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Preface

The genesis of this collection is the homonymous mini-symposium (MS) held on
July 16, 2019, in the International Congress of Industrial and Applied
Mathematics (ICIAM-2019) organized by the Spanish Society of Applied
Mathematics (SEMA) at the University of Valencia (July 15–19, 2019). Its initial
idea, however, was born out of discussions I held with Carlile LAVOR, Pablo
COLAPINTO and Sr an LAZENDIĆ on the occasion of the 7th Conference on Applied
Geometric Algebras in Computer Science and Engineering (AGACSE 2018), a
satellite of ICIAM-2019 held at the University of Campinas, Brazil, July 23rd to
27th, 2018.

The goal of the mini-symposium was envisaged to overview the basic ideas of
geometric algebra/calculus, to report on state-of-the-art applications showcasing its
advantages, and to explore the bearing of the formalisms in novel contexts, with a
particular view to automatic learning. The idea was given further considerations,
within the constraints of the ICIAM-2019 MS, and finally the outcome was the
following program:

1. Geometric calculus techniques in science and engineering
(Sebastià XAMBÓ-DESCAMPS, Chair)

2. Bringing new perspectives to robotics and computer vision (Isiah ZAPLANA)
3. Geometric algebra and distance geometry (Carlile LAVOR)
4. Embedded Coprocessors for Native Execution of Geometric Algebra Operations

(Salvatore VITABILE)
5. Hypercomplex algebras for art investigation (Sr an LAZENDIĆ)
6. Conformal Geometric Algebra for Medical Imaging (Salvatore VITABILE)
7. Geometric bio-inspired deep learning (Eduardo Ulises MOYA)
8. Geometric Calculus meets Deep Learning (Sebastià XAMBÓ-DESCAMPS)

E. U. MOYA had send a paper to the AGACSE 2018 Conference, and although it
turned out that he could not travel to Campinas (his work was presented there by
Eduardo BAYRO-CORROCHANO, his PhD advisor), he expected to attend
ICIAM-2019. In contrast, Pablo COLAPINTO attended AGACSE 2018, and there he
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agreed to deliver a talk at the MS on The New Geometry of Computer Aided Design
if he could manage to join the MS, but at the end he could not.

The collection of papers in this volume differs from the program in several
respects. The talk number 5 did not end in a paper, nor did the tutorial 1. The talks 4
and 6 were merged into a single paper. In addition to the five remaining contri-
butions (perhaps with additional authors and variations in the titles), we invited
three additional authors: Leo DORST, Pablo COLAPINTO, and Leandro A.
F. FERNANDES. The final contents are as follows:

1. New Perspectives on Robotics with Geometric Calculus (Isiah ZAPLANA)
2. Recent advances on oriented conformal geometric algebra applied to molecular

distance geometry (Carlile LAVOR and Rafael ALVES)
3. Geometric Calculus Applications to Medical Imaging: Status and Perspectives

(Silvia FRANCHINI and Salvatore VITABILE)
4. Optimal Combination of Orientation Measurements Under Angle, Axis and

Chord Metrics (Leo DORST)
5. Space-Bending Lattices through Conformal Transformation of Principal

Contact Elements (Pablo COLAPINTO)
6. Exploring Lazy Evaluation and Compile-Time Simplifications for Efficient

Geometric Algebra Computations (Leandro A. F. FERNANDES)
7. A Quaternion Deterministic Monogenic CNN Layer for Contrast Invariance

(Eduardo U. MOYA, S. XAMBÓ-DESCAMPS, Sebastián SALAZAR COLORES, Abraham
SÁNCHEZ, Ulises CORTÉS)

8. Geometric Calculus and Deep Learning–An Overview (S. XAMBÓ-DESCAMPS and
Eduardo U. MOYA)

The main idea of this collection is well aligned with the core purposes of the MS.
The first three contributions, which correspond to lectures at the MS, offer per-
spectives on recent advances in the application GC in the areas of robotics,
molecular geometry, and medical imaging. The next three, especially invited, hone
the expressiveness of GC in orientation measurements under different metrics, the
treatment of contact elements, and the investigation of efficient computational
methodologies. The last two, which also correspond to lectures at the MS, deal with
two aspects of deep learning: a presentation of a concrete quaternionic convolu-
tional neural network layer for image classification that features contrast invariance
and a general overview of automatic learning aimed at steering the development of
neural networks whose units process elements of a suitable algebra, as, for instance,
a geometric algebra.

It is a pleasant duty to thank the organizers of ICIAM-2019, and in particular the
organizers of the mini-symposia, the speakers at our MS, and the authors of the
papers collected in this volume.

January 2021 Sebastià Xambó-Descamps
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New Perspectives on Robotics
with Geometric Calculus

Isiah Zaplana

Abstract One of the most successful applications of geometric calculus to engi-
neering refers to robotics and computer vision. In this line, this chapter presents an
overview of the main classical problems in robot kinematics and motion planning
and explains how geometric calculus has been used to solve them by exploiting their
algebraic and geometric properties (such as, for instance, that every isometry can be
compactly represented, the geometric covariance, the properties of the rotor group
and the bivector algebra). Besides, it also introduces recent open problems in robotics
and explains how geometric calculus can be used to contribute to their solutions.

1 Introduction

Nowadays, robotics is a well-known field. From science-fiction to real industry,
during the last years we have thought and talked a lot about robots and their role
in our modern society. But, what exactly is a robot? It is a programmable machine
able to carry out a complex series of tasks with some level of autonomy [17]. This
definition, however, is too broad for the purposes of this chapter since it includes
robots like the vacuum Roomba robot and the Lego toy robot. Here, instead, we
are going to focus on serial industrial robots, which are of fundamental importance
in the industry. They perform tasks that human operators cannot, such as carrying
heavy objects, painting, grasping, moving and handling large pieces, etc. Either by
assisting human operators or by completely replacing them, serial industrial robots
have turned out to be an indispensable element of modern industry.

Geometrically speaking, these robots are sequences of rigid-bodies (called links)
connected by means of motor-actuated kinematic pairs (called joints). Every joint
provides relative motion between the two consecutive links it connects (see Fig. 1).
The most important point is the free end of the last link, the so-called end-effector.
Its importance relies on the fact that every tool the robot needs to perform its
tasks—painting tools, screw-drives, robotic hands, grippers, etc.—is placed at the

I. Zaplana (B)
Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
e-mail: isiah.zaplana@kuleuven.be

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 I. Zaplana

Fig. 1 General scheme of a serial industrial robot

end-effector and, therefore, it is fundamental to know: (1) where the end-effector is
at each configuration of the entire robot, i.e., its position and orientation in R

3 at
each configuration, and (2) how to move the robot so its end-effector arrives in a
predefined desired position and orientation. The first problem is known as the for-
ward kinematics problem of a serial industrial robot, while the second is known as
the motion planning problem. Since both problems analyze the motion of a serial
industrial robot without considering the dynamics of the system, they are said to be
kinematic problems or, more precisely, robotic kinematic problems.

This chapter provides a formal mathematical introduction to both problems and
develops some tools based on conformal geometric algebra to solve them. In partic-
ular, we are going to deal with the forward and inverse kinematics, where the latter is
a non-trivial kinematic subproblem of the motion planning problem, as well as with
the motion planning problem itself. The rest of the chapter is organized as follows:
Sect. 2 formulates the forward and inverse kinematics for general serial industrial
robots using conformal geometric algebra and shows how to solve them using this
mathematical framework, while the same is done with the motion planning problem
in Sect. 3. Finally, we present the conclusions and some open problems in the final
section, Sect. 4.

2 Forward and Inverse Kinematics

As stated before, robot kinematics is about studying the motion of general robots
without considering the dynamics of the system. In particular, for serial industrial
robots, it entails the study of two well-differentiated problems: the forward kine-
matics and the inverse kinematics. Before we formally formulate both problems, we
need to introduce some preliminary concepts.

The joints of serial industrial robots are of two types: revolute, if their motion is
rotational, and prismatic, if their motion is translational. The amount of such motion
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is known as the joint variable and is denoted by q. Then, for every joint 1 ≤ i ≤ n, qi
is either an angle, θi , if joint i is revolute or a displacement, di , if joint i is prismatic.

Definition 1. The vector of all joint variables q = (q1, . . . , qn) is said to be the
configuration of the robot. The space of all configurations of a robot is called the
configuration or joint space of the robot and is denoted by C.

A frame {o, x, y, z} is attached to the end-effector of the robot. The three-
dimensional point o ∈ R

3 describes the position of the end-effector, while the right-
handed linear frame {x, y, z} describes its orientation. We will use this notation
through the rest of the chapter to avoid confusion, so a linear frame will be a set of
three mutually orthogonal unitary vectors x, y and z, while a frame will be the pair
formed by a three-dimensional point and a linear frame.

Definition 2. The space of all positions and orientations of the end-effector with
respect to a reference frame is called the operational space of the robot and is
denoted by X. Clearly, X ⊂ SE(3), where SE(3) denotes the three-dimensional
special Euclidean group.

Definition 3. A serial industrial robot is said to have n degrees of freedom (DoF) if
its configuration is specified by n joint variables.

Given a configuration q ∈ C, we want to find the position and orientation of the end-
effector associated with that configuration. This is known as the forward kinematics
problem. Conversely, the inverse kinematics problem consists of finding the config-
urations associated with a predefined position and orientation of the end-effector.
In other words, the forward kinematics problem consists on finding the continuous
function f that assigns the position and orientation x of the end-effector to each
configuration q:

f : C → X
q �→ x

(1)

Since f is well-defined, the forward kinematics is said to have analytical solution.
However, f has not, in general, a global inverse [2, 3] and, as a consequence, the
inverse kinematics problem of an arbitrary serial industrial robot has no analytical
solution. Hence, geometric and numerical methods need to be developed to solve it.

2.1 Forward Kinematics

In practice, we can also attach a frame to each joint of the robot, that is, for every
1 ≤ i ≤ n, we have a frame {oi , xi , yi , zi } attached to joint i . They are known as the
joint frames of the robot.

Each one of these joint frames depends on the position and orientation of the
previous joints, i.e., it depends on the previous joint frames. In particular, for 2 ≤
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Fig. 2 Given two different
frames, there is always a
rotor relating one to the
other. In this case, such a
rotor R describes a screw or
helical motion (translation
followed by a rotation
around the same axis)
between the two frames

i ≤ n, the i-th joint frame is related to the (i − 1)-th joint frame, that works as a
reference frame. The case i = 1 is a special case since there is no previous joint.
Hence, the first joint frame has, as a reference frame, the frame placed at the base
of the robot, the so-called base frame. It is fixed, i.e., it does not depend on the
configuration of the robot. Due to this, the base frame is usually considered the
global reference frame of the robot.

Each joint frame is determined, not only by the joint variable qi , but also by the
following set of rules [16]:

• The zi -axis is aligned with the rotational/translational joint axis.
• The xi -axis is aligned with the common perpendicular to zi and zi−1, where the
latter is the z-axis of the (i − 1)-th joint frame.

• The origin oi is set at the intersection of zi with the common perpendicular to zi
and zi−1.

It is well-known that, given any two linear frames {x, y, z} and {x′, y′, z′}, there
always exists a rotor R ∈ G+

3 , uniquely determined up to sign, such that:

⎧
⎪⎨

⎪⎩

x′ = Rx R̃

y′ = R y R̃

z′ = Rz R̃

⎫
⎪⎬

⎪⎭
(2)

In conformal geometric algebra, since translations are also encoded by rotors (see
section 2.4 of chapter 2 in [13]), we can extend the result to include also their
respective origins (see Fig. 2).

Theorem 1. Given two arbitrary frames {o, x, y, z} and {o′, x′, y′, z′}, there always
exists a rotor R ∈ G4,1, uniquely determined up to sign, satisfying that:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

o′ = RoR̃

x′ = Rx R̃

y′ = R y R̃

z′ = Rz R̃

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)

In addition, R = R1R2, where:

R1 = 1 − ve∞
2

, (4)

with v = o′ − o and
R2 ∈ G+

3 , (5)

i.e., R1 is the rotor encoding the translation that maps o to o′ and R2 is the rotor
encoding the rotation that transforms {x, y, z} to {x′, y′, z′}.
As a corollary of Theorem1, we have that we can recover the rotor that transforms
the (i − 1)-th joint frame into the i-th joint frame for every 1 ≤ i ≤ n. These rotors
allow to relate the base frame of the robot with the end-effector, thus allowing to
compute its position and orientation with respect to the global reference frame—
i.e., the base frame. Notice that, since the joint frames are determined by the joint
variables, so are the rotors recovered from them.

Now, given two consecutive joint frames, how can we construct the rotor that
transforms one into the other? There are different ways. For instance, in [13, chapter
4], we followed the standard convention in robot kinematics (known as the Denavit-
Hartenberg convention) to construct each intermediate joint frame by means of a set
of four parameters (the Denavit-Hartenberg parameters) and, with those parameters,
recover the rotor relating each frame to the following one. Here, we are going to
follow a different approach based on the use of the reciprocal frame.

Definition 4. Given a linear frame {e1, e2, e3}, its reciprocal frame {e1, e2, e3} is the
linear frame satisfying that ei · e j = δi j , where δ(·) denotes the Kronecker delta.

In [7], the reader can find some useful properties of reciprocal frames as well as an
explicit expression for calculating them. In addition, there is an expression for the
rotor relating two different linear frames {e1, e2, e3} and { f1, f2, f3}:

R = 1 + f1e1 + f2e2 + f3e3

|1 + f1e1 + f2e2 + f3e3| . (6)

If we apply Eq. (6) to the joint frames, we have that:

Ri
i−1 = 1 + xi xi−1 + yi yi−1 + zi zi−1

|1 + xi xi−1 + yi yi−1 + zi zi−1| (7)
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is the rotor that transform the (i − 1)-th linear joint frame into the i-th linear joint
frame. Now, taking the rotor defined in Eq. (4) and applying it to the origins of these
joint frames, we have that:

T i
i−1 = 1 + e∞v

2
, (8)

where v = oi − oi−1.
In summary, the rotor that transforms the (i − 1)-th joint frame into the i-th joint

frame is:
Mi

i−1 = T i
i−1R

i
i−1. (9)

Hence, the rotor that relates the base frame with the end-effector for a specific con-
figuration q ∈ C is:

M = M1
0M

2
1 · · · Mn

n−1. (10)

Therefore, if we take the base frame, i.e., the global reference frame {o, x, y, z}, and
we applied M to each one of its elements (with the sandwiching product M(·)M̃),
we get the frame attached to the end-effector, i.e., its position and orientation with
respect to that global reference frame. Again, all we have done so far is configuration-
dependent, which means that M is the rotor that solves the forward kinematics
problem for a specific q ∈ C. Ifwe change the configuration,wewill need to construct
the new joint frames and recover the associated rotors to compute its product. In
general, we have the following result.

Theorem 2. For every configuration q = (q1, . . . , qn) ∈ C, the position and orien-
tation of the end-effector associated with q is:

P ′ = M(q)PM̃(q) = M1
0 (q1) · · · Mn

n−1(qn)PM̃n
n−1(qn) · · · M̃1

0 (q1), (11)

where P is the position (orientation) of the base frame and P ′ denotes the position
(orientation) of the end-effector.

The advantages of the approach presented here include a compact formulation of
both the forward kinematics problem and its solution. In addition, since rotors are
elements of the algebra, themanipulation of complex geometric structures (like serial
chains) becomes easier.

2.2 Inverse Kinematics

A serial industrial robot is said to have a spherical wrist if their last three joint axes
either intersect at a single point or are parallel. It is well-known that serial industrial
robots with a spherical wrist have always analytical or closed-form solutions (by
Pieper’s theorem [15]). In addition, the proof of Pieper’s theorem is constructive
in the sense that closed-form solutions are explicitly derived for any type of robot
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Fig. 3 Non-spherical wrist.
Notice the offset between the
(n − 2)-th and the (n − 1)-th
joints

with a spherical wrist. However, if there is an offset between any of the last three
joint axes (as shown in Fig. 3), then the robot has no longer a spherical wrist and,
hence, Pieper’s theorem cannot be applied. To solve the inverse kinematics problem
for those robots, Paul [14] developed a method based on the homogeneous matrices
T i
i−1 used to describe the kinematics of serial industrial robots [16]. Indeed, given

the kinematic identity:

T 1
0 · T 2

1 · · · T n
n−1 = T n

0 , (12)

where we recognize in T n
0 the homogeneous matrix describing the position and

orientation of the end-effector with respect to the base frame and where T i
i−1 only

depends on the joint variable qi , Paul’s method consists of analyzing each one of the
following matrix equations:

T i
i−1 · · · T n

n−1 = (
T i−1
i−2

)−1 · · · (T 1
0

)−1 · T n
0 for i = 2, . . . , n (13)

to isolate known trigonometric equations that can be solved analytically for one or
more joint variables. However, the large number of different combinations together
with the intricacies for solving analytically arbitrary trigonometric equations makes
this method not suitable for kinematic chains of complex geometry. Most of the con-
tributions found in the literature [5, 8, 10] focus either on numerical methods or on
particular geometric methods. Although the latter can only be applied to the specific
robots they have been designed for, they give the complete set of solutions, contrary
to what happens with the former, where only one solution is obtained. Nevertheless,
geometric methods are difficult to design, especially for robots without a spherical
wrist. This is one of the reasons why conformal geometric algebra turns out to be
useful to deal with this problem. For instance, the works [4, 6, 9, 18, 19] solve the
inverse kinematics of different type of robots by means of conformal geometric alge-
bra. The idea exploited in all of them is to define different geometric entities whose
intersections coincide with the origins of the frames attached to the joints. Those
points allow us to recover the joint variables and, hence, the configuration or con-
figurations associated with a predefined position and orientation of the end-effector.
Finally, in [1] a numerical method also based on conformal geometric algebra is
developed to solve the inverse position problem for arbitrary long serial robots.
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In our previous work [13, chapter 4], we used conformal geometric algebra to
develop a geometric method to cope with the inverse kinematics of serial industrial
robots with a spherical wrist based on the same idea of the works cited above. Here,
we will go one step further by considering robots without a spherical wrist. As stated
before, the most typical case is when there is an offset between any of the last three
joint axes. In that case, we cannot split the problem in the two classical subproblems,
namely the inverse position problem and the inverse orientation problem (as we did
in [13, chapter 4]). This is the first time, to the author’s knowledge, that the inverse
kinematics of this particular type of robots is addressed by means of conformal
geometric algebra.

Let us suppose that the predefined position is denoted by p ∈ R
3, while the prede-

fined orientation is denoted by {x, y, z}. First, we compute the null vector p ∈ G4,1

associated with p:

p = H( p) = p + e0 + 1

2
p2e∞, (14)

where H(·) denotes the Hestenes’ embedding (as defined in section 2.1 of chapter 2
in [13]). With the three vectors x, y, z we define three lines, whose inner represen-
tation are:

�x = x I − (x ∧ p)I e∞
� y = yI − ( y ∧ p)I e∞
�z = z I − (z ∧ p)I e∞,

(15)

where I = e1 ∧ e2 ∧ e3 is the pseudoscalar of G3. Clearly, the orientation of the
end-effector is uniquely determined by any two of those lines.

Now, let us consider the serial industrial robot depicted in Fig. 4, i.e., the typical
serial industrial robot but, instead of having a spherical wrist, it has an offset between
the fourth and the fifth joints. In this case, we have the points p0—the null vector
representation of the origin of the base frame—and p—the null vector representation
of the target position p. Hence, we need to find the points p1, p2 and p3.

Point p1 is the translation of the point p0 through the z-axis of the first joint frame,
z1, a displacement by the length of the first link, a1. Therefore:

p1 = Tz1 p0T̃z1 , (16)

where:
Tz1 = 1 + a1e∞z1

2
. (17)

Notice that, since z1 is aligned with the first joint axis, it does not change under the
action of the joint variable q1 (in fact, it does not change under the action of any joint
variable) and, thus, the base frame and the first joint frame have the same z-axis.

Analogously, point p3 is the translation of the point p along the z-axis of the last
joint, which coincides with the z-axis of the target orientation, a displacement by the
length of the last link, a6. Hence:
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Fig. 4 Schematic representation of a serial industrial robot: the length of the i-th link is denoted
by ai , while the joint variable of the i-th joint is denoted by the angle θi . The value d is the length
of the offset placed between the fourth and fifth joints (so this robot has not a spherical wrist). To
find out the value of the unknown joint variables θi , the points pi , attached to the joints, need to be
computed

p3 = Tz pT̃z, (18)

where:
Tz = 1 + a6e∞z

2
, (19)

Finally, to compute the point p2, we proceed as follows. We need two spheres and
one plane, whose inner representations are:

π = p0 ∧ p1 ∧ p3 ∧ e∞

s1 = p1 − 1

2
a22e∞

s2 = p3 − 1

2
(a4 + d)2e∞

(20)

Clearly, p2 belongs to the intersection between these three geometric objects.
To compute such a intersection we use the following definition:

Definition 5. Let O1 and O2 be two different geometric objects with outer repre-
sentations K ∗

1 and K ∗
2 . The meet or intersection between O1 and O2, denoted by

K ∗
1 ∨ K ∗

2 , is defined as the multivector K ∗
1 ∨ K ∗

2 = (K1 ∧ K2)
∗ = K1 · K ∗

2 .

Extended to three geometric objects with outer representations K ∗
1 , K

∗
2 and K ∗

3 , we
have that:

K ∗
1 ∨ K ∗

2 ∨ K ∗
3 = (K1 ∧ K2 ∧ K3)

∗. (21)
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Now, since the inner representation of any plane and sphere is a grade-1 element of
G4,1, s1 ∧ s2 ∧ π is a grade-3 element and, as a consequence, its dual is a grade-2
element of G4,1, i.e., a bivector. Therefore:

B = s∗
1 ∨ s∗

2 ∨ π∗ = (s1 ∧ s2 ∧ π)∗ (22)

is a bivector. This bivector represents a pair of points in conformal geometric algebra,
so B = b1 ∧ b2 for some null vectors b1 and b2. It is clear that p2 is one of these two
null vectors. To extract them from B, the following equations are used [11]:

b1 = −P̃ ((b1 ∧ b2) · e∞) P,

b2 = P ((b1 ∧ b2) · e∞) P̃,
(23)

where P denotes the projector operator defined as:

P = 1

2

(

1 + b1 ∧ b2
|b1 ∧ b2|

)

. (24)

It only remains to find the value of the joint variables. Since all joints are revolute,
their joint variables are angles. First, we need to construct four auxiliary lines and
two planes with the already obtained points:

�∗
1 = p0 ∧ p1 ∧ e∞, (25)

�∗
2 = p1 ∧ p2 ∧ e∞, (26)

�∗
3 = p2 ∧ p3 ∧ e∞, (27)

�∗
4 = p3 ∧ p ∧ e∞, (28)

π1 = x1, (29)

π∗
2 = p2 ∧ p2 ∧ p3 ∧ e∞. (30)

Finally, using the geometric entities defined in Eqs. (15), (20) and (25–30), the joint
variables are obtained:

θ1 = ∠(π∗
1 , π∗), (31)

θ2 = ∠(�∗
1, �

∗
2), (32)

θ3 = ∠(�∗
2, �

∗
3), (33)

θ4 = ∠(�∗
z , π

∗
2 ), (34)

θ5 = ∠(�∗
z , �

∗
3), (35)

θ6 = ∠(�∗
x, �

∗
4), (36)

where ∠(·, ·) denotes the main angle defined by two geometric entities. More pre-
cisely, for two geometric objects with outer representation K ∗

1 and K ∗
2 , it is defined

by the following formula:
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∠(K ∗
1 , K

∗
2 ) = cos−1

(
K ∗

1 · K ∗
2

|K ∗
1 ||K ∗

2 |
)

. (37)

3 Motion Planning

We start this section by giving some basic definitions that will allow us to formulate
the motion planning problem for serial industrial robots [12, 16]. Here, a serial
industrial robot of n DoF is denoted by Rn .

Definition 6. The space of all positions and orientations that the end-effector of a
serial industrial robot can reach is known as theworkspace of the robot and is denoted
byW. Clearly, W ⊂ X.
Definition 7. An obstacle O is a rigid-body object inW.

Since obstacles are closed and bounded sets in R
3, they are compact sets with

respect to the standard topology of R3. Hence, every obstacle O can be covered by a
finite collection of open sets {Sj }mj=1, i.e., O ⊂ ⋃m

j=1 Sj . Obviously, since we are in
R

3, these open sets may be assumed to be open balls. But then, we have that:

O ⊂
m⋃

j=1

Sj ⊂
m⋃

j=1

S j , (38)

so every obstacle O can be covered by a finite set of closed balls.
As elements of the workspace of the robot, every obstacle can be represented in

the configuration space C.
Definition 8. Let Rn be a serial robot and O ⊂ W, an obstacle. Then, as stated
before, there exists a finite set of closed balls {S j }mj=1 such that O ⊂ ⋃m

j=1 S j . The
representation of O in the configuration space C is computed as:

C(O) = {q ∈ C : Rn(q) ∩ S j 
= ∅ for some j = 1, . . . ,m}, (39)

where Rn(q) is the subset of W occupied by Rn in that specific configuration q.
Such representation is known as the C-obstacle or C-obsctacle of O.
Definition 9. Let Rn be a serial robot and O1, . . . ,Or ⊂ W, r different obstacles.
The free-of-obstacles configuration space Cfree is:

Cfree = C \
r⋃

k=1

C(Ok). (40)

Proposition 1. The free-of-obstacles configuration space Cfree is an open set.
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Fig. 5 Graphical example of
a planar motion planning
problem: the mobile
platform R should move
from an initial configuration
qi to a goal configuration q f
avoiding the special
configurations q1 to q3 in its
way. A sphere is defined
around each special
configuration and, then, the
solution trajectory is
computed so its distance to
all the spheres is always
higher than a given value

Proof. Wehave seen that, for every k = 1, . . . , r ,Ok is a closed set. In addition, since
every serial industrial robot is a sequence of rigid-bodies, Rn(q) is also a closed set
for every q ∈ C and, thus, Ok ∩ Rn(q) is a closed set and so Cobs = ⋃r

k=1 C(Ok).
Therefore, Cfree is an open set.

Definition 10. The motion planning problem consists of finding a mapping, i.e., a
path, c : [0, 1] → C such that no configuration along the path intersects an obstacle.
If the map c has codomain Cfree, the path is said to be a free-path.

Now,we can explore howconformal geometric algebra can be applied to this prob-
lem. In particular, it can be applied in two different ways: (1) by allowing an efficient
computation of the free-of-obstacles configuration space Cfree and (2) by improving
the computation of the solution trajectories for any motion planning problem.

For the first application, the number and position of the closed balls covering each
obstacle are not relevant. The only key point is the fact that they are covered by a
finite set of closed balls (which is guaranteed by the compactness of the obstacles).
Analogously, Rn(q) is also a compact set and, hence, can be covered by a finite set
of closed balls. Therefore, we can rewrite Eq. (39) as:

C(O) =
{

q ∈ C : C� ∩ S j 
= ∅ for
some j = 1, . . . ,m

some � = 1, . . . , p

}

, (41)

where Rn(q) ⊂ ⋃p
�=1 C�.

Now, the expression C� ∩ S j is equivalent to (c� ∧ s j )∗, where c� and s j are the
inner representation of the spheres defined by the boundary ofC� and S j respectively.
Such intersection is empty if, and only if, (c� ∧ s j )2 > 0. We add the extra condition
c� · s j < 0 since we want to avoid to have one sphere contained in the other (if
c� · s j > 0, the intersection between both spheres is still empty but one is contained
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in the other and, hence, it is clear that such configuration does not belong to the
free-of-obstacles configuration space). Therefore, Eq. (39) can be rewritten as:

C(O) =
{

q ∈ C : (c� ∧ s j )
2 > 0

c� · s j < 0
for

some j = 1, . . . ,m

some � = 1, . . . , p

}

. (42)

This is a more efficient way of computing C(O) for every possible obstacle and, as
a consequence, of computing Cfree.

With respect to the second application, we should restrict the robots we use to
serial industrial robots of two or three degrees of freedom so its configuration space
has dimension two or three. This is done for practical reasons as we shall see later.
This may seem too restrictive, but there is a large number of serial industrial robots
with few degrees of freedom. A good example are mobile manipulators, where a
platform with two translational degrees of freedom and one rotational degree of
freedom moves freely in a planar environment (see Fig. 5). The main methods used
for computing the solution trajectories in motion planning problems can be grouped
into three categories:

• Potential field methods, where a differentiable real-valued function U : C → R,
called the potential function, is defined. Such function has an attractive component
that pulls the trajectory towards the goal configuration and a repulsive component
that pushes the trajectory away from the start configuration and from the obstacles.

• Sampling-based multi-query methods, where a roadmap is constructed over Cfree.
The nodes represent free-of-obstacles configurations, while the edges represent
feasible local paths between those configurations.Once the roadmap is constructed,
a search algorithm finds out the best solution trajectory by selecting and joining
the local paths through an optimization process.

• Sampling-based single-query methods, where a tree-structure data is constructed
by searching newconfigurations (nodes) inCfree and connecting them through local
paths (edges). Its main difference with respect to the multi-query methods is that,
while the multi-query methods work in two times (construction of the roadmap
and searching of a solution trajectory), in the single-query methods both steps are
taken together. Each new configuration added to the set of nodes is connected by
a local path and evaluated in order to check its feasibility.

Now, we will introduce a very useful concept. Given a sphere (or a circle) S
centered at cwith radius r > 0 and a point p exterior to S, we can always construct a
right triangle with the segment defined by p and c as its hypotenuse and the radius as
one of its legs. Then, by the Pythagorean theorem, the other leg has a length equal to
d2(c, p) − r2. This is known as the tangential distance of S from p and is denoted
by dT ( p, S).

If s denotes the inner representation of S and p and c are the null vector repre-
sentations of p and c, then:
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s · p = (c − 1

2
r2e∞) · p

= c · p − 1

2
r2e∞ · p

= −1

2
d2(c, p) + 1

2
r2

= −1

2

(
d2(c, p) − r2

)

= −1

2
d2
T ( p, S),

(43)

and, thus, dT ( p, S) = √−2s · p.
For any of the three methods listed above, we can use the tangential distance dT

defined inEq. (43) to simplify the computations and improve the overall performance.
Indeed, let us first consider special configurations like, for instance, singularities—
configurationswhere the serial industrial robot loses the ability tomove in at least one
direction of the operational space X—and colliding configurations—configurations
lying in the boundary between Cfree and Cobs. These configurations should be taken
into accountwhen computing the solution trajectory of anymotion planning problem.
Then, for every special configuration q0, we define a sphere S centered at q0 and with
a small random radius r > 0. Now, we proceed as follows:

• For a potential field method, we define the potential function so it has a repulsive
component that pushes the trajectory away from these special configurations. To
do so, the most efficient way is to define, for each configuration q0 of this type, a
quadratic repulsive component as follows:

Uq0(q) =
⎧
⎨

⎩

κ

2

(
1

dT (q, S)
− 1

d0

)2

if dT (q, S) ≤ d0

0 if dT (q, S) > d0

(44)

where s is the inner representation of S, d0 is set as a threshold for the distance dT
and κ ∈ R. Notice that d2

T (q, S) = −2q · s, where q is the null vector representa-
tion of q.

• For a sampling-based method with multiple queries, it is sufficient with removing
from the roadmap those nodes associated with special configurations. During the
construction of the roadmap, each configuration q ∈ C is evaluated to determine
whether q is free-of-obstacles or not. Similarly, the idea is to evaluate each q ∈ C
in order to determine whether q is close to a special configuration or not. To speed
up the process, both evaluations can be carried out together:

1) Select a value d0 > 0 that will work as a threshold.
2) Given a discretization of the configuration spaceC, each q of such discretization

is evaluated to check whether:
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• Is free-of-obstacles.
• Is far from any special configuration q0. This can be done simply by evalu-

ating whether dT (q, S) > d0 or dT (q, S) ≤ d0, where, again, s is the inner
representation of the sphere S and d2

T (q, S) = −2q · s.
3) If q is free-of-obstacles and far from any special configuration, then it can be

added to the set of nodes of the roadmap.

• For a sampling-based method with a single query, the approach is completely
analogous to the one used for methods with multiple-queries due to the similarities
between both categories.

Remark 1. As stated before, we are restricting the robots we use to robots with
two or three degrees of freedom. The reason stems from the fact that every method
explained hereworks in the configuration spaceC of the robot. Hence, for an arbitrary
serial industrial robot of n degrees of freedom, C has dimension n and any special
configuration will be an n-dimensional vector q ∈ C. Since the proposed solution
is based on the computation of the tangential distance between the current robot
configuration and several spheres (each one centered at one of those special configu-
rations), we will need to compute the inner product between two grade-1 elements of
Gn+1,1. Theoretically speaking, there is no problem in that but, in practice, most of
the current libraries, toolboxes and computer-based tools work with the conformal
geometric algebra of vector spaces of small dimension, so the methods introduced
here would not be able to be implemented.

4 Conclusions

In this chapter, we have dealt with three problems of serial industrial robots, namely
the forward kinematics, the inverse kinematics and the motion planning problem.We
have used the key elements of conformal geometric algebra to formally introduce
them, as well as to develop specific tools to solve them. In particular, we have shown
that given an arbitrary configuration q ∈ C of the robot, there exists a rotor M ∈ G4,1

such that P ′ = MPM̃ is either the position or orientation of the end-effector of the
robot and where P is the position/orientation of the base frame. This means that
rotor M relates the base frame with the end-effector’s position and orientation for
that specific configuration q.

In addition, we have developed a geometric method based on the definition and
manipulation of several geometric entities to solve the inverse kinematics of serial
industrial robots without a spherical wrist and that, together with the method intro-
duced in [13] provides a general method to deal with the inverse kinematics of
arbitrary serial robots. Notice that the two methods have some similarities, so the
question onwhether amore general geometricmethod to solve the inverse kinematics
of these robots exists or not arises naturally. Or whether is there a numerical method
based on conformal geometric algebra that solves this problem? We have seen that,
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in [1], a numerical method is developed using conformal geometric algebra. How-
ever, since its target is to solve just the inverse position problem of arbitrary long
serial robots with only revolute joints, the algorithm can only be applied to these
type of robots.

Finally,we have formulated themotion planning problemaswell as shownhowwe
can compute the free-of-obstacles configuration space Cfree by means of evaluating
the intersection between spheres when represented in conformal geometric algebra.
In addition, we have also seen that we can compute a solution trajectory between two
configurations qi , q f ∈ Cfree by evaluating, in each step of the process, the distance
between the sphere or spheres representing the serial robot and the spheres covering
each obstacle, singularity and/or forbidden configuration. There is, however, much
to do in this field. For instance, two open questions are:

• We have seen several methods to compute solution trajectories. Can any of them
be improved or its performance enhanced if entirely formulated using conformal
geometric algebra?

• Could a new method be defined using this mathematical framework?
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Recent Advances on Oriented Conformal
Geometric Algebra Applied to Molecular
Distance Geometry

Carlile Lavor and Rafael Alves

Abstract Oriented Conformal Geometric Algebra was recently applied to Molec-
ular Distance Geometry, where we want to determine 3D protein structures using
distance information provided by Nuclear Magnetic Resonance experiments. We
present new results that simplify the associated calculations.

1 Introduction

Distance Geometry (DG) deals with calculation of points using distances between
some of them [30, 31]. One of the most important applications of DG is related to the
determination of 3D protein structures using distance data from Nuclear Magnetic
Resonance (NMR) experiments [11, 27, 34, 40]. For other applications and more
information about DG, see [4, 5, 32, 33, 36].

Given a graph G = (V, E, d), where V represents the set of atoms of a molecule
and E is the set of atom pairs for which a distance is available (defined by d : E →
(0,�)), the Molecular Distance Geometry Problem (MDGP) is to find a function
x : V → R

3 that associates each element of V with a point in R3 in such a way that
the Euclidean distances between the points correspond to the values given by d [30].

Information from protein geometry and NMR data allow us to solve the MDGP
using a combinatorial method, called Branch-and-Prune (BP) [7, 29]. The discrete
MDGP is called the Discretizable MDGP (DMDGP), which is based on a vertex
order v1, ..., vn ∈ V , also given as input of the problem [8, 15, 25, 26, 35]. Formally,
the DMDGP is defined as follows [19, 20] (we denote xi instead of x(vi ) and di, j
instead of d(vi , v j )):

Definition 1 Given a simple undirected graph G = (V, E, d), whose edges are
weighted by d : E → (0,�), and a vertex order v1, ..., vn ∈ V , such that
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1. For v1, v2, v3 ∈ V , there exist x1, x2, x3 ∈ R
3 satisfying the given distances;

2. For i > 3,
{{vi−3, vi }, {vi−2, vi }, {vi−1, vi }} ⊂ E (1)

and
di−3,i−2 + di−2,i−1 > di−3,i−1, (2)

find a function x : V → R
3 satisfying

∀{vi , v j } ∈ E, ||xi − x j || = di, j . (3)

Property 1 avoids solutions modulo rotations and translations and Property 2
allows us to calculate the two possible positions for v4. For each position for v4, we
have other two for v5, and so on, implying that theDMDGP search space is finite [20].

For i > 3, we may also have {v j , vi } ∈ E , j < i − 3, adding another equation
(||xi − x j || = d j,i ) to the system related to vi :

||xi − xi−1|| = di−1,i ,

||xi − xi−2|| = di−2,i , (4)

||xi − xi−3|| = di−3,i .

We obtain a unique solution x∗
i for vi , supposing ||x∗

i − x j || = d j,i and that the points
xi−1, xi−2,xi−3, x j ∈ R

3 are not in the same plane. If both possible positions for vi
are unfeasible with respect to additional distances d j,i , j < i − 3, it is necessary to
consider the other possible position for vi−1 and repeat the procedure. Essentially,
this is what the BP algorithm does [20].

Since distances di−1,i and di−2,i are related to bond lengths and bond angles of a
protein, they can be considered precise values. This may not happen to distances d j,i ,
j ≤ i − 3, since theymaybeprovidedbyNMRexperiments [28, 40]. In [21], distances
d j,i are represented as interval distances [d j,i , d j,i ],d j,i ≤ d j,i ≤ d j,i , and anextension
of the BP algorithm, called iBP, is proposed. The idea is to sample values from inter-
vals [di−3,i , di−3,i ] in order to solve the associated system to calculate positions to vi ,
which implies that, choosing many values, the search space increases exponentially,
and for small samples, a solution may not be found [1, 9, 10, 16, 37, 39].

Geometrically, even considering interval distances, solving systems like (4)
is to intersect spheres and spherical shells centered at the positions for vertices
vi−1, vi−2, vi−3, v j ( j < i − 3) with radius di−1,i , di−2,i , [di−3,i , di−3,i ], [d j,i , d j,i ],
respectively.

In [2, 3], Conformal Geometric Algebra (CGA) was used to model uncertainties
in the DMDGP, for the branching phase of iBP (intersection of two spheres and a
spherical shell), and, in [24], the Oriented CGA (OCGA) [6] was applied for the
pruning phase of iBP (when additional spherical shells must be considered in the
intersection). Another CGA approach is discussed in [13].
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Fig. 1 Intersection of two spheres and a spherical shell resulting in two arcs

We present new results that simplify the calculations in the pruning phase of iBP
algorithm.

Next section explains how CGA and OCGA replace the classical approach for
solving the DMDGP and Sect. 3 provides our contribution.

2 Conformal Geometric Algebra (CGA) and Oriented
CGA (OCGA) for the iBP Algorithm

2.1 CGA for Branching

Replacing di−3,i ∈ R by interval distance [di−3,i , di−3,i ] in (4), we have to intersect
two spheres with one spherical shell resulting in two arcs, instead of two points in
R

3 (see Fig. 1).
The points P0

i , P1
i and P0

i , P1
i , from the intersection of spheres centered at the

positions for vi−1, vi−2, vi−3 with radius di−1,i , di−2,i , di−3,i and di−1,i , di−2,i , di−3,i ,
respectively (see Fig. 1), can be obtained from the point pairs generated by

Si−1,i ∧ Si−2,i ∧ Si−3,i and Si−1,i ∧ Si−2,i ∧ Si−3,i ,

where underline and overline indicate the use of di−3,i and di−3,i , respectively [2]
(in the conformal model, Si, j is the sphere centered at the position for vertex vi with
radius di, j ).

With the starting and the ending point of an arc, we can define a rotor, for i ≥ 4,
given by

Ri = cos

(
λi

2

)
− sin

(
λi

2

)
z∗
i , (5)
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where λi ∈ [0, φi ] is the rotation angle corresponding to the arcs P0
i P

0
i and P1

i P
1
i

(see Fig. 1), z∗
i is the dual of zi , and

zi = Xi−2 ∧ Xi−1 ∧ e�,

since the rotation axis of Ri is defined by Xi−2 and Xi−1 (the positions for vi−2 and
vi−1 in the conformal model). Note that φi , i ≥ 4, can be computed apriori based on
the given intervals [di−3,i , di−3,i ] and the DMDGP definition [2].

In order to consider the effect of changing points in the arcs (to avoid the sampling
process), the rotation axes of the rotors must be replaced by (see [3])

zi = (Ri · · · R4)
(
Pb
i−2 ∧ Pb

i−1 ∧ e�
) (

R−1
4 · · · R−1

i

)
,

implying that

Xb
i (λ4, . . . , λi ) = (Ri · · · R4) P

b
i

(
R−1
4 · · · R−1

i

)
,

for i ≥ 4. The values b ∈ {0, 1} are defined when iBP chooses one of the branches in
the search tree [3].

Note that, when all distances di−3,i are precise values, i.e. φi = 0 for i ≥ 4,

Xb
i (0, . . . , 0) = P

b
i = P

b
i .

2.2 OCGA for Pruning

During the pruning phase of iBP,when additional spherical shellsmust be considered,
the arc orientation is even more important. In [24], this was done using the Oriented
Conformal Geometric Algebra (OCGA) [6], which is an extension of the Oriented
Projective Geometry [38].

First, we define an orientation for the circle obtained from the intersection
Si−1,i ∧ Si−2,i (Fig. 2), given by

Ci = P
0
i ∧ P0

i ∧ P1
i .

Since Ci is a trivector in the conformal space, its dual C∗
i is a bivector orthogonal to

the plane that contains the circle Ci , which implies that the line

C∗
i ∧ e�

is oriented according to Ci .
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Fig. 2 Oriented circle Ci

Using the normalized bivector dual to the rotation axis C∗
i ∧ e�, we can define z

∗
i

in a different way, that carries the orientation of Ci . The associated rotor Ri is now
defined by:

Ri = cos

(
λi

2

)
− sin

(
λi

2

)
z∗
i , 0 ≤ λi ≤ φi ,

where

zi =
C∗
i ∧ e�

||C∗
i ∧ e�|| .

Supposing that for vi , i > 4, there is a pruning edge {v j , vi } ∈ E , j < i − 3,

with interval distance [d j,i , d j,i ], and denoting by P0
j P

0
j and P1

j P
1
j the arcs obtained

from the intersections Si−1,i ∧ Si−2,i ∧ S j,i and Si−1,i ∧ Si−2,i ∧ S j,i , we compute the
new starting and ending points of the associated rotors doing the following calcula-
tions [24] (all the possible cases are illustrated in Fig. 3):

t1 = (P0
j ∧ P0

i ∧ P1
i )Ci , t2 = (P0

i ∧ P0
j ∧ P1

i )Ci

and
t1 = (P0

j ∧ P0
i ∧ P1

i )Ci , t2 = (P0
i ∧ P0

j ∧ P1
i )Ci ,

where
Ci = P

0
i ∧ P0

i ∧ P1
i .

The same procedure must be done for P1
j and P1

j .
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Fig. 3 Possible cases for intersecting arcs

3 New Approach for iBP Prunning Phase

Considering a circleC , obtained from the intersection of spheres S1 and S2, we obtain

C = S1 ∧ S2 ⇒
(

C

||C ||
)∗
=

S∗
1 ∧ S

∗
2

||S∗
1 ∧ S

∗
2 ||

.

Since C can also be defined by three points P1, P2, P3 ∈ C , let us suppose that

(
P1 ∧ P2 ∧ P3

||P1 ∧ P2 ∧ P3||
)∗
=

S∗
1 ∧ S

∗
2

||S∗
1 ∧ S

∗
2 ||

.

For other three points Q1, Q2, Q3 ∈ C , but with opposite orientation, we have
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(
Q1 ∧ Q2 ∧ Q3

||Q1 ∧ Q2 ∧ Q3||
)∗
=−

(
P1 ∧ P2 ∧ P3

||P1 ∧ P2 ∧ P3||
)∗

.

Thus, for any three distinct points in C , given by S1 ∧ S2, the expression
(

C
||C ||

)∗

is constant (up to a sign ±). This implies that to distinguish the orientation of two
trivectors that define C , it is enough to check the signs of some fixed coordinate ( /=0)
of the trivectors.

For example, for points P1, P2, P3 ∈ C , with

P1 = e0 + x1e1 + x2e2 + x3e3 + 1

2
||(x1, x2, x3)||2e�,

P2 = e0 + y1e1 + y2e2 + y3e3 + 1

2
||(y1, y2, y3)||2e�,

P3 = e0 + z1e1 + z2e2 + z3e3 + 1

2
||(z1, z2, z3)||2e�,

and choosing the coordinate of
e1 ∧ e2 ∧ e0

of the trivector P1 ∧ P2 ∧ P3, we have to calcultate

x1y2 − x2y1 − (x1 − y1)z2 + (x2 − y2)z1. (6)

From Sect. 2, in order to know the position of P0
j (obtained from the intersection

Si−1,i ∧ Si−2,i ∧ S j,i ), in terms of arc P0
i P

0
i , we have to calculate

t1 = (P0
j ∧ P0

i ∧ P1
i )Ci and t2 = (P0

i ∧ P0
j ∧ P1

i )Ci .

Using the new idea, in addition to avoid two trivector products, we just calculate
(and compare the signs) expressions like (6): one for P0

j ∧ P0
i ∧ P1

i and another for

P0
i ∧ P0

j ∧ P1
i .

Without loss of generality, let us suppose that the sign of expression (6), associated
to the points P0

j , P
0
i , P1

i , is positive, denoted by

[
P0
j , P

0
i , P1

i

]
> 0.

So, all the cases illustrated in Fig. 3 are given, respectively, by
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• Case 1:
[
P0
j , P

0
i , P1

i

]
> 0[

P0
i , P0

j , P
1
i

]
< 0[

P0
j , P

0
i , P1

i

]
> 0[

P0
i , P0

j , P
1
i

]
> 0

• Case 2:
[
P0
j , P

0
i , P1

i

]
> 0[

P0
i , P0

j , P
1
i

]
> 0[

P0
j , P

0
i , P1

i

]
< 0[

P0
i , P0

j , P
1
i

]
> 0

• Case 3:
[
P0
j , P

0
i , P1

i

]
> 0[

P0
i , P0

j , P
1
i

]
> 0[

P0
j , P

0
i , P1

i

]
> 0[

P0
i , P0

j , P
1
i

]
> 0

• Case 4:
[
P0
j , P

0
i , P1

i

]
< 0[

P0
i , P0

j , P
1
i

]
> 0[

P0
j , P

0
i , P1

i

]
< 0[

P0
i , P0

j , P
1
i

]
> 0
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3.1 Example

Let us consider the same example given in [24], that is, a DMDGP instance with the
following data (all the calculations were done using GAALOP [18]):

di−1,i = 1, i = 2, ..., 6,

di−2,i =
√
3, i = 3, ..., 6,

d1,4 = 2.15, d2,5 ∈ [2.20, 2.60], d3,6 ∈ [2.40, 2.60],
d1,5 ∈ [2.45, 2.55].

Since d1,4 is also a precise value, we can fix the first four points, given by

x1 =

⎡
⎣0
0
0

⎤
⎦ , x2 =

⎡
⎣−1

0
0

⎤
⎦ , x3 =

⎡
⎣−1.5√

3
2
0

⎤
⎦ , x4 =

⎡
⎣−1.311

1.552
0.702

⎤
⎦ .

From the intersections of spheres S2,5 ∧ S3,5 ∧ S4,5 and S2,5 ∧ S3,5 ∧ S4,5, we

obtain the arcs P0
5 P

0
5 and P1

5 P
1
5 , defined by the points

P0
5 = e0 − 0.409e1 + 1.981e2 + 0.753e3 + 2.329e

�
,

P1
5 = e0 − 1.502e1 + 1.350e2 + 1.663e3 + 3.422e

�
,

P0
5 = e0 − 1.386e1 + 2.525e2 + 0.484e3 + 4.266e

�
,

P1
5 = e0 − 2.046e1 + 2.144e2 + 1.033e3 + 4.966e

�
.

Using the interval distance d1,5, we calculate S1,5 ∧ S3,5 ∧ S4,5 and S1,5 ∧ S3,5 ∧
S4,5, giving the points

A0
5 = e0 − 0.674e1 + 2.299e2 + 0.513e3 + 3.001e

�
,

A1
5 = e0 − 1.260e1 + 1.283e2 + 1.664e3 + 3.001e

�
,

A0
5 = e0 − 0.795e1 + 2.377e2 + 0.470e3 + 3.251e

�
,

A1
5 = e0 − 1.407e1 + 1.317e2 + 1.670e3 + 3.251e

�
.

With the orientation of C5 = S3,5 ∧ S4,5 defined by

C5 = P
0
5 ∧ P0

5 ∧ P1
5 ,

the calculations necessary to test if A0
5 ∈ P0

5 P
0
5 , using the original strategy, are the

following (ei j = ei ∧ e j and E = e
�
∧ e0):
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C5 = +0.732e12 ∧ e0 − 0.715e13 ∧ e0 + 0.197e23 ∧ e0 − 1.634e13 ∧ e�

−2.830e23 ∧ e� + 0.634e1 ∧ E + 1.098e2 ∧ E − 1.243e3 ∧ E + 1.887e123,

A05 ∧ P0
5 ∧ P1

5 = +0.421e12 ∧ e0 − 0.411e13 ∧ e0 + 0.113e23 ∧ e0 − 0.940e13 ∧ e�

−1.628e23 ∧ e� + 0.365e1 ∧ E + 0.631e2 ∧ E − 0.715e3 ∧ E + 1.085e123,

P0
5 ∧ A05 ∧ P1

5 = +0.478e12 ∧ e0 − 0.467e13 ∧ e0 + 0.128e23 ∧ e0 − 1.067e13 ∧ e�

−1.848e23 ∧ e� + 0.414e1 ∧ E + 0.717e2 ∧ E − 0.811e3 ∧ E + 1.232e123

and
(
A0
5 ∧ P0

5 ∧ P1
5

)
C5 = 0.468,(

P0
5 ∧ A0

5 ∧ P1
5

)
C5 = 0.531.

However, using the proposed approach, we just calculate the coordinates of
e12 ∧ e0, using (6):

[
A0
5, P

0
5 , P1

5

]
= (−0.674)(2.525) − (2.299)(−1.386)

−(−0.674 + 1.386)(2.144) + (2.299 − 2.525)(−2.046)

= 0.421,

[
P0
5 , A0

5, P
1
5

]
= (−0.409)(2.299) − (1.981)(−0.674)

−(−0.409 + 0.674)(2.144) + (1.981 − 2.299)(−2.046)

= 0.478.

Since
[
A0
5, P

0
5 , P1

5

]
> 0 and

[
P0
5 , A0

5, P
1
5

]
> 0, we conclude that

A0
5 ∈ P0

5 P
0
5 .

4 Conclusion and Acknowledgements
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Geometric Calculus Applications
to Medical Imaging: Status
and Perspectives

Silvia Franchini and Salvatore Vitabile

Abstract Medical imaging data coming from different acquisition modalities
requires automatic tools to extract useful information and support clinicians in the
formulation of accurate diagnoses. Geometric Calculus (GC) offers a powerful math-
ematical and computational model for the development of effective medical imaging
algorithms. The practical use of GC-based methods in medical imaging requires fast
and efficient implementations to meet real-time processing constraints as well as
accuracy and robustness requirements. The purpose of this article is to present the
state of the art of theGC-based techniques formedical image analysis and processing.
The use of GC-based paradigms in Radiomics and Deep Learning, i.e. a comprehen-
sive quantification of tumor phenotypes by applying a large number of quantitative
image features and its classification, is also outlined.

1 Introduction

In the last few decades, Geometric Calculus (GC) has attracted growing attention in
many research fields as a universal and comprehensive mathematical language for
expressing and elaborating geometric concepts. GC, often referred to as Geometric
Algebra (GA) or Clifford Algebra (CA), integrates and reformulates in a single
unified framework several mathematical models and theories including complex
numbers, quaternions, matrix algebra, vector algebra, spinor and tensor calculus, and
differential forms [1]. GC offers powerful mathematical and computational models
that allow for the formulation of effective algorithms in a large spectrum of appli-
cation domains, such as computer graphics, computer vision, robotics, and image
analysis.

Several applications of GC in the field of medical image analysis and processing
have been recently proposed. The great amount of available medical imaging data
coming from different modalities, such as Computer Tomography (CT), Magnetic
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Resonance (MR), and Positron Emission Tomography (PET), requires effective auto-
matic techniques and tools to extract useful information in order to assist clinicians
in diagnosing accuracy. Medical data needs to be validated and certified by medical
experts before being processed by the automated computing tools. Target applica-
tions are automatic detection of relevant regions (tissues, tumors, lesions, anatom-
ical areas of interest), segmentation, shape extraction, classification, 3D modeling
and reconstruction, volume registration. Image segmentation is often the first step in
image processing and analysis since it allows for partitioning the image into multiple
regions or areas based on similar pixel characteristics, such as color, shape, or texture.
In medical imaging, automatic segmentation is useful to detect and label pixels in
an image or voxels in a 3D volume that represent a tumor within a patient’s organ.
Another key task in computer-aided diagnosis is medical image classification that
consists in extracting a set of features from the image and using a trainable classifier to
assign one or more labels to the image. The availability of 3D models of the anatom-
ical areas of interest (organs, bones, tumors, lesions, etc.) is important since they
allow for a better visualization and understanding of the situation. The reconstruc-
tion of a 3D shape starting from a sequence of 2D scans and their boundary points
consists in extracting and display a 3D surface composed of geometric primitives
that approximate the object of interest. Medical image registration (or alignment)
consists in finding the proper geometric transformation to align two misaligned 2D
images or 3D surfaces captured in different moments or by different acquisition
modalities. The registration process is needed to compare or integrate medical data
derived from different measurements. In clinical practice, medical image registra-
tion has many important applications including: 1) aligning temporal sequences of
images to compensate for motion of the patient between scans, 2) combining images
of the same subject from different imaging modalities (the multi-modality fusion
facilitates diagnosis by integrating information acquired by diverse imaging devices,
as CT and MR), 3) image guidance during interventions, 4) aligning images from
the same subject or from multiple patients in longitudinal studies, which investigate
temporal changes in anatomical structures (regions of interest, organs, cancers, etc.).
The powerful representation and computation models provided by the GC frame-
work have been used to develop effective medical imaging methods for pathology
diagnosis and prognostication.

This paper presents an overview of the state of the art of GC-based medical
imaging techniques and outlines future directions on the application of GC in this
relevant application domain.

The use of Conformal Geometric Algebra (CGA), namely, five-dimensional (5D)
Clifford algebra, has been proposed as an efficient tool to develop several medical
imaging techniques including segmentation, 3D surface reconstruction, and registra-
tion of medical images [2−6]. These algorithmsmassively use geometric operations,
such as reflections, rotations, translations, and dilations, so that they can exploit the
efficient formulation of these operations provided by the CGA framework.

Furthermore, GA entities and operators allow for a more effective handling of
multi-dimensional images, such asmulti-channel ormulti-spectral images, which are
frequently used in computer-aided medical diagnosis for automatic tumor detection,



Geometric Calculus Applications to Medical Imaging … 33

segmentation, and classification. The use of GA multivectors allows images to be
represented with the different channels defined as a single entity, rather than separate
quantities so as to preserve the correlations among channels and avoid information
loss. Several GA-basedmethods to process multi-spectral andmulti-channel medical
images have been recently reported in the literature, including Clifford convolution
and Clifford Fourier transform for multi-spectral medical image segmentation [7–
12], quaternionic Gabor filters for medical image texture segmentation [13], Clifford
neural networks [14–17] and Clifford Support Vector Machines [20, 21] for medical
image classification, and GA-based algorithms, such as GA-SIFT [29], GA-SURF
[30], and GA-ORB [31], for feature extraction in multi-spectral medical images.

The practical use of GA-based methods in medical imaging requires fast and
efficient implementations tomeet specific constraints such as the real-timeprocessing
of large amounts of medical data or the required accuracy and precision. To this aim,
different specialized hardware architectures able to directly support GA elements and
operators have been designed to accelerate GA-based medical imaging algorithms
[5, 12, 32].

Future directions in the application ofGC formedical imaging can be envisaged in
the integration and reformulation of two advanced medical imaging techniques, such
as Radiomics [51] and Deep Learning [57], exploiting the new powerful GC-based
computation paradigms for the quantification and classification of tumor phenotypes
based on the efficient extraction and processing of a large number of quantitative
image features.

The rest of the paper is organized as follows: Sect. 2 presents the state of the art of
medical imagingmethods based onGC includingCGA-based algorithms for segmen-
tation, 3Dmodeling and registration of medical data as well as GA-based techniques
for feature extraction, segmentation, and classification of multi-dimensional medical
images. Section 3 summarizes the hardware implementations of GC-based medical
imaging algorithms reported in literature. Section 4 outlines future perspectives on
the application of GC in the medical imaging field focusing on the use of GC-based
paradigms in Radiomics and Deep Learning. Finally, conclusions are contained in
Sect. 5.

2 Applications of Geometric Calculus to Medical Image
Processing: State of the Art

In the last few years, several research works have proposed the use of Geometric
Calculus (GC) for medical image analysis and processing. The following sections
present an overview covering various GC-based medical imaging methods.
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2.1 Conformal Geometric Algebra for Medical Image
Segmentation, 3D Modeling and Registration

Several medical imaging tasks, such as segmentation, shape extraction, 3D
surface modeling, and registration (alignment) of medical images, involve complex
geometric operations, which are usually solved by using classical geometry based
on standard vector algebra and matrix calculations.

In the last few years, however, different works have proposed the use of Conformal
Geometric Algebra (CGA) to reformulate, in a more effective way, several medical
imaging algorithms. CGA, a.k.a. five-dimensional (5D) Geometric or Clifford
algebra, is a 5D representation of three-dimensional (3D) geometry that allows
for a simple and efficient modeling of 3D space objects and transformations. In
CGA, 5D algebraic elements can be directly used to represent 3D geometric enti-
ties,while conformal (angle-preserving) geometric transformations (reflections, rota-
tions, translations, dilations) are obtained by universal operators, called versors,
which are directly applied to the geometric objects to be transformed.

Recent works have proposed new CGA-based approaches for the segmentation,
3Dmodeling and registration ofmedical data. Amedical image segmentationmethod
based on gradient information and CGA-based self-organizing neural networks has
been proposed by J. Rivera-Rovelo and E. Bayro-Corrochano [2]. The algorithm uses
the Generalized Gradient Vector Flow (GGVF) to extract the contour points of the
object of interest, which are then used as the training set of a Growing Neural Gas
(GNG) network havingCGA translators asweights. After the training stage, theGNG
neuronswill contain the proper CGA translators, whichwill be applied to the centroid
of the contour points to translate it to the object contour and will define the shape of
the object of interest. Thismethod has been also extended for the approximation of 3D
surfaces [3] and tested with several medical datasets, including CT and MR images.
Another work has proposed the use of CGA for the 3D rendering and registration
of CT and MR sequences [4]. The authors have reformulated the standard Marching
Cubes rendering algorithm to reconstruct a 3D model based on spheres defined in
the CGA framework. Furthermore, the Thin-Plate Spline Robust Point Matching
(TPS-RPM) algorithm has been adapted for the registration of two misaligned 3D
models based on CGA spheres derived from two misaligned sequences of CT or MR
medical images.

However, compute-intensive medical imaging tasks require the analysis and
processing of massive volumes of medical data. Fast and efficient computing tech-
niques are needed to meet real-time processing constraints as well as result precision
and accuracy requirements. To this aim, a novel simplified formulation ofCGAopera-
tions has been introduced in [5] to reduce computation times and accelerate the CGA-
based algorithms so as to make the CGA-based methods practically usable for clin-
ical practice. The reformulated CGA operators have been used to re-design a suite of
CGA-basedmedical imaging automatic techniques [6]. The proposedmedical image
processing chain includes three stages: segmentation of the 2D image sequence (CT
or MR), 3D surface reconstruction, and registration of two misaligned 3D models.
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Experimental results show that reformulated CGA-based medical imaging methods
lead to shorter computation times as well as to higher precision results with respect
to both standard CGA algorithms and traditional medical imaging methods. Figure 1
shows the results obtained when the registration method TPS-RPM, reformulated
according the new formulation of CGA, is compared, in terms of both error and
execution times, with both the traditional TPS-RPM method and the TPS-RPM
method based on the standard formulation of CGA. As it can be observed, the new
CGA-based TPS-RPM algorithm shows better results than the traditional TPS-RPM
algorithm in terms of both precision and computation speed.

(a)

(b)
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Fig. 1 Comparison between three different registration methods: standard TPS-RPM, standard
CGA-based TPS-RPM and new CGA-based TPS-RPM in terms of (a) error and (b) execution times
for three different medical datasets (D1: MR brain, D2: CT brain tumor, D3: CT liver lesion)
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2.2 Geometric Algebra for Multi-dimensional Medical Image
Processing

Multi-dimensional medical images (multi-channel images, multi-spectral images)
are effectively used for several tasks, such as automatic tumor detection, segmen-
tation and classification. Medical images acquired by different imaging modalities
are often combined since the multi-modality fusion facilitates the diagnosing accu-
racy by integrating information derived from different imaging devices (CT, MR,
PET). Classical medical imaging methods treat multi-dimensional data as multiple
independent data (for multi-channel images, each channel is processed separately),
which can lead to information loss since the correlations among multiple dimensions
are ignored. Conversely, GA defines multivectors that can be used to represent multi-
dimensional data so preserving correlations amongdifferent dimensions and avoiding
information loss. The following subsections summarize a suite of GA-based tech-
niques for feature extraction, segmentation, and classification of multi-dimensional
medical images.

2.2.1 Clifford Fourier Transform for GA-based Multi-dimensional
Image Analysis

The classical Fourier transform is applied to scalar fields. Clifford Fourier transform
represents an extension of standard Fourier transform to vector fields [7–9]. The
geometric product or Clifford product defined in the Clifford algebra framework is
used to generalize the concepts of convolution and Fourier transform to vector fields.

These concepts have been used to formulate new edge detection methods for
color images [10, 11]. Usually, traditional edge detection methods, used for gray-
scale images, are extended to color images and applied to the three color channels
separately. This approach however leads to increased computational load and long
execution times. In the GA-based methods, conversely, color value triples are treated
as multivectors and Clifford convolution and Clifford Fourier transform are used
for edge detection. Color value triples are converted in luminance and chrominance
components.A standard gray-scale edge detectionmethod is applied to the luminance
component, while Clifford convolution with proper vector-value filter masks is used
to detect edges in the chrominance part.

The edge detection algorithm proposed in [10] uses the Sobel technique to
extract edges in the luminance component, while a single fixed value is used as
the thresholding value.

A novel, enhanced version of this algorithm is proposed in [11], where the Canny
algorithm is applied to the gray-scale component of the image, while a thresh-
olding with hysteresis is applied to both the gray-scale and color components of the
image.As reported in [11], theGA-based algorithm achieves a detection performance
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comparable to classical edge detectionmethods allowing at the same time for a signif-
icant reduction of computational times in comparison with classical component-wise
Canny color edge detection method.

The GA-based method has been also successfully applied for feature extraction of
multi-spectral MR images [12]. In particular, as reported in Fig. 2, experimental tests
have been performed on brain MR images in three different bands (PD-weighted,
T1-weighted, and T2-weighted, respectively). The Clifford edge detector has been

Band 1 
PD-weighted MR 

Luminance Y 

Band 2
T2-weighted MR 
Chrominance U 

Band 3
T1-weighted MR 
Chrominance V 

Multi-spectral MR 

(a) Original image

(b) Y filtered (c) UV filtered
(d) Thresholding

on Y
(e) Thresholding

on UV

(f) Y and UV
combined

Fig. 2 The figure [12] shows three MR brain images in three different bands. Bands 1, 2 and
3 are PD-weighted, T2-weighted and T1-weighted, respectively. Clifford edge detector has been
applied to the multi-spectral MR image using band 1 as luminance component Y and bands 2
and 3 as chrominance components U and V, respectively. It can be observed that processing the
multi-spectral image (Fig. 2(f)) adds further details to the simple edge detection performed on the
single-spectrum image (Fig. 2(d))
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applied to multi-spectral MR images using band 1 (PD-weighted) as luminance
component (Y) and bands 2 and 3 (T2-weighted and T1-weighted) as chromi-
nance components (UV), respectively. Experimental results show that the GA-based
method applied to multi-spectral MR images achieves a better performance in terms
of precision with respect to the classical edge detection algorithm applied to the
single-spectrum images.

2.2.2 Quaternionic Gabor Filters for Medical Image Texture
Segmentation

The use of quaternionic Gabor filters for the classification of local image structure
was proposed by T. Bulow and G. Sommer in [13]. Quaternionic Gabor filters are
defined as Gaussian windowed kernels of the quaternionic Fourier transform. Based
on these filters, the above-mentioned work introduces a novel quaternionic phase
concept for 2D signals. The local quaternionic phase is computed from the response
of the quaternionic Gabor filter. The authors show that it exists a specific relation
between the local quaternionic phase and the 2D local structure. Different values of
the local phase correspond to different local structures (such as lines or step edges)
that can be therefore discriminated from their local phase.

The paper shows that the additional phase value resulting from the quaternionic
filtering provides new information that is not provided by the phase when estimated
with two complex Gabor filters. The local image structure can be therefore classified
by the value of the local quaternionic phase. QuaternionicGabor filters can be applied
for medical image texture segmentation and image matching.

2.2.3 Clifford Neural Networks and Clifford Support Vector Machines
for Medical Image Classification

Several applications of Clifford algebra in the field of neural computing and
machine learning, including Clifford neural networks and Clifford Support Vector
Machines, have been proposed. Various studies have been performed and different
approaches have been presented to extend classical real-valued neural networks to
higher-dimension numbers, such as complex numbers [14].

Clifford algebras provide a higher-dimension generalization of the complex
numbers. Clifford neural networks extend classical neural networks to Clifford
numbers or multivectors, including not only complex numbers, but also quaternions,
and, in general, hypercomplex numbers [15–17]. In these works, new back error
propagation algorithms are introduced for multi-layered neural networks with Clif-
ford valued weight and activation values. The use of Clifford neurons and Clifford
multi-layer perceptrons has been demonstrated to give a better performance when
compared with standard real-valued neural networks. Clifford neural networks have
applications in pattern recognition and classification.
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Interesting approaches have been also proposed to extend Support Vector
Machines (SVM) in the GA context. SVM have been originally designed for binary
classification. Different solutions have been proposed to extend this method to multi-
class classification. Most of these solutions combine multiple binary SVM classifiers
to obtain amulticlass SVM classifier. Such an approach is used in both one-vs-all and
one-vs-one algorithms [18]. Conversely, other solutions consider all the classes at
once in a single large optimization problem [19]. These one-step methods, however,
present higher computational complexity. A more performant solution consists in
extending classical SVM methods to the GA space. In [20, 21], the authors intro-
duce Clifford Support VectorMachines (CSVM) by redesigning classical real-valued
SVM kernels in the Clifford algebra framework. In Clifford SVM, optimization vari-
ables are redefined as multivectors, multivector values are used as inputs and outputs
so that CSVMcan be applied to solvemulticlass classification tasks. According to the
Clifford algebra dimension, multiple classes can be represented. Geometric product
or Clifford product is used to design CSVM kernels for non-linear classification.
In multiclass classification tasks, using a single CSVM kernel instead of multiple
real-valued SVM kernels can significantly reduce the computational load. Clifford
SVM algorithms include complex, quaternion, and hypercomplex SVM algorithms.
Clifford SVMmethods have a large spectrumof applications including pattern recog-
nition, signal and image processing, robotics, and computer vision. In the medical
imagingfield, SVMclassifiers are used to classifymedical images and detect the pres-
ence/absence of a specific pathology [22, 23], while multiclass SVM classifiers are
needed when we have not only to detect the presence of a specific disease, but also to
estimate its activity according to multiple classes or levels [24]. Clifford SVM can be
an effective solution for themulti-level classification and grading of different patholo-
gies since they can guarantee higher result precision aswell as reduced computational
complexity with respect to the standard multiclass classification methods.

2.2.4 GA-Based Feature Extraction Methods

Image feature extraction algorithms are often applied as an important basis for
different medical image processing tasks, such as image segmentation, registration,
classification, and matching. In particular, image interest point detectors, such as
SIFT (Scale Invariant Feature Transform) [25], SURF (SpeededUpRobust Features)
[26, 27], and ORB (Oriented Fast and Rotated Brief) [28], are used to detect and
describe image local features that are invariant to image scaling, orientation, trans-
lation, rotation, and illumination changes and robust to local geometric distortion.
However,most of thesemethods are designed to handle gray-scale images and cannot
be applied directly to extract features frommulti-dimensional images.As an example,
multi-channel images are usually converted into gray-scale images before being
processed by these algorithms. This conversion leads to information loss since the
correlations among channels are not considered. To simultaneously capture relations
among multiple channels and maintain the performance of these methods also for
multi-spectral and multi-channel images, different approaches have been proposed
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that reformulate image feature extraction algorithms to operate in the GA framework
and treat directly multi-dimensional images. The GA-SIFT method is the reformula-
tion of the standard SIFT algorithm formulti-spectral images [29]. Exploiting theGA
theory, the authors propose a new representation of multi-spectral images including
spatial and spectral information. The feature points are detected and described in the
GA space. Comparison results reported in the paper show that the GA-SIFT method
outperforms some previously reported SIFT algorithms in the feature extraction from
multi-spectral images. Another algorithm that uses the GA theory to extract features
from multi-spectral images is the GA-SURF [30]. A Hessian matrix based on GA is
calculated for locating interest points in both spatial and spectral spaces. The calcula-
tion of theHessianmatrix is simplifiedbyusingboxfilters basedonGA,while interest
points are extracted according to the procedures of SURF and described in the GA
mathematical context. The paper demonstrates that the GA-SURF method is faster
and more robust than other existing feature extraction algorithms for multi-spectral
images. In [31], the authors propose a new version of the ORB algorithm based on
the GA theory for multi-spectral images. Multi-spectral images are represented as
GA multivectors and each spectral channel of multispectral images is mapped to
each blade of GA. For each 2D coordinate of the multispectral image, the image
data of the i-th band is mapped to the i-th blade of the associated multivector. The
scale information for multi-spectral images in both spectral and spatial domains is
derived in the GA space, where the inherent spectral structures of the images can be
successfully retained, while the image interest points are extracted and described in
the GA framework. Experimental results show that the GA-ORB algorithm is faster
when compared with the standard ORB method as well as with the GA-SIFT and
GA-SURF algorithms.

3 Hardware Implementations of GA-Based Image
Processing Applications

Geometric Algebra offers a powerful computing tool that allows for a simple and
elegant representation of complex mathematical operations in high-dimensional
spaces. The high symbolic representation power of GA allows for high-dimensional
objects and their complex transformations to be modeled in a direct, intuitive, and
universal way. However, the low symbolic complexity of GA is accompanied by its
high numeric complexity, which requires to handle calculations on high-dimensional
elements involving a great number of numerical coefficients. This computational
complexity is especially significant in compute-intensive applications, such as image
processing and medical imaging algorithms, which demand the real-time processing
of massive volumes of image data. For these reasons, GA-based algorithms need to
be accelerated by using specialized hardware architectures able to directly support
GA elements and operators. Different hardware coprocessors have been reported to
accelerate GA-based image processing applications.
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The coprocessor presented in [5] is conceived to support a suite of CGA-based
medical imaging algorithms, including segmentation, 3D modeling and registra-
tion of medical data, which require the execution of a large amount of rigid body
motion operations, namely, rotations, translations, and uniform scaling. The paper
first introduces a novel, simplified, and hardware-oriented formulation of these oper-
ations and then presents a specialized coprocessor properly designed to accelerate
CGA-based geometric operations by using advanced parallelism techniques, such as
pipelining. A Field Programmable Gate Array (FPGA) prototyping board has been
used for the implementation of the proposed coprocessor in the form of a System
on Programmable Chip (SoPC), while experimental tests have been executed on
several CT and MR medical datasets. Experimental results show average speedups
of about one order of magnitude with respect to the execution on a conventional
general-purpose processor.

In [32], the authors present an application-specific hardware architecture. The
proposed coprocessor is specifically designed to accelerate GA-based color edge
detection methods. The specialized architecture has been implemented on a custom
Application Specific Integrated Circuit (ASIC). The coprocessor supports the 3D
GA vector rotation operations required in the color image edge detection algorithm.
Experimental results show significant speedups of the proposedGAcoprocessorwith
respect to existing software implementations of GA.

Another hardware architecture has been proposed in [12] to accelerate aGA-based
edge detection algorithm that can be used to process multi-channel images, including
not only color images, but also multi-spectral medical images. The proposed edge
detection method exploits the generalized convolution operator and the generalized
Fourier transform for vector fields, which are based on the geometric product of
vectors given in the Clifford algebra framework. Using this GA-based approach,
the three channels of color images or multispectral medical images are treated as a
single entity rather than as separated entities as in the traditional image processing
algorithms. The proposed hardware architecture has been prototyped on an FPGA
device. Experimental tests executedon theFPGAprototype show that the coprocessor
allows for an average speedup ranging between 6× and 18× for different image sizes
against the execution on a standard general-purpose CPU.

4 Future Directions

4.1 Multi-channel Medical Imaging

Several works show that multi-channel imaging is very effective in prostate cancer
detection [33–35], in breast cancer detection [36], in brain cancer detection [37].

The great amount of available medical imaging data coming from different
modalities can be combined to improve the accuracy in automatic cancer detection,
segmentation, and classification in order to assist doctors in diagnosing accuracy.
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In the above scenario, a principal role is played by image data representation
dealing with multi-channel medical imaging. As shown before [11, 12], GC can be
used to represent a three-channel imaging data allowing for algorithms dealing with
the whole image set rather than with each single image. As result, a very effective
segmentation algorithm is obtained. In image processing, quaternions have been used
to represent color images [38, 39], color sensitive filtering [40], edge detection in
color images [41, 42], and cross correlation of color images [43]. Quaternions repre-
sentation can be adapted to three-channel medical imaging creating a framework to
develop powerful cancer segmentation and detection systems. In [44] a new model
for image processing tasks, such as image reconstruction and image denoising, of
multi-channel images is proposed. Themodel uses the octonion algebra for the repre-
sentation of multi-spectral images with up to 7 color channels. The same schema can
be used for representing seven-channel medical images dealing with the previously
described medical scenarios.

4.2 Radiomics

Radiomics is defined as the high-throughput extraction and analysis of large amounts
of quantitative features frommedical imaging data to characterize tumor phenotypes
[51]. Nowadays, there are two main applications of radiomics: the classification of
lesions/nodules (diagnostic) or prognostication of established cancer (theragnostic).
Radiomics features are divided in two wide classes: “semantic” and “agnostic”
features [45]. The “semantic” features are used to describe qualitative morphological
aspect of lesions such as size, shape, location, vascularity, speculation, necrosis, and
attachments or lepidics [46]. The “agnostic” features refer to invisibly quantitative
description of lesions heterogeneity such as textures, histogram, wavelets, Laplacian
transforms, Minkowski functionals, and fractal dimensions. Textures can be also
obtained through first, second, and high-order statistical methods [47–50].

GC can improve radiomics features’ number and quality introducing new oper-
ators for feature extraction in medical image. The use of hypercomplex Fourier
transforms [52–54], quaternionic Gabor filters [55], and Clifford wavelet filters [56]
can be explored to select powerful features for cancer diagnostic and theragnostic.

In addition, the high number and complexity of the “radiomics space”, suggest
innovative approaches for features representation, separation, and classification.
Geometrical transformations, defined in the context of GC, as well as dimension-
ality reduction techniques [23] can help features processing efficiency and results by
providing efficient algebraic methods for manipulating geometrical data as well as
flexible nonlinear functions operating in high dimensional spaces.
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4.3 Deep Learning

Deep Learning (DL) models are composed of many layers transforming input image
data in classification results. With more details, DL models are composed of one
or more convolutional layers for image feature detection and extraction and one or
more fully connected layers for data classification. Generally, a convolutional layer
consists of neurons connected to the input images or to the previous layer outputs
extracting image features while scanning through an image [57].

Following our analysis in Radiomics, several new image filters, i.e. feature detec-
tors, can be developed for qualitative and quantitative feature extraction. At each
layer, the convolution output (feature map learned from that layer) becomes the
input for the next convolutional layer, and so on. GC can be also used to replace stan-
dard scalar methods, such as convolution, Fourier transform, wavelet transform with
more powerful GA-based methods, such as Clifford convolution, Clifford Fourier
transform, Geometric Algebra wavelet in each layer of the Convolutional Neural
Network. Its use allows for extending deep learning methods from scalar data to
vector data involving multi-channel and multi-spectral images.

As pointed out before, the output feature maps of the final convolution layer are
connected to one or more fully connected layers through learnable weights. Usually,
the final fully connected layer has the same number of output nodes and classes [57].
GC has been used to generate new neural network models and new Support Vector
Machine models [15, 20, 21, 58]. As an extension, GC can be used to generate new
fully connected layers dealing with vector data for new and more powerful Deep
Learning models.

5 Conclusions

Medical images contain powerful and unexplored hidden information. Radiomics
represents a newdiscipline for dealingwith that information. On the other hand,Deep
Learningmodels are attractingmore andmore researchers for their classification and,
in some cases, forecasting results. They are complementary disciplines and can be
easily integrated in very powerfulmodels in pathology diagnosis and prognostication.
Geometric Calculus is able to support each single layer development aspect as well
as model integrations and developments by providing the necessary support towards
the personalized medicine.
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Optimal Combination of Orientation
Measurements Under Angle, Axis and
Chord Metrics

Leo Dorst

Abstract Orientation measurements of attitudes estimate relative rotations of
objects. The non-commutative algebra of rotations makes transference of techniques
inspired by the usual vector-based approaches for translations non-trivial.

We treat three differentmetrics thatmay be used to compare orientations, compute
the corresponding optimal averages, and relate them in a unified framework. The
metrics are based on measuring differences in angular arc, axis tilt (or bivector) and
rotational chord. We also compute the optimal combination of orientation estimates
according to their local variances, as may be employed in a Kalman filter update
step.

Our use of the geometric algebra characterization of rotations (through the bivector
angle of rotors) allows us to perform computations and comparisons in a coordinate-
free manner, and thus to compare and evaluate the alternative parametrizations. We
briefly discuss how this subsumes and extends the traditional quaternion representa-
tion of rotations.

1 Processing Orientations and Rotations

In many applications of computer vision to 3D scenes, we encounter the problem of
pose estimation. We may need to know where an object is in space relative to the
camera, either to measure that object or, as in robotics, to calibrate our own stance
in space. Typically, the scene or camera is moving, and we obtain a sequence of
orientation measurements (or ‘attitude measurements’ for applications in space). We
would like to combine the various measurements in a consistent way to obtain the
best current pose estimate. For the translational (i.e. positional) part of the stance,
this is not too hard; but orientations are more involved. Typical problems that need
to be addressed are:
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• Interpolation or extrapolation of orientation sequences
• Filtering of orientation sequences
• Minimum variance estimation of orientations of the same pose.

It is common to describe orientations (or, equivalently, attitudes) using rotation
operations, since the orientation as the state of an object is naturally characterized by
referring to a standard object and a rotation operation: namely the (relative) rotation
one has to give the reference copy of the object to reach the actual orientation. Though
we will tend to use the three terms orientation, attitude and rotation interchangeably,
‘rotations’ will be the central term in our treatment.

1.1 Manifold Issues

We cannot immediately use familiar Euclidean techniques to solve these orientation
problems, since the parameter space of rotations is not just a vector space to which
linear techniques apply. Rotations in more than 2 dimensions form a (Lie-)group
with a non-commutative multiplication (the composition of rotations), and ‘live’ on
a somewhat unusual manifold. Yet one can still use the intuition of the processing
of translations to develop very similar techniques for orientations, but now carefully
taking into account the proper algebra. This is done by a combination of the technique
of local linearization through employing the tangent space of themanifold, combined
with a choice of algebraic representation for the non-commutative nature of the
rotation operation.

There are many papers processing rotations or orientations; reference [1] contains
a very extensive list, focussed on Kalman filtering in particular. Of course all workers
attempting to provide processing of filtering of rotations recognize that accurate
treatment requires taking themanifold structure into account.Yet even if oneperforms
a linearized analysis in the local tangent space (and many do), this still requires the
choice of a way to represent both the local perturbation and the rotational elements
that are to be perturbed, plus the assignment of a metric, to measure the relative
significance of differences.

1.2 Representation Matters

In older papers, such representational choices are not always made explicitly; one
tends to use a standard representation. This may inadvertently affect the flexibility or
applicability of the results. The natural noise model for one’s mathematical represen-
tation may actually not be reasonable in practice. Lately, some structural frameworks
for Lie-groups (including rotations) have been formulated [1, 7], which allow one to
postpone the representational choice. Among the representations one encounters:
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• Rotation matrices are notoriously awkward: all parametrizations by Euler angles
contain discontinuities; they reside on a non-flat submanifold (orthogonal matri-
ces) of the more tractable manifold of all matrices, and their derivatives as skew-
symmetric matrices are sparse in the parametrization of change.

• Unit quaternions are in common use, in the usual representation of ‘4D complex
numbers’. They are better behaved in terms of singularities, but there is still a
mismatch between the number of dimensions of the 4D embedding space, and the
3D tangent space. Also, quaternion perturbation is non-linear, one of the reasons
Kraft [11] gives for his need to resort to anExtended Kalman filter to process them.
We will view this need as caused by the representation of orientations, rather than
by their essence. Even then, there are many options for metrics [8].

• Rotors or spinors fromgeometric algebra are slowly gaining acceptance, especially
in higher dimensions. They permit easy integrationwith the objects that are rotated,
through the geometric sandwiching product. As we will show, even in 3D there is
an advantage to rotors over quaternions, especially when they are represented as
exponentials of bivectors. These rotors and their bivectors will be our preferred
description.

Hertzberg et al. [7] give a general ‘encapsulation’ framework for Kalman filters on
Lie groups, and work out the specific cases of directions and orientations in detail,
demonstrating how their framework uncovers the common structure in various rep-
resentations. But even they use the classical vector structure of the tangent space
as their fundamental tool for modeling. Kanatani [9], too, uses the local Lie alge-
bra structure, now in the form of sparse skew-symmetric matrices, and their vector
characterization by means of cross products.

1.3 The Geometric Algebra Perspective

If one admits parametrization of the operations not by mere vectors from (metric)
vector space, but by the geometric algebra of that vector space, one’s tools for
operational parametrization extend considerably. In that geometric algebra context,
rotations are orthogonal transformations represented efficiently by rotors (a form of
spinor). This works in n-dimensional space. In 3D, the rotors strongly resemble unit
quaternions, but now embedded in the real algebra of elements of the 3D space itself.
And in the full geometric algebra, those rotors can be parametrized by the linear
space of bivectors (namely, as their exponentials). This gives their tangent space the
structure of a Lie group, simply by applying the geometric product to the bivector
characterization. The embedding permits the exponentialmap to operate, by the same
geometric product, on the manifold itself, and also to make the rotational elements
act (in a spinorial fashion) on all the linear subspaces of the vector space they act on
(what roboticists would call the ‘task space’.)
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When applied to 3D rotations, the geometric algebra modelling clears up the
mysterious nature of quaternions (they are geometric ratios of real vectors, a con-
struction that easily extends to n dimensions), and permits aminimal parametrization
by the linear space of bivectors—the available exponential map takes care of the ‘unit
quaternion’ nature of the desired rotation representation. These instruments greatly
clarify the computational relationships of the tangent space parametrization of per-
turbations and the rotational elements they affect. And an augmented set of tools,
including geometric calculus, is then available to solve problems analytically.

The geometric algebra modeling does not resolve all problems in rotation pro-
cessing. As for unit quaternions, the rotor representation appears to provide a ‘double
cover’, so one should take care that all elements are part of the same sheet (though for
composite objects the double cover does actually have a physically meaningful inter-
pretation). And the fact that things can be compactly and consistently represented
does not imply that problems also have a closed form solution: attempting to find
an average rotation that minimizes the sum of relative bivectors is a counterexample
treated in this paper. The non-commutative algebra of the tangent space, which is
fundamental to Lie groups, does not disappear in geometric algebra (and it should
not!); though we hope it may become more tractable when additional techniques are
developed for the framework.

In this paperwe present how the geometric algebramodelling of the tangent spaces
of the particular Lie group of 3D rotations extends our analytical tools. The linear
bivector nature of the tangent space allows combinations based on the locally flat
nature of the tangent space to be expressed compactly—as we will see in the update
step for aKalman filter for rotations. Constructing actual operators from the perturba-
tions is more clearly a separate step than in the matrix or quaternion frameworks, and
this helps. Even within the geometric algebra framework, there are different ways of
characterizing the noisy perturbations, and these can be made to correspond to actual
measurement situations, rather than being chosen for convenience in one’s represen-
tation of rotations. We treat an arc metric, a bivector metric, and a chord metric on
the perturbations. Their unified consideration within 3D geometric algebra allows
us to give explicit algebraic relationships between these characterizations, exact or
to first or second order, so that the rotation filters and their results can be explicitly
related. We show how the chord metric on rotors turns out to be very tractable, and
to be virtually equivalent in its results to more classical metrics.

1.4 Paper Overview

We build up our understanding of this geometric algebra representation in a briefly
tutorial manner, first introducing geometric algebra and its rotors in Sect. 2. We
investigate, in Sect. 3, three reasonable metrics that one might impose on rotations,
based on net differences in arc, bivector and (rotor) chord. We then show how to
average estimates of poses for each of those metrics in Sect. 4. This leads naturally
to partly known results on interpolation in Sect. 5. In Sect. 6 we present new results,
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when we investigate how to characterize noise in orientation, and how to combine
various estimates in an optimal manner by minimizing the total error covariance, as
required in the Kalman filtering update step. We provide details on the conversion
between the various parametrizations of orientations, to first order, including their
covariance properties. In the Conclusions of Sect. 7 we discuss how the rotor chord
representation effectively combines accuracy with tractability.

2 Rotation Representation by Rotors

2.1 Geometric Algebra

We give a brief summary of geometric algebra, focusing on the concepts and opera-
tions we need. More complete tutorial introductions may be found elsewhere, such
as in [3].

Any vector space with a dot (or inner) product based on a symmetric bilinear form
has a geometric algebra, in particular the n-dimensional Euclidean vector spaces.
The basis for the algebra is the geometric product, which is bilinear, associative,
commutes with scalars, and for a vector x with itself equals a scalar equal to the
dot product x · x. Because of its fundamental nature, we will denote the geometric
product of two quantities A and B simply as AB. (This gives no confusion with the
scalar product in the vector space, since that is just a special case of the geometric
product, as is the product of two scalars.)

The geometric product is not commutative, and that fact is related to the properties
of parallelness and perpendicularity. Since those properties are important, we define
two convenient derived products, the inner and outer product. For vectors a and b,
these are defined as

inner product : a · b ≡ 1
2 (a b + b a)

outer product : a ∧ b ≡ 1
2 (a b − b a).

The inner product is symmetric and scalar-valued. For vectors it coincides with the
familiar dot product, but it is naturally extended to the multivectors that constitute
the geometric algebra. It is associated with the geometrical intuition of orthogonal
projection and perpendicularity. The outer product is anti-symmetric and for vectors
is ‘bivector-valued’. Bivectors are interpretable as directed area elements (similar to
the way that vectors are directed line elements), at least when they are factorizable as
an outer product of vectors (and in 3D, all of them are). The outer product thus makes
the geometrical concept of a ‘span’ of vectors a computable element of the algebra,
which is a handy ‘upgrade’ of linear algebra. It relates to parallelness of vectors and
of the subspaces it spans. In 3-dimensional Euclidean space, the outer product is
related to the cross product from classical vector algebra, as we show below.
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The outer product can be extended by associativity; and generates elements rep-
resenting subspaces of various dimensionalities. These subspaces are called blades
and their dimensions grades. Due to the anti-symmetry, the k-vectors form an (nk )-
dimensional linear space (in which the k-blades form a manifold). The highest non-
zero blade in an n-dimensional space is an n-blade; it can be interpreted as an n-
dimensional oriented hypervolume.

Geometric algebra focuses on blades and their products. Semantically, it is there-
fore the quantitative algebra of the subspaces of a metric vector space. The geometric
product of an element grade k and an element of grade � in general contains ele-
ments of grades k + �, k + � − 2, · · · , |k − �|. The part of grade i of an element A
is selected by the grade operator denoted 〈A〉i . So for example for two vectors a and
b we have a · b = 〈ab〉0 and a ∧ b = 〈ab〉2.

The norm squared ‖A‖2 of a quantity A is defined as

‖A‖2 = 〈˜AA〉0, (1)

where ˜A (alternatively denoted A∼) is the reverse, obtained by writing all multiplica-
tive factors in A in reverse order. For instance for vectors a and b we have ã = a
and (a ∧ b)∼ = b ∧ a = −a ∧ b. For blades in a Euclidean vector space, ‖A‖2 is a
positive scalar quantity, so its square root is well-defined.

A very useful property of the geometric product is its invertibility: we can divide
by vectors, bivectors (or rather, 2-blades) etcetera. Dividing is multiplication by the
inverse of an element (if it exists); and for blades this gives:

A−1 ≡ ˜A
˜AA

. (2)

The inverse of a vector is therefore a−1 = a
a a = a

a·a = a
‖a‖2 , and indeed it is easily

verified that a−1a = 1. A unit vector is its own inverse, a unit bivector B has its
reverse ˜B = −B as inverse.

The volume element of the n-D space In is an n-blade called its pseudoscalar; it
has a sign reflecting the chirality. In R

n one commonly normalizes it to unity. Then
division by the unit pseudoscalar In converts an element of grade k into its dual of
grade n − k, through division by the pseudoscalar:

duality operation: A∗ = A I−1
n . (3)

In 3D, this duality can be used to convert a 2-blade (representing a rotation plane)
to an axial vector (representing a rotation axis). This conversion is important in the
context of this paper since the classical description tends to use the latter, while the
geometric algebra approach uses the former—among other reasons, because that also
works in n dimensions, not just 3. Retrieving A from A∗ involves ‘undualization’:
A = (A∗)−∗, which in Euclidean R

3 differs from dualization by a minus sign.
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Note that the norm of the 2-blade and its dual vector are the same, since˜I3 = I−1
3 :

‖A‖2 = 〈A˜A〉0 = 〈AI−1
3 I3˜A〉0 = 〈AI−1

3 (AI−1
3 )

∼〉0 = ‖A∗‖2. (4)

A specific example of duality in 3D is the relationship between the vector cross
product (which yields a vector) and the outer product (which yields a bivector):

a × b = (a ∧ b)∗. (5)

The inverse involved in the duality Eq. (3) ensures that e1 ∧ e2 corresponds with the
vector e3 = e1 × e3, for a right-handed oriented I3 = e1 ∧ e2 ∧ e3, so a right-hand
rule applies.

2.2 The Geometric Algebra of 3-Dimensional Euclidean
Space

Let us list the elements of the geometric algebra of 3-dimensional Euclidean space,
our only concern in this paper. Linearity of the construction means that we are free
to choose our basis. For convenience, we use an orthonormal basis {e1, e2, e3} for
the vectors. Coefficients of vectors or scalars on this basis are all real. The ‘basis’
for the scalars is thus {1}. For an orthonormal basis, ei ei = 1, and for i 	= j we have
ei e j = −e j ei (= ei ∧ e j ).

With this we can develop the geometric product of two general vectors a and b.
Choose a suitable basis to have a = ‖a‖ e1, and b = ‖a‖ (cos θ e1 + sin θ e2). This
implies that I ≡ e1 ∧ e2 can be interpreted as the unit area element of the (a,b)-
plane, and θ is the angle from a to b in that plane I (where the ‘positive direction of
angles’ is denoted by the sign of I). That gives:

a b = ‖a‖ ‖b‖ (cos θ + I sin θ). (6)

Since this result is independent of the coordinate system (because the definition of the
geometric product is), the geometric product always contains this complete geometric
information about the relationship of the vectors: relative angle θ and common plane
I, and relative size (the latter is slightly better conveyed by the geometric division
a/b = a b−1 = (‖a‖/‖b‖)(cos θ + I sin θ)which gives ‖a‖/‖b‖ as the magnitude).
The fact that a can be retrieved from knowing b and the quantity (a/b) (namely as
a = (a/b)b) implies that the geometric ratio contains the full information on the
relative geometry of a and b.

Actually computing the geometric product for two general vectors on an arbitrary
orthonormal basis reveals how familiar the coefficients are:
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(a1e1 + a2e2 + a3e3) (b1e1 + b2e2 + b3e3)

= (a1b1 + a2b2 + a3b3)

+ (a2b3 − a3b2)e2e3 + (a3b1 − a1b3)e3e1 + (a1b2 − a2b1)e1e2 (7)

This confirms that the scalar part is equal to the dot product, and shows how the part
of grade 2 has coefficients which are similar to that of a cross product but now on a
bivector basis {e2 ∧ e3, e3 ∧ e1, e1 ∧ e2} = {e2e3, e3e1, e1e2} rather than the vector
basis {e1, e2, e3}. This is the coordinate form of the duality correspondence Eq. (5).

Taking the geometric product of three vectors a b c, one finds that the product of 3
vectors contains a 1-vector part and a 3-vector part. That 3-vector part is a multiple of
a basis trivector e1 ∧ e2 ∧ e3, by the determinant of the matrix (a b c). We will often
denote this trivector element by I3, since it is independent of the actual orthonormal
basis used: it is just the oriented unit volume element in 3D.

As an 8-dimensional basis to denote elements of the geometric algebra of 3-
dimensional real Euclidean space, we thus obtain:

⎧

⎪

⎨

⎪

⎩

1
︸︷︷︸

scalars

, e1, e2, e3
︸ ︷︷ ︸

vector space

, e2 ∧ e3, e3 ∧ e1, e1 ∧ e2
︸ ︷︷ ︸

bivector space

, e1 ∧ e2 ∧ e3
︸ ︷︷ ︸

trivector space

⎫

⎪

⎬

⎪

⎭

. (8)

The geometric product multiplication table of these basis elements is as follows. (We
indicated the blades with geometric products to save space; for our orthonormal basis
this is allowed since ei ∧ e j = ei e j if i 	= j .)

1 e1 e2 e3 e2e3 e3e1 e1e2 e1e2e3
e1 1 e1e2 −e3e1 e1e2e3 −e3 e2 e2e3
e2 −e1e2 1 e2e3 e3 e1e2e3 −e1 e3e1
e3 e3e1 −e2e3 1 −e2 e1 e1e2e3 e1e2
e2e3 e1e2e3 −e3 e2 −1 −e1e2 e3e1 −e1
e3e1 e3 e1e2e3 −e1 e1e2 −1 −e2e3 −e2
e1e2 −e2 e1 e1e2e3 −e3e1 e2e3 −1 −e3
e1e2e3 e2e3 e3e1 e1e2 −e1 −e2 −e3 −1

Note that the basis 2-blades each square to−1.Yet these are not complex numbers:
for instance, e1 ∧ e2 does not commutewith e1, whereas a complex scalar would have
done so. In 3D, the pseudoscalar I3 = e1e2e3 does commute with all elements, and
it does square to −1. Still, in R

n the pseudoscalar only commutes for odd n, and
only squares to −1 when n = 2 mod 4 or n = 3 mod 4), so that the pseudoscalar
should not be considered to be the complex unit either. Actually, the point is moot:
with the availability of truly geometrical plane elements that square to −1, we will
not need to employ complex numbers to perform rotations.

The bilinearity and associativity of the geometric product imply that it can simply
be implemented on the basis of Eq. (8) as a 23 × 23 matrixmultiplication in a standard
linear algebra package, and you can gain some experiencewith it in thatway.But once
you switch over to geometric algebra, there aremore efficient direct implementations,
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especially for the geometrically meaningful operations which tend to be rather sparse
in that coarse matrix viewpoint.

2.3 Reflections and Rotations

We can think of the blades of the geometric algebra of R3 as real representations
of spanned subspaces of dimension 0, 1, 2 and 3 within a 3-dimensional Euclidean
space. These indicate weighted, oriented directional elements of various dimensions
in R

3. We can change such directional elements in two closely related ways: by
reflection and by rotation.

The reflection of a vector x into a plane through the origin characterized by the
normal vector a is given by the elementary classical formula:

x 
→ x − 2 (a · x) a/‖a‖2. (9)

Using the geometric product to express the dot product as a · x ≡ 1
2 (a x + x a), and

our capability of dividing by vectors, we can rewrite this to the form

x 
→ − a x a−1. (10)

Two reflections make a rotation: first reflecting in a, then in b, gives a rotation
around an axis perpendicular to the a ∧ b-plane, by an angle that is twice the angle
from a to b (and this order also gives the sense of positive rotation). Therefore, when
we have two unit vectors a and b, the operation

x 
→ b(a x a−1)b−1 = (b a) x (b a)−1. (11)

is that rotation in the a ∧ b plane. We observe that this rotation is generated by an
element R = b a, as applied to a vector by the sandwiching product:

x 
→ R x R−1. (12)

It is common to avoid the inversion by computing the element R as the product of
two unit vectors. This normalization allows one to replace the inverse by a reverse,
and thus rewrite the sandwiching product to

x 
→ R x ˜R. (13)

This normalized element R is called a rotor, and it satisfies

‖R‖2 = R˜R = 1, (14)
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as is easily verified: R˜R = b a a b = 1. We will use these rotors as the representa-
tion of rotations. The fact that elements of geometric algebra can be (recursively)
expressed as weighted sums of geometric products of vectors implies that the appli-
cation of rotors extends beyond vectors: any element of the geometric algebra rotates
as X 
→ R X ˜R, i.e., by sandwiching.

Writing out the geometric product, we find for the unit vectors a and b:

b a = b · a + b ∧ a = cos(θ/2) − I sin(θ/2) = e−Iθ/2, (15)

where θ/2 is the angle from a to b, and I is the unit 2-blade for the (a ∧ b)-plane.
The exponential notation is based on employing the geometric product in the usual
power series definition:

eX = 1 + X + 1
2 X

2 + 1
3! X

3 + · · · , (16)

using the algebraic property that I2 = −1 to produce the trigonometric functions.
This operator (b a) rotates over an angle θ in the I-plane (or, if you prefer, around
the I∗-axis). The fact that the rotor can be written only in terms of Iθ shows the con-
venience of the parametrization in terms of this bivector angle Iθ . That weighted,
oriented 2-blade contains all information about the rotation: both the magnitude of
the angle and the oriented plane in which it should be measured. Keeping these
in one quantity Iθ makes the characterization geometrical, independent of the con-
vention of clockwise or anti-clockwise assignation. From this bivector angle, one
can immediately construct the rotor performing the corresponding rotation through
exponentiation (well, after multiplying by − 1

2 to conform to conventions of angular
sign and magnitude as Eq. (15) shows).

Geometric algebra contains a logarithm to retrieve the bivector angle from a rotor.
In 3D, that is a straightforward inversion of the definition of the exponential:

log(R) = 〈R〉2
‖〈R〉2‖ atan

(‖〈R〉2‖
〈R〉0

)

, (17)

where 〈R〉k denotes the grade-k-part of R. We will take the principal value of this
logarithm, with a magnitude less than π/2, so that the rotation angle is in the range
(−π, π), corresponding to rotors for which 〈R〉0 ≥ 0. This formula for the logarithm
of a rotor is ill-defined when it has no bivector component. When this occurs at
R = 1, we define the logarithm to be 1; when this occurs at R = −1, we can return
an arbitrary bivector Iπ . But in what follows, we will avoid this ambiguous situation
by ensuring that 〈R〉0 is non-negative. This is no loss of applicability to orientation
measurement, since using the transformation formula x 
→ R x ˜R, we see that a rotor
R and ‘minus that rotor’ −R give the same resulting rotation to a vector x.
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Fig. 1 A rotor RIθ can be
visualized as an oriented arc
on the intersection of the unit
sphere with the I-plane, of
arc length θ/2. The arc
should be allowed to slide
freely along the circle, since
both b/a and its rotated
version b′/a′ must represent
the same rotor

2.4 The Geometry of Rotors: Adding Spherical Arcs

It is sometimes useful to have a visualization of the rotors, and their combination.
We will provide this for 3D rotations. This visualization juggles the two alternative
but equivalent representations: as a geometric product of unit vectors a and b, and
as the exponential of a 2-blade Iθ :

RIθ = b a = e−Iθ/2, (18)

which are related by I = (a ∧ b)/‖a ∧ b‖ being the oriented plane of rotation, and
θ the effective rotation angle, twice the angle between the reflection vectors. Note
that this bivector angle Iθ , and with it RIθ , is invariant under a common rotation of
a and b in their common plane. We can visualize RIθ in Fig. 1 as an arc on the unit
sphere, of arc length θ/2, in the I-plane (we will take +θ since that sign corresponds
with the actual rotation performed by the rotor). But this arc should be allowed to
be anywhere on the great circle in which the I-plane cuts the unit sphere, since the
rotor is invariant under rotations in the I-plane.

These ‘slidable arcs’ help visualize the composition of two rotations R1 then R2

in 3D: represent each by an arc of half their angle on the great circle cut into the unit
sphere by their rotation plane. Now rotate the arc of the second rotation R2 in its
plane I2, so that its start connects to the end of the rotor R1 in its plane I1 (which may
need to be rotated to an intersection point to make this possible). Then a great circle
arc that connects the tail of R1 to the head of R2 is the arc of the resulting rotation
R2R1: its attitude gives the resulting rotation plane, and the total resulting angle is
twice its arc length, see Fig. 2.
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Fig. 2 Composition of
rotations through
concatenation of their rotor
arcs: R2R1 is the composite
rotor of doing first R1, then
R2, and is the arc oriented
completing the spherical
triangle formed by the arcs
of R1 and R2

Why does this work? Let us switch to viewing the rotors again as a product of the
form b a, the two unit vectors a and b making a ‘vee’. We can rotate this vee freely
in its plane, and still have the same rotor. Now, composing two rotors (in possibly
different planes) is identical to composing two double reflections, in two planes with
these vectors as their unit normals. It is then natural to rotate the two vees of normal
vectors so that the last vector of the first (rightmost) rotor and the first vector of the
last (leftmost) rotor coincide (since we are free to rotate them). In 3D, this can always
be done: it amounts to moving them both to the common line of intersection of the
two rotor planes. Let us call this common unit vector direction b; then the first rotor
can be written as ba, and the second as cb. Combining the two in the correct order
gives (c b) (b a) = c (bb) a = ca (since b is a unit normal vector). So the common
direction of the aligned vees cancels, and what is left is the vee ca, defining the arc
of the net rotation using the first vector of the first realigned rotor, followed on the
left by the second vector of the second realigned rotor. The arc defines the resulting
rotation plane and angle.

Thus rotor multiplication implements this kind of arc addition on the unit sphere.
This makes it easy to predict the consequence of performing two rotations in 3D—as
easy as combining translations, really.

2.5 Rotors and Quaternions

Rotors are closely related to quaternions: quaternions are simply rotors separated
from their natural context in geometric algebra (and because of that, to many
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people unfortunatelymoremysterious than they need to be). Rotors are real operators
in a real Euclidean vector space, applying to any element in its geometric algebra
(scalars, vectors, bivectors, trivectors, other rotors, etc., which represent real geomet-
ric primitives such as points, lines, planes, volumes and rotation operators). When
split into its grades, a rotor has two interpretable components: a scalar part (related
to the cosine of the angle) and a bivector part (containing sine and rotation plane).
In quaternion literature, the non-scalar part of a quaternion is often seen as a vector
that denotes the rotation axis, but expressed on a strange basis of complex vector
quantities i , j , k that square to −1 and do not commute. For us, these basis elements
are not vectors but bivectors, representing the coordinate planes:

i = e1 I3 = e2e3, j = e2 I3 = e3e1, k = e3 I3 = e1e2, (19)

with I3 the 3D pseudoscalar; so we prefer to characterize a rotation directly by its
plane rather than its complexified axis. Note that our basic geometric product then
automatically gives the quaternion relations j i = k and cyclic, and i j k = 1; i.e., the
usual quaternion product is a special case of the geometric product. Quaternions are
considered non-intuitive, due to their confusing correspondence to complex quan-
tities, and due to the artificial way of mapping vectors to be ‘pure’ quaternions in
order to allow them to be rotated. We view quaternions as a historic, even antiquated,
encoding of rotors out of their natural context [3].

As an aside that may convince the skeptics, this geometric view of quaternions is
actually productive: it has led to a new but simple and fast formula to compute the
quaternion for two vector correspondences [6].

Given two pairs of corresponding vector (x, x′) and (y, y′), the (unnormalized) rotor V that
produces the correspondences x′ = V x V−1 and y′ = V y V−1 is:
V = (y′ + y) · (x′ − x) + (y′ − y) ∧ (x′ − x).

Converting this to the vector notation of quaternions merely involves replacing the
outer product by a cross product. It is geometric algebra’s credit that this basic formula
for generating a quaternion based on data had not been found in the quaternion
literature. Viewing rotors (and hence quaternions) as multiple planar reflections is
crucial to its simple proof in [6].

3 Three Metrics for Orientations and Rotations

If one had to design a metric for two orientations (or attitudes) of an object, to
give a measure for their difference, some function of the angle between them would
seem appropriate. When considering rotations, which differ in both angle and in
their rotation planes, it seems less obvious how to mix those into a sensible measure.
Since we treat rotations and orientations as interchangeable, one could argue that the
spatial issue arises for orientations as well.
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In this paper, we study three different methods of measuring orientation differ-
ences, and the consequences they have for how different estimates are combined. To
compare them, we need a common setting for the curved group manifold of rotations
and its flat (Euclidean) tangent spaces. The metric one employs in those tangent
spaces is to be expressed in one’s chosen parametrization of rotations.

Recently, two practical frameworks for processing data in this algebra of 3D
rotations and other Lie algebras have been formulated, in Bourmaud et al. [1] and
Hertzberg et al. [7]. Both are usable, but the encapsulation framework of [7] has
a simpler notation, and is more explicit on the metric consequences of different
parametrizations; that is why we adapt it in this paper.

The encapsulation framework elegantly encodes the mapping between a mani-
fold S (in our case, SO(3)) and the Euclidean tangent space Rn . We quote directly
from [7]:

We propose to implement the mapping by means of two encapsulation operators � (“box-
plus”) and � (“boxminus”) where:

� : S × R
n → S (20)

� : S × S → R
n (21)

Here, � takes a manifold state and a small change expressed in the mapped local neighbor-
hood in Rn and applies this change to the state to yield a new, modified state. Conversely, �
determines the mapped difference between two states.

The encapsulation operators capture an important duality: The generic sensor fusion
algorithm uses� and� in place of the corresponding vector operations− and+ to compare
and to modify states, respectively, based on flattened perturbation vectors, and otherwise
treats the state space as a black box. Problem-specific code such as measurement models,
on the other hand, can work inside the black box, and use the most natural representation
for the state space at hand.

The choice of parametrization one employs for the rotationsmay be a compromise
between mathematical tractability and actual noise characteristics of one’s measure-
ment setup. Depending on how we consider the noise in rotations, a metric may
suggest itself. The encapsulation framework connects that metric uniquely to the
parametrization: the Euclidean norm in the parametrized tangent space will be the
metric for comparison of rotations (Lemma 2 in [7]). This metric is thus induced by
the chosen � operator, as

d : S × S → R : d(R1, R2) = ‖R2 � R1‖. (22)

Tying the metric this directly to the parametrization connects the two choices in a
formalwaywhich permits us to compare and relate the various options.We appreciate
the increased clarity which such a strict use of the encapsulation framework enforces
explicitly.

So our focus will be on the tangent space parametrization. Our reference [7] uses
classical linear algebra, but we will find that the same principles can be given more
analytical techniques by employing the geometric algebra of the tangent spaces.
To enable this, we characterize rotations (and hence relative orientations) by rotors
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R, which may also be characterized by their bivector B = −Iθ/2.1 This in itself is
simply the language in which we describe the rotations, and does not yet involve
a parametrization which uniquely fixes (by means of the encapsulation framework)
the metric of the tangent space. We will initially show the vector form of each of
our parametrizations, to correspond to the techniques in [7]. But we quickly switch
over to geometric algebra bivectors (their duals), since those give us more tools
for manipulating the induced metric structure of the tangent space—and suggest
more clearly how one would extend these techniques to arbitrary dimensions. The
connections of geometric algebra rotors to traditional quaternions will allow us to
identify some of the metrics with alternatives discussed in [8] for quaternions.

3.1 Arc Metric

A noisy measurement of a rotor can be considered as a perturbation afterward by an
extra rotor, typically close to the identity 1:

multiplicative rotation noise: ea R = ea eB, (23)

where a is a small bivector (the small font reminds us). Due to the non-commutation
of a and B, we cannot write this simply as a single exponential. In terms of [7],
we have effectively defined an operation� : S × R

3 → S combining a perturbation
vector in the Euclidean spaceR3 to characterize a transformation to a new rotor in the
rotor manifold S. As we said, our reference [7] prefers characterization by a vector,
so to conform we simply take one whose dual is the bivector a, i.e., −→a ∗ = a. Then
we can cast our perturbation as:

R �a
−→a ≡ e

−→a ∗
R. (24)

(The subscript ‘a’ in �a index refers to ‘arc’ or ‘arc angle’ of Fig. 1, we will define
other � operators later.)

Accompanying this is a difference operation �a : S × S → R
3 which compares

two rotors:
R2 �a R1 ≡

(

log(R2 ˜R1)
)−∗ =

(

log(R2 ˜R1)
)

I3, (25)

undualizing to retrieve the vector −→a characterizing the perturbation (though in the
remainder we will be content with retrieving the bivector a). One easily verifies that
(R �a a) �a R = a, as required. In the encapsulation framework, a natural metric is
associated with this difference operation, according to Eq. (22):

1We assume, without loss of generality, that those bivectors are taken within the main range of
half-angle values, so B is a unit bivector multiplied by a half-angle in the range (−π, π) (avoiding
the ambiguous value ±π altogether).



62 L. Dorst

da(R2, R1) = ‖R2 �a R1‖ = ‖ log(R2 ˜R1)‖, (26)

which is the absolute magnitude of the difference in angle (modulo 2π ). This
Euclidean norm has the same value whether defined on the vector −→a or its dual
bivector a, by Eq. (4), so we dropped the I3 from Eq. (26). Either way, da evaluates
to ‖a‖ = |θ/2|, half the absolute angle of the perturbation (since rotors employ half
angles).

This is effectively the metric �3 = 2�6 of [8], even though the formula given
there is rather different.

3.2 Bivector Metric (or Axis Metric)

Alternatively, if one has characterized the rotation by an axial vector
−→
b , it is naturally

tempting to characterize the noise by a small additive vector perturbing this axis, and
this is very commonly done (some examples are [5, 9, 14]). In terms of geometric
algebra, this additive axis perturbation is equivalent to changing the bivector by a
small additive bivector, so that the rotor eB becomes the noisy rotor

additive bivector noise: eB+b. (27)

Again, we could use this bivector b directly, but to show the correspondence with the
encapsulation framework of [7], in this section we temporarily employ a vector

−→
b =

b−∗. Then converted to this required vector characterization within the encapsulation
framework, but using the geometric algebra bivector exponentiation, Eq. (27) reads
as:

R �b
−→
b ≡ elog(R)+−→

b
∗
, (28)

with the subscript ‘b’ on � denoting ‘bivector’ (as opposed to the ‘arc’ of Sect. 3.1).
The accompanying �b is:

R2 �b R1 ≡ (

log(R2) − log(R1)
)−∗

(29)

The associated metric is:

db(R2, R1) = ‖R2 �b R1‖ = ‖ log(R2) − log(R1)‖. (30)

We have again omitted the dualization, since in geometric algebra this norm can be
computed directly on the bivectors by Eq. (4).

In the title of this paper, we have preferred to refer to this metric as based on the
axis, rather than its bivector, since that is a more familiar term and more likely to be
used in searches. In the body we prefer ‘bivector’, for possible generalization to n-D
and because arc, bivector and chord are nicely denotable by a, b and c.
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Surprisingly, this often used metric (in the sense that many use perturbations in
the axis vector, with the angle as its length, as a measure of noise) is not among the
six 3D rotation metrics evaluated in [8].

3.3 Chord Metric

We will find it convenient to introduce and use a distance measure ‖R2 − R1‖, the
magnitude of the difference between two rotors. In older quaternion literature, this
metric is not uncommon, see e.g. [8].

At first sight, characterizing a rotation difference by such a ‘rotor chord’ would
appear to be constrained, since the converse operation of adding a chord-like vector
to a rotor must somehow be forced to end on the manifold. We now show that this
metric can still be characterized by an unconstrained vector from the tangent space,
as the framework of [7] demands.

To incorporate the chord metric into this encapsulation framework, let us reverse
engineer the � and � from the desired metric dc. Our chord metric is

d2
c (R1, R2) = ‖R2 − R1‖2

= 〈(R2 − R1)(˜R2 − ˜R1)〉0
= 〈R2˜R2 + R1˜R1 − R1˜R2 − R2˜R1〉0
= 2 − 〈R2˜R1 + R1˜R2〉0
= 2(1 − 〈R2˜R1〉0)
= 2

(

1 − cos(θ/2)
)

= 4 sin2(θ/4), (31)

where θ is the relative rotation angle of the two rotors, defined from R2˜R1 =
exp(−Iθ/2), so Iθ = −2 log(R2/R1).

We expect the quantity d2
c to be the squared norm of a vector (for the encapsulation

framework) or bivector (in the 3D geometric algebra perspective). Starting with the
latter, let us employ the usual geometric algebra overloading of the sine function to
a 2-blade X (with negative scalar square X2 < 0), a map from bivectors to bivectors
defined as:

sin(X) ≡ sin(‖X‖) X
‖X‖ , (32)

which follows from the Taylor expansion of the exp-function in geometric alge-
bra. Note that we can then write d2

c as ‖2 I sin(θ/4)‖2 = ‖2 sin(Iθ/4)‖2. Since this
should equal ‖R2 �c R1‖2, we should define as our �c operation (with the subscript
‘c’ denoting ‘chord’) the Euclidean vector of which the relevant bivector is the dual.
This suggests the definition:



64 L. Dorst

R2 �c R1 = −2
(

sin
(

1
2 log(R2/R1)

)

)

I3. (33)

(As before, the final undualization converts the bivector to a vector, as is required for
the strictly Euclidean framework of [7]; but other than that it is cosmetic, we could
and will work with the linear 3D bivector space directly.) Working back through
the encapsulation framework, it follows that the corresponding �c is the Euclidean
parametrization:

R �c
−→c = e−2 asin(

−→c ∗
/2) R, (34)

employing dualization to convert the Euclidean vector −→c to the bivector c = −→c ∗

so that it can be used in the geometric algebra arcsine function (defined as the local
inverse of the geometric algebra sine function, so asin(X) for a 2-blade X is defined
as asin(‖X‖)X/‖X‖). Then the corresponding Euclideanmetric is indeed as desired:

dc(R2, R1) = 2 | sin(θ/4)|. (35)

This embedding in the encapsulation framework endows the seemingly naive ‘dif-
ference of rotors’ metric construction with sufficient legitimacy, and permits us to
relate it to the other two parametrizations. This metric also occurs in as �2 in [8],
who refers to a traditional source for this quaternion difference measure.

Effectively,−→c is a vector perpendicular to the plane of relative rotation (and hence
determines that plane), and the length of the vector is equal to the length of the chord
of the (unit circle) arc a vector moves on, thus determining the relative angle. This
vector −→c as parametrization of the relative rotation is therefore fully unconstrained;
while the exponentiation in Eq. (34) ensures that the rotor chord nevertheless ends
on the unit sphere of rotors.

3.4 The Parametrizations Related

The arc and chord parametrizations by a = −→a ∗
and c = −→c ∗

can be easily related,
directly from the bivectors of their defining additional rotors:

c = 2 sin(a/2). (36)

It is clear that for small values of the perturbation magnitude, these characterizations
are equivalent to second order. Moreover, the relationship is monotonic, which will
relate the optimal estimators based on them in a simple manner.

The relationship of the additive bivector parametrization by b = −→
b

∗
to the other

two is more involved and we cannot give it in closed form, due to non-commutative
properties of the exponentials involved. We compute a first order approximation
a ≈ ψB(b) in detail in the next section. The outcome is:
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a ≈ ψB(b) ≡ b‖ + b⊥ sinc(B) e−B. (37)

Here b‖ = 1
2 (b − BbB−1) is the component of b parallel to B, and b⊥ = 1

2 (b +
BbB−1) the perpendicular component. This split in the roles of parallel and perpen-
dicular parts is understandable: the former is purely the change of the rotation angle,
the latter is the change of attitude of the rotation plane, which only partly contributes
to the total change.

The mapping ψB(b) is linear in b, but strongly non-linear in its dependence on
the local value of B, the bivector of the current rotor. We thus find that the most
commonly employed characterization of a rotation by an additive axis vector is
actually geometrically the most involved. This will have consequences for modeling
noise, as we will see.

3.5 First-Order Conversion of Arc and Bivector
Parametrizations

This section derives Eq. (37) in detail. It may be skipped at first reading.
In the arc parametrization of rotations, it is natural to treat the noise in rotation

(or orientation) as a small rotor applied after the main rotation:

r R = eaeB ≈ eB + a eB, (38)

where B and a are the large and small bivectors characterizing these rotors. This
is not different in principle from doing the noisy rotor before the main rotor. For
since R r ≈ eB + eB a = eB + (eB a e−B)eB, that change of order merely differs by
a simple linear mapping of the infinitesimal rotor argument, and we know how to
deal with the covariance of such transformed noise.

In the bivector parametrization of rotations, it is more natural to encode the noise
through a small additive term in the bivector of the rotor, so a rotor R = eB becomes
perturbed as

eB → eB+b. (39)

This appears quite natural, sincewe have seen before that the space of bivectorswhich
parameterize the rotor is linear. This is also how noise is modeled in the geometric
algebra paper [14], and (in its dual classical axis vector parametrization) traditionally
by many others (such as [1, 5, 9, 11]).

This additive bivector characterization of the noise is really different fromEq. (38),
though we can establish a linear relationship between this 2-blade noise b and the
rotor noise a used above. That correspondence is also derived in [14] (their equation
(39)) usingmultivector differentiation, but we give our own (brief) derivation tomake
the present paper self-contained, and show the underlying first-order assumption
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explicitly (so that it could be refined). We later propagate the consequences to the
covariances used in the Kalman update combination, in Sect. 6.4.

In the following, assume that the rotor argumentB is a pure 2-blade (which squares
to a scalar) and invertible, and that all terms of order 2 and higher in b (and a) can
be neglected.

eB+b ≈ 1

+ 1

1! (B + b)

+ 1

2!
(

B2 + Bb + bB
)

+ 1

3!
(

B3 + 2B2b + BbB
)

+ 1

4!
(

B4 + 2B3b + 2B2bB
)

+ · · ·
= 1 + 1

2
B−1(B0b − bB0)

+ 1

1!
(

B1 + 1

2
B0(b + B−1bB) + 1

2
B−1(B1b − bB1)

)

+ 1

2!
(

B2 + 2

2
B1(b + B−1bB) + 1

2
B−1(B2b − bB2)

)

+ 1

3!
(

B3 + 3

2
B2(b + B−1bB) + 1

2
B−1(B3b − bB3)

)

+ 1

4!
(

B4 + 4

2
B3(b + B−1bB) + 1

2
B−1(B4b − bB4)

)

+ · · ·
= eB + 1

2 e
B

(

b + B−1bB + B−1(eBb − beB)
)

(40)

Equating the two expressions Eq. (38) and Eq. (40) involving b and a gives

a ≡ ψB(b) = 1

2
eB (b + B−1 bB)e−B + 1

2
B−1(eB b e−B − b) (41)

In 3D, the formula cleans up by defining the component b‖ of b which is contained
in the B-plane, and the component b⊥ perpendicular to it:

b‖ ≡ 1

2
B−1(Bb + bB) b⊥ ≡ 1

2
B−1(Bb − bB) (42)

Then

a = eBb‖e−B − 1

2
b⊥B−1(e−2B − 1) = b‖ + b⊥

eB − e−B

2B
e−B. (43)

Defining the correspondence as a = ψB(b), we thus obtain:

a = ψB(b) ≡ b‖ + b⊥ sinc(B) e−B, (44)
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where we introduced the sinc function of bivector arguments. By complete analogy
to the definition in real analysis, it is defined as sin(B)/B, and it is easy to show that
it equals the scalar sin(|B|)/|B|.

Thus ψB() is a linear correspondence between the characterization of a perturba-
tion by a small bivector b and a small arc a. The final form shows that the in-plane
component of the bivector (which signifies the change in angle) is unchanged, but
that the out-of-plane component (the change in rotation plane attitude) rotates clock-
wise by e−B while shrinking by sinc(B). This is illustrated in Fig. 3, for a normal
vector representation of the bivector: the in-plane component of the normal vector
of the bivector b ‘winds up’ around the normal vector of the B-plane, shortening as
it does so.

The inverse mapping of ψB() is:

b = ψ−1
B (a) ≡ a‖ + a⊥

eB

sinc(B)
. (45)

Near |B| = π , this grows unbounded and the assumption that the bivectorb is small is
no longer valid. This suggests that the ‘post-rotor’ characterization is better behaved
than the ‘additive bivector’ characterization. However, a rotor angle of π implies a
rotation angle of 2π , so in practice usage of the equations in this region is presumably
avoided by a proper disambiguation of the rotor representation, resetting all to be
around the zero angle.

Wewill also need the adjointψBwhenpropagating the covariances. This is simply:

ψB = ψ−B (46)

Derivation: for arbitrary bivectors b and y, we have (defining the scalar product
X ∗ Y ≡ 〈X Y 〉0)

y ∗ ψB(b) = y ∗
(

b‖ + b⊥e−B sinc(B)
)

= y ∗ b‖ + y ∗ (b⊥e−B) sinc(B)

= b‖ ∗ y + b⊥ ∗ (e−By) sinc(B) (by cyclic re-ordering of scalar product)

= b ∗ y‖ + b ∗ (e−By⊥) sinc(B) (apply cyclic re-ordering again)

= b ∗
(

y‖ + y⊥eB sinc(−B)
)

(anti-commutation, and symmetry of sinc)

= b ∗ ψ−B(y)

The linearity of the mapping ψB means that statistics of b and a can be related,
but since they are so different (by Eq. (44)), it should be possible to decide which
characterization is most suitable for any specific measurement process.
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Fig. 3 A comparison of
noisy rotor characterization
by a and b, as eaeB or eb+B.
This is a 3-dimensional
surface of which the points
denote the solution for a in
terms of b, as in Eq. (44).
Since the relationship scales
proportionally, the bivector
coefficients of b (or if you
will, the normal vectors to
the bivectors) are made to
range over a unit sphere. The
sphere is shown cut by the
B-plane of the main rotor eB

for clarity. Equation (44)
causes the perpendicular
component of b to swirl in
the way indicated; the
parallel component of b is
unaffected by this (but is still
determined by the fact that b
is a unit bivector). You may
study this swirly shape in 3D
in Matlab as: ezsurf
(’cos(s)*sin(t)/
t*sin(t)’,’cos(s)*
sin(t)/t*cos(t)’,
’sin(s)*ones(size(t))’,
[0,pi,0.01,6*pi],300)

4 Averaging Orientations

The orientational distance measures we introduced have two important properties:
first, only the relative rotation matters (so that the distance measure is uniform over
the whole rotor manifold); second, of the relative rotation only the angular aspect
contributes to the distance measure, not its plane. Figure 4 shows a rotor (as an arc
on the rotation sphere), and some rotors that are all equally different from it for the
chord metric dc. Their endpoints all lie on a circle of equal chord length from the
result. You can see that some differ mainly in angle, others mainly in rotation plane.
It is comforting that a distance measure ‖R2 − R1‖ derived on the rotor manifold
has such a clear interpretation for the rotational arcs (and a similar picture can be
drawn for the arc metric da). You should realize, though, that the figure is slightly
too specific: since the arc representation can be freely slid along the great circle, we
only get all rotations with the same distance to the given rotation if we perform this
small-circle-construction everywhere along the great circle indicated.

Note that for small rotational differences, the distances of Eq. (26) and Eq. (35)
are proportional to the arclength |θ/2|, and this is perhaps half of what one would
have expected (by contrast, the rotation examples in [7] use double this value). For
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Fig. 4 The chord length
metric on rotations

the finite rotation over angle π , the distance is
√
2, for a rotation over 2π the measure

is 2, which is its maximum, and only for a rotation of 4π do we get a rotor of distance
zero to the original rotation.

This is strange, but strangely correct. It is related to the property of rotors to
describe relative rotations rather than absolute rotations (what are those anyway?).
You can see this in a ‘Balinese dance experiment’. Stand up straight, with your hand
immediately in front of your left shoulder, flat, palm up; now make the motions
necessary to make your hand turn 2π in its own plane, around its center (you may
have to move your torso a little to maintain a planar plate rotation); you find that your
elbow sticks up in the air; continue turning the hand in the same direction; when you
have reached 4π , you are (surprise!) back in your original pose and ready to do this
once more. The moral: the periodicity of the relative rotation of the hand was 4π ,
not 2π ; the maximally different orientation was halfway the experiment, at the 2π
rotation, after that the rotational distance decreased again. This is what our distance
measure gives as well.

Incidentally, the Balinese experiment also illuminates our earlier remark on the
physical significance of the apparent sign multiplicity of the rotor representation.
Merely observing the hand, its orientation might just as well be characterized by
R = e−Iθ/2 as by R′ = −R = −e−Iθ/2.However, the latter equals R′ = e−Iπe−Iθ/2 =
e−I(2π+θ)/2, so it is more properly interpreted as the rotation over (2π + θ). For the
hand, there is no difference, but the elbow stance demonstrates the non-equivalence
when one considers the connection of the rotated element to a fixed basis. One
could use R and −R as clockwise and counterclockwise ways of achieving the same
orientation.
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With this intuition in place, we can study the various ways of producing average
rotations under the three metrics. So suppose we have a set of measured rotors
{Ri }ni=1, all with the same accuracy (we will refine this in Sect. 6.3 to ‘independently
identically distributed’), and let us find the rotor that has the minimum total squared
distance to all of them.

4.1 The Minimal Chord Estimator

For the distance measure of the chord metric, we are looking for the rotor Rc that
minimizes

∑

i

d2
c (Ri , Rc) =

∑

i

〈(Ri − Rc)
∼(Ri − Rc)〉0 (47)

= 2
∑

i

〈1 − ˜Ri Rc〉0

= 2(n − 〈(
∑

i

˜Ri ) Rc〉0)

= 2(n − 〈˜S Rc〉0). (48)

This derivation involves a rewriting similar to that in the derivation of Eq. (31), and
the bilinearity of the scalar product. The quantity S ≡ ∑

i Ri , is not a rotor, so let us
normalize it to become one:

R ≡ S

‖S‖ =
∑

i Ri

‖∑i Ri‖ (49)

Now we can rewrite the quantity to be minimized to: 2(n − ‖S‖〈˜R̄Rc〉0). The first
term is a given constant, the second is maximal when Rc = R̄, so that is the solution.

The least-square chord length error estimate Rc ≡ argminR
∑

i ‖R − Ri‖2 of a set of inde-
pendent identically distributed rotors Ri is their normalized sum

Rc = R

‖R|| , (50)

with R ≡ 1
n

∑

i Ri .

This is the proper formula for the ‘mean rotor’ of an ensemble under the chordmetric.
The form of the resulting estimator is not that different from translations, where the
best linear estimate of a set of measurements {xi }ni=1 of the same position would be
the mean x̂ = (

∑

i xi )/n.
Some care is required when averaging these rotors, due to the double representa-

tion of orientations, in which −Ri may represent the same rotation as Ri (the issue
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we mentioned at the end of Sect. 2.3). If you have been sloppy in casting your mea-
surement data into rotors, you may have both forms and should not average over
them; then you first need to multiple all Ri by the sign of their scalar part, to ensure
that 〈Ri 〉0 ≥ 0.

4.2 The Minimal Bivector Estimator

In the bivector metric, we measured the magnitude of the squared difference in
characterizing bivectors of rotors. Finding an estimator that minimizes this least-
square criterion is easy: it is just achieved by averaging the bivectors of the ensemble
and exponentiating.

The least-square bivector error estimate Rb ≡ argminR
∑

i ‖ log(R) − log(Ri )‖2 of a set
of independent identically distributed rotors Ri is the exponential of the average bivector

Rb = exp(log(R)), (51)

with log(R) ≡ 1
n

∑

i log(Ri ).

This is the direct consequence of the standard quadratic form of the criterion in terms
of log R and the fact that the log() is a monotonic function which does not affect the
optimum. For, taking the directional derivative of the criterion we find (by the rules
of geometric differentiation, see e.g. [3]):

0 = (A ∗ ∂R)
∑

i

‖ log(R) − log(Ri )‖2

= 2
∑

i

(

log(R) − log(Ri )
)∼

(A ∗ ∂R) log(R)

= 2n
(

log(R) − log(R)
)∼

(A ∗ ∂R) log(R)

and since this needs to hold for all A, the result follows.
The considerations on standardizing rotors and their bivectors of the ensemble to

the principal values that we mentioned above for the estimator Rc also apply to Ra,
for functionally equivalent rotors represented by angles that are not in the same range
would cause problems when averaging the corresponding bivectors. So again, ensure
that 〈Ri 〉0 ≥ 0 beforehand, and use the principal value of the logarithm, returning an
angle in the range (−π, π).

4.3 The Minimal Arc Estimator

Another reasonable criterion to minimize is the sum of squared arc lengths d2
a , from

the estimated rotor to all noisy rotors:
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Ra = argminR
∑

i

‖ log(R ˜Ri )‖2. (52)

We define Bi = log(Ri ) and X = log(R), then perform a differentiation by varying
the rotor R through its bivector X , so as tomaintain the rotor nature.We derive a first-
order approximation to the estimator by demanding that it extremizes the criterion,
to first order in the perturbation. The non-commutative products make a closed form
solution hard, so we employ the first few terms of the Baker-Campbell-Hausdorff
(BCH) formula:

eX eY ≈ exp(X + Y + X × Y + 1
3
(

X × (X × Y) + Y × (Y × X)
) + higher order commutators (53)

with X × Y ≡ 1
2 (X Y − Y X). We cut this after the term X × Y ; this is allowed if X

and Y are small, since otherwise the series is not convergent.We can therefore not use
it to bring R ˜Ri into a single exponential of which could then take the logarithm, but
have to proceed more subtly. As a shorthand, let us denote the bivector log(eX e−Bi)

by ri , and assume it to be small (not infinitesimal, but small enough to apply it in
BCH). In the directional derivative, another bivector εA occurs; since we are taking
the limit for vanishing ε, that is definitely small. Now compute:

0 = (A ∗ ∂X)
∑

i

‖ log(eX e−Bi)‖2

= lim
ε→0

1

ε

∑

i

(

‖ log(eX+εA e−Bi)‖2 − ‖ log(eX e−Bi)‖2
)

Eq. (37)= lim
ε→0

1

ε

∑

i

(

‖ log(eψX(εA)eX e−Bi)‖2 − ‖ log(eX e−Bi)‖2
)

= lim
ε→0

1

ε

∑

i

(

‖ log(eψX(εA)eri)‖2 − ‖ log(eri)‖2
)

BCH≈ lim
ε→0

1

ε

∑

i

(

‖ log(eψX(εA)+ri+ψX(εA)×ri)‖2 − ‖ log(eri)‖2
)

= lim
ε→0

1

ε

∑

i

(

‖ψX(εA) + ri + ψX(εA) × ri‖2 − ‖ri‖2
)

=
∑

i

(

ri
(

ψX(A) + ψX(A) × ri
) + (

ψX(A) + ψX(A) × ri
)

ri
)

≈
∑

i

(

ri ψX(A) + ψX(A) ri
)

= rψX(A) + ψX(A) r

where the ≈ equalities employ the smallness of ri . This needs to be zero for all A.
Since ψX(A) is a linear function, containing both components parallel and perpen-
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dicular to X, and hence commutating and anti-commutating with it, the only way
to satisfy the equation is to demand that r = 0, which implies for the arc-based
estimator Ra:

∑

i

log(Ra ˜Ri ) = 0. (54)

So, the sum of the bivectors of the relative rotors to the optimal arc rotor Ra should
be zero. Since the criterion of Eq. (52) is non-negative, demanding it to be zero
would certainly give a minimum; therefore the approximations we had to make in
the derivation do not jeopardize this result. It is interesting that this solution involves
both the scalar quantitative aspects (the arc lengths) and the spatial aspects (the
orientations of the relative rotation planes).

Yet I do not know how to solve Eq. (54) in closed form, so at this moment we can
only state:

The least-square arc error estimate Ra ≡ argminR
∑

i ‖ log(R/Ri )‖2 of a set of independent
identically distributed rotors Ri is the solution Ra of

∑

i

log(Ra ˜Ri ) = 0. (55)

The best we can do at this point is to use the closeness of chord and arc for the small
angles involved, and use the straightforward minimum chord estimator Rc as a proxy
for the minimum arc estimator Ra. In an iterative solution to the defining equation
Eq. (55), it should be a good starting point. The above derivation then provides the
directional derivative for a gradient descent method to converge to the true optimum.

Simulations using 100 noisy rotors with a reasonable Gaussian noise level of
0.2 rad standard deviation on the bivector angle show that the normalized average
rotor Rc, designed to minimize the sum of squared chord lengths, indeed has a very
small total arc sum with a net angle of the order of 5 × 10−4. The minimum chord
estimator Rc is therefore a very good approximation to optimal arc rotor Ra.

4.4 Averages Compared

We can consider the estimators Ra, Rb, Rc from the point of view of perturbation, and
this provides some additional insights. With an ensemble of rotors Ri = exp(ai ) R
perturbing the original rotor R (in the arc-noise perturbation representation), the
average chord rotor Rc amounts to normalizing the average rotor R = exp(a) R.
Normalization to construct Rc from R requires division by
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‖exp(a) R‖ = ‖exp(a)‖
=

√

(1 + ā + 1
2a

2 + · · · ) · (1 − ā + 1
2a

2 + · · · )

=
√

1 + (a2 − ā2) + · · ·
= √

1 + var(a) + · · ·
≈ 1 + 1

2var(a) + · · · ,

It follows that, to second order:

Rc = R̄/‖R̄‖
≈ (1 − 1

2var(a)) exp(a) R

= (

1 − 1
2 (a

2 − ā2) + · · · ) (a + ā + 1
2a

2 + · · · ) R
= (

1 + ā + 1
2 ā

2 + · · · ) R
≈ exp(ā) R.

Bycomputing the normalized average rotor Rc, we are therefore effectively averaging
the bivectors of the perturbing rotors (to second order). Since their mean ā is expected
to be zero (with a small standard error of the mean of

√
var(a)/n), we expect this

estimator Rc of R based on the data Ri to be quite precise.
We can establish the relationship of the minimum bivector rotor Rb to this way of

considering the chord rotor Rc. Its analysis can be performed by first converting the
individual Ri = exp(ai )R to the bivector representation, by the first-order method
of Eq. (37). Defining B = log(R) this is, to first order in the small quantity ai :

Ri = exp(ai ) R

= exp(ai ) exp(B)

≈ exp
(

B + ψ−1
B (ai )

)

.

Now averaging the bivectors in the exponents of the Ri (done by taking the log,
averaging, and re-exponentiating) leads to the average bivector-based optimal rotor
Rb. Using the linearity (to first order) of the mapping ψ−1

B (), we find:

Rb = exp
(

B + ψ−1
B (a)

)

= exp
(

B + ψ−1
B (a)

)

≈ exp(ā) R,

where we converted back using the inverse mapping of ψB() (again to first order).
The two estimators ‘normalized average rotor’ Rc (which minimizes the chords)

and the ‘average bivector rotor’ Rb (which minimizes the bivector norm) therefore
agree to first order. This is confirmed by comparing them directly, for instance by
computing their difference:
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Rb − Rc ≈
(

exp(ā) − (1 − 1
2var(a)) exp(a)

)

R

≈
(

(1 + ā + 1
2 ā

2) − (1 − 1
2var(a)) (1 + ā + 1

2a
2)

)

R

=
(

1
2 ā

2 − 1
2a

2 + 1
2var(a) (1 + ā + 1

2a
2)

)

R

=
(

− 1
2 var(a) + 1

2 var(a) (1 + ā + 1
2a

2)
)

R

≈ 1
2var(a) ā R.

Since the noisy bivectors are assumed to be unbiased, ā will be very small (the
standard error of the mean is

√
var(a)/n), and hence so is the difference of the

estimators.

5 Interpolating Rotations

Inmany applications, notably in computer graphics, one needs to interpolate between
given orientations. Here representation matters greatly: interpolating between rota-
tion matrices gives many undesirable effects. The introduction of quaternions into
the field by Shoemake [15] showed how such issues are much more easily tractable
in that representation, and boosted their rapid adoption. We briefly repeat the basic
derivation, now using rotors, to set up our Kalman combination in the next section.

5.1 Interpolation: The slerp

If we would have two position vectors x0 and x1, we would linearly interpolate
between them using the familiar

lerp(x0, x1; λ) = (1 − λ)x0 + λx1, (56)

with λ running from 0 to 1. For interpolation between two rotors R0 and R1, the
analogous formula (i.e. (1 − λ)R0 + λR1) would not work since the result would
not be a rotor; and renormalization would make the interpolation non-uniform.

We would like to have a rotation that interpolates rotation in the sense that it
divide the total rotationbetween R0 and R1 in a linearmanner into smaller incremental
rotations. Visualizing this on the sphere, the intermediate rotations have rotors which
are pictured as arcs to evenly spaced intermediate points on the completing side of
the spherical triangle, as in Fig. 5. So we need to find the relative rotation and split
it up into equal parts. We write the relative rotation as:

R1˜R0 ≡ e−Iθ/2 = cos(θ/2) − I sin(θ/2), (57)
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Fig. 5 Illustration of the
interpolation of rotors R0 and
R1, by intermediate rotors

so that I denotes the relative rotation plane, θ is the relative rotation angle, and θ/2
is the relative rotor angle. This gives IR0 = (R1 − R0 cos(θ/2))/ sin(θ/2). Then the
linear interpolation is achieved by rotation over a fraction λ(θ/2) of the angle, from
R0 towards R1. That is the rotor e−λIθ/2R0, which may be expressed as:

Rλ = (

cos(λθ/2) − I sin(λθ/2)
)

R0

= R0 sin(θ/2) cos(λθ/2) − R0 cos(θ/2) sin(λθ/2) + R1 sin(λθ/2)

sin(θ/2)

= sin((1 − λ)θ/2)

sin(θ/2)
R0 + sin(λθ/2)

sin(θ/2)
R1 ≡ slerp(R0, R1; λ) (58)

This is the linear interpolation formula for rotations, which we abbreviate as
slerp[R0, R1; λ] (following [15] who derived it for quaternions). It is slightly more
involved than linear interpolation of vectors since the linear interpolation is now
‘under the sine’.2 Please note that the angles involved in the interpolation are
the rotor angles, which are half the rotation angles. When R0 and R1 are not
very different, θ/2 is small, and Eq. (58) becomes a linear interpolation of rotors:
slerp(R0, R1; λ) ≈ lerp(R0, R1; λ).

In computer graphics, more general interpolations (such as Bézier) between a
set of key rotations are done by extending this principle. The fact that this was
demonstrated to be possible in [15] was one of the motivations for that field to begin
using quaternions rather than rotation matrices for their representation of rotations

2Yet comparing to Eq. (56), there is really nothing new under the sine—or one could remember
that the lerp is now ‘living in sin( )’.



Optimal Combination of Orientation Measurements ... 77

and orientations. In geometric algebra, one could naturally perform the identical
techniques in the linear space of bivectors of the relative rotors.

For purposes later on, we can rewrite the slerp formula in terms of the sum and
difference of the two rotors, by use of some trig identities3:

slerp(R0, R1; λ) = sin((1 − λ)θ/2)

sin(θ/2)
R0 + sin(λθ/2)

sin(θ/2)
R1

= cos
(

(2λ − 1) θ/4
)

cos(θ/4)

R1 + R0

2
+ sin

(

(2λ − 1) θ/4
)

sin(θ/4)

R1 − R0

2

= cos(ρ θ/4)

cos(θ/4)

R1 + R0

2
+ sin(ρ θ/4)

sin(θ/4)

R1 − R0

2
, (59)

introducing ρ ≡ 2λ − 1 varying from −1 to 1 as λ varies from 0 to 1.

5.2 Chord-Based Interpolation

In practice, one often applies chord-based interpolation, to avoid the sine evaluation
occurring in Eq. (58) or Eq. (59). This involves simply performing a linear interpo-
lation of the end-points of a chord; and then rescaling the result to be an equal-radius
rotation. This operation is based on points, not on the rotors themselves, and therefore
leads to a sequence of approximately-equi-angle-rotated points.

In the more powerful applications of geometric algebra, one really would like
to interpolate at the rotor level, since the interpolated rotors can then be used to
rotate arbitrary elements. To compute the chord-interpolated rotor, linearly interpo-
late between the rotors 1 and R2˜R1 = cos(θ/2) − I sin(θ/2). This gives:

Rc(λ) = normalize
(

(1 − λ)1 + λ (cos(θ/2) − I sin(θ/2)
)

= normalize
(

1 − 2λ sin2(θ/4) − 2λ I sin(θ/4) cos(θ/4)
)

= normalize
(

1 − 2λ sin(θ/4)(sin(θ/4) + I cos(θ/4)
)

= normalize
(

1 − 2λ sin(θ/4) I exp(−Iθ/4)
)

= 1 − 2λ sin(θ/4) I exp(−Iθ/4)
√

1 + 4λ2 sin2(θ/4)
. (60)

This computation of the approximate rotor involves one trig function, and a square
root; it is perhaps somewhat more efficient than the exact angle-interpolated rotor.
But since one expects to compute it in a situation where the rotor is to be applied to
multiple elements, the savings are hardly worth it.

3Like sin((1 − λ)θ/2) + sin(λθ/2) = sin(θ/2) cos(λθ/2) − cos(θ/2) sin(λθ/2) + sin(λθ/2) =
2 sin(θ/4) cos(θ/4) cos(λθ/2) + 2 sin2(θ/4) sin(λθ/2) = 2 sin(θ/4) cos(θ/4 − λθ/2).
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As for the point-based interpolation, for larger angles θ one can first compute a
mid-rotor

√
R (in 3D, the normalized (1 + R), in n-D more involved [4]), and then

perform the chord interpolation twice on the half chords (repeating the process if
accuracy requires).

5.3 Bivector-Based Interpolation and Filtering

For the bivector metric, one would perform the difference �b of Eq. (29) in linearly
interpolated fashion. This produces the intermediate rotor:

Rb(λ) = exp
(

(1 − λ) log(R1) + λ log(R2)
)

= exp
( − (1 − λ) I1θ1/2 − λ I2θ2/2

)

= exp
(

− 1
2

( I1θ + I2θ2
2

− ρ
I2θ2 − I1θ1

2

)

)

, (61)

with ρ = 2λ − 1. Since the bivectors form a linear space (even in n-D), this is well-
defined and the outcome is an intermediate rotor.

Because of the linearity of the bivector space, more general interpolation tech-
niques can be applied as well, such as rational Bézier employing Bernstein polyno-
mials on bivectors (adapting them from being applied to axis vectors by duality), see
e.g. [10] for a quaternion formulation. One can even lift the intuition and techniques
from linear filtering to the exponential argument of the rotor (or quaternion). This is
a powerful way to, say, ‘smooth’ a sequence of orientations, or to ‘sharpen’ it. Lee
and Shin [12] give the explicit computation of the coefficients for such quaternion
filters based on applying the classical linear techniques in the tangent space to the
unit quaternion manifold.

6 Statistical Processing of Orientations

To predict orientations, we look at how an orientation is evolving in its rotational
aspects, and give a good guess of what it could be at the next time instant. Our deriva-
tion of the interpolation formula shows that this can also be used for extrapolation:
just extend the interpolated arc from R0 to R1 beyond R1, by taking λ > 1. Once we
have decided how far to extend it, a prediction for some subsequent rotation R2 has
been obtained. If we also have measurement data available about the actual value
of R2, with some noise, then we would like to combine these two optimally. This
is the update step of any discrete-time Kalman filter, where the optimal combina-
tion is done statistically, to produce a minimum variance unbiased linear estimate
[13]. In this section, we produce the optimal weighting procedure for prediction and
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Fig. 6 Propagation of errors
in translations

observation of orientations. To develop this weighting, we obviously first need to
understand how to represent and compute confidence measures in orientations.

6.1 Propagating Orientational Noise

Let us recall how we usually combine noise in translation measurements. Suppose
we have a translation vector X0, and a translation X1, both with some noise. To see
what the distribution of the result X0 + X1 is, we need to do some averaging: take
an error vector x0 (located at the tangent space at the endpoint of X0) and an error
vector x1 (located at the tangent space at the endpoint ofX1); these produce the error
vector x0 + x1 at the endpoint of X0 + X1. Drawing X0 and X1 head to tail, we have
basically ‘transferred’ the error x0 to the end ofX0 + X1, and added, see Fig. 6. This
is permissible: translations are commutative, and the tangent spaces are everywhere
isomorphic, and even isomorphic to the Euclidean space itself so that this transfer
also works for non-infinitesimal displacements. In particular, we are allowed to write
(x1 + X1) + (x0 + X0) as

(x1 + x0) + (X1 + X0) ≡ xt + Xt , (62)

so that the ‘quantity plus error’ retains its form, and the total error (x1 + x0) is
independent of the data X0 and X1. If we now want to average this for distributions
of x0 and x1, then the total distribution becomes the convolution of the contributing
distributions, integrating for a given error xt the ways in which it can be produced
from x0 and x1:

pt (xt ) =
∫

p0(x0) p1(xt − x0) dx0 ≡ (p0 ∗ p1)(xt ). (63)

For noise characterization, the Gaussian family of distributions is particularly suit-
able, since convolution of two Gaussians is again a Gaussian, merely coarser. To
be precise, denoting the Gaussian with covariance matrix C by G[C], the resulting
distribution is simply:

G[C0] ∗ G[C1] = G[C0 + C1]. (64)
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In an isotropic situation, the equi-probability lines of the resulting pdf are equidistant
lines of the metric induced by the covariance matrix.

Compare these straightforward results for translations to the situation with rota-
tions. The main issue is that rotations are not commutative, so we have to choose
where to represent the noise. Let us first represent it by a small rotor applied after the
main rotor, bearing in mind Fig. 4 of ‘similar rotors’. So for rotor R0, we multiply
by a small rotor r0 performed ‘after’ the main rotation to obtain r0R0. Now apply
a second rotor R1 with similar noise and attempt to rewrite to a form showing the
resulting rotor R1R0, accompanied by some little noise rotor:

(r1 R1) (r0 R0) = (r1 R1 r0 ˜R1) (R1 R0) ≡ rt Rt , (65)

implying that rt = r1 R1 r0 ˜R1. This shows thatwhile the resulting noise is still a small
rotor, the initial main rotor R1 plays an essential role in how the noise transfers. It
implies that the composition of distributions of rotors is not simply a convolution,
but assumes the form:

pt (rt ) =
∫

p0(r0) p1(rt R1 r̃0 ˜R1 ) dr0 (66)

That the pdfs are defined in terms of rotors is less of a problem than the complicated
argument of p1. This composition is not a convolution, andnot closed for theGaussian
family.

It is perhaps possible to find a ‘natural’ noisemodelwith parameters that transform
simply under this transfer law (but the simple and common von Mises distribution
does not; I checked). I do not know how to treat this composition in general. In an
approximation for small noise, though, the composition becomes tractable, and this
is naturally the approach taken bymany (such as [1, 9]).Wewill follow that approach
in the remainder of this paper.

6.2 Composition of Narrow Orientation Distributions

If the noise rotors are small, we can approximate them and study their ‘infinitesimal
interaction’, which is simpler than the general interaction. For a small rotor r0 in our
metric, the distance between it and the identity should be small, and therefore its
rotor angle θ0 is small. This implies that we can write, to first order4:

r0 = e−I0θ0/2 = cos θ0/2 − I0 sin θ0/2 ≈ 1 − I0θ0/2 ≡ 1 − i0, (67)

wherewe defined i0 as the small bivector I0θ0/2, andwe define i1 an it similarly. (This
approximation is rather good, for 10◦ noise in rotation angle the error is about 0.4%;

4The first order equivalence of all three metrics introduced implies that this model, based on the
arc-characterization, also applies to the others.
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5% error is reached for 36◦.) Expanding the composition of a total rotor Rt ≡ R1R0

and its noise rt now gives:

rt Rt = (r1 R1) (r0 R0) ≈ (1 − i1 − R1 i0 ˜R1) (R1R0) ≡ (1 − it ) Rt . (68)

It follows that for small amounts of noise, the propagation is simply:

it = i1 + R1 i0 ˜R1 = i1 + R1i0 (69)

We rewrote this outcome using the linear mapping R1 (the rotation, in sans serif
font), to simplify notation for the following derivation. Of course, Eq. (69) involves
bivectors; but since these elements are merely dual to vectors, defining a distribution
over them is straightforward.

If we have a distribution p0 of i0 and an independent distribution p1 of i1, this
induces a distribution pt on it . Using i0 as the parametrization, this distribution can
be integrated as:

pt (it ) =
∫

p0(i0) p1(it − R1i0) di0 ≡ (p0 ∗R1 p1)(it ). (70)

The symbol ∗R1 denotes that this resembles, but is different from, a convolution: we
have rotation R1 in the second argument, so it is a ‘convolution with a turn’.

Although it is not quite a convolution, the Gaussian family of functions is still
closed under this composition, and can therefore be used in our thinking about covari-
ance. In fact, denoting the Gaussian with covariance matrix C by G[C], we have:

G[C0] ∗R G[C1] = G[RC0R] ∗ G[C1] = G[RC0R + C1] (71)

where R is the adjoint of R, representable by the transpose of the matrix of R.
This result is immediate from the combination of covariances of distributions (see
e.g. [13]), since in Eq. (69) it is a linear combination of i0 and i1. The sandwiching
between rotation mappings is just how covariance matrices rotate, through the usual
linear algebra of bilinear forms.Notice that the exponent occurring in the computation
of the convolution can be rewritten (omitting a factor − 1

2 ):

iT0 C−1
0 i0 + (it − Ri0)

T C−1
1 (it − Ri0) = (Ri0)

T (RC−1
0 R)(Ri0) + (it − Ri0)

T C−1
1 (it − Ri0). (72)

By a change of variables from Ri0, this is just the exponent occurring in the usual
convolutionof twoGaussians,with covariancesRC0R andC1, resulting in aGaussian
with covariance RC0R + C1.

It is comforting that Gaussians are still natural in this ‘small noise’ setting, since
we may expect them to arise in practice whenever we have a reasonable number
of rotations with independent errors (the ensemble will then tend to a Gaussian
distribution by the central limit theorem). In the small noise approximation we are
considering (less than, say, 30◦), themore usual vonMises-Fisher or Fisher-Bingham
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distributions of orientation quaternions are virtually equivalent to the Gaussian [7],
so that we may extend this practical result to their corresponding parametrizations.

6.3 Optimal Combination of Orientations

Before we tackle rotation combinations, let us recall the procedure for optimally
combining translation estimates.

The linear combination of two estimates of a translation is a lerp function. The
total covariance of the lerp of Eq. (56) is the ‘qerp’ (quadratic interpolation, our
term):

qerp(C0, C1; λ) ≡ (1 − λ)2C0 + λ2C1. (73)

Suppose we desire to do an update in a Kalman filter, optimally combining prediction
and measurement by weighting them. One of the equivalent formulations of this
step, and particularly convenient for us, is that the Kalman filter is the minimum
variance unbiased linear estimate [13]; for Gaussian distributions this linear estimate
is optimal. The updated estimate is then effectively found by minimizing the total
error covariance, defined as the trace of the error covariance matrix (the trace of the
matrix equals the divergence of the corresponding linear mapping, so we minimize
the ‘uncertainty leakage’ in this time step). Since the trace is a linear function,
the optimization involves differentiation of the weighting factors in Eq. (73). Let us
denote the trace ofCi by τi , then we find: τλ = qerp(τ0, τ1; λ) = (1 − λ)2 τ0 + λ τ1,
and the value of λ that minimizes this is

λ∗ = τ0

τ0 + τ1
, so x∗ = τ1 x0 + τ0 x1

τ0 + τ1
, (74)

the well-known classical result for the optimal combination of two translation esti-
mates. For comparison with the rotor Kalman update step below, we rewrite this
into a form that shows how this estimate deviates from the mean, by reparametrizing
using τ∗ ≡ tanh( 12 log(τ1/τ0)) = (τ1 − τ0)/(τ1 + τ0):

λ∗ = 1
2 − 1

2τ∗, so x∗ = x0 + x1
2

+ τ∗
x0 − x1

2
. (75)

This is the Kalman filter’s update step, as a minimal covariance combination of
translations (or other vectorial quantities).

Now let us combine two rotations R0 and R1 to an intermediate interpolated
rotor Rλ, as before, which has the form of the ‘spherical linear interpolation’ Rλ =
slerp(R0, R1; λ) of Eq. (58). We have established in Sect. 6.2 that for small amounts
of noise, we can work with covariance matrices. The consequences of this linear
combination of R0 and R1 for the covariance matrices is easily established, and the
covariance for the intermediate rotation Rλ is
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Cλ =
(

sin((1 − λ)θ/2)

sin(θ/2)

)2

C0 +
(

sin(λθ/2)

sin(θ/2)

)2

C1 ≡ sqerp[C0, C1; θ/2, λ]
(76)

The notation ‘sqerp’ is the ‘spherical quadratic interpolation’ (our term again), and
we need the relative rotor angle θ/2 (half the rotation angle) as an argument. We are
again interested in the optimal way of combining these distributions, i.e. in a choice
of λ which is ‘best’ in a well-defined sense. And again viewing the Kalman filter
update step as the minimum variance unbiased linear estimate helps. For Gaussian
distributions this linear estimate is optimal, and as we have seen in Sect. 6.2 there
are algebraic and statistical reasons for us to focus on Gaussian distributions of small
rotation errors.

As in the translation case, the total error variance is the trace of the error covari-
ance matrix. Denoting the trace of Ci by τi , we have that the interpolation for traces
is τλ = sqerp[τ0, τ1; θ/2, λ]. Differentiating, we find the optimum:

0 = dτλ

dλ
= d

dλ

(

( sin((1 − λ)θ/2)

sin(θ/2)

)2
τ0 +

( sin(λθ/2)

sin(θ/2)

)2
τ1

)

= θ/2

sin2 θ/2

(

−2τ0 sin((1 − λ)θ/2) cos((1 − λ)θ/2) + 2τ1 sin(λθ/2) cos(λθ/2)
)

= θ/2

sin2 θ/2

(

τ0 sin((λ − 1)θ) + τ1 sin(λθ)
)

= θ/2

sin2(θ/2)

(

sin(λθ)(τ0 cos θ + τ1) − cos(λθ)τ0 sin θ
)

Therefore the minimum is reached at:

λ∗ = 1

θ
atan

(

sin θ

cos θ + τ1/τ0

)

(77)

We bring this in a more convenient form using τ∗ = tanh( 12 log(τ1/τ0)) = (τ1 −
τ0)/(τ1 + τ0) and some ingenious rewriting5

λ∗ = 1
2 − 1

2

atan
(

τ∗ tan(θ/2)
)

θ/2
≡ 1

2 + 1
2 ρ∗ (78)

defining ρ∗ = 2λ∗ − 1 in terms of the parameters θ and τ1/τ0. With this the inter-
polation formula gives (using the same rewriting as before for the slerp equation
Eq. (59)):

R∗(λ) = cos(ρ∗θ/4)

cos(θ/4)

R0 + R1

2
+ sin(ρ∗θ/4)

sin(θ/4)

R1 − R0

2
. (79)

5Using tan
(

θ
2 − atan( sin (θ)

cos(θ)+τ
)
)

=
(

sin(θ/2)
cos(θ/2) − sin (θ)

cos(θ)+τ

)

/
(

1 + sin(θ/2)
cos(θ/2)

sin (θ)
cos(θ)+τ

)

=
sin(θ/2)

(

2 cos2(θ/2)+τ−1
)

−2 sin(θ/2) cos2(θ/2)

cos(θ/2)
(

−2 sin2(θ/2)+τ+1
)

+2 cos(θ/2) sin2(θ/2)
= tan(θ/2) τ−1

τ+1 .
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Fig. 7 Minimum total covariance combination of estimates: λ∗ as a function of the trace ratio τ1/τ0.
Left: translation estimates according to Eq. (75). Right: rotation estimates according to Eq. (78) (in
the approximation of relatively small noise)

Just to verify our basic understanding, the ratio τ1/τ0 has the special cases 0 (no noise
in R1), 1 (equal noise in both) and∞ (no noise in R0). These give, as they should,λ∗ =
1, 1

2 , and 0, so ρ∗ = −1, 0, 1, corresponding to the rotors R∗(λ) = R1, (R0 + R1)

(normalized) and R0, respectively. That equal noise case can be generalized to the
averaging formula of Eq. (47), which is now indeed seen to be valid for identically
distributed data.

Although different in form,Eq. (79) is not that different fromEq. (75) in substance.
This is illustrated in the plots of Fig. 7. Indeed, when we are using λ∗ in a Kalman
filter to optimally blend prediction and observation, we can expect the relative angle
θ between them to be small. In that case,

λ∗ ≈ 1

1 + τ1/τ0
= τ0

τ0 + τ1
, so R∗ ≈ τ1R0 + τ0R1

τ0 + τ1
. (80)

This coincides in form with the translation case, since the local tangent space to the
unit rotor manifold is flat. But unless there is demand for excessive speed, there is no
reason to make this linear approximation, the computation of Eq. (78) and applying
the proper interpolation by Eq. (79) is simple enough.

6.4 Converting Covariances

Due to the linear relationship between the arc and bivector characterizations in first
order, propagation of the statistics of either characterization is straightforward: if
the multiplicative a-characterization has a covariance of C, then the additive b-
characterization has a covariance C′ of
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C′ = ψB C ψB = ψ−B C ψB, (81)

withψB as defined in Eq. (37). The Kalman filter update computation of the previous
section is now valid for this alternative noise characterization, if we convert the noise
covariances C′

0 and C′
1 in the additive bivectors first. This gives

C0 = ψ
−1
0 C′

0 ψ−1
0 and C1 = ψ

−1
1 C′

1ψ
−1
1 , (82)

where the ψi are the conversion functions as in Eq. (37), different for each rotor. The
consequence for the relationship between the traces is

tr(C0) = tr
(

ψ
−1
0 C′

0 ψ−1
0

)

= tr
(

ψ−1
0 ψ

−1
0 C′

0

)

= tr(�0 C′
0), (83)

with

�0(b) ≡ ψ−1
0 (ψ

−1
0 (b)) = b‖ + b⊥

e−B

sinc(−B)

eB

sinc(B)
= b‖ + b⊥/sinc2(B0),

(84)
where b‖ and b⊥ are defined relative to B0. The net effect is to increase the contri-
bution of the perpendicular component b⊥ to the trace τ0. In 3D, the trace of this
bivector-to-bivector mapping �0( ) is 1 + 2/sinc2(B0).

A similar equation, but involving B1, computes τ1. Substituting these in Eq. (78)
gives the optimalλ, which in this additive bivector characterization therefore involves
the absolute orientation bivectors B0 and B1 of the interpolants R0 and R1. As a con-
sequence, the additive bivector noise characterization is not rotationally invariant.
This makes it rather less likely as a model for reasonable noise in applications than
the multiplicative characterization we have used throughout the paper.

6.5 Procrustes Orientation Estimation, and Extensions to
Kalman

Applying the Kalman update combination procedure clearly presumes knowledge of
the covariance of rotation estimates. For the common Procrustesmethod, which gives
an optimal estimate of the orientation to make two labeled point clouds coincide, we
have reported this covariance in [5]. Combining those results with this paper provides
the backbone for aKalmanfilter for the orientational aspects of the Procrustesmethod
for aligning point clouds.

In that paper [5], the covariances in rotation are characterized classically by an
additive distribution over the rotation axis vector, rather than a bivector, but the
conversion is simple by duality. This is therefore an example of the additive noise
(in axis or bivector); in the classical representation of the Procrustes formalism, that
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seemed themore natural characterization.We have now found other characterizations
that may be preferable, and the corresponding conversions from the earlier solution.

The main conclusions from [5] are that it is the ‘harmonized inertia’ of the point
cloud that becomes the covariance of the rotation. For a point cloud characterized
in its principal frame by its major covariances as diag(λ1, λ2, λ3

)

, the harmonized
inertia is computed from this as diag(1/(λ2 + λ3), 1/(λ3 + λ1), 1/(λ1 + λ2)

)

. This
implies that isotropic and rod-like shaped point clouds convey most of the intuition
on the orientational effects of distributions. For details we refer to the paper; the
present paper is the ‘Kalman filter on pose estimation’ referred to in its Conclusions
section.

In a true application to attitude estimation, one usually also tracks the velocity
of change and uses that as part of the state. In a quaternion representation, this
leads to a nonlinear state propagation by the geometric or quaternion product, and
this necessitated [11] to process the data by an unscented Kalman filter. It may be
possible to avoid this in the rotor bivector representation.

7 Conclusions

This paper has reviewed three ways of measuring rotation (or orientation, or attitude)
differences in 3D: by arc, bivector or chord. These three metrics were codified within
the encapsulation framework of Hertzberg et al. [7], which couples a metric uniquely
to a choice of parametrization.

By means of geometric algebra, we could perform these parametrizations (and
found that the chord metric was a bit surprising in its geometry, see Eq. (34)). Geo-
metric algebra rotors and their bivectors were instrumental in the unification (and
introduced in brief tutorial fashion). While in some sense equivalent to quaternions,
their full membership of a geometric algebra provides useful extended tools for
computation and analysis, as well as visualization.

Having the three metrics thus embedded and related, we investigated averaging,
interpolation and optimal updating of rotations.

• We found closed form solutions to the optimal average for arc and chord metrics,
though not for the bivectormetric.We showed analytically how all are very similar,
to second order.

• The arc and bivector based interpolations recover the well-known slerp of [15],
while the bivector interpolation connects to known Bézier techniques on quater-
nions.

• Optimal updating based on minimizing the variance for distributions of rotations
was performed to first order, and led to a closed form Kalman update formula.
We have shown that the very commonly used ‘axis vector perturbation’ treatment
of noise (use e.g. in [1, 5, 9, 11] and many others), which involves the bivector
metric, is not rotationally invariant. It therefore may not correspond to a sensible
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noise model, and one should consider modeling perturbations in the arc or chord
parametrizations instead.

When we started this work we thought that the chord metric (basically, norm of the
difference of rotors—or quaternions)was a naive, non-geometricalway of comparing
rotations. Yet our detailed comparison of rotations combinations shows that it is as
good as the others for averaging (to second order), and certainly more suited to
statistical processing than the common axis vector perturbation. For interpolation,
we still prefer the slerp form which the arc or bivector parametrizations provide.

In summary, the arc angle parametrization of rotations appears to be the most
suitable for all combinations,with chord parametrization (which is easier to compute)
a good second choice.

An additional advantage of using geometric algebra to perform this comparative
analysis is that the techniques used are already in a form that permits treatment
beyond 3D. Bivectors are the geometric algebra encoding of general Lie algebras
[2]. Reformulating the encapsulation framework [7] in terms of bivectors (as we
have done here for 3D rotations) should extend its scope as a practical tool for the
combination of operators.
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Space-Bending Lattices:
Parameterization and Rationalization
of Cyclidic Volumes Through Conformal
Transformation of Principal Contact
Elements

Pablo Colapinto

Abstract Using 3D conformal geometric algebra, smoothly deformable curved vol-
umes of space can be constructed with simple expressions, purely in terms of tan-
gents to the space. Rationalization is achieved through continuous transformation of
spheres, which are principal contact surfaces of the space. The resulting triply orthog-
onal curvilinear coordinate system enables lattice bending deformations within a
hexahedral volume. An inverse mapping is used to connect the coordinate systems
of neighboring volumes. The development of these parameterizations offers a new
but foundational tool for computer aided design of machine parts, animated 3D char-
acters, or freeform architecture.

1 Introduction

The embedding of 3DEuclidean geometry inConformalGeometricAlgebra provides
a precise, expressive, and unifyingmathematical structure for computer aided design.
It is precise in that the discretization of surfaces quickly converges to the continuous
case using closed-form equations with spherical primitives. It is expressive in that
complicated geometric structures can be intuitively parameterized with just a few
elements. Finally, it is unifying in that it helps bridge disparate branches of applied
mathematics, and offers its practitioners an intuitive way to generalize expressions
into higher dimensions.

As an example of these features, in a previous work [3] we composed conformal
transformations of principal contact spheres into a rationalization of cyclidic surfaces,
which exhibit valuable geometric properties of use in engineering and design. Most
notably, these analytic mappings benefit from reduced torsion while their composi-
tion from circles offers a closer approximation to continuous differential geometry,
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which can allow for simplified deformation and fabrication techniques. This reformu-
lation of the model of curvature-line parameterized surfaces and volumes developed
by Bobenko and Huhnen-Venedey [2, 12] was motivated by the demonstration by
Dorst and Valkenburg [6] and Dorst [7] that all 3D conformal motions can be decom-
posed into two orthogonal bivector generators of the transformation. The decompo-
sition itself is an application of the bivector split uncovered by Hestenes and Sobczyk
[11].

In the present work, we extend this composition to more carefully detail the
construction of cyclidic volumes of space, by leaning explicitly on the geometric
expressivity of principal tangent contact elements, obviating the need for supporting
circles (or cones) found in our own (and other) earlier formulations. These tangent
elements can be considered unit normals at a particular location in space. Dually,
they can be considered infinitesimal surface area—a circle that has shrunk to zero
radius—though in the expressions that follow we deal with them as an “arrow at a
point in space”. As we will see, we can create a discretizable volume of curved space
by relying on these contact elements exclusively.

By evaluating coordinateswithin a hexahedral cyclidic volume,weprovide a novel
technique for constructingdeformations, as depicted inFig. 1.Wealso provide a novel
inverse mapping algorithm, which is necessary for joining these elements together
into more complex lattices. The resulting formulations are compact, coherent, and
generalizable to higher dimensions.

Fig. 1 Various cyclidic lattice deformations of a cylinder. To define the transformation of a vertex
v �→ v′, the coordinates of the original cylinder vertex v are used as inputs to the mapping outlined
in this paper.
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2 Cyclidic Volumes

Ageneric six-sided—hexahedral—volume,where the individual edge boundary lines
lie on circles and the faces are patches of Dupin cyclides, we call a cyclidic volume
(sometimes referred to in the literature as a cyclidic cube or hexahedron—see Fig. 2).
The cyclidic volume is an extension of a cyclidic surface patch, a 2D manifold so-
called because it lies on a Dupin cyclide, which is any torus, cylinder, or cone under a
Möbius transformation [9]. The aforementioned references [6] and [7] show that all
3D conformal transformations generate orbits that lie on these cyclidic surfaces. Such
surfaces can therefore be rationalized with orthogonal and commuting generators of
conformal transformations.

The original use of cyclidic patches as elements in computational geometry stems
fromMartin’s PhD thesis [13], where he developed the use of these principal patches
to create a surface modelling technique through direct manipulation of tangent ele-
ments. The formulation provides an at-times more intuitive, albeit more restrictive,
alternative to the prevalent NURBS-based modelling (Non-Uniform Rationalized
Basis Spline), and enables the creation of isotropic surfaces which exhibit some
useful properties.

In particular, working with discretized cyclidic surfaces and volumes is useful in
engineering and design for their precision and consistency. For one, the edges of a
surface patch are circular segments, and, as discussed in [2], discretizing space with
curved elements instead of flat ones leads to closer approximations to the contin-
uous case, a desirable feature of any discrete differential system. In [1], freeform
architectural constructions are faciliated with simplified edges and reduced nodal
complexity, effectively eliminating nodal torsion and reducing construction costs.
Conformal surface deformations are also useful in computer graphics, where the
elimination of shearing forces will more consistently warp a uv-texture in a way
that preserves local features, as explored in [5] and [15]. In [14], we see this type
of construction provides a mechanism for solving difficult modelling tasks, such as
hole-filling, finding and generating canal surfaces, and shape blending.

Fig. 2 A few six-sided cyclidic volumes. Each face is itself a cyclidic patch composed of circular
segments.
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3 Conformal Geometric Algebra

In the references [7, 8] and [4], readers can find a clear introduction to geometric
algebra and the conformal model. Here we summarize the notation to be used in the
expressions that follow.

Themodel we use in our parameterization is the geometric algebra ofmetric space
R

4,1 with basis elements {e1, e2, e3, e+, e−}, null origin basis vectorno = 1
2 (e− + e+)

and null infinity basis vector n∞ = e− − e+. Euclidean vectors in bold x are sums
of Euclidean subspace basis {e1, e2, e3} and conformal points p are defined through
inverse stereographic projection: p = n0 + x + 1

2 x
2n∞. We write the outer product

of null basis vectors as E = no ∧ n∞.
The application of a continuous rotor R = e−t B with scalar variable t and bivector

generator B to transform a multivector X is written X �→ R[X ] = RX R̃.
A ratio of elements B

A is calculated in the order BA−1 and in many cases this

entire ratio is noted as being normalized with a hat symbol (as in ̂( B
A )) which in

the current text should not be mistaken to signify an involution (to try to avoid
confusion, the involution operation is not used anywhere in this paper).Normalization
is calculated by dividing out the reverse norm, as in Xnormalized = X/‖X‖, where the
reverse norm is:

‖X‖ =
⎧

⎨

⎩

√

X · X̃ if X · X̃ ≥ 0

−
√

−(X · X̃) if X · X̃ < 0
(1)

Brackets 〈X〉k around a multivector extract only the grade k component of X ,
with the absence of a subscript, as in 〈X〉, signifying the grade 0 scalar component.

In this 5D metric space, the dual operator X∗ effectively multiplies X by the
negative of the pseudoscalar I = e123E , whereas the undual operator X−∗ does the
same but without the minus sign, hence:

X∗ = −X−∗ = −X I (2)

4 A Tangential Approach

A summary of the details below can be found in the “cast of characters” reference
of Table1.

A translator Tp in direction p is a rotor constructed through exponentiation of a
direction vector pn∞ where p is a Euclidean vector:

Tp = e− pn∞
2 = 1 − pn∞

2
, (3)

which stems from a result of Taylor expansion (see also Eq.23 below).
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A tangent τ at a point p is constructed from a unit Euclidean vector v representing
a direction, wedged with the null origin no, which together have been translated by
a translator Tp to position p = no + p + 1

2 p
2n∞:

τ = Tp[n0v] (4)

Such a tangent element, or “arrow-at-a-point” is sometimes called a null point
pair, as it is equivalent to a 0-sphere with zero radius, and it is dual to a null circle,
or “surface-at-a-point”, which is a 1-sphere with zero radius.

A tangent at p is orthogonal (normal) to a flat surface dual plane π through p
constructed with the simple form:

π = n∞ · τ (5)

The flat surface π (with normal τ at p) is bent into a curved surface sphere (also
with normal τ at p)with scalar curvature k by using the tangent itself as a generator
to create a curvature inducing rotor S:

σ = S[π ] (6)

with

S = e− kτ
2 = 1 − kτ

2
(7)

which is anexpression resulting fromtheTaylor expansionsofEq. 23below,given that
τ 2 = 0. Here k really is the curvature: i.e. the inverse of the radius of the resulting
sphere. It is important to note that the expressivity of the tangent allows us to use it
both to construct the flat surface and to generate the transformation that bends it. All
that is needed is the tangent τ and the curvature scalar k. The expression for creating
a surface sphere σ with normal τ and curvature k in precisely just those terms is then:

σ(τ, k) = (1 − k

2
τ)(n∞ · τ)(1 + k

2
τ)

= ((n∞ · τ) − (
k

2
τ)(n∞ · τ))(1 + k

2
τ)

= ((n∞ · τ) + (n∞ · τ)(
k

2
τ))(1 + k

2
τ)

= (n∞ · τ)(1 + k

2
τ)(1 + k

2
τ)

= (n∞ · τ)(1 + kτ) (8)

Another simple and useful expression for constructing a curved surface σ with a
normal τ is to use another surface σ⊥ as an orthogonality constraint to give

σ = σ⊥ · τ (9)
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which constructs a sphere σ that is orthogonal to σ⊥ and has normal τ . When two
spheres are orthogonal, at every point along their intersection, the normals of one lie
tangent to the other. Equation9 is a versatile general expression: when σ⊥ is a point
p, the resulting sphere goes through p. And we have already seen in Eq.5 that when
σ⊥ is the point at infinity, the resulting sphere is a plane. We will also encounter this
basic expression in Sect. 9 in the form p · κ , where κ is a pair of contact surfaces,
and p is a point we would like to inverse map.

Finally, the following expression for extracting the tangent τ normal at a point p
on a surface σ will be useful during cyclidic constructions.

τ = σ ∧ p (10)

The use of the above spheres in rationalization is further described in Sect. 8 and
Table1.

5 The Sense of Spheres

The curvature-parameterized spheres of Eq.8 will have a positive or negative signed
sense depending on whether the curvature coefficient is, respectively, positive or
negative (see Fig. 3). This curvature will be initially encoded in the no coefficient of
the sphere. In practice, we normalize the spheres by dividing out the absolute value
of this coefficient, so that spheres have an orientation of 1 or −1. We can also define
this sense s algebraically as the trivector direction e123n∞,

s = (−n∞ · σ−∗) ∧ n∞ (11)

which is a formulation found in [8].
As shown in Fig. 3, in our curvature parameterization a positive sense means

the generating tangent points inwards towards the center of the sphere, and hence,
towards the direction of curvature, concave upward.With a negative sense the tangent
points outwards, the curvature being concave downward. In this representation, the
dot product of a point p with a sphere σ is positive if a point is on the same side of the
sphere surface pointed to by the tangent’s direction and negative if it is on the other
side. The same separation holds true if the curvature is 0 and σ is in fact a plane.

While this is a consistent representation, it is “inverted” in that positively-sensed
spheres have normals that face inwards, and points that are on the same side of a
sphere as the direction of its normals have a positive dot product with it. Furthermore,
the spheres of Eq.8 will have the opposite sense than the spheres they are orthogonal
to. We can easily change this if desired by negating the expressions of Eqs. 6 and 9,

σ = S[−n∞ · τ ] (12)

σ = −σ⊥ · τ (13)
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Fig. 3 The sense
(sometimes called direction,
or orientation) of spheres in
the curvature parameteri-
zation of Eq.8 is (left image)
positive if the curvature is
positive, concave upward,
and (right image) negative if
the curvature is negative,
concave downward. Both
spheres in the image above,
despite having opposing
absolute sense, actually have
similar relative sense
(positive) with respect to
their generating tangents.
Table2 demonstrates how
relative sense can be used to
specify an appropriate
transformation between two
intersecting spheres.

but we need not do so, as it will not impact the formulations in this paper.
In practice, what is more relevant than the absolute sense of a sphere σ is the

sense relative to a given tangent arrow τ orthogonal to its surface, which we define
as the sense of the sphere σ · τ . We call this important measure the relative sense as
it is the sense with respect to a specific direction, telling us whether the arrow points
towards the positive or negative side of the sphere. Similarly, we use the signed scalar
value p · σ to determine the relative direction of a point p with respect to the sphere
σ , which tells us on which side of the surface the point lies. In Sect. 8, the sign of
these measures is essential to enabling us to precisely control the bivector logarithm
of the transformation that takes a tangent arrow on one surface to a tangent arrow on
the other (see Table2).

6 Establishing the Tangent Frame

With our basic geometric constructions prescribed, let us be more explicit about
what these represent. We will be constructing a triply orthogonal curved coordi-
nate system, providing a mapping f : (ux , vy, wz) �→ R

3 from scalar coordinate
variables ux , vy, wz to a point p(ux ,vy ,wz) in a 3D volume. The value of the coordi-
nate we write in the subscript, such that u0 means u = 0. Working in the conformal
model of 3D Euclidean space, an orthonormal frame at coordinate (ux , vy, wz) is
written F(ux ,vy ,wz). This tangent frame is encoded by the location and orientation
of three orthonormal tangents at p: τu, τv, τw. In generic notation we will write τi ,
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with i = u, v or w specifying our principal directions. Our initial volume will be
hexahedral (six-sided), like a cube, and so there are eight frames in all F(ux ,vy ,wz)

with x, y, z ∈ {1, 0}, as depicted in Fig. 6.
Through use of the simple expressions of Eqs. 6 and 9, we will identify spheres

σ i that have normals τi which represent a constant coordinate surface: moving on
the surface σ i is equivalent to not moving in the orthogonal direction encoded by τi .
Again, the superscript notation in σ i specifies the coordinate that is held constant,
with i = u, v or w. Likewise, the subscript in τi indicates the coordinate value that
is increased in direction τi .

With these tangent elements, six spheres written σ i
j (with normals τi ) are con-

structed from, respectively, six curvature coefficients kij . These represent coordinate
surfaces of constant i with respect to moving in the j direction. So, for instance,
the sphere σ u

v represents the surface of constant coordinate u as we move in the v

direction, whereas the sphere σ u
w represents the surface of constant coordinate u as

we move in the w direction. In flat spaces these two surfaces would be the same
plane, but this is not necessarily the case in curvilinear coordinates, where there are
now two distinct constant coordinate surfaces for each direction of travel: σ u

v , σw
v ,

σ u
w, σ

v
w, σ

v
u , and σw

u .
It becomes geometrically clear that each tangent τ lies along a circular coordinate

curve K specifying a linearly independent direction of movement, and that each
circular coordinate curve trajectory K lies on the intersection of the two spherical
constant coordinate surfaces (see Fig. 4).1

Fig. 4 Two examples where a surface of constant u in the v direction, σ u
v , intersects with a surface

of constant w in the v direction, σw
v , to define a coordinate curve Kv . On the left, both surfaces are

flat and the curve is straight. On the right, σ u
v is round and the curve is as well.

1Dupin’s theorem relates that the principal curvature lines lie at the intersection of a pair of coor-
dinate surfaces in a triply orthogonal system. Hestenes provides a Geometric Calculus approach to
analyzing the various components of these differential manifolds in [10].
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Fig. 5 Six spheres define all
the various constant
coordinate surfaces of one
triply orthogonal tangent
frame. In red: σ u

v and σ u
w . In

green: σv
u and σv

w . In blue,
σw
u and σw

v . Coordinate
curves lie upon the
intersection of spheres with
common subscripts, e.g.
(σ u

v ∧ σw
v )−∗, (σ v

u ∧ σw
u )−∗,

and (σ u
w ∧ σv

w)−∗. A
transformation along that
curve is then defined using
Eq.17.

Kk = (σ i
k ∧ σ

j
k )−∗ (14)

To specify points along this coordinate curve we apply a conformal rotor to a
point translated some distance along the line τ i n∞. Given a point along this line we
transform it to lie on the coordinate curve using the rotor Ck , which is constructed
by summing the two generators of constant surfaces i and j :

Ck = e− 1
2 (kikτi+k j

k τ j ) = 1 − 1

2
(kikτi + k j

k τ j ) (15)

The selection of the point along the line is also defined as a rotor in terms of a scalar
distance dk and, once again, our tangent element itself:

Tdk = e− d
2 (n∞·τk )∧n∞ (16)

such that our point p′ on curve Kk is completely defined in terms of tangents as a
translation followed by a conformal rotation:

p′ = CkTdk [p] (17)

where p is the location of the orthonormal frame F (see Fig. 5).

7 Completing the Coordinate System

So far we have fully defined the six constant coordinate surfaces of one “corner” of
our volume of space, using a tangent frame and six curvature coefficients. To actually
navigate the space we need to be able to specify the tangent frames at the other seven
corners.
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Fig. 6 A hexahedral
(six-sided) lattice consists of
eight tangent frames and can
be completely specified with
nine curvature coefficients,
forming 24 constant
coordinate surfaces (see
Sect. 7).

F(u0v0w0) F(u1v0w0)

F(u0v1w0)

F(u0v0w1)

F(u1v1w0)

F(u1v0w1)

F(u0v1w1) F(u1v1w1)

Beforewe do so, it is already apparent wewill need to keep track ofmore variables
in our notation, as the constant coordinate surfaces at one corner of our hexahedral
volume need to be distinguishable from those at the other. We extend the previous
notationwith the following scheme:σ inkl

jm
is to be understood as the surface of constant

i = n as we move in the j direction, starting at frame F(in , jm ,kl ), where i = n, j = m
and k = l. Thus, this encoding specifies the actual frame where our surface exists. If
a subscript or superscript is missing, then it should be assumed to be equal to 0.

For instance, σ u0w0
v0

is the surface of constant u as we move along v, starting at
frame F(u0,v0,w0), whereas σ u1w0

v0
is the surface of constant u as we move along v,

starting at frame F(u1,v0,w0).
With the dimensions of the volume given, to fully define a hexahedral volume we

will need to create a total of 24 constant coordinate surfaces (two for each edge of
the volume):

σ u0w0
v0

, σ u0v0
w0

, σ v0w0
u0 , σ v0u0

w0
, σw0v0

u0 , σw0u0
v0

,

σ u1w0
v0

, σ u1v0
w0

, σ v1w0
u0 , σ v1u0

w0
, σw1v0

u0 , σw1u0
v0

,

σ u0w1
v0

, σ u0v1
w0

, σ v0w1
u0 , σ v0u1

w0
, σw0v1

u0 , σw0u1
v0

,

σ u1w1
v0

, σ u1v1
w0

, σ v1w1
u0 , σ v1u1

w0
, σw1v1

u0 , σw1u1
v0

.

Similarly, we will also want to keep better track of our tangent frames, as there
will be eight total, one for each corner of the hexahedral volume. We refer to the
originating frame tangents as before, τu , τv , and τw, and specify other frames with
specific values: e.g. τ (u1,v0,w0)

u is the u-direction tangent element at frame F(u1,v0,w0),
and τ (u1,v1,w0)

u the u-direction tangent at frame F(u1,v1,w0).
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7.1 Choosing Three More Curvature Coefficients to Close the
Volume

By specifying three distinct distances, du , dv , and dw (one for each principal direction)
and applying the resulting rotor from Eq.17 to the tangents τu , τv , and τw, we can
transform our original tangent frame F(u0,v0,w0) to the corners F(u1,v0,w0), F(u0,v1,w0),

and F(u0,v0,w1) as labelled in Fig. 6.
Our task is now to identify the tangent frames and surface spheres at the remaining

unknown corners, F(u1,v1,w0), F(u0,v1,w1), F(u1,v0,w1) and F(u1,v1,w1). To do so we first
specify three more curvature coefficients at our newly found frames to identify three
more surfaces: σv1w0

u0 , σ u1v0
w0

, and σw1u0
v0

, as depicted in Fig. 7. We then use Eq.9 to
create the surfaces that are orthogonal to them, namely:

sphere is orthogonal to has normal

σ
w0u1
v0 σ

v1w0
u0 τ

(u1,v0,w0)
w

σ
u1w0
v0 τ

(u1,v0,w0)
u

σ
v0w1
u0 σ

u1v0
w0 τ

(u0,v0,w1)
v

σ
w1v0
u0 τ

(u0,v0,w1)
w

σ
u0v1
w0 σ

w1u0
v0 τ

(u0,v1,w0)
u

σ
v1u0
w0 τ

(u0,v1,w0)
v

With these constructed, we use them to continue constructing three more:

sphere is orthogonal to has normal

σ
w0v1
u0 σ

w0u1
v0 τ

(u0,v1,w0)
v

σ
v0u1
w0 σ

v0w1
u0 τ

(u1,v0,w0)
u

σ
u0w1
v0 σ

u0v1
w0 τ

(u0,v0,w1)
w

Finally, in the following section,wewill calculate the transformation that takes one
surface to its opposing one, and apply this transformation to the tangents themselves.

8 Conformal Rotors from Ratios of Constant Coordinate
Surfaces

With 18 of the orthogonal surfaces now constructed, we are able to create conformal
transformations that take spheres to spheres. This transformation allows us to build
three new tangent frames F(u1,v1,w0), F(u0,v1,w1), and F(u1,v0,w1). For instance, F(u1,v1,w0)

can be found by transforming the tangents at F(u1,v0,w0) by the conformal rotor that
takes constant coordinate surface σv0w0

u0 to σv1w0
u0 . The action of this rotor is depicted

in Fig. 8.We will be using these tangent frames to produce additional surface spheres
using Eq.9.

We write the point pair generator of a conformal surface transformation as
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Fig. 7 a) Surfaces σ
v1w0
u0 (green), σ

u1v0
w0 (red), and σ

w1u0
v0 (blue) are created by applying Eq.6 to

the tangents τ
(u0,v1,w0)
v , τ (u1,v0,w0)

u , and τ
(u0,v0,w1)
w , respectively. b) Given σ

v1w0
u0 (green), we define

σ
u1w0
v0 as the sphere that must be orthogonal to it, with normal τ

(u1,v0,w0)
u , using Eq.9. While not

pictured, we also define σ
w0u1
v0 in this way, with normal τ (u1,v0,w0)

w .

Table 1 Cast of characters: proposed algebraic notation for curvilinear coordinate systems using
conformal geometric algebra, built entirely with tangent elements. The hat symbol̂ here means
“normalized” (and not involution).

Notation Expression(s) Geometric meaning

τi T [n0vi ] Unit normal to constant surface π i
j

π i
j n∞ · τi Surface (flat) of constant i = 0 in direction j

Sij e− 1
2 k

i
j τi Rotor to create surface with scalar curvature kij

σ i
j Surface of constant i = 0 in direction j

Sij [π i
j ] Round surface from transformed flat surface

σ
in
j Surface of constant i = n in direction j

σ
inkl
jm

Surface of constant i = n in direction j , at j = m, k = l

σ
jm+1kl
in−1

· τ (in , jm ,kl )
i Surface with normal τ orthogonal to surface σ

σ
jm+1in
kl−1

· τ (in , jm ,kl )
i

κ
in
j

1
2 log(±

̂
σ
in+1
j

σ
in
j

) Generator to transform σ
in
j to σ

in+1
j

R
i(n+t)
j etκ

in
j Rotor transforming σ

in
j to σ

in+t
j , with t in range (0, 1)

Rinkl
jm

Rotor transforming σ
inkl
jm

to σ
in+t kl
jm

and σ
kl in
jm

to σ
kl in+1
jm

Ck e− 1
2 (kikτi+k j

k τ j ) Rotor that bends a straight line into a k-direction curve

Kk (σ i
k ∧ σ

j
k )−∗ A k-direction curve
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Fig. 8 The conformal rotor
Rv0w0
u0 is a continuous

transformation that takes the
surface σ

v0w0
u0 to σ

v1w0
u0 . It

can be applied to tangents,
points, etc.—any element of
the algebra. Applying it to
tangents allows us to identify
the corners of our hexahedral
lattice.

κ
in
j = 1

2
log(±

̂
σ
in+1
j

σ
in
j

) (18)

with the hat here symbolizing normalization of the entire ratio (not involution). In
practice, we use the minus sign if the relative sense of the spheres with respect to
their tangents at the beginning and end of the transformation are opposite (see the
bottom row of Table2 for visual explanation of this distinction).

As explained in [6], the log itself is

log(R) = atanh2(〈R〉2, 〈R〉) (19)

with

atanh2(s, c) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

asinh(
√
s2)√

s2
s if s2 > 0

s if s2 = 0
atan2(

√−s2,c)√−s2
s if − 1 ≤ s2 < 0

(20)

In [3] we proposed an additional case to this logarithm: when s2 is negative, we can
provide an alternate sense of transformation to approach a sphere from the opposite
direction (see the first column of Table2 for when we want to do so):
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atan2(
√−s2, c) − 2π√−s2

s (21)

The rotor itself is then the continuous transformation

R
i(n+t)

j = etκ
in
j (22)

with n an integer greater than 0 and t a scalar value in the range of 0 to 1. The laws
of exponentiation follow from Taylor expansion:

et B =

⎧

⎪

⎨

⎪

⎩

cosh(t) + sinh(t)B if B2 = 1

cos(t) + sin(t)B if B2 = −1

1 + t B if B2 = 0.

(23)

Applying the rotors to the tangents leaves out only F(u1,v1,w1), the position ofwhich
can be found as the intersection of three planes, and the tangents themselves using
Eq.10.

With these tangent frames constructed, we can find the 6 remaining constant
coordinate surfaces.

sphere through point has normal

σ
u1v1
w0 p(u1,v1,w1) τ

(u1,v1,w0)
u

σ
v1u1
w0 τ

(u1,v1,w0)
v

σ
v1w1
u0 τ

(u0,v1,w1)
v

σ
w1v1
u0 τ

(u0,v1,w1)
w

σ
w1u1
v0 τ

(u1,v0,w1)
w

σ
u1w1
v0 τ

(u1,v0,w1)
u

8.1 Triply Orthogonal Coordinate System

The discretization of this curved space depends only on the constant coordinate
surface spheres defined in the previous section. This compact representation allows
one to continue working directly with elements tangent to the space itself, without
extraneously constructed supporting elements. With our surfaces specified, we can
use Eq.18 to define the generators κ

inkl
jm

of the conformal transformation Rinkl
jm

that

takes σ
inkl
jm

to σ
in+1kl
jm

. There are 12 such generators, which are used to transform
one constant coordinate surface into another on the opposing face. There are two
generators across each face of the hexahedral volume—i.e. four generators for each
of the three directions a face can be extended to form a cube. Figure9 diagrams four
such generators.
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Table 2 Given two intersecting spheres σL and σR , there are four ways to generate a transformation
that takes a point on one sphere to a point on the other. Two boolean parameters determine which
path should be made – rows of the table consider whether starting and ending tangents of the path
have similar relative sense with respect to their spheres, and the columns consider whether the
starting point has a similar sense as the ending tangent.

Fig. 9 The arrows on four
faces of the hexahedral
volume here represent the
four transformation
generators κw0 bringing
constant surfaces σw0 to
σw1 . These w-direction
transformations are just 4 of
the 12 possible generators
κ
inkl
jm

formed by the ratio of
constant coordinate surface
spheres using Eq.18. The
other 8 consist of v-direction
transformations taking σv0 to
σv1 and u-direction
transformations taking σ u0

to σ u1 .

σw0u0
v0

σw1u0
v0

σw0u1
v0

σw0v0
u0

σw0v1
u0

σw1v0
u0

σw0v
u0

v
0

w0u0
v0
w0u0
v

σw1v1
u0

σw1u1
v0
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Fig. 10 The principal surface spheres σ
v0w0
u0 and σ

v1w0
u0 slide along the volume in the w-direction

to become σ
v0w1
u0 and σ

v1w1
u0 by application of the Rwzv0

u0 and Rwzv1
u0 rotors, respectively, with z in

the range (0, 1).

We have explained that the rotor Rw0u0
v0

takes sphere σw0u0
v0

to σw1u0
v0

and that the
rotor Rw0u1

v0
takes sphere σw0u1

v0
to σw1u1

v0
. But these rotors also, respectively, transform

the spheres σ u0w0
v0

and σ u1w0
v0

into the spheres σ u0w1
v0

and σ u1w1
v0

, effectively sliding them

along the outside of the volume. In general the Rinkl
jm

rotor transforms σ
inkl
jm

to σ
in+1kl
jm

and also transforms σ
kl in
jm

to σ
kl in+1
jm

. Figure10 shows these principal surfaces sliding
along the w-direction.

We desire a consistent mapping that allows to move first along the w coordinate
curve by an amount z, and then find our surfaces of constant σ

u0wz
v0 , σ

u1wz
v0 , σ

v0wz
u0 ,

and σ
v1wz
u0 at that location, to effectively determine the uv patch at w = z. While

Fig. 10 shows the principal contact elements can slide along the tangent space of the
volume, there is no guarantee that such contact surfaces will slide along opposing
surfaces at a rate that maintains the orthogonality condition. Instead, we rely on the
orthogonality condition to find these surfaces constructively. We first transform the
tangents τu and τv themselves by Rwzu0

v0 (so, by amount z along the w coordinate
curve) to define τ

(u0v0wz)
u and τ

(u0v0wz)
v , and then across the full volume in the u and

v directions:

τ (u1v0wz)
u = Ru0v0

w0
[τ (u0v0wz)

u ]

τ (u0v1wz)
v = Rv0u0

w0
[τ (u0v0wz)

v ]

With these four tangents defined at w = z we can construct the constant coordinate
spheres at w = z by maintaining orthogonality with our known constant coordinate
spheres:

σ u0wz
v0

= σv1u0
w0

· τ (u0v0wz)
u
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σ u1wz
v0

= σv1u1
w0

· τ (u1v0wz)
u

σv0wz
u0 = σ u1v0

w0
· τ (u0v0wz)

v

σ v1wz
u0 = σ u1v1

w0
· τ (u0v1wz)

v

We can then define the transformation between these spheres using Eq.18 to find
the generators κ

u0wz
v0 and κ

v0wz
u0 . Interpolating these generators by amounts x and y

respectively, we now have a complete mapping at (ux , vy, wz):

R(ux ,vy ,wz) = R
vywz
u0 Ruxwz

v0
Rwzu0

v0
(24)

The above conformal rotor first performs a transformation of amount z along the
w-direction generator, and then of amount x along the w-transformed u-direction
generators and amount y along thew-transformed v-direction generators. Thus, here
we are extending the uv surface along thew-direction (see Fig. 11)—we should note
that a different transformation, and therefore mapping, would result if we instead
extended the uw face along the v-direction or the vw face along the u-direction. The
application of such a mapping to a cylinder is demonstrated in Figs. 12 and 13.

9 Connecting Volumes with Inverse Mapping

A challenge remains to connect the coordinate systems of two discretizable volumes
or surface patches. This is a necessary step with the conformal discretization, as
neighboring patches do not rationalize at the same rate across the cyclidic arcs (see
Fig. 14), and so the coordinate systems do not line up.

An inverse mapping is needed here f : R
3 �→ (ux , vy, wz), such that given a

point p on a border, we can identify the coordinates of the two different systems
to which it belongs, i.e. the corresponding coordinate values of u, v, w. This is
simplified by the fact that we need only the inverse mapping at the boundary (i.e.
face)where two volumesmeet, so one of the coordinate valueswill already be known.

Given a point p on a surface patch—one of the faces of the curved hexahedron—
we can find the constant coordinate surfaces onwhich it lies using the surface-finding
expression;

σ i(n+t) = −p · κ in (25)

where κ in is a surface generator taking patch boundary surfaces σ in to σ in+1 and t is the
coordinate value offset in the range (0, 1) we will next seek to identify (see Fig. 13).
Note that this is the same simple expression used for defining surfaces throughout
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Fig. 11 A uv surface is transformed along thew direction, to define a 3Dmapping that rationalizes
the cyclidic volume. Above we draw the mapping of a circle at w = z with z ∈ {0, .5, 1}. The
surfaces of constant u and v at w = z, which are used to define the mapping, are found by first
transforming the tangent vectors themselves and then relying on the orthogonality condition to
extract the principal contact spheres.

this paper. The inverse mapping requires extracting the scalar coordinate value t
which can be done by finding the ratio of surface transformation generators:

t = κ in(t) · (κ in )−1 (26)

with

κ in(t) = 1

2
log(

̂

(
σ i(n+t)

σ in
)) (27)
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Fig. 12 A cyclidic volume
defines a mapping which is
here applied to a cylinder.
Below each image we note
the sign of the specific
curvature coefficient
controlling the deformation.

In this way, given a point on a face, we can identify the coordinate in both of the
volume systems to which it belongs, enabling a way to traverse smoothly from one
volume to the next. The ability to smoothly navigate connected volumes allows for
warping more complex surfaces and topologies. Figure15 demonstrates a step in this
direction, by applying the lattices to deform a cylinder.

The above expressionwill return 0 if the two opposing surfaces are parallel planes.
A more general expression is:

t = (no · κ in(t)) · (no · κ in )−1 (28)



108 P. Colapinto

Fig. 13 Given a point p on
the w = 0 surface patch, the
sphere −p · κu

v (in red) and
−p · κv

u (in green) are the
surfaces of constant u and v

at p. These surfaces can be
used in Eqs. 26 and 27 to find
the inverse mapping, which
specifies a uv-coordinate
value for p. In this example,
p is in the middle of the
patch, where u = .5 and
v = .5.

Fig. 14 With the conformal rotor rationalization outlined in Sect. 8, neighboring volumes will not
coherently rationalize at the same rate, as visualized here with patches whose coordinate curves
do not line up (left image). To account for this, the inverse mapping at a boundary can be used to
connect the coordinate systems of neighboring patches (right image).

Fig. 15 Various deformations of a series of cylinders across multiple lattice volumes. On the left-
most image we see in green the points that are inverse mapped in order to connect the series of
volumes.
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10 Conclusion

The precise, expressive, and unifying nature of conformal geometric algebra allows
us to design carefully parameterized spatial systems with geometric primitives and
versatile expressions. In this work, we began by explicitly encoding the concept of
curvature at a point in space, and proceeded to walk through a novel algorithmic
technique for defining a curved hexahedral volume of space using nine curvature
coefficients and direct manipulation of principal tangent contact elements. To ratio-
nalize this space into a curvilinear coordinate system, we demonstrated that there are
24 principal surface spheres tangent to such a volume—4 for each face (e.g. 2 for
each edge)—and that a composition of conformal transformations of one principal
surface across to the opposing face can be applied to rationalize the volume. This
provides us with a coordinate mapping f : (ux , vy, wz) �→ R

3 which can be used to
warp the contents of the space, providing a potentially useful mechanism for com-
puter aided design. To connect the coordinate systems of two adjacent volumes, we
provide an inversemapping f : R

3 �→ (ux , vy, wz) to extract the coordinate values at
a boundary. This inverse mapping can assist the construction of a network of lattices
to bend and design more elaborate forms. With these techniques firmly in hand, we
can now explore the range of motions and meshes facilitated by this space-bending
approach to design.

Acknowledgements The author would like to thank Professor Leo Dorst for his essential correc-
tions and comments during the preparation of this text. Of course, any omissions or errors are the
author’s alone.
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Exploring Lazy Evaluation
and Compile-Time Simplifications
for Efficient Geometric Algebra
Computations

Leandro A. F. Fernandes

Abstract Mathematical function libraries for scientific computation play an essen-
tial role in scientific development. These libraries allow researchers to focus their
efforts on solving higher-level problems while the implementations provided by the
libraries make good use of available computer resources. The Geometric Algebra
Template Library (GATL) is a C++ library of data structures and mathematical func-
tions for arbitraryGeometricAlgebras (GAs).GATLuses templatemetaprogramming
to implement a lazy evaluation strategy at compile-time. Thisway,GATL is capable of
performing optimizations on the programs during the compilation of executable files,
reducing the computational cost that programswill have at runtime.More specifically,
we have designed GATL to automatically execute low-level algebraicmanipulation in
the procedures described by the programmer using GA operations. The aim of GATL
at compile-time is to simplify each described procedure by performing symbolic opti-
mizations on expressions, leading to more efficient programs.

1 Introduction

It is well-known that Geometric Algebra (GA) is a powerful mathematical system
encompassing concepts like Complex Numbers, Quaternion Algebra, Grassmann-
Cayley Algebra, and Plücker Coordinates under the same framework [9, 16, 18, 21].
GA is mainly based on Clifford Algebra, but with a strong emphasis on geometric
interpretation. As such, it is an appropriate mathematical tool for modeling and solv-
ing geometric problems in physics, chemistry, engineering, and computer science.
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This contribution discusses the application of the lazy evaluation strategy at com-
pile time as a promising approach for the implementation of efficient programs based
onGA. Lazy evaluation defers the evaluation of expressions until other computations
need the expressions’ results. We present the Geometric Algebra Template Library
(GATL) as proof of concept of how toexplore lazy evaluation at compile time to reduce
both computational cost andmemory footprint of programs.GATL is a high-levelC++
library that includes a data structure that represents GA expressions that operate mul-
tivectors in arbitrary metric spaces and dozens of operations of this algebra. In con-
trast to other lazy solutions such asGaalet [25],GATL conducts symbolic optimiza-
tions on expressions during compilation. Solutions like Gaalop [5, 17] also execute
algebraicmanipulations at compile time to simplify expressions. In this case, the solu-
tion uses an external tool to perform symbolic optimizations and replaces the original
source code by the optimized counterpart version of it. GATL, on the other hand, per-
forms symbolic optimizations by the ingenious use of themetaprogramming template
capabilities of C++.

In Sect. 2, we present an overview of the implementation strategies that have been
employed in defining code optimizers, libraries, and library generators for GA.
Section3 describes the internal structure of GATL and how it implements lazy evalu-
ation and compile-time simplification. The performance of other solutions for GA is
compared to GATL in Sect. 4. Finally, we draw our conclusions in Sect. 5.
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2 Overview of Implementation Strategies forGeometric
Algebra

One can classify the solutions that provide data structures andmathematical functions
toworkwithGA in terms of their type as code optimizers, libraries, or library genera-
tors. The solutions can employ twodifferent strategies for evaluating the implemented
operations. Namely, lazy evaluation and eager evaluation. We call implementation
strategy the combination of a type of solution with an evaluation strategy. Table1
relates some existing solutions with their classification regarding their type, evalua-
tion strategy, supported data types at runtime, and programming languages.

Section1 introduces the lazy evaluation as the strategy that defers the evaluation of
expressions until other computations need the expressions’ results. In eager evalua-
tion, the arguments to a function are always evaluated completely before the function
is applied. It is important to emphasize that the actual evaluation strategy is intrinsic
to the programming language. All programming languages mentioned in this section
employ theeager evaluation strategy.But inall of them, it is possible to implementdata
structures that simulate laziness.Therefore, the solutions indicated as “lazy”makeuse
of implementation tricks to simulate laziness in eager languages.

Table 1 Classification of solutions for GA regarding their type, evaluation strategy, supported data
types at runtime, and the programming languages
Solution Type Evaluation Strategy Runtime Data types Programming

languages

clifford [1] Library Eager Numeric Python 3

Gaalet [25] Library Lazy Numeric, Symbolic† C++

Gaalop [5, 17] Code Optimizer Eager Numeric C, C++, CUDA,
OpenCL, MATLAB

Gaigen [13] Library Generator Eager Numeric C, C++, C#, Java

galgebra [3, 23] Library Eager Symbolic Python 2, Python 3

Gallant [8, 12] Library Eager Numeric Java

ganja.js [7] Library Generator Eager Numeric C++, C#, Javascript,
Python 3, Rust

Garamon [2] Library Generator Eager Numeric C++

GATL Library Lazy Numeric, Symbolic C++

GluCat [19] Library Eager Numeric C++, Python 2

GMac [10] Code Optimizer Eager Numeric C++, C#, VB.NET,
F#, IronPython

Grassmann.jl [24] Library Eager Numeric, Symbolic Julia

Klein [20] Library Eager Numeric C++

Liga [4] Library Eager Numeric Julia

TbGAL [26] Library Eager Numeric, Symbolic† C++, Python 2,
Python 3

Versor [6] Library Eager Numeric, Symbolic† C++

†As a template-based C++ solution, it is likely to support symbolic data types for multivector coef-
ficients at runtime. However, this capability has not been asserted by the authors
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CodeOptimizers.When a programmer uses a code optimizer, he/shewrites snippets
of the source code of his/her program using the representation language provided by
the optimizer. The representation language is not necessarily the same used to write
the rest of the program. Before compiling the whole program, the optimizer analyzes
the snippets of specialized code,maps the input variables to symbols, and converts the
calls to operations of the algebra into mathematical expressions. Such expressions, in
turn, aremanipulated algebraically in order to simplify them. The result of themanip-
ulation is then translated into source code in the programming language chosen by the
programmer, and compiled with the rest of the program.
Gaalop [17] is an example of code optimizer for GA. It is a software that expects

procedures implemented using CLUScript [22] as input and converts them into
simpler C, C++, CUDA, OpenCL, or MATLAB code. Gaalop uses the Maxima
system for the manipulation of symbolic expressions. Charrier et al. [5] developed a
Gaalop Pre-Compiler for C++, CUDA, and OpenCL that takes CLUScript snip-
pets declared in pragma directives [27] and optimize them producing inline code for
a given source file. The source code produced by Gaalop is evaluated eagerly. Nev-
ertheless, in theory, it does not show any performance issues at runtime since the sim-
plification process runs before the compiling process is triggered.
GMac [10] is another code optimizer that produces code fragments from a descrip-

tion of an algorithm in a domain-specific language. It can be configured to generate
textual code files using an API that is accessible through any .NET language, includ-
ing C++, C#, VB.NET, F#, and IronPython. Currently, GMac depends on Wolfram
Mathematica for symbolic processing. The generated code is evaluated eagerly.

Libraries.When using libraries, the programmer declares variables whose types are
data structures provided by the solution and calls subroutines that represent GA oper-
ations implementedby the library.clifford [1],galgebra [3, 23],Gallant [8,
12],GluCat [19], Grassmann.jl [24], Klein [20],Liga [4], TbGAL [26], and
Versor [6] are examples of GA libraries that employ the eager evaluation strategy.
For eager libraries, theonlypossibleoptimizationsare those that affect individual calls
of subroutines, because eager evaluation solves each subroutine call before passing its
result as an argument for the next call.
Versor uses the metaprogramming capabilities of C++ templates to perform

compile-time specialization of subroutines based on the arguments passed to them,
producing results that compute and store only the multivector components whose
coefficients may be non-zero at runtime. To perform such simplification at compile-
time, Versor assumes that the coefficients stored by the input multivectors are non-
zero values since the actual valueswill only be known at runtime. In contrast, the basis
blade associated with each coefficient is known at compile time. Through the alge-
braicmanipulation of the basis blades of the inputmultivectors, the library can predict
which components of the resultingmultivector will be equal to zero andwhichwill be
different from zero, eliminating the need for calculating the former and maintaining
the storage andcomputationof the latter.However, as illustrated in the followingcode,
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eager evaluation prevents the library from suppressing intermediate results thatwould
be unnecessary when considering a sequence of operations.

Other eager libraries presented in Table1 do not simplify subroutine according to
their arguments at compile time. The only exception is clifford [1], which uses
the just-in-time (JIT) compilation feature of Python to improve the performance of
subroutine calls. The JIT functionality was extended for C�4,1 by Gajit [15].

Libraries for GA that employ the lazy evaluation strategy provide two types of
data structures to representmultivectors. Themore straightforward kind of data struc-
ture represents concrete multivectors, i.e., multivectors that store their components
in memory at runtime. The other kind of data structure encodes (lazy) multivector
expressions, i.e., expressions obtained by operating concrete multivectors and other
expressions. Typically, a multivector expression arg can be evaluated implicitly by
assigning it to an existing concrete multivector variable or explicitly by calling func-
tions like eval(arg) and arg.eval() that return a concrete multivector.
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To the best of our knowledge, Gaalet [25] and GATL are the only libraries for
GA that employ the lazy evaluation strategy. By combining C++ templates metapro-
gramming and lazy evaluation, both solutions extend the compile-time specialization
capability of Versor to include the suppression of unnecessary computations over
sequences of operations, inline function calls, and avoid storage of temporary values.
The main difference between Gaalet and GATL is that GATL’s lazy evaluation sys-
tem of template expressions implements an algebraicmanipulator that conducts sym-
bolic manipulations equivalent to those performed by Gaalop, but without the need
for an external tool. Also, unlike Gaalet and Versor, GATL allows multivector
coefficients to assume known values at compile-time, thus reducing storage cost at
runtime. This latter feature is especially useful in representing points with unit homo-
geneous coordinate and constant multivector.

The code examples that follow illustrate, respectively, the use of Gaalet and
GATL in solving the same rotation case presented for Versor.
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LibraryGenerators. For this kind of solution, the programmer first defines the para-
meters of his/her programming language andGAof interest in the generator software.
The generator then produces implementations of data structures and GA operations
from scratch. This set of implementations, in turn, can be used by the programmer like
conventional libraries inwritinghis/herprograms.Gaigen [13],ganja.js [7], and
Garamon [2] are examples of library generators forGA (Table1). The three solutions
generate eager libraries but only Gaigen implements an optimization mechanism
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for individual subroutines based on use cases.When usingGaigen, the programmer
must generate the initial library without optimizations and use it in his/her program
with the profiling functionality enabled. Profiling data is then interpreted byGaigen,
which produces an optimized version of the GA library by pruning unused multivec-
tor components. The final compilation of the program must be done considering the
optimized version of the generated library.

3 TheGeometric AlgebraTemplate Library (GATL)

GATL is aC++17 template librarydefined in its headersfiles.There is nobinary library
to link to, no configured header file, or dependencies to external libraries. Therefore, if
youwant to use GATL, you can use the header files right away. Section3.1 presents an
overview of GATL’s front-end, i.e., the set of data structure and subroutines available
to the programmer while using the library. The internal organization and implemen-
tation of the library correspond to the back-end presented in Sect. 3.2.

3.1 GATL’s Front-End

According to the GATL’s conventions, the root directory for the header files that the
programmer will include in his/her source files is the gatl folder. The header file
that encloses allGATL implementations isgatl/ga.hpp. Fromthisheader, thepro-
grammer has access to the ga namespace, which is the main namespace of the GATL
library. In C++, namespaces are declarative regions that provide scope to the names
of the types, subroutines, and constants inside it. The following classes correspond to
the most important data structures in GATL’s front-end:

clifford_expression<CoefficientType, Expression>
ACliffordexpression.The templateparameterCoefficientTypecanbeeither
a native arithmetic type (e.g.,double,float,int) or third-party classes imple-
menting arbitrary-precision arithmetic or symbolic computation. It specifies the
data type of the multivector’s coefficients. The Expression parameter is a type
describing the internal structure of the Clifford expression. Depending on the defi-
nition of this parameter, the Clifford expression will be classified as concrete mul-
tivector or (lazy)multivector expression (see Sect. 2).

lazy_context<CliffordExpression1, CliffordExpression2, …>

Aclass todefine lazyarguments for lazyevaluationofCliffordexpressions. It keeps
references to the set of instances of clifford_expression<…> informed as
input argument and produces multivector expressions having the concrete coeffi-
cients and basis blades in the input set replaced by symbols.
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metric_space<MetricSpaceType>
The basemetric space class fromwhich all specializedmetric space classes derive.
The parameter MetricSpaceTypemust be one of those specialized spaces.

That’s it.Only three classes!Andmost of the time, theprogrammerdoesnot have to
worry about parameterizing these classes since GATL provides helper functions and
auxiliary headers for pre-defined GAs. Also, it is strongly recommended to use the
auto placeholder type specifier [27] whenever possible.

The last programcodepresented inSect. 2 illustrates theuseof GATL. In this exam-
ple, gatl/ga3e.hpp (line 1) is an auxiliary header defining the namespace ga3e
(line 3) for a GA for 3-dimensional Euclidean geometry (C�3,0) with basis vectors
{e1, e2, e3}. The specialized metric space class in this example is euclidean_
metric_space<3>. It is used inside the header to declare the static constant object
space. This object is implicitly passed as argument to all metric and non-metric
products called in this example, such as the geometric and outer products (lines 17
and 19). e1 and e2 (line 17) are also static constant objects defined in the names-
pace ga3e. The constants e1 and e2 and the variables a, a_, phi_, R_, b_, and b
are instances of the clifford_expression<…> class assuming different types
in the Expression parameter. Notice the use of the auto placeholder to deduce
the type of a variable from the initializer. In line 14, the lazy variable is of type
lazy_context<…>. Typically, we use the helper function make_lazy_con
text(arg1, …) to initialize it. We also use the helper functions vector
(arg1,…) and scalar(arg) to initialize Clifford expressions in lines 12 and 14.
In line 17, the helper templatec<arg> initializes a clifford_expression<…>
whose Expression parameter wraps the constant scalar value 2. The difference
between a wrapped constant value and a regular constant value is that the former can
be handled at compile time by the symbolic simplification mechanism implemented
by GATL’s back-end (Sect. 3.2).

In its current version, GATL includes the following set of namespaces for specific
GAs. These namespaces already use thega namespace.Also, they overload allmetric
operations in ga by setting their respective metric:

ga1e, ga2e, ga3e, ga4e, ga5e
GAs for Euclidean geometry (C�n,0), with basis vectors {e1, e2, · · · , en}.

ga1h, ga2h, ga3h, ga4h
GAs for homogeneous geometry (C�d+1,0), with basis vectors {e1, e2, · · · , ed , e+}.

ga1m, ga2m, ga3m
GAs for Minkowski spaces (C�d+1,1), with basis vectors {e1, e2, · · · , ed , e+, e−}.

ga1c, ga2c, ga3c
GAs for conformal geometry (C�d+1,1),with basis vectors {e1, e2, · · · , ed , no, n∞}.

The header file for each namespace is its name followed by the .hpp extension, e.g.,
gatl/ga3e.hpp,gatl/ga3h.hpp,gatl/ga3c.hpp, andsoon.Please, refer
toexamples in theGATL repository [11] to seehowtodeclareCliffordAlgebrasC�r,p,q
with arbitrary (p, q, r) signatures and assuming arbitrary metric matrices.
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Thedocumentation in [11] also includes the complete reference to helper functions
and GA operations implemented by GATL. Among them, we highlight:

+rhs Unary plus.
-rhs Unary minus.
lhs + rhs Addition.
lhs - rhs Subtraction.
gp(lhs, rhs [, mtr]) Geometric product (same as lhs ∗ rhs).
op(lhs, rhs [, mtr]) Outer product (same as lhs ^ rhs).
rp(lhs, rhs [, mtr]) Regressive product.
lcont(lhs, rhs [, mtr]) Left contraction (same as lhs < rhs).
rcont(lhs, rhs [, mtr]) Right contraction (same as lhs > rhs).
dot(lhs, rhs [, mtr]) Dot product (same as lhs | rhs).
hip(lhs, rhs [, mtr]) Hestenes’ inner product.
sp(lhs, rhs [, mtr]) Scalar product.
cp(lhs, rhs [, mtr]) Commutator product.
dp(lhs, rhs [, tol] [, mtr]) Delta product.
conjugate(arg) Clifford conjugation.
involute(arg) Grade involution.
reverse(arg) Reversion (same as ~arg).
rnorm_sqr(arg [, mtr]) Squared reverse norm.
rnorm(arg [, mtr]) Reverse norm.
inv(arg [, mtr]) Inverse of the given versor.
dual(arg [, pseudoscalar [, mtr]]) Dualization operation.
undual(arg [, pseudoscalar [, mtr]]) Undualization operation.

According to GATL conventions, lhs and rhs are informal shorthand for, respec-
tively, the left-hand side and the right-hand side arguments of binary operations. The
mtr argumentmust be an instance of the metric_space<…> class, while all other
argumentscanbeeither instancesof theclifford_expression<…>class, native
arithmetic types, or third-party classes implementing arbitrary-precision arithmetic or
symbolic computation.

3.2 GATL’s Back-End

All namespaces mentioned in Sect. 3.1 declare a nested detail namespace. This is
the namespacewhere themagic happens, i.e., the namespace of GATL’s back-end.All
data types described in this section are defined in the detail namespace.
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3.2.1 Expression Structure

The behavior of GATL at compile time and runtime is related to the definition of the
Expression parameter of the instances of clifford_expression<…>
involved in each operation. Recall that as a template parameter, Expression is a
type, not an instance. It represents the description of the structure of the respective
instance of clifford_expression<…>. The possible types for Expression
are:

component<Coefficient, BasisBlade>
A single multivector component whose coefficient is described by the template
parameterCoefficientas a real-valuedexpression, andabasis bladedescribed
by the template parameter BasisBlade.

add<Component1, Component2, …>
The addition of two ormore components of typecomponent<Coefficient,
BasisBlade> having different basis blades.

When the BasisBlade parameter is constant_basis_blade<Basis
Vectors>, it means that the basis blade of the component is known at compile time.
Here, BasisVectors is an unsigned integer value whose bitset represents an unit
basis blade. For instance, in Euclidean geometry, 1 = 0001b stands for e1, 2 = 0010b
stands for e2, 3 = 0011b stands for e1 ∧ e2, and so on.

Basis blades defined at runtime are represented by setting BasisBlade to
dynamic_basis_blade<PossibleGrades, Bitset>, where Possible
Grades is an unsigned integer value known at compile time, indicating the grades
that the runtime-defined component may assume (e.g., 1 = 0001b stands for grade 0,
2 = 0010b stands for grade 1, 3 = 0011b stands for grades 0 and 1, and so on). It is
important to notice that one may predict the possible grades of the outcome of a GA
operation if you know the grades of the arguments, even when the actual basis blades
are unknown. For instance, the grade of the outer product of a 2-blade and a 3-blade
will be 5 unless n < 5. In this case, the resulting grademay be set to any value, and the
resulting coefficientwill be 0 for sure.GATL explores this observation to performsim-
plifications at compile-time, evenon expressionswith runtime-definedmultivector. In
components with dynamic basis blades, the Bitset parameter is a type describing a
bitwise expression with at least one bitset defined at runtime.

So far, only two templates parameters where not described in detail:
CoefficientandBitset. InGATL, theatomic types forCoefficientexpres-
sions are:
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constant_value<Value>
This type wraps a compile-time defined integer value.

stored_value
This type indicates that the value of the coefficient is stored by the current instance
of clifford_expression<…>.

get_value<Tag, Index> and get_map_values<Tag, Index>
These types can be interpreted as variables within an algebraic expression. The
pair of compile-time defined integer values Tag and Indexmakes it possible for
a lazy_context<…> to unequivocally identify the value stored by one of the
instances of clifford_expression<…> informed to it as initialization argu-
ment.Tag indexes the argument passed to the lazy context and Index indexes the
value or values stored by this argument. To different lazy contexts do not confuse
their arguments by defining conflicting Tag values, each lazy_context<…>
instance deduces the minimum value it can assign to Tag by checking which val-
ues have already been used in its arguments.

function<Name, Argument1, Argument2, …>
The function represented by this type is defined by the Name parameter at com-
pile time. The values that Name can assume includes, but is not limited to, add,
mul, power, sine, cosine, and if_else. The expected number of argu-
ments depends on the function’s name, and they can encode real-valued expres-
sions or logical expressions defined on the same set of atomic types.

The atomic types for Bitset are similar to those defined for Coefficient:
constant_value<Value>, stored_bitset, get_bitset<Tag,
Index>, get_map_bitsets<Tag, Index>, and function<Name,
Argument1, …>. The difference is that atomic types for Bitset expressions are
related to basis blades instead to the values of coefficients. Thus, among the possi-
ble values for the Name parameter, we highlight bitwise_and, bitwise_or,
bitwise_xor, and if_else.

When the Expression parameter of a clifford_expression<…> only
includes components with constant_basis_blade<…>, constant_
value<…>, and function<…> types, we say that we have a concrete multivector
completely defined at compile time. These multivectors do not occupy space in the
compiled program because they do not store anything. Also, they do not depend on
other multivectors. The e1 object in the sample code is an example of such multivec-
tor type:
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The objects e2 and c<2> are also concrete multivectors defined at compile time.
The object b is an example of concrete multivector defined at runtime. As can be

seen in its type definition, b stores three double-precision floating-point values:

Thus, the size of b at runtime is 3 × 8 bytes = 24 bytes. In GATL, concrete multi-
vectors store their runtime-defined coefficients and bitsets using sequence contain-
ers of type std::array or associative containers of type std::map. The asso-
ciative container is used when more than one component of the multivector resulting
from an operation have overlapping sets of possible grades, and runtime-defined bit-
sets. In this case, the description of the Expression parameter is simplified in the
final clifford_expression<…> type and all components having overlapping
PossibleGrades sets are put in the same std::map. Otherwise, the sequential
container is chosen to store the data. Notice that it is possible for a
clifford_expression<…> type to use std::array and std::map simul-
taneously to store componets with different configurations.

Lazymultivector expressions dependon concretemultivectors to have the values of
their coefficients or the bitsets of their components computed at runtime. InGATL, the
Expression parameter of all lazy clifford_expression<…> objects
includes at least one getter type. For instance, the type of the R_ object in the sample
code includes get_value<2, 0>. Thus, the object R_ depends on the 1st coeffi-
cient (std::array is zero-base indexed [27]) of the 2nd argument of the lazy con-
text:
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Lazy multivector expressions do not store anything. Thus, variables of this kind
do not take up memory space at runtime. Of course, if you compile your program in
debug mode, then these variables will have 1 byte each to be addressed by the debug-
ger. However, in release mode, they are usually optimized by the compiler.

3.2.2 Expression Simplification and Evaluation

Whenwe state that GATL employs the lazy evaluation strategy, we are referring to the
possibility for the programmer to start a lazy context, operate the lazy context argu-
ments by callingGAoperations, and evaluate such expressions later.However, strictly
speaking, the explicit use of a lazy context by the programmer is optional. Thismeans
that the sample program code presented for GATL could have been written without
using the lazy context. However, in this case, the evaluation of the sequence of opera-
tions would be in an eager fashion, and the lazy multivectors would be concrete mul-
tivectors with coefficients defined at runtime. In addition, variable b would have the
extra component of grade 3 observed in the sample code of the Versor library, since
the suppression of this component would not be foreseen by GATL. The programmer
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would choose to use a lazy context if he/she thinks that there are pertinent simplifica-
tions to be made in a certain part of his/her program.

Nevertheless, all subroutines implemented by GATL initializes a lazy context to
benefit from any simplifications thatmay arise from the algebraicmanipulation of the
components of its arguments. It means that the implementation of all GATL subrou-
tines looks like this:

Here, CTi and Ei encode the types assumed by, respectively, the template parame-
ters CoefficientType and Expression of the i-th argument of the function
foo(…), MST is the MetricSpaceType parameter, and make_lazy_
context_tuple(…) is a helper shorthand function for calling lazy = make_
lazy_context(…) and […] = lazy.arguments(). C++14 introduced
decltype(auto) to delay the return type deduction after the dust of template
instantiation has settled [27].

In high-level operations like dualization, inversion, and versor application, the
implementation placed between the creation of the lazy context and the evaluation of
the result is similar to what is expected from the user of the library. That is, by calling
products and grade-dependent sign-change operations implemented byGATL as sub-
routines. Core operations, on the other hand, are implemented in a special way. They
apply generative template metaprogramming to process the Expression parame-
ters of the input arguments andproduce the type set to theExpressionparameter of
the non-concrete multivector result_. It is at this moment that GATL applies alge-
braic simplification. For example, geometric product, outer product, regressive prod-
uct, and inner products implement a set of recursive templates to apply distributivity
over addition, and partial template specialization to enable conditional branching to
suppress arithmetic operations that equal compile-time defined constant values.More
specifically, when the compiler instantiates a template that implements a core opera-
tion,GATL’s lexicographic expression ordering convention tries to put the subexpres-
sions defined on the same get_value<…> (or get_bitset<…>) types close to
each other. Whenever predefined patterns are identified, they are replaced by simpler
equivalent expressions.

Calling the lazy.eval(result_) function causes the instantiation of a new
clifford_expression<…> object. The Expression parameter of the new
object will be derived from the Expression parameter describing result_. The
coefficients and bitsets stored by the newobject (if any) are computed by the lazy con-
text by traversing the result_’s Expression parameter and solving
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subexpressions defined on the occurrences of get_value<…>, get_map_
values<…>, get_bitset<…>, and get_map_bitsets<…> related to
instances of the clifford_expression<…> objects given as input. The current
lazy context instance does not evaluate subexpressions definedon coefficients and bit-
setswithTagvalues coming fromother lazy contexts, nor subexpressions completely
defined on constant values. It is because it is clear that the evaluation of these subex-
pressions must be deferred to another part of the program.

4 Experimental Results

Wehave used theGABenchmark Project [14] to assess the execution time of GATL in
comparison to other C++ solutions for GA. The GA Benchmark Project started from
informal conversations among developers who attended to AGACSE 2018, in Camp-
inas, Brazil. The idea was to build a suitable environment to compare GA solutions.
It is an effort to define standards andmethodologies for benchmarking GA code opti-
mizers, libraries, and library generators. The goal of the project is to help physicists,
chemists, engineers, and computer scientists to choose the GA solution that best suits
their practical needs, aswell as to push further the improvement of the compared solu-
tions and to motivate the development of new tools. GA Benchmark is built on the
Google Benchmark, a open source library to benchmark code snippets.

The GA Benchmark version 2.0.3 includes the evaluation of twelve binary opera-
tions (commutator product, geometric product, inverse geometric product, dot prod-
uct, Hestenes’ inner product, left contraction, right contraction, scalar product, outer
product, regressive product, addition, and subtraction) and tenunary operations (dual-
ization, undualization, versor inversion, normalization under reverse norm, squared
reverse norm, unary minus, unary plus, Clifford conjugation, grade involution, and
reversion) applied to k-blades having grades ranging from k = 0 to k = n on eleven
models of geometry (Euclideanmodelswith basis vectors {e1, · · · , en} and n ∈ {2, 3,
4, 5}, homogeneous models with basis vectors {e1, · · · , en−1, e+} and n ∈ {3, 4, 5},
Minkowski spaces with basis vectors {e1, · · · , en−2, e+, e−} and n ∈ {4, 5}, and con-
formal models assuming {e1, · · · , en−2, no, n∞} and n ∈ {4, 5}). GABenchmark also
includes the evaluation of an inverse kinematics algorithm assuming the conformal
model of 3-dimensional Euclidean space, where n = 5 and the set of basis vectors
depends on the solution.

For each possible configuration of input grades in unary and binary operation, GA
Benchmark generates random blades (or pairs of random blades) and measures the
mean execution times of 30 evaluations of the operation. For the inverse kinemat-
ics algorithm, the inputs are random sets having five angular values each. The time
required to build input data is not considered when calculating the execution times.

Thebenchmark is ready tocompare sevenC++solutions forGA.Namely,Gaalet
[25], Gaalop [5], Garamon [2], GATL, GluCat [19], TbGAL [26], and Versor
[6]. For GluCat, the benchmark includes comparison considering framed-based and
matrix-based multivectors. We performed the comparison in a notebook running



Exploring Lazy Evaluation and Compile-Time Simplifications ... 127

Table 2 Ranking of performance of the compared solutions on binary and unary operations accord-
ing to the gold first method
Solutions Medals Compilation

errors1 2 3 4 5 6 7 8

GATL 247 75 1 0 0 0 0 0 0

Versor 246 76 1 0 0 0 0 0 0

Gaalop 246 18 0 0 0 0 0 0 59

Gaalet 238 26 0 0 0 0 0 0 59

TbGAL 34 56 97 107 26 3 0 0 0

Garamon 26 255 42 0 0 0 0 0 0

GluCat
(framed)

6 60 151 72 22 12 0 0 0

GluCat
(matrix)

0 3 45 108 151 16 0 0 0

Ubuntu 18.04 operating system (Linux kernel version 4.4.0) on bare metal. The com-
puter was equipped with 16 Gb of RAM and one Intel Core i7-8550U processor with
1.99GHz and 8 cores. The C++ source codes were compiled using GCC 7.4.0 with
O3 optimization in release mode and single thread. The tables and charts that fol-
low only show results considering conformal, Euclidean, andMinkowski geometries,
sincehomogeneous andEuclideanmodels are equivalent.The complete set of logfiles
produced for the experiments, as well as detailed charts for all operations and models
of geometry, are available at the GitHub repository of the GA Benchmark project as
the results reported on February 5th, 2020.

Table2classifies the compared solutionsusing thegoldfirstmethod, i.e.,basedfirst
on the number of goldmedals, then silver, and so on. A solution receives a goldmedal
(medal #1) whenever its performance is better than that of other solutions in a partic-
ular case of binary or unary operation with input arguments having specific grades.
The second best-placed solution receives a silver medal (medal #2), and so on. The
medals are distributed among the solutions for testing cases implemented as native
subroutines and models of geometry by all of them. Therefore, only Euclidean and
Minkowskimodels were considered here, because Gaalet and GluCat implement
conformal geometry assuming {e1, e2, · · · , e+, e−} as basis vectors (like the
Minkowskimodel) insteadof {e1, e2, · · · , no, n∞}.Regarding thesetof availableoper-
ations, unfortunately, the front-end of most of the solutions is incomplete. As can be
seen in Table3, the only operations implemented by all solutions are geometric prod-
uct, outer product, and reversion. From the results in Table2, it is possible to conclude
that the code optimizer (i.e., Gaalop) and libraries that explore template metapro-
gramming to perform compile-time specialization of subroutines (i.e., Gaalet,
GATL, andVersor) present equivalent performancewhen themean processing time
of common operations are considered. The last column of Table2 shows the number
of cases where the benchmark program could not be compiled due to errors raised by
the solution.
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Table 3 Binary and unary operations implemented as native subroutines by the compared solutions

The comparison of the mean execution times of complete algorithms aims to ver-
ify the ability of each solution to induce the optimization of sequences of operations
andnot only of individual subroutines. Figure1 shows themean execution times of the
inverse kinematics algorithm. The GA Benchmark does not included TbGAL in this
comparison because the original algorithmperforms the addition of generalmultivec-
tors andTbGALonly implements the addition and subtractionoperationsof scalar val-
ues, vectors, pseudovectors, and pseudoscalars. It is becauseTbGAL stores blades and
versors as collections of scalar and vector factors instead of as the weighted sums of
basis blades. In Fig. 1(a), we only include the result obtained for the frame-based ver-
sion of GluCat, because the mean execution time of the matrix-based version of the
library is four times higher for this algorithm. Since both frame andmatrix-based ver-
sions belong to the same library, we used the onewith better performance. In Fig. 1(b)
we highlight the Top-3 solutions. The vertical lines on each of the bars on the graph
indicate one standard deviation confidence interval.

Surprisingly, according to Fig. 1(a), Gaalet proved to be the least efficient solu-
tion. We believe that better results can be achieved if the user carefully inspects the
outcome of each sequence of operations. In this way, he/she will be able to instruct
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Fig. 1 Mean execution times of the inverse kinematics algorithm implemented using six C++ solu-
tions for GA (a), and the detailed view of the results of the Top-3 solutions (b)

the library to suppress unnecessary components in the intermediate results. But such
a task can be difficult and laborious.

When comparing Garamon and GluCat, we conclude that Garamon achieved
better results because it stores the multivector components as per grade arrays, while
GluCat uses dictionaries to store individual components. The high cost of both solu-
tions is related to the time needed to manage the dynamic memory used by the algo-
rithm’s intermediate variables.

The detailed view of the results obtained for Gaalop,GATL, and Versor is pre-
sented in Fig. 1(b). The proposed library achieved better results because the lazy eval-
uation and compile-time simplification mechanisms were able to eliminate unneces-
sarymultivector components andarithmetic operations.The samedegreeof optimiza-
tion is not achieved by the eager evaluation strategy employed by Versor. The opti-
mized codes generated by Gaalop show that the lack of performance of the solution
in this algorithmis related to the substitutionof expressions suchas x2, x3, etc., bycalls
to thestd::pow(base,exponent) function.GATL, on the other hand, uses one
or twomultiplications to raise x to the powers 2, 3, and 4. The std::pow(…) func-
tion requires many more processing cycles than multiplication.

5 ConcludingRemarks

This contribution presents GATL, a C++ library that applies the lazy evaluation strat-
egy and template metaprogramming to conduct symbolic optimizations on expres-
sions at compile-time to improve the runtime performance of GA-based programs.

In addition to runtime performance, GATL is concerned with being user friendly
and intuitive. In other words, we expect the implementation of equations written with
GA to be as straightforward as possiblewithout compromising the proper use of avail-
able computing resources.To this end,GATLoffers dozens ofGAoperations ready for
use and completely integrated with the lazy evaluation concept.
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Currently, GATL does not include modules for data visualization. However, in our
experience, the results produced with GATL can be easily integrated with other visu-
alization solutions, such as ganja.js [7].
GATL supportsCliffordAlgebrasassumingmetricmatriceswitharbitrary (p, q, r)

signatures and arbitrary sets of basis vectors. The practical use of GATL’s current ver-
sion is limited to spaces with up to n = p + q + r = 7 dimensions, except in special
situations where the operated multivectors are made up of a small amount of com-
ponents. This limitation is also observed in other templates-based GA libraries such
as Versor and Gaalet. It is related to the ability of the compiler to analyze and
instantiate the templates. Fortunately, each newversion of theC++ language includes
features that allows us to replace complex templates by simpler counterparts. Conse-
quently, the expectation is that in the future it will be possible to work with algebras
in higher dimensions and produce programs that compile in less time.

The development of computational tools for GA is a living ecosystem. We hope
that the ideas presented in this contribution will help developers to improve existing
solutions and serve as inspiration for the development of innovative tools.

Acknowledgements This work was sponsored by CNPq-Brazil (grant 311.037/2017-8) and
FAPERJ (grant E-26/202.718/2018).
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CNN Layer for Contrast Invariance
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Abstract Deep learning (DL) is attracting considerable interest as it currently
achieves remarkable performance inmany branches of science and technology. How-
ever, current DL cannot guarantee capabilities of themammalian visual systems such
as lighting changes. This paper proposes a deterministic entry layer capable of classi-
fying images evenwith low-contrast conditions.We achieve this through an improved
version of the quaternion monogenic wavelets. We have simulated the atmospheric
degradation of the CIFAR-10 and the Dogs and Cats datasets to generate realistic
contrast degradations of the images. The most important result is that the accuracy
gained by using our layer is substantially more robust to illumination changes than
nets without such a layer.
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Acronyms

CIFAR Canadian Institute for Advanced Research
CNN Convolutional Neural Network
DL Deep Learning
FC Fully Connected Layer
FL Flatten Layer

FME Facultat de Matemàtiques i Estadística
GA Geometric Algebra
GC Geometric Calculus

HSV Hue-Saturation-Value (color standard)
MCNN Monogenic CNN

ML Machine Learning
MP Max pooling layer
NN Neural Network

RESNET Residucal Network
RGB Read-Green-Blue (color standard)
UPC Universitat Politìcnica de Catalunya

1 Introduction

Many authors argue that currently, no suitable theory of CNNs design is available
[1, 2]. Although some evidence supports that the depth (number of layers) [3], and the
data augmentation during the training process [4], can occasionally provide invari-
ance or equivariance relative to some class of transformations, the reasons for that
behaviour do not seem to be well understood. Some investigations indicate that the
learning of an invariance response may fail even with very deep CNNs or by large
data augmentations in the training [1].

To overcome these shortcomings one idea is to embrace suitable geometric meth-
ods, as in [5], where the main techniques are real algebraic varieties and methods
of computer algebra, and in [1, 2, 6–10], in which methods of differential geometry
are used. In this regard, another strategy to progress in “Geometric Deep Learning”
is to use Geometric Calculus (GC) in the sense of [11–14]. The main strong points
for this advance are the long history of achievements in a great variety of fields
(see [12], §6.4, and the references therein); that it includes the complex numbers
and the quaternions as exceptional cases; and the fact that there is a well-developed
theory of GCwavelets with the potential to be applied to DLmuch as scalar wavelets
are used in current DL techniques [15–17]. An additional bonus of GC is that the
representation of the signals occurs in a higher-dimensional space, and hence they
provide a more robust discrimination capacity naturally.

In this work, as the first step in this general strategy, we work with Hamilton’s
quaternions H, which is the most straightforward geometric calculus beyond the
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complex numbers C (see Appendix A). The main results are the design and imple-
mentation of a CNN layer (M6) based on themonogenic signal proposed by Feslberg
et al. [18]. These layers substantially enhance the invariance response to illumination-
contrast.

Up till now, quaternions have been used with fully connected NNs [19–22], and,
more recently, with CNNs [23–26]. In this context, the method proposed in this
paper is the first, to the best of our knowledge, that combines a CNN with local
phase computations using quaternions.

On the experimental side, to evaluate the predictive performance of M6, we have
simulated illumination-contrast changes using the atmospheric degradation model
(see Appendix B) over two image-datasets, the CIFAR-10 [27] and the Dogs and
Cats [28].

The rest of the paper is organised into four additional sections and two appendices.
The core of the paper consists of Sects. 2 and 3, which describe the new monogenic
layer, M6, and the experimental setup, respectively. The experiments, results and
analyses are presented in Sect. 4. Our conclusions are drawn in Sect. 5. Finally, in
appendixes A and B, we summarise what we need about the quaternion field H and
about the atmospheric scattering model of light, respectively.

2 Monogenic Convolution Neural Network Layer

What we call Monogenic Convolutional Neural Network (MCNN) is the coupling
of a deterministic layer based on the monogenic signal, which we call monogenic
layer (M6), with a conventional convolutional neural network (CNN). What we
accomplish in this way, as shown by the experiments in subsequent sections, is a
system for classifying images that not only outperforms the usual CNNs in speed
but which is also resilient in front of severe changes in contrast.

2.1 Monogenic Signal

The terminology we are going to use is as follows (cf. Felsberg et al. [18]). We
define 1D (resp. 2D) multivectorial signals as C1 maps U → G from an interval
U ⊂ R (a region U ⊂ R2) into a geometric algebra G (see [12]). For G = R (G = C,
G =H) we say that the signal is scalar (complex, quaternionic). For technical
reasons we also assume that signals are in L2 (that is, the modulus is square-
integrable).

TheRiesz-Felsberg transform (RF)maps 2D scalar signals to 2D quaternionic sig-
nals. Among the signals obtained in this way, our interest lies in the (quaternionic)
monogenic signals (see [18] for details). Some applications of the monogenic signal
are: visual perception measurements [29, 30], local feature detection such as lines
(even-signal) and edges (odd-signal) [14, 31], estimation of the disparity of stereo
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images and blending of images [32], or computation of fast phase-based video mag-
nification [33].

The monogenic signal IM = IM(x, y) ∈H associated to an image1

I = I (x, y) ∈ R (where x, y ∈U ,U a region ofR2). The definition of IM is as follows
(cf. [18]):

IM = I + IM ′ , IM ′ = i I1 + j I2, (1)

where, denoting by ∗ the convolutional product,

I1 = I ∗ h1, I2 = I ∗ h2,

h1(x, y) = −
x

2π(x2+y2)3/2 , (2)

h2(x, y) = −
y

2π(x2+y2)3/2 .

The signals I1 and I2 are the Riesz transforms (quadrature filters) of I in the x and
y directions [18]. Note that IM ∈ 〈1, i, j〉 ⊂H.

The local amplitude signal |IM | is defined by |IM |(x, y) = |IM(x, y)|, where the
last expression is the modulus of the quaternion IM(x, y) [18]. Notice that we have

|IM |2 = |I |2 + |IM ′ |2 = |I |2 + |I1|2 + |I2|2, (3)

where |I |(x, y) = |I (x, y)| and similarly with |I1| and |I2|.

2.2 Monogenic Filter Bank

In practice the monogenic signal needs a bandpass filtering, in order to define the
local region of the signal [14, 34]. For all the computations of the filtered version of
the image I we have used a radial (isotropic) bandpass Log-Gabor function in the
frequency domain G(u1, u2)) defined as follows:

G(u1, u2) = exp

⎛
⎜⎜⎜⎝−

log

(√
u21+u

2
2

ω0

)2

2 log(σ )2

⎞
⎟⎟⎟⎠ , (4)

where u1, u2 are frequency components, ω0 is the central frequency of the filter, σ is
a bandwidth parameter (see [35] for more details). The filtering process is described
in the following steps:

1Here it is to be noted that I is not the source image we are interested in, but a filtered version of it
in the sense explained in Sect. 3.
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Fig. 1 a Log-Gabor filters at
different scales and
bandwidths in the frequency
domain

1. Compute the 2D Fourier transform F ( J̄ ) of the mean value image J̄ as in [36],
namely

F ( J̄ )[u1, u2] =
∑
m1

∑
m2

J̄ [m1,m2]e−i2π(u1m1+u2m2) (5)

2. We have modified the P. Kovesi Python implementation [37], in order to compute
a monogenic filter bank based on G(u1, u2) with different scales. A filter bank
can be computed with the following parameters ωs

0 =
1

minwl ∗ss−1f
, where minwl is

the minimumwavelength, s f is a scale factor, s = 1, 2, . . . , ns is the current scale.

J̄ s(u1, u2) = J̄ (u1, u2) exp

⎛
⎜⎜⎜⎝−

log

(√
u21+u

2
2

ωs
0

)2

2 log(σ )2

⎞
⎟⎟⎟⎠ (6)

Figure1 presents various views of the Log-Gabor function G(u1, u2).
The local phase Iφ and the local orientation Iθ associated to I are defined, fol-

lowing [18], by the relations

Iφ = atan2

(
I

|IR|
)

, (7)

Iθ = atan

(
−I2
I1

)
, (8)

where the quotients of signals are taken point-wise. For the geometric interpretation
of these signals see Fig. 2.

The local phase can distinguish lines and edges [14, 20, 30, 31, 38], whereas
the local orientation appears as a pinwheel picture resembling the behaviour of V1
simple cells and orientation columns.
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Fig. 2 Geometry of the
monogenic signal

I

IM

1

i

j

I1

I2

IR

Iφ

Iθ

Fig. 3 Original image, filtered image, local energy IM , local phase Iφ , and local orientation Iθ

Figure3 illustrates the monogenic transform of the image of a white circle. From
left to right, we display the original image, the filtered image (in the sense of Sect. 3),
and the corresponding local magnitude, phase and orientation signals. The highest
local energy values take place at the circle boundary, whereas the dominant values
of the local orientation are −π/2 (blue), 0 (white), π/2 (red).

2.3 Description of the Monogenic Layer

We report on work about one monogenic layer, which we call M6. As we will see,
both share promising features with the V1 layer in which they are inspired.

The purpose of M6 is to perform the following set of operations on the input
image J . If J is formed by different channels indexed by c = 0, 1, . . . , N − 1, we
denote by Jc the image corresponding to channel c. For instance, in an RGB (HSV)
image, we would have the images IR , IG , and IB (IH , IS , and IV ).
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1. Get the average J̄ of J over the channels forming J , that is, with the previous
notations,

J̄ =
1

N

N−1∑
c=0

Jc (9)

2. Get the image I obtained by filtering J̄ in the sense explained in Sect. 3.
3. Calculate the monogenic components |IM |, Iφ, Iθ of I as defined by the Eqs. (3),

(7), and (8), respectively.
4. Construct two HSV images as follows:

HSVφ = (H, S, V ) = (Iφ, |IR|, 1), (10)

HSVθ = (H, S, V ) = (Iθ , |IR|, 1). (11)

5. Transform the HSV images into RGB images RGBφ and RGBθ according to the
standard conventions (see page 304 of [39])

The use of the colour space HSV has been handy for the encoding in different
colour hues the values of the monogenic angular components. Moreover, the further
transformation to the RGB colour space enhances the visibility of the regions in the
original image in which the local amplitude is significant, which translates into a
sensitivity to sharp edges.

The six components of M6, namely RGBθ plus RGBψ , together with the 3 RGB
components of the input signal J , are illustrated in Fig. 4.

Fig. 4 a RGB input image. b RGBθ . c RGBφ . M6 is defined by b and c
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3 Experimental Setup

3.1 Datasets

We have used two datasets, CIFAR-10 [27] (Fig. 5(a)) and Dogs and Cats (Fig. 5(b)).
Each data set was split into three sets: training set, validation set and test set. Table1
shows their main characteristics.

Table 1 Characteristics of the CIFAR-10 and Dogs and Cats datasets

CIFAR-10 Cats vs Dogs

Training set 36,000 2,400

Validation set 12,000 800

Test set 12,000 800

Total 60,000 4,000

Input shape [32 × 32 × 3] [150 × 150 × 3]

Fig. 5 Examples of: a 100 RGB images from the CIFAR-10 dataset; b 100 images from the Dogs
and Cats dataset
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3.2 Degrading Procedures

In our experiments, any of the original images is degraded by the addition of fog
according to the McCartney atmospheric scattering model [40] (summarized in
Appendix B) and further modified by the addition of independent random changes
in the illumination colour (in the range 0.8–1.0 for each colour component) of atmo-
spheric light A(r, g, b). In addition, the transmissionmap t (x, y)was computed with
the random parameters summarized in the Table2.

An account of the details is deferred to Appendix B, while Fig. 6 provides an
illustration of a degradation run of the images in Fig. 5. For concreteness, we consider
three degraded levels (d1, d2, d3) for each dataset; for an illustration, see Fig. 7

Table 2 Degradation
parameters of colour of
atmospheric light A(r, g, b)
and the transmission map
t (x, y)

Fig. 6 Degraded versions (d1) of the images in Fig. 5: a From CIFAR-10; b From Dogs and Cats
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Fig. 7 a Original image, level d0; b contrast level d1; c contrast level d2; d contrast level d3. For
the meaning of these labels see Subsect. 3.5

3.3 CNN and MCNN Architectures

Functionally, an NN layer takes an input x and produces an output x′. The map
f : x↦ x′ depends on parameters associatedwith the layer andwhose nature depends
on the kind of layer. In general, x, x′, and the layer parameters are multidimensional
arrays whose nature is chosen according to the processing that has to be achieved.

Write [n1, n2, . . . , nd ] to denote the type of a d-dimensional (real) array with axis
dimensions n1, . . . , nd . Thus [n] is the type of n-dimensional vectors and [n1, n2],
the type of matrices with n1 rows and n2 columns. Matrices are useful to represent
monochrome images, but for RGB images we need arrays of type [n1, n2, 3], or
[n1, n2, n3] if it is required that the image be represented by n3 channels, as for
example n3 = 6 for a pair of color stereoscopic images.

The parameters associated to convolutional and fully connected layers are rep-
resented by a filter array of weights, W ,2 and a bias array, b. In these cases, the
expression of f has the form

f π (x) = g(x �π W + b), (12)

where �π is a pairing specific of the layer and g is an activation function, ReLU
in this paper, that is applied component-wise to arrays. For convolutional layers,
�π = � is array cross-correlation, to be described below, while for fully connected
layers, �π is matrix product, which is denoted by juxtoposition of its factors, xW .
For a maximum pooling layer, the parameters are represented by a triple of positive
integers (w1, w2, s = 1), where (w1, w2) is the shape of the pooling window and s is
the stride (1 by default). In this case �π = �mp is given by the rule

(x �mp W )[i, j, k] =max(x[is : is +w1 − 1, js : js +w2 − 1, k]), (13)

where we use the standard slicing conventions for arrays. The shape of the array
x �mp W is [n′

1, n
′
2, n3], where n′

1 and n
′
2 are the greatest integers such that n

′
1 ≤ (n1 −

w1)/s and n′
2 ≤ (n2 −w2)/s.

2Filters are also called kernels.



A Monogenic CNN ... 143

In the cross-correlation product y = x � W , x is an array of type [n1, n2, n3] and
W (the filter) is an array of type [w1, w2, n3,m3]. The pair (n1, n2) is the shape of
the space dimensions of x and n3 the number of channels. The pair (w1, w2) denotes
the window dimensions of the filter and m3 the number of channels of the array y.
The definition is given by the following formula:

y[i, j, k] =
w1−1∑
m=0

w2−1∑
n=0

n3−1∑
r=0

x[i + m, j + n, r ]W [m, n, r, k], (14)

which can be expressed more compactly as

y[i, j, k] =
n3−1∑
r=0

x[i : i +w1 − 1, j : j +w2 − 1, r ] ∗ W [:, :, r, k], (15)

where ∗ denotes the ordinary scalar product of matrices. Notice that the shape of y
is [n1 −w1 + 1, n2 − w2 + 1,m3].

There is also a downsampled cross-correlation y = x �s W by a stride s:

y[i, j, l] =
∑
k,m,n

x[is + m, js + n, k]W [m, n, k, l]

=

∑
k

x[is : is +w1 − 1, js : js +w2 − 1, k]

∗ W [:, :, k, l]. (16)

Table 3 Flow of the monogenic CNN and of CNN-1 for the CIFAR-10 dataset. CNN-1 has
1,250,858 trainable parameters

CIFAR-10

I [32, 32, n3 = 3]
M6 [32, 32, n3 = 6]
x→ x′ W x′

C*-1 [3, 3, n3, 32] [32, 32, 32]
C-2 [3, 3, 32, 32] [30, 30, 32]
MP-1 [2, 2, s = 2] [15, 15, 32]
C*-3 [3, 3, 32, 64] [15, 15, 64], Dropout (0.25)
C-4 [3, 3, 32, 64] [13, 13, 64]
MP-2 [2, 2, s = 2] [6, 6, 64] Dropout (0.25)
FL [2304]
FC-1 [2304, 512] [512]
FC-2 [512, 10] [10] Dropout (0.5)
SMAX [10]
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Table 4 Flow of the monogenic CNN, and of CNN-2, for Cats and Dogs dataset. CNN-2 with
2,797,730 trainable parameters

Cats and Dogs

I [224, 224, n3 = 3]
M6 [224, 224, n3 = 6]
x→ x′ W x′

C*-1 [3, 3, n3, 32] [224, 224, 32]
MP-1 [2, 2, s = 2] [112, 112, 32]
C-2 [3, 3, 32, 32] [110, 110, 32]
MP-2 [2, 2, s = 2] [55, 55, 32]
C-2 [3, 3, 32, 64] [53, 53, 64]
MP-2 [2, 2, s = 2] [26, 26, 64]
FL [43264]
FC-1 [438264, 64] [64] Dropout (0.5)
SMAX [2]

The shape of the array x �s W is [n′
1, n

′
2, n3], where n′

1 and n
′
2 are the greatest integers

such that n′
1 ≤ (n1 −w1)/s and n′

2 ≤ (n2 − w2)/s.
In this work, we have used two architectures: CNN-1 (for CIFAR-10) and CNN-2

(for Dogs and Cats). See Fig. 8 for a schematic representation of M6CNN-1, which
consists of CNN-1 with theM6 layer (M6CNN-2 is defined similarly). The computa-
tion flux of these networks is summarized in Table3 for CIFAR-10 and in Table4 for
Cats and Dogs. In these two tables, the input I is processed by M6, and the resulting
output is processed by a sequence of convolutional (C),3 max-pooling (MP), flatten
(FL), fully connected (FC), and softmax (SMAX) layers. If the monogenic step is
omitted, the flow agrees with fairly standard CNNs (here called CNN-1 and CNN-2;
see below for further details). The value n3 is equal to 3 for I and 6 for M6, respec-
tively. The W column specifies the filter of the current step. It is to be understood
that the action of the layers C and FC is completed with a ReLU activation function.

Initially, we tested our monogenic layer on top of two CNNs architectures, CNN-
1 and CNN-2, both with nine hidden layers. These testings aimed to carry out a
relatively fast search of adequate hyper-parameter values that guarantee a classifi-
cation accuracy close to a baseline mark. Additionally, we have tested our layer on
top of a well-known RESNET-20 v2 architecture (with 571,034 trainable parame-
ters) [41], with 18 hidden layers, to ascertain that it also produced gains similar to
those observed with the simpler architectures.

3C* is a convolution with zero padding.
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[32, 32, 6][32, 32, 3] [32, 32, 32] [30,30,32] [15, 15, 32] [15, 15, 64] [13, 13, 64] [6, 6, 64]

S
o
ftm

a
x

1
0

M6 C*-1
W[3, 3, 6, 32]

C-2
W[3, 3, 32, 32]

MP-1
(2,2, stride=2)

C*-3
W [3, 3, 32, 64]
Dropout(0.25)

C-4
W [3, 3, 64, 64]

MP-2
(2,2,stride=2)
Dropbox (0.5)

FC-1
[2304, 512]

[2304] [512] [10]

FC-2
[512, 10]

FL

Fig. 8 CNN-1 architecture with 1,250,858 trainable parameters including the monogenic layer,
four convolutional layers, 2 dropout, two max polling layers, three fully connected and one softmax
function

Table 5 Experimental arrangements for each CNN

CNN

Trained Tested

d0 d0, d1, d2, d3
d1 d0, d1, d2, d3
d2 d0, d1, d2, d3
d3 d0, d1, d2, d3

3.4 Monogenic Hyper Parameters

To find the best parameters of the Monogenic layer, we evaluated the valida-
tion accuracy of CNN-1 on the CIFAR-10 dataset up to 100 epochs, with scales
s = [3, 4, 5], minimum wavelength minw =[3, 4, 5] (i.e. smallest scale filter), scal-
ing factors s f = [1.1, 1.2...2.1], and standard deviations σ = [0.3, 0.4, 0.48, 0.6].
Finally we tried the learning rate values lr = [0.0001, 0.001, 0.005]. Altogether
this amounts to 1584 combinations. The outcome was that the best parameters are
lr = 0.0001, s = 1,minw =3, σ = 0.25, s f = 1.1, for a maximum of test accuracy and
minimum processing time.

3.5 Experiments

We trained and tested six nets: CNN-1,M6CNN-1, CNN-2,M6CNN-2, RESNET-20
v2, M6-RESNET-20 v2 [41], following the scheme summarized in Table5, where
di (i = 0, 1, 2, 3) means a degradation degree (see Fig. 7 for an intuitive view of the
significance of these values). The computational codes are available at https://github.
com/asp1420/monogenic-cnn-illumination-contrast.

In order to test each of all trained models about their generalization capacity, they
were run not only on the original test set but also on the three modified versions of
it consisting in adding the same three levels of haze.

https://github.com/asp1420/monogenic-cnn-illumination-contrast
https://github.com/asp1420/monogenic-cnn-illumination-contrast
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All the experiments were carried out for 100 epochs, and learning rate of
lr = 0.0001, no data augmentation, on the CTE-power 9 cluster of the Barcelona
Supercomputing Center with one Tesla V-100.

4 Results and Analysis

A synopsis of experimental results for CNN-1 and CNN-2 is reported in Fig. 9 for
CIFAR-10 a Fig. 10 for Cats and Dogs. Similarly, Fig. 11 summarizes the findings
for RESNET-20 in the case of CIFAR-10.

The general idea of the experimental design has been to train the nets under four
different degradation levels. These trained systems are represented on the horizontal
axes and labelled by the degradation labels d j ( j = 0, 1, 2, 3). Each d j is run on a set of
images not seenbefore and also presented in four degradation levelsdk (k = 0, 1, 2, 3).
The observed accuracies are represented by coloured circles in the case of the basic
net and by coloured squares in the case of the corresponding monogenic-enhanced
net. Thus each of the three graphics quotes 32 accuracies, 16 for the basic net and
16 for the monogenic net.

The main finding is the resilience of each of the monogenic systems d j with
respect to any of the degradations dk , for the squares above d j are clustered around
0.70 accuracy for all dk . This contrasts with the wide dispersion of the circles above
d j , with a (to be expected) maximum when k = j and substantially lower values for
k ≠ j . To note, however, that the basic nets d j perform slightly better just for the
degradation d j , as shown by the top position of several of the corresponding circles
(in Fig. 9, for instance, blue circle for d0 − d0, green for d1 − d1, and magenta for
d2 − d2).

Fig. 9 CIFAR-10 test data
with different degradation
using CNN1 models. See
text for details
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Fig. 10 Dogs and Cats test
data with different
degradation models using
CNN-2. See text for details

Fig. 11 CIFAR-10 test data
with different degradation
models using RESNET-20.
See text for details

Our experiments results are consistent with the theoretical invariance of the phase-
based feature detection to brightness and contrast transformations reported at [38,
42]. The M6 activation maps presented at Fig. 12 strengthened our confidence in that
the M6 is invariant to these transforms, due to the activation maps is visually the
same even with different levels of degradation.
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Fig. 12 Activation maps of
M6. Row A present a one
CIFAR-10 image with
different degradation levels.
Row B presents the
activation map (local
orientation) with different
image degradation. Row C
shows the local phase
activation map with different
input images

5 Conclusions

The context of this paper is the idea that geometric calculus has the potential to
articulate novel and promising researches in deep learning.

In the explorations reported in this paper, we have used the quaternion calculus,
which is the most straightforward geometric calculus beyond the complex calculus.
More specifically, we have designed a front layer for CNNs that processes a mono-
genic signal by extracting phase and orientation signals and assembling them in an
HSV space.

The experimental results with two different datasets and three CNNs confirm that
the accuracy gained by using our layer has a substantially more robust performance
when faced with severe illumination changes than the same nets without such a front
layer.

We plan to continue the trail walked in this research by developing a front layer
for CNNS that is resilient when faced with other transformations of the images, like
rotations or even small deformations.
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Appendices

A. Quaternion Algebra

The quaternion algebraH is a four dimensional real vector spacewith basis 1, i, j , k,

H = R1 ⊕ Ri ⊕ R j ⊕ Rk (17)

endowed with the bilinear product (multiplication) defined by Hamilton’s relations,
namely

i2 = j2 = k2 = i j k = −1. (18)

As it is easily seen, these relations imply that

i j = − j i = k, j k = −k j = i, ki = −i k = j . (19)

The elements of H are named quaternions, and i, j , k, quaternionic units. By defi-
nition, a quaternion q can be written in a unique way in the form

q = a + bi + c j + dk, a, b, c, d ∈ R. (20)

Its conjugate, q̄ , is defined as

q̄ = a − (bi + c j + dk). (21)

Note that (q + q̄)/2 = a, which is called the real part or scalar part of q, and (q −
q̄)/2 = q − a = bi + c j + dk, the vector part of q.

Since the conjugates of i, j , k are −i,− j ,−k, the relations (18) and (19) imply
that the conjugation is an antiautomorphism of H, which means that it is a linear
automorphism such that qq ′

= q̄ ′q̄ .
Using Hamilton’s relations again, we easily conclude that

qq̄ = a2 + b2 + c2 + d2. (22)

This allows to define the modulus of q, |q|, as the unique non-negative real number
such that

|q|2 = qq̄. (23)

Observe that |qq ′| = |q||q ′|. Indeed, |qq ′|2 = qq ′qq ′
= qq ′q̄ ′q̄ = q|q ′|2q̄ = |q|2|q ′|2.

Finally, forq ≠ 0, |q| > 0 andq(q̄/|q|2) = 1,which shows that any non-zero quater-
nion has an inverse and therefore that H is a (skew) field.
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B. The Atmospheric Scattering Model

Wehave used the atmospheric scatteringmodel in order tomodel the illumination and
contrast degradation of the images. The formation of a degraded image is modeling
using the atmospheric scattering model proposed by McCartney et al. [40], defined
as follows:

I (x, y) = J (x, y)t (x, y) + A(1 − t (x, y)), (24)

where I (x, y) is the measured image, J (x, y) is the original scene without affecta-
tions, A(r, g, b) is the illumination colour of atmospheric light, and t (x, y) is named
as transmission map, which can be defined in a homogeneous atmosphere as:

t (x, y) = e−βd(x,y), (25)

where β is the scattering coefficient of the atmosphere and d(x, y) is the scene depth.
An example of the estimated transmission map is presented in Fig. 13.

Fig. 13 Transmission map estimation. a Transmission map over 100 images from CIFAR-10;
b Transmission map over 100 images from Dogs and Cats dataset
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Geometric Calculi and Automatic
Learning An Outline

Sebastià Xambó-Descamps and Eduardo Ulises Moya

Abstract Signal representation and processing are the backbone ofmathematically-
aided engineering. Among themyriad of ideas and results in that realm,many sorts of
algorithms and techniques capable of learning from experience have taken the stage
in the last decades, with a crescendo of great successes in a variety of fronts in recent
years. This paper provides a sketchy outline of those developments that seem more
relevant or promising in view of their bearing on the geometric calculus (multivector)
representations of signals and the concomitant automatic learning algorithms. The
corresponding artificial neurons, and their organization in networks, may be seen as
a way to transcend the biologically inspired neuron networks much as the wheel or
aviation transcended legs or bird flight. Recent developments suggest that there are
exciting research opportunities ahead.

Prelude

The evolution of learning and reasoning, of understanding how they are achieved
by minds, and the quest toward making them easier, and even mechanizing them, is
centuries old, and for some aspects even millennia, [102]. Other valuable historical
sources are [115] and, more recent, [135], which has the benefit of plentiful historical
notes aptly inserted in an otherwise excellent treatise on many aspects of artificial
intelligence as presently understood.

The wave is not frozen in those sources. It keeps its mighty rolling. Two notewor-
thy recent advances should suffice here to illustrate this relentless progression. One
is about natural language processing (see the paper [24], and the chronicle [104]: “The
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latest natural-language system generates tweets, pens poetry, summarizes emails,
answers trivia questions, translates languages and even writes its own computer pro-
grams”). The other is about an outstanding leap in the difficult problem of protein
folding (see [36]: “AI makes gigantic leap in solving protein structures: DeepMind’s
program for determining the 3D shapes of proteins stands to transform biology, say
scientists”).

There are also books that try to look far ahead into the future, like [21, 49, 61,
130, 155, 163], but here, for our purposes, and nomatter how alluring these and other
works are, we feel bound to take a suitablemeasure of Turing’s appraisal that “We can
only see a short distance ahead, but we can see plenty there that needs to be done.”

Thus we will first look into conventional automatic learning (Sect. 1) and neural
networks (Sect. 2), illustrated by several examples, with the purpose of reviewing
some fundamental concepts of automatic learning, and thenwewill consider (Sect. 3)
the neural networks that process multivectors of a geometric algebra, with special
emphasis on the complex and quaternionic cases. The last section (Sect. 4) advances
a few prospective suggestions and the paper ends with the list of cited references.

1 Overview of Conventional Automatic Learning

The area in which we are primarily interested in is automatic learning (AL for short).
It is a quest that has much in common with machine learning (ML), and with deep
learning (DL) in particular, which in turn are subsidiary of artificial intelligence
(AI). To a first approximation, AL seeks efficient algorithms that return, given a data
set (experience), predictors of relevant information associated to new data.

In one form or another, the matters covered in this section can be found in books
such as [47, 107, 168] (this includes a carefully chosen list of motivating examples,
§1.3). See also [164] for a quite neat overview. When we speak of data, we refer to
digitized forms of information, like audio signals or pictures. From a theoretical point
of view, we may assume that a datum is a vector in some vector space.

Let us assume that data x are drawn from a space X (usually called input space)
according to a probability distribution P ,whichweexpress symbolically by x ∼ P .A
dataset of lengthm is a sequenceD = {x1, . . . , xm} such that x j ∼ P independently,
j ∈ 1..m, where 1..m = {1, . . . ,m}.

In unsupervised learning one of the major goals is to subdivide D into clusters,
so that data in the same cluster are similar, according to some given criterion, while
elements in different clusters are dissimilar. It is also required that any x ∈ X be
assigned to one of the clusters.

k-Means. This is a typical algorithm, with many variants, for unsupervised learn-
ing from a dataset D. For simplicity, we will assume that X is a convex set in some
Euclidean space. In particular we have a distance function d : X × X → R (so for all
x, x ′x ′′ ∈ X we have that d(x, x ′) > 0 if x �= x ′; d(x, x) = 0; d(x, x ′) = d(x ′, x);
and d(x, x ′′) ≤ d(x, x ′) + d(x ′, x ′′) (triangular inequality)). The algorithm
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partitionsD into k clusters, where k is predefined (1 < k < m), according to the fol-
lowing steps:

1) Choose k distinct elements z1, . . . , zk fromD at random;
2) Assign each x j ∈ D to the first zi such that d(x j , zi ) = minl∈1..k d(x j , zl), thus

getting an initial grouping of D into k groups Z1, . . . , Zk ;
3) Replace each zi by the centroid (barycenter) of Zi ;
4) Iterate until the zi are stable according to some predefined tolerance.

At the end we have a partition of D into k clusters Zi and the corresponding cen-
troids zi (i ∈ 1..k). Now each x ∈ X is assigned to the first Zi such that d(x, zi ) =
minl∈1..k d(x, zl). This produces a partition ofX into k clusters X1, . . . , Xk such that
Zi ⊆ Xi .

A good reference for unsupervised learning is [78, Ch. 10]. That chapter also
includes a presentation of Principal Component Analysis (PCA), which is a corner-
stone of dimensionality reduction techniques. The PCA is closely related to the Sin-
gular Vector Decomposition (SVD), which is clearly presented in [151]. To mention
also the treatise [79], with chapters on related topics, as a presentation of autoen-
coders and a few interesting applications. In any case, we agree with the appraisal
in [133, end of §4.2.2] that “unsupervised learning is an extremely active area of
research and one that has yet to be solved”.

In supervised learning the problem is to come up with algorithms that produce a
function f : X → Y, whereY is called the output space, with an acceptable capacity
to predict the values of an unknown function f ∗ : X → Y (called the expert or super-
visor) from a labeled dataset, or set of examples, D∗ = {(x1, y1), . . . , (xm, ym)},
y j = f ∗(x j ). When the output space is a finite set (of classes), the problem is said
to be a classification problem. Regression or interpolation problems are those for
whichY = R, or some other suitable continuous space. In this context, the learning
algorithm is usually called the learner.

k-NN (nearest neighbors). This is an illustration of a classification algorithm. In this
case the dataset has the formD∗ = {(x j , y j )} ( j ∈ 1..m), where x j ∼ P and Y is a
finite set. This algorithm partitions D = {x1, . . . , xm}, and X, into n = |Y| clusters
that are labeled by the y ∈ Y. A much studied example is the case where Y is the
set of decimal digits and the x j are random images of handwritten digits (see [92,
114, 133] for detailed computational presentations).

With the same assumptions onX as for the k-Means, fix a positive integer k. Given
x ∈ X, the algorithm k-NN selects a label in Y according to the following rules:

1) Find x j1 , . . . , x jk in {x1, . . . , xm} so that the k distances d(x, x j1), . . . , d(x, x jk )

are the smallest among the distances d(x, x j ), j ∈ 1..m. To get {x j1 , . . . , x jk }
it is enough to make a list of the pairs ( j, d j = d(x, x j )), sort them in non-
decreasing order of the d j , retain the first k pairs ( j1, d j1), . . . , ( jk, d jk ), and
extract the indices { j1, . . . , jk}.

2) Assign to x the mode of the set {y j1 , . . . , y jk }. If there is more than one element
representing the mode, chose the first in the list.
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For k = 1, for example, x is assigned to the first y j such that d(x, x j ) =
mink∈1..m d(x, xk).

The k-NNalgorithmcan bemodified so that k increaseswithm butwith k/m → 0,
say k = log n. For the analysis of this asymptotic version of the algorithm, particu-
larly in the caseY = {0, 1} (binary classifiers) and its relation to the optimal classifier
(called Bayes’ classifier), we refer to [145, 150, 164]. It is also important to men-
tion the contribution [152], which outlines a wondrous improvement of the k-NN
algorithm capable of classifying n objects using a dataset of size m < n. This seem-
ingly impossible task is achieved by replacing the standard ‘hard’ labels y j by ‘soft’
labels, that is, by distributions of probability on n objects. This paper also provides
references to the key foregoing works that paved the way for this discovery.

In supervised learning in general, we can deal with both cases (classification and
regression) by setting f (x) 
 f ∗(x) to indicate f (x) = f ∗(x) for classification and
f (x) ≈ f ∗(x) for regression, where ≈ indicates approximate equality according to
some predefined criterion. With this convention, we can measure the goodness of
f with the learning rate, that is, the proportion � of cases for which f (x j ) 
 y j

( j ∈ 1..m), and its accuracy, also called generalization rate or predicting capacity,
as the proportion a of cases for which f (x) 
 f ∗(x) (x ∈ X). Thus 1 − � is the
learning error rate and 1 − a is the generalization error rate. Notice that � depends
only of f and D∗, whereas a involves the whole input space, which is beyond the
learner’s reach. In practice a is replaced by the proportion of accurate predictions for
a testing dataset independent of the training dataset D∗. The study of the validity
conditions of this approach belongs to the subject of statistical learning, for which
here we can only provide standard references, like [20, 60, 78, 84, 161, 164], or
general treatises on ML, like [5, 47, 62, 112, 145, 168].

Let us remark that achieving a learning rate � = 1 amounts to a perfect memoriza-
tion of the examplesD∗, which usually entails a poor performance when faced with
new examples, which means a low generalization rate. Therefore it is to be expected
that the best use of the training examples D∗ is to find a trade-off learning rate
beyond which the generalization rate decreases. To be more precise, a useful setup
is to assume that the functions available to the learner are a set F = { fw | w ∈ W }
of functions fw : X → Y parameterized by the elements w is some parameter setW
(set of weights), and that it has a measure L(w) = L( fw) (loss functional) of how
close fw is of f ∗. Then the training can be construed as a search of w ∈ W such that
L(w) is as small as possible. Let us consider a few examples.

Linear Regression. Assume that the data are vectors x ∈ R
n and that the values y

are real numbers. For any vector x ∈ R
n , set

fw(x) = w · x = w1x1 + · · · + xnxn

(aweighted sum of the entries x1, . . . , xn of x). Ifwe take L(w)= ∑n
j=1(w · x j − y j )

(square loss) as a measure of how well does fw fit the dataset (notice that L(w) = 0
is equivalent to the perfect fitting fw(x j ) = y j for all j), then the goal is to find
argminwL(w) (thew that minimizes L(w)). In particular the solutionmust satisfy the
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condition ∇wL(w) = 0 (or ∂L/∂wk = 0, k ∈ 1..n), which turns out to be equivalent
to the relation wXT X = yX , where X denotes them × n matrix whose rows are the
vectors x j and y = (y1, . . . , ym). This relation ismost usefulwhen XT X is invertible,
a condition that requires n ≤ m, as in this case we get a unique solutionw. If XT X is
singular, butwXT X = yX still has a solution, then it is possible to findw ofminimum
norm.Otherwise one can applywell known numericalmethods to find a suitablew, as
in [159, Lecture 11]. Notice that a loss of the form L(w) = w0 + w1x1 + · · · + wnxn
can be treated with the same methods by augmenting each vector x with a 0-th
component x0 = 1. The method of least squares (as is ancestrally called) can be
applied to determine objects in some space that approximate a cloud of (noisy)
points in the same space provided that those objects can be described as vectors in
a higher dimensional space. For example, conics in a plane can be described by the
vector of their coefficients, and this allows to apply least squares to find the conic
that best fits a cloud of points (cf. [80], on optimization techniques for geometric
estimation). The method can also be extended to find curves that best fit a cloud of
points. In the case of spline curves, the control points are regarded as the weights to
be determined (see [52, 59, 96, 97, 99, 140, 167], and the forthcoming [137], where
curves other than splines are also explored).

A special case of linear regression is the logistic regression, which is suitable
when the log of the odds P(x)/(1 − P(x)) of drawing x ∈ X can be predicted by a
linear regression, say

log
P(x)

1 − P(x)
= w1x1 + . . . + wd xd = w · x .

Once the weights w1, . . . , wn are ascertained by means of a dataset, then we get the
logistic predictor

P(x) = σ(w · x) = 1

1 + e−w·x ,

where σ(t) = 1/(1 + e−t ) is the logistic function. It has a sigmoid form and ranges
between 0 for t = −∞ and 1 for t = ∞. Occasionally it may be handy to have a
sigmoid ranging from −k to k, k a positive constant, like for instance 2kσ(t) − k =
k(1 − e−t )/(1 + e−t ).

Support Vector Techniques for Classification.These techniques, usually known as
support vector machines (SVM), were introduced by Vapnik and his school in 1992
(see [43], no doubt a classic of AL, where they were actually called “Support-Vector
Networks”). An early application was the recognition of hand-written digits with an
accuracy not less than the best systems available at the time. Excellent treatments of
this topic can be found in [107, Ch. 5] and [5, Ch. 14].

Assume that X = R
n . Of a dataset of the form D = {(x1, y1), . . . , (xm, ym)},

with x j ∈ R
n and y j ∈ {−1, 1}, we say that it is linearly separable if there is a

hyperplane h(x) = w · x + b (w ∈ R
n , b ∈ R)) such that h(x j ) > 0 or h(x j ) < 0

according to whether y j = +1 or y j = −1, that is, if y j h(x j ) > 0 for all j ∈ 1..m.
Geometrically, the points with y j = 1 lie on the positive half-space defined by h
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w · x + b = 0 w′ · x + b′ = 0

Fig. 1 Separation by hyperplanes and support vectors. On the left, the white points (+1) and the
black points (−1) are linearly separable. On the right we see the same set of points and the greatest
margin separator, which is computed by the SVM algorithm described in the text

and the points with y j = −1 lie on the negative half-space (see Fig. 1). In general,
there are (if any) infinitely many separating hyperplanes, so that we can envisage to
impose additional constraints, like the condition that the points on either side are as
far as possible from the hyperplane. This idea leads to the notion of margin and the
appearance of support vectors as described next.

Given a separating hyperplane h(x) = w · x + b, let s = min j∈1..m |w · x j + b| >

0. On dividing h by s, an artifice that does not change the hyperplane, wemay assume
the normalization condition min j∈1..m |w · x j + b| = 1, and in this case 1/|w| is the
distance of any x j at minimum distance from the hyperplane, for this distance is
|w · x j + b|/|w|. The quantity 1/|w| is the margin of the hyperplane and the x j

at a margin distance are its support vectors. It is therefore clear that to maximize
the margin of h is equivalent to minimize |w|, or, more conveniently, 1

2 |w|2, whose
gradient and hessian arew and the identity, respectively. This shows that the problem
is equivalent to minimizing |w| under the constraints y j (w · x j + b) ≥ 1, which in
turn can be solved by the technique of Lagrange multipliers. Among the properties
of the solution, obtained by means quadratic optimization techniques (see [107, Ch.
5]), let us highlight that the support vectors lie on the hyperplanes w · x + b = ±1
(called marginal planes) and that w turns out to be an explicit linear combination
of the support vectors. Moreover, the solution only depends on the inner products to
the data vectors (which form their Gram matrix).

The technique can be adapted to more general classification problems. One is the
classification of data that are not linearly separable. Not being able to assume that
y j (w · x j + b) ≥ 1 for all j , introduce non-negative deviation variables t1, . . . , tn
and consider the relaxed constraints y j (w · x j + b) ≥ 1 − t j . In this situation, a
convenient modification of the function to be minimized is 1

2 |w|2 + λ
∑

t j . The
hyperplane produced with this minimization separates correctly the x j with margin
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1/|w| except the outliers, which means that fall either on the incorrect half-space or
within the ribbon −1 < w · x j + b < +1 (see, for example, [78, Ch. 9]). Another
extension is to multi-class classifications (ibidem).

Finally, let us mention the very useful device consisting of applying linear sepa-
ration after mapping the input space to a higher dimension by means of a non-linear
map. Roughly, it works as follows. A characteristic (or feature map) of the space X
is a map ψ : X → R

n′
, where n′ can be arbitrary. Usually n′ and ψ are chosen to

facilitate that the data ψ(x) appear to be linearly separable in R
n′
when this con-

dition is not satisfied in X. Actually, if we manage to obtain a linear separator h′
of the ψ(xi ) ∈ R

n′
, then h(x) = h′(ψ(x)) is a non-linear separator of the xi in R

n

and the hypersurface {h(x) = 0} is the decision boundary. A relevant point is that
these techniques lead naturally to the notion of kernels (see, for example, [5, Ch.
14]), which rely on the pairing K (x, x ′) = ψ(x) · ψ(x ′) or, more specifically, on the
kernel matrix K (xi , x j ), which is sufficient, as remarked before, to run the support
vector algorithms (in R

n′
), and the kernel trick amounts to the realization that often

the values K (xi , x j ) can be judiciously specified with no reference to ψ (see [5,
§14.6] for examples, and in particular for the polynomial and radial kernels). One
more point is that there are also interesting cases in which n′ < n, and then we speak
of dimension reduction. As noted, the PCA and SVDmentioned earlier fall under this
notion. A quite interesting achievement is the t-SNE separation algorithm developed
in [100] and [160] mapping images of hand-written digits (dimension n = 282) to
R

2. Further references: [35, 139, 146], [45, Chapters9 and 10], [2, 84, 145].

2 Conventional Neural Networks (NN)

In AL, a useful model of a neuron (see Fig. 2) is a function of the form

x �→ fw(x) = σ(x · w), (1)

wherew ∈ R
n (weights or parameters) and σ is a sigmoid function (called activation

function), like for instance the logistic function σ(t) = (1 + e−t )−1, inwhich case the
neuron computes a logistic regression. Augmenting x with x0 = 1 and providing an
extra weightw0 (called the bias), the neuron computes σ(w0 + w1x1 + · · · + xnwn).
If we want to display separately the bias and the other weights, we will write fw,w0

or some similar notation.
A neural network (NN) can be construed as a composition of neurons according

to a graph of connections called the architecture of the net. Here we will consider
the case of directed graphs and thus leaving aside nets based on undirected graphs
such as those of Hopfield networks and Boltzmann machines. Nor will we discuss
networks with feedback (those having closed paths).

The standard architecture of a NN is a directed graph structured in layers L j , as
illustrated in Fig. 3, and its functional signature can be condensed as a chain:
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Fig. 2 Scheme of a neuron.
The neuron’s output depends
on the weights w and on σ

(activation function), and
this functionality is
represented by the decorated
circle
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Fig. 3 aNeural networkwith no hidden neurons and fully connected.bNetworkwith a hidden layer
L1 of three neurons fully connected to the two output neurons of L2. The input layer, L0, is only
partially connected to L1. Since each hidden neuron receives the outputs of three input neurons,
the weights of the three hidden neurons could share the same weights. This notion prefigures
the convolutional neural networks (CNN, or ConvNets) described later. Notice that if the three
shared weights are w = (w1, w2, w3), the inputs of the hidden neurons are y j = ∑3

i=1 wi xi+ j−1,
j = 1, 2, 3, which we recognize as the cross correlation x � w of the input vector x with w

N : Input → L0
f0−→ L1

f1−→ · · · → Lm
fm−→ Lm+1 → Output (2)

Conventionally, the net is shallow ifm = 1 and deep ifm > 1. The layers L1, . . . , Lm

are considered to be hidden, while the input and output layers (L0 and Lm+1) are
visible.

Functionally, the layer L j takes an input x and yields an output x ′. The map f j :
x �→ x ′ depends on the parameters associated to the layer neurons and its expression
defines the kind of layer (the main kinds are introduced later). The input x0 to L0 is
the signal to be processed (a sound or an image, for example). The output of Lm+1

(output layer) is the transformation produced by the net on x0. The role of L0 is akin to
the sensory organs of living beings. The output is the result of applying progressively
the maps f0, f1, . . . , fm (that is, the composition fm ◦ fm−1◦ · · · ◦ f1◦ f0) to the input.
In terms of the biological analogy, the hidden layers are alike the brain structure,
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and the output, to the signals sent by the brain to the various organs involved in the
behavior of the being (like locomotion and phonation, for example).

The map f j : x �→ x ′ is parametrized by the set Wj of weights of the neural
connections arriving at (neurons of) L j+1, so that we can write f j = fWj . Con-
sequently, the map computed by the NN is parametrized by the set W = ∪ jW j :
fW = fWm

◦ · · · ◦ fW0 . Since the activation functions of the neurons are non-linear, fW
is a highly non-linear map. The number of parameters is generally large or very
large, the more so the deeper the net. At present the number of parameters of the
largest NNs are approaching 1012. In biological terms, these weights play the role of
the synaptic potentials of the neocortex, but these still outnumber by more than two
orders of magnitude the artificial connections.

NNs are universal approximators, in the sense that any continuous function can
be approximated by a NN, and even by a fully connected shallow one with a single
output neuron. The function computed by such a NN has the form

f (x) = w′ · x ′, x ′
i = σ(w(i) · x), (3)

wherew′ ∈ R
n1+1 (n1 = |L1|) is the vector of output weights andw(i) ∈ R

n0+1 (n0 =
|L0|) is the vector of weights arriving at the i-th neuron of L1. Here we assume that
x0 = x ′

0 = 1, so that w
(i)
0 and w′

0 play the role of biases. The class of functions f
given by (3) is sufficient to approximate an arbitrary continuous function to any
degree of precision uniformly on compact sets (see [7, 10, 46, 74, 126]).

The Array Model. In general, x and x ′ in x ′ = f j (x), and the layer parameters
Wj , b j (weights and biases), are multidimensional arrays whose nature is chosen
according to the processing that has to be achieved.

Write [n1, n2, . . . , nd ] to denote the type of a d-dimensional (real) array with axis
dimensions n1, . . . , nd . Thus [n] is the type of n-dimensional vectors and [n1, n2]
the type of matrices with n1 rows and n2 columns. Matrices are useful to represent
monochrome images, but for RGB images we need arrays of type [n1, n2, 3] , or
[n1, n2, n3] if it is required that the image be represented by n3 channels.

The parameters associated to convolutional and fully connected layers are repre-
sented by an array of weights, W , and a bias array, b. In these cases, the expression
of f has the form

f π (x) = g (x �π W + b) (4)

where �π is a pairing specific of the layer and g an activation function that is applied
component-wise to arrays. Here it is to be remarked that instead of a sigmoid activa-
tion it has become practical to use a rectified linear unit (ReLU), defined asmax(0, x)
(cf. [5, §12.2.1]). Its advantages are that it is continuous and piecewise linear, that
it is not bounded above, and that it works fine when its derivative is needed (the
jump function x �→ 0 if x ≤ 0, 1 if x > 0). For convolutional layers, �π = � is array
cross-correlation, while for fully connected layers, �π is matrix product, which is
denoted by juxtoposition of its factors, xW .
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In the cross-correlation product y = x � W , x is an array of type [n1, n2, n3] and
W (the filter) is an array of type [w1, w2, n3,m3] . The pair (n1, n2) is the shape of
the geometric dimensions of x and n3 the number of channels. The pair (w1, w2)

denotes the window dimensions of the filter and m3 the number of channels of the
output array y. The definition is given by the following formula:

y[i, j, k] =
w1−1∑

m=0

w2−1∑

n=0

n3−1∑

r=0

x[i + m, j + n, r ]W [m, n, r, k] (5)

which can be expressed more compactly as

y[i, j, k] =
n3−1∑

r=0

x [i : i + w1 − 1, j : j + w2 − 1, r ] ∗ W [:; r, k] (6)

where we use the standard slicing conventions for arrays and ∗ denotes the ordinary
scalar product ofmatrices.Notice that the shapeof y is [n1 − w1 + 1, n2 − w2 + 1,m3].

There is also a downsampled cross-correlation y = x �s W by a stride s :

y[i, j, l] =
∑

k,m,n

x[is + m, js + n, k]W [m, n, k, l]

=
∑

k

x [is : is + w1 − 1, js : js + w2 − 1, k] ∗ W [:; k, l]
(7)

The shape of the array x �s W is
[
n′
1, n

′
2, n3

]
, where n′

1 and n′
2 are the greatest

integers such that n′
1 ≤ (n1 − w1) /s and n′

2 ≤ (n2 − w2) /s.
A point about terminology: When a NN has at least one convolutional layer, we

qualify it as a convolutional NN (CNN for short).
For a maximum pooling (maxpool) layer, the parameters are represented by a

triple of positive integers (w1, w2, s = 1) ,where (w1, w2) is the shape of the pooling
window and s is the stride

(
1 by default). In this case �π = � mp is given by the rule

(
x �mp W

) [i, j, k] = max (x [is : is + w1 − 1, js : js + w2 − 1, k]) . (8)

The shape of the array x �mp W is
[
n′
1, n

′
2, n3

]
, where n′

1 and n′
2 are the greatest

integers such that n′
1 ≤ (n1 − w1) /s and n′

2 ≤ (n2 − w2) /s.

Training. A training algorithm for the network (2) using a labeled dataset D∗
is any procedure to adjust the weights Wj and biases b j so that the function
fWm ,bm ◦ · · · ◦ fW0,b0 computed by the net has a good balance of the learning and gen-
eralization rates. This is usually done by iterating two steps: a forward pass ending
with a measure (loss) of how close the result is to what it should be, and a backward
pass to modify the parameters in order to decrease the loss incurred in the forward
step. When the number of parameters is less than the number of data samples, we
are faced with an unavoidable trade-off: the learning and the generalization can both
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Fig. 4 Adaptation of Fig. 1 in [17]. The Threshold marks the vanishing of the training error. Below
the threshold, we have the orthodox phase, with a mark for the trade-off boundary between under-
fitting and overfitting. The part on the right represents the extraordinary behavior, quite paradoxical
at a first glance, that occurs when the number of parameters exceeds the number of training data:
the generalization error decreases again from the peak that separates the two phases, thus making
possible a perfect learning of the training data together with a high generalization capacity that
increases with the number of parameters

increase for a while, but there is a turning point beyond which the learning keeps
improving but the generalization enters a steady degrading. Before the turning point
we have underfitting, in the sense that the learning and the generalization rates can
still improve. After the turning point we have overfitting, in the sense that we are
forcing the net to have a higher learning rate at the expense of a poorer generalization
rate (under these circumstances, rote learning of the data does not favor the general-
ization capacity). This is the underparemeterized scenario (capacity, as measured by
the number of weights, below the number of data) and it was the accepted wisdom
until not long ago.

The question of what happens with overparameterized networks, a scenario
favored by the increasing computing power, has been addressed in the last cou-
ple of years and the answers so far are surprising breakthroughs. Prominent among
such discoveries is the ‘double descent’ phenomenon described in [17], which shows
that for overparameterized NNs the training follows the pattern explained above until
reaching zero training error, corresponding to a threshold of maximal testing error,
and then the test error starts decreasing steadily and becomes smaller than the rel-
ative minimum achieved before the threshold (see Fig. 4). To learn more about this
fascinating behavior, see [19] (on the role of kernel learning in deep learning), [18]
(two models of double descent), and also [103, 113].

Further references for NNs: [138] (overview of DL in NNs), [154] (DL with
SVM), [101] (mathematical underpinnings of CNN), [105] (deep versus shallow
performance ofNNs), [162] (mathematics ofDL), [177] (universality of deepCNNs).



164 S. Xambó-Descamps and E. U. Moya

3 Geometric Neural Networks (GNN)

The first part of this section, devoted to briefly explain some basic notions of geo-
metric algebra, is meant to ease the understanding of the related concepts introduced
in the second part.

A Sketch of Geometric Algebra. The reason for using geometric algebras is that
their formalism is optimally adapted to express the geometric facts of any linear
geometric space, that is, of a real vector space E = Er,s endowed with a metric (a
bilinear symmetric real-valued product x · x ′, x, x ′ ∈ E) of signature (r, s). Themost
direct way to introduce the geometric algebra Gr,s of this space, one that is arguably
the closest to the ideas on which W. K. Clifford (1845–1879) based his creation,
is that Grassmann’s exterior algebra of E , 	E , has a unique bilinear associative
product with unit 1 (called geometric product by Clifford himself) such that

xa = x · a + x ∧ a (x ∈ E, a ∈ 	E), (9)

where x · a = ix (a) (the contraction of x with a).
Since ix is the unique skew derivation of 	E such that ix (x ′)= x · x ′ for any

x ′ ∈ E , the formula (9) shows how to multiply any multivector a by any vector x
on the left. In fact, the formula suffices for the calculation of any product of mul-
tivectors because of the following reasoning. By bilinearity, it is enough to know
how to multiply a non-zero exterior product b = x1 ∧ · · · ∧ xr (r ≥ 2) of vectors
x1, . . . , xr (such products are called r -blades) by an arbitrary multivector a. We can
further assume that x1, . . . , xr are pair-wise orthogonal, for the space 〈x1, . . . , xr 〉
has orthogonal bases and the exterior product of any such basis is equal, up to amulti-
plicative constant, to b. Finally we have that x1 · · · xr = b (by induction on r wemay
assume that x2 · · · xr = x2 ∧ · · · ∧ xr , and then x1x2 · · · xr = x1(x2 ∧ · · · ∧ xr ) =
x1 ∧ x2 ∧ · · · ∧ xr because x1 · (x2 ∧ · · · ∧ xr ) = 0). So ba = x1 · · · xra, a product
that can be determined by r applications of (9). For an extensive study of geometric
algebras in a similar spirit, see [171, chapter 3], or the forthcoming [172], which also
includes the treatment of nonlinear geometric spaces.

Now the geometric algebra Gr,s is the exterior algebra 	Er,s enriched with the
geometric product (this structure is also known as Clifford’s algebra). It is clear
then that it has dimension 2n , where n = r + s = dim E . Note that the Eq. (9) shows
that the linear grading of Gr,s , which is in fact a grading with respect to the exterior
product, is not a gradingwith respect to the geometric product. But the decomposition
G = G+ ⊕ G− into even (G+) and odd (G−) degree components is a grading mod 2
also with respect to the geometric product (ultimately this is derived from the Eq. (9),
by which the product of two vectors is resolved as the sum of a scalar, which has
degree 0, and a bivector, which has degree 2). In particular, G+ is a subalgebra.

The isomorphisms G1,0 
 R ⊕ R, G0,1 
 G+
2,0 
 C, G2,0 
 R(2), or G0,2 


G+
3,0 
 H, easy to derive directly, are in fact examples of a general trend (cf.

[171]): Gr,s is isomorphic to a matrix algebra Fν(m), where ν = s − r mod 8,
Fν = R,C,H, 2H,H,C,R, 2R for ν = 0, 1, 2, 3, 4, 5, 6, 7, and dim(Fν)m2 = 2n .
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For example,G1,3 = F2(m) = H(2). Of these isomorphisms, those that most closely
connect algebra with geometry are C = G+

2,0 
 C and H = G+
3,0 
 H in the case of

the Euclidean plane and space, respectively (of C and H we say that they are the geo-
metric complex numbers and quaternions, respectively, since they emerge directly
from the geometry and not from ad hoc definitions as the usual ones for C and H).
For samples of various applications of geometric algebra, see [89, 171] and their
bibliographies.

For a discussion of a broader perspective of geometric algebra and its applications,
see [94] (especially Ch. 1), and the references cited there.

A-neurons and A-networks. The quantities x j and w j used in the neuron model
introduced in Eq. (1) are real numbers. But we can imagine that they are entities of
an algebraic structure A sufficient to guarantee that the expression x · w = x1w1 +
· · · + xnwn , and an activation function σ : A → A, make sense. For example, A
can be a real algebra of finite dimension and σ the function of an ordinary sigmoid
applied component-wise (with respect to a fixed basis of the algebra). We thus arrive
at the concept of A-neuron and, connecting neurons as we have done before, to the
notion of A-neural network, or A-NN. Another generalization is to replace x and
w with more general data structures, such as A-arrays (or tensors), and the product
x · w by a suitable operation x � w. Among these operations, the most commonly
used are certain bilinear products, such as cross-correlation, as well as nonlinear
ones, such as max-pooling.

Thus the usual neurons and neural networks are R-neurons and R-neuronal net-
works. Beyond real numbers, among the most immediate concrete cases of algebras
Awe canmentionC (complex numbers),H (quaternions),O (octonions), an algebra
of matrices R(n), or a geometric algebra G = Gr,s of signature (r, s). To simplify
the terminology, we will talk about real, complex, quaternionic (QNN), octonionic
(ONN), matrix (MNN), and geometric (GNN) networks, respectively.

One advantage of A-neurons is that the number of (real) weights they require
decreases in inverse proportion to d = dimA. The argument is based on the simple
observation that w ∈ A counts for d real weights, whereas both x and x ′ = x � w

count for d real parameters each and hence we need d2 real weights to connect
them. Another advantage is that the algebraic structure of A can be regarded as a
resource for describing and implementing AL algorithms, a point that is particularly
relevant whenA is a geometric algebra on account of its intimate connection with the
geometry of its geometric space. This is not unlike the use of finite fields as alphabets
for coding information, for being able to sum, multiply and divide alphabet symbols
turns out to represent a great bonus with respect to a set with no structure.

Besides the further references provided henceforth, we find that the text [8] is a
remarkably inspiring early reference for most of the topics discussed in this section.
In particular, it studies complex NNs in Chap.2 and QNNs in Chap.5. It also features
interesting applications of these algebras to predict chaotic time series (Chap.6) and
to robotics (Chap.7).

Complex NNs. Perhaps the most important idea of these networks is that they can
exploit the phase properties of complex numbers. At the beginning of the study of
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these networks, the contributions of Hirose and his school stand out. They focus on
signal processing, with collections such as [70] (2003) and treated as [116] (2009), or
[68] (2012; a second edition of a book of the same title and author published in 2006),
and the collection of ten articles collected in [69] (2013), of which the first stands
out, by Hirose himself (the editor of the volume), with the title Application fields and
fundamental merits of complex-valued neural networks. The text [3] belongs to the
same circle, which illustrates with very convincing graphic experiments the value of
considering the phase.

More recently we have [58] (2016), on complex convolutional networks; [127]
(2017), focused on image classification; [158] (2017), where the emphasis is on
deep networks; and [108] (2018), which provides an assessment of complex net-
works in real signal classification tasks. Finally we mention [26], which reveals the
significance of complex networks from other points of view, particularly that of deep
AL.

QNNs. The interest of these networks comes from the relation that the quaternions
keep with the group of rotations of the ordinary Euclidean space, a relation especially
transparent in terms ofH, for the expression h(x) = hxh̄, h ∈ H non-zero, is a vector
and h is a similarity of ratio |h|2 (a rotation if h is unitary). Another reason is that
quaternions have three phases and that these phases can be used to extract valuable
information from the signals to be processed.

Research in QNNs also comes from long ago, even before that of complex net-
works. We refer to [22] and [72] for relevant historical information regarding what
is called Clifford’s analysis, especially in relation to Fourier and wavelet transforms
in a quaternionic context and their generalization to the geometric context. In the
origin of the more specific topic we are considering, we find Gerald Sommer and his
collaborators: [33] (generalization of Gabor filters) and [30] (generalization of the
real multilayer perceptron, cf. [62]). The report [38] presents a quaternion wavelet
theory “for image analysis and processing” and [75] an overview of the properties
and applications of quaternion networks up to that point.

In the last decade, research on QNNs has continued both on the applied and
theoretical fronts. The article [76] deals with the quaternionic multilayer percep-
tron. Hopfield QNNs and their rotation invariance are investigated in [82]. In the
works [120] and [121], the QNNs are applied to the comprehension of the spoken
language. Deep QNNs are studied in [56] and convolutional ones in [179]. Finally
[176] presents a quaternionic version of capsule networks aimed at processing point
clouds in Euclidean space and in [110] a new QNN deterministic layer is introduced
that provides contrast invariance and sensitivity to rotation angles using quaternionic
Gabor functions and Hilbert transforms, while in [109] the authors use the Riesz
transform in the quatermion monogenic representation to propose a novel determin-
istic convolution layer in the Fourier domain robust to contrast and haze changes in
image classification.

GNNs. Interestingly, the study of GNNs began even before that of QNNs, as in
[123], and G. Sommer was a strong proponent of this inquiry at the beginning of



Geometric Calculi and Automatic Learning An Outline 167

the millennium with works such as [149], in which he developed the theoretical
foundations that served him well for problems such as artificial vision and robotics;
[31], dedicated to a G-version of the multilayer perceptron; [50] and [34], which
develop the notion of monogenic signal. A culmination of these efforts was Sven
Buchholz’s thesis, [28], which should be considered, as its title indicates, a theory
of neuronal computation with geometric algebras. As a sample of applications, we
cite [132] (image segmentation), [16] (support vectors in the geometric context),
the volumes [13] (geometric computing for wavelet transforms, artificial vision,
learning, control and action) and [15] (geometric computing in engineering and
computer science), [53] (use of geometric algebra for edge detection in color images),
[125] (clusteringmethods based on the conformal geometric algebraG4,1), and [166]
(treatment of multispectral images with geometric algebra). We end with [14], the
first volume of what should be a systematic treatment on these developments, but
see also [42] and [12].

OtherA-NNs. In the recent article [169], convolutional octonion networks are con-
structed and applied to CIFAR-10 andCIFAR-100 image classification. According to
the authors, they have better convergence and accuracy than other networks applied to
the same tasks. Octonions have also been successfully applied to dictionary learning,
as for instance in [90], an approach that can in fact be formulated for more general
algebras, including geometric ones, as in [91].

Another recent example is the case whenA is the algebra of commutative quater-
nions, Hc = 〈1, i1, i2, i2〉. They were introduced by C. Segre in 1892 (see [141])
and can be defined by the relations i21 = i23 = −1, i22 = 1, i1 i2 i3 = −1. These imply
that i1 i2 = i2 i1 = i3, i2 i3 = i3 i2 = i1, i3 i1 = i1 i3 = −i2, and hence Hc is com-
mutative. This algebra has been revived in [117] at the level of what, in our notations,
would be called H

c-neurons.
Finally let us have a look to the recent paper [73]. In its Abstract we read:

Our work considers a richer set of objects for activations and weights, and undertakes a
comprehensive study of alternative algebras as number representations by studying their
performance on two challenging problems: large-scale image classification using the Ima-
geNet dataset and language modeling using the enwiki8 and WikiText-103 datasets. We
denote this broader class of models as AlgebraNets. Our findings indicate that the conclu-
sions of prior work, which explored neural networks constructed fromC (complex numbers)
andH (quaternions) on smaller datasets, do not always transfer to these challenging settings.
However, our results demonstrate that there are alternative algebras which deliver better
parameter and computational efficiency compared with R. We consider C, H, M2(R) (the
set of 2 × 2 real-valued matrices), M2(C), M3(R), M4(R), dual numbers and the R3 cross
product. Additionally, we note that multiplication in these algebras has higher compute den-
sity than real multiplication, a useful property in situations with inherently limited parameter
reuse such as auto-regressive inference and sparse neural networks.

These are allA-NNs. Are they GNNs? By our comments on the isomorphism class
ofGr,s , this is certainly the case for 2R 
 G1,0,1 C 
 G0,1,R(2) 
 G2,0,H 
 G0,2 =
G+

3,0, C(2) 
 G1,2, and R(4) 
 G2,2. The exceptions are R(3) and (R3,×), as their

12R = R ⊕ R is the algebra of dual numbers, and in general 2A = A ⊕ A. By A(n), or Mn(A),
we denote that algebra of n × n matrices with entries inA.
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dimensions are not powers of 2. Note however that the nature of the latter is also
geometric, as the cross product is the Hodge dual of their wedge product, which
lives in G3,0. See also [8, Ch. 3] (on Vectorial NNs). To remark also that although
the octonions are not a geometric algebra, they are nevertheless a subalgebra of G0,7

(see [98, §7.4]).

4 Outlook

In this section we try to establish some connections between what has been said
or hinted before and possible lines of inquiry in the area of AL by means of what
can be described, in a broad sense, as geometric calculi. Our comments will refer to
the following topics: AL of mathematical structures; Other faces of geometric AL;
Robotics; Computational resources and techniques; Recent advances on k-NN; and
Other liaisons.

AL of Mathematical Structures. A compelling illustration of this theme is reported
in [87]. In our view, it represents a line of research that may be promising for AL of
geometric calculi as well: “Neural networks have a reputation for being better at solv-
ing statistical or approximate problems than at performing calculations or working
with symbolic data. In this paper, we show that they can be surprisingly good at more
elaborated tasks in mathematics, such as symbolic integration and solving differen-
tial equations. We propose a syntax for representing mathematical problems, and
methods for generating large datasets that can be used to train sequence-to-sequence
models. We achieve results that outperform commercial Computer Algebra Systems
such as Matlab or Mathematica” (from the paper’s Abstract). For other works of a
similar potential, see [63] (on learning algebraic structures), [4] (the bearing of AL
on current research in number theory), [37] (a kindred report in the realm of phys-
ical sciences, with many useful insights in various aspects of AL), [64] (“a foray
into discrete analogues of Riemannian manifolds, providing a rich interplay between
combinatorics, geometry and theoretical physics”), [44] (on finding symbolic equa-
tions that match a given dataset, with the surprising illustration of an “overdensity
equation for dark matter”), [39] (showing that “neural networks can learn advanced
theorems and complex computations without built-in mathematical knowledge”),
[95] (a version of AL that learns mappings between function spaces, with impressive
applications to partial differential equations). Altogether, these works point out to
novel avenues for inquiries in AL that are transforming the understanding of science
in general and of mathematics in particular in ways never seen hitherto.

Other Faces of Geometric AL. For people working in geometric algebra/calculus, it
is natural to termALas “geometric” if based on those formalisms.ButAL researchers
came up with a different use for this qualification, as in [65]: “[...] we consider the
general question of how to construct deep architectures with small learning complex-
ity on general non-Euclidean domains, which are typically unknown and need to be
estimated from the data”. Even more explicit in these appraisals is [23]: “Geometric
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deep learning is an umbrella term for emerging techniques attempting to general-
ize (structured) deep neural models to non-Euclidean domains such as graphs and
manifolds. The purpose of this paper is to overview different examples of geometric
deep learning problems and present available solutions, key difficulties, applications,
and future research directions in this nascent field”. Further evidence for the great
potential of this paradigm can be gleaned in the survey [86], whose main thrust lies
in linking graph neural networks and (neural) symbolic computing: “The need for
improved explainability, interpretability and trust of AI systems in general demands
principledmethodologies, as suggested by neural-symbolic computing. In this paper,
we review the state-of-the-art on the use of GNNs as a model of neural-symbolic
computing”. We do not regard the two views of “geometric” that we are considering
as antagonistic in any way, as in fact we sense that each can benefit from the other.

Robotics. We have already mentioned the application of quaternions to robotics
presented in [8, Ch. 7]. Among later texts, let us refer to the pioneer book [42],
particularly Chaps. 2 and 7; Selig’s treatise Geometric fundamentals of robotics,
[142]; the collection [12], especially the papers in Part VIII (Geometry andRobotics),
and the extensive compilation [13], especially Part IV (Geometric computing of
robot kinematics and dynamics) and Part VI (Applications II: Robotics and medical
robotics). For recent summaries of robotics analyzed with CGA, see [89, Ch. 4] and
[175].

Concerning AL in robotics, it has proceeded largely in parallel to the geomet-
ric developments, as witnessed by [118] (how machine learning has been applied to
robotic path-planning andpath-planning related concepts), the survey [83] (reinforce-
ment learning in robotics; see also [9]), Lenz’ PhD thesis [93], and the surveys [143]
(DL techniques for mobile robot applications), [134] (DL methods for robot vision),
[153] (learning control in robotics). It appears ever more clearly that advanced AL is
playing a major role in robotics aimed at providing all sorts of assisting services to
humans, as epitomized by the memoir [41]. In all these cases, the opportunities for
applying geometric methods to gain theoretical and applied advantages seem clearly
plentiful, if only because of the many engineering aspects that concur in any such
system.

Computational Resources and Techniques. Currently, there is a wealth of soft-
ware (frameworks) for deep learning (see Comparison_of_deep-learning_software
in Wikipedia). For example, Tensorflow (see [1]) provides “an interface for express-
ing machine learning algorithms, and an implementation for executing such algo-
rithms”. Most of them offer a Python interface and increasingly also a Julia interface,
as for instance Tensorflow. An interesting case is Flux (2017), which is pure Julia
(framework and interface). But as far as we know, none of these frameworks can deal
with GNNs beyond complex NNs.

On the other hand, there is a rich variety of systems that perform computations
with geometric algebras (see, for example, the Software section in the Wikipedia
Geometric_algebra article). But again, and as far as we know, none offers a deep
learning framework. By its design, the Julia system described in [131] has perhaps
the highest potentiality to serve as a basis for developing such a framework.Afirst step

https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
https://en.wikipedia.org/wiki/Geometric_algebra
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in this direction would be a framework supporting QNNs. Another useful resource
is provided by template libraries, as for instance [51].

Recent Advances in Unsupervised Learning. The authors of [164] also express the
view that “the theory [...] for many branches of unsupervised learning is still in its
infancy” (end of §2.1). For our inquiry, there are two main directions to look at. One
concerns recent advances in conventional (non-geometric) unsupervised learning, as
for example [170], which orchestrates a powerful scenario for an automatic physicist
with no supervision. In our appraisal, there is much that can conceivably be trans-
ferred to other domains, like the strategies that it advocates and the algorithmic ways
by which they are marshaled. For other instances of a similar kind, see [85] (recon-
struction of the periodic table), [124] (proposing “a family of biologically plausible
artificial neural networks (NNs) for unsupervised learning”) and [77] (steps “towards
the long-term goal of machine-assisted scientific discovery from experimental data
without making prior assumptions about the system”).

The other direction is linking unsupervised learning with GNNs. Aside from
contributions such as the innovative paper [125], which develops a clusteringmethod
based on CGA, it appears to be a largely uncharted terrain. Many of the ideas in
the preceding paragraph may be relevant for these explorations. In this, it may bear
further fruits the unsupervised learning of Lie group transformations studied in [148]
on account of its generality and the geometric character ofLie groups (cf. [171, §6.5]).

Other Liaisons. In Sect. 3 we have met layeredA-NNs, but now it is convenient for
us to allow more flexible architectures. By adapting the conventional notions about
graph NNs (cf. [48, 178]), we find that a suitable class, among many other possible
generalizations, is formed by directed acyclic graphs (N , E) with no isolated nodes
and endowed with (trainable) weightswe ∈ A (e ∈ E) and, for each non-initial node
n, (trainable) biases bn ∈ A and activation functions σn : A → A. The states of a
node are in one-to-one correspondence with elements of a ∈ A. The initial nodes
are input nodes. For a non-initial node n, its state an is determined by the formula
an = σn(bn + ∑

e:e0=n weae1), where e0 and e1 are the nodes connected by the edge e.
The output of the net is given by the states of the terminal nodes produced by these
rules. In the layered A-NN, the initial (final) nodes are those of L0 (Lm+1). Let us
also suggest that it may be productive, particularly in the case of GNNs, to allow
that weights w be operators acting on states a according to suitable law w � a (let us
dub �NNs these structures). These notions draw some inspiration from [89, Ch. 5]
and [88] (on oriented CGA and its application to molecular distance geometry), and
actually it looks puzzling to see whether they could help in porting AL to bear on the
problems tackled by molecular distance geometry (see the more specific comments
on AL in Chemistry at the end of this section). In doing so, it is important to bear in
mind early trailblazers on Clifford neurons such as [29, 32, 71].

Other areas where the scheme may provide analytic and geometric advantages is
in the treatment of 3D point clouds (see the survey [59], and papers like [54, 66,
165]), as well as in devising more powerful capsule nets: see [67, 136, 173, 174].
Of these, only the latter operates with complex numbers. Since CapsNets process
elementary patterns, they should benefit from drawing ideas about pattern theories,
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say in the sense of the monograph [111], and also to enhance explainability along
the lines of [144].

A fewhints on the aptness of �NNs to properly dealwith invariance and covariance
properties are in order. These concepts always refer to the action of some group. If
a group G = {g} acts on a set X, a function f (x) is invariant under this action
if f (g · x) = f (x) for all x ∈ X and g ∈ G. Similarly, if G also acts on a set Y,
a map f : X → Y is covariant (or equivariant) with respect to the actions of G
in X and Y if f (g · x) = g · f (x) for all x ∈ X and g ∈ G. Note that an invariant
function f is covariant if we let the action of G act trivially on the range of f , so
that g · f (x) = f (x) for all x ∈ X. The main reason in the context of AL to care
about G-covariance is that no data augmentation is required to recognize features in
arbitrary G-poses, as in [40] for discrete groups of rigid motions.

Let us go back to AL for Chemistry. We note a perceptible � character of the
networks studied in works such as [57, 81, 122, 147, 156], which motivates a careful
study of their contributions from the �NN point of view. See also the collection [128]
and especially the paper [11], in which the relevant group is SE(3), the group of
distance-preserving transformations of the ordinary Euclidean space. Themain claim
is that the authors “directly verify that the performance gains are connected with the
unique SE(3)-equivariant convolution architecture of the new model”. Even closer
to the spirit of our disquisition is [157], as for us geometric algebras are optimally
suited for the treatment of tensors in the sense of this paper, andmany other geometric
entities and formalisms as well. By the way, we note that the AlgebraNets that we
have seen before are special cases of �NNs, and that they have beenmainly applied to
classification problems, but more research could uncover properties and applications
based on their geometric character.

We end with a few remarks on the scattering transforms (a special kind of CNN)
introduced in [27] and further studied in [55] (for graph networks), [25] and [119].
The computational side of this transform has produced the system [6]. Altogether, it
would be worthwhile to define and study a geometric scattering transform based on
the geometric algebra wavelet theory first introduced in [106] and further exploited
in [38] (for quaternions), the collection [129] (particularly the paper by P. Cerejeiras,
M. Ferreira, and U. Kähler), and [72]. It would also be gainful to devise a scattering
transform network that could be trained, both in the conventional sense and in the
geometric realm just mentioned, and a computational platform that could deal with
both.
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