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Abstract. Time series classification is one of the most important prob-
lems in data mining. With the growth in availability of time series data,
many novel classification algorithms have been proposed. Despite the
promising progress in accuracy, the performance of many algorithms still
strongly depends on an initial training session containing labeled exam-
ples of all classes to be learned. In most realistic applications, however,
labels are lacking or only partially available; limiting the practical appli-
cability of time series classification algorithms with this requirement. To
remedy this, we introduce the Robust Time series Labeling (RTL) algo-
rithm and show its ability to increase labeling accuracy and robustness
across a wide variety of time series datasets. Given its flexibility, the RTL
algorithm can successfully be applied in many real-life situations.
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1 Introduction

Time Series Classification (TSC) is arguably one of the most interesting, com-
mon, and challenging problems in data mining. With the growth in availability
of time series data, many novel TSC algorithms have been proposed, increasing
the accuracy of classification significantly. Although this progress is promising,
the performance of many algorithms still strongly depends on an initial training
session containing labeled examples of all classes (or concepts) to be learned. In
most real-life situations, however, this is unrealistic; severely limiting the prac-
tical applicability of these TSC algorithms.

To deal with situations without prior understanding of the concepts involved,
TSC algorithms need to interactively invoke human expertise. While humans
have an innate ability to extract meaningful knowledge from the shape of time
series, this remains a complex problem for computers [3]. Unlike humans, TSC
algorithms are not able to understand the context of the time series. However,
in ever more real-life situations data is generated at such high rates that unas-
sisted labeling by experts is no longer feasible. To be applicable in practice, TSC
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algorithms thus need to support the expert in labeling efficiently and effectively.
In other words, the relative labeling effort – which is defined as the fraction of
machine- and human-based labeling relative to complete human labeling of a
time series—should be minimized.

In this paper we introduce the Robust Time series Labeling (RTL) algorithm,
that aims to minimize the labeling effort without affecting the overall quality of
TSC tasks. The contribution of the paper is fourfold: (1) through an extensive
review of an existing time series labeling algorithm we identify the key features
needed to have a robust method for reducing the labeling effort while maintaining
high quality labels, (2) we present the RTL algorithm that is based on these key
features, (3) as part of the RTL algorithm we introduce a novel zoom-in step
that secures the quality of the assigned labels, and (4) we show RTL’s ability
to increase the efficiency and robustness of the labeling procedure across a wide
variety of time series datasets. RTL clears the path for TSC tasks in many
application domains where large amounts of complex data are generated and
need to be labeled continuously.

The outline of the remainder of the paper is as follows. In Sect. 2 we review
related work. Then, in Sect. 3 we review the Like-Behaviors Labeling Routine
(LBLR) introduced by Madrid et al. [9] and discuss possible improvements,
which we use as starting point for the introduction of the RTL algorithm in
Sect. 4. In Sects. 5 and 6 we evaluate and discuss the RTL algorithm and finally,
we conclude and mention future research directions in Sect. 7.

2 Related Work

While the detection and classification of (anomalous) sub-sequences has been
researched extensively (see e.g. [3]), there is almost no research dedicated to
time series labeling. As far as we are aware, there are four papers on time series
labeling [1,9,12,13].

Peng et al. [12] proposed the Active Learning for Time Series (ACTS) algo-
rithm and showed that it achieved a higher classification accuracy than tradi-
tional active learning methods. Unlike our focus, theirs was on supervised active
learning. Moreover, their method is built on the assumption that all classes to be
learned are known before the learning procedure starts and that the time series
data is perfectly arranged into segments having equal length and approximate
alignment. In practice, this is seldom the case [1]. While Souza et al. [13] focus
on unsupervised active learning, their experiments, like those of Peng et al. [12],
were based on the perfectly segmented data from the UCR TSC Archive [2]. As
stressed before, such perfectly segmented data is quite unlike the data encoun-
tered in real-life situations. In fact, segmentation is part of the challenge to find
proper labels [6].

Chen et al. [1] and Madrid et al. [9] proposed the use of motif discovery for
time series labeling. While computers are not able to understand the context
of the time series, they are very proficient in motif discovery. A motif refers to
pairs of sub-sequences of one or more time series that are highly similar[11] and
may therefore reflect a common underlying cause. By combining the ability of
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algorithms to detect motifs with the ability of experts to label these motifs, the
efficiency and effectiveness of labeling may increase significantly. Chen et al. [1]
proposed an algorithm in which an agent examines an unbounded stream of data
and occasionally asks a teacher – human or algorithm – for a label. Compared to
Peng et al. [12], they do consider the case where no prior knowledge about the
concepts to be learned is available. Likewise, Madrid et al. [9] proposed the LBLR
algorithm to label an entire time series dataset with minimum human effort. Both
algorithms, however, require the lengths of the motifs as input. Whilst the LBLR
is closest to the aim of our RTL algorithm to deal with realistic unsegmented
and unlabeled data, the empirical realities of different length motifs and a lack of
a priori knowledge on what is to be discovered [4,5,10], suggest room for further
improvement. Before introducing our RTL algorithm, we review the LBLR [9]
and suggest improvements to it.

3 Requirements for a Robust Time Series Labeling
Method

In this section we identify the strengths and potential shortcomings of the LBLR.
To quantify the effects of these potential shortcomings, we introduce a variant
called LBLR’. Subsequently, we define the two measures used for evaluating
LBLR’s performance. Based on the results obtained through a diverse set of
experiments, we conclude with the key features needed to have a robust method
for reducing labeling effort while maintaining high quality labels.

The LBLR increases the labeling efficiency of TSC by using the Matrix Profile
(MP) and Minimum Description Length (MDL). The former is a method to
perform motif discovery efficiently (see [14] for a detailed explanation), the latter
is an information-theoretic measure to determine which motifs carry the same
information content. When a set of sub-sequences is similar in terms of MDL
(referred to as “semantically similar”), the whole set is assigned a single label
by the user. However, during this procedure, the LBLR allows for an extra user
interaction in which the user can add or remove sub-sequences from the elements
in this set. This enables the user to remove misclassifications during the labeling
procedure, which assumes that the user is able to do so. While such user-based
removal could improve the quality of the assigned labels, it undeniably increases
the labeling effort.

The use of motif discovery techniques helps to decrease the labeling effort.
However, it also may negatively affect the quality of the labels. In the LBLR,
labeled motifs are assumed to be all of a certain fixed length l. Not surprisingly,
though, motifs can vary considerably in length. Assuming otherwise thus may
affect the operation of LBLR during two phases: the detection of motifs and the
so-called cleanup phase. The latter refers to the action in which all unlabeled
sub-sequences of length less than l get assigned their neighboring labels auto-
matically. Put differently, the cleanup phase labels heuristically, without any use
of machine or human expertise.

To measure the effect of the extra user interaction, we compare the perfor-
mance of the original LBLR with LBLR’. In the latter, all the selected motifs,
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misclassifications or not, receive the same label given by the user. This provides
insight into the actual labeling effort of the expert. To assess how the use of
fixed-length motifs affects the performance of LBLR, we vary the predefined
motif lengths. To evaluate the performance of LBLR and LBLR’, two measures
are used: the relative labeling effort and labeling accuracy.

– Relative Labeling Effort (RLE) is defined as the fraction of machine- and
human-based labeling to complete human labeling of a time series. Given
a time series of length n and fixed motif length l, the maximum number
of Labeling Rounds is defined as LRmax = n

l . Automatically detecting and
labeling semantically similar motifs gives rise to a reduced number of labeling
rounds LR. The Relative Labeling Effort is defined as RLE = LR

LRmax
.

– Labeling Accuracy (LA) is defined as the percentage of correctly labeled
instances and is therefore directly related to the label quality. It is important
to remark that we can only determine accuracy, because we select labeled
datasets for evaluation. As stated in the introduction, in most realistic appli-
cations, labels are lacking or only partially available.

In the following we will determine how fixed length motifs and the extra
user interaction affect the labeling performance of LBLR. To do this, we use the
following six different pre-labeled time series datasets.

1. ACP1: Entomology dataset. Data from an Asian Citrus Psyllid (snippet 1).
2. ACP5: Entomology dataset. Data from an Asian Citrus Psyllid (snippet 5).
3. EER: Epilepsy dataset representing distinct epilepsy episodes.
4. ECG: Electrocardiogram dataset. Each series traces the electrical activity

recorded during one heartbeat.
5. SLC: Part of the StarLight Curves dataset.
6. HCS: A Hydraulic Control System dataset.

The datasets ACP1, ACP5, and EER have been used by Madrid et al. to
evaluate their algorithm.1 Datasets ECG and SLC are from the UCR Archive
[2], and dataset HCS is a real-world industrial dataset collected by the authors.2

These datasets were selected to cover as broad a range of characteristics as pos-
sible. Labeling each dataset with its numerical characteristics as a sequence of
numbers, i.e., {number of classes, number of class transitions, length of the time
series}, yields: ACP1{2,1,5203}, ACP5{2,1,13126}, EER{3,2,2734}, ECG{2,41,9600},
SLC{3,11,20480} and HCS{2,15,25000} (cf. Fig. 1). This diversity enables us to
assess the performance of LBLR across different domains and situations.

Table 1 contains six sub-tables representing the performances of LBLR and
LBLR’ for each of the six datasets and four motif lengths. We make four
observations from these results. First, rejecting the extra user interaction

1 The datasets are downloaded from the web-page of the authors (www.cs.ucr.edu/
∼fmadr002/LBLR.html), where the names of some datasets differ from the original
naming convention.

2 Due to the nature of the ECG and SLC datasets, we needed to concatenate the
separate sequences into a single time series.

www.cs.ucr.edu/~fmadr002/LBLR.html
www.cs.ucr.edu/~fmadr002/LBLR.html
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Fig. 1. The time series of the six datasets. Different time scales are depicted, due to
the different time series lengths. The black vertical lines indicate the class transitions;
clearly visible for the first three datasets, less so for the last three.

(LBLR vs. LBLR’) results in a drop in LA that varies from zero (APC1(l = 200))
to huge (EER(l = 10)). Second, using fixed-length motif discovery yields a
decrease in LA of LBLR for some datasets. This (negative) effect is even more
substantial for the LBLR’, revealing that the combined effect of abandoning
both the extra user interaction and fixed-length motif discovery is large. Third,
LBLR and LBLR’ perform well on the datasets selected by Madrid et al., but
the accuracy drops significantly on the additional datasets we tested. This drop
in performance is due to the cleanup phase. As the three additional datasets
include many class transitions, the chance of wrongly labeling motifs of length
less than l increases. Fourth, the RLE decreases for almost all dataset-motif
length combinations, and especially for LBLR’. Whilst in itself a positive effect,
it only materializes in combination with a (possibly severely) reduced LA.

There are three surprising results worth mentioning. First, the LA of 34.8%
for EER(l = 20) and 57.4% for HCS(l = 500) is lower than the baseline accu-
racy, that is obtained by assigning the majority label to the entire time series.
Second, for the two pre-processed datasets, i.e. ECG and SLC, the fixed motif
length (l = 96 and l = 1024, respectively) does not provide the best results. This
even led to a substantial drop from 74.0% (l = 100) to 69.5% (l = 96) for the
ECG dataset. So, even when the data is perfectly segmented and arranged into
patterns of fixed length, this fixed motif length does not return the best results
in terms of accuracy. Third, for ACP1(l = 200) the RLE is close to 100%. This
means that using the LBLR for this specific motif length is as efficient as just
labeling all the sub-sequences separately.

As these results indicate, there is room for improvement with regards to: a)
not being dependent on extra user interactions; and b) being able to robustly
handle various situations, including varying motif lengths.



RTL: A Robust Time Series Labeling Algorithm 419

Table 1. The Labeling Accuracy LA (higher is better) and Relative Labeling Effort
RLE (lower is better) per motif length l of both LBLR and LBLR’.

ACP1
LA RLE

l LBLR LBLR’ LBLR LBLR’

50 99.6 90.3 34.6 28.8

100 99.5 83.9 44.2 36.5

150 98.5 77.0 75.0 54.8

200 98.9 98.9 99.9 99.9

ACP5
LA RLE

l LBLR LBLR’ LBLR LBLR’

50 99.8 90.5 50.3 36.9

100 99.3 87.3 48.8 40.4

150 99.8 88.8 57.1 48.0

200 98.8 90.0 70.1 50.3

EER
LA RLE

l LBLR LBLR’ LBLR LBLR’

10 99.5 34.8 19.4 1.8

20 99.6 88.2 11.7 2.2

40 99.4 72.7 21.9 8.7

50 98.1 80.7 21.9 11.0

ECG
LA RLE

l LBLR LBLR’ LBLR LBLR’

50 85.9 70.0 34.4 1.6

96 85.3 69.5 25.0 3.0

100 79.6 74.0 20.8 3.1

200 74.7 69.1 20.8 6.2

SLC
LA RLE

l LBLR LBLR’ LBLR LBLR’

500 79.1 75.6 34.2 7.3

1000 78.8 68.3 29.3 9.8

1024 78.9 68.4 30.0 10.0

1500 63.6 65.0 43.9 14.6

HCS
LA RLE

l LBLR LBLR’ LBLR LBLR’

100 95.9 80.1 27.2 18.4

200 93.9 87.1 33.6 26.4

250 91.0 82.7 34.0 35.0

500 81.9 57.4 24.0 28.0

4 Robust Time Series Labeling

In this section we introduce a novel algorithm to efficiently and effectively label
time series. It is based on a motif discovery method that groups motifs, and
allows experts to label them efficiently. Motifs of variable length are considered
and high labeling accuracy is maintained by the introduction of a zooming in
function for the detected motifs.

Introducing some notation, we define a time series T as an ordered sequence of
n real-valued numbers, often measured at fixed intervals. Given T = {t1, . . . , tn},
we want to detect motifs of different lengths l for labeling. The steps included
in the RTL algorithm are summarized in Algorithm 1.3

As an initial pre-processing step to raise efficiency, RTL discretizes T into
a symbolic representation D (line 1). The details of this step are provided in
Sect. 4.1 below. The procedure of finding motifs for labeling starts on line 2 and
continues until an automatic stopping criterion is met (cf. Sect. 4.3). On line
3, variable length motifs are detected within an automatically updated range of
lengths L = {MIN,MAX} and are saved in ML (cf. Sect. 4.1). Note that

3 The code and datasets have been made publicly available at �GitHub.
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Algorithm 1. The RTL algorithm
Require: Time Series T
1: D = SymbolicRepresentation(T)
2: while T has unlabeled data ∧ ¬ algorithm(quits) do
3: ML = FindMotifs(D*, L)
4: M ′

L = Zoom-in(ML)
5: S = SelectandLabelMotif(M ′

L)
6: Update(D*)
7: end while
8: return S: Labels corresponding to T

only those parts of D not yet labeled are considered to be candidates for motif
discovery (D∗, line 6). To secure the quality of the assigned labels, the zoom-in
step mentioned above is introduced (line 4). In fact, based on the (dis)similarity
between all motifs which belong to a motif group, only the so-called represen-
tative motifs are selected and saved in M ′

L (cf. Sect. 4.2). Within this set of
motifs, the longest motif is selected to be labeled (line 5, cf. Sect. 4.3). These
labels are saved in S, which includes the label (or not-yet-labeled) information
per data point n of T . Unlike LBLR, no cleanup phase is included. All data is
labeled under supervision of the user and no labels are automatically assigned.
As a consequence, LBLR returns an entire labeled dataset, while RTL returns
S containing not-yet-labeled data points.

In our experiments in which we evaluate RTL and LBLR (cf. Sect. 5), we
use an extra step between lines 7 and 8 in Algorithm 1. This step is purely for
comparison and ensures RTL, like LBLR, returns a fully labeled dataset. In the
extra step all not-yet-labeled data in S is labeled automatically based on their
neighbors.

4.1 Variable-Length Motifs

To transform our time series into a symbolic representation, we use SAX (Sym-
bolic Aggregate approXimation) [8]. The SAX algorithm has two parameters:
w and a, which control the number of segments (PAA-size) and alphabet-size,
respectively. Based on the extensive experiments carried out in [7], we set a = 3
for all experiments. The best value of w depends on the data (relatively smooth
and slowly changing datasets favor a small value of w). We determine the value of
w as follows: all data points n of the time series are transformed into a sequence
of symbols of equal length n, for which we calculate the average number of con-
secutive identical symbols (q). This average is rounded to the closest integer for
which it holds that n%q = 0. w is then set to w = n

q . This procedure ensures that
the running time of creating SAX strings remains low, and complex time series
showing a lower average of consecutive identical symbols, i.e. more variability,
receive a larger w.

To detect variable length motifs, we split the string representation of T , into
so-called words of two symbols. For example, the string ccaaaabb becomes cc aa
aa bb. Subsequently, we count the number of occurrences of (successive) word(s),
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e.g. {cc : 1}, {aa : 2}, {ccaa : 1}, {aaaabb : 1} and so on.4 In this way, any word
that occurs more than once in the string is considered to be a motif. While short
words are likely to occur frequently in the string, they may be less representative
of the underlying shape of the time series than longer motifs. Therefore, we start
by labeling the longer – more unique – motifs and only subsequently label shorter
motifs. To achieve this, we introduce L = {MIN,MAX}, with MIN being the
minimum considered motif length and MAX the maximum per labeling round.
Every labeling round the procedure starts with searching the longest word that
appears twice (set the length of this word to MAX) and keeps searching until
a word of smaller length appearing more than twice is found (set this value to
MIN). In this way, a set of motifs ML with different lengths is created in which
longer motifs are prioritized over shorter ones.

4.2 Representative Motifs

Although the use of (symbolic) motif discovery techniques helps to increase the
efficiency of the labeling procedure, important details within the motifs may
be overlooked. More specifically, the selected motifs (Algorithm 1, line 3) may
reveal significant variance when we consider more details by means of the zoom-
in step (line 4). The zoom-in step is needed as grouped motifs may be very
similar when compared to the rest of the time series, but may differ a lot when
compared directly to each other. Hence, to safeguard the labeling accuracy, we
need a method which is able to perceive detailed differences within the motif
groups so that potential missclasifications can be removed. To achieve this, all
motifs within the motif group are discretized into a small SAX string (e.g. w = 3:
bbb). If these newly created strings are all the same, these so called representative
motifs are considered to be candidates for labeling.

4.3 Motif Selection and Stopping Criteria

Every iteration round, a set M ′
L of representative motifs is created (Algorithm

1, line 4). From this set, the motif group which includes most data points (motif
frequency × motif length) is chosen to be labeled (line 5). This motif group is
considered to be the optimal motif in terms of efficient labeling, as it contributes
most to the goal of minimizing the labeling effort. After the motif is labeled by
the human annotator, the initial discretized time series is updated (D*), so that
in the next round the labeled data is not considered for labeling anymore. This
procedure repeats until no more representative motifs can be found.

5 Results

We compare the RTL algorithm to the adjusted LBLR’ algorithm, as they are
both independent of (unquantifiable) extra user interactions. In this way, the

4 We use the commonly used text analytics method CountVectorizer for this, but other
methods may also work. CountVectorizer requires input words of at least size two.
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actual LA and RLE of using motif discovery for efficient time series labeling
is unveiled. We compare the performances of the RTL algorithm and LBLR’
by plotting the LA against percentage labeled (Fig. 2) and listing the RLE
per dataset (Table 2). In order to simplify the comparison and to unveil the
robustness of the algorithms, we report the best and worst LA results obtained
with the augmented LBLR’ in Table 1.

Figure 2 shows the results for all datasets (Sect. 3) and can be interpreted as
follows. The dots, interconnected by the lines, represent the percentage labeled
(x-axis) and LA (y-axis) for each labeling round. The procedure starts in the
upper left corner with 100% LA, i.e. correctly labeled data, and each following
dot represents the LA of the (already) labeled part. The printed percentages
at the end of the orange and red each curves express the LA of LBLR’ after
the labeling procedure was terminated. For RTL, the values at the end of the
solid line represent the LA after the algorithm is terminated and thus before
all left-overs are labeled automatically based on their neighboring behaviors
(represented by dotted lines). As a reminder, automatic labeling is not part of
the RTL algorithm and is only done so that RTL can be more easily compared
to LBLR’.

The challenge in achieving a minimum RLE with a maximum LA, lies in
managing their trade-off. In Fig. 2, we can see that RTL (blue line) outperforms
LBLR’ (orange and red lines) with respect to the LA on all datasets, except SLC.
In some cases (ACP5 and ECG) the improvement is substantial, in others it is
relatively small (ACP1 ). However, the performance of LBLR’ depends strongly
on the chosen fixed motif length – as is evident from the considerable gaps
between the orange and red curves – and is therefore not as robust as RTL. So,
concerning LA, RTL is recommended over LBLR’.

Compared to LBLR’, the RLE (Table 2) for RTL is significantly lower on
datasets ACP1 and ACP5.5 This observation, together with a higher LA, implies
that on similar datasets RTL outperforms LBLR’. For the other datasets, RTL
requires a higher RLE, which generally leads to a higher LA. Since the RLE
is still not excessive, ranging from 8.0% to 29.6%, the higher LA may be worth
the extra effort.

Table 2. Relative labeling effort %

ACP1 ACP5 EER ECG SLC HCS

RTL 20.2 8.0 13.9 25.0 9.8 29.6

LBLR’best 99.9 36.9 2.2 3.1 7.3 26.4

LBLR’worst 54.8 40.4 1.8 6.2 14.6 28.0

5 As no fixed motif length l is used as input for RTL, we are actually not able to
calculate the RLE as defined in Sect. 3. To still be able to compare, we used the
length for which LBLR’ performed best, e.g. ACP1(l = 200).
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Fig. 2. Comparison between RTL and LBLR’. The parent curve indicates the best
performing labeling algorithm concerning the obtained LA and thus label quality. The
preferred performance is one with a high labeling quality and low labeling effort, cor-
responding to a flat curve with a minimal number of dots.

Unlike LBLR, RTL does not return a fully labeled dataset. As stated before,
for the purpose of experimental evaluation, we introduced an extra step in the
RTL algorithm that automatically labels unlabeled data after termination. The
dotted lines in Fig. 2 show that automatically filling the gaps after the labeling
procedure is terminated, affects the accuracy considerably for most datasets.
Whereas ±75% can be labeled robustly by RTL, the so-called rest-category
seems to require a different approach. These left-overs are unique and cannot
be matched based on motif discovery and thus may include e.g. anomalies, nov-
elties, state-changes or noise. Accordingly, we recommend to either not label
this, automatically label it as rest-category or to label it manually. Although
the latter increases the labeling effort, it may reveal interesting and previously
unknown concepts to the user.
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To summarize, being independent of fixed-length motifs and automatic label-
ing, benefits LA. Unfortunately, a higher LA may force a sacrifice with respect to
RLE. But with a appreciable reduced RLE, RTL achieved a more robust com-
promise between the RLE and LA for all considered datasets. Due to this more
balanced trade-off, RTL is useful for anyone who wants to efficiently and accu-
rately label time series for TSC tasks in a wide variety of application domains.

6 Discussion

The use of symbolic motif discovery might result in overlooking important
details. To remedy this, we introduced the extra zoom-in step (Algorithm 1,
line 4). To determine the contribution of this extra step, we compared RTL to
an adjusted version where line 4 in Algorithm 1 was removed. For all datasets
the removal of this line led to a deterioration of LA by 1.4% points (ACP5 )
to 5.0% points (ECG). Thus, this extra step is important with respect to the
labeling quality.

The performance of any algorithm depending on SAX, relies on alphabet-
size a and PAA-size w. So does RTL.6 The Matrix Profile used by LBLR is not
dependent on such parameters and could be potentially used in future work.
However, an extra step – such as using MDL – is needed to find all motifs
which are semantically the same. Hence, one way or the other, some sort of
discretization method is needed to find semantically similar motifs, so that they
can be grouped and labeled efficiently.

7 Conclusion and Future Research

Despite the extensive research on TSC, research dedicated to time series labeling
is scarce. We demonstrated that the implied user interaction and restriction of
fixed motif length hamper LBLR’s labeling performance. We presented RTL
as an alternative and demonstrated its robustness by comparing the labeling
accuracy and relative labeling effort to those of LBLR’ on a variety of datasets.
With an average accuracy of 93.7% and a significantly reduced labeling effort,
the path for TSC tasks in practice is cleared.

The RTL algorithm can be further improved along at least three lines. First,
more research should be done on the effect of the PAA-size and alphabet-
size on the quality of the motifs and thus labels. Second, the use of e.g. the
Euclidean Distance—instead of separate SAX strings—in the zoom-in step could
be explored in future research. Finally, in some cases a high-frequency motif could
be more relevant than a longer less-frequent motif. In this paper, motifs were
selected based on the trade-off between three measures: the similarity, frequency
and length of the motif. In other variable-length motif discovery algorithms, the

6 After comparing different values for a and w no significant accuracy changes were
obtained. However, more research is needed to fully understand the impact of both
parameters on the LA and RLE.
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motif is defined using only a similarity or frequency measure, often based on a
threshold function. Depending on the application, the right trade-off between
measures should be found.
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