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Abstract Turbomachines also prone to various types of dynamic instabilities and
responses that in some respects are similar to those of classical aeroelasticity as
described in earlier chapters. However the complications of rotating flows and struc-
tures provide new challenges as described in this chapter, also see the related discus-
sion in chapters “Modeling of Fluid-Structure Interaction and Modern Analysis for
Complex” and “Nonlinear Unsteady Flows in Turbomachinery”.

The advent of the jet engine and the high performance axial-flow compressor toward
the end of World War II focussed attention on certain aeroelastic problems in turbo-
machines.

The concern for very light weight in the aircraft propulsion application, and the
desire to achieve the highest possible isentropic efficiency by minimizing parasitic
losses led inevitably to axial-flow compressors with cantilever airfoils of high respect
ratio. Very early in their development history these machines were found to experi-
ence severe vibration of the rotor blades at part speed operation; diagnosis revealed
that these were in fact stall flutter (see chapter “Stall Flutter”) oscillations. The seri-
ousness of the problem was underlined by the fact that the engine operating regime
was more precisely termed the ‘part corrected speed’ condition, and that in addition
to passing through this regime at ground start up, the regime could be reentered dur-
ing high flight speed conditions at low altitude. In either flight condition destructive
behavior of the turbojet engine could not be tolerated.

In retrospect it is probable that flutter had occurred previously in some axial
flow compressors of more robust construction and in the later stages of low pres-
sure axial-flow stream turbines as well. Subsequently a variety of significant forced
and self-excited vibration phenomena have been detected and studied in axial-flow
turbomachinery blades.

In 1987 and 1988 two volumes of the AGARD Manual on Aeroelasticity in Tur-
bomachines [1, 2] were published with 22 chapters in all. The sometimes disparate
topics contributed by nineteen different authors and/or co-authors form a detailed
and extensive reference base related to the subject material of the present chapter.
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The reader is urged to refer to the AGARD compendium for in-depth development
and discussion of many of the topics to be introduced here, and for related topics
(such as the role of experimentation) not included here.

1 Aeroelastic Environment in Turbomachines

Consider an airfoil or blade in an axial flow turbine or compressor which is running
at some constant rotational speed. For reasons of steady aerodynamic and structural
performance the blade has certain geometric properties defined by its length, root and
tip fixation, possiblemechanical attachment to other blades and by the chord, camber,
thickness, stagger and profile shape which are functions of the radial coordinate.
Furthermore, the blade may be constructed in such a manner that the line of centroids
and the line of shear centers are neither radial nor straight, but are definedby schedules
of axial and tangential coordinates as functions of radius. In fact, in certain cases,
it may not be possible to define the elastic axis (i.e., the line of shear centers). The
possibility of a built-up sheet metal and spar construction, a laid-up plastic laminate
construction, movable or articulated fixations and/or supplemental damping devices
attached to the blade would complicate the picture even further.

The blade under consideration, which may now be assumed to be completely
defined from a geometrical and kinematical point of view, is capable of deforming1

in an infinite variety of ways depending upon the loading to which it is subjected.
In general, the elastic axis (if such can be defined) will assume some position given
by axial and tangential coordinates which will be continuous functions of the radius
(flapwise and chordwise bending). About this axis a certain schedule of twisting
deformations may occur (defined, say by the angular displacement of a straight
line between leading and trailing edges). Finally, a schedule of plate type bending
deformations may occur as functions of radius and the chordwise coordinate. (Radial
extensions summoned by centrifugal forces may further complicate the situation).

Although divergence is not a significant problem in turbomachines, an alternative
static aeroelastic problem, possibly resulting in themeasurable untwist and uncamber
of the blades, can have important consequences with respect to the steady perfor-
mance and with respect to the occurrence of blade stall and surge.

One has now to distinguish between steady and oscillatory phenomena. If the
flow through the machine is completely steady in time and there are no mechanical
disturbances affecting the blade through its connections to other parts of themachine,
the blade will assume some deformed position as described above (and as compared
to its manufactured shape) which is also steady in time. This shape or position will
depend on the elastic and structural properties of the blade and upon the steady
aerodynamic and centrifugal loading. (The centrifugal contribution naturally does
not apply to a stator vane.)

1 Deformations are reckoned relative to a steadily rotating coordinate system in the case of a rotor
blade.
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Consider the situation, however, where dynamic disturbances may exist in the
airstream, or may be transmitted through mechanical attachments from other parts o
the structure. Due to the unsteadiness of the aerodynamic and/or the external forces
the blade will assume a series of time-dependent positions. If there is a certain
repetitive nature with time of the displacements relative to the equilibrium position,
the blade is said to be executing vibrations, the term being taken to include those
cases where the amplitude of the time-dependent displacements is either increasing,
decreasing or remaining constant as time progresses.

It is the prediction and control of these vibrations with which the turbomachine
aeroelastician is concerned.Once the blade is vibrating the aerodynamic forces are no
longer a function only of the airstreamcharacteristics and the blade’s angular position
and velocity in the disturbance field, but depend in general upon the blade’s vibratory
position, velocity and acceleration as well. There is a strong interaction between the
blade’s time-dependent motion and the time-dependent aerodynamic forces which it
experiences. It is appropriate at this point to note that in certain cases the disturbances
may be exceedingly small, serving only to ‘trigger’ the unsteady motion, and that the
vibration may be sustained or amplified purely by the interdependence or feedback
between the harmonic variation with time of the blade’s position and the harmonic
variation with time of the aerodynamic forces (the flutter condition).

A further complication is that a blade cannot be considered as an isolated struc-
ture. There exist aerodynamic and possibly structural coupling between neighboring
blades which dictate a modal description of the entire vibrating bladed-disk assem-
bly. Thus an interblade phase angle, σ , is defined and found to play a crucial role in
turbomachine aeroelasticity . Nonuniformities among nominally ‘identical’ blades
in a row, or stage, are found to be extremely important in turbomachine aeroelas-
ticity; stemming from manufacturing and assembly tolerances every blade row is
‘mistuned’ to a certain extent, i.e., the nominally identical blades in fact are not
identical.

2 The Compressor Performance Map

The axial flow compressor, and its aeroelastic problems, are typical; the other major
important turbomachine variant being the axial flow turbine (gas or steam). In the
compressor the angle of attack of each rotor airfoil at each radius r is compounded
of the tangential velocity of the airfoil section due to rotor rotation and the through
flow velocity as modified in direction by the upstream stator row. Denoting the axial
component by Vx and the angular velocity by � as in Fig. 1, it is clear that the angle
of attack will increase inversely with the ratio φ = Vx/(r�). In the compressor, an
increase in angle of attack (or an increase in ‘loading’) results in more work being
done on the fluid and a greater stagnation pressure increment �p0 being imparted
to it. Hence the general aspects of the single ‘stage’ (i.e., pair of fixed and moving
blade rows) characteristics in Fig. 2 are not without rational explanation. Note that
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Fig. 1 Velocity triangle in an axial compressor

Fig. 2 Work and pressure ratio relationships

themassflow through the stage equals the integral over the flowannulus of the product
of Vx and fluid density.

When the various parameters are expressed in dimensionless terms, and the com-
plete multistage compressor is compounded of a number of states, the overall com-
pressor ‘map’, or graphical representation of multistage characteristics, appears as in
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Fig. 3 Compressor map

Fig. 3, where ṁ is massflow, γ and R are the ratio of specified heats and gas constant,
respectively; T0 is stagnation temperature and A is a reference flow area in the com-
pressor. Conventionally the constants γ and R are omitted where the identity of the
working fluid is understood (e.g., air). The quantity A is a scaling parameter relating
the absolute massflow of geometrically similar machines and is also convention-
ally omitted. The tangential velocity of the rotor blade tip, �rtip, is conventionally
replaced by the rotational speed in rpm. The latter omission and replacement are
justified when discussing a particular compressor.

An important property of the compressor map is the fact that to each point there
corresponds theoretically a unique value for angle of attack (or incidence) at any
reference airfoil section in the compressor. For example, taking a station near the tip
of the first rotor blade as a reference, contours of incidence may be superposed on
the map coordinates. In Fig. 4 such angle contours have been shown for a specific
machine. As defined here, ai is the angle between the relative approach velocity W
and the chord of the airfoil. Here again axial velocity Vx (or massflow) is seen to dis-
play an inverse variation with respect to angle of attack as a line of constant rotational
speed is traversed. The basic reason such incidence contours can be established is
that the two parameters which locate a point on the map, ṁ

√
T0/p0 and�r/

√
T0, are

effectively a Mach number in the latter case and a unique function of Mach number
in the former case. Thus the ‘Mach number triangles’ are established which yield
the same ‘angle of attack’ as the velocity triangles to which they are similar, Fig. 5.

As a matter for later reference, contours of V/(vω) for a particular stator airfoil,
or else W/(bω) for a particular rotor airfoil, can be superimposed on the same map,
provided the environmental stagnation temperature, T0, is specified. These contours
are roughly parallel, though not exactly, to the constant rotational speed lines. The
natural frequency of vibration, ω, tends to be constant for a rotor blade at a given
rotational speed; and of course a stator blade’s frequency does not depend directly on
rotation. However, upon viewing the velocity triangles in Fig. 5, it is clear that if �r
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Fig. 4 Map showing incidence as a parameter

Fig. 5 Velocity and Mach number correspondence

is kept constant and the direction of V is kept constant, the size of W may increase
or decrease as Vx (or massflow) is changed. In fact, if the angle between V and W is
initially close to 90 degrees, a not uncommon situation, the change in the magnitude
of W will be minimal. For computing the stator parameter, V/(bω), the direction
of W leaving a rotor is considered to be virtually constant, and the corresponding
changes in V (length and direction) as Vx is varied lead to similar conclusions with
regard to angle of attack and magnitude of V experienced y the following stator. The
values of W/(bω) increase with increasing value of �rtip, since the changes in W
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(or V ) will dominate the somewhat smaller changes in the appropriate frequency ω,
at least in the first few stages of the compressor. Compressibility phenomena, when
they become significant will sometimes alter these general conclusions.

3 Blade Mode Shapes and Materials of Construction

Flutter andvibration of turbomachinery blades can anddooccurwith awide variety of
these beam -like structures and their degrees of end restraint. Rotor blades in use vary
from cantilever with perfect root fixity all the way to a single pinned attachment such
that the blade behaves in bending like a pendulum ‘flying out’ and being maintained
in a more or less radial orientation by the centrifugal (rather than a gravity) field.
Stator vanes may be cantilevered from the outer housing or may be attached at both
ends, with degrees of fixity ranging from ‘encastred’ to ‘pinned’.

The naturalmodes and frequencies of these blades, or blade -disc systemswhen the
blades are attached to their neighbors in the same row or the discs are not effectively
rigid, are obtainable by standard methods of structural dynamics. Usually twisting
and twodirections of bending are incorporated in a beam -typefinite element analysis.
If plate-type deformations are significant, the beam representation must be replaced
bymore sophisticated plate or shell elementswhich recognize static twist and variable
thickness.

In predicting the first several natural modes and frequencies of rotor blades it
is essential to take into account the effect of rotor rotational speed. Although the
description is not analytically precise in all respects, the effect of rotational speed
can be approximately described by stating ω2

n = ω2
0n + Kn�

2 where ω0n is the static
(nonrotating) frequency of the rotor blade and the Southwell coefficient Kn is a pro-
portionality constant for any particular blade in the nth mode. The effect is most pro-
nounced in the natural modes which exhibit predominantly bending displacements;
the modes associated with the two gravest frequencies are usually of this type, and it
is here that the effect is most important. A positive Southwell coefficient represents
a centrifugal stiffening of the blade, increasing the natural frequency. Disk rotation
rate also produces a softening effect that can reduce the Southwell coefficient. This
softening effect is typically significant for only the first mode. High temperatures
in high pressure turbines operating at high power levels can reduce the modulus of
elasticity of the blades, reducing the static natural frequency ω0n . As high engine
power tends to occur at high rotor speeds, thermal effects can cause the frequency
of some blade modes to decrease with increasing speed. Other factors also need to
be considered, such as blade fixity boundary condition (fixed-fixed in stators versus
fixed-free in rotors), and disk flexibility.

Materials of construction are conventionally aluminum alloys, steel or stainless
steel (high nickel and/or chromiumcontent).However, in recent applications titanium
and later beryllium have become significant. In all these examples, considering flutter
or forced vibration in air as the surrounding fluid, the fluid/structural mass ratios are
such that the critical mode and frequency may be taken to be one or a combination
of the modes calculated, or measured, in a vacuum.
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More recently there has been a reconsideration of using blades and vanes made of
laminated materials such as glass cloth, graphite or metal oxide fibers laid up in poly-
meric or metal matrix materials and molded under pressure to final airfoil contours.
Determining the modes and frequencies of these composite beams is more exacting.
However, once determined, these data may be used in the same manner as with con-
ventional metal blades. It should also be noted that aeroelastic programs related to
turbomachinery often make a great deal of practical use out of mode and frequency
data determined experimentally from prototype and development hardware.

A major consideration in all material and mode of construction studies is the
determination of mechanical damping characteristics. Briefly stated the damping
may be categorized as material or structural. The former is taken to describe a
volume-distributed property in which the rate of energy dissipation into heat (and
thus removed from the mechanical system) is locally proportional to a small power
of the amplitude of the local cyclical strain. The proportionality constant is deter-
mined by many factors, including the type of material, state of mean or steady strain,
temperature and other minor determinants.

The structural dampingwill usually be related to interfacial effects, for example in
the blade attachment to the disk or drum, and will depend on normal pressure across
the interface, coefficient of friction between the surfaces, mode shape of vibration,
and modification of these determinants by previous fretting or wear. Detailed knowl-
edge about damping is usually not known with precision, and damping information
is usually determined and used in ‘lumped’ or averaged fashion. Comparative calcu-
lations may be use to predict such gross damping parameters for a new configuration,
basing the prediction on the known information for an existing and somewhat similar
configuration. By this statement it is not meant to imply that this is a satisfactory
state of affairs.More precise damping prediction capabilities would be very welcome
in modern aeroelastic studies of turbomachines, and some studies of this nature are
reported in Refs. [1, 2].

The aeroelastic response is central to the analysis of fatigue and fracture of turbo-
machinery blades. The question of crack initiation, crack propagation and destructive
failure cannot be addressed without due attention being given to the type of exci-
tation (forced or self-excited) and the parametric dependencies on the nonsteady
aerodynamic forces. This may be appreciated when it is noted that the modal shape
functions, frequencies and structural damping of a blade change with the crack
growth of the specimen. This concatenation of aeroelasticity and blade failure pre-
diction is presently an active area of research and development.

4 Nonsteady Potential Flow in Cascades

Unwrapping an annulus of differential height dr from the blade row flow passage
of an axial turbomachine results in a two-dimensional representation of a cascade of
airfoils and the flow about them. The airfoils are identical in shape, equally spaced,
mutually congruent and infinite in number.
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Fig. 6 Cascade camberlines modelled by vortex sheets

When a cascade is considered, as opposed to a single airfoil, the fact that the
flexible blades may be vibrating means that the relative pitch and stagger may be
functions of time and also position in the cascade. The steady flow, instead of being
a uniform stream, will now undergo turning; large velocity gradients may occur in
the vicinity of the blades and in the passages between them. These complications
imply that the blade thickness and steady lift distribution must be taken into account
for more complete fidelity in formulating the nonsteady aerodynamic reactions. See
chapters by Whitehead and Verdon in Ref. [1].

A fundamental complication which occurs is the necessity for treating the wakes
of shed vorticity from all the blades in the cascade.

Assume the flow is incompressible. Standard methods of analyzing steady cas-
cade performance provide the steady vorticity distribution common to all the blades,
γs(x), and its dependence on W1 and β1. As a simple example of cascading effects
consider only this steady lift distribution on each blade in the cascade and compute
the disturbance velocity produced at the reference blade by a vibration of al the blades
in the cascade.

In what follows the imaginary index j for geometry and the imaginary index i
for time variation (i.e., complex exponential) cannot be ‘mixed’. That is i j �= −1.
Furthermore, it is convenient to replace the coordinate normal to the chord, z, by y
and the upwash on the reference airfoilwa by υ. The velocities induced by an infinite
column of vortices of equal strength, τ , are given by (Fig. 6)

δ[u(z) − jv(z)] = j�

2π

∞∑

n=−∞

1

Z − ζn
(4.1)

where the location ζn of the nth vortex
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ζn = ξ + jnse− jβ + jYn(ξn, t) + Xn(t) (4.2)

indicates small deviations from uniform spacing s, (Yn � s, Xn � c). The point Z
is on the zeroth or reference blade

Z = x + jY (x, t) + X (t) (4.3)

and the location of the vortices will ultimately be congruent points on different blades
so that

ξn = ξ + ns sin β (4.4)

(The subscript naught, indicating the zeroth blade, is conventionally omitted.)
Finally, harmonic time dependencewith time lag−r between themotions of adjacent
blades2 is indicated by

Yn(ξn, t) = einωr Y (ξ, t) (4.5)

With these provisions the Cauchy kernel in (4.1) may be written

1

Z − ζn
= 1

x − ξ − jnse− jβ + j[Y (x, t) − Yn(ξn, t)] + X (t) − Xn(t)
(4.6)

and summing (4.5) over all blades

n=∞∑

n=−∞

1

Z − ζn
= 1

x − ξ + j[Y (x, t) − Y (ξ, t)] +
∞′∑

n=−∞

1

Z − ζn
(4.7)

where the primed summation indicates n = 0 is excluded. The first term on the
RHS of (4.7) is a self-induced effect of the zeroth foil. The part Y (x, t) − Y (ξ, t) is
conventionally ignored in the thin-airfoil theory; it is small compared to x − ξ and
vanishes with x − ξ . Hence the first term supplies the single airfoil or self-induced
part of the steady state solution. Expanding the remaining term yields

′∑ 1

Z − ζn

∼=
′∑ 1

x − ξ − jns e− jβ
+ j

′∑ Yn(ξn, t) − Y (x, t)

(x − ξ − jns e− jβ)2

+
′∑ Xn(t) − X (t)

(x − ξ − jns e− jβ)2
+ · · ·

(4.8)

2 This so-called ‘periodicity assumption’ of unsteady cascade aerodynamics lends order, in principle
and often in practice, to the processes of cascade aeroelasticity. The mode of every blade is assumed
to be identical, with the same amplitude and frequency but with the indicated blade-to-blade phase
shift. Such a blade row, would be termed ‘perfectly tuned’. Absent this assumption, the cascade
representing a rotor of n blades could have n distinct components (type of mode, modal amplitude,
frequency).
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where the last two summations on the RHS of (4.8) are the time-dependent por-
tions. The corresponding unsteady induced velocities from (4.1) may be expressed
as follows using the preceding results

δ[ũ(x ′)− j ṽ(x ′)] � −γs(ξ
′)δξ ′

2πc
P2

{ ′∑ einωτY (ξ ′, t) − Y (x ′, t)
(χ − jnπ)2

+ 1

j

′∑ einωτ X (t) − X (t)

(χ − jnπ)2

} (4.9)

where the primed variables are dimensionless w.r.t. the chord,

P = πe jβc/s (4.10)

χ = P(x ′ − ξ ′) (4.11)

and ũ, υ̃ are the time dependent parts of u, υ. The local chordwise distribute vortex
strength γs(ξ)dξ has replaced τ the discrete vortex strength in the last step, (4.9).
With the notation

q = 1 − ωτ/π (4.12)

the summations may be established in closed form. For example, when the blades
move perpendicular to their chordlines with the same amplitude all along the chord
(pure bending) the displacement function is a constant

Y = −h̄eiωt = −h (4.13)

and, upon integrating over the chord in (4.9), one obtains

ũ(x ′) − j ṽ(x ′) = P2

2πc

∫ 10γs

(ξ ′)
∑ ′ e

inωτh(t) − h(t)

(χ − jnπ)2
dξ ′ (4.14)

or

ũ = − h

2πc

∫ 1

0
γs(ξ

′)[F − i I ]dξ ′ (4.15a)

ṽ = − h

2πc

∫ 1

0
γs(ξ

′)[G + i H ]dξ ′ (4.15b)

where

F + iG = P2 q sinh χ sinh qχ − cosh χ cosh qχ + 1

sin h2χ
(4.15c)

H + i I = P2 q sinh χ cosh qχ − cosh χ sinh qχ

sin h2χ
(4.15d)
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Similar disturbance velocity fields can be derived for torsional motion, pure chord-
wise motion, etc. Another separate set of disturbance fields may be generated to take
account of the blade thickness effects by augmenting the steady vorticity distribution
γ (x) by, say − jε(x), the steady source distribution, in the above development.

The net input to the computation of oscillatory aerodynamic coefficients is then
obtained by adding the υ̃ of all the effects so described to the LHS of the integral
equation which follows

on y=0, 0<x<c︷ ︸︸ ︷
v1(x) + v2(x) + v3(x) = 1

2π

∫ c

0
[γ1(ξ) + γ2(ξ) + γ3(ξ)]K (ξ − x)dξ

+ 1

2π

∫ ∞

c
[γ1(ξ) + γ2(ξ) + γ3(ξ)]K (ξ − x)dξ

(4.16)

In this formulation υ1 may be identified with the unsteady upwash, if any, convected
as a gust with the mean flow and υ2 is the unsteady upwash attributable to vibratory
displacement of all the blades in the cascade, where each blade is represented by
steady vortex and source/sink distribution. It is υ2 that was described for one special
component (pure bending) in the derivation of υ̃ leading to (4.15b).

The component υ3 may be identified with the unsteady upwash elative to the
zeroth airfoil occasioned by its harmonic vibration.

Since we are dealing here with a linear problem each of the subscripted sub-
problems may be solved separately and independently of the others. It is also impor-
tant to note that since the vortex distributions γ1, γ2 and γ3 representing the lift
distributions on the cascade chordlines are unsteady they must give rise to distribu-
tions of free vortices in the wake of each airfoil of the cascade. In other words vortex
wakes emanate from the trailing edge of each airfoil and are convected downstream:
at a point with fixed coordinates in thewake, the strength of the vortex element instan-
taneously occupying that point will vary with time. Hence, the integral equation will
in general contain a term that is an integral over the wake (c < ξ < ∞) to account
for the additional induced velocities from the infinite number of semi-infinite vortex
wakes. The kernel 1

2πK (ξ − x) accounts in every case for the velocity induced at
(x , 0) by a vortex element at the point (π , 0) on the chord or wake of the reference,
or zeroth, airfoil plus an element of equal strength located at the congruent point
(π + ns sin β, ns cosβ) of every other profile of the cascade or its wake. The form
of K may in fact be derived by returning to the previous derivation for υ̃ in (4.9) and
(4.15b) and extracting the terms

isolated airfoil︷ ︸︸ ︷
1

ξ − x
+

cascade effect︷ ︸︸ ︷
∞∑

n=−∞

1

ξ − x + jns e− jβ
(4.17)

In this expression the signs have been changed to imply calculations of positive υ

(rather than − jυ) and with each term it is now necessary to associate a strength
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γr (ξ) exp(inωr) (r = 1, 2 or 3) since the inducing vortexes now pulsate rather than
being steady in time. The kernel now appears as

1

2π
K (ξ − x) = 1

2π

∞∑

n=−∞

einωτ

ξ − x + jns exp(− jβ)
(4.18)

which may be summed in closed form to yield

1

2π
K (ξ − x) = e jβ

2s

· cosh[(1 − σ/π)π exp( jβ)(ξ − x)/s] + i j sinh[(1 − σ/π)π exp( jβ)(ξ − x)/s]
sinh[π exp( jβ)(ξ − x)/s]

(4.19)
where σ = ωτ is known as the interblade phase angle, an assumed constant.

The term for n = 0 in the summation (4.18) is

1

2π
K0(ξ − x) = 1

2π

1

ξ − x
(4.20)

which is the kernel for the isolated airfoil. Hence, the added complexity of solving
the cascaded airfoil problem is attributed to the additional terms giving the more
complicated kernel displayed in (4.19).

In contradistinction to the isolated airfoil case, solutions of the unsteady aerody-
namics integral equation cannot be solved in closed form, or in terms of tabulated
functions, for arbitrary geometry (β and s/c) and arbitrary interblade phase angle, σ .
In fact, as noted previously, the thickness distribution of the profiles and the steady
lift distribution become important when cascades of small space/chord ratio are con-
sidered to vibrate with nonzero interblade phasing. Consequently, solutions to the
equation are always obtained numerically. It is found that the new parameters β,
s/c and σ are strong determinants of the unsteady aerodynamic reactions. A tabular
comparison of the effect of these variables on the lift due to bending taken from
the data in [3] appears below. In this chart, the central stencil gives the lift coeffi-
cient for the reference values of s/c = 1.0, β = 45◦, σ = 0.4pi . Other values in the
matrix give the coefficient resulting from changing one and only one of the governing
parameters.
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β s/c σ

STENCIL

k=0

π1 45 .4

-.8670
-.3085

1 45 π.8 75 .4 π1

-.0232
-.8734 -.7606

-.5298

1 45 .4 π 45 .4 π2

1 1 145 45 .4 ππ0 4. 0

k=1.0

s/cs/c
-.7318
-.1558

-.6903
-.0991

-.6963
-.4343

-.6004 -.4261 -.6079

otherwise noted
k=0.5 unless

σ β 

β σ

k

k

-.0580 -.2267 -.4034

o oo

o o

oo

imag. part
real part

The effects of thickness and steady lift cannot be easily displayed, and are con-
ventionally determined numerically for each application. See Chap. III in [1].

5 Compressible Flow

The linearized problem of unsteady cascade flow in a compressible fluid may be
conveniently formulated in terms of the acceleration potential,−p/ρ, where p is the
perturbation pressure, i.e., the small unsteady component of fluid pressure. Using
the acceleration potential as the primary dependent variable, a number of compact
solutions have been obtained for the flat plate cascade at zero incidence. The most
reliable in subsonic flow is that due to Smith [4], and in supersonic flow the solutions
of Verdon [5] and Adamczyk [6] are representative.

Supersonic flow relative to the blades of a turbomachine is of practical importance
in steam turbines and near the tips of transonic compressor blades. In these cases
the axial component of the velocity remains subsonic; hence analytic solutions in
this flow regime (the so-called subsonic leading edge locus) are of the most interest.
It may be that in future applications the axial component will be supersonic. In
this event the theory actually becomes simper so that the present concentration on
subsonic values of Maxial represents the most difficult problem. Currently efforts
are underway to account for such complicating effects as changing back-pressure on
the stage, flow turning, shock waves, etc.

To illustrate the effect of varying the Mach number from incompressible on up to
supersonic, a particular unsteady aerodynamic coefficient has been graphed in Fig. 7
as a function of the relativeMach number. It is seen that the variation of the coefficient
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Fig. 7 The aerodynamic resonance phenomenon

in the subsonic regime is not great except in the immediate neighborhood of the
so-called ‘resonant’ Mach number, or the Mach number at which ‘aerodynamic
resonance’ occurs.

It is possible to generalize the situation with respect to compressibility by indi-
cating that the small disturbance approximations are retained, but the velocities,
velocity potential, acceleration potential, or pressure (in every case the disturbance
component of these quantities) no longer satisfy the Laplace equation, but rather an
equation of the following type.

(1 − M2)φxx + φyy = 1

a2
φt t − 2

M

a
φxt = 0 (5.1)

Here M is the relative Mach number and a is the sound speed. Note that the presence
of time derivatives make this partial differential equation hyperbolic whatever the
magnitude of M , a situation quite different from the steady flow equation.

Although the above equation is appropriate to either subsonic or supersonic flow,
the resonance phenomenon occurs in the regime of subsonic axial component of the
relative velocity when geometric and flow conditions satisfy a certain relationship.

Equating the time of propagation of a disturbance along the cascade to the time
for an integral number of oscillations to take place plus the time lag associated with
the interblade phase angle, σ , yields

s

V+
p

= 2πv

ω
− σ

ω
(5.2a)

s

V−
p

= 2πv

ω
+ σ

ω
(5.2b)

where V±
p , the velocity of propagation, has two distinct values associated with the

two directions along the cascade, see Fig. 8.
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Fig. 8 Resonant values of
governing parameters

V±
p = a[

√
1 − M2 cos2 β ± M sin β] (5.3)

These expressions can be reduced to the equation

ωs

a
= (2vπ ± σ)(

√
1 − M2 cos2 β ∓ M sin β) (5.4)

where v may be any positive integer, and with the upper set of signs may also be
zero.

Equation (5.4) may be graphed and potential acoustic resonances discerned by
plotting the characteristics of a given stage on the same sheet for possible coinci-
dence. (It is convenient to take β as the parameter with axes ωs/a and M .) Acoustic
resonances of the variety described abovemay be dangerous because they account for
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the vanishing, or near vanishing, of all nonsteady aerodynamic reactions including
therefore the important aerodynamic damping. Although it is difficult to establish
with certainty, several cases of large vibratory stresses have been correlated with
the onset of acoustic resonance. It should be recognized that the effects of blade
thickness and nonconstant Mach number throughout the field are such as to render
the foregoing formulation somewhat approximate.

The foregoingdevelopmentmay also be basedmore rigorously on the theoretically
derived integral equation relating the harmonically varying downwash on the blade
to the resulting harmonically varying pressure difference across the blade’s thickness.
Symbolically

v̄a(x) =
∫ c

0
K (ξ − x)� p̄a(ξ)dξ (5.5)

and the acoustic resonance manifests itself by a singularity appearing in the kernel K
for special values of k, s, c, τ and β of which K is a function. Under this circumstance
the downwash υa can only remain finite, as it must physically, by a vanishing of
�pa as noted above. The previous development shows why the compressible flow
solutions have received such an impetus from, and are so closely related to, the
acoustic properties of compressor and fan cascades.

Thus the field of aeroacoustics, as exemplified in the text of Goldstein [7], and the
field of turbomachine aeroelasticity are in a synergistic relationship. This is discussed
more fully in [1].

The acoustic resonance phenomenon, as just described results from standing
waves in blade-fixed coordinates, albeit with impressed throughflow velocity, of
the fluid occupying the interblade passages.

6 Periodically Stalled Flow in Turbomachines

Rotating, or propagating, stall are terms which describe a phenomenon of circum-
ferentially asymmetric flow in axial compressors. Such a flow usually appears at
rotationally part-speed conditions and manifests itself as one or more regions of
reduced (or even reversed) throughflow which rotate about the compressor axis at a
speed somewhat less than rotor speed, albeit in the same direction.

A major distinction between propagating stall and surge is that in the former case
the integrated massflow over the entire annulus remains steady with time whereas
in the latter case this is not true. The absolute propagation rate can be brought to
zero or even made slightly negative by choosing pathological compressor design
parameters.

If the instigation of this phenomenon can be attributed to a single blade row (as
it obviously must in a single-stage compressor) then insofar as this blade row is
concerned, it represents a periodic stall ing and unstall ing of each blade in the row.
Later or preceding blade rows (i.e., half-stage) may or may not experience individual
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blade stall periodically, depending on the magnitude of the flow fluctuation at that
stage, as well as the cascade stall limits in that stage.

The regions of stall ed flowmay extend across the flow annulus (full span) or may
be confined either to the root or tip regions of the blades (partial-span stall ) The
number of such regions which may exist in the annulus at any one time varies from
perhaps 1 to 10 with greater numbers possible in special types of apparatus.

The periodic loading and unloading of the blades may prove to be extremely
harmful if a resonant condition of vibration obtains. Unfortunately the frequency of
excitation cannot be accurately predicted at the present time so that avoidance of
resonance is extremely difficult.

The results of various theories concerning propagating stall are all moderately
successful in predicting the propagational speed.However the number of stall patches
which occur (i.e., the circumferential wavelength of the disturbance) seems to be ana-
lytically unpredictable so that the frequency of excitation remains uncertain. Further-
more, the identification of the particular stage which is controlling the propagating
stall , in the sense noted above, is often uncertain or impossible.

This situation with regard to propagating stall has recently been impacted by a
CFD approach using the vortex method of description. In chapter “Stall Flutter” the
vortex method was applied to the analysis of stall flutter. The earlier application,
however, was to propagating (or rotating) stall, i.e. for the flow instability which
can occur with completely rigid blades. The vortex method has been intensively
developed for propagating stall prediction and results [9] indicate that success in
the long sought objective of wavelength prediction is at hand. Improvements that are
required for more useful results are in the boundary layer subroutine executed at each
time step for each blade) and in the enlargement of computing capacity to handle
the number of blades in realistic annular cascades. A further improvement that is
desirable is in the vortex merging algorithm. The vortex method is a time-marching
CFD routine inwhich the location of a large number of individual vortices are tracked
on the computational domain. New vortices are created at each time step to satisfy
the boundary conditions and separation criteria. Hence, to limit the total number of
vortices in the field after many time steps, it is necessary tomerge individual vortices,
preferably downstream of the cascade. Many merging criteria may be considered,
related to the strength and position of the candidate vortices.

Although the precise classification of vibratory phenomena of an aeromechanical
nature is often somewhat difficult in turbomachines because of the complication due
to cascading and multistaging, it is nevertheless necessary to make such distinctions
as are implied by an attempt at classification. The manifestation of stall flutter in
turbomachines is a good example of what is meant. When a given blade row, or
cascade, approaches the install ing incidence in some sense (i.e., stall ing defined by
rapid increase of relative total pressure loss, or defined by rapid increase in deviation
angle, or defined by the appearance of flow separation from the suction surface of the
blades, etc.) it is found experimentally that a variety of phenomena may exist. Thus
the region of reduced throughflowmay partially coalesce into discrete patches which
propagate relative to the cascade giving rise to the type of flow instability previously
discussed under rotating stall. There is no dependence on blade flexibility.
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Under certain other overall operating conditions it is found that in the absence
of, or even coexistent with, the previous manifestation, the blades vibrate somewhat
sporadically at or near their individual natural frequencies. There is no immediately
obvious correlation between the motions of adjacent blades, and the amplitudes of
vibrations change with time in an apparently random manner. (We exclude here all
vibration attributable to resonance with the propagating stall frequency, should the
propagation phenomenon also be present.) This behavior is termed stall flutter or stall
ing flutter and the motion is often in the fundamental bending mode. Another term is
random vibration. Since the phenomenon may be explained on the basis of nonlinear
mechanics, (see the chapter on Stall Flutter) the sporadicity of the vibration can be
attributed provisionally to the fact that the excitation has not been strong enough
to cause ‘entrainment of frequency’, a characteristic of many nonlinear systems.
Hence, each blade vibrates, on the average, as if the adjacent blades were not also
vibrating. However, a careful analysis demonstrates that the instantaneous amplitude
of a particular blade is effected somewhat by the ‘instantaneous phase difference’
between its motion and the motion of the adjacent blade(s). One must also speak
of ‘instantaneous’ frequency since a frequency modulation is also apparent. As a
general statement it must be said that the frequency, amplitude and phase of adjacent
blades are functionally linked in some complicated aeromechanical manner which
results in modulations of all three qualities as functions of time. While the frequency
modulation will normally be small (perhaps less than 1 or 2%) the amplitude and the
phase modulations can be quite large. Here the term phase difference has been used
rather loosely to describe the relationship between two motions of slightly different
frequency. Since this aerodynamic coupling would also depend on the instantaneous
amplitude of the adjacent blade(s), it is not surprising that the vibration gives a
certain appearance of randomness. On the linear theory for identically tuned blades
one would not expect to find sporadic behavior as described above. However, it is
just precisely the failure to satisfy these two conditions that accounts for the observed
motion; the average blade system consists of an assembly of slightly detuned blades
(nonidentical frequencies ) and furthermore the oscillation mechanism is nonlinear.

Application of vortex method aerodynamics to a cascade of elastically supported
blades recently has demonstrated [12], in a computational sense, the features of
randomness and sporadicity as described above.

When the relative magnitudes of the nonsteady aerodynamic forces increase it
may be expected that entrainment of frequency will occur. In certain nonlinear sys-
tems it can be shown that the ‘normalized’ frequency interval (ω − ω0)/ω (where ω

is the impressed frequency and ω0 is the frequency of self-excitation) within which
one observes entrainment, is proportional to h/h0, where h is the amplitude of the
impressed motion and h0 is the amplitude of the self-excited oscillation. In case of
entrainment onewould expect to find a common phase difference between themotion
of adjacent blades which implies also motion with a common flutter frequency. This
latter phenomenon is also termed stalling flutter, although the term limit-cycle vibra-
tion is sometimes used to emphasize the constant-amplitude nature of the motion,
which is often in the fundamental torsional mode.
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Finally it should be noted that the distinction between blade instability (flutter)
and flow instability (rotating stall ) is not always perfectly distinct.When the sporadic
stall flutter occurs it is clear that there is no steady tangentially propagating feature of
the instability. Similarly,when propagating stall occurswith little or no vibration (stiff
blades away from resonance) it is apparent that the instability is not associated with
vibratorymotion of the blade.However, the limit cycle type of behavior can be looked
upon (due to the simultaneously observed constant interblade phase relationship) as
the propagation of a disturbance along the cascade. Furthermore, the vorticity shed
downstream of the blade row would have every aspect of a propagation stall region.
For instance if the interblade phasing was 180 degrees the apparent stall region
would be on one blade pitch in tangential extent and each would be separated by one
blade pitch of unstall ed throughflow. The tangential wavelength is two blade pitches.
Because of the large number of such regions, and the small tangential extent of each,
this situation is still properly termed stall flutter since the blades are controlling and
the blade amplitudes are constant. At the other extremewhen one or two stall patches
appear in the annulus it is obvious that the flow instability is controlling and then
the phase relationships between adjacent blade’s motions may appear to be rather
sporadic. At any rate, in the middle ground between these extremes it is probable
that a strong interaction between flow stability and blade stability exists and the two
phenomena cannot be easily separated.

Another distinction may be attempted to assist in understanding the operative
phenomena. When a single airfoil is subjected to an increasing angle of attack an
instability of the fluid may arise, related to the Karman vortex frequency or the
extension of this concept to a distributed frequency spectrum. If the frequency of
this fluid instability coincides with the natural frequency of the blade in any mode
the phenomenon is termed buffeting. If the dynamic moment coefficient (or force
coefficient) attains a negative slope a self-excited vibration known as stall flutter
occurs. The two phenomena may merge when airfoil vibration exerts some influence
on the vortex shedding frequency. Stall -flutter is usually observed in the torsional
mode and buffeting in the bending mode, but this distinction is not always possible.
These concepts cannot be carried over directly to the cascade where steady bending
amplitudes of the limit cycle variety have been observed. The explanation rests on
the additional degrees of freedom present in the cascaded configuration.

7 Stall Flutter in Turbomachines

On account of the foregoing complications and the very recent emergence of quanti-
tative CFD-based theories noted in chapter “Stall Flutter” it is not surprising that past
prediction for turbomachines has rested almost entirely on correlation of experimen-
tal data. The single most important parameter governing stall ing is the incidence,
and the reduced frequency has been seen in all aeroelastic formulations to exert a
profound influence. Hence it is not surprising that these variables have been used to
correlate the data.
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Fig. 9 Experimental stall flutter correlation

Typically stall flutter will occur at part-speed operation and will be confined to
those rotor stages operating at higher than average incidence. With luck the region
of flutter will be above the operating line on a compressor map and extend up to
the surge line. Under less fortunate circumstances the operating line will penetrate
the flutter region. The flutter boundary will have the appearance shown on Fig. 9.
Contours of constant flutter (or limit cycle oscillation) stress (or tip amplitude) will
run more or less parallel to, and within, the boundary. Traditional parameters for
this typical experimental correlation are reduced velocity, W/bω, (the inverse of
reduced frequency) and incidence, at some characteristic radius such as 75% or 80%
of the blade span for a cantilever blade. The curve is typical of data obtained in
turbomachines or cascades; essentially a new correlation is required for each major
change of any aerodynamic variable (Mach number, stagger, blade contour, etc.). The
structural mode shape will usually be first torsion. The single contour shown in the
previous figure is for that level of cyclic stress (or strain) in the blade material that is
arbitrarily taken to represent some distinct and repeatable measurement attributable
to the flutter vibration and discernible above the ‘noise’ in the strain measuring
system. A typical number might be a stress of 10,000 kPa used to define the flutter
boundary. However, small changes in relative airspeed, W , may increase the flutter
stress substantially, or, in the case of ‘hard’ flutter, a small increase in incidence
might have a similar effect. Hence, in keeping with the nonlinear behavior described
in chapter “Stall Flutter”, the contours of constant flutter stress may be quite closely
spaced in some regions of the correlation diagram.

Naturally, when considering three-dimensional effects it is the net energy passing
from airstream to airfoil that determines whether flutter will occur, or not. The stall
ed tip of a rotor blade, for example, must extract more energy from the airstream than
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Fig. 10 Stall flutter boundary

is put back into the airstream by airfoil sections at smaller radii and that is dissipated
from the system by damping.

This total description of stall flutter in turbomachine rotor blades is consistent
with the appearance of the stall flutter boundary as it appears on the following typical
compressor performancemap (Fig. 10), the vibrations are usually confined to the first
two or three stages. This figure may be viewed in conjunction with the performance
maponFig. 4which shows typical angles of attack for a rotor blade tip in the first stage
of a compressor. Keeping in mind that the mass flow parameter ṁ

√
T0/p0 is virtually

proportional to the throughflow velocity in the first few stages of a compressor, it is
clear that any typical operating line as shown on the compressor map will traverse
the flutter boundary somewhat as the dotted line on Fig. 9.

This explains the general shape and location of the region of occurrence of stall
flutter. Experimental determinations confirm increasing stresses as the region is pen-
etrated from below and the specific behavior is a function of the aeroelastic properties
of the individual machine, consistent with the broad principles enunciated here.

8 Choking Flutter

In the middle stages of a multistage compressor it may be possible to discern another
region on the compressor map wherein so-called choking flutter will appear. This
will normally occur at part-speed operation and will be confined to those rotor stages
operating at lower than average incidence (probably negative values are encountered).
The region of flutter will normally lie below the usual operating line on a compressor
map, but individual stages may encounter this type of instability without greatly
affecting operating line; this is particularly true when the design setting angle of
a particular row of rotor blades has been arbitrarily changed from the average of
adjacent stages through inadvertence or by a sequence of aerodynamic redesigns.

The physical manifestation of choking flutter is usually discriminated by a plot
of a stage’s operating line on coordinates of relative Mach number vs. incidence, as
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Fig. 11 Choking flutter
correlation

in Fig. 11. On these same coordinates the choke boundaries are shown; a coincidence
or intersection of these graphs indicate the possible presence of choking flutter and
is usually confined to a very small range of incidence values. The mechanism of
choking flutter is not fully understood. It is related to compressibility phenomena
in the fluid and separation of the flow is probably also involved. The graph labelled
‘2 × Loss ′

min is a locus of constant aerothermodynamic loss coefficient (closely
related to the drag coefficient of an airfoil); the interior of the nose-shaped region
representing low values of loss, or efficient operation of the compressor stage. The
curve labelled ‘choke boundary’ represents the combination of relativeMach number
and flow angle at which the minimum flow area between adjacent blades (the throat)
is passing the flow with the local sonic velocity. Presumably separation of the flow
at the nose of each airfoil on the pressure surface, and the relative motion between
adjacent blades as they vibrate, conspire to change the effective throat location in
a time dependent manner. These oscillatory changes effect the pressure distribution
on each blade in such a fashion (including a phase angle) as to pump energy from
the airstream into the vibration and thus sustain the presumed motion.

Experimental results [13, 14] bear out the general description of choking flutter
described above. The analytically-based predictions [15, 16] lend further credence
to the mechanism, although the aerodynamic formulation is confined to quasisteady
time dependence. Ultimately a satisfactory explanation and prediction technique will
be likely attained with a timemarching computational capability using the compress-
ible Navier-Stokes equations.

Choking flutter occurs in practice with sufficient frequency and destructive poten-
tial as to be an important area for current research efforts as noted above.

9 Aeroelastic Eigenvalues

Traditionally the analytical prediction of flutter has been conducted by computa-
tion of the aeroelastic eigenvalues for the particular system under investigation. In
turbomachines the eigenvalue determinations have been conducted in the frequency
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domain, and the unsteady aerodynamics, excluding separated or choked flow, have
been based on the solutions of the small disturbance equations as described in [3–6]
and elsewhere, and as reviewed effectively in the AGARD Manual [1]. A repre-
sentative sample analysis for the steady loading effect in an infinite cascade was
introduced in Sect. 4. In the literature a large number of additional effects are treated,
including compressibility, finite flow deflection, three-dimensionality, finite shock
strength and shock movement, section thickness and turbine-type geometry.

In every case, however, the initial formulation of the eigenvalue problem for an N -
bladed annular cascade results in a system of mN equations, where m is the number
of degrees of freedom (or else structural modes) assigned to each blade. Since the
disc on which the turbomachine blades are attached will not be completely rigid,
these modeshapes will be ‘system’ modes in which nodal circles and diameters may
be discerned on the disc proper (and its extension into the flow annulus).

− ω2[Mn]{qn} + [Mnω
2
n(1 + ign)]{qn} = πb3ω2[F]{qn} (9.1)

In (9.1) the aeroelastic equation has been specialized for one degree of freedom
per blade (m = 1); hence n ranges from 0 to N -1. This equation, adapted from
Crawley’s Chap.19 in [2], assumes harmonic time dependence at frequency ω and
the nth blade has its individual mass, Mn , natural frequency, ωn , and the structural
damping coefficient, gn . The development leading to (9.1) parallels that for (3.7.32)
for a single foil. (The principal result of considering m > 1 is to replace each matrix
element by a submatrix and enlarge the displacement vector, {qn}).

When the blades on the disc are structurally uncoupled (rigid disc and no inter-
connecting shrouds or lacing wires) the square matrices on the LHS are diagonal and
the equations are coupled only through the aerodynamic force matrix

[F] =

⎡

⎢⎢⎢⎢⎣

F0 FN−1 FN−2 . . . F1

F1 F0 FN−1 . . . F2

· · · ·
· · · ·

FN−1 FN−2 FN−3 . . . F0

⎤

⎥⎥⎥⎥⎦
(9.2)

The matrix is completely populated and each element is an aerodynamic influ-
encecoefficient: the force effect on the row-identified blade due to the motion of the
column-identified blade. These are the terms derivable from the previously described
analytical theories under the assumption of constant interblade phase angle, σ , and
harmonic displacement given by

qn = Re[q̄n exp(iωt)] (9.3)

although Fourier decomposition of the aerodynamic force is necessary to obtain the
form implied by (9.1) and (9.2).

For a ‘tuned’ stage the mass, natural frequency and damping coefficient for every
blade are the same so that the N equations are identical ([F] is circulant) and the

http://dx.doi.org/10.1007/978-3-030-74236-2_3
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complex eigenvalues
ω = ωR + iωI (9.4)

may be obtained from any one of the individual blade equations. Since there are N
possible tuned values of σ , there are N possible [F] matrices and N corresponding
eigenvalues. The particular eigenvalue that obtains in practice will be for those values
of airspeed W (embedded in F) and gn that just produce ωI = 0. That is, the typical
V , g plot is replaced by a family of contours with σ as the parameter. The critical
flutter speed is then obtained by minimizing W with respect to σ , see [10]. In this
sense the aeroelastic behavior of tuned cascades is a straightforward extension of
the single airfoil procedure, to include an additional parameter, the interblade phase
angle.

One of the most intensive recent efforts in turbomachine aeroelastic studies has
been in the area of ‘mistuned’ blade rows. When the mass and/or stiffness of all
airfoils are not identical, or the coupling through the discs or shrouds is not uniform,
then structural mistuning is present. Analogous aerodynamic mistuning results from
nonuniform blade spacing, setting angle of section profile. Such mistuned stages are
inevitably manufactured, subject in degree to inspection and tolerance acceptance
procedures at assembly. The general effect of mistuning is to reduce the symmetry
and cyclical nature of the matrices in the flutter equation, (8.9.1). The character of
the eigenvalue plots and the eigenfunctions become more varied. Thus, at flutter, all
blades are found to vibrate with the same frequency; the relative blade amplitudes
and phase angles are constant with respect to time, but not with respect to location
in the blade row. For each of the eigensolutions, however, there may be associated
a ‘tuned’ interblade phase angle [2]. The most significant effect of mistuning is to
change the value of ωI . If the shift of the least stable eigenvalue is in the direction
of increased stability, the proclivity to flutter is reduced and it is for this reason
that mistuning is considered to be a powerful design tool for improving aeroelastic
stability in cascaded airfoils. Figures12a and 12b adapted from [11] show the effect
of mistuning on the position of the eigenvalues (actually iω rather than ω) for a
14-blade cascade.

It is demonstrated that a necessary but not sufficient condition for aeroelastic sta-
bility is that the blades be self-damped; the effect of a blade’s motion upon itself must
be to contribute positive aerodynamic damping. The unsteady interactions amongst
or between blades in the cascade are destabilizing for at least one possible σ . This
blade-to-blade destabilizing interference is reduced by mistuning and is hence desir-
able.Mistuning, however, can never produce stability when self-damping is negative.
With nonzero structural damping, blades of larger (blade to air) mass ratio are rela-
tively more stable.

The effect of kinematic coupling (e.g. the presence of somebending displacements
in a predominantly torsional mode) may be quite important in determining stability
whereas dynamic coupling (e.g. through the aerodynamic reactions) is usually not
strong enough to be of significance. The effect of mean loading is speculated as being
a possible source of flutter near stall, and stability trends with reduced velocity are
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Fig. 12 a Aeroelastic eigenvalues of a 14-bladed tuned rotor. b Eigenvalues of the same rotor with
‘optimal’ mistuning

discussed qualitatively in [2], noting both structural and aerodynamic implications
of the reduced frequency parameter.

Optimal mistuning as an intentional manufacturing procedure at assembly is an
important concept, although it must be tempered with the knowledge that, under
forced aerodynamic resonance, so-called ‘rogue’ blades may be identified which
will vibrate at dangerously high amplitude. More research on mistuning may be
expected to yield increasingly practical results for the turbomachine aeroelastician
to apply beneficially, see [17–19].
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Fig. 12 (continued)

10 Recent Trends

A number of supersonic flutter regimes have been encountered in practice, see
Regions III, IV and V in Fig. 13. Only Region III flutter, in either pitching or plung-
ing, will usually be encountered along a normal operating line, and then only at
corrected overspeed conditions. Supersonic aerodynamic theories have been devel-
oped to explain and confirm Region III flutter. Low incidence formulations were
reported by a number of investigators, with greatest interest being attached to the
onset flows having a subsonic axial component. The survey papers by Platzer [21–
24] give an excellent summary of the early aerodynamics literature and experience
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Fig. 13 Axil compressor or fan characteristic map showing principle types of flutter and region of
occurrence

up to 1982 including summaries of relevant papers by authors in the former Soviet
Union.

Regions IV and V in Fig. 13 are at higher compressor pressure ratio, above the
normal equilibrium operating line, and, in Region V, may involve stall ing at super-
sonic blade relative Mach number. Unsteady aerodynamic analyses appropriate to
this regime have been presented [25, 26]. For the first time account was taken of the
effect of shock waves which may appear when the surface Mach number exceeds
unity. Flutter observed in these regions have beenmostly flexural, although not exclu-
sively. In Region V stall ing of the flow has been implicated since the region is in
the neighborhood of the surge or stall limit line. Hence Region V is provisionally
termed ‘supersonic bending stall flutter’ and it is assumed that there is a detached
bow shock at each blade passage entrance; i.e., the passage is unstarted. By contrast,
the flutter mechanism in Region IV is thought to involve an in-passage shock wave
whose oscillatory movement is essential for the instability mechanism.

A counterclockwise continuation around Fig. 13 returns one to Region I, divided
earlier in Fig. 10 and which, it now appears, should be divided into more than one
subregion. The so-called system mode instability seems to be associated with the
upper end of this region, and although the blade loading is high, flutter may not
involve flow separation as an essential part of the mechanism. Instead it has been
hypothesized [27] that even with a subsonic onset flow the surface Mach number
can exceed unity locally and oscillating shocks may help explain the appearance
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of negative aerodynamic damping. It seems that these instability mechanisms (sep-
aration, oscillating shocks) may both appear in this general region of the fan or
compressor map, although not both at the same time in a particular machine. Thus
the non-aerodynamic factors, which are not revealed by the map parameters and are
discussed in Sect. 1, may determine which, if any, of these flutter types will manifest
itself in any particular instance. The clarification of this matter is still required so that
Region I is now provisionally labelled Subsonic/Transonic Stall Flutter and System
Mode Instability. Region II, discussed in Sect. 8 and of relatively lesser importance,
is associated with choking of the passage and is labelled Choke Flutter. As such
the role of oscillatory shock waves is again indicated to be important. Hence for
relatively low negative incidence and high enough subsonic relative Mach numbers,
appropriate to a middle stage of a multistage compressor, the mechanism of choke
flutter has many similarities to the transonic stall flutter of Region I. In addition,
some authors [28] add a second sub-region at a larger negative incidence and lower
relative Mach number, and term it negative incidence stall flutter. The choke flutter
mechanism is still controversial; it may involve the type of machine (fan, compressor
or turbine), type of stage (front, middle, or rear) and structural details (shrouded vs
unshrouded, disc vs drum, etc.).

Three-dimensional unsteady cascade flow was first formulated in the 1970s [29,
30]. In order to apply two-dimensional theory to the aeroelastic problems of real blade
systems one must either use a representative section analysis or else apply the strip
hypothesis; i.e., the aerodynamics at one radius is uncoupled from the aerodynamics
at any other radius. In particular, it is known that at ‘aerodynamic resonance’ the
strip theory breaks down and the acoustic modes are strongly coupled radially.

Along with aerodynamic advances the structural description of the blade d-disc
assembly [31, 32], has received a great impetus, and the importance of forward and
backward travelling waves has been firmly established. Within a particular number
of nodal diameters, coupling between modes has been shown to be significant [33]
and the role of the ‘twin modes’ (i.e. sin nφ and cos nφ) in determining propagation
has been clarified. Ford and Foord [34] have used the twin mode concept in both
analysis andfluttermeasurement. Furthermore, the number of nodal diameters affects
the fundamental natural frequencies slightly so that they cluster together. Coupling
of modes with closely spaced frequencies by aerodynamic means therefore becomes
appreciable and the resulting flutter mode may contain significant content from two
or three modes with consecutive numbers of diametral nodes.

A great concentration of studies recently has been in the area of Computational
Fluid Dynamics (CFD) coupled with a Finite Element Method (FEM) description of
the blade and disk structure. Typically these sets of governing equations are solved
interactively in a time marching fashion to yield the developing flutter amplitudes.
Stability limits are not determined directly per se. For nonlinear systems the limit
cycle amplitudes are predictedwhile for linear systems the temporal growth of ampli-
tude identifies those values of the operating variables that lie within the instability
boundary.

Usually in these models only spanwise displacements in plunging, pitching and
surging are allowed, leading to beam -type finite elements for representing a tapered,



436 F. Sisto

twisted blade of variable cross-section [35, 36]. Consequently, when plate- or shell-
type elements are necessitated by airfoil thicknesses on the order of 4 or 5%, the
chordwise deformations cannot be neglected and full three-dimensional FEM pack-
ages must be utilized. Essentially the camber schedule of the blade profiles change
with time in these cases.

The FEM-based structural analysis is also essential for static aeroelastic studies
in the nascent field of compliant blade performance modification. The compliance
of the blade in an annular cascade represents a passive means of controlling the
aerothermodynamic performance of the turbomachine by aeroelastic tailoring. This
topic comes under the overarching subject of aeroservoelasticity, the application of
automatic control theory to fundamental aeroelastic problems. In the blading of turbo-
machinery the enhanced compliance, and its chordwise distribution, are introduced
intentionally by design. The resulting configuration must be checked for freedom
from dynamic aeroelastic instability, or flutter, over the entire operating range of the
compressor map such as that appearing in Fig. 4. It may be remarked that the concept
of performance “map” will have to be extended to include the parametric ependence
of performance on a representative value of a new dimensionless quantity: the ratio
of the dynamic pressure of the fluid to the Young’s modulus of the structure. In effect
the augmentation of compliance introduces variable geometry into the turbomachine
blading.

The small compliance, or conversely great rigidity, of conventional blades is
responsible for only slight amounts of untwist and uncambering. In the design and
development of traditional turbomachines these effects, in turn, have been reflected
in very slight corrections to the aerothermodynamic performance as compared to
assuming complete rigidity of the airfoils. This situation will be changed with the
application of static aeroservoelasticity to the design of turbomachines with compli-
ant blades.

Applications of unsteadyNavier-Stokes codes to cascaded airfoils appear in refer-
ences [37][38] and [39]. These early studies usingNavier-Stokes solvers for unsteady
flows with moving boundaries are chiefly of interest for computational prediction.
At present the needed confidence and accuracy are not being obtained because of the
inadequacy of the turbulence model in the CFD code and the extreme requirements
on computer capacity alluded to above.

Subjects receiving attention recently that have not been treated fully include such
topics as finite shock motion, variable shock strength, thick and highly cambered
blades in a compressible flow, and the effects of curvilinear wakes and vorticity
transport. These and other large amplitude and therefore nonlinear perturbations,
which prevent the linear super-position implicit in classical modal analysis, have
certain implications relative to the traditional solutions of the aeroelastic eigenvalue
problem. The field of aeroelasticity in turbomachines continues to be under active
investigation, drivenby theneeds of aircraft powerplant, gas turbine and steam turbine
designers.
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