
Chapter 3
Rectangular Summability of Higher
Dimensional Fourier Series

In this chapter, we investigate the rectangular summability of d-dimensional Fourier
series.We consider two types of convergence, the so-called restricted and unrestricted
convergence. In the first case, n ∈ N

d is in a cone or a cone-like set and n → ∞while
in the second case, we have n ∈ N

d and min(n1, . . . , nd) → ∞, which is called
Pringsheim’s convergence. Similarly, we consider two types of maximal operators,
the restricted one defined on a cone or cone-like set and the unrestricted one defined
on N

d . We prove similar results as for the �q -summability. In the restricted case, we
use the Hardy space H�

p (Td) and in the unrestricted case a newHardy space Hp(T
d).

In the first section, we present the basic definitions for the rectangular summability
and verify some estimations for the kernel functions. In the next section, we can find
the L p(T

d) convergence of the rectangular Cesàro and Riesz means. In Sect. 3.3,
we investigate the restricted maximal operators of the rectangular Cesàro and Riesz
means by taking the supremumover a cone.We show that these operators are bounded
from theHardy space H�

p (Td) to L p(T
d) for any p > p0, where p0 < 1 is depending

again on the summation and on the dimension. As a consequence, we obtain the
restricted almost everywhere convergence of the summability means. Similar results
are also shown for cone-like sets.

We introduce the product Hardy spaces Hp(T
d) and present the atomic decompo-

sition and a boundedness result for these spaces. Moreover, we show that the unre-
strictedmaximal operator of the rectangular Cesàro andRieszmeans is bounded from
Hp(T

d) to L p(T
d) for any p > p0. This implies the almost everywhere convergence

of the summability means in Pringsheim’s sense. In the last section, we consider the
rectangular θ-summability and prove similar results as mentioned above. We give a
sufficient and necessary condition for the uniform and L1(T

d) convergence of the
rectangular θ-means.
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3.1 Summability Kernels

Definition 3.1.1 For f ∈ L1(T
d) and n ∈ N

d , the nth rectangular Fejér means σn f
of the Fourier series of f and the nth rectangular Fejér kernel Kn are introduced by

σn f (x) =
∑

|k1|≤n1

· · ·
∑

|kd |≤nd

d∏

i=1

(
1 − |ki |

ni

)
f̂ (k)eık·x

and

Kn(t) :=
∑

|k1|≤n1

· · ·
∑

|kd |≤nd

d∏

i=1

(
1 − |ki |

ni

)
eık·t ,

respectively.

Again, we generalize this definition as follows.

Definition 3.1.2 Let f ∈ L1(T
d), n ∈ N

d and α ≥ 0. The nth rectangular Cesàro
means σα

n f of the Fourier series of f and the nth rectangular Cesàro kernel K α
n are

introduced by

σα
n f (x) := 1

∏d
i=1 A

α
ni−1

∑

|k1|≤n1

· · ·
∑

|kd |≤nd

d∏

i=1

Aα
ni−1−|ki | f̂ (k)e

ık·x

and

K α
n (t) := 1

∏d
i=1 A

α
ni−1

∑

|k1|≤n1

· · ·
∑

|kd |≤nd

d∏

i=1

Aα
ni−1−|ki |e

ık·t ,

respectively.

The Cesàro means are also called rectangular (C,α)-means. If α = 1, then these
are the rectangular Fejér means and if α = 0, then the rectangular partial sums (see
Fig. 3.1).

Definition 3.1.3 For f ∈ L1(T
d), n ∈ N

d and 0 < α, γ < ∞, the nth rectangular
Riesz means σ

α,γ
n f of the Fourier series of f and the nth rectangular Riesz kernel

K α,γ
n are given by

σα,γ
n f (x) :=

∑

|k1|≤n1

· · ·
∑

|kd |≤nd

d∏

i=1

(
1 −

( |ki |
ni

)γ)α

f̂ (k)eık·x

and
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Fig. 3.1 The rectangular
Fejér kernel Kn with d = 2,
n1 = 3, n2 = 5
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K α,γ
n (t) :=

∑

|k1|≤n1

· · ·
∑

|kd |≤nd

d∏

i=1

(
1 −

( |ki |
ni

)γ)α

eık·t ,

respectively.

For α = γ = 1, we get back the rectangular Fejér means. The next results follow
from

K α
n = K α

n1 ⊗ · · · ⊗ K α
nd (3.1.1)

and
K α,γ

n = K α,γ
n1 ⊗ · · · ⊗ K α,γ

nd , (3.1.2)

where K α
n j

and K α,γ
n j are the corresponding one-dimensional kernels.

Lemma 3.1.4 If 0 ≤ α, γ < ∞ and n ∈ N
d , then

1

(2π)d

∫

Td

K α
n (t) dt = 1

and
1

(2π)d

∫

Td

K α,γ
n (t) dt = 1.

Lemma 3.1.5 If 0 ≤ α, γ < ∞ and n ∈ N
d , then

|K α
n (t)| ≤ C

d∏

i=1

ni and |K α,γ
n (t)| ≤ C

d∏

i=1

ni (t ∈ T
d).
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Lemma 3.1.6 For f ∈ L1(T
d), n ∈ N

d and 0 < α, γ < ∞,

σα
n f (x) = 1

(2π)d

∫

Td

f (x − t)K α
n (t) dt

and

σα,γ
n f (x) = 1

(2π)d

∫

Td

f (x − t)K α,γ
n (t) dt.

The rectangular Cesàro means are the weighted arithmetic means of the rectan-
gular partial sums.

Lemma 3.1.7 For f ∈ L1(T
d), α > 0 and n ∈ N

d , we have

σn f (x) = 1
∏d

i=1 ni

n1−1∑

k1=1

· · ·
nd−1∑

kd=1

sk f (x),

σα
n f (x) = 1

∏d
i=1 A

α
ni−1

n1−1∑

k1=0

· · ·
nd−1∑

kd=0

d∏

i=1

Aα−1
ni−1−ki

sk f (x)

and

K α
n (t) = 1

∏d
i=1 A

α
ni−1

n1−1∑

k1=0

· · ·
nd−1∑

kd=0

d∏

i=1

Aα−1
ni−1−ki

Dk(t).

We will use the next estimation of the derivatives of the one-dimensional kernel
functions.

Theorem 3.1.8 For 0 < α ≤ r + 1, n ∈ P and t ∈ T, t �= 0,

∣∣∣
(
K α

n

)(r)
(t)

∣∣∣ ≤ Cnr+1 and
∣∣∣
(
K α

n

)(r)
(t)

∣∣∣ ≤ C

nα−r |t |α+1
.

Proof Similar to Lemma 1.2.4 and Theorem 1.4.16, we have

|D(r)
k | ≤ Ckr+1 (k ∈ P),

which implies the first inequality.
We have seen in Theorem 1.4.16 and Lemma 1.4.14 that
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K α
n (t) = 1

Aα
n−1

n−1∑

k=0

Aα−1
n−1−k

sin((k + 1/2)t)

sin(t/2)

= 1

Aα
n−1 sin(t/2)

	
(

n−1∑

k=0

Aα−1
n−1−ke

ı(k+1/2)t

)

= 1

Aα
n−1 sin(t/2)

	
⎛

⎝eı(n−1/2)t
n−1∑

j=0

Aα−1
j e−ı j t

⎞

⎠ .

In this proof, we use the notation

u(β) :=
n−1∑

k=0

Aβ
k e

−ıkt .

Abel rearrangement and Lemma 1.4.8 imply

u(β) =
n−2∑

k=0

(
Aβ
k − Aβ

k+1

)
Sk + Aβ

n−1Sn−1

= −
n−2∑

k=0

Aβ−1
k+1 Sk + Aβ

n−1Sn−1

= −
n−1∑

k=1

Aβ−1
k Sk−1 + Aβ

n−1Sn−1,

where

Sk :=
k∑

j=0

e−ı j t = 1 − e−ı(k+1)t

1 − e−ı t
.

Then

u(β) = −
n−1∑

k=1

Aβ−1
k

1 − e−ıkt

1 − e−ı t
+ Aβ

n−1

1 − e−ınt

1 − e−ı t

= (
1 − e−ı t

)−1

(
n−1∑

k=1

Aβ−1
k e−ıkt −

n−1∑

k=1

Aβ−1
k + Aβ

n−1 − Aβ
n−1e

−ınt

)

= (
1 − e−ı t

)−1
u(β − 1) − (

1 − e−ı t
)−1

Aβ
n−1e

−ınt .
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Iterating this result s-times (s ∈ N),

u(β) = (
1 − e−ı t

)−2
u(β − 2) − (

1 − e−ı t
)−2

Aβ−1
n−1e

−ınt

− (
1 − e−ı t

)−1
Aβ
n−1e

−ınt

= . . .

= (
1 − e−ı t

)−s
u(β − s) − e−ınt

s∑

j=1

Aβ− j+1
n−1

(
1 − e−ı t

)− j
.

Writing β = α − 1 and using (1.4.11), we conclude

K α
n (t) = 1

Aα
n−1 sin(t/2)

	 (
eı(n−1/2)t u(α − 1)

)

= 1

Aα
n−1 sin(t/2)

	
(
eı(n−1/2)t

(
1 − e−ı t

)−s
u(α − 1 − s)

− e−ı t/2
s∑

j=1

Aα− j
n−1

(
1 − e−ı t

)− j
)

= 1

Aα
n−1 sin(t/2)

	
(
eı(n−1/2)t

(
1 − e−ı t

)−s
n−1∑

k=0

Aα−1−s
k e−ıkt

− e−ı t/2
s∑

j=1

Aα− j
n−1

(
1 − e−ı t

)− j
)

.

The equality

K α
n (t) = 1

Aα
n−1 sin(t/2)

	
(
eı(n−1/2)t (1 − e−ı t

)−α

− (
1 − e−ı t

)−s
∞∑

k=n

Aα−1−s
k e−ı(k−n+1/2)t − e−ı t/2

s∑

j=1

Aα− j
n−1

(
1 − e−ı t

)− j
)

=: I1(t) + I2(t) + I3(t)

follows from (1.4.5). Suppose that |t | ≥ 1/n. The r th derivative of I1 can be estimated
as

∣∣∣I (r)
1 (t)

∣∣∣ ≤ C

Aα
n−1

r∑

l=0

nl

|t |1+α+r−l

≤ C |t |−r−1
r∑

l=0

(n|t |)l−α

≤ C |t |−r−1(n|t |)r−α = Cnr−α|t |−α−1.
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To estimate the second term, we choose s > α + r . Then the r times termwise
differentiated series in I2 is absolutely convergent. Thus

∣∣∣I (r)
2 (t)

∣∣∣ ≤ C

Aα
n−1

r∑

l=0

∞∑

k=n

Aα−1−s
k

(k − n + 1/2)l

|t |1+s+r−l

≤ C

Aα
n−1

r∑

l=0

|t |−1−s−r+l
∞∑

k=n

kα−1−s+l

≤ C
r∑

l=0

|t |−1−s−r+lnl−s

≤ C |t |−r−1
r∑

l=0

(n|t |)l−s

≤ C |t |−r−1(n|t |)r−s ≤ C |t |−r−1(n|t |)r−α = Cnr−α|t |−α−1.

Similarly,

∣∣∣I (r)
3 (t)

∣∣∣ ≤ C

Aα
n−1

s∑

j=1

Aα− j
n−1

1

|t |1+ j+r

≤ C |t |−r−1
s∑

j=1

(n|t |)− j

≤ C |t |−r−1(n|t |)−1 ≤ C |t |−r−1(n|t |)r−α = Cnr−α|t |−α−1,

because 0 < α ≤ r + 1. Finally, if |t | < 1/n, then the first inequality of our theorem
implies the second one. �

The next lemma can be proved as Lemma 1.4.13.

Lemma 3.1.9 For α > −1 and h > 0, we have

σα+h
n f = 1

∏d
i=1 A

α+h
ni−1

n1∑

k1=1

· · ·
nd∑

kd=1

d∏

i=1

Ah−1
ni−ki

Aα
ki−1σ

α
k f.

The same results hold if we choose different exponents αi and γi in the products.

3.2 Norm Convergence of Rectangular Summability Means

The next results follow from (3.1.1), (3.1.2), Theorem 2.3.3 and from the one-
dimensional theorems.
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Theorem 3.2.1 If 0 < α ≤ 1, then

sup
n∈Nd

∫

Td

∣∣K α
n (x)

∣∣ dx ≤ C.

If 0 < α < ∞ and γ ∈ P, then

sup
n∈Nd

∫

Td

∣∣K α,γ
n (x)

∣∣ dx ≤ C.

Theorem 3.2.2 If 1 ≤ p < ∞, 0 < α < ∞ and γ ∈ P, then

sup
n∈Nd

∥∥σα
n f

∥∥
p ≤ C‖ f ‖p

and
sup
n∈Nd

∥∥σα,γ
n f

∥∥
p ≤ C‖ f ‖p.

Moreover, for all f ∈ L p(T
d),

lim
n→∞ σα

n f = f in the L p(T
d)-norm

and
lim
n→∞ σα,γ

n f = f in the L p(T
d)-norm.

Here, the convergence is understood in Pringsheim’s sense as in Theorem 2.1.8.

3.3 Almost Everywhere Restricted Summability
over a Cone

In this section, we investigate the convergence of the rectangular Cesàro and Riesz
summability means taken in a cone. For a given τ ≥ 1, we define a cone by

R
d
τ := {x ∈ R

d
+ : τ−1 ≤ xi/x j ≤ τ , i, j = 1, . . . , d}. (3.3.1)

The choice τ = 1 yields the diagonal. The definition of the Cesàro and Riesz means
can be extended to distributions as follows.

Definition 3.3.1 Let f ∈ D(Td), n ∈ N
d and 0 ≤ α, γ < ∞. The nth rectangular

Cesàro means σα
n f and rectangular Riesz means σ

α,γ
n f of the Fourier series of f are

given by
σα
n f := f ∗ K α

n
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Fig. 3.2 The cone for d = 2

and
σα,γ
n f := f ∗ K α,γ

n ,

respectively.

Definition 3.3.2 We define the restricted maximal Cesàro and restricted maximal
Riesz operator by

σα
� f := sup

n∈Rd
τ

|σα
n f |

and
σ

α,γ
� f := sup

n∈Rd
τ

|σα,γ
n f |,

respectively.

If α = 1, we obtain the restricted maximal Fejér operator σ� f . As we can see
on Fig. 3.2, in the restricted maximal operator the supremum is taken on a cone
only. Marcinkiewicz and Zygmund [234] were the first who considered the restricted
convergence.We show that the restrictedmaximal operator is bounded from H�

p (Td)

to L p(T
d).

The next result follows easily from Theorem 3.2.1.

Theorem 3.3.3 If 0 < α ≤ 1, then

∥∥σα
� f

∥∥∞ ≤ C ‖ f ‖∞ ( f ∈ L∞(Td)).

If 0 < α < ∞ and γ ∈ P, then

∥∥σα,γ
� f

∥∥∞ ≤ C ‖ f ‖∞ ( f ∈ L∞(Td)).

Theorem 3.3.4 If 0 < α ≤ 1 and
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max

{
d

d + 1
,

1

α + 1

}
< p ≤ ∞,

then ∥∥σα
� f

∥∥
p

≤ Cp‖ f ‖H�
p

( f ∈ H�
p (Td)).

Proof We have seen in Theorem 3.1.8 that

∣∣∣K α
n j

(t)
∣∣∣ ≤ C

nα
j |t |α+1

(t �= 0) (3.3.2)

and ∣∣∣(K α
n j

)′(t)
∣∣∣ ≤ C

nα−1
j |t |α+1

(t �= 0). (3.3.3)

Let a be an arbitrary H�
p -atom with support I = I1 × I2 and

2−K−1 < |I1|/π = |I2|/π ≤ 2−K (K ∈ N).

We can suppose again that the center of I is zero. In this case,

[−π2−K−2,π2−K−2] ⊂ I1, I2 ⊂ [−π2−K−1,π2−K−1].

Choose s ∈ N such that 2s−1 < τ ≤ 2s . It is easy to see that if n1 ≥ k or n2 ≥ k,
then we have n1, n2 ≥ k2−s . Indeed, since (n1, n2) is in a cone, n1 ≥ k implies
n2 ≥ τ−1n1 ≥ k2−s . By Theorem 2.4.19, it is enough to prove that

∫

T2\4(I1×I2)

∣∣σα
�a(x1, x2)

∣∣p dx1 dx2 ≤ Cp. (3.3.4)

First we integrate over (T \ 4I1) × 4I2. Obviously,

∫

T\4I1

∫

4I2

∣∣σα
�a(x1, x2)

∣∣p dx1 dx2

≤
2K−1∑

|i |=1

∫ π(i+1)2−K

πi2−K

∫

4I2

sup
n1,n2≥2K−s

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

+
2K−1∑

|i |=1

∫ π(i+1)2−K

πi2−K

∫

4I2

sup
n1,n2<2K

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

=: (A) + (B).

We can suppose that i > 0. Using that
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∫

T

∣∣K α
n2(x2)

∣∣ dx2 ≤ C (n2 ∈ N)

(see Corollary 1.5.3), (3.3.2) and the definition of the atom, we conclude

∣∣σα
n1,n2a(x1, x2)

∣∣ =
∣∣∣∣
∫

I1

∫

I2

a(t1, t2)K
α
n (x1 − t1)K

α
n2(x2 − t2) dt1 dt2

∣∣∣∣

≤ Cp2
2K/p

∫

I1

1

nα
1 |x1 − t1|α+1

dt1.

For x1 ∈ [πi2−K ,π(i + 1)2−K ) (i ≥ 1) and t1 ∈ I1, we have

1

|x1 − t1|ν ≤ 1

(πi2−K − π2−K−1)ν
≤ C2Kν

iν
(ν > 0). (3.3.5)

From this, it follows that

∣∣σα
n1,n2a(x1, x2)

∣∣ ≤ Cp2
2K/p+Kα 1

nα
1 i

α+1
.

Since n1 ≥ 2K2−s , we obtain

(A) ≤ Cp

2K−1∑

i=1

2−2K22K+Kαp 1

2Kαpi (α+1)p
≤ Cp

2K−1∑

i=1

1

i (α+1)p
,

which is a convergent series if p > 1/(α + 1).
To consider (B), let I1 = I2 = (−μ,μ) and

A1(x1, v) :=
∫ x1

−π

a(t1, v) dt1, A2(x1, x2) :=
∫ x2

−π

A1(x1, t2) dt2. (3.3.6)

Then
|Ak(x1, x2)| ≤ Cp2

K (2/p−k). (3.3.7)

Integrating by parts, we get that

∫

I1

a(t1, t2)K
α
n1(x1 − t1) dt1

= A1(μ, t2)K
α
n1(x1 − μ) −

∫

I1

A1(t1, t2)(K
α
n1)

′(x1 − t1) dt1. (3.3.8)

Recall that the one-dimensional kernel K α
n2 satisfies

∣∣K α
n2

∣∣ ≤ Cn2 (n2 ∈ N).
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For x1 ∈ [πi2−K ,π(i + 1)2−K ), the inequalities (3.3.2), (3.3.5) and (3.3.7) imply

∣∣∣∣
∫

I2

A1(μ, t2)K
α
n1(x1 − μ)K α

n2(x2 − t2) dt2

∣∣∣∣

≤ Cp2
2K/p−K2−K 1

nα
1 |x1 − μ|α+1

n2

≤ Cp2
2K/p+Kα−K n1−α

1

1

iα+1
.

Moreover, by (3.3.3), (3.3.5) and (3.3.7),

∣∣∣∣
∫

I2

∫

I1

A1(t1, t2)(K
α
n1)

′(x1 − t1)K
α
n2(x2 − t2) dt2 dt1

∣∣∣∣

≤ Cp2
2K/p−K

∫

I1

1

nα−1|x1 − t1|α+1
dt1

≤ Cp2
2K/p+Kα−K n1−α

1

1

iα+1
.

Consequently,

(B) ≤ Cp

2K−1∑

i=1

2−2K22K+Kαp−Kp2K (1−α)p 1

i (α+1)p
≤ Cp

2K−1∑

i=1

1

i (α+1)p
< ∞,

because p > 1/(α + 1). Hence, we have proved that in this case

∫

T\4I1

∫

4I2

∣∣σα
�a(x1, x2)

∣∣p dx1 dx2 ≤ Cp.

Next, we integrate over (T \ 4I1) × (T \ 4I2):
∫

T\4I1

∫

T\4I2

∣∣σα
�a(x1, x2)

∣∣p dx1 dx2

≤
∞∑

|i |=1

∞∑

| j |=1

∫ π(i+1)2−K

πi2−K

∫ π( j+1)2−K

π j2−K

sup
n1,n2≥2K−s

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

+
∞∑

|i |=1

∞∑

| j |=1

∫ π(i+1)2−K

πi2−K

∫ π( j+1)2−K

π j2−K

sup
n1,n2<2K

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

=: (C) + (D).

We may suppose again that i, j > 0. For x1 ∈ [πi2−K ,π(i + 1)2−K ) and x2 ∈
[π j2−K ,π( j + 1)2−K ), we have by (3.3.2) and (3.3.5) that
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∣∣σα
n1,n2a(x1, x2)

∣∣ ≤ Cp2
2K/p

∫

I1

1

nα
1 |x1 − t1|α+1

dt1

∫

I2

1

nα
2 |x2 − t2|α+1

dt2

≤ Cp
22K/p+Kα+Kα

nα
1 n

α
2 i

α+1 jα+1
.

This implies that

(C) ≤ Cp

2K−1∑

i=1

2K−1∑

j=1

2−2K 22K+Kαp+Kαp

2Kαp+Kαpi (α+1)p j (α+1)p

≤ Cp

∞∑

i=1

∞∑

j=1

1

i (α+1)p j (α+1)p
< ∞.

Using (3.3.8) and integrating by parts in both variables, we get that

∫

I1

∫

I2

a(t1, t2)K
α
n1(x1 − t1)K

α
n2(x2 − t2) dt1 dt2

= −
∫

I2

A2(μ, t2)K
α
n1(x1 − μ)(K α

n2)
′(x2 − t2) dt2

+
∫

I1

A2(t1,μ)(K α
n1)

′(x1 − t1)K
α
n2(x2 − μ) dt1

−
∫

I1

∫

I2

A2(t1, t2)(K
α
n1)

′(x1 − t1)(K
α
n2)

′(x2 − t2) dt1 dt2

=: D1
n1,n2(x1, x2) + D2

n1,n2(x1, x2) + D3
n1,n2(x1, x2). (3.3.9)

Note that A(μ,−μ) = A(μ,μ) = 0. Since |K α
n1 | ≤ Cn1 and (3.3.2) holds as well,

we obtain

|K α
n1(x1)| ≤ C

nη+α(η−1)
1

|x1|(α+1)(1−η)

for all 0 ≤ η ≤ 1. Moreover, the inequality

|(K α
n2)

′| ≤ Cn22 (n2 ∈ N)

and (3.3.3) imply

|(K α
n2)

′(x2)| ≤ C
n2ζ+(α−1)(ζ−1)
2

|x2|(α+1)(1−ζ)
= C

nζ+1+α(ζ−1)
2

|x2|(α+1)(1−ζ)
(3.3.10)

for all 0 ≤ ζ ≤ 1. We use inequalities (3.3.5) and (3.3.7) to obtain
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∣∣D1
n1,n2(x1, x2)

∣∣ ≤ Cp2
2K/p−2K nη+α(η−1)

1

|x1 − μ|(α+1)(1−η)

∫

I2

nζ+1+α(ζ−1)
2

|x2 − t2|(α+1)(1−ζ)
dt2

≤ Cp2
2K/p−3K nη+α(η−1)

1

(
2K

i

)(α+1)(1−η)

nζ+1+α(ζ−1)
2

(
2K

j

)(α+1)(1−ζ)

, (3.3.11)

whenever x1 ∈ [πi2−K ,π(i + 1)2−K ), x2 ∈ [π j2−K ,π( j + 1)2−K ) and 0 ≤ η, ζ ≤
1. If

η + α(η − 1) + ζ + 1 + α(ζ − 1) ≥ 0,

then

sup
n1,n2<2K

∣∣D1
n1,n2(x1, x2)

∣∣ ≤ Cp2
2K/p 1

i (α+1)(1−η)

1

j (α+1)(1−μ)

because (n1, n2) is in a cone. Choosing

η := ζ := max

{
2α − 1

2(α + 1)
, 0

}
,

we can see that
∫

T\4I1

∫

T\4I2
sup

n1,n2<2K

∣∣D1
n1,n2(x1, x2)

∣∣p dx1 dx2

≤ Cp

∞∑

i=1

∞∑

j=1

2−2K22K
1

i3p/2∧(α+1)p

1

j3p/2∧(α+1)p
,

which is a convergent series. The analogous estimate for
∣∣D2

n1,n2(x1, x2)
∣∣ can be

similarly proved.
For x1 ∈ [πi2−K ,π(i + 1)2−K ) and x2 ∈ [π j2−K ,π( j + 1)2−K ), we conclude

that

∣∣D3
n1,n2(x1, x2)

∣∣ ≤ Cp2
2K/p−2K

∫

I1

1

nα−1
1 |x1 − t1|α+1

dt1

∫

I2

1

nα−1
2 |x2 − t2|α+1

dt2

≤ Cp
22K/p−2K+Kα+Kαn1−α

1 n1−α
2

iα+1 jα+1
.

So
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∫

T\4I1

∫

T\4I2
sup

n1,n2<2K

∣∣D3
n1,n2(x1, x2)

∣∣p dx1 dx2

≤ Cp

2K−1∑

i=1

2K−1∑

j=1

2−2K 22K−2Kp+Kαp+Kαp2K (2−α−α)p

i (α+1)p j (α+1)p

≤ Cp

∞∑

i=1

∞∑

j=1

1

i (α+1)p

1

j (α+1)p
< ∞

by the hypothesis. The integration over 4I1 × (T \ 4I2) can be done as above. This
finishes the proof of (3.3.4) as well as the theorem. �

Remark 3.3.5 In the d-dimensional case, the constant d/(d + 1) appears if we
investigate the corresponding term to D1

n . More exactly, if we integrate the term

∫

Id

A(μ, · · · ,μ, td)K
α
n1(x1 − μ) · · · K α

nd−1
(xd−1 − μ)(K α

nd )
′(xd − td) dtd

over (T \ 4I1) × · · · × (T \ 4Id) similar to (3.3.11), then we get that p > d/(d + 1).

Corollary 3.3.6 If 0 < α ≤ 1 and 1 < p < ∞, then

∥∥σα
� f

∥∥
p

≤ Cp‖ f ‖p ( f ∈ L p(T
d)).

Let us turn to the Riesz means.

Theorem 3.3.7 If 0 < α < ∞, γ ∈ P and

max

{
d

d + 1
,

1

α ∧ 1 + 1

}
< p ≤ ∞,

then ∥∥σα,γ
� f

∥∥
p ≤ Cp‖ f ‖H�

p
( f ∈ H�

p (Td)).

Proof Let

θ(s) :=
{

(1 − |s|γ)α if |s| ≤ 1;
0, if |s| > 1

(s ∈ R).

By the one-dimensional version of Corollary 2.2.28,

∣∣θ̂(t)
∣∣ ,
∣∣(θ̂)′(t)

∣∣ ≤ C |t |−α−1 (t �= 0).

Taking into account (2.2.34), we conclude that

∣∣∣K α,γ
n j

(t)
∣∣∣ ≤ C

nα
j |t |α+1

(t �= 0) (3.3.12)
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and ∣∣∣(K α,γ
n j

)′(t)
∣∣∣ ≤ C

nα−1
j |t |α+1

(t �= 0). (3.3.13)

For 0 < α ≤ 1, the inequality can be proved as in Theorem 3.3.4. Now let α > 1.
Since ∣∣θ̂(t)

∣∣ ,
∣∣(θ̂)′(t)

∣∣ ≤ C

trivially and since |t |−α−1 ≤ |t |−2 if |t | ≥ 1, we conclude that

∣∣θ̂(t)
∣∣ ,
∣∣(θ̂)′(t)

∣∣ ≤ C |t |−2 (t �= 0).

Hence ∣∣∣K α,γ
n j

(t)
∣∣∣ ≤ C

n j |t |2 ,

∣∣∣(K α,γ
n j

)′(t)
∣∣∣ ≤ C

|t |2 (t �= 0)

and the theorem can be proved as above. �

Corollary 3.3.8 Suppose that 0 < α < ∞ and γ ∈ P. If 1 < p < ∞, then

∥∥σα,γ
� f

∥∥
p ≤ Cp‖ f ‖p ( f ∈ L p(T

d)).

As we have seen in Theorems 2.5.6 and 2.5.12, in the one-dimensional case, the
operators σα

� and σ
α,γ
� are not bounded from H�

p (T) to L p(T) if 0 < p ≤ 1/(α + 1)
and α = 1. Using interpolation, we obtain the weak type (1, 1) inequality.

Corollary 3.3.9 If 0 < α ≤ 1, then

sup
ρ>0

ρλ(σα
� f > ρ) ≤ C‖ f ‖1 ( f ∈ L1(T

d).

If 0 < α < ∞ and γ ∈ P, then

sup
ρ>0

ρλ(σ
α,γ
� f > ρ) ≤ C‖ f ‖1 ( f ∈ L1(T

d).

The density argument of Marcinkiewicz and Zygmund (Theorem 1.3.6) implies

Corollary 3.3.10 Suppose that f ∈ L1(T
d). If 0 < α ≤ 1, then

lim
n→∞, n∈Rd

τ

σα
n f = f a.e.

If 0 < α < ∞ and γ ∈ P, then

lim
n→∞, n∈Rd

τ

σα,γ
n f = f a.e.
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This result was proved by Marcinkiewicz and Zygmund [234] for the two-
dimensional Fejér means. The general version of Corollary 3.3.10 is due to the
author [328, 329].

3.4 Almost Everywhere Restricted Summability over a
Cone-Like Set

Now we generalize the results of Sect. 3.3 to so-called cone-like sets (see Fig. 3.3).
Suppose that for all j = 2, . . . , d, κ j : R+ → R+ are strictly increasing and contin-
uous functions such that

lim
j→∞ κ j = ∞ and lim

j→+0
κ j = 0.

Moreover, suppose that there exist c j,1, c j,2, ξ > 1 such that

c j,1κ j (x) ≤ κ j (ξx) ≤ c j,2κ j (x) (x > 0). (3.4.1)

Note that this is satisfied if κ j is a power function. Let us define the numbers ω j,1

and ω j,2 via the formula

c j,1 = ξω j,1 and c j,2 = ξω j,2 ( j = 2, . . . , d). (3.4.2)

For convenience, we extend the notations for j = 1 byκ1 := I, c1,1 = c1,2 = ξ. Here
I denotes the identity function I(x) = x . Letκ = (κ1, . . . ,κd) and τ = (τ1, . . . , τd)
with τ1 = 1 andfixed τ j ≥ 1 ( j = 2, . . . , d).Wedefine the cone-like set (with respect
to the first dimension) by

R
d
κ,τ := {x ∈ R

d
+ : τ−1

j κ j (n1) ≤ n j ≤ τ jκ j (n1), j = 2, . . . , d}.

Figure 3.3 shows a cone-like set for d = 2.
If κ j = I for all j = 2, . . . , d, then we get a cone investigated above. The con-

dition on κ j seems to be natural, because Gát [119] proved in the two-dimensional
case that to each cone-like set with respect to the first dimension there exists a larger
cone-like set with respect to the second dimension and conversely, if and only if
(3.4.1) holds.

Here we have to consider a new Hardy space. We modify slightly the definition
of H�

p (Td). Fix ψ ∈ S(R) such that
∫
R

ψ(x)dx �= 0. For f ∈ D(Td), let

ψκ
+( f )(x) := sup

t∈(0,∞)

∣∣ f ∗ (ψt ⊗ ψκ2(t) ⊗ · · · ⊗ ψκd (t))(x)
∣∣ .
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Fig. 3.3 Cone-like set for
d = 2

Definition 3.4.1 For 0 < p < ∞ the Hardy spaces Hκ
p (T

d) and weak Hardy spaces
Hκ

p,∞(Td) consist of all distributions f ∈ D(Td) for which

‖ f ‖Hκ
p

:= ∥∥ψκ
+( f )

∥∥
p < ∞ and ‖ f ‖Hκ

p,∞ := ∥∥ψκ
+( f )

∥∥
p,∞ < ∞.

We can prove all the theorems of Sect. 2.4 for Hκ
p (T

d). Among others,

‖ f ‖Hκ
p

∼ ∥∥Pκ
+( f )

∥∥
p (0 < p < ∞),

where Pt is the one-dimensional Poisson kernel and

Pκ
+( f )(x) := sup

t∈(0,∞)

∣∣ f ∗ (Pt ⊗ Pκ2(t) ⊗ · · · ⊗ Pκd (t))(x)
∣∣ .

If each κ j = I, we get back the Hardy spaces H�
p (Td). We have to modify slightly

the definition of atoms, too.

Definition 3.4.2 A bounded function a is an Hκ
p -atom if there exists a rectangle

I := I1 × · · · × Id ⊂ T
d with |I j | = κ j (|I1|−1)−1 such that

(i) supp a ⊂ I ,
(ii) ‖a‖∞ ≤ |I |−1/p,
(iii)

∫
I a(x)xk dx = 0 for all multi-indices k with |k| ≤ �d(1/p − 1)�.

The following two results can be proved as Theorems 2.4.18 and 2.4.19.

Theorem 3.4.3 A distribution f ∈ D(Td) is in Hκ
p (T

d) (0 < p ≤ 1) if and only if
there exist a sequence (ak, k ∈ N) of Hκ

p -atoms and a sequence (μk, k ∈ N) of real
numbers such that
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∞∑

k=0

|μk |p < ∞ and
∞∑

k=0

μkak = f in D(Td). (3.4.3)

Moreover,

‖ f ‖Hκ
p

∼ inf

( ∞∑

k=0

|μk |p
)1/p

,

where the infimum is taken over all decompositions of f of the form (3.4.3).

Theorem 3.4.4 For each n ∈ N
d , let Kn ∈ L1(T

d) and Vn f := f ∗ Kn. Suppose
that ∫

Td\r I
|V∗a|p0 dλ ≤ Cp0

for all Hκ
p0 -atoms a and for some fixed r ∈ N and 0 < p0 ≤ 1, where the rectangle

I is the support of the atom. If V∗ is bounded from L p1(T
d) to L p1(T

d) for some
1 < p1 ≤ ∞, then

‖V∗ f ‖p ≤ Cp‖ f ‖Hκ
p

( f ∈ Hκ
p (T

d))

for all p0 ≤ p ≤ p1.

Definition 3.4.5 For given κ, τ satisfying the above conditions, we define the
restricted maximal Cesàro and restricted maximal Riesz operator by

σα
κ f := sup

n∈Rd
κ,τ

|σα
n f |

and
σα,γ

κ f := sup
n∈Rd

κ,τ

|σα,γ
n f |,

respectively.

The next theorem holds obviously.

Theorem 3.4.6 If 0 < α ≤ 1, then

∥∥σα
κ f

∥∥∞ ≤ C ‖ f ‖∞ ( f ∈ L∞(Td)).

If 0 < α < ∞ and γ ∈ P, then

∥∥σα,γ
κ f

∥∥∞ ≤ C ‖ f ‖∞ ( f ∈ L∞(Td)).

Let H be an arbitrary subset of {1, . . . , d}, H �= ∅, H �= {1, . . . , d} and Hc :=
{1, . . . , d} \ H . Define
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p1 := sup
H⊂{1,...,d}

∑
j∈H ω j,2 + ∑

j∈Hc ω j,1∑
j∈H ω j,2 + 2

∑
j∈Hc ω j,1

, (3.4.4)

where the numbers ω j,1 and ω j,2 are defined in (3.4.2).

Theorem 3.4.7 If 0 < α ≤ 1 and

max

{
p1,

1

α + 1

}
< p ≤ ∞,

then ∥∥σα
κ f

∥∥
p ≤ Cp‖ f ‖Hκ

p
( f ∈ Hκ

p (T
d)).

Proof Since we will prove the result for d = 2, we simplify the notation. Instead
of c2,1, c2,2 and ω2,1,ω2,2, we will write c1, c2 and ω1,ω2, respectively. Let a be an
arbitrary Hκ

p -atom with support I = I1 × I2, |I2|−1 = κ(|I1|−1) and

2−K−1 < |I1|/π ≤ 2−K , κ(2K+1)−1 < |I2|/π ≤ κ(2K )−1

for some K ∈ N. We can suppose that the center of I is zero. In this case

[−π2−K−2,π2−K−2] ⊂ I1 ⊂ [−π2−K−1,π2−K−1]

and

[−πκ(2K+1)−1/2,πκ(2K+1)−1/2] ⊂ I2 ⊂ [−πκ(2K )−1/2,πκ(2K )−1/2].

To prove ∫

T2\4(I1×I2)

∣∣σα
κa(x1, x2)

∣∣p dx1 dx2 ≤ Cp,

first we integrate over (T \ 4I1) × 4I2:

∫

T\4I1

∫

4I2

|σα
κa(x1, x2)|p dx1 dx2

≤
∫

T\4I1

∫

4I2

sup
n1≥2K ,(n1,n2)∈Rd

κ,τ

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

+
∫

T\4I1

∫

4I2

sup
n1<2K ,(n1,n2)∈Rd

κ,τ

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

=: (A) + (B).

If n1 ≥ 2K and x ∈ [πi2−K ,π(i + 1)2−K ) (i ≥ 1), then by (3.3.5),
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∣∣σα
n1,n2a(x1, x2)

∣∣ =
∣∣∣∣
∫

I1

∫

I2

a(t1, t2)K
α
n1(x1 − t1)K

α
n2(x2 − t2) dt1 dt2

∣∣∣∣

≤ Cp2
K/pκ(2K )1/p

∫

I1

1

nα
1 |x1 − t1|α+1

dt1

≤ Cp2
K/p+Kακ(2K )1/p

1

nα
1 i

α+1

≤ Cp2
K/pκ(2K )1/p

1

iα+1
.

From this, it follows that

(A) ≤
2K−1∑

i=1

∫ π(i+1)2−K

πi2−K

∫

4I2

sup
n1≥2K

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

≤ Cp

2K−1∑

i=1

2−Kκ(2K )−12Kκ(2K )
1

i (α+1)p

= Cp

2K−1∑

i=1

1

i (α+1)p
,

which is a convergent series if p > 1/(1 + α).
We estimate (B) by

(B) ≤
∞∑

k=0

∫

T\4I1

∫

4I2

sup
2K

ξk+1 ≤n1<
2K

ξk
,(n1,n2)∈Rd

κ,τ

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

≤
∞∑

k=0

(∫

T\
[
− πξk

2K
,

πξk

2K

]

∫

4I2

+
∫
[
− πξk

2K
,

πξk

2K

]

∫

4I2

)

sup
2K

ξk+1 ≤n1<
2K

ξk
,(n1,n2)∈Rd

κ,τ

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

=: (B1) + (B2).

If (n1, n2) ∈ R
d
κ,τ and

2K

ξk+1 ≤ n < 2K

ξk
, thenn2 < τκ( 2

K

ξk
). The inequality |K α

n2 | ≤ Cn2
and (3.3.2) imply

∣∣σα
n1,n2a(x1, x2)

∣∣

≤ Cp2
K/pκ(2K )1/p−1n2

∫

I1

1

nα
1 |x1 − t1|α+1

dt1

≤ Cp2
K/p−Kκ(2K )1/p−1κ

(
2K

ξk

)(
2K

ξk+1

)−α

|x1 − π2−K−1|−α−1.
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Hence

(B1) ≤ Cp

∞∑

k=0

2K (1−p−αp)κ(2K )−pκ

(
2K

ξk

)p

ξkαp

∫

T\
[
− πξk

2K
,

πξk

2K

] |x1 − π2−K−1|−(α+1)p dx1

≤ Cp

∞∑

k=0

2K (1−p−αp)κ(2K )−pκ

(
2K

ξk

)p

ξkαp(ξk2−K )−(α+1)p+1.

Since κ(x) ≤ c−1
1 κ(ξx) by (3.4.1), we conclude

(B1) ≤ Cp

∞∑

k=0

κ(2K )−pκ(2K )pc−kp
1 ξk(1−p) = Cp

∞∑

k=0

ξk(1−p−ω1 p),

which is convergent if p > 1/(1 + ω1). Note that

1

1 + ω1
<

1 + ω1

1 + 2ω1
≤ p1 < p.

For (B2), we obtain similarly that

∣∣σα
n1,n2a(x1, x2)

∣∣ ≤ Cp2
K/p−Kκ(2K )1/p−1n1n2

≤ Cp2
K/p−Kκ(2K )1/p−1 2

K

ξk
κ

(
2K

ξk

)
(3.4.5)

and, moreover,

(B2) ≤ Cp

∞∑

k=0

ξk

2K
κ(2K )−12Kκ(2K )1−pξ−kpκ

(
2K

ξk

)p

≤ Cp

∞∑

k=0

ξk(1−p)c−kp
1 ,

which was just considered. Hence, we have proved that

∫

T\4I1

∫

4I2

|σα
κa(x1, x2)|p dx1 dx2 ≤ Cp (p1 < p ≤ 1).

The integral over 4I1 × (T \ 4I2) can be handled with a similar idea. Indeed, let
us denote the terms corresponding to (A), (B), (B1), (B2) by (A′), (B ′), (B ′

1), (B
′
2).

If we take the integrals in (A′) over
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4I1 × [
π jκ(2K )−1,π( j + 1)κ(2K )−1

]
( j = 1, . . . ,κ(2K )/2 − 1),

then we get in the same way that (A′) is bounded if p > 1/(1 + α). For (B ′
1), we

can see that

(B ′
1) =

∞∑

k=0

∫

4I1

∫

T\
[
−πκ

(
2K

ξk

)−1
,πκ

(
2K

ξk

)−1
]

sup
2K

ξk+1 ≤n1<
2K

ξk
,(n1,n2)∈Rd

κ,τ

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

≤ Cp

∞∑

k=0

2Kκ(2K )2−K2−Kp
∫

T\
[
−πκ

(
2K

ξk

)−1
,πκ

(
2K

ξk

)−1
]

sup
2K

ξk+1 ≤n1<
2K

ξk
,(n1,n2)∈Rd

κ,τ

(
n1

∫

I2

1

nα
2 |x2 − t2|α+1

dt2

)p

dx2.

Thus

(B ′
1) ≤ Cp

∞∑

k=0

ξ−kpκ(2K )1−pκ

(
2K

ξk+1

)−αp

∫

T\
[
−πκ

(
2K

ξk

)−1
,πκ

(
2K

ξk

)−1
] |x2 − πκ(2K )−1/2|−(α+1)p dx2

≤ Cp

∞∑

k=0

ξ−kpκ(2K )1−pκ

(
2K

ξk

)p−1

≤ Cp

∞∑

k=0

ξ−kpck(1−p)
2

= Cp

∞∑

k=0

ξk(ω2−ω2 p−p)

and this converges if p > ω2/(1 + ω2), which is less than

1 + ω2

2 + ω2
≤ p1.

Using (3.4.5), we establish that



142 3 Rectangular Summability of Higher Dimensional Fourier Series

(B ′
2) =

∞∑

k=0

∫

4I1

∫
[
−κ

(
2K

ξk

)−1
,κ
(

2K

ξk

)−1
]

sup
2K

ξk+1 ≤n1<
2K

ξk
,(n1,n2)∈Rd

κ,τ

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

≤ Cp

∞∑

k=0

2−Kκ

(
2K

ξk

)−1

2Kκ(2K )1−pξ−kpκ

(
2K

ξk

)p

≤ Cp

∞∑

k=0

ξ−kpck(1−p)
2 .

Hence ∫

4I1

∫

T\4I2

∣∣σα
κa(x1, x2)

∣∣p dx1 dx2 ≤ Cp (p1 < p ≤ 1).

Integrating over (T \ 4I1) × (T \ 4I2), we decompose the integral as

∫

T\4I1

∫

T\4I2

∣∣σα
κa(x1, x2)

∣∣p dx1 dx2

≤
∫

T\4I1

∫

T\4I2
sup

n1≥2K ,(n1,n2)∈Rd
κ,τ

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

+
∫

T\4I1

∫

T\4I2
sup

n2<2K ,(n1,n2)∈Rd
κ,τ

∣∣σα
n1,n2a(x1, x2)

∣∣p dx1 dx2

=: (C) + (D).

Notice that

(C) ≤
2K−1∑

i=1

κ(2K )/2−1∑

j=1

∫ π(i+1)2−K

πi2−K

∫ π( j+1)κ(2K )−1

π jκ(2K )−1
sup
n1≥2K

|σα
n1,n2a(x1, x2)|p dx1 dx2.

For x1 ∈ [πi2−K ,π(i + 1)2−K ) and x2 ∈ [π jκ(2K )−1,π( j + 1)κ(2K )−1), we have
by (3.3.2) and (3.3.5) that

∣∣σα
n1,n2a(x1, x2)

∣∣ ≤ Cp2
K/pκ(2K )1/p

∫

I1

1

nα
1 |x1 − t1|α+1

dt1
∫

I2

1

nα
2 |x2 − t2|α+1

dt2

≤ Cp
2K/p+Kακ(2K )1/p+α

nα
1 n

α
2 i

α+1 jα+1

≤ Cp
2K/pκ(2K )1/p

iα+1 jα+1
. (3.4.6)
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Then

(C) ≤ Cp

2K−1∑

i=1

κ(2K )/2−1∑

j=1

1

i (α+1)p j (α+1)p
< ∞

if p > 1/(1 + α).
To consider (D) let us define A1(x1, x2), A2(x1, x2), D1

n1,n2(x1, x2), D
2
n1,n2(x1, x2)

and D3
n1,n2(x1, x2) as in (3.3.6) and (3.3.9), respectively, and let I1 = [−μ,μ], I2 =

[−ν, ν]. Then

|A1(x1, u)| ≤ 2K/p−Kκ(2K )1/p, |A2(x1, x2)| ≤ 2K/p−Kκ(2K )1/p−1. (3.4.7)

Obviously,

∫

T\4I1

∫

T\4I2
sup

n1<2K ,(n1,n2)∈Rd
κ,τ

|D1
n1,n2(x1, x2)|p dx1 dx2

≤
∞∑

k=0

∫

T\4I1

∫

T\4I2
sup

2K

ξk+1 ≤n1<
2K

ξk
,(n1,n2)∈Rd

κ,τ

|D1
n1,n2(x1, x2)|p dx1 dx2

≤
∞∑

k=0

κ(2K )/2−1∑

j=1

∫

T\
[
− πξk

2K
,

πξk

2K

]

∫ π( j+1)κ(2K )−1

π jκ(2K )−1

sup
n1<2K ,(n1,n2)∈Rd

κ,τ

|D1
n1,n2(x1, x2)|p dx1 dx2

≤
∞∑

k=0

κ(2K )/2−1∑

j=1

∫
[
− πξk

2K
,

πξk

2K

]

∫ π( j+1)κ(2K )−1

π jκ(2K )−1

sup
n1<2K ,(n1,n2)∈Rd

κ,τ

|D1
n1,n2(x1, x2)|p dx1 dx2

=: (D1) + (D2).

It follows from (3.3.5), (3.3.10) and (3.4.7) that

|D1
n1,n2(x1, x2)|

≤ Cp2
K/p−Kκ(2K )1/p−2 1

nα
1 |x1 − μ|α+1

nζ+1+α(ζ−1)
2

|x2 − ν|(α+1)(1−ζ)

≤ Cp2
K/p−Kκ(2K )1/p−2+(α+1)(1−ζ)

(
2K

ξk+1

)−α

|x1 − μ|α+1

κ
(
2K

ξk

)ζ+1+α(ζ−1)

j (α+1)(1−ζ)
,

where 0 ≤ ζ ≤ 1. This leads to
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(D1) ≤ Cp

∞∑

k=0

κ(2K )/2−1∑

j=1

∫

T\
[
− πξk

2K
,

πξk

2K

] 2K (1−p−αp)κ(2K )p(−2+(α+1)(1−ζ))ξkαp

|x1 − μ|−(α+1)p
κ
(
2K

ξk

)p(2+(α+1)(ζ−1))

j p(α+1)(1−ζ)
dx1

≤ Cp

∞∑

k=0

κ(2K )/2−1∑

j=1

2K (1−p−αp)ξkαp(ξk2−K )−(α+1)p+1 c
−kp(2+(α+1)(ζ−1))
1

j p(α+1)(1−ζ)

≤ Cp

∞∑

k=0

κ(2K )/2−1∑

j=1

ξk(1−p−ω1 p(2+(α+1)(ζ−1)))

j p(α+1)(1−ζ)
,

which is convergent if

p >
1

1 + ω1(2 + (α + 1)(ζ − 1))
and p >

1

(α + 1)(1 − ζ)
.

After some computation, we can see that the optimal bound is reached if

ζ = α − ω1 + αω1

1 + α + ω1 + αω1
,

which means that

p >
1 + ω1

1 + 2ω1
.

Considering (D2), we estimate as follows:

|D1
n1,n2(x1, x2)| ≤ Cp2

K/p−Kκ(2K )1/p−2n1
nζ+1+α(ζ−1)
2

|x2 − ν|(α+1)(1−ζ)

≤ Cp2
K/pκ(2K )1/p−2+(α+1)(1−ζ)ξ−k

κ
(
2K

ξk

)ζ+1+α(ζ−1)

j (α+1)(1−ζ)

and

(D2) ≤ Cp

∞∑

k=0

κ(2K )/2−1∑

j=1

∫
[
− πξk

2K
,

πξk

2K

] 2Kκ(2K )p(−2+(α+1)(1−ζ))ξ−kp
κ
(
2K

ξk

)p(2+(α+1)(ζ−1))

j p(α+1)(1−ζ)
dx1
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≤ Cp

∞∑

k=0

κ(2K )/2−1∑

j=1

ξk(1−p−ω1 p(2+(α+1)(ζ−1)))

j p(α+1)(1−ζ)

≤ Cp

as above.
The term D2

n1,n2 can be handled similarly. We obtain

∫

T\4I1

∫

T\4I2
sup

n1<2K ,(n1,n2)∈Rd
κ,τ

|D2
n1,n2(x1, x2)|p dx1 dx2 ≤ Cp

if

p >
1 + ω2

2 + ω2
.

Using (3.3.3), we estimate D3
n1,n2 in the same way as (C) in (3.4.6). Now the

exponents of n1 and n2 are non-negative and so they can be estimated by 2K and
κ(2K ) as in (3.4.6). This proves that

∫

T\4I1

∫

T\4I2

∣∣σα
κa(x1, x2)

∣∣p dx1 dx2 ≤ Cp

which completes the proof. �

Remark 3.4.8 In the d-dimensional case, the constant p1 appears if we investigate
the terms corresponding to D1

n1,n2 and D2
n1,n2 . Indeed, let

∏d
j=1 I j be centered at 0

and the support of the atom a, A be the integral of a, I j =: [−μ j ,μ j ] and

t j :=
{

μ j , j ∈ H ;
t j , j ∈ Hc,

H ⊂ {1, . . . , d}, H �= ∅, H �= {1, . . . , d}. If we integrate the term
∫
∏

j∈Hc I j

A(t1, . . . , td)
∏

j∈H
K α

n j
(x j − μ j )

∏

i∈Hc

(K α
ni )

′(xi − ti ) dt

over
∏d

j=1(T \ 4I j ), then we get that

p >

∑
j∈H ω j,2 + ∑

j∈Hc ω j,1∑
j∈H ω j,2 + 2

∑
j∈Hc ω j,1

.

Moreover, considering the integral
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∫
∏

j∈H (T\4I j )

∫
∏

j∈Hc 4I j

|σα
κa(x)|p dx,

we obtain

p >

∑
j∈H ω j,2∑

j∈H ω j,2 + ∑
j∈Hc ω j,1

.

However, this bound is less than p1.

Remark 3.4.9 If ω j,1 = ω j,2 = 1 for all j = 1, . . . , d, then we obtain in Theorem
3.4.7 the bound

max

{
d

d + 1
,

1

α + 1

}
.

In particular, this holds if κ j = I for all j = 1, . . . , d, i.e., if we consider a cone.
This bound was obtained for cones in Theorem 3.3.4.

Corollary 3.4.10 If 0 < α ≤ 1 and 1 < p < ∞, then

∥∥σα
κ f

∥∥
p ≤ Cp‖ f ‖p ( f ∈ L p(T

d)).

We obtain similar results for the Riesz means (cf. Theorem 3.3.7). The details are
left to the reader.

Theorem 3.4.11 If 0 < α < ∞, γ ∈ P and

max

{
p1,

1

α ∧ 1 + 1

}
< p ≤ ∞,

then ∥∥σα,γ
κ f

∥∥
p ≤ Cp‖ f ‖Hκ

p
( f ∈ Hκ

p (T
d)).

Corollary 3.4.12 Suppose that 0 < α < ∞ and γ ∈ P. If 1 < p < ∞, then

∥∥σα,γ
κ f

∥∥
p ≤ Cp‖ f ‖p ( f ∈ L p(T

d)).

Corollary 3.4.13 If 0 < α ≤ 1, then

sup
ρ>0

ρλ(σα
κ f > ρ) ≤ C‖ f ‖1 ( f ∈ L1(T

d).

If 0 < α < ∞ and γ ∈ P, then

sup
ρ>0

ρλ(σα,γ
κ f > ρ) ≤ C‖ f ‖1 ( f ∈ L1(T

d).
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Corollary 3.4.14 Suppose that f ∈ L1(T
d). If 0 < α ≤ 1, then

lim
n→∞, n∈Rd

κ,τ

σα
n f = f a.e.

If 0 < α < ∞ and γ ∈ P, then

lim
n→∞, n∈Rd

κ,τ

σα,γ
n f = f a.e.

In the two-dimensional case, Corollaries 3.4.13 and 3.4.14 were proved by Gát
[119] for Fejér summability. In this case, he verified also that if the cone-like set
R

d
κ,τ is defined by τ j (n1) instead of τ j and if τ j (n1) is not bounded, then Corollary

3.4.14 does not hold and the largest space for the elements of which we have almost
everywhere convergence is L log L . This means that under these conditions Theorem
3.4.7 cannot be true for any p < 1.

3.5 Hp(T
d) Hardy spaces

For the investigation of the unrestricted almost everywhere convergence of the rect-
angular summability means, we need a new type of Hardy spaces, the so-called
product Hardy spaces.

Fix ψ ∈ S(R) such that
∫
R

ψ(x)dx �= 0. We define the product radial maximal
function, the product non-tangential maximal function and the hybrid maximal func-
tion of f ∈ D(Td) by

ψ∗
+( f )(x) := sup

ti∈(0,∞),i=1,...,d

∣∣( f ∗ (ψt1 ⊗ · · · ⊗ ψtd ))(x)
∣∣ ,

ψ∗
�( f )(x) := sup

ti∈(0,∞),|xi−yi |<ti ,i=1,...,d

∣∣( f ∗ (ψt1 ⊗ · · · ⊗ ψtd ))(y)
∣∣

and

ψ∗
�i
( f )(x)

:= sup
tk∈(0,∞),k=1,...,d;k �=i

∣∣( f ∗ (ψt1 ⊗ · · · ⊗ ψti−1 ⊗ ψti+1 ⊗ · · · ⊗ ψtd ))(x)
∣∣ ,

respectively, (i = 1, . . . , d).

Definition 3.5.1 For 0 < p < ∞, the product Hardy spaces Hp(T
d), product weak

Hardy spaces Hp,∞(Td) and the hybrid Hardy spaces Hi
p(T

d) (i = 1, . . . , d) consist
of all distributions f ∈ D(Td) for which

‖ f ‖Hp
:= ∥∥ψ∗

+( f )
∥∥
p

< ∞,
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‖ f ‖Hp,∞ := ∥∥ψ∗
+( f )

∥∥
p,∞ < ∞

and
‖ f ‖Hi

p
:= ∥∥ψ∗

�i
( f )

∥∥
p

< ∞.

The Hardy spaces are independent of ψi , more exactly, different functions ψi give
the same space with equivalent norms. For f ∈ D(Td), let

P∗
+( f )(x) := sup

ti∈(0,∞),i=1,...,d

∣∣( f ∗ (Pt1 ⊗ · · · ⊗ Ptd ))(x)
∣∣ ,

P∗
�( f )(x) := sup

ti∈(0,∞),|xi−yi |<ti ,i=1,...,d

∣∣( f ∗ (Pt1 ⊗ · · · ⊗ Ptd ))(x)
∣∣

and

P∗
�i
( f )(x)

:= sup
tk∈(0,∞),k=1,...,d;k �=i

∣∣( f ∗ (Pt1 ⊗ · · · ⊗ Pti−1 ⊗ Pti+1 ⊗ · · · ⊗ Ptd ))(x)
∣∣ ,

respectively (i = 1, . . . , d), where the Poisson kernel Pti was defined before Theo-
rem 2.4.14. The next theorems were proved in Chang and Fefferman [54, 55], Gundy
and Stein [155] or Weisz [346], so we omit the proofs.

Theorem 3.5.2 Let 0 < p < ∞. Fixψ ∈ S(R) such that
∫
R

ψ(x)dx �= 0. Then f ∈
Hp(T

d) if and only ifψ∗
�( f ) ∈ L p(T

d) or P∗+( f ) ∈ L p(T
d) or P∗

�( f ) ∈ L p(T
d). We

have the following equivalences of norms:

‖ f ‖H�
p

∼ ‖ψ∗
�( f )‖p ∼ ‖P∗

+( f )‖p ∼ ‖P∗
�( f )‖p.

The same holds for the weak Hardy spaces:

‖ f ‖H�
p,∞ ∼ ‖ψ∗

�( f )‖p,∞ ∼ ‖P∗
+( f )‖p,∞ ∼ ‖P∗

�( f )‖p,∞

and for the hybrid Hardy spaces:

‖ f ‖Hi
p
∼ ‖P∗

�i
( f )‖p (i = 1, . . . , d).

As we can see from the next theorem, in the theory of product Hardy spaces, the
hybrid Hardy spaces Hi

p(T
d) will play the role of the L1(T

d) spaces in some sense.

Theorem 3.5.3 If1 < p < ∞and i = 1, . . . , d, then Hp(T
d) ∼ Hi

p(T
d) ∼ L p(T

d)

and
‖ f ‖p ≤ ‖ f ‖Hi

p
≤ ‖ f ‖Hp

≤ Cp ‖ f ‖p .

For p = 1, H1(T
d) ⊂ Hi

1(T
d) ⊂ H�

1,∞(Td) ∩ L1(T
d) and
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‖ f ‖Hi
1
≤ ‖ f ‖H1

( f ∈ H1(T
d)),

‖ f ‖H1,∞ ≤ C‖ f ‖Hi
1

( f ∈ Hi
1(T

d)).

Definition 3.5.4 The set L(log L)d−1(Td) contains all measurable functions for
which ∥∥| f |(log+ | f |)d−1

∥∥
1 < ∞.

Theorem 3.5.5 Hi
1(T

d) ⊃ L(log L)d−1(Td) for all i = 1, . . . , d and

‖ f ‖Hi
1
≤ C + C

∥∥| f |(log+ | f |)d−1
∥∥
1 ( f ∈ L(log L)d−1(Td)).

A straightforward generalization of the atoms would be the following:

(i) supp a ⊂ I , I ⊂ T
d is a rectangle,

(ii) ‖a‖∞ ≤ |I |−1/p,
(iii)

∫
T
a(x)xki dxi = 0, for all i = 1, . . . , d.

However, the space Hp(T
d) do not have atomic decomposition with respect to these

atoms (see Weisz [327]). The atomic decomposition for Hp(T
d) is much more com-

plicated. One reason of this is that the support of an atom is not a rectangle but
an open set. Moreover, here we have to choose the atoms from L2(T

d) instead of
L∞(Td).

First of all, we introduce some notations. By a dyadic interval we mean one of
the form [k2−n, (k + 1)2−n) for some k, n ∈ Z. A dyadic rectangle is the Cartesian
product of d dyadic intervals. Suppose that F ⊂ T

d is an open set. LetM1(F) denote
those dyadic rectangles R = I × S ⊂ F , I ⊂ T is a dyadic interval, S ⊂ T

d−1 is a
dyadic rectangle that are maximal in the first direction. In other words, if I ′ × S ⊃ R
is a dyadic subrectangle of F (where I ′ ⊂ T is a dyadic interval) then I = I ′. Define
Mi (F) similarly. Denote by M(F) the maximal dyadic subrectangles of F in the
above sense.

Recall that if I ⊂ T is an interval, then r I is the interval with the same center as
I and with length r |I | (r ∈ N). For a rectangle R = I1 × . . . × Id ⊂ T

d let r R :=
r I1 × . . . × r Id . Instead of 2r R we write Rr (r ∈ N).

Definition 3.5.6 A function a ∈ L2(R
d) is an Hp-atom (0 < p ≤ 1) if

(i) supp a ⊂ F for some open set F ⊂ T
d with finite measure,

(ii) ‖a‖2 ≤ |F |1/2−1/p,
(iii) a can be decomposed further into the sum of “elementary particles” aR ∈

L2(R
d),

a =
∑

R∈M(F)

aR,

satisfying

(a) supp aR ⊂ 5R,
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(b) for all R ∈ M(F), i = 1, . . . , d and almost every fixed
x1, . . . , xi−1, xi+1, . . . , xd ,

∫

T

aR(x)xki dxi = 0 (k = 0, . . . , M(p) ≥ �2/p − 3/2�),

(c) for every disjoint partition Pl (l ∈ P) of M(F),

⎛

⎝
∑

l∈P

∥∥∥∥∥∥

∑

R∈Pl

aR

∥∥∥∥∥∥

2

2

⎞

⎠

1/2

≤ |F |1/2−1/p.

Theorem 3.5.7 A distribution f ∈ D(Td) is in Hp(T
d) (0 < p ≤ 1) if and only if

there exist a sequence (ak, k ∈ N) of Hp-atoms and a sequence (μk, k ∈ N) of real
numbers such that

∞∑

k=0

|μk |p < ∞ and
∞∑

k=0

μkak = f in D(Td).

Moreover,

‖ f ‖Hp
∼ inf

( ∞∑

k=0

|μk |p
)1/p

,

where the infimum is taken over all decompositions of f .

The result corresponding to Theorem 2.4.19 for the Hp(T
d) space is much more

complicated. Since the definition of the Hp-atom is very complex, to obtain a usable
condition about the boundedness of the operators, we have to introduce simpler atoms
(see also the definition right after Theorem 3.5.5).

Definition 3.5.8 Afunctiona ∈ L2(T
d) is a simple Hp-atomor a rectangle Hp-atom

if

(i) supp a ⊂ R for a rectangle R ⊂ T
d ,

(ii) ‖a‖2 ≤ |R|1/2−1/p,
(iii)

∫
T
a(x)xki dxi = 0 for i = 1, . . . , d, k = 0, . . . , M(p) ≥ �2/p − 3/2� and for

almost every fixed x j , j = 1, . . . , d, j �= i .

Note that Hp(T
d) cannot be decomposed into rectangle p-atoms, a counterex-

ample can be found in Weisz [327]. However, the following result says that for
an operator V to be bounded from Hp(T

2) to L p(T
2) (0 < p ≤ 1), it is enough

to check V on simple Hp-atoms and the boundedness of V on L2(T
2). We omit

the proof because it can be found for all dimensions in Weisz [332, 346] (see also
Fefferman [98]).
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Theorem 3.5.9 Let d = 2, 0 < p0 ≤ 1, Kn ∈ L1(T
2) and Vn f := f ∗ Kn (n ∈

N
2). Suppose that there exists η > 0 such that for every simple Hp0 -atom a and

for every r ≥ 1 ∫

T2\Rr

|V∗a|p0 dλ ≤ Cp2
−ηr ,

where R is the support of a. If V∗ is bounded from L2(T
2) to L2(T

2), then

‖V∗ f ‖p ≤ Cp0‖ f ‖Hp ( f ∈ Hp(T
2))

for all p0 ≤ p ≤ 2.

Note that Theorem 2.4.16 holds also for Hp(T
d) spaces with a very similar proof.

Theorem 3.5.10 If K ∈ L1(T
d), 0 < p < ∞ and

lim
k→∞ fk = f in the Hp(T

d)-norm,

then
lim
k→∞ fk ∗ K = f ∗ K in D(Td).

Corollary 3.5.11 If p0 < 1 in Theorem 3.5.9, then for all f ∈ Hi
1(T

2) and i = 1, 2,

sup
ρ>0

ρ λ(|V∗ f | > ρ) ≤ C‖ f ‖Hi
1
.

Proof Using the preceding theorem and interpolation, we conclude that the operator

V∗ is bounded from Hp,∞(T2) to L p,∞(T2)

when p0 < p < 2. Thus, it holds also for p = 1. By Theorem 3.5.3,

sup
ρ>0

ρ λ(|V∗ f | > ρ) = ‖V∗ f ‖1,∞ ≤ C‖ f ‖H1,∞ ≤ C‖ f ‖Hi
1

for all f ∈ Hi
1(T

2), i = 1, 2. �

Note that for higher dimensions, we have tomodify slightly Theorem3.5.9, Corol-
lary 3.5.11 as well as the definition of simple Hp-atoms (see Weisz [332, 346]).

3.6 Almost Everywhere Unrestricted Summability

For the almost everywhere unrestricted summability, we introduce the next maximal
operators.
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Definition 3.6.1 We define the unrestricted maximal Cesàro and unrestricted max-
imal Riesz operator by

σα
∗ f := sup

n∈Nd

|σα
n f |

and
σα,γ

∗ f := sup
n∈Nd

|σα,γ
n f |,

respectively.

For α = γ = 1, the operator is called unrestricted maximal Fejér operator and
denoted by σ∗ f .

We will first prove that the operator σα∗ is bounded from L p(T
d) to L p(T

d) (1 <

p ≤ ∞) and then that it is bounded from Hp(T
d) to L p(T

d) (1/(α + 1) < p ≤ 1).
To this end, we introduce the next one-dimensional operators.

Definition 3.6.2 Let
τα
n f (x) := f ∗ ∣∣K α

n

∣∣ (x),

τα,γ
n f (x) := f ∗ ∣∣K α,γ

n

∣∣ (x)

and
τα
∗ f := sup

n∈N

∣∣τα
n f

∣∣ ,

τα,γ
∗ f := sup

n∈N

∣∣τα,γ
n f

∣∣ .

Obviously,

|σα
n f | ≤ τα

n | f | (n ∈ N) and σα
∗ f ≤ τα

∗ | f |.

The same holds for the operators σ
α,γ∗ and τ

α,γ∗ . The next result can be proved similar
to Theorem 3.3.4.

Theorem 3.6.3 If 0 < α ≤ 1 and 1/(α + 1) < p ≤ ∞, then

∥∥τα
∗ f

∥∥
p ≤ Cp‖ f ‖Hp ( f ∈ Hp(T)).

Proof It is easy to see that

∥∥τα
∗ f

∥∥∞ ≤ C‖ f ‖∞ ( f ∈ L∞(T)).

Let a be an arbitrary Hp-atom with support I ⊂ T and

[−π2−K−2,π2−K−2] ⊂ I ⊂ [−π2−K−1,π2−K−1].



3.6 Almost Everywhere Unrestricted Summability 153

Then

∫

T\4I1
|τα

∗ a(x)|p dx ≤
2K−1∑

|i |=1

∫ π(i+1)2−K

πi2−K

sup
n≥2K

|τα
n a(x)|p dx

+
2K−1∑

|i |=1

∫ π(i+1)2−K

πi2−K

sup
n<2K

|τα
n a(x)|p dx

=: (A) + (B).

Using (3.3.2) and (3.3.5), we can see that

∣∣τα
n a(x)

∣∣ =
∣∣∣∣
∫

I
a(t)

∣∣K α
n (x − t)

∣∣ dt
∣∣∣∣

≤ Cp2
K/p

∫

I

1

nα|x − t |α+1
dt

≤ Cp2
K/p 1

iα+1

and

(A) ≤ Cp

2K−1∑

i=1

2−K2K
1

i (α+1)p
≤ Cp

as in Theorem 3.3.4.
To estimate (B), observe that by (iii) of the definition of the atom,

τα
n a(x) =

∫

I
a(t)

∣∣K α
n (x − t)

∣∣ dt =
∫

I
a(t)

( ∣∣K α
n (x − t)

∣∣ − ∣∣K α
n (x)

∣∣
)
dt.

Thus,
∣∣τα

n a(x)
∣∣ ≤

∫

I
|a(t)|

∣∣∣K α
n (x − t) − K α

n (x)
∣∣∣ dt.

Using Lagrange’s mean value theorem and (3.3.3), we conclude

∣∣∣K α
n (x − t) − K α

n (x)
∣∣∣ = ∣∣(K α

n )′(x − ξ)
∣∣ |t |

≤ Cp2−K

nα−1|x − ξ|α+1
≤ Cp2K

iα+1
,

where ξ ∈ I and x ∈ [πi2−K ,π(i + 1)2−K ). Consequently,

∣∣τα
n a(x)

∣∣ ≤ Cp2
K/p−K 2K

iα+1
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and

(B) ≤ Cp

2K−1∑

i=1

2−K2K
1

i (α+1)p
≤ Cp,

which proves the theorem. �

We can verify in the same way

Theorem 3.6.4 If 0 < α < ∞, γ ∈ P and 1/(α ∧ 1 + 1) < p ≤ ∞, then

∥∥τα,γ
∗ f

∥∥
p ≤ Cp‖ f ‖Hp ( f ∈ Hp(T)).

The next result can be obtained by interpolation.

Corollary 3.6.5 Suppose that 1 < p ≤ ∞. If 0 < α ≤ 1, then

sup
ρ>0

ρ λ(τα
∗ f > ρ) ≤ C‖ f ‖1 ( f ∈ L1(T))

and ∥∥τα
∗ f

∥∥
p ≤ Cp‖ f ‖p ( f ∈ L p(T)).

If 0 < α < ∞ and γ ∈ P, then

sup
ρ>0

ρ λ(τα,γ
∗ f > ρ) ≤ C‖ f ‖1 ( f ∈ L1(T))

and ∥∥τα,γ
∗ f

∥∥
p ≤ Cp‖ f ‖p ( f ∈ L p(T)).

Now, we turn to the higher dimensional case and verify the L p(T
d) boundedness

of σα∗ and σ
α,γ∗ .

Theorem 3.6.6 Suppose that 1 < p ≤ ∞. If 0 < α < ∞, then

∥∥σα
∗ f

∥∥
p ≤ Cp‖ f ‖p ( f ∈ L p(T

d)).

If 0 < α < ∞, γ ∈ P and 1 < p ≤ ∞, then

∥∥σα,γ
∗ f

∥∥
p ≤ Cp‖ f ‖p ( f ∈ L p(T

d)).

Proof For 0 < α ≤ 1, let us apply Corollary 3.6.5 to obtain
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∫

T

∫

T

sup
n1,n2∈N

∣∣∣∣
∫

T

∫

T

f (t1, t2)K
α
n1(x1 − t1)K

α
n2(x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤
∫

T

∫

T

sup
n2∈N(∫

T

(
sup
n1∈N

∣∣∣∣
∫

T

f (t1, t2)K
α
n1(x1 − t1) dt1

∣∣∣∣

)
∣∣K α

n2(x2 − t2)
∣∣ dt2

)p

dx2 dx1

≤ Cp

∫

T

∫

T

sup
n1∈N

∣∣∣∣
∫

T

f (t1, x2)K
α
n1(x1 − t1) dt1

∣∣∣∣
p

dx1 dx2

≤ Cp

∫

T

∫

T

| f (x1, x2)|p dx1 dx2.

The inequality for 1 < α < ∞ follows from Lemma 3.1.9. The result for σ
α,γ∗ can

be proved in the same way. �

The next result is due to the author [331, 332].

Theorem 3.6.7 If 0 < α < ∞ and 1/(α + 1) < p ≤ ∞, then

∥∥σα
∗ f

∥∥
p ≤ Cp‖ f ‖Hp ( f ∈ Hp(T

d)).

Proof By Theorem 3.1.8,

∣∣∣∣
(
K α

n j

)(s)
(t)

∣∣∣∣ ≤ C

nα−s
j |t |α+1

(3.6.1)

for 0 < α ≤ s + 1,n j ∈ P and t ∈ T, t �= 0.Choose a simpleHp-atomawith support
R = I1 × I2, where I1 and I2 are intervals with

2−Ki−1 < |Ii |/π ≤ 2−Ki (Ki ∈ N, i = 1, 2)

and
[−π2−Ki−2,π2−Ki−2] ⊂ Ii ⊂ [−π2−Ki−1,π2−Ki−1].

We assume that r ≥ 2 is an arbitrary integer. Theorem 3.6.6 implies that the operator
σα∗ is bounded from L2(T

d) to L2(T
d). By Theorem 3.5.9, we have to integrate∣∣σα∗ a

∣∣p over

T
2 \ Rr = (

T \ I r1
) × I2

⋃
(T \ I r1 ) × (T \ I2)

⋃
I1 × (T \ I r2 )

⋃
(T \ I1) × (T \ I r2 ).

First, we integrate over (T \ I r1 ) × I2:
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∫

T\4I1

∫

I2

∣∣σα
∗ a(x1, x2)

∣∣p dx1 dx2

≤
∫

T\4I1

∫

I2

sup
n1≥2K1 ,n2∈N

∣∣σα
n a(x1, x2)

∣∣p dx1 dx2

+
∫

T\4I1

∫

I2

sup
n1<2K1 ,n2∈N

∣∣σα
n a(x1, x2)

∣∣p dx1 dx2

≤
2K1−1∑

|i1|=2r−2

∫ π(i1+1)2−K1

πi12−K1

∫

I2

sup
n1≥2K1 ,n2∈N

∣∣σα
n a(x1, x2)

∣∣p dx1 dx2

+
2K1−1∑

|i1|=2r−2

∫ π(i1+1)2−K1

πi12−K1

∫

I2

sup
n1<2K1 ,n2∈N

∣∣σα
n a(x1, x2)

∣∣p dx1 dx2

=: (A) + (B).

Here we may suppose that i1 > 0. For k, l ∈ N let A0,0(x) := a(x),

A1,0(x1, x2) :=
∫ x1

−π

a(t, x2) dt A0,1(x1, x2) :=
∫ x2

−π

a(x1, u) du

and

Ak,l(x1, x2) :=
∫ x1

−π

Ak−1,l(t, x2) dt =
∫ x2

−π

Ak,l−1(x1, u) du.

By (iii) of the definition of the simple Hp-atom, we can show that supp Ak,l ⊂ R
and Ak,l(x1, x2) is zero if x1 is at the boundary of I1 or x2 is at the boundary of I2 for
k, l = 0, . . . , M(p) + 1 (i = 1, 2), where M(p) ≥ �2/p − 3/2�. Moreover, using
(ii), we can compute that

∥∥Ak,l

∥∥
2 ≤ |I1|k+1/2−1/p|I2|l+1/2−1/p (k, l = 0, . . . , M(p) + 1). (3.6.2)

We may suppose that M(p) ≥ α + 1 and choose N ∈ N such that N < α ≤ N +
1. For x1 ∈ [πi12−K1 ,π(i1 + 1)2−K1), t1 ∈ [−π2−K1−1,π2−K1−1), inequality (3.6.1)
implies

∣∣(K α
n1)

(N )(x1 − t1)
∣∣ ≤ CnN−α

1 2K1(α+1)

iα+1
1

(3.6.3)

and
∣∣(K α

n1)
(N+1)(x1 − t1)

∣∣ ≤ CnN+1−α
1 2K1(α+1)

iα+1
1

. (3.6.4)

Integrating by parts, we can see that
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∣∣σα
n a(x)

∣∣ =
∣∣∣∣
∫

I1

∫

I2

AN ,0(t1, t2)(K
α
n1)

(N )(x1 − t1)K
α
n2(x2 − t2) dt1 dt2

∣∣∣∣

≤ CnN−α
1 2K1(α+1)

iα+1
1

∫

I1

∣∣∣∣
∫

I2

AN ,0(t1, t2)K
α
n2(x2 − t2) dt2

∣∣∣∣ dt1

whenever x1 ∈ [πi12−K1 ,π(i1 + 1)2−K1). Hence, by Hölder’s inequality and (3.6.3),

(A) ≤ Cp

2K1−1∑

i1=2r−2

2−K1
2K1(N+1)p

i (α+1)p
1

∫

I2

(∫

I1

sup
n2∈N

∣∣∣∣
∫

I2

AN ,0(t1, t2)K
α
n2(x2 − t2) dt2

∣∣∣∣ dt1

)p

dx2

≤ Cp|I2|1−p
2K1−1∑

i1=2r−2

2K1((N+1)p−1)

i (α+1)p
1

(∫

I2

∫

I1

sup
n2∈N

∣∣∣∣
∫

I2

AN ,0(t1, t2)K
α
n2(x2 − t2) dt2

∣∣∣∣ dt1 dx2

)p

.

Using again Hölder’s inequality and the fact that σα∗ is bounded on L2(T), we con-
clude

(A) ≤ Cp|I2|1−p/2
2K1−1∑

i1=2r−2

2K1((N+1)p−1)

i (α+1)p
1

⎛

⎝
∫

I1

(∫

I2

sup
n2∈N

∣∣∣∣
∫

I2

AN ,0(t1, t2)K
α
n2(x2 − t2) dt2

∣∣∣∣
2

dx2

)1/2

dt1

⎞

⎠
p

≤ Cp|I2|1−p/2
2K1−1∑

i1=2r−2

2K1((N+1)p−1)

i (α+1)p
1

(∫

I1

(∫

I2

∣∣AN ,0(t1, x2)
∣∣2 dx2

)1/2

dt1

)p

.

Then (3.6.2) implies
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(A) ≤ Cp|I2|1−p/2
2K1−1∑

i1=2r−2

2−K1 p/2
2K1((N+1)p−1)

i (α+1)p
1

(∫

I1

∫

I2

∣∣AN ,0(t1, x2)
∣∣2 dx2 dt1

)p/2

≤ Cp

2K1−1∑

i1=2r−2

1

i (α+1)p
1

≤ Cp2
−r((α+1)p−1).

To estimate (B), we use (3.6.4):

(B) ≤ Cp

2K1−1∑

i1=2r−2

2−K1
2K1(N+2)p

i (α+1)p
1

∫

I2

(∫

I1

sup
n2∈N

∣∣∣∣
∫

I2

AN+1,0(t1, t2)K
α
n2(x2 − t2) dt2

∣∣∣∣ dt1

)p

dx2

≤ Cp|I2|1−p/2
2K1−1∑

i1=2r−2

2K1((N+2)p−1)

i (α+1)p
1

⎛

⎝
∫

I1

(∫

I2

sup
n2∈N

∣∣∣∣
∫

I2

AN+1,0(t1, t2)K
α
n2(x2 − t2) dt2

∣∣∣∣
2

dx2

)1/2

dt1

⎞

⎠
p

and

(B) ≤ Cp|I2|1−p/2
2K1−1∑

i1=2r−2

2K1((N+2)p−1)

i (α+1)p
1

(∫

I1

(∫

I2

∣∣AN+1,0(t1, x2)
∣∣2 dx2

)1/2

dt1

)p

≤ Cp|I2|1−p/2
2K1−1∑

i1=2r−2

2−K1 p/2
2K1((N+2)p−1)

i (α+1)p
1

(∫

I1

∫

I2

∣∣AN+1,0(t1, x2)
∣∣2 dx2 dt1

)p/2

≤ Cp

2K1−1∑

i1=2r−2

1

i (α+1)p
1

≤ Cp2
−r((α+1)p−1).

Next, we integrate over (T \ I r1 ) × (T \ I2):
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∫

T\4I1

∫

T\I2

∣∣σα
∗ a(x1, x2)

∣∣p dx1 dx2

≤
∫

T\4I1

∫

T\I2
sup

n1≥2K1 ,n2≥2K2

∣∣σα
n a(x1, x2)

∣∣p dx1 dx2

+
∫

T\4I1

∫

T\I2
sup

n1≥2K1 ,n2<2K2

∣∣σα
n a(x1, x2)

∣∣p dx1 dx2

+
∫

T\4I1

∫

T\I2
sup

n1<2K1 ,n2≥2K2

∣∣σα
n a(x1, x2)

∣∣p dx1 dx2

+
∫

T\4I1

∫

T\I2
sup

n1<2K1 ,n2<2K2

∣∣σα
n a(x1, x2)

∣∣p dx1 dx2

=: (C) + (D) + (E) + (F).

We will only consider the term (D):

(D) ≤
2K1−1∑

|i1|=2r−2

2K2−1∑

|i2|=1

∫ π(i1+1)2−K1

πi12−K1

∫ π(i2+1)2−K2

πi22−K2

sup
n1≥2K1 ,n2<2K2

∣∣σα
n a(x1, x2)

∣∣p dx1 dx2,

where we may suppose again that i1 > 0 and i2 > 0. Integrating by parts,

∣∣σα
n a(x)

∣∣

=
∣∣∣∣
∫

I1

∫

I2

AN ,N+1(t1, t2)(K
α
n1)

(N )(x1 − t1)(K
α
n2)

(N+1)(x2 − t2) dt1 dt2

∣∣∣∣

≤ C2K1(N+1)2K2(N+2)

iα+1
1 iα+1

2

∫

I1

∫

I2

∣∣AN ,N+1(t1, t2)
∣∣ dt1 dt2.

Thus

(D) ≤ Cp

2K1−1∑

i1=2r−2

2K2−1∑

i2=1

2−K12−K2
2K1(N+1)p2K2(N+2)p

i (α+1)p
1 i (α+1)p

2
(∫

I1

∫

I2

∣∣AN ,N+1(t1, t2)
∣∣ dt1 dt2

)p

≤ Cp

2K1−1∑

i1=2r−2

2K2−1∑

i2=1

2−K1 p/22−K2 p/2
2K1((N+1)p−1)2K2((N+2)p−1)

i (α+1)p
1 i (α+1)p

2
(∫

I1

∫

I2

∣∣AN ,N+1(t1, t2)
∣∣2 dt1 dt2

)p/2
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≤ Cp

2K1−1∑

i1=2r−2

2K2−1∑

i2=1

1

i (α+1)p
1 i (α+1)p

2

≤ Cp2
−r((α+1)p−1).

All other integrals can be handled in the same way. Consequently,

∫

T2\Rr

∣∣σα
∗ a(x1, x2)

∣∣p dx1 dx2 ≤ Cp2
−r((α+1)p−1),

which finishes the proof of the theorem. �

Theorem 3.6.8 If 0 < α < ∞, γ ∈ P and 1/(α + 1) < p ≤ ∞, then

∥∥σα,γ
∗ f

∥∥
p ≤ Cp‖ f ‖Hp ( f ∈ Hp(T

d)).

Proof Similar to (3.3.13), for s ∈ N, n j ∈ P and t ∈ T, t �= 0, we have

∣∣∣∣
(
K α,γ

n j

)(s)
(t)

∣∣∣∣ ≤ C

nα−s
j |t |α+1

.

The theorem can be proved as Theorem 3.6.7. �

Corollary 3.5.11 implies

Corollary 3.6.9 Let f ∈ Hi
1(T

d) for some i = 1, . . . , d. If 0 < α < ∞, then

sup
ρ>0

ρλ(σα
∗ f > ρ) ≤ C‖ f ‖Hi

1
.

If 0 < α < ∞ and γ ∈ P, then

sup
ρ>0

ρλ(σα,γ
∗ f > ρ) ≤ C‖ f ‖Hi

1
.

By the density argument, we get here almost everywhere convergence for func-
tions from the spaces Hi

1(T
d) instead of L1(T

d). In some sense, the Hardy space
Hi

1(T
d) plays the role of L1(T

d) in higher dimensions.

Corollary 3.6.10 Let f ∈ Hi
1(T

d) for some i = 1, . . . , d. If 0 < α < ∞, then

lim
n→∞ σα

n f = f a.e.

If 0 < α < ∞ and γ ∈ P, then

lim
n→∞ σα,γ

n f = f a.e.
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The almost everywhere convergence is not true for all f ∈ L1(T
d).

A counterexample, which shows that the almost everywhere convergence is not
true for all integrable functions, is due to Gát [119]. Recall that

L1(T
d) ⊃ Hi

1(T
d) ⊃ L(log L)d−1(Td) ⊃ L p(T

d) (1 < p ≤ ∞).

3.7 Rectangular θ-Summability

In this section, we introduce some new function spaces and then we generalize the
rectangular Cesàro and Riesz means. As we will see in Definition 3.7.4, instead
of condition (2.6.2), we have to suppose here that θ : R

d → R is a d-dimensional
function and ∞∑

k1=−∞
· · ·

∞∑

kd=−∞

∣∣∣∣θ
(
k1
n1

, . . . ,
kd
nd

)∣∣∣∣ < ∞ (3.7.1)

for all n ∈ P
d . Wewill see that it is more convenient to suppose that θ is in theWiener

algebra W (C, �1)(R
d). All summability methods considered in the literature satisfy

the condition θ ∈ W (C, �1)(R
d).

Definition 3.7.1 A measurable function f : R
d → R belongs to the Wiener amal-

gam space W (L∞, �1)(R
d) if

‖ f ‖W (L∞,�1) :=
∑

k∈Zd

sup
x∈[0,1)d

| f (x + k)| < ∞.

The smallest closed subspace ofW (L∞, �1)(R
d) containing continuous functions is

denoted by W (C, �1)(R
d) and is called Wiener algebra.

Lemma 3.7.2 If 1 ≤ p ≤ ∞, then

W (L∞, �1)(R
d) ⊂ L p(R

d) and ‖ f ‖p ≤ ‖ f ‖W (L∞,�1).

Moreover, W (L∞, �1)(R
d) is dense in L p(R

d) for 1 ≤ p < ∞.

Proof For p = ∞, the statement is trivial. If 1 ≤ p < ∞, then

‖ f ‖p =
(
∑

k∈Zd

∫

k+[0,1)d
| f (x)|pdx

)1/p

≤
(
∑

k∈Zd

sup
x∈[0,1)d

| f (x + k)|p
)1/p
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≤
∑

k∈Zd

sup
x∈[0,1)d

| f (x + k)|

= ‖ f ‖W (L∞,�1)
.

SinceW (L∞, �1)(R
d) contains the space of continuous functions with compact sup-

port, W (L∞, �1)(R
d) is dense in L p(R

d) if 1 ≤ p < ∞. �

The Wiener amalgam spaces and Wiener algebra are used quite often in Gabor
analysis, because they provide convenient and general classes of windows (see,
e.g., Walnut [323] and Gröchenig [152]).

Theorem 3.7.3 (a) If θ ∈ W (C, �1)(R
d) then (3.7.1) holds.

(b) If the one-dimensional function θ is continuous and |θ| can be estimated by an
integrable function η which is non-decreasing on (−∞, c) and non-increasing
on (c,∞) then θ ∈ W (C, �1)(R).

(c) There exists θ /∈ W (C, �1)(R) such that (3.7.1) holds.

Proof It is easy to see that

∞∑

k1=−∞
· · ·

∞∑

kd=−∞

∣∣∣∣θ
(
k1
n1

, . . . ,
kd
nd

)∣∣∣∣ ≤
∑

l∈Zd

⎛

⎝
d∏

j=1

n j

⎞

⎠ sup
x∈[0,1)d

|θ(x + l)|

=
⎛

⎝
d∏

j=1

n j

⎞

⎠ ‖θ‖W (C,�1) < ∞, (3.7.2)

which shows (a). Under the conditions of (b), ‖θ‖W (C,�1) ≤ ‖η‖1.
To see (c), let θ ≥ 0 be continuous and even on R, θ(0) := 0,

θ(x) := 0 if j + 1

j + 1
≤ x ≤ j + 1 ( j ∈ N)

and

sup
[ j, j+1]

θ = 1

j + 1
( j ∈ N).

Then θ ∈ L1(R),

‖θ‖W (C,�1) = 2
∞∑

k=0

1

k + 1
= ∞

and ∞∑

k=−∞

∣∣∣∣θ
(

k

n + 1

)∣∣∣∣ ≤ 2
n∑

j=0

1

j + 1

n + 1

j + 1
< ∞ (n ∈ N).

This finishes the proof of Theorem 3.7.3. �
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Definition 3.7.4 Suppose that θ ∈ W (C, �1)(R
d). For f ∈ L1(T

d) and n ∈ N
d , the

nth rectangular θ-means σθ
n f of the Fourier series of f and the nth rectangular

θ-kernel K θ
n are introduced by

σθ
n f (x) :=

∑

k1∈Z
· · ·

∑

kd∈Z
θ

(−k1
n1

, . . . ,
−kd
nd

)
f̂ (k)eık·x

and

K θ
n (t) :=

∑

k1∈Z
· · ·

∑

kd∈Z
θ

(−k1
n1

, . . . ,
−kd
nd

)
eık·t ,

respectively.

By Theorem 3.7.3, the θ-kernels K θ
n and the θ-means σθ

n f are well defined. We
suppose often that

θ = θ1 ⊗ · · · ⊗ θd ,

where θi ∈ W (C, �1)(R) for all i = 1, . . . , d. Then θ ∈ W (C, �1)(R
d) and

K θ
n = K θ1

n1 ⊗ · · · ⊗ K θd
nd .

Lemma 3.7.5 Suppose that θ ∈ W (C, �1)(R
d). For f ∈ L1(T

d) and n ∈ N
d , we

have

σθ
n f (x) = 1

(2π)d

∫

Td

f (x − t)K θ
n (t) dt.

The θ-means can also be written as a convolution of f and the Fourier transform
of θ in the following way.

Theorem 3.7.6 If θ ∈ W (C, �1)(R
d) and θ̂ ∈ L1(R

d), then

σθ
n f (x) =

⎛

⎝
d∏

j=1

n j

⎞

⎠
∫

Rd

f (x − t)θ̂(n1t1, . . . , ndtd) dt

for almost every x ∈ T
d and for all n ∈ N

d and f ∈ L1(T
d).

Proof If f (t) = eık·t (k ∈ Z
d , t ∈ T

d), then

σθ
n f (x) = θ

(−k1
n1

, . . . ,
−kd
nd

)
eık·x

= eık·x
∫

Rd

⎛

⎝
d∏

j=1

e−ık j t j /n j

⎞

⎠ θ̂(t) dt
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=
⎛

⎝
d∏

j=1

n j

⎞

⎠
∫

Rd

eık·(x−t)θ̂(n1t1, . . . , ndtd) dt.

Thus, the theoremholds also for trigonometric polynomials. Theproof canbefinished
as in Theorem 2.2.30. �

We extend again the definition of the rectangular θ-means to distributions.

Definition 3.7.7 Suppose that θ ∈ W (C, �1)(R
d). For f ∈ D(Td) and n ∈ N

d , the
nth rectangular θ-means σθ

n f of the Fourier series of f are given by

σθ
n f := f ∗ K θ

n .

3.7.1 Feichtinger’s Algebra S0(Rd)

Theorem 3.7.6 is a fundamental result, so the condition θ̂ ∈ L1(R
d) is of great impor-

tance. In this subsection, we give some sufficient conditions for a function θ to satisfy
θ̂ ∈ L1(R

d). In contrary to the other sections, we do not prove all results here. Some
of them are presented without proof. Several such conditions are already known. The
next one can be found in Bachman, Narici and Beckenstein [15, p. 323].

Theorem 3.7.8 If θ ∈ L1(R) is bounded on a neighborhood of 0 and θ̂ ≥ 0, then
θ̂ ∈ L1(R).

Obviously, θ is bounded on a neighborhood of 0 if θ ∈ L∞(R) or θ is continuous
at 0. Moreover, if θ ∈ L1(R) has compact support and θ ∈ Lip(α) for someα > 1/2,
then θ̂ ∈ L1(R) (see Natanson and Zuk [244, p. 176]).

Nowwe introduce a Banach space, called Feichtinger’s algebra, the Fourier trans-
forms of the elements of which are all integrable. This space was first considered in
Feichtinger [100].

Definition 3.7.9 The short-time Fourier transform of f ∈ L2(R
d) with respect to a

window function g ∈ L2(R
d) is defined by

Sg f (x,ω) := 1

(2π)d

∫

Rd

f (t)g(t − x)e−ıω·t dt (x,ω ∈ R
d).

Definition 3.7.10 Let g0(x) := e−π‖x‖22 be the Gauss function. We define the
Feichtinger’s algebra S0(Rd) by

S0(R
d) :=

{
f ∈ L2(Rd) : ‖ f ‖S0 := ∥∥Sg0 f

∥∥
L1(R2d )

< ∞
}

.
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Any other non-zero Schwartz function defines the same space and an equivalent
norm. It is known that S0(Rd) contains all Schwartz functions. Moreover, S0(Rd)

is isometrically invariant under translation, modulation and Fourier transform (see
Feichtinger and Zimmermann [100, 106]). Actually, S0(Rd) is the minimal Banach
space having this property (see Feichtinger [100]). Furthermore, Feichtinger’s alge-
bra is a subspace of the Wiener algebra, the embedding S0(Rd) ↪→ W (C, �1)(R

d) is
dense and continuous and

S0(R
d) � W (C, �1)(R

d) ∩ F(W (C, �1)(R
d)),

where F denotes the Fourier transform and F(W (C, �1)(R
d)) the set of Fourier

transforms of the functions from W (C, �1)(R
d) (see Feichtinger and Zimmermann

[106], Losert [223] and Gröchenig [152]). Let us define the weight function

vs(ω) := (
1 + ‖ω‖22

)d/2
(ω ∈ R

d , s ∈ R).

Theorem 3.7.11 (a) If θ ∈ S0(Rd), then θ̂ ∈ S0(Rd) ⊂ L1(R
d).

(b) If θ ∈ L1(R
d) and θ̂ has compact support, then θ ∈ S0(Rd).

(c) If θ ∈ L1(R
d) has compact support and θ̂ ∈ L1(R

d), then θ ∈ S0(Rd).
(d) If θvs, θ̂vs ∈ L2(R

d) for some s > d, then θ ∈ S0(Rd).
(e) If θvs, θ̂vs ∈ L∞(Rd) for some s > 3d/2, then θ ∈ S0(Rd).

For more about Feichtinger’s algebra see Feichtinger and Zimmermann [100,
106]).

Sufficient conditions can also be givenwith the help of Sobolev, fractional Sobolev
and Besov spaces. We do not give a detailed description of these spaces. For the
interested readers, we refer to Triebel [313], Runst and Sickel [267], Stein [289] and
Grafakos [143]. The Sobolev space Wk

p(R
d) (1 ≤ p ≤ ∞, k ∈ N) is defined by

Wk
p(R

d) := {
θ ∈ L p(R

d) : Dαθ ∈ L p(R
d), |α| ≤ k

}

and endowed with the norm

‖θ‖Wk
p
:=

∑

|α|≤k

‖Dαθ‖p ,

where D denotes the distributional derivative.
This definition can be extended to every real s in the following way. The fractional

Sobolev space Ls
p(R

d) (1 ≤ p ≤ ∞, s ∈ R) consists of all tempered distributions θ
for which

‖θ‖Ls
p
:= ∥∥F−1

(
(1 + | · |2)s/2θ̂)∥∥

p
< ∞,

where F denotes the Fourier transform. It is known that
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Ls
p(R

d) = Wk
p(R

d) if s = k ∈ N and 1 < p < ∞

with equivalent norms.
In order to define the Besov spaces, take a non-negative Schwartz function ψ ∈

S(R) with support [1/2, 2] that satisfies
∞∑

k=−∞
ψ(2−ks) = 1 for all s ∈ R \ {0}.

For x ∈ R
d , let

φk(x) := ψ(2−k |x |) for k ≥ 1 and φ0(x) = 1 −
∞∑

k=1

φk(x).

The Besov space Bs
p,r (R

d) (0 < p, r ≤ ∞, s ∈ R) is the space of all tempered dis-
tributions f for which

‖ f ‖Bs
p,r

:=
( ∞∑

k=0

2ksr
∥∥(F−1φk

) ∗ f
∥∥r
p

)1/r

< ∞.

The Sobolev, fractional Sobolev and Besov spaces are all quasi-Banach spaces, and
if 1 ≤ p, r ≤ ∞, then they are Banach spaces. All these spaces contain the Schwartz
functions. The following facts are known: in the case 1 ≤ p, r ≤ ∞, one has

Wm
p (Rd), Bs

p,r (R
d) ↪→ L p(R

d) if s > 0,m ∈ N,

Wm+1
p (Rd) ↪→ Bs

p,r (R
d) ↪→ Wm

p (Rd) if m < s < m + 1, (3.7.3)

Bs
p,r (R

d) ↪→ Bs
p,r+ε(R

d), Bs+ε
p,∞(Rd) ↪→ Bs

p,r (R
d) if ε > 0, (3.7.4)

Bd/p1
p1,1 (Rd) ↪→ Bd/p2

p2,1 (Rd) ↪→ C(Rd) if 1 ≤ p1 ≤ p2 < ∞. (3.7.5)

For two quasi-Banach spaces X and Y, the embedding X ↪→ Y means that X ⊂ Y

and ‖ f ‖Y ≤ C‖ f ‖X.
The connection between Besov spaces and Feichtinger’s algebra is summarized

in the next theorem.

Theorem 3.7.12 We have

(i) If 1 ≤ p ≤ 2 and θ ∈ Bd/p
p,1 (Rd), then θ̂ ∈ L1(R

d) and

∥∥θ̂
∥∥
1 ≤ C ‖θ‖Bd/p

p,1
.
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(ii) If s > d, then Ls
1(R

d) ↪→ S0(Rd).
(iii) If d ′ denotes the smallest even integer which is larger than d and s > d ′, then

Bs
1,∞(Rd) ↪→ Wd ′

1 (Rd) ↪→ S0(R
d).

Proof (i) was proved in Girardi and Weis [130] and (ii) in Okoudjou [250]. The first
embedding of (iii) follows from (3.7.3) and (3.7.4). If k is even, then Wk

1 (Rd) ↪→
Lk
1(R

d) (see Stein [289, p. 160]). Then (ii) proves (iii). �

It follows from (i) and (3.7.3) that θ ∈ W j
p (R

d) ( j > d/p, j ∈ N) implies θ̂ ∈
L1(R

d). If j ≥ d ′, then even W j
1 (Rd) ↪→ S0(Rd) (see (iii)). Moreover, if s > d ′ as

in (iii), then

Bs
1,∞(Rd) ↪→ Bd

1,1(R
d) ↪→ Bd/p

p,1 (Rd) (1 < p < ∞)

by (3.7.4) and (3.7.5). Theorem 3.7.12 says that Bs
1,∞(Rd) ⊂ S0(Rd) (s > d ′) and if

we choose θ from the larger space Bd/p
p,1 (Rd) (1 ≤ p ≤ 2), then θ̂ is still integrable.

The embedding W 2
1 (R) ↪→ S0(R) follows from (iii). With the help of the usual

derivative, we give another useful sufficient condition for a function to be in S0(Rd).
As usual, we denote by Ck(Rd) the set of k times continuously differentiable func-
tions.

Definition 3.7.13 A function θ is in V k
1 (R) if there are numbers −∞ = a0 < a1 <

· · · < an < an+1 = ∞, where n = n(θ) depends on θ and

θ ∈ Ck−2(R), θ ∈ Ck(ai , ai+1), θ( j) ∈ L1(R)

for all i = 0, . . . , n and j = 0, . . . , k. The norm of this space is defined by

‖θ‖V k
1

:=
k∑

j=0

∥∥θ( j)
∥∥
1 +

n∑

i=1

∣∣θ(k−1)(ai + 0) − θ(k−1)(ai − 0)
∣∣ ,

where θ(k−1)(ai ± 0) denotes the right and left limits of θ(k−1).

These limits do exist and are finite because θ(k) ∈ C(ai , ai+1) ∩ L1(R) implies

θ(k−1)(x) = θ(k−1)(a) +
∫ x

a
θ(k)(t) dt

for some a ∈ (ai , ai+1). Since θ(k−1) ∈ L1(R), we establish that

lim
x→−∞ θ(k−1)(x) = lim

x→∞ θ(k−1)(x) = 0.

Similarly, θ( j) ∈ C0(R) for j = 0, . . . , k − 2.
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Of course,W 2
1 (R) and V 2

1 (R) are not identical. For θ ∈ V 2
1 (R), we have θ′ = Dθ;

however, θ′′ = D2θ only if limx→ai+0 θ′(x) = limx→ai−0 θ′(x) (i = 1, . . . , n).

Theorem 3.7.14 We have V 2
1 (R) ↪→ S0(R).

Proof Integrating by parts, we have

Sg0θ(x,ω)

= 1

2π

∫

R

θ(t)g0(t − x)e−ıωt dt

= 1

2π

n∑

i=0

∫ ai+1

ai

θ(t)e−π(t−x)2e−ıωt dt

= 1

2π

n∑

i=0

[
θ(t)e−π(t−x)2 e

−ıωt

−ıω

]ai+1

ai

− 1

2π

n∑

i=0

∫ ai+1

ai

(
θ′(t)e−π(t−x)2 − 2πθ(t)e−π(t−x)2(t − x)

) e−ıωt

−ıω
dt.

Observe that the first sum is 0. In the second sum, we integrate by parts again to
obtain

Sg0θ(x,ω) = 1

2π

n∑

i=0

[(
θ′(t)e−π(t−x)2 − 2πθ(t)e−π(t−x)2(t − x)

) e−ıωt

ω2

]ai+1

ai

− 1

2π

n∑

i=0

∫ ai+1

ai

(
θ′′(t)e−π(t−x)2 − 4πθ′(t)e−π(t−x)2(t − x)

− 2πθ(t)
(
−2πe−π(t−x)2(t − x)2 + e−π(t−x)2

))e−ıωt

ω2
dt.

The first sum is equal to

1

2π

n∑

i=1

(
θ′(ai + 0) − θ′(ai − 0)

)
e−π(ai−x)2 e

−ıωai

ω2
.

Hence ∫

R

∫

{|ω|≥1}
|Sg0θ(x,ω)| dx dω ≤ Cs‖θ‖V 2

1
.

On the other hand,

∫

R

∫

{|ω|<1}
|Sg0θ(x,ω)| dx dω ≤ Cs

∫

R

∫

{|ω|<1}

∫

R

|θ(t)|g0(t − x) dt dx dω

≤ Cs‖θ‖V 2
1
,
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which finishes the proof of Theorem 3.7.14. �

The next Corollary follows from the definition of S0(Rd) and from Theorem
3.7.14.

Corollary 3.7.15 If each θ j ∈ V 2
1 (R) ( j = 1, . . . , d), then

θ = θ1 ⊗ · · · ⊗ θd ∈ S0(R
d).

3.7.2 Norm Convergence of the Rectangular θ-Means

First, we investigate the L2(T
d)-norm convergence of σθ

n f as n → ∞ (n ∈ N
d) in

Pringsheim’s sense.

Theorem 3.7.16 If θ ∈ W (C, �1)(R
d) and θ(0) = 1, then

lim
n→∞ σθ

n f = f in the L2(T
d)-norm for all f ∈ L2(T

d).

Proof It is easy to see that the norm of the operator

σθ
n : L2(T

d) → L2(T
d)

can be given by

sup
f ∈L2(Td ), ‖ f ‖2≤1

∥∥ f ∗ K θ
n

∥∥
2 = sup

f ∈L2(Td ), ‖ f ‖2≤1

∥∥ f̂ K̂ θ
n

∥∥
2

= sup
f̂ ∈�2(Zd ), ‖ f̂ ‖2≤1

∥∥ f̂ K̂ θ
n

∥∥
2

= ∥∥K̂ θ
n

∥∥∞

= sup
k∈Zd

∣∣∣∣θ
(−k1

n1
, . . . ,

−kd
nd

)∣∣∣∣

≤ C.

Thus, the norms of σθ
n (n ∈ N

d) are uniformly bounded. Since θ is continuous, the
convergence holds for all trigonometric polynomials. The set of the trigonometric
polynomials are dense in L2(T

d), so the usual density theorem proves Theorem
3.7.16. �

Now, we give a sufficient and necessary condition for the uniform and L1(T
d)

convergence σθ
n f → f .

Theorem 3.7.17 If θ ∈ W (C, �1)(R
d) and θ(0) = 1, then the following conditions

are equivalent:
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(i) θ̂ ∈ L1(R
d),

(ii) σθ
n f → f uniformly for all f ∈ C(Td) as n → ∞ and n ∈ N

d ,
(iii) σθ

n f (x) → f (x) for all x ∈ T
d and f ∈ C(Td) as n → ∞ and n ∈ N

d ,
(iv) σθ

n f → f in the L1(T
d)-norm for all f ∈ L1(T

d) as n → ∞ and n ∈ N
d ,

(v) σθ
n f → f uniformly for all f ∈ C(Td) as n → ∞ and n ∈ R

d
τ ,

(vi) σθ
n f (x) → f (x) for all x ∈ T

d and f ∈ C(Td) as n → ∞ and n ∈ R
d
τ ,

(vii) σθ
n f → f in the L1(T

d)-norm for all f ∈ L1(T
d) as n → ∞ and n ∈ R

d
τ .

Recall the definition of Rd
τ from (3.3.1).

Proof Wemay suppose that d = 1, since themulti-dimensional case is similar. First,
we verify the equivalence between (i), (ii), (iii) and (iv). If (i) holds, then by Theorem
3.7.6, ∥∥σθ

n f
∥∥∞ ≤ ‖ f ‖∞

∥∥θ̂
∥∥
1 ( f ∈ C(T), n ∈ N)

and so the operators σn : C(T) → C(T) are uniformly bounded. Since (ii) holds for
all trigonometric polynomials and the set of the trigonometric polynomials are dense
in C(T), (ii) follows easily. (ii) implies (iii) trivially.

Suppose that (iii) is satisfied. We are going to prove (i). For a fixed x ∈ T, the
operators

Un : C(T) → R, Un f := σθ
n f (x) (n ∈ N)

are uniformly bounded by the Banach-Steinhaus theorem. We get by Lemma 3.7.5
that

‖Un‖ = 1

(2π)d

∫

T

|K θ
n (x − t)| dt = 1

(2π)d
‖K θ

n‖1 (n ∈ N).

Hence
sup
n∈N

‖K θ
n‖1 ≤ C.

Since K θ
n is 2π-periodic, we have for α ≤ n/2 that

∫ 2απ

−2απ

1

n

∣∣∣∣∣

∞∑

k=−∞
θ

(−k

n

)
eıtk/n

∣∣∣∣∣ dt ≤
∫ nπ

−nπ

1

n

∣∣∣∣∣

∞∑

k=−∞
θ

(−k

n

)
eıtk/n

∣∣∣∣∣ dt

=
∫ π

−π

∣∣∣∣∣

∞∑

k=−∞
θ

(−k

n

)
eıkx

∣∣∣∣∣ dx

=
∫

T

|K θ
n (x)| dx ≤ C. (3.7.6)

For a fixed t ∈ R, let

hn(t) := 1

n

∞∑

k=−∞
θ

(−k

n

)
eıtk/n
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and

ϕn(t, u) :=
∞∑

k=−∞
θ

(−k

n

)
eıtk/n1[ kn , k+1

n )(u).

It is easy to see that
lim
n→∞ ϕn(t, u) = θ(−u)eıtu .

Moreover,

|ϕn(t, u)| ≤
∞∑

l=−∞
sup

x∈[0,1)
|θ(x − l − 1)| 1[l,l+1)(u)

and

∫ ∞

−∞

∞∑

l=−∞
sup

x∈[0,1)
|θ(x − l − 1)| 1[l,l+1)(u) du =

∞∑

l=−∞
sup

x∈[0,1)
|θ(x − l − 1)|

= ‖θ‖W (C,�1).

Lebesgue’s dominated convergence theorem implies that

lim
n→∞

∫ ∞

−∞
ϕn(t, u) du =

∫ ∞

−∞
θ(−u)eıtu du = (2π)d θ̂(t).

Obviously, ∫ ∞

−∞
ϕn(t, u) du = hn(t)

and so
lim
n→∞ hn(t) = (2π)d θ̂(t).

Of course, this holds for all t ∈ R. We have by (3.7.2) that

|hn(t)| ≤ ‖θ‖W (C,�1).

Thus

lim
n→∞

∫ 2απ

−2απ

|hn(t)| dt = (2π)d
∫ 2απ

−2απ

∣∣θ̂(t)
∣∣ dt.

Inequality (3.7.6) yields that

∫ 2απ

−2απ

∣∣θ̂(t)
∣∣ dt ≤ C for all α > 0

and so
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∫ ∞

−∞

∣∣θ̂(t)
∣∣ dt ≤ C,

which shows (i).
If θ̂ ∈ L1(R), then Theorem 3.7.6 implies

∥∥σθ
n f

∥∥
1 ≤ ‖ f ‖1

∥∥θ̂
∥∥
1 ( f ∈ L1(T), n ∈ N).

Hence (iv) follows from (i) because the set of the trigonometric polynomials are
dense in L1(T). The fact that (iv) implies (i) can be proved similarly as (i i i) ⇒ (i),
since, by duality, the norm of the operator σθ

n : L1(T) → L1(T) is again

∥∥σθ
n

∥∥ = ∥∥K θ
n

∥∥
1 .

It is easy to see that the equivalence between (i), (v), (vi) and (vii) can be proved
in the same way. �

Note that the statement (i) ⇔ (i i) was shown in the one-dimensional case by
Natanson and Zuk [244] for θ having compact support. The situation in our general
case is much more complicated and can be found in Feichtinger and Weisz [103].
One part of the preceding result can be generalized for L p(T

d) spaces.

Theorem 3.7.18 Assume that θ(0) = 1, θ ∈ W (C, �1)(R
d) and θ̂ ∈ L1(R

d). If 1 ≤
p < ∞ and f ∈ L p(T

d), then

sup
n∈N

∥∥σθ
n f

∥∥
p ≤ C‖ f ‖p

and
lim
n→∞ σθ

n f = f in the L p(T
d)-norm.

Proof For simplicity, we show the theorem for d = 1. Using Theorem 3.7.6, we
conclude

σθ
n f (x) − f (x) = n

∫

R

(
f (x − t) − f (x)

)
θ̂(nt) dt

=
∫

R

(
f

(
x − t

n

)
− f (x)

)
θ̂(t) dt

and
∥∥σθ

n f − f
∥∥
p =

∫

R

∥∥∥∥ f
(

· − t

n

)
− f (·)

∥∥∥∥
p

∣∣θ̂(t)
∣∣ dt.

The theorem follows from the Lebesgue dominated convergence theorem. �

Since θ ∈ S0(Rd) implies θ ∈ W (C, �1)(R
d) and θ̂ ∈ S0(Rd) ⊂ L1(R

d), the next
corollary follows from Theorems 3.7.17 and 3.7.18.
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Corollary 3.7.19 If θ ∈ S0(Rd) and θ(0) = 1, then

(i) σθ
n f → f uniformly for all f ∈ C(Td) as n → ∞ and n ∈ N

d ,
(ii) σθ

n f → f in the L1(T
d)-norm for all f ∈ L1(T

d) as n → ∞ and n ∈ N
d ,

(iii) σθ
n f → f in the L p(T

d)-norm for all f ∈ L p(T
d) (1 < p < ∞) as n → ∞

and n ∈ N
d .

The next corollary follows from the fact that θ ∈ S0(Rd) is equivalent to θ̂ ∈
L1(R

d), provided that θ has compact support (see, e.g., Feichtinger andZimmermann
[106]).

Corollary 3.7.20 If θ ∈ C(Rd) has compact support and θ(0) = 1, then the follow-
ing conditions are equivalent:

(i) θ ∈ S0(Rd),
(ii) σθ

n f → f uniformly for all f ∈ C(Td) as n → ∞ and n ∈ N
d ,

(iii) σθ
n f (x) → f (x) for all x ∈ T

d and f ∈ C(Td) as n → ∞ and n ∈ N
d ,

(iv) σθ
n f → f in the L1(T

d)-norm for all f ∈ L1(T
d) as n → ∞,

(v) σθ
n f → f uniformly for all f ∈ C(Td) as n → ∞ and n ∈ R

d
τ ,

(vi) σθ
n f (x) → f (x) for all x ∈ T

d and f ∈ C(Td) as n → ∞ and n ∈ R
d
τ ,

(vii) σθ
n f → f in the L1(T

d)-norm for all f ∈ L1(T
d) as n → ∞ and n ∈ R

d
τ .

3.7.3 Almost Everywhere Convergence of the Rectangular
θ-Means

Definition 3.7.21 For given κ, τ satisfying the conditions given in Sect. 3.4, we
define the restricted maximal θ-operators by

σθ
� f := sup

n∈Rd
τ

∣∣σθ
n f

∣∣ , σθ
κ f := sup

n∈Rd
κ,τ

∣∣σθ
n f

∣∣ .

The unrestricted maximal θ-operator is defined by

σθ
∗ f := sup

n∈Nd

∣∣σθ
n f

∣∣ .

In this subsection, we suppose that

θ(0) = 1, θ = θ1 ⊗ · · · ⊗ θd , θ j ∈ W (C, �1)(R), j = 1, . . . , d.

(3.7.7)
For the restricted convergence, we suppose in addition that

I θ j ∈ W (C, �1)(R), j = 1, . . . , d. (3.7.8)

Here I denotes the identity function, so
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I(x) = x and (I θ j )(x) = xθ j (x).

Similar to (2.6.6), assume that θ̂ j is (N + 1)-times differentiable (N ≥ 0) and there
exists

N < β j ≤ N + 1

such that ∣∣∣
(
θ̂ j
)(i)

(x)
∣∣∣ ≤ C |x |−β j−1 (x �= 0) (3.7.9)

for i = N , N + 1 and all j = 1, . . . , d.

Theorem 3.7.22 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.
If

max

{
d

d + 1
,

1

β j + 1
, j = 1, . . . , d

}
< p ≤ ∞,

then ∥∥σα
� f

∥∥
p ≤ Cp‖ f ‖H�

p
( f ∈ H�

p (Td)).

Moreover,
sup
ρ>0

ρ λ(σθ
� f > ρ) ≤ C‖ f ‖1 ( f ∈ L1(T

d)).

Proof Inequality (3.7.2) implies that

∣∣∣K θ j
n j

∣∣∣ ≤ Cn j (n j ∈ N).

Similarly,

∞∑

k=−∞

∣∣∣∣
k

n j
θ j

(
k

n j

)∣∣∣∣ ≤ n j

∥∥I θ j

∥∥
W (C,�1)

< ∞ (n j ∈ N),

from which we get immediately that

∣∣∣∣
(
K

θ j
n j

)′∣∣∣∣ ≤ Cn2j (n j ∈ N).

By Theorem 3.7.6,

K
θ j
n j (x) = 2πn j

∞∑

k=−∞
θ̂ j
(
n j (x + 2kπ)

)
(x ∈ T)

as in (2.2.34). From this, it follows that
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∣∣∣K θ j
n j (x)

∣∣∣ ≤ C

n
β j

j |x |β j+1
(x �= 0)

and ∣∣∣∣
(
K

θ j
n j

)′
(x)

∣∣∣∣ ≤ C

n
β j−1
j |x |β j+1

(x �= 0).

The proof can be finished as in Theorem 3.3.4. �

Corollary 3.7.23 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.
If f ∈ L1(T

d), then
lim

n→∞, n∈Rd
τ

σθ
n f = f a.e.

Combining the proofs of Theorems 3.7.22 and 3.4.7, we obtain

Theorem 3.7.24 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.
If

max

{
p1,

1

β j + 1
, j = 1, . . . , d

}
< p ≤ ∞,

then ∥∥σθ
κ f

∥∥
p

≤ Cp‖ f ‖Hκ
p

( f ∈ Hκ
p (T

d)).

Moreover,
sup
ρ>0

ρ λ(σθ
κ f > ρ) ≤ C‖ f ‖1 ( f ∈ L1(T

d)).

We recall that p1 was defined in (3.4.4).

Corollary 3.7.25 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.
If f ∈ L1(T

d), then
lim

n→∞, n∈Rd
κ,τ

σθ
n f = f a.e.

For the unrestricted convergence, we can allow more general conditions for θ.
The next theorem can be shown as Theorems 2.6.7 and 3.6.7.

Theorem 3.7.26 If each θ j satisfies (2.6.2) and (2.6.3), then

∥∥σθ
∗ f

∥∥
p

≤ Cp‖ f ‖Hp ( f ∈ Hp(T
d))

for 1/2 < p ≤ ∞. If (3.7.7), (3.7.8) and (3.7.9) are satisfied, then the preceding
inequality holds for

max

{
1

β j + 1
, j = 1, . . . , d

}
< p ≤ ∞.
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In both cases
sup
ρ>0

ρλ(σθ
∗ f > ρ) ≤ C‖ f ‖Hi

1
( f ∈ Hi

1(T
d))

for all i = 1, . . . , d.

Corollary 3.7.27 Under the conditions of Theorem 3.7.26,

lim
n→∞ σθ

n f = f a.e.

for all f ∈ Hi
1(T

d) and i = 1, . . . , d.

Note that these results are proved in Weisz [332, 333, 335].

3.7.4 Some Summability Methods

It is easy to see that θ ∈ V 2
1 (R) ⊂ S0(R) for all examples 2.6.13–2.6.20 of Sect. 2.6.3

and Example 2.6.21 (the Riesz summation) with 1 ≤ α < ∞. Moreover, in Example
2.6.21, θ ∈ S0(R) for all 0 < α < ∞. In the next examples, θ has d variables and
θ ∈ S0(Rd).

Example 3.7.28 (Riesz summation]). Let

θ(t) =
{

(1 − ‖t‖γ
2)

α if ‖t‖2 ≤ 1;
0 if ‖t‖2 > 1

(t ∈ R
d)

for some (d − 1)/2 < α < ∞, γ ∈ P (see Fig. 3.4).

Example 3.7.29 (Weierstrass summation). Let

θ(t) = e−‖t‖22/2 or θ(t) = e−‖t‖2 (t ∈ R
d)

(see Fig. 3.5). In the first case θ̂(x) = e−‖x‖22/2 and in the second one, θ̂(x) = cd/(1 +
‖x‖22)(d+1)/2 for some cd ∈ R (see Stein and Weiss [293, p. 6.]).

Fig. 3.4 Riesz summability
function with d = 2, α = 1,
γ = 2
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Fig. 3.5 Weierstrass
summability function
θ(t) = e−‖t‖22/2

Fig. 3.6 Picard-Bessel
summability function with
d = 2

Example 3.7.30 (Picard and Bessel summations). Let

θ0(t) = 1

(1 + ‖t‖22)(d+1)/2
(t ∈ R

d)

(see Fig. 3.6). Here θ̂0(x) = cde−‖x‖2 for some cd ∈ R
d .

Lemma 3.7.31 Let θ ∈ W (C, �1)(R), I θ ∈ W (C, �1)(R) and θ be even and twice
differentiable on the interval (0, c), where [−c, c] is the support of θ (0 < c ≤ ∞).
Suppose that

lim
x→c−0

xθ(x) = 0, lim
x→+0

θ′ ∈ R, lim
x→c−0

θ′ ∈ R and lim
x→∞ xθ′(x) = 0.

If θ′ and max(I, 1)θ′′ are integrable, then

∣∣θ̂(x)
∣∣ ≤ C

x2
,

∣∣∣
(
θ̂
)′

(x)
∣∣∣ ≤ C

x2
(x �= 0),

i.e., (3.7.9) hold with N = 0 and β j = 0.

Proof By integrating by parts, we have

θ̂(x) = 2

2π

∫ c

0
θ(t) cos t x dt

= 1

πx

∫ c

0
θ′(t) sin t x dt

= −1

πx2
[θ′(t) cos t x]c0 + 1

πx2

∫ c

0
θ′′(t) cos t x dt.
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Similarly,

(θ̂)′(x) = 2

2π

∫ c

0
tθ(t) cos t x dt

= 1

πx

∫ c

0
(tθ(t))′ sin t x dt

= −1

πx2
[(tθ(t))′ cos t x]c0 + 1

πx2

∫ c

0
(tθ(t))

′′
cos t x dt,

which proves the lemma. �

Note that all examples 2.6.13–2.6.21 satisfy Lemma 3.7.31, (3.7.7), (3.7.8) and
(3.7.9). Thus, all results of Sects. 3.7.2 and 3.7.3 hold.
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