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Abstract This paper will demonstrate a solution for detecting damage to a bridge
structure from measured displacements gathered using a roving vision sensor based
approach. The measurement of displacement was accomplished using a synchro-
nised multi-camera vision-based displacement measurement system. Displacement
measurements can provide a valuable insight into the structural condition and service
behaviour of bridges under live loading. Computer Vision systems have been vali-
dated as ameans of displacement calculation, the research developed here is intended
to form the basis of a real time damage detection system. This is done through the use
of unsupervised deep learning methods for anomaly detection which could form the
basis of a low cost durable alternative. The performance of the system was evaluated
in a series of controlled laboratory tests. This research provides a means of detecting
changes to a bridge structure through use of minimal sensor installation, reducing
potential sources of error and allowing for potential live rating of bridge structures.

Keywords Computer Vision · Structural Health Monitoring · Anomaly
Detection · Deep Learning

1 Introduction

The progressive deterioration of civil infrastructure is now of paramount concern to
asset owners and users alike. Structural damage results in a change in the geometric
or material properties of bridges which manifests through a change in stiffness
or stability of the structure. Traditional bridge inspections are sensitive to human
error and bias and can often result in over conservative assumptions on reduced
load carrying capacity [1]. Structural Health Monitoring (SHM) systems provide
a means of objectively capturing and quantifying this change under operational
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conditions. The application of such systems has significant cost saving potential
across the lifespan of bridge structures and can ensure the safe operation of our road
and rail transport networks. With over one million bridges across Europe the task
of assessing each structure often surpasses the available resources. This shortfall
dramatically reduces the resilience of transport networks particularly considering
35% of Europe’s rail bridges are over 100 years old [2]. The understanding of the
true capacity of this aging infrastructure is now more critical than ever as in recent
years the UK witnessed an increasing number of failure events in clusters of bridges
such as those witnessed in Northern Ireland in 2017 and Yorkshire in 2019 [3, 4].
In response to this during the last two decades a significant amount of research has
been dedicated to the development and enhancement of SHM systems for bridge
monitoring. The challenge of accurately detecting and quantifying damage in civil
infrastructure still exists globally and few systems have been deployed and verified
on real bridges. Displacementmeasurements provide a valuable insight into the struc-
tural condition and service behaviour of structures under live loading. Displacement
has been used as a metric for bridge condition rating in numerous studies outlined
in the following section. Analysis of monitored displacement values over time can
provide an insight in possible excessive loading or changes to structural behaviour,
since displacement can be directly linked to structural stiffness and external loading.
In a long term analysis (multiple years), the displacement responses can be used to
create a pattern of structural response to temperature or vehicle loading, if measured
responses display extreme variance from this pattern it could be surmised that there
has been a change to the structural properties of the monitoring subject.

In [5], a displacement curve was used to detect damage to a cantilever beam
structure. In [6], Zhang et al. used the displacement caused by a vehicle passing over
a bridge structure as a modelling scenario for simulated damage detection.

This type of experiment, where the changes to the displacement curvature based
on repeated passes by a vehicle established the methodology of the laboratory work
described in this paper. A test setup by Catbas et al., where a bridge model is fully
instrumented to determine displacement from a passing vehicle is laid out in [7]. This
was developed upon in [8] where a series of Linear Variable Differential Transducers
(LVDT) were used to detect damage under a roving sensor approach. The research
presented below will further enhance the development of roving sensor systems
for damage detection by replacing the cumbersome setup of the LVDT series with
a system of time synchronised cameras for displacement measurement that was
demonstrated by the authors in [9].

These studies all demonstrate the use of displacement measurements as a
powerful means of assessing bridge condition through performance. The displace-
ment measurements will be used as means for training an autoencoder [10], which
is an unsupervised neural network frequently used for anomaly detection [11, 12].
An autoencoder consists of two parts, an encoder and a decoder. The encoder maps
the input to a lower-dimensional space, and the decoder maps the encoded data back
to the input. If an autoencoder is trained to recognize a certain type of input, in
this case our baseline scenarios, any deviation from this output would have a high
reconstruction error. This will be demonstrated in the following sections.
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2 Methodology

A laboratory model study of a two-span bridge was developed in the Experimental
Design and Monitoring (EDM) laboratory of Civil Infrastructure Technologies for
Resilience and Safety (CITRS) at University of Central Florida (UCF). The bridge
has two 300 cm main continuous spans supported by three steel frame sections as
shown in Fig. 2. The bridge deck is 120 cm wide and 600 cm long of steel plate
construction with the thickness of 3.18 mm. The steel deck is supported by two 25
× 25× 3.2 mm steel girders with the space of 0.61 m. The girders are denoted as A
and B as illustrated in Fig. 1. The connection sets with four M6 bolts and 3.18-mm-
thick plates are used to connect the girders and the deck. A small-scale toy truck is
employed as the moving load on the bridge in this study.

Fig. 1 Two span model bridge

Fig. 2 Experimental cases and configurations
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The supports of the bridge are varied during the experiment to simulate the change
of boundary condition, replicating common real-life bridge conditions. The undam-
aged case, i.e., baseline, in this experiment is the case that all the supports are rollers.
Four damage cases are designated by changing the supports of the Girder B. Two
lanes were predefined on the deck: one was close to Girder A (lane 1) and the other
was close to Girder B (lane 2). The truck ran on the lane 2 travelling longitudi-
nally from left to right to simulate the moving load. Four cameras were employed
to measure the displacements of the predefined measurement nodes on the girders,
from 1 to 16, as shown in Fig. 2.

Each camera was set up using a fixed tripod to measures one node in each run, as
such the measurement of all the nodes cannot be captured in one run. In the study,
the cameras were roved to accommodate all the measurement nodes. As shown in
Fig. 2, Node 1 was set as the reference node (Ref. Node) and it is measured in each
run. The triangles in Fig. 2 represent the cameras used in each run in addition to the
reference camera that remained fixed at Node 1. For Test 1, this indicates Nodes 2–4,
Test 2 consists of Nodes 5–7 and so on until all nodes have been monitored. Vertical
displacements of the Ref Node for the first crossing at no damage condition is shown
in Fig. 3a.

The response pattern is similar to other nodes located on the left span. Vertical
displacement histories of the nodes on the right span are opposite to the ones on the left
support.When the vehicle is on the left span the right span lifts up, and vice versa. The
raw response measurements contain both static component (bridge deflection) and
dynamic component (bridge vibration induced by the vehicle). The static response
can be isolated by processing the raw response with an adequate high-pass filter. The
conversion of the response measurement from time domain to frequency domain
reveals fundamental frequencies. The power spectrum density (PSD) plot is used to
set a suitable high-pass filter. The lowest frequency component, which is 0.098 Hz,
presents duration of the vehicle crossing. The crossing lasts approximately 10 s.
The frequency range of the dynamic response is above 4 Hz (see Fig. 3b). Thus

(a) (b)

Fig. 3 Node 1 displacement time history (a) and its PSD plot (b)
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Table 1 Results from
Autoencoder predictions on
Test Dataset

Scenario type Predicted Actual

Baseline 6401 6400

Damage 1499 1500

the high pass frequency is set to 1 Hz. The resulting signal is subtracted from the
raw measurements leaving only the component of the static response. During the
trials, it was not possible to ensure that all runs start and end at the same time. They
also vary slightly in their duration. For these reasons, selecting the range of vertical
displacements of each node as the damage factor (DF) is the best choice.

3 Results

The filtered displacement ranges were used as a basis for a 1-dimensional CNN
autoencoder training dataset. This was done by using the variance between displace-
ment ranges between runs 1–5 in the undamaged scenario as boundary conditions
to generate displacement scenarios for all nodes on the bridge. This was repeated
50,000 times to make a dataset that encompassed “normal” behavior of the bridge.
This was split int 45,000 training examples and 5000 validation examples. The 4
damage scenarios were also used as candidates for scenario generation in the test
dataset, with 6500 “normal” scenarios and 1500 damaged scenarios generated. The
autoencoder was then trained for 100 epochs with early stopping, the optimal loss
was found after 63 epochs. A threshold for classification of undamaged vs damaged
scenarios was then calculated by comparing the RMSE for the predictions on the
test set and determining the optimal decision boundary. If the DF generated by the
autoencoder from the supplied displacements was outside the boundary conditions
determined in the training phase, the scenario was labeled as damaged. This method
was successful at identifying damage was present, but was incapable of localizing
where damage occurred on the structure. The results for the predictions from the
trained autoencoder are shown in Table 1.

4 Conclusions and Future Work

As can be seen from the results, it is possible to use a roving sensor setup to establish
a baseline scenario in which to detect changes to a bridge structure. This has shown
that the sensor roving technique is viable as a means of data collection for vision
based monitoring, which can lead to a reduction in monitoring costs for real life
scenarios. The automated nature of the results analysis means that, if paired with an
accuratemethod for load evaluation, real time damage detection can be implemented.
The accuracy of the proposed system could also be improved by feeding in live data
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in a continuous training methodology similar to the work in [13]. The next steps in
this work are:

• Perform additional laboratory trials to obtain more undamaged scenario readings
to validate that the boundary conditions set out in the initial runs are feasible.
There are other scenarios which could also be explored, i.e. multiple vehicles,
differing weights etc.

• Create less severe damage scenarios to determine the accuracy of the proposed
system when damage is not at critical levels.

• Plan and execute field trials of the system to determine the accuracy of scenario
measurement outside a controlled laboratory environment.
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