Can Artificial Intelligence Improve Our )
Health? e

Radu Grosu

Abstract Open and adaptive living systems share many of their underlying princi-
ples with artificial rational agents. Control theory and artificial intelligence drew and
continue drawing, therefore, inspiration form nature. For example, we have shown
that a biophysical model of neurons can reduce the size of a lane-keeping neural
network by a factor of 100 in autonomous driving. In this paper, I review the main
principles of control theory (e.g., how a rational agent uses the states and rewards
returned by a plant to learn the actions maximizing its total expected reward), and
of artificial intelligence (e.g., feedforward versus recurrent networks, unsupervised,
supervised, and reinforcement learning) in an accessible and comprehensive manner.
Smart, distributed control and machine learning technologies have currently entered
all segments of our civilization (e.g., farming, energy, mobility, city management, and
industry) in order to optimize and individualize processes, increase efficiency and
security, and reduce the environmental burden. Examples from health care include the
detection of novel disease features in medical imaging, prediction of ablation strate-
gies in cardiology, better growth models for improved tumor control, and optimized
rescue of victims of traffic accidents.
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1 Living Systems are Open Learning Systems

Health is an indispensable attribute of all living organisms and a healthy biosphere
is essential for the survival of mankind. Scientific and technological advances over
the past centuries have considerably improved our health. Unfortunately, it achieved
this at a great pollution cost that puts at risk the rest of the biosphere [2]. This
will inevitably lead to our doom, too. A key question is therefore, if science and
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technology can now also come to our rescue. Can artificial intelligence help in this
respect?

Health is intimately related to life. To understand health, we therefore need to first
understand life itself. A descriptive definition of life, from a biological point of view
is as follows [11].

Life is a characteristic of open systems that preserves and reinforces their existence
in a given environment. This characteristic exhibits all or most of the following
seven traits: Homeostasis, organization, metabolism, growth, adaptation, response
to stimuli, and reproduction.

A disease occurs when any of these traits is damaged, and the purpose of health-
care is to repair, or at least to control the damage. Repair and control can thus only
be conceived after a deeper look into the nature of the seven traits above, themselves.
They all involve optimal regulation.

Homeostasis is a dynamic internal equilibrium maintained by living organisms
to ensure their optimal functioning. Organization is a structuring principle allowing
the emergence of complex organisms from cells, the basic units of life. Metabolism
is a set of life sustaining chemical reactions optimally converting food to energy
or cellular building blocks, and eliminating waste. Growth and reproduction are
responsible for cell increase and division, and the ability to produce new organisms.
Adaptation is the ability of an organism to change over time in response to a change in
its environment. Finally, response to stimuli is the ability of an organism to optimally
interact with its environment.

2 Information Processing is at the Core of Living
and Artificial Systems

Systems biology [16] studies the emergence of complexity in functional organisms
from the point of view of dynamic systems theory. Control theory [3] and artificial
intelligence [14] draw inspiration from living organisms, too, with an emphasis on
information processing. The latter is at the heart of all the above traits, through the
very concept of optimal regulation.

Open systems use information processing in order to learn a dynamic model of
their environment, including their own abilities, with the purpose of acting in an
optimal fashion to a possibly unbounded sequence of environmental stimuli and
rewards, each associated to their previous actions.

Acting in an optimal fashion refers to choosing the actions that maximize the
total expected reward over time, also known as the utility of the system. In biology,
rewards play a central role [7], and they range from most primitive ones, such as pain,
hunger, and pleasure, facilitating survival and reproduction, to more abstract ones,
such as promotion, or simply winning a game in sports, facilitating selection. Reward
shaping [15] is also a main concern in artificial intelligence and decision theory [1].
The open system, called a rational agent [14], is assumed to possess finitary means,
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only, and key to such means are learning and memory. This is where most of recent
advances in artificial intelligence, in particular in machine learning, happened.

The architecture of a rational agent, together with its environment, is shown in
Fig. 1. The physical plant represents the environment to be controlled, for example,
one of the seven life traits in biology, or a factory, energy system, or even a car in
engineering. The plant has a set of sensors, actuators, and rewards. The actuators
control the behavior of the plant, whereas the sensors and rewards provide evidence,
or feedback, about the state of the plant and also about the desirability of this state.
The main goal of the rational agent is to maximize the total reward r = > o, y'r;
received from the plant over time, in expectation, where y € (0, 1) is a discount
weighting the importance of future rewards.

As the evidence output by the plant might contain incomplete information about
the internal plant state, a state estimator is used first, to compute the most likely state
of the plant P (b|e, a), also called a belief state, from the past sequence of controller
actions @ = q; ... a,, and the past sequence of plant evidence e = ¢ ... ¢,. For this
purpose, the estimator takes advantage of a stochastic model of the plant, consisting
of two distributions: the next state and reward probability, given the current state
and current action P(s’, r|s, a), and the evidence probability, given the current state
P(els).

The current belief state and the current reward is given to an optimal controller,
which computes the current action a = m(b), such that the utility U (b) of the
agent, that is the rewards it receives over time starting from b, are maximized in
expectation. The agent may possess a map, or desired-goals landscape, allowing a
planner to compute an optimal path p, that is a sequence of waypoints, or sub goals,
which are also given to the optimal controller.

A very important question is how does the rational agent infer the plant model, the
current belief state, the optimal action, and the waypoints? In biology, this is achieved
through very sophisticated regulatory networks [7], which are either chemical and
therefore slow, such as gene regulatory networks, homeostatic regulatory networks,
metabolic regulatory networks, and reproduction regulatory networks, or electric
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Fig. 1 The architecture of a rational agent together with its environment
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Fig. 2 Simplified architecture of biological neural networks

and therefore fast, such as neural regulatory networks. All these networks possess
plasticity, that is, they adapt to environmental changes. In neural regulatory networks
[7], the basic information-processing unit is the neuron and its synapses, with which
the neuron interacts with the other neurons. A simplified architecture of biological
neurons and their associated neural networks is shown in Fig. 2.

Figure 2a shows a biophysical model of biological neurons [7, 9, 17], which
focusses solely on the electric interaction between pre- and post-synaptic neurons.
Electrically, the fatty membrane of a neuron is a capacitor, and the inside—outside
difference of ionic concentrations defines the membrane potentials x; (¢), x; (¢) of the
neurons at time ¢, respectively. The neurons interact with each other through either
electric synapses, also called gap junctions, or through chemical synapses, which
are either activating or inhibiting. Through each synapse s passes a current I;; (t).
Through the membrane also passes a passive leakage current Jieaxage (1) and possibly
an input current /;,,(¢).

Figure 2b shows a simple neural circuit [17] of the C. elegans nematode, the
so-called tap withdrawal circuit. The circuit has four sensory neurons, responsive to
forward, backward, and middle taps, of the Petri dish containing the nematode; two
motor neurons, causing either a forward or a backward movement; three interneurons
further processing the inputs; and two command neurons. The neurons are recurrently
interconnected through either gap junctions or chemical synapses. Originally, the
circuit causes the nematode to make a large forward or backward movement, of the
size of the nematode, in case the dish is tapped on the back-side or the front side
of the nematode, respectively. In case the dish is tapped close to the middle of the
nematode, the nematode decides to move backwards. If, however, repeated taps to
the dish do not harm the nematode in any way, the nematode learns that there is no
harm, and considerably reduces its movement response.

At TU Wien [10], we developed a biophysical model of neurons and synapses,
capturing the above electric description with smooth ordinary differential equations.
This model is more complex than artificial neural network models, described below,
but it is much more succinct, as each neuron can accomplish more complex tasks.

For example, to get a taste of this succinctness, we were able to learn a lane-
keeping controller for an autonomous driving car with only 19 neurons, whereas
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the corresponding artificial deep neural network learned by our MIT collaborators,
required 1900 neurons for the same precision [10]. Both networks were able to drive
successfully a car equipped with appropriate sensing and actuation capabilities on the
streets of Boston. Owing to its small size, the biophysical network is also explainable
[10] and thus certifiable. However, this is not the case for the deep neural network.

3 Principles of Machine Learning

The key property of biological networks, that enables them to learn while interacting
with their environment, is the plasticity of synapses, that is, the ability of synapses
to change their strength in response to the accumulated rewards, for example, in the
form of serotonin [8].

Artificial neural networks [5] take this observation to the limit, by using a model
that very remotely resembles biological neurons, only. Each synapse s has an asso-
ciated weight w,, which multiplies the value presented by the presynaptic neuron.
The neuron itself makes a smoothened, step-like decision, called a sigmoidal output,
based on the sum ) :_,w;x; — p of its weighted inputs and its associated bias . A
network that has at least two hidden layers and sufficient neurons, can approximate
to arbitrary precision any nonlinear function. The more hidden layers are available,
the easier it is to learn the function, as each layer acts like one parallel step of a
sequential computation. Thus, layers decompose the original function in the sequen-
tial composition of simpler functions. If the network has more than two layers, it is
called a deep neural network [5]. According to the graph structure of the network,
one distinguishes between feedforward and recurrent networks. Figure 3a shows a
feed forward network [5], that is, a network with no feedback connections.

This network has one input layer x, one output layer y, here with a single neuron,
and [ hidden layers of neurons. Like biophysical networks, these networks can be
trained to accomplish a particular task, such as lane-keeping in autonomous driving.
Their drawback is that they tend to be very large, in both terms of depth and width,
and the individual role of each neuron is very hard to explain. If a network allows
feedback connections, like in biophysical networks, then it is called recurrent [5].
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Fig. 3 A feedforward and a recurrent artificial deep neural network
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In such cases, the behavior of a network can be explained by its unfolding in time,
in a feedforward network, as shown in Fig. 3b. In this unfolding, each slice f computes
the output y; based on the current state x,. The current state is computed based on
the current input /, and the previous state x,_;. Recurrent networks are especially
useful in sequential decision tasks, where the current output, or action, depends on the
entire sequence of previous evidence and previous actions. Hence, recurrent neural
networks are very well suited for learning the components of a rational agent.

The learning techniques are best explained in terms of Fig. 1, giving the architec-
ture of a rational agent. They can be classified into three categories: Unsupervised
learning, supervised learning, and reinforcement learning. The main goal of unsuper-
vised learning [5] is to uncover the fundamental patterns within the environmental,
that is, the plant’s evidence.

The basic neural architecture employed for this purpose is a fan-in fan-out feedfor-
ward network, called an autoencoder. The fan-in encodes (compresses) the evidence
through successively smaller layers of hidden neurons. The fan-out feedforward
network decodes (decompresses) the state obtained this way, through successively
larger layers of neurons, such that the output state, reproduces the input up to a
desired precision. Each neuron of the middle layer, containing the smallest number
of neurons, can be understood in this case as a fundamental feature, or pattern of the
evidence, as the nonlinear combination of these features is able to accurately repro-
duce the original evidence. More advanced techniques include variational autoen-
coders [13] and generative adversarial networks [6]. An example for the use of
unsupervised learning is uncovering the main patterns occurring in prostate cancer,
for different levels of cancer malignity, as defined by the well-established Gleason
score [4].

The main goal of supervised learning [5, 14] is to learn an input—output model,
given a set of desired input—output sequences.

For example, given action sequence a = a;...a, and evidence sequence
e = e...e,, the goal is to learn a plant model that produces for same actions an
evidence ¢ = ¢ ... ¢,, that minimally differs from the plant evidence e, according
to a given cost function. A very popular cost is > ;_,(e; — ¢:)* /2. Minimization
is achieved by successively updating the synaptic weights of the neural network
through backpropagation and stochastic gradient descent, until a local minimum,
sufficiently close to the global one, is achieved. Supervised learning is not restricted
to plant models. One can also apply it to the optimal controller, if one already has
a teacher. This can be a human or a program, producing the proper actions given
the current states. An example of supervised learning in medicine is prostate cancer
segmentation, where the prostate is delineated by an expert physician within the input
image [4]. A further example is classification, where the malignity of the prostate
carcinoma is labeled by a physician according to the Gleason score [4]. In this case,
one obtains superior results, if supervised learning is combined with unsupervised
learning. The latter abstracts the pixels in the original image into very useful lower
dimensional features, which considerably simplifies the ulterior classification of the
carcinoma’s malignity.
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Finally, the main aim of reinforcement learning [14, 15] is to learn an input—
output model, for example, the optimal controller of a rational agent, solely based
on rewards.

While supervised learning cannot learn better models than their teacher can, rein-
forcement learning can, by discovering new actions on their own. Rewards are the
most abstract way of teaching, and they may only occur after many actions. Synaptic
weights are learned by maximizing the cumulative expected reward. If a finitary plant
model is available and the plant is fully observable, then one may employ dynamic
programming in order to solve the Bellman equation [1], defining in a recursive
fashion the utility of a rational agent: U(s) = R(s) + y max, »_, P(s'ls, a)U(s").
Note that knowing the model is equivalent to knowing the recursion-unfolding tree
of this equation, for every possible action and every possible next state. If the model
is not known but it is finitary, one can employ adaptive dynamic programming, to
learn the model on-the-fly. If the model is not finitary, one can employ Monte-Carlo
execution sampling, where a sample corresponds to one path in the tree, or temporal-
differencing, which amounts to executing just one step. In this case, the utility of a
state is U(s) = U(s) + a(R(s) + yU(s') — U(s)). The parenthesis contains the
prediction error, that is the difference in the utility after and before action a in state
s leading to next state s’ and reward R(s). The learning rate is tuned with «. In
neural networks, the main learning tool is the policy-gradient theorem stating that:
one has to update the synaptic weights, proportionally to the sample utility, and to
the gradient of the probability of choosing the action actually taken. Learning any
kind of sport involves reinforcement learning, and so does the optimal irradiation in
prostate carcinoma [4].

4 Applications of Artificial Intelligence

Combining the classic, hypothesis-driven approaches to health care, with the novel,
data-driven machine learning techniques, is already unleashing a revolution in health
care: Imaging mines vast imaging repositories for overlooked disease traits that
are thereafter used in better disease classification and control. Cardiology is on the
brink of creating personalized dynamic heart models that allow to explore the results
of various ablation strategies in atrial fibrillation. Oncology exploits data-driven
techniques to learn better tumor-growth models and develop novel strategies for
improved tumor control. Cities are learning dynamic models, facilitating optimal first
response in case of accidents. This requires traffic, patient, physician, and hospital
distributions. However, artificial intelligence technology in health-care is still in its
infancy. A better understanding of how to apply it in order to repair or at least control
diseases will open—without any doubt—treatment possibilities that we could have
never dreamt about today.

Artificial intelligence can also indirectly help to improve our health, by more
efficiently regulating our industrial society [12]. This will considerably reduce
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pollution or human fatalities. For example, artificial intelligence is expected to play
a key role in.

Smart mobility with the grand challenge of zero traffic fatalities. Autonomous
cars are expected to reduce pollution and accidents through optimal control.

Smart energy with the grand challenge of black-out free electricity. The energy
grids will be operated by smart and adaptive controllers.

Smart buildings with the grand challenge of energy-awareness. Deploying a
swarm of sensors and actuators will allow for much better monitoring and control.

Industry 4.0 with the grand challenge of on-the-fly production. Digital twins and
the industrial Internet of things will revolutionize the way factories work.

Smart farming with the grand challenge of max-yield agriculture. Sophisticated
weather prediction and the agricultural Internet will be a game-changer.

In all the above areas, the Internet of things, akin to our body, is going to play
a central role. Its swarm of sensors and actuators, like our skin and muscle cells,
the fog, like our spinal cord, and the cloud, like our brain, will all employ machine
learning technology, in order to enhance their own abilities.
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