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Abstract. Three probabilistic analytical (“mathematical”) human-system-
integration (HSI) models and their application in ergonomics engineering are
addressed. The general concepts are illustrated by numerical examples. It is con-
cluded that such models should always be considered, in addition to computer
simulations, in every critical HSI effort.
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1 Introduction

By employing quantifiable andmeasurable ways of assessing the role and significance of
critical uncertainties and treating the human-in-the-loop (HITL) as a part, often the most
crucial part, of a complex man–instrumentation (both its hard- and software)–object-
of-control–environment system, one could improve dramatically the state-of-the-art in
ergonomics engineering, including its HSI aspect. In the analysis that follows several
recently employed probabilistic HITL/HSI models are addressed. The models are based
on the well-known general principles of applied probability (see, e.g., [1]) and can
be and, actually, have been applied, when a human fulfils a challenging mission or
encounters an extraordinary situation, and is expected to possess a high enough human
capacity factor (HCF) to successfully cope with an elevated mental workload (MWL)
[2]. The “object-of-control” could be, particularly, aerospace, automotive, railway or a
maritime vehicle; another human, such as, e.g., medical patient or a business customer,
particularly in the situations, when adequate trust is critical [3]. One cannot improve
anything, if he/she does not quantify things. And since nobody and nothing is perfect, a
physically meaningful and effective quantification should be done on the probabilistic
basis. Probabilistic predictivemodelling (PPM) is able predict, quantify and, if necessary
and appropriate, even specify an adequate and never-zero probability of failure of an
ergonomics undertaking of importance.
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Tversky and Kahneman [4] seem to be the first ones who addressed, in application
to decision making tasks in economics (2002 Nobel Prize in economics), various cog-
nitive “heuristics and biases” with consideration of uncertainties in human psychology,
but being top-notch, but still traditional, human psychologists, these authors discussed
such problems from the qualitative viewpoint, while the importance of the probabilistic
quantitative approach [5–28] that has been addressed and discussed here. It is note-
worthy that the analytical PPM was used in all the referenced publications [8] and that
the addressed ergonomics models originated from the models suggested and employed
earlier in electronics and photonics reliability engineering (see, e.g., [6, 7]). The first
attempt of doing so was undertaken in application to helicopter-landing-ship (HLS) sit-
uation [5]. It was shown that the likelihood that such landing would be successful and
safe, i.e., the helicopter’s undercarriage will not be damaged, if the probability that the
anticipated random time of the calm “widow” in the sea state exceeds appreciably the
sum of two random times: the actual time of landing and the times of the “go-non-go”
decision making by the officer on shipboard and the helicopter pilot.

2 Analysis

As has been indicated, the convolution model was introduced and applied first in the
HLS situation, and then employed in several other HSI problems [10–16]. Let us show, as
a suitable example, how thismodel can be applied for the assessment of the probability of
a head-on railway obstruction. Consider first a situation when the assessed sight distance
(ASD) Ŝ determined by the system’s radar and/or LIDAR is viewed as a non-random
variable and assume that the random pre-deceleration constant speed distance S0 and
the subsequent constant deceleration distance S1 (after the system and/or the machinist
detected an obstacle) are random variables distributed in accordance with the Rayleigh
law. Indeed, the most likely values of the breaking times and distances (modes) cannot
be zero but cannot be very long (large) either. In addition, in emergency situations of the
type in question, short times and small distances are much more likely than long times
and large distances. Because of that, the modes of their probability density distribution
functions (PDFs) should be heavily skewed towards short times and small distances.
The Rayleigh distribution is the simplest distribution that possesses these features. The
probability that the random distance S = S0 + S1 exceeds a certain non-random level Ŝ
can be found as a convolution of the two Rayleigh distributed random variables S0 and
S1 as follows:
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integral (Laplace function). If the probability (1) is small (how small is “small” should
be determined, agreed upon and eventually included into the governing specifications),
then there is reason to believe that the train will stop before hitting the obstacle, so that
obstruction will be avoided. The calculated PS values are shown in Table 1. As evident
from the calculated data, the ASD parameter s plays the major role, while the ratio η of
the most likely deceleration and the pre-deceleration distances is much less important.

Table 1. Calculated probabilities PS of obstruction assuming non-random ASD

s/η 0 1.0 2.0 5.0 10.0 20.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.25 0.9394 0.9975 0.9962 0.9870 0.9719 0.9579

0.5 0.7788 0.9656 0.9515 0.8890 0.8413 0.8071

0.75 0.5698 0.8629 0.8232 0.7059 0.6424 0.6058

1.00 0.3679 0.6848 0.6259 0.5817 0.4324 0.3997

1.50 0.1054 0.2818 0.2399 0.2181 0.1344 0.1197

2.0 0.0183 0.0645 0.0534 0.0328 0.0253 0.0216

3.0 1.234E-4 6.562E-4 5.395E-4 2.852E-4 1.980E-4 1.577E-4

4.0 1.254E-7 1.064E-6 6.384E-7 2.673E-7 2.078E-7 1.125E-7

5.0 1.389E-11 1.231E-10 9.847E-11 4.853E-11 2.924E-11 2.085E-11

The role of the ASD variability could be accounted for based on the following
reasoning. Assuming, based on the intuitively obvious physical considerations, that the
ASD is a normally distributed random variable, the probability that this variable is below
a certain level S is PA = 1

2 [1 − �(s)]. Obstruction will be avoided, when the random

distance S = S0 + S1 is below a level S
∧

(the probability of this situation is 1 − Ps) and,
in addition, if the ASD distance is above this level (this probability is 1−PA). Then the
probability that the obstruction is avoided can be evaluated as (1−Ps)(1−PA), and the
probability PSA that obstruction will occur is therefore

PSA = 1 − (1 − Ps)(1 − PA) = PA + Ps − PAPs = 1

2
[1 − �(s) + Ps(1 + �(s))]

(2)

The calculated PSA values are shown in Table 2. As one could see by comparing the
Tables 1 and 2 data, consideration of the variability of the ASD results in an insignificant
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increase in the predicted probabilities of obstruction and this difference decreases with
the decrease in this probability. For very low probabilities of obstruction, consideration
of the ASD variability does not make any difference at all (see italic data in the last two
rows of Table 2). Intuitively, such a behaviour could be anticipated from (2). Indeed,
when the prediction of the ASD is absolutely accurate and, owing to that, the probability
PA of obstruction caused by the inaccurate radar or a LIDAR measurements is zero
(PA = 0), then PSA = PS , and when PS is low, PSA is also low and is not different from
the PS .

Table 2. Calculated probabilities PSA of obstruction considering ASD variability

s/η 0 1.0 2.0 5.0 10.0 20.0

0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.25 0.9613 0.9984 0.9976 0.9917 0.9821 0.9731

0.5 0.8318 0.9738 0.9631 0.9156 0.8793 0.8368

0.75 0.6319 0.8827 0.8487 0.7484 0.7281 0.6627

1.00 0.4176 0.7096 0.6553 0.6146 0.4770 0.4469

1.50 0.1206 0.2940 0.2528 0.2314 0.1491 0.1346

2.0 0.0201 0.0662 0.0551 0.0346 0.0271 0.0234

3.0 1.334E-4 6.662E-4 5.495E-4 2.952E-4 2.038E-4 1.677E-4

4.0 1.254E-7 1.064E-6 6.384E-7 2.673E-7 2.078E-7 1.125E-7

5.0 1.389E-11 1.231E-10 9.847E-11 4.853E-11 2.924E-11 2.085E-11

The double-exponential-probability-distribution (DEPD) model uses the DEPD
function. This function could be introduced in many ways, depending on a particular
problem of importance. In vehicular, such as, say, avionic engineering, if one intends
to evaluate the impact of the HCF F , the MWL G and the time t on the probability
Ph(F,G, t) of the pilot’s non-failure, this function can be sought in the form:

Ph(F,G, S∗) = P0 exp

[
−

(
γSS∗t + G2

G2
0

)
exp

(
−F2

F2
0

)]
. (3)

HereP0 is the probability of human non-failure at the initialmoment of time and/or in
the case of a very lowMWL levelG, but could be defined also as the level for the situation
when the HCF F is extraordinarily high, while the MWL G is still finite, and so is the
time t; S∗ is the threshold (acceptable level) of the continuously monitored/measured
human health characteristic (symptom), such as, e.g., body temperature, arterial blood
pressure, etc.; γS is the sensitivity factor for the symptom S∗;G ≥ G0 is the actual
(elevated, off-normal) MWL; G0 is the MWL in normal operation conditions; F ≥ F0
is the actual (off-normal) HCF exhibited or required in the extraordinary condition of
importance; F0 is the most likely (normal, specified) HCF; γS is the sensitivity factor for
the governing symptom S∗. While measuring the MWL has become, for many years, a
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key method of improving safety, HCF is a relatively new notion (see, e.g., [2, 3, 10, 11])
that playswith respect to theMWLmore or less the same role as strength or capacity play
with respect to stress or demand in structural analysis and in some economics problems.
The function (3) makes physical sense. Indeed, when time t, and/or the level S∗ of the
governing symptom, and/or the level of the MWL G are significant, the probability of
non-failure is always low, no matter how high the level of the HCF F is; when the level
of the HCF is high, and the time t, and/or the level S∗ of the governing symptom, and/or
the level of the MWL G are finite, the probability Ph(F,G, S∗) becomes close to the
probability P0; when the HCF F is on the ordinary level F0 the formula (3) yields:

Ph(F,G, S∗) = Ph(G, S∗) = P0 exp

[
−

(
γSS∗t + G2

G2
0

)]
, (4)

and for a long time in operation (t → ∞) and/or when the level S∗ of the governing
symptom is significant (S∗ → ∞) and/or when the level G of the MWL is high, the
probability (4) of non-failure will be always low; at the initial moment of time (t = 0)
and/or in the case of a very low S∗ level (S∗ = 0), the Eq. (4) yields: Ph(F,G, S∗) =
Ph(G) = P0 exp

[
−

(
G2

G2
0

)]
; when the MWL G is high, this probability is low. In the

function (3) there are two unknowns: the probability P0 and the sensitivity factor γS . The
probabilityP0 could be determined by testing a group of highly qualified individuals. Let
us show how the sensitivity factor γS can be determined. The Eq. (4) can be written as

− lnP

γSS∗t+G2

G2
0

= exp

(
−F2

F2
0

)
. Let accelerated testing be conducted on a flight simulator for

the same group of individuals with the same high HCF F/F0 level (Captain Sullenberger
[12] is a good example), but at two different elevated (off-normal) MWL conditions,G1
and G2. Let the governing symptom has reached its critical level S∗ at the times t1 and
t2 from the beginning of testing, respectively, and the percentages of the individuals that
failed the tests were Q1 and Q2, so that the corresponding probabilities of non-failure

were
⇀

P
1
and

⇀

P
2
, respectively. Since the same group of individuals was tested, the right part

of the above relationship should remain unchanged, and because of that the condition
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should be fulfilled. This condition yields: γS = 1
S∗

G2
1

G2
0
− lnP1

lnP2

G2
2
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lnP1
lnP2

t2−t1
.

After the sensitivity factor γS is determined, the probability Ph(F,G, S∗) of human non-
failure can be evaluated on the basis of the formula (3). Let the accelerated testing on a
flight simulator was conducted twice for a group of individuals with high HCF F

F0
levels

at loading conditions, G1
G0

= 1.5 and G2
G0

= 2.5. The tests have indicated that the value
of the symptom S of the critical magnitude of, say, S∗ = 180, has been detected in 70%
of individuals (P1 = 0.3) during testing under the loading condition of G1

G0
= 1.5 after

t1 = 2 h of testing and in 90% of individuals (P2 = 0.1) during the second set of testing
under the loading condition G2

G0
= 2.5 after t2 = 1 h. Then the sensitivity factor γS is as
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follows: γS = 1
S∗

G2
1

G2
0
− lnP1

lnP2

G2
2

G2
0

lnP1
lnP2

t2−t1
= 1

180
2.25− −1.2040

−2.3026 6.25
−1.2040
−2.3026−2

= 3.8288x10−3hr−1, and the Eq. (4)

results in the following probability of the human non-failure:

P = Ph(F,G, S∗)

P0
= exp

[
−

(
γSS∗t + G2

G2
0

)
exp

(
−F2

F2
0
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= exp
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−

(
0.68918t + G2

G2
0

)
exp

(
−F2

F2
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For a pilot of ordinary skills
(

F
F0

= 1
)

(normal HCF) and for a normal MWL(
G
G0

= 1
)
this formula yields: P = exp[−0.3679(0.68918t + 1)]. In 10 h this prob-

ability will be only 5.48%. However, for an exceptionally highly qualified indi-
vidual, like Captain Sullenberger, whose estimated HCF level is as high as F

F0
=

3.14 [12], the probability of the navigator’s non-failure is considerably higher:
P = exp

[−(0.68918t + 1) exp(−9.8596)
] = 0.9996. For an individual with the

HCF of, say, F
F0

= 2.0 this probability is significantly, by 13.5%, lower: P =
exp

[−(0.68918t + 1) exp(−4.0)
] = 0.8654. These results indicate particularly the

importance of the HCF in the addressed HITL problem.
The probabilistic segmentation model [11, 15] was used to quantify a HSI related

situation, when a vehicular mission of interest consists of a number of consecutive
segments/phases characterized by different probabilities of occurrence of a particular
harsh environment or and/by other extraordinary conditions during the particular seg-
ment of the mission, and/or by different durations of these segments/phases; and/or by
different failure rates, of the equipment and instrumentation and/or the navigator(s).
According to the probabilistic segmentation model, the probability of the mission non-
failure can be calculated as the sum of the products of the likelihood qi of the occur-
rence of a harsh environment of the given severity at each segment of the route, the
probability Pe

i (ti) of non-failure of the equipment and the probability Ph
i (ti) of non-

failure of the navigator(s). The probability of the mission failure can be determined as

Q =
n∑

i=1
qiQi(ti) = 1 −

n∑
i=1

qiPe
i (ti)P

h
i (ti). If at a certain segment of the fulfilment of

the mission of interest the human performance is not critical, then the corresponding
probability Ph

i (ti) of human non-failure should be put equal to one. On the other hand, if
there is confidence that the equipment (instrumentation) failure is not critical, or if there
is a reason to believe that the probability of the equipment non-failure is considerably
higher than the probability of the human non-failure, then it is the probability Pe

i (ti)
that should be put equal to one. Finally, if one is confident that a certain level of the
harsh environment will be encountered during the fulfilment of the mission at the i−
th segment of the route, then the corresponding probability qi of encountering such an
environment should be put equal to one. Let, for instance, the duration of a particular
vehicular mission is 24 h, and the vehicle spends equal times at each of the six segments
(so that ti = 4 hours at the end of each segment), the failure rates of the equipment
and the human performance are independent of the environmental conditions and are
λ = 8x10−4 1/h, the shape parameter in the Weibull distribution in both cases is β = 2

(Rayleigh distribution), theHCF ratio is F2

F2
0

= 8
(

F
F0

= 2.828
)
, the probability of human
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non-failure at ordinary flight conditions is P0 = 0.9900, and the MWL Gi/G0 ratios are
given vs. the probability qi of occurrence of the environmental conditions in Table 3.

Table 3. Calculated probabilities of mission failure

i 1 2 3 4 5 6

qi,% 95.30 3.99 0.50 0.10 0.06 0.05

Gi/G0 1 1.414 1.732 2.000 2.236 2.4495

Pi 1 0.9991 0.9982 0.9978 0.9964 0.9955

Phi 0.9900 0.9891 0.9882 0.9878 0.9864 0.9855

Pei P
h
i 0.9900 0.9891 0.9882 0.9878 0.9864 0.9856

qiP
e
i P

h
i 0.9435 0.0395 0.0049 0.0010 0.0006 0.0005

The computations of the probabilities of interest yield:

Pe
i =exp

[
−(λti)

2
]

= exp

[
−

(
8 × 10−4 × 4

)2] = 0.99999,

Ph
i =P0P̄i exp

[
(λti)

2
]

= 0.9900 × 0.99999P̄i = 0.99P̄i

The probability of the mission’s non-failure is
n∑

i=1
qiPe

i (ti)P
h
i (ti) = 0.9900, so that

the probability of mission failure is Q = 1 −
n∑

i=1
qiPe

i (ti)P
h
i (ti) = 1 − 0.990 = 0.01 =

1%.

3 Conclusion

Asuccessful/safe outcome of anHSI related effort cannot be assured, nor even improved,
if this outcome is not quantified. Since nobody and nothing is perfect, and the probability
of failure is never zero, such a quantification should be done on the probabilistic basis, and
the established never-zero probability of failure should be made adequate for a particular
system, individual(s) and application. Analytical (“mathematical”) predictive modelling
should always be considered, in addition to computer simulations, in every critical HSI
effort. These two types of models are based, as a rule, on different assumptions and
use different calculation techniques, and if the predictions based on these models are in
agreement, then there is a good reason to believe that the obtained data are both accurate
and trustworthy.
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