Chapter 3 ®)
Rectangular Summability of Higher oo
Dimensional Fourier Series

In this chapter, we investigate the rectangular summability of d-dimensional Fourier
series. We consider two types of convergence, the so-called restricted and unrestricted
convergence. In the first case, n € N9 is in a cone or a cone-like set and n — oo while
in the second case, we have n € N¢ and min(ny, ..., ns) — 0o, which is called
Pringsheim’s convergence. Similarly, we consider two types of maximal operators,
the restricted one defined on a cone or cone-like set and the unrestricted one defined
on N¢. We prove similar results as for the £,-summability. In the restricted case, we
use the Hardy space H pD (T) and in the unrestricted case a new Hardy space H,(T%).

In the first section, we present the basic definitions for the rectangular summability
and verify some estimations for the kernel functions. In the next section, we can find
the L ,,(Td ) convergence of the rectangular Cesaro and Riesz means. In Sect. 3.3,
we investigate the restricted maximal operators of the rectangular Cesaro and Riesz
means by taking the supremum over a cone. We show that these operators are bounded
from the Hardy space H, (T¢) to L ,(T¢) forany p > po, where py < 1is depending
again on the summation and on the dimension. As a consequence, we obtain the
restricted almost everywhere convergence of the summability means. Similar results
are also shown for cone-like sets.

We introduce the product Hardy spaces H,(T?) and present the atomic decompo-
sition and a boundedness result for these spaces. Moreover, we show that the unre-
stricted maximal operator of the rectangular Cesaro and Riesz means is bounded from
H, (T%) to L » (T?) for any p > py. This implies the almost everywhere convergence
of the summability means in Pringsheim’s sense. In the last section, we consider the
rectangular -summability and prove similar results as mentioned above. We give a
sufficient and necessary condition for the uniform and L;(T“) convergence of the
rectangular f-means.
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120 3 Rectangular Summability of Higher Dimensional Fourier Series

3.1 Summability Kernels

Definition 3.1.1 For f € L{(T¢) and n € N, the nth rectangular Fejér means o, f
of the Fourier series of f and the nth rectangular Fejér kernel K,, are introduced by

d
afw =3 % 1‘[( lk')f(k) e

[ky|<ny lkal<ng i=1

and

ko= T T (- )

[ki]=<m; lkgl<nq i=1
respectively.

Again, we generalize this definition as follows.

Definition 3.1.2 Let f € Li(T%), n € N? and o > 0. The nth rectangular Cesaro
means oy, f of the Fourier series of f and the nth rectangular Cesaro kernel K, are
introduced by

ol f(x) = Yooy HA i e

1—11 1 "1—1 [ky|<ny lkal<ng i=1
and
K () == Z Z l_IAn —1- |k\e
1_[1 1 An,fl |ky|<n, lkql<ng i=1
respectively.

The Cesaro means are also called rectangular (C, o)-means. If o = 1, then these
are the rectangular Fejér means and if o = 0, then the rectangular partial sums (see
Fig.3.1).

Definition 3.1.3 For f € L{(T9), n € N? and 0 < a, 7 < o0, the nth rectangular
Riesz means o,"7 f of the Fourier series of f and the nth rectangular Riesz kernel
K7 are given by

o f) = Y e Y 1‘[( ( )) Flhye

[k |<ny |kal<nq i=1

and
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Fig. 3.1 The rectangular
Fejér kernel K,, withd = 2,
n=3,n=>5

{
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K=Y ) ]i[<1— (";—')vek

[ki]<ny |ka|<nq i=1
respectively.

For o = v = 1, we get back the rectangular Fejér means. The next results follow
from
K=K, ®---®K, (3.1.1)

and
K =K@ @K, (3.1.2)

where K ,‘f] and K, ,(,Y/.’A’ are the corresponding one-dimensional kernels.

Lemma 3.14 If0 <a,v<ocoandn € N¢, then

1 . B
G fT Kot di =1

and
;/ K7 (t)dr =1
@m)? Jpa " o

Lemma 3.1.5 If0 < a,v<ocoandn € N¢, then

d d
Kew<C[n and K@< C[[n eT).

i=1 i=1
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Lemma 3.1.6 For f € L1(T%), n e NY and 0 < o,y < o0,

o, f(x) = on )d/ f(x =K (1) dt
and
70 = / FOr— DK@y dr.

The rectangular Cesaro means are the weighted arithmetic means of the rectan-
gular partial sums.

Lemma 3.1.7 For f € Li(T%), o > 0 and n € N¢, we have

ni—1 ng—1

onf(x) = H Do s f ),

i=1 T =1 k=1

ny—1 ng—1 d

ol f(x) = ]_[d;“ Z .. Z 1_[ A;:i__ll_k,_skf(x)
i=1

ni—1 k=0 ky=0 i=1

and
ni—1 ng—1 d

, 1 o
K;(’)=Wz ZHAn_ll i Di (2).

ni—1 k =0i=1

We will use the next estimation of the derivatives of the one-dimensional kernel
functions.

Theorem 3.1.8 ForO <a <r+1,nePandt €T, t #0,

‘(K,?)(r) (l‘)‘ < Ci’lH—l and ‘(KG (r) (l‘)‘ W.

Proof Similar to Lemma 1.2.4 and Theorem 1.4.16, we have
DI < Ckt (keP),

which implies the first inequality.
We have seen in Theorem 1.4.16 and Lemma 1.4.14 that
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n—1 .
Ko@) = 1 3 Ao sin((k + 1/2)t)
" Ay =R singe/2)
n—1
_ R A0l k12
A sin(/2) " kz_: n=1-k€

A% sin(t/2)

nl

n—1
X et(nfl/Z)t § A;’—leﬂjt
j=0

In this proof, we use the notation

n—1
u(B) =y Ale™.

k=0
Abel rearrangement and Lemma 1.4.8 imply

n—2

u@® =y (Al

k=0

Afﬂ) Sk + Ay Su-

=—2Ak+lsk+An 5.

=— Z Af_lsk—l + Af,lsn—l,
=1

where .
) 1 — gt k+Dr
— —ijt __
Sk'_ze "= 1 — et
j:
Then
n—1
1l—e —1kt 1 — et
ﬁ 1 B
u(B) = Z T TAT o

—zt <2Aﬂ 1 —ikt ZAH 1+An .
_ 7![)

B —int
- Anfle )

_ 7”) lAﬁ

—int
n—1 .

fu@-1 - (1
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Iterating this result s-times (s € N),

M(ﬁ) — (1 7![) u(ﬂ 2) ( 7![) Aﬂ 1 7mt
_ (1 _ efzt) IAQ eflnt

n—1

=(1—e) " u@—s) -y AT (11—
j=1

Writing 8 = o — 1 and using (1.4.11), we conclude

1
Kr?(t) — N (el(nfl/Z)I
A sin(z/2)
1

o~ 1(n—1/2 — 1\~
:m§‘<( /)t(l—e [) M(OZ—I—S)

_ —lt/ZZA l_e—lt)_j>

u(a — 1))

1
1(n— 1/2)t _ —zl Aa 1-s —lkl
= A% sin(r/2) ‘(e Z
N ,”/QZA(M _l] zt)j>
n °

The equality

1 —a
Ko(t) = ———— s(e“"‘ﬂ)’ (1—e)

AY_ sin(t/2)

—zl ZAQ 1—s —1(k n+1/2)t _ —ll/ZZA(Y l —ll)_.f)

= L(t)+ L)+ L)

follows from (1.4.5). Suppose that |¢| > 1/n. The rth derivative of /; can be estimated
as

C < n!
I(’)(t)‘
1 — _
‘ Arclv . ; |t|1+a+r l
<Cle|~! Z(n|t|)’*“
=0

S C|t|—r—1(n|t|)r—0( — Cnr_a|t|_(¥_l.
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To estimate the second term, we choose s > « + r. Then the r times termwise
differentiated series in I is absolutely convergent. Thus

A

r oo _ !
‘Iz(r)(t)‘ < A%ZZA?717S (k n+ 1/2)

14s4r—1
n=1 =0 k=n It

C «
—1—s—r+l a—1—s+l
— |t] E k
A Z
k=n

n—1 j—¢

r
C Z |t|7lfsfl‘+lnlfs
=0

<Cle[™ Y e

1=0
< Clt| e ™ < Clel™ e ) ™ = Cn e

IA

Similarly,

C < 1
(r) § : a—j
‘13 (t)‘ = AQ An—l |l|l+j+r
n—1 j=1

IA

Cle| ™" > (mle)) ™

Jj=1
<Clt| )™ < Clel T ey T = OO,

because 0 < a < r + 1. Finally, if || < 1/n, then the first inequality of our theorem
implies the second one. u

The next lemma can be proved as Lemma 1.4.13.

Lemma 3.1.9 Foro > —1and h > 0, we have

1 ny ng d
a+h p § E : | | h—1 « «
On f - d a+h o A”i—kiAkiflo-k ’

|

i=1 D=1 =1 ky=1i=1

The same results hold if we choose different exponents «; and ; in the products.

3.2 Norm Convergence of Rectangular Summability Means

The next results follow from (3.1.1), (3.1.2), Theorem 2.3.3 and from the one-
dimensional theorems.
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Theorem 3.2.1 If0 < a < 1, then

sup [ |Kg(x)| dx <C.
neNd JTd

If0 < a <ooand~ € P, then

sup |K;m(x)| dx < C.
neNd JTd

Theorem 3.2.2 If1 < p < 00,0 < a <ocoand~y € P, then
sup [on f]|, < CllfIl,
neNd

and
sup o7 |, < CILflp.
neNd

Moreover, for all f € Lp(Td),
lim 0% f = f inthe L,(T%)-norm
n—o0

and
lim 07 f = f inthe L,(T¢)-norm.
n—o00

Here, the convergence is understood in Pringsheim’s sense as in Theorem 2.1.8.

3.3 Almost Everywhere Restricted Summability
over a Cone

In this section, we investigate the convergence of the rectangular Cesaro and Riesz
summability means taken in a cone. For a given 7 > 1, we define a cone by

R :={xeR: :77 ' <xj/x; <7,i,j=1,....d)}. (3.3.1)
T + J

The choice 7 = 1 yields the diagonal. The definition of the Cesaro and Riesz means
can be extended to distributions as follows.

Definition 3.3.1 Let f € D(T¢), n € N¥ and 0 < a, 7 < oo. The nth rectangular
Cesaro means o f and rectangular Riesz means o, f of the Fourier series of f are
given by

oy fi=f*K
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Fig. 3.2 The cone ford =2 .

and
oy f = fx K>,

n
respectively.

Definition 3.3.2 We define the restricted maximal Cesaro and restricted maximal
Riesz operator by
oy f == sup |oy fl

neRd
and
Y oo o,y
UD f L Sup |J,1 f|9
neR?
respectively.

If o = 1, we obtain the restricted maximal Fejér operator o f. As we can see
on Fig.3.2, in the restricted maximal operator the supremum is taken on a cone
only. Marcinkiewicz and Zygmund [234] were the first who considered the restricted
convergence. We show that the restricted maximal operator is bounded from H pD (T9)

to L,(T?).
The next result follows easily from Theorem 3.2.1.

Theorem 3.3.3 [f0 < « < 1, then

lotfle < Clifle (f € Lao(T9)).
If0 < < ocoand~ € P, then

lot flo <Cliflle (f € Loo(TD).

Theorem 3.34 If0 < o <1 and
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d 1
max{——, ——t < p < o0,
d+1 a+1

then
lot ], < Coll flup  (f € HP(TD).

Proof We have seen in Theorem 3.1.8 that

‘K (z)’ < (t £ 0) (3.3.2)

ﬂ/|t|a+l

and

((K ) (t)‘ (t #0). (3.3.3)

Let a be an arbitrary H pD-atom with support I = I} x I, and
2 < h/m=|bl/m <278 (K eN).
We can suppose again that the center of / is zero. In this case,
[—m2 K2 72 K2 1, I C [—-m27 K1 m2- K1

Choose s € N such that 2°~! < 7 < 25 Ttis easy to see thatif n; > k orn, >k,
then we have ny, n, > k27°. Indeed, since (n;, n;) is in a cone, n; > k implies
ny > 7 'ny > k275, By Theorem 2.4.19, it is enough to prove that

/ loa(xi, x2)|” dxydx, < Cp. (3.3.4)
T2\4(1|><12)

First we integrate over (T \ 41;) x 4I,. Obviously,

f / |J|%a(x1,x2)|p dxidxs
™AL J4L

K1 2K
p
/ / Sup |O-r(lyl,n2a(~x]ax2)| dX] d}Cz
™ 4

i2-K Lony,ny>2K-s

IA

lil=1

261 (12K
P
+E / / sup |0,‘fl,n2a(x1,x2)| dxydx;
7r 4

lil=1 i2—K I ny,n,<2K

1 (A) + (B).

We can suppose that i > 0. Using that
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/ |KS (x2)| dx, <C (n2 €N)
T
(see Corollary 1.5.3), (3.3.2) and the definition of the atom, we conclude

|U,(fl,,,2ﬂ(xlaxz)| =

1
<C 22K/p/ ——dt.
- 1 N lxn — ot

For x; € [7i2 X w(i + 1)27%) (i > 1) and #; € I, we have

o 1 _ 2 =0
lx1 —f|¥ = (mi2~K —g2-K-1yy = v
From this, it follows that
lod . alxr, x2)| < c,,zZK/HK“W.
Since n; > 25275, we obtain
2K 2K

1 1
—2K~2K+Kap
(4) = CP Z 2 2 2Kapja+l)p = C/’ Z ilatbp’

i=1 i=1

which is a convergent series if p > 1/(a+ 1).
To consider (B), let I, = I, = (—u, ) and

X2

X1
Aq(x1,v) 2=/ a(ti,v)dt,  Ax(xi, x2) 1=/ Ai(x1, i) dt.

- -

Then
[Ax(x1, x2)| < szK(2/p—k)'

Integrating by parts, we get that

/ a(t;, n)K, (x; — ) dt
I

= A1, ) K, (x1 — p) —f At ) (K, (x1 — ) dty.

I

Recall that the one-dimensional kernel K ;?2 satisfies

Ko | <Cny  (ny €N.

f[a(h,lz)K,‘f(M—h)Kffz(xz—tz)dh dt
nJn

129

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)
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For x; € [1i27 X, n(i + 1)27K), the inequalities (3.3.2), (3.3.5) and (3.3.7) imply

‘/ Ar(p, ) Ky (1 — K, (xo — 1) diy
I

1
v
n e — ploT
1

jatl’

< szZK/pr 27](

< Cp22K/p+Ka—Knlfa

Moreover, by (3.3.3), (3.3.5) and (3.3.7),

/ / Ai(t, ) (K, (1 — 1)Ky, (o — 1) dty diy
ndn
1

e e e
< Cp22l(/p+Ka—Kn17aia1+1‘
Consequently,
2K _| s | 2K—1 1
(B)<C, Zl 72Ky K+Kap—Kp2K(l—rv)Pi(aT)p <C, 2 PPy < 00,
= i=

because p > 1/(a + 1). Hence, we have proved that in this case

/ f |a%a(x1, xz)ip dxydx, < Cp.
TGl J4L
Next, we integrate over (T \ 41;) x (T \ 41,):
/ / ‘O’%a()ﬂ,)@)’p dxidx;
TG JT\4L

X > r(i+1)2°K  pr(i+D2-K
a p
=303 I | N L

jil=11j1=17 2" 2K nyny 2K
z"o 0 ar+D27 K pr(j+D27K

" Z/ / sup oy ,a(x1, x2)|” dxidx
lil=11j1=1" 727" T2 K <2k

=: (C) + (D).

We may suppose again that i, j > 0. For x; € [7i27 %, 7(i +1)27%) and x, €
[7j2=K, 7(j + 1)27X), we have by (3.3.2) and (3.3.5) that
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1 1
@ 2K/p
oot x9] = €2 | AT — fl] on gl —
1 2

22K /p+Kat+Ka
=0y +1ja+1"
- ey ey
ninyiot!j

This implies that
261251 22K+Kap+Kap

—2K
(C) = Cp Z 2 2K(1p+l(apl(a-‘rl)p](a-‘rl)p
i=1 1

J:
o0 o0
- C” Z Z l(a+1)p](a+1)p <>
i=1 j=1

Using (3.3.8) and integrating by parts in both variables, we get that
f a(t;, L) K, (x; — 1)Ky, (x2 — ) dty dty
LJI
- f A 1)K (vy — i) (K2) (12 — 1) d
L

/ AnCer, (K2 Gy — 1)K (2 — p) iy

/ Ax(tr, (K2 Y (e — 1)(K2 ) (a2 — ) dty i
L JI

D, ,.(x1,x2) + D}, (x1,%) + D, , (x1,x2).

131

2

(3.3.9)

Note that A(u, —p) = A(u, 1) = 0. Since | K} | < Cny and (3.3.2) holds as well,

we obtain
n+a(n—1)

« < 1
K, (e = € |, |@+D =)

for all 0 < n < 1. Moreover, the inequality
[(Ky)'| < Cny (12 €N)

and (3.3.3) imply

2(+(a=D(¢-1) n(+l+a((71)
(K ()] < €2 =C 2
2 T |xpetDU=0) | x| (+DA=0)

for all 0 < ¢ < 1. We use inequalities (3.3.5) and (3.3.7) to obtain

(3.3.10)
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n+a(n—1) C+1+a({ 1)

2K /p—2K n
<
(1. x2)| = €2 e — @ = |, T _t2|<a+1><l 5 9n

2K )((H-l)(l m

| ny,ny

i

C+l+a(C 1)) 2K (rei=o
. : (3.3.11)
J

< C 22K/p 3K rH—a(r/ 1)(

whenever x| € [mi2 %, w(i + D27%), x, € [rj27 K, 7(j + D27 %) and 0 < 0, <
1. If
n+amn—D+C+1+a(C—-1) =0,

then
1 1

i (a+D(d=n) j((!+1)(1—ﬂ)

sup |DL . (x1,x0)| < €22/

ny,ny<2K

because (11, ny) is in a cone. Choosing

2a0 — 1
n.:(.:max{m,O},

we can see that

/ / sup |D, . (x1, x)|” dxi dx,
NG, JT\GE ny ny <2K

1 1

—2KA~2K
= Cp Z]: Z; 2 2 i3p/2A(a+1D)p j3p/2/\(a+l)p ’
1= J=

which is a convergent series. The analogous estimate for |D3]’n2 (x1, x2)| can be
similarly proved.

For x; € [mi27 %, 7(i + 1)27%) and x, € [7j27%, n(j + 1)27K), we conclude
that

1 1
D3, (x1, x)| < €,22K/P=2K / S S—T / —— _un
ni,ny I n?(—l|x1 _ t1|a+1 5 ng_1|XQ _ t2|a+l

22K/p—2K+Ko,+K(yn{—uné—a

<
- Cp l‘a+1ja+1

So
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p
f / sup ‘Dnl nz(.X],XQ)’ dxl de
T\41; JT\4I, ny,n,<2K
261251 22K 2Kp+Kap+Kap2K(2 a—a)p

E : 2K
<
- C/’ Z 2 l(a-s-l)p](aﬂ)p

i=1 j=I

[o.¢] [e¢] 1
ZZ l(a+1)P ](04+1)P <00

by the hypothesis. The integration over 41; x (T \ 41;) can be done as above. This
finishes the proof of (3.3.4) as well as the theorem. [ |

Remark 3.3.5 In the d-dimensional case, the constant d/(d + 1) appears if we

investigate the corresponding term to D). More exactly, if we integrate the term

f Al i ) K Gy — )+ KE Gramt — (K2 (e — 1)
I

over (T'\ 41}) x --- x (T \ 41;) similar to (3.3.11), then we getthat p > d/(d + 1).

Corollary 3.3.6 If0 <a <land1 < p < oo, then

HU%f”,, =GCulfll, (fe€ Lp(Td))-
Let us turn to the Riesz means.

Theorem 3.3.7 If0 < a < oo, v € P and

d 1
maxj———, ———— < p =00,
d+1 anl+1
then
lo5 £, < Coll Fllup— (f € HI(T)).
Proof Let

A =fsM*ifs| < 1y
0(s) := {O, if 5] > 1 (s € R).

By the one-dimensional version of Corollary 2.2.28,

<Clt™*" (t #0).

Taking into account (2.2.34), we conclude that

‘K‘”( )) < (t # 0) (3.3.12)

a|t|a+1
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and

‘(K,zﬁ.”)’(t)‘ < (t #0). (3.3.13)

n;?*1 |t|a+1
For 0 < o < 1, the inequality can be proved as in Theorem 3.3.4. Now let o > 1.
Since R R

OOINIQIGIEES

trivially and since [t]7*~! < |¢|7%if |¢| > 1, we conclude that

<Clt|? (@t #0).

Hence

Ko s s Jwols s a0

njle*
and the theorem can be proved as above. ]

Corollary 3.3.8 Suppose that) < o < ocoandy € P. If 1 < p < o0, then
lo" £1l, < Coll £l (f € Lp(T).

As we have seen in Theorems 2.5.6 and 2.5.12, in the one-dimensional case, the
operators o and o are not bounded from H pD (MtoL,(T)if0 < p <1/(a+1)
and o = 1. Using interpolation, we obtain the weak type (1, 1) inequality.

Corollary 3.3.9 If0 < a < 1, then

sulgpA(o%f >p) <Clflli (f €Li(T9.
p>

If0 < a < ocoand~ € P, then

sugpA(og“’f >p) <Clflli (f €Li(T9.
p>

The density argument of Marcinkiewicz and Zygmund (Theorem 1.3.6) implies

Corollary 3.3.10 Suppose that f € L{(T¢). If0 < o < 1, then

lim oYf=f ae

n—o0, n€RY T
If0 <o < ocoandy € P, then

lim o"f=f oae

n— 00, neRY



3.3 Almost Everywhere Restricted Summability over a Cone 135

This result was proved by Marcinkiewicz and Zygmund [234] for the two-
dimensional Fejér means. The general version of Corollary 3.3.10 is due to the
author [328, 329].

3.4 Almost Everywhere Restricted Summability over a
Cone-Like Set

Now we generalize the results of Sect. 3.3 to so-called cone-like sets (see Fig.3.3).
Suppose that forall j =2, ...,d, k; : Ry — R, are strictly increasing and contin-
uous functions such that

lim k; = 00 and lim x; =0.
j—oo j—>+0

Moreover, suppose that there exist ¢; 1, ¢; 2, £ > 1 such that
ciikj(x) < Kj(€x) < cjokj(x) (x > 0). (3.4.1)

Note that this is satisfied if »; is a power function. Let us define the numbers w; |
and w; ; via the formula

i1 =69 and cjp =9 (j=2,....d). (3.4.2)

For convenience, we extend the notations for j = 1by k) :=Z,¢;,1 = ¢12 = & Here
7 denotes the identity function Z(x) = x.Letx = (K1, ..., kg)and T = (71, ..., Ty)
with7y = landfixed7; > 1(j =2, ..., d). Wedefine the cone-like set (with respect
to the first dimension) by

Rij ={x e R‘i : T;Ifsj(nl) <n;<7ikj(n),j=2,...,d}.

Figure 3.3 shows a cone-like set for d = 2.

If k; =T forall j =2,...,d, then we get a cone investigated above. The con-
dition on x; seems to be natural, because Gat [119] proved in the two-dimensional
case that to each cone-like set with respect to the first dimension there exists a larger
cone-like set with respect to the second dimension and conversely, if and only if
(3.4.1) holds.

Here we have to consider a new Hardy space. We modify slightly the definition
of HE(Td). Fix ¢ € S(R) such that fR W(x)dx # 0. For f € D(T?), let

¢i(f)(x) = S(:)lp | ‘f * (Y @ Viyiy -+ ® Y/JKd(z))(X)‘ .
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Fig. 3.3 Cone-like set for
d=2

Definition 3.4.1 For0 < p < oo the Hardy spaces H; (T?) and weak Hardy spaces
H} . (T) consist of all distributions f € D(T¢) for which

Il = 45O, <00 and  1fllyy = [¥5(H], o < o0

p.oo

We can prove all the theorems of Sect. 2.4 for H} (T¢). Among others,

1 g ~ [PECO], 0 < p<o0),

where P, is the one-dimensional Poisson kernel and

PE(F)(x) = sup |f*(Pr® Py ® -+ ® Pryin) ()] .

t€(0,00)

If each k; = T, we get back the Hardy spaces H 1',:' (T?). We have to modify slightly
the definition of atoms, too.

Definition 3.4.2 A bounded function a is an H-atom if there exists a rectangle
I:=1 x---xI; c T with |1;| = /@j(|11|’1)’1 such that

(i) suppa C I,
(i) Nlalloo < [117V/7,
(iii) f, a(x)x* dx = 0 for all multi-indices k with |k| < |d(1/p — 1)].

The following two results can be proved as Theorems 2.4.18 and 2.4.19.

Theorem 3.4.3 A distribution f € D(T?) is in H[’,“(']I‘d) 0 < p <1)ifand only if
there exist a sequence (ax, k € N) of H}j-atoms and a sequence (p, k € N) of real
numbers such that



3.4 Almost Everywhere Restricted Summability over a Cone-Like Set 137
[e¢] [e.¢]
DolmlP <00 and Y map=f in D(TY). (3.4.3)
k=0 k=0

Moreover,
00 1/p
~ i P
1 1y mf(kX(;mu) :

where the infimum is taken over all decompositions of f of the form (3.4.3).

Theorem 3.4.4 For each n € N%, let K,, € L\(T) and V, f := f % K,. Suppose
that

[ V.al™dA < Cp,
Td\rl

for all Hj -atoms a and for some fixed r € N and 0 < po < 1, where the rectangle

I is the support of the atom. If V, is bounded from L, (T%) to L ” (T?) for some
1 < p; < o0, then

IVaflly < Cpll fllay — (f € Hy(T%)

forall po < p < p1.

Definition 3.4.5 For given k, 7 satisfying the above conditions, we define the
restricted maximal Cesaro and restricted maximal Riesz operator by

opf = sup oy f]

neRy
and
Q, —— Q.7
O-,tf ’Yf L Sup |Un ,f|7
neRrd
respectively.

The next theorem holds obviously.

Theorem 3.4.6 [f0 < « < 1, then

o2 fl. < Clifle  (f € Loo(T).
If0 < a < ocoand~ € P, then

los7fl, S Clflle (f € Lao(TD).

Let H be an arbitrary subset of {1,...,d}, H #@, H #{1,...,d}and H® :=
{1,...,d}\ H. Define
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ZjeH wj2+ Z]'EHr Wil

, (3.44)
Hc({l,...d} ZjeH wja+2 ZjeH" Wil

where the numbers w; 1 and wj , are defined in (3.4.2).
Theorem 3.4.7 If0 < o < 1 and

1

max ,—— 1 < p <00,
{pla+1} P

then
loe fll, < Coll Flluy — (f € HE (M),

Proof Since we will prove the result for d = 2, we simplify the notation. Instead
of 3.1, 2.2 and w1, wy 2, we will write ¢, ¢; and wy, ws, respectively. Let a be an
arbitrary H-atom with support [ = I, x b, |LI7! = k(II;|7") and
¥ < <278 k@Y < nl/m < k25T
for some K € N. We can suppose that the center of [ is zero. In this case
[-m2~ %2, 27K c I ¢ [-m27 Kt m27 K
and
[~ 2, 7@K 2] € L € [—7r(5) 712, mr(25) 7121
To prove

/2 laija(xl,xz)|p dx;dx; < Cp,
T2\4(1 x 1)

first we integrate over (T \ 41;) x 41;:

/ / loa(xy, x2)|” dxy dx;
™41, Jan,

« p
< / / sup |0n]’n2a(x1, xz)| dxy;dx;
T\4I; J4I n=2K (ny,ny)eRe

« p
+/ f sup |Unl,n2a(x1,x2)| dxydx,
T\4I; J4L ny<2K (ny,np)€Rd

=: (A) + (B).

Ifn; > 2% and x € [7i27%, 7(i + 1)27%) (i > 1), then by (3.3.5),
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|o oy ,,,a(xl,xz)| =

/fa(tl,lz) o (1 — 1)K (x2 — 1) dty dty
nJn

1
< c,,zK/Pn(zK)l/f'/ dn

1 nflx — oot
1

K/p+Ka K\1/p

< J—
<C,2 k(25) e

1
< c,,zK/Pn(zK)l/f'im.

From this, it follows that

A

28— m(i+1)27K
(A) < E / / sup |0‘n] nza(xl,x2)|p dxydx;
T 4

i=1 i2-K 12 n|>2K
2Kk _1

c, Zz K k(2K 12K (2K -
i=1
2K_1

- Cl’ Z l(a+1)p

IA

jla+Dp

which is a convergent series if p > 1/(1 + ).
We estimate (B) by

(B) < < / /
T\41, J41, 2 <n,< (n1 ny)eRy
§</ﬂr\[—z [”z / 35 [”)

(e}
ny,ny

(e}
ny,na

|a a(xl,x2)|p dx;dx,

IA

sup |a a(xl,xz)‘ dx;dx,

5/‘“ n1< ,(ny, nz)e]R

2 (B1) + (By).

If (n;, ny) € R4 and%—f, <n< thenn, < 7'/1( ).Theinequality|K“| <Cny
K, T 13 na

, gk k]
and (3.3.2) imply

|log . alxr, x2)|

1
< C,2K/P Ky r=1y / -t
-7 @0 2 )y gl — et

K K KA1 1 2K 2K - K—1 1
< C2K/P=K 2Ky l/r= H(E—k> (gﬁ) lxg — w2 KTt
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Hence

26\
(Bl) <C ZzK(l p— (!p)/i(zl() pK/< ) é—kCYP

k
k=0 5

f - |)C1 —7T2_K_l|_(a+l)p dx1
[ 5]

2K 7 2K

<C ZZK(I p— up)ﬁ(zK) pﬁ(g ) é—kap(gk K)f(aJrl)PJrl.

k=0
Since k(x) < cflm(fx) by (3.4.1), we conclude
(B1) <CpZ R@E) PRSP = ¢, Zf"“ P,
k=0 k=0
which is convergent if p > 1/(1 + w;). Note that

1 14wy
<
1+WI 1+2w1

< p1 <p.
For (B;), we obtain similarly that
o0 axr, x)| < 2K P Kk 25)/P = nny

<C 2K/P*K/<;(2K)1/P*1gﬁ (ﬁ) (3.4.5)
- SN o

and, moreover,
- ~1 1—p¢e—k 2K\
(B,) < C, Z— (A AP R (gk)
< Cp Z é-k(lfp)clfkp
k=0
which was just considered. Hence, we have proved that

/ / lopa(xy, x)|Pdxidx; <Cp,  (p1 < p=<1).
™41 Jan

The integral over 41; x (T \ 41,) can be handled with a similar idea. Indeed, let
us denote the terms corresponding to (A), (B), (By), (By) by (A)), (B'), (By), (Bj).
If we take the integrals in (A”) over
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AL x [N G+ DRSO G =165 /2 -1,

then we get in the same way that (A’) is bounded if p > 1/(1 + «). For (B}), we
can see that

=3 [ /
: ; 41 'I[‘\ 7m ZK ,71' ZK) :|

&

o
sup |0n1 ,12a(x1,xz)| dx;dx,
5/~+1 ”1<5/< J(ny, nz)e]R

<C 2’%(2’()2*2—’(/’/ ) )
o ) )]

( : p
sup nl/ —dt2> dx,.
L N5 lxy — ot

E/‘“ <n1< J(ny,n2)eR?

oo

Thus

o 2K \ TP
(B}) < Cp Y £77k(25)! 7k (W)

k=0

Xy — mr(2K) /2|7 @+ Dr gy,

f“[-ﬂ-ef)'m(m

¢

LS p—1
<CPZ£ kg (2K)1-p (§k>

k=0

00
—kp k(1—
SCpZ£ pcz( P)

k=0

)
=C, Z gk(wz*wzpfp)

k=0
and this converges if p > w,/(1 + w»), which is less than

14wy

< .
2+UJ2 =

Using (3.4.5), we establish that
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(@=2L%ﬂ®¥@”

v p
Sllp i03|,n2a(xlax2)| dxl dx2

2K 2K "
Wf"l < {Tq(nl n2)€RY

0 2]( -1 2]( P
<C, > 27k <€—k> 2K Ky mrehry (?)

k=0

o0
—kp k(1=p)
SQ,Z& Pey .
k=0

Hence
/ / lotatxr, x)|" dxidx, <C,  (pr<p<D.
41, JT\GI

Integrating over (T \ 41;) x (T \ 41,), we decompose the integral as

/ / ‘Uga(xl,x2)|p dx;dx;
™AL JT\4L

e} P
/ / Sup |0n1,nza(x17 x2)| d.x1 d_xZ
T\41, JT\4I, n\>2K (n, ’"Z)ER‘Z-,T

+/ / sup log . a(xr, x2)|" dxidx;
T\41; JT\4L ny<2K,(n1,np)eRY

=:(C) + (D).

IA

Notice that

2K 1 k(2K)/2—1 Ti+1)2K

CEDS |
i=1  j=1 g

Forx; € [7i2™ X, 7 + D2 %) and x, € [7jc¥)~"!, n(j + Dr(2¥)™"), we have
by (3.3.2) and (3.3.5) that

T(j+1)K@K)!
/ sup |08 a(xy, x2)|? dxy dx;.
T

ni,ny
i2-K jr(2K)! n>2K

1
o a(x1, x2)| < C,,z"/P/-;(zK)l/P/ dt,

ny,n
- p niln = 0]

1
——dn
/12 ng|x; — ot

2K/p+Kal€(2K)l/p+u

— b apaiatl ja+tl
ninyi J

2K/p,§(2K)1/p

< pW (3.4.6)
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Then
2K 1 k(25)/2—1

1
(€)=Cy Z Z i@t jatDp <
i1

J=1

it p>1/1+ ).
To consider (D) let us define A (xq, x2), A>(x1, X2), D,l“,n2 (x1, x2), D,z“,n2 (x1, x2)
and D> (x, x») as in (3.3.6) and (3.3.9), respectively, and let I} = [—pu, pu], I, =

np,ny

[—=v, v]. Then

|A1(xr, w)| < 2K/ K 28YVP Ay (g, xp)| < 2K/P K28V (3.4.7)

Obviously,
1
/ / sup ID,, n,(x1, X2)|” dx1 dx;
T\; JT\AL g <2K, (ny,mp)€RY |
o0
1
<y [ / sup Dy, (X1, X2)|7 dixy dx
k=0 T\41; JT\41, %f”l<%}f»("la"2)ERﬁ',’
oo k(2K)/2—1 T(j+1KQK)!
DI N |
- ’er ’lTk . —
im0 o ISk ] Jriseo
sup D), (x1, x2)|” dxy dxy
n1<2K,(n|,ng)eRj£vT
oo #(25)/2-1 A+ DR
<
=3 SN N
k=0  j=I [—TKTK] mjr2%)
sup |Dy, (61, x2)|7 dxy doxs
n1<2K,(ny,ny)eRe
=: (Dy) + (D2).

It follows from (3.3.5), (3.3.10) and (3.4.7) that

i
ID,, 4, (X1, X2)]
1 ng+1+ll(C*1)

< C2K/P=Kgkyl/p=2
=Gy %) 20 — o g — @00

2K\ 7O oK (+H14+a(C-1)
(#) (%)

|x1 _ N|a+l j(a-H)(l—() )

< szK/[)fKK(zK)l/p*?ri’(OH’l)(lfO

where 0 < ¢ < 1. This leads to
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o k(2K)/2-1

(Dl)SCpZ Z / o 2K (I=p=ap) QK p(=2H(@+D(1=0) chap
k=0 j=I T\[_%K’;LK]
Sk \ PHa+D(E=1)
oy ()
_ —(a+Dp
1 = pl parn—0 dx,
0o K(2K)/2—1 —kp2+(a+1)(¢—1))

IA

K(1—p—ap) ckap (ckny—K\—(a+1) p+1 €1
B S SR S S
k=0  j=I

00 £(25)/2-1 ¢hO1=p=1p@+a+1 (1)

Cry D PO ’
k=0 j=1

IA

which is convergent if

> ! and p > ;
l+w2+ (a+DEC-1) (a+ D=0

p

After some computation, we can see that the optimal bound is reached if

. o — Wi + awq
Tl a4w +aw’

¢

which means that
1+w;

> .
P = 120,

Considering (D;), we estimate as follows:

(+1+a(C-1)
1 K/p—K K\1/p—2 2
IDyy, oy (X1, X2)| < C)2 K(27) M, — p[@rD(=0
<2K>C+1+0(C—l)
R\ Zr
< C2KIP K P2+ 1-0g—k _\&)
< C,2K/P k25 £ )

and

co K(2K)/2—1

(D) =<Cp Y.
k=0 j=1

2K

R\ Zx
K . AK\p(—2+(a+1)(1=0) ¢—kp (5
f[_m k]z £(27) 3 jp@FDI=0)

)p(2+(a+l)(C—1))

dx1
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oo k(2X)/2-1 gh=p=w1pQ+@+D(C=D)

<G

k=0 j=I

<,

jP(a+l)(l—C)

as above.
The term D?  can be handled similarly. We obtain

ny,ny

2
/ / sup |Dy, 0y (X1, X2) P dxydxy < C)
T\41, JT\41 ny<2K ,(ny,n2)eRd

I+ wp
24wy

if

p >

Using (3.3.3), we estimate Dslm in the same way as (C) in (3.4.6). Now the
exponents of n; and n, are non-negative and so they can be estimated by 2% and
%(2%) as in (3.4.6). This proves that

/ / \Uf:a(xl,xz)|p dxidx, < Cp
™4 JT\AL

which completes the proof. ]

Remark 3.4.8 In the d-dimensional case, the constant p; appears if we investigate

the terms corresponding to D,il’nz and Drzl]’nz. Indeed, let ]_[;{21 I; be centered at 0

and the support of the atom a, A be the integral of a, I; =: [—p;, u;] and

7. {NﬁjeH;
J

4. jeH

Hc{l,...,d},H#@,H#{l,...,d}. If we integrate the term

/H Ayt [ ] K G =) [T K (i — 1)
JjeHC 1/'

jeH ieH®
over 1—[;1_21 (T \ 41;), then we get that

Djenwi2t D jene Wil
ZjeH wja+2 ZjeH‘ Wil

p >

Moreover, considering the integral



146 3 Rectangular Summability of Higher Dimensional Fourier Series

/ / loga(x)|?” dx,
H/EH(T\4Ij) l_[jer 41;

P> Zjeij»z
Djen Wizt D jencwit

we obtain

However, this bound is less than p;.

Remark 349 If w;| =w;, =1forall j =1,...,d, then we obtain in Theorem
3.4.7 the bound

d 1
max § ——, .
d+1 a+1
In particular, this holds if k; =7 forall j =1,...,d, i.e., if we consider a cone.

This bound was obtained for cones in Theorem 3.3.4.

Corollary 3.4.10 If0 <a <land1 < p < o0, then

lo2 £, < CollFll,  (F € Ly(T).

‘We obtain similar results for the Riesz means (cf. Theorem 3.3.7). The details are
left to the reader.

Theorem 3.4.11 If0 < a < oo, v € Pand

1

- <
a/\1+1}<p_oo,

max{pl,

then
loe 7 £, < Col Flg — (f € Hy (M),

Corollary 3.4.12 Suppose that0 < o < ocoand~y € P. If 1 < p < oo, then
lox 2 fll, < Col fllp (f € Lp(TD).
Corollary 3.4.13 If0 < « < 1, then

sugpA(a,‘jf >p) <Cllfli  (f € Li(T9.
p>

If0 < < ocoand~ € P, then

sur))p)\(gg'“/f >p) <Cllfli  (f € Li(T9.
p>C
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Corollary 3.4.14 Suppose that f € L(T¢). If0 < o < 1, then

lim off=f ae
n— o0, neRY

If0 < a<ooandy € P, then

lim o f=f oae
n—o0, n€RY

In the two-dimensional case, Corollaries 3.4.13 and 3.4.14 were proved by Gat
[119] for Fejér summability. In this case, he verified also that if the cone-like set
R? _is defined by 7;(n,) instead of 7; and if 7;(n;) is not bounded, then Corollary
3.4.14 does not hold and the largest space for the elements of which we have almost
everywhere convergence is L log L. This means that under these conditions Theorem
3.4.7 cannot be true for any p < 1.

35 H, (T?) Hardy spaces

For the investigation of the unrestricted almost everywhere convergence of the rect-
angular summability means, we need a new type of Hardy spaces, the so-called
product Hardy spaces.

Fix ¢ € S(R) such that fR (x)dx # 0. We define the product radial maximal
function, the product non-tangential maximal function and the hybrid maximal func-
tion of f € D(T) by

VI = sup (8 @ @ 1,) ()]
1;€(0,00),i=1,....d
Yo () = sup |(f>;<(¢tl ®"'®¢u))()’)}
1;€(0,00),|x; —yi|<t;,i=1,....d
and
Yy (F)(x)

= sup |(f % (b ® - @Yy, ® Yy, @+ R Py,))(X)
t€(0,00),k=1,..., d;k#i

)

respectively, ( =1, ..., d).

Definition 3.5.1 For 0 < p < oo, the product Hardy spaces H,(T¢), product weak
Hardy spaces H), o (T¢) and the hybrid Hardy spaces H},(T¢) (i = 1, ..., d) consist
of all distributions f € D(T¢) for which

1, = [wi(H], < oo
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1 N, = (O], 00 < 00

and

1 Wy o= ||¢§‘,.(f)||p < 0.

The Hardy spaces are independent of 1);, more exactly, different functions v); give
the same space with equivalent norms. For f € D(T9), let

Pi(f)(x) = sup |(f * (P, ® - ® P,) ()],
1,€(0,00),i=1,....d
PI(NH(x) = sup |(f * (P, ®--® P,) ()|
t;€(0,00),|x; —y;|<t;,i=1,....d
and
P (f)(x)
= sup (f*(P,® - ®P,_ ®P,, ® - ®P))x)|,
t€(0,00),k=1,....d;k#i
respectively (i =1, ..., d), where the Poisson kernel P;, was defined before Theo-

rem 2.4.14. The next theorems were proved in Chang and Fefferman [54, 55], Gundy
and Stein [155] or Weisz [346], so we omit the proofs.

Theorem 3.5.2 Let0 < p < oo. Fixy € S(R) such that fR1/)(x)dx # 0.Then f €
Hp(']I‘d) ifand only if 5 (f) € Lp(']I‘d) or PI(f) € L,,(']I‘d) or P5(f) € Lp(Td). We
have the following equivalences of norms:

1A e ~ 195 (O ~ IPEOTp ~ 1P (D p-

The same holds for the weak Hardy spaces:

1A s, ~ 195 (D lpoe ~ IPEpoo ~ 1P (lp.co

and for the hybrid Hardy spaces:

Il ~ IPS(OI,  G=1,....d).

As we can see from the next theorem, in the theory of product Hardy spaces, the
hybrid Hardy spaces H 1’, (T?) will play the role of the L;(T%) spaces in some sense.

Theorem 3.5.3 If1 < p < ooandi =1, ...,d, then H,(T?) ~ H}(T%) ~ L,(T¢)
and

1A, < Wl < W flle, < Cp ILFI, -

For p =1, Hi(T%) C H{(T%) C H{,,(T*) N L{(T) and
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1Al < Ul (f € Hi(TY),
If . < Clflly  (f € H{(TY).

Definition 3.5.4 The set L(log L)¢~!(T¢) contains all measurable functions for
which

l1£10og® £, < oo
Theorem 3.5.5 Hf (T > L(log L)d_l(Td)for alli =1,...,d and
I£lg < C+C[If1Qog* 1D, (f € Ldog L) '(T?).

A straightforward generalization of the atoms would be the following:

(i) suppa C I, I C T¢ is a rectangle,
(i) flallo < 117"/,
(i) [pa(x)xfdx; =0, foralli=1,....d.

However, the space H p(Td ) do not have atomic decomposition with respect to these
atoms (see Weisz [327]). The atomic decomposition for H), (T%) is much more com-
plicated. One reason of this is that the support of an atom is not a rectangle but
an open set. Moreover, here we have to choose the atoms from L,(T¢) instead of
Loo(T?).

First of all, we introduce some notations. By a dyadic interval we mean one of
the form [k27", (k + 1)27") for some k, n € Z. A dyadic rectangle is the Cartesian
product of d dyadic intervals. Suppose that F C T¢ is an open set. Let M (F) denote
those dyadic rectangles R =1 x S C F, I C T is a dyadic interval, S ¢ T¢" ! is a
dyadic rectangle that are maximal in the first direction. In other words, if I’ x § D R
is a dyadic subrectangle of F' (where I’ C T is a dyadic interval) then I = I’. Define
M, (F) similarly. Denote by M (F) the maximal dyadic subrectangles of F in the
above sense.

Recall that if 7 C T is an interval, then I is the interval with the same center as
I and with length r|I| (r € N). For arectangle R=1; x ... x I; C T¢ let rR :=
rly x ... x rl;. Instead of 2" R we write R" (r € N).

Definition 3.5.6 A functiona € L,(R?) isan H p-atom (0 < p < 1) if

(i) supp a C F for some open set F C T¢ with finite measure,
(i) llall, < |F|'/> VP,
(iii)) a can be decomposed further into the sum of “elementary particles” ag €

LZ(Rd)7
a = Z agr,

ReM(F)
satisfying

(a) suppag C 5R,
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(b) forall R € M(F),i =1,...,d and almost every fixed
xl"'~7-xi—laxi+1?'-'axd’

[antontax =0 k=0..... M) = 2/p 3720
T

(c) for every disjoint partition P; (I € P) of M(F),

2\ 1/2

Y1 ax < |F|Elr,

leP ||ReP,; 2

Theorem 3.5.7 A distribution f € D(TY) is in Hp(Td) 0 < p <1)ifand only if
there exist a sequence (a*, k € N) of H p-atoms and a sequence (i, k € N) of real
numbers such that

o0 o0
Sl <oo and Y max = f in D(TY).
k=0 k=0

Moreover,

00 1/p
£ 11, ~ inf (me) :

k=0
where the infimum is taken over all decompositions of f.

The result corresponding to Theorem 2.4.19 for the H,(T%) space is much more
complicated. Since the definition of the H,-atom is very complex, to obtain a usable
condition about the boundedness of the operators, we have to introduce simpler atoms
(see also the definition right after Theorem 3.5.5).

Definition 3.5.8 A functiona € L,(T9)isasimple H,-atom or arectangle H,-atom
if
(i) supp a C R for arectangle R C T¢,
(i) llalla < [RIV*1P,
(i) [pa()xfdx; =0fori=1,...,d,k=0,...,M(p) = [2/p —3/2] andfor
almost every fixed x;, j =1,...,d, j #1.

Note that H, (T?) cannot be decomposed into rectangle p-atoms, a counterex-
ample can be found in Weisz [327]. However, the following result says that for
an operator V to be bounded from H,,(Tz) to L,,(’]I‘z) (0 < p < 1), it is enough
to check V on simple Hp-atoms and the boundedness of V on L,(T?). We omit
the proof because it can be found for all dimensions in Weisz [332, 346] (see also
Fefferman [98]).
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Theorem 3.5.9 Let d =2, 0 < py <1, K, € L\(T?) and V,f = f*K, (ne
N2). Suppose that there exists 1 > 0 such that for every simple H,,-atom a and
foreveryr > 1

/ [Vial’dX < C,277,
T2\R

where R is the support of a. If V.. is bounded from L,(T?) to L,(T?), then

IVifllp < Cpllflln,  (f € Hy(T?)

forall po < p <2.
Note that Theorem 2.4.16 holds also for H,(T?) spaces with a very similar proof.

Theorem 3.5.10 IfK € L (T¢), 0 < p < oo and
klim fi = f inthe H,,(']I‘d)-norm,
— 00

then
klim fixK = fxK inD(T?.
—00

Corollary 3.5.11 [fpy < 1in Theorem 3.5.9, then forall f € H(T?) andi = 1,2,

sup p A(IVif1 > p) < Cll fll i

p>0
Proof Using the preceding theorem and interpolation, we conclude that the operator
V. 1is bounded from H,,,oo(Tz) to L,,,OO(TZ)

when pg < p < 2. Thus, it holds also for p = 1. By Theorem 3.5.3,

Sugﬂ/\(lV*fl > p) = Vaifllioo = Cllf Il = Cllf Il
p>

forall f € HI(T?),i=1,2. (]

Note that for higher dimensions, we have to modify slightly Theorem 3.5.9, Corol-
lary 3.5.11 as well as the definition of simple H ,-atoms (see Weisz [332, 346]).
3.6 Almost Everywhere Unrestricted Summability

For the almost everywhere unrestricted summability, we introduce the next maximal
operators.
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Definition 3.6.1 We define the unrestricted maximal Cesaro and unrestricted max-
imal Riesz operator by

og f == sup |oy f]

neNd
and
o7 f = sup |oy 7 f1,
neNd
respectively.

For o« = v = 1, the operator is called unrestricted maximal Fejér operator and
denoted by o, f.

We will first prove that the operator o< is bounded from L ,(T%) to L,(T9) (1 <
p < o0) and then that it is bounded from H,,(Td) to Lp(Td) (1/(a+1) < p<1).
To this end, we introduce the next one-dimensional operators.

Definition 3.6.2 Let
T f(x) = fx|K7| (x),

TEVF(x) = f x| K27 (%)

and

’

o = spl f
neN

T f = sup |70 £
neN
Obviously,
loy fl=71fl mneN) and olf <7]|fl

The same holds for the operators o7 and 7" . The next result can be proved similar
to Theorem 3.3.4.

Theorem 3.6.3 [f0 <a <land1/(a+ 1) < p < o0, then
|7 £, = Coll fll,  (f € Hy(D)).
Proof 1t is easy to see that
|72/l < Clifloe (f € Loo(T)).
Let a be an arbitrary H,-atom with support / C T and

[—m2 K2 727 K21 c 1 c[—m27 K71 p2 K1,
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Then

A

271 w4127k
/ ITea(x)|P dx < Z/ sup 7% (x)|” dx
T\41, m

lil=1 i2—kK n>2K

27 -1 ax(i41)27K
+> / sup |7%a(x)|? dx
e

lil=1 i2-K n<2k

. (A) + (B).

Using (3.3.2) and (3.3.5), we can see that

|Tta(x)| = Va(t) |KS(x —1)| dt
1

1
<C ZK/”/—dt
— P 7 na|x _t|a+l
K/
SCP2 pi(y-H
and
2K_1
—KnK
(4)<c, Y 272 <r = Cr

i=l1

as in Theorem 3.3.4.
To estimate (B), observe that by (iii) of the definition of the atom,

a(x) = /,a(t) K2 (x — 1)] dt = /Ia(z)(|K;*(x = 0| = |kl ) dr.

Thus,
I7a(x)| < /la(t)|‘K,?(x - K,‘:(x)‘dt.
1

Using Lagrange’s mean value theorem and (3.3.3), we conclude

Ko =0 - Ke@| = & @ - o] 1

C2 kK
- na—l|x_£|a+l - jotl ?

where ¢ € I and x € [mi2™X, (i + 1)27X). Consequently,

K K 2K
mrato| = €20 T

153
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and
2K

1
—K~HK
(B)<C, Y 27*2% o <,
i=1

which proves the theorem. |
We can verify in the same way

Theorem 3.6.4 I[f0 <a <o0o,vyePand1/(aAnl+1) < p < oo, then

|77 ), < Coll fllm, — (f € Hp(T)).
The next result can be obtained by interpolation.

Corollary 3.6.5 Suppose that1 < p < o00.If0 < o < 1, then

Sugp)\(ﬁ?f >p) =Clflh (f € Li(T)
p>

and
|7 £, < Coll £ll,  (f € Lp(D)).

If0 <o < ocoand~y € P, then

Sugp/\(Tf”f >p) =Clflh (f € Li(T)
p>

and
|77 7, < Coll fl, (€ Lp(T).

Now, we turn to the higher dimensional case and verify the L p(T" ) boundedness

X,
of 0% and 0.

Theorem 3.6.6 Suppose that 1 < p < o00. If0 < o < o0, then
log £, < Collfll,  (f € Lp(T).
If0<a<oo,vyePandl < p < oo, then
loe7 £, < Coll fll,  (f € Lp(T).

Proof For 0 < a < 1, let us apply Corollary 3.6.5 to obtain
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[/ sup //f(fl,tz)Kff,(Xl—fl)K,?z(xz—tz)dtldtz
T JT ny,neN|JT JT

Lo

T JT nyeN

/ sup

T n1€N

ng// sup

T JT neN

sc,,//|f<xl,xz>|"dxl dxs.
TJT

p
dxy dx,

P
/f(fl, K, (x1 —t)dn ) |Ky (o — 1) dl‘z) dx, dx,
T

p
dx1 dX2

/ ft, x2)K, (x1 —t)dn
T

The inequality for 1 < o < oo follows from Lemma 3.1.9. The result for 05" can

be proved in the same way. ]
The next result is due to the author [331, 332].

Theorem 3.6.7 If0 <a <ocoand1/(a+ 1) < p < oo, then
lot I, < Coll flm,  (f € Hy(Th).

Proof By Theorem 3.1.8,

< C (3.6.1)

a—s a+1
n; |7]

(CHNT

forO0 < o < s+ 1,n; € Pandr € T,t # 0.Chooseasimple H,-atom a with support
R = I, x I, where I, and I, are intervals with

2kt <278 (K eN,i=1,2)

and
[-m2~ K72 m2= K2 c I, ¢ [-m27 Kt 27K,

We assume that r > 2 is an arbitrary integer. Theorem 3.6.6 implies that the operator
o¢ is bounded from L,(T%) to L,(T%). By Theorem 3.5.9, we have to integrate

*
|crfa |P over

T2\R’=(T\1{)x12U(T\1;)x(T\12)
Uh x (T\IZ’)U(T\II) x (T\ I}).

First, we integrate over (T \ I]) x I»:
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/ /|afa(x1,x2)‘p dx; dx
™5 1

5/ sup }a;ya(xl,x2)|p dx)dx;
™ J I

> n>2K1,n,eN

/ / sup U;a(xl,xz)]p dxy dx,
TNAI J I ny<2K1 nmpeN

2511 r D2k
Z / / sup |0,‘,’a(x1,x2)|p dxidxs
T I,

i —K K
. 127k >2Kj
lij]=2r2 1 ny>2%1 neN

2611 42K
+ Z / / sup |U,‘fa(x1,x2)|p dx;dx;
I

liy|=2r-2 mi 27K > ny<2K1,neN

1 (A) +(B).

IA

Here we may suppose that i; > 0. For k,/ € Nlet Ago(x) := a(x),

X2

X1
Aqo(x1, x2) 3=/ a(t,x)dt  Ag1(x1, x2) 1=/ a(xy,u)du

—T —T

and
X2

X1
Api(x, x2) 1=/ Akfl,l(t1x2)dt:/ Api—1(x1, u)du.

-7 -

By (iii) of the definition of the simple H,-atom, we can show that supp A;; C R
and Ay ;(x1, x2) is zero if x; is at the boundary of /; or x; is at the boundary of /, for
k,1=0,....,.M(p)+1 (i =1,2), where M(p) > |2/p — 3/2]. Moreover, using
(ii), we can compute that

|Aa], < ILFH2YP |G kD=0, M(p)+1).  (3.6.2)

We may suppose that M (p) > o+ 1 and choose N € N suchthat N <a <N +
1.Forx; € [mi;27%, @iy + D275, 1y € [=m2~ K~ 1 727 K1=1) inequality (3.6.1)
implies

CnN*DzzKl(a-H)

[(KH)™ (xy — )] < = (3.6.3)
1
and N+1 Ki(a+1)
Cn —ank, a+
(KN () — 1) =« ——f—. (3.6.4)

31

Integrating by parts, we can see that
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|0,‘:a(x)| =

f / Anoltr, (K2 (e — 1)K (v — 1) diy di
L JI

CnN—(yzKI(OH—l)
<1t = / dt
I

- ca+1
I

/ Ano(t, R) K (x2 — 1) dty

b

whenever x| € [7i;27%1, 7(i; + 1)27X1). Hence, by Hélder’s inequality and (3.6.3),

2611
2K1(N+1)p
7K]
(4) = Cf’ Z 2 i(a+l)l’
1

il =2r—2

[ ([ sw
I 1 ﬂzEN

281 S K ((N+Dp=1)

<Gplnl'™” )

i =22

p
// sup dtydxy | .
I, JI neN

Using again Holder’s inequality and the fact that o is bounded on L,(T), we con-
clude

p
dl‘l) dx;

/ Ano(t, ) K, (x2 — 1) d
L

(a+1)p
I

/ Ano(t, 2Ky (xa — ) di

L

2K1 -1
2K (N+Dp=1)
1=p/2 sz
(4) < Gyl > N

i =22 1

[ ([ sw
1] IzﬂzGN

2K1 1
2K (N+1)p=1)
1-p/2
= Cplh| Z ;@+Dp

i =22 1

5 1/2 P
(f (/ |Ano(t, x2)| dx2> dtl) .
n \Jn,

Then (3.6.2) implies

p

5 12
de) dn

/ Ano(t, ) K, (xa — 1) dt
I
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1—p)2 2! P 2K\ (N+1)p—1)
-p -Kyp/2Z 000
W =iy 2

1

ij=2r-2

5 r/2
(//|AN,O(H,X2)’ dxzdtl)
nJn

2K1—1

1
—r((a+1)p—1)
<G Y pre e :
i1=2r-2 "1

To estimate (B), we use (3.6.4):

2K1—1
2K I(N+2)p
- l
B =C 2 2N ey

11_2r 2

f / sup
I I npeN

2K
2 K1 (N+2)p—1)
1-p/2
= Gylhl Z <a+1>p

=r=2

/ / sup
1, I, n,eN

p
fAN+10(tl,l2)K (x2 — ) dh dtl) dx,

p

) 12
dXQ> dt

/ Any10(t, DK (x2 — ) dy

and

291 S K ((N+2)p-1)

1-p/2
(B) = Cplbl Z ; @+ Dp
n=22 h

5 1/2 r
(/ ( |An+1.0(11, x2)| dxz) dl1)
I I

2 2KI(N+2)p=1)

1=p/2 —Kip/2
= Glb Z 2 ;@+Dp
i1=2r-2 1

p/2
</ |An41.0(1, x2)| dxzdt1>
L JI

2K1 -1

1

—r((a+1)p—1)

= Cp Z (a+)p = sz :
ll=2r—2 1

Next, we integrate over (T \ I]) x (T \ I):
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« p
f / ‘U*a(xl,xz)’ dx;dx,
™41 JT\I
5/ / sup ‘a a(xl,x2)| dx; dx;
T4, J T\ 0, >2K1 ny>2K2
p
~|—/ / sup ‘U;Ya(.XI,XQ)’ dxidxs
T\4I; JT\I n;>2K1,n,<2K2
+/ / sup |a,?a(x1,x2)|p dxy dx;
T\41; JT\Iy ny<2K1,ny>2K2

+/ / sup lota(xr, x2)|” dxi dx,
T\41, JT\L, n,<2X1 n,<2K2

=:(C)+ (D) + (E) + (F).
We will only consider the term (D):

211 2K 7r(i1+1)2‘K‘/ﬂ'(i2+1)2_K2

(D) < Z f

—2r2 |ip]=1 1271

7Tl'227K2

sup |a a(xl,x2)| dx;dx,,
n1>2K1 ,ny <252

where we may suppose again that i; > 0 and i, > 0. Integrating by parts,

lota(x)]

C2KI N+ Ka(N+2)
< TR / / | Ay n41(t1, 0)| dty dty.
ll li L J
Thus
2K1 -1 2K2 1 2K (N+1)po Kr(N+2)p
—K1~—K
(D) < Cp Z Z 2 2 L(a+1D)p . (a+Dp
i1=2r-2 ip=1 h b2

)4
<//‘AN,N+1(tlat2)|dtldt2>
L JI

2812821 2KI(N+D)p=1) 9 K> (N+2)p—1)

- / Ayt KD G — 1)KV (e — 1) diy dry
nJn

—Kip/24—K>p/2
= Cl’ Z Z 2 2 i(a+l)pi(a+l)p
1 2

i1=2r-2 ip=1

2 p/2
<//|AN,N+1(1‘1J2)| dtldt2>
nJn

159
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2Ki—1 2K2]
1

Scp Z Z (a+l)pi(a+l)p
2

=22 =1 U

< sz—r((a+l)p—l)'

All other integrals can be handled in the same way. Consequently,
/ |a:a(x1, x2)|p dx;dxy < CPZ_’((“H)”_”,
T2\R"

which finishes the proof of the theorem. |
Theorem 3.6.8 [f0 < a <oo,y € Pand 1/(a+ 1) < p < 00, then
loe £l < Coll Flla,  (f € Hy(TD).

Proof Similar to (3.3.13), fors e N,n; e Pandt € T, ¢ # 0, we have
(s)
—

The theorem can be proved as Theorem 3.6.7. ]

=

a=8121a041"
n; |7

Corollary 3.5.11 implies

Corollary 3.6.9 Let f € Hf (T?) for somei =1, ...,d. If0 < a < oo, then

sup pA(o f > p) < Cll fllpi-

p>0

If0 <o < ocoand~y € P, then

sug pNo [ > p) < Cl fllgi-
P>

By the density argument, we get here almost everywhere convergence for func-
tions from the spaces Hj (T?) instead of L;(T?). In some sense, the Hardy space
H 1’ (T?) plays the role of L (T¢) in higher dimensions.

Corollary 3.6.10 Let f € H{(T?) for somei =1,...,d. If0 < a < oo, then
limo)f=f ae
n—00

If0 <o < ocoand~y € P, then

lim o) f=f ae
n—00
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The almost everywhere convergence is not true for all f € L,(T%).

A counterexample, which shows that the almost everywhere convergence is not
true for all integrable functions, is due to Gat [119]. Recall that

Li(T% > HI(TY) > LAog LY"(T) > L,(T%) (1 < p < 00).

3.7 Rectangular 6-Summability

In this section, we introduce some new function spaces and then we generalize the
rectangular Cesaro and Riesz means. As we will see in Definition 3.7.4, instead
of condition (2.6.2), we have to suppose here that # : RY — R is a d-dimensional

function and o o
k k
DS ‘9<_1,__.,_d>‘<oo 3.7.1)
ni ng

k1:—00 kd:—OO

foralln € PY. We will see that it is more convenient to suppose that 6 is in the Wiener
algebra W(C, ¢, )(RY). All summability methods considered in the literature satisfy
the condition 8 € W (C, £;)(R?).

Definition 3.7.1 A measurable function f : RY — R belongs to the Wiener amal-
gam space W (Lo, £1)(RY) if

I IwLwen =D, sup |f(x+k)| < oo.

kezd €0,

The smallest closed subspace of W (L, £1)(R?) containing continuous functions is
denoted by W(C, £;)(R?) and is called Wiener algebra.

Lemma 3.7.2 If1 < p < oo, then
W(Loo )R C L,RY)  and | fll, < I flwiewen-

Moreover, W (Lo, £1)(R?) is dense in LP(Rd)for 1<p<oo

Proof For p = oo, the statement is trivial. If 1 < p < oo, then

1/p
= E 7]
”f”p (kezd /k+[(),1)d /@)l x)

1/p
s(Z sup If(x+k)|”)

ke ¥€0,1)¢
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<Y swp |fx+D)
kezd X€10.D4

=1 llwwe.e) -

Since W (L, £1)(R?) contains the space of continuous functions with compact sup-
port, W (Lo, £1)(R?) is dense in L,,(Rd) if 1 <p<oo. [ |

The Wiener amalgam spaces and Wiener algebra are used quite often in Gabor
analysis, because they provide convenient and general classes of windows (see,
e.g., Walnut [323] and Grochenig [152]).

Theorem 3.7.3 (a) If0 € W(C, £,)(R?) then (3.7.1) holds.

(b) If the one-dimensional function 0 is continuous and |0| can be estimated by an
integrable function 1 which is non-decreasing on (—oo, ¢) and non-increasing
on (c, o) then € W(C, £1)(R).

(c) There exists 0 ¢ W(C, £1)(R) such that (3.7.1) holds.

Proof 1t is easy to see that

o0 oo

d
Yooy ‘9(%%)‘52 []ni] sup 160Gx+0)
kij=—00 ky=—00

teze \j=1 ) xelo-D?

d
= l_[”j 10llwc,ey < o0, (3.7.2)
=1

which shows (a). Under the conditions of (b), [|0lwc.c,) < I7ll1-
To see (c), let & > 0 be continuous and even on R, 6(0) := 0,

1
Ox):=0 if j+ —<x<j+1 (jeN)
J+1

and |
[j?}lfne B (e R).
Then 6 € L;(R),
=1
10llwc,e) =2 2 Pl 00

and

= k SR | 1
Z‘a( )‘szz,_”;m (n e N).
P n+1 j+1j+1

j=0

This finishes the proof of Theorem 3.7.3. |
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Definition 3.7.4 Suppose that § € W(C, £,)(R?). For f € L;(T¢) and n € N, the

nth rectangular #-means ag f of the Fourier series of f and the nth rectangular
6-kernel K? are introduced by

—k —ky\ ~
ol f(x) = ZZG(H—II n—d"> Flk)etts

k[EZ kdEZ
and
[4 . _kl _kd k-t
K=Y Yol )
ni ng
ki €Z kq€Z
respectively.

By Theorem 3.7.3, the 6-kernels K? and the f-means o f are well defined. We
suppose often that
0=0Q®- - ®0,

where §; € W(C, ¢)(R) foralli =1, ...,d. Then 8 € W(C, £,)(R?) and
) ) )
Ki=kKk!'® @K

Lemma 3.7.5 Suppose that 6 € W(C, L)(RY). For fe L1(T%) and n € N?, we
have

1
(2m)d

ol fx) = / flx =K @)dt.
Td

The 6-means can also be written as a convolution of f and the Fourier transform
of 6 in the following way.

Theorem 3.7.6 If6 € W(C, £,)(RY) and 0 € L,(R?), then

d
Uﬁf(x): Hnj /f(x—t)@\(nltl,...,ndtd)dt
]Rd

j=1

for almost every x € T and for alln € N? and f e L,(T?).

Proof If f(t) = %" (k € Z¢,t € T), then

—k —k
Ugf(x) =0 (—1, e —d> etk

ni ng

— etk~x
R4 :

J

d
e tkiti/n; g([) dt
=1
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d

= l_[nj / ety L ngty) dt.
. R4
j=1

Thus, the theorem holds also for trigonometric polynomials. The proof can be finished
as in Theorem 2.2.30. u

We extend again the definition of the rectangular -means to distributions.

Definition 3.7.7 Suppose that § € W(C, £;)(R?). For f € D(T¢) and n € N?, the
nth rectangular §-means ¢? f of the Fourier series of f are given by

ol f=fxkl.

3.7.1 Feichtinger’s Algebra S (R%)

Theorem 3.7.6 is a fundamental result, so the condition e L1 (R%) is of great impor-
tance. In this subsection, we give some sufficient conditions for a function 6 to satisfy
6 € Li(R?). In contrary to the other sections, we do not prove all results here. Some
of them are presented without proof. Several such conditions are already known. The
next one can be found in Bachman, Narici and Beckenstein [15, p. 323].

Theorem 3.7.8 [f 0 € L\(R) is bounded on a neighborhood of 0 and @\Z 0, then
0 € Li(R).

Obviously, € is bounded on a neighborhood of 0 if § € L, (R) or € is continuous
at0. Moreover, if @ € L{(R) has compact support and 6 € Lip(«) for some ov > 1/2,
then 6 € L (R) (see Natanson and Zuk [244, p. 176]).

Now we introduce a Banach space, called Feichtinger’s algebra, the Fourier trans-
forms of the elements of which are all integrable. This space was first considered in
Feichtinger [100].

Definition 3.7.9 The short-time Fourier transform of f € L,(R?) with respect to a
window function g € L,(R?) is defined by

1
@2m)?

S f(x,w) = /}RI fgt —x)e™'dr  (x,weRY.

Definition 3.7.10 Let go(x) := e ™3 be the Gauss function. We define the
Feichtinger’s algebra So(R¢) by

So(RY) 1= {f e PR 1 fllsy = |Seo |, ey < oo}.
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Any other non-zero Schwartz function defines the same space and an equivalent
norm. It is known that Sy(R¢) contains all Schwartz functions. Moreover, Sy(R?)
is isometrically invariant under translation, modulation and Fourier transform (see
Feichtinger and Zimmermann [100, 106]). Actually, So(R¢) is the minimal Banach
space having this property (see Feichtinger [100]). Furthermore, Feichtinger’s alge-
bra is a subspace of the Wiener algebra, the embedding Sy (RY) — W(C, £))(RY) is
dense and continuous and

So(RY) € W(C, £1)(R) N F(W(C, £1)(RY)),

where F denotes the Fourier transform and F(W(C, £;)(R?)) the set of Fourier
transforms of the functions from W (C, £,)(R?) (see Feichtinger and Zimmermann
[106], Losert [223] and Grochenig [152]). Let us define the weight function

v == (1+wl3)”  weR:seR).

Theorem 3.7.11 (a) If0 € Sy(R?), then 0e So(RY) € Ly (RY).

(b) If6 € Li(R?) and 0 has compact support, then 6 € So(RD).

(c) If0 €L, (R?) has compact support and 6 € L(R?), then § € So(RY).
(d) If Qvy, st € Ly(RY) for some s > d, then § € Sy(R?).

(e) If Oug, Ovg € Loo(RY) for some s > 3d /2, then 0 € So(RY).

For more about Feichtinger’s algebra see Feichtinger and Zimmermann [100,
106]).

Sufficient conditions can also be given with the help of Sobolev, fractional Sobolev
and Besov spaces. We do not give a detailed description of these spaces. For the
interested readers, we refer to Triebel [313], Runst and Sickel [267], Stein [289] and
Grafakos [143]. The Sobolev space W} (R?) (1 < p < 00, k € N) is defined by

WERY) := {6 € L,(R") : D“0 € L,(R"), |a| < k}

and endowed with the norm

10wy == D 1D,

lor| <k

where D denotes the distributional derivative.

This definition can be extended to every real s in the following way. The fractional
Sobolev space q,(Rd ) (1 < p <o00,s € R) consists of all tempered distributions ¢
for which

1611z, =7~ (A +1-»7?8)], < oo,

where F denotes the Fourier transform. It is known that
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LRY) =WER?Y) if s=keN and 1<p<oo

with equivalent norms.
In order to define the Besov spaces, take a non-negative Schwartz function ¢ €
S(R) with support [1/2, 2] that satisfies

Z Y(@27*s) =1 forall seR\{0}.
k=—00
For x € R?, let
oe(x) == @ |x]) for k=1 and go(x) =1 - di(x).
k=1

The Besov space B,, (R?) (0 < p,r < 00, s € R) is the space of all tempered dis-
tributions f for which

o 1/r
||f||3;_,. = (Z oksr ” (f—|¢k) * f“;) < Q.

k=0

The Sobolev, fractional Sobolev and Besov spaces are all quasi-Banach spaces, and
if 1 < p,r < oo, then they are Banach spaces. All these spaces contain the Schwartz
functions. The following facts are known: in the case 1 < p, r < oo, one has

W' ®RY, B, ,(RY) — L,R?) if s>0,meN,

Wit R — B (R — WIRY)  if m<s<m+1, (3.7.3)
B, ,(R) < B, (R, B (RY) < B} (RY) if ¢>0, (3.7.4)
BN (RY) — BYP(RY) — CRY)  if 1< p; < py < o0 (3.7.5)

For two quasi-Banach spaces X and Y, the embedding X < Y means that X C Y

and [| flly < CIl fllx.
The connection between Besov spaces and Feichtinger’s algebra is summarized
in the next theorem.

Theorem 3.7.12 We have
(i) If1 < p <2and 9 € B! (R?), then§ € Li(R?) and

191, < € 161l
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(i) Ifs > d, then L5 (RY) — Sp(R?).
(iii) If d’ denotes the smallest even integer which is larger than d and s > d’, then

B} (RY) — W (RY) — Sy(RY).

Proof (i) was proved in Girardi and Weis [130] and (ii) in Okoudjou [250]. The first
embedding of (iii) follows from (3.7.3) and (3.7.4). If k is even, then Wlk (R?) —
Elf (R?) (see Stein [289, p. 160]). Then (ii) proves (iii). [ |

It follows from (i) and (3.7.3) that 6 € W,{ (R?) (j > d/p, j € N) implies 0e
Li(R?).If j > d’, then even wi (R?) — Sp(RY) (see (iii)). Moreover, if s > d’ as
in (iii), then

Bf,OO(Rd) — B{ |(R") — BZ,/{)(Rd) (1 <p<o0)
by (3.7.4) and (3.7.5). Theorem 3.7.12 says that B} _ (R?) C So(RY) (s > d’) and if

we choose 0 from the larger space BZ( 7 (RY) (1 < p <2), then Bis still integrable.

The embedding Wf R) = Sy(R) follows from (iii). With the help of the usual
derivative, we give another useful sufficient condition for a function to be in Sy (IR?).
As usual, we denote by C¥(IRY) the set of k times continuously differentiable func-
tions.

Definition 3.7.13 A function € is in Vlk (R) if there are numbers —00 = ap < a; <
- < a, < ape] = 00, where n = n(6) depends on 6 and

0eC2R), 6eCai,a), 0V eL (R)

foralli =0,...,nand j =0, ..., k. The norm of this space is defined by

k n
161y =Y 169, + 3 [6% Vi@ +0) - 64" (@; — 0)
j=0 i=1

)

where 6%~ (g; 4 0) denotes the right and left limits of #*~1.

These limits do exist and are finite because 8% € C(a;, ai+1) N L (R) implies

0% D (x) = 0% V() + / 00 (1) dt

a

for some a € (a;, ai+1). Since %~V e L (R), we establish that

lim 0% V() = lim 6% P(x) = 0.
X—>—00 X—> 00

Similarly, §%) € Co(R) for j =0, ...,k —2.
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Of course, W} (R) and VZ(R) are not identical. For § € VZ(R), we have 6 = D0,
however, 0" = D*@ only if lim,_,, 400 (x) = lim,_,,_00'(x) (i = 1,...,n).

Theorem 3.7.14 We have VZ(R) — Sp(R).

Proof Integrating by parts, we have
Sg,0(x, w)
1 -
= —/ O(t)go(t — x)e "' dt
2w R

ai+1

l « :
=5 Z / O(t)e ™IV e gt
T 4 a
—lwt ai+1
- _Z 10 i —
109

- —Z / - 9 (t)e ™ _ 2710 (1)e T (1 — x))

—lwt

dt.

—lw

Observe that the first sum is 0. In the second sum, we integrate by parts again to
obtain

1 « / 77T([7.)C)2 77T(I*X)2 eiwﬂ a
Sufr,w) = 5- 3 (9 ()e —270()e (t — x)) >
i=0 aj

Ai+]

- Z / 9”(t)e—”<’—x>2 — 470 (t)e ™ (¢ — x)

e*lwf

dt.

— 2761 (—zwe*ﬂ'ﬂ)z (t—x)* + e*ﬂf*”z)) :
w

The first sum is equal to

e lwai

1 . / ’ —7(a;—x)*
gé?(@(ai+0)—9(ai—0))e @=2f

w?

Hence

/ f 1S, 0(x, W)l dx dw < Cs[10]]y2.
lw|=1}

On the other hand,

// [Sg,0(x, w)|dx dw < C; // /IG(I)|go(t—x)dtdxdw
R J{jw|<1} {lwl<1} JR

< G181z,
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which finishes the proof of Theorem 3.7.14. |

The next Corollary follows from the definition of Sy (R?) and from Theorem
3.7.14.

Corollary 3.7.15 Ifeach0; € Vi(R) (j =1,...,d), then

9=91®"'®9d€SO(Rd).

3.7.2 Norm Convergence of the Rectangular 0-Means

First, we investigate the L,(T%)-norm convergence of oﬁ fasn—> o0 (ne N%) in
Pringsheim’s sense.

Theorem 3.7.16 If € W(C, £,)(R?) and 6(0) = 1, then

lim to = f inthe Ly(T¢)-norm for all f € L,(T%).

n—oo

Proof 1t is easy to see that the norm of the operator
ot Ly(TY) — Ly(T)

can be given by

sup [ fxkil, = swp 7K,
feLy(T9), || fll2<1 feLy(T9), | fll2<1
= sw | 7K},
Feta(Zh), | fll2<1
=&
= sup 9<_—kl_—kd)‘
kezd n ng
<C.

Thus, the norms of aﬁ (n € N9) are uniformly bounded. Since 6 is continuous, the
convergence holds for all trigonometric polynomials. The set of the trigonometric
polynomials are dense in L,(T¢), so the usual density theorem proves Theorem
3.7.16. ]

Now, we give a sufficient and necessary condition for the uniform and L (T¢)
convergence 03 f—f.

Theorem 3.7.17 If0 € W(C, £;)(R?) and 6(0) = 1, then the following conditions
are equivalent:



170 3 Rectangular Summability of Higher Dimensional Fourier Series

(i) 0 e Li(RY,
(ii) o f — f uniformly forall f € C(T%) asn — oo andn € N,
(iii) 0! f(x) — f(x)forallx € T and f € C(T¥) asn — oo and n € N,
(iv) Uﬁf — finthe L{(T%-norm forall f € Li(T% asn — oo andn € N¢,
v) sz — f uniformly for all f € C(T?) asn — oo andn € R,
(vi) azf(x) — f(x) forall x € T and f € C(T% asn — ocoandn € Rf,
(vii) o f — finthe L\(T%)-normforall f € L (T¢) asn — oo andn € R?.

Recall the definition of R? from (3.3.1).

Proof We may suppose thatd = 1, since the multi-dimensional case is similar. First,
we verify the equivalence between (i), (ii), (iii) and (iv). If (i) holds, then by Theorem
3.7.6,

lotfle < Ifls 0], (fec(m,neN)

and so the operators o, : C(T) — C(T) are uniformly bounded. Since (ii) holds for
all trigonometric polynomials and the set of the trigonometric polynomials are dense
in C(T), (ii) follows easily. (ii) implies (iii) trivially.

Suppose that (iii) is satisfied. We are going to prove (i). For a fixed x € T, the

operators
U,:C(T) - R, U,f:=0c"f(x) (meN)

are uniformly bounded by the Banach-Steinhaus theorem. We get by Lemma 3.7.5

that { 1
Uydl= —— [ IK)(x —1)|dt = K’ eN).
U, (27r)d/T| MEEE) (%)dll | PO )
Hence
sup K}l < C.
neN

Since Kfl) is 2m-periodic, we have for a < n/2 that

2am S _ nm > _
/ l Z 9<_k)ettk/n th/ 1 Z e(_k>ezlk/n dt
—2an N n —nm N n
k=—00 k=—00
)
T —k !
=/ Z 9(—) e\ dx
7 | oo n
= f IK?(x)|dx < C. (3.7.6)
T

For a fixed t € R, let

1 & —k
hn p—— o — itk/n
()=~ k;w ( - )e
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and

> —k
On(t,u) := Z 6 <7> ¢k s ().

k=—00

It is easy to see that
lim @, (t, u) = 0(—u)e'™.
n—0oQ

Moreover,
(o]
lon(t, )l < Y sup [0(x =1 = Dl 141 ()
I:_ooxe[o,l)
and
0o 00 o)
|3 s 166 -1 Dltg@du= Y sup 166 ~1 = D)
—00 ;__ o, X€[0,1) 1= —o00 X€l0,D

= 10llw(c.e))-

Lebesgue’s dominated convergence theorem implies that
oo

lim On(t, u)du = / O(—u)e'™ du = 2m)0(1).

n—o0 J_

Obviously,
oo
/ on(t, u) du = hy(1)

o0
and so N
lim h,(t) = 2m)%0@).
n—oo
Of course, this holds for all + € R. We have by (3.7.2) that

lhn (] < 10llwc.e)-

Thus , ,
lim/ |hn(t)|dt=(27r)d/ 0(1)| dr.

2am —2am
Inequality (3.7.6) yields that
2am .
/ 0(t)| dt <C  forall a>0
—2am

and so
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/oo |§(t)| dr < C,

which shows (i).
If 6 € L (R), then Theorem 3.7.6 implies

lo?f 1, < 1£1: 8], (f € Li(T),n € N).

Hence (iv) follows from (i) because the set of the trigonometric polynomials are
dense in L (T). The fact that (iv) implies (i) can be proved similarly as (iii) = (i),
since, by duality, the norm of the operator 03 : L1(T) — L(T) is again

6 6
lonll = %1,
It is easy to see that the equivalence between (i), (v), (vi) and (vii) can be proved
in the same way. u

Note that the statement (i) < (ii) was shown in the one-dimensional case by
Natanson and Zuk [244] for 6 having compact support. The situation in our general
case is much more complicated and can be found in Feichtinger and Weisz [103].
One part of the preceding result can be generalized for L, (T?) spaces.

Theorem 3.7.18 Assume that 6(0) = 1, 0 € W(C, £,)(R?) and 9 e Li(RY. If1 <
p<ooand f € L,,(Td), then

sup o, |, < CIIfIl,
neN

and
lim aﬁf =f inthe Lp(Td)-norm.
n—00

Proof For simplicity, we show the theorem for d = 1. Using Theorem 3.7.6, we
conclude

7is0 = s =n [ (£6=0 = £ d
R

=f (f <x—5>—f(x)>§(r)dt
R n

p _ A Y
H%f—f”,,—/RHf( n) 10!

The theorem follows from the Lebesgue dominated convergence theorem. ]

Since 6 € Sy(RY) implies § € W(C, £;)(R%) and § € Sy(R?) C L, (R?), the next
corollary follows from Theorems 3.7.17 and 3.7.18.

6(t)| ar.
p
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Corollary 3.7.19 If0 € So(R?) and 6(0) = 1, then

(i) ozf — f uniformly forall f € C(T¢) asn — oo andn € N¢,
(ii) sz — finthe L{(T%-norm forall f € Li(T% asn — oo andn € N¢,
(iii) UZf — f in the LP(Td)-normfor all f € L,,(’IF") (1<p<o0)asn— o0
andn € N¢.

The next corollary follows from the fact that 6 € So(R?) is equivalent to e
L1 (R?), provided that § has compact support (see, e.g., Feichtinger and Zimmermann
[106]).

Corollary 3.7.20 If6 € C(R?) has compact support and 6(0) = 1, then the follow-
ing conditions are equivalent:

(i) 0 € So(RY),

(ii) O’Zf — f uniformly for all f € C(T%) asn — oo andn € N¢,

(iii) Ugf(x) — f(x)forallx €e T and f € C(T?) asn — oo and n € N¢,
(iv) azf — finthe Ll(Td)—normfor all f € Li(T% asn — oo,

(v) O'Zf — f uniformly forall f € C(T*) asn — oo andn € Ri,

(vi) sz(x) — f(x)forallx e T and f € C(T%) asn — oo andn € R‘Tl,
(vii) sz — finthe Li(T%-norm forall f € Li(T%) asn — oo andn € Rf.

3.7.3 Almost Everywhere Convergence of the Rectangular
0-Means

Definition 3.7.21 For given «, 7 satisfying the conditions given in Sect.3.4, we
define the restricted maximal §-operators by

0 ¢ . 0 04 . 0
on.zsup‘onf, o.f = sup }anf|.
neR? neRd

The unrestricted maximal #-operator is defined by

Jff = sup |03f|.

neNd

In this subsection, we suppose that
00)=1, 0=0®--®0;, 0;€e WCtHR), j=1,...,d.
(3.7.7)
For the restricted convergence, we suppose in addition that

10; e W(C,L)HR), j=1...,d. (3.7.8)

Here 7 denotes the identity function, so
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I(x)=x and (Z0;)(x) =x0;(x).

Similar to (2.6.6), assume that ’éj is (N + 1)-times differentiable (N > 0) and there
exists
N <pB;<N+1

such that ‘ 4
0,)" 0| < ClxI (x £0) (3.7.9)
J

fori = N,N+1landallj=1,...,d.

Theorem 3.7.22 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.

If
{ d : =1 d} <
max\y——, >———, =1,..., < < 00,
d+1 B;+1 J p
then
lotfll, = Coll fllgp  (f € HY(@).
Moreover,

sugpA(a"Df >p) <Clfli (f € Li(T%).
p>

Proof Inequality (3.7.2) implies that

0
2

< Cl’lj (n_i e N).

Similarly,

o]

2

k=—00

k k
(2
nj nj

from which we get immediately that

‘ (k)
J

<n;||Z6, wa,zl) <o (njeN),

<Cn; (n; €N).

By Theorem 3.7.6,

K'?f, (x) = 27mn; Z 9\1 (nj(x+2km)  (xeT

k=—o00

as in (2.2.34). From this, it follows that
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0; C
ki@ = ——— @#0
nj/ x|t
and c
0\
K,,’.) X)) < ——— x #0).
(ki) T ©#0
The proof can be finished as in Theorem 3.3.4. ]

Corollary 3.7.23 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.
If f € Li(T%), then
lim UZ f=f ae
n— o0, neRY

Combining the proofs of Theorems 3.7.22 and 3.4.7, we obtain

Theorem 3.7.24 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.

If
1
max{phﬂ—_H,j:I,...,d} < p < o0,
J
then
lolF 1, < Coll fllug  (f € HF(T).
Moreover,

supp Al f > p) < Clflli  (f € Li(T9).

p>0
We recall that p; was defined in (3.4.4).

Corollary 3.7.25 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.
If f € Li(T%), then

lim azf =f ae
n—o00, neRy

For the unrestricted convergence, we can allow more general conditions for 6.
The next theorem can be shown as Theorems 2.6.7 and 3.6.7.

Theorem 3.7.26 If each 0; satisfies (2.6.2) and (2.6.3), then
lolf]l, < CollFllu, — (f € Hp(Th)

for 1/2 < p <oo. If (3.7.7), (3.7.8) and (3.7.9) are satisfied, then the preceding
inequality holds for
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In both cases .
sup pAOLf > p) < Cliflly  (f € H{(TY)
p>

foralli=1,...,d.

Corollary 3.7.27 Under the conditions of Theorem 3.7.26,
lim o’f =f ae
n—o00

forall f € Hli(Td) andi=1,...,d.

Note that these results are proved in Weisz [332, 333, 335].

3.7.4 Some Summability Methods

Itiseasy toseethatf € V12 (R) C Sp(R) for all examples 2.6.13-2.6.20 of Sect.2.6.3
and Example 2.6.21 (the Riesz summation) with 1 < a < co. Moreover, in Example
2.6.21, 0 € Sp(R) for all 0 < o < oo. In the next examples, 6 has d variables and
0 € Sp(RY).

Example 3.7.28 (Riesz summation]). Let

=) if el < 15 d
0(’)_{0 il >1  FERD

for some (d — 1)/2 < a < 00, v € P (see Fig.3.4).

Example 3.7.29 (Weierstrass summation). Let
0(t) = B2 or g1y =€ (1 € RY)

(see Fig.3.5). In the first case g(x) — ¢~ ¥13/2 and in the second one, a(x) =cq/(1+
[|x113) @172 for some ¢4 € R (see Stein and Weiss [293, p. 6.]).

Fig. 3.4 Riesz summability
function withd =2, a =1,
v=2
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Fig. 3.5 Weierstrass
summability function

0(1) = e~ I113/2

<5 \
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.
RS
OO TR SN
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<>

Fig. 3.6 Picard-Bessel
summability function with
d=2
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Example 3.7.30 (Picard and Bessel summations). Let

1

s d
A+ppana <R

Oo(t) =
(see Fig.3.6). Here @)(x) = cge I for some ¢y € RY.

Lemma 3.7.31 Let0 € W(C,£)(R), Z6 € W(C, £;)(R) and 0 be even and twice
differentiable on the interval (0, c), where [—c, c] is the support of 0 (0 < ¢ < 00).
Suppose that

lim x0(x)=0, lim § €¢R, lim ¢ €R and lim x¢(x)=0.
0 x—>—+0 XxX—00

x—>c— x—c—0

If 0" and max(Z, 1)0” are integrable, then

o~ C 12 C
ol =5 @) @=5  «zo,

i.e, (3.7.9) hold with N = 0 and 3; = 0.

Proof By integrating by parts, we have

—~ 2 ¢
0(x) = —/ O(t) costx dt
27T 0

1
=— [ 0(t)sintxdt
™ Jo

-1 1 ¢
= —[0'(t) costx]y + — / 0" (t)costx dt.
mx2 wx2 Jo
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Similarly,

@' = = / " 10() cos tx di
27T 0

1 C
— / (t0(t)) sintx dt
™ Jo

-1 1 ¢ "
—[(t6(2)) costx] + —/ (t0(r)) costxdt,
mx2 mx2 Jo

which proves the lemma. ]

Note that all examples 2.6.13-2.6.21 satisfy Lemma 3.7.31, (3.7.7), (3.7.8) and
(3.7.9). Thus, all results of Sects. 3.7.2 and 3.7.3 hold.
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