further enhance the network’s performance, it is guided by the perceptual loss and
an identity preserving loss in addition to the adversarial loss. It was shown that once
the face images are synthesized, any off-the-shelf face recognition and verification
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Fig. 11.5 An overview of the GAN-basedmulti-stream encoder-decoder network proposed in [31].
The generator contains a multi-stream feature-level fusion encoder-decoder network. In addition, a
deep-guided subnet is stacked at the end of the encoding part. The discriminator is composed of a
multi-scale patch-discriminator structure

networks trained on the visible-only face data can be used for matching. In particular,
features from the second last fully connected layer of the VGG-face network [17]
are extracted and the cosine distance is used to calculate the scores.

11.4 Thermal-to-Visible Face Verification Via
Attribute-Preserved Synthesis

In a recent work [8], a different approach was proposed to the problem of thermal
to visible matching. Figure 11.6 compares the traditional cross-modal verification
problem with that of the new attribute-preserved cross-modal verification approach
proposed in [8].Given a visible and thermal pair, the traditional approachfirst extracts
some features from these images and then verifies the identity based on the extracted
features [15] (see Fig. 11.6b). In contrast, a novel framework was proposed in which
the authors make use of the attributes extracted from the visible image to synthesize
the attribute-preserved visible image from the input thermal image for matching
(see Fig. 11.6b). In particular, a pre-trained VGG-Face model [17] is used to extract
the attributes from the visible image. Then, a novel Attribute-Preserved Generative
Adversarial Network (AP-GAN) is proposed to synthesize the visible image from
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Fig. 11.6 a Traditional heterogeneous face verification approaches use the features directly
extracted from different modalities for verification [30]. b The heterogeneous face verification
approach proposed in [8] uses a thermal face and semantic attributes to synthesize a visible face.
Finally, deep features extracted from the synthesized and visible faces are used for verification

the thermal image guided by the extracted attributes. Finally, a deep network is used
to extract features from the synthesized and the input visible images for verification.

The AP-GANmodel proposed in [8] was inspired by the recent image generation
from attributes/text works [6, 21, 30]. The AP-GAN consists of two parts: (i) a
multimodal compact bilinear (MCB)pooling-basedgenerator [9, 10] and (ii) a triplet-
pair discriminator. The generator fuses the extracted attribute vector with the image
feature vector in the latent space.On the other hand, the discriminator uses triplet pairs
(real image/true attributes, fake image/true attributes, fake image/wrong attributes) to
not only discriminate between real and fake images but also to discriminate between
the image and the attributes. In order to generate high-quality and attribute-preserved
images, the generator is optimized by amulti-purpose objective function consisting of
adversarial loss [11], L1 loss, perceptual loss [14], identity loss [30], and attribute-
preserving loss. The entire AP-GAN framework is shown in Fig. 11.7. Extensive
experiments were conducted using the ARL Polarimetric face dataset and it was
shown that this method achieves significant synthesis and matching improvements
over the state-of-the-art methods.
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(a) AP-GAN Framework (b) Multimodal Compact
Bilinear (MCB) pooling

Fig. 11.7 a A U-net-based generator with MCB pooling is proposed in [8] to fuse the seman-
tic attribute information with the image feature in the latent space. A triplet pair is adopted for
the discriminator in order to discriminate fake/real images as well as the corresponding semantic
attributes. In order to generate high-quality and attribute-preserving images, a multi-purpose loss
is optimized for training the network. b The architecture of MCB. Here, FFT indicates the fast
Fourier transform and FFT−1 indicates the inverse FFT

11.5 Self-attention Guided Synthesis

In [7], a new approach to the problem of thermal-to-visible matching was proposed
by exploring the complementary information of different modalities. Figure 11.8
gives an overview of this approach [7]. Given a thermal-visible pair (xt , xv), these
images are first transformed into their spectrum counterparts using two trained gener-
ators as x̂v = Gt→v(xt ), x̂t = Gv→t (xv). Then a feature extractor network Feat , in
particular, the VGG-Face model [17], is used to extract features fxt = Feat (xt ),
fx̂v

= Feat (x̂v), fxv
= Feat (xv), and fx̂t = Feat (x̂t ). These features are then

fused to generate the gallery template gxv
= ( fxv

+ fx̂t )/2 and the probe template
gxt = ( fxt + fx̂v

)/2. Finally, the cosine similarity score between these feature tem-
plates is calculated for verification.

Note that CycleGAN-based networks [32] can be used to train these genera-
tors. However, experiments in [7] have shown that CycleGAN often fails to capture
the geometric or structural patterns around the eye and mouth regions of the face.
One possible reason could be that the network relies heavily on convolutions to
model the dependencies across different image regions. The long-range dependen-
cies are not well captured by the local receptive field of convolutional layers [29].
For improvement, the self-attention techniques were adopted from SAGAN [29].
The self-attention module was applied right before the last convolutional layer of the
generator and the discriminator. Given the feature maps, this module learns the atten-
tion maps by itself with a softmax function and then the learned attention maps are
multiplied with the feature maps to output the self-attention guided feature maps. In
addition, the generator is optimized by an objective function consisting of the adver-
sarial loss [11], L1 loss, perceptual loss [14], identity loss [30], and cycle-consistency
loss [32]. The entire synthesis framework is shown in Fig. 11.9.
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Fig. 11.8 An overview of the cross-modal face verification method proposed in [7]. Given a visible
gallery image xv , a generator network is used to synthesize the corresponding thermal image x̂t .
Similarly, given a polarimetric thermal probe image xt , a different generator network is used to
synthesize the corresponding visible image x̂v . Pre-trained CNNs are used to extract features from
the original and the synthesized images. These features are then fused to generate the gallery
template gxv and the probe template gxt . Finally, the cosine similarity score between these feature
templates is calculated for verification
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Fig. 11.9 Self-attention guided synthesis of visible images from polarimetric thermal input [7]. In
order to minimize the domain gap between different modalities, the input thermal/visible images
are directly mapped into the visible/thermal modality. In order to obtain the image-level style, the
pixel GAN loss (blue) and cycle consistency loss (green) are introduced. The feature-level semantic
information is captured by the identity and perceptual losses (yellow). Similar architecture was also
used for synthesizing thermal images from visible images
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(a) (b) (c) (d) (e) (f)

Fig. 11.10 The synthesized samples from different methods: Riggan et al. [25], Mahendran et al.
[16], Zhang et al. [30], Di et al. [8], ground truth. The first row results correspond to the S0 image,
and the second row results correspond to the Polar image

Table 11.1 Protocol I Verification performance comparison among the thermal-to-visible synthesis
and matching methods for both polarimetric thermal (Polar) and conventional thermal (S0) cases
on the ARL dataset

Method AUC (Polar) AUC (S0) EER (Polar) EER (S0)

Raw (%) 50.35 58.64 48.96 43.96

Mahendran et al.
[16] (%)

58.38 59.25 44.56 43.56

Riggan et al. [25]
(%)

75.83 68.52 33.20 34.36

GAN-VFS [30]
(%)

79.90 79.30 25.17 27.34

Riggan et al. [24]
(%)

85.42 82.49 21.46 26.25

AP-GAN [8] 88.93% ± 1.54% 84.16% ± 1.54% 19.02% ± 1.69% 23.90% ± 1.52%

Multi-stream
GAN [31]

96.03% 85.74% 11.78% 23.18%

Di et al. [7] 93.68% ± 0.97% 89.20% ± 1.56% 13.46% ± 1.92% 18.77% ± 1.36%

Figure 11.10 compares the synthesis performance of differentmethods on theARL
polarimetric thermal dataset [12]. As can be seen from this figure, in general, CNN-
based methods are able to provide good quality visible faces from thermal faces. In
particular, the attribute-based synthesis method [8] provides the best quality results.
Table 11.1 compares the face verification performance corresponding to different
synthesis methods on the ARL polarimetric thermal dataset. As can be seen from this
method, multi-stream GAN-based synthesis and the recently proposed self-attention
guided synthesis methods produce the best cross-modal face verification results on
the ARL polarimetric thermal dataset on Protocol I [7].
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11.6 Conclusion

In this chapter, we provided a review of recent deep CNN-based thermal-to-visible
face synthesis methods. In particular, GAN-based methods were reviewed and it was
shown that they can provide high-quality synthesis and matching performance on
different thermal modalities.
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Chapter 12
Obstructing DeepFakes by Disrupting
Face Detection and Facial Landmarks
Extraction

Yuezun Li and Siwei Lyu

Abstract Recent years have seen fast development in synthesizing realistic human
faces using AI technologies. AI-synthesized fake faces can be weaponized to cause
negative personal and social impact. In this work, we develop technologies to defend
individuals from becoming victims of recent AI-synthesized fake videos by sabo-
taging would-be training data. This is achieved by disrupting deep neural network
(DNN)-based face detection and facial landmark extraction method with specially
designed imperceptible adversarial perturbations to reduce the quality of the detected
faces. We empirically show the effectiveness of our methods in disrupting state-of-
the-art DNN-based face detectors and facial landmark extractors on several datasets.

12.1 Introduction

The recent advances in machine learning and the availability of vast volume of
online personal images and videos have drastically improved the synthesis of highly
realistic human faces in images [26, 27] and videos [8, 30, 67, 72]. While there are
interesting and creative applications of the AI face synthesis systems, they can also
be weaponized. Due to the strong association of faces to the identity of an individual,
well-crafted AI-synthesized fake videos can create illusions of a person’s presence
and activities that do not occur in reality (see Fig. 12.1), which can lead to serious
political, social, financial, and legal consequences [11]. The potential threats range
from revenge pornographic videos of a victim whose face is synthesized and spliced
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Fig. 12.1 Examples of AI-synthesized impersonation videos (DeepFakes). (top) Head puppetry
entails synthesizing a video of a target person’s head using a video of a source person’s head,
so the synthesized target appears to behave the same way as the source. (middle) Face swapping
(DeepFake) involves generating a video of the target with the faces replaced by synthesized faces
of the source while keeping the same facial expressions. (bottom) Lip syncing is to create a falsified
video by only manipulating the lip region

in to realistic videos of state leaders seeming to make inflammatory comments they
never actually made or a high-level executive commenting about her company’s
performance to influence the global stock market.

Foreseeing this threat, many forensic techniques aiming to detect AI-synthesized
faces in images or videos have been proposed recently [1, 20, 36, 37, 47, 85].
However, given the speed and reach of the propagation of online media, even the
currently best forensic techniqueswill largely operate in a postmortem fashion, appli-
cable only after AI-synthesized fake face images or videos emerge. In this work, we
aim to develop proactive approaches to protect individuals from becoming the vic-
tims of such attacks. The protection methods are complementary to the forensic
tools, and our solution is to add specially designed patterns known as the adversar-
ial perturbations that are imperceptible to human eyes but can result in detection
failures.

The rationale of our method is the following. High-quality AI face synthesis
models need large number of, typically in the range of thousands, sometimes even
millions, training face images collected using automatic face detection methods,
i.e., the face sets. Adversarial perturbations “pollute” a face set to have few actual
faces and many non-faces with low or no utility as training data for AI face synthesis
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models. Since the face detectors can be used to crop out the faces and facial landmarks
can be used to align the cropped faces to a standard coordinate for training, we focus
our study on adversarial perturbations to deep neural network (DNN)-based face
detectors, e.g., [25, 50, 66, 71, 74, 83, 87], and facial landmark extractors, e.g.,
[54, 65, 88]. Concretely, we first describe a new white-box adversarial perturbation
generation method, assuming the knowledge of the structure and parameters of the
underlying DNN models. We then discuss the feasibility of extending the white-box
method to attack black-box models of face detectors and facial landmark extractors.

12.2 Background and Related Works

AI Face Synthesis Methods. Synthesizing realistic faces using algorithms has
always been an important task in computer vision and computer graphics. Even with
sophisticated computer graphics systems (e.g., 3D Studio Max and Maya) and high-
resolution 3D surface models to render high-quality realistic human faces. However,
the process is lengthy, costly, and technically demanding for ordinary users.

This has been significantly changed with the recent development of Generative
Adversarial Networks (GANs) [4, 13, 18, 21, 24, 26, 28, 41, 63, 70], which lead
to more realistic synthesized faces with considerable reduction in time and cost.
For instance, fake videos generated with face swapping, commonly known as the
DeepFakes, can be used to create realistic impersonation videos. Specifically, to
make a DeepFake video, the faces of a target individual are replaced by the faces
of a donor individual synthesized by a DNN model trained using the target and the
donor’s faces, retaining the target’s facial expressions and head poses. Similarly,
whole face or upper-body reenactment can be synthesized with AI algorithms such
as Face2Face [72], ReenactGAN [77], and DeepPortrait [30], and even whole body
can be reenacted in [9] more recently.

Face Detection. The first efficient and effective face detector [73] uses Haar-type
features in a cascaded classifier based on AdaBoost. Subsequently, more robust,
effective, and efficient face detectors are proposed in the literature based on various
feature types such as LBP [52], SURF [34, 35], and DPMs [55]. Using the HOG
feature [12], software package DLib represents the state of the art for the pre-DNN
face detection methods.

Recently, DNN-based face detectors have becomemainstreamwith their high per-
formance and robustness with regard to variations in pose, expression, and occlusion.
There has been a plethora of DNN-based face detectors, e.g., [17, 25, 33, 50, 56–58,
66, 71, 74, 80, 81, 83, 87]. Regardless the idiosyncrasies of different detectors, they
all follow a similar work flow. First face proposals, which are potential candidate
regions corresponding to faces, are identified. Using face proposals avoids the more
expensive sliding window search. Each face proposal is then further classified by a
trained classifier, known as the backbone network to determine if the proposal is a
face. The prohibitive cost of searching optimal network structures and architectures
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makes the choice of the backbone network limited to two well-tested DNN mod-
els, namely, the VGG network [64] or the ResNet [22]. As reported on the leader
board of face detection challenge on the WIDER dataset [82], the top performance
is achieved from 23 DNN-based methods, all using VGG or ResNet as backbone
networks, differing in the numerical values of the parameters and model variants
(VGG16, VGG19 [64], ResNet50, or ResNet101 [22]).
Facial landmark extractors. The facial landmark extractors detect and locate key
points of important facial parts such as the tips of the nose, eyes, eyebrows, mouth,
and jaw outline. Earlier facial landmark extractors are based on simple machine
learning methods such as the ensemble of regression trees (ERT) [29] as in the Dlib
package [31]. The more recent ones are based on CNNmodels, which have achieved
significant improved performance over the traditional methods, e.g., [6, 23, 54, 65,
76, 88]. The current CNN-based facial landmark extractors typically contain two
stages of operations. In the first stage, a set of heat-maps (feature maps) are obtained
to represent the spatial probability of each landmark. In the second stage, the final
locations of facial landmarks are extracted based on the peaks of the heat-maps. In
this work, we mainly focus on attacking the CNN-based facial landmark extractors
because of their better performance.

Adversarial Perturbations. Adversarial perturbations are intentionally designed
noises that are imperceptible to human observers, yet can seriously reduce the deep
neural network performance if added to the input image. Many methods [2, 7, 14,
19, 32, 45, 48, 49, 53, 68, 86] have been proposed to impair image classifiers
by adding adversarial perturbations on the entire image. Recently, there have been
several works on adversarial perturbation generation for general object detectors
[10, 16, 38, 44, 78]. Most of these works are for the white-box setting and generate
adversarial perturbations for increasing mis-detection. Several recent works [40, 43,
51] have been proposed to use adversarial perturbations to disrupt object detectors
and classifiers. Other works [60, 84] target GAN-based models under the white-box
setting. Comparing to the existing methods, our method attacks the face detection
step, which is the first step in most AI-based face synthesis system. To date, there are
not many studies of the vulnerability of face detectors. Compared to the only existing
method [5], which uses a GAN model [19] to increase mis-detection of VGG16-
based Faster-RCNN face detector, our method optimizes specifically crafted loss
function with respect to image, to increase both the mis-detection and false detection
of different face detectors under different attack settings. Moreover, to date, there is
no existing work to attack CNN-based facial landmark extractors using adversarial
perturbations. Compared to the attack to image CNN-based classifiers, which aims
to change the prediction of a single label, disturbing facial landmark extractors is
more challenging as we need to simultaneously perturb the spatial probabilities of
multiple facial landmarks to make the attack effective.
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Fig. 12.2 Overview of the proposed method of disrupting AI face synthesis. Our aim is to use
the adversarial perturbations (amplified by 30 for better visualization) to distract DNN-based face
detectors, such that the quality of the obtained face set as training data to the AI face synthesis is
reduced

12.3 Attacking Face Detectors

12.3.1 White-Box Adversarial Perturbation Generation

In this section, for the purpose of disrupting training of AI face synthesis models, we
develop adversarial perturbation generation for face detectors. We start with a white-
box adversarial perturbation generation (Sect. 12.3.1), where we assume access to
the DNN model of the face detector. We then extend the white-box method to the
more general case where the DNNmodel is not completely accessible, i.e., the gray-
box (Sect. 12.3.2) and (Sect. 12.3.3). In Sect. ??, we introduce a new performance
evaluation metric, data utility quality (DUQ), that is specifically designed to evaluate
the effectiveness of adversarial perturbation generation in disrupting the training
process of AI face synthesis models. Section ?? summarizes comparison of our
methodwith existingworks.We perform extensive experimental evaluations on three
widely used benchmark datasets, i.e., WIDER [82], 300-W [62] and UMDFaces [3]
to demonstrate the effectiveness of our method in disrupting state-of-the-art DNN-
based face detectors (measured by DUQ) with low visual distortions (measured by
SSIM), as well as its robustness with regard to JPEG compression, additive noise,
blurring, and median filtering. Figure 12.2 illustrates the overview of attacking face
detectors.
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We use [n] as a shorthand for {1, . . . , n}, |A| is the cardinality of set A, and A/B
as the set of elements in A but not in B. We use b to represent a rectangular region
(bounding box) in an image. The intersection over union (IoU) of two bounding
boxes b and b′ is computed as

IoU(b,b′) = area(b ∩ b′)
area(b ∪ b′)

.

IoU takes values in the range of [0, 1], and it is one when b = b′ and zero when b and
b′ donot overlap. For image I,weuse I(b) to denote sub-imageof I restricted to region
b. For a particular DNN-based face detector with backbone network F, we denote
P(I) = {bp

1 ,b
p
2 , . . . ,b

p
n } as the set of bounding boxes of n face proposals obtained

on an input image I. Each proposal b comes with a corresponding prediction score
F(I(b)) ∈ [0, 1] given by the backbone network. Proposals with prediction scores
F(I(b)) ≥ θd , with θd as a threshold set internally in the face detector, are added to
the set of detected faces on I, D(I) = {bd1 ,bd2 , . . . ,bdm}. Usually, D(I) ⊆ P(I) and
m � n.

The white-box adversarial perturbation generation for image I seeks a perturbed
image I′ = I + z, such that when processed by the same DNN-based face detector
with backbone network F, I′ has more mis-detections and false detections than I.
Specifically, this is achieved by finding z that reduces the prediction score of the
original detections in D(I), while increasing the prediction score of proposals in
P(I)/D(I). To be specific, we consider set P̃(I) = {b|b ∈ P(I)/D(I) ∧ F(I(b)) ∈
[θp, θd)} for candidates of non-face regions. The threshold θp is to avoid adding
adversarial perturbations to structure-less regions and reduce the number of non-
face proposals to be considered. The overall problem is a constrained optimization
problem with regards to z, as

max‖z‖2≤ε

∑

b∈D(I)

log(1 − F((I + z)(b))) +
∑

b∈P̃(I)

logF((I + z)(b)). (12.1)

In Eq. (12.1), we use a slightly abused notation (I + z)(b) to denote the image region
b in the perturbed image. We use L(z) to denote the objective function of Eq. (12.1).
The first term in L(z) corresponds to increasing mis-detection, as maximizing it
leads to decreasing the prediction score of original detection. For our purpose of
sabotaging training face set of AI face synthesis models, we also need to increase
the false detection rate, which is given by the second term in L(z). The constraint
‖z‖2 ≤ ε ensures that the adversarial perturbation does not introduce large visual
distortion to the image, with ε being a parameter of the problem.

Solution to Eq. (12.1) is obtained with a projected gradient ascent algorithm.
Startingwith initial value of z, which is chosen as samples from uniform distributions
in [−ε/2, ε/2], at the t-th iteration, we update the current estimation of It by first
moving it along the direction of the gradient (or sub-gradient when the network
involves non-differentiable activation functions such as ReLU or leaky ReLU) of
L(z), with a small step size γt > 0, as
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zt+1 = zt + γt∇L(zt ). (12.2)

The gradient can be computed using the chain rule as

∇L(z) = −
∑

b∈D(I)

1

1 − F((I + z)(b))

∂F((I + z)(b))

∂z

+
∑

b∈P̃(I)

1

F((I + z)(b))

∂F((I + z)(b))

∂z
. (12.3)

Derivative ∂F((I+z)(b))

∂z is the gradient of the backbone network F with regard to its
input, which can be computed with the backpropagation algorithm [61]. Step size γt
is determined to ensure that the update satisfies the constraint as

γt = argmax
γ

{
γ

∣∣∣∣
‖zt + γ∇L(zt )‖2 ≤ ε ∧
L(zt + γ∇L(zt )) > L(zt ).

}
. (12.4)

The solution is obtained by a 1D line search procedure.
We can obtain adversarial perturbation by repeating Eqs.(12.2)-(12.4) until the

algorithm converges to a local minimum of L(z). However, face proposals extracted
from the perturbed image, I′, may be different with those extracted from the original
image, I, due to the adversarial perturbation. Therefore, simply running the iterative
algorithm given by Eqs. (12.2)–(12.4) until convergence may not achieve the desired
perturbation. To solve this problem, we use a technique known as warm start [32].
Specifically, instead of running the iterations given by Eqs. (12.2)–(12.4) until con-
vergence, we run only one round of the update and obtain an intermediate image Ĩ.
Then we set I = Ĩ, and run the DNN-based face detector F on the updated I to initiate
a new round of optimization usingEqs. (12.2)–(12.4). This procedure is repeated until
either (1) the perturbation introduced in the image violates the constraint ‖z‖ ≤ ε,
or (2) no detections in D can be identified in the perturbed image, i.e., all original
detections in I are missing in I′.

12.3.2 Gray-Box Adversarial Perturbation Generation

Using model gradient makes the search for adversarial perturbation efficient but it
also entails a dependence on the details of the underlying DNN model. This limits
the applicability of white-box attack. On the other hand, as mentioned previously
in Sect. 12.2, current DNN-based face detectors only use variants of a few standard
architectures, adversarial perturbation developed for one DNN-based face detector
can be transferred to the other DNN-based face detectors using the same backbone
network but with different parameters, when the generation method is less reliant
on the exact numerical values of the model parameters. This can be achieved by
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randomizing the projected gradient ascent scheme in Eq. (12.2), as

zt+1 = zt + γt (∇L(zt ) + nt ), (12.5)

wherent is a sample from i.i.d. zero-meanwhiteGaussian noisewith a small standard
deviation. This is equivalent to a randomization to the gradient, so the update in
Eq. (12.5) does not follow the exact gradient obtained from a fixed set of parameters,
which increases the robustness of the solution to different model parameters.

12.3.3 Black-Box Adversarial Perturbation Generation

The more challenging setting is when we have no knowledge about the backbone
network structures or parameters, other than that the face detector is based on a DNN
model. In this work, we define black-box attack to DNN-based face detectors as
where we have no knowledge of the network structure or the parameters other than
that it is based on a DNN model.

As mentioned previously, existing DNN-based face detectors use two basic types
of backbonenetworks, and future generation ofDNN-based face detectors is expected
to follow the same trend. So, combining gray-box adversarial perturbations obtained
from different DNN-based face detectors with known backbone networks is the
basis for the black-box generation method. Specifically, denote Fk , k = 1, . . . , K ,
as different backbone networks for DNN-based face detectors, and Lk(z) as the
objective function for the artifacts of Fk as defined in Eq. (12.1), we find adversarial
perturbation for image I by solving

max‖z‖2≤ε

K∑

k=1

Lk(z). (12.6)

Equation (12.6) is then optimized using the algorithms described in Sects. 12.3.1 and
12.3.2, with warm start and randomly perturbed gradient update.

12.4 Attacking Facial Landmark Extractors

In this section, we describe awhite-boxmethod to obstruct the creation of DeepFakes
based on disrupting the facial landmark extraction. The facial landmarks are key
locations of important facial parts including tips and middle points of eyes, nose,
mouth, eye brows as well as contours, see Fig.12.3. Our method attacks the facial
landmark extractors by adding adversarial perturbations [19, 69], which are image
noises purposely designed to mislead DNN-based facial landmark extractors [6, 54,
65]. The overall procedure of our method is illustrated in Fig.12.3.
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Fig. 12.3 The overview of our method on obstructing DeepFake generation by disrupting the
facial landmark extraction. The top row shows the original DeepFake generation, and the bottom
row corresponds to the disruption after facial landmarks are disrupted. The landmark extractor we
use is FAN [6] and the “Heat-maps” is visualized by summing all heat-maps. Note that training
of the DeepFake generation model is also affected by disrupted facial landmarks, but is not shown
here

Let F denote the mapping function of a CNN-based landmark extractor of which
the parameters we have access to, and {h1, . . . , hk} = F(I) be the set of heat-maps
of running F on input image I. Our goal is to find an image Iadv, which can lead
the prediction of landmark locations to a large error, while visually similar to as
original image I. The difference Iadv − I is the adversarial perturbation. We denote
the heat-maps from the perturbed image {ĥ1, . . . , ĥk} = F(Iadv).

We introduce a loss function that aims to enlarge the error between predicted
heat-maps and original heat-maps, while constraining the pixel distortion in a certain
budget as

argminIadvL(Iadv, I) = ∑k
i=1

h
i ĥi

‖hi‖‖ĥi‖ ,
s.t. ||Iadv − I||∞ ≤ ε,

(12.7)

where ε is a constant. We use cosine distance to measure the error as it can naturally
normalize the loss range in [−1, 1]. Minimizing this loss function increases the error
between predicted and original heat-maps, which will disrupt the facial landmark
locations.

We use the MI-FGSM method [14] to optimize problem Eq. (12.7). Specifically,
let t denote the iteration number and Iadvt denote the adversarial image obtained at
iteration t . The start image is initialized as Iadv0 = I. Iadvt+1 is obtained by considering
the momentum and gradient as

mt+1 = λ · mt + ∇Iadv (L(Iadvt ,I))
||∇Iadv (L(Iadvt ,I))||1 ,

Iadvt+1 = clip{Iadvt − α · sign(mt+1)},
(12.8)

where ∇Iadv(L(Iadvt , I)) is the gradient of L with respect to the input image Iadvt at
iteration t ;mt is the accumulated gradient and λ is the decay factor of momentum; α
is the step size and sign returns the signs of each component of the input vector; and
clip is the truncation function to ensure the pixel value of the resulting image is in
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[0, 255]. The algorithm stops when the maximum number of iteration T is reached
or the distortion threshold ε is reached.

12.5 Experiments

12.5.1 Attacking Face Detection

Datasets. We validate our method using three datasets.

• sub-WIDER: We construct a dataset of 909 images from the validation set of the
WIDER dataset [82], which is one of the largest benchmarks for face detection.
We exclude faces with small sizes, heavy occluded, or unusual orientations as they
are not relevant for training AI face synthesis methods.

• 300-W: This dataset has 600 images each containing a single face from the test set
of the 300 Faces In-the-Wild Challenge 300-W [62].1

• sub-UMDFaces: This dataset is constructed from 500 images randomly sampled
from the UMDFaces dataset [3].

DNN-based Face Detectors. We consider several state-of-the-art DNN-based face
detectors as the target of our experiments. For Faster-RCNN [59]-based face detec-
tors,we consider two different backbone networks:VGG16 [64] andResNet101 [22],
which are denoted by Fv16 and Fr101, respectively. For SSD [42]-based face detec-
tors, we consider two state-of-the-art face detectors: PyramidBox [71] and SFD [87].
We use ResNet50-based PyramidBox and VGG16-based SFD, which are denoted
by Pr50 and Sv16, respectively. All of these face detectors are trained on complete
WIDER training set.

Evaluation Metrics. Performance of face detection methods is usually evaluated
using average precision (AP) [82]. However, for evaluating the effectiveness of
adversarial perturbation, AP does not directly reflect the quality reduction of face
detection over a dataset in terms of the number of mis-detections and false detections
caused by the adversarial perturbation. To this end, we introduce a new metric, data
utility quality (DUQ), to evaluate the utility of adversarial perturbation in contami-
nating a face set.

For an image I and its perturbed version I′, we define set DT (I) that contains all
detections in the perturbed image I′ that have significant overlaps with detections in
the unperturbed imageD(I), asDT (I) = {b|b : b ∈ D(I′) ∧ maxb′∈D(I) IoU(b,b′) >

ρ}. In other words, these are detections in the original image that survive the adver-
sarial perturbation. Correspondingly, set D(I′)/DT (I) includes detections that are
not present in the unperturbed image, i.e., they are potentially false detections. Over
a set of images, DUQ is defined as

1 Since ground truth faces are not labeled in 300-W, we use the detection results of Dlib as the
ground truth detection, which is also the protocol used in a compared work [5].
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DUQ =
∑

I |DT (I)| − ∑
I |D(I′)/DT (I)|∑

I |D(I)| . (12.9)

DUQ takes value in the range (−∞, 1], where a value 1 indicates no effect of adver-
sarial perturbation, i.e., no mis-detections and no false detections are generated. A
lower DUQ corresponds to a lower purity of the detection face set when used as
training data for AI face synthesis algorithms, in particular, a negative DUQ sug-
gests a significant number of false detections that are not in the original image have
been included in the face set.

We use DUQ as the major performance metric to evaluate the effectiveness of
various adversarial perturbation generation schemes in lowering utility of resulting
face sets as training data for AI face synthesis models. We also use SSIM [75] to
assess the visual quality of images after adversarial perturbation are added. SSIM
takes value in [0, 1], and higher value corresponds to better visual quality.

Implementation Details and Running Time. Some of the key constants are set
empirically as follows. The upper bound of distortion (Mean Square Error) is set to
ε = 5 × 10−5. The step size in each iteration is set to γt = 30

||∇L(zt )||2 . The confidence
score threshold θd is set to 0.5. Since the amount of non-face proposals in set P̃(I) is
large, we only pick the top 1000 ones in terms of confidence score into optimization
for better efficiency. The IoU threshold ρ is set to 0.5 in DUQ.

Our adversarial perturbation generationmethod is implementedwith unoptimized
code Python and pyTorch. All experiments are performed on a machine which
is equipped an Intel(R) Xeon(R) CPU E5-2620 v3@ 2.40 GHz with 24 cores and 96
GB RAM. The GPU we use is a NVIDIA TITAN × (Pascal) with 12 GB memory.
The average time for generating successful adversarial perturbation for an image
is 4.69 s. The running time will be further improved if we optimize the code for
practical deployment.

Baselines and Compared Methods. We evaluate the performance of our method
and compared with three algorithms.

• Random: The is a simple baseline algorithm that adds random Gaussian noise to
image.

• SSOD: This algorithm is based on a recent adversarial perturbation generator for
general object detectors [78]. SSODwas originally trained and evaluated on Pascal
VOC dataset [15], which has no label corresponding to human faces. To facilitate
comparison, we use the original code of SSOD and refine it on the face datasets
using the same parameter settings as in our experiments.

• NNCO: This algorithm is from [5]. NNCO uses a GAN model with a generator
of adversarial perturbations targeting VGG16-based Faster-RCNN face detectors
trained and tested both on dataset 300-W. We compare our method with NNCO
by both applying them on VGG16 face detector.
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12.5.1.1 White-Box Adversarial Perturbation Generation

Table 12.1 shows the performance of compared methods for Faster-RCNN- and
SSD-based face detectors with different backbone networks before and after adver-
sarial perturbations. We show both the effectiveness of the adversarial perturbation
(DUQ) and image quality (SSIM). Note the ground truth of datasets is used as the
correct detection set to compute DUQ of original and perturbed image for efficacy
demonstration. Figure 12.5 provides four visual examples of the results of adversarial
perturbation of face images.

As these results show, face detection is significantly affected after the adversarial
perturbations generated with our method are added to these images. For example,
DUQ of Fv16 is reduced to −4.89 from 0.81 on sub-WIDER dataset with a minor
reduction of SSIM (0.02), and this shows that our method conceals true detections
in the original unperturbed image and introduces a large number of false detections
(also, see Fig. 12.5). In contrast, SSOD can only reduce DUQ of all face detectors
on all datasets to around 0, as it only considers reducing true detections. On the
other hand, adding random Gaussian noise has almost no effect on face detectors,
suggesting that the dependency structure in the adversarial perturbation is essential.
The performance for the SSD-based DNN face detectors is similar.

Furthermore, when compared with method NNCO, our method can reduce the
DUQ of Fv16 from 0.81, 0.64, 0.55 to −4.89,−9.07,−7.52 on three datasets,
respectively, while NNCO only reduces DUQ to 0.17, 0.06, 0.12. Moreover, com-
pared with NNCO, our method achieves better image quality. Figure ?? shows a
visual comparison of the perturbed image generated by our method and NNCO with
enlarged area. Note the visible artifacts generated by NNCO, which are not present
in the perturbed image generated with our method. This is corroborated by the quan-
titative results when comparing the SSIM scores of our method (0.98, 0.98, 0.98)
and those of NNCO (0.92, 0.91, 0.92) on all datasets, respectively.

12.5.1.2 Black-Box Adversarial Perturbation Generation

Following themethoddescribed inSect. 12.3.3,wegenerate adversarial perturbations
using Eq. (12.6) for the combination of four face detectors for black-box attack of
unknown face detectors. Specifically, we use the following three DNN-based face
detectors as the unknown face detectors:

• Faster-RCNN-based face detector with backbone network ResNet50 (denoted as
Fr50);

• SSD-based face detector SSH [50] with backbone networks VGG16 (denoted as
SSHv16);

• SSD-based face detector SSH [50] with backbone networks ResNet50 (SSHr50).

All the experiments are conducted on sub-WIDER dataset. We denote our adver-
sarial perturbation generationmethod targeting the ensemble of known face detectors
as Ours(Fv16+Fr101+Pr50+Sv16) as described in Sect. 12.3.3. For comparison, we adapt
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Table 12.1 Performance of adversarial perturbation generation against Faster-RCNN- and SSD-
based face detectors on three datasets. Fv16 and Fr101 denote faster-RCNN-based face detector
with backbone network VGG16 [64] and ResNet101 [22]. Pr50 denotes PyramidBox [71] with
backbone network ResNet50 and Sv16 denotes SFD [87] with backbone network VGG16
Adversarial perturbation Sub-WIDER 300-W Sub-UMDFaces

generation method Fv16 Fr101 Pr50 Sv16 Fv16 Fr101 Pr50 Sv16 Fv16 Fr101 Pr50 Sv16

DUQ Original 0.81 0.82 0.92 0.88 0.64 0.64 0.76 0.81 0.55 0.54 0.64 0.64

Random 0.81 0.82 0.92 0.81 0.64 0.64 0.76 0.81 0.54 0.54 0.64 0.64

NNCO
[5]

0.17 – – – 0.06 – – – 0.12 – – –

SSOD
[78]

–0.06 −0.21 −0.74 −0.53 −0.02 −0.03 −0.81 −1.01 −0.18 −0.65 −0.88 -0.99

Ours −4.89 −7.98 −19.18 −9.40 −9.07 −7.95 −17.91 −8.80 −7.52 −9.91 −26.88 −8.80

SSIM NNCO
[5]

0.92 – – – 0.91 – – – 0.92 – – –

SSOD
[78]

1.0 0.99 0.97 0.99 0.94 0.98 0.95 0.98 1.0 1.0 0.95 0.98

Ours 0.98 0.96 0.96 0.98 0.98 0.97 0.94 0.96 0.98 0.97 0.93 0.96

Table 12.2 Performance evaluated in DUQ for black-box adversarial perturbation generation.
Rows denote perturbed images generated from different cases. Columns denote different face detec-
tors. Fv16 and Fr101 denote Faster-RCNN-based face detector with backbone network VGG16 [64]
andResNet101 [22]. Pr50 denotes PyramidBox face detector [71]with backbone networkResNet50
and Sv16 denotes SFD face detector [87] with backbone network VGG16. The last three columns,
Fr50, SSHv16, SSHr50, are black-box face detectors, which are Faster-RCNN-based face detector
with backbone network ResNet50 and SSH [50] with backbone network VGG16 and ResNet50

SSIM Known face detectors Unknown face detectors

Fv16 Fr101 Pr50 Sv16 Fr50 SSHv16 SSHr50

Original 1.0 0.81 0.82 0.92 0.88 0.87 0.93 0.94

SSOD(Fv16+Fr101+Pr50+Sv16) 0.95 0.14 0.34 0.26 0.04 0.57 0.65 0.66

Ours(Fv16+Fr101+Pr50+Sv16) 0.91 −4.94 −5.69 −14.14 −6.37 −1.72 −0.26 −0.47

the adversarial perturbation generation scheme for general object detectors [78] to
face detectors, and denote the corresponding method as SSOD(Fv16+Fr101+Pr50). SSOD
can be extended to the black-box setting by generating adversarial perturbations for
different face detectors independently, and then uses their summation as the final
perturbations to any unknown face detectors. On the other hand, our method is based
on an optimization problem, Eq. (12.6), and also considers false detections.

Table 12.2 shows the performance evaluated in DUQ of SSOD and our method.
In addition, Fig. 12.4 shows three examples of black-box attack on Fr50, SSHv16,
and SSHr50. As the adversarial perturbations are obtained by considering the four
known DNN-based face detectors, they are expected to work well in those cases for
all methods, which is confirmed by their performance under the white-box setting.
When applied to the unknown DNN-based face detectors, both methods tend to be
effective in reducingDUQof the resulting face set. However, ourmethod showsmore
reduction and usually leads to negativeDUQ scores, suggesting that it generatesmore
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Fr50 SSHv16 SSHr50

Fig. 12.4 Visual examples of black-box attack on Fr50, SSHv16, and SSHr50 face detectors,
respectively. The top row corresponds to detection results on original images. The middle row
corresponds to the detection results on images after adversarial perturbation is added to the orig-
inal image. The bottom row shows the actual noise added, which are amplified by 30 for better
visualization

false detections, and thus is more effective in reducing the quality of the face set as
training data for AI face synthesis system. This is further corroborated by the visual
results shown in Fig. 12.4.

12.5.2 Attacking Landmark Extractors

Our method is validated on three state-of-the-art CNN-based facial landmark extrac-
tors, namely, FAN [6], HRNet [65], and AVS-SAN [54]. FAN is constructed by
multiple stacked hourglass structures, where we use one hourglass structure for sim-
plicity. HRNet is composed by parallel high-to-low resolution sub-networks and
repeats the information exchange across multi-resolution sub-networks. AVS-SAN
first disentangles face images to style and structure space, which is then used as aug-
mentation to train the network. We use implementations of all three methods trained
on the WLFW dataset [76].

Datasets. To demonstrate the effectiveness of our method on obstructing DeepFake
generation, we conduct experiments on Celeb-DF dataset [39], which contains high-
quality DeepFake videos of 59 celebrities. Each video contains one subject with
various head pose and facial expression. We choose this dataset as the pretrained
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Table 12.3 The NME and SSIM scores of our method on different landmark extractors. The
landmark extractors shown in leftmost column denote where the adversarial perturbation is from
and the ones shown in the top row denotes which landmark extractors are attacked

DeepFake models are available to us, which can be used to test our method. In our
experiment, we utilize the DeepFake method described in [39] to synthesize fake
videos using original and adversarial images, respectively. We randomly select six
identities, corresponding to 36 videos in total. Since the adjacent frames in a video
show little variations, we apply Our method to the key frames of each video, i.e., 600
frames in total, for evaluation. Since the Celeb-DF dataset does not have the ground
truth of facial landmarks, we use the results of HRNet as the ground truth due to its
superior performance.

Evaluations.We use two metrics to evaluate our method, namely, Normalized Mean
Error (NME) [65] and Structural Similarity (SSIM) [75]. The relation of thesemetrics
is shown in Fig. ??.

– NME is the average Euclidean distance between landmarks on adversarial image
and the ground truth,which is then normalized by the distance between the leftmost
key point in left eye and the rightmost key point in right eye. Higher NME score
indicates less accurate landmark detection, which is the objective of our method.

– The SSIM metric simulates perceptual image quality. We use this indicator to
demonstrate our method can affect the visual quality of DeepFake. As shown in
Fig. ??, we compute mask-SSIM [46] of original and adversarial input images
(SSIMI ) and then compute the SSIM of the synthesized results (SSIMW ). The
lower score indicates the image quality is degraded. Ideally, the attacking method
should have largeSSIMI that the adversarial perturbation does not affect the quality
of input image, and small SSIMW that the synthesis quality is degraded.

Baselines. To better analyze ourmethod,we adapt other twomethods FGSM[69] and
I-FGSM [19] from attacking image classifiers to our task. Specifically, the FGSM is a
single-step optimizationmethod as Iadv1 = clip{Iadv0 − α · sign(∇Iadv0

(L(Iadv0 , I))},
while I-FGSM is an iterative optimizationmethodwithout consideringmomentum as
Iadvt+1 = clip{Iadvt − α · sign(∇Iadv(L(Iadvt , I))}. The step size α and iteration num-
ber T of I-FGSM are set as same in our method. We use these two adapted methods
as our baseline methods, which are denoted as Base1 and Base2, respectively.
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Fv16 Sv16Fr101 Pr50

Fig. 12.5 Visual examples of our method attacking Fv16, Fr101, Pr50, and Sv16, respectively. The
top row corresponds to detection results on original images. The middle row corresponds to the
detection results on images after adversarial perturbation is added to the original image. The bottom
row show the actual noise added, which are amplified by 30 for better visualization

Table 12.4 The NME and SSIM performance of different attacking methods

12.5.2.1 Results

Table 12.3 shows the NME and SSIM performance of our method. The landmark
extractors shown in leftmost column denote where the adversarial perturbation is
from and the ones shown in the top row denotes which landmark extractor is
attacked. “None” denotes no perturbations are added to image. Our method can
notably increase the NME score and decrease the SSIMW score in white-box attack
(e.g., the value in the row of “FAN” and the column of “FAN” ), which indicates our
method can effectively disrupt facial landmarks extraction and subsequently affect
the visual quality of the synthesized faces. We also compare our method with two
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Table 12.5 The NME and SSIM performance of black-box attack. See text for details

baselines, Base1 and Base2, in Table 12.4. We can observe the Base1 method merely
has effect on the NME performance but can largely degrade the quality of adversarial
images compared to Base2 and ourmethod (LB). The Base2method can also achieve
the competitive performance with our method in NME but is slightly degraded in
SSIM.

Following existing works attacking image classifiers [14, 69], which achieves
the black-box attack by transferring the adversarial perturbations from a known
model to an unknown model (transferability), we also test the black-box attack using
the adversarial perturbation generated from one landmark extractor to attack other
extractors. However, the results show that the adversarial perturbations have merely
effect on different extractors.

As shown in Table 12.3, the transferability of our method is weak. To improve
the transferability, we employ the strategies commonly used in black-box attack on
image classifiers: (1) Input transformation [79]: we randomly resize the input image
and then padding aroundwith zero at each iteration (denoted asLBtrans); (2)Attacking
mixture [79]: we alternatively use Base2 and our method to increase the diversity in
optimization (denoted as LBmix). Table 12.5 shows the results of black-box attack,
which reveals that the strategies effective in attacking image classifiers do not work
on attacking landmark extractors. This is probably due to themechanism of landmark
extractors is more complex than image classifiers, as the landmark extractors need to
output a series of points instead of labels and only a minority of points shifted does
not affect the overall prediction.

12.6 Conclusion

AI-synthesized fake faces are becoming a problem encroaching our trust to online
media. As most AI-based face synthesis algorithms require automatic face detec-
tion as an indispensable pre-processing step in preparing training data, an effec-
tive protection scheme can be obtained by disrupting the face detection methods.
In this chapter, we describe a proactive protection method to deter bulk reuse of
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automatically detected face and face alignment for the production of AI-synthesized
faces. Our method exploits the sensitivity of DNN-based face detectors and facial
landmark extractors, and use adversarial perturbation to contaminate the face sets.

We expect this technology to spawn counter-measures from the forgery makers.
In particular, operations that can destroy or reduce the adversarial perturbation are
expected to be developed. It is thus our continuing effort to improve the robustness
of the adversarial perturbation generation method. Another important direction to
further explore is a more generic black-box attack scheme that does not limit to
DNN-based face detectors and facial landmark extractors, and do not rely on the dif-
ferentiability of the underlying model. Furthermore, we will also work on improving
the running time efficiency of the current method so it can scale up to large number
of images.
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Chapter 13
Multi-channel Face Presentation Attack
Detection Using Deep Learning

Anjith George and Sébastien Marcel

Abstract Face recognition has emerged as a widely used biometric modality. How-
ever, its vulnerability to presentation attacks remains a significant security threat.
Although Presentation Attack Detection (PAD) methods attempt to remedy this
problem, often they fail in generalizing to unseen attacks and environments. As
the quality of presentation attack instruments improves over time, achieving reliable
PA detection using only visual spectra remains a major challenge. We argue that
multi-channel systems could help solve this problem. In this chapter, we first present
an approach based on a multi-channel convolutional neural network for the detec-
tion of presentation attacks. We further extend this approach to a one-class classifier
framework by introducing a novel loss function that forces the network to learn a
compact embedding for the bonafide class while being far from the representation of
attacks. The proposed framework introduces a novel way to learn a robust PAD sys-
tem from bonafide and available (known) attack classes. The superior performance
in unseen attack samples in publicly available multi-channel PAD database WMCA
shows the effectiveness of the proposed approach. Software, data, and protocols for
reproducing the results are made publicly available.

13.1 Introduction

Biometrics provides a secure and convenientmeans for access control. Facial biomet-
rics is one of the most convenient modalities for biometric authentication due to its
non-intrusive nature. Even though facial recognition systems achieve human perfor-
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mance in identifying people in many difficult [32] datasets, most facial recognition
systems are still vulnerable to presentation attacks (PA), also known as spoofing1 [29,
41, 42]. Simply showing a printed photo to an unprotected facial recognition system
might be enough to fool the system [2]. Vulnerability to presentation attacks limits
the reliable deployment of such systems for applications in unsupervised conditions.

According to the ISO [29] standard, a presentation attack is defined as:

A presentation to the biometric data capture subsystem with the goal of interfering with the
operation of the biometric system.

Presentation attacks include both “impersonation” and “obfuscation” of identity.
Impersonation refers to attacks in which the attacker wants to be recognized as a
different person, while, in “obfuscation” attacks, the goal is to hide the identity of
the attacker. The biometric characteristic or object used in a presentation attack is
known as a presentation attack instrument (PAI).

Often, features such as color, texture [8, 39], motion [2], and physiological cues
[28, 55] and CNN-basedmethods [20] are used for detection of attacks like 2D prints
and replays. However, detection of sophisticated attacks like 3D masks and partial
attacks is challenging and poses a serious threat to the reliability of face recognition
systems. Most of the presentation attack detection (PAD) methods available in pre-
vailing literature try to solve the problem for a limited number of presentation attack
instruments and on visible spectrum images [42]. Though some success has been
achieved in addressing 2D presentation attacks, performance of the algorithms in
realistic 3D masks and other kinds of attacks is poor. With the increase in quality of
attack instruments, it becomes harder to discriminate between bonafide and PAs in
the visible spectrum alone. Moreover, considering a real-world situation with a wide
variety of 2D, 3D, and partial attacks, PAD in visual spectra alone is challenging and
inadequate for security-critical applications. Partial attacks refer to attacks where the
attack instrument covers only a part of the face. These attacks are much harder to
detect as they appear similar to bonafide in most of the face regions, and they can
fool holistic liveliness detection systems easily. Multi-channel methods have been
proposed as an alternative [5, 21–23, 26, 44, 45, 54, 57], since they use comple-
mentary information from different channels to improve the discrimination between
bonafide and attacks. In the multi-channel scenario, the additional channels used can
be any modality which can provide complementary representation such as depth,
infrared, and thermal channels. Multi-channel PAD approaches are more promising
in the context of a wide variety of attacks since they make PAD systems harder to
fool.

Even with the use of multiple channels, one of the main issues with PAD is its
poor generalization to unseen attacks [23]. This is particularly important, since at
the time of developing a PAD system, anticipating all possible attacks is impossible.
Malicious attackers can always come up with new attacks to fool the PAD systems.
In such situations, PAD systems which are robust against unseen attacks are of

1 The term spoofing should be deprecated in favor of presentation attacks to comply with ISO
standards.
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Fig. 13.1 Illustration of the embedding space with known and unknown attack classes. The red
dotted line shows the learned decision boundary when only bonafide and known attacks are present
in the training set, this results in misclassification of unknown attacks. If a decision boundary of
the bonafide class (green dotted lines) is learned, known and unknown attacks can be classified
correctly

paramount importance. Moreover, while it is comparatively easy to collect data for
attacks like 2D prints and replays, making replicas of challenging presentation attack
instruments (PAI) like silicone mask is often very costly [6] and resource-intensive.
In this context, it will be ideal to have a frameworkwhich can be trainedwith bonafide
alone, or with a combination of bonafide and easy-to-manufacture PAIs.

In real-world scenarios, it can be assumed that all presentation attacks are unseen,
as it is not possible to foretell all the variations a PAD system could encounter a
priori. A toy example of the decision boundary in an unseen attack scenario is illus-
trated in Fig. 13.1. Performances in typical PAD databases may not be representative
of the performance of a PAD system in real-world conditions. This necessitates the
PAD algorithms to be robust against unseen attacks. Since it is easy (in effort and
cost) to collect data from more straightforward attacks compared to complex PAIs,
we try to learn the representation leveraging the information from PA classes which
are available at the training stage (while not over-fitting on the available attacks). To
achieve this, we propose a one-class classifier-based framework, where the feature
representation is learned with a CNN to have discriminative properties. The core of
the framework is a multi-channel CNN trained to learn the embedding using a spe-
cific loss function. The Multi-Channel Convolutional Neural Network (MC-CNN)
architecture efficiently combines multi-channel information for robust detection of
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presentation attacks. The network uses a pre-trained LightCNN model as the base
network, which obviates the requirement to train the framework from scratch. In
MC-CNN, only low-level LightCNN features acrossmultiple channels are re-trained,
while high-level layers of pre-trained LightCNN remain unchanged. In combination
with the new loss function, the network aims at learning a compact representation
for the bonafide class while leveraging the discriminative information for PAD task.

The source code and protocols to reproduce the results aremade available publicly
and are accessible at the following link.2

The rest of the chapter is organized as follows. Section 13.2 describes the related
work with a particular focus on unseen attack detection. Section 13.3 outlines the
proposed framework. Extensive evaluations, comparison with baseline methods, and
ablation studies are shown in Sect. 13.4. Section 13.5 discusses the importance of
the results, and Sect. 13.6 presents the conclusions.

13.2 Related Work

Most of the work related to face presentation attack detection addresses detection of
2D attacks, specifically print and 2D replay attacks. A brief review of recent PAD
methods is given in this section.

13.2.1 Feature-Based Approaches for Face PAD

For PAD using visible spectrum images, several methods such as detecting motion
patterns [2], color texture and histogram-based methods in different color spaces,
and variants of Local Binary Patterns (LBP) in grayscale [8] and color images [9],
[39] have shown good performance. Image quality-based feature [18] is one of the
successful methods available in prevailing literature. Methods identifying moiré pat-
terns [49], and image distortion analysis [59], use the alteration of the images due
to the replay artifacts. Most of these methods treat PAD as a binary classification
problem which may not generalize well for unseen attacks [46].

Chingovska et al. [10] studied the amount of client-specific information present
in features used for PAD. They used this information to build client-specific PAD
methods. Their method showed a 50% relative improvement and better performance
in unseen attack scenarios.

Arashloo et al. [3] proposed a new evaluation scheme for unseen attacks. Authors
have tested several combinations of binary classifiers and one-class classifiers. The
performance of one-class classifiers was better than binary classifiers in the unseen
attack scenario. BSIF-TOP was found successful in both one-class and two-class
scenarios. However, in cross-dataset evaluations, image quality features were more

2 Source code: https://gitlab.idiap.ch/bob/bob.paper.oneclass_mccnn_2019.

https://gitlab.idiap.ch/bob/bob.paper.oneclass_mccnn_2019
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useful. Nikisins et al. [46] proposed a similar one-class classification framework
using one-class Gaussian Mixture Models (GMM). In the feature extraction stage,
they used a combination of Image Quality Measures (IQM). The experimental part
involved an aggregated database consisting of replay attack [9], replay mobile [11],
and MSU-MFSD [59] datasets.

Heusch and Marcel [27] recently proposed a method for using features derived
from remote photoplethysmography (rPPG). They used the long-term spectral statis-
tics (LTSS) of pulse signals obtained fromavailablemethods for rPPGextraction. The
LTSS features were combined with SVM for PA detection. Their approach obtained
better performance than state-of-the-art methods using rPPG in four publicly avail-
able databases.

13.2.2 CNN-Based Approaches for Face PAD

Recently, several authors have reported good performance in PAD using convolu-
tional neural networks (CNN). Gan et al. [19] proposed a 3D CNN-based approach,
which utilized the spatial and temporal features of the video. The proposed approach
achieved good results in the case of 2D attacks, prints, and videos. Yang et al. [64]
proposed a deep CNN architecture for PAD. A preprocessing stage including face
detection and face landmark detection is used before feeding the images to the CNN.
Once the CNN is trained, the feature representation obtained from CNN is used to
train a SVM classifier and used for final PAD task. Boulkenafet et al. [7] summa-
rized the performance of the competition on mobile face PAD. The objective was
to evaluate the performance of the algorithms under real-world conditions such as
unseen sensors, different illumination, and presentation attack instruments. In most
of the cases, texture features extracted from color channels performed the best. Li et
al. [34] proposed a 3D CNN architecture, which utilizes both spatial and temporal
nature of videos. The network was first trained after data augmentation with a cross-
entropy loss, and then with a specially designed generalization loss, which acts as
a regularization factor. The Maximum Mean Discrepancy (MMD) distance among
different domains is minimized to improve the generalization property.

There are several works involving various auxiliary information in the CNN train-
ing process, mostly focusing on the detection of 2D attacks. Authors use either 2D
or 3D CNNs. The main problem of CNN-based approaches mentioned above is the
lack of training data, which is usually required to train a network from scratch. One
broadly used solution is fine-tuning, rather than a complete training of the networks
trained for face recognition, or image classification tasks.Another issue is poor gener-
alization in cross-database, and unseen attack tests. To circumvent these issues, some
researchers have proposed methods to train a CNN using auxiliary tasks, which is
shown to improve generalization properties. These approaches are discussed below.

Liu et al. [36] presented a novel method for PAD with auxiliary supervision.
Instead of training a network end to end directly for PAD task, they used CNN-
RNN model to estimate the depth with pixel-wise supervision and estimate remote
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photoplethysmography (rPPG)with sequence-wise supervision. The estimated rPPG
and depth were used for PAD task. The addition of the auxiliary task improved the
generalization capability.

Atoum et al. [4] proposed a two-stream CNN for 2D presentation attack detection
by combining a patch-based model and holistic depth maps. For the patch-based
model, an end-to-end CNNwas trained. In the depth estimation, a fully convolutional
networkwas trained using entire face image. The generated depthmapwas converted
to feature vector by finding the mean values in the N × N grid. The final PAD score
was obtained by fusing the scores from the patch and depth CNNs.

Shao et al. [56] proposed a deep convolutional network-based architecture for
3D mask PAD. They tried to capture the subtle differences in facial dynamics using
the CNN. Feature maps obtained from the convolutional layer of a pre-trained VGG
network was used to extract features in each channel. Optical flow was estimated
using the motion constraint equation in each channel. Further, the dynamic texture
was learned using the data from different channels. The proposed approach achieved
an AUC (area under curve) score of 99.99% in 3DMAD dataset.

13.2.3 One-Class Models for Face PAD

Most of thesemethods handle the PADproblem as binary classification,which results
in classifiers over-fitting to the known attacks resulting in poor generalization to
unseen attacks. We focus the further discussion on the detection of unseen attacks.
However, it is imperative that methods working for unseen attacks must perform
accurately for known attacks as well. One naive solution for such a task is one-class
classifiers (OCC). OCC provides a straightforwardway of handling the unseen attack
scenario by modeling the distribution of the bonafide class alone.

Arashloo et al. [3] and Nikisins et al. [46] have shown the effectiveness of one-
class methods against unseen attacks. Even though these methods performed bet-
ter than binary classifiers in an unseen attack scenario, the performance in known
attack protocols was inferior to that of binary classifiers. Xiong et al. [62] proposed
unseen PAD methods using auto-encoders and one-class classifiers with texture fea-
tures extracted from images. However, the performance of the methods compared
to recent CNN-based methods is very poor. CNN-based methods outperform most
of the feature-based baselines for PAD task. Hence, there is a clear need of one-
class classifiers or anomaly detectors in the CNN framework. One of the drawbacks
of one-class model is that they do not use the information provided by the known
attacks. An anomaly detector framework which utilizes the information from the
known attacks could be more efficient.

Perera and Patel [50] presented an approach for one-class transfer learning in
which labeled data from an unrelated task is used for feature learning. They used
two loss functions, namely, descriptive loss, and compactness loss to learn the rep-
resentations. The data from the class of interest is used to calculate the compactness
loss whereas an external multi-class dataset is used to compute the descriptive loss.
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Accuracy of the learned model in classification using another database is used as
the descriptive loss. However, in the face PAD problem, this approach would be
challenging since the bonafide and attack classes appear very similar.

Fatemifar et al. [16] proposed an approach to ensemble multiple one-class clas-
sifiers for improving the generalization of PAD. They introduced a class-specific
normalization scheme for the one-class scores before fusion. Seven regions, three
one-class classifiers, and representations from three CNNs were used in the pool of
classifiers. Though their method achieved better performance as compared to client
independent thresholds, the performance is inferior to CNN-based state-of-the-art
methods. Specifically, many CNN-based approaches have achieved 0% HTER in
Replay-Attack andReplay-Mobile datasets.Moreover, the challenging unseen attack
scenario is not evaluated in this work.

Pérez-Cabo et al. [51] proposed a PAD formulation from an anomaly detection
perspective. A deep metric learning model is proposed, where a triplet focal loss
is used as a regularization for “metric-softmax,” which forces the network to learn
discriminative features. The features learned in such a way is used together with
an SVM with RBF kernel for classification. They have performed several experi-
ments on an aggregated RGB-only datasets showing the improvement made by their
proposed approach. However, the analysis is mostly limited to RGB-only models
and 2D attacks. Challenging 3D and partial attacks is not considered in this work.
Specifically, the effectiveness in challenging unknown attacks (2D vs 3D) is not
evaluated.

Recently, Liu et al. [37] proposed an approach for the detection of unknown
spoof attacks as Zero-Shot Face Anti-spoofing (ZSFA). They proposed a Deep Tree
Network (DTN) which partitions the attack samples into semantic sub-groups in an
unsupervised manner. Each tree node in their network consists of a Convolutional
Residual Unit (CRU) and a Tree Routing Unit (TRU). The objective is to route the
unknown attacks to the most proper leaf node for correctly classifying it. They have
considered a wide variety of attacks in their approach and their approach achieved
superior performance compared to the considered baselines.

Jaiswal et al. [30] proposed an end-to-enddeep learningmodel for PADwhichused
unsupervised adversarial invariance. In their method, the discriminative information
and nuisance factors are disentangled in an adversarial setting. They showed that by
retaining only discriminative information, the PAD performance improved for the
samebase architecture.Mehta et al. [43] trained anAlexnetmodelwith a combination
of cross-entropy and focal losses. They extracted the features from Alexnet and
trained a two-class SVM for PAD task. However, results in challenging datasets
such as OULU and SiW were not reported.

Recently, Joshua and Jain [14] utilized multiple GANs for spoof detection in
fingerprints. Their method essentially consisted of training a DCGAN [53] using
only the bonafide samples. At the end of the training, the generator is discarded,
and the discriminator is used as the PAD classifier. They combined the results from
different GANs operating on different features. However, this approach may not
work well for face images as the recaptured images look very similar to the bonafide
samples.
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13.2.4 Multi-channel-Based Approaches for Face PAD

In general, most of the visible spectrum-based PAD methods try to detect the subtle
differences in image quality when it is recaptured. However, this method could fail as
the quality of capturing devices and printers improves. For 3D attacks, the problem is
even more severe. As the technology to make detailed masks is available, it becomes
very hard to distinguish between bonafide and presentation attacks by just using
visible spectrum imaging. Many researchers have suggested using multi-spectral
and extended range imaging to solve this issue [54, 57].

Raghavendra et al. [54] presented an approach using multiple spectral bands for
face PAD. The main idea is to use complementary information from different bands.
To combine multiple bands they observed a wavelet-based feature level fusion, and a
score fusion methodology. They experimented with detecting print attacks prepared
using different kinds of printers. They obtained better performance with score level
fusion as compared to the feature fusion strategy.

Erdogmus and Marcel [15] evaluated the performance of a number of face PAD
approaches against 3D masks using 3DMAD dataset. This work demonstrated that
3D masks could fool PAD systems easily. They achieved HTER of 0.95 and 1.27%
using simple LBP features extracted from color and depth images captured with
Kinect.

Steiner et al. [57] presented an approach using multi-spectral SWIR imaging for
face PAD. They considered four wavelengths—935, 1060, 1300, and 1550 nm. In
their approach, they trained a SVM for classifying each pixel as a skin pixel or
not. They defined a Region Of Interest (ROI) where the skin is likely to be present,
and skin classification results in the ROI is used for classifying PAs. The approach
obtained 99.28% accuracy in per pixel skin classification.

Dhamecha et al. [13] proposed an approach for PAD by combining the visible and
thermal image patches for spoofing detection. They classified each patch as either
bonafide or attack and used the bonafide patches for subsequent face recognition
pipeline.

In [6], Bhattacharjee et al. showed that it is possible to spoof commercial face
recognition systems with custom silicone masks. They also proposed to use mean
temperature of face region for PAD.

Bhattacharjee et al. [5] presented a preliminary study of using multi-channel
information for PAD. In addition to visible spectrum images, they considered thermal,
near-infrared, and depth channels. They showed that detecting rigid masks and 2D
attacks is simple in thermal and depth channels, respectively. Most of the attacks can
be detected with a similar approach with combinations of different channels, where
the features and combinations of channels to use are found using a learning-based
approach.

Wang et al. [58] proposed multimodal face presentation attack detection with a
ResNet-based network using both spatial and channel attentions. Specifically, the
approach was tailored for the CASIA-SURF [67] database which contained RGB,
near-infrared, and depth channels. The proposed model is a multi-branch model
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where the individual channels and fused data are used as inputs. Each input channel
has its own feature extraction module and the features extracted are concatenated in a
late fusion strategy. Followed by more layers to learn a discriminative representation
for PAD. The network training is supervised by both center loss and softmax loss.
One key point is the use of spatial and channel attention to fully utilize complemen-
tary information from different channels. Though the proposed approach achieved
good results in the CASIA-SURF database, the challenging problem of unseen attack
detection is not addressed.

Parkin et al. [47] proposed a multi-channel face PAD network based on ResNet.
Essentially, their method consists of different ResNet blocks for each channel fol-
lowed by fusion. Squeeze and excitation modules (SE) are used before fusing
the channels, followed by remaining residual blocks. Further, they add aggrega-
tion blocks at multiple levels to leverage inter-channel correlations. Their approach
achieved state-of-the-art results in CASIA-SURF [67] database. However, the final
model presented in is a combination of 24 neural networks trained with different
attack-specific folds, pre-trained models, and random seeds, which would increase
the computation greatly.

13.2.5 Challenges in PAD

In general, presentation attack detection in real-world scenario is challenging. Most
of the PAD methods available in prevailing literature try to solve the problem for a
limited number of presentation attack instruments. Though some success has been
achieved in addressing 2D presentation attacks, the performance of the algorithms
in realistic 3D masks and other kinds of attacks is poor.

As the quality of attack instruments evolves, it becomes increasingly difficult to
discriminate between bonafide and PAs in the visible spectrum alone. In addition,
more sophisticated attacks, like 3D silicone masks, make PAD in visual spectra
challenging. These issuesmotivate the use ofmultiple channels,makingPADsystems
harder to by-pass.

We argue that the accuracy of the PADmethods can get better with amulti-channel
acquisition system. Multi-channel acquisition from consumer-grade devices can
improve the performance significantly. Hybrid methods, combining both extended
hardware and software, could help in achieving good PAD performance in real-
world scenarios. We extend the idea of a hybrid PAD framework and develop a
multi-channel framework for presentation attack detection. Even with multi-channel
methods, to achieve robustness against unseen attacks, the classifier part shouldmove
away from the typical binary classification formulation. One-class classifiers could
be a good alternative for binary classification in the PAD task. However, the features
used for one-class classifiers should be discriminative and compact to outperform
binary classification.
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Fig. 13.2 Preprocessed images from a rigid mask attack; channels showed are grayscale, infrared,
depth, and thermal, respectively. Channels were preprocessed with face detection, alignment, and
normalization

13.3 Proposed Method

A Multi-Channel Convolutional Neural Network (MC-CNN)-based approach using
a new loss function is proposed for PAD. Different stages of the framework are
described below.

13.3.1 Preprocessing

Face detection is performed in the color channel using the MTCNN algorithm [66].
Once the face bounding box is obtained, face landmark detection is performed in the
detected face bounding box using Supervised Descent Method (SDM) [63]. Align-
ment is accomplished by transforming image, such that the eye centers and mouth
center are aligned to predefined coordinates. The aligned face images are converted
to grayscale, and resized to the resolution of 128 × 128 pixels. An example of the
result of this first stage in the preprocessing pipeline is shown in Fig. 13.2.

The preprocessing stage for non-RGB channels requires the images from different
channels to be aligned both spatially and temporally with the color channel. For these
channels, the facial landmarks detected in the color channel are reused, and a similar
alignment procedure is performed. A normalization using Mean Absolute Deviation
(MAD) [33] is performed to cast the type of non-RGB facial images to 8-bit format.

13.3.2 Network Architecture

Many of previous work in face presentation attack detection utilize transfer learning
from pre-trained face recognition networks. This is required since the data avail-
able for PAD task is often of a very limited size, being insufficient to train a deep
architecture from scratch.
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The features learned in the low level of CNN networks are usually similar to
Gabor filter masks, edges, and blobs [65]. Deep CNNs compute more discriminant
features as the depth increases [40]. It has been observed in different studies [35,
65], that is, features, which are closer to the input are more general, while features
in the higher levels contain task-specific information. Hence, most of the literature
in the transfer learning attempts to adapt the higher level features for the new tasks.

Recently, Freitas Pereira et al. [17] showed that the high-level features in deep
convolutional neural networks, trained in visual spectra, are domain independent,
and they can be used to encode face images collected from different image-sensing
domains. Their idea was to use the shared high-level features for heterogeneous
face recognition task, re-training only the lower layers. In their method, they split
the parameters of the CNN architecture into two, the higher level features are shared
among thedifferent channels, and the lower level features (knownasDomain-Specific
Units (DSU)) are adapted separately for different modalities. The objective was to
learn the same face encoding for different channels, by adapting just the DSUs. The
network was trained using contrastive loss (with Siamese architecture) or triplet loss.
Re-training of only low-level features has the advantage of modifying a minimal set
of parameters.

We extend the idea of domain-specific units (DSU) for multi-channel PAD task.
Instead of forcing the representation from different channels to be same, we leverage
the complementary information from a joint representation obtained from multi-
ple channels. We hypothesize that the joint representation contains discriminatory
information for PAD task. By concatenating the representation from different chan-
nels, and using fully connected layers, a decision boundary for the appearance of
bonafide and attack presentations can be learned via backpropagation. The lower
layer features, as well as the higher level fully connected layers, are adapted in the
training.

In this work, we utilize a LightCNNmodel [61], which was pre-trained on a large
number of face images for face recognition. The LightCNN network is especially
interesting as the number of parameters is much smaller than in other networks used
for face recognition. LightCNN achieves a reduced set of parameters using a Max-
Feature Map (MFM) operation as an alternative to Rectified Linear Units (ReLU),
which suppresses low activation neurons in each layer.

The block diagram of the proposed framework is shown in Fig. 13.3. The pre-
trained LightCNNmodel produces a 256-dimensional embedding, which can be used
as face representation. The LightCNN model is extended to accept four channels.
The 256-dimensional representation from all channels is concatenated, and two fully
connected layers are added at the end for PAD task. The first fully connected layer
has ten nodes, and the second one has one node. A sigmoidal activation function is
used in each fully connected layer. The higher level features are more related to the
task to be solved. Hence, the fully connected layers added on top of the concatenated
representations are tuned exclusively for PAD task. Reusing the weights from a
network pre-trained for face recognition on a large set of data, we avoid plausible
over-fitting, which can occur due to limited amount of training data.
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Fig. 13.3 Block diagram of the basic multichannel network. The gray color blocks in the CNN
part represent layers which are not re-trained, and other colored blocks represent re-trained/adapted
layers

Binary Cross Entropy (BCE) is used as the loss function to train the model using
the ground truth information for PAD task.

Several experiments were done by adapting the different blocks of layers, starting
from the low-level features. The final fully connected layers are adapted for PAD
task in all the experiments.

While doing the adaptation, the weights are always initialized from the weights
of the pre-trained layers. Apart from the layers adapted, the parameters for the rest
of the network remain shared.

The layers corresponding to the color channel are not adapted since the repre-
sentation from the color channel can be reused for face recognition, hence making
the framework suitable for simultaneous face recognition and presentation attack
detection.

13.3.3 One-Class Contrastive Loss (OCCL)

From a practical viewpoint, it is not possible to anticipate all the possible types of
attacks and to have them in the training set. This, in turn, make the PAD task an
unseen classification problem in a broad sense. In general, we can even consider
attacks coming from different replay devices as unseen attacks. Typically, one-class
classifiers are well suited for such outlier detection tasks. However, in practice,
the performance of one-class classifiers is inferior compared to binary classifiers
for known attacks, since they do not leverage useful information from the known
attacks. Ideally, the PAD system should perform well in both known and unseen
attack scenarios.

Clearly, there is a necessity of a method which can learn a compact one-class
representation while utilizing the discriminative information from known attacks.
While the collection of attacks could be difficult and costly, collecting bonafide
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samples are rather easy.Anewclassification strategy is required to handle the realistic
scenario where a limited variety of attack classes are available.

Though one-class classifiers (OCC) offer a way to model the bonafide class,
the efficient use of OCC requires the feature representation to be compact while
containing discriminative information for PAD task. In the proposed framework, we
use a CNN-based approach to learn the feature representation. A novel loss function
is proposed to learn a representation of bonafide samples leveraging the known attack
classes.

Consider a typical CNN architecture for PAD, where the output layer contains
one node and the loss function used is Binary Cross Entropy (BCE), which is defined
as follows:

LBCE = −(y log(p) + (1 − y) log(1 − p)) (13.1)

where y is the ground truth, (y = 0 for attack and y = 1 for bonafide) and p is the
probability.

When trained only with BCE loss, the network learns a decision boundary based
on the bonafide and attacks present in the training set. However, it may not generalize
when encountered with an unseen attack in the test time as it could be over-fitted to
attacks which are “known” from the training set.

To overcome this issue, we propose the “One-Class Contrastive Loss” (OCCL)
function which operates on the embedding layer. Proposed One-Class Contrastive
Loss (OCCL) function is used as an auxiliary loss function in conjunctionwith binary
cross-entropy loss. The feature map obtained from the penultimate layer of the CNN
is used as the embedding. The loss function is inspired from center loss [60] and
contrastive loss [24], which are usually used in the face recognition applications.

In face recognition applications, center loss is used as an additional auxiliary loss
function, the task of the center loss is to minimize the distance of the embeddings
from their corresponding class centers. The center loss is defined as follows:

Lcenter = 1

2

m∑

i=1

‖xi − cyi ‖22 (13.2)

where Lcenter denotes the center loss, m the number of training samples in a mini-
batch, xi ∈ Rd denotes the ith training sample, yi denotes the label, and cyi denotes
the ythi class center in the embedding space.

The main issue with center loss in the PAD application is that the loss function
penalizes for large intra-class distances and does not care about the inter-class dis-
tances. Contrastive center loss [52] tries to solve this issue by adding the distance
between classes (inter-class) in the formulation. However, for the PAD problem,
modeling the attack class as a cluster and finding a center for the attack class is not
trivial. The attacks could be of different categories: 2D, 3D, and partial attacks, and
it is not ideal forcing them to cluster together in the embedding space. It is only nec-
essary to have the embeddings of attacks far from bonafide cluster in the embedding
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space. Hence, we put the compactness constraint only on the bonafide class, while
forcing the embeddings of PAs to be far from that of bonafide.

To formulate the loss function, we start with the equation for contrastive loss
function proposed by Lecun et al. [24].

LContrastive(W,Y, X1, X2) =(1 − Y )
1

2
D2

W

+ Y
1

2
max(0,m − DW)2

(13.3)

where W is the network weights; X1, X2 are the pair; and Y the label of the pair,
i.e., whether they belong to the same class or not. m is the margin, and DW is the
distance function between two samples. The data is provided as pairs (X1, X2) and
the distance function DW can be computed as the Euclidean distance.

DW =
√

‖X1 − X2‖22 (13.4)

Now, in our loss formulation, the critical difference is how we define DW . In the
original contrastive loss, DW is the distance between samples. In our case, we need
the representation of bonafide samples to be compact in an embedding space. At the
same time, we want to maximize the distance between bonafide cluster and attack
samples in the embedding space. This can be achieved by defining DCW to be the
distance from the center of bonafide class as follows:

DCW =
√

‖Xi − cBF‖22 (13.5)

where Xi is the embedding for i th sample, and cBF is the center of bonafide class in
the embedding space.

The center of the bonafide class is updated in every mini-batch during training as
follows:

cBF = ĉBF (1 − α) + α
1

N

N∑

i=1

ei (13.6)

where cBF and ĉBF denote the new and old bonafide centers. α is a scalar which
prevents sudden changes in the class centers in mini-batch. ei denotes the difference
between embeddings for the bonafide samples in the current mini-batch compared to
the previous center, and N denotes the number of bonafide samples in themini-batch.

Combining the equations, our auxiliary loss function becomes

LOCCL(W,Y, X) =Y
1

2
DC2

W

+ (1 − Y )
1

2
max(0,m − DCW)2

(13.7)
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Fig. 13.4 Loss functions acting on the embedding space, left) bonafide representations are pulled
closer to the center of bonafide class (green), while the attack embeddings (red) are forced to be
beyond the margin. The attack samples outside the margin do not contribute to the loss, right) The
loss as a function of distance from the bonafide center

where DCW denotes the Euclidean distance between the samples and the bonafide
class center,Y denotes the ground truth, i.e.,Y = 0 for attacks andY = 1 for bonafide
(note the change in labels from the standard notation due to the ground truth con-
vention). It is to be noted that the proposed loss function does not require pairs of
samples, which is a requirement in usage of contrastive loss. This makes it easier to
train the model without requiring an explicit selection of pairs during training.

This auxiliary loss makes the representation of bonafide compact pushing it closer
to the center of bonafide class and penalizes attack samples which are closer than
the marginm. Attack samples which are farther than the marginm are not penalized.
An illustration of the loss functions acting on the embeddings of bonafide and attack
samples is shown in Fig. 13.4.

We combine the proposed loss function with standard binary cross entropy for
training. The combined loss function to minimize is given as

L = (1 − λ)LBCE + λLOCCL (13.8)

where L denotes the total loss for the CNN. LBCE and LOCCL denote the binary
cross entropy and one-class contrastive loss, respectively. λ denotes a scalar value to
set the weight for each loss functions. In our experiments, we set the value of λ as
0.5.

The combined loss function L tries to learn a decision boundary between the
available attacks and bonafide while the auxiliary loss tries to make the feature rep-
resentation of the bonafide compact in the embedding space. We expect the decision
boundary learned in this fashion to be more robust in unseen attacks compared to
the network learned only with BCE. The embedding obtained in this manner is used
with a one-class classifier for the PAD task.
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Fig. 13.5 Schematic diagram of the proposed framework. The CNN architecture is trained with
two losses and then used as a fixed feature extractor with frozen weights. The one-class GMM is
trained using the embeddings obtained from bonafide class alone

An illustration of the proposed framework is shown in Fig. 13.5. At the time of
training, both losses are used, and the model corresponding to the lowest validation
score is selected. It is to be noted that, at the time of CNN training, both bonafide
and (known) attack samples are used. After the CNN training, the network weights
are frozen, and the bonafide samples are feedforwarded to obtain the embeddings.

13.3.3.1 One-Class Gaussian Mixture Model

After the training of MCCNN with BCE and OCCL, the trained weights of the
network are frozen, and it is used as a fixed feature extractor for the PAD task.
Now that a compact representation is available, the objective is to learn a one-class
classifier using the features obtained. We use one-class Gaussian mixture model for
this task. The one-class GMM is a generative approach which is used for modeling
the distribution of the bonafide class in the proposed framework.

A Gaussian mixture model is defined as the weighted sum of K multivariate
Gaussian distributions as

p(x |�) =
K∑

k=1

wkN(x;μk, �k) (13.9)

where � = {wk, μk, σk}{k=1,...,K } are the weights, means, and the covariance matrix
of the GMM.

Expectation-Maximization (EM) [12] was used to compute the parameters of the
GMM. A full covariance matrix is computed for each component, and the number
of components to use was empirically selected as five (K = 5).
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During the training phase, embeddings obtained from bonafide class only are used
to train the one-class GMM.

In test time, a sample is first forwarded though the network to obtain the embedding
x , and then fed to the one-class GMM to obtain the log-likelihood score as follows:

score = log(p(x|�)) (13.10)

Algorithm 1: Algorithm for training the proposed framework
Data: (xi , yi ), where xi is multi-channel input and yi ∈ 0, 1; 0 – for attack and 1– for

bonafide
Result: WC – CNN weights, �GMM – Parameters of GMM

1 Constants : λ – weighting factor, μ – learning rate
2 Initialize : CBF – center of bonafide class, WC – initial weights of CNN from pre-trained
model

3 for mini-batch ← 1 to P do
4 Forward xi through the CNN
5 Compute the combined loss: L = (1 − λ)LBCE + λLOCCL
6 Back-propagate the loss and update the weights of DSUs and FC layers
7 Update the bonafide center:

8 cBF = ĉBF (1 − α) + α 1
N

∑N
i=1 ei

9 end
10 Forward x j (bonafide, where y j = 1) through the CNN to obtain Embeddings E j
11 Estimate parameters of GMM from E j :
12 �GMM= (wk , μk , �k)

13 Parameters← (WC ,�GMM )

In summary, the proposed framework can be considered as a one-class classifier-
based framework for PAD.The crucial distinction is that the features used are learned.
The loss function proposed forces the CNN to learn a compact representation for the
bonafide class leveraging the information from known attack classes. The algorithm
for training the framework is shown in Algorithm 1.

13.3.4 Implementation Details

To increase the number of samples, data augmentation using random horizontal
flips with a probability of 0.5 was used in training. Adam optimizer [31] was used
to minimize the combined loss function. Learning rate of 1 × 10−4 and a weight
decay parameter of 1 × 10−5 were used. The network was trained for 50 epochs on
GPU grid with a batch size of 32. The model corresponding to minimum validation
loss in the dev set is selected as the best model. For the four-channel models, the
MCCNN architecture has about 13.1 M parameters and about 14.5 GFLOPS. The
implementation was done using PyTorch [48] library.
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13.4 Experiments

In order to evaluate the effectiveness of the proposed approach, we have performed
experiments in three publicly available databases, namely, WMCA [23], MLFP [1],
and SiW-M [37] datasets. Recently published CASIA-SURF [67] database also con-
sists of multi-channel data, namely, color, depth, and infrared channels with a limited
set of attack instruments. However, the raw data from the sensors were not publicly
available; in the publicly available version of the database, images were masked and
scaled with custom preprocessing reducing the dynamic range of depth and infrared
channels severely. Moreover, there was no guaranteed alignment between the chan-
nels. Therefore, we cannot use our framework with CASIA-SURF database due to
the mentioned limitations.

13.4.1 WMCA Dataset

We have conducted an extensive set of experiments onWide Multi-Channel presen-
tation Attack (WMCA)3 database, which contains a total of 1679 video samples of
bonafide and attack attempts from 72 identities. The database contains information
from four different channels collected simultaneously, namely, color, depth, infrared,
and thermal channels. The data was collected using two consumer devices, Intel®

RealSense™SR300 capturing RGB-NIR-Depth streams and Seek Thermal Com-
pactPRO for the thermal channel. The database contained around 80 different PAIs
constituting seven different categories of attacks: print, replay, funny eyeglasses, fake
head, rigid mask, flexible silicone mask, and paper masks. The RGB visualization
of the attack categories is shown in Fig. 13.6 and the different sessions in Fig. 13.7.
Detailed information about theWMCA database can be found in the publication [23].
The statistics of the number of samples in each category and their types are shown
in Table 13.1. We have made challenging protocols in theWMCA dataset to perform
an extensive set of evaluations emulating real-world unseen attack scenarios.

13.4.1.1 Protocols inWMCA

To test the performance of the algorithm in known and unseen attack scenarios, we
created three protocols in the WMCA dataset. The protocols are described below:

• grandtest: This is the exact same grandtest protocol available with WMCA
database, here all the attack types are present in almost equal proportions in the
train, development, and evaluation sets. The attack types and bonafide samples are
divided into threefolds, and the client ids are disjoint across the three sets. Each

3 Database available at: https://www.idiap.ch/dataset/wmca.

https://www.idiap.ch/dataset/wmca
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Fig. 13.6 Attack categories in WMCA dataset, only RGB images are shown. Print and Replay
constitutes the 2D attacks and all others are 3D attacks (Image taken from [23])

Fig. 13.7 Different sessions
inWMCA dataset, only RGB
images are shown. A total of
six sessions was used in the
WMCA (Image taken from
[23])



288 A. George and S. Marcel

Table 13.1 Statistics of attacks inWMCA database

PA category Type #Presentations

Bonafide – 347

Glasses Partial 75

Print 2D 200

Replay 2D 348

Fake head 3D 122

Rigid mask 3D 137

Flexible mask 3D 379

Paper mask 3D 71

Total 1679

presentation attack instrument had a separate client id. The train, dev, eval splits
were made in such a way that a specific PA instrument will appear in only onefold.

• unseen-2D: In this protocol, we use same splits as grandtest and removed all 2D
attacks from train and development groups. Evaluation set contains only bonafide
and 2D attacks. This emulates the performance of a systemwhen encountered with
2D attacks which was not seen in training.

• unseen-3D: In this protocol, we use same splits as grandtest and removed all 3D
attacks from train and development groups. Evaluation set contains only bonafide
and 3D attacks. This emulates the performance of a system when encountered
with 3D attacks which were not seen in training. This is the most challenging
protocol as the model sees only the simpler 2D attacks in training and encounter
challenging 3D attacks in testing.

While the grandtest protocol emulates the known attack scenario, other protocols
emulate the unseen attack scenario. All protocols are made available publicly.

13.4.2 MLFP Dataset

MLFP dataset [1] consists of attacks captured with seven 3D latex masks and three
2D print attacks. The dataset contains videos captured from color, thermal, and
infrared channels. Since channels were captured individually in different recording
sessions, multi-channel approaches are not trivial. Also, the alignment of channels is
not possible since they are not collected simultaneously. Hence, we only use the RGB
videos from the MLFP dataset for our experiments. The database contains videos of
10 subjects wearing both print and latex masks. There are 440 videos are consisting
of both attacks and bonafide for the RGB channel.



13 Multi-channel Face Presentation Attack Detection … 289

13.4.2.1 Protocols inMLFP

To emulate known and unseen attack scenarios, we created three new protocols in
theMLFP dataset. There are two types of attacks, namely, print and mask. Only two
sets, i.e., train and evaluation are created due to the small size of the dataset. We
used a subset of the train set (10%) for model selection. The protocols are described
below:

• grandtest: This protocol emulates the known attack scenario. Both the attacks are
present in both train and evaluation set. However, the subjects and the PAs are
disjoint across the two sets.

• unseen-print: In this protocol, only bonafide and mask attacks are present in train
set; the evaluation set contains only bonafide and print attacks. This emulates
unseen attack scenario.

• unseen-mask: In this protocol, only bonafide and print attacks are present in train
set; the evaluation set contains only bonafide and mask attacks. This protocol also
emulates unseen attack scenario.

13.4.3 SiW-M Dataset

The Spoof in the Wild database with Multiple Attack Types (SiW-M) [37] consists
of a wide variety of attacks captured only in RGB spectra. The database consists of
images from 493 subjects, and a total of 660 bonafide and 968 attack samples. A total
of 1628 files, consisting of 13 different attack types, collected in different sessions,
pose, lighting, and expression (PIE) variations. The attacks consist of various types
of masks, makeups, partial attacks, and 2D attacks. The videos are available in 1080P
resolution.

13.4.3.1 Protocols in SiW-M

To emulate unseen attack scenarios,we use the leave-one-out (LOO) testing protocols
available with the SiW-M [37] dataset. The protocols consist of only train and eval
sets. In each LOO protocol, the training set consists of 80% percentage of the live
data and 12 types of spoof attacks. The evaluation set consists of 20% of bonafide
data and the attack which was left out in the training phase. The subjects in bonafide
sets are disjoint in train and evaluation sets. A subset of the train set (5%) was used
for model selection. Additionally, we have created a grandtest protocol, specifically
for cross-database testing which contains all the attack types in all the folds.
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13.4.4 Evaluation Metrics

We report the standardized ISO/IEC 30107-3 metrics [29], Attack Presentation
Classification Error Rate (APCER), Bonafide Presentation Classification Error Rate
(BPCER), and Average Classification Error Rate (ACER) in the test set. A BPCER
threshold of 1% is used for computing the threshold in dev set. The APCER and
BPCER in both dev and eval sets are also reported. Additionally, the ROC curves
for experiments are also shown in all the protocols. For theMLFP dataset, we report
only EER in the evaluation set since only two sets are available. For SiW-Mdatabase,
we apply a threshold selected a priori in all protocols, for computing the metrics, to
be comparable with the results in [37].

13.4.5 Baselines

We have implemented three feature-based baselines and two CNN-based baselines.
For a fair comparison, all the benchmarks are multi-channel methods and use the
same four channels. Besides, anRGB-onlyCNNmodel is also added for comparison.
A short description of the baselines along with the acronyms used is shown below:

• MC-RDWT-Haralick-SVM: This baseline is the multi-channel extension of the
RDWT-Haralick-SVM approach proposed in [1]; the images from all channels are
stacked together after preprocessing. For each channel, the image is divided into a
4 × 4 grid, and Haralick [25] features obtained from the RDWT decompositions
are concatenated from all the grids in all channels to get the joint feature vector.
The joint feature is used with a linear SVM for PAD.

• MC-RDWT-Haralick-GMM: Here, the feature extraction stage is same as MC-
RDWT-Haralick-SVM; however, the classifier used is one-class GMM. Only
bonafide samples are used in training this model. This model is added to show
the performance of one-class models in unseen attack scenarios.

• MC-LBP-SVM: Here, again, the same preprocessing is performed on all the chan-
nels first. After this, spatially enhanced histograms of LBP representation from all
the component channels are computed and concatenated to a feature vector. The
features extracted are fed to an SVM for PAD task.

• DeepPixBiS: This is a CNN-based system [20] trained using both binary and pixel-
wise binary loss functions. This model only uses RGB information for PAD.

• MC-ResNetPAD:We reimplemented the architecture from [47] extending it to four
channels, based on their open-source implementation.4 This approach obtained the
first place solution in the “CASIA-SURF” challenge. For a fair comparison, instead
of using an ensemble, we used the best pre-trained model as suggested in [47].

4 Available from: https://github.com/AlexanderParkin/ChaLearn_liveness_challenge.

https://github.com/AlexanderParkin/ChaLearn_liveness_challenge
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• MCCNN(BCE): This is the multi-channel CNN system described in [23], which
achieved state-of-the-art performance in the grandtest protocol. The model is
trained using Binary Cross-Entropy (BCE) loss only.

All the baseline methods described are reproducible, and the details about the
parameters can be found in our open-source package.5

13.4.6 Experiments and Results in WMCA Dataset

We have tested the baselines and the proposed approach in three different protocols
inWMCA. The proposed approach is denoted as MCCNN(BCE+OCCL)-GMM.

• MCCNN(BCE+OCCL)-GMM: Here, the bonafide embeddings from theMCCNN
trained using both the losses are used to train a GMM, and in the evaluation stage,
the score from the one-class GMM is used as the PAD score.

The results in each protocol are described below.

13.4.6.1 Experiments in Grandtest Protocol

The grandtest protocol emulates the known attack scenario. Table 13.2 shows the
results in the grandtest protocol. The proposed approach outperforms the feature-
based methods by a large margin as expected. The model MC-RDWT-Haralick-
GMM trained using a one-class model achieves the worse results. It is interesting
to note that the MC-RDWT-Haralick-SVM model, trained using the same feature
as a binary classifier, performed much better. This shows one weakness of one-
class classifiers in a known attack scenario, as they do not use the known attacks
in training. The MCCNN(BCE) achieves much better performance as compared to
MC-ResNetPAD. The MCCNN(BCE) trained as a binary classifier achieves the best
performance in this protocol. The proposedMCCNN(BCE+OCCL)-GMM approach
achieves comparable performance to MCCNN(BCE). This indicates that the one-
class GMM classifier performs on par with the binary classification, provided they
are trained with compact feature representations.

13.4.6.2 Experiments in Unseen-2D and Unseen-3D Protocol

Theunseen-2D andunseen-3Dprotocols emulate theunseen attack scenario (Table13.3).
The unseen-3D is the most challenging protocol since it is trained only on 2D print
and replay attacks and encounters awide variety of 3D attacks such as siliconemasks,
fake heads, mannequins, etc. in the eval set.

5 Source code: https://gitlab.idiap.ch/bob/bob.paper.oneclass_mccnn_2019.

https://gitlab.idiap.ch/bob/bob.paper.oneclass_mccnn_2019
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Table 13.2 Performance of the baseline systems and the proposed method in grandtest protocol
of WMCA dataset. The values reported are obtained with a threshold computed for BPCER 1% in
dev set

Method Dev (%) Test (%)

APCER ACER APCER BPCER ACER

MC-RDWT-Haralick-SVM 3.6 2.3 5.4 1.2 3.3

MC-LBP-SVM 3.6 2.3 8.5 0.6 4.6

MC-RDWT-Haralick-
GMM

43.4 22.2 47.7 1.7 24.7

DeepPixBiS (RGB only)
[20]

1.0 1.0 8.2 3.7 6

MC-ResNetPAD [47] 3.8 2.4 3.5 1.6 2.6

MCCNN (BCE) [23] 0.4 0.7 0.5 0 0.2

MCCNN (BCE+OCCL)-
GMM

0.1 0.6 0.6 0.1 0.4

Table 13.3 Performance of the baseline systems and the proposed method in unseen protocols of
WMCA dataset. The values reported are obtained with a threshold computed for BPCER 1% in dev
set

Method Unseen-2D Unseen-3D

APCER BPCER ACER APCER BPCER ACER

MC-RDWT-Haralick-SVM 0.3 0.1 0.2 66.0 0.1 33.1

MC-LBP-SVM 40.7 0.1 20.4 38.9 0.2 19.5

MC-RDWT-Haralick-
GMM

0.0 0.2 0.1 70.8 1.9 36.4

DeepPixBiS (RGB only)
[20]

77.7 0.3 39 74.7 16.3 45.5

MC-ResNetPAD [47] 4.1 0.9 2.5 92.2 6.4 49.3

MCCNN (BCE) [23] 0.0 1.0 0.5 62.0 0.0 31.0

MCCNN (BCE+OCCL)-
GMM

0.3 0.6 0.5 15.4 3.9 9.7

Most of the approaches perform well in the unseen-2D protocol. This result is
intuitive as these models are trained on challenging 3D attacks, detection of 2D
attacks is much easier. Moreover, the 2D attacks can be easily identified in depth,
thermal, and infrared channels. Even some feature-based methods perform well in
this protocol, with MC-RDWT-Haralick-GMM method achieving the best perfor-
mance. This shows the advantage of one-class model in an unseen attack scenario.
The proposed approach MCCNN(BCE+OCCL)-GMM andMCCNN(BCE) baseline
perform comparably in this protocol. Notably, the DeepPixBiSmodel achieves much
worse results in this protocol. This could be because discriminating between bonafide
and 2D attacks are harder when only RGB information is used.



13 Multi-channel Face Presentation Attack Detection … 293

Fig. 13.8 DET curves for the eval sets of different protocols of WMCA dataset a grandtest,
b unseen-2D, c unseen-3D protocol

The unseen-3D protocol shows important results. All the baselines show inferior
performance when encountered with unseen-3D samples. This shows the failure of
binary classifiers in generalizing to challenging unseen attacks. TheMCCNN(BCE)
approach, while being architecturally similar, fails to generalize when trained in the
binary classification setting. With the proposed approach, performance improves to
9.7% when the one-class GMM is used on the bonafide representations. Since the
network learns to map the bonafide samples to a compact cluster in the feature space,
even in the presence of unseen attacks, the decision boundary learned for the bonafide
class is robust. The unseen attacks map far from the bonafide cluster and hence
becomes easy to discriminate from bonafide samples. This result is encouraging
since the network has shown only 2D attacks in training, and still it manages to
achieve good performance against challenging 3D attacks. The ROCs for all the
protocols are shown in Fig. 13.8.

The t-SNE [38] plots of the embeddings for all protocols are shown in Fig. 13.9.
Five frames from each video in the evaluation sets of the protocols are used for
this visualization. While the difference between bonafide and attacks is clear in the
grandtest and unseen-2D, difference in unseen-3D protocol is very evident. It can
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Fig. 13.9 t-SNE plots of embeddings in the protocols in WMCA dataset. First row (a, b, c) shows
the embeddings when only BCE loss was used. Second row (d, e, f) shows the embeddings when
both the losses are used. Embeddings of both known and unseen attacks are shown in the figures
for each protocol. Grandtest protocol contains only known attacks in the test set

be clearly seen that the bonafide class clusters together and is far from the bonafide
representation in the embedding space in the unseen-3D protocol when the proposed
loss is used. Unseen attacks overlap with bonafide embeddings when only BCE
is used. This clearly demonstrates the effectiveness of the proposed approach for
unseen attack detection. The unseen attacks which are overlapping with the bonafide
region are shown in Fig. 13.10. It can be seen that some video replay samples and
flexible silicone 3D masks get misclassified in unseen-2D and unseen-3D protocols,
respectively.

13.4.6.3 Ablation Study with Channels

To evaluate the performance of the proposed framework on different set of channels,
we perform an ablation study by including a different set of channels. We used only
the best performingMCCNN(BCE+OCCL)-GMM approach in this ablation study. In
all combinations, the grayscale channel is present since it is used as a reference. This
is required as the embedding from the grayscale part can be used for face recognition
as well.

The acronyms for different channels are shown below:

• G: Grayscale image,
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Fig. 13.10 The attack
samples which are closer to
bonafide cluster in a
unseen-2D (Fig. 13.9e) and b
unseen-3D (Fig. 13.9f)
protocol for the proposed
framework

Table 13.4 Performance of the proposed framework with different combinations of channels in
all protocols of WMCA dataset. The values reported are obtained with a threshold computed for
BPCER 1% in dev set

Channels Grandtest Unseen-2D Unseen-3D

ACER ACER ACER

GDIT 0.4 0.5 9.7

GDI 1.1 11.2 23.1

GT 2.2 3.2 21.5

GD 2.3 49.4 45.4

GI 1.1 2.2 22.6

• D: Depth image,
• I: Infrared channel, and
• T: Thermal channel.

Various combinations of these channels are experimented with, and the results
are tabulated in Table 13.4. It is to be noted that the channels G, D, and I come from
the same device and T is coming from a different device. Usually, thermal cameras
are expensive, compared to RGB-D cameras, and hence the combinations involving
subsets of G, D, and I are more interesting from a deployment point of view.

From Table 13.4, it can be seen that the performance degrades as channels are
removed. However, the combination GI achieves reasonable performance while con-
sidering the performance-cost ratio. The ROCs for different protocols are shown in
Fig. 13.11.
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Fig. 13.11 Ablation study with different combination of channels, DET curves for the eval sets of
different protocols of WMCA dataset a grandtest, b unseen-2D, c unseen-3D protocol

13.4.7 Experiments and Results in MLFP Dataset

We have used only the RGB channel for the experiments since the other channels
were not captured simultaneously. For the MCCNN framework and other baselines,
“R,” “G,” and “B” are considered as the different channels in these experiments. We
have performed the experiments in the three newly created protocols and the results
are tabulated in Table 13.5.

From the results in Table 13.5, it can be seen that the CNN-based approach out-
performs the feature-based approaches. The MCCNN framework, with the addition
of the newly proposed loss, outperforms the architecture trained with BCE only,
showing the effectiveness of the proposed approach.

Even though the proposed approach performs better than the baselines, it is to be
noted that the key point of the proposed approach, leveraging multi-channel infor-
mation, is not utilized here. The architecture is not optimized for PAD in RGB and
this experiment is performed only to show the change in performance with the new
loss function. Nevertheless, the proposed approach achieves better performance as
compared to the baselines in all the protocols.
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Table 13.5 Performance of the proposed framework in the protocols inMLFP dataset. Only RGB
channel was used in this experiments. The values reported are the EER in the evaluation set

Algorithm Grandtest Unseen
print

Unseen
mask

MC-RDWT-Haralick-
SVM

9.8 12.0 32.2

MC-LBP-SVM 6.3 27.1 9.3

MC-RDWT-Haralick-
GMM

27.4 40.8 21.5

DeepPixBiS (RGB
only) [20]

6.3 24.8 17.5

MCCNN (BCE) 5.5 9.2 5.2

MCCNN
(BCE+OCCL)-GMM

1.2 3.3 3.4

13.4.8 Experiments and Results in SiW-M Dataset

Table 13.6 shows the performance of the proposed framework, again only in the RGB
scenario. CNN-based methods are much more powerful than feature-based methods
in this case. It can be seen that the proposed approach achieves better performance
compared to the baseline methods. The performance of theMCCNN (BCE+OCCL)-
GMM model is better than that of the MCCNN(BCE) model. It can be seen that the
addition of the new loss function makes the classification of unseen attacks more
accurate.

13.4.9 Cross-Database Evaluations

Since we cannot carry out a cross-database evaluation between a multi-channel
database and an RGB-only database, we only used the RGB channels from two
datasets for the cross-database evaluation. We selected WMCA and SiW-M datasets
since they are relatively large and consist of a wide variety of attacks.

Table 13.7 shows that theMCCNNmodel achieves comparable performance with
and without the new loss. In general, performance in the cross-database setting is
poor for all models. The poor performance can be due to the disparity in acquisition
conditions and attack types. A larger variety of attacks makes it more difficult for
the classifier to identify attacks only via RGB channels. Cross-database performance
against this multitude of attacks appears to be more challenging than typical cross-
database evaluations that only use 2D attacks. Using multiple channels [23] may
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Table 13.7 The results from the cross-database testing betweenWMCA and SiW-M datasets using
the grandtest protocol, only RGB channels were used in this experiment

Method Trained on WMCA Trained on SiW-M

Tested on
WMCA

Tested on
SiW-M

Tested on
SiW-M

Tested on
WMCA

MC-RDWT-
Haralick-SVM

14.6 29.6 15.1 45.3

MC-LBP-SVM 26.6 45.5 19.6 38.6

MC-RDWT-
Haralick-GMM

27.9 34.0 25.5 43.6

DeepPixBiS 7.5 49.1 14.7 44.4

MCCNN (BCE) 12.1 34.0 9.9 42.3

MCCNN
(BCE+OCCL)-
GMM

12.3 31.9 9.5 41.8

alleviate these issues. This also indicates the limitation of RGB-only methods while
dealing with a wide variety of attacks.

13.5 Discussions

The experiments in the WMCA database clearly show that the CNN-based meth-
ods outperform the feature-based methods by a large margin. When comparing the
method MCCNN (BCE) with the proposed method, the performance in the known
attack scenario is comparable. This indicates that the proposed one-class GMM-
based approach performs par with the binary classification, thanks to the embedding
learnedwith the proposed loss function.Most approachesworkwell in the unseen-2D
protocol, as it can be clearly distinguished in many channels. Furthermore, it shows
that simpler attacks are easy to spot if the network is trained in challenging attacks.
While the performance in the grandtest and unseen-2D protocols is comparable, the
proposed method achieves a great increase in performance in the most challeng-
ing unseen-3D protocol. The proposed loss function forces the network to learn a
compact representation for bonafide examples in the feature space. Both known and
unknown attacks are mapped far away from the bonafide cluster in the feature space.
The decision boundary learned from the one-class model seems robust in identifying
both seen and unseen attacks in such a scenario. This finding is significant for several
reasons. It is to be noted that in the unseen-3D protocol, the network is trained with
only 2D attacks, i.e., prints and replays. The proposedmethod achieves excellent per-
formance in a test set consisting of challenging 3D attacks such as custom silicone
masks, paper masks, mannequins, etc. The real-world implications of this approach
are very promising. The proposed method can be used to develop robust PAD sys-
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tems without the requirement of having to manufacture costly presentation attacks.
Depending on availability, the PAD models can be trained using easily available
attacks. The proposed framework utilizes the available (known) attack categories to
learn a robust representation to facilitate known and unseen attack detection. It is to
be noted that the compact representation is made possible by the joint multi-channel
representation used.

In practical deployment scenarios, computational or cost constraints can prevent
the use of all four channels. In such a situation, models trained on available channels
can be selected based on the cost-performance ratio by sub-selecting the channels.
The results of the ablation study in Table 13.4 can be used to determine which
channels should be used in such cases.

In a similar way, the experiments in MLFP and SiW-M databases also show that
CNN-based methods outperform feature-based baselines. Although we did not use
multichannel information in these experiments, the experimental results show the
performance improvementwith the new loss function.Using the proposed framework
together with network backbones designed specifically for RGB PADmight improve
the results.

The cross-database performance shows the limitations of the RGB channel when
tested with a wide variety of attacks. The performance of the baselines, as well as the
proposed approach, is poor when only using RGB data. This shows the challenging
nature of RGB-only PAD while considering a multitude of attacks. Using multiple
channels as done with the WMCA dataset might improve the performance.

13.6 Conclusions

Detecting face presentation attacks is often considered as a binary classification
task which results in over-fitting to known attacks and results in poor generalization
against unseen attacks. In this chapter, we address this problem with a new multi-
channel framework that uses a one-class classifier.Anovel loss function is formulated
which forces the network to learn a compact yet discriminative representation for
the face images. Thanks to the proposed loss function, the bonafide samples form
a compact cluster in the feature space. A decision boundary around the representa-
tion of bonafide class can be obtained using the one-class model. Both known and
unknown attacks are mapped far away from the bonafide cluster in the feature space,
which can be classified by the one-classmodel. The proposed framework offers a new
way to learn a robust PAD system from bonafide and available (known) attack sam-
ples. The proposed system was evaluated in the challenging datasets such asWMCA,
MLFP, and SiW-M and was observed to surpass the baselines in both known and
unseen attack scenarios. The drastic improvement in the performance in the unseen-
3D protocol inWMCA shows the robustness of the proposed approach against unseen
attacks thanks to the multi-channel information. The proposed method also shows an
improvement even when used together with RGB channels alone. The source code
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and protocols to reproduce the results are made available publicly to enable further
extensions of the proposed framework.
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Chapter 14
Scalable Person Re-identification:
Beyond Supervised Approaches

Rameswar Panda and Amit Roy-Chowdhury

Abstract Person re-identification across cameras is an important problem as it
enables associating targets over a wide area, which is likely to be viewed by multiple
cameras. It is an extremely active area of research today. Most of the approaches are
extensively supervised, in the sense that they require significant labeling effort to
train re-identification models, usually based on deep networks. However, as in other
problems in computer vision, it raises the question of scalability of the approaches
as the number of people to be associated grows or the size of the network grows. In
this chapter, we focus on two problems that hold the potential for developing highly
scalable person re-identification approaches. In the first, we focus on the problem of
how to limit the labeling effort even as the number of targets in the network grows.
On the challengingMarket-1501 dataset, we demonstrate that with only 8% labeling,
we can achieve performance very close to that with full-set labeling. In the second
problem, we focus on the size of the camera network and consider how to onboard
new cameras into an existing network with little to no additional supervision. We
leverage upon transfer learning approaches for this purpose and demonstrate the
results on a benchmark dataset. Overall, the chapter provides some research direc-
tions and initial results in pushing person re-identification beyond fully supervised
approaches and lays the groundwork for future research in this area.

14.1 Introduction

Person re-identification (re-id) across cameras is an extremely important problem in
computer vision as it forms the foundation for scene understanding across awide area,
which is likely to be covered by multiple cameras. Similar to most other recognition
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problems, the most successful approaches have been based on supervised training
phases. Labeled data across pairs of cameras are used to learn models that define
the transformation between the views in two cameras, and these learned models are
used to associate between images during the testing phase. However, this level of
supervision hampers scalability of the problem because of the need to label quantities
of data, which growswith the size of the camera network and the variety of conditions
that may be encountered.

In this chapter, we discuss the possibility of significantly reducing the level of
supervision in person re-identification problems without any sacrifice in perfor-
mance. This will ensure that it is possible to scale re-identification problems to larger
and larger networks of cameras without compromising the accuracy of the associa-
tion task.We specifically consider the following questions in person re-identification
in camera networks, building upon recent work in our group.

Optimal subset selection for labeling. Given unlabeled training data across a net-
work of cameras and a similarity measure, can we select a minimal subset of images
that should be labeled and from which the person re-identification models can be
learned? The intuition here is that if we choose this minimal subset judiciously, the
labels can be propagated using the similarity measure to the rest of the dataset. Thus,
most of the labels would be obtained automaticallywith only a small subset of images
being labeled.

On-boarding new cameras through transfer learning. Is it possible to leverage
upon learned re-identification models to onboard new cameras to an existing net-
work, again with limited to no additional supervision? We will show that, building
upon transfer learning concepts, we can augment an existing network with additional
cameras. Compared to a fully supervised approach to learnmodels, in this augmented
network, it is possible to achieve similar performance with little additional supervi-
sion by building upon the transfer learning process.

The first problem mentioned above relates to scalability of person re-id as the
number of people grows. The second relates to scalability as the size of the camera
network grows.We startwith a survey of relevant literature in person re-identification,
followed by an exposition of two approaches where we demonstrate how person re-
id approaches with limited supervision can be developed—what the challenges are,
what possible approaches exist, and some sample results.

14.2 Related Work

A thorough recent survey on person re-identification can be found at [84]. In this
chapter, we focus on a few relevant papers that are critical to our problem of person
re-identification under limited supervision.

Supervised Person Re-identification. Most existing person re-id techniques are
based on supervised learning. These methods either seek the best feature represen-
tation [5, 40, 49, 75] or learn discriminant metrics [23, 26, 36–38, 58, 66, 82, 86]
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that yield an optimal matching score between two cameras or between a gallery and
a probe image. Recently, deep learning methods have shown significant performance
improvement on image classification and has been applied to person re-id [11, 16,
42, 74, 76, 78, 80]. Combining feature representation and metric learning with an
end-to-end deep neural network is also a recent trend in re-identification [1, 35, 77].
Considering that a modest-sized camera network can easily have dozens of cameras,
these supervised re-id models will require a huge amount of labeled data which are
difficult to collect in real-world settings.

Unsupervised Person Re-identification. Unsupervised learning models have
received little attention in re-identification because of their weak performance on
benchmarking datasets compared to supervised methods. Representative methods
along this direction use either hand-crafted appearance features [12, 41, 45, 46] or
saliency statistics [81] for matching persons without requiring a huge amount of
labeled data. Recently, dictionary learning-based methods have also been utilized in
an unsupervised setting [2, 28, 29, 43].

Open-World Person Re-Identification. Open-world recognition has been intro-
duced in [6] as an attempt to move beyond the dominant static setting where the
number of classes is not fixed in recognition. Inspired by such approaches, there
have been few works in re-identification [8, 87] which try to address the open-world
scenario by assuming that gallery and probe sets contain different identities of per-
sons.

Incremental andActive Learning. In an effort to bypass tedious labeling of training
data, there has been recent interest in “active learning” [64] to intelligently select
unlabeled examples for the experts to label in an interactive manner. This can be
achieved by choosing one sample at a time by maximizing the value of informa-
tion [25], reducing the expected error [3], or minimizing the resultant entropy of
the system [7]. Recently, works selecting batches of unlabeled data by exploiting
classifier feedback to maximize informativeness and sample diversity [10, 17] were
proposed. Specific application areas in computer vision include, but are not limited
to, tracking [70], scene classification [25, 68], semantic segmentation [67], video
annotation [27], and activity recognition [22]. Authors in [4] propose a scalable re-id
framework using manifold smoothing. Active learning is introduced for incremental
updates in [71]. Another scalable re-id framework with a human in the loop is pro-
posed in [72]. In [14], an entropy-based selection approach is proposed for reducing
manual annotation. In [50],the authors uses a dominant clustering-based approach
for probe relevant set selection and utilizes it for pair selection in a dynamic setting.
Transitivity is utilized in [13] for increasing performance by re-organizing the pre-
dicted assignment matrix. The method proposed in [39] also uses similar ideas in a
deep learning-based framework.

Domain Adaptation. Domain adaptation, which aims to adapt a source domain
to a target domain, has been successfully used in many areas of computer vision
and machine learning, e.g., object classification and action recognition and speech
processing. Despite its applicability in classical vision tasks, domain adaptation for
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re-identification still remains as a challenging and under-addressed problem. Only
very recently, domain adaptation for re-id has begun to be considered [33, 34, 44,
73, 85]. However, these studies consider only improving the re-id performance in a
static camera network with a fixed number of cameras. Furthermore, most of these
approaches learn supervised models using labeled data from the target domain.

Budget-Constrained Learning. The problem of video analysis under budget con-
straints has been studied by few researchers [54, 55, 69] in the recent past; however,
none look into the problem of re-identification under budget constraints. Activity
detection under a computational. budget is considered in [65].

14.3 Optimal Subset Selection for Labeling

14.3.1 Problem Statement

Supervised distance metric learning-based methods for person re-id are specifically
popular because of their robustness toward large color variations and fast training
speed. However, like other supervisedmethods, metric learning algorithms have their
own burden of human labeling effort especially for large camera networks [60]. The
total number of training pairs assumed to be available by these algorithms increases
tremendously with network size and the number of persons in each camera. Manual
labeling of such a huge number of pairs is a tedious and expensive process. So
naturally, a question arises: given a camera network, can we come up with a strategy
of choosing a minimal subset of image pairs for labeling without compromising
on recognition performance? This is a problem of considerable significance in the
context of person re-id inmulti-camera networks, especially in larger ones. However,
the problem has received little attention in the literature thus far. Transitive relations
among person identities across multiple cameras and their logical consequences are
strongly informative properties. These properties have been explored previously for
globally consistent person re-id in several existing works [9, 13, 39]. Though it
may not be apparent at first, we can also exploit these transitive relations to reduce
manual pairwise annotation effort. To illustrate the idea, let us consider few plausible
scenarios as shown in Fig. 14.1a.

• In camera pair 1–2 and 1–3, if we know from human labeling person that pairs
P1
1 − P1

2 and P1
1 − P2

3 are positive matches, then from transitivity, we can directly
infer that P1

2 and P2
3 also have same identity. Similarly, given labels of P1

1 − P1
2

(+ve) and P1
1 − P1

3 (-ve), we can infer that P1
2 − P1

3 is negative.
• However, given that we already know labels of P1

1 − P2
2 (-ve) and P1

1 − P1
3 (-ve),

we still cannot conclude anything about pair P2
2 − P1

3 .

So, from the examples above, we can make a simple observation, i.e., if we do not
ask an expert for the label of the third pair/s in the first two cases described above,
required labeling effortwill be considerably reduced.However, this seemingly simple
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Human Label

Camera -1 

Inferred Label

Positive Pair

Negative Pair

No information

)b()a(

Fig. 14.1 a Motivation of our approach. Here, we have a camera network with three cameras.
Pi

k represent the “i”-th person in the “k”-th camera. Now suppose, we ask the human to label the
pairs P1

1 − P1
2 and P1

1 − P2
3 by asking a yes/no question. As both of them are positive matches,

after we know the labels of these two pairs using transitivity property, we can correctly infer the
label of P1

2 − P2
3 . Similarly, if we know labels of P1

1 − P1
2 and P1

1 − P1
3 , we can precisely infer

that P1
2 − P1

3 is a negative match. However, knowing the labels of pairs P1
1 − P2

2 and P1
1 − P1

3
does not give us any information about the pair P2

2 − P1
3 . b Network Representation. This figure

demonstrates the representation of a camera network with four cameras as a k-partite graph with
k=4. Best viewed in color

strategy implicitly makes an invalid assumption that we already have access to the
pair-labels from human. Also, note that, if we arbitrarily choose subsets of pairs for
labeling, there is no guarantee that we will be able to take advantage of pairwise-
relations as we will end up frequently in situations like the third scenario (occurrence
probability of this scenario is significantly higher than the other two). So, in order
to actually reduce annotation effort using this transitivity-based approach, we have
to choose image pairs in a judicious manner. Toward this objective, in this work, we
first formulate this pair subset selection as a combinatorial optimization problem on
edge-weighted k-partite graph. This combinatorial optimization can be represented
as a binary integer program which we can solve exactly for smaller datasets using
standard techniques such as branch and cut [52] and cutting plane algorithms [48].
However, as it is an NP-hard optimization problem, solving it with exact algorithms
takes exponential order time and for larger datasets, it becomes intractable. So, in
order to scale up the proposed methodology for large camera networks, we propose
two polynomial time sub-optimal algorithms for our optimization problem. The first
proposed algorithm is a pure greedy algorithmand second one is a 1/2-approximation
algorithm [61].
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14.3.2 Solution Overview

Graph-Based Representation of Camera Network. We represent any camera net-
work as a edge weighted complete k-partite graph Gk = (V, E) (see Fig. 14.1b).
Below we describe how this partite graph is constructed from a camera network
consisting of k cameras and total n persons across all cameras.

Vertex and Edges: Each vertex in Gk denotes a person in the camera network.
To be precise, vertex vi

k ′ represents the i-th person from k ′-th camera. From now
on, throughout rest of the work, we will use the terms “person” and “vertex” inter-
changeably. An edge Ei, j

k1,k2
= (vi

k1
, v

j
k2

) denotes probable correspondence between
i-th person in camera k1 and j-th person in camera k2.

Vertex Set Partitions: As per our definition, the set of all the persons in a camera
network forms the vertex set V of Gk . Now in our framework, we assume the intra-
camera vertices are not connected to each other, i.e., they form an independent vertex
set. So, k sets of vertices from each different camera form k different partitions.
More formally, V = (V1, V2, ..., Vk) where Vk ′ = {

v1
k ′, v2

k ′ , . . . , v
nk′
k ′

}
is the set of nk ′

persons in k ′-th camera. So, if we have n1,n2,. . . ,nk persons in camera 1, camera 2,
. . . , camera k, respectively, the cardinality of the set V is

|V | =
k∑

i=1

|Vi | = n1 + n2 + ... + nk = n (14.1)

Now, Gk is a complete multipartite graph as we have probable correspondences (i.e.,
an weighted edge) between every pair of vertices from different partitions. So the
total number of edges in the graph can be computed as follows:

|E | =
∑

∀k1∈{1,2,...,k}
∀k2∈{1,2,...,k}

s.t. k1<k2

nk1nk2 (14.2)

Edge weight: We define our edge weight function Fw : E → R as follows:

Fw

(
Ei, j

k1,k2

) = S(
vi

k1 , v
j
k2

)
(14.3)

where S is a function which computes similarity or association score between two
persons vi

k1
and v

j
k2
. Note that our framework can be used with any kind of similarity

measure. As we define our objective function later over non-negative edge weights,
the proposed scheme will scale any negative-valued similarity score into a non-
negative value using the sigmoid function. In this work, we compute similarity scores
between a pair of shots of two persons as follows:

S(
vi

k1 , v
j
k2

) = 1

1 + exp
(D( f i

k1 , f j
k2

) − μ
) (14.4)
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where f i
k1 , f j

k2
are the feature vectors of the corresponding persons v

k1
i , v

k2
j , respec-

tively, D is a distance function giving distance between two feature vectors, and μ

is a threshold.

Triangle: Complete subgraphs (or clique) of size 3 are termed as triangle in anygraph.
Naturally, whenever we have three persons(vertices), vi

k1
, v

j
k2

, vl
k3
from three different

cameras (camera k1, camera k2, and camera k3), they form a triangle, T i, j,l
k1,k2,k3

={
vi

k1
, v

j
k2

, vl
k3

}
. As we progress, we will see that triangles are the central objects

around which our whole framework evolves.
With the initial setup in place, we can now formulate the image pair selection

task as an optimization problem on our graph Gk . Let us consider first revisiting the
problem statement of the budget-constrained pair selection task.

14.3.2.1 Optimization Problem

Given a labeling budget, B, and a set of training image pairs from a camera network,
we have to select an optimal subset of size atmost B for human annotation. The notion
of “optimal subset” is incomplete. As seen from Fig. 14.1a, the transitive relations
defined over associations between different persons (vertices) can be utilized for
labeling effort reduction. Now we give that idea a concrete shape by making some
specific observations in the context of our graph Gk .

• For any triangle in our graph, we have a total of three edges from which we can
select for manual labeling.

• We may always want to select positive edges as they will contribute more toward
reducing manual labeling effort because transitive inference in our graph always
requires at least one positive edge.

• As shown in Fig. 14.1, if we have precise information about two edges in a triangle
of our graph and one of them is a positive edge, then we can deterministically infer
the label of the third edge. For this reason, we must always want to constrain the
number of edges chosen for manual labeling in a triangle to be at most two in order
to respect the budget.

• As we cannot foresee the actual labels, we have to choose that pair of edges from
any triangle which will maximize the probability of getting at least one positive
match.

• Also, note that any edge is a part of multiple triangles in our graph, so inference
propagation can occur from different directions.

With these observations in mind, our optimization problem can be stated as follows:

• Given a complete k-partite graph Gk = (V, E) with non-negative edge weights
and an integer B, choose a maximum-weight set S of edges from E such that
G’=(V,S) is triangle-free and |S| ≤ B.
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14.3.2.2 An Equivalent Binary Integer Program

Our combinatorial optimization can be formulated as a binary integer programing
problem as follows:

argmax
xi, j

k1 ,k2∀(i, j)∈δ(k1,k2)∀k1,k2∈{1,...,k} s.t k1<k2

⎛

⎜⎜
⎝

k∑

k1,k2=1
k1<k2

nk1 ,nk2∑

i, j=1

w
i, j
k1,k2

xi, j
k1,k2

⎞

⎟⎟
⎠ (14.5)

subject to :
k∑

k1,k2=1
k1<k2

nk1 ,nk2∑

i, j=1

xi, j
k1,k2

≤ B,

∀(i, j) ∈ δ(k1, k2) ∀k1, k2 ∈ {1, 2, ..., k} s.t k1 < k2 (14.6)

xi, j
k1,k2

+ xi,l
k1,k3

+ x j,l
k2,k3

≤ 2,∀(i, j) ∈ δ(k1, k2)

k1, k2, k3 ∈ {1, 2, ..., k}s.t. k1 < k2 < k3 (14.7)

xi, j
k1,k2

∈ {0, 1} ,∀(i, j) ∈ δ(k1, k2),

∀k1, k2 ∈ {1, 2, ..., k} s.t. k1 < k2
(14.8)

where Eq. (14.5) represents the linear objective function, which aims tomaximize the
total weight of the chosen subgraph. δ(k1, k2) denotes the edge-set between cameras
k1 and k2. Equations (14.6)–(14.8) are the constraintswe have to satisfy. x

i, j
k1,k2

denotes

the edge between i-th person in camera k1 and j-th person in camera k2. xi, j
k1,k2

’s are
defined over all possible values of i, j, k1, and k2 as described above and together
all possible xi, j

k1,k2
’s form the decision variable set. w

i, j
k1,k2

’s are the weights of the
corresponding edges and B is our labeling budget. The first constraint (14.6) dictates
that we can select at most B number of edges. Equation (14.7) constrains that the
subgraph formed by the selected edges be triangle-free. Equation (14.8) denotes that
optimization variable be binary, where a 1 would indicate that an edge is chosen for
manual labeling and 0 otherwise.

14.3.2.3 Polynomial Time Approximation Optimal Algorithms

On smaller datasets, we can easily solve our optimization problem using traditional
integer programming algorithms, such as cutting plane methods [48] and Branch
and Cut [52]. These methods always provide globally optimal solutions. However,
as they are exponential time algorithms, we cannot employ them for larger datasets.
In order to tackle this challenge, we propose two polynomial time algorithms which
drastically improve scalability.
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Algorithm 1. This algorithm is motivated by the observation that if we make any
cut on the vertex set of a graph, the set of cut crossing edges induces a triangle-free
subgraph. So if we can make a cut that maximizes the total weight of edges crossing
the cut, thenwemay construct a approximately optimal solution using those edges. In
graph theory, the max-cut problem is well studied where the objective is to find such
a max-weight cut. As max-cut is also an NP-hard [51] problem, there is no known
efficient algorithm for it. However, there exists a deterministic 1/2-approximation
algorithm for max-cut [20, 53]. Our first algorithm uses this 1/2-max-cut to achieve
1/2 approximation for our problem. After initialization steps, the Max-Cut Select
algorithm constructs the subgraph G ′ using the top B heaviest edges in E . Then it
employs the deterministic 1/2-max-cut algorithm on G ′ to generate a cut (S,V\S).
Finally, the algorithm selects the set T of edges which crosses the cut (S,V\S) and
returns it.

Algorithm 2. Often in practice, simple greedy heuristics give better performance as
compared to other theoretically superior algorithms. This perspective has motivated
us to explore greedy strategies for our problem resulting in the “Greedy-Select”
algorithm. Greedy-Select begins with an empty set T and iterates over the edges in
decreasing weight order. In each iteration, the algorithm adds the current edge to the
set T if the current edge does not form any triangle with the existing edges in T . The
algorithm terminates either when we have collected B number of edges in set T or
we have iterated over all the edges in the graph.

14.3.3 Sample Experimental Results

Dataset. We experiment on Market-1501 dataset [83], which is one of the largest
person re-identification datasets available today. It has 32,668 images of 1501 persons
taken from six cameras. We use the train-test split given in the dataset. Apart from
large variations in pose and illuminations, the size of the dataset itself introduces
a new level of computational challenge. For Market-1501 dataset, the optimization
problem we consider has more than 4.3 millions of variables.

Settings.We useKISSmetric learningmethod [30] for our experiments. To represent
each person node in the graph, we use 29600-dimensional LOMO features [40]. For
metric learning, we project the features into 100-dimensional space using PCA. We
use the Euclidean metric as our distance function. In any online setting, similarity
scores at any time instant can be computed using the learnedmetric from the previous
instance. Given a budget of B, we use a portion of the budget pB(0 < p < 1) [we
used p = 0.7 for experiments] to select triangle-free edges using our optimization
problem. However, in cases where the selected edges in a triangle are both negative
matches, we cannot infer about the label of the third edge and we may want to gather
information about it. For this reason, after the first stage of triangle-free selection,
we employ a greedy top selection mechanism to exhaust the rest of the budget. We
use Cumulative Matching Curves (CMC) to demonstrate recognition performance
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Fig. 14.2 This figure presents the comparisons of the proposed approach with baselines on the
Market-1501 dataset using Configuration 2. (a) and (b) are CMC curves with 8% and 3% manual
labeling, respectively. c Presents the plot for manual labeling effort vs. Rank-1 accuracy. Best
viewed in color

at a given budget. We also provide labeling effort vs. recognition performance plots
trade-off between the two.

Baseline. In this work, we use top-B edge selection as the baseline strategy. For all
our experiments, we compare our method against this baseline.

Results. Figure 14.2a demonstrates re-id performance with 8% labels. From
Fig. 14.2a, we observe that both of our approaches achieve full-set accuracy with
this amount of labeling. While with 3% labels, the performance of the proposed
approaches slightly degrades (see Fig. 14.2b). In Fig. 14.2c, we provide the manual
labeling percentage vs rank-1 accuracy graph. From all these three graphs, it can be
easily observed that our approach performs better than the baseline across all the
conducted experiments on Market dataset [61].

14.4 On-Boarding New Cameras through Transfer
Learning

14.4.1 Problem Statement

In this section, we address a very practical problem in camera networks, but which
has received little attention in the person re-identification literature. Given a camera
network where the inter-camera transformations/distance metrics have been learned
in an intensive training phase, how can we onboard new cameras into the installed
system with minimal additional effort? This is an important problem to address in
realistic open-world re-identification scenarios, where a new camera may be tem-
porarily inserted into an existing system to get additional information. To illustrate
such a problem, let us consider a scenario withN cameras for which we have learned
the optimal pairwise distance metrics, so providing high re-id accuracy for all cam-
era pairs. However, during a particular event, a new camera may be temporarily
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How can we introduce 
the new camera with 

minimal effort?

Training Images

(  ,  )(  ,  )
Model Training

Existing Camera Network

Newly Introduced Camera

Re-ID Model

No Label

C3

C1

C2

Fig. 14.3 Consider an existing network with two cameras C1 and C2 where we have learned a
re-id model using pairwise training data from both of the cameras. During the operational phase,
a new camera C3 is introduced to cover a certain area that is not well covered by the existing two
cameras. Most of the existing methods do not consider such dynamic nature of a re-id model. In
contrast, we propose to adapt the existing re-id model in an unsupervised way by exploring: what is
the best source camera to pair with the new camera and how can we exploit the best source camera
to improve the matching accuracy across the other camera

onboarded to cover a certain related area that is not well covered by the existing net-
work ofN cameras (see Fig. 14.3 for an illustrative example). Despite the dynamic
and open nature of the world, almost all work in re-identification assume a static
and closed world model of the re-id problem where the number of cameras is fixed
in a network. Given newly introduced camera(s), traditional re-id methods will try
to relearn the inter-camera transformations/distance metrics using a costly training
phase. This is impractical since labeling data in the new camera and then learning
transformations with the others are time-consuming, and it defeats the entire purpose
of temporarily introducing the additional camera. Thus, there is a pressing need to
develop unsupervised learning models for re-identification that can work in such
dynamic camera networks.

Transfer learning/domain adaptation [15, 32] has been successful in many clas-
sical vision problems such as object recognition [21, 24, 62] and activity classi-
fication [47, 79] with multiple classes or domains. The main objective is to scale
learned systems from a source domain to a target domain without requiring a pro-
hibitive amount of training data in the target domain. Considering a newly introduced
camera as the target domain, we pose an important question in this paper: Can the
unsupervised domain adaptation be leveraged upon for re-identification in a dynamic
camera network?

Unlike classical vision problems, e.g., object recognition [62], domain adaptation
for re-id has additional challenges. A central issue in domain adaptation is that from
which source to transfer. When there is only one source of information available
which is highly relevant to the task of interest, then domain adaptation is much
simpler than in the more general and realistic case where there are multiple sources
of information of greatly varying relevance. Re-identification in a dynamic network
falls into the latter, more difficult, case. Specifically, given multiple source cameras
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(already installed) and a target camera (newly introduced), how can we select the best
source camera to pair with the target camera? The problem can be easily extended to
multiple additional cameras being introduced.Moreover, once the best source camera
is identified, how can we exploit this information to improve the re-identification
accuracy of other camera pairs? For instance, let us consider C1 being the best
source camera for the newly introduced camera C3 in Fig. 14.3. Once the pairwise
distance metric between C1 and C3 is obtained, can we exploit this information to
improve the re-id accuracy across (C2–C3)? This is an especially important problem
because it will allow us to now match data in the newly inserted target camera C3

with all the previously installed cameras.

14.4.2 Solution Overview

To adapt re-id models in a dynamic camera network, we first formulate a domain
adaptive re-id approach based on geodesic flow kernel which can effectively find the
best source camera (out of multiple installed ones) to pair with a newly introduced
target camera with minimal additional effort. Then, to exploit information from the
best source camera, we propose a transitive inference algorithm that improves the
matching performance across other camera pairs in a network [57].

14.4.2.1 Initial Setup

Our proposed framework starts with an installed camera network where the discrim-
inative distance metrics between each camera pairs are learned using an off-line
intensive training phase. Let there be N cameras in a network and the number of
possible camera pairs is

(N
2

)
. Let {(xAi , xBi )}m

i=1 be a set of training samples, where
xAi ∈ R

D represents feature representation of training a sample from camera view
A and xBi ∈ R

D represents feature representation of the same person in a different
camera view B.

Given the training data, we follow KISS Metric Learning (KISSME) [30] and
compute the pairwise distance matrices such that distance between images of the
same individual is less than the distance between images of different individuals.
The basic idea of KISSME is to learn the Mahalanobis distance by considering a log
likelihood ratio test of two Gaussian distributions. The likelihood ratio test between
dissimilar pairs and similar pairs can be written as

R(xAi , xBj ) = log
1
CD

exp(− 1
2x

T
i j�

−1
D xi j )

1
CS

exp(− 1
2x

T
i j�

−1
S xi j )

(14.9)

where xi j = xAi − xBj , CD = √
2π |�D|, CS = √

2π |�S |,�D and�S are covariance
matrices of dissimilar and similar pairs respectively. With simple manipulations,



14 Scalable Person Re-identification: Beyond Supervised Approaches 317

(14.9) can be written as
R(xAi , xBj ) = xT

i jMxi j (14.10)

whereM = �−1
S − �−1

D is theMahalanobis distance between covariances associated
to a pair of cameras. We follow [30] and clip the spectrum by an eigen-analysis to
ensure M is positive semi-definite. Note that our approach is agnostic to the choice
of metric learning algorithm used to learn the optimal metrics across camera pairs
in an already installed network. We adopt KISSME in this work since it is simple to
compute and has shown to perform satisfactorily on the person re-id problem.

14.4.2.2 Discovering the Best Source Camera

Our approach for discovering the best source camera consists of the following steps:
(i) compute geodesic flow kernels between the new (target) camera and other source
cameras; (ii) use the kernels to determine the distance between them; and (iii) rank
the source cameras based on distance with respect to the target camera and choose
the one with the lowest as best source camera.

Let {X s}Ns=1 be the N source cameras and X T be the newly introduced tar-
get camera. To compute the kernels in an unsupervised way, we extend a previous
method [19] that adapts classifiers in the context of object recognition to the re-
identification in a camera network. The main idea of our approach is to compute the
low-dimensional subspaces representing data of two cameras (one source and one
target) and then map them to two points on a Grassmannian.1 Intuitively, if these two
points are close by on the Grassmannian, then the computed kernel would provide
high matching performance on the target camera. In other words, both of the cam-
eras could be similar to each other and their features may be similarly distributed
over the corresponding subspaces. For simplicity, let us assume we are interested in
computing the kernel matrix KST ∈ R

D×D between the source camera XS and a
newly introduced target camera X T . Let X̃S ∈ R

D×d and X̃ T ∈ R
D×d denote the

d-dimensional subspaces, computed using Partial Least Squares (PLS) and Principal
Component Analysis (PCA) on the source and target camera, respectively. Note that
we cannot use PLS on the target camera since it is a supervised dimension reduction
technique and requires label information for computing the subspaces.

Given both of the subspaces, the closed loop solution to the geodesic flow kernel
between the source and target camera is defined as

xSi
T
KST xTj =

1∫

0

(ψ(y)T xSi )T (ψ(y)xTj ) dy (14.11)

1 Let d being the dimension of the subspace, the collection of all d dimensional subspaces form the
Grasssmannian.



318 R. Panda and A. Roy-Chowdhury

where xSi and xTj represent feature descriptor of i-th and j-th sample in source and
target camera, respectively.ψ(y) is the geodesic flow parameterized by a continuous
variable y ∈ [0, 1] and represents how to smoothly project a sample from the original
D-dimensional feature space onto the corresponding low-dimensional subspace. The
geodesic flow ψ(y) over two cameras can be defined as [19],

ψ(y) =

⎧
⎪⎨

⎪⎩

X̃S if y = 0

X̃ T if y = 1

X̃SU1V1(y) − X̃S
o U2V2(y) otherwise

(14.12)

where X̃S
o ∈ R

D×(D−d) is the orthogonal matrix to X̃S and U1,V1,U2,V2 are given
by the following pairs of SVDs:

XSTX T = U1V1PT , XS
o

TX T = −U2V2PT (14.13)

With the above defined matrices, KST can be computed as

KST = [X̃SU1 X̃S
o U2

]G
[
UT
1 XST

UT
2 XS

o
T

]

(14.14)

where G =
[
diag[1 + sin(2θi )

2θi
] diag[ (cos(2θi )−1)

2θi
]

diag[ (cos(2θi )−1)
2θi

] diag[1 − sin(2θi )

2θi
]

]

and [θi ]d
i=1 represents the principal

angles between source and target camera. Once we compute all pairwise geodesic
flow kernels between a target camera and source cameras using (14.14), our next
objective is to find the distance across all those pairs. A source camera which is
closest to the newly introduced camera is more likely to adapt better than others. We
follow [59] to compute the distance between a target camera and a source camera
pair. Specifically, given a kernel matrix KST , the distance between data points of a
source and target camera is defined as

DST (xSi , xTj ) = xSi
T
KST xSi + xTj

T
KST xTj − 2xSi

T
KST xTj (14.15)

where DST represents the kernel distance matrix defined over a source and target
camera. We compute the average of a distance matrix DST and consider it as the
distance between two camera pairs. Finally, we chose the one that has the lowest
distance as the best source camera to pair with the target camera.

14.4.2.3 Transitive Inference for Re-identification

Once the best source camera is identified, another question that remains in adapting
models is: can we exploit the best source camera information to improve the re-
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identification accuracy of other camera pairs? Let {Mi j }Ni, j=1,i< j be the optimal
pairwise metrics learned in a network of N cameras and S� be the best source
camera for a newly introduced target camera T . Motivated by the effectiveness of
the Schur product in operations research [31], we develop a simple yet effective
transitive algorithm for exploiting information from the best source camera. The
Schur product (a.k.a. Hadamard product) has been an important tool for improving
the matrix consistency and reliability in multi-criteria decision making. Our problem
naturally fits to such decision making systems since our goal is to establish a path
between two cameras via the best source camera. Given the best source camera S�,
we compute the kernel matrix between remaining source cameras and the target
camera as follows:

K̃ST = MSS� � KS�T , ∀[S]Ni=1, S 	= S� (14.16)

where K̃ST represents the updated kernel matrix between source cameraS and target
camera T by exploiting information from best source camera S�. The operator �
denotes the Schur product of two matrices. Equation 14.16 establishes an indirect
path between camera pair (S,T ) by marginalization over the domain of possible
appearances in best source camera S�. In other words, camera S� plays a role of
connector between the target camera T and all other source cameras.

To summarizing, to adapt re-id models in a dynamic network, we use the kernel
matrix KS�T computed using (14.14) to obtain the re-id accuracy across the newly
inserted target camera and best source camera, whereas we use the updated kernel
matrices, computed using (14.16), to find the matching accuracy across the target
camera and remaining source cameras.

Note that although our framework is designed for unsupervised adaptation of re-id
models, it can be easily extended if labeled data from the newly introduced camera
become available. Specifically, the label information from the target camera can be
encoded while computing subspaces. That is, instead of using PCA for estimating
the subspaces, we can use Partial Least Squares (PLS) to compute the discriminative
subspaces on the target data by exploiting the labeled information. PLS has shown
to be effective in finding discriminative subspaces by projecting data with labeled
information to a common subspace [18, 63]. This essentially leads to semi-supervised
adaptation of re-id models in a dynamic camera network.

14.4.3 Sample Experimental Results

Datasets.We conduct experiments onRAiDdataset [13] to verify the effectiveness of
our framework. It was collected with a view to have a large illumination variation that
is not present in most of the publicly available benchmark datasets. In the original
dataset, 43 subjects were asked to walk through four cameras of which two are
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outdoor and two are indoor to make sure there is enough variation of appearance
between cameras.

Settings. The feature extraction stage consists of extracting Local Maximal Occur-
rence (LOMO) feature proposed in [40] for person representation. The descriptor
has 26,960 dimensions. We follow [30, 56] and apply principle component analysis
to reduce the dimensionality to 100 in all our experiments. To compute the dis-
tance between cameras, as well as, re-id matching score, we use kernel distance [59]
(Eq. 14.15) for a given projection metric. We show results using Cumulative Match-
ing Characteristic (CMC) curves and normalized Area Under Curve (nAUC) values,
as it is common practice in re-id literature [13, 26, 28, 50, 81].

All the images for each dataset are normalized to 128×64 for being consistent
with the evaluations carried out by state-of-the-art methods [5, 12, 13]. Following
the literature [13, 30, 40, 57], the train and test set are kept disjoint by picking half of
the available data for the training set and the rest of the half for testing. We repeated
each task 10 times by randomly picking five images from each identity both for train
and test time. The subspace dimension for all the possible combinations is kept 50.

Compared Methods. We compare our approach with several unsupervised alterna-
tives which fall into two categories: (i) hand-crafted feature-basedmethods including
CPS [12] and SDALF [5], (ii) two domain adaptation-based methods (Best-GFK
andDirect-GFK) based on geodesic flowkernel [19]. For Best-GFK baseline,we
compute the re-id performance of a camera pair by applying the kernel matrix,KS�T

computed between best source and target camera [19], whereas in Direct-GFK
baseline, we use the kernel matrix computed directly across the source and target
camera using (14.14). The purpose of comparing with Best-GFK is to show that
the kernel matrix computed across the best source and target camera does not pro-
duce optimal re-id performance in computing matching performance across other
source cameras and the target camera. On the other hand, the purpose of comparing
with Direct-GFK baseline is to explicitly show the effectiveness of our transitive
algorithm in improving re-id performance in a dynamic network

Results. Figure 14.4 shows the results for all possible combinations on the four-
camera RAiD dataset. The following observations can be made from Fig. 14.4: (i)
the proposed framework for re-identification consistently outperforms all compared
unsupervised methods on all three datasets by a significant margin. (ii) among the
alternatives, CPS baseline is the most competitive. However, the gap is still sig-
nificant due to the two introduced components working in concert: discovering the
best source camera and exploiting its information for re-identification. The rank-1
performance improvements over CPS is 24.50% on RAiD dataset. (iii) Best-GFK
works better than Direct-GFK in most cases, which suggests that kernel com-
puted across the best source camera and target camera can be applied to find the
matching accuracy across other camera pairs in re-identification. (iv) Finally, the
performance gap between our method and Best-GFK (maximum improvement of
17% in nAUC on RAiD) shows that the proposed transitive algorithm is effective in
exploiting information from the best source camera while computing re-id accuracy
across camera pairs.
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Fig. 14.4 CMC curves for RAiD dataset with four cameras. Plots (a, b, c, d) show the perfor-
mance of different methods while introducing cameras 1, 2, 3, and 4, respectively, to a dynamic
network. Our method significantly outperforms all the compared baselines for each case of the
dynamic network. Best viewed in color

14.5 Conclusions

In this chapter, we have provided some initial research directions for ensuring scala-
bility in person re-identification problems. We considered two aspects of scalability.
First, we considered how to limit the labeling effort without any reduction in perfor-
mance when compared to full-set labeling. Second, we considered how to onboard
additional cameras to an existing network,with little to no additional supervision. The
first is achieved by considering the similarity structure in the data through a graph-
based representation and exploiting transitivity relationships in the graph. The second
is achieved by building upon ideas of domain adaptation. Together, they demonstrate
the ability to scale person re-identification approaches beyond fully supervised ones,
building upon recent successes in these areas. We hope that this will spur future
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research into person re-identification under limited supervision scenarios and in sit-
uations where the network is dynamically evolving.
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Chapter 15
Towards Causal Benchmarking of Bias
in Face Analysis Algorithms

Guha Balakrishnan, Yuanjun Xiong, Wei Xia, and Pietro Perona

Abstract Measuring algorithmic bias is crucial both to assess algorithmic fairness
and to guide the improvement of algorithms. Current bias measurement methods
in computer vision are based on observational datasets and so conflate algorithmic
bias with dataset bias. To address this problem, we develop an experimental method
for measuring algorithmic bias of face analysis algorithms, which directly manipu-
lates the attributes of interest, e.g., gender and skin tone, in order to reveal causal
links between attribute variation and performance change. Our method is based on
generating synthetic image grids that differ along specific attributes while leaving
other attributes constant. Crucially, we rely on the perception of human observers to
control for synthesis inaccuracies when measuring algorithmic bias. We validate our
method by comparing it to a traditional observational bias analysis study in gender
classification algorithms. The two methods reach different conclusions. While the
observational method reports gender and skin color biases, the experimental method
reveals biases due to gender, hair length, age, and facial hair. We also show that our
synthetic transects allow for a more straightforward bias analysis on minority and
intersectional groups.
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15.1 Introduction

Automated systems trained using machine learning methods are increasingly used to
support decisions in industry, medicine, and government. While the performance
of such systems is often excellent, accuracy is not guaranteed and needs to be
assessed through careful measurements. Measuring biases, i.e., performance dif-
ferences, across protected attributes such as age, sex, gender, and ethnicity, is partic-
ularly important for decisions that may affect peoples’ lives. Unlike systems based
on human judgment, where measuring and correcting biases is notoriously difficult,
measuring and mitigating algorithmic bias are feasible and may become a powerful
agent of progress towards more fair, accountable, and transparent institutions [1, 2].

The prevailing technique for measuring the performance of algorithms is to mea-
sure statistics like error frequencies on a test set that is sampled in the wild, hopefully
mirroring some of the data statistics that will be encountered in the field. Studies of
algorithmic bias in computer vision [3–6] have adopted this approach by adding
one additional step: each image of the test set is annotated for attributes of interest
(e.g., ethnicity, gender, and age), and the test set is then split into groups that have
homogeneous attribute values. Comparing error rates across such groups yields pre-
dictions of bias. As an example, Fig. 15.1-top shows the results of a recent study of
algorithmic bias in gender classification of face images. This type of study is called
observational, because the independent variables (e.g., skin color and gender) are
sampled from the environment, rather than controlled by the investigator.

Algorithmic bias is measured for two reasons. First, fairness: would changing a
protected attribute, all else being equal, cause a systematic change in the output of
the algorithm? For example, would two job applicants, that differed only by their
gender or ethnicity, face predictably different outcomes [7]? The second reason for
measuring bias is getting rid of it: which actions should one take to best improve
the system’s performance? For example, should the engineers who are in charge of
developing systems A, B, and C (Fig. 15.1, top) infer that the best strategy is to add
more examples of dark-skinned women to their training set? Thus, measuring algo-
rithmic bias ultimately has one goal: revealing causal connections between attributes
of interest and algorithmic performance.

Unfortunately, observational studies are ill-suited for drawing such conclusions.
When one samples data in the wild, other variables may correlate with the variable
of interest, and any one of the correlated variables may have an influence on the
performance of the algorithm. Thus, it is difficult to impute the cause of perfor-
mance differences to variations in the variable of interest—as the old saying goes:
“correlation does not imply causation.”

One simple instance of this problem is sample bias: samples in the wild may
fail to represent specific combinations of variables of interest [8–10]. For example,
the appearance of the parliamentarians in the PPB dataset [3] tends to be gender-
stereotypical, e.g., very fewmales have long hair and almost no light-skinned females
have short hair (Fig. 15.12, and [11]). The fact that hair length (a variable that may
affect gender classification accuracy) is correlated in PPB with skin color (a variable
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Fig. 15.1 Algorithmic bias measurements are test set dependent. (Top) Gender classification
error rates of three commercial face analysis systems (System A–C) were measured in 2017 on the
Pilot Parliaments Benchmark (PPB) [3], an observational dataset of portrait pictures downloaded
from the websites of six national parliaments in Scandinavia and Africa. Error rates for dark-
skinned females were found to be significantly higher than for other groups. We observed the same
qualitative behavior when we replicated the study by training a standard classifier (ResNet-50) on
two publicly available face datasets (CelebA; FairFace) and testing the twomodels thus obtained on
a replica of the PPB dataset. (Bottom) Our experimental investigation using the Transects dataset,
where the sample faces are matched across attributes, reveals a different picture of algorithmic bias
(see Fig. 15.13, Sects. 15.5, and 15.6 for a more complete analysis).

of interest) complicates the analysis. In addition, the sample dataset that is used to
measure bias is often not representative of the population of interest. For example,
the middle-aged Scandinavians and Africans of PPB are not representatives of, say,
the broad U.S. Caucasian and African-American population [12]. While observa-
tional methods do yield useful information on disparate impact within a given test
set population, generalizing observational performance predictions to different target
populations is hit-or-miss [13] and can negatively impact underrepresented or minor-
ity populations [14, 15]. In a nutshell, one would want a method that systematically
identifies algorithmic bias while transcending the peculiarities of specific test sets.

Scientists in biology, medicine, and the social sciences are well aware of this
problem and have developed practices to discover, and to control for, confound-
ing variables. A powerful approach to discovering cause–effect relationships is the
experimental methodwhich involves artificiallymanipulating the variable of interest,
while fixing all the other inputs [7, 16]. This is not easy in the case of image data,
leading us to ask the question: Can one systematically measure bias in computer
vision algorithms using the experimental method? While this is not immediately
intuitive [11], we find that the answer is yes and offer a practical way forward.
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Fig. 15.2 Synopsis of our approach. A generative adversarial network (Generator) is used to
synthesize “transects,” or grids of images, modifying selected attributes on synthetic faces (in this
example: hair length and skin tone). This is accomplished by traversing the generator’s latent space
in attribute-specific directions. These directions are learned using randomly sampled faces and
human annotators (not shown). Human annotations on the transects provide generator-independent
ground truth to be compared with algorithm output to measure algorithm errors. Attribute-specific
bias measurements are obtained by comparing the algorithm’s predictions with human annotations
as the attributes are varied. The depicted example may study the question: Does hair length, skin
tone, or any combination of the two have a causal effect on classifier errors? Transects exploring
other attributes are shown in Figs. 15.3, 15.4, and 15.9a. The GUIs for human image annotation are
shown in Fig. 15.6. Samples of image annotations are shown in Fig. 15.7

Our approach (Fig. 15.2) generates the test images synthetically, rather than sam-
pling them from thewild, so that they are varied selectively along attributes of interest.
This is enabled by recent progress in controlled and realistic image synthesis [17, 18],
along with methods for collecting large amounts of accurate human annotations [19]
to quantify the perceptual effect of image manipulations.

Our synthesis approach can alter multiple attributes at a time to produce grid-like
matched samples of images we call transects. We quantify the image manipulations
with detailed human annotations which we then compare with algorithm output to
estimate algorithmic bias.

We evaluate ourmethodologywith experiments on two gender classification algo-
rithms. We first find that our transect generation strategy creates significantly more
balanced data across key attributes compared to “in the wild” face datasets. Next,
inspired by [3], we use this synthetic data to explore the effects of various attributes
like skin color, hair length, age, and perceived gender on gender classifier errors. Our
findings reveal that using an experimental method can change the picture of algo-
rithmic bias (Fig. 15.13), which will affect the strategy of algorithm improvement,
particularly concerning groups that are often underrepresented in training and test
sets.

We view our work as a first step in developing experimental methods for algorith-
mic bias testing in computer vision which, we argue, are necessary to achieve trust-
worthy and actionable measurements. Much remains to be done, both in design and
experimentation to achieve broadly applicable and reliable techniques. In Sect. 15.6,
we discuss limitations of the current method and the next steps in this research area.
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15.2 Related Work

Benchmarking in computer vision has a long history [20–22] including face recog-
nition [6, 23–27] and face analysis [3]. Some of these studies examine biases in
performance, i.e., error rates across variation of important parameters (e.g., racial
background in faces). Since these studies are purely observational, they raise the
question of whether the biases they measure depend on algorithmic bias or on cor-
relations in the test data. Our work addresses this question.

A dataset is said to be biased when combinations of features of interest are dispro-
portionately represented or, equivalently, when such features are correlated. Com-
puter vision datasets are often found to be biased [13, 28]. Human face datasets are
particularly scrutinized [5, 29–33] becausemethods andmodels trained on these data
can end up being biased along attributes that are protected by the law [1]. Approaches
to mitigating dataset bias include collecting more thorough examples [33], using
image synthesis to compensate for the distribution gaps [32], and example resam-
pling [34].

The machine learning community is active in analyzing biases of learning models
and how one may train models where bias is mitigated [32, 35–42], usually by
ensuring that performance is equal across certain subgroups of a dataset. Here, we
ask a complementary question: we assume that the system to be benchmarked is pre-
trained and fixed, and we ask how to reliably measure algorithmic bias in pre-trained
black-box algorithms.

Studies of face analysis systems [3, 5, 41] and face recognition systems [6, 43]
attempt to measure bias across gender and skin color (or ethnicity). However, the
evaluations are based on observational rather than interventional techniques—and
therefore, any conclusions from these studies should be treated with caution. A
notable exception is a recent study [11] using the experimental method to investigate
the effect of skin color in gender classification. In that study, skin color is modi-
fied artificially in photographs of real faces to measure the effects of differences in
skin color, all else being equal. However, the authors observe that generalizing the
experimental method to other attributes, such as hair length, is too onerous if one is
to modify existing photographs. Our goal is to develop a generally applicable and
practical experimental method, where any attribute may be studied independently.

Recent work uses generative models to explore face classification system biases.
One study explores how variations in pose and lighting affect classifier perfor-
mance [29, 31, 32]. A second study uses a generative model to synthesize faces
along particular attribute directions [44]. These studies rely on the strong assump-
tion that their generative models can modify one attribute at a time. However, this
assumption relies on having unbiased training data, which is almost always not prac-
tical. In contrast, our framework uses human annotations to account for residual
correlations produced by our generative model.

Finally, there is research into interpreting neural networks. One strategy is to
determine regions of the input that are salient, either through analysis of gradients
or perturbations of the input image [45–51]. Network dissection approaches explore
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how particular neurons within a network affect the output, particularly in a seman-
tic way [52, 53]. Testing with Concept Activation Vectors (TCAV) [54] provides
explanations at a high level using directional derivatives to reveal the “conceptual
sensitivity” of a model’s prediction of a class (e.g., Smiling) to a concept. In contrast,
our approach uses a synthesis model to create carefully modified input images, and
human annotations to precisely quantify them.

15.3 Face Attribute Annotation in Synthetic Images

The face images used in our experiments are synthetic, and therefore, there is no real
person behind each image. Thus, there is no intrinsic ground truth for face attributes
such as gender, hair length, and skin tone. Such attributes are instead established by
human annotators. We clarify here what we mean when we talk about face attributes
in the absence of a physical ground truth.

Many attributes have both intrinsic and extrinsic manifestations. For example,
“emotion” may be studied at three levels [55]: an unconscious physiological state,
conscious self-perception (feelings), and emotional display (e.g., facial expres-
sion) [56]. These quantities are intrinsic to a person’s or an animal’s body and are not
directly accessible to a machine. By contrast, an extrinsic description, i.e., the report
by an onlooker of his/her perception, is more easily accessible, and this is what the
machine is trained to predict.

Sincewe are using synthetic images, it should be clear thatwe are not attempting to
access the intrinsic state of a person: there is noperson, and there is no intrinsic gender,
ethnicity, age, or emotion. However, perception of such attributes is possible. This
is the same way that onlookers instinctively classify the Venus of Milo as “female”
and Michelangelo’s David as “male,” despite the fact that they are idealized marble
representations, rather than real people.

Thus,whenwe refer to the “age” or “gender” or anyother attribute that is computed
by a face analysis system from a picture, what we mean is the algorithm’s prediction
of a casual observer’s report of their perception of the outwards display of that
attribute. This is a bit of amouthful, and that’s whywe use the abbreviated expression
of “attribute,” “age”, or “gender.” The attributes we measure from human observers
are reports of subjective perceptions. However, as we find in Sect. 15.4.3, these
measurements are consistent and reproducible across different observers, and so we
consider statistics of such reports as objective quantities.

In our study, we discretize continuous face attributes. We have used six classes
of age and skin tone, five of hair length, facial expression, and gender, etc. (see
Figs. 15.6 and 15.8). This choice was made to conform with the literature, e.g.,
the Fitzpatrick scale of skin tone [57], and to accommodate the abilities of non-
expert casual observers, the “common person,” whose perception we rely on in our
experiments. We make no claim to have the perfect discretization scheme; other
discretization choices may be better suited in different contexts.
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Gender deserves a special mention: gender identity is often modeled as multi-
dimensional [58]. However, here we are measuring reports of gender perception (an
extrinsic variable), rather than gender identity (the intrinsic variable), and our subjects
could not reliably report beyond the traditional one-dimensional M/F dimension.
Therefore, following [3] we settled for one dimension, which we discretized into
five steps to accommodate different levels of confidence and ambiguity.

15.4 Method

Our framework consists of two components: a technique to synthesize sets of images
with control over semantic attributes, and aprocedure using these synthesized images,
along with human annotators, to perform analysis of a recognition system.

In Sect. 15.4.1, we present our technique for attribute-controlled image synthesis.
We introduce the concept of transect, a grid-like construct of synthesized imageswith
a different attribute manipulated along each axis. A transect gives control over the
joint distribution of synthesized attributes allowing us to generate matched samples
across multiple attributes, unlike related methods that operate on only one or two
attributes at a time [44, 59–61]. We then collect human annotations for each transect
image to precisely quantify our modifications.

In Sect. 15.4.2, we present analyses we can perform using the annotated transects.
We report a classifier’s error rate, stratified along subgroups of a sensitive attribute.
We also return a covariate-adjusted estimate of the causal effect of a binary attribute
on the classifier’s performance.

15.4.1 Transects: A Walk in Face Space

We assume a black-box face generator G that can transform a latent vector z ∈ RD

into an image I = G(z), where p(z) is a distribution we can sample from. In our
study, G is the generator of a pre-trained, publicly available state-of-the-art GAN
(“StyleGAN2”) [17, 18]. GAN latent spaces typically exhibit good disentanglement
of semantic image attributes. In particular, empirical studies show that each image
attribute often has a direction v ∈ RD that predominantly captures its variability [17,
53]. We base our approach on a recent study [53] for single-attribute traversals
in GAN latent spaces. That method trains a linear model to predict a particular
image attribute from z and uses the model to traverse the z-space in a discriminative
direction. Our method generalizes this idea to synthesize image grids, i.e., transects,
spanning arbitrarily many attributes.
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Fig. 15.3 1D transects. 1 × 5 sample transects synthesized by our method for various attributes.
Orthogonalization was used (see Fig. 15.5)

Fig. 15.4 2D transects. 5 × 5 transects for varying, simultaneously, hair lengths and skin tones.
Multidimensional transects allow for intersectional analysis, i.e., analysis across the joint distribu-
tion of multiple attributes. Orthogonalization was used (see Fig. 15.5)

15.4.1.1 Estimating Latents-to-Attributes Linear Models

We first sample the latent space, measure the attributes at each location through
human observers, and use thesemeasurements to calculate principal axes of variation
for attributes. More formally, let there be a list of Na image attributes of interest
(age, gender, skin color, etc.). As explained below, we generate an annotated training
dataset Dz = {zi , ai }Nz

i=1, where ai is a vector of scores, one for each attribute, for
generated image G(zi ). The score for attribute j , ai

j , may be continuous in [0, 1] or
binary in {0, 1}.

WeproduceDz as follows. First,we sample a generous number of values of zi from
p(z). Second, we obtain labels ai from human annotators. A related study obtains
labels by only processing the generated images through a trained classifier [53]. We
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generally avoid this approach because any biases of the classifier due to attribute
correlations—precisely the phenomena we are trying to avoid—will leak into our
method.

For each attribute j , we useDz to compute a (D − 1)-dimensional linear hyper-
plane h j = (n j , b j ), wheren j is the normal vector and b j is the offset. For continuous
attributes like age or skin color, we train a ridge regression model [62]. For binary
attributes, we train a Support Vector Machine (SVM) classifier [63].

When sampling fromStyleGAN2 using the native latent Gaussian distribution, we
noticed a bias towards generating Caucasian-looking faces which is not surprising
given the fact that it was trained on Flickr-Faces-HQ (FFHQ)—a public dataset
that is skewed towards that demographic (see Fig. 15.11). However, using human
annotations, our method is able to partially mitigate this bias by directing sampling
towards the relevant portions of the latent space (see following sections), so that it
could generate a diversity of attributes. Nevertheless, training face synthesis GANs
with a more diverse set of faces will be an important step in making our method more
easily applicable.

15.4.1.2 Multi-attribute Transect Generation

The attribute hyperplanes may now be used to sample faces that vary along spe-
cific attributes. More formally: the hyperplane h j specifies the subspace of RD with
boundary or neutral values of attribute j , and the normal vector n j specifies a direc-
tion along which that attribute primarily varies. To construct a one-dimensional,
length-L transect for attribute j , we first start with a random point zi and project it
onto h j . We then query L − 1 evenly spaced points along n j , within fixed distance
limits on both sides of the h j . Figure 15.3 presents some single transect examples
(with orthogonalization, a concept introduced in the next section). We give further
details on querying points in Sect. 15.4.1.4.

The 1D transect does not allow us to explore the joint space of several attributes
or to fix other attributes in precise ways when varying one attribute. We generalize
to K -dimensional transects in Algorithm 1 to address this. The main extensions are:
(1) we project zi onto the intersection of K attribute hyperplanes, and (2) we move
in a K -dimensional grid in z-space (see Fig. 15.4). Input ck is a vector of decision
values with respect to the hyperplane hk , and vk is a direction vector (equivalent to
nk here, until orthogonalization is introduced in the next section).

We are unaware of a simple closed-form solution to project zi onto the intersection
of arbitrarily many hyperplanes. We instead take an iterative approach: we sequen-
tially project the point onto each hyperplane and repeat this process for some number
of iterations. Repeated projections onto convex sets, the hyperplanes in our case, are
guaranteed to converge to a location on the intersection of the sets [64] which, in
our case, is a single point. If the hyperplanes are perfectly orthogonal, this process
converges in exactly one iteration; we empirically found convergence in fewer than
50 iterations.
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15.4.1.3 Orthogonalization of Traversal Directions

The hyperplane normals {n j }Na
j=1 are not orthogonal to one another. If we set the

direction vectors equal to these normal vectors in Algorithm 1, i.e., v j = n j , we
will likely observe unwanted correlations between attributes. We reduce this effect
by producing a set of modified direction vectors such that v j ⊥ nk,∀k �= j (see
Algorithm 2).

Figure 15.5 illustrates the effects of orthogonalization for hair length and skin
color. Without orthogonalization, the hair length transects exhibit unwanted changes
in gender, with shorter hair also causing faces to appearmoremasculine.With orthog-
onalization, these unwanted changes are removed. In contrast, we see no clear differ-
ence in skin color transects with and without orthogonalization, indicating that the
skin color hyperplane was already near-orthogonal to the other attribute hyperplanes.

Algorithm 1: K -attribute transect generation

Input: Generator G, tuples {(Lk ,nk , bk , vk , ck)}K
k=1, where Lk is a transect dimension,

(nk , bk) is a hyperplane, vk is a direction vector, and ck are signed decision values.
Output: A L1 × · · · × L K transect T i .

zi ∼ p(z)
zi,0 = projection of zi onto intersection of {(nk , bk)}K

k=1
for l1 = 1 · · · L1 do

.

.

.

for lK = 1 · · · L K do
T i (l1, · · · , lK ) = G(zi,0 + ∑K

k=1
ck [lk ]

〈vk ,nk 〉
vk‖vk‖ )

Algorithm 2: Orthogonalization

Input: Vectors {n j }Na
j=1.

Output: Vectors {ñ j }Na
j=1, where ñ j ⊥ nk ,∀k �= j

Q, R ← QR-factorization of matrix [n1,n2, · · · ,nNa ]
for i = 1 · · · Na do

ñi = ni
for j = 1 · · · Na do

if i �= j then

ñi = ñi − Q j ·〈Q j ,ñi 〉
〈Q j ,Q j 〉
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Fig. 15.5 1D transects with and without orthogonalization. Without orthogonalization
(Sect. 15.4.1.2), decreasing hair length results in more masculine-looking faces. This phenomenon
is not as apparent after orthogonalization (Sect. 15.4.1.3). We see only slight orthogonalization
differences in the skin color transects
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15.4.1.4 Setting Step Sizes and Transect Dimensions

If human annotation costs were negligible, we could simply query many grid loca-
tions with large transect dimensions L to capture subtle appearance changes over
the dynamic ranges of the attributes. But given constrained resources, we set L to
small values. For example, L = 5 for the 1D transects in Fig. 15.3 and 2D transects
in Fig. 15.4, and L = 2 for the 3D transects in Fig. 15.9. For each attribute j , we
manually set min/max signed decision values with respect to h j and linearly inter-
polate L j points between these extremes to obtain c j . We set per-attribute min/max
values so that transects depict a full dynamic range for most random samples.

15.4.2 Analyses Using Transects

Weassume a target attribute of interest, e.g., gender, and a target attribute classifierC .
We will use transect images to perform bias analysis on C . Though an ideal transect
will modify only selected attributes at a time, in practice, unintended attributes may
also be accidentally modified. In addition, the degree to which an attribute is altered
varies across transects. Tomeasure and control these factors, we annotate each image
of each transect, resulting in a second datasetDtransect = {I i , ai }Nimages

i=1 of images and
human annotations.

We denote the ground truth gender of image I i (as reported by humans) by yi

and C’s prediction by ŷi . For ease of analysis, we discretize the remaining attributes
into bins and assign an independent binary variable to each bin [65]. For instance,
we may represent the “skin color” attribute with six binary variables, corresponding
to the six levels shown in Fig. 15.6 (top right). For a given image, only one of these
six variables would be set to 1—often called a “one-hot encoding.” We denote the
vector of concatenated binary covariates for image i by xi and the classification error
by ei = �(ŷi , yi ), where �(·, ·) is an error function.

Our first analysis strategy is to simply compare C’s error rate across different
subgroups in the population. Let Es

j denote the average error of C over test samples
for which covariate j is equal to s ∈ {0, 1}:

Es
j =

∑
i ei1(xi

j = s)
∑

i 1(xi
j = s)

. (15.1)

If the data is generated from a perfectly randomized or controlled study, the quantity
E1

j − E0
j is a good estimate of the “Average Treatment Effect” (ATE) [66–69] of

covariate j on e or the average change in e over all examples when covariate j is
flipped from 0 to 1, with other covariates fixed. For example, the ATE of the “dark
skin” covariate captures the average change inC’s error when each person’s skin tone
is changed from non-dark to dark. Exactly computing the ATE from an observational
dataset is not possible, because we do not observe the counterfactual case(s) for each
data point, e.g., the same person with both light and dark skin tones.
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Though our transects come closer to achieving an ideal controlled study than do
observational datasets “from the wild” (see Sect. 15.5.3 for empirical validation),
there may still be some confounding between covariates in practice (see Fig. 15.18
for an example). Since any observable confounder may be annotated in Dtransect ,
we can employ covariate-adjusted ATE estimators [70–72]. One simple covariate
adjustment approach is to train a linear regression model predicting ei from xi :

ei = εi + β0 +
∑

j

β jxi
j , (15.2)

where β’s are parameters, and εi is a per-example noise term. β j captures the ATE,
the average change in e given one unit change in x j holding all other variables
constant, provided: (1) a linear model is a reasonable fit for the relationship between
the dependent and independent variables, (2) all relevant attributes are included in
the model (i.e., no hidden confounders), and (3) no attributes that are influenced by
x j are included in the model, otherwise these other factors can “explain away” the
impact of x j .

An experimenter can never be completely sure that (s)he has satisfied these con-
ditions but (s)he can strive to do so through careful consideration. Discretizing and
binarizing attributes help with (1), though we still found some nonlinear influences
between covariates in our experiments (see Sect. 15.5.5.1). As an example of (2), we
found that earrings may be an important attribute that we did not account for in our
analysis (see Fig. 15.19).

Finally, when the outcome lies in a fixed range, as is the case in our experiments
with ei ∈ [0, 1], we use logistic instead of linear regression. β j then represents the
expected change in the log odds of e for a unit change in x j . We use such a logistic
regression analysis in our experiments (see Sect. 15.5.5).

15.4.3 Human Annotation

We collect human annotations on the synthetic faces to construct Dz and Dtransect .
The annotators were recruited on Amazon Mechanical Turk [19] through the AWS
SageMaker Ground Truth service [73]. Annotators evaluated each image for seven
attributes: gender, facial hair, skin color, age,makeup, smiling, hair length, and image
fakeness. Each attribute was evaluated on a discrete scale. Each annotator evaluated
each image for one attribute at a time. For each image, we collected five annotations
per attribute for a total of 40 annotations per image.

We discretized each attribute using three to six levels. For example, we use the
Fitzpatrick six-point scale for skin color [57] and split age into six groups rang-
ing from children to senior citizens. For complete details about subgroups for each
attribute, along with samples of our Mechanical Turk survey layouts, please see
Fig. 15.6.
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Fig. 15.6 Screenshots of the graphical user interface for seven annotations we collected from
Amazon Mechanical Turk annotators using the SageMaker Ground Truth service [73]

The number of annotations that are needed by our method is rather formidable.
However, we found that this is not an obstacle in practice. In our experiments, Dz

consists of 5,000 images, and Dtransect consists of 1,000 8-image transects (see
examples in Fig. 15.9). The total number of annotations was thus 13,000 (images)
× 8 (attributes) × 5 (annotations per image and per attribute) = 0.52M annotations.
Amazon Mechanical Turk delivered on average 10–20 annotations per second, thus
annotations took about 10 hours to complete over two separate sessions. Annotators
were paid 1.2c per annotation, earning 10-1-5 US$ per hour.
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Fig. 15.7 Annotation consistency. Hair length (top), gender (middle), and skin tone (bottom)
annotations on a 13-image 1D transect. This transect was annotated in a pilot experiment to fine tune
our GUIs and to evaluate the consistency of the annotators and not used in our main experiment.
Here nine annotations were obtained for each attribute and for each image. The annotations are
shown as dots below each image. The x-axis increments one unit from one image to the next. A
small amount of noise was added in x and y in order to visualize the individual annotations. The
thick gray curves show the fit of a logistic function to the data. Annotations typically fall within one
or two neighboring attribute levels. There are very few outliers. For a quantitative overall analysis,
see Fig. 15.8

Onemay be concerned that annotatorsmay not be able to givemeaningful attribute
annotations on synthetic images. Therefore, we explored the level of agreement of
annotator responses, both in the number of pilot experiments and in the annotations
we collected for the main experiment. Figure 15.7 shows the raw annotations for
one 1D transect and three attributes. One may see that there are very few outlier
annotations and that inmost cases, annotations fall in one or two neighboring attribute
levels. Figure 15.8 (top left) shows a distribution of per-image annotation standard
deviations, split by attribute. One unit corresponds to the dynamic range of each
attribute. For most attributes, the median annotator standard deviation is near 0.1,
i.e., less than the separation between attribute levels. These observations indicate
good agreement between annotators and suggest that annotations are meaningful
and reproducible.

Figure 15.8 (top right) presents the distribution of mean annotator fakeness scores
for the synthesized images. Only a small portion of images are deemed “Likely fake”
or “Fake for sure.” The realism of images is particularly important in our analysis,
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Fig. 15.8 Annotation quality and image realism. (Top left) Distributions of per-image standard
deviations of human annotations for each of the attributes we considered (one unit = dynamic range
of the attribute). Five annotators were asked to provide a rating for each attribute of each image.
The number of rating options per attribute is indicated in brackets next to the attribute’s name. The
median standard deviations (red lines) are comparable to the quantization step, indicating good
annotator agreement. (Top right) We asked our annotators to rate the realism of the images. The
distribution of such scores is shown. Fewer than 10% of the ratings indicated fake or likely fake,
suggesting that the synthetic images we randomly sampled are fairly realistic. (Bottom) We show
examples of synthesized faces organized bymean human fakeness scores. Imageswith high fakeness
scores were removed from the experiments (see Sect. 15.5.2.1)

since image artifacts can unknowingly affect the decisions of gender classifiers. In our
experiments, we remove images with a fakeness score above a certain threshold (see
Sect. 15.5.2.1). Figure 15.8 (bottom) shows example synthesized images organized
by mean human fakeness score.
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Fig. 15.9 Sample of three-attribute transects used in our experiments. We created 1,000 2 ×
2 × 2 transects spanning skin color, hair length, and gender—four examples are shown in (a).We set
step sizes in such a way that we obtained pale-to-dark skin tones, short-to-medium hair lengths, and
M/F gender (see Sect. 15.4.1.4). Besides the intentionally modified attributes, other face attributes
are held constant. For each image in each transect, we collected human annotations to measure the
perceived attributes. In (b), we show human-annotated gender values of the bottom-left transect in
(a) side-by-side with the generator’s intended values. Humans label the first face as a male, though
the generator intended to produce a female. In all our experiments, we used human perception,
rather than intended generator attributes, as the ground truth

15.5 Experiments

In order to test our method on a practical application, we experiment with bench-
marking bias of gender classifiers. The Pilot Parliaments Benchmark (PPB) [3], a
dataset of faces of parliamentmembers of various nations, was the first wild-collected
test dataset to balance gender and skin color with the goal of fostering the study of
gender classification bias across both attributes. The authors of that study found a
much larger error rate on dark-skinned females as compared to other groups and
conjectured that this is due to bias in the algorithms, i.e., that the performance of the
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algorithm changes when gender and skin color are changed, all else being equal. Our
method allows us to test this hypothesis.

15.5.1 Gender Classifiers

We trained two research-grade gender classifier models, each using the ResNet-50
architecture [74]. The first was trained on the CelebA dataset [75], and the second
on the FairFace dataset [76]. CelebA is the most popular public face dataset due to
its size and rich attribute annotations, but is known to have severe imbalances [44].
The FairFace dataset was introduced to mitigate some of these biases.

We trained our classifiers for 20 epochs with the binary cross-entropy loss. We
set the learning rate at 1e−4 for the first 10 epochs, and 1e−5 for the final 10 epochs.
To avoid a baseline bias of predicting one gender over another, we enforced the
likelihood of sampling male and female faces during training to be equal.

We decided not to test the commercial system for two reasons. First,
reproducibility—the models we test may be re-implemented and re-trained by other
researchers at any time,while commercial systems are black boxeswhichmay change
unpredictably over time. Second, our ResNet-50 models show biases comparable to
those observed in the original study by [3] (see Fig. 15.2).

15.5.2 Transect Data

To produce the synthetic images for our transects, we used the generator from the
StyleGAN2architecture trained onFlickr-Faces-HQ(FFHQ) [17, 18]. This generator
has both a multivariate Normal input noise space,N(0, I), as well as an intermediate
“style space.” To train the latent space linear models (see Sect. 15.4.1.1), we sampled
5000 vectors from the noise distribution and labeled the generated imageswith human
annotators (see Sect. 15.4.3). However, we use the style space as the latent space in
our method, because we found it better suited for disentangling semantic attributes.
We trained linear regressionmodels to predict age, gender, skin color, and hair length
attributes from style vectors. For the remaining attributes—facial hair, makeup, and
smiling—we found that binarizing the ranges and training a linear SVM classifier
works best.

We generated 3D transects across subgroups of skin color, hair length, and gender
following the procedure described in Sect. 15.4.1.2.We use a transect size of 2 × 2 ×
2, with grid decision values (specified by input vector c in Algorithm 1) spaced to
generate a pale-to-dark transition along the skin color axis, short-to-medium length
along the hair length axis, and male-to-female along the gender axis. We set the
decision values by trial-and-error and made them equal for all transects: (−1.5, 1.7)
for skin color, (−0.5, 0) for hair length, and (−1.75, 1.75) for gender. We generated
1000 such transects, resulting in 8000 total images. Figure 15.9 presents four example
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Fig. 15.10 Samples of synthesized faces, organized by mean human annotation scores. In our
analysis, we omitted faces from ranges indicated in red to focus on clearly perceived females/males,
light/dark skin tones, and short/long hair lengths

transects. The general characteristics of the faces—besides the intentionallymodified
attributes—are held constant.
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Fig. 15.11 Attribute distributions by dataset and gender groups. “Violin” plot widths are pro-
portional to frequency counts, and each violin is scaled so that its maximum count spans the full
width. Wild-collected datasets have greater attribute imbalances across gender than synthetic tran-
sects, e.g., longer hair and younger ages for women. We designed our transects to mirror PPB skin
color distribution and age distributions, while mitigating hair length imbalance. Hair length versus
skin color distributions are further explored in Fig. 15.12

15.5.2.1 Dataset Pruning

Not all synthesized images are ideal for our analysis. Some elicit ambiguous human
responses (Fig. 15.8 top left) or are unrealistic (Fig. 15.8 top right). Furthermore,
others may not belong clearly to one of our two intended categories for gender, hair
length, and skin color attributes. We addressed these points by first removing any
image with a mean fakeness score greater than or equal to “Likely fake” (0.75 in
the normalized range of [0, 1]). We also removed faces with attribute values in the
normalized subranges of [0.4, 0.6] for skin color and gender, and [0.3, 0.5] for hair
length (see Fig. 15.10 for examples). After these pruning steps, we were left with
5713 images.
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Fig. 15.12 Hair length distributions by gender and skin color groups. In the wild-collected
datasets, hair length is correlated with skin color when gender is held constant. Synthetic transects
may be designed to minimize this correlation

15.5.3 Comparison of Transects to Real Face Datasets

Figure 15.11 analyzes attribute distributions for the CelebA-HQ, FFHQ, and PPB
datasets, along with our transects, stratified by gender. The wild-collected datasets
contain significant imbalances across gender, particularly with hair length. They also
have biases in age, with a larger percentage of males being older than females. An
interesting correlation is that males are also more likely to smile in these data. In
contrast, our transects exhibit more balance across gender. They depict more males
with medium-to-long hair and fewer females with very long hair. Our transects also
have a bimodal skin color distribution and an older population by design, since we
are interested in mimicking those population characteristics of PPB. All datasets are
imbalanced along the “Beard” and “Makeup” attributes—this is reasonable since we
expect these to have strong correlations with gender.

In an ideal matched study, sets of images stratified by a sensitive attribute
will exhibit the same distribution over the remaining attributes. Put simply, no
other attribute should be strongly correlated with the attribute being manipulated.
Figure 15.12 stratifies by skin color. We see correlations of hair length distributions
and skin colors in all the wild-collected data, while the synthetic transects exhibit
much better balance.

15.5.4 Analysis of Bias

We now analyze the performance of the classifiers on PPB and our transects. We
verify that the classifiers exhibit similar error patterns to the commercial classifiers
already evaluated on PPB [3]. Because PPB only consists of adults, we remove
children and teenagers (age < 0.4 in the normalized [0, 1] scale) from our transects
to make a more direct comparison, leaving us with 5335 total images.

Figure 15.1 presents classification errors split by gender (M/F) and skin color
(L/D). We replicated the reported errors of the commercial classifiers in [3] and
reported the errors of our classifiers on our in-house version of PPB. All classi-
fiers perform significantly worse on dark-skinned females. Figures 15.13 and 15.14
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Fig. 15.13 Algorithmic errors, disaggregated by intersectional groups for wild-collected
(PPB, top) and synthetic (transects, bottom). Wilson score 95% confidence intervals [77] are
indicated by vertical bars, and the misclassification count and the total number of samples are writ-
ten below each bar. PPB has few samples for several groups, such as short-haired, light-skinned
females and long-haired males (see Fig. 15.12). Synthetic transects provide numerous test samples
for all groups. The role of the different attributes in causing the errors is studied in Fig. 15.15

Fig. 15.14 Scatter plots of error rates using data from Fig. 15.13 (transects). Each dot compares
the error rates of a pair of groups that differ by one attribute only (indicated in the label of the x
and y axes). The two letters near each dot indicate the shared attributes (“M/F” indicate male and
female, “D/L” indicate dark and light skin, and “s/l” indicate short and long hair). Dots falling along
the equal error line indicate that skin tone has little or no effect on error. In contrast, females and
persons with short hair have higher error rates
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Fig. 15.15 Logistic regression coefficient values. The logistic regression model is trained to
predict absolute errors of the gender classifiers on our transect data given attributes as input.
Coefficients represent the change in log odds of the error for a change of 1 unit of each attribute.
Larger coefficient magnitudes indicate more important variables, and positive(red)/negative(green)
values correspond to variables that increase/decrease classifier error. Each attribute subgroup labeled
on the x-axis is represented by a binary variable in the regression model, and we order attributes
in this plot from large-to-small coefficient magnitudes. Error bars report standard deviations that
were computed via bootstrapping 1000 times

present classification errors, stratified by gender/hair length/skin color combinations.
We can make a number of broad-stroke, qualitative observations:

• The broad pattern of errors is similar across PPB and transects, with more errors
on the left (females) than on the right (males).

• Transect errors are either comparable or higher than in PPB, indicating that syn-
thetic faces can be at least as challenging as real faces. Most significantly, errors
are nonzero onmales, which allows the study of relative difficulties when attributes
are varied.

• In PPB, there are fewmaleswith long hair and few females with short hair and light
skin, making measurements unreliable for these categories. This is not a problem
with transects, where faces are matched by attributes.

• Transect errors are higher when hair is shorter for women. However, hair length
has a negligible effect for males (see Fig. 15.18 for a possible explanation).

• There is no consistent transect error pattern in skin tone: within homogeneous
groups, changing skin tone does not seem to affect the performance of either
algorithm. For example, females with long hair see no significant difference in
classification error between light vs. dark skin. Looking at PPB alone, we could
notmake this observation, since skin tone is so strongly correlatedwith hair length.
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15.5.5 Regression Analysis

In order to obtain a quantitative assessment of the effect (or lack thereof) of attributes
on classifier error, we investigated further by calculating covariate-adjusted causal
effects. For eachgender classifiermodel,we trained an L2-regularized logistic regres-
sion model to predict that classifier’s error conditioned on all attributes.

We discretized attributes into levels and assigned a binary variable to each level.
We used the same discretization for hair length (short vs. long hair), skin color (light
vs. dark skin), and gender (female vs. male) used in our experiments thus far. We
used two levels for beard (no/light beard vs. beard) and makeup (no/light makeup
vs makeup), three for facial expression (serious/frown vs. neutral vs. smile), and the
original semantic levels for age described in Fig. 15.6. In all, this resulted in 17 input
variables to our logistic regressionmodel.We used scikit-learn’s Logistic Regression
function [78] and set the regularization parameter to 1.

Figure 15.15 presents coefficients for both logistic regression models. Recall
that each coefficient represents the change in log odds of the classifier’s error for
a change of 1 unit of each covariate (see Sect. 15.4.2). Error bars depict standard
deviations, obtained by bootstrapping the dataset 1000 times. A person’s facial hair,
gender, makeup, hair length, and age all have significant effects on classification
error, and skin color has a negligible effect. Our main experimental conclusion is that
observational (PPB) and experimental (transects) methods are fundamentally at odds
on the causes of algorithm bias in gender classification algorithms. Observational
analysis on wild-collected PPB suggests that a combination of gender and skin tone
are implicated, while our experimental method using synthetic transects suggests
that other attributes are far more important than skin tone.

15.5.5.1 Joint Effects of Attributes on Classification Error

Our regression analysis makes a simplifying assumption that each covariate has
an independent, linear effect on classification error. The independence assumption
can be a poor one. For example, Fig. 15.14-right shows that error rates vary across
different intersectional groups of skin color and hair length in a way that is not simply
a linear combination of each attribute.

This is also the reason we removed children and teenagers from our analysis,
as these individuals tend to have different appearance characteristics from adults.
Figure 15.16 illustrates this by breaking down error rates by age and gender subpop-
ulations for two classifier decision thresholds. The difference in error rates between
the genders is fairly consistent for young adults to middle-aged individuals but varies
for children/teenagers and seniors. This demonstrates that age and gender have joint
effects on errors.

Figure 15.17 shows faces from our synthesized transects on which the ResNet
models were most incorrect. For each gender misclassification direction, we show
faces onwhich themodel predictionswere farthest from the average human annotator
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Fig. 15.16 Errors by gender and age group on our transect images. The two top plots were
obtained by using a decision threshold equal to 0.5 and show a prevalence of female errors. The
bottom two plots were obtained with a threshold equal to 0.8, chosen to minimize overall error.
There is a non-uniform influence of age on errors. Both models tend to have lower errors for young
to middle-aged adults. The differences in errors between genders are fairly consistent for adults, but
differ for children, teenagers, and seniors, illustrating a combined age–gender bias in the algorithms

Fig. 15.17 Images with largest errors. Synthetic faces on which the classifiers most deviated
from the mean human annotations
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Fig. 15.18 Correlated attributemodifications.We found that ourmethod sometimes adds a beard
to a male face when attempting to only modify hair length. This is an example of an imprecise
intervention which can complicate downstream bias analyses. This bias may be due to the training
data itself (men with long hair tend to have facial hair) or injected by the algorithm

response. ResNet-CelebA tends to heavily misclassify young male children/babies
as female, in line with the quantitative result in Fig. 15.16.

15.6 Discussion and Conclusions

15.6.1 Summary

Our study leads us to three main conclusions. First, the experimental approach to
measuring algorithmic bias in computer vision is feasible. Second, the experimen-
tal approach may yield quite different conclusions from traditional observational
studies. Third, when analyzing algorithmic bias, a broad spectrum of attributes and
attribute combinations should be considered besides the ones of immediate interest.
We examine each in detail below.

Our experimental approach is made possible by combining recent progress in
image synthesis with detailed human annotations collected by crowdsourcing. Image
synthesis, calibrated by human annotations, allows us to generate transects of
matched samples, i.e., groups of images that differ only along attributes of inter-
est. In contrast to the previous attribute-specific methods [11], any attribute may be
explored, provided that it can be annotated by humans. By relying on human ground
truth annotations, one does not need to rely on the synthesis method being perfect.

The experimental method and our synthesis-based experimental approach offer a
number of attractive properties and advantages over traditional observational meth-
ods:

1. Causal inferences on bias are possible. Our method generates approximately
matched samples across selected attributes, allowing for counterfactual analysis,
e.g., “Would the algorithm have made the same mistake if the same person had
had a different skin color?” Observational image data are almost never matched.
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Fig. 15.19 Hidden confounders. There is always the possibility of a hidden confounder lurking in
a dataset. As an example, we found—after already collecting annotations—that our method tends
to add earrings when transitioning from dark-skinned men to dark-skinned women, a cue that a
gender classifier might be used to perform disproportionately well on the latter group. Because we
did not annotate this attribute, it is hidden in our analysis. Interestingly, one male in this image also
has an earring; that earring becomes larger for his female counterpart

2. Bias may be measured for underrepresented groups. Image synthesis allows,
to a great degree, uniform sampling of the space of attributes of interest—gender,
skin color, and hair length in our experiments. This is very difficult to do when
one relies on images that are sampled from natural distributions, which tend to
be long-tailed, and therefore where some groups are underrepresented.

3. Biasmaybemeasured for intersectional groups.Ourmethodallows researchers
to draw causal inferences across groups that are defined by specific attribute com-
binations. Single-attribute analysis may conceal biases affecting groups defined
by the combination of multiple attributes [10]. Some such combinations are often
vastly undersampled in natural data.

4. Bias measurements are valid across different populations. This is because
the experimental method identifies causally linked attributes, independent of the
prevalence of these attributes, i.e., the bias measurements are a property of the
algorithm and not of the population on which it is used. By contrast, observational
measurements do not generalize beyond the narrowly defined population where
the data was collected. Furthermore, by combining appropriately the contribution
of different attributes, onemay predict the effects both of disparate treatment [79]
and disparate impact [80] on a specific population.

5. Accurate bias measurements may be made quickly and inexpensively. Image
synthesis is fast and inexpensive, and crowdsourced image annotation is also
relatively fast and affordable. By contrast, assembling large datasets of natural
images is laborious and expensive—it may take years and substantial investment,
which may only be afforded by large organizations. Thus, synthetic data has the
potential to democratize testing for bias.

6. Ethical and legal concerns are greatly reduced. Collecting face image datasets
in the wild requires great care to respect the privacy and dignity of individuals,
the rights of minors and other vulnerable groups, as well as copyright laws. By
contrast, synthetic datasets are free from such risks because they do not depict
real people.

The experimental analysis (transects) and traditional observational analysis (using
PPB) diverged most significantly on the effect of skin color; the observational study
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was flagged as significant and the experimental method was found to be not signif-
icant in determining algorithmic bias. The experimental method reveals a number
of additional sources of bias: age, hair length, and facial hair (Fig. 15.15). The two
methods agree on gender. Our analysis suggests that the difference between the con-
clusions of the two methods is likely due to the correlation of hair length, skin color,
and gender in PPB (see Figs. 15.11 and 15.12). Consequently, if one does not con-
trol for hair length, the classifiers’ bias towards assigning gender on the basis of
hair length is read as a bias concerning dark-skinned women. The triple correlation
between hair length, gender, and skin color had been noticed in a previous study [11].

The main reason for measuring algorithmic bias is to get rid of it. Error and bias
measurements guide scientists and engineers towards effective corrective measures
for improving the performance of their algorithms. It is instructive to view the differ-
ent predictions of the two methods through this lens. The correlational study based
on PPB (Fig. 15.1) may suggest that, in order to reduce biases in our classifiers, more
images of dark-skinned women should be added to their training sets. The experi-
mental method leads engineers in a different direction. First, more training images of
long-haired men and short-haired women of all races are needed. Second, correcting
age bias requires more training images in the child-teen and, possibly, senior age
groups.

Finally, a lesson from our study is that it is important to consider a rich number
of attributes and attribute combinations, besides the one(s) of immediate interest.
This is for two reasons. First, unobserved confounders can have strong effects and
need to be included in the analysis. Second, the combined effect of attributes can
be strongly nonlinear (see the interaction of age and gender in Fig. 15.16), and
therefore an intersectional analysis [3, 8] is necessary. Selecting attributes or attribute
combinations is as much of an art as a science, and therefore one has to rely on good
judgment and on a healthy multidisciplinary debate to progressively reveal missing
ones.

15.6.2 Limitations and Future Work

While the advantages of the experimentalmethod are clear, our proposedmethoddoes
not exempt researchers from exercising attention and good judgment. In particular,
while our method greatly reduces unwanted correlations with annotated variables, it
does not eliminate them completely, nor does it account for hidden confounders [81],
and one will need to keep a sharp eye out for both. As an example of the first, we
found that ourmethod often adds facial hair tomale faces when increasing hair length
(see Fig. 15.18). This is likely a reason why our classifiers did not have higher error
rates for males with longer hair (see Fig. 15.13). As an example of the second, we
found that our method tends to synthesize earrings when modifying a dark-skinned
face to look female (see Fig. 15.19). Depending on culture, earrings may or may not
be relevant to the definition of gender. If this is an unwanted correlation, one ought
to add earrings to the annotation pipeline so that it may be “orthogonalized away”
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by the synthesis method. Scientists building an industry-grade system for measuring
face analysis bias will want to consider including a more exhaustive set of factors.
A significant advantage of an approach that is based on synthetic images and human
annotation is thus the following: as soon as one residual correlation is discovered,
it may be systematically annotated, compensated for in the analysis, and mitigated
in the synthesis.

A number of refinements in face synthesis will make our experimental method
more practical and powerful. First, many of the faces we generated contained visible
artifacts (see Fig. 15.8), which we eliminated by human annotation—even subtle
artifacts can affect classifier outputs, as revealed by the literature on adversarial
examples [82]. Second,we do not yet have tools to estimate the sets of physiognomies
and attribute combinations that can and cannot be produced by a given generator.
Current GANs are known to have difficulties in generating data outside of their
training distributions. Third, we observed a bias of StyleGAN2 towards generating
Caucasian faces when sampling from its latent distribution. While our method can
compensate for biases through carefully oriented traversals calibrated by human
annotations, it would be clearly better to start from unbiased synthesis methods. We
are hopeful that these shortcomings will be incrementally resolved by a combination
of training sets with increased diversity of attributes like ethnicity, gender, personal
style, and age, as well as better models.

Our first-order technique for controlling synthesis can also be improved. A better
understanding of the geometry of face space will hopefully yield more accurate
global coordinate systems. These, in turn, will help reduce residual biases in synthetic
transects, which we currently mitigate by having transects annotated by hand.

Finally, extendingourmethodbeyondgender classification tomore complex tasks,
such as face recognition, is not straightforward in practice and will require further
study.
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Chapter 16
Strategies of Face Recognition
by Humans and Machines

Jacqueline G. Cavazos, Géraldine Jeckeln, Ying Hu, and Alice J. O’Toole

Abstract Face recognition bymachines has improvedmarkedly over the last decade.
Machines now perform some face recognition tasks at the level of untrained humans
and forensic face identification experts. In this chapter, first we review recent work
on human and machine performance on face recognition tasks. Second, we con-
sider the benefits of statistically fusing human and machine responses to improve
performance. Third, we review strategic differences in how humans with various
levels of expertise approach face identification tasks. We conclude by considering
the challenging problem of human and machine performance on recognition of faces
of different races. Understanding how humans and machines perform these tasks can
lead to more effective and accurate face recognition in applied settings.

16.1 Introduction

Human face recognition can be impressive. With remarkable speed and accuracy,
we can recognize the face of a long-missed friend across a dimly lit room. Failures
of face recognition are common also. These range from the embarrassing mistakes
we make every day to the highly consequential mistakes made by eyewitnesses in
forensic settings. Understanding how human face recognition operates and when it
is likely to succeed is especially critical in these latter cases.

In the era of machine-based face recognition, it is incumbent on researchers to
better understand the circumstances in which humans versus machines will iden-
tify faces more accurately. Moreover, it is important to consider the possibility that
human–machine collaborations could provide a “better” (more accurate) option in
cases of consequence. Recent research indicates that strategy differences among
humans [1–3], machines, and between humans and machines can be exploited to
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improve system performance through statistical fusion [4, 5]. The progress made on
this question in recent years is the subject of this review. In particular, we will focus
on the diverse range of strategies and skills found among humans and on how these
diverse skills can be used intelligently in forming collaborations among humans and
between humans and machines.

This chapter is organized as follows. First, we note the range of face identification
skills found in humans, for both untrained individuals and professional forensic
examiners. Second, we review the progress of machines on face identification from
the perspective of published comparisons between human andmachine accuracy over
the last decade. Third, we evaluate results from human–human and human–machine
fusion studies that examine the benefits of combining individual face identification
judgments in efforts to improve accuracy. Fourth, we take a look at the different
strategies in face identification utilized by both humans and machines. Finally, we
will consider how human and machine accuracies are affected by the race/ethnicity
of the face to be recognized. For humans, the race of both the perceiver and the person
being perceived affects accuracy. This phenomenon is called the “other-race effect”.
We will see a version of this other-race effect for machines developed in different
parts of the world and tested on faces of different races [6]. The other-race effect, at
least for humans, may reflect a difference in recognition strategy that might benefit
from careful use of fusion.

16.2 Identification Accuracy: Human Face Recognition

The study of human face recognition by psychologists has a history that goes back
to the early 1980s and before. Over the last five decades, psychologists have mea-
sured human performance across a broad range of tasks. An overarching theme in
behavioral research on face recognition is the wide range of performance across indi-
viduals and across groups of people. At one extreme, prosopagnosics show highly
selective impairments for face recognition [7]. At the other end of the spectrum,
super-recognizers show high accuracy across multiple face recognition tasks [8]. In
between these extremes, there is wide person-to-person variation in face recognition
skills. The behavioral literature makes it clear that “human performance” on face
recognition cannot be categorized as a monolithic skill that operates equivalently
across all individuals.

16.2.1 Face Identification Performance of Untrained
Humans

Despite the wide person-to-person variation in face recognition abilities, untrained
human subjects share some common trends in accuracy. For example, humans are
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experts at recognizing and identifying familiar, or well-known, identities. This exper-
tise spans across photometric changes, including illumination, pose, and expression.
It can also span changes in appearance, such as hair color, aging, and disguise.
Human expertise for familiar faces has encouraged a false belief that humans are
experts for all faces [9]. However, previous studies have shown that this expertise
does not extend to unfamiliar faces (See Johnston and Edmonds [10] for a review
of familiar versus unfamiliar face recognition). When asked to identify or recognize
faces of unfamiliar or unknown identities, humans are susceptible to errors at an
alarming rate. These accuracy differences for recognizing familiar versus unfamiliar
faces raise the question of whether trained professional human observers are also
prone to these susceptibilities.

16.2.2 Performance of Trained Versus Untrained Humans

Until recently, remarkably little was known about the accuracy of face identification
professionals relative to untrained observers. The National Research Council report,
Strengthening Forensic Science in the United States: A Path Forward [11], changed
that state of affairs. The first comprehensive scientific study of the performance of
professional forensic facial examinerswas performed in 2015 [3]. In this study, foren-
sic facial examiners were assessed, along with other experts in biometric systems
and untrained university students. The stimuli used in this experiment were selected
carefully to be highly challenging for both humans and previous-generation face
recognition algorithms. This study also examined face identification performance
across different stimulus exposure durations (2 s and 30 s) and stimulus orientations
(upright and inverted). Forensic facial examiners performed consistently superior
to motivated controls and university students. This experiment, however, imposed
conditions that are not reflective of typical forensic laboratory conditions. In foren-
sic labs, identification decisions can require days or weeks to be completed and
are made with the assistance of image measurement and manipulation tools [12].
Accordingly, the results reported in [3] should be considered a lower bound estimate
of the accuracy of examiners in the practice of their casework.

To address the question of performance under conditions more typical of identifi-
cation decisions in a forensic laboratory, a Black Box test of forensic facial examiners
was conducted in 2017 [4]. This test used themost challenging images from [3]. In the
experiment, forensic facial examiners, forensic facial reviewers, professional forensic
fingerprint examiners, super-recognizers, and university studentswere tested. Results
confirmed the advantage of facial examiners, facial reviewers, and super-recognizers
over fingerprint examiners and students. They also showed that the performance of
individuals in all of the groups varied widely (See Fig. 16.1). The researchers pro-
posed that the problem of individual variability in the accuracy of the high expertise
group might be ameliorated by the use of face recognition software, if it can be
tailored to address the weaknesses of individual examiners (see Section “Fusion:
Humans and Machines”).
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Fig. 16.1 Human and machine accuracy from [4]. Black dots indicate AUCs of individual partici-
pants; red dots are group medians. In the algorithms column, red dots indicate algorithm accuracy.
Face specialists (facial examiners, facial reviewers, and super-recognizers) surpassed fingerprint
examiners, who surpassed the students. The violin plot outlines are estimates of the density for
the AUC distribution for the subject groups. The dashed horizontal line marks the accuracy of a
95th percentile student. For the facial examiner group, 53% were above the 95th percentile of stu-
dents; for the facial reviewers, this proportion was 36%; for super-recognizers it was 46 %; and for
fingerprint examiners, it was 17%. All algorithms perform in the range of human performance

16.3 Identification Accuracy: Machines Versus Humans

The study of machine-based face recognition has a long history as well that pro-
gresses from simple pattern recognition algorithms a few decades ago to algorithms
that are nowneurally inspired and operatewith hundreds ofmillions of parameters. In
this section, we will review the development of machines. Our focus is on measuring
progression in terms of the difficulty of the stimuli an algorithm is capable of rec-
ognizing. Here we see a progression from identification of controlled images (i.e.,
constrained frontal images, with minimal photometric variation) to highly uncon-
trolled images (i.e., with wide photometric and appearance variation).

Controlled face recognition (2005–2013). In 2005, computer-based face recogni-
tion systems began to close the gap between human and machine performance. The
progress of machines can be tracked by examining the difficulty of the problems on
which performance was tested. Over the last two decades, large-scale evaluations of
state-of-the-art face recognition algorithms, open to international competitors from
academics and industry, have provided a look at the progression of task difficulty
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expected at any given time by a state-of-the-art face recognition algorithm [13–16].
Systematic comparisons between humans and algorithms on these tests started in
2005 (cf., for a review [17]).

In 2007, the state of the art for machines was to determine whether pairs of
frontal images showed the same identity or different identities when one image was
taken under controlled illumination (passport-style) and the second image was taken
under uncontrolled indoor illumination. At that time, the best algorithms surpassed
untrained humans on face pairs prescreened to be challenging for the machines
[18]. By 2012, machine recognition had progressed to matching pairs of images
with unconstrained variation in illumination (indoor and outdoor) and expression.
In one test, image pairs were divided into easy, more challenging, and extremely
challenging categories, based on the performance of a baseline algorithm. Human–
machine comparisons at matching the identity of faces across pairs of images showed
that machines were far better than humans on the easy and moderately challenging
pairs [19]. On the extremely challenging pairs, machines and humans were equally
matched. In no case were humans superior to the best algorithms.

To summarize, by 2012, on the problem of identifying faces from constrained
frontal images, the best face recognition algorithms performed as well as or better
than humans. However, it is important to consider the fact that the human perceivers
tested for these comparisons were not familiar with the people in the images.

Uncontrolled face recognition (2014–present). Deep convolutional neural net-
works (DCNNs) trained for face recognition first appeared in 2014. These algorithms
are capable of recognizing faces from uncontrolled images captured “in the wild”
(e.g., [20–26]). Performance on datasets such as Labeled Faces in the Wild [27, 28],
IJB-A [29], and Mega-Face [30] indicates that machines are beginning to attack the
problem of generalized face recognition, which involves recognizing faces across
changes in image parameters and appearance.

One factor underlying the success of DCNNs is that they are trained with millions
of images of thousands of individuals captured “in the wild”. Notably, the algorithm
learns an identity from exposure to many images of the person. These images should
span multiple pose, illumination, and expression conditions, as well as appearance
variables (e.g., age, make-up, hairstyles, facial hair, glasses). Accurate labels are also
critical and are provided by online crowd-sourcing or from social media applications.

How do DCNNs compare to humans? This question was addressed in [4] (see
Section “Trained vs. Untrained Human Performance”). In that study, four DCNNs,
developed between 2015 and 2017, took the same challenging face identification
test administered to human participants. The performance of the algorithms appears
along side that of the humans in Fig. 16.1. The results demonstrated that the DCNNs
identified faces within the range of human accuracy. In addition, the accuracy of the
algorithms increased steadily over time. Remarkably, the most recent DCNN scored
slightly above the median of the forensic facial examiners.

Next, we consider the potential for fusing identification judgments to achieve
more accurate performance.
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16.4 Fusion

It is well known that combining multiple individual judgments can yield a response
closer to the ground truth than the individual judgments themselves. This concept,
known as the wisdom-of-crowds in psychology and fusion in engineering, derives its
potential from the diversity of cognitive strategies employed by independent respon-
ders [31, 32]. For instance, valuable information derived fromdistinct face processing
computations (e.g., feature analysis versus configuration analysis) can be fused in
order to increase accuracy on a face identification decision. In what follows, the face
identification test employed requires a decision about whether two images picture the
same person or different people. We refer to this task as a face identity matching test.
In this section, we begin with a brief overview of methods employed for fusion and
then discuss the effects of fusing judgments on face identity matching tests across
individual humans and between humans and machines.

16.4.1 Crowd-Sourcing Methods

Substantial improvements in face identity matching have been achieved with dif-
ferent crowd-sourcing methods, including the “majority vote decision rule”, simple
response averaging, and Partial Least Square Regression (PLS-R). In general, human
crowds of varying sizes are generated by randomly sampling participants who have
completed a given task individually.When the task consists of dichotomous response
options, a joint decision is determined for each test item by selecting the response
(e.g., “same” or “different”) on which 50% or more of the individuals within the
simulated crowd converge. Otherwise, individual ratings from a similarity scale (1:
very dissimilar; 7: very similar) or certainty scale (1: sure different identity; 7: sure
same identity) are averaged for each item independently. In addition, fusion can be
performed through PLS-R, where similarity ratings from individual systems are used
to predict whether two face images depict the same identity or different identities.
The model first generates a weight for each of the individual systems and then com-
bines the individual system judgments to produce an estimated similarity rating (See
[5]).

16.4.2 Fusion: Human Participants

Wisdom-of-crowds effects on difficult face-matching tasks have been found across
different groups of observers, including professional forensic face examiners, fin-
gerprint examiners, super-recognizers, other forensic professionals, and untrained
university students [3, 4]. Specifically, accuracy is found to increase as a function of
the number of individual responders sampled. Performance typically reaches near-
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Fig. 16.2 Accuracy increases as more judgments are fused. Clear improvements for aggregating
judgments are seen within all three groups of subjects. For all groups, these improvements plateau
well before the maximum sample size: at asymptote, average aROCs for groups of roughly eight
raters were close to perfect for all three groups (examiners = 0.997; controls = 0.987; students =
0.973) [3]

perfect accuracy at a sample size of eight individual human participants [1–3]. This is
illustrated in Fig. 16.2. Although face-matching response combinations can be com-
puted by averaging individual ratings across individual test items, similar effects
have been achieved through the interactive collaboration of human participants [1,
33]. Nonetheless, it has been shown that “social” collaboration (i.e., people work-
ing together) does not increase performance beyond the benefits of simple response
averaging [1].

In a recent study, researchers aggregated the judgments of multiple groups of
human individuals by means of simple response averaging (See Figs. 16.3 and 16.4).
Performance was substantially better for fused human judgments than for individuals
working on the task alone. In addition, the findings demonstrate that fusion helped
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Fig. 16.3 Fusion of examiners and algorithms from [4]. Violin plots show the distribution of AUCs
for each fusion test. Red dots indicate median AUCs. Fusing one examiner and A2017b is more
accurate than fusing two examiners

to stabilize performance by boosting the scores of lower performing individuals and
decreasing variability [4].

Although fusion boosts performance in comparison to systems operating individ-
ually, it is important to note that the best combinations of human subjects require peo-
ple from high-performing groups (e.g., forensic facial examiners) [4] (See Figs. 16.1
and 16.4). For instance, perfect performance (AUC = 1) was achieved by sampling
forensic facial examiners (n = 4) or super-recognizers (n = 3), but not by sampling
subjects from other groups (i.e., forensic facial reviewers, fingerprint examiners, or
untrained university students). Previous research has also shown that benefits from
fusion for forensic facial examiners are amplified in conditions for which this group
outperforms untrained groups. For example, forensic examiners benefit from fusion
when the identity-diagnostic information is mostly in the face, and not when other
biometric information in the body would be helpful (cf., [34, 35]).

16.4.3 Fusion: Humans and Machines

Similar wisdom-of-crowds effects have been found by fusing similarity ratings of
multiple computer-based face recognition algorithms [5, 36]. The results reveal that
greater boosts in performance are obtained by combining systems that differ maxi-
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Fig. 16.4 For all groups, combining judgments by simple averaging is effective [4]. The violin
plots (top panel) show the distribution of AUCs for fusing examiners. Red circles indicate median
AUCs. The median AUC reaches 1.0 for fusing four examiners or fusing three super-recognizers
(bottom panel). The median AUC of fusing 10 students was 0.88, substantially below the median
AUC for individual examiner accuracy [4]

mally in computational strategies and that also occupy a range of individual perfor-
mance levels [5]. This is sometimes preferable to combining similar, high-performing
systems [5]. These findings led researchers to investigate ways to exploit the diverse
strategies employed by face recognition algorithms and human participants in order
to achieve optimal accuracy. Specifically, researchers have combined the similarity
ratings of human subjects and computer-based face recognition algorithms on sets of
difficult face-image pairs. These fusions have been accomplished through a variety
of crowd-sourcing methods.

In an early study, similarity scores produced by seven face recognition algorithms
and untrained human participants were used to predict the match status of difficult
face-image pairs by means of weighted combinations of similarity scores derived
with PLS-R. This study showed that human and machine collaborations can help
achieve near-perfect face-matching performance [5].
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More recently, researchers investigated the performance of state-of-the-art deep
DCNNsdeveloped between 2015 and 2017. The performance of these algorithmswas
compared with that of different groups of human participants, including untrained
university students and forensic professionals [4]. This recent study demonstrated
that perfect performance (AUC = 1) could be achieved by fusing the ratings of an
individual forensic facial examiner with image-pair similarity scores generated by
the best performing state-of-the-art face recognition DCNN. Notably, this accuracy
exceeded that obtainedby fusing two forensic examiners (SeeFig. 16.3) [4]. Together,
these findings support the idea that the human raters provide valuable information
that is not attainable through computer-based face recognition algorithms and vice
versa.

In sum, combining the judgments of independent systems (e.g., human partici-
pants and/or computer-based face recognition algorithms) yields significant boosts
in the face identification accuracy. These effects result from crowd-sourcing meth-
ods that take advantage of the strengths and weaknesses of diverse computational
strategies. The following sectionwill discuss strategic differences studied in different
groups of human participants and computer-based face recognition algorithms.

16.5 Strategic Differences: Forensic Facial Examiners
Versus Untrained Humans

In the previous section, we presented studies demonstrating accuracy differences in
face identification across various groups of human participants. These accuracy dif-
ferences could be based either on skill-level differences in applying a single strategy
or on the use of different face identification strategies. For the former, it is possible
that all humans use the same strategy, but that some of them are simply better at apply-
ing it. For the latter, it is possible that different people approach the task in different
ways. Fusion should succeed best when strategies differ. Therefore, fusion offers a
useful method for probing the strategies of individuals and groups of individuals.

In addition to accuracy level differences, the face identification literature also
makes it clear that perceivers use various strategies. These strategies differ in the
regions of the face people focus on, the comparison methods they use, and/or in
the way they report their responses. Studies examining strategic differences between
professional forensic facial examiners and untrained individuals are limited. Here,
we list and review four findings from two recent studies that offer evidence that
strategy differs for forensic facial examiners and untrained human subjects [3, 35].

First, the most common example of strategic differences used by humans per-
tains to whether a person uses configural or feature-based facial analysis. Configural
information in faces is based on the relational configuration of facial features (e.g.,
spacing between eyes) [37]. Feature-based processing focuses on isolated analyses
of single features (e.g., eyes, nose). In psychology, one method for distinguishing the
two strategies is to invert the images presented to a human subject. This is thought
to disrupt the configural processing while allowing feature-based analysis to pro-
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ceed [38]. Examiners are less impaired by inverting the faces than untrained people,
indicating less reliance on configural processing [3]. This result is somewhat at odds
with findings from face memory tests of untrained people, in which higher perform-
ers rely more on configural processing than feature-based processing. Here, forensic
examiners show excellent results with a strategy that is non-optimal for an untrained
subject.

Second, in the same set of tests [3], forensic facial examiners showed a greater
accuracy advantage over untrained groups of subjects when they viewed images for
30s, but not when they viewed face images for only 2s. This indicates that examiners
require more analysis time to surpass untrained groups.

The third strategic difference between professional examiners and untrained
humans comes from how these groups respond to the test items to generate an iden-
tification decision. Examiners’ overall accuracy advantage is disproportionately due
to their ability to accurately determine when identities differ, rather than to their
ability to verify that two images show the same identity. This is due in part to the
cautious way examiners use the response scales, by contrast to untrained groups [35,
39].

Fourth, it is also known that forensic facial examiners use information in faces
more effectively than the information from bodies [35]. Specifically, when the qual-
ity of identity information in the face versus the body was manipulated, untrained
humans spontaneously used identity information from the body if the face provided
only limited identity information [34]. Forensic facial examiners do not take similar
advantage of body information for identification. One possible explanation for exam-
iners “ignoring” this information may be the rigorous training they receive on facial
analysis. This may enhance their ability to conduct a detailed examination of the
internal facial features, but inhibit their flexibility in the use of external information
when these features are of limited use [35].

In summary, various strategies are used by examiners, students, and computer
algorithms. In the next section, we illustrate a special case of strategic differences that
may underlie face identification performance for both humans and machines. This
is the case of identification when people/machines learn from faces of a particular
race and are tested on faces of a different race.

16.6 Other-Race Effects in Humans and Machines

Human face recognition accuracy is influenced by both the race of the perceiver and
the race of the person to be recognized. Formally, this “other-race effect” is defined as
a tendency for greater recognition accuracy for “own-race” faces compared to“other-
race” faces [40, 41]. The robust effects of race on the human face recognition accuracy
have been studied and found acrossmultiple racial/ethnic and age subgroups andwith
different experimental designs [41].

The implications of these effects, however, extend beyond the confounds of a
laboratory setting. The other-race effect has resulted in identification errors in law
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enforcement and in the judicial system (see [42–44] for a review of this effect in the
justice system). For example, according to the Innocence Project, an organization
founded to exonerate innocent convicted individuals, 41% of cases exonerated by
DNA evidence involving eyewitness misidentifications involved some form of cross-
race misidentification (Innocence Project 2015). This well-documented weakness
in the justice system makes it a problem worth exploring. Moreover, despite the
decades of research on the effect, little is known about how this phenomenon impacts
face recognition algorithms. With the increased use of these algorithms for security
applications, it is imperative to understand the extent to which race plays a role in
algorithm accuracy. In this section, we describe evidence for the other-race effect in
humans and discuss its possible causes. We also present evidence from the limited,
but essential, research on how race impacts the performance of face recognition
algorithms.

Beginning with humans, the other-race effect has been studied and found across
multiple demographic groups. Race influences recognition accuracy in adults and has
been found in children as young as five years old [45–47]. There is evidence that a
perceptual expertise advantage with own- versus other-race faces emerges in infancy
[48, 49]. The impact of race on identification accuracy has been reported in non-
typically developing populations, including individuals with schizophrenia [50] and
autism spectrum disorder [51, 52]. Notably, the other-race effect has also been found
using multiple experimental paradigms, including face identity matching tasks [53],
eyewitness lineups [54, 55], old/new or yes/no memory conditions [40, 56], name
learning [57], and lineup constructor tasks [58]. Although stimuli and experimental
parameters differ considerably across these studies, the consistent impact of race on
face recognition/identification accuracymakes the other-race effect of pivotal interest
to scientists.

Given the clear negative effects of the other-race effect, several studies have also
examined strategies for mitigating the effect. For example, participant awareness of
the other-race effect [56] and viewing caricatured images of other-race faces [59]
have been shown to reduce its effects. Developmental studies show that perceptual
training in infants can prevent the other-race effect from emerging [60]. The effects
of perceptual and individuation training on other-race faces have been studied in chil-
dren [61] and adults [62–64]. Importantly, these studies also show that the mitigating
effects of these interventions are temporary.

16.6.1 Theories of the Other-Race Effect

Given its robust effects and its potential for serious consequences in applied set-
tings, a substantial amount of research has focused on investigating the causes of the
other-race effect [65–67]. From this research, two principal models have emerged as
explanations for the other-race effect: the perceptual expertise model and the social-
cognitive model.
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The perceptual expertise model states that increased experience with own-race
faces improves face recognition accuracy selectively, or at least preferentially, for
own-race faces [41, 68]. The precise mechanisms influenced by expertise, however,
remain open to debate (see [67]). One possibility is that expertise improves one’s
ability to analyze faces configurally. Configural processing is thought to improve
recognition accuracy over feature-based processing [37]. Several studies show that
own-race faces are processed configurally, whereas other-race faces are processed
with a more feature-based strategy [67, 69–71]. Notably, the degree to which percep-
tual expertise with faces improves recognition accuracy is still uncertain. Although
there is evidence to support the benefits of experience with faces of a certain race,
the amount of this experience explains only a small portion of the variance of the
other-race effect [41]. Other studies have suggested that the type, rather than amount,
of experience is crucial to other-race face recognition accuracy. Thus, it seems that
qualitative experience, as opposed to mere quantitative exposure, may be responsi-
ble for promoting configural holistic processing [72], and ultimately for improving
accuracy.

Support for the expertise model comes also from studies that manipulate experi-
encewith other-race faces. For example, [47] found a reducedother-race effect in chil-
dren and teenagers with increased other-race experience. Monoracial British–White
children showed a typical other-race effect and had greater recognition accuracy
for own-race (Caucasian) faces than other-race faces (Chinese, Malay, and African
Black). In contrast, multiracial Chinese Malaysian children showed an other-race
effect, but only for faces of the race they reported less contact with (African Black).
Increased experiencewith other-race faces has also been shown to reverse completely
the effects of race [73]. For example, one study showed thatKorean adults, adopted by
European parents when the children were between the ages of 3–9 years old, showed
a reversed other-race effect (greater recognition accuracy for Caucasian faces than
Asian faces) [73]. Interestingly, the accuracy for Korean adults on Caucasian faces
was comparable to native French-born Caucasian participants. These results pro-
vide support for the influence of experience and how this other-race experience can
mitigate the other-race effect.

The social-cognitive model suggests that the other-race effect is due to the human
tendency to perceive individuals in terms of social groups [67]. “In-groups” consist of
peoplewe think as similar to ourselves (demographically and socially). “Out-groups”
are people we think of as different from ourselves along these same dimensions.
This social-cognitive model is explained by the tendency to think of people in our
in-groups as individuals and people in our out-groups categorically, rather than as
individuals [74, 75]. As an account of the other-race effect, the social-cognitive
model applies as follows. Because we think of out-group members (e.g., other-race
individuals) as categories rather than individuals, we attend only to superficial facial
attributes (i.e., skin color or hair color). These features are insufficient to individuate
people.

Next, we consider the other-race effect for algorithms. Although human perfor-
mance might be influenced by social perception and motivation, these are clearly
not situations of concern for an algorithm. For this reason, we have limited our dis-
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cussion to the perceptual expertise model. For a discussion of additional other-race
effect models on human face recognition accuracy, see [65–67]. As noted, the data
used for training algorithms has a strong effect on algorithm performance. As we
will see, level of expertise indexed by the quality of training data, including own-
and other-race faces, influences algorithm performance.

16.6.2 Other-Race Effect in Machines

Given the robust effect of race on human face recognition, there is a long history
of studies examining its effects on recognition algorithms and training models [6,
76, 77]. In an early study (1991), an auto-associative neural network model of face
recognition was trained with a “majority” and “minority” race of faces. Majority and
minority were defined simply by the imbalance of training data for two races of face
[76]. Results showed that the network represented novel (untrained) faces from the
majority race more accurately than novel face from the minority race [76]. Addition-
ally, to test whether the associative network created representations of minority-race
faces that were less individuated than representations ofmajority-race faces, the aver-
age inter-face similarity was calculated. Inter-face similarity for the minority race
was greater than inter-face similarity for majority-race faces. This result is consistent
with the old adage that other-race faces “all look alike”.

Moving forward in time, neural network models, circa 2002, provided a look
at plausible underlying computational mechanisms of a perceptual expertise theory
of the other-race effect [6]. Using extant models, the researchers found an other-
race effect only for a subset of face recognition algorithms. These were algorithms
in which the representational system was developed through experience that warped
the perceptual space in a way that was sensitive to the overall structure of the model’s
experience with faces of different races. These models are in some ways analogous
to developmental psychology models of language that invoke a “critical period”
mechanism during development. This posits that experience with different languages
structures basic aspects of the perceptual space to favor the language sounds we hear
most often—usually phonemes fromour native language. For faces, this distinguishes
the impact of experience based on when it occurs and potentially indicates that the
other-race effect requires experience with other-races to be timed to be early in life
to coincide with the critical period, during which visual feature sets develop.

In one early study, circa 2011, researchers examined differences in face recog-
nition algorithms developed in different countries [77]. In that study, 13 algorithms
from the Face Recognition Vendor Test 2006 (FRVT-2006) served as test algorithms.
[18]. Eight of these algorithms were developed in Western countries (United States,
Germany, France) and five algorithms were developed in East Asian (China, Japan,
Korea). The algorithms developed in the west were fused together to create a single
“Western” algorithm. Similarly, the algorithms from Eastern countries were fused
to create an “East Asian” algorithm. The fused Western and East algorithms were
then tested on controlled and uncontrolled Caucasian and East Asian faces. Machine
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accuracy mirrored the classic other-race effect found in humans. The Western fused
algorithm was more accurate on Caucasian faces and the East Asian fused algo-
rithm was more accurate on East Asian faces. This other-race effect was attributed
to the likelihood that algorithms trained in East Asia would be trained mostly with
East Asian faces, whereas algorithms trained in Western counties would be trained
mostly with Caucasian faces. In this era, additional work looking more generally at
the performance of algorithms with multiple demographic categories (race, gender,
age) show analogous challenges across demographic categories [78].

To compare human and machine recognition, the researchers used a condensed
version of the experiment with a smaller number of face pairs. Human participants
demonstrated a classic other-race effect with a slight, but non-significant, advantage
for Caucasian faces. Additionally, both algorithms were better at recognizing Cau-
casian face pairs.However, theCaucasian face advantagewas larger for theCaucasian
algorithm than the East Asian algorithm—again evidence for an other-race effect.
This overall Caucasian advantage was attributed to the likelihood that the researchers
who submitted algorithms to the FRVT-2006 anticipated that themajority of the faces
used to test the algorithms would be Caucasian. These results demonstrate that origin
of the algorithm and the training data used for the algorithm both play a crucial role
in building better representations of own-vs-other-race faces. If these algorithms are
to be used in diverse populations, it may be imperative that their training data reflect
such diversity.

The most recent class of face recognition algorithms, based on DCNNs, became
state of the art, circa 2015. These algorithms also perform differently as a function
of the race of the face [79, 80] (See [80] for review on the topic up to 2019). A com-
prehensive and thorough test of race bias in face recognition algorithms, published
in 2019 by the NIST [79], showed a variety of bias effects for different algorithms
depending on performance measures (e.g., false alarm rate). Although the meta-data
on the race of faces used in these tests were limited, and perhaps not directly compa-
rable to older more controlled studies, the study nonetheless shows that the problems
of race for face recognition have not been solved. A more systematic approach to
measuring race bias in face recognition algorithms is needed [80]. The challenges
in this endeavor include understanding data driven factors (e.g., population distri-
butions in training and test data) and application factors (e.g., threshold setting) for
these algorithms. A comprehensive analysis and discussion of these factors, and their
potential impact on performance across race is available in [80].

16.7 Closing Thoughts

In summary, we have examined the diversity of ways in which humans and machines
approach the problem of face identification. Understanding this diversity can be a
prerequisite to developing and implementing fusion strategies for humans, machines,
and between humans and machines. These can ultimately improve the accuracy of
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face identification in security and law enforcement applications that require the best
possible accuracy.
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Chapter 17
Evaluation of Face Recognition Systems

Patrick Grother and Mei Ngan

While face recognition research has been perennial and popular since its inception,
there has been a marked escalation in this research in recent years due to the con-
fluence of several factors, primarily the development of advanced machine learning
algorithms, free and robust software implementations thereof, ever faster GPU pro-
cessors for running them, vast web-scraped face image databases, open performance
benchmarks, and a vibrant face recognition literature.

The new algorithms were largely been developed to exhibit invariance to pose,
illumination, and expression variations that characterize photojournalism and social
media images. The initial research [1, 2] employed large numbers of images of rela-
tively few (∼ 104) individuals to learn invariance. Inevitablymuch larger populations
(∼ 107) were employed for training [3, 4] but the benchmark, lfwwith an eermetric
[5], represents an easy task: one-to-one verification at very high false match rates.
While a larger scale identification benchmark duly followed (Megaface [6]) its pri-
mary metric, rank one hit rate, contrasts with the high threshold discrimination task
required in large-population governmental applications of face recognition, namely
credential de-duplication, law enforcement, and intelligence searches. There identi-
fication into galleries containing from up to 108 individuals must be performed using
very few images per individual and stringent thresholds adopted to afford very low
false positive identification rates.

Technological advances have led to massive reductions in recognition errors. The
largest independent published benchmark, NIST’s Face Recognition Vendor Test
[7], has documented that the leading commercial algorithms now produce twenty
times fewer false negatives in 2018 than they did in 2013 on an identical portrait
image identification task with gallery size 1.6 million. This contrasts with progress
in the period 2010–2013 when error rates fell only by a factor of two on the same
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task. These gains are realized at both high and low false positive identification rates,
showing that CNN-based algorithms can exhibit both invariance and discrimination.
This demonstrates that the major commercial developers have integrated and, in
many cases, replaced existing algorithms with those based on convolutional neural
networks (CNNs).

This chapter covers topics in evaluation including some that are often ignored in
research settings yet which present operational concerns. These are low false positive
rates, impostor distribution stability, and measurement of computational resources.

17.1 Introduction

Progress in face recognition has always been underpinned by evaluation, i.e., quan-
tification of accuracy to assess whether an algorithm is superior to its progenitors and
to its competitors. Most evaluation is done within the laboratories of the developers
and is necessarily tightly bound to research. In university settings, peer-reviewed
journals invariably insist that accuracy be measured against published benchmarks.
In commercial settings, however, the results rarely see the light of day. In both cases,
developers have historically been frustrated by the lack of suitable image datasets.
This constraint has lifted in recent years as face imagery can be taken from the
internet, in many cases from identity-labeled photographs residing on photography,
news, and, particularly, social media websites. These are available in large part due
to the advent of the digital camera, particularly on the smartphone, and critically, the
internet as a distribution mechanism.

Regardless of the quantity of available data, researchers usually utilize the data
in an iterative build–test–refine process, in which error cases are isolated and algo-
rithmically addressed. This process may expose ground truth identity errors in the
dataset. It may also lead to specialization and impede generalization of the algorithm
to other datasets.

17.1.1 Objectives of Evaluation

The goals behind evaluation of face recognition algorithms have remained consistent
despite the rapid-changing pace of the technology. Fundamentally, independent eval-
uation of face recognition software on operational data allows for fair, repeatable, and
relevant assessment of performance of core capability. Capability testing establishes
criteria for whether the technology is viable and what’s possible, understanding what
the technology limits are, and assessing whether application and technical require-
ments can be met. Comparative testing of algorithms affords an understanding of
which technologies work and likewise and which technologies don’t work. This sup-
ports end-users in their procurement decisions and also motivates the advancement
of new technology. Longitudinal monitoring of performance gives a quantitative
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measurement of performance gains and influences upgrade schedules and contract
re-competes. Face recognition errors incur cost, for example, failure to enroll (FTE)
imposes additional time, procedures, modalities, and processes, so measurement of
such quantities supports shaping operational expectations if the software is deployed.
Characterizing performance allows procedures to mitigate risk, for example, finding
that FTE is very high prompts environmental redesign to regulate ambient light or
other causes for failure.

17.2 Verification

This section gives metrics for verification. Identification is dealt with later. The ver-
ification task is the fundamental biometric operation—to determine whether two
images are of the same face or not. Verification is now by far the most common
application of biometrics, being widely deployed in applications such as access con-
trol and authentication, particularly on mobile phones. It quantifies the ability to
answer the question are two samples from the same person or not.

Verification involves a claim of identitywith a verification sample being compared
with a particular (prior) reference sample. The comparison can be either a genuine
or impostor comparisons, the former are often known as authentic or mated com-
parisons. It is reasonable and sufficient for much algorithm development to proceed
by running verification tests—the lfw [5] task being the most famous—to quantify
core algorithmic efficacy.

17.2.1 Metrics

Nomenclature: This section defines false non-match rate (fnmr) false match rate
(fmr). In decision theory, these are generically the Type I and II error rates, respec-
tively. These are the fundamental sample-comparison matching error rates. The aca-
demic literature, particularly, often uses the terms false accept rate (far) and false
reject rate (frr) but industrial practice, and formally standardized biometrics perfor-
mance tests, reserve these terms to represent transactional error rates defined over
the entire interaction of a human with a biometric system that potentially involves
multiple presentations, samples, and comparisons.

Scores versus distances: For the purposes of core algorithm evaluation, however,
the matching error rates are the key accuracy indicators. Algorithms are assumed to
produce comparison scores,which in commercial face recognition are conventionally
non-negative similarity scores. In academic settings, algorithms usually produce
distances (with metric properties). For the discussion here, scores are assumed to be
similarity scores, with higher-is-more-similar semantics. Distancesmay be converted
to similarities via monotone transformations such as 1/(1 + d) or negation U − d,
with U constant, usually large.
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False non-match computation: Given NG scores from genuine comparisons,
fnmr is the proportion of genuine scores below threshold, T :

FNMR(T ) = 1 − 1

NG

NG∑

i=1

H(si − T ) (17.1)

where the step functionH(x) is 1 if x ≥ 0 and 0 otherwise. The inequality supports the
commercial convention of authenticating a claimant if the score equals the threshold.
It is common for algorithms to fail to produce a template from some input images,
particularly in non-cooperative wild images where detection may be difficult. These
so-called failures to enroll outcomes must be accounted for when comparing algo-
rithms. One means of doing this is to assign low scores, e.g., 0, to any comparison
involving that template. This simulates false rejection of a user and increases fnmr.
Alternatively, failure rates can be included explicitly. For example, consider NG pairs
of images each comprised of a portrait and a wild image, with template generation
failure rates of F1 and F2, respectively. A generalized false non-match rate can be
computed as

GFNMR(T ) = F1 + F2 + (1 − F1)(1 − F2)FNMR(T ) (17.2)

Modified formulae are necessary for human-in-the-loop tests to model, for example,
a policy where a subject does not continue in a test if they cannot enroll.
False match computation: Scores from NI impostor comparisons are used in the
false match rate (fmr) computation, which states the proportion of impostor com-
parisons yielding scores at or above T :

FMR(T ) = 1

NI

NI∑

i=1

H(si − T ) (17.3)

In cases where an algorithm fails to produce a template from an input image, a
low score is again assigned as the result of any comparison involving that template.
This practice actually benefits (reduces) fmr.

17.2.2 Error Tradeoff Characteristics

fnmr quantifies inconvenience of users; fmr quantifies the likelihood that an impos-
tor can falsely match an identity. As low fmr values are needed in strong authenti-
cation processes, the most important depiction of biometric performance then is to
plot fnmr(T) vs fmr(T). Such a plot is an error tradeoff characteristic, an example
of which is shown in Fig. 17.1. Note that, when computed empirically, the det points
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Fig. 17.1 The traces show error tradeoff characteristics for three algorithms applied to the com-
parison of visa photographs. The inset legend affords comparison at one particular operating point

are connected via horizontal and vertical lines, and therefore the common term det
curve is incorrect.

Relation of DET and ROC: The term receiver operating characteristic (roc) is
conventionally a plot of true match rate (tmr = 1 - fnmr) against fmr and as such
is only trivially different to the det. However the det should be preferred because
for highly accurate biometrics, tmr values become close to 1 and visualization of
difference in that range becomes difficult. A logarithmic fnmr axis spreads plots
out, readily revealing a factor of two reduction in fnmr for example.

Axis scaling: The term detection error tradeoff characteristic (det) is used for
this plot—the word “detection” hailing from target detection in radar applications—
although it has been claimed by the speech recognition community for the special
case where both axes are probit transformed such that Normal genuine and impostor
score distributions yield straight lines on the plot. Practically researchers should use
appropriate scaling—linear, probit, log-log, log-linear—to afford good visualization
of the error rates. All such plots may be called dets.

The importance of low FMR: It is unfortunately common in the literature for
error tradeoff characteristics to be plotted with fmr on a linear axis. This confines
the range of typical operational values, [0.0001, 0.01], to a very narrow region of the
visible plot, emphasizing only irrelevant fmrvalues, [0.1, 1]. This issuemotivated the
development of the improved lfw benchmark[8] specifying much greater numbers
of impostor comparisons than the 6000 mandated in the original lfw design[5].

The det should usually therefore be reported with transformed fmr axis—often
logarithmic as in Fig. 17.1—unless a linear range can be justified. fmr should span
an interval from as low as the data can support statistically to at least 0.1. Figure
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17.1 presents an example of a detection error tradeoff characteristic plotted on a
logarithmic scale.

Uncertainty: The test itself, and the reported results, should support quantifica-
tion of fmr at low enough values to be representative of some application. Given
scores from a set of NI impostor comparisons, fmr (T0) = 0, for any threshold, T0,
higher than the highest observed impostor score. At that point, binomial statistics
indicates that we can be 95% confident that the true fmr is below 3/NI . This assumes
independent comparisons and implies that det plots should be plotted only on the
range [3/NI , 1]. However, as it is common and useful to cross-compare all available
images (N images gives NI = N (N − 1)/2 impostor comparisons), these will not be
independent, and plotting fmr down to 3/NI is then less reliable but also less expen-
sive than acquiring NI pairs from 2NI people. International biometrics performance
and reporting standard ISO/IEC 19795-1. For further discussion on components of
variance, uncertainty estimation, and test sizing, see Part 1 of the ISO/IEC 19795
performance testing standard [9].

17.2.3 Population-Specific Error Rates

It is generally the case that face recognition accuracy varies with subject-specific
covariates such as sex, age, and race. In those common operational situations where
images with such variations are sent to an algorithm configured with a single thresh-
old, the fnmr and fmr values will both vary. While, it is common to report dets for
sub-populations A, B, C. . ., such plots omit essential information, namely whether
the dets are shifted vertically, horizontally, or in some combination. Possible reme-
dies to this are to show genuine and impostor distributions as a function of threshold
or to tabulate or show linked det points corresponding to fixed thresholds. A variant
of the latter is shown in Fig. 17.2.

While for all algorithms, the blue line lies below the red line, which can be naively
interpreted as males are easier to recognize than females, examination of points of
equal threshold shows that the difference is more to do with higher false match rates,
extending beyond an order of magnitude in one case.

Demographically matched impostors It is conventional in tests of biometric
algorithms for the experimental design to use zero-effort impostors, meaning that
an impostor pair is used without regard to biographic (or biometric) information.
However, because the face is a genetically linked trait, the distribution of impostor
scores produced by comparing faces of subjects of the same sex and national origin
is markedly higher. This is depicted in Fig. 17.3.
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17.2.4 Image-Specific Error Rates

Similarly, image-specific covariates such as resolution and compression affect recog-
nition. Indeed the major factors—pose, illumination, expression—have given their
names to databases and driven whole lines of research. Given that adequate lighting
can be installed by design, invariably the most influential parameter on actual recog-
nition outcomes has been the orientation of the head in one photograph relative to
that in a prior image.

Using wild photographs and yaw estimates obtained from an automated pose-
estimation tool, we quantify the dependence of face recognition accuracy on yaw.
The ability of algorithms to compensate for viewing angle is summarized in Fig. 17.4
which shows false non-match rate as a function of yaw angle, θ , of the face in
enrollment and verification images. These vary over ±90◦. Each panel encodes a
false non-match rate fnmr for an algorithm at a particular threshold. This is set
to give a false match rate of 0.001 for images of the frontal pose, i.e., those with
|θ | ≤ 15. The fnmr values are generally lowest for frontal pairs, then for pairs with
the same yaw angle, and they increase with difference in yaw.

While figures [10] equivalent to Figure 17.4 have appeared in the literature since
at least 2004, the effect of yaw on fmr has gone largely unreported. The assumption
may be that faces at different poses would simply not match, but it is worth checking
in, for example, a phone unlocking application that a non-frontal presentation does
not present a false match hazard. This is evident in Fig. 17.5 which shows how fmr
itself varies with the pair of yaw angles. This figure is relevant in applications where
a global threshold is set and pose varies widely. In all panels, the center cell has
fmr = 0.001, by design. The results for other yaw angles show different behaviors.
First, the more accurate algorithms often have weak dependence of fmr on yaw
angles (prevalence of gray). Others give consistently low fmr when angles differ
(prevalence of blue) consistent with an inability to match. A final class of algorithms
gives higher fmr when yaw angles differ (prevalence of red in the periphery). This
is typically unexpected and undesirable. Such figures are not relevant if a specific
pair of poses can be forced by design and capture-time checking, in which case a
dedicated threshold could be set.

17.2.5 Summary Statistics

The default, and recommended, way to state verification accuracy is in terms of
fnmr at threshold set to achieve a certain fmr, typically fmr = 0.001, for automated
border control gates for example. This serves as a standard and simpleway to compare
core algorithm recognition capability. However, it is very common in the academic
literature to quote summary statistics:

• Equal Error Rate: The eer is obtained from a det by finding the threshold where
fmr is equal to fnmr. The metric was popular even before lfw [5] adopted essen-
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Fig. 17.4 For three commercial algorithms evaluated in 2017, the figure shows the effect of yaw
between the enrollment image and the verification image on fnmr. The threshold is fixed in all cells
to that value that gives fmr = 0.001 on near frontal images (the center cell). Three behaviors are
evident: same-pose invariance (left), pose sensitivity (center), and substantial cross-pose invariance
(right)
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Fig. 17.5 For three commercial algorithms evaluated in 2017, the figure shows the effect of yaw
between the enrollment image and the verification image on fmr. The threshold is fixed in all cells
to that value that gives fmr = 0.001 on near frontal images. The elevated false positive rates when
both images have large yaw angles may present a vulnerability

tially the same quantity as its benchmark metric. The eer should be deprecated
because it usually corresponds to an operationally high and unrealistic fmr. Usu-
ally the operating fmr of relevance is much lower than the fnmr, for example,
when fmr = 0.001 and fnmr = 0.01.

• Area Under the Curve The auc is the area under the roc, integrating fnmr
over fmr on [0, 1]. This verification metric corresponds to the expected rank 1
recognition rate in identification trials where the gallery size is two and scores are
computed independently. It is favored by radiologists and in other human studies
where scores are reported in very discrete scales.

• Half total error rate The hter is (fmr + fnmr) / 2 is one special case of decision
cost function
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DCF(T ) = (1 − P) CFNM FNMR(T ) + P CFMFMR(T ) (17.4)

which expresses the (monetary) cost of errors committed by an verification system,
where proportion P are impostors comparisons and Cx quantify the cost of false
non-match and match errors. The problem with hter is that the two errors almost
never have equal priors and costs.

While these metrics are well defined, easy to compute, and reasonably common,
they all drive research away from the low-fmr regimemost useful to the marketplace
uses of face recognition. They should be deprecated in favor of citing fnmr at some
low fmr, e.g., fmr≤ 0.001.

17.3 Identification

Background: The largest segment of the face recognition marketplace is identifica-
tion, with identification and duplicate detection of standardized cooperative portrait
images being the largest applications.

Identification, which involves no claim of identity, involves searching a set of
N enrolled templates with a probe template, to return matches, if any. Many iden-
tification algorithms implement 1:N search as N 1:1 comparisons, followed by a
sort operation. In operations, there are two modes of operation: First is to return
any entries with similarity above some threshold and second to return a fixed num-
ber of the most similar entries, essentially a k-nearest neighbor search. Neither of
these tasks necessarily require an exhaustive search of all N enrollments, and it is
incumbent therefore on an evaluation to not prescribe nor constrain the underlying
implementation, for example, by requiring the algorithm to return all N comparison
scores.

Fundamentally, a probe is searched against an enrollment database of existing
identities and a candidate list of potential matching subjects is retrieved. Applica-
tions are generally differentiated by the kinds of images being compared (e.g., driving
license photos vs. surveillance photos), enrolled population sizes, and the prior prob-
ability that a search has an enrolled mate. In most applications, the core accuracy of
a facial recognition algorithm is the most important performance variable.

17.3.1 Closed Versus Open-Universe Identification

In one-to-many identification, unknown imagery is searched against a gallery of N
individuals previously collected, and the goal is to determine the identity of the query
subject.

In a closed-universe, every subject queried against the gallery is known to have
a mate (i.e., exists in the gallery). While this might apply to situations such as the
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one-to-many search on a cruise ship where everyone being searched is known to have
boarded the ship, closed-universe applications occur very infrequently. Because only
mated searches are conducted, closed-universe tests generally report a rank-based hit
rate, ignoring scores produced by the algorithm, neglecting to look at false positives,
and frequently encouraging optimization of the wrong quantity when commonly,
high threshold (low false positive rate) discrimination is required in large-population
government applications of face recognition.

Closed-universe experiments are often seen in academic tests [6]. The University
of Washington’s Megaface Challenge [6] is an open academic face recognition chal-
lenge that contains a one-to-many protocol which evaluates algorithmic capability
to retrieve the correct hit against galleries with up to 1 million distractors. The pro-
tocol is closed-universe as it only conducts searches that are known to exist in the
gallery. As such, the challenge reports identification hit rate as a function of distractor
size and rank but does not report identification performance against false positive
identification rate.

Most applications are naturally open-universe, where some proportion of query
subjects will not have a corresponding mate entry among the previously enrolled
identities. In high search volume applicationswheremost searches do not have amate
(e.g., casino surveillance for cheats), the emphasis is not controlling false positive
outcomes. In low-volume applications, for example, bank robbery investigation, false
positives will be investigated manually.

From a testing perspective, open-universe is accomplished by running both mated
searches and non-mated searches. The non-mated searches afford the ability to gen-
erate a false positive identification rate against a threshold. Face identification algo-
rithms must minimize both false positive errors where an unenrolled person is mis-
takenly returned and false negative errors where an enrolled person is missed. This
is critical whenever the proportion of non-mated searches is naturally large particu-
larly in the canonical “watch-list” surveillance application where a large majority of
individuals in the field of view are not enrolled and the system should return nothing.
So a face recognition system looking for terrorism suspects in a crowded railway
station must be configured to produce few false positives, no more than what can
be sustainably adjudicated by trained reviewers who would determine the veracity
of the candidate match and then initiate action. If, on the other hand, the proportion
of unmated searches is low, as is the case, for example, with patrons entering their
gymnasium, the system must be configured to tolerate a few false positives, i.e., to
admit the infrequent non-customer who attempts access.

False negative identification performance: It is necessary to report accuracy in
terms of both false negative identification rate quantifying how often enrollees are
not recognized and the false positive identification rate stating how often algorithms
incorrectly issue false alarms.

Outputs from the mated searches are used in the false negative identification rate
(fnir) computation. fnir is defined as the number of mated searches which fail to
produce the enrolled mate in the top R ranks with score above threshold, T . fnir is
therefore known as a miss rate. Its value will generally increase with the size of the
enrolled database, N , because the recognition algorithm is tasked with assigning a



392 P. Grother and M. Ngan

low score to all N − 1 non-mated enrollments. Thus, for each of M mated searches,
the algorithm returns L candidates with hypothesized identities and similarity scores.
If the identity of the search face is IDi and that of the r -th candidate is IDr , then

FNIR(N , R, T ) = 1 − 1

M

M∑

i=1

R∑

r=1

H(sir − T ) δ(IDi , IDr ) (17.5)

where sir is the r -th highest score from the i-th search, the step function H(x) is 1 if
x ≥ 0 and 0 otherwise, and the function δ(x, y) is 1 if x = y and 0 otherwise.

In caseswhere an algorithm fails to produce a template fromaprobe input image—
the fnir computation conventionally proceeds by assigning a low score, −∞, and
high rank, L + 1, simulating a miss. For non-mate searches, this treatment actually
improves fpir.

As discussed below, fnir varies with population size N and the number of candi-
dates examined to rank, R that is above threshold, T .

Effect of Gallery Size As the world population increases in size, face recogni-
tion databases are also getting larger. It is known that face recognition performance
degrades as the population size being searched increases. With an increased popu-
lation size, comes an increased chance of finding another person in the gallery who
looks similar to the search probe. This has an impact on the false match rate and how
often a similar-looking person is incorrectly matched. How algorithmic performance
degrades with increasing population size is a primary challenge in any application
where individuals are enrolled at a greater rate than they are unenrolled. Therefore,
reporting accuracy as a function of the population size being searched is essential
as this will inform end-users of face recognition systems, who each have their own
unique operating points along the population size spectrum. A desirable property of
a good face recognition algorithm is slow degradation in accuracy as the population
size increases. Figure 17.6 presents algorithm accuracy plotted against enrolled pop-
ulation size. The key point about the graph is the lines are quite flat, and the lines
drift up quite slowly on a logarithmic scale as the enrolled population size increases.
This substantiates the viability for the face recognition industry, where searches are
conducted with usable accuracy performance as the enrolled population goes up to
state and nation sizes.

Effect of candidate list length In investigative applications, a human reviewer
may be employed to look for mates that have been displaced from rank one by
higher scoring non-mates. A plot of fnir(R) is then the relevant metric stating how
often mates are not contained in, say, the top R = 50 candidates. Figure 17.7. The
complement of this quantity the cumulative match characteristic is perhaps the most
commonly reported metric: CMC(N , R) = 1−FNIR(N , R).

False positive identification rate: Scores from the non-mated searches are used
in the false positive identification rate (fpir) computation, which states the proportion
of non-mate searches yielding any candidates at or above a threshold T :



17 Evaluation of Face Recognition Systems 393

orinoco_2 nile_4 okavango_0

600 1600 3000 6000 9000
12000 600 1600 3000 6000 9000

12000 600 1600 3000 6000 9000
12000

0.003

0.005

0.007

0.010

0.020

0.030

Enrolled population size, N (thousands)

Fa
ls

e 
ne

ga
tiv

e 
id

en
tif

ic
at

io
n 

ra
te

, F
N

IR
(N

, T
), 

T 
= 

0)

Dataset:
2018 Mugshots

Rank 1

Rank 10

Rank 50

Fig. 17.6 Figure shows rank-based miss rates versus enrolled population, fnir(N , 0), estimated
over mated searches. The threshold of zero means the computation ignores scores, as a mate may
be at rank 1 but have a low score

nile_4 okavango_0 orinoco_2

1 3 10 30 50 1 3 10 30 50 1 3 10 30 50

0.003

0.005

0.007

0.010

0.020

0.030

Rank

Fa
ls

e 
ne

ga
tiv

e 
id

en
tif

ic
at

io
n 

ra
te

 (F
N

IR
)

Dataset: 2018 Mugshots
Enrolled pop., N

00640000

01600000

03000000

06000000

12000000

Fig. 17.7 Miss rate, FNIR(N , R, 0), showing the value to an investigator of manually reviewing
candidate lists to rank, R

FPIR(T ) = 1

NI

N∑

i=1

H(si − T ) (17.6)

In cases where an algorithm fails to produce a template from an input image, a low
score is again assigned as the result of any comparison involving that template. This
practice actually benefits (reduces) fpir.

An alternative quantity expressing false positive accuracy is “selectivity”. This
term hails from the fingerprint recognition literature, particularly for latent print
identification. In operations, it is defined as the expected number of candidates a
human reviewer would have to examine before a mate is found. The definition, in
algorithm testing, is related but different: the expected number of candidates returned
in a non-mated search. Recall, fpir, is the proportion of searches returning any non-
mate candidates. Selectivity expresses how many:
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SEL(T, R) = 1

NI

N∑

i=1

R∑

r=1

H(sir − T ) (17.7)

Selectivity takes on values on [0,R], where R is the upper limit on the number of
candidates reviewed by policy, with R ≤ L the number returned by the algorithm.
Formany algorithms, at high threshold values, false positives are rare and SEL(T ) →
FPIR(T ). When this is not the case, an algorithm is concentrating false positives in
the results of particular searches, for example, by returning images of any person
wearing glasses or beards similar to the probe image.

Relationship of FPIR and FMR In identification, a false positive occurs when
at least one comparison produces a false positive. This requires correct rejection
of all N non-mated enrollments and if these are independent comparisons, then a
verification trial producing an estimate of false match rate fmr(t) could be used to
estimate fpir(t); thus,

FPIR(T ) = 1 − (1 − FMR(T ))N (17.8)

The binomial expansion gives the approximation

FPIR(T ) = N FMR(T ) (17.9)

This formula is widely used by practitioners in biometrics supporting the use of the
verification det to estimate identification accuracy as follows. Given, for example,
Fig. 17.1, the horizontal axis would be relabeled as fpir and would be rescaled by a
factor of N. However, two caveats are necessary: First, it’s an approximation which
overstates fpir and closely holds only when N FMR(T ) � 1. Second and more
seriously, this model is incorrect for implementations that do not implement 1:N
search as N 1:1 comparisons. This is evident in Fig. 17.8 and discussed now.

Linked DET When assessing an algorithm’s performance on images from dif-
ferent populations or on images with different properties, it is very easy to naively
look at det and draw conclusions about error rates when lines lie above or beneath
one another. Because most operational systems always operate at a fixed threshold,
it is necessary to compare points of equal operating threshold between the differ-
ent populations. Figure 17.8 presents det plots for identification in mugshot images
for searches into five different enrolled population sizes. The three black lines join
points of equal threshold. Horizontal lines represent an increase in fpir(T ) and ver-
tical lines represent an increase in fnir(T ). In the rightmost plot, fpir(T ) is almost
independent of N , and the binomial model (Eq. 17.8) and its linear approximation
(Eq. 17.9) do not hold. This is consistent with 1:N search not being implemented as
N 1:1 comparisons. The implication of this is that identification algorithms should
be tested as such and not simulated using scores produced in verification recognition
trials.
Aging Face recognition accuracy is undermined by aging, the progressive essentially
irreversibly effects of soft and hard-tissue changes to the anatomy. This has been
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Fig. 17.8 Identification det plots showing fnir vs fpir for five enrolled population sizes (colored
traces). The black lines show accuracy varies at fixed thresholds: Horizontal lines correspond to
linear growth in false positives with N, per binomial theory; approximately vertical lines show
an algorithm attempting to produce false positives independent of N. This can be achieved by
stabilizing the distribution of the highest impostor score

quantified using longitudinal analysis applied to recognition scores produced from
long-run repeat images of a large set of individuals. The application of mixed-effect
models [11] to aging allows for imbalanced sets of irregularly sampled data to be
modeled as a shared population component (reflecting that everybody ages) and
an individual-specific “random-effect” (allowing subjects to vary around that). This
approach, which relies on multiple encounters of the same individual, such as those
seen in frequent traveler systems, yields an aging rate, i.e., how rapidly the score is
expected to degrade in average subjects. Of course, this depends on the recognition
algorithm. It can handle, additionally, the effect of age and aging—where a five-
year time lapse in a fifteen-year old is wholly different than in a fifty-year old. The
sensitivity of algorithms to aging is evident in Fig. 17.9 which shows the decline
in scores. While the figure is not a replacement for mixed-effect analysis (because
imbalance can give misleading results), it does expose the better algorithms. For
example, aging can be quantified in terms of howquickly scores degrade.Comparison
between algorithms can be achieved by normalizing, e.g., to standard deviations per
decade.

In summary, while most evaluations concentrate on quantification of error rates,
changes in thewhole score distribution reveals systematic effects.Mixed-effect mod-
eling of scores and error rates [12] is the recommended approach to quantifying
aging.
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Fig. 17.9 In a fixed gallery of the N = 3 million, the violin plots show mate scores (on native
ranges) returned from 10.9 million searches, broken out by time-lapse in years. As faces age, they
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rank one miss rate; the horizontal lines show thresholds corresponding to various fpir values and
the score of rank 2 non-mates. Plots showing native scores can reveal systematic effects rather than
just those causing recognition errors confined to the tails of distribution

17.3.2 Enrollment Gallery Composition

Most face identification experiments proceed by placing N images of N people in a
gallery. For pure algorithm evaluation, this is the recommended approach. However,
operational reality departs from this simple case because, over time, subjects are
encountered multiple times, e.g., as part of a visa application process, and these
images are added to the gallery.

Recognition accuracy is improvedwhen K > 1 images are available. Figure 17.10
shows the effect of providing multiple images for each identity to three different face
recognition algorithms and the impact it has on accuracy. In all cases, fnir reduces
with K ; persons with multiple enrollments are more readily recognized. However,
for two algorithms, there are an order of magnitude increases in fpir, showing that
non-mate searches match multiple-image enrolees spuriously.

Key to the mitigation of this is how multiple images are employed. Referring to
Fig. 17.11, there are two approaches:

• Event-based, unconsolidated gallery: Here images are added to the gallery with-
out regard for whether the person already exists or not. Under this model, there
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Fig. 17.10 The effect of providing multiple images for each identity to three face recognition
algorithms and the impact it has on accuracy. Plotted is identification miss rates vs. false positive
rates at four operating thresholds. The enrolled population size is fixed at 1.6 million

Fig. 17.11 This figure presents examples of how enrollment data is stored in a subject-based,
consolidated gallery versus an event-based, unconsolidated gallery
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can be multiple images of the same person in the gallery. Templates are generated
from single images independently and are treated as different identities. Admin-
istratively, there might be record-keeping that associates same-person images, but
the underlying face recognition algorithm is not aware of this.

• Subject-based, consolidated gallery: Unique identities of people are maintained,
and a record contains K ≥ 1 images of the unique subject. This person-centric
model affords the face recognition algorithm an opportunity to fuse feature vectors,
select the best image using quality assessment, or to simply extract features from
K images independently and then arrange to effect score-level fusion during the
search.

The recommended approach—which has been adopted in identification bench-
marks [13]—is to construct a consolidated gallery by providing the algorithm with
K images from which feature extraction can proceed in an algorithm-defined way,
for example, by concatenation of feature vectors (common), by selecting the “best”
images, by some metric, or by some template-level fusion scheme. The consolidated
approach was used for Fig. 17.10. When an algorithm consolidates by concatenating
the individual feature vectors, the resulting template will have size linear in K. In
the best-image and fusion approaches, size is independent of K . Both schemes exist
commercially with themost accurate algorithm in a recent benchmark [7] performing
template-level fusion.

There are algorithm effects associated with the different enrollment gallery types.
For example, Fig. 17.12 presents a det comparing performance for two state-of-the-
art face recognition algorithms on both consolidated and unconsolidated enrollment
galleries.

How an enrollment gallery is built and maintained is an operational decision,
and depending on the face recognition algorithm, there may be varying performance
gains. Testing algorithms on different gallery compositions will provide insight into
optimal performance scenarios.

17.3.3 Database Segmentation

Database segmentation is a phenomenon that occurs when a gallery is somehow het-
erogeneous containing images with mixtures of population or image-specific prop-
erties. This will often cause a face recognition algorithm to easily distinguish images
with one set of characteristics from another, rather than with the actual facial identi-
ties of the subject. Database segmentation occurs naturally whenever the enrollment
gallery is not homogenous, and a number of factors including subject age, race, image
quality, beards, and glasses can affect this.

Figure 17.13, as excerpted from [14], shows an example of database segmentation.
The particular experiment uses images from the lfw [5] and IJB-A [15] photojournal-
ism datasets as probes and mates, enrolled with 80 million distractor images scraped
from social media websites (Web-Face). The differences in properties between the
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Fig. 17.13 As excerpt from [14], distributions of cosine similarities of the genuine pairs, within-
dataset impostor pairs and between-dataset impostor pairs for the combinations of lfw and Web-
Face
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photojournalism images versus social media images lead to a database segmentation
effect, which can be clearly seen by the left-shifted distribution of similarity scores
for imposter distribution when photojournalism images are compared with social
media images. The left-shifted distribution indicates that the algorithm can more
easily distinguish imposters (due to image characteristics rather than the identities of
the faces) when comparing lfw against Web-Face images, versus when lfw images
are compared against other lfw images. This undesirable effect causes the actual
gallery size to be an overstatement of the “effective” gallery size. As such, this can
lead to undesirable overestimation of algorithm performance accuracy.

Notably, the number of people in that gallery is unknown. The test design, to
make as large a gallery as possible, eschews the normal design goal of constructing
a balanced gallery containing equal numbers of entries per individual. Care should
be taken to ensure that the gallery is homogenous with respect to image properties
to prevent or minimize database segmentation effects.

17.4 Computational Efficiency

In high applications in which the volumes of enrollments or searches are large, or in
which there is a rapid response requirement, the duration of the algorithms operation
becomes important. Therefore, evaluators should measure and report the following.

• Feature extraction time:Operational face recognition systems usuallymust local-
ize a face and extract features from an image in less than one second—this is
necessary for human satisfaction and operational throughput. While additional or
exotic hardware may be fielded to achieve this, there will be marketplace pres-
sures to avoid doing so. Similarly, the use of GPU processors, while ubiquitous
for the training of algorithms, is (empirically) not needed for sub-second feature
extraction from contemporary face recognition algorithms. In addition, many fea-
ture extraction algorithms have not or cannot be parallelized when operating on a
single face image.
Developers should measure feature extraction time. This may be achieved by
wrapping the appropriate function call with high-resolution timers (such as the
std::chrono facility in C++).

• Search duration and complexity: Recent test results show that 1:N search speeds
can span up to three orders of magnitude [16]. Given the implications for hard-
ware procurement, it becomes essential to measure speed and to only invest in
slow algorithms if they offer measurable accuracy advantages. Further, given very
large operational databases, the scalability of algorithms is important. It has been
reportedpreviously [16, 17] that searchduration can scale sublinearlywith enrolled
population size N. Further, there has been considerable recent research on index-
ing, exact [18] and approximate nearest neighbor search[18, 19], and fast-search
[20]. Figure 17.14 shows search duration as a function of database size for linear
and sublinear algorithms.
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Fig. 17.14 For three algorithms, the duration of search is a function of enrolled population size.
The times are measured on a single c. 2016 CPU. On each plot are the actual durations (in red
and as points) and then projections based on linear (blue) and logarithmic (green) growth. Those
algorithms that give sublinear growth have accuracy approaching that of linear versions from the
same developer

• Fast-search data structure construction and maintenance: While most algo-
rithms implement linear search with a linear data structure, those that achieve
sublinear search durations generally require pre-processing and organization of
the enrollment data structure prior to conducting search. This may not be an inex-
pensive operation. Researchers should report the duration of gallery construction
operations and the expected complexity (linear, quadratic, etc).

• Insertion and deletion Likewise, developers should report the durations of func-
tions for inserting and deleting gallery entries and their dependence on N.

17.5 Summary and Recommendations

We summarize with a set of recommendations:
	 recommendation 1: To encourage explicit consideration of the impostor distribu-
tion and low fmr, face recognition algorithm developers should report verification
metrics as the primary indicators of accuracy. Researchers should not report just
rank-based metrics from identification trials.
	 recommendation 2: When reporting verification results, prefer dets over rocs,
i.e. plot fnmr instead of true match rate tmr.
	 recommendation 3: When reporting verification results, plot dets and, absent
an overriding reason, emphasize lower false match rates by using a logarithmic scale
for the fmr axis showing fmr� 1.
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	 recommendation 4: Given adequate data construct impostor pairs from demo-
graphically matched individuals. When that is not possible, compute and comment
on within and cross-demographic impostor score distributions.
	 recommendation 5: While the series of ISO/IEC 19795 biometrics performance
testing and reporting standards are not free, biometric laboratories should invest in
copies as they contain a wealth of carefully vetted information that guide test design,
measurement, analysis and reporting.
	 recommendation 6: For identification algorithms, conduct open-universe iden-
tification testing. Run both mated and non-mated searches against the enrollment
gallery. Report both fnir(T) and fpir(T), for a range of thresholds.
	 recommendation 7: Database segmentation causes the nominal gallery size to
be an overstatement of the “effective” gallery size. This will underestimate fnir.
Unless a galleries represents a real situation, or other should not be an overt mixture,
or if that’s not possible, should be balanced a uniformly sampled from a represent
a real-application, or other and should n Prevent database segmentation by using
images with uniform properties.
	 recommendation 8: Populate with galleries with equal numbers of images per
person. Avoid imbalanced galleries. When multiple images are available per person,
use them as probe images.
	recommendation 9:Measure durationof all elemental functions, includingdetec-
tion, feature extract, comparison, and search. For fast-search data structures report
duration of construction and search and the expected complexity of those operations
(e.g. O(

√
N ).
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