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Abstract. A large part of the time invested in data science is spent on
manual preparation of data. Transforming wrongly formatted columns
into useful features takes up a significant part of this time. We present
the avatar algorithm for automatically learning programs that perform
this type of feature wrangling. Instead of relying on users to guide the
wrangling process, avatar directly uses the predictive performance of
machine learning models to measure its progress during wrangling. We
use datasets from Kaggle to show that avatar improves raw data for
prediction, and square it off against human data scientists.
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1 Introduction

Data scientists spend a lot of time simply preparing data for analysis. Even
before exploratory analysis, data cleaning and feature engineering, an additional
step of data wrangling is often required. This step consists of taking raw data
and wrangling it into a format that can be used for data science tasks, such as
visualisation and prediction. Data wrangling is typically carried out by writing
a program that transforms part of the data into the desired format. Writing
these programs is very time consuming to data scientists—according to popular
statistic, up to 80% of the time in the whole data science pipeline is invested in
wrangling [2], which explains the interest in automated data wrangling [5,10].

The existing work on automated data wrangling, however, assumes that a
user knows which format the data should take and can provide input. This input
can take many forms. Early methods interactively propose transformations based
on data that the user selects and require the wrangling algorithm to learn how
to extract the selection [7,14]. Other methods allow the user to give an example
of what the output should look like in order to learn a program that correctly
produces this output [3,5]. This is clearly a strong assumption: the big lesson of
feature engineering is that users rarely know which features, and in which form,
are useful for the target task.
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Taking inspiration from both feature engineering and data wrangling, we
introduce the problem of feature wrangling, which is concerned with wrangling
at the feature level. More specifically, we automatically search for transforma-
tions that wrangle individual columns into features of high quality to be used
in predictive models. For example, a date formatted as “01/01/2001” would be
split in its constituent day, month and year parts and these should be marked as
ordinal (day and month) or numerical (year) features. As the resulting features
are to be used in supervised machine learning, the quality of the generated fea-
tures can be assessed using the predictive performance of the resulting model. A
major benefit of our approach is that it eliminates the need for user interaction.

Motivational Example. Consider the excerpt of basketball data in Fig. 1a.
Regardless of the task, we can see that it is not very suited for further anal-
ysis. The height feature is not numerical and position is ambiguous—is “G-F”
a position on its own or is this player comfortable in multiple positions?

Suppose a fourth column salary exists that we want to predict. We can then
try different possibilities of representations for position and height and use
their performance in predicting salary to choose the most appropriate one. For
example, position can be one-hot encoded or split on “-” and then encoded with
a dummy variable for every symbol.

Whereas previous approaches would require the user to provide an example
of the desired feature, avatar generates and tries different alternatives to see
which ones yield the best performance. In this example, it will also discover that
splitting height by a “-” yields new columns that, after being made numerical in
a second iteration, are good features. The full wrangling program and its result
are respectively shown in Figs. 1b and 1c.

Fig. 1. Example of data wrangling for machine learning.

Contributions. In this paper, we make the following contributions.

– We introduce the problem of automated feature wrangling, which is concerned
with wrangling at the individual feature level and uses the performance of the
predictive models to evaluate alternative feature sets.

– We implement this idea in a prototype feature wrangling tool called avatar—
the Automated VAlue Transformator And extractoR. Given only a dataset
and a prediction task, it returns a new dataset with wranlged features that
are more suitable for the given task.

– We evaluate avatar on real datasets from the Kaggle1 data science platform.
1 www.kaggle.com.

www.kaggle.com
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Fig. 2. Overview of the data science pipeline.

2 Related Work

Feature engineering aims to improve the performance of predictive models by
transforming and combining existing features into new features that are eas-
ier for the model to use. Being a laborious process, automating it is an active
area of research [8,9]. The goal of feature wrangling is to use wrangling trans-
formations in order to extract new features from previously unusable columns.
Feature wrangling therefore lies at the intersection of data wrangling and feature
engineering.

AutoML is concerned with automating the data science pipeline as a whole.
The general structure of such a pipeline is shown in Fig. 2. These systems start
either from the feature engineering or model selection steps and build a data
science pipeline with the goal of optimising performance on a prediction task.
Some examples of methods are TPOT [13], auto-sklearn [4] and OBOE [18].
Automated feature wrangling can be viewed as extending these approaches to
include wrangling transformations in the feature engineering process.

Two types of wrangling approaches aim to prepare data for the data science
pipeline. The first is concerned with extracting and restructuring data, as lots of
information is still stuck in inconvenient formats such as spreadsheets, XML or
json. Selecting a few examples of desired rows allows methods like FlashExtract
[10] to learn a program that extracts all similar rows. Auto-Suggest recommends
data preparation steps, such as pivot and join, for raw tables [17]. Foofah [6] and
AutoPandas [1] learn full transformation programs if an output example can be
given. A second type of wrangling is concerned with transforming and normaliz-
ing individual columns based on examples provided by a user [3,5]. Approaches
in both types of wrangling assume that a user knows how to represent their data
and provide a shortcut to obtain this representation. avatar, on the other hand,
automatically determines a suitable representation at the feature level.

3 Data Wrangling for Machine Learning

Data wrangling in general is concerned with preparing raw data for data science.
In this paper, we focus on the specific task of transforming wrongly formatted
columns into usable features by automatically constructing a transformation
program—similar to how a human data scientist would perform the same task.
We formally describe this problem and present a simple language capable of
performing common data wrangling tasks in the following two sections.
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3.1 Problem Statement

We are interested in learning a data transformation program P : X → X ′ that
transforms a dataset D with instances of the form (x, y) ∈ (X ,Y) into a new
dataset D′. The goal is to obtain a dataset D′ with a better feature representation
than the original dataset D to perform a given machine learning task. In this
paper, we consider the task of supervised learning. The dataset D is used to
learn a model m : X → Y that predicts the value of y given its features x. This
model m is learned using a learner F on the dataset D, written as m = F(D).

Assessing whether a dataset D′ contains better features than D is possible in
the existence of a scoring function s : (F ,D) → R that estimates the performance
of a model F(D). The score of a model trained on a dataset then serves as a
proxy to evaluate the quality of the features of this dataset—better features will
result in better predictions. We assume the learner and scoring function to be
given, for example, a decision tree classifier and predictive accuracy.

The problem of feature wrangling for machine learning is then as follows.
Given a dataset D and a transformation language L, find a program P ∗ =
argmaxP∈L s(F , P (D)) that transforms D into a dataset D∗ = P ∗(D) on which
an optimal model F(D∗) can be learned.

It is intractable to find the optimal program, however, as an infinite number
of programs can be generated. Any program P such that s(F , P (D)) > s(F ,D)
is an improvement over using the raw data.

3.2 A Language for Feature Wrangling

Let us write D = [X1, . . . , Xm] when referring to columns of data. Let t(X,a) be
a transformation that takes a column X and (optional) arguments a, and returns
a new matrix of columns X. A transformation with fixed arguments is called a
wrangling transformation and written as t(a). This wrangling transformation is
valid for X if t(X,a) �= X.

Example 1. The split(X, d) transformation takes a column X and a delimiter
d. It returns a set of columns obtained by splitting each row of X at every
occurrence of d. An example of a wrangling transformation is split(“-”). It is
valid for the height and position columns in Fig. 1a, but not for the name
column.

A wrangling program is simply a sequence of wrangling transformations. Data
scientists typically build such programs by iteratively picking a transformation t
and arguments a for a target column Xi such that t(Xi,a) yields new columns.
Each of these new columns is given a unique identifier and added to the data.

Example 2. An example of a dataset, wrangling program and its result is shown
in Fig. 1a. Table 1 shows an overview of transformations currently supported by
avatar.
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Table 1. Overview of transformations supported by avatar and their generators. The
implicit column parameter is not mentioned. Argument d is a string, p is a regular
expression and L is a list of strings.

Transformation Description Generator

makeNumerical Make column numerical true if Xi contains a number

oneHot One hot encode true if Xi contains limited number of
unique values

NaN Encode value as hidden missing
value

Values in Xi that match a predefined
set of patterns, such as “?” and “111”

split(d) Split on delimiter Strings consisting of subsequent,
non-alphanumeric characters found
in Xi

splitDummies(d) Split on delimiter and dummy
encode the resulting categorical
features

Same as split

extractNumber(p) Extract numbers that follow a
regular expression pattern

Extract numbers from Xi and
generate regexes from them by
mapping digits to \d. Additionally,
generate patterns where consecutive
\d are mapped to \d+

extractWord(L) Extract a specific word from L
in each row

Greedily look for combinations of
words such that each row contains
exactly one of these words

wordToNumber Convert written numbers to
numerical

true if at least one written number is
found

3.3 Generating Arguments

To compose valid wrangling programs, we need to tractably identify the possible
arguments of transformation functions. We do so by following a generator-based
approach [1]. For each transformation t, we define a generator Gt(X) that takes
a column X as input and yields arguments a such that t(a) is a valid wrangling
transformation for X. In other words, the arguments of wrangling transforma-
tions are generated from data and are not predefined by a user. Generators in
avatar are only allowed to yield a finite number of arguments.

Example 3. The generator for split yields strings of consecutive, non-
alphanumeric characters from rows in the input column, one at a time. Given
either position or height columns from Fig. 1a, only a single argument is gener-
ated: “-”.

Generators for all transformations that avatar supports are described in Table 1.
A generator for a transformation without additional arguments returns true if
the function can be applied to X.
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4 Machine Learning for Feature Wrangling

At the core of avatar is the use of machine learning models for evaluating
progress during wrangling. As opposed to looking for a single transformation
at a time, multiple transformations are considered in parallel to allow feature
interactions to be considered when evaluating progress. In order to do so, avatar
explores the space of wrangling programs by exploiting the fact that, starting
from a dataset, the order in which transformations are applied to this dataset
does not matter. At each iteration, a large wrangling program is generated, which
is then pruned by subsequent steps. A high level overview of avatar is shown
in Fig. 3 and the following sections describe each of these steps in detail.

Fig. 3. The avatar algorithm.

4.1 Prune

Pruning aims to remove columns that are not and will never become useful
features. This step allows the generators for transformations to be significantly
less complex, as different edge cases don’t have to be explicitly considered. The
following columns are removed from the dataset.

1. Columns that are constant.
2. Columns in which more than pnan percent of values is missing.
3. Columns that are more than pid percent identical to another column.

4.2 Select

From all remaining columns, the selection step aims to find promising features—
those that have at least some predictive power. Selection happens in two steps:
preselection and feature ranking. This ranking of features is then used in the
next step to evaluate the fitness of the current dataset.
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Preselection. This step heuristically excludes the following bad columns.

1. Categorical columns that contain more than pu percent unique values.
2. Categorical columns Xj for which there exists a column Xi with i < j such

that a bijective mapping exists between these columns for at least pbi of rows.

Preselection serves to reduce the effort required by the feature ranking step
that follows. As opposed to the pruning step, columns excluded by preselection
are not removed from the dataset; instead, they remain available to subsequent
wrangling steps, as they may still become useful features after more transforma-
tions.

Feature Ranking. The aim of this step is to quickly rank columns by potential
relevance. To do so, avatar uses a wrapper approach—learning shallow models
on subsets of features and aggregating the feature importances extracted from
these models. In every iteration, n rows are randomly sampled from a random
subset of columns. On this subset of data, we perform k-fold cross-validation
with a shallow learner Fr. In each of the folds, feature importances are esti-
mated from these learned models, averaged for each column and weighted by the
cross-validation performance. Final importances for each column are obtained
by averaging the weighted importances over multiple iterations.

To estimate model performance, we use accuracy in case of classification
and max(0, R2) in case of regression. Feature importances within each model
are estimated using SHAP values [11,12]. They are a practical implementation
of the game-theoretic concept of Shapley values, which quantify an individual
player’s contribution towards the final outcome in a cooperative game [15]. Each
feature takes the role of a player and a prediction is considered the outcome of
a game.

4.3 Evaluate

Given the ranking of features, avatar now heuristically evaluates its progress on
the current dataset. It looks for a k such that the top-k ranked features result in
the best performance. Performance for a set of features is evaluated using cross
validation on all rows of the dataset using a learner Fe. Accuracy is used for
classification and RMSE for regression.

If performance decreases with respect to previous iteration, avatar termi-
nates and returns the set of features that achieved the highest performance. A
user can easily request more features from avatar, which are returned in order
of their rank. The wrangling program is also generated from these selected fea-
tures by adding drop transformations for columns that are generated but not
selected, as was shown in Fig. 1b.

4.4 Wrangle

In this step,avatar generates new candidate features by transforming the columns
of the current dataset. We exhaust the generators for all transformations on all
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columns that were not wrangled before and apply the transformations to obtain
new columns. These new columns are appended to the current dataset, ensuring
that more complex features—obtained by applying more transformations—are
pruned over simpler ones.

5 Evaluation

We perform experiments to answer the following questions.

Q1 Is avatar able to find new and useful features?
Q2 How does avatar compare to human wranglers?

Data. We use datasets from Kaggle, a popular data science platform. Kaggle
allows users to publish datasets and provides public notebooks which contain
snippets of code executing the data science steps. We search for datasets that
(1) contain scraped data, (2) have a single file, and (3) a clear prediction target.
We focus on evaluating avatar’s ability to wrangle interesting features and,
therefore, only use the datasets that have at least one column that requires
wrangling. An overview of datasets is shown in Table 2a.

Table 2. Data used for evaluating avatar.

(a) Classification (C) and regression (R) datasets.

Dataset Type Columns Rows

Total Text

Android R 10 8 984

Car features R 17 8 11914

Car price R 27 10 205

Food choices R 61 13 121

GSM R 40 39 8628

House R 82 43 1460

Melbourne housing R 22 8 13580

NBA C 21 7 128069

NBA2K R 15 11 429

Pet C 11 4 18834

Shelter animals C 10 10 26729

Titanic C 12 5 891

iPhone 11 R 7 3 247

(b) Notebooks compared with avatar.

Dataset Lines of code # features

Human avatar

iPhone 11 28 6 7

NBA 34 10 9

Pet 44 66 10

Car features 42 3 26

Food choices 57 133 17

GSM 277 14 42

Models and Metrics. As we are interested in avatar’s ability to wrangle new
features, not in obtaining the best possible performance on a dataset, our primary
concern when choosing the model for estimating feature importance is its speed
(as we need to train it frequently) and ability to identify useful features. We
assume that even low-capacity models are capable of identifying useful features,
though their estimate might be less robust compared to complex models. For this
reason, we focus on decision trees and limit their depth to 4 when evaluating
feature importance and to 12 when training the final model. We report the
relative performance over the absolute performance.
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Fig. 4. Relative performance of avatar after iterations of wrangling new features when
compared to the original dataset (iteration 0). Feature importances for marked data
points are shown in Fig. 5a.

Experimental Setup. Experiments were performed on a laptop with a prototype
implemented in Python. Code, data and results are available on GitHub.2 We ran
avatar for four iterations, with 1600 iterations of feature selection on samples
of 1000 rows. In some datasets with many columns containing long strings, the
number of columns can quickly explode after a few iterations. If the pruning step
took longer than two hours, avatar was stopped early.

5.1 Wrangling New Features

Evaluating the quality of features is impossible to do directly; instead, we eval-
uate their quality implicitly through the performance of a model trained on the
features. More precisely, we compare performance of the model training the raw
data versus the model trained on data wrangled by avatar. The relative per-
formance after each iteration is shown in Fig. 4. Note that avatar starts with
pruning and selection, and the baseline result at iteration 0 is thus also obtained
after greedily selecting features for the best performance without wrangling.

The results show that avatar consistently improves predictive performance
by wrangling new features. A single exception is the NBA dataset, where wran-
gled features are not relevant to the target. This is reinforced in the next exper-
iment, where avatar performs on par with human wranglers. We observe a gen-
eral trend where performance drops after multiple wrangling iterations. The rea-
son for that is the noise in feature importance estimation: our estimate becomes
less robust with the increase of the number of features because avatar repeat-
edly uses uniformly sampled subsets of features to estimate their importance.
With the increase in the number of features, there is a higher chance of a spuri-
ous interaction between the features. This negatively impacts the performance
2 https://github.com/pidgeyusedgust/avatar-ida21.

https://github.com/pidgeyusedgust/avatar-ida21
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Fig. 5. A closer look at selected features for two datasets.

of the final model due to overfitting. avatar then terminates and returns the
ranked features from the previous iteration.

As a small case study, we take a closer look at the best performing features
for the Melbourne housing and iPhone 11 datasets in Fig. 5a. One column from
their original datasets is shown in Fig. 5b. For the Melbourne housing dataset,
the dummy encoded feature for “Southern” after splitting Regionname on “”
is found to be the most relevant one. The selected feature in the second itera-
tion first splits this column by “-” and then extracts the word “Metropolitan”,
“South” or “Victoria”. This results in “South-Eastern Metropolitan” and “South-
ern Metropolitan” being projected to the same “South” feature, which a human
might not think of. On the iPhone 11 dataset, many features are extracted from
the Description. Very relevant is the full model name “iPhone 11 256GB” as
obtained by splitting on “-”. Human data scientists might expect that this feature
requires to be split up further. It is, however, an ordinal feature on its own and
provides a strong signal.

5.2 Comparison with Humans

In the second experiment, we compare the performance of a predictive model
on a dataset wrangled by (1) human experts on Kaggle and (2) by avatar. We
obtain expert-wrangled datasets from the corresponding notebooks on Kaggle.
As we are interested in the ability to wrangle features, any feature engineering
steps are removed from the notebooks, but any feature selection is left untouched.
A list of notebooks and number of lines of wrangling code is given in Table 2b.
We compare the relative performance of the same model trained on features
wrangled by humans versus features wrangled by avatar and show them in
Fig. 6.
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Fig. 6. Comparing the relative performance of human wranglers to avatar. Downward
slopes indicates that avatar is better, which happens for half of the datasets. For the
NBA and Pet dataset, the previous experiment has already shown that little additional
information is present in wrangled features.

The results show that avatar performs similarly or better than human data
wranglers. The only exception is the iPhone 11 dataset. avatar still identi-
fies interesting features, but the main reason for bad performance are noisy
examples—iPhone 11 covers instead of phones—which negatively impacts the
performance of avatar. For the NBA and Pet datasets, human performance is
marginally better. Wrangled features are not representative of the target, which
further explains their small performance differences in Fig. 4b. On datasets where
avatar greatly improves with respect to the baseline, it also beats human wran-
gling.

6 Conclusion and Future Work

In order to cope with data scientists spending valuable time on this tedious
process, we present the avatar algorithm for automatically wrangling features
from raw columns. We show that avatar is able to wrangle features that improve
predictive performance when compared to the original dataset. On datasets that
require heavy wrangling, it even outperforms some human wranglers.

Future Work. Two immediate pointers for extensions are expanding avatar to
the multi-relational setting, allowing different tables to be joined, and explor-
ing the unsupervised case, for example, by using multi-directional ensembles
of decision trees [16]. Unsupervised data wrangling would allow avatar to
aid exploratory data analysis, another significant time sink for data scientists.
Quickly selecting relevant features from high-dimensional data with high mul-
ticollinearity plays an important role in avatar. Our repository contains the
intermediate, wrangled datasets to encourage further research on this topic. The
main technical limitation for avatar is that the search space quickly explodes
when many columns with long, textual values are present. Being more strict on
the generators and pruning rules can trade off speed for expressive power.
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