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Abstract Ambient vibrationmodal identification, also known asOperationalModal
Analysis (OMA), aims to identify the modal properties of a structure based on vibra-
tion data collected when the structure is under its operating conditions, i.e., when
there is no initial excitation or known artificial excitation. This method for testing
and/ormonitoringhistorical buildings and civil structures, is particularly attractive for
civil engineers concerned with the safety of complex historical structures. However,
in practice, not only records of external force are missing, but uncertainties are
involved to a significant extent. Hence, stochastic mechanics approaches are needed
in combination with the identification methods to solve the problem. In this context,
this paper’s contribution is to introduce an innovative ambient identification method
based on the Hilbert Transform to obtain the analytical representation of the system
response in terms of the correlation function. This approach opens the pathway for
a monitoring system that is user friendly and can be used by people who have little
to no knowledge of signal processing and stochastic analysis such as those who
are responsible for the maintenance of a city’s historical buildings. In particular,
this method operates in time domain only. Specifically, firstly the correlation func-
tions matrix RX (τ ) is determined based on the recorded time domain data. Next,
performing a Singular Value Decomposition (SVD) on RX (τ ) for τ = 0 leads to
an estimate of the modal matrix � containing all the modal shapes. In this manner,
once � is known, the entire correlation functions matrix in modal space RY (τ ) is
recovered. Further, the analytical signals of the auto-correlation functions in modal
space are determined performing the sum of each auto-correlation function with its
Hilbert transform. Moreover, since the analytical signal can be expressed in terms
of amplitude and phase, then frequencies and damping ratios estimation is possible.
Finally, in order to prove the reliability of the method several numerical examples
and an experimental test are reported.
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1 Introduction

A fundamental step for the Structural Health Monitoring (SHM) is the structural
identification that, from a dynamic point of view, coalesces with the identification of
natural frequencies, damping ratios and modal shapes.

In literature there are a lot of dynamic identification methods that can be subdi-
vided into two main classes: Experimental Modal Analysis methods (EMA) and
Operational Modal Analysismethods (OMA) [1]. The first one can identify the non-
linear behavior of a structure but requires the knowledge of the structural input.
This aspect is penalizing because the artificial generation of the structural input is
complicated and very expensive in the in situ tests. On the other hand, the set-up of
the OMA methods is very cheap and simple because these methods don’t require
the knowledge, and thus the artificial generation of the structural input. Furthermore,
since the structural input in the OMAmethod is an ambient noise due to traffic, wind,
ground vibrations, use of the structure and so on, it is possible to identify the dynamic
properties in the real operative conditions and the structural input is moldable as a
white noise. For these advantages, in the last decades, the researchers focused their
attention on the OMA methods.

Another classification of the identification methods can be done considering
the domain in which they are developed, in fact OMA methods are subdivided
in: time domain methods, frequency domain methods and hybrid domain methods
[2]. Frequency domain methods in OMA, like Peak Picking and Half Power Band-
width Method (PP+HP) [3] and Frequency Domain Decomposition (FDD) [4, 5], are
usually based on the Power Spectral Density (PSD) estimation that can be performed
by using the Welch’s method [6, 7]. The estimation of the PSD with the Welch’s
method allows to have different advantages due to the decomposition of the structural
output in sub-signals to which is possible to apply time windows (Tukey, Hamming,
Hanning) and to assign an overlap length. However, the use of this method is difficult
for a non-expert user and the choice of the sub-signals length, the kind of window to
apply to every sub-signal and the overlap length can influence the results especially in
terms of damping ratios estimation. Furthermore, if themodes are very close the iden-
tification of the dynamic properties might not be very accurate [3]. There are several
time domain methods in literature, such as: Natural Excitation Technique (NExT)
[8] that, when the excitation is an ambient vibration, it requires that the analytical
form of free-vibration and the analytical form of the structural output are the same;
Stochastic Subspace Identificationmethods (SSI) [2] divided into covariance-driven
models (SSI-COV) and data-driven models (SSI-DATA); Auto Regressive Moving
Average models (ARMA) [9] that are articulated into Auto Regressive (AR) step
andMoving Average (MA) step. Hybrid domain methods can be developed in time-
frequency domain, like methods based on the Wavelet transform [10], or they can be
divided into different steps some in the time domain, others in the frequency domain.
An example of the latter is the Analytical Signal Method (ASM) [11] that profits by
the advantages due to the use of the analytical signal i.e. a high sensitivity to the
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minimum variations of the natural frequency. Due to the aforementioned advantages
the analytical signal is also used for the identification of structural damage [12, 13].

In this paper, a new OMAmethod founded upon stochastic mechanic’s principles
is proposed. It uses a Singular Value Decomposition (SVD) [14] to reproduce the
relationship between the correlation functions matrix in the nodal space and correla-
tion functions matrix in the modal space. The proposed method, called Time Domain
Analytical SignalMethod (TD-ASM) for the similaritywith the hybridmethodASM,
does not involve the difficulties due to the use of Welch’s method, in fact it is devel-
oped only in time domain. Furthermore, the analytical signals of the correlation
functions are used in order to have a high precision in the frequencies identification.

2 Proposed Method: Time Domain Analytical Signal
Method (TD-ASM)

2.1 Identification Algorithm for SDOF Systems

In this section, a novel OMA method is proposed. This method allows to iden-
tify natural frequency and damping coefficient of the SDOF structures enforced by
ambient vibration. After the acquisition of the output process X(t), its correlation
function RX (τ ) is calculated. The analytical signal of the correlation function can be
estimated by summing the correlation function to its Hilbert transform multiplied by
the imaginary unit; in fact, the analytical signal is a complex signal in which the real
part is the original function and the imaginary part is its Hilbert transform. Finally,
the dynamic properties of the structural system can be estimated from the properties
of the analytical signal: amplitude A(τ ) and phase θ(τ ). The different steps of the
proposed method for SDOF structures can be resumed in:

(1) Acquisition of the structural output process X(t);
(2) Estimation of the correlation function RX (τ );
(3) Reconstruction of the analytical signal zX (τ );
(4) Identification of the dynamic properties.

For SDOF structures the proposed method is very similar to the ASM but it is
simpler than the latter because the estimation of the PSD with the Welch’s method
is removed. In particular, the direct estimation of the correlation function allows to
overcome the difficulties introduced by the use of the Welch’s method for the eval-
uation of power spectral density; in fact, the choice of the time windows applied to
the sub-signals and the overlap length between two successive sub-signals can influ-
ence the results, furthermore the use of theWelch’s method requires high specialized
skills.

In order to introduce the proposed method in details, a linear SDOF shear-type
frame with mass m, stiffness k and damping c is used. The dynamic properties to
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identify are: the natural frequencies of the structure f =
√
k
/
m/(2π) and the

damping ratio ζ = c
/

(4πm f ).
When the signal of the input force is not acquired and the excitation source is due to

ambient vibrations, the key hypothesis of OMA is that the structure can be considered
as excited by a white noise process, defined as in [15–18], and, consequently, the
stochastic differential equation governing the structural motion is

Ẍ(t) + 2ζω0 Ẋ(t) + ω2
0X(t) = W (t) (1)

where ω0 is the circular frequency that is equal to 2π f . Adding the initial condition
to the Eq. (1), the structural response process X(t) can be obtained.

The correlation function RX (τ ) of the output response process X(t) can be
estimated as

RX (τ ) = E[X(t)X(t + τ)] − μ2
X (2)

where μX is the mean of the process X(t). Since X(t) is a zero-mean process the
Eq. (2) coalesces with

RX (τ ) = E[X(t)X(t + τ)]. (3)

The Hilbert transform R̂X (τ ) of the correlation function RX (τ ) is, for definition,
the convolution of RX (τ ) with the signal 1

/
(π τ), i.e. it is the response to RX (τ ) of

a linear time-invariant filter having impulse response 1
/

(π τ). Therefore R̂X (τ ) can
be calculated as

R̂X (τ ) = 1

π
℘

∞∫

−∞

RX (τ̃ )

τ − τ̃
d τ̃ (4)

where ℘ is the principal value.
The analytical signal is calculated as

zX (τ ) = RX (τ ) + i R̂X (τ ) (5)

and, can be written in polar form as

zX (τ ) = A(τ )ei θ(τ ) (6)

where A(τ ) is the amplitude

A(τ ) =
√
R2
X (τ ) + R̂2

X (τ ) (7)
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and θ(τ ) is the phase

θ(τ ) = arctan

[
Im[zX (τ )]

Re[zX (τ )]

]
= arctan

[
R̂X (τ )

RX (τ )

]
. (8)

Taking into account the Euler’s formula, the analytical signal in Eq. (6) can be
expressed in the form

zX (τ ) = A(τ ) cos(θ(τ )) + i A(τ ) sin(θ(τ )). (9)

The correlation function of a SDOF structure enforced by a white noise can be
approximated, for τ > 0, as

RX (τ ) = Qe−2π f ζ τ cos
(
2π f̄ τ

)
(10)

and thus its Hilbert transform can be expressed as

R̂X (τ ) = Qe−2π f ζ τ sin
(
2π f̄ τ

)
(11)

where f̄ = f
√
1 − ζ 2 is the damped frequency and Q is a constant equal to the

variance of the structural response.
Replacing Eqs. (10) and (11) in the Eq. (5) it leads to

zX (τ ) = Qe−2π f ζ τ cos
(
2π f̄ τ

) + i Qe−2π f ζ τ sin
(
2π f̄ τ

)
(12)

and thus, using Eqs. (12) and (9) is clear that

A(τ ) = Qe−2π f ζ τ (13)

and

θ(τ ) = 2π f̄ τ. (14)

The instantaneous damped frequency can be calculated performing the first
derivative of the phase and dividing by 2π, i.e.

f̄ (τ ) = 1

2π

d

dτ
[θ(τ )]. (15)

By performing the average of the instantaneous damped frequency it is possible
to obtain the damped frequency of the structure like

f̄ = E
[
f̄ (τ )

]
. (16)
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The damping ratio can be obtained from the logarithm of the amplitude that has
a linear form as it can be seen from the following equation

ln[A(τ )] = ln[Q] − 2π f ζ τ = c2 + c1τ. (17)

From the linear form of the Eq. (17) it is clear that the angular coefficient of the
amplitude’s logarithm is related to the structural damping ratio; in particular, the
damping ratio is obtained as

ζ = − c1
2π f

. (18)

Since only the damped frequency is identified, we need to take into account that

f = f̄
/√

1 − ζ 2, and thus the Eq. (18) reverts to

ζ =
√

c̄21
1 + c̄21

(19)

with c̄1 = c1
/(

2π f̄
)
.

2.2 Identification Algorithm for MDOF Systems

The proposed method, introduced in the previous section, requires another step if
applied to the MDOF systems. As a matter of fact, the components of the correlation
functions matrix are “multi-component” functions and then they have a not well-
behaved Hilbert transform. Therefore, it needs a “mono-component” correlation
function, such as the modal correlation function, to restore the efficiency of the
Hilbert transform. In light of the above, the identification method forMDOF systems
can be resumed as:

(1) Output processes X(t) acquisition;
(2) Correlation functions matrix RX(τ ) estimation;
(3) Singular Value Decomposition of RX(0) and modal shapes identification;
(4) Calculation of the correlation functions matrix in the modal space RY(τ );
(5) Reconstruction of the analytical signals of the auto-correlation functions in the

modal space;
(6) Frequencies and damping ratios estimation.

In order to extend the proposed method to a MDOF system, a shear-type MDOF
frame with mass matrix M, stiffness matrix K and damping matrix C is used. The
dynamic properties to be identified are: the modal matrix �, the natural frequencies
fi and the damping ratios ζi where i = 1, 2, . . . , N and N is the number of degree
of freedom of the system. In this case the differential equations system that governs
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the structural motion is

MẌ(t) + CẊ(t) + KX(t) = −MVW (t) (20)

where V is the influence vector. The correlation functions contained into the
correlation functions matrix are estimated as

RXi X j (τ ) = E
[
Xi (t)X j (t + τ)

] − μXi μX j (21)

whereμXi andμX j are respectively the averages of the i-th and j-th response process.
As it is well known, the differential equation system in Eq. (20) can be expressed

in the modal space pre-multiplying for the modal matrix � and taking into account
the modal transformation

X(t) = �Y(t) (22)

whereX(t) is the response process in the nodal space andY(t) is the response process
in the modal space. The Eq. (20) expressed in the modal space thus becomes

Ÿ(t) + �Ẏ(t) + �Y(t) = −�TMVW (t) (23)

in which � = �TK� is a diagonal matrix containing the squares of the circular
frequencies of the system and � = �TC� is, for classically damped system, a
diagonal matrix that have the i-th term on the diagonal equal to 2ζiωi .

The auto-correlation functions contained into the diagonal of the correlation
functions matrix expressed in the modal space are

RYiYi (τ ) = E[Yi (t)Yi (t + τ)] − μ2
Yi (24)

where μYi is the average of the i-th response process in the modal space.
Since themodal matrix� is unknown, the proposedmethod takes into account the

relationship between the correlation functions matrix expressed in the nodal space
RX(τ ) and the correlation function matrix expressed in the modal space RY(τ ) [14],
i.e.

RX(τ ) = �RY(τ )�T . (25)

In order to decompose RX(0) in the product of three matrices is possible to use a
SVD as it is reported in the following equation

RX(0) = USVH . (26)

In Eq. (26) S is a diagonal matrix that contains the singular values of RX(0), U
and V are unitary matrices that contain respectively the left singular vectors and the
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right singular vectors of RX(0); and the apex H denote the conjugated transpose. If
RX(0) is a normal matrix, i.e. if it is square and (RX(0))HRX(0) = RX(0)(RX(0))H ,
then U = V. Since RX(0) is a normal and real matrix, Eq. (26) becomes

RX(0) = USUT . (27)

If the frequencies are well separated, then RY(0) is almost a diagonal matrix and
thus S ≈ RY(0) and U ≈ �. In light of the above, the modal matrix � is estimated
performing a SVD of RX(0) and the correlation functions matrix in the nodal space
can be calculated with the inverse formula of Eq. (25), i.e.

RY(τ ) = �TRX(τ )� (28)

The analytical signals zi (τ ) of the auto-correlation functions in the modal space
are calculated as

zi (τ ) = RYiYi (τ ) + i R̂Yi Yi (τ ) (29)

where R̂Yi Yi (τ ) is the Hilbert transform of RYiYi (τ ).
For each degree of freedom of the system, the frequencies and the damping ratios

can be estimated with the same procedure proposed for SDOF system. In particular,
applying Eqs. (7) and (8) is possible to calculate respectively the amplitudes Ai (τ )

and the phases θi (τ ) of the analytical signals, by using Eqs. (15) and (16) the damped
frequencies f̄i can be estimated and, finally, Eqs. (17–19) can be used to estimate
the damping ratios ζi of the system.

3 OMA: From Research to Engineering Applications

As regards, the paper’s contribution is to provide a user friendly method, that can be
used by people who have little to no knowledge of signal processing and stochastic
analysis such as those who are responsible for the maintenance of a city’s historical
buildings. To aim at this, all the aforementioned steps have been implemented into
an algorithm in MatLab environment reported in the Appendix.

Specifically, this algorithm only requires as input the time vector and the recorded
structural outputs, then automatically returns all steps necessary to provide the
dynamic properties of the structure. In sequential order the aforementioned algorithm
estimate: the correlation functions matrix in the nodal space, the modal shapes, the
correlation functions matrix in the modal space, the analytical signals of the auto-
correlation functions in the modal space, the amplitudes, the phases, the damped
frequencies and the damping ratios. To assess the reliability of the method and the
algorithm, several numerical simulations and an experimental test are reported as it
follows.
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3.1 Validation of the Proposed Algorithm Through a SDOF
System

In order to prove the reliability of the identification algorithm for SDOF system, a
numerical simulation on a linear SDOF shear-type framewas performed for different
values of the damping coefficient ζ . In particular, the SDOF structure has a natural
frequency f = 30 Hz and the damping ratio is variable between 0.01 and 0.10 with a
step equal to 0.01. The structural inputW (t) has been generatedwith the Shinozuka’s
formula [19] and the number of the generated samples is equal to 1000. Every sample
has a duration of 100 s with sampling frequency 1000 Hz. The instantaneous damped
frequency f̄ (τ ) and the logarithm of the amplitude A(τ ) are depicted respectively
in Figs. 1 and 2 for ζ = 0.02.

The results obtained by using the proposed method and PP + HP are reported,
with the relative discrepancies ε%, in Tables 1 and 2. These results suggest that both
methods are reliable for the estimation of the natural frequency and damping ratio
in a SDOF system. However, the proposed method has less discrepancy than PP +
HP, both in terms of damped frequency estimation and in terms of damping ratio
estimation. In this section the proposed method is compared only with PP + HP
because other automated algorithm in MatLab environment, like FDD.m [20] and
SSICOV.m [21], can be used only for MDOF systems.

Fig. 1 Instantaneous damped frequency for f = 30 Hz and ζ = 0.02
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Fig. 2 Amplitude’s logarithm for f = 30 Hz and ζ = 0.02

Table 1 Comparison among the exact damped frequency and the estimated damped frequency

Damping ratio Exact
frequency

TD-ASM
frequency

Discrepancy
ε%

PP + HP
frequency

Discrepancy
ε%

0.0100 29.9985 29.9999 0.0046 29.9900 0.0283

0.0200 29.9940 29.9967 0.0090 29.9700 0.0800

0.0300 29.9865 29.9901 0.0121 29.9500 0.1217

0.0400 29.9760 29.9798 0.0125 29.9500 0.0867

0.0500 29.9625 29.9647 0.0074 29.9500 0.0416

0.0600 29.9460 29.9434 0.0087 29.9500 0.0135

0.0700 29.9264 29.9130 0.0447 29.9400 0.0454

0.0800 29.9038 29.8694 0.1152 29.9400 0.1209

0.0900 29.8783 29.8064 0.2405 29.9400 0.2067

0.1000 29.8496 29.7173 0.4433 29.5600 0.9703

3.2 Validation of the Proposed Algorithm Through a MDOF
System

In order to prove the reliability of the identification algorithm for MDOF systems,
a numerical simulation on a linear 3DOF shear-type system was performed at
various values of the damping coefficient ζ1. In particular, the range of variation
of the first damping ratio is ζ1 = 0.05 ÷ 0.10 with a step equal to 0.01. ζ2 and
ζ3 are calculated considering a Rayleigh damping. The shear-type 3DOF frame
used for the numerical simulations has mass m j = 794 kg for j = 1, 2, 3 and
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Table 2 Comparison between the exact damping ratio and the estimated ramping ratio

Exact damping
ratio

TD-ASM
damping ratio

Discrepancy ε% PP + HP damping
ratio

Discrepancy ε%

0.0100 0.0100 0.3102 0.0104 3.6540

0.0200 0.0200 0.0063 0.0202 1.1639

0.0300 0.0300 0.0623 0.0299 0.4492

0.0400 0.0400 0.0485 0.0394 1.4300

0.0500 0.0500 0.0157 0.0492 1.5617

0.0600 0.0599 0.1252 0.0595 0.7978

0.0700 0.0698 0.2866 0.0703 0.4566

0.0800 0.0796 0.5158 0.0795 0.6002

0.0900 0.0908 0.8370 0.0886 1.5493

0.1000 0.1013 1.2787 0.1022 2.2490

stiffness k j = 6.18 × 106N
/
m for j = 1, 2, 3 and thus the natural frequen-

cies are f1 = 6.2489 Hz, f2 = 17.5091 Hz, f3 = 25.3014 Hz, and the modal

shapes are φ1 = [
0.328 0.591 0.737

]T
, φ2 = [

0.737 0.328 −0.591
]T
, φ3 =[

0.591 −0.737 0.328
]T
. The results in terms of damped frequencies (for each value

of ζ1 = 0.05 ÷ 0.01) evaluated by using the proposed method are compared with
those obtained by SSI-COV [21] and FDD [20], as reported in Table 3.

From these results it is apparent that all methods are performing very well, in
particular the SSI-COV results have the least discrepancy, but SSI-COV is not direct
as the proposed method TD-ASM, since it requires the knowledge of a parameter
related to the first frequency, that is a priori unknown. This means that it needs at least
a Fourier Transformof the signal to get this value,while the proposedmethod does not
require any preliminary information of the unknown characteristics. Further, results
in terms of damping ratios are compared with SSI-COV only, since the algorithm
FDD.m does not allow the damping ratios’ evaluation. Also in this case the proposed
method gets satisfactory results as shown in Table 4 (for each value of ζ1 = 0.05 ÷
0.01).

As regards the modal shapes, Fig. 3 reports the discrepancies of results obtained
with the proposedmethod, FDD and SSI-COVwith respect the exact ones at different
values of damping ratios. Also in this case, the proposed method and SSICOV (both
developed in the time domain and based on the correlation function) are more precise
than FDD (developed in the frequency domain and based on the PSD) especially for
the first modal shape that gives the major contribution to the total structural motion.
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Table 3 Comparison between the exact damped frequencies and the estimated damped frequencies

ζ1 Mode Exact TD-ASM ε% FDD ε% SSI ε%

0.05 1 6.2411 6.2363 0.0770 6.1646 1.2261 6.2433 0.0356

2 17.4872 17.4529 0.1961 17.8833 2.2650 17.4595 0.1584

3 25.2522 25.0554 0.7794 25.3296 0.3065 25.2753 0.0916

0.06 1 6.2376 6.2262 0.1823 6.1646 1.1713 6.2426 0.0802

2 17.4776 17.4344 0.2472 17.8833 2.3213 17.4334 0.2529

3 25.2305 24.9680 1.0405 25.3296 0.3926 25.2255 0.0201

0.07 1 6.2335 6.2255 0.1290 6.1646 1.1065 6.2381 0.0734

2 17.4662 17.4128 0.3060 17.8833 2.3880 17.4147 0.2950

3 25.2049 24.7680 1.7334 25.3296 0.4947 25.1682 0.1455

0.08 1 6.2288 6.2223 0.1042 6.1646 1.0315 6.2353 0.1036

2 17.4531 17.3857 0.3858 17.8833 2.4652 17.4209 0.1844

3 25.1753 24.3554 3.2568 25.3296 0.6129 25.0907 0.3362

0.09 1 6.2234 6.2133 0.1625 6.1035 1.9271 6.2361 0.2033

2 17.4381 17.3575 0.4626 17.8833 2.5528 17.3813 0.3257

3 25.1417 24.2051 3.7254 25.3296 0.7473 25.1235 0.0723

0.10 1 6.2175 6.2222 0.0761 6.1035 1.8326 6.2377 0.3251

2 17.4215 17.3323 0.5117 17.8833 2.6510 17.3420 0.4562

3 25.1041 24.1537 3.7860 25.3296 0.8982 25.1216 0.0698

3.3 Validation of the Proposed Algorithm Through
Experimental Test

In order to prove the reliability of the proposed method on real structures, an exper-
imental test was performed on a three-story frame. The set-up of the experimental
test is reported in Fig. 4. In particular, the structure was excited by a broad-band
noise from 0.01 to 80Hz through an electro-magnetic shaker APS-ELECTRO-SAIS.
The input and the output signals were recorded using piezo-electric accelerome-
ters Brüel&Kjaer 4507 002 connected to the acquisition unit NI PXIe 1082. Some
tests of 240 s with sampling frequency equal to 1000 Hz were performed and the
proposed algorithm was used to obtain the modal shapes, the frequencies and the
damping ratios of the structure. Since the tests are performed on a real system that
has unknown dynamic properties, is impossible to report a discrepancy between the
exact properties and the identified properties. However, the results obtained by the
used methods are reported in Tables 5 and 6.

From these results, it is clear that all the used algorithms well identify the same
frequencies and that the differences between the damping ratios identified with the
proposed algorithm and SSICOV.m are very low.
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Table 4 Comparison between the exact damping ratios and the estimated damping ratios

ζ1 Mode Exact TD-ASM ε% SSI ε%

0.05 1 0.0501 0.0519 3.6703 0.0481 3.9291

2 0.0500 0.0493 1.2739 0.0521 4.2302

3 0.0623 0.0623 0.0697 0.0646 3.6640

0.06 1 0.0601 0.0607 0.9509 0.0582 3.2513

2 0.0600 0.0597 0.3966 0.0629 4.8558

3 0.0748 0.0746 0.2821 0.0739 1.1238

0.07 1 0.0702 0.0727 3.6792 0.0666 5.0789

2 0.0699 0.0699 0.1102 0.0726 3.8543

3 0.0872 0.0824 5.5115 0.0858 1.6690

0.08 1 0.0802 0.0838 4.5188 0.0757 5.5309

2 0.0799 0.0793 0.7807 0.0850 6.3065

3 0.0997 0.0915 8.2092 0.1034 3.6762

0.09 1 0.0902 0.0953 5.6554 0.0848 6.0208

2 0.0899 0.0894 0.5921 0.0926 2.9736

3 0.1122 0.1038 7.4214 0.1106 1.4040

0.10 1 0.1002 0.1046 4.3784 0.0935 6.7502

2 0.0999 0.1004 0.4290 0.1015 1.6203

3 0.1246 0.1081 13.2609 0.1215 2.5302

Fig. 3 Discrepancy of results obtained with the proposedmethod TD-ASM (circular marker), FDD
(hexagram marker) and SSICOV (diamond marker) with respect the exact ones at different values
of damping ratios: first mode a, second mode b, third mode c
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Fig. 4 Experimental set-up

Table 5 Comparison betweenTD_ASM.m,SSICOV.mandFDD.m in terms of damped frequencies
and damping ratios

Mode Frequencies Damping ratios

TD-ASM FDD SSICOV TD-ASM FDD SSICOV

1 2.1438 2.2125 2.1511 0.0853 – 0.0717

2 6.0719 6.0730 6.0868 0.0075 – 0.0080

3 8.7321 8.7280 8.7285 0.0013 – 0.0016

Table 6 Comparison between TD_ASM.m, SSICOV.m and FDD.m in terms of modal shapes

TD-ASM FDD SSICOV

φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.7306 0.3794 −1.2784 2.0377 0.3328 −1.4188 1.9186 0.7549 −1.4351

1.9751 −0.8388 0.6139 2.5393 -0.7784 0.7477 2.3581 −0.8516 0.7672

4 Conclusions

This paper introduces an innovative ambient identification method based on the
Hilbert Transform to obtain the analytical representation of the system response in
terms of the correlation function. It leads to identify the modal shapes performing a
SVD of the correlation functionmatrix in τ = 0, the frequencies by the phase of each
analytical signal of the auto-correlation functions in themodal space and the damping
ratios by the amplitude of each analytical signal of the auto-correlation functions in
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the modal space. The numerical simulations prove that for SDOF structures the
proposed method can identify the dynamic properties better than the PP+HP and
for MDOF structures the proposed method TD-ASM can identify very well the
dynamic properties of the structural systems, especially in terms of the damping
ratios. The performed experimental tests prove that the dynamic properties identified
with the proposed method are similar to the properties identified by other automated
algorithm and that the proposed algorithm have some advantages compared to the
others. However, the greatest advantage of TD-ASM is that it is user friendly, in
fact the developed MatLab function requires only the time vector and the recorded
outputs and can be used also by a not-expert user. As a concluding remark, the
authors wish that this approach could open the pathway for a monitoring system
that is user friendly and can be used by people who have little to no knowledge of
signal processing and stochastic analysis such as those who are responsible for the
maintenance of a city’s historical buildings.

Acknowledgements S. Russotto, A. Di Matteo, C. Masnata and A. Pirrotta gratefully acknowl-
edge the support received from the Italian Ministry of University and Research, through the PRIN
2017 funding scheme (project 2017J4EAYB 002 - Multiscale Innovative Materials and Structures
“MIMS”).

Appendix

The proposed algorithm, entirely reported in this appendix, requires as input only the
output signals (X) and the time vector (time). It calculates automatically the frequen-
cies (fid), the damping ratios (Z_ID_LOG) and the modal shapes both normalized
with respect to the first component of each mode (PHI_IDNN) and not-normalized
(PHI_ID). The entire developed MatLab function, called TD_ASM.m, is shown
below.
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In this code only two kind of interactions with the user are requested. The first
one is the organization of the input data i.e. the time vector that is a row vector and
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Fig. 5 Interactive graphic interface of TimeStopSelection.m: for frequency estimation a, for
damping ratio estimation b

the structural output process that is a three-dimensional array. The second one is
a step of the function TimeStopSelection.m that is contained into TD_ASM.m and
that requires the choice of the time interval to be used to perform the average in
Eq. (16) and to identify the coefficient c1 in Eq. (17). In order to simplify this step,
TimeStopSelection.m has an interactive graphic interface that allows to choose, with
few clicks, the aforementioned time intervals as reported in Fig. 5a, b respectively
for frequency identification and damping ratios identification.
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