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Abstract. We present a ‘CLAssifier-DECoder’ architecture (ClaDec)
which facilitates the comprehension of the output of an arbitrary layer in a
neural network (NN). It uses a decoder to transform the non-interpretable
representation of the given layer to a representation that is more similar
to the domain a human is familiar with. In an image recognition prob-
lem, one can recognize what information is represented by a layer by con-
trasting reconstructed images ofClaDec with those of a conventional auto-
encoder(AE) serving as reference. We also extend ClaDec to allow the
trade-off between human interpretability and fidelity. We evaluate our
approach for image classification using Convolutional NNs. We show that
reconstructed visualizations using encodings from a classifier capture more
relevant information for classification than conventional AEs. Relevant
code is available at https://github.com/JohnTailor/ClaDec.

1 Introduction

Understanding a NN is a multi-faceted problem, ranging from understanding
single decisions, single neurons and single layers, up to explaining complete mod-
els. In this work, we are interested in better understanding the decision of a NN
with respect to one or several user-defined layers that originate from a com-
plex feature hierarchy, as commonly found in deep learning models. In a layered
model, each layer corresponds to a transformed representation of the original
input. Thus, the NN succinctly transforms the input into representations that
are more useful for the task at hand, such as classification. From this point of
view, we seek to answer the question: “Given an input X, what does the repre-
sentation L(X) produced in a layer L tell us about the decision and about the
network?”. To address this question, we propose a classifier-decoder architecture
called ClaDec. It uses a decoder to transform the representation L(X) produced
by a layer L of the classifier, with the goal to explain that layer via a human
understandable representation, i.e., one that is similar to the input domain. The
layer in question provides the “code” that is fed into a decoder. The motivation
for this architecture stems from the observation that AE architectures are good
at (re)constructing high-dimensional data from a low-dimensional representa-
tion. The idea behind this, stems from the observation that the classifier to be
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explained is expected to encode faithfully aspects relevant to the classification
and ignore input information that does not impact decisions. Therefore, use of a
decoder can lead to accurate reconstruction of parts and attributes of the input
that are essential for classification. In contrast, inputs that have little or no
influence to the classification will be reconstructed at lower fidelity. Attributes
of an input might refer to basic properties such as color, shape, sharpness but
also more abstract, higher-level concepts. That is, reconstructions of higher-level
constructs might be altered to be more similar to prototypical instances.

Fig. 1. Basic architecture of ClaDec and RefAE and explanation process

Explanations should fulfill many partially conflicting objectives. We are inter-
ested in the trade-off between fidelity (How accurately does the explanation
express the model behavior?) and interpretability (How easy is it to make sense
of the explanation?). While these properties of explanations are well-known,
existing methods typically do not accommodate adjusting this trade-off. In con-
trast, we propose an extension of our base architecture ClaDec by adding a
classification loss. It allows to balance between producing reconstructions that
are similar to the inputs, i.e., training data that a user is probably more famil-
iar with (easier interpretation), and reconstructions that are strongly influenced
by the model to explain (higher fidelity) but may deviate more from what the
user knows or has seen. Our approach relies on an auxiliary model, a decoder,
to provide explanations. Similar to other methods that use auxiliary or proxy
models, e.g., to synthesize inputs [10] or approximate model behavior [11], we
face the problem that explanation fidelity may be negatively impacted by a poor
auxiliary model. That is, reconstructions produced by AEs (or GANs) might suf-
fer from artifacts. For example, AEs are known to produce images that might
appear more blurry than real images. People have noticed that GANs can pro-
duce clearer images but they may suffer from other artifacts as shown in [10].
Neglecting that the explainability method might introduce artifacts can have
an adverse impact on understandability and even lead to wrong conclusions on
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model behavior. When looking at the reconstruction, a person not familiar with
such artifacts might not attribute the distortion to the auxiliary model being
used but she might believe that it is due to the model to be explained. While
evaluation of explainability methods has many known open questions [19], this
is the first work that has made this observation.

To avoid any wrongful perceptions with respect to artifacts in reconstruction,
we suggest to compare outcomes of auxiliary models to a reference architecture.
We employ an auto-encoder RefAE with the exact same architecture as ClaDec
to generate outputs for comparison as shown in Fig. 1. The encoder of RefAE is
not trained for classification, but the RefAE model optimizes the reconstruction
loss of the original inputs as any conventional AE. Therefore, only the differ-
ences visible in the reconstructions of RefAE and ClaDec can be attributed to
the model to be explained. The proposed comparison to a reference model can
also be perceived as a rudimentary sanity check, i.e., if there are no differences
then either the explainability method is of little value or the objective of the
model to be explained is similar to that of the reference AE, as we shall elabo-
rate more in our theoretical motivation. We believe that such sanity checks are
urgently needed, since multiple explanation methods have been scrutinized for
failing “sanity” checks and simple robustness properties [1,5,8]. For that rea-
son, we also introduce a sanity check that formalizes the idea that inputs plus
explanations should lead to better performance on downstream tasks than inputs
alone. In our context, we even show that auxiliary classifiers trained on either
reconstructions from RefAE or ClaDec perform better on the latter, although
the reference AE leads to reconstructions that are closer to the original inputs.
Thus, the reconstructions of ClaDec are more amendable for the task to be
solved. Overall, we make the following contributions:
i) We present a novel method to understand layers of NNs. It uses a decoder
to translate non-interpretable layer outputs into a human understandable rep-
resentation. It allows to trade interpretability and fidelity.
ii) We introduce a method dealing with artifacts created by auxiliary models (or
proxies) through comparisons with adequate references. This includes evaluation
of methods.

2 Method and Architecture

The ClaDec architecture is shown on the top portion of Fig. 1. It consists of an
encoder and a decoder reconstructing the input. The encoder is made of all layers
of a classifier up to a user-specified layer L. The entire classifier has been trained
beforehand to optimize classification loss. Its parameters remain unchanged dur-
ing the explanation process. To explain layer L of the classifier for an input X,
we use the activations of layer L(X). The activations L(X) are provided to the
decoder. The decoder is trained to optimize the reconstruction loss with respect
to the original inputs X. The RefAE architecture is identical to ClaDec. It differs
only in the training process and the objective. For the reference AE, the encoder
and decoder are trained jointly to optimize the reconstruction loss of inputs X.
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In contrast, the encoder is treated as fixed in ClaDec. Once the training of all
components is completed, explanations can be generated without further need
for optimization. That is, for an input X, ClaDec computes the reconstruction
X̂E serving together with the original input and the reconstruction from RefAE
as the explanation.

However, comparing the reconstruction X̂E to the input X may be difficult
and even misleading, since the decoder can introduce distortions. Image recon-
struction in general by AEs or GANs is not perfect. Therefore, it is unclear,
whether the differences between the input and the reconstruction originate from
the encoding of the classifier or the inherent limitations of the decoder. This
problem exists in other methods as well, e.g. [10], but it has been ignored. Thus,
we propose to use both the RefAE (capturing unavoidable limitations of the
model or data) and ClaDec (capturing model behavior). The evaluation pro-
ceeds by comparing the reconstructed “reference” from RefAE, the explanation
from ClaDec and the input. Only differences between the input and the recon-
struction of ClaDec that do not occur in the reconstruction of the reference can
be attributed to the classifier. Figure 2 shows an extension of the base architec-
ture of ClaDec (Fig. 1) using a second loss term for the decoder training. It is
motivated by the fact that ClaDec seems to yield reconstructions that capture
more aspects of the input domain than of the classifier. That is, reconstructions
might be easy to interpret, but in some cases it might be preferable to allow for
explanations that are more fidel, i.e. capturing more aspects of the model that
should be explained.

Fig. 2. Extension of the ClaDec architecture. The decoder is optimized for reconstruc-
tion and classification loss

More formally, for an input X, a classifier C (to be explained) and a layer L to
explain, let L(X) be the activations of layer L for input X, and Loss(CL(X), Y )
the classification loss of X depending on the true classes Y . The decoder D
transforms the representation L(X) into the reconstruction X̂. For ClaDec the
decoder loss is:

Loss(X) := (1 − α) ·
∑

i

(Xi − X̂E,i)
2 + α · Loss(CL(X̂E), Y )

with X̂E := D(L(X)) and α ∈ [0, 1]

(1)
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The trade-off parameter α allows to control whether reconstructions X̂E are
more similar to inputs with which the domain expert is more familiar, or recon-
structions that are more shaped by the classifier and, thus, they might look more
different than training data a domain expert is familiar with. For reconstructions
XR,i of RefAE the loss is only the reconstruction loss

∑
i(Xi − X̂R,i)2.

3 Theoretical Motivation of ClaDec

We provide rational for reconstructing explanations using a decoder from a layer
of a classifier that should be explained, and comparing it to the output of a
conventional AE, i.e. RefAE (see Fig. 1). AEs perform a transformation of inputs
to a latent space and then back to the original space. This comes with information
loss on the original inputs because reconstructions are typically not identical to
inputs. To provide intuition, we focus on a simple architecture with a linear
encoder (consisting of a linear model that should be explained), a single hidden
unit and a linear decoder as depicted in Fig. 3. An AE, i.e. the reference AE
RefAE, aims to find an encoding vector E and a reconstruction vector R, so
that the reconstruction x̂ = R · y of the encoding y = E · x is minimal using
the L2-loss, i.e. minR,E ||x − R · E · x||2. The optimal solution which minimizes
the reconstruction loss stems from projecting onto the eigenvector space (as
given by a Principal Component Analysis) [3]. That is, given there is just a
single latent variable, the optimal solution for W = R ·E is the first eigenvector
u1. This is illustrated in Fig. 3 in the upper part with y = u1 · x. For ClaDec
the goal is to explain a linear regression model y = E · x. The vector E is
found by solving a regression problem. We fit the decoder R to minimize the
reconstruction loss on the original inputs given the encoding, i.e. minR ||x−R·y||2
with y = E · x. The more similar the regression problem is to the encoding
problem of an AE, the more similar are the reconstructions. Put differently, the
closer E is to u1 the lower the reconstruction loss and the more similar are the
optimal reconstructions for the reference AE and ClaDec. Assume that E differs
strongly from u1, i.e. say that the optimal solution to the regression problem is

Fig. 3. An AE with optimal encoder y = u1 ·x (and decoder) captures more information
than any other encoder. But a regression/classification model serving as encoder, e.g.
y = u2 · x, combined with an optimized decoder, might capture some input attributes
more accurately, e.g. x2.
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the second eigenvector y = u2 ·x. This is shown in the lower part of Fig. 3. When
comparing the optimal reconstruction of the RefAE, i.e. using y = u1x, and the
illustrated reconstruction of ClaDec, i.e. using y = u2x, it becomes apparent
that for the optimal encoding y = u1x the reconstructions of both coordinates
x1 and x2 are fairly accurate on average. In contrast, using y = u2x, coordinate
x2 is reconstructed more accurately (on average), whereas the reconstruction of
x1 is mostly very poor.

Generally, this suggests that a representation obtained from a model (trained
for some task) captures less information than an encoder optimized towards
reconstructing inputs. But aspects of inputs relevant to the task should be cap-
tured relatively in more detail than those that are irrelevant. Reconstructions
from ClaDec should show more similarity to original inputs for attributes rel-
evant to classification and less similarity for irrelevant attributes. But, overall
reconstructions from the classifier will show less similarity to inputs than those
of an AE.

4 Assessing Interpretability and Fidelity

Fidelity is the degree to which an explanation captures model behavior. That
is, a “fidel” explanation captures the decision process of the model accurately.
The proposed evaluation (also serving as sanity check) uses the rational that fidel
explanations for decisions of a well-performing model should be helpful in per-
forming the task the model addresses. Concretely, training a new classifier CE

eval

on explanations and, possibly, inputs should yield a better performing classifier
than relying on inputs only. That is, we train a baseline classifier CR

eval(X̂R) on
the reconstructions of the RefAE and a second classifier with identical architec-
ture CE

eval(X̂E) on explanations from ClaDec. The latter classifier should achieve
higher accuracy. This is a much stronger requirement than the common sanity
check demanding that explanations must be valuable to perform a task bet-
ter than a “guessing” baseline. One must be careful that explanations do not
contain additional external knowledge (not present in the inputs or training
data) that help in performing the task. For most methods, including ours, this
holds true. Therefore, it is not obvious that training on explanations allows to
improve on classification performance compared to training on inputs that are
more accurate reconstructions of the original inputs. Improvements seem only
possible if an explanation is a more adequate representation to solve the prob-
lem. Formally, we measure the similarity between the reconstructions X̂R (using
RefAE ) and X̂E (of ClaDec) with the original inputs X. We show that explana-
tions (from ClaDec) bear less similarity with original inputs than reconstructions
from RefAE. Still, training on explanations X̂E yields classifiers with better per-
formance than training on the more informative outputs X̂R from RefAE.

Interpretability is the degree to which the explanation is human under-
standable. We build upon the intuitive assumption that a human can better and
more easily interpret explanations made of concepts that she is more familiar
with. We argue that a user is more familiar with real-world phenomena and con-
cepts as captured in the training data than possibly unknown concepts captured
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in representations of a NN. This implies that explanations that are more similar
to the training data are more interpretable than those with strong deviation
from the training data. Therefore, we quantify interpretability by measuring the
distance to the original input, i.e. the reconstruction loss. If explanations show
concepts that are highly fidelitous, but non-intuitive for a user (high reconstruc-
tion loss) a user can experience difficulties in making sense of the explanation. In
contrast, a trivial explanation (showing the unmodified input) is easy to under-
stand but it will not reveal any insights into the model behavior, i.e., it lacks
fidelity.

5 Evaluation

In our qualitative and quantitative evaluation we focus on image classification
using CNNs and the following experiments: (i) Explaining different layers for
correct and incorrect classifications, (ii) Varying the fidelity and interpretability
tradeoff. Our decoder follows a standard design, i.e. using 5 × 5 deconvolutional
layers. For the classifier (and encoder) we used the same architecture, i.e. a
VGG-5 and ResNet-10. For ResNet-10 we reconstructed after each block. Both
architectures behaved similiarly, thus we only report for VGG-5. Note, that
the same classifier architecture (but trained with different input data) serves
as encoder in RefAE, classifier in ClaDec and for classifiers used for evaluation
of reconstructions, i.e. classifier CE

Eval (for assessing ClaDec) and CR
Eval (for

RefAE ). The evaluation setup is shown in the right panel of Fig. 4 for ClaDec.
Thus, we denote by “Acc Enc ClaDec” the validation accuracy of the encoder,
i.e. classifier, of the ClaDec architecture and by “Acc Eval RefAE” the validation
accuracy of the classifier CR

Eval used for evaluation as shown in Fig. 4 trained on
reconstructions from the reference AE. Other combinations are analogous.

Fig. 4. Left panel: Evaluation setup using a dedicated evaluation classifier. Right panel:
Comparison of original inputs and reconstructions using the FC layer of the encoder for
handbags. Comparing RefAE and ClaDec shows that both do not reconstruct detailed
textures. The classifier does not rely on graytones, which are captured by RefAE. It
uses prototypical shapes.
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Note that the decoder architecture varies depending on which layer is to be
explained. The original architecture allows to either obtain reconstructions from
the last convolutional layer or the fully connected layer. For a lower layer, the
highest deconvolutional layers from the decoder have to be removed, so that
the reconstructed image X̂ has the same width and height as the original input
X. We employed three datasets namely Fashion-MNIST, MNIST and TinyIm-
ageNet. Since all datasets behaved similarly, we focus on Fashion-MNIST con-
sisting of 70000 28 × 28 images of clothing stemming from 10 classes that we
scaled to 32 × 32. 10000 samples are used for testing. We train all models using
the Adam optimizer for 64 epochs. That is, the refAE, the decoder of ClaDec,
the classifier serving as encoder in ClaDec as well as the classifiers used for eval-
uation. We conducted 5 runs for each reported number. We show both averages
and standard deviations.

Fig. 5. Comparison of original inputs and reconstructions using multiple layers of the
encoder. For incorrect samples it shows a gradual transformation into another class.
Differences between RefAE and ClaDec increase with each layer

5.1 Qualitative Evaluation

Varying Explanation Layers: Reconstructions based on RefAE and ClaDec
are shown in Figs. 4 and 5. For the last layer, i.e. the fully connected (FC) layer,
there is only one value per class, implying a representation of 10 dimensions
for Fashion-MNIST. For the handbags depicted in Fig. 4 and explained in the
caption, comparing the original inputs and the reconstructions by RefAE and
ClaDec shows clear differences in reconstructions. Some conclusions are knowl-
edge of precise graytones is not used to classify these objects. Reconstructions
from ClaDec resemble more prototypical, abstract features of handbags. Figure 5
shows reconstructions across layers. For all samples one can observe a gradual
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abstraction resulting in change of shape and graytones as well as loss of details.
The degree of abstraction varies significantly among samples, e.g. modest for T-
Shirt and strong for handbags in the right panel. Reconstructions from ClaDec
are more blurry than for RefAE. Blurriness indicates that the representation of
the layer does not contain information needed to recover the details. However,
the reason is not (primarily) distortions inherent in the decoder architecture,
since RefAE produces significantly sharper images, but rather the abstraction
process of the classifier. This is most apparent for incorrectly classified samples
(left panel). One can observe a gradual modification of the sample into another
class. This helps in understanding, how the network changed input features and
at which layer. For example, the sandal (second row) appears like a sneaker at
layer -3, whereas the reconstruction from RefAE still maintains the look of a
sandal. The black “holes” in the sandals have vanished at layer -3 for the incor-
rectly classified sandal, whereas for the correctly classified sandal (right panel,
same row), these holes remain. The bag (third row) only shows signs of a T-shirt
in the second layer, where stumps of arms appear.

Fig. 6. Adding classification loss (α > 0) yields worse reconstructions for the last conv.
layer. Using classification loss only, reconstructions are not human recognizable.

Fidelity and Interpretability Trade-off: Figure 6 shows for the last conv.
layer (second to last overall) the impact of adding a classification loss (Fig. 2)
to modulate how much the model impacts reconstructions. Neglecting recon-
struction loss, i.e. α = 1, yields non-surprisingly non-interpretable reconstruc-
tions (not shown in Figure). Already modest reconstruction loss leads to well-
recognizable shapes. The quality of reconstructions in terms of sharpness and
amount of captured detail constantly improves the more emphasis is put on
reconstruction loss. It also becomes evident that the NN learns “prototypical”
samples (or features) towards which reconstructed samples are being optimized.
For example, the shape of handbag handles shows much more diversity for val-
ues of α close to 0, it is fairly uniform for relatively large values of α. Thus, the
parameter α provides a means to reconstruct a compromise between the sample
that yields minimal classification loss and a sample that is true to the input. It
suggests that areas of the reconstruction of ClaDec that are similar to the orig-
inal input are also similar to a “prototype” that minimizes classification loss.
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That is, the network can recognize them well, whereas areas that are strongly
modified, resemble parts that seem non-aligned with “the prototype” encoded
in the network.

5.2 Quantitative Evaluation

Varying Explanation Layers: Results in Table 1 contain two key messages:
First, the reconstruction loss is lower for RefAE than for ClaDec. This is expected
since RefAE is optimized entirely towards minimal reconstruction loss of the
original inputs. Second, the classification (evaluation) accuracy is higher, when
training the evaluation classifier CEval using reconstructions from ClaDec than
from RefAE. This behavior is not obvious, since the reconstructions from ClaDec
are poorer according to the reconstruction loss. That is, they contain less infor-
mation about the original input than those from RefAE. However, it seems that
the “right” information is encoded using a better suited representation. Aside
from these two key observations there are a set of other noteworthy behaviors: As
expected the reconstruction loss increases the more encoder layers, i.e. the more
transformations of the input, are used. The impact is significantly stronger for
ClaDec. The difference between RefAE and ClaDec increases the closer the layer
to explain is to the output. This is not surprising, since lower layers are known to
be fairly general, i.e. in transfer learning lower layers are the most applicable to
work well for varying input data. There is a strong increase for the last layer, this
is also no surprise, since the last layer consists of fairly fewer dimensions, i.e. 10
dimensions (one per class) compared to more than 100 for the second last layer.
The classification accuracy for the evaluation classifier somewhat improves the
more layers are used as encoder, i.e. of the classifier that should be explained.
The opposite holds for RefAE. This confirms that RefAE focuses on the wrong

Table 1. Explaining layers: ClaDec has larger reconstruction loss but the evaluation
classifier has higher accuracy on ClaDec’s reconstructions

Layer Rec Loss ClaDec Rec Loss RefAE Δ Acc Eval ClaDec Acc Eval RefAE Δ

−1 28.6±0.6851 8.48±0.3799 20.2 0.89±0.0031 0.83±0.0105 0.06

−3 4.56±0.0921 3.63±0.0729 0.93 0.877±0.0074 0.863±0.0093 0.014

−5 1.93±0.1743 1.87±0.0933 0.06 0.878±0.0073 0.875±0.0048 0.003

Table 2. Adding classification loss α > 0 (Eq. 1) yields worse reconstructions, but
higher evaluation accuracy

α Total Loss ClaDec Rec Loss Classifier Loss Acc Eval ClaDec

.0 0.01±0.0033 285.5±52.01 0.0±0.0 0.9028±0.0035

.001 0.03±0.0023 25.4±0.9292 0.03±0.0009 0.9033±0.0022

.1 0.84±0.0132 8.35±0.1195 0.75±0.0106 0.9011±0.0026

1.0 7.49±0.1119 7.49±0.1119 4.4±0.254 0.8824±0.0042
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information, whereas the classifier trained towards the task focuses on the right
information and encodes it well.

Fidelity and Interpretability Tradeoff : Table 2 shows that evaluation accu-
racy increases when adding a classification loss, i.e. α > 0 yields an accuracy
above 90% whereas α = 0 gives about 88%. Reconstructions that are stronger
influenced by the model to explain (larger α) are more truthful to the model,
but they exhibit larger differences from the original inputs. Choosing α slightly
above the minimum, i.e. larger than 0, already has a strong impact.

6 Related Work

We categorize explainability methods [13] into methods that synthesize inputs
(like ours and [10,20]) and methods that rely on saliency maps [18] based on
perturbation [11,21] or gradients [2,16]. Saliency maps show feature importance
of inputs, whereas synthesized inputs often show higher level representations
encoded in the network. Perturbation-based methods include occlusion of parts
of the inputs [21] and investigating the impact on output probabilities of specific
classes. Linear proxy models such as LIME [11] perform local approximations of
a black-box model using simple linear models by also assessing modified inputs.
Saliency maps [18] highlight parts of the inputs that contributed to the deci-
sion. Many explainability methods have been under scrutiny for failing sanity
checks [1] and being sensitive to factors not contributing to model predictions
[8] or adversarial perturbations [5]. We anticipate that our work is less sensitive
to targeted, hard to notice perturbations [5] as well as translations or factors
not impacting decisions [8], since we rely on encodings of the classifier. Thus,
explanations only change if these encodings change, which they should. The idea
to evaluate explanations on downstream tasks is not new, however a compar-
ison to a “close” baseline like our RefAE is. Our “evaluation classifier” using
only explanations (without inputs) is more suitable than methods like [14] that
use explanations together with inputs in a more complex, non-standard classi-
fication process. Using inputs and explanations for the evaluation classifier is
diminishing differences in evaluation outcomes for any compared methods since
a network might take missing information in the explanation from the input. So
far, inputs have only been synthesized to understand individual neurons through
activation maximization in an optimization procedure [10]. The idea is to iden-
tify inputs that maximize the activation of a given neuron. This is similar to the
idea to identify samples in the input that maximize neuron activation. [10] uses
a (pre-trained) GAN on natural images relevant to the classification problem.
It identifies through optimization the latent code that when fed into the GAN
results in a more or less realistic looking image that maximally activates a neuron
[20] uses regularized optimization as well, yielding artistically more interesting
but less recognizable images. Regularized optimization has also been employed
in other forms of explanations of images, e.g. to make human understand how
they can alter visual inputs such as handwriting for better recognizability by a
CNN [12]. [6,7] allow to investigate high level concepts that are relevant to a
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specific decision. DeepLift [17] compares activations to a reference and propa-
gates them backwards. Defining the reference is non-trivial and domain specific.
[9] estimates the impact of individual training samples. [4] uses a variational
AE for contrastive explanations. They use distances in latent space to identify
samples which are closest to a sample X of class Y but actually classified as Y ′.

7 Conclusions

Our explanation method synthesizes human understandable inputs based on
layer activations. It takes into account distortions originating from the recon-
struction process. It is verified using novel sanity checks. In the future, we plan
to investigate differences among networks, e.g. a result of model fine-tuning as
in personalization [15] or to look at subsets of layer activations.
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