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Chapter 4
Estimation of Sharing Dependencies 
in Personal Storage Clouds Using 
Ensemble Learning Approaches

S. Poonkuntran and J. Manessa

4.1  �Dynamic Provisioning of Cloud Resources 
in Multi-Cloud Environment

Cloud computing is an emerging trend in all kinds of industries starting from data 
collection to prepare detailed analysis and conclusions. It becomes a preference for 
industries in different ways. They include no need to invest in infrastructure, an 
infinite amount of resource capacity, and no need to wait for several months to build 
infrastructure to start the business. The cloud provides complete virtualization 
where user can hire their required resources at competitive prices. They need to pay 
only for the resource they are using. The users can acquire their resources dynami-
cally, and the same can elastically be customized based on the changing needs at 
different times [1].

Many architectures have been proposed and practiced by companies. Multi-
cloud is one particular architecture where the services will be availed from different 
vendors for single network architecture. It is different from the hybrid cloud that 
provides a heterogeneous environment composed of different infrastructure envi-
ronments such as the public and private cloud. There are three main reasons for 
choosing a multi-cloud environment.

Choice: The cloud service vendors are chosen by the companies for their needs, and 
they have flexibility in choosing the vendors. It helps the companies to avoid 
vendor lock-in.

S. Poonkuntran (*) 
School of Computer Science and Engineering, VIT Bhopal University, Bhopal, India
e-mail: poonkuntran.s@vitbhopal.ac.in 

J. Manessa 
Freelance Trainer, Madurai, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74402-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-74402-1_4#DOI
mailto:poonkuntran.s@vitbhopal.ac.in


66

Disaster Avoidance: The multi-cloud environment provides 100% availability of 
resources for computation and storage if any loss happens due to human errors or 
disaster. It helps the companies to avoid downtime.

Compliance: The multi-cloud environments help the companies to achieve their 
goals for governance, risk management, and compliance regulations.

The dynamic and elasticity are important features of multi-cloud service for 
which users no need to do anything from their side. The service provider of cloud 
computing needs to take care provisioning of the resources to the different users 
based on their changing needs over different times. This cannot be simply done and 
needs to have a good mechanism to exactly predict the number of resources required 
to execute the computation, improve utilization of resources, and minimize the cost.

The resource provisioning includes the selection of appropriate hardware 
resources (Processor, RAM, Storage, Networking), deployment, OS requirements, 
creating a runtime environment, and providing necessary software and its manage-
ment to ensure the guaranteed performance of the application as per service level 
agreement (SLA). Every service will be offered through an SLA executed between 
provider and consumer of the cloud.

The SLA will provide QoS parameters which include availability, reliability, 
response time, throughput, security, and performance. The provisioning of resources 
needs to be done without affecting the SLA and QoS. The resource provisioning 
will have four different styles. They are static, dynamic, static/dynamic, and user 
self-service. In static, the resource provisioning will be fixed irrespective of work-
load and requirements. It is suffered from underprovisioning and overprovisioning. 
In underprovisioning, few jobs will never be executed, since no resources are provi-
sioned for them. In overprovisioning, few jobs will have more resources than 
required, and it becomes a waste. Both situations will lead to ineffective utilization 
of resources. The dynamic provisioning will allocate resources based on the 
demands, and it is not fixed. It is decided based on different parameters which 
include demand, events, and popularity. Here, the allocation of resources will be 
varied over time based on requirements. Predicting the exact requirement will be a 
challenge in dynamic provisioning. Sometimes, the prediction will not be possible 
due to frequent requirement changes. Hence, the third style static/dynamic is used. 
It is a hybrid style where static provisioning will be done in cases where dynamic 
provisioning is not feasible. The fourth style is user self-service where the user will 
decide the requirements and purchase the resources [1, 2].

The dynamic resource provisioning targeted response time, minimization of the 
cost of the services, maximization of company profit, fault tolerance, reducing SLA 
violation, and efficient power consumption [3]. The prediction of the pattern of 
resource consumption in cloud computing is very crucial and important in the 
dynamic provisioning of resources. It can only serve as a base for the provisioning. 
It raises the demand for the prediction of workload patterns in cloud computing. The 
workload parameters are different from one application to another running on 
the cloud.
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The social networking applications which require websites to be run on the cloud 
need higher bandwidth and storage requirements. The scientific application which 
requires computing infrastructure to be run on cloud needs high computing powers. 
The e-Commerce applications require their application to be run on cloud needs 
current load parameters. Similarly, the different parameters will be used to measure 
workload parameters based on different applications.

Many companies are presently shifting their business to the multi-cloud to avail 
the benefits of elasticity and pay as you go cost molds. Such an environment will 
have several public clouds and private clouds based on the company’s business 
needs. Such an environment demands storage solutions in the cloud. Thereby, the 
storage cloud becomes popular today [4–19].

4.1.1  �Storage Cloud

The storage cloud provides storage solutions to the user where the user can store 
their data on the cloud through the Internet and access them being anywhere. It 
provides anytime anywhere access to the user’s data. The cloud storage provider 
delivers your data on demand, just in time fashion and cheaper cost. It makes users 
avoid buying their own storage devices. The cloud storage vendors need to have a 
well scalable infrastructure to provide storage services to the users on-demand and 
pay as you go model. They need to manage their capacity, security, and durability to 
provide access to your data [4–19].

The storage cloud takes many advantages, and the major three advantages are 
listed below.

	1.	 No need to invest in hardware infrastructures to create our storage facilities. 
Users need to avail of the entire storage solution on the cloud, and they can pay 
as per their usage. Usually, the two parameters will be used to measure the con-
sumption of storage resources in the cloud. They are the amount of storage pur-
chased and how frequently the storage is accessed for storage and retrieval. This 
model brings different cost metrics based on the data access frequency. If a par-
ticular data is created and it is not frequently accessed, this will come to the 
lesser cost models.

	2.	 The storage cloud provides on-time deployment of resources where any addi-
tional resources can be purchased in time without worries about installation and 
deployment. It can quickly be added to your subscription. We can find additional 
resources dynamically on the go, no need to fix it in advance. However, it requires 
well prediction techniques to forecast future needs.

	3.	 The cloud storage provides centralized data management where all the data is 
stored centrally in the cloud, and it can be easily accessed, shared, and migrated 
online. It can also be done anywhere and anytime.
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Cloud storage supports different types of formats in which the data can be stored 
and retrieved. It includes object storage, file storage, and block storage. The object 
storage stores the objects that are metadata of the data to be stored. It allows us to 
build our storage solution from scratch. The Amazon Simple Storage Service (S3) 
is an example of object storage. It can be widely used to import, backup, and archive 
our data.

The second type is file storage where the application needs a file system through 
which it will share the files between users. Usually, file storage is linked to Network 
Attached Storage (NAS). File storage is widely used by enterprises and users to 
store their information as files and storing media files. The Amazon Elastic File 
System (EFS) is an example of file storage.

The third type is block storage where the application will have low latency and 
variable size storage for all the users connected to it. For example, the ERP systems 
will need individual storage to work with databases. Usually, this storage is facili-
tated through Storage Area Networks (SAN). The Amazon Elastic Block Store 
(EBS) is an example of block storage.

From the storage cloud revolution, personal cloud storage has come up now. 
Personal cloud storage provides cloud storage solutions to individuals for storing 
their files, photos, and videos. As in cloud storage, it enables individuals to access 
their files at any time, anywhere [4–19].

4.1.2  �Dynamic Provisioning of Personal Storage Cloud

The dynamic provisioning of personal storage cloud includes volume creation, 
ensuring the availability of files in time, preparing the necessary number of copies 
of the same file for parallel processing, ensuring the security of the contents, pro-
tecting ownership rights, and measuring sharing dependency. The sharing depen-
dency is a key parameter in the storage cloud by which how files are being shared 
among the number of users. This will be an important parameter for predicting the 
workload patterns in personal storage clouds. The majority of the user who uses the 
personal cloud accounts is mainly for sharing their contents with their dears 
and nears.

The sharing dependency helps the cloud service provider to estimate the resources 
and provisioning them for sharing. However, it is not easy to estimate the sharing 
dependency of the files on cloud storage. The pattern of sharing will change over 
time and requires intensive machine learning applications to predict them [4–19].

It also helps the companies to check the utilization of the spaces availed from the 
cloud and to estimate the future trends in storage requirements.
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4.2  �Machine Learning in Cloud Resource Provisioning

The elasticity is the main feature of cloud computing which automatically increases 
and shrinks the resources for the applications based on the workload. The prediction 
of the workload usually is done through resource indicators such as processor 
usages, storage usage, and traffic parameters. It is well suited for non-complex 
applications where the workload patterns are having periodical changes. However, 
it is very difficult to fix the indicator values, changes, and obtained thresholds.

When applications become complex, the indicators will be at a low level and 
limited. The changes in workload will be ad hoc, and it requires techniques apart 
from the resource indicators. In general, all the cloud services will be offered as best 
of service where no reservation of resources will be done by the vendors for the 
applications. Based on the demand raised by the applications, the resources are 
being provisioned. No guarantee is given by the vendor.

At the same time, cloud vendors can also provide advanced reservations for the 
applications. In this case, the SLA will have guaranteed QoS parameters to provide 
reservation. Such reservations need to be supported by the machine learning utilities 
to compute the current level of resource utilization and estimate future trends [20].

Machine learning is being applied in cloud resource provisioning, especially for 
pro-active management and auto-scaling. Many kinds of research have witnessed 
the role of machine learning in auto-scaling and the proactive management of 
clouds. VMware’s Distributed Resource Scheduler (DRS) is proposed in [21] and 
uses an auto-scaling. A middleware called “Haizea” is introduced in [22] and offers 
reservation facility through leases. The Haizea can be called anytime and anywhere. 
The metric-based scaling technique called “Amazon Cloud Watch” is proposed in 
[23] that does auto-scaling on demand. No reservation is supported by the Amazon 
Cloud Watch. In [24], a system is proposed that reserves the resources initially and 
later adjusts based on the demands of the applications. In [25], the Aneka system is 
proposed that collects and releases the resources based on the completion time of 
requests. The auto-scaling is governed by the thresholds that must meet the require-
ments of completion of applications. In [26], a system is proposed for auto-scaling 
that uses past workload statistics to estimate future needs.

In [27], statistical machine learning was employed in single tier applications on 
the cloud to estimate the system performance parameters. The CPU and bandwidth 
utilization of VMs for single-tier applications were measured in Amazon EC2 using 
machine learning [28]. The reinforcement learning approach was used to find the 
best optimal server configurations in [29]. The same reinforcement learning was 
used to allocate the resources automatically in [30] for single-tier applications. The 
work in [31] uses non-linear regression techniques to learn the patterns of the per-
formance of web applications hosted on the cloud, and a trained model is then used 
to predict future needs. The queuing networks were used in the research for analyz-
ing the behaviors of each tier in multi-tier web applications [32]. The capacity of 
multi-tier web applications was estimated online using machine learning in [33]. 
The k-means clustering algorithm was used to model the dynamic workloads of 
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multi-tier applications. This work uses queuing theory and service rates as base 
parameters for the clustering. Another work in [34] uses the learning models to do 
resource provisioning for homogeneous performances. In [35], machine learning is 
employed to automatically configuring web applications based on CPU utilization, 
number of requests, and network utilization. A rule-based learning model was used 
in [36] for identifying sudden changes in requirements.

From these works, it is concluded that workload volume is a key parameter that 
is being identified differently and used to estimate the future needs of the require-
ments. The machine learning techniques were good in predicting the workload pat-
terns in the clouds, especially for dynamic provisioning. The machine learning 
models need to be designed based on the application for which the estimation is 
carried out [27–37].

The sharing dependency is a vital relation in identifying the workload volumes 
of storage clouds. This chapter takes NEC personal cloud data and models the shar-
ing dependency using ensemble learning for the auto-provisioning of resources.

4.3  �Prediction of Sharing Dependency Using 
Ensemble Learning

4.3.1  �Ensemble Learning

Ensemble learning is a branch of machine learning where multiple model outputs 
are combined to yield improved performance. Bias and variance are two important 
factors in machine learning.

The bias is referring to the average difference between actual values and pre-
dicted values. The trained model bias is high; it will underperform and miss impor-
tant details in the models. Hence, we need to have a lower bias. When models have 
become complex to train, the bias will reduce and it is up to some point. After that, 
the variance of the model will increase.

The variance is another factor that defines how the prediction is done on the same 
data different from each other. The high variance will overfit your data and the 
model will be failed. However, the bias and variance will be the tradeoff as shown 
in Fig. 4.1. To resolve this, ensemble learning is used.

The bias and variance will play an important role in machine learning. The low 
bias and low variance model will be good, and it will classify all the data into the 
respective classes. If the model has low bias and high variance, it will classify the 
data around the respective classes, not exactly on the classes, and each data will be 
far away from each other. If the model has high bias and low variance, it will miss 
the data and will not classify it into respective classes. However, all these data will 
be near to each other because of the low variance. If the model has high bias and 
high variance, it will miss all the data and will not classify into the respective 
classes. All these data will be far away from each other because of the high variance. 
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Hence, the main objective of any machine learning model is to reduce bias and vari-
ance to get the best model. It is shown in Fig. 4.2. The red color circle is a class to 
which the data points (blue colored dots) to be classified.

The ensemble learning can be applied in three different styles. They are bagging, 
boosting, and stacking. The bagging style will divide your input data sets into small, 
multiple datasets. The appropriate, different machine learning models will be cho-
sen for every subset of the data and applied independently. The results of all the 
subsets are aggregated through an average to give the results of the original dataset.

0

20

40

60

80

100

120

0 2 4 6 8 10 12

Er
ro

r

Complexity of the Model

Bias Variance 

Fig. 4.1  Bias vs. variance in machine learning

Fig. 4.2  The bulls eye 
diagram for bias vs. 
variance in machine 
learning. Source: http://
scott.fortmann-roe.com/
docs/BiasVariance.html
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The boosting style will not divide the datasets. It collects all the appropriate 
models and starts applying them one by one on the dataset. It adjusts the weight 
values of the model based on the previous results. Thereby, it reduces the bias and 
makes the model the best fit for the data.

The stacking is a different style where different model outputs are combined. 
The combined operation targets reducing bias or variance. Thereby, the best model 
is identified through stacking.

4.3.2  �Dataset

The NEC Personal Cloud Data set is used in this chapter [38]. This dataset is an 
original dataset collected from the vendors with limitations. The limitation includes 
no location information is collected for privacy. All the data are collected as traces 
and it contains log information. The data are given by two trace files. The File Trace 
(CS_FileTraces.txt) contains details about the file, and Sharing Traces (CS_
SharingTraces.txt) contains sharing details of the files. The data collected is real 
data from 7th March 2013 to 9th September 2015, and the total duration of the data 
is 2 years and 6 months. This data set contains two levels of information. They are 
storage and sharing interactions.

From the storage level, file traces were collected directly from the provider 
through SQL Server and Open Stack Swift. The file traces are log files containing 
file id, user id, file size in Bytes, and Account/Container ID in which the file is 
located. This information is used to analyze the file-related details at the storage 
layer. The statistics of the file traces are listed in Table 4.1.

From the sharing interaction, the sharing traces were collected. The sharing 
traces are log files that contain interaction among users and their sharing file infor-
mation. The data is collected for 2 years and 6 months duration as mentioned above. 
This file contains 75,041 interaction details of file sharing. The fields include user 1, 
user 2, file id, folder ID, and account ID. User 1 is the owner of the file, and it is 
located in the folder that is linked to that user in the cloud. The user 2 is sharing the 
files of the user1. The statistics of the sharing interaction are listed in Table 4.2.

Table 4.1  CS_FileTraces – statistics

Total number records 76,554 file records

Total number of unique users 7721
Total number of unique accounts/containers 9215
Total number of unique files 74,723
Total number of unique file formats available 
in the dataset

418

Total number of unique file size present in the 
dataset

63,430
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4.3.3  �Preprocessing

The given datasets cannot be directly used for machine learning. To prepare the 
extracted data to be used for machine learning, preprocessing is carried out. All the 
details given in the file traces are categorical types except file size which is a numer-
ical type. Similarly, the details in the sharing traces are also in categorical types. The 
preprocessing analyzes the dataset thoroughly. The file traces contain the details 
about each file whose owner details are given by the user id. The file sizes are given 
in bytes. The account/container id is the location id where the file is kept in the 
cloud. The sharing traces contain files whose owners are in user 1 and sharing users 
are in user 2. However, the sharing traces recorded each interaction separately. 
These interactions are raw and not labeled or grouped. The sharing interactions are 
in different styles which include a single file shared by many users, many files 
shared by a single user, a single file shared by a single user, and many files shared 
by a single user. To label the interactions, the number of files of each owner that is 
shared by others is calculated. The distribution of the number of files of each owner 
is illustrated in Fig. 4.3.

From Fig. 4.3, it is found that few owners do not have any files in their accounts 
that are being accessed by others. The number of files held by the owner is around 
500 for the majority of the owners. Few of them are having a huge number of files. 
The minimum and the maximum number of files held by the owner are 0 and 9369, 
respectively.

Next, the file sizes are computed for each owner. The sharing traces contain only 
the file ID that is being shared. The size of each file is given in file traces. To calcu-
late the file sizes, all the files shared by an owner are taken from sharing traces, 
whose size is referred from file traces, and the total file sizes are computed by sum. 
This is taken as a folder size since it contains many files. The folder sizes are com-
puted in Bytes and converted into MegaBytes (MB). The distribution of folder size 
is as shown in Fig. 4.4. It is clearly shown that few owners do not have any files in 
their folder and it makes folder size zero. Many owner’s folder size is around 
5000 MB and a few of them having folder size above 5000 MB. The minimum and 
maximum folder sizes are 0 MB and 241830.1 MB, respectively.

Next, the frequency of folder access for each owner is computed. It is directly 
calculated from the sharing traces file by doing self-references of owners in the 
user1 field. The reason is that sharing traces contain interaction details of each file 
that is linked to an owner.

Table 4.2  CS_SharingTraces – statistics

Total number records 75,041 sharing interaction records

Total number of unique owners (User 1) 7015
Total number of unique users sharing the files  
(User 2)

8314
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The distribution of frequency access to the folder is shown in Fig. 4.5. It is clearly 
shown that the minimum frequency is zero. It means that the folder is not accessed 
by anyone. The maximum frequency is 242. It means that the folder is shared by 
242 users. Thus the preprocessing extracted four different parameters from the data-
set. The user ID is mainly for identification, and it is excluded from machine learn-
ing. The other three parameters number of files, folder size, and frequency access 
are taken for machine learning.

4.3.4  �Ensemble Classifiers

The five different ensemble classifiers are used in the experiment. They are bagged 
tree, boosted tree, subspace discriminant, subspace kNN, and RUSboosted tree.
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Fig. 4.3  The distribution of the number of files for each owner that is shared by others
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Fig. 4.4  The distribution of the folder size of each owner
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The bagged tree uses a random forest algorithm. It divides the given input into n 
number of parts using bootstrap sampling. Then, it constructs n number of classifi-
cation trees and combines them into a single tree to yield the final classification 
[39–41].

The ADA boosting is used in the boosted tree which is one of the first boosting 
algorithms that combines multiple weak learner’s outputs into single strong learners 
by using different weights. The ADA boost first divides the input into number splits 
and then applies a decision tree on them individually. A single split with a decision 
tree is called decision stumps. It analyzes all the stumps carefully and assigns higher 
weightage to the stumps which is difficult to classify and low weightage to the 
stumps which can classify well [42].

The subspace discrimination uses discriminant learners in subspace. The learn-
ers use Gaussian mixture models. The subspaces are generated using random sub-
space methods. The random subspace method uses three parameters. The first 
parameter is the actual dimension (D1) of the data (it means the number of columns 
in the given data) and next is the dimensions of the data (D2) to be used in the 
samples of each learner in the ensemble. The value of D2 is to be calculated statisti-
cally. The last parameter is the number of learners (N) used in the ensemble.

The random subspace method identifies the random subset of D2 variables from 
the D1 possible variables. Then, the methods iteratively train the week learners of 
discriminant analysis using these D2 variables, until there are N weak learners. The 
final prediction is carried out from the highest average of weak learners. Thus, the 
subspace discrimination works. Similarly, the subspace kNN works in subspace 
with nearest neighbors’ leaners rather than discriminant analysis [42–47].

The RUSboosted tree uses ADA boosting algorithm in under-sampling space. 
This method is well suited for imbalanced data where few classes will have only a 
few members in the training data compared to other classes. The under-sampling is 
a key concept in this method where the number of members for each class in the 
training data is computed first and selects the minimum value. The chosen minimum 
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Fig. 4.5  The distribution of the frequency of access to the owner’s folder
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value will be the sample size for each class to which the undersampling is done for 
the classes whose members are above the minimum. Finally, the boosting procedure 
will be done based on ADA Boost [42–47].

4.3.5  �Data Cleaning

As in Sects. 3.3.2 and 3.3.3, the NEC data set is a log file that contains two sets of 
information for sharing dependency in the personal clouds. From this, we have 
extracted three vital pieces of information, namely, the number of files, folder size 
in MB, and frequency of access of the files for each owner. This is the data to be 
used in machine learning. This data is collected for 7015 owners in the NEC per-
sonal cloud. Thereby, the data set contains 7015 records and the dimension is three. 
The number of files and folder size is chosen as predictors, and the frequency of 
access is taken as a response.

First, the outliers analysis is carried out for from the variables through the box 
plot. By reviewing the box plot of the number of files as shown in Fig. 4.6, it is clear 
that the majority of the values are below 1000 and few values are above 1000. The 
number of the file contains zero values for 897 records. It means that 897 owners 
have accounts with no files in them. The median of the number of files is six. By 
analyzing the box plot for the number of files, it is found that the data is not uni-
formly distributed.

Fig. 4.6  The box plot for number of files
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The box plot for the folder size is shown in Fig. 4.7. The minimum folder size is 
0 MB and the maximum is 241,830 MB. The accounts which are not having any 
files will have a 0 MB folder size. The median value is 166 MB. The folder size is 
also not uniformly distributed. The response variable frequency of access is also 
reviewed by its box plot as shown in Fig. 4.8.

The frequency of access is having a minimum of 0 and a maximum of 242. The 
median is 9. and the majority of the values are within 100 and few values are above 
100. It is also observed that accounts not having any files are accessed many times. 
The frequency of access to 897 records (which are not having any files, empty fold-
ers) is exemplified in Fig.  4.9. This information will not provide any scope in 
machine learning for the identification of shared dependency. The main aim of the 
work is to predict sharing dependency for the dynamic provisioning of cloud 
resources. The empty folder’s access will not require any provisioning of resources. 
Such folders would have been accessed wrongly or the requested file is no longer 
available. Hence, these 897 records are filtered out from the experiment. In addition 
to this, the folders have few empty files whose sizes are in few kilobytes (KB). 
However, these files are accessed many times, and such information will be useful 
in learning. Hence, those records are retained. Thereby, the dataset contains 7015 
records initially reduced to 6118 records after cleaning.

Fig. 4.7  The box plot for folder size
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4.3.6  �Model Training and Analysis

After the cleaning, the experiment is set up with the number of files, and folder size 
is as predictors and frequency of access as a response. The experiment is carried out 
on Matlab R2016b using the classification leaners app. The response variable 

Fig. 4.8  The box plot for frequency of access

Fig. 4.9  The frequency of access to empty folders
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contains 65 classes for which the predictors are trained in the model. The scatter 
plot of predictors is shown in Fig. 4.10. From the scatter plot, it is clear that the 
predictors are not linearly related and cannot be trained using any linear models. 
The relationship of predictors is non-linear and it requires non-linear models. The 
nature of the tasks in the experiment is to predict the frequency of access from a 
given number of files and folder size. The decision tree and clustering models are 
more suitable for such situations. Thereby, the chapter uses ensemble learning for 
the training.

The predictors are fed to the classification learner app with the default configura-
tion of all the ensemble learners. The results are summarized in Table  4.3. The 
boosted trees yield the highest accuracy of 7.1%, and all other models are providing 
an accuracy below 7.1%. The ROC curves of all the models are shown in Fig. 4.10. 
All the models provide an AUC value of around 0.5, and around 50% of the data is 
properly mapped to positive and negative classes as shown in Fig. 4.11.

It is also understood that the response variable has 65 classes of the frequency of 
access not well mapped by the number of files and folder sizes. To fine-tune the 
results, we have created a new class variable based on the number of files, folder 
size, and frequency of access. Here, these three variables are taken as the predictors. 
The response variable is prepared by using quartiles of each variable. Each variable 
has four quartiles, and all these four quartiles of each variable are combined to quar-
tile values of other variables. Thereby, 64 quartile combinations are created and the 
same is modeled as response classes for the data. Then, for every sample, the 

Fig. 4.10  The scatter plot between Num_Files and Folder_Size_MB
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corresponding quartile in which the variable is present and quartile combination of 
all three variables are computed.

Table 4.4 shows the quartile values of all the predictors used in the experiment. 
The response class is computed as follows. For example, if the sample contains 
values of Num_Files as 12, Folder_Size_MB as 684.58, and Frequency _Access as 
18, then the quartile for Num_Files will be 4, Folder_Size_Mb will be 4, and 
Frequency_Access as 4. The response class for this sample will be 444. Thus, the 
response class for each sample is computed. Now, the model is trained using these 
three variables as a predictor and combined quartile values of variables as the 
response variable.

Table 4.5 shows the improvement in accuracy compared to the results in 
Table 4.4. The bagged trees provide the highest accuracy of 99.8%, and the boosted 
tree yields the second highest accuracy of 88.1%. All other models provide an 

Table 4.3  Ensemble learners – results (number of predictors is two)

Ensemble learner Accuracy (%)

Model 1.1 boosted trees 7.1
Model 1.2 bagged trees 5.1
Model 1.3 subspace discriminant 6.9
Model 1.4 subspace kNN 5.9
Model 1.5 RUSboosted trees 4.0

Fig. 4.11  ROC curve for the ensemble learners – number of predictors is two
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accuracy of below 50% and improved the accuracy compared to the results in 
Table 4.4. The second approach improved the overall accuracy of ensemble classi-
fiers by 50% at an average. The individual model wise improvements are 81% in 
boosted trees, 94.70% in bagged tress, 7.90% in subspace discriminant, 32.60% in 
subspace kNN, and 35.10% in RUSboosted trees.

Figure 4.12 shows the performance of each model through ROC curves, and all 
the models can improve the AUC values compared to the previous results in 
Fig. 4.11. Now, the models are providing AUC values between 0.9 and 1.

4.3.7  �Comparative Results

We have experimented with two different methods. First, we have taken a dataset 
with two predictors (Num_Files and Folder_Size_MB) and Frequency_Access as 
Response. The training results gave a maximum accuracy of 7.1% and an AUC of 
0.67. This is achieved by the boosted tree. Second, we have taken all three variables 
as predictors (Num_Files, Folder_Size_MB, and Frequency_Access) and the newly 
computed quartile combination as a response. The training results for this method 
yield a maximum accuracy of 99.8% and an AUC of 1. Comparatively, the second 
method was found best for the NEC personal cloud dataset. This method can predict 
the demands of the quartile combinations using Num_Files and Folder_Size_MB 
and Frequency_Access. Method 2 improved the overall accuracy of all the models 
by 50% at an average and AUC by 45% at an average. The bagged tree model was 
found as the best model for the NEC cloud dataset.

Table 4.5  Ensemble learners – results (number of predictors is three)

Ensemble learner Accuracy (%)

Model 1.1 boosted trees 88.1
Model 1.2 bagged trees 99.8
Model 1.3 subspace discriminant 14.8
Model 1.4 subspace kNN 38.5
Model 1.5 RUSboosted trees 39.1

Table 4.4  Quartile values of predictors

Parameters Num_Files Folder_Size_MB Frequency_Access

Min 1 0 1
Q1 4 91.8675 5
Q2 6 203.725 9
Q3 8 362.2425 15
Q4 9369 241830.1 242
Max 9369 241830.1 242
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4.4  �Conclusions

This chapter presents ensemble classifier analysis to the NEC personal cloud dataset 
that contains two files File Traces and Sharing Traces for 2 years and 6 months from 
7th March 2013 to 9th September 2015. From the dataset, we have extracted three 
4 parameters, Owner ID, Number of Files, Folder Size in MB, and Frequency of 
Access. The owner ID is omitted, and the other three parameters are taken for learn-
ing. The ensemble learning contains five models boosted trees, bagged trees, sub-
space discriminant, subspace kNN, and RUSboosted trees. The training is done by 
two methods. The first method attempted to map the relationship between the num-
ber of files and folder size to the frequency of access. The second method attempted 
to find the relationship between all these three parameters to newly computed quar-
tile combinations. The experimental results show that method 2 is best for the NEC 
data set and the Bagged Tree model can excel in the prediction that provides an 
accuracy of 99.8% and AUC of 1. Method 2 improves the accuracy of all the models 
by 50% and AUC by 45% compared to method 1. Thus, the bagged tree model with 
three predictors outperforms all other models of ensemble classifiers, and it is found 
as the best model for NCE personal cloud dataset in predicting sharing dependency. 
It is concluded that the bagged tree model is the best in estimating the sharing 
dependency of personal clouds in multi-cloud environments.

Fig. 4.12  ROC curve for the ensemble learners – number of predictors is three
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