
Chapter 2
�q-Summability of Higher Dimensional
Fourier Series

Here, we study the theory of multi-dimensional Fourier series. In the first section,
we introduce different versions of the partial sums of the d-dimensional Fourier
series and the corresponding Dirichlet kernels, i.e., the cubic, triangular, circular and
rectangular partial sums and Dirichlet kernels.We show that the cubic, triangular and
rectangular partial sums converge in the L p(T

d)-norm to the function (1 < p < ∞).
The multi-dimensional version of Carleson’s theorem is also considered.

The summability of Fourier series can be generalized for higher dimensions basi-
cally in twoways. In this chapter, we study the �q -summability of higher dimensional
Fourier series. As in the literature, we investigate the three cases q = 1, q = 2 and
q = ∞. The other type of summability, the so-called rectangular summability will be
investigated in the next chapter. For each type, we investigate the Cesàro and Riesz
summation. In Sect. 2.2, we present the basic definitions of the �q -summability and
prove some estimations for the �q -Cesàro and Riesz kernels. In the next section, we
prove that the �q -Cesàro means and �q -Riesz means of f ∈ L p(T

d) (1 ≤ p < ∞)

converge to f in the L p(T
d)-norm.

In Sect. 2.4, we prove the basic results for Fourier series of distributions. We
introduce the Hardy spaces H�

p (Td) and present the atomic decomposition of these
spaces. We verify also sufficient conditions for an operator to be bounded from
H�

p (Td) to L p(T
d). Applying this result, we show that the maximal operator of the

�q -Cesàro and Riesz means are bounded from H�
p (Td) to L p(T

d) for any p > p0,
where p0 < 1 is depending on the summation and on the dimension. This result
implies the almost everywhere convergence of the summability means. In Sect. 2.6,
we introduce a general summability method, the so-called θ-summability generated
by a single function θ and prove similar results for the �q -θ-means. In the last section,
as special cases, we present some summability methods, such as the de La Vallée-
Poussin, Jackson-de La Vallée-Poussin, Rogosinski, Weierstrass, Picard and Bessel
summations.
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34 2 �q -Summability of Higher Dimensional Fourier Series

2.1 Higher Dimensional Partial Sums

In this section, we generalize the results of Sect. 1.2, we introduce four types of partial
sums of the d-dimensional trigonometric Fourier series and study their L p(T

d)-norm
and almost everywhere convergence of a function f ∈ L p(T

d).
We introduce the following notations. For x = (x1, . . . , xd) ∈ R

d and u =
(u1, . . . , ud) ∈ R

d set

u · x :=
d∑

k=1

ukxk, ‖x‖p :=
(

d∑

k=1

|xk |p
)1/p

(1 ≤ p < ∞)

and
‖x‖∞ := sup

k=1,...,d
|xk | , |x | := ‖x‖2 .

Definition 2.1.1 The functions

eık·x =
d∏

j=1

eık j x j

are called d-dimensional trigonometric system, where k = (k1, . . . , kd) ∈ Z
d , x =

(x1, . . . , xd) ∈ T
d .

Definition 2.1.2 For an integrable function f ∈ L1(T
d), its kth d-dimensional

Fourier coefficient is defined by

f̂ (k) = 1

(2π)d

∫

Td

f (x)e−ık·x dx (k ∈ Z
d).

The formal trigonometric series

∑

k∈Zd

f̂ (k)eık·x (x ∈ T
d)

is called the d-dimensional Fourier series of f .

We will generalize the one-dimensional partial sums in Definition 1.2.2 for higher
dimensional functions in two ways. In the first generalization, we take the sum over
the indices ‖k‖q ≤ n instead of k = −n, . . . , n, where 1 ≤ q ≤ ∞. These sums
are called �q -partial sums. In the second generalization, we take the sum in each
dimension, i.e., over the indices |k1| ≤ n1, . . . , |kd | ≤ nd . Here, we call the sums
rectangular partial sums. The most natural choices q = 2, q = 1, q = ∞ and the
rectangular partial sums are investigated in several papers and books (for q = 2, see
e.g. Stein and Weiss [290, 293], Davis and Chang [76], Grafakos [143, 145, 146],
Lu and Yan [229], Feichtinger and Weisz [103, 104], for q = 1, Berens, Li and Xu
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[30–32, 356], Weisz [336, 337], for q = ∞, Marcinkiewicz [233], Zhizhiashvili
[366], Weisz [332, 342, 346], for the rectangular sums, Zygmund [367] and Weisz
[332, 342, 346]).

Definition 2.1.3 For f ∈ L1(T
d), 1 ≤ q ≤ ∞ and n ∈ N, the nth �q -partial sum

sqn f of the Fourier series of f and the nth �q -Dirichlet kernel D
q
n are given by

sqn f (x) :=
∑

k∈Zd , ‖k‖q≤n

f̂ (k)eık·x

and
Dq

n (u) :=
∑

k∈Zd , ‖k‖q≤n

eık·u,

respectively.

The next lemma follows easily from the definition.

Lemma 2.1.4 For all n ∈ N, 1 ≤ q ≤ ∞ and t ∈ T
d , we have

|Dq
n (t)| ≤ Cnd .

The partial sums are called triangular if q = 1, circular if q = 2 and cubic if
q = ∞ (see Figs. 2.1, 2.2, 2.3 and 2.4).

Definition 2.1.5 For f ∈ L1(T
d) and n = (n1, . . . , nd) ∈ N

d , the nth rectangular
partial sum sn f of the Fourier series of f and the nth rectangular Dirichlet kernel
Dn are given by

sn f (x) :=
∑

|k1|≤n1

· · ·
∑

|kd |≤nd

f̂ (k)eık·x

and

Fig. 2.1 Regions of the �q -partial sums for d = 2
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Fig. 2.2 The Dirichlet kernel Dq
n with d = 2, q = 1, n = 4

Dn(u) :=
∑

|k1|≤n1

· · ·
∑

|kd |≤nd

eık·u,

respectively.

Similar to (1.2.1), we obtain

Lemma 2.1.6 For f ∈ L1(T
d) and n ∈ N,

sqn f (x) = 1

(2π)d

∫

Td

f (x − t)Dq
n (t) dt

and

sn f (x) = 1

(2π)d

∫

Td

f (x − t)Dn(t) dt.

It is clear that
Dn(u) = Dn1(u1) · · · Dnd (ud),

where Dn j is the one-dimensional Dirichlet kernel (see Fig. 2.5).

Definition 2.1.7 For some n = (n1, . . . , nd) ∈ N
d , the function
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Fig. 2.3 The Dirichlet kernel Dq
n with d = 2, q = 2, n = 4

n1∑

k1=−n1

· · ·
nd∑

kd=−nd

cke
ık·x (x ∈ T

d)

is said to be a trigonometric polynomial.

By iterating the one-dimensional result, we get easily the L p-norm convergence
for the rectangular partial sums.

Theorem 2.1.8 If f ∈ L p(T
d) for some 1 < p < ∞, then

sup
n∈Nd

‖sn f ‖p ≤ Cp‖ f ‖p

and
lim
n→∞ sn f = f in the L p(T

d)-norm.

Here, n → ∞ means the Pringsheim convergence, i.e., min(n1, . . . , nd) → ∞.

Proof By Theorem 1.2.10,
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Fig. 2.4 The Dirichlet kernel Dq
n with d = 2, q = ∞, n = 4
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Fig. 2.5 The rectangular Dirichlet kernel with d = 2, n1 = 3, n2 = 5
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∫

T

|sn f (x)|p dx1

=
∫

T

∣∣∣∣
∫

T

(∫

T

f (t)Dn2(x2 + t2) dt2

)
Dn1(x1 + t1) dt1

∣∣∣∣
p

dx1

≤ Cp

∫

T

∣∣∣∣
∫

T

f (t)Dn2(x2 + t2) dt2

∣∣∣∣
p

dt1.

Again by the same theorem,

∫

T

∫

T

|sn f (x)|p dx1 dx2 ≤ Cp

∫

T

∫

T

∣∣∣∣
∫

T

f (t)Dn2(x2 + t2) dt2

∣∣∣∣
p

dx2 dt1

≤ Cp

∫

T

∫

T

| f (t)|p dt2 dt1,

which gives the desired inequality of Theorem 2.1.8. The convergence is a conse-
quence of this inequality and of the density of trigonometric polynomials. �

In the next theorem, we present the norm convergence of the triangular and cubic
partial sums.We omit the proof since it can be found at several places of the literature
(see e.g., Fefferman [93], Grafakos [143] or Weisz [346]).

Theorem 2.1.9 If q = 1,∞ and f ∈ L p(T
d) for some 1 < p < ∞, then

sup
n∈N

∥∥sqn f
∥∥
p ≤ Cp‖ f ‖p

and
lim
n→∞ sqn f = f in the L p(T

d)-norm.

If q = 2, then the same result is valid for p = 2.

Since the characteristic function of the unit ball is not an L p(R
d) (1 < p �= 2 <

∞, d ≥ 2) multiplier (see Fefferman [95] or Grafakos [143, p. 743] or Lu and Yan
[229, p. 743]), we have

Theorem 2.1.10 If d ≥ 2, q = 2 and 1 < p �= 2 < ∞, then the preceding theorem
is not true.

The analogue of Carleson’s theorem holds also for the triangular and cubic partial
sums in higher dimensions (see Fefferman [93, 94] and Grafakos [143, p. 231]), but
it does not hold for the circular and rectangular partial sums.

Definition 2.1.11 We denote by

sq∗ f := sup
n∈N

∣∣sqn f
∣∣

the maximal operator of the �q -partial sums.
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Theorem 2.1.12 If q = 1,∞ and f ∈ L p(T
d) for some 1 < p < ∞, then

∥∥sq∗ f
∥∥
p ≤ Cp‖ f ‖p

and if 1 < p ≤ ∞, then
lim
n→∞ sqn f = f a.e.

Theorem 2.1.12 does not hold for circular partial sums (see Stein andWeiss [293,
p. 268]).

Theorem 2.1.13 If q = 2 and p < 2d/(d + 1), then there exists a function f ∈
L p(T

d) whose circular partial sums sqn f diverge almost everywhere.

This means that for a general function in L p(T
d) (p < 2) almost everywhere

convergence of the circular partial sums is not true if the dimension is sufficiently
large. It is an open problem, whether Theorem 2.1.12 holds for p = 2 and for cir-
cular partial sums. A counterexample, which proves the next result, can be found in
Fefferman [94].

Theorem 2.1.14 There exists a continuous function f such that for the rectangular
partial sums sn f ,

lim
n→∞ sn f (x) = f (x)

does not hold for any x ∈ T
d .

The generalization of Theorem 1.2.13 for higher dimensions was proved by
Antonov [8].

Theorem 2.1.15 If q = ∞ and

∫

Td

| f (x)|(log+ | f (x)|)d log+ log+ log+ | f (x)| dx < ∞,

then
lim
n→∞ sqn f = f a.e.

2.2 The �q-Summability Kernels

As in the one-dimensional case, Theorems 2.1.8, Theorem 2.1.9 and the inequality
in Theorem 2.1.12 do not hold for p = 1 and p = ∞. Using a summability method,
we can extend the theorems to p = 1 and p = ∞ again. Now we introduce the �q -
summabilitymeans andkernels and showsome results for the kernels.Weconcentrate
on the two-dimensional kernels.
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Definition 2.2.1 For f ∈ L1(T
d), 1 ≤ q ≤ ∞ and n ∈ N, the nth �q -Fejér means

σ
q
n f of the Fourier series of f and the nth �q -Fejér kernel K

q
n are introduced by

σq
n f (x) :=

∑

k∈Zd , ‖k‖q≤n

(
1 − ‖k‖q

n

)
f̂ (k)eık·x

and

Kq
n (t) :=

∑

k∈Zd , ‖k‖q≤n

(
1 − ‖k‖q

n

)
eık·t ,

respectively.

We generalize this definition as we did for the one-dimensional Fourier series and
introduce the �q -Cesàro means.

Definition 2.2.2 Let f ∈ L1(T
d), n ∈ N, α ≥ 0 and q = 1 or q = ∞. The nth �q -

Cesàro means σ
q,α
n f of the Fourier series of f and the nth �q -Cesàro kernel Kq,α

n

are introduced by

σq,α
n f (x) := 1

Aα
n−1

∑

k∈Zd , ‖k‖q≤n

Aα
n−1−‖k‖q f̂ (k)e

ık·x

and

Kq,α
n (t) := 1

Aα
n−1

∑

k∈Zd , ‖k‖q≤n

Aα
n−1−‖k‖q e

ık·t ,

respectively.

We also call the Cesàro means �q -(C,α)-means. For α = 1, we get back the
�q -Fejér means and for α = 0, the �q -partial sums. We introduce also a second
generalization of the Fejér summation. For the circular summability (i.e., for q = 2),
we will investigate rather this generalization.

Definition 2.2.3 For f ∈ L1(T
d), 1 ≤ q ≤ ∞, n ∈ N and 0 < α, γ < ∞, the nth

�q -Riesz means σ
q,α,γ
n f of the Fourier series of f and the nth �q -Riesz kernel K

q,α,γ
n

are given by

σq,α,γ
n f (x) :=

∑

k∈Zd , ‖k‖q≤n

(
1 −

(‖k‖q
n

)γ)α

f̂ (k)eık·x

and

Kq,α,γ
n (t) :=

∑

k∈Zd , ‖k‖q≤n

(
1 −

(‖k‖q
n

)γ)α

eık·t ,

respectively.
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Fig. 2.6 The Fejér kernel Kq
n with d = 2, q = 1, n = 4

We will always suppose that 0 ≤ α < ∞, 1 ≤ γ < ∞. If α = γ = 1, we get
back the �q -Fejér means. In the case q = 2, let γ ∈ N. If α = 0, we get the partial
sums and if q = γ = 2,α > 0, themeans are calledBochner-Rieszmeans. The cubic
summability (when q = ∞) is also calledMarcinkiewicz summability (see Figs. 2.6,
2.7, 2.8, 2.9 and 2.10).

The following two lemmas follow the definition.

Lemma 2.2.4 Let 0 ≤ α, γ < ∞ and n ∈ N. If q = 1 or q = ∞, then

1

(2π)d

∫

Td

K q,α
n (t) dt = 1.

If 1 ≤ q ≤ ∞, then
1

(2π)d

∫

Td

K q,α,γ
n (t) dt = 1.

Lemma 2.2.5 Under the same conditions as in Lemma 2.2.4,

|Kq,α
n (t)| ≤ Cnd and |Kq,α,γ

n (t)| ≤ Cnd (t ∈ T
d).

Proof We have
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Fig. 2.7 The Fejér kernel Kq
n with d = 2, q = ∞, n = 4

|Kq,α
n (t)| ≤ 1

Aα
n−1

∑

k∈Zd , ‖k‖q≤n

Aα
n−1−‖k‖q ≤ C

1

Aα
n−1

n∑

j=0

Aα
n−1− j j

d−1 ≤ Cnd .

The second inequality can be shown in the same way. �
One can easily see that

Lemma 2.2.6 Let f ∈ L1(T
d), n ∈ N and 0 < α, γ < ∞. If q = 1 or q = ∞, then

σq,α
n f (x) = 1

(2π)d

∫

Td

f (x − t)Kq,α
n (t) dt.

If 1 ≤ q ≤ ∞, then

σq,α,γ
n f (x) = 1

(2π)d

∫

Td

f (x − t)Kq,α,γ
n (t) dt.

Lemma 2.2.7 For f ∈ L1(T
d), α > 0, q = 1,∞ and n ∈ N, we have

σq,α
n f (x) = 1

Aα
n−1

n−1∑

j=0

Aα−1
n−1− j s

q
j f (x)



44 2 �q -Summability of Higher Dimensional Fourier Series

−4
−2

0
2

4

−4

−2

0

2

4
−5

0

5

10

15

20

Fig. 2.8 The Fejér kernel Kq
n with d = 2, q = 2, n = 4

and

Kq,α
n (t) = 1

Aα
n−1

n−1∑

j=0

Aα−1
n−1− j D

q
j (t).

Proof Since ‖k‖q is an integer, Lemma 1.4.8 implies that

Kq,α
n (t) = 1

Aα
n−1

∑

k∈Zd , ‖k‖q≤n

Aα
n−1−‖k‖q e

ık·t

= 1

Aα
n−1

∑

k∈Zd , ‖k‖q≤n

n−1∑

j=‖k‖q
Aα−1
n−1− j e

ık·t

= 1

Aα
n−1

n−1∑

j=0

Aα−1
n−1− j D

q
j (t),

which shows the lemma. �

Obviously, the �q -Fejér means are the arithmetic means of the �q -partial sums
when q = 1,∞:
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Fig. 2.9 The Bochner-Riesz kernel Kq,α
n with d = 2, q = 2, n = 4, α = 1, γ = 2

σq
n f (x) = 1

n

n−1∑

k=0

sqk f (x).

Similar to Lemma 1.4.13, we have

Lemma 2.2.8 For α > −1, q = 1,∞ and h > 0, we have

σq,α+h
n f = 1

Aα+h
n−1

n∑

k=1

Ah−1
n−k A

α
k−1σ

q,α
k f.

Theproofs of the results presented later are very different for the casesq = 1, 2,∞
because the kernel functions are very different. In the next subsections, we give some
estimations for the kernels. Since we will prove later the results basically for d = 2,
we present these estimations in the two-dimensional case.
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Fig. 2.10 The Bochner-Riesz kernel Kq,α
n with d = 2, q = 2, n = 4, α = 1/2, γ = 2

2.2.1 Kernel Functions for q = 1

For the triangular Dirichlet kernel, we need the notion of the divided difference,
which is usually used in numerical analysis.

Definition 2.2.9 The nth divided difference of a one-dimensional function f at the
(pairwise distinct) knots x1, . . . , xn ∈ R is introduced inductively as

[x1] f := f (x1), [x1, . . . , xn] f := [x1, . . . , xn−1] f − [x2, . . . , xn] f
x1 − xn

.

One can see that the difference is a symmetric function of the nodes. The following
theorem is proved in DeVore and Lorentz [82, p. 120]), so we omit the proof.

Theorem 2.2.10 We have

[x1, . . . , xn] f =
n∑

k=1

f (xk)∏n
j=1, j �=k(xk − x j )

. (2.2.1)

If f is (n − 1)-times continuously differentiable on [a, b] and xi ∈ [a, b], then there
exists ξ ∈ [a, b] such that
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[x1, . . . , xn] f = f (n−1)(ξ)

(n − 1)! . (2.2.2)

To give an explicit form of the triangular Dirichlet kernel, we will need the fol-
lowing trigonometric identities.

Lemma 2.2.11 For all n ∈ N and 0 ≤ x, y ≤ π,

n∑

k=0

εk cos(ky) sin((n − k + 1/2)x)

= sin(x/2)
cos(x/2) cos((n + 1/2)x) − cos(y/2) cos((n + 1/2)y)

cos x − cos y
(2.2.3)

and

n∑

k=0

εk cos(ky) cos((n − k + 1/2)x)

= cos(x/2)
sin(y/2) sin((n + 1/2)y) − sin(x/2) sin((n + 1/2)x)

cos x − cos y
, (2.2.4)

where ε0 := 1/2 and εk := 1, k ≥ 1.

Proof By trigonometric identities,

n∑

k=0

εk cos(ky) sin((n − k + 1/2)x)

= sin((n + 1/2)x)
n∑

k=0

εk cos(ky) cos(kx)

− cos((n + 1/2)x)
n∑

k=0

εk cos(ky) sin(kx)

= 1

2
sin((n + 1/2)x)

n∑

k=0

(
εk cos(k(x − y)) + εk cos(k(x + y)

)

− 1

2
cos((n + 1/2)x)

n∑

k=0

(
εk sin(k(x − y)) + εk sin(k(x + y))

)
.

Similarly to (1.2.2), we can show that

n∑

k=0

εk sin(kx) = cos(x/2) − cos((n + 1/2)x)

2 sin(x/2)
.

Using this and (1.2.2), we conclude
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n∑

k=0

εk cos(ky) sin((n − k + 1/2)x)

= 1

4
sin((n + 1/2)x)

(
sin((n + 1/2)(x − y))

sin((x − y)/2)
+ sin((n + 1/2)(x + y))

sin((x + y)/2)

)

− 1

4
cos((n + 1/2)x)

(
cos((x − y)/2) − cos((n + 1/2)(x − y))

sin((x − y)/2)

+1

4

cos((x + y)/2) − cos((n + 1/2)(x + y))

sin((x + y)/2)

)
.

Since

sin((n + 1/2)x) sin((n + 1/2)(x − y))

+ cos((n + 1/2)x) cos((n + 1/2)(x − y)) = cos((n + 1/2)y)

and

sin((n + 1/2)x) sin((n + 1/2)(x + y))

+ cos((n + 1/2)x) cos((n + 1/2)(x + y)) = cos((n + 1/2)y),

we conclude that

n∑

k=0

εk cos(ky) sin((n − k + 1/2)x)

= 1

4

cos((n + 1/2)y) − cos((n + 1/2)x) cos((x − y)/2)

sin((x − y)/2)

+ 1

4

cos((n + 1/2)y) − cos((n + 1/2)x) cos((x + y)/2)

sin((x + y)/2)

= 1

4

cos((n + 1/2)y)
(
sin((x + y)/2) + sin((x − y)/2)

)

sin((x − y)/2) sin((x + y)/2)

− 1

4

cos((n + 1/2)x)

sin((x − y)/2) sin((x + y)/2)
×

×
(
cos((x − y)/2) sin((x + y)/2) + cos((x + y)/2) sin((x − y)/2)

)
.

Using again some trigonometric identities, we get that

n∑

k=0

εk cos(ky) sin((n − k + 1/2)x)

= 1

2

2 cos((n + 1/2)y) sin(x/2) cos(y/2)

cos y − cos x
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− 1

2

cos((n + 1/2)x) sin x

cos y − cos x

= sin(x/2)
cos(x/2) cos((n + 1/2)x) − cos(y/2) cos((n + 1/2)y)

cos x − cos y
.

Formula (2.2.4) can be shown in the same way. �

Define the function Gn by

Gn(cos x) := (−1)[(d−1)/2]2 cos(x/2)(sin x)d−2soc ((n + 1/2)x),

where the function soc is defined by

soc x :=
{
cos x, if d is even;
sin x, if d is odd.

The following representation of the triangular Dirichlet kernel was proved by Herriot
[165] and Berens and Xu [30, 356].

Lemma 2.2.12 For x ∈ T
d ,

D1
n(x) = [cos x1, . . . , cos xd ]Gn

= (−1)[(d−1)/2]2
d∑

k=1

cos(xk/2)(sin xk)d−2soc ((n + 1/2)xk)∏d
j=1, j �=k(cos xk − cos x j )

. (2.2.5)

Proof We will prove this lemma for all dimensions because the main idea of the
proof is induction with respect to the dimension. First, we note that the second
equality follows from the definition of Gn and from the property of the divided
difference described in (2.2.1). In this proof, let us denote the Dirichlet kernel by
D1

d,n(x) := D1
n(x). We have seen in (1.2.2) that in the one-dimensional case

D1
1,n(x) = D1

n(x) = sin((n + 1/2)x)

sin(x/2)

= 2 cos(x/2)(sin x)−1 sin((n + 1/2)x),

thus (2.2.5) holds for d = 1. Suppose the lemma is true for integers up to d and let
d be even. It is easy to see that

D1
d+1,n(x) = 2d+1

∑

j∈Nd , ‖ j‖1≤n

ε j1 cos( j1x1) · · · ε jd+1 cos( jd+1xd+1)

= 2
n∑

l=0

εl cos(lxd+1)Dd,n−l(x1, . . . , xd)
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= (−1)[(d−1)/2]4
d∑

k=1

cos(xk/2)(sin xk)d−2

∏d
j=1, j �=k(cos xk − cos x j )

n∑

l=0

εl cos(lxd+1) cos((n − l + 1/2)xk),

where ε0 := 1/2 and εl := 1, l ≥ 1. Using (2.2.4), we obtain

D1
d+1,n(x) = −(−1)[(d−1)/2]4

d∑

k=1

cos(xk/2)(sin xk)d−2

∏d+1
j=1, j �=k(cos xk − cos x j )

cos(xk/2) sin(xk/2) sin((n + 1/2)xk)

+ (−1)[(d−1)/2]4
d∑

k=1

cos(xk/2)(sin xk)d−2

∏d+1
j=1, j �=k(cos xk − cos x j )

cos(xk/2) sin(xd+1/2) sin((n + 1/2)xd+1)

= −(−1)[(d−1)/2]2

(
d∑

k=1

cos(xk/2)(sin xk)d−1 sin((n + 1/2)xk)∏d+1
j=1, j �=k(cos xk − cos x j )

− sin(xd+1/2) sin((n + 1/2)xd+1)×

×
d∑

k=1

(1 + cos xk)(sin xk)d−2

∏d+1
j=1, j �=k(cos xk − cos x j )

)
. (2.2.6)

Since d is even, the function h(t) := (1 + t)(1 − t2)(d−2)/2 is a polynomial of degree
d − 1. Then, by (2.2.2),

0 = [cos x1, . . . , cos xd+1]h

=
d∑

k=1

(1 + cos xk)(sin xk)d−2

∏d+1
j=1, j �=k(cos xk − cos x j )

+ (1 + cos xd+1)(sin xd+1)
d−2

∏d+1
j=1, j �=d+1(cos xd+1 − cos x j )

.

This and (2.2.6) imply

D1
d+1,n(x) = −(−1)[(d−1)/2]2

(
d∑

k=1

cos(xk/2)(sin xk)d−1 sin((n + 1/2)xk)∏d+1
j=1, j �=k(cos xk − cos x j )

+ sin(xd+1/2) sin((n + 1/2)xd+1)
(1 + cos xd+1)(sin xd+1)

d−2

∏d+1
j=1, j �=d+1(cos xd+1 − cos x j )

)

= (−1)[d/2]2
d+1∑

k=1

cos(xk/2)(sin xk)d−1 sin((n + 1/2)xk)∏d+1
j=1, j �=k(cos xk − cos x j )

,
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which proves the result if d is even. If d is odd, the lemma can be proved similarly.
�

As a special case, for d = 2, we get the next corollary.

Corollary 2.2.13 For x ∈ T
2, we have

D1
n(x1, x2)

= [cos x1, cos x2]Gn

= 2
cos(x1/2) cos((n + 1/2)x1) − cos(x2/2) cos((n + 1/2)x2)

cos x1 − cos x2
.

In what follows, we may suppose that x ∈ T
2 and π > x1 > x2 > 0. We denote

the characteristic function of a set H by 1H , i.e.,

1H (x) :=
{
1, if x ∈ H ;
0, if x /∈ H.

Lemma 2.2.14 If 0 < α ≤ 1 and π > x1 > x2 > 0, then

∣∣K 1,α
n (x1, x2)

∣∣ ≤ C(x1 − x2)
−1(x1 + x2)

−11{x2≤π/2}
+ C(x1 − x2)

−1(2π − x1 − x2)
−11{x2>π/2}, (2.2.7)

1{x2≤π/2}
∣∣K 1,α

n (x1, x2)
∣∣

≤ Cn−α(x1 − x2)
−1(x1 + x2)

−1x−α
2 1{x2≤π/2}

+ Cn−1(x1 − x2)
−1(x1 + x2)

−1x−1
2 1{x2≤π/2}, (2.2.8)

1{x2>π/2}
∣∣K 1,α

n (x1, x2)
∣∣

≤ Cn−α(x1 − x2)
−1(2π − x1 − x2)

−1x−α
2 1{x2>π/2}

+ Cn−1(x1 − x2)
−1(2π − x1 − x2)

−1x−1
2 1{x2>π/2}, (2.2.9)

1{x2≤π/2}
∣∣K 1,α

n (x1, x2)
∣∣ ≤ Cn1−α(x1 + x2)

−1x−α
2 1{x2≤π/2}

+ C(x1 + x2)
−1x−1

2 1{x2≤π/2} (2.2.10)

and

1{x2>π/2}
∣∣K 1,α

n (x1, x2)
∣∣ ≤ Cn1−α(2π − x1 − x2)

−1x−α
2 1{x2>π/2}

+ C(2π − x1 − x2)
−1x−1

2 1{x2>π/2}. (2.2.11)
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Proof By the trigonometric identity,

cos a − cos b = −2 sin((a − b)/2) sin((a + b)/2),

Corollary 2.2.13 can be rewritten as

D1
k (x1, x2)

= −cos(x1/2) cos((k + 1/2)x1) − cos(x2/2) cos((k + 1/2)x2)

sin((x1 − x2)/2) sin((x1 + x2)/2)
. (2.2.12)

We will use that
sin(x1 ± x2)/2 ∼ x1 ± x2 if x2 ≤ π/2

and

sin(x1 − x2)/2 ∼ x1 − x2, sin(x1 + x2)/2 ∼ 2π − x1 − x2 if x2 > π/2.

By Lemma 2.2.7 and (2.2.12), we can see that

K 1,α
n (x1, x2) = 1

Aα
n−1

n−1∑

k=0

Aα−1
n−1−k (2.2.13)

cos(x2/2) cos((k + 1/2)x2) − cos(x1/2) cos((k + 1/2)x1)

sin((x1 − x2)/2) sin((x1 + x2)/2)

≤ 2(x1 − x2)
−1(x1 + x2)

−11{x2≤π/2}
+ 2(x1 − x2)

−1(2π − x1 − x2)
−11{x2>π/2},

which is exactly (2.2.7).
Suppose that x2 ≤ π/2. By (2.2.13) and Lemma 1.4.14,

∣∣K 1,α
n (x1, x2)

∣∣

≤ (x1 − x2)
−1(x1 + x2)

−1 1

Aα
n−1(∣∣∣∣∣

n−1∑

k=0

Aα−1
n−1−k cos((k + 1/2)x2)

∣∣∣∣∣+
∣∣∣∣∣

n−1∑

k=0

Aα−1
n−1−k cos((k + 1/2)x1)

∣∣∣∣∣

)

≤ Cn−α(x1 − x2)
−1(x1 + x2)

−1x−α
2 + Cn−1(x1 − x2)

−1(x1 + x2)
−1x−1

2 ,

which shows (2.2.8).
Lagrange’s mean value theorem and (2.2.12) imply that there exists x1 > ξ > x2,

such that

D1
k (x1, x2) = − H ′

k(ξ)(x1 − x2)

sin((x1 − x2)/2) sin((x1 + x2)/2)
,
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where
Hk(t) = cos(t/2) cos((k + 1/2)t).

Then (2.2.10) follows from

∣∣K 1,α
n (x1, x2)

∣∣ ≤ 1

Aα
n−1

∣∣∣∣∣

n−1∑

k=0

Aα−1
n−1−k

H ′
k(ξ)(x1 − x2)

sin((x1 − x2)/2) sin((x1 + x2)/2)

∣∣∣∣∣

≤ Cn(x1 − x2)(x1 − x2)
−1(x1 + x2)

−1(n−αx−α
2 + n−1x−1

2 ).

The inequalities (2.2.9) and (2.2.11) for x2 > π/2 can be proved in the same way. �

The next estimations of the kernel function come easily from Lemma 2.2.14.

Lemma 2.2.15 If 0 < α ≤ 1, 0 ≤ β ≤ 1 and π > x1 > x2 > 0, then

∣∣K 1,α
n (x1, x2)

∣∣ ≤ C(x1 − x2)
−3/2x−1/2

2 1{x2≤π/2}
+ C(x1 − x2)

−3/2(π − x1)
−1/21{x2>π/2}, (2.2.14)

1{x2≤π/2}
∣∣K 1,α

n (x1, x2)
∣∣

≤ Cn−α(x1 − x2)
−1−βxβ−α−1

2 1{x2≤π/2}
+ Cn−1(x1 − x2)

−1−βxβ−2
2 1{x2≤π/2}, (2.2.15)

1{x2>π/2}
∣∣K 1,α

n (x1, x2)
∣∣

≤ Cn−α(x1 − x2)
−1−β(π − x1)

β−α−11{x2>π/2}
+ Cn−1(x1 − x2)

−1−β(π − x1)
β−21{x2>π/2}, (2.2.16)

1{x2≤π/2}
∣∣K 1,α

n (x1, x2)
∣∣ ≤ Cn1−αx−α−1

2 1{x2≤π/2} + Cx−2
2 1{x2≤π/2} (2.2.17)

and

1{x2>π/2}
∣∣K 1,α

n (x1, x2)
∣∣ ≤ Cn1−α(π − x1)

−α−11{x2>π/2}
+ C(π − x1)

−21{x2>π/2}. (2.2.18)

Proof The basic facts

x1 + x2 > x1 − x2, x1 + x2 > x2

and
2π − x1 − x2 > x1 − x2, 2π − x1 − x2 > π − x1
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together with (2.2.7) imply

∣∣K 1,α
n (x1, x2)

∣∣ ≤ 2(x1 − x2)
−3/2x−1/2

2 1{x2≤π/2}
+ 2(x1 − x2)

−3/2(π − x1)
−1/21{x2>π/2},

which shows (2.2.14). Since 0 ≤ β ≤ 1, (2.2.8) implies

∣∣K 1,α
n (x1, x2)

∣∣ ≤ Cn−α(x1 − x2)
−1−βxβ−α−1

2 + Cn−1(x1 − x2)
−1−βxβ−2

2

if x2 ≤ π/2. The other inequalities can be shown similarly. �

Lemma 2.2.16 If 0 < α ≤ 1 and π > x1 > x2 > 0, then

1{x2≤π/2}
∣∣K 1,α

n (x1, x2)
∣∣

≤ C(x1 − x2)
α−1x−α−1

2 1{x2≤π/2} + Cx−2
2 1{x2≤π/2} (2.2.19)

and

1{x2>π/2}
∣∣K 1,α

n (x1, x2)
∣∣ ≤ C(x1 − x2)

α−1(π − x1)
−α−11{x2>π/2}

+ C(π − x1)
−21{x2>π/2}. (2.2.20)

Proof If β = 0 and n ≥ (x1 − x2)−1, then (2.2.15) implies (2.2.19). On the other
hand, (2.2.19) follows from (2.2.17) if n < (x1 − x2)−1. �

In the next lemma, we estimate the partial derivatives of the kernel function.

Lemma 2.2.17 If 0 < α ≤ 1, 0 ≤ β ≤ 1 and π > x1 > x2 > 0, then for j = 1, 2,

1{x2≤π/2}
∣∣∂ j K

1,α
n (x1, x2)

∣∣

≤ Cn1−α(x1 − x2)
−1−βxβ−α−1

2 1{x2≤π/2}
+ C(x1 − x2)

−1−βxβ−2
2 1{x2≤π/2} (2.2.21)

and

1{x2>π/2}
∣∣∂ j K

1,α
n (x1, x2)

∣∣

≤ Cn1−α(x1 − x2)
−1−β(π − x1)

β−α−11{x2>π/2}
+ C(x1 − x2)

−1−β(π − x1)
β−21{x2>π/2}. (2.2.22)

Proof Let x2 ≤ π/2. By Lagrange’s mean value theorem and (2.2.12),
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∂1D
1
k (x1, x2)

= 1

2

(
sin(x1/2) cos((k + 1/2)x1) + cos(x1/2)(2k + 1) sin((k + 1/2)x1)

)

sin((x1 − x2)/2)
−1 sin((x1 + x2)/2)

−1

+ 1

2
(x1 − x2)

(
sin((x1 − x2)/2)

−2 sin((x1 + x2)/2)
−1 cos((x1 − x2)/2)

+ sin((x1 − x2)/2)
−1 sin((x1 + x2)/2)

−2 cos((x1 + x2)/2)
)
H ′

k(ξ),

where y < ξ < x is a suitable number. Using the methods above,

∣∣∂1K
1,α
n (x1, x2)

∣∣ = 1

Aα
n−1

∣∣∣∣∣

n−1∑

k=0

Aα−1
n−1−k∂1D

1
k (x1, x2)

∣∣∣∣∣

≤ C(x1 − x2)
−1(x1 + x2)

−1(n1−αx−α
2 + x−1

2 )

+ C(x1 + x2)
−2(n1−αx−α

2 + x−1
2 )

≤ C(x1 − x2)
−1−β(n1−αxβ−α−1

2 + xβ−2
2 ),

which proves (2.2.21). The case x2 > π/2, i.e., (2.2.22), can be shown similarly. �

2.2.2 Kernel Functions for q = ∞

Lemma 2.2.18 For x ∈ T
d ,

D∞
n (x) =

d∏

i=1

D∞
n (xi ) =

d∏

i=1

sin((n + 1/2)xi )

sin(xi/2)
.

Proof The proof follows from the definition of the cubic Dirichlet kernels and from
Lemma 1.2.3. �

To estimate the cubic Cesàro kernels, we may suppose again that x ∈ T
2 and

π > x1 > x2 > 0.

Lemma 2.2.19 If 0 < α ≤ 1, x ∈ T
2 and π > x1 > x2 > 0, then

∣∣K∞,α
n (x1, x2)

∣∣ ≤ Cx−1
1 x−1

2 , (2.2.23)

∣∣K∞,α
n (x1, x2)

∣∣ ≤ Cn−αx−1
1 x−1

2 (x1 − x2)
−α

+ Cn−1x−1
1 x−1

2 (x1 − x2)
−1 (2.2.24)

and
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∣∣K∞,α
n (x1, x2)

∣∣ ≤ Cn1−αx−1
1 (x1 − x2)

−α + Cx−1
1 (x1 − x2)

−1. (2.2.25)

Proof The first inequality, (2.2.23) follows easily from Lemma 1.4.8 and from

K∞,α
n (x1, x2) = 1

Aα
n−1

n−1∑

k=0

Aα−1
n−1−k D

∞
k (x1, x2)

= 1

Aα
n−1

n−1∑

k=0

Aα−1
n−1−k

sin((k + 1/2)x1)

sin(x1/2)

sin((k + 1/2)x2)

sin(x2/2)
.

The trigonometric identity

sin a sin b = 1

2
(cos(a − b) − cos(a + b)) (2.2.26)

yields

∣∣K∞,α
n (x1, x2)

∣∣

= 1

2Aα
n−1

∣∣∣∣∣

n−1∑

k=0

Aα−1
n−1−k

cos((k + 1/2)(x1 − x2)) − cos((k + 1/2)(x1 + x2))

sin(x1/2) sin(x2/2)

∣∣∣∣∣ .

Observe that sin(xi/2) ∼ xi ,

sin(x1 ± x2)/2 ∼ x1 ± x2 if x2 ≤ π/2

and

sin(x1 − x2)/2 ∼ x1 − x2, sin(x1 + x2)/2 ∼ 2π − x1 − x2 if x2 > π/2.

Using the facts x1 + x2 > x1 − x2, 2π − x1 − x2 > x1 − x2 and and Lemma 1.4.14,
we conclude that

∣∣K∞,α
n (x1, x2)

∣∣

= C

2Aα
n−1

1

| sin(x1/2) sin(x2/2)|
( 1

| sin(x1 − x2)/2|α + nα−1

| sin(x1 − x2)/2|
+ 1

| sin(x1 + x2)/2|α + nα−1

| sin(x1 + x2)/2|
)

≤ Cn−αx−1
1 x−1

2 (x1 − x2)
−α + Cn−1x−1

1 x−1
2 (x1 − x2)

−1, (2.2.27)

which is (2.2.24). Using Lagrange’s theorem in (2.2.27) and Lemma 1.4.15, there
exists x1 − x2 < ξ < x1 + x2 such that
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∣∣K∞,α
n (x1, x2)

∣∣ = 1

Aα
n−1

∣∣∣∣∣

n−1∑

k=0

Aα−1
n−1−k(k + 1/2)x2 sin((k + 1/2)ξ)

sin(x1/2) sin(x2/2)

∣∣∣∣∣

≤ Cn1−αx−1
1 (x1 − x2)

−α + Cx−1
1 (x1 − x2)

−1.

This finishes the proof of the lemma. �

Lemma 2.2.20 If 0 < α ≤ 1 and π > x1 > x2 > 0, then

∣∣K∞,α
n (x1, x2)

∣∣ ≤ Cxα−1
2 (x1 − x2)

−α−1 + C(x1 − x2)
−2. (2.2.28)

Proof The inequality follows from (2.2.24) if n ≥ x−1
2 and from (2.2.25) if n < x−1

2 .
�

The partial derivatives of the cubic Cesàro kernels can be estimated as follows.

Lemma 2.2.21 If 0 < α ≤ 1, j = 1, 2 and π > x1 > x2 > 0, then

∣∣∂ j K
∞,α
n (x1, x2)

∣∣ ≤ Cn1−αx−1
1 x−1

2 (x1 − x2)
−α.

Proof By Lagrange’s mean value theorem and (2.2.26),

∂1D
∞
k (x1, x2)

= 1

2
(k + 1/2)

(
sin((k + 1/2)(x1 + x2)) − sin((k + 1/2)(x1 − x2))

)

sin(x1/2)
−1 sin(x2/2)

−1

+ 1

4

(
cos((k + 1/2)(x1 − x2)) − cos((k + 1/2)(x1 + x2))

)

cos(x1/2) sin(x1/2)
−2 sin(x2/2)

−1

= 1

2
(k + 1/2)

(
sin((k + 1/2)(x1 + x2)) − sin((k + 1/2)(x1 − x2))

)

sin(x1/2)
−1 sin(x2/2)

−1

+ 1

4
(k + 1/2)x2 sin((k + 1/2)ξ) cos(x1/2) sin(x1/2)

−2 sin(x2/2)
−1,

where x1 − x2 < ξ < x1 + x2 is a suitable number. Similarly as above,

∣∣∂1K
∞,α
n (x1, x2)

∣∣ = 1

Aα
n−1

∣∣∣∣∣

n−1∑

k=0

Aα−1
n−1−k∂1D

∞
k (x1, x2)

∣∣∣∣∣

≤ Cn1−αx−1
1 x−1

2 (x1 − x2)
−α + Cx−1

1 x−1
2 (x1 − x2)

−1

+ Cn1−αx−2
1 (x1 − x2)

−α + Cx−2
1 (x1 − x2)

−1

≤ Cn1−αx−1
1 x−1

2 (x1 − x2)
−α + Cx−1

1 x−1
2 (x1 − x2)

−1,
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which proves the lemma. �

2.2.3 Kernel Functions for q = 2

As we mentioned before, for q = 2, we will consider the Riesz summability. To
this, we have to introduce some special functions. For the sake of completeness, we
prove some elementary properties for these functions. First, we introduce the gamma
function by

�(x) :=
∫ ∞

0
t x−1e−t dt (x > 0).

Integration by parts yields

�(x) =
[ t x e−t

x

]∞
0

+ 1

x

∫ ∞

0
t x e−t dt = 1

x
�(x + 1) (x > 0).

Since �(1) = 1, we have

�(x + 1) = x�(x) (x > 0) and �(n) = (n − 1)!. (2.2.29)

After a substitution, we can see that

�
(1
2

)
=
∫ ∞

0
t−1/2e−t dt = 2

∫ ∞

0
e−u2 du = √

π.

The beta function is defined by

B(x, y) :=
∫ 1

0
sx−1(1 − s)y−1 ds =

∫ 1

0
s y−1(1 − s)x−1 ds,

where x, y > 0. The relationship between the beta and gamma function reads as
follows:

�(x + y)B(x, y) = �(x)�(y). (2.2.30)

Indeed, substituting s = u/(1 + u), we obtain

�(x + y)B(x, y) = �(x + y)
∫ 1

0
s y−1(1 − s)x−1 ds

= �(x + y)
∫ ∞

0
uy−1

( 1

1 + u

)x+y
du

=
∫ ∞

0

∫ ∞

0
uy−1

( 1

1 + u

)x+y
vx+y−1e−v dvdu.
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The substitution v = t (1 + u) in the inner integral yields

�(x + y)B(x, y) =
∫ ∞

0

∫ ∞

0
uy−1t x+y−1e−t (1+u) dt du

=
∫ ∞

0
t x e−t

∫ ∞

0
(ut)y−1e−tu du dt

=
∫ ∞

0
t x−1e−t�(y) dt

= �(x)�(y),

which shows (2.2.30).

Definition 2.2.22 For k > −1/2, the Bessel functions are defined by

Jk(t) := (t/2)k

�(k + 1/2)�(1/2)

∫ 1

−1
eıts(1 − s2)k−1/2 ds (t ∈ R).

Using the Euler formulas, we can see that the Bessel functions are real-valued.

Lemma 2.2.23 We have

J ′
k(t) = kt−1 Jk(t) − Jk+1(t) (t �= 0).

Proof By integrating by parts and by (2.2.29), we conclude

d

dt
(t−k Jk(t)) = ı2−k

�(k + 1/2)�(1/2)

∫ 1

−1
eıtss(1 − s2)k−1/2 ds

= ı2−k

(2k + 1)�(k + 1/2)�(1/2)

(
−
[
eıts(1 − s2)k+1/2

]1
−1

+
∫ 1

−1
ı teıts(1 − s2)k+1/2 ds

)

= −2−k−1t

(k + 1/2)�(k + 1/2)�(1/2)

∫ 1

−1
eıts(1 − s2)k+1/2 ds

= −t−k Jk+1(t),

which proves the desired result. �

Lemma 2.2.24 For k > −1/2 and t > 0,

Jk(t) ≤ Ckt
k and Jk(t) ≤ Ckt

−1/2,

where Ck is independent of t .
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Proof Since 1 − s2 ≥ 1 − |s| for |s| ≤ 1, the first estimate follows from the defini-
tion of Jk . The second one follows from the first one if 0 < t ≤ 1. So wemay assume
that t > 1. Let us integrate the complex valued function

eıtz(1 − z2)k−1/2 (z ∈ C)

over the boundary of the rectangle whose lower side is [−1, 1] and whose height is
R > 0. By Cauchy’s theorem,

0 = ı
∫ 0

R
eıt (−1+ıs)(s2 + 2ıs)k−1/2 ds +

∫ 1

−1
eıts(1 − s2)k−1/2 ds

+ ı
∫ R

0
eıt (1+ıs)(s2 − 2ıs)k−1/2 ds + ε(R),

where ε(R) → 0 as R → ∞. Hence, taking the limit as R → ∞,

∫ 1

−1
eıts(1 − s2)k−1/2 ds = ıe−ı t

∫ ∞

0
e−ts(s2 + 2ıs)k−1/2 ds

− ıeıt
∫ ∞

0
e−ts(s2 − 2ıs)k−1/2 ds

=: I1 + I2.

Observe that
(s2 + 2ıs)k−1/2 = (2ıs)k−1/2 + φ(s),

where
|φ(s)| ≤ Csk+1/2 if 0 < s ≤ 1 or s > 1 and k ≤ 3/2

and
|φ(s)| ≤ Cs2k−1 if s > 1 and k > 3/2.

Indeed, it follows from Lagrange’s mean value theorem that

|φ(s)| = ∣∣(2ıs)k−1/2
∣∣
∣∣∣∣
( s

2ı
+ 1
)k−1/2 − 1

∣∣∣∣ ≤ Cks
k+1/2

∣∣∣∣
ξ

2ı
+ 1

∣∣∣∣
k−3/2

,

where 0 < ξ < s. Hence

∣∣s2 + 2ıs
∣∣k−1/2 ≤ Cks

k−1/2 + |φ(s)|

and
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|I1| ≤
∫ ∞

0
e−ts

(
Cks

k−1/2 + |φ(s)|) ds

= Ck

∫ ∞

0
e−tssk−1/2 +

∫ 1

0
e−ts |φ(s)| ds +

∫ ∞

1
e−ts |φ(s)| ds

= I1,1 + I1,2 + I1,3.

By the substitution ts = u and by the definition of the gamma function,

I1,1 = Ckt
−1
∫ ∞

0
e−u(u/t)k−1/2 du

= Ckt
−k−1/2

∫ ∞

0
e−uuk−1/2 du = Ck�(k + 1/2)t−k−1/2.

The same substitution implies

I1,2 ≤
∫ 1

0
e−ts sk+1/2 ds ≤ t−k−3/2

∫ ∞

0
e−uuk+1/2 ds

= �(k + 3/2)t−k−3/2 ≤ Ckt
−k−1/2. (2.2.31)

If k ≤ 3/2, then

I1,3 ≤ �(k + 3/2)t−k−3/2 ≤ Ckt
−k−1/2

as in (2.2.31). Similarly, for k > 3/2,

I1,3 ≤
∫ ∞

1
e−ts s2k−1 ds ≤ t−2k

∫ ∞

0
e−uu2k−1 ds

= �(2k)t−2k ≤ Ckt
−k−1/2.

The integral I2 can be estimated in the same way. �

Lemma 2.2.25 If k > −1/2, l > −1 and t > 0, then

Jk+l+1(t) = t l+1

2l�(l + 1)

∫ 1

0
Jk(ts)s

k+1(1 − s2)l ds.

Proof Taking into account (2.2.30), we get that

Jk(t) = 2(t/2)k

�(k + 1/2)�(1/2)

∫ 1

0
cos(ts)(1 − s2)k−1/2 ds

=
∞∑

j=0

(−1) j
2(t/2)k t2 j

(2 j)!�(k + 1/2)�(1/2)

∫ 1

0
s2 j (1 − s2)k−1/2 ds
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=
∞∑

j=0

(−1) j
(t/2)k t2 j

(2 j)!�(k + 1/2)�(1/2)

∫ 1

0
u j−1/2(1 − u)k−1/2 du

=
∞∑

j=0

(−1) j
(t/2)k t2 j

(2 j)!�(k + 1/2)�(1/2)
B( j + 1/2, k + 1/2)

= (t/2)k

�(1/2)

∞∑

j=0

(−1) j
�( j + 1/2)

�( j + k + 1)

t2 j

(2 j)! . (2.2.32)

Thus

∫ 1

0
Jk(ts)s

k+1(1 − s2)l ds

=
∫ 1

0

⎛

⎝ (ts/2)k

�(1/2)

∞∑

j=0

(−1) j
�( j + 1/2)

�( j + k + 1)

(ts)2 j

(2 j)!

⎞

⎠ sk+1(1 − s2)l ds

= (t/2)k

�(1/2)

∞∑

j=0

(−1) j
�( j + 1/2)

�( j + k + 1)

t2 j

(2 j)!
∫ 1

0
s2k+2 j+1(1 − s2)l ds.

Substituting s2 = u and using (2.2.30) and (2.2.32), we conclude

∫ 1

0
Jk(ts)s

k+1(1 − s2)l ds

= (t/2)k

�(1/2)

∞∑

j=0

(−1) j
�( j + 1/2)

2�( j + k + 1)

t2 j

(2 j)!
∫ 1

0
uk+ j (1 − u)l du

= (t/2)k

�(1/2)

∞∑

j=0

(−1) j
�( j + 1/2)

2�( j + k + 1)

t2 j

(2 j)! B(k + j + 1, l + 1)

= 2l�(l + 1)

t l+1

(t/2)k+l+1

�(1/2)

∞∑

j=0

(−1) j
�( j + 1/2)

�(k + l + j + 2)

t2 j

(2 j)!

= 2l�(l + 1)

t l+1
Jk+l+1(t),

which proves the lemma. �

Now we can turn back to the circular Riesz means.

Definition 2.2.26 For f ∈ L1(R
d), the Fourier transform is defined by

f̂ (x) := 1

(2π)d

∫

Rd

f (t)e−ı x ·t dt (x ∈ R
d).
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Define

θ(s) :=
{

(1 − |s|2)α if |s| ≤ 1;
0 if |s| > 1

(s ∈ R)

and
θ0(x) := θ(‖x‖2) (x ∈ R

d).

θ0 is called a radial function. No we use another method than for q = 1 or q = ∞.
We will express the Riesz means in terms of the Fourier transform of θ0. As we will
see in the next lemma, θ̂0 can be computed with the help of the Bessel functions.

Theorem 2.2.27 If α > 0 and x ∈ R
d , then

θ̂0(x) = 1

(2π)d/2
2α�(α + 1)‖x‖−d/2−α

2 Jd/2+α(‖x‖2).

Proof The function θ0 ∈ L1(R
d) because

∫

Rd

|θ0(x)| dx ≤ C
∫ ∞

0
|θ(r)|rd−1 dr < ∞.

Using the notation r = ‖x‖2, x = r x ′, s = ‖u‖2 and u = su′, we get that

θ̂0(x) = 1

(2π)d

∫

Rd

θ0(u)e−ı x ·u du

= 1

(2π)d

∫ ∞

0
θ(s)

(∫

�d−1

e−ırsx ′ ·u′
du′
)
sd−1 ds, (2.2.33)

where �d−1 denotes the sphere. In the inner integral, we integrate first over the
parallel

Pδ := {u′ ∈ �d−1 : x ′ · u′ = cos δ}

orthogonal to x ′ obtaining a function of 0 ≤ δ ≤ π, which we then integrate over
[0,π]. If ωd−2 denotes the surface area of �d−2, then the measure of Pδ is

ωd−2(sin δ)d−2 = 2π(d−1)/2

�((d − 1)/2)
(sin δ)d−2.

Hence
∫

�d−1

e−ırsx ′ ·u′
du′ =

∫ π

0
e−ırs cos δωd−2(sin δ)d−2 dδ

= ωd−2

∫ 1

−1
eırsξ(1 − ξ2)(d−3)/2 dξ
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= 2π(d−1)/2

�((d − 1)/2)

�(d/2 − 1/2)�(1/2)

(rs/2)d/2−1
Jd/2−1(rs)

= (2π)d/2(rs)−d/2+1 Jd/2−1(rs).

Taking into account this and (2.2.33), we conclude

θ̂0(x) = 1

(2π)d/2
r−d/2+1

∫ ∞

0
θ(s)Jd/2−1(rs)s

d/2 ds

= 1

(2π)d/2
‖x‖−d/2+1

2

∫ 1

0
Jd/2−1(‖x‖2s)sd/2(1 − s2)α ds.

Applying Lemma 2.2.25 with k = d/2 − 1, l = α, we see that

θ̂0(x) = 1

(2π)d/2
‖x‖−d/2+1

2 Jd/2+α(‖x‖2)‖x‖−α−1
2 2α�(α + 1),

which shows the theorem. �

Theorem 2.2.27, Lemma 2.2.23 and 2.2.24 imply that θ̂0(x) as well as all of its
derivatives can be estimated by ‖x‖−d/2−α−1/2

2 .

Corollary 2.2.28 For all i1, . . . , id ≥ 0 and α > 0,

|∂i1
1 · · · ∂id

d θ̂0(x)| ≤ C‖x‖−d/2−α−1/2
2 (x �= 0).

The same result holds for

θ(s) :=
{

(1 − |s|γ)α if |s| ≤ 1;
0 if |s| > 1

(s ∈ R)

and
θ0(x) := θ(‖x‖2) (x ∈ R

d),

whenever γ ∈ P (see Lu [224, p. 132]). From now on, we assume that γ ∈ P. The
next result is an easy consequence of Corollary 2.2.28.

Corollary 2.2.29 θ̂0 ∈ L1(R
d) if

d − 1

2
< α < ∞.

Now we are ready to express the Riesz means using the Fourier transform of θ0.

Theorem 2.2.30 If n ∈ N, f ∈ L1(T
d), (d − 1)/2 < α < ∞ and γ ∈ P, then

σ2,α,γ
n f (x) = nd

∫

Rd

f (x − t)θ̂0(nt) dt



2.2 The �q -Summability Kernels 65

for almost every x ∈ T
d .

Proof If f (t) = eık·t (k ∈ Z
d , t ∈ T

d), then

σ2,α,γ
n f (x) = θ0

(−k

n

)
eık·x

= eık·x
∫

Rd

e−ık·t/n θ̂0(t) dt

= nd
∫

Rd

eık·(x−t)θ̂0(nt) dt.

The theorem holds also for trigonometric polynomials. Let f be an arbitrary element
from L1(T

d) and ( fk) be a sequence of trigonometric polynomials such that fk → f
in the L1(T

d)-norm. It follows from Lemma 2.2.6 and from the fact that K 2,α,γ
n ∈

L1(T
d) that

lim
n→∞ σ2,α,γ

n fk = σ2,α,γ
n f

in the L1(T
d) norm.

On the other hand, since θ̂0 ∈ L1(R
d), we have

lim
n→∞

∫

Rd

fk(x − t)θ̂0(nt) dt =
∫

Rd

f (x − t)θ̂0(nt) dt

in the L1(T
d)-norm. �

Lemma 2.2.31 If n ∈ N, (d − 1)/2 < α < ∞ and γ ∈ P, then

K 2,α,γ
n (t) = (2π)dnd

∑

k∈Zd

θ̂0(n(t + 2kπ)). (2.2.34)

Proof Since f is periodic, Theorem 2.2.30 implies that

σ2,α,γ
n f (x) = nd

∑

k∈Zd

∫

2kπ+Td

f (x − t)θ̂0(nt) dt

= nd
∑

k∈Zd

∫

Td

f (x − t)θ̂0(n(t + 2kπ)) dt.

The result follows from Lemma 2.2.6. �
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2.3 Norm Convergence of the �q-Summability Means

In this section, we will prove that the Cesàro and Riesz means, σq,α
n f and σ

q,α,γ
n f are

uniformly bounded on the L p(T
d) spaces and they converge to the original function

f in norm when 1 ≤ p < ∞, q = 1, 2 or q = ∞. Having the results of Sect. 2.2,
we are ready to prove that the L1(T

d)-norms of the kernel functions are uniformly
bounded. We start with the triangular and cubic Cesàro summability.

Theorem 2.3.1 If 0 < α ≤ 1 and q = 1 or q = ∞, then

sup
n∈N

∫

Td

∣∣Kq,α
n (x)

∣∣ dx ≤ C.

Proof of Theorem 2.3.1 for q = 1. It is enough to integrate the kernel function over
the set

{(x1, x2) : 0 < x2 < x1 < π}.

Let us decompose this set into the union ∪10
i=1Ai , where

A1 := {(x1, x2) : 0 < x1 ≤ 2/n, 0 < x2 < x1 < π, x2 ≤ π/2},
A2 := {(x1, x2) : 2/n < x1 < π, 0 < x2 ≤ 1/n, x2 ≤ π/2},
A3 := {(x1, x2) : 2/n < x1 < π, 1/n < x2 ≤ x1/2, x2 ≤ π/2},
A4 := {(x1, x2) : 2/n < x1 < π, x1/2 < x2 ≤ x1 − 1/n, x2 ≤ π/2},
A5 := {(x1, x2) : 2/n < x1 < π, x1 − 1/n < x2 < x1, x2 ≤ π/2}
A6 := {(x1, x2) : x2 > π/2,π − 2/n ≤ x2 < π, 0 < x2 < x1 < π},
A7 := {(x1, x2) : π/2 < x2 < π − 2/n,π − 1/n < x1 < π},
A8 := {(x1, x2) : π/2 < x2 < π − 2/n, (π + x2)/2 < x1 ≤ π − 1/n},
A9 := {(x1, x2) : π/2 < x2 < π − 2/n, x2 + 1/n < x1 ≤ (π + x2)/2},
A10 := {(x1, x2) : π/2 < x2 < π − 2/n, x2 < x1 ≤ x2 + 1/n}.

The sets Ai can be seen on Fig. 2.11.
By Lemma 2.2.5, we can see that

∫

A1

∣∣K 1,α
n (x1, x2)

∣∣ dx +
∫

A6

∣∣K 1,α
n (x1, x2)

∣∣ dx ≤ C.

Inequality (2.2.14) implies

∫

A2

∣∣K 1,α
n (x1, x2)

∣∣ dx ≤ C
∫ π

2/n

∫ 1/n

0
(x1 − 1/n)−3/2x−1/2

2 dx2 dx1 ≤ C

and
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Fig. 2.11 The sets Ai

∫

A7

∣∣K 1,α
n (x1, x2)

∣∣ dx

≤ C
∫ π−2/n

π/2

∫ π

π−1/n
(π − 1/n − x2)

−3/2(π − x1)
−1/2 dx1 dx2 ≤ C.

Observe that x1 − x2 ≥ x1/2 on the set A3. Choosing β such that 0 < β < α, we
get from (2.2.15) that

∫

A3

∣∣K 1,α
n (x1, x2)

∣∣ dx ≤ Cn−α

∫ π

2/n

∫ x1/2

1/n
x−1−β
1 xβ−α−1

2 dx2 dx1

+ Cn−1
∫ π

2/n

∫ x1/2

1/n
x−1−β
1 xβ−2

2 dx2 dx1 ≤ C.

Similarly, x1 − x2 > (π − x2)/2 on the set A8 and so, by (2.2.16),
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∫

A8

∣∣K 1,α
n (x1, x2)

∣∣ dx

≤ Cn−α

∫ π−2/n

π/2

∫ π−1/n

(π+x2)/2
(π − x2)

−1−β(π − x1)
β−α−1 dx1 dx2

+ Cn−1
∫ π−2/n

π/2

∫ π−1/n

(π+x2)/2
(π − x2)

−1−β(π − x1)
β−2 dx1 dx2 ≤ C.

We have x2 > x1/2 on A4, hence (2.2.15) implies

∫

A4

∣∣K 1,α
n (x1, x2)

∣∣ dx

≤ Cn−α

∫ π

2/n

∫ x1−1/n

x1/2
(x1 − x2)

−1−βxβ−α−1
1 dx2 dx1

+ Cn−1
∫ π

2/n

∫ x1−1/n

x1/2
(x1 − x2)

−1−βxβ−2
1 dx2 dx1 ≤ C.

Similarly, π − x1 ≥ (π − x2)/2 on the set A9. Thus

∫

A9

∣∣K 1,α
n (x1, x2)

∣∣ dx

≤ Cn−α

∫ π−2/n

π/2

∫ (π+x2)/2

x2+1/n
(x1 − x2)

−1−β(π − x2)
β−α−1 dx1 dx2

+ Cn−1
∫ π−2/n

π/2

∫ (π+x2)/2

x2+1/n
(x1 − x2)

−1−β(π − x2)
β−2 dx1 dx2 ≤ C.

Finally, by (2.2.19),

∫

A5

∣∣K 1,α
n (x1, x2)

∣∣ dx ≤ C
∫ π

1/n

∫ x2+1/n

x2

(x1 − x2)
α−1x−α−1

2 dx1dx2

+ C
∫ π

1/n

∫ x2+1/n

x2

x−2
2 dx1dx2 ≤ C

and

∫

A10

∣∣K 1,α
n (x1, x2)

∣∣ dx ≤ C
∫ π−1/n

π/2

∫ x1

x1−1/n
(x1 − x2)

α−1(π − x1)
−α−1 dx2dx1

+ C
∫ π−1/n

π/2

∫ x1

x1−1/n
(π − x1)

−2 dx2dx1 ≤ C

which completes the proof of the theorem. �
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Fig. 2.12 The sets Ai

Proof of Theorem 2.3.1 for q = ∞. We integrate again over the set

{(x1, x2) : 0 < x2 < x1 < π}

and decompose this set into the union ∪5
i=1Ai , where

A1 := {(x1, x2) : 0 < x1 ≤ 2/n, 0 < x2 < x1 < π},
A2 := {(x1, x2) : 2/n < x1 < π, 0 < x2 ≤ 1/n},
A3 := {(x1, x2) : 2/n < x1 < π, 1/n < x2 ≤ x1/2},
A4 := {(x1, x2) : 2/n < x1 < π, x1/2 < x2 ≤ x1 − 1/n},
A5 := {(x1, x2) : 2/n < x1 < π, x1 − 1/n < x2 < x1}

(see Fig. 2.12).
First of all, ∫

A1

∣∣K∞,α
n (x1, x2)

∣∣ dx ≤ C.

By (2.2.25),
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∣∣K∞,α
n (x1, x2)

∣∣ ≤ Cn1−α(x1 − x2)
−1−α + C(x1 − x2)

−2

and so

∫

A2

∣∣K∞,α
n (x1, x2)

∣∣ dx1 dx2 ≤ Cn1−α

∫ π

2/n

∫ 1/n

0
(x1 − 1/n)−1−α dx2 dx1

+ C
∫ π

2/n

∫ 1/n

0
(x1 − 1/n)−2 dx2 dx1 ≤ C.

Since x1 − x2 ≥ x1/2 on A3, we get from (2.2.24) that

∣∣K∞,α
n (x1, x2)

∣∣ ≤ Cn−αx−1−α
1 x−1

2 + Cn−1x−2
1 x−1

2

≤ Cn−αx−1−α+β
1 x−1−β

2 + Cn−1x−2+β
1 x−1−β

2 (2.3.1)

for any 0 < β < α. Thus

∫

A3

∣∣K∞,α
n (x1, x2)

∣∣ dx1 dx2 ≤ Cn−α

∫ π

2/n

∫ x1/2

1/n
x−1−α+β
1 x−1−β

2 dx2 dx1

+ Cn−1
∫ π

2/n

∫ x1/2

1/n
x−2+β
1 x−1−β

2 dx2 dx1 ≤ C.

Since x2 > x1/2 and x2 > x1 − x2 on A4, we get from (2.2.24) that

∣∣K∞,α
n (x1, x2)

∣∣ ≤ Cn−αx−1
1 x−1

2 (x1 − x2)
−α + Cn−1x−1

1 x−1
2 (x1 − x2)

−1

≤ Cn−αx−1−β
1 (x1 − x2)

−1−α+β

+ Cn−1x−1−β
1 (x1 − x2)

−2+β (2.3.2)

for any 0 < β < α. Then

∫

A4

∣∣K∞,α
n (x1, x2)

∣∣ dx1 dx2

≤ Cn−α

∫ π

2/n

∫ x1−1/n

x1/2
x−1−β
1 (x1 − x2)

−1−α+β dx2 dx1

+ Cn−1
∫ π

2/n

∫ x1−1/n

x1/2
x−1−β
1 (x1 − x2)

−2+β dx2 dx1 ≤ C.

Finally, x2 > x1/2 also on A5 and so (2.2.23) implies

∫

A5

∣∣K∞,α
n (x1, x2)

∣∣ dx1 dx2 ≤ C
∫ π

2/n

∫ x1

x1−1/n
x−2
1 dx2 dx1 ≤ C,
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which finishes the proof. �

Now we continue with the circular Riesz summability.

Theorem 2.3.2 If q = 2, α > (d − 1)/2 and γ ∈ P, then

sup
n∈N

∫

Td

∣∣K 2,α,γ
n (x)

∣∣ dx ≤ C.

Proof Taking into account Lemma 2.2.31, we can see that

∫

Td

|K 2,α,γ
n (x)| dx ≤ (2π)dnd

∑

k∈Zd

∫

Td

|θ̂0(n(x + 2kπ))| dx = (2π)d
∥∥θ̂0
∥∥
1 .

Now the theorem follows easily from Corollary 2.2.28. �

These imply easily

Theorem 2.3.3 If 1 ≤ p < ∞, 0 < α < ∞ and q = 1 or q = ∞, then

sup
n∈N

∥∥σq,α
n f

∥∥
p ≤ C‖ f ‖p

and
lim
n→∞ σq,α

n f = f in the L p(T
d)-norm for all f ∈ L p(T

d).

Proof For 0 < α ≤ 1, we use Minkowski’s inequality and Theorem 2.3.1 to obtain

∥∥σq,α
n f

∥∥
p ≤ 1

(2π)d

∫

Td

‖ f (· − t)‖pK
q,α
n (t) dt

= 1

(2π)d

∫

Td

‖ f ‖pK
q,α
n (t) dt

≤ C‖ f ‖p.

For 1 < α < ∞, we can use Lemma 2.2.8. The convergence follows easily from this
because the trigonometric polynomials are dense in L p(T

d). �

The next theorem can be proved in the same way.

Theorem 2.3.4 If 1 ≤ p < ∞, q = 2, (d − 1)/2 < α < ∞ and γ ∈ P, then

sup
n∈N

∥∥σq,α,γ
n f

∥∥
p

≤ C‖ f ‖p

and
lim
n→∞ σq,α,γ

n f = f in the L p(T
d)-norm for all f ∈ L p(T

d).
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Theorems 2.3.3 and 2.3.4 were proved in Berens, Li and Xu [30], Oswald [253]
and Weisz [337, 338, 341] for q = 1,∞ and in Bochner [36] and Stein and Weiss
[293] for q = 2.

The situation is more complicated and not completely solved if q = 2 and α ≤
(d − 1)/2. It is clear by the Banach-Steinhaus theorem that limn→∞ σ

q,α,γ
n f = f in

the L p(T
d)-norm for all f ∈ L p(T

d) if and only if the operators σ
q,α,γ
n are uniformly

bounded from L p(T
d) to L p(T

d). We note that each operator σ
q,α,γ
n is bounded on

L p(T
d) because Kq,α,γ

n ∈ L1(T
d). For more about the norm convergence of the

Bochner-Riesz means (i.e., q = 2, γ = 2) see Grafakos [143].

2.4 H�
p (Td) Hardy Spaces

To prove almost everywhere convergence of the Cesàro and Riesz means, we will
need the concept of Hardy spaces and their atomic decomposition. Before studying
Hardy spaces, we have to introduce the concept of distributions.

Let C∞(Td) denote the set of all infinitely differentiable functions on T
d . Then

f ∈ C∞(Td) implies

sup
x∈Td

∣∣∂k f (x)
∣∣ < ∞ for all k = (k1, . . . , kd) ∈ N

d ,

where ∂k = ∂k1
1 · · · ∂kd

d .

Definition 2.4.1 Let n ∈ N, fn, f ∈ C∞(Td). We say that

lim
n→∞ fn = f in C∞(Td)

if
lim
n→∞

∥∥∂k fn − ∂k f
∥∥∞ = 0 for all k ∈ N

d .

Definition 2.4.2 A map u : C∞(Td) → C is called distribution if it is linear and
continuous, more exactly,

u(α1 f1 + α2 f2) = α1u( f1) + α2u( f2)

for all f1, f2 ∈ C∞(Td) and α1,α2 ∈ C and

lim
n→∞ u( fn) = u( f ) if lim

n→∞ fn = f in C∞(Td).

The set of distributions are denoted by D(Td).

If g ∈ L p(T
d) (1 ≤ p ≤ ∞), then
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ug( f ) := 1

(2π)d

∫

Td

f g dλ ( f ∈ C∞(Td))

is a distribution. Indeed, if limn→∞ fn = f in C∞(Td), then limn→∞ fn = f in
L p′(Td) as well. Applying Hölder’s inequality,

∣∣ug( fn) − ug( f )
∣∣ ≤

∫

Td

| fn(x) − f (x)| |g(x)| dx
≤ ‖ fn − f ‖p′ ‖g‖p → 0,

as n → ∞. So every function from L p(T
d) (1 ≤ p ≤ ∞) can be identified with a

distribution u ∈ D(Td) in the previous way.

Proposition 2.4.3 A linear functional u on C∞(Td) is a distribution if and only if
there exist C > 0 and m ∈ N such that

|u( f )| ≤ C sup
|k|≤m

∥∥∂k f
∥∥∞

for all f ∈ C∞(Td).

Proof It is evident that the inequality ensures the continuity of u, thus u is a dis-
tribution. Conversely, suppose that u is a distribution and the inequality is not true.
Then there exists fn ∈ C∞(Td) such that

|u( fn)| > n sup
|k|≤n

∥∥∂k fn
∥∥∞ .

Since the right-hand side is not 0, we may define

gn := fn
n sup|k|≤n

∥∥∂k fn
∥∥∞

.

Then gn ∈ C∞(Td) and

sup
|k|≤n

∥∥∂kgn
∥∥∞ = 1

n
,

which means that gn → 0 in C∞(Td). On the other hand,

u(gn) = u( fn)

n sup|k|≤n

∥∥∂k fn
∥∥∞

> 1.

This contradicts to the continuity of u, i.e., to u(gn) → 0 as n → ∞. �

Definition 2.4.4 The least integer m for which Proposition 2.4.3 holds is called the
order of u.
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Definition 2.4.5 The distributions un tend to the distribution u in the sense of dis-
tributions or in D(Td) if

lim
n→∞ un( f ) → u( f ) for all f ∈ C∞(Td).

The next definition extends the Fourier coefficients to distributions.

Definition 2.4.6 Let

en(x) := eın·x (n ∈ Z
d , x ∈ T

d).

For a distribution u ∈ D(Td), the nth Fourier coefficient is defined by

û(n) := u(e−n) (n ∈ Z
d).

The Fourier series, the partial sums and the summability means of u are defined in
the same way as in Definitions 2.1.2, 2.1.3, 2.1.5, 2.2.2 and 2.2.3.

Theorem 2.4.7 If u ∈ C∞(Td) is of order m, then

û(n) = O(|n|m) as |n| → ∞. (2.4.1)

Moreover, for 1 ≤ q ≤ ∞ and N ∈ N,

sqNu =
∑

n∈Zd , ‖n‖q≤N

û(n)en → u in D(Td) as N → ∞.

Conversely, if cn = O(|n|m), then

sqN :=
∑

n∈Zd , ‖n‖q≤N

cnen

converge to u in D(Td) as N → ∞ and û(n) = cn. The same holds for the rectan-
gular partial sums sN .

Proof Equality (2.4.1) follows immediately from the inequality of Proposition 2.4.3
if we take therein f = e−k . For f ∈ C∞(Td),

sqNu( f ) =
∑

n∈Zd , ‖n‖q≤N

û(n) f̂ (−n) = u

⎛

⎝
∑

n∈Zd , ‖n‖q≤N

f̂ (−n)e−n

⎞

⎠ .

It is easy to see that f̂ (n) = O(|n|−k) for any k ∈ N. Hence

lim
N→∞

∑

n∈Zd , ‖n‖q≤N

f̂ (n)en = f
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in C∞(Td) and so
lim
N→∞ sqNu( f ) = u( f ).

Conversely, if cn = O(|n|m), then

sqN ( f ) =
∑

n∈Zd , ‖n‖q≤N

cn f̂ (−n) (2.4.2)

for all f ∈ C∞(Td). Since the series on the right-hand side is absolutely convergent,
let

u( f ) := lim
N→∞ sqN ( f ) =

∑

n∈Zd

cn f̂ (−n).

Then u is linear andwe can show easily that u is continuous as well.Writing f = e−n

in (2.4.2), we can see that û(n) = cn (n ∈ Z
d). �

Definition 2.4.8 The convolution of two functions f, g ∈ L1(T
d) is defined by

( f ∗ g)(x) := 1

(2π)d

∫

Td

f (x − t)g(t) dt (x ∈ T
d).

It is easy to see that

( f ∗ g)(x) = 1

(2π)d

∫

Td

f (t)g(x − t) dt (x ∈ T
d).

Using Minkowski’s inequality, we obtain Young’s inequality. More exactly, for f ∈
Lr (T

d), g ∈ L1(T
d) and 1 ≤ r ≤ ∞, we have

‖ f ∗ g‖r ≤ ‖ f ‖r‖g‖1.

Lemma 2.4.9 If f, g ∈ L1(T
d), then f̂ ∗ g(n) = f̂ (n)ĝ(n)

Proof We have,

f̂ ∗ g(n) = 1

(2π)2d

∫

Td

(∫

Td

f (x − t)g(t) dt

)
e−ın·x dx

= 1

(2π)2d

∫

Td

(∫

Td

f (x − t) e−ın·(x−t) dx

)
g(t) e−ın·t dt

= 1

(2π)2d

∫

Td

(∫

Td

f (u) e−ın·u du
)
g(t) e−ın·t dt

= f̂ (n) · ĝ(n),

which finishes the proof of the lemma. �
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Now we are able to define the convolution of a distribution and function.

Definition 2.4.10 The convolution of f ∈ D(Td) and g ∈ L1(T
d) is defined by

f ∗ g :=
∑

n∈Nd

f̂ (n)ĝ(n)en in D(Td).

Since ĝ is bounded, the series is convergent by Theorem 2.4.7. Similarly, we can
also define the convolution f ∈ D(Td) and ψ ∈ L1(R

d).

Definition 2.4.11 For f ∈ D(Td) and ψ ∈ L1(R
d) let

f ∗ ψ :=
∑

n∈Nd

f̂ (n)ψ̂(n)en in D(Td),

where ψ̂ denotes the Fourier transform of ψ ∈ L1(R
d).

Similar to Lemma 2.4.9,

f ∗ ψ(x) = 1

(2π)d

∫

Rd

f (x − u)ψ(u) du

if f ∈ D(Td) and ψ ∈ L1(R
d). For t ∈ (0,∞) and x ∈ R

d , let

ψt (ξ) := t−dψ(ξ/t).

It is easy to see that for f ∈ D(Td) and ψ ∈ L1(R
d), we have

f ∗ ψt =
∑

n∈Nd

f̂ (n)ψ̂(tn)en in D(Td). (2.4.3)

To define the Hardy spaces, we need the concept of Schwartz functions.

Definition 2.4.12 The function f ∈ C∞(Rd) is called a Schwartz function if for all
α,β ∈ N

d ,
sup
x∈Rd

∣∣xα∂β f (x)
∣∣ = Cα,β < ∞,

where xα = xα1
1 · · · xαd

d ,α = (α1, . . . ,αd) andβ = (β1, . . . ,βd). The set ofSchwartz
functions are denoted by S(Rd).

Then f ∈ D(Td) andψ ∈ S(Rd) implies that (2.4.3) converges absolutely in each
point as well and so f ∗ ψt ∈ L∞(Td).

Fix ψ ∈ S(Rd) such that
∫
Rd ψ(x)dx �= 0. We define the radial maximal function

and the non-tangential maximal function of f ∈ D(Td) associated to ψ by

ψ∗
�,+( f )(x) := sup

t∈(0,∞)

| f ∗ ψt (x)|
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and
ψ∗

�,�( f )(x) := sup
t∈(0,∞),|y−x |<t

| f ∗ ψt (y)|,

respectively. For N ∈ N, let

FN (Rd) :=
{

ψ ∈ S(Rd) : sup
x∈Rd ,‖β‖1≤N

(1 + |x |)N+d |∂βψ(x)| ≤ 1

}
,

where ‖β‖1 = β1 + · · · + βd . For any N ∈ N, the radial grandmaximal function and
the non-tangential grand maximal function of f ∈ D(Td) are defined by

f ∗
�,+(x) := sup

ψ∈FN (Rd )

sup
t∈(0,∞)

| f ∗ ψt (y)|

and
f ∗
�,�(x) := sup

ψ∈FN (Rd )

sup
t∈(0,∞),|y−x |<t

| f ∗ ψt (y)|,

respectively. We fix a positive integer N > �d(1/p − 1)�, where �x� denotes the
integer part of x ∈ R.

Definition 2.4.13 For 0 < p < ∞ the Hardy spaces H�
p (Td) and weak Hardy

spaces H�
p,∞(Td) consist of all distributions f ∈ D(Td) for which

‖ f ‖H�
p

:= ∥∥ψ∗
�,+( f )

∥∥
p

< ∞

and
‖ f ‖H�

p,∞ := ∥∥ψ∗
�,+( f )

∥∥
p,∞ < ∞.

We will see in the next theorem that the Hardy spaces are independent of ψ and
N , more exactly, different functions ψ and different integers N give the same space
with equivalent norms.

The d-dimensional periodic Poisson kernel is introduced by

Pt (x) :=
∑

k∈Zd

e−t‖k‖2eık·x (x ∈ T
d , t > 0).

Notice that Pt ∈ L1(T
d). In the one-dimensional case, we get back the usual Poisson

kernel

Pt (x) =
∞∑

k=−∞
r |k|eıkx = 1 − r2

1 + r2 − 2r cos x
(x ∈ T),

where r := e−t . For f ∈ D(Td), let
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P∗
�,+( f )(x) := sup

t∈(0,∞)

| f ∗ Pt (x)|

and
P∗

�,�( f )(x) := sup
t∈(0,∞),|y−x |<t

| f ∗ Pt (y)|.

Theorem 2.4.14 Let 0 < p < ∞. Fix ψ ∈ S(Rd) such that
∫
Rd ψ(x)dx �= 0 and fix

a positive integer N > �d(1/p − 1)�. Then f ∈ H�
p (Td) if and only if ψ∗

�,�( f ) ∈
L p(T

d) or f ∗
�,+ ∈ L p(T

d) or f ∗
�,� ∈ L p(T

d) or P∗
�,+( f ) ∈ L p(T

d) or P∗
�,�( f ) ∈

L p(T
d). We have the following equivalences of norms:

‖ f ‖H�
p

∼ ‖ψ∗
�,�( f )‖p ∼ ‖ f ∗

�,+‖p ∼ ‖ f ∗
�,�‖p ∼ ‖P∗

�,+( f )‖p ∼ ‖P∗
�,�( f )‖p.

The same holds for the weak Hardy spaces:

‖ f ‖H�
p,∞ ∼ ‖ψ∗

�,�( f )‖p,∞ ∼ ‖ f ∗
�,+‖p,∞

∼ ‖ f ∗
�,�‖p,∞ ∼ ‖P∗

�,+( f )‖p,∞ ∼ ‖P∗
�,�( f )‖p,∞.

Note that ∼ denotes the equivalence of norms and spaces, more exactly we write
that A ∼ B if there exist positive constants c1 and c2 such that c1A ≤ B ≤ c2A.

Theorem 2.4.15 If 1 < p < ∞, then H�
p (Td) ∼ L p(T

d) and

‖ f ‖p ≤ ‖ f ‖H�
p

≤ Cp ‖ f ‖p .

For p = 1, H�
1 (Td) ⊂ L1(T

d) ⊂ H�
1,∞(Td) and

‖ f ‖1 ≤ ‖ f ‖H�
1

( f ∈ H�
1 (Td)),

‖ f ‖H�
1,∞

≤ C‖ f ‖1 ( f ∈ L1(T
d)).

We omit the proofs of these theorems because they are very similar to the proofs
of the corresponding theorems for Hp(R

d), which can be found in several books and
papers (e.g., in Stein [290], Grafakos [143], Lu [224], Stein [289], Stein and Weiss
[293], Uchiyama [320], Fefferman and Stein [96], Weisz [346]).

We define the reflection and translation operators by

h̆(x) := h(−x), Txh(t) := h(t − x).

Theorem 2.4.16 If K ∈ L1(T
d), 0 < p < ∞ and

lim
k→∞ fk = f in the H�

p (Td)-norm,
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then
lim
k→∞ fk ∗ K = f ∗ K in D(Td).

Proof Observe that for f ∈ Hp(T
d) and h ∈ C∞(Td),

f ∗ h(x) =
∑

n∈Nd

f̂ (n)̂h(n)en(x)

=
∑

n∈Nd

f̂ (n)T̂−xh(n)

=
∑

n∈Nd

f̂ (n)en(Tx h̆)

= f (Tx h̆),

Thus

∣∣∣ f (h̆)

∣∣∣ = | f ∗ h(0)| ≤
(

sup
x∈Td ,‖β‖1≤N

(1 + |x |)N+d |∂βh(x)|
)

f ∗
�(y),

where |y| < 1 and N > �d(1/p − 1)�. Then
∣∣∣ f (h̆)

∣∣∣ ≤ C

(
sup

x∈Td ,‖β‖1≤N
|∂βh(x)|

)
inf|y|<1

f ∗
�(y)

≤ C

(
sup

x∈Td ,‖β‖1≤N
|∂βh(x)|

)(∫

Td

f ∗
�(y)p dy

)1/p

≤ C

(
sup

‖β‖1≤N
|∂β h̆|

)
‖ f ‖Hp

,

which implies that the order of f is at most N and that

lim
k→∞ fk = f in D(Td).

By Theorem 2.4.7 and by the definition of the convolution,

( fk − f ) ∗ K (h) =
∑

n∈Nd

(
f̂k − f̂

)
(n)K̂ (n)en(h)

=
∑

n∈Nd

(
f̂k − f̂

)
(n)K̂ (n)̂h(−n),

where h ∈ C∞(Td) is arbitrary. Observe that the orders of fk and f are at most N ,
K̂ is bounded and

∣∣̂h(n)
∣∣ ≤ C |n|−l for any l ∈ N. Then for all ε > 0 there exists
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m ∈ N
d such that

∣∣∣∣∣∣

⎛

⎝
∑

n∈Nd

−
∑

|n|≤m

⎞

⎠( f̂k − f̂
)
(n)K̂ (n)̂h(−n)

∣∣∣∣∣∣
≤ ε.

On the other hand, since
lim
k→∞( fk − f )(e−n) = 0,

we conclude that
∣∣∣∣∣∣

∑

|n|≤m

(
f̂k − f̂

)
(n)K̂ (n)̂h(−n)

∣∣∣∣∣∣
≤
∑

|n|≤m

∣∣( f̂k − f̂
)
(e−n)

∣∣→ 0

as k → ∞, which finishes the proof. �

The atomic decomposition provides a useful characterization of Hardy spaces.
First, we introduce the concept of an atom.

Definition 2.4.17 Abounded function a is an H�
p -atom if there exists a cube I ⊂ T

d

such that

(i) supp a ⊂ I ,
(ii) ‖a‖∞ ≤ |I |−1/p,
(iii)

∫
I a(x)xk dx = 0 for all multi-indices k = (k1, . . . , kd) with |k| ≤ �d(1/p −

1)�.
In the definition, the cubes can be replaced by balls and (ii) by

(ii’) ‖a‖q ≤ |I |1/q−1/p (0 < p < q ≤ ∞, q > 1).

We could suppose that the integral in (iii) is zero for all multi-indices k for which
|k| ≤ N , where N ≥ �d(1/p − 1)�. The best possible choice of such numbers N is
�d(1/p − 1)�.Hardy spaces have atomicdecompositions. In otherwords, every func-
tion from the Hardy space can be decomposed into the sum of atoms (see e.g. Latter
[195], Lu [224], Coifman and Weiss [62], Wilson [353, 354], Stein [290], Grafakos
[143] and Weisz [346]).

Theorem 2.4.18 A distribution f ∈ D(Td) is in H�
p (Td) (0 < p ≤ 1) if and only if

there exist a sequence (ak, k ∈ N) of H�
p -atoms and a sequence (μk, k ∈ N) of real

numbers such that

∞∑

k=0

|μk |p < ∞ and
∞∑

k=0

μkak = f in D(Td). (2.4.4)

Moreover,
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‖ f ‖H�
p

∼ inf

( ∞∑

k=0

|μk |p
)1/p

,

where the infimum is taken over all decompositions of f of the form (2.4.4).

The following result gives a sufficient condition for an operator to be bounded
from H�

p (Td) to L p(T
d). If I ⊂ T is an interval, then r I denotes the interval with

the same center as I and with length r |I | (r ∈ N). For a rectangle

R = I1 × · · · × Id ⊂ T
d , let r R = r I1 × · · · × r Id .

Instead of 2r Rwewrite Rr (r ∈ N). For operators Vn : L1(T
d) → L1(T

d), we define
the maximal operator

V∗ f := sup
n∈Nd

|Vn f |.

Theorem 2.4.19 For each n ∈ N
d , let Kn ∈ L1(T

d) and Vn f := f ∗ Kn. Suppose
that ∫

Td\r I
|V∗a|p0 dλ ≤ Cp0

for all H�
p0 -atoms a and for some fixed r ∈ N and 0 < p0 ≤ 1, where the cube I is the

support of the atom. If V∗ is bounded from L p1(T
d) to L p1(T

d) for some 1 < p1 ≤ ∞,
then

‖V∗ f ‖p ≤ Cp‖ f ‖H�
p

( f ∈ H�
p (Td)) (2.4.5)

for all p0 ≤ p ≤ p1.

Proof Observe that, under the conditions of Theorem 2.4.19, the L p0 -norms of V∗a
are uniformly bounded for all H�

p0 -atoms a. Indeed,

∫

Td

|V∗a|p0 dλ =
∫

r I
|V∗a|p0 dλ +

∫

Td\r I
|V∗a|p0 dλ

≤
(∫

r I
|V∗a|p1 dλ

)p0/p1

|r I |1−p0/p1 + Cp0

≤ Cp0

(∫

r I
|a|p1 dλ

)p0/p1

|I |1−p0/p1 + Cp0

≤ Cp0

(|I |−p1/p0 |I r |)p0/p1 |I |1−p0/p1 + Cp0

= Cp0 .

There is an atomic decomposition such that
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f =
∞∑

k=0

μkak in the H�
p0 -norm and

( ∞∑

k=0

|μk |p0
)1/p0

≤ Cp0‖ f ‖H�
p0

,

where the convergence holds also in the H�
1 (Td)-norm and in the L1(T

d)-norm if
f ∈ H�

1 (Td). Since Vn : L1(T
d) → L1(T

d) is bounded, we have

Vn f =
∞∑

k=0

μkVnak

and

|V∗ f | ≤
∞∑

k=0

|μk ||V∗ak |

for f ∈ H�
1 (Td). Thus

‖V∗ f ‖p0
p0 ≤

∞∑

k=0

|μk |p0‖V∗ak‖p0
p0 ≤ Cp0‖ f ‖p0

H�
p0

( f ∈ H�
1 (Td)). (2.4.6)

Obviously, the same inequality holds for the operators Vn . This and interpolation
proves the theorem if p0 = 1. Assume that p0 < 1. Since H�

1 (Td) is dense in L1(T
d)

as well as in H�
p0 (T

d), we can extend uniquely the operators Vn and V∗ such that
(2.4.6) holds for all f ∈ H�

p0 (T
d). Let us denote these extended operators by V ′

n and

V ′∗. Then Vn f = V ′
n f and V∗ f = V ′∗ f for all f ∈ H�

1 (Td). We get by interpolation
from (2.4.6) that the operator

V ′
∗ is bounded from H�

p,∞(Td) to L p,∞(Td) (2.4.7)

when p0 < p < p1. For the basic definitions and theorems on interpolation theory,
see Bergh and Löfström [33], Bennett and Sharpley [28] or Weisz [346]. Since
p0 < 1, the boundedness in (2.4.7) holds especially for p = 1, and so Theorem
2.4.15 implies that V ′∗ is of weak type (1, 1):

sup
ρ>0

ρ λ(|V ′
∗ f | > ρ) = ‖V ′

∗ f ‖1,∞ ≤ C‖ f ‖H�
1,∞

≤ C‖ f ‖1 (2.4.8)

for all f ∈ L1(R
d). Obviously, the sameholds forV ′

n . SinceVn is bounded on L1(T
d),

if fk ∈ H�
1 (Td) such that limk→∞ fk = f in the L1-norm, then

lim
k→∞ Vn fk = Vn f in the L1(T

d)-norm.

Inequality (2.4.8) implies that
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lim
k→∞ Vn fk = V ′

n f in the L1,∞(Td)-norm,

hence Vn f = V ′
n f for all f ∈ L1(T

d). Similarly, for a fixed N ∈ N, the operator

VN ,∗ f := sup
|n|≤N

|Vn f |

satisfies (2.4.8) for all f ∈ H�
1 (Td) and its extension V ′

N ,∗ for all f ∈ L1(T
d). Then

sup
ρ>0

ρ λ(|V ′
N ,∗ f − VN ,∗ f | > ρ) ≤ sup

ρ>0
ρ λ(|V ′

N ,∗ f − V ′
N ,∗ fk | > ρ/2)

+ sup
ρ>0

ρ λ(|VN ,∗ fk − VN ,∗ f | > ρ/2)

≤ sup
ρ>0

ρ λ(|V ′
N ,∗( f − fk)| > ρ/2)

+
N∑

n=0

sup
ρ>0

ρ λ(|Vn( fk − f )| > ρ/2N )

≤ C ‖ f − fk‖ → 0

as k → ∞. This shows the equality

V ′
N ,∗ f = VN ,∗ f for all f ∈ L1(T

d).

Moreover, for a fixed ρ,

λ(|V ′
∗ f − VN ,∗ f | > ρ)

≤ λ(|V ′
∗ f − V ′

∗ fk | > ρ/3) + λ(|V∗ fk − VN ,∗ fk | > ρ/3)

+ λ(|VN ,∗ fk − VN ,∗ f | > ρ/3)

≤ λ(V ′
∗( f − fk) > ρ/3) + λ(V∗ fk − VN ,∗ fk > ρ/3)

+ λ(VN ,∗( fk − f ) > ρ/3)

≤ C

ρ
‖ f − fk‖1 + λ(V∗ fk − VN ,∗ fk > ρ/3)

< ε

if k and N are large enough. Hence limN→∞ VN ,∗ f = V ′∗ f in measure for all f ∈
L1(T

d). On the other hand, limN→∞ VN ,∗ f = V∗ f a.e., which implies that

V∗ f = V ′
∗ f for all f ∈ L1(T

d).

Consequently, (2.4.8) holds also for V∗ and (2.4.6) for all f ∈ H�
p0 (T

d) ∩ L1(T
d).

Assume that p < 1, fk ∈ H�
p (Td) ∩ L1(T

d) (k ∈ N) and that limk→∞ fk = f in
the H�

p (Td)-norm. By Theorem 2.4.16,



84 2 �q -Summability of Higher Dimensional Fourier Series

lim
k→∞ Vn fk = Vn f in D(Td)

for all n ∈ N
d . Since by (2.4.5), Vn fk is convergent in the L p(T

d)-norm as k → ∞,
we can identify the distribution Vn f with the L p(T

d)-limit limk→∞ Vn fk . Hence the
same holds for VN ,∗ f :

VN ,∗ f = lim
k→∞ VN ,∗ fk in the L p(T

d)-norm.

Moreover,

‖V ′
∗ f − VN ,∗ f ‖p

≤ ‖V ′
∗ f − V ′

∗ fk‖p + ‖V∗ fk − VN ,∗ fk‖p + ‖VN ,∗ fk − VN ,∗ f ‖p

≤ Cp‖ f − fk‖H�
p

+ ‖V∗ fk − VN ,∗ fk‖p + ‖VN ,∗ fk − VN ,∗ f ‖p

< ε

if k and N are large enough. Thus

lim
N→∞ VN ,∗ f = V ′

∗ f in the L p(T
d)-norm

and, on the other hand,
lim
N→∞ VN ,∗ f = V∗ f a.e.,

which implies that V∗ f = V ′∗ f for all f ∈ H�
p (Td). Consequently, (2.4.5) holds for

all f ∈ H�
p (Td). �

Unfortunately, for a general linear operator V , the uniform boundedness of the
L p0 -norms of Va is not enough for the boundedness V : H�

p0 (T
d) → L p0(T

d) (see
[41, 42, 235, 236, 259]). The next weak version of Theorem 2.4.19 can be proved
similarly (see also the proof in Weisz [346]).

Theorem 2.4.20 For each n ∈ N
d , let Kn ∈ L1(T

d) and Vn f := f ∗ Kn. Suppose
that

sup
ρ>0

ρpλ
(
{|V∗a| > ρ} ∩ {Td \ r I }

)
≤ Cp

for all H�
p -atoms a and for some fixed r ∈ N and 0 < p < 1. If V∗ is bounded from

L p1(T
d) to L p1(T

d) (1 < p1 ≤ ∞), then

‖V∗ f ‖p,∞ ≤ Cp‖ f ‖H�
p

( f ∈ H�
p (Td)).

The weak type (1, 1) inequality follows from inequality (2.4.8).

Corollary 2.4.21 For each n ∈ N
d , let Kn ∈ L1(T

d) and Vn f := f ∗ Kn. Suppose
that
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∫

Td\r I
|V∗a|p0 dλ ≤ Cp0

for all H�
p0 -atoms a and for some fixed r ∈ N and 0 < p0 < 1, where the cube I is the

support of the atom. If V∗ is bounded from L p1(T
d) to L p1(T

d) for some 1 < p1 ≤ ∞,
then for all f ∈ L1(T

d),

sup
ρ>0

ρ λ(|V∗ f | > ρ) ≤ C‖ f ‖1.

Proof By Theorem 2.4.19 and interpolation,

V∗ is bounded from H�
p,∞(Td) to L p,∞(Td)

when p0 < p < p1. Since p0 < 1, this holds also for p = 1. Thus, by Theorem
2.4.15:

sup
ρ>0

ρ λ(|V∗ f | > ρ) = ‖V∗ f ‖1,∞ ≤ C‖ f ‖H�
1,∞

≤ C‖ f ‖1

for all f ∈ L1(T
d). �

Theorem 2.4.19 and Corollary 2.4.21 can be regarded also as an alternative tool to
the Calderon-Zygmund decomposition lemma for proving weak type (1, 1) inequal-
ities. In many cases, this method can be applied better and more simply than the
Calderon-Zygmund decomposition lemma.

2.5 Almost Everywhere Convergence of the
�q-Summability Means

Since the kernels Kq,α
n and Kq,α,γ

n are integrable, the definition of the Fejér and Riesz
means can be extended to distributions.

Definition 2.5.1 Let f ∈ D(Td), 1 ≤ q ≤ ∞, n ∈ N and 0 ≤ α, γ < ∞. The nth
�q -Cesàro means σ

q,α
n f and �q -Riesz means σ

q,α,γ
n f of the Fourier series of f are

given by
σq,α
n f := f ∗ Kq,α

n

and
σq,α,γ
n f := f ∗ Kq,α,γ

n ,

respectively.

Definition 2.5.2 We define the maximal Cesàro and maximal Riesz operator by
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σq,α
∗ f := sup

n∈N
|σq,α

n f |

and
σq,α,γ

∗ f := sup
n∈N

|σq,α,γ
n f |,

respectively.

If α = 1, we obtain the maximal Fejér operator and write it simply as σ
q
∗ f :=

σ
q,1
∗ f . Wewill prove that theCesàro andRieszmaximal operators,σq,α

∗ f andσ
q,α,γ
∗ f

are bounded from the Hardy space H�
p (Td) to the Lebesgue space L p(T

d) when
q = 1, 2 or q = ∞ and p is greater than a critical index p0 < 1 which is depending
on q, d and α. If p is equal to this critical index, then weak type inequality holds. As
a consequence, we obtain the almost everywhere convergence of the �q -Cesàro and
Riesz means to the original function. We start again with the triangular and cubic
Cesàro summability.

2.5.1 Almost Everywhere Convergence for q = 1 and q = ∞

Proposition 2.5.3 If 0 < α ≤ 1 and q = 1 or q = ∞, then

∥∥σq,α
∗ f

∥∥∞ ≤ C ‖ f ‖∞ ( f ∈ L∞(Td)).

Proof The proof follows easily from the fact that the L1(T
d)-norms of the kernel

functions are uniformly bounded (see Theorem 2.3.1) and from Lemma 2.2.8. �

In what follows we use the notation a ∧ b := min(a, b).

Theorem 2.5.4 Suppose that q = 1,∞ and 0 < α < ∞. If

p0 := d

d + α ∧ 1
< p ≤ ∞,

then ∥∥σq,α
∗ f

∥∥
p

≤ Cp ‖ f ‖H�
p

( f ∈ H�
p (Td)). (2.5.1)

Corollary 2.5.5 If q = 1,∞, 0 < α < ∞ and 1 < p < ∞, then

‖σq,α
∗ f ‖p ≤ Cp‖ f ‖p ( f ∈ L p(T

d)).

Proof This follows from Theorem 2.5.4 and from the fact that H�
p (Td) ∼ L p(T

d)

for 1 < p ≤ ∞. �
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Proof of Theorem 2.5.4 for q = 1. By Lemma 2.2.8, we may suppose again that
0 < α ≤ 1. It is enough to show that

∫

T2

∣∣σ1,α
∗ a(x1, x2)

∣∣p dx1 dx2

=
∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp (2.5.2)

for every H�
p -atom a, where 2/(2 + α) < p < 1 and I is the support of the atom.

By Theorem 2.4.19 and Proposition 2.5.3, this will imply (2.5.1). Without loss of
generality, we can suppose that a is a H�

p -atom with support I = I1 × I2 and

[−2−K−2, 2−K−2] ⊂ I j ⊂ [−2−K−1, 2−K−1] ( j = 1, 2)

for some K ∈ N. By symmetry, wemay assume that π > x1 − t1 > x2 − t2 > 0, and
so, instead of (2.5.2), it is enough to show that

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1Ai (x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp

for all i = 1, . . . , 10, where

A1 := {(x1, x2) : 0 < x1 ≤ 2−K+5, 0 < x2 < x1 < π, x2 ≤ π/2},
A2 := {(x1, x2) : 2−K+5 < x1 < π, 0 < x2 ≤ 2−K+2, x2 ≤ π/2},
A3 := {(x1, x2) : 2−K+5 < x1 < π, 2−K+2 < x2 ≤ x1/2, x2 ≤ π/2},
A4 := {(x1, x2) : 2−K+5 < x1 < π, x1/2 < x2 ≤ x1 − 2−K+2, x2 ≤ π/2},
A5 := {(x1, x2) : 2−K+5 < x1 < π, x1 − 2−K+2 < x2 < x1, x2 ≤ π/2}
A6 := {(x1, x2) : x2 > π/2,π − 2−K+5 ≤ x2 < π, 0 < x2 < x1 < π},
A7 := {(x1, x2) : π/2 < x2 < π − 2−K+5,π − 2−K+2 < x1 < π},
A8 := {(x1, x2) : π/2 < x2 < π − 2−K+5, (π + x2)/2 < x1 ≤ π − 2−K+2},
A9 := {(x1, x2) : π/2 < x2 < π − 2−K+5, x2 + 2−K+2 < x1 ≤ (π + x2)/2},
A10 := {(x1, x2) : π/2 < x2 < π − 2−K+5, x2 < x1 ≤ x2 + 2−K+2}.

These sets are similar to those in Theorem 2.3.1 (see Fig. 2.11). If 0 < x1 − t1 ≤
2−K+5, then −2−K−1 < x1 ≤ 2−K+6 and the same holds for x2. If π − 2−K+5 ≤
x2 − t2 < π, then π − 2−K+6 < x2 ≤ π + 2−K−1 and the same is true for x1. By the
definition of the H�

p -atom and by Theorem 2.3.1,
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∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A1(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ 22K
∫

T2
sup
n≥1

∣∣∣∣
∫

I

∣∣K 1,α
n (x1 − t1, x2 − t2)

∣∣ 1A1(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp2
2K2−2K ≤ Cp

and

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A6(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp2
2K2−2K ≤ Cp.

On the set A2, we have 2−K+5 < x1 − t1 < π and 0 < x2 − t2 ≤ 2−K+2, thus

2−K+4 < x1 < π + 2−K−1 and − 2−K−1 < x2 ≤ 2−K+3.

Using (2.2.14), we conclude

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A2(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cp2
2K/p

∫

I
(x1 − t1 − x2 + t2)

−3/2(x2 − t2)
−1/2

1A2(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p1{2−K+4<x1<π+2−K−1}1{−2−K−1<x2≤2−K+3}∫

I
(x1 − 2−K+3)−3/2(x2 − t2)

−1/2 dt1 dt2

≤ Cp2
2K/p−3K/21{2−K+4<x1<π+2−K−1}

1{−2−K−1<x2≤2−K+3}(x1 − 2−K+3)−3/2 (2.5.3)

and

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A2(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp2
2K−3Kp/2

∫ π+2−K−1

2−K+4

∫ 2−K+3

−2−K−1
(x1 − 2−K+3)−3p/2 dx1 dx2

≤ Cp.

Here we have used that p > 2/3. Similarly, on A7, π/2 < x2 − t2 < π − 2−K+5 and
π − 2−K+2 < x1 − t1 < π, thus

π/2 − 2−K−1 < x2 < π − 2−K+4 and π − 2−K+3 < x1 < π + 2−K−1.
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By (2.2.14),

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A7(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cp2
2K/p

∫

I
(x1 − t1 − x2 + t2)

−3/2(π − x1 + t1)
−1/2

1A7(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p1{π/2−2−K−1<x2<π−2−K+4}1{π−2−K+3<x1<π+2−K−1}∫

I
(π − 2−K+3 − x2)

−3/2(π − x1 + t1)
−1/2 dt1 dt2

≤ Cp2
2K/p−3K/21{π/2−2−K−1<x2<π−2−K+4}

1{π−2−K+3<x1<π+2−K−1}(π − 2−K+3 − x2)
−3/2

and

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A7(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp2
2K−3Kp/2

∫ π−2−K+4

π/2−2−K−1

∫ π+2−K−1

π−2−K+3
(π − 2−K+3 − x2)

−3p/2 dx2 dx1

≤ Cp.

We may suppose that the center of I is zero, in other words I := (−ν, ν) ×
(−ν, ν). Let

A1(u, t2) :=
∫ u

−ν

a(t1, t2) dt1 and A2(u, v) :=
∫ v

−ν

A1(u, t2) dt2.

Observe that
|Ak(u, v)| ≤ Cp2

K (2/p−k) (k = 1, 2).

Integrating by parts, we can see that

∫

I1

a(t1, t2)K
1,α
n (x1 − t1, x2 − t2)1A3∪A8(x1 − t1, x2 − t2) dt1

= A1(ν, t2)K
1,α
n (x1 − ν, x2 − t2)1A3∪A8(x1 − ν, x2 − t2)

+
∫ ν

−ν

A1(t1, t2)∂1K
1,α
n (x1 − t1, x2 − t2)1A3∪A8(x1 − t1, x2 − t2) dt1,

because A1(−ν, t2) = 0. Let us integrate the first term again by parts and use that

A2(ν, ν) =
∫

I1

∫

I2

a(t1, t2) dt1 dt2 = 0
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to obtain
∫

I1

∫

I2

a(t1, t2)K
1,α
n (x1 − t1, x2 − t2)1A3∪A8(x1 − t1, x2 − t2) dt1 dt2

=
∫ ν

−ν

A2(ν, t2)∂2K
1,α
n (x1 − ν, x2 − t2)1A3∪A8(x1 − ν, x2 − t2) dt2

+
∫

I1

∫

I2

A1(t1, t2)∂1K
1,α
n (x1 − t1, x2 − t2)1A3∪A8(x1 − t1, x2 − t2) dt1 dt2.

Note that

x1 − t1 − x2 + t2 > (x1 − t1)/2 (2.5.4)

on the set A3 and

x1 − t1 − x2 + t2 > (π − x2 + t2)/2 (2.5.5)

on the set A8. If n ≤ 2K , we get from Lemma 2.2.17 and (2.5.4) that

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
1−γ22K/p−2K

∫

I2

(x1 − ν)−1−β(x2 − t2)
β−γ−11A3(x1 − ν, x2 − t2) dt2

+ Cpn
1−γ22K/p−K

∫

I
(x1 − t1)

−1−β(x2 − t2)
β−γ−11A3(x1 − t1, x2 − t2) dt1dt2

≤ Cp2
2K/p−2K−Kγ1{2−K+4<x1<π+2−K−1}1{2−K+1<x2≤x1/2+2−K }

(x1 − 2−K−1)−1−β(x2 − 2−K−1)β−γ−1, (2.5.6)

where 0 ≤ β ≤ 1, γ = α or γ = 1. On A8, we use (2.5.5) to obtain

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A8(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
1−γ22K/p−2K

∫

I2

(π − x2 + t2)
−1−β(π − x1 + ν)β−γ−11A8(x1 − ν, x2 − t2) dt2

+ Cpn
1−γ22K/p−K

∫

I
(π − x2 + t2)

−1−β(π − x1 + t1)
β−γ−11A8(x1 − t1, x2 − t2) dt1dt2

≤ Cp2
2K/p−2K−Kγ1{π/2−2−K−1<x2<π−2−K+4}1{(π+x2)/2−2−K<x1<π−2−K+1}
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(π − x2 − 2−K−1)−1−β(π − x1 − 2−K−1)β−γ−1. (2.5.7)

Similarly, if n > 2K , then we get from (2.2.15) and (2.5.4) that

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
−γ22K/p

∫

I
(x1 − t1)

−1−β(x2 − t2)
β−γ−11A3(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p−2K−Kγ1{2−K+4<x1<π+2−K−1}1{2−K+1<x2≤x1/2+2−K }

(x1 − 2−K−1)−1−β(x2 − 2−K−1)β−γ−1 (2.5.8)

and, by (2.5.5),

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A8(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
−γ22K/p

∫

I
(π − x2 + t2)

−1−β(π − x1 + t1)
β−γ−11A8(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p−2K−Kγ1{π/2−2−K−1<x2<π−2−K+4}1{(π+x2)/2−2−K<x1<π−2−K+1}

(π − x2 − 2−K−1)−1−β(π − x1 − 2−K−1)β−γ−1. (2.5.9)

Choosing β = γ/2, we conclude

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1dx2

≤ Cp2
2K−2Kp−Kγ p

∫ π+2−K−1

2−K+4

∫ x1/2+2−K

2−K+1
(x1 − 2−K−1)−p(1+γ/2)(x2 − 2−K−1)−p(1+γ/2) dx2dx1

≤ Cp2
2K−2Kp−Kγ p2−K (1−p(1+γ/2))2−K (1−p(1+γ/2))

≤ Cp

and

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A8(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1dx2

≤ Cp2
2K−2Kp−Kγ p

∫ π−2−K+4

π/2−2−K−1

∫ π−2−K+1

(π+x2)/2−2−K

(π − x2 − 2−K−1)−p(1+γ/2)(π − x1 − 2−K−1)−p(1+γ/2) dx1dx2

≤ Cp2
2K−2Kp−Kγ p2−K (1−p(1+γ/2))2−K (1−p(1+γ/2))
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≤ Cp,

whenever p > 2/(2 + γ). Recall that γ = α or γ = 1.
Since

x2 − t2 > (x1 − t1)/2 on A4

and
π − x1 + t1 > (π − x2 + t2)/2 on A9,

Lemma 2.2.17 implies

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
1−γ22K/p−2K

∫

I2

(x1 − ν − x2 + t2)
−1−β

(x1 − t1)
β−γ−11A4(x1 − ν, x2 − t2) dt2

+ Cpn
1−γ22K/p−K

∫

I
(x1 − t1 − x2 + t2)

−1−β

(x1 − t1)
β−γ−11A4(x1 − t1, x2 − t2) dt1dt2

≤ Cp2
2K/p−2K−Kγ1{2−K+4<x1<π+2−K−1}1{x1/2−2−K<x2≤x1−2−K+1}

(x1 − x2 − 2−K )−1−β(x1 − 2−K−1)β−γ−1 (2.5.10)

and
∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A9(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
1−γ22K/p−2K

∫

I2

(x1 − ν − x2 + t2)
−1−β

(π − x2 + ν)β−γ−11A9(x1 − ν, x2 − t2) dt2

+ Cpn
1−γ22K/p−K

∫

I
(x1 − t1 − x2 + t2)

−1−β

(π − x2 + t2)
β−γ−11A9(x1 − t1, x2 − t2) dt1dt2

≤ Cp2
2K/p−2K−Kγ1{π/2−2−K−1<x2<π−2−K+4}1{x2+2−K+1<x1<(π+x2)/2+2−K }

(x1 − x2 − 2−K )−1−β(π − x2 − 2−K−1)β−γ−1, (2.5.11)

whenever n ≤ 2K . If n > 2K , then by (2.2.15),
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∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
−γ22K/p

∫

I
(x1 − t1 − x2 + t2)

−1−β

(x1 − t1)
β−γ−11A4(x1 − t1, x2 − t2) dt1dt2

≤ Cp2
2K/p−2K−Kγ1{2−K+4<x1<π+2−K−1}1{x1/2−2−K<x2≤x1−2−K+1}

(x1 − x2 − 2−K )−1−β(x1 − 2−K−1)β−γ−1 (2.5.12)

and
∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A9(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
−γ22K/p

∫

I
(x1 − t1 − x2 + t2)

−1−β

(π − x2 + t2)
β−γ−11A9(x1 − t1, x2 − t2) dt1dt2

≤ Cp2
2K/p−2K−Kγ1{π/2−2−K−1<x2<π−2−K+4}1{x2+2−K+1<x1<(π+x2)/2+2−K }

(x1 − x2 − 2−K )−1−β(π − x2 − 2−K−1)β−γ−1. (2.5.13)

Choosing again β = γ/2, we obtain

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1dx2

≤ Cp2
2K−2Kp−Kγ p

∫ π+2−K−1

2−K+4

∫ x1−2−K+1

x1/2−2−K

(x1 − x2 − 2−K )−p(1+γ/2)(x1 − 2−K−1)−p(1+γ/2) dx2dx1

≤ Cp2
2K−2Kp−Kγ p2−K (1−p(1+γ/2))2−K (1−p(1+γ/2))

≤ Cp

and

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A9(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1dx2

≤ Cp2
2K−2Kp−Kγ p

∫ π−2−K+4

π/2−2−K−1

∫ (π+x2)/2+2−K

x2+2−K+1

(x1 − x2 − 2−K )−p(1+γ/2)(π − x2 − 2−K−1)−p(1+γ/2) dx1dx2

≤ Cp2
2K−2Kp−Kγ p2−K (1−p(1+γ/2))2−K (1−p(1+γ/2))

≤ Cp,

whenever p > 2/(2 + γ).
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Finally, inequality (2.2.19) imply

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A5(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cp2
2K/p

∫

I
(x1 − t1 − x2 + t2)

γ−1

(x2 − t2)
−γ−11A5(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p−Kγ1{2−K+4<x1<π+2−K−1}

1{x1−2−K+3<x2≤x1+2−K }
∫

I2

(x2 − t2)
−γ−1 dt2

≤ Cp2
2K/p−Kγ−K1{2−K+4<x1<π+2−K−1}

1{x1−2−K+3<x2≤x1+2−K }(x2 − 2−K−1)−γ−1

and
∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A10(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cp2
2K/p

∫

I
(x1 − t1 − x2 + t2)

γ−1

(π − x1 + t1)
−γ−11A5(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p−Kγ1{π/2−2−K−1<x2<π−2−K+4}

1{x2−2−K<x1<x2+2−K+3}
∫

I2

(π − x1 + t1)
−γ−1 dt2

≤ Cp2
2K/p−Kγ−K1{π/2−2−K−1<x2<π−2−K+4}

1{x2−2−K<x1<x2+2−K+3}(π − x1 − 2−K−1)−γ−1.

Hence

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A5(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1dx2

≤ Cp2
2K−Kγ p−Kp

∫ π+2−K−1

2−K+4

∫ x1+2−K

x1−2−K+3
(x2 − 2−K−1)−p(γ+1) dx2dx1

≤ Cp2
2K−Kγ p−Kp

∫ π+2−K+5

2−K+3

∫ x2+2−K+3

x2−2−K

(x2 − 2−K−1)−p(γ+1) dx1dx2

≤ Cp

and
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∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A10(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1dx2

≤ Cp2
2K−Kγ p−Kp

∫ π−2−K+4

π/2−2−K−1

∫ x2+2−K+3

x2−2−K

(π − x1 − 2−K−1)−p(γ+1) dx1dx2

≤ Cp2
2K−Kγ p−Kp

∫ π−2−K+3

π/2−2−K+1

∫ x1−2−K+3

x1+2−K

(π − x1 − 2−K−1)−p(γ+1) dx2dx1

≤ Cp,

whenever p > 1/(1 + γ), which finishes the proof of the theorem. �

Proof of Theorem 2.5.4 for q = ∞. We assume again that α ≤ 1 and a is a cube
H�

p -atom with support I = I1 × I2,

[−2−K−2, 2−K−2] ⊂ I j ⊂ [−2−K−1, 2−K−1] ( j = 1, 2)

for some K ∈ Z. As before, it is enough to show that

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1Ai (x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp

for all i = 1, 2, 3, 4, 5, where π > x1 − t1 > x2 − t2 > 0 and

A1 := {(x1, x2) : 0 < x1 ≤ 2−K+5, 0 < x2 < x1 < π},
A2 := {(x1, x2) : 2−K+5 < x1 < π, 0 < x2 ≤ 2−K+2},
A3 := {(x1, x2) : 2−K+5 < x1 < π, 2−K+2 < x2 ≤ x1/2},
A4 := {(x1, x2) : 2−K+5 < x1 < π, x1/2 < x2 ≤ x1 − 2−K+2},
A5 := {(x1, x2) : 2−K+5 < x1 < π, x1 − 2−K+2 < x2 < x1}

(see Fig. 2.12). The estimation on the set A1 is the same as before in the proof for
q = 1. Inequality (2.2.28) implies

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A2(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cp2
2K/p

∫

I
(x1 − t1 − x2 + t2)

−1−γ(x2 − t2)
γ−1

1A2(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p1{2−K+4<x1<π+2−K−1}1{−2−K−1<x2≤2−K+3}∫

I
(x1 − 2−K+3)−1−γ(x2 − t2)

γ−1 dt1 dt2
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≤ Cp2
2K/p−K−Kγ1{2−K+4<x1<π+2−K−1}

1{−2−K−1<x2≤2−K+3}(x1 − 2−K+3)−1−γ,

where γ = α or γ = 1 in the whole proof. Furthermore,

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A2(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp2
2K−Kp−Kγ p

∫ π+2−K−1

2−K+4

∫ 2−K+3

−2−K−1
(x1 − 2−K+3)−p(1+γ) dx2dx1

≤ Cp,

provided that p > 1/(1 + γ). For any 0 < β < α, we get from (2.3.1) that

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cp2
2K/pn−γ

∫

I
(x1 − t1)

−1−γ+β(x2 − t2)
−1−β

1A3(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p−2K−Kγ1{2−K+4<x1<π+2−K−1}1{2−K+1<x2≤x1/2+2−K }

(x1 − 2−K−1)−1−γ+β(x2 − 2−K−1)−1−β,

whenever n > 2K . Lemma 2.2.21 and (2.5.4) imply that

∣∣∂ j K
∞,α
n (x1, x2)

∣∣ ≤ Cn1−αx−1−α+β
1 x−1−β

2

on A3, where j = 1, 2. Similar to the proof for q = 1, we get by integration by parts
that
∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤
∣∣∣∣
∫ ν

−ν

A2(ν, t2)∂2K
∞,α
n (x1 − ν, x2 − t2)1A3(x1 − ν, x2 − t2) dt2

∣∣∣∣

+
∣∣∣∣
∫

I1

∫

I2

A1(t1, t2)∂1K
∞,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
1−α22K/p−2K

∫

I2

(x1 − ν)−1−α+β(x2 − t2)
−1−β1A3(x1 − t1, x2 − t2) dt2

+ Cpn
1−α22K/p−K

∫

I
(x1 − t1)

−1−α+β(x2 − t2)
−1−β

1A3(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p−2K−Kα1{2−K+4<x1<π+2−K−1}1{2−K+1<x2≤x1/2+2−K }
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(x1 − 2−K−1)−1−α+β(x2 − 2−K−1)−1−β

if n ≤ 2K . Thus

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp2
2K−2Kp−Kγ p

∫ π+2−K−1

2−K+4

∫ x1/2+2−K

2−K+1
(x1 − 2−K−1)(−1−γ+β)p(x2 − 2−K−1)−(1+β)p dx2dx1

≤ Cp2
2K−2Kp−Kγ p2−K (1−(γ−β+1)p)2−K (1−(1+β)p)

≤ Cp,

whenever p > 1/(1 + β) and p > 1/(γ − β + 1). β = γ/2 implies p > 2
2+γ

.

Using (2.3.2), we see that

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
−γ22K/p

∫

I
(x1 − t1 − x2 + t2)

−1−γ+β(x1 − t1)
−1−β

1A4(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p−2K−Kγ1{2−K+4<x1<π+2−K−1}1{x1/2−2−K<x2≤x1−2−K+1}

(x1 − x2 − 2−K )−1−γ+β(x1 − 2−K−1)−1−β, (2.5.14)

where n > 2K and 0 < β < α. Since x2 > x1/2 and x2 > x1 − x2 on A4, Lemma
2.2.21 implies

∣∣∂ j K
∞,α
n (x1, x2)

∣∣ ≤ Cn1−αx−1−β
1 (x1 − x2)

−1−α+β,

where j = 1, 2. For n ≤ 2K , we get by integration by parts that

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤
∣∣∣∣
∫ ν

−ν

A2(ν, t2)∂2K
∞,α
n (x1 − ν, x2 − t2)1A4(x1 − ν, x2 − t2) dt2

∣∣∣∣

+
∣∣∣∣
∫

I1

∫

I2

A1(t1, t2)∂1K
∞,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cpn
1−α22K/p−2K

∫

I2

(x1 − ν)−1−β(x1 − t1 − x2 + t2)
−1−α+β

1A4(x1 − t1, x2 − t2) dt2
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+ Cpn
1−α22K/p−K

∫

I
(x1 − t1)

−1−β(x1 − t1 − x2 + t2)
−1−α+β

1A4(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p−2K−Kα1{2−K+4<x1<π+2−K−1}1{x1/2−2−K<x2≤x1−2−K+1}

(x1 − x2 − 2−K )−1−α+β(x1 − 2−K−1)−1−β . (2.5.15)

From this it follows that

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp2
2K−2Kp−Kγ p

∫ π+2−K−1

2−K+4

∫ x1−2−K+1

x1/2−2−K

(x1 − x2 − 2−K )(−1−γ+β)p(x1 − 2−K−1)−(1+β)p dx2dx1

≤ Cp2
2K−2Kp−Kγ p2−K (1−(γ−β+1)p)2−K (1−(1+β)p)

≤ Cp,

whenever β = γ/2 and p > 2
2+γ

.
Finally, since x2 > x1/2 also on A5,

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A5(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cp2
2K/p

∫

I
(x1 − t1)

−21A5(x1 − t1, x2 − t2) dt1 dt2

≤ Cp2
2K/p−2K1{2−K+4<x1<π+2−K−1}1{x1−2−K+3<x2≤x1+2−K }(x1 − 2−K−1)−2

and so

∫

T2
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣
p

dx1 dx2

≤ Cp2
2K−2Kp

∫ π+2−K−1

2−K+4

∫ x1+2−K

x1−2−K+3
(x1 − 2−K−1)−2p dx2dx1

≤ Cp.

This completes the proof. �
If p is smaller than or equal to the critical index, then this theorem is not true (see

Oswald [253] and Stein, Taibleson and Weiss [292]). More exactly, we have

Theorem 2.5.6 If q = ∞ and α = 1, then the operator σ
q,α
∗ is not bounded from

H�
p (Td) to L p(T

d) if p is smaller than or equal to the critical index d/(d + 1).

However, if p is equal to the critical index, then we can verify a weak type
inequality.
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Theorem 2.5.7 Suppose that q = 1,∞ and 0 < α < ∞. If

p0 := d

d + α ∧ 1

and f ∈ H�
p0 (T

d), then

∥∥σq,α
∗ f

∥∥
p0,∞ = sup

ρ>0
ρλ(σq,α

∗ f > ρ)1/p0 ≤ C ‖ f ‖H�
p0

. (2.5.16)

Proof of Theorem 2.5.7 for q = 1. We may suppose again that 0 < α ≤ 1. We use
Theorem 2.4.20 and prove that

sup
ρ>0

ρ2/(2+α)λ(σ1,α
∗ a > ρ) ≤ C

for all H�
2/(2+α)-atoms a. In other words, we have to show that

λ

(
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1Ai (x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣ > ρ

)

≤ Cρ−2/(2+α)

for i = 1, . . . , 10 and ρ > 0. Since

ρ2/(2+α)λ(|g| > ρ) ≤
∫

Td

|g|2/(2+α), (2.5.17)

the desired inequality follows from the proof of Theorem 2.5.4 for i = 1, 6, 5, 10.
The same holds for i = 2, 7 if α < 1. So for i = 2, 7, we suppose that α = 1.

For i = 2 and p = 2/3, we have seen in (2.5.3) that

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A2(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ C23K/21{2−K+4<x1<π+2−K−1}1{−2−K−1<x2≤2−K+3}(x1 − 2−K+3)−3/2.

If this is greater than ρ, then

1{2−K+4<x1<π+2−K−1}(x1 − 2−K+3) < Cρ−2/32K1{−2−K−1<x2≤2−K+3}

and
2−K+4 < x1 < Cρ−2/32K + 2−K+4.
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Consequently,

λ

(
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A2(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣ > ρ

)

≤
∫

T2
1{

1{2−K+4<x1<π+2−K−1}(x1−2−K+3)<Cρ−2/32K 1{−2−K−1<x2≤2−K+3}
} dx1 dx2

≤ Cρ−2/32K
∫

T

1{−2−K−1<x2≤2−K+3} dx2

≤ Cρ−2/3.

Similarly,

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A7(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ C23K/21{π/2−2−K−1<x2<π−2−K+4}
1{π−2−K+3<x1<π+2−K−1}(π − 2−K+3 − x2)

−3/2.

If this is greater than ρ, then

1{π/2−2−K−1<x2<π−2−K+4}(π − 2−K+3 − x2)

< Cρ−2/32K1{π−2−K+3<x1<π+2−K−1}.

Let us denote the set of (x1, x2) for which the preceding inequality holds by H7. If
(x1, x2) ∈ H7, then

π − 2−K+3 − Cρ−2/32K < x2 < π − 2−K+3.

Furthermore,

λ

(
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A7(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣ > ρ

)

≤
∫

T2
1H7(x1, x2) dx2 dx1

≤ Cρ−2/32K
∫

T

1{π−2−K+3<x1<π+2−K−1} dx1

≤ Cρ−2/3.

For i = 3, 8, 4, 9, we may suppose that γ = α and p = 2/(2 + α). We get by
(2.5.6) and (2.5.8) that
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∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ C1{2−K+4<x1<π+2−K−1}1{2−K+1<x2≤x1/2+2−K }
(x1 − 2−K−1)−1−β(x2 − 2−K−1)β−α−1.

If this is greater than ρ, then

1{2−K+1<x2≤x1/2+2−K }(x2 − 2−K−1)

< Cρ− 1
1+α−β 1{2−K+4<x1<π+2−K−1}(x1 − 2−K−1)

− 1+β
1+α−β .

Note that x1/2 + 2−K < x1. Choosing β such that− 1+β
1+α−β

+ 1 < 0, i.e.,α/2 < β ≤
1, we obtain

λ

(
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣ > ρ

)

≤
∫ ρ−1/(2+α)+2−K−1

2−K+4

x1
2

+ 2−K dx1

+ Cρ− 1
1+α−β

∫ π

ρ−1/(2+α)+2−K−1
(x1 − 2−K−1)

− 1+β
1+α−β dx1

≤ Cρ−2/(2+α) + Cρ− 1
1+α−β ρ

−1
2+α (− 1+β

1+α−β +1)

= Cρ−2/(2+α).

Similarly, by (2.5.7) and (2.5.9),

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A8(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ C1{π/2−2−K−1<x2<π−2−K+4}1{(π+x2)/2−2−K<x1<π−2−K+1}
(π − x2 − 2−K−1)−1−β(π − x1 − 2−K−1)β−α−1.

If this is greater than ρ, then

1{(π+x2)/2−2−K<x1<π−2−K+1}(π − x1 − 2−K−1)

< Cρ− 1
1+α−β 1{π/2−2−K−1<x2<π−2−K+4}(π − x2 − 2−K−1)

− 1+β
1+α−β .

Here (π − x2)/2 + 2−K < π − x2. Choosing β as before, we obtain

λ

(
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A8(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣ > ρ

)

≤
∫ π−2−K+4

π−ρ−1/(2+α)−2−K−1

π − x2
2

+ 2−K dx2
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+ Cρ− 1
1+α−β

∫ π−ρ−1/(2+α)−2−K−1

−π

(π − x2 − 2−K−1)
− 1+β

1+α−β dx2

≤ Cρ−2/(2+α) + Cρ− 1
1+α−β ρ

−1
2+α (− 1+β

1+α−β +1)

= Cρ−2/(2+α).

For A4, we get from (2.5.10) and (2.5.12) that

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ C1{2−K+4<x1<π+2−K−1}1{x1/2−2−K<x2≤x1−2−K+1}
(x1 − x2 − 2−K )−1−β(x1 − 2−K−1)β−α−1.

If this is greater than ρ, then

1{x1/2−2−K<x2≤x1−2−K+1}(x1 − x2 − 2−K )

< Cρ− 1
1+β 1{2−K+4<x1<π+2−K−1}(x1 − 2−K−1)

β−α−1
1+β .

Hence

λ

(
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣ > ρ

)

≤
∫ ρ−1/(2+α)+2−K−1

2−K+4
x1 dx1

+ Cρ− 1
1+β

∫ π

ρ−1/(2+α)+2−K−1
(x1 − 2−K−1)

β−α−1
1+β dx1

≤ Cρ−2/(2+α) + Cρ− 1
1+β ρ

−1
2+α (

β−α−1
1+β +1)

= Cρ−2/(2+α).

Here we have chosen β such that β−α−1
1+β

+ 1 < 0, i.e., 0 < β < α/2.
Finally, by (2.5.11) and (2.5.13),

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A9(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ C1{π/2−2−K−1<x2<π−2−K+4}1{x2+2−K+1<x1<(π+x2)/2+2−K }
(x1 − x2 − 2−K )−1−β(π − x2 − 2−K−1)β−α−1

and
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1{x2+2−K+1<x1<(π+x2)/2+2−K }(x1 − x2 − 2−K )

< Cρ− 1
1+β 1{π/2−2−K−1<x2<π−2−K+4}(π − x2 − 2−K−1)

β−α−1
1+β .

This implies that

x2 + 2−K+1 < x1 < (π − x2 − 2−K−1)
β−α−1
1+β + x2 + 2−K+1

and so

λ

(
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

1,α
n (x1 − t1, x2 − t2)1A9(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣ > ρ

)

≤
∫ π−2−K+4

π−ρ−1/(2+α)−2−K−1

π − x2
2

+ 2−K dx2

+ Cρ− 1
1+β

∫ π−ρ−1/(2+α)−2−K−1

−π

(π − x2 − 2−K−1)
β−α−1
1+β dx2

≤ Cρ−2/(2+α) + Cρ− 1
1+β ρ

−1
2+α (

β−α−1
1+β +1)

= Cρ−2/(2+α)

with the same β as for A4, i.e., 0 < β < α/2. The proof of the theorem is complete.
�

Proof of Theorem 2.5.7 for q = ∞. Similar to the proof for q = 1, we have to show
that

λ

(
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1Ai (x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣ > ρ

)

≤ Cρ−2/(2+α)

for α ≤ 1, i = 1, . . . , 5, for all H�
2/(2+α)-atoms a and ρ > 0. For i = 1, 2, 5, this

inequality follows from (2.5.17) and the proof of Theorem 2.5.4. For i = 3, 4, we
may suppose that γ = α and p = 2/(2 + α). We have seen in (2.5.6) and (2.5.8) that

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ C1{2−K+4<x1<π+2−K−1}1{2−K+1<x2≤x1/2+2−K }
(x1 − 2−K−1)−1−α+β(x2 − 2−K−1)−1−β .

If this is greater than ρ, then
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1{2−K+1<x2≤x1/2+2−K }(x2 − 2−K−1)

< Cρ− 1
1+β 1{2−K+4<x1<π+2−K−1}(x1 − 2−K−1)

− 1+α−β
1+β .

Since x1/2 + 2−K < x1 and β can be chosen such that − 1+α−β
1+β

+ 1 < 0, i.e., 0 <

β < α/2, we obtain

λ

(
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A3(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣ > ρ

)

≤
∫ ρ−1/(2+α)+2−K−1

2−K+4

x1
2

+ 2−K dx1

+ Cρ− 1
1+β

∫ π

ρ−1/(2+α)+2−K−1
(x1 − 2−K−1)

− 1+α−β
1+β dx1

≤ Cρ−2/(2+α) + Cρ− 1
1+β ρ

−1
2+α (− 1+α−β

1+β +1)

= Cρ−2/(2+α).

Similarly, by (2.5.14) and (2.5.15),

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣

≤ Cp2
2K/p−2K−Kγ1{2−K+4<x1<π+2−K−1}1{x1/2−2−K<x2≤x1−2−K+1}

(x1 − x2 − 2−K )−1−α+β(x1 − 2−K−1)−1−β,

which implies that

1{x1/2−2−K<x2≤x1−2−K+1}(x1 − x2 − 2−K )

< Cρ− 1
1+α−β 1{2−K+4<x1<π+2−K−1}(x1 − 2−K−1)

− 1+β
1+α−β .

Hence

λ

(
sup
n≥1

∣∣∣∣
∫

I
a(t1, t2)K

∞,α
n (x1 − t1, x2 − t2)1A4(x1 − t1, x2 − t2) dt1 dt2

∣∣∣∣ > ρ

)

≤
∫ ρ−1/(2+α)+2−K−1

2−K+4
x1 dx1

+ Cρ− 1
1+α−β

∫ π

ρ−1/(2+α)+2−K−1
(x1 − 2−K−1)

− 1+β
1+α−β dx1

≤ Cρ−2/(2+α) + Cρ− 1
1+α−β ρ

−1
2+α (− 1+β

1+α−β +1)

= Cρ−2/(2+α),
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where− 1+β
1+α−β

+ 1 < 0, i.e.,α/2 < β < α. This completes the proof of the theorem.
�

Of course, (2.5.16) cannot be true for p < p0, i.e., σ
q,α
∗ is not bounded from

H�
p (Td) to the weak L p,∞(Td) space for p < p0. If the operator was bounded, then

by interpolation (2.5.1) would hold for p = p0, which contradicts Theorem 2.5.6.
Oswald [253] proved a similar theorem to Theorem 2.5.4 for the Riesz means of

the Fourier transforms and for q = ∞. Theorems 2.5.4 and 2.5.7 can be found in
Weisz [330, 339]. For a detailed proof of the multi-dimensional version, see [337,
338, 341, 344].

Marcinkiewicz [233] verified for two-dimensional Fourier series that the cubic
(i.e.,q = ∞) Fejérmeans of a function f ∈ L log L(T2) converge almost everywhere
to f as n → ∞. Later Zhizhiashvili [364, 366] extended this result to all f ∈ L1(T

2)

and to Cesàro means and Berens, Li and Xu [30] to q = 1. The general convergence
result can be found in [330, 337–339, 341].

The next corollary follows easily from Theorem 2.5.4.

Corollary 2.5.8 Suppose that q = 1,∞ and 0 < α < ∞. If f ∈ L1(T
d), then

sup
ρ>0

ρ λ(σq,α
∗ f > ρ) ≤ C‖ f ‖1.

The density argument of Marcinkiewicz and Zygmund implies

Corollary 2.5.9 Suppose that q = 1,∞ and 0 < α < ∞. If f ∈ L1(T
d), then

lim
n→∞ σq,α

n f = f a.e.

Proof Since the trigonometric polynomials are dense in L1(T
d), the corollary fol-

lows from Theorem 1.3.6 and Corollary 2.5.8. �

2.5.2 Almost Everywhere Convergence for q = 2

Theorem 2.5.10 Suppose that q = 2, (d − 1)/2 < α < ∞ and γ ∈ P. If

p0 := d

d/2 + α + 1/2
< p < ∞,

and f ∈ H�
p (Td), then ∥∥σq,α,γ

∗ f
∥∥
p

≤ Cp ‖ f ‖H�
p

.

Proof Let us choose N ∈ N such that N < α − (d − 1)/2 ≤ N + 1. As we men-
tioned in Sect. 2.4, we may suppose that the support of an atom a is a ball B with
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radius β, 2−K−1 < β ≤ 2−K (K ∈ N). Moreover, we may suppose that the center of
B is zero, i.e., B = B(0,β). Obviously,

∫

Td\(r B)

|σ2,α,γ
∗ a(x)|p dx

≤
�d1/22Kπ�−1∑

i=4�d1/2�−1

∫

B(0,(i+2)2−K )\B(0,(i+1)2−K )∩Td

sup
n≥d1/22K+1

|σ2,α,γ
n a(x)|p dx

+
�d1/22Kπ�−1∑

i=4�d1/2�−1

∫

B(0,(i+2)2−K )\B(0,(i+1)2−K )∩Td

sup
n<d1/22K+1

|σ2,α,γ
n a(x)|p dx

=: (A) + (B),

where r = 8d1/2. Note that if K ≤ 3, then the integral is equal to 0.
We use Taylor’s formula for gk(t) = θ̂0(n(x − 2kπ − t)):

gk(t) =
N−1∑

l=0

∑

‖i‖1=l

∂i1
1 . . . ∂id

d gk(0)
d∏

j=1

t
i j
j

i j ! +
∑

‖i‖1=N

∂i1
1 . . . ∂id

d gk(νt)
d∏

j=1

t
i j
j

i j !

for some 0 < ν < 1. Here

∂i1
1 . . . ∂id

d gk(t) = (−1)‖i‖1n‖i‖1∂i1
1 . . . ∂id

d θ̂0(n(x − 2kπ − t)).

Using this with t − 2kπ instead of t , Theorem 2.2.30 and the definition of the atom,
we obtain

σ2,α,γ
n a(x) = 1

(2π)d

∑

k∈Zd

nd
∫

B+2kπ
a(t)θ̂0(n(x − t)) dt

= 1

(2π)d

∑

k∈Zd

nd
∫

B+2kπ
a(t)

⎛

⎝θ̂0(n(x − t)) −
N−1∑

l=0

∑

‖i‖1=l

∂i1
1 . . . ∂id

d gk(0)
d∏

j=1

(t j − 2k jπ)i j

i j !

⎞

⎠ dt

= 1

(2π)d

∑

k∈Zd

nd
∑

‖i‖1=N

(−1)‖i‖1n‖i‖1
∫

B+2kπ
a(t)

∂i1
1 · · · ∂id

d θ̂0

(
n(x − 2kπ) − nvk(t − 2kπ)

) d∏

j=1

(t j − 2k jπ)i j

i j ! dt,

where 0 < vk < 1. Then, by Corollary 2.2.28,
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∣∣σ2,α,γ
n a(x)

∣∣ ≤ Cp

∑

k∈Zd

n(d−1)/2+N−α2Kd/p2−K N

∫

B+2kπ
‖x − 2kπ − vk(t − 2kπ)‖−d/2−α−1/2

2 dt. (2.5.18)

Moreover,

sup
n≥d1/22K+1

∣∣σ2,α,γ
n a(x)

∣∣ ≤ Cp

∑

k∈Zd

2K ((d−1)/2−α)2Kd/p

∫

B+2kπ
‖x − 2kπ − vk(t − 2kπ)‖−d/2−α−1/2

2 dt

=: A1(x) + A2(x),

where

A1(x) := 2K ((d−1)/2−α)2Kd/p
∫

B+2kπ
‖x − v0t‖−d/2−α−1/2

2 dt

and

A2(x) :=
∑

k∈Zd ,k �=0

2K ((d−1)/2−α)2Kd/p

∫

B+2kπ
‖x − 2kπ − vk(t − 2kπ)‖−d/2−α−1/2

2 dt.

If k = 0, u ∈ B and x ∈ B(0, (i + 2)2−K ) \ B(0, (i + 1)2−K ) ∩ T
d for some i =

4�d1/2� − 1, . . . , �d1/22Kπ� − 1, then

‖x − u‖2 ≥ ‖x‖2 − ‖u‖2 ≥ i2−K .

In case k �= 0, u ∈ B + 2kπ and x ∈ B(0, (i + 2)2−K ) \ B(0, (i + 1)2−K ) ∩ T
d ,

one can see that
‖x − u‖2 ≥ ‖k‖2/4.

Then

A1(x) ≤ Cp2
K ((d−1)/2−α)2Kd/p

∫

B
(i2−K )−d/2−α−1/2 dt

≤ Cp2
Kd/pi−d/2−α−1/2

and
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A2(x) ≤ Cp

∑

k∈Zd ,k �=0

2K ((d−1)/2−α)2Kd/p
∫

B+2kπ
‖k‖−d/2−α−1/2

2 dt

≤ Cp

∑

k∈Zd ,k �=0

2K (−d/2−1/2−α)2Kd/p‖k‖−d/2−1/2−α
2

≤ Cp

∞∑

j=1

2K (−d/2−1/2−α)2Kd/p j (−d/2−1/2−α) j d−1

≤ Cp

for p ≥ d/(d/2 + α + 1/2). Hence,

(A) ≤ Cp

�d1/22Kπ�−1∑

i=4�d1/2�−1

2−Kdid−12Kdi p(−d/2−α−1/2) + Cp

�d1/22Kπ�−1∑

i=4�d1/2�−1

2−Kdid−1 ≤ Cp

if p > d/(d/2 + α + 1/2).
Applying Taylor’s formula for N + 1 instead of N , we get similar to (2.5.18) that

∣∣σ2,α,γ
n a(x)

∣∣ ≤ Cp

∑

k∈Zd

n(d−1)/2+(N+1)−α2Kd/p2−K (N+1)

∫

B+2kπ
‖x − 2kπ − vk(t − 2kπ)‖−d/2−α−1/2

2 dt

and

sup
n<d1/22K+1

∣∣σ2,α,γ
n a(x)

∣∣ ≤ Cp

∑

k∈Zd

2K ((d−1)/2−α)2Kd/p

∫

B+2kπ
‖x − 2kπ − vk(t − 2kπ)‖−d/2−α−1/2

2 dt.

The inequality
(B) ≤ Cp

can be shown as above. �

Corollary 2.5.11 Suppose that q = 2, (d − 1)/2 < α < ∞ and γ ∈ P. If 1 < p <

∞, then
‖σq,α,γ

∗ f ‖p ≤ Cp‖ f ‖p ( f ∈ L p(T
d)).

Theorem2.5.10was proved byStein, Taibleson andWeiss [292] andLu [224]. The
author generalized it for other summabilitymethods inWeisz [332, 334]. The theorem
is not true if p is smaller than or equal to the critical index d/(d/2 + α + 1/2) (see
Stein, Taibleson and Weiss [292]).
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Theorem 2.5.12 If q = 2, (d − 1)/2 < α < ∞ and γ ∈ P, then the operator σ
q,α,γ
∗

is not bounded from H�
p (Td) to L p(T

d) if p is smaller than or equal to the critical
index d/(d/2 + α + 1/2).

If p is equal to the critical index, then we have again a weak type inequality.

Theorem 2.5.13 Suppose that q = 2, (d − 1)/2 < α < ∞ and γ ∈ P. If

p0 := d

d/2 + α + 1/2

and f ∈ H�
p0 (T

d), then

∥∥σq,α,γ
∗ f

∥∥
p0,∞ = sup

ρ>0
ρλ(σq,α,γ

∗ f > ρ)1/p0 ≤ C ‖ f ‖H�
p0

.

Proof We will use Theorem 2.4.20. Let us introduce the set

Eρ := {i ≥ 4�d1/2� − 1 : i−d/2−α−1/2 > C−1ρ2−Kd/p
}
,

where p = d/(d/2 + α + 1/2). Observe that

ρp λ
(
{A1 > ρ} ∩ {Td \ (r B)}

)
≤ Cρp

∑

i∈Eρ

i d−12−Kd .

If k is the largest integer for which k−d/2−α−1/2 > C−1ρ2−Kd/p, then

ρp λ
(
{A1 > ρ} ∩ {Td \ (r B)}

)
≤ ρp2−Kdkd ≤ C.

The same inequality for (A2) is trivial. We can estimate supn<d1/22K+1 |σ2,α,γ
n a(x)|

similarly, which shows the theorem. �

Corollary 2.5.14 Suppose that q = 2, (d − 1)/2 < α < ∞ and γ ∈ P. If f ∈
L1(T

d), then
sup
ρ>0

ρ λ(σq,α,γ
∗ f > ρ) ≤ C‖ f ‖1.

As in the previous subsection, this implies

Corollary 2.5.15 Suppose that q = 2, (d − 1)/2 < α < ∞ and γ ∈ P. If f ∈
L1(T

d), then
lim
n→∞ σq,α,γ

n f = f a.e.
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2.6 �q-Summability Defined by a Function θ

Now we generalize the �q -Fejér and Riesz means investigated above. We introduce
a general summability method, the so-called θ-summability generated by a given
one-dimensional function θ.

We suppose that θ : R → R and

∑

k∈Zd

∣∣∣∣θ
(‖k‖q

n

)∣∣∣∣ < ∞ (2.6.1)

for all n ∈ N. If θ has compact support, then this holds obviously. As we will see in
Sect. 2.6.1, (2.6.2) implies (2.6.1).

Definition 2.6.1 Suppose that θ satisfies (2.6.1). For f ∈ L1(T
d), 1 ≤ q ≤ ∞ and

n ∈ N, the nth �q -θ-means σ
q,θ
n f of the Fourier series of f and the nth �q -θ kernel

Kq,θ
n are defined by

σq,θ
n f (x) :=

∑

k∈Zd

θ

(‖k‖q
n

)
f̂ (k)eık·x

and

Kq,θ
n (t) :=

∑

k∈Zd

θ

(‖k‖q
n

)
eık·t ,

respectively.

Lemma 2.6.2 Suppose that θ satisfies (2.6.1). For f ∈ L1(T
d) and n ∈ N,

σq,θ
n f (x) = 1

(2π)d

∫

Td

f (x − t)Kq,θ
n (t) dt.

The definition of the �q -θ-means can be extended to distributions as usual.

Definition 2.6.3 Suppose that θ satisfies (2.6.1). For f ∈ D(Td), 1 ≤ q ≤ ∞ and
n ∈ N, the nth �q -θ-means σ

q,θ
n f of the Fourier series of f are given by

σq,θ
n f := f ∗ Kq,θ

n .

Definition 2.6.4 We define the maximal θ-operator by

σq,θ
∗ f := sup

n∈N

∣∣σq,θ
n f

∣∣ .

Note that Kq,θ
n is bounded and integrable. If θ(t) = max((1 − |t |γ)α, 0), then we

get back the Riesz (or in special case α = γ = 1, the Fejér) means. θ-summability
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was considered in many papers and books, such as Butzer and Nessel [47], Trigub
and Belinsky [319], Natanson and Zuk [244], Bokor, Schipp, Szili and Vértesi [38,
272, 274, 300, 301], and Feichtinger andWeisz [103, 104, 332, 337, 338, 342, 346].

2.6.1 Triangular and Cubic Summability

For q = 1 or ∞, instead of (2.6.1), we suppose that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

the support of θ is [−c, c] (0 < c ≤ ∞),

θ is even and continuous, θ(0) = 1,
∑∞

k=0 k
d
∣∣∣�1θ(

k
n )

∣∣∣ < ∞,

limt→∞ tdθ(t) = 0,

(2.6.2)

where

�1θ

(
k

n

)
:= θ

(
k

n

)
− θ

(
k + 1

n

)

is the first difference. If the support of θ is not compact, then we say that c = ∞.
Abel rearrangement implies

∑

j∈Zd

∣∣∣∣θ
(‖ j‖q

n

)∣∣∣∣ ≤ C
∞∑

k=0

kd−1

∣∣∣∣θ
(
k

n

)∣∣∣∣ ≤ C
∞∑

k=0

kd
∣∣∣∣�1θ

(
k

n

)∣∣∣∣ < ∞,

thus (2.6.1) holds.

Lemma 2.6.5 Suppose that θ satisfies (2.6.2). For f ∈ L1(T
d), q = 1,∞ and n ∈

N, we have

σq,θ
n f (x) =

∞∑

j=0

�1θ

(
j

n

)
sqj f (x).

and

Kq,θ
n (t) =

∞∑

j=0

�1θ

(
j

n

)
Dq

j (t)

Proof The proof follows from

Kq,θ
n (t) =

∑

k∈Zd

∑

j≥‖k‖q
�1θ

(
j

n

)
eık·t =

∞∑

j=0

�1θ

(
j

n

)
Dq

j (t)

�
We need also the following condition:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ is twice continuously differentiable on(0, c),
θ′′ �= 0 except at finitely many points and finitely many intervals,
limt→0+0 tθ′(t) is finite,
limt→c−0 tθ′(t) is finite,
limt→∞ tθ′(t) = 0.

(2.6.3)

The norm convergence follows easily from Theorem 2.6.7.

Theorem 2.6.6 Assume that q = 1 or q = ∞ and (2.6.2) and (2.6.3) are satisfied.
If 1 ≤ p < ∞, then

sup
n∈N

∥∥σq,θ
n f

∥∥
p ≤ C‖ f ‖p

and
lim
n→∞ σq,θ

n f = f in the L p(T
d)-norm for all f ∈ L p(T

d).

For the almost everywhere convergence, we introduce some notations. Let X

and Y be two complete quasi-normed spaces of measurable functions, L∞(Td) be
continuously embedded intoX and L∞(Td)bedense inX. Suppose that if 0 ≤ f ≤ g,
f, g ∈ Y, then ‖ f ‖Y ≤ ‖g‖Y. If fn, f ∈ Y, fn ≥ 0 (n ∈ N) and fn ↗ f a.e. as
n → ∞, then assume that ‖ f − fn‖Y → 0. Recall that σ

q
∗ denotes the maximal

Fejér operator.

Theorem 2.6.7 Assume that q = 1 or q = ∞ and (2.6.2) and (2.6.3) are satisfied.
If σq

∗ : X → Y is bounded, i.e.,

‖σq
∗ f ‖Y ≤ C‖ f ‖X ( f ∈ X ∩ L∞(Td)),

then σ
q,θ
∗ is also bounded,

‖σq,θ
∗ f ‖Y ≤ C‖ f ‖X ( f ∈ X).

Proof By Abel rearrangement,

m∑

k=0

�1θ

(
k

n

)
Dq

k (x) =
m−1∑

k=0

�2θ

(
k

n

)
kKq

k (x) + �1θ
(m
n

)
mKq

m(x),

where

�2θ

(
k

n

)
:= �1θ

(
k

n

)
− �1θ

(
k + 1

n

)

is the second difference and Kq
m denotes the Fejér kernel. Observe that for a fixed x ,

we have that Kq
m(x) is uniformly bounded in m. By Lagrange’s mean value theorem

there exists m < ξ(m) < m + 1, such that
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m�1θ
(m
n

)
= −m

n
θ′
(

ξ(m)

n

)

and this converges to zero if m → ∞. Thus,

Kq,θ
n (x) =

∞∑

k=0

k �2θ

(
k

n

)
Kq

k (x).

Now we prove that

sup
n≥1

∞∑

k=0

k

∣∣∣∣�2θ

(
k

n

)∣∣∣∣ ≤ C < ∞. (2.6.4)

If θ′′ ≥ 0 on the interval (i/n, ( j + 2)/n), then θ is convex on this interval and this
yields that

�2θ

(
k

n

)
≥ 0 for i ≤ k ≤ j.

Hence

j∑

k=i

k

∣∣∣∣�2θ

(
k

n

)∣∣∣∣ =
j∑

k=i

k �2θ

(
k

n

)

= θ

(
i

n

)
+ (i − 1)�1θ

(
i

n

)
−

j �1θ

(
j + 1

n

)
− θ

(
j + 1

n

)
.

Applying again Lagrange’s mean value theorem, we have

(i − 1)

∣∣∣∣�1θ

(
i

n

)∣∣∣∣ =
i − 1

n

∣∣∣∣θ
′
(

ξ(i)

n

)∣∣∣∣ =
i − 1

ξ(i)

∣∣∣∣
ξ(i)

n
θ′
(

ξ(i)

n

)∣∣∣∣ ≤ C,

where i < ξ(i) < i + 1. Here, we used the fact that the function x �→ |xθ′(x)| is
bounded, which follows from (2.6.3). If θ′′ = 0 at an isolated point u or if θ′′ is not
twice continuously differentiable at u, u ∈ (k/n, (k + 1)/n), then the boundedness

of k
∣∣∣�2θ

(
k
n

)∣∣∣ can be seen in the same way. Since there are only finitely many

intervals and isolated points satisfying the above properties, we have shown (2.6.4).
Hence

σq,θ
n f (x) =

∫

Td

f (t)Kq,θ
n (x − t) dt

=
∞∑

k=0

∫

Td

k �2θ

(
k

n

)
f (t)Kq

k (x − t) dt
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for all f ∈ L∞(Td). Thus

σq,θ
∗ f ≤ Cσq

∗ f ( f ∈ L∞(Td))

and so ∥∥σq,θ
∗ f

∥∥
Y

≤ C ‖ f ‖X ( f ∈ X ∩ L∞(Td)).

By a usual density argument, we finish the proof of the theorem. �

It is easy to see that X can be chosen to be the Hardy space H�
p (Td) and Y to be

the space L p(T
d) or L p,∞(Td) (0 < p ≤ ∞). Theorems 2.6.7 and 2.5.4 imply

Theorem 2.6.8 Assume that q = 1 or q = ∞ and (2.6.2) and (2.6.3) are satisfied.
If

d

d + 1
< p ≤ ∞,

then ∥∥σq,θ
∗ f

∥∥
p ≤ Cp ‖ f ‖H�

p
( f ∈ H�

p (Td))

and, for f ∈ H�
d/(d+1)(T

d),

∥∥σq,θ
∗ f

∥∥
d/(d+1),∞ = sup

ρ>0
ρλ(σq,θ

∗ f > ρ)(d+1)/d ≤ C ‖ f ‖H�
d/(d+1)

.

Moreover,
sup
ρ>0

ρ λ(σq,θ
∗ f > ρ) ≤ C‖ f ‖1 ( f ∈ L1(T

d)).

Corollary 2.6.9 Assume that q = 1 or q = ∞ and (2.6.2) and (2.6.3) are satisfied.
If f ∈ L1(T

d), then
lim
n→∞ σq,θ

n f = f a.e.

2.6.2 Circular Summability

If q = 2, then we have to assume other additional conditions instead of (2.6.2) and
(2.6.3). Recall that

θ0(x) = θ(‖x‖2).

Let
θ0 ∈ L1(R

d) and θ̂0 ∈ L1(R
d). (2.6.5)

Assume that θ̂0 is (N + 1)-times differentiable (N ≥ 0) and there exists
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d + N − 1 < β ≤ d + N

such that ∣∣∣∂i1
1 · · · ∂id

d θ̂0(x)
∣∣∣ ≤ C‖x‖−β−1

2 (x �= 0), (2.6.6)

whenever i1 + · · · + id = N or i1 + · · · + id = N + 1. If β = d + N , then it is
enough to suppose (2.6.6) for i1 + · · · + id = N + 1.

We recall that the Riesz summability, i.e., if θ(t) = max((1 − |t |γ)α, 0), satisfy
(2.6.5) and (2.6.6) with β = d/2 + α − 1/2 (see Corollary 2.2.28).

The norm convergence can be proved as Theorem 2.3.2.

Theorem 2.6.10 Assume that q = 2, θ(0) = 1 and (2.6.1) and (2.6.5) are satisfied.
If 1 ≤ p < ∞, then

sup
n∈N

∥∥σq,θ
n f

∥∥
p ≤ C‖ f ‖p

and
lim
n→∞ σq,θ

n f = f in the L p(T
d)-norm for all f ∈ L p(T

d).

We can prove the next theorem similar to Theorem 2.5.10. The details are left to
the reader.

Theorem 2.6.11 Assume that q = 2 and (2.6.1), (2.6.5) and (2.6.6) are satisfied. If

d

β + 1
< p ≤ ∞,

then ∥∥σq,θ
∗ f

∥∥
p ≤ Cp ‖ f ‖H�

p
( f ∈ H�

p (Td))

and, for f ∈ H�
d/(β+1)(T

d),

∥∥σq,θ
∗ f

∥∥
d/(β+1),∞ = sup

ρ>0
ρλ(σq,θ

∗ f > ρ)(β+1)/d ≤ C ‖ f ‖H�
d/(β+1)

.

Moreover,
sup
ρ>0

ρ λ(σq,θ
∗ f > ρ) ≤ C‖ f ‖1 ( f ∈ L1(T

d)).

Corollary 2.6.12 Assume that q = 2, θ(0) = 1 and (2.6.1), (2.6.5) and (2.6.6) are
satisfied. If f ∈ L1(T

d), then

lim
n→∞ σq,θ

n f = f a.e.

We note again, that (2.6.2) implies (2.6.1).
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2.6.3 Some Summability Methods

Now we give some examples for the θ-summation.

Example 2.6.13 (Fejér summation). Let

θ(t) =
{
1 − |t | if |t | ≤ 1;
0 if |t | > 1.

Example 2.6.14 (de La Vallée-Poussin summation). Let

θ(t) =
⎧
⎨

⎩

1 if if |t | ≤ 1/2;
−2|t | + 2 if 1/2 < |t | ≤ 1;
0 if |t | > 1.

Example 2.6.15 (Jackson-de La Vallée-Poussin summation). Let

θ(t) =
⎧
⎨

⎩

1 − 3t2/2 + 3|t |3/4 if |t | ≤ 1;
(2 − |t |)3/4 if 1 < |t | ≤ 2;
0 if |t | > 2.

Example 2.6.16 Let 0 = α0 < α1 < · · · < αm and β0, . . . ,βm (m ∈ N) be real
numbers, β0 = 1, βm = 0. Suppose that θ is even, θ(α j ) = β j ( j = 0, 1, . . . ,m),
θ(t) = 0 for t ≥ αm , θ is a polynomial on the interval [α j−1,α j ] ( j = 1, . . . ,m).

Example 2.6.17 (Rogosinski summation). Let

θ(t) =
{
cosπt/2 if |t | ≤ 1 + 2 j;
0 if |t | > 1 + 2 j

for some j ∈ N.

Example 2.6.18 (Weierstrass summation). Let

θ(t) = e−|t |γ for some 1 ≤ γ < ∞.

Note that if γ = 1, then we obtain the Abel means.

Example 2.6.19 Let

θ(t) = e−(1+|t |q )γ for some 1 ≤ q < ∞, 0 < γ < ∞.

Example 2.6.20 (Picard and Bessel summations). Let

θ(t) = (1 + |t |γ)−α for some 0 < α < ∞, 1 ≤ γ < ∞,αγ > d.

Example 2.6.21 (Riesz summation). Let
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θ(t) =
{

(1 − |t |γ)α if |t | ≤ 1;
0 if |t | > 1

for some 0 < α, γ < ∞.

It is easy to see that all of these examples satisfy (2.6.2) and (2.6.3).

Theorem 2.6.22 Suppose that θ is one of the Examples 2.6.13–2.6.21. Then Theo-
rems 2.6.6, 2.6.8 and Corollary 2.6.9 hold.

One can show [334, 343] that Example 2.6.21 with α > (d − 1)/2, γ ∈ P and
β = d/2 + α − 1/2, Example 2.6.18 with 0 < γ < ∞ and β = d + N , Example
2.6.19 with 0 < γ, q < ∞ and β = d + N and Example 2.6.20 with β = d + N
satisfy (2.6.2), (2.6.5) and (2.6.6).

Theorem 2.6.23 Suppose that θ is one of the Examples 2.6.18, 2.6.19, 2.6.20 or
2.6.21with the parameterβ just defined. Then Theorems 2.6.10, 2.6.11 andCorollary
2.6.12 hold.
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