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Preface

The main purpose of this book is to investigate the summability of higher
dimensional Fourier series and to generalize the concept of Lebesgue points.
It is a basic question in Fourier analysis whether the partial sums

suf () =Y f(k)e™ (neN)

|k| <n

converge to the integrable function f € L(T), where T denotes the torus and the
Fourier coefficients are defined by

f(k) = % /T fxe ™ ax (1:=V-1).

One of the deepest results in harmonic analysis is Carleson’s theorem ([51],
[174)), i.e., for f € L,(T), 1 <p<oo,

lims,f=f ae.
n—oo

The convergence holds also in the L,(T)-norm. In this book, we do not prove
Carleson’s theorem as it is investigated exhaustively in several books (e.g. Arias de
Reyna [9] or Grafakos [143] or Muscalu and Schlag [242]).

This convergence does not hold for p = 1. However, using a summability
method, we can generalize these results. In this book, we will focus on the well
known Fejér and Cesaro summability. The most known result in summability
theory is Lebesgue’s theorem [197] about the Fejér means [107], i.e., the Fejér
means of an integrable function converge almost everywhere to the function:

n—1

1
nlir&;Zsjf(x) =f(x) ae.

j=0

vii
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The set of convergence was also characterized. A point x € T is called a
Lebesgue point of f if

1 h
mﬂ[hy(xﬂ) — f(x)|dt = 0.

Lebesgue [197] proved that almost every point is a Lebesgue point of f € L;(T)
and the Fejér means converge to f in each Lebesgue point. The same holds for the
Cesaro means.

In this book, these results will be generalized to d-dimensional Fourier series and
to different summability means. The generalization of the Lebesgue points is not
straightforward. We will investigate six types of generalizations.

We will consider different summation methods for d-dimensional trigonometric
Fourier series. Basically, two types of summations will be introduced. In the first
one, we take the sum in the partial sums and in the summability means over the
balls of £, which is called ,-summability. In the literature, the cases g = 1,2, oo,
i.e., the triangular, circular and cubic summability are investigated. In the second
version of summation, we take the sum over rectangles which is called rectangular
summability. In this case, three types of convergence and maximal operators are
considered: the restricted (over a cone and over a cone-like set) and the unrestricted
ones. Under the first one, we mean the convergence over the diagonal or more
generally, over a cone or over a cone-like set. The unrestricted convergence is taken
over N, In each version, the three most known summability methods, the Fejér,
Cesaro and Riesz means will be investigated in details. The Fejér summation is a
special case of the Cesaro method. Moreover, in each type of summability, we will
deal with the so-called O-summation as well, which is a general summability
method generated by a single function 0 : R — R. This summation contains all well
known summability methods, such as the Fejér, Riesz, Weierstrass, Abel, Picard,
Bessel, Rogosinski, de La Vallée-Poussin summations, however, it does not contain
the Cesaro summation. We consider norm convergence and almost everywhere
convergence of the different summability means.

We introduce two types of Hardy spaces. For the /,- and restricted rectangular
summability, we use the Hardy space HE(T" ) and for the unrestricted summability,

the Hardy space H p(']l‘d). We do not verify the results about the Hardy spaces, e.g.,
we give the atomic decompositions and the equivalence of the different norms
without proofs, because the readers can find them in several books (see e.g.
Grafakos [143], Yang et al. [361] and Weisz [346]). We prove that the maximal
operators of the summability means are bounded from the corresponding Hardy
space HPD(T‘Z) or H,(T“) to L,(T?), whenever p > p, for some p, < 1. The critical
index p, depends on the summability method and on the dimension. Forp = 1, we
obtain a weak type inequality by interpolation, which implies the almost every-
where convergence of the summability means. The one-dimensional version of the
almost everywhere convergence and the weak type inequality are proved usually
with the help of a Calderon-Zygmund type decomposition lemma. However, in
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two- or higher dimensions, this lemma can not be used for all cases investigated in
this monograph. Our method, that can also be applied well in higher dimensions,
can be regarded as a new method to prove the almost everywhere convergence and
weak type inequalities.

In Chap. 1, we give the basic results about the one-dimensional Fourier series.
We prove the Lebesgue theorem mentioned above and some convergence results
for the partial sums of the one-dimensional Fourier series. We prove norm—and
almost everywhere convergence and boundedness results for the £,-summability in
Chap. 2, and for the restricted and unrestricted rectangular summability in Chap. 3.
Yet in the same chapter, we give a sufficient and necessary condition for the norm
convergence of the rectangular #-means. In particular, if the function 6 is in the
Feichtinger’s algebra So(Rd) used in the theory of Gabor analysis, then norm
convergence of the f-means holds.

In Chap. 4, we introduce six types of Lebesgue points for higher dimensional
functions. We need different Lebesgue points and different Hardy-Littlewood
maximal operators for the different summability methods. We study the bounded-
ness of all Hardy-Littlewood maximal operators on the L,,(Td) spaces. We will
show that the summability means converge to the integrable function in each
Lebesgue point and almost every point is a Lebesgue point. For the ¢,-0-summa-
bility, we give a sufficient and necessary condition for the convergence in Lebesgue
points.

This book was aimed to be written so that it is as nearly self-contained as
possible. However, it is assumed that the reader has some basic knowledge on
analysis, functional analysis and on Hardy spaces. Besides the classical results,
recent results of the last 20-30 years are studied. For simplicity, we will prove all
results for the two-dimensional case. If needed, after the theorems we will give a
guide how we can prove them for higher dimensions and where we can find the
proofs. I am sure, in this way the book is more understandable, easier to read and it
can reach a wider readership. So I hope, the book will be useful not only for
researchers but also for graduate, postgraduate and Ph.D. students.

Budapest, Hungary Ferenc Weisz
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Chapter 1 ®)
One-Dimensional Fourier Series Creck for

In this chapter, we present some theorems for one-dimensional Fourier series and
for the Hardy-Littlewood maximal function. In Sect. 1.1, we introduce the L ,(T)
spaces and prove some basic inequalities. In Sect. 1.2, we prove that the partial sums
of the Fourier series are uniformly bounded on the L ,(T) spaces when 1 < p < oo.
As a consequence, we obtain the norm convergence of the partial sums. We do not
give the proof of the almost everywhere convergence because it can be found at
several places, e.g., in Carleson [51], Grafakos [143], Arias de Reyna [9], Muscalu
and Schlag [242], Lacey [192], or Demeter [80].

In the next section, the Hardy-Littlewood maximal function is considered and
we prove that it is bounded on the L ,(T) spaces (1 < p < oo) and is of weak type
(1, 1). Lebesgue’s differentiation theorem is also proved. We introduce the Lebesgue
points and show that almost every point is a Lebesgue point.

It was proved by Fejér [107] that the Fejér means of the one-dimensional Fourier
series of a continuous function converge uniformly to the function. A similar problem
for integrable functions was investigated by Lebesgue [197]. He proved that for every
integrable function f,

n—1
%Zskf(X) — f(x) as n—o0
k=0

at each Lebesgue point of f, thus almost everywhere, where s; f denotes the kth
partial sum of the Fourier series of f. Later, Riesz [260], Butzer and Nessel [47],
Stein and Weiss [293], and Torchinsky [310] proved the same convergence result
for the Riesz, Weierstrass, Picard, Bessel, and de La Vallée-Poussin summations. In
Sects. 1.4 and 1.5, we will generalize these results to Cesaro summability.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 1
F. Weisz, Lebesgue Points and Summability of Higher Dimensional Fourier Series,
https://doi.org/10.1007/978-3-030-74636-0_1
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2 1 One-Dimensional Fourier Series

1.1 The L, Spaces

Let us denote the set of complex numbers, the set of real numbers, the set of rational
numbers, the set of integers, the set of non-negative integers, and the set of positive
integers by C, R, Q, Z, N, and P, respectively. The subsets of R and QQ containing
only positive numbers are denoted by R, and Q,, respectively. T denotes the torus,
which can be identified naturally with the interval [—m, 7).

In this book, the constants C are absolute constants and the constants C, are
depending only on p and may denote different constants in different contexts.

Definition 1.1.1 The space L ,(X) is consisting of all Lebesgue measurable func-
tions f : X — C, for which

1/p
fl, = (/ |f|pd/\> , if0 < p <o
X

and
| flloo :=sup|fl, if p=o0,
X

where X C R is an arbitrary Lebesgue measurable set and \ denotes the Lebesgue
measure.

Two functions in L,(X) will be considered equal if they are equal A-almost
everywhere. It is known that L ,(X) is a Banach space if 1 < p < oo and a complete
quasi-normed space if 0 < p < 1. We also use the notation /Il for the Lebesgue
measure of the set /. Most often we will use the notation X = R or X = T. The
functions from the L ,(T) space can be extended to R such that they are periodic
with respect to 2. In case of X = Z, the corresponding space will be denoted by
£,(Z) and it is consisting of all complex sequences ¢ = (¢, k € Z), for which

1/p
lelle, = (Dcw) , if0<p<oo

keZ

and

liclle, :==suplexl,  if p=oo0.
keZ

The space of continuous functions with the supremum norm is denoted by C (X)
and C.(R) denotes the space of continuous functions having compact support. We
will use the notation Cy(R) for the space of continuous functions vanishing at infinity,
ie.,

Co(R) := {f:R—)(C:fGC(R),llim f(x):O}.

We also introduce the notion of weak L ,(T) spaces.
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Definition 1.1.2 A measurable function f is in the weak L ,(T) space, or, in other
words, in the L, o(T) (0 < p < 00) space if

1711500 := sup p A(If1 > PP < oo.
In case of p = 00, let L, o(T) := Lo(T).
The weak L, (T) spaces are quasi-norm spaces because
[fllpoo=0 <<= f=0 ae.
lcfllpoo = lcll fllpoe  (c €O,

ILf 4 &llpco = cpUlfllpoc + l1€llp.c0)

where ¢, = max(2, 21/py,
We show that the weak L, (T) spaces are larger than the L ,(T) spaces.

Proposition 1.1.3 If0 < p < oo, then L ,(T) C L) o(T) and

I/ lpoo < I1Lf Nlp-

Proof 1t is easy to see that
[irrar= [ r@raz g,
T {x: f ()= p}
which proves the proposition. |
If h(x) := |x|~!/7, then obviously i ¢ L,(R), buth € L, ~(R) because
PP ({x ClxTVP > p}) =2pPp7P =2,

Thus, the inclusion L ,(R) C L, »(R) is properif 0 < p < oo. Recall that the weak
space L, o (R) is also complete for each p.

1.2 Convergence of Fourier Series

We introduce the trigonometric Fourier series and show that the partial sums of
a function f € L,(T) (I < p < 0o) converge almost everywhere as well in the
L ,(T)-norm to the function f.

Definition 1.2.1 For an integrable function f € L (T), its kth Fourier coefficient is
defined by
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-~ 1
fk) = —/ fe ™ dx (k€ Z).
2T T
The formal trigonometric series

Y fe™  (xeT)

keZ

is called the Fourier series of f.

Definition 1.2.2 For f € L{(T) and n € N, the nth partial sum s, f of the Fourier

series of f and the nth Dirichlet kernel D,, are introduced by

snf () 1=y flkye™

k=—n

and
n

D,(t) := Z e

k=—n

respectively.

We get immediately that

spf(x) = Z %/Tf(t)ezk(xft) dt

k=—n

1
= —/ fx—=1)D,(t)dt (meN)
27 T
(see Fig.1.1).
Lemma 1.2.3 Foralln e Nandt €T, t #0,

sin((n 4+ 1/2)t)

Dut) = =72

Proof Using some simple trigonometric identities, we obtain

D,(t)=1+2 Z cos(kt)
k=1

! in(z/2 2n kt) sin(t/2
) sin(t/2) +2 ) cos(kt) sin(t/2)

k=1

1 . S .
= m (sm(t/Z) + Z (sin((k + 1/2)t) — sin((k — 1/2)t))

k=1

(1.2.1)

(1.2.2)

)
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10t 1

Fig. 1.1 Dirichlet kernel D,, forn =5

which shows the lemma. ]
The next lemma follows easily from this.

Lemma 1.2.4 Foralln e Nandt €T, t # 0, we have
|IDyl <2n+4+1 and |D,(t| <C/t.

It is easy to see that the L;(T)-norms of D, are not uniformly bounded, more
exactly || D, |1 ~ logn.

Before proving the norm convergence of the partial sums, we need some other
definitions and results. We follow the proof of Grafakos [143].

Definition 1.2.5 For some n € N, the function
n
Z ce™  (x eR)
k=—n
is said to be a trigonometric polynomial.

It is a well-known result that the trigonometric polynomials are dense in L ,(T)
forany 1 < p < oo.

Definition 1.2.6 For a trigonometric polynomial f define the conjugate function f
by
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F) =—1) sign (k) f(k)e™.

keZ

Now we show that fis bounded on L ,(T) (1 < p < oo) (see Riesz [261, 262]).

Theorem 1.2.7 [f1 < p < oo, then
||f|}p <ColIfll, (f €Ly(M).

Proof First suppose that f is a real trigonometric polynomial and f 0)=0.TItis
easy to see that f is also real valued and f + 1 f contains only positive frequencies.
Since [, e'** dx = 0 (k # 0), we have

/ (fx)+1F)* dx =0,
T

where k is a positive natural number. Taking the real part of the integral and using
that f and f are real valued, we obtain

k
0=2 (=D <2k) f FOM F)* % dx
=0 2j) Jr
~ ‘ 2% -
= (—1)’6/ f(x)Zk dx + Z(_l)k—j< ) / f(x)ij(x)Zk—Zj dx.
T j=1 2] T
This and Holder’s inequality imply that

| 7l < ( ) f F Y F0)* Y dx
1

j=

- 2k %—2j
‘,-Z.<21> AT el

/ | f |5, and divide by ||f|| to obtain

k
R% _ Z <§k> R <,
=1 N

Then R is smaller than the largest root in absolute value of the polynomial on the
left-hand side, say R < Cy, in other words

Let R = Hszk

|71, <Collfll, forp=2k. (1.2.3)
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If £(0) # 0, then apply this inequality to f — £(0). Since | f(0)| < || fIl,,, we get
the preceding inequality with 2C,. Every general trigonometric polynomial can be
written as the sum of two real-valued trigonometric polynomials. Therefore, (1.2.3)
holds for every trigonometric polynomials and by density forall f € L,(T), p = 2k.
By interpolation (see, e.g., Berg and Lofstrom [33] or Weisz [346]), (1~.2.3) holds f(Lr
all 2 < p < oo. Finally, observe that the adjoint operator of f +— f is f +— —f,
which implies by duality that (1.2.3) holds also for 1 < p < 2. |

Definition 1.2.8 For a trigonometric polynomial f, the Riesz projections P* and
P~ are defined by

PTfx) ~ Y Flkye™
k=1

and

-1
PTf) ~ Y Flket.

k=—00

Observe that f = PTf + P~ f + f(0)and f = —PTf + 1P~ f.

Theorem 1.2.9 If1 < p <ooand f € L,(T), then
|PEF], < Collfll,

and

|P=Fl, < Crllfll,-

Proof Since
1 ~ 1
PYf=(f+1f)— 510,
2 2
and |f(0)| < Il f1l,, the first inequality follows from Theorem 1.2.7. The second one
can be proved similarly. |

The following theorem is a fundamental result and it can be found in most books
about trigonometric Fourier series (e.g., Zygmund [367], Bary [19], Torchinsky
[310], or Grafakos [143]). It is due to Riesz [260].

Theorem 1.2.10 If f € L,(T) for some 1 < p < oo, then

sup lsn fIl, < Collf1l, (1.2.4)

ne

and
lim s,f = f inthe L,(T)-norm. (1.2.5)
n— o0
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Proof Define
2n

Plrg(x) =) ke
k=0
It is easy to see that
n 2n o
Y FWet = e Y (e ket
k=—n k=0
This implies that the norm of s, : L,(T) — L,(T) is equal to the norm of Pt

L,(T) — L,(T).
We have

B'f

f(k)ezkx _ Z f(k)elkx

k=2n+1

1 D

[o¢]
f/'\(k)elkx _ el(2n+1)x Z f(k + n + 1)elkx
k=0

f(x) _ el(2n+l)x P+(e—l(2n+l)(-)f) _ fA(O)(l _ el(21‘l+l)X)

=~
o

I
~
+

for all trigonometric polynomials. By density this yields that
|25 71, = ClPT[+2) 070,

forall f € L,(R)andn € N, whichproves (1.2.4). The convergence (1.2.5)is clearly
valid for all trigonometric polynomials and so the convergence follows for all f €
L,(T) (1 < p < 00) by density. |

Since the L-norms of D, are not uniformly bounded, Theorem 1.2.10 is not true
for p =1and p = o0.

One of the deepest results in harmonic analysis is Carleson’s theorem that the
partial sums of the Fourier series converge almost everywhere to f € L,(T) (1 <
p < 00). Since the proof can be found in many papers and books (see, e.g., Carleson
[51], Hunt [174], Arias de Reyna [9], Grafakos [143], Muscalu and Schlag [242],
Lacey [192], or Demeter [80]), we present the result without proof.

Definition 1.2.11 We denote by

s f = sup [$n f1
neN

the maximal operator of the partial sums.

Theorem 1.2.12 If f € L,(T) for some 1 < p < oo, then
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Is.f1l, < Cp I £IL,

andif1 < p < oo, then
lims,f=f ae
n—oQ

The inequality of Theorem 1.2.12 does not hold if p =1 or p = oo, and the
almost everywhere convergence does not hold if p = 1. Du Bois Reymond [84] and
Fejér [108] proved the existence of a continuous function f € C(T) and a point
xo € T such that the partial sums s, f (xo) diverge as n — oo. Kolmogorov gave an
integrable function f € L(T), whose Fourier series diverges almost everywhere or
even everywhere (see Kolmogorov [186, 187], Zygmund [367], or Grafakos [143]).

Since there are many function spaces contained in L (T) but containing L, (T)
(1 < p < 00), itis natural to ask whether there is a “largest” subspace of L, (T) for
which almost everywhere convergence holds. The next result, due to Antonov [7],
generalizes Theorem 1.2.12.

Theorem 1.2.13 If

/ | £ ()] log* | £ (x)]log" log* log* | £ (x)| dx < o0, (1.2.6)
T

then
lims,f=f ae
n—o00

Note that log™ u = max(0, logu). It is easy to see that if f € L,(T)(I1<pc=
o0), then f satisfies (1.2.6). If f satisfies (1.2.6), then of course f € L;(T). For the
converse direction, Konyagin [188] obtained the next result.

Theorem 1.2.14 [f the non-decreasing function ¢ : R, — R, satisfies the condi-
tion
o(u) = o(u\/log u/+/loglog u) asu — oo,

then there exists an integrable function f such that

/T¢(|f(X)I)dx <0

and
limsups, f(x) =00 forallx €T,

n—oo

i.e., the Fourier series of f diverges everywhere.

For example, if ¢(#) = ulog™ log™ u, then there exists a function f such that its
Fourier series diverges everywhere and
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/ | f(0)llog™ log™ | f ()] dx < o0.
T

1.3 Hardy-Littlewood Maximal Function and Lebesgue
Points

Before continuing our investigations about the convergence of the Fourier series, we
have to introduce the Hardy-Littlewood maximal function. We will prove that it is
bounded on L, (T) for 1 < p < oo and it is of weak type (1, 1). Using this result,
we obtain Lebesgue’s differentiation theorem and the theorem about the Lebesgue
points.

Definition 1.3.1 For f € L(T), the Hardy-Littlewood maximal function is defined
by
1
Mo =swp o [ If1ax e,
I

xer |
where the supremum is taken over all open intervals I containing x.

We can also define the centered maximal function,

1
M. f(x):=sup ——— [fldx (x €T,
f ST Sy

where I (x, h) (x € T, h > 0) denotes the interval with center x and radius A:
I(x,h):={yeT:|x—y| <h}

Obviously, M. f < Mf.If x € I(y, h), then I(y, h) C I(x,2h) and so Mf <
2M.f.LetrI(x,h) := I(x,rh) forr > 0.

Lemma 1.3.2 (Vitali covering lemma) Let be given finitely many open intervals I;
and let E = Uj I;. Then there exists a finite subcollection I, ..., 1, of disjoint

intervals, such that
m

Z|Ik| > @
3

k=1

Proof Let I be an interval of the collection {/;} with maximal radius. Next choose
I, to have maximal radius among the subcollection of intervals disjoint with ;. We
continue this process until we can go no further. Then the intervals 1y, ..., I, are
disjoint. Observe that 31; contains all intervals of the original collection that intersect
Iy (k =1, ..., m). From this, it follows that U;’_, 3/, contains all intervals from the
original collection. Thus



1.3 Hardy-Littlewood Maximal Function and Lebesgue Points 11

U3h| =) Brl<3) 1Ll
k=1 k=1 k=1

which shows the lemma. |

|E| <

Theorem 1.3.3 The maximal operator M is of weak type (1, 1), i.e.,

sugp/\(Mf >p) =3Iflh (f € Ly(T)). (1.3.1)
p>

Moreover, if | < p < oo, then

IMfll, < Cpllfll,  (f € Lp(T)). (1.3.2)

Proof Let E C {Mf > p}beacompactsubset. Foreachx € {Mf > p}, there exists
an open interval I, such that x € I, and

1
pP<T |/ | f]d. (1.3.3)
X I,

Since x € I, we can select a finite collection of these intervals covering E. By
Lemma 1.3.2, we can choose a finite disjoint subcollection I, . . ., I, of this covering

with
m
|E| <3 |Ll.
k=1

Since each I satisfies (1.3.3), adding these inequalities, we obtain

3w 3
<2 [irans2 [ yrian
pk:l I P {Mf>p}

Taking the supremum over all compact sets E C {Mf > p}, we conclude

g = p <2 [
p

{Mf>p}

3
fldA < —/ f1dA,
pPJT

which gives exactly (1.3.1).

For p = o0, obviously
1

_ A ’
|,|f,|f'd <1l

and so

IMfllo = [ flle  (f € Loo(R)).
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Now the theorem follows easily for 1 < p < oo by interpolation (see, e.g., Bergh
and Lofstrom [33]). |

The boundedness on L, (T) and the weak type (1, 1) boundedness of M imply a
finer version of (1.3.1).

Theorem 1.3.4 We have
o0
PAMY > 2p) < 3/ If| = 0dt (p>0).
p

Proof Let us decompose f into the sum of fy € L;(T) and f; € L (T) as follows.
For an arbitrary p > 0, set

f@, if|f()] < p;

Sfrp(®) = {p/signf(t)’ otherwise.

and
Jo, () = f(&) — f1,@).
Then || f1,5llc < p. Since

Mf <Mfo,+Mfi, and |Mfi,]_ < Cox|fiol, <e

we have
(Mf >2p} C{Mfo,>plU{Mfi, > p}={Mfo, > p}.
Hence
PAM [ > 2p) < pA(M fo,, > p)
<3| foul,
- 3[ (If1 = p)dr
{If1>p}
o0
= 3/ / Lifi>1=p) dt dX
T Jo
=3/ A(f] > t)dt
p
as desired. [ |

It is known that inequality (1.3.2) does not hold for p = 1. However, we can prove
that
IMFIl, < €+ CIf] (log" | £1)]

1°

where logt u := max(0, log u). We generalize this inequality as follows.
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Theorem 1.3.5 Foreveryk € Pand f € L,(log L)*(T),
k—1 k
|47 Qo )] = €+ curiogr1s1)]

Proof First, we handle the case k > 1. Observe that

B 00 d(p(logt k—1
fitogt i) ] = [ aasr> TR D g
0 P

d( (10 )<~ 1)
= [T xrs p T )
Theorem 1.3.4 implies

oo d 1 + k-1
/ MIMF| > p)%d
1 p

0o 0o + k—1
5/ é/ M f] > t)dtM
P Jon dp

2t k—1
_6// M| > t)/ 1d(p<log p) ) dpar.

Since .
d(p(log* p)*~")
dp

= (log" p)* ' + (k — D(log™ p)* 2,

we conclude

2t + k=1
/ Ld(plog" ™) |, _ 1(10g+ (21 + (log* (21))"!
P dp
_ 1 d@idog" 20"
2k dt

Therefore

00 d 1 + k=1
//\(|Mf| (p(oipp) )

n
/ M| > d(2t(log 2t))

:cH2|f| tog" 21)"|.
(1.3.4)

< C+C|1f1 (0" 1£1)"

which completes the proof for k > 1.
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Let k = 1 and notice that A(M f < 1) < 1. Then

/ Mf(t)dt=/oo)\(Mf>max(p,l))dp
(Mf>1) 0
=/ AMf >pydp+ AXMf > 1).
1
Moreover,

AMF > 1) <30 f] =3/

|f|d)\+3/ [fldA
{If]=<e}

{Ifl>e}
<c+ c/ |f1Tog™ | ] dA.
T

Since (1.3.4) holds for £k = 1, too, we obtain
1M f1h =/ Mf(t)dt+/ Mf(1)dt
{Mf=<1} {Mf>1}
<cc [ ifimogti71an
T

as we stated in the theorem. |

Now we present a density theorem due to Marcinkiewicz and Zygmund [234].
Let L (T) denote the set of measurable functions and X C Ly(T). Let the operators
T,T,: X — Lyo(T) (n € N) be given. Moreover, we introduce the maximal operator
by

T.f(x):=sup|T, f(x)| (feX xeT.
neN

Theorem 1.3.6 Ler X be a normed space of measurable functions and S C X be
dense in X. Suppose that T and T, (n € N) are linear operators and

Iim T, f=Tf ae
n—o00

forall f € S.If

SulgpA(lel >p) =Clfllx (feX) (1.3.5)
p>
and
SuI@’P)\(T*f >p) <Clfllx (feX), (1.3.6)
p>

then for every f € X,
Iim T, f=Tf ae
n—o00
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Proof Fix f € X and set

&:=limsup |T, f — Tf].

n—00

It is sufficient to show that ¢ = 0 a.e. Choose a sequence f;,, € S (m € N) such that
Tim || f = fullx =0.
By the triangle inequality,

§ < limsup |T,(f — fu)l +limsup [T, for = T fiul + 1T (fw —

n—o00 n—o0

for all m € N. Since f;, € S, we have

limsup |T, fn — Tfm| = lim |T, f,, — Tf,] =0 ae.,
n—oo

n—00

SO

gST*(fm_f)‘FlT(fm—fﬂ a.e.

Applying inequalities (1.3.5) and (1.3.6), we obtain

AE > 2p) = MLl fw — 1) > p) + AT (fn — I > p)
< Cp = Flix +Cp M fn = flix

for all p > 0 and m € N. Since f,, — f in the X-norm as m — oo, we get that
AE>2p) =0
for all p > 0. This implies immediately that £ = 0 almost everywhere. |

The next theorem can be proved in the same way.

Theorem 1.3.7 Let X be a normed space of measurable functions and S C X be
dense in X. Suppose that T, is a sublinear operator for every n € N and

lim 7, f =0 ae

n—oo

forall f € S.If

Sulgp/\(T*f >p) =Clifllx  (f €X),
p>

then for every f € X,
lim 7, f =0 ae

n—oo
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Now we can state Lebesgue’s differentiation theorem mentioned before.

Corollary 1.3.8 Forall f € L,(T),
hm—/ f@®dt = f(x) aexeT.
Proof Letr, >0 (n € N) and lim,,_, o, r,, = 0. Define

Tf(x):=f(x) and T,f(x):=

x+r,
/ f@®ydr (xeT.

—ry

2r,

These operators are linear and

SugpA(ITfI>p) SUPPA(|f|>p)<SUP/ LfldA <1/l
p> {1f1>p}

p>0

implies (1.3.5). Inequality (1.3.6) follows from Theorem 1.3.3. The result obviously
holds for continuous functions. If S denotes the set of continuous functions, then S
is dense in L{(T). Now Theorem 1.3.6 implies Corollary 1.3.8. |

Similarly, we get

Corollary 1.3.9 Forall f € L (T),

/fd)\ f(x) aexeT.

xel m—>o |I|

Corollary 1.3.8 implies that | f(x)| < M f(x) for almost every x € T, and so the
converse of (1.3.2) is also true:

If1lp, < IMfll, (A=< p=<00).

Now we introduce the concept of Lebesgue points. Corollary 1.3.8 can be written
in the form
hl—IR)E/ fx—10)dt = f(x)

for almost every x € T and f € L{(T). Thus

,ggrm/ (=1 — fx)) di =0

for almost every x € T, which is equivalent to

lim = ‘f (FGx—1) — () di
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for almost every x € T. Though the definition of the Lebesgue point is a stronger
condition, we prove in the next theorem that almost every point is a Lebesgue point.

Definition 1.3.10 A point x € T is called a Lebesgue point of f € L(T) if

) 1 h
%Loﬂ/_hlf(x—t)—f(X)ldt=0-

Theorem 1.3.11 Almost every point x € R is a Lebesgue point of f € L{(T).

Proof For all rational numbers ¢ let

1 [
G, = {xeR:lim—/ |f(x—t)—q|dt=|f(x)—q|}.

h—02h J_,

Applying Corollary 1.3.8 to the function | f(-) — g|, we can see that B, := R\ G, is
of Lebesgue measure 0. Observe that f is almost everywhere finite. Set N := {x €
R :|f(x)| = oo}. Then the set

B=nN{J| B,
q€Q

has Lebesgue measure 0. We show that the points of G := T \ B are Lebesgue points.
Let e > 0 and x € G be arbitrary. Choose ¢ € Q such that

@ =gl < 5.
Then
1 h
o | M= = feolar
1 [ 1 [
<o | Wa—n=aldis s | g feld
- _Zlf(x—t)—QIdt+|q—f(X)|~

Since x ¢ By, we have

h
limsupi [f(x—0)— fx)]dt <2[f(x) —ql <e.
h— 00 2h —h

Thus, every x € G is a Lebesgue point of f. |
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Lemma 1.3.12 [f x is a Lebesgue point of f € Li(T), then f(x) and M f (x) are
finite.

Proof f(x) is clearly finite. For € = 1 there exists § > 0 such that for all |#] < 4,

1 h
7 _h|f(x—f)—f(x)|df<1-

Thus

h

1 1 [t
5 | ra—ola= ﬂ/_hlf(x—t)—f(x)l dt +1f )] < 1+ 1),

On the other hand,
h

1 1
), If(x =0l dt < 2—5I|fll1

for all |h| > 6. |

1.4 Summability of One-Dimensional Fourier Series

Though Theorems 1.2.10 and 1.2.12 are not true for p = 1 and p = oo, with the
help of some summability methods they can be generalized. Obviously, summability
means have better convergence properties than the original Fourier series. Summa-
bility is intensively studied in the literature (see, e.g., the books Stein and Weiss
[293], Butzer and Nessel [47], Trigub and Belinsky [319], Grafakos [143] and Weisz
[332, 346], and the references therein).

One of the first investigated summability methods is the Fejér method. In 1904,
Fejér [107] investigated the arithmetic means of the partial sums, the so-called Fejér
means o, f. He proved for an integrable function f € L;(T) that if the left and right
limits f(x — 0) and f(x + 0) exist at a point x, then the Fejér means converge to
(fx=0)+ f(x +0))/2, that is,

Jx =0+ fx+0)

5 (1.4.1)

lim o, f(x) =
n—oo

One year later Lebesgue [197] extended this theorem and obtained that the conver-
gence holds for every f € L;(T) and every Lebesgue points, i.e.,

lim o, f(x) = f(x) (1.4.2)

at each Lebesgue point of f, thus almost everywhere. In this section, we generalize
these results.
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3.5

Fig. 1.2 Fejér kernel K, forn =5

19

Definition 1.4.1 For f € L(T) and n € N, the nth Fejér means o, f of the Fourier

series of f and the nth Fejér kernel K, are introduced by
onf(x) == Z 1= K Fagers
k=—n n

and

K, (1) := Z (1 - %) ekt

k=—n
respectively.

One can see that

1
Unf(x) = E/H‘f(x - t)Kn(t)dt

(see Fig.1.2). We will prove the next result in Lemma 1.4.12.

Lemma 1.4.2 For f € L|(T) andn € N, we have
1 n—1
onf(x) =~ ;sjf(x>

and
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n—1

1
Ki(t) =~ _ D).

j=0
Lemma 1.43 Forn > landt €T, t #0,

n—1
. _ 1 —cos(nr)
kg sin(k +1/2)1 = -2 /) (1.4.3)

and
n—1

Zcos(k +1/2)t =

k=0

sin(nt)

Proof Adding the equalities
2sin(t/2) sin(k 4+ 1/2)t = cos(kt) — cos(k + 1)¢

and
2sin(t/2) cos(k + 1/2)t = sin(k + 1)t — sin(kt),

we obtain the lemma. |

Lemma 1.44 Forn > landt €T, t # 0, we have

o 2 L (sinee/2) 2
”()_Z<sin(t/2)> '

Proof By Lemmas 1.2.3 and 1.4.2,

n—1

Z sin((k + 1/2)t)

1 n—1 1

k=0 j=0
The lemma follows from (1.4.3). |

Corollary 1.4.5 Forn > land —m <t <m,t #0,

C
K,(®)| <2n—1 and |K,(t)| < —5.
n|t|?

Proof The inequalities follow from Lemmas 1.2.4 and 1.4.4. |
Now we generalize the Fejér summability.

Definition 1.4.6 For o # —1, -2, ..., let A%, := 0 and
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A% (n+a)= (a+D(@+2) - (a+n) .

- n n!
Obviously, A = landifa = 0,then AY = 1,ifa = 1,then Al =n + 1 (n € N).

Lemma 1.4.7 Foranyn e N, o, 8 # —1, -2, ..., we have

n

a+p+1 _ a s B
Ay = E A} An—k'
k=0

Proof 1t is known that, forany x € C, |x| < 1,

= (—a—1
(1—x>-“—‘=z< an )(—x)”.

n=0
From this, it follows that
o0 o0
o n+(—n—a-—1)
1 — a—1 — )t — « n. 4.
(1-x) Z( . )( X' =Y Alx (1.4.5)
n=0 n=0
Similarly,
A—x) =" alx
n=0
and

oo
(1 _ x)—a—[3—2 — Z A:;H—ﬁ-'rlxn'
n=0

However, the last series can be obtained also by multiplying the first two:

o0 n
I-n"2=-xta-n""=)" (Z A;;Af_k> X",
n=0 \k=0

which implies the desired result. ]

Lemma 1.4.8 Foranyn e N, a # —1, -2, ..., we have
Ar=Y AT AT— A=A
k=0

Proof We obtain the first equality by replacing o by aw — 1 and 3 by 0 in Lemma
1.4.7. The second one follows easily from the first one. ]
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Lemma 1.49 Foranyn,N € N, —N <a < N and o # —1, =2, ..., there exist
cn, Cy > 0 such that

cyn® < Ay < Cyn®. (1.4.6)

Proof By Taylor’s formula, for x € (—1, 1) there exists £ € (0, x) such that

1 2

ln(l+x)=x—mx .

This implies that In(1 + x) = x + O(x?) if —-N/(N + 1) < x < 1. Then
- «@

In|AY|=) In|l+ —

A7 ; .

S | . 1
In 1+% +a Y z+oﬂ > 0<k—2>

I
M=

k=1 k=N+1 k=N+1
al a
=Y i+ +a<lnn n 0(1)) +a20(1),
k=1
that is,
A = n%0(1).
This proves the lemma. n

Definition 1.4.10 For f € L{(T),n € N and o > 0, the nth Cesaro means o}, f of
the Fourier series of f and the nth Cesaro kernel K" are introduced by

1 . —~
o fx) = Y AL fle
A”_] k=—n
and
l n
K (1) == e Z AR e
n=l g—_p
respectively.

Note that the Cesaro means are also called (C, a)-means. Obviously, for a = 1,
we get back the Fejér means and for o = 0, the partial sums. The definition of the
Cesaro kernels implies

Lemma 1.4.11 For o > Qand n € N, we have

1
—/K,‘}(t)dt =1.
27'(' T
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One can see that

oo f(x) = T Z A / F()e = gy

n—1 p—_

= L/ fx—0KX(t)dt  (neN). (1.4.7)
2T T

Lemma 1.4.12 For f € L|(T), a > 0 and n € N, we have

-1

o f@ = Z w18 f ()

A j=0
and
Kt = n— 1 iDj@).
-1 j=
Proof By Lemma 1.4.8,
1 n
K= D Ariwe™
n—l p—_p

|
33| -
|-
M1
32

|
S o
~.
L[]
=
§$:
>—‘>—
\
S
=
~
\/

which shows the lemma. |

The following lemma shows that if the (C, o) means (o > —1) are convergent
then the (C, a + h) means (h > 0) are convergent, too.

Lemma 1.4.13 For oo > —1 and h > 0, we have
o h— «a
o = AM{Z ZA,, AL oL T
n—1 =1

Proof Indeed, by Lemmas 1.4.7 and 1.4.12,
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n k—1
Aa”‘ ZAZ IIcA;cl 1ocf = AoHrh ZAz X;Ak 1-%
j=

n—1 f=1 n—1 k=1
n—1
— h—1 ga—1
- AaJrh 2 :S]f 2 An kAk 1—-j
n—1 ,—o k=j+1
_ a-‘rh l
— Lath Z n—1—j j
An 1 j=0
which gives the result. n

For Cesaro means, instead of inequalities (1.4.3) and (1.4.4), we will use the
following lemma.

Lemmal4.14 ForO<a<1l,n>1,andt €T, t #0,

ZA“ | sin(tk+ 1/2)0)| < < Cn! (1.4.8)
B = Isinz/2)|* " |sin(t/2)] o
and |
S C Cn"~!
;An_l_k cos(k +1/2)0)| < T+ T (1.4.9)

Proof Theinequalities follow from Lemma 1.4.3forae = 1.Let0 < o < 1. Suppose
that —7m <t < 7. Then

n—

1 n—1
AL sin((k+1/2)1) =3 (ZAg_l_ ’<’<+'/2>’>

k=0 k=0

and
n n—1
a—1 1(k+1/2)t _ 1(n—1/2)t a—1 1(k+1—n)t
ZAnflfke =e ZAnflfke
k=0

n—1

— =1/t ZA?fle—zjz, (1.4.10)
j=0

where 3 denotes the imaginary part of the function. We know that

o0
YA =1 -2 (1.4.11)

Jj=0
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for x € C, |x| < 1. However, this holds also for |x| = 1, x # 1. Indeed, A;}‘Z <0
and so by Lemma 1.4.8, (A;:’l),,eN is non-increasing. The left-hand side of (1.4.11)
is convergent because Abel rearrangement implies that

m m—1 J m
5ot = 50 () (0 ) ()
j=n j=n i=n i=n
X" — xj+l
< A(I—l sup
"oasjEel 1—x
240-1
= (1.4.12)
1T — x|

asn — oo. The last convergence follows from Lemma 1.4.9. Similarly, if 0 < r < 1
isnearto 1,say rop < r < 1, then

o0

ZA‘;_lrjxj =1-rx)™®
j=0
and
m o 2Aa—l 4Aa—l
ZA()-‘flrfo < L < " 50
J [T —rx| [1— x|

j=n
for |x| = 1, x # 1. This implies that

n—1

A=) =Y AT | < |1 =)™ = (1 —rx)™|

Jj=0
n—1 n—1 n—1
F A=) =Y AT Y A P =y A
Jj=0 Jj=0 Jj=0

n—1
<2+ |1 —rx)""— ZA(}_'rjxj < 3¢
Jj=0

if r is near enough to 1 and » is large enough. Thus (1.4.11) is true for [x| < 1,x # 1.
Using (1.4.10), (1.4.11), (1.4.12), and (1.4.6), we get that
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o0
_ _mity—a a—1_—ijt
=[(1—e) ZAJ. e
Jj=n
I(1—e™) ™+ 2457 A — )7
C Ccnel

<
|t lt]

n—1

a—1 _1(k+1/2)t
E :Anflfke
k=0

IA

s

which proves (1.4.8). Inequality (1.4.9) can be handled similarly. |

The derivatives of the left-hand sides of (1.4.8) and (1.4.9) can be estimated as
follows.

Lemmal4.15 ForO<a<l,n>1landt e T, t #0,

Cn Cn®
< +
T |sin(z/2)|*  |sin(t/2)]

n—1
> kAYT g sin((k + 1/2)1)
k=0

and 1
e Cn Cn®

kA0£71 k 1/2)t)| < .

; n—l—k COS(( + / ) ) — | sln(t/2)|” + | s1n(t/2)|

Proof We apply Lemma 1.4.14 to obtain

n—l n—1 [n—1
D kAL sin(k+ /20| < Y 1Y AL sin((k + 1/2)0)
k=0 j=1 |k=j

n—1

C C‘a—l
<> (= +
= |sin(¢/2)|*  |sin(t/2)]
Cn Cn®

< — + — )
— Isin(z/2)|* [ sin(z/2)]
The second inequality can be shown in the same way. |

The following theorem will be used several times in this book. It can also be found
in Zygmund [367].

Theorem 1.4.16 ForO <a <1l,n>land —m <t <mt #0,

ki@ <2n—1 and |KJ(0)| < (1.4.13)

na|t|a+1'

Proof For o = 1, the theorem is exactly Corollary 1.4.5. Let 0 < o < 1. The first
inequality follows from Lemma 1.2.4 and 1.4.12. By Lemmas 1.2.3 and 1.4.12,
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1 n—1
a—1
AQ ZAnflkak(t)
n=1 =0
n—1

$ pocy Sk /D)
ok singe/2)

K, (1) =

1
Ay k=0
Now, by Lemma 1.4.14,

|Ka(t)|< 1 C +Cno‘71 < C n C
" T AL |sin(t/2)] \ |g|* 2] T nojtjett o op|e)?”

If || > 1/n, then
1 1

< —.
n|t|2 na|t|a+1

If |t| < 1/n, then the first inequality of (1.4.13) implies the second one. |

1.5 Convergence at Lebesgue Points of the Cesaro Means

Now we are ready to generalize Lebesgue’s theorem given in (1.4.2) for Cesaro
summability. But first we introduce the Herz spaces which, as we will see later, are
very closely connected to the concept of Lebesgue points.

Definition 1.5.1 The Herz space E(T) contains all functions f for which

0

Iflle, == > 2| fln] < oo

k=—00

where Py := (0, 287 \ 1(0,25"17), (k € Z).

Recallthat I (x, h) :={y € T : |[x — y| < h}. The Cesaro kernels are all in E,(T)
forO <a <1.

Theorem 1.5.2 If0 < o < 1, then K € Eo(T) and

sup ||K,‘,¥||EOO < C,.
neN
Proof By Theorem 1.4.16, |K(¢)| < g;'(t), where

1
(1) ;== C mi , —— | .
)= Comin (i)

Since g, is non-increasing and integrable, we obtain
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0

&2l = ¥ 2 Ikinl, < c. [ s
‘ k=—00 T

1/n ™
< ca/ nd\+ Can_“/ 7|7 tdr < C,,,
0 1/n

which shows the desired result. |

In the same way, we obtain

Corollary 1.5.3 If0 < a <1, then K € L{(T) and

wp K71, = C..
neN

Theorem 1.5.4 [f0 < a < oo, then
lim o f(x) = f(x)
n—0oo

for all Lebesgue points of f € L{(T).
Proof First suppose that 0 < o < 1. Set

G(u) :=/ |f(x —1t)— f(x)|dt (u > 0).
—u
Since x is a Lebesgue point of f, for all € > 0, there exists m € Z such that
G(u)
2u

<e if O<u<2m™ (1.5.1)

It follows from Lemma 1.4.11 and (1.4.7) that

1
o) = f0) = 5 / (G — 1) — FNKE@) dr.
T Jr
Thus
0% F () — F(0)] < c/ =1 — FOI K2 di
']I‘d
2’”7"
= C[ If(x—1) — fOI K@) dt
72m7l-
+C/ =1 — FI K20 di

T\(=2"7,2m)

=: A1(x) + Ax(x).

We estimate A;(x) by
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Ai(x) =C Z . |f(x—1) = f) | K@) dr
k=—o00 ¥ 'k

=C ). S;‘P|Ké”|/P lf(x —1) — f(x)|dt

k=—00

<C ) sup|Ky| G@m).

k=—oc0 Tk

Then, by (1.5.1),

m

Ai(x) < Ce Y 2 sup Ky | < Ce | K|,y < Ce.
k=—00 k \
On the other hand, Theorem 1.4.16 implies
A(x) <C  sup  |K| |f(x—1) = f(x)|dt

T\(=2"7,2"m7) T\(=2"7,2"mT)

— 1D,

n(yzm(a’-H)

which tends to 0 as n — oo. Finally, for | < a < o0, the result follows from Lemma
1.4.13. [ |

We can weaken the definition of Lebesgue points and we can suppose that

RN
hEBrlo;:/o f(—1)+ FG+1) = 2F (0] di =0. (152)

By a triangle inequality, it is clear that if x is a Lebesgue point then (1.5.2) holds.
The following result can be proved similar to Theorem 1.5.4.

Theorem 1.5.5 [fO < o < oo, f € L{(T) and (1.5.2) holds for a point x € T, then
lim o) f(x) = f(x).
n—0oo

Proof Using (1.4.7), Lemma 1.4.11 and that the function K, is even, we obtain

« l " «
o f@) = fa)y = | (flr=1) = fO)K, (D) dt
l ™
= %/ (fx=D+ fx+1) =2f@x)K, () dt.

0

Thus
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1 ™
0% £ () — £0)] = 5/0 =0+ fG+0) = 2£ )] K2 dr

and the proof can be finished as in Theorem 1.5.4. ]
Now we can generalize Fejér’s theorem given in (1.4.1).

Corollary 1.5.6 Suppose that 0 < o < oo, f € L(T) and that the left and right
limits f(x —0) and f(x + 0) exist at a point x. Then

S =0+ f(x+0)
5 .

lim o) f(x) =

Proof Choosing
fx—=0)+ f(x+0)

fx) = 7 :

we can easily see that (1.5.2) holds. The corollary follows from Theorem 1.5.5. W
If f is continuous at a point x, then we get

Corollary 1.5.7 Suppose that 0 < a < oo, f € L1(T) and f is continuous at a
point x. Then

lim o) f(x) = f(x).
n—00
In the next theorem, we verify the norm convergence of the Cesaro means.

Theorem 1.5.8 Suppose that0 < o <ooand1 < p < oo. If f € L,(T), then

(07 < Ca
sup 7 f ], < Calf1,

and
lim o, f = f inthe L,(T)-norm.
n—0oQ

Proof Again, it is enough to show the result for 0 < o < 1. By (1.4.7), Minkowski
inequality and Corollary 1.5.3,

1
< —
P 27

loaro] /T LFC =D, | K3 @] dt < Call £l

The convergence obviously holds for all trigonometric polynomials and so it holds
also forall f € L,(T) (1 < p < oo) by density. ]

We get the next corollary with the same proof.
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Corollary 1.59 If0 < a < ocoand f € C(T), then

sup o ], < Call flloo
neN

and
lim o) f = f  uniformly.
n—o0

31



Chapter 2 ®)
{,-Summability of Higher Dimensional e i
Fourier Series

Here, we study the theory of multi-dimensional Fourier series. In the first section,
we introduce different versions of the partial sums of the d-dimensional Fourier
series and the corresponding Dirichlet kernels, i.e., the cubic, triangular, circular and
rectangular partial sums and Dirichlet kernels. We show that the cubic, triangular and
rectangular partial sums converge in the L, (T)-norm to the function (1 < p < o0).
The multi-dimensional version of Carleson’s theorem is also considered.

The summability of Fourier series can be generalized for higher dimensions basi-
cally in two ways. In this chapter, we study the £,-summability of higher dimensional
Fourier series. As in the literature, we investigate the three cases ¢ = 1, ¢ = 2 and
q = oo. The other type of summability, the so-called rectangular summability will be
investigated in the next chapter. For each type, we investigate the Cesaro and Riesz
summation. In Sect.2.2, we present the basic definitions of the £,-summability and
prove some estimations for the £,-Cesaro and Riesz kernels. In the next section, we
prove that the £,-Cesaro means and £,-Riesz means of f € LP(TI“’) (1<p<o0)
converge to f in the L ,(T¢)-norm.

In Sect.2.4, we prove the basic results for Fourier series of distributions. We
introduce the Hardy spaces H E (T?) and present the atomic decomposition of these
spaces. We verify also sufficient conditions for an operator to be bounded from
H E (T9) to L,(T¢). Applying this result, we show that the maximal operator of the

£,-Cesaro and Riesz means are bounded from HpD (T9) to L,(T¢) for any p > p,
where py < 1 is depending on the summation and on the dimension. This result
implies the almost everywhere convergence of the summability means. In Sect. 2.6,
we introduce a general summability method, the so-called §-summability generated
by a single function 6 and prove similar results for the £,-0-means. In the last section,
as special cases, we present some summability methods, such as the de La Vallée-
Poussin, Jackson-de La Vallée-Poussin, Rogosinski, Weierstrass, Picard and Bessel
summations.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 33
F. Weisz, Lebesgue Points and Summability of Higher Dimensional Fourier Series,
https://doi.org/10.1007/978-3-030-74636-0_2
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2.1 Higher Dimensional Partial Sums

In this section, we generalize the results of Sect. 1.2, we introduce four types of partial
sums of the d-dimensional trigonometric Fourier series and study their L , (T¢)-norm
and almost everywhere convergence of a function f € L ,,(']I‘d ).

We introduce the following notations. For x = (x,...,x4) € R? and u =
@y, ..., ug) € R set

d d 1/p
wex =y wxe, lxll, = (Z |xk|") (1<p<o0)
k=1 k=1

and
Ixlloo := sup Ixil,  [x|:=|xll>.

AAAAA

Definition 2.1.1 The functions
d
etk-x — l_lelk/xj
j=1

are called d-dimensional trigonometric system, where k = (ki, ..., k) € 74, x =
(x1,...,x4) € T?.

Definition 2.1.2 For an integrable function f € L;(T¢), its kth d-dimensional
Fourier coefficient is defined by

1

f(k)=m

/ fe ™ dx (ke Z%).
Td
The formal trigonometric series

> Fets  (xeT?)

kez4

is called the d-dimensional Fourier series of f.

We will generalize the one-dimensional partial sums in Definition 1.2.2 for higher
dimensional functions in two ways. In the first generalization, we take the sum over

the indices |k||, < n instead of k = —n, ..., n, where 1 < g < co. These sums
are called £,-partial sums. In the second generalization, we take the sum in each
dimension, i.e., over the indices |k;| < ny, ..., |ks| < ny. Here, we call the sums

rectangular partial sums. The most natural choices ¢ =2, ¢ = 1, ¢ = 0o and the
rectangular partial sums are investigated in several papers and books (for g = 2, see
e.g. Stein and Weiss [290, 293], Davis and Chang [76], Grafakos [143, 145, 146],
Lu and Yan [229], Feichtinger and Weisz [103, 104], for ¢ = 1, Berens, Li and Xu
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[30-32, 356], Weisz [336, 337], for g = oo, Marcinkiewicz [233], Zhizhiashvili
[366], Weisz [332, 342, 346], for the rectangular sums, Zygmund [367] and Weisz
[332, 342, 346]).

Definition 2.1.3 For f € L(T%, 1< g < oo and n € N, the nth £,-partial sum
sp f of the Fourier series of f and the nth ¢,-Dirichlet kernel Dj; are given by

sife) = Y. Floet

keZd, |Ikllg<n

and

Di(u) := Z etk

keZ, |lklly<n
respectively.
The next lemma follows easily from the definition.

Lemma 2.1.4 Foralln e N, 1 <qg <ooandt € T4, we have
DY) < Cnl

The partial sums are called triangular if ¢ = 1, circular if ¢ =2 and cubic if
q = oo (see Figs.2.1,2.2,2.3 and 2.4).

Definition 2.1.5 For f € L,(T¢) and n = (ny, ..., ng) € N%, the nth rectangular
partial sum s, f of the Fourier series of f and the nth rectangular Dirichlet kernel

D,, are given by
snf ()= Y e Y flyet”

lki|<ny |kal<na

and

qg=1 q=2 q=0c°

Fig. 2.1 Regions of the £, -partial sums for d = 2
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Fig. 2.2 The Dirichlet kernel Df withd =2, =1,n =4

Dy(u) = Y o Y et

[ki=<n; [ka|=<nq
respectively.

Similar to (1.2.1), we obtain

Lemma 2.1.6 For f € L1(T%) andn € N,

spf(x) =

or )d/ f(x —1)Dl(t)dt

and

1
50 = G / fx — D) dr.

It is clear that
Dn(u) = Dm (ul) et Dn[,(ud),

where D, is the one-dimensional Dirichlet kernel (see Fig.2.5).

Definition 2.1.7 For some n = (n1, ..., ny) € N, the function
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Fig. 2.3 The Dirichlet kernel D} withd =2, =2,n =4

nj

Z i e (x e T

k1:—n1 kd:—nd

is said to be a trigonometric polynomial.

37

By iterating the one-dimensional result, we get easily the L ,-norm convergence

for the rectangular partial sums.

Theorem 2.1.8 If f € LP(Td)for some 1 < p < oo, then

sup [lsa fll, < Cpll fllp

neNd

and
inthe L, (T9)-norm.

lim s, f = f

n—0oQ
Here, n — 0o means the Pringsheim convergence, i.e., min(ny,

Proof By Theorem 1.2.10,

..., Ng) = O0.
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Fig. 2.4 The Dirichlet kernel D{ withd =2,q9 = oo, n =4

Fig. 2.5 The rectangular Dirichlet kernel withd = 2,n; =3,n, =5
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/ I5o f COI? dix
T

2/ /(/ f(f)Dnz(Xz-i-l‘z)dfz) D,, (x; + 1) dt
T [Jr \JT

SCp/'/ S @)Dy, (x2 + 1) dty
T|JT

P
dX]

14
dty.

Again by the same theorem,

//|snf<x)|f’ dxldxzscp/f
TJT TJT

stf/If(t)lp dnydn,
TJT

which gives the desired inequality of Theorem 2.1.8. The convergence is a conse-
quence of this inequality and of the density of trigonometric polynomials. |

14
dx, dty

Af(t)Dllz(xz + t2) dlZ

In the next theorem, we present the norm convergence of the triangular and cubic
partial sums. We omit the proof since it can be found at several places of the literature
(see e.g., Fefferman [93], Grafakos [143] or Weisz [346]).

Theorem 2.1.9 Ifg =1,00and f € L,,(’]I‘d)for some 1 < p < 00, then
sup s |, < Coll £,
neN

and
lim s7f = f inthe L,(T?)-norm.
n—o00

If ¢ = 2, then the same result is valid for p = 2.

Since the characteristic function of the unit ball is not an L ,,(Rd) I<p#2<
00, d > 2) multiplier (see Fefferman [95] or Grafakos [143, p. 743] or Lu and Yan
[229, p. 743]), we have

Theorem 2.1.10 Ifd > 2,q =2and 1 < p # 2 < 00, then the preceding theorem
is not true.

The analogue of Carleson’s theorem holds also for the triangular and cubic partial
sums in higher dimensions (see Fefferman [93, 94] and Grafakos [143, p. 231]), but
it does not hold for the circular and rectangular partial sums.

Definition 2.1.11 We denote by
sTf = sup|s,‘1’f|
neN

the maximal operator of the £,-partial sums.
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Theorem 2.1.12 [fg = 1,00and f € L,,(Td)for some 1 < p < oo, then

[s£1, = Coll £l

and if 1 < p < oo, then
lim s/f=f ae
n—oo

Theorem 2.1.12 does not hold for circular partial sums (see Stein and Weiss [293,
p- 268]).

Theorem 2.1.13 If g =2 and p < 2d/(d + 1), then there exists a function f €
L ,,(Td) whose circular partial sums s, f diverge almost everywhere.

This means that for a general function in L ,,(Td) (p < 2) almost everywhere
convergence of the circular partial sums is not true if the dimension is sufficiently
large. It is an open problem, whether Theorem 2.1.12 holds for p = 2 and for cir-
cular partial sums. A counterexample, which proves the next result, can be found in
Fefferman [94].

Theorem 2.1.14 There exists a continuous function f such that for the rectangular
partial sums s, f,

lim s, f(x) = f(x)
does not hold for any x € T.

The generalization of Theorem 1.2.13 for higher dimensions was proved by
Antonov [8].

Theorem 2.1.15 [fg = oo and

/w | £ ()1 (og® | f () log* log* log™ | £ (x)| dx < oo,

then
lims?f=f ae
n—oo

2.2 The {;,-Summability Kernels

As in the one-dimensional case, Theorems 2.1.8, Theorem 2.1.9 and the inequality
in Theorem 2.1.12 do not hold for p = 1 and p = oo. Using a summability method,
we can extend the theorems to p = 1 and p = oo again. Now we introduce the £ -
summability means and kernels and show some results for the kernels. We concentrate
on the two-dimensional kernels.
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Definition 2.2.1 For f € L{(T9), 1 < g < oo and n € N, the nth ¢,-Fejér means
on f of the Fourier series of f and the nth ¢,-Fejér kernel K,/ are introduced by

ol = Y (1—W>ﬂk>e’“

n
keZ?, |kll,<n
o Il
- q 1kt
Ki):= > (1— . )e ,
keZd, |kllg<n
respectively.

We generalize this definition as we did for the one-dimensional Fourier series and
introduce the £,-Cesaro means.

Definition 2.2.2 Let f € L;(TY),n € N,a > 0and g = 1 or ¢ = co. The nth ¢,-
Cesaro means oy “ f of the Fourier series of f and the nth ¢,-Cesaro kernel K,
are introduced by

1 _~
opt f(x) = a0 Z Ar(lel—”k”qf(k)elk.x

n=1 gezd, k|, <n

and

( | .
K@ =3 Do At

=1 kezd, k), <n

respectively.

We also call the Cesaro means £,-(C, o)-means. For o =1, we get back the
£4-Fejér means and for a = 0, the £,-partial sums. We introduce also a second
generalization of the Fejér summation. For the circular summability (i.e., for g = 2),
we will investigate rather this generalization.

Definition 2.2.3 For f € Li(T%, 1< qg <oo,neNand0 < a,y < oo, the nth
¢,-Riesz means o7’ f of the Fourier series of f and the nth ¢,-Riesz kernel K;7"*"
are given by

q,a,y . ”k”q N\~ 1k-x
o1 f(x) = Z == Fke

keZd, |Ikllq=n
and o
, k|l :
Kz,a,v(t) — Z <1 _ (_‘1 otk 3
n
keZd, ||kl <n

respectively.
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Fig. 2.6 The Fejér kernel K,! withd =2, =1,n =4

We will always suppose that 0 <a < o0, 1 <v<oo. If a=7v=1, we get
back the £,-Fejér means. In the case g = 2, let v € N. If o = 0, we get the partial
sumsandifg = v = 2, o > 0, the means are called Bochner-Riesz means. The cubic
summability (when g = 00) is also called Marcinkiewicz summability (see Figs. 2.6,
2.7,2.8,2.9 and 2.10).

The following two lemmas follow the definition.

Lemma2.24 Let0 <a,v<ooandn € N. If g =1 or g = oo, then

1
(2m)d

/ KI“(t)dt = 1.
Td

If1 < q < oo, then

1
K& @t)ydt = 1.
(2m)d /Td w0
Lemma 2.2.5 Under the same conditions as in Lemma 2.2.4,
K@) < Cn?  and |KPT(0)] < Cn? (€T,

Proof We have
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Fig. 2.7 The Fejér kernel K,! withd =2,q = oo, n =4

1 1<
" .d—1 d
K0l = 43 Y A, < C YA = cnt
n—1 keZd, |k, <n n—1 i_q
Nkl =
The second inequality can be shown in the same way. ]
One can easily see that

Lemma 2.2.6 Let f € L(T¢),n e Nand0 < o,y < 00.Ifqg = 1 or g = oo, then

q,x — _ q,x
ot f(x) = any /w flx =K (1) dt.
If1 < g < oo, then
1
q,a, _ _ q,a,y
o fx) = o /w fx =K (1) dr.

Lemma 2.2.7 For f € L(T%), o > 0, q =1,00andn € N, we have

n—1
DAL st f()

1 j=0

oy f(x) =

«
n—
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and

K

n—1
« 1 a—1 q
) = e JZ_O AWH.DJ. ().

Proof Since | k|, is an integer, Lemma 1.4.8 implies that

Ko =

which shows the lemma.

Obviously, the £,-Fejér
when g = 1, oco:

1
« 1kt
Yo Ariue

«
n=1 ez, Ikl <n
-1
1 n
_ a—1 1kt
= X > D
n=1 ez, k|, <n j=Ikll,
1 n—1
— a—1 q
= DAL D),

n—1 j=0

means are the arithmetic means of the £,-partial sums
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Fig. 2.9 The Bochner-Riesz kernel K;"® withd =2, g =2, n=4,a=1,y=2

n—1
1
ol f(x) == sl fx).
-
Similar to Lemma 1.4.13, we have

Lemma 2.2.8 Fora > —1,q = 1,00 and h > 0, we have

n

1 T

q,a+h £ __ § h—1 4« q,

Oy f_ A(H_h An—kAkflo—k :
n—1 k=1

The proofs of the results presented later are very different for the casesg = 1, 2, co
because the kernel functions are very different. In the next subsections, we give some
estimations for the kernels. Since we will prove later the results basically for d = 2,
we present these estimations in the two-dimensional case.
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Fig. 2.10 The Bochner-Riesz kernel K,'® withd =2,g =2, n=4,a =1/2,y =2

2.2.1 Kernel Functions for q =1
For the triangular Dirichlet kernel, we need the notion of the divided difference,
which is usually used in numerical analysis.

Definition 2.2.9 The nth divided difference of a one-dimensional function f at the
(pairwise distinct) knots x1, ..., x, € R is introduced inductively as

— [xlv"'axn—]]f_ [x25 -*-7xﬂ]f

X1 — Xp

[x(]f == fx0), [x,....x]f:

One can see that the difference is a symmetric function of the nodes. The following
theorem is proved in DeVore and Lorentz [82, p. 120]), so we omit the proof.

Theorem 2.2.10 We have

Zn S (xe)
[ AR ] l‘l] = n . (2.2.1)
ol = = G = %))

If f is (n — 1)-times continuously differentiable on [a, b] and x; € [a, b], then there
exists £ € [a, b] such that



2.2 The £,-Summability Kernels 47

o

[x1, ..., x,1f = TEETE

(2.2.2)

To give an explicit form of the triangular Dirichlet kernel, we will need the fol-
lowing trigonometric identities.

Lemma 2.2.11 Foralln e Nand0 <x,y <,

> e cos(ky) sin((n — k + 1/2)x)
k=0
cos(x/2) cos((n + 1/2)x) — cos(y/2) cos((n + 1/2)y)

= sin(x/2) y—— (2.2.3)

and

> e cos(ky) cos((n — k + 1/2)x)
k=0
sin(y/2) sin((n + 1/2)y) — sin(x/2) sin((n + 1/2)x)

= cos(x/2) cosx —cosy , (224

where g :==1/2and ¢, := 1, k > 1.

Proof By trigonometric identities,

> e cos(ky) sin((n — k + 1/2)x)
k=0

=sin((n + 1/2)x) Z € cos(ky) cos(kx)
k=0

—cos((n+ 1/2)x) Z € cos(ky) sin(kx)
k=0

= % sin((n + 1/2)x) Z <€k cos(k(x — y)) + e cos(k(x + y))
k=0

1 n
— 5 cos((n +1/2)x) 3 (ek sin(k(x — v)) + e sin(k(x + y))).
k=0

Similarly to (1.2.2), we can show that

. cos(x/2) —cos((n +1/2)x)
Z € sin(kx) = 3sin(x/2) .

k=0

Using this and (1.2.2), we conclude
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n

Z e cos(ky) sin((n — k + 1/2)x)
k=0

= %sin((n +1/2)x) <

sin((n +1/2)(x —y)) = sin((n +1/2)(x + y)))
sin((x — y)/2) sin((x + y)/2)
1 cos((x — y)/2) —cos((n + 1/2)(x — y))
-2 cos((n+1/2)x) ( S (G —9)/2)
+1 cos((x +y)/2) —cos((n + 1/2)(x + y)))
4 sin((x + y)/2) ’

Since

sin((n + 1/2)x) sin((n + 1/2)(x — y))
+ cos((n + 1/2)x)cos((n +1/2)(x — y)) = cos((n + 1/2)y)

and

sin((n + 1/2)x) sin((n + 1/2)(x + v))
+cos((n + 1/2)x) cos((n + 1/2)(x + y)) = cos((n + 1/2)y),

we conclude that

n

Z e cos(ky) sin((n — k + 1/2)x)

k=0
_ 1 cos((n+1/2)y) — cos((n + 1/2)x) cos((x — y)/2)
T4 sin((x — y)/2)
n lcos((n + 1/2)y) — cos((n 4+ 1/2)x) cos((x + y)/2)
4 sin((x + )/2)
L cos((n+ 1 /2)y)(sin((x £ )/2) +sin((x — y) /2))
T4 sin((x — ¥)/2) sin((x + y)/2)
1 cos((n + 1/2)x)

T Asin((r — ) /2) sin((x £ ) /2)
x (cos((x — ¥)/2) sin((x + ¥)/2) + cos((x + y)/2) sin((x — y)/2))-

Using again some trigonometric identities, we get that

> e cos(ky) sin((n — k + 1/2)x)

k=0
_ 12 cos((n + 1/2)y) sin(x/2) cos(y/2)
2 COSy — COSX
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_ lcos((n + 1/2)x)sinx
2 COSy — COS X
. cos(x/2) cos((n + 1/2)x) — cos(y/2) cos((n + 1/2)y)
= sin(x/2) COSX — COSy '

Formula (2.2.4) can be shown in the same way. |
Define the function G, by
G (cosx) := (—DI=D/22 cos(x/2) (sin x)?2s0c ((n + 1/2)x),
where the function soc is defined by

cos x, if d is even;

S0CX = {sinx, if d is odd.

The following representation of the triangular Dirichlet kernel was proved by Herriot
[165] and Berens and Xu [30, 356].

Lemma 2.2.12 Forx € T¢,

D,i(x) = [cos xq, .. cosxd]G

_ (_1y-n/21 Z cos(xx /2)(sin x;)4~2soc ((n + 1/2)x0) 2.2.5)

]_[j 1.k (€OS X — COS X )

Proof We will prove this lemma for all dimensions because the main idea of the
proof is induction with respect to the dimension. First, we note that the second
equality follows from the definition of G, and from the property of the divided
difference described in (2.2.1). In this proof, let us denote the Dirichlet kernel by
D}Ln (x) := D,i (x). We have seen in (1.2.2) that in the one-dimensional case

1 A _ sin((n 4+ 1/2)x)
R )

=2 cos(x/2)(sinx) ! sin((n + 1/2)x),

thus (2.2.5) holds for d = 1. Suppose the lemma is true for integers up to d and let
d be even. It is easy to see that

1 d+1 . .
Dy ,(x) =2 E €j, COS(j1X1) - -+ €,y COS(Ja+1Xd+1)
JeNe |l jli<n

n
=2 Z €1 coS(Ixg41) Da i (X1, ..., Xq)
1=0
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d . -~
SENCLIS cos (xy./2) (sin x;) "

d
i1 [1=1, 4 (cos xi — cosxj)

n

> ercos(lxgr) cos((n — 1+ 1/2)x),
=0

where ¢y := 1/2 and ¢; := 1,/ > 1. Using (2.2.4), we obtain

d . B
D)y, (x) = —(=DD2a " dCOIS(Xk/Z)(smxk)d 2
, k=1 ]_[j:],j;’;k(cosxk — COSX;)
cos(x/2) sin(xy/2) sin((n + 1/2)x)
d 1 d-2
+ (=Dl=DRIg N dcfls(xkﬂ)(sm )
k=1 Hj:l,j;ék(cosxk —COS x;)

cos(xi./2) sin(xar1/2) sin((n + 1/2)x441)

— —(=D)l@-D/2y (Xd: cos(xi/2) (sin x;)? " sin((n 4 1/2)x;)
k=1 l_[(]i';rll,j#k(cos X — COS )Cj)
— sin(xg+1/2) sin((n + 1/2)xg41) %

d

« 3 (1 4 cos x;)(sin x;)4—2 )

d+1
iy [1551, 24 (cos xi — cos x)

(2.2.6)

Since d is even, the function 4 (¢) := (1 4+ ¢)(1 — t*)¢~2/2 is a polynomial of degree
d — 1. Then, by (2.2.2),

0 =[cosxy,...,cosxs41]h

4 (1 4 cos xp) (sin x) 72 (1 + €8 xg1)(sin xg41)" 2

d+1 d+1
o1 L1521 ju(cosxe —cosx;)  [155) j2aq1(cOSxa41 — COS X))

This and (2.2.6) imply

Xd: cos(xx/2)(sin x,)? ! sin((n + 1/2)xx)

d+1
1521 j 4k (cos xx — cos x;)

(1 4+ cos xg41)(sinxg41)? 2 )

Dji1,0(x) = =(= D101 (
k=1

+ sin(xg41/2) sin((n + 1/2)x4+1)
I—[‘;g’j#dﬂ(cos X441 — COSX;)

— (1)l % cos(xy/2) (sin x;)4 ! sin((n + 1/2)xz)
k=1

d+1 >
]_[J.:Lj#k(cosxk — CcosX;)
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which proves the result if d is even. If d is odd, the lemma can be proved similarly.

As a special case, for d = 2, we get the next corollary.

Corollary 2.2.13 For x € T?, we have

1
D, (x1, x2)
= [cos x1, cos x2]G,,

. 2cos()c1/2) cos((n + 1/2)x1) — cos(xz/2) cos((n + 1/2)x3)

COSX] — COS X2

In what follows, we may suppose that x € T? and 7 > x; > x, > 0. We denote

the characteristic function of a set H by 1y, i.e.,

1,ifx e H;
L) := {0, ifx ¢ H.

Lemma 2.2.14 [fO0 <a <land 7w > x; > xp > 0, then

|K;’Q(X1,X2)| < Cx—x) '(xy +x2)711[x25"/2}

+Cx —x2) 7' — x1 — x2) a2y

Ly <y | KE (x1, 22)|
< Cn(x1 — x2) 7 1+ 22) 7w M y<na)

+Cn g — x2) 7 o+ x) T g a2y,

L, >7/2) |K,i'a(x1, x2)|
<Cn(x —x2) 712 — x1 — x2) 7' Va2

+Cn e — x2) 7@ = x1 = x2) 7w a2y,

Ly <ryay | K (1, x2)| < Cr' ey + x2) ™1y Ly <)

+ C 1+ x2) 7% M <rp)
and

L, >n/2) |K,}’Q(X1,X2)| <Cn'Q2r — x1 — x2) 7' a2

+C2m—x1 —x2) 7% Moy

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)
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Proof By the trigonometric identity,
cosa —cosb = —2sin((a — b)/2) sin((a + b)/2),
Corollary 2.2.13 can be rewritten as
Dy (x1, x2)
_cos(xl/Z) cos((k + 1/2)xy) — cos(x2/2) cos((k + 1/2)x3)

= . . . (2.2.12)
sin((x; — x2)/2) sin((x1 + x2)/2)

‘We will use that
sin(x; £x3)/2 ~x;£x if xp <m/2

and
sin(x; — x3)/2 ~ x; — X, sin(x; +x2)/2 ~ 27w —x; —xp if x> 7w/2.

By Lemma 2.2.7 and (2.2.12), we can see that

n—1
1 -~
Ky, ) = == > A, 2.2.13)
n=1 k=0

cos(x2/2) cos((k + 1/2)xp) — cos(x1/2) cos((k + 1/2)x1)
sin((x; — x2)/2) sin((x1 + x2)/2)
<2(x; —x2) 7 (xy 4+ x2) <)

+2(x1 —x2) 7' QT — X1 — x2) M anr/)s

which is exactly (2.2.7).
Suppose that x, < 7/2. By (2.2.13) and Lemma 1.4.14,

|Ky (x1, x2)|

«a
An—l

< (x1 —x2) N + a7
n—1 n—1
D AT ccos((k + 1/2)x) | + | D ATl cos((k + 1/2)x1)

> )

<Cn(x —x2) ' F ) T+ O (g — x) T o x) g

+

which shows (2.2.8).
Lagrange’s mean value theorem and (2.2.12) imply that there exists x; > £ > xp,
such that
- HY(©)(x1 — x2)
sin((x) — x2)/2) sin((x; +2)/2)

D} (x1,x2) =
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where
Hi(t) = cos(t/2) cos((k + 1/2)¢).

Then (2.2.10) follows from

= H{ () (x) — x2)
l,a a—1 k
K1l = 2o D A G D st T 12

IA

Cn(x; —x2)(x1 —x2) " '(xy —l—xz)_'(n_ax{a + n_]xgl).

The inequalities (2.2.9) and (2.2.11) for x, > /2 can be proved in the same way. B
The next estimations of the kernel function come easily from Lemma 2.2.14.

Lemma2.2.15 [f0<a<1,0<0<landw > x| > x, > 0, then

30 —1)2
|K,:’a(x1,x2)| < C(x; — x2)7x; / L, <n/2)

+ C(xp — x2) (= x1) " 1y sy, (2.2.14)

Lo<nsa) | Ky @ (1, x2)
- _1-8 _fB—a—1
= Cn a(X] - xz) ! ﬂxé “ 1{xz§7r/2}

+Cn7 o — )7 2y, (2.2.15)

Loy | K% (x1, x0)|
< Cn (x; — x2) " P = x1)P T M ey

+Cn =) @ = ) P e, (2.2.16)

Ly <n/2) ’K,z’&(xla x)| < Cn' x5 M y<n) + Cx3 2 <) (2.2.17)
and

Lysrsay | Ky (p, 20)| < Cn' (= x) 7 M yona)

+ C(m = x1) L ayon/2)- (2.2.18)
Proof The basic facts
X1+ X2 > Xx; — Xxp, X1+ X2 > X

and
2T — X1 — X3 > X1 — X2, 2T —X] — Xy > T — X]
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together with (2.2.7) imply

' _ —1/2
|K1 (e, x| < 2000 = 2720 P g <ay)

+2(x1 — x2) A (m — X1)71/21{XZ>7r/2},
which shows (2.2.14). Since 0 < 8 < 1, (2.2.8) implies
K G| < Cn =)™ g™ g O o =)
if x, < 7/2. The other inequalities can be shown similarly. ]

Lemma 2.2.16 [f0 < a <landm > x; > x, > 0, then

Ly <nyay [ Ky ® (1, 20) |

<C(x — xZ)a_IXEOﬁI l{xzi‘fr/Z} + Cx;zl{mg/z} (2.2.19)
and

Loy |[Ky (1, x2)| < Cxp — x2) 7 — x1) 7™ Mgy
+ C(m = x1) jyor/2)- (2.2.20)

Proof If 3=0and n > (x; — x,)~!, then (2.2.15) implies (2.2.19). On the other
hand, (2.2.19) follows from (2.2.17) if n < (x; — x)~". |

In the next lemma, we estimate the partial derivatives of the kernel function.
Lemma2.2.17 I[f0<a<1,0<f<landm > x; > x, > 0, then for j =1, 2,
L<r/a) [0 Ky (1, 32) |

. —1-8_B—a—1
< Cn' Y (x1 —x2) : ﬂxz “ L, </2)

+Cx —x2) ) P <y (2.2.21)
and

Loy |05 Ky (1, x2)|
<Cn' (1 —x2) (= x) T gy

+ C(x1 —x) (1 — x0)" a2y (2.2.22)

Proof Let x, < w/2. By Lagrange’s mean value theorem and (2.2.12),
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01D} (x1, x2)
= %(sin(xl/Z) cos((k + 1/2)x1) + cos(x1/2)(2k + 1) sin((k + 1/2)x1)>
sin((x; — x2)/2) " sin((xy +x2)/2) 7"
+ %(xl - x2)<Sin((xl — X2)/2) " sin((x; 4 x2)/2) "L cos((x; — x2)/2)

o sin((n = x2)/2)7" sin((xn + x2)/2) 7 cos((x1 + 2)/2) ) HJ(©),

where y < £ < x is a suitable number. Using the methods above,

ZAn 10D} (x1, x2)

k=0
< C(x; —x2) 'y +X2)71(n17a ) ¢ +x2_l)
+ Cry 4+ x) 72" x5+ x5

< C(xy —xp) Pt oxd T 17,

01K, (x1, x2)| =

n 1

which proves (2.2.21). The case x, > 7/2, i.e., (2.2.22), can be shown similarly. l

2.2.2 Kernel Functions for ¢ = oo

Lemma 2.2.18 Forx € T¢,

i} o)y sinn+ 125
D (x) = HD (x; )_U sin(x;/2)

Proof The proof follows from the definition of the cubic Dirichlet kernels and from
Lemma 1.2.3. |

To estimate the cubic Cesaro kernels, we may suppose again that x € T? and
T > x1 > xp > 0.

Lemma2.2.19 [f0<a<1,x¢€ T2 and 7 > x; > xp > 0, then

|K2>(xp, x)| < Cxp e !, (2.2.23)

|K> ey, x2)| < Cn~ %%y (g — x0) ™

+Cn a7 g g — xg) ™! (2.2.24)

and
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|Kp> (o, x0)| < Cn' =% (e — x2) ™ + Coy (e —x0) 7 (2.2.25)

Proof The first inequality, (2.2.23) follows easily from Lemma 1.4.8 and from

n—1

ZAn 1D (x, x2)
1 ’ZA sin((k 4+ 1/2)x;) sin((k + 1/2)x,)

Ay = —* sin(x;/2) sin(xa/2)

K> %x1, x) =

-1

The trigonometric identity
. . 1
sina sinb = E(cos(a — b) — cos(a + b)) (2.2.26)

yields

| K% (x1, x2)|

n—1

1 Z e cos((k 4+ 1/2)(x; — x2)) — cos((k + 1/2)(x1 + x2))
n—1—k .

ZAZ‘ e sin(x; /2) sin(x/2)

Observe that sin(x; /2) ~ x;,
sin(x; £x3)/2 ~x;£x if xp <m/2
and
sin(x; — x3)/2 ~ x; — X, sin(x; +x2)/2 ~ 27w —x; —xp if x> 7w/2.

Using the facts x; 4+ xp > x; — X2, 2™ — x; — xp > x; — X and and Lemma 1.4.14,
we conclude that

| K29 (x1, x2)|
_ C 1 ( 1 n n
©2A% | |sin(x;/2) sin(x2/2)| \| sin(x; — x2)/2]*  |sin(x; — x2)/2]

a—1

1 a—1

n
+— +— )
[sin(x; +x2)/2]*  [sin(x; + x2)/2]
< Cn_“xflx{l(xl — X)) "+ Cn_lelxgl(xl —x)7 !, (2.2.27)

which is (2.2.24). Using Lagrange’s theorem in (2.2.27) and Lemma 1.4.15, there
exists x; — x; < £ < x1 4+ x5 such that
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|K2o% (x1, x0) | =

1 i ASTL (k4 1/2)xy sin((k + 1/2)€)

AY = sin(x/2) sin(x,/2)
< Cnl_“xl_'(xl —x) “ + Cxl_l(xl —x)" L

This finishes the proof of the lemma. ]
Lemma 2.2.20 I[f0 <a <landm > x; > xp > 0, then
|K2>(xp, x2)| < Cx57 ' (xp —x2) ™7+ Clxy — x0) 2 (2.2.28)

Proof The inequality follows from (2.2.24) if n > x, ' and from (2.2.25)ifn < x, .

[ |
The partial derivatives of the cubic Cesaro kernels can be estimated as follows.
Lemma 2.2.21 [fO0<a<1,j=1,2and 7w > x; > xp > 0, then
‘8‘,'K,f°’“'(x1,x2)’ < Cnl_“xl_lxz_l(xl —x) "
Proof By Lagrange’s mean value theorem and (2.2.26),
01 D% (x1, x2)
1 . .
= 30+ 1/2)((sin(k + 1/2)(x1 +02)) = sin((k + 1/2) (61 = x2)))
sin(x/2) " ! sin(xp/2) 7!
1
+ 5 ((costt+ 1/2)(r1 = x2)) = cos((k + 1/2)(x1 +x2))
cos(x/2) sin(x; /2) 2 sin(xy/2) !
1
= 30+ 1/2)((sin(k + 1/2)(x1 +02)) = sin((k + 1/2) (1 = 22))
sin(x;/2) "' sin(x,/2)7!

+ i(k + 1/2)x, sin((k + 1/2)€) cos(x1/2) sin(x;/2) 2 sin(x»/2) 7",

where x; — x; < £ < x| + x, is a suitable number. Similarly as above,

1 n—1 -
01K (x1, x2)| = G ZAS,ll,kalD/fo(xlﬁxz)
n=1 |x=0

_ —1 -1 — —1_ -1 —
< Cn' “xpxy (o —x) Y+ Cxpxy (X — x2) !
+ Cnl_“xfz(xl —x) 4+ foz(xl —x)"!

< Cnlfo‘xl_lxz_l(xl — X)) "+ Cxl_lxz_](xl —x)7 !,
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which proves the lemma. n

2.2.3 Kernel Functions for q = 2

As we mentioned before, for ¢ = 2, we will consider the Riesz summability. To
this, we have to introduce some special functions. For the sake of completeness, we
prove some elementary properties for these functions. First, we introduce the gamma
function by

I(x) := /Ooff-‘e—f dt (x> 0).
0

Integration by parts yields

tre™fqoo 1 [ 1
] +- | retdri=-Ta+D (x>0
0

r(x) = [
0 x
Since I'(1) = 1, we have

Fr'e+D)=xI'x) x>0 and T()=@w-—1. (2.2.29)

After a substitution, we can see that

1 ° s
r(5) =/ 126 dy =2f e du = /7.
2 0 0

The beta function is defined by

! 1
B(x, ) :=/ s"*l(l—s)y”dszf s — )M ds,
0

0

where x, y > 0. The relationship between the beta and gamma function reads as
follows:
Fx +y)B(x,y) =TT (). (2.2.30)

Indeed, substituting s = u/(1 + u), we obtain

1
C(x + »)B(x. y) = T(x + y)/ 211 = 5y ds
0

o 1 \*+y
=T vl d
(x+y)/0 u (1+u) u

= / / u)’_l( ) v’ e dudu.
0 0 1 +u
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The substitution v = (1 4 u) in the inner integral yields

o0 o
'x+y)Bx,y) = / / W Tt 40 g gy
o Jo

o0 oo
:/ txe_’/ (ut)’ e ™™ du dt
0 0

oo
=/ e ' T (y) dt
0
=T @),
which shows (2.2.30).

Definition 2.2.22 For k > —1/2, the Bessel functions are defined by

_ (t/2)" Loy ke
Jie(t) := AT LATA/D) x (1 —s%) ds (t eR).

Using the Euler formulas, we can see that the Bessel functions are real-valued.

Lemma 2.2.23 We have

K@) =kt (@) = Jepa (1) (¢ #0).

Proof By integrating by parts and by (2.2.29), we conclude

i(fkf 1) = 2 l eSs(1 — s2)12 gs

dro F Tk +1/20(1/2) ),
_ 127 its 2vk+172]"
T Qk+ DIk + 1/2)r(1/2)(_ [e (I=s9 ]_1

1
+/ e (1 —sz)kH/zds)

1
_szflt 1
T k+ 1Tk +1/20(1/2) |,
= —1" T (),

eltS(l _ SZ)k+1/2 ds

which proves the desired result. ]

Lemma 2.2.24 Fork > —1/2 andt > 0,
Je(@) < Cut* and  J(t) < Cut 7',

where Cy is independent of t.
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Proof Since 1 — s> > 1 — |s| for |s| < I, the first estimate follows from the defini-
tion of J;. The second one follows from the first one if 0 < # < 1. So we may assume
that # > 1. Let us integrate the complex valued function

ellZ(l _ Z2)k—1/2 (Z c C)

over the boundary of the rectangle whose lower side is [—1, 1] and whose height is
R > 0. By Cauchy’s theorem,

1

0
0= lf ell(—l+l.§')(s2 +215)k_1/2 ds +f elts(] _S2)k—]/2ds
R -1

R
+1 / I (g2 _ 21 5) 12 gs 4 e(R),
0

where €(R) — 0 as R — oo. Hence, taking the limit as R — oo,

1 00
/ elm‘(l _ S2)k—l/2 dS — le—lf/ e—IS(SZ + le)k_l/2 ds
—1 0

o0
— te”/ e (s? = )12 g
0
=1+ L.

Observe that
(% + 21) 12 = ()12 + o(s),

where
lp(s)] < Cs*T1/2 if0<s<lors>landk <3/2

and
lo(s)| < Cs*~! ifs > land k > 3/2.

Indeed, it follows from Lagrange’s mean value theorem that

s k1) k—3/2
5 1) —1
(21 +

< CysFH1/2 £ +1
21

’

lp(s)] = |(2us) 17|

where 0 < £ < s. Hence
| + 2057 < Gt 4 160s)

and
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o0
e / e (Cust12 + 16(9)]) ds
0
o) 1 o)
:Ckf e*”sk*”2+/ e*”|¢>(s)|ds+/ e S|p(s)| ds
0 0 1

=L+ L+ 13

By the substitution s = u and by the definition of the gamma function,

o0
I :Ckflf e “(u/) 2 du
0
o0
= ckt—k-l/zf e "u* 12 du = C T (k + 1/2)r7F=1/2,
0

The same substitution implies

1
I, < / eI SKHI2 g < 4k—3/2 /oo e Uy k12 g
0 0
=T (k +3/2)t %32 < Cre= =12, (2.2.31)
If k < 3/2, then
Lz <T(k+3/20t732 < ce=*172
as in (2.2.31). Similarly, for k > 3/2,
o0 [o¢]
I S/ e 1521 gg < fzk/ ety g
1 0
=T k)t < Cr™*12,

The integral I, can be estimated in the same way. ]

Lemma 2.2.25 Ifk > —1/2,1 > —l andt > O, then

s 1
Jig141(t) = m/o Je()s* (1 — 57 ds.

Proof Taking into account (2.2.30), we get that

_ 2(t/2)F !
C Tk+1/29T(1/2) Jo

= , 2(t/2) % L
B e — L 91— 12 d
j=0

Ji (1) cos(ts)(1 — sH 12 gs

@CHI (k4 1/2)I(1/2) Jo
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A R O 1
— TGk 1) Jo

uj—]/Z(l _ u)k—l/z du

= CHIT(k+1/2)T'(1/2)

BG+1/2,k+1/2)

_ @2 LG H12)
T r(1/2) ;( D rGtrrnan (2.2.32)

Thus

1
/ Je(@s)s" (1 = sH ds

0

_ f ((fS/Z) Z(_l)j LG +1/2) @s) J) S = $2) ds
0 j=0

r'(1/2) T(+k+1) 2))

t/2)fF & CTG+1/2) 2 N
F(1/2)jgo(_l)jl“(j+k+l)(2j)!/o ST =57y ds.

Substituting s> = u and using (2.2.30) and (2.2.32), we conclude

1
/ Je(19)s*H (1 = 52 ds

0

ko : 2j 1
_ /2 S -1y rGg+1/2 v / W (1 — ) du
j=0 0

/2 2 (j +k+ 1) 2))!

Bk+j+1,1+1)

(/2 i(_l)j rG+1/2) %
j=0

T r{1/2) 2 (j +k+ 1) 2))!
_ 2T+ 1) (1/2)k ! i( D rG+1/2) %
T raz2 = Ckk+14+j+2) 2))!
2T +1)
= t(lTJkHH(t),
which proves the lemma. ]

Now we can turn back to the circular Riesz means.
Definition 2.2.26 For f € L;(R?), the Fourier transform is defined by

1

fx) = W

/ f®e ™ dt  (x € RY.
Rd
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Define )
_Ja—=isH*ifs| < 1;
0(s) '_{0 ifls|>1 WEB

and
fo(x) == 0(llx]l)  (x € RY).

0y is called a radial function. No we use another method than for ¢ = 1 or g = co.
We will express the Riesz means in terms of the Fourier transform of 6. As we will
see in the next lemma, 6y can be computed with the help of the Bessel functions.

Theorem 2.2.27 Ifa > 0and x € R, then

Bo(x) = ——— 2T + Dlx I Jara(lx )
b(x) = RIS ! x|, a2+a(llx]2).

Proof The function 8, € L;(R?) because

f |6o(x)| dx < C/ 10(r)|r¢ " dr < co.
R 0

Using the notation r = ||x||2, x = rx’, s = ||ul|, and u = su’, we get that

~ 1
90()6) =S W /Rd 90(u)e_”"” du

1 > —rsx’-u’ / d—1
= W./o 0(s) (Ldl e du > s ds, (2.2.33)

where X;_; denotes the sphere. In the inner integral, we integrate first over the
parallel
Ps:={u ey :x -u =cosd}

orthogonal to x’ obtaining a function of 0 < § < m, which we then integrate over
[0, ]. If wy_> denotes the surface area of X,;_,, then the measure of Py is

2pld=1)/2
¥t = T (sing)? 2.

B V(P V)

Hence
T
/ e irsxu dlzt/ — / e*trscosﬁwd_z(sin 6)0[72 ds
Sa-1 0

1
— Wd72/ ezrsf(l _ 52)((1—3)/2 dé-

1
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. 2pd=1)/2 Td/2 —1/2)T(1/2) ,
-~ T((d-1)/2) (rs/2)d/2-1 a/2-1(rs)

= M2 (rs) P Iy i (rs).

Taking into account this and (2.2.33), we conclude

Bo(x) = r_d/2+1/ 9(s)Jd/2—1(rs)sd/2ds
0

(27)d/2

_l —d/2+1 : a -
~ Qn)inr Il | Jajp-1(Ixll2s)s?(1 — s*)* ds.
Applying Lemma 2.2.25 with k = d /2 — 1,1 = «, we see that

” l - —a—lra
B0 = Gl apsa () 1113712 T @+ 1),

which shows the theorem. |

Theorem 2.2.27, Lemma 2.2.23 and 2.2.24 imply that %(x) as well as all of its
. . —d/2—a—1/2
derivatives can be estimated by || x||, .

Corollary 2.2.28 Foralliy,...,ig > 0and o > 0,
07+ 0 Bo ()] < Cllx ;2772 (x £ 0).
The same result holds for

@ =Ism*if|s| < 1;
0(s) '_{0 ifls|>1 WER

and
Oo(x) := O(llx[2)  (x € RY),

whenever v € P (see Lu [224, p. 132]). From now on, we assume that v € P. The
next result is an easy consequence of Corollary 2.2.28.

Corollary 2.2.29 0, € L,(RY) if

d—1
— < a < oo
2

Now we are ready to express the Riesz means using the Fourier transform of 6.

Theorem 2.2.30 Ifn e N, f € L|(T?%), (d —1)/2 < o < oo and y € P, then

o207 £ () = / Fx = Dly(nr) dr
Rd
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for almost every x € T

Proof If f(t) = ¢'*" (k € Z,t € T¢), then

—k
o f(x) = o (—) =
n
— etk-x/ e_lk‘t/né\o(l‘) dt
Rd

=n? / R C=D90 (ne) dt.
R4

The theorem holds also for trigonometric polynomials. Let f be an arbitrary element
from L (T%) and ( f;) be a sequence of trigonometric polynomials such that f; — f
in the L, (T?)-norm. It follows from Lemma 2.2.6 and from the fact that K;'*” €
L,(T%) that

lim 0> fi = o> f
n—o00

in the L; (T?) norm. _
On the other hand, since 6, € L(R?), we have

lim [ fi(x — H)lo(nt)dt = / f(x — )0y (nt) dt
]Rd

n—>00 Jpd
in the L; (T)-norm. |

Lemma 2.231 I[fneN, (d —1)/2 < a < oo andy € P, then

K’%aﬁ(t) — (27l')dnd Z %(n(t + 2km)). (2.2.34)
kezd

Proof Since f is periodic, Theorem 2.2.30 implies that

o_z,n,,wf(x) — I’ld Z / f(x — t)/@\o(nl) dt

tegi Y 2em+T?
=n') / fx = D8y(n(t + 2km)) dt.
kezd 4T

The result follows from Lemma 2.2.6. |
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2.3 Norm Convergence of the {,-Summability Means

In this section, we will prove that the Cesaro and Riesz means, i f and o' ™" f are
uniformly bounded on the L, (T?) spaces and they converge to the original function
f innorm when 1 < p < 00, ¢ = 1,2 or g = oco. Having the results of Sect.2.2,
we are ready to prove that the L;(T¢)-norms of the kernel functions are uniformly
bounded. We start with the triangular and cubic Cesaro summability.

Theorem 2.3.1 [f0 < a <landq =1 o0rq = oo, then

sup [ |KP(x)| dx < C.
neN J T4

Proof of Theorem 2.3.1 for g = 1.1t is enough to integrate the kernel function over
the set
{(x1,x) :0 < xp < x1 <7}

Let us decompose this set into the union u}gl A;, where

A = {(x1,x):0<x1 <2/n,0 <xy <x1 <m,xy <m/2},

Ay i={(x1,x2) :2/n <x1 <7, 0 <x, <1/n,xp <m/2},

Az = {(x1,x2) :2/n <x; <7, 1/n <xp <x1/2,x <m/2},

Ay = {(x1,x2) :2/n <x1 <7, x1/2 <xp <x1—1/n,x, <7/2},
As = {(x1,x3) :2/n <x1 <7, x1—1/n <x3 <x1,x0 <7/2}

Ag :={(x1,x0) :xo>m/2,m=2/n <xp <m,0 <xy <x; <7},
A7 :={(x1,x) 72 <xp <m—2/n,m—1/n < x; <},

Ag = {(x1,x) :7/2 <xo <7 —=2/n,(m+x3)/2 <x1 <7—1/n},
Ag ={(x,x2) /2 <xy <m—=2/n,x+1/n <x; <(m+ x2)/2},

A ={(x1,x) :7m/2 <xo <7 —2/n,x <x1 <x,+ 1/n}.

The sets A; can be seen on Fig.2.11.
By Lemma 2.2.5, we can see that

/ |K 2 (x1, x0)| dx+/ |Ky*(x1, x2)| dx < C.
A Ag

Inequality (2.2.14) implies

ks

1/n
/ !K,:’“(xl,xz)| dx <C / (x1 — 1/11)_3/2)62_1/2 dx,dx; <C
A 0

2/n

and
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b3

3=

Iy

Fig. 2.11 The sets A;

/ |K,1"’(x1,x2)| dx
Az
T—2/n T
< c/ / (m—1/n—x) 3 (x — x1) "V dx,dx, < C.
T—1/n

Observe that x; — x, > x;/2 on the set A3. Choosing 3 such that 0 < 8 < «, we
get from (2.2.15) that

x1/2
[|K1 *(x1,x2)| dx < Cn~ // xR g dx
2/n

x1/2 1 5
/ / . ﬁ dx,dx; < C.
2/n

Similarly, x; — x, > (m — x2)/2 on the set Ag and so, by (2.2.16),
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1
/ ’Kn’”(xl , xz)} dx
Ag

m—2/n m—1/n
/ / (m—x2) " = x) N dxy dxy
(

T+x2)/2

m—2/n m—1/n )
’1/ / 7T—xz)flf“j(ﬂ'—xl)ﬁ*zdxldxz <C.
(m+x2)/2

We have x, > x1/2 on Ay, hence (2.2.15) implies

f |K,}'a(x1 , x2)| dx
Ay

T x1—1/n 3 |
< Cn‘“/ / (x1 — x2) " T  dxy dx,
2/n Jx1/2

T x1—1/n 2 B2
Cn’l/‘ / (x1 —xz)’lfﬂx‘lf dxrdx; < C.
2/n Jx1/2

Similarly, 7 — x; > (7 — x)/2 on the set Ag. Thus
f |K1“(x1,x2)| dx
T—2/n (7T+xz)/2 ) )
_af / — )P = xp)P N dxy dxy
X

2+1/n

m—=2/n (m+x2)/2 )
cn! / / (x1 —x2) " P(r — x2)% % dx; dx, < C.
x2+1/n

Finally, by (2.2.19),

xo+1/n
f |k} (xl,x2)|dx<C/ / (1 —x2)* 1y dxydxs

x2+1/n
+C/ / 72dx1dx2§C
1/n

and
T—1/n  px;
/ |Ky®(x1, x2)| dx < C/ / (x1 — x)* (= x) " dixodx,
A /2 x—1/n
T—1/n
+ C/ / (m — x1) 2dxydx, < C
xi1—1/n

which completes the proof of the theorem. ]
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T2 A
T
As
Ay
As
A
1 A
0 2/n ” X1

Fig. 2.12 The sets A;

Proof of Theorem 2.3.1 for g = co. We integrate again over the set

{(x1,x2) 1 0 < x3 < x; <7}

and decompose this set into the union U_ A;, where

Ay
Ay
A3
Ay
As

(see Fig.2.12).
First of all,

By (2.2.25),

= {(x1, x2) :
= {(x1,x2) :
={(x1, x2) :
= {(x1,x2) :

= {(x1, x2) :

0<x; <2/n,0<x <x; <7},

2/n <x; <m0<xy <1/n},

2/n <x) <m, 1/n<xy <x1/2},

2/n < x; <m,x1/2 <xy <x1—1/n},

2/n <x; <mx;—1/n<x < x}

/ |K,‘Z’°’a(x1,x2)| dx <C.
Ay

69
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-« —1-a -2
|K2o(xy, x0)| < Cn' () —x2) 7' 7 4+ Clxy — x2)

and so
1/n
/ |K (xl,x2)| dx,dx, < Cn'~ "/ / (x1 — 1/n) "% dx, dx,
2/n
1/n
+c/ / (x1 —1/n) 2dx,dx; < C.
2/n J0

Since x; — x, > x1/2 on A3, we get from (2.2.24) that

|Kfl’°’a(x1,x2)| < Crfo‘xl_l_axz_l + Ciflxl_zxz_l

I’H“?xziliﬂ + Cn_le2+@x2717ﬂ (2.3.1)

<Cn %,

forany 0 < 3 < «. Thus

/ |K°°“(x1,xz)| dxidx, < Cn~ / / 71 athy 17‘601162 dxi
2/nd1/n

nre, i 1
71/ / TEAy dxzdxl <C.
2/n

Since x; > x1/2 and x, > x| — x; on Ay, we get from (2.2.24) that

|Kn°°’“(x1, xz)} < Cn_‘”xflxgl(xl —x) 4+ Cn_lelxgl(xl —x)7!
<Cn "x; (xl — xy)"loth

+Cn ' T g = xp) 2P (2.3.2)

forany 0 < 8 < «. Then
| K22 (x1, x2)| doxy dxa
Ay

—a n-im —1-p —l—a+8
<Cn X, (x1 — x2) Pdxy dx
2/n Jx1/2

x;—1/n -5 )
Cn_lf f x o Txg — )62)_2*‘J dx,dx; < C.
2/n Jx1/2

Finally, x, > x;/2 also on As and so (2.2.23) implies

xi
/ |K°°a(x1,x2)| dxi1dx; < C/ / xl_2dx2dx1 <C,
2/nJx1—1/n
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which finishes the proof. u
Now we continue with the circular Riesz summability.

Theorem 2.3.2 Ifq =2, o> (d —1)/2and vy € P, then

sup/ |K,f’“’”(x)] dx <C.
neN JTd

Proof Taking into account Lemma 2.2.31, we can see that
f K27 ()] dx < 2m)'n? Y / 100(n(x + 2km))| dx = 2m)* [Bo], -
T¢ T
kezd
Now the theorem follows easily from Corollary 2.2.28. |
These imply easily

Theorem 2.3.3 If1 < p <00,0 <a <ooandq =1orq = oo, then
sup o2 £ < CIIfI,
neN

and
lim 0“f = f inthe L,(T%)-normforall f € L,(T?).
n—oo

Proof For 0 < a < 1, we use Minkowski’s inequality and Theorem 2.3.1 to obtain

Joe £ <L / £ (=l , KL dr
P = @2m)d
1
— q,x
= G /1; AN K@y dr
<CIfll,

For 1 < a < 0o, we can use Lemma 2.2.8. The convergence follows easily from this
because the trigonometric polynomials are dense in L ,(T¢). ]

The next theorem can be proved in the same way.

Theorem 2.3.4 If1 <p <o00,qg=2,(d—1)/2 <a <ooand~ € P, then

sup o3 f ||, < CIIfIl,
neN

and
lim 097 f = f inthe L,(T%)-norm forall f € L,(T%).
n—0oQ



72 2 £,-Summability of Higher Dimensional Fourier Series

Theorems 2.3.3 and 2.3.4 were proved in Berens, Li and Xu [30], Oswald [253]
and Weisz [337, 338, 341] for ¢ = 1, oo and in Bochner [36] and Stein and Weiss
[293] for g = 2.

The situation is more complicated and not completely solved if ¢ = 2 and @ <
(d — 1)/2.1tis clear by the Banach-Steinhaus theorem that lim,,_, o, o' *” f = f in
the L ,(T?)-norm for all f € L,(T¢) if and only if the operators o;*” are uniformly
bounded from L ,(T?) to L ,(T¢). We note that each operator o;*” is bounded on
L,(T%) because K7 € L;(T?). For more about the norm convergence of the
Bochner-Riesz means (i.e., ¢ = 2, v = 2) see Grafakos [143].

2.4 H,(T?) Hardy Spaces

To prove almost everywhere convergence of the Cesaro and Riesz means, we will
need the concept of Hardy spaces and their atomic decomposition. Before studying
Hardy spaces, we have to introduce the concept of distributions.

Let C*(T?) denote the set of all infinitely differentiable functions on T<. Then
f € C*(T?) implies

sup |0 f(x)| <00 forallk = (ki,..., ks) € N,

xeTd
where 9% = 8" ... 9.
Definition 2.4.1 Letn € N, f,, f € C®°(T¢). We say that
lim fy=f inC¥(TY)

if
lim |0 f, — 9 f|| =0 forallk e N.
n—oo

Definition 2.4.2 A map u : C*(T¢) — C is called distribution if it is linear and
continuous, more exactly,

u(on fi + aa f2) = aqu(fi) + cou(f2)
forall fi, f» € C*®°(T%) and v, oy € C and
lim u(f,) =u(f) if lm f,=f in C®(TY).
n>00 n>00
The set of distributions are denoted by D(T%).

If g € L,(T% (1 < p < 00), then
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1
@m)

ug(f) := /T fgdx (S e C>(T))

is a distribution. Indeed, if lim,— f, = f in C ©(T), then lim,_ o fu=fin
L, (T9) as well. Applying Holder’s inequality,
e =P = [ 10 = 700l el d
T!
<Ifi= 1l lgl, — o0,

as n — oo. So every function from L p(T" ) (1 < p < 00) can be identified with a
distribution # € D(T¢) in the previous way.

Proposition 2.4.3 A linear functional u on C*(T?) is a distribution if and only if
there exist C > 0 and m € N such that

u(f) < c‘;up 10" £ o

forall f e C®(TY).

Proof 1t is evident that the inequality ensures the continuity of u, thus u is a dis-
tribution. Conversely, suppose that u is a distribution and the inequality is not true.
Then there exists f, € C*°(T¢) such that

lu(f)] > n sup 108 £l . -

Since the right-hand side is not 0, we may define

_ f
nsup<y i

8n 't

Then g, € C*®°(T%) and
1
ak n =
sup [0, =

which means that g, — 0 in C*°(T¢). On the other hand,

u( fy)
)= 1.
s nsupy <, [ 0% fu o g

This contradicts to the continuity of u, i.e., to u(g,) — 0 asn — oo. [ |

Definition 2.4.4 The least integer m for which Proposition 2.4.3 holds is called the
order of u.
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Definition 2.4.5 The distributions u,, tend to the distribution « in the sense of dis-
tributions or in D(T9) if

lim u,(f) — u(f) forall fe C>®(T).

The next definition extends the Fourier coefficients to distributions.

Definition 2.4.6 Let
en(x)i=e""  (neZ'xeT.
For a distribution u € D(T?), the nth Fourier coefficient is defined by
an) i=ule_,) (neZ9.

The Fourier series, the partial sums and the summability means of u are defined in
the same way as in Definitions 2.1.2, 2.1.3,2.1.5,2.2.2 and 2.2.3.

Theorem 2.4.7 Ifu € C®(T¢) is of order m, then
un)=0((n™ as|n| - oo. (2.4.1)
Moreover, for 1 < g <ooand N € N,

shu = Z uwn)e, - u in D(T?) as N — oo.

neZ, nll, <N

Conversely, if c, = O(|n|™), then

9 ._
Sy = E Chén

neZd, |Inlly <N

converge to u in D(T?% as N — oo and 1i(n) = c,. The same holds for the rectan-
gular partial sums sy.

Proof Equality (2.4.1) follows immediately from the inequality of Proposition 2.4.3
if we take therein f = e_;. For f € C®°(T%),

spu(H)= Y. amfem=ul Y Fl=me,

neZd, |nl, <N neZd, ||njl, <N

It is easy to see that f(n) = O(|n|7*) for any k € N. Hence

li £ =
Y fue= s
neZd, nflg<N
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in C*°(T%) and so
I}iinw~?1%u(f) =u(f).

Conversely, if ¢, = O(|n|™), then

sEH= D efl-n) (2.4.2)

neZé, |nll, <N

forall f € C*(T?). Since the series on the right-hand side is absolutely convergent,
let

u(f) = lim sy (f) = enf(-n).

neZd

Then u is linear and we can show easily that u is continuous as well. Writing f = e_,
in (2.4.2), we can see that #(n) = ¢, (n € Z9). |

Definition 2.4.8 The convolution of two functions f, g € L;(T%) is defined by

1
(2m)d

(f *8)x) = /w fx—ngydr  (x eT.

It is easy to see that

— 1 _ d
(f*90) = 55 fwfa)g(x ndt  (x €T9.

Using Minkowski’s inequality, we obtain Young’s inequality. More exactly, for f €
L, (T%), g€ L;(T% and 1 < r < oo, we have

ILf gl < IfI-lglh-

Lemma 2.4.9 If f, g € L,(T9), then f % g(n) = f(n)g(n)

Proof We have,

fe : 57 —in-x
fxgn) = 2 /Td (/Tdf(x—z)g(;)d,>e dx
: —ne(x—t —in-t
- e /T ( S )dx) gy e di
! —in-u —1in-t
e fT ( | fwe du) gty di

= f(n)-3n),

which finishes the proof of the lemma. ]
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Now we are able to define the convolution of a distribution and function.
Definition 2.4.10 The convolution of f € D(T%) and g € L;(T¢) is defined by
frg:=) fmBme, inDT).
neNd

Since g is bounded, the series is convergent by Theorem 2.4.7. Similarly, we can
also define the convolution f € D(T?) and v € L;(R%).

Definition 2.4.11 For f € D(T%) and ¢ € L;(R?) let

frv=Y" Fybme, in DT,

neNd
where 12 denotes the Fourier transform of 1) € L (R?).

Similar to Lemma 2.4.9,

1

f*?/’(x)=w

/Rd fx —w)yu)du

if f € D(TY) and ¢ € Li(RY). Fort € (0, 00) and x € R, let
D) =17 Y(E/D).

It is easy to see that for f € D(T¢) and ¥ € L, (R%), we have

[ =Y fp@nye, in D(TY). 2.4.3)

neNd

To define the Hardy spaces, we need the concept of Schwartz functions.

Definition 2.4.12 The function f € C*®(R?) is called a Schwartz function if for all

a, B e N9,
sup |x“6*‘9f(x)| = Cy.p < 00,
xeRd
wherex® = x| - x, a0 = (a1, ..., ag)and 8 = (Bi, . .., Ba). The setof Schwartz

functions are denoted by S(R?).

Then f € D(T¢)and ¢ € S(RY) implies that (2.4.3) converges absolutely in each
point as well and so f * 9; € Lo (T?).

Fix ¢y € S(R?) such that fRd Y(x)dx # 0. We define the radial maximal function
and the non-tangential maximal function of f € D(T¢) associated to ) by

v () = S})lp)lf*wt(X)l

re(
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and

Uh,e () = sup | f x bW,

te(0,00),|y—x|<t

respectively. For N € N, let

Fv@®Y =1y e SR :  sup (14 xDV0%y) < 1¢,
xeR B <N

where ||G|l1 = 81 + - - - + (4. Forany N € N, the radial grand maximal function and
the non-tangential grand maximal function of f € D(T?) are defined by

fO.() = sup  sup |f x¢(y)
weFy(R) te(0,00)

and
fOe(x) = sup sup Lf* I,

peFnRY) 1€(0,00),|y—x|<t

respectively. We fix a positive integer N > |d(1/p — 1)], where | x| denotes the
integer part of x € R.

Definition 2.4.13 For 0 < p < co the Hardy spaces H pD (T?) and weak Hardy
spaces H Eoo (T9) consist of all distributions f € D(T¢) for which

1A lan = ||¢*D,+(f)||p <0

and

||]C||HEoc = |Wa+(f) ” poo = O

We will see in the next theorem that the Hardy spaces are independent of ¢ and
N, more exactly, different functions ¢ and different integers N give the same space
with equivalent norms.

The d-dimensional periodic Poisson kernel is introduced by

P,(x) := Z e Ml gtkx (e T4 4 5 ().
keZd

Notice that P, € L;(T?). In the one-dimensional case, we get back the usual Poisson

kernel

—r
Pi(x) = Z riklethx —

= e,
14+r2—2rcosx (x )

k=—00

where r := ¢~'. For f € D(T?), let
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P (@) = sup |f* P (x)]

1€(0,00)
and
Ph o () = sup Lf* P (y).

te(0,00),|y—x|<t

Theorem 2.4.14 Let0 < p < oo. Fix1p € S(RY) such that fRd P(x)dx # 0 and fix
a positive integer N > |d(1/p — 1)]. Then f € H[',:’(']I‘d) if and only ifi/)av(f) S
Lp(Td) or fEH € Lp(']I‘d) or fﬂv € Lp(']I‘d) or Pﬁ+(f) € Lp(Td) or PE,v(f) €
L p(Td ). We have the following equivalences of norms:

1 lam ~ Mg, (D ~ a4l ~ 1S e ~ 1P (Ol ~ 1PE o (Dl

The same holds for the weak Hardy spaces:

||f||H]‘y:]:x, ~ ”'(Z)E,v(f)”p,oo ~ ||fE],+”p,oo
~ N ellp.oe ~ PG (Dl p.oo ~ I1PE.g ()l p.oo-

Note that ~ denotes the equivalence of norms and spaces, more exactly we write
that A ~ B if there exist positive constants ¢; and ¢, such that c;A < B < ¢, A.

Theorem 2.4.15 If1 < p < oo, then HE (T?) ~ Lp(Td) and
1A, < U flgp < CpllfI, -
For p =1, H(T?) C L\(T%) C H{,,(T%) and
I <0 flyo (F € HY (T,

Iflug < CIFI (f € Li(T).

We omit the proofs of these theorems because they are very similar to the proofs
of the corresponding theorems for H,(R?), which can be found in several books and
papers (e.g., in Stein [290], Grafakos [143], Lu [224], Stein [289], Stein and Weiss
[293], Uchiyama [320], Fefferman and Stein [96], Weisz [346]).

We define the reflection and translation operators by

h(x):=h(=x), T.h(t) = h(t — x).
Theorem 2.4.16 If K € L{(T), 0 < p < oo and

lim f, = f inthe HPD(Td)-norm,
k— 00
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then
klim fixK = f*xK inD(TY).
—00

Proof Observe that for f € H,(T?) and h € C*(T%),

frh() =Y Fhmn)e,(x)

neNd

=Y F)T_ch(n)
neNd

=Y Fmyeu(Teh)
neNd

= f(T.:h),

Thus

\f(ﬁ>\=|f*h<0)|s< sup <1+|x|>N+d|83h<x>|) 500,

xe€T4, |8l <N
where |[y| < land N > [d(1/p — 1)]. Then

]f(%“z)(sc( sup |«93h<x>|) inf £70)

x€T4, |1l <N

1/p
=C ( sup |a"h<x)|> ( f f;mpdy)
xeT?, |18l <N Td

< C( sup |83/€|> 1 N,

18Ihi=N
which implies that the order of f is at most N and that
klirgo fe=f in D(T%).
By Theorem 2.4.7 and by the definition of the convolution,

(fi= P xKh) =" (fi = ) MK ey (h)

neNd

=Y (=) mKmh(-n),

neNd

where h € C>®(T%) is arbitrary. Observe that the orders of f; and f are at most N,
K is bounded and ]h(n)| < C|n|™ for any I € N. Then for all ¢ > 0 there exists



80 2 £,-Summability of Higher Dimensional Fourier Series

m € N? such that

Z - Z (ﬁ - ﬂ (MK (m)h(—n)| <.

neNd  |n|<m

On the other hand, since
lim (fi = f)(e-n) =0,

we conclude that

Y (h—F)@Emh(-n)| < Y |(fi = F) e-)| = 0

In|<m n|<m

as k — oo, which finishes the proof. |

The atomic decomposition provides a useful characterization of Hardy spaces.
First, we introduce the concept of an atom.

Definition 2.4.17 A bounded functiona is an H pD-atom if there existsacube I c T¢
such that

(i) suppa C I,
(i) Nlallo < [117Y7,
(iii) f1 a(x)x* dx = 0 for all multi-indices k = (ki, ..., kg) with |k| < |d(1/p —
D).

In the definition, the cubes can be replaced by balls and (ii) by
(i) llally < 111Y971P (0<p<g=<o0,q>1).

We could suppose that the integral in (iii) is zero for all multi-indices k for which
|k| < N, where N > |d(1/p — 1)]. The best possible choice of such numbers N is
ld(1/p — 1)].Hardy spaces have atomic decompositions. In other words, every func-
tion from the Hardy space can be decomposed into the sum of atoms (see e.g. Latter
[195], Lu [224], Coifman and Weiss [62], Wilson [353, 354], Stein [290], Grafakos
[143] and Weisz [346]).

Theorem 2.4.18 A distribution f € D(T¢)isin HI',:I (T4 (0 < p < 1) ifand only if
there exist a sequence (ar, k € N) of H E—atoms and a sequence (L, k € N) of real
numbers such that

o0 o0
D lmlP <oo and Y pay=f in D(TY. (2.4.4)
k=0 k=0

Moreover,
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o0 1/p
I £y ~ inf (Z mkV’) :

k=0
where the infimum is taken over all decompositions of f of the form (2.4.4).

The following result gives a sufficient condition for an operator to be bounded
from H 1‘7:' (TH to L p(']I‘d ). If I C T is an interval, then rI denotes the interval with
the same center as / and with length r|| (r € N). For a rectangle

R=Ix---xI;cT? let rR=rl x-- xrl.

Instead of 2" R we write R” (r € N). Foroperators V,, : L1(T?) — L,(T%), we define
the maximal operator
Vif == sup |V, fl.

neNd

Theorem 2.4.19 For eachn € N%, let K, € L\(T%) and V, f := f * K,.. Suppose
that

/ Veal™ dX < Cp,
Td\rl

forall H[E -atoms a and for some fixedr € Nand0 < pg < 1, where the cube I is the

support of the atom. If V. is bounded from L ,, (T% to L, (T9) for some 1 < p; < oo,
then

IVefll, < Coll fllyn  (f € H,(TD) (2.4.5)

forall py < p < pi.

Proof Observe that, under the conditions of Theorem 2.4.19, the L ,,-norms of V.a
are uniformly bounded for all H pDo-atoms a. Indeed,

/ |V*a|P°d)\=/ |V*a|1’°d>\+f [V.a|™ dA
Td rl Td\rl

po/ P
5(] |V.a|” d>\) [rI|'=P/P 4 Cp,
rl

po/p1
< Cp, </1 la|”! d/\> |I|'~Po/P1 +Cp,

< Cpy (PP 1) 0 4

CP
Cpo-

There is an atomic decomposition such that
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o0 00 1/po
— : O D
f= ;ukak in the A )-norm and (gum ) < Cpll fllng.

where the convergence holds also in the H 1':’ (T%)-norm and in the L;(T¢)-norm if
f e H,D (T%). Since V,, : L1(T¢) — L,(T9) is bounded, we have

9]
an = Z Mk Vnak

k=0

and

o0
Vi f 1 <) Ll Vi

k=0

for f € HZ(T). Thus

oo
IV f 112 <3 el P I Vaar |2 < Cpoll f I (f € HO(TD).  (2.4.6)
k=0 Po

Obviously, the same inequality holds for the operators V,,. This and interpolation
proves the theorem if py = 1. Assume that py < 1. Since H ID (T?) is dense in L (T%)
as well as in HPDO (T“), we can extend uniquely the operators V,, and V, such that

(2.4.6) holds forall f € H pDO (T9). Let us denote these extended operators by V! and
V.. ThenV,f =V, fand V,f =V, f forall f € HlD (T?). We get by interpolation
from (2.4.6) that the operator

V! is bounded from HEOO(Td) o Lpoo(T?) (2.4.7)
when py < p < pj. For the basic definitions and theorems on interpolation theory,
see Bergh and Lofstrom [33], Bennett and Sharpley [28] or Weisz [346]. Since

po < 1, the boundedness in (2.4.7) holds especially for p = 1, and so Theorem
2.4.15 implies that V, is of weak type (1, 1):

sup p AV, f1 > p) = IV, fllioo = Cllf g, < ClIS I (2.4.8)

p>0

forall f € L, (RY). Obviously, the same holds for V, . Since V,, is bounded on L (T9),
if fr e H ID (T9) such that limy_, fx = f in the L;-norm, then

klim Vofi =V,f inthe L;(T%-norm.
—00

Inequality (2.4.8) implies that
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klim Vofi =V/f inthe L o (T¢)-norm,
—00

hence V, f = V! f forall f € L;(T?). Similarly, for a fixed N € N, the operator

VN,*f ‘= Sup |an|

[n|<N

satisfies (2.4.8) forall f € H{(T¢) and its extension V}, forall f € Li(T?). Then

sup p A(IVy o f = Vi f1 > p) < supp A(IVy o f = Vi fil > p/2)

p>0 p>0
+ sugp/\(WN,*fk — Vyifl>p/2)
p>
< sugpA(lV/v,*(f — fol > p/2)
p>

N
+ ) sup p A(IVa(fe — £ > p/2N)

n:Op>0
=Clf=fill—0

as k — oo. This shows the equality
Viof =Vnaf forall f e Li(T%.
Moreover, for a fixed p,

AV = Vi f1 > p)
S AV = Vi fil > p/3) + A(Vs fe = Vv fil > p/3)
+ A Vnsfe = Vs f 1 > p/3)
<AV = f) > p/3) + AVafi = Vv fi > p/3)
+ AN (fi = ) > p/3)

C
< ;llf — filit # AV Sk = Ve fi > p/3)

<€

if k and N are large enough. Hence limy_, o Vy . f = V/f in measure for all f €
L;(T%). On the other hand, limy_, « V.« f = Vi f a.e., which implies that

Vof = V.f forall f e L(T%.

Consequently, (2.4.8) holds also for V, and (2.4.6) for all f € HIE (T4 N Ly (T%).
Assume that p < 1, fi € HO(T) N Ly(T¢) (k € N) and that limg oo fi = f in
the H[',:| (T)-norm. By Theorem 2.4.16,
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lim ank = an in D(Td)
k— 00

for all n € N?. Since by (2.4.5), V,, fi is convergent in the L ,(T%)-norm as k — oo,
we can identify the distribution V,, f with the L p(’]I‘d )-limit lim_, o V,, fx. Hence the
same holds for Vy . f:

Vnasf = klirglo Vnsfe inthe L, (T%)-norm.

Moreover,

IVif = Vsl
S WV = Vifilly + 1V = Vv fillp + Vs fe = Ve
< Collf = fillum + 1WVafi = Vv fillp + Vs i = Vs £l

<e€
if k and N are large enough. Thus
Nlim Vy.f =V.f inthe L,(T?)-norm
—00

and, on the other hand,
A}im Vnsf =Vif a.e.,

which implies that V. f = V/ f forall f € H pD (T%). Consequently, (2.4.5) holds for
all f € H(T). [ ]

Unfortunately, for a general linear operator V, the uniform boundedness of the
L ,,-norms of Va is not enough for the boundedness V : H;% (T4) — L,,(T%) (see
[41, 42, 235, 236, 259]). The next weak version of Theorem 2.4.19 can be proved
similarly (see also the proof in Weisz [346]).

Theorem 2.4.20 For eachn € N, let K,, € L{(T¢) and V,, f := f * K,,. Suppose
that

suppp)\<{|V*a| > p} N T4\ rl}) <c,
p>0

forall HE-atoms a and for some fixedr € Nand 0 < p < 1. If V. is bounded from
L, (T%) to Lp](Td) (1 < p1 < 00), then

Vifllpoo = Cpllfllugp  (f € H(T%)).

The weak type (1, 1) inequality follows from inequality (2.4.8).

Corollary 2.4.21 Foreachn € N%, let K, € L\(T?) and V,, f := f % K,,. Suppose
that
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/ |Vial’dX\ < C),
Td\rl

forall Hg-atoms a and for some fixedr € Nand0 < py < 1, where the cube I is the
support of the atom. If V. is bounded from L ,, (T%) to L, (T9) for some 1 < p; < oo,
then for all f € L(T%),

sugpA(IV*fl >p) = Cllflh.
P>

Proof By Theorem 2.4.19 and interpolation,
V. 1is bounded from HEOO (T%) to LP,OO(T‘I)

when pg < p < p;. Since pg < 1, this holds also for p = 1. Thus, by Theorem
2.4.15:

Sugp)\(lV*fl >p) = IVifllhoo = Clfllgo, = CllLfIM
p> '

forall f € Li(T9). (]

Theorem 2.4.19 and Corollary 2.4.21 can be regarded also as an alternative tool to
the Calderon-Zygmund decomposition lemma for proving weak type (1, 1) inequal-
ities. In many cases, this method can be applied better and more simply than the
Calderon-Zygmund decomposition lemma.

2.5 Almost Everywhere Convergence of the
{,-Summability Means

Since the kernels K, and K,"*” are integrable, the definition of the Fejér and Riesz
means can be extended to distributions.

Definition 2.5.1 Let f € D(T9),1 <q <oo,n € Nand 0 < o, 7 < co. The nth
£,-Cesaro means oy " f and ¢,-Riesz means oy, " f of the Fourier series of f are
given by

ol f = fxKI

and
ol® f = fx KT

n 4
respectively.

Definition 2.5.2 We define the maximal Cesaro and maximal Riesz operator by
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o4 f = suplo? f|

neN
and
e Nl . NeRel
O-Z ’f'_ Sup"jg *)f|’
neN
respectively.

If = 1, we obtain the maximal Fejér operator and write it simply as o f :=
o' £. We will prove that the Cesaro and Riesz maximal operators, ¢ f and 07" f
are bounded from the Hardy space H [‘,:' (T?) to the Lebesgue space L p(Td ) when
q = 1,2 0r g = oo and p is greater than a critical index py < 1 which is depending
on q,d and a. If p is equal to this critical index, then weak type inequality holds. As
a consequence, we obtain the almost everywhere convergence of the £,-Cesaro and
Riesz means to the original function. We start again with the triangular and cubic
Cesaro summability.

2.5.1 Almost Everywhere Convergence for ¢ =1 and q = oo

Proposition 2.5.3 [f0 < a <1landq =1 o0rq = oo, then
[offlle = Cllflla (f € Loo(T).

Proof The proof follows easily from the fact that the L (T¢)-norms of the kernel
functions are uniformly bounded (see Theorem 2.3.1) and from Lemma 2.2.8. W

In what follows we use the notation a A b := min(a, b).

Theorem 2.5.4 Suppose thatq = 1,00 and 0 < o < oo. If

d
= — < s
po d+anl =pP=®
then
lotefll, < Colfllup  (f € H(T). 25.1)

Corollary 2.5.5 Ifqg =1,00,0 <a <ooand 1 < p < oo, then

loZfllp, < Coll fll,  (f € Lp(T).

Proof This follows from Theorem 2.5.4 and from the fact that H pD (T4 ~ L p(Td )
forl < p < o0. |
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Proof of Theorem 2.5.4 for ¢ = 1. By Lemma 2.2.8, we may suppose again that
0 < a < 1. Itis enough to show that

/ |ai’“a(x1,xQ)|p dx;dx;
TZ

=/ sup
T2 n>1

<C, (2.5.2)

P
/a(tl,tz)K,l"’(xl —1,X —bh)dtidty| dx;dx;
1

for every H pD-atom a, where 2/(2 4+ «) < p < 1 and I is the support of the atom.
By Theorem 2.4.19 and Proposition 2.5.3, this will imply (2.5.1). Without loss of
generality, we can suppose that a is a H pD—atom with support I = I} x I, and

[27 K2 27 K21 c (27K 27K (j=1,2)

for some K € N. By symmetry, we may assume thatm > x; —#; > x, —, > 0,and
s0, instead of (2.5.2), it is enough to show that

/ sup
T2 n>1

=G

p

/a(fl, YK} (x — 11, %0 — ) 1A, (X1 — 1, X2 — ) dt; dby| dxy dx;
I

foralli =1, ..., 10, where

Al = {(x1,x):0<x; < 27K 0<xy<xy <m0 < w/2},

Ar = {(x1,x2) 1 27K < x| <m,0 < xp <27K%2 x, < w/2},

Az = {(x;,x0) : 278K < x) <, 27K <y < X1 /2, x0 < /2),

Agq = {(x1,x2) : 2K+ X <mXx1/2 <xp <x;— 2_K+2,x2 <m/2},

As = {(x1, x2) : 27K < x —27KF2

<Xy < Xx1,% <m/2}
Ag == {(x1,x2) : x2 > 7r/2,7r—2’K+5 <x<m0<x<x <7}

A= {(x1,x0) i /2 < xp < — 27K g K+2

< Xx; < 7},
Ag = {(x1,x) :T/2 <xp < T — 27K+ (T4+x)/2<x <m— 2_K+2},
Ag = {(x1, x2) i /2 <xg <7 =278 x; 4+ 2752 < x| < (m 4+ x2)/2),

A = {(x1,x) 1 m/2 <x3 < =275 %y < x; < xp + 2752}

These sets are similar to those in Theorem 2.3.1 (see Fig.2.11). f 0 < x; — 1) <
2-K+5 then —2K-1 < x; < 27K+6 and the same holds for x,. If 7 — 2= K45 <
Xy —ty <, thenm —27K+6 < x) < 7 4 27K~1 and the same is true for x;. By the
definition of the H pD-atom and by Theorem 2.3.1,
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P
/ﬁwp/amJﬂ@ﬂ@rﬁuh—bﬂm@rﬁum—hwhﬁzdmdm
T2 n>1 |J1I
P
<2 / sup / |K,:‘“'(x1 — 1, Xy — t2)| La,(x1 —t1,x0 — ) dti dtr| dxydx;
T2 n>1 |J1
2K H—2K
<C,27"2 <C,
and
1 P
/ sup fa(tl,l‘z)Kn’a(M —t1, X2 — ) o (x1 — t1, X2 — ) dti dtz| dxydx;
T2 n>1 1

< 227K < ),

On the set Ay, wehave 275 < x; —f; < mrand 0 < x, — 1, < 27K+2 thus
27K —x <rm+27K1 and  — 27Kl <, < 27KH3,

Using (2.2.14), we conclude

1,
‘/a(fl, )K, (X1 — 11, X2 — )14, (X1 — t1, X2 — 1) dt1 dty
I

SCﬂM”/m—ﬁ—m+m4Wm—m4ﬂ
1

14,(x1 = t1, X2 — ) dt; dty

2K
< Cp2 /P1{2—K+4<X1<7r+2—K—]}1{,2—K—1<X2§2—K+3}

/(Xl — 27K TR (g — 1)V dty dny
I

2K/p—-3K/2
= sz /p / 1{2*K+4<x1<ﬂ'+2”<’1}

gkt gy <p-ke3y (g — 27 KF+3) 7372 (2.5.3)

and

/ sup
T2 n>1

P
La
/Cl(ll, )K,“(x1 — 11, x0 — )1 a,(x) — 11, X0 — ) dt; dtz|  dx;dx;
1

7.‘._,'_271(71 27[(1»3
< Cp22K73Kp/2 [ (-xl _ 271(4*3)73[)/2 dxl d.xz
- —K+4 _o-K-1
<C,.
Here we have used that p > 2/3. Similarly,on A7, 7/2 < x, —t, < ® — 27 K+3 and

7 —2"K+2 < x, — 1, < 7, thus

/2 27K o < —27KF and m 27K o x < 27KL
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By (2.2.14),

1,
‘/a(fl, )K" (x1 —t1, %0 — )14, (x1 — 11, X2 — 1) dty dty
I

< szzK/p/()ﬁ —t1—x2+ 1) —xy + 1)
I

La,(x1 — t1, X2 — ) dt; dty

2K
=< Cp2 /171{71'/272*’(*I <xz<7«'72*’<+4}1{7r72*’<+3<x1<7r+2*’(*1}

/(W — 27K )2 — x4+ 1)V dt dny
1

2K/ p—3K /2
< Cp2KIP3KIY okt er ke

—K+3 -3/2

1{7r—2”(+3<x1<7r-ﬁ-2*’<*1}(7T -2 — X2)

and

/ sup
T2 n>1

<C 22K—3Kp/2/
- w/2—2-K~1

p

/a(fl, fz)K,i’a(xl —t,x — ) lg,(x1 — 11, X2 — ) dti dt| dxydx;
I

n—0—K+4

m4+2-K-1
/ (7T — 2_K+3 — )CQ)_3p/2 de dx1
m

_0-K+3
<C,.

We may suppose that the center of / is zero, in other words [ := (—v, V) X
(—v,v). Let

v

Ai(u, tr) Z=/ a(ty, ) dy and Ar(u, v) Z=/ Ai(u, t) dt,.

14 14

Observe that
|Ac(u, v)| < C2KC/P70 (k= 1,2).

Integrating by parts, we can see that

La
/ alty, n)K,“(x1 — 11, x3 — ) La,ua, (X1 — 11, X2 — 1) dty
I

1,
=AW, )K,“(x; —v, x0 — )L ayuas (X1 — v, X2 — 1)

+/ Ai(t1, )0 K (xy — 11, xa — 1) Layuag (X1 — 11, X2 — 1) dty,

v

because A|(—v, ;) = 0. Let us integrate the first term again by parts and use that

Ar(v,v) = / a(ty, b)dtydt, =0
L Jh
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to obtain
1,
/ a(t, n)K,“(x1 — t1, X2 — )L a,ua, (X1 — t1, X2 — 1) dt; dty
L JI,
v
La
= / Ary(V, )0 K, (x1 — v, X2 — )L aquag (X1 — V, X2 — ) dtp
—V
La
—i—/ A1, )OI K, " (x1 — 11, x2 — ) La,ua, (X1 — 11, X2 — 1) dty dty.
LJDL

Note that
Xi—th—xa+t>x —1)/2 (2.5.4)
on the set Az and
Xi—Hh—X2+tH>@m—x+05)/2 (2.5.5)

on the set Ag. If n < 2K, we get from Lemma 2.2.17 and (2.5.4) that

‘/d(h, )K= 11, %0 — ) 1A, (x1 — 11, X2 — 1) dty dty
i
< Cpn'—122KIP2K
1 =) P = )T Y () — v — ) dny
)43
+ Cpnl—'yzZK/p—K

/(x1 — 1) P = 1) T g (61 — 11, x2 — 1) dhdty
I

< Cp2* KPR K ki rir iy Lokt cy 242K
(0 = 27K — 27Ky, (2.5.6)

where 0 < 8 <1,y =caorvy =1.0n Ag, we use (2.5.5) to obtain

La
/G(ﬁ, 1)K, “(x1 — 11, X2 — )14, (X1 — t1, X2 — 1) dt1 dty
I

< Cpnl—fy22K/p—2K

1-3

(m—x2+0) " —x1 + 1) () — v, x0 — ) dby

I
+ Cpnlf’y22K/p7K

/(W — x4+ 1) P —x + tl)ﬁ_ﬁ'/_llAg(xl — 1, X — h)dtdh
I

2K/p—2K—K
< 2%/ g j2—2-K1 cxy <m—2-K+4) {(rty) j2-2-K <y <m—2-K+1)
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(m—xp = 27K — xy — 27Ky (2.5.7)
Similarly, if n > 2%, then we get from (2.2.15) and (2.5.4) that
/Ia(ll,l‘z)Ki’a(xl —t, X — )l s(x1 — 11, X0 — ) dt; diy
< Cpn12%K/P /(xl — 1) P = 1) g (61 — 11, X2 — 1) dty diy
i
< C 2K K L ki ik Lk cy ey 242K
(x; — 27K 71=0(x, — 2= K-1)f=-1 (2.5.8)
and, by (2.5.5),
/Cl(h, B)K) () — 11, %0 — )1 ag(x1 — 11, X2 — 1) dty db
15 C,n2%/p
/I(W —x2+ 1) P — x4+ 1) g (1 — 11, x0 — 1) dt db
< Cp K P ket g ema k) V() j2—2K <y <m0+
(r—xp = 27K 180 — x, = 27K=1)f=—1, (2.5.9)

Choosing 3 = /2, we conclude

/ sup
T2 n>1

< Cp22K72Kp7K'yp

p

1,
/a(fl, DK, (x1 —t1, %0 — )L a,(x1 — 11, X2 — 1) dty dtz| dxidx;
I

m42-K-1 x1/2+4+27K
(x — Z*K*I)*P(IH’/Z)(X2 _ 2*K*1)*P(1+7/2) dx,dx;
2-K+4 2-K+1
< Cp22K*ZKP*K"/PZ*K(I*p(lJr",’/Z))2*K(1*p(1+7’/2))
<C,

and

/ sup
T2 n>1
7(_2—K+4

7(_2—K+l
< CPZZK—ZKp—Kﬂ,p/ /
w/2—2"K=1 J(n+x,)/2—-2"K

(r— x5 — 2—K—1)—P(H—7/2)(7T —x — 2—K—1)—P(1+“//2) dxidx,

< C,22K~2Kp=K1py=K(1=p(L+7/2) =K (1=p(l+7/2)

p

/a(n, YKy — 11, %0 — ) 1Ay (x1 — 11, X2 — ) dty dby | dxidx;
1
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E pr
whenever p > 2/(2 + 7). Recall thaty = aor v = 1.
Since
)C2—l2>()€1—11)/2 on Ay
and

T—x1+H>(m—x3+1t)/2 on Ay,

Lemma 2.2.17 implies

1,
/0(11, DK, (x1 — 1, X2 — )14, (X1 — t1, X2 — t) dt; dty
I

< Cpnl_“”22K/”_2K X1 —v—x24+ 1) F
1)

(1 — 1) 7, () — v, x0 — B) diy

+ C,,nlf"’ZZK/p*K /()C1 —H —Xxy+ [2)717“3
1

(1 — 1) 7 oy, (e — 1, %0 — ) dndt
< Cp2*KIPT2EEA o ki cna iy Ly 22K iy, 2K
(x) —xp — 278170, — 27K yf=—d (2.5.10)

and

La
/0(11, 1)K, (X1 — 11, X2 — )14, (X1 — 11, X2 — 1) dt1 dty
i

< Cpnl_"’ZZK/”_ZK ) (xi—v—x24+0)""F
2
(m—x2 + )77 My (6 — v, X2 — ) dty

+ Cpn'"122K/PK /(x1 —t = x4 1) 7
1

(m —x2 + 1) gy (x) — 11, X2 — 1) dtydty

= CpZZK/pizKiK’Yl{ﬂ/Z—Z*K*I <xp<m—2-K+4} l{xz+2*K+‘ <xy<(m+x7)/2+2K}
(x1 —xp =278y 1B — xp, — 27Ky (2.5.11)

whenever n < 2K If n > 2K then by (2.2.15),
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1
/a(ll, D)K, (X1 —t1, X2 — )14, (x1 — 11, X0 — 1) dt; dtp
I

< Cpn 122K/ /(xl —t—xa+ 07
i
-1
(1 — 1)y, () — 11, %0 — 0) dtydty
2K/ p—2K—K~
< C,2%/p M-kt ey <rpo-5-1y Lz, 22K <y <y —2-K+1)

(1 —x = 275) 10y — 27Ky (2.5.12)

and

1,
‘/G(ﬁ, DK, (x1 —t1, %0 — )L, (x1 — 11, X2 — 1) dty dty
I

< Cpn12%K/p /(xl —t—x 1)
1

(m—x2 + t2)ﬁ77711A9(x1 — 1, X — h)dhdh
=< szzK/p_ZK_KW 1{7r/2—2*’<*1 <xp<m—2-K+4} 1{x2+2*K+‘ <x1<(m+x7)/2+2K}
(x1 —xp =278y 1B — xp, — 27Ky (2.5.13)

Choosing again § = /2, we obtain
P
/a(tl,tz)Kj’“(xl —t1, X —t)1a, (X1 — t1, X2 — ) dti dty| dxidx;

/ sup
T2 n>1 1

< Cp22K—2Kp—K'*,'p

T2-K-1 x;—2-K+1
/ (x; —xp — 2—K)—P(1+’Y/2)(xl _ 2—K—1)—P(l+'¥/2) dx,dx;
2K+ x1/2-27K

< C,22K-2Kp=K1pp=K(1=p(147/2) ) =K (1=p(1+1/2)

=C

and

/ sup
T2 n>1
p_n—K+4

(T4x7)/2+27K
< Cp22K72Kp7K'yp / /
m/2—2-K=1 Jxy42-K+1

(x1 — xp = 27Ky PUBD (1 _ ) — 27 K1Y=/ gy dx,

<C, 22K =2Kp—Kvpy—K(1=p(1+7/2) =K (1=p(1+7/2))

P
1,
/a(fl, K, (x) — 11, x0 — )L a,(x1 — 11, X0 — 1) dt; dty|  dx1dx;
I

S Cp?

whenever p > 2/(2 + 7).



94 2 £,-Summability of Higher Dimensional Fourier Series

Finally, inequality (2.2.19) imply

1,
‘/G(fl, DK, (x1 —t1, %0 — )L, (x1 — 11, X2 — 1) dty dty
I

< C,2%Kr /(Xl —t—x2+ 1)
I
(2 — 1) 7 A (61 — 1, X2 — 1) dty dty
< Cp22K/p_KV1{2*K+4<x1<7r+2’K’1}

=1
1{x1—2’K+3<x2§x|+2*K}/(x2_t2) T dn
I

2K/ p—Kv—K
< C2 KPR K L ki pyrr

CK—1\—y—1
1{x1—2’K+3<x2§x1+2*K}(x2 -2 ) 7

and
1
/a(fl,l‘z)Kn’a(xl —t, X — )y (x1 — 11, X2 — ) dt; dty
I
< C,2%K/p /(xl —t—x+0)!
I
-1
(m—=x1+0)"7 1a,(x1 —t1, X0 — ) dt1 dty
2K/ p—K
< Cp 2K ket gy cpniy)
-1
L—2-Kaxy<xpp2k03y | (M —x1+1)77 dt
L
2K/ p—Ky—K
< sz /p—K1 1{7r/272*’<*‘ <xp<m—2-K+4)
—K—1y—y—1
l{xz72*K <x1<xz+2*K+3}(ﬂ_ —x1—2 )y
Hence

P

/0(11, YK} — 11, %0 — )1 ag(x1 — 11, X2 — ) dty dty | dxidx;
i

/ sup
T2 n>1

T2 K1 xi+27K
< C 22K Kyp—Kp / (x2 _ szfl)fp(’val) dx2dx1
X1

D—K+4 _0—K+3
T2~ K+ X427 K+3

<C, 22K—K~yp—Kp _ Z_K_')_”(”’H)dxldxz
2-K+3 Xo— 2-K

<Gy

and
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/ sup
T2 n>1

< Cp22K—K7p—Kp /

p

1
/a(ll,l‘z)K,,’a(Xl —t, Xy — )l (x1 — 11, X — ) dty dtz| dxidx;
I

T2 K+4

X2+2—K+3
/ (m —x; =275 H=PO*D dx dx,
X

7/2-27K-1 Jxy 2K
T—2—K+3 x;—2—K+3
< C,2¥~Kp=kKp f f (m—x; — 27K 7PO0D g xsdx,
7/2-2-K+1 Jy 42K
S Cp!
whenever p > 1/(1 + ), which finishes the proof of the theorem. |

Proof of Theorem 2.5.4 for ¢ = oo. We assume again that & < 1 and a is a cube
HI',]—atom with support I = I x I,

(27227 %21 cc 2% 27 F T (=12
for some K € Z. As before, it is enough to show that

/ sup
T2 n>1

=G

p

/d(ll, DK (X1 — t, %0 — )14, (x1 — 11, X2 — ) dty dtz| dxidx;
1

foralli =1,2,3,4,5 where ™ > x; —t; > x, — 1, > O and

Al ={(x1,x):0<x; < 27K 0<xp <x) < m},
Ay = {(x1,x2) : 27555 < x) < 7,0 < xp < 27572,
Az = {01, x0) : 27K < x) <, 2782 < xy < xy/2),

Ay = {(x, x2) 1 2757 <y < x1 /2 < xp < xp — 27K,

K+2

As = {(xl,xg):2_K+5 <x<m,x —2 < Xy < X1}

(see Fig.2.12). The estimation on the set A; is the same as before in the proof for
q = 1. Inequality (2.2.28) implies

'/a(ﬁ, DK (x) — 1, x0 — ) 14,(x1 — 11, X2 — B) dty dby
I

< C,2%K/p /(Xl —t =X+ h) T — 1)
I
La,(x1 — t1, X2 — o) dty dty

2K
< sz /p1{2—K+4<X1<7T+2—K—1}1{_2—K—1<X252—K+3}

/(xl — 27Ky — 1) dr dty
I
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2K/p—K—-K
< sz /p /71{27K+4<xl<7r+2—1<—1}

—K+3y—1—
ookt cgyeprs3y (g — 27K F) 7177,

where v = « or v = 1 in the whole proof. Furthermore,

/ sup
T2 n>1
0—K+3

T2 K1
< szZK—Kp—K')/p (xl _ 2—K+3)—p(1+’y) d.XQd)Cl
2—K+4 72—1(—]

p
/a(tl, DK (x) — 1, X0 — )14, (X1 — 11, X2 — ) dty dty| dxydx;
I

= Cy,

provided that p > 1/(1 + ~). For any 0 < 8 < a, we get from (2.3.1) that

/Cl(lh )K(x1 — t, %0 — )14, (x1 — 11, x2 — ) dt d1y
I

< €, 22K /Py f Gy — 1)y — 1)1
I

Lay(x1 —t1, X2 — ) dt; dty

2K/p—2K—K
< sz /p 71{2—K+4<xl <m42-K-1} 1{27K+1<x25xl/2+24<}

(x) — 27K71)717"/+ﬂ(x2 _ 271(71)717/3’
whenever n > 2X. Lemma 2.2.21 and (2.5.4) imply that

|8j[(é’0,a(xl’x2)| < Cnl—axl—l—a-rﬂxz_l_g

on Az, where j = 1, 2. Similar to the proof for ¢ = 1, we get by integration by parts
that

fa(l‘l, DK (x) —t, x0 — )14, (x1 — 11, X2 — ) dty diy
I

v
< / Ar(, ) K2 (x) — v, X2 — ) 1o, (X1 — v, x2 — 1) dtp

+ / Aj(t, ) K2 () — 11, x0 — 1) 14y (xy — 11, X2 — 1) dty diy
I JI

< Cpn'022KIP 2K (e — )T (e — 1) T Py () — 11, 00 — 1) d
)63

+ Cpn17a22K/p7K /(xl _ t1)717a+,‘3(x2 _ tz)flfﬁ
1

Lay(x1 — 11, X2 — ) dt; dny

2K /p—2K —Ka
< C,2%/r Lo-k+4 cxy <mp2-k-1) L o=k +1 iy <1, j242-K)
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(xl _ 2—K—1)—1—(1+,3(x2 _ 2—K—1)—l—ﬁ
if n < 2X. Thus

/ sup
T2 n>1

< Cp 22K72Kp71('~/p

p
/Cl(h, DK (x1 — 11, X0 — ) 1a,(x1 — 1, X2 — ) dty dty| dxydx;
I

a+27K=1 axy /242K
/ (xl _ Z—K—l)(—l—’*/-i-ﬁ)p(xz _ Z—K—l)—(l+ﬁ)p dxzd.X]
2-K+4 2—-K+1

< C,22K~2Kp=K1pp=K(1=G=P+1p)p=K(I=(45)p)

S Cp?

whenever p > 1/(1+()and p > 1/(y — B+ 1). B = /2 implies p > ﬁ
Using (2.3.2), we see that

/a(tl»IZ)K,?O’a(xl — 1, X — )1 4,(x1 — 11, X2 — ) dt; dy
I

< Cpn12%K/P /(Xl —t1 =X+ )Ty =)
1

14,(x1 —t1, X0 — ) dt1 dtr
< Cp2*KIP=2RKA o kvi cnra k) L (2o K <y, 2K
(x) — xp — 27K 19 +B () — 27 K=1)=1=0) (2.5.14)

where n > 2% and 0 < 8 < a. Since x» > x;/2 and x» > x; — x» on A4, Lemma
2.2.21 implies

, 1—a —1- Cass
|0, K2 (x1, x2)| < Cnl=ox 70 (g — xp) 7170,

where j = 1, 2. For n < 2%, we get by integration by parts that

fa(l‘l, DK (x) — 1, x0 — ) 14,(x1 — 11, X2 — b)) dt; diy
I

=

/ Ay (U, )L K2 (x) — v, X0 — )14, (X1 — v, X2 — 1)) dby

+ / Ai(t1, )OI K2 (x1 — t1, %0 — )14, (x1 — 11, X2 — B) dt dty
L JI

< Cpn'T0?K/r2K / =) P = —xp )
)63

La,(x1 — t1, x2 — o) dty
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+ Cpn' 022K/ /(xl )P =t —xp 1) O
1

La,(x1 — t1, X2 — ) dty dty
< Cp2* KPR ki k1) Ly jm2K <y xy—2KH)
(x) — xp — 27Kyt 0 () — 2= K-1y=1=5, (2.5.15)

From this it follows that
p
/a(fl, D)Ko (x1 — 11, X0 — )14, (x1 — 11, X2 — ) dti dty| dxydx;

/sup
T2 n>1 |J1

42 K1y K
< CPZZK—ZK[)—K“/[)‘/‘ /
2-K+4 x1/2-2"K

(xl — Xy — 271()(71774’@)[)()(1 _ 27K71)*(1+[})p dxdeI

< CPZZK*ZKP*K“/PZfK(lf(vfﬁJrl)p)27K(17(1+6)p)

= Cp9

whenever § = y/2 and p > %
Finally, since x, > x;/2 also on As,

/a(l‘l,lz)K,?o’a(xl — 1, X0 — )14 (x1 — 11, X2 — ) dt1 dy
I

< C,2%/r /(M — 1) Ha (X1 — 11, X2 — 1) dty db
1
2K/p—2 CK-1y-2
< Cp22K P 2K ks cnpa ko L 2ok gy <y 2y (1 — 2757

and so

p
/ sup fa(tl,tz)K,?o’a(xl —t, X — )1, (x1 —t,x2 — ) dtdty| dxydx;
T2 n>1

1

m+2-K-1 x+2°K
< CPZZK_zKp (x1 — 2—K—1)—2p dx,dx;
2-K+4 X —2-K+3
<C,.
This completes the proof. |

If p is smaller than or equal to the critical index, then this theorem is not true (see
Oswald [253] and Stein, Taibleson and Weiss [292]). More exactly, we have

Theorem 2.5.6 If ¢ = oo and o = 1, then the operator o1 is not bounded from
HE (T9) 1o Lp(Td) if p is smaller than or equal to the critical index d/(d + 1).

However, if p is equal to the critical index, then we can verify a weak type
inequality.
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Theorem 2.5.7 Suppose thatq = 1,00 and 0 < o < oo. If

. d
o= d+anl
and f € HJ(T?), then
,Q — No 1/
%Zﬂum—iWMdf>p)msCWMﬂ (2.5.16)

Proof of Theorem 2.5.7 for ¢ = 1. We may suppose again that 0 < o < 1. We use
Theorem 2.4.20 and prove that

sup p”/ T\ (ola > p) < C

p>0
for all Hg(z Loy-atoms a. In other words, we have to show that
A (SUP /a(l1, )K= t1, %0 — )14, (X1 — 1, X2 — ) dty dby| > p)
n>1 I

< Cp—2/(2+a)

fori =1,...,10and p > 0. Since

MWWMM>ms/WwWW, (2.5.17)
Td

the desired inequality follows from the proof of Theorem 2.5.4 fori =1, 6, 5, 10.
The same holds fori = 2,7 if « < 1. So for i = 2, 7, we suppose that o = 1.
Fori = 2 and p = 2/3, we have seen in (2.5.3) that

’/;a(fl, )KL (x) — 11, X2 — 1) 14, (x1 — 11, X — 1) dt; dty
< C23K/21{2—K+4<X1 <rt2-k- ook oy <o-k43y (X — 27K+3)73/2.
If this is greater than p, then

Lip-—x+4 <y <mpa-x-1y (X1 — 2_K+3) < Cp_2/32K Li_ok-1 oy <2-K43)

and
2_K+4<X1 <Cp_2/32K +2—K+4.
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)

Consequently,

A (sup
n>1

< 1
- /']I‘Z [1(24<+4<Xl<W+2—K—1,(X1*2’K+3)<CP’2/32K1(,2—1@102524@3)

< Cp72/32K/ 1{,2—K—1<x2§2—K+3}dX2
T

1,
fa(ll, D)K,“(x1 —t1, % — )1 a, (X1 — 11, X2 — 1) dty dty
i

} dx1 d)CZ

< Cp’2/3.

Similarly,

La
/11([1, D)K,“(x1 — 11, X2 — )1 a4, (X1 — 11, X2 — 1) dt; dtr
I

< C23K/21{ﬂ./2_2—1<—1 <xp<m—2-K+4)

Lir—o-k43 <y cqqa-k-1y (T — 2—K+3 _ x2)_3/2.
If this is greater than p, then
- 3
1{77/2,2—1(—1<X2<7T,2—K+4}(7T -2 B+3 _ .X'z)

< Cp72/32K Lim—2543 <y, <mg2-K-1-

Let us denote the set of (x;, x») for which the preceding inequality holds by H;. If
(x1, x2) € H7, then

7 =27k _Ccp3K < xy < — 27K,

Furthermore,

A (sup
n>1

< / La, (x1, x2) dxs dx,
’]I‘Z

La
/11(11, DK, (x1 —t1, X2 — )1 a4, (X1 — t1, x0 — 1) dt1 dty
i

e

< CP_2/32K/ Lir—o-&+3 <y <pp2-k-1) d Xy
T

<Ccp 2.

For i = 3, 8,4,9, we may suppose that v =« and p =2/(2 + o). We get by
(2.5.6) and (2.5.8) that
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1
/ll(tl, D)K,“(x1 —t1, X0 — )14, (X1 — 11, X2 — 1) dt; dtr
i

S C1{27K+4<X1<7T+2’K’I}1{2’K+'<x2§x1/2+2”(}
—K—-1\—1-03 —K—1\f—a—1
(xr =270 P =270 )T

If this is greater than p, then

1{2—K+1<x2§xl/2+271<}(.x2 — 27K71)

-1l K-
< Cp Ho-p 1{271<+4<x]<ﬂ+24<71](x1 -2 ) THed,

Note that x; /2 + 2~X < x;. Choosing 3 such that — lljfﬁ +1<0,ie,a/2 <8<
1, we obtain

A (sup /a(tl, DKV (x) — ty, %0 — ) Lo, (x1 — 11, X2 — 1) dty dp| > P)
n>1 1
—1/Q2+a)  9—K—1
P +2 X %
< — 42 dx
—K+4 2
__ 1 g —_K—1 _ 48
+ Cp 1+a—p3 (_xl — 2 ) I+a—p3 d_xl
p1/@ta) 4 2-K-1
< Cp et 4 Cpfﬁpﬁv -4
— Cp—2/(2+a)'

Similarly, by (2.5.7) and (2.5.9),

1
‘/a(fl, )K,“(x) — 11, x0 — )L, (x1 — 11, X2 — 1) dt; dty
I
< Clygjpox-1cxycn—2-54 L (riny) j2—2-K <) <m—2-K+1)
(r = xp — 27K )10 — x; — 27 K-1)fma-l
If this is greater than p, then

k-1
L{(rtn) j2—2-K <xy <m—2-k+1y (T — X1 — 2 )

-l K==
< Cp +a—p 1{71-/2,2—1(71 <x2<7.r72—K+4}(7T —xy—2 ) FeB,
Here (1 — x,)/2 4+ 27X < 7 — x,. Choosing 3 as before, we obtain
A (SUP /a(fl, K} () — 1, %0 — )1 ag(x1 — 11, X2 — 1) dty db
n>1 1

T_n—K+4

5/ T2 Ky

—pV/@te) _p-K-1

-
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—1/@+a) _p—K-1

TP LK fe_ 18
+ Cp I+a—3 (71— — Xy — 2 ) 1+a—3 dxz
—T
< Cp et 4 Cpfﬁpﬁv -4

— Cp—2/(2+a')'

For A4, we get from (2.5.10) and (2.5.12) that

/a(tl, DKV (x) — ty, %0 — )4, (x1 — 11, X2 — 1) dty dby
I

< Clp-stacy cngrk-1y 1 ey 2—2-K <y < —2- K41
—K\—1-3 —K—1\f—a—1
(X1 —x2—=277)" P (x; =2 )T

If this is greater than p, then

K
Ly, j2—2-K <y <y —2-k+1y (X — X2 — 277)

o _K—]. fret
<Cp =7 1{2-K+4<xl<,r+2_x-1}(x1 -2 ) .

Hence
lLa
A (sup fa(tl, DK, (x1 —t1, 60 — ) 1A, (x) — 11, %0 — 1) dt; dtp | > P)
n>1 1
pV/@r0) K=
f/ x1dx
2-K+4
_a 7 Ky Bast
+CP 1+8 (xl -2 ) +3 dX1
p1/@+a) 4 o—K-1

=1 (fB=a=1

< Cp72/(2+0z) + Cp*ﬁpm( 43 +1)

— Cp—Z/(Z-Hy) .

Here we have chosen (3 such that ﬁ?ﬁgl +1<0,ie,0< (< a/2.

Finally, by (2.5.11) and (2.5.13),

1,
/a(ﬁ, )K, (X1 — 11, X2 — )14, (X1 — 11, X2 — 1) dt1 dty
I

< Cliypjpma-x-1 cxyen—a-k+4y Ly p0-K41 o) < (mry) 242K}

(X1 — x = 275) 1P — xy — 27K

and
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K
Ly 2541y <(mpay) 2425y (X1 — X2 —277)
Boa-1

1
_ —K-1 7
<Cp ™7 1{7r/272"(‘] <X2<7T72_K+4}(7r —x2—2 )

This implies that

B—a—1 _
042K ey < (m—x, = 27K 4 x4 27KH

and so
A (SUP /ll(tl, B)K) () — 11, %0 — )1 ay (X1 — 11, X2 — 1) dty dt
n>1 1

q—2—k+4

5/ T2 0K,

—p- Vet _p-K-1 2

)

e p /@) _p—K-1
1 f-a-1
L —K—1y 5t
+ Cp ™7 (m—x—2 ) T dx,
—T
—1 oI

< Cpfz/(2+a) + Cp*ﬁpzw En )

— Cp—Z/(2+u')

with the same (3 as for Ay, i.e.,0 < 8 < «/2. The proof of the theorem is complete.
|

Proof of Theorem 2.5.7 for g = oo. Similar to the proof for g = 1, we have to show

that
> p)

A <sup
n>1
< Cp—z/(2+u)
fora<1,i=1,...,5, for all Hz':/‘(Ha)—atoms a and p > 0. For i = 1,2,5, this
inequality follows from (2.5.17) and the proof of Theorem 2.5.4. For i = 3, 4, we
may suppose thaty = cvand p = 2/(2 + o). We have seen in (2.5.6) and (2.5.8) that

/a(tl» 1)K (X1 — t1, X2 — )14, (x1 — 11, X2 — 1) dty dty
I

/a(fl, DK (x) — 1, x0 — )14, (x1 — 11, X2 — B) dty diy
I

=< Cl{2*’““<x| <m++2-K-1} 1{2*’(*‘ <xp<x1/2+2K}
(x) — 27K71)7lfa+33(x2 _ 27K71)717ﬁ.

If this is greater than p, then
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—K—1
Lokt cgyeny japa-ky (12 — 27571

1 R N e
<Cp ™ 1{2‘K+4<x1<77+2"<“}(-x1 -2 ) A

Since x1/2 + 27X < x; and 3 can be chosen such that — lff_gﬁ +1<0,ie.,0<
B < a/2, we obtain ‘

A (Sllp /a(l‘l, DK (x — 11, x0 — )14, (X1 — 11, X2 — ) dty dby | > P)
n>1 1
—1/Q24a) L H—K—1
p +a) 4 o x1 T
< — +27%dx;
2-K+4 2
1 ™ I+a—f3
+Cp ™ / (x; — 275155 dxy
p*l/(2+n)+27K—l
< Cp U 4 Cp—ﬁpﬁ(—%ﬂ)
— Cp—z/(2+rk).

Similarly, by (2.5.14) and (2.5.15),

‘/a(ll,l‘z)K,?o’a(Xl — 1, X — )1l 4,(x1 — 11, X2 — ) dt; diy
I

2K/ p—2K —K
< C,2%/r Mi-k+4 <y <m2-K -1y L, 22K <xy <y —2-K41)

(01— xp = 27F) IRty — 27K,
which implies that

K

Ly j2—2-K <y —2-k+1y (X1 — X2 — 277)
SR K
< Cp™ i 1{271<+4<xl<7r+24(71](x1 -2 ) THed,

Hence
A (SHP /a(l‘l, DK (x) — 1, x0 — ) 14,(x1 — 11, X0 — ) dti dbp| > p)
n>1 1
p*l/(2+(x)+2fk—l
< Xy dx
2-K+4
1 g —K—1 __+8
+ Cp Tas (x1 —2 ) =8 dx
p—l/(2+n)+2—K—1

< Cp Yo 4 Cp*ﬁpﬁ(ﬂl%iﬁl)

— CpYr),
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1+

Wwhere — I+a—p

4+ 1 < 0,ie.,a/2 < [ < «.Thiscompletes the proof of the theorem.
|

Of course, (2.5.16) cannot be true for p < po, i.e., o'* is not bounded from

H E (T9) to the weak L ,,,OO(T" ) space for p < py. If the operator was bounded, then
by interpolation (2.5.1) would hold for p = pg, which contradicts Theorem 2.5.6.

Oswald [253] proved a similar theorem to Theorem 2.5.4 for the Riesz means of
the Fourier transforms and for ¢ = co. Theorems 2.5.4 and 2.5.7 can be found in
Weisz [330, 339]. For a detailed proof of the multi-dimensional version, see [337,
338, 341, 344].

Marcinkiewicz [233] verified for two-dimensional Fourier series that the cubic
(i.e.,q = oo)Fejérmeans of afunction f € L log L(T?) converge almost everywhere
to f asn — oo. Later Zhizhiashvili [364, 366] extended thisresulttoall f € L (T?)
and to Cesaro means and Berens, Li and Xu [30] to g = 1. The general convergence
result can be found in [330, 337-339, 341].

The next corollary follows easily from Theorem 2.5.4.

Corollary 2.5.8 Suppose thatg = 1,00 and 0 < a < 00. If f € L (T9), then

sugp)\(aZ’”f >p) <Clflh.
p>

The density argument of Marcinkiewicz and Zygmund implies

Corollary 2.5.9 Suppose thatg = 1,00 and 0 < a < 00. If f € L(T9), then

lim o/“f=f ae

n—o0

Proof Since the trigonometric polynomials are dense in L;(T¢), the corollary fol-
lows from Theorem 1.3.6 and Corollary 2.5.8. ]

2.5.2 Almost Everywhere Convergence for q = 2

Theorem 2.5.10 Suppose thatq =2, (d —1)/2 < a <ocoand~y € P. If

d
Po:

= —— < p < 00,
d)2+a+1/2

and f € H(T?), then
o2 f], < Coll fllug -

Proof Let us choose N € N such that N <a —(d —1)/2 < N + 1. As we men-
tioned in Sect.2.4, we may suppose that the support of an atom « is a ball B with
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radius 3,27 %X~! < 3 < 27K (K e N). Moreover, we may suppose that the center of
B is zero, i.e., B = B(0, 3). Obviously,

/ lo2*Ya(x)|? dx
Td\(rB)

la'22K 7] -1
< Y sup |02 a(x)|P dx
i=alq@i2)—1 ¥ BOGH227FNBO, (+1)27F)NTY nzd!/22K+1
la'228 7] -1
+ Z sup |05'“”’a(x)|”dx
i=ad']—1 B(0,(i+2)2-¥)\B(0,(i+1)2-K)NT? n<d!/22K+1
=: (A) + (B),

where r = 84'/2. Note that if K < 3, then the integral is equal to 0.
We use Taylor’s formula for g () = Op(n(x — 2kmw — t)):

N—1 d i
) . t
g =Y Y .. 8:;’gk(0>]"[— + Z o ofaen 5
1=0 lilli=t =t = j=1t
for some 0 < v < 1. Here

. g (1) = (=)l gl 9By (n(x — 2k — 1)).

Using this with ¢t — 2k instead of ¢, Theorem 2.2.30 and the definition of the atom,
we obtain

0> a(x) = (zﬂ)dz /Bﬂkﬂa(t)ﬁo(n(x—t))dt

keZd
= G P /B%"(”
= (t; — 2k;m)"
fonx =) =Y > a0y k(O)]‘[’—
1=0 Jilli=l j=1 ek
Nl il
- G 2 2 Y fym e

, o~ 4t — 2k; 77)’
o - -8319()(71()( — 2km) — nug(t — 2k7r)) 1_[ dt,
j=1

where 0 < v; < 1. Then, by Corollary 2.2.28,



2.5 Almost Everywhere Convergence of the £,-Summability Means 107

|05’G’”/a(x)| <C, Z p@=D/24N—-anKd/py—KN

keZd

/ llx — 2k — v (r — 2km) ||, /277 ar. (2.5.18)
B+2k~

Moreover,

sup  |o2a(x)| < C, Z 2K ((d=1)/2-a)9Kd/p

n>d1/22K+1 =
/ lx — 2km — v (¢t — 2k7r)||2—d/2—u—1/2 dt
B+2km
=1 A1(x) + Ax(x),
where

Ay (x) 1= 2K(@=DR-aKdlp f lbe = vot ;272 dt
B+2km

and

Az(x) = Z ZK((dfl)/Zf(y)de/p
keZd k#0

/ I = 2 — e (r = 2kl .
B+2km

If k=0, u € Band x € B0, (i +2)27%)\ B0, (i + D27%) N T for some i =
4ld'2| —1,..., [d"22K 7] — 1, then

lx — ull > llxlla — llull, > i27X.
In case k #0, u € B+ 2km and x € B(0, (i +2)27%)\ B(0, (i + D27 %) N T,
one can see that
lx —ull> = |Ikll2/4.
Then
Ar(x) = szK((dfl)/z’“)de/P/(isz)fd/Zfa—l/z dt
B

< szKd/Pi—d/Z—a—l/z

and
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Ay(x) < C) Z 2K((d—l)/2—a)2Kd/17/ ”knz—d/z—a—uz dt

keZd k0 B+2km
<C, Z 2K(—d/2—1/2—a)2[(d/p”k||2—d/2—l/2_u
keZd k0

o0
<c, Z 2K(—d/2—l/2—a)2[(d/pj(—d/2—l/Z—a)jd—l

=1
=G

for p >d/(d/2 + o+ 1/2). Hence,

|d'?2K x| —1 |d'?2K x| —1
(A <c, > Kgshfpedpestid o N K < ¢
i=4d'/?2]—1 i=4|d"/2]—1

ifp>d/d/2+a+1/2).
Applying Taylor’s formula for N 4 1 instead of N, we get similar to (2.5.18) that

\o_z,a.'ya(x)| <C, Z p(@=D/2+(N+1)—anKd/py—K(N+1)

kez

/ lx —2km — v (t — 2k7r)||2‘d/2—”—1/2 dt
B+2km

and
Sup |0'5'Ot7’7'a(x)| S Cp Z 2K((d71)/2*0’)2Kd/p
n<d!/22K+1 =
/ lx — 2km — v (t — 2k7r)||2*d/27a71/2 dr.
B+2km
The inequality
(B) <C,

can be shown as above. .

Corollary 2.5.11 Supposethatq =2, (d —1)/2 <a <ococandyeP. If1 < p <
0o, then

loZ* fll, < Coll fll,  (f € Lp(Th).

Theorem 2.5.10 was proved by Stein, Taibleson and Weiss [292] and Lu [224]. The
author generalized it for other summability methods in Weisz [332, 334]. The theorem
is not true if p is smaller than or equal to the critical index d/(d/2 + a + 1/2) (see
Stein, Taibleson and Weiss [292]).
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Theorem 2.5.12 Ifqg =2,(d —1)/2 < a < ccand~y € P, then the operator o™
is not bounded from HII,:| (T%) to L,,(Td) if p is smaller than or equal to the critical
indexd/(d/2 + o+ 1/2).

If p is equal to the critical index, then we have again a weak type inequality.

Theorem 2.5.13 Suppose thatq =2, (d —1)/2 < a <ocoand v € P. If

d
P = v at 1,2

O md
and f € H, (T%), then
o2 00 = iglgpk(oZ*‘“’f > < Clifllug-

Proof We will use Theorem 2.4.20. Let us introduce the set
E,:={i >4|d"?] — 17712 5 ¢l pa=Kdir)

where p = d/(d/2 + o+ 1/2). Observe that

P A141 > P T\ 0 B)) = Cpr Y 012K

i€k,
If k is the largest integer for which k=4/2==1/2 5 C=1p2=Kd/P then

pﬂA({A1 > p} N T4\ (rB)}) < pr2Kdpd < C.

The same inequality for (A;) is trivial. We can estimate sup,, _ 129+ IJﬁ‘a’Wa(xﬂ
similarly, which shows the theorem. |

Corollary 2.5.14 Suppose that g =2, (d—1)/2 <a<oo and veP. If f €
L1(T%), then

sup p M@ f > py < C||flh.
p>0

As in the previous subsection, this implies

Corollary 2.5.15 Suppose that g =2, (d—1)/2 <a<oo and veP. If f €
L (T%), then

lim ¢?*“7f =f ae
n—oo
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2.6 {,-Summability Defined by a Function 0

Now we generalize the £,-Fejér and Riesz means investigated above. We introduce
a general summability method, the so-called #-summability generated by a given
one-dimensional function 6.
P ( &l )
n

We suppose that § : R — R and
for all n € N. If 6 has compact support, then this holds obviously. As we will see in

> (2.6.1)
Sect.2.6.1, (2.6.2) implies (2.6.1).

keZd

Definition 2.6.1 Suppose that § satisfies (2.6.1). For f € L{(T¢), 1 < g < oo and
n € N, the nth £,-0-means aZ’ef of the Fourier series of f and the nth £,-0 kernel

K2 are defined by

,0 — m Iy tk-x
o f(x) == Ze( . )f(k)e

kezd
n Ik
K49) .= H*lg Y ikt
(1) keEZdH( . )e ,
respectively.

Lemma 2.6.2 Suppose that 0 satisfies (2.6.1). For f € L1(T%) andn € N,

1
(2m)d

ol f(x) = /TI fx =K () dt.

The definition of the £,-0-means can be extended to distributions as usual.

Definition 2.6.3 Suppose that @ satisfies (2.6.1). For f € D(T%), 1 < ¢ < oo and
n € N, the nth £,-0-means o} 0 f of the Fourier series of f are given by

JZ’(’f = f % K,‘{’e.
Definition 2.6.4 We define the maximal §-operator by

o? f 1= sup |0’Z'€f’ .
neN

Note that K,{f’g is bounded and integrable. If 6(¢) = max((1 — |¢|")“, 0), then we
get back the Riesz (or in special case @ = v = 1, the Fejér) means. §-summability
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was considered in many papers and books, such as Butzer and Nessel [47], Trigub
and Belinsky [319], Natanson and Zuk [244], Bokor, Schipp, Szili and Vértesi [38,
272,274, 300, 301], and Feichtinger and Weisz [103, 104, 332, 337, 338, 342, 346].

2.6.1 Triangular and Cubic Summability

For ¢ = 1 or oo, instead of (2.6.1), we suppose that

the support of 8 is [—c, ¢] (0 < ¢ < 00),
0 is even and continuous, 6(0) = 1,
Z,‘j‘;okd‘me(g)‘ < 00,

lim,_, o t90(t) = 0,

MORIORICS

is the first difference. If the support of § is not compact, then we say that ¢ = oo.
Abel rearrangement implies

(2.6.2)

where

S e b eEre) -~

thus (2.6.1) holds.
Lemma 2.6.5 Suppose that 0 satisfies (2.6.2). For f € L{(T¢), g =1, 00andn €

N, we have
0‘19 f(x)= ZAl < ) qf(x)

and

- j
K901 = ; A6 (Z) D)

Proof The proof follows from

K&f'ny=Y" Y A0 (%) okt _ ZA10 (%) DY)

keZd ,fz”kllq

We need also the following condition:
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0 is twice continuously differentiable on(0, c),

0" # 0 except at finitely many points and finitely many intervals,

lim,_, g0 16’ (¢) is finite, (2.6.3)
lim;_, ._q t0'(¢) is finite,

lim;_, o t0' () = 0.

The norm convergence follows easily from Theorem 2.6.7.

Theorem 2.6.6 Assume that q = 1 or g = 00 and (2.6.2) and (2.6.3) are satisfied.
If1 < p < oo, then

sup [, < CIF1,

ne

and
lim O'Z’ef = f inthe L,(T%)-normforall f € L,(T?).
n—oo

For the almost everywhere convergence, we introduce some notations. Let X
and Y be two complete quasi-normed spaces of measurable functions, L, (T¢) be
continuously embedded into X and L, (T9) be dense in X. Suppose thatif0 < f < g,

fig €Y, then || flly < llglly. If fu, f €Y, fu =0 meN) and f, / f ae. as
n — 0o, then assume that || f — f,|ly — 0. Recall that o denotes the maximal
Fejér operator.

Theorem 2.6.7 Assume that q = 1 or g = 00 and (2.6.2) and (2.6.3) are satisfied.
If ol : X — Y is bounded, i.e.,

lo? flly < Clifllx  (f € XN Loo(T),

then ol Y is also bounded,

lo?? flly < Cliflx (f € X).

Proof By Abel rearrangement,

u K\ 4 e K\, m
gme (Z) D!(x) = ; Ny <;) KK (x) + A0 (;) mK9 (x),

where ' ' 1
A29 (—) = A19 (—) — A19 (—+ )
n n n
is the second difference and K, denotes the Fejér kernel. Observe that for a fixed x,

we have that K, (x) is uniformly bounded in m. By Lagrange’s mean value theorem
there exists m < £(m) < m + 1, such that
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mad () =10 (5(;")>

and this converges to zero if m — oo. Thus,

= k
Kz’e(x) = gk Ay0 (;) KZ()C)

> k
suka ‘Ag@ (—)
nzl = "

If ” > 0 on the interval (i/n, (j 4+ 2)/n), then @ is convex on this interval and this
yields that

Now we prove that

<C < 0. (2.6.4)

k
Aﬁ(—)zo for i <k <.
n

Hence

Zk

wa(t) -Eroa(?)
:0<—>+(i—1)A19<l— =
n n
i+ 1 i+ 1
jan(12)-0(52).
n n
Applying again Lagrange’s mean value theorem, we have
£0) (5(0)’ <c
n

: i\| 10) i—1
e=nlao ()| =5 ()

where i < £(i) < i + 1. Here, we used the fact that the function x — |x6'(x)] is
bounded, which follows from (2.6.3). If §” = 0 at an isolated point u or if §” is not
twice continuously differentiable at u, u € (k/n, (k 4+ 1)/n), then the boundedness

of k ‘Azﬁ(f)‘ can be seen in the same way. Since there are only finitely many

intervals and isolated points satisfying the above properties, we have shown (2.6.4).
Hence

o? f(x) = / FOKP (x — 1) dt

—Z/ kA29< )f(z)K"(x—z)dt
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forall f € Loo(T). Thus
.0 d
ol"f =Colf (f €L(TY)

and so
[o2?fly <Clflx  (f € XN Loo(TY).

By a usual density argument, we finish the proof of the theorem. ]

It is easy to see that X can be chosen to be the Hardy space H E (T?) and Y to be
the space L,,(’]Td) or L,,,OQ(']I‘d) (0 < p < 00). Theorems 2.6.7 and 2.5.4 imply

Theorem 2.6.8 Assume that g = 1 or ¢ = o0 and (2.6.2) and (2.6.3) are satisfied.
If
d

_ <OO,
a+1 =

then
lo2? 1, < Collfllyp  (f € HY(T)

and, for f € Hd':/'(dﬂ)(ﬂ‘d),

,0 ,0 d+1)/d
02 Flajiasny o = 58D PA@Ef > )0 < ClFlyg

I+

Moreover,

sugpMazﬂf >p) <Clflh  (f € Li(T%).
P>

Corollary 2.6.9 Assume that ¢ = 1 or g = 00 and (2.6.2) and (2.6.3) are satisfied.
If f € Li(T%), then

lim o?’f =f ae

n— o0

2.6.2 Circular Summability

If ¢ = 2, then we have to assume other additional conditions instead of (2.6.2) and
(2.6.3). Recall that
Bo(x) = 0(|lx|12)-

Let
0y e Li(RY) and B € L(RY). (2.6.5)

Assume that @\0 is (N + 1)-times differentiable (N > 0) and there exists
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d+N—-1<pB<d+N

such that ‘ e X
- 00| < Clixll,”™ (x £ 0, (2.6.6)

whenever i1 +---+ig=Norij+---+ig=N+1.If 3=d+ N, then it is
enough to suppose (2.6.6) fori; +---+i; = N + 1.

We recall that the Riesz summability, i.e., if 8(¢) = max((1 — [¢|7)?, 0), satisfy
(2.6.5) and (2.6.6) with 8 = d/2 + o — 1/2 (see Corollary 2.2.28).

The norm convergence can be proved as Theorem 2.3.2.

Theorem 2.6.10 Assume that g = 2, (0) = 1 and (2.6.1) and (2.6.5) are satisfied.
If1 < p < oo, then

sup [ £1], < CIlf

ne

and
lim 09 f = f inthe L,(T¢)-norm forall f € L,(T%).

n—oo

We can prove the next theorem similar to Theorem 2.5.10. The details are left to
the reader.

Theorem 2.6.11 Assume that g = 2 and (2.6.1), (2.6.5) and (2.6.6) are satisfied. If

then
|21, < Collfllun (F € HP(T)

and, for f € H['f/'(ﬁﬂ)(']l‘d),

o2’ = sup pA(@?? f > p) TV < C|l |l 4o
p>0

ajB+)

f||d/(ﬁ+l).00

Moreover,

sugpA(GZ")f >p) <Clflh  (f € Li(T%).
P>

Corollary 2.6.12 Assume that g = 2, (0) = 1 and (2.6.1), (2.6.5) and (2.6.6) are
satisfied. If f € L1(T%), then

lim UZ’Hf =f ae
n—oo

We note again, that (2.6.2) implies (2.6.1).
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2.6.3 Some Summability Methods

Now we give some examples for the #-summation.

Example 2.6.13 (Fejér summation). Let

) 1=elif e < 1
9(’)_{0 if ]t > 1.

Example 2.6.14 (de La Vallée-Poussin summation). Let

1 if if [t] < 1/2;
0) =3 2|t|+2if1/2 < |t < 1;
0 if |¢| > 1.

Example 2.6.15 (Jackson-de La Vallée-Poussin summation). Let
1—32/243)t3/4if |t < 1;
0 = | 2—1t)*/4 if 1 <r] <2
0 if [t] > 2.
Example 2.6.16 Let 0 =9 <a; <--- < ay, and [y, ..., LB, (m € N) be real

numbers, By = 1, B, = 0. Suppose that 0 is even, 0(a;) =3; (j =0,1,...,m),
6(t) = 0 fort > ay,, 0 is a polynomial on the interval [o;_1, o] (j =1, ..., m).

Example 2.6.17 (Rogosinski summation). Let

o) = cosmt/2 if |[t] <14 2j;
—]0 if |t] > 1425

for some j € N.
Example 2.6.18 (Weierstrass summation). Let

6(t) = e " forsome 1<~ < oo.

Note that if v = 1, then we obtain the Abel means.

Example 2.6.19 Let
0(r) = e~ 11D forsome 1< g < 00,0 <7 < o0.
Example 2.6.20 (Picard and Bessel summations). Let
0@) =1+ 1t|")™ forsome 0 <a<oo,l <vy<oo,ay>d.

Example 2.6.21 (Riesz summation). Let
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@ =Mt < 1;
o) = {0 if 7] > 1

for some 0 < o, v < o0.
It is easy to see that all of these examples satisfy (2.6.2) and (2.6.3).

Theorem 2.6.22 Suppose that 0 is one of the Examples 2.6.13—-2.6.21. Then Theo-
rems 2.6.6, 2.6.8 and Corollary 2.6.9 hold.

One can show [334, 343] that Example 2.6.21 with « > (d — 1)/2, v € P and
B =d/2+ «a—1/2, Example 2.6.18 with 0 < v < oo and 3 =d + N, Example
2.6.19 with 0 < v,¢g < o0 and 8 =d 4+ N and Example 2.6.20 with 5 =d + N
satisfy (2.6.2), (2.6.5) and (2.6.6).

Theorem 2.6.23 Suppose that 0 is one of the Examples 2.6.18, 2.6.19, 2.6.20 or
2.6.21 with the parameter (3 just defined. Then Theorems 2.6.10, 2.6.11 and Corollary
2.6.12 hold.



Chapter 3 ®)
Rectangular Summability of Higher s
Dimensional Fourier Series

In this chapter, we investigate the rectangular summability of d-dimensional Fourier
series. We consider two types of convergence, the so-called restricted and unrestricted
convergence. In the first case, n € N9 is in a cone or a cone-like set and n — oo while
in the second case, we have n € N¢ and min(ny, ..., ns) — 0o, which is called
Pringsheim’s convergence. Similarly, we consider two types of maximal operators,
the restricted one defined on a cone or cone-like set and the unrestricted one defined
on N¢. We prove similar results as for the £,-summability. In the restricted case, we
use the Hardy space H pD (T) and in the unrestricted case a new Hardy space H,(T%).

In the first section, we present the basic definitions for the rectangular summability
and verify some estimations for the kernel functions. In the next section, we can find
the L ,,(Td ) convergence of the rectangular Cesaro and Riesz means. In Sect. 3.3,
we investigate the restricted maximal operators of the rectangular Cesaro and Riesz
means by taking the supremum over a cone. We show that these operators are bounded
from the Hardy space H, (T¢) to L ,(T¢) forany p > po, where py < 1is depending
again on the summation and on the dimension. As a consequence, we obtain the
restricted almost everywhere convergence of the summability means. Similar results
are also shown for cone-like sets.

We introduce the product Hardy spaces H,(T?) and present the atomic decompo-
sition and a boundedness result for these spaces. Moreover, we show that the unre-
stricted maximal operator of the rectangular Cesaro and Riesz means is bounded from
H, (T%) to L » (T?) for any p > py. This implies the almost everywhere convergence
of the summability means in Pringsheim’s sense. In the last section, we consider the
rectangular -summability and prove similar results as mentioned above. We give a
sufficient and necessary condition for the uniform and L;(T“) convergence of the
rectangular f-means.
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3.1 Summability Kernels

Definition 3.1.1 For f € L{(T¢) and n € N, the nth rectangular Fejér means o, f
of the Fourier series of f and the nth rectangular Fejér kernel K,, are introduced by

d
afw =3 % 1‘[( lk')f(k) e

[ky|<ny lkal<ng i=1

and

ko= T T (- )

[ki]=<m; lkgl<nq i=1
respectively.

Again, we generalize this definition as follows.

Definition 3.1.2 Let f € Li(T%), n € N? and o > 0. The nth rectangular Cesaro
means oy, f of the Fourier series of f and the nth rectangular Cesaro kernel K, are
introduced by

ol f(x) = Yooy HA i e

1—11 1 "1—1 [ky|<ny lkal<ng i=1
and
K () == Z Z l_IAn —1- |k\e
1_[1 1 An,fl |ky|<n, lkql<ng i=1
respectively.

The Cesaro means are also called rectangular (C, o)-means. If o = 1, then these
are the rectangular Fejér means and if o = 0, then the rectangular partial sums (see
Fig.3.1).

Definition 3.1.3 For f € L{(T9), n € N? and 0 < a, 7 < o0, the nth rectangular
Riesz means o,"7 f of the Fourier series of f and the nth rectangular Riesz kernel
K7 are given by

o f) = Y e Y 1‘[( ( )) Flhye

[k |<ny |kal<nq i=1

and
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Fig. 3.1 The rectangular
Fejér kernel K,, withd = 2,
n=3,n=>5

{
1

i

'{"&3" JARNIAS

K=Y ) ]i[<1— (";—')vek

[ki]<ny |ka|<nq i=1
respectively.

For o = v = 1, we get back the rectangular Fejér means. The next results follow
from
K=K, ®---®K, (3.1.1)

and
K =K@ @K, (3.1.2)

where K ,‘f] and K, ,(,Y/.’A’ are the corresponding one-dimensional kernels.

Lemma 3.14 If0 <a,v<ocoandn € N¢, then

1 . B
G fT Kot di =1

and
;/ K7 (t)dr =1
@m)? Jpa " o

Lemma 3.1.5 If0 < a,v<ocoandn € N¢, then

d d
Kew<C[n and K@< C[[n eT).

i=1 i=1
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Lemma 3.1.6 For f € L1(T%), n e NY and 0 < o,y < o0,

o, f(x) = on )d/ f(x =K (1) dt
and
70 = / FOr— DK@y dr.

The rectangular Cesaro means are the weighted arithmetic means of the rectan-
gular partial sums.

Lemma 3.1.7 For f € Li(T%), o > 0 and n € N¢, we have

ni—1 ng—1

onf(x) = H Do s f ),

i=1 T =1 k=1

ny—1 ng—1 d

ol f(x) = ]_[d;“ Z .. Z 1_[ A;:i__ll_k,_skf(x)
i=1

ni—1 k=0 ky=0 i=1

and
ni—1 ng—1 d

, 1 o
K;(’)=Wz ZHAn_ll i Di (2).

ni—1 k =0i=1

We will use the next estimation of the derivatives of the one-dimensional kernel
functions.

Theorem 3.1.8 ForO <a <r+1,nePandt €T, t #0,

‘(K,?)(r) (l‘)‘ < Ci’lH—l and ‘(KG (r) (l‘)‘ W.

Proof Similar to Lemma 1.2.4 and Theorem 1.4.16, we have
DI < Ckt (keP),

which implies the first inequality.
We have seen in Theorem 1.4.16 and Lemma 1.4.14 that
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n—1 .
Ko@) = 1 3 Ao sin((k + 1/2)t)
" Ay =R singe/2)
n—1
_ R A0l k12
A sin(/2) " kz_: n=1-k€

A% sin(t/2)

nl

n—1
X et(nfl/Z)t § A;’—leﬂjt
j=0

In this proof, we use the notation

n—1
u(B) =y Ale™.

k=0
Abel rearrangement and Lemma 1.4.8 imply

n—2

u@® =y (Al

k=0

Afﬂ) Sk + Ay Su-

=—2Ak+lsk+An 5.

=— Z Af_lsk—l + Af,lsn—l,
=1

where .
) 1 — gt k+Dr
— —ijt __
Sk'_ze "= 1 — et
j:
Then
n—1
1l—e —1kt 1 — et
ﬁ 1 B
u(B) = Z T TAT o

—zt <2Aﬂ 1 —ikt ZAH 1+An .
_ 7![)

B —int
- Anfle )

_ 7”) lAﬁ

—int
n—1 .

fu@-1 - (1
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Iterating this result s-times (s € N),

M(ﬁ) — (1 7![) u(ﬂ 2) ( 7![) Aﬂ 1 7mt
_ (1 _ efzt) IAQ eflnt

n—1

=(1—e) " u@—s) -y AT (11—
j=1

Writing 8 = o — 1 and using (1.4.11), we conclude

1
Kr?(t) — N (el(nfl/Z)I
A sin(z/2)
1

o~ 1(n—1/2 — 1\~
:m§‘<( /)t(l—e [) M(OZ—I—S)

_ —lt/ZZA l_e—lt)_j>

u(a — 1))

1
1(n— 1/2)t _ —zl Aa 1-s —lkl
= A% sin(r/2) ‘(e Z
N ,”/QZA(M _l] zt)j>
n °

The equality

1 —a
Ko(t) = ———— s(e“"‘ﬂ)’ (1—e)

AY_ sin(t/2)

—zl ZAQ 1—s —1(k n+1/2)t _ —ll/ZZA(Y l —ll)_.f)

= L(t)+ L)+ L)

follows from (1.4.5). Suppose that |¢| > 1/n. The rth derivative of /; can be estimated
as

C < n!
I(’)(t)‘
1 — _
‘ Arclv . ; |t|1+a+r l
<Cle|~! Z(n|t|)’*“
=0

S C|t|—r—1(n|t|)r—0( — Cnr_a|t|_(¥_l.
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To estimate the second term, we choose s > « + r. Then the r times termwise
differentiated series in I is absolutely convergent. Thus

A

r oo _ !
‘Iz(r)(t)‘ < A%ZZA?717S (k n+ 1/2)

14s4r—1
n=1 =0 k=n It

C «
—1—s—r+l a—1—s+l
— |t] E k
A Z
k=n

n—1 j—¢

r
C Z |t|7lfsfl‘+lnlfs
=0

<Cle[™ Y e

1=0
< Clt| e ™ < Clel™ e ) ™ = Cn e

IA

Similarly,

C < 1
(r) § : a—j
‘13 (t)‘ = AQ An—l |l|l+j+r
n—1 j=1

IA

Cle| ™" > (mle)) ™

Jj=1
<Clt| )™ < Clel T ey T = OO,

because 0 < a < r + 1. Finally, if || < 1/n, then the first inequality of our theorem
implies the second one. u

The next lemma can be proved as Lemma 1.4.13.

Lemma 3.1.9 Foro > —1and h > 0, we have

1 ny ng d
a+h p § E : | | h—1 « «
On f - d a+h o A”i—kiAkiflo-k ’

|

i=1 D=1 =1 ky=1i=1

The same results hold if we choose different exponents «; and ; in the products.

3.2 Norm Convergence of Rectangular Summability Means

The next results follow from (3.1.1), (3.1.2), Theorem 2.3.3 and from the one-
dimensional theorems.
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Theorem 3.2.1 If0 < a < 1, then

sup [ |Kg(x)| dx <C.
neNd JTd

If0 < a <ooand~ € P, then

sup |K;m(x)| dx < C.
neNd JTd

Theorem 3.2.2 If1 < p < 00,0 < a <ocoand~y € P, then
sup [on f]|, < CllfIl,
neNd

and
sup o7 |, < CILflp.
neNd

Moreover, for all f € Lp(Td),
lim 0% f = f inthe L,(T%)-norm
n—o0

and
lim 07 f = f inthe L,(T¢)-norm.
n—o00

Here, the convergence is understood in Pringsheim’s sense as in Theorem 2.1.8.

3.3 Almost Everywhere Restricted Summability
over a Cone

In this section, we investigate the convergence of the rectangular Cesaro and Riesz
summability means taken in a cone. For a given 7 > 1, we define a cone by

R :={xeR: :77 ' <xj/x; <7,i,j=1,....d)}. (3.3.1)
T + J

The choice 7 = 1 yields the diagonal. The definition of the Cesaro and Riesz means
can be extended to distributions as follows.

Definition 3.3.1 Let f € D(T¢), n € N¥ and 0 < a, 7 < oo. The nth rectangular
Cesaro means o f and rectangular Riesz means o, f of the Fourier series of f are
given by

oy fi=f*K



3.3 Almost Everywhere Restricted Summability over a Cone 127

Fig. 3.2 The cone ford =2 .

and
oy f = fx K>,

n
respectively.

Definition 3.3.2 We define the restricted maximal Cesaro and restricted maximal
Riesz operator by
oy f == sup |oy fl

neRd
and
Y oo o,y
UD f L Sup |J,1 f|9
neR?
respectively.

If o = 1, we obtain the restricted maximal Fejér operator o f. As we can see
on Fig.3.2, in the restricted maximal operator the supremum is taken on a cone
only. Marcinkiewicz and Zygmund [234] were the first who considered the restricted
convergence. We show that the restricted maximal operator is bounded from H pD (T9)

to L,(T?).
The next result follows easily from Theorem 3.2.1.

Theorem 3.3.3 [f0 < « < 1, then

lotfle < Clifle (f € Lao(T9)).
If0 < < ocoand~ € P, then

lot flo <Cliflle (f € Loo(TD).

Theorem 3.34 If0 < o <1 and
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d 1
max{——, ——t < p < o0,
d+1 a+1

then
lot ], < Coll flup  (f € HP(TD).

Proof We have seen in Theorem 3.1.8 that

‘K (z)’ < (t £ 0) (3.3.2)

ﬂ/|t|a+l

and

((K ) (t)‘ (t #0). (3.3.3)

Let a be an arbitrary H pD-atom with support I = I} x I, and
2 < h/m=|bl/m <278 (K eN).
We can suppose again that the center of / is zero. In this case,
[—m2 K2 72 K2 1, I C [—-m27 K1 m2- K1

Choose s € N such that 2°~! < 7 < 25 Ttis easy to see thatif n; > k orn, >k,
then we have ny, n, > k27°. Indeed, since (n;, n;) is in a cone, n; > k implies
ny > 7 'ny > k275, By Theorem 2.4.19, it is enough to prove that

/ loa(xi, x2)|” dxydx, < Cp. (3.3.4)
T2\4(1|><12)

First we integrate over (T \ 41;) x 4I,. Obviously,

f / |J|%a(x1,x2)|p dxidxs
™AL J4L

K1 2K
p
/ / Sup |O-r(lyl,n2a(~x]ax2)| dX] d}Cz
™ 4

i2-K Lony,ny>2K-s

IA

lil=1

261 (12K
P
+E / / sup |0,‘fl,n2a(x1,x2)| dxydx;
7r 4

lil=1 i2—K I ny,n,<2K

1 (A) + (B).

We can suppose that i > 0. Using that
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/ |KS (x2)| dx, <C (n2 €N)
T
(see Corollary 1.5.3), (3.3.2) and the definition of the atom, we conclude

|U,(fl,,,2ﬂ(xlaxz)| =

1
<C 22K/p/ ——dt.
- 1 N lxn — ot

For x; € [7i2 X w(i + 1)27%) (i > 1) and #; € I, we have

o 1 _ 2 =0
lx1 —f|¥ = (mi2~K —g2-K-1yy = v
From this, it follows that
lod . alxr, x2)| < c,,zZK/HK“W.
Since n; > 25275, we obtain
2K 2K

1 1
—2K~2K+Kap
(4) = CP Z 2 2 2Kapja+l)p = C/’ Z ilatbp’

i=1 i=1

which is a convergent series if p > 1/(a+ 1).
To consider (B), let I, = I, = (—u, ) and

X2

X1
Aq(x1,v) 2=/ a(ti,v)dt,  Ax(xi, x2) 1=/ Ai(x1, i) dt.

- -

Then
[Ax(x1, x2)| < szK(2/p—k)'

Integrating by parts, we get that

/ a(t;, n)K, (x; — ) dt
I

= A1, ) K, (x1 — p) —f At ) (K, (x1 — ) dty.

I

Recall that the one-dimensional kernel K ;?2 satisfies

Ko | <Cny  (ny €N.

f[a(h,lz)K,‘f(M—h)Kffz(xz—tz)dh dt
nJn

129

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)
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For x; € [1i27 X, n(i + 1)27K), the inequalities (3.3.2), (3.3.5) and (3.3.7) imply

‘/ Ar(p, ) Ky (1 — K, (xo — 1) diy
I

1
v
n e — ploT
1

jatl’

< szZK/pr 27](

< Cp22K/p+Ka—Knlfa

Moreover, by (3.3.3), (3.3.5) and (3.3.7),

/ / Ai(t, ) (K, (1 — 1)Ky, (o — 1) dty diy
ndn
1

e e e
< Cp22l(/p+Ka—Kn17aia1+1‘
Consequently,
2K _| s | 2K—1 1
(B)<C, Zl 72Ky K+Kap—Kp2K(l—rv)Pi(aT)p <C, 2 PPy < 00,
= i=

because p > 1/(a + 1). Hence, we have proved that in this case

/ f |a%a(x1, xz)ip dxydx, < Cp.
TGl J4L
Next, we integrate over (T \ 41;) x (T \ 41,):
/ / ‘O’%a()ﬂ,)@)’p dxidx;
TG JT\4L

X > r(i+1)2°K  pr(i+D2-K
a p
=303 I | N L

jil=11j1=17 2" 2K nyny 2K
z"o 0 ar+D27 K pr(j+D27K

" Z/ / sup oy ,a(x1, x2)|” dxidx
lil=11j1=1" 727" T2 K <2k

=: (C) + (D).

We may suppose again that i, j > 0. For x; € [7i27 %, 7(i +1)27%) and x, €
[7j2=K, 7(j + 1)27X), we have by (3.3.2) and (3.3.5) that
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1 1
@ 2K/p
oot x9] = €2 | AT — fl] on gl —
1 2

22K /p+Kat+Ka
=0y +1ja+1"
- ey ey
ninyiot!j

This implies that
261251 22K+Kap+Kap

—2K
(C) = Cp Z 2 2K(1p+l(apl(a-‘rl)p](a-‘rl)p
i=1 1

J:
o0 o0
- C” Z Z l(a+1)p](a+1)p <>
i=1 j=1

Using (3.3.8) and integrating by parts in both variables, we get that
f a(t;, L) K, (x; — 1)Ky, (x2 — ) dty dty
LJI
- f A 1)K (vy — i) (K2) (12 — 1) d
L

/ AnCer, (K2 Gy — 1)K (2 — p) iy

/ Ax(tr, (K2 Y (e — 1)(K2 ) (a2 — ) dty i
L JI

D, ,.(x1,x2) + D}, (x1,%) + D, , (x1,x2).
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2

(3.3.9)

Note that A(u, —p) = A(u, 1) = 0. Since | K} | < Cny and (3.3.2) holds as well,

we obtain
n+a(n—1)

« < 1
K, (e = € |, |@+D =)

for all 0 < n < 1. Moreover, the inequality
[(Ky)'| < Cny (12 €N)

and (3.3.3) imply

2(+(a=D(¢-1) n(+l+a((71)
(K ()] < €2 =C 2
2 T |xpetDU=0) | x| (+DA=0)

for all 0 < ¢ < 1. We use inequalities (3.3.5) and (3.3.7) to obtain

(3.3.10)
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n+a(n—1) C+1+a({ 1)

2K /p—2K n
<
(1. x2)| = €2 e — @ = |, T _t2|<a+1><l 5 9n

2K )((H-l)(l m

| ny,ny

i

C+l+a(C 1)) 2K (rei=o
. : (3.3.11)
J

< C 22K/p 3K rH—a(r/ 1)(

whenever x| € [mi2 %, w(i + D27%), x, € [rj27 K, 7(j + D27 %) and 0 < 0, <
1. If
n+amn—D+C+1+a(C—-1) =0,

then
1 1

i (a+D(d=n) j((!+1)(1—ﬂ)

sup |DL . (x1,x0)| < €22/

ny,ny<2K

because (11, ny) is in a cone. Choosing

2a0 — 1
n.:(.:max{m,O},

we can see that

/ / sup |D, . (x1, x)|” dxi dx,
NG, JT\GE ny ny <2K

1 1

—2KA~2K
= Cp Z]: Z; 2 2 i3p/2A(a+1D)p j3p/2/\(a+l)p ’
1= J=

which is a convergent series. The analogous estimate for |D3]’n2 (x1, x2)| can be
similarly proved.

For x; € [mi27 %, 7(i + 1)27%) and x, € [7j27%, n(j + 1)27K), we conclude
that

1 1
D3, (x1, x)| < €,22K/P=2K / S S—T / —— _un
ni,ny I n?(—l|x1 _ t1|a+1 5 ng_1|XQ _ t2|a+l

22K/p—2K+Ko,+K(yn{—uné—a

<
- Cp l‘a+1ja+1

So
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p
f / sup ‘Dnl nz(.X],XQ)’ dxl de
T\41; JT\4I, ny,n,<2K
261251 22K 2Kp+Kap+Kap2K(2 a—a)p

E : 2K
<
- C/’ Z 2 l(a-s-l)p](aﬂ)p

i=1 j=I

[o.¢] [e¢] 1
ZZ l(a+1)P ](04+1)P <00

by the hypothesis. The integration over 41; x (T \ 41;) can be done as above. This
finishes the proof of (3.3.4) as well as the theorem. [ |

Remark 3.3.5 In the d-dimensional case, the constant d/(d + 1) appears if we

investigate the corresponding term to D). More exactly, if we integrate the term

f Al i ) K Gy — )+ KE Gramt — (K2 (e — 1)
I

over (T'\ 41}) x --- x (T \ 41;) similar to (3.3.11), then we getthat p > d/(d + 1).

Corollary 3.3.6 If0 <a <land1 < p < oo, then

HU%f”,, =GCulfll, (fe€ Lp(Td))-
Let us turn to the Riesz means.

Theorem 3.3.7 If0 < a < oo, v € P and

d 1
maxj———, ———— < p =00,
d+1 anl+1
then
lo5 £, < Coll Fllup— (f € HI(T)).
Proof Let

A =fsM*ifs| < 1y
0(s) := {O, if 5] > 1 (s € R).

By the one-dimensional version of Corollary 2.2.28,

<Clt™*" (t #0).

Taking into account (2.2.34), we conclude that

‘K‘”( )) < (t # 0) (3.3.12)

a|t|a+1
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and

‘(K,zﬁ.”)’(t)‘ < (t #0). (3.3.13)

n;?*1 |t|a+1
For 0 < o < 1, the inequality can be proved as in Theorem 3.3.4. Now let o > 1.
Since R R

OOINIQIGIEES

trivially and since [t]7*~! < |¢|7%if |¢| > 1, we conclude that

<Clt|? (@t #0).

Hence

Ko s s Jwols s a0

njle*
and the theorem can be proved as above. ]

Corollary 3.3.8 Suppose that) < o < ocoandy € P. If 1 < p < o0, then
lo" £1l, < Coll £l (f € Lp(T).

As we have seen in Theorems 2.5.6 and 2.5.12, in the one-dimensional case, the
operators o and o are not bounded from H pD (MtoL,(T)if0 < p <1/(a+1)
and o = 1. Using interpolation, we obtain the weak type (1, 1) inequality.

Corollary 3.3.9 If0 < a < 1, then

sulgpA(o%f >p) <Clflli (f €Li(T9.
p>

If0 < a < ocoand~ € P, then

sugpA(og“’f >p) <Clflli (f €Li(T9.
p>

The density argument of Marcinkiewicz and Zygmund (Theorem 1.3.6) implies

Corollary 3.3.10 Suppose that f € L{(T¢). If0 < o < 1, then

lim oYf=f ae

n—o0, n€RY T
If0 <o < ocoandy € P, then

lim o"f=f oae

n— 00, neRY
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This result was proved by Marcinkiewicz and Zygmund [234] for the two-
dimensional Fejér means. The general version of Corollary 3.3.10 is due to the
author [328, 329].

3.4 Almost Everywhere Restricted Summability over a
Cone-Like Set

Now we generalize the results of Sect. 3.3 to so-called cone-like sets (see Fig.3.3).
Suppose that forall j =2, ...,d, k; : Ry — R, are strictly increasing and contin-
uous functions such that

lim k; = 00 and lim x; =0.
j—oo j—>+0

Moreover, suppose that there exist ¢; 1, ¢; 2, £ > 1 such that
ciikj(x) < Kj(€x) < cjokj(x) (x > 0). (3.4.1)

Note that this is satisfied if »; is a power function. Let us define the numbers w; |
and w; ; via the formula

i1 =69 and cjp =9 (j=2,....d). (3.4.2)

For convenience, we extend the notations for j = 1by k) :=Z,¢;,1 = ¢12 = & Here
7 denotes the identity function Z(x) = x.Letx = (K1, ..., kg)and T = (71, ..., Ty)
with7y = landfixed7; > 1(j =2, ..., d). Wedefine the cone-like set (with respect
to the first dimension) by

Rij ={x e R‘i : T;Ifsj(nl) <n;<7ikj(n),j=2,...,d}.

Figure 3.3 shows a cone-like set for d = 2.

If k; =T forall j =2,...,d, then we get a cone investigated above. The con-
dition on x; seems to be natural, because Gat [119] proved in the two-dimensional
case that to each cone-like set with respect to the first dimension there exists a larger
cone-like set with respect to the second dimension and conversely, if and only if
(3.4.1) holds.

Here we have to consider a new Hardy space. We modify slightly the definition
of HE(Td). Fix ¢ € S(R) such that fR W(x)dx # 0. For f € D(T?), let

¢i(f)(x) = S(:)lp | ‘f * (Y @ Viyiy -+ ® Y/JKd(z))(X)‘ .
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Fig. 3.3 Cone-like set for
d=2

Definition 3.4.1 For0 < p < oo the Hardy spaces H; (T?) and weak Hardy spaces
H} . (T) consist of all distributions f € D(T¢) for which

Il = 45O, <00 and  1fllyy = [¥5(H], o < o0

p.oo

We can prove all the theorems of Sect. 2.4 for H} (T¢). Among others,

1 g ~ [PECO], 0 < p<o0),

where P, is the one-dimensional Poisson kernel and

PE(F)(x) = sup |f*(Pr® Py ® -+ ® Pryin) ()] .

t€(0,00)

If each k; = T, we get back the Hardy spaces H 1',:' (T?). We have to modify slightly
the definition of atoms, too.

Definition 3.4.2 A bounded function a is an H-atom if there exists a rectangle
I:=1 x---xI; c T with |1;| = /@j(|11|’1)’1 such that

(i) suppa C I,
(i) Nlalloo < [117V/7,
(iii) f, a(x)x* dx = 0 for all multi-indices k with |k| < |d(1/p — 1)].

The following two results can be proved as Theorems 2.4.18 and 2.4.19.

Theorem 3.4.3 A distribution f € D(T?) is in H[’,“(']I‘d) 0 < p <1)ifand only if
there exist a sequence (ax, k € N) of H}j-atoms and a sequence (p, k € N) of real
numbers such that
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[e¢] [e.¢]
DolmlP <00 and Y map=f in D(TY). (3.4.3)
k=0 k=0

Moreover,
00 1/p
~ i P
1 1y mf(kX(;mu) :

where the infimum is taken over all decompositions of f of the form (3.4.3).

Theorem 3.4.4 For each n € N%, let K,, € L\(T) and V, f := f % K,. Suppose
that

[ V.al™dA < Cp,
Td\rl

for all Hj -atoms a and for some fixed r € N and 0 < po < 1, where the rectangle

I is the support of the atom. If V, is bounded from L, (T%) to L ” (T?) for some
1 < p; < o0, then

IVaflly < Cpll fllay — (f € Hy(T%)

forall po < p < p1.

Definition 3.4.5 For given k, 7 satisfying the above conditions, we define the
restricted maximal Cesaro and restricted maximal Riesz operator by

opf = sup oy f]

neRy
and
Q, —— Q.7
O-,tf ’Yf L Sup |Un ,f|7
neRrd
respectively.

The next theorem holds obviously.

Theorem 3.4.6 [f0 < « < 1, then

o2 fl. < Clifle  (f € Loo(T).
If0 < a < ocoand~ € P, then

los7fl, S Clflle (f € Lao(TD).

Let H be an arbitrary subset of {1,...,d}, H #@, H #{1,...,d}and H® :=
{1,...,d}\ H. Define
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ZjeH wj2+ Z]'EHr Wil

, (3.44)
Hc({l,...d} ZjeH wja+2 ZjeH" Wil

where the numbers w; 1 and wj , are defined in (3.4.2).
Theorem 3.4.7 If0 < o < 1 and

1

max ,—— 1 < p <00,
{pla+1} P

then
loe fll, < Coll Flluy — (f € HE (M),

Proof Since we will prove the result for d = 2, we simplify the notation. Instead
of 3.1, 2.2 and w1, wy 2, we will write ¢, ¢; and wy, ws, respectively. Let a be an
arbitrary H-atom with support [ = I, x b, |LI7! = k(II;|7") and
¥ < <278 k@Y < nl/m < k25T
for some K € N. We can suppose that the center of [ is zero. In this case
[-m2~ %2, 27K c I ¢ [-m27 Kt m27 K
and
[~ 2, 7@K 2] € L € [—7r(5) 712, mr(25) 7121
To prove

/2 laija(xl,xz)|p dx;dx; < Cp,
T2\4(1 x 1)

first we integrate over (T \ 41;) x 41;:

/ / loa(xy, x2)|” dxy dx;
™41, Jan,

« p
< / / sup |0n]’n2a(x1, xz)| dxy;dx;
T\4I; J4I n=2K (ny,ny)eRe

« p
+/ f sup |Unl,n2a(x1,x2)| dxydx,
T\4I; J4L ny<2K (ny,np)€Rd

=: (A) + (B).

Ifn; > 2% and x € [7i27%, 7(i + 1)27%) (i > 1), then by (3.3.5),
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|o oy ,,,a(xl,xz)| =

/fa(tl,lz) o (1 — 1)K (x2 — 1) dty dty
nJn

1
< c,,zK/Pn(zK)l/f'/ dn

1 nflx — oot
1

K/p+Ka K\1/p

< J—
<C,2 k(25) e

1
< c,,zK/Pn(zK)l/f'im.

From this, it follows that

A

28— m(i+1)27K
(A) < E / / sup |0‘n] nza(xl,x2)|p dxydx;
T 4

i=1 i2-K 12 n|>2K
2Kk _1

c, Zz K k(2K 12K (2K -
i=1
2K_1

- Cl’ Z l(a+1)p

IA

jla+Dp

which is a convergent series if p > 1/(1 + ).
We estimate (B) by

(B) < < / /
T\41, J41, 2 <n,< (n1 ny)eRy
§</ﬂr\[—z [”z / 35 [”)

(e}
ny,ny

(e}
ny,na

|a a(xl,x2)|p dx;dx,

IA

sup |a a(xl,xz)‘ dx;dx,

5/‘“ n1< ,(ny, nz)e]R

2 (B1) + (By).

If (n;, ny) € R4 and%—f, <n< thenn, < 7'/1( ).Theinequality|K“| <Cny
K, T 13 na

, gk k]
and (3.3.2) imply

|log . alxr, x2)|

1
< C,2K/P Ky r=1y / -t
-7 @0 2 )y gl — et

K K KA1 1 2K 2K - K—1 1
< C2K/P=K 2Ky l/r= H(E—k> (gﬁ) lxg — w2 KTt
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Hence

26\
(Bl) <C ZzK(l p— (!p)/i(zl() pK/< ) é—kCYP

k
k=0 5

f - |)C1 —7T2_K_l|_(a+l)p dx1
[ 5]

2K 7 2K

<C ZZK(I p— up)ﬁ(zK) pﬁ(g ) é—kap(gk K)f(aJrl)PJrl.

k=0
Since k(x) < cflm(fx) by (3.4.1), we conclude
(B1) <CpZ R@E) PRSP = ¢, Zf"“ P,
k=0 k=0
which is convergent if p > 1/(1 + w;). Note that

1 14wy
<
1+WI 1+2w1

< p1 <p.
For (B;), we obtain similarly that
o0 axr, x)| < 2K P Kk 25)/P = nny

<C 2K/P*K/<;(2K)1/P*1gﬁ (ﬁ) (3.4.5)
- SN o

and, moreover,
- ~1 1—p¢e—k 2K\
(B,) < C, Z— (A AP R (gk)
< Cp Z é-k(lfp)clfkp
k=0
which was just considered. Hence, we have proved that

/ / lopa(xy, x)|Pdxidx; <Cp,  (p1 < p=<1).
™41 Jan

The integral over 41; x (T \ 41,) can be handled with a similar idea. Indeed, let
us denote the terms corresponding to (A), (B), (By), (By) by (A)), (B'), (By), (Bj).
If we take the integrals in (A”) over
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AL x [N G+ DRSO G =165 /2 -1,

then we get in the same way that (A’) is bounded if p > 1/(1 + «). For (B}), we
can see that

=3 [ /
: ; 41 'I[‘\ 7m ZK ,71' ZK) :|

&

o
sup |0n1 ,12a(x1,xz)| dx;dx,
5/~+1 ”1<5/< J(ny, nz)e]R

<C 2’%(2’()2*2—’(/’/ ) )
o ) )]

( : p
sup nl/ —dt2> dx,.
L N5 lxy — ot

E/‘“ <n1< J(ny,n2)eR?

oo

Thus

o 2K \ TP
(B}) < Cp Y £77k(25)! 7k (W)

k=0

Xy — mr(2K) /2|7 @+ Dr gy,

f“[-ﬂ-ef)'m(m

¢

LS p—1
<CPZ£ kg (2K)1-p (§k>

k=0

00
—kp k(1—
SCpZ£ pcz( P)

k=0

)
=C, Z gk(wz*wzpfp)

k=0
and this converges if p > w,/(1 + w»), which is less than

14wy

< .
2+UJ2 =

Using (3.4.5), we establish that
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(@=2L%ﬂ®¥@”

v p
Sllp i03|,n2a(xlax2)| dxl dx2

2K 2K "
Wf"l < {Tq(nl n2)€RY

0 2]( -1 2]( P
<C, > 27k <€—k> 2K Ky mrehry (?)

k=0

o0
—kp k(1=p)
SQ,Z& Pey .
k=0

Hence
/ / lotatxr, x)|" dxidx, <C,  (pr<p<D.
41, JT\GI

Integrating over (T \ 41;) x (T \ 41,), we decompose the integral as

/ / ‘Uga(xl,x2)|p dx;dx;
™AL JT\4L

e} P
/ / Sup |0n1,nza(x17 x2)| d.x1 d_xZ
T\41, JT\4I, n\>2K (n, ’"Z)ER‘Z-,T

+/ / sup log . a(xr, x2)|" dxidx;
T\41; JT\4L ny<2K,(n1,np)eRY

=:(C) + (D).

IA

Notice that

2K 1 k(2K)/2—1 Ti+1)2K

CEDS |
i=1  j=1 g

Forx; € [7i2™ X, 7 + D2 %) and x, € [7jc¥)~"!, n(j + Dr(2¥)™"), we have
by (3.3.2) and (3.3.5) that

T(j+1)K@K)!
/ sup |08 a(xy, x2)|? dxy dx;.
T

ni,ny
i2-K jr(2K)! n>2K

1
o a(x1, x2)| < C,,z"/P/-;(zK)l/P/ dt,

ny,n
- p niln = 0]

1
——dn
/12 ng|x; — ot

2K/p+Kal€(2K)l/p+u

— b apaiatl ja+tl
ninyi J

2K/p,§(2K)1/p

< pW (3.4.6)
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Then
2K 1 k(25)/2—1

1
(€)=Cy Z Z i@t jatDp <
i1

J=1

it p>1/1+ ).
To consider (D) let us define A (xq, x2), A>(x1, X2), D,l“,n2 (x1, x2), D,z“,n2 (x1, x2)
and D> (x, x») as in (3.3.6) and (3.3.9), respectively, and let I} = [—pu, pu], I, =

np,ny

[—=v, v]. Then

|A1(xr, w)| < 2K/ K 28YVP Ay (g, xp)| < 2K/P K28V (3.4.7)

Obviously,
1
/ / sup ID,, n,(x1, X2)|” dx1 dx;
T\; JT\AL g <2K, (ny,mp)€RY |
o0
1
<y [ / sup Dy, (X1, X2)|7 dixy dx
k=0 T\41; JT\41, %f”l<%}f»("la"2)ERﬁ',’
oo k(2K)/2—1 T(j+1KQK)!
DI N |
- ’er ’lTk . —
im0 o ISk ] Jriseo
sup D), (x1, x2)|” dxy dxy
n1<2K,(n|,ng)eRj£vT
oo #(25)/2-1 A+ DR
<
=3 SN N
k=0  j=I [—TKTK] mjr2%)
sup |Dy, (61, x2)|7 dxy doxs
n1<2K,(ny,ny)eRe
=: (Dy) + (D2).

It follows from (3.3.5), (3.3.10) and (3.4.7) that

i
ID,, 4, (X1, X2)]
1 ng+1+ll(C*1)

< C2K/P=Kgkyl/p=2
=Gy %) 20 — o g — @00

2K\ 7O oK (+H14+a(C-1)
(#) (%)

|x1 _ N|a+l j(a-H)(l—() )

< szK/[)fKK(zK)l/p*?ri’(OH’l)(lfO

where 0 < ¢ < 1. This leads to
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o k(2K)/2-1

(Dl)SCpZ Z / o 2K (I=p=ap) QK p(=2H(@+D(1=0) chap
k=0 j=I T\[_%K’;LK]
Sk \ PHa+D(E=1)
oy ()
_ —(a+Dp
1 = pl parn—0 dx,
0o K(2K)/2—1 —kp2+(a+1)(¢—1))

IA

K(1—p—ap) ckap (ckny—K\—(a+1) p+1 €1
B S SR S S
k=0  j=I

00 £(25)/2-1 ¢hO1=p=1p@+a+1 (1)

Cry D PO ’
k=0 j=1

IA

which is convergent if

> ! and p > ;
l+w2+ (a+DEC-1) (a+ D=0

p

After some computation, we can see that the optimal bound is reached if

. o — Wi + awq
Tl a4w +aw’

¢

which means that
1+w;

> .
P = 120,

Considering (D;), we estimate as follows:

(+1+a(C-1)
1 K/p—K K\1/p—2 2
IDyy, oy (X1, X2)| < C)2 K(27) M, — p[@rD(=0
<2K>C+1+0(C—l)
R\ Zr
< C2KIP K P2+ 1-0g—k _\&)
< C,2K/P k25 £ )

and

co K(2K)/2—1

(D) =<Cp Y.
k=0 j=1

2K

R\ Zx
K . AK\p(—2+(a+1)(1=0) ¢—kp (5
f[_m k]z £(27) 3 jp@FDI=0)

)p(2+(a+l)(C—1))

dx1
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oo k(2X)/2-1 gh=p=w1pQ+@+D(C=D)

<G

k=0 j=I

<,

jP(a+l)(l—C)

as above.
The term D?  can be handled similarly. We obtain

ny,ny

2
/ / sup |Dy, 0y (X1, X2) P dxydxy < C)
T\41, JT\41 ny<2K ,(ny,n2)eRd

I+ wp
24wy

if

p >

Using (3.3.3), we estimate Dslm in the same way as (C) in (3.4.6). Now the
exponents of n; and n, are non-negative and so they can be estimated by 2% and
%(2%) as in (3.4.6). This proves that

/ / \Uf:a(xl,xz)|p dxidx, < Cp
™4 JT\AL

which completes the proof. ]

Remark 3.4.8 In the d-dimensional case, the constant p; appears if we investigate

the terms corresponding to D,il’nz and Drzl]’nz. Indeed, let ]_[;{21 I; be centered at 0

and the support of the atom a, A be the integral of a, I; =: [—p;, u;] and

7. {NﬁjeH;
J

4. jeH

Hc{l,...,d},H#@,H#{l,...,d}. If we integrate the term

/H Ayt [ ] K G =) [T K (i — 1)
JjeHC 1/'

jeH ieH®
over 1—[;1_21 (T \ 41;), then we get that

Djenwi2t D jene Wil
ZjeH wja+2 ZjeH‘ Wil

p >

Moreover, considering the integral
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/ / loga(x)|?” dx,
H/EH(T\4Ij) l_[jer 41;

P> Zjeij»z
Djen Wizt D jencwit

we obtain

However, this bound is less than p;.

Remark 349 If w;| =w;, =1forall j =1,...,d, then we obtain in Theorem
3.4.7 the bound

d 1
max § ——, .
d+1 a+1
In particular, this holds if k; =7 forall j =1,...,d, i.e., if we consider a cone.

This bound was obtained for cones in Theorem 3.3.4.

Corollary 3.4.10 If0 <a <land1 < p < o0, then

lo2 £, < CollFll,  (F € Ly(T).

‘We obtain similar results for the Riesz means (cf. Theorem 3.3.7). The details are
left to the reader.

Theorem 3.4.11 If0 < a < oo, v € Pand

1

- <
a/\1+1}<p_oo,

max{pl,

then
loe 7 £, < Col Flg — (f € Hy (M),

Corollary 3.4.12 Suppose that0 < o < ocoand~y € P. If 1 < p < oo, then
lox 2 fll, < Col fllp (f € Lp(TD).
Corollary 3.4.13 If0 < « < 1, then

sugpA(a,‘jf >p) <Cllfli  (f € Li(T9.
p>

If0 < < ocoand~ € P, then

sur))p)\(gg'“/f >p) <Cllfli  (f € Li(T9.
p>C
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Corollary 3.4.14 Suppose that f € L(T¢). If0 < o < 1, then

lim off=f ae
n— o0, neRY

If0 < a<ooandy € P, then

lim o f=f oae
n—o0, n€RY

In the two-dimensional case, Corollaries 3.4.13 and 3.4.14 were proved by Gat
[119] for Fejér summability. In this case, he verified also that if the cone-like set
R? _is defined by 7;(n,) instead of 7; and if 7;(n;) is not bounded, then Corollary
3.4.14 does not hold and the largest space for the elements of which we have almost
everywhere convergence is L log L. This means that under these conditions Theorem
3.4.7 cannot be true for any p < 1.

35 H, (T?) Hardy spaces

For the investigation of the unrestricted almost everywhere convergence of the rect-
angular summability means, we need a new type of Hardy spaces, the so-called
product Hardy spaces.

Fix ¢ € S(R) such that fR (x)dx # 0. We define the product radial maximal
function, the product non-tangential maximal function and the hybrid maximal func-
tion of f € D(T) by

VI = sup (8 @ @ 1,) ()]
1;€(0,00),i=1,....d
Yo () = sup |(f>;<(¢tl ®"'®¢u))()’)}
1;€(0,00),|x; —yi|<t;,i=1,....d
and
Yy (F)(x)

= sup |(f % (b ® - @Yy, ® Yy, @+ R Py,))(X)
t€(0,00),k=1,..., d;k#i

)

respectively, ( =1, ..., d).

Definition 3.5.1 For 0 < p < oo, the product Hardy spaces H,(T¢), product weak
Hardy spaces H), o (T¢) and the hybrid Hardy spaces H},(T¢) (i = 1, ..., d) consist
of all distributions f € D(T¢) for which

1, = [wi(H], < oo
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1 N, = (O], 00 < 00

and

1 Wy o= ||¢§‘,.(f)||p < 0.

The Hardy spaces are independent of 1);, more exactly, different functions v); give
the same space with equivalent norms. For f € D(T9), let

Pi(f)(x) = sup |(f * (P, ® - ® P,) ()],
1,€(0,00),i=1,....d
PI(NH(x) = sup |(f * (P, ®--® P,) ()|
t;€(0,00),|x; —y;|<t;,i=1,....d
and
P (f)(x)
= sup (f*(P,® - ®P,_ ®P,, ® - ®P))x)|,
t€(0,00),k=1,....d;k#i
respectively (i =1, ..., d), where the Poisson kernel P;, was defined before Theo-

rem 2.4.14. The next theorems were proved in Chang and Fefferman [54, 55], Gundy
and Stein [155] or Weisz [346], so we omit the proofs.

Theorem 3.5.2 Let0 < p < oo. Fixy € S(R) such that fR1/)(x)dx # 0.Then f €
Hp(']I‘d) ifand only if 5 (f) € Lp(']I‘d) or PI(f) € L,,(']I‘d) or P5(f) € Lp(Td). We
have the following equivalences of norms:

1A e ~ 195 (O ~ IPEOTp ~ 1P (D p-

The same holds for the weak Hardy spaces:

1A s, ~ 195 (D lpoe ~ IPEpoo ~ 1P (lp.co

and for the hybrid Hardy spaces:

Il ~ IPS(OI,  G=1,....d).

As we can see from the next theorem, in the theory of product Hardy spaces, the
hybrid Hardy spaces H 1’, (T?) will play the role of the L;(T%) spaces in some sense.

Theorem 3.5.3 If1 < p < ooandi =1, ...,d, then H,(T?) ~ H}(T%) ~ L,(T¢)
and

1A, < Wl < W flle, < Cp ILFI, -

For p =1, Hi(T%) C H{(T%) C H{,,(T*) N L{(T) and
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1Al < Ul (f € Hi(TY),
If . < Clflly  (f € H{(TY).

Definition 3.5.4 The set L(log L)¢~!(T¢) contains all measurable functions for
which

l1£10og® £, < oo
Theorem 3.5.5 Hf (T > L(log L)d_l(Td)for alli =1,...,d and
I£lg < C+C[If1Qog* 1D, (f € Ldog L) '(T?).

A straightforward generalization of the atoms would be the following:

(i) suppa C I, I C T¢ is a rectangle,
(i) flallo < 117"/,
(i) [pa(x)xfdx; =0, foralli=1,....d.

However, the space H p(Td ) do not have atomic decomposition with respect to these
atoms (see Weisz [327]). The atomic decomposition for H), (T%) is much more com-
plicated. One reason of this is that the support of an atom is not a rectangle but
an open set. Moreover, here we have to choose the atoms from L,(T¢) instead of
Loo(T?).

First of all, we introduce some notations. By a dyadic interval we mean one of
the form [k27", (k + 1)27") for some k, n € Z. A dyadic rectangle is the Cartesian
product of d dyadic intervals. Suppose that F C T¢ is an open set. Let M (F) denote
those dyadic rectangles R =1 x S C F, I C T is a dyadic interval, S ¢ T¢" ! is a
dyadic rectangle that are maximal in the first direction. In other words, if I’ x § D R
is a dyadic subrectangle of F' (where I’ C T is a dyadic interval) then I = I’. Define
M, (F) similarly. Denote by M (F) the maximal dyadic subrectangles of F in the
above sense.

Recall that if 7 C T is an interval, then I is the interval with the same center as
I and with length r|I| (r € N). For arectangle R=1; x ... x I; C T¢ let rR :=
rly x ... x rl;. Instead of 2" R we write R" (r € N).

Definition 3.5.6 A functiona € L,(R?) isan H p-atom (0 < p < 1) if

(i) supp a C F for some open set F C T¢ with finite measure,
(i) llall, < |F|'/> VP,
(iii)) a can be decomposed further into the sum of “elementary particles” ag €

LZ(Rd)7
a = Z agr,

ReM(F)
satisfying

(a) suppag C 5R,
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(b) forall R € M(F),i =1,...,d and almost every fixed
xl"'~7-xi—laxi+1?'-'axd’

[antontax =0 k=0..... M) = 2/p 3720
T

(c) for every disjoint partition P; (I € P) of M(F),

2\ 1/2

Y1 ax < |F|Elr,

leP ||ReP,; 2

Theorem 3.5.7 A distribution f € D(TY) is in Hp(Td) 0 < p <1)ifand only if
there exist a sequence (a*, k € N) of H p-atoms and a sequence (i, k € N) of real
numbers such that

o0 o0
Sl <oo and Y max = f in D(TY).
k=0 k=0

Moreover,

00 1/p
£ 11, ~ inf (me) :

k=0
where the infimum is taken over all decompositions of f.

The result corresponding to Theorem 2.4.19 for the H,(T%) space is much more
complicated. Since the definition of the H,-atom is very complex, to obtain a usable
condition about the boundedness of the operators, we have to introduce simpler atoms
(see also the definition right after Theorem 3.5.5).

Definition 3.5.8 A functiona € L,(T9)isasimple H,-atom or arectangle H,-atom
if
(i) supp a C R for arectangle R C T¢,
(i) llalla < [RIV*1P,
(i) [pa()xfdx; =0fori=1,...,d,k=0,...,M(p) = [2/p —3/2] andfor
almost every fixed x;, j =1,...,d, j #1.

Note that H, (T?) cannot be decomposed into rectangle p-atoms, a counterex-
ample can be found in Weisz [327]. However, the following result says that for
an operator V to be bounded from H,,(Tz) to L,,(’]I‘z) (0 < p < 1), it is enough
to check V on simple Hp-atoms and the boundedness of V on L,(T?). We omit
the proof because it can be found for all dimensions in Weisz [332, 346] (see also
Fefferman [98]).
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Theorem 3.5.9 Let d =2, 0 < py <1, K, € L\(T?) and V,f = f*K, (ne
N2). Suppose that there exists 1 > 0 such that for every simple H,,-atom a and
foreveryr > 1

/ [Vial’dX < C,277,
T2\R

where R is the support of a. If V.. is bounded from L,(T?) to L,(T?), then

IVifllp < Cpllflln,  (f € Hy(T?)

forall po < p <2.
Note that Theorem 2.4.16 holds also for H,(T?) spaces with a very similar proof.

Theorem 3.5.10 IfK € L (T¢), 0 < p < oo and
klim fi = f inthe H,,(']I‘d)-norm,
— 00

then
klim fixK = fxK inD(T?.
—00

Corollary 3.5.11 [fpy < 1in Theorem 3.5.9, then forall f € H(T?) andi = 1,2,

sup p A(IVif1 > p) < Cll fll i

p>0
Proof Using the preceding theorem and interpolation, we conclude that the operator
V. 1is bounded from H,,,oo(Tz) to L,,,OO(TZ)

when pg < p < 2. Thus, it holds also for p = 1. By Theorem 3.5.3,

Sugﬂ/\(lV*fl > p) = Vaifllioo = Cllf Il = Cllf Il
p>

forall f € HI(T?),i=1,2. (]

Note that for higher dimensions, we have to modify slightly Theorem 3.5.9, Corol-
lary 3.5.11 as well as the definition of simple H ,-atoms (see Weisz [332, 346]).
3.6 Almost Everywhere Unrestricted Summability

For the almost everywhere unrestricted summability, we introduce the next maximal
operators.
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Definition 3.6.1 We define the unrestricted maximal Cesaro and unrestricted max-
imal Riesz operator by

og f == sup |oy f]

neNd
and
o7 f = sup |oy 7 f1,
neNd
respectively.

For o« = v = 1, the operator is called unrestricted maximal Fejér operator and
denoted by o, f.

We will first prove that the operator o< is bounded from L ,(T%) to L,(T9) (1 <
p < o0) and then that it is bounded from H,,(Td) to Lp(Td) (1/(a+1) < p<1).
To this end, we introduce the next one-dimensional operators.

Definition 3.6.2 Let
T f(x) = fx|K7| (x),

TEVF(x) = f x| K27 (%)

and

’

o = spl f
neN

T f = sup |70 £
neN
Obviously,
loy fl=71fl mneN) and olf <7]|fl

The same holds for the operators o7 and 7" . The next result can be proved similar
to Theorem 3.3.4.

Theorem 3.6.3 [f0 <a <land1/(a+ 1) < p < o0, then
|7 £, = Coll fll,  (f € Hy(D)).
Proof 1t is easy to see that
|72/l < Clifloe (f € Loo(T)).
Let a be an arbitrary H,-atom with support / C T and

[—m2 K2 727 K21 c 1 c[—m27 K71 p2 K1,
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Then

A

271 w4127k
/ ITea(x)|P dx < Z/ sup 7% (x)|” dx
T\41, m

lil=1 i2—kK n>2K

27 -1 ax(i41)27K
+> / sup |7%a(x)|? dx
e

lil=1 i2-K n<2k

. (A) + (B).

Using (3.3.2) and (3.3.5), we can see that

|Tta(x)| = Va(t) |KS(x —1)| dt
1

1
<C ZK/”/—dt
— P 7 na|x _t|a+l
K/
SCP2 pi(y-H
and
2K_1
—KnK
(4)<c, Y 272 <r = Cr

i=l1

as in Theorem 3.3.4.
To estimate (B), observe that by (iii) of the definition of the atom,

a(x) = /,a(t) K2 (x — 1)] dt = /Ia(z)(|K;*(x = 0| = |kl ) dr.

Thus,
I7a(x)| < /la(t)|‘K,?(x - K,‘:(x)‘dt.
1

Using Lagrange’s mean value theorem and (3.3.3), we conclude

Ko =0 - Ke@| = & @ - o] 1

C2 kK
- na—l|x_£|a+l - jotl ?

where ¢ € I and x € [mi2™X, (i + 1)27X). Consequently,

K K 2K
mrato| = €20 T

153
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and
2K

1
—K~HK
(B)<C, Y 27*2% o <,
i=1

which proves the theorem. |
We can verify in the same way

Theorem 3.6.4 I[f0 <a <o0o,vyePand1/(aAnl+1) < p < oo, then

|77 ), < Coll fllm, — (f € Hp(T)).
The next result can be obtained by interpolation.

Corollary 3.6.5 Suppose that1 < p < o00.If0 < o < 1, then

Sugp)\(ﬁ?f >p) =Clflh (f € Li(T)
p>

and
|7 £, < Coll £ll,  (f € Lp(D)).

If0 <o < ocoand~y € P, then

Sugp/\(Tf”f >p) =Clflh (f € Li(T)
p>

and
|77 7, < Coll fl, (€ Lp(T).

Now, we turn to the higher dimensional case and verify the L p(T" ) boundedness

X,
of 0% and 0.

Theorem 3.6.6 Suppose that 1 < p < o00. If0 < o < o0, then
log £, < Collfll,  (f € Lp(T).
If0<a<oo,vyePandl < p < oo, then
loe7 £, < Coll fll,  (f € Lp(T).

Proof For 0 < a < 1, let us apply Corollary 3.6.5 to obtain
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[/ sup //f(fl,tz)Kff,(Xl—fl)K,?z(xz—tz)dtldtz
T JT ny,neN|JT JT

Lo

T JT nyeN

/ sup

T n1€N

ng// sup

T JT neN

sc,,//|f<xl,xz>|"dxl dxs.
TJT

p
dxy dx,

P
/f(fl, K, (x1 —t)dn ) |Ky (o — 1) dl‘z) dx, dx,
T

p
dx1 dX2

/ ft, x2)K, (x1 —t)dn
T

The inequality for 1 < o < oo follows from Lemma 3.1.9. The result for 05" can

be proved in the same way. ]
The next result is due to the author [331, 332].

Theorem 3.6.7 If0 <a <ocoand1/(a+ 1) < p < oo, then
lot I, < Coll flm,  (f € Hy(Th).

Proof By Theorem 3.1.8,

< C (3.6.1)

a—s a+1
n; |7]

(CHNT

forO0 < o < s+ 1,n; € Pandr € T,t # 0.Chooseasimple H,-atom a with support
R = I, x I, where I, and I, are intervals with

2kt <278 (K eN,i=1,2)

and
[-m2~ K72 m2= K2 c I, ¢ [-m27 Kt 27K,

We assume that r > 2 is an arbitrary integer. Theorem 3.6.6 implies that the operator
o¢ is bounded from L,(T%) to L,(T%). By Theorem 3.5.9, we have to integrate

*
|crfa |P over

T2\R’=(T\1{)x12U(T\1;)x(T\12)
Uh x (T\IZ’)U(T\II) x (T\ I}).

First, we integrate over (T \ I]) x I»:
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/ /|afa(x1,x2)‘p dx; dx
™5 1

5/ sup }a;ya(xl,x2)|p dx)dx;
™ J I

> n>2K1,n,eN

/ / sup U;a(xl,xz)]p dxy dx,
TNAI J I ny<2K1 nmpeN

2511 r D2k
Z / / sup |0,‘,’a(x1,x2)|p dxidxs
T I,

i —K K
. 127k >2Kj
lij]=2r2 1 ny>2%1 neN

2611 42K
+ Z / / sup |U,‘fa(x1,x2)|p dx;dx;
I

liy|=2r-2 mi 27K > ny<2K1,neN

1 (A) +(B).

IA

Here we may suppose that i; > 0. For k,/ € Nlet Ago(x) := a(x),

X2

X1
Aqo(x1, x2) 3=/ a(t,x)dt  Ag1(x1, x2) 1=/ a(xy,u)du

—T —T

and
X2

X1
Api(x, x2) 1=/ Akfl,l(t1x2)dt:/ Api—1(x1, u)du.

-7 -

By (iii) of the definition of the simple H,-atom, we can show that supp A;; C R
and Ay ;(x1, x2) is zero if x; is at the boundary of /; or x; is at the boundary of /, for
k,1=0,....,.M(p)+1 (i =1,2), where M(p) > |2/p — 3/2]. Moreover, using
(ii), we can compute that

|Aa], < ILFH2YP |G kD=0, M(p)+1).  (3.6.2)

We may suppose that M (p) > o+ 1 and choose N € N suchthat N <a <N +
1.Forx; € [mi;27%, @iy + D275, 1y € [=m2~ K~ 1 727 K1=1) inequality (3.6.1)
implies

CnN*DzzKl(a-H)

[(KH)™ (xy — )] < = (3.6.3)
1
and N+1 Ki(a+1)
Cn —ank, a+
(KN () — 1) =« ——f—. (3.6.4)

31

Integrating by parts, we can see that
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|0,‘:a(x)| =

f / Anoltr, (K2 (e — 1)K (v — 1) diy di
L JI

CnN—(yzKI(OH—l)
<1t = / dt
I

- ca+1
I

/ Ano(t, R) K (x2 — 1) dty

b

whenever x| € [7i;27%1, 7(i; + 1)27X1). Hence, by Hélder’s inequality and (3.6.3),

2611
2K1(N+1)p
7K]
(4) = Cf’ Z 2 i(a+l)l’
1

il =2r—2

[ ([ sw
I 1 ﬂzEN

281 S K ((N+Dp=1)

<Gplnl'™” )

i =22

p
// sup dtydxy | .
I, JI neN

Using again Holder’s inequality and the fact that o is bounded on L,(T), we con-
clude

p
dl‘l) dx;

/ Ano(t, ) K, (x2 — 1) d
L

(a+1)p
I

/ Ano(t, 2Ky (xa — ) di

L

2K1 -1
2K (N+Dp=1)
1=p/2 sz
(4) < Gyl > N

i =22 1

[ ([ sw
1] IzﬂzGN

2K1 1
2K (N+1)p=1)
1-p/2
= Cplh| Z ;@+Dp

i =22 1

5 1/2 P
(f (/ |Ano(t, x2)| dx2> dtl) .
n \Jn,

Then (3.6.2) implies

p

5 12
de) dn

/ Ano(t, ) K, (xa — 1) dt
I
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1—p)2 2! P 2K\ (N+1)p—1)
-p -Kyp/2Z 000
W =iy 2

1

ij=2r-2

5 r/2
(//|AN,O(H,X2)’ dxzdtl)
nJn

2K1—1

1
—r((a+1)p—1)
<G Y pre e :
i1=2r-2 "1

To estimate (B), we use (3.6.4):

2K1—1
2K I(N+2)p
- l
B =C 2 2N ey

11_2r 2

f / sup
I I npeN

2K
2 K1 (N+2)p—1)
1-p/2
= Gylhl Z <a+1>p

=r=2

/ / sup
1, I, n,eN

p
fAN+10(tl,l2)K (x2 — ) dh dtl) dx,

p

) 12
dXQ> dt

/ Any10(t, DK (x2 — ) dy

and

291 S K ((N+2)p-1)

1-p/2
(B) = Cplbl Z ; @+ Dp
n=22 h

5 1/2 r
(/ ( |An+1.0(11, x2)| dxz) dl1)
I I

2 2KI(N+2)p=1)

1=p/2 —Kip/2
= Glb Z 2 ;@+Dp
i1=2r-2 1

p/2
</ |An41.0(1, x2)| dxzdt1>
L JI

2K1 -1

1

—r((a+1)p—1)

= Cp Z (a+)p = sz :
ll=2r—2 1

Next, we integrate over (T \ I]) x (T \ I):
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« p
f / ‘U*a(xl,xz)’ dx;dx,
™41 JT\I
5/ / sup ‘a a(xl,x2)| dx; dx;
T4, J T\ 0, >2K1 ny>2K2
p
~|—/ / sup ‘U;Ya(.XI,XQ)’ dxidxs
T\4I; JT\I n;>2K1,n,<2K2
+/ / sup |a,?a(x1,x2)|p dxy dx;
T\41; JT\Iy ny<2K1,ny>2K2

+/ / sup lota(xr, x2)|” dxi dx,
T\41, JT\L, n,<2X1 n,<2K2

=:(C)+ (D) + (E) + (F).
We will only consider the term (D):

211 2K 7r(i1+1)2‘K‘/ﬂ'(i2+1)2_K2

(D) < Z f

—2r2 |ip]=1 1271

7Tl'227K2

sup |a a(xl,x2)| dx;dx,,
n1>2K1 ,ny <252

where we may suppose again that i; > 0 and i, > 0. Integrating by parts,

lota(x)]

C2KI N+ Ka(N+2)
< TR / / | Ay n41(t1, 0)| dty dty.
ll li L J
Thus
2K1 -1 2K2 1 2K (N+1)po Kr(N+2)p
—K1~—K
(D) < Cp Z Z 2 2 L(a+1D)p . (a+Dp
i1=2r-2 ip=1 h b2

)4
<//‘AN,N+1(tlat2)|dtldt2>
L JI

2812821 2KI(N+D)p=1) 9 K> (N+2)p—1)

- / Ayt KD G — 1)KV (e — 1) diy dry
nJn

—Kip/24—K>p/2
= Cl’ Z Z 2 2 i(a+l)pi(a+l)p
1 2

i1=2r-2 ip=1

2 p/2
<//|AN,N+1(1‘1J2)| dtldt2>
nJn

159
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2Ki—1 2K2]
1

Scp Z Z (a+l)pi(a+l)p
2

=22 =1 U

< sz—r((a+l)p—l)'

All other integrals can be handled in the same way. Consequently,
/ |a:a(x1, x2)|p dx;dxy < CPZ_’((“H)”_”,
T2\R"

which finishes the proof of the theorem. |
Theorem 3.6.8 [f0 < a <oo,y € Pand 1/(a+ 1) < p < 00, then
loe £l < Coll Flla,  (f € Hy(TD).

Proof Similar to (3.3.13), fors e N,n; e Pandt € T, ¢ # 0, we have
(s)
—

The theorem can be proved as Theorem 3.6.7. ]

=

a=8121a041"
n; |7

Corollary 3.5.11 implies

Corollary 3.6.9 Let f € Hf (T?) for somei =1, ...,d. If0 < a < oo, then

sup pA(o f > p) < Cll fllpi-

p>0

If0 <o < ocoand~y € P, then

sug pNo [ > p) < Cl fllgi-
P>

By the density argument, we get here almost everywhere convergence for func-
tions from the spaces Hj (T?) instead of L;(T?). In some sense, the Hardy space
H 1’ (T?) plays the role of L (T¢) in higher dimensions.

Corollary 3.6.10 Let f € H{(T?) for somei =1,...,d. If0 < a < oo, then
limo)f=f ae
n—00

If0 <o < ocoand~y € P, then

lim o) f=f ae
n—00



3.6 Almost Everywhere Unrestricted Summability 161

The almost everywhere convergence is not true for all f € L,(T%).

A counterexample, which shows that the almost everywhere convergence is not
true for all integrable functions, is due to Gat [119]. Recall that

Li(T% > HI(TY) > LAog LY"(T) > L,(T%) (1 < p < 00).

3.7 Rectangular 6-Summability

In this section, we introduce some new function spaces and then we generalize the
rectangular Cesaro and Riesz means. As we will see in Definition 3.7.4, instead
of condition (2.6.2), we have to suppose here that # : RY — R is a d-dimensional

function and o o
k k
DS ‘9<_1,__.,_d>‘<oo 3.7.1)
ni ng

k1:—00 kd:—OO

foralln € PY. We will see that it is more convenient to suppose that 6 is in the Wiener
algebra W(C, ¢, )(RY). All summability methods considered in the literature satisfy
the condition 8 € W (C, £;)(R?).

Definition 3.7.1 A measurable function f : RY — R belongs to the Wiener amal-
gam space W (Lo, £1)(RY) if

I IwLwen =D, sup |f(x+k)| < oo.

kezd €0,

The smallest closed subspace of W (L, £1)(R?) containing continuous functions is
denoted by W(C, £;)(R?) and is called Wiener algebra.

Lemma 3.7.2 If1 < p < oo, then
W(Loo )R C L,RY)  and | fll, < I flwiewen-

Moreover, W (Lo, £1)(R?) is dense in LP(Rd)for 1<p<oo

Proof For p = oo, the statement is trivial. If 1 < p < oo, then

1/p
= E 7]
”f”p (kezd /k+[(),1)d /@)l x)

1/p
s(Z sup If(x+k)|”)

ke ¥€0,1)¢
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<Y swp |fx+D)
kezd X€10.D4

=1 llwwe.e) -

Since W (L, £1)(R?) contains the space of continuous functions with compact sup-
port, W (Lo, £1)(R?) is dense in L,,(Rd) if 1 <p<oo. [ |

The Wiener amalgam spaces and Wiener algebra are used quite often in Gabor
analysis, because they provide convenient and general classes of windows (see,
e.g., Walnut [323] and Grochenig [152]).

Theorem 3.7.3 (a) If0 € W(C, £,)(R?) then (3.7.1) holds.

(b) If the one-dimensional function 0 is continuous and |0| can be estimated by an
integrable function 1 which is non-decreasing on (—oo, ¢) and non-increasing
on (c, o) then € W(C, £1)(R).

(c) There exists 0 ¢ W(C, £1)(R) such that (3.7.1) holds.

Proof 1t is easy to see that

o0 oo

d
Yooy ‘9(%%)‘52 []ni] sup 160Gx+0)
kij=—00 ky=—00

teze \j=1 ) xelo-D?

d
= l_[”j 10llwc,ey < o0, (3.7.2)
=1

which shows (a). Under the conditions of (b), [|0lwc.c,) < I7ll1-
To see (c), let & > 0 be continuous and even on R, 6(0) := 0,

1
Ox):=0 if j+ —<x<j+1 (jeN)
J+1

and |
[j?}lfne B (e R).
Then 6 € L;(R),
=1
10llwc,e) =2 2 Pl 00

and

= k SR | 1
Z‘a( )‘szz,_”;m (n e N).
P n+1 j+1j+1

j=0

This finishes the proof of Theorem 3.7.3. |
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Definition 3.7.4 Suppose that § € W(C, £,)(R?). For f € L;(T¢) and n € N, the

nth rectangular #-means ag f of the Fourier series of f and the nth rectangular
6-kernel K? are introduced by

—k —ky\ ~
ol f(x) = ZZG(H—II n—d"> Flk)etts

k[EZ kdEZ
and
[4 . _kl _kd k-t
K=Y Yol )
ni ng
ki €Z kq€Z
respectively.

By Theorem 3.7.3, the 6-kernels K? and the f-means o f are well defined. We
suppose often that
0=0Q®- - ®0,

where §; € W(C, ¢)(R) foralli =1, ...,d. Then 8 € W(C, £,)(R?) and
) ) )
Ki=kKk!'® @K

Lemma 3.7.5 Suppose that 6 € W(C, L)(RY). For fe L1(T%) and n € N?, we
have

1
(2m)d

ol fx) = / flx =K @)dt.
Td

The 6-means can also be written as a convolution of f and the Fourier transform
of 6 in the following way.

Theorem 3.7.6 If6 € W(C, £,)(RY) and 0 € L,(R?), then

d
Uﬁf(x): Hnj /f(x—t)@\(nltl,...,ndtd)dt
]Rd

j=1

for almost every x € T and for alln € N? and f e L,(T?).

Proof If f(t) = %" (k € Z¢,t € T), then

—k —k
Ugf(x) =0 (—1, e —d> etk

ni ng

— etk~x
R4 :

J

d
e tkiti/n; g([) dt
=1
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d

= l_[nj / ety L ngty) dt.
. R4
j=1

Thus, the theorem holds also for trigonometric polynomials. The proof can be finished
as in Theorem 2.2.30. u

We extend again the definition of the rectangular -means to distributions.

Definition 3.7.7 Suppose that § € W(C, £;)(R?). For f € D(T¢) and n € N?, the
nth rectangular §-means ¢? f of the Fourier series of f are given by

ol f=fxkl.

3.7.1 Feichtinger’s Algebra S (R%)

Theorem 3.7.6 is a fundamental result, so the condition e L1 (R%) is of great impor-
tance. In this subsection, we give some sufficient conditions for a function 6 to satisfy
6 € Li(R?). In contrary to the other sections, we do not prove all results here. Some
of them are presented without proof. Several such conditions are already known. The
next one can be found in Bachman, Narici and Beckenstein [15, p. 323].

Theorem 3.7.8 [f 0 € L\(R) is bounded on a neighborhood of 0 and @\Z 0, then
0 € Li(R).

Obviously, € is bounded on a neighborhood of 0 if § € L, (R) or € is continuous
at0. Moreover, if @ € L{(R) has compact support and 6 € Lip(«) for some ov > 1/2,
then 6 € L (R) (see Natanson and Zuk [244, p. 176]).

Now we introduce a Banach space, called Feichtinger’s algebra, the Fourier trans-
forms of the elements of which are all integrable. This space was first considered in
Feichtinger [100].

Definition 3.7.9 The short-time Fourier transform of f € L,(R?) with respect to a
window function g € L,(R?) is defined by

1
@2m)?

S f(x,w) = /}RI fgt —x)e™'dr  (x,weRY.

Definition 3.7.10 Let go(x) := e ™3 be the Gauss function. We define the
Feichtinger’s algebra So(R¢) by

So(RY) 1= {f e PR 1 fllsy = |Seo |, ey < oo}.
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Any other non-zero Schwartz function defines the same space and an equivalent
norm. It is known that Sy(R¢) contains all Schwartz functions. Moreover, Sy(R?)
is isometrically invariant under translation, modulation and Fourier transform (see
Feichtinger and Zimmermann [100, 106]). Actually, So(R¢) is the minimal Banach
space having this property (see Feichtinger [100]). Furthermore, Feichtinger’s alge-
bra is a subspace of the Wiener algebra, the embedding Sy (RY) — W(C, £))(RY) is
dense and continuous and

So(RY) € W(C, £1)(R) N F(W(C, £1)(RY)),

where F denotes the Fourier transform and F(W(C, £;)(R?)) the set of Fourier
transforms of the functions from W (C, £,)(R?) (see Feichtinger and Zimmermann
[106], Losert [223] and Grochenig [152]). Let us define the weight function

v == (1+wl3)”  weR:seR).

Theorem 3.7.11 (a) If0 € Sy(R?), then 0e So(RY) € Ly (RY).

(b) If6 € Li(R?) and 0 has compact support, then 6 € So(RD).

(c) If0 €L, (R?) has compact support and 6 € L(R?), then § € So(RY).
(d) If Qvy, st € Ly(RY) for some s > d, then § € Sy(R?).

(e) If Oug, Ovg € Loo(RY) for some s > 3d /2, then 0 € So(RY).

For more about Feichtinger’s algebra see Feichtinger and Zimmermann [100,
106]).

Sufficient conditions can also be given with the help of Sobolev, fractional Sobolev
and Besov spaces. We do not give a detailed description of these spaces. For the
interested readers, we refer to Triebel [313], Runst and Sickel [267], Stein [289] and
Grafakos [143]. The Sobolev space W} (R?) (1 < p < 00, k € N) is defined by

WERY) := {6 € L,(R") : D“0 € L,(R"), |a| < k}

and endowed with the norm

10wy == D 1D,

lor| <k

where D denotes the distributional derivative.

This definition can be extended to every real s in the following way. The fractional
Sobolev space q,(Rd ) (1 < p <o00,s € R) consists of all tempered distributions ¢
for which

1611z, =7~ (A +1-»7?8)], < oo,

where F denotes the Fourier transform. It is known that
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LRY) =WER?Y) if s=keN and 1<p<oo

with equivalent norms.
In order to define the Besov spaces, take a non-negative Schwartz function ¢ €
S(R) with support [1/2, 2] that satisfies

Z Y(@27*s) =1 forall seR\{0}.
k=—00
For x € R?, let
oe(x) == @ |x]) for k=1 and go(x) =1 - di(x).
k=1

The Besov space B,, (R?) (0 < p,r < 00, s € R) is the space of all tempered dis-
tributions f for which

o 1/r
||f||3;_,. = (Z oksr ” (f—|¢k) * f“;) < Q.

k=0

The Sobolev, fractional Sobolev and Besov spaces are all quasi-Banach spaces, and
if 1 < p,r < oo, then they are Banach spaces. All these spaces contain the Schwartz
functions. The following facts are known: in the case 1 < p, r < oo, one has

W' ®RY, B, ,(RY) — L,R?) if s>0,meN,

Wit R — B (R — WIRY)  if m<s<m+1, (3.7.3)
B, ,(R) < B, (R, B (RY) < B} (RY) if ¢>0, (3.7.4)
BN (RY) — BYP(RY) — CRY)  if 1< p; < py < o0 (3.7.5)

For two quasi-Banach spaces X and Y, the embedding X < Y means that X C Y

and [| flly < CIl fllx.
The connection between Besov spaces and Feichtinger’s algebra is summarized
in the next theorem.

Theorem 3.7.12 We have
(i) If1 < p <2and 9 € B! (R?), then§ € Li(R?) and

191, < € 161l
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(i) Ifs > d, then L5 (RY) — Sp(R?).
(iii) If d’ denotes the smallest even integer which is larger than d and s > d’, then

B} (RY) — W (RY) — Sy(RY).

Proof (i) was proved in Girardi and Weis [130] and (ii) in Okoudjou [250]. The first
embedding of (iii) follows from (3.7.3) and (3.7.4). If k is even, then Wlk (R?) —
Elf (R?) (see Stein [289, p. 160]). Then (ii) proves (iii). [ |

It follows from (i) and (3.7.3) that 6 € W,{ (R?) (j > d/p, j € N) implies 0e
Li(R?).If j > d’, then even wi (R?) — Sp(RY) (see (iii)). Moreover, if s > d’ as
in (iii), then

Bf,OO(Rd) — B{ |(R") — BZ,/{)(Rd) (1 <p<o0)
by (3.7.4) and (3.7.5). Theorem 3.7.12 says that B} _ (R?) C So(RY) (s > d’) and if

we choose 0 from the larger space BZ( 7 (RY) (1 < p <2), then Bis still integrable.

The embedding Wf R) = Sy(R) follows from (iii). With the help of the usual
derivative, we give another useful sufficient condition for a function to be in Sy (IR?).
As usual, we denote by C¥(IRY) the set of k times continuously differentiable func-
tions.

Definition 3.7.13 A function € is in Vlk (R) if there are numbers —00 = ap < a; <
- < a, < ape] = 00, where n = n(6) depends on 6 and

0eC2R), 6eCai,a), 0V eL (R)

foralli =0,...,nand j =0, ..., k. The norm of this space is defined by

k n
161y =Y 169, + 3 [6% Vi@ +0) - 64" (@; — 0)
j=0 i=1

)

where 6%~ (g; 4 0) denotes the right and left limits of #*~1.

These limits do exist and are finite because 8% € C(a;, ai+1) N L (R) implies

0% D (x) = 0% V() + / 00 (1) dt

a

for some a € (a;, ai+1). Since %~V e L (R), we establish that

lim 0% V() = lim 6% P(x) = 0.
X—>—00 X—> 00

Similarly, §%) € Co(R) for j =0, ...,k —2.
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Of course, W} (R) and VZ(R) are not identical. For § € VZ(R), we have 6 = D0,
however, 0" = D*@ only if lim,_,, 400 (x) = lim,_,,_00'(x) (i = 1,...,n).

Theorem 3.7.14 We have VZ(R) — Sp(R).

Proof Integrating by parts, we have
Sg,0(x, w)
1 -
= —/ O(t)go(t — x)e "' dt
2w R

ai+1

l « :
=5 Z / O(t)e ™IV e gt
T 4 a
—lwt ai+1
- _Z 10 i —
109

- —Z / - 9 (t)e ™ _ 2710 (1)e T (1 — x))

—lwt

dt.

—lw

Observe that the first sum is 0. In the second sum, we integrate by parts again to
obtain

1 « / 77T([7.)C)2 77T(I*X)2 eiwﬂ a
Sufr,w) = 5- 3 (9 ()e —270()e (t — x)) >
i=0 aj

Ai+]

- Z / 9”(t)e—”<’—x>2 — 470 (t)e ™ (¢ — x)

e*lwf

dt.

— 2761 (—zwe*ﬂ'ﬂ)z (t—x)* + e*ﬂf*”z)) :
w

The first sum is equal to

e lwai

1 . / ’ —7(a;—x)*
gé?(@(ai+0)—9(ai—0))e @=2f

w?

Hence

/ f 1S, 0(x, W)l dx dw < Cs[10]]y2.
lw|=1}

On the other hand,

// [Sg,0(x, w)|dx dw < C; // /IG(I)|go(t—x)dtdxdw
R J{jw|<1} {lwl<1} JR

< G181z,
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which finishes the proof of Theorem 3.7.14. |

The next Corollary follows from the definition of Sy (R?) and from Theorem
3.7.14.

Corollary 3.7.15 Ifeach0; € Vi(R) (j =1,...,d), then

9=91®"'®9d€SO(Rd).

3.7.2 Norm Convergence of the Rectangular 0-Means

First, we investigate the L,(T%)-norm convergence of oﬁ fasn—> o0 (ne N%) in
Pringsheim’s sense.

Theorem 3.7.16 If € W(C, £,)(R?) and 6(0) = 1, then

lim to = f inthe Ly(T¢)-norm for all f € L,(T%).

n—oo

Proof 1t is easy to see that the norm of the operator
ot Ly(TY) — Ly(T)

can be given by

sup [ fxkil, = swp 7K,
feLy(T9), || fll2<1 feLy(T9), | fll2<1
= sw | 7K},
Feta(Zh), | fll2<1
=&
= sup 9<_—kl_—kd)‘
kezd n ng
<C.

Thus, the norms of aﬁ (n € N9) are uniformly bounded. Since 6 is continuous, the
convergence holds for all trigonometric polynomials. The set of the trigonometric
polynomials are dense in L,(T¢), so the usual density theorem proves Theorem
3.7.16. ]

Now, we give a sufficient and necessary condition for the uniform and L (T¢)
convergence 03 f—f.

Theorem 3.7.17 If0 € W(C, £;)(R?) and 6(0) = 1, then the following conditions
are equivalent:



170 3 Rectangular Summability of Higher Dimensional Fourier Series

(i) 0 e Li(RY,
(ii) o f — f uniformly forall f € C(T%) asn — oo andn € N,
(iii) 0! f(x) — f(x)forallx € T and f € C(T¥) asn — oo and n € N,
(iv) Uﬁf — finthe L{(T%-norm forall f € Li(T% asn — oo andn € N¢,
v) sz — f uniformly for all f € C(T?) asn — oo andn € R,
(vi) azf(x) — f(x) forall x € T and f € C(T% asn — ocoandn € Rf,
(vii) o f — finthe L\(T%)-normforall f € L (T¢) asn — oo andn € R?.

Recall the definition of R? from (3.3.1).

Proof We may suppose thatd = 1, since the multi-dimensional case is similar. First,
we verify the equivalence between (i), (ii), (iii) and (iv). If (i) holds, then by Theorem
3.7.6,

lotfle < Ifls 0], (fec(m,neN)

and so the operators o, : C(T) — C(T) are uniformly bounded. Since (ii) holds for
all trigonometric polynomials and the set of the trigonometric polynomials are dense
in C(T), (ii) follows easily. (ii) implies (iii) trivially.

Suppose that (iii) is satisfied. We are going to prove (i). For a fixed x € T, the

operators
U,:C(T) - R, U,f:=0c"f(x) (meN)

are uniformly bounded by the Banach-Steinhaus theorem. We get by Lemma 3.7.5

that { 1
Uydl= —— [ IK)(x —1)|dt = K’ eN).
U, (27r)d/T| MEEE) (%)dll | PO )
Hence
sup K}l < C.
neN

Since Kfl) is 2m-periodic, we have for a < n/2 that

2am S _ nm > _
/ l Z 9<_k)ettk/n th/ 1 Z e(_k>ezlk/n dt
—2an N n —nm N n
k=—00 k=—00
)
T —k !
=/ Z 9(—) e\ dx
7 | oo n
= f IK?(x)|dx < C. (3.7.6)
T

For a fixed t € R, let

1 & —k
hn p—— o — itk/n
()=~ k;w ( - )e
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and

> —k
On(t,u) := Z 6 <7> ¢k s ().

k=—00

It is easy to see that
lim @, (t, u) = 0(—u)e'™.
n—0oQ

Moreover,
(o]
lon(t, )l < Y sup [0(x =1 = Dl 141 ()
I:_ooxe[o,l)
and
0o 00 o)
|3 s 166 -1 Dltg@du= Y sup 166 ~1 = D)
—00 ;__ o, X€[0,1) 1= —o00 X€l0,D

= 10llw(c.e))-

Lebesgue’s dominated convergence theorem implies that
oo

lim On(t, u)du = / O(—u)e'™ du = 2m)0(1).

n—o0 J_

Obviously,
oo
/ on(t, u) du = hy(1)

o0
and so N
lim h,(t) = 2m)%0@).
n—oo
Of course, this holds for all + € R. We have by (3.7.2) that

lhn (] < 10llwc.e)-

Thus , ,
lim/ |hn(t)|dt=(27r)d/ 0(1)| dr.

2am —2am
Inequality (3.7.6) yields that
2am .
/ 0(t)| dt <C  forall a>0
—2am

and so
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/oo |§(t)| dr < C,

which shows (i).
If 6 € L (R), then Theorem 3.7.6 implies

lo?f 1, < 1£1: 8], (f € Li(T),n € N).

Hence (iv) follows from (i) because the set of the trigonometric polynomials are
dense in L (T). The fact that (iv) implies (i) can be proved similarly as (iii) = (i),
since, by duality, the norm of the operator 03 : L1(T) — L(T) is again

6 6
lonll = %1,
It is easy to see that the equivalence between (i), (v), (vi) and (vii) can be proved
in the same way. u

Note that the statement (i) < (ii) was shown in the one-dimensional case by
Natanson and Zuk [244] for 6 having compact support. The situation in our general
case is much more complicated and can be found in Feichtinger and Weisz [103].
One part of the preceding result can be generalized for L, (T?) spaces.

Theorem 3.7.18 Assume that 6(0) = 1, 0 € W(C, £,)(R?) and 9 e Li(RY. If1 <
p<ooand f € L,,(Td), then

sup o, |, < CIIfIl,
neN

and
lim aﬁf =f inthe Lp(Td)-norm.
n—00

Proof For simplicity, we show the theorem for d = 1. Using Theorem 3.7.6, we
conclude

7is0 = s =n [ (£6=0 = £ d
R

=f (f <x—5>—f(x)>§(r)dt
R n

p _ A Y
H%f—f”,,—/RHf( n) 10!

The theorem follows from the Lebesgue dominated convergence theorem. ]

Since 6 € Sy(RY) implies § € W(C, £;)(R%) and § € Sy(R?) C L, (R?), the next
corollary follows from Theorems 3.7.17 and 3.7.18.

6(t)| ar.
p



3.7 Rectangular -Summability 173

Corollary 3.7.19 If0 € So(R?) and 6(0) = 1, then

(i) ozf — f uniformly forall f € C(T¢) asn — oo andn € N¢,
(ii) sz — finthe L{(T%-norm forall f € Li(T% asn — oo andn € N¢,
(iii) UZf — f in the LP(Td)-normfor all f € L,,(’IF") (1<p<o0)asn— o0
andn € N¢.

The next corollary follows from the fact that 6 € So(R?) is equivalent to e
L1 (R?), provided that § has compact support (see, e.g., Feichtinger and Zimmermann
[106]).

Corollary 3.7.20 If6 € C(R?) has compact support and 6(0) = 1, then the follow-
ing conditions are equivalent:

(i) 0 € So(RY),

(ii) O’Zf — f uniformly for all f € C(T%) asn — oo andn € N¢,

(iii) Ugf(x) — f(x)forallx €e T and f € C(T?) asn — oo and n € N¢,
(iv) azf — finthe Ll(Td)—normfor all f € Li(T% asn — oo,

(v) O'Zf — f uniformly forall f € C(T*) asn — oo andn € Ri,

(vi) sz(x) — f(x)forallx e T and f € C(T%) asn — oo andn € R‘Tl,
(vii) sz — finthe Li(T%-norm forall f € Li(T%) asn — oo andn € Rf.

3.7.3 Almost Everywhere Convergence of the Rectangular
0-Means

Definition 3.7.21 For given «, 7 satisfying the conditions given in Sect.3.4, we
define the restricted maximal §-operators by

0 ¢ . 0 04 . 0
on.zsup‘onf, o.f = sup }anf|.
neR? neRd

The unrestricted maximal #-operator is defined by

Jff = sup |03f|.

neNd

In this subsection, we suppose that
00)=1, 0=0®--®0;, 0;€e WCtHR), j=1,...,d.
(3.7.7)
For the restricted convergence, we suppose in addition that

10; e W(C,L)HR), j=1...,d. (3.7.8)

Here 7 denotes the identity function, so



174 3 Rectangular Summability of Higher Dimensional Fourier Series
I(x)=x and (Z0;)(x) =x0;(x).

Similar to (2.6.6), assume that ’éj is (N + 1)-times differentiable (N > 0) and there
exists
N <pB;<N+1

such that ‘ 4
0,)" 0| < ClxI (x £0) (3.7.9)
J

fori = N,N+1landallj=1,...,d.

Theorem 3.7.22 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.

If
{ d : =1 d} <
max\y——, >———, =1,..., < < 00,
d+1 B;+1 J p
then
lotfll, = Coll fllgp  (f € HY(@).
Moreover,

sugpA(a"Df >p) <Clfli (f € Li(T%).
p>

Proof Inequality (3.7.2) implies that

0
2

< Cl’lj (n_i e N).

Similarly,

o]

2

k=—00

k k
(2
nj nj

from which we get immediately that

‘ (k)
J

<n;||Z6, wa,zl) <o (njeN),

<Cn; (n; €N).

By Theorem 3.7.6,

K'?f, (x) = 27mn; Z 9\1 (nj(x+2km)  (xeT

k=—o00

as in (2.2.34). From this, it follows that
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0; C
ki@ = ——— @#0
nj/ x|t
and c
0\
K,,’.) X)) < ——— x #0).
(ki) T ©#0
The proof can be finished as in Theorem 3.3.4. ]

Corollary 3.7.23 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.
If f € Li(T%), then
lim UZ f=f ae
n— o0, neRY

Combining the proofs of Theorems 3.7.22 and 3.4.7, we obtain

Theorem 3.7.24 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.

If
1
max{phﬂ—_H,j:I,...,d} < p < o0,
J
then
lolF 1, < Coll fllug  (f € HF(T).
Moreover,

supp Al f > p) < Clflli  (f € Li(T9).

p>0
We recall that p; was defined in (3.4.4).

Corollary 3.7.25 Assume that (3.7.7), (3.7.8) and (3.7.9) are satisfied with N = 0.
If f € Li(T%), then

lim azf =f ae
n—o00, neRy

For the unrestricted convergence, we can allow more general conditions for 6.
The next theorem can be shown as Theorems 2.6.7 and 3.6.7.

Theorem 3.7.26 If each 0; satisfies (2.6.2) and (2.6.3), then
lolf]l, < CollFllu, — (f € Hp(Th)

for 1/2 < p <oo. If (3.7.7), (3.7.8) and (3.7.9) are satisfied, then the preceding
inequality holds for
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In both cases .
sup pAOLf > p) < Cliflly  (f € H{(TY)
p>

foralli=1,...,d.

Corollary 3.7.27 Under the conditions of Theorem 3.7.26,
lim o’f =f ae
n—o00

forall f € Hli(Td) andi=1,...,d.

Note that these results are proved in Weisz [332, 333, 335].

3.7.4 Some Summability Methods

Itiseasy toseethatf € V12 (R) C Sp(R) for all examples 2.6.13-2.6.20 of Sect.2.6.3
and Example 2.6.21 (the Riesz summation) with 1 < a < co. Moreover, in Example
2.6.21, 0 € Sp(R) for all 0 < o < oo. In the next examples, 6 has d variables and
0 € Sp(RY).

Example 3.7.28 (Riesz summation]). Let

=) if el < 15 d
0(’)_{0 il >1  FERD

for some (d — 1)/2 < a < 00, v € P (see Fig.3.4).

Example 3.7.29 (Weierstrass summation). Let
0(t) = B2 or g1y =€ (1 € RY)

(see Fig.3.5). In the first case g(x) — ¢~ ¥13/2 and in the second one, a(x) =cq/(1+
[|x113) @172 for some ¢4 € R (see Stein and Weiss [293, p. 6.]).

Fig. 3.4 Riesz summability
function withd =2, a =1,
v=2
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Fig. 3.5 Weierstrass
summability function

0(1) = e~ I113/2
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Fig. 3.6 Picard-Bessel
summability function with
d=2
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Example 3.7.30 (Picard and Bessel summations). Let

1

s d
A+ppana <R

Oo(t) =
(see Fig.3.6). Here @)(x) = cge I for some ¢y € RY.

Lemma 3.7.31 Let0 € W(C,£)(R), Z6 € W(C, £;)(R) and 0 be even and twice
differentiable on the interval (0, c), where [—c, c] is the support of 0 (0 < ¢ < 00).
Suppose that

lim x0(x)=0, lim § €¢R, lim ¢ €R and lim x¢(x)=0.
0 x—>—+0 XxX—00

x—>c— x—c—0

If 0" and max(Z, 1)0” are integrable, then

o~ C 12 C
ol =5 @) @=5  «zo,

i.e, (3.7.9) hold with N = 0 and 3; = 0.

Proof By integrating by parts, we have

—~ 2 ¢
0(x) = —/ O(t) costx dt
27T 0

1
=— [ 0(t)sintxdt
™ Jo

-1 1 ¢
= —[0'(t) costx]y + — / 0" (t)costx dt.
mx2 wx2 Jo
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Similarly,

@' = = / " 10() cos tx di
27T 0

1 C
— / (t0(t)) sintx dt
™ Jo

-1 1 ¢ "
—[(t6(2)) costx] + —/ (t0(r)) costxdt,
mx2 mx2 Jo

which proves the lemma. ]

Note that all examples 2.6.13-2.6.21 satisfy Lemma 3.7.31, (3.7.7), (3.7.8) and
(3.7.9). Thus, all results of Sects. 3.7.2 and 3.7.3 hold.



Chapter 4 ®
Lebesgue Points of Higher Dimensional I
Functions

In Theorem 1.5.4, we have proved the well known theorem of Lebesgue [197], i.e.,
for one-dimensional Fejér and Cesaro means and for all f € L(T),

lim o, f(x) = f(x)

ateach Lebesgue point of f. In this chapter, we generalize this result to higher dimen-
sions and to all summability methods considered in Chaps. 2 and 3. We investigate a
common generalization of the Cesaro, Riesz and §-means and define

1
(2m)4

ouf(x) = fT =K,

where n e N or n € N and f € L1(T%), K, € L{(T?) N Ly (T%). We will give
sufficient and/or necessary conditions for K, such that o, f is convergent at each
Lebesgue point. We will study six versions of Lebesgue points, for different summa-
bility methods different Lebesgue points. We consider again the triangular, circular,
cubic, the restricted (taken on a cone or cone-like set) and unrestricted rectangular
summability as in the previous chapters. The proofs are very different for differ-
ent summability methods, therefore each case needs new ideas. For each type of
Lebesgue points, we introduce different and new type of Hardy-Littlewood maxi-
mal functions. We prove that these maximal operators are bounded from L, (T?) to
L ,,(Td )with 1 < p < oo and we prove also a weak type inequality for p = 1. Using
this, we obtain that almost every point is a Lebesgue point of an integrable function.
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4.1 {£>-Summability

In this section, we use the notation
f(x) ! ff( NK,t)dt (neN)
o, f(x) = —— X — n n s
(ZTI')d Td

where f € L (T?) and K,, € L,(T9) N Loo(T?) foralln € N.If K, = K7, K2*
or K, is the one-dimensional Cesaro kernel K, then we obtain the £,-Riesz and 0-
means af’a‘” f, 0,2[’9 f or the one-dimensional Cesaro means o, f, respectively. The
higher dimensional ¢,-Riesz kernel K ,f **7 and the one-dimensional Cesaro kernel
K “ satisfy all conditions in this subsection. Under some conditions on §, K >% satisfies

all conditions, too.

4.1.1 Hardy-Littlewood Maximal Functions

We generalize the Hardy-Littlewood maximal function for higher dimensions. As
in the one-dimensional case, the Hardy-Littlewood maximal function is bounded
on L,,(’JTd) for 1 < p < o0 and it is of weak type (1, 1). We denote by B, (c, h)
(¢c € T?, h > 0) the r-ball

Bi(c.h):={xeT':|x—cll, <h} (I1=r=oc0)
with center ¢ and radius &. For r = 2, we omit the index and write simply B = B,.

Similarly to the one-dimensional case, the Hardy-Littlewood maximal function can
be given by

1/p
o =sw (o [ra) T e,
B,

xeB, |Br|

where the supremum is taken over all r-balls B, containing x and 1 < p,r < oo. In
the special case when »r = 0o, we have to take the supremum over all cubes / with
sides parallel to the axes. Note that in the one-dimensional case this definition was
given for p = 1, only. In this section, we will rather use the next equivalent centered
version.

Definition 4.1.1 For1 < p <ooand f € L p(']I‘d), the Hardy-Littlewood maximal
function is defined by

1 h h 1/p
s = (G [ [ o)
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If we take the supremum over all 0 < & < , then we get an equivalent definition.
It is easy to see that
ClMpf =< M[r;f =< CZMpf

foralll < p<ooand 1 <r <oo.If p=1, then we omit the notation p and
write simply M f. The next theorem can be proved exactly as Theorem 1.3.3 in the
one-dimensional case.

Theorem 4.1.2 If1 < p < oo, then the maximal operator M, is of weak type (p, p),
Le.,

sugpA(Mpf > )P < Cylifll, (f €Ly(T).
P>

Moreover, if p < r < o0, then

IM,f|, <Clifl,  (f € L,(TY).

Using the density theorem of Marcinkiewicz and Zygmund (see Theorem 1.3.6),
we can formulateLebesgue’s differentiation theorem similarly to Corollary 1.3.8.

Corollary 4.1.3 If f € L,(T¢), then

) 1 h h
i [, [, =0

for almost every x € T

This implies that the inequality

Ifllp < IMfll, (I <p=o0)
is trivial. Now we introduce the restricted Hardy-Littlewood maximal function by

1/p

M, f(x) := sup T /|f|Pd>\ (x e T9)
xel, T*1<|1|/|1 <t

i,j=1,...

for some fixed 7 > 1, where the supremum is taken over all appropriate rectangles
I=1 x---x1

with sides parallel to the axes. The centered version is given in

Definition 4.1.4 Forafixed7 > land f € L, (T%), the restricted Hardy-Littlewood
maximal function is defined by
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1 hy ha 1/p
Mp,, f(x) := sup —/ .- / |f(x —10)|Pdt .
g heRd 24 HZ=1 hy J—n, —ha

Recall that
RU={xeRL:77" <xi/x; <7,i,j=1,...,d}

was defined in (3.3.1). Taking the supremum over all 7 € R?, we get a different
maximal function, the so called strong Hardy-Littlewood maximal function. We will
study this maximal operator in Sect. 4.2.1. Again, it is easy to see that

CIMD,pf =< M‘%ipf S C2MD,pf

and
CiMp,f <M,f <CMp,f 4.1.1)

forall 1 < p < oco. From this follows

Corollary 4.1.5 If 7 > 1 is arbitrary and 1 < p < 00, then

sup pA(Mo, f > p)'/? < ClIfll, (f € L,(T%)).

p>0

Moreover, if p < r < 0o, then

|Ma,f], <C lIfll,  (f € L(TY).

Corollary 4.1.6 If 7 > 1 is arbitrary and f € L,(T¢), then

1 hy hg
lim —/ f(x—t)dt = f(x)

y d
womess 20T S

for almost every x € T.

4.1.2 Lebesgue Points for the £>-Summability

First of all, we generalize the Herz spaces for higher dimensions.

Definition 4.1.7 For 1 < g, r < oo, the Herz space E; (R9) contains all functions
f for which

1flle, = 32 27 f1gy

k=—00

< 00,
q
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where
Pl = {x e R : 27 < |x|l, < 2¥7} = B,(0,2°7) \ B, (0,25 '7).
If we modify the definition of P/,
Pl={x eR": 2" ' < |x|, < 2"} N T,

then we get the definition of the space E (T9).

These spaces are special cases of the Herz spaces [166] (see also Garcia-Cuerva
and Herrero [113]). We immediately obtain the next proposition.

Proposition 4.1.8 Forafixed 1 < g < oo, the spaces E; (X?) are equivalent for all
1<r<oo where X=RorX=T.

For simplicity, we will use usually the sets P and the space E_° XH X =Ror

X' =T). These sets and spaces will be denoted by P and E, (X4). This means that
we have to take the sum in the E, (T%)-norm only for k <0, i.e.,

0
1w = D 290V | f1p], < oo

k=—00

It is easy to see that
Li(XY) = Ei(X) <« E,(X9) < E;(XY) <2 Ex(X9)
forall 1 < g < g’ < oo, where X denotes either R or T. Moreover,
E (T <> L, (TY) (1 <q < o0). 4.1.2)

Indeed,

0 0
1Ay = D 290V f1p ], < Y 29O fIl, < 1F -

k=—00 k=—00

It is known in the one-dimensional case (see, e.g., Torchinsky/\[3 10]) that if there
exists an even function 7 such that 7 is non-increasing on R, |6] < n, n € L;(R),
then o is of weak type (1, 1). Under similar conditions, we will generalize this result
to the multi-dimensional setting.

Theorem 4.1.9 For a measurable function f, let the non-increasing majorant be

defined by
nx) = sup [f(1)]

lell-=lxll-
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for some 1 <r < oo. Then f € Eo(X9) ifand only if n € L1(X?) and

C Ml < If Nl < Clinlh,

where X =R or X =T.
Proof We prove the theorem for X = R. If € L;(R?), then

o0 (o]
1fle < lnlle. = Y- 24 el = Y- 240@"m) < Clinlh.

k=—o00 k=—o00

For the converse, denote by

o0
ai = sup |f| and V/ = Z aklB,r(O.ka)\B,(O,Zk’IW)'
B, (0,2km)\ B, (0,2k~ 1)

k=—00
Let
v(x):= sup V(1) (xeRY).

el =lxll-

Since f € Eqx(RY) implies limy_, o, @y = 0, we conclude that there exists an increas-
ing sequence (1 )kez of integers such that (a,, )rez is decreasing and v can be written

in the form
o0

v=) anylp 0208025 0.

k=—00

Thus

o0
il < v = > a | ax
B,

(0,27 m)\ B, (0,21 )

k=—o00
—c Y (2 —2m)a,
k=—00

By Abel rearrangement,
o0
Il <€ ) 27 (an, , —an) < Cll f e,
k=—00

which proves the theorem. |

The maximal operator is introduced by

oxf = suplo, f].
neN
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In the next theorem we show that, under some conditions, the maximal operator can
be estimated by the Hardy-Littlewood maximal function pointwise.

Theorem 4.1.10 If1 <p <oo, 1/p+1/q =1and

sup ”Kn”Eq(Td) <C, 4.1.3)
N

ne

then
O'*f(X) = C (SUP ”Kn”Eq('[[‘d)> Mpf(x)
neN

forall f € Lp(']I‘d) and x € T¢.
Proof By the definition of o, f,

1
o £ (x)] = ) /;rd fx =K, (1) dt
1 0
- (ZW)d k;oov/l;k |f(x - t)”K”(t)'dt

Recall that
Po=P® ={x eR: 21 < ||x|l0 < 2F7).
By Holder’s inequality,

0

1/ 1
lo, f(x)] < ! E (/ | K, ()] dt) ' ( |f(x—t)|1’dt> p.
(2m)d i Py Py

—00

It is easy to see that if

u u 1/p
G(u)::(/ / |f(x—t)|”dt) (u > 0),

G?(u)
) <Mf(x) (u>0).

then

Therefore

0 1/q
o f@=C Y (/P |Kn<t)|‘1dt) G@tm)

k=—00

0 1/q
<C ) 2’“’/1’( |Kn(r>|er) M, f(x)
Py

k=—00
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=C ”Kn”Eq('JI‘(’) Mpf(x)a
which shows the theorem. |

Note that K, € Loo(T?) C Ex(T9) C E,(T?) foralln € N?, because of (4.1.2).
Theorem 4.1.2 implies immediately

Theorem 4.1.11 If1 <p <oo, 1/p+1/qg =1 and

sup K, ”Eq('I[‘d <C,
neN

then
sup pA(o. f > p)''? < C, <Sug ”Kn”Eq('JI‘d)> Iy
ne

p>0

forall f € L,,(Td). Moreover, for every p <r < 0o,

lowfll, =C (SUP 1Ky ||E,,ard>) If1- (f € L.(T?).
neN

Corollary 4.1.12 Suppose that 1 < p < oo, 1/p+1/q = 1 and

sup [ Ky |l g, (re) < C.
neN

If .
lim K, (k) = 1

n—o0o

forallk € Z4, then

limo,f = f ae
n— 00

forall f € Lp(']I‘d).
Proof For f(x) = e¢'**, we have

1
@m

lim o, f(x) = lim / RO (1) dt = lim %K, (k) = e**.
n—oo n—oo Td n—o00

This means that the convergence holds for all trigonometric polynomials. The corol-
lary follows from Theorem 4.1.11 and from the density theorem. ]
We consider the £,-0-means given by

oy fx) =) 0 (@) Fyes,

kezd
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where 6 : R — R. As in Sect. 2.6, we suppose that

ShE)

kezd

(4.1.4)

and we use the notation

Oo(x) = O(llx[l)  (x € RY).

Theorem 4.1.13 Suppose that 1 < p < ocoand 1/p+1/q = 1. If (4.1.4) is satis-
fied, 8y € Li(R?) and 0, € E, (RY), then

ot f ) = C 00| g, oy My f (x)

forall f € Lp(Td) and x € T¢.

Proof Similarly to Lemma 2.2.31,

2 f ) = — / fax =KX @y di=n" | fx—0b(nn)dr
(27T)d Td Rd
and R
K20ty = @m)n? Z Oo(n(ty + 2j17), ..., n(tg + 2 jam)). (4.1.5)

jezd

We will prove that 8, € E,(RY) implies

2,0 I
|&; ||Eq @ = C b ||Eq @y (@eN). (4.1.6)
First, we investigate the term j = O of the norm:
s
||n Oo(nty, ..., nty) ”Eq(?rd)
0 . 1/q
= Z 2kd(=1/a)yd (/ |0o(nty, .. .,ntd)|”dt>
k=—00 Py
0 . 1/q
=€, Yy 2Tt ( Nz ...,rd>|qdr> ,
k=—00 Ok

where

d
( — 2k g, n2k_l7r).

=1

d
— Ak k
Qk.—]lj[l( n27r,n27r>\

J



188 4 Lebesgue Points of Higher Dimensional Functions

Suppose that 2/~! < n < 2! for some [ € N. If

d
Ok == 1_[ ( —okH 2k+l7r) \ ( _ k=2 2k+l_27r>,
j:l j:1
then
[n900(nty, ..., ntd)”Eq(Td)
. —~ 1/q
< Cq Z 2kd(1=1/q)nld(1=1/q) (/ 100t ..., t0)|¢ dt)
k=—o00 Ok
0 K+l 1/q
<Cy Z 9 k+)d(1-1/q) ( Z / [Oo(t1, ..., t) dt)
k=—c0 i=k+i—1Y P
0 k+1 R g
=G Z Z 2=l (/ 10o(t1, - .., ta)|? dt)
k=—00 i=k-+I—1 P,
l i —~ 1/q
<Cy Z 9id(1-1/q) (/ 10o(t1, ... 1) dt)
i=—00 P;
= Co Il @.1.7)
Moreover,

nt Y oyt +21m). . nata + 2jam)
jeZdJ?éO Eq (’]I‘d)

0
— Z okd(1-1/q),d
k=—00

q 1/q
[ ¥ G+ 2jimontas+ 200m)|
P\ jen, j20
0
_ Z kd(1=1/q) ,d
k=—o00
q 1/q

L| ¥ fon+2im...on+2imn)
T jeza j0
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q 1/q
d ~ . .
< Cyn / Z Oo(n(t1 + 2j1m), ..., n(ty + 2j4m))| dt
T jezt jo
Let
Ri={jeZ:j#0,nT+2jm) x...xn(T+2j,m) NP #0}.

Since |n(ty, + 2j,m)| = 2717 if j,, # 0, we conclude

nt Y Bt + 217, . nata + 2jam)

jEZd,j;ﬁO Eq (Td)
q 1/q
o
<G [ [0 S Bt + 2monts + 2iam) |
T2l jer
o q 1/q
=C, ot | [ Bttt + 20m. ot + 2iam) |
, Td |4
i=l JER;
Since R; has at most C2/¢ /n members, we get that
nt Y Byt +21m). . nata + 2jam)
jEstj?&O Eq (Td)
1/q
e Zid g—1 . .
<Cyy n Z(—d> /|eo(n<r1+2mr),...,n<td+2jd7r>)\ dt
i=l jer, N T
1/q

<€,y 20l Bo(tr, ... t0)|" dt
i=l

JeR; /r:l(']I‘+2j177)><...><nd(']l'+2jd7r)

o . p 1/q
<c, 22,(1(171/4) (/P Oo(t1, ..., 12)] d;)

i=l

=¢q Hé\O” E,(R?)’ 4.1.8)
which proves (4.1.6). The theorem follows from Theorem 4.1.10. [ |
Note that

0o € E,(RY) C E{(RY) C Li(R),

thus (2.6.5) is satisfied and 6 is continuous.
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Theorem 4.1.14 Suppose that 1 < p < oo and 1/p +1/q = 1. If (4.1.4) is satis-
fied, 0y € L{(R?) and 0, E, (R?), then

sugpk(oi’ef > 0" < Cp o] . ey 1115
P>

forall f € L,,(Td). Moreover, for every p <r < oo,
1027 £l = € 1ol gy 1£1: (f € LT

Corollary 4.1.15 Supposethat1 < p < ooand1/p +1/q = 1.If6(0) = 1, (4.1.4)
is satisfied, 8y € L1(R?) and 8, € E, (R?), then

lim aiﬂf =f ae
n—00

forall f € L,,(’]I'd).
Now we prove some converse type results. We know that the weak type inequality
of Theorem 4.1.11 implies the almost everywhere convergence

limo,f = f ae.
n—00

forall f € L p(’]I‘d) (see Corollary 4.1.12). Conversely, if | < p <2 and the almost
everywhere convergence holds forall f € L, (T4), then o, is bounded from L P (T9)
oL, (T9), asin Theorem 4.1.11 (see Stein [288]). The converse of Theorem 4.1.10
is given in the next result. More exactly, if o, f can be estimated pointwise by M, f,
then (4.1.3) holds. Before proving this theorem, we need the following definition.

Definition 4.1.16 For 1 < p < oo, we define the space D,(T¢) with the norm

1 r r 1/p
”f”Dp(Td) = Osup (r_d[ .. / |f(t)|p dl) .

Taking the supremum for all 0 < r < 0o, we obtain the space D, (RY).

Lemma 4.1.17 For 1 < p < oo, the norm

£ 1l = sup 277 [ f1p, |,
k<0

is an equivalent norm on D, (T9).

Proof Choosing r = 2k7 (k < 0), we conclude

l 2k7r 2k7T 1/])
n—kd/p ||f1Pk||p <C (W /_zk ...</_2k |f(f)|Pdt> = ||f||D,,-
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On the other hand, suppose that 2¥~!7 < » < 2V 7 for some N € N. Then

1 r r 2Ng 2N
7/ |f(t)|pdt§C2’Nd/ / @l
—r —r —2N7

=c2 M Z o

k=—00

<27 Z 2L = CUrIE,

k=—00
which shows the lemma. |

We can see that D,(T¢) € L,(T“) and

Ifl, < Cliflp,@a  (f € Dp(T).

Theorem 4.1.18 If1 < p <oo, 1/p+1/q =1 and
0. f(0) = CM, f(0) (4.1.9)

forall f € Lp(']I‘d), then
sup 1Kl s, iy < C.
neN

Proof 1t is easy to see by Lemma 4.1.17 that

sup
1f 1L vy <1

f(=DK,(@)dt

= 1Kl g, (1) - (4.1.10)
Td

There exists a function f € Dp(’ﬂ'd) with || f]Ip, < 1 such that

I n”E(’]I‘)

‘/ F(=D)K, (1) dt].

Since f € L,(R%), by (4.1.9),

Vw f(=D)Ky ) dt) = o, f(0) = CM, f(0)  (n€N),
which implies

IKnllg, 0ty < CM, f(0) < Cli fllp, =<C  (n€N).
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This proves the result. n

Note that the norm of D, (T9) is equivalent to

1 T Ta
IfIl=sup = / / Lf (1P dt
re[0,m]¢NRY Hj:1 rj J—n —Td

Now, we introduce the first generalization of Lebesgue points for higher dimen-
sions. Corollary 4.1.3 says that

1
lim / / f—ndi = f()

for almost every x € T4, where felL (T9). In other words,

) 1 h h
%%W[h~--[h(f(x—t)—f(x))dt=0,

1/p

which is equivalent to

1
lim ——
h—0 (2h)4

h h
/ / (f(x—1)— fx)dt] =
—h —h

In the next definition, we describe a stronger condition.

Definition 4.1.19 For 1 < p < oo, a point x € T is called a p-Lebesgue point of
f € L,(T9)if

1 h h 1/p
1 J— — 1) — p —
tim (s [ [ s == gwrar) <o

For p = 1, the points are said to be Lebesgue points. One can see that using the
restricted maximal operator and Corollary 4.1.6, we get an equivalent definition:

ha 1/p
h—>10he]R4<l—[j \2h; )/ / If(x—t)—f(x)|pdt) =0.

If p < r and x is an r-Lebesgue point of f, thenitis alsoa p-Lebesgue point. Indeed,
by Holder’s inequality,

1 h h 1/p
(W/h-'/hu(x—z)—f(xnf’dt)
1 h h 1/r
A " d ,
< ((Zh)d /_h /_hlf(x H— ol r)
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The following two results can be proved as in the one-dimensional case, see
Theorem 1.3.11 and Lemma 1.3.12.

Theorem 4.1.20 Almost every point x € T? is a p-Lebesgue point of f € L,,(']I‘d)
(1< p< o).

Lemma 4.1.21 If x is a p-Lebesgue point of [ € L,,(']Td), then f(x) and M, f (x)
are finite (1 < p < 00).

The next theorem generalizes Theorem 1.5.4.

Theorem 4.1.22 Suppose that1 < p < oo, 1/p+1/q = 1 and

sup | Kull g, (rey < C.

neN
If forall § >0
HILH(}O I KnllL, ra\(-s.60) = 0 (4.1.11)
and
lim K,(0) =1, (4.1.12)
n—oQ
then

lim 0, f(x) = ()

for all p-Lebesgue points of f € Lp('JTd).

Proof Now, set

u u 1/p
G(u)::(/ / |f(x—t)—f(x)|”dt> (u > 0),

Since x is a p-Lebesgue point of f, for all € > 0, there exists m € Z, m < 0 such

that Gr
W _

Quyd ~

if 0<u<2mr (4.1.13)

Observe that

1
@m)

+f(X)<

onf(xX) — f(x) = /Td(f(x—l)—f(X))Kn(t)dt

1
2y /w K,(t)dt — 1) .

Thus
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lon f(x) = f)] = Cf 1f = 1) = FONK, (O] dt + | £(x) (K, (0) = 1)
Td

m 2
- c/ e =D = F@IK 0] dr

oma oma

+C/ [fx—1) = fFOlKa(0)] dt
T\ (=2, 2m )

+ £ ) (Ka(0) = 1)
= A1(x) + A2 (x) + A3(x).

We estimate A (x) by

Ailx)=C Z . |f(x —1) = fOIK, (@) dt
k=—00 ¥ 'k

m 1/q
<c ( : |Kn<z>|‘1dr) ( : lf(x—t)—f(x)l”dt)
k=—o00 k k

m 1/q
<Cc )y ( |K,()]? dt) G2 ).
k=—o00

Py

1/p

Then, by (4.1.13),
m o 1/q
A1) < Cpe Y 24P </ |Kn(r)|qdr) < Cpell Kl o)
k=—00 P

For 0 < § < 2™, we have

Az(X)SC/ If(x —1) = fOOIIK. (1) dt

T(/\(_(S’()“)(l

1/q
<C (/ |Kn(r)|‘1dr) (1£1p + 17 1),
TI\(=4,0)¢

which tends to 0 as n — oo. Moreover, Az(x) — 0 asn — 00, too. This completes
the proof of the theorem. |

Observe that (4.1.2) and &' < 2k < & imply

I Knll g, (rav—6.000) < I KnllL, (we\(-6.5))

IA

| K ll 2, (ra\(—2¢ ., 25m))

0 1/q
(Z |Kn<r>|"dz)

I=k+17F

IA
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0 1/q
<G Y 2’<d<“/4>( K, (1)) dr)
Py

I=k+1
< G5l Kl g, (ra\(—2¢ . 25m))
< G5l Kl g, (ra\(~5.6))- (4.1.14)

Then condition (4.1.11) is equivalent to
nli)ﬁolo I K ll £, (1é\(~6.8)7) = 0.

In the case 50 €k, (RY), we can formulate a somewhat simpler version of the
preceding theorem.

Theorem 4.1.23 Supposethatl < p < ocoand1/p+1/q =1.1f6(0) =1, (4.1.4)
is satisfied, 8y € L1(R?) and 8, € E, (R?), then

lim o’ f (x) = f(x)
n—o0
for all p-Lebesgue points of f € L,,(']Td).
Proof We have seen in Theorem 4.1.13 that 50 €k, (R% implies

||K3’0||Eq('[[‘d) <C ”% (ne N),

” E,(RY)
so the first condition of Theorem 4.1.22 is satisfied.

On the other hand, let 27 < § and 2/~! < n < 2/ as in the proof of Theorem
4.1.13. We get similarly to (4.1.7) and (4.1.8) that

° 1/q

2,6 id(1-1/q) T

| K2 sy < Ca D 24071 ( [P |0o(t1,...,rd>|th)
i=ko+l—1 i

N 1/q
+C, 32t (/ |90(t1,...,td)l"df> g
i=l b

which tends to 0O asn — 00, since 50 € E, (R%). Then (4.1.11) follows from (4.1.14).
Finally, by (4.1.5),

/Kn(t)dt:ndZ/ Oo(n(ty +2j17), ..., nlty + 2jum)) dt
Td

2\
(2m)* Jra et

— nd/ Oo(nt)dt = 0y(1) = 1,
R(l

which finishes the proof of our theorem. ]
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Since each point of continuity is a Lebesgue point, we have

Corollary 4.1.24 Ifthe conditions of Theorem4.1.22 or Theorem4.1.23 are satisfied
andif f € L,,(']I'd) is continuous at a point x, then

lim o, f(x) = f(x).

The converse of Theorem 4.1.22 holds also.

Theorem 4.1.25 Suppose that 1 < p <occand 1/p+1/q = 1. If
lim o, f(x) = f(x)
n—o0

for all p-Lebesgue points of f € L ,,(']Td) then

sup | Kull g, (rey < C.
neN

Proof The space DY) (T?) consists of all functions f € D,(T?) for which f(0) = 0
and 0 is a p-Lebesgue point of f, in other words

1 h h 1/p
1 p —
,ELI‘(‘)(@h)d [ Lo ‘”) -

‘We will show that Dg (T%) is a Banach space. Let ( f,,) be a Cauchy sequence in
Dg (T9), i.e.,
”fn_fm”Dg('ﬂ*d) —- 0 as n,m — 0OQ.

Then there exists a subsequence ( f;,) such that

” fl/n+| - fl/,, “Dg(?l‘d) <27

= <2,

DY (T¢)

00
2 Fos = £

n=0

Z ‘fl/nﬂ - an
n=0

L, (T)

thus the series

Z |fl/n+l - an
n=0

is almost everywhere finite. That is to say the sequence (f;,) is almost everywhere
convergent. Let
f=1lm f,, and f(0)=0.
n—0o0
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For all € > 0, there exists N such that

[e ] o0
17 = fonllogeeny = 2 Mfones = Fol gy = D227 <&
n=N n=N

If & > 0 is small enough, then

1 h h 1/p
<—(2h)d // .../h|ﬁ,N(t)|pdt) < €.
Hence

1 h h 1/p
[ P
((2h)d L"'L'ﬂm dt)
1 h h 1/p
SC||f—ny||Dg<w>+(W/h---/hw(r)v’dt) <2,

whenever / is small enough. From this it follows that f € Dg (T?) and Ois a Lebesgue
point of f. Thus DY (T?) is a Banach space, indeed.
We get from the conditions of the theorem that

lim 0, f(0)=0 forall f e D)(T’).
n—oo
Thus the operators
Up: Dy(T) > R, Upf:=0,f(0) (el

are uniformly bounded by the Banach-Steinhaus theorem. Observe that in (4.1.10),
we may suppose that f is 0 in a neighborhood of 0. Then

C = Uyl

f (=D K, (1) dt

Td

= sup
171y e <1

F(=DK, (1) dt

Td

sup
1f 1l eray <1

| Knll £, (o)

forall n € N. |

Corollary 4.1.26 Suppose that1 < p <oo, 1/p+1/q =1, (4.1.11) and (4.1.12)
hold. Then

lim 0, f(x) = f ()
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for all p-Lebesgue points of f € Lp(Td) if and only if

sup ||Kn||E,,('11‘d) <C.
neN

Note that these results can be found in Feichtinger and Weisz [104]. We know that
our results can be applied to the one-dimensional Cesaro summability (see Sect. 1.5).
Moreover, the Riesz, Weierstrass, Picard and Bessel summations given in Sect.3.7.4
(Examples 3.7.28, 3.7.29, 3.7.30) satisfy all conditions of this section, too.

Corollary 4.1.27 Suppose that 0 is one of the Examples 3.7.28, 3.7.29 or 3.7.30.
Then

Jlim ol f(x) = f(x)

for all Lebesgue points of f € Li(T?). Moreover,

sup pA@ > ) = € o]l gy IS (f € L2(T)
p>

and, for every 1 < p < oo,

[o2£1l, < Co B0l gy 1 £, (f € Lp(T).

4.2 Unrestricted Rectangular Summability

Here we study the operators

1

Unf(x) = (27‘(’)”’

/ fx=0K,@)dt (neN),
Td

where f € L, (T9) and K,, € L;(T%) N Loo(T?) for all n € N¢. The higher dimen-
sional rectangular Cesaro and Riesz kernels, K¢ and K,,"" satisfy the conditions of
this section. The kernel K is also investigated.

4.2.1 Strong Hardy-Littlewood Maximal Functions

A second generalization of the one-dimensional maximal function is the so-called
strong Hardy-Littlewood maximal function given by

1 1/p
My, f (x) = sup (m / IfIPdA) (x € TY,
1

xel
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where f € L p(TI‘d) and the supremum is taken over all rectangles
I=Ix---xI;cT!

with sides parallel to the axes and containing x. This maximal function is different
from M), and from Mp , defined in Sect.4.1.1, it remains bounded on L ,,(Td ) with
1 < p < oo, but it is not of weak type (1, 1). The reason for this is that in the
definition the ratio of the sides of the rectangles can be large. We will use again the
next centered version of the strong maximal function.

Definition 4.2.1 For 1 < p < oo and f € L,(T%) the strong Hardy-Littlewood
maximal function is defined by

1 h ha I/p
M; , f(x) := sup —/ |f(x —0)|Pdt .
: nerd \[15=1@hp) J=n Jon,

Taking the supremum over all 2 € (0, )4, we get an equivalent definition. It is
easy to see that
Cle,pf =< Mé,pf =< CZMs,pf

forall 1 < p < oo.If p = 1, then we omit the notation p and write simply M; f. In
the one-dimensional case M; is the usual Hardy-Littlewood maximal function and
s0, it is of weak type (1, 1). For higher dimensions it is known that there is a function
f € Li(T?) such that M, f = oo almost everywhere (see Jessen, Marcinkiewicz and
Zygmund [177] and Saks [268]). Thus M, cannot be of weak type (1, 1), however,
with the help of the L ,(log L)*(T“) spaces, we can show a weak type inequality. Set
log* u := max(0, log u).

Definition 4.2.2 For k € Nand 1 < p < oo, a measurable function f is in the set

L,(log L)*(T9) if

1/p
If N, dog Lyt = (/ | £17 (log™ | f D) dA) < oo0.
T

If p = oo, then set Lo, (log L)*(T¢) = L (T9).

For k = 0, we get back the L,(T?) spaces. We have forall k e Pand 1 < p <
r < oo that

L,(T% > L,(log L)*"'(T?) > L,(log L)*(T?) > L,(T%).

Theorem 4.2.3 If f € L(log L)?~'(T?), then

sup pA(M, f > p) < C +C H|f| (log* 17])"" H

p>0 1
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Moreover, for | < p < oo, we have

1M fll, < Collfll,  (f € Lp(TY).

Proof Let us denote the one-dimensional Hardy-Littlewood maximal function in the
ith dimension by M. Then

Mf <MV oMPo-.. o MDf.
By Theorems 1.3.3 and 1.3.5,

sup pA(M, f > p) = Sllpp)\(M(l) oMPo... o M(d)f > p)
p>0 p>0

< M o 0b ]

<CHC[MP 0 o MDL], o0t

IA

...=C+C ”f”Ll(logL)d*‘(Td) .
The second inequality of Theorem 4.2.3 follows similarly. ]

Similarly to Corollary 4.1.3, we obtain

Corollary 4.2.4 If f € L (log L)' (T%), then

1 hy hy
lim —— —dt =
hl—rf})]—[;?:l(zhj) /h] %ﬂx =71

for almost every x € T

Note that this convergence result does not hold for al f € L;(T%) (see Jessen,
Marcinkiewicz and Zygmund [177] and Saks [268]). Since M_f,,f = M,(| f|?) for
1 < p < oo, we have

Corollary 4.2.5 If1 < p < ocoand f € L,(log L)' (T?), then

Sup pA(MS,pf > p)l/[) 5 Cp + Cp ”f”L,,(logL)d*I .
p>0

Forp <r < o9,
IMspf], < C AN, (f € Lo(T).
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4.2.2 Lebesgue Points for the Unrestricted Rectangular
Summability

To formulate the generalization of Lebesgue’s theorem for the unrestricted rectan-
gular summability, we have to modify slightly the definition of the space E, (RY).

Definition 4.2.6 For 1 < g < oo, the Herz space E; (RY) resp. E :] (T?) contains all
functions f for which

d

oo oo
||f||E,;(Rd) = Z Z szj(lfl/q) HflPqu < 00

k1:—00 kd:—OO ]:l

resp.
0 0 d
£ 1 gy pay = Z Z nzk/(lfl/q) | £1p, ||q < 00,
kj=—00 kg=—00 j=1
where
Ppi= Py x - X Py, (k € Z%
and ) .
P={xeR:27'n<|x| <27} (iel.
Again,

LX) = E{XY) < E,(X)) < E,(X") < E (X!, 1l<q<gq <o,
where X = R or T and
Ej(T?) < Ly(TY) (1 <q <00).
It is easy to see that E/ (X9) D E,(X¢) and
Iflle, = Cliflle, (I =g =<o00).
Here we will estimate pointwise the maximal operator

o« f = sup |o, f|

neNd

by the strong Hardy-Littlewood maximal function. Since the condition (4.1.11) is
not true for rectangular summability kernels (e.g., for the Cesaro or Riesz kernels,
K¢, K;'"), we use here other conditions and other ideas. We introduce the functions

n?’
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ni ng

En([) = 1—[7[/‘ (1(777,7r)dKn) (t—l, ceey t—d>

d
(TTizins) Ko (2 )il < 7, ] < s

-1
— "7 i _1 P 4
0, else.

Theorem 4.2.7 Foralln € N¢,
c ”Kn”E"i(’]I‘d) = || Kn H E(/](Rd) <C ||Kn||E"7(']F"’) .

Proof We have

:&

I
=

J - kg=—00 \ j=I

p q 1/q
/ / (l(—m‘/r)dKn) (—1, Ceey —d) dt
Py Py, ni na

~1+1/g .,
() £ (A
j=1

J kq=—00

/9
(/ |(Lerme Kn) 0] dl) :
PAI("I) Pk,(ﬂd)

.

N - 00 00 d
K, ||E;(RI,) = n; Z Z 1—[ k;(1=1/q)
oo

~

:m

I
=

where
P(nj) =={x eR:2%"'7/n; < |x| <2Y7/n;}  (j=1,....d).
Choosing /; € N such that 2/~ < n; < 2%, we conclude that
P,(nj) C{xeR: 2V lr < x| <25ty =Ry, (j=1,....d)
and

d

E, Rd) = <C Z Z 1_[2(]{/71/)(171/‘1)

kj=—00 kg=—00 \ j=I1

(.

4

1/q
|(1erme Kn) O] dt)

ka-la
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[e9) 00 d
<C Z Z l‘[lzi,nfl/q)
j=

i[ =—00 id:—OO

(/ / |(1er,me Kn) @] dt)
Py Py,

=< C H 1(—7r,7r)"Kn

1/q

” E,(RY)
= CIKull g o) -
The other inequality can be shown in the same way. |
Now we formulate the analogue of Theorem 4.1.10.

Theorem 4.2.8 If1 <p <oo, 1/p+1/q=1and

sup |1K, g ey < C. 4.2.1)
neNd

then

o.f(x) =C (Sup 1 Knll e, mrd)) M, f (x)

neNd
forall f € Lp(Td) and x € T¢.

Proof Observe that

0w f (x)l
(2 )d / f =0 (LrmaKy) (1) dt
(Zﬁ)d Z k _Z_:Oo /;’kl w /Pkd(nd) 16 =D (Lenmea) O] di.
By Holder’s inequality,
low f ()]
1/p
= (zﬂ)d Z k:Z_w (/P " -/Pkd(nd) fx - t)l”dt)

1/q
(f .o f |(1(,71—’77)61Kn) (t)|q dt)
Py, (n1) Py, (ng)

1/p
. —DlPd
(27)d Z Z </Pkl<n1> /Pkd(nd)lf(x gl t)
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a \ 7V RN
n 17}

17 [k () )

j=1 Py Pry i Na

If we define

1/p
G(u) —</ / |f(x—t)|pdt> (ue]R ),

then P
u
Pof(x)  (ueRY).
1—1] ](2 j)
Thus
ki ok d —1/q
1 d,n_
= —_— .
7w f ()] < (27T)dk_2_: _X_) ( o ) Unj
1=—00 kg=—00 j=
t PN /g
/ / (1(—mr>dKn) (—1,- ,—d> dt 4.2.2)
Py, P, ny ng
d d -1
kj/ )
N (27T)d Z Z HZ ! l_[nj M;,p f(x)
hi=—c0  ky=—o0 \j=I j=1
1/q
t t 4
[ [ ()
Py Py, ni ng
=C| K, H E/(RY) M;,p f (x).
The result follows from Theorem 4.2.7. m

The following result comes from Corollary 4.2.5.

Corollary 4.29 If1 <p <oo,1/p+1/q =1and

sup | Kullg ey = C,

neNd

then

sup pA(oy f > P)l/p <Cp| sup ”Kn”E/ @y )\ L+ 1L, gog ys
p>0 eNd rioe

forall f € L,(log L)A=1(T?). Moreover, forevery p <r < 00,
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lowfll, = C (Sup IIKnIIE;(m) Ifl- (f € L(T).

neNd

Corollary 4.2.10 Suppose that1 < p < oo, 1/p+1/q =1 and

sup || Knllgy ey < C,

neNd

If _
lim K, (k) = 1
n—oo

forallk € 74, then
lim o, f =f ae
n—oo

forall f € Lp(logL)d_l(Td).

Recall that L ,(log L)*(T¢) > L,(T¢) with 1 < p < r < oc. In this section, we
study the rectangular 6-means,

—k —k;\ ~
sz(x) = Z ZG(n_ll"“’ n_dd) flk)e™™,

k1€Z kdEZ

where 8 € W(C, £))(R?).

Theorem 4.2.11 Suppose that 1 < p <oo and 1/p+1/q=1.1f 0 € W(C, £))
(RY) and 0 € E, (R?), then

oL @) = C 0], oy Mop f 2)

forall f € L,(T%) and x € T.
Proof Since 56 L;(RY) and, by Theorem 3.7.6,

d
off)y = (]]n /f(x—t)ﬁ(nltl,...,ndtd)dz,
Rd

j=1

we can repeat the proof of Theorem 4.2.8 step by step. |

Corollary 4.2.12 Suppose that 1 < p <ocoand 1/p+1/q=1.1f0 € W(C, )
(R and 6 Ec; (R?), then

sugp)\(aff >p''’<C, ”é\H E/(RY) (1 + ”f”Lp(logL)d’l)
P>

forall f € L,(log LY=1(T9). Moreover, forevery p <r < oo,
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[ol 1, < C 1814, gy 150 (F € Lo(TD).

Corollary 4.2.13 Suppose that 1 < p <ocoand 1/p+1/q=1.1f0 € W(C, {y)
(R%), 8(0) = 1 and 0 € E’ (R?), then

lim o/f = f ae
n—0oo

forall f € L,(log LY=1(T%).
For the converse theorems, we need

Definition 4.2.14 For 1 < p < oo, we define the space D;, (T?) with the norm

1 r rd
”f”D’p(T") = Sup d—/ / |f(1‘)|pdt
re(0,m)4 Hj:l rj J—n —Td

The next two results can be proved as Lemma 4.1.17 and Theorem 4.1.18.

1/p

Lemma 4.2.15 For 1 < p < oo, the norm

Ifl.= su l_[2" P f1e],

k1 <0,..

is an equivalent norm on D;, (T9).
The converse of Theorem 4.2.8 reads as follows.
Theorem 4.2.16 If1 < p <oo, 1/p+1/qg =1 and

0. f(0) = CM;,, £(0)

forall f € Lp(Td), then

sup || Kl g ey < C.
neNd

We are going to study the second generalization of Lebesgue points for higher
dimensions. By Corollary 4.2.4,

ha

1 h
’Hol'[ e )/ » [ —ndr= f(x)

for almost every x € T?, where f € L(log L)?~'(T%). This is equivalent to

hy ha

(fx—1) = f)dt| =

Hj:l( j)
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Definition 4.2.17 For 1 < p < oo, a point x € T¢ is called a strong p-Lebesgue
point of f € L,,(Td) if

1 I hy 1/p
li - . — 1) — P d =0.
iy (Hj_l(zhj) /hl /hd 7Gx =8 = F @) t)

For p = 1, the points are called strong Lebesgue points. If p < r, then all strong
r-Lebesgue points are strong p-Lebesgue points. The next result can be proved as
Theorem 4.1.20

Theorem 4.2.18 Almost every point x € T? is a strong p-Lebesgue point of f €
L,(log L)4=1(T?) (1 < p < o).

This is not true for f € L p(’]I‘d ). The reason for this is again that in the definition
of the strong Lebesgue points the ratio of the sides of the rectangles can be large. To
be able to obtain convergence at strong Lebesgue points, we have to modify slightly
condition (4.2.1).

Theorem 4.2.19 Suppose that1 < p < oo, 1/p+1/q =1 and
00 0o d ~
> []24""9 | sup |K,1g,], < C. 4.2.3)
neNd 1

ky=—00 kg=—00 \ j=1

If _
lim X, (0) = 1,
n—o0

M p, f (x) is finite and x is a strong p-Lebesgue point of f € L,(log L)4=1(T9), then
lim o, f(x) = f(x).
n—oo

Proof Similarly to Theorem 4.2.8, let

u ug 1/p
G(u) = (/ f |f(x—t)—f(x)|”dt) (u GRi).

Since x is a strong p-Lebesgue point of f, forall € > 0, we can find an integerm < 0

such that
GP(u)

—<e if O<wu;<2"mj=1,...,d. 4.2.4)
[Tj_i u;) '

Let {my, ..., my} be a permutation of {1,...,d}and 1 < j < d. Then
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o £ ) — ﬂﬂL_Q)d/|f@—ﬂ—f@ﬂK<me)0ﬂm

1
+ | f(x) ((%)d /;rd K,(t)dt — 1)‘

= A (x) + Ay(x) + Az(x),

where

m+-[log, ny] m+[log, ng]

1
AI(X)::W Z Z

|=—00 kg=—00

/ -~/ Ifx—1) — fFOOI|(1crmiKa) (1) dt
Py, (m1) Py, (na)

and

oo

e YD DD i

T1seensTd kpy =m+[log, nzy |41 k7r =m+|log, N J+1 k

00
k,,d:—oo

f ~~/ 1fx =1 = fFOI|(LcrmaKn) ()] dt,
Py (n1) Py, (nq)

and
1 —
M@%=V@%Q)%/K0Mt N=Uuﬂmmw4»

It is clear that
lim As(x) = 0.

n—00

Asin (4.2.2),

Ap(x)

m+[log, ny | m+[log, ng |

1/p
c - - o
<.k 2 </Pk1 ) /‘;kd () |f e —1) = f@)] t)

ky=—00 ky=—00
1/q
h ta a
@%W«0(<””—>cﬂ
ni ng

d
[In) / 5l
j=1 Py Piy
—1/q

m+log, ny ] m+|log, ng| (2k

L 2d
<C Z Z n_l’ . 7r> 1—[”]

k] =—00 kd=700
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p p q 1/q
f/ (1<_ﬂ,,r)dKn)(_l,...,_d) ar)
Pkl Pkd

ni ng
Inequality (4.2.4) and 2% /n; < 2™n;/n; = 2™ imply

m+|log, ny ] m+|log, ng4| d d
ww=ce 3 oy (112 (1T
kj=—00 kg=—00 j=1 j=1
1/q
| ta \|!
/ . / (1(—71',71')"Kn) (—, e —) dt
Py Py, ni nq
= Cpe ” K"| Ej(RY) *
Similarly,
Az (x)
[ 00 [ [
S N SIS YD D
ThseensTd Ky =m+[log, ny J+1 k,,/:rthLlog2 nﬂjjwtlk,,jH:foo ky,=—00

1/p
(/ - |f<x—z)—f(x>|"dr>
Py, (n1) Py (na)
4 —1/q . .
1 d
l_ln] (/ / (1(_,”,7)5[[(”) (_,..., _>
=1 Py Py, ni ng

g 1/q
dt) .

209

We supposed that M , f(x) is finite and x is a strong p-Lebesgue point of f, so we

have
I/p
(/ a0 reop dt)
Py (n1) Py (na)
d ok v
= (T (Myp @ +1701).
Consequently,
Az (x)

Y Y .y :im

oo Td kg =m+[log, nz J+1 k,,j =m+|log, nﬁjj-&-l kﬂ/.Jrl =—00 kry=—
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d
[T257 ) (Mopf o +1701)
J=1

-c, Y Ly i:i

TseeesTd Ky =m+[log, nyy J+1 k,/.:vaUog2 nﬂjﬁlk,Hl:foo ky,=—00

d 1/q
1257 | sup (/ f IR, dt) (Ms,,,f(x) n |f(x)|).
j=1 neNd Py, Py

Therefore (4.2.3) and the fact [log, n;,] — coas T — oo imply that Ay(x) — 0 as
n— oo. |

Obviously, (4.2.3) implies
sup | K| <C,
neNI?] “ ”Eq(R'i)

which is equivalent to
sup || Knll gy ey < C,

neNd
by Theorem 4.2.7. If K, can be estimated by a function g € E; (RY) which is

independent of n, then (4.2.3) holds clearly. This is true for the Cesaro kernel
KY =K ®---® K} and forthe Riesz kernel K" =Ky ®---® K" Indeed,

nq
for the one-dimensional Cesaro kernel functions

1 a t C . n;
— K, | — )| = —minjn;, ——
n; P \n; n; ¢t
by Theorem 1.4.16. Similarly, by (3.3.12),

Llgen (L
nj | " \nj

Hence, by (4.2.7), Ko, K5 € E/_(R%).

=Cmin{l, [t} € Ex(R) 4.2.5)

< C . I’lj
- _,mln nj |t|min(a,l)+l

= Cmin {1, |f|"™ D"} € E(R). (4.2.6)

Corollary 4.2.20 If0 < o < 1, M, , f (x) is finite and x is a strong Lebesgue point
of f € Li(log L)*~1(T%), then
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lim o) f(x) = f(x).
n—o0

Moreover,

sup pA(@S > p) < C (14 11 £ll1, qog i)
p>0

forall f € Ly(log L)~'(T%) and, for every 1 < p < o0,

lot £, < Col flp (f € Lp(T).

a,y

The same hold for the Riesz summation o, if 0 < o < oo and v € PP.

Considering different parameters «; in the jth coordinate, we obtain the same
results. The next result can be proved in the same way as Theorem 4.2.19.

Theorem 4.2.21 Supposethatl < p < 00,1/p+1/q =1,0 € W(C, £;)(R?) and
0 e E; RY). If 0(0) = 1, My, f (x) is finite and x is a strong p-Lebesgue point of
f € L,y(log L)4=1(T?), then

lim o/ f(x) = f(x).

n—o00

Corollary 4.2.22 Ifthe conditions of Theorem4.2.19 or Theorem 4.2.21 are satisfied
and if f € Li(log L)*~'(T¢) is continuous at a point x, then

Tim oy f (x) = f(x).

Now we show the partial converse of Theorem 4.2.19.

Theorem 4.2.23 Suppose that1 < p <ocoand 1/p+1/q = 1. If
lim o, f(x) = f(x)
n—o0

for all strong p-Lebesgue points of f € Lp(Td) then

sup || K, ||E @y < C.
neNd

Proof We define D;? (T9) as the set of all functions f € D; (T¢) for which f(0) =0
and O is a strong p-Lebesgue point of f, i.e.,

1 n 1/p
- rd =0.
hg(l) (H?zl(Zhj) [hl /hd 7)) t)

Then we can show that D;? (T?) is a Banach space and the proof can be finished as
in Theorems 4.1.25 and 4.2.16. |
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In the next subsection, we give some further examples for the #-summation sat-
isfying the above conditions.

4.2.3 Some Applications

Now we suppose that
K,=KP®---@K?P (neN

n ng

and
0=60® -6,

For these functions, we have

(n € N%) 4.2.7)

d
o %)
1 Knll gy (1ey = 1_[1 H K E,(T)
j=

and a similar formula holds for ||6]| Ej(R4)- Hence for these functions, it is enough to
consider the one-dimensional Herz spaces E,(X) (X =T, R). As we have seen in
Corollary 4.2.20, the rectangular Cesaro and Riesz summation satisfy the conditions
of the preceding subsection.

Now, we present some sufficient condition on 6 such that = Eo(R). The next
theorem was proved in Herz [166], Peetre [254] and Girardi and Weis [130].

Lemma 4.2.24 If0 € B} |(R), then § € E~(R) and

01z = Cplbls,-

A function f belongs to the weighted Wiener amalgam space W (Lo, £]")(R) if

oo
I Wy =Y, sup |f(x+0)vs(k) < oo,
szooxe[o,l)
where v, (x) := (1 + [x])* (x € R).
Lemma 4.2.25 If0 € W(Loo, £]")(R), then 6 € Eo(R) and
101l£, < C”e”w([m,efl)-

Proof The inequalities
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o0
k
10lle, = ) 2" supo]
k=—00 P
o0
<2 sup |6] +C22k Z sup |6]
(=m,m) k=0 ji(—mm+2jnn Py (TTOH2T

o.¢]
<C Y (A+ljh sup 6]

Pl (—mmyi42j

= C”e”W(Lw,g‘]’l)
prove the result. u

We generalize Feichtinger’s algebra and introduce its weighted version.

Definition 4.2.26 Let go(x) := e ™*IZ be the Gauss function. We define the
weighted Feichtinger’s algebra or modulation space M;*(R?) (s > 0) by

My @Y = {f e LR N fllagp =[S0 f - vl oy < 00

where v, (x, w) := v,(w) = (1 + |w|)* (x, w € RY).

Any other non-zero Schwartz function defines the same space and an equivalent
norm (see, e.g., Feichtinger [100] and Grochenig [152]).

Lemma 4.2.27 If € M (R), then § € Eo(R) and

161 < 116110 -
Proof By Lemma 4.2.25,
”ﬂEw =C ”ﬂ W(Looot!) = ClIf gy

where the second inequality can be found in Gréchenig [152, p. 249]. ]

Corollary 4.2.28 Suppose that 0 =0, ® --- ® 0, € W(C, £,)(R?) and 6(0) = 1.
If0; € M{'"(R) forall j =1,...,d, M f(x) is finite and x is a strong Lebesgue
point of f € Li(log L)4=1(T?), then

lim ¢/ f(x) = f(x).

n—o00

Moreover,

d
sup pA(a > p) < C | TT10; 1 | (1 + 102 000 1)

p>0 =1
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forall f € Ly(log L)*~'(T%). Also, for every 1 < p < oo,
d
lolrl, <o {TTHO M | 151, (F € L@,
j=1

In the next theorem, we give a sufficient result for 6 to be in M| (R).

Theorem 4.2.29 If 0 € Vlk (R) for some k > 2, then 6 € M|"(R) for all 0 <s <
k—1and
100 ap < CsllOll .

This theorem can be proved as was Theorem 3.7.14. Note that Vlk (R?) was defined
in Definition 3.7.13.

The space V12 (R) is not contained in M}" (R). However, the same results hold as
in Corollary 4.2.28.

Theorem 4.2.30 If0 € VZ(R), then § € Eq(R).
Proof The inequality
~ C
|6(x)| < =5 G#0 (4.2.8)

can be shown similarly to Theorem 3.7.14. fe E . (R) follows from Theorem 4.1.9.
[ |

Corollary 4.2.31 Suppose that 0 =6, ® --- ® 0, € W(C, £,)(R?) and 6(0) = 1.
If0; € VER) forall j = 1,...,d, then the results of Corollary 4.2.28 holds.

Note that for all examples of Sect.2.6.3, we have § € V12 (R) or (4.2.8). This means
that all results of Sect.4.2.2 hold if each ¢; denotes either the Cesaro summation or
one of the examples of Sect.2.6.3.

4.3 Restricted Rectangular Summability over a Cone

Let again
1

@2m)

onf(x) = /Tdf(x—l)Kn(t)dt (n € N%,

where f € L (T?) and K,, € L;(T%) N Lo (T?). Here we suppose that n € N is in
the cone R?. Recall that R? is defined by

R=f{xeRy:7' <xi/x; <70, j=1,....d},

where 7 > 1 is fixed. The higher dimensional rectangular Cesaro and Riesz kernels,
K and K,,"" satisfy the conditions of this section.



4.3 Restricted Rectangular Summability over a Cone 215

4.3.1 Hardy-Littlewood Maximal Functions

It would be a straightforward idea that for the restricted rectangular summability,
we use the restricted Hardy-Littlewood maximal function M, defined in Theorem
4.1.4. However, this would be not useful because the restricted maximal function is
equivalent to the usual maximal function M, f (see (4.1.1)). So we have to introduce
a third generalization of the maximal function.

Definition 4.3.1 Forw > 0,1 <p <ooand f €L ,,(’JI‘d), the Hardy-Littlewood
maximal function M;l f is given by

. il 1 2 h 2idfy 1/p
M f(x) := sup 27¢Mh —/ f x—t ”dt) .
) ieNd.E>O ((Zh)dZH’”‘ _2ith —diap ¢ )

For p = 1, we write simply M“! f. If w = 0, we get back the definition of the
strong Hardy-Littlewood maximal function M , f. In contrary to the strong maximal
function, due to the weight 27l | the weak type (p, p) inequality will be true for
M. Ttis clear that

M“Ij"lff/\/l’;jz’lf forw; > wy, >0and 1 < p < oo.

Let us point out the definition in the two-dimensional case. We have

L 1
MOV F(x,x) =  su gl
A PRSI

20h  p22h 1/p
/ f |f(x1—tl,x2—t2)|Pdt) .
—2ip J-202h

To prove inequalities for M“;*l f, we need another generalization of the maximal
function M, f. Let 11(h) and v(h) be two continuous functions of i > 0, strictly
increasing to co and O at &4 = 0. Let

. phy  pvh) 1/p
M LX) 1= —t, X2 — )|’ dt ;
p S x2) = <4u(h)u(h)/ =t 0 = n)l )

h>0 p(h) J—v(h)

where f € L ,,(Tz). If u(h) = v(h) = h,then we get back the usual Hardy-Littlewood
maximal function M, f investigated in Sect.4.1.1. The next result can be proved in
the same way as Theorem 4.1.2.

Theorem 4.3.2 If1 < p < oo, then

sup pAMM Y f > p)P < CplIfll,  (f € Lp(T?).

p>0
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Moreover, if p < r < 0o, then

|y £ < Collfl, (f € Le(T)),
where the constants C, and C, are independent of |1 and v.

Using this theorem, we can prove the inequalities for M‘;*l.

Theorem 4.3.3 [fw > 0and 1 < p < o0, then
sugpA(M;"f > <Clfll, (f € Ly(T).
P>

Moreover, if p < r < 0o, then

|METF| < Cllfl (f € LT

Proof Applying Theorem 4.3.2 to u(h) = 2" h and v(h) = 22h, we obtain

o)
o 1

P w,1 —w(i1+iz) -

PPAMf > p) = p)‘<AU02 o P <4.2i1+i2h2
11,02=!

2ith p22h 1/p
G — 113 — wdt) . p)
—2ith J-22h
o0 oo
< pl’ Z Z)\ (Mll),y,uf - 2w(11+12)p)
i|=0 i2=0
oo o0
<Cp Yy Y 2@ gy
i1=0 [2=0
<GlfI?

forall f € L(T?) and p > 0. The inequality
M), < Colflly (f € Lp(T?), 1 < p < 00)

can be shown similarly. |

4.3.2 Lebesgue Points for the Summability over a Cone

We briefly write L“;(Rd ) (w > 0) instead of the weighted Lebesgue space L'“;(Rd s A)
equipped with the norm
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1/p
Ifllzs = (/Rd [f o)A+ le)’“’lpdx> (1 <p<o0),

with the usual modification for p = oco. If w = 0, then we get back the L ,,(Rd )
spaces. Clearly, L,(R?) > L4(R?).

In this subsection, we introduce a new type of Herz spaces, the so-called weighted
inhomogeneous Herz spaces.

Definition 4.3.4 Forw > 0and 1 < g < oo, the weighted Herz space E;’ (R%) con-
tains all functions f for which

[e'e) o) d
Il =D > [ TT29“ Y ) | £1a, < oo,
k=0  ky=0 \ j=I
where
Q= Qu x-+x 0 (keN)
and

Oi={xeR: 27"t <|x| <27} (G eN), Qp:=(—mn).

It is clear that
E:(Rd)DE;)(Rd) 0<w<uw <00

and
LiR") D L{RY) = EYRY) D EZRY) D E;(RY) > ELR?)

forany 1 < ¢ < ¢’ < oo with continuous embeddings. Moreover,
E;RD CLy®RD  and | fll@e < Co Il fllpsmo) -
Indeed,

o0 d
> ([T / O dr,
1 [

k=0 \ j=

/ If@dr <y -
R k=0

which implies the inequality. The connection between Eg(]Rd) and Ec// (R%) is the
following. First of all,

EJR) CE;®R) and | fllg@y < Cqlfllmes -

We prove this for one dimension, only:
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0 0
D o e D e L e M
k=—00

k=—00

We get the inequality for higher dimensions similarly. Summarizing these results,
we can see that

EJRY) = LyRYNE;RY) and || fllgo@a ~ 1 fllg + 1 f 1l ;o)

with equivalent norms. Usually, § € L;(R%) N Co(RY), thus 8 € E 7 (RY) if and only
iff e ES(IR%"), but 101l g, ®e) < CqllOll orey, (1 < g < 00).

We show that f € E¥ (R) if and only if f has a decreasing majorant function
belonging to LY (R).

Theorem 4.3.5 Let w > 0 and n(x) := sup, > | f(@)]. Then f € EZ(R) if and
only ifn € LY (R) and

C™ Il < 1 fllge < Clinlls +1(0).

Proof 1If n € LY(R), then

oo
Ifllge <Y 2™ Intg, |
k=0
= 2Kt ) 4 (0) < C Il + 0(0).
k=1

For the converse, we use the function v introduced in the proof of Theorem 4.1.9
to obtain

o0
Inllee < vy =Zf1nk/ (1 +x)“dx
=0 B(0,2")\B(0,2"k-1)
(o]
-C Zznkw (2nk _ 2"1{—]) a,, < C ”f”Ego ,
k=0
which proves the theorem. ]

In this section, we investigate the restricted maximal operator

oo f = sup |o, f1,

neR?

where 7 > 1 is fixed. Recall that
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-1

d
~ t t
Ky := [[]ns (1(M)d1<n)(—‘,... —”’).
j=1

ni ’l’ld

Theorem 4.3.6 I[fw>0,1<p<oo, 1/p+1/q=1and

Cv

sup | Kl 520y =

then

oof(x)<C (sup/ H I?,,| EW,(RI,)) MU;,lf(x)
neRd K

forall f € L,,(']I‘d) and x € T¢.

Proof We have

|Unf(x)|
1
~ @ny /Rd fa =0 (nmeKn) () dt
" o0 / /
< |f(x—t)| 177‘_’,”,,[{" ([) d[,
@2m)d ](]2:;) ](HX_% 04, (n1) 01, (n) |(1mmye Kn) (0]
where

Qinj):={x eR:2""n/n; < |x| <2'7/n;} (i eNy)

and

Qo(n;) := (—=m/n;, m/n;).
By Holder’s inequality,

|low f ()1

1 o) oo 1/p
< |f(x—t)|pdt
@2m = 2, (fgmnl) '/‘de(nd)

=0 kq=0

1/q
</ / |(1er,me Kn) O] dt)
Oy, (m1) Oy (na)

oo %) 1/p
1 Jovur )
— | f(x —0)|Pdt
@2m)4 ,(Z 2, ( 00 0,0 )

=0 k=0
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d ; 1/q
e (/ / (1 rmyiKy) ( . —d) dt) . (43.1)
=1 Ok, Oy

Choose s € N such that 27! < 7 < 2%, Since n € R?, we conclude

low f(x)]
o 2kt 2kd+s 7 /ny 1/p
. x —1)|Pdt
(277)d Z dZ (/Zk"ﬁﬂ'/nl /deﬂﬂ‘/nl |f( )l )
d - ; N 1/q
[]n / / (M)dk)<‘,...,—d> dt] . 432
j=l le de }’l] nd
Let again

u g 1/p
G(u)::(/ / |f(x—t)|”dt> (ue]R)

Then
B GP M sm/ny, ..., 2k S /ny)
wlky+...+ka)p ,d ) w,1
2o (@m) T2 a2h ot = MDPT)
and so
low f(x)]
2k1+s 2kd+s,n.
<C .,
Soyo(NT )

fl/q

d

t t
n”f / / 1(M)4K)<1 ...,i)
j=1 Qk| de n nd

<C i i ]“[2“””” ny P M f(x)

k=0  ks=0
151 g
l K e, —
) (G )

q 1/q
dt)

d —1l/q
1 / o /
; Ok, Ok,

The fact n € RY implies

q 1/q
dt) .
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[e'e] oo d
o f@l=C Y T T4 ) Mt foo [ []ng
k1=0

ka=0 \Jj=1 Jj=1

(fQ /Q (k) (f_f_)

ni ng
= C || Ko | po gy M3 (),

H E;;(Rd
which shows the theorem. |
Taking into account Theorem 4.3.3, we have

Theorem 4.3.7 Ifw >0,1<p<oo, 1/p+1/qg=1and

sup | I?,,|

<
neRd ®%) = .

£y

then

neRd

p>0

forall f € L,,(’]I'd). Moreover, for every p < r < 00,

loofl, <C (sup | Kn nEW(Rd)) Ifll (f € L(T).
neRd ¢

Corollary 4.3.8 Suppose thatw > 0,1 < p <oo, 1/p+1/qg =1and

:sﬂg H K, ” E(RY) =C

If _
lim  K,(k) =1

n—00, neR?

forallk € 74, then

lim o,f=f ae
n— o0, n€RY

forall f € L,,(']I‘d).

For the rectangular #-means

ko ki) -
=Y Y0 (n_ll - Tj) Floets.

ki €Z kqa€Z
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we obtain

Theorem 4.3.9 Suppose that w >0, 1 < p <ocoand 1/p+1/g=11f0eW
(C, )R and b € E;’(Rd), then

ol f(x) < C 9]

w,1
E(“]“(R") Mp f(-x)

forall f € Lp(']I‘d) and x € T¢.
This inequality can be proved as Theorem 4.3.6 (see also Theorem 4.2.11).

Theorem 4.3.10 Suppose that w >0, 1 <p <oo and 1/p+1/q=1 If 0 €
W(C, £1)(RY) and 6 € E;’(Rd), then

sugpx\(of’jf >p'? <C, ”5”5%11@/) Iflp
p> !

forall f € Lp(']I‘d). Moreover; for every p <r < 00,
lotaf [, < € 18] oy 170 (F € Li(TY).

Corollary 4.3.11 Suppose that w > 0, 1 < p <ooand 1/p+1/q = 1. If 0(0) =
1,9 e W(C, £)(RY) and 0 € E;“(Rd), then

lim olf=f ae
n— o0, n€RY

forall f € Lp(']I‘d).

We introduce the third generalization of Lebesgue points as follows. Starting from
the maximal function M'};‘*‘ f, we introduce

: 1
U:}’lf(x) = sup 2*“’”1”1 (—
. ieN,h>0,2k h<rk=1,...d (2h)421ih
21 p 2id h 1/p
R If(x—t)—f(x)lpdt) . (4.3.3)
_Dith _Did}

Incase p = 1, we omit the notation p and write simply U*"! f.In the two-dimensional
case this definition reads as

;1 — —w(iy+i
Uy fx, x) = sup 27w 2)<W
i1,i2eN,h>0,2k h<r,k=1,2 :
2n 202

1/p
[ f(x1 —t, x0 — ) — f(x1, x)|? dl) .

—2ith J-22h
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Note that the definitions of the p-Lebesgue points and strong p-Lebesgue points
(see Definitions 4.1.19 and 4.2.17) can be rewritten as

. 1 h h 1/p
im0 (G [, [ b o= s a) o

and

1 n hy 1/p
lim sup —/ / [f(x —1)— f(x)|? dt =0,
r=00<h;<r,j=1,..d ]_[;“’=1 2h;) J-n, ~hg

respectively. Similarly to this definition, we introduce a new type of Lebesgue points.

Definition 4.3.12 For 1 < p < oo and w > 0, a point x € T¢ is called a (p, w)-
Lebesgue point of f € L,(T) if

: w,1 _
lim U f (x) = 0.

If w = 0, then the (p, 0)-Lebesgue points are the same as the strong p-Lebesgue
points. It is easy to see that every (p, w»)-Lebesgue pointis a (p, w)-Lebesgue point
if w; > wy > 0. Moreover, if p < r, then every (r, w)-Lebesgue point is a (p, w)-
Lebesgue point. If f is continuous at x, then x is a (p, w)-Lebesgue point of f for
alll < p<ocandw > 0.

Theorem 4.3.13 Forl < p < coandw > 0, almost every pointx € T¢ isa (p, w)-
Lebesgue point of f € L,(T%).

Proof If f is a continuous function, then x is obviously a (p, w)-Lebesgue point.
By Theorem 4.3.3,

P (sup Uz f > p) < PPAME S = p/2) + 20" M f1 > p/2)
r>0
<ClfI.

Since the result holds for continuous functions and the continuous functions are
dense in L,(T?), the theorem follows from the usual density argument of Theorem
1.3.7. [ |

Theorem 4.3.14 Suppose thatw > 0,1 < p <oo, 1/p+1/q =1and
o0

00 d
oy | TT29“ 2 sup [Kalg], < €. 4.3.4)
k=0 k=0 \ j=1 nery

If
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lim  K,(0) =1,

n— o0, neR?
/\/l’;j’lf(x) is finite and x is a (p, w)-Lebesgue points of f € L,,('JI‘d), then

lim o, f(x) = f(x).
R¢

n—00, ne

Proof Choose again s € N such that 2°~! < 7 < 2°. Since x is a (p, w)-Lebesgue
point of f, we can fix a number r < 1 such that

.1
Ulyer pf (X) <€,

where U}, ! » / was introduced in (4.3.3). Let us denote by ro the largest number i, for
which r/2 <2//ny < r. We have

lon f(x) — f)] = n )d_/ |f =1 = FO|(Ler i Kn) (0] dt

f(x)<(2 )d/ K,At)dt—l)‘

= A1(x) + A2(x) + A3(x),

where
1 ro 7o
A1)
(2m)d ](IX:;) 1;)
/ / |fx—0) = fOOl|(Lerme Kn) 0] dt,
Oy, (n1) Ok, (ng)
Azm:deZ ZZ Z
( ) Tl yeees T kry=ro+1 k,r —r()+1k =0
/ / |f(x_t)_f(x)”(l(—‘/r,ﬂ')dKn) (t)| dt,
Ok, (n1) Ok, (na)
and

1 —
Az(x) = ‘f(X) (W /w K, (1) dt — 1)' = |f ) (Ka(0) = 1)].

Here {rmy, ..., m;} denotes a permutation of {1,...,d} and 1 < j < d. Obviously,
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lim Asz(x) =0.

n— 00, neRY

Similarly to (4.3.1) and (4.3.2), we deduce

Ap(x)

I/p
Z Z(/ / If(x—l)—f(x)l”dt>
k=0 k, Qs (m1) Oy, (na)
- t ta \|! Ha
an (/ / 1(7r7r)dK)<],...,—d> dt)
j=1 QO O, ni ng

K1t/ Ha+s/n, 1/p
[f(x —t)— f(x)|Pdt
(27T)d Z ,;) /;2k1+w/n, /—zww/n.

d q
t f

o | ([ ek (2 2)

j=I Ok Oxy n na

(27r)d

1/q
dt) . (4.35)

Setting

uy g 1/p
G(u):=</ / |f(x—t)—f(x)|pdt> (MER)

we conclude

GQRM S ny, ..., 2K+ /ny)

g—wlkit..tka) ,d/p
((zﬁ)dzsdzkl +otky ) 1/p

< U, f () (4.3.6)

because n € R? and so

2k j+s 270 +s
=

<2 (=1...d).

ni ni
Hence
Aq(x)
1 S k+s kq+s
5(27r)dkz ZG(Z‘ L2k
1

fl/q

d q 1/q
Hnj / / dt
j=1 O Oy

5] tq
(1. M)[,K)<n1 E)
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ro

r2’m,p

Sci...
0

k|: kd:
—1/q

1) (]~

From this it follows immediately that

d
sz_,'(uﬂrl/p) nfd/pr’l £ (x)
0 \j=1

q 1/q
dt) |

(Lrmy o) (’_1 f_d)

I’ll’ ’nd

1o

r d
A(x) <C Z .. XO: szj(W‘H/P) U:Jz',\-;’pf(x)

k=0 k=0 \ j=1
h g
(Lr oy Ko) (_ _)

-1
9 K
ni nq

1) (/1.

< c|&|

q 1/q
dt)

E2 @) €.
Similarly to (4.3.5) and (4.3.6), we can see that

Az (x)

S(Z;)d > i i i i

TseeesTd Ky =ro+1 nj:ro-ﬁ-l kr 0 k=0

=
M+ /) atir/n, 1/p
[ a0 oo ar
_2k1+xﬂ./n] —2k41+577/n]

—1/q 1/

d q q
151 Iq

H”J (/ / (1rmmeKn) (-, —) dt)

j=1 Ok Ok, ni ng

< M)+ | f @)

and

GQM*r/ny, ..., 2k+S 1 /ny)

2—u}(k1 +...+kd)nd/[7
((27r)d23d2k1 +..4+kd) 1/p

Since /\/l;*l £ (x) is finite, we have

Az (x)
o0 o0 o0 o0

<Y ¥ OOY Y Y

ThseeesTd ki =19+1 k,Tj =ro+1 k”j+l =0 kr, =0
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d
sz,(w+1/}7) (M‘;*lf(x) +1f(0)])

—1
d
I 7
[]ni / / 1(T,r)LfK,l)< —)
j=1 Ok, (% ny’ ng

cY > ZZZ

q 1/q
dt

Tl yeees Ty k,,l_r0+1 k-._r0+1 k. = k_ =0

1/q
nzk J@+1/p) (/ / 1K, (0] dt) (MO @) + 1))
j=1 Ok

Since rg — oo as n; — oo and (4.3.4) holds, we conclude that
lim A,(x) =0,
n—0oQ

which finishes the proof. ]
Note that (4.3.4) implies

:;lRpg H K, ” Ee(Rd) = =C.

If fn can be estimated by a function g € E; (RY) which is independent of n, then
(4.3.4) holds. This holds again for the Cesaro kernel K = K ® --- ® K and for

np ng

the Riesz kernel K, = K,,)” ® --- ® K. Indeed, taklng into account (4.2.5) and
(4.2.6), we can see that

min {1, [¢|7*"'} € ELRY)
if0<w<a<1and
min {1, [¢]" ™D e EY (RY)

if 0 < w < min(e, 1).

Corollary 4.3.15 If0 < w < a < 1, M“! f(x) is finite and x is a (1, w)-Lebesgue
point of f € Li(T?), then

lim J” Yf(x) = f(x).

n—o00, neR

Moreover,

suppA(od > p) < Clflli  (f € Li(T?)

p>0
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and, for every 1 < p < oo,
d
lotsfll, = Coll fll, (f € Lp(T)).

The same hold for the Riesz summation oy,"” if0 < w < min(e, 1), 0 < a < 0o and
v el

The proof of Theorem 4.3.14 shows also

Theorem 4.3.16 Suppose thatw > 0,1 <p <oo, 1/p+1/g=10¢€ W(C, )
(RY) and 6 E;J(]Rd). If6(0) =1, ./\/l’“]j’lf(x) is finite and x is a (p, w)-Lebesgue
pointof f € L,,(']I‘d), then

lim ol f(x) = fFx).

n—00, neR4

Corollary 4.3.17 Ifthe conditions of Theorem4.3.14 or Theorem 4.3.16 are satisfied
and if f € L{(T%) is continuous at a point x, then

lim ol f(x) = fx).

n—o00, ne

Taking into account Theorem 4.2.30, we obtain

Corollary 4.3.18 Suppose that 0 =6, ® --- ® 0, € W(C, £,)(R?), 6(0) = 1 and
0; e VIZ(R)forallj =1,...,d. If0 < w < 1, M f(x) is finite and x is a (1, w)-
Lebesgue point of f € L{(T?), then

lim o f(x) = f(x).

n—00, neR4
Moreover,
d

suppA(oty > p) < C | [T 10i gy | I/ (F € Li(TD)

p>0 j=1

and, for every 1 < p < o0,
d
lotafll, < Co [ TTHO oy | 115 (f € Lp(TD).
j=1

All examples of Sect.2.6.3 satisfy the condition 6 € VZ(R). This means that all
results of Sect.4.3.2, especially Corollary 4.3.18 hold if each §; denotes either the
Cesaro summation or one of the examples of Sect.2.6.3.
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4.4 Restricted Rectangular Summability over a Cone-Like
Set
In this section, we investigate the operators

1
@2m)4

onf(x) = /Tdf(x—t)Kn(t)dt

over a cone-like set, i.e., we assume that n € R? . Recall that RY _ was defined in
Sect.3.4 by

R ={xeRy:7'kj(m) <nj <7jkj(ny), j=2,....d},

where £ is the identity function and, forall j = 2,...,d,x; : R — R, arestrictly
increasing and continuous functions such that

lim K; =00  and lim x; =0.
j—o0 j—>+0

Instead of (3.4.1), we will suppose that there exist c¢;, { > 1 such that
Kkj€x) =cjrj(x) (x> 0). “4.4.1)

The higher dimensional rectangular Cesaro and Riesz kernels, K and K" will
satisfy again the conditions of this section.

4.4.1 Hardy-Littlewood Maximal Functions

We generalize the definition of M- ! f as follows.

Definition 4.4.1 Forw > 0,1 <p <ooand f €L p(']Td), the Hardy-Littlewood
maximal function M7:* f is given by

d
MEefx) = sup | []ri€H

ieNh>0 \ i)

1 K1 (€1 )y Ka(€dym 1/p
d - f ‘ f Ifa-nlPadr) .
[T521@r; iy Jom@mn J—ramn

We show that the operator M7 is of weak type (p, p) as was M';"l.

Theorem 4.4.2 [f1 < p < oo, then
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sup AMG“f > P < Cyllfllp - (F & Ly(T).
p>

Moreover, if p < r < oo, then

IME“F] <Gl (f € LARY).

Proof Choosing A .
ph) == k1 (§h),  v(h) = K(E7h)

in the definition of M,"" f (see Theorem 4.3.2), we get that

PPA(M;’wf > p)
00 2 1

= pp)‘< k(€)™ | sup <—
ilE;J:O 11:[1 ! h>0 H?:](znj(ejh))

E1(ETh)  pRa(&2h)

1/p
_ , |f(X1—11,x2—f2)|pdf> >P>
—ra (€1 h) =2

<pPZZA My"f > Hm(gw p

i1=0i,=0
2
<G Y |ATTmiE€ 7 |urne
ieNd \ j=1
2
<G Y | TTe ™ m)P | IFIL < Coll £1IL
ieNd \ j=1
becausec; > 1 (j =1,2). [ ]

4.4.2 Lebesgue Points for the Summability over a Cone-Like
Set

Using the functions ;, we modify slightly the norm of the Herz spaces E;/ (RY).

Definition 4.4.3 For w > 0 and 1 < g < oo, the weighted Herz space E;’“(Rd)
contains all functions f for which

1f g = Z Z Hn,(fk)“’“ Yl f1el, < oo

k=0 ka= j=1
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where
Or = Qs X% Qup, (keN,

Qj0:= Q= (—rj(Hm k;(M7)  (G=1,....d)

and ‘ '
Qi =07 ={xeR:r(¢ Hr<Ix| <rj)m} (i eNp.

However, these spaces are equivalent to the Herz spaces E;J(Rd) studied in
Sect.4.3.2.

Theorem 4.4.4 The spaces E;(Rd) and E";“ (R are equivalent for all 1 < q <
oo, w > 0.

Proof 1tis enough to show the result for one dimension. Then we denote the function
r; and the corresponding constant c¢; simply by « and c, and the sets Q';’k by OF.
For a fixed k, let v be the smallest natural number / for which x(£') = ¢'k(1) > 2F
and y be the largest natural number / for which (&) < 2¢~!. Then

v

2 1], = Y € |1,
J=ptl

’

q

which means that
Iflzs < ClLf e

The other side of the equivalence can be shown in the same way. ]

We will investigate a restricted maximal operator depending on the cone-like set:

opf = sup |o.fl|.

|
neRd

Theorem4.4.5 [fw>01<p<oo, 1/p+1/g=1and

(Rd) S Cv

sup | Kal .

then

0. f(x) < C ( sup ||, | mm) M f(x)
nery - !

forall f € Lp(Td) and x € T¢.
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Proof Obviously,

lon f(x)] =

1
(27{_)d / f(x - t) (1(_77,71—)11[(”) (t) dt
R4
1 ad ad
e G

[ [ e ol o] ar
Q1k, (n1) Qa kg (n1)

Qj.0(m) := (—r;(1/n)m, k;(1/n))T)

where

and

Qi) = {x eR:k;( " /n)m < |x| < K; € /n)m} (€ Ny).

By Holder’s inequality,

low f ()]

1 0 o0 1/p
= |f(x — )7 dt
(27T)d k=0 kdg) </.Qlk1 (n1) /Qd.k[,(nl)
1/q
([ / |(1er,me Kn) O] dt)
Qi (1) Quky(n1)
1/p d —1/q
: |f(x — D)7 dt n;
(27T)d Z Z </Qlkl () /kaé,(zn) 11:[1 !

t W\
/ / ‘(1(W)d1<)< 1,...,—d> dr) . (442
n1 Q1 (n1) 14 Qu kg (n1) ny nq
uj g 1/p
Gu) := (/ / |f(x—t)|”dt> (u e RY),
—Uuy —Ug

For

we have

d G (k1 (€4 /i), . .., ka (€% /ny)m)
.(Ek/)_WP 2 2 S (Mﬁ,w)pf(x)'
(H N ) [T 2k (€5 /n ) ’

Thus
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lon f (%)
—1/q
o0 [ee] d
<C Z Y Gl (€ nom, kg€ nom) [ [ ]
k=0 k=0 j=1
1/q
t ta \|?
’(1(—71' W)dKn) <_17 s _d> dt
lellq(”]) ”dekd(nl) ni nq
o0 [ee) d d /p d —1/q
=C Z S TTm@@ [ | TTm€mo | My<r@ [ []n
=0 kg=0 \ j=I j=1 j=1
1/q
t ta \|?
/ / ‘(1( ﬂ-ﬂ-)dK)(l ,—d> dt .
n1 Q1 (n1) 14 Qaky(n1) n na
If ¢! <ny < &+ for some ! € Z, then by (4.4.1),
rj(Deh = rj (€ < mjm) < w;ETH = k(D
and
kj k; 1 Ki( k,-) ki (D5 i( k»,-+1)
j J\ A

Choose integers p and v such that

i) <cf and ') = ¢
forall j =1, ..., d. Using the definition of the cone-like set, we can see that

kj kj

§ § ,
njK; (Z < 7jkj(n)k; = T (DR (€97
< Cifﬂj(é‘k}._‘_l) — K:j(fk_,‘+,u,+l)'
On the other hand
k;
o (5)=e
ni

and

(51‘ ) - %’fj(f"f) VIO LCONIOLICE)

gt i ¢j ki) kj(ny)
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s & ey . & =1, (k-1
ik > 7, kj(m)K; " > 77K (DKj(E9 T
> (€97 =y,

Setting
Qo= (—r;E T, k()

and
Q) ={x eR: k(" m < x| < 5 Hr) (e Ny,

we conclude

kg=

|anf<x>|<cZ Z 1‘[&(5")”'“’)
ki=0 j=1

-1/p —1/q

d
[[ri0]  Mi©f@
j=1

(L |

h ty
( ﬂ.,r)dK <_ 5 —)
n ng
Lk “d

ECZZ H/Qj(gk/)“H‘l/I’ M';’““f(x)

1/q
(f f 1K, ()| dt)
Qlkl r/k

< C R gy My £ ),

:QQ

nj
1

q 1/q
dt)

(R
which proves the theorem. |
Theorem 4.4.2 implies

Theorem 4.4.6 Ifw>0,1<p<oo, 1/p+1/qg=1and

E;‘(R‘{) S C,

sup ||

ne KT

then

sup pA(o. f > p)'/? < C, ( sup | K, |
neRrd

p>0

forall f € Lp(']I‘d). Moreover, for every p <r < oo,
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lowfll, <C ( sup |K, E:(Rl,)) I£1: (f € Lo(T%).
nerd

Corollary 4.4.7 Suppose thatw > 0,1 < p <oo, 1/p+1/qg =1and

<C.

sup ” K, Eg (RY)

nek

It _
lim  K,(k) =1

n—o00, n€RY _

forallk € Z4, then

lim o,f=f ae
n—>o0, R¢

forall f € Lp(']I‘d).
For rectangular §-means, we obtain the next theorems in the same way.

Theorem 4.4.8 Suppose that w >0, 1 < p <ooand 1/p+1/qg=1.1f0 €W
(C, )R and b e E;’(Rd), then

oL @) = C ] oy My f )

forall f € Lp(']I‘d) and x € T¢.

Theorem 4.4.9 Suppose that w >0, 1 < p <ooand 1/p+1/g=1.1f0 €W
(C,2)HRY) and 0 € E;J(Rd), then

Su}gp)\(JZf > p)l/p < Cp ||§HE;(]R”1) ”f”[’
P>

forall f € L,(T%). Moreover, for every p < r < 0o,
lot 1, < C 18l o 151 (f € Lo (D).

Corollary 4.4.10 Suppose thatw >0, 1 < p <ocoand 1/p+1/q = 1. If 6(0) =
1,0 € W(C,€)(RY) and § € EZ(R?), then

. 0,
im o,f=/f ae
n—o0, neRd

forall f € Lp(Td).
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We generalize the concept of Lebesgue points as follows. Let

d
) ; 1
ULy f ) = sup [Tri€™ (
d j=1 l_[

: d :
ieN? h>0,¢'i h<r,j=1,... =1 (2K (&'ih)m)

k1 (€T h)T Ka(Edh)m 1/p
/ / | —1) —f(x)|1’dt) .

Ky (E1h)T kg (Ed h)m

Definition 4.4.11 For 1 < p < oo and w > 0, a point x € T¢ is called a (p, &, w)-
Lebesgue point of f € L,(T) if

- A _
}E% U:y fx) =0.
If k is the identity function, then we get back the (p, w)-Lebesgue points inves-
tigated in the previous section.

Theorem 4.4.12 For 1 < p < 0o and w > 0, almost every point x € T¢ is a
(p, K, w)-Lebesgue point of f € L, (T%).

We omit the proof, since it is similar to that of Theorem 4.3.13. Our basic theorem
about the convergence at (p, x, w)-Lebesgue points reads as follows.

Theorem 4.4.13 Suppose thatw > 0,1 < p <oo, 1/p+1/q =1 and

00 e’} d _
- Z 1_[ nj(fk’)w+l_l/q sup ” K.1g, Hq <C. 4.4.3)
k=0 k=0 \j=I nery

If _
lim  K,(0) =1,

n—o00,neRY
M f(x) is finite and x is a (p, k, w)-Lebesgue points of f € L,(T%), then

lim 0, f(x) = f).

:
n—o00, neR?

Proof Since x is a (p, k, w)-Lebesgue point of f, we can fix a number r < 1 such
that

Unyfx) <e
Let us denote by rq the largest number i, for which r/& < &' /n; < r. We use again
the decomposition
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00 () = )1 = - )d/ £ =) = £ |(1nmpKn) O] dt

1
+lron ((Wi /;r Ko () di — 1)‘

= A (x) + Ay(x) + Az(x),

where

=0 kq=

/ |f =) = FOI|(L—rmeKa) (0] dt,
Qi (1) Qaxy(n1)

Al(x) = (2 )

ey LY e B 53

Tseens d k~ =ro+1 k7r —ro+1k =0
/ / |f =) = FOI|(L—mmeKa) (0] dt,
Q1 (n1) Qaky(n1)

and

Az(x) = ‘f(X) ( /w K, (1) dt — 1)‘ = [f(x) (Kx(0) — 1)|.

(2m)d
{my, ..., my} denotes again a permutation of {1, ...,d}and I < j < d. Obviously,

lim ., Az(x) = 0.

n—o00, neR4

Taking into account (4.4.2), we can see that
Aq(x)

1 o 1o
<
= G 2o
(27T) k1=0 kq=0
1/p d
|f(x—1) = f)IPdt n;
</Ql,k| (n1) /Qd,kd(nl) ]1:[1 !

t ta \|? &
/ / (1( 7T7T)le)<l,,—d> dt
n1 Q1 (n1) 14 Qu ky (n1) ny ng

—1/q
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—1/q
ro

<CZ ZG(m(f"‘/m)w s Ka(€/n)m) Hn,

j=1

h la
/ / ’(1(_71.,77)11[(”) <_,...,_)
n1 Q1 (n1) 14 Qd kg (n1) ni na

where

q 1/q
dt) , (444

uy Ugq 1/p
Gu) = (/ f |f(x—t)—f(x)|pdt) u € RY).

It comes from the definition of U,’f},’“’ that

H”J(gk o) G npm, ..o ka(ER/ny)m)

U f), (4.4.5)
1/
= (I14s 2y et /nl)ﬂ)) ’

which implies

Ar(x)

d 1/p J —~1/q
<CZ Z Hn(&")“ [1si€mo | vrereo [[]n
=0 k=0 j=1 j=1

1/q
t ti\|?
[ s ( ) )
n1 Q1 (n1) 14 Qaky (1) ni ng
As in the proof of Theorem 4.4.5,
Al(x)<CZ Z H,{ (51‘ w+l/p
=0 kg=
—l/p —1/q

U

d
[Trxi@D Ure o | T n
j=1 j=1

(f / ( ﬂ-’ﬂ-)dK < . )
Qul Qdk,

<CZ Z ]_[n(ﬁk P U fx)
1=0 ka=

1/q
dt)
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(f / 1K, (1)) dt)
Q' .

< cc| &,

1/q

Es(RY)

In the same way as in (4.4.4), we get that

Az (x)

ey Y ZZZ

Mo Td Ky =ro+1 ke, =ro+1kz;, ;=0

-1
d /q

G nnym, ... kg mpym | []n

Jj=1
(‘/’;lQl.kl("l) /nde.kd(nl)

t f,
(1( ﬂ-’r)dK)<l ,—d>
Besides (4.4.5), we know also the inequality

ni ng

q 1/q
dt> |

= MEEf(x) + CLf )l

d

i | G nD)T, . k(€5 ny)m)
H/-;j(§ ) y 7y
=1 (i rj(€ fnnm)

As above, we get that

Az (x)

ey Y ZZZ

Moo Td ke =ro+1 k7r =ro+1k

i1 = 7'(/

1 -1
d /p d /q

d
[T | (TTmem ) oo rw+1ren (TTn
j=1 j=1 j=1

; ; q /9
/ / (1(M)¢,K)<1,...,—d> dt
ny Q1x, (n1) ngQaky (1) ni na

(o]

cmErwrcro) YO Y Y Z

TonsTa ey =ro+ 1 ke =ro+1 ke =0

d
H,{j(gk/)wrl/p (/ / |1?,,(t)|q dt)
j=1 Q’I,kl Qé!.kd

T+l

/q
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Since rg — oo as n; — oo, we deduce that

lim A(x) = 0.

n—00

The proof of the theorem is complete. ]

Obviously, (4.4.3) implies

sup || I?n C.

on | E@d) =

d
KT

Since we basically work with the E; (R?) space, our results can be applied to all
examples of Sect.4.3.2, amongst others, to the Cesaro and Riesz summability.

Corollary4.4.14 If 0 <w < a <1, M*®Yf(x) is finite and x is a (1, K, w)-
Lebesgue point of f € L\(T?), then

lim o) f(x) = f(x).

I
n—o0, neRY

Moreover,
suppA(cl > p) < Cllflli  (f € Li(TY)

p>0

and, for every 1 < p < o0,
loz fll, < ol (f € Lp(T).

The same hold for the Riesz summation oy, if0 < w < min(o, 1), 0 < o < 00 and
v e P

Theorem 4.4.15 Suppose that w >0, 1<p<oo, l/p+1l/g=1 0eW
(C,¢)HRY) and b e E;J(Rd). If00) =1, /\/l;*’”'f(x) is finite and x is a (p, K, w)-
Lebesgue pointof f € L ,,(Td), then

lim y ol f(x) = fFx).

n—00, neRy

This theorem can be proved exactly as Theorem 4.4.13.

Corollary 4.4.16 Ifthe conditions of Theorem4.4.13 or Theorem4.4.15 are satisfied
and if f € L(T%) is continuous at a point x, then

lim ol f(x) = fx).

n—00, neRY,



4.4 Restricted Rectangular Summability over a Cone-Like Set 241

Corollary 4.4.17 Suppose that 0 =6, ® --- ® 0; € W(C, £,)(R?), 6(0) = 1 and
0; € VER) forall j=1,...,d. If 0 <w < 1, M f(x) is finite and x is a
(1, K, w)-Lebesgue point of f € Li(T%), then

lim  o/f(x) = f(x).

d
n—00, n€RY

Moreover,

d
sup pA@l > p) < CTT0 ] poe | 1510 (F € Li(TD)
= j=1

and, for every 1 < p < oo,

d
lotfl, < Co | TTIO o | 151 (F € Lp(TD).
j=1

We note again that all examples of Sect.2.6.3 satisfy the condition 6 € V12 (R).

4.5 {~-Summability

Now we consider Lebesgue points for the £-summability. We study the £,-Cesaro

means 1

0, f(x) = 3

/ fx—K>X%t)dt (neN)
Td

and the £,,-0-means 0°>% f. Recall that the Cesaro kernel K® was defined by

e 1 a k-
Ko@) = A0 Z AL e

"=l kezd, koo <n

In this section, we cannot use the concept of Herz spaces, we will use other ideas.

4.5.1 Hardy-Littlewood Maximal Functions

In this section, we are going to generalize the maximal operator ./\/l;j'1 f investigated
in Sect. 4.3. Under a diagonal, we understand a diagonal of the cube [0, 7]¢. Let
us denote by Py o, a parallelepiped, whose center is the origin and whose
sides are parallel to the axes and/or to the diagonals and whose kth side length is
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261} if the kth side is parallel to an axis and +/22% !/ if the kth side is parallel to a
diagonal (i € N/, h > 0,k = 1, ..., d). More exactly, at least one side of Py, s

is parallel to one of the axes and the other sides are parallel to the axes and/or to the
diagonals.

Definition 4.5.1 Forw > 0,1 <p <ooand f €L ,,(’]I‘d), the Hardy-Littlewood
maximal function M f is given by

M f(x)
1 1/p
= sup 2=l (— |f(x = )P dl) ,
Pyt iy €N4 RS0 | Py ian| Py ia

where the supremum is taken over all parallelepipeds P, o, (i € N, h > 0)

just defined.

.....

For p = 1, we use the notation M* f. Obviously,
M f < Mpf  forwy >w;>0and1 < p < oo.

It is easy to see that

. 1
w —wlill
M= s (e

2ip 61[1+2i2h \/\5‘1]([1[2-~l,1])+2it[h
0,

1/p
|f(x — t)l”dt> ;

—20th J 611, -22h a—1 (i —ty—-—tg_1)—2'd h

where 6; € {0,1} (i =1, ..., d). If we take the supremum only over all rectangles
with sides parallel to the axes, we get back the definition of the maximal operator
M;,"lf from Sect.4.3.1. Thus

MYf =M.

In the two-dimensional case, besides /\/l“;’ ! f defined in Sect.4.3.1, we introduce

L 1
Mw’zf(xly X3) :=  sup 2 —w(ii+iz) (—
: i1,i2€N,h>0 4 . irtia 2

20h pn+22h 1/p
/ | f(xy —tl,xz—t2)|”dt2dt1> ,
—2ith Jy—22h
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. 1
M3 f(x),x0) :=  sup 27@H) (—
r i1,i2eN, >0 4 .20+ p2

2ih p—t 4220 1/p
| f(x1 —t, x2 — t2)|1’dt2dt1> ,

i J =22
- 1
M4 F(x1,x2) == su ety
v il,izeNI,)h>0 4. 20+ p2
220 pt4271h 1/p
/ [ f(x1 —t, x2 — 0)|P dt dlz)
iy J—2ith
as well as
L. 1
Mw,S (x1, x2) := su 2‘“’“‘“2) T r——
v il,izeNI,)h>0 4. 20+ p2
22h  p—ty 4211 h 1/p
/ [ f(x1 —t1, x0 — )7 dty dfz) .
—22p J—r,—20h

Note that in M;"l f, we take the supremum over rectangles with sides parallel to

the axes and in M“,”,’ f (G =2,3,4,5), over parallelograms with at most one side
parallel to one of the axes and with the other sides parallel to the diagonals of the
square [0, 7). Then we have

5

MG f(xr,x0) =Y M f(x1,x2)

j=1

forallw > 0and 1 < p < oo. Similarly to M,l,’“’”f, we introduce also

1
2,u,v — _
My xo) =g <4u(h)l/(h)

wh)  pri+vh)

1/p
[ f(x1 — 11, x0 — )P dty dll) ,
—uhy Jtr—v(h)

1
M3y , Xp) 1= _—
p! O, x2) 2= sup <4u(h)1/(h)

wh)  p—ti+v(h) 1/p
/ If(x1 — 11, %2 — 0)|” dty dll) ,
—p(h) J—t1—v(h)
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NTRY e 1
My, xa) = sup (4u(h)l/(h)

v(h)  ptatuh) 1/p
/ | f(x1 — 11, x2 — 1)|P dny dlz)
—uh) Jis— iy

and

1
MS,/L,V =
p! S x2) 1= sup (zm(h)u(h)

v(h)  p—tat+p(h) 1/p
f f [ f(x1 —t, x2 — 0)|P dty dt2> i

v(h) J =ty —p(h)

Recall that (k) and v(h) are two continuous functions of # > 0, strictly increasing
to oo and 0 at &7 = 0. The next two theorems can be proved in the same way as in
Sect.4.3.1.

Theorem4.5.2 Ifj=1,...,5and 1 < p < oo, then

sugpA(M,f;’“’"f >pP <Cplifll, (f €Ly(T).
p>

Moreover, if p < r < oo, then

|mprr £l < Colfll, (f € LT,
where the constants C, and C, are independent of |1 and v.

Theorem 4.5.3 [fw > 0and1 < p < o0, then

sup PACM f > PP <CIfll,  (f € Lp(T).
p>

Moreover, if p < r < oo, then

IMef] < Collfl (f € LT,

4.5.2 Lebesgue Points for the {.-Summability

Here we introduce a stronger version of Lebesgue points than the (p, w)-Lebesgue
points. Similarly to Sect.4.3.2, let
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1 1/p
U::}pf(x) = sup o=wllilly P—
Pyt iy i €NC >0 | Poin,._.2ian]

2kh<rk=1,...d

(/

21 h,..2dh

1/p
[f(x —1) — f(X)Ipdt) ;

where the supremum is taken over all parallelepipeds whose center is the origin and

whose sides are parallel to the axes and/or to the diagonals as in the definition of
M f. Obviously,

) 1 1/p
UZ, f(x) = sup 2wl (—) X
d

) dn||i
ieNd h>0,2k h<rk=1,... (2my®21ih

ik S22k St (h—tr— e —lg_ 1)+ 20 1/p
X / / f [f(x —1) = f(x)|"dt ,
—2ith Jo,1 =202 Sur (f1—ty—eee—mty_)—2id B

d

where§; = 0,1 (i =1,...,d — 1). Taking the supremum in the definition of U;fpf
over all parallelepipeds whose sides are parallel to the axes, we obtain the definition
of U, ! ., | (see Definition 4.3.12). In case p = 1, we omit again the notation p and

write s1mply U¥ f. In the two-dimensional case, similarly to M, o/ f, we can define
U/, f for j =2,3,4,5 as follows:

1

w,2 o —w(i1+iz)
Upp fxisx2) 1= sup 2 (4.2i1+i2h2

i1,i2€N,h>0,2k h<r,k=1,2

20h pn422h 1/p
/ _ / | f (a1 —ll,)C2—l2)-f()€1,)€2)|pdl2dl1) ;
n

—2'1h —22p

L 1
Uy (x1, x0) o= sup Z_w(llw)(ﬁ
i1,i2€N,h>0,2k h<rk=1,2 4-20%0h

20h p—tj4+22h 1/p
/ / | f(x1 —tl,xz—fz)—f(xl,xz)|pdt2dfl> ,

2i1h —2i2p

o 1
w,4 e —w(iy+is
Ur,p f(xls XZ) = SUP 2 (UREEY <m
i1,1eN,h>0,2"c h<r,k=1,2 :

22h pnp420h 1/p
/ , / If(xl—tl,x2—tz)—f(xl,xz)lpdtldt2>
5]

—2i2h Jt,—=2i1h



246 4 Lebesgue Points of Higher Dimensional Functions

and

L 1
Ui o= s o
i1,i2€N,h>0,2%k h<r,k=1,2 :

Wl a4 2iTh 1/p
[ f(x1 =t x0 — 1) — f(x1,x2)|7 dty dtz) .
=202 J —t,-201h

Definition 4.5.4 Forl < p < coandw > 0,apointx € T iscalleda strong (p, w)-
Lebesgue point of f € L,(T) if

lim U, f (x) = 0.

Recall that x € T¢ a (p, w)-Lebesgue point of f L,,(']Td) if
: w,1 _
}gl}) Uy, f(x) =0.
Since

Uro,dl’ilforLf)pf 1<p<o0,0<r<o0)),

Definition 4.5.4 is indeed stronger than the definition of (p, w)-Lebesgue points.
Note that every strong (p, w»)-Lebesgue point is a strong (p, w;)-Lebesgue point
(0 < wy < wy < 00), because of

U f U5 O<w <w <00, 1 <p<o0).

Moreover, if p < r, then every strong (7, w)-Lebesgue point is a strong (p, w)-
Lebesgue point. If f is continuous at x, then x is a strong (p, w)-Lebesgue point of
fforalll < p < oo and w > 0. The proof of the next result is the same as that of
Theorem 4.3.13.

Theorem 4.5.5 For 1 < p < oo and w > 0, almost every point x € T¢ is a strong
(p, w)-Lebesgue point of f € L,,(']Td).

To be able to prove the main theorem of this section, we need the next lemma.

Lemma 4.5.6 Suppose that0 < a <1, x € T?> and ™ > x; > x5 > 0. Then
|K2% (x1, x0)| < Cn? (45.1)
and
| K2 (xp, x2)| < Cx 'y ! (4.5.2)

Moreover, if x; — x5 > 1/n, then
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|K> ey, x)| < Cn~ %' xy (g — x0) ™ (4.5.3)
and
|K2(xy, x2)| < Cn' =y (g — x0) ™" (4.5.4)

These inequalities come easily from Lemma 2.2.19.

Theorem 4.5.7 If0 < a < 00, 0 < w < min(a, 1)/d, M* f(x) is finite and x is a
strong (1, w)-Lebesgue point of f € Li(T?), then

lim 2 f () = ().

Proof By Lemma 2.2.8, we have to prove the theorem for 0 < o < 1. Let0 < w <
a/2.Since (x1, x;) is a strong (1, w)-Lebesgue point of f, we can fix anumberr < 1
such that

UY f(x1,x) < e

Let us denote the square [0, r/2] x [0, r/2] by S,,» and let 2/n < r/2.
Since

/2 K> (x1, x2) dx = (2m)%,
T

we have
oo f(x1, x2) = f(x1, x%2)]

1
o [1re=tim =) = fnl K3 @] dr @539
']I‘Z

-

It is enough to integrate over the set

{(t1, ) :0 <t <t; <m}.

We decompose this set into the union of the same sets A; (i = 1,...,5) as in the
proof of Theorem 2.3.1 (see Fig.4.1), where

A i={(x1,x):0<x1 <2/n,0<xy <x; <},

Ay = {(x1,x3) :2/n <x; <7, 0<x, <1/n},

Az ={(x1,x) :2/n <x; <7, 1/n <x, <x1/2},

Ay = {(x1,x2) :2/n < x1 <7, x1/2 < x, <x1— 1/n},

As = {(x1,x2) :2/n <x; <7, x1—1/n <xp <x1}.

We will integrate the right-hand side of (4.5.5) over the sets
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Lo A
T
As
Ay
S‘r‘/?
As
A
1 A,
0 2/n  T/2 T X
Fig. 4.1 The sets A;
5 5

UJ@ins, and | Jinsg,),

i=1 i=1

where §¢ denotes the complement of the set S. Of course, A; C S, 2. By (4.5.1),

|f( =t x2 — 1) — [, x)] |[K2% (1, )| dt
Ay

2/n 2/n
<cn? / f (61— t1ax2 — 1) — £ Gy x)| diy di
0 0

< CU*' f(x1,x2) < Ce.

Let us denote by ry the largest number i, for which r/2 < 2/*+!/n < r. By (4.5.4),

/ |fG =t x2 — 1) — fQxr, x| |[K2 (1, )| dt
Aan,/z

ro 2i —1 2i 1—(1
<C l—a [ 2 - _ -
=) G



4.5 {so-Summability 249

20+ /n 1/n
/ / | f(x1 —t1, x20 —12) — f(x1,x2)| dtadty
/n 0

il . . n?
< sz(wfa)zzfm (E)

i=1
2+

1/n
/ / [ f(x1 —t1, %0 — ) — f(x1,x2)| dirdty
'/n 0
ro

< CY 29U f(xy, x)) < Ce.

i=1
Since t; —t, > t;/2 and t; — t, > t, on Az, we obtain by (4.5.3) that
|KnOO,(l(t1’ t2)| < Cnfutlflftl/zt;l*a/Z.

Hence

/ |f(xr —t1, x2 — 1) — f(xp, x2)| | KO (11, 1)| dt
A3NS, 2

ro i—1 i\ —1—a/2 i\ —1-a/2
2! 2/
= " ( ) ( >
Z Z n n

i=1 j=0

204l /p 20t p
/ [ f(x1 =1, x2 — ) — f(x1,x2)| dty dty
2

i/n J/n
ro i—1 I’lz
(w—a/2)(i+j)y—w(i+j) [
<CcY Y2 2 <2i+j)
i=1 j=0

2 /w20t g
f [ f(x1 —t1, %2 — B) — f(x1,x2)| dty dty
2i/n 27 /n

ro i—1
<CY Y 2PNyl f(x), xy) < Ce.
i=1 j=0
Since t, > t;/2 on Ay, (4.5.3) implies
|kt )| < Cn~t 72 (1 — )™, (4.5.6)

and so



250 4 Lebesgue Points of Higher Dimensional Functions

/ |f(xr —t1,x0 — 1) — flxr, )| |[KO (1, 1) dt
AN,

£S5 ()6

i=1 j=0

24l /n pty—=2//n
/ / | f(x1 —t1, %2 — o) — f(x1,x2)| dtadty
; ;

—2i+l/n
ro i—1 I’l2
(W=Din(w+l-a)jy—wi+j) [ =
<Cy Yoy (1)
i=1 j=0

2 I pt—20 /n
/ | f(x1 — 11, x2 — 1) — f(x1, x2)| dtadty
n—

i/n 21+1/n
ro i—1

<€) N oW higlHlmmiy e £(xy 1)
i=1 j=0

ro
< CY 2% UL2f(xy, xp) < Ce.

i=1
We get from (4.5.2) that
|K>(n, n)| < €12

on the set As. This implies

/ |f G = 11,32 = 1) = f(xr, )| |2 (1, )] dt
AsNS,/
21 21+1/n f
<C2< ) / / | f(x1 —t1,x0 — ) — f(x1,x2)| dtr dty
! t—1/n
< C 2(~U 1)12—ul I’l_
Z >

21+l/n
/ | fGx1 — 11, x2 — 1) — f(x1, x2)| dta dty
'/n t—1/n

<C 22(”_1)iU,’”"2f(x1, 1) < Ce.

i=I

On the other hand, we get that



4.5 {so-Summability 251

/ |f1 =11, — 1) — fQx1, )] |[K2% (1, 12)| dt
A0S,

o0 oo
<CY 29T M f (ki x) + C Y 27 f(x, x))

i=ry i=ry

< C2Wm 0 M@ F (xy, x2) + €277 £ (x1, x2)|
< C(nr)* "M f(x1,x2) + C(nr) ™| f(x1, x2)| = O

as n — oo. Similarly,

/ |f(x1 —t1, X2 — 1) — flxr, )| |[K2 (1, 1) dt
AgﬁS,”/z

oo i—1 oo i—1
SCY Y 2@ PED M f(xy, x0) + C Y Y 27 IR f(xy, x))
i=r0 j=0 i=r0 j:O

< 2@ ML (xy, x2) 4+ C2702| f (x1, x2)| — O

and

/ |f(xr =t x0 — 1) — f(xr, x| |[KO% (1, )] dt
A4NSE,

oo i—1 oo i—1
<CY Y 2D MR f(xy x0) +C )Y 2720V f(xy, 1)
i=ry j=0 i=ro j=0

< C2@m M0 M2 f(xy, xp) + C27| f(x1, x2)| — O,

asn — o0. In the last line, we have used that 0 < o« < 1. The same holds for v = 1.
Finally,

/ |f(xr =t x2 — 1) — fxn, x2)| |[KO% (1, )| dt
AsnSf/z

< CY 29TVIME2 f(xy,x0) + C Y27 f i, )

i=ry i=rgy

< C27DO M= f(xy, x2) + C270| f (x1, x2)| — O,

as n — oo. Note that A; N §7, = 0. n

Note that Belinsky [20] proved that the convergence does not hold for all p-
Lebesgue points defined in Definition 4.1.19. Since by Theorems 4.5.5 and 4.5.3
almost every point is a strong (1, w)-Lebesgue point and the maximal operator M* f
is almost everywhere finite for f € L;(T¢), Theorem 4.5.7 implies the almost every-
where convergence
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lim o,°%f = f a.e.
n—0o0

if f € L1(T%) (see Corollary 2.5.9).
In the next theorem, we use only the maximal operator Mg*' f and the (p, w)-
Lebesgue points as in Sect.4.3.

Theorem 4.5.8 Suppose that 0 < a <00, | <p<oo, I/p+1/g=1and 0 <
w < min(a/d, 1/(2q)). If./\/(“;’lf(x) is finite and x is a (p, w)-Lebesgue point of
f e L,,(Td), then

hm o> f(x) = f(x).

n—

Proof Suppose that 0 < o < 1. Since (xy, x») is a (p, w)-Lebesgue point of f, we
fix again a number 0 < r < 1 such that

U““f(xl,xz) <e.

We can prove in the same way as in Theorem 4.5.7 that
/ |f(xr =t x0 — 1) — f(xr, x| |[K2 (1, 1)| dt — 0,
A;

fori =1, 2,3,asn — oo. So we have to consider the sets A4 and As, only. Itis easy
to see that

/ |f(x1 — 11,50 — 1) — f(x1, x| |[K2% (1, )| dt
AdNS,

2’+]/n 2/’+1/n
<
Z /’/n «éf/n

i=1 j=i—1
[ f(x1 —t1, x2 — ) — f(x1,x2)] ‘K,fo’a(fl, tz)| L4, (t1, ) dtr dty.

Holder’s inequality and (4.5.6) imply

/ |f (1 — 11,52 — 1) — [, x| |[KO% (1, 1)| dt
ANS, 2

2y w20ty 1/p
(/ / |f G =t 00 — 1) — fxg, x2)|” dtzdll)
i= lj i—1 ! 2/n

2 n ati—1/n , 1/q
/ / n= M — 1) 4, (1, ) di dt .
i 21—[/,,

Ifg < 1/, then
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24 at—1/n ,
/ n=t Nt — 1) "4, (1, ) dty diy
2

2i/n i~1/n
i\ —ag+1 2i+1/n
/ 17 dn
2

< Cna (2_>
n i/n
2[ —ag+1 2[ 1-2¢q
e (2 )
n n
2g—-2

and so

/ |f (1 =t %2 — 1) — flxr, x| |[Ko(, )| dt
A4QS,/2

ro i
<C, Z Z 2 W=a/2)(i+))

i=1 j=i—1

. n2 2l 2ty 1/p
2 s / |f@ =113 = ) = fO1, 0)I” dndny
2 25 J2in

ro 14

<Cp Y Y 2PNy f(xy xy) < Cpe.

i=1 j=i—1

An analogous inequality can also be proved for ¢ > 1/c. Indeed, choose a small
number 0 < 3 < 1 such that w < (1 — 3)/2q. Since t| — 1, < t;/2 on As and 1 —
aq — B < 0, we conclude

24 n pty—1/n )
/ = (1 — 1), (11, 1) dby diy
i/n i—l/n

2% n pty—1/n 2048

— - —ag—3

=< C/ O n aqtl a4 /(l‘l — 1) 9= 1A4(l‘1,t2)dl‘2dl‘1
i/n i=1/n

1\ ~@d—F+L p2n ,
< Cn~4 (—) / 1727 any
n 2i /n

< (LY
c(2

and

f |f(xr —t1, x2 — 1) — f(xp, x2)| | KO (11, 1) dt
A4ﬂS,-/z
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ro i
< Cp Z Z 2(w‘7(17@9)/2q)(i+j)27w(i+j)
i=1 j=i—1
2 2t/ a2ty 1/p
2‘_+J/ / |f(x1 — 11, %0 — B) — f(x1, x2)|” dty dty
i/n 27 /n
ro i

<C, Z Z 2(w—(l—ﬂ)/2q)(i+./’)Ur¢tf;Ulf(xl’xZ) < Cye.

i=1 j=i—1
For the set As, we obtain

/ |f(x1 =11, %2 — 1) — fx1, )] |[KO% (1, 1)| dt
AsNS, 2

o i 2y w2ty 1/p
SZ Z (/ /; [f(x1 =t x0 — 1) — f(x1,x2)]” dfzdll)

i=1 j=i—1 \Y2/n I/n

2 /ey 1/q
/ t, dndt .
2i/n n—1/n

We can compute that
2i+l/n

h 2i\ 2! 2q-2 .
/ 17 dtydt, < Cn™! (—) =C (i) 27,
im  Ju—1/n n 2

Then

/ |f(xr —t1,x0 — 1) — flxp, x)| |[K2% (1, 1) dt
Asmsr/z

ro i
<3 3 o206 gt

i=1 j=i—1

2 2ty a2ty 1/p
i+ / / |f(x1 =11, %0 — ) — f(x1, x2)|” dtrdty
i/n 2/ /n
ro i

<C, Z Z Z(M_I/(zq))(i+j)U:j1’,lf(X1,X2) < Ce.

i=1 j=i—1

Similarly, we can see that
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/ |f (1 — 11,0 — 1) — f(x1, x| |[K2 (1, )| dt
AdNSE,

00 i
<C, Z Z 2(w*a/2)(i+j)Mo;,1f(xl’ x2)

i=rg j=i—1
00 i
+Cp Yy Y 2R f ()
i=rq j=i—1

< CR2% M f(x1, x2) + Cp27 7| f (31, x2)|
< Cr)* M f(x1, x2) + Cr) ™| f (x1, x2)| = 0

asn > ooandg < 1/a.If g > 1/a, then

/ |fG =t x0— 1) — f(x1, x| |[K2 (1, )| dt
A4ﬂS;/2

oo i
< Cp Z Z 2(w—(1—ﬂ)/2tl)(i+j)MopJ,lf(xl’ x2)

i=rg j=i—1
0o i
—(1=p)(i+))/2
+Cp Yy D IR f ()]
i=ry j=i—1

< Cp2R27 DI M f (31, 0x0) + €277 f (31, 000) = 0

as n — oo. Finally,

/ |f(x1 — 11, x2 — 1) — f(xp, x2)| | KO (1, 1)| dt
AsNS¢

/2

[e'9) i
< Cp Z Z 2(w_1/2q)(i+j)M;'lf(X1, x2)

i=rg j=i—1

0 i
+CpY o Y 2T £y, )

i=rg j=i—1

< 2%V M f(xy, x2) 4+ Cp27 | f (1, x2)] = O

as n — 00. The proof of the theorem is complete. |

Note that these results were proved in Weisz [345, 349]. Now we turn to the
£ -0-means introduced by

Klloo\ =~
ol )=y 0 (—” | ) Foe

kezd
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in Sect.2.6.1. We suppose again that 6 : R — R satisfies (2.6.2) and (2.6.3).

Theorem 4.5.9 Suppose that 0 satisfies (2.6.2) and (2.6.3). If 0<w<1/d, M f(x)
is finite and x is a strong (1, w)-Lebesgue point of f € L{(T¢), then

lim o7 f () = f(x).

Proof In Theorem 2.6.7, we have proved that

Ko (x) = ;k Ay0 (;> KX (x),

where K° denotes the Fejér kernel. We have verified in (2.6.4) that
- k
sup Z k |A0 -
nz1l k=0

<C < o0.

Hence

o f @) = ) = /T (fa—n—-r@)kr@ar

=Y kA0 (S) /;rd (f(x - f(x))K,’jO(t)dt.
k=0

The proof can be finished using Theorem 4.5.7. ]

This implies also the almost everywhere convergence of 7 f stated in Corollary
2.6.9. From Theorem 4.5.8, we obtain in the same way

Theorem 4.5.10 Suppose that 0 satisfies (2.6.2) and (2.6.3), 1 < p < o0, 1/p +
1/g =1and 0 < w < min(1/d, 1/(2q)). If/\/l;’lf(x) is finite and x is a (p, w)-
Lebesgue pointof f € L p(Td), then

lim o7 f (x) = f(x).

4.6 £1-Summability

Finally, we investigate Lebesgue points for the ¢;-Cesaro means

1

l,a _
o, f(x) = o

/ fx—nK @)ydt  (neN)
'H‘d
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as well as the £;-0-means o,ll’” f. The definition of the Cesaro kernel K,}“, ie.,

1
Lagry k-
Ky =3 > A

=1 kezd, Ikl <n

can be found in Sect. 2.2. In this section, we use the same Hardy-Littlewood maximal

functions M f and /\/l“,j*1 f and the same (strong) (p, w)-Lebesgue points as in

Sect.4.5. In what follows, we have to suppose that f is periodic with respect to 7.
Instead of Lemma 2.2.14, we will use the next estimations.

Lemma 4.6.1 Supposethat0) <o <1,0< G <1landm > x; > x, > 0. Then

|K oy (x1,x0)| < Cn?, (4.6.1)

Ky (e, 2| < €= x0) 7 1+ 02) ey

+ Cx — x2) 1 = x2) M yanya)- (4.6.2)
If1/n < x, < 7/2, then
|K1(x, x0)| < Cn~ e — x0) ™ Py 0! (4.6.3)
and
|Ky*(xr, x)| < Cn'~ox507 " (4.6.4)
Ift/2 < xp <7 —1/n, then
|Kp 2 (x1, x2)| < Cn~(x) — x0) 7 P (m — xp) ! (4.6.5)
and
|Ky 2 (1, x0)| < Cn' = (m —xp) 771 (4.6.6)

Proof Inequalities (4.6.1) and (4.6.2) follow from Lemma 2.2.5 and (2.2.7), because
21 — x| — X > ™ — X, while (4.6.3) and (4.6.4) follow from (2.2.15) and (2.2.17).
Finally, (4.6.5) and (4.6.6) can be proved as (2.2.16) and (2.2.18). |

The main theorem of this section reads as follows.

Theorem 4.6.2 Suppose that 0 < a < o0, 0 < w < min(e, 1)/d and M“ f(x) is
finite. If f € L(T?) is periodic with respect to 7 and x is a strong (1, w)-Lebesgue
point of f, then

lim 0, f(x) = f(x).
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Proof Again, it is enough to prove the theorem for 0 < o < 1. Let 0 < w < a/2
and fix a number » < 1 such that

U f(x1,x) <e
Let
) ror ror ;o r r r r
Syp2 = [_E’ z] X [_E 5] L = [7r— 7T E] X [7r— 2 5]
and 2/n < r/2. We have

|O‘,1’af(x1, x2) — f(xy, x2)|

1
) / |fG =t x2— 1) — f(x,x)] |[Ky (L )| dr.
T2

=<

We will integrate on the set
{(t1, ) :0 <t <t; <},

more exactly on

5 5 10 10
Uwinsn.,  Jainsgy., Jwains,,  [J@ins,)o.
i=1 i=6 i=6

i=1
where the sets A; (i =1, ..., 10) are defined by (see Fig. 4.2)

A i ={(x1,x2):0<x1 <2/n,0 <xp <x1 <T,xy <m/2},

Ay i ={(x1,x2) :2/n <x1 <7, 0 <x, <1/n,xy <m/2},

Az = {(x1,x2) :2/n <x1 <7, 1/n <x2 <x1/2,x <m/2},

Ag = {(x1,x2) :2/n <x1 <, x1/2 <xp <x1—1/n,x, <7/2},
As = {(x1,x2) :2/n <x; <m,x1 — 1/n < x3 < x1,x <7/)2}

Ag i ={(x1,x2) ixy>7/2,m=2/n <xy <7, 0<x <x1 <7},
A7 ={(x1,x) 72 <xpo <mwm—2/n,m—1/n < x; <},

Ag :={(x1,x) :m/2 <xp <7 —2/n,(m+x)/2 <x; <7—1/n},
Ag i ={(x1,x2) :7/2 <xpo <7 —2/n,xo+ 1/n < x; < (m+ x2)/2},

A :={(x1,x) :7m/2 <xo <7 —2/n,x0 <x1 <x,+ 1/n}.

—_

Since A1 C S,/ and Ag C S;/z, we deduce by (4.6.1) that



4.6 ¢;-Summability 259

T2 )
w
2
=2
n
mw
2
Sv-,.-"2
1
" Al
{'] 5 T B » “‘x
== = = 1
w 2 2

Fig. 4.2 The sets A;

|f (1 — 11, x2 — 1) — f(x1, x2)| | K (11, 1) | dit
Ay

2/n 2/n

ECHZ/ f [ f(x1 =11, x2 — ) — f(x1,x2)| dir dty
0 0

S CUP f(x1,x) < Ce

and

|f G =t x0 — 1) — f(xr, x| | Ky, )| di
Ag

Sanf / [ f(x1 —t1, %2 — o) — f(x1,x2)| dtadty
m—2/n Jn-=2/n

0 40
SCHZ/ / | fGx1 —uy — 7, x0 —us — ) — f(x1,x2)| dusduy
—2/nJ=2/n

< CU*' f(x1,x2) < Ce.

Let us denote by ry the largest number i, for which r/2 < 2! /n < r. By (4.6.2),
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/ |f G =t x — 1) — f(xr, x| |[Ky (1, 1) dt
ANS,2
-1 L1
2[
<C —_ - = —
>0 ()
2+ pl/n
/ / G — 11,30 — 1) — ey, x)] dirdiy
(w=D)i :
< C ZUJ_ 12_(.()1 I
> (5)
2I+'/n 1/n
/ / [ f(x1 —t1, %2 — ) — f(x1,x2)| dtadty
20 0

<cC Z 2@V« £(x1, x) < Ce.
i=1

Similarly,

/ |f 1 — 1,50 — 1) — f(xp, x| [Ky (11, 1) di
ANS

£ C6)

721 /n T
/ / [f(x1 —t1, x0 — 1) — f(x1,x2)| dt1 dtr
T— m—1/n

2‘*'//1
2
< sz(w 1)12 wi (E)

2’/n 0
/ / |f(x1 —t1 —m, %2 —tr — ) — f(x1,x2)| dty dty
—1/n

2’“/11

<cC Zzw—‘)fu;*‘f(xl, x;) < Ce.

i=1
On the other hand, we get that

/ |f( =t x0 — 1) — f, )] Ky (h, )| dt
ANS¢

+/ |f(x1 —ti,x0 — 1) — f(xn, x| |[Ky (1, )| dt
AN

<CY 2CTME (e, )+ C Y27 (1)

i=ro i=rgp
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< C2W7DO M@ f(xy, x2) + C277°) f(x1, X2)|
< Cr)*7' M f(xy, x0) + Car) 7' f (x4, x2)| — O

asn — oo.
Since t; —t, > t;/2 and t; — 1, > 1, on Az, we obtain by (4.6.3) that

iK;,a(tl, t2)| < Cn—a(tl _ tz)—l—(l’/Z(tl _ l‘z)_°6+a/2l§7a71

—a,—1—-a/2 ,—1—a/2
< Cn atl af [2 a/

’

whenever 3 > «/2. Hence

/ |f(x1 —t1, x2 — 1) — f(xp, x2)| |[K (1, )] dt
A3NS, 2

ro i—1 . 21' —1—a/2 2]' —1—a/2
cexye (i) (5)

i=1 j=0

2i+]/n 2/+l/n
/ | f(x1 —t1, %2 — 1) — f(x1, x2)| dtadty
2,

2i/n J/n
ro i—1 n2
W=/ (i+)) A —w(i+)
2i+l/n 2.f+l/n
/ [f(x1 — 11, %2 — 1) — f(x1, x2)| dip dity
2i/n 27 /n
ro i—1
<CY Ny 2@ PEEIYL f(xy, x) < Ce.
i=1 j=0

On Ag, 1) —t, > (m — 1)/2 > (7w — t;)/2 and so (4.6.5) implies

|Kr(t, b)) < Cn(ty — 1) 2 (1) — )P ( — 1) P!

< Cn™m =) TP =)~

if # > a/2. From this it follows

/ |f (1 — 1, %0 — 1) — f(xp, x| [Ky (11, 1) dt
AgﬁS;/z

ro i—1 . 2i —1—a/2 2]~ —1—a/2
<22 (5) (5)

i=1 j=0
72" /n 7—2//n
| f(x1 —t1, x2 — 1) — f(x1, x2)| dty dip

m=2i+1/n Jg—2it1/n



262 4 Lebesgue Points of Higher Dimensional Functions

ro i—1 2
W=/ i+ n—wi+j) [
ey ey ()

i=1 j=0

—2/n —2//n
/ / | fG1—t —m, X —th —m) — f(x1, x2)| dty dtp

2+ /n 20+
ro i—1

< CY N 2@ PENYL f(xy, x)) < Ce.

i=1 j=0

Similarly,

/ |f( =t x0— 1) — flx,x)] [Ky(h, 0| dt
A3NS¢

/2

+/ |f (1=t ;0 — 1) — f(xp, x| [Ky (11, 1) dt
ABQ(S;/z){

oo i—1 oo i—1
=C Z Z T ADED M f(xy, x0) + C Z Z 27D f (xy, x0)|
imry j=0 imry j=0

< C2UWm DM f(xy, xp) + C272| f(x1, x2)| — O

asn — oo.
Since t, > t;/2 on Ay, (4.6.3) with 3 = /2 implies

Kyt )| < Cn (0 — i)™ 70y

<Cn TP (4 — )12

and so

/ |f(x1 — 11,00 — 1) — [, x| |[Ky ()| di
A4S, 2

ro i—1 . 2[- —1—a/2 2j —1-a/2
<exye(z) (5)

i=1 j=0

24 pn=27/n
/ [ f(x1 — 11, x2 — ) — f(x1,x2)| dadty
h

i/n —2i+l/n
ro i—1 n2
(w—a/2)(i+j)n—w(i+])
<cy Y2 e ()
i=1 j=0

24 p—=27/n
/ (1= 132 — 1) — f G, x| diydiy
i/n 1 —2it/n
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ro i—1

<CY Y 2@ PEEDIYL f(xy, x7) < Ce.
i=1 j=0

Inequality (4.6.5) with 8 = «/2 yields
Ky ()| < Cn™0 (0 — )71 72 (m — 1) 7172

Thus

1
/ |f(xr =t %0 — 1) — flxr, x| |[Ky®(t, )| dt
AgﬂS;/z

ro i—1 . 2,' —1—a/2 2j —1-a/2
=22 ()

i=1 j=0

72 /n 1427+ n
/ [f(x1 —t1, %2 — 1) — f(x1,x2)| dty dty
15}

m=2it1/n Jt,+27 /n

ro i—1 o o n2
< €YY plmu iyt (21_ﬂ>

i=1 j=0

—2/n 42/ /n

/ [f(x1 =t =7, x2—ta — ) — f(x1,x2)| dt1 dtp

=21t /n S, 427 /n

ro i—1
<CY Y 2oL f(x), xy) < Ce.

i=1 j=0

Similarly,
/ |f(x1 —ti,x2 — 1) — f(xr, x)| |[Ky* (1, )| dt
A4ﬂSf/2

+/ |f (1=t 60 — 1) — fxp, x| |[Ky (1, )] di
A9N(S)p)°

oo i—1

<C Z Z 2 w=a/2)(i+)) (Mw,Zf(xl’ x3) + Mw'4f(xl, )Cz))
i=ry j=0

oo i—1

+CY Y 2R f(x, x)]

i=ry j=0

< C2(w—u/2)r0wa(xl’ XZ) 4 C2—(1r0/2|f(xl’ )C2)| -0

as n — OQ.
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Inequality (4.6.4) implies
1,a l—a,—a—1
|K,y“(t, n)| < Cn'™0,
on the set As and so
1,
| - m - el ko]
AsNSy 2
ro | 2i —a-l 2i+l/n I
scy i~ _ / |f(xp — 11, x0 —12) — f(xy,x2)| dydry
i1 n i/n n—1/n
S (w—a)i (1
W—Q)lHn—wi
<C ; 2 2 >

2i+l/n tl
/, / [f(x1 —t1,x2 — 1) — f(x1,x2)| diy dip
t/n n—1/n

1o
<Y 2@ DIy f(xy xp) < Ce.
i=l1

In the same way, by (4.6.6),

/ |f(x1 =t x50 — 1) — f(x,x)] [Ky (L )| dt

A]()QST//Z
ro | 21' —1l—a
<C al=o | Z
¥ (5)
i=1
7=2'/n tHh+1/n
/ / [f(er — f1, %0 — 1) — f(x1, x2)| diydt
T=2it1/n J1,
ro i—1 I’l2
(w—a)in—wi [ °
sey Yo (1)
i=1 j=0

—2/n Hh+1/n
/ / [fxi—t =7, x—th —m) — f(x1,x2)| dt1 dty
_ Y

2i+l/n
ro i—1

<CY DY 2Lt f(xy, x)) < Ce.

i=1 j=0

Finally,



4.6 ¢;-Summability
/ |f(1 =11, x0 — 1) — (1, x| |[Ky® (1, 12)| dt
AsNS),
+/ £ G = 10 — 1) — f x| |[KR (1, 1) d
Alom(si/z)(.
o0
< €Y 267 (M2 f (a1, x0) + MO f(x1, x2))
i=r0
o0
+CY 2 f (3
i=ry
< C2WTM f(x1, X2) + C27| f(x1, x2)] — 0
as n — 0o, which finishes the proof.

In this way, we obtain Corollary 2.5.9 for the ¢;-Cesaro means, i.e.,

lim o)“f = f ae.
n—oo

if f € L1(T%).For 1 < p < oo, we get again a better result.

265

Theorem 4.6.3 Suppose that 0 < « < 0o, 1/(min(a, 1) < p <oo, I/p+1/q =
L0<w< (1 +g¢gmin(a, 1) — q)/2q and./\/l'“[;'*lf(x) is finite. If f € L ,(T?) is peri-

odic with respect to  and x is a (p, w)-Lebesgue point of f, then

lim 0, f(x) = f(x).

Proof We prove the theorem again for 0 < o < 1. Note that 1 /o < p < oo implies

l<g<1/(1—-a)andso |+ ag — g > 0. Moreover,

l+aqg—q «
—_— < .
2q 2

Fix a number 0 < r < 1 such that
U:f};lf(xl,xz) <E€.

In Theorem 4.6.2, we have verified that

/ |f (1 =t x2 — 1) — f(x, )] |[Ky (4, )] dt — 0,
A;

fori =1,2,3,6,7,8,asn — oo and w < /2. So we need to consider the sets A4,

A5, A9 and AIO, only.
We apply (4.6.3) with 3 = 0 and that , > #;/2 on A4 to obtain
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Kyt )| < Cn(t — ) 1707

By Holder’s inequality,

/ |f(xr =t x2 — 1) — flxr, x| |[Ky (1, )] dt
ANS,2

o i 2+ /n 20+
i=1 j=i—1 2/n

|f(xr —t1,x0 — 1) — fxp, x| |[Ky @t 1)| 1a, (11, ) dia diy

2% p27* n 1/p
<Z Z (/, /; |f(x1—t1,x2—t2)—f(x1’x2)|17 dtzdh)

i=1 j=i— /n //n

2y an—1/n 1 1/a
/ / n= (= )" 1T, (0, ) didy |
i i— l/n

Since 1 — g < 0, we have

2+ an—1/n (140)
/ n=(t — 1) 1 L4,(t1, ) dtrdty
i/n 21‘—1/"

1 l—q p2it/p
< Cn~™ <;> /2‘./ tl—q(1+a) dty
'/n
1 1—q 9i I—g(1+a)
<Cn %[ - —

<C (i)zq—z p—ill+ag—q)
2i
and so

/ |f(r1— 11,0 — 1) — [, x| |[Ky® (1, 12)| dt
A4DS, 2

ro i
< C”Z Z 2 (w=(+ag=q)/2q)(i+))

i=1 j=i—1
21+l/n 2j+]/n l/p
27D | f(x) —t1, %0 — 1) — f(x1, x2)|P dtr dty
zw i o
/n
ro i
=CpY L ) TS f (v xa) < Ce.

i=1 j=i—1

Let us use (4.6.5) with 3 = 0 to get that
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/ |f 1=t x0 — 1) — f(xr, x| [Ky® (11, 1) di
mS’

m—2"/n T— 2//1‘[ 1/p
<Z Z (/ /77 | f(x) —t1, %0 — 1) — f(x1, x2)|? dtldt2>

i=1 j=i—1 2+t /n 2+t n
7=2"/n —2i=1/n 1/q
/ / n=(t — 1) U(r — ) 1V, ) dndn |
=2+t /n Jn+1/n
Therefore,

=21 /n 7=21"1/n
/ / Tt — 1) U — )1V 1y, (1, 1) dty db
=241 /n Jn+1/n

71' 2i/n
scwq( ) (r — 1)~ 1" dry
n

T— 21+1/n

1 1—q(1+a)
< (1) (7)
n
-2

2g—
< C( ) 2~ i(l4+aq—q)
21
and

/ |f (1 — 11, x2 — 1) — fx1, x2)| | K (11, 1) | dit
AgNS’

ro i
(w—=(+aq—q)/2¢)(i+])y—w(i+))
S IDIE z
i=1 j=i—1

7=2'/n =2/ /n 1/p
577 / / |f (1 — 11,00 — 1) = [, x)|” diydiy
2 J T— 2‘+l/l’l T— 2/+l/n

<C, Z Z 2(“]_(1+(¥q_q)/2q)(’+])U:f’plf(x1,xz) < Cpe.

i=1 j=i—1

Similarly, we can see that
/ |f (1 =t x — 1) — f(x1, x| |Ky® ()| di
AgNS¢

+/ |f (1 — 11, x2 — 1) — f(x1, x2)| | Ky (01, 1) | di
AQO(S,//Q)

00 i
<C, Z Z 2(w—(1+aq—q)/2q)(i+j)MuPJ,lf(xl’ x)

i=ry j=i—1
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o0 i
+ Cp Z Z 2*(1+aq*q)(i+j)/2q|f(xl , x2)|

i=ry j=i—1
< szro(wa(lJraqfq)/q)M;,lf(xl ,x0) + sz*ro(1+aqfq)/q|f(xl’x2)|
< Cnry> W=Dl M f(xy, x7) + Cnr) ™D f(xy, x0)| > 0

asn — oo.
On As, t, > t;/2 and so (4.6.4) implies

/ |f(x1 —ti,x2 — 1) — f(xn, )| |[Ky (1, )| dt
AsNSy 2

o i 2 a2ty 1/p
=y > (/ /2 If G =t — 1) — f(xp, x2)” dlzdh)
1

i=1 j=i— '/n J/n

2i+l/n fn 1/q
/ nd=0p 4O g arn |
2i/n t—1/n

It is easy to see that
20+ n ) 2,' 1—g(a+1)
/ nq(lfa)tl*q(cwr )dlz dll < nflnq(lfoz) (_)
Hh—1/n

i/n n

<C (£>2‘H 5-il+ag—g)
<C(3 :

Then

/ |f (1=t 60 — 1) — fxr, x| |[Ky (1, )] di
AsNS,

ro i
<3 3 22y

i=1 j=i—1

}’12 2i+l/n 20+ 1/p
2’_+J/ / |f =11, x2 — 1) — fx1, x2)|” diadty
'/n 2/ /n
ro i

<C, Z Z 2(w7(1+aq7q)/2q)(i+j)U:’J[,)lf(xl’ x2) < Ce.

i=1 j=i—1

Let us use (4.6.6):
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/ |f(x1 — 11,0 — 1) — f(x1, x| |[Ky ()| dt
Amms’

m—2"/n T— 2//1‘[ 1/p
<Z Z (/ /77 | f(x) —t1, %0 — 1) — f(x1, x2)|? dtldt2>

i=1 j=i—1 2+t /n 2+t n

7=2/n  ptat+l/n 1/q
/ / nq“ @) (m—1t)~ a(a+1) dt, dtp .
T— 21+1/n

Then

7=2"/n nh+1/n i I—g(a+1)
/ / pd-a (T — 1)~ q(a+1) dtydt, <n~ 1,a(1-a) ( )
T=2i+1/n n

< (LYo
=< 5
and

/ If(x1 — 11, %0 — 1) — fx1, x| |[Ky (. )| dt
ApNS’

o i
< Z Z 2 @=(1+ag—q)/2q)i+))y—w(i+))

i=1 j=i—1

7=2'/n =2/ /n 1/p
577 / / |f(xr =t x2 — 1) — f(x1, x2)|” diydny
20+ 720+ /n Jg—2i+1/n

<C, Z Z 2(w—(l+aq—(1)/2!1)(i+j)Uruj,p]f(xhx2) < Ce.

i=1 j=i—1
Finally,

/ |f(x =t x0 — 1) — [l x)] [Ky ()| dt
AsNS¢

/2

+/ |f(x1 =t 50 — 1) — flx, x| Ky, )| dt
Alon(s;/z)v

00 i
<C, Z Z z(w—(1+ﬂq—fl)/2KI)(i+j)M'u;,1f(xl’ x)

i=ry j=i—1

o0 1
+C, Z Z 2_(l+‘¥‘1_q)(i+'7)/2’1|f(x1, x2)|

i=rg j=i—1

< szm(zw—(waq—q)/q)/\/l‘;*1f(m, x2) + Cp2_r°(1+“"_(”/q|f(x1» x)| =0
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as n — 00. The proof of the theorem is complete. |

Let us point out this result for o > 1. Recall that for o = 1, we get the ¢-Fejér
means.

Theorem 4.6.4 Suppose that 1 <a <oo, l <p<oo, 1/p+1/g=10<w<
1/2q and M’“Ij’lf(x) is finite. If f € Lp(Td) is periodic with respect to ™ and x is a
(p, w)-Lebesgue point of f, then

lim 0, f(x) = f(x).

Recall that the £;-6-means were introduced by
1,0 . ”kHI >y 1kex
o' fx) =) 0 —) fke
keZd "

in Sect.2.6.1. The next two results can be proved as Theorems 4.5.9 and 4.5.10. For
more details see the papers [325, 326].

Theorem 4.6.5 Suppose that 0 satisfies (2.6.2) and (2.6.3), 0 <w < 1/d and
M f(x) is finite. If f € Li(T¢) is periodic with respect to T and x is a strong
(1, w)-Lebesgue point of f, then

lim o f(x) = f(x).
n—00
Theorem 4.6.6 Suppose that 0 satisfies (2.6.2) and (2.6.3), 1 < p <oo, 1/p +

l/g=1 0<w<1/2q and ./\/l“;"f(x) is finite. If f € LP(T‘J) is periodic with
respect to  and x is a (p, w)-Lebesgue point of f, then

lim 0,7 f(x) = f(x).
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Symbols Bochner-Riesz summation, 116, 176
(C, a)-means, 22
(p, k, w)-Lebesgue point, 236

(p, w)-Lebesgue point, 223 C

Hp-atom, 149 Calderon-Zygmund decomposition, 85
H E—atom, 80 Carleson’s theorem, 8, 39
H¥-atom, 136 centered maximal function, 10
£4-0 kernel, 110 Cesaro kernel, 22
£,-0-means, 110 Cesaro means, 22

£,-Cesaro kernel, 41 characteristic function, 51
£,-Cesaro means, 41, 85 Circular partial sum, 35
£4-Dirichlet kernel, 35 cone-like set, 135

£,-Fejér kernel, 41 conjugate function, 5

£,-Fejér means, 41 convolution, 75, 76

£,-Riesz kernel, 41 Cubic partial sum, 35

£,-Riesz means, 41, 85
{,-partial sum, 35

£4-(C, a)-means, 41 D

0-summability, 110 de La Vallée-Poussin summation, 116
p-Lebesgue point, 192 Dirichlet kernel, 4, 46, 49

soc, 49 distribution, 72

divided difference, 46
dyadic interval, 149

A dyadic rectangle, 149
Atom, 149
atomic decomposition, 80

F

Feichtinger’s algebra, 164
B Fejér kernel, 19
Besov space, 166 Fejér means, 19
Bessel function, 59 Fejér summation, 116
Bessel summation, 116, 177 Fourier coefficient, 3, 34, 74
beta function, 58 Fourier series, 4, 34
Bochner-Riesz means, 42 fractional Sobolev space, 165
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G
gamma function, 58

H

Hardy spaces, 77, 136, 147

Hardy-Littlewood maximal function, 10,
180, 215, 229, 242

Hardy-Littlewood theorem, 11, 181, 215,
244

Herz space, 27, 182, 201

hybrid Hardy spaces, 147

I
interpolation theory, 82

J

Jackson-de La Vallée-Poussin summation,
116

L

Lebesgue measure, 2
Lebesgue point, 17, 192, 207, 223, 236, 246
Lebesgue’s differentiation theorem, 16, 181

M

Marcinkiewicz summability, 42
Marcinkiewicz-Zygmund theorem, 14, 15
maximal @-operator, 110

maximal Cesaro operator, 85

maximal Fejér operator, 86

maximal operator, 8, 14, 39, 81, 184, 201
maximal Riesz operator, 85

modulation space, 213

(0]

order of distribution, 73

P

partial sum, 4

Picard summation, 116, 177
Poisson kernel, 77
Pringsheim convergence, 37

R
rectangle H)-atom, 150
rectangular (C, o)-means, 120
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rectangular 6-kernel, 163

rectangular f-means, 163, 164

rectangular Cesaro kernel, 120

rectangular Cesaro means, 120, 126

rectangular Dirichlet kernel, 35

rectangular Fejér kernel, 120

rectangular Fejér means, 120

rectangular partial sum, 35
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Restricted maximal 6-operator, 173

restricted maximal Cesaro operator, 127, 137

restricted maximal Fejér operator, 127

restricted maximal operator, 218

restricted maximal Riesz operator, 127, 137

Riesz projection, 7

Riesz summation, 116, 176

Rogosinski summation, 116

S

Schwartz function, 76

short-time Fourier transform, 164

simple H)-atom, 150

Sobolev space, 165

strong (p, w)-Lebesgue point, 246

strong p-Lebesgue point, 207

strong Hardy-Littlewood maximal function,
199

T

translation, 78

Triangular partial sum, 35
trigonometric polynomial, 5, 37

U

unrestricted maximal 6-operator, 173
unrestricted maximal Cesaro operator, 152
unrestricted maximal Fejér operator, 152
unrestricted maximal Riesz operator, 152

v
Vitali covering lemma, 10

w
weak L, (T) space, 3
weak Hardy spaces, 77, 136, 147
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Weierstrass summation, 116, 176
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Wiener algebra, 161
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Young’s inequality, 75
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A%, 20
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c(X),2
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HY (1), 77
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HP (1), 77
HE(T9), 136
H(TY), 147
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