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Abstract One of the most successful applications of geometric calculus to engi-
neering refers to robotics and computer vision. In this line, this chapter presents an
overview of the main classical problems in robot kinematics and motion planning
and explains how geometric calculus has been used to solve them by exploiting their
algebraic and geometric properties (such as, for instance, that every isometry can be
compactly represented, the geometric covariance, the properties of the rotor group
and the bivector algebra). Besides, it also introduces recent open problems in robotics
and explains how geometric calculus can be used to contribute to their solutions.

1 Introduction

Nowadays, robotics is a well-known field. From science-fiction to real industry,
during the last years we have thought and talked a lot about robots and their role
in our modern society. But, what exactly is a robot? It is a programmable machine
able to carry out a complex series of tasks with some level of autonomy [17]. This
definition, however, is too broad for the purposes of this chapter since it includes
robots like the vacuum Roomba robot and the Lego toy robot. Here, instead, we
are going to focus on serial industrial robots, which are of fundamental importance
in the industry. They perform tasks that human operators cannot, such as carrying
heavy objects, painting, grasping, moving and handling large pieces, etc. Either by
assisting human operators or by completely replacing them, serial industrial robots
have turned out to be an indispensable element of modern industry.

Geometrically speaking, these robots are sequences of rigid-bodies (called links)
connected by means of motor-actuated kinematic pairs (called joints). Every joint
provides relative motion between the two consecutive links it connects (see Fig. 1).
The most important point is the free end of the last link, the so-called end-effector.
Its importance relies on the fact that every tool the robot needs to perform its
tasks—painting tools, screw-drives, robotic hands, grippers, etc.—is placed at the
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Fig. 1 General scheme of a serial industrial robot

end-effector and, therefore, it is fundamental to know: (1) where the end-effector is
at each configuration of the entire robot, i.e., its position and orientation in R

3 at
each configuration, and (2) how to move the robot so its end-effector arrives in a
predefined desired position and orientation. The first problem is known as the for-
ward kinematics problem of a serial industrial robot, while the second is known as
the motion planning problem. Since both problems analyze the motion of a serial
industrial robot without considering the dynamics of the system, they are said to be
kinematic problems or, more precisely, robotic kinematic problems.

This chapter provides a formal mathematical introduction to both problems and
develops some tools based on conformal geometric algebra to solve them. In partic-
ular, we are going to deal with the forward and inverse kinematics, where the latter is
a non-trivial kinematic subproblem of the motion planning problem, as well as with
the motion planning problem itself. The rest of the chapter is organized as follows:
Sect. 2 formulates the forward and inverse kinematics for general serial industrial
robots using conformal geometric algebra and shows how to solve them using this
mathematical framework, while the same is done with the motion planning problem
in Sect. 3. Finally, we present the conclusions and some open problems in the final
section, Sect. 4.

2 Forward and Inverse Kinematics

As stated before, robot kinematics is about studying the motion of general robots
without considering the dynamics of the system. In particular, for serial industrial
robots, it entails the study of two well-differentiated problems: the forward kine-
matics and the inverse kinematics. Before we formally formulate both problems, we
need to introduce some preliminary concepts.

The joints of serial industrial robots are of two types: revolute, if their motion is
rotational, and prismatic, if their motion is translational. The amount of such motion
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is known as the joint variable and is denoted by q. Then, for every joint 1 ≤ i ≤ n, qi
is either an angle, θi , if joint i is revolute or a displacement, di , if joint i is prismatic.

Definition 1. The vector of all joint variables q = (q1, . . . , qn) is said to be the
configuration of the robot. The space of all configurations of a robot is called the
configuration or joint space of the robot and is denoted by C.

A frame {o, x, y, z} is attached to the end-effector of the robot. The three-
dimensional point o ∈ R

3 describes the position of the end-effector, while the right-
handed linear frame {x, y, z} describes its orientation. We will use this notation
through the rest of the chapter to avoid confusion, so a linear frame will be a set of
three mutually orthogonal unitary vectors x, y and z, while a frame will be the pair
formed by a three-dimensional point and a linear frame.

Definition 2. The space of all positions and orientations of the end-effector with
respect to a reference frame is called the operational space of the robot and is
denoted by X. Clearly, X ⊂ SE(3), where SE(3) denotes the three-dimensional
special Euclidean group.

Definition 3. A serial industrial robot is said to have n degrees of freedom (DoF) if
its configuration is specified by n joint variables.

Given a configuration q ∈ C, we want to find the position and orientation of the end-
effector associated with that configuration. This is known as the forward kinematics
problem. Conversely, the inverse kinematics problem consists of finding the config-
urations associated with a predefined position and orientation of the end-effector.
In other words, the forward kinematics problem consists on finding the continuous
function f that assigns the position and orientation x of the end-effector to each
configuration q:

f : C → X
q �→ x

(1)

Since f is well-defined, the forward kinematics is said to have analytical solution.
However, f has not, in general, a global inverse [2, 3] and, as a consequence, the
inverse kinematics problem of an arbitrary serial industrial robot has no analytical
solution. Hence, geometric and numerical methods need to be developed to solve it.

2.1 Forward Kinematics

In practice, we can also attach a frame to each joint of the robot, that is, for every
1 ≤ i ≤ n, we have a frame {oi , xi , yi , zi } attached to joint i . They are known as the
joint frames of the robot.

Each one of these joint frames depends on the position and orientation of the
previous joints, i.e., it depends on the previous joint frames. In particular, for 2 ≤
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Fig. 2 Given two different
frames, there is always a
rotor relating one to the
other. In this case, such a
rotor R describes a screw or
helical motion (translation
followed by a rotation
around the same axis)
between the two frames

i ≤ n, the i-th joint frame is related to the (i − 1)-th joint frame, that works as a
reference frame. The case i = 1 is a special case since there is no previous joint.
Hence, the first joint frame has, as a reference frame, the frame placed at the base
of the robot, the so-called base frame. It is fixed, i.e., it does not depend on the
configuration of the robot. Due to this, the base frame is usually considered the
global reference frame of the robot.

Each joint frame is determined, not only by the joint variable qi , but also by the
following set of rules [16]:

• The zi -axis is aligned with the rotational/translational joint axis.
• The xi -axis is aligned with the common perpendicular to zi and zi−1, where the
latter is the z-axis of the (i − 1)-th joint frame.

• The origin oi is set at the intersection of zi with the common perpendicular to zi
and zi−1.

It is well-known that, given any two linear frames {x, y, z} and {x′, y′, z′}, there
always exists a rotor R ∈ G+

3 , uniquely determined up to sign, such that:

⎧
⎪⎨

⎪⎩

x′ = Rx R̃

y′ = R y R̃

z′ = Rz R̃

⎫
⎪⎬

⎪⎭
(2)

In conformal geometric algebra, since translations are also encoded by rotors (see
section 2.4 of chapter 2 in [13]), we can extend the result to include also their
respective origins (see Fig. 2).

Theorem 1. Given two arbitrary frames {o, x, y, z} and {o′, x′, y′, z′}, there always
exists a rotor R ∈ G4,1, uniquely determined up to sign, satisfying that:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

o′ = RoR̃

x′ = Rx R̃

y′ = R y R̃

z′ = Rz R̃

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)

In addition, R = R1R2, where:

R1 = 1 − ve∞
2

, (4)

with v = o′ − o and
R2 ∈ G+

3 , (5)

i.e., R1 is the rotor encoding the translation that maps o to o′ and R2 is the rotor
encoding the rotation that transforms {x, y, z} to {x′, y′, z′}.
As a corollary of Theorem1, we have that we can recover the rotor that transforms
the (i − 1)-th joint frame into the i-th joint frame for every 1 ≤ i ≤ n. These rotors
allow to relate the base frame of the robot with the end-effector, thus allowing to
compute its position and orientation with respect to the global reference frame—
i.e., the base frame. Notice that, since the joint frames are determined by the joint
variables, so are the rotors recovered from them.

Now, given two consecutive joint frames, how can we construct the rotor that
transforms one into the other? There are different ways. For instance, in [13, chapter
4], we followed the standard convention in robot kinematics (known as the Denavit-
Hartenberg convention) to construct each intermediate joint frame by means of a set
of four parameters (the Denavit-Hartenberg parameters) and, with those parameters,
recover the rotor relating each frame to the following one. Here, we are going to
follow a different approach based on the use of the reciprocal frame.

Definition 4. Given a linear frame {e1, e2, e3}, its reciprocal frame {e1, e2, e3} is the
linear frame satisfying that ei · e j = δi j , where δ(·) denotes the Kronecker delta.

In [7], the reader can find some useful properties of reciprocal frames as well as an
explicit expression for calculating them. In addition, there is an expression for the
rotor relating two different linear frames {e1, e2, e3} and { f1, f2, f3}:

R = 1 + f1e1 + f2e2 + f3e3

|1 + f1e1 + f2e2 + f3e3| . (6)

If we apply Eq. (6) to the joint frames, we have that:

Ri
i−1 = 1 + xi xi−1 + yi yi−1 + zi zi−1

|1 + xi xi−1 + yi yi−1 + zi zi−1| (7)
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is the rotor that transform the (i − 1)-th linear joint frame into the i-th linear joint
frame. Now, taking the rotor defined in Eq. (4) and applying it to the origins of these
joint frames, we have that:

T i
i−1 = 1 + e∞v

2
, (8)

where v = oi − oi−1.
In summary, the rotor that transforms the (i − 1)-th joint frame into the i-th joint

frame is:
Mi

i−1 = T i
i−1R

i
i−1. (9)

Hence, the rotor that relates the base frame with the end-effector for a specific con-
figuration q ∈ C is:

M = M1
0M

2
1 · · · Mn

n−1. (10)

Therefore, if we take the base frame, i.e., the global reference frame {o, x, y, z}, and
we applied M to each one of its elements (with the sandwiching product M(·)M̃),
we get the frame attached to the end-effector, i.e., its position and orientation with
respect to that global reference frame. Again, all we have done so far is configuration-
dependent, which means that M is the rotor that solves the forward kinematics
problem for a specific q ∈ C. Ifwe change the configuration,wewill need to construct
the new joint frames and recover the associated rotors to compute its product. In
general, we have the following result.

Theorem 2. For every configuration q = (q1, . . . , qn) ∈ C, the position and orien-
tation of the end-effector associated with q is:

P ′ = M(q)PM̃(q) = M1
0 (q1) · · · Mn

n−1(qn)PM̃n
n−1(qn) · · · M̃1

0 (q1), (11)

where P is the position (orientation) of the base frame and P ′ denotes the position
(orientation) of the end-effector.

The advantages of the approach presented here include a compact formulation of
both the forward kinematics problem and its solution. In addition, since rotors are
elements of the algebra, themanipulation of complex geometric structures (like serial
chains) becomes easier.

2.2 Inverse Kinematics

A serial industrial robot is said to have a spherical wrist if their last three joint axes
either intersect at a single point or are parallel. It is well-known that serial industrial
robots with a spherical wrist have always analytical or closed-form solutions (by
Pieper’s theorem [15]). In addition, the proof of Pieper’s theorem is constructive
in the sense that closed-form solutions are explicitly derived for any type of robot
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Fig. 3 Non-spherical wrist.
Notice the offset between the
(n − 2)-th and the (n − 1)-th
joints

with a spherical wrist. However, if there is an offset between any of the last three
joint axes (as shown in Fig. 3), then the robot has no longer a spherical wrist and,
hence, Pieper’s theorem cannot be applied. To solve the inverse kinematics problem
for those robots, Paul [14] developed a method based on the homogeneous matrices
T i
i−1 used to describe the kinematics of serial industrial robots [16]. Indeed, given

the kinematic identity:

T 1
0 · T 2

1 · · · T n
n−1 = T n

0 , (12)

where we recognize in T n
0 the homogeneous matrix describing the position and

orientation of the end-effector with respect to the base frame and where T i
i−1 only

depends on the joint variable qi , Paul’s method consists of analyzing each one of the
following matrix equations:

T i
i−1 · · · T n

n−1 = (
T i−1
i−2

)−1 · · · (T 1
0

)−1 · T n
0 for i = 2, . . . , n (13)

to isolate known trigonometric equations that can be solved analytically for one or
more joint variables. However, the large number of different combinations together
with the intricacies for solving analytically arbitrary trigonometric equations makes
this method not suitable for kinematic chains of complex geometry. Most of the con-
tributions found in the literature [5, 8, 10] focus either on numerical methods or on
particular geometric methods. Although the latter can only be applied to the specific
robots they have been designed for, they give the complete set of solutions, contrary
to what happens with the former, where only one solution is obtained. Nevertheless,
geometric methods are difficult to design, especially for robots without a spherical
wrist. This is one of the reasons why conformal geometric algebra turns out to be
useful to deal with this problem. For instance, the works [4, 6, 9, 18, 19] solve the
inverse kinematics of different type of robots by means of conformal geometric alge-
bra. The idea exploited in all of them is to define different geometric entities whose
intersections coincide with the origins of the frames attached to the joints. Those
points allow us to recover the joint variables and, hence, the configuration or con-
figurations associated with a predefined position and orientation of the end-effector.
Finally, in [1] a numerical method also based on conformal geometric algebra is
developed to solve the inverse position problem for arbitrary long serial robots.
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In our previous work [13, chapter 4], we used conformal geometric algebra to
develop a geometric method to cope with the inverse kinematics of serial industrial
robots with a spherical wrist based on the same idea of the works cited above. Here,
we will go one step further by considering robots without a spherical wrist. As stated
before, the most typical case is when there is an offset between any of the last three
joint axes. In that case, we cannot split the problem in the two classical subproblems,
namely the inverse position problem and the inverse orientation problem (as we did
in [13, chapter 4]). This is the first time, to the author’s knowledge, that the inverse
kinematics of this particular type of robots is addressed by means of conformal
geometric algebra.

Let us suppose that the predefined position is denoted by p ∈ R
3, while the prede-

fined orientation is denoted by {x, y, z}. First, we compute the null vector p ∈ G4,1

associated with p:

p = H( p) = p + e0 + 1

2
p2e∞, (14)

where H(·) denotes the Hestenes’ embedding (as defined in section 2.1 of chapter 2
in [13]). With the three vectors x, y, z we define three lines, whose inner represen-
tation are:

�x = x I − (x ∧ p)I e∞
� y = yI − ( y ∧ p)I e∞
�z = z I − (z ∧ p)I e∞,

(15)

where I = e1 ∧ e2 ∧ e3 is the pseudoscalar of G3. Clearly, the orientation of the
end-effector is uniquely determined by any two of those lines.

Now, let us consider the serial industrial robot depicted in Fig. 4, i.e., the typical
serial industrial robot but, instead of having a spherical wrist, it has an offset between
the fourth and the fifth joints. In this case, we have the points p0—the null vector
representation of the origin of the base frame—and p—the null vector representation
of the target position p. Hence, we need to find the points p1, p2 and p3.

Point p1 is the translation of the point p0 through the z-axis of the first joint frame,
z1, a displacement by the length of the first link, a1. Therefore:

p1 = Tz1 p0T̃z1 , (16)

where:
Tz1 = 1 + a1e∞z1

2
. (17)

Notice that, since z1 is aligned with the first joint axis, it does not change under the
action of the joint variable q1 (in fact, it does not change under the action of any joint
variable) and, thus, the base frame and the first joint frame have the same z-axis.

Analogously, point p3 is the translation of the point p along the z-axis of the last
joint, which coincides with the z-axis of the target orientation, a displacement by the
length of the last link, a6. Hence:
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Fig. 4 Schematic representation of a serial industrial robot: the length of the i-th link is denoted
by ai , while the joint variable of the i-th joint is denoted by the angle θi . The value d is the length
of the offset placed between the fourth and fifth joints (so this robot has not a spherical wrist). To
find out the value of the unknown joint variables θi , the points pi , attached to the joints, need to be
computed

p3 = Tz pT̃z, (18)

where:
Tz = 1 + a6e∞z

2
, (19)

Finally, to compute the point p2, we proceed as follows. We need two spheres and
one plane, whose inner representations are:

π = p0 ∧ p1 ∧ p3 ∧ e∞

s1 = p1 − 1

2
a22e∞

s2 = p3 − 1

2
(a4 + d)2e∞

(20)

Clearly, p2 belongs to the intersection between these three geometric objects.
To compute such a intersection we use the following definition:

Definition 5. Let O1 and O2 be two different geometric objects with outer repre-
sentations K ∗

1 and K ∗
2 . The meet or intersection between O1 and O2, denoted by

K ∗
1 ∨ K ∗

2 , is defined as the multivector K ∗
1 ∨ K ∗

2 = (K1 ∧ K2)
∗ = K1 · K ∗

2 .

Extended to three geometric objects with outer representations K ∗
1 , K

∗
2 and K ∗

3 , we
have that:

K ∗
1 ∨ K ∗

2 ∨ K ∗
3 = (K1 ∧ K2 ∧ K3)

∗. (21)
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Now, since the inner representation of any plane and sphere is a grade-1 element of
G4,1, s1 ∧ s2 ∧ π is a grade-3 element and, as a consequence, its dual is a grade-2
element of G4,1, i.e., a bivector. Therefore:

B = s∗
1 ∨ s∗

2 ∨ π∗ = (s1 ∧ s2 ∧ π)∗ (22)

is a bivector. This bivector represents a pair of points in conformal geometric algebra,
so B = b1 ∧ b2 for some null vectors b1 and b2. It is clear that p2 is one of these two
null vectors. To extract them from B, the following equations are used [11]:

b1 = −P̃ ((b1 ∧ b2) · e∞) P,

b2 = P ((b1 ∧ b2) · e∞) P̃,
(23)

where P denotes the projector operator defined as:

P = 1

2

(

1 + b1 ∧ b2
|b1 ∧ b2|

)

. (24)

It only remains to find the value of the joint variables. Since all joints are revolute,
their joint variables are angles. First, we need to construct four auxiliary lines and
two planes with the already obtained points:

�∗
1 = p0 ∧ p1 ∧ e∞, (25)

�∗
2 = p1 ∧ p2 ∧ e∞, (26)

�∗
3 = p2 ∧ p3 ∧ e∞, (27)

�∗
4 = p3 ∧ p ∧ e∞, (28)

π1 = x1, (29)

π∗
2 = p2 ∧ p2 ∧ p3 ∧ e∞. (30)

Finally, using the geometric entities defined in Eqs. (15), (20) and (25–30), the joint
variables are obtained:

θ1 = ∠(π∗
1 , π∗), (31)

θ2 = ∠(�∗
1, �

∗
2), (32)

θ3 = ∠(�∗
2, �

∗
3), (33)

θ4 = ∠(�∗
z , π

∗
2 ), (34)

θ5 = ∠(�∗
z , �

∗
3), (35)

θ6 = ∠(�∗
x, �

∗
4), (36)

where ∠(·, ·) denotes the main angle defined by two geometric entities. More pre-
cisely, for two geometric objects with outer representation K ∗

1 and K ∗
2 , it is defined

by the following formula:
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∠(K ∗
1 , K

∗
2 ) = cos−1

(
K ∗

1 · K ∗
2

|K ∗
1 ||K ∗

2 |
)

. (37)

3 Motion Planning

We start this section by giving some basic definitions that will allow us to formulate
the motion planning problem for serial industrial robots [12, 16]. Here, a serial
industrial robot of n DoF is denoted by Rn .

Definition 6. The space of all positions and orientations that the end-effector of a
serial industrial robot can reach is known as theworkspace of the robot and is denoted
byW. Clearly, W ⊂ X.
Definition 7. An obstacle O is a rigid-body object inW.

Since obstacles are closed and bounded sets in R
3, they are compact sets with

respect to the standard topology of R3. Hence, every obstacle O can be covered by a
finite collection of open sets {Sj }mj=1, i.e., O ⊂ ⋃m

j=1 Sj . Obviously, since we are in
R

3, these open sets may be assumed to be open balls. But then, we have that:

O ⊂
m⋃

j=1

Sj ⊂
m⋃

j=1

S j , (38)

so every obstacle O can be covered by a finite set of closed balls.
As elements of the workspace of the robot, every obstacle can be represented in

the configuration space C.
Definition 8. Let Rn be a serial robot and O ⊂ W, an obstacle. Then, as stated
before, there exists a finite set of closed balls {S j }mj=1 such that O ⊂ ⋃m

j=1 S j . The
representation of O in the configuration space C is computed as:

C(O) = {q ∈ C : Rn(q) ∩ S j = ∅ for some j = 1, . . . ,m}, (39)

where Rn(q) is the subset of W occupied by Rn in that specific configuration q.
Such representation is known as the C-obstacle or C-obsctacle of O.
Definition 9. Let Rn be a serial robot and O1, . . . ,Or ⊂ W, r different obstacles.
The free-of-obstacles configuration space Cfree is:

Cfree = C \
r⋃

k=1

C(Ok). (40)

Proposition 1. The free-of-obstacles configuration space Cfree is an open set.
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Fig. 5 Graphical example of
a planar motion planning
problem: the mobile
platform R should move
from an initial configuration
qi to a goal configuration q f
avoiding the special
configurations q1 to q3 in its
way. A sphere is defined
around each special
configuration and, then, the
solution trajectory is
computed so its distance to
all the spheres is always
higher than a given value

Proof. Wehave seen that, for every k = 1, . . . , r ,Ok is a closed set. In addition, since
every serial industrial robot is a sequence of rigid-bodies, Rn(q) is also a closed set
for every q ∈ C and, thus, Ok ∩ Rn(q) is a closed set and so Cobs = ⋃r

k=1 C(Ok).
Therefore, Cfree is an open set.

Definition 10. The motion planning problem consists of finding a mapping, i.e., a
path, c : [0, 1] → C such that no configuration along the path intersects an obstacle.
If the map c has codomain Cfree, the path is said to be a free-path.

Now,we can explore howconformal geometric algebra can be applied to this prob-
lem. In particular, it can be applied in two different ways: (1) by allowing an efficient
computation of the free-of-obstacles configuration space Cfree and (2) by improving
the computation of the solution trajectories for any motion planning problem.

For the first application, the number and position of the closed balls covering each
obstacle are not relevant. The only key point is the fact that they are covered by a
finite set of closed balls (which is guaranteed by the compactness of the obstacles).
Analogously, Rn(q) is also a compact set and, hence, can be covered by a finite set
of closed balls. Therefore, we can rewrite Eq. (39) as:

C(O) =
{

q ∈ C : C� ∩ S j = ∅ for
some j = 1, . . . ,m

some � = 1, . . . , p

}

, (41)

where Rn(q) ⊂ ⋃p
�=1 C�.

Now, the expression C� ∩ S j is equivalent to (c� ∧ s j )∗, where c� and s j are the
inner representation of the spheres defined by the boundary ofC� and S j respectively.
Such intersection is empty if, and only if, (c� ∧ s j )2 > 0. We add the extra condition
c� · s j < 0 since we want to avoid to have one sphere contained in the other (if
c� · s j > 0, the intersection between both spheres is still empty but one is contained
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in the other and, hence, it is clear that such configuration does not belong to the
free-of-obstacles configuration space). Therefore, Eq. (39) can be rewritten as:

C(O) =
{

q ∈ C : (c� ∧ s j )
2 > 0

c� · s j < 0
for

some j = 1, . . . ,m

some � = 1, . . . , p

}

. (42)

This is a more efficient way of computing C(O) for every possible obstacle and, as
a consequence, of computing Cfree.

With respect to the second application, we should restrict the robots we use to
serial industrial robots of two or three degrees of freedom so its configuration space
has dimension two or three. This is done for practical reasons as we shall see later.
This may seem too restrictive, but there is a large number of serial industrial robots
with few degrees of freedom. A good example are mobile manipulators, where a
platform with two translational degrees of freedom and one rotational degree of
freedom moves freely in a planar environment (see Fig. 5). The main methods used
for computing the solution trajectories in motion planning problems can be grouped
into three categories:

• Potential field methods, where a differentiable real-valued function U : C → R,
called the potential function, is defined. Such function has an attractive component
that pulls the trajectory towards the goal configuration and a repulsive component
that pushes the trajectory away from the start configuration and from the obstacles.

• Sampling-based multi-query methods, where a roadmap is constructed over Cfree.
The nodes represent free-of-obstacles configurations, while the edges represent
feasible local paths between those configurations.Once the roadmap is constructed,
a search algorithm finds out the best solution trajectory by selecting and joining
the local paths through an optimization process.

• Sampling-based single-query methods, where a tree-structure data is constructed
by searching newconfigurations (nodes) inCfree and connecting them through local
paths (edges). Its main difference with respect to the multi-query methods is that,
while the multi-query methods work in two times (construction of the roadmap
and searching of a solution trajectory), in the single-query methods both steps are
taken together. Each new configuration added to the set of nodes is connected by
a local path and evaluated in order to check its feasibility.

Now, we will introduce a very useful concept. Given a sphere (or a circle) S
centered at cwith radius r > 0 and a point p exterior to S, we can always construct a
right triangle with the segment defined by p and c as its hypotenuse and the radius as
one of its legs. Then, by the Pythagorean theorem, the other leg has a length equal to
d2(c, p) − r2. This is known as the tangential distance of S from p and is denoted
by dT ( p, S).

If s denotes the inner representation of S and p and c are the null vector repre-
sentations of p and c, then:
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s · p = (c − 1

2
r2e∞) · p

= c · p − 1

2
r2e∞ · p

= −1

2
d2(c, p) + 1

2
r2

= −1

2

(
d2(c, p) − r2

)

= −1

2
d2
T ( p, S),

(43)

and, thus, dT ( p, S) = √−2s · p.
For any of the three methods listed above, we can use the tangential distance dT

defined inEq. (43) to simplify the computations and improve the overall performance.
Indeed, let us first consider special configurations like, for instance, singularities—
configurationswhere the serial industrial robot loses the ability tomove in at least one
direction of the operational space X—and colliding configurations—configurations
lying in the boundary between Cfree and Cobs. These configurations should be taken
into accountwhen computing the solution trajectory of anymotion planning problem.
Then, for every special configuration q0, we define a sphere S centered at q0 and with
a small random radius r > 0. Now, we proceed as follows:

• For a potential field method, we define the potential function so it has a repulsive
component that pushes the trajectory away from these special configurations. To
do so, the most efficient way is to define, for each configuration q0 of this type, a
quadratic repulsive component as follows:

Uq0(q) =
⎧
⎨

⎩

κ

2

(
1

dT (q, S)
− 1

d0

)2

if dT (q, S) ≤ d0

0 if dT (q, S) > d0

(44)

where s is the inner representation of S, d0 is set as a threshold for the distance dT
and κ ∈ R. Notice that d2

T (q, S) = −2q · s, where q is the null vector representa-
tion of q.

• For a sampling-based method with multiple queries, it is sufficient with removing
from the roadmap those nodes associated with special configurations. During the
construction of the roadmap, each configuration q ∈ C is evaluated to determine
whether q is free-of-obstacles or not. Similarly, the idea is to evaluate each q ∈ C
in order to determine whether q is close to a special configuration or not. To speed
up the process, both evaluations can be carried out together:

1) Select a value d0 > 0 that will work as a threshold.
2) Given a discretization of the configuration spaceC, each q of such discretization

is evaluated to check whether:
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• Is free-of-obstacles.
• Is far from any special configuration q0. This can be done simply by evalu-

ating whether dT (q, S) > d0 or dT (q, S) ≤ d0, where, again, s is the inner
representation of the sphere S and d2

T (q, S) = −2q · s.
3) If q is free-of-obstacles and far from any special configuration, then it can be

added to the set of nodes of the roadmap.

• For a sampling-based method with a single query, the approach is completely
analogous to the one used for methods with multiple-queries due to the similarities
between both categories.

Remark 1. As stated before, we are restricting the robots we use to robots with
two or three degrees of freedom. The reason stems from the fact that every method
explained hereworks in the configuration spaceC of the robot. Hence, for an arbitrary
serial industrial robot of n degrees of freedom, C has dimension n and any special
configuration will be an n-dimensional vector q ∈ C. Since the proposed solution
is based on the computation of the tangential distance between the current robot
configuration and several spheres (each one centered at one of those special configu-
rations), we will need to compute the inner product between two grade-1 elements of
Gn+1,1. Theoretically speaking, there is no problem in that but, in practice, most of
the current libraries, toolboxes and computer-based tools work with the conformal
geometric algebra of vector spaces of small dimension, so the methods introduced
here would not be able to be implemented.

4 Conclusions

In this chapter, we have dealt with three problems of serial industrial robots, namely
the forward kinematics, the inverse kinematics and the motion planning problem.We
have used the key elements of conformal geometric algebra to formally introduce
them, as well as to develop specific tools to solve them. In particular, we have shown
that given an arbitrary configuration q ∈ C of the robot, there exists a rotor M ∈ G4,1

such that P ′ = MPM̃ is either the position or orientation of the end-effector of the
robot and where P is the position/orientation of the base frame. This means that
rotor M relates the base frame with the end-effector’s position and orientation for
that specific configuration q.

In addition, we have developed a geometric method based on the definition and
manipulation of several geometric entities to solve the inverse kinematics of serial
industrial robots without a spherical wrist and that, together with the method intro-
duced in [13] provides a general method to deal with the inverse kinematics of
arbitrary serial robots. Notice that the two methods have some similarities, so the
question onwhether amore general geometricmethod to solve the inverse kinematics
of these robots exists or not arises naturally. Or whether is there a numerical method
based on conformal geometric algebra that solves this problem? We have seen that,
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in [1], a numerical method is developed using conformal geometric algebra. How-
ever, since its target is to solve just the inverse position problem of arbitrary long
serial robots with only revolute joints, the algorithm can only be applied to these
type of robots.

Finally,we have formulated themotion planning problemaswell as shownhowwe
can compute the free-of-obstacles configuration space Cfree by means of evaluating
the intersection between spheres when represented in conformal geometric algebra.
In addition, we have also seen that we can compute a solution trajectory between two
configurations qi , q f ∈ Cfree by evaluating, in each step of the process, the distance
between the sphere or spheres representing the serial robot and the spheres covering
each obstacle, singularity and/or forbidden configuration. There is, however, much
to do in this field. For instance, two open questions are:

• We have seen several methods to compute solution trajectories. Can any of them
be improved or its performance enhanced if entirely formulated using conformal
geometric algebra?

• Could a new method be defined using this mathematical framework?
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