Chapter 2 ®)
{,-Summability of Higher Dimensional Guca i
Fourier Series

Here, we study the theory of multi-dimensional Fourier series. In the first section,
we introduce different versions of the partial sums of the d-dimensional Fourier
series and the corresponding Dirichlet kernels, i.e., the cubic, triangular, circular and
rectangular partial sums and Dirichlet kernels. We show that the cubic, triangular and
rectangular partial sums converge in the L, (T)-norm to the function (1 < p < o0).
The multi-dimensional version of Carleson’s theorem is also considered.

The summability of Fourier series can be generalized for higher dimensions basi-
cally in two ways. In this chapter, we study the £,-summability of higher dimensional
Fourier series. As in the literature, we investigate the three cases ¢ = 1, ¢ = 2 and
q = oo. The other type of summability, the so-called rectangular summability will be
investigated in the next chapter. For each type, we investigate the Cesaro and Riesz
summation. In Sect.2.2, we present the basic definitions of the £,-summability and
prove some estimations for the £,-Cesaro and Riesz kernels. In the next section, we
prove that the £,-Cesaro means and £,-Riesz means of f € LP(TI“’) (1<p<o0)
converge to f in the L ,(T¢)-norm.

In Sect.2.4, we prove the basic results for Fourier series of distributions. We
introduce the Hardy spaces H E (T?) and present the atomic decomposition of these
spaces. We verify also sufficient conditions for an operator to be bounded from
H E (T9) to L,(T¢). Applying this result, we show that the maximal operator of the

£,-Cesaro and Riesz means are bounded from HpD (T9) to L,(T¢) for any p > p,
where py < 1 is depending on the summation and on the dimension. This result
implies the almost everywhere convergence of the summability means. In Sect. 2.6,
we introduce a general summability method, the so-called §-summability generated
by a single function 6 and prove similar results for the £,-0-means. In the last section,
as special cases, we present some summability methods, such as the de La Vallée-
Poussin, Jackson-de La Vallée-Poussin, Rogosinski, Weierstrass, Picard and Bessel
summations.
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34 2 £,-Summability of Higher Dimensional Fourier Series

2.1 Higher Dimensional Partial Sums

In this section, we generalize the results of Sect. 1.2, we introduce four types of partial
sums of the d-dimensional trigonometric Fourier series and study their L , (T¢)-norm
and almost everywhere convergence of a function f € L ,,(']I‘d ).

We introduce the following notations. For x = (x,...,x4) € R? and u =
@y, ..., ug) € R set

d d 1/p
wex =y wxe, lxll, = (Z |xk|") (1<p<o0)
k=1 k=1

and
Ixlloo := sup Ixil,  [x|:=|xll>.

AAAAA

Definition 2.1.1 The functions
d
etk-x — l_lelk/xj
j=1

are called d-dimensional trigonometric system, where k = (ki, ..., k) € 74, x =
(x1,...,x4) € T?.

Definition 2.1.2 For an integrable function f € L;(T¢), its kth d-dimensional
Fourier coefficient is defined by

1

f(k)=m

/ fe ™ dx (ke Z%).
Td
The formal trigonometric series

> Fets  (xeT?)

kez4

is called the d-dimensional Fourier series of f.

We will generalize the one-dimensional partial sums in Definition 1.2.2 for higher
dimensional functions in two ways. In the first generalization, we take the sum over

the indices |k||, < n instead of k = —n, ..., n, where 1 < g < co. These sums
are called £,-partial sums. In the second generalization, we take the sum in each
dimension, i.e., over the indices |k;| < ny, ..., |ks| < ny. Here, we call the sums

rectangular partial sums. The most natural choices ¢ =2, ¢ = 1, ¢ = 0o and the
rectangular partial sums are investigated in several papers and books (for g = 2, see
e.g. Stein and Weiss [290, 293], Davis and Chang [76], Grafakos [143, 145, 146],
Lu and Yan [229], Feichtinger and Weisz [103, 104], for ¢ = 1, Berens, Li and Xu
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[30-32, 356], Weisz [336, 337], for g = oo, Marcinkiewicz [233], Zhizhiashvili
[366], Weisz [332, 342, 346], for the rectangular sums, Zygmund [367] and Weisz
[332, 342, 346]).

Definition 2.1.3 For f € L(T%, 1< g < oo and n € N, the nth £,-partial sum
sp f of the Fourier series of f and the nth ¢,-Dirichlet kernel Dj; are given by

sife) = Y. Floet

keZd, |Ikllg<n

and

Di(u) := Z etk

keZ, |lklly<n
respectively.
The next lemma follows easily from the definition.

Lemma 2.1.4 Foralln e N, 1 <qg <ooandt € T4, we have
DY) < Cnl

The partial sums are called triangular if ¢ = 1, circular if ¢ =2 and cubic if
q = oo (see Figs.2.1,2.2,2.3 and 2.4).

Definition 2.1.5 For f € L,(T¢) and n = (ny, ..., ng) € N%, the nth rectangular
partial sum s, f of the Fourier series of f and the nth rectangular Dirichlet kernel

D,, are given by
snf ()= Y e Y flyet”

lki|<ny |kal<na

and

qg=1 q=2 q=0c°

Fig. 2.1 Regions of the £, -partial sums for d = 2
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Fig. 2.2 The Dirichlet kernel Df withd =2, =1,n =4

Dy(u) = Y o Y et

[ki=<n; [ka|=<nq
respectively.

Similar to (1.2.1), we obtain

Lemma 2.1.6 For f € L1(T%) andn € N,

spf(x) =

or )d/ f(x —1)Dl(t)dt

and

1
50 = G / fx — D) dr.

It is clear that
Dn(u) = Dm (ul) et Dn[,(ud),

where D, is the one-dimensional Dirichlet kernel (see Fig.2.5).

Definition 2.1.7 For some n = (n1, ..., ny) € N, the function
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Fig. 2.3 The Dirichlet kernel D} withd =2, =2,n =4

nj

Z i e (x e T

k1:—n1 kd:—nd

is said to be a trigonometric polynomial.

37

By iterating the one-dimensional result, we get easily the L ,-norm convergence

for the rectangular partial sums.

Theorem 2.1.8 If f € LP(Td)for some 1 < p < oo, then

sup [lsa fll, < Cpll fllp

neNd

and
inthe L, (T9)-norm.

lim s, f = f

n—0oQ
Here, n — 0o means the Pringsheim convergence, i.e., min(ny,

Proof By Theorem 1.2.10,

..., Ng) = O0.
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Fig. 2.4 The Dirichlet kernel D{ withd =2,q9 = oo, n =4

Fig. 2.5 The rectangular Dirichlet kernel withd = 2,n; =3,n, =5
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/ I5o f COI? dix
T

2/ /(/ f(f)Dnz(Xz-i-l‘z)dfz) D,, (x; + 1) dt
T [Jr \JT

SCp/'/ S @)Dy, (x2 + 1) dty
T|JT

P
dX]

14
dty.

Again by the same theorem,

//|snf<x)|f’ dxldxzscp/f
TJT TJT

stf/If(t)lp dnydn,
TJT

which gives the desired inequality of Theorem 2.1.8. The convergence is a conse-
quence of this inequality and of the density of trigonometric polynomials. |

14
dx, dty

Af(t)Dllz(xz + t2) dlZ

In the next theorem, we present the norm convergence of the triangular and cubic
partial sums. We omit the proof since it can be found at several places of the literature
(see e.g., Fefferman [93], Grafakos [143] or Weisz [346]).

Theorem 2.1.9 Ifg =1,00and f € L,,(’]I‘d)for some 1 < p < 00, then
sup s |, < Coll £,
neN

and
lim s7f = f inthe L,(T?)-norm.
n—o00

If ¢ = 2, then the same result is valid for p = 2.

Since the characteristic function of the unit ball is not an L ,,(Rd) I<p#2<
00, d > 2) multiplier (see Fefferman [95] or Grafakos [143, p. 743] or Lu and Yan
[229, p. 743]), we have

Theorem 2.1.10 Ifd > 2,q =2and 1 < p # 2 < 00, then the preceding theorem
is not true.

The analogue of Carleson’s theorem holds also for the triangular and cubic partial
sums in higher dimensions (see Fefferman [93, 94] and Grafakos [143, p. 231]), but
it does not hold for the circular and rectangular partial sums.

Definition 2.1.11 We denote by
sTf = sup|s,‘1’f|
neN

the maximal operator of the £,-partial sums.
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Theorem 2.1.12 [fg = 1,00and f € L,,(Td)for some 1 < p < oo, then

[s£1, = Coll £l

and if 1 < p < oo, then
lim s/f=f ae
n—oo

Theorem 2.1.12 does not hold for circular partial sums (see Stein and Weiss [293,
p- 268]).

Theorem 2.1.13 If g =2 and p < 2d/(d + 1), then there exists a function f €
L ,,(Td) whose circular partial sums s, f diverge almost everywhere.

This means that for a general function in L ,,(Td) (p < 2) almost everywhere
convergence of the circular partial sums is not true if the dimension is sufficiently
large. It is an open problem, whether Theorem 2.1.12 holds for p = 2 and for cir-
cular partial sums. A counterexample, which proves the next result, can be found in
Fefferman [94].

Theorem 2.1.14 There exists a continuous function f such that for the rectangular
partial sums s, f,

lim s, f(x) = f(x)
does not hold for any x € T.

The generalization of Theorem 1.2.13 for higher dimensions was proved by
Antonov [8].

Theorem 2.1.15 [fg = oo and

/w | £ ()1 (og® | f () log* log* log™ | £ (x)| dx < oo,

then
lims?f=f ae
n—oo

2.2 The {;,-Summability Kernels

As in the one-dimensional case, Theorems 2.1.8, Theorem 2.1.9 and the inequality
in Theorem 2.1.12 do not hold for p = 1 and p = oo. Using a summability method,
we can extend the theorems to p = 1 and p = oo again. Now we introduce the £ -
summability means and kernels and show some results for the kernels. We concentrate
on the two-dimensional kernels.
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Definition 2.2.1 For f € L{(T9), 1 < g < oo and n € N, the nth ¢,-Fejér means
on f of the Fourier series of f and the nth ¢,-Fejér kernel K,/ are introduced by

ol = Y (1—W>ﬂk>e’“

n
keZ?, |kll,<n
o Il
- q 1kt
Ki):= > (1— . )e ,
keZd, |kllg<n
respectively.

We generalize this definition as we did for the one-dimensional Fourier series and
introduce the £,-Cesaro means.

Definition 2.2.2 Let f € L;(TY),n € N,a > 0and g = 1 or ¢ = co. The nth ¢,-
Cesaro means oy “ f of the Fourier series of f and the nth ¢,-Cesaro kernel K,
are introduced by

1 _~
opt f(x) = a0 Z Ar(lel—”k”qf(k)elk.x

n=1 gezd, k|, <n

and

( | .
K@ =3 Do At

=1 kezd, k), <n

respectively.

We also call the Cesaro means £,-(C, o)-means. For o =1, we get back the
£4-Fejér means and for a = 0, the £,-partial sums. We introduce also a second
generalization of the Fejér summation. For the circular summability (i.e., for g = 2),
we will investigate rather this generalization.

Definition 2.2.3 For f € Li(T%, 1< qg <oo,neNand0 < a,y < oo, the nth
¢,-Riesz means o7’ f of the Fourier series of f and the nth ¢,-Riesz kernel K;7"*"
are given by

q,a,y . ”k”q N\~ 1k-x
o1 f(x) = Z == Fke

keZd, |Ikllq=n
and o
, k|l :
Kz,a,v(t) — Z <1 _ (_‘1 otk 3
n
keZd, ||kl <n

respectively.
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Fig. 2.6 The Fejér kernel K,! withd =2, =1,n =4

We will always suppose that 0 <a < o0, 1 <v<oo. If a=7v=1, we get
back the £,-Fejér means. In the case g = 2, let v € N. If o = 0, we get the partial
sumsandifg = v = 2, o > 0, the means are called Bochner-Riesz means. The cubic
summability (when g = 00) is also called Marcinkiewicz summability (see Figs. 2.6,
2.7,2.8,2.9 and 2.10).

The following two lemmas follow the definition.

Lemma2.24 Let0 <a,v<ooandn € N. If g =1 or g = oo, then

1
(2m)d

/ KI“(t)dt = 1.
Td

If1 < q < oo, then

1
K& @t)ydt = 1.
(2m)d /Td w0
Lemma 2.2.5 Under the same conditions as in Lemma 2.2.4,
K@) < Cn?  and |KPT(0)] < Cn? (€T,

Proof We have



2.2 The ¢,-Summability Kernels 43

25

20

15 I

10 /I \

10

. P “‘ | =

-9 > ‘: Nl “9:.0022-
4 :-‘:: = 22555

-4 -4

Fig. 2.7 The Fejér kernel K,! withd =2,q = oo, n =4

1 1<
" .d—1 d
K0l = 43 Y A, < C YA = cnt
n—1 keZd, |k, <n n—1 i_q
Nkl =
The second inequality can be shown in the same way. ]
One can easily see that

Lemma 2.2.6 Let f € L(T¢),n e Nand0 < o,y < 00.Ifqg = 1 or g = oo, then

q,x — _ q,x
ot f(x) = any /w flx =K (1) dt.
If1 < g < oo, then
1
q,a, _ _ q,a,y
o fx) = o /w fx =K (1) dr.

Lemma 2.2.7 For f € L(T%), o > 0, q =1,00andn € N, we have

n—1
DAL st f()

1 j=0

oy f(x) =

«
n—
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Fig. 2.8 The Fejér kernel K,/ withd =2,q =2,n =4

and

K

n—1
« 1 a—1 q
) = e JZ_O AWH.DJ. ().

Proof Since | k|, is an integer, Lemma 1.4.8 implies that

Ko =

which shows the lemma.

Obviously, the £,-Fejér
when g = 1, oco:

1
« 1kt
Yo Ariue

«
n=1 ez, Ikl <n
-1
1 n
_ a—1 1kt
= X > D
n=1 ez, k|, <n j=Ikll,
1 n—1
— a—1 q
= DAL D),

n—1 j=0

means are the arithmetic means of the £,-partial sums
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Fig. 2.9 The Bochner-Riesz kernel K;"® withd =2, g =2, n=4,a=1,y=2

n—1
1
ol f(x) == sl fx).
-
Similar to Lemma 1.4.13, we have

Lemma 2.2.8 Fora > —1,q = 1,00 and h > 0, we have

n

1 T

q,a+h £ __ § h—1 4« q,

Oy f_ A(H_h An—kAkflo—k :
n—1 k=1

The proofs of the results presented later are very different for the casesg = 1, 2, co
because the kernel functions are very different. In the next subsections, we give some
estimations for the kernels. Since we will prove later the results basically for d = 2,
we present these estimations in the two-dimensional case.
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Fig. 2.10 The Bochner-Riesz kernel K,'® withd =2,g =2, n=4,a =1/2,y =2

2.2.1 Kernel Functions for q =1
For the triangular Dirichlet kernel, we need the notion of the divided difference,
which is usually used in numerical analysis.

Definition 2.2.9 The nth divided difference of a one-dimensional function f at the
(pairwise distinct) knots x1, ..., x, € R is introduced inductively as

— [xlv"'axn—]]f_ [x25 -*-7xﬂ]f

X1 — Xp

[x(]f == fx0), [x,....x]f:

One can see that the difference is a symmetric function of the nodes. The following
theorem is proved in DeVore and Lorentz [82, p. 120]), so we omit the proof.

Theorem 2.2.10 We have

Zn S (xe)
[ AR ] l‘l] = n . (2.2.1)
ol = = G = %))

If f is (n — 1)-times continuously differentiable on [a, b] and x; € [a, b], then there
exists £ € [a, b] such that
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o

[x1, ..., x,1f = TEETE

(2.2.2)

To give an explicit form of the triangular Dirichlet kernel, we will need the fol-
lowing trigonometric identities.

Lemma 2.2.11 Foralln e Nand0 <x,y <,

> e cos(ky) sin((n — k + 1/2)x)
k=0
cos(x/2) cos((n + 1/2)x) — cos(y/2) cos((n + 1/2)y)

= sin(x/2) y—— (2.2.3)

and

> e cos(ky) cos((n — k + 1/2)x)
k=0
sin(y/2) sin((n + 1/2)y) — sin(x/2) sin((n + 1/2)x)

= cos(x/2) cosx —cosy , (224

where g :==1/2and ¢, := 1, k > 1.

Proof By trigonometric identities,

> e cos(ky) sin((n — k + 1/2)x)
k=0

=sin((n + 1/2)x) Z € cos(ky) cos(kx)
k=0

—cos((n+ 1/2)x) Z € cos(ky) sin(kx)
k=0

= % sin((n + 1/2)x) Z <€k cos(k(x — y)) + e cos(k(x + y))
k=0

1 n
— 5 cos((n +1/2)x) 3 (ek sin(k(x — v)) + e sin(k(x + y))).
k=0

Similarly to (1.2.2), we can show that

. cos(x/2) —cos((n +1/2)x)
Z € sin(kx) = 3sin(x/2) .

k=0

Using this and (1.2.2), we conclude
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n

Z e cos(ky) sin((n — k + 1/2)x)
k=0

= %sin((n +1/2)x) <

sin((n +1/2)(x —y)) = sin((n +1/2)(x + y)))
sin((x — y)/2) sin((x + y)/2)
1 cos((x — y)/2) —cos((n + 1/2)(x — y))
-2 cos((n+1/2)x) ( S (G —9)/2)
+1 cos((x +y)/2) —cos((n + 1/2)(x + y)))
4 sin((x + y)/2) ’

Since

sin((n + 1/2)x) sin((n + 1/2)(x — y))
+ cos((n + 1/2)x)cos((n +1/2)(x — y)) = cos((n + 1/2)y)

and

sin((n + 1/2)x) sin((n + 1/2)(x + v))
+cos((n + 1/2)x) cos((n + 1/2)(x + y)) = cos((n + 1/2)y),

we conclude that

n

Z e cos(ky) sin((n — k + 1/2)x)

k=0
_ 1 cos((n+1/2)y) — cos((n + 1/2)x) cos((x — y)/2)
T4 sin((x — y)/2)
n lcos((n + 1/2)y) — cos((n 4+ 1/2)x) cos((x + y)/2)
4 sin((x + )/2)
L cos((n+ 1 /2)y)(sin((x £ )/2) +sin((x — y) /2))
T4 sin((x — ¥)/2) sin((x + y)/2)
1 cos((n + 1/2)x)

T Asin((r — ) /2) sin((x £ ) /2)
x (cos((x — ¥)/2) sin((x + ¥)/2) + cos((x + y)/2) sin((x — y)/2))-

Using again some trigonometric identities, we get that

> e cos(ky) sin((n — k + 1/2)x)

k=0
_ 12 cos((n + 1/2)y) sin(x/2) cos(y/2)
2 COSy — COSX
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_ lcos((n + 1/2)x)sinx
2 COSy — COS X
. cos(x/2) cos((n + 1/2)x) — cos(y/2) cos((n + 1/2)y)
= sin(x/2) COSX — COSy '

Formula (2.2.4) can be shown in the same way. |
Define the function G, by
G (cosx) := (—DI=D/22 cos(x/2) (sin x)?2s0c ((n + 1/2)x),
where the function soc is defined by

cos x, if d is even;

S0CX = {sinx, if d is odd.

The following representation of the triangular Dirichlet kernel was proved by Herriot
[165] and Berens and Xu [30, 356].

Lemma 2.2.12 Forx € T¢,

D,i(x) = [cos xq, .. cosxd]G

_ (_1y-n/21 Z cos(xx /2)(sin x;)4~2soc ((n + 1/2)x0) 2.2.5)

]_[j 1.k (€OS X — COS X )

Proof We will prove this lemma for all dimensions because the main idea of the
proof is induction with respect to the dimension. First, we note that the second
equality follows from the definition of G, and from the property of the divided
difference described in (2.2.1). In this proof, let us denote the Dirichlet kernel by
D}Ln (x) := D,i (x). We have seen in (1.2.2) that in the one-dimensional case

1 A _ sin((n 4+ 1/2)x)
R )

=2 cos(x/2)(sinx) ! sin((n + 1/2)x),

thus (2.2.5) holds for d = 1. Suppose the lemma is true for integers up to d and let
d be even. It is easy to see that

1 d+1 . .
Dy ,(x) =2 E €j, COS(j1X1) - -+ €,y COS(Ja+1Xd+1)
JeNe |l jli<n

n
=2 Z €1 coS(Ixg41) Da i (X1, ..., Xq)
1=0
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d . -~
SENCLIS cos (xy./2) (sin x;) "

d
i1 [1=1, 4 (cos xi — cosxj)

n

> ercos(lxgr) cos((n — 1+ 1/2)x),
=0

where ¢y := 1/2 and ¢; := 1,/ > 1. Using (2.2.4), we obtain

d . B
D)y, (x) = —(=DD2a " dCOIS(Xk/Z)(smxk)d 2
, k=1 ]_[j:],j;’;k(cosxk — COSX;)
cos(x/2) sin(xy/2) sin((n + 1/2)x)
d 1 d-2
+ (=Dl=DRIg N dcfls(xkﬂ)(sm )
k=1 Hj:l,j;ék(cosxk —COS x;)

cos(xi./2) sin(xar1/2) sin((n + 1/2)x441)

— —(=D)l@-D/2y (Xd: cos(xi/2) (sin x;)? " sin((n 4 1/2)x;)
k=1 l_[(]i';rll,j#k(cos X — COS )Cj)
— sin(xg+1/2) sin((n + 1/2)xg41) %

d

« 3 (1 4 cos x;)(sin x;)4—2 )

d+1
iy [1551, 24 (cos xi — cos x)

(2.2.6)

Since d is even, the function 4 (¢) := (1 4+ ¢)(1 — t*)¢~2/2 is a polynomial of degree
d — 1. Then, by (2.2.2),

0 =[cosxy,...,cosxs41]h

4 (1 4 cos xp) (sin x) 72 (1 + €8 xg1)(sin xg41)" 2

d+1 d+1
o1 L1521 ju(cosxe —cosx;)  [155) j2aq1(cOSxa41 — COS X))

This and (2.2.6) imply

Xd: cos(xx/2)(sin x,)? ! sin((n + 1/2)xx)

d+1
1521 j 4k (cos xx — cos x;)

(1 4+ cos xg41)(sinxg41)? 2 )

Dji1,0(x) = =(= D101 (
k=1

+ sin(xg41/2) sin((n + 1/2)x4+1)
I—[‘;g’j#dﬂ(cos X441 — COSX;)

— (1)l % cos(xy/2) (sin x;)4 ! sin((n + 1/2)xz)
k=1

d+1 >
]_[J.:Lj#k(cosxk — CcosX;)
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which proves the result if d is even. If d is odd, the lemma can be proved similarly.

As a special case, for d = 2, we get the next corollary.

Corollary 2.2.13 For x € T?, we have

1
D, (x1, x2)
= [cos x1, cos x2]G,,

. 2cos()c1/2) cos((n + 1/2)x1) — cos(xz/2) cos((n + 1/2)x3)

COSX] — COS X2

In what follows, we may suppose that x € T? and 7 > x; > x, > 0. We denote

the characteristic function of a set H by 1y, i.e.,

1,ifx e H;
L) := {0, ifx ¢ H.

Lemma 2.2.14 [fO0 <a <land 7w > x; > xp > 0, then

|K;’Q(X1,X2)| < Cx—x) '(xy +x2)711[x25"/2}

+Cx —x2) 7' — x1 — x2) a2y

Ly <y | KE (x1, 22)|
< Cn(x1 — x2) 7 1+ 22) 7w M y<na)

+Cn g — x2) 7 o+ x) T g a2y,

L, >7/2) |K,i'a(x1, x2)|
<Cn(x —x2) 712 — x1 — x2) 7' Va2

+Cn e — x2) 7@ = x1 = x2) 7w a2y,

Ly <ryay | K (1, x2)| < Cr' ey + x2) ™1y Ly <)

+ C 1+ x2) 7% M <rp)
and

L, >n/2) |K,}’Q(X1,X2)| <Cn'Q2r — x1 — x2) 7' a2

+C2m—x1 —x2) 7% Moy

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)



52 2 £,-Summability of Higher Dimensional Fourier Series
Proof By the trigonometric identity,
cosa —cosb = —2sin((a — b)/2) sin((a + b)/2),
Corollary 2.2.13 can be rewritten as
Dy (x1, x2)
_cos(xl/Z) cos((k + 1/2)xy) — cos(x2/2) cos((k + 1/2)x3)

= . . . (2.2.12)
sin((x; — x2)/2) sin((x1 + x2)/2)

‘We will use that
sin(x; £x3)/2 ~x;£x if xp <m/2

and
sin(x; — x3)/2 ~ x; — X, sin(x; +x2)/2 ~ 27w —x; —xp if x> 7w/2.

By Lemma 2.2.7 and (2.2.12), we can see that

n—1
1 -~
Ky, ) = == > A, 2.2.13)
n=1 k=0

cos(x2/2) cos((k + 1/2)xp) — cos(x1/2) cos((k + 1/2)x1)
sin((x; — x2)/2) sin((x1 + x2)/2)
<2(x; —x2) 7 (xy 4+ x2) <)

+2(x1 —x2) 7' QT — X1 — x2) M anr/)s

which is exactly (2.2.7).
Suppose that x, < 7/2. By (2.2.13) and Lemma 1.4.14,

|Ky (x1, x2)|

«a
An—l

< (x1 —x2) N + a7
n—1 n—1
D AT ccos((k + 1/2)x) | + | D ATl cos((k + 1/2)x1)

> )

<Cn(x —x2) ' F ) T+ O (g — x) T o x) g

+

which shows (2.2.8).
Lagrange’s mean value theorem and (2.2.12) imply that there exists x; > £ > xp,
such that
- HY(©)(x1 — x2)
sin((x) — x2)/2) sin((x; +2)/2)

D} (x1,x2) =
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where
Hi(t) = cos(t/2) cos((k + 1/2)¢).

Then (2.2.10) follows from

= H{ () (x) — x2)
l,a a—1 k
K1l = 2o D A G D st T 12

IA

Cn(x; —x2)(x1 —x2) " '(xy —l—xz)_'(n_ax{a + n_]xgl).

The inequalities (2.2.9) and (2.2.11) for x, > /2 can be proved in the same way. B
The next estimations of the kernel function come easily from Lemma 2.2.14.

Lemma2.2.15 [f0<a<1,0<0<landw > x| > x, > 0, then

30 —1)2
|K,:’a(x1,x2)| < C(x; — x2)7x; / L, <n/2)

+ C(xp — x2) (= x1) " 1y sy, (2.2.14)

Lo<nsa) | Ky @ (1, x2)
- _1-8 _fB—a—1
= Cn a(X] - xz) ! ﬂxé “ 1{xz§7r/2}

+Cn7 o — )7 2y, (2.2.15)

Loy | K% (x1, x0)|
< Cn (x; — x2) " P = x1)P T M ey

+Cn =) @ = ) P e, (2.2.16)

Ly <n/2) ’K,z’&(xla x)| < Cn' x5 M y<n) + Cx3 2 <) (2.2.17)
and

Lysrsay | Ky (p, 20)| < Cn' (= x) 7 M yona)

+ C(m = x1) L ayon/2)- (2.2.18)
Proof The basic facts
X1+ X2 > Xx; — Xxp, X1+ X2 > X

and
2T — X1 — X3 > X1 — X2, 2T —X] — Xy > T — X]
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together with (2.2.7) imply

' _ —1/2
|K1 (e, x| < 2000 = 2720 P g <ay)

+2(x1 — x2) A (m — X1)71/21{XZ>7r/2},
which shows (2.2.14). Since 0 < 8 < 1, (2.2.8) implies
K G| < Cn =)™ g™ g O o =)
if x, < 7/2. The other inequalities can be shown similarly. ]

Lemma 2.2.16 [f0 < a <landm > x; > x, > 0, then

Ly <nyay [ Ky ® (1, 20) |

<C(x — xZ)a_IXEOﬁI l{xzi‘fr/Z} + Cx;zl{mg/z} (2.2.19)
and

Loy |[Ky (1, x2)| < Cxp — x2) 7 — x1) 7™ Mgy
+ C(m = x1) jyor/2)- (2.2.20)

Proof If 3=0and n > (x; — x,)~!, then (2.2.15) implies (2.2.19). On the other
hand, (2.2.19) follows from (2.2.17) if n < (x; — x)~". |

In the next lemma, we estimate the partial derivatives of the kernel function.
Lemma2.2.17 I[f0<a<1,0<f<landm > x; > x, > 0, then for j =1, 2,
L<r/a) [0 Ky (1, 32) |

. —1-8_B—a—1
< Cn' Y (x1 —x2) : ﬂxz “ L, </2)

+Cx —x2) ) P <y (2.2.21)
and

Loy |05 Ky (1, x2)|
<Cn' (1 —x2) (= x) T gy

+ C(x1 —x) (1 — x0)" a2y (2.2.22)

Proof Let x, < w/2. By Lagrange’s mean value theorem and (2.2.12),
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01D} (x1, x2)
= %(sin(xl/Z) cos((k + 1/2)x1) + cos(x1/2)(2k + 1) sin((k + 1/2)x1)>
sin((x; — x2)/2) " sin((xy +x2)/2) 7"
+ %(xl - x2)<Sin((xl — X2)/2) " sin((x; 4 x2)/2) "L cos((x; — x2)/2)

o sin((n = x2)/2)7" sin((xn + x2)/2) 7 cos((x1 + 2)/2) ) HJ(©),

where y < £ < x is a suitable number. Using the methods above,

ZAn 10D} (x1, x2)

k=0
< C(x; —x2) 'y +X2)71(n17a ) ¢ +x2_l)
+ Cry 4+ x) 72" x5+ x5

< C(xy —xp) Pt oxd T 17,

01K, (x1, x2)| =

n 1

which proves (2.2.21). The case x, > 7/2, i.e., (2.2.22), can be shown similarly. l

2.2.2 Kernel Functions for ¢ = oo

Lemma 2.2.18 Forx € T¢,

i} o)y sinn+ 125
D (x) = HD (x; )_U sin(x;/2)

Proof The proof follows from the definition of the cubic Dirichlet kernels and from
Lemma 1.2.3. |

To estimate the cubic Cesaro kernels, we may suppose again that x € T? and
T > x1 > xp > 0.

Lemma2.2.19 [f0<a<1,x¢€ T2 and 7 > x; > xp > 0, then

|K2>(xp, x)| < Cxp e !, (2.2.23)

|K> ey, x2)| < Cn~ %%y (g — x0) ™

+Cn a7 g g — xg) ™! (2.2.24)

and
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|Kp> (o, x0)| < Cn' =% (e — x2) ™ + Coy (e —x0) 7 (2.2.25)

Proof The first inequality, (2.2.23) follows easily from Lemma 1.4.8 and from

n—1

ZAn 1D (x, x2)
1 ’ZA sin((k 4+ 1/2)x;) sin((k + 1/2)x,)

Ay = —* sin(x;/2) sin(xa/2)

K> %x1, x) =

-1

The trigonometric identity
. . 1
sina sinb = E(cos(a — b) — cos(a + b)) (2.2.26)

yields

| K% (x1, x2)|

n—1

1 Z e cos((k 4+ 1/2)(x; — x2)) — cos((k + 1/2)(x1 + x2))
n—1—k .

ZAZ‘ e sin(x; /2) sin(x/2)

Observe that sin(x; /2) ~ x;,
sin(x; £x3)/2 ~x;£x if xp <m/2
and
sin(x; — x3)/2 ~ x; — X, sin(x; +x2)/2 ~ 27w —x; —xp if x> 7w/2.

Using the facts x; 4+ xp > x; — X2, 2™ — x; — xp > x; — X and and Lemma 1.4.14,
we conclude that

| K29 (x1, x2)|
_ C 1 ( 1 n n
©2A% | |sin(x;/2) sin(x2/2)| \| sin(x; — x2)/2]*  |sin(x; — x2)/2]

a—1

1 a—1

n
+— +— )
[sin(x; +x2)/2]*  [sin(x; + x2)/2]
< Cn_“xflx{l(xl — X)) "+ Cn_lelxgl(xl —x)7 !, (2.2.27)

which is (2.2.24). Using Lagrange’s theorem in (2.2.27) and Lemma 1.4.15, there
exists x; — x; < £ < x1 4+ x5 such that
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|K2o% (x1, x0) | =

1 i ASTL (k4 1/2)xy sin((k + 1/2)€)

AY = sin(x/2) sin(x,/2)
< Cnl_“xl_'(xl —x) “ + Cxl_l(xl —x)" L

This finishes the proof of the lemma. ]
Lemma 2.2.20 I[f0 <a <landm > x; > xp > 0, then
|K2>(xp, x2)| < Cx57 ' (xp —x2) ™7+ Clxy — x0) 2 (2.2.28)

Proof The inequality follows from (2.2.24) if n > x, ' and from (2.2.25)ifn < x, .

[ |
The partial derivatives of the cubic Cesaro kernels can be estimated as follows.
Lemma 2.2.21 [fO0<a<1,j=1,2and 7w > x; > xp > 0, then
‘8‘,'K,f°’“'(x1,x2)’ < Cnl_“xl_lxz_l(xl —x) "
Proof By Lagrange’s mean value theorem and (2.2.26),
01 D% (x1, x2)
1 . .
= 30+ 1/2)((sin(k + 1/2)(x1 +02)) = sin((k + 1/2) (61 = x2)))
sin(x/2) " ! sin(xp/2) 7!
1
+ 5 ((costt+ 1/2)(r1 = x2)) = cos((k + 1/2)(x1 +x2))
cos(x/2) sin(x; /2) 2 sin(xy/2) !
1
= 30+ 1/2)((sin(k + 1/2)(x1 +02)) = sin((k + 1/2) (1 = 22))
sin(x;/2) "' sin(x,/2)7!

+ i(k + 1/2)x, sin((k + 1/2)€) cos(x1/2) sin(x;/2) 2 sin(x»/2) 7",

where x; — x; < £ < x| + x, is a suitable number. Similarly as above,

1 n—1 -
01K (x1, x2)| = G ZAS,ll,kalD/fo(xlﬁxz)
n=1 |x=0

_ —1 -1 — —1_ -1 —
< Cn' “xpxy (o —x) Y+ Cxpxy (X — x2) !
+ Cnl_“xfz(xl —x) 4+ foz(xl —x)"!

< Cnlfo‘xl_lxz_l(xl — X)) "+ Cxl_lxz_](xl —x)7 !,
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which proves the lemma. n

2.2.3 Kernel Functions for q = 2

As we mentioned before, for ¢ = 2, we will consider the Riesz summability. To
this, we have to introduce some special functions. For the sake of completeness, we
prove some elementary properties for these functions. First, we introduce the gamma
function by

I(x) := /Ooff-‘e—f dt (x> 0).
0

Integration by parts yields

tre™fqoo 1 [ 1
] +- | retdri=-Ta+D (x>0
0

r(x) = [
0 x
Since I'(1) = 1, we have

Fr'e+D)=xI'x) x>0 and T()=@w-—1. (2.2.29)

After a substitution, we can see that

1 ° s
r(5) =/ 126 dy =2f e du = /7.
2 0 0

The beta function is defined by

! 1
B(x, ) :=/ s"*l(l—s)y”dszf s — )M ds,
0

0

where x, y > 0. The relationship between the beta and gamma function reads as
follows:
Fx +y)B(x,y) =TT (). (2.2.30)

Indeed, substituting s = u/(1 + u), we obtain

1
C(x + »)B(x. y) = T(x + y)/ 211 = 5y ds
0

o 1 \*+y
=T vl d
(x+y)/0 u (1+u) u

= / / u)’_l( ) v’ e dudu.
0 0 1 +u
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The substitution v = (1 4 u) in the inner integral yields

o0 o
'x+y)Bx,y) = / / W Tt 40 g gy
o Jo

o0 oo
:/ txe_’/ (ut)’ e ™™ du dt
0 0

oo
=/ e ' T (y) dt
0
=T @),
which shows (2.2.30).

Definition 2.2.22 For k > —1/2, the Bessel functions are defined by

_ (t/2)" Loy ke
Jie(t) := AT LATA/D) x (1 —s%) ds (t eR).

Using the Euler formulas, we can see that the Bessel functions are real-valued.

Lemma 2.2.23 We have

K@) =kt (@) = Jepa (1) (¢ #0).

Proof By integrating by parts and by (2.2.29), we conclude

i(fkf 1) = 2 l eSs(1 — s2)12 gs

dro F Tk +1/20(1/2) ),
_ 127 its 2vk+172]"
T Qk+ DIk + 1/2)r(1/2)(_ [e (I=s9 ]_1

1
+/ e (1 —sz)kH/zds)

1
_szflt 1
T k+ 1Tk +1/20(1/2) |,
= —1" T (),

eltS(l _ SZ)k+1/2 ds

which proves the desired result. ]

Lemma 2.2.24 Fork > —1/2 andt > 0,
Je(@) < Cut* and  J(t) < Cut 7',

where Cy is independent of t.
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Proof Since 1 — s> > 1 — |s| for |s| < I, the first estimate follows from the defini-
tion of J;. The second one follows from the first one if 0 < # < 1. So we may assume
that # > 1. Let us integrate the complex valued function

ellZ(l _ Z2)k—1/2 (Z c C)

over the boundary of the rectangle whose lower side is [—1, 1] and whose height is
R > 0. By Cauchy’s theorem,

1

0
0= lf ell(—l+l.§')(s2 +215)k_1/2 ds +f elts(] _S2)k—]/2ds
R -1

R
+1 / I (g2 _ 21 5) 12 gs 4 e(R),
0

where €(R) — 0 as R — oo. Hence, taking the limit as R — oo,

1 00
/ elm‘(l _ S2)k—l/2 dS — le—lf/ e—IS(SZ + le)k_l/2 ds
—1 0

o0
— te”/ e (s? = )12 g
0
=1+ L.

Observe that
(% + 21) 12 = ()12 + o(s),

where
lp(s)] < Cs*T1/2 if0<s<lors>landk <3/2

and
lo(s)| < Cs*~! ifs > land k > 3/2.

Indeed, it follows from Lagrange’s mean value theorem that

s k1) k—3/2
5 1) —1
(21 +

< CysFH1/2 £ +1
21

’

lp(s)] = |(2us) 17|

where 0 < £ < s. Hence
| + 2057 < Gt 4 160s)

and
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o0
e / e (Cust12 + 16(9)]) ds
0
o) 1 o)
:Ckf e*”sk*”2+/ e*”|¢>(s)|ds+/ e S|p(s)| ds
0 0 1

=L+ L+ 13

By the substitution s = u and by the definition of the gamma function,

o0
I :Ckflf e “(u/) 2 du
0
o0
= ckt—k-l/zf e "u* 12 du = C T (k + 1/2)r7F=1/2,
0

The same substitution implies

1
I, < / eI SKHI2 g < 4k—3/2 /oo e Uy k12 g
0 0
=T (k +3/2)t %32 < Cre= =12, (2.2.31)
If k < 3/2, then
Lz <T(k+3/20t732 < ce=*172
as in (2.2.31). Similarly, for k > 3/2,
o0 [o¢]
I S/ e 1521 gg < fzk/ ety g
1 0
=T k)t < Cr™*12,

The integral I, can be estimated in the same way. ]

Lemma 2.2.25 Ifk > —1/2,1 > —l andt > O, then

s 1
Jig141(t) = m/o Je()s* (1 — 57 ds.

Proof Taking into account (2.2.30), we get that

_ 2(t/2)F !
C Tk+1/29T(1/2) Jo

= , 2(t/2) % L
B e — L 91— 12 d
j=0

Ji (1) cos(ts)(1 — sH 12 gs

@CHI (k4 1/2)I(1/2) Jo
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A R O 1
— TGk 1) Jo

uj—]/Z(l _ u)k—l/z du

= CHIT(k+1/2)T'(1/2)

BG+1/2,k+1/2)

_ @2 LG H12)
T r(1/2) ;( D rGtrrnan (2.2.32)

Thus

1
/ Je(@s)s" (1 = sH ds

0

_ f ((fS/Z) Z(_l)j LG +1/2) @s) J) S = $2) ds
0 j=0

r'(1/2) T(+k+1) 2))

t/2)fF & CTG+1/2) 2 N
F(1/2)jgo(_l)jl“(j+k+l)(2j)!/o ST =57y ds.

Substituting s> = u and using (2.2.30) and (2.2.32), we conclude

1
/ Je(19)s*H (1 = 52 ds

0

ko : 2j 1
_ /2 S -1y rGg+1/2 v / W (1 — ) du
j=0 0

/2 2 (j +k+ 1) 2))!

Bk+j+1,1+1)

(/2 i(_l)j rG+1/2) %
j=0

T r{1/2) 2 (j +k+ 1) 2))!
_ 2T+ 1) (1/2)k ! i( D rG+1/2) %
T raz2 = Ckk+14+j+2) 2))!
2T +1)
= t(lTJkHH(t),
which proves the lemma. ]

Now we can turn back to the circular Riesz means.
Definition 2.2.26 For f € L;(R?), the Fourier transform is defined by

1

fx) = W

/ f®e ™ dt  (x € RY.
Rd



2.2 The ¢,-Summability Kernels 63

Define )
_Ja—=isH*ifs| < 1;
0(s) '_{0 ifls|>1 WEB

and
fo(x) == 0(llx]l)  (x € RY).

0y is called a radial function. No we use another method than for ¢ = 1 or g = co.
We will express the Riesz means in terms of the Fourier transform of 6. As we will
see in the next lemma, 6y can be computed with the help of the Bessel functions.

Theorem 2.2.27 Ifa > 0and x € R, then

Bo(x) = ——— 2T + Dlx I Jara(lx )
b(x) = RIS ! x|, a2+a(llx]2).

Proof The function 8, € L;(R?) because

f |6o(x)| dx < C/ 10(r)|r¢ " dr < co.
R 0

Using the notation r = ||x||2, x = rx’, s = ||ul|, and u = su’, we get that

~ 1
90()6) =S W /Rd 90(u)e_”"” du

1 > —rsx’-u’ / d—1
= W./o 0(s) (Ldl e du > s ds, (2.2.33)

where X;_; denotes the sphere. In the inner integral, we integrate first over the
parallel
Ps:={u ey :x -u =cosd}

orthogonal to x’ obtaining a function of 0 < § < m, which we then integrate over
[0, ]. If wy_> denotes the surface area of X,;_,, then the measure of Py is

2pld=1)/2
¥t = T (sing)? 2.

B V(P V)

Hence
T
/ e irsxu dlzt/ — / e*trscosﬁwd_z(sin 6)0[72 ds
Sa-1 0

1
— Wd72/ ezrsf(l _ 52)((1—3)/2 dé-

1
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. 2pd=1)/2 Td/2 —1/2)T(1/2) ,
-~ T((d-1)/2) (rs/2)d/2-1 a/2-1(rs)

= M2 (rs) P Iy i (rs).

Taking into account this and (2.2.33), we conclude

Bo(x) = r_d/2+1/ 9(s)Jd/2—1(rs)sd/2ds
0

(27)d/2

_l —d/2+1 : a -
~ Qn)inr Il | Jajp-1(Ixll2s)s?(1 — s*)* ds.
Applying Lemma 2.2.25 with k = d /2 — 1,1 = «, we see that

” l - —a—lra
B0 = Gl apsa () 1113712 T @+ 1),

which shows the theorem. |

Theorem 2.2.27, Lemma 2.2.23 and 2.2.24 imply that %(x) as well as all of its
. . —d/2—a—1/2
derivatives can be estimated by || x||, .

Corollary 2.2.28 Foralliy,...,ig > 0and o > 0,
07+ 0 Bo ()] < Cllx ;2772 (x £ 0).
The same result holds for

@ =Ism*if|s| < 1;
0(s) '_{0 ifls|>1 WER

and
Oo(x) := O(llx[2)  (x € RY),

whenever v € P (see Lu [224, p. 132]). From now on, we assume that v € P. The
next result is an easy consequence of Corollary 2.2.28.

Corollary 2.2.29 0, € L,(RY) if

d—1
— < a < oo
2

Now we are ready to express the Riesz means using the Fourier transform of 6.

Theorem 2.2.30 Ifn e N, f € L|(T?%), (d —1)/2 < o < oo and y € P, then

o207 £ () = / Fx = Dly(nr) dr
Rd
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for almost every x € T

Proof If f(t) = ¢'*" (k € Z,t € T¢), then

—k
o f(x) = o (—) =
n
— etk-x/ e_lk‘t/né\o(l‘) dt
Rd

=n? / R C=D90 (ne) dt.
R4

The theorem holds also for trigonometric polynomials. Let f be an arbitrary element
from L (T%) and ( f;) be a sequence of trigonometric polynomials such that f; — f
in the L, (T?)-norm. It follows from Lemma 2.2.6 and from the fact that K;'*” €
L,(T%) that

lim 0> fi = o> f
n—o00

in the L; (T?) norm. _
On the other hand, since 6, € L(R?), we have

lim [ fi(x — H)lo(nt)dt = / f(x — )0y (nt) dt
]Rd

n—>00 Jpd
in the L; (T)-norm. |

Lemma 2.231 I[fneN, (d —1)/2 < a < oo andy € P, then

K’%aﬁ(t) — (27l')dnd Z %(n(t + 2km)). (2.2.34)
kezd

Proof Since f is periodic, Theorem 2.2.30 implies that

o_z,n,,wf(x) — I’ld Z / f(x — t)/@\o(nl) dt

tegi Y 2em+T?
=n') / fx = D8y(n(t + 2km)) dt.
kezd 4T

The result follows from Lemma 2.2.6. |
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2.3 Norm Convergence of the {,-Summability Means

In this section, we will prove that the Cesaro and Riesz means, i f and o' ™" f are
uniformly bounded on the L, (T?) spaces and they converge to the original function
f innorm when 1 < p < 00, ¢ = 1,2 or g = oco. Having the results of Sect.2.2,
we are ready to prove that the L;(T¢)-norms of the kernel functions are uniformly
bounded. We start with the triangular and cubic Cesaro summability.

Theorem 2.3.1 [f0 < a <landq =1 o0rq = oo, then

sup [ |KP(x)| dx < C.
neN J T4

Proof of Theorem 2.3.1 for g = 1.1t is enough to integrate the kernel function over
the set
{(x1,x) :0 < xp < x1 <7}

Let us decompose this set into the union u}gl A;, where

A = {(x1,x):0<x1 <2/n,0 <xy <x1 <m,xy <m/2},

Ay i={(x1,x2) :2/n <x1 <7, 0 <x, <1/n,xp <m/2},

Az = {(x1,x2) :2/n <x; <7, 1/n <xp <x1/2,x <m/2},

Ay = {(x1,x2) :2/n <x1 <7, x1/2 <xp <x1—1/n,x, <7/2},
As = {(x1,x3) :2/n <x1 <7, x1—1/n <x3 <x1,x0 <7/2}

Ag :={(x1,x0) :xo>m/2,m=2/n <xp <m,0 <xy <x; <7},
A7 :={(x1,x) 72 <xp <m—2/n,m—1/n < x; <},

Ag = {(x1,x) :7/2 <xo <7 —=2/n,(m+x3)/2 <x1 <7—1/n},
Ag ={(x,x2) /2 <xy <m—=2/n,x+1/n <x; <(m+ x2)/2},

A ={(x1,x) :7m/2 <xo <7 —2/n,x <x1 <x,+ 1/n}.

The sets A; can be seen on Fig.2.11.
By Lemma 2.2.5, we can see that

/ |K 2 (x1, x0)| dx+/ |Ky*(x1, x2)| dx < C.
A Ag

Inequality (2.2.14) implies

ks

1/n
/ !K,:’“(xl,xz)| dx <C / (x1 — 1/11)_3/2)62_1/2 dx,dx; <C
A 0

2/n

and
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Igl

Sl

N

3=

€Ty

Fig. 2.11 The sets A;

/ |K,1"’(x1,x2)| dx
Az
T—2/n T
< c/ / (m—1/n—x) 3 (x — x1) "V dx,dx, < C.
T—1/n

Observe that x; — x, > x;/2 on the set A3. Choosing 3 such that 0 < 8 < «, we
get from (2.2.15) that

x1/2
/ |K1 (xl,xz)| dX<CI’l / / _] B a_ld)Czdxl
2/n

x1/2 1 5
/ / . ﬁ dx,dx; < C.
2/n

Similarly, x; — x, > (m — x2)/2 on the set Ag and so, by (2.2.16),
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1
/ ’Kn’”(xl , xz)} dx
Ag

m—2/n m—1/n
/ / (m—x2) " = x) N dxy dxy
(

T+x2)/2

m—2/n m—1/n )
’1/ / 7T—xz)flf“j(ﬂ'—xl)ﬁ*zdxldxz <C.
(m+x2)/2

We have x, > x1/2 on Ay, hence (2.2.15) implies

f |K,}'a(x1 , x2)| dx
Ay

T x1—1/n 3 |
< Cn‘“/ / (x1 — x2) " T  dxy dx,
2/n Jx1/2

T x1—1/n 2 B2
Cn’l/‘ / (x1 —xz)’lfﬂx‘lf dxrdx; < C.
2/n Jx1/2

Similarly, 7 — x; > (7 — x)/2 on the set Ag. Thus
f |K1“(x1,x2)| dx
T—2/n (7T+xz)/2 ) )
_af / — )P = xp)P N dxy dxy
X

2+1/n

m—=2/n (m+x2)/2 )
cn! / / (x1 —x2) " P(r — x2)% % dx; dx, < C.
x2+1/n

Finally, by (2.2.19),

xo+1/n
f |k} (xl,x2)|dx<C/ / (1 —x2)* 1y dxydxs

x2+1/n
+C/ / 72dx1dx2§C
1/n

and
T—1/n  px;
/ |Ky®(x1, x2)| dx < C/ / (x1 — x)* (= x) " dixodx,
A /2 x—1/n
T—1/n
+ C/ / (m — x1) 2dxydx, < C
xi1—1/n

which completes the proof of the theorem. ]
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o A
™
As
Ay
As
A
1 P
0 2/n n X1

Fig. 2.12 The sets A;

Proof of Theorem 2.3.1 for g = co. We integrate again over the set

{(x1,x2) 1 0 < x3 < x; <7}

and decompose this set into the union U_ A;, where

Ay
Ay
A3
Ay
As

(see Fig.2.12).
First of all,

By (2.2.25),

= {(x1, x2) :
= {(x1,x2) :
={(x1, x2) :
= {(x1,x2) :

= {(x1, x2) :

0<x; <2/n,0<x <x; <7},

2/n <x; <m0<xy <1/n},

2/n <x) <m, 1/n<xy <x1/2},

2/n < x; <m,x1/2 <xy <x1—1/n},

2/n <x; <mx;—1/n<x < x}

/ |K,‘Z’°’a(x1,x2)| dx <C.
Ay

69
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-« —1-a -2
|K2o(xy, x0)| < Cn' () —x2) 7' 7 4+ Clxy — x2)

and so
1/n
/ |K (xl,x2)| dx,dx, < Cn'~ "/ / (x1 — 1/n) "% dx, dx,
2/n
1/n
+c/ / (x1 —1/n) 2dx,dx; < C.
2/n J0

Since x; — x, > x1/2 on A3, we get from (2.2.24) that

|Kfl’°’a(x1,x2)| < Crfo‘xl_l_axz_l + Ciflxl_zxz_l

I’H“?xziliﬂ + Cn_le2+@x2717ﬂ (2.3.1)

<Cn %,

forany 0 < 3 < «. Thus

/ |K°°“(x1,xz)| dxidx, < Cn~ / / 71 athy 17‘601162 dxi
2/nd1/n

nre, i 1
71/ / TEAy dxzdxl <C.
2/n

Since x; > x1/2 and x, > x| — x; on Ay, we get from (2.2.24) that

|Kn°°’“(x1, xz)} < Cn_‘”xflxgl(xl —x) 4+ Cn_lelxgl(xl —x)7!
<Cn "x; (xl — xy)"loth

+Cn ' T g = xp) 2P (2.3.2)

forany 0 < 8 < «. Then
| K22 (x1, x2)| doxy dxa
Ay

—a n-im —1-p —l—a+8
<Cn X, (x1 — x2) Pdxy dx
2/n Jx1/2

x;—1/n -5 )
Cn_lf f x o Txg — )62)_2*‘J dx,dx; < C.
2/n Jx1/2

Finally, x, > x;/2 also on As and so (2.2.23) implies

xi
/ |K°°a(x1,x2)| dxi1dx; < C/ / xl_2dx2dx1 <C,
2/nJx1—1/n
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which finishes the proof. u
Now we continue with the circular Riesz summability.

Theorem 2.3.2 Ifq =2, o> (d —1)/2and vy € P, then

sup/ |K,f’“’”(x)] dx <C.
neN JTd

Proof Taking into account Lemma 2.2.31, we can see that
f K27 ()] dx < 2m)'n? Y / 100(n(x + 2km))| dx = 2m)* [Bo], -
T¢ T
kezd
Now the theorem follows easily from Corollary 2.2.28. |
These imply easily

Theorem 2.3.3 If1 < p <00,0 <a <ooandq =1orq = oo, then
sup o2 £ < CIIfI,
neN

and
lim 0“f = f inthe L,(T%)-normforall f € L,(T?).
n—oo

Proof For 0 < a < 1, we use Minkowski’s inequality and Theorem 2.3.1 to obtain

Joe £ <L / £ (=l , KL dr
P = @2m)d
1
— q,x
= G /1; AN K@y dr
<CIfll,

For 1 < a < 0o, we can use Lemma 2.2.8. The convergence follows easily from this
because the trigonometric polynomials are dense in L ,(T¢). ]

The next theorem can be proved in the same way.

Theorem 2.3.4 If1 <p <o00,qg=2,(d—1)/2 <a <ooand~ € P, then

sup o3 f ||, < CIIfIl,
neN

and
lim 097 f = f inthe L,(T%)-norm forall f € L,(T%).
n—0oQ
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Theorems 2.3.3 and 2.3.4 were proved in Berens, Li and Xu [30], Oswald [253]
and Weisz [337, 338, 341] for ¢ = 1, oo and in Bochner [36] and Stein and Weiss
[293] for g = 2.

The situation is more complicated and not completely solved if ¢ = 2 and @ <
(d — 1)/2.1tis clear by the Banach-Steinhaus theorem that lim,,_, o, o' *” f = f in
the L ,(T?)-norm for all f € L,(T¢) if and only if the operators o;*” are uniformly
bounded from L ,(T?) to L ,(T¢). We note that each operator o;*” is bounded on
L,(T%) because K7 € L;(T?). For more about the norm convergence of the
Bochner-Riesz means (i.e., ¢ = 2, v = 2) see Grafakos [143].

2.4 H,(T?) Hardy Spaces

To prove almost everywhere convergence of the Cesaro and Riesz means, we will
need the concept of Hardy spaces and their atomic decomposition. Before studying
Hardy spaces, we have to introduce the concept of distributions.

Let C*(T?) denote the set of all infinitely differentiable functions on T<. Then
f € C*(T?) implies

sup |0 f(x)| <00 forallk = (ki,..., ks) € N,

xeTd
where 9% = 8" ... 9.
Definition 2.4.1 Letn € N, f,, f € C®°(T¢). We say that
lim fy=f inC¥(TY)

if
lim |0 f, — 9 f|| =0 forallk e N.
n—oo

Definition 2.4.2 A map u : C*(T¢) — C is called distribution if it is linear and
continuous, more exactly,

u(on fi + aa f2) = aqu(fi) + cou(f2)
forall fi, f» € C*®°(T%) and v, oy € C and
lim u(f,) =u(f) if lm f,=f in C®(TY).
n>00 n>00
The set of distributions are denoted by D(T%).

If g € L,(T% (1 < p < 00), then
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1
@m)

ug(f) := /T fgdx (S e C>(T))

is a distribution. Indeed, if lim,— f, = f in C ©(T), then lim,_ o fu=fin
L, (T9) as well. Applying Holder’s inequality,
e =P = [ 10 = 700l el d
T!
<Ifi= 1l lgl, — o0,

as n — oo. So every function from L p(T" ) (1 < p < 00) can be identified with a
distribution # € D(T¢) in the previous way.

Proposition 2.4.3 A linear functional u on C*(T?) is a distribution if and only if
there exist C > 0 and m € N such that

u(f) < c‘;up 10" £ o

forall f e C®(TY).

Proof 1t is evident that the inequality ensures the continuity of u, thus u is a dis-
tribution. Conversely, suppose that u is a distribution and the inequality is not true.
Then there exists f, € C*°(T¢) such that

lu(f)] > n sup 108 £l . -

Since the right-hand side is not 0, we may define

_ f
nsup<y i

8n 't

Then g, € C*®°(T%) and
1
ak n =
sup [0, =

which means that g, — 0 in C*°(T¢). On the other hand,

u( fy)
)= 1.
s nsupy <, [ 0% fu o g

This contradicts to the continuity of u, i.e., to u(g,) — 0 asn — oo. [ |

Definition 2.4.4 The least integer m for which Proposition 2.4.3 holds is called the
order of u.
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Definition 2.4.5 The distributions u,, tend to the distribution « in the sense of dis-
tributions or in D(T9) if

lim u,(f) — u(f) forall fe C>®(T).

The next definition extends the Fourier coefficients to distributions.

Definition 2.4.6 Let
en(x)i=e""  (neZ'xeT.
For a distribution u € D(T?), the nth Fourier coefficient is defined by
an) i=ule_,) (neZ9.

The Fourier series, the partial sums and the summability means of u are defined in
the same way as in Definitions 2.1.2, 2.1.3,2.1.5,2.2.2 and 2.2.3.

Theorem 2.4.7 Ifu € C®(T¢) is of order m, then
un)=0((n™ as|n| - oo. (2.4.1)
Moreover, for 1 < g <ooand N € N,

shu = Z uwn)e, - u in D(T?) as N — oo.

neZ, nll, <N

Conversely, if c, = O(|n|™), then

9 ._
Sy = E Chén

neZd, |Inlly <N

converge to u in D(T?% as N — oo and 1i(n) = c,. The same holds for the rectan-
gular partial sums sy.

Proof Equality (2.4.1) follows immediately from the inequality of Proposition 2.4.3
if we take therein f = e_;. For f € C®°(T%),

spu(H)= Y. amfem=ul Y Fl=me,

neZd, |nl, <N neZd, ||njl, <N

It is easy to see that f(n) = O(|n|7*) for any k € N. Hence

li £ =
Y fue= s
neZd, nflg<N
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in C*°(T%) and so
I}iinw~?1%u(f) =u(f).

Conversely, if ¢, = O(|n|™), then

sEH= D efl-n) (2.4.2)

neZé, |nll, <N

forall f € C*(T?). Since the series on the right-hand side is absolutely convergent,
let

u(f) = lim sy (f) = enf(-n).

neZd

Then u is linear and we can show easily that u is continuous as well. Writing f = e_,
in (2.4.2), we can see that #(n) = ¢, (n € Z9). |

Definition 2.4.8 The convolution of two functions f, g € L;(T%) is defined by

1
(2m)d

(f *8)x) = /w fx—ngydr  (x eT.

It is easy to see that

— 1 _ d
(f*90) = 55 fwfa)g(x ndt  (x €T9.

Using Minkowski’s inequality, we obtain Young’s inequality. More exactly, for f €
L, (T%), g€ L;(T% and 1 < r < oo, we have

ILf gl < IfI-lglh-

Lemma 2.4.9 If f, g € L,(T9), then f % g(n) = f(n)g(n)

Proof We have,

fe : 57 —in-x
fxgn) = 2 /Td (/Tdf(x—z)g(;)d,>e dx
: —ne(x—t —in-t
- e /T ( S )dx) gy e di
! —in-u —1in-t
e fT ( | fwe du) gty di

= f(n)-3n),

which finishes the proof of the lemma. ]
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Now we are able to define the convolution of a distribution and function.
Definition 2.4.10 The convolution of f € D(T%) and g € L;(T¢) is defined by
frg:=) fmBme, inDT).
neNd

Since g is bounded, the series is convergent by Theorem 2.4.7. Similarly, we can
also define the convolution f € D(T?) and v € L;(R%).

Definition 2.4.11 For f € D(T%) and ¢ € L;(R?) let

frv=Y" Fybme, in DT,

neNd
where 12 denotes the Fourier transform of 1) € L (R?).

Similar to Lemma 2.4.9,

1

f*?/’(x)=w

/Rd fx —w)yu)du

if f € D(TY) and ¢ € Li(RY). Fort € (0, 00) and x € R, let
D) =17 Y(E/D).

It is easy to see that for f € D(T¢) and ¥ € L, (R%), we have

[ =Y fp@nye, in D(TY). 2.4.3)

neNd

To define the Hardy spaces, we need the concept of Schwartz functions.

Definition 2.4.12 The function f € C*®(R?) is called a Schwartz function if for all

a, B e N9,
sup |x“6*‘9f(x)| = Cy.p < 00,
xeRd
wherex® = x| - x, a0 = (a1, ..., ag)and 8 = (Bi, . .., Ba). The setof Schwartz

functions are denoted by S(R?).

Then f € D(T¢)and ¢ € S(RY) implies that (2.4.3) converges absolutely in each
point as well and so f * 9; € Lo (T?).

Fix ¢y € S(R?) such that fRd Y(x)dx # 0. We define the radial maximal function
and the non-tangential maximal function of f € D(T¢) associated to ) by

v () = S})lp)lf*wt(X)l

re(
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and

Uh,e () = sup | f x bW,

te(0,00),|y—x|<t

respectively. For N € N, let

Fv@®Y =1y e SR :  sup (14 xDV0%y) < 1¢,
xeR B <N

where ||G|l1 = 81 + - - - + (4. Forany N € N, the radial grand maximal function and
the non-tangential grand maximal function of f € D(T?) are defined by

fO.() = sup  sup |f x¢(y)
weFy(R) te(0,00)

and
fOe(x) = sup sup Lf* I,

peFnRY) 1€(0,00),|y—x|<t

respectively. We fix a positive integer N > |d(1/p — 1)], where | x| denotes the
integer part of x € R.

Definition 2.4.13 For 0 < p < co the Hardy spaces H pD (T?) and weak Hardy
spaces H Eoo (T9) consist of all distributions f € D(T¢) for which

1A lan = ||¢*D,+(f)||p <0

and

||]C||HEoc = |Wa+(f) ” poo = O

We will see in the next theorem that the Hardy spaces are independent of ¢ and
N, more exactly, different functions ¢ and different integers N give the same space
with equivalent norms.

The d-dimensional periodic Poisson kernel is introduced by

P,(x) := Z e Ml gtkx (e T4 4 5 ().
keZd

Notice that P, € L;(T?). In the one-dimensional case, we get back the usual Poisson

kernel

—r
Pi(x) = Z riklethx —

= e,
14+r2—2rcosx (x )

k=—00

where r := ¢~'. For f € D(T?), let
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P (@) = sup |f* P (x)]

1€(0,00)
and
Ph o () = sup Lf* P (y).

te(0,00),|y—x|<t

Theorem 2.4.14 Let0 < p < oo. Fix1p € S(RY) such that fRd P(x)dx # 0 and fix
a positive integer N > |d(1/p — 1)]. Then f € H[',:’(']I‘d) if and only ifi/)av(f) S
Lp(Td) or fEH € Lp(']I‘d) or fﬂv € Lp(']I‘d) or Pﬁ+(f) € Lp(Td) or PE,v(f) €
L p(Td ). We have the following equivalences of norms:

1 lam ~ Mg, (D ~ a4l ~ 1S e ~ 1P (Ol ~ 1PE o (Dl

The same holds for the weak Hardy spaces:

||f||H]‘y:]:x, ~ ”'(Z)E,v(f)”p,oo ~ ||fE],+”p,oo
~ N ellp.oe ~ PG (Dl p.oo ~ I1PE.g ()l p.oo-

Note that ~ denotes the equivalence of norms and spaces, more exactly we write
that A ~ B if there exist positive constants ¢; and ¢, such that c;A < B < ¢, A.

Theorem 2.4.15 If1 < p < oo, then HE (T?) ~ Lp(Td) and
1A, < U flgp < CpllfI, -
For p =1, H(T?) C L\(T%) C H{,,(T%) and
I <0 flyo (F € HY (T,

Iflug < CIFI (f € Li(T).

We omit the proofs of these theorems because they are very similar to the proofs
of the corresponding theorems for H,(R?), which can be found in several books and
papers (e.g., in Stein [290], Grafakos [143], Lu [224], Stein [289], Stein and Weiss
[293], Uchiyama [320], Fefferman and Stein [96], Weisz [346]).

We define the reflection and translation operators by

h(x):=h(=x), T.h(t) = h(t — x).
Theorem 2.4.16 If K € L{(T), 0 < p < oo and

lim f, = f inthe HPD(Td)-norm,
k— 00
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then
klim fixK = f*xK inD(TY).
—00

Proof Observe that for f € H,(T?) and h € C*(T%),

frh() =Y Fhmn)e,(x)

neNd

=Y F)T_ch(n)
neNd

=Y Fmyeu(Teh)
neNd

= f(T.:h),

Thus

\f(ﬁ>\=|f*h<0)|s< sup <1+|x|>N+d|83h<x>|) 500,

xe€T4, |8l <N
where |[y| < land N > [d(1/p — 1)]. Then

]f(%“z)(sc( sup |«93h<x>|) inf £70)

x€T4, |1l <N

1/p
=C ( sup |a"h<x)|> ( f f;mpdy)
xeT?, |18l <N Td

< C( sup |83/€|> 1 N,

18Ihi=N
which implies that the order of f is at most N and that
klirgo fe=f in D(T%).
By Theorem 2.4.7 and by the definition of the convolution,

(fi= P xKh) =" (fi = ) MK ey (h)

neNd

=Y (=) mKmh(-n),

neNd

where h € C>®(T%) is arbitrary. Observe that the orders of f; and f are at most N,
K is bounded and ]h(n)| < C|n|™ for any I € N. Then for all ¢ > 0 there exists
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m € N? such that

Z - Z (ﬁ - ﬂ (MK (m)h(—n)| <.

neNd  |n|<m

On the other hand, since
lim (fi = f)(e-n) =0,

we conclude that

Y (h—F)@Emh(-n)| < Y |(fi = F) e-)| = 0

In|<m n|<m

as k — oo, which finishes the proof. |

The atomic decomposition provides a useful characterization of Hardy spaces.
First, we introduce the concept of an atom.

Definition 2.4.17 A bounded functiona is an H pD-atom if there existsacube I c T¢
such that

(i) suppa C I,
(i) Nlallo < [117Y7,
(iii) f1 a(x)x* dx = 0 for all multi-indices k = (ki, ..., kg) with |k| < |d(1/p —
D).

In the definition, the cubes can be replaced by balls and (ii) by
(i) llally < 111Y971P (0<p<g=<o0,q>1).

We could suppose that the integral in (iii) is zero for all multi-indices k for which
|k| < N, where N > |d(1/p — 1)]. The best possible choice of such numbers N is
ld(1/p — 1)].Hardy spaces have atomic decompositions. In other words, every func-
tion from the Hardy space can be decomposed into the sum of atoms (see e.g. Latter
[195], Lu [224], Coifman and Weiss [62], Wilson [353, 354], Stein [290], Grafakos
[143] and Weisz [346]).

Theorem 2.4.18 A distribution f € D(T¢)isin HI',:I (T4 (0 < p < 1) ifand only if
there exist a sequence (ar, k € N) of H E—atoms and a sequence (L, k € N) of real
numbers such that

o0 o0
D lmlP <oo and Y pay=f in D(TY. (2.4.4)
k=0 k=0

Moreover,
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o0 1/p
I £y ~ inf (Z mkV’) :

k=0
where the infimum is taken over all decompositions of f of the form (2.4.4).

The following result gives a sufficient condition for an operator to be bounded
from H 1‘7:' (TH to L p(']I‘d ). If I C T is an interval, then rI denotes the interval with
the same center as / and with length r|| (r € N). For a rectangle

R=Ix---xI;cT? let rR=rl x-- xrl.

Instead of 2" R we write R” (r € N). Foroperators V,, : L1(T?) — L,(T%), we define
the maximal operator
Vif == sup |V, fl.

neNd

Theorem 2.4.19 For eachn € N%, let K, € L\(T%) and V, f := f * K,.. Suppose
that

/ Veal™ dX < Cp,
Td\rl

forall H[E -atoms a and for some fixedr € Nand0 < pg < 1, where the cube I is the

support of the atom. If V. is bounded from L ,, (T% to L, (T9) for some 1 < p; < oo,
then

IVefll, < Coll fllyn  (f € H,(TD) (2.4.5)

forall py < p < pi.

Proof Observe that, under the conditions of Theorem 2.4.19, the L ,,-norms of V.a
are uniformly bounded for all H pDo-atoms a. Indeed,

/ |V*a|P°d)\=/ |V*a|1’°d>\+f [V.a|™ dA
Td rl Td\rl

po/ P
5(] |V.a|” d>\) [rI|'=P/P 4 Cp,
rl

po/p1
< Cp, </1 la|”! d/\> |I|'~Po/P1 +Cp,

< Cpy (PP 1) 0 4

CP
Cpo-

There is an atomic decomposition such that
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o0 00 1/po
— : O D
f= ;ukak in the A )-norm and (gum ) < Cpll fllng.

where the convergence holds also in the H 1':’ (T%)-norm and in the L;(T¢)-norm if
f e H,D (T%). Since V,, : L1(T¢) — L,(T9) is bounded, we have

9]
an = Z Mk Vnak

k=0

and

o0
Vi f 1 <) Ll Vi

k=0

for f € HZ(T). Thus

oo
IV f 112 <3 el P I Vaar |2 < Cpoll f I (f € HO(TD).  (2.4.6)
k=0 Po

Obviously, the same inequality holds for the operators V,,. This and interpolation
proves the theorem if py = 1. Assume that py < 1. Since H ID (T?) is dense in L (T%)
as well as in HPDO (T“), we can extend uniquely the operators V,, and V, such that

(2.4.6) holds forall f € H pDO (T9). Let us denote these extended operators by V! and
V.. ThenV,f =V, fand V,f =V, f forall f € HlD (T?). We get by interpolation
from (2.4.6) that the operator

V! is bounded from HEOO(Td) o Lpoo(T?) (2.4.7)
when py < p < pj. For the basic definitions and theorems on interpolation theory,
see Bergh and Lofstrom [33], Bennett and Sharpley [28] or Weisz [346]. Since

po < 1, the boundedness in (2.4.7) holds especially for p = 1, and so Theorem
2.4.15 implies that V, is of weak type (1, 1):

sup p AV, f1 > p) = IV, fllioo = Cllf g, < ClIS I (2.4.8)

p>0

forall f € L, (RY). Obviously, the same holds for V, . Since V,, is bounded on L (T9),
if fr e H ID (T9) such that limy_, fx = f in the L;-norm, then

klim Vofi =V,f inthe L;(T%-norm.
—00

Inequality (2.4.8) implies that
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klim Vofi =V/f inthe L o (T¢)-norm,
—00

hence V, f = V! f forall f € L;(T?). Similarly, for a fixed N € N, the operator

VN,*f ‘= Sup |an|

[n|<N

satisfies (2.4.8) forall f € H{(T¢) and its extension V}, forall f € Li(T?). Then

sup p A(IVy o f = Vi f1 > p) < supp A(IVy o f = Vi fil > p/2)

p>0 p>0
+ sugp/\(WN,*fk — Vyifl>p/2)
p>
< sugpA(lV/v,*(f — fol > p/2)
p>

N
+ ) sup p A(IVa(fe — £ > p/2N)

n:Op>0
=Clf=fill—0

as k — oo. This shows the equality
Viof =Vnaf forall f e Li(T%.
Moreover, for a fixed p,

AV = Vi f1 > p)
S AV = Vi fil > p/3) + A(Vs fe = Vv fil > p/3)
+ A Vnsfe = Vs f 1 > p/3)
<AV = f) > p/3) + AVafi = Vv fi > p/3)
+ AN (fi = ) > p/3)

C
< ;llf — filit # AV Sk = Ve fi > p/3)

<€

if k and N are large enough. Hence limy_, o Vy . f = V/f in measure for all f €
L;(T%). On the other hand, limy_, « V.« f = Vi f a.e., which implies that

Vof = V.f forall f e L(T%.

Consequently, (2.4.8) holds also for V, and (2.4.6) for all f € HIE (T4 N Ly (T%).
Assume that p < 1, fi € HO(T) N Ly(T¢) (k € N) and that limg oo fi = f in
the H[',:| (T)-norm. By Theorem 2.4.16,
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lim ank = an in D(Td)
k— 00

for all n € N?. Since by (2.4.5), V,, fi is convergent in the L ,(T%)-norm as k — oo,
we can identify the distribution V,, f with the L p(’]I‘d )-limit lim_, o V,, fx. Hence the
same holds for Vy . f:

Vnasf = klirglo Vnsfe inthe L, (T%)-norm.

Moreover,

IVif = Vsl
S WV = Vifilly + 1V = Vv fillp + Vs fe = Ve
< Collf = fillum + 1WVafi = Vv fillp + Vs i = Vs £l

<e€
if k and N are large enough. Thus
Nlim Vy.f =V.f inthe L,(T?)-norm
—00

and, on the other hand,
A}im Vnsf =Vif a.e.,

which implies that V. f = V/ f forall f € H pD (T%). Consequently, (2.4.5) holds for
all f € H(T). [ ]

Unfortunately, for a general linear operator V, the uniform boundedness of the
L ,,-norms of Va is not enough for the boundedness V : H;% (T4) — L,,(T%) (see
[41, 42, 235, 236, 259]). The next weak version of Theorem 2.4.19 can be proved
similarly (see also the proof in Weisz [346]).

Theorem 2.4.20 For eachn € N, let K,, € L{(T¢) and V,, f := f * K,,. Suppose
that

suppp)\<{|V*a| > p} N T4\ rl}) <c,
p>0

forall HE-atoms a and for some fixedr € Nand 0 < p < 1. If V. is bounded from
L, (T%) to Lp](Td) (1 < p1 < 00), then

Vifllpoo = Cpllfllugp  (f € H(T%)).

The weak type (1, 1) inequality follows from inequality (2.4.8).

Corollary 2.4.21 Foreachn € N%, let K, € L\(T?) and V,, f := f % K,,. Suppose
that
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/ |Vial’dX\ < C),
Td\rl

forall Hg-atoms a and for some fixedr € Nand0 < py < 1, where the cube I is the
support of the atom. If V. is bounded from L ,, (T%) to L, (T9) for some 1 < p; < oo,
then for all f € L(T%),

sugpA(IV*fl >p) = Cllflh.
P>

Proof By Theorem 2.4.19 and interpolation,
V. 1is bounded from HEOO (T%) to LP,OO(T‘I)

when pg < p < p;. Since pg < 1, this holds also for p = 1. Thus, by Theorem
2.4.15:

Sugp)\(lV*fl >p) = IVifllhoo = Clfllgo, = CllLfIM
p> '

forall f € Li(T9). (]

Theorem 2.4.19 and Corollary 2.4.21 can be regarded also as an alternative tool to
the Calderon-Zygmund decomposition lemma for proving weak type (1, 1) inequal-
ities. In many cases, this method can be applied better and more simply than the
Calderon-Zygmund decomposition lemma.

2.5 Almost Everywhere Convergence of the
{,-Summability Means

Since the kernels K, and K,"*” are integrable, the definition of the Fejér and Riesz
means can be extended to distributions.

Definition 2.5.1 Let f € D(T9),1 <q <oo,n € Nand 0 < o, 7 < co. The nth
£,-Cesaro means oy " f and ¢,-Riesz means oy, " f of the Fourier series of f are
given by

ol f = fxKI

and
ol® f = fx KT

n 4
respectively.

Definition 2.5.2 We define the maximal Cesaro and maximal Riesz operator by
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o4 f = suplo? f|

neN
and
e Nl . NeRel
O-Z ’f'_ Sup"jg *)f|’
neN
respectively.

If = 1, we obtain the maximal Fejér operator and write it simply as o f :=
o' £. We will prove that the Cesaro and Riesz maximal operators, ¢ f and 07" f
are bounded from the Hardy space H [‘,:' (T?) to the Lebesgue space L p(Td ) when
q = 1,2 0r g = oo and p is greater than a critical index py < 1 which is depending
on q,d and a. If p is equal to this critical index, then weak type inequality holds. As
a consequence, we obtain the almost everywhere convergence of the £,-Cesaro and
Riesz means to the original function. We start again with the triangular and cubic
Cesaro summability.

2.5.1 Almost Everywhere Convergence for ¢ =1 and q = oo

Proposition 2.5.3 [f0 < a <1landq =1 o0rq = oo, then
[offlle = Cllflla (f € Loo(T).

Proof The proof follows easily from the fact that the L (T¢)-norms of the kernel
functions are uniformly bounded (see Theorem 2.3.1) and from Lemma 2.2.8. W

In what follows we use the notation a A b := min(a, b).

Theorem 2.5.4 Suppose thatq = 1,00 and 0 < o < oo. If

d
= — < s
po d+anl =pP=®
then
lotefll, < Colfllup  (f € H(T). 25.1)

Corollary 2.5.5 Ifqg =1,00,0 <a <ooand 1 < p < oo, then

loZfllp, < Coll fll,  (f € Lp(T).

Proof This follows from Theorem 2.5.4 and from the fact that H pD (T4 ~ L p(Td )
forl < p < o0. |
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Proof of Theorem 2.5.4 for ¢ = 1. By Lemma 2.2.8, we may suppose again that
0 < a < 1. Itis enough to show that

/ |ai’“a(x1,xQ)|p dx;dx;
TZ

=/ sup
T2 n>1

<C, (2.5.2)

P
/a(tl,tz)K,l"’(xl —1,X —bh)dtidty| dx;dx;
1

for every H pD-atom a, where 2/(2 4+ «) < p < 1 and I is the support of the atom.
By Theorem 2.4.19 and Proposition 2.5.3, this will imply (2.5.1). Without loss of
generality, we can suppose that a is a H pD—atom with support I = I} x I, and

[27 K2 27 K21 c (27K 27K (j=1,2)

for some K € N. By symmetry, we may assume thatm > x; —#; > x, —, > 0,and
s0, instead of (2.5.2), it is enough to show that

/ sup
T2 n>1

=G

p

/a(fl, YK} (x — 11, %0 — ) 1A, (X1 — 1, X2 — ) dt; dby| dxy dx;
I

foralli =1, ..., 10, where

Al = {(x1,x):0<x; < 27K 0<xy<xy <m0 < w/2},

Ar = {(x1,x2) 1 27K < x| <m,0 < xp <27K%2 x, < w/2},

Az = {(x;,x0) : 278K < x) <, 27K <y < X1 /2, x0 < /2),

Agq = {(x1,x2) : 2K+ X <mXx1/2 <xp <x;— 2_K+2,x2 <m/2},

As = {(x1, x2) : 27K < x —27KF2

<Xy < Xx1,% <m/2}
Ag == {(x1,x2) : x2 > 7r/2,7r—2’K+5 <x<m0<x<x <7}

A= {(x1,x0) i /2 < xp < — 27K g K+2

< Xx; < 7},
Ag = {(x1,x) :T/2 <xp < T — 27K+ (T4+x)/2<x <m— 2_K+2},
Ag = {(x1, x2) i /2 <xg <7 =278 x; 4+ 2752 < x| < (m 4+ x2)/2),

A = {(x1,x) 1 m/2 <x3 < =275 %y < x; < xp + 2752}

These sets are similar to those in Theorem 2.3.1 (see Fig.2.11). f 0 < x; — 1) <
2-K+5 then —2K-1 < x; < 27K+6 and the same holds for x,. If 7 — 2= K45 <
Xy —ty <, thenm —27K+6 < x) < 7 4 27K~1 and the same is true for x;. By the
definition of the H pD-atom and by Theorem 2.3.1,
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P
/ﬁwp/amJﬂ@ﬂ@rﬁuh—bﬂm@rﬁum—hwhﬁzdmdm
T2 n>1 |J1I
P
<2 / sup / |K,:‘“'(x1 — 1, Xy — t2)| La,(x1 —t1,x0 — ) dti dtr| dxydx;
T2 n>1 |J1
2K H—2K
<C,27"2 <C,
and
1 P
/ sup fa(tl,l‘z)Kn’a(M —t1, X2 — ) o (x1 — t1, X2 — ) dti dtz| dxydx;
T2 n>1 1

< 227K < ),

On the set Ay, wehave 275 < x; —f; < mrand 0 < x, — 1, < 27K+2 thus
27K —x <rm+27K1 and  — 27Kl <, < 27KH3,

Using (2.2.14), we conclude

1,
‘/a(fl, )K, (X1 — 11, X2 — )14, (X1 — t1, X2 — 1) dt1 dty
I

SCﬂM”/m—ﬁ—m+m4Wm—m4ﬂ
1

14,(x1 = t1, X2 — ) dt; dty

2K
< Cp2 /P1{2—K+4<X1<7r+2—K—]}1{,2—K—1<X2§2—K+3}

/(Xl — 27K TR (g — 1)V dty dny
I

2K/p—-3K/2
= sz /p / 1{2*K+4<x1<ﬂ'+2”<’1}

gkt gy <p-ke3y (g — 27 KF+3) 7372 (2.5.3)

and

/ sup
T2 n>1

P
La
/Cl(ll, )K,“(x1 — 11, x0 — )1 a,(x) — 11, X0 — ) dt; dtz|  dx;dx;
1

7.‘._,'_271(71 27[(1»3
< Cp22K73Kp/2 [ (-xl _ 271(4*3)73[)/2 dxl d.xz
- —K+4 _o-K-1
<C,.
Here we have used that p > 2/3. Similarly,on A7, 7/2 < x, —t, < ® — 27 K+3 and

7 —2"K+2 < x, — 1, < 7, thus

/2 27K o < —27KF and m 27K o x < 27KL
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By (2.2.14),

1,
‘/a(fl, )K" (x1 —t1, %0 — )14, (x1 — 11, X2 — 1) dty dty
I

< szzK/p/()ﬁ —t1—x2+ 1) —xy + 1)
I

La,(x1 — t1, X2 — ) dt; dty

2K
=< Cp2 /171{71'/272*’(*I <xz<7«'72*’<+4}1{7r72*’<+3<x1<7r+2*’(*1}

/(W — 27K )2 — x4+ 1)V dt dny
1

2K/ p—3K /2
< Cp2KIP3KIY okt er ke

—K+3 -3/2

1{7r—2”(+3<x1<7r-ﬁ-2*’<*1}(7T -2 — X2)

and

/ sup
T2 n>1

<C 22K—3Kp/2/
- w/2—2-K~1

p

/a(fl, fz)K,i’a(xl —t,x — ) lg,(x1 — 11, X2 — ) dti dt| dxydx;
I

n—0—K+4

m4+2-K-1
/ (7T — 2_K+3 — )CQ)_3p/2 de dx1
m

_0-K+3
<C,.

We may suppose that the center of / is zero, in other words [ := (—v, V) X
(—v,v). Let

v

Ai(u, tr) Z=/ a(ty, ) dy and Ar(u, v) Z=/ Ai(u, t) dt,.

14 14

Observe that
|Ac(u, v)| < C2KC/P70 (k= 1,2).

Integrating by parts, we can see that

La
/ alty, n)K,“(x1 — 11, x3 — ) La,ua, (X1 — 11, X2 — 1) dty
I

1,
=AW, )K,“(x; —v, x0 — )L ayuas (X1 — v, X2 — 1)

+/ Ai(t1, )0 K (xy — 11, xa — 1) Layuag (X1 — 11, X2 — 1) dty,

v

because A|(—v, ;) = 0. Let us integrate the first term again by parts and use that

Ar(v,v) = / a(ty, b)dtydt, =0
L Jh
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to obtain
1,
/ a(t, n)K,“(x1 — t1, X2 — )L a,ua, (X1 — t1, X2 — 1) dt; dty
L JI,
v
La
= / Ary(V, )0 K, (x1 — v, X2 — )L aquag (X1 — V, X2 — ) dtp
—V
La
—i—/ A1, )OI K, " (x1 — 11, x2 — ) La,ua, (X1 — 11, X2 — 1) dty dty.
LJDL

Note that
Xi—th—xa+t>x —1)/2 (2.5.4)
on the set Az and
Xi—Hh—X2+tH>@m—x+05)/2 (2.5.5)

on the set Ag. If n < 2K, we get from Lemma 2.2.17 and (2.5.4) that

‘/d(h, )K= 11, %0 — ) 1A, (x1 — 11, X2 — 1) dty dty
i
< Cpn'—122KIP2K
1 =) P = )T Y () — v — ) dny
)43
+ Cpnl—'yzZK/p—K

/(x1 — 1) P = 1) T g (61 — 11, x2 — 1) dhdty
I

< Cp2* KPR K ki rir iy Lokt cy 242K
(0 = 27K — 27Ky, (2.5.6)

where 0 < 8 <1,y =caorvy =1.0n Ag, we use (2.5.5) to obtain

La
/G(ﬁ, 1)K, “(x1 — 11, X2 — )14, (X1 — t1, X2 — 1) dt1 dty
I

< Cpnl—fy22K/p—2K

1-3

(m—x2+0) " —x1 + 1) () — v, x0 — ) dby

I
+ Cpnlf’y22K/p7K

/(W — x4+ 1) P —x + tl)ﬁ_ﬁ'/_llAg(xl — 1, X — h)dtdh
I

2K/p—2K—K
< 2%/ g j2—2-K1 cxy <m—2-K+4) {(rty) j2-2-K <y <m—2-K+1)
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91
(m—xp = 27K — xy — 27Ky (2.5.7)
Similarly, if n > 2%, then we get from (2.2.15) and (2.5.4) that
/Ia(ll,l‘z)Ki’a(xl —t, X — )l s(x1 — 11, X0 — ) dt; diy
< Cpn12%K/P /(xl — 1) P = 1) g (61 — 11, X2 — 1) dty diy
i
< C 2K K L ki ik Lk cy ey 242K
(x; — 27K 71=0(x, — 2= K-1)f=-1 (2.5.8)
and, by (2.5.5),
/Cl(h, B)K) () — 11, %0 — )1 ag(x1 — 11, X2 — 1) dty db
15 C,n2%/p
/I(W —x2+ 1) P — x4+ 1) g (1 — 11, x0 — 1) dt db
< Cp K P ket g ema k) V() j2—2K <y <m0+
(r—xp = 27K 180 — x, = 27K=1)f=—1, (2.5.9)

Choosing 3 = /2, we conclude

/ sup
T2 n>1

< Cp22K72Kp7K'yp

p

1,
/a(fl, DK, (x1 —t1, %0 — )L a,(x1 — 11, X2 — 1) dty dtz| dxidx;
I

m42-K-1 x1/2+4+27K
(x — Z*K*I)*P(IH’/Z)(X2 _ 2*K*1)*P(1+7/2) dx,dx;
2-K+4 2-K+1
< Cp22K*ZKP*K"/PZ*K(I*p(lJr",’/Z))2*K(1*p(1+7’/2))
<C,

and

/ sup
T2 n>1
7(_2—K+4

7(_2—K+l
< CPZZK—ZKp—Kﬂ,p/ /
w/2—2"K=1 J(n+x,)/2—-2"K

(r— x5 — 2—K—1)—P(H—7/2)(7T —x — 2—K—1)—P(1+“//2) dxidx,

< C,22K~2Kp=K1py=K(1=p(L+7/2) =K (1=p(l+7/2)

p

/a(n, YKy — 11, %0 — ) 1Ay (x1 — 11, X2 — ) dty dby | dxidx;
1
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E pr
whenever p > 2/(2 + 7). Recall thaty = aor v = 1.
Since
)C2—l2>()€1—11)/2 on Ay
and

T—x1+H>(m—x3+1t)/2 on Ay,

Lemma 2.2.17 implies

1,
/0(11, DK, (x1 — 1, X2 — )14, (X1 — t1, X2 — t) dt; dty
I

< Cpnl_“”22K/”_2K X1 —v—x24+ 1) F
1)

(1 — 1) 7, () — v, x0 — B) diy

+ C,,nlf"’ZZK/p*K /()C1 —H —Xxy+ [2)717“3
1

(1 — 1) 7 oy, (e — 1, %0 — ) dndt
< Cp2*KIPT2EEA o ki cna iy Ly 22K iy, 2K
(x) —xp — 278170, — 27K yf=—d (2.5.10)

and

La
/0(11, 1)K, (X1 — 11, X2 — )14, (X1 — 11, X2 — 1) dt1 dty
i

< Cpnl_"’ZZK/”_ZK ) (xi—v—x24+0)""F
2
(m—x2 + )77 My (6 — v, X2 — ) dty

+ Cpn'"122K/PK /(x1 —t = x4 1) 7
1

(m —x2 + 1) gy (x) — 11, X2 — 1) dtydty

= CpZZK/pizKiK’Yl{ﬂ/Z—Z*K*I <xp<m—2-K+4} l{xz+2*K+‘ <xy<(m+x7)/2+2K}
(x1 —xp =278y 1B — xp, — 27Ky (2.5.11)

whenever n < 2K If n > 2K then by (2.2.15),
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1
/a(ll, D)K, (X1 —t1, X2 — )14, (x1 — 11, X0 — 1) dt; dtp
I

< Cpn 122K/ /(xl —t—xa+ 07
i
-1
(1 — 1)y, () — 11, %0 — 0) dtydty
2K/ p—2K—K~
< C,2%/p M-kt ey <rpo-5-1y Lz, 22K <y <y —2-K+1)

(1 —x = 275) 10y — 27Ky (2.5.12)

and

1,
‘/G(ﬁ, DK, (x1 —t1, %0 — )L, (x1 — 11, X2 — 1) dty dty
I

< Cpn12%K/p /(xl —t—x 1)
1

(m—x2 + t2)ﬁ77711A9(x1 — 1, X — h)dhdh
=< szzK/p_ZK_KW 1{7r/2—2*’<*1 <xp<m—2-K+4} 1{x2+2*K+‘ <x1<(m+x7)/2+2K}
(x1 —xp =278y 1B — xp, — 27Ky (2.5.13)

Choosing again § = /2, we obtain
P
/a(tl,tz)Kj’“(xl —t1, X —t)1a, (X1 — t1, X2 — ) dti dty| dxidx;

/ sup
T2 n>1 1

< Cp22K—2Kp—K'*,'p

T2-K-1 x;—2-K+1
/ (x; —xp — 2—K)—P(1+’Y/2)(xl _ 2—K—1)—P(l+'¥/2) dx,dx;
2K+ x1/2-27K

< C,22K-2Kp=K1pp=K(1=p(147/2) ) =K (1=p(1+1/2)

=C

and

/ sup
T2 n>1
p_n—K+4

(T4x7)/2+27K
< Cp22K72Kp7K'yp / /
m/2—2-K=1 Jxy42-K+1

(x1 — xp = 27Ky PUBD (1 _ ) — 27 K1Y=/ gy dx,

<C, 22K =2Kp—Kvpy—K(1=p(1+7/2) =K (1=p(1+7/2))

P
1,
/a(fl, K, (x) — 11, x0 — )L a,(x1 — 11, X0 — 1) dt; dty|  dx1dx;
I

S Cp?

whenever p > 2/(2 + 7).
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Finally, inequality (2.2.19) imply

1,
‘/G(fl, DK, (x1 —t1, %0 — )L, (x1 — 11, X2 — 1) dty dty
I

< C,2%Kr /(Xl —t—x2+ 1)
I
(2 — 1) 7 A (61 — 1, X2 — 1) dty dty
< Cp22K/p_KV1{2*K+4<x1<7r+2’K’1}

=1
1{x1—2’K+3<x2§x|+2*K}/(x2_t2) T dn
I

2K/ p—Kv—K
< C2 KPR K L ki pyrr

CK—1\—y—1
1{x1—2’K+3<x2§x1+2*K}(x2 -2 ) 7

and
1
/a(fl,l‘z)Kn’a(xl —t, X — )y (x1 — 11, X2 — ) dt; dty
I
< C,2%K/p /(xl —t—x+0)!
I
-1
(m—=x1+0)"7 1a,(x1 —t1, X0 — ) dt1 dty
2K/ p—K
< Cp 2K ket gy cpniy)
-1
L—2-Kaxy<xpp2k03y | (M —x1+1)77 dt
L
2K/ p—Ky—K
< sz /p—K1 1{7r/272*’<*‘ <xp<m—2-K+4)
—K—1y—y—1
l{xz72*K <x1<xz+2*K+3}(ﬂ_ —x1—2 )y
Hence

P

/0(11, YK} — 11, %0 — )1 ag(x1 — 11, X2 — ) dty dty | dxidx;
i

/ sup
T2 n>1

T2 K1 xi+27K
< C 22K Kyp—Kp / (x2 _ szfl)fp(’val) dx2dx1
X1

D—K+4 _0—K+3
T2~ K+ X427 K+3

<C, 22K—K~yp—Kp _ Z_K_')_”(”’H)dxldxz
2-K+3 Xo— 2-K

<Gy

and
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/ sup
T2 n>1

< Cp22K—K7p—Kp /

p

1
/a(ll,l‘z)K,,’a(Xl —t, Xy — )l (x1 — 11, X — ) dty dtz| dxidx;
I

T2 K+4

X2+2—K+3
/ (m —x; =275 H=PO*D dx dx,
X

7/2-27K-1 Jxy 2K
T—2—K+3 x;—2—K+3
< C,2¥~Kp=kKp f f (m—x; — 27K 7PO0D g xsdx,
7/2-2-K+1 Jy 42K
S Cp!
whenever p > 1/(1 + ), which finishes the proof of the theorem. |

Proof of Theorem 2.5.4 for ¢ = oo. We assume again that & < 1 and a is a cube
HI',]—atom with support I = I x I,

(27227 %21 cc 2% 27 F T (=12
for some K € Z. As before, it is enough to show that

/ sup
T2 n>1

=G

p

/d(ll, DK (X1 — t, %0 — )14, (x1 — 11, X2 — ) dty dtz| dxidx;
1

foralli =1,2,3,4,5 where ™ > x; —t; > x, — 1, > O and

Al ={(x1,x):0<x; < 27K 0<xp <x) < m},
Ay = {(x1,x2) : 27555 < x) < 7,0 < xp < 27572,
Az = {01, x0) : 27K < x) <, 2782 < xy < xy/2),

Ay = {(x, x2) 1 2757 <y < x1 /2 < xp < xp — 27K,

K+2

As = {(xl,xg):2_K+5 <x<m,x —2 < Xy < X1}

(see Fig.2.12). The estimation on the set A; is the same as before in the proof for
q = 1. Inequality (2.2.28) implies

'/a(ﬁ, DK (x) — 1, x0 — ) 14,(x1 — 11, X2 — B) dty dby
I

< C,2%K/p /(Xl —t =X+ h) T — 1)
I
La,(x1 — t1, X2 — o) dty dty

2K
< sz /p1{2—K+4<X1<7T+2—K—1}1{_2—K—1<X252—K+3}

/(xl — 27Ky — 1) dr dty
I
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2K/p—K—-K
< sz /p /71{27K+4<xl<7r+2—1<—1}

—K+3y—1—
ookt cgyeprs3y (g — 27K F) 7177,

where v = « or v = 1 in the whole proof. Furthermore,

/ sup
T2 n>1
0—K+3

T2 K1
< szZK—Kp—K')/p (xl _ 2—K+3)—p(1+’y) d.XQd)Cl
2—K+4 72—1(—]

p
/a(tl, DK (x) — 1, X0 — )14, (X1 — 11, X2 — ) dty dty| dxydx;
I

= Cy,

provided that p > 1/(1 + ~). For any 0 < 8 < a, we get from (2.3.1) that

/Cl(lh )K(x1 — t, %0 — )14, (x1 — 11, x2 — ) dt d1y
I

< €, 22K /Py f Gy — 1)y — 1)1
I

Lay(x1 —t1, X2 — ) dt; dty

2K/p—2K—K
< sz /p 71{2—K+4<xl <m42-K-1} 1{27K+1<x25xl/2+24<}

(x) — 27K71)717"/+ﬂ(x2 _ 271(71)717/3’
whenever n > 2X. Lemma 2.2.21 and (2.5.4) imply that

|8j[(é’0,a(xl’x2)| < Cnl—axl—l—a-rﬂxz_l_g

on Az, where j = 1, 2. Similar to the proof for ¢ = 1, we get by integration by parts
that

fa(l‘l, DK (x) —t, x0 — )14, (x1 — 11, X2 — ) dty diy
I

v
< / Ar(, ) K2 (x) — v, X2 — ) 1o, (X1 — v, x2 — 1) dtp

+ / Aj(t, ) K2 () — 11, x0 — 1) 14y (xy — 11, X2 — 1) dty diy
I JI

< Cpn'022KIP 2K (e — )T (e — 1) T Py () — 11, 00 — 1) d
)63

+ Cpn17a22K/p7K /(xl _ t1)717a+,‘3(x2 _ tz)flfﬁ
1

Lay(x1 — 11, X2 — ) dt; dny

2K /p—2K —Ka
< C,2%/r Lo-k+4 cxy <mp2-k-1) L o=k +1 iy <1, j242-K)
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(xl _ 2—K—1)—1—(1+,3(x2 _ 2—K—1)—l—ﬁ
if n < 2X. Thus

/ sup
T2 n>1

< Cp 22K72Kp71('~/p

p
/Cl(h, DK (x1 — 11, X0 — ) 1a,(x1 — 1, X2 — ) dty dty| dxydx;
I

a+27K=1 axy /242K
/ (xl _ Z—K—l)(—l—’*/-i-ﬁ)p(xz _ Z—K—l)—(l+ﬁ)p dxzd.X]
2-K+4 2—-K+1

< C,22K~2Kp=K1pp=K(1=G=P+1p)p=K(I=(45)p)

S Cp?

whenever p > 1/(1+()and p > 1/(y — B+ 1). B = /2 implies p > ﬁ
Using (2.3.2), we see that

/a(tl»IZ)K,?O’a(xl — 1, X — )1 4,(x1 — 11, X2 — ) dt; dy
I

< Cpn12%K/P /(Xl —t1 =X+ )Ty =)
1

14,(x1 —t1, X0 — ) dt1 dtr
< Cp2*KIP=2RKA o kvi cnra k) L (2o K <y, 2K
(x) — xp — 27K 19 +B () — 27 K=1)=1=0) (2.5.14)

where n > 2% and 0 < 8 < a. Since x» > x;/2 and x» > x; — x» on A4, Lemma
2.2.21 implies

, 1—a —1- Cass
|0, K2 (x1, x2)| < Cnl=ox 70 (g — xp) 7170,

where j = 1, 2. For n < 2%, we get by integration by parts that

fa(l‘l, DK (x) — 1, x0 — ) 14,(x1 — 11, X2 — b)) dt; diy
I

=

/ Ay (U, )L K2 (x) — v, X0 — )14, (X1 — v, X2 — 1)) dby

+ / Ai(t1, )OI K2 (x1 — t1, %0 — )14, (x1 — 11, X2 — B) dt dty
L JI

< Cpn'T0?K/r2K / =) P = —xp )
)63

La,(x1 — t1, x2 — o) dty
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+ Cpn' 022K/ /(xl )P =t —xp 1) O
1

La,(x1 — t1, X2 — ) dty dty
< Cp2* KPR ki k1) Ly jm2K <y xy—2KH)
(x) — xp — 27Kyt 0 () — 2= K-1y=1=5, (2.5.15)

From this it follows that
p
/a(fl, D)Ko (x1 — 11, X0 — )14, (x1 — 11, X2 — ) dti dty| dxydx;

/sup
T2 n>1 |J1

42 K1y K
< CPZZK—ZK[)—K“/[)‘/‘ /
2-K+4 x1/2-2"K

(xl — Xy — 271()(71774’@)[)()(1 _ 27K71)*(1+[})p dxdeI

< CPZZK*ZKP*K“/PZfK(lf(vfﬁJrl)p)27K(17(1+6)p)

= Cp9

whenever § = y/2 and p > %
Finally, since x, > x;/2 also on As,

/a(l‘l,lz)K,?o’a(xl — 1, X0 — )14 (x1 — 11, X2 — ) dt1 dy
I

< C,2%/r /(M — 1) Ha (X1 — 11, X2 — 1) dty db
1
2K/p—2 CK-1y-2
< Cp22K P 2K ks cnpa ko L 2ok gy <y 2y (1 — 2757

and so

p
/ sup fa(tl,tz)K,?o’a(xl —t, X — )1, (x1 —t,x2 — ) dtdty| dxydx;
T2 n>1

1

m+2-K-1 x+2°K
< CPZZK_zKp (x1 — 2—K—1)—2p dx,dx;
2-K+4 X —2-K+3
<C,.
This completes the proof. |

If p is smaller than or equal to the critical index, then this theorem is not true (see
Oswald [253] and Stein, Taibleson and Weiss [292]). More exactly, we have

Theorem 2.5.6 If ¢ = oo and o = 1, then the operator o1 is not bounded from
HE (T9) 1o Lp(Td) if p is smaller than or equal to the critical index d/(d + 1).

However, if p is equal to the critical index, then we can verify a weak type
inequality.
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Theorem 2.5.7 Suppose thatq = 1,00 and 0 < o < oo. If

. d
o= d+anl
and f € HJ(T?), then
,Q — No 1/
%Zﬂum—iWMdf>p)msCWMﬂ (2.5.16)

Proof of Theorem 2.5.7 for ¢ = 1. We may suppose again that 0 < o < 1. We use
Theorem 2.4.20 and prove that

sup p”/ T\ (ola > p) < C

p>0
for all Hg(z Loy-atoms a. In other words, we have to show that
A (SUP /a(l1, )K= t1, %0 — )14, (X1 — 1, X2 — ) dty dby| > p)
n>1 I

< Cp—2/(2+a)

fori =1,...,10and p > 0. Since

MWWMM>ms/WwWW, (2.5.17)
Td

the desired inequality follows from the proof of Theorem 2.5.4 fori =1, 6, 5, 10.
The same holds fori = 2,7 if « < 1. So for i = 2, 7, we suppose that o = 1.
Fori = 2 and p = 2/3, we have seen in (2.5.3) that

’/;a(fl, )KL (x) — 11, X2 — 1) 14, (x1 — 11, X — 1) dt; dty
< C23K/21{2—K+4<X1 <rt2-k- ook oy <o-k43y (X — 27K+3)73/2.
If this is greater than p, then

Lip-—x+4 <y <mpa-x-1y (X1 — 2_K+3) < Cp_2/32K Li_ok-1 oy <2-K43)

and
2_K+4<X1 <Cp_2/32K +2—K+4.
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)

Consequently,

A (sup
n>1

< 1
- /']I‘Z [1(24<+4<Xl<W+2—K—1,(X1*2’K+3)<CP’2/32K1(,2—1@102524@3)

< Cp72/32K/ 1{,2—K—1<x2§2—K+3}dX2
T

1,
fa(ll, D)K,“(x1 —t1, % — )1 a, (X1 — 11, X2 — 1) dty dty
i

} dx1 d)CZ

< Cp’2/3.

Similarly,

La
/11([1, D)K,“(x1 — 11, X2 — )1 a4, (X1 — 11, X2 — 1) dt; dtr
I

< C23K/21{ﬂ./2_2—1<—1 <xp<m—2-K+4)

Lir—o-k43 <y cqqa-k-1y (T — 2—K+3 _ x2)_3/2.
If this is greater than p, then
- 3
1{77/2,2—1(—1<X2<7T,2—K+4}(7T -2 B+3 _ .X'z)

< Cp72/32K Lim—2543 <y, <mg2-K-1-

Let us denote the set of (x;, x») for which the preceding inequality holds by H;. If
(x1, x2) € H7, then

7 =27k _Ccp3K < xy < — 27K,

Furthermore,

A (sup
n>1

< / La, (x1, x2) dxs dx,
’]I‘Z

La
/11(11, DK, (x1 —t1, X2 — )1 a4, (X1 — t1, x0 — 1) dt1 dty
i

e

< CP_2/32K/ Lir—o-&+3 <y <pp2-k-1) d Xy
T

<Ccp 2.

For i = 3, 8,4,9, we may suppose that v =« and p =2/(2 + o). We get by
(2.5.6) and (2.5.8) that
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1
/ll(tl, D)K,“(x1 —t1, X0 — )14, (X1 — 11, X2 — 1) dt; dtr
i

S C1{27K+4<X1<7T+2’K’I}1{2’K+'<x2§x1/2+2”(}
—K—-1\—1-03 —K—1\f—a—1
(xr =270 P =270 )T

If this is greater than p, then

1{2—K+1<x2§xl/2+271<}(.x2 — 27K71)

-1l K-
< Cp Ho-p 1{271<+4<x]<ﬂ+24<71](x1 -2 ) THed,

Note that x; /2 + 2~X < x;. Choosing 3 such that — lljfﬁ +1<0,ie,a/2 <8<
1, we obtain

A (sup /a(tl, DKV (x) — ty, %0 — ) Lo, (x1 — 11, X2 — 1) dty dp| > P)
n>1 1
—1/Q2+a)  9—K—1
P +2 X %
< — 42 dx
—K+4 2
__ 1 g —_K—1 _ 48
+ Cp 1+a—p3 (_xl — 2 ) I+a—p3 d_xl
p1/@ta) 4 2-K-1
< Cp et 4 Cpfﬁpﬁv -4
— Cp—2/(2+a)'

Similarly, by (2.5.7) and (2.5.9),

1
‘/a(fl, )K,“(x) — 11, x0 — )L, (x1 — 11, X2 — 1) dt; dty
I
< Clygjpox-1cxycn—2-54 L (riny) j2—2-K <) <m—2-K+1)
(r = xp — 27K )10 — x; — 27 K-1)fma-l
If this is greater than p, then

k-1
L{(rtn) j2—2-K <xy <m—2-k+1y (T — X1 — 2 )

-l K==
< Cp +a—p 1{71-/2,2—1(71 <x2<7.r72—K+4}(7T —xy—2 ) FeB,
Here (1 — x,)/2 4+ 27X < 7 — x,. Choosing 3 as before, we obtain
A (SUP /a(fl, K} () — 1, %0 — )1 ag(x1 — 11, X2 — 1) dty db
n>1 1

T_n—K+4

5/ T2 Ky

—pV/@te) _p-K-1

-
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—1/@+a) _p—K-1

TP LK fe_ 18
+ Cp I+a—3 (71— — Xy — 2 ) 1+a—3 dxz
—T
< Cp et 4 Cpfﬁpﬁv -4

— Cp—2/(2+a')'

For A4, we get from (2.5.10) and (2.5.12) that

/a(tl, DKV (x) — ty, %0 — )4, (x1 — 11, X2 — 1) dty dby
I

< Clp-stacy cngrk-1y 1 ey 2—2-K <y < —2- K41
—K\—1-3 —K—1\f—a—1
(X1 —x2—=277)" P (x; =2 )T

If this is greater than p, then

K
Ly, j2—2-K <y <y —2-k+1y (X — X2 — 277)

o _K—]. fret
<Cp =7 1{2-K+4<xl<,r+2_x-1}(x1 -2 ) .

Hence
lLa
A (sup fa(tl, DK, (x1 —t1, 60 — ) 1A, (x) — 11, %0 — 1) dt; dtp | > P)
n>1 1
pV/@r0) K=
f/ x1dx
2-K+4
_a 7 Ky Bast
+CP 1+8 (xl -2 ) +3 dX1
p1/@+a) 4 o—K-1

=1 (fB=a=1

< Cp72/(2+0z) + Cp*ﬁpm( 43 +1)

— Cp—Z/(Z-Hy) .

Here we have chosen (3 such that ﬁ?ﬁgl +1<0,ie,0< (< a/2.

Finally, by (2.5.11) and (2.5.13),

1,
/a(ﬁ, )K, (X1 — 11, X2 — )14, (X1 — 11, X2 — 1) dt1 dty
I

< Cliypjpma-x-1 cxyen—a-k+4y Ly p0-K41 o) < (mry) 242K}

(X1 — x = 275) 1P — xy — 27K

and



2.5 Almost Everywhere Convergence of the £,-Summability Means 103

K
Ly 2541y <(mpay) 2425y (X1 — X2 —277)
Boa-1

1
_ —K-1 7
<Cp ™7 1{7r/272"(‘] <X2<7T72_K+4}(7r —x2—2 )

This implies that

B—a—1 _
042K ey < (m—x, = 27K 4 x4 27KH

and so
A (SUP /ll(tl, B)K) () — 11, %0 — )1 ay (X1 — 11, X2 — 1) dty dt
n>1 1

q—2—k+4

5/ T2 0K,

—p- Vet _p-K-1 2

)

e p /@) _p—K-1
1 f-a-1
L —K—1y 5t
+ Cp ™7 (m—x—2 ) T dx,
—T
—1 oI

< Cpfz/(2+a) + Cp*ﬁpzw En )

— Cp—Z/(2+u')

with the same (3 as for Ay, i.e.,0 < 8 < «/2. The proof of the theorem is complete.
|

Proof of Theorem 2.5.7 for g = oo. Similar to the proof for g = 1, we have to show

that
> p)

A <sup
n>1
< Cp—z/(2+u)
fora<1,i=1,...,5, for all Hz':/‘(Ha)—atoms a and p > 0. For i = 1,2,5, this
inequality follows from (2.5.17) and the proof of Theorem 2.5.4. For i = 3, 4, we
may suppose thaty = cvand p = 2/(2 + o). We have seen in (2.5.6) and (2.5.8) that

/a(tl» 1)K (X1 — t1, X2 — )14, (x1 — 11, X2 — 1) dty dty
I

/a(fl, DK (x) — 1, x0 — )14, (x1 — 11, X2 — B) dty diy
I

=< Cl{2*’““<x| <m++2-K-1} 1{2*’(*‘ <xp<x1/2+2K}
(x) — 27K71)7lfa+33(x2 _ 27K71)717ﬁ.

If this is greater than p, then
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—K—1
Lokt cgyeny japa-ky (12 — 27571

1 R N e
<Cp ™ 1{2‘K+4<x1<77+2"<“}(-x1 -2 ) A

Since x1/2 + 27X < x; and 3 can be chosen such that — lff_gﬁ +1<0,ie.,0<
B < a/2, we obtain ‘

A (Sllp /a(l‘l, DK (x — 11, x0 — )14, (X1 — 11, X2 — ) dty dby | > P)
n>1 1
—1/Q24a) L H—K—1
p +a) 4 o x1 T
< — +27%dx;
2-K+4 2
1 ™ I+a—f3
+Cp ™ / (x; — 275155 dxy
p*l/(2+n)+27K—l
< Cp U 4 Cp—ﬁpﬁ(—%ﬂ)
— Cp—z/(2+rk).

Similarly, by (2.5.14) and (2.5.15),

‘/a(ll,l‘z)K,?o’a(Xl — 1, X — )1l 4,(x1 — 11, X2 — ) dt; diy
I

2K/ p—2K —K
< C,2%/r Mi-k+4 <y <m2-K -1y L, 22K <xy <y —2-K41)

(01— xp = 27F) IRty — 27K,
which implies that

K

Ly j2—2-K <y —2-k+1y (X1 — X2 — 277)
SR K
< Cp™ i 1{271<+4<xl<7r+24(71](x1 -2 ) THed,

Hence
A (SHP /a(l‘l, DK (x) — 1, x0 — ) 14,(x1 — 11, X0 — ) dti dbp| > p)
n>1 1
p*l/(2+(x)+2fk—l
< Xy dx
2-K+4
1 g —K—1 __+8
+ Cp Tas (x1 —2 ) =8 dx
p—l/(2+n)+2—K—1

< Cp Yo 4 Cp*ﬁpﬁ(ﬂl%iﬁl)

— CpYr),
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1+

Wwhere — I+a—p

4+ 1 < 0,ie.,a/2 < [ < «.Thiscompletes the proof of the theorem.
|

Of course, (2.5.16) cannot be true for p < po, i.e., o'* is not bounded from

H E (T9) to the weak L ,,,OO(T" ) space for p < py. If the operator was bounded, then
by interpolation (2.5.1) would hold for p = pg, which contradicts Theorem 2.5.6.

Oswald [253] proved a similar theorem to Theorem 2.5.4 for the Riesz means of
the Fourier transforms and for ¢ = co. Theorems 2.5.4 and 2.5.7 can be found in
Weisz [330, 339]. For a detailed proof of the multi-dimensional version, see [337,
338, 341, 344].

Marcinkiewicz [233] verified for two-dimensional Fourier series that the cubic
(i.e.,q = oo)Fejérmeans of afunction f € L log L(T?) converge almost everywhere
to f asn — oo. Later Zhizhiashvili [364, 366] extended thisresulttoall f € L (T?)
and to Cesaro means and Berens, Li and Xu [30] to g = 1. The general convergence
result can be found in [330, 337-339, 341].

The next corollary follows easily from Theorem 2.5.4.

Corollary 2.5.8 Suppose thatg = 1,00 and 0 < a < 00. If f € L (T9), then

sugp)\(aZ’”f >p) <Clflh.
p>

The density argument of Marcinkiewicz and Zygmund implies

Corollary 2.5.9 Suppose thatg = 1,00 and 0 < a < 00. If f € L(T9), then

lim o/“f=f ae

n—o0

Proof Since the trigonometric polynomials are dense in L;(T¢), the corollary fol-
lows from Theorem 1.3.6 and Corollary 2.5.8. ]

2.5.2 Almost Everywhere Convergence for q = 2

Theorem 2.5.10 Suppose thatq =2, (d —1)/2 < a <ocoand~y € P. If

d
Po:

= —— < p < 00,
d)2+a+1/2

and f € H(T?), then
o2 f], < Coll fllug -

Proof Let us choose N € N such that N <a —(d —1)/2 < N + 1. As we men-
tioned in Sect.2.4, we may suppose that the support of an atom « is a ball B with
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radius 3,27 %X~! < 3 < 27K (K e N). Moreover, we may suppose that the center of
B is zero, i.e., B = B(0, 3). Obviously,

/ lo2*Ya(x)|? dx
Td\(rB)

la'22K 7] -1
< Y sup |02 a(x)|P dx
i=alq@i2)—1 ¥ BOGH227FNBO, (+1)27F)NTY nzd!/22K+1
la'228 7] -1
+ Z sup |05'“”’a(x)|”dx
i=ad']—1 B(0,(i+2)2-¥)\B(0,(i+1)2-K)NT? n<d!/22K+1
=: (A) + (B),

where r = 84'/2. Note that if K < 3, then the integral is equal to 0.
We use Taylor’s formula for g () = Op(n(x — 2kmw — t)):

N—1 d i
) . t
g =Y Y .. 8:;’gk(0>]"[— + Z o ofaen 5
1=0 lilli=t =t = j=1t
for some 0 < v < 1. Here

. g (1) = (=)l gl 9By (n(x — 2k — 1)).

Using this with ¢t — 2k instead of ¢, Theorem 2.2.30 and the definition of the atom,
we obtain

0> a(x) = (zﬂ)dz /Bﬂkﬂa(t)ﬁo(n(x—t))dt

keZd
= G P /B%"(”
= (t; — 2k;m)"
fonx =) =Y > a0y k(O)]‘[’—
1=0 Jilli=l j=1 ek
Nl il
- G 2 2 Y fym e

, o~ 4t — 2k; 77)’
o - -8319()(71()( — 2km) — nug(t — 2k7r)) 1_[ dt,
j=1

where 0 < v; < 1. Then, by Corollary 2.2.28,
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|05’G’”/a(x)| <C, Z p@=D/24N—-anKd/py—KN

keZd

/ llx — 2k — v (r — 2km) ||, /277 ar. (2.5.18)
B+2k~

Moreover,

sup  |o2a(x)| < C, Z 2K ((d=1)/2-a)9Kd/p

n>d1/22K+1 =
/ lx — 2km — v (¢t — 2k7r)||2—d/2—u—1/2 dt
B+2km
=1 A1(x) + Ax(x),
where

Ay (x) 1= 2K(@=DR-aKdlp f lbe = vot ;272 dt
B+2km

and

Az(x) = Z ZK((dfl)/Zf(y)de/p
keZd k#0

/ I = 2 — e (r = 2kl .
B+2km

If k=0, u € Band x € B0, (i +2)27%)\ B0, (i + D27%) N T for some i =
4ld'2| —1,..., [d"22K 7] — 1, then

lx — ull > llxlla — llull, > i27X.
In case k #0, u € B+ 2km and x € B(0, (i +2)27%)\ B(0, (i + D27 %) N T,
one can see that
lx —ull> = |Ikll2/4.
Then
Ar(x) = szK((dfl)/z’“)de/P/(isz)fd/Zfa—l/z dt
B

< szKd/Pi—d/Z—a—l/z

and
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Ay(x) < C) Z 2K((d—l)/2—a)2Kd/17/ ”knz—d/z—a—uz dt

keZd k0 B+2km
<C, Z 2K(—d/2—1/2—a)2[(d/p”k||2—d/2—l/2_u
keZd k0

o0
<c, Z 2K(—d/2—l/2—a)2[(d/pj(—d/2—l/Z—a)jd—l

=1
=G

for p >d/(d/2 + o+ 1/2). Hence,

|d'?2K x| —1 |d'?2K x| —1
(A <c, > Kgshfpedpestid o N K < ¢
i=4d'/?2]—1 i=4|d"/2]—1

ifp>d/d/2+a+1/2).
Applying Taylor’s formula for N 4 1 instead of N, we get similar to (2.5.18) that

\o_z,a.'ya(x)| <C, Z p(@=D/2+(N+1)—anKd/py—K(N+1)

kez

/ lx —2km — v (t — 2k7r)||2‘d/2—”—1/2 dt
B+2km

and
Sup |0'5'Ot7’7'a(x)| S Cp Z 2K((d71)/2*0’)2Kd/p
n<d!/22K+1 =
/ lx — 2km — v (t — 2k7r)||2*d/27a71/2 dr.
B+2km
The inequality
(B) <C,

can be shown as above. .

Corollary 2.5.11 Supposethatq =2, (d —1)/2 <a <ococandyeP. If1 < p <
0o, then

loZ* fll, < Coll fll,  (f € Lp(Th).

Theorem 2.5.10 was proved by Stein, Taibleson and Weiss [292] and Lu [224]. The
author generalized it for other summability methods in Weisz [332, 334]. The theorem
is not true if p is smaller than or equal to the critical index d/(d/2 + a + 1/2) (see
Stein, Taibleson and Weiss [292]).
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Theorem 2.5.12 Ifqg =2,(d —1)/2 < a < ccand~y € P, then the operator o™
is not bounded from HII,:| (T%) to L,,(Td) if p is smaller than or equal to the critical
indexd/(d/2 + o+ 1/2).

If p is equal to the critical index, then we have again a weak type inequality.

Theorem 2.5.13 Suppose thatq =2, (d —1)/2 < a <ocoand v € P. If

d
P = v at 1,2

O md
and f € H, (T%), then
o2 00 = iglgpk(oZ*‘“’f > < Clifllug-

Proof We will use Theorem 2.4.20. Let us introduce the set
E,:={i >4|d"?] — 17712 5 ¢l pa=Kdir)

where p = d/(d/2 + o+ 1/2). Observe that

P A141 > P T\ 0 B)) = Cpr Y 012K

i€k,
If k is the largest integer for which k=4/2==1/2 5 C=1p2=Kd/P then

pﬂA({A1 > p} N T4\ (rB)}) < pr2Kdpd < C.

The same inequality for (A;) is trivial. We can estimate sup,, _ 129+ IJﬁ‘a’Wa(xﬂ
similarly, which shows the theorem. |

Corollary 2.5.14 Suppose that g =2, (d—1)/2 <a<oo and veP. If f €
L1(T%), then

sup p M@ f > py < C||flh.
p>0

As in the previous subsection, this implies

Corollary 2.5.15 Suppose that g =2, (d—1)/2 <a<oo and veP. If f €
L (T%), then

lim ¢?*“7f =f ae
n—oo
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2.6 {,-Summability Defined by a Function 0

Now we generalize the £,-Fejér and Riesz means investigated above. We introduce
a general summability method, the so-called #-summability generated by a given
one-dimensional function 6.
P ( &l )
n

We suppose that § : R — R and
for all n € N. If 6 has compact support, then this holds obviously. As we will see in

> (2.6.1)
Sect.2.6.1, (2.6.2) implies (2.6.1).

keZd

Definition 2.6.1 Suppose that § satisfies (2.6.1). For f € L{(T¢), 1 < g < oo and
n € N, the nth £,-0-means aZ’ef of the Fourier series of f and the nth £,-0 kernel

K2 are defined by

,0 — m Iy tk-x
o f(x) == Ze( . )f(k)e

kezd
n Ik
K49) .= H*lg Y ikt
(1) keEZdH( . )e ,
respectively.

Lemma 2.6.2 Suppose that 0 satisfies (2.6.1). For f € L1(T%) andn € N,

1
(2m)d

ol f(x) = /TI fx =K () dt.

The definition of the £,-0-means can be extended to distributions as usual.

Definition 2.6.3 Suppose that @ satisfies (2.6.1). For f € D(T%), 1 < ¢ < oo and
n € N, the nth £,-0-means o} 0 f of the Fourier series of f are given by

JZ’(’f = f % K,‘{’e.
Definition 2.6.4 We define the maximal §-operator by

o? f 1= sup |0’Z'€f’ .
neN

Note that K,{f’g is bounded and integrable. If 6(¢) = max((1 — |¢|")“, 0), then we
get back the Riesz (or in special case @ = v = 1, the Fejér) means. §-summability
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was considered in many papers and books, such as Butzer and Nessel [47], Trigub
and Belinsky [319], Natanson and Zuk [244], Bokor, Schipp, Szili and Vértesi [38,
272,274, 300, 301], and Feichtinger and Weisz [103, 104, 332, 337, 338, 342, 346].

2.6.1 Triangular and Cubic Summability

For ¢ = 1 or oo, instead of (2.6.1), we suppose that

the support of 8 is [—c, ¢] (0 < ¢ < 00),
0 is even and continuous, 6(0) = 1,
Z,‘j‘;okd‘me(g)‘ < 00,

lim,_, o t90(t) = 0,

MORIORICS

is the first difference. If the support of § is not compact, then we say that ¢ = oo.
Abel rearrangement implies

(2.6.2)

where

S e b eEre) -~

thus (2.6.1) holds.
Lemma 2.6.5 Suppose that 0 satisfies (2.6.2). For f € L{(T¢), g =1, 00andn €

N, we have
0‘19 f(x)= ZAl < ) qf(x)

and

- j
K901 = ; A6 (Z) D)

Proof The proof follows from

K&f'ny=Y" Y A0 (%) okt _ ZA10 (%) DY)

keZd ,fz”kllq

We need also the following condition:
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0 is twice continuously differentiable on(0, c),

0" # 0 except at finitely many points and finitely many intervals,

lim,_, g0 16’ (¢) is finite, (2.6.3)
lim;_, ._q t0'(¢) is finite,

lim;_, o t0' () = 0.

The norm convergence follows easily from Theorem 2.6.7.

Theorem 2.6.6 Assume that q = 1 or g = 00 and (2.6.2) and (2.6.3) are satisfied.
If1 < p < oo, then

sup [, < CIF1,

ne

and
lim O'Z’ef = f inthe L,(T%)-normforall f € L,(T?).
n—oo

For the almost everywhere convergence, we introduce some notations. Let X
and Y be two complete quasi-normed spaces of measurable functions, L, (T¢) be
continuously embedded into X and L, (T9) be dense in X. Suppose thatif0 < f < g,

fig €Y, then || flly < llglly. If fu, f €Y, fu =0 meN) and f, / f ae. as
n — 0o, then assume that || f — f,|ly — 0. Recall that o denotes the maximal
Fejér operator.

Theorem 2.6.7 Assume that q = 1 or g = 00 and (2.6.2) and (2.6.3) are satisfied.
If ol : X — Y is bounded, i.e.,

lo? flly < Clifllx  (f € XN Loo(T),

then ol Y is also bounded,

lo?? flly < Cliflx (f € X).

Proof By Abel rearrangement,

u K\ 4 e K\, m
gme (Z) D!(x) = ; Ny <;) KK (x) + A0 (;) mK9 (x),

where ' ' 1
A29 (—) = A19 (—) — A19 (—+ )
n n n
is the second difference and K, denotes the Fejér kernel. Observe that for a fixed x,

we have that K, (x) is uniformly bounded in m. By Lagrange’s mean value theorem
there exists m < £(m) < m + 1, such that
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mad () =10 (5(;")>

and this converges to zero if m — oo. Thus,

= k
Kz’e(x) = gk Ay0 (;) KZ()C)

> k
suka ‘Ag@ (—)
nzl = "

If ” > 0 on the interval (i/n, (j 4+ 2)/n), then @ is convex on this interval and this
yields that

Now we prove that

<C < 0. (2.6.4)

k
Aﬁ(—)zo for i <k <.
n

Hence

Zk

wa(t) -Eroa(?)
:0<—>+(i—1)A19<l— =
n n
i+ 1 i+ 1
jan(12)-0(52).
n n
Applying again Lagrange’s mean value theorem, we have
£0) (5(0)’ <c
n

: i\| 10) i—1
e=nlao ()| =5 ()

where i < £(i) < i + 1. Here, we used the fact that the function x — |x6'(x)] is
bounded, which follows from (2.6.3). If §” = 0 at an isolated point u or if §” is not
twice continuously differentiable at u, u € (k/n, (k 4+ 1)/n), then the boundedness

of k ‘Azﬁ(f)‘ can be seen in the same way. Since there are only finitely many

intervals and isolated points satisfying the above properties, we have shown (2.6.4).
Hence

o? f(x) = / FOKP (x — 1) dt

—Z/ kA29< )f(z)K"(x—z)dt
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forall f € Loo(T). Thus
.0 d
ol"f =Colf (f €L(TY)

and so
[o2?fly <Clflx  (f € XN Loo(TY).

By a usual density argument, we finish the proof of the theorem. ]

It is easy to see that X can be chosen to be the Hardy space H E (T?) and Y to be
the space L,,(’]Td) or L,,,OQ(']I‘d) (0 < p < 00). Theorems 2.6.7 and 2.5.4 imply

Theorem 2.6.8 Assume that g = 1 or ¢ = o0 and (2.6.2) and (2.6.3) are satisfied.
If
d

_ <OO,
a+1 =

then
lo2? 1, < Collfllyp  (f € HY(T)

and, for f € Hd':/'(dﬂ)(ﬂ‘d),

,0 ,0 d+1)/d
02 Flajiasny o = 58D PA@Ef > )0 < ClFlyg

I+

Moreover,

sugpMazﬂf >p) <Clflh  (f € Li(T%).
P>

Corollary 2.6.9 Assume that ¢ = 1 or g = 00 and (2.6.2) and (2.6.3) are satisfied.
If f € Li(T%), then

lim o?’f =f ae

n— o0

2.6.2 Circular Summability

If ¢ = 2, then we have to assume other additional conditions instead of (2.6.2) and
(2.6.3). Recall that
Bo(x) = 0(|lx|12)-

Let
0y e Li(RY) and B € L(RY). (2.6.5)

Assume that @\0 is (N + 1)-times differentiable (N > 0) and there exists
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d+N—-1<pB<d+N

such that ‘ e X
- 00| < Clixll,”™ (x £ 0, (2.6.6)

whenever i1 +---+ig=Norij+---+ig=N+1.If 3=d+ N, then it is
enough to suppose (2.6.6) fori; +---+i; = N + 1.

We recall that the Riesz summability, i.e., if 8(¢) = max((1 — [¢|7)?, 0), satisfy
(2.6.5) and (2.6.6) with 8 = d/2 + o — 1/2 (see Corollary 2.2.28).

The norm convergence can be proved as Theorem 2.3.2.

Theorem 2.6.10 Assume that g = 2, (0) = 1 and (2.6.1) and (2.6.5) are satisfied.
If1 < p < oo, then

sup [ £1], < CIlf

ne

and
lim 09 f = f inthe L,(T¢)-norm forall f € L,(T%).

n—oo

We can prove the next theorem similar to Theorem 2.5.10. The details are left to
the reader.

Theorem 2.6.11 Assume that g = 2 and (2.6.1), (2.6.5) and (2.6.6) are satisfied. If

then
|21, < Collfllun (F € HP(T)

and, for f € H['f/'(ﬁﬂ)(']l‘d),

o2’ = sup pA(@?? f > p) TV < C|l |l 4o
p>0

ajB+)

f||d/(ﬁ+l).00

Moreover,

sugpA(GZ")f >p) <Clflh  (f € Li(T%).
P>

Corollary 2.6.12 Assume that g = 2, (0) = 1 and (2.6.1), (2.6.5) and (2.6.6) are
satisfied. If f € L1(T%), then

lim UZ’Hf =f ae
n—oo

We note again, that (2.6.2) implies (2.6.1).
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2.6.3 Some Summability Methods

Now we give some examples for the #-summation.

Example 2.6.13 (Fejér summation). Let

) 1=elif e < 1
9(’)_{0 if ]t > 1.

Example 2.6.14 (de La Vallée-Poussin summation). Let

1 if if [t] < 1/2;
0) =3 2|t|+2if1/2 < |t < 1;
0 if |¢| > 1.

Example 2.6.15 (Jackson-de La Vallée-Poussin summation). Let
1—32/243)t3/4if |t < 1;
0 = | 2—1t)*/4 if 1 <r] <2
0 if [t] > 2.
Example 2.6.16 Let 0 =9 <a; <--- < ay, and [y, ..., LB, (m € N) be real

numbers, By = 1, B, = 0. Suppose that 0 is even, 0(a;) =3; (j =0,1,...,m),
6(t) = 0 fort > ay,, 0 is a polynomial on the interval [o;_1, o] (j =1, ..., m).

Example 2.6.17 (Rogosinski summation). Let

o) = cosmt/2 if |[t] <14 2j;
—]0 if |t] > 1425

for some j € N.
Example 2.6.18 (Weierstrass summation). Let

6(t) = e " forsome 1<~ < oo.

Note that if v = 1, then we obtain the Abel means.

Example 2.6.19 Let
0(r) = e~ 11D forsome 1< g < 00,0 <7 < o0.
Example 2.6.20 (Picard and Bessel summations). Let
0@) =1+ 1t|")™ forsome 0 <a<oo,l <vy<oo,ay>d.

Example 2.6.21 (Riesz summation). Let
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@ =Mt < 1;
o) = {0 if 7] > 1

for some 0 < o, v < o0.
It is easy to see that all of these examples satisfy (2.6.2) and (2.6.3).

Theorem 2.6.22 Suppose that 0 is one of the Examples 2.6.13—-2.6.21. Then Theo-
rems 2.6.6, 2.6.8 and Corollary 2.6.9 hold.

One can show [334, 343] that Example 2.6.21 with « > (d — 1)/2, v € P and
B =d/2+ «a—1/2, Example 2.6.18 with 0 < v < oo and 3 =d + N, Example
2.6.19 with 0 < v,¢g < o0 and 8 =d 4+ N and Example 2.6.20 with 5 =d + N
satisfy (2.6.2), (2.6.5) and (2.6.6).

Theorem 2.6.23 Suppose that 0 is one of the Examples 2.6.18, 2.6.19, 2.6.20 or
2.6.21 with the parameter (3 just defined. Then Theorems 2.6.10, 2.6.11 and Corollary
2.6.12 hold.
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