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Abstract. We investigated the appropriate time window duration for calculating
eye and headmovement parameters in mental workload (MWL) estimation during
automobile driving. Participants performed driving tasks on a driving simulator,
and eye and head movements were measured by controlling their MWL using
the N-back task, which required them to keep answering aloud the N-th previ-
ous digit in a sequence of digits. The eye and head movement parameters were
calculated by changing a time window from 30 s to 150 s in increments of 30 s.
An anomaly detector of MWL was constructed using the one-class support vec-
tor machine (OCSVM) with the no N-back task (“None”) data. In each window
length condition, we calculated the area under curve (AUC) for the binary classifi-
cation between None and the highest MWL condition, the percentage of anomaly
data, and the distance from the decision boundary. The results showed that a time
window of 30 s had significantly lower AUC compared with other time windows.
In addition, the correlation coefficient between the subjective MWL score and
the distance of each eye movement parameter data from the decision boundary
monotonically increased in the time window 30 s to 120 s and decreased at 150 s.
Therefore, we concluded that 60 s to 120 s is an appropriate time window duration
for MWL evaluation.

Keywords: Driver monitoring ·Mental workload · Eye tracking ·Machine
learning · Anomaly detection · One-class support vector machine

1 Introduction

Distracted driving is one of themost common causes of fatal traffic accidents in Japan [1].
To prevent distracted driving, it is necessary to evaluate themental state of drivers. To this
end,we focused on the eyemovement of the drivers for a quantitative evaluation ofmental
workload (MWL); tracking eyemovements is practical andmay indicate comfort, stress,
and various other biological states of the driver. In our previous research, the following
effective eye movement parameters were selected: the standard deviation (SD) of the
horizontal gaze angle, the SD of the horizontal eyeball rotation angle, the sharing rate of
headmovement against the eyeball rotation in a gazemovement, and the brink frequency
[2]. These parameters were calculated in a time window of 60 s, which was determined
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intuitively. However, the duration of the time window may affect the accuracy of MWL
estimation. A longer time window may improve the estimation accuracy as the effect
of the surrounding noise is reduced; however, the temporal resolution of MWL tracking
decreases as it takes time to estimate MWL. Therefore, the effect of the time window
duration should be investigated to maximize the accuracy of MWL estimation. The
aim of this study is to investigate the appropriate time window range for calculating eye
movement parameters inmentalworkload (MWL) estimation during automobile driving.
Furthermore, the accuracy of MWL estimation and correlation between the subjective
and estimated MWL are compared for different time windows using experimental data
obtained in the previous study [2].

2 Methods

2.1 Experimental Conditions

Twelve Japanese students with an average age of 21.6 ± 0.51 years and having drivers’
licenses participated in this experiment. They performed driving tasks in an urban city
course on a driving simulator (UCwin/Road Ver.13 Driving Sim, FORUM8 Inc.) (see
Fig. 1); their eye and head movements were simultaneously measured with an image
sensor (B5T-007001, Omron Inc.) by controlling their MWL through the N-back task
[3]. In the N-back task, the participants were required to keep answering aloud the N-th
previous digit in a sequence of digits that was read out consecutively. The N-back task
had five difficulty levels: none, 0-back, 1-back, 2-back, and 3-back. The subjectiveMWL
was measured using the national aeronautics and space administration task load index
(NASA-TLX) [4, 5]. The adaptive weighted workload (AWWL) score [5] was used as
the total score. The AWWL score is calculated as the weighted sum of the six scales
with the weights of 6, 5, 4, 3, 2, and 1 in a decreasing order of the scales. The higher the
value, the higher is the subjective MWL.
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Fig. 1. Driving simulator and driving route.
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2.2 Quantification of MWL by One-Class Support Vector Machine

The gaze angle, head angle, and degree of eye closure during the driving task were
measured using an image sensor. Thereafter, the four eye movement parameters (i.e.,
SD of gaze angle, SD of eyeball rotation angle, sharing rate of headmovement, and blink
frequency) were calculated by changing the time window to 30–150 s in increments of
30 s (Fig. 2). Anomaly detectors for MWLwere constructed using the one-class support
vector machine (OCSVM) for each participant and each increment of the time window.
The OCSVM creates a decision function that takes a non-negative value in the area
containing a large volume of training data and a negative value in the other areas. We
used the OCSVM implemented in scikit-learn 0.23.2. The radial basis function (RBF)
kernel was used as the kernel function, and the coefficient of the kernel γ was set as
γ = 0.25 . In addition, the upper bound on the fraction of training errors ν was set as
ν = 0.01. The two hyper parameters of the OCSVM were heuristically determined.

In total, 50% of the “none” data were randomly used as the training data for the
OCSVM, and the remaining “none” and “0-back” to “3-back” data were used as test
data. Note that the training and the test data were normalized based on the means and
SDs of the four eye movement parameters in the training dataset.
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Fig. 2. Calculation of eye and head movement parameters.

2.3 Analysis

For each window length condition, we calculated the area under the curve (AUC) for the
binary classification between “none” and “3-back” data, the percentage of anomalous
data, and the distance of each eye movement parameter data from the decision boundary.
A one-way analysis of variance (ANOVA) was conducted to investigate the effects of
the time window on the AUC; Tukey’s post-hoc tests were carried out to compare the
levels of the time window.
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3 Results

Figure 3 shows the average AUCs for each time window. The ANOVA revealed that
the effect of time window was significantly associated with the AUC at 1% significance
level. The time window of 30 s had significantly lower AUC compared with other time
windows.

The ratios of the anomalous data for each time window are shown in Fig. 4. The ratio
of the anomalous data monotonically increased with the increase in the task difficulty
in the range from “0-back” to “3-back.” In addition, the anomaly ratio also increased
with the increase in the duration of the time window with respect to the same task
difficulty except “None.” Especially for the time window duration of 150 s, the ratio of
the anomalous data became almost 100% for “1-back” to “3-back” tasks.

Figure 5 shows the correlation coefficients between the subjective MWL (i.e.,
AWWL score of NASA-TLX) and the distance of each eye movement parameter data
from the decision boundary of OCSVM (N = 5 task difficulties × 12 participants =
60). The correlation coefficients were significant at 1% significance level irrespective of
the time window. The correlation coefficient monotonically increased between 30 s and
120 s and decreased at 150 s. Figure 6 shows the relationship between AWWL scores
and the distance of each eye movement parameter data from the decision boundary at
120 s time window, which has the highest correlation coefficient.
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Fig. 3. Relationship between the timewindow and averageAUC.Error bars represent the standard
deviations. This graph includes the results of the post-hoc test; * and ** represent p < 0.05 and
p < 0.01, respectively.

4 Discussion

As shown in Fig. 4, the ratio of the anomalous data monotonically increased with the
task difficulty irrespective of the time window; therefore, the time window of 30–150 s
can quantify the MWL during driving. The participants showed different abilities for
the N-back task; thus, MWL from the same N-back task is different for each participant.
Therefore, the ratio of the anomalous data is expected to have some variability among
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                               (a) 30 s                                                                  (b) 60 s

                                (c) 90 s                                                                 (d) 120 s

(e) 150 s

Fig. 4. Box plots of ratio of anomaly data for each time window. The bottom and top edges of the
box represent the first and third quartiles (Q1 and Q3), respectively, and the band in the box is the
second quartile (Q2) or the median. The white dot represents an outlier; the threshold for outlier
determination was less than Q1 – 1.5 × IQR (IQR = interquartile range) and higher than Q3 +
1.5 × IQR. The bottom and top of the whisker represent the maximum and minimum excluding
the outliers, and the cross represents the average value.

the participants, especially in the relatively easy N-back task. By contrast, the “3-back”
task was the most difficult one, resulting in a considerably high MWL for almost all the
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Fig. 5. Correlation coefficient between the normalized AWWL score and the distance from the
decision boundary for each time window.
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Fig. 6. Relationship between the normalized AWWL score and the distance from the decision
boundary for the time window of 120 s.

participants. However, the average of the ratio of the anomalous data for the “3-back”was
approximately 80%when the timewindowwas 30 s (Fig. 4(a)). In addition, the detection
ability for the time window of 30 s is lower compared with other time windows. This
is because 30 s is relatively short for calculating the eye movement parameter, and the
detection accuracy decreases due to the effect of the noise. Therefore, the time window
should be more than 30 s.

The time window 120–150 s has approximately 100% anomalous data ratios, not
only for the “3-back” but also for the “1-back” and “2-back” tasks. It would be more
natural for the ratio of the anomalous data to increase gradually with the N-back task
because the MWL from the relatively low-difficulty task may have variability across the
participants. In addition, too long a window length (i.e., 150 s) impairs the correlation
between the objective and subjectiveMWL evaluation. The time window of 150 s masks
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the difference for “1-back” to “3-back” tasks, whereas the anomaly ratio should increase
gradually. Therefore, 150 s is slightly too long as the time window.

Considering the aforementioned points, we concluded that 60 s to 120 s is an
appropriate time window duration for MWL evaluation.

5 Conclusions

We found that the range of 60 s to 120 s is the appropriate time window duration for
calculating eye movement parameters in mental workload (MWL) estimation during
automobile driving.
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