
Marco Brambilla
Richard Chbeir
Flavius Frasincar
Ioana Manolescu (Eds.)

LN
CS

 1
27

06

Web Engineering
21st International Conference, ICWE 2021
Biarritz, France, May 18–21, 2021
Proceedings

Lecture Notes in Computer Science 12706

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Marco Brambilla • Richard Chbeir •

Flavius Frasincar • Ioana Manolescu (Eds.)

Web Engineering
21st International Conference, ICWE 2021
Biarritz, France, May 18–21, 2021
Proceedings

123

Editors
Marco Brambilla
Dipartimento di Elettronica
Politecnico di Milano
Milan, Italy

Richard Chbeir
E2S UPPA, LIUPPA
Université de Pau et des Pays de l’Adour
Anglet, France

Flavius Frasincar
Econometric Institute
Erasmus University Rotterdam
Rotterdam, The Netherlands

Ioana Manolescu
Inria Saclay-Île-de-France,
Institut Polytechnique de Paris
Palaiseau, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-74295-9 ISBN 978-3-030-74296-6 (eBook)
https://doi.org/10.1007/978-3-030-74296-6

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2021, corrected publication 2021, 2022
Chapter “AWeb-Based Co-Creation and User Engagement Method and Platform” is licensed under the terms
of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8753-2434
https://orcid.org/0000-0003-4112-1426
https://orcid.org/0000-0002-8031-758X
https://orcid.org/0000-0002-0425-2462
https://doi.org/10.1007/978-3-030-74296-6

Preface

The Web is 30 years old, and few technologies have withstood the test of time as well
as the Web has. Despite its age, the Web is more relevant than ever. Nowadays, few
can imagine a life without it. The Web is omnipresent in our daily lives from reading
news, buying products, keeping in touch with friends, or doing business, to name a few
examples. Due to its undeniable importance, a new discipline aimed at studying the
multidisciplinary aspects of the Web has emerged entitled Web Science. Part of this
discipline is Web Engineering (WE), which aims to study Web technologies and their
applications following rigorous engineering practices. One could claim that this field
appeared with the first edition of the International Conference on Web Engineering
(ICWE), i.e., 20 years ago, a reason for the WE community to celebrate!

ICWE is the flagship conference for the WE community. Previous editions of ICWE
took place in Helsinki, Finland (2020) [virtually], Daejeon, South Korea (2019),
Cáceres, Spain (2018), Rome, Italy (2017), Lugano, Switzerland (2016), Rotterdam,
the Netherlands (2015), Toulouse, France (2014), Aalborg, Denmark (2013), Berlin,
Germany (2012), Paphos, Cyprus (2011), Vienna, Austria (2010), San Sebastian, Spain
(2009), Yorktown Heights, USA (2008), Como, Italy (2007), Palo Alto, USA (2006),
Sydney, Australia (2005), Munich, Germany (2004), Oviedo, Spain (2003), Santa Fe,
Argentina (2002), and Cáceres, Spain (2001).

This volume contains the full research papers, short research papers, posters,
demonstrations, PhD symposium papers, tutorials, and extended abstracts for the
keynotes of the 21st International Conference on Web Engineering (ICWE 2021), held
from May 18–21, 2021, in Biarritz, France [virtually].

ICWE 2021 focused on eight research themes, namely, Semantic Web, Social Web,
Web Modeling and Engineering, Web Big Data and Data Analytics, Web Mining and
Knowledge Extraction, Web of Things, Web Programming, and Web User Interfaces.

The ICWE 2021 edition received 128 submissions, out of which the Program
Committee selected 22 full research papers (17% acceptance rate) and 13 short research
papers (27% acceptance rate). Additionally, the Program Committee accepted six
demonstrations, one poster, and three contributions to the PhD symposium. Also
accepted were three tutorials: (1) High-level Interaction Design with Discourse Models
for Automated Web GUI Generation, (2) Similarity Search, Recommendation and
Explainability over Graphs for different domains: Social Media, News, and Health
Industry, and (3) Influence Learning and Maximization, and three workshops: (1) 1st
International Workshop on Big Data Driven Edge Cloud Services (BECS 2021), (2) 1st
International Workshop on Web Engineering in Education (WEE 2021), and (3) 7th
International Workshop on Knowledge Discovery on the Web (KDWEB 2021).

The comprehensive program would not have been possible without the support
of the many people that contributed to the successful organization of this event. We
would like to thank all the Special Issues, Tutorials, Workshops, Demonstrations and
Posters, PhD Symposium, Publicity, Website, Local Arrangements, and Finance Chairs

for their dedication and hard work. Our thanks goes also to Ricardo Baeza-Yates
(Northeastern University, USA), Christos Faloutsos (Carnegie Mellon University,
USA), and Fabrizio Silvestri (Sapienza University of Rome, Italy) who accepted to be
our keynote speakers. Alessandro Bozzon and Oscar Diaz deserve special thanks for
their support and encouragement in setting up ICWE 2021. We would like to also thank
André Langer and Martin Gaedke for hosting the conference website. We are grateful
to Springer for making possible the publication of this volume. In addition, we thank
the reviewers for their hard work that allowed us to select the best papers to be
presented at ICWE 2021. Last but not least, we would like to thank the authors that sent
their work to ICWE 2021 and all the participants that contributed to the success of this
conference.

May 2021 Marco Brambilla
Richard Chbeir

Flavius Frasincar
Ioana Manolescu

vi Preface

Organization

Technical Committee

General Chair

Richard Chbeir Université de Pau et des Pays de l’Adour, France

Vice-General Chair

Flavius Frasincar Erasmus University Rotterdam, the Netherlands

Program Committee Chairs

Marco Brambilla Politecnico di Milano, Italy
Ioana Manolescu Inria Saclay-Île-de-France and Institut Polytechnique

de Paris, France

Special Issues Chair

Yannis Manolopoulos Open University of Cyprus, Cyprus

Tutorials Chairs

Vassilis Christophides ENSEA, France
Michalis Vazirgiannis École Polytechnique, Institut Polytechnique de Paris,

France

Workshops Chairs

Maxim Bakaev Novosibirsk State Technical University, Russia
Cesare Pautasso University of Lugano, Switzerland

Demonstrations and Posters Chairs

Irene Garrigós University of Alicante, Spain
Marco Winckler Université Côte d’Azur, France

PhD Symposium Chairs

Cinzia Cappiello Politecnico di Milano, Italy
Gustavo Rossi Universidad Nacional de La Plata, Argentina

Publicity Chairs

Tommaso Di Noia Politecnico di Bari, Italy
In-Young Ko Korea Advanced Institute of Science and Technology,

South Korea

Website Chairs

Sabri Allani Université de Pau et des Pays de l’Adour, France
Elio Mansour Université de Pau et des Pays de l’Adour, France

Local Arrangements Chairs

Philippe Aniorté Université de Pau et des Pays de l’Adour, France
Philippe Arnould Université de Pau et des Pays de l’Adour, France
Laurent Gallon Université de Pau et des Pays de l’Adour, France

Finance Chair

Khouloud Salameh American University of Ras Al Khaimah, UAE

Steering Committee Liaisons

Alessandro Bozzon Delft University of Technology, the Netherlands
Oscar Diaz University of the Basque Country, Spain

Program Committee

Research Program Committee

Ioannis Anagnostopoulos University of Thessaly, Greece
Myriam Arrue University of the Basque Country, Spain
Mohamed-Amine Baazizi Sorbonne University, France
Marcos Baez University of Trento, Italy
Maxim Bakaev Novosibirsk State Technical University, Russia
Luciano Baresi Politecnico di Milano, Italy
Peter Bednár Technical University of Kosice, Slovakia
Devis Bianchini University of Brescia, Italy
Matthias Book University of Iceland, Iceland
Gabriela Bosetti VeryConnect, UK
Alessandro Bozzon Delft University of Technology, the Netherlands
Christoph Bussler Google, USA
Carlos Canal University of Málaga, Spain
Cinzia Cappiello Politecnico di Milano, Italy

viii Organization

Sven Casteleyn Universitat Jaume I de Castelló, Spain
Dickson K. W. Chiu The University of Hong Kong, China
Pieter Colpaert Ghent University, Belgium
Oscar Corcho Universidad Politécnica de Madrid, Spain
Alexandra Cristea Durham University, UK
Olga De Troyer Vrije Universiteit Brussel, Belgium
Oscar Diaz University of the Basque Country, Spain
Schahram Dustdar Vienna University of Technology, Austria
Jutta Eckstein IT communication, Germany
Filomena Ferrucci Università di Salerno, Italy
Sergio Firmenich UNLP and CONICET, Argentina
Piero Fraternali Politecnico di Milano, Italy
Martin Gaedke Chemnitz University of Technology, Germany
Irene Garrigós University of Alicante, Spain
Cristina Gena University of Torino, Italy
Christian Hammer University of Potsdam, Germany
Hao Han Konica Minolta and University of Tokyo, Japan
Jan Hidders Birkbeck, University of London, UK
Geert-Jan Houben Delft University of Technology, the Netherlands
Radu Tudor Ionescu University of Bucharest, Romania
Ashwin Ittoo University of Liège, Belgium
Guy-Vincent Jourdan University of Ottawa, Canada
Epaminondas Kapetanios University of Hertfordshire, UK
Tomi Kauppinen Aalto University, Finland
Ralf Klamma RWTH Aachen University, Germany
Alexander Knapp Universität Augsburg, Germany
In-Young Ko Korea Advanced Institute of Science and Technology,

South Korea
Nora Koch University of Seville, Spain
Maurizio Leotta Università di Genova, Italy
Javier Luis Canovas

Izquierdo
Open University of Catalonia, Spain

Zakaria Maamar Zayed University, UAE
Josip Maras University of Split, Croatia
Maristella Matera Politecnico di Milano, Italy
Santiago Melia Universidad de Alicante, Spain
Tommi Mikkonen University of Helsinki, Finland
Lourdes Moreno Universidad Carlos III de Madrid, Spain
Nathalie Moreno University of Málaga, Spain
Juan Manuel Murillo

Rodríguez
University of Extremadura, Spain

Luis Olsina Universidad Nacional de La Pampa, Argentina
George Pallis University of Cyprus, Cyprus
Jose Ignacio Panach

Navarrete
University of Valencia, Spain

Ján Paralič Technical University Košice, Slovakia

Organization ix

Oscar Pastor Lopez Universitat Politècnica de València, Spain
Pankesh Patel National University of Ireland, Ireland
Cesare Pautasso University of Lugano, Switzerland
Vicente Pelechano Universitat Politècnica de València, Spain
Alfonso Pierantonio University of L’Aquila, Italy
Nicoleta Preda University of Versailles, France
Raphael M. Reischuk ETH Zurich, Switzerland
Werner Retschitzegger Johannes Kepler University Linz, Austria
Filippo Ricca Università di Genova, Italy
Thomas Richter Rhein-Waal University of Applied Sciences, Germany
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Harald Sack Leibniz Institute for Information Infrastructure and KIT

Karlsruhe, Germany
Carmen Santoro ISTI-CNR, Italy
Andrea Stocco University of Lugano, Switzerland
Zhu Sun Macquarie University, Australia
Kari Systä Tampere University of Technology, Finland
Aikaterini Tzompanaki CY Cergy Paris University, France
William Van Woensel Dalhousie University, Canada
Markel Vigo University of Manchester, UK
Michael Weiss Carleton University, Canada
Erik Wilde CA Technologies, USA
Manuel Wimmer Johannes Kepler University Linz, Austria
Marco Winckler Université Côte d’Azur, France
Yeliz Yesilada Middle East Technical University, Turkey
Nicola Zannone Eindhoven University of Technology, the Netherlands
Gefei Zhang Hochschule für Technik und Wirtschaft Berlin,

Germany
Jürgen Ziegler University of Duisburg-Essen, Germany

Research Additional Reviewers

Oana Balalau
Nelly Barret
Luca Berardinelli
Russa Biswas
Yiyi Chen
Alexandre Connat
Lorenzo Corti
Paolo Cremonesi
Evan Crothers
Marco Di Giovanni
Antonio Gamendia
Alberto González-Pérez
Ibrahim Hammoud
Sebastian Heil
Yu-Jung Ko

Hae-Na Lee
Andrea Mauri
Madhulika Mohanty
Andrea Morichatta
Mahda Noura
Tarmo Robal
Martin Sarnovsky
Salma Sassi
Miroslav Smatana
Mary Ann Tan
Andrea Tocchetti
Utku Uckun
Sabine Wolny
Derek Yu

x Organization

Demonstrations and Posters Program Committee

Devis Bianchini University of Brescia, Italy
Sven Casteleyn Universitat Jaume I de Castelló, Spain
Damiano Distante University of Rome Unitelma Sapienza, Italy
Sergio Firmenich UNLP and CONICET, Argentina
César González Mora University of Alicante, Spain
Jose Norberto Mazón University of Alicante, Spain

PhD Symposium Program Committee

Marcos Baez University of Trento, Italy
Maxim Bakaev Novosibirsk State Technical University, Russia
Alessandro Bozzon Delft University of Technology, the Netherlands
Jordi Cabot Open University of Catalonia, Spain
Carlos Canal University of Málaga, Spain
Cinzia Cappiello Politecnico di Milano, Italy
Oscar Diaz University of the Basque Country, Spain
Francisco José Domínguez

Mayo
University of Seville, Spain

Irene Garrigós University of Alicante, Spain
Daniela Godoy ISISTAN Research Institute, Argentina
In-Young Ko Korea Advanced Institute of Science and Technology,

South Korea
Maristella Matera Politecnico di Milano, Italy
Birgit Pröll Johannes Kepler University Linz, Austria
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Marco Winckler Université Côte d’Azur, France

Sponsors

Organization xi

In Memoriam

In the last year we have lost one of our beloved colleagues, Florian Daniel, a prominent
member of the WE community. Few people from the WE field do not know Florian. He
is remembered as an enthusiastic fellow, a proficient scientist, a passionate educator,
and, above all, an authentic and inspiring person. Florian, you will be dearly missed!

xii Organization

Keynotes

Biases on Web Systems

Ricardo Baeza-Yates

Institute for Experiential AI, Northeastern University, USA
rbaeza@acm.org

Abstract. Biases on the Web reflects both societal and cognitive biases,
emerging in subtler ways. This keynote aims to increase awareness of the
potential effects imposed on us all through bias present in Web use and content,
coming from different sources: data, algorithms, and our interaction with them.
We must thus consider and account for it in the design and engineering of web
systems that truly address people’s needs.

Keywords: ML-based web systems � bad practices � good practices

Summary

We have already discussed many sources of bias on the Web ?, so here we focus on the
biases while we engineer web systems, where today most of the time we use machine
learning (ML). In this context, many systems fail to have even one of the properties
proposed by the ACM [1].

When we design web systems (and in general), we have many bad practices, similar
to the ones we find in ML-based systems [5]:

– We use the available data instead of the data that you need.
– We do not properly check the quality and completeness of the data.
– We use training data that does not cover well all the solution space.
– We learn from the past without checking the difference with the current context,

reusing code in unanticipated contexts.
– We learn from human behavior without considering encoded biases and the pos-

sibility of malicious training.
– We do not check for spurious correlations or if there are proxies for protected

information.

After the system is designed and implemented, we have the tendency to aggres-
sively resist reviews, failing to measure the impact of the deployed system and in many
times having inappropriate relationships between the system and the people taking
decisions [5].

But going one step further: Do systems reflect the characteristics of the designers
and/or the coders? We believe the answer is yes [2]. Indeed, we all have professional
biases product of our culture, education and experience. For example, today big data
and deep learning are the current focus of the industry, forgetting that most of the

https://orcid.org/0000-0003-3208-9778

institutions in the world will never have big data [3]. Moreover, in [4] it is shown that
cultural and cognitive biases of programmers can be transferred to the code.

This is particularly true when we do software evaluation. One clue is the experi-
ment done regarding data analysis, where all 29 teams did something different [6]. This
shows the breadth of thought, knowledge and experience of different teams. This
affects what experiments we design, the test data that we use, the metrics considered,
and the baselines for comparison that we choose.

Hence, what can we do? For the data part, we can:

– Analyze for known and unknown biases, debiasing and/or mitigating when
possible.

– Recollect more data for sparse regions of the solution space.
– Do not use features associated directly/indirectly with protected attributes that can

produce harmful bias.

For the design and implementation, we need to let experts/colleagues/users contest
every step of the process. We can be completely transparent publishing our code in a
public repository and at the end registering the algorithm. We can even request an
external audit. For the human computer interaction part, we need to make sure that the
user is aware of the system’s biases all the time and has tools to control it.

What are the good practices then? In my personal opinion, some are:

– Design thinking in people first! (users and society).
– Have a deep respect for the limitations of your system, starting with the fact that you

cannot learn what is not in the data.
– Be humble, if your result or prediction is not good, answer “I don’t know”.
– Do a strong evaluation and cross-discipline validation.
– Have an external ethics board for the process and enforce a Code of Ethics.
– Remember that we, humans, should be in control and hence machines are in the

loop.

References

1. ACM U.S. Technology Policy Committee: Statement on algorithmic transparency and
accountability (January 2017). https://www.acm.org/ binaries/content/assets/public-policy/
2017_usacm_statement_algorithms.pdf

2. Baeza-Yates, R.: Bias on the web. Commun. ACM 61(6), 54–61 (2018). https://cacm.acm.
org/magazines/2018/6/228035-bias-on-the-web/fulltext

3. Baeza-Yates, R.: BIG, small or right data: which is the proper focus? (October 2018). https://
www.kdnuggets.com/2018/10/big-small-right-data.html

4. Johansen, J., Pedersen, T., Johansen, C.: Studying the transfer of biases from programmers to
programs (December 2020). https://arxiv.org/abs/2005.08231v2

5. Matthews, J.N.: Patterns and anti-patterns, principles and pitfalls: accountability and trans-
parency in AI. AI Mag. 41(1), 82–89 (2020). https://doi.org/10.1609/aimag.v41i1.5204

6. Silberzahn, R., et al.: Many analysts, one data set: making transparent how variations in
analytic choices affect results. Adv. Methods Pract. Psychol. Sci. 1(3), 337–356 (2018).
https://psyarxiv.com/qkwst/

xvi R. Baeza-Yates

https://www.acm.org/
https://www.acm.org/
https://cacm.acm.org/magazines/2018/6/228035-bias-on-the-web/fulltext
https://cacm.acm.org/magazines/2018/6/228035-bias-on-the-web/fulltext
https://www.kdnuggets.com/2018/10/big-small-right-data.html
https://www.kdnuggets.com/2018/10/big-small-right-data.html
https://arxiv.org/abs/2005.08231v2
https://doi.org/10.1609/aimag.v41i1.5204
https://psyarxiv.com/qkwst/

Anomaly Detection in Large Graphs

Christos Faloutsos

Carnegie Mellon University, Pittsburgh PA, USA
christos@cs.cmu.edu

Abstract. Given a large graph, like who-calls-whom, or who-likes-whom, what
behavior is normal and what should be surprising, possibly due to fraudulent
activity? How do graphs evolve over time? We focus on these topics:
(a) anomaly detection in large static graphs and (b) patterns and anomalies in
large time-evolving graphs. For the first, we present a list of static and temporal
laws, including advances patterns like ‘eigenspokes’; we show how to use them
to spot suspicious activities, in on-line buyer-and-seller settings, in Facebook, in
twitter-like networks. For the second, we show how to handle time-evolving
graphs as tensors, as well as some surprising discoveries such settings.

Keywords: Graph mining � Anomaly detection

Introduction

Graphs appear in numerous settings: who-follows-whom in Twitter, who-buys-what
from e-retailers, which machine sends packets to what machine in a computer com-
munication network. The list continues: which protein interacts with what protein;
which patient exhibits what symptoms in a medical records setting; which document
contains what word.

How do we spot abnormal patterns in such graphs? It turns out that most real
graphs tend to obey some recurring patterns, like the ‘six-degrees’ of separation,
power-law degree distributions [3], and several other patterns that we will present in the
talk. Patterns that do not appear in organic graphs, are the cliques and bi-partite cores -
such patterns usually signify organized behavior, and is often malicious, like DDoS
(distributed denial of service), or fake twitter followers, fake product reviews. We will
present tools to spot such behavior, like the ‘eigenspokes’ method [7], and related
dense-block detection methods (CopyCatch [1], CrossSpot [5], Fraudar [4], D-Cube
[8]).

Studying static graphs like the above, is still on-going. But there are even more
fascinating patterns when we study time-evolving graphs, like
who-calls-whom-and-when. We will present some patterns [2, 9], as well as tools to
analyze time evolving graphs, including tensor analysis [6].

https://orcid.org/0000-0003-2996-9790

References

1. Beutel, A., Xu, W., Guruswami, V., Palow, C., Faloutsos, C.: Copycatch: stopping group
attacks by spotting lockstep behavior in social networks. In: International World Wide Web
Conferences Steering Committee/ACM (WWW), pp. 119–130 (2013)

2. Costa, A.F., Yamaguchi, Y., Traina, A.J.M., Jr., C.T., Faloutsos, C.: RSC: mining and
modeling temporal activity in social media. In: KDD, pp. 269–278. ACM (2015)

3. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet
topology. In: SIGCOMM, pp. 251–262. ACM (1999)

4. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: FRAUDAR: bounding
graph fraud in the face of camouflage. In: KDD, pp. 895–904. ACM (2016)

5. Jiang, M., Beutel, A., Cui, P., Hooi, B., Yang, S., Faloutsos, C.: A general suspiciousness
metric for dense blocks in multimodal data. In: ICDM, pp. 781–786. IEEE Computer Society
(2015)

6. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and data fusion:
models, applications, and scalable algorithms. ACM TIST 8(2), 16:1–16:44 (2017)

7. Prakash, B.A., Sridharan, A., Seshadri, M., Machiraju, S., Faloutsos, C.: Eigenspokes: sur-
prising patterns and scalable community chipping in large graphs. In: PAKDD 2010. LNCS,
vol. 6119, pp. 435–448. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-13672-6_42
(2010)

8. Shin, K., Hooi, B., Kim, J., Faloutsos, C.: D-cube: dense-block detection in terabyte-scale
tensors. In: WSDM, pp. 681–689. ACM (2017)

9. Zang, C., Cui, P., Faloutsos, C.: Beyond sigmoids: the nettide model for social network
growth, and its applications. In: KDD, pp. 2015–2024. ACM (2016)

xviii C. Faloutsos

https://doi.org/10.1007/978-3-642-13672-6_42

Neural Databases

Fabrizio Silvestri

University of Rome, Italy
fabrizio.silvestri@uniroma1.it

Abstract. We introduce neural databases, a class of systems that use NLP
transformers as localized answer derivation engines. We ground the vision in
NEURALDB, a system for querying facts represented as short natural language
sentences. In fact, in this research, we explore the possibility of using neural
network architectures to relax the fundamental assumption of database man-
agement: the processed data is represented as fields of a pre-defined schema. We
demonstrate that recent natural language processing models, specifically the
ones based on transformers, can answer select-project-join (SPJ) queries if they
are given a set of relevant facts. In addition to that, we show experiments
proving that a simple transformer-based solution cannot answer queries
requiring aggregations, e.g., min, max, count, avg. We thus propose an improved
NEURALDB architecture that specifically address also this task. It adds a com-
ponent that enable the use of traditional aggregation operators on top of neural
components and is able to effectively match the performance of traditional DBs
in a large fraction of the cases.

Keywords: Transformers � Databases � Neural language understanding

Introduction

Neural networks have been successful in many different areas, such as vision and
language. In this research, we explore the possibility of using neural network archi-
tectures to relax the fundamental assumption of database management: the processed
data is represented as fields of a pre-defined schema. The question, then, is: can data
and queries be represented as short natural language sentences, and can queries be
answered from these sentences? This research presents a first step in answering that
question. We propose NeuralDB, a database system in which updates and queries are
given in natural language. The query processor of a NEURALDB builds on the primitives
offered by the state-of-the-art Natural Language Processing (NLP) techniques.

Realizing the vision of NeuralDB will offer several benefits that database systems
have struggled to support for decades. The first and most important benefit is that a
NEURALDB, by definition, has no pre-defined schema. The database’s scope does not

A longer, and thorough, description of the system described in this abstract can be found in the paper
authored by Thorne

https://orcid.org/0000-0001-7669-9055

need to be defined in advance, and any data that becomes relevant as the application is
used can be stored and queried. Also, updates and queries can be posed in various
natural language forms, as is convenient to any user. Finally, NEURALDB is based on a
pre-trained language model that already contains much knowledge. For example, the
fact that London is in the UK is already encoded in the language model. Hence, a query
asking who lives in the UK can retrieve people who are known to live in London
without having to specify an additional join explicitly. Furthermore, using the same
paradigm, we can endow the NEURALDB with more domain knowledge by extending
the pre-training corpus to that domain.

By nature, a NEURALDB is not meant to provide the same correctness guarantees of
a traditional database system, i.e., that the answers returned for a query satisfy the
query language’s precise binary semantics. Hence, NEURALDBs should not be con-
sidered an alternative to traditional databases in applications where such guarantees are
required. Given its benefits, Neural Databases are well suited for emerging applications
where the schema of the data cannot be determined in advance and data can be stated in
a wide range of linguistic patterns.

One of our contributions is to show that state-of-the-art transformer models [2] can
be adapted to answer simple natural language queries. Specifically, the models can
process facts relevant to a query independent of their specific linguistic form and
combine multiple facts to yield correct answers, effectively performing a join. How-
ever, we identify two significant limitations of these models: (1) they do not perform
well on aggregation queries (e.g., counting, max/min), and (2) since the input size to
the transformer is bounded, and the complexity of the transformer is quadratic in the
size of its input, they only work on a relatively small collection of facts.

Another contribution is to propose an architecture for neural databases that uses the
power of transformers at its core but puts several other components in place to address
the scalability and aggregation issues. Our architecture runs multiple instances of a
Neural SPJ operator in parallel. The operator results are either the answer to the query
or the input to an aggregation operator, which is done traditionally. Underlying this
architecture is a novel algorithm for generating the small sets of database sentences fed
to each Neural SPJ operator.

References

1. Thorne, J., Yazdani, M., Saeidi, M., Silvestri, F., Riedel, S., Halevy, A.: Neural databases.
arXiv preprint arXiv:2010.06973 (2020)

2. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008. Curran Associates,
Inc. (2017)

xx F. Silvestri

https://arxiv.org/abs/2010.06973

Contents

Semantic Web

Interface to Query and Visualise Definitions from a Knowledge Base 3
Anelia Kurteva and Hélène De Ribaupierre

CARDINAL: Contextualized Adaptive Research Data Description
INterface Applying LinkedData. 11

André Langer, Christoph Göpfert, and Martin Gaedke

Publishing Base Registries as Linked Data Event Streams 28
Dwight Van Lancker, Pieter Colpaert, Harm Delva,
Brecht Van de Vyvere, Julián Rojas Meléndez, Ruben Dedecker,
Philippe Michiels, Raf Buyle, Annelies De Craene,
and Ruben Verborgh

OntoSpect: IoT Ontology Inspection by Concept Extraction and Natural
Language Generation. 37

Mahda Noura, Yichen Wang, Sebastian Heil, and Martin Gaedke

A File-Based Linked Data Fragments Approach to Prefix Search 53
Ruben Dedecker, Harm Delva, Pieter Colpaert, and Ruben Verborgh

Social Web

Assessing the Quality of Online Reviews Using Formal
Argumentation Theory . 71

Davide Ceolin, Giuseppe Primiero, Jan Wielemaker,
and Michael Soprano

Web User Interface as a Message: Power Law for Fraud Detection in
Crowdsourced Labeling . 88

Sebastian Heil, Maxim Bakaev, and Martin Gaedke

Conversation Graphs in Online Social Media . 97
Marco Brambilla, Alireza Javadian, and Amin Endah Sulistiawati

Web Modeling and Engineering

WTA: Towards a Web-Based Testbed Architecture 115
Valentin Siegert and Martin Gaedke

Towards Large-Scale Empirical Assessment of Web APIs Evolution 124
Fabio Di Lauro, Souhaila Serbout, and Cesare Pautasso

Stability Metrics for Continuous Integration of Service-Oriented Systems. . . . 139
Dionysis Athanasopoulos and Daniel Keenan

Web Big Data and Data Analytics

Attentive Hybrid Collaborative Filtering for Rating Conversion
in Recommender Systems . 151

Phannakan Tengkiattrakul, Saranya Maneeroj, and Atsuhiro Takasu

Sentence Dependent-Aware Network for Aspect-Category
Sentiment Analysis . 166

Lianwei Li, Ying Yang, Shimeng Zhan, and Bin Wu

A Probabilistic Approach to Personalize Type-Based Facet Ranking
for POI Suggestion . 175

Esraa Ali, Annalina Caputo, Séamus Lawless, and Owen Conlan

Web Mining and Knowledge Extraction

Web Table Classification Based on Visual Features. 185
Babette Bühler and Heiko Paulheim

Automated Essay Scoring via Example-Based Learning 201
Yupin Yang and Jiang Zhong

Conversation and Recommendation: Knowledge-Enhanced Personalized
Dialog System . 209

Ming He, Tong Shen, and Ruihai Dong

MPIA: Multiple Preferences with Item Attributes for Graph Convolutional
Collaborative Filtering . 225

Ming He, Zekun Huang, and Han Wen

Better Call the Plumber: Orchestrating Dynamic Information
Extraction Pipelines. 240

Mohamad Yaser Jaradeh, Kuldeep Singh, Markus Stocker,
Andreas Both, and Sören Auer

Preprocessing Techniques for End-To-End Trainable RNN-Based
Conversational System. 255

Hussein Maziad, Julie-Ann Rammouz, Boulos El Asmar, and Joe Tekli

xxii Contents

Effective Seed-Guided Topic Labeling for Dataless Hierarchical
Short Text Classification . 271

Yi Yang, Hongan Wang, Jiaqi Zhu, Wandong Shi, Wenli Guo,
and Jiawen Zhang

PrivaSeer: A Privacy Policy Search Engine . 286
Mukund Srinath, Soundarya Nurani Sundareswara, C. Lee Giles,
and Shomir Wilson

Web of Things

Knowledge-Driven Architecture Composition: Assisting the System
Integrator to Reuse Integration Knowledge . 305

Fabian Burzlaff and Christian Bartelt

A-MaGe: Atomic Mashup Generator for the Web of Things. 320
Ege Korkan, Fady Salama, Sebastian Kaebisch,
and Sebastian Steinhorst

WebAssembly Modules as Lightweight Containers for Liquid IoT
Applications . 328

Niko Mäkitalo, Tommi Mikkonen, Cesare Pautasso, Victor Bankowski,
Paulius Daubaris, Risto Mikkola, and Oleg Beletski

Leveraging Web of Things W3C Recommendations for Knowledge
Graphs Generation . 337

Dylan Van Assche, Gerald Haesendonck, Gertjan De Mulder,
Thomas Delva, Pieter Heyvaert, Ben De Meester, and Anastasia Dimou

A Standalone WebAssembly Development Environment for the Internet
of Things . 353

István Koren

Web Programming

Full Stack Is Not What It Used to Be . 363
Antero Taivalsaari, Tommi Mikkonen, Cesare Pautasso, and Kari Systä

An Improving Approach for DOM-Based Web Test Suite Repair 372
Wei Chen, Hanyang Cao, and Xavier Blanc

Communicating Web Vessels: Improving the Responsiveness
of Mobile Web Apps with Adaptive Redistribution 388

Kijin An and Eli Tilevich

Snapshot-Based Migration of ES6 JavaScript . 404
Yong-Hwan Yoo and Soo-Mook Moon

Contents xxiii

Web User Interfaces

Automated Repair of Layout Bugs in Web Pages
with Linear Programming. 423

Stéphane Jacquet, Xavier Chamberland-Thibeault, and Sylvain Hallé

A Model-Based Chatbot Generation Approach to Converse
with Open Data Sources . 440

Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, Gwendal Daniel,
and Jordi Cabot

Open Data Accessibility Based on Voice Commands. 456
César González-Mora, Irene Garrigós, Jose-Norberto Mazón,
Sven Casteleyn, and Sergio Firmenich

PWA vs the Others: A Comparative Study on the UI Energy-Efficiency
of Progressive Web Apps. 464

Stefan Huber, Lukas Demetz, and Michael Felderer

Ph.D. Symposium

Static Analysis of Large-Scale JavaScript Front End 483
Anton Karakochev and Gefei Zhang

Applying Predictive Analytics on Research Information to Enhance
Funding Discovery and Strengthen Collaboration in Project Proposals 490

Dang Vu Nguyen Hai and Martin Gaedke

A Web-Based Co-Creation and User Engagement Method and Platform 496
Andrea Tocchetti, Lorenzo Corti, Marco Brambilla,
and Diletta Di Marco

Posters and Demonstrations

Effectiveness Comparison of Email Addresses Recovery from Gravatars 505
Przemysław Rodwald

A Web Tool for XQuery Debugging . 509
Jesús M. Almendros-Jiménez and Antonio Becerra-Terón

Managing Versioned Web Resources in the File System 513
Leon Müller and Lars Gleim

Visualizing Web Users’ Attention to Text with Selection Heatmaps 517
Ilan Kirsh

xxiv Contents

City-Stories: Combining Entity Linking, Multimedia Retrieval,
and Crowdsourcing to Make Historical Data Accessible 521

Laura Rettig, Shaban Shabani, Loris Sauter, Philippe Cudré-Mauroux,
Maria Sokhn, and Heiko Schuldt

SMOTE: A Tool to Proactively Manage Situations in WoT Environments . . . 525
Daniel Flores-Martin, Javier Berrocal, José García-Alonso,
and Juan M. Murillo

Voice-Based Virtual Assistants for User Interaction Modeling 530
Marco Brambilla and Davide Molinelli

Tutorials

Similarity Search, Recommendation and Explainability over Graphs
in Different Domains: Social Media, News, and Health Industry 537

Panagiotis Symeonidis

High-Level Interaction Design with Discourse Models for Automated
Web GUI Generation. 542

Hermann Kaindl

Influence Learning and Maximization . 547
George Panagopoulos and Fragkiskos D. Malliaros

Correction to: Web Engineering . C1
Marco Brambilla, Richard Chbeir, Flavius Frasincar,
and Ioana Manolescu

Correction to: A Web-Based Co-Creation and User Engagement Method
and Platform. C2

Andrea Tocchetti, Lorenzo Corti, Marco Brambilla,
and Diletta Di Marco

Author Index . 551

Contents xxv

Semantic Web

Interface to Query and Visualise
Definitions from a Knowledge Base

Anelia Kurteva1(B) and Hélène De Ribaupierre2

1 Semantic Technology Institute, Department of Computer Science,
University of Innsbruck, Innsbruck, Austria

anelia.kurteva@sti2.at
2 School of Computer Science and Informatics, Cardiff Univeristy, Cardiff, Wales, UK

deribaupierreh@cardiff.ac.uk

Abstract. Linked data is at the core of the Web due to its ability to
model real world entities, connect them via relationships and provide
context, which could help to transform data into information and infor-
mation into knowledge. For example, ontologies, which could be stored
locally or could be made available to everyone online (e.g. the DBpe-
dia knowledge base). However, both access and usage of Linked Data
require individuals to have knowledge in the field of the Semantic Web.
Many of the existing solutions are developed for specific use cases such as
building and exploring ontologies visually and are aimed at expert users.
The solutions that are aimed at non-experts are generic and, in most
cases, a data visualisation is not available. In this paper, we present a
web application with a user interface (UI), which combines features from
applications for both expert and non-experts. The UI allows individuals
with no previous knowledge of the Semantic Web to query the DBpedia
knowledge base for definitions of a specific word and to view a graphical
visualisation of the query results (the search keyword itself and concepts
related to it).

Keywords: Linked data · Knowledge base · User interface · Graphical
visualisation · Human-computer interaction · Comprehension

1 Introduction

Linked Data is at the core of the web. However, its access and usage is not as
straightforward for humans as it is for machines. Search engines such as Google1,
Swoogle [5], Falcons [4] allow one to access and use Linked Data indirectly. With
the help of its knowledge graph2, Google can provide hundreds of sources as an
answer to one’s query in a matter of seconds. However, most of the information
presented on the result’s page is in textual and tabular formats, which does
not ease one’s comprehension and decision making. While machines are able
1 https://www.google.com.
2 https://developers.google.com/knowledge-graph.

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 3–10, 2021.
https://doi.org/10.1007/978-3-030-74296-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_1&domain=pdf
https://www.google.com
https://developers.google.com/knowledge-graph
https://doi.org/10.1007/978-3-030-74296-6_1

4 A. Kurteva and H. De Ribaupierre

to comprehend large volumes of information, written in different languages in
milliseconds, this is not the case with humans. Humans are visual creatures and
look for visual cues such as colors, forms, depth, and movements [3,8]. Reading
large volumes of information in textual formats is time-consuming and can cause
problems such as information overload [7].

Linked Data can be also queried directly with tools such as Protégé3 or
through application programming interfaces (APIs) such as the DBpedia REST
API4. However, in order to work with Linked Data directly, for example, to
query DBpedia5, knowledge of OWL6, RDF7 RDFs8 and SPARQL9 is needed.
The query results are, in most cases, still in textual format, follow a triple pattern
and can include specific uniform resource identifiers (URIs), which while useful
for machines and individuals with expert knowledge of the Semantic Web it is not
in favour of non-experts. Further, querying DBpedia, even for a single concept,
results in displaying millions of triples thus the issue of information overload [7]
arises again.

This paper presents a web application with a user interface (UI) that allows
individuals with no previous knowledge of the Semantic Web to query the DBpe-
dia knowledge base for definitions of a specific word and to view a visualisation
of the query result (i.e. the search keyword and concepts related to it). The
web application combines features from applications for both experts and non-
experts and aims to ease one’s comprehension. The main research question that
this paper aims to answer is:

“Is a visualisation of a knowledge base’s query result useful for individuals?”.
Our main hypothesis is that a visualisation of the query results, when pre-

sented together with a definition of a word, is both useful and interesting to
individuals.

The rest of the paper is structured as follows: Related work is presented in
Sect. 2. Section 3 outlines the methodology that this research follows. Section 4
provides insights of the implemented solution, while Sect. 5 presents the evalu-
ation results. Conclusions and future work are presented in Sect. 6.

2 Related Work

Existing applications that are powered by Linked Data have interfaces are either
too generic or too complex. Applications aimed at professionals such as Protégé
(see footnote 3) provide the option to not only explore Linked Data but also to
create, edit and visualise it. These options are rarely available in applications
developed for non-experts. While it is true that different users have different

3 https://Protege.stanford.edu.
4 https://wiki.dbpedia.org/rest-api.
5 https://wiki.dbpedia.org.
6 https://www.w3.org/2001/sw/wiki/OWL.
7 https://www.w3.org/TR/2004/REC-rdf-primer-20040210/.
8 https://www.w3.org/2001/sw/wiki/RDFS.
9 https://www.w3.org/TR/rdf-sparql-query/.

https://Protege.stanford.edu
https://wiki.dbpedia.org/rest-api
https://wiki.dbpedia.org
https://www.w3.org/2001/sw/wiki/OWL
https://www.w3.org/TR/2004/REC-rdf-primer-20040210/
https://www.w3.org/2001/sw/wiki/RDFS
https://www.w3.org/TR/rdf-sparql-query/

Interface to Query and Visualise Definitions from a Knowledge Base 5

needs regarding functionality, presenting users with visualisation of data has
been proven to be useful as visualisations help ease comprehension, engage one’s
attention and arouse curiosity [10–12,17].

Online dictionaries such as Lexico10, Oxford Learner’s Dictionaries11 and
Cambridge Dictionary12 have an interface, which resembles a search engine and
could be used by both experts and non-experts. The main focus of these tools
is on searching for word’s meaning, displaying similar terms and grammar rules.
While the Lexico and Oxford Learner’s Dictionaries allow one to input a word
and hear how it is pronounced, the Cambridge Dictionary allows one to simul-
taneously search for a word’s meaning and its translation in different languages.
Regarding the interface design, all three dictionaries resemble each other. The
interface is designed as a single page view, which based on the input term is
divided into several sections explaining its meaning and providing examples.
Although, providing examples of how a term could be used could help one com-
prehend the meaning of the term better, all of the information is in textual
format. Further, depending on how much information is available for a specific
term, the result page could require one to scroll several times in order to get to
a specific section. Google Search13, which is powered by a knowledge graph [6],
allows one to perform much more complicated search queries. Google’s interface
is simple and does not require expert knowledge in how Linked Data is struc-
tured thus it has turned into the main source of information for many. However,
the results of a Google search are still presented in a textual and tabular formats.

Linked Data-powered tools and applications that present information in for-
mats other that textual are developed for experts. The Protégé (see footnote 3)
ontology development environment allows one to create, import, export, query
and visualise Linked Data structures such as ontologies. Protégé’s interface pro-
vides the option to customise what fields are shown. Individuals can select from
a variety of editing options and can further use plugins such as OntoGraph14 to
view a graphical visualisation of the current ontology. Due to its user-friendly
and intuitive interface design, Protégé has become a standard for ontology devel-
opment. In order to use it, one needs to have knowledge of semantic models and
experience with SPARQL (see footnote 9) as one needs to import or create an
ontology first in order to explore it visually.

Lohman et al. [14] present VOWL15 - an application for interactive Linked
Data exploration and visualisation, which is available online under the name
WebVOWL16 and as a plugin extension for Protégé (see footnote 3) called
ProtégéVOWL17. VOWL’s interface allows one to import ontologies from a file
or via a Uniform Resource Locator (URL). Once imported a scalable vector
10 https://www.lexico.com.
11 https://www.oxfordlearnersdictionaries.com.
12 https://dictionary.cambridge.org.
13 https://www.google.com.
14 https://protegewiki.stanford.edu/wiki/OntoGraf.
15 http://vowl.visualdataweb.org.
16 http://vowl.visualdataweb.org/webvowl.html.
17 http://vowl.visualdataweb.org/protegevowl.html.

https://www.lexico.com
https://www.oxfordlearnersdictionaries.com
https://dictionary.cambridge.org
https://www.google.com
https://protegewiki.stanford.edu/wiki/OntoGraf
http://vowl.visualdataweb.org
http://vowl.visualdataweb.org/webvowl.html
http://vowl.visualdataweb.org/protegevowl.html

6 A. Kurteva and H. De Ribaupierre

graphics (SVG) visualisation of the whole file is generated with D3.js18. The
interface gives individuals the options to customize the generated visualisation
by filtering and editing data and the colours associated with it. The evaluation
of the tool, which was done with five participants (four of which were experts),
showed that while helpful VOWL is “almost showing too much information”,
which had a negative effect on one’s comprehension [14].

A similarity that could be found in existing Linked Data tools for experts is
their ability to generate a graphical visualisation of the data. This feature could
be extremely useful when one wants to view relationships between things and
discover more information. Most of the tools such as Protégé (see footnote 3)
and VOWL (see footnote 15) require an ontology or schema to be imported or
created first. Once such semantic model is available a graphical visualisation is
generated for the whole ontology. A graphical visualisation of specific data could
be generated only upon inputting special parameters. For example, limiting the
number of results a query could return. From an experts perspective, all these
options are useful but this does not apply to non-experts. However, non-experts
should be given the opportunity to benefit from such visualisation. In order to
achieve that, an interface that simplifies the process of Linked Data query and
visualisation is needed.

3 Methodology

This work follows the methodology for building interfaces based on Linked Data
presented in [13]. The methodology consists of four main steps: (i) gather data,
(ii) define use case, (iii) build interface and (iv) use data. Further, we follow
the recommendations for UI design by Schneiderman presented in [15]. Our
main focus is on reducing one’s short-term memory load (i.e. the eight rule
of Schnerderman [16]) by building a one screen UI and by using hierarchical
visualisations.

This work uses Linked Data that is available through the DBpedia (see foot-
note 5) knowledge base. The main use case that we focus on is querying defini-
tions of terms and providing a visualisation of the query results (i.e. the definition
of a word and concepts related or similar to it). Figure 1 presents this system’s
architecture and all of its building blocks. The front-end implementation is based
on HTML19, CSS20 and PHP21, while EasyRDF22, SPARQL (see footnote 9)
and JavaScript23 were used on the back-end. The Speak.js24 library was used for
text-to-speech transformation. The visualisation itself was done with D3.js (see

18 https://d3js.org.
19 https://html.spec.whatwg.org.
20 https://developer.mozilla.org/en-US/docs/Web/CSS.
21 https://www.php.net.
22 https://www.easyrdf.org.
23 https://www.javascript.com.
24 https://github.com/kripken/speak.js/.

https://d3js.org
https://html.spec.whatwg.org
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.php.net
https://www.easyrdf.org
https://www.javascript.com
https://github.com/kripken/speak.js/

Interface to Query and Visualise Definitions from a Knowledge Base 7

Fig. 1. System architecture

footnote 18). The solution was hosted on a local host provided by the XAMPP25

tool and was later made public on remote web server in order to be evaluated.

4 Implementation

The implementation of the proposed web application comprises of two stages.
Stage 1 focuses on the UI design and implementation, while Stage 2 on the
graphical visualisation of the query results. The next sections present an overview
of the development at each stage.

4.1 User Interface

The UI (Fig. 2) consist of three main components: a search bar that allows the
input of keywords, a “Result” field, which displays the query results in textual
format and a “Visualisation” field that presents the graphical visualisation of
the query results.

We focus mainly on querying definitions of words from DBpedia (see foot-
note 5) thus we have predefined a SPARQL (see footnote 9) query that could use
any word as its query variable. With the help of the EasyRDF (see footnote 22)
library, one’s input is sent to the predefined SPARQL query, which takes it as an
input variable. The query is then send to DBpedia. The main DBpedia proper-
ties we query are “dbo:abstract”, “dbo:thumbnail”, “dbo:sameAs”, “rdfs:seeAlso”
and “owl:differentFrom”. As some concepts have longer abstracts, we limit the
queried information to a few sentences in order to avoid information overload
when displaying the definition to the user. All query results are stored in JSON-
LD format, which allows data to be easily consumed by the D3.js (see footnote
18) visualisation library. Once a query is executed and the result (i.e. the key-
word, its definition and its thumbnail) is returned it is displayed in the “Result”
field (Fig. 2).

When developing the UI, Human-Computer Interaction [9] was also consid-
ered. In order to try to raise one’s comprehension and make one feel involved,
we focused on interactivity. Components of the UI, such as the graphical visu-
alisation, which we describe in the next section, and the fields themselves can

25 https://www.apachefriends.org/index.html.

https://www.apachefriends.org/index.html

8 A. Kurteva and H. De Ribaupierre

Fig. 2. User interface and graphical
visualisation

Fig. 3. Interactive hierarchical tree
layout

be expanded and collapsed on demand. Further, the UI provides the option to
hear a keyword’s pronunciation, which is also available in the LEXICO (see
footnote 10) dictionary. Implementing this feature was a challenge as most of
the recordings of word pronunciations were not openly available thus a simple
text-to-speech functionality was implemented using the Speak.js (see footnote
24) library. We made use of the textToSpeech() function, which allows passing a
value to it and returning the specified language pronunciation.

4.2 Graphical Visualisation of the Query Result

Viarious graph visualisation layouts such as a Force-Directed Graph [1] and
Hierarchical Edge Bundling [2] exist and are widely used. However, each has its
own limitation and is suitable for a different use case. For example, a Force-
Directed Graph displays all nodes and edges that are available, does not display
information about the type relationship between the nodes and does not follow
a hierarchy, which can be a challenge for non-experts’ comprehension.

Based on this we have selected one of the simplest, most common and intu-
itive graph layouts - a hierarchical tree (Fig. 3), where one’s search term is the
root node. All branches coming out of it are directly connected to it based on the
relationships queried from DBpedia (see footnote 5). Each branch represents a
specific sub-category connected to the main term and has its own sub-divisions.
In order to differentiate between the available data types, different colours were
used. Nodes that represent individual personas are in green, while contradictions
are shown in red. External nodes, which hold hyperlinks, change colour upon
hoover. All nodes can be collapsed and expanded with a click. Further, upon
hoovering on the root node a tooltip with its definition is shown. The options to
zoom in and zoom out via a scroll of the mouse wheel or the equivalent touch
pad action are available as well.

Interface to Query and Visualise Definitions from a Knowledge Base 9

5 Evaluation

The evaluation, in the form of different questionnaires26, was conducted with 10
participants from different educational and ethnic backgrounds. The participants
were presented with a system usability questionnaire, which helped evaluate the
design and overall experience while using the application, scenarios and were
asked to complete several tasks.

The analysis showed that 7 out of the 10 participants strongly agreed that
the application was helpful and easy to use, while the rest agreed. When asked if
they would use the application frequently, more than the half agreed. Regarding
the visualisation itself, half strongly agreed that it was useful, while the other half
gave “agree” as an answer. By computing the median values for each question, we
were able to see how answers differ through the different categories. The biggest
difference in answers was in the category “educational level”. Participants with
a Postgraduate degree strongly agreed or agreed that they would frequently use
the application, while participants with both Undergraduate and High School
educational level are on the fence between agree and disagree. Undergraduate
users found the application not as easy to use as postgraduates and High School
participants did. However, looking at the comments that all participants left on
the questionnaire and while completing the given tasks, it was agreed that the
application is easy to use, useful and simple. Finally, participants were given
the option to describe with their own words the application and their experi-
ence. Some of the adjectives that the participants used were: useful, intuitive
and accessible. When asked about what they would improve, the participants
stated: “bigger font size”, “link should be easier to hoover on” and “delay in
the return times”. In conclusion, the evaluation showed that the application is
well-accepted, user-friendly and helpful.

6 Conclusion

In this paper, we presented a web application for querying and visualising Linked
Data aimed at non-expert users. The developed solution provides a simple,
intuitive user interface, which enables users to perform different tasks such as
search for definitions, interact with the graphical visualisation of their query and
hear a word’s pronunciation. Looking back at the main research question, we
believe that the conducted evaluation provides a positive answer and proves our
hypothesis.

Future work will be focused on improving the visualisation algorithm, which
currently accepts as an input only a specific JSON-LD structure, providing dif-
ferent graph layouts, an option to filter data and allowing multi-word search. In
conclusion, although the presented solutions has its limitations, it achieves the
task of combining features from Linked Data-powered solutions for both experts
and non-experts and presents them to non-experts in an accessible way.

26 https://github.com/aneliamk/research.

https://github.com/aneliamk/research

10 A. Kurteva and H. De Ribaupierre

Acknowledgements. We would like to thank Simon Tippner for his helpful feed-
back regarding the graphical visualisation and Midhat Faheem for participating in the
discussions that this research inspired.

References

1. Bostock, M.: Force-directed graph (2017). https://observablehq.com/@d3/force-
directed-graph

2. Bostock, M.: Hierarchical edge bundling with d3.js (2018). https://observablehq.
com/@d3/hierarchical-edge-bundling

3. Brookhaven National Laboratory: visualizing scientific big data in informative and
interactive ways (2017). https://phys.org/news/2017-04-visualizing-scientific-big-
interactive-ways.html

4. Cheng, G., Qu, Y.: Searching linked objects with falcons: approach, implementation
and evaluation. Int. J. Semant. Web Inf. Syst. 5, 49–70 (2009)

5. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking
knowledge on the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005).
https://doi.org/10.1007/11574620 14

6. Google: How google’s knowledge graph works. https://support.google.com/
knowledgepanel/answer/9787176?hl=en

7. Gross., B.M.: The managing of organizations: the administrative struggle. Ann.
Am. Acad. Polit. Soc. Sci. 360(1), 197–198 (1965). https://doi.org/10.1177/
000271626536000140

8. Eisenberg, H.: Humans process visual data better (2014). https://www.t-sciences.
com/news/humans-process-visual-data-better

9. Holzinger, A.: Human-computer interaction and knowledge discovery (HCI-KDD):
what is the benefit of bringing those two fields to work together? In: Cuzzocrea,
A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol.
8127, pp. 319–328. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40511-2 22

10. Kolari, S., Savander-Ranne, C.: Why do our students not learn as we wish them
to?. In: Proceedings of 2nd Global Congress on Engineering Education, pp. 153–155
(2000)

11. Kolari, S., Savander-Ranne, C.: Will the application of constructivism bring a
solution to today’s problems of engineering education? Glob. J. Eng. Educ. 4(3),
275–280 (2000)

12. Kolari, S., Savander-Ranne, C.: Visualisation promotes apprehension and compre-
hension. Int. J. Eng. Educ. 20(3), 484–493 (2004)

13. Lindstörm, N., Mainsten, M.: Building interfaces on a networked graph. In: Linked
data and user interaction, pp. 85–97. De Gruyter Saur, Berlin/Munich/Boston
(2015)

14. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL.
Semant. Web 7(4), 399–419 (2016). https://doi.org/10.3233/SW-150200, http://
dx.doi.org/10.3233/SW-150200

15. Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S.: Designing the user interface:
strategies for effective human-computer interaction. In: SIGB (2016)

16. Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S.: The eight golden rules of
interface design (2016). https://www.cs.umd.edu/users/ben/goldenrules.html

17. White, R.T.: Learning Science. Basil Blackwell, Oxford (1988)

https://observablehq.com/@d3/force-directed-graph
https://observablehq.com/@d3/force-directed-graph
https://observablehq.com/@d3/hierarchical-edge-bundling
https://observablehq.com/@d3/hierarchical-edge-bundling
https://phys.org/news/2017-04-visualizing-scientific-big-interactive-ways.html
https://phys.org/news/2017-04-visualizing-scientific-big-interactive-ways.html
https://doi.org/10.1007/11574620_14
https://support.google.com/knowledgepanel/answer/9787176?hl=en
https://support.google.com/knowledgepanel/answer/9787176?hl=en
https://doi.org/10.1177/000271626536000140
https://doi.org/10.1177/000271626536000140
https://www.t-sciences.com/news/humans-process-visual-data-better
https://www.t-sciences.com/news/humans-process-visual-data-better
https://doi.org/10.1007/978-3-642-40511-2_22
https://doi.org/10.1007/978-3-642-40511-2_22
https://doi.org/10.3233/SW-150200
http://dx.doi.org/10.3233/SW-150200
http://dx.doi.org/10.3233/SW-150200
https://www.cs.umd.edu/users/ben/goldenrules.html

CARDINAL: Contextualized Adaptive
Research Data Description INterface

Applying LinkedData

André Langer(B) , Christoph Göpfert , and Martin Gaedke

Chemnitz University of Technology, Chemnitz, Germany
{andre.langer,christoph.goepfert,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. In the publishing process for research data, common user
interfaces for gathering descriptive structured metadata traditionally
rely on static free-text input elements. This constitutes an obstacle for
interdisciplinary, unambiguous, fine-grained data descriptions. Reusing
already existing domain-specific metadata models based on semantic
ontologies are a more promising approach, but the careful selection and
presentation of relevant properties is not trivial. In this paper, we present
the CARDINAL approach, which takes the current research context into
consideration to request additional but only meaningful domain-specific
characteristics. It generates and presents an adaptive user input inter-
face to the user that allows the structured input of knowledge-domain
specific descriptive metadata based on existing ontologies. We show in
a proof-of-concept the feasibility of such a contextualized web form for
research metadata and discuss challenges in the selection process for rel-
evant ontologies and properties. A web-based survey experiment with 83
participants of varying research domain and expertise shows, that the
CARDINAL approach allows to collect additional relevant metadata in
a structured way without overstraining the user.

Keywords: Adaptive user interface · Contextualization · Linked
data · Research data management · Data publishing · Ontologies

1 Introduction

In the context of OpenScience, researchers are encouraged to publish their
research data (also known as research datasets) in common data repositories
so that others can find and reuse them. The term research data refers to any
“data being a (descriptive) part or the result of a research process”. Any kind of
research literature is usually excluded when using the term research data, e.g.,
research articles or papers [4,11].

This research data publishing process shall increasingly be in compliance with
the FAIR (Findable, Accessible, Interoperable, Reusable) guiding principles for
scientific data management [17]. As digital research data is normally not self-
descriptive, a user has to add additional metadata during the research data
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 11–27, 2021.
https://doi.org/10.1007/978-3-030-74296-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_2&domain=pdf
http://orcid.org/0000-0001-7073-5377
http://orcid.org/0000-0001-6659-8947
http://orcid.org/0000-0002-6729-2912
https://doi.org/10.1007/978-3-030-74296-6_2

12 A. Langer et al.

publishing process to explicitly describe all relevant aspects of the contained
data to make it findable by search crawlers and other applications.

Nowadays, data repositories primarily focus on administrative, citation, tech-
nical and some basic descriptive metadata [9]. Information on particular data
characteristics are either collected not at all, in an unstructured way as float-
ing text or only in domain-specific data repositories. This makes it difficult to
simplify the discoverability of relevant datasets for researchers from different
knowledge disciplines and results in the current situation, that dedicated scien-
tific search catalogs are relying on keyword-based or fuzzy-logic based full-text
search operations in this metadata. And their faceted search possibilities are
limited to basic entities such as the knowledge discipline, resource type or data
license and certain provenance constraints, which is directly in conflict with the
FAIR principles to provide rich metadata (F1) in standardized vocabularies (I2)
with accurate and relevant attributes (R1).

This is astounding as scientific communities have already yielded domain-
specific high-quality, well-structured, controlled vocabularies that contain rele-
vant properties. However, traditional approaches of using static user input inter-
faces do not take these domain-specific metadata models into account, as static
forms are always structured the same way in terms of input elements, neglecting
the context of the research artifact being described. A semantic technology-based
approach, which focuses on an established metadata representation format and
additionally incorporates other relevant vocabularies in such a metadata descrip-
tion, would be a means to improve the interdisciplinary publishing and discovery
process.

Within the collaborative research center Hybrid Societies1, we investigated
the realization of an adaptive user input interface for collecting structured,
descriptive, detailed research metadata as part of the PIROL PhD project [8]
and provide the following three contributions:

1. We present CARDINAL to demonstrate an approach on how to select and
adaptively incorporate domain-specific properties into a web form.

2. We formalize and discuss the contextualization of the research metadata col-
lection in user input interfaces.

3. We show in an online study experiment the acceptance of the approach and
the acquisition of additional domain-specific, descriptive metadata.

The results will contribute to the purpose of improving the interdisciplinary
findability of published research data.

The rest of the paper is structured in the following way: In Sect. 2, we pro-
vide a conceptual problem and requirement analysis based on a comprehensive
usage scenario. In Sect. 3, we describe a concept to identify and present rele-
vant properties to a user for metadata input for describing research data. The
realization of this process is then shown in Sect. 4 and evaluated in Sect. 5 wrt.
acceptance and metadata quality. Section 6 compares our approach with other

1 https://hybrid-societies.org/.

https://hybrid-societies.org/

CARDINAL 13

related literature, and Sect. 7 finally summarizes our results and provides an
outlook to future work.

2 Problem Analysis

The findability and reusability of research data is interrelated as the relevance of
search results depends on its suitability for a new application scenario and the
possibility to limit a search to particular characteristics of a dataset. By using
general-purpose search applications for research data repositories such as the
OpenAIRE search2, EOSC EUDAT B2FIND3 or the Google Dataset search4,
users are already accustomed to a keyword-based input with some basic filter
possibilities, where they have to review results on the search pages individually
and carefully in order to actually find existing, relevant research data that can
be reused or repurposed for their own work beside irrelevant search results.
Additional available research datasets might be even existing that will not show
up in such a result list as there is a mismatch between the terms used in the meta
description of the published research data and the keywords that were entered
by a user in a search interface.

Search services for scientific data typically still focus on keyword-based
search methods5, and filter possibilities are commonly limited to general enti-
ties. Instead, it would be a benefit, if a user can make use of more particu-
lar filters for characteristics of research data that the user is looking for. This
would require better structured metadata that supports concept-based search
approaches, but relevant characteristics vary greatly between different know-
ledge disciplines and a user might not be willing or able to describe all possibly
eligible aspects in a research data meta description. A semantic vocabulary-based
approach is promising to improve this situation, especially because a large set
of domain-specific controlled vocabularies already exists6. Research data repos-
itories have started to add support for additional domain-specific structured
metadata descriptions, however, the user interface experience is still weak and
requires expert knowledge and manual completion as shown in Fig. 1, thus, its
usage is limited in a broader scope.

In the following, we will describe a fictitious scenario to illustrate an adaptive
approach, how a user can be encouraged to provide more specific metadata
while maintaining or even improving the user interface experience. John Doe is
a political scientist and conducts research on electoral behavior. Recently, John
and his colleagues conducted a randomized survey in which they asked 50 people
who they would vote for if they had to choose right now. The answers of the
survey participants were compiled in a spreadsheet, which shall now be published
to a broader scientific community.

2 https://explore.openaire.eu/search/find.
3 http://b2find.eudat.eu/dataset.
4 https://datasetsearch.research.google.com/.
5 https://www.eosc-hub.eu/services/B2FIND.
6 https://lov.linkeddata.es/dataset/lov/vocabs.

https://explore.openaire.eu/search/find
http://b2find.eudat.eu/dataset
https://datasetsearch.research.google.com/
https://www.eosc-hub.eu/services/B2FIND
https://lov.linkeddata.es/dataset/lov/vocabs

14 A. Langer et al.

Fig. 1. Current situation: provision of domain-specific characteristics, zenodo.org

Depending on the research area which the dataset relates to, further comple-
mentary information should be provided. This makes the data easier to inter-
pret and facilitates reuse. In various research areas, there already exist semantic
knowledge models about domain-specific concepts in form of ontologies. In the
provided scenario, an ontology that models characteristics for survey data could
be relevant to John, such as the DDI-RDF Discovery (DISCO) Vocabulary7.

There are three user roles to consider for this scenario as shown in Fig. 2:
The user who publishes research data together with additional descriptive meta-
data, users that search for existing datasets in the future, and domain experts
that provide a domain-specific ontology and the knowledge which concepts are
relevant to describe.

Fig. 2. Conceptual view on the problem scenario

Based on that scenario, we investigate how to design an adaptive submis-
sion form for describing a research dataset. Therefore, we identified the follow-
ing five objectives which also consider the criteria introduced by Paulheim and
Probst [12]:

7 https://rdf-vocabulary.ddialliance.org/discovery.html.

https://rdf-vocabulary.ddialliance.org/discovery.html

CARDINAL 15

OBJ1 Metadata acquisition: In the user input interface, it shall be possible
to enter additional structured metadata based on existing domain-specific
ontologies which is considered to be of interest for other users in the future.

OBJ2 Adaptivity: The form shall be adaptive in the sense that its structure
and its components adapt to the context of the research data.

OBJ3 Research characteristics: The form shall reuse existing standardized
recommendations for properties and concepts to describe research char-
acteristics.

OBJ4 Usability: The form shall hide technical data details from the user and
not create an unsatisfying user interface experience causing additional
user effort.

OBJ5 Metadata output: The resulting research data metadata description
shall be stored persistently in a machine-readable format, so that it can be
easily provided and used in consecutive tool chains, e.g., by corresponding
search services.

3 The CARDINALApproach

The following design is based on three assumptions:

1. A user intends to publish research data, possessing certain attributes that
can be related to at least one knowledge domain.

2. Standardized vocabularies / ontologies already exist and are available in this
knowledge domain in a structured (OWL) description that reflect relevant
concepts to describe research in this discipline.

3. A subset of these properties is relevant for other users to find and reuse this
research data.

Input forms are an established means to collect metadata in a manual user
input activity. In contrast to static input forms, which are assembled by a devel-
oper and commonly present the same input controls to all users, we are heading
for an adaptive approach, which will add additional input elements depending
on the nature of the resource to describe. Therefore, additional knowledge has
to be provided to the application in a first step that can be used to contextual-
ize the further form handling. In a consecutive form building process, relevant
ontologies and properties have to be (semi-)automatically selected in order to
generate an input form in which a user can then provide and store metadata in
a final process step, as shown in Fig. 3.

16 A. Langer et al.

Fig. 3. BPMN process for an adaptive research metadata input form

3.1 Contextualization

In order to tailor the adaptive form to the useful description of particular research
data, the context of a published research artifact must be understood. This step
is necessary to decide on which domain-specific information is relevant for this
research data. We refer to the process of finding a suitable context for an artifact
as contextualization.

Referring to context-aware software [15], this can be done based on infor-
mation explicitly provided by the user, implicitly by processing the provided
research data with knowledge extractors if a file artifact is directly provided,
implicitly by reusing externally available metadata background information to
the dataset if a persistent identifier is already provided, or a combination or vari-
ation of the mentioned approaches. For the sake of simplicity, we focus on the
first option and reuse meta information that a user might provide anyway when
publishing research data (context-triggering actions) independent of a material-
ized file artifact or identifier.

Contextualization can be related to the classification, characteristics and
usage of the investigated object and its origin as well as to spatial or tem-
poral constraints. Attributes that might be used to describe the context of the
research data include, for example, the research area(s) which the data can be
assigned to, the resource type, or information about the research or application
environment in which the data was generated.

Apparently, there exists also a trade-off between the amount of requested
metadata for contextualization purposes, the appropriateness of the adaptivity
behavior and the effort of the user and the application to achieve the activity
result, so these contextualization attributes have to be considered carefully by
the application developer.

Context (dataset) = {ci | i ∈ 0, 1, . . . , ci is attribute of dataset with key (ci) and value (ci)}
(1)

The provided contextual information can then be used to select the most suit-
able ontologies for a given research data artifact that contain additional charac-
teristics in the meaning of classes and properties that are worth to describe.
This decision-making problem can be tackled by strategies such as using a

CARDINAL 17

rule-based approach or a decision tree. It is thereby advantageous to limit the
value ranges for the contextualization attributes.

3.2 Ontology Selection

Based on the specified contextual information, relevant ontologies have to be
selected which shall be incorporated adaptively into the input form to describe
particular characteristics of the research data from the user. Selecting reusable
ontologies is not a trivial step. Ontology catalogs can be used to retrieve infor-
mation about publicly available ontologies in an automated fashion. However,
they need to contain tagged metadata to consider them as appropriate for a
particular research context.

In our approach, we suggest a weighted sum model as a simple multi-criteria
decision making method for selecting relevant ontologies out of a list of classified
available ontologies, shown in Eq. (2).

score(ontology, dataset)

=
∑

ci∈Context(dataset)

ωontology(ci) · isMatch
(
valueontology(ci), valuedataset(ci)

)

with isMatch
(
valueontology(ci), valuedataset(ci)

)

=

{
1 valueontology(ci) = valuedataset(ci)

0 otherwise

(2)

Based on that, an ontology selection component can return all ontologies
related to the provided context whose score value exceed a predefined threshold.
If no score value exceeds the threshold, an empty list will be returned, thus, the
further input form will not be adaptive and not offer additional input fields.

3.3 Form Generation

The previously provided ontology selection is used to build the adaptive section
of the input form, which we will refer to as ontology-based form building.

In an ideal case, the structured OWL representation of an ontology can auto-
matically be processed to generate an input interface for its provided classes
and properties (Code generation through model transformation [7]). However,
in practice it turns out, that a direct reuse of ontology representations is not
feasible and that an additional presentation specification is needed.

Domain-specific ontologies are usually developed with focus on modeling
knowledge about certain concepts, not necessarily with focus on data acquisi-
tion. The structure and content of the ontologies can vary greatly. Furthermore,
ontologies might contain classes and properties irrelevant for describing research
data. However, it is difficult to automate the process to decide which classes and
properties are relevant. Instead, this decision should ideally be made in consulta-
tion with an expert of the respective domain. Additionally, it might be necessary
to describe further layout, order, nesting and repetition possibilities for a certain
property.

18 A. Langer et al.

As existing approaches are not applicable in this scenario, we rely on a sep-
arately introduced representation of ontologies for presentation and reusability
purposes, called OnForm, which is described in more detail in [6]. OnForm spec-
ifications for an ontology are also represented in an RDF format and can be
read and interpreted by an OnForm generation component. For details on the
detailed form generation process, we refer to the corresponding publication.

3.4 Metadata Acquisition

After generating a form user interface based on an OnForm description, a user
can then enter context-specific information into the form fields that will be stored
as metadata to describe this research data.

The input elements can make use of additional information provided by the
respective ontology, such as an rdf:type or rdfs:range constraint, in order to ren-
der input elements with assistance, entity lookup and auto-completion function-
ality to increase the user interface experience, hide on a technical level semantic
persistent identifiers from the user and nevertheless collect structured, unam-
biguous information [10].

3.5 Metadata Persistence

Following the completion of an adaptive research data submission form, a seri-
alized metadata description has to be created based on the provided form input
data. Using established semantic technologies, this process can then be done in
a straight-forward fashion as the user interface itself is already based on RDF
classes and properties with corresponding identifiers. The provided values by the
user will be taken by a persistency component and stored in a common RDF
serialization format such as RDF/XML, JSON-LD or Turtle.

4 Prototypical Design

Based on the concept presented in the previous section and our sample appli-
cation scenario from Sect. 2, we designed a prototypical CARDINAL applica-
tion for Creating an Adaptive Research Data Description Interface that applies
Linked Data properties and concepts based on existing ontologies.

It realizes an adaptive web form, that is divided in a straight-forward fashion
into three sections as depicted in Fig. 4. Each serves a distinct purpose. The first
section requires users to provide general literal administrative and citational
metadata. The second section requests additional common meta information
that constitutes the basis for contextualizing the research data-specific further
part of the web form. The third section is then built adaptively depending on
the selected OnForm ontology.

In this simple form, the user does not have to provide the research data
itself or any reference to it, as we do not focus on automated classification and
knowledge extraction methods in this paper.

CARDINAL 19

In order to select appropriate attributes for the contextualization section, we
carefully reviewed existing user interfaces of established research data repository
providers, namely the research data submission forms from Zenodo, Research-
Gate, Mendeley Data, Dataverse and B2SHARE. In all of these application,
a dedicated input field for keywords and the file type is already established
and users are used to provide this additional information. Additionally, we add
the research area as another contextual attribute as this information might be
directly related to existing vocabularies established by dedicated communities.

In order to limit the value range of these contextual attributes to mappable
characteristics of existing ontologies, we rely on existing classifications schemes
for these attribute values. As a basis for suggesting research areas, a comparison
of existing librarian classification systems focusing on scientific publications was
done. As a result, the German/Dutch Basisklassifikation (BK) was used, which
offered a number of 48 main classes and was already available in a structured
RDF description, which made it simple to integrate the provided research area
resource URI into a meta description. For the file type, our review also resulted
in a set of typical data types for our demonstrator, containing Audio, Code/-
Software, Document, Image, Model, Tabular Data, Text, and Video similar to
the recommended list for DCMITypes. We excluded common generic data types
such as Dataset or Publication, as their usage for contextualization was consid-
ered limited. The scope of allowed keywords is difficult to limit in practice. As we
focus on identifiable concepts with a persistent mappable identifier, we added an
auto-suggestion feature to the keyword input element which retrieves keyword
suggestions from a an appropriate terminology, such as DBpedia8, Wikidata9

and the WordNet10 dump.
Available domain-specific ontologies were retrieved from ontology catalogs,

such as Linked Open Vocabularies (LOV)11. The retrievable ontologies are
already tagged with basic category labels that were considered for the ontol-
ogy selection process in the CARDINAL prototype, in such a way, that we
curated a list of relevant ontologies and stored for each of these ontologies a con-
text definition, attribute weight and OnForm description as a basic application
configuration.

We followed our introductory scenario example and added an OnForm rep-
resentation of the DISCO ontology12 together with matching for research data
with keywords, such as Survey or Questionnaire and a data type tabular data
or text, independent of the research area. Similar rules can, of course, also be
defined for other usage scenarios, e.g., for applying a multimedia ontology to
describe an image, video or 3d model.

8 https://dbpedia.org/sparql.
9 https://query.wikidata.org/.

10 https://wordnet.princeton.edu/.
11 https://lov.linkeddata.es/dataset/lov/vocabs.
12 http://purl.org/net/vsr/onf/desc/survey.

https://dbpedia.org/sparql
https://query.wikidata.org/
https://wordnet.princeton.edu/
https://lov.linkeddata.es/dataset/lov/vocabs
http://purl.org/net/vsr/onf/desc/survey

20 A. Langer et al.

Fig. 4. Exemplary user interface for a generated adaptive web form

After a user fills out and submits the generated form, all form data is stored
and provided in Turtle as an RDF serialization format for download. An example
is given in Fig. 5. We emphasize, that the information in the highlighted section
is additionally gathered by the adaptive CARDINAL approach in comparison
to traditional research data submission forms.

CARDINAL 21

Fig. 5. Exemplary metadata export result in Turtle

5 Evaluation

In order to evaluate our proposed approach, we implemented the designed proto-
type from Sect. 4 as a proof-of-concept13 in Python based in a straight-forward
fashion on Django, Bootstrap and rdflib.

The demonstrator was then used in an unsupervised online study which con-
tained a web-based survey experiment. The guiding research question for the
survey was, if users provide additional and more specific descriptive research
metadata with limited effort in comparison to a traditional static form-based
approach. We therefore used an A/B test and users had the option to skip irrel-
evant sections of the presented web form. Our hypothesis was, that users will be
willing to provide additional information as long as this is comprehensive and rel-
evant for them. The survey was realized with LimeSurvey14 and distributed via
university mailing lists and the platform SurveyCircle15. Based on the objectives
defined in Sect. 2, the online study had the purpose to analyze the feasibility
and acceptance of an adaptive input form approach. We were therefore especially
interested in the extent of the acquired metadata and its data quality character-
istics, additional user effort reflected by the time to complete the form as well
as occurring usability issues.

The study was based on a given fictitious initial scenario, similar to Sect. 2. It
was provided to all study participants at the beginning of the survey description
in German or English.

The participants were randomly divided into two groups. The participants of
group A were given a traditional static submission form which did not contain
an additional research data context-specific section whereas the participants of

13 http://purl.org/net/vsr/onf/onform.
14 https://bildungsportal.sachsen.de/umfragen/limesurvey/index.php/877377.
15 https://www.surveycircle.com/.

http://purl.org/net/vsr/onf/onform
https://bildungsportal.sachsen.de/umfragen/limesurvey/index.php/877377
https://www.surveycircle.com/

22 A. Langer et al.

group B saw the adaptive submission form with an additional dynamic form
section based on their contextual selection. After participants completed the
input procedure, they were asked to fill out a System Usability Score (SUS)
questionnaire to evaluate the usability of the system.

The survey took place without incentives over a period of one month between
July 2020 - August 2020 and reached 83 participants with 74 full responses16.
The majority of our participants assigned their primary field of knowledge to
Economics (38), Psychology (15) and Social ScienceS (7), but the target group
also contained participants from the field of Engineering & Computer Science
(6), Medicine (2), and other disciplines with varying age and experience level. 35
participants were assigned to version A, thus, the static submission form, and
39 participants were assigned to version B, the adaptive submission form.

5.1 Acquired Metadata

For test group B, the entered general information from the study participants
was used to identify a suitable ontology together with a corresponding OnForm
description and to display additional input fields in a separate form section to
the user. Based on the provided input data, we evaluated the extent, to which
the contextualization step worked as expected and if additional metadata was
actually entered by the adaptive test group B in comparison to the reference
group A.

Identifying a context based on the provided keywords worked very well.
Within the experiment, we relied on WordNet as a data source and compared
the entered keywords with it. A total of 115 keywords were provided. 86 out of
115 keywords were selected from suggestions, so that internally the user input
could be mapped to a corresponding resource URI successfully. Surprisingly,
explicitly providing a data type for the given scenario was unexpectedly chal-
lenging for the participants. Although the scenario description stated to publish
an Excel spreadsheet, only 23 users actually selected the tabular data option,
whereas other participants selected Document (6), Text (6) or even Audio (4).
Especially in the last case, the form did not adapt as intended to the context
of questionnaire data. In the following form section, participants were then able
to specify information based on the context-related DISCO ontology. Figure 6
shows which of these input fields participants completed or skipped. A question
text was provided by 33 participants. The field for“Analysis Unit” was skipped
the most with only 26 participants specifying a value, which might originate in
the ambiguous label provided by the ontology and could be resolved easily in
the future.

Only two participants decided to skip the second form section entirely.

5.2 User Effort

Additionally, we measured Time to Completion. The adaptive form consisted of
12 fields compared to 4 fields of the static form – therefore, we expected that
16 https://doi.org/10.5281/zenodo.4439700.

https://doi.org/10.5281/zenodo.4439700

CARDINAL 23

Fig. 6. Number of participants in test group B that provided additional descriptive
metadata

the completion time would approximately triple as well, which turned out to be
correct as shown in Table 1.

Table 1. Completion times for static form (A) and adaptive form (B)

Min time Max time Avg time

Group A 16 s 314 s 101 s

Group B 58 s 1084 s 286 s

We want to point out explicitly the enhancement, that the adaptive approach
will only display input elements to the user that are worth to consider in com-
parison to an input form which simply displays all imaginable input elements to
a user.

5.3 Usability Assessment

We used a System Usability Score (SUS) questionnaire as introduced by Brooke
to assess usability [2]. The static form thereby received an average SUS score
of 72 (standard deviation 15.88) and the adaptive form a score of 58 (standard
deviation 16.95). According to the Sauro-Lewis curved grading scale for the SUS,
the static form is located in the 60–64 percentile range and the adaptive form
is located in the 15–34 percentile range [14]. In terms of scores, the static form
achieved a score of C+, far exceeding the adaptive form, which is rated D. This
indicates a below-average user-friendliness.

24 A. Langer et al.

5.4 Summary and Discussion of Evaluation Results

Our research question was to develop an adaptive input form to obtain more
detailed metadata descriptions of research data in a machine-readable semantic
format than currently possible. In the evaluation scenario, we used the CARDI-
NAL approach to let users describe a research dataset that contains questionnaire
data. Based on the provided information by the user, a matching ontology was
selected in test group B, which in particularly reused classes and properties of
the (DISCO) ontology.

The evaluation results show that the defined objective from Sect. 2 have been
achieved. Users in test group B did not only work with an adaptive form section;
they also provided appropriate values in the presented input fields which were
automatically generated from the domain-specific ontology. Out of 35 users, only
2 users did not provide additional metadata in the adaptively generated form
section. That means that in 94% of all submission procedures, our approach
has led to an improved metadata description of the research data (OBJ1). Our
approach requires users to specify additional context metadata to contextualize
research data. 31 out of 35 users got a relevant ontology displayed in the adaptive
form section based on their specified data type (OBJ2). The classes and prop-
erties of the presented ontologies are domain-specific and suitable for describing
additional research characteristics (OBJ3). Nevertheless, usability problems do
still exist (OBJ4). Users are able to use the adaptive description form efficiently
and effectively, but they are evidently not satisfied with it. According to user
feedback, this is mostly due to labels and help texts that are incomprehensible
to some. We consider this mainly as a UI problem in our CARDINAL prototype.
Therefore, focus should be put on improving usability in the future. The pro-
vided form input is offered to the user as a json-ld metadata export for download
after clicking on the form submit button. This is a functional feature realized in
the CARDINAL demonstrator (OBJ5).

6 Related Work

In the field of human-computer interaction, research is conducted on context-
aware computing and context-aware software. Schilit et al. [15] use the term in
reference to mobile computing by mainly focusing on the physical environment
of devices. They state that context-awareness software can be implemented by
using simple if-then rules. In contrast, Schmidt et al. [16] argue that the term
context refers to more than just the physical environment. They classify contexts
into two categories: human factors and physical environment.

There are various suggestions to define the term adaptivity. Preim and
Dachselt [13] distinguish three types of adaptivity wrt. the experience of users,
perceptual skills and work environments. At present, there are no research data
repositories that adapt to the context of a research data artifact. However, a few
approaches have been proposed that show how adaptive user interfaces can be
designed. Baclawski and Schneider implemented an approach for using ontologies
to describe data [1] by annotating their research data with additional metadata.

CARDINAL 25

However, their system relies heavily on user expertise. Users are required to
determine themselves which ontology is most suitable for their research data. A
similar initial situation is described by Cimino and Ayres [3].

Besides using ontologies to describe data in more detail, Gonçalves et al.
have shown an approach on how ontologies can be used to generate web forms.
They introduced an “ontology-based method for web form generation and struc-
tured data acquisition” [5]. Their system requires two input files to generate
a web form which is used to digitize a standardized questionnaire. Firstly, an
XML file is used to configure the form layout, as well as bindings of user inter-
face components to entities within the ontology. Secondly, a form specification
is used to define the actual content of the form. Paulheim and Probst created an
extensive state of the art survey on ontology-enhanced user interfaces [12]. An
ontology-enhanced user interface is defined as “a user interface whose visualiza-
tion capabilities, interaction possibilities, or development process are enabled or
(at least) improved by the employment of one or more ontologies”.

Although there are currently no research data repositories that employ adap-
tive user interfaces as defined in this section, the use of adaptive user interfaces
can be advantageous to provide users with means to describe their research
data in more detail, specifically by using domain-specific terminology. These
user interfaces should adapt to the context of a user’s research data artifact.
With regard to the definition of adaptivity according to Preim and Dachselt,
this corresponds in the broadest sense to the adaptivity type with regard to the
physical environment. However, we instead refer to the contextual environment
of research data and not to the physical environment as in the original defini-
tion. As exemplary case studies of [1,3,5] show, emphasis should be placed on
data interoperability. For this purpose, ontologies for describing the structure
and semantics of data proved to be useful. In contrast to approaches that stati-
cally add entity classes and value ranges from particular ontologies to dedicated
application input elements, such as [18], the CARDINAL approach is more flexi-
ble and provides a dynamic, application-independent adaptive ontology selection
mechanism.

7 Conclusion

In this paper, we focused on the description step in research data publishing
processes and discussed CARDINAL: an adaptive ontology-based form build-
ing approach based on existing, domain-specific ontologies in order to provide
research data descriptions with additional context-related structured meta infor-
mation. By considering general contextual information for the semi-automated
selection of relevant ontologies, we relieve the user from filling out extensive
research data submission forms with input elements that are not relevant at all
as well as the developer who had to manually craft detailed input forms in the
past. The additionally acquisitioned metadata can facilitate the interdisciplinary
findability and reuse of existing research data based on Linked Data.

26 A. Langer et al.

We implemented our suggested CARDINAL approach, demonstrated it as a
proof-of-concept and additionally evaluated the solution based on an online sur-
vey experiment with 83 participants. The results of our user study proved that
the prototype could successfully be used for obtaining more detailed metadata
descriptions. The results also showed that our prototype fulfills all predefined
requirements apart from usability weaknesses, where the survey results already
disclosed some issues. We additionally learnt in the evaluation, that the quality
of the contextualization depends both on the availability of appropriately tagged
ontology classifications, but also on the correct user input for the selection cri-
teria, which was not always given.

As future work, it is necessary to further improve the user interface experience
as well as to provide further OnForm descriptions for existing domain-specific
ontologies. Furthermore, it makes sense to investigate more deeply possibilities
to semi-automatically create these OnForm representations by applying more
sophisticated ontology classification algorithms, property relevance metrics and
knowledge extraction methods.

Acknowledgment. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project-ID 416228727 – SFB 1410.

References

1. Baclawski, K., Schneider, T.: The open ontology repository initiative: requirements
and research challenges. In: Proceedings of Workshop on Collaborative Construc-
tion, Management and Linking of Structured Knowledge, ISWC (2009)

2. Brooke, J.: Sus: a quick and dirty usability scale. Usability Evaluation in Industry,
vol. 189, November 1995

3. Cimino, J., Ayres, E.: The clinical research data repository of the us national
institutes of health. Stud. Health Technol. Inform. 160, 1299–1303 (2010)

4. Elsevier: Sharing research data (2021). https://www.elsevier.com/authors/author-
resources/research-data

5. Gonçalves, R., Tu, S., Nyulas, C., Tierney, M., Musen, M.: An ontology-driven
tool for structured data acquisition using web forms. J. Biomed. Semant. 8(1),
1–14 (2017)

6. Göpfert, C., Langer, A., Gaedke, M.: Ontoform: deriving web input forms from
ontologies. In: Web Engineering - 21th International Conference, ICWE 2021,
Biarritz, France, May 18–21, 2021, Proceedings. Currently Under Review. Lecture
Notes in Computer Science, Springer (2021)

7. Hemel, Z., Kats, L.C., Groenewegen, D.M., Visser, E.: Code generation by model
transformation: a case study in transformation modularity. Softw. Syst. Model.
9(3), 375–402 (2010)

8. Langer, A.: PIROL: cross-domain research data publishing with linked data tech-
nologies. In: La Rosa, M., Plebani, P., Reichert, M. (eds.) Proceedings of the Doc-
toral Consortium Papers Presented at the 31st CAiSE 2019, pp. 43–51. CEUR,
Rome (2019)

9. Langer, A., Bilz, E., Gaedke, M.: Analysis of current RDM applications for the
interdisciplinary publication of research data. In: CEUR Workshop Proceedings,
vol. 2447. CEUR-WS.org (2019)

https://www.elsevier.com/authors/author-resources/research-data
https://www.elsevier.com/authors/author-resources/research-data

CARDINAL 27

10. Langer, A., Göpfert, C., Gaedke, M.: URI-aware user input interfaces for the unob-
trusive reference to Linked Data. IADIS International Journal on Computer Science
and Information Systems, vol. 13, no. 2 (2018)

11. Pampel, H., Vierkant, P., Scholze, F., et al.: Making research data repositories
visible: the re3data.org registry. Plos One 8(11), 1–10 (2013)

12. Paulheim, H., Probst, F.: Ontology-enhanced user interfaces: a survey. Int. J.
Seman. Web Inf. Syst. 6, 36–59 (2010)

13. Preim, B., Dachselt, R.: Interaktive Systeme. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-05402-0

14. Sauro, J., Lewis, J.R.: Quantifying the User Experience, Second Edition: Practical
Statistics for User Research, vol. 38. Morgan Kaufmann, Burlington (2016)

15. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: 1994
First Workshop on Mobile Computing Systems and Applications, pp. 85–90 (1994)

16. Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location.
Comput. Graph. 23(6), 893–901 (1999)

17. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., et al.: The fair guiding princi-
ples for scientific data management and stewardship. Sci. Data 3(1), 160018 (2016)

18. Wolstencroft, K., Owen, S., Horridge, M., et al.: RightField: embedding ontology
annotation in spreadsheets. Bioinformatics 27(14), 2021–2022 (2011)

https://doi.org/10.1007/978-3-642-05402-0
https://doi.org/10.1007/978-3-642-05402-0

Publishing Base Registries as Linked
Data Event Streams

Dwight Van Lancker1,3(B), Pieter Colpaert1(B), Harm Delva1,
Brecht Van de Vyvere1, Julián Rojas Meléndez1, Ruben Dedecker1,

Philippe Michiels2, Raf Buyle1,3, Annelies De Craene3, and Ruben Verborgh1

1 IDLab, Department of Electronics and Information Systems,
Ghent University–Imec, Ghent, Belgium

{dwight.vanlancker,pieter.colpaert,harm.delva,brecht.vandevyvere,
julianandres.rojasmelendez,ruben.dedecker,raf.buyle,ruben.verborgh}@ugent.be

2 Imec EDiT, Leuven, Belgium
philippe.michiels.ext@imec.be

3 Flemish Information Agency, Flanders, Belgium
annelies.decraene@vlaanderen.be

Abstract. Fostering interoperability, Public Sector Bodies (PSBs)
maintain datasets that should become queryable as an integrated Knowl-
edge Graph (KG). While some PSBs allow to query a part of the KG on
their servers, others favor publishing data dumps allowing the querying
to happen on third party servers. As the budget of a PSB to publish their
dataset on the Web is finite, PSBs need guidance on what interface to
offer first. A core API can be designed that covers the core tasks of Base
Registries, which is a well-defined term in Flanders for the management
of authoritative datasets. This core API should be the basis on which
an ecosystem of data services can be built. In this paper, we introduce
the concept of a Linked Data Event Stream (LDES) for datasets like
air quality sensors and observations or a registry of officially registered
addresses. We show that extra ecosystem requirements can be built on
top of the LDES using a generic fragmenter. By using hypermedia for
describing the LDES as well as the derived datasets, agents can dynami-
cally discover their best way through the KG, and server administrators
can dynamically add or remove functionality based on costs and needs.
This way, we allow PSBs to prioritize API functionality based on three
tiers: (i) the LDES, (ii) intermediary indexes and (iii) querying interfaces.
While the ecosystem will never be feature-complete, based on the market
needs, PSBs as well as market players can fill in gaps as requirements
evolve.

Keywords: Semantic web · Web Apis · Data reuse · Data versioning

1 Introduction

Public Sector Bodies (PSBs) world-wide maintain and open up reference datasets
to foster interoperability by advocating the reuse of the identifiers for which
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 28–36, 2021.
https://doi.org/10.1007/978-3-030-74296-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_3

Publishing Base Registries as LDES 29

they are the authoritative source. In Flanders, for example, the Large-scale Ref-
erence Database1 (LRD) contains millions of geospatial objects in the Flemish
region [2]. On the one hand, the LRD publishes periodical data dumps or version
materializations, which users have to fully download to stay up to date with the
dataset. With a querying API, on the other hand, users can query the dataset
without first having to download the entire dataset. Trying to meet the needs of
their reusers, PSBs will have to provide and maintain an increasing amount of
such querying APIs as specific end-user features are solved by creating feature-
specific APIs [7]. However both data dumps and querying APIs will never fully
meet the needs of their end-users, as a data dump gives a possibly outdated view
on the dataset, whereas a querying API provides its client only with a partial
view of the dataset.

To avoid synchronization problems with data dumps on the one hand, and
maintenance problems of an always increasing amount of querying APIs on the
other, trade-offs need to be made. This resulted in the question: “What is the
base API for base registries?”. PSBs must accept they will not be able to
implement any querying API on their own, but that there are other organizations
with other interests that can take up parts of the processing. In Sect. 2 we
discuss the definition of the European term “base registry”, the ideas behind
Linked Data Fragments and the recent initiative of Streaming Linked Data on
which our approach was inspired. In Sect. 3 we design a Linked Data Event
Stream (LDES) incrementally by first making sure everyone can download the
history and retrieve the latest updates on the data collection. In Sect. 4 we then
introduce three generic open-source building blocks for a FAIR [10] ecosystem,
where also third parties can build reusable indexes on top of an LDES. Finally
we discuss in Sect. 5 the three tiers of base registry management, creating a
vision for PSBs to set the priorities when deciding upon their next API.

2 Related Work

The term base registry was introduced by the European Commission and is
defined as a trusted and authoritative source of information, which can and
should be digitally re-used by others. A single organization is responsible and
accountable for the collection, use, updating and preservation of information.
Authoritative in this context means that a base registry is considered to be the
source of information and is thus up-to-date and of the highest quality2. In order
to publish its base registries for maximum reuse on the Web, the Flemish Infor-
mation Agency (FIA) embraces Linked Data with the Flemish Interoperability
Program called Open Standards for Linked Organizations (OSLO). OSLO devel-
ops unambiguous data standards to exchange data in an uniform way [1].

1 https://overheid.vlaanderen.be/en/producten-diensten/large-scale-reference-
database-lrd.

2 http://eurlex.europa.eu/resource.html?uri=cellar:2c2f2554-0faf-11e7-8a35-
01aa75ed71a1.0017.02/DOC 1&format=PDF p. 31–32.

https://overheid.vlaanderen.be/en/producten-diensten/large-scale-reference-database-lrd
https://overheid.vlaanderen.be/en/producten-diensten/large-scale-reference-database-lrd
http://eurlex.europa.eu/resource.html?uri=cellar:2c2f2554-0faf-11e7-8a35- 01aa75ed71a1.0017.02/DOC_1&format=PDF
http://eurlex.europa.eu/resource.html?uri=cellar:2c2f2554-0faf-11e7-8a35- 01aa75ed71a1.0017.02/DOC_1&format=PDF

30 D. Van Lancker et al.

The FIA has aligned its base registries with the definition as stated by the
European Commission, but extended it with three additional requirements: (i)
Base registries are part of a semantic system of uniform identified objects and
relations which are in line with the OSLO standards; (ii) The identifiers of objects
in a base registry should be re-used in other base registries (or datasets); and
(iii) Each base registry is obliged to have life-cycle and history management of
their objects [2]. This extended definition is considered to be the core task of a
base registry.

Today, data controllers publish their data through a querying API, such as
the Open Geospatial Consortium (OGC)3 APIs for example. These APIs build
upon the legacy of OGC Web Service standards, of which WFS and WMS are
the most known. Although the WFS is a standardised – technical - protocol, it
does not provide interoperable data. At the moment, it is impossible to use a
dataset described with the principles of Linked Data as a data source in a WFS
service, although recent efforts have been made [3]. Furthermore, the processing
done by such a service happens fully on the server side, meaning that all costs
are for the provider of it.

Instead of publishing their data through a querying API, data controllers also
have the possibility to publish a data dump of the dataset. Both interfaces have
in common that they only return a fragment of the dataset. Given a Linked
Data dataset, the result of each request to such interfaces is called a Linked
Data Fragment (LDF)4. On the axis of LDFs, both data dumps and querying
APIs are situated at the extremes, because the workload needed to compute
the fragments is divided differently between clients and servers. In the case of
a data dump, the processing burden is put on the client-side, but also allows
the most flexibility for the client. In the other case, providing a querying API
on top of the dataset puts the processing burden on the server, allowing any
kind of query and therefore limiting the availability of the API, i.e. a SPARQL
endpoint. In order to achieve efficient Web querying, in-between solutions that
provide an optimal balance between client and server effort are needed [8]. In-
between solutions exist, such as Triple Patterns Fragments, brTPF, Smart KG
and subject pages. These in-between solutions shift the needed processing more
towards the client and limit the different queries that can be executed on the
server.

Publishing data at a high speed has caused a shift in the data landscape, as
such that it does not always make sense anymore to use polling-based approaches.
Instead, it makes more sense to push this fast-changing (with an acceptable
latency of ≤ 10 s), continuously updating dataset to its consumers [9]. In order
to manage these streams of data, Stream Processing Engines have come to aid [6].
To counter the problem that a data stream can be in all shapes and sizes, an
effort was needed by the Web of Data community. This led to the creation of
RDF Stream Processing techniques, which allows to process RDF-based data
streams. These ideas were already applied on non-sensor related datasets such

3 https://ogcapi.ogc.org/.
4 https://linkeddatafragments.org/.

https://ogcapi.ogc.org/
https://linkeddatafragments.org/

Publishing Base Registries as LDES 31

as DBPedia and Wikimedia, where the goal was to query of the latest changes,
with the term Streaming Linked Data [6]. However, more general the goal should
be to provide the ability to query over a window of updates on top of a stream,
which is similar to our goal, as we want to provide everyone as fast as possible
with the latest updates.

3 A Base API for Base Registries

A Linked Data Event Stream (LDES) extends the principles of an event stream
by publishing interoperable data re-using existing machine-readable data stan-
dards. We applied this data publishing strategy to two datasets: for context
information, we used the registry of all officially registered addresses in Flan-
ders, using the OSLO data standard5 to describe them. For a faster updating
dataset, we used measurements of air quality sensors, using the Semantic Sensor
Network Ontology.

<C> a ldes:EventStream ;
tree:shape <shacl.shape > ;
tree:member <Observation1 > .

<Observation1 > a sosa:Observation ;
sosa:resultTime "2020..." ;
sosa:hasSimpleResult "1" .

Listing 1.1: Linked Data Event Streams described with the TREE hypermedia
API specification

To describe LDESs, we used a hypermedia specification, called the TREE
Hypermedia API specification6. Using a hypermedia specification to describe
event streams, makes them self-descriptive. There is not really a definition of
what an event stream exactly is, which means, in order to replicate the event
stream, the links have to be followed. The TREE specification describes an
LDES as a ldes:EventStream which is an extension of tree:Collection, con-
taining not only a collection of objects, but each object is also immutable. Each
immutable object, defined as a tree:member, has a timestamp that indicates
at which time it was created. Furthermore, with tree:shape the specification
allows to link a SHACL shape [4] to the collection, indicating the content of
the immutable objects. The presence of such a SHACL shape is rather an opti-
mization so that autonomous agents know beforehand what the content of the
immutable objects is within the collection. An example of the specification is
shown in Listing 1.1 and was also applied to air quality observations: https://
streams.datapiloten.be/observations.

However when implementing an LDES for data models that do not have the
concept of things that live in time, the model must be extended, which is the
case for an address or a sensor. It is possible for a sensor to change, take for

5 https://data.vlaanderen.be/ns/adres.
6 https://treecg.github.io/specification/.

https://streams.datapiloten.be/observations
https://streams.datapiloten.be/observations
https://data.vlaanderen.be/ns/adres
https://treecg.github.io/specification/

32 D. Van Lancker et al.

example the Bel-Air project7 in Flanders, where air quality sensor were fitted
to the roof of mail delivery vans. So periodically, not only the observation made
by a sensor changes, but it is also possible that the location of a sensor has
changed. The stated problem can be solved by using the concept of versions,
for example dcterms:isVersionOf, as shown in Listing 1.2. This way, we indi-
cate to which object this version belongs. The Dutch NEN3610 standard8 for
example advocates the use of foaf:isPrimaryTopicOf. Furthermore, uniquely
identifying each version object, makes them individual reusable.

<C> a ldes:EventStream ;
tree:shape <shacl.shape > ;
tree:member <E1 > .

<E1> prov:generatedAtTime "2020 -01 -01 T00 :00:00Z" ;
adms:versionNote "First version of this address" ;
dcterms:isVersionOf <AddressRecord1 > ;
dcterms:title "Streetname X, ZIP Municipality , Country" .

Listing 1.2: When a data model does not have the concept of things that live
in time, the model must be extended, for example, with the concept of versions.
Here, dcterms:isVersionOf is used to indicate which address object is affected
by this event.

Furthermore, the TREE Hypermedia API specification was also used to
describe the metadata of each page. With tree:relation, the specification
enables users to describe the relation between a specific value and all mem-
bers on a page linked from the current page. Using this relation, a query agent
can automatically discover whether or not it is useful to go to the next page. An
interesting fragmentation strategy for an event stream is time-based as the data
grows in time. As shown in Listing 1.3, the first page, which always contains
the oldest objects, has a tree:GreaterThanOrEqualToRelation with the sec-
ond page, which indicates that all values of page two are greater than or equal
to those of page 1. To indicate on what property of the immutable object the
relation is based on, the predicate tree:path is used. The predicate tree:value
then contains the value for which all members on the next page are greater than
or equal to. In Listing 1.3, sosa:resultTime is the property that the relation
is based on, and thus all members on ?page=2 have a sosa:resultTime that is
later than or equal to 2020-12-24T12:00:00Z. The LDES specification is available
at https://w3id.org/ldes/specification.

7 https://www.imeccityofthings.be/en/projecten/bel-air.
8 https://geonovum.github.io/NEN3610-Linkeddata/.

https://w3id.org/ldes/specification
https://www.imeccityofthings.be/en/projecten/bel-air
https://geonovum.github.io/NEN3610-Linkeddata/

Publishing Base Registries as LDES 33

<?page=1> a tree:Node ;
tree:relation [

a tree:GreaterThanOrEqualToRelation ;
tree:path sosa:resultTime ;
tree:node <?page=2> ;
tree:value "2020 -12 -24 T12 :00:00Z"^^xsd:dateTime .

] .

Listing 1.3: Within the TREE Hypermedia API specification, a relation to
another page can be described with tree:relation.

4 A Linked Data Event Streams Ecosystem

We implemented three reusable building blocks:

The metadata extractor can be used to read TREE metadata in a page and
show the next steps possible from the current page to an app or an intermedi-
ary server. The extractor has been written within the Comunica framework [5]
and is available at https://github.com/TREEcg/comunica-feature-tree/.

The LDES client reuses the metadata extractor to allow intermediary servers
to copy all members of a tree:Collection, and subscribe to new updates. A
fragment’s time to live is retained from its HTTP caching headers. A polling
interval can be configured to wait before refetching. Specifically for an LDES,
before emitting an immutable member of a collection, a cache can be checked
to check whether the object has not been emitted before. This way, consumers
only retrieve updated members of a collection. Code is available at https://
github.com/brechtvdv/event-stream-client.

The fragmenter reuses the LDES client to keep its own copy in sync and to
refragment the LDES based on a configuration. Code is available at https://
github.com/hdelva/tree index.

Fig. 1. A schematic overview of the fragmentation process. Values from each individual
event are used to place that event into one or more fragments. In this example, the
event represents a street labeled as “Admontstraat”, and this label is used as the input
of a prefix-based fragmenter. The logical links between increasingly specific prefixes are
stored in a separate storage layer, which is used to generate the hypermedia descrip-
tions. The events themselves are stored like regular RDF data, and the contents of a
fragment are persisted as a set of event URIs.

Applications that require a specific subset of the data can be optimized by
consuming only the most relevant data for their use case. For instance, appli-
cations that focus on a specific geospatial region are more likely to reuse the
published data if they can filter out data from other regions.

https://github.com/TREEcg/comunica-feature-tree/
https://github.com/brechtvdv/event-stream-client
https://github.com/brechtvdv/event-stream-client
https://github.com/hdelva/tree_index
https://github.com/hdelva/tree_index

34 D. Van Lancker et al.

To realize this, we have implemented an intermediary server that
(re)fragments an existing LDES into multiple smaller ones9. Every discovered
immutable object is assigned to one or more fragments, as illustrated in Fig. 1.
An LDES may be processed using multiple fragmentation strategies, resulting
in multiple orthogonal fragmentations, and some strategies can yield multiple
fragments for a single event. In the latter case, the fragments can be ordered by
increasing specificity such as by prefix length or geospatial granularity. These
relations between fragments are stored separately from the events themselves,
and are used to generate the hypermedia controls.

5 Conclusion and Future Work

Fig. 2. The three layered shield of base registry data publishing: the core (I) is what
must be done by PSBs; the second layer (II) as well as the third layer (III) can be done
PSBs, but can equally be done by third parties. As tier 2 can be derived from tier 1 by
anyone, and tier 3 from 2 and 1, base registry managers must first focus on the Linked
Data Event Stream, then prioritize reusable indexes, and only then prioritize specific
querying APIs. This will create a level playing field for an ecosystem of data services
on top of this dataset.

With Linked Data Event Streams, this paper sets out a vision regarding the
core task of a PSB when publishing a base registry. The LDES, which is an
append-only publishing interface, is the last interface that must be removed when
austerity would strike. In Fig. 2, a conceptual three layered shield illustrating
the entire ecosystem sets out the next priorities. The PSB can bootstrap the
ecosystem by building reusable indexes on top of their LDES by using the TREE
indexer. This way, consumers – which can be both the PSB itself or third parties
– can more efficiently create querying interfaces on top the dataset. When a
third party for example needs an OGC API for geospatial querying, a geospatial
9 For example, a prefix fragmentation applied to the LDES of streetnames: https://

fast-and-slow.osoc.be/data/streetname/prefix.

https://fast-and-slow.osoc.be/data/streetname/prefix
https://fast-and-slow.osoc.be/data/streetname/prefix

Publishing Base Registries as LDES 35

fragmentation will allow that third party to fetch the right parts of the dataset
just in time, blurring the lines between replication, prefetching and cacheable
querying. Compared to the in-between solutions discussed in the related work,
an LDES can be used as a basis to create these solutions.

An LDES and its reusable indexes are self-descriptive thanks to the TREE
Hypermedia Specification. Every page becomes part of a tree structure, and
clients, such as the LDES client or Comunica, can traverse the tree to answer
certain queries. Multiple trees or indexes can be traversed in parallel, and the
fastest interface for a specific task can by dynamically selected. This makes the
ecosystem as a whole more resilient: there are always multiple paths to answer
a certain query, in worst case having to replicate the core LDES. Contrary to
the core LDES API, derived indexes can evolve faster: when a better geospatial
indexes has been thought of, the old geospatial index can be taken offline without
any problem.

Future work is to fully implement the TREE specification within the Comu-
nica [5] framework to perform among others SPARQL, GraphQL-LD and auto-
completion queries across Linked Data Fragments datasets. Query optimization
combining interfaces such as TPF [8] and various TREE views and collections
will be a challenge for the coming years.

References

1. Buyle, R., et al.: Open standards for linked organizations. In: Proceedings of the
International Conference on Electronic Governance and Open Society: Challenges
in Eurasia, pp. 126–134 (2016)

2. Buyle, R., et al.: Raising interoperability among base registries: the evolution of
the linked base registry for addresses in flanders. J. Web Semant. 55, 86–101 (2019)

3. Jones, J., Kuhn, W., Keßler, C., Scheider, S.: Making the web of data available
via web feature services. In: Huerta, J., Schade, S., Granell, C. (eds.) Connecting a
Digital Europe Through Location and Place. LNGC, pp. 341–361. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-03611-3 20

4. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL) (2017).
W3C recommendation (2017). https://www.w3.org/TR/shacl/#property-paths

5. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
modular SPARQL query engine for the web. In: Vrandečić, D., et al. (eds.) ISWC
2018. LNCS, vol. 11137, pp. 239–255. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00668-6 15

6. Tommasini, R., Ragab, M., Falcetta, A., Valle, E.D., Sakr, S.: A first step towards
a streaming linked data life-cycle. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS,
vol. 12507, pp. 634–650. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-62466-8 39

7. Verborgh, R., Dumontier, M.: A Web API ecosystem through feature-based reuse.
Internet Computing 22(3), 29–37 (2018). DOI: https://doi.org/10.1109/MIC.2018.
032501515,https://ruben.verborgh.org/articles/web-api-ecosystem/

8. Verborgh, R., et al.: Querying datasets on the web with high availability. In: Mika,
P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 180–196. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11964-9 12

https://doi.org/10.1007/978-3-319-03611-3_20
https://www.w3.org/TR/shacl/#property-paths
https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.1007/978-3-030-62466-8_39
https://doi.org/10.1007/978-3-030-62466-8_39
https://doi.org/10.1109/MIC.2018.032501515,
https://doi.org/10.1109/MIC.2018.032501515,
https://ruben.verborgh.org/articles/web-api-ecosystem/
https://doi.org/10.1007/978-3-319-11964-9_12

36 D. Van Lancker et al.

9. Van de Vyvere, B., Colpaert, P., Verborgh, R.: Comparing a polling and push-
based approach for live open data interfaces. In: Bielikova, M., Mikkonen, T.,
Pautasso, C. (eds.) ICWE 2020. LNCS, vol. 12128, pp. 87–101. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50578-3 7

10. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management
and stewardship. Sci. Data 3(1), 1–9 (2016)

https://doi.org/10.1007/978-3-030-50578-3_7

OntoSpect: IoT Ontology Inspection
by Concept Extraction and Natural

Language Generation

Mahda Noura(B) , Yichen Wang , Sebastian Heil , and Martin Gaedke

Technische Universität Chemnitz, Chemnitz, Germany
{mahda.noura,sebastian.heil,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. One of the main challenges in the Internet of Things (IoT) is
the lack of semantic interoperability between heterogeneous sources. In
the Semantic Web domain, ontologies are one way to achieve semantic
interoperability by using a common vocabulary that represents hetero-
geneous sources. However, recent studies have shown that the amount
of concept reuse from existing IoT ontologies is low. As the number
of IoT ontologies increases, encouraging users to reuse existing ontolo-
gies instead of creating new concepts becomes important. Ontology cata-
logues are a prominent approach to discover and inspect existing ontolo-
gies for reuse. However, such catalogues inspect the ontologies using gen-
eral criteria which is not enough to understand the content of the ontol-
ogy. In this paper, we propose a method for automatic ontology inspec-
tion (OntoSpect) of IoT ontologies from different application domains
based on a generic set of content-related concepts. OntoSpect consists of
two main steps: first it extracts the set of IoT concepts, and then gen-
erates human-understandable descriptions using a Model-driven Engi-
neering (MDE) approach. We evaluate the quality of concept extraction
and natural language description generation with 84 ontologies retrieved
from the LOV4IoT catalogue and report on quality metrics. In addi-
tion, we conduct an empirical study with 28 ontology users to further
assess the quality of the generated descriptions. The results demonstrate
the capability of OntoSpect to support ontology users inspecting IoT
ontologies.

Keywords: Internet of Things · Semantic Web · Ontology · Concept
extraction · Model-driven Engineering · Natural Language Generation

1 Introduction

The vision of the Internet of Things (IoT) is to connect all “Things” (radio-
frequency identification, sensors, actuators, etc.) to the Internet, allowing a wide
range of innovations and opportunities in different application domains. In spite
of the massive growth in this domain, currently “developing a single and global
ecosystem of Things that communicate with each other seamlessly is virtually
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 37–52, 2021.
https://doi.org/10.1007/978-3-030-74296-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_4&domain=pdf
http://orcid.org/0000-0002-5105-2463
http://orcid.org/0000-0003-2462-4478
http://orcid.org/0000-0003-2761-9009
http://orcid.org/0000-0002-6729-2912
https://doi.org/10.1007/978-3-030-74296-6_4

38 M. Noura et al.

impossible” [10]. To achieve the vision of IoT, interoperability at different layers
is required [9]. Semantic interoperability describes smart devices according to
their data, services, and capabilities in machine readable form using a shared
vocabulary (a.k.a ontologies). Ontologies allow developers to reuse and share
domain knowledge using a common vocabulary across heterogeneous systems,
platforms, environments, etc. Numerous ontologies have been proposed to cover
the different IoT application domains. According to LOV4IoT1, there are over
550 ontology-based research projects which have been categorized into more
than 29 application domains. Unfortunately, the wide range of ontologies to
represent IoT devices and their produced data hinders the efficient development
of cross-platform and cross-domain applications [16]. The analysis in [11,12]
demonstrates that many of the ontologies found in existing standardization’s
and different projects have many redundant concepts and properties redesigned.

What are Existing Solutions Towards IoT Ontology Reuse? One way to encour-
age the reuse of existing ontologies is to provide a common standard vocabu-
lary. Current efforts such as W3C WoT Description2, and iot.schema.org3 are
dedicated to provide a common vocabulary for the IoT domain. However, the
IoT domain still lacks one comprehensive standard ontology. Another method
towards ontology reuse is ontology registries, indexes and catalogues such as
LOV4IoT, READY4SmartCities4, LOV5, and OpenSensingCity6. Such ontology
catalogues enable discovering, inspecting and selecting an ontology according to
a set of criteria. The catalogues make a high contribution towards discovering
the distributed ontologies over the Web for reuse.

What are the Limitations of Existing Solutions? The catalogues have facilitated
discovering and providing a high-level overview of an ontology, however, for
ontology comparison and selection, additional information within the ontology
is required. The existing catalogues inspect the ontologies using general criteria
such as quality indicators and metadata which is not enough to understand the
content of the ontology. Inspecting the main content-related concepts is time-
consuming for IoT developers and needs interdisciplinary experts. Moreover, the
catalogues put a huge effort on the catalogue maintainers. When a new ontology
is published, the catalogue maintainer has to inspect the ontology manually to
identify the required metadata which is time-consuming and subjective.

What are the Information Requirements of IoT Developers when Inspecting
Ontologies? Given the wealth of information described in IoT ontologies and
the advantages provided by ontology catalogues, the challenge lies in system-
atically inspecting IoT ontologies from different application domains based on
a similar set of content-related concepts with reduced effort. There are many

1 https://lov4iot.appspot.com/.
2 https://www.w3.org/WoT/.
3 http://iotschema.org/.
4 http://smartcity.linkeddata.es/.
5 https://lov.linkeddata.es/dataset/lov/vocabs?tag=IoT.
6 http://opensensingcity.emse.fr/scans/ontologies.

https://lov4iot.appspot.com/
https://www.w3.org/WoT/
http://iotschema.org/
http://smartcity.linkeddata.es/
https://lov.linkeddata.es/dataset/lov/vocabs?tag=IoT
http://opensensingcity.emse.fr/scans/ontologies

OntoSpect: IoT Ontology Inspection 39

different IoT application domains and each ontology describes the concepts that
are essential to that specific domain. Lets assume a developer who wants to
develop an IoT application with a set of physical devices and is looking for
the most suitable concepts to reuse from the ontologies within the catalogue
according to an application scenario. In accordance to a typical IoT application
development process, such a developer would start with identifying the con-
cepts defined in the ontologies related to the physical devices or the category
of the hardware, represented as the sensors and actuators. Since, these are the
initial information that is available when a developer first starts to query the
catalogue. Concepts like sensors and actuators are needed for identifying a can-
didate set of ontologies. With the shortlisted ontologies, the developer can then
have a deeper look at the content to identify the knowledge and the relation-
ships encoded within the ontology. The rules defined in an ontology is a common
way of representing the logic and the results of an ontology [4]. These concepts
are also commonly found in the literature. For instance, the analysis in [11,12]
showed that among 46 ontologies from four IoT domains, sensor and actuator
are the most frequent concepts designed. Gyrard et al. [2] identified that the
IF THEN rules defined within IoT ontologies provide valuable knowledge for
interpreting IoT data.

What is Our Contribution? Therefore, we propose a systematic approach, called
Ontology Inspection OntoSpect, which enables the inspection of IoT ontologies
according to a common set of concepts (sensor, actuator and rules). OntoSpect
consists of two steps: first it automatically extracts a set of IoT concepts defined
in the ontology using a pattern-based approach, and then generates human-
understandable description from the extracted rules using a Model-driven Engi-
neering (MDE) approach. To the best of our knowledge, no previous work has
proposed such a method incorporating MDE to automatically describe seman-
tic rules in natural language (NL). Moreover, we implement a prototype of the
solution which is publicly available online7 and conduct extensive evaluation on
the LOV4IoT ontology catalogue to demonstrate its effectiveness. Our solution
especially supports (1) application developers to inspect ontologies based on sim-
ilar concepts to enable them to choose and reuse the ontologies that might be
appropriate for their application scenario (2) ontology catalogues maintainers
with a tool that automatically extracts the concepts with lower effort, and (3)
IoT standardization efforts (e.g., W3C WoT Working Group (see footnote 2)) to
migrate the existing ontologies to new standards, known as Extract Transform
Load (ETL) procedure. In addition, OntoSpect also facilitates ontology inspec-
tion for researchers and ontology engineers, because they also need to assess,
summarize and modify IoT ontologies.

In Sect. 2, we discuss the related work. Then Sect. 3, elaborates on the
proposed approach. Section 4 provides the evaluation procedure and obtained
results. Finally, Sect. 5 concludes the paper and provides future insights.

7 https://vsr.informatik.tu-chemnitz.de/projects/2019/growth.

https://vsr.informatik.tu-chemnitz.de/projects/2019/growth

40 M. Noura et al.

2 Related Work

IoT suffers from a lack of semantic interoperability between heterogeneous
devices. These challenges are highlighted in [7]. The European Research Cluster
on the IoT released IoT semantic interoperability best practices and recom-
mendations [15], but does not refer concrete tools to encourage the reuse of
the domain knowledge already designed. Tirado et al. [19] highlight that the
lack of standard data models and structures forces developers to create models
from scratch. Developers need collaborations with domain experts having the
correct background knowledge. Given the absence of a common standard data
model, knowledge repositories encourage developers to reuse and share domain
knowledge using a common vocabulary across heterogeneous systems [13]. There
are several knowledge repositories for the IoT domain like LOV4IoT (see foot-
note 1), Ready4SmartCities (see footnote 4), and OpenSensingCity (see foot-
note 6). These repositories make a high contribution towards discovering the
distributed ontologies over the Web for facilitating reuse. However, they inspect
the ontologies using general criteria such as quality indicators (e.g., online avail-
ability, license, etc.) and metadata (authors, syntax, domain, etc.) which is not
enough for developers to make targeted comparison over the content. More-
over, the catalogue maintainers manually extract the ontology metadata which is
time-consuming and subjective. In contrast, OnstoSpect automatically extracts
content-related concepts (sensor, actuator, rules) which complements the exist-
ing ontology catalogues to improve their findability and provide the catalogue
users an overview about the ontology content.

On the other hand, several researches are proposed in the literature to
enhance the reuse of ontologies through knowledge extraction. Sun et al. [18]
highlights that one of the requirements for achieving a well-defined data model
for the IoT is information extraction. They define a semantic data model which
extracts useful information from raw IoT data. However, in this work, we extract
useful information modelled within existing ontologies. The KE4WoT proposed
in [11,12], analyze the existing IoT ontologies in several sub-domains to identify
what are the most important concepts defined within them. The authors use
word2vec and k-means algorithm and for each IoT domain the most relevant
vocabularies are provided to encourage reuse. They observed that sensor and
actuator are the most frequent concepts designed within IoT ontologies. There-
fore, we base our research on the KE4WoT analysis to automatically extract the
specific types of sensors and actuators defined in an ontology.

The authors in [2,17] point to the importance of rules for interpreting raw
data coming from IoT devices. Rules are logical elements composed of precon-
ditions and postconditions. Preconditions represent a state of the world such
that the rule should be applied in order to generate its post conditions [17].
W3C standards such as RuleML8 and RIF9 provide interoperability between
rule languages, inference systems and knowledge representation paradigms.

8 https://www.w3.org/2004/12/rules-ws/paper/96/.
9 http://www.w3.org/TR/rif-overview/.

https://www.w3.org/2004/12/rules-ws/paper/96/
http://www.w3.org/TR/rif-overview/

OntoSpect: IoT Ontology Inspection 41

In [4], a set of principles for Linked Rule is proposed to facilitate rule reuse
over the web. Maarala et al. [5] provide many approaches that utilize rules for
context-awareness in the IoT. The authors of [6] propose a rule-based approach
to process and execute rules semantically, concerned with the deductions of rules
and semantifying them. In contrast, OntoSpect is not concerned with the exe-
cution of the rules and reasoning upon them. This work falls one step before the
execution and is concerned with the challenge of automatic rule identification
from ontologies and how to present semantically-described rules in a NL form.
Sensor-based Linked Open Rules (S-LOR) [2] provide an automated rule discov-
ery approach for IoT applications and its use in smart cities via a rule-based
reasoning engine aiming to share, reuse and execute rules for interpreting sensor
data. This approach is only automated for developers trying to discover rules
and not on the catalogue maintainer side. When there are new rules, the cata-
logue maintainer has to manually identify the rules from existing ontologies or
publications and feed them to S-LOR. OntoSpect helps catalogue maintainers
by automatically identifying the rules from ontologies which can then serve as
an input for S-LOR.

Faced with the challenge of inspecting IoT ontologies, generating human-
understandable description from the rules remains an important issue. Auto-
matic approaches can benefit ontology users to ease and speed up the ontology
understanding process. In the literature, many studies have focused on gener-
ating NL text of the knowledge encoded in an ontology, which is called ontol-
ogy verbalization. An analysis conducted by Power et al. provides over 600,000
axioms from 203 ontologies to evaluate the feasibility of ontology verbalization
[14]. We do not aim to verbalize the entire ontology but rather the rules expressed
in them. There are several ontology verbalization approaches in the literature,
such as ACE [3] and SWAT [20]. They rely on NL techniques to name symbols of
the underlying formalism to construct the content lexicon in which concepts are
mapped onto nouns or adjectives and roles map onto transitive verbs. By this
means, the underlying semantic operators and constructors are mapped onto NL
constructs. However, these approaches cannot verbalize IoT ontologies because
they are not able to understand the rules encoded in an ontology. In contrast,
our solution aims at performing verbalization of the rules designed for the IoT
domain. Moreover, we have not found any MDE-based approach for generating
NL descriptions from ontologies.

In the MDE domain, there is a line of research focusing on enabling software
developers to locate software artifacts for reuse, which is similar to the problem
dealt in this research. The existing works use clustering techniques based on
similarity measures e.g. [1] or supervised techniques based on machine learning
e.g. [8] for grouping metamodels. In an analogy to OntoSpect, they classify an
ontology according to the ontologies metadata. In contrast to our work, we do
not intend to classify an ontology, rather we aim to identify knowledge from the
ontology content in a human-understandable form.

In summary, there is a lack of approaches for inspecting IoT ontologies, that
can extract the sensors, actuators and rules from an IoT ontology, and provide a
human-understandable description of the rules. Our approach targets this gap.

42 M. Noura et al.

3 IoT Ontology Inspection Using OntoSpect

In this section, we present the end-to-end approach that is employed for IoT
ontology inspection from IoT sub-domains according to a common set of concepts
(sensor, actuator, and IF THEN rules). The main objective is to extract the key
concepts from an IoT ontology and to transform the machine-understandable
rules into human-understandable descriptions. In particular, this solution can be
seen as an interface for ontology users—catalogue maintainers, IoT application
developers, IoT researchers, and ontology engineers—inspecting IoT ontologies
in different IoT application domains.

Figure 1 shows an overview of the workflow as BPMN diagram in the two
main stages of our solution: Concept Extraction and Natural Language Gener-
ation. The Concept Extraction shown on top automatically identifies the main
IoT concepts—sensors, actuators, and rules—in the ontology based on pattern-
matching. The Natural Language Generation shown on bottom transforms the
extracted knowledge into human-understandable NL descriptions according to
a generative model-to-text approach. The entire process is executed by the
OntoSpect Toolchain, a system role representing our proposed software toolchain
for supporting the ontology users’ inspection of a given IoT ontology.

Fig. 1. The OntoSpect process

The OntoSpect process requires two inputs: a repository of extraction patterns
and an IoT ontology for inspection. The patterns are an artifact which is created
by a domain expert and initialized only once. On the other hand, the ontology
is a run-time input artifact provided by the ontology user with the aim of auto-
matic inspection. The OntoSpect pattern repository is created through ontology
selection and pattern identification. It represents the different ways in which

OntoSpect: IoT Ontology Inspection 43

Fig. 2. Sensor identification examples

IoT ontologies describe sensors, actuators and rules. To realize this, we used 37
ontologies from the LOV4IoT catalogue. The ontologies were selected according
to the following criteria:

– Citations of the scientific publications describing the ontology (e.g., the SSN10

ontology V1 has more than 1000 citations).
– Dissemination or scheduled for dissemination by standardization organiza-

tions (e.g., W3C SSN/SOSA, W3C WoT ontology).
– Increased impact of ontology-based projects when industrial partners are

involved.
– Availability of Ontology code from IoT catalogues.

The domain expert then manually analyzed the selected ontologies to iden-
tify the set of patterns used for defining sensors, actuators and rules. These pat-
terns combine reasoning based on well-known concepts with a heuristic NLP-
based approach. For that, the patterns have to consider both ontology struc-
ture and identifiers as shown in the example in Fig. 4 for Sensor identifica-
tion. Known concepts from well-known/standardized IoT onotologies like W3C’s
SSN, WoT (see footnote 2), or M3Lite are used to identify matching ontol-
ogy concepts by following subclass- and instance relationships: in the example,
the myOntology:VehicleCounter concept is identified as sensor due to having
mthreelite:CounterSensing in its ancestor graph, the fallCounter individ-
ual because of being an instance of an ancestor graph containing mthreelite:
CounterSensing. In the absence of such well-known concepts, patterns need to
consider the identifiers of concepts and individuals in the inspected IoT ontol-
ogy. Synonym matching and stemming allows us to identify unknown individuals
(e.g. thermometer42, shipSensing) and concepts (e.g. myOntology:AirSensor)
based on appearance of character sequences of matching stems in their identi-
fiers. The consideration of ancestry is also applied, allowing to identify NOS as
Sensor.

The OntoSpect process consists of the following nine steps:

Step 1 Ontology Preprocessing. The received ontology is first converted
into Turtle representation and character encoding is converted from unicode to
ASCII for compatibility with the ontology parsers. Then, the ontology is queried
to identify its classes, subclasses, and properties as a graph.
10 https://www.w3.org/TR/vocab-ssn/.

https://www.w3.org/TR/vocab-ssn/

44 M. Noura et al.

Step 2a and 2b Sensor and Actuator Extraction. The set of classes and
properties from (1) and the extraction pattern repository are the input for
extracting sensors and actuators, which can occur in the ontology as classes or
individuals. Extraction starts by the individuals and then the classes according
to the patterns described above. Text processing techniques (synonym matching,
stemming) are applied to their identifiers. Also, the ontology structure is con-
sidered. The resulting sensors and actuators can contain duplicate entries from
matching several patterns, which are then removed. The output of this is a list
of sensor and actuators represented using their identifiers. These can be used for
catalogue maintainers as can be seen in LOV4IoT catalogue11.

Step 3 Rule Extraction. The rules are designed as property restric-
tions on classes within an ontology axiom. These restrictions include
owl:allValuesFrom, owl:someValuesFrom, owl:hasValue, owl:cardinality,
owl:minCardinality, and owl:maxCardinality. OWL ontologies express these
in combination with owl:Restriction statements. Therefore, the ontology is
queried to identify all classes and properties with restrictions. Listing 1.1 shows
an example of an extracted rule from Staroch ontology: “if the temperature
value is greater than 20.0 and smaller than 25.0 degree-Celsius then it is room
temperature”. The output of this step is a set of rules represented as restricted
axioms.

Listing 1.1. Room temperature rule from Staroch ontology in Turtle

:RoomTemperature rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;
owl:intersectionOf (:WeatherPhenomenon
[rdf:type owl:Restriction ;

owl:onProperty :hasTemperatureValue;
owl:someValuesFrom [rdf:type owl:Class ;
owl:intersectionOf ([rdf:type owl:Restriction ;
owl:onProperty muo:measuredIn l
owl:hasValue temperature:degree-Celsius]

[rdf:type owl:Restriction ;
owl:onProperty muo:numericalValue ;
owl:someValuesFrom [rdf:type rdfs:Datatype ;

owl:onDatatype xsd:float ;
owl:with Restrictions ([xsd:min Inclusive "20.0"^^

↪→ xsd:float])]]
[rdf:type owl:Restriction ;
owl:onProperty muo:numericalValue ;
owl:someValuesFrom [rdf:type rdfs:Datatype ;

owl:onDatatype xsd:float ;
owl:withRestrictions ([xsd:max Inclusive "25.0"^^

↪→ xsd:float])]])]])] .

11 https://linkedopenreasoning.appspot.com/?p=slor.

https://linkedopenreasoning.appspot.com/?p=slor

OntoSpect: IoT Ontology Inspection 45

Step 4 RuleML Specification. The restricted axioms identified in the previ-
ous step need to be expressed in NL to facilitate understanding by users. MDE
is used to automate this generation process. Step 4 is a model-to-model transfor-
mation from OWL to RuleML. We adopt the First Order Logic RuleML (FOL
RuleML)12 specification. In this step, the restricted axioms extracted from step
3 are automatically transformed into a set of FOL-RuleML models using the
OWL Trans13. The semantic meanings are decomposed into a set of RuleML
atoms as shown in 1.2, which represent a node in the form of an RDF triple
(subject, property, object) and the relationship between nodes are replaced by
node IDs. The transformation reduces the structural complexity of the OWL by
converting it to a standard language without losing its semantic meaning. This
step produces an intermediate artifact in FOL-Rule ML syntax that can be also
used when processed with existing tool chains.

Listing 1.2. Extract of FOL-RuleML speicification for Room temperature rule

<Atom>
<Rel>statement</Rel>
<Ind>N65585</Ind>
<Ind>owl:hasValue</Ind>
<Ind>temperature:degree-Celsius</Ind>
</Atom> ...

Step 5 RuleML Parser. This step is the first towards generating a model-
to-text transformation from RuleML specification to text. Given the RuleML
specification as input, this step parses it according to a Domain Specific Lan-
guage (DSL) Grammar. The parser is implemented using ANTLR414 (Another
Tool for Language Recognition). The OntoSpect grammar includes the lexer
grammar and the parser grammar. Listing 1.3 and 1.4 provides a minimal sam-
ple of the rules in the grammar. The Ontospect grammar consists of 174 lexer
rules and 154 parser rules. The output of this phase is the RuleML parse tree.

Listing 1.3. Ontospect lexer grammar extract

OWLSVF: ’owl:someValuesFrom ’;
OWLAVF: ’owl:allValuesFrom ’;
OWLONP: ’owl:onProperty ’;

12 https://www.w3.org/Submission/FOL-RuleML/.
13 http://www.ag-nbi.de/research/owltrans/.
14 https://github.com/antlr/grammars-v4.

https://www.w3.org/Submission/FOL-RuleML/
http://www.ag-nbi.de/research/owltrans/
https://github.com/antlr/grammars-v4

46 M. Noura et al.

Listing 1.4. Ontospect Parser grammar extract

ruleMLDoc: (selective_atom | unselective_atom)*;
selected_atom: subject selective_functor object;
unselective_atom : subject unselective_functor object;
selective_functor: OWLSVF | OWLAVF | OWLONP;
unselective_functor : RDFTYPE | RDFSCOMMENT;

Step 6 Atom Selection. Not all initially extracted restricted axioms in the
parse tree represent IF THEN rules. To distinguish such rules, we use the
OntoSpect grammar to label those rules as ’unselective atom’ as shown in listing
1.4. Therefore, those nodes will not be considered for NL text generation.

Step 7 NL Text Generation. This step finalizes the model-to-text transfor-
mation from the selected atoms in the parse tree to NL descriptions. The text is
generated by mapping the nodes in the parse tree to a sequence of placeholders
in a matching verbalization template in the pattern repository as demonstrated
in Table 1.

The resulting output artifacts created by running the OntoSpect toolchain
are the sensors, actuators and NL descriptions of the rules contained in the
ontology. These artifacts allow IoT developers when used in combination with the

Table 1. RoomTemperature NL generation process

Selected atom NL output

Subject Property Object

Room-
Temperature

Owl:equivalentClass N65552 “IF”

N65552 Owl:intersectionOf Weather-
Phenomenon

“WeatherPhenomenon”

N65561 Owl:onProperty Temperature-
Value

“TemperatureValue”

N65561 Owl:someValuesFrom N65569 “is”

N65575 Owl:onProperty MeasuredIn “measuredIn
degree-Celsius”

N65569 Owl:intersectionOf N65585 “and”

N65585 Owl:someValuesFrom N65590 “is”

N65596 Xsd:minInclusive 20.0 “greater than or equal
to 20.0”

N65569 Owl:intersectionOf N65614 “and”

N65614 Owl:someValuesFrom N65622 “is”

N65631 Xsd:maxInclusive 25.0 “smaller than or equal
to 25.0”

Verbalization Template END clause “THEN
RoomTemperature”

OntoSpect: IoT Ontology Inspection 47

meta-data provided by existing ontology catalogues to evaluate the suitability of
an ontology for the application scenario. For catalogue maintainers, the artifacts
created by OntoSpect reduce the work effort when adding a newly published
ontology to their catalogues.

4 Evaluation

The main goal of our evaluation is to assess the quality of OntoSpect for extract-
ing sensors, actuators and rules from IoT ontologies as well as NL representations
of these rules. We describe the evaluation procedure and report on the results.

4.1 Evaluation Procedure and Material

The evaluation consists of two experiments, the first experiment addresses the
quality of the concept extraction and the second one the quality of the NL
text generated by OntoSpect. To evaluate the quality of the concept extraction,
we use ontology samples collected from the LOV4IoT catalogue. LOV4IoT ref-
erences about 550 ontology-based research projects. However, there is a vast
amount of ontologies which are not available anymore or have syntax errors, and
thus have been removed from the evaluation dataset. To avoid a very positive
bias in the results, the ontologies which were used for creating the OntoSpect
extraction patterns as described in Sect. 3 are also excluded from the evaluation.
Ultimately, the remaining dataset resulted in 84 ontologies from 22 different IoT
sub-domains. The evaluation dataset was then assessed manually by two domain
experts to extract the sensors, actuators and rules which forms the ground-truth
for the evaluation experiment as described in Table 2. The evaluation dataset is
available (see footnote 7) for review and further research. Based on this ground
truth, we calculate the precision, recall and F-measure scores of OntoSpect con-
cept extraction.

In the second evaluation experiment, the performance of the generated NL
descriptions is evaluated: two domain experts manually wrote the NL descrip-
tions of the rules for each ontology in the evaluation dataset. Then, the Bilingual
Evaluation Understudy (BLEU) score is calculated to measure the similarity
between the generated descriptions and the ground-truth human-written text.
Since automatic metrics may not completely correspond with human judgement,
human testing is required to evaluate how natural the generated rule descriptions
are. We therefore conducted an additional empirical study to evaluate the qual-
ity of the generated text. We invited ontology catalogue maintainers, developers
and participants working in IoT ontology standardization like iot.schema.org and
W3C WoT. The participants were shown 11 randomly sampled rules in OWL
and their NL-equivalents generated by OntoSpect. They were then asked to score
each text in terms of readability and accuracy based on a 5-point Likert scale
ranging from very poor to excellent. Here readability is defined as whether the
text is clearly readable and understandable, and accuracy is defined as whether
the text contains all the information specified in the semantic rule.

48 M. Noura et al.

Table 2. Evaluation dataset characteristics, showing the number of concept instances,
and ontologies/domains containing the concept

Concept Number of instances Ontologies Domain

Sensor 432 31 11

Actuator 181 16 4

Rule 377 15 7

Table 3. OntoSpect concept extraction evaluation statistics

Concept P R Pµ Rµ F1

Sensor 0.9489 0.9658 0.9379 0.9585 0.9480

Actuator 0.9548 0.9846 0.8994 0.9157 0.9075

Rule 0.9672 0.9649 0.9155 0.9259 0.9207

Mean Precision P , Mean Recall R, Mean Precision
(micro-averaged) Pµ, Mean Recall (micro-averaged)
Rµ, and Mean F1-score (micro-averaged)

4.2 Results and Analysis

Evaluation of the OntoSpect concept extraction on 84 ontologies, containing 432
sensors, 181 actuators, and 377 rules in the ground-truth resulted in the statis-
tics in Table 3. Due to the unbalanced distribution of the concepts across the
ontologies—sensor, actuator and rules occur very frequently in some ontologies
and rarely in some other ontologies—we also show the micro-average Precision
and Recall. While the latter is slightly lower than the macro average, both have
a F1 > 0.9 and only display limited differences. The overall F1 = 0.94, 0.90,
and 0.92 for sensor, actuator and rule respectively, shows a good performance of
OntoSpect in extracting these concepts from IoT ontologies.

To analyze the quality of OntoSpect for generating NL description rules, we
report on BLEU scores in terms of their cumulative n-gram precision for different
rule lengths. Figure 3 illustrates the NL rule length distribution in the evaluation
dataset. The n-gram scores are calculated by counting the number of n-gram
matches between extracted tokens by OntoSpect, and the actual tokens by the
domain expert. For example, 1-g score is calculated from individual tokens, while
the 2-g compares word pairs. We report on these n-gram precision scores for
n ∈ {1, 2, 3, 4} in Table 4 which follows the standard practice for evaluation of
automatic verbalization. The precision decreases with the increase of the rule
length as longer rules introduce more possibilities for error.

To further analyze the quality of the rule verbalization an online question-
naire was taken by 28 subjects. We checked their expertise and asked them to
select the role best describing them (multi-selections were possible). Most of
the experts were developers (74%), 48.1% had a basic understanding of ontolo-
gies, 22.2% had experience with researching ontologies, 18.5% classified them-
selves as experienced ontology designers and 14.8% were ontology practitioners.

OntoSpect: IoT Ontology Inspection 49

Fig. 3. Frequency distribution of rule length

The evaluation investigates whether the NL descriptions generated by OntoSpect
are readable and accurate. The test subjects rated accuracy and readability of
the rule verbalizations relatively good (64,3% / 56,2% good or excellent, respec-
tively) with a slightly better rating for accuracy as shown in Fig. 4.

Overall, the experiments show promising result quality, indicating that
OntoSpect can be helpful for inspecting IoT ontologies. Further experiments
with ontology users are required assess the performance of OntoSpect when
embedded within their corresponding work processes.

4.3 Threats to Validity

External Validity. Is limited by the representativeness of the ontology cata-
logue used in this study, and the overall generealizability of the concept extrac-
tion to domains other than IoT. We expect that for other IoT ontology cata-
logues the quality of the results will be similar, because sensor and actuators
are commonly found in all IoT ontologies [11]. Sensor and actuator extraction is
restricted to the IoT domain while the rules extraction and NL generation may
also work for other domains that follow a similar rule structure.

Table 4. N-gram precision scores for different rule lengths

BLEU type ≤20 Tokens ≤30 Tokens >30 Tokens Total

Cumulative 1-g 0.9026 0.8863 0.7579 0.8748

Cumulative 2-g 0.8264 0.8091 0.6755 0.7970

Cumulative 3-g 0.7649 0.7435 0.5861 0.7293

Cumulative 4-g 0.7112 0.6841 0.4908 0.6666

|Rules| 247 312 31 343

50 M. Noura et al.

Fig. 4. Empirical quality ratings for accuracy and readability of the generated NL rule
descriptions

Internal Validity. A potential threat to internal validity lies in the manual
extraction and NL description generation forming the evaluation dataset. To
deal with this, two domain experts have performed this with many discussions.
The experimental design involves empirical ratings of the text quality that may
have introduced a bias by the test subjects. To reduce this, we also computed
BLEU scores as an objective quantitative metric. In addition, for evaluating the
NL generation, a subset of the rules (11 from 377) was selected. To avoid the
selection bias, the rules were randomly sampled.

Construct Validity. Our evaluation focused on result quality and is not a com-
plete user study with ontology users such as catalogue maintainers. This would
exceed the scope of this paper, since the different groups have different work pro-
cesses and requirements necessitating separate evaluation runs per group, which
is planned for future work.

5 Conclusion and Future Work

Inspecting IoT ontologies with content-related concepts can encourage develop-
ers to reuse existing ontologies and reduce the effort of catalogue maintainers.
In this paper, we introduced OntoSpect for automatically inspecting IoT ontolo-
gies according to sensor, actuator and rules using concept extraction- and NL
generation-based techniques. The prototype of OntoSpect is publicly available
(see footnote 7) for use and further research. OntoSpect was evaluated using
quality metrics and empirical evaluation. The concept extraction results showed
that OntoSpect can extract sensors, actuators and rules with good quality. Also,
the generated NL description of the rules are sufficiently readable and accurate.
Overall, the evaluation suggested that OntoSpect can be helpful for inspect-
ing IoT ontologies. In the future work, we plan to extend the experiments by
allowing different ontology user groups to use OntoSpect tool and to report on
the benefits. In addition, we plan to integrate OntoSpect with the LOV4IoT
catalogue.

OntoSpect: IoT Ontology Inspection 51

Acknowledgements. We thank the maintainer of LOV4IoT, Amelie Gyrard, for
motivating this research and supporting it with basic evaluation data. This work was
partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)–Project-ID 416228727–SFB 1410.

References

1. Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated
clustering of metamodel repositories. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J.
(eds.) CAiSE 2016. LNCS, vol. 9694, pp. 342–358. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39696-5 21

2. Gyrard, A., Serrano, M., Jares, J.B., Datta, S.K., Ali, M.I.: Sensor-based linked
open rules (s-lor) an automated rule discovery approach for IoT applications and
its use in smart cities. In: Proceedings of the 26th International Conference on
World Wide Web Companion, pp. 1153–1159 (2017)

3. Kaljurand, K.: Attempto controlled english as a semantic web language. Ph.D.
thesis (2007)

4. Khandelwal, A., Jacobi, I., Kagal, L.: Linked rules: principles for rule reuse on the
web. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 108–123.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23580-1 9

5. Maarala, A.I., Su, X., Riekki, J.: Semantic reasoning for context-aware internet of
things applications. IEEE Internet Things J. 4(2), 461–473 (2016)

6. Mainetti, L., Mighali, V., Patrono, L., Rametta, P.: A novel rule-based semantic
architecture for IoT building automation systems. In: 2015 23rd International Con-
ference on Software, Telecommunications and Computer Networks (SoftCOM), pp.
124–131. IEEE (2015)

7. Murdock, P., et al.: Semantic Interoperability for the Web of Things (White Paper)
(2016)

8. Nguyen, P.T., Di Rocco, J., Di Ruscio, D., Pierantonio, A., Iovino, L.: Automated
classification of metamodel repositories: a machine learning approach. In: 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), pp. 272–282. IEEE (2019)

9. Noura, M., Atiquzzaman, M., Gaedke, M.: Interoperability in internet of things
infrastructure: classification, challenges, and future work. In: Lin, Y.-B., Deng,
D.-J., You, I., Lin, C.-C. (eds.) IoTaaS 2017. LNICST, vol. 246, pp. 11–18. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00410-1 2

10. Noura, M., Atiquzzaman, M., Gaedke, M.: Interoperability in internet of things:
taxonomies and open challenges. Mobile Netw. Appl. 24(3), 796–809 (2018).
https://doi.org/10.1007/s11036-018-1089-9

11. Noura, M., Gyrard, A., Heil, S., Gaedke, M.: Concept extraction from the web of
things knowledge bases. In: 17th International Conference WWW/Internet (2018)

12. Noura, M., Gyrard, A., Heil, S., Gaedke, M.: Automatic knowledge extraction to
build semantic web of things applications. IEEE Internet Things J. 6(5), 8447–8454
(2019)

13. Poveda-Villalón, M., Garćıa-Castro, R., Gómez-Pérez, A.: Building an ontology
catalogue for smart cities. In: Proceedings of the 10th European Conference on
Product and Process Modelling, ECPPM 2014, pp. 1–8 (2014)

14. Power, R., Third, A.: Expressing owl axioms by english sentences: dubious in the-
ory, feasible in practice (2010)

https://doi.org/10.1007/978-3-319-39696-5_21
https://doi.org/10.1007/978-3-319-39696-5_21
https://doi.org/10.1007/978-3-642-23580-1_9
https://doi.org/10.1007/978-3-030-00410-1_2
https://doi.org/10.1007/s11036-018-1089-9

52 M. Noura et al.

15. Serrano, M., Barnaghi, P., Carrez, F., Cousin, P., Vermesan, O., Friess, P.: Internet
of things IoT semantic interoperability: research challenges, best practices, recom-
mendations and next steps. European Research Cluster on the Internet of Things,
Technical report, IERC (2015)

16. Serrano, M., Barnaghi, P., et al.: Internet of Things IoT semantic interoperability:
research challenges, best practices, recommendations and next steps. Technical
report, European Research Cluster on the Internet of Things, AC4 (2015)

17. Seydoux, N., Drira, K., Hernandez, N., Monteil, T.: Edr: a generic approach for
the distribution of rule-based reasoning in a cloud-fog continuum. Semantic Web
(Preprint), pp. 1–32 (2020)

18. Sun, Y., Jara, A.J.: An extensible and active semantic model of information orga-
nizing for the internet of things. Pers. Ubiquit. Comput. 18(8), 1821–1833 (2014)

19. Tirado, J.M., Serban, O., Guo, Q., Yoneki, E.: Web data knowledge extraction.
arXiv preprint arXiv:1603.07534 (2016)

20. Williams, S., Third, A., Power, R.: Levels of organisation in ontology verbalisation.
In: Proceedings of the 13th European Workshop on Natural Language Generation,
pp. 158–163 (2011)

http://arxiv.org/abs/1603.07534

A File-Based Linked Data Fragments
Approach to Prefix Search

Ruben Dedecker(B) , Harm Delva , Pieter Colpaert ,
and Ruben Verborgh

IDLab, Department of Electronics and Information Systems, Ghent University–imec,
Technologiepark-Zwijnaarde 122, 9052 Ghent, Belgium

Ruben.Dedecker@Ugent.be

Abstract. Text-fields that need to look up specific entities in a dataset
can be equipped with autocompletion functionality. When a dataset
becomes too large to be embedded in the page, setting up a full-text
search API is not the only alternative. Alternate API designs that bal-
ance different trade-offs such as archivability, cacheability and privacy,
may not require setting up a new back-end architecture. In this paper,
we propose to perform prefix search over a fragmentation of the dataset,
enabling the client to take part in the query execution by navigating
through the fragmented dataset. Our proposal consists of (i) a self-
describing fragmentation strategy, (ii) a client search algorithm, and (iii)
an evaluation of the proposed solution, based on a small dataset of 73k
entities and a large dataset of 3.87 m entities. We found that the server
cache hit ratio is three times higher compared to a server-side prefix
search API, at the cost of a higher bandwidth consumption. Nevertheless,
an acceptable user-perceived performance has been measured: assuming
150 ms as an acceptable waiting time between keystrokes, this approach
allows 15 entities per prefix to be retrieved in this interval. We conclude
that an alternate set of trade-offs has been established for specific prefix
search use cases: having added more choice to the spectrum of Web APIs
for autocompletion, a file-based approach enables more datasets to afford
prefix search.

Keywords: Prefix search · Query evaluation · Linked data fragments ·
Web APIs

1 Introduction

Prefix autocompletion is a common user interface feature in forms. Given a
certain prefix, suggestions are provided that match the prefix to an item in a
collection. This way, a user can recognize the item they are looking for, rather
than recalling the exact identifier it may have in the underlying data. To provide
such functionality, an API can be provided that filters the dataset entities on

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 53–67, 2021.
https://doi.org/10.1007/978-3-030-74296-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_5&domain=pdf
http://orcid.org/0000-0002-3257-3394
http://orcid.org/0000-0001-8272-0754
http://orcid.org/0000-0001-6917-2167
http://orcid.org/0000-0002-8596-222X
https://doi.org/10.1007/978-3-030-74296-6_5

54 R. Dedecker et al.

the server-side illustrated by the URL template https://example.org/%7B?query
%7D. Such a service requires the server to process all queries for every typed
character of every connected client. Another solution is to ship the collection
of entities to the client for processing. While feasible for small collections, this
quickly becomes problematic when the dataset grows.

Where some data publishers manage to publicly provide such an API for
prefix autocompletion for their datasets, others leave this feature up to third
parties reusing the data. An in-between solution could add more choice to the
spectrum for cases where prefix query evaluation entirely on the server is less
desirable. For example,

– for a website builder, shipping a collection of a couple of thousand entities
would make a page too heavy, yet setting up a website with a full-text search
API requires the maintenance of dynamic server-side functionality;

– for specialized cases where additional information can be incorporated in the
autocompletion client, e.g. adding error correction using a list of common
mistakes or filtering of geographically irrelevant results.

– for users that do not want to leak their search queries via query logs.

In this paper, we present a file-based architecture with an accept-
able user-perceived performance that enables clients to take control
of the prefix query evaluation process. The contributions are as follows: (i)
a hypermedia specification that can describe fragmentation strategies for string
search, (ii) a tailored implementation of a B-tree fragmentation described with
this hypermedia, (iii) a client search algorithm able to traverse the hypermedia
search space, and (iv) an evaluation discussing query performance, cache hit
ratio, bandwidth and efficiency.

In Sect. 2 we provide an overview on related work that inspired our work.
Evaluating the approach introduced in Sect. 3, in Sect. 4 we used the database of
all public transport stops in Belgium, for which we also published a real query-
set based on an access log, as well as a subset of OSMNames1, for which we
generated a random query-set. We measure whether clients evaluating prefix
queries over the proposed fragmentation strategy experience an acceptable user-
perceived performance by analyzing the performance, cache hit ratio, bandwidth
consumed and efficiency.

2 Related Work

Research on full-text search, prefix search or autocompletion on one machine has
a large history [1]. These techniques have profited from that prior work, resulting
in powerful open-source tools such as ElasticSearch. Today, for example, Elastic-
Search is the engine behind the autocompletion of Linked Open Vocabularies [7],
offering a search engine through all indexed Linked Data vocabularies2. Another
1 https://osmnames.org/download/.
2 The service can be used via the URL template https://lov.linkeddata.es/data
set/lov/api/v2/term/autocompleteLabels{?q}.

https://example.org/%7B?query%7D
https://example.org/%7B?query%7D
https://osmnames.org/download/

A File-Based Linked Data Fragments Approach to Prefix Search 55

example of a reconciliation tool using ElasticSearch is Pelias3. It offers world-
wide address autocompletion and geocoding by combining different datasets such
as Geonames4, OpenStreetMap5, Who’s on first6 and openaddresses.io. There is
however no public instance and a user is required to self-host it, or rely on soft-
ware as a service solutions that come at a pay per use cost. Furthermore, when
using the API, there are user experience guidelines to take into account, such as
(i) throttling requests, (ii) taking into account possible out of order responses
and (iii) using a pre-written client on the front-end if possible.

Triple Pattern Fragments (TPF) [8] is a Linked Data API specification for
solving queries using Basic Graph Patterns, introduced as an alternative to host-
ing a SPARQL endpoint. Instead of answering a full SPARQL query on the
server-side, it requires the client to take part in the query execution. The client
retrieves the fragments of the dataset required to evaluate the query from the
server by requesting Triple Patterns, and evaluates the query over the retrieved
fragments. Approximate counts of the specific triple patterns in the full dataset
are provided in the retrieved fragments to optimize client query evaluation based
on selectivity of certain triple patterns.

Van Herwegen et al. [6] extended the TPF interface with substring filtering
on objects using different indexes, such as ElasticSearch or an FM-index. For
this part of the query, the client thus relies on the server to fully filter the triple
pattern fragment’s response and does not explore in-between solutions. These
initiatives follow the idea of Linked Data Fragments (LDF)7 [5].

Finally, in a survey on Query Auto Completion (QAC) [1] the state of the
art is discussed. It sketches an elaborate overview of the research trends, among
others, heuristic and learning based approaches to raising the relevance of the
suggestions, analysis of the computational complexity – yet only on one machine
– of different algorithms, or the state of the art in QAC user experience. No
alternate Web API designs are discussed where clients could take part in the
query execution. Furthermore, in order to test the computational complexity,
only the complexity of resolving one prefix is considered, despite the fact that
a consecutive QAC query may continue querying from where a previous query
left off, and thus have a lower amortized complexity.

3 Dataset Fragmentation and Traversal

Client participation in query evaluation can be easily achieved by sending all data
to the client. However, as datasets grow larger, this approach leads to increased
bandwidth requirement and application response times, which is undesirable for
cases such as mobile applications where bandwidth caps are in place, and stable
network reception cannot be guaranteed.
3 https://pelias.io/.
4 https://www.geonames.org/.
5 https://www.openstreetmap.org/.
6 https://whosonfirst.org/.
7 https://linkeddatafragments.org.

https://pelias.io/
https://www.geonames.org/
https://www.openstreetmap.org/
https://whosonfirst.org/
https://linkeddatafragments.org

56 R. Dedecker et al.

In this section, we propose our strategy to publish datasets by fragmenting
the data using search tree structures. With this approach to data publishing,
clients are enabled to evaluate prefix queries over remote datasets by only retriev-
ing fragments of the dataset relevant to the client query. In Sect. 3.1 we introduce
preliminaries, which we use in Sect. 3.2 to introduce a self-describing fragmen-
tation strategy. Finally, in Sect. 3.3 a generic client-side traversal algorithm is
introduced.

3.1 Preliminaries

Given a dataset D, an autocompletion interface provides autocompletion func-
tionality over all entities in D. These entities can have different properties over
which autocompletion can be offered, such as a person entity having a first and
last name property. To enable fast prefix search lookups in a dataset for a given
property, an index can be constructed for that property using a data structure
that enables lookups to only retrieve the parts of the dataset relevant to the
query. Clients use such an indexing structure to more efficiently find entities
in the dataset matching a given prefix value for the indexed properties. Our
approach explores generating such indexing data structures, and using them to
fragment the dataset into smaller files (fragments). By embedding this tree struc-
ture as hypermedia controls in the generated fragments, clients are enabled to
only retrieve fragments relevant to the evaluated prefix query from the dataset.

3.2 A Self-describing Fragmentation Strategy

Instead of publishing a dataset as a query interface, or publishing it as a single
data dump, an in-between solution was chosen. To enable clients to participate
in the prefix query evaluation, clients should be able to retrieve only the data
relevant to the evaluated query from the dataset. This requires the dataset to
be fragmented, and for the fragments to be structured in a way that enables
clients to traverse and prune the search space. In the interest of improving query
performance by limiting the amount of HTTP requests necessary for a client to
autocomplete a prefix, we took our inspiration from the design of balanced tree
structures such as a B-tree [2]. The implementation of the creation algorithm
used in this paper makes use of B-tree structures to fragment the dataset. It can
be found at https://github.com/Dexagod/linked_data_tree.

To create fragmentations of a dataset, the data publisher first has to deciding
the properties over which the dataset entities should be indexed. For each chosen
property, a separate fragmentation of the dataset is created.

To create a fragmentation, first an indexing search tree data structure is gen-
erated, adding all entities in the dataset using the value of the chosen property as
key to add to the data structure (the data publisher decides the extent of a data
entity). Upon adding all dataset entities, for each node in the tree structure a
dataset fragment is generated, stored as a separate file. Such a fragment contains
the node information, its relations to other nodes in the data structure, and the

https://github.com/Dexagod/linked_data_tree

A File-Based Linked Data Fragments Approach to Prefix Search 57

data entities present in the node. To enable the client to traverse the tree struc-
ture in the generated fragments, the node and relation data in the fragments are
defined in a semantic way as hypermedia controls, using the TREE hypermedia
descriptions8, as depicted in Listing 1.1.

To enable clients to find a dataset and its available fragmentations, this
dataset information is published semantically as a collection object, as seen in
Listing 1.1. The different created fragmentations of the dataset are defined as
views on this collection object. These view properties point to the root nodes of
used tree structure and its containing fragment. An optional shape property can
be provided, defining the base shape (structure) of all entities in the collection.
On publishing this collection object on the Web, a client can discover all available
fragmentations of the dataset through the view properties present in the object.

1 {
2 "@context ": {
3 "tree": "https :// w3id.org/tree#"
4 },
5 "@id": "# Dataset", ///D
6 "@type": "tree:Collection",
7 "tree:shape": "shape.shacl",
8 "tree:view": {
9 "@id": "node1.jsonld", ///n

10 "tree:relation ": [
11 {
12 "@type": "tree:GreaterThanRelation", /// defines χ
13 "tree:path": "foaf:name", ///p
14 "tree:value": "Alice", ///v
15 "tree:node": "node2.jsonld", ///c
16 },
17 ...
18]
19 },
20 "tree:member": [...] /// array of e
21 }

Listing 1.1. An example of the metadata of a response in JSON-LD. A client
encountering this relation knows that all data found following the link to node2.jsonld
will result in a value that is greater than Alice for the foaf:name property.

For each node in the created tree structure of the dataset, the generated
fragment for that node defines a node object. This object stores the relations to
its child nodes (and their containing fragments). The dataset entities present in
the node of the tree structure are stored in the generated fragment as members
of the collection object (dataset) as seen on line 20 of Listing 1.1.

The relations to the child nodes are defined as relation objects, as seen on
line 10 of Listing 1.1. These semantically define the data found in the subtree of
the referenced child node, by specifying the following properties:

1. The relation type, being LessThanRelation, LessThanOrEqualToRelation,
GreaterThanRelation or GreaterThanOrEqualToRelation. This relation
type specifies a comparison operator χ, to to which all entities ec in the
subtree of child node c are evaluated in comparison to the relation value
vrelation;

8 https://treecg.github.io/specification.

https://treecg.github.io/specification

58 R. Dedecker et al.

2. a node property, being the hypermedia link to the child node c and its con-
taining dataset fragment.

3. an optional path p, that is the property path over which all entities ec in the
subtree of child node c are evaluated, and

4. a value vrelation.

This relation object semantically defines the entities that can be found in the
subtree of child node c. E.g. for a path p of firstName, a value vrelation of Alice,
and a relation type of GreaterThanRelation, the relation defines that all data
entities ec in the subtree of c have value greater than Alice for the value of their
firstname property. With this information, a client evaluating a query over the
dataset fragmentation can process the available relations, and prune the ones
that do not lead to relevant data entities for the evaluated query. Note that
multiple relation objects can defined in a node referencing the same child node,
further specifying the entities found in the child node and its subtree.

In order to express the property paths, the design of property paths in the
Shapes Constraint Language (SHACL) [4] is reused. As the ordering of characters
is important for comparing string based values, unicode ordering is used as a
default, as defined by the TREE specification. Flags are available to indicate
other orderings used to generate the fragmentation, and have to be followed by
clients.

As datasets can contain entities with non-unique values for a given prop-
erty, the tree structure used to fragment the dataset needs to support duplicate
key values. In Modern B-tree techniques [3], duplicate key values are stored
once, and subsequent entities with the same value are added in a (paged) array-
structure. Since however we are not limited to predefined semantics for relations,
we adapted the B-tree splitting algorithm to allow entities with duplicate key
values to just be stored in the tree structure. In case a node overflows during the
creation of the tree structure, and is split between duplicate key values, this is
resolved by having the parent node reference the two new nodes using the rela-
tion types LessThanOrEqualToRelation and GreaterThanOrEqualToRelation.
The client is not required to be aware of this adaptation, as it just requires an
understanding of the relation semantics to prune the search space.

3.3 Client Algorithm

In this section we describe the client algorithm used for the evaluation in Sect. 4.
A client can be asked to evaluate prefix search queries for a given prefix value
vquery and property path pquery over a dataset D (e.g. the client searches for
entities in D where the property pquery value of firstName matches the prefix
vquery of Ali). For this, the client requires a reference to the collection object of
D. Upon retrieving this collection object, the client dereferences the root nodes
of the available fragmentations of the dataset through the views defined on the
collection. This operation can be done at page load times, and should not slow
down lookups when used in Web applications.

At the start of the query evaluation process, the client decides the best frag-
mentation of the dataset to query over. For all fragmentations, the client checks if

A File-Based Linked Data Fragments Approach to Prefix Search 59

the available relations specify a property path prelation that matches the queried
property path pquery (e.g. the relation specifies it stores relations for the first-
Name property, and the query searches entities matching a prefix value for the
firstName property). If a fragmentation is found containing such relations, the
client continues to evaluate its query over this fragmentation. If no such frag-
mentation can be discovered, the client will not be able to prune relations of
any of the fragmentations (e.g. when the relations provide information over the
stored entities firstName property, but the client is querying for entities with a
lastName property matching the prefix Bob). In this case the client can retrieve
fragments of a random fragmentation without pruning, until the required amount
of results is retrieved for the query.

Now that the client has chosen a fragmentation to evaluate the query over,
the recursive traversal process is started. On retrieval of a new fragment
of the dataset (initially the one containing the root node), the client starts by
extracting all tree metadata from the fragment. First, the client emits all data
entities in the fragment matching the client query. In case the desired amount
of results is retrieved, the client is stopped. This design of incremental results
contrasts with evaluating the full query on the server-side, where traditionally
results are only emitted when the desired amount of results have been found.

If more results are needed, the relations available in the node of the frag-
ment are evaluated, as seen in Listing 1.1 on line 10. As multiple relations may
reference the same child node, and provide additional constraints to the enti-
ties stored in the subtree of that child node, the relations are grouped on the
child nodes they point to. If any of the relations pointing to a child node can
be pruned, all the relations to that child node can be pruned, as the referenced
node and its subtree cannot contain results for the client query

A relation is evaluated by matching the relation path prelation to the query
path pquery. In the case that these paths do not match (e.g. the relations stores
entities for the firstName property, where the client queries entities based on
their lastName property), the client can make no assumptions about the entities
stored in the node referenced by the relation, and the relation cannot be pruned.

In the case of matching path properties, the client tries to prune the search
space. This is done by comparing the queried prefix value vquery to the relation
value vrelation and the comparison operator χ specified by the relation type (e.g.
the GreaterThanRelation specifies the > comparison operator). In the case
of prefix search, the client now evaluates if the queried prefix value vquery is
contained in the range specified by the prefix of the same length of the relation
value vrelation and the comparison operator χ defined by the relation type. A
query for the prefix Car evaluated over a relation of type GreaterThanRelation
with a value vrelation of Alice, requires the client to check if Car > Ali. If this
comparison holds, the client may retrieve entities relevant for the evaluated query
by dereferencing the relation child node. For prefix search, the edge cases where
the queried prefix and the prefix of the relation value are equal, or where the
relation value is smaller prefix of the queried prefix value, the referenced child
node may also contain entities relevant to the evaluated query. When all relations

60 R. Dedecker et al.

referencing a child node cannot be pruned by the algorithm, the child node may
contain useful data and the recursive traversal process is repeated for the
child node fragment.

As the client is in control of the query evaluation process, subsequent evalu-
ated queries for incremental prefix values (e.g.) can con-
tinue the previous query evaluation, for an updated prefix value, as the results
of the updated query are a subset of the results of the previous query. Additional
rules can be implemented, such as deciding to not prune relations that provide
results within a certain Levenshtein distance of the queried prefix if only few
results are found. Different traversal strategies such as breadth-first or depth-
first can be implemented and changed during query evaluation depending on the
situation. Multithreading can be implemented using a queue system, where a set
number of relations can be processed in parallel.
The client implementation used for evaluating the approach can be found at
https://github.com/Dexagod/ldtreeBrowser.

4 Experiments and Results

We define a prefix query as the set of the requests that are performed to retrieve
25 results (if available) that start with that prefix. The query server approach
consists of a client using a query server that returns a page with 25 results from
the dataset (if available) for the queried prefix value and path. The search tree
is the approach introduced in this paper, where a client traverses a published
search tree for entities matching the queried prefix value and path. For this
evaluation, we assume that a fragmentation is available for the property over
which the prefix query is evaluated. In order to understand the effectiveness
of the tree approach, we will measure the cacheability of these requests, and
how this impacts efficiency and bandwidth, based on the size of a dataset in
a real-world environment. Based on this cacheability and the scalability of the
depth of the tree, we can deduct what this means for the overall user-perceived
performance.

For the experiments, we republished 2 datasets using our approach, and setup
a query server interface for these datasets: A dataset of Belgian public transport
stops (6 triples per entity, and a total of 72,967 entities), and a subset (BE, FR,
NE, LU, DE) of the OSMNames dataset9 (32 triples per entity, and a total of
3.87m entities), both published using a fragment size (m) of 25 members (a frag-
ment contains 25 data entities, and relations to the 26 child nodes and their con-
taining fragments). For the Belgian public transport stops dataset, a real-world
query log was extracted from a server autocompleting Belgian railway stops. For
the OSMnames subset, we did not have access to a real-world query set, so a ran-
domized query set was generated. This randomized query set was generated for
1000 target values distributed over 50 simulated user clients, where for each tar-
get a series of prefix queries was created, starting at random length prefix, for a

9 https://osmnames.org/download/.

https://github.com/Dexagod/ldtreeBrowser
https://osmnames.org/download/

A File-Based Linked Data Fragments Approach to Prefix Search 61

randomized amount of subsequent prefixes (e.g.).
In the case of the query server, the client sends a separate request for every
prefix in the query log. The used datasets and query logs are made available on
Github10.

The evaluation consists of a server providing the search tree fragmentation, a
server providing the server-sided prefix search query interface and a proxy cache
in front of these servers on the same network, and a laptop using Wi-Fi with an
average ping of ±20ms. All servers are dedicated machines with a 2x Dual Core
AMD Opteron 270 (2GHz) CPU, 4GB Ram and a 80Gb Hdd. All queries are
evaluated on a laptop with a Intel M4800MQ CPU and 16GB Ram.

4.1 Cache Efficiency

In Fig. 1, we show the server cache hit ratio for a client evaluating the randomized
prefix query set over the OSMNames dataset, using an nginx cache at 10% the
size of the original dataset. This evaluation was done for the larger dataset, to
provide a better overview of the caching behavior. We tested this for both a
query server (baseline) as the search tree approach and notice the search tree
approach achieves a three times bigger cache hit rate on the server.

As the baseline query server returns results for a specific prefix value, it can
only return a cached request in the case of an exact match in requested prefix.
In contrast, our approach uses a tree structure to fragment the dataset. A client
evaluating a prefix query over a tree structure requires multiple requests for
nodes in the tree in contrast to the single request when using the baseline query
server. As the client evaluates queries by traversing the tree structure starting
from the root node, nodes closer to the root of the tree structure are fewer
and therefore have a higher probability of being retrieved for a random prefix
query. Because of this, they have a higher probability of being present in the
server cache. This explains the higher server cache hit ratio for our approach of
evaluating prefix queries compared to the baseline query server.

4.2 Query Performance

As the proposed search tree querying approach enables the autocompletion client
to emit results during the traversal process of the tree structure, this experiment
was setup to see how many results can be achieved within 150 ms, a time span
which feels instantaneous to end-users. As query server interfaces are capable of
this, and do not provide incremental results (all results are transmitted at once),
we focus on the query performance of the proposed search tree approach.

Prefix requests are not isolated events, where often the value of the previous
request is a prefix of the current request. Because of this, the performance eval-
uation is done separately for the first three queries (if available) in each series of
prefix queries in the used query sets.

10 https://github.com/Dexagod/Paper_metadata/tree/master/ISWC2021.

https://github.com/Dexagod/Paper_metadata/tree/master/ISWC2021

62 R. Dedecker et al.

Fig. 1. Average server cache hit ratio evaluating the randomized query set over the
OSMNames dataset. The query server stagnates at around 20%, where our proposed
approach provides cached result for more than half the requests to the server after an
initial warmup period.

The performance is measured as the amount of results the query emits for
the evaluation of a prefix query within a 150 ms interval of the client receiving a
new prefix value. The results are averaged for all first, second and third requests
in all series of subsequent prefix queries in the query logs. For the experiment,
the server cache size is set to 10% of the dataset size, and a client cache is set
per user that stores all previously retrieved fragments.

In Fig. 2 we can see that for the public transport stops dataset (73k entities),
the first evaluated prefix query in a series returns on average just below 15 results
in within the 150 ms period. For the subsequent second and third prefix queries,
the results can be retrieved faster, producing on average 15 results within a
150 ms interval. For an average query, the first 5 results are shown in a 25 ms
interval as a result of server caching, and cached results from previous queries.
Subsequent queries in a series returning less results can be explained by the
dataset containing less than 15 entities matching the queried prefix.

In Fig. 3, we see that for the subset of the OSMNames11 dataset (3.87m
entities), the proposed approach results in a slower start for the evaluation of
the first prefix queries in a series. This is caused by the randomized nature of
the query set used for this dataset. As the first prefix query has a randomized
length, it may have results stored deeper in the tree structure of the published
dataset fragmentation, requiring a more expensive initial lookup. For subsequent
queries in the series, the performance normalizes because of previously cached
data, with the second evaluated prefix query returning on average 15 results in
the 150 ms interval. A slower average results in the first 25 ms of the query
compared to the smaller dataset is caused by the deeper tree structure of the
fragmentation.

11 https://osmnames.org.

https://osmnames.org

A File-Based Linked Data Fragments Approach to Prefix Search 63

Fig. 2. Increased performance in a series of subsequent prefix queries (e.g. query1:
“Lou”, query2: “Louv”, query3: “Louva”) over the transport stops dataset (73k entries)
for the proposed approach. First 5 results are shown in a 25 ms as a result of caching
and results available from previous queries. Later queries may not have 15 results in
the dataset, leading to a lower amount of retrieved results.

Fig. 3. Slower retrieval of results for the first evaluated prefix query in a series because
of randomized length of the first query in the generated query set for the OSMNames
dataset (3.87 m entities). Subsequent queries provide 15 results in the 150 ms interval,
with a slower start because of the deeper tree structure of the dataset fragmentation.

4.3 Efficiency and Bandwidth

We define the efficiency as “the fraction of data retrieved from the server during
the execution of a task over the amount of data required to execute that task” [8].
In a query server approach, developers will aim towards a 100% efficiency. At the
cost of efficiency, the search tree approach raises the cacheability. In Fig. 4, we
discuss the results for how much efficiency we sacrifice. In Fig. 5 we discuss the
bandwidth consumption and the number of HTTP requests that this adheres to.

In the implementation for our approach, we made the decision to allow the
data publisher to decide how many data entities can be stored per dataset frag-
ment (identical to the amount of values that can be stored in a node of a generic
B-tree implementation). The consequence of this is that the size of a single frag-
ment scales both with the amount of data entities stored in the fragment, as
well as with the individual sizes of each of these entities. Because of this, at
publication time the average entity size has to be taken into consideration when
creating a fragmentation, as this will influence the bandwidth requirement of the
interface.

64 R. Dedecker et al.

Fig. 4. The efficiency shows a large quantity of 0% queries. This is due to targets
that do not result in an answer (not in the collection). For other requests we see the
efficiency averages over 50%.

Fig. 5. A max bandwidth of 25kB is consumed for an autocompletion query for this
particular dataset and query log. The number of requests for a full query autocomple-
tion range from 0 to 20 requests in worst-case. The y-axis is the % of queries.

4.4 Fragment Sizes

In the prior experiments, we always used a fragment size of 25 entities per page.
We selected this page size when comparing the query performance of 25, 50, 75 to
100 entities per page. The results are provided in Fig. 6. We notice longer startup
times for the initial queries over larger dataset, and that larger fragment sizes
perform better for small datasets, but in turn perform worse for larger datasets.
This can be attributed to the trade-off between traversal speed and data locality,
where for larger datasets traversal speed becomes increasingly important.

A File-Based Linked Data Fragments Approach to Prefix Search 65

Fig. 6. This figure compares the performance for clients evaluating prefix queries over
(Top) the public transport stops dataset (73k entities, 6 triples per entity) and (Bottom)
the OSMNames dataset (3.87m entities, 32 triples per entity).

5 Discussion

In contrast to a query server, where the number of HTTP requests stays con-
stant when a dataset grows in size, the amount of HTTP requests needed with
the tree approach is proportional to the amount of entities in the dataset. In
case of a fragmentation based on a theoretical B-tree, the number of requests
necessary to find entities matching a prefix value is decided based on the height
of the tree, which can be calculated theoretically for a dataset of n entities as:
rmax = �log�m/2�(n+1

2)�, with rmax the maximum number of requests necessary,
without counting the root node which can be prefetched, and with m the max-
imum number of children a node can have. The depth thus defines the number
of HTTP requests needed when only the root node of a tree is found, and this is
the first time the auto-completion is being ran, so the client cache is cold. With
every depth that is added, it takes an exponential (power of m/2) number of
entities more to result in an increase in worst-case number of requests necessary.
Applied to our dataset: with 25 entities per fragment for a total of 105 entities, a
depth of 4 would be needed (hmax), and thus 4 HTTP requests would be needed
in worst-case to show results. When a new query shortly thereafter is done, the
probability of being able to cache one of the higher-level nodes should become

66 R. Dedecker et al.

higher, which is illustrated by Fig. 2. Our implementation and experiment con-
firms this theoretical analysis: for a full series of queries, the experimental results
are depicted in Fig. 5.

This is illustrated by the OSMNames dataset, with a maximum depth of 6
for 3.87 million entities, vs. the public transport stops dataset with a maximum
depth of 4 for 73k entities. Fig. 3 thus also shows that even for larger datasets,
the approach returns timely results.

6 Conclusion

Given that a sufficient number (±15) of results will be retrieved in a timely
fashion (±150 ms), we can conclude that our approach of fragmenting a dataset
as static files can be a viable alternative to a query service, given a dataset
fragmentation is published for the queried data property. At the expense of the
client having to take part in the query evaluation and consume more bandwidth,
the server may work even fully from cache, archive or CDN. The results show
using a cache that is 10% the size of the dataset, the search tree approach
implemented in this paper reaches a server cache hit ratio that is ±3 times better.
Thanks to the TREE hypermedia specification, any search space design that
uses the specified hypermedia controls can be used by a generic autocompletion
client. The downside however is a larger bandwidth consumption, meaning query
response times will be easier impacted by a bad internet connectivity. While we
designed this approach for datasets for which setting up a tool like ElasticSearch
or a SPARQL endpoint is not worth the effort, the approach can return results
in a timely fashion even for large datasets with millions of entities.

The fragment size itself however is a difficult decision to make, and we do
not have a silver bullet approach to decide what the best number per dataset
fragment would be. In this paper we tested the approach for one specific use case
of prefix autocompletion and came to the conclusion that a size of 25 entities
per fragment gave the best response times. However, depending on the dataset,
the query set used for the benchmark, the level of privacy you want to guar-
antee and type of text search query, we believe other fragment sizes may be
more interesting. Furthermore, the ideal fragment size will also depend on the
type of hypermedia search space one implements. In this paper we chose a B-
tree approach to prove that file-based fragmentation strategies can produce and
acceptable user-perceived performance, yet we certainly do not rule out other
search space designs. Future work will be to come up with specific search space
designs such as faster querying by adding important entities higher up in the
tree, for substring search with automata, for fuzzy matches by clustering by
string distance, with a geospatial bias by first adding a geospatial fragmentation
to your dataset, etc.

The new client-server relation for prefix search has an effect on the user
experience guidelines of Pelias (cfr. Sect. 2)). (i) Throttling requests can happen
differently, as a large amount of requests can be handled from server cache. In a
similar way, there is also no danger of out of order responses (ii). As the client

A File-Based Linked Data Fragments Approach to Prefix Search 67

controls the query evaluation process, subsequent request can filter the previ-
ously retrieved results, and continue the on-going query processing to the next
prefix. Finally, (iii) using a pre-written client was a guideline when working with
the query server design, and remains our guideline here as well. This pre-written
client is given more responsibility for the query evaluation process, giving it more
flexibility to implement the autocompletion or any text search feature in the way
a developer wants. In the same spirit of the Pelias user experience guidelines,
we formulate two additional guidelines for publishing a fragmented interface. A
caching is the driver behind the scalability of this approach, probably the most
important of these guidelines will be (iv) to set caching headers. Both conditional
caching with etag header, as setting a cache-control header are possibilities
in different designs. Next, for public datasets, also (v) Cross Origin Resource
Sharing (CORS) headers need to be enabled. This will enable application devel-
opers to reuse the dataset from a different domain than where the dataset itself
is hosted.

References

1. Cai, F., De Rijke, M., et al.: A survey of query auto completion in information
retrieval. Found. Trends Inf. Retrieval 10(4), 273–363 (2016). https://staff.fnwi.
uva.nl/m.derijke/wp-content/papercite-data/pdf/cai-survey-2016.pdf

2. Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. (CSUR) 11(2), 121–137 (1979).
https://dl.acm.org/doi/10.1145/356770.356776

3. Graefe, G., Kuno, H.: Modern b-tree techniques. In: 2011 IEEE 27th International
Conference on Data Engineering, pp. 1370–1373. IEEE (2011). https://doi.org/10.
1561/1900000028. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.
7269&rep=rep1&type=pdf

4. Knublauch, H., Kontokostas, D.: Shapes constraint language (shacl) (2017). W3C
recommendation (2017) https://www.w3.org/TR/shacl/#property-paths

5. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
modular SPARQL query engine for the web. In: Vrandečić, D., et al. (eds.) ISWC
2018. LNCS, vol. 11137, pp. 239–255. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00668-6_15

6. Van Herwegen, J., De Vocht, L., Verborgh, R., Mannens, E., Van de Walle, R.:
Substring filtering for low-cost linked data interfaces. In: Arenas, M., et al. (eds.)
ISWC 2015. LNCS, vol. 9366, pp. 128–143. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25007-6_8

7. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked
Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web.
Semantic Web 8(3), 437–452 (2017)

8. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface
for the web. J. Web Semant. 37–38, 184–206 (2016). http://linkeddatafragments.
org/publications/jws2016.pdf. https://doi.org/10.1016/j.websem.2016.03.003

https://staff.fnwi.uva.nl/m.derijke/wp-content/papercite-data/pdf/cai-survey-2016.pdf
https://staff.fnwi.uva.nl/m.derijke/wp-content/papercite-data/pdf/cai-survey-2016.pdf
https://dl.acm.org/doi/10.1145/356770.356776
https://doi.org/10.1561/1900000028
https://doi.org/10.1561/1900000028
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.7269&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.7269&rep=rep1&type=pdf
https://www.w3.org/TR/shacl/#property-paths
https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.1007/978-3-319-25007-6_8
https://doi.org/10.1007/978-3-319-25007-6_8
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
https://doi.org/10.1016/j.websem.2016.03.003

Social Web

Assessing the Quality of Online Reviews
Using Formal Argumentation Theory

Davide Ceolin1(B) , Giuseppe Primiero2 , Jan Wielemaker1 ,
and Michael Soprano3

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{davide.ceolin,j.wielemaker}@cwi.nl

2 University of Milan, Milan, Italy
giuseppe.primiero@unimi.it

3 University of Udine, Udine, Italy
michael.soprano@uniud.it

Abstract. Review scores collect users’ opinions in a simple and intuitive
manner. However, review scores are also easily manipulable, hence they
are often accompanied by explanations. A substantial amount of research
has been devoted to ascertaining the quality of reviews, to identify the
most useful and authentic scores through explanation analysis. In this
paper, we advance the state of the art in review quality analysis. We
introduce a rating system to identify review arguments and to define an
appropriate weighted semantics through formal argumentation theory.
We introduce an algorithm to construct a corresponding graph, based
on a selection of weighted arguments, their semantic similarity, and the
supported ratings. We provide an algorithm to identify the model of such
an argumentation graph, maximizing the overall weight of the admitted
nodes and edges. We evaluate these contributions on the Amazon review
dataset by McAuley et al. [15], by comparing the results of our argu-
mentation assessment with the upvotes received by the reviews. Also, we
deepen the evaluation by crowdsourcing a multidimensional assessment
of reviews and comparing it to the argumentation assessment. Lastly,
we perform a user study to evaluate the explainability of our method.
Our method achieves two goals: (1) it identifies reviews that are con-
sidered useful, comprehensible, truthful by online users and does so in
an unsupervised manner, and (2) it provides an explanation of quality
assessments.

Keywords: Formal argumentation theory · Online reviews ·
Information quality

1 Introduction

Online reviews can be a valuable source of information, as they allow users
to gain from the experience of others who have expressed their opinion about
the next product to buy or room to book. Opinions provided by Web users
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 71–87, 2021.
https://doi.org/10.1007/978-3-030-74296-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_6&domain=pdf
http://orcid.org/0000-0002-3357-9130
http://orcid.org/0000-0003-3264-7100
http://orcid.org/0000-0001-5574-5673
http://orcid.org/0000-0002-7337-7592
https://doi.org/10.1007/978-3-030-74296-6_6

72 D. Ceolin et al.

are useful insofar as those of higher quality can be identified. Over the past
years, research has characterized reviews’ trustworthiness in several ways: user
reputation and quality assessment are among them. However, while reviews are
about specific products or services, they represent often express multifaceted
views on the target object. To assess the quality and trustworthiness of a review,
it is important to understand which arguments it provides, their strength, and
on which aspects of a target product they provide positive or negative evidence.

Reviews can be seen in the form of ratings-descriptions pairs. Such form of
reviews, common in many e-commerce sites, indicates a rating (often in a 1–
5 Likert scale) for the quality of a given target product, enriched with textual
descriptions motivating the score. We analyze these descriptions to identify argu-
ments that support the corresponding scores. Arguments are identified through
natural language processing of such descriptions and ranked according to their
importance using the textRank algorithm [16]. The quality of the descriptions
is quantified through a readability measure [11]. We formulate, implement, and
evaluate a rating system based on formal argumentation theory which collects
such sets of pairs when they share a given argument but offer opposing ratings.
We study it in depth by addressing the following research questions:

R1: Given a set of reviews about the same product, can argumentation reasoning
help assessing review quality?

R2: Which quality aspects does argumentation reasoning emphasize?
R3: Can argumentation reasoning be used to explain review quality?

The rest of this paper is structured as follows. In Sect. 2 we first provide some
informal preliminaries, then develop a preferential argumentation framework. In
Sect. 3 we describe the experimental settings we adopt. In Sects. 4, 5, and 6 we
present our approaches to RQ1, 2, and 3, and the related results. We discuss the
three evaluations in Sect. 7. In Sect. 8 we present related work, and in Sect. 9 we
conclude.

2 Weight Based Preferential Rating Systems

We propose a formal semantics of value-based argumentation that extends the
model of Baroni et al. [3] to describe the conflict and support dynamics between
topics as arguments within a set of reviews. Let us consider a set of reviews of a
given product. We interpret them as nodes of a graph, where edges of the graph
express the attack relation between two reviews providing descriptions for at
least one common feature of the product, while they assign different scores to
it. The semantics of the graph is established by a standard labeling function on
vertices:

1. An argument is labeled in when all its attackers are out ;
2. An argument is labeled out when at least one of its attackers is in;
3. An argument is labeled undec if not all its attackers are out and no attacker

is in.

Assessing the Quality of Online Reviews 73

This semantics is aligned with the scores from natural language processing of the
reviews and translated in a graph construction algorithm. Topics are grouped
using K-means clustering; two reviews with disagreeing ratings attack each other
when they share two topics belonging to the same cluster. Attacks follow topic
weight ordering and support between arguments is represented indirectly: an
argument supports another argument when it attacks its attacker. The weight
of the corresponding edge is based on semantic similarity. Grouping reviews per
topic allows obtaining a coherent set of reviews identifying the pros and cons of
the same item.

Definition 1 (Review). A review Ri(t) by an agent i ∈ A on a target t is
construed as:

1. A list of topics: T = {φ1; ...;φn};
2. A relevance value r(φi) ∈ [0, 1] for each topic φi;
3. A semantic similarity value sem sim(φi, φj) ∈ [0, 1] defined for each pair of

topic for each review;
4. A score sc(Ri) = {1, 2, 3, 4, 5};
5. A quality value v(Ri) ∈ [0, 1].

Provided a list of reviews {R}, we collect all those with the same target
object t and denote them as {R(t)}. The list of topics T collects the elements
characterizing the review content on the target product: for example, on the
target “shoes”, topics could be “sole”, “upper”, but also “comfortable for long
walks”. The relevance value r(φi) quantifies the importance of topic φi within the
review itself. This is a de facto value function from topics to real positive num-
bers. Likewise, sem sim(φi, φj) represents any of the available functions (e.g.
based on thesaurus, symbolical representations of word semantics, term proba-
bilistic co-occurrence) for semantic similarity defined for every couple of topics.
Given {R(t)} and T (t) = {φ1; ...;φn}, we cluster any two topics according to a
function sem dist(φi, φj) defined in the interval [0,∞]. Several implementations
are possible for this measure. In our case, we use the Word Mover distance [13] to
measure the similarity between topics that are represented through text tokens,
that are, in fact, groups of words. To identify the ideal number of clusters, we
compute the cluster silhouette for a diverse number of clusters and we select the
cluster configuration that maximizes this value, i.e. such that the intra-cluster
average distance is minimized. The function sem sim(φi, φj) is then computed
simply as 1

sem dist(φi,φj)
. The score Ri is the value attributed to the object.

We represent the score as an integer from 1 to 5, as it is done in many review
systems. We currently consider different values as opposing, and do not con-
sider the absolute difference between them (e.g. treating the difference between
| sc(Ri) − sc(Rj) |>| sc(Ri) − sc(Rk) |). Finally, a quality value is used to rank
reviews. We especially consider the readability of the review to be an impor-
tant aspect because: (1) it quantifies how easily a reader might consume it and
(2) it might provide a proxy for the quality of the information it contains. In
particular, in our experiments, we use the Flesch Kincaid Reading Ease mea-
sure [11]. This formula provides reliable scores between 100 (text understandable

74 D. Ceolin et al.

by 5th graders) and 0 (texts understandable by professionals). Other readability
measures will be tested in the future.

Topics within the same cluster are those on which reviews’ attacks are
defined, as reviews showing semantically distant topics might be considered
incomparable:

Definition 2 (Attack). Review Ri attacks review Rj with weight w (Ri →w

Rj) iff

1. Ri(t) = Rj(t);
2. {T (t) ∈ Ri ∩ T (t) ∈ Rj} �= ∅;
3. sc(Ri) �= sc(Rj);
4.

∑
φi∈R i

(r(φi) · v(Ri)) >
∑

φj∈Rj
(r(φj) · v(Rj));

5. w = 1/
∑

φi∈R i,φj∈Rj
(sem dist(φi, φj))

According to the definition above a review attacks another one if and only if
(1) they are about the same target object; (2) they have at least one of the
topics of the target object considered in common; (3) their score is different
(as mentioned above, we make at this point no granular distinction between
differences in scores); (4) the (sum of the) relevance value(s) of the topic(s) of
the attacking review weighted by its quality is higher than that of the attacked
review; and finally, (5) attacks are weighted on their importance: the weight of
an attack is defined as the inverse of the (sum of the) semantic distance(s) of
the topic(s) of the reviews involved, hence expressing the fact that an attack on
more closely related topics weights more than one involving distant topics. A
rating system is now built as a set of reviews and attacks between them, ordered
according to a preference relation based on their weights:

Definition 3 (Rating System). A rating system is a tuple RS :=
〈{R(t)}, R−,≤〉 where

1. {R(t)} is a list of reviews on target t;
2. R− ⊆ {R(t)} × {R(t)} is a binary relation of attack between reviews, such

that (Ri,Rj) ∈ R− iff Ri →w Rj;
3. ≤ ⊆ R− × R′− is a preference relation such that R− ≤ R′− if and only if

R− : Ri →w Rj, R′− : Rk →w′ Rl, w > w′ with possibly j = k.

According to this Definition, a rating system contains (1) a set of reviews on
the same target, (2) equipped with a set of attack relations, (3) ordered based on
their weights. We now define several strategies to establish the attack relations
actually included in any given rating system:

Definition 4 (Full Attack Strategy). ∀R−, R− ∈ RS.

The Full Attack Strategy includes every well-defined attack relation in the
graph, i.e. any review attacks any other review with a different score with which
it shares a topic within the same semantic similarity cluster and which has
a lower weight computed as the relevance of the topic and quality value of the
review. From this general case, we offer several pruning strategies on the number
of attack relations.

Assessing the Quality of Online Reviews 75

Definition 5 (Heavy Weight Pruning). R− ∈ RS iff ∃R′−. R− ≤ R′−.

In the Heavy Weight Pruning, we remove from the rating system the (set of)
attack(s) with the lowest weight. By the definition of weight, this reflects the
intuition that one removes those attacks based on the reviews having a different
score on topics of low relevance, or on semantically distant topics (i.e. the reviews
express different views on possibly incomparable aspects of the product). Note
that a significant variant of this pruning method consists in removing the attacks
with the weight under a certain value, e.g. falling within the last percentile.
A more selective pruning strategy is expressed through clustering by semantic
similarity:

Definition 6 (Clustering Pruning). R− ∈ RS iff R− < R′− for some R′− :
Ri →w′ Rj and w′ < n such that n is the chosen value for a given clustering
algorithm.

According to this method, an attack relation is considered in the graph of the
rating system if and only if its weight is above the clustering threshold for the
semantic similarity of the topics involved by the attack. Once the clustering is
established of what does it mean for two topics to be similar, any attack which
picks topics from distinct clusters is removed and no longer considered. In the
following, we consider this pruning strategy as our main one. We now define the
labeling of a rating system:

Definition 7 (Labelling). Given a rating system RS

– {S (t)} ⊆ {R(t)} is conflict-free iff there are no Ri,Rj ∈ {S (t)} such that
(Ri,Rj) ∈ R−;

– A review Ri ∈ {R(t)} is supported by {S (t)} ⊆ {R(t)} iff for any Rj ∈
{R(t)} such that (Rj ,Ri) ∈ R−, it exists Rk ∈ {R(t)} such that (Rk,Rj) ∈
R−;

– A review Ri ∈ {R(t)} is defeated by {S (t)} ⊆ {R(t)} if and only if it
∃Rj ∈ {S (t)} such that (Rj ,Ri) ∈ R− and Rj is supported by {S (t)};

– A review Ri ∈ {R(t)} which is neither supported nor defeated is undecided.

A conflict-free RS is possible if and only if every review has the same score
for every topic φi within a given cluster of semantic similarity. The notion of
support of a review by a rating system expresses the idea that the score of that
review for the given (cluster of) topic(s) is endorsed; the defeat of a review by a
rating system expresses the dual idea that the score of that review for the given
(cluster of) topic(s) is rejected; an undecided review is one which presents high
expected variance on its usefulness in establishing the score of the product.

Definition 8 (Semantics). Given a rating system RS

– A conflict free set {S (t)} ⊆ {R(t)} is admissible iff each Ri ∈ {S (t)} is
supported by {S (t)};

– A preferred extension is an admissible subset of {R(t)} maximal w.r.t. set-
inclusion and preference;

76 D. Ceolin et al.

– An admissible {S (t)} ⊆ {R(t)} is a complete extension iff each review sup-
ported by {S (t)} is in {S (t)};

– The most (with respect to the weight of supported reviews) complete extension
is the weighted complete extension.

We look for the model which maximizes the number of in-nodes with higher
weight.

3 Experimental Setting

We describe the implementation of the above framework and the dataset
adopted.

3.1 Implementation

Figure 1 provides an overview of our implementation,1 described as follows.

Feature Extraction. Given a set of reviews for product target t, we extract:

1. The set of textual tokens in such reviews to use as the set of topics T and
their importance in the text r(φi) for each topic φi ∈ T . Textual tokens are
estimated using the Spacy library, their importance is estimated through the
pyTextRank library implementing the TextRank algorithm, i.e., computing
the PageRank of the tokens in the review based on their textual dependency.

2. The readability scores of the review to use as a proxy for sc(Ri); again we
use the Spacy library and, in particular, the Spacy-readability extension.

Fig. 1. Overview of the graph creation pipeline

Argumentation Graph Building. We proceed as follows:

1. Build the semantic distance matrix of all the tokens in the reviews of that
product from each sem dist(φi, φj). We use the Word Mover distance [13]
implemented in Gensim [19] to this aim;

2. cluster tokens according to their semantic similarity. We use K-means and we
identify the optimal number of clusters using the silhouette method;

3. represent an argumentation graph as a NetworkX Directed graph where: (1)
nodes represent reviews; and (2) links represent attacks. Reviews attack all
other reviews with a lighter score that share the same topic and disagree on
the rating.

1 Source code available at: https://github.com/davideceolin/FAReviews.

https://github.com/davideceolin/FAReviews

Assessing the Quality of Online Reviews 77

Graph Solution. In order to identify the models of the graph, we implement a
SWISH Prolog-based solver also available as a standalone service accessed via a
customized extension of the Python Prolog Pengines library.2

3.2 Dataset

We evaluate the above model on the Amazon Review Dataset [15], in particular
on the Amazon Fashion 5-core dataset, which consists of 3,562 reviews (3,009
after duplicate removal) provided by 406 users about 31 products. For each
review, the dataset reports:

– the id of the review author;
– the timestamp and the text of the review;
– the id of the product reviewed;
– the rating given to the product (on a 1–5 Likert scale);
– the number of upvotes a given review received. Note that users can only

indicate whether they found a given review useful, not the contrary.

3.3 Argumentation Graph Building Example

Reviews and their argumentation graph are compared for explainability. Details
of the graph construction process are given below in Sect. 4. Here we provide an
example:

Review 1: ‘We have used these inserts for years. They provide great sup-
port.’ (5 stars)
Review 2: ‘This is my 6th pair and they are the best thing ever for my
plantar fasciitis and resultant neuromas. Unfortunately, the ones I ordered
from SmartDestination must be seconds as they kill my feet. The hard
plastic insert rubs on the outside edges of my feet. I am unable to exchange
them as I waited one day too late to use them in my walking shoes.’ (2
stars).

The two reviews have no textual token in common, however, some of their
tokens are semantically related. For example, ‘these inserts’ (Review 1) and ‘hard
plastic insert’ are semantically close enough to belong to the same cluster. This
means that we capture an attack between the two, from Review 1 (readability
102.5) to Review 2 (readability 73.44). The weight of the attack is given by the
sum of the importance of all the tokens of the two reviews which co-occur in
a cluster, weighted on the semantic similarity between each pair of tokens and
on the readability of the review itself. The semantic similarity is computed after
stop words removal (the above tokens are ‘hard plastic insert’ and ‘inserts’). This
process is repeated with all the tokens shared between two reviews and with all
the review pair combinations for a given product.

2 https://swish.swi-prolog.org/p/argue.swinb.

https://swish.swi-prolog.org/p/argue.swinb

78 D. Ceolin et al.

4 RQ1 - Review Quality Assessment Evaluation

We consider here the ability of our system to discriminate reviews’ quality.

4.1 Baselines and Evaluation Settings

We created two baselines:

Unsupervised (K-Means). We extract a set of basic textual features from the
reviews (e.g., text length) and we cluster them using the K-Means algorithm
with K = 3.

Supervised (SVC). Using the same features as above, we split the dataset and
use the first 30% of reviews to train a Support Vector Classifier to classify
the remaining 70%. To allow a fair comparison between the three methods,
we convert the number of upvotes into two buckets, to mimic the classifi-
cation obtained with our method. We provide three variations on this, with
thresholds at 1, 5, and 10 upvotes.

We evaluate our framework under three different settings:

Argumentation Framework. We adopt the dataset described in Sect. 3.1.
Argumentation Framework Weighted. We adopt the dataset described in

Sect. 3.1, but we apply a decaying function to the number of upvotes based on
their age. The decaying function we use is w(x) = tmax−tx

tmax−tmin
where tmax and

tmin are the highest and lowest timestamps in the dataset; tx is the timestamp
of review x. Since the argumentation framework result is compared with a
snapshot of the upvotes collected at a given time, this decaying function
compensates for the fact that the older reviews had a higher chance to get
upvotes than the younger ones.

Argumentation Framework Weighted (Upvotes>0). Since votes can only
be up and not down, we cannot tell whether zero-votes reviews deserve zero
votes or negative votes. We focus here on reviews that received at least one
upvote.

Assessing the Quality of Online Reviews 79

Table 1. Average number (left) and sum (right) of upvotes received by the reviews in
each class. The average of upvotes in the class should be maximized, the average in
the out class minimized. In Arg. Framework Weighted, a temporal decaying function
(see Sect. 4.1) is used. In Arg. Framework Weighted (>0 upvotes), we consider reviews
with at least 1 upvote (see Table 3).

Method Out In

Arg. Framework 2.3 0.5

Arg. Framework Weighted 0.0 0.4

Arg. Fram. Weigh. (>0 upvotes) 0.0 4.2

Unsupervised (K-Means) 2.5 0.3

Supervised (SVC) @1 0.0 5.7

Supervised (SVC) @5 0.1 10.2

Supervised (SVC) @10 0.3 17.7

Method Out In

Arg. Framework 35 1553

Arg. Framework Weighted 0 1210

Arg. Fram. Weigh. (>0 upvotes) 0 1210

Unsupervised (K-Means) 662 926

Supervised (SVC) @1 26 1165

Supervised (SVC) @5 304 765

Supervised (SVC) @10 610 459

4.2 Results

We run the above algorithm and we obtain a classification of product reviews as
in or out. No review is classified as undecided. Table 1 shows the average number
and sum of upvotes that the review in a given class received. For example,
the reviews that are labeled as out (i.e., rejected) by the weighted version of
our framework got, on average, 4.2 upvotes, and reviews classified as out got on
average 0.0. We considered the possibility of computing precision and recall of our
method. However, precision and recall imply the existence of negative samples,
while upvotes are only positive values. Artificially introducing a threshold to split
reviews into positive and negative items would be possibly misleading. A “one-
size-fits-all” would hardly work in this case: such a threshold could have to vary
per product or product type and could have to take into account also temporal
aspects. For instance, less popular products could receive fewer reviews and have
a smaller chance to get upvotes. Thus, their threshold should be lower than that
of popular products. At the same time, the rareness of reviews alone cannot be
considered a sufficient reason to set the bar low: those few reviews could get
few upvotes because of their poor quality. Therefore, we limit the comparison
with the baseline approaches to Table 1. With these considerations in mind, to
allow a comparison between our method and SVC, we still introduce the use of
thresholds to convert the multivalued classification of SVC into binary values.
For this, we use three thresholds, 1, 5, and 10 (the mean number of upvotes
received by a review in the ground truth is 0.55, median 0). We deepen these
considerations in Sect. 7.

5 RQ2 - Multidimensional Review Quality Assessment

The evaluation of the argumentation theory-based review assessment by correla-
tion with upvotes uses the latter as the only ground truth provided in the dataset
at our disposal, but they also show important limitations. First, upvotes collect
only positive votes: if a review did not get a high number of upvotes, it could be

80 D. Ceolin et al.

either of low- or average-quality. Second, the semantics of upvotes is rather vague
and broad: since they are the only means for readers to express their endorse-
ment, they can capture appreciation in a too broad sense. Third, upvotes might
depend on the order with which reviews are exposed to users and their age. We
extend our analysis on the quality of reviews to obtain a more thorough and
detailed gold standard. We crowdsource answers to questions regarding quality
aspects of a significant number of reviews, as detailed below.

5.1 Crowdsourcing Setting

We collect 380 reviews by first randomly selecting one of the products reviewed,
then one of its reviews. This ensures that the products are fairly represented since
the dataset is rather skewed. Considering that, in total, the dataset is composed
of 3.009 reviews, our sample has a confidence interval of 6.19 with a confidence
level of 99%. We ask each worker to evaluate the quality of 10 reviews, and each
review is evaluated by 5 workers. Workers are located in the US, and the tasks
(which are rewarded 0.9$) are performed through Amazon Mechanical Turk.3

Task Description. We present the worker with a product description as provided
in the Amazon dataset. Then, we present the review, and we ask the worker to
assess the review on a 5-level Likert scale (from −2, completely disagree, to +2,
completely agree), across the following quality dimensions:

Truthfulness: measures the overall truthfulness and trustworthiness of the
review.

Reliability: the review is considered reliable, as opposed to reporting unreliable
information. Example (label: +2 Completely agree): “They fit great, look great,
are quite comfortable and are just what I was looking for!”.

Neutrality: the review is expressed objective terms, as opposed to resulting
subjective or biased. Example (label: −2 Completely disagree): “Love them!!”

Comprehensibility: the review is comprehensible/understandable/readable as
opposed to difficult to understand. Example (label: +2 Completely agree):
“They run big. Order a full size smaller”.

Precision: the review is precise/specific, as opposed to vague. Example (label:
+2 Completely agree): They run big. Order a full size smaller.

Completeness: the review is complete as opposed to partial. Example (label:
+2 Completely agree): “I actually have 3 pairs of these trainers. They are
very comfortable, there is a neoprene sleeve that goes around your ankle that
makes them the most comfortable for me compared to normal athletic shoes.
They run a little narrow - for me this is perfect, but you may want to round
up on the size or try on in the store first if your feet are on the wider side.”

Informativeness: The review allows deriving useful information as opposed to
well-known facts and/or tautologies. Example (label: +1 Agree): “Love these
shoes! Needed new running shoes and these are perfect. Light weight and fit
great!”

3 http://mturk.com.

http://mturk.com

Assessing the Quality of Online Reviews 81

The above dimensions are based on previous work on multidimensional qual-
ity assessment [6]. However, with reviews, it is very hard for the workers to deter-
mine the truthfulness of information because they need to assess the authenticity
of the review itself, which is often subjective. So, we adapt the quality dimensions
from the literature to represent more subjective aspects like reliability.

5.2 Results

Assessments were collected and we checked whether the scores in any of the
evaluated dimensions showed a correlation with the in-out evaluation of the
review by our algorithm. Since our classification consists of two labels only, while
the crowdsourced data are multidimensional and finer-grained, we performed a
set of analyses at diverse levels of aggregation, starting from splitting the reviews
into in and out, obtaining:

– a χ2 on the two sets review scores: no significant difference is identified;
– a Mann-Whitney test on the average score per dimension: no significant dif-

ference between the two sets of reviews is identified;
– t-test or Mann-Whitney test when comparing the raw scores on each dimen-

sion: no significant difference is identified.

Then, we aggregate the scores in two ([−2, 0], [1, 2]) and three ([−2,−1], [0],
[1, 2]):

– a χ2 test on the two sets reviews still does not identify any significant differ-
ence in the distribution of scores;

– a Mann-Whitney test on the average score per dimension identifies a signifi-
cant difference in the distribution of scores;

– at 90% confidence, a significant difference is identified in the distribution of
the comprehensibility and the overall truthfulness scores of the two distribu-
tions.

In other words, when the crowdsourced scores are expressed on a coarse
scale (two- or three-valued), our classification identifies two sets of reviews,
where those labeled as out have higher comprehensibility and a higher overall-
truthfulness than those labeled as out. Since readability score plays a role in
the argumentation framework, those results might just be linked to the use of
those scores. However, the readability score has a correlation of 0.24 with the
crowdsourced comprehensibility, and of only 0.02 with the overall truthfulness.
Thus, the identification of the review with higher truthfulness can be attributed
to the whole framework.

6 RQ3 - Explainability Evaluation

We run an explorative questionnaire4 to evaluate whether our approach provides
informative explanations on the decision taken about the reviews (in/out out-
come). We select two reviews about the same product, one accepted, and one
4 The questionnaire is available at https://forms.gle/srGJpGyYBzWd9RTaA.

https://forms.gle/srGJpGyYBzWd9RTaA

82 D. Ceolin et al.

rejected by our system. We show the argumentation graph on which the judg-
ment is based and we ask the respondent whether the graph helps in understand-
ing the underlying reasoning using a 1–5 Likert scale. Users can provide addi-
tional feedback. Table 2 shows the distribution of the 31 anonymous responses
received, while Fig. 2 shows an example question.

According to these results, the argumentation graph does indeed help in
explaining the outcome. Since the outcomes vary from ‘poorly informative’ (1)
‘to very informative’ (5), the results are explanatory on both reviews (although
for review 2 the signal is stronger). An important aspect of consideration as a
possible limitation is that in argumentation-based reasoning arguments are valid
until attacked and this translates into reviews accepted because not attacked.

Table 2. Distribution of the answers regarding the helpfulness.

Informativeness 1 (poorly informative) 2 3 4 5 (very informative)

Review 1 (accepted) 0 6 11 12 2

Review 2 (rejected) 0 1 7 15 8

Fig. 2. Example question. Nodes represent reviews, (green in, red out) for the
argument-based review classification, arrows represent attacks, their shade expresses
semantic similarity. (Color figure online)

7 Discussion

We now discuss the results related to each research question.

7.1 RQ1 - Given a Set of Reviews About the Same Product, Can
Argumentation Reasoning Help Assess Review Quality?

Our method (especially in the improved versions, see rows 2 and 3 of Table 1)
identifies two clusters of reviews where those in have a higher chance of having

Assessing the Quality of Online Reviews 83

more upvotes than those out. Also, the method identifies the majority of the
reviews that received upvotes.

The first difference between the unsupervised approach and the proposed
argumentation framework concerns labeling. The results reported in Table 1
assume arbitrarily that one of the two classes predicted by the K-means method
equals the out class, the other the in class. However, we do not have any means
to label the classes in this respect. So, while the performance of the two methods
looks similar when considering the averages in Table 1, this may not be the case.
For most of the remaining performance reported in Table 1, our method outper-
forms K-means. The supervised approaches are those showing the best perfor-
mance in terms of the distribution of the average number of upvotes. Supervised
approaches focus on identifying the peculiarities of reviews that hint at their
upvotes. They do so at the dataset level, they make use of labeled data (number
of upvotes per review) and can identify those reviews that meet these criteria.
These methods achieve high accuracy of the number of upvotes estimated for
a given review. However, they do so at the expense of a significant amount of
upvotes missed, as the right table of Table 1 shows. Measuring performance as
precision and recall would have meant comparing our method on the mere abil-
ity to identify reviews having at least n upvotes for an arbitrary threshold n
(this step is necessary to transform the number of upvotes in the ground truth
into binary values comparable with our classification). This goes beyond our
goals and just amplifies the results reported in the left table of Table 1. The
correct threshold should depend on the number of reviews received by a given
product, etc. We use thresholds to transform SVC in binary outcomes, though,
because of the quantitative nature of SVC. SVC predicts the number of upvotes
received by a review. Setting a threshold introduces the mentioned limitations
but, in this case, performance would have been measured in terms of error of the
number of upvotes predicted. Thresholds mainly reduce the granularity of such
metrics but necessarily introduce some error: reviews which got n upvotes for
0 < n < threshold are labeled as out, thus affecting the performance reported in
the right table of Table 1. Also, the good performance of the supervised methods
comes with limitations:

– Need for training data. Being supervised, SVC craves for labeled data; in
production, the system might be affected by the cold start problem.

– Arbitrary parameters. When comparing the two methods, we had to con-
vert the estimated number of upvotes into two classes. This is arbitrary
because it corresponds to answering a question like “how many upvotes does
a review need to receive to be accepted?”. This has led to testing the three
different parameters.

– Lack of explanations. The method is meant to estimate the number of
upvotes received by each review. However, when deciding whether to con-
sider a given review or not based on such estimates, it is important to under-
stand how such reasoning was performed. Inspection on the importance would
require additional efforts.

84 D. Ceolin et al.

These limitations are not shown by our method, which is unsupervised and
explainable. Also, from the diverse evaluation settings, we learned the following
lessons.

Lesson Learned 1: Time Matters. When inspecting the reviews in the out class,
the high average is due to just one review labeled as out, despite having received
35 upvotes. This is the oldest review of that product; 6 more reviews, received
about 6 years later, had 0 upvotes. Given that these newer reviews got a lower
chance to get an upvote because they are more recent, we discounted the number
of upvotes based on the age of the review. This improves the system performance
(see Table 1).

Lesson Learned 2: Non-attacked Reviews Should Not Necessarily Be Accepted. In
formal argumentation theory, arguments are accepted until they are defeated.
However, not yet attacked reviews could get zero upvotes for a variety of reasons
(e.g., they are out of topic). On a long-tail distributed dataset, this affects the
results obtained. This is the reason why the reviews classified in have a low
average number of upvotes. As shown in the third row of Table 1, the performance
on the reviews with at least one upvote is higher. Table 3 provides an overview
of the number of reviews per class.

7.2 RQ2 - Which Quality Aspects Does Argumentation Reasoning
Emphasize?

The labeling obtained by our argumentation framework is correlated with the
comprehensibility and with the overall truthfulness of the reviews. As already
pointed out in Sect. 5, the readability scores alone would not be able to point
out the reviews having higher overall truthfulness. This result has a twofold
consequence. First, it supports the argumentation-based approach and the need
for logical reasoning to be performed on top of the ranked arguments to obtain
labeling that correlates with overall truthfulness and comprehensibility. Second,
it points out other quality aspects that we might consider in future extensions
of our framework. E.g., completeness might be correlated to the number of in
arguments in a review. Here we learned an important lesson.

Table 3. Number of reviews classified as in and out, split on the number of upvotes.

Class In Out

Reviews with 0 upvotes 2,706 14

Reviews with at least 1 upvote 288 1

Assessing the Quality of Online Reviews 85

Lesson Learned 3: Granularity and Semantics Matter. While quality is subjec-
tive and contextual, it is also possible to define which aspects of quality we
are interested in. This is important to allow a more precise understanding of
the argumentation outcome. Also, the current implementation of the framework
provides a three-valued assessment and, as expected, correlation with crowd-
sourced ratings emerges only when these are aggregated in buckets. Future exten-
sions of the framework might consider a fine-grained representation of accep-
tance/rejection of arguments.

7.3 RQ3 - Can Argumentation Reasoning Be Used to Explain
Review Quality?

According to the exploratory study described in Sect. 6, argumentation graphs
are useful to explain review assessment. The study was meant to provide a first
indication about the hypothesis that argumentation graphs are useful to explain
review assessment. The responders agreed with this idea: 45,2% of them rated
informativeness at level 4 or 5 (very informative) for the first question, 73,6% for
the second. This will be further explored in the future. “How to better represent
attack weights?” and “which level of complexity users can handle?” are examples
of questions we will tackle.

8 Related Work

This work falls within the growing family of weighted argumentation frame-
works extending standard Dung’s setting, including Preferential Argumentation
Frameworks [1,2,17] and Value-based Argumentation Frameworks [4,5]. A spe-
cific approach is represented by systems defining preferences based on weighted
attacks, see [9], establishing that some inconsistencies are tolerated in the set of
arguments, provided that the sum of the weights of attacks does not exceed a
given value. Weights can be used to provide a total order of attacks, see [14]. This
approach can be generalized in several ways: in [8] a different way of relaxing the
admissibility condition and strengthening the notion of defense is presented; in
[7] different selections on extensions based on the order of weights are proposed.
Our work also relies on an ordering on weighted attacks, essential differences
being that:

1. the definition of weights is given by the semantic distance between topics;
2. the clustering of attacks is based on weights;
3. the pruning of the graph is based on the order, as distinct from the selection

of the model based on the maximization of the weight of accepted arguments.

Research on the assessment of quality and credibility of product reviews has
focused mostly on linguistic aspects, e.g. based on readability and linguistic
errors [10,12,18,22]. While such approaches can be a source of inspiration for
future extensions, the main difference with our approach is the combination of
such linguistic aspects with argumentation reasoning. A similar extension can be

86 D. Ceolin et al.

obtained by looking into credibility factors, as in [21]. Lastly, [23] looks for a junc-
tion between natural language processing and argumentation reasoning. While
it classifies more thoroughly the diverse tokens as different kinds of arguments, it
does so semi-automatically, while we take an automatic unsupervised approach.
Refining the characterization of arguments is one aspect we intend to improve
in the future. Regarding the crowdsourced assessment of online information, we
refer the reader to [20], although their focus is on political statements, and their
assessment is mono-dimensional. A multidimensional approach is adopted in [6],
where Web documents are assessed by experts (nichesourcing).

9 Conclusion and Future Work

This paper presents a framework for classifying reviews’ quality based on a
combination of NLP and argumentation reasoning. We evaluate the framework
on a real-world dataset showing that this approach partly outperforms base-
line unsupervised and supervised approaches, while also providing explainable
results. A deeper analysis of the quality of the reviews based on crowdsourcing
highlights that the argumentation framework is actually capable of identify-
ing those reviews that the users perceive as more comprehensible and truthful.
Also, a two- or three-level scoring of reviews across multiple quality dimensions
reveals to be the ideal level of granularity. We also run a user study that con-
firms the ability of argumentation graphs of providing useful explanations. This
argumentation-based framework represents a first step towards a reliable and
transparent assessment of the quality of online opinions.

We foresee several future developments for this work. Firstly, the framework
should be extended by discounting the weight of the review and its attacks
considering the temporal aspect (e.g., using weight w(x) of Sect. 7). Secondly,
the model could account for a different semantics of nodes in and out to prevent
that novel reviews be automatically in. Thirdly, we will improve the identification
of the arguments among the review tokens. Lastly, we plan on analyzing a larger
number of datasets and reviews.

Acknowledgements. This work is partially supported by The Credibility Coalition.

References

1. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable
arguments. Ann. Math. Artif. Intell. 34, 197–215 (2002)

2. Amgoud, L., Vesic, S.: Two roles of preferences in argumentation frameworks. In:
Liu, W. (ed.) ECSQARU 2011. LNCS (LNAI), vol. 6717, pp. 86–97. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22152-1 8

3. Baroni, P., Caminada, M., Giacomin, M.: Abstract argumentation frameworks and
their semantics. In: Baroni, P., Gabbay, D., Giacomin, M. (eds.) Handbook of
Formal Argumentation, Chap. 4. College Publications, London (2018)

4. Bench-Capon, T.J.M.: Value-based argumentation frameworks. In: Proceedings of
NMR Workshop, pp. 443–454 (2002)

https://doi.org/10.1007/978-3-642-22152-1_8

Assessing the Quality of Online Reviews 87

5. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. J. Logic Comput. 13(3), 429–448 (2003)

6. Ceolin, D., Noordegraaf, J., Aroyo, L.: Capturing the ineffable: collecting,
analysing, and automating web document quality assessments. In: Blomqvist, E.,
Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024,
pp. 83–97. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5 6

7. Coste-Marquis, S., Konieczny, S., Marquis, P., Ouali, M.A.: Selecting extensions
in weighted argumentation frameworks. In: Proceedings of COMMA. IOS Press
(2012)

8. Coste-Marquis, S., Konieczny, S., Marquis, P., Ouali, M.A.: Weighted attacks
in argumentation frameworks. In: Proceedings of KR, pp. 593–597. AAAI Press
(2012)

9. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted
argument systems: basic definitions, algorithms, and complexity results. Artif.
Intell. 175(2), 457–486 (2011)

10. Ghose, A., Ipeirotis, P.G.: Estimating the helpfulness and economic impact of
product reviews: mining text and reviewer characteristics. IEEE Trans. Knowl.
Data Eng. 23(10), 1498–1512 (2011)

11. Kincaid, J., Fishburne, R., Rogers, R., Chissom, B.: Derivation of new readabil-
ity formulas for navy enlisted personnel. Research branch report 8–75. Technical
report, Chief of Naval Technical Training: Naval Air Station Memphis (1975)

12. Korfiatis, N., Garćıa-Bariocanal, E., Sánchez-Alonso, S.: Evaluating content quality
and helpfulness of online product reviews: the interplay of review helpfulness vs.
review content. Electron. Commer. Res. Appl. 11(3), 205–217 (2012)

13. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to
document distances. In: Proceedings of ICML, pp. 957–966. JMLR.org (2015)

14. Mart́ınez, D.C., Garćıa, A.J., Simari, G.R.: An abstract argumentation framework
with varied-strength attacks. In: Proceedings of KR, pp. 135–144. AAAI Press
(2008)

15. McAuley, J.J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommenda-
tions on styles and substitutes. In: Proceedings of SIGIR, pp. 43–52. ACM (2015)

16. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of
EMNLP, pp. 404–411. ACL (2004)

17. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell.
173(9), 901–934 (2009)

18. Ocampo Diaz, G., Ng, V.: Modeling and prediction of online product review help-
fulness: a survey. In: Proceedings of ACL, vol. 1, pp. 698–708. ACL (2018)

19. Řeh̊uřek, R., Sojka, P.: Software framework for topic modelling with large corpora.
In: Proceedings of NLP Frameworks Workshop, pp. 45–50. ELRA (2010)

20. Roitero, K., Soprano, M., Fan, S., Spina, D., Mizzaro, S., Demartini, G.: Can
the crowd identify misinformation objectively? The effects of judgment scale and
assessor’s background. In: Proceedings of SIGIR, pp. 439–448. ACM (2020)

21. Wathen, C.N., Burkell, J.: Believe it or not: factors influencing credibility on the
web. J. Am. Soc. Inf. Sci. Technol. 53(2), 134–144 (2002)

22. Wu, P., Van Der, Heijden, H., Korfiatis, N.: The influences of negativity and review
quality on the helpfulness of online reviews. In: Proceedings of ICIS, pp. 3710–3719
(2011)

23. Wyner, A., Schneider, J., Atkinson, K., Bench-Capon, T.: Semi-automated argu-
mentative analysis of online product reviews. In: Proceedings of COMMA, pp.
43–50. IOS Press (2012)

https://doi.org/10.1007/978-3-319-49004-5_6

Web User Interface as a Message
Power Law for Fraud Detection in Crowdsourced Labeling

Sebastian Heil1 , Maxim Bakaev2(B) , and Martin Gaedke1

1 Technische Universität Chemnitz, Chemnitz, Germany
{sebastian.heil,martin.gaedke}@informatik.tu-chemnitz.de

2 Novosibirsk State Technical University, Novosibirsk, Russia
bakaev@corp.nstu.ru

Abstract. Web Engineering becomes increasingly hungry for training data, as
the application of machine learning (ML) methods in the field intensifies. Human-
labeled datasets are particularly indispensable forML-based validation and design
of user interfaces (UIs). The production of such datasets is often outsourced to
crowdworkers, who typically have lower motivation and payment compared to
in-house staff, so the quality of their work becomes the paramount concern. In our
paper, we explore the applicability of the trending fraud detection approach based
on fit to power law in crowdsourced web UI labeling. On Amazon Mechanical
Turk, 298 crowdworkers labeled over 30,000 UI elements in about 500 univer-
sity homepage screenshots. We found a significant correlation between workers’
precisions and Kolmogorov-Smirnov statistics-based goodness-of-fit between the
frequencies of UI elements in a worker’s output and power law. The obtained
R2 = 0.504 was higher than the R2 = 0.432 baseline for the popular time-on-task
parameter. Moreover, the distribution of UI elements’ frequencies is much less
prone to manipulation by malicious crowdworkers, which is advantageous as a
crowdsourced data quality control measure. The findings of our study suggest a
certain resemblance between web UIs and natural language texts, in which word
frequencies are known to comply with Zipf’s law.

Keywords: Data quality · Distribution functions · Crowdsourcing · Amazon
Mechanical Turk · Image labeling

1 Introduction

Web Engineering increasingly relies on machine learning (ML) models hungry for
human-labeled training data: for information engineering, code and logs analysis, and
foremost for engineering human-computer interaction and designing user interfaces
(UIs). Abundant and adequate dataset is at least as important as a fine algorithm for
solving a task, and training data provision is an outstanding topic in today’s AI. Crowd-
sourcing has become a kind of fast-food technology for ML, being able to quickly and
economically deliver sizable datasets, though of dubious quality and benefit. Indeed, the

S. Heil and M. Bakaev—Both authors contributed equally to the work.

© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 88–96, 2021.
https://doi.org/10.1007/978-3-030-74296-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_7&domain=pdf
http://orcid.org/0000-0003-2761-9009
http://orcid.org/0000-0002-1889-0692
http://orcid.org/0000-0002-6729-2912
https://doi.org/10.1007/978-3-030-74296-6_7

Web User Interface as a Message 89

core challenge in crowdsourcing today is obtaining data of appropriate quality, in the
light of low wages and motivation of the workers [1]. Crowdplatforms, such as Amazon
Mechanical Turk (MTurk), microworkers.com, Yandex.Toloka, struggle to support data
quality assessment and control – so, lately, various related tools, such as CDAS, Crowd
Truth, iCrowd, DOCS for MTurk, etc., have been introduced [2].

Concerning crowd data-quality control methods, themost widely used and supported
in most of the platforms are majority/group consensus (MC) and ground truth (GT).
These two methods necessarily imply redundancy, i.e. several workers performing the
same task, which means wasting some – up to 67% in case of theMC – of the potentially
useful work effort. Non-redundant data quality control methods that have the potential
to decrease the share of low-quality or unnecessary data, can involve comparing the
workers’ output or some secondary parameters to a common sense or a fundamental
“truth”. An apparent example of a secondary parameter related to worker behavior is
time-on-task, which is indeed reasonably popular in practical crowdsourcing quality
control [1]. Obviously, knowing some expected characteristics that the dataset should
comply with to be of desired quality can be even more advantageous.

A corresponding technique long known in financial fraud detection and popularized
with the recent political elections is comparing large sets of data to a known distribution.
Particularly,Benford’s law, from the family of power laws, that predicts the probability of
a specific leading digit in numbers, can be an indicator of numerical data trustworthiness
in various fields [3]. Another widely known power law is Zipf’s law for natural language
texts, whose original formulation is “the frequency of any word is inversely proportional
to its rank in the frequency table”. There is evidence that random texts do not exhibit
this phenomenon [4], and the fit to Zipf’s law is believed to be one of the factors that
search engines use to judge an online text’s naturalness.

In our paper, we enquire whether fit to power law can be indicative of crowdsourced
data quality in web UI labeling tasks, which are gaining in popularity as computer vision
methods are seeingwider application forwebUI visual analysis [2].Webase our assump-
tion on the semiotic view that UI is essentially a message, since in a human-computer
system “… a human being (the user…) exchanges messages… with the system… using
a constrained type of artificial codes” [5]. Despite this conceptual outlook, to the extent
of our knowledge, there were no successful applications of power laws to UIs. In part,
this is probably due to the low diversity of the artificial codes (web UI elements) and
the insufficient total number of elements in up-to-date web UIs. For instance, in one
of our previous works motivated labelers found on average 86.3 visual UI elements in
university homepages [2], which is far too little for a straightforward statistical test for
fit to power law that is foremost characterized by its “long tail” [6]. In Sect. 2 of the
paper, we position our approach within the crowdsourced data quality control and pro-
vide some background on the power laws and the testing with goodness-of-fit (GOF)
that we employ instead of statistical significance, as a workaround for the small sam-
ples in web UIs. In Sect. 3, we analyze the data of the experiment we performed with
MTurk workers who labeled over 30,000 UI elements in about 500 university homepage
screenshots and show the superiority of the GOF measure compared to the time-on-task
baseline.

90 S. Heil et al.

2 Methods and Related Work

2.1 Data Quality Control in Crowdsourcing

A recent and comprehensive review of quality control methods for crowdsourcing can
be found in [1], where the methods are organized into three major groups: individual,
group and computation-based. The former two generally imply involvement of humans
into assessment of the annotators or of the tasks output, thus suggesting additional
overhead in the work effort. As for the methods that can be automatically performed by
machines, the comparison of themeasurements to some known distributions is described
e.g. in the standard ISO 13528:2015 Statistical methods for use in proficiency testing by
interlaboratory comparison (Chap. 8.4).

Automation in data quality control does not have to imply automated rejections, but
should rather supportRequester’s decisions. InMTurk’s own system for controlling fraud
and abuse1, they first use ML to identify suspicious activities, and then humans review
them. Correspondingly, regression should be preferred to classification in estimating
the crowd data quality. A viable approach is assessing workers, not just their output, for
which worker reputation systems were implemented in all major crowd platforms. There
are also methods that predict the likelihood of cheating based on workers’ behavior in
interaction with the task interface and even propose to transfer the predictions to other
related tasks [7]. Since the number of elements in a typical web UI has the order of 102,
we decided to rely on the assessment of workers each labeling several UIs, to have
enough samples for checking the fit to the power law.

2.2 Power Law Distributions for Fraud Detection

The formulation of the power law is that a quantity x is drawn from a probability
distribution.

p(x) ∝ x−α (1)

where α is the scaling parameter [6]. Zipf’s law is basically the case when α is close to
1. Benford’s law for the leading digit is conceptually similar, but has somehow different
distribution and formulation:

p(d) = logb(1 + 1/d) (2)

where d is the digit number (1…9), b is the base (e.g. b = 10).
Both laws essentially deal with frequency distributions, but Benford’s law requires

numerical attributes,whereasZipf’s does not. Correspondingly, the former’s use to detect
fraud and invalid data is wider and includes such fields as finance, social and political
sciences, biometrics, network traffic analysis, etc. [3]. Zipf’s law, even though not being
limited to natural language texts – e.g. Halstead’s equation for software code is also
derivable from the law – sees comparingly less application for validating data quality.

1 https://blog.mturk.com/important-updates-on-mturk-marketplace-integrity-worker-identity-
and-requester-tools-to-manage-206e4e90da0c (accessed 18 Jan 2021).

https://blog.mturk.com/important-updates-on-mturk-marketplace-integrity-worker-identity-and-requester-tools-to-manage-206e4e90da0c

Web User Interface as a Message 91

Still, it was reported that the Zipf exponent characterizes the quality of peer reviewers
[8], while in SEO they use it to rank copywriting texts, although different related services
can provide very different estimations.

Indeed, statistical testing of fit to power law used to be controversial, as least-squares
fitting is inaccurate, not being able to distinguish from e.g. exponential or lognormal
distributions. In [6] they justify the use of goodness-of-fit tests based on theKolmogorov-
Smirnov (KS) statistic in combination with maximum-likelihood fitting and provide the
software implementation (plpva library)2. As we have a low diversity of elements in
UIs and relatively small samples overall, we cannot expect statistical significance of any
power law tests, so we are going to rely on the goodness-of-fit measure alone.

3 Evaluation

The hypothesis in our experimental study was that the degree of compliance with power
law can better explain variance in workers’ performance than the baseline time-on-task.

3.1 The Experiment Description

Material. The material for the UI labeling was screenshots of homepages of higher
educational organizations’ (universities, colleges, etc.) websites. Initially, we collected
10,639 screenshots in PNG format using a dedicated Python script crawling through
URLs that we acquired from various catalogs (DBPedia, etc.). To ensure better diversity
of UI elements, the screenshots were made for full web pages, not just of the part
above the fold or of a fixed size. For the current experiment, 495 screenshots were
manually selected, as described in our previous related study with the same dataset [2].
The budget allocated for the MTurk experimental session was 300 USD, following our
estimation of an average UI labeling task difficulty and the required work effort of 5 min.

Procedure (HIT). The labeling HIT was designed using the Crowd HTML elements
provided byMTurk, based on the crowd-form and crowd-bounding-box widgets, with
the screenshot URL as input parameter. The MTurk crowd-bounding-box widget ren-
ders the screenshot, allows to zoom and pan it, and to create bounding boxes of the given
types with keyboard shortcuts available for fast labeling of a larger number of objects.
HITs could be previewed and skipped by the crowd workers.

Aswe require representative frequencies for testing fit to power law,we estimated the
desired number of contributions per crowdworker as at least 20. To achieve this objective
within our budget of 300 USD, we introduced a second HIT, called set HIT. This HIT
was only available to crowd workers with a custom qualification, which we assigned
to those workers who successfully completed at least 20 of our labeling HITs. The
overall fair reward per screenshot R = 0.5 USD was calculated based on a minimum
hourly wage of 6 USD and an average labeling time of 5 min. A worker completing
20 screenshots would thus receive R20 = 10 USD. To incentivize workers to complete
at least 20 labeling HITs, this reward was distributed between the labeling and the set
HIT with a ratio of 1 to 10, resulting in R1 = 0.05 USD reward for one labeling HIT

2 https://aaronclauset.github.io/powerlaws/

https://aaronclauset.github.io/powerlaws/

92 S. Heil et al.

and RS = 9 USD for the set HIT. This setup was pre-tested by the authors in the MTurk
sandbox.

Over a period of 44 days from June 29 to August 11 2020, the labeling and set HITs
were available on MTurk in 4 batches of 80, 160, 160, and 97 screenshots. Within a
batch, workers could submit as many labeling HITs as they wanted. To increase the
diversity, however, workers who had successfully labeled 20 or more screenshots in a
batch were not allowed to accept labeling HITs in the following batch.

Design. Exactly one label per bounding box and only labels from the list of pre-defined
classes could be selected by the crowd workers. There were 10 classes (partially by
analogy to 10 digits in Benford’s law), focused on themost frequentUI objects: including
interactive (button, check, input, link, dropdown, navigation), non-interactive (image,
backgroundimage), and container (table, panel) objects.

In order to effectively use our budget and create a crowd-labeled dataset with diverse
quality levels of sufficient size, the labeled screenshots submitted by the crowd workers
were subject to our quick (5–10 s per screenshot) visual inspection. Using MTurk’s
results Rejection mechanism, we would reject the contributions:

• of evidently malicious quality – i.e. empty submissions or submissions of a few non-
existing objects arbitrary located across the screenshot;

• of workers misunderstanding the labeling task – e.g. only few objects, significantly
less than required for complete labeling or labeling of only one object type.

Workers who repeatedly submitted malicious results were excluded from further
submissions using the “BlockWorker” mechanism. In case of a HIT rejection, an expla-
nation was provided to the workers. All other submissions were approved and received
the rewards specified above.

From theUI labeling results and the data recorded by theAmazonMTurk, we derived
the following variables for each worker:

• frequency distribution of the classes, i.e. the number of labels in each class: AMTi;
• KS-based goodness-of-fit of AMTi to power law (with plpva.r from [6]): GOFKS;
• mean time-on-task: ToT;
• precision, reflecting the worker’s performance (quality data or fraud):

Precision = accepted HITs

accepted HITs + rejected HITs
(3)

Participants (Crowdworkers). Altogether 298 recorded workers participated in the
4 labeling batches (20 of them we had to block as malicious). According to the IP
addresses provided by MTurk and correlated with MaxMind GeoIP2, ¾ of the workers
came from the 3 countries: US (44.8%), Brazil (15.5%), and India (13.8%).

Web User Interface as a Message 93

3.2 Descriptive Statistics

In total, we collected 31676 labeled UI elements for 488 accepted and 754 rejected HITs.
The mean Precision per worker was 0.442 (SD= 0.475). The total amount of time spent
on the 1242 HITs by all the workers was 665322 s, and on average a worker devoted
635 s (SD = 481 s) to a UI labeling HIT, the correlation between ToT and Precision
being significant (r298 = 0.449, p< 0.001). ANOVA test for the 4 batches of screenshots
suggested that there were no significant differences in either mean number of HITs per
worker (F3,310 = 2.41, p = 0.07) or in Precision (F3,310 = 1.82, p = 0.14).

Themean ToT turned out to bemore than twice as long compared to the 5min (300 s)
that we estimated when planning the crowdsourcing session budget. Interestingly, 22
workers who didn’t label a single UI element still spent 188416 s on the HITs, which
might suggest that the time-on-task became widely known as a quality control parameter
in crowdsourcing and can be manipulated by malicious workers.

On average, a worker attempted to perform 4.17 HITs (SD = 4.50), of which 1.64
(SD = 2.13) would be accepted. Contrary to our expectations, the extra 9 USD award
for labeling 20 UIs seemingly did not motivate the workers enough, as only 9 of them
have reached this threshold. Our total expended budget for the session was 126.72 USD,
which corresponds to 0.26 USD per accepted labeled UI or about 0.69 USD per working
(or slacking) hour. Of the 9workerswho took our questionnaire in the set HIT, 6 provided
textual feedback (3 positive, 3 satisfied, 0 negative).

3.3 The Testing Set of MTurk Workers

Since the number of crowdworkers who tried to complete at least 20 HITs turned out to
be lower than expected, we decided to soften the requirements for inclusion to the testing
set. The rulewe appliedwas that a worker must have attempted at least 10 HITs (accepted
or rejected) and have labeled at least 100 UI elements so that a reasonably representative
distribution of classes could be composed. Of all the recorded workers, only 20 (6.71%)
have complied with the rule, but it was them who provided 272 (55.7%) of all accepted
UIs and 17067 (53.9%) of all labeled elements, spending 169768 s (25.5%) and earning
94.7 USD (74.7%) in total.

In the testing set, the mean Precision has somehow improved: 0.566 (SD = 0.453),
but the mean ToT dropped to 408 s (SD = 303 s), which may suggest the effect of
training. Each of the 20 workers had on average undertaken 23.85 HITs (SD = 7.11),
labeling in total 853 UI elements (SD = 619) or 36.4 elements per UI (SD = 25.3). As
we demonstrate in Table 1, neither class was the most popular for all the workers.

Table 1. The frequency distributions in the testing set (20 workers) and the entire MTurk set

Class Testing set MTurk set
Overall frequencyOverall frequency # times most frequent

link 8604 12 14524

button 3134 2 5933

(continued)

94 S. Heil et al.

Table 1. (continued)

Class Testing set MTurk set
Overall frequencyOverall frequency # times most frequent

image 3036 6 5554

navigation 885 1773

panel 362 838

dropdown 359 943

input 330 1023

backgroundimage 244 659

table 86 239

check 27 190

Total 17067 20 31676

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Va
lu

e
(n

or
m

al
iz

ed
)

Rank

AMT1 (0.98)

AMT2 (0)

AMT3 (0.83)

AMT4 (1)

AMT5 (0)

AMT6 (0.71)

AMT7 (0)

AMT8 (0)

AMT9 (1)

AMT10 (0)

AMT11 (1)

AMT12 (1)

AMT13 (0)

AMT14 (1)

AMT15 (1)

AMT16 (1)

AMT17 (1)

AMT18 (0)

AMT19 (0)

AMT20 (0.80)

Power law

Fig. 1. Frequencies distributions for the workers and the power law (Color figure online)

Web User Interface as a Message 95

3.4 Power Law-Based Fraud Detection

In Fig. 1 we show the frequency distributions of the classes for the 20 workers of the
testing set (AMTi) and the overlaid power law distribution (α = 2.49) that best fit the
overall frequencies. The classes were sorted by frequency for each of the workers, so
the ranks on the horizontal axis correspond to different classes for different workers.
The distributions were normalized by dividing each value by the mean frequency. The
Precision values for each worker are given in brackets in the legend, and the lines are
displayed in green(Precision = 1), red(Precision = 0) or orange(anything in between).
Even before the quantitative analysis, one can notice that the distributions that deviate
from the power law the most and/or the ones that have a “bad” shape are red or orange.

Then, for each of the workers, we calculated GOFKS (mean = 0.542, SD = 0.104).
In explaining the variance in Precision, the GOFKS factor (R2 = 0.504, F1,18 = 18.3,
p < 0.001) turned out to be superior compared to the baseline ToT (R2 = 0.432,
F1,18 = 13.7, p = 0.002). In the regression for Precision with the two factors, both
GOFKS (Beta = 0.533, p = 0.003) and ToT (Beta = 0.445, p = 0.009) were highly
significant, and the model had further improved R2 = 0.670 (F2,17 = 17.3, p < 0.001):

Precision = −0.668 + 1.87GOFKS + 0.001ToT (4)

4 Discussion and Conclusions

Our results suggest that power laws might be applicable for crowdsourced UI label-
ing data quality control. GOFKS [6] was able to explain more variance in Precision
(R2 = 0.504) than the baseline ToT factor (R2 = 0.432), and had a higher Beta in the
joint regression (4). Moreover, time-on-task is easily prone to malicious manipulations,
as the crowdworkers seem to be already well aware of its role. In our study, the 22 work-
ers who did not label a single UI element have inflated their overall ToT to 28.3% of all
time elapsed by the workers. At the same time, manipulating the output to better fit the
frequencies to power law appears problematic andmight be even harder than performing
the actual crowdsourcing task well.

Arguably the strongest limitation of the proposed approach is that a worker needs to
produce enough results to compose a representative distribution of the classes – in our
study, at least 100 UI elements labeled in 10 UIs. Indeed, the workers excluded from the
testing set had contributed 216 (44.3%) of accepted HITs, which would probably need
to undergo different quality control procedures. On the other hand, the UI labeling task
has an entry threshold – the workers need to comprehend the classes, read instructions,
etc., so the learning effect is a positive thing and fewer workers each performing more
HITs should be preferred to the contrary situation.

The results of our study might be applicable for decision-support in web UI labeling
quality control. The Requester could order the workers by the predicted quality of output
and choose to perform more detailed manual checks for certain workers or HITs, based
on the available time and validation resources, the dataset quality requirements, etc. Our
theoretical contribution to HCI and Web Engineering – although much more research
would be required – is that power laws might be characteristic of web UIs, similarly as

96 S. Heil et al.

for natural language texts. Thus, consideration of UIs as messages in human-computer
systems [5] receives additional quantitative reinforcement.

Acknowledgment. This work was funded by RFBR according to the research project No. 19-29-
01017 and partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Project-ID 416228727 – SFB 1410.

References

1. Florian, D., et al.: Quality control in crowdsourcing: a survey of quality attributes, assessment
techniques, and assurance actions. ACM Comput. Surv. 51(1), 1–40 (2018)

2. Heil, S., Bakaev, M., Gaedke, M.: Assessing completeness in training data for image-based
analysis of web user interfaces. In: CEUR Workshop Proceedings, vol. 2500, art. 17 (2019)

3. Iorliam, A.: Application of power laws to biometrics, forensics and network traffic analysis.
Doctoral dissertation, University of Surrey (2016)

4. Ferrer-i-Cancho, R., Elvevåg, B.: Random texts do not exhibit the real Zipf’s law-like rank
distribution. PLoS ONE 5(3), e9411 (2010)

5. De Souza, C.S.: The Semiotic Engineering of Human-Computer Interaction. MIT Press,
Cambridge (2005)

6. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM
Rev. 51(4), 661–703 (2009)

7. Rzeszotarski, J.M., Kittur, A.: Instrumenting the crowd: using implicit behavioral measures to
predict task performance. In: Proceedings of the 24th ACM UIST, pp. 13–22 (2011)

8. Ausloos, M., Nedic, O., Fronczak, A., Fronczak, P.: Quantifying the quality of peer reviewers
through Zipf’s law. Scientometrics 106(1), 347–368 (2015)

Conversation Graphs in Online
Social Media

Marco Brambilla(B) , Alireza Javadian , and Amin Endah Sulistiawati

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Via Giuseppe Ponzio, 34, 20133 Milano, Italy

{marco.brambilla,alireza.javadian,amin.sulistiawati}@polimi.it

Abstract. In online social media platforms, users can express their ideas
by posting original content or by adding comments and responses to
existing posts, thus generating virtual discussions and conversations.
Studying these conversations is essential for understanding the online
communication behavior of users. This study proposes a novel approach
to retrieve popular patterns on online conversations using network-based
analysis. The analysis consists of two main stages: intent analysis and
network generation. Users’ intention is detected using keyword-based cat-
egorization of posts and comments, integrated with classification through
Näıve Bayes and Support Vector Machine algorithms for uncategorized
comments. A continuous human-in-the-loop approach further improves
the keyword-based classification. To build and understand communica-
tion patterns among the users, we build conversation graphs starting
from the hierarchical structure of posts and comments, using a directed
multigraph network. The experiments categorize 90% comments with
98% accuracy on a real social media dataset. The model then identifies
relevant patterns in terms of shape and content; and finally determines
the relevance and frequency of the patterns. Results show that the most
popular online discussion patterns obtained from conversation graphs
resemble real-life interactions and communication.

Keywords: Network analysis · Conversation graph · Intent analysis ·
Social media · Instagram · Discourse analysis · Online conversation

1 Introduction

According to Qualman, 2011 [23], the emergence of social media (SM) has pro-
foundly changed the perspective of communication, which resulted in a revo-
lution in the way people interact with each other. As technology grows and
expands the range of communication, SM becomes a vital tool for daily social
interactions. The interactions can take the form of various activities, like sharing
links about interesting content, public updates on the profile such as location
data or current activities, and commenting or liking posts and updates.

To leverage SM data benefits as a key to crucial insights into human behav-
ior, many studies such as [4,7,15,18] have been done to perform analysis on
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 97–112, 2021.
https://doi.org/10.1007/978-3-030-74296-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_8&domain=pdf
http://orcid.org/0000-0002-8753-2434
http://orcid.org/0000-0001-9459-2411
https://doi.org/10.1007/978-3-030-74296-6_8

98 M. Brambilla et al.

SM data by scholars, journalists, and governments. Reasons of people relying on
SM platforms include, but are not limited to, interacting within the inner circle
of friendship, entertainment purposes, or subscribing to news; also as presented
in various work such as [1,26], evolving widely for knowledge sharing purpose
on online learning and Q&A platforms. Many companies adopt SM to utilize
this growing trend to gain business values [13]. Schreck et al. [25] discuss how
leveraging massive amounts of SM data presents many challenges. The data is
multimodal and ambiguous in its content. Communication patterns also change
rapidly among various SM elements. This defies choosing proper approaches to
handle the systems’ complexity. Various methods can be used for understanding
complex SM systems [6,16]. The presence of graph libraries simplifies the intri-
cacy analysis of social networks (SNs), yet the workloads to uncover meaningful
values from billions of nodes and vertexes have not diminished.

1.1 Problem Statement

Understanding communication behaviors is an essential awareness. The conver-
sations among SM users are the core of virtual communication that deputizes
closely to the real/direct communication. Seeing that most studies on SNs are
centralized on a user-to-user relationship, they let through the valuable infor-
mation from generated conversations in order to conceive online communication
behavior. Considering a large dataset from SM platforms with its complex struc-
ture, the research questions that lead to this work are as follows:

1. How to build a convenient graph to describe the conversations on SM?
2. How to reconstruct conversations from comments that belong to an SM post

that does not follow the reply feature?
3. How to assign an appropriate category label to an SM comment that repre-

sents the author’s intention?
4. What frequent patterns can be found in conversation graphs of online SM?

1.2 Objective

This study proposes a new approach for analyzing online conversations. It con-
sists of two main stages. The first step is intention analysis on SM comments
reflecting the authors’ thoughts. Initially, a list of category names is defined using
popular keywords based on set bag-of-words. Then, we perform keyword-based
classification to assign a label to each SM comment representing its meaning.
Finally, human-in-the-loop techniques are involved in improving the initial key-
words. The second stage is network generation based on the designed nodes
and edges from SM data as well as their attributes. Subsequently, by identifying
comments connected by a reply edge in the generated network, we automatically
generate conversation graphs. Therefore, conversation graphs with labeled com-
ments are produced, portraying patterns of communication behavior between

Conversation Graphs in Online Social Media 99

the authors. Finally, we perform statistical and matrix analyses on the conversa-
tions. We test the proposed methodology on a real SM event—YourExpo2015 1,
i.e., a game challenge developed for Expo 2015 Milano event.

1.3 Contribution

This study is designed for companies or organizations that desire to analyze
their audiences’ communication behaviors on SM platforms. Using text classifi-
cation on SM comments, we can obtain the most discussed topics. Accordingly,
exploiting the illustrated comment-to-comment relationships, patterns from con-
versation graphs are gained. Considering the obtained patterns, they can better
understand the most frequent conversations. Moreover, an automatic reply fea-
ture is possibly generated based on the analysis result.

The rest of the work is as follows. Sect. 2 discusses the related work. Sect.
3 details the methodology. Sect. 4 presents a set of experiments on a real case
dataset. Sect. 5 discusses the results. Finally, Sect. 6 concludes the work.

2 Related Work

2.1 Graph Analysis on Social Network

Myers et al. [21] investigate the structural characteristics of Twitter’s follow
graph to understand how such networks arise. Zhao et al. [30] formulate a new
problem of specialized finding in Q&A platforms. Buntain et al. [8] present an
identification method to find a social role based on the user interactions’ graph on
Reddit. McAuley et al. [20] develop a model for detecting circles in ego networks.
Rao et al. [24] propose a new algorithm for community detection using graph
techniques. Yang et al. [28] model the statistical interaction between the network
structure and the node attributes.

2.2 Conversation Graphs on Social Media

Ning et al. [22] utilize graph analysis to better support Q&A systems. Aumayr
et al. [3] explore classification methods for recovering the reply structures in
forum threads. Cogan et al. [11] propose a method to reconstruct complete con-
versations around initial tweets. Zayats et al. [29] predict the popularity of com-
ments on Reddit discussions. Kumar et al. [17] propose a mathematical model
for the generation of basic conversation structure to explore the model humans
follow during online conversations. Aragon et al. [2] investigate the impact of
threading the messages instead of linearly displaying them. Work [12,14] show
how individuals’ contribution increases when they feel unique. Reply and Men-
tion functions can be employed for this purpose.

1 http://www.socialmediaexpo2015.com/yourexpo/.

http://www.socialmediaexpo2015.com/yourexpo/

100 M. Brambilla et al.

2.3 Proposed Network Analysis on Conversation Graphs

This study offers a novel network analysis to learn conversation graphs on SM by
automatically detected reply comments. Besides, we further perform analysis on
users’ intentions. Note that intent analysis is different from sentiment analysis
(positive, neutral, or negative [10]), while the proposed intent analysis studies
several classes that are most relevant for the comments. Finally, the constructed
conversations with labeled members bring exciting information, such as finding
common patterns. To analyze networks, we use SNAP [19] and Gephi [5].

3 Methodology

Figure 1 illustrates the main methods implemented in this study. Initially, the
data gathering from the Internet is constructed to extract data from SM plat-
forms; afterward, the data is stored in the database. Then, we do text processing
to perform intent analysis. The next step is to develop a multigraph network’s
design to construct conversation graphs.

Fig. 1. High-level overview of the employed methods.

3.1 Text Classification Design

The text preprocessing pipeline consists of two main activities. At first, it applies
text cleaning and stemming in order to produce bag-of-words. Then it constructs
the TF/IDF to obtain the word/document weight matrix. After preprocessing,
as illustrated in Fig. 2, the list of comment categories is initially defined. After
we specify the classes’ label, we use keyword-based classification to assign each
media comment label. Then, we apply Näıve Bayes and SVM to increase our
intent analysis accuracy. Finally, human-in-the-loop is involved for validation.

Conversation Graphs in Online Social Media 101

Fig. 2. Intent analysis procedure.

3.2 Network and Conversation Graph Design

Media

Author

Label

Text

Name

Category

City

Country

Post

User

Challenge

Comment

Hashtag

Loca�on

write

like

par�cipate

contain

about

sequence

men�on

reply

tag

located

Label

Time

EdgeNode
A�ributes

Nodes Edge
A�ributes

Fig. 3. Network design for Social Media platforms.

In Fig. 3, we present a general SN design representing relationships among all
components, such as SM posts, users, comments, locations, etc. Figure 4 dis-
plays a graph illustration of a post on SM. The path destination is needed, for
instance, to describe the relationship between comment nodes within a conver-
sation and to track which comment’s sequence. This is the reason for designing
a directed multigraph for this study. Meanwhile, a multigraph is selected since
there are possibly multiple edges connecting two nodes. Attributes of each node
and edge from the graph depict the information needed for our analysis. Finally,
the generated graph is stored in a graph file to be used for the analysis.

102 M. Brambilla et al.

Fig. 4. Graph visualization of a Social Media post from the case study.

To date, most SMs adopt the comment reply feature, making it easier to
recognize relationships between comments in a post. However, it is possible that
the users do not use this feature. They can write a comment intended to reply to
the preceding one in a new section as if it is a brand new comment. Also, when a
post contains some comments that all together come within a short period and
have the same intention, (e.g., “congratulation”), the author may do not reply
to them singly but only reply in a new comment by mentioning those users.

In this study, we design a methodology to recognize a comment that is inten-
tionally linked to the previous comment. The method is described as follows.

1. User mention recognition: The idea is to recognize whether a comment has
one or more mentioned users. A mentioned/tagged user can be extracted by
identifying a term initiated by “@” character in a comment or caption.

2. Search tagged users: We examine a list of authors from all comments posted
before the current one to find a similar user from the mentioned users list.

3. Reply assignment: Once a comment is found that its author mentions in the
recent comment, the reply edge is assigned between the two comments.

4 Experiments

4.1 Case Study and Data Collection

Expo 2015, hosted in Milan, Italy, was a universal exposition and a part of the
International Registered Exhibition. During the six months of the exhibition, 145
countries participated by running their exhibition. The exhibition successfully
attracted more than 22M visitors and derived many marketing campaigns to
promote the event. Also, an SM game challenge—YourExpo2015 was proposed.
The game was based on Instagram posts, which are tagged by specific hashtags
published every week by Expo 2015. During the whole challenge cycle of nine
weeks, more than 15K photos and 600K actions were generated. This study is
applied to 15, 343 posts containing 98, 924 comments related to the challenge.

Conversation Graphs in Online Social Media 103

4.2 Intent Analysis

After applying the text preprocessing steps, we obtained the bag-of-words. By
analyzing the most frequent and interesting words, with a subjective assumption,
we conclude that the suitable categories for the contents associated with the case
study are: thank, congratulation, agreement, positive, invitation, food, greeting,
question, hashtag, and other which cannot be assigned to any other class.

The initial keywords for each category are constructed based on the obtained
bag-of-words. The classification method merely is counting scores for each cat-
egory’s keywords to the comment collection. This method is a simple approach
with a consequence of having several comments (20%) being labeled as other.
Using direct observation to define keyword-based classification’s ground truth,
100 random samples are chosen for each category to be validated by humans.
The average accuracy is 97.5%. So the implementation of keyword-based classi-
fication is reliable. The misplace labeling on keyword-based classification is due
to the lack of consideration for keywords dependence or context meaning.

Next, comments labeled as hashtag and other were used as a new dataset to
be classified using Näıve Bayes and SVM algorithms. As we are not provided the
ground truth, we employed the previous result to train Näıve Bayes and SVM.
The result states that SVM outperforms Näıve Bayes with 97.67% accuracy.

4.3 Network Analysis

Photo

Hashtag

Loca�on

Challenge

User

Comment

Fig. 5. Graph visualization of three Social Media posts from the case study.

The generated graph is composed of 461, 952 nodes and 1, 416, 751 edges.
Figure 5 presents the visualization of 3 photos. All photos are connected through
the challenges node. All nodes are unique, including users. As we can see, a user
can publish, like, and comment on more than a photo. Outgoing edges draw user
activities; the more outgoing the edges are, the more active the user is.

104 M. Brambilla et al.

other

photo

user

thank

congratula�on

agreement

invita�on

posi�ve

gree�ng

food

ques�on

hashtag

Fig. 6. Visualization of the conversation graphs.

Figure 6 presents an intent analysis in different colors. Generated relation-
ships inside comments from an Instagram photo portray opinion exchange from
the author of those comments. A reply edge links two comments. The idea to
retrieve conversation graphs is to recognize all connected comments node by
reply link. From the visualization, we observe that there are some interesting
patterns. A node that replies to many comment nodes most likely is a thank
comment, and a positive comment is usually followed either by a positive or
thank comment.

5 Analysis Results

5.1 Statistical Analysis on Conversation

Statistical Analysis. The experiment is performed on 15, 343 Instagram posts.
Table 1 clarifies a statistical analysis of the collection of all comments and
retrieved conversations. The number of comments ranges from 0 to 328. If we
exclude photos with no comment, the average number of comments is 7. If we
include a comment with no relationship with other comments, the maximum
number of conversations extracted in all photos is 177. On average, the size of
the conversation is 2 nodes. From all conversations in all photos, we obtain that
the most extended conversation is the one with the highest size (i.e., 93 nodes).

Table 1. Statistical analysis of comments and conversations.

Comments per post # Conversation per post Size per conversation

(min 1 comment) (1 member include) (1 member exclude)

Mean 7.45 5.10 2.79

Q1 2 2 2

Q2/Median 4 3 2

Q3 8 6 3

Min 1 1 2

Max 328 177 93

Conversation Graphs in Online Social Media 105

Figure 7 displays the total number of all the conversations. A comment with-
out a relation with others, has the highest frequency. Conversations composed
of 2 nodes are the most prevalent ones. The frequency decreases gradually as
the size of the conversation increases. Most of the long conversations only occur
once.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 35 37 45 48 65 93
conversation size

Fig. 7. Frequency for each size of conversation.

Comment Category Distribution. Figure 8 describes the spread of intent
categories in the post having at least 30 comments. It shows that posi-
tive and thank comments dominate all conversations. Two other classes that
appear almost in all variations of conversation size are greeting and question
types. Comments with invitation and agreement intention are slightly expressed
in most conversations, whereas congratulations are only mentioned in some
discussions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 35 37 45 48 65 93

conversa�on size

thank

food

congratula�on

gree�ng

agreement

ques�on

posi�ve

hashtag

invita�on

Fig. 8. Distribution of categories on conversations having minimum 30 comments.

As expected, thank is not stated in solo conversations, which is most likely
in a real discussion. Additionally, hashtag comments generally appear in a single
comment. In more extended discussions, participants generally talk about com-
pliments, gratitude, and salutation. Considering such online conversations, by

106 M. Brambilla et al.

investigating the figure, one might conclude that by increasing the conversation
size, most of the categories will be dominated by fewer categories. Food is the
3rd significant topic; however, it is barely mentioned in extensive conversations.
Thus, we investigated photos with 7 to 29 comments.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% hashtag

ques�on

gree�ng

food

invitation

posi�ve

agreement

congratula�on

thank

conversa�on size
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 9. Distribution of categories on conversations having 7 to 29 comments.

Figure 9 accounts that the fewer comments, the smaller length of conversa-
tion is. Thank, positive, and food categories dominated the overall conversations.
Similar to the previous analysis, agreement, congratulation, and invitation cat-
egories have low frequency confirming that hashtag comments are only written
in a single comment. Oppositely, gratitude expression is not mentioned in self
conversation.

Time Space Analysis. The variety in the number of comments for each con-
versation drives another idea in the time-space analysis. We would like to know
if the time and length of conversation are correlated or not.

1

10

100

1000

10000

2 4 6 8
10 12 14 16

18
20

22
24

26
28

31
33

37
46

48
93conversa�on size

0-5min >5min >15min >30min >1h >2h >3h >6h >12h >24h >1w

Fig. 10. 3D representation of the conversation size, period, and frequency.

Conversation Graphs in Online Social Media 107

Figure 10 displays conversation size, period, and frequency. The duration
of conversations is calculated by subtracting the time of the latest comment
and the first one. Durations range from less than 5 min to longer than one
week. We were expecting that the smaller conversation takes less time than the
longer one. However, the result contradicts our presumption. It visualizes (in
logarithmic scale) that generally, conversations occupy a variety of duration.
Accordingly, we can conclude that mostly smaller discussions possibly have a
longer duration. Conversations with size comments between 2 and 10 have all
ranges of duration, while conversations with more than 10 comments tend to
narrow the duration.

Figure 11 shows that long discussions with a conversation size greater than
10 positively do not take a duration of fewer than 15 min. It is clearly stated that
users involved in the discussion need time to write a comment reply. Another
proof states that longer conversations do not take more than 1 day to end the
discussion. For instance, a conversation that involves 93 comments takes time
between 12 and 24 h. In conclusion, the small discussions can take a longer time
to finish, while more extended ones lean to finish discussion within 24 h.

0

10

20

30

40

50

2 4 6 8
10 12 14

16
18

20
22

24
26

28
31

33
37

48
93conversa�on size

0-5min >5min >15min >30min >1h >2h >3h >6h >12h >24h >1w

Fig. 11. 3D representation of conversation duration in a smaller frequency range.

5.2 Conversation Patterns Retrieval

The user’s intention in a comment is included in the graphs as a category label.
To understand the online communication behavior, we analyze the conversations
to retrieve the most frequent patterns generated from intent relationships.

Two-Node Patterns. Table 2 illustrates a heat matrix that details the occur-
rences for each combination of categories. The matrix’s left side represents a
comment that replies to a previous comment on the matrix’s top side.

As expected, thank Ñ positive is the most popular pattern; in other words,
a gratitude action is generally expressed after a compliment. Similar rational
behaviors which frequently happened are thank Ñ thank, positive Ñ positive,

108 M. Brambilla et al.

positive Ñ greeting, thank Ñ invitation, and so on. These virtual characters
imitate real-world communications. It also reveals less popular combinations
that most likely do not happen in direct communication, such as agreement after
a congratulation or congratulation after someone saying an invitation or even
asking a question to someone who gives congratulation. Another less possible
pattern is hashtag comment used to reply to any other types of comments.

In conclusion, with combinations of all intention labels on the two linked
comments, we can obtain digital communication behavior that similarly adopts
real-life conversation. Both the most and least popular patterns are likely to
happen also in daily communication. Therefore, in the next stage of our analysis,
we want to know how far we can expand the length of conversation paths.

Table 2. The frequency of the comment-reply relationship for categories.

Previous comment

replies to � th
a
n
k

p
o
si

ti
v
e

fo
o
d

g
re

et
in

g

q
u
es

ti
o
n

co
n
g
ra

ts

a
g
re

em
en

t

in
v
it

a
ti

o
n

h
a
sh

ta
g

thank 1830 9299 1783 1150 397 149 88 790 143

positive 632 2158 997 439 581 27 73 98 95

food 247 924 738 203 546 5 24 36 34

greeting 109 625 180 644 136 8 12 15 13

question 154 409 279 109 182 1 14 49 26

congrats 14 37 11 16 7 19 1 1 2

agreement 21 128 57 37 92 1 10 6 5

invitation 40 82 54 18 114 1 7 31 6

S
u
b
se

q
u
e
n
t
c
o
m
m
e
n
t

hashtag 2 3 0 1 6 0 0 0 0

Three- and Four-Nodes Patterns. We take further the analysis patterns
into 3 and 4 nodes, and we select the most popular patterns. In this case, we
select intent combinations that have more than 1K occurrences. They include
thank Ñ positive, positive Ñ positive, thank Ñ thank, thank Ñ food, thank Ñ
greeting.

The next step is to find the pattern in our conversation graphs for all possible
combinations of those 5 schemas by adding another comment category before
and after the patterns. The results show that the top pattern is thank Ñ thank Ñ
positive. It replicates direct communication when a person says a complimentary
comment; then, the partner replies to express their gratefulness. Afterward, most
likely, the first person replies with another gratitude comment. Other popular
patterns are reasonable as well. However, the number of occurrences decreases
significantly from the most popular one. From the retrieved patterns, we select
top ones composed of 3 and 4 nodes to perform temporal analysis and analyze

Conversation Graphs in Online Social Media 109

the number of users involved in the discussions. The first analysis seeks to find
how long a user takes time to write a reply comment. We pick thank Ñ thank Ñ
positive pattern that has 1, 254 occurrences in the conversation graphs. Figure 12
shows the diversity of reply times. The first part of the chart shows the time
needed for the last comment to reply to the previous comment, and the second
part is the duration of 2nd comment to reply to the 1st comment.

thank thank posi�ve
reply reply

3 2 1

Fig. 12. Reply time in thank Ñ thank Ñ positive conversation pattern.

We observe that the reply time from the 2nd comment to the 1st one mostly
takes less than 5 min, as well as periods, need for the 3rd to answer the 2nd one.
Yet, some users need more than 1 week to reply to a comment. On average, it
takes 12 to 24 h for the 2nd comment to reply to the 1st one, and the period in
which the 3rd comment answers the 2nd one is between 6 and 12 h.

The second analysis is applied to top patterns arranged in 4 nodes thank Ñ
thank Ñ thank Ñ positive. In Fig. 13, the result shows that the time needed for
the 2nd comment to reply to the 1st one varies in the range of 5 min to more
than a week. However, in other cases, for the 3rd comment to answer the 2nd one
and the 4th comment to react to the 3rd comment, the period taken is generally
less than 5 min. On average, the 2nd comment takes 6 to 12 h to respond to the
1st one. The 3rd comment requires 30 to 60 min to answer the 2nd one, and the
4th comment needs 3 to 6 h to react to the 3rd one.

Another thing that interests us is how many users are involved in the con-
versations. We analyze the top patterns with 3 and 4 nodes. We sum up the
number of users that join the discussion. Overall, two users participate in the
conversations, and in some cases, 3 and 4 users have taken part in the discussions.

In conclusion, it is a natural behavior that when a compliment is presented
at the beginning of the talk, the following responses are all gratitude, and two

110 M. Brambilla et al.

thank

2

reply
thank thank posi�ve

reply reply

4 3 1

Fig. 13. Reply time in thank Ñ thank Ñ thank Ñ positive conversation pattern.

people are communicating. This generally means that the 1st expresses a positive
opinion, then the 2nd expresses gratitude. Then, the 1st responds, and so on.

6 Conclusion and Future Work

This study aims at understanding communication behavior on SM discussions
compared to real-life. Intent analysis using keyword-based classification is pro-
posed on SM comments. For the case study, we use Instagram photos of the Your-
Expo2015 challenge. Initially, the approach classifies comments into 9 categories,
thank, congratulation, agreement, positive, invitation, food, greeting, question, and
hashtag, on each class’s defined keywords. Comments that do not contain any
keywords are assigned to the other category. Then, we perform Näıve Bayes and
SVM on the uncategorized comments. Finally, we perform human-in-the-loop to
improve keywords from misclassified comments with the algorithms. In the end,
our performance shows a significant result with an accuracy of 98%, with the
dominant categories being compliment expression and food talk.

We also utilized a directed multigraph composed of more than 450K nodes
and 1.4M edges representing the collected SM dataset, including intent analysis
on the comments. It contains essential information representing relationships
among nodes, together with their attribute information. The list of nodes is
composed by posts, comments, authors, locations, comments, and hashtags.

A conversation from a post is constructed by identifying the relationships
among all comments on an SM post. A virtual discussion is built from one com-
ment that replies to another and analyzes and checks whether other comments
are linked as well. Our proposed approach is also able to recognize comment-
reply that does not follow the reply feature provided on the SM platform.

The analysis of online discussion is not limited to conversation graph retrieval
but also understanding users’ intentions. Thus, the study’s final stage is mining

Conversation Graphs in Online Social Media 111

popular patterns of conversation composed of comments with labels. The most
popular obtained patterns resemble real-life conversation, where people tend
to say thank after others say something positive to them. Another observation
about the challenge is that most participants are willing to write compliments
in the comment section, even when they talk about food.

Future work concerns a more in-depth analysis of mechanisms, particularly
in the intent analysis. Even our proposed intent analysis has high accuracy, we
perform a plain way to classify SM comments; thus, in the future, we can perform
other text classification methods such as [27] to obtain the ground truth. Since
we are involved with SM data in which emoticon symbols mostly appear together
with text, another work is the learning of emoticon expressions as studied in [9].

References

1. Al-Atabi, M., DeBoer, J.: Teaching entrepreneurship using massive open online
course (MOOC). Technovation 34(4), 261–264 (2014)

2. Aragón, P., Gómez, V., Kaltenbrunner, A.: To thread or not to thread: the impact
of conversation threading on online discussion. In: Proceedings of the International
AAAI Conference on Web and Social Media, vol. 11 (2017)

3. Aumayr, E., Chan, J., Hayes, C.: Reconstruction of threaded conversations in
online discussion forums. ICWSM 11, 26–33 (2011)

4. Balduini, M., et al.: Models and practices in urban data science at scale. Big Data
Res. 17, 66–84 (2019)

5. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for explor-
ing and manipulating networks. In: Proceedings of 3rd ICWSM (2009)

6. Brambilla, M., Sabet, A.J., Hosseini, M.: The role of social media in long-running
live events: the case of the big four fashion weeks dataset. Data Brief 35, 106840
(2021)

7. Brena, G., Brambilla, M., Ceri, S., Di Giovanni, M., Pierri, F., Ramponi, G.: News
sharing user behaviour on Twitter: a comprehensive data collection of news articles
and social interactions. In: Proceedings of the International AAAI Conference on
Web and Social Media, vol. 13, pp. 592–597 (2019)

8. Buntain, C., Golbeck, J.: Identifying social roles in reddit using network structure.
In: Proceedings of the 23rd International Conference on World Wide Web, pp.
615–620 (2014)

9. Cha, Y., Kim, J., Park, S., Yi, M.Y., Lee, U.: Complex and ambiguous: under-
standing sticker misinterpretations in instant messaging. In: Proceedings of the
ACM on Human-Computer Interaction, vol. 2(CSCW), November 2018

10. Chakraborty, K., Bhattacharyya, S., Bag, R.: A survey of sentiment analysis from
social media data. IEEE Trans. CSS 7(2), 450–464 (2020)

11. Cogan, P., Andrews, M., Bradonjic, M., Kennedy, W.S., Sala, A., Tucci, G. Recon-
struction and analysis of twitter conversation graphs. In: Proceedings of the 1st
ACM International Workshop on HotSocial, pp. 25–31 (2012)

12. Dillahunt, T.R., Mankoff, J. Understanding factors of successful engagement
around energy consumption between and among households. In: Proceedings of
the 17th ACM Conference on CSCW, pp. 1246–1257 (2014)

13. Dong, J.Q., Wu, W.: Business value of social media technologies: Evidence from
online user innovation communities. J. Strat. Inf. Sys. 24(2), 113–127 (2015)

112 M. Brambilla et al.

14. Farzan, R., Dabbish, L.A., Kraut, R.E., Postmes, T.: Increasing commitment to
online communities by designing for social presence. In: Proceedings of the ACM
2011 Conference on Computer Supported Cooperative Work, pp. 321–330 (2011)

15. Gasparini, M., Ramponi, G., Brambilla, M., Ceri, S.: Assigning users to domains
of interest based on content and network similarity with champion instances. In:
Proceedings of the IEEE/ACM Conference on ASONAM, pp. 589–592 (2019)

16. Sabet, A.J.: Social media posts popularity prediction during long-running live
events. a case study on fashion week (2019)

17. Kumar, R., Mahdian, M., McGlohon, M.: Dynamics of conversations. In: Proceed-
ings of the 16th ACM SIGKDD, pp. 553–562 (2010)

18. Lai, L.S.L., To, W.M.: Content analysis of social media: a grounded theory app-
roach. J. Electron. Commer. Res. 16(2), 138 (2015)

19. Leskovec, J., Sosič, R.: Snap: a general-purpose network analysis and graph-mining
library. ACM TIST 8(1), 1–20 (2016)

20. Mcauley, J., Leskovec, J.: Discovering social circles in ego networks. ACM Trans.
Knowl. Discovery Data (TKDD) 8(1), 1–28 (2014)

21. Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social network?
the structure of the twitter follow graph. In: Proceedings of the 23rd International
Conference on World Wide Web, pp. 493–498 (2014)

22. Ning, K., Li, N., Zhang, L.-J.: Using graph analysis approach to support question
& answer on enterprise social network. In: IEEE APSCC (2012)

23. Qualman, E.: Socialnomics: How social media transforms the way we live and do
business. Wiley (2012)

24. Rao , B., Mitra, A.: A new approach for detection of common communities in a
social network using graph mining techniques. In: ICHPCA (2014)

25. Schreck, T., Keim, D.: Visual analysis of social media data. Computer 46(5), 68–75
(2012)

26. Vasilescu, B., Serebrenik, A., Devanbu, P., Filkov, V.: How social q&a sites are
changing knowledge sharing in open source software communities. In: Proceedings
of the 17th ACM conference on CSCW, pp. 342–354 (2014)

27. Baoxun, X., Guo, X., Ye, Y., Cheng, J.: An improved random forest classifier for
text categorization. JCP 7(12), 2913–2920 (2012)

28. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node
attributes. In: 2013 IEEE 13th ICDM, pp. 1151–1156 (2013)

29. Zayats, V., Ostendorf, M.: Conversation modeling on reddit using a graph-
structured LSTM. Trans. ACL 6, 121–132 (2018)

30. Zhao, Z., Wei, F., Zhou, M., Ng, W.: Cold-start expert finding in community
question answering via graph regularization. In: Renz, M., Shahabi, C., Zhou, X.,
Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol. 9049, pp. 21–38. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18120-2 2

https://doi.org/10.1007/978-3-319-18120-2_2

Web Modeling and Engineering

WTA: Towards a Web-Based Testbed
Architecture

Valentin Siegert(B) and Martin Gaedke

Distributed and Self-organizing Systems Group, Technische Universität Chemnitz,
Straße der Nationen 62, 09111 Chemnitz, Germany

{valentin.siegert,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. Tests, evaluations, and solution comparisons in complex use
cases are often realized by creating a testbed for a domain of use cases
and solutions. Web-based testbeds add key advantages like results shar-
ing, remote test execution, and collaboration. Focusing on their research
objectives, creators see their testbeds as a means to that end. The result-
ing web-based testbeds are similar in structure and functionality, but
there is no common architecture supporting their creation, introducing
redundant design efforts. Therefore, we determine structural similarities
based on insights into the architecture of current web-based testbeds,
from which we derive a generic web-based testbed architecture. This
framework of reference will help to develop future testbeds focusing on
the testbed domain instead of reinventing general testbed functionality.

Keywords: Web · Testbeds · Software architecture

1 Introduction

Evaluations are an essential step for proving the capabilities of newly created
solutions in developing software or publishing research findings. While limited
feasibility and scalability can often be tested manually in the early stages with
respective manual effort, comparing solutions in complex use cases is not pos-
sible. However, many conduct their evaluations in software development and
research manually or within their environment to prove the initial step in the
correct direction [15]. The need for evaluating solutions in complex use cases
is emerging from the industry and the research community as first stage eval-
uations are limited by design. Proof of feasibility and scalability in bigger and
more complex use cases as well as insights by comparing different solutions at
such use cases establish the need for testbeds. These can support the evaluation
and give those insights into complex constructs as they can be set up for differ-
ent test runs in the same environmental conditions. Additionally, testbeds can
also test a combination of known solutions on how they work together in exem-
plary use cases.

On the other hand, testbeds are often created out of the need for proof or
insights. The testbeds’ development process thus is not the main focus. Instead,
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 115–123, 2021.
https://doi.org/10.1007/978-3-030-74296-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_9&domain=pdf
http://orcid.org/0000-0001-5763-8265
http://orcid.org/0000-0002-6729-2912
https://doi.org/10.1007/978-3-030-74296-6_9

116 V. Siegert and M. Gaedke

the potentially obtained knowledge out of the testbed’s results is the motivation.
With such focus, researchers tend to develop their testbeds well suited for their
usage, which results in a limitation of testbeds and followingly more testbeds
for slightly different motivations. For example, in the field of multi-agent trust
management systems, Yu et al. [15] describe that researchers tend to design their
evaluation environments, which are often also own testbeds.

In the past years, more and more web-based testbeds were presented and
developed. The web-based architecture adds to testbeds key advantages like
results sharing, remote test execution, and collaboration. They exist in different
domains like Web Applications, Internet of Things (IoT), Semantic Web, Deep
Web, and many more and are conceived from small-sized testbeds on one machine
to globally distributed ones like PlanetLab [11], a testbed for network services.
As web-based testbeds are not restricted to test things in a web-related domain,
researchers of other domains make use of them as well. Some recent examples are
microgrids [13], railways [10], or also underwater acoustic communication [16].

Even though the research domains are different, current web-based testbeds
make use of similar concepts. Thus, most researchers seem to have a common
understanding of how a web-based testbed needs to be implemented. Neverthe-
less, to the best of our knowledge, a general architecture for web-based testbeds
does not exist. Cavalieri et al. [4] propose some principles, but they focused
on industrial production systems and date back to the early 2000s. In other
terms, researchers have to reinvent a web-based testbed for their own needs
without being able to build upon a given architecture. Besides the manual rein-
vention effort, especially researchers from non-computer science domains might
not exploit the full potential of a web-based testbed due to a lack of knowledge
about the available functionalities and architectural choices. As testbeds are a
means to achieve experimentation and evaluation objectives, their architecture
and development are not of prime concern to most researchers and any reduction
in the effort will allow them to focus more on their original research activities.
A web-based testbed architecture can limit these several reinventions and in
the best case also limit the reoccurring need for a new testbed due to better
reusability.

With this work, we provide insights into relevant web-based testbeds and
determine their structural similarities to create a web-based testbed architec-
ture. Our approach can improve existing testbeds and give future needs of tests,
evaluations, and comparisons of different solutions a chance to be done faster
without having to reinvent what others already elaborated for their own needs.
Our contributions are as follows: (1) We present a software architecture for web-
based testbeds based on known principles and structural similarities in current
testbeds. (2) The architecture integrates key advantages of the web like results
sharing, remote test execution, and collaboration.

2 Recent Work: Web-Based Testbeds’ Similarities

The most common conceptual similarity to realize a web-based testbed architec-
ture in recent work is a concept with three actors: (1) the central node within

WTA: Towards a Web-Based Testbed Architecture 117

the testbed, (2) an experimenter as a user of the testbed, and (3) the laboratory
itself with its testbed environment capability to manage evaluations. The central
node of a web-based testbed is often realized as a web server, which interacts
as the interface between the experimenter and testbed. On the one side, it com-
municates with the experimenter via its web application. On the other side, the
central node realizes the management of the testbed by preparation, execution,
and clean-up of one evaluation [12]. The user interface is not necessarily a web
UI [2], but in many cases it is. Such a UI supports thereby the users’ work with
the testbed by visualizations and maybe some wizard alike guides.

The Experimenter may only have central access via the web application
on the testbed, but some indicate their testbed environment elements also as
directly accessible. Such direct access can be distinguished into access to the
environment elements with organizational relation [1] or to the ones required for
the evaluation execution itself [14]. It is often realized via ssh and indicates the
distribution of the testbed’s actors on different machines.

The testbed’s actual feasibility is delivered by the testbed environment and
its elements, which represent the testbed’s domain-specific motivation. In general
it exists to set up the initial situation for each evaluation, to execute, and later
collect all required results measured during execution. The environment elements
interact therefore according to a description created by the experimenter. Some
approaches highlight for this description also how to schedule it and call the
elements of such procedures job, trace or observation [5,12,14].

Several approaches work on not only single but multi-tier architectures within
all described technical actors. Multi-tier approaches appear e.g. at the web appli-
cation which is developed in a multi-site fashion [6] or at the testbed environ-
ment, which can be organized in several tiers by domain [8], by evaluation need
[2] or by testbed management need [1,12]. Besides, some also present how to
create the central node in a multi-tier fashion [6,8,9].

The literature supposes also access points for different testbeds, e.g. model-
based testbed creation [3] or an EaaS architecture [9]. These approaches add
a meta management layer, such that the original organization elements of the
environment and central node of one testbed are also dynamically created by
the experimenters’ description.

3 Web-Based Testbed Architecture (WTA)

To achieve a good web-based testbed architecture, several goals emerge from
the identified conceptual similarities and the principles by Cavalieri et al. [4].
One architectural goal is to have a central node that serves as the interface
between experimenters and testbed. It hereby should serve a web UI for the
experimenters, independent of which device they use for access. We call this
central node Testbed Server, which should contain besides the web application
for the experimenter the laboratory management, which we call Testbed Director.

The web UI for the experimenters should be more than only the access point
but deliver certain usability features to the experimenters. Thus, it should sup-
port all experimenters, also the rather inexperienced ones with a clear evaluation

118 V. Siegert and M. Gaedke

process and how to use the testbed. Wizard-like support with visual and textual
help would be one way to realize this. Further, the UI needs to use a stan-
dardized representation according to the testbed’s domain in visual and textual
descriptions of any testbed artifacts, like measurements, use cases, evaluation
descriptions, or results. As a testbed serves the need for testing, the experi-
menter should be able to get creative with combinations of possible solutions
or use cases. Therefore, the web UI requires a playground for experimenters to
change preferences of an evaluation, a set of pre-created artifacts like measure-
ments or use cases, and a possibility to upload own created elements, like features
to test or own created artifacts. The web UI should also contain a visualization
of used schedulers within the testbed, if its domain requires such as in [5,12,14].

To have the possibility of choosing pre-created artifacts for evaluation prefer-
ences, web-based testbeds require a place to store its artifacts in a central place.
We call this place the Testbed Library, originating from the library component
in Cavalieri et al. [4]. The provided use cases are better if they are more complex,
meaning not only many actors or events, but also include unforeseen events.

As a web-based approach, key advantages of the web like sharing, remote
execution, and collaborative work should be included in the architectural design.
Hereby, especially the Testbed Library and the web UI require to enable the
user to share stored artifacts, to work collaboratively on artifacts, and to start a
remote evaluation. The testbed server thus requires to proxy any experimenter
for the evaluation run and has to ensure that one evaluation finishes when it is
started or gives feedback to the experimenter on why it stopped intermediately.
Combining direct access of elements with the named web’s key advantages, any
element of a web-based testbed should be accessible via the web.

The Testbed Director should be the experimenter’s proxy accordingly and
do everything to manage one evaluation execution. Therefore, it needs to set up
the initial evaluation situation in the Testbed Environment, start the execution,
gather all required results, and insure following evaluations with a releasing of
preserved testbed performance for an evaluation execution.

A Testbed Environment is required to serve the actual testbeds functionality
of evaluations. Depending on the testbed’s domain and motivation of creation
its environment has to be designed. Mostly it is a distributed system of different
actors simulating a situation for one use case. It can thereby involve devices and
simulated or virtualized elements. A separation of organizational and executional
elements in the Testbed Environment will improve the evaluations’ execution [4].
Not only environment elements should be separated into these two categories,
but also artifacts and communication channels.

A clear hierarchy supports the future adaptability of a testbed. The testbed
server is hereby the root, follows with organizational elements first, and ends
with executional elements. To set up the distributed testbed faster, a bottom-
up registration supports the process of dynamic ordered evaluations. Any ele-
ment besides artifacts and used communication channels can be organized in
a multi-tier fashion if required for the testbed’s domain. While the organiza-
tional elements of the testbed are mostly described by the testbed’s creator, the

WTA: Towards a Web-Based Testbed Architecture 119

executional ones can also be configured by the experimenters according to their
evaluations. EaaS infrastructures form the exceptions where also organizational
elements are partially described by the experimenters.

A web-based testbed serves degrees of freedom in a 2-dimensional space.
One is the freedom of experimenter interactions and one is the freedom of the
testbed environment elements. In both dimensions, the creators require to iden-
tify the sweet spot and design the testbed accordingly. In terms of experimenter
interactions it is a dimension with three possible values: (1) a testbed can be
a strict demo without any possibility for an experimenter to choose anything,
(2) a testbed with limited available possible use cases and solutions to choose
of, and (3) a full creative playground where the experimenters can live out their
creativity to create their preferred evaluation with many possibilities to choose
and change individually. The dimension of the testbed environment elements’
freedom is a scale between two extremes, where both are hindering a valuable
evaluation execution. One is the full control of the testbed organizational ele-
ments over the executional ones, and the other is the opposite, so no control of
the organizational elements over the executional ones.

Web-based testbeds should also be open for future changes in their architec-
ture. Therefore a core of components should be given, but similar to an onion
architecture [7], the creators should include interfaces for future changes accord-
ing to newly discovered technology. A testbed can thereby serve more similar
needs. Followingly the number of testbeds in one domain can decrease.

3.1 WTA Elements

Fig. 1. Web-based testbed architecture elements.

120 V. Siegert and M. Gaedke

The testbed server is the root of all involved elements and includes a Web UI,
the Testbed Director, and the Testbed Library. Together with the testbed envi-
ronment, they build the WTA components, which will be described in the fol-
lowing subsection with their interactions. Besides the WTA components, WTA
includes elements like Scheduler, Artifact, and Communication Channel. Sched-
ulers either order events into a sequence or schedule them on a timestamp if an
evaluation description contains events or interactions to happen during the eval-
uation. Offering in a testbed several schedulers to choose from can be necessary
because new insights into the testbed’s domain could lead to new scheduling
approaches in according evaluations. In WTA the schedulers relate to the events
occurring in the testbed’s domain and should be choosable by the experimenters
for each evaluation if more than one is implemented.

Every web-based testbed has due to its distribution at least one communi-
cation channel to the experimenters’ user agents. WTA-based testbeds need to
communicate in the purpose of evaluation organization and maybe also within
an executed use case between executional testbed environment elements. The
organizational communication channels require thereby to be separated from
the executional ones, such that they do not interfere with running evaluations.
While the organizational channels mainly stick to web technology, executionals
are influenced by the testbed’s domain.

The artifacts of a WTA testbed are all the data within the testbed’s pro-
cess being stored, consumed, or both. Besides the evaluation results, which are
the output artifacts, also input artifacts like standardized measurements, (real-
world) use cases, or evaluation descriptions of experimenters exist in WTA. An
instance of a WTA should also have measurements and use cases available to
choose from in the Testbed Library. Additionally, some domains and their use
cases might produce intermediate artifacts like logs, which need to be communi-
cated to other environmental elements within the use case or serve an interme-
diate contemplation of an ongoing evaluation.

All WTA elements require to be accessible online. Thereby, experimenters can
have potentially direct access to them and easily share especially the artifacts of a
testbed. Maintaining a testbed and its executions is conducted in the distributed
system of a WTA testbed with more efficiency due to such online accessibility.
Therefore, all elements require a valid URL to be queried via the web.

3.2 WTA Components

WTA splits into three main components as in the conceptual similarities and
includes the Web UI (1) such that the testbed server communicates with several
user agents and serves as access points for the experimenters. We propose the
implementation of the components in the component diagram in Fig. 2. The Web
UI is then connected to two other components: the Testbed Director (2) and the
Testbed Library (3). Therefore, the Testbed Director is the second half of the
conceptual similarities’ central node, and thus manages the Testbed Environ-
ment (4). It organizes the execution of a given evaluation description and later
gathers all results from the environment.

WTA: Towards a Web-Based Testbed Architecture 121

Fig. 2. Web-based testbed architecture components.

The Testbed Library offers an interface for Web UI and Testbed Director
and saves all central artifacts of the testbed. Hereby, it saves the results of
evaluations, real-world use cases, measurements, and other in advance created
setup instructions for the testbed environment. All experimenters can access
the library via the UI to either checkout results of passed evaluations or to
create their next evaluation on the testbed. With such a library the ease of all
experimenters is supported, such that they can focus on their main motivation
of tests and evaluations and do not have to create everything from scratch.

The Testbed Environment is the most crucial aspect of the testbed as it
realizes the required functionality. Thereby, its structure is highly dependent on
the testbed’s domain. It could be structured as in recent work from single-tier to
multi-tier in as many layers as required for the testbed’s domain. Also, additional
layers to manage the correct testbed execution could be realized within.

The given architecture can by all components besides the User Agent be
realized in a single- or multi-tier architecture. Figure 2 is hereby showing a single-
tier version. Recent work proposes, that some domains or usages of a testbed
might require such multi-tier testbed not only in executional elements but also
in components like the Testbed Director or the Testbed Library.

4 Conclusion

In this work, we identified the recurrent innovation of web-based testbeds in
different domains without a common architecture. To close the gap of especially
testbed creators inexperienced in computer science towards full exploitation of
the web-based testbed advantages, we identified conceptual similarities of recent
web-based testbeds. Consequently, we presented a web-based testbed architec-
ture (WTA) with emerging architectural goals out of the identified conceptual
similarities and the principles initially proposed by Cavalieri et al. [4] which
are still crucial. It conflates the common understanding and key advantages of
the web. In the future, we need to support this first approach with a precise
method supporting any testbed developer in his work, which will help especially
researchers from non-computer science domains.

122 V. Siegert and M. Gaedke

Acknowledgements. We would like to thank Sebastian Heil for his valuable concep-
tual discussion and input. This work is funded by the Deutsche Forschungsgemeinschaft
(German Research Foundation) - Project-ID 416228727 - SFB 1410.

References

1. Adjih, C., Baccelli, E., Fleury, E., et al.: FIT loT-LAB: A large scale open exper-
imental loT testbed. In: Proceedings of the IEEE World Forum on Internet of
Things, WF-IoT 2015, pp. 459–464 (2015)

2. Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: Wireless multimedia sensor net-
works: applications and testbeds. Proc. IEEE 96(10), 1588–1605 (2008)

3. Bertolino, A., De Angelis, G., Frantzen, L., Polini, A.: Model-based generation of
testbeds for web services. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T.
(eds.) FATES/TestCom-2008. LNCS, vol. 5047, pp. 266–282. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68524-1 19

4. Cavalieri, S., Macchi, M., Valckenaers, P.: Benchmarking the performance of man-
ufacturing control systems: design principles for a web-based simulated testbed. J.
Intell. Manuf. 14(1), 43–58 (2003)

5. Cecchet, E., Udayabhanu, V., Wood, T., Shenoy, P.: BenchLab: an open testbed
for realistic benchmarking of web applications. In: The 2nd USENIX Conference
on Web Application Development, pp. 37–48 (2011)

6. Gao, Y., Zhang, J., Guan, G., Dong, W.: LinkLab: a scalable and heteroge-
neous testbed for remotely developing and experimenting iot applications. In: 2020
IEEE/ACM 5th International Conference on Internet-of-Things Design and Imple-
mentation, pp. 176–188 (2020)

7. Khalil, M.E., Ghani, K., Khalil, W.: Onion architecture: a new approach for XaaS
(every-thing-as-a service) based virtual collaborations. In: 2016 13th Learning and
Technology Conference (LT), pp. 1–7 (2016)

8. Kouřil, D., Rebok, T., Jirśık, T., et al.: Cloud-based testbed for simulation of
cyber attacks. In: 2014 IEEE Network Operations and Management Symposium
(NOMS) (2014)

9. Lanza, J., Sánchez, L., Santana, J.R., et al.: Experimentation as a service over
semantically interoperable internet of things testbeds. IEEE Access 6, 51607–51725
(2018)

10. Neema, H., Koutsoukos, X., Potteiger, B., Tang, C.Y., Stouffer, K.: Simulation
testbed for railway infrastructure security and resilience evaluation. In: 7th Sym-
posium on Hot Topics in the Science of Security (2020)

11. Peterson, L., Roscoe, T.: The design principles of PlanetLab. ACM SIGOPS Oper.
Syst. Rev. 40(1), 11–16 (2006)

12. Siegert, V., Noura, M., Gaedke, M.: aTLAS: a testbed to examine trust for a
redecentralized web. In: Proceedings of The 2020 IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology (2020, to
be published)

13. Vargas-Salgado, C., Aguila-Leon, J., Chiñas-Palacios, C., Hurtado-Perez, E.: Low-
cost web-based supervisory control and data acquisition system for a microgrid
testbed: a case study in design and implementation for academic and research
applications. Heliyon 5(9), e02474 (2019)

14. Werner-Allen, G., Swieskowski, P., Welsh, M.: MoteLab: a wireless sensor network
testbed. In: 4th International Symposium on Information Processing in Sensor
Networks, pp. 483–488. IEEE (2005)

https://doi.org/10.1007/978-3-540-68524-1_19

WTA: Towards a Web-Based Testbed Architecture 123

15. Yu, H., Shen, Z., Leung, C., Miao, C., Lesser, V.R.: A survey of multi-agent trust
management systems. IEEE Access 1, 35–50 (2013)

16. Zia, M.Y.I., Otero, P., Siddiqui, A., Poncela, J.: Design of a web based underwater
acoustic communication testbed and simulation platform. Wirel. Pers. Commun.
116, 1171–1193 (2020)

Towards Large-Scale Empirical
Assessment of Web APIs Evolution

Fabio Di Lauro(B) , Souhaila Serbout , and Cesare Pautasso

Software Institute, USI, Lugano, Switzerland
{fabio.di.lauro,souhaila.serbout}@usi.ch, c.pautasso@ieee.org

Abstract. Web Application Programming Interfaces (APIs) decouple
the internal implementation of a service from its consumers which can
reuse and compose them to rapidly build new applications. Many Web
APIs are described with the OpenAPI Specification (OAS). The goal of
our research is to check the feasibility of using API descriptions found in
public open source repositories to study how APIs evolve over time. To
do so, we collected a large dataset of OAS documents by crawling open
source repositories, we parsed the corresponding metadata and measured
the API size in order to extract a simple model to track the lifecycle of
API artifacts and observe common evolution behaviors. Our preliminary
results indicate that only a subset of the APIs changes, but as opposed to
the expectation that APIs should only grow to maintain backward com-
patibility we also detected a number of APIs with a more variable history.
We also study the stability of API artifacts over time and whether APIs
are more or less likely to change as they age.

Keywords: Web API · API evolution · OpenAPI

1 Introduction

Web Application Programming Interfaces (APIs) are used to remotely access
software services over the HTTP protocol [16]. They make it possible to build
complex applications rapidly by accessing third-party data sources and by
reusing software delivered as a service, written in many programming lan-
guages [5]. APIs can evolve during their lifetime for different reasons [12,18].
These changes could have a minor impact or severely damage or break clients
depending on whether, for example, API features are added, updated, or
removed [13]. To mitigate this, service providers can guarantee the stability of
their offerings, reveal a preview of new experimental versions to selected clients
and support one or more versions of an API at the same time [14].

In this paper, we assume that the interface of a Web API is described using
OpenAPI [1], an emerging standard specification language which supports ver-
sioning metadata embedded in the API description. Throughout the API evo-
lution life cycle [15], the API documentation is also continuously changing [17].
These changes to the API description artifacts themselves are tracked via version
control systems.

The original version of this chapter was revised: the term “paths” has been corrected to
“operations” in several places of the paper. The correction to this chapter is available
at https://doi.org/10.1007/978-3-030-74296-6 49

c© Springer Nature Switzerland AG 2021, corrected publication 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 124–138, 2021.
https://doi.org/10.1007/978-3-030-74296-6 10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_10&domain=pdf
http://orcid.org/0000-0001-6982-9851
http://orcid.org/0000-0002-8144-2606
http://orcid.org/0000-0002-2748-9665
https://doi.org/10.1007/978-3-030-74296-6_49
https://doi.org/10.1007/978-3-030-74296-6_10

Towards Large-Scale Empirical Assessment of Web APIs Evolution 125

50 100

0 50 100 150 200 250 300

0

365

730

1,095

1,460

1,825

API

D
ay

of
C
om

m
it

150 200 250

Number of Commits/API

9046 Commits

Fig. 1. Dataset Overview: Commit History of APIs with more than 10 commits, sorted
by number of commits

Our goal is to assess the feasibility of using API descriptions collected from
open-source repositories to study how Web APIs evolve over long periods of
time. To do so, we collected on GitHub the change histories of 4,682 OpenAPI
Specification (OAS) files.

Can these be used to trace, measure, and classify changes on APIs structures
during their lifetime? What kind of changes can be detected by analyzing basic
artifacts metadata? How stable are API artifacts over time? Do APIs tend to
grow or shrink over time? How much is the frequency of change of an API
dependent on its age? These are the research questions we aim to answer in this
paper.

The rest of this paper is structured as follows. Section 2 presents an overview
of collected API artifacts. Section 3 outlines the results that we obtained and
shows selected Web API evolution cases. We discuss the results in Sect. 4.
Section 5 summarizes the related work before we conclude in Sect. 6.

126 F. Di Lauro et al.

1
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
9
9

100

101

102

103

Number of Commits

N
um

be
r

of
A

P
Is

101

102

103

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

9
7

100

101

102

103

Number of Versions

101

102

103

C
um

ul
at

iv
e

N
um

be
r

of
A

P
Is

Fig. 2. How many commits and versions are there for each API? (Log Scale)

2 Dataset Overview

To analyze the evolution of an API specification we collected multiple versions
of its description artifacts. Each artifact is associated with metadata (e.g., the
commit timestamp, the version identifier, the API title) and can be measured to
determine the size of the API. In this paper, we use the number of operations - a
simple metric that counts how many operations are present on published paths
- hereinafter called size. While such information can be extracted from many
API description languages [20], the industry is adopting standard specification
languages such as OpenAPI to model their APIs.

By crawling GitHub during December 2020, we collected 4,682 open-source
API descriptions, written in both Swagger 2.0 and OpenAPI 3.0, with a total
number of 34,638 commits, where 55% of the APIs have more than 1 commit. We
downloaded all files and metadata in each commit and checked their compliance
with the OpenAPI standard using Prance [2], configured with the validator
open-api-spec-validator [3]. As a result, we obtained 13,786 commits labeled
as valid, which we include in this analysis.

We visualize the entire dataset in Fig. 1, where each dot represents a commit.
Its horizontal position shows which API changed, while the vertical position
represents when the change occurred, relative to the time of the initial commit
for the corresponding API. Its color highlights how many commits have been
found in each API. We can see that for some APIs there are commits spanning
across more than four years and that there are 280 APIs which have more than
10 commits.

3 Results

3.1 Change Granularity: Commits and Versions

Figure 2 shows how many commits and how many distinct version identifiers
have been found for each API. All APIs have less than 300 commits and 44% of

Towards Large-Scale Empirical Assessment of Web APIs Evolution 127

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

Number of Commits

N
um

be
r

of
V
er

si
on

s
20 40 60 80 100 120

Number of APIs

Fig. 3. Commits and versions (APIs with more than 2 commits)

them have only 1. We can also observe in Fig. 3 the relationship between changes
that impact the versioning metadata embedded in the API description and the
changes which only touch the artifact as tracked by the versioning system. It is
clear that the number of versions is bound by the number of commits since every
observable change of the version identifier requires a new commit to store the
updated API specification. This chart helps to select a dozen of APIs which not
only have many fine-grained changes over a long period of time but also have
been explicitly annotated with different version identifiers by their developers.

3.2 API Age and Change Frequency

We define the age of the API as the time interval between the last and first
commit of its history. The distribution of the age of the APIs in our collection is
shown in Fig. 4 (top). While -again- most APIs have only 1 commit (thus, they
have age 0), our collection also includes APIs whose history spans up to 5 years,
which make them potential subjects for further study.

How often do API descriptions change? We measure the change interval as
the duration of the time interval between two consecutive commits within an
API history. As shown in Fig. 4 (bottom), most APIs change within the same
day (change interval < 1) while there are some commits which occurred after
leaving the API specification untouched for more than 3 years. It is interesting
to note that, in many APIs, OAS files are committed and pushed only once, and
afterward, they are no longer touched.

Does the age of the API impact its likelihood of changing? If we estimate
the likelihood of change based on the time interval between commits, as shown
in Fig. 5, we can observe that as APIs get older they still tend to change rather
often.

128 F. Di Lauro et al.

0 1

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

1
2
0
0

1
2
5
0

1
3
0
0

1
3
5
0

1
4
0
0

1
4
5
0

1
5
0
0

1
5
5
0

1
8
2
6

101

102

103

API Age: Commit Range (Days)

N
um

be
r

of
A

P
Is

101

102

103

C
um

ul
at

iv
e

N
um

be
r

of
A

P
Is

0 1

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

1
3
1
5

100

101

102

103

104

Change Interval (Days)

N
um

be
r

of
C

om
m

it
s

100

101

102

103

104

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

it
s

Fig. 4. API Age and Change Interval (Log Scale): How old are the APIs and how often
do they change?

3.3 API Growth

While it is straightforward to observe the time of the commits, detecting actual
change occurring to an API is more challenging. API descriptions are complex
documents, which – in the case of OpenAPI specifications – enumerate the
resource paths exposed by the API, define the corresponding resource repre-
sentations, and prescribe which HTTP methods can be invoked on each path,
using which parameters and which status codes can be expected as part of the
responses.

To simplify the analysis while keeping the possibility to detect some changes,
in this paper we abstract the content of the API specification with one metric:
its size, measured as the number of operations. While there are many changes
that can be made to an API specification document that does not impact the
number of paths, we are interested in studying how many commits during the
history of an API actually do so. This would already allow us to determine if
the hypothesis that APIs tend to grow over time can be confirmed.

Towards Large-Scale Empirical Assessment of Web APIs Evolution 129

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Y = 0.072935X + 4.736144, R2 = 0.06632

Days since the first commit

D
ay

s
si

nc
e

pr
ev

io
us

C
om

m
it

50 100 150 200
Number of Commits

r = 0.293201772

Fig. 5. Likelihood of change: Do APIs change less as they age?

In Fig. 6 (top) we report the API size distribution for every commit. While a
few hundred commits do not contain any paths, the size follows an exponential
distribution with a tail that reaches up to 357 operations.

Regarding how the size of API changes, we report the variance of the number
of operations across we report the variance of the number of paths across the
commit history of every API in Fig. 6 (bottom). Here we can see that 30% of
APIs have a size variance of 0 over their commit history.

We have also computed the variation of the API size at every commit by
comparing the size of the new version against the size of the previous one (Fig. 6,
middle). While, in this case, the vast majority of commits do not change the size,
we can also measure how much APIs grow or shrink after each commit.

In Fig. 7 we can observe absolute APIs size variations related to the time
between the corresponding commits. There is no correlation between the amount
of API size changes and the time needed to apply them.

130 F. Di Lauro et al.

0 1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

3
5
7

100

101

102

103

API Size (Operations)

N
um

be
r

of
C

om
m

it
s

102

103

104

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

it
s

-1
9
2

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0 -5 0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

1
2
2

100

101

102

103

104

Δ(API Size)

N
um

be
r

of
C

om
m

it
s

100

101

102

103

104

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

it
s

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

4
8
0

5
6
5
0

100

101

102

103

variance(API Size(Operations))

N
um

be
r

of
A

P
Is

102

103

C
um

ul
at

iv
e

N
um

be
r

of
A

P
Is

Fig. 6. Do changing APIs always grow larger? API Size, Size variation of every commit
and Size variance of every API (Log Scale)

Measuring the size variation per unit of time represents the API growth
speed : a negative speed value indicates how much an API has been shrinking
(some operations were removed) and conversely, a positive speed value indicates
a tendency to grow the number of operations. We measured this speed at every
commit (Fig. 8) as well as aggregated it over the history of each API (Fig. 9).

Towards Large-Scale Empirical Assessment of Web APIs Evolution 131

0 50 100 150 200 250 300 350 400

0

50

100

150

200

Change Interval (Days)

|Δ
(A

P
I

Si
ze

)|
100 200 300 400 500

Number of Commits

r = −0.01412004

Fig. 7. Speed of change: How much time does it take to grow or shrink the API?

Given the fast-slow dynamics of APIs, which may remain unchanged for months
and then go through a development iteration with multiple commits during the
same day, we have chosen to measure the speed in terms of operations/day. The
high values shown in the tails of the distribution are due to changes in the API
size which have been amplified by the short change interval between the commits
in which they were introduced.

We also computed the total size variation of APIs (Fig. 9), measured by
comparing the size of the last commit and the first commit of its history. If we
classify APIs in terms of whether they grow, shrink, or simply do not change, we
obtain the groups shown in Table 1. The first table (a) counts how many APIs

-4
9
3
7
1

-1
0
0
0

-9
5
0

-9
0
0

-8
5
0

-8
0
0

-7
5
0

-7
0
0

-6
5
0

-6
0
0

-5
5
0

-5
0
0

-4
5
0

-4
0
0

-3
5
0

-3
0
0

-2
5
0

-2
0
0

-1
5
0

-1
0
0

-5
0 0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
4
0
4
0
0

100

101

102

103

104

Speed of Change (Δ(API Size)/Change Interval)

N
um

be
r

of
C

om
m

it
s

101

102

103

104

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

it
s

Fig. 8. Speed of change distribution: operations/day (Log Scale)

132 F. Di Lauro et al.

-5
5

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0 -5 0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
4
0

100

101

102

103

Final API Size - Initial API Size (Paths)

N
um

be
r

of
A

P
Is

100

101

102

103

C
um

ul
at

iv
e

N
um

be
r

of
A

P
Is

Fig. 9. Total API size change (Log Scale)

have grown larger or smaller over their entire history. Here we see that 6% of
the APIs shrink, while 50% grow. If we also consider changes occurring at every
commit (b), we see that 42% of the APIs keep a constant size in all the commits
in their history. This leaves 17 APIs which change their intermediate size but
end up with the same size as the initial one. Moreover, 16% of the APIs have a
history with some commits increasing their size, and others reducing their size.

3.4 Web API Evolution Case Studies

Out of the large number of APIs we collected, we selected a set of APIs cases
showing different evolution histories in Fig. 10 and 11 (a) is an example of an
API which has 40 commits corresponding to 16 different versions. However, we
can notice that its size, measured as the number of operations, remains the same
during the whole evolution period. This case is an example where a more detailed
metric is required to detect changes. In fact, 23 commits of its history contain
schema definition changes, 6 commits contain changes to paths parameters defi-
nitions, and 2 are related to responses modifications; Furthermore, in its history
developers push 6 major and 8 minor version upgrades.

Unlike (a), (b), and (d) are APIs that gain additional operations after almost
every commit, and only a few commits introduced some deletions. There are also
some APIs, such as (e), which steadily grow all the time. (f) show the Kubermatic

Table 1. How many APIs with more than 2 commits grow or shrink their size?

Size change Number of APIs

None 380 44%

Larger 423 50%

Smaller 54 6%

Total 857

(a) Total API change (Fig. 9)

Size change Number of APIs

None 363 42%

Growing 326 38%

Shrinking 31 4%

Growing and shrinking 137 16%

(b) Commit Δ(API size) (Fig. 6 middle)

Towards Large-Scale Empirical Assessment of Web APIs Evolution 133

API, which both grows and shrinks over its history of 199 commits over more
than 2 years, eventually more than tripling its initial size. It grows rapidly with
an average speed of 1.77 operations/day.

Another particular change-history example is the API depicted in (c), which
has a commit where 192 operations were deleted at once. Then it started slowly
growing during the next 254 days adding 85 operations more. On the day 394,
there was a commit that inserted 122 operations to the API and, after that, we
can observe minimal variations in its size with a variation of 5 operations from
day 394 to 574. Also, while during the first half of its history there is no change
in versioning metadata, it undergoes 23 different versions from day 279 onwards.

4 Discussion

Is it possible to find – by crawling open source repositories – enough machine-
readable API descriptions suitable to study how Web APIs evolve over large
periods of time? In this paper, we have shown that thanks to the growing adop-
tion of the OpenAPI specification language, a sample of 875 APIs with a history
of more than 2 commits can be found on GitHub.

We could also find many more API description artifacts (1322) without a
commit history of significant length. While these are still interesting to analyze
for synchronic studies, it remains to be seen whether developers pushed only a
single commit because their APIs were committed only when stable, or we have
crawled repositories of projects which never went beyond the first commit.

By analyzing basic artifact metadata (such as commit timestamps and ver-
sion identifiers) we have begun to trace, measure and classify changes on APIs
during their lifetime. For example, we have shown that the frequency of change
of APIs is not dependent on the age of the API.

Likewise, different API developers follow different versioning practices, rang-
ing from version identifiers incremented every other commit (like in the Open-
Storage SDK shown in Fig. 10b) to API histories with only a few explicitly
identified versions over hundreds of commits. We also found examples in which
the title of the API itself would change, although the OAS document used to
describe it would remain the same.

Regarding the evolution of the API content, in this paper, we have focused
on one possible API size metric, which has allowed us to detect changes for more
than half of the APIs in the collection. We certainly need a more in-depth analysis
of API artifacts to detect and measure changes beyond the length of the resource
operations, not only to distinguish whether existing operations are renamed but
also to spot changes in parameters, responses and schema definitions. Still, by
only looking at the size we could show that the majority of the APIs in our
sample, which changed their size, have a tendency to grow larger over time.

4.1 Threats to Validity

One of the challenges faced when performing a study using datasets collected
from open-source repositories is the quality of the retrieved data. In our case,

134 F. Di Lauro et al.

0 100 200 300 400 500 600 700
24

26

28

30
v
7
.1

.1
v
7
.3

.0

v
1
0
.0

.0

v
1
1
.0

.0
v
1
1
.0

.1

v
1
2
.0

.0
-r

c
.2

v
1
2
.0

.0
v
1
3
.0

.0
-b

e
ta

.1

Days since the first commit

A
P

I
Si

ze
 (

O
pe

ra
ti
on

s)

(a) Voyager

40 commits, 16 versions 0.00 operations/day

0 100 200 300 400 500 600 700 800 900 1,000
0

50

100

150

200

v
e
rs

io
n

n
o
t

se
t

0
.6

.0
0
.8

.0
0
.1

0
.0

0
.1

5
.0

0
.1

7
.0

0
.2

4
.0

0
.3

0
.0

0
.3

4
.0

0
.3

7
.0

0
.3

8
.0

0
.3

3
.2

0
.4

3
.0

0
.4

4
.0

0
.5

0
.0

0
.5

2
.0

0
.5

4
.0

0
.5

5
.0

0
.5

9
.0

0
.6

0
.0

0
.6

2
.0

0
.6

5
.0

0
.6

6
.0

0
.6

9
.0

0
.7

1
.0

0
.7

3
.0

0
.7

5
.0

0
.7

6
.0

0
.7

7
.0

0
.8

4
.0

0
.9

1
.0

0
.9

2
.0

0
.9

5
.0

0
.9

9
.0

0
.1

0
0
.0

0
.1

0
0
.0

0
.1

0
2
.0

0
.1

0
5
.0

Days since the first commit

A
P

I
Si

ze
 (

O
pe

ra
ti
on

s)

(b) OpenStorage SDK

188 commits, 97 versions 0.30 operations/day

0 100 200 300 400 500 600
0

100

200

300

400

500

1
.6

.0

1
.6

.0 1
.9

.0
-a

lp
h
a
.5

-S
N
A
P
S
H
O

T
1
.9

.0
-a

lp
h
a
.6

-S
N
A
P
S
H
O

T

1
.9

.0
-a

lp
h
a
.9

-S
N
A
P
S
H
O

T

1
.9

.0
-a

lp
h
a
.1

0
-S

N
A
P
S
H
O

T
1
.9

.0
-b

e
ta

.1
-S

N
A
P
S
H
O

T

1
.9

.0
-b

e
ta

.3
-S

N
A
P
S
H
O

T

1
.9

.1
-S

N
A
P
S
H
O

T
1
.9

.1
-S

N
A
P
S
H
O

T
1
.9

.1
1
.1

0
.0

-a
lp

h
a
.0

-S
N
A
P
S
H
O

T
1
.9

.2
-S

N
A
P
S
H
O

T

1
.1

0
.0

-a
lp

h
a
.1

-S
N
A
P
S
H
O

T

1
.1

0
.0

-a
lp

h
a
.3

-S
N
A
P
S
H
O

T

1
.1

1
.0

-a
lp

h
a
.0

-S
N
A
P
S
H
O

T

Days since the first commit

A
P

I
Si

ze
 (

O
pe

ra
ti
on

s)

(c) Dockstore API

195 commits, 23 versions 0.21 operations/day

Fig. 10. API evolution histories examples

Towards Large-Scale Empirical Assessment of Web APIs Evolution 135

0 100 200 300 400 500 600
0

20

40

0
.1 0

.3
.1

0
.6 0
.1

0 0
.1

3

0
.1

4
.6

0
.1

5
.1

0
.1

6
.0

1
.0

.0

1
.0

.3

1
.0

.4
1
.0

.6

1
.0

.7
1
.0

.1
0

1
.0

.1
1

1
.0

.1
2

1
.0

.2
1

1
.0

.2
3

1
.0

.2
5

1
.0

.2
8

1
.0

.3
1

1
.0

.3
3

1
.0

.3
6

1
.0

.3
8

Days since the first commit

A
P

I
Si

ze
 (

O
pe

ra
ti
on

s)
(d) Dokumente API

126 commits, 70 versions -0.65 operations/day

0 100 200 300 400 500 600
20

30

40

50

60

v
e
rs

io
n

n
o
t

se
t

0
.1

.2
0

0
.1

.3
8

0
.5

.1
1
.0

.0
-d

e
v
.2

1
.0

.0

1
.0

.1

1
.1

.0
-a

lp
h
a
.1

1
.1

.2
-r

c
.1

1
.1

.2

Days since the first commit

A
P

I
Si

ze
 (

O
pe

ra
ti
on

s)

(e) Kubeflow Pipelines API

36 commits, 15 versions 0.01 operations/day

0 100 200 300 400 500 600
0

50

100

2
.2

.3

2
.8

2
.1

1

Days since the first commit

A
P

I
Si

ze
 (

O
pe

ra
ti
on

s)

(f) Kubermatic API

199 commits, 3 versions 1.77 operations/day

Fig. 11. API evolution histories examples (continued)

we are interested in observing the evolution of distinct real world Web API
through their OAS description. Another threat to our sample validity could be
represented by the fact that not all APIs are really implemented in up and
running services. This fact could void the assumption that commits introduce
always tested modifications as usually happen in productive environments.

136 F. Di Lauro et al.

5 Related Work

Observing the evolution of Web API was also a study subject for many works,
such as [8] where the authors studied the impact of the evolution of an API
system through interviews with six developers involved in this process. They
also investigated how major API providers organize the evolution of their APIs
systems and how changes can impact clients’ applications. While [8] focused on
the impact of Web APIs evolution on the clients, the authors of [19] focus on the
difficulties developers face to upgrade their client applications as a consequence
of the API evolution of their dependencies. The authors also investigated how
RESTful web API evolve analyzing subsequent changes in different software
versions. A taxonomy of breaking and non-breaking Web API changes has been
presented by [12], which we plan to use as the next step to check how often each
type of change occurs in practice.

API Evolution has also been empirically studied in software engineering. For
example, [10] presented a large-scale study of change propagation within the
Pharo ecosystem. In the same direction, the authors of [9] designed APIEvo-
lutionMiner : a tool to extract rules by monitoring APIs changes during their
evolution. This tool mines changes using deltas from revisions contained in his-
tories and produces rules to indicate how method calls should be replaced. In
our empirical study, we observe Web APIs changes based on comparing different
versions of their textual documentation written in OpenAPI Specification.

In [11] the authors identify and classify the most frequent changes that hap-
pen to APIs and how these changes could be reflected in the documentation,
release notes, issue tracker and API usage logs.

Other works aimed at proposing solutions for handling the problems that
both clients and developers can face because of their Web APIs evolution. For
that purpose, the authors of [6] proposed to use refactoring tools to mitigate
the impact of some types of API changes. In [4] the authors propose a data-
driven approach to enhance processes of APIs creation and evolution. They have
analyzed how to use data gathered from APIs usage and developers in order
to build indicators, usable as references, to plan the development of the next
releases. Also in [7], the authors addressed challenges related to the co-evolution
of APIs and their clients. They analyzed already-built artifacts in order to obtain
API access points and relate their usage to clients’ behavior.

6 Conclusions

To observe the evolution of Web APIs over time, we performed an empirical study
over a dataset of 4,682 APIs. Our quantitative approach consists of extracting
Web APIs changes from their textual documentation written in the OpenAPI
Specification language, using the change histories from Github. Based on this
meta-data, we have measured different change granularities, from fine-grained
commits to coarse-grained version identifier changes. While most APIs have only
a few commits and a single version, we were able to spot potentially interesting

Towards Large-Scale Empirical Assessment of Web APIs Evolution 137

outliers worthy of further study with hundreds of commits and up to 97 different
versions. We also analyzed temporal aspects of commit histories, attempting to
correlate the age of APIs with their change frequency. To observe the impact of
change on the API content, we used a simple size metric defined as the number
of operations listed in the corresponding OAS specification. This allowed us to
observe that if the APIs change size, they mostly do so by growing over time.
We have also visualized the commit history of six representative examples of
different types of Web API evolution.

As future work, we plan to define heuristics for classifying the changes occur-
ring on the different files through the commits, using more metrics, such as
HTTP methods, paths, and query parameters and properties of response objects.
We also plan to establish a non-linear, partial order relationship between the arti-
facts which may undergo forks and merges across different repositories. Moreover,
platforms such as GitHub allow forking repositories and their reuse, which means
that the retrieved OAS cannot be treated as files with a linear, separate history
but we have to track their provenance considering that they can be forked by
other users and then extended or modified in different repositories. Thus, we will
also trace changes occurring across forks.

Acknowledgements. This work is funded by the SNSF, with the API-ACE project
nr. 184692.

References

1. OpenAPI Initiative. https://www.openapis.org/. Accessed 30 Dec 2020
2. Prance. https://pypi.org/project/prance/. Accessed 28 Dec 2020
3. open-api-spec-validator. https://github.com/p1c2u/openapi-spec-validator.

Accessed 29 Dec 2020
4. Abelló, A., Ayala, C.P., Farré, C., Gómez, C., Oriol, M., Romero, O.: A data-driven

approach to improve the process of data-intensive API creation and evolution. In:
Proceedings of the Forum and Doctoral Consortium Papers Presented at CAiSE,
vol. 1848, pp. 1–8. CEUR-WS.org (2017)

5. Antonio, G.D., Pablo, F., Ruiz-Cortés, A.: An analysis of RESTful APIs offerings in
the industry. In: Proceedings of the International Conference on Service-Oriented
Computing (ICSOC), pp. 589–604 (2017)

6. Dig, D., Johnson, R.: How do APIs evolve? A story of refactoring. J. Softw. Maint.
Evol. Res. Pract. 18(2), 83–107 (2006)

7. Eilertsen, A.M., Bagge, A.H.: Exploring API/client co-evolution. In: 2nd
IEEE/ACM International Workshop on API Usage and Evolution (WAPI@ICSE),
pp. 10–13 (2018)

8. Espinha, T., Zaidman, A., Gross, H.G.: Web API growing pains: stories from
client developers and their code. In: Proceedings of the IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE).
IEEE (2014)

9. Hora, A., Etien, A., Anquetil, N., Ducasse, S., Valente, M.T.: APIEvolutionMiner:
keeping API evolution under control. In: Proceedings of the IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
pp. 420–424 (2014)

https://www.openapis.org/
https://pypi.org/project/prance/
https://github.com/p1c2u/openapi-spec-validator

138 F. Di Lauro et al.

10. Hora, A., Robbes, R., Valente, M.T., Anquetil, N., Etien, A., Ducasse, S.: How do
developers react to API evolution? A large-scale empirical study. Softw. Qual. J.
26(1), 161–191 (2018)

11. Koçi, R., Franch, X., Jovanovic, P., Abelló, A.: Classification of changes in API
evolution. In: Proceedings of the 23rd International Enterprise Distributed Object
Computing Conference (EDOC), pp. 243–249 (2019)

12. Lauret, A.: The Design of Web APIs. Manning (2019)
13. Li, J., Xiong, Y., Liu, X., Zhang, L.: How does web service API evolution affect

clients? In: Proceedings of the 20th International Conference on Web Services
(ICWS) (2013)

14. Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U., Stocker, M.: Interface evo-
lution patterns—balancing compatibility and flexibility across microservices life-
cycles. In: Proceedings of the 24th European Conference on Pattern Languages of
Programs, EuroPLoP 2019. ACM (2019)

15. Murer, S., Bonati, B., Furrer, F.: Managed Evolution - A Strategy for Very Large
Information Systems. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-01633-2

16. Pautasso, C., Zimmermann, O.: The Web as a software connector: Integration
resting on linked resources. IEEE Softw. 35, 93–98 (2018)

17. Shi, L., Zhong, H., Xie, T., Li, M.: An empirical study on evolution of API docu-
mentation. In: Proceedings of the 14th International Conference on Fundamental
Approaches to Software Engineering: Part of the Joint European Conferences on
Theory and Practice of Software, FASE 2011/ETAPS 2011, pp. 416–431 (2011)

18. Sohan, S.M., Anslow, C., Maurer, F.: A case study of Web API evolution. In:
Proceedings of the IEEE World Congress on Services, pp. 245–252 (2015)

19. Wang, S., Keivanloo, I., Zou, Y.: How do developers react to RESTful API evolu-
tion? In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS,
vol. 8831, pp. 245–259. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45391-9 17

20. Yang, J., Wittern, E., Ying, A.T.T., Dolby, J., Tan, L.: Towards extracting web
API specifications from documentation. In: 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), pp. 454–464 (2018)

https://doi.org/10.1007/978-3-642-01633-2
https://doi.org/10.1007/978-3-642-01633-2
https://doi.org/10.1007/978-3-662-45391-9_17
https://doi.org/10.1007/978-3-662-45391-9_17

Stability Metrics for Continuous
Integration of Service-Oriented Systems

Dionysis Athanasopoulos(B) and Daniel Keenan

School of Electronics, Electrical Engineering, Computer Science Queen’s University
Belfast, Northern Ireland, UK

{D.Athanasopoulos,dkeenan21}@qub.ac.uk

Abstract. One of the key principles of the service orientation is the
standardised service contract. However, the assumption that the service
contract is kept unmodified during the whole life-cycle of a system is not
always held. Evolution changes on the service APIs have an impact on
the maintainability of their programming clients within the system mak-
ing difficult the continuous integration of the services. The metrics that
have currently been applied for the service maintainability assess the ser-
vice coupling, cohesion, complexity, and granularity. Software stability
can further contribute in assessing the maintainability of systems. How-
ever, it is challenging to measure the stability of service APIs without
having evolved their programming clients, because it should be mea-
sured by considering the types of the evolution changes in APIs that
have direct impact on the programming clients. To address this chal-
lenge, we define a set of mappings between evolved service APIs based
on which the stability changes can be determined. We further specify a
generic algorithm that recognises the evolution changes required on the
programming clients of the evolved APIs. We finally define an initial ver-
sion of a suite of metrics that estimate the stability of a service system
without assuming the existence of the evolved programming clients.

Keywords: Software stability · Service API · Evolution · Continuous
integration

1 Introduction

Organizations have already migrated or developed from scratch the architecture
of their software systems into service-oriented architecture (SOA) [1]. Service-
orientation views systems as a composition of reusable services. Microservices
currently are an increasingly popular SOA style due to the advantages microser-
vices provide [2]. Microservices are highly cohesive and reusable services [3]. A
key principle of the service orientation is the standardised service contract that
consists of a set of service descriptions [1]. Each description specifies a (micro-)
service from a different aspect, e.g., syntactic, semantic, behavioral, or QoS
aspect [4]. The syntactic aspect specifies the syntax and the structure of the

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 139–147, 2021.
https://doi.org/10.1007/978-3-030-74296-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_11&domain=pdf
http://orcid.org/0000-0002-0720-1986
https://doi.org/10.1007/978-3-030-74296-6_11

140 D. Athanasopoulos and D. Keenan

public (micro-)service API (e.g., OpenAPI1). We use the term API to refer to
the interface of a (micro-)service.

The core implication of the principle of the standardised service contract is
that if the service contract is kept unmodified, then the code of the programming
clients of the service will not be affected. The term of the programming client
refers to the lines of code of the SOA system that invokes a (micro-)service API.
However, the assumption that the service contracts are kept unmodified during
the whole life-cycle of a SOA system does not always hold. Intuitively, changes
in service contracts can be frequent in the case of microservices due to the low
granularity and the high number of microservices that exist in a single large-scale
SOA system.

To confirm our intuition, we did a preliminary assessment of the stability of
the service APIs in open-source microservice systems [5] and we observed that
most of the evolution changes were made in the operations of the microservice
APIs. The evolution changes in the microservice APIs are significant because
they have a direct impact on the programming clients of the microservices. In
other words, evolution changes in the (micro-)service APIs increase the main-
tenance cost of SOA systems, i.e., the number of changes required in the pro-
gramming clients of APIs. As an example, a change in a parameter data-type
of an operation of a microservice API may trigger updates in tens of code lines
that invoke the reusable operation. However, there may exist evolution changes
in the (micro-)service APIs that do not affect the programming clients of the
(micro-)services. For instance, a data-type modification from the int data-type
of an input parameter of an API operation to a more general double data-type
does not require changes on the programming client of the API. In this case, the
programming client remains stable with respect to this specific evolution change
in the used API.

The source code of the microservice systems that we checked is held within
repositories of a collaborative development platform (e.g., GitLab2). We checked
the evolution changes in the microservice APIs over the many pushed commits of
the systems to the repositories. Collaborative platforms usually provide a level
of automation in setting up and triggering continuous-integration pipelines3.
A pipeline contains a sequence of steps (e.g., building, testing) that will be
automatically executed when commits are pushed to a central repository. The
continuous integration is one of the collaborative development practices followed
to reduce the development and the maintenance times of software systems [6].
However, if the programming clients of an evolved API have not been updated
before the API is pushed to a repository, then the execution of the continuous-
integration pipeline will be broken. This frequently happens because separate
(micro-)services are usually developed/maintained by separate engineers’ teams.

To avoid to break a continuous-integration pipeline, developers should mea-
sure how much stable a SOA system can be before pushing the API evolution

1 https://swagger.io/specification.
2 https://gitlab.com.
3 https://docs.gitlab.com/ee/topics/autodevops/.

https://swagger.io/specification
https://gitlab.com
https://docs.gitlab.com/ee/topics/autodevops/

Stability Metrics for Continuous Integration of Service-Oriented Systems 141

changes to a repository. However, it is challenging to calculate the system sta-
bility because it is not clear how data-type evolution changes affect the system
stability. Evolution changes at the data-type level can be quite various and of a
high number because API operations take as input/return as output XML/JSON
schemas that generally consist of many and various data-types. On top of that,
the actual value of the system stability cannot be calculated at the API evolution
time because the programming clients of the evolved APIs have not been evolved
yet. Thus, the following research question is raised: “How can the stability of
a SOA system be estimated without having evolved the programming clients of
service APIs?”

To answer this question, we searched in the literature for stability metrics.
Software stability is a quality attribute that contributes to the maintainability
of systems [7]. The stability of a system is defined as its resistance to the ampli-
fication of its changes (additions, modifications, deletions) [8]. To the best of our
knowledge, there is no maintainability metric that assesses (micro-)service sta-
bility. Significant research has been carried out on stability in the object-oriented
domain at the level of classes [9] and more recently at the lesser-explored level of
packages [10]. Conceptually, the object-oriented inter-package stability is close
to (micro-)service stability because a (micro-)service can be considered as a set
of packages that expose a public API used by many programming clients of other
(micro-)services. In other words, we do not consider the intra-package stability
because it deals with the changes made in all the classes/packages of a (micro-
)service that do not necessarily affect the other (micro-)services of a system.
However, the package-level stability metrics proposed in [10] are coarse-grained
because these metrics do not consider the kind of the data-type changes in the
public APIs of packages. Given the evolution of programming clients depend
on the data-type changes, the above metrics do not suffice to assess the SOA
stability.

To cover this literature gap, we contribute an initial study of the API changes
that affect the stability of SOA systems. We also define a set of mappings between
evolved (micro-)service APIs based on which the stability changes can be deter-
mined. We further specify a generic algorithm that recognises (guided by the
API mappings) the evolution changes required on the programming clients of
the evolved APIs. We finally define an initial version of a suite of metrics that
estimate the stability of a SOA system without assuming the existence of the
evolved programming clients. The metrics use the API mappings and follow the
steps of the client-evolution algorithm. The metrics can be used for both ser-
vices and microservices. Thus, we use the term of the service in the remainder
of the paper to refer to both services and microservices. We finally discuss the
employment of our stability metrics on a real-world microservice system [5].

The rest of the paper is structured as follows. Section 2 presents the related
state-of-the-art approaches and highlights the literature gaps. Section 3 defines
the concepts of SOA system, (micro-)service API, and API programming client.
Section 4 defines the mapping between evolved (micro-)service APIs. Section 5
defines the evolution changes on (micro-)service APIs and the evolution algo-

142 D. Athanasopoulos and D. Keenan

rithm of programming clients. Section 6 defines our proposed suite of stability
metrics. Section 7 summarizes our contribution and discusses its future direc-
tions.

2 Related Work

The existing quality metrics for (micro-)services focus on the service cohesion,
coupling, complexity, and granularity [11,12]. Further quality metrics specific for
microservices have been proposed in the area of the microservice extraction from
legacy systems. An example is the quality evaluation performed on extracted
microservices in [13]. The authors describe a quality criterion called “functional
independence”, which focuses on cohesion and coupling.

[14] highlights that the microservice quality attributes of modularity, scal-
ability, independence, and maintainability, have been frequently discussed in
the literature, without though proposing specific quality metrics. The industrial
research in [15] reveals that source code quality was the primary target of tools
and metrics in industry, but this is missing at the level of (micro-)service archi-
tecture. [16] developed a tool which accepts microservice system source code
as input, performs static analysis on the code, and computes metrics on the
microservices. [17] proposes SOA maintainability metrics in terms of microser-
vice coupling, cohesion, and complexity.

However, there is no stability metric for SOA systems. Software stability has
been well explored in the domain of object-oriented software. This has resulted in
metrics such as class stability metrics [7], class implementation instability [9], and
more recently a suite of package metrics [10]. However, the package-level stability
metrics proposed in [10] are coarse-grained because these metrics do not consider
the kind of the data-type changes in the public APIs of packages. In particular,
the metrics just increase by one the number of the evolution changes if a data-
type has been changed, independently of the type of the change made to the data-
type. Concluding, what is still missing in the literature are inter-service stability
metrics that take into account the fine-grained data-type evolution changes in the
service APIs.

3 Service API and SOA System

We define the concepts of service API, API client, and SOA system in a generic
way, independently of the underlying specification language (e.g., Java, WSDL,
OpenAPI).

Definition 1 (Service API). Service API is modelled by a name and a set
of operations.

api :=
(
name, {opi}

)

Definition 2 (API Operation). An API operation is modelled by a name and
(potentially empty) input and output messages, op := (name, msgin, msgout).

Stability Metrics for Continuous Integration of Service-Oriented Systems 143

Definition 3 (Operation Message). The input/output message of an oper-
ation consists of a set of elements, msg := {ei}.
We define the operation message in this paper based on the leaf elements of
the hierarchical structure of an XML/JSON schema, leaving as future work the
consideration of the complete hierarchical structure.

Definition 4 (Message Element). An element of a message is modelled by
a tuple that consists of the name, the data-type, the min occurrence number, and
the max occurrence number of the element, e := (name, type, min, max).

Given that the number of the instances of a leaf element appear in a schema
instance equals the product of the numbers of the instances of the elements that
belong to the path from the schema root to the leaf, the min/max occurrence
numbers are calculated by the product of the min/max occurrence numbers of
the elements of the path [18].

Definition 5 (API Programming Client). An API programming client
instantiates (assigning data values to) a number of (a part or all of) the leaf
elements of the (input/output) message of an operation of a service API and
finally invokes the operation.

pc :=
(
api, op,

{
(name, type, num, {valuei})

})

Definition 6 (SOA System). A SOA system consists of a set of service
APIs. Each API is associated with the set of its programming clients, sys :={(

api, {pci}
)}

.

4 Service API Mappings

We formally define the concept of the API mapping and we leave as future
work the specification of an algorithm that technically identifies these mappings
(e.g., by adapting existing schema/API mapping tool [19]). The API mapping
definition considers a source API (old API version) is mapped to a target API
(new API version). API mappings are hierarchically structured following the
hierarchical structure of service APIs.

Definition 7 (API Mapping). An API mapping consists of the source and
the target APIs, along with a set of their 1 − 1 operation mappings, mapi :=(
apis, apit, {mop}

)
.

Definition 8 (Operation Mapping). An operation mapping consists of the
source and the target operations and their 1 − 1 message mappings, mop :=(
ops, opt, {mmsg}

)
.

144 D. Athanasopoulos and D. Keenan

Definition 9 (Message Mapping). A message mapping consists of the
source and the target messages, along with the 1 − 1 mappings between their
leaf elements.

mmsg :=
(
msgs, msgt, {me}

)

Definition 10 (Element Mapping). An element mapping consists of the
source and the target elements, the absolute differences in their min/max occur-
rence numbers, and the amount of the information loss due to the translation of
the value of the source element to conform to the data-type of the target element,
me := (es, et, Δmin, Δmax, loss).

The concept of the information loss is specified in Sect. 5.

5 API Evolution Changes and Evolution Algorithm
for API Clients

According to [20], there are the following types of evolution changes that can
occur on the syntactic aspect of service APIs: i. add parameter; ii. remove
parameter; iii. rename parameter; iv. change data-type of parameter; v. change
min/max occurrence numbers of parameter; vi. change data-type of return value;
vii. delete operation; viii. add operation; ix. rename operation; x. combine oper-
ations; xi. split operation. We focus in this paper on the first nine types of
evolution changes, leaving as future work the last two types of changes. Even if
there are empirical studies on how developers react to API evolution [21], these
studies do not model the algorithmic steps of the client evolution. To cover
this gap, we specify in Algorithm 1 an initial version of the evolution algorithm
for API client, taking into account the above nine types of the API evolution
changes.

Algorithm 1. Evolution of a programming client of an evolved service API
Input: ops, opt, mapi, pc;

1: if mop =
(
ops, opt, {mmsg}

)
/∈ mapi then return -1;

2: else
3: if ops.name �= opt.name then pc.op.name := opt.name;

4: for pc.name /∈ mmsg.me do pc := pc - (name, type, num);

5: for pc.name ∈ mmsg.me do
6: if pc.name �= mmsg.me.et.name then pc.name := mmsg.me.et.name;

7: if pc.type �= mmsg.me.et.type then
8: for pc.type.valuei do pc.type.valuei := (mmsg.me.et.type)

pc.type.valuei;

9: if pc.num > mmsg.me.et.max then removeValues (pc);

10: if pc.num < mmsg.me.et.max then addValues (pc);

Stability Metrics for Continuous Integration of Service-Oriented Systems 145

Algorithm 1 accept as input the mappings between a source API and a tar-
get API, along with a programming client of the source API. Algorithm 1 first
retrieves the mapping of the source operation to the target operation. If the
source operation has been deleted, then Algorithm 1 aborts without success
(Algorithm 1 (Step 1)). If the source operation has been renamed, then Algo-
rithm 1 renames the source operation name to the target operation name (Algo-
rithm 1 (Step 3)). Following, Algorithm 1 continues with the element mappings
of the messages. For each source element, Algorithm 1 executes the following
steps: if the source element has been deleted, then Algorithm 1 deletes the ele-
ment instances from the programming client (Algorithm 1 (Step 4)). If the source
element has been renamed, then Algorithm 1 renames the source element name
to the target element name (Algorithm 1 (Step 6)). If the data-type of the source
element has been changed, then Algorithm 1 casts the data value of the element
parameter to conform to the data-type of the target element (Algorithm 1 (Step
8)). If the max (min) occurrence numbers of the source element is lower (resp.
higher) than the instances number of the element, then Algorithm 1 removes
(resp. add) the extra data values of the element (Algorithm 1 (Step 9 (resp.
Step 10))). We assume the removal and the additional of data values are manu-
ally performed by developers.

The information loss that can happen in the casting of values of built-in
data-types (e.g., converting a double value to an int value) has been quantified
in [22].

6 Stability Metrics for SOA System

We define the stability metrics by using the API mappings and taking into
account the steps of the client-evolution algorithm. The values of each metric
belong to the interval [0, 1] (the 1 value corresponds to the max stability value).

Definition 11 (System Stability). The stability of a SOA system equals the
average stability of the mapped operations of all the programming clients of the

service APIs of the system, ssys :=
∑|sys.{pci}|

i=1 sop(mop) | pci.op ∈ mop

|sys.{pci}| .

Definition 12 (Operation Stability). The operation stability equals the
average stability of the mapped input/output operation messages, sop :=
smsg(mmsgin

)+smsg(mmsgout)

2 .

Definition 13 (Message Stability). The stability of a source message equals
the average stability of the mapped message elements divided by the max number
of the element between the source message and the target message, smsg :=

∑|{me}|
i=1 se(me)

max(|msgs|,|msgt|) .

Definition 14 (Element Stability). The element stability equals the product
of the percentages of the differences in the min/max occurrence numbers and of
the information loss, se := Δmin

max(es.min,et.min) ∗ Δmax
max(es.max,et.max) ∗ loss.

146 D. Athanasopoulos and D. Keenan

Please note we use the product operator in Definition 14 because we con-
sider that all the terms in the calculation of the element stability are equally
important.

Illustrative example. We employed our stability metrics on an open-source
microservice system which is available here [5]. We indicatively chose the real-
world microservice system, Apollo4, which contains three microservices and the
mean number of API operations per microservice is 65. We focused on one of those
microservices, adminservice, and especially, on the evolution of its API across
various versions of the system. Through our inspection, we observed that most
of the evolution changes on the API were additions/removals of parameters and
changes in the data-types of the parameters. These cases of evolution changes are
taken into account by our metrics as follows. The parameter additions/removals
are considered by Definition 13 because there is no mapping between the source ele-
ments and the newly added target elements, while the denominator of the message
stability value equals to the max number of the elements between a source mes-
sage and a target message. Finally, the data-type changes are taken into account
by Definition 14 because the differences in min/max multiplicities, along with the
amount of the information loss, are considered.

7 Conclusions and Future Work

To address the challenge of measuring the stability of service APIs without hav-
ing first evolved their programming clients, we defined a set of mappings between
evolved service APIs based on which the stability changes can be determined.
We further specified a generic algorithm that recognises the evolution changes
required on the programming clients of the evolved APIs. We finally defined an
initial version of a suite of metrics that estimate the stability of a service system
without assuming the existence of the evolved programming clients.

We introduced in this work an early version of an automated approach for
measuring service stability. The road ahead includes the definition of stability
metrics that consider not only the leaf elements of the hierarchical structure of an
XML/JSON schema, but the complete hierarchical structure. Moreover, all the
evolution changes in the interface of APIs should be taken into account, including
the combination and the split of operations. Finally, a research prototype of the
approach is needed that can identify the mappings and calculate the values of
the stability metrics to evaluate the effectiveness of our approach on real-world
(micro-)service systems.

References

1. Erl, T.: Service-Oriented Architecture: Analysis and Design for Services and
Microservices, 2nd edn. Prentice Hall (2016)

2. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc. (2015)

4 https://github.com/davidetaibi/Microservices Project List.

https://github.com/davidetaibi/Microservices_Project_List

Stability Metrics for Continuous Integration of Service-Oriented Systems 147

3. Taibi, D., Systä, K.: A decomposition and metric-based evaluation framework for
microservices. CoRR, abs/1908.08513 (2019)

4. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: On the evolution of services.
IEEE Trans. Softw. Eng. 38(3), 609–628 (2012)

5. Rahman, M.I., Panichella, S., Taibi, D.: A curated dataset of microservices-based
systems. CoRR, abs/1909.03249 (2019)

6. Zhu, L., Bass, L., Champlin-Scharff, G.: Devops and its practices. IEEE Softw.
33(3), 32–34 (2016)

7. Bogner, J., Wagner, S., Zimmermann, A.: Towards a practical maintainability qual-
ity model for service-and microservice-based systems. In: European Conference on
Software Architecture, pp. 195–198. ACM (2017)

8. Soong, N.L.: A program stability measure. In: ACM Annual Conference, pp. 163–
173 (1977)

9. Li, W., Etzkorn, L.H., Davis, C.G., Talburt, J.R.: An empirical study of object-
oriented system evolution. Inf. Softw. Technol. 42(6), 373–381 (2000)

10. Baig, J.J.A., Mahmood, S., Alshayeb, M., Niazi, M.: Package-level stability evalu-
ation of object-oriented systems. Inf. Softw. Technol. 116, 106172 (2019)

11. Perepletchikov, M., Ryan, C., Frampton, K.: Cohesion metrics for predicting main-
tainability of service-oriented software. In: International Conference on Quality
Software, pp. 328–335. IEEE Computer Society (2007)

12. Perepletchikov, M., Ryan, C., Frampton, K., Tari, Z.: Coupling metrics for predict-
ing maintainability in service-oriented designs. In: Australian Software Engineering
Conference, pp. 329–340. IEEE Computer Society (2007)

13. Jin, W., Liu, T., Zheng, Q., Cui, D., Cai, Y.: Functionality-oriented microservice
extraction based on execution trace clustering. In: International Conference on
Web Services, pp. 211–218. IEEE (2018)

14. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microser-
vice architecture. In: International Conference on Service-Oriented Computing and
Applications, pp. 44–51. IEEE Computer Society (2016)

15. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Assuring the evolvability
of microservices: insights into industry practices and challenges. In: International
Conference on Software Maintenance and Evolution, pp. 546–556. IEEE (2019)

16. Asik, T., Selçuk, Y.E.: Policy enforcement upon software based on microservice
architecture. In: International Conference on Software Engineering Research, pp.
283–287. IEEE (2017)

17. Cardarelli, M., Iovino, L., Di Francesco, P., Di Salle, A., Malavolta, I., Lago, P.: An
extensible data-driven approach for evaluating the quality of microservice archi-
tectures. In: Symposium on Applied Computing, pp. 1225–1234. ACM (2019)

18. Jiang, H., Ho, H., Popa, L., Han, W.-S.: Mapping-driven xml transformation. In:
International Conference on World Wide Web, pp. 1063–1072 (2007)

19. Athanasopoulos, D., Zarras, A.V., Vassiliadis, P., Issarny, V.: Mining service
abstractions. In: International Conference on Software Engineering, pp. 944–947.
ACM (2011)

20. Li, J., Xiong, Y., Liu, X., Zhang, L.: How does web service API evolution affect
clients? In: International Conference on Web Services, pp. 300–307. IEEE Com-
puter Society (2013)

21. Hora, A., Robbes, R., Valente, M.T., Anquetil, N., Etien, A., Ducasse, S.: How do
developers react to API evolution? A large-scale empirical study. Softw. Qual. J.
26(1), 161–191 (2016). https://doi.org/10.1007/s11219-016-9344-4

22. Stroulia, E., Wang, Y.: Structural and semantic matching for assessing web-service
similarity. Int. J. Coop. Inf. Syst. 14, 407–438 (2005)

https://doi.org/10.1007/s11219-016-9344-4

Web Big Data and Data Analytics

Attentive Hybrid Collaborative Filtering
for Rating Conversion in Recommender

Systems

Phannakan Tengkiattrakul1,3(B) , Saranya Maneeroj2,
and Atsuhiro Takasu1,3

1 The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
2 Department of Mathematics and Computer Science, Faculty of Science,

Chulalongkorn University, Bangkok, Thailand
saranya.m@chula.ac.th

3 National Institute of Informatics, Tokyo, Japan
{phannakan,takasu}@nii.ac.jp

Abstract. Recommendation models that use collaborative filtering con-
sider the influence of friends and neighbors when recommending suitable
items for a target user. Most of these neighborhood-based models use
the actual ratings from neighbors to predict the ratings of the target
user toward target items, which often leads to a low accuracy prediction
caused by the improper rating-range problem. Recently, rating conver-
sion methods have been proposed to address this issue. Because each
friend/neighbor can have a different level of influence on the target user,
we propose a friend module, which converts their ratings to match the
target user’s perspective and assigns different weight to each user before
modeling latent relations and predictions. In rating conversion, ratings
that involve explicit feedback are important. Instead of the traditional
approach to user embedding, we propose a novel approach that uses
explicit feedback. This can express user features better than traditional
methods and can then be used to convert ratings to match the target
user’s perspective. For better representation and recommendation, we
also learn latent relations between each user and item by adopting knowl-
edge graph ideas, which leads to more accurate results. The FilmTrust
and MovieLens datasets are used in experiments comparing the proposed
method with existing methods. This evaluation showed that our model
is more accurate than existing methods.

Keywords: Recommender systems · Collaborative filtering · Rating
conversion · Neural networks

1 Introduction

Following the rapid growth of online information in recent years, it has become
difficult for users to choose items that would best suit them from among the

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 151–165, 2021.
https://doi.org/10.1007/978-3-030-74296-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_12&domain=pdf
http://orcid.org/0000-0002-3442-4915
http://orcid.org/0000-0002-9061-7949
https://doi.org/10.1007/978-3-030-74296-6_12

152 P. Tengkiattrakul et al.

abundant choices. Recommender systems (RSs) have been developed during this
time and have become a key approach to addressing this information overload
problem. RSs are tools to find and suggest appropriate items to users, based on
the users’ individual preferences and tastes.

There are many approaches in RSs. The collaborative filtering (CF) approach
is the most popular technique for recommending items to the target user (the
user to whom recommendations are targeted) based on the similarity of users
or items to previous interactions. In the real world, neighbors and friends can
have an influence on the target user when making choices about items. Based
on this real-world assumption, RSs, particularly CF-based systems, utilize the
opinions of neighbors, friends, and others in predicting how much the target user
would like an item. The opinion can be in the form of both explicit and implicit
feedback.

To predict the rating score of the user toward a target item, an RS aims
to identify the set of friends or neighbors, called raters, who have rated the
target item in the past. The actual scores of raters are then used to calculate the
predicted rating score for the target user toward the target item. However, using
the actual ratings from raters often leads to low-accuracy predictions because of
the improper rating-range problem [2].

This problem can be explained as follows. Because each user has an individual
rating pattern, a rating score needs to be interpreted. Even though two users
might rate the same item with the same score, it does not mean they like this
item to the same extent. Therefore, using the actual ratings from users who rate
items within different ranges to predict the rating score is improper and can
lead to low recommendation accuracy. This problem has led some researchers
[2,11,13] to adjust the ratings from different ranges to fit a common range.

In addition to this improper rating-range problem, another problem is that
each friend is likely to have a different influence on the target user. All friends are
not equal, with user A having more or less influence on the target user than user
B. Therefore, we propose a friend module that modifies each friend’s rating score
to match the target user’s perspective and then assigns an individual weight to
each user.

For such rating conversions, ratings that involve explicit feedback are the
most important input. For RSs, there are two popular approaches to evalu-
ating the performance of the model, namely rating prediction and item rank-
ing. Recently, item ranking has become more popular because some datasets
involve implicit feedback and most recent work focuses on implicit feedback
[9,18]. Implicit feedback is the interaction between a user and an item that has
no rating score. Some methods consider explicit feedback as implicit feedback
and input them into their model [9,18]. Explicit feedback or ratings are more
powerful and more expressive than implicit feedback because each rating score
can have a different meaning. In fact, just because a user rates an item, it does
not mean that the user likes that item. For example, using a score of 1 in a
1–5 scoring range probably means that the user does not like that item. We
therefore propose a novel approach to incorporating explicit ratings into an end-
to-end item-ranking-based model. To replace traditional user embeddings, we

Attentive Hybrid CF for Rating Conversion in RSs 153

introduce a user representation matrix, which can integrate explicit feedback
into the model. In addition, we introduce a user perspective unit matrix, which
can capture user preferences more richly by using several rating scores. This
matrix aims to help the model convert a friend’s rating scores to best match the
target user’s perspective.

In this work, we also adopt the idea of the knowledge graph (KG) embedding
technique [1], aiming to learn the latent relation vector between user–item pairs
instead of trying to assign a user–item pair to the same point in a vector space
by minimizing the distance between each user–item interaction, as in collabo-
rative metric learning (CML) [10]. Latent relational metric learning (LRML)
[18] adopts the scoring function of TransE [1], which is the simplest KG embed-
ding technique, to learn the latent relation between a user–item pair. It was
found that this approach can help to ease the potential geometric inflexibility of
CML. Another reason for introducing the KG embedding technique is that we
believe the latent relation vector can help the model to learn better user and
item embedding, which can lead to better recommendations. Because a vector
value often has more expressive power than a scalar value, we can expect to
obtain more effective embedding.

The main contributions of this paper are as follows.

– We propose an end-to-end KG-based attentive hybrid CF neural network
(NN) for rating conversion in RSs and ranking using explicit feedback.

– We propose a friend module that can convert each friend’s rating to match
the target user’s perspective and then assigns a different weight for each
friend. For rating conversion, we propose a novel input representation that
incorporates explicit feedback (ratings) into the model.

– We have conducted experiments using three datasets to evaluate our proposal.
The experimental results demonstrate that our proposed method outperforms
existing methods.

2 Related Work

2.1 Recommender Systems

RSs aim to suggest and recommend items to an individual user, with the hope
that the user would be satisfied by the recommended item [16]. RS techniques
are categorized into three main approaches: the CF approach, the content-based
approach, and the hybrid approach.

The CF approach is the most popular and widely used technique. It rec-
ommends items to individual users based on their neighbors. Typically, CF is
further divided into the neighborhood-based approach and the model-based app-
roach. The neighborhood-based approach is memory-based in that user–item
ratings are stored in the system and used directly to predict ratings for new
items. The main advantages of the neighborhood-based approach are simplicity,
justifiability, and stability [5].

154 P. Tengkiattrakul et al.

Although the neighborhood-based approach is straightforward and works rea-
sonably well in practice, there is a heavy computation cost involving both time
and space complexity and it can also suffer from sparsity problems. Therefore,
the model-based approach, which uses the user–item ratings to learn a predictive
model, is now becoming more popular. Its main advantages over the model-based
approach are scalability, prediction speed, and avoidance of overfitting. There-
fore, most recent CF models adopt the model-based approach. In this work,
we combine the advantages of both the neighborhood-based approach and the
model-based approach in proposing a hybrid CF network for RSs.

2.2 Deep Learning and the Attention Mechanism in RSs

In recent years, NNs and deep learning have been applied to many research
fields. Deep learning is now becoming the most popular technique for information
retrieval and RSs [23].

Matrix factorization (MF) [12] is a standard baseline technique for CF that
models the relationship between user and item via their inner product, with
several implementations of deep learning models now being based on MF [7,9].
One such approach is neural MF (NeuMF) [9], a recent state-of-the-art deep
learning model that combines MF with a multilayer perceptron (MLP).

The attention mechanism is widely used and is successful for learning a
weighted representation across multiple samples. Inspired by human visual atten-
tion, the goal of the attention mechanism is to reduce noise and select more infor-
mative features for the final prediction. The attention mechanism has recently
become popular in the fields of computer vision, natural language processing,
and RSs [3,4,14,18].

Despite many advanced models emerging each year, with several types of NN
and deep-learning techniques being applied to RSs, RSs still suffer from several
challenges, such as data sparsity and cold start problems.

2.3 KG Embedding Techniques in RSs

KG embedding involves embedding the components of KG such as entities and
relations into a continuous vector space. Many KG embedding techniques have
recently been proposed and are rapidly gaining attention [21].

Researchers have applied KG embedding techniques to RSs for which the RS
problem is defined as link prediction in a KG comprising users and items as the
entities and ratings as the relations [8]. These techniques are being applied to
RSs to mitigate the challenges mentioned above, such as data sparsity and cold
start problems. Several approaches integrate side information into the RSs and
treat the resultant data as a KG, aiming to address these issues.

Inspired by RotatE [17], Sun et al. proposed KG-embedding based CF [24].
Here, the RSs problem is defined as link prediction in a KG for which the users
and items are the entities, and the interactions (implicit feedback) between user–
item pairs form the relations.

Attentive Hybrid CF for Rating Conversion in RSs 155

LRML [18] is an attention-based memory-augmented neural architecture that
uses a latent relation vector to model the relationship between user–item pairs
in metric space. LRML tries to mitigate the problems with CML [10], whose
scoring function is geometrically restrictive because the objective function of
CML aims to minimize the distance between each user–item pair in a vector
space. LRML adopts the scoring function from TransE [1] to model the latent
relation vector of a user–item pair, instead of assigning them to the same spot, as
does CML. TransE [1], as proposed by Bordes et al., is both the simplest and the
most representative translation-based KG embedding technique. It represents
both entities and relations as vectors in the same vector space. Our work is
inspired by the ideas of LRML and TransE to enable learning an appropriate
representation of users, items, and latent relations. However, our proposed model
obtains the latent relation vector differently from LRML. We introduce friends
to the model and propose using a module that converts friends’ ratings into
ratings that match the target user’s perspective and then assigns an appropriate
weight to each friend.

2.4 Rating Conversion Methods

Although many RSs have been proposed in recent years, most of them did not
consider the improper rating-range problem. This problem occurs because dif-
ferent users may have different rating patterns. Suppose that in a 1–5 rating
system, user A always rates items within a range of 1–4, whereas user B always
rates items within a range of 2–5. In this case, a rating 4 by user A would then be
considered as “most liked” whereas “most liked” of user B would be represented
by a rating of 5. Thus, using the actual rating score from users who rate items
within different ranges to calculate the predicted score of the item for the target
user is considered improper and can leads to low accuracy in recommendations.

Therefore, rating conversion methods have been proposed to address this
problem. Some approaches try to adjust the rating scores from different ranges
to a common range. One such adjusting method is normalization [11], which
converts rating scores to a specific range, usually between 0 and 1, to represent
“most disliked” and “most liked”, respectively.

However, normalization is insufficient because the conversion is based on data
from the original user only. In an attempt to overcome this problem, several other
rating conversion techniques have been proposed [2,13], most of which deal with
rating scores in scalar form.

SAMN [4] is an attention-based memory network that constructs a user–
friend relation vector. It contains a friend-level attention component to adap-
tively measure the social influence among each user’s friends. However, this
method did not consider the different ranges of rating for different users.

In a previous paper [19], we aimed to address the improper rating-range
problem via a translation-based embedding model. However, it had the drawback
of requiring many steps to complete a recommendation task. Recently, end-to-
end learning has become popular for deep-learning applications, because it tends

156 P. Tengkiattrakul et al.

to achieve improved accuracy. Therefore, in this work, we propose an end-to-
end NN architecture that includes both rating conversion and translation-based
embedding ideas.

Fig. 1. Schematic illustration of our proposed architecture as an end-to-end NN. This
example assumes a user–item pair 〈u, v〉, with the user’s four friends {f1, f2, f3, f4}
rating item v with rating scores {3, 1, 3, 4}, respectively.

Attentive Hybrid CF for Rating Conversion in RSs 157

3 Proposed Method

In this section, we introduce our novel deep-learning recommendation archi-
tecture, which can be categorized as a hybrid CF based on the idea of KG
embedding. Figure 1 shows the overall architecture of this model. Features of
the proposed model are as follows.

– Users are converted to a dense matrix and items are converted to vector
representations. Note that we introduce a dense matrix to represent a user
unlike many recommendation systems that use a single vector for this purpose
(see Sect. 3.1).

– For each target user and target item, we input the set of friends (users who
have rated the target item in the past) into the Friend Module. This step
generates a summation of the weighted projected vectors of the target user’s
friends, effectively realizing both rating conversion and weight assignment
(see Sect. 3.2).

– The model aggregates the target user representation matrix into a single
vector and combines it with the projected vectors of the target user’s friends
obtained in the previous step. It then calculates the latent relation vector r,
which is dependent on both user and item (see Sect. 3.3).

– Finally, the model uses pairwise hinge loss and negative sampling to optimize
‖u + r − v‖ ≈ 0 (see Sect. 3.4).

3.1 User and Item Representation

In most RSs, users and items are usually represented by embedding vectors.
However, a single vector is unsuitable for our purpose because it cannot store
rating patterns for each user. To realize the rating conversion requirement, we
use a matrix to represent each user, called the user representation matrix (UR-
matrix). We propose to store each user’s rating information (explicit feedback)
in their matrix representation and this is then available for rating conversion
purposes.

For a user u, the UR-matrix is represented by U ∈ R
z×d, where d is the

dimensionality of user embeddings and z is number of rating scores. The s-th
row of Uu corresponds to a rating score s and represents an embedding vector
of u for s (e.g., the first row of the matrix represents score 1). Suppose that
the RS accepts rating scores of {1, 2, 3, 4, 5}, then the UR-matrix comprises five
rows and each row represents each rating score in {1, 2, 3, 4, 5}. In this way, the
UR-matrix represents how each user rates items.

U ∈ R
m×z×d and V ∈ R

n×d are embedding matrices that store user and
item embeddings, respectively, where m and n are the total numbers of users
and items, respectively. d denotes the dimensionality of the user and item embed-
dings. z is the number of rating values when the RS accepts rating scores such
as {1, 2, . . . , z}.

Note that this work focuses on rating conversion for users, for which we
propose the UR-matrix. Our item embeddings are represented in the traditional
way.

158 P. Tengkiattrakul et al.

3.2 The Friend Module

In this subsection, we describe the details of the Friend Module, which aims to
convert the target user’s friend vector to match the target user’s perspective. The
output of this module is a summation of the weighted projected vectors of the
target user’s friends. To convert friend vectors, we introduce a user-perspective
unit matrix (UPU-matrix) to the model.

Because users have their own individual perspective on items, they will have
their own rating patterns. In [15], a local context unit is learned in addition
to word embedding to utilize the word-specific influences of each word on its
context words. Inspired by [15], our aim is to convert friend vectors to match
the target user’s perspective. We therefore introduce a UPU-matrix in addition
to the UR-matrix. The matrix represents each user’s individual perspective.
Specifically, each column of the matrix captures a rich range of user preferences.
It captures not only the user’s overall preference but also preferences for specific
rating scores. This matrix enables the model to convert friend vectors to match
the target user’s perspective. The UPU-matrix for user u is represented by K ∈
R

d×z.
Consider the set of friends with respect to item v, denoted as Fv. Let f ∈ Fv

be a friend in a user–item pair 〈u, v〉. Suppose this friend has rated the target
item v with a score s. If us

f ∈ Uf is the s-th row of friend f ’s UR-matrix and
ks

u ∈ Ku is the s-th column of target user u’s UPU-matrix, the projected vector
of friend f with respect to target user u is calculated by

pf = ks
u � us

f , (1)

where � is the Hadamard product (i.e., element-wise multiplication).
This equation converts each friend’s vector so as to match the target user’s

perspective. In this step, the model calculates the projected vector pf for each
friend in Fv. The set of friends’ projected vectors with respect to the target
user’s perspective is then input into the Attention Layer for weight assignment.

The Attention Layer (see Fig. 1). Because the importance of all friends is
not the same, they should have different influence levels with respect to the
target user, and so any weighting (to represent relative importance) should also
vary. The function of the Attention Layer is to apply nonuniform weights for each
friend, varying the weight for users interacting with different items. We therefore
adopt an attention mechanism [20] that has been widely used in many fields and
is successful for assigning nonuniform weights. According to its protocol, a two-
layer network is applied to compute the attention score αf , using the current
user u, current item v, and projected friend vector pf as inputs. The scoring
function is then defined as

βf = hT ReLU(W1u + W2pf + W3v), (2)

where h ∈ R
a,W1,W2,W3 ∈ R

d×a are model parameters, a denotes the dimen-
sionality of the Attention Layer, and ReLU is a nonlinear activation function.

Attentive Hybrid CF for Rating Conversion in RSs 159

The final weight for each friend is then obtained by normalizing the atten-
tion weights using the softmax function, as is the common practice for neural
attention networks. The attention score can then be calculated as

αf =
exp(βf)

∑
j∈Fv

exp(βj)
, (3)

where Fv is all friends of user u on the view of item v.
After obtaining the attention weight for each friend, the output of the Atten-

tion Layer represents the summation of the projected vector of friends pF(u,v) .
This summation vector represents all friends’ vectors from the target user’s per-
spective, with each friend having an individual weight representing importance
to the target user. It can be calculated as

pF(u,v) =
∑

f∈Fv

αfpf . (4)

3.3 Generating Latent Relations

After the summation of friends’ weighted projected vectors pF(u,v) is obtained,
we combine it with aggregated target-user representation vector u ∈ R

d. This
vector is calculated as the means of each column of the UR-matrix.

The combination of the aggregated target-user representation and the sum-
mation of friends’ weighted projected vectors can be calculated as

u∗ = u + pF(u,v) . (5)

Finally, the Friend Module generates a latent relation vector r for each user–
item pair by multiplying combined user u∗ and the item v as

r = u∗ � v. (6)

3.4 Optimization and Learning

This subsection explains details of the final layer of this model. Our model is an
end-to-end NN. Inspired by LRML [18], it learns latent relation vectors for user–
item pairs by adopting an idea from TransE [1]. This mitigates the geometric
inflexibility of CML [10], whose objective function aims to place user–item pairs
at the same point by minimizing the distance between each user–item interaction.
Therefore, we learn the latent relation vector between a user–item pair as follows.
The Relation Modeling Layer (see Fig. 1). For each pair comprising a user
u and an item v, the scoring function s(u, v) is defined as

s(u, v) = ‖u + r − v‖2 , (7)

where r is the latent relation vector obtained from Eq. (6) and ‖·‖2 is the L2
norm of the vector u + r − v. This equation is adopted from TransE [1] because
TransE is the simplest and most understandable KG embedding technique.

160 P. Tengkiattrakul et al.

Objective Function. Like TransE [1], we also use pairwise ranking loss or
hinge loss for optimization. For each positive (observed) user–item pair 〈u, v〉,
we perform negative sampling by sampling a corrupted user–item pair denoted as
〈u′, v′〉. The corrupted user–item pair goes through the same user–item embed-
ding layer in the Translation Layer (see Fig. 1). The pairwise hinge loss is then
defined as

L =
∑

(u,v)∈Δ

∑

(u′,v′)/∈Δ

max(0, s(u, v) + λ − s(u′, v′)), (8)

where Δ is the set of all positive user–item pairs and λ is the margin that
separates the observed pairs and the corrupted samples.

4 Experimental Evaluation

In this section, we present details of our experiments. Our experimental evalua-
tion is designed to answer several research questions (RQs).

– RQ1: Is the proposed model more accurate than existing state-of-the-art
methods for collaborative ranking?

– RQ2: Does the UR-matrix improve the model’s accuracy?
– RQ3: Does the Friend Module affect the model’s performance?

4.1 Datasets

We evaluated the method using three real datasets, namely FilmTrust1 and two
datasets from MovieLens2. FilmTrust is a recommendation dataset extracted
from the entire FilmTrust website. MovieLens is a widely adopted benchmark
dataset for CF in the application domain of recommending movies to users. In
this work, we use two configurations of MovieLens, namely MovieLens100k and
MovieLens1M. The numbers of users and items in each dataset are listed in
Table 1.

Table 1. Datasets

Dataset #Users #Items #Ratings

FilmTrust 1,508 2,071 35,497

MovieLens100K 943 1,682 100,000

MovieLens1M 6,040 3,706 1,000,209

1 https://www.librec.net/datasets.html.
2 https://grouplens.org/datasets/movielens.

https://www.librec.net/datasets.html
https://grouplens.org/datasets/movielens

Attentive Hybrid CF for Rating Conversion in RSs 161

4.2 Existing Systems

For each of the three datasets, we conducted experiments that compared our
proposed model with the following existing methods.

– LRML [18]: an end-to-end attention-based memory-augmented neural archi-
tecture that models the relationship between users and items in metric space
using latent relation vectors. To test the ability of the proposed UR-matrix
against the original version, we experimented using two settings:

• The original LRML model.
• The LRML model using our proposed UR-matrix. (Instead of the original

user embeddings, we used our UR-matrix as the input to the LRML model.)

– Generalized matrix factorization (GMF) [9]: an implementation of MF [12],
a standard baseline for CF that models the relationship between users and
items using inner products.

– NeuMF [9]: a state-of-the-art unified framework combining MF with an
MLP.

In addition to comparison with these existing systems, we also conducted
the experiments using our proposed model minus the Fried Module to test the
module’s relevance. This is denoted the Simple Model.

4.3 Implementation and Parameter Settings

In this work, we modified the source code of DeepRec, an open-source toolkit
for deep-learning-based Recommendation systems [22], which includes several
algorithms expressed in Python and Tensorflow3. DeepRec also includes the
LRML, GMF, and NeuMF models.

All models were trained until convergence. We optimized the models by using
AdaGrad [6], a stochastic optimization method that adapts the learning rate to
the parameters. For all models, the dimension d was tuned amongst {50, 100,
200}, the learning rate was tuned amongst {0.1, 0.01, 0.001}, and the batch size
is tuned amongst {256, 512, 1024}. For models that minimized the hinge loss,
the margin γ was tuned amongst {0.1, 0.2, 0.5, 1.0}. For our proposed model,
the attention size a was tuned amongst {50, 100, 200}. For the LRML model, we
set the number of memory slices to 20, as recommended in [18]. Note that we did
not use pretrained models in the NeuMF model to enable a fair comparison. For
simplicity, each training instance was paired with only a single negative sample.
All embeddings and parameters were initialized with a standard deviation of
0.01.

3 https://www.tensorflow.org.

https://www.tensorflow.org

162 P. Tengkiattrakul et al.

4.4 Evaluation Protocol and Metrics

Each dataset was separated into two parts: 80% for training and the remaining
20% for testing. In the training phrase, we sampled a single negative sampling
for each user–item pair. After training the models, we performed the ranking
recommendation task on the test set. Given a user–item pair 〈u, v〉, the negative
samplings were all 〈u, v′〉, where v′ is the set of items that had no interaction with
the target user u. We used all the ranking-based metrics implemented in DeepRec
[22], namely precision@n (P@10), recall@n (Re@10), mean average precision
(MAP), mean reciprocal rank (MRR), and normalized discounted cumulative
gain (NDCG).

4.5 Experimental Results

We compared the performance of our proposed model with the existing methods
listed above. We separated the experiments into two sets: using our UR-matrix
and using the original user embeddings. Because our optimization and learning
techniques were similar to those for LRML, we also tested the use of our UR-
matrix in LRML. Table 2 shows the empirical results for our proposed model
and the existing methods for the three benchmark datasets. The results show
that our proposed model was the best-performing model for most metrics and
datasets. This answers RQ1 in the affirmative (i.e., our proposed model can
offer better accuracy in for collaborative ranking than existing systems).

For the FilmTrust dataset, our proposed model was the most accurate with
respect to Re@10, MAP, MRR, and NDCG, but the GMF model performed best
with respect to P@10. For the MovieLens100K and MovieLens1M datasets, our
proposed model was the best-performing model for all evaluation metrics.

5 Discussion

In the previous section, we showed that our proposed model can provide the
most accurate ranking recommendations for all datasets tested.

5.1 Performance of the Proposed UR-Matrix

We have proposed UR-matrix, a novel input representation for incorporating
explicit feedback in the model. This matrix stores user rating information and
expresses how each user rates items. Table 2 gives the comparative results for the
original LRML method and the LRML method using the proposed UR-matrix
as an input. These provide an answer to RQ2, namely that using the proposed
UR-matrix leads to more accurate ranking recommendations for all metrics and
all datasets tested. This is because a matrix can express more meaningful user
features than can a single vector. In particular, a matrix in which each row
is related to the user’s rating information can store more relevant character-
istics of the user than can a single vector. Moreover, it is better suited and
directly applicable to rating conversion, unlike the traditional approach to user
embedding.

Attentive Hybrid CF for Rating Conversion in RSs 163

Table 2. Evaluation results for experiments comparing with different methods

Dataset Metrics Our UR-matrix Original user embedding

Our

proposed

model

Simple

model

LRML Original

LRML

NeuMF GMF

FilmTrust P@10 0.3129 0.3090 0.3097 0.3022 0.3121 0.3196

Re@10 0.6021 0.5968 0.5975 0.5751 0.5580 0.5834

MAP 0.4446 0.4371 0.4312 0.4293 0.4258 0.4403

MRR 0.5719 0.5622 0.5427 0.5500 0.5322 0.5571

NDCG 0.6232 0.6158 0.6109 0.6105 0.6020 0.6143

ML100K P@10 0.3177 0.2996 0.2965 0.2858 0.2507 0.1856

Re@10 0.2095 0.1994 0.1977 0.1907 0.1461 0.0883

MAP 0.2493 0.2417 0.2380 0.2276 0.1810 0.1325

MRR 0.6047 0.5999 0.5864 0.5658 0.4985 0.4342

NDCG 0.5878 0.5814 0.5776 0.5684 0.5196 0.4639

ML1M P@10 0.3310 0.3129 0.2295 0.2295 0.2016 0.1841

Re@10 0.1371 0.1357 0.0946 0.0937 0.0763 0.0662

MAP 0.2151 0.2050 0.1388 0.1376 0.1290 0.0997

MRR 0.5963 0.5821 0.4705 0.4767 0.4413 0.3768

NDCG 0.5755 0.5643 0.5028 0.5020 0.4825 0.4521

5.2 Performance of the Friend Module

We make three assumptions: 1) friends’ opinions affect the target user’s decision
to choose items, 2) each user has their own rating patterns, and 3) friends can
be more or less important to the target user. These assumptions are all imple-
mented in the Friend Module (see Sect. 3.2). The comparison between our pro-
posed model and the Simple model (i.e., without the Friend Module) has shown
that the Friend Module can help provide better recommendations. This pro-
vides an answer to RQ3, namely that the Friend Module enhances the model’s
performance.

There are three reasons for the Friend Module having a positive effect.
First, our UR-matrix integrates explicit feedback (ratings) into each friend-
representation matrix, thereby expressing how each user rates items and cap-
turing this richer information in a way that a single vector cannot. Second, we
propose the UPU-matrix, which aims to convert each friend’s specific ratings to
match the target user’s perspective and thereby mitigate the improper rating-
range problem. Finally, we assign a nonuniform weight to each user to indicate
the relative importance of each user to the target user.

6 Conclusion

In this paper, we propose an end-to-end KG-based attentive hybrid CF NN
architecture for rating conversion in RSs and ranking recommendations, using
explicit feedback. Our proposed model includes a Friend Module that first con-
verts friends’ ratings to match the target user’s perspective, and then assigns
a nonuniform individual weight to each user. We also propose a novel input
representation to enable the incorporation of explicit feedback (ratings) into the

164 P. Tengkiattrakul et al.

model. Our experimental results show that the proposed model can provide more
accurate results than existing methods.

One future direction for research is the introduction of multiple types of
relations to the model. There may be other useful side information available,
in addition to the rating score. The properties of KG suggest that integrating
multiple types of relations might help RSs to better model user and item repre-
sentations, thereby leading to better recommendations.

References

1. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Proceedings of the 26th Inter-
national Conference on Neural Information Processing Systems, NIPS 2013, vol.
2, pp. 2787–2795. Curran Associates Inc., USA (2013). http://dl.acm.org/citation.
cfm?id=2999792.2999923

2. Chalermpornpong, W., Maneeroj, S., Atsuhiro, T.: Rating pattern formation for
better recommendation. In: 2013 24th International Workshop on Database and
Expert Systems Applications, pp. 146–151 (August 2013). https://doi.org/10.
1109/DEXA.2013.23

3. Chen, C., Zhang, M., Liu, Y., Ma, S.: Neural attentional rating regression with
review-level explanations. In: Proceedings of the 2018 World Wide Web Confer-
ence, WWW 2018, pp. 1583–1592. International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, CHE (2018). https://doi.
org/10.1145/3178876.3186070

4. Chen, C., Zhang, M., Liu, Y., Ma, S.: Social attentional memory network: modeling
aspect- and friend-level differences in recommendation. In: Proceedings of the 12th
ACM International Conference on Web Search and Data Mining, WSDM 2019,
pp. 177–185. Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3289600.3290982

5. Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recom-
mendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Rec-
ommender Systems Handbook, pp. 107–144. Springer, Boston, MA (2011). https://
doi.org/10.1007/978-0-387-85820-3 4

6. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

7. Dziugaite, G.K., Roy, D.M.: Neural network matrix factorization. CoRR
abs/1511.06443 (2015). http://arxiv.org/abs/1511.06443

8. Guo, Q., et al.: A survey on knowledge graph-based recommender systems. arXiv
abs/2003.00911 (2020)

9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web, WWW 2017, pp. 173–182. International World Wide Web Conferences Steer-
ing Committee, Republic and Canton of Geneva, CHE (2017). https://doi.org/10.
1145/3038912.3052569

10. Hsieh, C.K., Yang, L., Cui, Y., Lin, T.Y., Belongie, S., Estrin, D.: Collaborative
metric learning. In: Proceedings of the 26th International Conference on World
Wide Web, WWW 2017, pp. 193–201. International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, CHE (2017). https://doi.
org/10.1145/3038912.3052639

http://dl.acm.org/citation.cfm?id=2999792.2999923
http://dl.acm.org/citation.cfm?id=2999792.2999923
https://doi.org/10.1109/DEXA.2013.23
https://doi.org/10.1109/DEXA.2013.23
https://doi.org/10.1145/3178876.3186070
https://doi.org/10.1145/3178876.3186070
https://doi.org/10.1145/3289600.3290982
https://doi.org/10.1007/978-0-387-85820-3_4
https://doi.org/10.1007/978-0-387-85820-3_4
http://arxiv.org/abs/1511.06443
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052639
https://doi.org/10.1145/3038912.3052639

Attentive Hybrid CF for Rating Conversion in RSs 165

11. Jin, R., Si, L.: A study of methods for normalizing user ratings in collaborative
filtering. In: Proceedings of the 27th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2004, pp. 568–569.
ACM, New York (2004). https://doi.org/10.1145/1008992.1009124

12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263

13. Lathia, N., Hailes, S., Capra, L.: Trust-based collaborative filtering. In: Karabulut,
Y., Mitchell, J., Herrmann, P., Jensen, C.D. (eds.) Trust Management II, pp. 119–
134. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-09428-1 8

14. Li, M., Tei, K., Fukazawa, Y.: An efficient co-attention neural network for social
recommendation. In: IEEE/WIC/ACM International Conference on Web Intel-
ligence, WI 2019, pp. 34–42. Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3350546.3352498

15. Qiao, C., et al.: A new method of region embedding for text classification. In:
International Conference on Learning Representations (2018). https://openreview.
net/forum?id=BkSDMA36Z

16. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook,
1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-0-387-85820-3

17. Sun, Z., Deng, Z., Nie, J., Tang, J.: RotatE: Knowledge graph embedding by rela-
tional rotation in complex space. CoRR abs/1902.10197 (2019). http://arxiv.org/
abs/1902.10197

18. Tay, Y., Anh Tuan, L., Hui, S.C.: Latent relational metric learning via memory-
based attention for collaborative ranking. In: Proceedings of the 2018 World Wide
Web Conference, WWW 2018, pp. 729–739. International World Wide Web Confer-
ences Steering Committee, Republic and Canton of Geneva, CHE (2018). https://
doi.org/10.1145/3178876.3186154

19. Tengkiattrakul, P., Maneeroj, S., Takasu, A.: Translation-based embedding model
for rating conversion in recommender systems. In: IEEE/WIC/ACM International
Conference on Web Intelligence, WI 2019, pp. 217–224. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3350546.3352521

20. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). http://
arxiv.org/abs/1706.03762

21. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017). https://doi.org/10.1109/TKDE.2017.2754499

22. Zhang, S., Tay, Y., Yao, L., Wu, B., Sun, A.: DeepRec: an open-source toolkit for
deep learning based recommendation. CoRR abs/1905.10536 (2019). http://arxiv.
org/abs/1905.10536

23. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a
survey and new perspectives. ACM Comput. Surv. 52(1), 38 (2019). https://doi.
org/10.1145/3285029

24. Zhang, Y., Wang, J., Luo, J.: Knowledge graph embedding based collaborative fil-
tering. IEEE Access 8, 134553–134562 (2020). https://doi.org/10.1109/ACCESS.
2020.3011105

https://doi.org/10.1145/1008992.1009124
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1007/978-0-387-09428-1_8
https://doi.org/10.1145/3350546.3352498
https://openreview.net/forum?id=BkSDMA36Z
https://openreview.net/forum?id=BkSDMA36Z
https://doi.org/10.1007/978-0-387-85820-3
http://arxiv.org/abs/1902.10197
http://arxiv.org/abs/1902.10197
https://doi.org/10.1145/3178876.3186154
https://doi.org/10.1145/3178876.3186154
https://doi.org/10.1145/3350546.3352521
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/TKDE.2017.2754499
http://arxiv.org/abs/1905.10536
http://arxiv.org/abs/1905.10536
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1109/ACCESS.2020.3011105
https://doi.org/10.1109/ACCESS.2020.3011105

Sentence Dependent-Aware Network
for Aspect-Category Sentiment Analysis

Lianwei Li, Ying Yang, Shimeng Zhan, and Bin Wu(B)

Beijing University of Posts and Telecommunications, Beijing, China
{llw,regulus,zhanshimeng,wubin}@bupt.edu.cn

Abstract. The purpose of Aspect-Category Sentiment Analysis is to
predict sentiment polarities of given aspect categories in sentences. Most
previous methods used attention-based neural network models to Estab-
lish connections between aspect categories and sentiment words and
generate aspect-specific sentence representations. However, these models
may mismatch sentiment words with aspect categories due to the com-
plexity of sentence structures. To solve this problem, we reconstruct the
dependency tree into an ACSA-oriented dependency tree, which builds a
direct or indirect semantic connection between sentiment words and cor-
responding aspect categories, and avoid introducing redundant informa-
tion from the original dependency tree. On this basis, we propose a Sen-
tence Dependent-Aware Network (SDAN) to encode the tree effectively.
The experimental results of applying SDAN to three public datasets
demonstrate its effectiveness.

Keywords: Aspect-category sentiment analysis · Multi-task learning ·
Graph attention networks

1 Introduction

Aspect-based sentiment analysis is a fine-grained sentiment analysis task [8,9].
Specifically, its purpose is to determine the sentiment polarities of aspects
included in a sentence. Aspect-based sentiment analysis has multiple subtasks,
two of which are Aspect-Category Detection (ACD) and Aspect-Category Sen-
timent Analysis (ACSA). ACD is used to detect aspect categories mentioned in
a sentence and ACSA predicts the sentiment polarities of the detected aspect
categories. Aspect categories come from some predefined categories and may
not appear explicitly in a sentence. Figure 1 is an example. Sushi indicates the
aspect category food, and waiters indicates the aspect category service. We call
these words that indicate aspect categories as indicator words. In this paper, we

This work is supported by the National Key Research and Development Program of
China (2018YFC0831500), the National Natural Science Foundation of China under
Grant No.61972047, the NSFC-General Technology Basic Research Joint Funds under
Grant U1936220 and the Fundamental Research Funds for the Central Universities
(2019XD-D01).

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 166–174, 2021.
https://doi.org/10.1007/978-3-030-74296-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_13

Sentence Dependent-Aware Network for Aspect-Category Sentiment Analysis 167

Fig. 1. An example of ACD and ACSA. Fig. 2. An example of a dependency tree.

mainly focus on ACSA, ACD is an auxiliary task to find indicator words in a
sentence. Since a sentence may contain several aspect categories with disparate
sentiment polarities, the key to this task is accurately associating each aspect
category with its respective sentiment words. It is a very intuitive idea to use the
attention mechanism to establish this association. [1,14,17] used the attention
mechanism to assign appropriate sentiment words to a given aspect category and
achieved good results. However, due to the complexity of the sentence structure
and the language itself, methods that rely solely on the attention mechanism
may cause mismatch problems. Generally, we find that a dependency tree effec-
tively shortens the distance between indicator words and sentiment words in a
sentence and establishes a direct or indirect dependency path between indicator
words and sentiment words. This allows the sentence representation learned by
neural network models along the dependency path to avoid mismatching to a
certain extent. Figure 2 is an example of a dependency tree.

Although a dependency tree can capture the semantic relationship character-
istics between words, it is not appropriate to directly use an original dependency
tree. Through observation, we find that using a complete dependency tree may
introduce redundant or even wrong information. At this time, we need to prune
and reconstruct the original dependency tree to preserve important relations, we
call the reconstructed dependency tree the ACSA-oriented dependency tree.

In this paper, we put forward a Sentence Dependent-Aware Network (SDAN)
for ACSA that can effectively use the dependency tree. SDAN mainly includes
three modules: ACD task module, ACSA-oriented dependency tree module, and
ACSA task module. Specifically, it first finds the indicator words of the aspect
category through the ACD task module, then it builds ACSA-oriented depen-
dency tree based on the indicator words, retaining the nodes and relations
useful for predicting the aspect category’s sentiment polarity. Finally, in the
ACSA module, the node representations learned by grammar graph attention
networks (G-GAT) is applied to predict the sentiment polarity of the aspect
category. G-GAT that we proposed is an improved version of graph attention
networks (GAT) [15] obtained by expanding the original GAT attention heads.
It can encode graphs with additional information (part-of-speech information)
and labeled edges (dependency relation type labels). We summarized our main
contributions as follows:

– We put forward a Sentence Dependent-Aware Network, which can effectively
use the dependency tree for Aspect-Category Sentiment Analysis.

– Specifically, we design an algorithm to build ACSA-oriented dependency
tree, while establishing the semantic connection between indicator words and

168 L. Li et al.

sentiment words, it avoids introducing redundant information from the orig-
inal dependency tree.

– We propose G-GAT model, which can learn a better node representation with
some additional information.

2 Related Work

Many neural network models have been developed to solve the ACSA task. Wang
et al. [17] first proposed aspect category embedding and used an attention-based
LSTM to implicitly associate the aspect categories with the corresponding senti-
ment words for the aspect category sentiment analysis. Then some new attention-
based models [1,4,14] optimize the process of assigning sentiment words to aspect
categories and have led to promising progress. The pre-trained language model
BERT [2] achieved success in a lot of tasks, including ACSA. Sun et al. [13]
constructed auxiliary sentences and converted ACSA to a sentence-pair classi-
fication task. Several joint models [12,18,20] have been proposed that address
both ACD and ACSA. Li et al. [7] introduced Multi-Instance Multi-Label learn-
ing, it first predicts the sentiments of the instances and finds the key instances
for the aspect categories, then it obtains the sentiment polarities of the aspect
categories by aggregating polarities of the key instance. Recently, the use of
graph neural networks in ACSA has been explored. Li et al. [6] used the graph
attention networks and sentence constituency parse trees to solve ACSA task.

3 Method

In this section, we describe how to build ACSA-oriented dependency tree and
apply the ACSA-oriented dependency tree to the aspect category sentiment anal-
ysis task.

Problem Formulation. We first formulate the problem. There are N pre-
defined aspect categories C = {c1, c2, . . . , cN} and a predefined set of sen-
timent polarities P = {Neg,Neu, Pos} (i.e., Negative, Neutral and Positive
respectively). Given a sentence, denoted by S = {w1, w2, . . . , wn}, which con-
tains K aspect categories Cs = {cs1, c

s
2, . . . , c

s
K}, Cs ⊂ C, the ACSA task

is to predict the sentiment polarity distributions of the K aspect categories,
P = {P1, P2, . . . , PK}, where Pk = {pkNeg

, pkNeu
, pkPos

}.

ACSA-Oriented Dependency Tree Module. Given S, csi , indicator words
I = {I1, I2, . . . , IM}(M < 4) of csi and original dependency tree T , we use
the indicator words to build the ACSA-oriented dependency tree T̂ : 1© We set
the aspect category csi as the root node R of T̂ (R is a node that does not
exist originally), and then connect I to the R node. Here, we add the dir con
dependency type between I and R node to represent the indicator words and the

Sentence Dependent-Aware Network for Aspect-Category Sentiment Analysis 169

R node direct connection. 2© Then, the words and dependency relations that have
a direct dependency with the indicator words in T are added to T̂ . 3© Because
the dependency parser cannot always generate the correct dependency, in order
to increase the robustness of T̂ , we connect I and the words whose relative
distance to the I is less than d in the sentence S, and set a new relationship
n con. The remaining nodes and relations in the original dependency tree T will
be discarded. Figure 3 is an example of ACSA-oriented dependency tree. The
idea is partially inspired by [16].

Fig. 3. The ACSA-oriented dependency tree is builded according to the food’s indicator
word sushi, food is the root node R, the red line represents the dir con relation, the
green line is the relation retained from the original dependency tree, and the gray line
is the n con relation, because the distance between was and sushi is 1, so it is 1 con.
(Color figure online)

Fig. 4. Overall architecture of the proposed method.

Overall Processing. Our model mainly includes the ACD task module, ACSA-
oriented dependency tree module, and the ACSA task module. Given S and csi ,
Aspect-Category Detection (ACD) is used as an auxiliary task, its attention
layer is used to get the weight of words in the sentence S. The weight indicates
the probability that these words become indicator words for csi . When selecting
indicator words in ACD, we only select words with a weight greater than 0.3,
making the number of indicator words at most 3 and at least 1 (When there

170 L. Li et al.

is no word with a weight greater than 0.3, we do not reconstruct the depen-
dency tree. Because when the weight of the words in the sentence are relatively
evenly distributed, we think that the ACD task cannot provide good indicator
words.). Then ACSA-oriented dependency tree module reconstructs the original
dependency tree according to the indicator words to form an ACSA-oriented
dependency tree. The ACSA task module predicts the sentiment polarity of csi
based on the ACSA-oriented dependency tree. The architecture diagram of the
model is shown in the Fig. 4.

The ACD module includes four components: Embedding layer, this layer
converts the input sentence S = {w1, w2, . . . , wn} into a sequence of vector
V D = {vD

1 , vD
2 , . . . , vDn }, where, vD

i ∈ Rd, d is the dimension. LSTM layer,
the word embeddings V D are sent into LSTM to get the hidden states H =
{h1, h2, . . . , hn}. The size of hi is set to be d. Attention layer, this layer takes
the hidden states H as input and then generates an attention [21] weight vector
for each predefined aspect category. Aspect category prediction layer, we
use the weighted hidden state as the sentence representation for ACD prediction.

The ACSA module also includes four components: Embedding layer, this
layer’s input is the nodes in the tree T̂ , the tree nodes are transformed into a
sequence of vectors V T̂ = {vT̂

1 , vT̂
2 , . . . , vT̂

m}. Where vT̂
i ∈ Rd, d is the embedding

dimension. Bi-LSTM layer, V T̂ is fed into a Bidirectional LSTM [3], and out-
puts hidden states H = {h1, h2, . . . , hm}. The size of the hidden state is set to be
d. G-GAT layer, we can represent the tree T̂ as a graph G with m nodes, and
the edges of the graph G represent the dependency relation types between nodes.
Using the graph attention networks (GAT) [15] can aggregate the information
of neighborhood nodes along the dependency path, but this does not explicitly
consider the dependency information and the nodes’ part-of-speech information.
To solve this problem, we propose a grammar graph attention network (G-GAT)
by adding relation heads and part-of-speech heads to the original GAT to regu-
late information flow from other nodes. Specifically, we first put the dependency
relations and part-of-speech represented as vector representations, then calculate
relational heads and part-of-speech heads, in the l-th layer, given a node i, its
neighborhood nodes Ni:

hl+1
reli

= ||Mm=1

∑

j∈Ni

βlm
ij W l

mhl
j (1)

hl+1
posi = ||Uu=1

∑

j∈Ni

γlu
ij W l

uhl
j (2)

where hl+1
reli

and hl+1
posi are the representation of the node i aggregated by the

relational heads and part-of-speech heads at the l layer, || represents vector
concatenation, βlm

ij and γlu
ij are normalized attention coefficient at layer l. W l

m

and W l
u are linear transformation matrices. G-GAT has U part of speech heads,

M relation heads and K attention heads. Finally update the node i through:

hl+1
i = relu(Wl+1(hl+1

atti ||hl+1
reli

||hl+1
posi) + bl+1) (3)

Sentence Dependent-Aware Network for Aspect-Category Sentiment Analysis 171

where hl+1
atti is the representation of the node i aggregated by the original atten-

tion heads at the l layer, Wl+1, bl+1 are learnable parameters. Aspect category
sentiment prediction layer, since the information is propagated iteratively on
the graph, we finally only need to use the representation of the root node R (It
is the aspect category csi) in the last layer of G-GAT to calculate the sentiment
polarity distribution. We add up the loss functions of ACD and ACSA to jointly
train the two tasks:

L(θ) = LACSA(θACSA) + LACD(θACD) (4)

where θ contains all the trainable parameters.

4 Experiments

4.1 Datasets

Rest14: Rest14 dataset [11] has five predefined aspect categories, and each
aspect category has four sentiment polarities (positive, negative, neutral, con-
flict) that can be assigned. Following previous works [4,14,17], we removed sam-
ples with conflicting polarities. Rest14-hard: Rest14-hard dataset is provided
by Li et al. [7], the difference between Rest14-hard and Rest14 is that its test set
is a subset of Rest14’s test set. MAMS-ACSA: MAMS-ACSA is provided by
Jiang et al. [5], all sentences in MAMS-ACSA contain several aspect categories,
and these aspect categories have different sentiment polarities.

4.2 Experimental Setup

Some recent methods for aspect-category sentiment analysis have been com-
pared. non-BERT models: GCAE [19], As-capsule [18], CapsNet [5], SCAN [6]
and AC-MIMLLN [7]. BERT based models: BERT [5], BERT-pair-QA-B [13],
SCAN-BERT [6], CapsNet-BERT [5] and AC-MIMLLN-BERT [7]. Our mod-
els: SDAN,SDAN-BERT (the embedding layer and the Bi-LSTM in SDAN have
been replaced with pre-trained BERT). Ablation models: SDAN -w/o rel -
w/o pos, remove the relation heads and the part-of-speech heads, degenerate
into primitive GAT. SDAN -w/o rel, only remove the relation heads and keep
the part-of-speech heads. SDAN -w/o pos, only remove the part-of-speech heads,
keep the relation heads.

For SDAN, we use 300-dimensional word vectors trained by GloVe [10], the
batch size is set to 32, the model is optimized using adam optimizer, and the
learning rate is set to 0.001. We set the number of G-GAT layers to 2, and the
dropout rate is set to 0.6. The batch size for SDAN-BERT model is set to 16,
and use the last hidden states of the pre-trained BERT for word representations
and fine-tune them on our task. It uses adam optimizer, and the learning rate is
set to 0.00002, the number of G-GAT layers is set to 2, and the dropout rate is
set to 0.2. We run all models for 10 times and report the average results on the
test datasets.

172 L. Li et al.

Table 1. Results of the ACSA task in terms of accuracy (%).

Methods Rest14 Rest14-hard MAMS-ACSA

GCAE 81.593 58.372 72.174

CapsNet 81.772 54.061 73.150

As-capsule 82.479 61.844 75.308

SCAN 80.612 63.513 72.923

AC-MIMLLN 82.315 62.857 74.446

SDAN 84.892 65.722 76.164

BERT 87.441 70.545 77.202

CapsNet-BERT 86.768 53.304 78.438

AC-MIMLLN-BERT 87.751 73.829 80.129

SCAN-BERT 86.095 71.721 79.462

BERT-pair-QA-B 88.375 74.846 80.476

SDAN-BERT 87.872 75.122 81.097

SDAN-model -w/o rel -w/o pos 82.413 61.729 73.816

SDAN-model -w/o rel 84.573 64.701 75.485

SDAN-model -w/o pos 83.430 63.643 74.259

4.3 Results and Discussion

Table 1 lists the performance results. From the results, we can draw the follow-
ing conclusions. In the non-BERT model, SDAN outperforms all other models
on the three datasets, indicating that our model captures important syntac-
tic structures and effectively connects aspect category words with correspond-
ing sentiment words. Second, after combining BERT, SDAN has significantly
improved performance. It has achieved the best results on the Rest14-hard and
MAMS-ACSA datasets, but the accuracy on the rest14 dataset is 0.503% worse
than BERT-pair-QA-B. The possible reason is that BERT’s pre-training task
(next sentence prediction) allows it to handle the relationship between sentences
better, and BERT-pair-QA-B makes good use of this (processing the ACSA
task in sentence pairs), and many sentences in the rest14 dataset have only one
aspect category is not conducive to exploit the strengths of SDAN-BERT. By
conducting ablation experiments on G-GAT, we find that adding relation heads
or part-of-speech heads to the original GAT can improve the performance of the
model. Separately comparing the functions of the part-of-speech heads and the
relational heads, we can find that the part-of-speech heads have a greater impact
on the performance of the model.

5 Conclusion

In this paper, we have proposed a Sentence Dependent-Aware Network for
Aspect-Category Sentiment Analysis (SDAN). SDAN makes full use of the

Sentence Dependent-Aware Network for Aspect-Category Sentiment Analysis 173

dependency tree to extenuate the mismatch problem. Experimental results on
three public datasets prove the advantage of SDAN. In future work, we will
focus on the sequence2graph method to generate dependencies instead of based
on algorithm rules.

References

1. Cheng, J., Zhao, S., Zhang, J., King, I., Zhang, X., Wang, H.: Aspect-level sen-
timent classification with heat (hierarchical attention) network. In: CIKM, pp.
97–106 (2017)

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–
4186 (2019)

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

4. Hu, M., et al.: CAN: Constrained attention networks for multi-aspect sentiment
analysis. In: EMNLP-IJCNLP, pp. 4601–4610 (2019)

5. Jiang, Q., Chen, L., Xu, R., Ao, X., Yang, M.: A challenge dataset and effective
models for aspect-based sentiment analysis. In: EMNLP-IJCNLP, pp. 6279–6284
(2019)

6. Li, Y., Yin, C., Zhong, S.: Sentence constituent-aware aspect-category sentiment
analysis with graph attention networks. In: NLPCC, pp. 815–827 (2020)

7. Li, Y., Yin, C., Zhong, S., Pan, X.: Multi-instance multi-label learning networks
for aspect-category sentiment analysis. In: EMNLP, pp. 3550–3560 (2020)

8. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol.
5(1), 1–167 (2012)

9. Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Found. Trends R©
Inf. Retrieval 2(1–2), 1–135 (2008)

10. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: EMNLP, pp. 1532–1543 (2014)

11. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos,
I., Manandhar, S.: Semeval-2014 task 4: aspect based sentiment analysis. In:
SemEval@COLING, pp. 27–35 (2014)

12. Schmitt, M., Steinheber, S., Schreiber, K., Roth, B.: Joint aspect and polarity
classification for aspect-based sentiment analysis with end-to-end neural networks.
In: EMNLP, pp. 1109–1114 (2018)

13. Sun, C., Huang, L., Qiu, X.: Utilizing BERT for aspect-based sentiment analysis
via constructing auxiliary sentence. In: NAACL-HLT, pp. 380–385 (2019)

14. Tay, Y., Tuan, L.A., Hui, S.C.: Learning to attend via word-aspect associative
fusion for aspect-based sentiment analysis. In: AAAI, pp. 5956–5963 (2018)

15. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. CoRR abs/1710.10903 (2017)

16. Wang, K., Shen, W., Yang, Y., Quan, X., Wang, R.: Relational graph attention
network for aspect-based sentiment analysis. In: ACL, pp. 3229–3238 (2020)

17. Wang, Y., Huang, M., Zhao, L.: Attention-based lstm for aspect-level sentiment
classification. In: EMNLP, pp. 606–615 (2016)

18. Wang, Y., Sun, A., Huang, M., Zhu, X.: Aspect-level sentiment analysis using
as-capsules. In: WWW, pp. 2033–2044 (2019)

174 L. Li et al.

19. Xue, W., Li, T.: Aspect based sentiment analysis with gated convolutional net-
works. In: EMNLP, pp. 2514–2523 (2018)

20. Yang, Y., Wu, B., Li, L., Wang, S.: A joint model for aspect-category sentiment
analysis with TextGCN and Bi-GRU. In: IEEE DSC, pp. 156–163 (2020)

21. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: NAACL-HLT, pp. 1480–1489 (2016)

A Probabilistic Approach to Personalize
Type-Based Facet Ranking for POI

Suggestion

Esraa Ali1(B) , Annalina Caputo2(B) , Séamus Lawless1 ,
and Owen Conlan1

1 ADAPT Centre, School of Computer Science and Statistics, Trinity College Dublin,
Dublin, Ireland

{esraa.ali,seamus.lawless,owen.conlan}@adaptcentre.ie
2 ADAPT Centre, School of Computing, Dublin City University, Dublin, Ireland

annalina.caputo@adaptcentre.ie

Abstract. Faceted Search Systems (FSS) have become one of the main
search interfaces used in vertical search systems, offering users meaning-
ful facets to refine their search query and narrow down the results quickly
to find the intended search target. This work focuses on the problem of
ranking type-based facets. In a structured information space, type-based
facets (t-facets) indicate the category to which each object belongs. When
they belong to a large multi-level taxonomy, it is desirable to rank them
separately before ranking other facet groups. This helps the searcher in
filtering the results according to their type first. This also makes it eas-
ier to rank the rest of the facets once the type of the intended search
target is selected. Existing research employs the same ranking methods
for different facet groups. In this research, we propose a two-step app-
roach to personalize t-facet ranking. The first step assigns a relevance
score to each individual leaf-node t-facet. The score is generated using
probabilistic models and it reflects t-facet relevance to the query and
the user profile. In the second step, this score is used to re-order and
select the sub-tree to present to the user. We investigate the usefulness
of the proposed method to a Point Of Interest (POI) suggestion task. Our
evaluation aims at capturing the user effort required to fulfil her search
needs by using the ranked facets. The proposed approach achieved better
results than other existing personalized baselines.

Keywords: Type-based Facets · Faceted search · Personalization

1 Introduction

In Faceted Search Systems (FSS), users explore the information space through
facets, which are attributes or meta-data that describe the underlying content of
the collection. As the magnitude of data in a collection increases, the number of
facets and their values becomes impractical to display on a single page. Providing
users with too many facets has been shown to overwhelm and distract them [6].
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 175–182, 2021.
https://doi.org/10.1007/978-3-030-74296-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_14&domain=pdf
http://orcid.org/0000-0003-1600-3161
http://orcid.org/0000-0002-7144-8545
http://orcid.org/0000-0001-6302-258X
http://orcid.org/0000-0002-9054-9747
https://doi.org/10.1007/978-3-030-74296-6_14

176 E. Ali et al.

Faceted browsers overcome this problem by either displaying a small number
of facets and making the rest accessible through a “more” button, or by displaying
only the facet titles without the values: if the user is interested in a facet they
can click on the title to view its values. In either case, ranking the top facets is
required as it assists the searcher in narrowing down the information space and
locate the target document with minimum effort.

In an information space that is structured, facets are either extracted from
the edges or relationships between objects, in which case they are called property-
based facets (p-facets), or they are extracted from the types of the objects, in
which case they are called type-based facets (t-facets) (e.g. values of subClassOf
or isA relationships). Systems vary in their use of facets, some use a single type of
facets, others mix the two types. Usually, this is done by presenting t-facets first,
followed by the p-facets [10]. In FSS, which exploit multiple types of resources1,
it is important to prioritize and focus on the relevant t-facets. This is especially
true when the types of resources come from a large multilevel hierarchy. This
will encourage the user to filter the results by their type first and make it easier
to rank the p-facets. Multilevel hierarchical types are derived from ontologies by
exploiting the subClassOf relationships.

In this work, we focus on analysing the role of personalization in t-facet
ranking in isolation from other FSS aspects. Existing facet ranking methods
rely on attribute frequencies, navigation cost models, textual queries or click
logs to order the facets [10]. Neither the special case of t-facet ranking nor
the fact that t-facets relevance can be user dependant are addressed by these
approaches. This experiment aims at answering the following research question:
RQ: Does personalizing the t-facet ranking using probabilistic scoring models
minimize users effort to fulfil their search needs?

This study contributes to the research in this area by introducing a novel
ranking algorithm for type-based facets. The algorithm exploits the user’s past
preferences to build a user profile for ranking type-based facets. The proposed
approach functions over two consecutive steps. The first step generates person-
alized relevance score for each t-facet at the end level of the taxonomy. Then,
the second stage aggregates this score to re-arrange the ancestor t-facet nodes
and re-build the final t-facet tree to be rendered to the user. To the best of our
knowledge, this is the first approach that focuses on the special case of t-facet
ranking. It investigates using topic-based user profiles to improve the ranking
process. In addition to that, it provides an effective strategy to rank different
t-facet levels and decide the final tree to be portrayed to the searcher. The app-
roach operates on t-facets, which have a well structured tree-like hierarchical
taxonomy.

The implemented approach is evaluated using the TREC Contextual Sugges-
tion (TREC-CS) track dataset [5]. TREC-CS is a personalized Point-Of-Interest
(POI) recommendation task, in which participants develop systems to give a
ranked list of suggestions related to a given user profile and a context. We solve

1 In the scope of this paper, we refer to resources (or information objects) being
searched as venues or POIs.

A Prob. Approach to Personalize T-Facet Ranking 177

the POI suggestion problem by ranking the types of venues as t-facets. In our
evaluation, we measure the extent to which this ranked tree minimizes the user
effort to reach the first relevant POI.

2 Facet Ranking Related Research

Several approaches have been proposed in the literature to solve the problem of
personalized facet ranking that make use of individual user models, collaborative
filtering (CF), or a mixture between the two. Factic is a FSS that personalizes
by building models from semantic usage logs. Several layers of user adaption are
implemented and integrated with different weights to enhance the facet relevance
model [9]. Koren et al. [6] suggested a CF approach by leveraging explicit user
feedback about the facets, which is used to build a facet relevance model for
individuals. They also use the aggregated facet ratings to build a collaborative
model for the new users in order to provide initial good facets in absence of a
user profile. The Adaptive Twitter search system generates user models from
Twitter to personalize facet-values ordering [1]. The user model contains entities
extracted from the user’s tweets. The facet-values are weighted higher if they
exist in the user profile. Le et al. [7] also collects user profile from social net-
works. The profile is learned from user activities and preferences using a tf-idf
feature vector model. Important facets are then highlighted through a matching
with the model. A personalized ranking based on CF features was suggested by
Chantamunee et al. [4].

They used user ratings and Matrix Factorization via SVM to learn facet
ranks. All the discussed approaches in this section use the same strategy to rank
p-facets and t-facets. They do not provide means to order the hierarchy of t-
facets. We believe it is important to distinguish between the two types of facets
during the ranking process as they each support the user in different ways in
finding their intended target. Our approach exploits topic-based user profiles,
which employs users’ historical ratings to infer their preferred t-facet, an area
which was not explored by earlier research in facet ranking.

3 Proposed Approach

Our method works in the context of personalized venue search. When a user
submits a query, the underlying search engine retrieves a relevant set of venues
for it2. Our method works on this set by collecting the t-facets associated with
the retrieved venues. We assume that this set of retrieved venues is relevant for
the query and can be considered as the input for the t-facet ranking algorithm.

The proposed t-facet ranking approach consists of two steps. Assuming that
the t-facets are organized in a taxonomy, the first step assigns a relevance score to
each t-facet leaf node. The input to this step is the retrieved venues with their
relevancy score, the t-facets to which they belong, as well as the user profile.
2 How the venue ranking is performed is outside scope of this research.

178 E. Ali et al.

The second step constructs the final t-facet tree to be displayed to the user.
The input to this step is both the score for each t-facet (generated at the first
step) and the original hierarchical taxonomy from which we derived the t-facets.
The output of the t-facet ranking is a sub-tree which contains the ordered set of
relevant t-facets. The following sub-sections provide the details of each step.

3.1 Step 1: Scoring Using T-Facet Probabilistic Models

In this step, probabilistic models are developed to estimate a t-facet relevance
score given a query and a user profile. The models are based on the well-known
probabilistic models introduced by Sontag et al. for personalized web search [8].
They personalized the search results using topic-based user profiles collected
from users’ historical interactions with the system. Their approach re-weights
the original document level search results according to topic relevancy to the
user and query. In this work, we utilize the topic re-weighting factor to derive
the t-facets score. The generated score reflects t-facet relevance to both the user
and the input query. Below we re-define those models in the context of our t-facet
scoring task. To generate the t-facet score, two models are proposed; Model-
1 assumes no background data available, it is calculated using the following
formula:

score(fi) =
∑

fu

P (fu|q, θu)× P (cov(fu, fi)|fu, fi) (1)

Where fi is the current t-facet to be ranked, fu are t-facets rated before by the
user, θu is the user profile, and P (cov(fu, fi)|fu, fi) is the probability that t-facet
fu is covered by the t-facet fi. We estimate this probability using two methods,
the first is the exact match, in which the probability equals to 1 if fu = fi,
0 otherwise. The second estimate (cosine) uses a function of distance between
fu and fi. In our case, we employ the cosine similarity between BERT vectors
generated for the input t-facet labels, using a pre-trained generic BERT model.
Details about the probability P (fu|q, θu) are provided later in this section.

Model-2 uses background data to estimate the score:

score(fi) =

∑
fu

P (fu|q, θu)× P (cov(fu, fi)|fu, fi)∑
f Pr(f |q)× P (cov(f, fi)|f, fi)

(2)

The numerator is the same as Model-1. In the denominator, the background
distribution Pr(f |q) (where r denotes a random or generic user) is calculated
by averaging the relevance score for the top N search results belonging to this
t-facet when the query q is submitted to search engine. It can be obtained using
the following equation:

Pr(f |q) = 1
N

×
N∑

m=1

P (rel(dm, q) = 1|q)× P (fd|dm) (3)

Note that in our case P (fd|d) = 1, since the venues’ types are assigned by their
owners, i.e. the type of the venue is not estimated it is given, and hence can be
dropped from (3). Details of the derivation of the models can be found in [8].

A Prob. Approach to Personalize T-Facet Ranking 179

To model the user’s preferences, we estimate P (fu|q, θu), for which we use
users historical ratings by assuming that users prefer t-facets of the venues they
rated positively in the past. We use the generative model suggested in [8] to
estimate this value by employing the Bayesian rule:

P (fu|q, θu) = P (fu|θu)× P (q|fu)∑
f ′ P (f ′|θu)× P (q|f ′)

(4)

P (fu|θu) is estimated by dividing how many times the user rated documents
belong to fu positively, divided by total number of documents rated by the user.
The probability P (q|f) is estimated by inverting P (f |q) (see Eq. 3):

P (q|f) = c
Pr(f |q)
Pr(f)

(5)

where c is a constant and Pr(f) is the probability that a random user rates this
facet positively obtained by counting how many times this t-facet’s documents
were rated positively by all users divided by the total number of rated documents.

3.2 Step 2: T-Facet Tree Building

The tree construction algorithm re-orders the original taxonomy tree by using
the generated scores from the previous step. It follows a bottom-up approach
where the t-facets at the lower level in the taxonomy are sorted first, then it
proceeds by sorting all the ancestors of those t-facets, and so on up to the root
of the hierarchy. At each level, the scores from the previous level are employed
to induce the ranks of the current level. This step also decides which top t-facets
sub-tree will appear to the user in the first result page. Remaining facets will be
available to the user by clicking ‘More’ link.3

To build a final t-facet tree with v levels, we adopted a fixed level strategy
that follows a bottom-up approach. The strategy respects the original taxonomy
hierarchy and uses a predefined fixed page size for each t-facet level. The strategy
starts by grouping t-facets at level-v by their parent. Then, it sorts the (parent)
nodes at level-(v − 1) by aggregating the scores of their top k children, the
children are ordered by their relevance score generated in step 1, and so on up to
level-1. Several aggregation functions can be used, in our experiments we used
average (Avg) and maximum (Max) functions. Figure 1 shows an example for
this process, categories (Cat.) correspond to level-1 t-facets and sub-categories
correspond to level-2 t-facets. In the case where a level-1 facet has additional
relevant t-facet children that are not displayed in first page, they will be available
to the user through the “+ More Cat ...”. Each following t-facet page will be
sorted in the same way. The final output provides the user a more organized and
readable t-facet tree.
3 Although we acknowledge that other HCI factors may influence the decision of what

portion of the tree should be displayed to the users, in this work we focus on studying
how the tree building approach affects the user from a pure metric perspective.

180 E. Ali et al.

Fig. 1. Example output t-facet tree for a 2 level taxonomy using two aggregations:
average and max, level-1 t-facet page size=3, level-2 t-facet page size=3.

4 Experimental Results

Experimental Setup. Our approach is evaluated on TREC-CS 2016 dataset [5].
The t-facet taxonomy is derived from the Foursquare venue category hierarchy4.
Hence, having as much Foursquare venues linked to TREC-CS POIs as possi-
ble is paramount. For this reason, we complement the original data with three
Foursquare supplementary datasets from [2,3] and our own crawled POIs. The
final dataset has 58 requests and an average of 208 t-facets per request to be
ranked. We consider the first two levels of the taxonomy, they contain 10 level-1
and 429 level-2 t-facets. The document search engine implements BM25 with
NDCG value of 0.4023, the query is formed by combining user weighed tags by
their most common rating.

The existence of relevance judgments makes it possible to evaluate our app-
roach against a well established ground-truth. We follow the evaluation approach
used in Faceted Search task of INEX 2011 Data-Centric Track [11].

We report two metrics suggested by task organizers. The number of actions
(#Actions) metric counts how many clicks the user has to perform on the ranked
facets list in order to reach the first relevant document in the top 5 results.
The faceted scan (F-Scan) metric measures the user’s effort to scan facets and
documents until they reach the same document. We focus on these two metrics
as a proxy for user’s effort, which will help in answering our research question.

We report the results for the no background model (Model-1) and the back-
ground model (Model-2), each experimented using two coverage probability
estimators (exact) and (cosine). To show the effect of different tree building
approaches on the evaluation metrics, we produce results using two strategies:
1) fixed level with average (Avg), 2) fixed level with maximum (Max). Both use
3 level-1 t-facets per page, with 3 level-2 t-facets each.

Preliminary Results. The overall results in Table 1 show that the no Model-
1 consistently outperforms Model-2 across all metrics and regardless the used

4 https://developer.foursquare.com/docs/resources/categories, version: 20180323.

https://developer.foursquare.com/docs/resources/categories

A Prob. Approach to Personalize T-Facet Ranking 181

Table 1. Results for probabilistic scoring and fixed level tree building strategy with
max and avg aggregation functions.

Scoring method Max Avg.
F-Scan #Actions F-Scan #Actions

Model-1 + exact 4.258 1.534 4.051 1.517

Model-1 + cosine 3.413 1.327 3.482 1.396
Model-2 + exact 4.534 1.706 4.327 1.706

Model-2 + cosine 4.844 1.758 4.879 1.810

coverage probability method. One possible explanation is the small number of
training points available for the estimation of the background model. The dataset
has only 26 users, each rated either 30 or 60 venues, and the same 60 venues are
rated by all users. As a result, the profiles are limited to a small set of t-facets,
which ultimately affected the probability distributions. Further in depth analysis
of the relation between the number of user historical POIs and the performance
of the scoring methods is needed.

The skewed t-facet probability distribution also explains why the cosine simi-
larity implementation gave better results in Model-1. It aids the score generation
for new unseen, t-facets, where the strict exact match approach fails to handle
such cases, since it assigns 0 score if the user never rated that category before.

From Table 1 we can also observe that the evaluation metrics were affected by
the used tree building strategy. For the best performing scorer (Model-1 + cosine),
the Fixed Level-Max strategy produced better results. Two factors played a role
here: 1) The strategy maintains the top scored level-2 facets at the top of the final
tree; 2) In estimating Pr(f |q) (see Eq. 3) we set N = 1 (for all models) to favor
t-facets which will promote the first relevant result early to the user, which in turn
effectively minimized the user effort as shown in the results. When experimenting
with higher N values, all metrics were negatively impacted.

Table 2. Comparing our results against
baselines using Fixed Level-Max
Scoring method F-Scan #Actions

Model-1 + cosine 3.413 1.327
MF-SVM [4] 3.741 1.431

Most prob. (Person) [6] 4.000 1.672

Most prob. (Collab) [6] 3.327 1.379

Table 2 compares our system per-
formance against three personalized
facet ranking approaches. Since none
of the existing methods handle the
hierarchical nature of the t-facets, we
use them as scoring methods with
the Fixed Level-Max strategy. We can
see that our Model-1+cosine scoring
method achieved minimum #Actions. The Most Prob. (Collab) approach
achieved competing results, with F-Scan slightly better than our model. A rea-
son for this result is that by favouring popular t-facets, this method worked well
given the skewed t-facet probability distribution. However, it has the disadvan-
tage of not handling new unseen t-facets and failing for users with unpopular
preferences. Our approach on the other hand, handles both cases effectively.

5 Conclusions

This work has introduced a novel t-facet ranking approach. The two-step app-
roach considers the hierarchical nature of t-facets as well as user individual

182 E. Ali et al.

preferences. The first step assigns score to t-facets. The second step uses the
score to re-arrange and build the final t-facet tree to the user. To personalize
the scores, we explored several probabilistic models. They have shown promising
results given the limited user profiles in the dataset. Our future plans include
experimenting with more POI suggestion datasets and experimenting with com-
plex taxonomies to better understand the behavior of the proposed methods.
Our experiments have demonstrated that even the straight-forward tree build-
ing approaches can aid the ranking process. Developing more advanced strategies
can introduce further improvement.

Acknowledgements. This research was conducted with the financial support of
Science Foundation Ireland (SFI) under Grant Agreement No. 13/RC/2106 at the
ADAPT SFI Research Centre at Trinity College Dublin. The ADAPT Centre for Digi-
tal Media Technology is funded by SFI through the SFI Research Centres Programme
and is co-funded under the European Regional Development Fund (ERDF) Grant No.
13/RC/2106_P2.

References

1. Abel, F., Celik, I., Houben, G.-J., Siehndel, P.: Leveraging the semantics of tweets
for adaptive faceted search on twitter. In: Aroyo, L., et al. (eds.) ISWC 2011.
LNCS, vol. 7031, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25073-6_1

2. Aliannejadi, M., Mele, I., Crestani, F.: A cross-platform collection for contextual
suggestion. In: SIGIR. ACM (2017)

3. Bayomi, M., Lawless, S.: Adapt_tcd: an ontology-based context aware approach
for contextual suggestion. In: TREC (2016)

4. Chantamunee, S., Wong, K.W., Fung, C.C.: Collaborative filtering for personalised
facet selection. In: IAIT. ACM (2018)

5. Hashemi, S.H., Clarke, C.L., Kamps, J., Kiseleva, J., Voorhees, E.M.: Overview of
the trec 2016 contextual suggestion track. In: TREC (2016)

6. Koren, J., Zhang, Y., Liu, X.: Personalized interactive faceted search. In: WWW.
ACM (2008)

7. Le, T., Vo, B., Duong, T.H.: Personalized facets for semantic search using linked
open data with social networks. In: IBICA (2012)

8. Sontag, D., Collins-Thompson, K., Bennett, P.N., White, R.W., Dumais, S., Biller-
beck, B.: Probabilistic models for personalizing web search. In: WSDM. ACM
(2012)

9. Tvarožek, M., Bieliková, M.: Factic: personalized exploratory search in the semantic
web. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS,
vol. 6189, pp. 527–530. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13911-6_44

10. Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of rdf/s datasets: a
survey. J. Intell. Inf. Syst 48, 329–364 (2017)

11. Wang, Q., Ramírez, G., Marx, M., Theobald, M., Kamps, J.: Overview of the
INEX 2011 data-centric track. In: Geva, S., Kamps, J., Schenkel, R. (eds.) INEX
2011. LNCS, vol. 7424, pp. 118–137. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-35734-3_10

https://doi.org/10.1007/978-3-642-25073-6_1
https://doi.org/10.1007/978-3-642-25073-6_1
https://doi.org/10.1007/978-3-642-13911-6_44
https://doi.org/10.1007/978-3-642-13911-6_44
https://doi.org/10.1007/978-3-642-35734-3_10
https://doi.org/10.1007/978-3-642-35734-3_10

Web Mining and Knowledge Extraction

Web Table Classification Based on Visual
Features

Babette Bühler1 and Heiko Paulheim2(B)

1 Hector Research Institute of Education Sciences and Psychology,
University of Tübingen, Tübingen, Germany

babette.buehler@uni-tuebingen.de
2 Data and Web Science Group, University of Mannheim, Mannheim, Germany

heiko@informatik.uni-mannheim.de

Abstract. Tables on the web constitute a valuable data source for many
applications, like factual search and knowledge base augmentation. How-
ever, as genuine tables containing relational knowledge only account for
a small proportion of tables on the web, reliable genuine web table classi-
fication is a crucial first step of table extraction. Previous works usually
rely on explicit feature construction from the HTML code. In contrast,
we propose an approach for web table classification by exploiting the full
visual appearance of a table, which works purely by applying a convolu-
tional neural network on the rendered image of the web table. Since these
visual features can be extracted automatically, our approach circumvents
the need for explicit feature construction. A new hand labeled gold stan-
dard dataset containing HTML source code and images for 13,112 tables
was generated for this task. Transfer learning techniques are applied to
well known VGG16 and ResNet50 architectures. The evaluation of CNN
image classification with fine tuned ResNet50 (F1 93.29%) shows that
this approach achieves results comparable to previous solutions using
explicitly defined HTML code based features. By combining visual and
explicit features, an F-measure of 93.70% can be achieved by Random
Forest classification, which beats current state of the art methods.

Keywords: Web table · Genuine table · Layout table · Image
classification · Convolutional neural network

1 Introduction

The world wide web constitutes the worlds largest freely available source of
information covering almost every topic area. Especially web tables are of interest
in this respect, because they present knowledge in a structured and concise form.
They have been successfully employed as a data source in areas such as factual
search [26], entity augmentation [25] and knowledge base augmentation [17].

Before web tables can be employed as a powerful knowledge resource they
have to be extracted. As web pages are built using the Hyper Text Markup
Language (HTML), the intuitive approach to locate a table is via the <table>
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 185–200, 2021.
https://doi.org/10.1007/978-3-030-74296-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_15&domain=pdf
http://orcid.org/0000-0003-4386-8195
https://doi.org/10.1007/978-3-030-74296-6_15

186 B. Bühler and H. Paulheim

tag. Crestan and Pantel [5] suggest that, based on their investigation of table
type distribution on the web, an overwhelmingly large proportion of 88% of
tables defined by the <table> tag are layout tables, used for navigation or
formatting purposes. Consequently, the very first step in table processing is the
identification of genuine web tables presenting relational knowledge.

Figures 1b and 1d show the usage of HTML table elements for layout pur-
poses, i.e., for arranging logos in a grid, and for a navigation bar. In contrast,
Figs. 1a and 1c show genuine tables, once as a relational table and once as a
table of key/value pairs referring to the same entity.

(a) Example picture genuine table ver-
tical listing

(b) Example picture layout table for-
matting

(c) Example picture genuine table at-
tribute/value

(d) Example picture layout table navi-
gating

Fig. 1. Examples for layout and genuine tables

Previous research has worked on identifying genuine tables by applying exten-
sive heuristic filter rules [2,21] and by using machine learning with explicitly
defined features that describe the structure and genuine of a respective HTML
table [1,7,24]. Most approaches extract those features from the HTML code.
Exceptions are Cohen et al. [3] and Gatterbauer et al. [9] who employed quasi-
rendered representations. However, the HTML code encodes the visual appear-
ance of tables in the browser in a complex and indirect fashion. In contrast to
this, it is in most cases intuitive for human viewers to distinguish layout from
genuine tables in the rendered display of a website by their visual characteristics.

This paper proposes to automatically extract visual features by using convo-
lutional neural networks from the rendered image representation of web tables.
Two different strategies to the use of Convolutional Neural Networks (CNNs) for
web table classification are presented. First, pre-trained and fine tuned CNNs
are directly used to classify web tables, employing a dense classification layer.
Further, pre-trained CNNs are used as standalone feature extractors and the

Web Table Classification Based on Visual Features 187

extracted visual features, as well as their combination with explicitly defined fea-
tures by Eberius et al. [7] are employed to train a Random Forest classifier. For
each of the proposed approaches transfer learning and fine-tuning techniques for
two well known deep learning architectures, VGG16 and ResNet50, with weights
pre-trained on the ImageNet data, are tested.

The rest of this paper is structured as follows. Section 2 outlines related work.
Section 3 introduces our approach, which is analyzed in a set of experiments in
Sect. 4. We conclude with a summary and an outlook on future work.

2 Related Work

A range of research has been conducted in the area of discriminating genuine
and layout tables on the web. The approaches can be roughly divided into three
strands, i.e., heuristic rules, machine learning using HTML based features, and
visual representation based features.

2.1 Heuristic Filter Rules

Chen et al. [2] propose a set of filter rules and the use of cell similarity measures
to detect genuine tables. They filter tables containing less than two cells or
containing too many hyperlinks, forms, and figures. For the remaining tables,
the similarity of neighboring cells is considered to tell genuine and layout tables
apart. On a test dataset of 3,218 tables, they report an F-measure of 86.5%.

In a similar approach, Penn et al. [21] propose a set of heuristics to distin-
guish genuine and layout tables. Following these heuristics, genuine tables do
not contain other tables, lists, frames, forms, images, have multiple rows and
columms, more than one non-text-level-formatting tags, or less than a minimum
amount of words. On a dataset extracted from 75 news websites, the authors
report 86.3% precision and 89.8% recall.

2.2 Machine Learning Using HTML Based Features

Wang and Hu [24] apply machine learning techniques for the genuine versus non-
genuine table classification tasks. They propose a large set of layout and genuine
type features, as well as a word group feature to train Decision Tree classifiers
and Support Vector Machines (SVM). Layout features, e.g., the average number
of rows or columns, were adopted to depict structural information, while genuine
type features describe the type of the cells. On a test dataset consisting of
11,477 leaf tables they achieve a F-measure of 95.89% for SVM with a RBF
kernel. Additionally, it was compared to the rule based system proposed by Penn
et al. [21] which achieved a F-measure of 61.93% and a F-measure of 87.63% after
ruling out the cell length threshold of four, on the same data.

Carafella et al. [1] employ a combination of heuristic filter rules and rule-
based classifiers to distinguish between relational and non-relational tables. They
filter out small tables, attribute/value tables, and tables embedded inside HTML

188 B. Bühler and H. Paulheim

forms and calendars, eliminating 89.4% of all tables. In order to train a classi-
fier, they create seven features inspired by Wang and Hu [24]. While they do
not propose novel approaches for web table detection, they are the first to apply
the algorithms to a corpus at web scale, containing 14.1 billion HTML tables
extracted from the google.com Web crawl. As they optimize for recall of rela-
tional tables, they report a F-measure of 73.1% on a labeled subsample of the
data.

Crestan and Pantel [5] present a supervised framework to classify HTML
tables into a more fine-grained table type taxonomy, consisting of nine types,
constituting a more challenging classification task. Employing filter rules as a
minimum of two rows and columns and no cell containing more than 100 char-
acters about 80% of sampled tables were filtered out. A set of layout, genuine,
and lexical features is proposed and used to train Gradient Boosted Tree clas-
sifier. On a dataset containing 5,000 randomly sampled tables, they report an
F-measures of 68.3% for genuine and 89.3% for layout tables.

Son and Park [23] propose feature generation using the HTML document
structure, incorporating the structure within a table as well as the structure
appearing in the context of the table. In combination with the features proposed
by Wang and Hu, they achieve an F-measure of 98.58% on their dataset [24].

Lehmberg et al. [17] conduct web table classification in order to create a
large open corpus of relational HTML tables, i.e., the WebDataCommons HTML
Tables Dataset1 based on the 2012 version of the Common Crawl web corpus.
They use heuristic filter rules eliminating tables containing nested tables as well
as small tables, and employ a classifier using 16 layout, genuine type and word
group features, similar to Wang and Hu [24]. On a manually labeled Gold Stan-
dard data set of 7,350 randomly sampled web sites, consisting of 77,630 tables,
they report a precision of 58% and recall of 62%. Based on this, they created a
web table corpus containing 35.7 million tables, which was later updated incor-
porating contributions by Eberius et al. [7].

Eberius et al. [7] address the distinction of layout and genuine tables, as
well as a more fine-grained classification of the latter. They apply pre-selection
Filters, eliminating small tables as well as tables that were invalid or could not be
displayed correctly. They incorporated and extended features proposed by Wang
and Hu [24] and Crestan and Pantel [5], differentiating between global features,
considering the whole table, and local features only computed per row or column.
The 29 most relevant features of the initial 127 created features were selected
using correlation-based feature selection. The evaluation of different classifiers is
performed on a manually labeled data set containing 1,022 tables. For the best
performing classifier, the Random Forest a F-measure value of 95.2% is reported
for the binary classification task. The proposed approach was used to create the
Dresden Web Table Corpus2 consisting of millions of web tables.

A similar method can be seen in all of those approaches: Typically, a two-
step approach is used, which applies a rough pre-filter for non-genuine tables

1 http://webdatacommons.org/webtables/.
2 https://wwwdb.inf.tu-dresden.de/misc/dwtc/.

http://webdatacommons.org/webtables/
https://wwwdb.inf.tu-dresden.de/misc/dwtc/

Web Table Classification Based on Visual Features 189

(usually based on the number of rows and columns and/or nested tables) as a
first step. In a second step, a classifier is used to distinguish the remaining tables
as genuine or non-genuine. This is done with the help of combinations of different
features which can be divided into different groups [16]. Global features describe
the table as a whole, while Local features that are similar to average cell length,
which are created for rows or columns individually [5,7]. Another distinction
is made between content type features and structural or layout features. The
former describe for instance the frequency of certain types of content in cells as
images, hyperlinks, forms, alphabetic or numeric characters or empty cells. The
latter is for instance represented by the average, variance, minimum or maximum
number of rows, columns or cell length [1,5,7,24].

2.3 Visual Representation Based Features

What unites all previous approaches is the approach to generate the features used
for classification directly from the HTML source code of the tables. In contrast,
only few approaches have been made to directly employ visual properties of web
tables for table detection.

First, Cohen et al. [3] brought up the idea to include visual characteristics by
“quasi-rendering” HTML source code and using the results to detect relational
knowledge on the web. They presented a wrapper learning system, which employs
multiple document representations. For the entailed table-based extraction, they
define the table detection problem as a binary classification task for the <table>
tag elements. Two classes of features are extracted, first those originating from
the HTML representation of the table and second model based features that are
extracted from an abstract rendering of the table in order to represent the two
dimensional geometric structure of tables. This abstract rendering is achieved
by a geometric table model inferred from processes considering how a HTML
may be presented in the browser. On a labeled test sample of 339 tables, an
F-measure of 95.9% is reported.

Another approach to identify and extract information from tables on the web,
relying on visual features is taken by Gatterbauer et al. [9]. With the goal of
domain independent information extraction from web tables they propose per-
forming table extraction and interpretation on a variant of the CSS2 visual box
model as rendered by a web browser, rather than on the source code tree struc-
ture (however, the actual style sheet information is not used). In contrast to all
other literature considered, Gatterbauer et al. [9] do not use HTML <table> tag
to identify the location of tables, arguing that tables as defined by representing
relations reflected by certain visual properties and horizontal and vertical align-
ment of data in a grid structure become visible after a web page is rendered
and are not necessarily defined by the corresponding HTML tag. For the task of
table extraction on a data set of 493 web tables a recall 81% of and a precision
of 68% are reported.

In a recent work, Kim and Hwang proposed a method for table detec-
tion in Web pages, which also exploits visual features derived from the image

190 B. Bühler and H. Paulheim

representation of the Web page [14]. The authors report an F1 score of 0.71 and
0.78 on two different test cases.

Although those approaches consider visual features of web tables for the
detection of genuine tables, they both rely on rather coarse visual representations
and do not use the actual image of the website. This implies that important
signals that could be used for the detection (e.g., styling information such as
lines or background colors and images, which are not defined in the DOM tree,
but in an exterior CSS file) are, so far, not used by any approach. Hence, the
approach pursued in this paper is the first approach to exploit the full visual
appearance of a table, as it works on the rendered image as it would be presented
to a human visitor of a web page.

Fig. 2. Approach visualized. The upper part shows the purely visual approach. The
dashed line and the lower part illustrate the joint approaches.

3 Approach

The key idea of our approach is that identifying genuine tables on web pages
is rather straight forward for human beings, due to the fact that they have
certain visual properties that characterize them and distinguish them from other
website elements. Hence, it should be possible to also train a machine learning
classifier to directly distinguish genuine and layout tables from the image of
the rendered HTML table code. However, to obtain table images, only the part
defined as a table by the <table> tags is rendered. When doing so, the already
mentioned style information like CSS and style tags can be used to obtain the
exact representation of the table on the website. Additionally, more complex
tables structures, as nested tables, which are often filtered out during the filtering
step, can be included in the analysis. The only filter rule applied before rendering
the pictures is to eliminate obviously non-genuine tables with less than two rows
or columns.

Web Table Classification Based on Visual Features 191

In the purely visual approach, the binary classification task is solved using
solely a CNN classifier, including a fully connected classification layer. Further-
more, we propose two joint strategies for combining visual and HTML features:
(1) injecting HTML as additional features in the fully connected classification
layer of the CNN classifier, (2) and combining the features extracted by the CNN
and the HTML features in a downstream classifier (here, we use a Random For-
est and a MLP classifier). For the latter case, we experiment with extracting
only the highest layer features, as well as features from all layers of the CNNs.

Additionally, CNNs are used to extract visual features from the web table
images which are then used in a joint approach, using the original DWTC Ran-
dom Forest classifier [7] combining HTML features and visual features.

Figure 2 shows the overall approach. The images are rendered in color employ-
ing the open source wkhtmltoimage package3. The rendered images then fed into
a convolutional neural network for image classification, leading to a binary clas-
sification (genuine or layout).

3.1 Convolutional Neural Nets for Image Classification and Visual
Feature Extraction

One of the most commonly used learning algorithms for image classification
are Convolutional Neural Networks (CNNs). CNNs are hierarchical feed forward
networks, implementing several convolution stages, which are often a combina-
tion of convolution layers, non-linear transformation and pooling layers [12,15].
Convolution operations allow the network to extract relevant features from local
correlated data points [13]. By the stacking of multiple of these feature extrac-
tion stages, more abstract representations of the image data are learned sub-
sequently [27]. When used for classification, the convolution and pooling layers
are connected to a classification module consisting of one or several dense layers,
emitting classification predictions. Here, the convolutional and pooling layers
can bee seen as automatic feature extractors, which create the features used by
the downstream classifier.

Another way to leverage CNNs’ ability to automatically learn representations
of visual characteristics in images is to use it as a standalone feature extractor.
After the weights have been trained on a certain image classification task, the
fully connected layers of the network are removed. Thus, instead of a class pre-
diction, the CNN outputs feature vectors that can be used in other downstream
tasks. The use of such extracted visual feature vectors allows the combination
with HTML-based features.

Since CNNs subsequently create higher level features, we inspected two dif-
ferent approaches: using only the most abstract representation (the approach
depicted in Fig. 2 as top) and using features from all levels of abstractions (the
approach depicted in Fig. 2 as all).

3 https://github.com/wkhtmltopdf/wkhtmltopdf.

https://github.com/wkhtmltopdf/wkhtmltopdf

192 B. Bühler and H. Paulheim

3.2 Transfer Learning with VGG16 and ResNet50

While in classic machine learning, a model for a given classification task is learned
from scratch, using labeled examples for that task. In contrast, transfer learning
refers to re-using a machine learning model trained for a different task, and
adapting it for the task at hand [20]. In our case, we use re-use generic models
for image classification and apply them to the task of table classification.

In our approach, we reuse pre-trained CNNs as a starting point. For adapt-
ing (i.e., transferring) them to the classification task at hand, we use new input
data from our task. This can be accomplished either by freezing the pre-trained
weights in the convolution part of the network and allowing only the dense clas-
sification layer to adjust weights (we refer to that approach as frozen), or by
allowing all pre-trained weights in the network to adjust to the new task during
training (we refer to that approach as adapt). Transfer learning increases effi-
ciency compared to training the weights from scratch and has shown to produce
good results. Some well established CNN architectures for the task of image
classification are VGG16 and ResNet50 [13].

VGG16 is a deep convolutional neural network, built by stacking several
convolutional layers while using small filters of size 3× 3 [22]. The architecture
consists of five convolutional blocks consisting of two to three convolution layers
employing ReLu activation functions, followed by a max pooling layer. The out-
put of the convolutions is flattened and send through two dense layers, followed
by a classification layer on top. In total it entails 16 trainable layers, of which
are 13 convolution layers and three dense layers. In this case of a binary classi-
fication task, a classification layer is replaced by a dense layer with one output
node and sigmoid activation function is used. When used as feature extractor,
global average pooling of the output of convolutional blocks is applied to obtain
the feature vector.

ResNet50, short for Residual Network, is characterized by implementing a
residual learning framework, where layers learn residual functions with regard
to input layers, in order to facilitate training of very deep networks [11]. Besides
implementing identity based skip connections to enable cross layer connectivity,
it also incorporates batch normalization as regulating units. The model consists
of a total of 50 layers. A first convolution block is followed by four stages of
stacked convolution and identity blocks. Similar to the approach for VGG16, we
refined the classification layer according to the binary classification task. When
the model is used for feature extraction the output after applying global average
pooling is used.

For both VGG16 and ResNet50, we use pre-trained models which were built
on the ImageNet challenge dataset, an image classification training dataset of
more than 1 million images and 1,000 classes.

4 Experiments

While most approaches discussed in Sect. 2 use datasets which are not publicly
available, the only previous work using an open dataset is the work using the

Web Table Classification Based on Visual Features 193

Table 1. Gold standard dataset

Layout Genuine Total

Training 3938 4454 8392

Validation 1018 1080 2098

Test 1267 1355 2622

Total 6223 6889 13112

Dresden Web Table Corpus (DWTC) [7]. However, that corpus does not contain
the original CSS files and images from the Web pages; hence, a rendering of the
Web page as it would look in a browser was not possible based on the dataset.
Therefore, we manually annotated a new ground truth dataset.

4.1 Dataset

To collect the data used in this paper, the HTML code of roughly 1.25 million
websites was sampled, by accessing 125 randomly chosen WARC files of the
March 2020 common crawl4. From each of these websites one table, identified by
the HTML <table> tag, was randomly selected if it contained one. Subsequently,
a simple filter was applied, similar to Eberius et al. [7]. This filter eliminated all
tables that had less than two columns or two rows. This simple filter rule alone
led to an exclusion of about 65% the sampled tables. In addition, the language
was restricted to English, using the langdetect5 library in Python to ensure the
interpretability of images during manual ground truthing.

Afterwards, the collected web tables present in the HTML were rendered
to image files. To that end, linked images and CSS files were retrieved based
on their URL (since they are often not contained in the Common Crawl). To
handle cases where the style files were no longer accessible, we tried using the
Wayback machine6 to download historic snapshots instead, however, this lead to
no improvements. Furthermore, we discarded tables that could not be rendered
(e.g., due to invalid HTML code). However, the share of discarded tables in that
step is only about .01%.

To label the tables consistently, a precise definition of layout and genuine
tables must be established. The tables labeled as genuine tables largely corre-
spond to those defined as relational tables by Crestan and Pantel [4]. These
include vertical and horizontal lists, matrix and attribute/value tables and enu-
merations. Two examplary genuine tables can be seen in Figs. 1a and 1c. Only
forms such as log in elements or address forms were not defined as genuine
tables in this data generation. Although they are to be interpreted as relational
tables according to Crestan and Pantel [4], they do not contain knowledge to be
extracted but, as is the inherent characteristic of a form, blanks. Consequently,
4 https://commoncrawl.org/2020/04/.
5 https://github.com/shuyo/language-detection.
6 https://archive.org/web/.

https://commoncrawl.org/2020/04/
https://github.com/shuyo/language-detection
https://archive.org/web/

194 B. Bühler and H. Paulheim

they do not serve the purpose of information extraction. Tables classified as lay-
out tables are, for example, formatting tables used to visually arrange contents,
as in Fig. 1b, or navigational tables used to navigate the website as in Fig. 1d.

The resulting gold standard dataset used to develop the classification models
presented in this paper contains 13,112 tables, of which 6,889 were labeled as
genuine and 6,223 as layout tables, as shown in Table 1. For these, the original
HTML code as well as an image version is present. For model development the
data is split into a training set of 80% and a test set of 20%, containing 2,622
tables. A 20% validation set was again split off from the resulting training set,
resulting in a validation set of 2,098 tables and a training set of 8,392 tables.7

4.2 Experimental Setup

In order to evaluate our approach, we compare different settings to the state of
the art classifier used to build the Dresden Web Table Corpus.

Baselines. As a baseline for this work, we use the approach presented by
Eberius et al. [7] using a combination of content and layout features extracted
from tables’ HTML code. The best performing model was implemented in the
extraction of the Dresden Web Table Corpus (DWTC), referenced earlier. The
DWTC-Extractor8, containing the full code used for the extraction is available
on GitHub. Single elements of this extractor, namely the creation of HTML fea-
tures and the trained WEKA Random Forest classifier for the classification of
genuine and layout tables, can be accessed to apply the approach to the newly
generated Gold Standard test data. On their own data, Eberius et al. [7] reported
a weighted F1 score of 9.52%. In addition to applying the model trained on the
original dataset, we also retrained the Random Forest classifier on our training
dataset.

The DWTC extractor additionally filters nested tables before generating the
features. Therefore, for the nested tables contained in our Gold Standard, a
default layout classification was applied. Regarding the labels of these nested
tables reveals that the vast majority indeed are layout tables.

The hyperparameters of the default DWTC classifier are the standard set-
tings of the Weka Random Forest classifier, i.e., growing 10 trees and no other
restrictions for the Random Forest. For the retrained Random Forest, trained
with scikit-learn9 in Python, randomized grid search was employed for hyper-
parameter tuning, using the described validation set. The best resulting hyperpa-
rameter setting was growing 1,600 trees, with a maximal depth of 80, a minimum
of 4 samples per leaf, and a minimal number of samples per split of 2.

7 The code and data used in this paper are available at https://github.com/
babettebue/web-table-classification.

8 https://github.com/JulianEberius/dwtc-extractor/.
9 https://scikit-learn.org/stable/.

https://github.com/babettebue/web-table-classification
https://github.com/babettebue/web-table-classification
https://github.com/JulianEberius/dwtc-extractor/
https://scikit-learn.org/stable/

Web Table Classification Based on Visual Features 195

CNN Approaches. The CNN based approaches are implemented using Tensor-
flow10 in Python. The built in functional models of VGG16 and ResNet50, with
an option to load weights pre-trained on the ImageNet dataset, were used and
adapted. In order to adapt these networks, which are designed for classification
on the ImageNet dataset containing 10 image classes, to the binary classification
problem. The classification layer was replaced by a dense layer with one output
node and a sigmoid activation function.

Before feeding the images into the CNN, they have to be resized and normal-
ized. The latter is realized by implementing a rescaling layer into the network,
rescaling all images to 224× 224. First, the models were trained only employing
the weights pretrained on the ImageNet dataset. This was achieved by setting
all layers but the last dense layer used for classification to non-trainable. This
setting is referred to as frozen. In a second configuration, the ImageNet weights
were used as initialization weights, which could be fine tuned during the training
for our binary classification task. This setting is referred to as adapt.

The models were trained for 100 epochs, using the Adam optimizer, binary
crossentropy loss and the standard learning rate of .001 for the models with
frozen ImageNet weights. The models allowed to fine-tune weights were trained
with a smaller learning rate of .0001. A callback with a patience of 20, for
frozen weight models and 50 for fine-tuned models, in case of steady validation
accuracy was employed to prevent over-fitting. Training of VGG16 frozen was
stopped after 36 epochs, training of VGG16 adapt after 58 epochs. The frozen
ResNet50 was trained for 36 epochs and the fine-tuned ResNet allowed to adapt
weights for 69 epochs.

Joint Approaches. For the combined architectures, we used both the extracted
HTML features from the feature-based classification approach, as well as the
latent features extracted by the CNNs. To extract features generated by the
convolutional blocks of the networks, VGG16 and ResNet50 architectures are
used without the top dense layers. For the VGG16 a GlobalAveragePooling layer
is stacked on top of the convolutional network in order to obtain a one dimen-
sional feature vector with reduced dimensionality [27]. The VGG16 outputs 512
visual features. The ResNet50 model already implements a GlobalAveragePool-
ing layer after the last convolution, which outputs feature vector of length 2,048.
For both architectures, models with the ImageNet weights, as well as the mod-
els fine-tuned for the binary classification problem at hand, are used for feature
extraction.

Additionally, for both models features of all levels of abstractions, referred to
as all, are extracted, GlobalAveragePooling is applied and followed by a simple
concatenation of the feature vectors. For VGG16 this results in a feature set
containing 1,472 visual features and for ResNet50 in a set of 3,903 features.

10 https://www.tensorflow.org/.

https://www.tensorflow.org/

196 B. Bühler and H. Paulheim

4.3 Results

The recall, precision, and F1 score both on the layout and genuine table class,
as well as the weighted average of those, are shown in Table 2.

We can observe that while the original DWTC classifier does not perform
optimally on the dataset at hand, retraining the classifier works a lot better.
The results of the retrained classifier slightly outperform the results reported in
the original paper, where a weighted average F1 score of .906 was reported [7].

Applying the frozen VGG16 and ResNet50 architectures without weight
adaption yields results below the baseline. On the other hand, allowing fine-
tuning of weights in the adapt setting, the results are in a similar range as the
retrained DWTC classifier, with ResNet50 even outperforming those results by
a small margin. The best joint approaches combining both the DWTC and the
CNN features again perform a little better than the purely visual and the DWTC
approach alone.

McNemar’s non parametric test [8] was conducted to compare the best per-
forming classifiers from each approach, as recommended by Dietterich et al. [6]
if evaluation is performed on a single test set. The results reveal that there is no
significant difference between the retrained DWTC classifier, the best perform-
ing CNN classifier. Hence, our conclusion is that both the visual approach and
the approach based on explicit feature engineering work equally well.

While the results are very different in terms of overall performance, they
reveal striking difference when looking at the mistakes they make. Figure 3 shows
a few typical mistakes. More complex tables like the one shown in (a) are often
misclassified by the DWTC approach, but handled correctly by the CNN-based
classifiers. On the other hand, (b) and (c) show two typical mistakes made by the
CNN-based classifiers: they tend to misclassify tables for layouting input forms
as genuine tables, and often do not recognize tables without lines as genuine
tables. This shows that vertical and horizontal lines are features which have a
very strong importance for the CNN-based classifiers.

Another interesting observation is that when using the CNN architectures
alone, the approaches based on adapting weights outperform those without, and
ResNet50 outperforms VGG16. On the other hand, in the joint approaches,
the trend is reversed: adapted approaches work worse, and the best results are
achieved with VGG16. One possible explanation is that when fine-tuning the
weights to the task of table classification, the features that are learned by the
CNN become more similar to the explicitly created ones, and therefore, the
information gain by combining the extracted features with the explicitly created
ones is smaller. Moreover, being a smaller model, VGG16 might have a tendency
to extract more coarse grained features which are less overlapping with the
HTML based features.

Web Table Classification Based on Visual Features 197

Table 2. Results with baselines, visual classification approaches (upper part), and
joint approaches based on feature injection, RandomForest (RF), and MLP classifiers
(lower part)

Approach Layout Genuine Weighted avg.

P R F1 P R F1 P R F1

DWTC original .894 .916 .889 .917 .865 .890 .891 .890 .890

DWTC retrained .934 .924 .929 .930 .939 .934 .932 .932 .932

VGG16 frozen .901 .824 .861 .848 .916 .880 .873 .871 .871

VGG16 adapt .915 .925 .920 .929 .920 .924 .922 .922 .922

ResNet50 frozen .914 .875 .894 .887 .923 .905 .900 .900 .900

ResNet50 adapt .937 .929 .930 .929 .942 .936 .933 .933 .933

Injection VGG16 frozen .892 .921 .906 .924 .895 .909 .908 .908 .908

Injection VGG16 adapt .878 .913 .895 .916 .881 .898 .897 .897 .897

Injection ResNet50 frozen .821 .853 .837 .857 .826 .841 .840 .839 .839

Injection ResNet50 adapt .854 .766 .807 .800 .877 .837 .826 .823 .823

RF VGG16 frozen (top) .945 .923 .933 .930 .949 .939 .936 .936 .936

RF VGG16 frozen (all) .943 .925 .934 .931 .949 .940 .937 .937 .937

RF VGG16 adapt (top) .938 .913 .925 .921 .943 .932 .929 .929 .929

RF VGG16 adapt (all) .931 .918 .925 .924 .937 .930 .928 .928 .928

RF ResNet50 frozen (top) .938 .922 .930 .928 .943 .937 .933 .933 .933

RF ResNet50 frozen (all) .937 .926 .937 .931 .942 .937 .934 .934 .934

RF ResNet50 adapt (top) .930 .916 .923 .923 .936 .929 .926 .926 .926

RF ResNet50 adapt (all) .927 .920 .923 .925 .932 .929 .926 .926 .926

MLP Joint VGG16 frozen (top) .911 .927 .919 .931 .915 .923 .921 .921 .921

MLP Joint VGG16 frozen (all) .922 .891 .906 .901 .929 .915 .911 .911 .911

MLP Joint VGG16 adapt (top) .875 .935 .904 .935 .875 .904 .906 .904 .904

MLP Joint VGG16 adapt (all) .907 .912 .909 .917 .912 .915 .912 .912 .912

MLP Joint ResNet50 frozen (top) .914 .900 .907 .908 .921 .914 .911 .911 .911

MLP Joint ResNet50 frozen (all) .910 .931 .920 .934 .914 .924 .922 .922 .922

MLP Joint ResNet50 adapt (top) .949 .509 .663 .680 .974 .801 .810 .749 .734

MLP Joint ResNet50 adapt (all) .918 .595 .722 .715 .951 .816 .813 .779 .771

(a) Nested table (b) Form (c) Table without lines

Fig. 3. Examples for misclassified tables

198 B. Bühler and H. Paulheim

5 Conclusion and Outlook

In this paper, we have introduced a visual classification approach for distinguish-
ing tables on the Web, in particular, genuine and layout tables. The results show
that the purely visual approach yields results which are of the same quality as
the current state of the art, which is based on extracting explicit features from
the HTML code. We conclude that purely visual approaches are a suitable alter-
native to the state of the art, since they are also more versatile, as they can
handle information defined in style sheets, dynamically built Web pages, etc.

An in-depth inspection of the results has revealed that the mistakes made
by the approach based on HTML features and the visual approaches are dif-
ferent. This raises the assumption that joint approaches could yield even bet-
ter results, however, our results so far did not show a significant improvement.
Moreover, using other pre-trained image models more tailored to the task, like
TableNet [19], might improve the results.

So far, we have only considered one task, i.e., the distinction of layout and
genuine tables. While the approach could be transferred to other tasks, such as
a finer-grained distinction of different table types [5,7], experimental results are
still outstanding.

Web table classification is not the only task in Web information extraction
where visual signals can be exploited. In the future, we plan to evaluate whether
visual approaches can also be used for detecting certain content elements on a
Web page which have a common visual appeal, such as addresses or opening
hours. Since such elements are often marked up with Microdata or Microformat
annotations, training data for such approaches could easily be sourced [18]. Here,
visual approaches could also help in building information extraction systems
which work on HTML data.

Another interesting field is the classification of entire Web pages. Since we
assume that news pages, e-commerce pages, discussion pages etc. can also be
identified based on certain visual signals, visual approaches could also be of
interest here. Current works is usually based on images on the Web page, but
not rendered images of HTML content [10].

Acknowledgements. We would like to thank Julius Gonsior and Maik Thiele at
TU Dresden for their assistance in accessing the DWTC dataset and classifier for the
experiments.

References

1. Cafarella, M.J., Wu, E.: Uncovering the relational web. In: 11th International
Workshop on the Web and Databases (2008)

2. Chen, H.H., Tsai, S.C., Tsai, J.H.: Mining tables from large scale HTML texts.
In: 18th Conference on Computational linguistics (COLING 2000), pp. 166–172
(2000)

3. Cohen, W.W., Hurst, M., Jensen, L.S.: A flexible learning system for wrapping
tables and lists in HTML documents. In: 11th International Conference on World
Wide Web, pp. 232–241 (2002)

Web Table Classification Based on Visual Features 199

4. Crestan, E., Pantel, P.: A fine-grained taxonomy of tables on the web. In: Inter-
national Conference on Information and Knowledge Management, pp. 1405–1408
(2010)

5. Crestan, E., Pantel, P.: Web-scale table census and classification. In: 4th ACM
International Conference on Web Search and Data Mining (WSDM), pp. 545–554
(2011)

6. Dietterich, T.G.: Approximate statistical tests for comparing supervised classifica-
tion learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)

7. Eberius, J., Braunschweig, K., Hentsch, M., Thiele, M., Ahmadov, A., Lehner, W.:
Building the dresden web table corpus: a classification approach. In: 2nd Interna-
tional Symposium on Big Data Computing (BDC), pp. 41–50 (2015)

8. Everitt, B.S.: The Analysis of Contingency Tables. Chapman and Hall, London
(1977). ISBN: 9781489929273

9. Gatterbauer, W., Bohunsky, P., Herzog, M., Krüpl, B., Pollak, B.: Towards domain-
independent information extraction from web tables. In: 16th International Con-
ference on World Wide Web, p. 71 (2007)

10. Hashemi, M.: Web page classification: a survey of perspectives, gaps, and future
directions. Multimedia Tools Appl. 79, 1–25 (2020)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
arXiv:1512.03385 [cs] (2015)

12. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-
stage architecture for object recognition? In: 12th International Conference on
Computer Vision, pp. 2146–2153 (2009)

13. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architec-
tures of deep convolutional neural networks. Artif. Intell. Rev 53(8), 5455–5516
(2020). https://doi.org/10.1007/s10462-020-09825-6

14. Kim, J., Hwang, H.: A rule-based method for table detection in website images.
IEEE Access 8, 81022–81033 (2020)

15. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. In: International Symposium on Circuits and Systems, pp. 253–256 (2010)

16. Lehmberg, O.: Web table integration and profiling for knowledge base augmenta-
tion. Dissertation, University of Mannheim, Mannheim (2019)

17. Lehmberg, O., Ritze, D., Ristoski, P., Meusel, R., Paulheim, H., Bizer, C.: The
Mannheim search join engine. J. Web Semant. 35, 159–166 (2015)

18. Meusel, R., Petrovski, P., Bizer, C.: The webdatacommons microdata, RDFa and
microformat dataset series. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796,
pp. 277–292. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-
9 18

19. Paliwal, S.S., Vishwanath, D., Rahul, R., Sharma, M., Vig, L.: Tablenet: deep
learning model for end-to-end table detection and tabular data extraction from
scanned document images. In: International Conference on Document Analysis
and Recognition (ICDAR), pp. 128–133 (2019)

20. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2009)

21. Penn, G., Hu, J., Luo, H., McDonald, R.: Flexible Web document analysis for deliv-
ery to narrow-bandwidth devices. In: 6th International Conference on Document
Analysis and Recognition, pp. 1074–1078 (2001)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556 [cs] (2015)

23. Son, J.W., Park, S.B.: Web table discrimination with composition of rich structural
and content information. Appl. Soft Comput. 13(1), 47–57 (2013)

http://arxiv.org/abs/1512.03385
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/978-3-319-11964-9_18
https://doi.org/10.1007/978-3-319-11964-9_18
http://arxiv.org/abs/1409.1556

200 B. Bühler and H. Paulheim

24. Wang, Y., Hu, J.: A machine learning based approach for table detection on the
web. In: 11th International Conference on World Wide Web, pp. 242–250 (2002)

25. Yakout, M., Ganjam, K., Chakrabarti, K., Chaudhuri, S.: InfoGather: entity aug-
mentation and attribute discovery by holistic matching with web tables. In: ACM
SIGMOD International Conference on Management of Data, pp. 97–108 (2012)

26. Yin, X., Tan, W., Liu, C.: FACTO: a fact lookup engine based on web tables. In:
20th International Conference on World wide web, pp. 507–516 (2011)

27. Zheng, L., Zhao, Y., Wang, S., Wang, J., Tian, Q.: Good Practice in CNN Feature
Transfer. arXiv:1604.00133 [cs] (2016)

http://arxiv.org/abs/1604.00133

Automated Essay Scoring
via Example-Based Learning

Yupin Yang and Jiang Zhong(B)

Chongqing University, Chongqing 400044, China
{yyp,zhongjiang}@cqu.edu.cn

Abstract. Automated essay scoring (AES) is the task of assigning
grades to essays. It can be applied for quality assessment as well as pric-
ing on User Generated Content. Previous works mainly consider using
the prompt information for scoring. However, some prompts are highly
abstract, making it hard to score the essay only based on the relevance
between the essay and the prompt. To solve the problem, we design an
auxiliary task, where a dynamic semantic matching block is introduced
to capture the hidden features with example-based learning. Besides,
we provide a hierarchical model that can extract semantic features at
both sentence-level and document-level. The weighted combination of
the scores is obtained from the features above to get holistic scoring.
Experimental results show that our model achieves higher Quadratic
Weighted Kappa (QWK) scores on five of the eight prompts compared
with previous methods on the ASAP dataset, which demonstrate the
effectiveness of our model.

Keywords: Automated essay scoring · Natural language processing ·
Example-based learning

1 Introduction

Automated essay scoring (AES) is the task of employing computer programs to
assign grades to essays based on their content, grammar, and structure. It has
become an important educational application of natural language processing
(NLP). For example, Educational Testing Service (ETS) uses AES systems to
evaluate the writing ability of students. Such systems can also be applied for
quality assessment as well as pricing on User Generated Content. Typically, AES
systems regard the task as a regression problem based on handcrafted features
(e.g., length-based features and lexical features) and most of them have achieved
good results [1,10,16]. However, such systems require feature engineering, which
costs lots of time and effort. Therefore, a large number of researchers focus on
neural networks that are capable of modeling complex patterns without human
assistance [3,6,11,14].

Previous works mainly focus on the text itself [6,13,14], ignoring to inves-
tigate the topic information of the essays with prompts. Prompts indicate the
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 201–208, 2021.
https://doi.org/10.1007/978-3-030-74296-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_16&domain=pdf
http://orcid.org/0000-0003-2530-3908
https://doi.org/10.1007/978-3-030-74296-6_16

202 Y. Yang and J. Zhong

requirements and topics for students’ writing. As is observed, essays off the
prompt always receive low scores while high score essays are relevant to the
prompt. Chen and Li [2] extracted the similarity of the essay with the topic
on document-level for scoring and achieved good performance. But only using
document-level features for scoring may lose some information in detail. To learn
how each part of the essay sticks to the prompt more accurately, Zhang and Lit-
man [17] proposed the Co-Attention Based Neural Network to model the sim-
ilarity of essays at sentence level. However, some prompts are highly abstract,
making it hard to score the essay only based on the similarity between the essay
and the prompt. Thus, we introduce the example-based learning as auxiliary
task to capture the hidden features.

Our main contributions are as follows:

– We design a dynamic semantic matching block to capture the hidden features
with example-based learning, which is an auxiliary task for AES.

– We provide a hierarchical model that can extract semantic features at both
sentence-level and document-level, which are useful for evaluating coherence
and relevance in the essays.

– Experimental results show that our model achieves higher Quadratic
Weighted Kappa (QWK) scores on five of the eight prompts compared with
previous methods on the ASAP dataset.

2 Related Work

Automated Essay Scoring (AES) systems have been deployed for assigning
grades to essays since decades ago. The first AES system created in 1996 is
Project Essay Grade which uses linguistic surface features [12]. Recent works
mainly use neural networks for automated essay scoring. Dong and Zhang [5]
employed a two-layer CNN model to learn sentence representations and essay
representations. Differently, Taghipour and Ng [14] used LSTM in their model
which effectively learned features for scoring. However, these works only focus
on the essay itself, despite the relatedness of the essay to the topic.

High score essays always keep to the prompt closely. Some researchers con-
sider the relevance of the essay to the given prompt for scoring since an essay
cannot get a high score if it is not relevant to the prompt. There are many ways
to compute the relevance of an essay to the prompt. Higgins et al. [8] extracted
sentence features based on semantic similarity measures and the discourse struc-
ture, to capture breakdowns in coherence. Chen et al. [2] proposed hierarchical
neural networks and used the similarity between the essay and topic as auxiliary
information for scoring. All of them take prompt relevance into account as it is
an important part of the guidelines. However, it is hard to do semantic matching
with the prompt because the prompt is composed of abstract and general sen-
tences. In our approach, we generate relevance features by performing semantic
matching with the high score essays. The relevance features are used as auxiliary
features for prediction.

Automated Essay Scoring via Example-Based Learning 203

3 Model

In this section, we describe the proposed hierarchical structured model named
AES-SE, which contains three parts: 1) coherence modeling block, 2) relevance
modeling block, 3) dynamic semantic matching block (Fig. 1).

Fig. 1. An overview of our model. There are three parts: coherence modeling block,
relevance modeling block and dynamic semantic matching block. All the extracted
features are concatenated and sent to a dense layer for the final score.

3.1 Coherence and Relevance Modeling

For semantic coherence within a document and the relevance to the prompt, we
apply the coherence modeling block and the relevance modeling block. It is not
enough only considering features within cliques [7,9]. Instead, we use the self-
attention mechanism to capture semantic changes within the whole document.

Sentence Representation. To capture lexical-semantic relations among
words, we use pre-trained BERT [4] to get the sentence representation Si.

Si = BERT (We) (1)

where We are the words of each sentence in the essay.

Coherence Modeling. To extract the coherence feature of the essay, we use
self-attention mechanism to compute the similarity between sentences:

score(Si, Sj) = ST
i WaSj (2)

204 Y. Yang and J. Zhong

where Si and Sj are sentences from the essay {S1, S2, S3, ..., Sn}, Wa is the
weight matrix to be learnt and the score function score(Si, Sj) tells how much
similar the two sentences are.

αij =
exp(score(Si, Sj))∑n
k=1 exp(score(Si, Sk))

(3)

where αij represents the attention weight between Si and other sentences.

Scoh
i =

n∑

j=1

αijSj (4)

Finally, we use weighted sum of sentences as the coherence Scoh
i .

Relevance Modeling. It is observed that essays with high score always stick
to the topic. To model the prompt relevance, we compute the similarity of essays
with the assigned prompt. This process is almost the same as coherence model-
ing, where we compute the similarity between sentences from the essay and its
prompt. The obtained relevance representation is Srel

i .

3.2 Example-Based Learning

There are some consistent features that high-scoring essays usually have. There-
fore, we design a dynamic semantic matching block to capture the hidden feature
from high score essays as auxiliary information for holistic scoring.

Example Selection. To select typical examples, we use the k-means algorithm.
We pick out full mark compositions, and use BERT to encode the sentences.
Then, we take the averaged sentence vector of each essay as the input of k-means.
Finally, we select essays that are closest to the cluster centers as examples.

Dynamic Semantic Matching. According to psychological researches, it is
hard for people to pay close attention to too many things at the same time
[15]. While understanding a text deeply, our focus may dynamically change to
different sentences. With the aim to focus on the significant sentences with the
consideration of learned information at each step, the dynamic semantic match-
ing block is designed. To get the document representation of the essay. We utilize
attention mechanism to integrate the sentences:

Ti = Vctanh(WcSi + b) (5)

γi =
exp(Ti)∑n

k=1 exp(Tk)
(6)

Automated Essay Scoring via Example-Based Learning 205

where γi is the attention weight. Vc, Wc, and b are parameters to be trained.
The document representation he is weighted sum of sentence vector S.

he =
n∑

i=1

γiSi (7)

The same is done on the example essay to get the document representation hs.
The inputs of the dynamic semantic matching block are sentence vectors from
input essay Te = {S1, S2, S3, ..., Sn} and the example essay {S

′
1, S

′
2, S

′
3, ..., S

′
m}.

For each step, an important sentence will be chosen for current input of an LSTM
using attention mechanism. The choosing function Fc(Te, ˆht−1, hs) is formulated
as follows:

Zi = V T
d tanh(WdSi + Ud

ˆht−1 + Mdhs) (8)

δi =
exp(Zi)∑n

k=1 exp(Zk)
(9)

ât =
n∑

i=1

δiSi (10)

where Vd, Wd, UdandMd are parameters to be trained. hs is the document repre-
sentation of the example essay and ˆht−1 is the last step of the LSTM as follows:

ĥt = LSTM(ât, ˆht−1) (11)

We can get the last output ĥe from the LSTM where we compare the essay with
the example. To compare the example to the essay, we can also get ĥs. Then, we
send them to multi-layer perceptron (MLP) to calculate the relation probability
R:

R = MLP (ĥe, ĥs, ĥe � ĥs, ĥe − ĥs) (12)

where � means element-wise product. To each of the example essays, we repeat
this process and get the averaged features Ĥ:

Ĥ =
1
q

q∑

i=1

Ri (13)

where q is the number of the example essays.

3.3 Scoring

After obtaining coherence features Scoh and relevance features Srel, for each
sentence, we concatenate the features together and send them to a BI-LSTM for
modeling the document. After that, all the hidden states are fed into a mean-
over-time layer. The function is defined as follows, where n denotes the num of
sentences in an essay and ht is the hidden state of the BI-LSTM at time t.

ht = BI-LSTM(ht−1, [Scoh
t ;Srel

t]) (14)

206 Y. Yang and J. Zhong

H =
1
n

n∑

t=1

ht (15)

Finally, we use the sigmoid function to compute the final score.

y = σ(Wy[H; Ĥ] + by) (16)

where Wy and by indicate the weight matrix and bias. H is the semantic repre-
sentation of the essay. Ĥ is the semantic matching feature.

As for loss function, we use mean squared error (MSE) [6]. MSE is used to
compute the average value of squared error between the predicted scores and
golden ones, as follows:

mse(y, y∗) =
1
N

N∑

i=1

(yi − y∗
i)

2 (17)

where y is the predicted score and y∗ is the true value.

4 Experiments

In this section, we introduce the dataset and evaluation metric we use and the
experimental results.

4.1 Dataset

We use the ASAP (Automated Student Assessment Prize) dataset1 as it has
been widely used to evaluate the performance of AES systems. There are 12976
essays written by students with 8 prompts of different genres. The students were
from Grade 7 to Grade 10 and 2 human graders scored the essays.

4.2 Evaluation Metric

Quadratic Weighted Kappa (QWK) is the official evaluation metric in the ASAP
competition, which measures the agreement between ratings assigned by humans
and ratings predicted by AES systems. As the ASAP dataset is used in this paper
for evaluation, we adapt QWK as our evaluation metric.

4.3 Experimental Results

In this section, we test the performance of AES-SE and the baselines on the
ASAP dataset. The results in Table 1 are the QWK scores on the eight prompts
from the ASAP dataset, where the best results are bold. The baselines include
RNN, GRU, LSTM, CNN, EASE, SKIPFLOW LSTM, and HISK+BOSWE+

1 https://www.kaggle.com/c/asap-aes/data.

https://www.kaggle.com/c/asap-aes/data

Automated Essay Scoring via Example-Based Learning 207

Table 1. Comparison with state-of-the-art methods on the ASAP dataset

Models Prompt1 Prompt2 Prompt3 Prompt4 Prompt5 Prompt6 Prompt7 Prompt8 Average

RNN 0.687 0.633 0.552 0.744 0.744 0.757 0.743 0.553 0.675

GRU 0.616 0.591 0.668 0.787 0.795 0.800 0.752 0.573 0.698

EASE(SVR) 0.781 0.621 0.630 0.749 0.782 0.771 0.727 0.534 0.699

EASE(BLRR) 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705

CNN 0.774 0.662 0.639 0.753 0.748 0.766 0.751 0.626 0.714

LSTM 0.780 0.697 0.683 0.787 0.795 0.767 0.758 0.651 0.740

SKIPFLOW

LSTM

0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.765

HISK+BOSWE

and ν-SVR

0.845 0.729 0.684 0.829 0.833 0.830 0.804 0.729 0.785

AES-SE 0.864 0.727 0.717 0.823 0.838 0.835 0.812 0.694 0.788

ν-SVR, which achieved state-of-the-art performance on the ASAP dataset. Com-
pared with HISK+BOSWE+ ν-SVR [3], AES-SE achieves higher QWK scores
on five of the eight prompts and the average QWK score of AES-SE is also higher.
As shown in Table 1, AES-SE achieves new state-of-the-art performance on five of
the eight prompts and the averaged QWK score. On average of the eight prompts,
our AES-SE achieves 0.788, which is 0.3% higher than HISK+BOSWE+ ν-SVR
[3].

5 Conclusion

In this paper, we conduct a hierarchical structure named AES-SE with an auxil-
iary task for automated essay scoring. We use BERT to encode sentences captur-
ing lexical-semantic relations among words. We simultaneously consider coher-
ence features and relevance features to evaluate cohesion and task achievement.
Moreover, with dynamic semantic matching block, the similarity of an essay with
high score essays is computed as auxiliary information for scoring. Finally, we
concatenate all the extracted features and compute the final score. Experimental
results show that our model outperforms the current state-of-the-art methods
with the improvement of the QWK score by 0.3%. In addition, we also achieve
a significant 11.7% improvement over feature engineering baselines. For future
work, we will explore using domain adaptation in our model.

Acknowledgment. This research was partially supported by the National
Key Research and Development Program of China (2017YFB1402400 and
2017YFB1402401), the Key Research Program of Chongqing Science and Technology
Bureau (cstc2020jscx-msxmX0149), the Key Research Program of Chongqing Science
and Technology Bureau (cstc2019jscx-mbdxX0012), and the Key Research Program of
Chongqing Science and Technology Bureau (cstc2019jscx-fxyd0142).

References

1. Attali, Y., Burstein, J.: Automated essay scoring with e-rater R© v.2. J. Technol.
Learn. Assess. 4(3) (2006)

208 Y. Yang and J. Zhong

2. Chen, M., Li, X.: Relevance-based automated essay scoring via hierarchical recur-
rent model. In: 2018 International Conference on Asian Language Processing
(IALP), pp. 378–383. IEEE (2018)

3. Cozma, M., Butnaru, A.M., Ionescu, R.T.: Automated essay scoring with string
kernels and word embeddings. In: ACL, no. 2, pp. 503–509 (2018). https://
aclanthology.info/papers/P18-2080/p18-2080

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers),
pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019).
https://doi.org/10.18653/v1/N19-1423, https://www.aclweb.org/anthology/N19-
1423

5. Dong, F., Zhang, Y.: Automatic features for essay scoring-an empirical study. In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pp. 1072–1077 (2016)

6. Dong, F., Zhang, Y., Yang, J.: Attention-based recurrent convolutional neural net-
work for automatic essay scoring. In: Proceedings of the 21st Conference on Com-
putational Natural Language Learning (CoNLL 2017), pp. 153–162 (2017)

7. Farag, Y., Yannakoudakis, H., Briscoe, T.: Neural automated essay scor-
ing and coherence modeling for adversarially crafted input. arXiv preprint
arXiv:1804.06898 (2018)

8. Higgins, D., Burstein, J., Marcu, D., Gentile, C.: Evaluating multiple aspects of
coherence in student essays. In: Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational
Linguistics: HLT-NAACL, vol. 2004, pp. 185–192 (2004)

9. Li, J., Hovy, E.: A model of coherence based on distributed sentence representation.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 2039–2048 (2014)

10. Liu, J., Xu, Y., Zhu, Y.: Automated essay scoring based on two-stage learning.
arXiv preprint arXiv:1901.07744 (2019)

11. Mesgar, M., Strube, M.: A neural local coherence model for text quality assessment.
In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 4328–4339 (2018)

12. Page, E.B.: The use of the computer in analyzing student essays. Int. Rev. Educ.
14, 210–225 (1968)

13. Süzen, N., Gorban, A.N., Levesley, J., Mirkes, E.M.: Automatic short answer grad-
ing and feedback using text mining methods. Procedia Comput. Sci. 169, 726–743
(2020)

14. Taghipour, K., Ng, H.T.: A neural approach to automated essay scoring. In: Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1882–1891 (2016)

15. Wang, J., Chen, H.C., Radach, R., Inhoff, A.: Reading Chinese Script: A Cognitive
Analysis. Psychology Press, London (1999)

16. Zesch, T., Wojatzki, M., Scholten-Akoun, D.: Task-independent features for auto-
mated essay grading. In: Proceedings of the Tenth Workshop on Innovative Use of
NLP for Building Educational Applications, pp. 224–232 (2015)

17. Zhang, H., Litman, D.: Co-attention based neural network for source-dependent
essay scoring. arXiv preprint arXiv:1908.01993 (2019)

https://aclanthology.info/papers/P18-2080/p18-2080
https://aclanthology.info/papers/P18-2080/p18-2080
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
http://arxiv.org/abs/1804.06898
http://arxiv.org/abs/1901.07744
http://arxiv.org/abs/1908.01993

Conversation and Recommendation:
Knowledge-Enhanced Personalized

Dialog System

Ming He1(B), Tong Shen1, and Ruihai Dong2

1 Beijing University of Technology, Beijing 100124, China
heming@bjut.edu.cn

2 University College Dublin, Dublin, Ireland
ruihai.dong@insight-centre.org

Abstract. Traditional recommender systems are usually single-shot
systems, lacking real-time dialog with customers. Using dialog as an
interactive method can more accurately capture user preferences and
enhance system transparency. However, building such a goal-oriented
dialog system suffered many challenges as the system itself needs to col-
laborate with various sub-tasks, such as collecting user needs through
interaction, recommending appropriate products to users. Most existing
work of dialog systems does not comprehensively consider this scenario
and the challenges caused. In this paper, we propose a novel memory net-
work framework for conversational recommendation, which harness dia-
log historical information to endows our model with adaptability in dif-
ferent dialog scenarios, and leverage the knowledge base and user profiles
to reweight candidates, to reduce the ambiguity during interactions and
improve the quality of conversational recommender systems. Through
the experiments on the personalized bAbI dialog dataset and restaurant
recommendation application, we demonstrate that the proposed method
can achieve state-of-the-art performance in a few classical tasks, such as
options display and information provision, etc.

Keywords: Recommender systems · Dialog systems · Memory
network · Knowledge base

1 Introduction

Recommender systems [8,30] integrate query and recommendation techniques
with dialog systems, which enable users to ask questions about the recommen-
dations and to provide feedback. Due to its potential in fields such as e-commerce
websites, the interest in conversational recommender systems has significantly
increased in the past few years. However, they also pose challenges to researchers
from different perspectives, Fig. 1 illustrates these challenges described below
with an example.

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 209–224, 2021.
https://doi.org/10.1007/978-3-030-74296-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_17

210 M. He et al.

Fig. 1. Illustration of a conversational recommender system for restaurant reservation.
(Color figure online)

First, current end-to-end models usually do not consider a situation in which
the dialogue scenario can be divided into interaction or recommendation at each
turn in conversation. For instance, as shown in Fig. 1, when a user requests a
restaurant reservation, after interacting with the user and according to the user’s
“Dietary” and “Favorite”, an Italian restaurant is recommended by our person-
alized model. This suggests, conversational recommendation usually includes
interaction turns (blue box in Fig. 1) and recommendation turns (green box in
Fig. 1). Interaction turns gather information from users and predict responses,
while recommendation turns apply to rank the candidates. Therefore, the sys-
tem is necessary to take the strategy correctly at each turn. In this way, it can
more precisely capture user preference and will help to improve recommendation
performance in the long run.

Second, the ambiguities in user requests are difficult to handle. For example,
when a user Daniel requests for “direction” to the restaurant, this word can
be interpreted into “parking” or “public transport” directions information in
the knowledge base. Instead of selecting one randomly, the system handles this
ambiguity based on the learned fact that driving is suitable for high priced
restaurants while public transportation is more suitable for a lower price.

The third major issue of current recommendation methods is usually lim-
ited to the performance due to the irrelevant information in conversation. As
an example, when a user Daniel sends a restaurant request to the system, the
recommendation model will identify his intentions from the recommendation
request that contains two keywords: “reservation” and “four people”. Also, when
Daniel queries some information about the restaurant, the “Restaurant” is also
a keyword of dialog history. However, if the model pays more attention to irrele-
vant information in conversation might lead to poor conversational performance.
Hence, it is necessary to apply a more effective way to extract keywords from
user utterances during the conversation.

Knowledge-Enhanced Personalized Dialog System 211

Considering the above challenges in the conversational recommendation and
inspired by the wide success of leverage knowledge base, in this paper, we propose
an innovative knowledge base (KB) enhanced model based on the end-to-end
memory network (MEMN2N) framework named KB-enhanced MEMN2N. First,
we employ a fully connected layer to learn the dialog state, which is able to help
take an appropriate dialog strategy at each turn given the current user query
and dialog history. Second, we capture user preferences over the knowledge base
to solve the problem of ambiguity in user requests. Third, to avoid unrelated
information extraction in dialog, we apply multi-head attention mechanism to
perform keywords extraction automatically, which can provide more relevant
information.

Experiments on personalized bAbI dialog dataset verified the effectiveness of
our approach. In particular, our model shows significantly better performance
compared with baselines for making restaurant recommendations and handling
ambiguity in user requests by leveraging the knowledge base.

The key contributions of this paper are summarized as the following:

– To help improve recommendation accuracy, we consider the cases where the
interaction turns and the recommendation turns in conversation for taking
strategy correctly, we also propose a method to calculate user preference
scores for recommendation ranking based on the knowledge base.

– We design an information inference method to handle ambiguities in user
requests by modeling user preferences over the knowledge base. Unlike pre-
vious studies, this method takes advantage of both user profile and item
attributes, which can better capture user preferences.

– We apply multi-head attention mechanism to conduct efficient keywords
extraction from user queries, and the learned query representations can alle-
viate the irrelevant information in user utterances and dialog history.

– Based on the personalized bAbI dialog dataset, we have conducted extensive
experiments to evaluate the effectiveness of our framework. The results reveal
that our approaches significantly outperformed the baseline methods on two
commendation tasks including option display and information provision.

2 Related Work

In the past few years, there is a trend to develop fully data-driven dialog systems
by using deep neural networks, which directly map user input to agent output
[7]. According to the purpose, the dialog system is expected to solve these kinds
of problems: (1) question answering [7] and (2) task completion [14] and (3)
social chat [2,12], and the first two categories can be framed as task-oriented
system [25].

2.1 Task-Oriented System

Most of the existing works adopt the pipeline or end-to-end method. The typical
structure of a pipeline dialog system contains natural language understanding

212 M. He et al.

(NLU), dialog state tracker (DST), dialog policy learning (DPL), and natural
language generation (NLG) four parts [18]. [3] proposes a conversational product
search model based on negative user feedback. [11] proposes a new conversational
recommender system framework that consists of three stages to better converse
with users. But these pipeline models usually require some fixed slots and a
rather complicated processing pipeline of many stages. [31] first presents an
end-to-end reinforcement learning model to optimize the system actions more
robustly, but the user can only do the binary answer of yes/no. [10] introduces an
open dataset and applies memory network to the field of dialog systems, which
shows that an end-to-end dialog system can reach a promising performance, and
there are many subsequent dialog systems based on memory networks [6,15,21,
21]. The major difference between these methods and ours is that KB-enhanced
MEMN2N focuses on the personalization of a goal-oriented conversation and
models user preferences over knowledge base by leveraging both user profile and
item attributes.

2.2 Personalization in Dialog

Research on personalization in the field of dialog systems has not been short.
Considerable works have been done on chatbot [19,23,26,27] and many other
task-oriented dialog systems, such as personal assistant systems [20,28,29], they
both achieve remarkable performance on personalization. [1] proposes a multi-
task learning method for integrating user characteristics into the conversation
model through user-related data, which reflects the problem of too much lack
of personalized conversation data in the current research. [10] presents a new
dataset of goal-oriented dialogs and modified the architecture of the memory
network, which makes task-oriented dialog systems that can be explored in terms
of personalization. [16] modifies the memory network architecture and adds mul-
tiple modules to better mine the personalized information and combine it with
the knowledge base. One of the major factors affecting personalized end-to-end
models is the lack of consideration of dialog state when predicting response. To
the best of our knowledge, this paper is the first end-to-end model that decides
which dialog strategy is appropriate to take given the current dialog state in con-
versational recommendation.

3 Preliminaries

In this section, we give some preliminary knowledge about leveraging structural
information in a knowledge base to improve the quality of conversational recom-
mendation.

The knowledge base provides the details of the items. As shown in Table 1,
each row denotes an item and each column denotes one of their correspond-
ing attributes. However, a knowledge base typically only available in a closed
domain, and the relationships among the items suffer from sparsity (i.e., limited
relationships among items). Therefore, it’s difficult to learn a low-dimensional

Knowledge-Enhanced Personalized Dialog System 213

Table 1. Example of knowledge base facts.

Restaurant Price Location Speciality Phone

Restaurant1 Cheap Madrid Pizza Phone No1

Restaurant2 Moderate Madrid Pasta Phone No2

Restaurant3 Expensive Madrid Pie Phone No3

.

representation vector for each item and relation by representation learning
[13,24]. To address this issue, existing methods often store the knowledge base
triple (i.e., subject − relation − object) as a word sequence in the memory. How-
ever, since the information is far less structured, it is harder to retrieve relation-
ships directly from word sequences than knowledge base triples. For example, it
is not easy for memory networks to learn the relation between McDonald and
Cheeseburger directly with a word sequence “McDonald speciality Cheese-
burger”. To effectively integrate recommendation with the knowledge base, we
take inspiration from the work of [5,9,17], which found that key-value struc-
tural information can effectively utilize external knowledge. In KB-enhanced
MEMN2N, we only retain the item and value of a knowledge base triple and
combine them into a key-value pair. Then, we can switch the n attributes of an
item into {(kj , vj

1), . . . , (k
j , vj

n)}, where all the kj denote the same item and each
vj

i denotes one of the attributes.

Fig. 2. The framework of KB-enhanced MEMN2N.

214 M. He et al.

4 Methodology

Figure 2 illustrates the framework of the proposed model. Our model is built
upon split memory network, and we develop two key components: User Pref-
erence Scores Method and Information Inference Method, which will be
detailed the process in the following subsections.

4.1 Utterance and Profile Encoder

At any given time step t, the model takes the dialog history X = {x1, . . . , xt−1}
and the n attributes of user profile A = {a1, . . . , an} and the current step
user query xt as input. Each utterance or user profile attribute can be seen as
a sequence of words (w1, w2, ..., wT). We map each word to its d-dimensional
vector representation (initialized randomly and trained with back-propagation)
and then we employ a transformer encoder [22] to model the dependencies of
words in a sequence. Next, the words embedding are summed to get the sentence
representation. Later, we will use this encoder to encode item attributes and the
candidates.

4.2 Split Memory Network

Memory Network [4] can store historical dialogs and short-term context to pre-
dict the reasonable response by writing and then iteratively reading from a
memory component. We extend the work from Joshi et al. [10] to divide the
memory into two halves to record dialog history and user profile respectively.
For a given current query q, we utilize attention mechanism to capture the rel-
ative importance among utterances in dialog history m:

pi = Softmax
(
qT mi

)
(1)

Then, we use the weighted sum of the utterances in dialog history as the dialog
summarization

mh =
∑

i

pimi (2)

for the current query. Similarly, we calculate user profile attributes summariza-
tion mp for the current query q. Next, the outputs from both memories mh

and mp and the original query q are element-wise summed to get the updated
query u. In practice, the memory can be iteratively reread to update query with
a fixed number of iterations N (termed N hops).

4.3 Conversation or Recommendation?

If the system can take favorable strategy in corresponding dialog scenario, such as
recommendation or interaction, it can reduce the candidate space greatly. Based
on this assumption, we harness the dialog state to generate the probability of

Knowledge-Enhanced Personalized Dialog System 215

subsequent actions by applying a fully connected layer to learn the query q and
dialog summarization mh followed by a Softmax layer:

[θi; θr] = Softmax(W θ [q;mh] + bθ) (3)

where the concatenation of current query and the dialog summarization are
interpreted as the dialog state. Then, θi denotes the probability of interaction,
and θr denotes the probability of recommendations. We use θi and θr to weight
interaction candidates and recommendation candidates respectively later.

4.4 User Preference Scores Method

In this subsection, we calculate user preference scores for recommendation candi-
dates based on user profile and item knowledge base. As mentioned in Sect. 3, we
integrate recommendation with the knowledge base by switching the n attributes
of an item into a set of attributes {vj

1, . . . , v
j
n} and letting kj ∈ R

1×d denotes
the item. And then, we get the vector representations of the item and each of
its attributes via the utterance encoder. To model the user preference over the
items, we take a sum of the inner product of user profile mp and each attribute
i of the item j followed by a Relu activation as the match scores:

oj
v = Relu

(
n∑

i

mT
p vj

i

)

(4)

Assume that there are totally J items in the knowledge base facts, we can obtain
a set of match scores {o1

v, · · · ,oJ
v }. Next, we use the scores to calculate the

probabilities {p1
v, · · · ,pJ

v } of the items via a Softmax layer. Then, the user
preference over the items can be aggregated by the probabilities as follows:

op =
J∑

j

pj
vk

j (5)

Subsequently, we get the candidates (all bot utterances in the dataset) vector
representation r ∈ R

w×d via the utterance encoder, where w is the number of the
candidates. Note that the candidates that mention at least one item are used as
recommendation candidates, and the others are used as interaction candidates.
Thus, all candidates can be divided into interaction set ri and recommenda-
tion set rr. To obtain the two different sets, we create two duplicates for each
candidate, and pad the unrelated candidates with zero according to different
scenarios.

For recommendation, we combine the user profile mp and the preference op

to model the comprehensive user preference by calculating the inner product
between the user preference and the recommendation set followed by a Relu
activation:

sr = Relu
(
(mp + op)�rr

)
(6)

216 M. He et al.

And then, we consider the dialog historical information and user profile for bot
utterance prediction (i.e., interaction). The result can be calculated by taking
the inner product between the updated query u and interaction set ri:

si = u�ri (7)

In this way, si can pay attention to specific utterance and sr captures better
user preference. Next, the two parameters θi and θr can learn to implicitly track
dialog state (never given explicitly) and control the cooperation of the above
two scores.

Finally, the predicted response distribution is calculated as:

r̂ = Softmax (si ∗ θi + sr ∗ θr) (8)

4.5 Information Inference Method

As we mentioned in Sect. 1, there may have more than one attributes are avail-
able when the users ask for specific information of an item. In this subsection,
we investigate how to solve the ambiguity in the user requests. Since the user
preference have decisive influence on the prediction, the user profile is applied
to model the user preference on totally l different attributes as:

vp = Relu(mpP p) (9)

where P p ∈ R
d×l is a parameter matrix.

It differs from Luo et al. [16] that does only use user preference, our method
considers both user preference and the attributes of the item. Since the selected
item is a choice made by the user during the dialog, we obtain tendency weights
of each attribute by learning the dialog history:

vh = Relu(mhP h) (10)

where Ph ∈ R
d×l is a parameter matrix. Subsequently, we model a comprehen-

sive preference by combining vp and vh. To pick out the relevant attribute for
current query, we estimate the relevance between the attribute (phone, parking
information, etc.) arel ∈ R

l×d and query as:

αr = Softmax(q�arel) (11)

Therefore, we can intelligently select the most relevant attribute of the current
query and obtain the comprehensive preference over the attributes by a dot
product as:

v = αr · (vp + vm) (12)

As a result, v learns the user preference and the influence of the selected item.
Next, we use these preference values as the bias term for the candidates. To
establish the connection between the attributes and their corresponding values,
we set up a feedback matrix to record the attributes that appear in each can-
didate. The matrix λ ∈ R

w×l is constructed as the following rules. If the w-th

Knowledge-Enhanced Personalized Dialog System 217

candidate mentions a value an, which belongs to attribute n, then the corre-
sponding element λw,n=1, otherwise the element is 0,

λ(w, n) =
{

1, if entity am,n is mentioned in candidate w
0, otherwise (13)

where the value 1 in matrix λ represents the corresponding bias term is valid.
Then we obtain the bias term as follows:

b = v�λ (14)

Finally, we can update the Eq. 8 to

r̂ = Softmax (si ∗ θi + sr ∗ θr + b) (15)

4.6 The Unified Model

With all the methods introduced previously, we can propose our final integrated
framework to promote the recommendation performance by generating the user
preference scores for the candidates and address the ambiguity by modeling user
preference on the item attributes. Intuitively, we train the model by maximizing
a standard cross-entropy loss between r̂ and the true label rtrue, and adopt
stochastic gradient descent (SGD) for model training. In each turn, the model
generates the response by selecting the candidate of the highest probability.

5 Experiments

In this section, we evaluate our proposed framework on the personalized bAbI
dialog dataset for three separate tasks in a restaurant reservation scenario. The
experimental results demonstrate evidence of significant improvement over many
competitive baselines.

5.1 Dataset and Evaluation Metrics

We evaluate our model on the personalized bAbI dialog dataset [10], which is a
multi-turn dialog corpus in a restaurant reservation scenario. This dataset builds
upon the bAbI dialog dataset [10], it provides the profile information (gender,
age, dietary preference, and favorite food item) of the current user before the first
turn of dialog. In terms of task definitions, (1) Displaying Options gives a user
request, and the knowledge base facts will be added to the dialog history. Then
the bot must use a reasonable heuristic method based on the user preferences to
sort the restaurants in the results. (2) Providing Information assumes that
the user has selected a restaurant, then the user will ask for various information,
the bot must learn to retrieve the correct knowledge base facts, tailored for the
user. (3) Full Dialog conducts a complete dialog to verify all the above tasks.

The dataset provides two variations for each task: a full dataset with around
6000 dialogs, and a small sample dataset with 1000 dialogs.

Next, we report the accuracy of each response for all models and tasks in
Table 2. This accuracy is the percentage of responses in which the correct can-
didate is chosen out of all possible ones.

218 M. He et al.

5.2 Baselines

To evaluate the performance of our whole framework, we compare our ultimate
model against the following baselines:

– Memory Network [4] is a model that takes query and conversation history
as input, and the history are appended to the memory, then the memory can
be iteratively reread to look for additional pertinent information to update
the query, finally outputs the prediction results.

– Split Memory Network [10] is a model that divides the memory of the
model into two halves: profile attributes and conversation history. Both the
two memories operate the same as the MEMN2N, and the outputs from both
memories are summed to get the final response.

– Personalized MEMN2N [16] is a model based on MEMN2N that learns
user personalities with distributed profile representation, and learns user pref-
erences among ambiguous candidates by building a connection between the
user profile and the knowledge base, which is a state-of-the-art method in this
domain.

5.3 Experimental Setup

For the proposed KB-enhanced MEMN2N, we set the learning rate to 0.001,
the regularization parameter to 0.001, the dimension of utterances to 20. Mod-
els are trained with a batch size of 32, gradients are clipped to avoid gradient
explosion with a threshold of 15. For the part of memory network, we set the
maximum context memory to 250 and fill it with zeros if the number of utter-
ances in memory is less than 250. The above settings are for fair consideration.
Other parameters in the baselines are set as default.

Table 2. Evaluation results of the models on the personalized bAbI dialog dataset.

Displaying Providing Full

Models options information dialog

Memory network 58.94(58.71) 57.17(57.17) 85.10(77.74)

Split memory network 68.60(68.56) 57.17(57.11) 87.28(78.10)

Personalized MEMN2N 71.43(71.52) 81.56(80.79) 95.33(88.07)

KB-enhanced MEMN2N 74.70(74.73) 90.27(89.63) 96.43(90.14)

5.4 Results

For the evaluation of response prediction, we compare each predicted response
with the true label and calculate the correct percentage. The results of all models
are presented in Table 2. In each cell, the first number represents the accuracy on
the full set, and the number in parentheses represents the accuracy on a smaller
set with 1000 dialogs. From which we have the following observations:

Knowledge-Enhanced Personalized Dialog System 219

Table 3. Example of conversation.

Time Locutor Dialog history Hop1 Hop2

1 User good morning 0 0

2 Bot greetings sir what may i assist you with
today

0.65 0.37

3 User can you book table for four in paris with
italian cuisine

0.29 0.02

4 Bot excellent sir i will start request now 0 0.51

5 User SILENCE 0 0

6* Bot may i know your prefered price range 0 0

6 Bot is this one
cool:resto rome expensive indian 8stars 2

0 0

7 User in expensive price range please 0 0

8 Bot excellent sir please give me moment 0.06 0.10

9 User SILENCE 0 0

10 Bot may i suggest this:
resto paris expensive italian 8stars 1

0 0

Time 6* is the correct answer and Time 6 is a wrong prediction.

– Since we consider the cases where the interaction turns and the recommen-
dation turns in conversation, the user preference scores method based on the
knowledge base can determine an appropriate timing to push recommenda-
tions according to the dialog state, and the user preference scores also can
contribute to the recommendation so that KB-enhanced MEMN2N performs
best on Displaying Options.

– As argued in [10], memory networks cannot effectively use knowledge base
facts in the dialog. Personalized MEMN2N and our model predict the user
preference according to the knowledge base, and achieve superior performance
on Providing Information. Since we further consider the attributes of the
restaurant mentioned in the dialog and balance the relative importance of
multiple attributes, our performance is even better.

– Full Dialog comprehensively tests all of the previous tasks. Since our model
has significantly improved on Displaying Options and Providing Infor-
mation, it also leads to better performance on Full Dialog.

5.5 Analysis of User Preference Method

We briefly report the performance of the user preference scores method in this
subsection. To show all the situations that may happen, we implement a vari-
ant of our model which divides all the candidates into two sets ri and rr as
mentioned in Sect. 4.4, and do not add the user preference scores. Besides, we
present a visualization of the predictions, and highlight the attention weights for
the memory at 10-th turn over two iterations (called hops). As shown in the right

220 M. He et al.

two columns of Table 3, the model attends primarily to the utterance from the
bot. It is possible that the model tends to focus on the existing bot utterance to
maintain a consistent speech style, but this will lead to a lack of attention to the
user intention. Furthermore, we can see that the bot makes a correct prediction
at 10-th turn since the model take the strategy to recommend a restaurant that
match the user preferences. But the bot mistakenly recommends a restaurant
for the user at 6-th turn, since the model pays more attention to the candidate
restaurants.

To validate our thoughts, we perform extensive ablation studies on User
Preference Scores Method (UPSM). Table 4 reports the accuracy on Displaying
Options and the contribution of recommendation turns to the overall accuracy.
We implement three simplified variants of the proposed method:

– UPSM-1, which does not divide the candidates.
– UPSM-2, which only apply si and divides the candidates.
– UPSM-3, which removes the weight coefficients θi and θr.

The results in Table 4 suggest that our approach indeed improves the recom-
mendation accuracy by capturing user preferences through the knowledge base
and narrowing down candidates for different dialog scenario, but putting too
much focus on recommendation may weaken the performance of the interaction
turns. So, this highlights the importance of our method that the weight coeffi-
cients θi and θr is needed to learn the dialog state and balance the importance
of the two scores. We attribute the superiority of UPSM to its two properties: 1)
UPSM learns dialog state to consider a strategy decision, which can determine
an appropriate timing to push recommendation; 2) UPSM leverages the knowl-
edge base to apply user preference scores, which better matches users preference
and attributes of restaurants. Therefore, we improve the overall quality of the
responses of conversational recommendation by promoting the accuracy of the
recommendation turns.

Table 4. Ablation study of user preference scores method.

Method Accuracy Rec. contribution

UPSM-1 71.20 0

UPSM-2 66.92 4.13

UPSM-3 74.18 2.98

5.6 Analysis of Ambiguity

In this subsection, we investigate the performance of our information inference
method. Specifically, we further consider the mutual influences among the restau-
rant attributes, which is different from the previous method [16] that only lever-
ages user profile.

Knowledge-Enhanced Personalized Dialog System 221

Fig. 3. Price range impact on restaurant directions information system flow diagram.

As we mentioned in Sect. 1, the probability of choosing “parking” or “public
transport” should be affected by the price range of the recommended restaurant.
The statistics of the predictions on this instance is depicted in Fig. 3, when the
user has selected a restaurant in the moderate or expensive price range, the bot
prefers to provide parking information. On the other hand, the bot tends to
return the public transport information if the restaurant is cheap. The above
results confirm our hypothesis that the existence of the inherent relationships
among the attributes and our model does learn the mutual influences among the
attributes base on the knowledge base.

Subsequently, we are curious about whether the weight coefficient αr is help-
ful to balance the importance of the attributes. Table 5 shows the prediction
accuracy of different attributes with and without the weight coefficient αr. And
these attributes can be grouped into two categories:

– Phone and social media both belong to contact information. The model can
predict the responses just by learning the relationship between user profile
and restaurant attributes. As expected, the problem is solved perfectly.

– Parking and public transport both belong to directions information. The
model should learn the dialog history to find the selected restaurant and gen-
erate tendency weights through certain attributes of the restaurant, which
requires a more complex process and the accuracy is relatively low.

Table 5. Accuracy of different types in different cases.

Type Without αr With αr

Phone 79.75% 100%

Social media 66.79% 100%

Parking 47.05% 54.83%

Public transport 32.62% 47.87%

222 M. He et al.

As mentioned in Sect. 4.5, we obtain the αr by learning queries and dialog
history. From Table 5, we can observe that the second case with αr achieves
higher accuracy on each attribute in two groups, while the accuracy on each
attribute drops significantly without αr. This result means that picking out the
attribute which is more related to the current query indeed helps to provide
a reasonable response. In addition, personalized MEMN2N performs best on
Providing Information in all baselines, since our method further considers
the attributes of the candidate restaurants and balance the importance of them,
our performance is even better.

5.7 Analysis of Information Extraction

To evaluate the contribution of multi-head attention in information extraction,
we focus on the probability vector over the memory within the memory network.
We use multi-head attention to process the query and the memory separately,
and the results are used as input of our model. Then we can obtain the prob-
ability over the memory with and without multi-head attention in the memory
network, respectively. As shown in Fig. 4, the probability enables us to visual-
ize the weighted importance of memory for queries of each turn. The darker the
color of the corresponding grid, the higher attention is paid to the memory. From
Fig. 4(a) and Fig. 4(b), we can find that they have roughly the same distribu-
tion of the attention scores across the entire memory. Moreover, the attention
distribution in Fig. 4(b) is more concentrated, while the attentions are spread
evenly over the memory in Fig. 4(a). The difference in the probability over the
memory also affects the final predicted results that the model with multi-head
attention shows better results in the prediction. This means that the more effi-
cient keywords are extracted from utterances, the more precise responses are
predicted.

Fig. 4. Attention distribution over the memory for each query.

6 Conclusion and Future Work

In this work, we propose a KB-enhanced conversational recommendation frame-
work based on the end-to-end memory network. Different from previous methods,

Knowledge-Enhanced Personalized Dialog System 223

our method can effectively take advantage of the knowledge base to extract the
structural information. We then consider a strategy decision approach and apply
user preference scores method into our framework in order to capture more pre-
cise user preferences and improve prediction accuracy. Through extensive experi-
ments on the personalize bAbI dialog dataset, we validate the effectiveness of our
framework. In the future, we will consider exploring the effectiveness of involving
knowledge graphs and logic rules into our framework.

Acknowledgment. This work is supported by the Beijing Natural Science Foun-
dation under grant 4192008, and the Science Foundation Ireland (SFI) under Grant
Number 12/RC/2289 P2.

References

1. Multi-Task Learning for Speaker-Role Adaptation in Neural Conversation Models.
In: IJCNLP, pp. 605–614 (2017)

2. Banchs, R., Li, H.: IRIS: a chat-oriented dialogue system based on the vector space
model. In: ACL. pp. 37–42 (2012)

3. Bi, K., Ai, Q., Zhang, Y., Bruce Croft, W.: Conversational product search based
on negative feedback. In: CIKM, pp. 359–368 (2019)

4. Bordes, A., Lan Boureau, Y., Weston, J.: Learning end-to-end goal-oriented dialog.
In: ICLR, pp. 1–15 (2017)

5. Eric, M., Krishnan, L., Charette, F., Manning, C.D.: Key-value retrieval networks
for task-oriented dialogue. In: SIGDIAL, pp. 37–49 (2017)

6. Gangi Reddy, R., Contractor, D., Raghu, D., Joshi, S.: Multi-level memory for task
oriented dialogs. In: ACL, pp. 3744–3754 (2019)

7. Gao, J., Galley, M., Li, L.: Neural approaches to conversational AI. In: ACL, pp.
2–7 (2018)

8. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y.D., Wang, M.: LightGCN: simplifying
and powering graph convolution network for recommendation. In: SIGIR, pp. 639–
648 (2020)

9. Huang, J., Zhao, W.X., Dou, H., Wen, J.R., Chang, E.Y.: Improving sequential
recommendation with knowledge-enhanced memory networks. In: SIGIR, pp. 505–
514 (2018)

10. Joshi, C.K., Mi, F., Faltings, B.: Personalization in goal-oriented dialog. In: NIPS,
pp. 2440–2448 (2017)

11. Lei, W., et al.: Estimation-action-reflection: towards deep interaction between con-
versational and recommender systems. In: WSDM, pp. 304–312 (2020)

12. Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., Jurafsky, D.: Deep reinforcement
learning for dialogue generation. In: EMNLP, pp. 1192–1202 (2016)

13. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

14. Lipton, Z., Li, X., Gao, J., Li, L., Ahmed, F., Deng, L.: BBQ-networks: efficient
exploration in deep reinforcement learning for task-oriented dialogue systems. In:
AAAI, pp. 5237–5244 (2018)

15. Liu, F., Perez, J.: Gated end-to-end memory networks. In: EACL, pp. 1–10 (2017)
16. Luo, L., Huang, W., Zeng, Q., Nie, Z., Sun, X.: Learning personalized end-to-end

goal-oriented dialog. In: AAAI, pp. 6794–6801 (2019)

224 M. He et al.

17. Miller, A.H., Fisch, A., Dodge, J., Karimi, A.H., Bordes, A., Weston, J.: Key-
value memory networks for directly reading documents. EMNLP 2016, 1400–1409
(2016)

18. Sarnobat, A., Kalola, D.: A survey on recommender systems. In: IJSRP, p. 9356
(2019)

19. Su, F.G., Hsu, A.R., Tuan, Y.L., Lee, H.Y.: Personalized dialogue response gener-
ation learned from monologues. In: INTERSPEECH, pp. 4160–4164 (2019)

20. Sun, Y., Yuan, N.J., Wang, Y., Xie, X., McDonald, K., Zhang, R.: Contextual
intent tracking for personal assistants. In: SIGKDD, pp. 273–282 (2016)

21. Tsumita, D., Takagi, T.: Dialogue based recommender system that flexibly mixes
utterances and recommendations. In: WI, pp. 51–58 (2019)

22. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
23. Wang, D., Jojic, N., Brockett, C., Nyberg, E.: Steering output style and topic in

neural response generation. In: EMNLP, pp. 2140–2150 (2017)
24. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating

on hyperplanes. In: AAAI, pp. 1112–1119 (2014)
25. Wen, T.H., et al.: A network-based end-to-end trainable task-oriented dialogue

system. In: EACL, pp. 438–449 (2017)
26. Wu, Y., Wei, F., Huang, S., Wang, Y., Li, Z., Zhou, M.: Response generation by

context-aware prototype editing. In: AAAI, pp. 7281–7288 (2019)
27. Xing, C., et al.: Topic aware neural response generation. In: AAAI, pp. 3351–3357

(2017)
28. Yang, L., et al.: A hybrid retrieval-generation neural conversation model. In: CIKM,

pp. 1341–1350 (2019)
29. Yang, L., et al.: Response ranking with deep matching networks and external

knowledge in information-seeking conversation systems. In: SIGIR, pp. 245–254
(2018)

30. Zhang, Y., Chen, X., Ai, Q., Yang, L., Bruce Croft, W.: Towards conversational
search and recommendation: system ask, user respond. In: CIKM, pp. 177–186
(2018)

31. Zhao, T., Eskenazi, M.: Towards end-to-end learning for dialog state tracking and
management using deep reinforcement learning. In: SIGDIAL, pp. 1–10 (2016)

MPIA: Multiple Preferences with Item
Attributes for Graph Convolutional

Collaborative Filtering

Ming He(B), Zekun Huang, and Han Wen

Faculty of Information Technology, Beijing University of Technology, Beijing, China
heming@bjut.edu.cn, {huangzekun,wenhan}@emails.bjut.edu.cn

Abstract. Personalized recommender systems are playing an increas-
ingly critical role in a variety of online applications. In recent years,
advancements in graph-structured deep neural networks have attracted
considerable interest and achieved state-of-the-art performance on rec-
ommender system benchmarks. However, existing graph-based recom-
mendation methods generally characterize each user with just one rep-
resentation vector, which is insufficient to convey diverse preferences of
users. To address this issue, in this paper, we approach the learning of
user representations from a different perspective, by modeling users based
on multiple representation embeddings. We propose a Multiple Prefer-
ences with Item Attributes for Graph Convolutional Collaborative Fil-
tering (MPIA) framework built upon the message-aggregation concept
of graph neural networks, which can generate preference-specific user
representations to better model the diverse preferences of users. By tak-
ing advantage of graph representation learning techniques, MPIA learns
preference-specific embeddings for users and attribute-specific embed-
dings for items. Moreover, we utilize shared embeddings for user and
item representations to obtain the commonalities in multiple networks.
Specifically, we construct a user-item bipartite graph for each preference,
and enrich the representation of each node with the topological struc-
ture and features of its neighbors. We also design a preference-attribute
fusion method to acquire more accurate item retrievals for every aspect
of interest. Extensive experiments conducted on three real-world datasets
demonstrate the effectiveness of the proposed MPIA framework.

Keywords: Recommender systems · Graph convolution networks ·
Graph neural network · Collaborative filtering

1 Introduction

With the exponential growth of information on the Internet, recommender
systems have been successfully applied in online service scenarios such as
e-commerce, advertising, and social media. Collaborative filtering (CF) is one of
the most commonly used techniques for building recommender systems, which
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 225–239, 2021.
https://doi.org/10.1007/978-3-030-74296-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_18

226 M. He et al.

models user preferences based on similarities in the interaction data of users or
items. Essentially, user-item interactions can be naturally modeled as bipartite
graph edges between users and items. Thereby, CF can be transformed into an
edge prediction problem in the graph.

Graph Convolutional Networks (GCNs) have achieved considerable success
and are widely utilized in graph learning tasks as they can extract abundant
information from graph data. Recently, the introduction of GCNs into CF for
modeling more complex user-item interactions has attracted the attention of
researchers. Motivated by the strength of GCNs, some recent efforts, includ-
ing Neural graph collaborative filtering (NGCF) [20], and Graph convolutional
matrix completion (GC-MC) [2], use GCNs to model higher-layer collaborative
signals by adapting GCNs to a user-item interactions graph, in which CF sig-
nals can be captured in high-hop neighbors for making recommendations. These
GCN-based CF models achieve state-of-the art performance. Despite their enor-
mous success, they suffer from two limitations:

First, most current models do not model multiple user preferences. In the
real world, users usually have diverse preferences for items, which correspond
to varied attributes of items. In online shopping scenarios, people are attribute-
sensitive when choosing which products to buy. For example, some users are
interested in a product with the attributes “appearance” and “performance”,
whereas others may prefer products that emphasize “price” and “performance”
. Failing to identify the diverse interests of users can limit the recommenda-
tion performance. As a consequence, it is crucial to design a novel method that
can extract user’s diverse interests, and capture fine-grained user preferences.
Despite the design of a new type of multi-component learner reported in Multi-
Component graph convolutional Collaborative Filtering (MCCF) [21], which can
capture fine-grained user preferences, and generates user representation by com-
bining multiple latent components of users, we argue that it ignores the common-
ality of the node shared by multiple networks and fails to distinguish multiple
features better.

Second, existing methods typically focus on the aggregation of a user’s mul-
tiple preferences to generate a final embedding of the user, with little attention
paid to the combination of these preferences and item attributes. Cen et al. [3]
applies a multi-preference extraction module to generate multiple user interests,
and then uses an aggregation module to obtain the overall top-N items. Wei
et al. [23] models user preferences hierarchy for multiple dimensions and arbitrary
depth. Although both approaches successfully build a multi-preference frame-
work, they ignore the combination of these preferences with item attributes.
Thus, they directly generate a unified user/item embedding for the final rec-
ommendation, which can lead to the inferior usage of this fine-grained informa-
tion. Therefore, it is necessary to fuse the diverse preferences of users with item
attributes for improving recommendations.

Considering the above mentioned factors and inspired by the wide success
associated with the leveraging of GCNs, in this paper, we propose a novel
model for generating personalized recommendation tasks, namely the Multiple

MPIA for Graph Convolutional Collaborative Filtering 227

Preferences with Item Attributes for Graph Convolutional Collaborative Fil-
tering (MPIA). With users/items represented as nodes and different types of
preferences represented as multiple types of edges in the graph model, MPIA
constructs a user-item bipartite graph for each kind of preference. To capture
the commonality of a user shared by all preferences and the characteristic of a
particular preference for each bipartite graph, we apply shared and preference-
specific embeddings to represent the multiple preferences of users. Specifically,
we leverage an attention-based method to extract user preferences by aggre-
gating the corresponding attributes (e.g., price) of items that have interacted.
Meanwhile, we boost the representation of an item with its user group. Then, we
design a key component in the MPIA, named preference-attribute fusion layer,
to fuse the user’s multiple preferences with item specific attributes, which can
better utilize the fine-grained preference/attribute information. To demonstrate
the effectiveness of our method, we validated the MPIA framework on three
publicly accessible datasets: Yelp, Amazon, and MovieLens. The experimental
results show that our model can yield promising performance.

The contributions of this paper are summarized as follows:

• We design a preference-level attention method for extracting the diverse inter-
ests of users, which better captures the commonality of the node shared by
multiple networks and the characteristic of a particular preference.

• We propose MPIA, a novel collaborative filtering framework based on graph
neural networks, which leverages a preference-attribute fusion layer to com-
bine multiple user preferences with specific item attributes.

• Based on three real-word datasets, we have conducted extensive experiments
to evaluate the effectiveness of our framework. The results reveal that our
method significantly outperforms baseline methods.

2 Related Work

2.1 Collaborative Filtering

Collaborative filtering (CF) [17] methods, which have proven to be successful
in real-world recommender systems, find similar users and items and make rec-
ommendations on this basis. Early approaches to CF considered the user–item
rating matrix and predicted ratings via user-based [9] or item-based [12,16] CF
methods. With the development of dimension reduction methods, latent factor
models such as matrix factorization have been widely adopted in recommender
systems. Koren et al. [10] and Rendle et al. [15] project the ID of a user (or an
item) into an embedding vector. Recently, deep learning and neural models have
further extended CF. Neural recommender models like Neural graph collabora-
tive filtering (NCF) [20] uses the same embedding component, while enhancing
the interaction modeling with neural networks. Lately researchers have realized
that historical items make different contributions to the shaping of personal
interests. To this end, attention mechanisms, such as Attentive collaborative fil-
tering (ACF) [4] and Neural attentive item similarity model for recommendation

228 M. He et al.

(NAIS) [6], have been introduced to capture varying contributions, whereby the
importance of each historical item is automatically learned. Our model differs
significantly from these works, because most of these approaches presume that
user-item interactions can be uniformly represented by the edges in the user-
item bipartite graph, which fail to recognize multiple preferences. In this paper,
we adopt an attention-based method that captures multiple preferences of users
and common characteristic of the node across all networks.

2.2 Graph Methods for Recommendation

Very recently, Graph Neural Networks(GNNs) have been proven to be capable
of learning on graph structure data [8]. In the task of recommender systems, the
user-item interaction contains item ratings by users, which is a typical graph
data. Therefore, GNNs have been proposed to solve recommendation problems
[2]. GC-MC [2] treats recommender systems as the view of link prediction on
graphs and proposes a graph auto-encoder framework based on message pass-
ing on the bipartite interaction graph. Ying et al. [24] develops and deploys a
large-scale deep recommendation engine at Pinterest for image recommendation.
Zheng et al. [25] considers the category and price of items as nodes in the graph,
builds a graph consisting of four types of nodes, and then applies GCN for the
price-aware recommendation. Monti et al. [14] adopts GNNs to extract graph
embeddings for users and items, and then combines them with recurrent neural
networks to perform a diffusion process. Different from existing works that do
not consider combinations of user preferences and item attributes, we propose a
preference-attribute fusion layer to address this gap.

3 Method

Figure 1 shows the architecture of our proposed method, in which the model
takes the user–item bipartite graph as input and predicts user ratings for items.
Our framework consists of two important components: 1) an aggregation layer
that learns the characteristics of each node from interaction data; 2) a preference-
attribute fusion layer that fuses the multiple preferences of users with attributes
of items. Finally, the MLP layers are applied to the learned embeddings to output
the rating r.

3.1 Preference-Aware User-Item Graphs

We aim to generate multi-preference representations to perform the recommen-
dation for the target user. To do so, we treat each preference individually. The
input interaction data is represented by an undirected graph G = (V,E,R), where
the nodes are represented by V, and consist of user nodes u ∈ U and item nodes
i ∈ I. The edges in E contain the different user-item interaction edges, which
correspond different preferences of users, where an edge eui = 1 indicates an
observed interaction between user u and item i ; otherwise eui = 0. The rating

MPIA for Graph Convolutional Collaborative Filtering 229

Fig. 1. Illustration of the proposed framework, where the node User 1 is the target
user and Item 4 is the target item. A user-item bipartite graph is constructed for each
preference to capture the preference-specific user representation.

set R comprises the rating scores of users for the items
{
1, ..., 5

}
. The aggre-

gation part aggregates the interacted item/user features to learn the user/item
embeddings. The preference-attribute fusion layer considers the diverse interests
separately in the matching stage. To accurately capture the particular prefer-
ence of users, we split the bipartite graph Gk from G by keeping the features
in preference k solely, with different subgraph indicating different preference
subspace.

3.2 Embedding Layer

Let U0 denote the shared embedding set for users, I0 denote the shared embed-
ding set for items, and the embedding vectors eu

l
∈ Rd, eij ∈ Rd, be denoted as

follows:

U0 = (eu1, ..., e
u
n), I0 = (ei1, ..., e

i
m), (1)

230 M. He et al.

where n and m indicate the numbers of users and items respectively, and d is
the embedding size.

To ensure the extensibility of our model, one hot vector is used as input
to describe the ID of a user or an item. We then use matrix multiplication to
acquire the embedding for this user (item) with one hot vector as follows:

eul = U0 · ID
U
l , eij = I0 · ID

I
j , (2)

where IDU
l and IDI

j are the one hot vectors for the user ul and item ij , respec-
tively. We note that the embeddings in matrix U0 and I0 represent the respective
initialization features of the users and items, which can be seen as the input fea-
tures for each user and item in the GNN framework [8]. Specifically, to capture
the commonality of each network, U0 and I0 are shared by all preference-specific
embedding learning networks [22].

3.3 Aggregation Layer

Intuitively, we can leverage interaction data to enrich the representations of
users and items. To be more specific, the historical interactions of a user, which
is an aggregation of item information for that user, can describe the multiple
preferences of users. It is worth noting that for the aggregation operation, the
aggregation of more neighborhood nodes does not mean better performance,
which we verify in the experimental section. Inspired by the multi-head atten-
tion mechanism in the Transformer [18], we assume that the user-item bipartite
graph G is driven by K preferences. Different subgraphs obtain different prefer-
ence representations. When learning an item attribute embedding, we use the
same procedure as that for the user. Hence, we provide details only of the user
preference embedding process.

User preference and item attribute embedding vectors can be expressed by
embedding matrices Uk

P and IkA respectively, as follows:

Uk
P = (uk1, ..., u

k
n), IkA = (ik1, ..., i

k
m), (3)

where k is the tag of the kth preference/attribute of user/item.

Preference-Level Attention. The Graph Attention Networks [19] leverages
an attention mechanism to consider the different weights of neighboring nodes,
and enables the model to filter out noise and focus on important adjacent nodes.
Inspired by this approach, we use preference-level attention for users to obtain
preference-specific attention weights from the item attribute set IkA, as follows:

fl j = Z(Wku
k
l ,Wk i

k
j), (4)

where Wk ∈ Rd×d is shared by every user/item under preference k/attribute
k, and fl j indicates the contribution of item ij ’s kth attribute to user ul’s kth

MPIA for Graph Convolutional Collaborative Filtering 231

preference. To better compare the coefficients of different nodes, we normalize
them for all choices of j using the softmax function:

αl j = so f tmax(fl j) =
exp(fl j)∑

j∈Nl
exp(fl j)

, (5)

where Nl is a subset of adjacent nodes for user ul. We set Z as a neural network,
parameterized by a weight vector �a ∈ R2d×2d and apply Relu as a nonlinear
activation function. The coefficients computed by the attention mechanism are
represented as follows:

αl j = so f tmax(fl j) =
exp

[
Relu

(
�aT (Wkukl | |Wk ikj)

)]

∑
j∈Nl

exp
[
Relu

(
�aT (Wkukl | |Wk ikj)

)] , (6)

where T is the transposition and | | is the concatenation operation.

Preference-Specific Embedding. After obtaining the normalized attention
coefficients, we compute a weighted summation with nonlinear transformation
σ for the attributes of items, which serve as preference-specific embedding for
user ul:

pkl = σ

(
∑

j∈Nl

αl jWk i
k
j

)

, (7)

where pk
l

indicates the kth preference-specific embedding of user ul, which con-
tains information about the kth attribute of some rated items. To better capture
distinct features, we apply disagreement regularization [11] to maximize the
cosine distance between the preference-specific embeddings:

D =
−1
K2

K∑

i=1

K∑

j=1

pi
l
· pj

l

| |pi
l
| | · | |pj

l
| |

. (8)

Concatenation Combination. In multi-preference recommendation scenar-
ios, users may interact with an item for some but not all preferences, which
demonstrates the commonality and specificity of user preferences in their deci-
sions. For every node in a preference network, we concatenate the preference-
specific embedding and the shared embedding to generate the final embedding
of the user ul as follows:

zkl = pkl | |e
u
l . (9)

In this way, the shared embedding and a preference-specific embedding are com-
bined for the later procedure. Because the shared embedding and preference-
specific embedding only capture partial node characteristic, they are combined
to obtain a complete embedding.

232 M. He et al.

3.4 Preference-Attribute Fusion Layer

Existing approaches (e.g., MCCF [21], DHAN [23]) generally compress all the
information about multiple features of users into a single vector. We argue that
representing the diverse preferences of users by a unified representation vector
can be an obstacle to the leveraging of multiple user preferences. When all the
information related to the multiple interests of users is mixed together, this
causes the inaccurate matching of user preferences with item attributes. Instead,
we adopt multiple channels to separately fuse multiple preferences of user ul with
corresponding attributes of item ij , which process the learned features of different
subgraphs respectively. In this way, the diverse interests of users are considered
respectively in the matching stage, which enables more accurate item retrieval
for every aspect of interest:

h1 = z1l | |v
1
j , · · · , hK = zKl | |vKj , (10)

where h1, · · · , hK are the final K fusion results, and vkj represent the kth attribute-
specific embedding of item ij . Inspired by previous work [1], we adopt the idea
of the coordinated approach, and project hk into the latent space which is the
same as the user ID uid:

yk = Relu(Wγhk) + uid, (11)

where Wγ
∈ Rn×d is a weight matrix.

3.5 Rating Prediction

In this subsection, we design recommendation tasks to learn the model parame-
ters. There are various recommendation tasks, including item ranking and rating
prediction. In this work, we apply our proposed MPIA model to the recommen-
dation task of rating prediction. First, we feed all fusion information into the
MLP to obtain a rating prediction, as follows:

g11 = σ(W1
1 y1 + b11), · · · , g

K
1 = σ(WK

1 yK + bK1),

...

g1t = σ(W1
t g

1
t−1 + b1t), · · · , g

K
t = σ(WK

t gKt−1 + bKt),

rl j = g1t + g2t + · · · + gKt .

(12)

We then sum the K matching results to obtain the final predicted rating rl j of
user ul for item ij , and t represents the index of a hidden layer.

3.6 Optimization

For model training, we specify an objective function to achieve optimization. As
our task in this work is rating prediction, a widely used objective function is
formulated as:

L =
1

2|O |

(
∑

(l, j)∈O

(rl j − r0)
2

)

+ λ | |Θ| |22, (13)

MPIA for Graph Convolutional Collaborative Filtering 233

where r0 is the ground truth rating assigned by the user ul to item ij ; and λ,
|O |, and Θ represent the regularization weight, number of observed ratings, and
the parameters of the model, respectively.

4 Experiments

4.1 Experimental Settings

Datasets. To evaluate the performance of our model, we conducted experi-
ments on three real-world datasets: Yelp1, Amazon2, and MovieLens3, which
provide large amounts of rating information. Yelp is an online location-based
social network, in which users make friends with others and express their experi-
ences through reviews and ratings. For our recommendation task experiment, we
adopted Yelp’s rating data. Amazon is an open dataset collected from Amazon
e-commerce activity, which comprises large corpora of product ratings crawled
from Amazon.com. MovieLens is a widely used movie ratings dataset for eval-
uating CF algorithms. We used the MovieLens version (MovieLens-1M) that
includes 100,000 user ratings. Each user provides ratings in the range [1, 5].
Besides, we randomly split the dataset into training and testing sets with 8:2
ratios. The statistics of these three datasets are presented in Table 1.

Table 1. Basic statistics for the three datasets.

Dataset Yelp Amazon MovieLens

of Users 1286 1000 943

of Items 2614 1000 1682

of Ratings 30838 65170 100000

Density 0.917% 6.517% 6.304%

Baselines. To demonstrate the effectiveness of our MPIA model, we compare it
with several state-of-the-art methods. These baseline methods are mainly clas-
sified into matrix factorization (MF) and GCN-based methods:

• PMF [13]: This model leverages a user-item rating matrix only and models
the latent factors of users and items by Gaussian distributions.

• FISM [7]: A general model that indirectly obtains user representations by
factorizing an item-to-item similarity matrix. The original implementation
was for top-N recommendation task, and we adjusted its loss to the squared
loss for rating prediction.

1 https://www.yelp.com/dataset/challenge/.
2 http://jmcauley.ucsd.edu/data/amazon/.
3 https://grouplens.org/datasets/movielens/1M/.

https://www.yelp.com/dataset/challenge/
http://jmcauley.ucsd.edu/data/amazon/
https://grouplens.org/datasets/movielens/1M/

234 M. He et al.

• BiasMF [10]: This method is a classical MF-based model that factorizes the
user-item interaction matrix to optimize the embeddings of users and items
by introducing a new bias term.

• GraphSAGE [5]: A general inductive framework that utilizes node features
to update node representations for previously unseen data. Specifically, it
considers structural information as well as the distribution of node features
in the neighborhood.

• MCCF [21]: This model is a state-of-the-art recommender model with GNN
architecture. It introduces two attention modules to extract the various pur-
chasing motivations of a user.

• GC-MC [2]: This method is a GCN-based collaborative filtering model, that
utilizes a user-item bipartite graph and the associated features of users and
items to generate recommendations. Each user embedding is convolved in an
aggregation of the embeddings of rated items, and each item embedding is
convolved in an aggregation of rated user embeddings.

Evaluation Metrics and Hyper-parameter Setting. To verify the perfor-
mance of our recommendation model, we used the mean absolute error (MAE)
and root mean squared error (RMSE), whereby smaller MAE and RMSE values
indicate better predictive accuracy. We implemented our proposed method using
Pytorch, a popular framework for neural networks. For all the weight parame-
ters, we initialized latent vectors with small random values. In the model learning
process, we used the Adam optimization method for all networks that rely on
gradient back-propagation method. We used the early stopping strategy and the
batch size was searched in {8, 16, 64, 128, 256, 512}. In our proposed MPIA model,
we applied the regularization parameter α in the range {0.0001, 0.001, 0.01, 0.1, 1},
and found α = 0.001 to realize the best performance. The L2 normalization coef-
ficient was tuned in {0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.15}. In addition, we
used the node dropout technique in our model and the GCN-based models, in
which the ratio is searched in {0, 0.1, ..., 0.8}. The number of user preferences K
changed in the range {1, 2, 3, 4, 5}. The parameters for the baseline methods were
initialized as reported in corresponding papers, and were then carefully tuned
to achieve optimal performance.

4.2 Results

Comparison with Baselines. In this subsection, first, we compare the recom-
mendation performance of our proposed MPIA with those of the other baselines.
Table 2 presents the results obtained on the three datasets by all the recommen-
dation methods, based on the overall RMSE and MAE rating orediction error.
It’s worth noting that, MPIA-1, MPIA-2 and MPIA-3 correspond to three vari-
ants of our MPIA model: MPIA-1 eliminates the shared embeddings of U0 and
I0, MPIA-2 eliminates the preference-level attention, and MPIA-3 removes the
preference-attribute fusion layer. The best result in each row is bolded, and the
second best is underlined.

MPIA for Graph Convolutional Collaborative Filtering 235

We can see that compared with all the baseline methods, our MPIA method
achieved the best performance on all three datasets, which clearly demonstrates
the superiority of our proposed model. When comparing our results on the Yelp
dataset, we find almost no difference between the MPIA and its two variants:
MPIA-1 and MPIA-3, because we set the hyper-parameter number of preference
K = 1. Hence, we trained only one network in this dataset, which fails to show
the effect of shared embedding or the fusion of multiple user preferences with item
attributes. In the Amazon and MovieLens datasets, we set the hyper-parameter
K to be larger than 1, which demonstrates the effectiveness of these two modules.
We note that MPIA-2, in which the preference-level attention was removed,
performed poorly on all datasets. The reason for this may be due to the fact
that multiple preference networks that do not implement attention mechanism
can’t capture key information effectively and adds redundant information.

Table 2. Recommendation performances of different models.

Dataset Yelp Amazon MovieLens

Metrics RMSE MAE RMSE MAE RMSE MAE

PMF 0.3967 0.1571 0.9339 0.7113 0.9638 0.7559

BiasMF 0.3902 0.1616 0.9028 0.6759 0.9257 0.7258

FISM 0.3852 0.1235 0.9056 0.6728 0.9259 0.7294

GCMC 0.3850 0.1354 0.8946 0.6619 0.9145 0.7165

MCCF 0.3806 0.1029 0.8876 0.6428 0.9070 0.7050

GraphSAGE 0.3759 0.1128 0.8894 0.6379 0.9108 0.7082

MPIA-1 0.3695 0.0891 0.8847 0.6385 0.9052 0.7054

MPIA-2 0.3955 0.1342 0.9067 0.6658 0.9294 0.7241

MPIA-3 0.3684 0.0885 0.8939 0.6472 0.9165 0.7094

MPIA 0.3684 0.0885 0.8741 0.6294 0.8948 0.6953

The GNN-based models basically outperformed the MF-based models on
all three datasets. These results are attributed to the graph convolution layers,
which fuse the information of neighboring users (items) into their embeddings,
thereby enhancing the effectiveness of the representation learning. It also proves
that GNNs are powerful in the representation learning of graph data, as they
naturally integrate node information as well as the topological structure.

In the comparison of the MCCF, GC-MC, and GraphSAGE methods, we find
that considering multi-preference in user representations improves performance.
Our proposed model outperforms MCCF, which shows the effectiveness of the
preference-attribute fusion process in the final matching stage. Therefore, it is
necessary to fuse the different preferences of users with the corresponding item
attributes in multi-preference recommendations.

236 M. He et al.

Fig. 2. Impact of using preference-level attention on three datasets.

Impact of Preference-Level Attention. To explore the effect of preference-
level attention, we compare the results obtained when using different aggregation
methods on the three datasets, as shown in Fig. 2. We used three types of
aggregation methods: attention-based, average-based, and the graph Laplacian
norm 1/

√
|Nu | |Ni |, where Nu and Ni denote the neighbors of user u and item i.

For a fair comparison, we used the same number of aggregation neighbors in the
three methods. The results show that using the attention mechanism achieved
the best result, which demonstrate the superiority of the attention mechanism
in multi-graph networks embedding learning. We can also see that the average-
based method performed poorly on all three datasets, which may be because this
method incorrectly assumes that different neighbors make the same contributions
to the node representation in this situation. The results further demonstrate that
not all the interacting items of one user contribute equally to the user preference
representations, and not all interacting users have the same degree of importance
for learning item attributes.

Fig. 3. Impact of sample numbers on three datasets.

Impact of Sample Numbers. In this subsection, we describe the experiments
we conducted to study the impact of the number of neighborhood samples on
the recommendation performance. For all three datasets, we specified the same
number of neighborhood samples for both the users and items. Therefore, if
the number of neighbors for a node was more than the specified threshold x, we

MPIA for Graph Convolutional Collaborative Filtering 237

selected only x neighbors. Conversely, we selected all neighbors when the number
of neighbors was less than x. In accordance with the ratings, the principle for
selecting neighborhood nodes was from large to small, as items with high ratings
better reflect the preferences of users. Accordingly, the characteristics of the users
also reflect the item attributes.

Figure 3 shows a comparison of the experimental results, in which we find that
only approximately twenty neighbors must be sampled for both users and items
to achieve good performance in the Yelp dataset. However, for the Amazon and
MovieLens datasets, more neighborhood samples are needed. A possible reason
for this is that, the density of both the Amazon and MovieLens datasets is much
higher than that of Yelp, as shown in Table 1. Because high density means
more abundant feature information, more neighborhood nodes are needed to
capture multiple features. It’s obvious that for all datasets, too much or too
little neighborhood sampling leads to performance degradation, which is likely
because a small amount of neighborhood information is insufficient for capturing
complex features, whereas excessive sampling can introduce too much noise.

Fig. 4. Impact of preference number K on three datasets..

Impact of Preference Number K . To determine the effectiveness of multiple
user preferences, we designed experiments in which we changed the number K
to determine its effect. As shown in Fig. 4, the optimal value of K increases
with the density of the datasets. Datasets like Amazon and MovieLens, which
are denser and in which the ratings are more evenly distributed, benefit from
using the multiple preferences mechanism. However, if the number of preferences
is too great, the complexity of our model significantly increases. This is likely
because the extraction of too many features introduces a lot of noisy informa-
tion, which can lead to greater model complexity and performance degradation.
Therefore, we must set the appropriate hyper-parameters to achieve trade-off
between performance and complexity. This issue further demonstrates that user
preference representations are closely related to the content of item attributes,
and the same considerations apply to items.

Impact of Preference-Attribute Fusion. As we can see in Table 2, the
MPIA-3 method without the preference-attribute fusion layer exhibits inferior

238 M. He et al.

performance. Although the use of multi-preference representations allows the
model to jointly consider information from different representation subspaces,
simply compressing all the information about the multiple features of users into
a single vector does not make full use of all kinds of information obtained. In
addition, the aim of using multiple preferences, is to learn independent infor-
mation in different representation subspaces, but there is no mechanism that
guarantees that different attention modules capture absolutely independent fea-
tures [11]. The extracted features are not completely unrelated, so direct mix-
ing will inevitably result in information redundancy. Therefore, we use multiple
channels to fuse preferences of user with corresponding item attributes, whereby
some features that are not completely irrelevant can be leveraged respectively.

5 Conclusion

In this work, we propose a Graph Neural Network framework (MPIA) to model
recommendation for rating prediction. Specifically, this method constructs a
user-item bipartite graph for each preference, to capture the commonality of
the user/item shared by all multiple networks and the characteristics of partic-
ular preferences/attributes in the user-item bipartite graphs. We then present a
method that fuses features of user and item to make full use of all kinds of prefer-
ence and attribute information. The result of experiments reveal that the fusion
of preferences and attributes plays a crucial role in the improved performance
demonstrated by our model.

Acknowledgments. This work is supported by the Beijing Natural Science Founda-
tion under grant 4192008.

References

1. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey
and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

2. Berg, R.V.d., Kipf, T.N., Welling, M.: Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263 (2017)

3. Cen, Y., Zhang, J., Zou, X., Zhou, C., Yang, H., Tang, J.: Controllable multi-
interest framework for recommendation. arXiv preprint arXiv:2005.09347 (2020)

4. Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.S.: Attentive collaborative
filtering: multimedia recommendation with item-and component-level attention.
In: Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 335–344. ACM (2017)

5. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. arXiv preprint arXiv:1706.02216 (2017)

6. He, X., He, Z., Song, J., Liu, Z., Jiang, Y.G., Chua, T.S.: NAIS: neural attentive
item similarity model for recommendation. IEEE Trans. Knowl. Data Eng. 30,
2354–2366 (2018)

7. Kabbur, S., Ning, X., Karypis, G.: Fism: factored item similarity models for top-n
recommender systems. In: Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 659–667. ACM (2013)

http://arxiv.org/abs/1706.02263
http://arxiv.org/abs/2005.09347
http://arxiv.org/abs/1706.02216

MPIA for Graph Convolutional Collaborative Filtering 239

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

9. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.:
GroupLens: applying collaborative filtering to Usenet news. Commun. ACM 40,
77–87 (1997)

10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

11. Li, J., Tu, Z., Yang, B., Lyu, M.R., Zhang, T.: Multi-head attention with disagree-
ment regularization. arXiv preprint arXiv:1810.10183 (2018)

12. Linden, G., Smith, B., York, J.: Amazon. com recommendations: item-to-item col-
laborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

13. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. Adv. Neural.
Inf. Process. Syst. 20, 1257–1264 (2007)

14. Monti, F., Bronstein, M.M., Bresson, X.: Geometric matrix completion with recur-
rent multi-graph neural networks. arXiv preprint arXiv:1704.06803 (2017)

15. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

16. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295. ACM (2001)

17. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering rec-
ommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive
Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72079-9 9

18. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762
(2017)

19. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

20. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 165–174. ACM (2019)

21. Wang, X., Wang, R., Shi, C., Song, G., Li, Q.: Multi-component graph convolu-
tional collaborative filtering. In: Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 6267–6274. ACM (2020)

22. Xu, L., Wei, X., Cao, J., Yu, P.S.: Multi-task network embedding. Int. J. Data Sci.
Anal. 8(2), 183–198 (2018). https://doi.org/10.1007/s41060-018-0166-2

23. Xu, W., He, H., Tan, M., Li, Y., Lang, J., Guo, D.: Deep interest with hierarchical
attention network for click-through rate prediction. In: Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 1905–1908. ACM (2020)

24. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 974–983. ACM (2018)

25. Zheng, Y., Gao, C., He, X., Li, Y., Jin, D.: Price-aware recommendation with
graph convolutional networks. In: 2020 IEEE 36th International Conference on
Data Engineering (ICDE), pp. 133–144. IEEE (2020)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.10183
http://arxiv.org/abs/1704.06803
http://arxiv.org/abs/1205.2618
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/978-3-540-72079-9_9
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1710.10903
https://doi.org/10.1007/s41060-018-0166-2

Better Call the Plumber: Orchestrating
Dynamic Information Extraction

Pipelines

Mohamad Yaser Jaradeh1(B) , Kuldeep Singh2 , Markus Stocker3 ,
Andreas Both4 , and Sören Auer3

1 L3S Research Center, Leibniz University Hannover, Hanover, Germany
jaradeh@l3s.de

2 Zerotha-Research and Cerence GmbH, Aachen, Germany
kuldeep.singh1@cerence.com

3 TIB Leibniz Information Centre for Science and Technology, Hanover, Germany
{markus.stocker,auer}@tib.eu

4 Anhalt University of Applied Sciences, Bernburg, Germany
andreas.both@hs-anhalt.de

Abstract. We propose Plumber, the first framework that brings
together the research community’s disjoint information extraction (IE)
efforts. The Plumber architecture comprises 33 reusable components for
various Knowledge Graphs (KG) information extraction subtasks, such
as coreference resolution, entity linking, and relation extraction. Using
these components, Plumber dynamically generates suitable information
extraction pipelines and offers overall 264 distinct pipelines. We study
the optimization problem of choosing suitable pipelines based on input
sentences. To do so, we train a transformer-based classification model
that extracts contextual embeddings from the input and finds an appro-
priate pipeline. We study the efficacy of Plumber for extracting the
KG triples using standard datasets over two KGs: DBpedia, and Open
Research Knowledge Graph (ORKG). Our results demonstrate the effec-
tiveness of Plumber in dynamically generating KG information extrac-
tion pipelines, outperforming all baselines agnostics of the underlying
KG. Furthermore, we provide an analysis of collective failure cases, study
the similarities and synergies among integrated components, and discuss
their limitations.

Keywords: Information extraction · NLP pipelines · Software
reusability · Semantic search · Semantic Web

1 Introduction and Motivation

In last one decade, publicly available KGs (DBpedia [2] and Wikidata [42]) have
become rich sources of structured content used in various applications, includ-
ing Question Answering (QA), relation extraction, and dialog systems [4,39].
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 240–254, 2021.
https://doi.org/10.1007/978-3-030-74296-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_19&domain=pdf
http://orcid.org/0000-0001-8777-2780
http://orcid.org/0000-0002-5054-9881
http://orcid.org/0000-0001-5492-3212
http://orcid.org/0000-0002-9177-5463
http://orcid.org/0000-0002-0698-2864
https://doi.org/10.1007/978-3-030-74296-6_19

Better Call the Plumber 241

The research community developed numerous approaches to extract triple
statements [44], keywords/topics [9], tables [22,23,45], or entities [35,36] from
unstructured text to complement KGs. Despite extensive research, public KGs
are not exhaustive and require continuous effort to align newly emerging unstruc-
tured information to the concepts of the KGs.

Research Problem: This work was motivated by an observation of recent
approaches [14,35,45] that automatically align unstructured text to structured
data on the Web. Such approaches are not viable in practice for extracting and
structuring information because they only address very specific subtasks of the
overall KG information extraction problem. If we consider the exemplary sen-
tence Rembrandt painted The Storm on the Sea of Galilee. It was painted in
1633. (cf. Fig. 1). To extract statements aligned with the DBpedia KG from the
given sentences, a system must first recognize the entities and relation surface
forms in the first sentence. The second sentence requires an additional step of
the coreference resolution, where It must be mapped to the correct entity surface
form (namely, The Storm on the Sea of Galilee). The last step requires the map-
ping of entity and relation surface forms to the respective DBpedia entities and
predicates. There has been extensive research in aligning concepts in unstruc-
tured text to KG, including entity linking [14,17], relation linking [4,36,38], and
triple classification [13]. However, these efforts are disjoint, and little has been
done to align unstructured text to the complete KG triples (i.e., represented
as subject, predicate, object) [25]. Furthermore, many entity and relation link-
ing tools have been reused in pipelines of QA systems [26,39]. The literature
suggests that once different approaches put forward by the research community
are combined, the resulting pipeline-oriented integrated systems can outperform
monolithic end-to-end systems [27]. The motivation of our work is also shared
with this similar integrative effort in the software architecture community [19]
For the KG information extraction task, however, to the best of our knowledge,
approaches aiming at dynamically integrating and orchestrating various existing
components do not exist.

Objective and Contributions: Based on these observations, we build a frame-
work that enables the integration of previously disjoint efforts on the KG-IE
task under a single umbrella. We present the Plumber framework (cf. Fig. 2)
for creating Information Extraction pipelines. Plumber integrates 33 reusable
components released by the research community for the subtasks entity link-
ing (EL), relation linking (RL), text triple extraction (TE) (subject, predi-
cate, object), and coreference resolution (CR). Overall, there are 264 differ-
ent composable KG information extraction pipelines (generated by the possi-
ble combination of the available 33 components, i.e., for DBpedia 3 CRs, 8
TEs, 10 EL/RLs gives 3 * 8 * 10 = 240, and 4 * 3 * 2 = 24 for the ORKG. Hence,
240 + 24 = 264 pipelines). Plumber implements a transformer-based classifica-
tion algorithm that intelligently chooses a suitable pipeline based on the unstruc-
tured input text.

We perform an exhaustive evaluation of Plumber on the two large-scale
KGs DBpedia, and Open Research Knowledge Graph (ORKG) [24] to investi-

242 M. Y. Jaradeh et al.

gate the efficacy of Plumber in creating KG triples from unstructured text.
We demonstrate that independent of the underlying KG; Plumber can find
and assemble different extraction components to produce better suited KG triple
extraction pipelines, significantly outperforming existing baselines. In summary,
we provide the following novel contributions: i) The Plumber framework is the
first of its kind for dynamically assembling and evaluating information extrac-
tion pipelines based on sequence classification techniques and for a given input
text. Plumber is easily extensible and configurable, thus enabling the rapid cre-
ation and adjustment of new information extraction components and pipelines.
Researchers can also use the framework for running IE components indepen-
dently for specific subtasks such as triple extraction and entity linking. ii) A
collection of 33 reusable IE components that can be combined to create 264 dis-
tinct IE pipelines. iii) The exhaustive evaluation and our detailed ablation study
of the integrated components and composed pipelines on various input text will
guide future research for collaborative KG information extraction.

We motivate our work with a running example; the sentence Rembrandt
painted The Storm on the Sea of Galilee. It was painted in 1633. Multiple
steps are required to extract these formally represented statements from the
given text. First, the pronoun it in the second sentence should be replaced by
The Storm on the Sea of Galilee using a coreference resolver. Next, a triple
extractor should extract the correct text triples from the natural language text,
i.e., <Rembrandt, painted, The Storm on the Sea of Galilee>, and <The
Storm on the Sea of Galilee, painted in, 1633>. In the next step, the
entity and relation linking component aligns the entity and relation surface forms
extracted in the previous step to the DBpedia entities: dbr:Rembrandt for Rem-
brandt van Rijn, and dbr:The Storm on the Sea of Galilee for The Storm on
the Sea of Galilee, and for relations: dbo:Artist for painted, and dbp:year for
painted in. Figure 1 illustrates our running example and shows three Plumber
IE pipelines with different results. In Pipeline 1, the coreference resolver is unable
to map the pronoun it to the respective entity in the previous sentence. Moreover,

Fig. 1. Three example information extraction pipelines showing different results for the
same text snippet. Each pipeline consists of coreference resolution, triple extractors,
and entity/relation linking components.

Better Call the Plumber 243

the triple extractor generates incomplete triples, which also hinders the task of
the entity and relation linker in the last step. Pipeline 2 uses a different set of
components, and its output differs from the first pipeline. Here, the coreference
resolution component is able to correctly co-relate the pronoun it to The Storm
on the Sea of Galilee, and extract the text triple correctly. However, the overall
result is only partially correct because the second triple is not extracted. Also,
the linking component is not able to spot the second entity. Pipeline 3 correctly
extracts both triples. This pipeline employs the same component as the second
pipeline for coreference resolution but also includes an additional information
extraction component (i.e., ReVerb [15]) and a joint entity and relation linking
component, namely Falcon [35]. With this combination of components, the text
triple extractors were able to compensate for the loss of information in the sec-
ond pipeline by adding one more component. Using the extracted text triples,
the last component of the pipeline, a joint entity and relation linking tool, can
map both triple components correctly to the corresponding KG entities.

The reminder of this article is organized as follows. Related work is reviewed
in Sect. 2. Section 3 presents Plumber, which is extensively evaluated in Sect. 4.
Section 5 discusses the results, and Sect. 6 concludes and outlines directions for
future research and work.

2 Related Work

In the last decade, many open source tools have been released by the research
community to tackle IE tasks for KGs. These IE components are not only used
for end-to-end KG triple extraction but also for various other tasks, such as:

Text Triple Extraction: The task of open information extraction is a well
studied researched task in the NLP community [1]. It relies on NER (Named
Entity Recognition) and RE (Relation Extraction). SalIE [33] uses MinIE [21]
in combination with PageRank and clustering to find facts in the input text.
Furthermore, OpenIE [1] leverages linguistic structures to extract self-contained
clauses from the text. A comprehensive survey by Niklaus et al. [32] provides
detailed about such techniques.

Entity and Relation Linking: Entity and relation linking is a widely studied
researched topic in the NLP, Web, and Information Retrieval research commu-
nities [3,4,11]. Often, entity and relation linking is performed independently.
DBpedia Spotlight [10] is one of the first approaches for entity recognition and
disambiguation over DBpedia. TagMe [17] links entities to DBpedia using in-link
matching to disambiguate candidates entities. Others tools such as RelMatch [38]
do not perform entity linking and only focus on linking the relation in the text
to the corresponding KG relation. Recon [4] uses graph neural networks to map
relations between the entities with the assumption that entities are already linked
in the text. EARL [14] is a joint linking tool over DBpedia and models the task
as a generalized traveling salesperson problem. Sakor et al. [35] proposed Falcon,
a linguistic rules based tool for joint entity and relation linking over DBpedia.

244 M. Y. Jaradeh et al.

Coreference Resolution: This task is used in conjunction with other tasks
in NLP pipelines to disambiguate text and resolve syntactic complexities. The
Stanford Coreference Resolver [34] uses a multi pass sieve of deterministic coref-
erence models. Clark and Manning [8] use reinforcement learning to fine-tune a
neural mention-ranking model for coreference resolution. And more recently [37].

Frameworks and Dynamic Pipelines: There have been few attempts in
various domains aiming to consolidate the disjoint efforts of the research com-
munity under a single umbrella for solving a particular task. The Gerbil plat-
form [41] provides an easy-to-use web-based platform for the agile comparison of
entity linking tools using multiple datasets and uniform measuring approaches.
OKBQA [26] is a community effort for the development of multilingual open
knowledge base and QA systems. Frankenstein integrates 24 QA components
to build QA systems collaboratively on-top of the Qanary integration frame-
work [6]. Other ETL pipelines system exists such as Apache NiFi. Semantic
Web Pipes [31] and LarKC [16] are other prominent examples.

End-to-End Extraction Systems: More recently, end-to-end systems are
gaining more attention due to the boom of deep learning techniques. Such sys-
tems draw on the strengths of deep models and transformers [29]. Kertkeidka-
chorn and Ichise [25] present an end-to-end system to extract triples and link
them to DBpedia. Other attempts such as KG-Bert [44] leverage deep transform-
ers [29] for the triple classification task, given the entity and relation descriptions
of a triple. KG-Bert does not attempt end-to-end alignment of KG triples from
a given input text. Liu et al. [28] design an encoder-decoder framework with an
attention mechanism to extract and align triples to a KG.

3 Dynamic Information Extraction Pipelining Framework

Plumber has a modular design (see Fig. 2) where each component is integrated
as a microservice. To ensure a consistent data exchange between components,
the framework maps the output of each component to a homogeneous data
representation using the Qanary [6] methodology. Plumber follows three design
principles of i) Isolation, ii) Reusability, and iii) Extensibility inspired by [39,41].

Dynamic Pipeline Selection: Plumber uses a RoBERTa [29] based classifier
that given a text and a set of requirements, Plumber predicts a good pipeline
to extract KG triples. Rather than handcrafting features to train models on,
we let the RoBERTa model acts as intermediary that classifies the contextual
embeddings extracted from the input text into a class which represents one of the
possible pipelines. Regarding RoBERTa’s training, we run each input sequence
on all possible pipelines and compute the evaluation metrics F1-score (i.e., esti-
mated performance). RoBERTa is fed with the sentence and the sentence-level
performance with the best value among all pipelines as the target class. Hence,
in practice, the user points Plumber to a piece of text and internally it uses
RoBERTa to classify the text to a class (i.e., the pipeline) to execute against
the input text. We choose a transformer-based architecture due to its ability to

Better Call the Plumber 245

Fig. 2. Overview of Plumber’s architecture highlighting the components for pipeline
generation, selection, and execution. Plumber receives an input sentence and require-
ment (underlying KG) from the user. The framework intelligently selects a suitable
pipeline based on the contextual features captured from the input sentence.

encode the contextual knowledge from the input text, providing more accurate
classification.

Architecture: Plumber includes the following modules: i) IE Components
Pool: All information extraction components that are integrated within the
framework are parts of the pool. The components are divided based on their
respective tasks, i.e., coreference resolution, text triple extraction, as well as
entity and relation linking. These components have different input requirements
and output formats; thus, Plumber provides standard interfaces to facilitate
the interaction between pipeline components. ii) Pipeline Generator: This
module creates possible pipelines depending on the requirements of the com-
ponents (i.e., the underlying KG). Users can manually select the underlying
KG and, using the metadata associated with each component, Plumber aggre-
gates the components for the concerned KG. iii) IE Pipelines Pool: Plumber
stores the configurations of the possible pipelines in the pool of pipelines for
faster retrieval and easier interaction with other modules. iv) Pipeline Selec-
tor: Based on the requirements (i.e., underlying KG) and the input text, a
RoBERTa based model extracts contextual embeddings from the text and clas-
sifies the input into one of the possible classes. Each class corresponds to one
pipeline configuration that is held in the IE pipelines pool. v) Pipeline Run-
ner: Given the input text, and the generated pipeline configuration, the module
executes the pipeline and produce the final KG triples.

4 Evaluation

In this section, we detail the empirical evaluation of the framework in comparison
to baselines on different datasets and knowledge graphs. As such, we study the

246 M. Y. Jaradeh et al.

following research question: How does the dynamic selection of pipelines based
on the input text affect the end-to-end information extraction task?

4.1 Experimental Setup

Knowledge Graphs. To study the effectiveness of Plumber in building
dynamic KG information extraction pipelines, we use the following KGs dur-
ing our evaluation:

DBpedia. [2] is containing information extracted automatically from Wikipedia
info boxes. DBpedia consists of approximately 11.5B triples [35].

Open Research Knowledge Graph. [24] (ORKG) collects structured schol-
arly knowledge published in research articles, using crowd sourcing and auto-
mated techniques. In total, ORKG consists of approximately 984K triples.

Datasets. Throughout our evaluation, we employed a set of existing and newly
created datasets for structured triple extraction and alignment to knowledge
graphs: the WebNLG [20] dataset for DBpedia, and COV-triples for ORKG.

WebNLG. is the Web Natural Language Generation Challenge. The challenge
introduced the task of aligning unstructured text to DBpedia. In total, the
dataset contains 46K triples with 9K triples in the testing and 37K in the training
set.

COV-Triples. Is a handcrafted dataset that focuses on COVID-19 related schol-
arly articles. The COV-triples dataset consists of 21 abstracts from peer-reviewed
articles and aligns the natural language text to the corresponding KG triples into
the ORKG. Three Semantic Web researchers verified annotation quality, and
triples approved by all three researchers are part of the dataset. The dataset
contains only 75 triples. Hence, we use the WebNLG dataset for training, and
75 triples are used as a test set.

Components and Implementation. The Plumber framework integrates
33 components, the components span different IE tasks from Triple Extraction,
Entity and Relation Linking, and Coreference Resolution. Most of the compo-
nents used are open-sourced and they have been evaluated and used by the com-
munity in their respective publications. Plumber’s code and all related resources
are publicly available online at https://github.com/YaserJaradeh/ThePlumber.

Baselines. We include the following baselines:

T2KG. [25] is an end-to-end static system aligns a given natural language text
to DBpedia KG triples.

Frankenstein. [39] dynamically composes Question Answering pipelines over
the DBpedia KG. It employs logistic regression based classifiers for each com-
ponent for predicting the accuracy and greedily composes a dynamic pipeline of
the best components per task. We adapted Frankenstein for the KG information
extraction over DBpedia.

https://github.com/YaserJaradeh/ThePlumber

Better Call the Plumber 247

4.2 Experiments

The section summarizes a variety of experiments to compare the Plumber
framework against other baselines. Note, that evaluating the performance of indi-
vidual components or their combination is out of this evaluation’s scope, since
they were already used, benchmarked, and evaluated in the respective publica-
tions. We report values of the standard metrics Precision (P), Recall (R), and
F1 score (F1). In all experiments, end-to-end components (e.g., T2KG) are not
part of Plumber.

Performance of Static Pipelines. In this experiment, we report results of the
static pipelines, i.e., no dynamic selection of a pipeline based on the input text
is considered. We ran all 264 pipelines and Table 2 (T2KG & Static noted rows)
reports the performance of the best Plumber pipeline against the baselines.
Plumber static pipeline for DBpedia comprises of NeuralCoref [8] for corefer-
ence resolution, OpenIE [1] for text triple extraction, TagMe [17] for EL, and Fal-
con [35] for RL tasks. Also, in case of Frankenstein, we choose its best performing
static pipeline. Results illustrated in the Table 2 confirm that the static pipeline
composed by the components integrated in Plumber outperforms all baselines
on DBpedia. We observe that the performance of pipeline approaches is better
than an end-to-end monolithic information extraction approaches. Although the
Plumber pipeline outperforms the baselines, the overall performance is rela-
tively low. All our components have been trained on distinct corpora in their
respective publications and our aim was to put them together to understand
their collective strengths and weaknesses. Note, Frankenstein addresses the QA
pipeline problem and not all components are comparable and can be applied in
the context of information extraction. Thus, we integrated NeuralCoref coref-
erence resolution component and OpenIE triple extraction component used in
Plumber static pipeline into Frankenstein for providing the same experimental
settings.

Static Pipeline for Scholarly KG. In order to assess how Plumber performs
on domain-specific use cases, we evaluate the static pipelines’ performance on a
scholarly knowledge graph. We use the COV-triples dataset for ORKG. To the
best of our knowledge, no baseline exists on information extractions of research
contribution descriptions over ORKG. Hence, we execute all static pipelines in
Plumber tailored to ORKG to select the best one as shown in Table 2 (COV-
triples rows). Plumber pipelines over ORKG extract statements determining
the reproductive number estimates for the COVID-19 infectious disease from
scientific articles as shown below.

@prefix orkg: <http :// orkg.org/orkg/resource/>.
@prefix orkgp: <http :// orkg.org/orkg/property/>.

orkg:R48100 orkgp:P16022 "2.68" .

In this example, orkg:R48100 refers to the city of Wuhan in China in the ORKG
and orkgp:P16022 is the property “has R0 estimate (average)”. The number
“2.68” is the reproductive number estimate. Although COV-triples is a small
and manually annotated dataset, we believe that it sheds some light on how

248 M. Y. Jaradeh et al.

Table 1. 10-fold CV of pipeline selection classifiers wrt. Precision, Recall, and F1
score.

Pipeline selection approach Dataset Knowledge graph Classification

P R F1

Frankenstein [39] WebNLG DBpedia 0.732 0.751 0.741

COV-triples ORKG 0.832 0.858 0.845

Plumber WebNLG DBpedia 0.877 0.900 0.888

COV-triples ORKG 0.901 0.917 0.909

Plumber will perform on different domains and datasets. Furthermore, it is
the first step in creating such a scholarly dataset for IE tasks.

Comparison of the Classification Approaches for Dynamic Pipeline
Selection. In this experiment, we study the effect of the transformer-based
pipeline selection approach implemented in Plumber against the pipeline selec-
tion approach of Frankenstein. For a comparable experimental setting, we re-
use Frankenstein’s classification approach in Plumber, keeping the underlying
components precisely the same. We perform a 10-fold cross-validation for the
classification performance of the employed approach. Table 1 indicates that the
Plumber pipeline selection significantly outperforms baselines across the board.

Performance Comparison for KG Information Extraction Task. Our
third experiment focuses on comparing the performance of Plumber against
previous baselines for an end-to-end information extraction task. The results in
Table 2 illustrate that the dynamic pipelines built using Plumber for KG infor-
mation extraction outperform the best static pipelines of Plumber as well as
the dynamically selected pipelines by Frankenstein (rows noted with dynamic).
The end-to-end baselines, such as Kertkeidka-chorn and Ichise [25]. We also
observe that in cross-domain experiments for COV-triples datasets, dynamically
selected pipelines perform better than the static pipeline. In the cross-domain
experiment, the static and dynamic Plumber pipelines are relatively better per-
forming than the other two KGs. Unlike components for DBpedia, components
integrated into Plumber for ORKG are customized for KG triple extraction.
We conclude that when components are integrated into a framework such as
Plumber aiming for the KG information extraction task, it is crucial to select
the pipeline based on the input text dynamically. The superior performance
of Plumber shows that the dynamic pipeline selection has a positive impact
agnostic of the underlying KG and dataset. This also answers our overall research
question.

4.3 Ablation Studies

Plumber and baselines render relatively low performance on all the employed
datasets. Hence, in the ablation studies our aim is to provide a holistic picture of
underlying errors, collective success, and failures of the integrated components.

Better Call the Plumber 249

In the first study, we calculate the proportion of errors in Plumber. The
modular architecture of the proposed framework allows us to benchmark each
component independently. We consider the erroneous cases of Plumber on the
test set of the WebNLG dataset. We calculate the performance (F1 score) of
the Plumber dynamic pipeline (cf. Table 2) at each step in the pipeline. The
results show that the coreference resolution components caused 21.54% of the
errors, 33.71% are caused by text triple extractors, 18.17% by the entity linking
components, and 26.58% are caused by the relation linking components.

We conclude that the text triple extractor components contribute to the
largest chunk of the errors over DBpedia. One possible reason for their limited
performance is that open-domain information extracting components were not
initially released for the KG information extraction task. Also, these components
do not incorporate any schema or prior knowledge to guide the extraction. We
observe that the errors mainly occur when the sentence is complex (with more
than one entity and predicate), or relations are not explicitly mentioned in the
sentence. We further analyze the text triple extractor errors. The error analysis
at the level of the triple subject, predicate, and object showed that most errors
are in predicates (40.17%) followed by objects (35.98%) and subjects (23.85%).

Further Analysis. Aiming to understand why IE pipelines perform with low
accuracy, we conduct a more in-depth analysis per IE task. In the first anal-
ysis, we evaluated each component independently on the WebNLG dataset.
Researchers [12,40] proposed several criterion for micro-benchmarking tool-
s/components for KG tasks (entity linking, relation linking, etc.) based on
the linguistic features of a sentence. We motivate our analysis based on the
following:

I) Text Triple Extraction: We consider the number of words (wc) in the
input sentence (a sentence is termed by “simple” with average word length of
7.41 [39]. Sentences with higher number of words than seven are complex sen-
tences). Furthermore, having a comma in a sentence (sub-clause) to separate
clauses is another factor. Atomic sentences (e.g., “cats have tails”) are a type of

Table 2. Overall performance comparison of static and dynamic pipelines for the KG
information extraction task.

System Dataset Knowledge graph Performance

P R F1

T2KG [25] WebNLG DBpedia 0.133 0.140 0.135

Frankenstein (Static) [39] WebNLG DBpedia 0.177 0.189 0.181

Plumber (Static) WebNLG DBpedia 0.210 0.225 0.215

COV-triples ORKG 0.403 0.423 0.413

Frankenstein (Dynamic) [39] WebNLG DBpedia 0.199 0.208 0.203

COV-triples ORKG 0.403 0.424 0.413

Plumber (Dynamic) WebNLG DBpedia 0.287 0.307 0.297

COV-triples ORKG 0.411 0.437 0.424

250 M. Y. Jaradeh et al.

sentence that also affects triples extractors’ behavior. Moreover, nominal relation
as in “Durin, son of Thorin” is another impacting factor on the performance.
Uppercase and lowercase mentions of the words (i.e., correct capitalization of
the first character and not the entire word) in a sentence are standard errors for
entity linking components. We consider this as a micro-benchmarking criteria.

II) Coreference Resolution: We focus on the length of the coreference chain
(i.e., the number of aliases for a single mention). Additionally, the number of clus-
ters is another criterion in the analysis. A cluster refers to the groups of mentions
that require disambiguation (e.g., “mother bought a new phone, she is so happy
about it” where the first cluster is mother → she and the second is phone →
it). The presence of proper nouns in the sentence is studied as well as acronyms.
Furthermore, the demonstrative nature of the sentence is also observed as a fac-
tor. Demonstrative sentences are the ones that contain demonstrative pronouns
(this, that, etc.).

III) Entity Linking: The number of entities in a sentence (e = 1,2) is a cru-
cial observation for the entity linking task. Capitalization of the surface form
is another criterion for micro-benchmarking entity linking tools. An entity is
termed as an explicit entity when the entity’s surface form in a sentence matches
the KG label. An entity is implicit when there is a vocabulary mismatch. For
example, in the sentence “The wife of Obama is Michelle Obama.”, the surface
form Obama is expected to be linked to dbr:Barack Obama and considered as
an implicit entity [40]. The last linguistic feature is the number of words (w) in
an entity label (e.g., The Storm on the Sea of Galilee has seven words).

IV) Relation Linking: Similar to the entity linking criteria, we focus on the
number of relations in a sentence (rel = 1,2). The type of relation (i.e., explicit, or
implicit) is another parameter. Covered relation (sentences without a predicate
surface form) is also used as a feature for micro-benchmarking: “Which compa-
nies have launched a rocket from Cape Canaveral Air Force station?” where the
dbo:manufacturing relation is not mentioned in the sentence. Covered relations
highly depend on common sense knowledge (i.e., reasoning) and the structure of
the KG [40]. Lastly, the number of words (w<=N) in a predicate surface form
is also considered.

Figure 3 illustrates micro-benchmarking of various Plumber components
per task. We observe that across IE tasks, the F1 score of the components varies
significantly based on the sentence’s linguistic features. In fact, there exist no
single component which performs equally well on all the micro-benchmarking
criteria. This observation further validates our hypothesis to design Plumber
for building dynamic information extraction pipelines based on the strengths
and weaknesses of the integrated components. We also note in Fig. 3 that all
the CR components report limited performance for the demonstrative sentences
(demonstratives). When there is more than one coreference cluster in a sentence,
all other CR components observe a discernible drop in F1 score. The Neural-
Coref [8] component performs best for proper nouns, whereas PyCobalt [18] per-
forms best for the acronyms feature (almost being tied by NeuralCoref). In the
TE task, Graphene [7] shows the most stable performance across all categories.

Better Call the Plumber 251

Fig. 3. Comparison of F1 scores per component for different IE tasks based on the
various linguistic features of an input sentence (number of entities, word count in a
sentence, implicit vs. explicit relation, etc.). Darker colors indicate a higher F1 score.

However, the performance of all components (except Dependency Parser) drops
significantly when the number of words in a sentence exceeds seven (wc> 7). Case
sensitivity also affects the performance and all components observe a noticeable
drop in F1 score for lowercase entity mentions in the sentence. Similar behavior
is observed for entity linking components where case sensitivity is a significant
cause of poor performance. When the sentence has one entity and it is implicit
(e = 1, implicit); all entity linking components face challenges in correctly linking
the entities to the underlying KG. Relation linking components also report lower
performance for implicit relations.

5 Discussion

Even though the dynamic pipelines of Plumber outperforms static pipelines,
the overall performance of Plumber and baselines for the KG information
extraction task remains low. Our detailed and exhaustive ablation studies sug-
gest that when individual components are plugged together, their individual
performance is a major error source. However, this behavior is expected, consid-
ering earlier research works in other domains also observe a similar trend. As in
2015 Gerbil framework [41] and in 2018 Frankenstein [39]. Within two years, the
community has released several components dedicated to solving entity linking
and relation linking [14,30,35], which were two loopholes identified by [39] for
the QA task.

We observe that state of the art components for information extraction still
have much potential to improve their performance (both in terms of runtime

252 M. Y. Jaradeh et al.

and F1 score). It is essential to highlight that some of the issues observed in
our ablation study are very basic and repeatedly pointed out by researchers in
the community. For instance, Derczynski et al. [12] in 2015, followed by Singh
et al. [39] in 2018, showed that case sensitivity is a main challenge for EL tools.
Our observation in Fig. 3 again confirms that case sensitivity of entity surface
forms remains an open issue even for newly released components. In contrast,
on specific datasets such as CoNLL-AIDA, several EL approaches reported F1
scores higher than 0.90 [43], showing that EL tools are highly customized to
particular datasets. In a real-world scenario like ours, the underlying limitations
of approaches are uncovered.

6 Conclusion and Future Work

In this paper, we presented the Plumber approach and framework for informa-
tion extraction. Plumber effectively selects the a suitable pipeline for a given
input sentence using the sentential contextual features and a state-of-the-art
transformer-based classification model. Plumber has a service-oriented archi-
tecture which is scalable, extensible, reusable, and agnostic of the underlying
KG. The core idea of Plumber is to combine the strengths of already existing
disjoint research for KG information extraction and build a foundation for a
platform to promote reusability for the construction of large-scale and semanti-
cally structured KGs. Our empirical results suggest that the performance of the
individual components directly impacts the end-to-end information extraction
accuracy.

This article does not focus on internal system architecture or employed algo-
rithms in a particular IE component to analyze the failures. The focus of the
ablation studies is to holistically study the collective success and failure cases
for the various tasks. Our studies provide the research community with insight-
ful results over two knowledge graphs, 33 components, 264 pipelines. Our work
is a step in the larger research agenda of offering the research community an
effective way for synergistically combining and orchestrating various focused IE
approaches balancing their strengths and weaknesses taking different application
domains into account. We plan to extend our work in the following directions:
i) extending Plumber to other KGs such as UMLS [5] and Wikidata [42]. ii)
addressing multilinguality with Plumber, and iii) creating high performing RL
components.

Acknowledgements. This work was co-funded by the European Research Council
for the project ScienceGRAPH (Grant agreement ID: 819536) and the TIB Leibniz
Information Centre for Science and Technology.

References

1. Angeli, G., Premkumar, M.J.J., Manning, C.D.: Leveraging linguistic structure for
open domain information extraction, pp. 344–354. ACL (2015)

Better Call the Plumber 253

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC-2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

3. Balog, K.: Entity linking. Entity-Oriented Search. TIRS, vol. 39, pp. 147–188.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93935-3 5

4. Bastos, A., et al.: RECON: relation extraction using knowledge graph context in
a graph neural network. In: Proceedings of The Web Conference (WWW) (2021)

5. Bodenreider, O.: The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic Acids Res. 32, D267–D270 (2004)

6. Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary
- A methodology for vocabulary-driven open question answering systems, vol. 9678,
pp. 625–641 (2016)

7. Cetto, M., Niklaus, C., Freitas, A., Handschuh, S.: Graphene: semantically-linked
propositions in open information extraction. In: Proceedings of the 27th COLING,
pp. 2300–2311 (2018)

8. Clark, K., Manning, C.D.: Deep reinforcement learning for mention-ranking coref-
erence models. In: Proceedings of the 2016 EMNLP, pp. 2256–2262 (2016)

9. Cui, W., Liu, S., Wu, Z., Wei, H.: How hierarchical topics evolve in large text
corpora. IEEE TVCG 20(12), 2281–2290 (2014)

10. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accu-
racy in multilingual entity extraction. In: Proceedings of the 9th I-Semantics (2013)

11. Delpeuch, A.: OpenTapioca: lightweight entity linking for Wikidata (2019)
12. Derczynski, L., et al.: Analysis of named entity recognition and linking for tweets.

Inf. Process. Manage. 51, 32–49 (2015)
13. Dong, T., Wang, Z., Li, J., Bauckhage, C., Cremers, A.B.: Triple classification using

regions and fine-grained entity typing. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 77–85 (2019)

14. Dubey, M., Banerjee, D., Chaudhuri, D., Lehmann, J.: EARL: joint entity and
relation linking for question answering over knowledge graphs. In: Vrandečić, D.,
et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 108–126. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00671-6 7

15. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information
extraction. In: Proceedings of the 2011 EMNLP, pp. 1535–1545, July 2011

16. Fensel, D., et al.: Towards LarKC: a platform for web-scale reasoning. In: IEEE
ICSC, pp. 524–529 (2008)

17. Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments
(by wikipedia entities), pp. 1625–1628 (2010)

18. Freitas, A., Bermeitinger, B., Handschuh, S.: Lambda-3/pycobalt: coreference res-
olution in python. https://github.com/Lambda-3/PyCobalt

19. Garcia, J., et al.: Constructing a shared infrastructure for software architecture
analysis and maintenance. In: ICSA (2021)

20. Gardent, C., Shimorina, A., Narayan, S., Perez-Beltrachini, L.: Creating training
corpora for NLG micro-planners, pp. 179–188 (2017)

21. Gashteovski, K., Gemulla, R., del Corro, L.: MinIE: minimizing facts in open infor-
mation extraction. In: Proceedings of the 2017 EMNLP, pp. 2630–2640 (2017)

22. Hou, Y., Jochim, C., Gleize, M., Bonin, F., Ganguly, D.: Identification of tasks,
datasets, evaluation metrics, and numeric scores for scientific leaderboards con-
struction. In: Proceedings of the 57th ACL, pp. 5203–5213 (2019)

23. Ibrahim, Y., Riedewald, M., Weikum, G., Zeinalipour-Yazti, D.: Bridging quanti-
ties in tables and text. In: 2019 IEEE 35th ICDE, pp. 1010–1021 (2019)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-319-93935-3_5
https://doi.org/10.1007/978-3-030-00671-6_7
https://github.com/Lambda-3/PyCobalt

254 M. Y. Jaradeh et al.

24. Jaradeh, M.Y., et al.: Open Research Knowledge Graph: Next Generation Infras-
tructure for Semantic Scholarly Knowledge. Marina Del K-CAP19 (2019)

25. Kertkeidkachorn, N., Ichise, R.: T2kg: an end-to-end system for creating knowledge
graph from unstructured text. In: AAAI Workshops, vol. WS-17 (2017)

26. Kim, J.D., et al.: OKBQA framework for collaboration on developing natural lan-
guage question answering systems (2017)

27. Liang, S., Stockinger, K., de Farias, T.M., Anisimova, M., Gil, M.: Querying knowl-
edge graphs in natural language (2020)

28. Liu, Y., Zhang, T., Liang, Z., Ji, H., McGuinness, D.: Seq2rdf: an end-to-end
application for deriving triples from natural language text (2018)

29. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach (2019)
30. Mihindukulasooriya, N., et al.: Leveraging semantic parsing for relation linking

over knowledge bases. ISWC (2020)
31. Morbidoni, C., Polleres, A., Tummarello, G., Le-Phuoc, D.: Semantic web pipes

(2007)
32. Niklaus, C., Cetto, M., Freitas, A., Handschuh, S.: A survey on open information

extraction. In: Proceedings of the 27th COLING, pp. 3866–3878 (2018)
33. Ponza, M., Del Corro, L., Weikum, G.: Facts that matter. In: Proceedings of the

2018 EMNLP, pp. 1043–1048. ACL (2018)
34. Raghunathan, K., et al.: A multi-pass sieve for coreference resolution. In: EMNLP

(2010)
35. Sakor, A., et al.: Old is gold: linguistic driven approach for entity and relation

linking of short text, pp. 2336–2346. ACL (2019)
36. Sakor, A., Singh, K., Patel, A., Vidal, M.E.: Falcon 2.0: an entity and relation

linking tool over wikidata. In: CIKM (2020)
37. Sanh, V., Wolf, T., Ruder, S.: A hierarchical multi-task approach for learning

embeddings from semantic tasks. In: Proceedings of the AAAI, vol. 33, pp. 6949–
6956 (2019)

38. Singh, K., et al.: Capturing knowledge in semantically-typed relational patterns to
enhance relation linking. In: Proceedings of the Knowledge Capture Conference,
K-CAP 2017, 4–6 December 2017, Austin, TX, USA, pp. 31:1–31:8 (2017)

39. Singh, K., et al.: Why reinvent the wheel: let’s build question answering systems
together, pp. 1247–1256. WWW 2018 (2018)

40. Singh, K., et al.: QaldGen: towards microbench marking of question answering
systems over knowledge graphs. In: ISWC, pp. 277–292 (2019)

41. Usbeck, R., Röder, M., et al., N.N.: GERBIL: general entity annotator benchmark-
ing framework. In: Proceedings of the 24th WWW, pp. 1133–1143 (2015)

42. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

43. Yang, X., et al.: Learning dynamic context augmentation for global entity linking.
In: EMNLP-IJCNLP, pp. 271–281 (2019)

44. Yao, L., Mao, C., Luo, Y.: KG-BERT: BERT for knowledge graph completion
(2019)

45. Yu, W., Li, Z., Zeng, Q., Jiang, M.: Tablepedia: automating pdf table reading
in an experimental evidence exploration and analytic system. WWW 2019, pp.
3615–3619 (2019)

Preprocessing Techniques for End-To-End
Trainable RNN-Based Conversational System

Hussein Maziad1, Julie-Ann Rammouz1, Boulos El Asmar2, and Joe Tekli1(B)

1 E.C.E. Department, Lebanese American University, Byblos 36, Lebanon
{hussein.maziad,julieann.rammouz}@lau.edu, joe.tekli@lau.edu.lb

2 Logistics Robotics, BMW Group, 80788 Munich, Germany
boulos.el-asmar@bmw.de

Abstract. Spoken dialogue system interfaces are gaining increasing attention,
with examples including Apple’s Siri, Amazon’s Alexa, and numerous other prod-
ucts. Yet most existing solutions remain heavily data-driven, and face limitations
in integrating and handling data semantics. They mainly rely on statistical co-
occurrences in the training dataset and lack a more profound knowledge integra-
tion model with semantically structured information such as knowledge graphs.
This paper evaluates the impact of performing knowledge base integration (KBI) to
regulate the dialogue output of a deep learning conversational system.More specif-
ically, it evaluates whether integrating dependencies between the data, obtained
from the semantic linking of an external knowledge base (KB),would help improve
conversational quality. To do so,we compare three approaches of conversation pre-
processing methods: i) no KBI: considering conversational data with no external
knowledge integration, ii) All Predicates KBI: considering conversational data
where all dialogue pairs are augmented with their linked predicates from the
domain KB, and iii) Intersecting Predicates KBI: considering conversational data
where dialogue pairs are augmented only with their intersecting predicates (to
filter-out potentially useless or redundant knowledge). We vary the amount of his-
tory considered in the conversational data, ranging from 0% (considering the last
dialogue pair only) to 100% (considering all dialogue pairs, from the beginning
of the dialogue). To our knowledge, this is the first study to evaluate knowl-
edge integration in the preprocessing phase of conversational systems. Results
are promising and show that knowledge integration – with an amount of history
ranging between 10% and 75%, generally improves conversational quality.

Keywords: Conversational dialogue systems · Data semantics · Knowledge
base · Knowledge integration · Conversational data preprocessing

1 Introduction

Spoken dialogue system interfaces are gaining increasing attention, with examples
including Apple’s Siri, Google Assistant, Microsoft’s Cortana, Amazon’s Alexa, and
numerous other products. Most existing solutions utilize deep learning, where recurrent
neural networks (RNNs) have been successfully adapted to dialogue systems through

© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 255–270, 2021.
https://doi.org/10.1007/978-3-030-74296-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_20

256 H. Maziad et al.

encoder-decoder architectures [31]. While the main advantage of deep (RNN) learning
is its reduced feature engineering, it often requires large amounts of labeled data (which
are not always available), and purely data-driven learning can lead to unexpected results
(depending on the quality of the training data) [20, 29]. In this context, recent works
in language representation and processing, e.g., [1, 5, 12, 16], have investigated the
integration of external domain knowledge to augment the training of deep learners. Yet
their applications and related data preprocessing do not target conversational dialogue
systems.

The development of an RNN-based dialogue system consists of four main steps: i)
preprocessing the conversational dataset at hand to use as the training data, ii) building
the RNN responsible for inferring dialogue policies from the conversational data, iii)
training themodelwith andwithout testing and eventually preprocessing external knowl-
edge, and iv) representing the external knowledge alongside the conversational data to
compare the obtained results. In this context, data preprocessing techniques for end-to-
end RNN-based conversational systems seem to lack common grounds and comparative
evaluations. Results in [24] show that data representation plays a crucial role in the per-
formance of a neural network. In other words, the initial preprocessing step, including
input data and context representation, is of central importance in building an end-to-end
RNN-based dialogue system, and needs to be properly designed and fine-tuned before
diving deeper into external knowledge integration and processing.

This paper evaluates the impact of performing knowledge base integration (KBI)
to regulate the dialogue output of a deep learning conversational system. More specif-
ically, it evaluates whether integrating dependencies between the data, obtained from
the semantic linking of an external knowledge base (KB), would help improve con-
versational quality. In contrast with most existing solutions (cf. Section 2), where the
authors rely solely on the quality of the training data to improve conversational quality,
this study aims at evaluating whether integrating additional dependencies between the
data, obtained from the semantic linking of an external KB, would help improve con-
versational quality. To do so, we evaluate and compare three approaches of conversation
preprocessing methods: i) No KBI: considering conversational data with no external
knowledge integration, ii) All Predicates KBI: considering conversational data where
all dialogue pairs are augmented with their linked predicates from the domain KB, and
iii) Intersecting Predicates KBI: considering conversational data where dialogue pairs
are augmented only with their intersecting (common) predicates (in order to reduce
and filter-out potentially useless or redundant knowledge). For each of the mentioned
approaches, we vary the amount of history considered in the conversational data, rang-
ing from 0% (considering the last dialogue pair only) to 100% (considering all dialogue
pairs, from the beginning of the dialogue). To our knowledge, this is the first study to
evaluate knowledge integration in the preprocessing phase of conversational systems.
Results are promising and show that knowledge integration – with an amount of history
ranging between 10% and 75%, generally improves conversational quality.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
related works. Section 3 describes our proposal and the suggested conversation prepro-
cessing methods. Section 4 describes our experimental evaluation and results, before
concluding with future work in Sect. 5.

Preprocessing Techniques for End-To-End Trainable RNN 257

2 Related Works

2.1 Conversational Systems

The main functionality of a spoken dialogue system consists in decoding text utterances
to extract semantic information through spoken language understanding techniques [34].
The semantic representation of every utterance is then processed by a dialogue state
tracker, which estimates the dialogue state in order to decide what action to take, accord-
ing to a pre-defined dialogue policy. Such modular architectures depend to a large extent
on a series of hierarchical handcrafted rules to adapt the dialogue policy according
to the detected entities and to the utterance intent. This may work, with much effort,
for restricted domains where the number of intents is generally limited. However, the
extraction of semantic information becomesmuchmore intricate when shifting to amore
general domain environment, or when the dialogue is required to cover more features
during the conversation. Providing an exhaustive list of references for such traditional
dialogue systems is out of the scope of the current work. However, recent advances in
end-to-end training of neural networks, along with the availability of large-scale conver-
sation datasets [23] has permitted to directly infer dialogue policy from conversational
data. Notably, recurrent neural networks (RNNs) have been successfully adapted to dia-
logue systems through encoder-decoder architectures [31]. While the main advantage
of (deep) RNN learning is its reduced feature engineering, yet it often requires large
amounts of labeled data (which are not always available), and the purely data-driven
learning can lead to unexpected results (depending on the quality of the training data)
[20, 29]. However, integrating domain knowledge, in the form of an external knowl-
edge base (KB) semantic linking approach – which we refer to as KB Integration (KBI)
– has many advantages, including: i) resolving ambiguity in language, ii) performing
semantic-aware data integration, and iii) linking conversations with relevant documents
and meta-data through semantic search and semantic similarity evaluation. KBI does
introduce an increase in training time and computation, which might not be a major
concern since the training is done offline, prior to system run-time.

2.2 Generative Sequence-to-Sequence Deep Learning Models

Generative sequence-to-sequence (seq2seq) models follow the line initiated by Ritter
et al. [22] who treats the generation of conversational dialogue as a statistical machine
translation problem. Seq2seq models have recently shown promising results, mapping
complicated structures together. This has direct applications in natural language under-
standing [28], and in dialogue response generation by mapping queries with responses
[26], such as in recent works [25, 26] where RNNs have been used to model dialogue in
short conversations. Seq2seq models have also been used for neural machine translation
[2, 15, 28], and have achieved remarkable results in syntactic constituency parsing [30],
and in image captioning [32]. As it is the case for most deep learning models, seq2seq
requires little feature engineering and domain specificity whilst matching or surpassing
state-of-the-art results. However, thesemodels, being based on recurrent neural networks
(RNNs), suffer from the vanishing gradient problem, that’s why variants of Long Short-
Term Memory (LSTM) RNNs [11] are mostly used. Yet it is often very hard to control

258 H. Maziad et al.

the output of such models, primarily determined by statistical co-occurrences in the used
training data with limited synthesis of additional external knowledge (cf. Section 2.3).
Furthermore, such approaches are still unable to generate coherent responses [17] which
remains a major drawback for conversational dialogue applications.

2.3 Deep Neural Models with External Knowledge

Incorporating external knowledgewithin deepneuralmodels has beenof increasing inter-
est recently, promising to enhance generalization, increase interpretability, and control
network output. Recent works in [12, 13], have focused on transferring logical knowl-
edge into diverse neural network architectures by imposing posterior constraints on the
network. Also, the authors in [5] have used a structured label relation graph to improve
object classification. Other approaches integrate domain knowledge on training time,
consist in integrating first order logic with Bayesian models [6], or deriving probabilis-
tic graphical models for Markov logic networks from a set of rules. Also, in [1] a novel
neural knowledge language model was developed, bringing symbolic knowledge from a
knowledge graph into the expressive power of RNN language models. In a related study,
the authors in [17] improve generative models by learning external knowledge, repre-
sented as distributed embeddings, and refined during training time to increase model
consistency and infer speaker-specific characteristics. External knowledge integration
approaches have also been investigated with neural networks using external memory
[4, 14, 27], where a long-term memory structure acts as a (dynamic) knowledge base.
However, the latter approaches focus on learning attention models over unstructured
data, whereas we aim to link to entities using a structured knowledge base (KB).

3 Proposal: Preprocessing Techniques for Conversational RNN

We process the dialogue as a seq2seq learning problem within a neural encoder-decoder
architecture. The overall architecture of our approach is shown in Fig. 1.

Fig. 1. Simplified activity diagram describing our approach

3.1 Data Representation

We adopt a typical data representation model where dialogue utterances are represented
as a sequence of user requests u and system responses s: (u1, s1), (u2, s2), …, (uk,

Preprocessing Techniques for End-To-End Trainable RNN 259

sk), and k represents the number of turns in the dialogue [33]. More specifically, we
first parse the raw text, split it into conversations, and then split every conversation into
turns, where every turn consists of a pair of user utterance and the corresponding system
response. In order to easily process the dialogue within a seq2seq learning problem, we
represent each word in every utterance and reply as a one-hot vector1. Additionally, we
use a unique index per word to represent the input and targets of the network.

Note that the different preprocessing techniques considered in this studywill produce
different variations of the above-mentioned data representation, which we present and
discussion in the following sections.

3.2 Context and History

We define the context of a dialogue training pair (ui, si) as ([u1, u2,…, ui-1, ui], si),
where the network is fed: a concatenation of all previous user utterances (i.e., the user
request history) up until the current one ui, as well as the current system response si.
Accordingly, we define the history of a dialogue as the context of the dialogue starting
from the present utterance, by specifying the percentage of the previous utterance that
will be included in the following one. For instance, ([u150%, u250%,…, ui-150%, ui], si)
represents 50% of (ui, si)’s dialogue history where ui-150% represents half of ui-1′s textual
tokens, and so forth. Similarly, ([u1100%, u2100%,…, ui-1100%, ui], si) represents 100% of
the dialogue history, and is equivalent to the complete context of training pair (ui, si),
i.e., ([u1, u2,…, ui-1, ui], si).

3.3 RNN Set-up

Weutilize a typical seq2seqnetworkwhere twoRNNswork together in order to transform
one sequence into another. The first network, i.e., the encoder, reads the input sequence
and condenses it into a vector using typical one-hot-encoding. The decoder network reads
the vector and its context and transforms it into an output sequence. More specifically,
the decoder network accepts as input the context vector which includes the history of
the entire sequence. At every decoding stage, the decoder is given an input token and
a hidden state where the context vector serves as an initial hidden state. A problem
with typical decoders is that they process the complete context vectors which carry the
dialogue’s entire sequence (100% history). For this reason, and in order to improve our
model, we add an attentionmechanismwhich teaches the decoder to focus on a particular
part of the input sequence. To do so, we compute a set of attention weights, and multiply
them by the encoder output vectors to create a weighted combination which contains
information about the specific part of the input sequence that helps the decoder produce
the right output sequence. The attention weights are calculated using an additional feed-
forward layer, which accepts as input the decoder’s input and hidden states and produces
the weights accordingly.

1 It is called one-hot because only one bit is “hot” or TRUE at any time. For example, a 3-bit one-
hot encoding would have three states: 001, 010, and 100, compared with 23 binary combinations
obtained with binary encoding. Note that other encodings such as word2vec and GloVe vetor
representations can be used.

260 H. Maziad et al.

3.4 Knowledge Representation

Werepresent domain knowledge in the formof amachine readable knowledge base (KB),
consisting of nodes and edges, where nodes represent groups of words/expressions and
edges represent the semantic links connecting the nodes (synonymy, hyponymy (Is-
A), meronymy (Part-Of), etc. [19]). The latter can also be represented as sets of triplets:
concept1-relationship-concept2, or as more commonly known: subject-predicate-object
triplets [10] (cf. Fig. 2).

Fig. 2. Sample KB tailored base on DSRC2 [7]

In the following, we evaluate the impact of performing KB integration (KBI) at the
data preprocessing stage, to regulate the dialogue output of a conversational system.

3.5 Data Preprocessing Techniques

As motivated previously, data preprocessing in conversational systems is of central
importance in building an end-to-end RNN approach. For this reason, we propose and
evaluate three methods for KBI at the input and output of the encoder and decoder net-
works: i) No KBI, ii) All Predicates KBI, and iii) Intersecting Predicates KBI. These
methods can be applied to preprocess the training, the validation, and the testing data
sets.

3.5.1 No Knowledge Base Integration (no KBI)

This is the elementary approach where the dialogue exchange is represented in its most
basic form: (u1, s1), (u2, s2),… (uk, sk), i.e., as a sequence of pairs of user utterance u
and system reply s tokens. We do not consider any external knowledge here and vary
dialogue history to include more or less of the previous user utterances following our
context model: ([u1, u2„…, ui], si) where the system is fed an amount of previous user
utterances following user-specified history percentage (cf. Sect. 3.2).

Consider for instance the examples in Table 1: 0% history in considered in Table
1.a where no previous user utterances are included in the training pairs, 50% history is
considered in Table 1.b where the first half of the previous user utterances is included

Preprocessing Techniques for End-To-End Trainable RNN 261

in the training pair, and 100% history is considered in Table 1.c where all the previous
user utterances are included in the training pair. By observing this representation, one
can notice that the size of the training data increases significantly with the increase in
the percentage of history. This will impact both training speed and quality as we will
observe in the experimental evaluation section.

Table 1. Sample examples for No KBI preprocessing approach

Text in red represents the additions from previous user utterance history

a. 0% history
User UtterancePair metsyS Response

1 Hello Hi, how can I help you?

2 I would like to book a reservation at an expensive
restaurant in Paris

Sure, I will look one up

3 enisiucaevahuoyoD>ecneliS<
in mind?

4 lItuobawoh,yakOtaergebdluownailatI
Sorrentino?

b. 50% history
User UtterancePair metsyS Response

1 Hello Hi, how can I help you?

2 I would like to book a reservation at an expensive
restaurant in Paris

Sure, I will look one up

3 <Silence> I would like to book Do you have a cuisine in
mind?

4 Italian would be great <Silence> I would Okay, how about Il
Sorrentino?

c. 100% history No KBI
User UtterancePair System Response

1 Hello Hi, how can I help you?

2 I would like to book a reservation at an expensive
restaurant in Paris Hello

Sure, I will look one up

3 <Silence> I would like to book a reservation at an
expensive restaurant in Paris Hello

Do you have a cuisine in
mind?

4 Italian would be great <Silence> I would like to book a
reservation at an expensive restaurant in Paris Hello

Okay, how about Il
Sorrentino?

All examples presented in the paper are prepared based on the real dialogues from the restaurant
reservation system dataset: DSTC2 [9], using the dataset’s reference KB (cf. Fig. 2).

3.5.2 All Predicates KBI

Our ambition is to integrate knowledge at the level of the preprocessing step. As such,
we introduce the All predicates KBI representation, which scans each word token in
the current user utterance to identify matching objects in the reference KB. Then, it
intersects the subjects connected with the matching object predicates and appends them
to the user utterance. It also allows appending a varying amount of dialogue history to
include more or less of the previous user utterances with their augmented KB subjects.

Consider in Table 2 an extension of the examples from Table 1: 10% history in Table
1a where no previous user utterances are included in the training pairs, 50% history in

262 H. Maziad et al.

Table 1b where the first half of the previous user utterances is included in the training
pair, and 100% history in Table 1c where all the previous user utterances are included
in the training pair.

Table 2. Sample examples extended from Table 1, to represent All Predicates KBI preprocessing
approach

Text in red represents the additions from previous user utterance history
Text in blue represents the additions of subject tokens from the knowledge base

Test underlined represents a matching user utternance with an object from the knowledge base

a. 0% history
User UtterancePair System Response

1 Hello Hi, how can I help you?

2 I would like to book a reservation at an expensive
restaurant in Paris Liza Chez_Pippo il_Sorrentino Sure, I will look one up

3 <Silence> Do you have a cuisine in
mind?

4 Italian would be great Il_Sorrentino Napoli Okay, how about
Il_Sorrentino?

b. 50% history
User UtterancePair System Response

1 Hello Hi, how can I help you?

2 I would like to book a reservation at an expensive
restaurant in Paris Liza Chez_Pippo il_Sorrentino Sure, I will look one up

3 <Silence> I would like to book a reservation at an Do you have a cuisine in
mind?

4 Italian would be great Il_Sorrentino Napoli <Silence> I
would like to

Okay, how about
Il_Sorrentino?

c. 100% history
User UtterancePair System Response

1 Hello Hi, how can I help you?

2 I would like to book a reservation at an expensive
restaurant in Paris Liza Chez_Pippo il_Sorrentino Hello Sure, I will look one up

3
<Silence> I would like to book a reservation at an
expensive restaurant in Paris Liza Chez_Pippo
il_Sorrentino Hello

Do you have a cuisine in
mind?

4
Italian would be great Il_Sorrentino Napoli <Silence> I
would like to book a reservation at an expensive restaurant
in Paris Liza Chez_Pippo il_Sorrentino Hello

Okay, how about
Il_Sorrentino?

While the All Predicates KBI approach seems promising, it presents a major draw-
back: for every single matching object token between a training pair and the reference
KB, this approach will retrieve all matching subjects whose number might be signifi-
cantly large, depending on the size of the KB. Consider for instance the example in Table
3, where certain pairs contain hundreds of matching entries, while other pairs contain
only a few. This makes the dialogue unbalanced in terms of the number of terms per
sequence. While Table 3 presents a case for 0% history, the problem will be further
exacerbated when including more of the conversation history, as shown in Table 4.

Note that in the last pair of Table 4, we have thousands of entries, whichwill probably
make the training model overfitted, and will thus reflect badly on the results. In other

Preprocessing Techniques for End-To-End Trainable RNN 263

words, a single training pair with only one matching object token might end up encom-
passing a huge number of subject tokens, resulting in crowded (oversized) training pairs
which would negatively affect both training time and quality (including potentially noisy
data entries).

Table 3. Crowded data example for All Predicates KBI with 0% history

User UtterancePair System Response
1 Hello Hi, how can I help you?

2 I would like to book a reservation at an expensive
restaurant in Paris Liza Chez_Pippo il_Sorrentino Sure, I will look one up

3 <Silence> Do you have a cuisine in
mind?

4 Italian would be great (250 italian restaurants augmented
here…)

Okay, how about
Il_Sorrentino?

5 I think I will go for Lebanese instead
(250 Lebanese restaurants augmented here…)

Sure, I have found ten in
Paris

6 <Silence> Anything else?

7 I would rather have them in madrid (300 restaurants in
madrid augmented here…)

I will look for restaurants
in madrid

8
Please make sure the restaurants are in a moderate price
range (1500 moderately priced restaurants augmented
here…)

I will have them ready in
no time

Table 4. Crowded data example for All Predicates KBI with 100% history

User UtterancePair System Response
1 Hello Hi, how can I help you?

2 I would like to book a reservation at an expensive
restaurant in Paris Liza Chez_Pippo il_Sorrentino Hello Sure, I will look one up

3
<Silence> I would like to book a reservation at an
expensive restaurant in Paris Liza Chez_Pippo
il_Sorrentino Hello

Do you have a cuisine
in mind?

4 Italian would be great (250 Italian restaurants augmented
here…) + (18 terms from pair 3)

Okay, how about
Il_Sorrentino?

5
I think I will go for Lebanese instead
(250 Lebanese restaurants augmented here…) + (~250
from pair 4)

Sure, I have found ten
in Paris

6 <Silence> + (~500 from pair 5) Anything else?

7 I would rather have them in madrid (300 restaurants in
madrid augmented here…) + (~500 from pair 6)

I will look for
restaurants in madrid

8
Please make sure they are in moderate price range (1500
moderately priced restaurants augmented here…) + (~800
from pair 5)

I will have them ready
in no time

3.5.3 Intersecting Predicates KBI

By closely analyzing the example in Table 4, one can realize that the All Predicates KBI
approach does not accumulate the user’s choices on every new request. For instance, if
the user asks for “Italian” in pair #3, and then “expensive” in pair #4, we would expect
to have in pair #4 restaurants that intersect both descriptions, i.e., “expensive Italian”

264 H. Maziad et al.

restaurants, instead of retrieving restaurants of each description separately. To solve this
problem, as well as the data crowding issue discussed in the previous sub-section, we
introduce a dedicated data structure that maps two entries: one storing keys as the KB
predicates, and the other storing values as the KB objects. The contents of this map
are updated with new values as the system iterates over each user-system pair. At each
pair, we return the intersection of the subjects corresponding to these predicates if the
pair contains a predicate itself. We refer to this enhanced approach as the Intersection
Predicated KBI solution.

Table 5. Applying Intersecting Predicates KBI on the example from Tables 3 and 4.

a. 0% history

Pair User Utterance Map System Response

1 Hello { hasPrice: “”, hasLocation: “”,
hasCuisine : “” }

Hi, how can I help
you?

2

I would like to book a
reservation at an expensive
restaurant in Paris Liza
Chez_Pippo il_Sorrentino

{ hasPrice: “expensive”, hasLocation:
“Paris”, hasCuisine : “” }

Sure, I will look one
up

3 <Silence> { Price: “expensive”, hasLocation:
“Paris”, hasCuisine : “” }

Do you have a
cuisine in mind?

4 Italian would be great
Il_Sorrentino

{ hasPrice: “expensive”, hasLocation:
“Paris”, hasCuisine : “Italian” }

Okay, how about
Il_Sorrentino?

b. 50% history

Pair User Utterance Map System Response

1 Hello { hasPrice: “”, hasLocation: “”,
hasCuisine : “” }

Hi, how can I help
you?

2

I would like to book a
reservation at an expensive
restaurant in Paris Liza
Chez_Pippo il_Sorrentino

{ hasPrice: “expensive”, hasLocation:
“Paris”, hasCuisine : “” }

Sure, I will look one
up

3 <Silence> Liza
Chez_Pippo

{ hasPrice: “expensive”, hasLocation:
“Paris”, hasCuisine : “” }

Do you have a
cuisine in mind?

4 Italian would be great
Il_Sorrentino

{ hasPrice: “expensive”, hasLocation:
“Paris”, hasCuisine : “Italian” }

Okay, how about
Il_Sorrentino?

c. 100% history

Pair User Utterance Map System Utterance

1 Hello { hasPrice: “”, hasLocation: “”,
hasCuisine : “” }

Hi, how can I help
you?

2

I would like to book a
reservation at an expensive
restaurant in Paris Liza
Chez_Pippo il_Sorrentino

{ hasPrice: “expensive”, hasLocation:
“Paris”, hasCuisine : “” }

Sure, I will look one
up

3 <Silence> Liza
Chez_Pippo Sorrentino

{ hasPrice: “expensive”, hasLocation:
“Paris”, hasCuisine : “” }

Do you have a
cuisine in mind?

4 Italian would be great
Il_Sorrentino

{ hasPrice: “expensive”, hasLocation:
“Paris”, hasCuisine : “Italian” }

Okay, how about
Il_Sorrentino?

Preprocessing Techniques for End-To-End Trainable RNN 265

Using the same examples from Tables 3 and 4, we showcase the following three
samples using the Intersecting Predicates KBI approach. In Table 5b (50% history), we
update the map at each pair with the new objects, and then insert the intersection of the
corresponding subjects at the end of the same pair. If the pair does not contain an object,
then we insert 50% of the previous objects. The same goes for Table 5c (100% history).

One can realize that Intersecting Predicates KBI allows to gradually converge toward
the subject tokens that match the user’s evolving requests, and thus significantly reduces
the amount of knowledge added to the individual training pairs, compared with All
Predicates KBI described previously.

4 Experimental Evaluation

4.1 Experimental Data

To evaluate our approach, we utilize the Dialogue State Tracking Challenge 2 (DSTC2)
dataset [9] consisting of restaurant reservation user-system conversation pairs. These
dialogues are derived from a real-world system rendering the data raw and real, while
training a task-oriented dialogue system. The dialogs come from 6 conditions consisting
of the combinations of 3 dialog managers and 2 speech recognizers. There are roughly
500 dialogs in each condition, of average length 7.88 turns from 184 unique users.
In our current study, we use the raw version of dataset from [3] which only includes
user and system utterances2. We also utilize DSTC2′s underlying KB3 (cf. Fig. 2) as
the reference source of knowledge when performing KBI. It consists of 8400 subject-
predicate-object triplets where subjects represent restaurant names, predicates represent
semantic relationships, e.g., hasPrice, hasLocation, or hasCuisine, and objects represent
relationship properties, e.g., price could be cheap, moderate, or expensive. For better
visualization and understanding of the results, data is pre-processed and cleaned such
that all API calls are removed before using the data in any further steps.

4.2 Experimental Results

The evaluation of conversational dialogue systems remains an open problem. With the
lack of structure in the dialogues, it remains unclear which attributes of the conversa-
tion are relevant to measure the response’s quality. Evaluations can be of two types:
i) coarse-grained, which focus on the appropriateness (accuracy) of a response, and ii)
fine-grained, which focus on the specific behaviors a dialogue system should manifest
(such as perceived human likeness) [6]. In this study, we adopt the former approach
(coarse-grained) and utilize k-fold cross validation applied on each of the three prepro-
cessing variations: No KBI, All Predicates KBI, and Intersecting Predicates KBI. For
each variation, we vary the amount of conversational history from 0%, 10%, 25%, 50%,
75%, to 100%. Also, for each amount of history, we perform two degrees of k-fold: k

2 Available online at: https://github.com/HLTCHKUST/Mem2Seq/tree/master/data/dialog-bAbI-
tasks

3 https://github.com/HLTCHKUST/Mem2Seq/blob/master/data/dialog-bAbI-tasks/dialog-babi-
kb-all.txt

https://github.com/HLTCHKUST/Mem2Seq/tree/master/data/dialog-bAbI-tasks
https://github.com/HLTCHKUST/Mem2Seq/blob/master/data/dialog-bAbI-tasks/dialog-babi-kb-all.txt

266 H. Maziad et al.

a. Results for k=5

b. Results for k=10

60.89
61.03

64.61 65.38 68.28

78.19

51.89

63.59
69.65 71.39 71.21 71.51

64.88

80.47 81.19 83.63 80.95 80.34

0

10

20

30

40

50

60

70

80

90

0 10 25 50 75 100

Ac
cu

ra
cy

 (%
)

% of History

No KBI All Predicates KBI Intersec ng Predicates KBI

60.94

61.02
64.35 65.63 68.44

78.30

51.10

65.03
69.70 72.13 72.05 73.13

65.23

80.80 80.89 83.69 81.29 80.74

0

10

20

30

40

50

60

70

80

90

0 10 25 50 75 100

Ac
cu

ra
cy

 (%
)

% of history

No KBI All Predicates KBI Intersec ng Predicates KBI

Fig. 3. Accuracy of conversation results applied on DSTC2 dataset, using k-fold cross validation
with k = 5 and k = 10

= 5 and k = 10. This brings the total number of trained models to 3*6*(5 + 10) =
270, requiring a total number of 2,845 h to train. For every trained model, we compare
the generated system response with the expected response obtained from the reference
dataset, and then compute the number of matching responses (i.e., hits). We then eval-
uate accuracy as the sum of all the matching responses (hits) over the total number of
compared responses. Fig. 3 shows the average accuracy levels for the different iterations
of each k-fold degree.

Comparing No KBI with All Predicates KBI: we notice that performing KBI gen-
erally improves overall accuracy, except at the boundaries: with 0% and 100% history.
This is probably due to the following: i) at 100% history, many subject tokens are added
to every training pair which leads to overfitting; ii) at 0% history, some user-system

Preprocessing Techniques for End-To-End Trainable RNN 267

pairs contain thousands of subjects from the KB while other pairs contain only a few
or none at all, which renders the training data unbalanced and unpredictable; hence iii)
an amount of history between the boundaries allows the training data to become more
balanced which generally produces better results.

Comparing Intersecting Predicates KBI with alternatives: This approach yields the
highest accuracy levels for every history %. This is because it keeps the dataset balanced
while making most of the KB by converging to a handful of useful subject tokens as
the dialogue evolves. One important observation is that the accuracy of Intersecting
Predicates KBI peaks almost in the middle of the history % (at around 50%). This
concurs with the observations made in the previous paragraph regarding the need for a
balanced training set to improve training quality.

a. Comparing all three approaches

b. Comparing No KBI and Interescting Predicates KBI only

0

500

1000

1500

2000

2500

0 10 25 50 75 100

Tr
ai

ni
ng

m

e
(in

 m
in

s)

% of History

No KBI All Predicates KBI Intersec ng Predicates KBI

200

250

300

350

400

450

0 10 25 50 75 100

Tr
ai

ni
ng

m

e
(in

 m
in

s)

% of History

No KBI Intersec ng Predicates KBI

Fig. 4. Training time of conversation results applied on DSTC2 dataset, using k-fold cross val-
idation with k = 5 (similar results are obtained for k = 10, with an average 5% increate in
time)

268 H. Maziad et al.

Concerning training time, results in Fig. 4 show that theAll Predicates KBI approach
introduces a significant increase in training time compared with its counterparts. This
is due to the substantial increase in training data with the inclusion of all matching
predicates in every training pair, resulting in oversized training pairs which require more
time to process and train. While the Intersection Predicates KBI approach requires more
training time than itsNo KBI counterpart (cf. Fig. 4b), yet the two approaches are almost
undiscernible compared with All Predicated KBI (cf. Fig. 4a).

5 Conclusion

Knowledge base integration (KBI) in the training of sequence-to-sequence (seq2seq)
generative conversational approaches has not been widely explored so far. In this work,
we evaluate and compare three approaches of conversational data preprocessing that
involve knowledge integration: i) No KBI: considering dialogue pairs with no external
knowledge integration, ii) All Predicates KBI: where all dialogue pairs are augmented
with their linked predicates from the KB, and iii) Intersecting Predicates KBI: where
dialogue pairs are augmented only with their intersecting predicates from the KB. The
latter are prerequisites to generating semantically structured text integrated at training
time. Results show that KBI generally improves overall accuracy, except at the bound-
aries: with 0% and 100% history where the models tend to become either unbalanced
due to discrepancies in the sizes of the training pairs (with 0%), or overfitted (at 100%).
Intersecting Predicates KBI produces the best accuracy levels since it tends to keep the
training dataset balanced, compared with its All Predicates KBI alternative.

Future work includes evaluating KBI with different conversational models such as
BERT [21], XLNet [35], and RoBERTa [18], and comparing them with our seq2seq
RNN-based solution. This also requires combiningmultiple conversational datasets from
different domains, along with their reference KBs, to analyze how different models react
accordingly. The latter is an important step towards creating a general purpose spoken
dialogue system. Considering KBI with multilingual solutions, e.g., [7, 8], is another
future direction.

References

1. Ahn, S., et al.: A Neural Knowledge Language Model (2016). CoRR abs/1608.00318
2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align

and translate. In: International Conference on Learning Representations (ICLR) (2015)
3. Bordes, A., Boureau, Y., Weston, J.: Learning end-to-end goal-oriented dialog. In: Interna-

tional Conference on Learning Representations (ICLR) (2017)
4. Collier,M., Beel, J.: Implementing neural turingmachines. In:Kůrková,V.,Manolopoulos,Y.,

Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 94–104.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_10

5. Deng, J., et al.: Large-scale object classification using label relation graphs. In: Fleet, D.,
Pajdla, T., Schiele,B., Tuytelaars, T. (eds.) ECCV2014.LNCS, vol. 8689, pp. 48–64. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_4

6. Deriu, J., et al.: Survey on EvaluationMethods for Dialogue Systems (2019). CoRR abs/1905.
04071

1608.00318
https://doi.org/10.1007/978-3-030-01424-7_10
https://doi.org/10.1007/978-3-319-10590-1_4
1905.04071

Preprocessing Techniques for End-To-End Trainable RNN 269

7. Haraty, R., ElAriss, O.: Lebanese colloquial arabic speech recognition. In: ISCA International
Conference on Computer Applications in Industry and Engineering (CAINE), pp. 285–291
(2005)

8. Haraty, R., Nasrallah, R.: Indexing arabic texts using association rule data mining. Libr. Hi
Tech 37(1), 101–117 (2019)

9. Henderson, M., Williams, J., Thomson, B.: The second dialog state tracking challenge. In:
SIGDIAL Conference, pp. 263–272 (2014)

10. Ticona-Herrera, R., Tekli, J., Chbeir, R., Laborie, S., Dongo, I., Guzman, R.: Toward RDF
normalization. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.)
Conceptual Modeling, pp. 261–275. Springer International Publishing, Cham (2015). https://
doi.org/10.1007/978-3-319-25264-3_19

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

12. Hu, Z., et al.: Harnessing deep neural networks with logic rules. In: Annual Meeting of the
Association for Computational Linguistics (ACL) (2016)

13. Hu, Z., et al.: Deep neural networks with massive learned knowledge. In: Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1670–1679 (2016)

14. Jafari, R., Razvarz, S., Gegov, A.: End-to-end memory networks: a survey. In: Arai, K.,
Kapoor, S., Bhatia, R. (eds.) SAI 2020. AISC, vol. 1229, pp. 291–300. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-52246-9_20

15. Kalchbrenner, N., Blunsom, P.: Recurrent continuous translation models. In: Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1700–1709 (2013)

16. Karaletsos, T., Belongie, S.J., Rätsch, G.: When crowds hold privileges: bayesian unsuper-
vised representation learningwith oracle constraints. In: InternationalConference onLearning
Representations (ICLR) (2016)

17. Li, J., et al.: A persona-based neural conversation model. In: Annual Meeting of the
Association for Computational Linguistics (ACL) (2016)

18. Liu, Y., et al.: RoBERTa: A Robustly Optimized BERT Pretraining Approach (2019). CoRR
abs/1907.11692

19. Miller, G.A., Fellbaum, C.: WordNet then and now. Lang. Resour. Eval. 41(2), 209–214
(2007)

20. Nguyen, A., Yosinski, J., Clune J.: Deep neural networks are easily fooled: high confidence
predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 427–436 (2015)

21. Qu,C., et al.: BERTwith history answer embedding for conversational question answering. In:
Proceedings of the 42nd International ACMSIGIRConference onResearch andDevelopment
in Information Retrieval, pp. 1133–1136 (2019)

22. Ritter, A., Cherry, C., Dolan, W.: Data-driven response generation in social media. In: Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pp. 583–593
(2011)

23. Serban, J., Lowe, R., et al.: A survey of available corpora for building data-driven dialogue
systems: the journal version. Dial. Discourse 9(1), 1–49 (2018)

24. Shaik, R., et al.: The analysis of data representation techniques for early prediction of breast
cancer. Int. J. Pure Appl. Math., 1311–8080 (2017)

25. Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation. In: Annual
Meeting of the Association for Computer Linguistics (ACL), pp. 1577–1586 (2015)

26. Sordoni, A., et al.: A neural network approach to context-sensitive generation of con-
versational responses. In: North American Chapter of the Association for Computational
Linguistics (NAACL), pp. 196–205 (2015)

27. Sukhbaatar, S., et al.: End-to-end memory networks. In: Neural Information Processing
Systems (NeurIPS), pp. 2440–2448 (2015)

https://doi.org/10.1007/978-3-319-25264-3_19
https://doi.org/10.1007/978-3-030-52246-9_20
1907.11692

270 H. Maziad et al.

28. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Neural Information Processing Systems (NeurIPS), pp. 3104–3112 (2014)

29. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on
Learning Representations (ICLR) (2013)

30. Vinyals, O., et al.: Grammar as a foreign language. In: Neural Information Processing Systems
(NeurIPS), pp. 2773–2781 (2015)

31. Vinyals, O., Le, Q.: A Neural Conversational Model (2015). CoRR abs/1506.05869
32. Vinyals, O., et al.: Show and tell: a neural image caption generator. In: Computer Vision and

Pattern Recognition (CVPR), pp. 3156–3164 (2015)
33. Wen, T., et al.: A network-based end-to-end trainable task-oriented dialogue system. In: Con-

ference of the European Chapter of the Association for Computational Linguistics (EACL),
pp. 438–449 (2017)

34. Williams, J., Raux, A., Henderson, M.: The dialog state tracking challenge series: a review.
Dial. Discourse 7(3), 4–33 (2016)

35. Yang, Z., et al.: XLNET: generalized autoregressive pretraining for language understanding.
In: Advances in Neural Information Processing Systems, pp. 5753–5763 (2019)

Effective Seed-Guided Topic Labeling
for Dataless Hierarchical Short Text

Classification

Yi Yang1,3 , Hongan Wang1,3, Jiaqi Zhu1,2,3(B) , Wandong Shi1,3,
Wenli Guo1, and Jiawen Zhang1,3

1 SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China
{yangyi2012,hongan}@iscas.ac.cn, zhujq@ios.ac.cn

2 Zhejiang Lab, Hangzhou, Zhejiang, China
3 University of Chinese Academy of Sciences, Beijing, China

{shiwandong18,guowenli17,zhangjiawen181}@mails.ucas.edu.cn

Abstract. Hierarchical text classification has a wide application
prospect on the Internet, which aims to classify texts into a given hier-
archy. Supervised methods require a large amount of labeled data and
are thus costly. For this purpose, the task of dataless hierarchical text
classification has attracted more and more attention of researchers in
recent years, which only requires a few relevant seed words for given cat-
egories. However, existing approaches mainly focus on long texts with-
out considering the characteristics of short texts, so are not suitable in
many scenarios. In this paper, we tackle dataless hierarchical short text
classification for the first time, and propose an innovative model named
Hierarchical Seeded Biterm Topic Model (HierSeedBTM), which effec-
tively leverages seed words in Biterm Topic Model (BTM) to guide the
hierarchical topic labeling. Specifically, our model introduces iterative
distribution propagation mechanism among topic models in different lev-
els to incorporate the hierarchical structure information. Experiments on
two public datasets show that the proposed model is more effective than
the state-of-the-art methods of dataless hierarchical text classification
designed for long texts.

Keywords: Hierarchical text classification · Topic model · Seed word

1 Introduction

With the rapid development of social media, short texts are increasing and
widespread on the internet, when people obtain and exchange information
through tweets, reviews, and queries. It is important to acquire interesting infor-
mation from these huge number of short texts with text classification. In many

This work is supported by National Key Research and Development Program of China
(2018YFC0116703), Strategic Priority Research Program of Chinese Academy of Sci-
ences (XDC02060500), and Zhejiang Lab (2020NF0AC02).

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 271–285, 2021.
https://doi.org/10.1007/978-3-030-74296-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_21&domain=pdf
http://orcid.org/0000-0002-8133-6678
http://orcid.org/0000-0002-4261-6749
https://doi.org/10.1007/978-3-030-74296-6_21

272 Y. Yang et al.

scenarios, the category labels of short texts are often organized in a hierarchical
structure. Hierarchical text classification (HTC) aim to classify text into a given
hierarchy, has a wide variety of applications such as search result classification
[2], review classification [20] and sentiment classification [24]. Comparing with
flat text classification, HTC leverages the interrelationships among hierarchical
structure, and acquires more accurate classification results.

Some models [7,9] adopt a greedy strategy: a local classifier is trained for
each category node, and then the classification results are propagated to the
next level in a top-down manner. However, the greedy strategy may lead to
classification error propagation along the hierarchy. Other models [1] employ
the down-up backpropagation strategy: the leaf level is classified at first, and
the results are propagated to the top level. Although the models above are
widespread used, the lack of plentiful labeled data for training the classifiers
limits the application scenario of these models, since carefully-labeled documents
require domain expertise and are thus costly.

For this purpose, many researchers focused on dataless hierarchical text clas-
sification task as it can successfully reduce the effort in labeling documents. Xiao
et al. [26] proposed a generative framework to leverage the hierarchical struc-
tural information and compute path-generated probability to classify documents.
Meng et al. [18] utilizes a class distribution to generate pseudo documents for
training local classifiers and then iteratively refine the global hierarchical model.
However, these seed-guided dataless hierarchical text classification methods are
designed for long texts without considering the characters of short texts, which
are extremely sparse so that only limited features are available to train a clas-
sifier. Hence, these models get unsatisfactory performance for classifying short
texts.

Recently, some dataless short text classification approaches [11,28] are pro-
posed in a generative framework and achieve significant improvement, which
guides the topic labeling process based on a short text topic model to alleviate
the data sparsity. Inspired by these studies, we tackle the dataless hierarchi-
cal short text classification task for the first time and propose a model named
HierSeedBTM. Specifically, we at first calculate the semantic similarity between
document words (biterms) and categories as prior knowledge in each level sep-
arately, through integrating the seed words along the path from the current
category node to the root node in the category hierarchy. That directly guides
the generative process of BTM-like topic model for hierarchical topic labeling
and inference. Then, an iterative distribution propagation mechanism among
topic models in different levels is introduced to incorporate the hierarchical and
structural information to make up for the limited data.

In summary, the main contributions of this paper include:

(1) A model HierSeedBTM is presented to solve the task of dataless hierarchical
short text classification with seed words, by combining word co-occurrence
information and category-word semantic similarity based on word embed-
dings. To the best of our knowledge, it is the first successful work to tackle
the task of dataless hierarchical short text classification.

Effective Seed-Guilded Topic Labeling for DHSTC 273

(2) To effectively utilize the hierarchical structure, a novel iterative propagation
mechanism is put forward during the topic sampling process of the topic
model. Topic distribution and topic-word distribution are propagated in a
top-down manner respectively in each sampling iteration.

(3) Informative experiments are conducted on two hierarchical short text
datasets to show that our model outperforms the state-of-the-art baseline
methods designed for long texts, especially when the documents are very
short.

The remainder of the paper is organized as follows. In Sect. 2, we review
recent related work. In Sect. 3, we formalize the problem to be tackled. Section 4
introduces our model in detail. In Sect. 5, the experimental results on hierarchical
short text datasets are shown. Section 6 concludes this paper and discusses future
work.

2 Related Work

2.1 Dataless Text Classification

Dataless text classification attracts much attention as it only needs a few
user-provided seed words for classification, which can successfully reduce the
effort in labeling documents. Some researchers studied the methods to generate
pseudo-labels or pseudo-documents utilizing seed words for constructing training
dataset, and then classify texts with a supervised classification model [6,15]. In
particular, Mekala et al. [16] proposed a contextualized weak supervision frame-
work (ConWea) for text classification. The model generates the pseudo-label of
documents based on the frequency of seed words, and leverages contextualized
representations of words to iteratively train the classifier and expand seed words.
Meng et al. [17] proposed a novel weakly-supervised text classification model
(WeSTClass). It constructs a semantic space to generate pseudo-documents to
train a neural classifier, then fits unlabeled data through bootstrapping.

Another group of researchers studied topic-based models [11,12], in which the
generative process is guided by seed words to form category-aware topics. Li et al.
[13] proposed Seed-Guided Topic Model (STM), assuming that each document
is associated with a single category-aware topic and a mixture of general topics.
Yang et al. [28] proposed Seeded Biterm Topic Model (SeedBTM) for dataless
short text classification, which leverages both word co-occurrence information
from BTM and category-word semantic similarity from word embeddings to
classify short texts. All the methods above are designed for flat text classification.

2.2 Dataless Hierarchical Text Classification

As hierarchical text classification can obtain more accurate classification results
by leveraging the interrelated structure of categories in different levels, some
dataless hierarchical text classification models are studied. Song et al. [23] pro-
posed a dataless hierarchical text classification framework, which firstly rep-
resents the document semantics with three kinds of methods, then calculates

274 Y. Yang et al.

the semantic similarity between documents and categories as local classification
results, and finally adopts a standard hierarchical classification strategy to clas-
sify documents. Meng et al. [18] leveraged seed words to model the category
semantics as a mixture of von Mises Fisher distributions, and generated mean-
ingful pseudo-documents with LSTM-based language model. Then, the local
classifiers are trained and the global hierarchical model is refined iteratively.
Xiao et al. [26] proposed a generative framework for weakly hierarchical text
classification. It puts a path-dependent score to the cost-sensitive learning algo-
rithm and makes the classification consistent with the category hierarchy during
the inference process. However, None of the above models consider the charac-
teristics of short texts.

2.3 Topic Models for Short Texts

Many researchers proposed short text topic models to alleviate the problem of
data sparsity. Some studies adopt aggregation strategy [22,25] to generate long
documents by aggregating short texts. Others are based on the assumption that
each document has only a single latent topic [29,30]. In another direction, Yan
et al. [27] proposed BTM, which models the word co-occurrence explicitly and
aggregates patterns in the whole corpus for learning topics. Many researches
extended BTM with additional information [3,14] or aggregating strategy [8] to
make up for the limited data. Our approach selects BTM as the base model, since
the model is more flexible for different scenarios and can easily be extended.

3 Preliminaries

In dataless hierarchical short text classification, the class categories constitute a
hierarchy τ . It is a tree structure of depth H, and the node in depth 0 is defined
as ROOT. The categories of τ are distributed from depth 1 to H. Following the
definition in [26], all leaf nodes are in depth H, which can always be satisfied by
giving the shallower leaf node a child node until the node reaches depth H.

The categories at each level are denoted as C1, C2, ..., CH , with sizes M1,M2,
...,MH , respectively. The category ch,k ∈ Ch means the category k in the level
h, and its representative seed word set is Sh,k = {sh,k,1, sh,k,2, ..., sh,k,l}.

Given an unlabeled document set D = {D1,D2, ...,DN}, a category hierarchy
tree τ and the corresponding seed word sets S, the task of dataless hierarchical
short text classification is to assign the most likely category ch,k for each level h
to each document Di. Table 1 summarizes the main notations used in this paper.

4 Proposed Models

In this section, we at first present the overview of our approach and then elab-
orate the key steps. The first step is estimating category-path-biterm similarity
and the second is inferring modified biterm-topic distributions based on topic
model for calculating document categories (Fig. 1).

Effective Seed-Guilded Topic Labeling for DHSTC 275

Table 1. Notation in this paper.

Symbol Description

w Word

b Word pair

h The level in the hierarchy

N The number of biterm set

B Biterm set

H The number of levels in the hierarchy

zh The topic in level h

Mh The number of topics in level h

θ′
h The modified prior topic distribution in level h

θb
h The modified topic distribution from the dot product of θh and ζb,h

ζp
b,h The similarity vector between b and topics in level h

φh,z The topic-word distribution of topic z in level h

αh, β Hyper-parameter

Fig. 1. Overview of the dataless hierarchical short text classification approach.

4.1 Estimating Category-Path-Biterm Similarity

In BTM, a biterm bi,j consists of two words wi and wj , which are co-occurring
in the same short text regardless of the order. Given a biterm set B, a category
hierarchy τ as well as the corresponding seed word set S, our purpose is to
calculate semantic similarity between each biterm and each category for guiding
the topic labeling.

We at first calculate the semantic similarity between each corpus word w
and each seed word s in ch,k through external word embeddings, as it is easy
accessible, less time consuming, and can provide external similarity information
to alleviate the data sparsity [28]. Obviously, the similarity calculation method
can be easily replaced by other methods [18,23] based on different scenarios. We
get the word vectors vs and vw of a corpus word w and a seed word s respectively,
and then calculate the semantic similarity sim(s, w) as follows:

276 Y. Yang et al.

sim(s, w) = max(cos(vs, vw), ε) (1)

The threshold ε > 0 is the lower bound of sim(s, w) to make it positive. Then,
we calculate the category-word similarity δh,k,w, which is the maximal similarity
between each seed word in Sh,k = {sh,k,1, sh,k,2, ..., sh,k,n} and the document
word w:

δh,k,w = max
i

(sim(sh,k,i, w)) (2)

Next, we calculate the category-biterm similarity for each biterm bw1,w2 as
the mean value of δh,k,w1 and δh,k,w2 :

ζb,h,k = (δh,k,w1 + δh,k,w2)/2 (3)

To leverage the hierarchical and structural information, the path from ROOT
to the leaf node ch,k is denoted as ph,k (abbreviated as p when there is no
ambiguity for the leaf node), and our model propagates the semantic similarity
along p to obtain the category-path-biterm similarity ζpb,h,k as follows:

ζpb,h,k =
h∑

i=1

ζb,i,u(k,p,i) (4)

where u(k, p, i) is denoted as the upper category of category k in level i of path
p, and ζpb,h,k is the sum similarity of path p from c1,u(k,p,1) to ch,u(k,p,h).

4.2 Hierarchical Seeded Biterm Topic Model

Obviously, the semantic similarity ζp can be utilized as biterm-category distri-
bution directly to calculate the document label, but the similarity only contains
the external word embedding information without considering the co-occurrence
information. Similar to [26], we propose a generative model to modify the seman-
tic similarity based on BTM, named HierSeedBTM, which leverages the prior
similarity information and hierarchical structure information to guide the topic
labeling.

In HierSeedBTM, the generative process of a topic zh is influenced by both
prior category-path-biterm similarity ζp and the topic-word distribution φz,
which guides the model to induce category-aware topics. Moreover, in order
to leverage the hierarchical and structural information, the topic distribution θh
and topic-word distribution φh are propagated along the path as prior parame-
ters to influence the generative process of the lower level. Notice that the topic
number in each level of τ is different, so we define αh with different dimensions
to represent the hyper-parameter of prior topic distribution in each level.

The graphical representation of HierSeedBTM is described in Fig. 2, and the
generative process of HierSeedBTM is as follows:

1. Modify the prior topic probability θ′
h,k ← θh−1,u(k,p,h−1)

2. Draw a topic-word distribution θh ∼ Dir(αh + θ′
h)

3. For each topic k = 1, ...,Mh in level h
(a) Draw a topic-word distribution φh ∼ Dir(β + φh−1)

Effective Seed-Guilded Topic Labeling for DHSTC 277

Fig. 2. Graphical representation of HierSeedBTM.

4. For each biterm b in the biterm set B
(a) Modify the topic distribution θbh ∝ ζpb,h · θh
(b) Draw a topic zh ∼ Multi(θbh)
(c) Draw two words to form b: wi, wj ∼ Multi(φh,zh)

As the category number of level h is different from that of level h−1, we assign
the topic probability θh−1,u(k,p,h−1) in level h − 1 to the prior topic probability
θh,k in level h along all paths.

Inference via Gibbs Sampling. Similar to BTM, as the model is intractable,
we utilize the Gibbs Sampling to perform the approximate inference. After ran-
dom initialization on the Markov chain, we iteratively calculate the conditional
distribution P (zb = z|z¬b, B,ζζζ, h, θh−1, φh−1) for each biterm in each level.

P (zb = z|z¬b, B,ζζζ, h, θh−1, φh−1) ∝ ζpb,z · (nz + θ′
h,z + α)

·
(nwj |z + φh−1,u(k,p,h−1),wj

+ β)(nwi|z + φh−1,u(k,p,h−1),wi
+ β)

∑
w(

∑
w nw|z + φh−1,u(k,p,h−1),wj

+ Mβ)(nw|z + 1 + φh−1,u(k,p,h−1),wi
+ Mβ)

(5)

where z¬b is denoted the topic assignments for all biterms except b, nz is the
number of biterms assigned to the topic z, and nw|z is the number of times
when the word w is assigned to the topic z. When sampling on level 1, the
parent node is ROOT, so the θh−1,u(k,p,h−1) and φh−1,u(k,p,h−1) are all zero.

278 Y. Yang et al.

With the sampling results, the topic distribution θh and topic-word distribution
φh can be calculated as:

θh,z =
(nz + θ′

h,z + α)

|B| +
∑Mh

k=1(θ
′
h,k) + Mhα

(6)

φh,w|z =
(nw|z + φh−1,u(k,p,h−1),w + β)

∑
w′(nw′|z + φh−1,u(k,p,h−1),w′) + Nβ

(7)

The whole Gibbs Sampling process is shown in Algorithm 1:

Algorithm 1. Gibbs Sampling Process of HierSeedBTM
1: INPUT:B, Mh, ζ, αh, β, θh−1, φh−1

2: OUTPUT: θh, φh

3: for b ∈ B do
4: Initialize the topic assignment of b;

5: for iter = 1 to Niter do
6: for h = 1 to H do
7: for bwi,wj ∈ B do
8: Sample the topic z of b with Equation 5 ;
9: Update nz, nwi|z, nwj |z;

10: Calculate θh with Equation 6 and φh with Equation 7;

Predicting Document Category. The classification results of our model are
obtained from the leaf level, and the probabilities of inner categories are calcu-
lated by summing up the probabilities of their child categories. Specifically, we
treat the expectation of the topic proportions of biterms in a document as the
topic proportions of the document [27], as shown below:

P (zh,k|d, h) =
∑

b

P (zh,k,b|b, h)P (b|d) (8)

where P (zh,k,b|b, h) can be calculated by Eq. 5 and P (b|d) is estimated based on
the relative frequency of b in d. Finally, for document d, the category label zd
can be predicted as the topic with the highest probability:

zd,h = arg max
k

P (zh,k|d, h) (9)

5 Experiments

5.1 Datasets

We use two hierarchical short text datasets to evaluate the effectiveness of our
model. For both datasets, we at first lower and lemmatize all corpus words and
remove stop words, and then filter out the documents that contain only one word
or more than 50 words to obtain the short text datasets. The statistics of the
two datasets are shown in Table 2.

Effective Seed-Guilded Topic Labeling for DHSTC 279

Table 2. Statistics of datasets.

Dataset Categories (Level 1 + Level 2) Documents Average document length

20NG 7 + 20 10493 23

HuffPost 3 + 9 37054 3.8

– The 20 Newsgroups(20NG)1 [10] : 20 Newsgoups is a widely used dataset for
the text classification task, including flat text classification and hierarchical
text classification. It contains about 20,000 newsgroups messages from 20
newsgroups. After filtering long documents, we retain about 10,000 messages
as short text datasets. As the categories are close to each other, 20NG can
be categorized into a hierarchical structure with two levels. The upper level
contains 7 inner categories, and the leaf level contains 20 categories [26].

– HuffPost2 [19] : It is obtained from HuffPost and contains around 200K news
headlines from 2012 to 2018. There are totally 42 categories, and many of
them are overlapping, from which we select 9 leaf categories with 3 upper
categories. The categories and their statistics are shown in Table 3.

Table 3. Categories and their statistics of the HuffPost dataset.

Category in level 1 Categories in level 2

Family (5) WEDDINGS (1488), HOME & LIVING (3271),
PARENTING(5437),PARENTS (3443),
DIVORCE (1418)

Healthy (2) HOME & LIVING (3271), WELLNESS (10655)

Food (2) FOOD & DRINK (3890), TASTE (1862)

The number in the first column indicates the respective child category num-
ber, and the number in the second column indicates the document number of
each category.

5.2 Baselines

We evaluate our model with six baseline models, all of which can leverage seed
words to deal with the task of dataless text classification. The first four methods
aim at dataless hierarchical classification for general texts, and the last two are
dataless short text classification models.

1 http://qwone.com/jason/20Newsgroups/.
2 https://www.kaggle.com/rmisra/news-category-dataset.

http://qwone.com/jason/20Newsgroups/
https://www.kaggle.com/rmisra/news-category-dataset

280 Y. Yang et al.

– Hier-Dataless3 [23]: it introduces three ways to calculate the semantic simi-
larity between document and category with seed words as document-category
probabilities. To be fair, we choose the same word embedding as the semantic
representation to calculate semantic similarity.

– WeSHClass4 [18]: it is a successful weakly-supervised hierarchical text classi-
fication model, which leverages seed words to generate pseudo-labeled docu-
ments, and then iteratively refines the global hierarchical classifier with super-
vised methods.

– PCNB5 [26]: it is a state-of-the-art weakly-supervised hierarchical text clas-
sification model within a generative framework. The model adopts the initial
semantic similarity calculation method of Hier-Dataless, and constructs a
path-cost sensitive Bayes classifier.

– PCEM [26]: it improves the path-cost sensitive classifier and adopts EM tech-
nique for semi-supervised hierarchical text classification.

– SeedBTM [28]: it is a state-of-the-art dataless short text classification app-
roach. This model leverages both word co-occurrence information and prior
category-word similarity to classify short texts, utilizing seed words to calcu-
late category-word similarity to guide the topic-word distributions of BTM.

– SeedBTM* : it is a variant of SeedBTM with category-biterm similarity ζ to
guide the generative process rather than category-word similarity.

For all baseline models, we adopt their implementation codes and parameter
settings directly.

5.3 Experiment Settings

For seed words of 20NG, we adopt the setting of Hier-Dataless [23], and for
HuffPost, we use descriptive LDA (DescLDA)[4] to select 3∼9 representative
words for each category as seed words, as shown in Table 4.

For all datasets, we set the topic number K ′
h = Mh (category number in each

level), α = 50/K ′
h, β = 0.3 and ε = 0.0001. We set the number of iterations to 8

as our model achieves competitive performance since then. For word embeddings,
we employ the widely used GloVe Common Crawl6 [21], which contains 840B
tokens, 2.2M vocab and 300d vectors. It is also used in baseline models Hier-
Dataless, PCNB, PCEM, SeedBTM, and SeedBTM*. WeSHClass adopts the
self-training word embeddings based on the unlabeled documents.

3 https://github.com/CogComp/cogcomp-nlp/tree/master/dataless-classifier.
4 https://github.com/yumeng5/WeSHClass.
5 https://github.com/HKUST-KnowComp/PathPredictionForTextClassification.
6 http://nlp.stanford.edu/data/glove.840B.300d.zip.

https://github.com/CogComp/cogcomp-nlp/tree/master/dataless-classifier
https://github.com/yumeng5/WeSHClass
https://github.com/HKUST-KnowComp/PathPredictionForTextClassification
http://nlp.stanford.edu/data/glove.840B.300d.zip

Effective Seed-Guilded Topic Labeling for DHSTC 281

Table 4. Seed words of the HuffPost dataset.

Category Seed words

FAMILY Family adorable divorce daughter parent

HEALTH Health weight yoga mental drug cancer disease doctor

FOOD Food sweet cake chocolate cheese

HOME & LIVING Home house room

DIVORCE Divorce child parent relationship kid couple split

PARENTS Mom kid parent baby dad girl

WEDDINGS Wedding marriage couple bride love bridal

PARENTING Kid child parent mom teach study learn life

HEALTHY LIVING Health life cancer mental care

WELLNESS Wellness cancer drug heart weight stress

FOOD & DRINK Food cook taste wine cake chocolate

TASTE Taste cook dinner ice breakfast wine meal delicious sweet

5.4 Experimental Results

We evaluate the classification performances of HierSeedBTM using Macro-F1
and Micro-F1. For each model, we calculate the F1 scores for Level-1 and Level-
2 based on the hierarchy, and then get the F1 scores for all categories of Level-All
in general. We run 10 times on each dataset to get the average values, as shown
in Table 5 and Table 6.

Table 5. Macro-F1 (%) of HierSeedBTM and baselines on all datasets.

Dataset 20NG HuffPost

Level-l Level-2 Level-all Level-l Level-2 Level-all

HierSeedBTM 53.5 48.1 49.5 71.2 41 48.5

WeSHClass 54.7 37.7 41.2 61.7 30.7 38.9

PCNB 35.8 22 25.5 66.2 34.8 42.7

PCEM 47.9 30.9 35.3 67.6 40.3 47.1

Hier-Dataless 46.2 34.4 37.5 65.3 34.7 42.4

SeedBTM 38.9 25.8 29.2 65 38.6 45.2

SeedBTM* 42 34 36.1 65.1 38.4 45.1

The best results in the table are highlighted in bold, and we can observe that
HierSeedBTM performs better than almost all baseline models in both datasets.

For Macro-F1 in Table 5, on the 20NG dataset, HierSeedBTM increases
8.3 than the second WeSHClass and increases 12 than PCEM in level-all.

282 Y. Yang et al.

That certifies our model can make better use of hierarchical structures to improve
the classification accuracy of leaf nodes. The small deficiency against WeSHClass
in level-1 can be attributed to the reduced difficulty of classifying texts with
moderate length in an abstract level. On the HuffPost dataset, HierSeedBTM
improves 1.4 than PCEM and 9.6 than WeSHClass in level-all. For Micro-F1
in Table 6, HierSeedBTM is in line with WeSHClass on the 20NG dataset, but
increases 5.8 than WeSHClass on the HuffPost dataset in level-all.

Table 6. Micro-F1 (%) of HierSeedBTM and baselines on all datasets.

Dataset 20NG HuffPost

Level-l Level-2 Level-all Level-l Level-2 Level-all

HierSeedBTM 65.6 49.4 57.5 70.8 37.6 54.2

WeSHClass 73.8 41.1 57.5 62.8 32.7 48.4

PCNB 52.5 27.8 40.1 66.7 35.4 51

PCEM 63.2 39.7 51.5 67.7 38.4 53.1

Hier-Dataless 55.4 36.0 45.8 65.2 34.0 49.6

SeedBTM 54 24.7 32.9 66.1 35.7 51.1

SeedBTM* 57.4 31.2 36.2 66 35.3 50.8

For WeSHClass, the pseudo-labeled documents are relatively noisy and the
trained classifier cannot well distinguish short texts due to the sparse feature,
so WeSHClass gets poorer performance in HuffPost than the generative models.
For PCEM, only category-word similarities are propagated along paths, but
our model further propagates the distributions among each iteration and gets
better performance. The results indicate that the propagation mechanism and
generative framework for short texts make our model more effective to leverage
the hierarchical structure information and alleviate the data sparsity of short
texts. Moreover, the performances of baseline models fluctuate among datasets
with different lengths, while HierSeedBTM behaves more stable.

Compared with SeedBTM and the variant model SeedBTM*, HierSeedBTM
increases 3.3∼12 in Macro-F1 and 3.1∼21.4 in Micro-F1 respectively, which
explains that our propagation strategy based on the hierarchical structure can
integrate more evidences from different abstraction levels to classify short texts
accurately.

5.5 Parameter Study

In this section, we study the impact of different parameter settings on the classi-
fication performance of HierSeedBTM. When paying attention to one parameter,
other parameters are fixed to the default values given in Sect. 5.3.

Effective Seed-Guilded Topic Labeling for DHSTC 283

The Impact of Iteration Number. Iteration number is an important param-
eter to our model, because the smaller of this number means the more efficient
of our model. We change the value in the range of [1,20], and its Macro-F1 and
Micro-F1 results are shown in Fig. 3.

When the number of iterations is 6, HierSeedBTM can achieve good classi-
fication performance, and F1-score is almost stable after this point. Therefore,
we set the iteration number to 8 in our model. The fast convergence should give
credit to the regulating effect of information propagation mechanism among the
hierarchical structure and the prior knowledge from word embeddings.

Fig. 3. F1 values of level-2 and level-all with different iterations.

The Impact of β. β is the hyper-parameter of the topic model, which affects
the topic word distribution φ. We vary the value in the range of [0.01, 0.6] to
evaluate its impact, and the results are shown in Fig. 4.

Fig. 4. F1 values of level-2 and level-all with different β values.

The flat lines of the 20NG dataset indicates that the dataset with a longer
text length is relatively insensitive to β. But for the shorter HuffPost, the results
fluctuate and arrive at the best performance in the range of [0.3, 0.4], so we set
β to 0.3 in our model.

284 Y. Yang et al.

For the other hyper-parameter α, α = 50/K ′
h is a widely used parameter

setting of topic models [13,27], and the experimental results also indicate that
the classification accuracy of our model is insensitive to α. Hence, the detailed
comparison is omitted here due to the page limit.

6 Conclusion

In this paper, we propose an effective model for dataless hierarchical short text
classification. Our model leverages seed words to guide the generative process
of BTM for topic labeling and introduces an iterative distribution propagation
mechanism to incorporate the hierarchical and structural information. Moreover,
the propagation mechanism brings efficient performance because of the fast con-
vergence. Experiments on both hierarchical short text datasets show that our
model performs better than other baseline methods, especially when the length
of the document is extremely short and more sparse.

In the future, we plan to study how to incorporate contextualized vector rep-
resentation [5] to better tackle this task. In addition, it is important to study the
impact factors of datasets for classification accuracy, such as category imbalance
and bias as well as different hierarchical structures.

References

1. Bennett, P., Nguyen, N.: Refined experts: improving classification in large tax-
onomies. In: SIGIR, pp. 11–18. ACM (2009)

2. Chen, H., Dumais, S.T.: Bringing order to the web: automatically categorizing
search results. In: CHI, pp. 145–152. ACM (2000)

3. Chen, W., Wang, J., Zhang, Y., Yan, H., Li, X.: User based aggregation for biterm
topic model. In: ACL, vol. 2 (Short Papers), pp. 489–494 (2015)

4. Chen, X., Xia, Y., Jin, P., Carroll, J.: Dataless text classification with descriptive
LDA. In: AAAI, pp. 2224–2231 (2015)

5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186.
Association for Computational Linguistics (2019)

6. Druck, G., Mann, G., McCallum, A.: Learning from labeled features using gener-
alized expectation criteria. In: SIGIR, pp. 595–602. ACM (2008)

7. Dumais, S.T., Chen, H.: Hierarchical classification of web content. In: SIGIR, pp.
256–263. ACM (2000)

8. Jiang, L., Lu, H., Xu, M., Wang, C.: Biterm pseudo document topic model for
short text. In: ICTAI, pp. 865–872. IEEE (2016)

9. Koller, D., Sahami, M.: Hierarchically classifying documents using very few words.
In: ICML, pp. 170–178. Morgan Kaufmann (1997)

10. Lang, K.: Newsweeder: learning to filter netnews. In: ICML, pp. 331–339. Morgan
Kaufmann (1995)

11. Li, C., Chen, S., Qi, Y.: Filtering and classifying relevant short text with a few
seed words. Data Inf. Manag. 3(3), 165–186 (2019)

12. Li, C., Chen, S., Xing, J., Sun, A., Ma, Z.: Seed-guided topic model for document
filtering and classification. ACM Trans. Inf. Syst. 37(1), 9:1–9:37 (2019)

Effective Seed-Guilded Topic Labeling for DHSTC 285

13. Li, C., Xing, J., Sun, A., Ma, Z.: Effective document labeling with very few seed
words: a topic model approach. In: CIKM, pp. 85–94. ACM (2016)

14. Li, X., Zhang, A., Li, C., Guo, L., Wang, W., Ouyang, J.: Relational biterm topic
model: short-text topic modeling using word embeddings. Comput. J. 62(3), 359–
372 (2018)

15. Liu, B., Li, X., Lee, W.S., Yu, P.S.: Text classification by labeling words. In: AAAI,
vol. 4, pp. 425–430 (2004)

16. Mekala, D., Shang, J.: Contextualized weak supervision for text classification. In:
ACL, pp. 323–333. Association for Computational Linguistics (2020)

17. Meng, Y., Shen, J., Zhang, C., Han, J.: Weakly-supervised neural text classifica-
tion. In: CIKM, pp. 983–992. ACM (2018)

18. Meng, Y., Shen, J., Zhang, C., Han, J.: Weakly-supervised hierarchical text clas-
sification, vol. 33, no. 01, pp. 6826–6833 (2019)

19. Misra, R.: News category dataset (2018). https://doi.org/10.13140/RG.2.2.20331.
18729

20. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using
machine learning techniques. In: EMNLP, pp. 79–86 (2002)

21. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word repre-
sentation. In: EMNLP, pp. 1532–1543. Association for Computational Linguistics
(2014)

22. Quan, X., Kit, C., Ge, Y., Pan, S.J.: Short and sparse text topic modeling via
self-aggregation. In: IJCAI, pp. 2270–2276 (2015)

23. Song, Y., Roth, D.: On dataless hierarchical text classification. In: AAAI, pp.
1579–1585. AAAI Press (2014)

24. Tang, D., Qin, B., Liu, T.: EMNLP, pp. 1422–1432. The Association for Compu-
tational Linguistics (2015)

25. Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influ-
ential Twitterers. In: WSDM, pp. 261–270. ACM (2010)

26. Xiao, H., Liu, X., Song, Y.: Efficient path prediction for semi-supervised and weakly
supervised hierarchical text classification. In: WWW, pp. 3370–3376. ACM (2019)

27. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In:
WWW, pp. 1445–1456. ACM (2013)

28. Yang, Y., et al.: Dataless short text classification based on biterm topic model
and word embeddings. In: Bessiere, C. (ed.) International Joint Conferences on
Artificial Intelligence Organization, IJCAI, pp. 3969–3975 (2020)

29. Yin, J., Wang, J.: A Dirichlet multinomial mixture model-based approach for short
text clustering. In: SIGKDD, pp. 233–242. ACM (2014)

30. Zhao, W.X., et al.: Comparing twitter and traditional media using topic models.
In: Clough, P., et al. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20161-5 34

https://doi.org/10.13140/RG.2.2.20331.18729
https://doi.org/10.13140/RG.2.2.20331.18729
https://doi.org/10.1007/978-3-642-20161-5_34

PrivaSeer: A Privacy Policy
Search Engine

Mukund Srinath(B), Soundarya Nurani Sundareswara, C. Lee Giles,
and Shomir Wilson

Pennsylvania State University, University Park, State College, PA, USA
{mukund,sxn5310,clg20,shomir}@psu.edu

Abstract. Web privacy policies are used by organisations to disclose
their privacy practices to users on the web. However, users often do
not read privacy policies because they are too long, time consuming, or
too complicated. Attempts to simplify privacy policies using natural lan-
guage processing have achieved some success, but they face limitations of
scalability and generalization. While this puts an onus on researchers and
policy regulators to protect users against unfair privacy practices, they
often lack a large-scale collection of policies to study the state of inter-
net privacy. To remedy this bottleneck, we present PrivaSeer, the first
privacy policy search engine. PrivaSeer has been indexed on 1,400,318
English language website privacy policies and can be used to search pri-
vacy policies based on text queries and several search facets. Results can
be ranked by PageRank, query-based document relevance, and the prob-
ability that a document is a privacy policy. Results also can be filtered
by readability, vagueness, industry, and mentions of tracking technology,
self-regulatory bodies, or regulations and cross-border agreements in the
policy text. PrivaSeer allows legal experts, researchers, and policy regu-
lators to discover privacy trends and policy anomalies in privacy policies
at scale. In this paper we present the search interface, ranking technique,
and filtering techniques for PrivaSeer. We create two indexes of privacy
policies: one including supplementary non-policy content present in pri-
vacy policy web pages and one without. We evaluate the functionality of
PrivaSeer by comparing ranking techniques on these two indexes.

Keywords: Privacy · Search engine · Ranking

1 Introduction

A privacy policy is a legal document that an organisation uses to disclose how it
collects, uses, shares and secures its customers’ personal data. Laws around the
world such as the General Data Protection Regulation (GDPR) and the Califor-
nia Consumer Privacy Act (CCPA) require organisations to make their privacy
policies readily available to their users. These laws assume that users will read
the privacy policy of an organisation and either accept the practices or abstain
from using the offered services. However, a number of studies have shown that
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 286–301, 2021.
https://doi.org/10.1007/978-3-030-74296-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_22

PrivaSeer: A Privacy Policy Search Engine 287

although average internet users have a basic interest in online privacy [19], they
rarely read privacy policies as they are either too long [15] or too complicated
to understand [7]. Additionally, suggestions to improve the comprehensibility of
privacy policies [10] have not been adopted by most organisations.

Natural Language Processing (NLP) techniques to simplify privacy policies
tested on small corpora of privacy policies [24,26,27] have shown promising
results. However, they face issues of accuracy, scalability and generalization due
to their small datasets, often consisting of fewer than 10K policies. This paucity
of large datasets leads to a lack of robust techniques which could be used to easily
understand the wide range of privacy policies on the web. Without automated
tools, regulators in some jurisdictions (such as the European Union) rely on
user complaints to investigate privacy practices [23] while others (such as the
United States) rely on organisations to self-certify their compliance1 and only
investigate when a privacy policy is at odds with real world privacy practices.

To remedy the lack of a publicly accessible large-scale privacy policy resource,
we present PrivaSeer2, a privacy policy search engine that currently indexes
1,400,318 privacy policies collected from the web. PrivaSeer can be used to find
policies based on policy text using facets such as sector of commerce, policy
vagueness, policy readability, tracking technology mentioned, regulatory bodies
mentioned and regulations or cross-border agreements mentioned in the policy
text. Search results can be ranked by popularity of the website of the policy,
relevance based on the query and the probability that a document is a privacy
policy. To the best of our knowledge, PrivaSeer is the first search engine specif-
ically designed to support privacy research.

PrivaSeer gives researchers the ability to quantify and examine sets of poli-
cies based on key features, enabling them to discover trends in privacy practices
online. Similarly, policy regulators and legal experts can use PrivaSeer to find
anomalies in policies, thereby empowering them to protect users from privacy-
eroding practices. The simple and intuitive search interface allows privacy con-
cerned web users to find features of particular privacy policies and search for
privacy-friendly alternatives for everyday services.

2 Related Work

The related work can be categorised into two areas: collections of privacy policies
and methods to simplify privacy policy documents.

To the best of our knowledge, PrivaSeer is the first privacy policy search
engine, but a few prior attempts have focused on making privacy policies more
accessible to the public. The Usable Privacy Policy Project made available a
collection of 115 privacy policies with fine grained human annotation of privacy
practices in policies [24]. These policies can be accessed through the website
and filtered based on the URL3. They display the sector of activity, readability
1 https://www.privacyshield.gov/Program-Overview.
2 https://privaseer.ist.psu.edu/.
3 https://explore.usableprivacy.org/.

https://www.privacyshield.gov/Program-Overview
https://privaseer.ist.psu.edu/
https://explore.usableprivacy.org/

288 M. Srinath et al.

and popularity of the website from which the policy was originally obtained. In
addition, they also created a collection of seven thousand privacy polices which
contain machine annotated privacy practices which can be filtered by URL.
Similarly, Polisis4 is a collection of about 31,000 privacy policies which generates
automatic summaries of privacy policies based on various data practices. While
the privacy policies can be filtered based on their URL, they cannot be searched
based on user queries [9]. More recently, Amos et al. [1] released a longitudinal
corpus of privacy policies collected from around 130,000 websites.

Privacy policies have been simplified using various machine learning
approaches. PrivacyCheck is a an application that automatically summarizes
privacy policies online and answers ten basic questions on any privacy policy
[26]. Similarly, Privee uses both rule-based and machine learning methods to
classify privacy policies based on predefined categories of privacy practices [27].
Question answering techniques to simplify privacy policies have achieved some
success. The PrivacyQA corpus was introduced to promote question answering
in the privacy domain [16]. Opt-Out Easy is a web browser extension designed
to present available opt-out choices to users as they browse the web [3]. Addi-
tionally, Apple has begun displaying privacy labels in its MacOS and iOS app
stores having collected the information from App developers; however, they are
available exclusively for apps in the Apple ecosystem.

While all the above techniques are geared towards simplifying privacy policies
for everyday internet users, there is a lack of tools to aid privacy researchers and
help regulators manage the vast number of privacy policies online. PrivaSeer has
the capacity to help researchers and regulators analyse privacy policies based on
required features and enforce regulations at scale.

3 Data Collection

The privacy policies for the PrivaSeer search engine come from the PrivaSeer
Corpus5 [21,22]. Srinath et al. built the PrivaSeer Corpus using two sepa-
rate crawls of the web. The first crawl occurred in July 2019 with seed URLs
from Common Crawl6, a non-profit organisation which has been releasing large
monthly archives of the internet since 2008. The URLs in the Common Crawl
archive were first filtered based on a selection criteria that took advantage of the
fact that most privacy policy URLs either have the word ‘privacy’ or the words
‘data’ and ‘protection’ in them. The candidate URLs were then re-crawled. The
crawled documents were put though a filtering pipeline which included language
detection, document classification, duplicate and near-duplicate removal, URL
re-verification and non-policy content removal.

The second crawl, in February 2020, used seed URLs from the Free Company
Dataset7. Candidate documents were filtered using the crawl pipeline after which
4 https://pribot.org/polisis.
5 We refer to the corpus as PrivaSeer Corpus and the search engine as simply Pri-

vaSeer.
6 https://commoncrawl.org/.
7 https://docs.peopledatalabs.com/docs/free-company-dataset.

https://pribot.org/polisis
https://commoncrawl.org/
https://docs.peopledatalabs.com/docs/free-company-dataset

PrivaSeer: A Privacy Policy Search Engine 289

duplicates between the first and second crawls were resolved. The Free Company
Dataset provided additional website metadata such as year founded, industry,
size range, country, and employee estimate. The final set in the PrivaSeer Corpus
consists of around 1.4 million English language website privacy policies.

4 Search Interface

The user interface of PrivaSeer resembles a standard search engine, in order to
keep the system familiar and easy to use. A user enters a query in the search
text box on the landing page and can opt to search either the privacy policy
URLs or the policy text by selecting a radio button. Figure 1 shows a screenshot
of the landing page. Clicking Search takes the user to the results page.

Fig. 1. Snapshot of landing page

By default, the privacy policies in the results page are ordered based on a
custom ranking function discussed in Sect. 6. The result page displays the top
ten results with options to go to the next page. Each result has the title of
the webpage, the URL, the date it was crawled and snippets of text in the
document with words matching the query words highlighted. The user can re-
filter the results based on search facets on either side of the page. Figure 2 shows
a screenshot of the results page for the query ‘address’, a common personal
information type mentioned in privacy policies.

5 Indexing

We created two separate indexes: one for privacy policy web pages with non-
policy content included and one without. Non-policy content refers to content
in a privacy policy web page such as header, footer and navigation menus which
are irrelevant to the privacy policy as a legal text. We used Elasticsearch [8] to
create an inverted index and divided the documents into the title, URL, and
body for indexing. We tokenized the body and title of the privacy policy using
grammar based tokenization that works based on the Unicode text segmentation
algorithm [5] and tokenized the URL based on a regex tokenizer.

290 M. Srinath et al.

Fig. 2. Snapshot of results page

6 Ranking

The results in PrivaSeer are ranked based on PageRank, query based document
relevance and the probability of the document being a privacy policy.

PrivaSeer uses the bag-of-words based Okapi BM25 [17] ranking function to
estimate the relevance of a document given a search query. Given a search query
Q with terms qi where i = i...n, the score of a document D is given by the
following function.

n∑

1

idf(qi) × (k1 + 1).tf(qi,D)
tf(qi,D) + k1(1 − b + b.|D|/dlavg) (1)

Where, idf(qi) is given by the following equation.

idf(qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
(2)

In the equations, N is the total number of documents in the collection, n(qi)
is the number of documents containing qi, tf(qi,D) is the term frequency of qi

PrivaSeer: A Privacy Policy Search Engine 291

in document D, k1 and b are tuned constants, |D| is the number of words in
document D and dlavg is the average document length in the collection.

We extracted the PageRanks of the domains in the corpus Common Crawl’s
web graph. Common Crawl use the Gauss-Seidel algorithm [2] to calculate the
PageRanks in the web graph. Only a few domains have a high PageRank suggest-
ing that ranking based only on PageRank might limit the discovery of privacy
policies from the domains that are not very popular. The custom ranking func-
tion combines the scores derived from query based document relevance with
PageRank and the probability of the document being a privacy policy. The final
score of a document D given query Q is given by the following function.

P (D) ×Relevance(D,Q) × log10(Dpr) (3)

In the equation, P (D) is the probability that the document is a privacy
policy, Relevance(D,Q) is defined in Eq. 1, and Dpr is the PageRank of the
website from which the document was crawled.

The PrivaSeer Corpus was created by training a random forest model to
classify whether a document is a privacy policy. Srinath et al. [21] labeled 1000
crawled documents as either a privacy policy or not. We used the labeled data
to train a machine learning model and obtained the probability of a document
being a privacy policy. We used 100 documents as the validation set to tune
hyperparameters and divided the rest of the documents into train and test sets
in the ratio 4:1. We then tokenized and removed stop words before using term-
frequency inverse-document-frequency features extracted from the URL and doc-
ument. The average precision and recall score after 5-fold cross validation were
0.96 and 0.97 respectively.

Fig. 3. Distribution of probabilities of documents (being a privacy policy) in the Pri-
vaSeer Corpus

292 M. Srinath et al.

Figure 3 shows the distribution of the probabilities of documents classified as
a privacy policy for all the documents in the PrivaSeer Corpus. The horizontal
axis begins at 0.5 since the binary classification cutoff probability was 0.5, with
1 being the label for a privacy policy and 0 being the label for its negation. The
figure shows that most of the documents are classified with high confidence with
only a few documents having a probability less than 0.7.

7 Filtering and Observations on the Document Set

7.1 Sectors of Commerce

The Free Company Dataset, which was used to obtain seed URLs for the Pri-
vaSeer Corpus, maps website URLs to a set of 148 unique industries. Two
researchers worked independently and arrived at a consensus to consolidate the
industries into 11 sectors of commerce. Table 1 shows the distribution of privacy
policies across different sectors of commerce in the PrivaSeer Corpus. Unknown
consists of extracted privacy policies whose sector of commerce information could
not be found on the Free Company Dataset. Expected norms for privacy prac-
tices differ based upon sectors of commerce. For example, privacy policies in the
medical sector are more likely to address users’ health information, which has
its own privacy laws (i.e., HIPAA in the US). Thus, we provide sector of com-
merce as a filter facet to enable policy regulators to compare and find anomalies
between privacy policies of the same sector.

Table 1. Distribution of privacy policies across different sectors of commerce

Sector of commerce Number

Unknown 858, 395

Finance, Marketing and Human Resources 106, 732

Information Technology and Electronics 82, 192

Consumer and Supply Chain 77, 477

Civil, Mechanical and Electrical 70, 209

Medical 49, 918

Sports, Media and Entertainment 43, 912

Education 35, 468

Government, Defense and Legal 29, 037

Travel, Food and Hospitality 28, 290

Non-Profit 18, 688

Figure 2 shows the screenshot of the results page with sector of commerce as
a filter facet. For a given query, the number of privacy policies in each sector is
specified next to sector name. The progress bar and percentage value for each
sector indicate the number of privacy policies retrieved for the query out of the
total number of privacy policies for that sector in PrivaSeer Corpus.

PrivaSeer: A Privacy Policy Search Engine 293

7.2 Readability

Readability of a text can be defined as the ease of understanding or compre-
hension due to the style of writing [12]. One of the main critiques of privacy
policies is that they are too complicated to read and understand. Studies have
found that privacy policies are difficult to read and require a college-level reading
ability [6,7]. The online privacy paradigm follows the Notice and Choice frame-
work. Notice is a presentation of terms by an organisation, usually in the form
of a privacy policy and choice is an action by a user signifying the acceptance
of terms [20]. When privacy policies are difficult to understand, the notice and
choice framework breaks down. To assess readability, we calculate the Flesch-
Kincaid Grade Level (FKG) [11] for all the policies in the corpus and include
it as a facet to filter privacy policies. FKG gives the United States school grade
level an average user would need to be in order to understand the text. Srinath
et al. show the distribution of readability scores in the PrivaSeer Corpus based
on a number of readability techniques [21].

7.3 Tracking Technology

Tracking technologies are used by organisations to keep track of web users’ brows-
ing habits. We selected six different types of tracking technologies and extracted
their mentions in all the policies in the PrivaSeer Corpus. Table 2 shows the dis-
tribution of these mentions, extracted using regex queries in an approach similar
to Amos et al. [1]. To study the effectiveness of the regex technique, we manually
sampled 10 privacy policies from each category of the facet and found no false
positives for any category. Intuitively, privacy policies rarely mention tracking
technologies which they do not use. While there is a possibility that mentions of
some tracking technologies were not captured by the regex technique, thereby
leading to false negatives, we believe that the regex expressions captured the
common terms for all tracking technology thereby minimizing false negatives.

Studies have found a misalignment between the use and mentions of various
tracking technology in privacy policies [1]. While tracking technologies are com-
mon in practice, they may not always be mentioned in the privacy policy. Thus,
to enable further investigation of discrepancies and trends in the use of tracking
technology we include tracking technologies as a facet.

Table 2. Distribution of tracking technology

Tracking technology Number of policies % of total

Cookies 1,179,351 84.2%

Logs 249,901 17.8%

Web Beacon 236,099 16.9%

Fingerprinting 73,969 5.3%

Flash Cookies 39,199 2.8%

Advertising ID 15,366 1.1%

294 M. Srinath et al.

7.4 Self-regulatory Bodies

Some jurisdictions rely on organisations to self-certify their privacy regulation
compliance. Organisations therefore work with self-regulatory bodies to provide
them with privacy seals and certificates verifying the organization’s adherence
to certain specified privacy standards [18]. Amos et al. presented a longitudi-
nal analysis of self-regulatory compliance by examining the mentions of self-
regulatory bodies in privacy policies [1]. We applied the same method of using
regex queries to extract mentions of nine self-regulatory bodies in privacy poli-
cies of the PrivaSeer Corpus. Similar to the regex technique applied to extracting
tracking technologies, we sampled ten random privacy policies for each item in
the facet and found no false positives.

Table 3. Distribution of self-regulatory bodies

Self-regulatory bodies Number % of total

NAI 88, 964 6.35%

DAA 72, 754 5.19%

EDAA 22, 874 1.63%

BBBOnLine 3, 190

TrustArc 2, 300

CNIL 1, 767 <1%

ePrivacy 899

VeraSafe 180

Evidon 109

Table 3 shows the percentage of privacy policies mentioning each of the
self-regulatory organizations in the PrivaSeer Corpus. Only initiatives such as
Network Advertising Initiative (NAI), Digital Advertising Alliance (DAA) and
European Interactive Digital Advertising Alliance (EDAA) that develop self-
regulatory standards for online or digital advertising, have significant number of
mentions (present in over 1% of privacy policies in the corpus). Therefore, we
only provide these as filterable items in PrivaSeer.

7.5 Regulations and Agreements

While some jurisdiction rely on organisations to self-certify their privacy compli-
ance, others rely on concrete regulations and cross-border agreements. Similar
to self-regulatory bodies, we extracted mentions of eight regulations and cross-
border agreements in privacy policies of the PrivaSeer Corpus. We also included
a sector-specific government regulation, the Health Insurance Portability and
Accountability Act (HIPAA). Table 4 shows the percentage of privacy policies
mentioning different regulations and agreements in the PrivaSeer Corpus. GDPR

PrivaSeer: A Privacy Policy Search Engine 295

and Privacy Shield have the highest number of mentions among regulations and
cross-border agreements respectively. We include regulations and agreements as
a filter facet in PrivaSeer to enable users to identify privacy policies that refer
to these regulations.

Table 4. Distribution of regulations & agreements

Regulations & agreements Number % of total

GDPR 228, 726 16.33%

COPPA 73, 745 5.27%

Privacy shield 62, 778 4.48%

CalOPPA 57, 819 4.13%

CCPA 13, 215

SCC 6, 834

HIPAA 3, 713 <1%

BCR 2, 105

7.6 Vague Language

A term is regarded as vague if it admits borderline cases, where speakers are
reluctant to say either the term definitely applies or does not apply [4]. Vague-
ness in privacy policies is a pervasive problem [13], limiting the ability of readers
to precisely interpret their contents. Uncertainly in future needs prompts organ-
isations to resort to using vague language to describe their privacy practices
[4]. This diminishes the effectiveness of policies making them unclear to users,
thereby reducing trust and causing potential user privacy issues. Thus, we calcu-
late the vagueness scores of all policies in the PrivaSeer Corpus and make them
available as a search facet, for regulators and researchers to study at scale.

We use the corpus on vagueness in privacy policies made available by Lebanoff
and Liu [13] to calculate the vagueness of policies in PrivaSeer. To create their
corpus, Lebanoff and Liu first extracted sentences from 100 privacy policies that
contain 40 cue words for vagueness [4]. Each sentence was considered separately
and the vague words/phrases in it were identified and annotated. Since the sen-
tence context was not considered, co-referential words were annotated as vague.
For example, in the sentence You can find out more about this on the anonymous
edits page, the word ‘this’ was annotated as vague. Since our aim was to find
the vagueness of the privacy policy as a whole, we ignored annotations on words
that were only annotated as vague due to co-reference issues. We ignored the
annotations on the following words when they were annotated as vague: it, this
they, them, that, these, here, there, you, us, we, and following. We also ignored
annotations on the following phrases when they were annotated as vague: per-
sonal information, personally identifiable information, and third party (parties)
as they might have been defined in the privacy policy prior to usage.

296 M. Srinath et al.

Fig. 4. Distribution of vague sentences

We treated the problem as a token classification problem where each word
in a sentence would be predicted as either vague or not. We fine-tuned a pre-
trained transformer based model, namely Roberta [14], using the Roberta token
classification head from Huggingface [25]. We divided the corpus into train, devel-
opment, and test sets in the ratio 3:1:1. We used the development set for hyper-
parameter tuning. Table 5 shows the results for vague word prediction. While
Lebanoff and Liu achieve better precision and recall scores, the corpus that we
report on is a modified version due to the removed co-references.

For predicting vagueness of all the policies in the corpus, we extracted sen-
tences form the corpus that had any one of the 40 cue words [4] similar to
Lebanoff and Liu [13]. We call these candidate vague sentences. Following the
candidate sentence extraction, if any word in a sentence was found to be vague
by the Roberta model, we considered the sentence to be vague. We then nor-
malised the number of vague sentences with the total number of sentences in the
privacy policy to obtain a vagueness score for each policy.

Table 5. Vague word prediction results

Model Precision Recall F1

Lebanoff and Liu 68.4 53.8 60.08

Roberta 65.1 52.6 58.3

The distribution of candidates and vague sentences is shown in Fig. 4. From
the figure we can see that on average around 50% of the sentences in a privacy

PrivaSeer: A Privacy Policy Search Engine 297

policy are candidates for vague sentences, while about 30% are actually vague.
There appears to be a long tail with some privacy policies having almost no
vague sentences and some with almost all vague sentences. Manual evaluation of
the policies in tail shows that most of them are very short with at most three or
four sentences. Figure 2 shows the filter facet for vagueness based on a measure of
the ratio of vague sentences to the total number of sentences in the policy. Users
can filter results by entering a range between 0 and 1 to select the proportion of
vague sentences they would like to see in policies.

8 Ranking Evaluation and Discussion

We perform an exploratory evaluation, since no prior work exists on evaluating
a privacy policy search engine. Precision at k or P@k measures the number of
relevant results among the top k returned results. We report precision at 10 and
precision at 5 scores for two indexes of privacy policies as discussed in Sect. 5,
one with the context provided by non-policy content and one without.

Prior research identified ten categories of privacy practices that lawyers
expect privacy policies to contain [24]. To evaluate PrivaSeer, we created three
themes for queries based on the ten categories in prior work. These themes com-
prise of personal information type (PI), security information (S), and privacy
practice type (PP). The queries were designed and evaluated so that even if a
returned result for a query was a privacy policy with the query words, it was
deemed irrelevant if it did not fall in the expected category. For example, The
query ‘health information’ is from the category personal information type. If a
returned result for the query was a privacy policy from a hospital which did not
mention how users’ health information would be collected or managed, then the
query was deemed irrelevant.

Table 6. Queries and their categories

Category Queries

Personal information type Payment information, health information, social
security number, phone number, photos, private
messages, microphone

Security Firewall, encryption, SSL, data breach, deletion

Privacy practice type Opt-out, retention period, change notification, do not
track, European audience

The categories of queries and each query that was used for evaluation are
shown in Table 6. Table 7 shows the comparison of P@5 and P@10 results
between three ranking schemes over the different type of query categories and
indexes. The results suggest that the custom ranking technique works best fol-
lowed by PageRank and finally the simple query-document matching.

298 M. Srinath et al.

Table 7. PrivaSeer evaluation results

Non-policy content Excluded Non-policy content Included

PI S PP PI S PP

@5 @10 @5 @10 @5 @10 @5 @10 @5 @10 @5 @10

Relevance 0.54 0.48 0.28 0.38 0.66 0.63 0.37 0.31 0.48 0.44 0.6 0.62

PageRank 0.6 0.56 0.6 0.62 0.48 0.5 0.51 0.41 0.56 0.6 0.72 0.7

Custom 0.88 0.9 0.92 0.92 1 0.9 0.83 0.76 0.76 0.78 0.9 0.9

We tested a version of the custom ranking technique without document prob-
ability scores and found that the results were slightly better than either PageR-
ank or query based document relevance individually. Although this technique was
able to leverage PageRank and query based document relevance scores together,
we found that it performed poorly in cases where false positive privacy poli-
cies came from domains with a high PageRank. It was only able to perform
well when both PageRank and query based document relevance scores presented
reasonable results on their own. The use of document probabilities significantly
improved ranking performance. The document probability scores suppress doc-
uments with a high PageRank or high query based document relevance scores
but which might not be a privacy policy in reality.

Performance of all the techniques deteriorated on the index with non-policy
content, across all the categories. This suggests that content in the header, footer
or navigation menu do not provide much context while ranking queries related to
privacy practices. It is likely that non-policy content would improve ranking in
cases where users would like to filter results based on a specific industry. While
the ‘sector of commerce’ facet allows users to filter results based on course grained
industry categories, queries which include industry specific words on an index
with non-policy content might serve as a stronger filter.

The custom ranking technique outperforms the PageRank and query based
document relevance techniques and also has a higher variability in the returned
results when compared to the PageRank technique. The PageRank technique
usually returns the same set of documents for most queries. We hypothesize that
this behaviour is because most popular websites have a comprehensive coverage
of privacy practices.

9 Conclusion

We present PrivaSeer, the first privacy policy search engine. PrivaSeer is a
necessary tool that is the first of its kind and is helpful to several distinct
groups with goals in furthering user privacy. Documents can be ranked by query
based document relevance scores, PageRank values, and document probabilities.
They also can be filtered based on sector of commerce, policy vagueness, policy
readability, tracking technology mentioned, regulatory bodies mentioned, and
regulations/cross-border agreements mentioned in the policy text.

PrivaSeer: A Privacy Policy Search Engine 299

On average about 30% of the sentences in a privacy policy were found to
have at least one vague word in them. This suggests that vagueness in privacy
policy documents is a pervasive problem. We used regex text matching to extract
details about tracking technology, regulatory bodies, and regulations/cross-
border agreements and found non instances of false positives. We believe this is
because privacy policies only record elements of privacy that they use/comply
while rarely mentioning other elements/alternatives that exist.

An exploratory evaluation of PrivaSeer based on PageRank, query based
relevance, and our custom ranking technique found that the custom ranking
technique outperformed the others in all categories. We found that our custom
technique had higher variability in returned results and was able to overcome
limitations caused by the presence of false positive privacy policies in the results.
Future work could concentrate on adding a temporal component to the collection
of privacy policies and explore alternative ranking methods.

Acknowledgements. This work was partly supported by a seed grant from the Col-
lege of Information Sciences and Technology at the Pennsylvania State University.
We also acknowledge Adam McMillen for technical support and Ellen Poplavska for
providing feedback.

References

1. Amos, R., Acar, G., Lucherini, E., Kshirsagar, M., Narayanan, A., Mayer, J.: Pri-
vacy policies over time: curation andanalysis of a million-document dataset. arXiv
preprint arXiv:2008.09159 (2020)

2. Arasu, A., Novak, J., Tomkins, A., Tomlin, J.: Pagerank computation and the
structure of the web: experiments and algorithms. In: Proceedings of the Eleventh
International World Wide Web Conference, Poster Track, pp. 107–117 (2002)

3. Bannihatti Kumar, V., et al.: Finding a choice in a haystack: automatic extraction
of opt-out statements from privacy policy text. In: Proceedings of The Web Con-
ference, vol. 2020, pp. 1943–1954 (2020). https://doi.org/10.1145/3366423.3380262

4. Bhatia, J., Breaux, T.D., Reidenberg, J.R., Norton, T.B.: A theory of vagueness
and privacy risk perception. In: 2016 IEEE 24th International Requirements Engi-
neering Conference (RE), pp. 26–35. IEEE (2016). https://doi.org/10.1109/RE.
2016.20

5. Davis, M., Iancu, L.: Unicode text segmentation. Unicode Stand. Annex 29, 1–30
(2012)

6. Ermakova, T., Fabian, B., Babina, E.: Readability of privacy policies of healthcare
websites. Wirtschaftsinformatik 15, 1–15 (2015)

7. Fabian, B., Ermakova, T., Lentz, T.: Large-scale readability analysis of privacy
policies. In: Proceedings of the International Conference on Web Intelligence, pp.
18–25 (2017). https://doi.org/10.1145/3106426.3106427

8. Gormley, C., Tong, Z.: Elasticsearch: The Definitive Guide: A Distributed Real-
Time Search and Analytics Engine. O’Reilly Media, Inc., Newton (2015)

9. Harkous, H., Fawaz, K., Lebret, R., Schaub, F., Shin, K.G., Aberer, K.: Polisis:
automated analysis and presentation of privacy policies using deep learning. In:
27th USENIX Security Symposium, pp. 531–548 (2018)

http://arxiv.org/abs/2008.09159
https://doi.org/10.1145/3366423.3380262
https://doi.org/10.1109/RE.2016.20
https://doi.org/10.1109/RE.2016.20
https://doi.org/10.1145/3106426.3106427

300 M. Srinath et al.

10. Kelley, P.G., Cesca, L., Bresee, J., Cranor, L.F.: Standardizing privacy notices: an
online study of the nutrition label approach. In: Proceedings of the SIGCHI Con-
ference on Human factors in Computing Systems, pp. 1573–1582 (2010). https://
doi.org/10.1145/1753326.1753561

11. Kincaid, J.P., Fishburne Jr, R.P., Rogers, R.L., Chissom, B.S.: Derivation of new
readability formulas (automated readability index, fog count and flesch reading ease
formula) for navy enlisted personnel (1975). https://doi.org/10.21236/ada006655

12. Klare, G.R., et al.: Measurement of readability (1963). https://doi.org/10.1177/
002194366400100207

13. Lebanoff, L., Liu, F.: Automatic detection of vague words and sentences in privacy
policies. In: Proceedings of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 3508–3517 (2018). https://doi.org/10.18653/v1/D18-
1387

14. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

15. McDonald, A.M., Cranor, L.F.: The cost of reading privacy policies. Isjlp 4, 543
(2008)

16. Ravichander, A., Black, A.W., Wilson, S., Norton, T., Sadeh, N.: Question answer-
ing for privacy policies: combining computational and legal perspectives. In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 4949–4959 (2019). https://doi.org/10.18653/v1/D19-1500

17. Robertson, S.E., Walker, S., Beaulieu, M., Willett, P.: Okapi at TREC-7: automatic
ad hoc, filtering, VLC and interactive track. Nist Spec. Publ. SP 500, 253–264
(1999)

18. Rodrigues, R., Wright, D., Wadhwa, K.: Developing a privacy seal scheme (that
works). Int. Data Priv. Law 3(2), 100–116 (2013). https://doi.org/10.1093/idpl/
ips037

19. Rudolph, M., Feth, D., Polst, S.: Why users ignore privacy policies – a survey and
intention model for explaining user privacy behavior. In: Kurosu, M. (ed.) HCI
2018. LNCS, vol. 10901, pp. 587–598. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91238-7 45

20. Sloan, R.H., Warner, R.: Beyond notice and choice: privacy, norms, and consent.
J. High Tech. L. 14, 370 (2014). https://doi.org/10.2139/SSRN.2239099

21. Srinath, M., Wilson, S., Giles, C.L.: Privacy at scale: introducing the privaseer
corpus of web privacy policies. arXiv preprint arXiv:2004.11131 (2020)

22. Sundareswara, S.N., Wilson, S., Srinath, M., Giles, C.L.: Privacy not found: a
study of the availability of privacy policies on the web. In: Sixteenth Symposium
on Usable Privacy and Security (SOUPS 2020). USENIX Association (2020)

23. Supervisor, F.E.D.P.: What to expect when we inspect (2018)
24. Wilson, S., et al.: The creation and analysis of a website privacy policy corpus.

In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, pp. 1330–1340 (2016). https://doi.org/10.18653/v1/P16-1126

25. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45 (2020). https://doi.org/10.18653/
v1/2020.emnlp-demos.6

https://doi.org/10.1145/1753326.1753561
https://doi.org/10.1145/1753326.1753561
https://doi.org/10.21236/ada006655
https://doi.org/10.1177/002194366400100207
https://doi.org/10.1177/002194366400100207
https://doi.org/10.18653/v1/D18-1387
https://doi.org/10.18653/v1/D18-1387
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D19-1500
https://doi.org/10.1093/idpl/ips037
https://doi.org/10.1093/idpl/ips037
https://doi.org/10.1007/978-3-319-91238-7_45
https://doi.org/10.1007/978-3-319-91238-7_45
https://doi.org/10.2139/SSRN.2239099
http://arxiv.org/abs/2004.11131
https://doi.org/10.18653/v1/P16-1126
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

PrivaSeer: A Privacy Policy Search Engine 301

26. Zaeem, R.N., German, R.L., Barber, K.S.: Privacycheck: automatic summarization
of privacy policies using data mining. ACM Trans. Internet Technol. (TOIT) 18(4),
1–18 (2018). https://doi.org/10.1145/3127519

27. Zimmeck, S., Bellovin, S.M.: Privee: an architecture for automatically analyzing
web privacy policies. In: 23rd USENIX Security Symposium, pp. 1–16 (2014)

https://doi.org/10.1145/3127519

Web of Things

Knowledge-Driven Architecture
Composition: Assisting the System
Integrator to Reuse Integration

Knowledge

Fabian Burzlaff(B) and Christian Bartelt

Institute for Enterprise Systems (InES), University of Mannheim,
68131 Mannheim, Germany

{burzlaff,bartelt}@es.uni-mannheim.de

Abstract. Semantic interoperability for web services is still a problem.
Although decentralized solutions such as describing the integration con-
text with a formal mapping language or using a web service descrip-
tion language exist, practitioners rely on implementing software adapters
manually. For IoT and Web of Things systems, current scientific solu-
tions fall short as changing them, once defined, requires strenuous effort.
However, devices and thus, their interfaces change often in this class of
system. This paper tackles the barrier of high formalization effort for
mappings between required and provided interfaces. Therefore, we apply
and evaluate a novel integration method for web service choreography.
Our empirical experiment shows that this method lowers the integration
time and number of errors by assisting the system integrator to reuse
integration knowledge from previous integration cases.

Keywords: Knowledge-driven architecture composition · Web service
integration · Reuse

1 Introduction

In the universe of IoT, there will not exist one distinct standard for each use-
case [1]. The agreement process and keeping standards up-to-date is not feasible
for dynamically changing IoT systems. Hence, system integrators are currently
forced to implement software adapters. What’s bad about this is not the manual
implementation effort but the circumstance that the same integration knowledge
is repeatedly implemented in these software adapters.

Bottom-up approaches that do not rely on a predefined standard try to auto-
mate service integration by describing each integration context based on service

This work has been developed in the project BIoTope (Research Grant Number
01lS18079C) and is funded by the German Ministry of Education and Research
(BMBF).

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 305–319, 2021.
https://doi.org/10.1007/978-3-030-74296-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_23&domain=pdf
http://orcid.org/0000-0003-0632-5933
http://orcid.org/0000-0003-0426-6714
https://doi.org/10.1007/978-3-030-74296-6_23

306 F. Burzlaff and C. Bartelt

descriptions and interface mappings. These integration contexts are defined with
a closed-wold assumption in mind and relate to the concept of service chore-
ography. However, if an unforeseen integration case comes up, no automated
service integration occurs as the composition model is assumed to be complete.
In dynamically changing IoT environments, this results in a high formalization
effort that does not yield the desired benefits as structural and behavioral inter-
face mappings are assumed to be stable once they are defined. High formalization
effort such as adapting interface service descriptions, adjusting the underlying
ontology or resolving reasoning errors rather increases than decreases integration
effort over time. Furthermore, formalizing possible integration contexts ahead to
put them into inventory increases the specification effort even more as they may
not be used [2].

Within this gap, a novel integration method called knowledge-driven archi-
tecture composition (KDAC) has been suggested [3]. This method does not aim
at a stable composition model of the desired domain. In contrast to existing
bottom-up solution proposals, it refrains from formalizing integration contexts
in a big-bang manner at system design time. Instead, the approach explicitly
allows for interface mappings that are formalized incrementally and are thus
incomplete. Interface mappings are only written in a machine-understandable
way if a concrete integration case is present.

In this paper, we evaluate this so far conceptual method for web service
composition. Therefore, we design an empirical experiment and build up the
necessary tooling infrastructure. The method and tooling may assist the system
integrator in reusing existing integration knowledge and lowering the required
implementation effort. However, it is unclear if formalizing integration knowledge
and implementing a software adapter in the beginning results in lower integration
effort due to integration knowledge reuse over time.

2 Background for Applied Approach

The goal of KDAC is to assist the system integrator in generating software
adapters automatically. The leverage of the method is to make integration knowl-
edge reusable and reason about interface mappings [3]. Therefore, interface map-
pings must be stored in a machine-understandable way and made publicly avail-
able. These mappings must respect the semantic interoperability of services (e.g.,
REST). Semantic interoperability ensures that data exchanges between a pro-
vided and a required service make sense – that the requester and provider have a
common understanding of the meaning of services and data [7]. Semantic inter-
operability in distributed systems is mainly achieved by establishing semantic
correspondences (i.e., mappings) between vocabularies of different sources [1,14].

From an engineering perspective, software adaptability (e.g., service chore-
ography) can be achieved by engineering principles (i.e., explicitly planned com-
ponent configurations), emergent properties (i.e., implicitly derived from coop-
eration patterns of the participants), or evolutionary mechanisms (i.e., replacing
components) [15]. KDAC tackles engineering principles, emergent properties and
evolutionary mechanisms in the following way:

Knowledge-Driven Architecture Composition 307

Engineering: At the core, KDAC is a software engineering method that tries
to minimize the mapping formalization effort by relying on concrete integra-
tion cases instead of using predefined composition models (e.g., as known from
component-based software engineering). We can integrate KDAC into current
software engineering methods such as agile development or other incremen-
tal development modes. In addition to implementing an imperative software
adapter, mappings are only formalized if a concrete integration case occurs
(i.e., bottom-up). These mappings are stored incrementally using a declarative
language. A declarative language allows for applying reasoning principles. In
contrast to top-down methods (e.g., integration based on standards) and other
knowledge-based bottom-up methods (e.g., describing an integration context
using ontologies), KDAC explicitly allows for incomplete integration knowledge
at all times.

Fig. 1. Knowledge-driven architecture composition [adapted from [3]]

Evolution: In the beginning, the human-in-the-loop principle applies as the
underlying knowledge base is empty (see KB in Fig. 1). Over time, integration
knowledge is added to the knowledge base when new devices are integrated (see
dots and lines at t = 1 in Fig. 1). Hence, in the beginning, more formalization
effort takes place. The declarative formalization allows for knowledge reuse from

308 F. Burzlaff and C. Bartelt

previous integration cases independent of the service model and service descrip-
tion syntax. Finally, the formalization effort is reduced by reusing mappings and
reasoning principles (see dots and lines at t = n in Fig. 1).

Emergent: Although integration knowledge is incomplete, automated integra-
tion is possible over time so that the system integrator fades out of the loop.
Instead of integrating each device with one central domain model in a star-like
manner (i.e., the domain model acts similar to a ‘translator-in-the-middle’), we
can build up complex mapping chains. This structure allows for applying two
reasoning principles which are transitive relationships and inverse mappings.
Moreover, we can integrate unforeseen component replacements without human
anticipation.

In contrast, detecting semantic interoperability for ad-hoc integration cases
using a software adapter pattern is always a manual task.

Fig. 2. Reasoning example

2.1 Integration Knowledge Reuse Example

Assume for component A the interface of a Samsung TV and for component B
the interface of an LG TV (see Fig. 2). At t = 1, the method “status” and its
input and output parameters are mapped. A formalized mapping function can
include an attribute replacement (i.e., black lines with no text) or an operation
(i.e., black lines with text). As we can retrieve no mappings from the knowledge
base for the Samsung and LG interface, all mappings have to be created manually
by the system integrator. At t = n, these mapping functions can be reused for
the same integration case or for the inverse integration case (i.e., LG TV is
substituted by the Samsung TV). Furthermore, we can also reuse formalized
mappings for extensions of already seen interfaces (i.e., indicated by component
A* in Fig. 1).

For a transitive mapping chain, assume another integration from LG TV
to a Philips TV at t = 2 (see Fig. 2). Now, we can deduce the integration case

Knowledge-Driven Architecture Composition 309

from Samsung TV to Philips TV. Furthermore, the inverse integration case from
Philips to Samsung may also be covered if there exists an inverse function for
each formalized mapping function within the chain Philips TV ↔ LG TV ↔
Samsung TV. Hence, as soon as the system integrator selects the required and
provided interfaces based on the available components, a software adapter can
be (partially) generated.

However, integration knowledge is always incomplete, as not all methods
offered by all available devices and their possible combinations are formalized or
can be derived.

3 Evaluation Design and Results

In this experiment, we illustrate and test the end-to-end application of the pro-
posed method for web services. The participants have to work in two environ-
ments. This also allows for editing mappings within the mapping and coding
environment. The central evaluation goal is to compare implementing software
adapters, generating software adapters without reasoning principles, and gen-
erating software adapters with reasoning principles. Thereby we allow reusing
mapping functions between attributes and methods (see Fig. 2). As an effort
indicator, we measure the integration time and the number of mapping errors
and discuss problems during software adapter implementation.

3.1 Evaluation Setup

Challenge: It is unclear how KDAC can assist the system integrator during soft-
ware adapter (SA) implementation. Especially, the additional time to formalize
mappings should result in a working software adapter.

Experiment Design: We empirically compare the software adapter implementa-
tion method against KDAC applying a within-subject design [12,17]. SA repre-
sents implementing a software adapter. KDAC is split up in generating software
adapter without any mappings stored in the knowledge base (variant 1 – no
reasoning) and with mappings stored in the knowledge (variant 2 – reasoning).
Hence, we can compare the mapping time and errors made by the system integra-
tor and, if any, made by the reasoning algorithms. Thereby we focus on creating
correct mappings according to their semantic interoperability.

Therefore, three to five integration cases have been assigned to four students
each week (i.e., 16th October 2020 until 16th December 2020).

Participants: The students study Informatics at the Bachelor (two students) or
the Master (two students) level. All students did not have working experience
in implementing software adapters in the given programming language.

Experiment Scope: As we are interested in the method’s performance and not in
the underlying technology, we chose a technology stack that can be utilized by
both methods (i.e., SA and KDAC). Regarding the underyling KDCA method,

310 F. Burzlaff and C. Bartelt

we focus on empty knowledge-bases and high formalization effort in the begin-
ning (i.e., t = 0 and t = 1 within Fig. 1). We do not evaluate how reasoning prin-
ciples and the underlying method perform on a large knowledge base (i.e., t = 0
in Fig. 1).

Success Indicator: An integration task is finished if the request to a required
service is successfully transformed to the request of a provided service instance
and vice versa for the respective response. There is a test criterion for each
integration task that tells the students whether their mapping is correct or not.
In essence, the test criterion contains all attributes as defined for the required
operation and the values as produced by the provided operations. This test
criterion is checked every time the student runs the software adapter. If the test
fails, a snapshot of the software adapter is stored. This allows for a qualitative
evaluation of the code.

Metrics: The quantitative implementation effort is measured in integration time
and component interaction correctness. Integration time is measured from start-
ing the integration task until the students finished the mapping in the KDAC
tool in minutes. Component interaction correctness is measured by the number
of retries needed when the test criterion is not met.

Hypothesis: The independent variable is the engineering method. The dependent
variables are integration time and component interaction correctness. We suspect
that the component interaction correctness and integration time is highest using
the KDAC method (see Fig. 1).

Technology Stack: We rely on the HTTP/JSON component model using POST
and GET service calls. For specifying mapping functions in a declarative way,
we use JSONata [9], and for implementing the software adapter, we use the
Visual Studio Code Web IDE. For implementing the software adapter, we choose
NodeJS. A project setup script is provided so that the participants can resolve
all necessary dependencies by issuing one command line statement within the
Web IDE.

All HTTP/JSON endpoints have been designed based on publicly avail-
able endpoints from the OpenAPI repositories (e.g., https://rapidapi.com/) or
Smart Home Adapter repositories (e.g., https://www.openhab.org/addons/).
Here, OpenAPI refers to a syntactical description of service instances (i.e.,
device abstraction) that does not support any relationship to a machine-readable
or machine-understandable domain standard (e.g., URL links to an ontology).
Then, service instances from the OpenAPI specifications have been mocked.

3.2 Evaluation Execution Process

The leitmotif for the students is that a client requests a required server inter-
face (e.g. POST Samsung), but only a semantically identical provided inter-
face instance (e.g. POST LG) is available. This means that the needed software
adapter translates one interface to precisely one other interface. Thus, all request
parameters from the provided interface must be present in the required request,

https://rapidapi.com/
https://www.openhab.org/addons/

Knowledge-Driven Architecture Composition 311

1

2

3

Fig. 3. Evaluation steps

312 F. Burzlaff and C. Bartelt

and all required response parameters must be present in the response message
of the provided interface.

A student took the role of a System Integrator. Six measurement runs using
three different use cases were executed autonomously by the students. The inte-
gration contexts are illumination, music, and television (see running example).
The use case can be summarized as “As a mobile application user, I want to
control all available devices in my current room by only using one application”.
When selecting the OpenAPI descriptions, it was made sure by the experiment
conductors that each integration context fulfilled the technical one-to-one inter-
face mapping constraint. Furthermore, at least three similar interfaces had to
be integrated so that the transitive mapping chain could be computed (e.g., a
music player from Bose, Sony, and Sonos).

Software Adapter: When a mapping source and mapping target are selected,
then no mappings can be shown at any time. Hence, the students could only
continue to generate the software adapter and start implementing.

KDAC: In both variants, a mapping can be tested before generating the soft-
ware adapter within the KDAC tool (i.e., perform a request to a provided service
instance). This can be done as soon as all request attributes from the provided
interface and all response attributes from the required interface are mapped.

A search over all stored mappings is performed when a mapping source and
mapping target are selected. All computed mapping functions for the source
(i.e., required) and target (i.e., provided) interfaces are automatically inserted
and visualized in the KDAC tool. They can be edited at any time during the
evaluation process. All attributes from the selected provided and the required
interfaces can be used within one mapping function.

The students performed the following steps (see Fig. 3): First, they selected a
task from the task overview. Second, the type of tasks determines how mappings
are populated. If the tool is only used to generate the software adapter project,
no mappings are populated, and students can only generate the project. If the
tool is used to create mappings between operations, the students can inspect
and specify mappings. This view also symbolizes the first variant of the KDAC
method. If there are already mappings within the knowledge base, then the rea-
soning principles are applied and populated within the mapping view. Inferred
mappings are annotated with a green or merlot color (see 1 in Fig. 3) and man-
ually inserted mappings are annotated with a blue color (see 2 in Fig. 3). In the
first KDAC variant, only manual mappings are available. In the second KDAC
variant, manual and inferred mappings are available. Only when all calls succeed
mappings are stored within the knowledge base, and the students may proceed
to login into the Web IDE. This mandatory reliability feature ensures semantic
interoperability.

Last, the students must resolve all dependencies in the underlying Node.js
environment by executing an install script and provide their username and pass-
word for authentication towards the knowledge base. If the tool is only used to

Knowledge-Driven Architecture Composition 313

generate the adapter skeleton, then the method that should contain the actual
transformations had to be implemented. Suppose the tool was used to formalize
mappings or mappings have been computed based on the reasoning principles.
In that case, these mappings are inserted into the software adapter code that
had to be implemented (see 3 in Fig. 3).

Finally, the students can check anytime by executing a test script if their
operationalized mappings are correct according to the test criterion (see 3 Fig. 3).
If this is the case, then a corresponding message is printed on the terminal, and
the students end the task by switching back to the KDAC tool and click the
finish task button (see 2 in Fig. 3).

Fig. 4. High-level system architecture for evaluation setup

3.3 Implementation

The overall KDAC framework is built up of three parts responsible for generating
interface mappings. In addition, a generic Mapping Test & Validator for testing
the created mappings was implemented (see Fig. 4). Depending on the task type,
a preprocessor might be applied. Their duty is to populate the Mapping View
with automatically created suggestions of mapping functions. In the case of the
first variant of the KDAC method (i.e., no reasoning), the web-tool only provides
a graphical user interface for specifying mappings with JSNOata. The web-tool
is used to generate the software adapter project skeleton so that both approaches
are as similar as possible. Hence, the first and second variant only differentiate in

314 F. Burzlaff and C. Bartelt

whether existing mappings are evaluated or not. In the case of the second variant
of the KDAC method, the Transformation preprocessor is invoked. It first tries to
find a transitive mapping chain between the selected source and target interface
using a breadth-first search on the Transformation KB. Once such a chain is
identified, the preprocessor recursively applies the mappings stored in JSONata
to each other, producing a final mapping from the source to the target interface
(i.e., POST Samsung → POST LG). This is done for both, request and response
data.

3.4 Results

We captured 108 one-to-one interface integration tasks to validate our hypoth-
esis. There are 9 integration tasks for the Software Adapter Implementation
method, 9 for the first KDAC variant and 9 for the second KDAC variant. Each
integration task has been repeated 4 times during the evaluation period. It was
made sure that one student did not work on a similar or identical integration
task during a period of three weeks.

Fig. 5. Average and standard deviation for all integration tasks

Figure 5 outlines the duration average for all integration tasks. An integration
task involved ten to 16 attributes that had to be mapped. The integration time
is measured in minutes, and the description of each task involves the integration
task type. Here, “MANUAL” corresponds to only using the tool (see Fig. 3)
as a software adapter generation environment where all mapping logic has to
be implemented in the generated adapter project. “SUPPORTED” relates to
the first variant of the KDAC method, where mappings between interfaces are

Knowledge-Driven Architecture Composition 315

defined using JSONata. Last, “SUPPORTED-reasoning” is the second variant of
the KDAC method with reasoning and integration knowledge reuse. The devices
from Sony, Bose, and Sonos are speakers, Yeelight, Lifx, and Philips are lamps,
and Epson, LG, and Samsung are TVs.

Overall, the average time needed for constructing a working software adapter
is the highest for implementing software adapters and the lowest when mappings
can be reused. Furthermore, the manual task’s standard deviation is higher com-
pared to the second variant of the KDAC method. This is mainly because of the
presence or absence of errors during code writing. The number of attributes does
not seem to directly affect the average integration time as the highest value of
20.1 min had 13 attributes to be mapped. The first integration task with 16
attributes scored an average duration of 14 min.

Fig. 6. Metric integration time

Fig. 7. Metric errors

Figure 6a illustrates the average integration time per engineering method and
Fig. 6b the average integration time per use case. On average, the participants
need 11.9 min to implement a software adapter, 5.0 min to create mappings in
the tool and then generate a software adapter, and 1.2 min when mappings could
be reused. For all integration tasks type, the same number of attributes had to

316 F. Burzlaff and C. Bartelt

be mapped (i.e., 117 attributes in total). For the three use cases, this equal-
ity does not apply. However, this does not necessarily result in higher average
integration times. Concerning the traditional software adapter implementation
method, the use case with lamps (90 attributes in total) lasted 10.2 min, speakers
(117 attributes in total) lasted 12.5 min, and TVs (141 attributes in total) lasted
12.9 min. The average integration times are highest for the manual integration
task types and lowest for the second variant of the KDAC method.

Figure 7a and Fig. 7b illustrate the amount of retries from the viewpoints
of integration task types and use cases. Naturally, the sum of retries per use
case equals the number of retries per integration task type. It can be stated the
errors made is highest for the manual software adapter implementation method
and lowest for the second variant of the KDAC method. This circumstance is
straight forward as the number of errors possibly made by the students’ increases
if no automation is involved (e.g., as for manually coding a software adapter).
Hence, we list the most common errors for each method based on a manual
inspection of code snapshots. For the manual method, the most common errors
are: 1) Missing or wrong attributes in the result 2) result object is undefined
3) result object is empty 4) attribute hierarchy was ignored 5) attribute values
not correctly assigned 6) wrong encapsulation of result data 7) import of the
provided interface failed. For the first variant of the KDAC method, the most
common error was a wrongly mapped attribute. No errors have been made for
the second variant of the KDAC method.

Error resolving strategies for all methods include the usage of logging func-
tionality offered by the IDE. Regarding the manual method, this allowed for iden-
tifying attributes with different semantics as the retrieved values from the pro-
vided interfaces did not match the specified test criterion. Regarding the KDAC
method’s first variant, errors made in mapping from within the tool resulted
in wrong JSONata transformations. These errors have been mainly resolved by
adjusting the inserted JSONata mapping strings directly in the software adapter.
However, this case can be traced back to a non-use of the Mapping Test & Val-
idator (see Fig. 4) as no incorrect mappings should be stored in the knowledge
base.

We suspected that the component interaction correctness and integration
time is highest using the KDAC method. Based on the data collected, we can
summarize that the second variant of the KDAC method has the highest com-
ponent interaction correctness (i.e., no errors made), and the integration time is
lowest using the second variant of the KDAC method as well. However, the first
variant of the KDAC method involved some errors. Nevertheless, a low number
of the student population and the applicability of reasoning principles allow for
improvement.

3.5 Threats to Validity

Apparently, implementing interface mappings in a textual programming lan-
guage and implementing interface mappings in a graphical web-tool poses a
different challenge for novices. Therefore, we ensured that the students working

Knowledge-Driven Architecture Composition 317

on software adapter implementation tasks also could rely on the NodeJS project
skeleton generation service. Furthermore, we measure the results for using the
graphical tool without reuse and reasoning functionality (i.e., KDAC variant 1).
Consequently, we can identify the time saved by switching from the textual to
the graphical syntax for mapping creation. Although we can see that the second
variant of KDAC is the fastest, we can only approximate the point where using
KDAC in addition to implementing the software adapter pays off. This is mainly
due to the challenge of collecting realistic engineering data over time.

Overall, the presented evaluation design favors internal over external valid-
ity. Hence, we eliminated the confounding factors for the independent variable
engineering method as much as possible. Tasks are randomly assigned to the
students, but it is made sure that no student works on the same integration task
in subsequent measurement runs.

Nevertheless, we can only discuss generalized statements based on this exper-
iment within the following frame: There may be a selection bias as only four
students were serving as study population members. The representativeness of
use cases is ensured by using OpenAPI specifications from external product ven-
dors. However, it is made sure during OpenAPI interface description selection
that mappings could be chained early in the experiment. This may not hold
in practice. Furthermore, it may not always be the case that there is a one-to-
one mapping between a set of interfaces. However, the tool also supports one-
to-many mappings. Nevertheless, manual mappings are inevitable if there are
multiple paths from a source to a target interface within the knowledge base.

The evaluation focuses on the engineering method. Hence, different technolo-
gies might have produced other results. We assume that more complex interface
descriptions (e.g. using stateful services) would slow our approach down.

Last, there exists a learning curve by the students for all use cases. The first
integration contexts worked on (i.e., lamps) have a higher standard variation
than the later use case (i.e., TVs). This learning curve applied to all students and
all task types as they had no prior experience in implementing software adapters
or using the KDAC. Here, no experience can be measured more precisely than
some experience.

4 Related Work

There are four different research streams that deal with semantic service inter-
operability for various system classes (e.g., web services, interactive systems, or
embedded systems) based on interface mappings [4]. These are symbolic artificial
intelligence [11], component-based software development [5], software architec-
ture [2,16], and web services [6,8] .

For web service composition approaches with an explicit semantic layer, the
following approaches are related to KDAC. Bennaceur et al. [2] present a fully
automatable approach that achieves interoperability through semantics-based
technologies. Their approach uses a domain-specific ontology, already annotated

318 F. Burzlaff and C. Bartelt

services based in SAWSDL, and model-checking techniques to generate correct-
by-construction mediators automatically. They target the run time phase and
minimize additional specification effort by using reasoning principles.

Khodadadi et al. [10] suggest a framework for service definition and discovery.
This framework relies on ontologies paired with JSON-LD and is a prime example
for bottom-up service integration as services are annotated incrementally.

Kovatsch et al. [13] introduce a practical approach to semantics for the IoT
regarding physical states and device mashups. Their approach calculates an exe-
cution plan based on RESTdesc service descriptions to facilitate service compo-
sition. They note that calculating an execution plan took longer than expected
and is a potential obstacle to applying their approach out-of-the-box.

Like KDAC, all approaches describe the integration context, such as in our
example (see Sect. 2.1) in a decentralized manner. Hence, no global standard is
used by any of the approaches. However, Kovatsch et al. [13] and Bennaceur et al.
[2] assume that their decentralized integration context is complete (i.e., contains
also all needed interface mappings for future cases). If a change occurs, updating
these mappings requires substantial effort. Here, KDAC allows for incomplete
mappings that can be easily edited. Khodadadi et al. [10] also support incom-
pleteness by incrementally annotating data JSON data. However, they provide
no leverage to support mapping creation as they only focus on creating interface
descriptions. This means that only identical integration contexts can be solved.
Here, KDAC offers reasoning principles to integrate also unseen integration cases.

5 Conclusion

Semantic interoperability for web services is still a problem for IoT and Web
of Things systems. In this paper, we lower the formalization effort for web ser-
vices and their integration context by applying and evaluating an integration
method that makes use-case specific integration knowledge reusable. Therefore,
we performed an empirical experiment that compares manual software adapter
implementation with the knowledge-driven integration method. Our results sug-
gest that, over time, reusing incrementally formalized integration knowledge is
indeed faster than implementing software adapters manually without any inte-
gration knowledge reuse. In the future, we plan to extend the mapping language
used to cover other domains that do not only rely on the HATEOAS principle
for web services (e.g., cyber-physical systems).

References

1. Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of
things: early progress and back to the future. Int. J. Semant. Web Inf. Syst
(IJSWIS) 8(1), 1–21 (2012)

2. Bennaceur, A., Issarny, V.: Automated synthesis of mediators to support compo-
nent interoperability. IEEE Trans. Softw. Eng 41(3), 221–240 (2015). https://doi.
org/10.1109/TSE.2014.2364844

https://doi.org/10.1109/TSE.2014.2364844
https://doi.org/10.1109/TSE.2014.2364844

Knowledge-Driven Architecture Composition 319

3. Burzlaff, F., Bartelt, C.: Knowledge-driven architecture composition: Case-based
formalization of integration knowledge to enable automated component coupling.
In: 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW), pp. 108–111. IEEE (2017)

4. Burzlaff, F., Wilken, N., Bartelt, C., Stuckenschmidt, H.: Semantic interoperabil-
ity methods for smart service systems: a survey. IEEE Trans. Eng. Manag., 1–15
(2019). https://doi.org/10.1109/TEM.2019.2922103

5. Chang, H., Mariani, L., Pezze, M.: In-field healing of integration problems with
COTS components. In: 2009 IEEE 31st International Conference on Software Engi-
neering, pp. 166–176. IEEE (2009)

6. Garriga, M., Mateos, C., Flores, A., Cechich, A., Zunino, A.: RESTful service
composition at a glance: a survey. J. Netw. Comput. Appl 60, 32–53 (2016)

7. Heiler, S.: Semantic interoperability. ACM Comput. Surv. (CSUR) 27(2), 271–273
(1995)

8. Jara, A.J., Olivieri, A.C., Bocchi, Y., Jung, M., Kastner, W., Skarmeta, A.F.:
Semantic web of things: an analysis of the application semantics for the IoT moving
towards the IoT convergence. Int. J. Web Grid Serv. 10(2–3), 244–272 (2014)

9. JSONata: Json query and transformation language. https://jsonata.org/, Accessed
29 Oct 2020

10. Khodadadi, F., Sinnott, R.O.: A semantic-aware framework for service definition
and discovery in the internet of things using coap. Procedia Comput. Sci. 113,
146–153 (2017)

11. Klusch, M., Kapahnke, P., Zinnikus, I.: SAWSDL-MX2: a machine-learning app-
roach for integrating semantic web service matchmaking variants. In: 2009 IEEE
International Conference on Web Services, pp. 335–342 (2009). https://doi.org/10.
1109/ICWS.2009.76

12. Ko, A.J., LaToza, T.D., Burnett, M.M.: A practical guide to controlled exper-
iments of software engineering tools with human participants. Empirical Softw.
Eng. 20(1), 110–141 (2013). https://doi.org/10.1007/s10664-013-9279-3

13. Kovatsch, M., Hassan, Y.N., Mayer, S.: Practical semantics for the internet of
things: physical states, device mashups, and open questions. In: 2015 5th Interna-
tional Conference on the Internet of Things (IOT), pp. 54–61. IEEE (2015)

14. Noy, N.F., Doan, A., Halevy, A.Y.: Semantic integration. AI Mag. 26(1), 7–7 (2005)
15. Rausch, A., Bartelt, C., Herold, S., Klus, H., Niebuhr, D.: From software systems to

complex software ecosystems: model- and constraint-based engineering of ecosys-
tems. In: Münch, J., Schmid, K. (eds.) Perspectives on the Future of Software
Engineering: Essays in Honor of Dieter Rombach, pp. 61–80. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37395-4 5

16. Spalazzese, R., Inverardi, P.: Mediating connector patterns for components inter-
operability. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp.
335–343. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15114-
9 26

17. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1109/TEM.2019.2922103
https://jsonata.org/
https://doi.org/10.1109/ICWS.2009.76
https://doi.org/10.1109/ICWS.2009.76
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/978-3-642-37395-4_5
https://doi.org/10.1007/978-3-642-15114-9_26
https://doi.org/10.1007/978-3-642-15114-9_26
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

A-MaGe: Atomic Mashup Generator
for the Web of Things

Ege Korkan1(B) , Fady Salama1 , Sebastian Kaebisch2 ,
and Sebastian Steinhorst1

1 Technical University of Munich, Munich, Germany
{ege.korkan,fady.salama,sebastian.steinhorst}@tum.de

2 Siemens AG, Munich, Germany
sebastian.kaebisch@siemens.com

Abstract. Individually, Internet of Things (IoT) devices are often not
able to achieve complex functionalities and, therefore, need to be com-
posed together into useful mashups. However, given the current frag-
mentation of the IoT domain, designing a mashup is still a manual task
that is time-consuming and error-prone. The introduction of the Thing
Description (TD) from the World Wide Web Consortium (W3C) is meant
to facilitate the interoperability between IoT devices and platforms by
providing a standardized format to describe the network interfacing of
entities, called Things, participating in the Web of Things (WoT). Fur-
thermore, the System Description (SD) extension introduces the notion
of Atomic Mashups (AMs), small mashup building blocks that are easier
to design. However, designing AMs remains a manual task and, given the
rising complexity of IoT devices, manually exploring the resulting design
space is infeasible. In this paper, we introduce A-MaGe: a method and
its open-source implementation that takes the TDs as an input and uses
predefined templates, user-configurable rules, semantic annotation filter-
ing and natural language processing to automatically explore and reduce
the design space. SD-compliant UML Sequence Diagrams of the resulting
mashups are presented to the human agent for further selection to gen-
erate the SD of the mashup as well as implementation code based on the
W3C WoT Scripting API. We show that the generation process is fast,
allowing multiple iterations by the human agent to increase reduction
and we evaluate the filtering power of different filters and constraints.
Thus, in combination with the TD standard, our method ensures easy
composition of services in heterogeneous environments.

Keywords: Web of Things · Mashup composition

1 Introduction

The domain of Internet of Things (IoT) has been rapidly growing, with the num-
ber of connected devices projected to increase to 50 billion devices by 2030 [1].

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 320–327, 2021.
https://doi.org/10.1007/978-3-030-74296-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_24&domain=pdf
http://orcid.org/0000-0003-4910-4962
http://orcid.org/0000-0001-9225-6625
http://orcid.org/0000-0002-0544-4204
http://orcid.org/0000-0002-4096-2584
https://doi.org/10.1007/978-3-030-74296-6_24

A-MaGe: Atomic Mashup Generator for the Web of Things 321

Fig. 1. A-MaGe takes Thing Descriptions (TDs) and based on constraints and fil-
ters, Atomic Mashups are generated and presented to the human agent in form of
UML Sequence Diagrams. The human agent can then choose to generate the System
Description (SD) and the code for the selected mashup.

With this vast increase comes the challenge of connecting devices from differ-
ent vendors. To facilitate it, vendors offer IoT platforms, software that handles
the communication of different devices and exposes the functionalities. How-
ever, there are currently over 620 different IoT platforms on the market [2] and
this causes a high fragmentation in the IoT domain as well as a difficulty in
developing applications that leverage functionalities from the resulting silos.

To address this problem, the World Wide Web Consortium (W3C) proposed
the Web of Things (WoT) architecture as a standardized means to allow the
interoperability of different IoT platforms [3]. The main building block of the
WoT architecture is the Thing Description (TD) [4], which is a JSON-Linked
Data (JSON-LD) document [5] that is both machine- and human-readable and
describes the network-interfacing of the interaction affordances offered by any
IoT entity, called a Thing in the context of this paper.

However, TDs have no means to describe how a system of Things inter-
acts together to offer some functionality. To this end, the System Description
(SD) was proposed [6], a superset of the TD that offers additional keywords
for describing such systems, called mashups in the context of this paper. The
SD also specifies a second representation format for mashups using a subset
of the Unified Modeling Language (UML) Sequence Diagrams, as well as an
algorithm for converting one representation to the other. To describe complex
functionalities, the SD uses a sequence of building blocks that together form an
execution sequence called a Path. The smallest building block of a Path is an
Atomic Mashup (AM), in which a mashup controller performs a specific number
of interactions, waits asynchronously for the results of these interactions and,
based on these inputs, performs a series of asynchronous output interactions.

322 E. Korkan et al.

1.1 Problem Statement

While the TDs offer an abstraction level that eases the process of designing and
creating AMs, the process is still a manual task in which the developer needs to
go through the whole collection of TDs to find the interaction affordances that
are needed and suitable for the desired functionalities. Furthermore, a better
written and annotated TD that exposes more metadata about the TD and its
interaction affordances improves the understanding, but the added metadata
introduces more information that a human agent has to manually process and
consider when designing mashups. And finally, the resulting design space to be
explored increases exponentially with the total number of interaction affordances
in a system. Thus, the increasing complexity and capabilities of IoT devices, the
increasing complexity of the written TDs as well as the increasing complexity of
the desired mashups translate into the manual exploration of the design space,
being both time-consuming and error prone. There are solutions to automate
the generation of mashups which are discussed in Sect. 4, but to the best of our
knowledge, none are centered around the TD standard without extending its
standardized core vocabulary. Hence, the generation of mashups using the core
TD vocabulary remains unexplored.

1.2 Contributions

In this paper we introduce A-MaGe, a method and a corresponding implementa-
tion as a solution for system designers to automatically reduce the design space
that needs to be explored manually as well as automate the creation of AMs as
illustrated in Fig. 1. In particular, we make the following contributions:

– We introduce a method that takes TDs as an input and generates AMs that
conform to predefined templates as well as user-defined constraints and filters
leading to a reduction in the design space, introduced in Sect. 2.

– We propose a tool that uses the above-mentioned method to generate SD-
compliant UML Sequence diagrams, allowing further selection of the AMs for
automatic SD and code generation based on SD-algorithms.

– We show that the above-mentioned method achieves a design space reduction
of several orders of magnitude, while being sufficiently fast for a human agent
to allow multiple iterations of filtering to further reduce the design space,
explained in Sect. 3.

Section 4 explores other approaches and related work for mashup composition
and Sect. 5 concludes this paper.

2 A-MaGe Methodology

A-MaGe: an Atomic Mashup Generator is a method that is able to automatically
explore and reduce the possible design space of Atomic Mashups (AM) given a
set of TDs as an input with minimal direct intervention from a human agent. It
relies on the AM abstraction defined in the SD which we describe in the following
paragraph.

A-MaGe: Atomic Mashup Generator for the Web of Things 323

Atomic Mashup: A unique building block defined by the SD is the AM,
which describes an undividable execution sequence that performs a specific
functionality, similar to atomic operations in programming. An AM is defined
as an unordered sequence of interactions performed by a mashup controller,
called receive/input interactions (readproperty, observeproperty, subscribeevent
or invokeaction), followed by an unordered sequence of interactions performed
called send/output interactions (writeproperty or invokeaction). This makes it
possible to describe synchronous and asynchronous sensing-actuating behaviors
of a system and can then be combined using the aforementioned building blocks
such as loops and conditional execution to achieve any desired system behaviour.

Given a system of Things, we can define the set all interaction affordances
that can be considered as inputs as Intot and similarly Outtot for output inter-
actions. For AMs with a specific input length lin and specific output length lout,
we can calculate the resulting design space using the following equation:

C(|Intot|, lin) · C(|Outtot|, lout) =
|Intot|!|Outtot|!

lin!lout!(|Intot| − lin)!(|Outtot| − lout)!
(1)

with C(a, b) denoting the combination formula.
On the other hand, the design space of mashups in general can be used with the
permutations function:

P (n, k) =
|A|!

(|A| − k)!
(2)

with |A| denoting the number of interaction affordances in a system and k the
mashup length respectively.

Looking at an example of a system with four Things exposing five input
and five output interactions each and a desired mashup with two input and two
output interactions, meaning that |A| = 40, |Intot| = |Outtot| = 20, k = 4,
lin = lout = 2. Using these parameters, we can calculate using Eq. 1 that the
maximum number of AMs that can be generated is 36100, in contrast to 2193360
mashups in total as per Eq. 2, which means that in this case there is a 98.35%
reduction in the design space that needs to be explored manually.

2.1 Design Space Reduction Using Templates and Constraints

A human agent designing a mashup may have some prior expectations and con-
straints on how the mashup should operate or such constraints may arise during
the design phase, which can be added incrementally. A computer can take advan-
tage of these constraints and expectations to further reduce the design space and
generate mashups that adhere to them, making it easier for a human agent to
review and evaluate the results. With A-MaGe, we propose:

1. Filtering the considered mashup space by limiting the number of Things or
interactions considered for input or output

2. Matching input and output interactions who use the same vocabulary
3. Semantic context matching of input and output interactions, meaning only

interactions with annotations from the same vocabulary are considered.

324 E. Korkan et al.

4. Data type based filters to match input and output interactions based on their
Data Schemas or to filter out an interaction based on its type

5. Template rules to choose how the controller receives its inputs in order to
limit the InputTypes

– Subscription-driven template: The mashup controller starts by sub-
scribing to events or observing properties from input Things and waits
asynchronously for the data pushes.

– Read-driven template: The mashup controller starts by reading a set
of properties from input Things.

– Action-driven template: The mashup controller starts by invoking a
set of actions in input Things and receives the interactions’ outputs.

– Allowing mashups that mix the above-mentioned templates or not. Mixed
template mashups include multiple input interaction types.

6. matching input and output interactions filters using Natural Language Pro-
cessing (NLP) based on the similarity of their names using a similarity score
Word2Vec model [7] and based on the similarity of their descriptions by aug-
menting the Word2Vec approach using Word Mover’s Distance algorithm [8].

7. filtering mashups based on specific semantic annotations and/or interactions,
which can be described using Linear Temporal Logic (LTL) formulas Fφ and
G¬φ respectively. Our method proposes three path variables φ:
(a) φ1: An interaction from a TD, that was annotated on the top-level with

a specific semantic annotation, was performed.
(b) φ2: An interaction with a specified semantic annotation was performed.
(c) φ3: A specific interaction was performed.
To allow a granular selection, these constraints can be specified individually
to input, output, and input/output Things in case of φ1 as well as to each
type of input and output interactions in case of φ2 and φ3, respectively.

Based on the AM concept, the filters and constraints provided by the human
agent, our method generates all the possible mashups. These are then presented
to the human agent in the form of an SD-compliant UML Sequence Diagram.
The human agent can view them and further adjust the filters and constraints.
When the desired mashup is found, the human agent can then choose to generate
the equivalent SD. The Sequence Diagram is then converted to an SD document
using the SD conversion algorithm and the human agent can then automatically
generate executable code according to the WoT Scripting API [9].

3 Evaluation

To evaluate A-MaGe, we implemented our proposed method in the WoT API
Development Enviroment (WADE)1 [10]. However, our method does not rely
on any specific programming language or framework to function. We evaluate
the viability of our approach by looking at the execution time of our method

1 https://github.com/tum-esi/wade.

https://github.com/tum-esi/wade

A-MaGe: Atomic Mashup Generator for the Web of Things 325

and explore the filtering power of different user-defined constraints. Therefore,
we perform two different tests2, which are described in detail in this section.

Fig. 2. We perform a number of measurements for mashups with the lengths two, four,
six, eight and for interaction pools with sizes between the size of the mashup and 20
interactions. Note: The y-axis of Figure b is in logarithmic scale.

Testing Execution Time: In this test, we estimate the upper bound of exe-
cution time needed to generate all mashups given a specific mashup length and
number of available interactions. Hence, we run A-MaGe with all templates
enabled, as well as allowing mixed template mashups, but without any further
constraints or filters to be able to generate the maximum number of mashups.
We perform test runs for mashups with the lengths two, four, six, eight and for
interaction pools with sizes between the size of the mashup and 20 interactions.
The execution time for each specific test is measured 20 times to account for
execution time fluctuations and the results of measurements for the mashups
length of two and four can be viewed in Fig. 2.

Given that intended scope is small AMs and given these findings, we conclude
that our method is viable and is able to generate an exhaustive list of all mashups
conforming to certain constraints with acceptable speeds. The process of the
human agent further adjusting the filters and constraints and re-running the
code takes at most a few seconds, allowing for multiple iterations of filtering and
generation in a small span of time.

Testing Filtering Power: We also perform a set of measurements to test
the filtering power of different filters and constraints in different scenarios.
We selected a number of filters on three different systems from three different
domains: smart agriculture, smart home and smart industry. Each system differs
in the devices used as well as the variety in the input and output interactions
or multiplicity of Things. For each of these setups, we apply a selected num-
ber of filters and constraints one at a time and record the number of generated
mashups. The results of this experiment can be viewed in Fig. 3.
2 Both tests are done using a computer with an Intel c© CoreTM i7-8750H Processor,

8 GB of DDR4-2666 memory, Windows 10 Home 64-bit operating system.

326 E. Korkan et al.

4 Related Work

There are multiple approaches for semi- and fully automated (web) service compo-
sitions in literature. [11,12] proposes an approach based on the RESTdesc ontol-
ogy [13], that is able to describe REST APIs and the relationship between them.
Both approaches allow the user to define a set of goals to be achieved and use a
semantic reasoner that is able to parse and logically chain APIs based on seman-
tic reasoning to achieve this goal, but they differ in how they represent the goals.
[12] uses goals similar to LTL formulas used in our method, where a specific API
should be performed and the reasoner finds the chain ofAPIs that can be connected
together that lead to the desired API. On the other hand, [11] allows the user to
define the desired state that a mashup should achieve. Therefore, [11] augments
the RESTdesc with a semantic description of states and state transition to allow
for semantic reasoning about states. Compared to both of these approaches, our
method utilizes the TD ontology, which is not restricted to any specific protocol
or architecture, as long as the protocol bindings are defined. Hence, our method is
more universally applicable. Thus, to the best of our knowledge, no other method
was proposed that leverages the TD and the AM abstraction for mashup design
space exploration and automatic mashup composition.

Fig. 3. We evaluate the filtering power of different filters and constraints in different
scenarios. The results show that coarse forbidding using annotations is more powerful
than granularly forbidding specific interactions, but the opposite is true for enforcing
an annotation or interactions to be included.

5 Conclusion

In this paper, we proposed A-MaGe, a method that takes a set of TDs, as
well as multiple filters and constraints as an input, and is able to automatically
generate an exhaustive list of all possible Atomic Mashups (AMs) that adhere

A-MaGe: Atomic Mashup Generator for the Web of Things 327

to the specified constraints. We started by formally defining the design space
of mashups in general and showed that by focusing on AMs, we decrease the
design space by several orders of magnitude. Subsequently, we introduced our
method that uses a set of pre-defined templates, as well as filters and constraints
that allow a human agent to further decrease the design space. We showed that
our method is capable of generating AMs in maximum a few seconds and that
filtering power of different filters and constraints work in different application
domains. Both evaluations show that our method a viable approach while being
universally applicable to all WoT devices.

References

1. Mercer, D.: Global Connected and IoT Device Forecast Update (2019). https://
www.strategyanalytics.com/access-services/devices/connected-home/consumer-
electronics/reports/report-detail/global-connected-and-iot-device-forecast-
update, Accessed 26 Nov 2020

2. Lueth, K.L.: IoT Platform Companies Landscape 2019/2020: 620 IoT
Platforms globally (2019). https://iot-analytics.com/iot-platform-companies-
landscape-2020/, Accessed 27 Nov 2020

3. Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K., Kajimoto,
K.: Web of Things (WoT) Architecture. Technical report (2020) https://www.w3.
org/TR/2020/REC-wot-architecture-20200409/

4. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V., Kovatsch, M.: Web of
Things (WoT) Thing Description. Technical report (2020). https://www.w3.org/
TR/2020/REC-wot-thing-description-20200409/

5. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Champin, P.A., Lindström, N.:
JSON-LD 1.1 (2020). https://www.w3.org/TR/2020/REC-json-ld11-20200716/

6. Kast, A., Korkan, E., Käbisch, S., Steinhorst, S.: Web of things system description
for representation of mashups. In: 2020 COINS, pp. 1–8 (2020). https://doi.org/
10.1109/COINS49042.2020.9191677

7. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

8. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to
document distances. In: ICML2015, vol. 37, pp. 957–966. JMLR.org (2015)

9. Kis, Z., Peintner, D., Aguzzi, C., Hund, J., Nimura, K.: Web of Things (WoT)
Scripting API (2020). https://www.w3.org/TR/2020/NOTE-wot-scripting-api-
20201124/

10. Schlott, V.E., Korkan, E., Kaebisch, S., Steinhorst, S.: W-ADE: timing perfor-
mance benchmarking in web of things. In: Bielikova, M., Mikkonen, T., Pau-
tasso, C. (eds.) ICWE 2020. LNCS, vol. 12128, pp. 70–86. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-50578-3 6

11. Mayer, S., Verborgh, R., Kovatsch, M., Mattern, F.: Smart configuration of smart
environments. IEEE Trans. Autom. Sci. Eng 13(3), 1247–1255 (2016). https://doi.
org/10.1109/TASE.2016.2533321

12. Ventura, D., Verborgh, R., Catania, V., Mannens, E.: Autonomous composition
and execution of REST APIs for smart sensors. In: CEUR Workshop Proceedings,
vol. 1488, pp. 1–12 (2015). http://ceur-ws.org/Vol-1488/paper-02.pdf

13. Verborgh, R., et al.: RESTdesc–a functionality-centered approach to semantic ser-
vice description and composition. In: Proceedings of the 9th ESWC, Crete, Greece,
pp. 27–31 (2012)

https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://iot-analytics.com/iot-platform-companies-landscape-2020/
https://iot-analytics.com/iot-platform-companies-landscape-2020/
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://doi.org/10.1109/COINS49042.2020.9191677
https://doi.org/10.1109/COINS49042.2020.9191677
http://arxiv.org/abs/1301.3781
https://www.w3.org/TR/2020/NOTE-wot-scripting-api-20201124/
https://www.w3.org/TR/2020/NOTE-wot-scripting-api-20201124/
https://doi.org/10.1007/978-3-030-50578-3_6
https://doi.org/10.1109/TASE.2016.2533321
https://doi.org/10.1109/TASE.2016.2533321
http://ceur-ws.org/Vol-1488/paper-02.pdf

WebAssembly Modules as Lightweight
Containers for Liquid IoT Applications

Niko Mäkitalo1(B), Tommi Mikkonen1, Cesare Pautasso2, Victor Bankowski1,
Paulius Daubaris1, Risto Mikkola1, and Oleg Beletski3

1 University of Helsinki, Helsinki, Finland
{niko.makitalo,tommi.mikkonen,victor.bankowski,

paulius.daubaris,risto.mikkola}@helsinki.fi
2 University of Lugano, Lugano, Switzerland

cesare.pautasso@usi.ch
3 Huawei Technologies, Helsinki, Finland

oleg.beletski@huawei.com

Abstract. Going all the way to IoT with web technologies opens up
the door to isomorphic IoT system architectures, which deliver flexible
deployment and live migration of code between any device in the overall
system. In this vision paper, we propose using WebAssembly to imple-
ment lightweight containers and deliver the required portability. Our
long-term vision is to use the technology to support developers of liquid
IoT applications offering seamless, hassle-free use of multiple devices.

Keywords: Light-weight containers · Internet of Things · IoT · Liquid
software · Containers · WebAssemly · Web of Things · WoT

1 Introduction

Today, in the context of Internet of Things (IoT), web APIs are commonly used,
but actual devices and applications in them are often implemented with native
technologies. However, going all the way to IoT with web technologies would
open up the door to isomorphic IoT system architectures. In such architectures,
devices, gateways, and the cloud can run the same software components and
services, unaltered. This will allow flexible migration of code between any ele-
ment in the overall system. Practical isomorphic application scenarios include
virtual assistants and other ubiquitous applications for messaging, gaming, read-
ing, writing, listening to music/podcasts/news, or watching video.

Unfortunately, today’s container techniques are often too heavy-weight for
that, especially when considering devices with limited resources or direct access
to hardware [5,21]. A recent taxonomy of IoT client architectures [25] distin-
guishes bare metal RTOS systems, systems with a language runtime, and sys-
tems with full OS. Besides, some propose containers as a solution for IoT sys-
tems, where requirements regarding resources are relaxed. However, the taxon-
omy overlooks other architecture options than that the containers are built on
top of an OS.
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 328–336, 2021.
https://doi.org/10.1007/978-3-030-74296-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_25

WebAssembly Modules as Lightweight Containers 329

In this paper, we propose using the language runtime approach – the simplest
option to enable 3rd party application code [25] – as the basis for lightweight
containers. As the concrete implementation environment, we use WebAssembly
(WASM). WASM was initially conceived to enable near-native execution speed
[10] inside the browser. Following the same path of JavaScript runtimes which
left the browser many years ago, today there are WASM implementations that
can be run outside the browser as well [3].

Our long-term vision is to use WASM to implement the concept of liquid
software [20] – user-centric, hassle-free use of multiple computers with software
which can dynamically flow between them – in the context of the IoT. In essence,
building liquid web applications needs two facilities, (i) ability to relocate code
freely across different computing environments; and (ii) ability to synchronize
the state of the application across all devices running the code. In our previous
work, we have used the DOM [26] and Web Components with Polymer [7] as
the underlying technology. However, both technologies are closely tied to the
browser, and target at the UI layer of web applications. In particular, the unit
of deployment in both approaches has been a web page, which is not optimal for
embedded device, especially those that have no screen. WASM’s characteristics
– small footprint, near-native performance, advanced security, support for mod-
ules, and in-built support for isomorphic use – make it an attractive candidate
for considering to use the Web as a platform for IoT applications.

2 Background and Related Work

This work is based on and related to the following relatively distinct technologies:

Web of Things. Web of Things (WoT) describes a set of standards by the
W3C for solving the interoperability issues of different Internet of Things (IoT)
platforms and application domains1. In essence, WoT is about making each
’thing’ part of the Web by giving it an URI that can be used for communicating
with it. The communication with each thing should be supported with a common
data model and a uniform interface that is recognized by every thing2.

Assuming such Web API for things deployed widely, programming IoT could
be simplified to a large degree. Then, every device would provide this API and
its features for programs that want to address its properties. Given a powerful
enough API – in the context of this work, powerful enough to allow offloading
of software on the fly – the promise of the Programmable Web [19] could be
extended to cover the programmable world concept [27], using the Web as the
underlying standard, interoperable technology platform [18].

WebAssembly. WASM [29] is a fast, safe and portable binary instruction for-
mat which can be executed on a stack-based virtual machine that can leverage
1 https://www.w3.org/TR/wot-architecture/Overview.html, accessed Oct. 21, 2020.
2 https://iot.mozilla.org/wot/, accessed Oct. 21, 2020.

https://www.w3.org/TR/wot-architecture/Overview.html
https://iot.mozilla.org/wot/

330 N. Mäkitalo et al.

contemporary hardware [3,12]. WASM code is validated and run in a sandboxed
environment; there is no ambient access to the computing environment in which
code is being run except through explicit permission. Actual programs have
compact representation, so they are small to transmit, especially in comparison
to text or native code. Programs can be written by a variety of programming
languages and then compiled to WASM for execution.

WASM programs are organized into modules, which are the unit of deploy-
ment, loading, and compilation [10]. Each module can contain definitions for
types, functions, tables, memory areas, and global variables. These definitions
may be imported or exported. To support rapid startup and dynamic configu-
rations, WASM offers facilities for execution time dynamic linking.

Each WASM module executes within a sandboxed environment separated
from the host runtime using fault isolation techniques. Hence, applications exe-
cute independently, and only specific features can be accessed by providing
explicit permissions to APIs. Moreover, the security policies of its embedding
are applied to the module. Within a web browser, this means the same-origin
policy. On a non-web platform, no uniform model exists yet. So far, domain-
specific and capability-based security models have been proposed.

The original design goals of WASM were to make it compatible with the
web browser [29]. To this end, WASM applications can call into and out of the
JavaScript context and access browser functionality through the same Web APIs
accessible from JavaScript. For web pages and browser applications, which have
already become overly complex [4], embedding WASM to JavaScript is an option
that does not add many memory or performance related constraints.

Despite the increasing computing capacity of chips, it is still expected that
the future networks include memory and performance-related challenges as many
devices have limited memory. Moreover, in the context of IoT systems, comput-
ers, in general, have diverging performance capabilities, ranging from almost
bare metal in sensors to cloud systems where everything is virtualized [22].

Lightweight WASM Containers for IoT. There are numerous WASM vir-
tual machines that can be run outside the browser. The exact features of these
systems vary3, with some targeted for smallest devices, with the simplest possible
interpretation, and others supporting sophisticated features such as streaming
and ahead-of-time compilation4. Thus, small memory footprint and near-native
performance make it an attractive alternative for building IoT systems [28].

Some work on the performance of WASM has already been composed, but
the results seem inconclusive. The reasons are many, and include the fact
that there are multiple runtimes for WASM, with varying performance and
resource consumption5. For instance, [13] claim that in many of their benchmark

3 https://github.com/appcypher/awesome-wasm-runtimes, accessed Jan. 6, 2020.
4 https://github.com/wasm3/wasm3/blob/master/docs/Performance.md, accessed

Jan. 5, 2020.
5 https://medium.com/wasmer/benchmarking-webassembly-runtimes-18497ce0d76e,

accessed Oct. 21, 2020.

https://github.com/appcypher/awesome-wasm-runtimes
https://github.com/wasm3/wasm3/blob/master/docs/Performance.md
https://medium.com/wasmer/benchmarking-webassembly-runtimes-18497ce0d76e

WebAssembly Modules as Lightweight Containers 331

applications, WASM was slower than native by a factor of 1.5. The work was
conducted inside the browser, not using a runtime only, which may have affected
the results. At the same time, [28] claim that the Wasmachine runtime is up to
11% faster than Linux for common IoT and fog applications.

With the above facilities, we seek to build lightweight IoT containers, using
the WASM language runtime as the basis for the implementation. Such systems
can support third-party application development and dynamic changes, and it
is possible to update the device software (or parts thereof) dynamically without
having to reflash the entire firmware. Basically, applications run in a sandbox
that provides only limited access to the underlying platform features – something
that WASM immediately provides us at the level of modules.

Despite the idea’s attractiveness, it seems that the idea has not received
much attention in research. A recent thesis that includes a literature review
points out that little research has been invested in considering the use of WASM
modules as lightweight containers [23]. The study also points out that there
are issues with memory usage at runtime when comparing WASM to Docker
containers. What the study overlooks, however, is the fact that WASM module
images are smaller than corresponding Docker images (or even smaller than
compiled C/C++ modules), where facilities related to the infrastructure are
included. Furthermore, while some WASM virtual machines can be run in various
micro-controllers6 and play the role of an operating system [28] – even bare-metal
implementation is proposed7.

Finally, to complement the ability to use WASM runtimes and modules as
lightweight containers for IoT devices, WASM has also been used for serverless
computing [11,24]. Hence, the same technology has been demonstrated to be
feasible across all the elements needed to build IoT applications.

3 Our Vision

Our prime motivation of this work is to rely on Web technologies all the way
to IoT. Figure 1 represents how our goal is to push the boundaries of the devel-
opment up to a point we reach isomorphic computations, where no constraints
regarding the underlying architecture or platform are placed on applications,
but they can be run everywhere, taking the context and its computational
resources into account. In this deployment, using the Web as the underlying
platform liberates developers from the restrictions of mainstream containers that
rely on virtualizing a full operating system. This, in turn, results in more fine-
grained deployment. Moreover, it is possible to consider hardware-related aspects
by discovering the features available in this particular computing unit. Hence,
the deployment loads modules on-demand basis only when necessary and cus-
tomizes which module gets loaded, depending on the device. Such dynamic self-
configuration is difficult to achieve with static images, which are commonly used

6 https://github.com/bytecodealliance/wasm-micro-runtime, accessed Oct. 21, 2020.
7 https://github.com/lastmjs/wasm-metal, accessed Oct. 21, 2020.

https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/lastmjs/wasm-metal

332 N. Mäkitalo et al.

Fig. 1. Liquid IoT application lifecycle.

by mainstream containers. Finally, since the device configurations and availabil-
ity can change over time, the running software’s deployment configuration needs
to adapt dynamically. In other words, we want to go past dynamic deployment
only and reach the full liquid web software vision [20], where software can flow
and adapt to multiple devices. In essence, the solution must be able to migrate
the execution’s code and state so that the execution can continue one computer
from the same program execution state it had on the previous computer [6].

WebAssembly’s characteristics – small footprint, near-native performance,
advanced security, support for modules, availability of language runtimes for
different hardware devices – lead to potential support for isomorphic IoT appli-
cations. Using WebAssembly, one can relocate application code in a fine-grained
fashion to different computing units commonly used in IoT systems. To this
end, an approach similar to Apple’s Handoff API [9] where applications can
roam from device to device can be constructed, or one can rely on mobile agents
for IoT like in [14], for instance.

In addition to simply deploying WebAssembly modules, it is also possible
to support self-configuration by allowing the application to determine its envi-
ronment, and dynamically load the necessary modules on the fly. Then, the
initial deployment can be rapid – only a bootloader that is able to determine
its functions at a particular location is needed. With the isomorphic nature of
WebAssembly, actual application code can be the same despite its eventual loca-
tion in the IoT architecture. This turns WebAssembly modules into lightweight
containers that can easily be relocated.

Relocating and adapting code is only half of the liquid web application
vision; also, application state and data should be transferred [20]. As WebAssem-
bly relies on binary formats, techniques proposed in previous work, relying on
browser facilities, cannot transform the application state. However, serialization
techniques proposed in, e.g., [2] can be used to transfer the state of the appli-
cations when a WebAssembly module is relocated somewhere else in the IoT
system. For the data part, techniques proposed in our previous work will be
enough [7].

WebAssembly Modules as Lightweight Containers 333

4 Proof of Concept Design

Currently, WebAssembly virtual machines outside of the browser do not support
dynamic linking. Instead, all parts of an application must be present to run it.
This essentially predefines task allocation at startup, and does not leverage full
benefits of isomorphic architectures. To support more liberal configurations, we
have implemented an execution time dynamic linking system, where modules
can be loaded on the need basis [17]. With this facility, the application can
adapt to the role of the bigger context. The implementation uses execution time
shared-everything linking approach, meaning that modules can use each other’s
functions and resources once they have been loaded. A video of these loading
capabilities is available for demonstration purposes on YouTube8.

Based on its context, the application can decide what modules to load. Mod-
ules can be loaded from the local disk or from an online repository, which in turn
can contain parts of the code that can be freely allocated in the IoT network. At
present, the implementation still lacks support for migrating live applications.
Here, we plan to follow the approach of [14], where the developer defines the
migration with a special API, at least initially.

5 Way Forward to the Vision

While the research done for this paper has been promising, there are numerous
issues that still require practical solutions. Some key issues are listed below.

State Synchronization. As already mentioned, our proof-of-concept imple-
mentation lacks support for application state migration. The main design deci-
sion documented in the design space [8] concerns whether developers need to
explicitly annotate the state to be migrated and synchronized or whether the
underlying runtime transparently takes care of it. In particular, reflection will
be a topic of further investigation to help automate the migration.

Dynamic Orchestration. Migrating applications from one computer to
another cannot happen randomly, but it needs orchestration. This facility is to
some degree a novel avenue to us, although it has received some attention in the
context of stream processing [1]. In addition to an API that assumes full control,
as in [1], we also plan to consider techniques used for self-organization [16].

Generalized API for Hardware Access. To truly enable isomorphic software
architectures, also the environment where the software is run should be similar.
In our present implementation, we have introduced adaptability mechanisms for
taking the environment into account, but for large-scale use, such requirement
can be a burden. Instead, a generalized API for hardware access would be a

8 https://youtu.be/gZj3M31ZfuI, accessed Dec. 28, 2020.

https://youtu.be/gZj3M31ZfuI

334 N. Mäkitalo et al.

better solution. At the moment, WebAssembly offers WASI9, a modular system
interface for WebAssembly applications, but it is not generic enough for arbitrary
IoT devices. However, it can act as a starting point for designing a uniform
hardware access API across IoT architectures. Finally, even with a generalized
hardware API, mechanisms are needed to discover what hardware modules are
present at runtime, where the situation may change over time.

Fine-Grained Security Model. While WebAssembly provides a sandboxing
mechanism for applications at runtime level, something more comprehensive
is needed at the scale of full liquid applications, their adaptive configurations,
and migration. Here, our plan is to seek inspiration from mobile agents [15].
However, to truly address this aspect in detail, more specific use cases need to
be considered, whereas here we have focused on technological factors only.

Benchmarking. As already mentioned, there is no conclusive data on the per-
formance of WebAssembly applications in comparison to native ones. Performing
systematic tests in the context of IoT and containers is therefore in our interests
when our prototype implementation is more mature. Moreover, issues related to
migration and liquid features also require benchmarking in the context of IoT
to better understand the feasibility of the approach.

6 Conclusion

Going all the way with web in IoT development will help iron out numerous
device and technology specific complications. In this paper, we propose using
WebAssembly as a mechanism for building lightweight containers, which are
capable of assuming different roles, depending on their location and roles in an
IoT application. We demonstrated the use of the technology with a proof-of-
concept implementation, and provided links to solutions that can be used to fill
in the missing pieces needed for migrating full-fledged live applications.

References

1. Babazadeh, M., Pautasso, C.: A restful api for controlling dynamic streaming
topologies. In: Proceedings of the 23rd International Conference on World Wide
Web, pp. 965–970 (2014)

2. Bellucci, F., Ghiani, G., Paternò, F., Santoro, C.: Engineering javascript state per-
sistence of web applications migrating across multiple devices. In: Proceedings of
the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
pp. 105–110 (2011)

3. Bryant, D.: Webassembly outside the browser: a new foundation for pervasive
computing. In: Keynote at ICWE 2020, Helsinki, Finland, 9–12 June 2020 (2020)

9 https://wasi.dev/, accessed Oct. 21, 2020.

https://wasi.dev/

WebAssembly Modules as Lightweight Containers 335

4. Butkiewicz, M., Madhyastha, H.V., Sekar, V.: Characterizing web page complexity
and its impact. IEEE/ACM Trans. Netw. 22(3), 943–956 (2013)

5. Celesti, A., Mulfari, D., Fazio, M., Villari, M., Puliafito, A.: Exploring container
virtualization in iot clouds. In: 2016 IEEE International Conference on Smart Com-
puting (SMARTCOMP), pp. 1–6. IEEE (2016)

6. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans.
Softw. Eng. 24(5), 342–361 (1998)

7. Gallidabino, A., Pautasso, C.: The liquid.js framework for migrating and cloning
stateful web components across multiple devices. In: Proceedings of the 25th Inter-
national Conference Companion on World Wide Web, pp. 183–186 (2016)

8. Gallidabino, A., Pautasso, C., Mikkonen, T., Systä, K., Voutilainen, J.P., Taival-
saari, A.: Architecting liquid software. J. Web Eng. 16(5&6), 433–470 (2017)

9. Gruman, G.: Apple’s handoff: What works, and what doesn’t. InfoWorld (2014)
10. Haas, A., et al.: Bringing the web up to speed with webassembly. In: Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 185–200 (2017)

11. Hall, A., Ramachandran, U.: An execution model for serverless functions at the
edge. In: Proceedings of the International Conference on Internet of Things Design
and Implementation, pp. 225–236 (2019)

12. Jacobsson, M., Willén, J.: Virtual machine execution for wearables based on
webassembly. In: Sugimoto, C., Farhadi, H., Hämäläinen, M. (eds.) BODYNETS
2018. EICC, pp. 381–389. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-29897-5 33

13. Jangda, A., Powers, B., Berger, E.D., Guha, A.: Not so fast: analyzing the per-
formance of webassembly vs. native code. In: 2019 USENIX Annual Technical
Conference, pp. 107–120 (2019)

14. Järvenpää, L., Lintinen, M., Mattila, A.L., Mikkonen, T., Systä, K., Voutilainen,
J.P.: Mobile agents for the internet of things. In: 2013 17th International Confer-
ence on System Theory, Control and Computing, pp. 763–767. IEEE (2013)

15. Kumar, S.A., et al.: Classification and review of security schemes in mobile com-
puting. Wirel. Sensor Netw. 2(06), 419–440 (2010)

16. Kurzyniec, D., Wrzosek, T., Drzewiecki, D., Sunderam, V.: Towards self-organizing
distributed computing frameworks: the H2O approach. Parallel Process. Lett.
13(02), 273–290 (2003)

17. Mäkitalo, N., Bankowski, V., Daubaris, P., Mikkola, R., Beletski, O., Mikkonen,
T.: Bringing webassembly up to speed with dynamic linking. Accepted to SAC
2021 (2021)

18. Mäkitalo, N., Nocera, F., Mongiello, M., Bistarelli, S.: Architecting the web of
things for the fog computing era. IET Softw. 12(5), 381–389 (2018)

19. Maximilien, E.M., Ranabahu, A.: The programmable web: agile, social, and grass-
root computing. In: International Conference on Semantic Computing (ICSC 2007),
pp. 477–481. IEEE (2007)

20. Mikkonen, T., Systä, K., Pautasso, C.: Towards liquid web applications. In: Cimi-
ano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS,
vol. 9114, pp. 134–143. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19890-3 10

21. Morabito, R.: A performance evaluation of container technologies on internet of
things devices. In: 2016 IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), pp. 999–1000. IEEE (2016)

22. Morabito, R., Cozzolino, V., Ding, A.Y., Beijar, N., Ott, J.: Consolidate IoT edge
computing with lightweight virtualization. IEEE Netw. 32(1), 102–111 (2018)

https://doi.org/10.1007/978-3-030-29897-5_33
https://doi.org/10.1007/978-3-030-29897-5_33
https://doi.org/10.1007/978-3-319-19890-3_10
https://doi.org/10.1007/978-3-319-19890-3_10

336 N. Mäkitalo et al.

23. Napieralla, J.: Considering webassembly containers for edge computing on
hardware-constrained IoT devices. Master’s thesis, Blekinge Institute of Technol-
ogy, Karlskrona, Sweden (2020)

24. Shillaker, S., Pietzuch, P.: Faasm: Lightweight isolation for efficient stateful server-
less computing. arXiv preprint arXiv:2002.09344 (2020)

25. Taivalsaari, A., Mikkonen, T.: A taxonomy of IoT client architectures. IEEE Softw.
35(3), 83–88 (2018)

26. Voutilainen, J.-P., Mikkonen, T., Systä, K.: Synchronizing application state using
virtual DOM trees. In: Casteleyn, S., Dolog, P., Pautasso, C. (eds.) ICWE 2016.
LNCS, vol. 9881, pp. 142–154. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46963-8 12

27. Wasik, B.: In the programmable world, all our objects will act as one. Wired (2013).
http://www.wired.com/2013/05/internet-of-things-2/, Accessed 13 Oct 2020

28. Wen, E., Weber, G.: Wasmachine: bring IoT up to speed with a webassembly OS.
In: 2020 IEEE International Conference on Pervasive Computing and Communi-
cations Workshops (PerCom Workshops), pp. 1–4. IEEE (2020)

29. World Wide Web Consortium: WebAssembly Core Specification (2019). https://
www.w3.org/TR/wasm-core-1/, https://webassembly.github.io/spec/core/
download/WebAssembly.pdf

http://arxiv.org/abs/2002.09344
https://doi.org/10.1007/978-3-319-46963-8_12
https://doi.org/10.1007/978-3-319-46963-8_12
http://www.wired.com/2013/05/internet-of-things-2/
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf

Leveraging Web of Things W3C
Recommendations for Knowledge

Graphs Generation

Dylan Van Assche(B) , Gerald Haesendonck , Gertjan De Mulder ,
Thomas Delva , Pieter Heyvaert , Ben De Meester ,

and Anastasia Dimou(B)

IDLab, Department of Electronics and Information Systems,
Ghent University – imec, Technologiepark-Zwijnaarde 122, 9052 Ghent, Belgium
{dylan.vanassche,gerald.haesendonck,gertjan.demulder,thomas.delva,

pieter.heyvaert,ben.demeester,anastasia.dimou}@ugent.be

Abstract. Constructing a knowledge graph with mapping languages,
such as RML or SPARQL-Generate, allows seamlessly integrating hetero-
geneous data by defining access-specific definitions for e.g., databases or
files. However, such mapping languages have limited support for describ-
ing Web APIs and no support for describing data with varying veloci-
ties, as needed for e.g., streams, neither for the input data nor for the
output RDF. This hampers the smooth and reproducible generation of
knowledge graphs from heterogeneous data and their continuous integra-
tion for consumption since each implementation provides its own exten-
sions. Recently, the Web of Things (WoT) Working Group released a
set of recommendations to provide a machine-readable description of
metadata and network-facing interfaces for Web APIs and streams. In
this paper, we investigated (i) how mapping languages can be aligned
with the newly specified recommendations to describe and handle het-
erogeneous data with varying velocities and Web APIs, and (ii) how
such descriptions can be used to indicate how the generated knowledge
graph should be exported. We extended RML’s Logical Source to support
WoT descriptions of Web APIs and streams, and introduced RML’s Log-
ical Target to describe the generated knowledge graph reusing the same
descriptions. We implemented these extensions in the RMLMapper and
RMLStreamer, and validated our approach in two use cases. Mapping
languages are now able to use the same descriptions to define the input
data but also the output RDF. This way, our work paves the way towards
more reproducible workflows for knowledge graph generation.

1 Introduction

Mapping languages, such as the RDF Mapping Language (RML) [6], allow defin-
ing mapping rules to describe how to generate a knowledge graph from hetero-
geneous data. This is achieved by aligning the mapping rules with access-specific

The original version of this chapter was revised: the email addresses of some
authors have been corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-74296-6 49

c© Springer Nature Switzerland AG 2021, corrected publication 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 337–352, 2021.
https://doi.org/10.1007/978-3-030-74296-6 26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_26&domain=pdf
http://orcid.org/0000-0002-7195-9935
http://orcid.org/0000-0003-1605-3855
http://orcid.org/0000-0001-7445-1881
http://orcid.org/0000-0001-9521-2185
http://orcid.org/0000-0002-1583-5719
http://orcid.org/0000-0003-0248-0987
http://orcid.org/0000-0003-2138-7972
https://doi.org/10.1007/978-3-030-74296-6_49
https://doi.org/10.1007/978-3-030-74296-6_26

338 D. Van Assche et al.

definitions for e.g., databases or files, to integrate data from heterogeneous for-
mats, e.g., CSV, XML, JSON. However, we observe that: (i) data velocity is not
well supported in mapping languages and corresponding processors, compared
to data variety and volume [8,18,20]; and, (ii) the characteristics and destination
of the generated knowledge graph remain unexplored.

Mapping languages declaratively describe how to integrate heterogeneous
data without considering their data velocity, e.g., when new data is available
for retrieval. Consequently, processors cannot generate knowledge graphs from
data sources with varying data velocities, such as streams, as they lack the
descriptions that determine their execution. This results in non-reproducible
knowledge graph generation, because processors have each their own (use case-
depending) approach to deal with data sources with varying data velocities.

Mapping languages only partly align with Web APIs and streams descrip-
tions. When they do, they are limited to a set of protocols and do not describe
how authentication against Web APIs and streams should be performed. Exist-
ing approaches describe access Web APIs, but only for a subset of the HTTP
protocol, to retrieve data from Web APIs, while other protocols, e.g., MQTT or
CoAP, and use cases of Web APIs are not considered. Because of this, additional
steps outside the processor are needed to use other protocols. If authentication is
needed, data cannot be retrieved from Web APIs, as the processors do not know
how to handle authentication from the access description in mapping rules.

Last, mapping languages only define how a knowledge graph should be
generated from heterogeneous data, but not how a knowledge graph should
be exported and handled afterwards. Each processor has its own approach to
retrieve this information, using e.g. a configuration file or command line argu-
ments as this information is not declaratively described in the mappings. Fur-
thermore, the velocity of the input data, also influences the output velocity when
exporting knowledge graphs. Thus, it is necessary to consider the data velocity
when retrieving the input data as well when exporting a knowledge graph.

We address the aforementioned issues by leveraging the recent W3C recom-
mendations of the Web of Things (WoT) Working Group [2,10,13]. On one hand,
we adapt the data source descriptions to describe how processors can access and
process Web APIs and streams with the WoT W3C recommendations. On the
other hand, we introduce a target description which declaratively describes how
a knowledge graph should be exported. The target description defines in which
format and where the knowledge graph is exported. Since the target description
reuses same access descriptions as the input data sources, the generated knowl-
edge graph can be exported in various ways, e.g., file dumps or triple stores.

We apply our proposed approach to the RDF Mapping Language (RML) [6].
Our contributions are: (i) RML’s Logical Source adaptation to the new
WoT W3C recommendations to support more data structures, data velocity
and authentication; (ii) RML’s Logical Target introduction to define how
the knowledge graph should be handled and exported; (iii) Implementation of

Leveraging WoT for Knowledge Graphs Generation 339

our proposed approach in the RMLMapper1 and RMLStreamer2; and (iv)
Validation of our approach in two use cases: ESSENCE and DAIQUIRI.

Lack of access to data with different velocities and knowledge graph’s char-
acteristics’ descriptions hampers the knowledge graphs’ reproducible generation
from heterogeneous data. It also hampers their continuous integration for con-
sumption as additional steps are needed to retrieve the data and transform
these in an appropriate format. Our proposed approach shows how mapping lan-
guages can use same descriptions for input data and output knowledge graph.
This reduces the processor’s implementation costs, as the same descriptions are
reused for both input and output and all processors follow the same descriptions,
resulting in more reproducible knowledge graph generation.

Section 2 describes the state of the art and Sect. 3 our motivating use cases
and issues encountered in our use cases. Section 4 explains how we aligned the
WoT W3C recommendations with RML and how we implemented our approach
in the RMLMapper and RMLStreamer. We validate our approach in Sect. 5 with
two real-life use cases. In Sect. 6, we discuss conclusions and future work.

2 State of the Art

In this Section, we describe our related work (Sect. 2.1), and introduce the Web
of Things W3C recommendations and RML (Sect. 2.2).

2.1 Related Work

We outline vocabularies (Table 1) to describe Web APIs and streams, and inves-
tigate how current approaches use these vocabularies to access Web APIs, deal
with streams’ varying velocities and export the generated knowledge graph.

Vocabularies for Web APIs and Streams. Data sources on the Web come in vari-
ous forms and protocols while sharing common practices for identifying resources
or authentication schemes. Various vocabularies exist to describe access to Web
APIs and streams, e.g., Hydra, DCAT, HTTP, VoCaLS, and OWL-S.

The Hydra vocabulary [14] is proposed by the Hydra W3C Community Group
to describe Web APIs but it is not a W3C recommendation. The Hydra vocab-
ulary describes Web APIs but does not describe how a processor must perform
authentication against Web APIs or use protocol-specific features.

DCAT [16] is a W3C recommendation to describe data catalogs on the
Web. DCAT only describes datasets in a DCAT data catalog without cover-
ing protocol-specific features or authentication.

The HTTP W3C vocabulary [11] describes the HTTP protocol and can be
used to describe HTTP Web APIs. However, the HTTP W3C vocabulary is
limited to a single protocol, namely HTTP, does not describe how processors
must perform authentication against Web APIs, nor does it describe streams.
1 https://github.com/RMLio/rmlmapper-java.
2 https://github.com/RMLio/rmlstreamer.

https://github.com/RMLio/rmlmapper-java
https://github.com/RMLio/rmlstreamer

340 D. Van Assche et al.

OWL-S is a W3C member submission to semantically describe Web ser-
vices [17] such as Web APIs and streams. OWL-S consists of Service Profiles
to describe what the service does, Service Models to specify how it works,
and Service Grounding which describes how to access the service. OWL-S’ Ser-
vice Grounding leverages the Web Services Description Language [4] to describe
access to Web services. Although, OWL-S can describe access to Web services,
it does not cover authentication and never became a W3C recommendation.

VoCaLS [22] is a vocabulary and catalog description for data streams. It
extends the DCAT W3C recommendation to describe streams without being
limited to a specific stream protocol. VoCaLS can be used to describe access to
data streams, but not other Web APIs.

The Web of Things (WoT) W3C Working Group recently released recommen-
dations for describing IoT devices on the Web [2,10,13] by providing an abstract
layer to access Internet of Things (IoT) devices. WoT uses a similar approach as
OWL-S by applying binding templates to bind this layer to an underlying proto-
col used by an IoT device. New protocols can be added by defining a new binding
template without influencing the access abstraction layer [13]. We leverage the
WoT W3C recommendations to showcase how processors can access Web APIs
and streams without depending on a specific protocol.

Table 1. Existing vocabularies for describing access to Web APIs and streams.

Vocabulary Protocol independent Authentication Web APIs Streams W3C recommendation

Hydra ✓ ✗ ✓ ✗ ✗

DCAT ✗ ✗ ✓ ✗ ✓

HTTP W3C ✓ ✗ ✓ ✗ ✓

OWL-S ✗ ✗ ✓ ✓ ✗

VoCaLS ✓ ✗ ✗ ✓ ✗

WoT W3C ✓ ✓ ✓ ✓ ✓

Mapping Languages. Existing mapping languages share same principles for
describing input data sources by defining iterators and access descriptions for
the data sources and leave the characteristics of exporting generated knowl-
edge graphs up to the implementation. Most mapping languages, e.g., RML
and SPARQL-Generate, reuse existing specifications e.g. R2RML and SPARQL
respectively, to define a mapping language for generating knowledge graphs
from heterogeneous data sources. RML [6] broadens the scope of R2RML [5]
from relational databases to heterogeneous data sources using RML’s Logical
Source, while still being backwards compatible. SPARQL-Generate [15] extends
SPARQL [9] instead of R2RML to integrate heterogeneous data sources into
knowledge graphs with iterators to access and iterate over the data sources.

Such mapping languages describe how processors should access various het-
erogeneous data sources except for Web APIs and streams. RML leverages the
Hydra vocabulary to provide access to Web APIs [7], SPARQL-Generate and
xR2RML define each their own approach to accomplish this [15,19]. However,

Leveraging WoT for Knowledge Graphs Generation 341

they can only perform HTTP GET requests without authentication to retrieve
data from the Web. D2RML argues it is needed to describe access to Web APIs
in more detail [3] but D2RML can only describe HTTP requests using the W3C
HTTP vocabulary, other protocols are not supported.

Data Velocity. In recent years, there has been an increasing interest in gen-
erating knowledge graphs from data with different velocities than static data,
such as data streams. Several approaches were introduced, for example: Triple-
Wave [18], RDF-Gen [20], SPARQL-Generate [15], and Chimera [21]. However,
these approaches do not declaratively describe how different data velocities must
be handled during the knowledge graph generation.

TripleWave uses R2RML mappings for specifying the subject, predicate and
object of the generated RDF triples, but handles the data velocity problem
in its processor through a wrapper. This wrapper is mostly use case specific
and not reusable for other use cases. SPARQL-Generate provides access to data
streams, but delegates the processing and handling of the different data veloci-
ties to the underlying SPARQL engine. RDF-Gen claims it can access and pro-
cess data streams but does not mention how different data velocities are han-
dled. CARML3 also access streams by extending RML with its own extension,
a single access description for streams (carml:Stream) but only describes the
name of the stream to use. Recently, a data transformation framework Chimera
was proposed [21] which allows to uplift data into a knowledge graph using
RML and lower this knowledge graph later on in various data formats through
Apache Velocity templates and SPARQL queries [21]. Chimera leverages Apache
Camel’s Routes [21] for constructing its data processing pipelines. Because of
this, Chimera can have multiple input and output channels and access data
sources included in the Apache Camel framework, such as Web APIs or streams.
However, no declarative access description is available to describe Web APIs and
streams; instead, the rml:source property in RML’s Logical Source refers to a
generic InputStream, an extension of RML used in Chimera, which only specifies
the name of the InputStream to use as data source.

RDF Output. Mapping languages has not yet determined how the serialisation,
storage or velocity of the generated knowledge graph (output) should be handled,
exported, and described. Each processor of a mapping language has its own way
to handle the knowledge graph after its generation. Processors mainly use com-
mand line arguments (e.g., RMLMapper, RMLStreamer, SPARQL-Generate), or
configuration files (e.g., RMLMapper, SPARQL-Generate, Chimera) to specify
a single target such as a local file, access configuration of the SPARQL endpoint
containing the knowledge graph, or Kafka stream.

Exporting knowledge graphs to multiple output targets is not considered by
mapping languages, nor is generating a knowledge graph as a stream. While pro-
cessors such as SPARQL-Generate [15], RDF-Gen [20], and TripleWave [18] can
export their knowledge graphs as a stream during generation, these processors

3 https://github.com/carml/carml.

https://github.com/carml/carml

342 D. Van Assche et al.

do not enrich existing knowledge graphs but recreate the knowledge graph from
scratch when new data is retrieved. R2RML-Parser [12] avoids the former, but it
only focuses on relational databases. In case multiple sets of targets are needed,
the same mapping rules need to be executed multiple times, one set for each
target. Since there is no declarative way for specifying where the output must
be directed, processors cannot send parts of a knowledge graph to different or
multiple output targets. Furthermore, these existing approaches lack the ability
to describe if compression should be applied when exporting a knowledge graph.

2.2 Preliminaries

W3C Web of Things. A set of W3C recommendations were published by the
W3C Web of Things Working Group for describing IoT devices and their capa-
bilities such as interfaces, security, or protocols [2,10,13]. This way, machines
can retrieve metadata about IoT devices (Listing 1.1 lines 3–4), understand
how to interact with them (lines 8–10). The WoT W3C recommendations also
describe which security practices must be applied when interacting with the IoT
device (lines 5–6). These recommendations do not enforce a certain protocol,
instead, they provide an abstraction layer that describes the protocol that must
be used to interact with the device. External vocabularies, such as the W3C
HTTP vocabulary [11], are leveraged to describe protocol-specific options. This
way, new protocols can be added without changing the recommendation.

Listing 1.1. WoT Thing Description in JSON-LD for an MQTT illumance sensor

1 {

2 "@context ": "https ://www.w3.org /2019/ wot/td/v1",

3 "title": "MyIlluminanceSensor",

4 "id": "urn:dev:ops :32473 - WoTIlluminanceSensor -1234" ,

5 "securityDefinitions ": {" nosec_sc ": {" scheme ": "nosec"}},

6 "security ": [" nosec_sc"],

7 "events ": { "illuminance ": { "data ":{" type": "integer"},

8 "forms": [{

9 "href": "mqtt :// example.com/illuminance", "contentType" : "text/plain",

10 "op" : "subscribeevent" }] } }

11 }

RDF Mapping Language (RML). RML [6] broadens R2RML’s scope and covers
mapping rules from data in different (semi-)structured formats, e.g., CSV, XML,
JSON which define how heterogeneous data is transformed in RDF.

Listing 1.2. RML mapping definitions

1 <#Mapping > rml:logicalSource <#InputX > ;
2 rr:subjectMap [rr:template "http ://ex.com/{ID}"; rr:class foaf:Person];
3 rr:predicateObjectMap [rr:predicateMap [rr:constant foaf:knows];
4 rr:objectMap [rr:parentTriplesMap <#Acquaintance >]].
5 <#Acquaintance > rml:logicalSource <#InputY > ;
6 rr:subjectMap [rml:reference "acquaintance "; rr:termType rr:IRI;
7 rr:class foaf:Person] .

Leveraging WoT for Knowledge Graphs Generation 343

The main building blocks of RML are Triples Maps (Listing 1.2: line 1).
A Triples Map defines how triples of the form subject, predicate, and object, will
be generated. A Triples Map consists of three main parts: the Logical Source, the
Subject Map, and zero or more Predicate-Object Maps. The Subject Map (line 2,
6) defines how unique identifiers (URIs) are generated for the mapped resources
and is used as the subject of all RDF triples generated from this Triples Map. A
Predicate-Object Map (line 3) consists of Predicate Maps, which define the rule
that generates the triple’s predicate (line 3) and Object Maps or Referencing
Object Maps (line 4), which define how the triple’s object is generated. The
Subject Map, the Predicate Map, and the Object Map are Term Maps, namely
rules that generate an RDF term (an IRI, a blank node or a literal). A Term Map
can be a constant-valued term map (rr:constant, line 3) that always generates
the same RDF term, or a reference-valued term map (rml:reference, line 6)
that is the data value of a referenced data fragment in a given Logical Source, or
a template-valued term map (rr:template, line 2) that is a valid string template
that can contain referenced data fragments of a given Logical Source.

3 Motivation

In this Section, we introduce our motivating use cases, ESSENCE and
DAIQUIRI (Sect. 3.1), and derive open issues (Sect. 3.2) with existing map-
ping languages which we encountered while trying to address these use cases.

3.1 Motivating Use Cases: ESSENCE and DAIQUIRI

We describe here our motivating use cases, ESSENCE and DAIQUIRI.
In ESSENCE4, we had requirements related to data access, authentication

and knowledge graph export during knowledge graph generation. ESSENCE
focuses on data storytelling in smart cities with IoT sensors. These IoT sensors
provides information about the weather or traffic in the city and their measure-
ments are available through multiple Web APIs. We need to generate knowledge
graphs from measurements of these sensors5, such as rain sensors, water flow
meters, and vehicle counters6, and the generated knowledge graphs are pub-
lished in a triple store. The measurements are available through various Web
APIs, each with their own way of authentication. The generated knowledge
graphs are exported to a triple store to be consumed by other partners, and
are also stored locally to create backups.

In DAIQUIRI7, we found requirements for data access, data velocity and
exporting knowledge graph to various targets. DAIQUIRI is also a use case on
data storytelling but for sports games, such as cycling or hockey. Athletes are
4 https://www.imec-int.com/en/what-we-offer/research-portfolio/essence.
5 https://open-livedata.antwerpen.be/#/org/digipolis/api/weerobservatiecutler-actu

elewaarden/v1/documentation.
6 https://telraam-api.net/.
7 https://www.imec-int.com/en/what-we-offer/research-portfolio/daiquiri.

https://www.imec-int.com/en/what-we-offer/research-portfolio/essence
https://open-livedata.antwerpen.be/#/org/digipolis/api/weerobservatiecutler-actuelewaarden/v1/documentation
https://open-livedata.antwerpen.be/#/org/digipolis/api/weerobservatiecutler-actuelewaarden/v1/documentation
https://telraam-api.net/
https://www.imec-int.com/en/what-we-offer/research-portfolio/daiquiri

344 D. Van Assche et al.

tracked through sensors to provide sport analysts interesting facts in real time
about the game. We integrate several sport tracking sensors into knowledge
graphs and export these graphs for consumption. Data from these sensors are
available from multiple infinite streams such as movement speed or heart rate.
Multiple types of tracking sensors are used. Consequently, each sensor has its
own data velocity. While in ESSENCE, we exported the graphs to a triple store,
in DAIQUIRI we export the generated knowledge graphs as an stream and create
local backups on disk. The generated knowledge graph is continuously enriched.

3.2 Open Issues

In this Section, we describe open issues we encountered in our motivating use
cases (Sect. 3.1). While these issues are inspired by our use cases, we generalize
them in this Section aiming to tackle them with generic solutions. The Knowl-
edge Graph Construction (KGC) Community Group also has a list of unsolved
challenges for mapping languages. Several issues we encounter in our use cases
were also highlighted by other researchers and companies8

Open Issue 1. Streams. Since mapping languages do not describe access to
data with different velocities, processors implemented their own extensions, even
for the same mapping language, e.g., RML9. We encountered this issue in our
use cases when retrieving sensor measurements through Web APIs and streams
which required a use case specific preprocessing step to overcome this obstacle.
This issue is encountered and acknowledged by the KGC Community Group as
well in their mapping challenges10, verifying that this issue goes beyond our use
cases. Mapping languages need to describe access to data with different velocities
and indicate to processors how to handle data with different data velocities.

Open Issue 2. Web APIs. While mapping languages have preliminary support for
Web APIs [7,15,19], they do not consider defining authentication, or protocol-
specific features such as custom HTTP headers or other HTTP methods besides
HTTP GET. As mentioned in Sect. 3.1, we encountered this issue when accessing
Web APIs in our ESSENCE use case. These Web APIs required authentication
with a custom HTTP header. We had to create a use case specific preprocessing
step to authenticate with the Web APIs and retrieve the data. Mapping lan-
guages need to describe in detail how Web APIs must be accessed by processors
to avoid such preprocessing steps.

8 https://github.com/kg-construct/mapping-challenges/issues.
9 CARML’s Stream: https://github.com/carml/carml

RMLStreamer’s RML extension: https://github.com/RMLio/rmlstreamer
Chimera’s InputStream: https://github.com/cefriel/chimera.

10 https://github.com/kg-construct/mapping-challenges/issues/7.

https://github.com/kg-construct/mapping-challenges/issues
https://github.com/carml/carml
https://github.com/RMLio/rmlstreamer
https://github.com/cefriel/chimera
https://github.com/kg-construct/mapping-challenges/issues/7

Leveraging WoT for Knowledge Graphs Generation 345

Open Issue 3. Description of the Generated Knowledge Graph. Mapping lan-
guages do not describe how a processor must export a knowledge graph. In both
ESSENCE and DAIQUIRI, we had to store and publish the generated knowl-
edge graph of sensor measurements. Thus, processors cannot determine from
the mapping rules the serialization of a graph or where it must be exported.
Therefore, we created a postprocessing step in our use cases to export the gen-
erated knowledge graph. There is a need for mapping languages to describe the
characteristics of exporting a knowledge graph as RDF.

4 Approach

In this Section, we describe how we leveraged WoT W3C recommendations to
extend RML’s Logical Source (Sect. 4.1) and introduce RML’s Logical Tar-
get (Sect. 4.2) to solve the open issues we discussed in Sect. 3.2.

4.1 WoT W3C Recommendations as Data Access Description

We leverage the WoT W3C recommendations as data source description in RML
to describe how processors access Web APIs and streams and perform authenti-
cation, if needed (Open Issues 1 & 2). The access description of the Web API or
stream is described as td:PropertyAffordance (Listing 1.3: lines 3–9, 18–23)
which consists of an abstraction layer and protocol bindings. The abstraction
layer specifies the location of the resource (Listing 1.3: lines 4, 19), the content
type of the data (Listing 1.3: lines 5, 20), and if the property can be read (List-
ing 1.3: lines 6, 21). A td:PropertyAffordance can be combined with other
protocol-specific vocabularies through binding templates [13], e.g. the HTTP
W3C vocabulary [11] (Listing 1.3: lines 7–9, 23). This way, we describe com-
mon information, e.g., resource location, content-type, etc. in a generic way and
describe protocol-specific features in the mapping rules.

346 D. Van Assche et al.

Listing 1.3. WoT based access description for performing an HTTP GET request
with authentication through an API key in a custom HTTP header and subscribing
to an MQTT stream with authentication embedded in the message body

1 <#WoTWebAPISecurity > a wotsec:APISecurityScheme;
2 wotsec:in "header"; wotsec:name "apikey".
3 <#WoTWebAPISource > a td:PropertyAffordance;
4 td:hasForm [hctl:hasTarget "http :// example.com/data.json";
5 hctl:forContentType "application/json";
6 hctl:hasOperationType td:readproperty;
7 htv:headers ([htv:fieldName "User -Agent";
8 htv:fieldValue "Mapping language processor ";]);
9 htv:methodName "GET";].

10 <#WoTWebAPI > a td:Thing ;
11 td:hasSecurityConfiguration <#WoTWebAPISecurity >;
12 td:hasPropertyAffordance <#WoTWebAPISource >.
13 <#LogicalSource1 > a rml:logicalSource;
14 rml:source <#WoTWebAPISource >;
15 rml:referenceFormulation ql:JSONPath; rml:iterator "$".
16 <#WoTMQTTSecurity > a wotsec:BasicSecurityScheme;
17 wotsec:in "body".
18 <#WoTMQTTSource > a td:PropertyAffordance;
19 td:hasForm [hctl:hasTarget "mqtt :// example.com/mqtt";
20 hctl:forContentType "application/json";
21 hctl:hasOperationType td:readproperty ;
22 mqv:controlPacketValue "SUBSCRIBE ";].
23 <#WoTMQTT > a td:Thing ;
24 td:hasSecurityConfiguration <#WoTMQTTSecurity >;
25 td:hasPropertyAffordance <#WoTMQTTSource >.
26 <#LogicalSource2 > a rml:logicalSource;
27 rml:source <#WoT_MQTT_source >;
28 rml:referenceFormulation ql:JSONPath; rml:iterator "$".

We also use the WoT W3C recommendations to describe the authentication
of Web APIs and streams. Processors use this information to know how they
must authenticate against the Web API or stream to retrieve the data. The WoT
W3C recommendations provide several common authentication descriptions such
as wotsec:APISecurityScheme (Listing 1.3: lines 1–2) for token based authen-
tication or wotsec:BasicSecurityScheme (Listing 1.3: lines 16–17) for authen-
ticating with an username and password. These descriptions not only describe
the type of authentication (Listing 1.3: lines 1, 16) but also how the credentials
must be provided to the Web API or streams (Listing 1.3: lines 2, 17). This way,
we declaratively describe the authentication of Web APIs and streams in the
mapping rules. However, the WoT W3C recommendations do not describe the
actual credentials such as token, username or password, needed to authenticate
with the Web API or stream to avoid leaking the credentials in the WoT descrip-
tions. To overcome this problem, existing vocabularies such as the International
Data Spaces Information Model11 can be used to specify credentials. This way,
we declaratively describe the credentials for processors and avoid to leak them
by keeping them separated from the mapping rules.

11 https://w3id.org/idsa/core.

https://w3id.org/idsa/core

Leveraging WoT for Knowledge Graphs Generation 347

4.2 Introducing RML’s Logical Target

We introduce the Logical Target12 in RML which describes the characteristics of
the generated knowledge graph, e.g., serialization format, and target destination
of the generated knowledge graph, e.g., storage location (Open Issue 3).

While a Logical Source is part of a Triples Map, a Logical Target is a part of
a Term Map specified by rmlt:logicalTarget (Listing 1.4: lines 12, 15) which
expects a RML Logical Target description. This way, we have fine-grained control
over where each triple is exported to (Listing 1.4: lines 12, 15).

We follow the same approach for the output description as RML does for
the input description to specify how a target must be accessed and where the
knowledge graph must be exported to. We consider the same vocabularies, e.g.,
VoID [1], SD [23] or WoT, to describe the access to the target destination of the
generated knowledge graph as to specify the access to a data source.

A Logical Target describes how a processor accesses a target and the location
where the knowledge graph must be exported to with the rmlt:target13 prop-
erty (Listing 1.4: line 7). This way, we reuse the data source access descriptions
used in RML’s Logical Source to specify RML’s Logical Target. For instance,
we use a void:Dataset description as data target (Listing 1.4: lines 4–5) in a
Logical Target to export the generated knowledge graph to the local disk or
a sd:Service description to export to a triple store using SPARQL UPDATE
queries (Listing 1.4: lines 1–3).

A Logical Target also contains an optional rmlt:serialization14 property
(Listing 1.4: line 8) to specify which serialization format must be used to export
the generated knowledge graph. The rmlt:serialization property reuses the
existing W3C formats namespace15 as declarative description of the output
RDF format. If no format is specified, the serialization format is N-Quads by
default.

We also added an optional rmlt:compression16 property to the domain of
RML’s Logical Target to describe which compression algorithm is used to save
network bandwidth and storage when exporting a knowledge graph (Listing 1.4:
line 9). rmlt:compression requires an object from the Compression (comp)
namespace17. By specifying the compression algorithm through the comp names-
pace, we declaratively describe the compression algorithms. When the property
is not specified, no compression is applied when exporting the knowledge graph.

12 https://rml.io/specs/rml-target.
13 http://semweb.mmlab.be/ns/rml-target#.
14 http://semweb.mmlab.be/ns/rml-target#.
15 https://www.w3.org/ns/formats/.
16 http://semweb.mmlab.be/ns/rml-target#.
17 http://semweb.mmlab.be/ns/rml-compression#.

https://rml.io/specs/rml-target
http://semweb.mmlab.be/ns/rml-target#
http://semweb.mmlab.be/ns/rml-target#
https://www.w3.org/ns/formats/
http://semweb.mmlab.be/ns/rml-target#
http://semweb.mmlab.be/ns/rml-compression#

348 D. Van Assche et al.

Listing 1.4. RML Logical Target to export a knowledge graph to local disk as
N-Triples with GZip compression & SPARQL endpoint with SPARQL UPDATE.

1 @prefix sd: <http :// www.w3.org/ns/sparql -service -description#> .

2 <#SPARQLUPDATE > a sd:Service;

3 sd:endpoint <http :// example.com/sparql -update >;

4 sd:supportedLanguage sd:SPARQL11Update.

5 <#FileDump > a void:Dataset;

6 void:dataDump <file :/// home/dylan/out.nq >.

7 <#LogicalTarget1 > a rmlt:LogicalTarget;

8 rmlt:target <#FileDump >;

9 rmlt:serialization formats:N-Triples;

10 rmlt:compression comp:GZip.

11 <#TriplesMap > a rr:TriplesMap;

12 rr:subjectMap [rr:template "http :// example.com/{name }";

13 rmlt:logicalTarget <#LogicalTarget1 >];

14 rr:predicateObjectMap [rr:predicate foaf:name;

15 rr:objectMap [rml:reference "name";

16 rml:logicalTarget [a rml:LogicalTarget; rml:target <#SPARQLUPDATE >];

17];

18].

5 Validation

In this Section, we explain how we implemented our approach (Sect. 5.1) in the
RMLMapper and RMLStreamer, and how we applied our approach to two use
cases: ESSENCE (Sect. 5.2) and DAIQUIRI (Sect. 5.3).

5.1 Implementation

We implemented our approach in two RML processors, the RMLMapper18 and
RMLStreamer19, to show that our approach can be applied to any implementa-
tion following the RML specification. The RMLMapper follows a mapping-driven
approach by executing each Triples Map one by one to generate a single knowl-
edge graph. To the contrary, the RMLStreamer uses a data-driven approach by
executing the Triples Maps based on the retrieved data records. The knowledge
graph is generated continuously as a data stream.

5.2 ESSENCE Use Case

Initial Pipeline. We created an initial pipeline (Fig. 1) consisting of several
scripts and mapping rules to retrieve the measurement data, authenticate against
Web APIs, generate knowledge graphs, and export the generated knowledge
graphs to multiple targets. The mapping rules describe only how the retrieved
data need to be integrated into a knowledge graph. The authentication against
the Web API, the data retrieval, and export of the generated knowledge graphs
are not declaratively described. Instead, they are handled by the use case specific
scripts. Each script was especially written for the ESSENCE use case, and cannot
be reused for our other use cases.
18 https://github.com/RMLio/rmlmapper-java.
19 https://github.com/RMLio/rmlstreamer.

https://github.com/RMLio/rmlmapper-java
https://github.com/RMLio/rmlstreamer

Leveraging WoT for Knowledge Graphs Generation 349

Fig. 1. Above, the initial use case specific pipeline with use case specific scripts to
retrieve the data and export the generated knowledge graph. Below, our approach
which declaratively describes how the data should be retrieved and how the generated
knowledge graph should be exported.

Declaratively Described Pipeline. In our approach20, we not only declaratively
describe how the data must be integrated into a knowledge graph, but also
how processors must authenticate against Web APIs, retrieve the data from
Web APIs and how processors must export the generated knowledge graphs to
multiple targets. This way, the mapping rules not only describe how the data is
integrated, but also how the data is accessed and how the knowledge graphs are
exported. We replaced our retrieval and authentication script with Web of Things
Web API access and authentication descriptions (Sect. 4.1, Fig. 1). This way, the
RMLMapper can authenticate to the Web APIs and retrieve the necessary data.
Since these descriptions are reusable in other use cases, our approach provides
a generic solution for Open Issue 2. Afterward, we replaced the export script
as well with Logical Target descriptions (Sect. 4.2, Fig. 1). Consequently, the
RMLMapper can export its generated knowledge graph directly to a triple store
and local disk for backups. The local backups are also compressed during the
export to save disk space (Sect. 4.2).

5.3 DAIQUIRI Use Case

Initial Pipeline. As in ESSENCE, we first created an initial pipeline (Fig. 1)
consisting of several scripts and mapping rules to retrieve the data from the
MQTT stream, integrate the data into knowledge graphs, and export the gen-
erated knowledge graphs to multiple targets. The mapping rules only describe

20 https://github.com/RMLio/web-of-things-icwe2021.

https://github.com/RMLio/web-of-things-icwe2021

350 D. Van Assche et al.

how the data is integrated, the actual data retrieval and export of knowledge
graphs are handled by use case specific scripts which cannot be reused in other
use cases. Since the RMLStreamer only supports Kafka and TCP streams, we
created a script to transform the MQTT stream into a Kafka stream and back
to an MQTT stream when exporting the knowledge graph.

Declaratively Described Pipeline. By applying our approach to DAIQUIRI21, we
declaratively describe the knowledge graph generation pipeline from retrieving
the data until exporting the generated knowledge graphs to multiple targets. We
extended the RMLStreamer to support WoT descriptions for accessing MQTT
streams which allowed us to remove our initial data retrieval script. The WoT
descriptions contain sufficient information for the RMLStreamer to retrieve the
data directly (Sect. 4.1, Fig. 1) which solves Open Issue 1. We also reused the
same descriptions in a Logical Target for exporting the generated knowledge
graphs as an MQTT stream and store compressed backups locally (Sect. 4.2).

Our approach was validated for both ESSENCE and DAIQUIRI regarding
to exporting a knowledge graph by using the same access descriptions for het-
erogeneous data sources in RML (Open Issue 3).

6 Conclusion

In this paper, we investigated how mapping languages can describe the character-
istics of (i) accessing data streams and Web APIs, and (ii) exporting a knowledge
graph. We validated our approach with two real-life use cases which showcases
that our approach can be used for accessing Web APIs and streams and exporting
knowledge graphs. This shows that our approach improves the reproducibility of
knowledge graph generation as we not only declaratively describe how the knowl-
edge graph should be generated, but also how the Web APIs and streams should
be accessed, and the generated knowledge graph exported. WoT W3C recom-
mendations enable mapping languages to access Web APIs and streams without
depending on a specific protocol. More, access descriptions can be leveraged for
describing how generated knowledge graphs must be exported.

Only a limited amount of protocol bindings are standardized so far. The
WoT Working Group released several recommendations, which are used in this
paper, but some parts of the recommendations are still in development such as
the protocol bindings. These protocol bindings provide descriptions for protocol-
specific options and need to be provided for each protocol separately. However,
if no protocol-specific options are needed, the abstraction layer of the WoT W3C
recommendations covers the necessary parts to access a Web API or stream.

Further research should be undertaken to investigate how pagination in Web
APIs can be handled as our work only covers access of Web APIs in mapping
languages. Furthermore, more investigation must be applied to determine that
our work covers all possible Web API use cases.

21 https://github.com/RMLio/web-of-things-icwe2021.

https://github.com/RMLio/web-of-things-icwe2021

Leveraging WoT for Knowledge Graphs Generation 351

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets
with the VoID Vocabulary. Interest group note, World Wide Web Consortium
(W3C) (2011). https://www.w3.org/TR/void/

2. Charpenay, V., Lefrançois, M., Poveda Villalón, M., Käbisch, S.: Thing Description
(TD) Ontology. Working group editor’s draft, World Wide Web Consortium (W3C)
(2020). https://www.w3.org/2019/wot/td

3. Chortaras, A., Stamou, G.: Mapping diverse data to RDF in practice. In:
Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 441–457. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 26

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web ServicesDe-
scription Language (WSDL) 1.0 (2000)

5. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language.
Working group recommendation, World Wide Web Consortium (W3C) (2012).
http://www.w3.org/TR/r2rml/

6. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle,
R.: RML: a generic language for integrated RDF mappings of heterogeneous data.
In: Proceedings of the 7th Workshop on Linked Data on the Web. CEUR Workshop
Proceedings, vol. 1184. CEUR-WS.org (2014)

7. Dimou, A., Verborgh, R., Sande, M.V., Mannens, E., de Walle, R.V.: Machine-
interpretable dataset and service descriptions for heterogeneous data access and
retrieval. In: Proceedings of the 11th International Conference on Semantic Systems
- SEMANTICS 2015. ACM Press (2015)

8. Haesendonck, G., Maroy, W., Heyvaert, P., Verborgh, R., Dimou, A.: Parallel RDF
generation from heterogeneous big data. In: Proceedings of the International Work-
shop on Semantic Big Data - SBD 2019. ACM Press, Amsterdam, Netherlands
(2019)

9. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Recommendation, World
Wide Web Consortium (W3C) (2013). https://www.w3.org/TR/sparql11-query/

10. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V., Kovatsch, M.: Web of
Things (WoT) Thing Description. Working group recommendation, World Wide
Web Consortium (W3C) (2020). http://www.w3.org/TR/wot-thing-description/

11. Koch, J., Valesco, C.A., Ackermann, P.: HTTP Vocabulary in RDF 1.0. Working
group note, World Wide Web Consortium (W3C) (2017). http://www.w3.org/TR/
HTTP-in-RDF10/

12. Konstantinou, N., Spanos, D.E., Houssos, N., Mitrou, N.: Exposing scholarlyinfor-
mation as Linked Open Data: RDFizing DSpace contents. The ElectronicLibrary
(2014)

13. Koster, M., Korkan, E.: Web of Things (WoT) Binding Templates. Working group
note, World Wide Web Consortium (W3C) (2020). http://www.w3.org/TR/wot-
binding-templates/

14. Lanthaler, M.: Hydra Core Vocabulary: A Vocabulary for Hypermedia-Driven Web
APIs. Unofficial draft, World Wide Web Consortium (W3C) (2019). http://www.
hydra-cg.com/spec/latest/core/

15. Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generat-
ing RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi,
A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp.
35–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5 3

https://www.w3.org/TR/void/
https://www.w3.org/2019/wot/td
https://doi.org/10.1007/978-3-030-00671-6_26
http://www.w3.org/TR/r2rml/
https://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/wot-thing-description/
http://www.w3.org/TR/HTTP-in-RDF10/
http://www.w3.org/TR/HTTP-in-RDF10/
http://www.w3.org/TR/wot-binding-templates/
http://www.w3.org/TR/wot-binding-templates/
http://www.hydra-cg.com/spec/latest/core/
http://www.hydra-cg.com/spec/latest/core/
https://doi.org/10.1007/978-3-319-58068-5_3

352 D. Van Assche et al.

16. Maali, F., Erickson, J.: Data Catalog Vocabulary (DCAT). Recommendation,
World Wide Web Consortium (W3C) (2014). https://www.w3.org/TR/vocab-
dcat/

17. Martin, D., et al.: OWL-S: Semantic Markup for Web Services. Member sub-
mission, World Wide Web Consortium (W3C) (2004). http://www.w3.org/
Submission/OWL-S/

18. Mauri, A., et al.: TripleWave: spreading RDF streams on the web. In: Groth, P.,
et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 140–149. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46547-0 15

19. Michel, F., Djimenou, L., Faron-Zucker, C., Montagnat, J.: Translation of het-
erogeneous databases into RDF, and application to the construction of a SKOS
taxonomical reference. In: Monfort, V., Krempels, K.-H., Majchrzak, T.A., Turk,
Ž. (eds.) WEBIST 2015. LNBIP, vol. 246, pp. 275–296. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30996-5 14

20. Santipantakis, G.M., Kotis, K.I., Vouros, G.A., Doulkeridis, C.: RDF-Gen: generat-
ing RDF from streaming and archival data. In: Proceedings of the 8th International
Conference on Web Intelligence, Mining and Semantics (2018)

21. Scrocca, M., Comerio, M., Carenini, A., Celino, I.: Turning transport data to com-
ply with EU standards while enabling a multimodal transport knowledge graph.
In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 411–429. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-62466-8 26

22. Tommasini, R., et al.: VoCaLS: vocabulary and catalog of linked streams. In:
Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 256–272. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00668-6 16

23. Williams, G.: SPARQL 1.1 Service Description. Recommendation, World
Wide Web Consortium (W3C) (2013). https://www.w3.org/TR/sparql11-service-
description/

https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/vocab-dcat/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
https://doi.org/10.1007/978-3-319-46547-0_15
https://doi.org/10.1007/978-3-319-30996-5_14
https://doi.org/10.1007/978-3-030-62466-8_26
https://doi.org/10.1007/978-3-030-00668-6_16
https://www.w3.org/TR/sparql11-service-description/
https://www.w3.org/TR/sparql11-service-description/

A Standalone WebAssembly Development
Environment for the Internet of Things

István Koren(B)

Chair of Process and Data Science, RWTH Aachen University, Aachen, Germany
koren@pads.rwth-aachen.de

Abstract. In Industry 4.0, there is a growing demand to perform high-
performance and latency-sensitive computations at the edge. Increas-
ingly, machine data is not only collected but also processed and trans-
lated into actionable decisions influencing production parameters in real-
time. However, heterogeneous hardware in the Internet of Things pre-
vents the adoption of consistent development and deployment structures
as known from service containers. WebAssembly is a recent hardware-
agnostic bytecode format that is capable of running not only in the
browser, but also on microcontrollers and in cloud environments. In this
article, we argue that this web technology can have a real impact by lever-
aging tools and programming languages that web engineers are familiar
with. As a first step, we present a proof-of-concept integrated develop-
ment and deployment environment to execute WebAssembly modules
on microcontrollers. Its key feature is a built-in web server that pro-
vides a self-contained browser-based IDE to directly develop, compile and
flash AssemblyScript code to a device. In this sense, the Web of Things
will unfold a streamlined development and deployment context for the
agile and low-latency operationalization of adjustable data streaming and
action-oriented process adaptations for industrial devices.

Keywords: WebAssembly · Internet of Things · Industry 4.0

1 Introduction

Digitalization of industrial assets comes with many promises like higher pro-
ductivity, less rejects and smaller lot sizes. For instance, recent developments in
the application of machine learning in the production context allow for data-
driven decisions like parameter tuning in order to obtain a desired quality in the
manufactured part. However, there are a number of challenges towards a fully
connected smart production. First, the asset-heavy manufacturing industry is
characterized by long-term investments with many legacy devices on the shop
floor; while state-of-the-art industrial assets are able to push data over protocols
like OPC-UA, many legacy machines only feature serial communication ports.
Even programmable logic controllers are often restricted to a proprietary pro-
gramming language that only specialized developers can work with. Furthermore,
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 353–360, 2021.
https://doi.org/10.1007/978-3-030-74296-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_27&domain=pdf
http://orcid.org/0000-0003-1350-6732
https://doi.org/10.1007/978-3-030-74296-6_27

354 I. Koren

many industrial processes are time-critical, thus parameter adaptions need to be
carried out within a narrow window. For instance, compensations for disruptions
in steel production must be made within a few milliseconds.

The concept of Retrofitting [10] refers to augmenting industrial assets with
computational equipment able to forward data from serial interfaces via modern
Internet of Things (IoT) protocols. It can be achieved by using microcontrollers,
industrial-grade versions of boards like Raspberry Pi, or specialized edge cloud
hardware. By bringing computation close to the devices, Retrofitting is there-
fore also useful for addressing latency issues. Overall, in the highly heterogeneous
system landscape of the shop floor, different computational hardware like pro-
prietary programmable logic controllers prevail together with custom modules.
Yet, following the idea of agile manufacturing, software on the edge underlies
frequent incremental changes [9]. To tackle this highly complex environment, a
development and deployment structure is required that can handle this hetero-
geneity, i.e. produces service components that run on microcontrollers, on edge
devices as well as in the cloud.

Over the last decade, containerization of microservices through technologies
like Docker achieved low coupling of heterogeneous technologies with clearly cut
functionalities. However, these containers are not lightweight enough to be run
on low-powered IoT devices. To this end, WebAssembly (WASM) is a recent
web standard. Originally, it was conceived for computationally intensive tasks
within browser clients that need near-native performance, of that the interpreted
JavaScript environment is not capable of, like image processing. Initiatives like
WASI (WebAssembly Systems Interface) aim to make system calls available to
WASM modules, making them a suitable platform to tackle the above challenges
on the shop floor. In this article, we present a proof-of-concept that allows to run
the same code on different hardware platforms. It features a built-in web server
that delivers a simple IDE to develop code, compile it to bytecode, and flash
it to the device. After its initialization, the binary code is capable of accessing
device in- and output pins, for instance, to forward data from the device, or
to directly change control parameters as the result of stripped-down machine
learning algorithms. While essentially powered by web technologies, this opens
many use cases, e.g. for the low-latency operationalization of real-time decisions.

This article is organized as follows. Section 2 motivates WebAssembly usage
in service-oriented architectures and discusses related work. Section 3 presents
the conceptual design and implementation of our proof-of concept. Section 4
discusses our findings, experiences and limitations. Finally, Sect. 5 concludes the
article with an outlook on future work.

2 Towards Code Mobility on the Web of Things

Microservices and the containerization paradigm introduced by technologies like
Docker and Kubernetes changed development and deployment structures in the
last decade. By running isolated software containers, processes are sandboxed
from each other, i.e., services cannot access each other’s memory. However,
because of the large overhead of software containers, this approach is not feasible

A Standalone WebAssembly Development Environment for the IoT 355

Fig. 1. Migration of unmodified WebAssembly modules from edge to cloud

for resource-constrained devices like single-board computers or even microcon-
trollers. Even though WebAssembly has only been introduced recently, there is
already a vast adoption on frontend and backend as it harmonizes well with the
serverless computing paradigm [3,6]. A curated list of use cases in the browser
can be found on the list of Awesome Wasm1. Besides, open source and commer-
cial offerings recognize the potential of WebAssembly for deploying functionali-
ties on the backend. Fastly Inc., one of the world’s largest edge cloud providers,
feature a dedicated WebAssembly runtime in their content delivery network.
WebAssembly has an inherent sandbox based on design decisions such as linear
memory management, ensuring that program code cannot break out its dedi-
cated memory addresses. Its bytecode format can be cross-compiled from various
programming languages and interpreted on platforms like IoT devices and the
cloud. The format is governed by an open alliance of industry and research part-
ners. For instance, AssemblyScript, a derivate of TypeScript, can be compiled
into WASM bytecode. TypeScript, in turn, is very similar to JavaScript, opening
access to a large number of web developers. It adds variable type declarations
while staying syntactically close to JavaScript. The compiled WebAssembly mod-
ules can move freely between different hardware architectures. We argue, that
it is therefore suited as code mobility [2] framework for small-scale functions in
the Web of Things, adopting principles of Liquid Web Applications [5] on the
backend. Our use case are deployments in the heterogeneous device landscape
of industrial machines as illustrated in Fig. 1.

A number of researchers evaluated WebAssembly in serverless contexts out-
side the browser. Hall et al. run serverless functions and compare the execution as
WebAssembly with Docker containers [3]. In their system, a node.js context exe-
cutes WebAssembly modules. As primary advantage, they identify the absence
of a large cold start penalty, as opposed to Docker. Tiwary et al. confirm that
spawning WebAssembly modules in a containerized environment suffers from
cold-start problems [11]. Murphy et al. compare the performance of different
native runtimes and find executing in a pure node.js environment to be the
fastest [6].

3 Proof-of-Concept WASM on the Edge

In this section, we discuss our proof-of-concept, by demonstrating the viability
of WASM modules on microcontrollers.
1 cf. https://github.com/mbasso/awesome-wasm.

https://github.com/mbasso/awesome-wasm

356 I. Koren

Fig. 2. Overall system architecture with microcontroller and development laptop

3.1 Conceptual Design

The main conceptual idea is to provide a code execution layer on top of the
microcontroller firmware whose code is exchangeable. Our prototype consists of
three parts: the host environment, the runtime, as well as the development envi-
ronment. Figure 2 presents the basic architecture. On the left, the components
of a microcontroller are shown. On its top, SPIFFS (Serial Peripheral Interface
File System) is a lightweight system for storing files. Other peripheral interfaces
connect to external hardware over serial connections. The host is the firmware
that gets activated once the controller is booted. It connects to the WiFi net-
work and ensures availability via Bluetooth, if needed. Then, if a WebAssembly
module has been loaded, it gets instantiated and provided access to the device’s
in- and output pins. Any external dependency needs to be explicitly declared
beforehand to be available from within the module.

The host features a built-in web server. It delivers a simple HTML page
that has a code editor and a button. The HTML page references the external
compiler. Once the button is clicked, the compiler gets called. If the code can be
compiled without errors, the resulting binary WebAssembly module is uploaded
to the host environment on the microcontroller. For this purpose, the same web
server that provides the code editor also has an HTTP endpoint for accepting
and storing the binary module. After deployment, the microcontroller reboots
and executes the new module. In the next section, we discuss the implementation
and present the libraries used.

3.2 Microcontroller Implementation

As microcontroller, we chose an ESP32 board. The successor of the ESP8266
is extremely popular for tiny IoT projects, and comes with a dual-core pro-
cessor, as well as WiFi and Bluetooth connectivity. Most of the development
boards come with 4 MB of flash size. We specifically used modules from TTGO

A Standalone WebAssembly Development Environment for the IoT 357

Listing 1.1. AssemblyScript Code Passing Sensor Value Every Third Time

1 // the pass function is imported from the host
2 declare function pass(data: f32): void;
3
4 // a global variable to store the number of cycles
5 let cycle:f32 = 0;
6
7 // the process function gets called from the host
8 export function process(a: f32): f32 {
9 cycle ++;

10 if (cycle == 3) { // only send value upstream on every third cycle
11 pass(a);
12 cycle = 0;
13 }
14 return a;
15 }
16
17 export function _start(): void {
18 while (true) { // keep module active
19 }
20 }

and the DEVKIT V1, which are in a price range between 4–9 Euros. The host
firmware is developed using the Arduino framework that is compatible to the
native ESP development kit. As WebAssembly interpreter, we decided to use the
open source Wasm3 library2. The web server is available via a Multicast DNS
hostname over the local WiFi network. It is powered by the ESPAsyncWeb-
Server library3. The WebAssembly module is developed with AssemblyScript4.
It is a variant of TypeScript that is popular in the web development community.
The compiler that translates AssemblyScript into the binary bytecode format is
available as WebAssembly module itself, it can thus be called from within an
HTML5 application context. We load it from the unpkg.com CDN to free as
much memory as possible for the application code. After its compilation, the
WASM file is uploaded via a HTTP multi-part form upload to the microcon-
troller. On the microcontroller, it is saved within the flash that is formatted as
SPI file system.

Listing 1.1 shows an example AssemblyScript code. It is a very basic module
with a process function, that forwards every third call to the pass method.
With declare (line 2) we import functions of the host into the module. In the
other direction, functions that are called from the host are marked with export
(line 8 and 17). The start function is called for initializing resources; it is also
responsible for keeping the module active (cf. the loop() function in Arduino
code). Due to the sandbox, it is not possible to call other environment functions
from within the developed module. Consequently, all external functions must be
declared at compile time. WebAssembly is using a linear memory management
with allocated memory locations. In our demo code, we import and export for

2 cf. https://github.com/wasm3/wasm3.
3 cf. https://github.com/me-no-dev/ESPAsyncWebServer.
4 cf. https://www.assemblyscript.org/.

https://github.com/wasm3/wasm3
https://github.com/me-no-dev/ESPAsyncWebServer
https://www.assemblyscript.org/

358 I. Koren

now only integer and float types, as the management of elaborate types involving
strings and objects is more complicated and error-prone.

4 Applicability of WebAssembly on Microcontrollers

Our proof-of-concept allows to run user-contributed code on microcontrollers and
to exchange it during runtime. It brings advantages known from container-based
deployments to the Internet of Things with its resource-constrained devices and
variety of architectures. Our approach allows for the fast exchange of code, but
promises a certain level of security that is achieved through sandboxing. At the
same time, the standardized bytecode format allows to leverage various pro-
gramming languages. We are convinced that these characteristics make WASM
applicable for realizing the potential of the Web of Things in the industrial area.

Running replaceable user-contributed code on the edge, both in the browser
and as in our case on IoT devices, opens a number of security issues. Attack vec-
tors of running code in web browsers are discussed by Papadopoulos et al. [7].
The authors analyze the use of service workers for leveraging the processing
power of client devices, for instance to mine cryptocurrencies. Service workers
can execute code in the background, even if the user is not actively using the orig-
inating website. WebAssembly adds a controllable sandbox. However, through
the bytecode format, it is much harder to anticipate what code is running. Secu-
rity measures therefore need to be undertaken, and access to the outer world
needs to be limited to the absolutely necessary.

4.1 Preliminary Evaluation

The firmware size of our host, including the WASM and server libraries is around
1.1 MB. On a typical ESP32 chip, this leaves around 2.9 MB of flash that has to
be shared with RAM and the SPI file system. The AssemblyScript compiler has
a size of around 1 MB; to save SPIFFS space, we load it as external dependency.
To compare the performance of our WebAssembly framework with running code
natively on the microcontroller, we ran evaluations that confirmed the perfor-
mance penalty described in Sect. 2. For instance, Jangda et al. calculated an
average decrease between 1.5x and 2x [4]. The authors note that WebAssembly
is still a rather new technology that is constantly optimized. The range of pos-
sible functionalities in the module versus natively on the host, however, is not
limited, as it depends on what device resources are linked into the module.

4.2 Limitations of the Prototype

Conceptually, our proof-of-concept shares limitations with WebAssembly. For
instance, it does not support threads, even though the ESP32 has a dual-core
processor. WebAssembly does not allow for hardware-specific abstractions [3] like
graphics card based matrix multiplication for machine learning algorithms. This
could be a limiting factor when running (even light-weight) machine learning

A Standalone WebAssembly Development Environment for the IoT 359

models. Moreover, researchers have highlighted issues inherent to WebAssembly,
like decreased memory safety when compiling from other languages [1].

Our built-in IDE currently only supports AssemblyScript. We are planning to
add further languages, like Python or Rust, depending on the availability of com-
pilers that can be executed in a browser context. Besides, modules can already be
written in various languages, as described in Sect. 2. For this, the modules need
to import and export the specified methods. Regarding data exchange with the
underlying host, we only support integer and float types. Also, no security, like
access control, is part of our firmware. We are evaluating different mechanisms,
like private-key signatures and identification via OpenID Connect to overcome
this. Specific to the ESP32, we experienced a challenge with processor interrupts
caused by timeouts. To overcome this, we regularly call Arduino’s delay() func-
tion. In this regard, we do also not handle errors besides catching exceptions and
closing the module gracefully. To overcome this, we are planning to introduce
a fallback firmware. However, broken AssemblyScript modules are detected at
compile-time and thus cannot be flashed onto the device.

5 Conclusion and Outlook

Data-driven insights are currently driving the fourth industrial revolution. Indus-
trial assets are equipped with sensors that are able to provide fine-grained prop-
erties in a high frequency. However, there are many challenges towards agile soft-
ware development structures in this highly complex area. Heterogeneous hard-
ware architectures on the edge, from Arduino-driven microcontrollers up to spe-
cialized edge hardware make it hard to uniformly develop functionalities. Also,
updating code is cumbersome and varies across boards. Following the ideas of
agile manufacturing [9], frequent updates are part of the approach.

Our proposal is to introduce a common development methodology and frame-
work powered by web technologies, that can run on edge-deployed hardware as
well as in the cloud. For this, WebAssembly is an ideal candidate. In this article,
we introduced a working proof-of-concept. It features a web server that delivers
a complete IDE to develop, compile and deploy new firmware modules within a
browser. In the future, we plan to support a peer-to-peer firmware propagation
between modules. On the ESP platform, we can use built-in functionalities that
build a mesh via Bluetooth or WiFi. Similarly, we want to enable a dynamic
context-dependent code mobility from IoT device to edge, cloud and vice versa.
For instance, if the processor load becomes to high, the device should be able
to move its module to a near-by edge device. Both peer-to-peer deployment and
context adaptation require higher security measures. This can be achieved by a
security layer, e.g., by signing flashed modules.

We are currently equipping industrial laboratories of the engineering depart-
ment at our university to trial industrial use cases. As described, agile updates
of developed modules can be leveraged not only for data collection, but also for
the operationalization of, e.g., business processes. We are convinced that faster
development and deployment methodologies can finally enable the age of the

360 I. Koren

Internet of Production [8], where data collection powers artificial intelligence
algorithms that in turn achieve action-oriented data insights.

Acknowledgement. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy - EXC-2023 Internet
of Production - 390621612.

References

1. Disselkoen, C., Renner, J., Watt, C., Garfinkel, T., Levy, A., Stefan, D.: posi-
tion paper: progressive memory safety for WebAssembly. In: Proceedings of the
8th International Workshop on Hardware and Architectural Support for Security
and Privacy, pp. 1–8. ACM, New York (2019). https://doi.org/10.1145/3337167.
3337171

2. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans.
Software Eng. 24(5), 342–361 (1998). https://doi.org/10.1109/32.685258

3. Hall, A., Ramachandran, U.: An execution model for serverless functions at the
edge. In: Landsiedel, O., Nahrstedt, K. (eds.) Proceedings of the International
Conference on Internet of Things Design and Implementation, pp. 225–236. ACM,
New York (2019). https://doi.org/10.1145/3302505.3310084

4. Jangda, A., Powers, B., Berger, E.D., Guha, A.: Not so fast: analyzing the per-
formance of WebAssembly vs. Native Code. In: 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pp. 107–120. USENIX Association, Renton (2019).
https://www.usenix.org/conference/atc19/presentation/jangda

5. Mikkonen, T., Systä, K., Pautasso, C.: Towards liquid web applications. In: Cimi-
ano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS,
vol. 9114, pp. 134–143. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19890-3 10

6. Murphy, S., Persaud, L., Martini, W., Bosshard, B.: On the use of web assembly
in a serverless context. In: Paasivaara, M., Kruchten, P. (eds.) XP 2020. LNBIP,
vol. 396, pp. 141–145. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58858-8 15

7. Papadopoulos, P., Ilia, P., Polychronakis, M., Markatos, E.P., Ioannidis, S., Vasil-
iadis, G.: Master of Web Puppets: Abusing Web Browsers for Persistent and
Stealthy Computation. http://arxiv.org/pdf/1810.00464v1

8. Pennekamp, J., et al.: Towards an infrastructure enabling the internet of produc-
tion. In: 2019 IEEE International Conference on Industrial Cyber Physical Systems
(ICPS), pp. 31–37. IEEE (06052019–09052019). https://doi.org/10.1109/ICPHYS.
2019.8780276

9. Schuh, G., Reuter, C., Prote, J.P., Brambring, F., Ays, J.: Increasing data integrity
for improving decision making in production planning and control. CIRP Ann.
66(1), 425–428 (2017). https://doi.org/10.1016/j.cirp.2017.04.003

10. Stock, T., Seliger, G.: Opportunities of Sustainable Manufacturing in Industry 4.0.
Procedia CIRP 40, 536–541 (2016). https://doi.org/10.1016/j.procir.2016.01.129

11. Tiwary, M., Mishra, P., Jain, S., Puthal, D.: Data aware web-assembly function
placement. In: Seghrouchni, A.E.F., Sukthankar, G., Liu, T.Y., van Steen, M. (eds.)
Companion Proceedings of the Web Conference 2020, pp. 4–5. ACM, New York
(2020). https://doi.org/10.1145/3366424.3382670

https://doi.org/10.1145/3337167.3337171
https://doi.org/10.1145/3337167.3337171
https://doi.org/10.1109/32.685258
https://doi.org/10.1145/3302505.3310084
https://www.usenix.org/conference/atc19/presentation/jangda
https://doi.org/10.1007/978-3-319-19890-3_10
https://doi.org/10.1007/978-3-319-19890-3_10
https://doi.org/10.1007/978-3-030-58858-8_15
https://doi.org/10.1007/978-3-030-58858-8_15
http://arxiv.org/pdf/1810.00464v1
https://doi.org/10.1109/ICPHYS.2019.8780276
https://doi.org/10.1109/ICPHYS.2019.8780276
https://doi.org/10.1016/j.cirp.2017.04.003
https://doi.org/10.1016/j.procir.2016.01.129
https://doi.org/10.1145/3366424.3382670

Web Programming

Full Stack Is Not What It Used to Be

Antero Taivalsaari1,4, Tommi Mikkonen2(B), Cesare Pautasso3,
and Kari Systä4

1 Nokia Bell Labs, Tampere, Finland
antero.taivalsaari@nokia-bell-labs.com
2 University of Helsinki, Helsinki, Finland

tommi.mikkonen@helsinki.fi
3 USI, Lugano, Switzerland
cesare.pautasso@usi.ch

4 Tampere University, Tampere, Finland
kari.systa@tuni.fi

Abstract. The traditional definition of full stack development refers to
a skill set that is required for writing software both for the frontend and
backend of a web application or site. In recent years, the scope of full
stack development has expanded significantly, though. Today, a full stack
software developer is assumed to master various additional areas espe-
cially related to cloud infrastructure and deployment, message brokers
and data analytics technologies. In addition, the emergence of Internet
of Things (IoT) and the rapidly spreading use of AI/ML technologies are
introducing additional skill set requirements. In this paper, we discuss
the expectations for a modern full stack developer based on our industry
observations, and argue that these expectations have significant implica-
tions for software and web engineering education.

Keywords: Education · Software engineering · Web engineering ·
Software architecture · Cloud · Internet of Things · IoT ·
Programmable world

1 Introduction

According to the traditional definition, the term full stack developer refers to
a web engineer or developer who works with both the frontend and backend
of a website or a web application. This means that a full stack developer is
typically expected to participate in projects that involve not only the user facing
features of web applications, but also databases and other server-side components
that are used for storing and delivering the contents of a web site. Full stack
software developers are commonly also expected to work with customers during
the planning and design phases of projects.

The “classic” skill set of a full stack developer includes the following [12]:

– HTML, CSS and JavaScript,
– one or more popular web frameworks such as Angular, React or Vue,
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 363–371, 2021.
https://doi.org/10.1007/978-3-030-74296-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_28

364 A. Taivalsaari et al.

– experience with databases,
– experience with version control systems (at least Git),
– knowledge of web design, visual design and user experience best practices,
– knowledge of web security challenges and security best practices,
– experience with web server installation, configuration and web traffic log ana-

lytics, and
– some knowledge of additional programming languages that are commonly

used in web backend development such as Python, PHP and Ruby (more
recently also Go and Scala).

In general, full stack web developer job listings typically include a mix of fron-
tend and backend skills, covering just about everything that it takes to compose
a running application or a web site.

In recent years, the scope of full stack development has expanded consider-
ably, though. In this short paper we present our observations based on various
industry projects as well as discussions with our students and colleagues both in
the academia and in the industry. We argue that the requirements presented by
employers for full stack web engineers have grown significantly in recent years,
and that these expanded expectations are not yet really taken into account in
software engineering and web engineering education.

2 Software as a Service and the Disappearance of the IT
Department

“Dear Recruiters, That’s
not a Full Stack Developer.
That’s an IT Department.”

– Attributed to Giulio Carrara

The widespread adoption of the World Wide Web has fundamentally changed
the landscape of software development. In the past 10–15 years, the Web has
become the de facto deployment environment for new software systems and
applications. Today, the majority of new software applications used on desktop
computers or laptops are written for the Web, instead of conventional computing
architectures, specific types of CPUs or operating systems.

From its relatively humble origins at Salesforce.com and later at Ama-
zon.com, Software as a Service evolved into the dominant form of computing,
effectively displacing traditional, locally installed software applications and con-
ventional binary “shrink wrap” software [16]. As a side effect, the centralization
of software onto externally hosted cloud platforms and virtual machines grad-
ually killed the IT departments that nearly all major companies used to have.
Nowadays, based on our observations and discussions with various companies,
even in relatively large organizations there may be just one person who is respon-
sible for all aspects related to system management, including deployment and
operation of a large number of virtual machines rented from external providers.

Full Stack Is Not What It Used to Be 365

As a result of this transition, many of the tasks that were traditionally han-
dled by IT departments are now expected to be part of the job description of
software developers themselves. The disappearance of the IT department was
amplified by the DevOps movement [5] that shifted the majority of software
deployment tasks from the IT department to the developers. In recent years, the
transition towards cloud native software [3] and serverless computing [1]) has
accelerated the trend towards externally hosted web applications. In these sys-
tems, the allocation and maintenance of physical servers is handled by external
cloud providers, which significantly reduces the need for traditional IT tasks.

IaaS Platforms. The disappearance of the IT department has had a notable
impact on the skill set that web developers are expected to possess. Nowadays,
developers are assumed to master the basics of Infrastructure as a Service (IaaS)
platforms such as AWS, Azure or Google Cloud, including the use of various
services that are available in their management consoles. Many employers require
an AWS certification or Azure Developer Associate certification.

Web Servers and Backend Development Frameworks. Developers not
only have to be familiar with web servers (e.g., Apache, NGINX, Node.js) but
also with how to set up the necessary reverse proxies and security perime-
ters (e.g., with NGINX). In addition, they are nowadays commonly assumed
to master various backend development frameworks (typically written in either
JavaScript/Node.js or Python). The developers are also assumed to be familiar
with cloud automation/scripting languages such as Ansible.

Service Scaling, Monitoring, Logging and Fault Tolerance and Backup
Services. In addition, developers are commonly expected to master the deliv-
ery of scalable services with high availability. They need to understand how to
architect software that can benefit from load balancing, fault tolerance and auto-
mated switchover in case of VM or server domain failure, utilizing the services
offered by IaaS platforms. Good understanding of data storage and backup ser-
vices such as AWS Simple Storage Service (S3) and Glacier is also a common
expectation, as well as system monitoring and logging technologies including
Grafana, Kibana or CloudWatch.

Continuous Integration, Delivery and Deployment. Developers are also
expected to adopt processes enabling continuous integration and deployment
[2]. They have to set up GitLab CI/CD pipelines for automatically building,
testing and deploying their latest software versions to staging and production
environments. This also requires them to use the appropriate testing techniques
across the frontend and backend.

Containerization and Container Management. More recently, it is taken
for granted that the developers can perform the containerization/dockerization
of their software (packaging of their software into Docker containers), as well
as define the necessary Helm charts to enable their software to run in a Kuber-
netes cluster or some other popular management and orchestration platform for
containerized applications. Note that Kubernetes is a huge toolset; however, a

366 A. Taivalsaari et al.

developer does not necessarily need Kubernetes to implement and deploy con-
tainers, so there are different levels of complexity also in this area.

Serverless Computing. It should be remarked that if serverless computing
[1] becomes mainstream, the need for service management and IaaS platform
related tasks may reduce but yet another – often vendor-specific – approach
to architect and deploy applications needs to be learned. Details vary greatly
between the Function-as-a-Service providers.

In any case, the skill set is so broad that universities struggle to include all
the areas in their curricula, especially since a lot of the technologies are vendor-
specific and tightly coupled with particular commercial offerings. The breadth of
the expected skill set has led to a number of jokes, including the “dear recruiters”
quote at the beginning of this section.

3 The Implications of Microservice Architectures

Another major occurrence has been the emergence of microservice architectures
[10]. Originally, a key motivation behind microservice architectures was the idea
of polyglot programming [4]: as different microservices are implemented and main-
tained by different subteams, each team could independently choose and use the
most suitable technologies to support the task while also matching the exist-
ing competencies of each team. However, just as with deployment topics, it is
an increasingly common expectation that full stack developers will be able to
design and implement a broad variety of microservices and their APIs which
would typically communicate with each other using synchronous calls, or asyn-
chronous message brokers.

Message Brokers. Orchestration and internal communication to “glue” differ-
ent microservices together to a larger functional entity is typically performed
using a message broker [14]. Basically, in addition to adopting the HTTP pro-
tocol following the REST architectural style [13], developers are expected to
have at least basic knowledge of popular message brokers such as ActiveMQ,
RabbitMQ and/or Kafka.

Database Technologies Beyond SQL. In addition to traditional relational
(SQL) database skills, developers are also assumed to be familiar with popular
noSQL databases (such as Cassandra, Neo4j, Redis, or MongoDB) and in many
cases time-series databases such as InfluxDB or Riak. The use of time-series
databases is especially important in building microservices that deal with data
acquisition from a large number of devices. In-memory database systems such as
Apache Ignite are also a popular option in implementing microservices. Common
additional skill expectations in the storage and database query area include
technologies such as ElasticSearch, GraphQL and Hive.

Node.js and/or Python Backend Development Frameworks. The
microservices themselves are commonly written either in JavaScript or Python,
leveraging the massive number of frameworks and components available in

Full Stack Is Not What It Used to Be 367

Node.js NPM and Python PyPI ecosystems. The selection of applicable com-
ponents can be a daunting task, as discussed in papers focusing on opportunistic
design [8].

Web API Design. Along with knowledge about backend development frame-
works, developers are generally expected to be familiar with Web API design
principles and best practices, including RESTful API design [9], and the corre-
sponding API description languages such as OpenAPI, while keeping track of
emerging alternatives such as GraphQL or gRPC.

4 Emerging Expectations

Data Analytics. About ten years ago, data analytics became an important
topic and one of the hottest and highest paying technical professions in the IT
industry. Nowadays, even regular developers are expected to be familiar with at
least some of the popular data analytics technologies. Depending on the needs of
the particular project, focus may be more on real-time analytics or offline ana-
lytics technologies. Popular real-time analytics platforms include Apache Storm
and Spark. For offline analytics, HADOOP (along with its distributed file sys-
tem HDFS) is a common choice. More recently, managed technologies such as
Snowflake and BigQuery have become popular. In the context of data analytics,
knowledge of query languages such as GraphQL and data visualization libraries
such as D3.js or Vis.js is also a common expectation. For fancier visualizations,
WebGL knowledge (and knowledge of accompanying 3D convenience libraries
such as Plotly.js or Three.js) is a plus.

AI/ML Technologies. Turning raw data into valuable information requires
full stack developers to skillfully apply popular AI/ML technologies such as
Apache Mahout, Caffe, TensorFlow or Torch. While regular developers might
not be expected to be able to build/train AI models, they are expected to be
able to set up AI/ML pipelines to perform tasks such as object detection, face
recognition or voice/phrase recognition using available technologies (e.g. [15]).
While such tasks would have been considered very advanced or even impossible
in the early days of Web engineering, they are now considered “basic” tasks in
many contexts and applications. The availability of inexpensive AI/ML hardware
is raising the expectations further (see the edge intelligence discussion below).

Internet of Things and the Programmable World. The Internet of Things
(IoT) and the Web of Things (WoT) represent the next significant step in
the evolution of the Internet and software development. Advances in hard-
ware development and the general availability of powerful but very inexpensive
integrated chips will make it possible to embed connectivity and full-fledged
virtual machines and dynamic language runtimes virtually everywhere. The
future potential of this Programmable World disruption will be as significant as
the mobile application revolution that was sparked when similar technological
advances made it possible to open up mobile phones for third-party application
developers in the early 2000s [17,18].

368 A. Taivalsaari et al.

Factors that this disruption builds upon include (i) multidevice programming,
(ii) heterogeneity and diversity of devices, (iii) intermittent, potentially highly
unreliable connectivity, (iv) the distributed, highly dynamic, and potentially
migratory nature of software (between devices/cloud/fog/edge), (v) the reactive,
continuous, always-on nature of the overall system, and (vi) the general need to
write software in a highly fault-tolerant and defensive manner. Furthermore,
IoT is bringing back the need for embedded software development skills and the
ability to build software which can run on slow processors, with limited memory
and consuming little energy [11].

Streaming Data Systems. As devices themselves are becoming more data
intensive as their sensing capabilities (e.g., audio, video, LIDAR) become more
advanced, AI/ML capabilities benefit vastly when raw data streams from the
devices are made available in the cloud [7]. Developers must thus know how to
implement cloud backend capable of ingesting continuously streaming data from
a potentially very large numbers of devices – even millions of them.

Edge Computing and Edge Intelligence. Classic web sites and cloud com-
puting systems were highly centralized – nearly all of the computation apart from
web page rendering was performed in the backend. While centralized computing
has significant benefits, it can also be very costly in terms of communication
and power consumption. For instance, if an IoT system consists of a large col-
lection of devices that are in close proximity of each other, it may be inefficient
to transmit all the data from those devices to a faraway data center for process-
ing, and then transmit actuation requests back from the remote data center to
the individual devices. In an IoT deployment with tight latency requirements,
latency overhead alone can make such solutions impractical.

In recent years, the emergence of inexpensive but computationally power-
ful hardware solutions has made edge computing practical. This has made it
feasible to perform data analytics or at least initial data filtering and process-
ing in the IoT devices and gateways themselves, without having to send all the
raw measurement data to data centers for processing. Furthermore, growing pri-
vacy concerns and the availability of inexpensive AI/ML hardware such as, for
example, NVIDIA’s Jetson or Arduino Nano 33 BLE devices have made it both
necessary and possible to bring AI/ML capabilities (e.g., object detection and
face recognition) to the edge with very little development effort. Consequently,
it is rapidly becoming an expectation than an average full stack developer must
master at least the basic use of these technologies.

5 The New Full Stack – Implications for Software and
Web Engineering Education

Most university curriculums aim at a balance between theory and practice [6].
To complement teaching of theoretical aspects, universities commonly include
practical projects and hands-on exercises. However, the wide range of concepts

Full Stack Is Not What It Used to Be 369

and technology choices in the new full stack poses challenges for this approach –
there are simply too many topics and technologies to cover. Furthermore, many
of the relevant technologies tend to be rather vendor-specific. At the same time,
students graduating from the universities are clearly in a better position with
respect to their employment opportunities if they possess hands-on skills on the
entire spectrum of full stack technologies.

It is important to note that full stack does not mean “all” technologies. To
us, it seems that we must first define which “core” technologies the students
absolutely must master in order to be well versed for basic development tasks.
Beyond the core topics, the needs for specific technologies will be to at least some
extent dependent on use cases and roles, e.g., whether the developer is focusing
on “AI full stack” vs. “analytics full stack” vs. “IoT full stack”. At the moment,
no comprehensive taxonomy of core and advanced full stack technologies exists.
We see this as an interesting avenue for further research.

In the short term, one solution to this dilemma is to build extensive, industry-
grade systems around the aforementioned core full stack, where use case specific
modules can be added as subsystems, thus decomposing the projects to different
courses. Furthermore, as almost all modern full stack technologies have online
courses, e.g., in the form of Massive Open Online Courses (MOOCs) or online
tutorials and exercises, those can be used as educational material. As an example
of this model, the University of Helsinki has introduced Fullstack Challenge1

in which students work with modern web technologies and tools on practical
projects in collaboration with companies. At USI, practical ateliers scheduled in
the afternoons complement and integrate the theoretical morning lectures.

No matter which approach is taken, given the increasing complexity and
breadth of expected functionality, in most software systems it is no longer realis-
tic to implement everything from scratch, even if parts of the system were built
over time in different classes. Instead, the new full stack development is charac-
terized by plentiful use of public-domain software components from repositories
such as NPM and PyPI. Instead of using a fixed set of technologies or blindly
following recommendations in a cargo-cult fashion, the students should still learn
to think for themselves and carefully consider the implications of the selections
that they make. At the same time, every developer needs a “full stack Swiss
army knife” as the starting point.

In summary, the increased scope of full stack development challenges the
universities to recognize, formulate, conceptualize, and teach the new general
principles that provide long-term competencies. Students should learn how to
recognize fundamental problems so that they can solve them with the appropri-
ate conceptual tools using the corresponding technology of the day. This requires
research on effective technical paradigms, understanding of how to anticipate
practical needs of the companies, and also knowledge of the modern technolo-
gies and their associated online courses.

1 https://fullstackopen.com/en/.

https://fullstackopen.com/en/

370 A. Taivalsaari et al.

6 Conclusions

In this paper we have presented our observations on the rapidly growing require-
ments for a full stack web developer. While the classic full stack was concerned
primarily with the basic frontend and backend split and technologies required
for developing web sites and applications, the expectations for a modern full
stack developer are far more comprehensive. Effectively, expected skills cover
a spectrum of areas that would have been the responsibility of an entire IT
department in the earlier days. Moreover, we foresee further technologies emerg-
ing and broadening the expected skill set even more in the coming years. This
evolution will force us to reconsider the role of university degrees, technology
certificates and lifelong learning efforts together with new tools such as MOOCs
in the software and web engineering education.

References

1. Baldini, I., et al.: Serverless computing: current trends and open problems. In:
Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Com-
puting, pp. 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-
5026-8 1

2. Fitzgerald, B., Klaas-Jan, S.: Continuous software engineering: a roadmap and
agenda. J. Syst. Softw. 123, 176–189 (2017)

3. Gannon, D., Barga, R., Sundaresan, N.: Cloud-native applications. IEEE Cloud
Comput. 4(5), 16–21 (2017)

4. Harmanen, J., Mikkonen, T.: On Polyglot programming in the web. In: Modern
Software Engineering Methodologies for Mobile and Cloud Environments, pp. 102–
119. IGI Global (2016)

5. Hüttermann, M.: DevOps for Developers. Apress (2012)
6. Jazayeri, M.: The education of a software engineer. In: Proceedings of the 19th

International Conference on Automated Software Engineering (2004)
7. Maier, D., Chandramouli, B. (eds.): Special Issue on Next-Generation Stream Pro-

cessing. Bulletin of the Technical Committee on Data Engineering, vol. 38, no. 4
(2015)

8. Mäkitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., Capilla, R.: On oppor-
tunistic software reuse. Computing 102(11), 2385–2408 (2020)

9. Masse, M.: REST API Design Rulebook: Designing Consistent RESTful Web Ser-
vice Interfaces. O’Reilly Media Inc. (2011)

10. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly,
Newton (2015)

11. Noble, J., Weir, C.: Small Memory Software: Patterns for Systems with Limited
Memory. Addison-Wesley Longman Publishing Co., Inc. (2001)

12. Northwood, C.: The Full Stack Developer. Your Essential Guide to the Everyday
Skills Expected of a Modern Full Stack Web Developer. Apress, Berkeley (2018).
https://doi.org/10.1007/978-1-4842-4152-3

13. Pautasso, C., Zimmermann, O.: The web as a software connector: integration rest-
ing on linked resources. IEEE Softw. 35(1), 93–98 (2018)

14. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.: Microser-
vices in practice, part 2: service integration and sustainability. IEEE Softw. 2,
97–104 (2017)

https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-1-4842-4152-3

Full Stack Is Not What It Used to Be 371

15. Ravulavaru, A.: Google Cloud AI Services Quick Start Guide: Build Intelligent
Applications with Google Cloud AI Services. Packt Publishing Ltd. (2018)

16. Szyperski, C.: Objectively: components versus web services. In: Magnusson, B.
(ed.) ECOOP 2002. LNCS, vol. 2374, p. 256. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-47993-7 11

17. Taivalsaari, A., Mikkonen, T., et al.: A roadmap to the programmable world: soft-
ware challenges in the IoT era. IEEE Softw. 34(1), 72–80 (2017)

18. Wasik, B.: In the Programmable World, All Our Objects Will Act as One. http://
www.wired.com/2013/05/internet-of-things-2/. Accessed 13 Oct 2020

https://doi.org/10.1007/3-540-47993-7_11
https://doi.org/10.1007/3-540-47993-7_11
http://www.wired.com/2013/05/internet-of-things-2/
http://www.wired.com/2013/05/internet-of-things-2/

An Improving Approach for DOM-Based
Web Test Suite Repair

Wei Chen1,2, Hanyang Cao1,2, and Xavier Blanc1(B)

1 University of Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
2 Beihang University, Beijing, China

Abstract. Developers increasingly rely on end-to-end (E2E) testing to
test the web applications they develop and check whether there are no
bugs from the end user’s perspective. An E2E test simulates the actions
performed by the user using a browser and checks whether the web
application returns the expected output. It considers web applications
as a black box and only knows what user actions are and what their
expected output is. However, once some evolutions are implemented on
a web application, user actions may change (a button has been added,
deleted, or just moved to another location), which may break the E2E
test. Rebuilding new test suites takes a lot of time, especially for large
web applications. Therefore, E2E testing needs to evolve with the devel-
opment of web applications. To help the developers who face this situa-
tion, we present an approach, named WebTestSuiteRepair (WTSR), that
aims to generate and compare test suite graphs to identify candidates
for broken actions, hence helps to automatically and efficiently repair the
E2E tests for web applications.

Keywords: Web test repair · Test suite · Web test evolution · Test
case · Automated E2E test

1 Introduction

Nowadays, web applications have to evolve frequently to satisfy their user’s
needs. For example, there are 228 different releases of web app Joomla1 from
July 27, 2011, to our searched day on April 18, 2019, which means 28.5 releases
are submitted every year. A total of 325 releases of Moodle2 are updated from
August 19, 2002, to April 18, 2019, which means 19.1 releases are submitted
every year. Each new release will improve the quality of service in a web appli-
cation or update its appearance and style. To ensure a high level of quality, the
developers should test the new web application release and make sure that there
are no bugs [17]. To this extent, developers can choose automated end-to-end
testing (automated E2E testing) [15].

1 https://github.com/joomla/joomla-cms.
2 https://github.com/moodle/moodle.

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 372–387, 2021.
https://doi.org/10.1007/978-3-030-74296-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_29&domain=pdf
https://github.com/joomla/joomla-cms
https://github.com/moodle/moodle
https://doi.org/10.1007/978-3-030-74296-6_29

An Improving Approach for DOM-Based Web Test Suite Repair 373

An automated E2E test is a test case that aims to validate a user scenario [6].
A set of test cases constitute a test suite. Several well-known E2E test frame-
works exist and help developers to design and run E2E tests (i.e., Puppeteer3,
Selenium4, Nightwatch5, etc.).

However, the evolution performed on the web application may change its
graphical interface (a button has been deleted or just moved to another location),
which may interrupt the test case [13]. The broken E2E test is a testcase that
cannot be played because at least one of its user actions cannot be performed.
Such action is called broken action [14]. Structural and logical changes are the
main causes of damage to test cases [12], and Hammoudi [8] provided more
detailed reasons for breaking web testing.

Developers that face the broken test have to handle two problems. First, they
have to identify the broken action and the changes in the web application that
cause the E2E test to break. Second, once they identified the cause, they have
to fix the E2E test and make it supporting the performed evolution. These two
steps are time-consuming and error-prone. In some situations, the developers
even trash their broken E2E tests and rebuild new ones [4].

For these two problems, only a few DOM-based technologies have been pro-
posed in the web domain to automatically repair broken tests of web applica-
tions, such as Water [4] and Waterfall [7]. However, it is challenging for these
DOM-based technologies because the breakages do not always occur at the same
location where the test execution breaks [8]. Moreover, in many situations, there
is more than one breakage in a web test case.

In addition to the web domain, there are other GUI test repair techniques,
such as Sitar [5]. Sitar is one of existing automated GUI test repair techniques.
However, these technologies have some difficulties in the web domain. First, it is
difficult to traverse the entire website to make an event flow graph (EFG) if a web
application has a large number of web pages [5]. Second, unlike desktop software,
some web applications avoid overloading their websites with many requests like
a robot. So the repair tool is prohibited from requesting too many web pages.
Third, performing certain actions of the web test case will cause web navigation
[3], which takes one to several seconds. Compared to other GUI applications,
this navigation is another challenge in repairing test cases in the web domain.

In this article, we try to focus on web domains other than other GUI apps to
repair DOM-based test cases. We build Test Suite Graphs (TSG) for different
releases of a web application and compare these two TSGs to help develop-
ers repair their broken tests. To this extent, we propose an approach named
WebTestSuiteRepair, which will compare TSGs to identify substitutes for bro-
ken actions, and hence that developers can utilize this approach to repair broken
tests automatically. In this study, we make the following contributions:

– An approach to generate test suite graphs of web applications, which helps
to repair web test cases.

3 https://pptr.dev/.
4 https://selenium.dev/.
5 https://nightwatchjs.org/.

https://pptr.dev/
https://selenium.dev/
https://nightwatchjs.org/

374 W. Chen et al.

– An algorithm to automatically repair the DOM-based test suite by comparing
TSGs of web applications.

– An implemented tool WTSR for testers to repair broken web test cases.
– An empirical evaluation of our approach to repair broken tests for three real

web applications.

The rest of this article is structured as follows: Sect. 2 introduces the back-
ground of web test evolution. Section 3 proposes our approach to generate TSGs
and determine substitutes for broken actions to repair web test cases. Section 4
presents the evaluation of our approach for repairing broken tests. Section 5
discusses related work, and Sect. 6 concludes.

2 Background and Motivation

This section gives some basic definitions for web applications and E2E tests.
It then highlights how the evolution performed on a web application that may
cause a test break due to broken action. To scope this article, we present the
break type of DOM-based web test case that we are target to repair.

Fig. 1. Web application Joomla from release 3.6.0 (R1) to release 3.7.0 (R2).

2.1 Web Application and Evolution

Figure 1 presents the screen-shots of a real web application named Joomla6. This
web application is a content management system (CMS), which allows its users
to build websites and online applications. Figure 1 illustrates a simple evolution
that changes elements of Joomla. For the sake of clarity, we will refer to these
two releases of this web application as R1 and R2.

During the evolution of web application Joomla from R1 to R2, cer-
tain HTML elements have changed. The sub-menu named Featured Articles
6 https://www.joomla.org/.

https://www.joomla.org/

An Improving Approach for DOM-Based Web Test Suite Repair 375

(tag 5© on the left of Fig. 1) in R1 has been moved to the position of tag 5©’
in R2 (see Fig. 1). Moreover, in Fig. 1, the sub-menus named Fields and Field
Groups (above tag 5©’) are new features in R2. This is an evolution example of
web application Joomla by changing the layout in its new release.

2.2 E2E Test

To ensure web app quality, developers usually use a test suite for regression
testing. A test suite consists of a set of test cases. And each test case is an
automated E2E test. The definition of an automated E2E test is as follows.

Definition 1 (Automated E2E Test). An automated E2E test is a test case
that composed of a sequence of user actions that simulate actions performed by
a user on its browser (open a page, click a button, etc.). In addition to that, the
automated E2E test is also composed of an assertion that checks the expected
output. A set of test cases constitute a test suite.

1 puppeteer.page.type("input[name=’username’]", "admin")

2 puppeteer.page.type("input[name=’password’]", "123456")

3 puppeteer.page.click("#login")

4 puppeteer.page.click(".Articles")

5 puppeteer.page.click("#content > DIV:nth-child(3)")

6 puppeteer.page.type("input[name=’search’]", "Article")

7 puppeteer.page.click(".Search")

1 puppeteer.page.type("input[name=’username’]", "admin")

2 puppeteer.page.type("input[name=’password’]", "123456")

3 puppeteer.page.click("#login-button")

4 puppeteer.page.click(".Articles")

5 puppeteer.page.click("#content > DIV:nth-child(5)")

6 puppeteer.page.type("input[name=’search’]", "Article")

7 puppeteer.page.click(".Search")

Fig. 2. The test case in two releases of Joomla.

Figure 2 is a test case in two releases of Joomla. Developers write a suite of
test cases for R1 of Joomla (see a test case example at the top of Fig. 2). That
test case is consists of seven actions from line 1 to line 7. Each action corresponds
to one user’s operation (see tags from 1© to 7© in Fig. 1). From tag 1© to tag 7©,
these actions input Username, input Password, click Login Button, click
menu Articles, click sub-menu Featured Articles, input Search Content,
click Search Button. When this test case is executed, it will automatically
launch and run Google Chrome to simulate user actions on the website. Each
action in the test case can be described in JSON format7.
7 https://github.com/webautotester/scenario.

https://github.com/webautotester/scenario

376 W. Chen et al.

2.3 Broken Test and Action

Definition 2 (Broken E2E Test, Broken Action). A broken E2E test is
a test case that cannot be executed on a given release of a web application. A
broken action is an action that cannot be performed in a broken E2E test.

In addition, to make the scope of this study more clear, we should make a
distinction between breakage and error. According to Definition 2, a breakage
occurs that a test case T can be performed in web release Rn but break in the
following web release Rn+i (i>0), which is caused by web evolution. Differently,
an error is that a test case fails due to bugs in web applications. In this research,
we focus on the breakages of test cases, not test errors. The problem of test error
is in the future work plan.

In a recent study, some researchers have classified the reasons for the break
of web tests [8]. They concluded that locator is the first major cause of breakage
(73.62% of all causes of test breakages), and value is the second major cause
of breakage (15.21% of all causes of test breakages). In this study, we focus
on locator cause because it merits the greatest attention [8], and we do not
target value reason because data of input is related to the backend database.
For example, if the password value (see line 2 at the top of Fig. 2) is the cause
of test case breakage, then repairing the test case is a huge challenge.

Further, the locator breakage can be divided into non-selection breakage
and mis-selection breakage [8,10]. For non-selection breakage, a locator can
target the DOM element in release Rn but is unable to select the target element
in release Rn+i (i>0), which usually warnings that could not find the locator.
For mis-selection breakage, a locator target a DOM element in release Rn but
select a wrong element in release Rn+i (i>0), which causes the interruption of
the following action or assertion.

3 WTSR: Web Test Suite Repair

This section presents our approach WebTestSuiteRepair (WTSR), which aims
to repair the test suite for web applications. In this section, we first introduce
an overview of WTSR and then detail all of its parts.

Fig. 3. The architecture of web test suite repair.

An Improving Approach for DOM-Based Web Test Suite Repair 377

Algorithm 1. Algorithm to automatically repair web test suite
Require: Initial Test Suite (ITSset) � A set of Test Cases
Ensure: The Repaired Test Suite
1: procedure WebTestSuiteRepair:
2: TSGR1 ← CreateTSG(ITSset)
3: TSGR2 ← CreateTSG(ITSset)
4: TestRepair ← Compare(TSGR1, TSGR2)
5: end procedure
6: function CreateTSG(ITSset)
7: for Each(actioni) in ITSset do
8: WebPage ← browser.run(actioni)
9: if WebPage.true then

10: TSG ← generateTSG(WebPage)
11: else
12: TSG.breakInfo ← getBreakInfo(WebPage)
13: end if
14: end for
15: end function
16: function Compare(TSGR1, TSGR2)
17: BrokenTestR2set ← getBrokenTests(TSGR2)
18: for Each(TestCasei) in BrokenTestR2set do
19: breakLocation ← get(TestCasei.breakLocation)
20: for j ← 1 to breakLocation do
21: (R1CAset, R2CAset) ← getCA(actioni)
22: CAset ← compareCA(R1CAset, R2CAset)
23: OCAset ← Order(CAset)
24: for Each(CAi) in OCAset do
25: CandiTestCase ← replace(breakAction, CAi)
26: CandiResult ← play(CandiTestCase)
27: end for
28: end for
29: end for
30: end function

3.1 Overview

Figure 3 presents an overview of WTSR. We assume that testers capture the
initial test cases from Release 1 of a web app. WTSR tries to execute the initial
E2E tests on Release 1 to build the TSGR1. WTSR then runs these initial test
cases on Release 2 to build the TSGR2. WTSR compares these two TSGs to
repair the test suite. It repairs broken cases by utilizing a substitute to replace
broken action in Release 2. The following subsections will present these steps in
detail.

3.2 Create Test Suite Graph Release 1

In Algorithm 1, WTSR plays these initial test cases over the web application’s
Release 1 to create the TSGR1 (line 2). To create TSG, it will run each action of

378 W. Chen et al.

test case in ITSset (from line 7 to line 14). In other words, it performs each action
to interact with the web application. We use Puppeteer8 to run each action and
get the web page (line 8). It then generates TSGR1 in detail (line 10).

For this step to generate TSGR1 (line 10), it records the URL of each action
and saves these URLs to MongoDB. It can extract the actions and links between
actions from initial test cases. And, it crawls web pages to obtain DOM to extract
web elements that are the parameters of the candidate actions. To generate
candidate actions, we use the JS library9 that were developed before. The test
case and its running result will be saved to MongoDB (line 12). The TSG can
be regarded as a 5-tuple structure <S, U, A, L, C>:

– S is a test suite that consists of a set of test cases representing all tests.
– U is a set of URLs representing all web pages of test cases.
– A is a set of actions representing object events in the URLs, and actions in

different URLs are different.
– L ⊆ A × A is a set of links that may follow edges between different actions.

(Ai, Aj) means Aj executes immediately after Ai.
– C is a set of candidate actions after each test action.

Fig. 4. The test suite graph release 1.

Now we use two similar test cases to explain 5-tuple <S, U, A, L, C> archi-
tecture of TSG. For example, TSGR1 in Fig. 4 keeps these two test cases in
the mongo database. In Fig. 4, TS1 includes A1, A2, A3, A4, and assertion. TS2

includes A1, A5, A6, A7, and assertion. TSGR1 also keeps these actions and
their links in the database. The URL of every action is stored in MongoDB.
The link (A1, A2) means Action 2 is performed directly after Action 1. During
the execution of the test case, WTSR crawls the candidate actions after each
action and saves them in the database. For TSGR1, it is only a simple example
in Fig. 4. TSGR1 is more complicated in an actual web application that contains
more test cases and a lot of actions.
8 https://github.com/puppeteer/puppeteer.
9 https://github.com/webautotester/scenario.

https://github.com/puppeteer/puppeteer
https://github.com/webautotester/scenario

An Improving Approach for DOM-Based Web Test Suite Repair 379

3.3 Generate Test Suite Graph Release 2

In this step, we aim to generate TSGR2 by executing the test cases on web
application release 2. This process for generating TSGR2 is the same as the
process of creating TSGR1. In Algorithm 1, input test suite and use the same
function to create TSGR2 (line 3). For all the test cases, run them on web app
release 2 (from line 6 to line 15). The function to play each test case has been
presented in detail in Sect. 3.2. And there appeared interruptions (lines 12) in
some test cases during this process of creating TSGR2 because of the evolution
of web application.

Fig. 5. The test suite graph release 2.

In Algorithm 1, after performing each action, WTSR will also crawl the web
page to obtain DOM to extract web elements, which can be used to generate
candidate actions. However, during the process of creating TSGR2, some test
cases are broken due to web evolution. So WTSR needs to get the broken test
cases and the stopped actions (lines 12). And it will repair these damaged cases
in the next Sect. 3.4. For example, A3 on the left side of Fig. 5 is a broken
action that can not be performed. So TS1

′ keeps the breaking information with
A3. Figure 5 presents an example of TSGR2 that needs to be replenished and
updated in the next Sect. 3.4 by comparing TSGs.

3.4 Compare TSGs

After creating these two different TSGs, the next step is to compare them to
repair test cases. In Algorithm 1, it compares the TSGs to find the broken
tests (line 17). For these damaged tests, try to identify a substitute action from
the candidate set as a replacement of broken action to repair the breaking test
case (from line 18 to line 29). During the process of repairing the test case,
WTSR gets the candidate action set (line 21). It then compares the candidates
for different releases to get the candidate set(line 22). And WTSR orders these
candidate actions (line 23) owing to that top-ranked action is more likely to be

380 W. Chen et al.

a substitute. This is because elements close to each other are more similar [9].
For instance, Action 4 is broken in Fig. 5, and we identify the substitute action
CA3 from ordered candidates to repair the break test in Fig. 5.

In Algorithm 1, WTSR then tries to find the correct substitute to replace the
broken path on the right side of Fig. 5. For this purpose, we present a loop in
approach WTSR to try each candidate action to repair the broken test from line
24 to line 27 in Algorithm 1. And play the new case (line 26) to judge whether
this replacement is correct. The function of RedoRepair is from line 19 to line 28.
If we can not find the substitute action, there may be a mis-selection in previous
actions. For example, the locator of action Ai in Fig. 5 does not change, but the
corresponding element on the web page is different from R1. So action Ai is a
mis-selection resulting in the breakage of action Aj . We use the same method
to find a substitute for action Ai to repair the broken test. Therefore, we make
a loop to find a substitute for mis-selection action to repair broken tests (from
line 20 to line 28).

To rank these candidate actions, WTSR will calculate the distance between
candidate actions and broken action. By comparing the selectors (i.e. #id-left
> DIV:nth-child(1) > A:nth-child(1)) between broken action and each candi-
date action, WTSR can get their distances. WTSR then sorts these candidates
according to their distances with broken action from near to far. WTSR then
feedback these ordered candidates to TSGs (line 23). WTSR tries to identify
correct action from sorted candidates that can repair the broken test (line 25).

4 Empirical Evaluation

To evaluate the feasibility and efficiency of our approach to evolving the test
suite, we choose three research subjects and present a set of experiments with
quantitative analysis. Then we present experimental results and threats to the
validity of our approach. To evaluate the effectiveness of our approach WTSR
in this study, we try to answer three research questions:

– RQ1: Is it possible to generate test suite graphs for two different releases of
a web application?

– RQ2: Is it possible to automatically and efficiently repair these test cases for
web applications by comparing their test suite graphs?

– RQ3: How effective is our test suite evolution method?

The experiment verification is based on three real web applications. For RQ1,
we count the actions and links in each TSG. We count the candidates after each
action in TSG. And we count broken tests in TSG. We also record the execution
time that indicates how long it takes to create TSG. For RQ2, we count the
number of repaired test cases. For RQ3, we record how long it takes to repair
broken test cases.

An Improving Approach for DOM-Based Web Test Suite Repair 381

4.1 E2E Test Subjects

Based on this research, we implemented a tool called WTSR. As shown in Table 1,
we choose three web apps Joomla10, Moodle11, and Dolibarr12 as our subjects
of this experiment. They are real subjects that can contribute to evaluating the
potential performance and efficiency of our framework in a real test environment.

Table 1. E2E test subjects of web applications

Web App Releases # Release 1 # Release 2

Joomla 228 3.6.0 (Jul 12, 2016) 3.7.0 (Apr 25, 2017)

Moodle 325 3.5.0 (May 16, 2018) 3.6.0 (Dec 2, 2018)

Dolibarr 112 5.0.0 (Feb 27, 2017) 6.0.0 (Aug 30, 2017)

To obtain different releases of the web applications, we checked their releases
under each repository at Sourceforge and Github. They are sorted by release
date, and we can get all the releases for each target web application. The second
column in Table 1 presents the total release number of each web application
(searched on April 18, 2019). From these releases, we randomly select two dif-
ferent major releases for each web application. For these two major releases, we
assume that the lower is Release 1 (R1) and the higher is Release 2 (R2). In
Table 1, the third column is Release 1 of each web app with its release date. The
fourth column is Release 2 of each web app with its release date. Therefore, R1
and R2 of each web application are arbitrary to avoid prejudice.

4.2 Results

After obtaining two releases of each web application, we try to design the exper-
imental process. We first committed to creating an original test suite (a set of
test cases) for each web application. Then we run these test cases on two releases
of each web application to build TSGs and use our approach to evolve the test
suite by comparing TSGs. At last, we compare WTSR with Water [4] to validate
the efficiency and correctness of our approach. After getting the results of this
implementation, we then conduct a qualitative analysis in this subsection.

For RQ1: WTSR generates two TSGs for three real web apps, and the data
of TSGs are shown in Table 2. The first column presents the name of web
applications, such as Joomla, Moodle, and Dolibarr. The second column is the
releases (Abbreviated as Re) of each web app subject. From the third column to
the seventh column is the <S, U, A, L, C>. The third column is the test suite,
which contains the number of test cases, including the number of broken test
10 https://sourceforge.net/software/product/Joomla/.
11 https://sourceforge.net/projects/moodle/.
12 https://sourceforge.net/projects/dolibarr/.

https://sourceforge.net/software/product/Joomla/
https://sourceforge.net/projects/moodle/
https://sourceforge.net/projects/dolibarr/

382 W. Chen et al.

Table 2. Test suite graphs of web applications

WebApp Re Suite(B/T) URL(ge/up) Action(ge/up) Link(ge/up) CA Time(s)

Joomla R1 96 50 214 205 94.8 986

R2 38/96 28/51 142/209 145/211 97.73 845

Moodle R1 39 27 72 77 45.47 393

R2 36/39 5/29 10/73 7/80 35.86 201

Dolibarr R1 47 57 130 131 29.58 423

R2 27/47 35/55 63/132 63/134 29.57 352

cases and the total number of test cases. B represents the number of Broken test
cases, and T represents the Total number of test cases in R2. For example, a
total of 96 test cases have been written for Joomla R1. However, when executed
on R2, 38 test cases were broken. The fourth column is the number of URLs.
The same URL has been excluded, which means that the same URL can only
be counted once. For example, a total of 96 test cases of Joomla executed on R1
have 50 different URLs. However, WTSR only generates (abbreviated as ge in
Table 2) 28 URLs when performed on Joomla R2 because some URLs can not
be recorded due to broken cases. When comparing TSGs, WTSR can explore
more URLs by repairing broken tests. After the update (abbreviated as up in
Table 2), there are 51 URLs of Joomla R2. The fifth column is the number of
actions, and the sixth column is the number of links. The seventh column is the
average number of candidate actions (CA) after each action. And the last column
is the total cost time to generate TSG for each web app release. For instance,
WTSR takes 986 s to create TSG for Joomla R1, including the navigation time
between web pages.

The numbers of breakage for each app are different. As shown in Table 2,
Joomla has 38 broken test cases over a total of 96 tests and the corresponding
breaking percentage over the total number of tests is 39.58%. Moodle has a total
of 39 test cases created from R1, and there are 36 breaks when they are running
on R2. The breaking radio of Moodle is 92.31%. Dolibarr has 27 breaks over a
total of 47 test cases and the percentage of test breakage is 57.45%. The test case
was interrupted due to changes in the web application evolution, Hammoudi [8]
has detailed the reasons for these breaks. The breakages show that not all the
test cases are still usable for the next release when web applications evolve. This
illustrates that test cases are fragile and not robust to overcome the problem of
web application evolution. So it is necessary for testers to find an approach like
our framework WTSR to overcome the evolution issue of test cases. Furthermore,
the time cost of generating TSG is related to the number of test cases. More
precisely, the time cost of generating TSG is related to the number of actions in
test cases. As Table 2 depicts, the time has a linear relationship with the number
of total actions. The more actions it runs, the more time it takes.

For RQ2 and RQ3: After comparing test cases and candidates in TSGs, WTSR
evolves the test suite by repairing broken test cases. We count the number of

An Improving Approach for DOM-Based Web Test Suite Repair 383

Table 3. Web application test suite repair results

WTSR Water

WebApp #(R/B) ReRatio Time(s) AT(s) #(R/B) ReRatio Time(s) AT(s)

Joomla 33/38 86.84% 1182 35.81 25/38 65.79% 1073 42.92

Moodle 28/36 77.78% 674 24.07 19/36 52.78% 721 37.95

Dolibarr 22/27 81.48% 896 40.73 16/27 59.26% 834 52.13

Total 83/101 82.17% 2752 33.16 60/101 59.41% 2628 43.80

repaired tests and record the execution time. Table 3 indicates test suite repair
results, including the repaired number of test cases, execution time, and repair
ratios. The first column is the web app subjects. The second column shows the
number (#) of test cases repaired (R) by WTSR from the broken (B) tests. The
repair ratio (ReRatio) of each web app using WTSR is in the third column. The
fourth column presents the total execution time for repairing broken test cases.
And the fifth column is the average time (AT) to repair one test case. Table 3
also illustrates the running result of Water from column 6 to 9.

The repair time is related to the number of test cases that need to be repaired.
When the number of these cases is larger, the execution time will be longer. For
the repair ratio of each web app, the second column in Table 3 illustrated details.
Joomla’s repair ratio of broken tests is 86.84%. For web app Moodle, the ratio
of repairing tests is 77.78%. And Dolibarr’s percentage of test repair is 81.48%.
For these three web apps, WTSR has repaired 83 cases of a total of 101 broken
tests and the corresponding repair ratio is 82.17%. Water can repair 60 cases of
101 broken tests, the repair ratio is 59.41%. Water’s execution time is less than
WTSR, but the difference is small. Therefore, building TSGs is useful for the
repair of test cases. Our approach can help testers repair broken tests effectively.

Table 4. Number of broken actions of each test case

WebApp One Two Three Four Five Six

Joomla 28 8 2 0 0 0

Moodle 11 13 5 6 0 1

Dolibarr 18 5 1 1 1 1

Total 57 26 8 7 1 2

Each test case may be interrupted in multiple places. Table 4 shows the
number of broken actions in each test case. The second column indicates the
number of test cases with one broken action. The third column is the number of
test cases that have two broken actions. Take Joomla as an example, 28 test cases
have one interrupted action in each test case. By observing the data in each row,
the number of test cases is inversely proportional to the number of interrupts.

384 W. Chen et al.

As the number of broken actions in each test case increase, the number of test
cases decreases.

The number of broken actions in each test case

R
ep

ai
r

ra
tio

0.00%

25.00%

50.00%

75.00%

100.00%

one two three four five six

Joomla Moodle Dolibarr

Fig. 6. The repair ratio of test case with multiple breaks.

Because there is sometimes more than one interruption in a test case, WTSR
executes in a loop to fix more broken actions in the test case. Figure 6 presents the
repair ratio of the test case with a different number of interrupts. The horizontal
axis means the number of broken actions in each test case. And the vertical axis
is the repair ratio. For example, Joomla has 28 test cases with one interrupt, 27
of which have been successfully repaired, and the repair ratio is 96.42% for the
test case with one breakage. Figure 6 indicates that the repair ratio is inversely
proportional to the number of broken actions. As the number of broken actions
in each test case increases, the repair ratio will decrease. The test case with more
than five broken actions can not be repaired anymore.

4.3 Threats to Validity

Now we discuss threats to the validity of our framework that need to be cautious
about. One threat to validity is that the number of web applications and test
cases is limited in the experiment. However, it is enough to prove the effectiveness
of our approach in experiments, which can apply to general web test repair.
Moreover, the test executions may be affected by the changes of external third-
party components because some libraries are called in approach WTSR.

5 Related Work

In the past years, there are a lot of papers talking about the automatic web test.
This section present the details of each related work to solve the problem of test
breakage in the following.

An Improving Approach for DOM-Based Web Test Suite Repair 385

Breakage Prevention: Leotta et al. [13] propose a voting algorithm to select
the most robust DOM element locator from multi-locators to increase the robust-
ness of the locators for web test cases. Bajaj et al. [1] improve this algorithm by
generating locators from positive and negative examples of DOM elements for
multiple DOM elements. Their preventive methods improve the robustness of
test cases, but there are still some breakages that require the use of techniques
such as WTSR to repair broken tests.

Visual-Based Web Test: Bajammal et al. [2] employ visual analysis to gener-
ate reusable web components from a mockup for web development. Stocco [16]
uses a fast image-processing pipeline to analyze relevant visual pictures obtain-
ing from test execution and suggest potential fixes of test breakages to testers.
Leotta et al. [11] compare the robustness of the locators created by visual and
DOM-based approaches, then compare their cost for test case maintenance dur-
ing code evolution. The results of these articles show that DOM-based locators
are generally more robust than visual ones, and DOM-based test cases can be
developed from scratch and evolved at a lower cost. Besides, in some web evolu-
tion situations, the appearance of web pages is the same, but the corresponding
selector in HTML has been changed. These broken tests still need DOM-based
techniques to repair.

DOM-Based Web Test: Choudhary et al. [4] propose Water, a technique to
record the changes in the two web application versions and the break reasons
for broken test scripts, which can be applied to repair broken tests. By compar-
ing these two executions of different web releases and analyzing broken reasons,
it then recommends repair suggestions to users. Waterfall [7] focuses on repair
broken tests of fine-grained versions between main releases of web apps, which
is a supplement to Water. Water’s technique is similar to our approach, it intro-
duces mis-selection breakage in content, but it is not solved in their algorithm.
Moreover, it only repairs the test case with one break, but a test case may break
in multiple locations in some situations. To improve it, we generate TSGs to
automatically repair tests that including mis-selection breakage, and repair the
test with multiple break locations.

6 Conclusion

With the development of web applications, some damaged test cases need to be
repaired. So test cases need to evolve according to the evolution of web appli-
cations. For this reason, we proposed a novel framework WTSR that efficiently
evolves test cases by repairing broken tests. Our experiments show that: (1) the
cost of time spent to build TSGs is related to the number of actions, and they
have a positive linear correlation; (2) building TSGs is useful for the evolution
of test cases; (3) the key issue in the evolution of web testing is to repair broken
tests; (4) the more actions break in a test case, the harder it is to repair this case;
(5) WTSR is effective to repair test case for web apps. Therefore, WTSR can
evolve test cases corresponding to the evolution of web applications. We believe

386 W. Chen et al.

that our approach can apply to general web test evolution, which is helpful to
developers to repair test cases.

In our future work, we plan to: (1) Collect user feedbacks on our technique
to make our approach better for web test repair; (2) Experiment our approach
to the web applications with bugs to study how do bugs affect the usefulness of
this test repair approach; (3) Do a case study of all the web test repair tools by
comparing their efficiency; (4) Update our algorithm to continuously improve
the efficiency of test suites repair and try to deal with value-caused breakages.

References

1. Bajaj, K., Pattabiraman, K., Mesbah, A.: Synthesizing web element locators (t).
In: 2015 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 331–341. IEEE (2015)

2. Bajammal, M., Mazinanian, D., Mesbah, A.: Generating reusable web components
from mockups. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 601–611 (2018)

3. Biagiola, M., Stocco, A., Mesbah, A., Ricca, F., Tonella, P.: Web test dependency
detection. In: Proceedings of the 2019 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engi-
neering, pp. 154–164 (2019)

4. Choudhary, S.R., Zhao, D., Versee, H., Orso, A.: Water: Web application test
repair. In: Proceedings of the First International Workshop on End-to-End Test
Script Engineering, pp. 24–29. ACM (2011)

5. Gao, Z., Chen, Z., Zou, Y., Memon, A.M.: SITAR: GUI test script repair. IEEE
Trans. Software Eng. 42(2), 170–186 (2015)

6. Guarnieri, M., Tsankov, P., Buchs, T., Dashti, M.T., Basin, D.: Test execution
checkpointing for web applications. In: Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 203–214. ACM
(2017)

7. Hammoudi, M., Rothermel, G., Stocco, A.: WATERFALL: an incremental app-
roach for repairing record-replay tests of web applications. In: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 751–762. ACM (2016)

8. Hammoudi, M., Rothermel, G., Tonella, P.: Why do record/replay tests of web
applications break? In: 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pp. 180–190. IEEE (2016)

9. Heil, S., Bakaev, M., Gaedke, M.: Measuring and ensuring similarity of user inter-
faces: The impact of web layout. In: International Conference on Web Information
Systems Engineering (2016)

10. Imtiaz, J., Sherin, S., Khan, M.U., Iqbal, M.Z.: A systematic literature review
of test breakage prevention and repair techniques. Inf. Softw. Technol. 113, 1–19
(2019)

11. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Visual vs. DOM-based web locators:
an empirical study. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014.
LNCS, vol. 8541, pp. 322–340. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08245-5 19

https://doi.org/10.1007/978-3-319-08245-5_19
https://doi.org/10.1007/978-3-319-08245-5_19

An Improving Approach for DOM-Based Web Test Suite Repair 387

12. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for automated
end-to-end web testing. In: Advances in Computers, vol. 101, pp. 193–237. Elsevier
(2016)

13. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: Using multi-locators to increase
the robustness of web test cases. In: 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), pp. 1–10. IEEE (2015)

14. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: ROBULA+: an algorithm for gener-
ating robust Xpath locators for web testing. J. Softw. Evol. Process 28(3), 177–204
(2016)

15. Stocco, A., Leotta, M., Ricca, F., Tonella, P.: APOGEN: automatic page object
generator for web testing. Software Qual. J. 25(3), 1007–1039 (2017)

16. Stocco, A., Yandrapally, R., Mesbah, A.: Visual web test repair. In: Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 503–514. ACM
(2018)

17. Tonella, P., Ricca, F., Marchetto, A.: Recent advances in web testing. In: Advances
in Computers, vol. 93, pp. 1–51. Elsevier (2014)

Communicating Web Vessels: Improving

the Responsiveness of Mobile Web Apps

with Adaptive Redistribution

Kijin An(B) and Eli Tilevich

Software Innovations Lab, Virginia Tech, Blacksburg, USA
{ankijin,tilevich}@vt.edu

Abstract. In a mobile web app, a browser-based client communicates
with a cloud-based server across the network. An app is statically divided
into client and server functionalities, so the resulting division remains
fixed at runtime. However, if such static division mismatches the current
network conditions and the device’s processing capacities, app respon-
siveness and energy efficiency can deteriorate rapidly. To address this
problem, we present Communicating Web Vessels (CWV), an adap-
tive redistribution framework that improves the responsiveness of full-
stack JavaScript mobile apps. Unlike standard computation offloading,
in which client functionalities move to run on the server, CWV’s redistri-
bution is bidirectional. Without any preprocessing, CWV enables apps
to move any functionality from the server to the client and vice versa
at runtime, thus adapting to the ever-changing execution environment of
the web. Having moved to the client, former server functionalities become
regular local functions. By monitoring the network, CWV determines if a
redistribution would improve app performance, and then analyzes, trans-
forms, sandboxes, and moves functions and program state at runtime. An
evaluation with third-party mobile web apps shows that CWV optimizes
their performance for dissimilar network conditions and client devices.
As compared to their original versions, CWV-powered web apps improve
their performance (i.e., latency, energy consumption), particularly when
executed over limited networks.

Keywords: Mobile web apps · Javascript · Dynamic adaptation ·
Program analysis & transformation · Web frameworks

1 Introduction

Mobile web apps are fundamentally distributed: browser-based clients commu-
nicate with cloud-based servers over the available networks. Distribution assigns
an app component to run either on the client or on the server. Some distribution
strategies are predefined; for example, user interfaces must display on the client.
Other distribution strategies aim at improving performance; for example, a pow-
erful cloud-based server can execute some functionality faster than can a mobile
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 388–403, 2021.
https://doi.org/10.1007/978-3-030-74296-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_30&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_30

Communicating Web Vessels 389

device. Network communication significantly complicates the device/ cloud per-
formance equation. For a client to execute a cloud-based functionality, it needs
to pass parameters and receive results over the network. Transferring data across
a network imposes latency and energy consumption costs. For low-latency, high-
bandwidth networks, these costs are negligible. For limited networks, these costs
can grow rapidly and unexpectedly. The overhead of network transfer can not
only negate the performance benefits of remote cloud-based execution, but also
strain the mobile device’s energy budget. Operating over limited high-loss net-
works requires retransmission, which consumes additional battery power [17].
Hence, fixed distribution can hurt app responsiveness and energy efficiency.

Changing the locality of a software component can be non-trivial due to the
differences in latency, concurrency, and failure modes between centralized and
distributed executions [18]. Researchers and practitioners alike have thoroughly
explored the task of rendering local components remote. Cloud offloading moves
local functionalities to execute remotely in the cloud [4,9,15,19]. Nevertheless,
standard offloading is unidirectional : it can only move a client functionality to
run on a server. If mobile web apps are to flexibly adapt to the ever-changing
execution environment of the web, client and server functionalities may need to
adaptively switch places at runtime.

We address this problem by adaptively redistributing the client and server
functionalities of already distributed applications to optimize their performance
and energy efficiency. Our approach works with full-stack JavaScript apps, writ-
ten entirely (i.e., client and server) in JavaScript. By dynamically instrumenting
and monitoring app execution, our approach detects when network conditions
deteriorate. In response, it moves the JavaScript code, program state, and SQL
statements of a remote service to the client, so the service can be invoked as
a regular local function. To prevent cross-site scripting (XSS) or SQL injection
attacks, the moved code is sandboxed, creating a separate context with reduced
privileges for safe execution in the mobile browser. Thus, the same functionality
can be invoked locally or remotely as determined by the current execution envi-
ronment. To the best of our knowledge, our approach is the first one to support
bidirectional dynamic redistribution of distributed mobile web apps. Moreover, to
take advantage of our approach, a mobile app needs not be written against any
specific API or be pre-processed prior to execution.

We called the reference implementation of our approach—Communicating
Web Vessels (CWV)—due to its reminiscence of communicating vessels, a phys-
ical phenomenon of connected vessels with dissimilar volumes of liquid reaching
an equilibrium. CWV balances mobile execution by adaptively redistributing
functionalities between the server and the client, thus optimizing app perfor-
mance for the current execution environment. Our contribution is three-fold:

1. A novel bidirectional redistribution approach that dynamically adapts dis-
tributed mobile apps for the current execution environment.

2. A reference implementation of our approach, CWV, that works with increas-
ingly popular full-stack JavaScript mobile apps. Requiring no pre-processing,

390 K. An and E. Tilevich

CWV dynamically adapts apps by redistributing their JavaScript code, pro-
gram state, and SQL statements at runtime.

3. A comprehensive evaluation with 23 remote services of 8 real-world apps. To
assess the effectiveness of CWV’s adaptations, we report on their impact on
execution latency and energy consumption.

The rest of this paper is structured as follows. Section 2 motivates and
explains our approach. Section 3 describes the reference implementation of our
approach. Section 4 presents our evaluation results. Section 5 compares our app-
roach to the related state of the art. Section 6 presents concluding remarks.

2 Approach

We first present a motivating example, then give an overview of CWV, and
finally discuss our performance model.

2.1 Motivating Example

Consider Bookworm, an e-reader app for reading books on mobile devices. The
app also provides text analysis features that report various statistical facts about
the read books. The app is distributed: the client hosts the user interface; the
server hosts a repository of available books and a collection of text processing
routines. The current architecture of Bookworm is well-optimized for a typical
deployment environment: a resource-constrained mobile device and a powerful
server, connected to each other over a reliable network. For limited networks, the
performance equation can change drastically. Hence, to exhibit the best perfor-
mance for all combinations of client and server devices and network connections,
the app would have to be distributed in a variety of versions. Even if developers
were willing to expend a high programming effort to produce and maintain all
these versions, network conditions can change rapidly while the app is in oper-
ation, necessitating a different client/server decomposition. Clearly, achieving
optimal performance under these conditions would require dynamic adaptation.

Our framework, CWV, can adapt Bookworm, so its remote text processing
routines could migrate to the client at runtime for execution. CWV monitors
the network conditions, migrating server-side functions to the client and revert-
ing the execution back to the server, as determined by the network conditions.
The app can start executing with all the text processing routines running on
the server. Once the network connection deteriorates, a portion of these rou-
tines would be transferred over the network to the client, so they could execute
locally. CWV’s static and dynamic analyses determine the dependencies across
server functions and their individual computational footprints. This informa-
tion parameterizes CWV’s performance model, which determines which part of
server functionality needs to migrate to the client under the current network
conditions.

Communicating Web Vessels 391

Fig. 1. Conceptual view of Communicating Web Vessels (CWV)

2.2 Approach: Communicating Web Vessels

To optimize the performance of mobile web apps for the current network condi-
tions, CWV continuously applies the two operations depicted in Fig. 1:

1. fr = insource(/service r): The client requests that the server transfer the
remote functionality(/service r)’s partition fr to the client.

2. revert(fr): The client stops locally invoking the insourced partition fr, and
starts remotely invoking its original server version /service r.

2.3 Reasoning About Responsiveness

Responsiveness is a subjective criteria: application is responsive if the user per-
ceives the time taken to execute app functionalities as “short”. For this reason,
we define the responsiveness of a remote execution as the total execution time
that elapses between the client invoking a remote functionality and the results
presented to the user. We define the response time of a remote functionality fr as
RT (fr). The RT (fr) mainly depends on the “server speed” and “network speed”
parameters. We simplify the responsiveness of fr by means of the execution time
fr on the server Tserver(fr) and the remaining remote execution overheads. The
resulting Round Trip Time (RTT) is highly affected by the current network con-
ditions. To estimate the network conditions, CWV utilizes the RTTnet metrics,
detailed in Sect. 3.3.

RT (fr) =

{
Tserver(fr) + RTTnet remote exec.,
Tclient(fr) local exec.

(1)

If fr is executed locally, the responsiveness becomes the execution time fr

on the client Tclient(fr).

3 Reference Implementation

To move a server-side functionality to the client at runtime, one has to migrate
both the relevant source code and program state, which has to be captured and
restored at the client. JavaScript has a powerful facility, the eval function, which
executes a JavaScript program passed to it as a string argument. One could
simply duplicate the entire server-side code and its state, passing them to a

392 K. An and E. Tilevich

client-side eval. However, such a näıve approach would incur unacceptably high
performance and security costs. Hence, our approach applies advanced program
analysis and automated transformation techniques to minimize the amount of
code to be transferred to and executed by the client (Sects. 3.1 and 3.2). Fur-
thermore, our approach establishes an efficient protocol for the transformed app
to switch between different execution modes (Sect. 3.3), transferring the relevant
code correctly and safely (Sects. 3.4 and 3.5).

3.1 Analyzing Full-Stack JavaScript App

Server code comprises business logic and middleware libraries. The server-side
business logic can include database access routines. The portion that needs to be
insourced is business logic only. In other words, business logic must be reliably
separated from all middleware-related functionality. To that end, CWV identifies
the entry and exit statements of the business logic portion and then extracts all
the code executed between these statements, converting that code to a new
regular JavaScript function. All the dependent code of this new function is also
extracted and transferred, thus producing a self-sufficient execution unit.

The specific steps are as follows. First, CWV normalizes the server code to
facilitate the process of separating its business logic from middleware function-
ality. Then, CWV locates the statements that “unmarshal” the client parame-
ters and “marshal” the result of executing the business logic. CWV automati-
cally identifies these statements by capturing the client server HTTP traffic and
instrumenting code at the server and at the client (Fig. 2-(a)). To that end, CWV
uses Jalangi [14], a state-of-the-art dynamic analyzer for JavaScript. CWV mod-
ifies the built-in Jalangi’s callback API calls to be able to detect the events that
correspond to the “unmarshal/marshal” statements. By following these steps,
CWV identifies the specific lines of code and variables that correspond to the
entry and exit points of remote invocations, both at the server and the client.

Fig. 2. Automated program transformation for enabling CWV

Communicating Web Vessels 393

The statements executed between these points comprise the server-side busi-
ness logic and its dependent program states that may need to be moved to
the client at runtime. To identify a subset of statements that satisfies a pair of
entry/exit statements, CWV follows a strategy similar to that of other declar-
ative program analysis frameworks that analyze JavaScript code by means of
a datalog engine [2,16]. CWV encodes the declarative facts that specify the
behavior of JavaScript statements of server program: 1) declarations of vari-
ables/functions, 2) their read/writes operations, and 3) control flow graphs. The
dependency analysis query constructs a dependency graph between statements.
Then, CWV solves constraints describing these points with the z3 engine [5] and
then extracts them into a CWV-specific object that is movable between vessels
(Fig. 2-(b)).

Some server-side program statements use third-party APIs, whose libraries
and frameworks are deployed only at the server. CWV provides domain-specific
handling of the statements that interact with relational databases. In partic-
ular, some statements interacting with a server-side relational database can-
not be directly migrated to the client. As a specific example, consider the
statement mysql_server.query(SQL_STATEMENT), which queries the server-side MySQL
database engine. Mobile clients can also use relational databases, but of a dif-
ferent type, a browser-hosted SQL engine. Hence, the database-related state-
ment above should be replaced with a_mobile_engine(SQL_STATEMENT). To identify such
database-related statements, CWV instruments all function invocations whose
arguments are SQL commands by using callback API of Jalangi. Despite the
fragility of relying on the usage of SQL commands, our approach presents a prac-
tical solution for supporting domain-specific server-to-client migrations. Finally,
CWV transforms the identified entry/exit points at the client and server sides
to insert the CWV functionality with the local and remote vessels respectively
that we explain in the next section (Fig. 2-(c)).

3.2 Transforming Programs to Enable CWV

CWV enhances application source code to enable its transformation as follows.

Client Enhancements. CWV transforms the identified HTTP invocation in
the client program to be able to CWV’s functionality as follow. The CWV-
enabled client can operate and switch between these two modes: Original and
Local. In Original mode, the app operates the original remote execution and
can switch to Local mode by means of Insourcing. The Local mode designates
that the local version of the insourced remote functions is to be invoked and can
revert to the original mode by means of Reverting (See Fig. 3). To switch to a
mode, the client invokes fuzzMode(mode) that simply fuzzes a certain parameter of
the HTTP command that invokes the original remote service name. For instance,
the client can dynamically fuzz a remote service "/a_service" (Original Request)
into "/a_service?CWVmode=Local" (Local). And the app initiates the movement of the

394 K. An and E. Tilevich

relevant remote server code and execution states rcwv to the client by fuzzing
the original invocation into "/a_service?CWVmode=Insourcing" (Insourcing Request).

Insourcing. CWV moves a set of received server statements into a client’s
container, referred to as the local vessel. Initially, the local vessel is empty. When
the client device determines to switch from the Original mode into the Local
mode, the app issues the Insourcing Request and then invokes the moveToLocalVessel

(rcwv) call, only then adding received server code and state to the local vessel.
The client and server share all the referenced names for global entries added to
the local vessels. To that end, CWV also adds a special-purpose global object
for the client, lcwv. This object is used for storing functions and other JavaScript
objects received from the server1. Finally, the app fuzzes the HTTP command
into Local "CWVmode=Local" to change the current mode. After that, invoking the
rebalance() function compares the local replica’s execution time with that of its
original remote version.

Reverting. If the local execution stops being advantageous, the app with Local
mode reverts to Original mode and clears the local vessel with clearLocalVessel(),
overriding the local vessel into the empty function again. And then, the app
switches the mode by fuzzing HTTP command into the original mode.

Server Enhancements. In a CWV-enabled app, the server part can operate
in one of three modes to respond the client’s requests: Original, Insourcing,
and Local. With the detected entry/exit points of a remote functionality, CWV
transforms it to be able to detect the mode switching queries and switch to
the client-requested modes. The Original mode refers to the original unmodified
execution, with the exception for the profiling of the time taken to execute the
program statements that implement business logic Tserver(fr) of the Eq. (1).
The client uses resulting performance profiles to ascertain the current network
conditions RTTnet from the measured response time RT (fr). And Tserver(fr)
will be used to determine a threshold when to switch modes.

In the Insourcing mode, the server responds to the client’s special insourc-
ing query by serializing the relevant portions of a given remote functionality
into a JSON string. To that end, CWV calls saveSnapshot(fr), whose invo-
cation creates a snapshot of the remote functionality fr. CWV adds to the
server part a special-purpose global object, rcwv, which represents a remote ves-
sel. This object’s properties contain the extracted functions, rcwv.main, rcwv.
ftns[0], · · · , rcwv.ftns[k] and their corresponding saved states for global vari-
ables rcwv.gvars[0], · · · , rcwv.gvars[l]. To migrate fr with database dependent
statements, CWV takes a snapshot of database’s table in terms of SQL com-
mands to enable restoration in the client rcwv.sql[0], · · · , rcwv.sql[m]. To imple-
ment saveSnapshot(fr), CWV instruments 1) the declarations of global vari-
ables and 2) Call Expressions of embedded SQL statements extracted by the
constraints solving phrase. Finally, in the Local mode, the server executes no

1 The properties of lcwv are the same as of the remote object rcwv.

Communicating Web Vessels 395

business logic, but responds to periodic pings from the client. Based on the
roundtrip time of these pings, the client monitors the network conditions to
detect if the Local mode execution no longer provides any performance advan-
tages and then switches the app to the Original mode.

3.3 Updating Modes and Cutoff Latency

The transition diagram in Fig. 3 shows how an app can transition between differ-
ent modes. CWV-enabled client always starts in the Original mode. An insourc-
ing request issued in the Original mode can be either fulfilled (i.e., switching to
the Local mode) or declined (i.e., continuing to execute remotely in the Origi-
nal mode), with the latter incurring a large performance overhead. To avoid this
overhead, the system determines the optimal time window for issuing “Insourcing
Request” as soon as the app is automatically initialized with a couple of origi-
nal executions. The procedure that determines the window is as follows. First,
the client profiles both RT (fr) and Tserver(fr) by means of multiple “Original
Requests” during the initialization (Sect. 3.2). After that, the procedure invokes
the “Insourcing Request” and extrapolates how much time it would take to
execute the same business logic locally Tclient(fr).

Estimating Network Delay. CWV-enabled mobile clients continuously mon-
itor the underlying network conditions. The client collects the RTTnet

raw metric
that represents raw network delay. Specifically, the client is continuously moni-
toring the RTTnet

raw by subtracting T (fr) from RT (fr), which are obtained from
the server. Since the raw roundtrip is subject to sudden spikes [8], CWV filters
out such temporary fluctuations by applying an adaptive filter [11], which cal-

Input: raw network delay RTTnet
raw,

current mode m(k) and current cutoff τ
NET (k)
cutoff

Output: next cutoff τ
NET (k+1)
cutoff with a margin

and next mode m(k+1) for -enabled Client
//Remove spike by adaptive Kalman Filter
RTTnet estimateRTT (RTTnet

raw);

if RTTnet
filtered > τ

NET (k)
cutoff &&m(k) == Origin then

//Profiling the difference for execs T : rebalance

τ
NET (k+1)
cutoff T server(fr) − T client(fr);

//Set margin to the next cutoff condition
margin (1 − θ) · RTTnet

filtered;

τ
NET (k+1)
cutoff min(τ

NET (k+1)
cutoff , margin);

m(k+1) Local;

end

if RTTnet
filtered τ

NET (k)
cutoff &&m(k) == Local then

//Set margin to the next cutoff condition
margin (1 + θ) · RTTnet

filtered;

τ
NET (k+1)
cutoff max(τ

NET (k)
cutoff , margin);

m(k+1) Origin;

end

Fig. 3. Transition Diagram for CWV-enabled Client (left). Algorithm for updating
cutoffs and modes (right).

396 K. An and E. Tilevich

culates the covariance matrices and noise values for RTTnet
raw and then estimates

the RTTnet metric in Eq. (1).

Cutoff Network Latency. The resulting difference between the local and
remote execution times is used as the threshold that determines when switching
to the Local mode would become advantageous from the performance stand-
point. In other words, the difference value is compared with the overhead of
network communication, and when the latter starts exceeding the former, the
app switches to the Local mode. We define this network condition as cutoff net-
work latency, τNET

cutoff . Thus, a CWV-enabled app obtains this threshold as soon
as it start executing, and then stays in the Original mode until reaching the cut-
off. Then, it tries switching to the Local mode. Because this request is executed
only upon reaching the cutoff, it is more likely to be fulfilled as offering better
performance.

Since switching between modes incurs communication and processing costs,
frequent switching in response to insignificant network changes should be pre-
vented. To that end, the margin parameter expresses by how much the network
conditions need to change and remain changed. The algorithm in Fig. 3 explains
how the margin and the current cutoff latency τ

NET (k)
cutoff determine the next cut-

off latency τ
NET (k+1)
cutoff . The margin parameter θ prevents switching in response

to insignificant τ
NET (k)
cutoff changes. After switching to the Local mode, the app

periodically pings the network to determine if the current conditions are advan-
tageous for reverting to the Original remote mode.

3.4 Synchronizing States

Some remote services can be invoked by means of HTTP POST, PUT, DELETE,
which are all state-modifying operations. Invoking an insourced stateful remote
service locally modifies its state, which must be synchronized with its original
remote version via some consistency protocol.

Mobile apps are operated in volatile environments, in which mobile devices
become temporarily disconnected from the cloud server. To accommodate such
volatility, CWV’s synchronization is based on a weak consistency model. As an
implementation strategy, we take advantage of a proven weak consistency solu-
tion, Conflict-Free Replicated Data Types (CRDT), which provide a predefined
data structure, whose replicas eventually synchronize their states, as the replicas
are being accessed and modified. In CRDTs, the concurrent state updates can
diverge temporarily to eventually converge into the same state, as long as the
replicas manage to exchange their individual modification histories [7].

Specifically, CWV wraps the replicated ‘database’ and ‘global variables’
of cwv objects into the ‘CRDT-Table’, and ‘CRDT-JSON’ of CRDT tem-
plates2, respectively. To keep track of changes and resolve conflicts, these CRDT-

2 https://github.com/automerge/automerge.

https://github.com/automerge/automerge

Communicating Web Vessels 397

structures provide the API calls getChanges and applyChanges. By continuously apply-
ing/transmitting the reported changes, the device-based clients and the cloud-
based server maintain their individual modification histories and exchange them,
thus eventually converging to the same state. To that end, the cloud server peri-
odically sends its state changes on rcwv to each client, while each client starts
sending its state changes on lcwv to the cloud server, as soon as this client reverts
to executing remotely.

3.5 Sandboxing Insourced Code

Whenever code needs to be moved across hosts, the move can give rise to vul-
nerabilities unless special care is taken. The issue of insourcing JavaScript code
from the server to the client is security sensitive. Server-side code has several
privileges that cannot be provided by mobile browsers. In addition, as it is being
transferred, the insourced code can be tempered with to inject attacks. Finally,
the transferred segments of server-side database can be accessed by a malicious
client-side actor. To mitigate these vulnerabilities, the insourced code is granted
the least number of privileges required for it to carry out its functionality. To that
end, we sandbox the insourced code. Specifically, CWV’s sandboxing is applied
to the entire local vessel. The insourced functionality has exactly one entry point
through which it can be invoked. The sandbox guards the insourced execution
from performing operations that require escalating privileges. Finally, because
the insourced database data cannot be accessed directly, malicious parties would
not be able to exfiltrate it.

As a specific sandboxing mechanism, we take advantage of iframe, which
has become a standard feature of modern browsers. An iframe creates a new
nested browser context, separate from the global scope. Operating in a separate
context precludes any shared state between the insourced code and the original
client-based code. In addition, HTML5 supports the sandbox attribute to further
restrict what iframes are allowed to execute3. It protects the client from the
vulnerability related to client XSS. For instance, a sandboxed iframe is prohibited
from accessing window.localStorage[..].

4 Evaluation

Our evaluation seeks answers to the following questions:

– RQ1:—Redistribution Adaptivity for different Devices: How beneficial is
CWV’s redistribution for different mobile devices?

– RQ2:—Redistribution Adaptivity for Networks: How beneficial is CWV’s
redistribution for different networks?

– RQ3:—Energy Savings: How does CWV’s redistribution affect the energy con-
sumption of mobile devices?

– RQ4:—Overheads: When integrated with mobile apps, what is the impact of
CWV on their performance?

3 https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe

398 K. An and E. Tilevich

4.1 Device Choice Impact

Dataset. Our evaluation subjects are 23 remote services of 8 full-stack appli-
cations, 5 real-world full-stack mobile JavaScript applications, and 3 JavaScript
distributed system benchmarks [19]. These subject apps use different middle-
ware frameworks to implement their client/server (tier-1/-2) communication and
database (tier-3), with these frameworks being most popular in the JavaScript
ecosystem.

Table 1. Subject remote services

Subject

of files
Remote
Services

τD1
cutoff τD2

cutoff

(msec) (msec)

Bookworm
(729 files)

/ladypet 176ms 421ms

/thedea 1120ms 2332ms

/thered 158ms 424ms

/thegift 97ms 120ms

/bigtrip 146ms 224ms

/offshore 619ms 1528ms

/wallp 146ms 458ms

/thecask 90ms 102ms

DonutShop

(4.9k files)

/Donut 0.66ms 1.54ms

/Donut:id 0.71ms 2.2ms

/Empls 0.55ms 1.33ms

/Empls:id 0.81ms 1.23ms

recipebook

(8k files)

/recipe 0.7ms 1.66ms

/recipe:id 0.68ms 1.1ms

/ingts/:id 0.82ms 2.3ms

/dirs/:id 0.75ms 2.1ms

pstgr-sql

(4k files)

/user 1.33ms 2.71ms

/user:id 1.72ms 2.92ms

chem-rules
2.8k files)

/hbone 26ms 59ms

/molec 131ms 202ms

Benchmark in [19] (117 files)

str-fasta /str-fasta 656ms 1424ms

fannk /fannk 2576ms 4982ms

s-norm /s-norm 1896ms 4873ms

To that end, we searched the results
based on combinations of keywords
for popular server and client HTTP
middleware frameworks, curated by
the community. For server-side key-
words, we used ‘Express’, ‘Restify’, etc.,
while for client-side keywords we used
‘Ajax’, ‘Angular’, etc. Table 1 sum-
marizes their names and the number
of source files; 4 subject applications
contain database-dependent code. To
answer RQ1, we tested how the intro-
duced network delays affect different
devices. At launch time for each device,
CWV automatically calculates the cut-
off network latency and applies it when
scheduling mode switches to minimize
the switching overhead. For example,
CWV determined the cutoff network
latency for the remote service “/hbone”
as 26ms for device 1 (D1) in Table 1,
having profiled the execution time at
the server (Tserver(“/hbone”)) and the
client (TD1

client(“/hbone”)) as 14ms and
40ms, respectively. Device 1 is a Qual-
comm Snapdragon 616 (8 × 1.5 GHz),
and Device 2 is an A8-iphone 6 (2 × 1.4 GHz); Device 1 outperforms Device 2.
The server is an Intel desktop (i7-7700 4 × 3.6 GHz). We natively build the sub-
ject web apps (JavaScript, html, and CSS) for iOS and Android by using Apache
Cordova, a cross-platform development framework. Table 1 demonstrates that
the cutoff latency of Device 2 (τD2

cutoff) is always larger than that of Device 1
(τD1

cutoff).

4.2 Network Latency Impact

To answer RQ2, we set up a test-bed for evaluating network latency impact (See
Fig. 5-(a)). Even though, network latency can be changed by controlling RSSI

Communicating Web Vessels 399

levels, we change network conditions explicitly by means of an application-level
network emulator4. Then, we examine how CWV reacts by redistributing the
running applications. In these experiments, the server and the mobile device are
connected with a wireless router. We establish a high-speed wireless link between
the router and the device (–55dBm or better). By configuring the router to
different delays, we simulate different network conditions in the increasing order
of delay. Our test-bed has a minimum delay of about 100ms for the simulator’s
zero delay. Therefore, our starting point is 100ms, with the delays increased in
the increments of 20m, 50ms, and 100ms, based on the amount of cutoff network
latency for each subject. For each increment, we measure the average delay in
the execution of our subject applications (response time or responsiveness of
a functionality), run in two configurations: (1) the original unmodified version
(Before), (2) dynamically redistributed with CWV version (CWV). Figure 4
shows the performance results.

Fig. 4. Client’s responsiveness comparisons. Cutoff equals to τD1
cutoff in Table 1.

Across all experimental subjects, the CWV-enabled configuration consis-
tently outperforms the original version, once the network latency surpasses the
cutoff network latency mark. Once the network delay reaches the cutoff network,
the difference in performance starts increasing by a large margin, as accessing any
remote functionality becomes prohibitively expensive. Before reaching the cutoff
network mark, the majority of CWV-enabled apps and their original version
exhibit comparable performance since two versions are operated in remote exe-
cution. When operating over a high-speed network, CWV-enabled apps remain
in the original mode due to the remote execution’s performance advantages.
Some subjects consistently exhibit better performance when executed locally.
These subjects with their relatively low utilization of server resources are better
off not making any remote invocations, as the overhead of network delays is not
offset by the server’s superior processing capacity.
4 https://github.com/h2non/toxy.

https://github.com/h2non/toxy

400 K. An and E. Tilevich

4.3 Energy Consumption

Next, we evaluate how much energy is consumed by a mobile device executing
CWV-enabled and original versions of the same subjects (RQ3). We profile
the energy consumption of Android devices with a Qualcomm’s Trepn-Profiler.
We executed each subject 100 times and collected the profiled results for power
(mW). Figure 5 shows the obtained samples of the power measurements over
time. To test the consumed energy under a low speed network environment,
we placed the Android client device far from the wireless router, so the signal
strength level (RSSI) was -75dBm. The resulting energy profiles in Fig. 5 show
that CWV always uses more power than the original version despite shortening
the execution time. Remote execution consumes no device power for executing
the business logic, even if it takes much longer for the client to receive the results.
By removing the need to communicate with the server, our approach shortens the
overall execution time. Compared to the original version, our approach improves
energy efficiency by as much as from 9.7J to 74J for a poor network condition.
This result is not unexpected, as a large RTT causes longer idle periods between
TCP windows [6]. Even tough, the device switches into the low power mode
during the idle states, the longer execution consumes more energy overall.

Fig. 5. Testbed and consumed energy

4.4 Communication Overhead

To insource server execution, CWV serializes relevant code and state to transfer
and reproduce at the client. To evaluate the resulting communicating overhead
(RQ4), we compared the amount of network traffic during the regular remote
execution for unmodified version (Trreg) vs. the additional traffic resulting from
CWV insourcing server execution (Trcwv).

Communicating Web Vessels 401

Fig. 6. CWV’s overhead

Among our subjects, the Bookworm app
exhibits the largest of Trorig, as this app’s remote
services need to transfer not only the book content
but also the statistical information extracted from
that content. Whereas, the med-chem app shows
the largest of Trcwv, as CWV needs to replicate
all server-side DB entries. However, the transmit-
ting overhead is occurred only once at initialization
as these services are stateless. The resulting overall
overhead ratio Trcwv/Trreg turned out to be 2.4 on
average for our subjects (Fig. 6). To quantify the benefits of CWV’s insourcing
transferring only the necessary code and state, we also measured the overhead
of the näıve approach, which transfers the entire server code and state to the
client. The performance overhead of transferring everything is about two orders
of magnitude slower than CWV, an unacceptable slowdown for any practical
purposes (Fig. 6).

5 Related Work

Program Synthesis and Transformation: CWV automatically identifies a
remote service’s business functionality that satisfies the client’s input and server’s
output constraints, akin to program synthesis systems, concerned with producing
a program that satisfies a given set of input/output relationships. CodeCarbon-
Reply [15] and Scalpel [4] support for programmer this functionality by means of
manually annotating the code regions to integrate the transferred functionality.
In contrast, CWV is both fully automated and dynamic, integrating program
code and state at runtime. CanDoR [1] fixes the bug in the centralized vari-
ant version with existing tools, then CanDoR applies the resulting fixes to the
original distributed app by using program transformation.

Adaptive Middleware: Several middleware-based approaches have been pro-
posed to reduce the costs of invoking remote functionalities. APE [12] defers
remote invocations until some other apps switch the device’s state to net-
work activation. DR-OSGi [10] enhances middleware mechanisms with resilience
against network volatility. D-Goldilocks [3] adapts distributed web apps to adjust
their distribution granularity to improve both performance and invocation costs.
CWV is yet another middleware, albeit tailored for the realities of adapting
mobile apps by transforming their code at runtime.

Executing Code in a Mobile Browser: Ours is not the only approach that
moves server-side components and data to the client. Meteor [13] transparently
replicates given parts of a server-side MongoDB at the client, so these parts can
be used for offline operations. Browserify enables a browser to use modules in
the same way as regular Node.js modules at the server.

402 K. An and E. Tilevich

6 Conclusions and Future Work

This paper has presented Communicating Web Vessles (CWV), a dynamic adap-
tation approach that improves the responsiveness of mobile web apps under the
ever-changing execution environment of the web. The CWV’s reference imple-
mentation offers full automation and a low performance overhead. By featuring
dynamic program analysis and transformation to ensure both correctness and
efficiency, CWV adapts to dissimilar execution conditions by moving app func-
tionalities from the server to the client and vice versa at runtime. As a future
work direction, we plan to apply our approach to address the resource constraints
and execution volatility of edge computing applications.

Acknowledgments. This research is supported by the National Science Foundation
through the Grant # 1717065.

References

1. An, K., Tilevich, E.: Catch & release: an approach to debugging distributed full-
stack JavaScript applications. In: Web Engineering, pp. 459–473 (2019)

2. An, K., Tilevich, E.: Client insourcing: bringing ops in-house for seamless re-
engineering of full-stack JavaScript Applications. Proc. Web Conf. 2020, 179–189
(2020)

3. An, K., Tilevich, E.: D-goldilocks: Automatic redistribution of remote functionali-
ties for performance and efficiency. In: Proceedings of the 27th IEEE International
Conference on Software Analysis, Evolution and Reengineering(SANER) (2020)

4. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: Automated software
transplantation. In: Proceedings of the 2015 International Symposium on Software
Testing and Analysis, pp. 257–269. ISSTA 2015 (2015)

5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

6. Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y.C., Rice, A.: Characterizing
and modeling the impact of wireless signal strength on smartphone battery drain.
In: ACM SIGMETRICS Performance Evaluation Review, pp. 29–40 (2013)

7. Gomes, V.B., Kleppmann, M., Mulligan, D.P., Beresford, A.R.: Verifying strong
eventual consistency in distributed systems. In: Proceedings of the ACM on Pro-
gramming Languages 1(OOPSLA), pp. 1–28 (2017)

8. Jacobsson, K., Hjalmarsson, H., Möller, N., Johansson, K.H.: Estimation of RTT
and bandwidth for congestion control applications in communication networks. In:
IEEE CDC, Paradise Island, Bahamas. IEEE (2004)

9. Kwon, Y.W., Tilevich, E.: Power-efficient and fault-tolerant distributed mobile
execution. In: ICDCS 2013, IEEE (2013)

10. Kwon, Y.-W., Tilevich, E., Apiwattanapong, T.: DR-OSGi : hardening distributed
components with network volatility resiliency. In: Bacon, J.M., Cooper, B.F. (eds.)
Middleware 2009. LNCS, vol. 5896, pp. 373–392. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10445-9 19

11. Marchthaler, R., Dingler, S.: Beispiel: Bias-Schätzung. Kalman-Filter, pp. 119–135.
Springer, Wiesbaden (2017). https://doi.org/10.1007/978-3-658-16728-8 9

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-10445-9_19
https://doi.org/10.1007/978-3-658-16728-8_9

Communicating Web Vessels 403

12. Nikzad, N., Chipara, O., Griswold, W.G.: APE: an annotation language and mid-
dleware for energy-efficient mobile application development. In: Proceedings of the
36th International Conference on Software Engineering, pp. 515–526. ACM (2014)

13. Robinson, J., Gray, A., Titarenco, D.: Getting started with meteor. Introducing
Meteor, pp. 27–41. Apress, Berkeley (2015). https://doi.org/10.1007/978-1-4302-
6835-2 2

14. Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: A selective record-replay
and dynamic analysis framework for JavaScript. In: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pp. 488–498 (2013)

15. Sidiroglou-Douskos, S., Lahtinen, E., Eden, A., Long, F., Rinard, M.: CodeCarbon-
Copy. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 95–105 (2017)

16. Sung, C., Kusano, M., Sinha, N., Wang, C.: Static DOM event dependency analysis
for testing web applications. In: Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 447–459 (2016)

17. Tsaoussidis, V., Badr, H., Ge, X., Pentikousis, K.: Energy/throughput tradeoffs of
TCP error control strategies. In: Proceedings ISCC 2000. Fifth IEEE Symposium
on Computers and Communications, pp. 106–112. IEEE (2000)

18. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing.
In: Vitek, J., Tschudin, C. (eds.) MOS 1996. LNCS, vol. 1222, pp. 49–64. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-62852-5 6

19. Wang, X., Liu, X., Zhang, Y., Huang, G.: Migration and execution of JavaScript
applications between mobile devices and cloud. In: Proceedings of the 3rd Annual
Conference on Systems, Programming, and Applications: Software for Humanity,
pp. 83–84 (2012)

https://doi.org/10.1007/978-1-4302-6835-2_2
https://doi.org/10.1007/978-1-4302-6835-2_2
https://doi.org/10.1007/3-540-62852-5_6

Snapshot-Based Migration of ES6
JavaScript

Yong-Hwan Yoo(B) and Soo-Mook Moon

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea
{yyh729,smoon}@snu.ac.kr

Abstract. Recently, researches have proposed application (app) migra-
tion approaches for JavaScript programs to enable a non-breaking user
experience across different devices. To migrate a stateful JavaScript app’s
runtime, past studies have proposed snapshot-based techniques in which
the app’s runtime state is profiled and serialized into a text form that
can be restored back later. A common limitation of existing literature,
however, is that they are based on old JavaScript specifications. Since
major updates introduced by ECMASCript2015 (a.k.a. ES6), JavaScript
supports various features that cannot be migrated correctly with exist-
ing methods. Some of these features are in fact heavily used in today’s
real-world apps and thus greatly reduces the scope of previous works.

In this paper, we analyze ES6 features such as block scopes, modules,
and class syntax that were previously uncovered in app migration. We
present an algorithm that enables migration of apps implemented with
these new features. Based on the standards adopted in modern JavaScript
engines, our approach serializes a running program into a scope tree and
reorganizes it for snapshot code generation. We implement our idea on
the open source V8 engine and experiment with complex benchmark pro-
grams of modern JavaScript. Results show that our approach correctly
migrates 5 target programs between mobile devices. Our framework could
migrate the most complex app of source code size 213 KB in less than
200 ms in a X86 laptop and 800 ms in an embedded ARM board.

Keywords: JavaScript · App migration · Serialization · Code
generation

1 Introduction

JavaScript is undeniably one of the most pervasive programming languages that
exist today. According to recent survey results from StackOverflow1, its popu-
larity remains unsurpassed for several consecutive years. An important factor
for this popularity is its compatibility with web browsers which are available
in most mobile devices by default. Moreover, adoption of JavaScript outside
web browsers has given rise to server-side or desktop apps that run in popular
1 https://insights.stackoverflow.com/survey/.

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 404–419, 2021.
https://doi.org/10.1007/978-3-030-74296-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_31&domain=pdf
http://orcid.org/0000-0003-0832-0802
https://insights.stackoverflow.com/survey/
https://doi.org/10.1007/978-3-030-74296-6_31

Snapshot-Based Migration of ES6 JavaScript 405

runtime environments such as Node.js or electron. Also, several smart device
vendors support built-in web browers (e.g. Samsung Tizen, LG webOS), thus
readily running web applications written in JavaScript.

The wide platform pool of JavaScript makes it suitable for a cross-device
computing concept called liquid software [5,6,16] in which the workflow of inter-
actions and services are continued across devices. While similar approaches were
proposed for native mobile platforms [1], they lacked support for devices from
different vendors. Yet, the high portability of web apps and freedom from preda-
tory control of OS vendors exempt them from such issues.

Similarly, [3,13–15] proposed app migration frameworks for stateful web apps,
in which browser sessions can be migrated across devices to provide a contin-
uous user experience in web apps. Their main approach is to profile a running
program’s states, such as the objects in JavaScript heap, and saving them into
a text-formatted file (i.e. snapshot). Generating a snapshot as a JavaScript code
enables a low-overhead framework for continuous user experience across a het-
erogeneous device pool. Recent studies extended the techniques to IoT [8] and
compute offload [7,11], suggesting novel use cases like multi-device web games
and collaborative machine learning in browsers.

In implementing app migration for JavaScript apps, previous works addressed
important challenges raised by the dynamic nature of JavaScript. [15] suggested
solutions for saving variables hidden inside a function closure. [13] extended this
and proposed a scope tree building algorithm to save complex scope hierarchy
of function closures. However, JavaScript language, as well as its ecosystem,
has evolved significantly and has continuously been refined on a yearly basis.
Modern JavaScript engines support by default various features2 used in real-
world web apps (e.g. slack, ebay, duckduckgo). These apps make heavy use of
new language features (e.g. block scoping, class, module and new built-in types)
introduced in ECMAScript2015 standards3. This raise non-trivial issues to all
prior works which, at their best, are based on the old ECMAScript5.1 standards.

In this paper, we tackle the problem of migrating runtime states of ES6
JavaScript programs. We analyze the major language features defined in ES6
specifications and discuss the main challenges in app migration. Our work
expands scope tree building by [13] to support two new variable scopes introduced
by block scoping and module system. Based on analyses of scope trees, we pro-
pose methods for restoring class syntax included in modern JavaScript programs
together with new built-in types. We implement our work as a JavaScript module
and tested our idea using 5 modern benchmark programs. Experimental results
in two different mobile devices show that our approach correctly migrates all pro-
grams with minimal overhead, suggesting feasibility of in resource-constrained
environments. In short, this paper following contributions:

– To the best of our knowledge, this is the first study on runtime migration of
ES6 JavaScript. We analyze the challenges raised by new languages features
and propose new ways to serialize and restore their states.

2 https://kangax.github.io/compat-table/es6/.
3 http://www.ecma-international.org/ecma-262/6.0/.

https://kangax.github.io/compat-table/es6/
http://www.ecma-international.org/ecma-262/6.0/

406 Y.-H. Yoo and S.-M. Moon

– We evaluate our work on complex benchmark programs written in ES6.
Experiments in 2 different mobile devices show the app migration causes
low time overhead and is thus feasible in resource-constrained devices.

– We show that the size of restoration code generated by our framework is
comparable to previous state-of-the-art. We further analyze different ES6
programs based on the generated scope trees and snapshot codes.

2 Background and Related Works

2.1 Snapshot-Based JavaScript App Migration

Recent literature on JavaScript app migration have proposed capturing the appli-
cation state at JavaScript level [3,8,13–15]. As JavaScript engines save variables
of the global scope as the global object ’s properties, their values can be accessed
by enumerating these properties cleverly. After each element state is serialized
at a source device, a snapshot code can be generated to restore their values
at the target device. When this code is executed at the target device, original
global scope state can be migrated with minimal overhead, allowing the user to
resume execution of the app from the serialized state. Since this simplifies the
process of restoring an app as opposed to native-level solutions [2,9], we follow
the state-of-the-art approach proposed by [13] and incrementally build on this
baseline study throughout the paper.

2.2 Function Closure and Scope Tree

At runtime, the JavaScript engine manages a call stack to save the context, a.k.a.
the execution context, in which the code is executed. Each execution context
consists of a lexical environment (LE) whose environment record saves the set
of variables, functions, etc. bound to the LE. Another component of an LE is
a reference to the outside LE, which is referred to as “outer”, together defining
the variable’s scope.

When a JavaScript code makes a function call, the JavaScript engine dynami-
cally creates a new execution context and a corresponding LE. Then, the function
is dynamically bundled with its outer LE in which it is defined as a closure. These
closures are discussed as a major challenge in previous works on JavaScript app
migration. In fact, to preserve a function’s state completely, we need to save
and restore the “outer” LE accessed by the function’s closure which is inter-
nally managed by JavaScript engines. To tackle this issue at JavaScript-level,
[15] modified the JavaScript engine to gain direct access to the internal property
‘Scope’ to recursively obtain the chain of LEs, a.k.a. scope chain. This enables
a function to be restored together with the original context.

As demonstrated in later works, however, migrating functions is more chal-
lenging when multiple closures share the same LEs. For example, Fig. 1 illustrates
two functions print and reset that reference the same variable msg via their
closures. In this case, simply saving the LE of each function will not restore the

Snapshot-Based Migration of ES6 JavaScript 407

whole program correctly. If the relationship between two closures is not captured,
restoring each scope chain will generate multiple copies of shared contexts. Thus,
the whole scope hierarchy needs to be serialized in order to prevent unexpected
breakdowns in mysterious cases.

1 function wrapper () {

2 var msg = 'closure!';

3 function print () { console.log(msg); }

4 function reset () { msg= ''; }

5 return {print , reset};

6 }

7 var {print , reset} = wrapper ();

(a) source code

(b) scope chain of ”print”

(c) scope tree

Fig. 1. Scope chain and scope tree example

To solve the above problem, [13] proposed combining all the scope chain infor-
mation into a single data structure called scope tree. Figure 1c shows an example
scope tree generated for Fig. 1. In this scope tree, “print” and “reset” become
child nodes of the same node because they are defined inside the local scope of
wrapper. Afterwards, traversing this tree in pre-order generates a restoration
code for the original program state.

3 ES6 Features and Issues in App Migration

Although previous works incrementally addressed important issues in JavaScript
app migration, modern JavaScript apps rely on newer complex features to which
existing approaches do not provide solutions. We analyzed new specifications in
ES6 standards not addressed in previous approaches, specifically focusing on 4
features prevalent in modern JavaScript apps and frameworks: block scoping,
module system, class syntax, and new data types.

Block Scoping. Prior to ES6, a JavaScript variable was declared with keyword
var and scoped to the innermost surrounding function (a.k.a. function-scoped).

408 Y.-H. Yoo and S.-M. Moon

This means variables were available anywhere within the function it is declared.
On the other hand, ES6 introduced a new variable type called block-scoped
variables as a core update. Declared with keywords let or const, these variables
follow a more common convention of other languages and are scoped to any
innermost block that surround them and cannot be accessed until their lexical
bindings are evaluated.

Introduction of block-scoped variables in ES6 allow block statements other
than function blocks to create nodes on a scope chain. For instance, if-statement
and loops can form nodes on the scope chain that saves the block-scoped variable
declared inside them. In order to preserve the original scope chain correctly, a
block statement’s scope (BlockScope) needs to be differentiated from a func-
tion’s scope (FunctionScope).

Module System. ES6 standards introduced a new module system to JavaScript
which allows splitting a large piece of code into multiple files using built-in
syntax. This replaced previous platform-specific module implementations4,5 and
has been shipped into all major JavaScript engines as the de facto standard. A
module’s code is stored in a separate file, each containing a set of declarations
and statements which may be accessed from another module as read-only. In
practice, programmers specify an entry point module and explicitly load it, for
example, via a 〈script type=“module”〉 tag into an HTML file of a web app.

JavaScript engines execute modules differently from regular scripts, so the
same code can have different semantics depending on whether it is loaded as
a script or module. For example, calling this keyword at top-level will give
different results in a script (global object) and module (undefined). Thus, ES6
app migration needs to preserve such semantics of modules.

util.js

1 var foo = 'util-foo ';

2 export function bar(){

3 print(foo);

4 }

main.js

1 import {bar} from './ util.js

';

2 var foo = 'main-foo ';

3 bar(); // 'util-foo '

(a) source code

(b) scope tree of 2a

Fig. 2. ES6 module example

4 http://www.commonjs.org/.
5 https://github.com/amdjs/.

http://www.commonjs.org/
https://github.com/amdjs/

Snapshot-Based Migration of ES6 JavaScript 409

Internally, the JavaScript engine creates a new LE, a.k.a. ModuleScope when-
ever a new module’s code is executed, thereby isolating each module’s scope. In
perspective of a scope tree, this means that each module’s top-level bindings
are saved in a separate node. The challenge here is that the scope tree alone
cannot capture the order of each module’s declaration (i.e. relationship between
the modules). For example, Fig. 2b shows scope tree generated for the code of
Fig. 2a. Both ModuleScope nodes save the same function bar, but we cannot
identify in which module this function was first declared.

Class Syntax. ES6 also defined class definitions as a special function type
while reserving several keywords to mimic syntax similar to class-based languages
on top of JavaScript’s object-based nature. A class’s constructor function is dif-
ferentiated from normal functions and is bound to a new BlockScope generated
for that class. Subclassing in ES6 classes is done with the extends keyword, for
which the JavaScript engine evaluates the parent class and dynamically links the
child class’s constructor and prototype to their parent class counterparts.

1 var Circle;

2 var Shape;

3 Shape = class {

4 constructor(x,y){

5 this.x = x

6 this.y = y

7 }

8 }

9 Circle = class extends Shape {

10 constructor(x,y,r) {

11 super (x,y)

12 this.r = r

13 }

14 }

15 var c = new Circle ();

(a) source code

1 var Circle = class

extends Shape {

2 ...

3 } // syntax error

4 var Shape = class {

... }

5
6 var c = new Circle ();

(b) wrong snapshot code

Fig. 3. Wrong restoration of class definitions

In order to save and restore class definitions for app migration, naively treat-
ing them as regular functions and capturing their states using a scope tree will
not preserve the syntactic order between different classes. More specifically,
the extends keyword used in class subclassing requires that a parent class’s
BlockScope is evaluated before executing a child class’s BlockScope.

Due to JavaScript’s dynamic nature, however, such order between subclass-
ing classes are often not captured automatically. Figure 3a is a source code of
two class variables whose declarations (line 1–2) and definitions (line 4–5) are

410 Y.-H. Yoo and S.-M. Moon

in different order. If we restore this app like using a scope tree [13], identifier
Circle will be restored before Shape. Because dependencies between the two
identifiers are not explicit, a generated snapshot code (Fig. 3b) will raise a syn-
tax error when it is executed (line 1). Identifying such dependencies becomes
more challenging if classes are defined in different scopes (e.g. in different lexical
blocks) or if parent classes are defined by arbitrary expressions. Thus, we need
a new strategy that can generalize and account for such new syntax.

4 Proposed Approach

Figure 4 is a high-level overview of our framework. Given a target app, we save
its module structure into a JSON file (“module dep.json”) with a lightweight
static analysis (module profiler) which is loaded together for later use. The
app user can trigger app migration by calling a global function (“SaveSnapshot”)
of our framework (“migrator.js”) to generate a snapshot code (“snapshot.js”).
The user can load this snapshot code at the target device and restore original
app state in the source device so that app execution can continue seamlessly. We
now explain details of each stage.

Fig. 4. High-level overview

4.1 Module Profiling

To address the challenge of restoring module structure in the target device,
our framework statically analyzes the app source code and saves dependencies
between different modules included in the app. This is because a static analy-
sis can capture any complex relationship between ES6 modules that cannot be
captured easily at runtime, such as two different JavaScript modules that have
cyclic dependencies. As such, we add a module profiler stage in advance to
app deployment. Given an app’s source code and its entry module name, we gen-
erate a JSON file (“module dep.json”) that saves the dependency graph between
modules. This dependency graph models each module as a node and variables
imported to each module as an incoming edge. This file is later loaded with the
target app to restore the relationship between different modules.

Snapshot-Based Migration of ES6 JavaScript 411

4.2 Migrating Modified Built-In Objects

In advance to target app loading, our framework saves the initial states of
JavaScript’s built-in objects such as Array, String, etc. This is an optimiza-
tion to efficiently migrate JavaScript built-in objects based on the intuition that
after a JavaScript engine initializes their properties, most built-in objects are
rarely modified during program execution [11,12]. Inspired by this observation,
we do not serialize the unmodified properties redundantly and instead restore
them at the target device via default engine startup. To save the other modi-
fied portion and minimize our snapshot code size, our framework loads our app
migration script before the actual app is loaded by the JavaScript engine and
immediately save initial states of built-in objects (step 2-a). At the actual app
migration, we traverse these built-in object once again to find the properties
that are modified from their initial states during app execution (step 2-b) and
generate a JavaScript code that restores these changes via assignment.

4.3 Scope Tree Building

Our framework saves global identifiers (e.g. variables, objects) that were cre-
ated during app execution, together with their values and properties. If some
object is found to be a function (LeafFunction), we traverse the scope chain
and collect scope information (i.e. LEs) recursively up to the outermost scope
(GlobalScope). At the end of each traversal, we update the scope tree with the
collected information as in previous approaches [13] so that closure variables and
their relationships are serialized. At the end of this stage, the resulting scope
tree can be composed of 5 node types which we abbreviate as following:

– G = GlobalScope; global scope of a program.
– M = ModuleScope; top-level scope of a module.
– F = FunctionScope; scope introduced by a function.
– B = BlockScope; scope introduced by a block statement.
– L = LeafFunction; function that starts a scope chain.

4.4 Syntax-Aware Tree Re-ordering

After a scope tree is generated, we collect dependency information between tree
nodes to address the issue raised by subclassing syntax in class definitions. More
specifically, this dependency defines the order in which a parent class and a child
class will be declared so that the extends clause (i.e. reference to the parent) in
every class definition is evaluated without syntax error. By re-ordering the scope
tree with respect to such dependency, we ensure that a parent class is present
with the right values when evaluating the child.

The challenge in syntax-aware tree re-ordering is finding relationship between
these class constructors, i.e. finding each class’s parent. Here, we exploit the
prototype-based inheritance model of ES6 classes and inspect the internal links
between JavaScript classes to find each class’s parent. Since every object in

412 Y.-H. Yoo and S.-M. Moon

JavaScript, including class definitions, has an internal property named ‘Proto-
type’, recursively following these links up to null give us its “prototype chain”.
Based on this principle, we first iterate all observable class constructors and their
parent class and locate their least common ancestor node in our scope tree. We
then rearrange the two child branches to which the classes are bound, so that a
pre-order depth first search reaches the parent class’s scope before the child’s.

4.5 Tree Partitioning

Next, we restore the original partitioning of the source code so that each module’s
code can be generated separately. Since every module creates its own LE whose
“outer” element points at the global LE, a ModuleScope node in our scope
tree forms its own subtree as a direct child of GlobalScope node. Separating
each module is straightforward: we iterate children of the root node to find all
ModuleScope nodes and split their subtrees from the original scope tree.

To restore the relationship between module partitions, we examine the dec-
larations saved in each module partition’s root node (i.e. ModuleScope node)
and recursively map each ModuleScope to a node in our previously saved
dependency graph (“module dep.json”), thus restoring the original relationship
between them. Finally, generating a glue code (e.g. 〈script type=“module”〉) to
load the entry module into global scope restores the original module structure
of the application. As an example, Fig. 5 shows tree partitions of a target app
called UniPoker, originally composed of three code fragments.

(a) initial tree shape (b) module dep.json (c) final tree shape

Fig. 5. Tree partitioning example (UniPoker)

4.6 Snapshot Code Generation

After our scope tree is reordered and partitioned, we generate a snapshot code for
each scope tree partition. The final result of this stage will be multiple JavaScript
files, each corresponding to a tree partition. Code for a partition can be generated
by traversing the partition’s nodes in pre-order and applying an appropriate code
generation scheme to each visited node. We implement function generateScope

Snapshot-Based Migration of ES6 JavaScript 413

which generates code for a given node and recursively invokes itself until a leaf
node is reached. In other words, invoking generateScope with some partition’s
root node as argument returns its snapshot code. We show pseudo code of the
code generator in Fig. 6.

Algorithm 1: Code Generator
1 function generateScope(node):
2 switch node.type do
3 case BlockScope do
4 code += ”{”
5 foreach variable ∈ node.LE do
6 code += ”let” + serialize(variable)
7 end
8 foreach childNode ∈ node.children do
9 generateScope (childNode)

10 end
11 code += ”}”;
12 end
13 case FunctionScope do
14 code += ”(function(){”
15 foreach variable ∈ node.LE do
16 code += ”var” + serialize(variable)
17 end
18 foreach childNode ∈ node.children do
19 generateScope (childNode)
20 end
21 code += ”})”
22 end
23 case LeafFunction do
24 if node.function.startsWith(”class”) then
25 code += serializeClass(node.function)
26 else if node.function.prototype == undefined then
27 code += serializeMethod(node.function)
28 end
29 else
30 code += serializeFunction(node.function)
31 end

32 end

33 end

Fig. 6. Pseudo code for code generation

In line 2, we first check the type of the visited node to select an appropriate
code generation scheme. If the node type is BlockScope (line 3) or a Function-
Scope (line 13), we generate a wrapper code corresponding to the scope type,
i.e. lexical block statement (line 4 & 11) or an immediately invoked function
expression (line 14 & 21). Inside the wrapper code, we serialize the value of each

414 Y.-H. Yoo and S.-M. Moon

closure variable and invoke generateScope for each child node in the scope tree.
Note that variables are declared differently in each case so that they are bound
to the correct LE type.

When we visit a leaf node during a pre-order traversal (line 23), our code
generator first checks if the function is a class (line 24), a method (line 26) or
neither of two types (line 29). A class constructor is distinguishable lexically
at JavaScript level by its keyword “class” while a method function is unique
in that it does not have a “prototype” property. We again serialize its scope
chain (i.e. node.function), process it with respect to the syntax of the type, and
concatenate the resulting code.

Our framework also adds supports for new data types introduced in ES6
which cannot be serialized with existing methods. For instance, we introduce
an auxiliary array to migrate the new primitive type symbol since it can cause
aliasing issues if serialized into strings directly like other primitive types. For
migrating standard built-in objects (e.g. Map, Set, Typed Arrays), our code
generator adds declaration for an empty prototype of the built-in object and
copies each element of the target object in the original insertion order using the
corresponding built-in methods (e.g. Map.set("key", "value")).

5 Evaluation

5.1 Implementation and Setup

We used the V8 JavaScript engine of the open-source chromium browser to
implement and evaluate our work, as it is currently the most popular platform
adopted by major browser (Google Chrome, Microsoft Edge) and non-browser
platforms (Node.js, electron). We cloned the source code of a recent version
chromium browser (version 82.0.4060.0, Feb 15, 2020) to add accesses to internal
‘Scope’ property of functions. Our module profiler extends an open source npm
package6 built on Esprima JavaScript parser7. The rest of the framework is
implemented as a module named “migrator.js” so as to be easily plugged into
other JavaScript apps for app migration support. “SaveSnapshot” function in
the module is attached to a button click event to provide interactive interface.

We compiled our modified V8 engine to experiment in two environments:
(1) a X86 laptop with Intel Core i7-7700 3.6 GHz CPU and 32 GB memory
(2) ODROID-XU4 embedded board with ARM Cortex-A15 Quad 2 Ghz &
Cortex-A7 Quad 1.3 GHz CPUs, and 2 GB of memory, to simulate resource-
constrained scenarios. We then adapted several programs from JetStream2
benchmark (Table 1) that show various real-world usages of ES6 features. Orig-
inal details of the benchmark can be found in [4]. Since we couldn’t find any
standard benchmark for testing ES6 modules, we additionally split source codes
of two target programs (UniPoker and ML) into multiple modules.

6 https://www.npmjs.com/package/es-dependency-graph.
7 https://esprima.org/.

https://www.npmjs.com/package/es-dependency-graph
https://esprima.org/

Snapshot-Based Migration of ES6 JavaScript 415

Table 1. Target programs for app migration

App Description ES6 features

UniPoker 5 card stud poker simulation using
Unicode (U+1F0A1). 3 modules
(Card.js, Game.js, main.js)

let/const, classes, new
built-in types, module

Air ES6 port of WebKit B3 JIT’s
allocateStack phase. Runs hot function
bodies of popular benchmarks

let/const, classes, new
built-in types

Basic ES6 implementation of ECMA-55 BASIC
standard. Runs several simple apps (e.g.
find prime numbers)

let/const, classes, new
built-in types

Babylon JavaScript parser used in Babel
transpiler. Parses 4 JavaScript sources
with intensive string processing

let/const, classes, new
built-in types

ML Feedforward neural network for machine
learning. Trains several networks with
different activation functions and
datasets. Refactored into 5 modules

let/const, classes,
subclassing built-in types,
module

We first downloaded source codes of the target apps, saved them in the source
device, and adapted each app so that it imports our framework in advance of app
loading. We loaded each app in our modified browser and executed app migration
at 2 different execution points: (1) after a target app is fully loaded and (2) after
program finished several iteration. A generated snapshot file (“snapshot.js”) is
then loaded into a new browser session in a target device.

To ensure correctness of app migration, we first checked the runtime behavior
of each benchmark program by resuming their execution after app migration
multiple times. We also inspected all global identifiers in the original and new
session and made sure their all values are preserved. Lastly for the 2 benchmarks
written using ES6 modules, we checked if each module is properly split from each
other with the correct import/export statements. Our inspection results showed
that our snapshot codes restored the original program correctly.

5.2 RQ1: How Do ES6 Features Affect the Scope Tree Results?

We summarized scope tree results of our benchmark programs in Table 2. Results
of UniPoker and ML show that tree partitioning will yield 3 and 5 additional
module partitions respectively, same as the original source codes. Compared to
other programs, scope trees of Babylon and ML had relatively more complex
structures (Fig. 7). For example, in the center of ML’s result we can observe
a branch of length 5 (G-M-B-F-B) shared by 180 different leaf function nodes.
We observed that most of the LE nodes in these complex tree structures are
BlockScope nodes. In fact, a large portion of these nodes are created by class
definitions and thus their child nodes are subject to syntax-aware re-ordering.

416 Y.-H. Yoo and S.-M. Moon

Table 2. Scope tree details

App Tree height # of LEs # of
functionG M F B

UniPoker 3 1 3 0 3 31

Air 2 1 0 0 14 251

Basic 2 1 0 0 7 50

Babylon 3 1 0 1 30 290

ML 5 1 5 1 43 598

Table 3. Code size across migration

App Source
(KB)

Snapshot1
(KB)

Snapshot2
(KB)

UniPoker 16 24 26

Air 403 625 626

Basic 45 68 68

Babylon 238 514 622

ML 213 644 644

Fig. 7. Scope tree example (ML benchmark)

One of our framework’s limitations lies in supporting asynchronous features
in JavaScript (e.g. Promise API and generators) which is outside the scope of
this paper. For now, we simply disable app migration when such features are
detected and leave support for them as future research direction. Yet, it is worth
mentioning that these features essentially do not add new scoping rules and thus
will not break the semantics of our overall scope serialization process.

5.3 RQ2: Are Snapshot Codes Generated in Small Sizes?

In our framework, a small snapshot code size is desirable because it can reduce
time to transmit the snapshot code between devices and shorten app loading
time in the target device. Table 3 shows the source code and snapshot code size
at the two execution points. Intuitively, size increase will be relatively larger
for complex scope trees with more LEs, since we restore each LE by generating
reference codes that is not present in the original source.

Unlike other benchmarks whose snapshot code sizes are mostly consistent
across all execution points, noticeable increase exists between snapshot1 and
snapshot2 in Babylon. This is because in between the two snapshot points,
Babylon read 4 JavaScript source codes from external files and loads them into
memory, thus greatly increasing program state size. Also,code size increase is

Snapshot-Based Migration of ES6 JavaScript 417

unusually larger in ML compared to any other program. This is because ML’s
source code heavily uses the eval() function for code compression, which has long
been deprecated. Even including such exceptional cases, the snapshot codes sizes
are only 2.01X larger than the source code on average. This is comparable to
previous state-of-the-art baseline result by [13], which reports 1.97X code size
increase for the Octane benchmark 2.0 based on ES5 syntax. Considering the
extra lines of code added to support ES6 features (e.g. glue codes for restor-
ing dependencies in modules and classes), we conclude that the snapshot size is
reasonably small even for resource-constrained devices.

5.4 RQ3: How Much Is the Framework’s Time Overhead?

Loading the framework and serializing initial built-in object states was consistent
across benchmarks: 93ms (std 1ms) in laptop and 346ms (std 2ms) in ARM
board, i.e. initial steps take similar times regardless of target apps. Figure 8 shows
additional time overhead imposed by each stage. Total time spent for snapshot
generation is less than 200ms in laptop and 800ms in ARM board in the worst
case (ML). This is considered small enough for continuous progression in multi-
device experience [13] and even for single-device experience [10]. Thus, the time
overhead is small enough to provide seamless experience across devices from a
user-centric perspective, and feasible in resource-constrained environments.

X86 X86 X86 X86 X86
0

200

400

600

800
code generation
reorder & partition
scope tree building
built-in saving

ARM ARM ARM ARM ARM
UniPoker Air Basic Babylon ML

Fig. 8. Breakdown of our framework’s time overhead (ms)

While built-in saving time is measured almost the same throughout all pro-
grams, the other 3 measurements are dependent on the source program itself and
thus largely different by program. This is consistent to that of code sizes (i.e. the
larger the snapshot size, the longer the framework took to generate it). Among
the three items, time spent in reorder & partition was substantially lower than
other stages in all cases, implying that extra steps for migrating ES6 features
causes minimal extra overhead.

418 Y.-H. Yoo and S.-M. Moon

6 Conclusion

In this paper, we addressed challenges in snapshot-based app migration of ES6
JavaScript programs. We analyzed various features in ES6 standards and pro-
posed methods to handle them efficiently, including manipulation of the scope
tree and code generation for new scope types and data types. We implemented
our proposal on the open-source V8 engine as an easily pluggable module. Evalu-
ation on complex ES6-based benchmark programs shows that our framework can
generate reasonable size snapshots with little time overhead in mobile devices.

Acknowledgement. This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2020R1A2B5B02001845) and BK21 FOUR.

References

1. Apple: Handoff for developers (2018). https://developer.apple.com/handoff/
2. Barr, E.T., Marron, M., Maurer, E., Moseley, D., Seth, G.: Time-travel debugging

for javascript/node.js. In: Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 1003–1007 (2016)

3. Bellucci, F., Ghiani, G., Paternò, F., Santoro, C.: Engineering javascript state per-
sistence of web applications migrating across multiple devices. In: Proceedings of
the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
pp. 105–110 (2011)

4. Browserbench: Jetstream2 benchmark (2019). https://browserbench.org/
JetStream/

5. Gallidabino, A.: Liquid web architectures. In: Bakaev, M., Frasincar, F., Ko, I.-Y.
(eds.) ICWE 2019. LNCS, vol. 11496, pp. 560–565. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19274-7 45

6. Gallidabino, A., Pautasso, C.: The liquid.js framework for migrating and cloning
state ful web components across multiple devices. In: Proceedings of the 25th
International Conference Companion on World Wide Web, pp. 183–186 (2016)

7. Gallidabino, A., Pautasso, C.: The liquid web worker API for horizontal offloading
of stateless computations. J. Web Eng. 17, 405–448 (2019)

8. Gascon-Samson, J., Jung, K., Goyal, S., Rezaiean-Asel, A., Pattabiraman, K.:
Thingsmigrate: platform-independent migration of stateful javascript IoT applica-
tions. In: 32nd European Conference on Object-Oriented Programming (ECOOP
2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

9. Google: Custom startup snapshots. https://v8.dev/blog/custom-startup-
snapshots

10. Google: Measure performance with the rail model (2020). http://web.dev/rail
11. Jeong, H.J., Shin, C.H., Shin, K.Y., Lee, H.J., Moon, S.M.: Seamless offloading of

web app computations from mobile device to edge clouds via html5 web worker
migration. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 38–
49 (2019)

12. Kwon, J., Lee, H.-J., Moon, S.-M.: WebDelta: lightweight migration of web appli-
cations with modified execution state. In: Bielikova, M., Mikkonen, T., Pautasso,
C. (eds.) ICWE 2020. LNCS, vol. 12128, pp. 435–450. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-50578-3 29

https://developer.apple.com/handoff/
https://browserbench.org/JetStream/
https://browserbench.org/JetStream/
https://doi.org/10.1007/978-3-030-19274-7_45
https://doi.org/10.1007/978-3-030-19274-7_45
https://v8.dev/blog/custom-startup-snapshots
https://v8.dev/blog/custom-startup-snapshots
http://web.dev/rail
https://doi.org/10.1007/978-3-030-50578-3_29

Snapshot-Based Migration of ES6 JavaScript 419

13. Kwon, J.W., Moon, S.M.: Web application migration with closure reconstruction.
In: Proceedings of the 26th International Conference on World Wide Web, pp.
133–142 (2017)

14. Lo, J.T.K., Wohlstadter, E., Mesbah, A.: Imagen: Runtime migration of browser
sessions for javascript web applications. In: Proceedings of the 22nd International
Conference on World Wide Web, pp. 815–826 (2013)

15. Oh, J., Kwon, J.W., Park, H., Moon, S.M.: Migration of web applications with
seamless execution. In: Proceedings of the 11th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments, pp. 173–185 (2015)

16. Taivalsaari, A., Mikkonen, T., Systä, K.: Liquid software manifesto: The era of
multiple device ownership and its implications for software architecture. In: 2014
IEEE 38th Annual Computer Software and Applications Conference, pp. 338–343.
IEEE (2014)

Web User Interfaces

Automated Repair of Layout Bugs
in Web Pages with Linear Programming

Stéphane Jacquet, Xavier Chamberland-Thibeault, and Sylvain Hallé(B)

Laboratoire d’informatique formelle, Université du Québec à Chicoutimi,
Chicoutimi, Canada

{stephane.jacquet1,xavier.chamberland-thibeault1,shalle}@uqac.ca

Abstract. The paper addresses the issue of layout bugs, in which ele-
ments of a web page may overlap, become misaligned or protrude from
their parent container for fortuitous reasons. It proposes a technique to
apply corrections to a rendered page by formulating its current state and
associated layout constraints into a Mixed Integer Linear Programming
problem. An off-the-shelf numerical solver is used to generate a layout
that satisfies the constraints, in such a way that disruptions to the orig-
inal page are minimized. A probe then injects these corrections in the
form of a temporary “hotfix”. The approach has been implemented and
tested on samples of real-world web pages; using techniques that aim
to reduce the size of the optimization problem, a solution can often be
computed in a few seconds on commodity hardware.

Keywords: Layout bugs · Declarative specifications · Linear
programming

1 Introduction

The complex interaction of HTML, CSS and JavaScript inside a page may cause
its elements to be displayed and behave in ways that are not always anticipated
by the designer. A recent study of dozens of real-world web sites has shown that
bugs related to the user interface of a web page are very frequent, and even
occur in high-profile sites such as Facebook or YouTube [6]. Such bugs may have
various causes, including cross-browser rendering inconsistencies [13], responsive
web design complexities [2,20] and unforeseen internationalization side effects
[14].

Several tools and approaches have been proposed over the past decade to
automatically discover such bugs, and potentially identify the elements respon-
sible for the problematic rendering [12,17,18,20]. A page under test may be
compared to a reference page, or be evaluated against a set of declarative con-
straints that it is expected to fulfill. However, much fewer approaches take the
problem to the next step, and actually attempt to repair the problems that are
detected. Web designers are therefore left with the task of finding a suitable fix

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 423–439, 2021.
https://doi.org/10.1007/978-3-030-74296-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_32&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_32

424 S. Jacquet et al.

by themselves. Existing solutions sometimes require many minutes before finding
an appropriate fix [7,13], which makes them unsuitable for on-the-fly corrections.

This is precisely the problem addressed by the present paper, which focuses
on a particular class of user interface disruptions called layout bugs. These bugs,
which are geometrical in nature, occur when the elements of a page are incorrectly
placed, have improper dimensions, are misaligned or overlap each other while
they should not. Our approach tackles the issue by attempting to generate what
we call a “hotfix” —a temporary patch to the properties of elements as they
are displayed in the current page, which restores the satisfaction of declarative
layout constraints given beforehand. The solution we propose is to convert the
state of a page and its constraints into a Mixed Integer Linear Programming
problem (MILP). This makes it possible to leverage the use of an industrial-
level numerical solver to quickly compute a layout that satisfies the constraints.

This solution faces two key challenges. The first is to keep the size of the
numerical model small, in order to produce a result in acceptable time for an
end user (seconds rather than minutes). To this end, we introduce the concept of
“zone of influence”, which allows us to circumscribe in advance the set of elements
that may need to be modified in a page, and drastically reduce the number
of variables in the corresponding numerical problem. The second challenge is
the actual application of the fix into the page; we describe a technique that
is guaranteed to impose the given size and position to a given element, which
avoids the need to test a candidate repair into an actual browser. We present a
proof-of-concept implementation of this technique and report on experimental
results; they confirm that our hotfix generation technique can correctly modify
the elements of a page to solve a layout bug, in reasonable time for pages of size
corresponding to real-world websites.

This paper is structured as follows. Section 2 describes three types of layout
bugs with examples, and then covers related works on UI bug detection and
repair. Section 3 explains how we handle the correction through a Mixed Integer
Linear Program. Section 4 describes a proof-of-concept implementation that has
been tested on both real-world and synthetic pages of large size. Section 5 ends
the paper with a conclusion, with suggestions of future work.

2 State of the Art for Fixing Layout Bugs in Web Pages

Presentation bugs can routinely be found in web sites, ranging from subtle incon-
sistencies to more serious errors that may even break a page’s functionality. Case
in point, a recent study on UI bugs has found more than 100 issues in the pages
of various web sites [6]. In this section, we first describe the particular types of
layout bugs that are the focus of this work. We then briefly present the various
approaches that have been proposed in the past to automatically detect and/or
correct such bugs inside web pages.

Automated Repair of Layout Bugs in Web Pages with Linear Programming 425

2.1 Types of Layout Bugs

Among all bugs reported in previous works, we focus in this paper on bugs that
are related to a page’s geometrical features, namely the size and positioning of
the various elements (“boxes”) that compose the page; we call these bugs layout
bugs. In the GUI fault model developed by Lelli et al., these bugs correspond to
sub-category GSA1 [11]. Following the terminology introduced by Walsh et al.
[20], the layout bugs we consider can be divided in three categories.

Overlapping Elements. Figure 1 shows an example of overlapping elements on
the login page for an installation of the Moodle1 platform. The leftmost button,
labeled “Connexion”, extends over the password recovery button that lies to its
right.

(a) French text (b) English text

Fig. 1. Example of overlapping elements.

The effect produced by overlapping elements is often very easy to spot, yet
the causes of the presence of such overlapping elements are multiple. In the
example shown above, it appears that the position of the buttons is hard-coded
based on the size of the English version of their text. Case in point, Fig. 1b shows
the effect of changing the button’s text to “Login”, which restores an eye-pleasing
layout.

Misaligned Elements. Misaligned elements is a second common type of layout
bug, which can sometimes be subtle to detect. An example is shown in Fig. 2a,
which comes from the LinkedIn platform2; in this screenshot, the “Interests”
menu is placed one pixel lower than the other elements.

(a) Misalignment (b) Protrusion

Fig. 2. Examples of misaligned and protruding elements.

1 https://moodle.org.
2 https://linkedin.com.

https://moodle.org
https://linkedin.com

426 S. Jacquet et al.

As with overlapping elements, the causes of misalignment are varied. In the
previous example, one can observe by investigating the page’s source code that
the “Interests” menu is not clickable, contrary to the other elements of the bar.
To this end, it is given a different CSS class than the rest of the menu items,
which has a slightly different definition for its margins and padding.

Protruding Elements. The last type of bug occurs when an element extends
beyond the boundaries of another element that should contain it completely. This
is what Walsh et al. call element protrusion [20]. Figure 2b shows an example
of such an issue, taken from the site AgentSolo3: one can see that the Search
button extends beyond the region that is reserved for the menu bar of the page.

2.2 UI Bug Detection

Over the past decade, several approaches have been proposed for the automated
detection of UI bugs in web applications. For example, WebDiff [18] identifies
cross-browser layout issues in a web page. The tool harvests the DOM tree of
a page on a reference browser multiple times in order to identify the variable
elements that should not be considered. Then, it harvests the DOM tree of
the same page on other browsers and compares it node by node, to identify
mismatches in these nodes’ properties and report them.

Walsh et al. [20] used Responsive Layout Graphs, which are constructed by
querying the DOM tree of a web page under different viewport sizes, to compare
a page to itself at various viewport size aiming to find relative layout issues.
The DOM trees of each viewport are compared to identify elements that behave
incorrectly and report them to the developers. The work by Ryou and Ryu [19]
uses a crawler that interacts as much as possible with a web page, building graphs
of the page’s state along the way. These multiple graphs are then compared:
discrepancies between nodes representing the same page element in two graphs
are then identified.

All these works are based on the principle of comparison between multiple
versions of a page, or between a page and a reference version that is considered
correct. An alternate approach consists of asking the developer to write state-
ments that describe the intended appearance of the page in advance. In this line
of works, Cornipickle is a web testing tool that focuses on the detection of bugs
related to the user interface of a web application [6]. It provides an expressive
language in which declarative constraints can be expressed by a web developer,
and refer to any visible characteristic of the elements of a page—among others its
content, colors, position and dimensions. The tool can then automatically detect
violations of these constraints in a web page, and also provides a mechanism
for pinpointing the elements of the page that are involved in the corresponding
violation.

Similarly, the Cassius framework works as a declarative browser used to ver-
ify web pages [17]. Rather than checking constraints on a single rendition of a

3 https://www.agentsolo.com.

https://www.agentsolo.com

Automated Repair of Layout Bugs in Web Pages with Linear Programming 427

web page, the tool reasons symbolically over all possible viewports; therefore, if
an assertion passes, this guarantees that no possible set of device size or user
preferences can ever violate the assertion. In the opposite case, a counterexample
layout is produced and an element violating the assertion is identified. Finally,
although not a bug detection tool per se, we shall mention SeeSS [12], which
is a tool that highlights the portions of a web page that are subject to visual
modifications when a developer changes a CSS declaration and saves the file that
contains it.

2.3 Automated Repair

While most of the aforementioned solutions can identify portions of a page that
violate a given condition, none of them attempt to fix the issue. On the contrary,
Hallé and Beroual [7] proposed a generic model for correcting abstract objects
that do not satisfy a condition, based on the concept of repair. Formally, if ϕ is
a condition that some object o ∈ O violates, and τ1, . . . , τn are endomorphisms
O → O, a repair is any composition τ of some of the τi such that τ(o) satisfies
ϕ. Intuitively, each τi applies a different modification to the object o, and the
process of fixing o is reduced to the problem of searching for a combination
of modifications that makes the “corrected” object satisfy the condition. Web
page layout bugs are cited as one of the potential domains of application of this
general theory.

However, the search for an appropriate repair is computationally very expen-
sive, and ultimately amounts to a brute-force generate-and-test algorithm—
which, as it turns out, has not been experimentally tested on web pages. More-
over, in this generic model, all potential repairs are seen as black boxes with
an equal likelihood of fixing the input object. In the case of violations of layout
constraints, which are intrinsically numerical, such a solution does not exploit
the geometric nature of the problem to converge more quickly towards a possible
fix.

The work closest to the problem we tackle here is an approach to make auto-
mated repairs on cross-browser rendering inconsistencies, implemented in a tool
called X-Fix [13]. This is done by first comparing an incorrect page with a ref-
erence copy, to identify any elements with a different rendering. CSS properties
of these elements that have an impact on the rendering discrepancy are identi-
fied for each of them. The tool then proceeds to a search for alternate values
that could be given to these properties and that would fix the problem, called
candidate fixes. The process loops until all bugs have been resolved, or if no
improvement on an existing fix can be found.

The generation of candidate fixes is done by implementing a basic numerical
solver within the tool, which performs small positive or negative increments to
CSS properties of elements and watches for improvements in the value of a fitness
score. However, each such candidate requires the page to be re-rendered and re-
examined in the browser under test; consequently, experimental results report
running times in the order of minutes to find a proper fix. Moreover, in the
same way as most tools described in Sect. 2.2, it requires a correct rendering as

428 S. Jacquet et al.

a reference. In this respect, one could say that the tool already knows the proper
positions and sizes that each element is supposed to have (from the reference
page), and searches for appropriate CSS declarations that result in such positions
and sizes.

2.4 Optimization-Based Techniques

Several methods using optimization-based techniques have been used in the con-
text of GUIs. A survey has been conducted on using combinatorial optimization
for GUI layouts [16]. Mixed Integer Linear Programming (MILP) have been
developed in the past two decades to correct layout bugs in web pages. MILP
are problems were the objective function and the constraints are described by
linear functions. Cassowary[1] was an algorithm developed to solve problems of
linear equality and inequality constraints, using a modified version of the sim-
plex algorithm. However, the formulation of the problem initially did not contain
an objective function; this means that it was not possible to orient the solver
towards preferable solutions.

More recently, the GRIDS system [5] proposed layout management of GUIs
using MILP with a multi-objective formulation. A drawback of having multiple
functions to optimize is that the user has to chose between a large (theoretically
infinite) number of solutions located on a curve called the “Pareto front”. To help
the user, GRIDS only provides a small sample of feasible pages on that front that
are quite different one another. Among the objectives, we find the fact that the
outer hull of the GUI is as rectangular as possible, that there are as few holes
as possible, and that related elements are grouped together.

The same year, LaaS [10] handled this problem through a MILP while offering
two possibilities as objective function. The first one is the selection time. The
idea is to make sure that the most important elements take as little time as
possible to be found. Typically, the most important items might become bigger
than the others elements and closer to the top-left corner. The other one is
“visual saliency”. It describes basically how the elements catch the eyes of the
user. Tests have been done on a single element of attention, which means that
a single element of the page needed be found quickly using the time selection
criteria or to be catchy using the visual saliency criteria.

3 Modelization of Layout Bugs as MILP

In this section, we describe our proposed approach to fix layout bugs in a web
page. Given a page rendered by a browser, and constraints expressed on some
of its elements (called alignment, inclusion and containment), violations of these
constraints are automatically detected. The page’s state and these constraints
are converted into a linear optimization problem, which computes new positions
and dimensions for the elements; a patch is then directly injected into the page,
which restores the layout constraints.

Automated Repair of Layout Bugs in Web Pages with Linear Programming 429

This approach distinguishes itself from existing works in several aspects. First,
we do not assume the presence of a reference page, but only declarative con-
straints that must hold for the specified elements; therefore, our proposed tool
must find the proper layout by itself. Second, the goal is to produce a fix on-
the-fly, as the user is viewing the page: therefore, the time required to produce
a solution should be on the order of a few seconds at most. This is why our app-
roach leverages the use of an external numerical constraint solver, and does not
require the re-rendering of the page in order to test candidate fixes. Moreover,
the proposed solution relies on a few key techniques that aim to keep the linear
optimization problem small.

3.1 Layout Constraints

First, the DOM tree of a web page is modeled as a set of nested rectangles,
corresponding to the various HTML elements of the page, from the top-level
<body> all the way down to individual text leaves (CDATA). Each rectangle is
defined by the (x, y) coordinates of its top-left corner, its height and its width
(in displayed pixels). It follows that a complete web page, made of n ∈ N

∗

elements, is a set of quadruplets (x(i), y(i), w(i), h(i)), i ∈ {1, . . . , n}. A web page
is described by the characteristics of each rectangle. The complete page is hence
a vector of 4n components (x(1), y(1), w(1), h(1), . . . , x(n), y(n), w(n), h(n)).

Essentially, the layout constraints will be expressed on pairs of elements A =
(x(a), y(a), w(a), h(a)) and B = (x(b), y(b), w(b), h(b)); in terms of their position
in the DOM tree, these elements will typically be involved either in a parent-
child relationship, or a sibling relationship. Each constraint will contribute to
the addition of a number of linear equalities or inequalities between some of the
variables of the model. We assume that the set of element pairs subject to each
type of constraint is given, and known in advance.

Alignment Constraints. Alignment constraints are straightforward to handle by
linear equalities. For example, if A and B are expected to be aligned vertically,
the equality x(a) = x(b) is added to the system. Similarly, the fact that A and B
must be aligned horizontally is described by y(a) = y(b). This means that each
alignment constraint requires one linear constraint and no extra variables.

Inclusion Constraints. The case of inclusion constraints can be handled in a
similar way. An element B is completely included within an element A if and
only if these four inequalities hold. This means that each inclusion constraint
requires four linear constraints and no extra variable.

x(a) ≤ x(b)

y(a) ≤ y(b)

x(a) + w(a) ≥ x(b) + w(b)

y(a) + h(a) ≥ y(b) + h(b)

430 S. Jacquet et al.

Disjointedness Constraints. It is easy to see that A is disjoint from B if and only
if at least one of these four inequalities hold:

x(a) + w(a) ≤ x(b)

x(b) + w(b) ≤ x(a)

y(a) + h(a) ≤ y(b)

y(b) + h(b) ≤ y(a)

However, such a simple modeling causes problems for linear solvers, which
typically cannot directly handle the fact that it suffices that one of the con-
straints must be fulfilled. We therefore propose an alternate modelization, using
additional constraints and auxiliary variables. Elements A and B are disjoint if
and only if:

x(a) + w(a) ≤ x(b) + M(1 − z1)

x(b) + w(b) ≤ x(a) + M(1 − z2)

y(a) + h(a) ≤ y(b) + M(1 − z3)

y(b) + h(b) ≤ y(a) + M(1 − z4)
z1 + z2 + z3 + z4 ≥ 1
z1, z2, z3, z4 ∈ {0, 1}

where M ∈ R+ is a sufficiently large number. Intuitively, the zi are “choice”
variables: setting them to 0 or to 1 determines whether the constraint they are
associated with must be fulfilled or not. An equivalent modelization can also be
done by replacing the next-to-last equation by z1 + z2 + z3 + z4 = 1. In such
a case, z4 can be removed and replaced by 1 − (z1 + z2 + z3), which creates a
system with one fewer variable. This means that each disjointedness constraint
implies 4 linear constraints and 3 extra binary variables.

Non-Decreasing Sizes. If no constraints on the sizes is given, then some boxes
can become smaller. This can lead to some cases where it would be easier for
the solver to have a box of length or width equal to 0. Such a thing should not
be possible and could happen due to the fact that we lack information in our
formulation. In order to avoid that, we add the constraints that the boxes cannot
become smaller. Each non-decreasing size constraint adds one linear constraint
and no extra variables.

3.2 Defining an Objective Function

Given a set of element pairs that are subject to either alignment, inclusion or
disjointedness constraints, it is easy to define a system of inequalities that cor-
responds to these constraints. Given an input vector (x(1), y(1), w(1), h(1), . . . ,
x(n), y(n), w(n), h(n)), a constraint solver will produce an output vector that
defines the position and dimensions of each element, such that all constraints
are satisfied, if such a solution exists. Therefore, if the original page had a layout
that violated one of the constraints, the modifications to the elements’ properties
describe a way to “fix them”.

One could think that merely asking for a solution—any solution—to the
solver is sufficient. However, without additional instructions, it is possible that
the solver produces a version of the page that satisfies the constraints, but is

Automated Repair of Layout Bugs in Web Pages with Linear Programming 431

drastically different from the original. For example, if a single element in a group
is misaligned, a valid solution could be to move all elements to a new location
in the page. This goes against the intuition that the expected correction would
simply move the single misaligned element. Therefore, in order to guide the solver
towards solutions that minimally disturb the original document, an objective
function f must also be provided. A solver can hence be instructed to find
solutions that satisfy the constraints, and such that the value of f is minimized.

In the present case, this function should represent the amount of changes
made to the original vector. Given an initial page state (x(1)

0 , y
(1)
0 , w

(1)
0 , h

(1)
0 , . . . ,

x
(n)
0 , y

(n)
0 , w

(n)
0 , h

(n)
0), the function f to minimize is defined as:

n∑

i=1

|x(i) − x
(i)
0 | + |y(i) − y

(i)
0 | + w(i) − w

(i)
0 + h(i) − h

(i)
0

One can see that each term of the sum computes the absolute difference between
the initial and the final (x, y) position, and the variation of width and height
of each element. Therefore, minimizing f under the layout-bug-free constraints
means finding the layout-bug-free web page which is the most similar to the
initial web page.

An advantage of this formulation is that the objective function is piecewise
linear. Such functions can still be managed through MILP using a proper formu-
lation [4]. One can also note that no absolute values are required for the width
and height of the elements, assuming the non-decreasing sizes constraints are
used. This allows us to avoid adding 2n constraints and 4n variables to get the
MILP reformulation. Adding those would only lead to longer computation time
to solve the MILP.

3.3 Reducing the Number of Constraints

Modeling the previous layout requirements may result in a large number of con-
straints, affecting an equally large number of elements inside a page. The size
of the problem sent to a solver can quickly exceed the limits of what can be
handled in reasonable time in terms of user experience. However, the number
of variables and constraints can be reduced by taking advantage of the observa-
tion that many layout disruptions (and their associated corrections) are local in
nature—that is, they have an impact on a limited part of the page, while most
of the document typically remains unaffected (and consequently, does not need
to be changed).

Fig. 3. Displacing an element, and its impact on elements surrounding it.

432 S. Jacquet et al.

Let us first consider the case of a correction to an element that requires it
to be displaced. For example, Fig. 3 shows that element B must be moved up.
Doing so without any other change may result in a disjointedness constraint to
be violated. Therefore, surrounding elements such as A and C can also have to
be moved in order to make room for B at its new location. But this, in turn, can
shift elements beyond the original size of their container, and potentially violate
a protrusion constraint. In order to fix this issue, the size of the parent element
may have to be enlarged to accommodate all elements in their new positions.
The end result is the right-hand side of Fig. 3; it shows that, when an element
needs to be moved, its siblings in the DOM tree may also move, and its parent
in the DOM tree may need to be enlarged. A similar reasoning could be made
in the case of an element that needs to be enlarged: again, the siblings of this
element may need to move, while its parent container may need to be enlarged.

43

13 18 24 42

4 9 12

0 1 2 3 5 6 7 8 10 11

15 17

14 16

22 23

19 20 21

27 31 39 41

25 26 28 29 30 32 33 34 35 36 37 38 40

Fig. 4. An illustration of the concept of zone of influence. (Color figure online)

These changes cascade recursively through the document: if the parent of
an element needs to be resized, then its siblings may need to be moved, and
so on. Although this looks like modifications can potentially affect most of the
elements, it turns out not to be the case. This is illustrated in Fig. 4, which shows
an abstract DOM tree. We suppose that node 20, marked in red, needs to be
either enlarged or displaced. As per the rules mentioned above, some of the other
nodes related to node 20 may need to be displaced (marked in yellow), enlarged
(marked in green) or both (marked in both colors). The set of all DOM nodes
that are susceptible to either type of correction is called the zone of influence of
a given element, identified by a gray area in the tree.

Note that a fair fraction of the tree actually stays as is: in our example, 34 of
the 44 nodes are assured to require no modification. Consequently, these nodes
and their associated constraints do not even need to be included in the model
submitted to the solver. This would result, in this case, in a fourfold reduction
in the number of variables and constraints.

3.4 Hotfix Application

The schematics of the hotfix generation system can be separated into two phases:
the detection phase and the correction phase.

Automated Repair of Layout Bugs in Web Pages with Linear Programming 433

Detection Phase. A JavaScript probe P is first injected inside a web page.
This probe traverses the DOM tree of the page in a depth-first fashion, and
adds to each element a custom attribute called eid, whose value is an incre-
menting number. This procedure makes sure that every element of the page is
given a unique numerical identifier. This traversal progressively builds the vector
(x(1)

0 , y
(1)
0 , w

(1)
0 , h

(1)
0 , . . . , x

(n)
0 , y

(n)
0 , w

(n)
0 , h

(n)
0), by recording for each element its

displayed position and dimensions, as they are rendered by the browser.
This vector is returned to our Java program, which is also provided with a

set of constraints C. In its current form, constraints are represented as triplets
of the form (i, j, t), where i and j are numerical IDs representing individual
elements of the page, and t ∈ {V,H,D, I} indicates whether elements i and j
should be respectively vertically aligned, horizontally aligned, disjoint, or if i
should be included within j. The program uses these constraints to generate an
input model S for a numerical constraint solver. The solution from the solver is
a new vector v that stipulates the new position and size of each element in the
“corrected” version of the page.

Correction Phase. It shall be noted that there is no back-and-forth interaction
between the solver and the browser; contrary to some other approaches (notably
X-Fix [20]), the candidate solutions examined by the solver do not need to be
rendered in real to evaluate their actual effect. This, however, supposes that
whatever position and size the solver assigns to elements are guaranteed to be
the position and size the elements will indeed have in the corrected page.

It turns out that this task is less trivial than it seems. For example, to
place an element e at a particular horizontal coordinate x, it does not suffice to
issue a statement such as e.style.left = x. The positioning of the element’s
containing parent, its display properties, as well as additional attributes may
lead to the element being placed at a different coordinate than x. In other words,
there is a difference between the actual geometry of the element, and the values
that must be applied to the element for it to assume the desired geometry.

Changing the width or the height of e is relatively straightforward. The probe
starts by measuring the actual rendered properties of the selected element e in the
browser, which are retrieved via the getBoundingClientRect() method. How-
ever, its padding and borders, which are recovered via the window.getComputed-
Style() method, must first be subtracted from the prescribed dimensions, since
both properties are included within the actual width of the element. This newly
calculated value is then apply to the element’s width or height.

Changing the element’s position is more delicate. First, one must determine
the reference coordinates of the element, which correspond to the top-left corner
of the closest ancestor a whose position is absolute, or the document’s <body>
if no such element can be found. Once this ancestor has been found, its absolute
positioning and margin sizes are retrieved using the two aforementioned methods.
Both of these values must be subtracted from the coordinates returned by the
solver, in order to get the position that must actually be applied to the specified

434 S. Jacquet et al.

element.4 The position attribute of e is then set to absolute, and its top and
left properties are set to the calculated values.

4 Experimental Evaluation

The correction scheme detailed in the previous section has been concretely imple-
mented as a proof-of-concept hotfix generation system for web pages, whose goal
is to evaluate the potential of the approach for fixing minor layout bugs. In this
section, we describe this implementation and report on experimental results on
samples of actual and synthetic web pages.

The system is implemented as a Java program, which uses the Selenium
WebDriver5 library to interact with a controllable instance of a web browser.
The probe is a custom-made JavaScript piece of code that is injected inside the
page by the Java program, and is instructed to extract the properties of elements
with specific IDs, for which layout constraints are expected to apply. The Java
program then generates an input model for the IBM CPLEX numerical solver [9].
Finally, the solution computed by CPLEX is retrieved by the Java program, and
the corresponding JavaScript hotfix is re-injected back into the original page.

4.1 Real-World Bugs

In order to assess the feasibility of the proposed approach to correct actual bugs
in a page, two sets of experiments have been conducted, which we describe below.
In the first set of experiments, we tested the approach on a sample of real-world
web pages presenting layout bugs, taken from a previous study [6]. The goal of
these experiments is to determine whether, in an actual web page, the system
can not only correctly catch and fix a layout constraint stipulated by the designer
beforehand, but also avoid disturbing other (correct) parts of the page. In each
of the sampled pages, the appropriate constraints (alignment, containment or
disjointedness) on the faulty element and its neighbors were manually identified.
The page, along with these constraints, was then sent to our hotfix generator,
and the result of the hotfix application was then visually inspected.

(a) Moodle (b) AgentSolo

Fig. 5. Examples of the application of a hotfix to an incorrect page.

4 Except if p is the document’s <body>, which behaves differently and where margins
must be ignored.

5 https://seleniumhq.org.

https://seleniumhq.org

Automated Repair of Layout Bugs in Web Pages with Linear Programming 435

Figure 5a shows an example of the application of a hotfix, on the Moodle page
already shown in Fig. 1a. One can observe that the two green buttons, which
overlapped in the original page, are now placed exactly side by side. Although
no constraint was expressed on the alignment of these two buttons, they remain
horizontally aligned. This is due to the fact that the numerical solver is instructed
to minimize the changes applied to the original document: moving any of the two
buttons up or down would amount to a greater total change to the page than
simply keeping them aligned. This also explains why the size of each button has
been left unchanged.

We obtained similar results for the other pages we tested. For example, Fig. 5b
shows the hotfix for the protruding button illustrated in Fig. 2b. Note how the
red menu bar has been extended in width exactly enough to contain the search
button. Although not visible in this screenshot, the rest of the page remained
untouched.

4.2 Synthetic Pages

MILPs formulations are easy to formulate but they are NP-hard, implying that
their worst case complexity is not polynomial [15]. Therefore, a second set of
experiments aims to measure the scalability of the approach with respect to the
number of elements in a page. To this end, we conducted a systematic stress test
by running our hotfix tool on a sample of synthetic DOM trees, produced by a
random page generator we implemented and called PageGen6. The experiments
have been implemented in the form of a LabPal package [8] that is publicly
available online7.

The page generator works recursively as follows. First, for a given element
p, a number of children c is randomly selected. For each of these children, a
depth d is also randomly selected. If d = 0, an element b, of randomly selected
width and height, is created and added as a child of p. Otherwise, b is recursively
populated before being added to p’s children. Once all the children of p have been
created, the last step is to arrange them inside p, either following a horizontal or
a vertical layout, separated by an equal margin. Once the elements are arranged,
the dimensions of p are set to a rectangle that includes all the children. The
end result is a tree of nested rectangles, which can be exported as an HTML
document made of <div> elements, one for each box. Since the goal of our
approach is to correct properties related to the position and size of arbitrary
elements, the actual tag names and their content are irrelevant.

What is more, layout bugs can also be artificially injected when a page is
generated. Once all elements are arranged within their parent (according to the
horizontal or vertical layout), a coin is flipped for each to determine whether the
element should be purposefully misaligned with respect to the others, moved to
overlap with one of its siblings, or enlarged to extend beyond the dimensions
of its parent. Using this generator, we produced a sample of 100 generated web

6 https://github.com/sylvainhalle/pagegen.
7 https://github.com/liflab/hotfix-lab.

https://github.com/sylvainhalle/pagegen
https://github.com/liflab/hotfix-lab

436 S. Jacquet et al.

pages, which includes trees ranging between 2 and 10450 elements. We shall
mention that a recent empirical analysis of real-world web sites observed that
90% of pages had fewer than 2,000 nodes [3]. Therefore, we can safely conclude
that our sample contains pages of size comparable to (and even larger than) sites
that are actually present on the web.

For each of these pages, we measured the total time required to generate
and apply a hotfix to the layout bug contained in the page. Since the goal is
to generate fixes on-the-fly, the solver was given a very short time budget to
produce a result (at most 2 s). The running times are shown in Fig. 6a, plotted
in function of page size. One can see that, for most pages, solving time remains
well under 1 s; only a few pages exceeded the timeout. These running times
should be compared with those obtained by X-Fix [13], which reports a median
solving time of 841 s on a sample of web sites containing an average of 425 DOM
nodes each. Our faster running times, however, are crucial, since our goal is to
produce a fix to a page on-the-fly, and not to find a more permanent way of
correcting the issue at the CSS level.

Fig. 6. Experimental results from our benchmark.

Figure 6b is a visualization of the impact that the use of zones of influence
has on the analysis of a page. Each point in this plot represents a pair of trees:
on the x-axis is the original size of the tree, and on the y-axis the size of the
tree trimmed to retain only the zone of influence of the faulty elements. One can
see the drastic reduction in the number of nodes that need to be modeled: pages
of thousands of DOM nodes are reduced to a portion containing a few dozens
at most. Without such a reduction, the MILP problem to solve would quickly
become intractable.

5 Conclusion and Future Work

In this work, we proposed a technique for automatically generating repairs in the
case where a web page violates conditions on the layout of its DOM elements.
The problem has been modeled as a MILP problem, using an objective function
that aims to minimize the disruptions introduced into the page to restore the

Automated Repair of Layout Bugs in Web Pages with Linear Programming 437

conditions. The approach has been implemented as a proof-of-concept tool using
a combination of the Selenium browser driver for page manipulation, and the
IBM CPLEX software for solving numerical constraints. An experimental evalu-
ation of this implementation has shown that our hotfix generation technique can
correctly modify the elements of a page to solve a layout bug (§4.1); moreover,
the introduction of the concept of zone of influence can reduce the optimization
problem and produce results in reasonable time in terms of user experience (a
few seconds), for pages of size corresponding to real-world websites (§4.2).

However, these conclusions rest on several hypotheses, which we discuss
below. First, the proposed approach shares an issue that is common to all declar-
ative systems based on assertions: in order for bugs to be detected and pages to
be fixed, a page must be accompanied by appropriate constraints that should be
followed by its elements. Moreover, these constraints must be complete, in the
sense that any page that satisfies them should be considered valid. It turns out
that the human eye makes many implicit assumptions over the expected size,
position and alignment of elements which, in our approach, must be explicitly
provided. For example, without further constraint, the fix shown in Fig. 5b will
correctly enlarge the red menu area, but not the white parent element that con-
tains this menu. To decrease the burden on the designer of writing such tedious
conditions, a future work we consider is to automatically deduce such “obvious”
layout conditions based on heuristics.

The hotfix generated by our approach may only modify the page in a subtle
way visually, however it alters the structure of the page in a drastic way. Each
element to which a patch is applied has its position property set to “absolute”:
this makes sure that changing its top and left attributes are guaranteed to
move the element to the exact location stipulated by the solver. This avoids
having to test a candidate fix to make sure it has the intended effect, as needs to
be done in tools such as X-Fix. However, resizing the page after the application
of the hotfix may result in the element being yet again incorrectly placed; an
immediate workaround is to recompute a new hotfix when this happens. Absolute
positioning also removes the element from the normal flow inside its parent
container. For an element that is relatively positioned, an alternate fix, which
involves modifying the element’s margins, is currently being worked on.

We have also seen that the number of variables and constraints sent to the
solver was kept to a manageable level thanks to the observation that only ele-
ments in a so-called “zone of influence” need to be modeled. However, this only
works under the hypothesis that no element is ever reduced in size, because
changes only propagate upwards through the DOM tree. In contrast, if an ele-
ment can be made smaller, then this change propagates downwards to all its
children, and in such a case, the zone of influence of an element becomes the
whole document. Circumscribing the zone of influence in the case of element
reductions is the subject of ongoing work, which shall be integrated in a future
version of our system.

Finally, we plan to integrate this hotfix generation mechanism directly into
the Cornipickle declarative testing tool, and extend it to other types of con-

438 S. Jacquet et al.

straints beyond the three types of layout bugs addressed in this paper. Another
step would be to test the tool on a larger sample of bugs and websites, and
reenact the same tests on different browsers to ensure the complete validity of
the tool, since all the present tests have been realized only on Chrome.

References

1. Badros, G.J., Borning, A., Stuckey, P.J.: The Cassowary linear arithmetic con-
straint solving algorithm. ACM Trans. Comput.-Hum. Interact. 8(4), 267–306
(2001)

2. Beroual, O., Guérin, F., Hallé, S.: Detecting responsive web design bugs with declar-
ative specifications. In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE
2020. LNCS, vol. 12128, pp. 3–18. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-50578-3_1

3. Chamberland-Thibeault, X., Hallé, S.: Structural profiling of web sites in the wild.
In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE 2020. LNCS, vol. 12128,
pp. 27–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50578-3_3

4. Croxton, K., Gendron, B., Magnanti, T.: A comparison of mixed-integer program-
ming models for non-convex piecewise linear cost minimization problems. Manage.
Sci. 49, 1268–1273 (2003)

5. Dayama, N.R., Todi, K., Saarelainen, T., Oulasvirta, A.: GRIDS: Interactive layout
design with integer programming. In: CHI, pp. 1–13. ACM (2020)

6. Hallé, S., Bergeron, N., Guerin, F., Breton, G.L., Beroual, O.: Declarative layout
constraints for testing web applications. J. Log. Algebraic Methods Program. 85(5),
737–758 (2016)

7. Hallé, S., Beroual, O.: Fault localization in web applications via model finding.
In: Gößler, G., Sokolsky, O. (eds.) CREST@ETAPS. EPTCS, vol. 224, pp. 55–67
(2016)

8. Hallé, S., Khoury, R., Awesso, M.: Streamlining the inclusion of computer experi-
ments in a research paper. Computer 51(11), 78–89 (2018)

9. IBM: IBM ILOG CPLEX optimization studio CPLEX user’s manual, ver-
sion 12 release 6 (2013). https://public.dhe.ibm.com/software/products/Decision_
Optimization/docs/pdf/usrcplex.pdf

10. Laine, M., Nakajima, A., Dayama, N., Oulasvirta, A.: Layout as a service (LaaS):
a service platform for self-optimizing web layouts. In: Bielikova, M., Mikkonen, T.,
Pautasso, C. (eds.) ICWE 2020. LNCS, vol. 12128, pp. 19–26. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50578-3_2

11. Lelli, V., Blouin, A., Baudry, B.: Classifying and qualifying GUI defects. In: ICST,
pp. 1–10. IEEE Computer Society (2015)

12. Liang, H., Kuo, K., Lee, P., Chan, Y., Lin, Y., Chen, M.Y.: SeeSS: seeing what
I broke - visualizing change impact of cascading style sheets (CSS). In: Izadi, S.,
Quigley, A.J., Poupyrev, I., Igarashi, T. (eds.) UIST, pp. 353–356. ACM (2013)

13. Mahajan, S., Alameer, A., McMinn, P., Halfond, W.G.J.: Automated repair of
layout cross browser issues using search-based techniques. In: ISSTA, ISSTA 2017,
pp. 249–260. ACM (2017)

14. Mahajan, S., Alameer, A., McMinn, P., Halfond, W.G.J.: Automated repair of
internationalization presentation failures in web pages using style similarity clus-
tering and search-based techniques. In: ICST, pp. 215–226. IEEE Computer Society
(2018)

https://doi.org/10.1007/978-3-030-50578-3_1
https://doi.org/10.1007/978-3-030-50578-3_1
https://doi.org/10.1007/978-3-030-50578-3_3
https://public.dhe.ibm.com/software/products/Decision_Optimization/docs/pdf/usrcplex.pdf
https://public.dhe.ibm.com/software/products/Decision_Optimization/docs/pdf/usrcplex.pdf
https://doi.org/10.1007/978-3-030-50578-3_2

Automated Repair of Layout Bugs in Web Pages with Linear Programming 439

15. Morrison, D.R., Jacobson, S.H., Sauppe, J.J., Sewell, E.C.: Branch-and-bound algo-
rithms: a survey of recent advances in searching, branching, and pruning. Discrete
Optim. 19, 79–102 (2016)

16. Oulasvirta, A., Dayama, N., Shiripour, M., John, M., Karrenbauer, A.: Combina-
torial optimization of graphical user interface designs. In: Proceedings of the IEEE,
pp. 1–31 (2020)

17. Panchekha, P., Torlak, E.: Automated reasoning for web page layout. In: Visser,
E., Smaragdakis, Y. (eds.) OOPSLA, pp. 181–194. ACM (2016)

18. Roy Choudhary, S., Versee, H., Orso, A.: WEBDIFF: automated identification of
cross-browser issues in web applications. In: ICSM, pp. 1–10. IEEE (2010)

19. Ryou, Y., Ryu, S.: Automatic detection of visibility faults by layout changes in
HTML5 Web Pages. In: ICST, pp. 182–192. IEEE (2018)

20. Walsh, T.A., Kapfhammer, G.M., McMinn, P.: Automated layout failure detection
for responsive web pages without an explicit oracle. In: Bultan, T., Sen, K. (eds.)
ISSTA, pp. 192–202. ACM (2017)

A Model-Based Chatbot Generation
Approach to Converse with Open Data

Sources

Hamza Ed-douibi1 , Javier Luis Cánovas Izquierdo1(B) , Gwendal Daniel1 ,
and Jordi Cabot1,2

1 UOC., Barcelona, Spain
{hed-douibi,jcanovasi,gdaniel}@uoc.edu

2 ICREA., Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. The Open Data movement promotes the free distribution
of data. More and more companies and governmental organizations are
making their data available online following the Open Data philosophy,
resulting in a growing market of technologies and services to help publish
and consume data. One of the emergent ways to publish such data is via
Web APIs, which offer a powerful means to reuse this data and inte-
grate it with other services. Socrata, CKAN or OData are examples
of popular specifications for publishing data via Web APIs. Neverthe-
less, querying and integrating these Web APIs is time-consuming and
requires technical skills that limit the benefits of Open Data movement
for the regular citizen. In other contexts, chatbot applications are being
increasingly adopted as a direct communication channel between com-
panies and end-users. We believe the same could be true for Open Data
as a way to bridge the gap between citizens and Open Data sources.
This paper describes an approach to automatically derive full-fledged
chatbots from API-based Open Data sources. Our process relies on a
model-based intermediate representation (via UML class diagrams and
profiles) to facilitate the customization of the chatbot to be generated.

Keywords: Open data · UML · Chatbots · API · OpenAPI

1 Introduction

Open Data has emerged as a movement that promotes the free distribution of
data for everyone to consume and republish. Governmental organizations are
one of the significant sources of Open Data resources. They make their data
publicly available online to provide more transparency and enable the general
public to monitor and control the action of government bodies. For instance,
the Spanish Open Data portal registers more than 20,000 resources while the
European portal, which harvests the metadata of Public Sector Information

Work supported by the Spanish government (TIN2016-75944-R project).

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 440–455, 2021.
https://doi.org/10.1007/978-3-030-74296-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_33&domain=pdf
http://orcid.org/0000-0003-4342-4818
http://orcid.org/0000-0002-2326-1700
http://orcid.org/0000-0003-0692-0628
http://orcid.org/0000-0003-2418-2489
https://doi.org/10.1007/978-3-030-74296-6_33

A Model-Based Chatbot Generation Approach to Converse with Open Data 441

available on public data portals across European countries, links to over 1 million
already.

On the one hand, Open Data promotes public awareness and aims at boost-
ing citizen participation but, still, regular citizens hardly benefit from them as
consuming Open Data requires non-trivial technical skills. Indeed, more and
more Open Data sources are released as “web-friendly” artifacts (e.g., Linked-
Data, APIs or NoSQL databases) that facilitate their consumption by external
software applications and not directly by end-users. In particular, some specific
technologies to support the publication of Open Data in the Web have been
widely adopted in the last years, namely: Socrata1, CKAN2 and OData3.
Other organizations also rely on OpenAPI4, an initiative to formally describe
general-purpose REST APIs, to document their Open Data APIs. While all
these Web APIs “standards” offer a powerful means for writing complex data
queries, they require advanced technical knowledge that hampers their actual
use by non-technical people.

On the other hand, chatbots are intelligent conversational agents typically
embedded in websites and instant messaging platforms. Users can ask questions
or send requests to the chatbot using natural language, with no need to learn
any technical knowledge/language. Chatbots have proven useful in various con-
texts to automate tasks and improve the user experience, such as automated
customer services [22], education [13], e-commerce and, basically, every single
domain involving any type of user interaction, including technical domains such
as database queries [1]. Thus, we believe chatbots are the ideal interface to
access and query Open Data sources, thus allowing citizens to access the gov-
ernment/company data they need directly. Citizens would ask the questions in
their own language, and the chatbot would be the one in charge of translating
that question into the corresponding API request/s.

In this sense, we propose a model-based approach to generate chatbots tai-
lored to the Open Data API technologies mentioned above. As input of our pro-
cess, an API definition is analyzed and imported as a UML schema annotated
with UML profiles, which address specific domain information for chatbot config-
uration and Web API query generation. This API model is then used to generate
the corresponding chatbot to access and query the Open Data source. Via the
chatbot, users can ask direct queries or follow one of the guided query paths
that facilitate the Open Data exploration. To validate our approach, we provide
a proof-of-concept Eclipse plugin that fully supports Socrata and allows the
integration of other Open Data specifications (i.e., OData, CKAN) as well as
generic Web APIs (via OpenAPI specification).

Note that we focus on chatbots to help citizens exploit and dialogue with the
Open Data resource they are interested in, not on chatbots aimed to help citizens
find the best candidate/s data source/s based on their search interests [14], which

1 https://dev.socrata.com/.
2 https://ckan.org/.
3 https://www.odata.org/.
4 https://www.openapis.org/.

https://dev.socrata.com/
https://ckan.org/
https://www.odata.org/
https://www.openapis.org/

442 H. Ed-douibi et al.

is also useful but can be easily replaced with a proper keyword-based search
interface. This is not the case for the approach we propose here as, even when
citizens know which data sources to query, they typically lack the technical skills
to do it on their own and therefore will benefit from our chatbot to act as an
“interpreter” between them and the underlying API technology.

The rest of the paper is organized as follows. Section 2 introduces the back-
ground of our work. Section 3 briefly describes our approach while Sects. 4 and 5
describe its main phases, namely, Open Data Import and Bot Generation, respec-
tively. Section 6 described the tool support and Sect. 7 presents the related work.
Finally, Sect. 8 ends the paper and presents the future work.

2 Background

2.1 Open Data

The Open Data movement aims to make data free to use, reuse, and redistribute
by anyone. In the last years, Open Data portals have evolved from offering
data in text formats only (e.g., CSV, XML) towards web-based formats, such
as LinkedData [2] and Web APIs, that facilitate the reuse and integration of
Open Data sources by external Web applications. In this subsection, we briefly
describe the most common Web API technologies for Open Data, based on their
popularity in governmental Open Data portals.

Socrata. Promoted by Tyler Technologies, the Socrata data platform provides
an integrated solution to create and publish Open Data catalogs. Socrata sup-
ports predefined web-based visualizations of the data, the exporting of datasets
in text formats and data queries via its own API that provides rich query
functionalities through a SQL-like language called SoQL. Socrata has been
adopted by several governments around the world (e.g., Chicago5 or Catalonia6).

CKAN. Created by the Open Knowledge Foundation, CKAN is an Open Source
solution for creating Open Data portals and publishing datasets in them. As
an example, the European Data Portal relies on CKAN. Similar to Socrata,
CKAN allows viewing the data in Web pages, downloading it, and querying it
using a Web API. The CKAN DataStore API can be used for reading, searching,
and filtering data in a classical Web style using query parameters or by writing
SQL statements directly in the URL.

OData. Initially created by Microsoft, OData is a protocol for creating data-
oriented REST APIs with query and update capabilities. OData is now also
an OASIS standard. It is especially adapted to expose and access information
from a variety of data sources such as relational databases, file systems, and
content management systems. OData allows creating resources that are defined

5 https://data.cityofchicago.org.
6 http://governobert.gencat.cat/en/dades obertes/index.html.

https://data.cityofchicago.org
http://governobert.gencat.cat/en/dades_obertes/index.html

A Model-Based Chatbot Generation Approach to Converse with Open Data 443

according to a data model and can be queried by Web clients using a URL-
based query language in a SQL-like style. Many service providers adopted and
integrated OData in their solutions (e.g., SAP or IBM WebSphere).

OpenAPI. Evolving from Swagger, the OpenAPI specification has become the
de facto standard to describe REST APIs. Though not specific for Open Data,
OpenAPI is commonly used to specify all kinds of Web APIs, including Open
Data ones (e.g., Deutsche Bahn7).

In our approach, we target Open Data Web APIs described by any of the
previous solutions. We rely on model-driven techniques to cope with the variety
of data schema and operation representations, as described in the next sections.

2.2 Chatbots

Chatbots are conversational interfaces able to employ Natural Language Process-
ing (NLP) techniques to “understand” user requests and reply accordingly, either
by providing a textual answer and/or executing additional external/internal ser-
vices as part of the fulfillment of the request.

NLP covers a broad range of techniques that may combine parsing, pattern
matching strategies and/or Machine Learning (ML) to represent the chatbot
knowledge base. The latter is the dominant one at the moment thanks to the
popularization of libraries and Cloud-based services like DialogFlow or IBM
Watson Assistant, which rely on neural networks to match user intents.

However, chatbot applications are much more than raw language processing
components [17]. Indeed, the conversational component of the application is
usually the front-end of a larger system that involves data storage and service
integration and execution as part of the chatbot reaction to the user intent.
Thus, we define a chatbot as an application embedding a recognition engine to
extract intentions from user inputs, and an execution component performing
complex event processing represented as a set of actions.

Intentions are named entities that can be matched by the recognition engine.
They are defined through a set of training sentences, which are input exam-
ples used by the recognition engine’s ML/NLP framework to derive a number
of potential ways the user could use to express the intention. Matched inten-
tions usually carry contextual information computed by additional extraction
rules (e.g., a typed attribute such as a city name, a date, etc.) available to the
underlying application. In our approach, Actions are used to represent simple
responses such as sending a message back to the user; as well as advanced fea-
tures required by complex chatbots, like database querying or external service
calling (e.g., API queries in this paper). As we will see, in this paper these
actions will involve querying the API in charge of providing the Open Data
information requested by the user. Finally, we define a conversation path as a
particular sequence of received user intentions and associated actions (including
non-messaging actions) that can be executed by the chatbot application.

7 https://developer.deutschebahn.com/store.

https://developer.deutschebahn.com/store

444 H. Ed-douibi et al.

3 Overview

In this section, we present an overview of our proposal, depicted in Fig. 1. Our
proposal is split into two main phases, Open Data Import and Bot Generation.

During the import phase, an Open Data API model is injected (see Open-
Data injector) and refined (see Model refinement). The injector supports several
input formats (i.e., Socrata, CKAN, OData and OpenAPI) and the result is
a unified model representation of the API information (i.e., operations, param-
eters and data schemas).

Without loss of generality, this inferred API model is expressed as a UML
class diagram to represent the API information plus two additional UML profiles.
The first one, the OpenData profile, is used to keep track of technical infor-
mation on the input source (e.g., to be used later on by the Bot to know which
API endpoint to call and how). The second one is the Bot profile, proposed
to annotate the model with bot-specific configuration options (e.g., synonyms
or visibility filters) allowing for a more flexible chatbot generation. Once the
injector finishes, the Bot Designer refines the obtained model using this second
profile. During this step, elements of the API can be hidden, their type can be
tuned, or synonyms can be provided (so that the chatbot knows better how to
match requests to data elements).

The generation phase is in charge of creating the chatbot definition (see
Bot Generation). This phase involves specifying both the bot intentions and its
response actions. In our scenario, responses involve calling the right Open Data
API operation/s, processing the answer, and presenting it back to the user.

As bot platform we use Xatkit [7], a flexible multi-platform (chat)bot devel-
opment framework, though our proposal is generic enough to be adapted to work
with other available chatbot frameworks. Xatkit comprises two main Domain-
Specific Languages (DSLs) to define bots: Intent DSL, which defines the user
inputs through training sentences, and context parameter extraction rule (see
Intents); and Execution DSL, in charge of expressing how the bot should
respond to the matched intents (see Execution). If preferred, Xatkit can also
work with an internal Java-based DSL, that has the same semantics of the two
(external) DSLs mentioned before but offering an alternative syntax (based on
a chatbot fluent API), easier to adopt for programmers with Java knowledge.

Xatkit comes with a runtime to interpret and execute the bots’ definitions.
The execution engine includes several connectors to interact with external plat-
forms (e.g., Slack or Github). In the context of this work, we implemented a
new runtime in Xatkit to enable the communication with Web APIs.

The next sections describe each of these components in more detail. We will
use the following running example to illustrate them. The example is based on
an API provided by the Transparency Portal of Catalonia. In particular, the
API that gives access to pollution data gathered by the surveillance network
deployed within Catalonia. The data registers the air quality in Catalonia from
1991 until now, and it is updated daily. Besides the concentration of pollutants
in the air, it is also possible to query the location and type of the measurement
stations.

A Model-Based Chatbot Generation Approach to Converse with Open Data 445

Designer
Bot

Citizen

CKAN

API

injector 1

UML Class Diagram

+
profile

Model
Refinement

2

«queries»

generator
3 runtime

 API
runtime

«uses»

Fig. 1. Overview of our approach.

4 Importing Open Data APIs as Models

The import phase starts by analyzing the Open Data API description to inject
a UML model representing its concepts, properties, and operations. This model
is later refined by the bot designer. Next sections describe the main elements of
this process. We will introduce first the modeling support required to represent
Open Data APIs, then the injection step and finally the main tasks to tackle in
the refinement step.

4.1 Modeling Open Data APIs

To model Open Data APIs, we propose employing UML class diagrams plus two
UML profiles required to optimize and customize the bot generation.

Core Open Data Representation as a UML Class Diagram. Concepts,
properties and operations of Open Data APIs are represented using standard
elements of UML structural models (classes, properties and operations, respec-
tively). Figure 2 shows an excerpt of the UML model for the running example8.
As can be seen, the model includes the core concept of the API, called AirQuality-
Data; plus two more classes to represent data structures (i.e., Address and Loca-
tion). Note that the some elements include stereotypes that we will present later.

It is worth noting that most Open Data APIs focus around a single core data
element composed of a rich set of properties which can be split (i.e., “normal-
ized”) into separate UML classes following good design practices, also facilitating
the understanding of the model. This is what we have done for the UML diagram
shown in Fig. 2.

The Bot Profile. To be able to generate more complete bots, in particular,
to expand on aspects important for the quality of the conversation, the Bot
profile adds a set of stereotypes for UML model elements that cover (1) what

8 Full model available at http://hdl.handle.net/20.500.12004/1/C/ICWE/2021/232.

http://hdl.handle.net/20.500.12004/1/C/ICWE/2021/232

446 H. Ed-douibi et al.

Address
 «PropertyConfig, BotVocabulary, SocrataField» Address : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» Zip : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» State : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» City : String [1]

Location
«SocrataFieldType»

 longitude : Double [1]
 latitude : Double [1]

AirQualityData
«OpenDataAPIDetails, ClassConfig, BotVocabulary»

 «PropertyConfig, BotVocabulary, SocrataField» MeasurementCode : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» EOICode : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» Province : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» MunicipalityCode : Number [1]
 «PropertyConfig, BotVocabulary, SocrataField» StationCode : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» StationName : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» Municipality : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» Altitude : Number [1]
 «PropertyConfig, BotVocabulary, SocrataField» StationType : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» UrbanArea : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» Magnitude : Number [1]
 «PropertyConfig, BotVocabulary, SocrataField» Pollutant : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» Units : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» SamplePoint : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» Year : Number [1]
 «PropertyConfig, BotVocabulary, SocrataField» Month : Number [1]
 «PropertyConfig, BotVocabulary, SocrataField» Day : Number [1]
 «PropertyConfig, BotVocabulary, SocrataField» Date : String [1]
 «PropertyConfig, BotVocabulary, SocrataField» H01 : Number [1]
 «PropertyConfig, BotVocabulary, SocrataField» V01 : Number [1]

addressairqualitydata 0..1

1
record recordPoint

0..11

 «BotVocabulary»
 outputName = "Municipality"
 synonyms = ["town", "city"]

 «PropertyConfig»
 toExpose = true
 toFilterWith = true

 «SocrataField»
 fieldName = "municipi"

Fig. 2. UML model for the running example (our editor can show/hide the stereotypes
to show a simplified representation of the diagram).

Class
«Metaclass»

ClassConfig
«Stereotype»

 toExpose : Boolean [0..1]

Property
«Metaclass»

PropertyConfig
«Stereotype»

 toExpose : Boolean [0..1]
 toFilterWith: Boolean [0..1]

NamedElement
«Metaclass»

BotVocabulary
«Stereotype»

 outputName: String [0..1]
 synonyms: String[*]

Fig. 3. Bot profile.

data the chatbot should expose, (2) how to refer to model elements (instead of
the some obscure internal API identifiers), and (3) synonyms for model elements
that citizens may employ when attempting to alternatively name the concept as
part of a sentence.

Figure 3 shows the specification of the Bot profile. It comprises three stereo-
types, namely, ClassConfig, PropertyConfig and BotVocabulary, extending the
Class, Property and NamedElement UML metaclasses, respectively. The Class-
Config stereotype includes the toExpose property, in charge of defining if the
annotated Class element has to be made visible to end-users via the chatbot.
The PropertyConfig stereotype also includes the toExpose property, with the
same purpose; plus the toFilterWith property, which indicates if the correspond-
ing annotated property can be used to filter results as part of a conversation
iteration. For instance, in our running example, pollution data could be filtered
via date. Finally, the BotVocabulary stereotype can annotate almost any UML
model element and allows specifying a more “readable” name to be used when
printing concept information and a set of synonyms for the element.

In Fig. 2 we see the Bot profile applied on the running example. Note, for
instance, how we define that town and city could be used as synonyms of Munic-
ipality and that this attribute can be used to filter AirQuality results.

A Model-Based Chatbot Generation Approach to Converse with Open Data 447

Class
«Metaclass»

OpenDataAPIDetails
«Stereotype»

 id : String [1]
 name : String [1]
 dataUri : String [1]
 description : String [1]
 domain : String [1]
 license : String [1]
 webUri : String [1]
 tags : String [1]
 apiType : OpenDataAPIType [1]
 apiTypeVersion : String [1]

OpenDataAPIType
«Enumeration»

 UNDEFINED
 SOCRATA
 CKAN
 ODATA
 ADHOC

Type
«Metaclass»

OpenDataFieldType
«Stereotype»

ODataFieldType
«Stereotype»

CKanFieldType
«Stereotype»

AdhocFieldType
«Stereotype»

SocrataFieldType
«Stereotype»

 type : SocrataFieldTypeKind [1]

Property
«Metaclass»

OpenDataField
«Stereotype»

 name : String [1]
 description : String [1]

SocrataField
«Stereotype»

 fieldName : String [1]

CKanField
«Stereotype»

ODataField
«Stereotype»

AdhocField
«Stereotype»

SocrataFieldTypeKind
«Enumeration»

 UNDEFINED
 CHECKBOX
 TEXT
 NUMBER
 FLOATING_TIMESTAMP
 POINT
 MULTILINE
 MULTIPOINT
 POLYGON
 MULTIPOLYGON
 LOCATION

Fig. 4. OpenData profile.

The OpenData Profile. While the previous profile is more oriented towards
improving the communication between the chatbot and the user, this OpenData
profile is specially aimed at defining the technical details the chatbot needs to
know in order to communicate with the Open Data API backend. The profile
defines a set of stereotypes that cover how to access the information of the model
elements via the Web API. The access method depends on the specification
followed by the Open Data API, which can be Socrata, CKAN, OData or
OpenAPI.

Figure 4 shows the OpenData profile. As can be seen, we have defined three
stereotypes, namely, OpenDataAPIDetails, OpenDataField and OpenDataField-
Type, which extend Class, Property and Type UML metaclasses, respectively.
The OpenDataAPIDetails stereotype includes a set of properties to enable the
API query of the annotated UML Class. For instance, it includes the domain
and webUri to specify the host and route parameters to build the query. It also
includes the APIType property, which sets the kind of Open Data API (see
values of the OpenDataAPIType enumeration). The OpenDataField stereotype
annotates properties with additional information depending on the type of Open
Data API used. For instance, the SocrataField stereotype indicates the name of
the field (see fieldName) that has to be queried to retrieve the annotated prop-
erty. Finally, the OpenDataFieldType stereotype includes additional information
regarding the types of the properties used by the Open Data APIs.

Figure 4 also includes stereotypes prefixed with CKAN, OData and Adhoc
(in grey) to cover the information required for CKAN, OData and OpenAPI
specifications. We do not fully detail them due to the lack of space but they
are available online9. Besides, the Adhoc annotations also use the OpenAPI
profile [8].

9 http://hdl.handle.net/20.500.12004/1/C/ICWE/2021/411.

http://hdl.handle.net/20.500.12004/1/C/ICWE/2021/411

448 H. Ed-douibi et al.

As an example, this profile is also used to annotate Fig. 2. While the profile is
rather exhaustive and comprises plenty of detailed, technical information, note
that it is automatically applied during the injection process.

4.2 Injection of Open Data Models

Injectors collect specific data items from the API descriptions in order to gen-
erate a model representation of the API. In a nutshell, regardless of the API
specification used, the injector always collects information about the API meta-
data, its concepts and properties. This information is used to generate a UML
model annotated with the OpenData profile. Additionally, injectors also initial-
ize the annotations corresponding to the Bot profile with default values which
will later be tuned during the refinement step (see next subsection).

In our running example, the injector takes as input the Socrata description
of the data source10 to create the UML model classes and stereotypes. To com-
plement the definition of the data fields and their types, the injector also calls
the Views API11, an API provided by Socrata to retrieve metainformation
about the data fields of datasets.

4.3 Refinement of Open Data Models

Once the injection process creates a UML schema annotated with stereotypes,
the bot designer can revise and complete it to generate a more effective chatbot.
The main refinement tasks cover: (a) providing default names and synonyms for
model elements, which enriches the way the chatbot (and the user) can refer
to such elements; and (b) set the visibility of data elements, thus enabling the
designer to hide some elements of the API in the conversation.

During the refinement step, the bot designer can also revise the OpenData
profile values if the API description is not fully aligned with the actual API
behavior, as sometimes the specification (input of the process) unfortunately
is not completely up-to-date with the API implementation deployed (e.g., type
mismatches).

5 Generating the Bot

The generation process takes the annotated model as input and derives the
corresponding chatbot implementation. As our proposal relies on Xatkit, this
process generates the main artifacts required by such platform, specifically: (1)
intents definition, which describes the user intentions using training sentences
(e.g., the intention to retrieve a specific data point from the data source, or to
filter the results), contextual information extraction, and matching conditions;
and (2) execution definition, which specifies the chatbot behavior as a set of

10 https://analisi.transparenciacatalunya.cat/api/views/metadata/v1/tasf-thgu.json.
11 https://analisi.transparenciacatalunya.cat/api/views.json?id=tasf-thgu.

https://analisi.transparenciacatalunya.cat/api/views/metadata/v1/tasf-thgu.json
https://analisi.transparenciacatalunya.cat/api/views.json?id=tasf-thgu

A Model-Based Chatbot Generation Approach to Converse with Open Data 449

bindings between user intentions and response actions (e.g., displaying a message
to answer a question, or calling an API endpoint to retrieve data). A similar
approach could be followed when targeting other chatbot platforms as they all
require similar types of input artefact definitions in order to run bots.

The main challenge when generating the chatbot implementation is to pro-
vide effective support to drive the conversation. To this aim, it is crucial to
identify both the topic/s of the conversation and the aim of the chatbot, which
will enable the definition of the conversation path. In our scenario, the topic/s
is set by the API domain model (i.e., the vocabulary information embedded in
the UML model and the Bot profile annotations) while the aim is to query the
API endpoints (relying on the information provided by the OpenData profile).

Our approach supports two conversation modes, which are implemented in
the intents file. Table 1 lists the main intents generated for the conversation,
which we will present while describing the conversation modes. For each intent,
we also generate the corresponding set of training sentences, following a prede-
fined set of patterns that are instantiated based on the conversation context and
the API vocabulary.

Direct queries The most basic communication in a chatbot is when the user
directly asks what is needed (e.g., What was the pollution yesterday?). To
support this kind of query, we generate intents for each class and attribute
in the model12 enabling users to ask for that specific information. Moreover,
we also generate filtering intents that help users choose a certain property as
filter to cope with queries returning too many data. Table 1, row 1, shows an
example of this type of direct intent generated and a possible user utterance
(i.e., concrete user input query) corresponding to this intent kind.

Guided queries We call guided queries those interactions where there is an
exchange of questions/requests between the chatbot and the user, simulat-
ing a more natural Open Data exploration approach. Their implementation
requires a clear definition of the possible dialog paths driving the conversa-
tion. Table 1, rows 2–6, shows the intents generated for guided conversations,
which are applied in order (starting with GuidedSearch and then adding fil-
ters using the rest of the intents). Figure 5a aims to summarize the possible
conversation paths and the application order of the intents. The shown paths
start once the user provides an exploratory query of a specific concept made
available by the API (e.g., Show me the list of X). If the concept can be
filtered, the chatbot will ask the user whether he wants to apply filters. If the
answer is yes, the chatbot will provide buttons to help the user choose the
parameters he wants to filter with (e.g., date, address) and the operations he
wants to apply (e.g., before, equals). This step repeats while the user wants
to apply more filters. Figure 5b shows an example of guided query for our
running example.

12 Note that this scales well as we do not actually create completely separate intents
for each possible combination but use intent templates that can be instantiated at
run-time over the list of elements in the model.

450 H. Ed-douibi et al.

Table 1. Main intents generated.

Mode Intent Description Example sentence

Direct DirectSearch Shows elements given a filter show me all the air quality data with

municipality equals to"Barcelona"

Guided GuidedSearch Shows elements in conversation show me the list of air quality data

Guided AddFilter Chooses an attribute to filter date

Guided ChooseOperator Chooses an operator equals

Guided ProvideValue Sets a value yesterday

Guided EndFilter Ends filter for results I don’t want to add filters

Both SelectField Select fields for results municipality

Both ShowResult Ends field selection for results I don’t want to add fields

Both AddPostFilter Adds a filter in results add filter magnitude less than "14"

Both SortOrderBy Sorts/Orders the result sort by name ASC

order by date ASC

Both NextPage Shows the next page of results show me next page

Both AddPostFunction Calls function on results calculate FUN ATT

As input assistance, both direct and guided modes include buttons as short-
cuts in the conversation interface (see Fig. 5b). Once the chatbot collects the
request (with the possible filters) from the user, the next step is to query the
involved Open Data Web API, which relies on the information provided in the
OpenData profile. The implementation of this step is specified in the execution
file, where the steps to query, filter and retrieve the information from the API
are generated.

The final step in every query performed by the chatbot involves present-
ing and post-processing the results. In the presentation step, the user indicates
the fields to show. Table 1, rows 7–8, shows the intents for setting the fields
to present. Figure 5c shows an example of the result for our running example
showing the fields Municipality and Magnitude. In the post-processing step, the
user can apply additional filters, sort the results and paginate them. Table 1,
rows 9–12, shows the intents for post-processing the results. Finally, note that
our approach also incorporates aggregation functions (e.g., calculate the aver-
age, minimum o maximum) as post-processing operators, and built-in pagination
support to facilitate the navigation of large result sets.

6 Tool Support

Our approach has been implemented as a new plugin for the Eclipse platform13.
We rely on the environment extensibility and modeling support provided by
Eclipse to import and generate the chatbot definition, which is then eventually
executed by Xatkit.

Figure 6 shows several screenshots of the development environment. It com-
prises two wizards to perform the import and generation phases. During the
13 https://github.com/opendata-for-all/open-data-chatbot-generator.

https://github.com/opendata-for-all/open-data-chatbot-generator

A Model-Based Chatbot Generation Approach to Converse with Open Data 451

Property
has filter

U wants
to filter

Show results

There are
more filters

Y

N

Y

N

N

Do you want to apply a filter?

Y

show me the list of CONCEPT
GuidedSearch

I don't want to add filters
EndFilter

Choose a filter ATTRIBUTE
AddFilter

Which value do you want VALUE

Choose an operator OPERATOR

ProvideValue

L

B says to U
B action
Decision

U says to Bot
Intent

ChooseOperator

(a)

(b)
(c)

Fig. 5. (a) Conversation path in guided queries. (b) A guided conversation. (c) Showing
the results.

import phase, the UML model is loaded (see wizard in Figs. 6a and 6b) visualized
and refined using the Papyrus modeling IDE. Once completed, our generation
wizard (see Figs. 6c and 6d) creates the definition of the chatbot.

7 Related Work

Facilitating the interaction with Open Data sources has been studied from dif-
ferent perspectives. For instance, the work by González-Mora et al. [12] aims to
generate REST APIs for Open Data sources while the works by Cao et al. [3]
and Ed-Douibi et al. [9] look to generate the specification of such REST APIs
to simplify their consumption by client applications.

Nevertheless, the role of chatbots in Open Data has not been widely studied.
Keyner et al. [14] proposed a chatbot to help users find data sources in an Open
Data repository by relying on geo-entity annotations. However, the chatbot only
suggests the data sources to explore. It does not provide querying capabilities
to consult those data sources. The work by Neumaier et al. [16] is similar, also
focusing on the suggestion of potential useful datasets. Instead, Porreca et al. [19]
described a case study of using a chatbot for a concrete dataset. In all cases,
chatbots are manually created.

A couple of works address the creation of chatbots to query Web APIs. Our
own OpenAPI bot [11] helps developers understand what they could do with

452 H. Ed-douibi et al.

Fig. 6. Screenshots of the tool support: (a) and (b) the import wizard, (c) the gener-
ation wizard and (d) the generated bot.

an API if its OpenAPI definition is available, more than targeting the end-
users. More similar to ours, the work by Vazir et al. [21] generates a chatbot
to facilitate the execution of calls to the API itself. Nevertheless, they remain
very implementation-oriented and focus on helping users learn how to query the
API and assisting them in providing the right parameters for the call more than
offering any abstraction mechanism to add further semantics, configuration and
flexibility to the bot generation process, as we do.

Chatbot modeling and generation has also been proposed in some works (i.e.,
[4,5,18,20]) but none of these works proposes an end-to-end approach as ours,
from the reverse engineering of the Open Data source to the generation of a
chatbot actually able to directly call the initial source.

Therefore, to the best of our knowledge, ours is the first work aimed at
automatically generating chatbots to directly interact with Open Data sources
using a model-based approach.

8 Conclusion

In this paper, we have presented a model-based approach to generate chatbots as
user-friendly interfaces to query Open Data sources published as Web APIs. The
resulting chatbot accepts both direct queries and guided conversations, where
the chatbot and the user interact to precise the final query to send to the API.
We have implemented our approach as an Eclipse plugin that fully supports

A Model-Based Chatbot Generation Approach to Converse with Open Data 453

Socrata and allows the integration of other Open Data specifications (i.e.,
OData, CKAN) as well as generic Web APIs (via OpenAPI specification);
and generates chatbots using the Xatkit platform.

As further work, we plan to work on several extensions of this core framework:

Support for Advanced Queries. Our approach supports descriptive queries
where users navigate the data. However, there are other types of interesting
queries; for instance, we could have: (i) diagnostic queries, which focus on the
analysis of potential reasons for a fact to happen; (ii) predictive queries, aimed
at exploring how a fact may evolve in the future; and (iii) prescriptive ones,
which study how to reproduce a fact. We plan to extend our query templates to
provide initial support for these types of queries. Some of these queries (especially
if detected at often ones) could even be an inspiration for an API extension to
better match the API design with the actual information needs of the API users.

Composition of Several Open Data sources. Many times, the data needs
of a citizen span several Web APIs. The chatbot should be able to query and
combine those different sources, dealing with potential composition links among
them. This composition is not trivial and involves the well-known challenges of
any data integration scenario (e.g., entity matching) plus some others more API-
specific like finding the optimal paths (even based on non-functional properties),
as sometimes similar information can be obtained from different overlapping
sources. Existing works on API composition [6,10,15] can be used here to present
to the chatbot a single unified API to simplify this process.

Massive Chatbot Generation for Open Data Portals. Our approach works
on either individual APIs or a set of interrelated ones (see the point above). We
plan to extend our tool support with an automated pipeline able to retrieve and
process all available APIs in a given open data portal.

Voice-Driven Chatbots. The growing adoption of smart assistants emphasizes
the need to design chatbots supporting not only text-based conversations but
also voice-based interactions. We believe that our chatbot could benefit from
such a feature to improve the citizen’s experience further when manipulating
Open Data APIs. While Xatkit’s modular architecture supports both textual
and voice-based chatbots, additional research is required to translate raw data
returned by the API into sentences that can be read by the bot.

Additional Types of Data Sources. We cover the most common choices in
governmental Open Data portals, but they are not the only ones. For instance,
LinkedData sources, pure RDF files, GeoJSON collections, or database
dumps, among others, are also used. We plan to develop additional import com-
ponents that can target these technologies and integrate them into our frame-
work.

454 H. Ed-douibi et al.

References

1. Alghamdi, A., Owda, M.S., Crockett, K.A.: Natural language interface to relational
database (NLI-RDB) through object relational mapping (ORM). In: Workshop on
Computational Intelligence. Advances in Intelligent Systems and Computing, vol.
513, pp. 449–464 (2016)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data: The story so far. In: Semantic
Services, Interoperability and Web Applications: Emerging Concepts, pp. 205–227.
IGI Global (2011)

3. Cao, H., Falleri, J.-R., Blanc, X.: Automated generation of REST API specification
from plain HTML documentation. In: Maximilien, M., Vallecillo, A., Wang, J.,
Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 453–461. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69035-3 32

4. Castaldo, N., Daniel, F., Matera, M., Zaccaria, V.: Conversational data explo-
ration. In: international conference on Web Engineering, pp. 490–497 (2019)

5. Chittò, P., Baez, M., Daniel, F., Benatallah, B.: Automatic generation of chatbots
for conversational web browsing. In: Dobbie, G., Frank, U., Kappel, G., Liddle,
S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 239–249. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-62522-1 17

6. Cremaschi, M., De Paoli, F.: Toward automatic semantic API descriptions to sup-
port services composition. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.)
ESOCC 2017. LNCS, vol. 10465, pp. 159–167. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67262-5 12

7. Daniel, G., Cabot, J., Deruelle, L., Derras, M.: Xatkit: a multimodal low-code
chatbot development framework. IEEE Access 8, 15332–15346 (2020)

8. Ed-Douibi, H., Cánovas Izquierdo, J., Bordeleau, F., Cabot, J.: WAPIml: towards
a modeling infrastructure for web APIs. In: International Conference on Model
Driven Engineering Languages and Systems Companion, pp. 748–752 (2019)

9. Ed-douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: Example-driven web API spec-
ification discovery. In: Anjorin, A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol.
10376, pp. 267–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61482-3 16

10. Ed-douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: APIComposer: data-driven com-
position of REST APIs. In: Kritikos, K., Plebani, P., de Paoli, F. (eds.) ESOCC
2018. LNCS, vol. 11116, pp. 161–169. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99819-0 12

11. Ed-Douibi, H., Daniel, G., Cabot, J.: OpenAPI bot: a chatbot to help you under-
stand REST APIs. In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE
2020. LNCS, vol. 12128, pp. 538–542. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-50578-3 40

12. González-Mora, C., Garrigós, I., Jacobo Zubcoff, J., Mazón, J.: Model-based gener-
ation of web application programming interfaces to access open data (In Prepress).
J. Web Eng. 19(7–8), 194–217 (2020)

13. Kerlyl, A., Hall, P., Bull, S.: Bringing chatbots into education: towards natural lan-
guage negotiation of open learner models. In: International Conference on Appli-
cations and Innovations in Intelligent Systems, pp. 179–192 (2006)

14. Keyner, S., Savenkov, V., Vakulenko, S.: Open data chatbot. In: Satellite Events
of The Semantic Web, pp. 111–115 (2019)

15. Musyaffa, F.A., Halilaj, L., Siebes, R., Orlandi, F., Auer, S.: Minimally invasive
semantification of light weight service descriptions. In: International Conference
on Web Services, pp. 672–677 (2016)

https://doi.org/10.1007/978-3-319-69035-3_32
https://doi.org/10.1007/978-3-030-62522-1_17
https://doi.org/10.1007/978-3-319-67262-5_12
https://doi.org/10.1007/978-3-319-67262-5_12
https://doi.org/10.1007/978-3-319-61482-3_16
https://doi.org/10.1007/978-3-319-61482-3_16
https://doi.org/10.1007/978-3-319-99819-0_12
https://doi.org/10.1007/978-3-319-99819-0_12
https://doi.org/10.1007/978-3-030-50578-3_40
https://doi.org/10.1007/978-3-030-50578-3_40

A Model-Based Chatbot Generation Approach to Converse with Open Data 455

16. Neumaier, S., Savenkov, V., Vakulenko, S.: Talking open data. In: Satellite Events
of The Semantic Web, pp. 132–136 (2017)

17. Pereira, J., Dı́az, Ó.: Chatbot dimensions that matter: lessons from the trenches.
In: International Conference on Web Engineering, pp. 129–135 (2018)

18. Pérez-Soler, S., Daniel, G., Cabot, J., Guerra, E., de Lara, J.: Towards automating
the synthesis of chatbots for conversational model query. In: Nurcan, S., Reinhartz-
Berger, I., Soffer, P., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020. LNBIP,
vol. 387, pp. 257–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
49418-6 17

19. Porreca, S., Leotta, F., Mecella, M., Vassos, S., Catarci, T.: Accessing government
open data through chatbots. In: International Workshop on Current Trends in Web
Engineering, pp. 156–165 (2017)

20. Sindhgatta, R., Barros, A., Nili, A.: Modeling conversational agents for service
systems. In: On the Move to Meaningful Internet Systems, pp. 552–560 (2019)

21. Vaziri, M., Mandel, L., Shinnar, A., Siméon, J., Hirzel, M.: Generating chat bots
from web API specifications. In: ACM SIGPLAN Onward!, pp. 44–57 (2017)

22. Xu, A., Liu, Z., Guo, Y., Sinha, V., Akkiraju, R.: A new chatbot for customer
service on social media. In: Conference on Human Factors in Computing Systems,
pp. 3506–3510 (2017)

https://doi.org/10.1007/978-3-030-49418-6_17
https://doi.org/10.1007/978-3-030-49418-6_17

Open Data Accessibility Based
on Voice Commands

César González-Mora1(B), Irene Garrigós1, Jose-Norberto Mazón1,
Sven Casteleyn2, and Sergio Firmenich3

1 Web And Knowledge Research Group, Department of Software
and Computing Systems, University of Alicante, Alicante, Spain

{cgmora,igarrigos,jnmazon}@ua.es
2 Geospatial Technologies Lab (GEOTEC), Institute of New Imaging
Technologies (INIT), University Jaime I, Castellón de la Plana, Spain

sven.casteleyn@uji.es
3 LIFIA, Facultad de Informatica, UNLP and CONICET, La Plata, Argentina

sergio.firmenich@lifia.info.unlp.edu.ar

Abstract. Nowadays, the accessibility of open data on the Web is prob-
lematic, in particular for those data enthusiasts (non-technical users
really interested in data) with visual disabilities. They generally experi-
ence accessibility barriers when browsing open data portals. Therefore,
in order to improve accessibility and facilitate visually impaired users to
obtain open data, we propose a Web Augmentation Framework for Acces-
sibility for Open Data (WAFRA4OD). The proposed approach uses Web
augmentation techniques and voice interaction to help users in finding
relevant open data by offering them various useful comments, including
a full fledged voice interaction interface. Thereby, WAFRA4OD enables
visually impaired data enthusiasts to explore and interact with open
data portals using voice commands, and thus improves the accessibility
of open data. To show the feasibility of WAFRA4OD we demonstrate its
use in a case study using the European Data Portal.

Keywords: Web accessibility · Web augmentation · Open data ·
Voice interaction

Dedication

With great sadness in our hearts, we dedicate this work to Florian Daniel, our
friend and colleague who recently passed away, way too early. We know Florian
for his brilliant mind and scientific work, we will remember him for his kind,
warm and engaging personality, and for his optimistic spirit and catchy laugh.

1 Introduction

Open data portals aim to publish datasets equipped with metadata and organ-
ised as searchable catalogues. They are generally accessed by data enthusi-
asts [8], those users with no technical skills but willing to consume data to
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 456–463, 2021.
https://doi.org/10.1007/978-3-030-74296-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_34&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_34

Open Data Accessibility Based on Voice Commands 457

answer domain-specific questions. Although governments and institutions that
create open data portals generally adopt publishing guidelines (such as the Data
Catalogue Vocabulary (DCAT) standard1), the accessibility of open data on
these portals remains an issue [6,10], particularly for visually impaired users.
For example, in most open data portals such as the European Data Portal2,
in order to search open data users must choose one of the available categories
in the screen or enter a search term in a text box which may be difficult to
find. Then, a list of datasets is shown, from which users can access to a specific
dataset’s webpage. Finally, in this dataset’s page, a great deal of information
and metadata is available, including the links to the dataset contents as external
resources. Therefore, without any help, they find it hard to obtain data from
these open data portals [5].

In order to allow visually impaired users to access websites, several
approaches and tools have been proposed. Most popularly, screen readers [3]
render textual and visual web content as audio output. These screen readers
have been enhanced by annotation and/or voice interaction [1,2,12,13] to facil-
itate browsing in generic websites. However, there is still a gap between open
data Web portals and users with disabilities because current solutions focus on
day-to-day websites and they do not provide specific support for open data Web
portals for data enthusiasts.

Therefore, in this paper we propose the Web Augmentation Framework for
Accessibility for Open Data (WAFRA4OD), which takes into account the struc-
ture of open data portals through the use of DCAT standard. This approach can
be used with different voice commands to perform speech synthesis operations.
The main novelty of WAFRA4OD is the specific support for open data portals,
considering portals structure, datasets’ metadata and data contents.

This article is structured as follows. First, Sect. 2 gives more details about
related works. Then, Sect. 3 presents our approach for Web accessibility in open
data portals with a case study in Sect. 4 to better explain the voice operations,
and finally, conclusions are drawn in Sect. 5.

2 Related Work

In order to improve Web accessibility, there are several related works. On the
one hand, screen readers [3] are among the most used tools to facilitate the
interaction with computer systems for users with disabilities, including the Web
browser. Great examples of current screen readers are JAWS3 and BrowseAl-
oud4. However, these kind of solution are intended to read websites aloud but
in a straightforward way, reading even metadata. Therefore, users - specially
non-experienced users - may have a hard time to find what they are looking
for on the Web [3]. To tackle screen readers’ problems, different approaches
1 https://www.w3.org/TR/vocab-dcat-2/.
2 https://www.europeandataportal.eu/en.
3 https://www.freedomscientific.com/products/software/jaws/.
4 https://www.texthelp.com/en-gb/products/browsealoud/.

https://www.w3.org/TR/vocab-dcat-2/
https://www.europeandataportal.eu/en
https://www.freedomscientific.com/products/software/jaws/
https://www.texthelp.com/en-gb/products/browsealoud/

458 C. González-Mora et al.

aim to improve websites so they can be easily accessed by screen readers. The
Dante [13] approach semantically annotates Web objects with the Web Author-
ing for Accessibility (WAfA) ontology [9], using a tool or as part of the web
engineering process [11], and then it transcodes the contents of the website to
improve its accessibility. A conversational Web interaction system [2] has also
been proposed in order to change the way users interact with a website. With
this system, users are able to ask a chatbot to obtain specific contents in nat-
ural language, but the main focus is usability, not accessibility. Only adapting
the original website by their authors, making it compliant with the proposed
specification, could provide some accessibility support. The HearSay system [4]
proposes an improvement for voice browsing, a similar approach to screen read-
ers which do not provide filtering of Web content to eliminate “noise”. This
proposal presents a dialog interface, a voice interactive way of obtaining the
information from websites. This approach is specifically committed to help only
blind people to navigate Web contents. These solutions aim to improve acces-
sibility in data-intensive websites but their application to open data portals is
not sufficient, as the complex structure of open data portals based on metadata
coming from DCAT standard is not provided. Moreover, they do not consider
the access to external resources whose contents are not presented on the screen
- such as datasets in open data portals.

Therefore, although there are approaches which deal with Web accessibility
problems, a complete solution focused on open data portals is still needed for
visually impaired data enthusiasts.

3 Web Augmentation Framework for Open Data
Accessibility

In this section we present the Web Augmentation Framework for Accessibility
for Open Data (WAFRA4OD), which aims to improve open data portals acces-
sibility. The approach started with a previous version created by the authors [7]
consisting of a voice-based interactive framework which aimed to improve the
accessibility of data-intensive websites, such as Wikipedia. With WAFRA4OD,
we now focus on the access of data enthusiasts with visual problems to open
data from Web portals.

These data enthusiasts with visual disabilities are the main beneficiaries of
our current approach (Fig. 1). These users are now impeded to access these data,
because they need help to find relevant data within the open data catalogue and
then read data contents. Therefore, in order to improve Web portals accessibil-
ity, WAFRA4OD proposes a predefined set of accessibility operations based on
the Web Content Accessibility Guidelines5. Furthermore, these operations are
aligned with the Data Catalogue Vocabulary (DCAT) in order to consider Web
open data portals structure and thus better access open data. WAFRA4OD has
been designed by using the European Data Portal as case study, but it can easily
be applied to other portals if they are DCAT-compliant.
5 https://www.w3.org/WAI/WCAG21/quickref/.

https://www.w3.org/WAI/WCAG21/quickref/

Open Data Accessibility Based on Voice Commands 459

Fig. 1. Overview of WAFRA4OD

First of all, a set of operations are offered to help users find relevant data,
dealing with lists of datasets and different filters to be applied. Then, operations
that deal with dataset metadata are offered, similarly as a screen reader func-
tions. However, in our case, we are considering the structure of the Web open
data portal (through DCAT standard), and easily read aloud information that
may be difficult to find on the screen. Finally, operations that deal with datasets’
content help visually-impaired users to access tabular contents from open data
sources. All these operations are explained in detail in the following Sect. 4.

3.1 Extending WAFRA4OD with New Operations

Apart from the existing operations, new accessibility operations can easily be
added by users with programming skills as WAFRA4OD is a framework. The
framework is based on a “WAFRA4OD” main class (Fig. 2). This class is respon-
sible of speech recognition and synthesis, and includes a set of operations. These
operations inherit from the “Operation” abstract class which includes different
properties and methods. A default implementation of all these methods from this
abstract class is provided, facilitating the task of creating new operations. More-
over, as the already existing operations follow this class inheritance structure,
they can serve as example, or even as reusable components, for the implemen-
tation of new operations for WAFRA4OD.

3.2 Implementation Details

WAFRA4OD consists of a script developed in Javascript. Before installing it
from Greasy Fork6, the browser extension Tampermonkey7 is required. Once
installed, visually impaired users can start using the accessibility operations to
access open data. WAFRA4OD implements speech recognition and synthesis in
order to hear for operations and the apply them with the help of the Web Speech
API8 of JavaScript. Moreover, most of the operations offered by WAFRA4OD
take into account the DCAT standard by using a CKAN API to access portals’
metadata.
6 https://greasyfork.org/es/scripts/419908-wafra4od.
7 https://www.tampermonkey.net/.
8 https://wicg.github.io/speech-api/.

https://greasyfork.org/es/scripts/419908-wafra4od
https://www.tampermonkey.net/
https://wicg.github.io/speech-api/

460 C. González-Mora et al.

Fig. 2. WAFRA4OD framework structure overview.

The implementation of WAFRA4OD has been successfully tested on the
European Open Data portal, which has a CKAN-based infrastructure (not pure
CKAN, but DCAT-compliant). Importantly, WAFRA4OD can be easily applied
to other pure CKAN open data portals, by adapting existing operations to dif-
ferent implementation of DCAT.

4 WAFRA4OD Case Study

Our case study is focus on a user interested in obtaining tabular data about
street lighting in the Candem Council from the European Data Portal.

After installing Tampermonkey and our script, at the European Data Por-
tal’s main webpage the available operations are automatically read aloud by
WAFRA4OD. At any moment, they can be read aloud again using the voice com-
mand “welcome”. In this main page, the “search” voice command is available to
search by text terms. In this case, the user is interested in searching datasets by
filtering with the voice command “search” followed by the term “candem street
lighting”, as the dataset to find by the user is about street lighting in Candem.

After that, the user is redirected to the page with the list of datasets related
to street lighting (Fig. 3). In this results page the user can take advantage of the
same operations of the main page, but also there are different operations to apply
(which are explained to the user when the page is loaded): “add filter” to know
available filters and apply them, “results” to read aloud the list of datasets,
and “choose” to access the specific page of a dataset and other accessibility
operations. In this case study, the user wants to know the obtained results so
the voice command “results” is the most suitable, making WAFRA4OD to read
aloud the list of datasets. As the user is interested in tabular data, first the voice
command “add filter” can be used to know available filters and then “add filter
format csv” to apply the filter specified. Once the user has filtered the results,
if the user considers one dataset interesting, the command “choose” followed by
the dataset position in the list is used to access the dataset’s page, in this case
the dataset about street lighting in Candem Council9 shown in Fig. 4.

9 https://www.europeandataportal.eu/data/datasets/camden-street-lighting.

https://www.europeandataportal.eu/data/datasets/camden-street-lighting

Open Data Accessibility Based on Voice Commands 461

Fig. 3. Extract from the European data web portal results page.

Fig. 4. Extract from the European data web portal dataset’s page.

Now, in the dataset’s page, the user is able to ask for dataset metadata
(already obtained with the “details” command) and also access dataset’s con-
tents. The user is first interested in knowing the columns of the dataset, so that
the “read columns” command is available. Then, the user can use the following
voice commands related to data contents: “read row” followed by the row num-
ber, “read rows” to read all the dataset’s contents and “read rows from n to m”
to read a range of rows. Finally, the user is able to download the dataset tabu-
lar resource using the “download” voice command. An extract of the dataset is
presented in Table 1.

The complete case study to access open data in the European data portal
is shown in a demo video10 to better demonstrate how the user interacts with
WAFRA4OD through voice operations.

10 https://youtu.be/HvUw9o3IvDY.

https://youtu.be/HvUw9o3IvDY

462 C. González-Mora et al.

Table 1. Extract from the camden street lighting dataset’s content.

Asset number Street name Postcode Lamp type Description

707048 AGAR GROVE NW1 9SL Cosmopolis OUTSIDE 15

70590 SANDWELL CRESCENT NW6 1PB Generic LED Lighting S/O NO. 5

709976 HIGH HOLBORN WC1V 6NP LEDs S/O NO. 37

70858 BOUNDARY ROAD NW8 0JE Generic LED Lighting S/O NO. 35

701403 MESSINA AVENUE NW6 4LD Generic LED Lighting O/S NO 2/4

5 Conclusions

In order to improve the accessibility of open data, WAFRA4OD uses Web Aug-
mentation techniques that allow voice interaction, so that visually impaired users
can easily access open data from Web portals. The offered accessibility opera-
tions by WAFRA4OD are tailored to open data portals based on the DCAT
standard. Therefore, data enthusiasts with visual disabilities are now able to
easily navigate within portals, look for relevant open data and access their con-
tents.

As future work, we plan to perform an experiment to evaluate the actual
improvement of accessibility of our approach in open data portals for data enthu-
siasts with visual impairment.

Acknowledgement. This research work has been partially funded by the National
Foundation for Research, Technology and Development with the project TIN2016-
78103-C2-2-R of the Spanish Ministry of Economy, Industry and Competitiveness;
and by the DataTourism postCOVID-19 project funded by the “Consejo Social” of
University of Alicante.

References

1. Ashok, V., Billah, S.M., Borodin, Y., Ramakrishnan, I.: Auto-suggesting browsing
actions for personalized web screen reading. In: Proceedings of the 27th ACM
Conference on User Modeling, Adaptation and Personalization, pp. 252–260 (2019)

2. Baez, M., Daniel, F., Casati, F.: Conversational web interaction: proposal of a
dialog-based natural language interaction paradigm for the web. In: Proceedings
of the Third International Workshop on Chatbot Research and Design (2019)

3. Borodin, Y., Bigham, J.P., Dausch, G., Ramakrishnan, I.V.: More than meets the
eye: a survey of screen-reader browsing strategies. In: Proceedings of the Interna-
tional Cross Disciplinary Conference on Web Accessibility (W4A) (2010)

4. Borodin, Y., Mahmud, J., Ramakrishnan, I.V., Stent, A.: The HearSay non-visual
web browser. In: Proceedings of the International Cross-Disciplinary Conference
on Web Accessibility (W4A), W4A 2007, pp. 128–129 (2007)

5. Doush, I., Pontelli, E.: Non-visual navigation of spreadsheets. Univ. Access Inf.
Soc. 12 (2012)

6. Ferati, M., Dalipi, F., Kastrati, Z.: Open government data through the lens of uni-
versal design. In: Universal Access in Human-Computer Interaction. Applications
and Practice, pp. 331–340 (2020)

Open Data Accessibility Based on Voice Commands 463

7. González-Mora, C., Garrigós, I., Casteleyn, S., Firmenich, S.: A web augmentation
framework for accessibility based on voice interaction. In: ICWE, pp. 547–550
(2020)

8. Hanrahan, P.: Analytic database technologies for a new kind of user: The data
enthusiast. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 577–578 (2012)

9. Harper, S., Yesilada, Y.: Web authoring for accessibility (WAfA). J. Web Semant.
5(3), 175–179 (2007)

10. Manchova, R., Hub, M., Lnenicka, M.: Usability evaluation of open data portals
evaluating data discoverability, accessibility, and reusability from a stakeholders’
perspective. ASLIB. J. Inf. Manage. 70(3), 252–268 (2018)

11. Plessers, P., et al.: Accessibility: a web engineering approach. In: Proceedings of
the 14th international conference on World Wide Web, pp. 353–362 (2005)

12. Ripa, G., Torre, M., Firmenich, S., Rossi, G.: End-user development of voice user
interfaces based on web content. In: End-User Development, pp. 34–50 (2019)

13. Yesilada, Y., Stevens, R., Harper, S., Goble, C.: Evaluating DANTE: Seman-
tic transcoding for visually disabled users. ACM Trans. Comput.-Hum. Interact.
14(3), 14-es (2007)

PWA vs the Others: A Comparative
Study on the UI Energy-Efficiency

of Progressive Web Apps

Stefan Huber1(B) , Lukas Demetz1 , and Michael Felderer2

1 University of Applied Sciences Kufstein, Kufstein, Austria
{stefan.huber,lukas.demetz}@fh-kufstein.ac.at

2 Department of Computer Science, University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at

Abstract. Developing the same mobile app for multiple platforms is a
prominent challenge for practitioners in mobile software development.
When starting an app project, practitioners are faced with a plethora of
development approaches to choose from. Progressive Web Apps (PWAs)
are a novel and promising approach for mobile cross-platform develop-
ment (MCPD). As mobile devices are limited regarding battery capacity,
the energy footprint of a mobile app should be kept as low as possi-
ble. Thus, the aim of this study is to analyze the difference in energy
consumption of PWAs and other mobile development approaches with a
focus on UI rendering and interaction scenarios. For this, we implemented
five versions of the same app with different development approaches
and examined their energy footprint on two Android devices with four
execution scenarios. The results show that the used development app-
roach influences the energy footprint of a mobile app. Native develop-
ment shows the lowest energy consumption. PWAs, albeit not the lowest
energy consuming mobile development approach, are a viable alternative
to other MCPD approaches. Moreover, the web-browser engine used to
execute the PWA has a significant influence on the energy footprint of
the app.

Keywords: Mobile cross-platform development · Mobile web
engineering · Mobile app energy efficiency · Progressive web apps

1 Introduction

Mobile devices have seen a significant increase in terms of CPU and memory
performance over the last years. Still, power supply and energy consumption are
limiting factors of mobile devices [23]. Thus, practitioners must pay attention to
the energy consumed by their implemented mobile apps, which is, a challenging
task [22]. Furthermore, users are interested in energy efficient apps and are not
reluctant to rate energy inefficient apps negatively [28].

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 464–479, 2021.
https://doi.org/10.1007/978-3-030-74296-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_35&domain=pdf
http://orcid.org/0000-0001-7229-9740
http://orcid.org/0000-0001-8317-5049
http://orcid.org/0000-0003-3818-4442
https://doi.org/10.1007/978-3-030-74296-6_35

Energy-Efficiency of Progressive Web Apps 465

When developing mobile apps, developers are presented with a myriad of
development approaches. Progressive web apps (PWAs) are a rather novel app-
roach to develop mobile apps that can be run on different mobile platforms (e.g.,
Apple iOS and Google Android). PWAs are websites with additional function-
ality, such as offline availability and the possibility to install the PWA on the
user’s home screen. As such, PWAs are an example of mobile cross-platform
development (MCPD) approaches. The idea of such development approaches is
to deploy mobile apps to multiple mobile platforms from a single code base.
They allow writing code once and run it anywhere [8]. App market analytics1

indicate that these development approaches are highly popular among develop-
ers. In contrast to MCPD approaches, mobile apps can be developed natively, in
which dedicated mobile apps have to be implemented for each mobile platform.
Currently, there are two leading mobile platforms, Google Android and Apple
iOS. Developing mobile apps for multiple platforms is a prominent challenge for
developers [13] as dedicated code bases need to be maintained for each supported
mobile platform.

Previous research showed that apps developed with MCPD approaches con-
sume more energy during execution than native apps [4,6]. As PWAs are web-
sites with additional functionality, they seem to be more lightweight compared
to mobile apps developed with other MCPD approaches. Thus, the goal of this
present research is to investigate the energy consumption of PWAs compared to
other mobile development approaches with a dedicated focus on UI rendering
and interactions. In doing so, this paper strives to answer the following research
questions:

RQ1: How do PWAs differ in terms of energy consumption to other mobile
development approaches when executing typical UI rendering and interaction sce-
narios?

RQ2: How does the web-browser engine executing the PWA influence the
energy consumption of the PWA?

To answer the research questions, we implemented five versions of a sample
app. For each implementation, a different development approach was used. In
the sample app, we implemented four common interaction scenarios typically
found in mobile apps. We focus on UI interactions, as mobile apps are primarily
interactive in nature [27]. To gather data, we developed and executed automated
tests in which the interaction scenarios were executed repeatedly. For answering
the research question, we then developed hypotheses and tested them using a
statistical analysis.

The results show that the used development approach influences the energy
footprint of a mobile app. PWAs, albeit not the lowest energy consuming mobile
development approach, are a viable alternative to other MCPD approaches.
Moreover, the web-browser engine used to execute the PWA has a significant
influence on the energy footprint.

The main contributions of this study are: (1) an experimental compari-
son of the UI energy-efficiency of PWAs related to other mobile development

1 https://appfigures.com/top-sdks/development/apps.

https://appfigures.com/top-sdks/development/apps

466 S. Huber et al.

approaches; (2) an experimental comparison of the energy-efficiency of web-
browser engines executing PWAs; (3) a discussion of the results from the perspec-
tive of mobile web developers; (4) a replication package containing all research
artifacts.

The paper is structured as follows. Starting with Sect. 2, we lay out the
background of this study, in which possible ways of developing a mobile app are
described. Section 3 presents related work highlighting how our research differs
from existing research. Section 4 outlines the applied research method. We start
by detailing the interaction scenarios and by highlighting the details of the app
implementations and the test procedure. Afterwards, we present the energy mea-
surement and the test devices. We then describe our hypotheses and the data
analysis. In Sect. 5, we present the results of this study. The results and limita-
tion are discussed in Sect. 6. Finally, Sect. 7 concludes this paper and provides
possible directions of future research.

2 Background

When developing apps for mobile platforms, a developer can choose between two
possible approaches. The first option is to use a native development approach.
When using this approach, a developer has to build and maintain unique code
bases for each mobile platform on which the app should run. Currently, there
are the two dominating mobile platforms Google Android and Apple iOS [26].
As a result, a developer has to maintain two code bases. Additionally, she needs
to have deep knowledge in each of the platforms’ subtleties.

The second approach to develop a mobile app is to use MCPD approaches.
Such approaches allow building and deploying mobile apps for several mobile
platforms from a single code base. MCPD approaches use different technologies
for deploying mobile apps to multiple mobile platforms [14]. MCPD approaches
can be classified based on their internal functioning [14]. Interpretive MCPD
approaches (e.g., React Native) make use of web technologies, such as JavaScript,
to render and display native user interface components at run-time. Hybrid
approaches, such as Capacitor, display the mobile app within a native Web-
View component, which is wrapped inside a native app. Approaches like Flutter
integrate a complete rendering engine to generate UI components, which have a
similar look and feel as native Android or iOS components.

PWAs are a rather new MCPD approach first introduced in 2015 [24]. The
idea of PWAs is to build on top of standard web technologies (i.e., HTML, CSS,
and JavaScript). Contrary to a standard website and although being served by
and hosted on a web server, PWAs offer more sophisticated functionalities, such
as, offline availability [1]. A PWA is a website that can be opened in a mobile
device’s web-browser. This website has implemented special functionalities that
enable specific features, such as, push notifications, background sync and instal-
lation of the app [2]. As PWAs are websites with enhanced functionalities, they
can also be run on a desktop computer, independent of the computer’s operating
system.

Energy-Efficiency of Progressive Web Apps 467

To implement these special features, PWAs make use of service workers
[10]. A service worker is a JavaScript program that is loaded with the website,
installed, and run in the background. For instance, to provide offline availability,
a service worker intercepts network requests (e.g., loading an image) and serves
these requests from a local cache.

For developing PWAs, a developer has several options to choose from. One
option is to use common web-frameworks, such as, Angular, Vue, or React.
Using such frameworks means to be dependable on standards prescribed by the
framework. Alternatively, developers can use frameworkless approaches, such as,
StencilJS or Svelte. These approaches compile PWAs in standard formats (i.e.,
web-components) reducing the load put on mobile devices executing the PWA.

Besides accessing a PWA via URL, marketplaces for apps start to include
PWAs (e.g., Google Play Store [9] and Microsoft Store [19]). As such, a PWA
can be downloaded and installed like any other mobile app.

Despite its advantages, PWAs still offer limited support for important func-
tionality, such as, access to the file system, access to user data (e.g., calendar
entries) and other platform dependent APIs [2]. Others name a possible higher
energy consumption as one of PWAs’ drawbacks [15].

3 Related Work

A comparison of the energy footprint of different MCPD approaches was pre-
sented by Corbalan et al. [6]. The authors based their investigations on three
execution scenarios: intensive processing, video playback and audio playback.
The study shows that the energy consumption varies strongly between the dif-
ferent scenarios and MCPD approaches. Moreover, native development does not
have the lowest energy footprint in all scenarios.

Oliveira et al. [20] present another study, in which the energy efficiency and
execution performance of common benchmarks implemented in JavaScript, Java
and C++ were compared. The results show that JavaScript has a lower energy
consumption in most benchmarks, but not in all. Additionally, they show that
implementing parts of an Android app with JavaScript or C++ instead of Java
could also save energy.

In [4], Ciman et al. compare the energy consumption of sensors (such as GPS
or magnetometer) within apps developed with MCPD approaches and native
apps for iOS and Android. The study shows that apps developed using MCPD
approaches always exhibit a higher energy consumption than native apps. Fur-
thermore, the authors mention that updating the UI demanded more energy
than reading sensor data.

Two studies on the energy efficiency of service workers and networking in
PWAs were conducted by Malavolta et al. [16,17]. In their first study, the results
show that service workers do not have a significant impact on the energy con-
sumption of PWAs regardless of the used network connection (i.e., 2G or Wi-Fi).
The second study shows that an empty or populated cache has also no significant
impact on the energy consumption of a PWA.

468 S. Huber et al.

Previous research analyzed the energy efficiency of MCPD approaches regard-
ing several aspects, such as processing or media playback [6], sensor usage [4]
or benchmarks [20]. Energy-related aspects of networking and service workers of
PWAs have been investigated by [16,17]. However, these previous studies do not
investigate the energy efficiency of UI related aspects, which was identified as a
research gap in the literature. As mobile apps are highly interactive in nature
[27] and as experiments [21] show, UIs are responsible for a substantial part of
the energy footprint of a mobile app, we consider the energy consumption of
UI rendering and interactions a critical aspect for comparing PWAs with other
mobile development approaches. Therefore we focus our study on the energy
consumption of UI rendering and interactions.

4 Research Method

To answer the presented research questions, we implemented five versions of a
sample contact management app using different mobile development approaches
(Sect. 4.1). For each app, a series of repeatable and typical UI interaction scenar-
ios (Sect. 4.2) was executed in a predefined test procedure (Sect. 4.5). During the
procedure, the energy consumption of the different development approaches was
collected (Sect. 4.3). The test scenarios were conducted on two different mobile
devices (Sect. 4.4). The resulting data was used in a statistical analysis to answer
our research questions (Sect. 4.6 and Sect. 4.7).

All the implemented apps, the interaction scenarios, the test procedure and
the data analysis are publicly available as a replication package2.

4.1 App Implementation Details

Five different mobile apps were implemented as the subjects of the study. Each
app provides exactly the same functionalities, screens and UI elements. The look
and feel of all the apps is strictly based on the Google material design guidelines3

to make the implementations comparable with respect to the UI. One app was
implemented using the Android SDK to serve as the native baseline. The other
four apps were built using the MCPD approaches PWA, Capacitor, Flutter and
React Native.

All the selected MCPD approaches are supported and used by large developer
communities (e.g., visible on GitHub and Stack Exchange). Many successful apps
found in app markets are developed with these approaches.

PWA and Capacitor. Both the PWA and the Capacitor app are based on the
same web app. The web app was built with the Ionic web framework and the
StencilJS web-component compiler. The Ionic framework provides reusable UI
components, whose look and feel resembles the look and feel of native Android or

2 https://github.com/stefanhuber/ICWE-2021.
3 https://material.io.

https://github.com/stefanhuber/ICWE-2021
https://material.io

Energy-Efficiency of Progressive Web Apps 469

iOS components. The framework comprises all the required functionality without
the need for additional libraries.

For the PWA, we implemented a service worker and provided a web manifest
to enable offline usage of the PWA and to make it installable on a mobile device.
The service worker delivers all network requests from cache. As a result, no
network requests were executed by the PWA allowing for a complete offline
usage.

Capacitor is a wrapper around a web app inside an Android native app.
Therefore, no additional changes were required to provide the web app inside
Capacitor.

Flutter. Flutter offers a rich set of stateful and stateless widgets to build
UIs, which mimic the look and feel of Android or iOS native UIs. The Drawer,
ListView and TextField widgets were used to realize the screens. Navigation
between screens was handled with the Navigator service.

React Native. React Native provides only a few core UI components. To build
the contact app, several external libraries were required (i.e., react-navigation,
react-navigation-drawer and react-navigation-stack). Besides the
libraries the UI components FlatList and InputField were used to realize
the screens. Also respective styling was applied to get the Material look and
feel.

Native Android. The native Android app was implemented based on the
Android SDK and no additional libraries were used. The two available screens
were set up as an Activity. Navigation between Screens was implemented by
using Intents. The views NavigationView, RecyclerView, DrawerLayout and
EditText were used to create the screens.

4.2 Interaction Scenarios

To analyze the energy efficiency of the different development approaches, we
created repeatable UI interaction scenarios using the Android UI Automator
testing framework4. The automation framework was carefully selected based on
the guidelines provided by Cruz et al. [7], to minimize the impact of the interac-
tions on battery consumption. This framework allows scripting UI interactions
that can be automatically executed on Android devices. The interaction scenar-
ios were compiled and deployed on the test devices and could be started via
command line interaction on the respective device.

Four interaction scenarios (i1, i2, i3 and i4), which comprise UI interactions
commonly used within mobile apps, were implemented. These interaction sce-
narios are:

4 https://developer.android.com/training/testing/ui-automator.

https://developer.android.com/training/testing/ui-automator

470 S. Huber et al.

i1 Open the navigation drawer menu (change between first and second screen
in Fig. 1) with a left-to-right swipe gesture and after one second close it with
a tap outside the drawer menu. The interaction is repeated five times.

i2 Scroll down the list of contact entries (first screen in Fig. 1) with five consec-
utive bottom-to-top swipe gestures

i3 Tap on the top-right “Add Entry” menu icon (first screen in Fig. 1) to navigate
to the entry form screen (third screen in Fig. 1) and after one second tap on
the top-left back button to navigate back to the list screen. The interaction
is repeated five times.

i4 Enter form data for the input fields “Firstname”, “Lastname” and “Phone”
(third screen in Fig. 1)

Fig. 1. Overview of the different screens of the implemented contact app

4.3 Energy Measurement

Android provides the batterystats tool, which collects battery related data
on a mobile phone as timestamped usage data of hardware components, such
as CPU, screen or Wi-Fi. Based on a power profile for each mobile device and
power models, the energy drawn from the battery is estimated [12]. The energy
consumption is estimated for the entire device and in a more fine-granular man-
ner for each active app running on the device. For this study, the data for the
active app was used.

Energy-Efficiency of Progressive Web Apps 471

The energy consumption is specified in milli ampere hours (mAh) of cur-
rent drawn from the device battery. To be comparable to related research and
to actually calculate the energy consumption, a conversion to Joule was done.
Therefore, also the voltage was used from the collected battery statistics. For
the conversion, the following formula was used:

Energy[J] =
Charge[mAh]

106
∗ V oltage[V] ∗ 3600

4.4 Test Devices

The test cases were executed on two mobile devices running Google Android.
We selected the devices with respect to their device class using the device’s age,
supported Android version and hardware configuration as proxies. Additionally,
devices which at least support a big.LITTLE CPU architecture were selected,
as this architecture already integrates energy optimizations. At the end, a lower
end - LG Nexus 5X - and a higher-end device - Samsung Galaxy S9 - were used
for the tests. The Android versions of the devices were updated to the maximum
supported version of the manufacturer. Table 1 details the devices’ specifications.

Table 1. Mobile device specifications

Class Device CPU RAM Android Battery capacity

Lower-end LG Nexus Snapdragon 808 2 GB 8.0 2.700 mAh

5X 4 × 1.4GHz/2 × 1.8GHz

Higher-end Samsung Snapdragon 845 4 GB 10.0 3.000 mAh

Galaxy S9 4 × 2.7GHz/4 × 1.8GHz

4.5 Test Procedure

The developed UI interaction scenarios were used to test the energy consumption
of the developed apps on the test devices. In the test procedure, the following
steps were executed:

1. The tested device was connected to a computer using USB and the device
was prepared with all apps and the interaction scenarios.

2. The tested device was put into airplane mode and all open apps were closed
and all services (e.g., GPS) were deactivated. Only Wi-Fi was enabled to
communicate with the device via adb.

3. The test device’s display brightness was set to approximately 50%.
4. The test device was fully charged, before the test started. After unplugging

the device from USB, a Wi-Fi connection was established via adb from the
computer, which controlled the entire procedure.

5. A python script running on the connected computer for controlling the mobile
device via adb was started.

472 S. Huber et al.

6. The script opened and closed each of the apps one after the other and executed
all interaction scenarios (i1-i4) consecutively for each app on the device.
(a) Before each interaction scenario, the batterystats tool (see Sect. 4.3)

was reset on the test device using adb.
(b) After each interaction scenario, data created by batterystats was col-

lected for a latter analysis.
7. The python script was running in a loop for 30 times executing step 6, yielding

30 samples for each interaction scenario within each app on each device.

To answer RQ1 and RQ2 the test procedure was executed on each device,
yielding an overall number of 1.440 samples. It must be noted that the same
PWA was executed once in the Chrome web-browser engine and once in the
Firefox web-browser engine, yielding 240 samples each.

4.6 Hypotheses Formulation

For the hypothesises of this study, the different mobile development approaches
(i.e., PWA, Android native, Flutter, Capacitor and React Native) represent the
independent variable. As the dependent variable we used the energy consumption
in Joule during each interaction scenario for each development approach.

To investigate the differences in energy consumption of the PWA and other
mobile development approaches as formulated in RQ1, the following two-tailed
null hypothesis (H10) and corresponding alternative hypothesis (H1a) were for-
mulated:

H10 : μPWA(chrome) = μMDA

H1a : μPWA(chrome) �= μMDA

where μPWA(chrome) represents the mean energy consumption of the PWA
execution in the default Chrome web-browser. μMDA represents the mean energy
consumption of the other mobile development approaches. For simplicity, μMDA

is considered as a variable for each of the four approaches (i.e., Android native,
Flutter, Capacitor and React Native). Thus, the H10 hypothesis states that the
energy consumption of the respective mobile development approach does not
significantly differ from the PWA implementation with respect to the investi-
gated UI interactions. The alternative hypothesis H1a states that the respective
mobile development approach significantly differs from the PWA implementation
in terms of the consumed energy.

Additionally, to investigate the differences in energy consumption of the used
web-browser engine to execute the PWA as formulated in RQ2, the following two-
tailed null hypothesis (H20) and corresponding alternative hypothesis (H2a)
were formulated:

H20 : μPWA(chrome) = μPWA(firefox)

H2a : μPWA(chrome) �= μPWA(firefox)

Energy-Efficiency of Progressive Web Apps 473

where μPWA(chrome) represents the mean energy consumption of the PWA
execution in the default Chrome web-browser, and μPWA(firefox) represents the
mean energy consumption in the Firefox web-browser. The H20 hypothesis states
that the energy consumption of the PWA executed in Chrome and the PWA exe-
cuted in Firefox have the same energy consumption. The alternative hypothesis
H2a states that the respective consumed energy significantly differs between the
two web-browsers.

H1 was tested for each of the four UI interactions with each of the four mobile
development approaches against the PWA counterpart (executed in Chrome) on
each of the two devices leading to an overall of 32 hypothesis tests. Similarly,
H2 was tested for the four UI interactions on the two web-browser engines (i.e.,
Chrome and Firefox) and the two devices resulting in 8 hypothesis tests.

4.7 Data Analysis

The test executions on the two devices produced 1.440 samples for the energy
consumption. Each sample consists of the energy consumed by one app executing
one interaction scenario on one device in Joule.

To determine whether to use parametric or non-parametric statistical tests,
we analyzed the samples’ distributions using the Shapiro-Wilk test [25]. The
threshold for significance was set to an alpha level below 0.05 (α = 0.05). A result
below the alpha level shows evidence that the data is not normally distributed.
As 52% of the samples were not normally distributed, the non-parametric Mann-
Whitney U test [18] was selected for testing the hypotheses.

Using the same data samples in multiple statistical tests increases the chances
of Type-I errors. To counter this problem, we applied a Bonferroni correction [3].
This resulted in a final α value of 0.0125 to determine significance for hypothesis
H1.

As a final step of analysis, the effect size was calculated by applying Cliff’s
Delta [5] on respective pairs (i.e., PWA executed in Chrome in comparison to the
other mobile development approaches). Cliff’s Delta is a non-parametric effect
size measure that quantifies the statistical magnitude of the difference between
two observed groups and goes beyond a p-value interpretation. The resulting
effect size lies in the closed interval [−1, 1]. A value near 0 marks a high overlap
between the values of the sample distributions of the two observed groups, which
means a low difference between the groups. Whereas values near 1 or -1 mark
the absence of an overlap of the sample distributions. The maximum delta of 1
or -1 occurs if there is no overlap of the distributions. In this study a positive
value for Cliff’s Delta means the observed mobile development approach has a
higher energy consumption than the PWA executed in Chrome and a negative
value means the development approach has a lower energy consumption.

5 Results

Figure 2 provides a descriptive overview of the results. The interaction scenar-
ios (i1-i4) are displayed column-wise and the tested mobile device row-wise.

474 S. Huber et al.

For each chart the y-axis represents the energy consumption in Joule, the x-axis
represents the development approach.

Fig. 2. Energy consumption (Joules) results of different UI interaction scenarios

The assessment of RQ1 shows a stark difference between the mobile develop-
ment approaches. Figure 3 presents a heatmap, which shows the calculated effect
sizes. Rows represent the respective interaction scenarios executed with the PWA
in Chrome. The related mobile development approaches are listed column-wise.
In the intersection, the respective effect size is listed. Additionally, the color val-
ues red (higher energy consumption) and blue (lower energy consumption) mark
the direction of the difference.

The comparison of the PWA and React Native clearly shows that the PWA
executed in Chrome always has a significantly lower energy consumption. All
H10 hypothesises in the context of the PWA and React Native were rejected.
Also the calculated effect sizes indicate a large difference, visible in the fourth
column of the heatmaps in Fig. 3.

In contrast, the Android native development approach has a significantly
lower energy consumption than the PWA with a large magnitude for all examined
interaction scenarios on all mobile devices, except for the scenario i1 on the
higher-end device. This can be seen in the last column of the heatmaps in Fig. 3.
By interpreting the descriptive results, Android native in the scenario i1 on the
higher-end device has a lower energy consumption than the PWA, but with no
significance.

The Capacitor framework tends to have a lower energy consumption than the
PWA executed in Chrome, however only 3 out of 8 tests have a significantly lower
energy consumption. Scenario i1 on the higher-end device even has a significantly
higher energy consumption for Capacitor with respect to the PWA. Displayed in
the second column of the heatmaps in Fig. 3. Also, the Flutter framework tends
to have a lower energy consumption than the PWA executed in Chrome as

Energy-Efficiency of Progressive Web Apps 475

displayed in the third column of the heatmaps in Fig. 3. 5 out of the 8 statistical
tests are significant.

Fig. 3. Heatmap of the calculated Cliff’s delta effect sizes

Considering RQ2 and the corresponding hypotheses, the results allow a rejec-
tion of all H20 hypothesises for all examined interaction scenarios. Therefore, the
Chrome web-browser has a significantly lower energy footprint than the Firefox
web-browser in all examined scenarios. Moreover, the magnitude of the differ-
ence between the two web-browsers is large when considering the effect size, as
shown in the first columns of the heatmaps in Fig. 3.

6 Discussion

Prior work investigated different aspects of the energy consumption of mobile
development approaches [4,6,16,17,20]. However, these studies do not focus on
UI rendering and interaction scenarios, thus we have set up a set of testable
interaction scenarios and focused our investigation on the energy consumption
of UI related aspects.

When considering MCPD approaches, lower development cost, lower main-
tenance effort and ease of development [11] are common aspects, why developers
prefer MCPD approaches over the native development approach. Practitioners
face a difficult decision when selecting an MCPD approach over native develop-
ment and intending to lower the energy footprint. The results of this study show
that PWAs exhibit a higher energy footprint than native development. However,
the results could help practitioners to choose a mobile development approach
when trading-off the energy footprint with other non-functional requirements.

It is save to say that according to the results of this study, PWAs have a lower
energy consumption than React Native and could be used as an alternative. It
must be noted that PWAs miss some features that are provided by React Native
(e.g., access to personal data, such as calendar entries). If such features are

476 S. Huber et al.

required, the PWA can be transformed into a hybrid app as demonstrated in
this study by using the PWA within Capacitor. As this study shows, Capacitor
also has a lower energy consumption than React Native. Capacitor even tends
to have a lower energy consumption than the PWA. Capacitor uses a lightweight
Chrome WebView implementation, which seems to minimize the energy footprint
compared to the Chrome PWA even more.

According to this study, Flutter has the lowest energy footprint of the MCPD
approaches. Flutter should therefore be the preferred MCPD approach with
respect to energy efficiency, although for the entering form data UI interaction
(i4), Flutter and the PWA show similar results. Moreover, if a PWA is packaged
inside Capacitor, the results are even more comparable to the results of Flutter.

Therefore, regarding RQ1 we consider PWAs as a viable alternative to
other MCPD approaches when considering energy consumption. Similar to other
MCPD approaches, PWAs have a higher energy consumption than native devel-
opment.

The results of RQ2 indicate that the default web-browser for PWAs on
Android (Google Chrome) has a significantly lower energy footprint than the
alternative web-browser Firefox. It has to be noted that when installing a PWA
with Chrome, a WebAPK5 is created and the PWA is transformed into a fully-
fledged Android app. In contrast, for Firefox the PWA is stored as a web-browser
bookmark with an icon on the home screen. A possible explanation for the energy
overhead introduced by the Firefox PWA, could be that the WebAPK optimizes
the Chrome PWA. Web-browser vendors like Mozilla could investigate the inter-
operability and impact on the energy footprint when using WebAPKs for PWAs
in their products. The lower energy consumption of Capacitor compared to the
Chrome PWA is another indication that a more lightweight WebView component
could lower the energy consumption.

There are threats to validity of this study, which should be considered in the
context of our results. First, to allow for a comparison of the different develop-
ment approaches by using the same interaction scenarios we developed sample
apps. Throughout the implementation, we closely followed the documentation
and best practices for the respective development approaches, additionally we
strictly followed Google’s material design guidelines to have typical and repre-
sentative implementations. Second, we tried to cover a broad spectrum of mobile
devices. Therefore, we carefully selected two devices from different device classes
(lower-end and higher-end). Third, we used the built-in Android batterystats
tool to calculate the energy consumption. We consider this tool an easy-to-use
and easy-to-replicate approach for metering energy consumption. The tool uses
models to estimate the energy usage. There are clearly inaccuracies when esti-
mating the absolute energy consumption, however, we consider it adequate for
comparing different approaches as the estimations are based on the utilization
of the device’s hardware components.

5 https://developers.google.com/web/fundamentals/integration/webapks.

https://developers.google.com/web/fundamentals/integration/webapks

Energy-Efficiency of Progressive Web Apps 477

7 Conclusion

Developing the same app for multiple platforms is a prominent challenge for
practitioners [13]. In this study, we compared the energy efficiency of PWAs
with other mobile development approaches. Additionally, the energy footprint
of two different web-browser engines was examined while executing a PWA. The
results showed that PWAs are a viable alternative for MCPD when considering
energy efficiency. Also, the web-browser engine has a significant influence on the
energy footprint of the PWA.

The study used self-implemented apps for comparing the energy efficiency
of the various development approaches. An important direction for future work
would be to use real world apps for experimentation. Moreover, this research
focused on determining the differences in energy-efficiency of mobile develop-
ment approaches. A detailed investigation on the root causes for higher energy
footprints of some development approaches could be conducted. This could iden-
tify optimization opportunities for mobile software framework developers. Also
this study only used Android as a mobile platform, integrating also iOS in such
experiments would shed more light on the differences between mobile platforms.

References

1. Biørn-Hansen, A., Grønli, T.M., Ghinea, G.: A survey and taxonomy of core con-
cepts and research challenges in cross-platform mobile development. ACM Comput.
Surv. (CSUR) 51(5), 1–34 (2018)

2. Monfort, V., Krempels, K.-H., Majchrzak, T.A., Traverso, P. (eds.): WEBIST
2016. LNBIP, vol. 292. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66468-2

3. Bonferroni, C.: Teoria statistica delle classi e calcolo delle probabilita. Pubbli-
cazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze
8, 3–62 (1936)

4. Ciman, M., Gaggi, O.: An empirical analysis of energy consumption of cross-
platform frameworks for mobile development. Pervasive Mobile Comput. 39, 214–
230 (2017)

5. Cliff, N.: Dominance statistics: ordinal analyses to answer ordinal questions. Psy-
chol. Bull. 114(3), 494 (1993)

6. Corbalan, L., Fernandez, J., Cuitiño, A., Delia, L., Cáseres, G., Thomas, P., Pesado,
P.: Development frameworks for mobile devices: a comparative study about energy
consumption. In: 2018 IEEE/ACM 5th International Conference on Mobile Soft-
ware Engineering and Systems (MOBILESoft), ACM/IEEE, Gothenburg, Sweden
(2018)

7. Cruz, L., Abreu, R.: On the energy footprint of mobile testing frameworks. IEEE
Trans. Softw. Eng., 1 (2019). https://ieeexplore.ieee.org/document/8862921

8. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M.: Taxonomy of cross-
platform mobile applications development approaches. Ain Shams Eng. J. 8(2),
163–190 (2017)

9. Firtman, M.: Google play store now open for progressive web apps (2019). http://
bit.ly/3dKYSOp

https://doi.org/10.1007/978-3-319-66468-2
https://doi.org/10.1007/978-3-319-66468-2
https://ieeexplore.ieee.org/document/8862921
http://bit.ly/3dKYSOp
http://bit.ly/3dKYSOp

478 S. Huber et al.

10. Gaunt, M.: Service workers: an introduction (2016). https://developers.google.
com/web/fundamentals/primers/service-workers/

11. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Evaluating cross-platform develop-
ment approaches for mobile applications. In: Cordeiro, J., Krempels, K.-H. (eds.)
WEBIST 2012. LNBIP, vol. 140, pp. 120–138. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36608-6 8

12. Hoque, M.A., Siekkinen, M., Khan, K.N., Xiao, Y., Tarkoma, S.: Modeling, pro-
filing, and debugging the energy consumption of mobile devices. ACM Comput.
Surv. 48(3), 1–40 (2015)

13. Joorabchi, M.E., Mesbah, A., Kruchten, P.: Real challenges in mobile app devel-
opment. In: 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 15–24. IEEE, Baltimore, MD, USA (October
2013)

14. Majchrzak, T.A., Biørn-Hansen, A., Grønli, T.M.: Comprehensive analysis of inno-
vative cross-platform app development frameworks. In: Proceedings of the 50th
Hawaii International Conference on System Sciences, pp. 6162–6171. Hawaii Inter-
national Conference on System Sciences, Hawaii, USA (2017)

15. Malavolta, I.: Beyond native apps: Web technologies to the rescue! (keynote). In:
Proceedings of the 1st International Workshop on Mobile Development. Mobile!
2016, Association for Computing Machinery, New York, NY, USA (2016)

16. Malavolta, I., Chinnappan, K., Jasmontas, L., Gupta, S., Soltany, K.A.K.: Evaluat-
ing the impact of caching on the energy consumption and performance of progres-
sive web apps. In: 7th IEEE/ACM International Conference on Mobile Software
Engineering and Systems 2020 (2020)

17. Malavolta, I., Procaccianti, G., Noorland, P., Vukmirović, P.: Assessing the impact
of service workers on the energy efficiency of progressive web apps. In: Proceedings
of the 4th International Conference on Mobile Software Engineering and Systems.
IEEE Press, Buenos Aires, Argentina (2017)

18. McKnight, P.E., Najab, J.: Mann-Whitney U test. In: The Corsini Encyclopedia
of Psychology, p. 1. American Cancer Society (2010). https://doi.org/10.1002/
9780470479216.corpsy0524. ISBN: 9780470479216

19. Microsoft: Progressive web apps in the microsoft store (2020). http://bit.ly/
3qXRAum

20. Oliveira, W., Oliveira, R., Castor, F.: A study on the energy consumption of
android app development approaches. In: Proceedings of the 14th International
Conference on Mining Software Repositories, pp. 42–52 (2017)

21. Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app? fine
grained energy accounting on smartphones with Eprof. In: Proceedings of the 7th
ACM European conference on Computer Systems (2012)

22. Pinto, G., Castor, F., Liu, Y.D.: Mining questions about software energy con-
sumption. In: Proceedings of the 11th Working Conference on Mining Software
Repositories, pp. 22–31 (2014)

23. Pramanik, P.K.D., et al.: Power consumption analysis, measurement, management,
and issues: a state-of-the-art review of smartphone battery and energy usage. IEEE
Access 7, 182113–182172 (2019)

24. Russell, A.: Progressive web apps: Escaping tabs without losing our soul. https://
infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-
soul/ (2015)

25. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete
samples). Biometrika 52(3/4), 591–611 (1965)

https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://doi.org/10.1007/978-3-642-36608-6_8
https://doi.org/10.1007/978-3-642-36608-6_8
https://doi.org/10.1002/9780470479216.corpsy0524
https://doi.org/10.1002/9780470479216.corpsy0524
http://bit.ly/3qXRAum
http://bit.ly/3qXRAum
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

Energy-Efficiency of Progressive Web Apps 479

26. Statista: Global smartphone sales by operating system from 2009 to 2017 (in
millions). https://www.statista.com/statistics/263445/global-smartphone-sales-
by-operating-system-since-2009/ (2018)

27. Vallerio, K.S., Zhong, L., Jha, N.K.: Energy-efficient graphical user interface design.
IEEE Trans. Mob. Comput. 5(7), 846–859 (2006)

28. Wilke, C., Richly, S., Götz, S., Piechnick, C., Aßmann, U.: Energy consumption
and efficiency in mobile applications: a user feedback study. In: 2013 IEEE Interna-
tional Conference on Green Computing and Communications and IEEE Internet
of Things and IEEE Cyber, Physical and Social Computing. IEEE (2013)

https://www.statista.com/statistics/263445/global-smartphone-sales-by-operating-system-since-2009/
https://www.statista.com/statistics/263445/global-smartphone-sales-by-operating-system-since-2009/

Ph.D. Symposium

Static Analysis of Large-Scale
JavaScript Front End

Anton Karakochev(B) and Gefei Zhang

Hochschule für Technik und Wirtschaft Berlin, Berlin, Germany
{anton.karakochev,gefei.zhang}@htw-berlin.de

Abstract. In modern web applications, the elaborate GUI of the front
end is often developed with large-scale JavaScript frameworks. In such
systems, the behavior of one HTML element is usually defined by code
in different JavaScript functions scattered all over the source files, and a
piece of code may also have influence on other functions and variables all
over the source files. Therefore, the data and control flow of the front end
may be hard to follow. We propose an automated approach to integrate
the overall data and control flow of the front end into an overview model,
which then provides us with an excellent starting point to application of
formal methods to prove the correctness of the front end. Our approach
is hence helpful for comprehension of the front end code and validation
of its correctness.

1 Introduction

Modern web applications often have a rich front end with elaborate GUI, where
several HTML elements, JavaScript functions and variables are involved in one
single feature. In such systems, code that is scattered all over the source files
may be working together and implementing the same feature, and a piece of
code may have influence on other functions and variables spread throughout the
source files. Therefore, the data and control flow of the application may be hard
for the developer to follow. Moreover, such frond end systems are often imple-
mented using a large-scale framework such as Angular [3], React [2] or Vue [16].
Since frameworks need to be generic, they usually make heavy use of advanced,
dynamic features of the underlying programming language, which makes it hard
for existing tools to analyze the source code of large-scale applications and prove
their correctness by formal methods [15].

In the planned PhD research of Anton Karakochev, supervised by Gefei
Zhang, we aim to develop techniques and tools to close this gap by

– integrating the overall data and control flow of the JavaScript front end into
an overview model,

– developing automated analysis methods to proof the correctness of
framework-based JavaScript front end.

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 483–489, 2021.
https://doi.org/10.1007/978-3-030-74296-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_36&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_36

484 A. Karakochev and G. Zhang

In the following Sect. 2, we first discuss the state of the art in this area.
Then we explain our research proposal in more details and show our preliminary
results as well as a tentative plan for the future in Sect. 3. Finally, conclusions
are drawn in Sect. 4.

2 Related Work

Static analysis of event-based and asynchronous JavaScript applications is
explored in [12,13]. In [12] Sampaio et al. develop a formalism which enables
reasoning about event-related APIs symbolically. Sotiropoulos and Livshits [13]
present a calculus for modeling asynchrony and a callback graph that illustrates
the execution order. These two approaches do not consider large frameworks.
Our proposed approach does not rely on their semantics, we instead try to define
rules which can be used for model checking or theorem proving.

Park, Jordan and Ryu [11] focus on the automatic modeling of library code.
They propose an on-demand model using input samples, representing the analy-
sis states, which are then dynamically executed and abstracted. In comparison,
we do not analyze the library code dynamically, instead we model the behavior
of the framework manually. This way, our approach is more suited to analysis of
larger-scale framework based applications.

The detection of code issues using static analysis is explored in [1,7]. Liu [7]
specifies nine issue patterns and proposes a tool capable of detecting and fixing
them using pattern matching based on the abstract syntax tree and call graph
of the code. Almashfi and Lu [1] present a tool which is able to detect fourteen
code smells by building a control flow graph and performing a data-flow analysis.
Instead of relying on predefined code-smell patterns, we aim to apply formal
methods to validate the model.

State of the art frameworks for static analysis include SAFE [10] and
WALA [14]. WALA offers various capabilities such as call graph construction
and dataflow analysis. SAFE is designed as a playground for advanced research
in JavaScript web applications, focusing on pluggability, extensibility and debug-
gability. Our proposed method uses neither and is currently based on the abstract
syntax tree produced by ESLint [9].

Static Analysis of Large-Scale JavaScript Front End 485

3 Research Proposal and Preliminary Results

Fig. 1. Example: application “math for kids”

Consider the code given in Listing 1.1, which is based on the Vue framework and
implements a simple application to provide math exercises to the user. Simply
put, it poses math questions to the user, who can then input their answer and
the application shows whether it’s right or wrong, and does statistics of right
and wrong answers given so far. A screenshot of the application is given in Fig. 1.

1 <template >
2 <div >
3 <div >
4 <form @submit.prevent >
5 {{a}} +
6 {{b}} =
7 <input v-model="answer"/>
8 <button
9 class="btn btn -primary"

10 type="submit"
11 :disabled="!may_check ()"
12 @click="check_answer ()"
13 > Check </button >
14 <button
15 class="btn btn -success"
16 disabled="1"
17 v-if="right === true"
18 > Right </button >
19 <button
20 class="btn btn -danger"
21 disabled="1"
22 v-if="right === false"
23 > Wrong </button >
24 <button
25 class="btn btn -info"
26 @click="new_problem ()"
27 > New Problem </button >

28 </form >
29 </div >
30 <hr/>
31 <div >
32 <table >
33 <tr >
34 <td >Statistics </td >
35 <td >Right </td >
36 <td >Wrong </td >
37 </tr >
38 <tr >
39 <td />
40 <td >{{ count_right }}</td >
41 <td >{{ count_wrong }}</td >
42 </tr >
43 </table >
44 </div >
45 </div >
46 </template >
47

48 <script >
49 export default {
50 name: "MathForKids",
51 data() {
52 return {
53 a: 0, b: 0, c: 0,
54 answer: undefined ,

486 A. Karakochev and G. Zhang

55 right: undefined ,
56 count_right: 0,
57 count_wrong: 0,
58 };
59 },
60 created: function () {
61 this.add_problem (); },
62 methods: {
63 add_problem () {
64 let max = 100;
65 this.c =
66 Math.floor(
67 Math.random ()*
68 (max -1))+1;
69 this.a = Math.floor(Math.

random ()*(this.c-2))+1;
70 this.b = this.c - this.a;
71 this.answer = undefined;
72 this.right = undefined;
73 },
74 check_answer () {
75 this.right =

76 this.c ===
77 parseInt(this.answer);
78 this.right ?
79 (this.count_right +=1)
80 : (this.count_wrong +=1)
81 },
82 may_check () {
83 return (
84 !(this.answer ===
85 undefined
86 || this.answer ==="")
87 &&(this.right ===
88 undefined));
89 },
90 new_problem () {
91 this.add_problem (); },
92 },
93 };
94 </script >

Listing 1.1. Example: code

As is common in code based on this kind of frameworks, features of individual
widgets are implemented by several snippets, usually scattered all over the source
code. For instance, the behavior of the label Right, displayed if the answer of the
user is right, is defined in lines 17, 22, 55, 72, 75 and 78, and the value the user
input in line 7 has influence on the widgets Right, Check, and indirectly CountRight.
Obviously, in realistic projects the overall data and control flow may get rather
hard to follow, and the behavior of the application hard to reason about. On the
other hand, the variables count right and count wrong do not influence each other,
which may be important e.g. for test case generation,

In the planned PhD research, we propose to develop automated techniques
to

– integrate the overall data and control flow into an overview model
– apply formal methods to the overview model and to prove the correctness of

the application

3.1 Integration of Data and Control Flow

We propose to start from the source code and integrate all data and control flow
into one visualization. To this end, we model how, in the application, the HTML
elements and the JavaScript functions read and write JavaScript variables. For
interactions between JavaScript functions and variables, we use parsing tools like
ESLint [9], which reads JavaScript code and outputs an abstract syntax tree,
and by analyzing the abstract syntax tree we can conclude whether a function
writes a variable (if variable appears on the left hand side of an assignment) or
reads a variable (otherwise).

Static Analysis of Large-Scale JavaScript Front End 487

Automatic analysis of how the HTML elements interact with JavaScript is a
harder task. The interaction is actually implemented by the framework, and due
to the dynamic and generic nature of frameworks, the code is usually difficult
for existing analysis tools to analyze. Therefore, we follow the idea of [4] and
simply model the behavior of the framework manually, that is, we hard-code the
semantics of the directives and translate them into the overview model directly.

For example, in Listing 1.1, the directive v-model=”answer” in line 7 specifies
a two-way data binding, that is, the value input by the user is automatically
assigned to the JavaScript variable answer, and when the JavaScript code changes
the value of this variable, the HTML element is also updated automatically. This
kind of dependencies between HTML elements and JavaScript are translated by
hard-coded framework specific rules as opposed to general-purpose JavaScript
analysis tools.

3.2 Analysis

The overview model is an excellent starting point to further analysis. For exam-
ple:

– “Reaching definition analysis” [8] between HTML elements would be inter-
esting, which aims at revealing the values of which elements influence which
other elements. In the running example, such analysis may reveal that the
values of count right and count wrong do not influence each other.

– Now that we know how the HTML elements influence each other, it is a
natural next step to discuss test coverage criterion and techniques of test
case generation. In the running example, we could determine we need to test
that after the user has input an answer then whether count right or count wrong

will increase by 1.
– Also, we plan to apply formal methods, such as model checking or theorem

proving, to validate the correctness of the application. For instance, we could
model check or theorem-prove that according to the overview model, after the
use has input an answer then whether count right or count wrong will increase
by 1, but not both.

3.3 Preliminary Results

We have implemented a prototype [5] to generate an overview model, which we
call interaction diagram, for applications based on the Vue framework and to
generate test cases according to the test coverage criterion defined in [18]. We
also have shown in [17] a possible modeling of the behavior of modern JavaScript
front end using Temporal Logic of Actions [6] and some examples of model
checking the model. However, automating this step, as well as applying other
formal methods for stronger validation, are still subject to future research.

488 A. Karakochev and G. Zhang

Tentative Plan. We plan to spend six months to enhance our current proto-
type, and another 24 months to develop techniques of applying formal methods
to the overview model. For the final writing up of the thesis six to nine months
are planned.

4 Conclusions

We have shown a research proposal to static analysis of large-scale, framework-
based JavaScript front end. We aim to integrate the data and control flow of
the application, usually defined in small parts, into an overview model and then
verify properties of the model by formal methods. We have achieved promising
preliminary results so far. When the research is finished, we plan to deliver full
automated support for formal verification of framework-based JavaScript front
end.

References

1. Almashfi, N., Lu, L.: Code smell detection tool for Java Script programs. In: Pro-
ceedings of the 5th International Conference on Computer and Communication
Systems (ICCCS 2020), pp. 172–176. IEEE (2020)

2. Facebook: React - A JavaScript Library for Building User Interfaces. https://
reactjs.org. Accessed 21 Feb 2021

3. Google: Angular - The Modern Web Developer’s Platform. https://angular.io.
Accessed 17 Feb 2021

4. Jensen, S.H., Madsen, M., Møller, A.: Modeling the HTML DOM and browser API
in static analysis of JavaScript web applications. In: Proceedings of the 19th ACM
SIGSOFT Symposium Foundations of Software Engineering and 13th European
Software Engineering Conference (FSE/ESEC 2011), pp. 59–69. ACM (2011)

5. Karakochev, A.: Automatic interaction diagram generation of Vue.js-based web
applications. Master’s thesis, Hochschule für Technik und Wirtschaft Berlin (2021)

6. Lamport, L.: The TLA+ Language and Tools for Hardware and Software Engi-
neers. Addison-Wesley, Boston (2003)

7. Liu, Y.: JSOptimizer: an extensible framework for JavaScript program optimiza-
tion. In: Proceedings of the 41st International Conference on Software Engineering
Companion, pp. 168–170. IEEE (2019)

8. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (2005)

9. OpenJS Foundation: ESLint - Pluggable JavaScript linter. https://eslint.org.
Accessed 18 Feb 2021

10. Park, J., Ryou, Y., Park, J., Ryu, S.: Analysis of JavaScript web applications
using SAFE 2.0. In: Proceedings of the 39th International Conference on Software
Engineering Companion, pp. 59–62. IEEE (2017)

11. Park, J., Jordan, A., Ryu, S.: Automatic modeling of opaque code for JavaScript
static analysis. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS,
vol. 11424, pp. 43–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16722-6 3

https://reactjs.org
https://reactjs.org
https://angular.io
https://eslint.org
https://doi.org/10.1007/978-3-030-16722-6_3
https://doi.org/10.1007/978-3-030-16722-6_3

Static Analysis of Large-Scale JavaScript Front End 489

12. Sampaio, G., Fragoso Santos, J., Maksimović, P., Gardner, P.: A trusted infras-
tructure for symbolic analysis of event-driven web applications. In: 34th European
Conference on Object-Oriented Programming (ECOOP 2020). LIPIcs, vol. 166,
pp. 28:1–28:29. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

13. Sotiropoulos, T., Livshits, B.: Static analysis for asynchronous JavaScript pro-
grams. In: Donaldson, A.F. (ed.) 33rd European Conference on Object-Oriented
Programming, (ECOOP 2019). LIPIcs, vol. 134, pp. 8:1–8:30. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2019)

14. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation tracking
for points-to analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol.
7313, pp. 435–458. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31057-7 20

15. Sun, K., Ryu, S.: Analysis of JavaScript programs: challenges and research trends.
ACM Comput. Surv. 50(4), 59:1–59:34 (2017)

16. You, E.: Vue.js - The Progressive JavaScript Framework. https://vuejs.org.
Accessed 18 Feb 2021

17. Zhang, G.: Specifying and model checking workflows of single page applications
with TLA+. In: IEEE 20th International Conference on Software Quality, Relia-
bility and Security Companion (QRS-C), pp. 406–410. IEEE (2020)

18. Zhang, G., Zhao, J.: Scenario testing of AngularJS-based single page web appli-
cations. In: Brambilla, M., Cappiello, C., Ow, S.H. (eds.) ICWE 2019. LNCS,
vol. 11609, pp. 91–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51253-8 10

https://doi.org/10.1007/978-3-642-31057-7_20
https://doi.org/10.1007/978-3-642-31057-7_20
https://vuejs.org
https://doi.org/10.1007/978-3-030-51253-8_10
https://doi.org/10.1007/978-3-030-51253-8_10

Applying Predictive Analytics
on Research Information to Enhance
Funding Discovery and Strengthen
Collaboration in Project Proposals

Dang Vu Nguyen Hai(B) and Martin Gaedke

Chemnitz University of Technology, Chemnitz, Germany
{dang.vu-nguyen-hai,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. In academic and industrial research, writing a project pro-
posal is one of the essential but time-consuming activities. Nevertheless,
most proposals end in rejection. Moreover, research funding is getting
more competitive these days. Funding agencies are increasingly look-
ing for more extensive and more interdisciplinary research proposals. To
increase the funding success rate, this PhD project focuses on three open
challenges: poor data quality, inefficient funding discovery, and ineffec-
tive collaborative team building. We envision a Predictive Analytics-
based approach that involves analyzing research information and using
statistical and machine learning models that can assure data quality,
increase funding discovery efficiency and the effectiveness of collabora-
tion building. Accordingly, the goal of this PhD project is to support
decision-making process to maximize the funding success rates of uni-
versities.

Keywords: Research Information Management System (RIMS) ·
Linked data · Predictive analytics · Data driven decision making

1 Problem Context and Definitions

Writing a project proposal is a crucial and time-consuming activity in academic
and industrial research. However, the success rates of funding worldwide are
meager: only 14% were funded at the European Commission’s Horizon 2020;
the Australia National Health and Medical Research Council has been funding
less than 20% of proposals it receives since 2017; and the US National Sci-
ence Foundation had a success of just 25% in 2017 [13]. Some possible reasons
are: (i) the subject is not relevant to an issue of regional or national impor-
tance, (ii) the funding agency is not the most appropriate source of funds for
the proposed project, and (iii) the funding agency’s priorities and interests may
have changed [15]. Moreover, research funding is getting more competitive these
days. Funding agencies are increasingly looking for more extensive and interdis-
ciplinary research proposals, leading to the need for collaboration [14].
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 490–495, 2021.
https://doi.org/10.1007/978-3-030-74296-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_37&domain=pdf
http://orcid.org/0000-0002-5496-3633
http://orcid.org/0000-0002-6729-2912
https://doi.org/10.1007/978-3-030-74296-6_37

Predictive Analytics to Enhance Funding Discovery and Collaboration 491

To increase the funding success rate, universities need to make the right
research-intensive strategies: (i) understanding their research capabilities and
strengths, (ii) finding potential funding opportunities quickly, and (iii) building
the strongest possible team to work collaboratively on the project proposals [14].

To understand the research capabilities and strengths, the univer-
sities need to establish their own Research Information Management System
(RIMS). It is an integrated system of research information, research outputs,
grants, and research funds [9]. In addition, RIMS provides the central point for
information relating to an institution’s faculties, researchers and their research
activities. Nowadays, many semantic web platforms with Linked Data as the
main data model are widely used to implement RIMS: open-source platforms
(VIVO1, Profiles2) and commercial platforms (PURE3, Converis4).

To find the potential funding opportunities quickly, the universities
need to combine funding information (e.g. funder profiles, awarded grants, active
funding opportunities) from multiple funding sources, and then integrated it into
RIMS. In addition, the universities need to keep the information up-to-date. As
a result, the universities will not miss any potential funding opportunities. “Tar-
geted information on what grants are coming up can make a big difference” [14].

To build a collaborative team, the universities need to understand col-
laboration: what mix of skills and experience will be likeliest to success, which
researchers will work well together, which partners will be strong fit for coop-
eration [14]. The research information can help the universities to build the
strongest collaborative team so that “Getting those people to work collabora-
tively on a proposal is much more effective than one person leading, and then
everyone adding their name once the proposal is written.” [14].

2 Open Challenges

In this PhD project, we are going to focus on the following three challenges:
C.1 Poor Data Quality Research information of RIMS comes from many

data sources, both internal (researchers, faculties, activities) and external (fund-
ing, publication, projects). The growing volumes of data and the increasing num-
ber of data sources can lead to possible data errors, duplicates, missing values,
incorrect formatting and contradictions [2]. Additional, the rich data types, espe-
cially unstructured data (e.g., project description, funding program description)
are hard to be processed and analyzed [3]. Moreover, data change very fast, and
the “timeliness” of data is short, which can lead to outdated, inconsistent, and
invalid information [3]. As a consequence of lacking a minimum level of quality,
the universities will not able to make the right research-intensive strategies [3,6].

C.2 Inefficient Funding Discovery The fund-seekers use search skills and
solid connections to find grants from funding sources [5]. Nevertheless, searching
1 https://duraspace.org/vivo.
2 https://profiles.catalyst.harvard.edu/.
3 https://www.elsevier.com/solutions/pure.
4 https://clarivate.com/webofsciencegroup/solutions/converis.

https://duraspace.org/vivo
https://profiles.catalyst.harvard.edu/
https://www.elsevier.com/solutions/pure
https://clarivate.com/webofsciencegroup/solutions/converis

492 D. Vu Nguyen Hai and M. Gaedke

the funding opportunities in the long list of funding agencies (18,664 funders,
according to Crossref Funder Registry [4]) is inefficient and time-consuming.
A 2018 survey of more than 11,000 academic lab heads in the United States
found that, respondents spent around 44% of their research time simply tracking
down, preparing and dealing with grant applications [5]. Another study from the
National Health and Medical Research Council found that most of this grant-
related time is simply wasted, with little or no benefit to scientific progress [5].

C.3 Ineffective Collaborative Team Building Despite the fact that
building the collaborative team, either across faculties or across sectors, can
increase the key to success on the research proposals [14]; the collaboration
choices generally depend strongly on the opinions and personal motivations of
the researchers [12]. For example, researchers refer to collaborate with individ-
uals from a similar organization due to similarities in organizational norms; or
they prefer not to engage in collaborations with commercial partners due to
concerns about research integrity, academic freedom [12]. As a consequences,
these opinion-based decisions will lead to the ineffectiveness of collaborative
team building [14].

3 Related Work

Prior studies most related to the open challenges raised in this PhD project
focus on data quality assurance. Azeroual et al. [2] presented the methods to
detect, analyze and correct the data errors in research information systems. The
authors use three types of analysis: attribute analysis, functional dependency,
and reference analysis to measure data quality before being fused into RIMS.
In more recent work, Azeroual et al. [1] presented the implementation of text
and data mining methods to ensure high research information quality. The main
focus of this work is the unstructured data and its quality issues.

Guillaumet et al. [6] introduced “OpenAnalytics”, the Business Intelligence
solution developed by SIGMA for universities. Nevertheless, this solution focuses
on research outputs and research impact. Moreover, it only introduces basic
analytics types for visualization and reporting but lacks predictive analytics.

Finally, Elsevier Funding Institutional5 is a commercial product, provides
information on the active funding opportunities, awarded grants, and funding
agencies profiles. Nevertheless, the product is more focused on the search and
select functions, and it has a tight coupling with other Elsevier products.

4 Research Objectives and Contributions

According to [6] and our first impressions from existing literature, there is no
holistic solution that can solve the mentioned problem. Therefore, in this PhD
project, we envision the Predictive Analytics-based approach that runs on top of

5 https://www.elsevier.com/solutions/funding-institutional.

https://www.elsevier.com/solutions/funding-institutional

Predictive Analytics to Enhance Funding Discovery and Collaboration 493

RIMS. Predictive Analytics involves analyzing historical data and using statisti-
cal and machine learning techniques to develop models that can make recommen-
dations, suggestions [10]. It is widely used in industries to enable organizations
to make business decisions. Apart from business, it is also applied in higher edu-
cation [11] and gained noticeable success. For example: Predictive Analytics help
the University of Texas at Austin to rise its graduation rates from 53% (2013) to
nearly 70% (2019) [7]. According to its success in different contexts, Predictive
Analytics can be a promising approach to overcome all the challenges, especially
(C.2) and (C.3). Hence, this PhD project is going to achieve the following objec-
tives: (O.1) assure high data quality, (O.2) increase funding discovery efficiency,
and (O.3) increase effectiveness of building collaborative teams.

O.1 Assure high data quality With the support of a data quality check,
causes of quality problems can usually be detected [2]. For example, with the
help of data profiling, the university can evaluate their research information and
provide information about their quality, as well as examine the dependencies and
redundancies between data fields and better correct them within their RIMS [2].
For textual data, we are going to adapt text and data mining quality techniques
in [1] to analyze, quantify and correct the unstructure data and its quality issues.
In addition, for the short “timeliness” data, we are going to develop the schedule
jobs that run automatically to keep the research information in RIMS up to date.

O.2 Increase funding discovery efficiency After the funding information
is integrated to RIMS, the discovery and search facilities supported by RIMS can
help the universities find active funding opportunities quicker and easier. The
historical information can also tell universities where they have been successful
before. As the next step, we are going to develop Predictive Analytics mod-
els that can: (i) finding research topics of regional or national importance, (ii)
recommending strong fit funding opportunities, and (iii) predicting the success
of proposal applications. As a result, the models will actively suggest funding
opportunities to the universities and increase the efficiency of funding discovery.

O.3 Increase effectiveness of building collaborative teams Instead of
using opinion-based decisions, the universities can apply data-driven decisions
for resource allocation. “If faculties can see which researchers have succeeded
with which funders, they can significantly improve their chances of funding suc-
cess.” [14]. Therefore, we are going to build the models to analyze research
information (expertise and skills, research projects, and funding information).
Based on this, the models can recommend: (i) the most eligible experts who have
experienced success with the funding agencies or have needed expertise and skill
sets, and (ii) the suitable partners with good project partnerships.

With these research objectives, this PhD project will contribute: (i) the web-
based Predictive Analytics-based solution that runs on top of RIMS, (ii) the Pre-
dictive Analytics models that can enhance the funding discovery and strengthen
collaboration in the project proposals. At the end, this solution can support all
researchers, in general, and the researchers from Web Engineering community,
in particular, to improve the quality of their proposal activities.

494 D. Vu Nguyen Hai and M. Gaedke

5 Research Methodology and Preliminary Results

The main research method we use in this PhD project is the Design Science
Research (DSR) methodology – the systematic problem-solving method for pro-
ducing Information System solutions within a specific domain [17]. It comprises
several phases, as depicted in Fig. 1. Moreover, DSR is iterative, allowing the pre-
dictive analytics models to be improved through various iterations as required.

PROBLEM &
MOTIVATION

OBJECTIVE OF
SOLUTION

DESIGN &
DEVELOPMENT DEMONSTRATION EVALUATION COMMUNICATION

"Most proposal
end in rejection"

Literature reviews
Establish RIMS

Data Quality

Funding discovery

Collaborative team

Predictive
Analytics
models

Find suitable
context

Use predictive
model to solve a

problem

Observe how
effective, efficient

Iterate back to
DESIGN

Publications

Fig. 1. Our envisioned DSR process model.

In the first year of this PhD project, we conducted a review to get familiar
with the state-of-the-art in RIMS, Linked Open Data, Predictive Analytics, and
Web Engineering. We presented the first contribution to Research Data Pub-
lishing in ICWE 2020 (SolidRDP [8]). Another project activity was establishing
RIMS at the Chemnitz University of Technology which relies on VIVO semantic
web platform. In addition, we contributed to the VIVO community6 by sharing
our development experience [16] at the VIVO Conference 2020.

In the future, the next step is to conduct a literature review to understand
the state of problem context. In addition, we are going to identify the fund-
ing data sources and integrate this funding information into our current RIMS.
Afterward, the main remaining tasks performed during the PhD work are: design-
ing the architecture of the Predictive Analytics-based approach, demonstration
(developing, validating, and deploying the models), evaluating the outcomes.

6 Conclusion

The competitive research funding and the need of research collaboration lead to
the challenges in proposal activities, which includes funding discovery, collabo-
rative team building, and data quality issues. To overcome the challenges, this
PhD project envisioned the Predictive Analytics-based approach with the goal
of supporting decision-making process to maximize the funding success rates.

Acknowledgements. This PhD project is supported by the project IB20 Fis
Heavy/TU Chemnitz/259038, funded by the Saxon State Ministry for Science and
Art. In addition, we would like to thank André Langer, Maik Benndorf and Sebastian
Heil for their supports during the writing process of this Symposium.

6 https://duraspace.org/vivo/community/.

https://duraspace.org/vivo/community/

Predictive Analytics to Enhance Funding Discovery and Collaboration 495

References

1. Azeroual, O.: Text and data quality mining in CRIS. Information 10(12),
374 (2019). https://doi.org/10.3390/info10120374, https://www.mdpi.com/2078-
2489/10/12/374

2. Azeroual, O., Saake, G., Schallehn, E.: Analyzing data quality issues in research
information systems via data profiling. Int. J. Inf. Manag. 41, 50–56 (2018)

3. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the
big data era. Data Sci. J. 14, 2 (2015)

4. CrossRef: Funder registry factsheet. https://www.crossref.org/pdfs/about-funder-
registry.pdf. Accessed 2 Feb 2021

5. Dolgin, E.: The hunt for the lesser-known funding source. Nature 570(7759), 127–
130 (2019)

6. Guillaumet, A., Garćıa, F., Cuadrón, O.: Analyzing a CRIS: from data to insight
in university research. Procedia Comput. Sci. 146, 230–240 (2019)

7. Kash, W.: Predictive analytics tools are boosting graduation rates and ROI, say
university officials. https://edscoop.com/predictive-analytics-tools-are-boosting-
graduation-rates-and-roi-say-university-officials/. Accessed 25 Jan 2021

8. Langer, A., Vu Nguyen Hai, D., Gaedke, M.: SolidRDP: applying solid data con-
tainers for research data publishing. In: Bielikova, M., Mikkonen, T., Pautasso,
C. (eds.) ICWE 2020. LNCS, vol. 12128, pp. 399–415. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-50578-3 27

9. Manu, T., Parmar, M., Shashikumara, A., Asjola, V.: Research information man-
agement systems: a comparative study. In: Research Data Access and Management
in Modern Libraries, pp. 54–80. IGI Global (2019)

10. Mishra, N., Silakari, S.: Predictive analytics: a survey, trends, applications, oppur-
tunities & challenges. Int. J. Comput. Sci. Inf. Technol. 3(3), 4434–4438 (2012)

11. Rajni, J., Malaya, D.B.: Predictive analytics in a higher education context. IT
Prof. 17(4), 24–33 (2015). https://doi.org/10.1109/MITP.2015.68

12. van Rijnsoever, F.J., Hessels, L.K.: How academic researchers select collaborative
research projects: a choice experiment. J. Technol. Transfer 1–32 (2020). https://
doi.org/10.1007/s10961-020-09833-2

13. Sohn, E.: Secrets to writing a winning grant. Nature 577(7788), 133–135 (2020)
14. Thompson, L.: How to increase your institution’s grant success rates. https://

elsevier.com/connect/how-to-increase-your-grant-success-rates-with-insights-
discovery-and-decisions. Accessed 24 Jan 2021

15. University, I.: Some reasons proposals fail. https://www.montana.edu/research/
osp/general/reasons.html. Accessed 20 Jan 2021

16. Vu Nguyen Hai, D., Langer, A., Gaedke, M.: TUCfis: Applying vivo as the new
RIS of the technical university of Chemnitz. Technische Informationsbibliothek
TIB (2020). https://doi.org/10.5446/48014

17. Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

https://doi.org/10.3390/info10120374
https://www.mdpi.com/2078-2489/10/12/374
https://www.mdpi.com/2078-2489/10/12/374
https://www.crossref.org/pdfs/about-funder-registry.pdf
https://www.crossref.org/pdfs/about-funder-registry.pdf
https://edscoop.com/predictive-analytics-tools-are-boosting-graduation-rates-and-roi-say-university-officials/
https://edscoop.com/predictive-analytics-tools-are-boosting-graduation-rates-and-roi-say-university-officials/
https://doi.org/10.1007/978-3-030-50578-3_27
https://doi.org/10.1109/MITP.2015.68
https://doi.org/10.1007/s10961-020-09833-2
https://doi.org/10.1007/s10961-020-09833-2
https://elsevier.com/connect/how-to-increase-your-grant-success-rates-with-insights-discovery-and-decisions
https://elsevier.com/connect/how-to-increase-your-grant-success-rates-with-insights-discovery-and-decisions
https://elsevier.com/connect/how-to-increase-your-grant-success-rates-with-insights-discovery-and-decisions
https://www.montana.edu/research/osp/general/reasons.html
https://www.montana.edu/research/osp/general/reasons.html
https://doi.org/10.5446/48014
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

A Web-Based Co-Creation and User
Engagement Method and Platform

Andrea Tocchetti1(B) , Lorenzo Corti1 , Marco Brambilla1 ,
and Diletta Di Marco2

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Milan, Italy

{andrea.tocchetti,lorenzo.corti,marco.brambilla}@polimi.it
2 Dipartimento di Ingegneria Gestionale, Politecnico di Milano, Milan, Italy

diletta.marco@polimi.it

Abstract. In recent years, new methods to engage citizens in delib-
erative processes of governments and institutions have been studied.
Such methodologies have become a necessity to assure the efficacy and
longevity of policies. Several tools and solutions have been proposed while
trying to achieve such a goal. The dual problem to citizen engagement is
how to provide policy-makers with useful and actionable insights stem-
ming from those processes. In this paper, we propose a research featuring
a method and implementation of a crowdsourcing and co-creation tech-
nique that can provide value to both citizens and policy-makers engaged
in the policy-making process. Thanks to our methodology, policy-makers
can design challenges for citizens to partake, cooperate and provide their
input. We also propose a web-based tool that allow citizens to participate
and produce content to support the policy-making processes through a
gamified interface that focuses on emotional and vision-oriented content.

Keywords: Crowdsourcing · Gamification · Co-creation ·
Policy-making

1 Introduction

Over the past decades, a new form of governance has emerged to replace adver-
sarial and managerial modes of policy-making. Engaging citizens in decision
making is gradually proving to be a new way to overcome long-lasting symptoms
of a democratic deficit in modern societies, such as the reluctance to publicly
state one’s opinion, declining voter turnout, and the diminishing participation in
public debate within institutions. Governments and institutions are struggling
to understand the real impact on innovation creation of such engagement pro-
cesses, how they can be adequately developed and adopted [6,11]. The theory
and practice of public policy are increasingly concerned with placing the citizen
at the center of policy-makers’ considerations, both as target and active agent.
This new route focuses on opening up governmental structures to the external

The original version of this chapter was revised: this chapter was previously published
non-open access. It has been changed to Open Access. The correction to this chapter
is available at https://doi.org/10.1007/978-3-030-74296-6 50

c© The Author(s) 2021, corrected publication 2022
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 496–501, 2021.
https://doi.org/10.1007/978-3-030-74296-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_38&domain=pdf
http://orcid.org/0000-0002-1681-5859
http://orcid.org/0000-0002-4200-1664
http://orcid.org/0000-0002-8753-2434
http://orcid.org/0000-0002-6324-3072
https://doi.org/10.1007/978-3-030-74296-6_50
https://doi.org/10.1007/978-3-030-74296-6_38

A Web-Based Co-Creation and User Engagement Method and Platform 497

environment and investigating the effect of the intensive use of data, information,
and communications technology in the public sphere [7]. Public organizations are
trying to learn how to encourage citizens to get involved in finding solutions to
problems in the public sector for the sake of the common good. According to
[1], the only way to meet and face these challenges is through the co-creation of
new solutions with citizens.

This research proposes a method aimed at enabling large-scale citizen engage-
ment and co-creation in support of policy-makers. The presented approach, as
well as its implementation, is based on different principles and techniques, whose
initial conceptualization has been reported in [10]. We report on our research
plan and on the ongoing developments and continuous evolution with respect to
the initial concepts.

2 Related Work

Most of the times, engaging citizens is a tough task, especially when it comes
to the policy-making field. In recent years, many researchers and local adminis-
trations developed different methods and systems to achieve such a goal. Most
of the developed solutions were digital, like platforms, social media and/or web-
sites. “Love Your City” [9] allowed citizens to directly address to fellow citizens
or authorities (“Addressing”), create solutions to a proposed problem (“Co-
creating”) and organize events (“Organizational”). “Decide” [3] was an online
platform through which citizens could propose and vote new laws and opinions
about the city proceedings, debate and rate how to redistribute the city’s budget
among projects.

Developed in the U.S.A., “MindMixer” [4] is an online platform through
which citizens can express, support and comment public proposals. Its main func-
tionalities involve submitting ideas, feedback, and photos, answering to questions
on common themes and proposing their own solution to real life challenges.

Even though digital tools are more accessible and widespread, few European
administrations opted for more tangible alternatives. Helsinki, Finland promoted
public participation using a board game through which small teams of managers
and front-line staff could learn together how to involve citizens in their work [2].

In Ovar, Portugal a method called “Participatory Budget” allowed citizens
to express their support for different budget proposals [5]. The most interesting
outcome was that people were asking friends and families to express their votes
too. Inspired by this initiative, other cities pursued the same objective.

3 Co-Creation and User Engagement Method

3.1 The Evolution of the Policy-Making Process

In the traditional approach to policy-making citizens are perceived as passive
actors. As can be evinced from Fig. 1, the active participation of citizens in the
iterative formulation of a policy is able to enhance the overall outcome of such

498 A. Tocchetti et al.

process by collecting direct feedback on the perceived impact of such procedure.
However, this solution presents its own challenges when it comes to bridging the
gap between policy-makers and citizens.

Fig. 1. Proposed co-creation process engaging both policy-makers and citizens.

3.2 The Research Method

In the attempt to face this problem, we devised a research plan implementing
an incremental approach, where the work has been organized in four different
steps:

– Definition of the theoretical model based on literature review and
experts interviews;

– Realization of a paper-based implementation based on the theoreti-
cal model. The resulting physical mock-up has been tested by hosting work-
shops and gamified sessions, engaging experts in the social and policy-making
fields to validate the engagement mechanisms. Tocchetti et al. [10] explains in
details how such physical prototype was structured and how the experiment
was carried out;

– Development of a digital mock-up featuring the core aspects deemed
valuable based on the input of the physical phase;

– Engagement of communities of policy-making experts in the valida-
tion process of the digital mock-up.

A Web-Based Co-Creation and User Engagement Method and Platform 499

Fig. 2. Example of visual and textual content made by citizens

The preliminary feedback cycle contributed to identify some threats to the
validity of our methodology. Therefore, policy-making experts were engaged in
further discussion rounds. One of the aspects that has been under meticulous
scrutiny is the emotional one. Due to its relevance and eventual impact on the
design of the proposed interaction flow, this feature has undergone intense design
cycles which led to a partial re-design of the mock-up to improve the emotional
engagement of the citizens. The emotional facet has been modeled referencing
the categorization of human emotions proposed by Plutchik [8]. In particular,
the organization of people’s emotions under eight categories, with three different
intensities each, has been considered.

As most of the designed activities were successfully validated by the engaged
policy-makers, a digital mock-up with the objective of improving the testing
capabilities of the process has been developed. Further feedback on the final
prototype have been collected to ensure that the principles validated in the
physical prototype were correctly transposed into the digital one.

3.3 The Co-creation and User Engagement Solution

The approach and tool resulting from the research process engage citizens in a set
of structured activities through which they are able to organize their thoughts in
different formats. The interaction flow is structured to enable citizens to develop
and convey their ideas through textual and graphical elements. In particular,
the digital platform enables citizens to discuss about a variety of topics, through
a series of gamified co-creation activities. The main goal is to detect moods,
perceptions, and changes in the feelings of the users as they play and interact
within the platform. The approach also leverages on empathy between players.
Therefore, the proposed activities are aimed at structuring the thoughts of the
citizens in an organized way, making them share, discuss, explore and converge
on new lines of thought and visions for the future.

Thanks to its innovative content and interaction design, the proposed method
is capable of capturing interesting signals from citizens about the topics of
interest (Fig. 2).

500 A. Tocchetti et al.

4 Limitations and Future Work

Even though an internal testing phase has already been carried out, it’s still
necessary to evaluate the effectiveness of the proposed methods in a real envi-
ronment. Such assessments will engage stakeholders, policy-makers and different
categories of citizens (e.g. students, citizens from a specific city, etc.). A first
testing phase engaging university students will be carried out over the course of
the year. Another evaluation is expected in early summer, when the citizens of
an Italian city will be engaged to contribute in the decision-making process of
the local administration. The proposed method will be also tested in some public
events and conferences attended by policy-makers. Finally, likely the most cru-
cial aspect, the delivery of results to policy-makers will be addressed. This final
objective will be accomplished via a data visualization dashboard. Its aim is to
provide a comprehensive explanation of the content shared through the platform
to the policy-makers, involving not only descriptive statistics but also analytical
results about topics, questionnaires, keywords and textual comments shared by
citizens within the process proposed above. The data collected will also be ana-
lyzed through machine learning algorithms to extract further knowledge that can
be provided to policy-makers (e.g. by classifying the citizens depending on their
feelings and shared content, it would be possible to determine the polarization
of the citizens with respect to a specific topic).

The final objective will be to use the approach for creating and
evolving policies, around which the community will converge and gather con-
sensus.

5 Conclusions

In this paper, we described one of the aspects that both local and international
administrations are currently trying to deal with, namely the engagement of
the citizens in co-creating solutions to current problems. As a solution to such
a challenge, we briefly exhibited a methodology through which provide policy-
makers with insights on the thoughts of citizens, improving their decision-making
capabilities. Over the rest of the year, the research will be enhanced with addi-
tional features. Furthermore, extensive experimentation will be implemented to
test and validate the approach on real-world scenarios, engaging citizens and
communities from different countries and with different socio-demographic char-
acterization.

Acknowledgements. This research is partially supported by the European Commis-
sion under the H2020 framework, within project 822735 TRIGGER (TRends in Global
Governance and Europe’s Role) and project 101016233 PERISCOPE (Pan-European
Response to the Impacts of COVID-19 and future Pandemics and Epidemics).

References

1. Bason, C.: Leading Public Sector Innovation (Second Edition): Co-creating
for a Better Society. Bristol University Press (2018). https://doi.org/10.2307/j.
ctv1fxh1w

https://doi.org/10.2307/j.ctv1fxh1w
https://doi.org/10.2307/j.ctv1fxh1w

A Web-Based Co-Creation and User Engagement Method and Platform 501

2. BloombergCities. How Helsinki uses a board game to promote public partic- ipa-
tion, January 2018. https://medium.com/@BloombergCities/how-helsinki-uses-a-
board-game-to-promote-public-participation-39d580380280

3. Sam DeJohn GovLab. Beyond Protest: Examining the Decide Madrid Platform for
Public Engagement. May 2018. https://blog.p2pfoundation.net/beyond-protest-
examining-the-decide-madrid-platform-for-public-engagement/2018/05/09

4. Ha, A.: MindMixer Raises $17M To Help Governments Connect With Their
Communities - TechCrunch, September 2014. https://techcrunch.com/2014/09/
02/mindmixer-raises-17m-to-help-governments-connect-with-their-communities/

5. Mak, H.W.: A Political Success Story: Gamification as Civic Engagement
Tool, January 2016. http://www.gamification.co/2016/01/11/political-success-
story-gamification-civic-engagement-tool/

6. Mazzucato, M.: Mission-oriented innovation policies: challenges and opportunities.
In: Industrial and Corporate Change 27.5, October 2018, pp. 803–815. ISSN: 0960–
6491. https://doi.org/10.1093/icc/dty034

7. Misuraca, G., Pasi, G.: Landscaping digital social innovation in the EU: structuring
the evidence and nurturing the science and policy debate towards a renewed agenda
for social change. In: Govern- ment Information Quarterly 36.3, pp. 592–600 (2019).
ISSN: 0740–624X. https://doi.org/10.1016/j.giq.2019.02.004

8. Plutchik, R.: A general psychoevolutionary theory of emotion. In: Plutchik, R.,
Kellerman, H. (eds.) Theories of Emotion. Academic Press, pp. 3–33 (1980). ISBN:
978-0-12-558701-3. https://doi.org/10.1016/B978-0-12-558701-3.50007-7

9. Stembert , N., Mulder, I.J.: Love your city! An interactive platform empower-
ing citizens to turn the public domain into a participatory domain. In: Interna-
tional Conference Using ICT, Social Media and Mobile Technologies to Foster Self-
Organisation in Urban and Neighbourhood Governance, Delft, The Netherlands,
16–17 May 2013, May 2013

10. Tocchetti, A., Brambilla, M.: A gamified crowdsourcing framework for data-driven
co-creation of policy making and social foresight. In: NeurIPS 2020 Crowd Science
Workshop - CEUR Proceedings, vol. 2736, pp. 34–44 (2020)

11. Wegrich, K.: The blind spots of collaborative innovation. In: Public Management
Review 21.1 (2019), pp. 12–20 (2018). 1433311. https://doi.org/10.1080/14719037

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://medium.com/@BloombergCities/how- helsinki-uses-a-board-game-to-promote-public-participation-39d580380280
https://medium.com/@BloombergCities/how- helsinki-uses-a-board-game-to-promote-public-participation-39d580380280
https://blog.p2pfoundation.net/beyond-protest-examining-the-decide-madrid-platform-for-public-engagement/2018/05/09
https://blog.p2pfoundation.net/beyond-protest-examining-the-decide-madrid-platform-for-public-engagement/2018/05/09
https://techcrunch.com/2014/09/02/mindmixer-raises-17m-to-help-governments-connect-with-their-communities/
https://techcrunch.com/2014/09/02/mindmixer-raises-17m-to-help-governments-connect-with-their-communities/
http://www.gamification.co/2016/01/11/political-success-story-gamification-civic-engagement- tool/
http://www.gamification.co/2016/01/11/political-success-story-gamification-civic-engagement- tool/
https://doi.org/10.1093/icc/dty034
https://doi.org/10.1016/j.giq.2019.02.004
https://doi.org/10.1016/B978-0-12-558701-3.50007-7
https://doi.org/10.1080/14719037
http://creativecommons.org/licenses/by/4.0/

Posters and Demonstrations

Effectiveness Comparison of Email
Addresses Recovery from Gravatars

Przemys�law Rodwald(B)

Department of Computer Science, Polish Naval Academy, Gdynia, Poland
p.rodwald@amw.gdynia.pl

Abstract. Internet was not designed for anonymity, but most users
posting comments with unidentifiable pseudonyms hope to stay anony-
mous. On many websites, especially those powered by WordPress, the
comments system is linked with the Gravatar service. That service uses
email address, in obfuscated form (MD5 hash function), to provide
users’ avatars. This approach allows to deanonymize real emails of users.
Emails, which according to EU law, are considered as a personal infor-
mation. This article explains all stages and results of the real attacks on
a three types on websites: national ones, security oriented national ones
and global one. We compare the effectiveness of three types of attacks:
brute-force, dictionary and hybrid in relation to the type of attacked
website.

Keywords: MD5 hash function · Email recovery · Gravatar

1 Introduction

Gravatar is a widely used service for providing globally unique avatars. Avatar is
an individual image uploaded by a user and linked with his email address. Unfor-
tunately, Gravatar uses MD5 cryptographic hash function as a unique identifier
for user’s emails. A cryptographic hash function could be defined as an algorithm
that maps data of arbitrary size to a fixed size string of bits (called hash). A
hash function should be designed to be a one-way function - a function which is
infeasible to invert. MD5 hash algorithm was designed by Ronald Rivest in 1991
and produces a 128-bit hash value [1]. Gravatar is the most popular but not the
only service offering similar functionality, e.g. libravatar.org (MD5 or SHA256),
evatar.io (SHA256) or dicebear.com (plaintext).

The results of recovering email addresses from Gravatar hashes was pre-
viously demonstrated a few time. First, in 2008, a user nicknamed abell [2]
crawled 80000 MD5 Gravatar hashes from Stack Overflow webpage and was
able to recover 10% of email addresses. Second, in 2013, Bongard [3] acquired
2400 MD5 Gravatar hashes from French political blog Fdesouche and was able
to recover 70% of the email addresses. Rodwald, firstly in 2019 [4], showed how
to prepare for the attack on Gravatar MD5 hashes and how to carry out it step
by step. He showed results of a real attack on two polish language webservices
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 505–508, 2021.
https://doi.org/10.1007/978-3-030-74296-6_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_39&domain=pdf
http://orcid.org/0000-0003-4261-8688
https://doi.org/10.1007/978-3-030-74296-6_39

506 P. Rodwald

and revealed 65% of real email addresses. In 2020 [5] he adopted a small-scale
approach for the large-scale attack and was able to recover more than (1.25 M)
20% real emails of the Stack Overflow users.

2 Attacks on Gravatar MD5 Hashes

2.1 Targets

In order to provide more comprehensive comparison of effectiveness of attacks,
we decide to take into account three types of websites. The first group consists
of two national, general topic, web-services [4]: jakoszczedzacpieniadze.pl - Pol-
ish blog about saving money and swiatczytnikow.pl - Polish blog about e-books.
Those sites will be marked as nat-gen-1 and nat-gen-2 accordingly and nat-gen
together. The second group consist of two national, IT security oriented, websites:
niebezpiecznik.pl nat-sec-1 and z3s.pl nat-sec-2, marked as nat-sec together. To
the last group belongs global IT service [5], Stack Overflow global-it.

2.2 Preparation Phase

Attacks had to be preceded by extracting Gravatar MD5 hash values. The struc-
ture of the HTML code of selected website has been analyzed and dedicated
web-crawlers prepared. As a result, a following quantities of unique MD5 hashes
were obtained: 13935 from nat-gen-1, 12321 from nat-gen-2, 50335 from nat-
sec-1, 18202 from nat-sec-2 and 6016434 from global-it. Except of MD5 Gra-
vatar hashes of users’ emails some additional data were stored in the MySQL
database: nicknames for all sites and location for global-it. According to the pro-
posed methodology [4,5] as a second part of the preparation phase an analysis
of most popular email providers, for particular country (Poland in our case) or
identified top the most popular user countries for global-it, has been carried out.
As a third step a username patterns analysis has been done. Table 1 gives a
summary of all identified most popular patterns. In the table the most popular
notation is used, where: ?d – any digit, ?l – any letter, ?s – one of the signs
{NULL . }. To prepare a hybrid attack, based on patterns in the username part
of email address, searching for lists of national names and national surnames

Table 1. Username patterns

Pattern Examples

[lastname][?s][?d]{0, 4} rodwald rodwald 1990

[firstname][?s][?d]{0, 4} paul paul07

[firstname][?s][lastname][?d]{0, 4} paulrodwald paul rodwald2017

[lastname][?s][firstname][?d]{0, 4} rodwald.paul rodwald paul77

[?l][?s][lastname][?d]{0, 4} p.rodwald p rodwald33

[lastname][?s][?l][?d]{0, 4} rodwald p rodwald p01

[nickname][?s][?d]{0, 4} zipper oshin 82

Effectiveness Comparison of Email Addresses Recovery from Gravatars 507

has been done. For global-it this task involved not just one country, like in other
cases, but earlier identified top the most popular user countries.

The final step, preparing for the dictionary attack, was the most time con-
suming one. The reason is the choice of our sources of emails. As the dictionaries
we decided to use two sources of real leaked emails. The first one is known as
a Exploit.in leakage and the size of the zipped file is larger than 10GB. The
Exploit.in leakage has 805,499,391 rows of email address and plain text pass-
word pairs, but actually has 593,427,119 unique email addresses. The second
one is more up to date source of emails, dated January 2019, called Collection
1–5. Size of the compressed files is larger than 870 GB. Once prepared dictionary
of leaked emails could be used for attacking MD5 Gravatar hashes coming from
different websites.

2.3 Techniques of Attacks

The attack itself has been carry out with the power of the hashcat software on
dedicated rig (six overclocked GPU’s MSI GeForce GTX 1080 8GB, total speed
65GH/s for MD5 hash algorithm) and is divided into three main approaches:
dictionary attack based on leaked email addresses, hybrid attack and finally
brute force attack. As a source for dictionary attack an extracted list of emails,
coming from the two mentioned leakages, was used. Hybrid attack combines two
elements: list of identified patterns presented in Table 1 and the list of the most
popular national email domains. And finally, brute force attack attempts every
possible combination of a given character set up to a certain length. We decided
to check all possible usernames from 1 up to 8 chars long for global-it or up to 10
chars long for other services. As a domain part for this attack, all most popular
domains were used as well as some disposable email (i.e. mailinator.com).

3 Results and Findings

The summary of our attacks is as follows: for global-it 20.88% (1256315 of
6016434) of all Gravatar MD5 hashes were broken and emails revealed; the
effectiveness of individual attacks: dictionary - 14.78%, hybrid - 9.89%, brute
force - 8.96%; for nat-sec 62.18% reversed MD5 hashes (31.79%, 19.12% and
47.58% accordingly); for nat-gen 64.27% recovered emails. Venn diagram for
three types of attacks presents Fig. 1. The diagram shows that the attacks are
complementary, the use of all three approaches gives the best results.

There is a significant disproportion among number of revealed emails for
national websites (62.18% nat-sec, 64.27% nat-glo) and a global websites (20.88%
global-it). The highest success rate for national sites could be reached with brute
force approach where five the most popular email domains covers about 70% of all
emails. For global sites dictionary attack is the most effective one. The key factor is
the time-consuming preparation of appropriate dictionaries in advance. Compar-
ing domain statistics among recovered email addresses between nat-sec and nat-glo
there is a noticeable popularity of disposable emails, what could lead to a conclu-
sion of higher cybersecurity consciousness among IT-security oriented users.

508 P. Rodwald

Fig. 1. Venn diagram for three types of attacks for: a)nat-sec and b)global-it.

4 Conclusions

It is worth pointing out that in many jurisdictions an email address is consider as
a sensitive private data. For example in European Union an email address such
as name.surname@company.com is an examples of personal data as well [6].
Such a data in many circumstances must be anonymized. For data to be truly
anonymized, the anonymization must be irreversible. We prove in this article
that the usage of MD5 hash function as an anonymization technique for email
addresses is a bad idea. A usage of gravatar in places where deanonymization
could be a problem should be withheld.

The article aims to increase the awareness of users publishing comments on
various websites about the potential possibility of disclosing their real email
addresses.

References

1. Rivest, R.: The MD5 Message-Digest Algorithm. RFC 1321 (1992). https://tools.
ietf.org/html/rfc1321. Accessed 18 Jan 2021

2. abell: Gravatars: why publishing your email’s hash is not a good idea (2009).
http://www.developer.it/post/gravatars-why-publishing-your-email-s-hash-is-not-
a-good-idea. Accessed 18 Jan 2021

3. Bongard, D.: De-anonymizing Users of French Political Forums. Technical report
(2013). https://bit.ly/2XLhMNz. Accessed 18 Jan 2021

4. Rodwald, P.: E-mail recovery from websites using Gravatar. Bull. Military Univ.
Technol. 68(2), 59–70 (2019)

5. Rodwald, P.: Large scale attack on gravatars from stack overflow. In: Zamojski,
W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) DepCoS-
RELCOMEX 2020. AISC, vol. 1173, pp. 503–512. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-48256-5 49

6. European Commission: What is personal data? https://ec.europa.eu/info/law/law-
topic/data-protection/reform/what-personal-data en. Accessed 18 Jan 2021

https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321
http://www.developer.it/post/gravatars-why-publishing-your-email-s-hash-is-not-a-good-idea
http://www.developer.it/post/gravatars-why-publishing-your-email-s-hash-is-not-a-good-idea
https://bit.ly/2XLhMNz
https://doi.org/10.1007/978-3-030-48256-5_49
https://doi.org/10.1007/978-3-030-48256-5_49
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en

A Web Tool for XQuery Debugging

Jesús M. Almendros-Jiménez(B) and Antonio Becerra-Terón

Department of Informatics, University of Almeŕıa, 04120 Almeŕıa, Spain
{jalmen,abecerra}@ual.es

Abstract. This system demo shows how to debug XQuery programs
using an algorithmic debugger developed for XQuery. The debugging
process consists in the building of a debugging tree and the answering
of questions Yes/No by the user about the results of Function calls and
XPath expressions until a bug is found (or no more questions remain).
Using the higher-order capabilities of XQuery several debugging strate-
gies –children selection strategies– can be used, enabling the adaptation
of the debugging to the program/query.

Keywords: Debugging · Database query languages · XQuery

1 Introduction

Declarative debugging (DD) [4] is a well-known debugging technique enabling to
find program bugs. Also known as algorithmic debugging, it was proposed for
logic programming [7], but it has been adapted to other programming languages
(for instance, Haskell [5], Java [6], Datalog [2] and SQL [3]). DD is based on
the navigation of the so-called debugging tree, where the root of the debugging
tree is the main program and the result, and non-root nodes contain partial
computations (usually, function calls) and their computed values. The children of
each node correspond to subcomputations of the parent. The debugging process
consists in the navigation of the debugging tree, in which an oracle (normally,
the user) answers “Yes” or “No” to debugging questions, which are questions
about the results of the partial computations. When the answers of the oracle
to all the children of a given node are “Yes” and the answer to the parent is
“No”, a bug has been located in the code of the parent. Several strategies have
been defined (see [8] for a survey), whose main goal is to reduce the time of
the DD. They range from top-down to bottom-up traversal of the debugging
tree, selection strategies of nodes, types of debugging questions, memorization
of oracle answers and debugging tree transformations, among others. The order,
number and complexity of debugging questions affect the debugging process time.
Additionally, the reduction of the time to be built or the space consumed by the
debugging tree have influenced the design of declarative debuggers.

This work was supported by the State Research Agency (AEI) of the Spanish Ministry
of Science and Innovation under grant PID2019-104735RB-C42 (SAFER).

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 509–512, 2021.
https://doi.org/10.1007/978-3-030-74296-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_40&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_40

510 J. M. Almendros-Jiménez and A. Becerra-Terón

declare function local:min($t){
let $prices := db:open(’prices ’)
let $p := $prices/prices/book[title = $t]/year
return min($p)}
--
declare function local:store($t ,$p){
let $prices := db:open(’prices ’)
let $p := $prices/prices/book[title = $t and price=$p]
return $p/source };
--
declare function local:min_price($t){
let $min := local:min($t) return
<minprice title=’{$t}’>
{local:store($t,$min)}
<price >{ local:min($t)}</price >
</minprice >};
--
declare function local:avg($rates){
let $n := count($rates) return sum($rates)}
--
declare function local:data($t){
for $b in db:open(’bstore ’)/bstore/book[title=$t]
let $ra := local:avg($b/rate) where $ra < 5 return
if ($b[editor]) then ($b/editor ,$b/publisher ,<avg >{$ra}</avg >)
else ($b/author[position () <=1],$b/publisher ,<avg >{$ra}</avg >)}
-------------------------Query --------------------------------
<bib >{
let $mylist := db:open(’mylist ’)
for $t in distinct -values($mylist/title)
let $d := local:data($t) where exists($d) return
<book >{$d,local:min_price($t)}</book >
}</bib >

Fig. 1. Example of buggy program (Color figure online)

Here we have adapted declarative debugging to XQuery. Let us suppose the
XQuery program and query of Fig. 1. Here the query should extract the full data
from ‘bstore’ of each book of a names list ‘mylist’ as well as the lowest price from
‘prices’. The query should filter books with an average rating above five. With
this aim, the query uses the following XQuery functions: local:data for getting the
data of well-rated books (average rating above five); and local:min price which
returns the store and the lowest price. The later calls to auxiliary functions:
local:min –for computing the minimum price– and local:store – for retrieving the
store–. Additionally, local:data computes the average rate by calling the function
local:avg. Intentionally, some bugs have been introduced (in red colour). From
top to down, the first one uses a wrong tag year instead of price. In the second
one, the average price is incorrectly computed. Also the Boolean condition for
filtering average rating is incorrect – less than 5 instead of greater than 5– in
the third one. Finally, the path on the document ‘mylist’ is incorrect –it should
be $mylist/mylist/title–.

2 Debugging

A debugging session of the proposed debugger consists in the building of the
debugging tree (see Fig. 2), and the answering of a sequence of questions with

A Web Tool for XQuery Debugging 511

Fig. 2. Debugging tree

Fig. 3. Debugging session

‘Yes’ or ‘No’. Such questions are about the results of the nodes –which are XPath
expressions and Function calls–. When the answers of the user to all the children
of a given node are “Yes” and the answer to the parent is “No”, a bug has been
located in the code of the parent. The developed Web tool http://minerva.ual.
es:8090/debxquery/ handles a graphical interface, and uses grids for improving
the user experience (see Fig. 3).

The debugger has been implemented in XQuery, and the debugging tree is
represented as a XML tree. It facilitates its building from a query and enables
to use XQuery itself for the traversal of XML tree. The traversal function of
the XML debugging tree is defined as a higher order XQuery function, which is
parameterized by a children selection function in such a way that switching the
children selection functions different user-defined strategies of debugging can
be selected. Some built-in selection strategies are defined: First Paths –which

http://minerva.ual.es:8090/debxquery/
http://minerva.ual.es:8090/debxquery/

512 J. M. Almendros-Jiménez and A. Becerra-Terón

prioritizes the debugging of paths against functions–, First Functions –which
prioritizes the debugging of functions against paths–, Only Functions – in which
only function calls are analysed–, Heaviest First –where children are sorted by
tree size–, Lightest Results First –sorting children by the result size–, Heaviest
Functions First –which analyzes nodes with the highest number of Function calls
first– and Heaviest Paths First –which analyzes nodes with the highest number
of XPath expressions–. More details can be found in [1].

3 Future Work

We plan to extend the debugger with features like “undo” capabilities, incorpo-
ration of I don’t know answers and handling of exceptions and non-termination.
Another planned improvement is the debugging tree indexing and storing in
secondary memory. While currently once a question is answered, this question
is never asked again, a more sophisticated mechanism of trusting will be also
studied. Finally, we will study algorithmic debugging in other NoSQL database
query languages.

References

1. Almendros-Jiménez, J.M., Becerra-Terón, A.: Declarative debugging of XML
queries. In: Morales, J.F., Orchard, D. (eds.) PADL 2021. LNCS, vol. 12548, pp.
161–177. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67438-0 10

2. Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: A theoretical framework for the
declarative debugging of datalog programs. In: Schewe, K.-D., Thalheim, B. (eds.)
SDKB 2008. LNCS, vol. 4925, pp. 143–159. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88594-8 8

3. Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: Algorithmic debugging of SQL
views. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol.
7162, pp. 77–85. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29709-0 9

4. Caballero, R., Riesco, A., Silva, J.: A survey of algorithmic debugging. ACM Com-
put. Surv. (CSUR) 50(4), 1–35 (2017)

5. Faddegon, M., Chitil, O.: Algorithmic debugging of real-world haskell programs:
deriving dependencies from the cost centre stack. ACM SIGPLAN Not. 50(6), 33–
42 (2015)

6. Insa, D., Silva, J.: An algorithmic debugger for Java. In: 2010 IEEE International
Conference on Software Maintenance, pp. 1–6. IEEE (2010)

7. Shapiro, E.Y.: Algorithmic program diagnosis. In: Proceedings of the 9th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 299–
308 (1982)

8. Silva, J.: A survey on algorithmic debugging strategies. Adv. Eng. Softw. 42(11),
976–991 (2011)

https://doi.org/10.1007/978-3-030-67438-0_10
https://doi.org/10.1007/978-3-540-88594-8_8
https://doi.org/10.1007/978-3-540-88594-8_8
https://doi.org/10.1007/978-3-642-29709-0_9
https://doi.org/10.1007/978-3-642-29709-0_9

Managing Versioned Web Resources
in the File System

Leon Müller and Lars Gleim(B)

Databases and Information Systems, RWTH Aachen University, Aachen, Germany
{leon.mueller,lars.gleim}@rwth-aachen.de

Abstract. While the WebDAV standard provides a well-established
read/write mechanism for Web resources, as well as version management
through its Delta-V extension, the complexity of the underlying proto-
col limits its practical adoption. The W3C Linked Data Platform (LDP)
more recently provides an alternative approach for simultaneous resource
and semantic metadata management on the Web. In combination with
the HTTP Memento protocol, it has recently been successfully employed
in the context of interoperable data management. Inspired by file system
interfaces for WebDAV, we present factFUSE, the – to our knowledge –
first user-space application for the joint management of arbitrary com-
puter files and semantic RDF data & metadata in the file system based
on the LDP and HTTP Memento Web standards.

Keywords: Linked data platform · Semantic data management ·
FUSE · File system · Version management · HTTP memento protocol

1 Introduction

As the volume and variety of data that is produced every year keep growing,
the challenge of efficient data management is becoming increasingly relevant.
Especially since the beginning of the Corona pandemic, the need for distributed
data management systems has become more apparent than ever. While popu-
lar distributed cloud storage services like Dropbox or Google Drive are readily
available, they are not based on open Web standards and lack important inter-
operability features. Inspired by these services and version control systems such
as Git, we developed factFUSE: a data management system based upon the
W3C Linked Data Platform (LDP) [6] standard enabling the unified manage-
ment of RDF and binary resources through a simple hierarchical mapping of
Web resources into the classical file system, while providing simple version con-
trol mechanisms based upon the HTTP Memento protocol.

2 Mapping LDP Resources into the File System

Besides standardized HTTP CRUD operations for reading and writing Web
resources, the W3C LDP specification [6] provides primitives to hierarchically
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 513–516, 2021.
https://doi.org/10.1007/978-3-030-74296-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_41&domain=pdf
http://orcid.org/0000-0002-6367-2520
http://orcid.org/0000-0002-3550-1847
https://doi.org/10.1007/978-3-030-74296-6_41

514 L. Müller and L. Gleim

contains

contains

C1

contains

contains
C2

RDF1

RDF2

IMG1

C2

IMG1.jpg

RDF2.ttl

RDF1.ttl

Mountpoint

Fig. 1. Using the structural components of the Linked Data Platform Specifications,
we can directly translate the containment relations in the LDP (left) to directory-child
relations in the file system (right).

structure sets of RDF Linked Data resources, as well as arbitrary binary data,
using containers that can contain RDF resources, binary resources and other
containers. Based on the similarity of this organizational pattern with the tradi-
tional directory structure of hierarchical file systems, we define a straightforward
mapping of LDP resources into the file system, as illustrated in Fig. 1. Contain-
ers are directly mapped to directories and other resources to corresponding file
representations in the file system. While RDF resources are represented as text
files containing a Turtle serialization of their triples, binary resources are dis-
played in their respective file format, as determined through their respective
MIME-type.

Semantic Metadata. Each binary resource may further be augmented with
RDF metadata which can contain semantic context information and metadata,
stored in a dedicated metadata resource discoverable through a describedBy
relation in the HTTP link header (implementing the LDP specification). Subse-
quently, this approach enables the flexible and extensible semantic enrichment
of arbitrary binary resources and allows users to manage both RDF as well as
arbitrary binary Web resources and their metadata inside the file system.

Persistent Identification. To allow for the persistent identification and refer-
encing of individual resource revisions and keep a record of the resource revision
history, we employ timestamped URLs according to the FactID scheme [1–3]
to identify individual resource revisions and the HTTP Memento protocol [5],
a standardized HTTP extension enabling time-based content negotiation to
retrieve historical resource states, for version discovery and retrieval.

3 Implementation

factFUSE1 is a NodeJS application implementing a custom user-space file system
driver through JavaScript FUSE bindings2. The system is available as open-
1 https://git.rwth-aachen.de/i5/factdag/factfuse.
2 https://github.com/fuse-friends/fuse-native/.

https://git.rwth-aachen.de/i5/factdag/factfuse
https://github.com/fuse-friends/fuse-native/

Managing Versioned Web Resources in the File System 515

C2

IMG1.jpg

RDF2.ttl

RDF1.ttl

Mountpoint

DELETED

contains

contains
C1

revisionOfRDF1

IMG1

RDF1

contains
C2

EDITED

Fig. 2. Modifications to file representations are applied to the original LDP resource.
Changes to resources are tracked by creating a list of revisions.

source for both macOS and Linux environments. It communicates with LDP
servers through the factlib.js3 library, which is part of the FactStack data man-
agement system [3]. CRUD interactions with resources in the file system are
directly translated to corresponding LDP HTTP calls. factFUSE further sup-
ports subscribing to server-provided change-notifications in Activity Streams
2.0 format via WebSockets (as implemented by the FactStack system) to be
informed about resource updates on the LDP and to apply them to the local
file representations in near real-time. This makes factFUSE a tool that can be
used to interface with LDPs, manage data sets containing both RDF resources
and binary resources, and integrate previously unconnected data into the Web
of Linked Data.

Versioning. factFUSE transparently handles resource versioning using the
Memento Protocol [5] and assigns a persistent Memento URL – a FactID – to
each revision according to the FactDAG data interoperability layer model [2] and
the FAIR data principles [7]. New revisions of a resource are connected to their
predecessor through a W3C PROV-O [4] revisionOf relation, which is added
to the RDF metadata of the new revision. Our custom user-space file system
supports all regular CRUD file system interactions, such as writing, creating,
removing or renaming files. All interactions are translated into according HTTP
calls and so changes that were conducted in the file system representation are
applied to the LDP side. Users may discover and download previous resource
revisions through a file context menu. Therefore, factFUSE transparently dis-
covers the version history of the underlying Web resource from its respective
TimeMap provided by the LDP HTTP server in accordance with the HTTP
Memento specification.

Example. As described in Sect. 2, factFUSE maps LDP Resources and Con-
tainers to files and directories in the local file system. A selected LDP Container
is mapped to a virtual root directory – the mount point – within the local file
system. Once mounted, LDP resources are exposed below this root directory. In

3 https://git.rwth-aachen.de/i5/factdag/factlibjs.

https://git.rwth-aachen.de/i5/factdag/factlibjs

516 L. Müller and L. Gleim

an example scenario, as seen in Fig. 1, after connecting factFUSE to the LDP
the user can interact with the user-space file system and modify the resources
with, or use them in, any desktop application. Figure 2 shows the state of the
LDP after editing one, and deleting another file in the factFUSE file system
representation and the changes have been applied to the LDP side. The modi-
fied resource is stored as a new revision, with a revisionOf link to the original
resource.

4 Conclusion

In this paper, we have presented factFUSE, a user-space application for the joint
management of computer files and semantic data and metadata. It is based upon
the LDP, PROV and HTTP Memento Web standards and offers a novel solution
for distributed data management and version control in a familiar environment –
the file system. Through the mapping of LDP resources into the local file system,
factFUSE offers a first step towards bridging the gap between traditional file
system-based data management and semantic web management solutions.

factFUSE is available (see footnote 1) as open source software under the GNU
AGPLv3 license to be evaluated by the community. The repository includes
detailed installation and usage instructions, including screenshots of all the
implemented features and interfaces in in-use scenarios, as well as pre-built bina-
ries for macOS and the Ubuntu Linux distribution.

In future work, we plan to further extend upon the factFUSE concept in
order to integrate flexible semantic metadata management into the traditional
file system paradigm, ultimately working towards a tighter integration of Web
resources, computer files and semantic knowledge graphs.

Acknowledgments. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – EXC – 2023 Inter-
net of Production – 390621612.

References

1. Gleim, L., Decker, S.: Timestamped URLs as persistent identifiers. In: MEP-
DaW@ISWC (2020)

2. Gleim, L., et al.: FactDAG: formalizing data interoperability in an internet of pro-
duction. IEEE Internet Things J. 7(4), 3243–3253 (2020)

3. Gleim, L., Pennekamp, J., Tirpitz, L., Welten, S., Brillowski, F., Decker, S.: Fact-
Stack: interoperable data management and preservation for the web and Industry
4.0. In: BTW 2021. Gesellschaft für Informatik, Bonn (2021, preprint)

4. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: the PROV ontology. W3C Rec.
(2013)

5. Van de Sompel, H., Nelson, M., Sanderson, R.: HTTP framework for time-based
access to resource states - Memento. IETF RFC 7089 (2013)

6. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0. W3C Rec. (2015)
7. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak,

A., Blomberg, N., et al.: The FAIR guiding principles for scientific data management
and stewardship. Sci. Data 3, 160018 (2016)

Visualizing Web Users’ Attention to Text
with Selection Heatmaps

Ilan Kirsh(B)

The Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel
kirsh@mta.ac.il

Abstract. Web analytics tools provide useful information about the
interaction of users with websites, and particularly, on what captures
the attention of web visitors on websites. User attention to areas of web
pages can be visualized using heatmaps. Two types of attention indica-
tors are commonly used in web analytics heatmaps: visibility duration of
page sections in the browser’s viewport and mouse activity on areas and
elements of web pages. This work introduces a new type of user attention
heatmap, which visualizes the frequency of text selection operations on
websites. Selection is the first step in the process of copying text to the
clipboard, but it is also used to highlight important points while read-
ing, similarly to highlighting words on a notebook with a marker pen.
As demonstrated and discussed in this paper, selection heatmaps provide
interesting perspectives on user attention to paragraphs, sentences, and
words on websites, and this could be useful in web analytics.

Keywords: Web analytics · Visualization · Heatmaps · Text selection

1 Introduction

Web analytics aims to shed light on how a website is used by its visitors, and
particularly, what captures the users’ attention [1]. In web analytics heatmaps,
page areas that attract more attention are displayed with ‘hot’ background col-
ors, such as shades of red, and areas that attract less attention with ‘cold’ back-
ground colors, such as shades of blue. Two types of attention indicators are
commonly used in commercial web analytics: visibility time (page areas become
visible and invisible as users scroll the page) and mouse activity (clicks and
movements on page areas) [2,3]. A recent paper proposed to track and use copy
operations of text to the clipboard by web users as a new source of data for web
page heatmaps [3]. The usefulness and importance of heatmaps in web analytics
are demonstrated and discussed in previous works [2,3].

This work introduces a new type of heatmap, which visualizes user atten-
tion to text as reflected by selection (or highlighting) operations. Text selection
is often considered as merely the first step in copying text to the clipboard.
However, analysis shows that the vast majority of text selection operations in
this study’s dataset are not followed by copying. Text selection can be used by
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 517–520, 2021.
https://doi.org/10.1007/978-3-030-74296-6_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_42&domain=pdf
http://orcid.org/0000-0003-0130-8691
https://doi.org/10.1007/978-3-030-74296-6_42

518 I. Kirsh

online readers to highlight points while reading, similarly to highlighting words
in a book with a marker pen. Accordingly, selection heatmaps can extend the
existing web analytics toolbox and may provide new perspectives on web user
attention to elements of online text.

2 Implementation

Figure 1 illustrates the selection heatmaps implementation. At the top, we can
see a standard HTTP client-server communication between a browser (on the
left side) and a web server (on the right side).

Fig. 1. Architecture of the selection heatmaps implementation

To track text selection operations, a reference to a Tracking Script is embed-
ded in the website pages. As a result, when a web page is loaded it triggers a
request to load the Tracking Script from the Heatmaps Server. Once loaded, the
Tracking Script records text selection operations and reports them to the Col-
lector component in the Heatmaps Server, which stores the data in a dedicated
database. Following the common practice of web analytics, and to protect user
privacy, all the collected data are anonymized.

User actions, such as clicking and moving the mouse, scrolling the page, and
copying text to the clipboard, can be tracked by listening to JavaScript events
in the browser. Text selection is different, as it does not trigger any JavaScript
event. It is possible, however, to get information from JavaScript on which text
is selected, if any, at any given point in time. Therefore, the implementation
uses a timer to routinely check for text selections, at a rate of once every tenth
of a second (which only adds a negligible performance overhead). This poses
an additional challenge, as a single selection operation can be detected multiple
times with different text strings, while a user extends the selection (and some-
times also shrinks it). Therefore, detected selections are filtered: selections that
are substrings of the preceding or the succeeding selection are discarded.

Visualizing Web Users’ Attention to Text with Selection Heatmaps 519

Web analysts can examine the web pages with the selection heatmaps by
visiting the website through the Visualizer component, which functions as a
proxy server. The Visualizer retrieves the original web pages from the web server
and converts them to heatmap pages by adding background colors and shades.
The colors that this implementation uses are shown on the right side of the
heatmap toolbar at the top of the web page (see the bottom browser image in
Fig. 1), from the coldest color on the left to the hottest color on the right.

3 Demonstration

The selection heatmaps implementation was examined using pages of the
ObjectDB website1. Web usage data were collected for six months, ending
in June 2020. In total, 783,028 text selection operations were collected over
1,295,221 page views. Only a fraction of the selection operations were followed
by copying text to the clipboard (there were only 109,525 copy operations).

Figure 2 demonstrates selection heatmaps for two lists. The explanations on
the right side of these paragraphs attracted more selections than the class and
method names on the left side. Some words, and noticeably the word ‘exactly’
(in both of its appearances), gained more selections than the other words. The
similarity between the painting of the lines in these two paragraphs indicates
repeating patterns. Possibly, users highlighted the explanations, and particularly
the word ‘exactly’, to emphasize specific words to themselves while reading.

Fig. 2. A selection heatmap

Figure 3 presents heatmaps with the primary and secondary headers of two
web pages. These examples demonstrate another pattern: words that are less
frequent for the specific topic, or more unique, were selected more frequently.
Common words such as ‘Obtaining’, ‘Using’, and ‘Access’ were selected less fre-
quently than words that are specifically related to the context. The entire website
is about ‘JPA’ (and database), thus ‘Entity Fields’ and ‘Connection’ are much
more specific to these pages than ‘JPA’, and indeed, they were selected more
frequently. Similar behavior is also identified when moving from the page and
the primary header level down to page sections and secondary headers. In the

1 www.objectdb.com.

www.objectdb.com

520 I. Kirsh

‘JPA Entity Fields’ page, the word ‘Fields’ is very frequent, and not directly
linked to any particular section of the page. Accordingly, the words ‘Transient’,
‘Persistent’, etc. (which are specifically related to certain sections of the page)
were selected by users more frequently. This user behavior of selecting specifically
related terms more frequently might be linked to the concept of Inverse Docu-
ment Frequency (IDF) in Information Retrieval (IR). Terms that are generally
less frequent in the context provide more information, and therefore, highlighting
such terms might be more beneficial while reading.

Fig. 3. Selection heatmaps for headers

4 Conclusions and Future Work

This paper introduces a new type of user attention heatmap, the selection
heatmap, which visualizes the frequency of text selection operations across web
pages. Selection heatmaps may provide new web analytics perspectives regarding
user attention to paragraphs, sentences, and words on websites. The examples
in this demo highlight interesting user behaviors with respect to text selection.
Quantitative research will be needed to evaluate whether these examples rep-
resent significant, rather than causal patterns. Future work should also explore
particular potential uses: the use of selection heatmaps as an alternative for
conventional mouse movement heatmaps, which are used in commercial web
analytics to visualize user attention; automatic identification of key sentences,
for example for automatic text summarization; and automatic identification of
important keywords in textual content, possibly as a complementary metric for
Inverse Document Frequency (IDF) in Information Retrieval (IR).

References

1. Kaushik, A.: Web Analytics 2.0. SYBEX Inc., USA (2010)
2. Kirsh, I.: Using mouse movement heatmaps to visualize user attention to words.

In: Proceedings of the 11th Nordic Conference on Human-Computer Interaction,
NordiCHI 2020, Tallinn, Estonia, pp. 117:1–117:5. Association for Computing
Machinery, New York (2020). https://doi.org/10.1145/3419249.3421250

3. Kirsh, I., Joy, M.: A different web analytics perspective through copy to clipboard
heatmaps. In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE 2020. LNCS,
vol. 12128, pp. 543–546. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
50578-3 41

https://doi.org/10.1145/3419249.3421250
https://doi.org/10.1007/978-3-030-50578-3_41
https://doi.org/10.1007/978-3-030-50578-3_41

City-Stories: Combining Entity Linking,
Multimedia Retrieval, and Crowdsourcing

to Make Historical Data Accessible

Laura Rettig1(B) , Shaban Shabani2,3 , Loris Sauter2 ,
Philippe Cudré-Mauroux1 , Maria Sokhn3 , and Heiko Schuldt2

1 University of Fribourg, Fribourg, Switzerland
{Laura.Rettig,Philippe.Cudre-Mauroux}@unifr.ch

2 University of Basel, Basel, Switzerland
{Shaban.Shabani,Loris.Sauter,Heiko.Schuldt}@unibas.ch,

Shaban.Shabani@hes-so.ch
3 University of Applied Sciences Western Switzerland (HES-SO), Neuchatel,

Switzerland
Maria.Sokhn@hes-so.ch

Abstract. Digitized historical image collections as provided by individ-
uals or memory institutions often suffer from limited or a complete lack
of metadata In this paper, we present the City-Stories system that com-
bines entity linking, multimedia retrieval, and crowdsourcing to make
historical images searchable even across collections.

Keywords: Multimedia retrieval · Entity linking · Semantic data ·
Crowdsourcing

1 Introduction

Collecting, managing, and accessing historical data is essential for digital preser-
vation of cultural heritage. This is particularly important for advanced applica-
tions that use digitized historical content shared across cultural heritage insti-
tutions and archives [6]. Sharing such data opens the door to several exciting
possibilities. First, it makes it possible to integrate heterogeneous multimedia
collections from different sources, formats, and metadata schemata, to ensure
access via a homogeneous interface. Additionally, descriptive metadata opens
the possibility to extract the context of the documents for meaningful concepts
and to link the documents across media types and external collections. Sec-
ond, integrated historic multimedia content allows for interactive approaches to
retrieval which support different content and context-based query types such as

This work was supported by the Hasler Foundation in the context of the City-Stories
project (contract no. 17055).
L. Rettig, S. Shabani and L. Sauter—These authors contributed equally to this work.

c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 521–524, 2021.
https://doi.org/10.1007/978-3-030-74296-6_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_43&domain=pdf
http://orcid.org/0000-0002-9765-0549
http://orcid.org/0000-0003-4710-6091
http://orcid.org/0000-0001-8046-0362
http://orcid.org/0000-0003-2588-4212
http://orcid.org/0000-0001-7586-0564
http://orcid.org/0000-0001-9865-6371
https://doi.org/10.1007/978-3-030-74296-6_43

522 L. Rettig et al.

Fig. 1. Screen shots of City-Stories front-end supporting different query types.

keyword queries, query-by-example, query-by-sketch, semantic queries, spatio-
temporal queries, and any combination thereof (Fig. 1). Third, these features
allow the users of these applications to not only become content consumers but
also content providers. Citizens own valuable private collections such as photo
albums, audio, and video archives. Enabling crowdsourcing as a service allows
them to share important content that can be of great public interest and con-
tribute to the digital preservation of cultural heritage of their region. Moreover,
by sharing their knowledge, citizens can play a crucial role in curating existing
data.

In this paper, we present City-Stories, a hybrid system consisting of modules
for multimedia retrieval, entity recognition and linking, and crowdsourcing for
cultural heritage data. City-Stories enables the management, collection, and pre-
sentation of heterogeneous multimedia data in applications for cultural heritage,
leveraging both content and metadata for the multimedia documents.

2 System Overview

The City-Stories system consists of three major components: (i) a module for
semantic data expansion, (ii) a spatio-temporal content browser based on the
vitrivr system, and, (iii) a crowdsourcing and knowledge visualisation module.
During the offline phase, multimedia collections are extracted by a general data
ingestion module and subsequently processed by the browser’s underlying multi-
media retrieval engine while simultaneously a semantic expansion is performed.
In the online phase, additional information is gained via crowdsourcing, data
that is further enhanced on-the-fly by the semantic data expansion module.

2.1 Semantic Data Expansion

The multimedia data present in this project is often accompanied by textual
metadata (usually in the form of title and description of an item). In our previous
work [6], we detail how we use entity linking to enrich the data presented to

City-Stories 523

users with information from a knowledge base, specifically, WikiData1. In this
component, we use textual metadata provided alongside media items in the
DigitalValais2 and Mediathèque3 datasets to extract and link related entities.
This allows us to enhance our data with relevant information on the entities
present in both the metadata and in the knowledge base and enables linking
data from further sources to the same entities for integration.

Due to the specificity of our data, we encounter many rare entities: Such
entities are not recognized by our previous entity linking pipeline. However,
using word embeddings, we can still infer relationships between entities in absence
of entries to the knowledge base. In particular, since we are dealing with short
textual information—too small to learn embeddings from the entirety of the City-
Stories corpus—we employ methods that combine different textual sources for
domain-specific textual information [4] and temporal term evolution [5]. For this,
we localize the closest embedding (obtained via the aforementioned methods) in
the vector space of an identified entity that is present in the knowledge base.

2.2 Spatio-Temporal Content Browser

City-Stories leverages a modified version of the vitrivr [2] content-based mul-
timedia retrieval system, tailored to the search in historic multimedia collec-
tions. In particular, Cineast [3], vitrivr ’s retrieval engine, provides a plethora of
query modes, of which query-by-example (QbE), query-by-sketch (QbS), query-
by-location (QbL) and query-by-time (QbT) are enabled in City-Stories. QbE
enables users to provide a sample image to be looked for. Using QbS, users
might sketch the query freely or modify an existing image with a superimposed
sketch. Spatial (QbL) and temporal (QbT) queries allow users to search for the
time and/or place where historic objects have been captured.

QbS and QbE in City-Stories is based on a content-based similarity search
along various features. Metadata for QbL and QbT are either extracted from
the multimedia objects or provided externally. Often, historical documents lack
appropriate metadata like EXIF for images and thus we heavily rely on addi-
tional data provided by the two other modules, either provided by human annota-
tion or via semantic expansion. This data is stored in corresponding MongoDB
and PostgreSQL databases, while the extracted multimedia retrieval features
are stored in vitrivr ’s database CottontailDB [1]. The City-Stories system com-
municates with the vitrivr system via RESTful API, leveraging the OpenAPI
standard4.

2.3 Crowdsourcing and Knowledge Visualization

The crowdsourcing component of City-Stories allows platform users to share
multimedia content. Citizens can share their private digitized historical
1 https://www.wikidata.org.
2 http://www.valais-wallis-digital.ch.
3 https://www.mediatheque.ch/.
4 https://www.openapis.org/.

https://www.wikidata.org
http://www.valais-wallis-digital.ch
https://www.mediatheque.ch/
https://www.openapis.org/

524 L. Rettig et al.

collections and contribute to the digital preservation of cultural heritage of their
region. The cross-platform capability enables users to share their collections from
desktop or mobile devices and provide metadata that cover descriptive aspects of
the shared items (title, description, tags, and categories) and the spatio-temporal
properties (date and location).

The type of multimedia collections considered in City-Stories come without
or only with little geographical and temporal information. For instance, finding
the location and time where and when an image was taken is a rather challeng-
ing machine learning classification task. In contrast, humans can perform better
especially if the annotation tasks are properly matched with annotators’ capa-
bilities. We deploy four crowdsourcing tasks and leverage the wisdom of crowds
to improve the metadata of historical collections: i.) Location-Finder, used for
finding the place depicted in images; ii.) Year-Finder for identifying the year
images have been captured; iii.) Annotation-Competition for competitive image
tagging, and iv.) Validator to validate automatically generated tags and image
categories [7]. Gamification approaches are considered to incentivize the users
participating in the tasks as well as for data quality control.

3 Conclusion

In this paper, we have presented the City-Stories system and how it seamlessly
combines content-based retrieval with entity-based navigation and leverages the
wisdom of the crowd for enhancing the metadata and extending the historical
collections. It allows users to browse, perform different interactive query types
and explore historical data from archives and museum collections.

References

1. Gasser, R., Rossetto, L., Heller, S., Schuldt, H.: Cottontail DB: an open source
database system for multimedia retrieval and analysis. In: Proceedings of the 28th
ACM International Conference on Multimedia. ACM (2020)

2. Gasser, R., Rossetto, L., Schuldt, H.: Multimodal multimedia retrieval with vitrivr.
In: Proceedings of the International Conference on Multimedia Retrieval (2019)

3. Heller, S., Sauter, L., Schuldt, H., Rossetto, L.: Multi-stage queries and temporal
scoring in vitrivr. In: Proceedings of the IEEE International Conference on Multi-
media Expo Workshops (ICMEW) (2020)

4. Rettig, L., Audiffren, J., Cudré-Mauroux, P.: Fusing vector space models for domain-
specific pplications. In: Proceedings of the 31st IEEE International Conference on
Tools with Artificial Intelligence, ICTAI (2019)

5. Rettig, L., Hänggli, R., Cudré-Mauroux, P.: The best of both worlds: context-
powered word embedding combinations for longitudinal text analysis. In: Proceed-
ings of the IEEE International Conference on Big Data (2020)

6. Shabani, S., et al.: City-stories: a multimedia hybrid content and entity retrieval
system for historical data. In: HistoInformatics@CIKM, pp. 22–29 (2017)

7. Shabani, S., Sokhn, M., Schuldt, H.: Hybrid human-machine classification system
for cultural heritage data. In: Proceedings of the 2nd Workshop on Structuring and
Understanding of Multimedia HeritAge Contents (2020)

SMOTE: A Tool to Proactively Manage
Situations in WoT Environments

Daniel Flores-Martin(B) , Javier Berrocal , José Garćıa-Alonso ,
and Juan M. Murillo

Universidad de Extremadura, Badajoz, Spain
{dfloresm,jberolm,jgaralo,juanmamu}@unex.es

Abstract. The growing number of devices in the Web of Things (WoT)
allows larger and more complex smart environments. These environments
aim to provide the desired state for the people, adapting the devices to
their preferences. The characteristics of the environment, the people and
the devices generate a multitude of interconnections and behaviours in
specific situations. However, managing these situations is not straight-
forward because of their changing nature. Tools are needed to identify
and automate these interactions according to the desired conditions. In
this demo we present SMOTE (Situation Management fOr SmarT
Environments), a tool for proactively managing situations in WoT envi-
ronments, improving the management of different entities and reducing
the effort for adapting devices to people’s preferences.

Keywords: Web of Things · Smart-environments · Proactivity

1 Introduction

We live in a multi-device world connected to the Internet where we find differ-
ent smart environments of heterogeneous devices. The WoT complements smart
environments to reduce cost and risk for providers and consumers by combining
multiple devices and information services. Also, it enables devices to use common
and standardised languages for exchanging information.

One of the main challenges of the WoT is to provide interoperability and
collaboration between devices transparently and automatically for people [5].
To this end, the WoT provides mechanisms such as the W3C Thing Description
(W3C-TD) [3] that enables the description of devices. However, the interactions
in the environment are not yet considered, limiting in many cases the collabora-
tion among devices.

The Situation-Awareness paradigm already anticipated the concern for iden-
tifying the most suitable interactions in systems based on a descriptive view of
the environment and individual [1]. These interactions are a fundamental aspect
of the collaboration between devices and require information that is generated
in WoT environments. This information is related to the characteristics of the
devices, and is enriched through interaction with other devices. When, where
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 525–529, 2021.
https://doi.org/10.1007/978-3-030-74296-6_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_44&domain=pdf
http://orcid.org/0000-0002-2554-2194
http://orcid.org/0000-0002-1007-2134
http://orcid.org/0000-0002-6819-0299
http://orcid.org/0000-0003-4961-4030
https://doi.org/10.1007/978-3-030-74296-6_44

526 D. Flores-Martin et al.

and how are considered traditional general aspects in the automation of a pro-
cess. In WoT environments, these aspects represent specific properties such as
spatio-temporal data, temperature or lighting level, for example. With this infor-
mation, the interactions can be considered to generate and detect situations in
smart environments and act accordingly.

In this demo we present SMOTE, a tool that identifies the devices and the sit-
uations in a given environment to act on it proactively. The information obtained
from the devices and the environment is used to automatically detect the most
suitable interactions to meet the desires of the users present.

2 SMOTE: Situation Management for Smart
Environments

SMOTE is able to detect entities in a WoT environment, identify situations
and modify the entities’ behaviour to adapt them to the environment. The
entities can be smart devices or people represented through their smartphones,
which may have actions (operations that can change the environment) and objec-
tives (the desired state of the environment). The description of these entities is
done using an extended version of the W3C-TD specification [2], defined by the
authors of this work to support the management of situations in WoT environ-
ments. For the identification and automation of situations, SMOTE is composed
by two main parts: the controller and the description manager.

2.1 The Controller

The controller is responsible for detecting the entities in the environment, manag-
ing the interactions between them and adapting their behaviour when necessary.
It is developed in NodeJS1 and Python2, and the communication with the enti-
ties is performed by using the MQTT protocol3. The processing of the devices’
descriptions is done using Semantic Web techniques: an ontology based on the
IoT-O ontology [4] to define the information contained in the descriptions of the
entities, and the Owlready2 library4 for its treatment (storing, searching and
linking entities). The steps executed by the controller are:

1. Description request. When an entity is discovered, it is subscribed to the
controller topic by using MQTT protocol and its description is requested.

2. Description response. Then, the entity publishes its description.
3. Parse description. The information of the entities is stored in the ontology.

This ontology contains the classes needed to store W3C-TD models and match
actions and objectives to meet the users’ preferences.

1 https://nodejs.org.
2 https://www.python.org.
3 https://mqtt.org.
4 https://pypi.org/project/Owlready2.

https://nodejs.org
https://www.python.org
https://mqtt.org
https://pypi.org/project/Owlready2

SMOTE: A Tool to Proactively Manage Situations in WoT Environments 527

4. Check Situations. The environment situations are constantly identified.
This is done by comparing the information coming from the description with
that stored in the ontology. At this point, two possibilities can arise: a previ-
ously defined situation is detected (4.a), or a new one is identified (4.b).

– 4.a) Adapt the environment. An existing situation is detected by
getting the information related with where, when and how it is produced
from the ontology. When discovered, the devices behaviour is adapted to
achieve the desired state in the environment.

– 4.b) Generate the situation. The situation is generated by getting con-
textual information such as spatio-temporal aspects and the involved enti-
ties. Also, the detected objectives are matched with the available actions.
Then, the situation is sent to all the entities to be identified in the future.

5. Endpoint invocation. Once the actions are identified their endpoints are
invoked to perform the changes in the environment. This is done using the
actions stored in the W3C-TD description of the entity.

2.2 The Description Manager

People’ descriptions can be specified through a mobile application. This appli-
cation allows people to perform CRUD operations over actions and objectives,
to show situations and to display the complete description in W3C-TD format.
This application can send the description to the controller and receive new situ-
ations automatically. The description is locally stored on the smartphones and it
is automatically updated every time there is a change in it. In addition, device’s
descriptions can be provided by the manufacturer or obtained from external
repositories to be included in the controller.

The process detailed above among the controller and the description manager
is shown in Fig. 1. The source code of the implementation of the controller and
of the mobile application is available in public repositories5,6.

3 Application

SMOTE was applied in a use-case based on a smart-office. The controller was
deployed on a Raspberry Pi. Also, three members of the laboratory who stored
their descriptions on their smartphones, were part of the environment, and a
smart bulb (Xiaomi Yeelight) and a smart switch (Shelly v1) were used to adapt
the lighting and turn a device on or off. In addition, a video was recorded.7

Although SMOTE has been applied in a smart-office, the biggest benefit
is that it can be deployed in any environment that has IoT devices. All that is
needed is a controller, which can be a Raspberry Pi, and to provide the necessary
description of the IoT devices so that they can be used. Also, the same mobile
application can be used in different environments.
5 https://bitbucket.org/spilab/server-node-python-w3ctde.
6 https://bitbucket.org/spilab/android-w3ctde.
7 https://www.dropbox.com/s/bemodpkdc5v69rb/Video W3CTDE.mp4.

https://bitbucket.org/spilab/server-node-python-w3ctde
https://bitbucket.org/spilab/android-w3ctde
https://www.dropbox.com/s/bemodpkdc5v69rb/Video_W3CTDE.mp4

528 D. Flores-Martin et al.

b) Generate
the situation

2. Response

5. Endpoint invocation

1. Request

1. RequestController

RPi

Entity (Person)

Entity (IoT Device)

Ontology data

Ontology
request

Matching

Match objectives
and actions

Situation
NOT found

Situation

Store
situation

Situation

Propose an
strategy

Situation found
a) Adapt the
environment

4. Check
situations

W3C-TD
Extended

Trigger
strategy

Ontology data

Check
situations

3. Parse
description

Fig. 1. General flow data of SMOTE

4 Conclusions

WoT environments are growing at an unstoppable pace due to the development
of new and increasingly intelligent devices. This favours the emergence of ever-
larger smart environments composed of devices capable of altering their state.
Given the constant changes in these environments where entities are added or
removed, the situations that can occur are numerous and need to be managed. In
this demo we presented SMOTE, a tool that allows one to manage situations in
real time to achieve the desired state of the environment according to objectives
and actions, in a proactive and transparent way for the users.

Acknowledgments. This work was supported by the project RTI2018-094591-B-
I00 and the FPU17/02251 grant (MCIU/AEI/FEDER, UE), by the 4IE+ project
(0499 4IE PLUS 4 E) funded by the Interreg V-A España-Portugal 2014–2020 program
(POCTEP), by the Department of Economy and Infrastructure of the Government of
Extremadura (GR18112, IB18030) and by the European Regional Development Fund.

References

1. Endsley, M.R.: Designing for Situation Awareness: An Approach to User-Centered
Design. CRC Press, Boca Raton (2016)

2. Flores-Martin, D., Berrocal, J., Garćıa-Alonso, J., Murillo, J.M.: Extending W3C
thing description to provide support for interactions of things in real-time. In: Ko,
IY., Murillo, J.M., Vuorimaa, P. (eds.) Current Trends in Web Engineering. ICWE
2020. LNCS, vol. 12451, pp. 30–41. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-65665-2 4

3. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V.: Web of things (WoT) thing
description. Candidate recommendation, W3C (2019)

https://doi.org/10.1007/978-3-030-65665-2_4
https://doi.org/10.1007/978-3-030-65665-2_4

SMOTE: A Tool to Proactively Manage Situations in WoT Environments 529

4. Seydoux, N., Drira, K., Hernandez, N., Monteil, T.: IoT-O, a core-domain IoT ontol-
ogy to represent connected devices networks. In: Blomqvist, E., Ciancarini, P., Poggi,
F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 561–576. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49004-5 36

5. Thuluva, A.S., Anicic, D., Rudolph, S.: Semantic web of things for industry 4.0. In:
RuleML+ RR (Supplement) (2017)

https://doi.org/10.1007/978-3-319-49004-5_36

Voice-Based Virtual Assistants for User
Interaction Modeling

Marco Brambilla(B) and Davide Molinelli

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milano, Italy

{marco.brambilla,davide.molinelli}@polimi.it

Abstract. In this work, we propose a virtual assistant that allows build-
ing models by means of voice commands. To demonstrate the general-
ity of the approach, we describe three alternative strategies that apply
voice-based support at three levels of detail: a fully-guided strategy; a
pattern-based strategy; and an element-based strategy. We describe our
implementation experience with the development of a design assistant
covering the three strategies described above for OMG’s IFML (Interac-
tion Flow Modeling Language), in the context of user interaction design,
including the integration with the Amazon Alexa assistant. We report
our results that show how the assistant can bring advantages in terms of
productivity.

1 Introduction

The design of the user interaction model represents one of the most delicate steps
in the whole process of building and implementing a software system [2]. The
objective of the work is focused towards the introduction of a form of artificial
intelligence that could transform a passive support into an active assistance, able
to communicate and guide the designer, understanding his commands, provid-
ing advice and building models automatically [4] . Other works aimed at this
objective providing vocal assistant approaches for software designers [6,7].

In this paper we propose an approach and implementation of a voice-based
virtual assistant for model-driven development of user interactions
and user interfaces. While our solution is general and independent from
the modeling language, to demonstrate the feasibility and advantages of the
approach, the paper describes an implementation upon software models speci-
fied with IFML, the Interaction Flow Modeling Language [3,5]. The paper also
reports our preliminary results that show how the assistant can bring advantages
in terms of productivity.

2 Voice-Based Modeling Assistant

In the context of Model-Driven Development, a voice assistant can support
designers with a different level of expertise, in a non-invasive manner, with the
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 530–533, 2021.
https://doi.org/10.1007/978-3-030-74296-6_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_45&domain=pdf
http://orcid.org/0000-0002-8753-2434
https://doi.org/10.1007/978-3-030-74296-6_45

Voice-Based Virtual Assistants for User Interaction Modeling 531

Fig. 1. Overview of the voice assistant communication flow.

purpose of improving productivity and also the quality of the resulting mod-
els. Since modeling could be applied at different phases of the development and
by different designers profiles, an assistant should be flexible and able to adapt
to the trade-off between speed and precision in the design. The voice assistant
can follow or lead the design process by interacting vocally with the designer,
asking questions, reacting to his answers, and taking different decisions on the
subsequent steps to follow in a dialogue based on these answers.

In order to offer different levels of support to the designer, we propose three
different levels of assistance: a fully-guided requirement-based strategy, that pro-
duces complete designs starting from requirements, without the need of looking
into the modeling at all; a pattern-based strategy, that lets designers specify solu-
tions by selecting patterns and combining them together, thus obtaining quick
and optimal designs; and an element-based strategy, that lets designers specify
precise modeling structures with fine-grained granularity.

In this research we implemented Model Creator, an Amazon Alexa application
(called skill in Alexa parlance) developed using the Alexa Developer Console, a
suite made available by Amazon to define the intents of applications that make
use of the voice assistant to execute tasks.

The implementation goes through a multi-step dialogue (see Fig. 2) and it
progressively acquires all the information about the context and requirements,
guiding the designer through a set of alternatives, so as to reach a point where a
complete model of the application can be automatically generated (by exploiting
also the template-based approach when needed).

The skill aims at supporting the design of IFML models, and integrates with
IFMLEdit.org, an open-source, online framework for the specification of IFML
models and the generation of code for web and mobile applications [1].

An intent specified by the user during the design process can be represented
by a single interaction or a longer dialogue composed by multiple requests and
answers. In the first case, the designer asks for the execution of a simple com-
mand, while, in the second case, the request is complex and the voice assistant
demands the progressive acquisition of information. The reason is that any intent
can require the fulfillment of mandatory and optional parameters. When the
number of parameters is high, it is difficult to provide all the required values, by
means of a single sentence. Moreover, some parameters may become mandatory,
depending on the value assumed by other parameters. Therefore, the interaction
is divided into multiple steps.

532 M. Brambilla and D. Molinelli

Fig. 2. In the guided mode, the voice assistant acquires the specifications through a
multi-turn dialog before generating a complete model of the corresponding application.

The assistant is implemented as an Alexa skill that realizes a new voice-
based front-end for the modeling editor. A communication flow between the
skill and the modeling editor enables the voice-driven design process. This flow
consists of the following steps, also depicted in Fig. 1: (1) The designer wakes
up Alexa; (2) Alexa collects the voice stream containing the user request and
sends it to the Alexa Voice Service that recognizes the command; (3) The skill
is launched; (4) The modeling tool communicates back the result to the Alexa
Cloud Service, that, in turn, elaborates the voice answer stream and sends it
back to Alexa; (5) Alexa uses the speakers to communicate a feedback on the
executed command and awaits the formulation of new commands or answers.
For each new command (aka. intent) formulated by the designer, the process is
repeated: the voice stream is sent to the Alexa Voice Service that identifies the
intent and forwards the request to the modeling tool, which in turn executes the
required operations on the model editor, and provides the respective feedback.

Some examples of usage of the assistant have been recorded in a video that
is available online at: https://www.youtube.com/watch?v=00HoMz9Tq0A. For
instance, the Fully-guided Requirement-based Assistant covers some typical busi-
ness requirements and based on the decision of the designer at the requirement
level we obtain a complete model of the application. The application scenarios
covered in the current prototype include: e-commerce platforms, social network
applications, blogs, and crowdsourcing systems. During the interaction process,
the voice assistant initially asks for the scenario of interest and consequently
changes the formulation of the next questions, starting a dialogue towards the
ultimate intent of the user. At the end of the interaction, the assistant generates
the complete and configured model that best fits the user’s specifications. The
progresses of the multi-turn dialog are visually managed and kept under control
by means of a wizard panel (Fig. 2).

https://www.youtube.com/watch?v=00HoMz9Tq0A

Voice-Based Virtual Assistants for User Interaction Modeling 533

Table 1. Operations necessary to develop models with different assistants.

No assistant or

Element-based assistant

Pattern-based assistant

(including configuration)

Fully-guided assistant

(including configuration)

I C R B Total I C R B Total Saving I C R B Total Saving

E-commerce 200 97 927 219 1443 33 30 249 50 362 74.91% 1 0 249 0 250 82.67%

Blog 142 70 632 127 971 24 19 170 23 236 75.69% 1 0 170 0 171 82.38%

Social network 124 64 546 113 847 41 26 227 37 331 60.92% 1 0 227 0 228 73.08%

Crowdsourcing 107 49 478 101 735 22 10 139 6 177 75.91% 1 0 139 0 140 80.95%

Mean - - - - - - - - - - 71.85% - - - - - 79.77%

3 Evaluation

We evaluated our approach by asking some designers to use the assistant in
different configurations and application scenarios: an e-commerce application,
a social network, a blog, and a crowdsourcing platform. Developers performed
various kinds of operations:Insertions (I), Connections (C), Refinements (R),
and Bindings (B), i.e., links between IFML elements. Table 1 reports the total
number of operations needed to build the model with the corresponding type of
assistant, and the percentage of operations saved using the Pattern-based support
and the Fully Guided support with respect to the basic Element-based support.
On average, the Pattern-based support allows to save around 71% of operations,
while the Fully-guided support can reach 79% of saving.

References

1. Bernaschina, C., Comai, S., Fraternali, P.: IFMLEdit.org: model driven rapid pro-
totyping of mobile apps. In: 4th International Conference on Mobile Software Engi-
neering and Systems, pp. 207–208. IEEE Press (2017)

2. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Prac-
tice. 2nd ed. Morgan & Claypool, San Rafael (2017)

3. Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language: Model-Driven
UI Engineering of Web and Mobile Apps with IFML. Morgan Kaufmann, Burlington
(2014)

4. Cabot, J., Clarisó, R., Brambilla, M., Gérard, S.: Cognifying model-driven software
engineering. In: Seidl, M., Zschaler, S. (eds.) STAF 2017. LNCS, vol. 10748, pp.
154–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74730-9 13

5. OMG: Interaction Flow Modeling Language (IFML), version 1.0. http://www.omg.
org/spec/IFML/1.0.2015.

6. Soares, F., Araújo, J., Wanderley, F.: VoiceToModel: an approach to generate
requirements models from speech recognition mechanisms. In: Proceedings of the
30th Annual ACM Symposium on Applied Computing, pp. 1350–1357. ACM (2015)

7. Stephan, M.: Towards a cognizant virtual software modeling assistant using model
clones. In: 41st International Conference on Software Engineering: New Ideas and
Emerging Results, pp. 21–24. IEEE Press (2019)

https://doi.org/10.1007/978-3-319-74730-9_13
http://www.omg.org/spec/IFML/1.0.2015.
http://www.omg.org/spec/IFML/1.0.2015.

Tutorials

Similarity Search, Recommendation
and Explainability over Graphs in

Different Domains: Social Media, News,
and Health Industry

Panagiotis Symeonidis(B)

University of the Aegean, Samos, Greece
psymeon@aegean.gr

http://www.panagiotissymeonidis.com

Abstract. In this tutorial, we provide a rich blend of theory and prac-
tice regarding graph algorithms, to deal with challenging issues such
as scalability, data noise, and sparsity in recommender systems. We
also demonstrate real-life systems that use the graph algorithms for
Social Media (http://delab.csd.auth.gr/moviexplain/), News (http://
metarec.inf.unibz.it) and Health (https://drugrec.inf.unibz.it) industry
along with user studies which were used to evaluate the acceptance of
the users for these systems.

Keywords: Recommender systems · Graph-based algorithms

1 Introduction

In this tutorial, we provide a step-by-step analysis of graph-based methods to
infer similarity and provide recommendations in heterogeneous information net-
works. In particular, this tutorial surveys important research in a new family
of recommender systems aimed at serving multi-dimensional social networks.
We describe the family of local-based (i.e., FriendLink [8], Friend Of A Friend
(FOAF), etc.) and random walk-based algorithms (i.e., PageRank, SimRank,
Katz, etc.) that can be used to provide contextual recommendations in multi-
dimensional graphs, where there are many participating entities (users, locations,
products, and the time dimension). Furthermore, we present the time-evolving
graphs which incorporate session nodes to model the time dimension. More-
over, we will present methods that use meta paths to infer similarity among
entities and how these meta paths can be used for explaining either the simi-
larity among entities or the suggested item recommendations. We also present
state-of-the-art graph neural networks, graph convolution networks, and graph
embeddings (node2vec, metapath2vec, etc.) for similarity search and recommen-
dation in graphs.

The remainder of the article is organized as follows. Section 2 describes pre-
liminaries in graphs with a case study from News industry. We present the
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 537–541, 2021.
https://doi.org/10.1007/978-3-030-74296-6_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_46&domain=pdf
http://orcid.org/0000-0003-0685-3568
http://delab.csd.auth.gr/moviexplain/
http://metarec.inf.unibz.it
http://metarec.inf.unibz.it
https://drugrec.inf.unibz.it
https://doi.org/10.1007/978-3-030-74296-6_46

538 P. Symeonidis

related work of recommendation over graphs in Sect. 3. Section 4 describes real-
world recommendation practices for different domains, such as Social Networks,
and Medical industry. Finally, Sect. 5 concludes the paper.

2 News Industry Example Formulated as a Graph

In this Section, we give a basic introduction in multi-modal graphs, through a
case study example from news industry. A network for an online news portal is a
heterogeneous information network, containing objects from five types of entities
Q = {U, S,A,C,L}: users (U), sessions (S), articles (A), article categories (C),
and article locations (L). Each user u has one or more links to the sessions s.
Each session s possesses one unique user u and one or more articles a, which were
read by the user within the session. Finally, each article a can appear in one or
more sessions s, belong to one news category and be assigned to one geographic
location l.

Network schema serves as a template for a network and tells how many
types of objects there are in the network and where the possible links exist. The
network schema for an online news portal is shown in Fig. 1. More details about
the network schema and the session-based graph algorithms which run over it
can be found in [9].

Fig. 1. Online news portal network schema

3 Related Work

In this tutorial, we focus on local and global graph algorithms, which focus
on the local nodes’ structure, and the overall path structure of a graph, respec-
tively. A local-based graph algorithm, known as FriendLink [8], is used in GeoSo-
cialRec, which is a real location-based social netowrk1. A popular global-based
graph algorithm has been proposed by Jeh and Widom [5] and it is denoted as
SimRank. It builds on the concept of similarity in graphs, where two entities
are considered similar if they are referenced by similar entities. Another graph-
based algorithm for similarity search is Random Walk with Restart (RWR) [6],

1 http://delab.csd.auth.gr/geosocialrec/.

http://delab.csd.auth.gr/geosocialrec/

Recommendation Algorithms over Graphs 539

which is a variation of the well-known PageRank algorithm. Another similar-
ity measure that computes similarity in heterogeneous information networks is
PathSim [10]. PathSim runs on meta paths and captures the subtle semantics
of similarity among peer objects in a network. A meta path connects two peer
nodes with a sequence of edges between different node types.

There are various meta paths that can be built on the USACL network,
which is shown in Fig. 1. For example, if we start from the article type of the
node, we can build the following paths: ACA, ASA, ALA, ASUSA, etc. The
meta path framework provides a powerful mechanism for a user to select the
appropriate similarity semantics, which can be also used for explaining later a
recommendation.

Recently, graph embeddings have been used to infer similarities over graphs.
For example, node2vec and DeepWalk [2] learn vector representations of nodes
(i.e., node embeddings) with the goal to identify semantically similar nodes.
Metapath2vec [1] extends the DeepWalk and node2vec algorithms for hetero-
geneous graphs by generating only meta path-based random walks. Moreover,
there are deep neural network architectures, such as Graph Neural Networks
(GNNs), Graph Convolution Networks (GCNs), etc., that iteratively propagate
and aggregate node’s feature and topological information from local graph neigh-
borhoods using neural networks, to learn meaningful representations for graph
data. For example, MCRec [4] is a graph-based extension of NCF [3], which uses
as input the node embeddings that were constructed after applying a variation of
the word2vec algorithm on node sequences. MP4Rec [7] is a GNN which is able
to provide both accurate and explainable recommendations. To learn the local
characteristics of the graph, it uses meta paths and the PathSim [10] algorithm.

4 Other Examples: Social Media and Health Industry

In the previous sections, we described graph-based algorithms for the news indus-
try. However, these algorithms can be also applied to different recommendation
domains.

For the health industry domain, a network schema for patients’ treatment is
shown in Fig. 2(a). As shown, for capturing patient’s drug treatment, we would
have a graph that consists of Patients (P), who undergo a Treatment (T) using
Drugs (D) to target Genes (G) and may have harmful side Effects (E). Then, we
can provide a hybrid meta path-based explanation to a medical doctor as follows:
“We recommend for your patient drug D250, because: (i) it was prescribed to 6
other Patients (who have diagnosed the same disease with your patient) and took
also similar Drugs with those of your Patient’s current treatment (DTPTD), and
(ii) It cures/targets similar Genes together with 5 Drugs that your Patient has
already taken in his treatment (DGD)”. More details can be found in http://
drugrec.inf.unibz.it.

For the social media domain, a network schema for online movies provider is
shown in Fig. 3(b). As shown, it is very similar with the news recommendation
network schema of Fig. 1. That is, instead of news articles (A), news categories

http://drugrec.inf.unibz.it
http://drugrec.inf.unibz.it

540 P. Symeonidis

TTP D

G

E

Fig. 2. (a) Drug treatment schema

SSU M

G

D

Fig. 3. (b) Movies portal schema

(C), and Locations (L), it consists of movies (M), movie genres (G), and direc-
tors (D), respectively. More details can be found in http://delab.csd.auth.gr/
moviexplain/.

5 Conclusion

In this tutorial, we focused on the graph-based models for the task of item
recommendation. We also presented real-life systems that use the aforementioned
graph-based algorithms for Social Networks, News and Health industry along
with user studies which were used to evaluate the acceptance of the users for
these systems.

References

1. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning
for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 135–144. ACM
(2017)

2. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864. ACM (2016)

3. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 173–182. International World Wide Web Conferences Steering Committee
(2017)

4. Hu, B., Shi, C., Zhao, W.X., Yu, P.S.: Leveraging meta-path based context for
top-n recommendation with a neural co-attention model. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1531–1540. ACM (2018)

5. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Pro-
ceedings 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’2002), pp. 538–543. Edmonton, Canada (2002)

6. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of massive data sets. Cambridge
University Press (2019)

7. Ozsoy, M.G., et al.: Mp4rec: explainable and accurate top-n recommendations in
heterogeneous information networks. IEEE Access 8, 181835–181847 (2020)

http://delab.csd.auth.gr/moviexplain/.
http://delab.csd.auth.gr/moviexplain/.

Recommendation Algorithms over Graphs 541

8. Papadimitriou, A., Symeonidis, P., Manolopoulos, Y.: Friendlink: link prediction in
social networks via bounded local path traversal. In: 2011 International Conference
on Computational Aspects of Social Networks (CASoN), pp. 66–71. IEEE (2011)

9. Symeonidis, P., Kirjackaja, L., Zanker, M.: Session-aware news recommendations
using random walks on time-evolving heterogeneous information networks. User
Model. User-Adapt. Inter. 30(4), 727–755 (2020). https://doi.org/10.1007/s11257-
020-09261-9

10. Yizhou, S., Jiawei, H., Xifeng, Y., Philip S., Y., Tianyi, W.: Pathsim: meta path-
based top-k similarity search in heterogenuos information networks. In: Proceedings
of the VLDB Endowment (VLDB’2011). Seattle, Washigton (2011)

https://doi.org/10.1007/s11257-020-09261-9
https://doi.org/10.1007/s11257-020-09261-9

High-Level Interaction Design with Discourse
Models for Automated Web GUI Generation

Hermann Kaindl(B)

TU Wien, Vienna, Austria
kaindl@ict.tuwien.ac.at

Abstract. Interaction design is considered important for achieving usable Web
user interfaces. Communicative acts as abstractions from speech acts can model
basic building blocks (‘atoms’) of communication, like a question or an answer.
When, e.g., a question and an answer are glued together as a so-called adja-
cency pair, a simple ‘molecule’ of a dialogue is modeled. Deliberately complex
discourse structures can be modeled using relations from Rhetorical Structure
Theory (RST). The content of a communicative act can refer to ontologies of the
domain of discourse. Taking all this together, we created a new discourse meta-
model that specifies what discourse models may look like. Such discourse models
can specify an interaction design. Since manual creation of user interfaces is hard
and expensive, automated generation may becomemore and more important. This
tutorial also demonstrates how such an interaction design can be used for auto-
matedWeb user-interface generation. This is based onmodel-transformation rules
according to the model-driven architecture. Based on AI optimization techniques,
the graphical user interfaces (GUIs) are automatically tailored to a device such
as a smartphone according to a given device specification. Since the usability
of fully-automatically generated GUIs is still not satisfactory, unique customiza-
tion techniques are employed as well. We also address low-vision accessibility of
Web-pages, by combining automated design-time generation of Web-pages with
responsive design for improving accessibility.

Keywords: Interaction design · Discourse models · Task models · Automated
Web GUI generation · Customization · Low-vision accessibility of Web-pages

1 Intended Audience and Assumed Background

The target audience is interaction designers, Web designers, or project managers. Also
educators can benefit from this tutorial.

The assumed attendee background is some familiarity with scenarios/use cases as
well as interest in interaction design. There are no pre-requisites such as knowledge
about Human-Computer Interaction in general.

2 Tutorial Structure and List of Topics Covered

This tutorial is a combination of lectures, group discussions and exercises.

© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 542–546, 2021.
https://doi.org/10.1007/978-3-030-74296-6_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_47&domain=pdf
http://orcid.org/0000-0002-1133-0529
https://doi.org/10.1007/978-3-030-74296-6_47

High-Level Interaction Design with Discourse Models 543

In order to provide a common basis for participants with different background, this
tutorial starts with an overview of background material. An overview of discourse-
based modeling follows, which is brief but sufficient for understanding the generation
and customization of GUIs. This section concludes with an explanation of the duality
of task- and discourse-based interaction design.

Based on that, this tutorial shows how GUIs can be generated automatically and,
in this course tailored to different devices (as specified). This tutorial also shows how
customization can be integrated into such a generation approach, both through custom
rules and custom widgets.

Last but not least, this tutorial explains how low-vision accessibility can be improved
through a combination with Responsive Design.

2.1 Summary of Topics Covered

• Background

– Interaction design
– Task-based modeling
– Speech acts
– Conversation Analysis
– Model-driven transformation

• Interaction Design based on Discourse Modeling

– Discourse example
– Communicative Acts
– Adjacency Pair
– RST relations
– Exercise: Understand given model
– Duality of Task- and Discourse-based Design

• GUI Generation

– Process of user-interface generation
– Generation of Structural UI Model
– Generation of Behavioral UI Model
– Weaving of structural and behavioral models
– Optimization for tailoring to device
– Examples of generated user interfaces

• Customization

– Custom rules
– Custom widgets

544 H. Kaindl

• Improving Low-vision Accessibility

– Combination with Responsive Design
– Accessibility evaluation

• Conclusion

3 Learning Objectives and Outcomes

In this tutorial, participants learn about an open and fully implemented approach to GUI
generation frommodels at the highest level of the Cameleon Reference Framework, i.e.,
the Tasks & Concepts Level. These models focus on the specification of (classes of)
dialogues in contrast to tasks for modeling activities that can be performed by the user
or the application (system). Participants will understand a duality of these approaches.
Participants also get an overview of both automatically generating and customizingWeb
GUIs.

4 Biography of Presenter

Hermann Kaindl is the head of the organizational unit entitled “Software-intensive Sys-
tems” of the Institute of Computer Technology and a Vice Chairman of the Senate at TU
Wien.He joined this institute in early 2003 as a full professor. Prior tomoving to academia
in early 2003, he has gained nearly 25 years of industrial experience in requirements and
software engineering as well as human-computer interaction at Siemens Austria. Kaindl
is a Senior Member of the IEEE and a Distinguished Scientist Member of the ACM.

5 Tutorial History

Predecessors of the proposed tutorial have been presented by this proposer, e.g., at
CHI’12, IEEE SMC’14, ACM SAC’15, RE’15, APSEC’16, eics’17, and ACM SAC’19
(most of them half-day). Each of these tutorials has been received very well by the
respective audience. The number of attendees, e.g., at SAC’19 was 25. The most similar
version was the one presented in a plenary session at eics’17, with even more attendees.
These tutorials were based on the publications of this presenter as listed below.

The ICWE 2021 tutorial differs through its focus on Web GUIs, the inclusion of
customization techniques, and low-vision accessibility of Web-pages.

References

1. Bogdan, C., et al.: Generating an abstract user interface from a discourse model inspired
by human communication. In: Proceedings of the 41st Hawaii International Conference on
System Sciences, HICSS 2008, Waikoloa, Big Island, Hawaii. IEEE (2008)

High-Level Interaction Design with Discourse Models 545

2. Bogdan, C., Kaindl, H., Falb, J., Popp, R.:Modeling of interaction design by end users through
discoursemodeling. In: Proceedings of the 2008ACM International Conference on Intelligent
User Interfaces, IUI 2008, Maspalomas, Gran Canaria, Spain. ACM Press (2008)

3. Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R., Arnautovic, E.: A discourse model
for interaction design based on theories of human communication. In: Extended Abstracts on
Human Factors in Computing Systems, CHI 2006, pp. 754–759 (2006). ACM Press (2006)

4. Falb, J., Kavaldjian, S., Popp, R., Raneburger, D., Arnautovic, E., Kaindl, H.: Fully automatic
user interface generation from discourse models. In: Proceedings of the 2009 ACM Interna-
tional Conference on Intelligent User Interfaces, IUI 2009. ACM Press (2009). Tool demo
paper

5. Falb, J., Popp, R., Röck, T., Jelinek, H., Arnautovic, E., Kaindl, H.: Using communicative acts
in interface design specifications for automated synthesis of user interfaces. In: Proceedings
of the 21st IEEE/ACM International Conference on Automated Software Engineering, ASE
2006, pp. 261–264 (2006)

6. Kaindl, H.: Model a discourse and transform it to your user interface. In: Gross, T., et al. (eds.)
INTERACT 2009. LNCS, vol. 5727, pp. 948–949. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-03658-3_125

7. Kavaldjian, S., Bogdan, C., Falb, J., Kaindl, H.: Transforming discourse models to structural
user interface models. In: Giese, H. (ed.) Models in Software Engineering, MODELS 2007.
LectureNotes inComputer Science, vol. 5002, pp. 77–88. Springer,Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69073-3_9

8. Popp, R., J. Falb, D. Raneburger, H. Kaindl: A transformation engine for model-driven UI
generation. In: Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS 2012, Copenhagen, Denmark (2012)

9. Popp, R., Kaindl, H., Badalians Gholi Kandi, S., Raneburger, D., Paterno, F.: Duality of task-
and discourse-based interaction design for GUI generation. In: Proceedings of the 2014 IEEE
International Conference on Systems, Man, and Cybernetics, SMC 2014, pp. 3323–3328
(2014)

10. Popp, R., Raneburger, D., Kaindl, H.: Tool support for automated multi-device GUI gener-
ation from discourse-based communication models. In: Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, EICS 2013 (2013)

11. Raneburger, D., Alonso-Ríos, D., Popp, R., Kaindl, H., Falb, J.: A user study with GUIs
tailored for smartphones. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler,
M. (eds.) INTERACT 2013. LNCS, vol. 8118, pp. 505–512. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40480-1_34

12. Raneburger, D., Kaindl, H., Popp, R.: Strategies for automated GUI tailoring for multiple
devices. In: Proceedings of the 48st Annual Hawaii International Conference on System
Sciences, HICSS-48 (2015)

13. Raneburger, D., Kaindl, H., Popp, R.: Model transformation rules for customization of multi-
device graphical user interfaces. In: Proceedings of the 7th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, EICS 2015, pp. 100–109 (2015)

14. Raneburger, D., Kaindl, H., Popp, R., Šajatovic, V., Armbruster, A.: A process for facil-
itating interaction design through automated GUI generation. In: Proceedings of the 29th
ACM/SIGAPP Symposium on Applied Computing, SAC 2014 (2014)

15. Raneburger, D., Popp, R., Kaindl, H., Falb, J.: Automated WIMP-UI behavior generation:
parallelism and granularity of communication units. In: Proceedings of the 2011 IEEE
International Conference on Systems, Man and Cybernetics, SMC 2011, pp. 2816–2821
(2011)

16. Raneburger, D., Popp, R., Kaindl, H., Falb, J., Ertl, D.: Automated generation of device-
specificWIMP-UIs: weaving of structural and behavioral models. In: Proceedings of the 2011
SIGCHI Symposium on Engineering Interactive Computing Systems, EICS 2011 (2011)

https://doi.org/10.1007/978-3-642-03658-3_125
https://doi.org/10.1007/978-3-540-69073-3_9
https://doi.org/10.1007/978-3-642-40480-1_34

546 H. Kaindl

17. Rathfux, T., Popp, R., Kaindl, H.: Adding custom widgets to model-driven GUI generation.
In: Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS 2016, Brussels, Belgium (2016)

18. Rathfux, T., Thöner, J., Kaindl, H., Popp, R.: Combining design-time generation of web-
pages with responsive design for improving low-vision accessibility. In: Proceedings of the
ACMSIGCHI Symposium on Engineering Interactive Computing Systems, EICS 2018, Paris
(2018)

Influence Learning and Maximization

George Panagopoulos1(B) and Fragkiskos D. Malliaros2

1 École Polytechnique, Palaiseau, France
george.panagopoulos@polytechnique.edu

2 Université Paris-Saclay, CentraleSupélec, Inria, Gif-Sur-Yvette, France
fragkiskos.malliaros@centralesupelec.fr

Abstract. The problem of maximizing or minimizing the spreading in
a social network has become more timely than ever with the advent of
fake news and the coronavirus epidemic. The solution to this problem
pertains to influence maximization algorithms that identify the right
nodes to lockdown for epidemic containment, hire for viral marketing
campaigns, block for online political propaganda etc. Though these algo-
rithms have been developed for many years, the majority of the literature
focuses on scalability issues and relaxing the method’s assumptions. In
the recent years, the emergence of new complementary data and more
advanced machine learning methods for decision have guided part of
the literature towards learning-based approaches. These can range from
learning how information spreads over a network, to learning how to
solve the combinatorial optimization problem itself. In this tutorial, we
aim to dissentangle and clearly define the different tasks around learning
for influence applications in social networks. More specifically, we start
from traditional influence maximization algorithms, describe the need of
influence estimation and delineate the state-of-the-art on influence and
diffusion learning. Subsequently, we delve into the problem of learning
while optimizing the influence spreading which is based on online learning
algorithms. Finally, we describe the latest approaches on learning influ-
ence maximization with graph neural networks and deep reinforcement
learning.

Keywords: Influence maximization · Machine learning · Graph
mining · Social network analysis

1 Introduction and Objectives

Social influence governs multiple aspects of our lives. From deciding the product
you will buy and the restaurant you will visit, to adapting political ideas and
getting infected from viruses, peer pressure and the amount and quality of the
interaction with other people can be a deciding factor for a person’s life. In the
real world it can be used from epidemic containment [7] to diminishing the mis-
information in social networks [3,10]. To this end, social influence is a concept
worth studying and the problem of influence maximization is one of the most
c© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, pp. 547–550, 2021.
https://doi.org/10.1007/978-3-030-74296-6_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_48&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_48

548 G. Panagopoulos and F. D. Malliaros

challenging and timely in social network analysis. In its core, influence maximiza-
tion is a combinatorial optimization problem that aims to find a bounded set of
nodes in a network that can maximize spreading. This spreading might refer to
political propaganda, product purchasing intent, a virus etc. Though the initial
theoretical setting is rather well-studied, it suffers from some assumptions that
restrict its effectiveness in the real world. For example, it has been observed
that ignoring the structural impact of a node in influence relationships leads
to inaccurate spreading prediction [1]. Moreover, the network topology alone is
known to fail on predicting the spreading without temporal information [2,16]
or content [4].

Recently, novel methodologies have emerged that either merge influence max-
imization with learning-based components from extraneous data, or fully trans-
form it in a learning problem. In this tutorial, we are going to go through the
literature connecting influence maximization with machine learning methodolo-
gies. These can be separated in the sections outlined below, which resemble solu-
tions to the different problems pertaining to influence maximization. Method-
ologically this includes learning models ranging from recurrent neural networks
and point processes, to multi-armed bandits, reinforcement learning and graph
neural networks. From an algorithmic concepts, we delineate the basics of sub-
modular maximization and performance guarantees, as well as heuristics and
sketching. For each part of the tutorial, we aim to explain the most vital papers
on the problem, discussing also some variants and extensions. The target audi-
ence of the tutorial includes (i) researchers in the area of machine learning, data
mining, and web engineering with applications to social media and network anal-
ysis; (ii) graduate students interested in graph mining, algorithms, and machine
learning; (iii) practitioners and members of industrial partners relevant to rec-
ommender systems, epidemiology, or marketing. The assumed background is
sufficient knowledge of probabilities, graph concepts, and algorithm design.

Overall, we expect that the tutorial will be of great value for the ICWE
community because of the aforementioned reasons on how timely is the problem.
It could be argued that it is one of the most crucial problems in current social
network analysis, with important implications in the real world. Its connection
to the aforementioned fields as well as computational journalism renders it also
rather interdisciplinary, hence its effect will be broad and lasting. The tutorial
slides along with additional resources will be available online1.

2 Outline of the Tutorial

In this section, we give a tentative outline of the tutorial. The proposed duration
of the tutorial is half a day.

1. Introduction
– What is influence
– Exemplary applications

1 http://fragkiskosm.github.io/projects/influence learning tutorial/.

http://fragkiskosm.github.io/projects/influence_learning_tutorial/

Influence Learning and Maximization 549

– Metrics for influencer identification [22,28]
– What is a diffusion cascade
– Influence evaluation [25]

2. Traditional Influence Maximization
– Influence maximization [17]
– Faster heuristics [5]
– Faster algorithms [20,27]

3. Influence and Diffusion Learning
– The need for influence estimation [1]
– Learning influence [11–13]
– Influence Maximization with influence estimation [14,24,26]
– Diffusion prediction using neural networks [15,21]
– Diffusion prediction using point-processes [8,30]

4. Learning Influence Maximization
– Learning combinatorial optimization [18]
– Graph reinforcement learning for IM [9,23]

5. Online Influence Maximization
– Multi-armed bandits with edge feedback [6,29]
– Multi-armed bandits with node feedback [19]

6. Summary and Open Problems
– Realistic influence maximization
– Pointer to other tutorials and data

Acknowledgements. Supported by ANR (French National Research Agency) under
the JCJC project GraphIA (ANR-20-CE23-0009-01).

References

1. Aral, S., Dhillon, P.S.: Social influence maximization under empirical influence
models. Nat. Hum. Behav. 2(6), 375 (2018)

2. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer:
quantifying influence on twitter. In: WSDM, p. 65–74 (2011)

3. Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in
social networks. In: The WebConf, pp. 665–674 (2011)

4. Chen, S., Fan, J., Li, G., Feng, J., Tan, K.I., Tang, J.: Online topic-aware influence
maximization. Proc. VLDB Endowment 8(6), 666–667 (2015)

5. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: KDD, pp. 1029–1038 (2010)

6. Chen, W., Wang, Y., Yuan, Y., Wang, Q.: Combinatorial multi-armed bandit and
its extension to probabilistically triggered arms. J. Mach. Learn. Res. 17(1), 1746–
1778 (2016)

7. Drakopoulos, K., Ozdaglar, A., Tsitsiklis, J.N.: An efficient curing policy for epi-
demics on graphs. IEEE Trans. Netw. Sci. Eng. 1(2), 67–75 (2014)

550 G. Panagopoulos and F. D. Malliaros

8. Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., Song, L.: Recur-
rent marked temporal point processes: embedding event history to vector. In: KDD,
pp. 1555–1564 (2016)

9. Fan, C., Zeng, L., Sun, Y., Liu, Y.Y.: Finding key players in complex networks
through deep reinforcement learning. Nat. Mach. Intel. pp. 1–8 (2020)

10. Farajtabar, M., et al.: Fake news mitigation via point process based intervention.
arXiv preprint arXiv:1703.07823 (2017)

11. Feng, S., Cong, G., Khan, A., Li, X., Liu, Y., Chee, Y.M.: Inf2vec: latent repre-
sentation model for social influence embedding. In: ICDE (2018)

12. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and
influence. TKDD 5(4), 1–37 (2012)

13. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: WSDM, p. 241–250 (2010)

14. Goyal, A., Bonchi, F., Lakshmanan, L.V.: A data-based approach to social influence
maximization. VLDB (2011)

15. Islam, M.R., Muthiah, S., Adhikari, B., Prakash, B.A., Ramakrishnan, N.: Deep-
diffuse: Predicting the ‘who’ and ‘when’ in cascades. In: ICDM (2018)

16. Karsai, M., et al.: Small but slow world: how network topology and burstiness slow
down spreading. Phys. Rev. E 83(2), 025102 (2011)

17. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD (2003)

18. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-
mization algorithms over graphs. In: NeurIPS, pp. 6348–6358 (2017)

19. Lagrée, P., Cappé, O., Cautis, B., Maniu, S.: Algorithms for online influencer mar-
keting. TKDD 13(1), 1–30 (2018)

20. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: KDD, p. 420–429 (2007)

21. Li, C., Ma, J., Guo, X., Mei, Q.: DeepCas: an end-to-end predictor of information
cascades. In: The WebConf, pp. 577–586 (2017)

22. Malliaros, F.D., Rossi, M.E.G., Vazirgiannis, M.: Locating influential nodes in
complex networks. Sci. Rep. 6, 19307 (2016)

23. Manchanda, S., Mittal, A., Dhawan, A., Medya, S., Ranu, S., Singh, A.: Gcomb:
Learning budget-constrained combinatorial algorithms over billion-sized graphs.
In: NeurIPS (2020)

24. Panagopoulos, G., Malliaros, F.D., Vazirgianis, M.: Influence maximization using
influence and susceptibility embeddings. In: ICWSM, pp. 511–521 (2020)

25. Panagopoulos, G., Malliaros, F.D., Vazirgiannis, M.: Diffugreedy: An influence
maximization algorithm based on diffusion cascades. In: Complex Networks (2018)

26. Panagopoulos, G., Malliaros, F.D., Vazirgiannis, M.: Multi-task learning for influ-
ence estimation and maximization. IEEE TKDE (2020)

27. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: A martin-
gale approach. In: SIGMOD, p. 1539–1554 (2015)

28. Tixier, A.J.P., Rossi, M.E.G., Malliaros, F.D., Read, J., Vazirgiannis, M.: Perturb
and combine to identify influential spreaders in real-world networks. In: ASONAM,
p. 73–80 (2019)

29. Wen, Z., Kveton, B., Valko, M., Vaswani, S.: Online influence maximization under
independent cascade model with semi-bandit feedback. In: NeurIPS (2017)

30. Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J.: Seismic: A self-
exciting point process model for predicting tweet popularity. In: KDD, pp. 1513–
1522 (2015)

http://arxiv.org/abs/1703.07823

Correction to: Web Engineering

Marco Brambilla , Richard Chbeir , Flavius Frasincar ,
and Ioana Manolescu

Correction to:
M. Brambilla et al. (Eds.): Web Engineering, LNCS 12706,
https://doi.org/10.1007/978-3-030-74296-6

In Chapter 10, the term “paths” was used instead of the term “operation.” This has been
corrected and the term “operations” is now used throughout the paper.

In Chapter 26, the email addresses of some authors have been corrected. The corrected
email addresses are: dylan.vanassche@ugent.be, gertjan.demulder@ugent.be, and ben.
demeester@ugent.be.

The updated version of these chapters can be found at
https://doi.org/10.1007/978-3-030-74296-6_10
https://doi.org/10.1007/978-3-030-74296-6_26

© Springer Nature Switzerland AG 2021
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, p. C1, 2021.
https://doi.org/10.1007/978-3-030-74296-6_49

https://orcid.org/0000-0002-8753-2434
https://orcid.org/0000-0003-4112-1426
https://orcid.org/0000-0002-8031-758X
https://orcid.org/0000-0002-0425-2462
https://doi.org/10.1007/978-3-030-74296-6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_49&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_10
https://doi.org/10.1007/978-3-030-74296-6_26
https://doi.org/10.1007/978-3-030-74296-6_49

Correction to: A Web-Based Co-Creation
and User Engagement Method and Platform

Andrea Tocchetti , Lorenzo Corti , Marco Brambilla ,
and Diletta Di Marco

Correction to:
Chapter “A Web-Based Co-Creation and User Engagement
Method and Platform” in: M. Brambilla et al. (Eds.):
Web Engineering, LNCS 12706,
https://doi.org/10.1007/978-3-030-74296-6_38

Chapter “A Web-Based Co-Creation and User Engagement Method and Platform” was
previously published non-open access. It has now been changed to open access under a
CC BY 4.0 license and the copyright holder updated to ‘The Author(s)’. The book has
also been updated with this change.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-74296-6_38

© The Author(s) 2022
M. Brambilla et al. (Eds.): ICWE 2021, LNCS 12706, p. C2, 2022.
https://doi.org/10.1007/978-3-030-74296-6_50

http://orcid.org/0000-0002-1681-5859
http://orcid.org/0000-0002-4200-1664
http://orcid.org/0000-0002-8753-2434
http://orcid.org/0000-0002-6324-3072
https://doi.org/10.1007/978-3-030-74296-6_38
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_50&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_50&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74296-6_50&domain=pdf
https://doi.org/10.1007/978-3-030-74296-6_38
https://doi.org/10.1007/978-3-030-74296-6_50

Author Index

Ali, Esraa 175
Almendros-Jiménez, Jesús M. 509
An, Kijin 388
Asmar, Boulos El 255
Athanasopoulos, Dionysis 139
Auer, Sören 240

Bakaev, Maxim 88
Bankowski, Victor 328
Bartelt, Christian 305
Becerra-Terón, Antonio 509
Beletski, Oleg 328
Berrocal, Javier 525
Blanc, Xavier 372
Both, Andreas 240
Brambilla, Marco 97, 496, 530
Bühler, Babette 185
Burzlaff, Fabian 305
Buyle, Raf 28

Cabot, Jordi 440
Cánovas Izquierdo, Javier Luis 440
Cao, Hanyang 372
Caputo, Annalina 175
Casteleyn, Sven 456
Ceolin, Davide 71
Chamberland-Thibeault, Xavier 423
Chen, Wei 372
Colpaert, Pieter 28, 53
Conlan, Owen 175
Corti, Lorenzo 496
Cudré-Mauroux, Philippe 521

Daniel, Gwendal 440
Daubaris, Paulius 328
De Craene, Annelies 28
De Meester, Ben 337
De Mulder, Gertjan 337
De Ribaupierre, Hélène 3
Dedecker, Ruben 28, 53
Delva, Harm 28, 53
Delva, Thomas 337
Demetz, Lukas 464
Di Lauro, Fabio 124

Dimou, Anastasia 337
Dong, Ruihai 209

Ed-douibi, Hamza 440

Felderer, Michael 464
Firmenich, Sergio 456
Flores-Martin, Daniel 525

Gaedke, Martin 11, 37, 88, 115, 490
García-Alonso, José 525
Garrigós, Irene 456
Giles, C. Lee 286
Gleim, Lars 513
González-Mora, César 456
Göpfert, Christoph 11
Guo, Wenli 271

Haesendonck, Gerald 337
Hallé, Sylvain 423
He, Ming 209, 225
Heil, Sebastian 37, 88
Heyvaert, Pieter 337
Huang, Zekun 225
Huber, Stefan 464

Jacquet, Stéphane 423
Jaradeh, Mohamad Yaser 240
Javadian, Alireza 97

Kaebisch, Sebastian 320
Kaindl, Hermann 542
Karakochev, Anton 483
Keenan, Daniel 139
Kirsh, Ilan 517
Koren, István 353
Korkan, Ege 320
Kurteva, Anelia 3

Langer, André 11
Lawless, Séamus 175
Li, Lianwei 166

Mäkitalo, Niko 328
Malliaros, Fragkiskos D. 547

552 Author Index

Maneeroj, Saranya 151
Marco, Diletta Di 496
Maziad, Hussein 255
Mazón, Jose-Norberto 456
Meléndez, Julián Rojas 28
Michiels, Philippe 28
Mikkola, Risto 328
Mikkonen, Tommi 328, 363
Molinelli, Davide 530
Moon, Soo-Mook 404
Müller, Leon 513
Murillo, Juan M. 525

Noura, Mahda 37

Panagopoulos, George 547
Paulheim, Heiko 185
Pautasso, Cesare 124, 328, 363
Primiero, Giuseppe 71

Rammouz, Julie-Ann 255
Rettig, Laura 521
Rodwald, Przemysław 505

Salama, Fady 320
Sauter, Loris 521
Schuldt, Heiko 521
Serbout, Souhaila 124
Shabani, Shaban 521
Shen, Tong 209
Shi, Wandong 271
Siegert, Valentin 115
Singh, Kuldeep 240
Sokhn, Maria 521
Soprano, Michael 71
Srinath, Mukund 286
Steinhorst, Sebastian 320

Stocker, Markus 240
Sulistiawati, Amin Endah 97
Sundareswara, Soundarya Nurani 286
Symeonidis, Panagiotis 537
Systä, Kari 363

Taivalsaari, Antero 363
Takasu, Atsuhiro 151
Tekli, Joe 255
Tengkiattrakul, Phannakan 151
Tilevich, Eli 388
Tocchetti, Andrea 496

Van Assche, Dylan 337
Van Lancker, Dwight 28
Van de Vyvere, Brecht 28
Verborgh, Ruben 28, 53
Vu Nguyen Hai, Dang 490

Wang, Hongan 271
Wang, Yichen 37
Wen, Han 225
Wielemaker, Jan 71
Wilson, Shomir 286
Wu, Bin 166

Yang, Yi 271
Yang, Ying 166
Yang, Yupin 201
Yoo, Yong-Hwan 404

Zhan, Shimeng 166
Zhang, Gefei 483
Zhang, Jiawen 271
Zhong, Jiang 201
Zhu, Jiaqi 271

	Preface
	Organization
	Keynotes
	Biases on Web Systems
	Anomaly Detection in Large Graphs
	Neural Databases
	Contents
	Semantic Web
	Interface to Query and Visualise Definitions from a Knowledge Base
	1 Introduction
	2 Related Work
	3 Methodology
	4 Implementation
	4.1 User Interface
	4.2 Graphical Visualisation of the Query Result

	5 Evaluation
	6 Conclusion
	References

	CARDINAL: Contextualized Adaptive Research Data Description INterface Applying LinkedData
	1 Introduction
	2 Problem Analysis
	3 The CARDINALApproach
	3.1 Contextualization
	3.2 Ontology Selection
	3.3 Form Generation
	3.4 Metadata Acquisition
	3.5 Metadata Persistence

	4 Prototypical Design
	5 Evaluation
	5.1 Acquired Metadata
	5.2 User Effort
	5.3 Usability Assessment
	5.4 Summary and Discussion of Evaluation Results

	6 Related Work
	7 Conclusion
	References

	Publishing Base Registries as Linked Data Event Streams
	1 Introduction
	2 Related Work
	3 A Base API for Base Registries
	4 A Linked Data Event Streams Ecosystem
	5 Conclusion and Future Work
	References

	OntoSpect: IoT Ontology Inspection by Concept Extraction and Natural Language Generation
	1 Introduction
	2 Related Work
	3 IoT Ontology Inspection Using OntoSpect
	4 Evaluation
	4.1 Evaluation Procedure and Material
	4.2 Results and Analysis
	4.3 Threats to Validity

	5 Conclusion and Future Work
	References

	A File-Based Linked Data Fragments Approach to Prefix Search
	1 Introduction
	2 Related Work
	3 Dataset Fragmentation and Traversal
	3.1 Preliminaries
	3.2 A Self-describing Fragmentation Strategy
	3.3 Client Algorithm

	4 Experiments and Results
	4.1 Cache Efficiency
	4.2 Query Performance
	4.3 Efficiency and Bandwidth
	4.4 Fragment Sizes

	5 Discussion
	6 Conclusion
	References

	Social Web
	Assessing the Quality of Online Reviews Using Formal Argumentation Theory
	1 Introduction
	2 Weight Based Preferential Rating Systems
	3 Experimental Setting
	3.1 Implementation
	3.2 Dataset
	3.3 Argumentation Graph Building Example

	4 RQ1 - Review Quality Assessment Evaluation
	4.1 Baselines and Evaluation Settings
	4.2 Results

	5 RQ2 - Multidimensional Review Quality Assessment
	5.1 Crowdsourcing Setting
	5.2 Results

	6 RQ3 - Explainability Evaluation
	7 Discussion
	7.1 RQ1 - Given a Set of Reviews About the Same Product, Can Argumentation Reasoning Help Assess Review Quality?
	7.2 RQ2 - Which Quality Aspects Does Argumentation Reasoning Emphasize?
	7.3 RQ3 - Can Argumentation Reasoning Be Used to Explain Review Quality?

	8 Related Work
	9 Conclusion and Future Work
	References

	Web User Interface as a Message
	1 Introduction
	2 Methods and Related Work
	2.1 Data Quality Control in Crowdsourcing
	2.2 Power Law Distributions for Fraud Detection

	3 Evaluation
	3.1 The Experiment Description
	3.2 Descriptive Statistics
	3.3 The Testing Set of MTurk Workers
	3.4 Power Law-Based Fraud Detection

	4 Discussion and Conclusions
	References

	Conversation Graphs in Online Social Media
	1 Introduction
	1.1 Problem Statement
	1.2 Objective
	1.3 Contribution

	2 Related Work
	2.1 Graph Analysis on Social Network
	2.2 Conversation Graphs on Social Media
	2.3 Proposed Network Analysis on Conversation Graphs

	3 Methodology
	3.1 Text Classification Design
	3.2 Network and Conversation Graph Design

	4 Experiments
	4.1 Case Study and Data Collection
	4.2 Intent Analysis
	4.3 Network Analysis

	5 Analysis Results
	5.1 Statistical Analysis on Conversation
	5.2 Conversation Patterns Retrieval

	6 Conclusion and Future Work
	References

	Web Modeling and Engineering
	WTA: Towards a Web-Based Testbed Architecture
	1 Introduction
	2 Recent Work: Web-Based Testbeds' Similarities
	3 Web-Based Testbed Architecture (WTA)
	3.1 WTA Elements
	3.2 WTA Components

	4 Conclusion
	References

	Towards Large-Scale Empirical Assessment of Web APIs Evolution
	1 Introduction
	2 Dataset Overview
	3 Results
	3.1 Change Granularity: Commits and Versions
	3.2 API Age and Change Frequency
	3.3 API Growth
	3.4 Web API Evolution Case Studies

	4 Discussion
	4.1 Threats to Validity

	5 Related Work
	6 Conclusions
	References

	Stability Metrics for Continuous Integration of Service-Oriented Systems
	1 Introduction
	2 Related Work
	3 Service API and SOA System
	4 Service API Mappings
	5 API Evolution Changes and Evolution Algorithm for API Clients
	6 Stability Metrics for SOA System
	7 Conclusions and Future Work
	References

	Web Big Data and Data Analytics
	Attentive Hybrid Collaborative Filtering for Rating Conversion in Recommender Systems
	1 Introduction
	2 Related Work
	2.1 Recommender Systems
	2.2 Deep Learning and the Attention Mechanism in RSs
	2.3 KG Embedding Techniques in RSs
	2.4 Rating Conversion Methods

	3 Proposed Method
	3.1 User and Item Representation
	3.2 The Friend Module
	3.3 Generating Latent Relations
	3.4 Optimization and Learning

	4 Experimental Evaluation
	4.1 Datasets
	4.2 Existing Systems
	4.3 Implementation and Parameter Settings
	4.4 Evaluation Protocol and Metrics
	4.5 Experimental Results

	5 Discussion
	5.1 Performance of the Proposed UR-Matrix
	5.2 Performance of the Friend Module

	6 Conclusion
	References

	Sentence Dependent-Aware Network for Aspect-Category Sentiment Analysis
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Results and Discussion

	5 Conclusion
	References

	A Probabilistic Approach to Personalize Type-Based Facet Ranking for POI Suggestion
	1 Introduction
	2 Facet Ranking Related Research
	3 Proposed Approach
	3.1 Step 1: Scoring Using T-Facet Probabilistic Models
	3.2 Step 2: T-Facet Tree Building

	4 Experimental Results
	5 Conclusions
	References

	Web Mining and Knowledge Extraction
	Web Table Classification Based on Visual Features
	1 Introduction
	2 Related Work
	2.1 Heuristic Filter Rules
	2.2 Machine Learning Using HTML Based Features
	2.3 Visual Representation Based Features

	3 Approach
	3.1 Convolutional Neural Nets for Image Classification and Visual Feature Extraction
	3.2 Transfer Learning with VGG16 and ResNet50

	4 Experiments
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion and Outlook
	References

	Automated Essay Scoring via Example-Based Learning
	1 Introduction
	2 Related Work
	3 Model
	3.1 Coherence and Relevance Modeling
	3.2 Example-Based Learning
	3.3 Scoring

	4 Experiments
	4.1 Dataset
	4.2 Evaluation Metric
	4.3 Experimental Results

	5 Conclusion
	References

	Conversation and Recommendation: Knowledge-Enhanced Personalized Dialog System
	1 Introduction
	2 Related Work
	2.1 Task-Oriented System
	2.2 Personalization in Dialog

	3 Preliminaries
	4 Methodology
	4.1 Utterance and Profile Encoder
	4.2 Split Memory Network
	4.3 Conversation or Recommendation?
	4.4 User Preference Scores Method
	4.5 Information Inference Method
	4.6 The Unified Model

	5 Experiments
	5.1 Dataset and Evaluation Metrics
	5.2 Baselines
	5.3 Experimental Setup
	5.4 Results
	5.5 Analysis of User Preference Method
	5.6 Analysis of Ambiguity
	5.7 Analysis of Information Extraction

	6 Conclusion and Future Work
	References

	MPIA: Multiple Preferences with Item Attributes for Graph Convolutional Collaborative Filtering
	1 Introduction
	2 Related Work
	2.1 Collaborative Filtering
	2.2 Graph Methods for Recommendation

	3 Method
	3.1 Preference-Aware User-Item Graphs
	3.2 Embedding Layer
	3.3 Aggregation Layer
	3.4 Preference-Attribute Fusion Layer
	3.5 Rating Prediction
	3.6 Optimization

	4 Experiments
	4.1 Experimental Settings
	4.2 Results

	5 Conclusion
	References

	Better Call the Plumber: Orchestrating Dynamic Information Extraction Pipelines
	1 Introduction and Motivation
	2 Related Work
	3 Dynamic Information Extraction Pipelining Framework
	4 Evaluation
	4.1 Experimental Setup
	4.2 Experiments
	4.3 Ablation Studies

	5 Discussion
	6 Conclusion and Future Work
	References

	Preprocessing Techniques for End-To-End Trainable RNN-Based Conversational System
	1 Introduction
	2 Related Works
	2.1 Conversational Systems
	2.2 Generative Sequence-to-Sequence Deep Learning Models
	2.3 Deep Neural Models with External Knowledge

	3 Proposal: Preprocessing Techniques for Conversational RNN
	3.1 Data Representation
	3.2 Context and History
	3.3 RNN Set-up
	3.4 Knowledge Representation
	3.5 Data Preprocessing Techniques

	4 Experimental Evaluation
	4.1 Experimental Data
	4.2 Experimental Results

	5 Conclusion
	References

	Effective Seed-Guided Topic Labeling for Dataless Hierarchical Short Text Classification
	1 Introduction
	2 Related Work
	2.1 Dataless Text Classification
	2.2 Dataless Hierarchical Text Classification
	2.3 Topic Models for Short Texts

	3 Preliminaries
	4 Proposed Models
	4.1 Estimating Category-Path-Biterm Similarity
	4.2 Hierarchical Seeded Biterm Topic Model

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Experiment Settings
	5.4 Experimental Results
	5.5 Parameter Study

	6 Conclusion
	References

	PrivaSeer: A Privacy Policy Search Engine
	1 Introduction
	2 Related Work
	3 Data Collection
	4 Search Interface
	5 Indexing
	6 Ranking
	7 Filtering and Observations on the Document Set
	7.1 Sectors of Commerce
	7.2 Readability
	7.3 Tracking Technology
	7.4 Self-regulatory Bodies
	7.5 Regulations and Agreements
	7.6 Vague Language

	8 Ranking Evaluation and Discussion
	9 Conclusion
	References

	Web of Things
	Knowledge-Driven Architecture Composition: Assisting the System Integrator to Reuse Integration Knowledge
	1 Introduction
	2 Background for Applied Approach
	2.1 Integration Knowledge Reuse Example

	3 Evaluation Design and Results
	3.1 Evaluation Setup
	3.2 Evaluation Execution Process
	3.3 Implementation
	3.4 Results
	3.5 Threats to Validity

	4 Related Work
	5 Conclusion
	References

	A-MaGe: Atomic Mashup Generator for the Web of Things
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions

	2 A-MaGe Methodology
	2.1 Design Space Reduction Using Templates and Constraints

	3 Evaluation
	4 Related Work
	5 Conclusion
	References

	WebAssembly Modules as Lightweight Containers for Liquid IoT Applications
	1 Introduction
	2 Background and Related Work
	3 Our Vision
	4 Proof of Concept Design
	5 Way Forward to the Vision
	6 Conclusion
	References

	Leveraging Web of Things W3C Recommendations for Knowledge Graphs Generation
	1 Introduction
	2 State of the Art
	2.1 Related Work
	2.2 Preliminaries

	3 Motivation
	3.1 Motivating Use Cases: ESSENCE and DAIQUIRI
	3.2 Open Issues

	4 Approach
	4.1 WoT W3C Recommendations as Data Access Description
	4.2 Introducing RML's Logical Target

	5 Validation
	5.1 Implementation
	5.2 ESSENCE Use Case
	5.3 DAIQUIRI Use Case

	6 Conclusion
	References

	A Standalone WebAssembly Development Environment for the Internet of Things
	1 Introduction
	2 Towards Code Mobility on the Web of Things
	3 Proof-of-Concept WASM on the Edge
	3.1 Conceptual Design
	3.2 Microcontroller Implementation

	4 Applicability of WebAssembly on Microcontrollers
	4.1 Preliminary Evaluation
	4.2 Limitations of the Prototype

	5 Conclusion and Outlook
	References

	Web Programming
	Full Stack Is Not What It Used to Be
	1 Introduction
	2 Software as a Service and the Disappearance of the IT Department
	3 The Implications of Microservice Architectures
	4 Emerging Expectations
	5 The New Full Stack – Implications for Software and Web Engineering Education
	6 Conclusions
	References

	An Improving Approach for DOM-Based Web Test Suite Repair
	1 Introduction
	2 Background and Motivation
	2.1 Web Application and Evolution
	2.2 E2E Test
	2.3 Broken Test and Action

	3 WTSR: Web Test Suite Repair
	3.1 Overview
	3.2 Create Test Suite Graph Release 1
	3.3 Generate Test Suite Graph Release 2
	3.4 Compare TSGs

	4 Empirical Evaluation
	4.1 E2E Test Subjects
	4.2 Results
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Communicating Web Vessels: Improving the Responsiveness of Mobile Web Apps with Adaptive Redistribution
	1 Introduction
	2 Approach
	2.1 Motivating Example
	2.2 Approach: Communicating Web Vessels
	2.3 Reasoning About Responsiveness

	3 Reference Implementation
	3.1 Analyzing Full-Stack JavaScript App
	3.2 Transforming Programs to Enable CWV
	3.3 Updating Modes and Cutoff Latency
	3.4 Synchronizing States
	3.5 Sandboxing Insourced Code

	4 Evaluation
	4.1 Device Choice Impact
	4.2 Network Latency Impact
	4.3 Energy Consumption
	4.4 Communication Overhead

	5 Related Work
	6 Conclusions and Future Work
	References

	Snapshot-Based Migration of ES6 JavaScript
	1 Introduction
	2 Background and Related Works
	2.1 Snapshot-Based JavaScript App Migration
	2.2 Function Closure and Scope Tree

	3 ES6 Features and Issues in App Migration
	4 Proposed Approach
	4.1 Module Profiling
	4.2 Migrating Modified Built-In Objects
	4.3 Scope Tree Building
	4.4 Syntax-Aware Tree Re-ordering
	4.5 Tree Partitioning
	4.6 Snapshot Code Generation

	5 Evaluation
	5.1 Implementation and Setup
	5.2 RQ1: How Do ES6 Features Affect the Scope Tree Results?
	5.3 RQ2: Are Snapshot Codes Generated in Small Sizes?
	5.4 RQ3: How Much Is the Framework's Time Overhead?

	6 Conclusion
	References

	Web User Interfaces
	Automated Repair of Layout Bugs in Web Pages with Linear Programming
	1 Introduction
	2 State of the Art for Fixing Layout Bugs in Web Pages
	2.1 Types of Layout Bugs
	2.2 UI Bug Detection
	2.3 Automated Repair
	2.4 Optimization-Based Techniques

	3 Modelization of Layout Bugs as MILP
	3.1 Layout Constraints
	3.2 Defining an Objective Function
	3.3 Reducing the Number of Constraints
	3.4 Hotfix Application

	4 Experimental Evaluation
	4.1 Real-World Bugs
	4.2 Synthetic Pages

	5 Conclusion and Future Work
	References

	A Model-Based Chatbot Generation Approach to Converse with Open Data Sources
	1 Introduction
	2 Background
	2.1 Open Data
	2.2 Chatbots

	3 Overview
	4 Importing Open Data APIs as Models
	4.1 Modeling Open Data APIs
	4.2 Injection of Open Data Models
	4.3 Refinement of Open Data Models

	5 Generating the Bot
	6 Tool Support
	7 Related Work
	8 Conclusion
	References

	Open Data Accessibility Based on Voice Commands
	1 Introduction
	2 Related Work
	3 Web Augmentation Framework for Open Data Accessibility
	3.1 Extending WAFRA4OD with New Operations
	3.2 Implementation Details

	4 WAFRA4OD Case Study
	5 Conclusions
	References

	PWA vs the Others: A Comparative Study on the UI Energy-Efficiency of Progressive Web Apps
	1 Introduction
	2 Background
	3 Related Work
	4 Research Method
	4.1 App Implementation Details
	4.2 Interaction Scenarios
	4.3 Energy Measurement
	4.4 Test Devices
	4.5 Test Procedure
	4.6 Hypotheses Formulation
	4.7 Data Analysis

	5 Results
	6 Discussion
	7 Conclusion
	References

	Ph.D. Symposium
	Static Analysis of Large-Scale JavaScript Front End
	1 Introduction
	2 Related Work
	3 Research Proposal and Preliminary Results
	3.1 Integration of Data and Control Flow
	3.2 Analysis
	3.3 Preliminary Results

	4 Conclusions
	References

	Applying Predictive Analytics on Research Information to Enhance Funding Discovery and Strengthen Collaboration in Project Proposals
	1 Problem Context and Definitions
	2 Open Challenges
	3 Related Work
	4 Research Objectives and Contributions
	5 Research Methodology and Preliminary Results
	6 Conclusion
	References

	A Web-Based Co-Creation and User Engagement Method and Platform
	1 Introduction
	2 Related Work
	3 Co-Creation and User Engagement Method
	3.1 The Evolution of the Policy-Making Process
	3.2 The Research Method
	3.3 The Co-creation and User Engagement Solution

	4 Limitations and Future Work
	5 Conclusions
	References

	Posters and Demonstrations
	Effectiveness Comparison of Email Addresses Recovery from Gravatars
	1 Introduction
	2 Attacks on Gravatar MD5 Hashes
	2.1 Targets
	2.2 Preparation Phase
	2.3 Techniques of Attacks

	3 Results and Findings
	4 Conclusions
	References

	A Web Tool for XQuery Debugging
	1 Introduction
	2 Debugging
	3 Future Work
	References

	Managing Versioned Web Resources in the File System
	1 Introduction
	2 Mapping LDP Resources into the File System
	3 Implementation
	4 Conclusion
	References

	Visualizing Web Users' Attention to Text with Selection Heatmaps
	1 Introduction
	2 Implementation
	3 Demonstration
	4 Conclusions and Future Work
	References

	City-Stories: Combining Entity Linking, Multimedia Retrieval, and Crowdsourcing to Make Historical Data Accessible
	1 Introduction
	2 System Overview
	2.1 Semantic Data Expansion
	2.2 Spatio-Temporal Content Browser
	2.3 Crowdsourcing and Knowledge Visualization

	3 Conclusion
	References

	SMOTE: A Tool to Proactively Manage Situations in WoT Environments
	1 Introduction
	2 SMOTE: Situation Management for Smart Environments
	2.1 The Controller
	2.2 The Description Manager

	3 Application
	4 Conclusions
	References

	Voice-Based Virtual Assistants for User Interaction Modeling
	1 Introduction
	2 Voice-Based Modeling Assistant
	3 Evaluation
	References

	Tutorials
	Similarity Search, Recommendation and Explainability over Graphs in Different Domains: Social Media, News, and Health Industry
	1 Introduction
	2 News Industry Example Formulated as a Graph
	3 Related Work
	4 Other Examples: Social Media and Health Industry
	5 Conclusion
	References

	High-Level Interaction Design with Discourse Models for Automated Web GUI Generation
	1 Intended Audience and Assumed Background
	2 Tutorial Structure and List of Topics Covered
	2.1 Summary of Topics Covered

	3 Learning Objectives and Outcomes
	4 Biography of Presenter
	5 Tutorial History
	References

	Influence Learning and Maximization
	1 Introduction and Objectives
	2 Outline of the Tutorial
	References

	Correction to: Web Engineering
	Correction to: M. Brambilla et al. (Eds.): Web Engineering, LNCS 12706, https://doi.org/10.1007/978-3-030-74296-6

	Correction to: A Web-Based Co-Creation and User Engagement Method and Platform
	Correction to: Chapter “A Web-Based Co-Creation and User Engagement Method and Platform” in: M. Brambilla et al. (Eds.): Web Engineering, LNCS 12706, https://doi.org/10.1007/978-3-030-74296-6_38

	Author Index

