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Abstract Progresses in molecular genetics have improved the diagnostic yield
of severe neurodevelopmental disorders in childhood as neuromuscular diseases,
epilepsy, and movement disorders. Consequently, for some disorders, a personal-
ized therapy is now available ameliorating the genetic defect even in previously
devastating diseases. For example, intrathecal anti-sense nucleotide therapy is now
available for patients with spinal muscle atrophy. Early intervention is even proposed
in asymptomatic carriers of proven detrimental mutations of the responsible gene,
SMN-1. The latter case is now further addressed by the intervention of a neonatal pilot
screening program for SMA in Bavaria. Furthermore, gene therapy approaches for
this disease have currently been approved by the U.S. Food and Drug Administration
(FDA). Other interventions as deep brain stimulation and robotic assisted rehabil-
itation are increasingly used to improve motor functions in children with move-
ment disorders. However, all mentioned approaches bear high costs and address new
challenges for public and private health services. Fortunately, there is increasing
awareness of rare diseases in childhood prompting more research in order to find
personalized therapy approaches in these diseases.
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1 Genetics

Progresses in molecular genetics have improved the diagnostic yield of severe
neurodevelopmental disorders in childhood as neuromuscular diseases, epilepsy, and
movement disorders [6, 8, 14]. Consequently, for some disorders, a personalized
therapy is now available ameliorating the genetic defect even in previously devas-
tating diseases. For example, intrathecal anti-sense nucleotide therapy is now avail-
able for patients with spinal muscle atrophy [5]. Early intervention is even proposed
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in asymptomatic carriers of proven detrimental mutations of the responsible gene,
SMN-1. The latter case is now further addressed by the intervention of a neonatal
pilot screening program for SMA in Bavaria. Furthermore, gene therapy approaches
for this disease have currently been approved by the U.S. Food and Drug Admin-
istration (FDA). These new and innovative therapies prompted a public discussion
due to the high costs for both types of therapies [12]. The costs for gene therapy
for SMA are about 2 Mio. US$, and thus comprises the most expensive drug ever
approved. Nevertheless, an independent research institute defined the costs of the
drug recently at “the upper limit of what seems to be justified and cost effective”
[7]. Nevertheless, it is difficult to determine the real monetary value of a medica-
tion. Companies take high costs for development, admission, and merchandizing in
account for pricing. Critics may claim that the price of a certain medication is also
influenced by the impact of the medication itself (i.e., a medication, which “heals” a
devastating disease as gene therapy in SMA, might trigger higher prices than other
medications for symptom relief). Thus, the high demand for these medications will
most likely enforce high pricing as it follows the economic concept of demand
and offer. Taken together, these examples show that the cure of rare diseases is a
matter of money and that release of new and very expensive drugs is likely to gain
public attention in future and will be questioned beside the matter of effectiveness
by issues of cost-effectiveness. Pharmaceutical companies should acknowledge that
the price of a medication should more likely be related to real and reproducible costs
related to development, admission, and merchandizing of the medication rather than
to economic concepts of demand and offer in order to make a feasible pricing, which
can be covered by national health programs.

For other neurological disorders with common manifestations in childhood as
epilepsy, a wide range of genetic defects can be detected. Genes putatively causing
epilepsy comprise a plethora of different functions within the CNS. Impairment of
ion currents, distortion of cortical development, and enzyme deficiencies are some
examples of genetic causes of epilepsy (Fig. 1). However, development of new treat-
ment approaches is more difficult to achieve as compared to neuromuscular disorders
as the brain comprises a sophisticated network of interactions and plasticity which
evolves within the developing brain not only in utero but also during infancy and
childhood. Thus, interfering with genetic causes of epilepsy will probably mean
inventing any causal treatment approaches as early as possible in order to avoid
false network programming in these cases. In addition, the target cells for therapy
are more sophisticated to reach compared to other diseases: in some genetic epilep-
sies, a distinct neuronal cell type is mainly responsible for the resulting phenotype.
Regarding the wide range of different neuron populations within the human brain, it
will be a challenge to address different kinds of cell types for targeted therapeutical
interventions such as gene therapy or application of anti-sense oligonucleotides.
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Fig. 1 The figure depicts only some selected causes of genetic epilepsies, which in total comprise
a group of hundreds of different disorders

2 Neurostimulation

Neurostimulation is an effective therapeutic approach in some neurological disorders
starting in childhood as movement disorders and epilepsy.

Deep brain stimulation is effective in patients with severe generalized dystonia
[2, 9]. As a consequence of improved genetic testing, it could be unraveled that some
genetic disorders (i.e., DYT-1 and KMT2B) are more likely to be responsive to deep
brain stimulation than others closing the circle to what has been mentioned within
the previous paragraph [3, 15]. DBS of the internal globus pallidus in severe dystonic
movement disorders leads to significant reduction of motor impairment and increase
in daily participation. However, besides even positive results of motor improvement
over years, some patients report behavioral and mood disturbances during long-term
stimulation.

Stimulation of the left vagal nervemay lead to seizure reduction in severe epilepsy
syndromes [13]. Although themechanism of action is not clearly understood, manip-
ulation of thalamic networks is thought to contribute to this effect. The effect size
is reasonable in some patients though seizure freedom can only be rarely reached.
Thus, physicians have to cautiously discuss with the patients the expectations of such
a way of stimulation, as expectation to the effect of the procedure might be too high.

3 Robotics

Task-specific body weight-supported treadmill therapy enabled by a robotic gait
orthosis improves walking performance in children with central gait impairment [3,
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10, 11].Modulation of spinal networks and improvement ofmuscle energy consump-
tion are thought to contribute to this effect. Robotic assisted treadmill therapy enabled
by a driven gait orthosis (DGO) in adults has been established and shown significant
improvements in spinal cord injured patients and stroke individuals. A pediatricDGO
has recently been developed and reveals significant improvements in gait speed and
endurance in both short- and long-term surveys. Thus, the introduction of robotic
medicine in pediatric movement disorders contributes to regain of motor function in
children with central gait impairment [1, 4]. These positive results are contrasted by
the high costs for a robotic driven gait orthosis making it only available in certain
specialized centers.

4 Conclusions

The scope of this report is to reflect the recent advances in medical interventions for
children with neurological disorders on the one side. On the other side, the costs of
some of these new interventions seem to have reached a tolerable upper limit, which
is amatter of a public debate and critics.We believe that this discussion is very fruitful
and helpful for patients with these rare diseases to find and approve new therapeutic
targets, as both the public and pharmaceutical companies have neglected them for
decades. These new approaches give hope to significantly decrease the burden of
previously devastating diseases in future.
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