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Abstract Oriented Conformal Geometric Algebra was recently applied to Molec-
ular Distance Geometry, where we want to determine 3D protein structures using
distance information provided by Nuclear Magnetic Resonance experiments. We
present new results that simplify the associated calculations.

1 Introduction

Distance Geometry (DG) deals with calculation of points using distances between
some of them [30, 31]. One of the most important applications of DG is related to the
determination of 3D protein structures using distance data from Nuclear Magnetic
Resonance (NMR) experiments [11, 27, 34, 40]. For other applications and more
information about DG, see [4, 5, 32, 33, 36].

Given a graph G = (V, E, d), where V represents the set of atoms of a molecule
and E is the set of atom pairs for which a distance is available (defined by d : E →
(0,�)), the Molecular Distance Geometry Problem (MDGP) is to find a function
x : V → R

3 that associates each element of V with a point in R3 in such a way that
the Euclidean distances between the points correspond to the values given by d [30].

Information from protein geometry and NMR data allow us to solve the MDGP
using a combinatorial method, called Branch-and-Prune (BP) [7, 29]. The discrete
MDGP is called the Discretizable MDGP (DMDGP), which is based on a vertex
order v1, ..., vn ∈ V , also given as input of the problem [8, 15, 25, 26, 35]. Formally,
the DMDGP is defined as follows [19, 20] (we denote xi instead of x(vi ) and di, j
instead of d(vi , v j )):

Definition 1 Given a simple undirected graph G = (V, E, d), whose edges are
weighted by d : E → (0,�), and a vertex order v1, ..., vn ∈ V , such that
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1. For v1, v2, v3 ∈ V , there exist x1, x2, x3 ∈ R
3 satisfying the given distances;

2. For i > 3,
{{vi−3, vi }, {vi−2, vi }, {vi−1, vi }} ⊂ E (1)

and
di−3,i−2 + di−2,i−1 > di−3,i−1, (2)

find a function x : V → R
3 satisfying

∀{vi , v j } ∈ E, ||xi − x j || = di, j . (3)

Property 1 avoids solutions modulo rotations and translations and Property 2
allows us to calculate the two possible positions for v4. For each position for v4, we
have other two for v5, and so on, implying that theDMDGP search space is finite [20].

For i > 3, we may also have {v j , vi } ∈ E , j < i − 3, adding another equation
(||xi − x j || = d j,i ) to the system related to vi :

||xi − xi−1|| = di−1,i ,

||xi − xi−2|| = di−2,i , (4)

||xi − xi−3|| = di−3,i .

We obtain a unique solution x∗
i for vi , supposing ||x∗

i − x j || = d j,i and that the points
xi−1, xi−2,xi−3, x j ∈ R

3 are not in the same plane. If both possible positions for vi
are unfeasible with respect to additional distances d j,i , j < i − 3, it is necessary to
consider the other possible position for vi−1 and repeat the procedure. Essentially,
this is what the BP algorithm does [20].

Since distances di−1,i and di−2,i are related to bond lengths and bond angles of a
protein, they can be considered precise values. This may not happen to distances d j,i ,
j ≤ i − 3, since theymaybeprovidedbyNMRexperiments [28, 40]. In [21], distances
d j,i are represented as interval distances [d j,i , d j,i ],d j,i ≤ d j,i ≤ d j,i , and anextension
of the BP algorithm, called iBP, is proposed. The idea is to sample values from inter-
vals [di−3,i , di−3,i ] in order to solve the associated system to calculate positions to vi ,
which implies that, choosing many values, the search space increases exponentially,
and for small samples, a solution may not be found [1, 9, 10, 16, 37, 39].

Geometrically, even considering interval distances, solving systems like (4)
is to intersect spheres and spherical shells centered at the positions for vertices
vi−1, vi−2, vi−3, v j ( j < i − 3) with radius di−1,i , di−2,i , [di−3,i , di−3,i ], [d j,i , d j,i ],
respectively.

In [2, 3], Conformal Geometric Algebra (CGA) was used to model uncertainties
in the DMDGP, for the branching phase of iBP (intersection of two spheres and a
spherical shell), and, in [24], the Oriented CGA (OCGA) [6] was applied for the
pruning phase of iBP (when additional spherical shells must be considered in the
intersection). Another CGA approach is discussed in [13].
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Fig. 1 Intersection of two spheres and a spherical shell resulting in two arcs

We present new results that simplify the calculations in the pruning phase of iBP
algorithm.

Next section explains how CGA and OCGA replace the classical approach for
solving the DMDGP and Sect. 3 provides our contribution.

2 Conformal Geometric Algebra (CGA) and Oriented
CGA (OCGA) for the iBP Algorithm

2.1 CGA for Branching

Replacing di−3,i ∈ R by interval distance [di−3,i , di−3,i ] in (4), we have to intersect
two spheres with one spherical shell resulting in two arcs, instead of two points in
R

3 (see Fig. 1).
The points P0

i , P1
i and P0

i , P1
i , from the intersection of spheres centered at the

positions for vi−1, vi−2, vi−3 with radius di−1,i , di−2,i , di−3,i and di−1,i , di−2,i , di−3,i ,
respectively (see Fig. 1), can be obtained from the point pairs generated by

Si−1,i ∧ Si−2,i ∧ Si−3,i and Si−1,i ∧ Si−2,i ∧ Si−3,i ,

where underline and overline indicate the use of di−3,i and di−3,i , respectively [2]
(in the conformal model, Si, j is the sphere centered at the position for vertex vi with
radius di, j ).

With the starting and the ending point of an arc, we can define a rotor, for i ≥ 4,
given by

Ri = cos

(
λi

2

)
− sin

(
λi

2

)
z∗
i , (5)
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where λi ∈ [0, φi ] is the rotation angle corresponding to the arcs P0
i P

0
i and P1

i P
1
i

(see Fig. 1), z∗
i is the dual of zi , and

zi = Xi−2 ∧ Xi−1 ∧ e�,

since the rotation axis of Ri is defined by Xi−2 and Xi−1 (the positions for vi−2 and
vi−1 in the conformal model). Note that φi , i ≥ 4, can be computed apriori based on
the given intervals [di−3,i , di−3,i ] and the DMDGP definition [2].

In order to consider the effect of changing points in the arcs (to avoid the sampling
process), the rotation axes of the rotors must be replaced by (see [3])

zi = (Ri · · · R4)
(
Pb
i−2 ∧ Pb

i−1 ∧ e�
) (

R−1
4 · · · R−1

i

)
,

implying that

Xb
i (λ4, . . . , λi ) = (Ri · · · R4) P

b
i

(
R−1
4 · · · R−1

i

)
,

for i ≥ 4. The values b ∈ {0, 1} are defined when iBP chooses one of the branches in
the search tree [3].

Note that, when all distances di−3,i are precise values, i.e. φi = 0 for i ≥ 4,

Xb
i (0, . . . , 0) = P

b
i = P

b
i .

2.2 OCGA for Pruning

During the pruning phase of iBP,when additional spherical shellsmust be considered,
the arc orientation is even more important. In [24], this was done using the Oriented
Conformal Geometric Algebra (OCGA) [6], which is an extension of the Oriented
Projective Geometry [38].

First, we define an orientation for the circle obtained from the intersection
Si−1,i ∧ Si−2,i (Fig. 2), given by

Ci = P
0
i ∧ P0

i ∧ P1
i .

Since Ci is a trivector in the conformal space, its dual C∗
i is a bivector orthogonal to

the plane that contains the circle Ci , which implies that the line

C∗
i ∧ e�

is oriented according to Ci .
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Fig. 2 Oriented circle Ci

Using the normalized bivector dual to the rotation axis C∗
i ∧ e�, we can define z

∗
i

in a different way, that carries the orientation of Ci . The associated rotor Ri is now
defined by:

Ri = cos

(
λi

2

)
− sin

(
λi

2

)
z∗
i , 0 ≤ λi ≤ φi ,

where

zi =
C∗
i ∧ e�

||C∗
i ∧ e�|| .

Supposing that for vi , i > 4, there is a pruning edge {v j , vi } ∈ E , j < i − 3,

with interval distance [d j,i , d j,i ], and denoting by P0
j P

0
j and P1

j P
1
j the arcs obtained

from the intersections Si−1,i ∧ Si−2,i ∧ S j,i and Si−1,i ∧ Si−2,i ∧ S j,i , we compute the
new starting and ending points of the associated rotors doing the following calcula-
tions [24] (all the possible cases are illustrated in Fig. 3):

t1 = (P0
j ∧ P0

i ∧ P1
i )Ci , t2 = (P0

i ∧ P0
j ∧ P1

i )Ci

and
t1 = (P0

j ∧ P0
i ∧ P1

i )Ci , t2 = (P0
i ∧ P0

j ∧ P1
i )Ci ,

where
Ci = P

0
i ∧ P0

i ∧ P1
i .

The same procedure must be done for P1
j and P1

j .
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Fig. 3 Possible cases for intersecting arcs

3 New Approach for iBP Prunning Phase

Considering a circleC , obtained from the intersection of spheres S1 and S2, we obtain

C = S1 ∧ S2 ⇒
(

C

||C ||
)∗
=

S∗
1 ∧ S

∗
2

||S∗
1 ∧ S

∗
2 ||

.

Since C can also be defined by three points P1, P2, P3 ∈ C , let us suppose that

(
P1 ∧ P2 ∧ P3

||P1 ∧ P2 ∧ P3||
)∗
=

S∗
1 ∧ S

∗
2

||S∗
1 ∧ S

∗
2 ||

.

For other three points Q1, Q2, Q3 ∈ C , but with opposite orientation, we have
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(
Q1 ∧ Q2 ∧ Q3

||Q1 ∧ Q2 ∧ Q3||
)∗
=−

(
P1 ∧ P2 ∧ P3

||P1 ∧ P2 ∧ P3||
)∗

.

Thus, for any three distinct points in C , given by S1 ∧ S2, the expression
(

C
||C ||

)∗

is constant (up to a sign ±). This implies that to distinguish the orientation of two
trivectors that define C , it is enough to check the signs of some fixed coordinate ( /=0)
of the trivectors.

For example, for points P1, P2, P3 ∈ C , with

P1 = e0 + x1e1 + x2e2 + x3e3 + 1

2
||(x1, x2, x3)||2e�,

P2 = e0 + y1e1 + y2e2 + y3e3 + 1

2
||(y1, y2, y3)||2e�,

P3 = e0 + z1e1 + z2e2 + z3e3 + 1

2
||(z1, z2, z3)||2e�,

and choosing the coordinate of
e1 ∧ e2 ∧ e0

of the trivector P1 ∧ P2 ∧ P3, we have to calcultate

x1y2 − x2y1 − (x1 − y1)z2 + (x2 − y2)z1. (6)

From Sect. 2, in order to know the position of P0
j (obtained from the intersection

Si−1,i ∧ Si−2,i ∧ S j,i ), in terms of arc P0
i P

0
i , we have to calculate

t1 = (P0
j ∧ P0

i ∧ P1
i )Ci and t2 = (P0

i ∧ P0
j ∧ P1

i )Ci .

Using the new idea, in addition to avoid two trivector products, we just calculate
(and compare the signs) expressions like (6): one for P0

j ∧ P0
i ∧ P1

i and another for

P0
i ∧ P0

j ∧ P1
i .

Without loss of generality, let us suppose that the sign of expression (6), associated
to the points P0

j , P
0
i , P1

i , is positive, denoted by

[
P0
j , P

0
i , P1

i

]
> 0.

So, all the cases illustrated in Fig. 3 are given, respectively, by
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• Case 1:
[
P0
j , P

0
i , P1

i

]
> 0[

P0
i , P0

j , P
1
i

]
< 0[

P0
j , P

0
i , P1

i

]
> 0[

P0
i , P0

j , P
1
i

]
> 0

• Case 2:
[
P0
j , P

0
i , P1

i

]
> 0[

P0
i , P0

j , P
1
i

]
> 0[

P0
j , P

0
i , P1

i

]
< 0[

P0
i , P0

j , P
1
i

]
> 0

• Case 3:
[
P0
j , P

0
i , P1

i

]
> 0[

P0
i , P0

j , P
1
i

]
> 0[

P0
j , P

0
i , P1

i

]
> 0[

P0
i , P0

j , P
1
i

]
> 0

• Case 4:
[
P0
j , P

0
i , P1

i

]
< 0[

P0
i , P0

j , P
1
i

]
> 0[

P0
j , P

0
i , P1

i

]
< 0[

P0
i , P0

j , P
1
i

]
> 0
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3.1 Example

Let us consider the same example given in [24], that is, a DMDGP instance with the
following data (all the calculations were done using GAALOP [18]):

di−1,i = 1, i = 2, ..., 6,

di−2,i =
√
3, i = 3, ..., 6,

d1,4 = 2.15, d2,5 ∈ [2.20, 2.60], d3,6 ∈ [2.40, 2.60],
d1,5 ∈ [2.45, 2.55].

Since d1,4 is also a precise value, we can fix the first four points, given by

x1 =

⎡
⎣0
0
0

⎤
⎦ , x2 =

⎡
⎣−1

0
0

⎤
⎦ , x3 =

⎡
⎣−1.5√

3
2
0

⎤
⎦ , x4 =

⎡
⎣−1.311

1.552
0.702

⎤
⎦ .

From the intersections of spheres S2,5 ∧ S3,5 ∧ S4,5 and S2,5 ∧ S3,5 ∧ S4,5, we

obtain the arcs P0
5 P

0
5 and P1

5 P
1
5 , defined by the points

P0
5 = e0 − 0.409e1 + 1.981e2 + 0.753e3 + 2.329e

�
,

P1
5 = e0 − 1.502e1 + 1.350e2 + 1.663e3 + 3.422e

�
,

P0
5 = e0 − 1.386e1 + 2.525e2 + 0.484e3 + 4.266e

�
,

P1
5 = e0 − 2.046e1 + 2.144e2 + 1.033e3 + 4.966e

�
.

Using the interval distance d1,5, we calculate S1,5 ∧ S3,5 ∧ S4,5 and S1,5 ∧ S3,5 ∧
S4,5, giving the points

A0
5 = e0 − 0.674e1 + 2.299e2 + 0.513e3 + 3.001e

�
,

A1
5 = e0 − 1.260e1 + 1.283e2 + 1.664e3 + 3.001e

�
,

A0
5 = e0 − 0.795e1 + 2.377e2 + 0.470e3 + 3.251e

�
,

A1
5 = e0 − 1.407e1 + 1.317e2 + 1.670e3 + 3.251e

�
.

With the orientation of C5 = S3,5 ∧ S4,5 defined by

C5 = P
0
5 ∧ P0

5 ∧ P1
5 ,

the calculations necessary to test if A0
5 ∈ P0

5 P
0
5 , using the original strategy, are the

following (ei j = ei ∧ e j and E = e
�
∧ e0):
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C5 = +0.732e12 ∧ e0 − 0.715e13 ∧ e0 + 0.197e23 ∧ e0 − 1.634e13 ∧ e�

−2.830e23 ∧ e� + 0.634e1 ∧ E + 1.098e2 ∧ E − 1.243e3 ∧ E + 1.887e123,

A05 ∧ P0
5 ∧ P1

5 = +0.421e12 ∧ e0 − 0.411e13 ∧ e0 + 0.113e23 ∧ e0 − 0.940e13 ∧ e�

−1.628e23 ∧ e� + 0.365e1 ∧ E + 0.631e2 ∧ E − 0.715e3 ∧ E + 1.085e123,

P0
5 ∧ A05 ∧ P1

5 = +0.478e12 ∧ e0 − 0.467e13 ∧ e0 + 0.128e23 ∧ e0 − 1.067e13 ∧ e�

−1.848e23 ∧ e� + 0.414e1 ∧ E + 0.717e2 ∧ E − 0.811e3 ∧ E + 1.232e123

and
(
A0
5 ∧ P0

5 ∧ P1
5

)
C5 = 0.468,(

P0
5 ∧ A0

5 ∧ P1
5

)
C5 = 0.531.

However, using the proposed approach, we just calculate the coordinates of
e12 ∧ e0, using (6):

[
A0
5, P

0
5 , P1

5

]
= (−0.674)(2.525) − (2.299)(−1.386)

−(−0.674 + 1.386)(2.144) + (2.299 − 2.525)(−2.046)

= 0.421,

[
P0
5 , A0

5, P
1
5

]
= (−0.409)(2.299) − (1.981)(−0.674)

−(−0.409 + 0.674)(2.144) + (1.981 − 2.299)(−2.046)

= 0.478.

Since
[
A0
5, P

0
5 , P1

5

]
> 0 and

[
P0
5 , A0

5, P
1
5

]
> 0, we conclude that

A0
5 ∈ P0

5 P
0
5 .

4 Conclusion and Acknowledgements

Thefirstmathematical relationship betweenDistanceGeometry andGeometricAlge-
bra was established by Dress and Havel, in 1993 [14]. Since 2015 [22], the con-
nection between the DMDGP and Geometric Algebra has been studied, becoming
part of the relevant and challenging applications of Conformal Geometric Algebra
[12, 17, 23].
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