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Preface to the Sixth Edition

For the last several years, the lectures in the course on Aeroelasticity at Duke
University have been recorded and those are available to readers of this book upon
request.

At the end of the 2020 spring semester, each of my then Ph.D. students, Dani
Levin, Kevin McHugh, Maxim Freydin, Michael Lee, and also my faculty col-
league, Jeff Thomas, presented lectures on their current research interests. I know
you will enjoy their presentations as I did on the (1) the use of the ZERO computer
code for aeroelastic analysis, (2) hypersonic fluid-structure interaction, (3) the
construction of Reduced Order Models for the Navier–Stokes equations and (4) the
use of harmonic balance methods for nonlinear aeroelastic analysis. My own lec-
tures largely covered the first four chapters of the book, “A Modern Course in
Aeroelasticity”, using the fifth edition. For this sixth edition, the first twelve
chapters of the latest edition are largely unchanged except for the correction of
most, if not all, of the typos that appear in the fifth edition. The first homework
assignment for the aeroelasticity course last spring was to find the typos in the
chapter Static Aeroelasticity. Subsequent homework covered the chapters Dynamic
Aeroelasticity and Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces
and a summer reading course with one of the Ph.D. students in the course, Richard
Hollenbach, led to typos in the later chapters Stall Flutter–Some Recent Advances
in Nonlinear Aeroelasticity, being identified and corrected. Also, the chapters
Modern Analysis for Complex and Nonlinear Unsteady Flows in Turbomachinery
and Some Recent Advances in Nonlinear Aeroelasticity have been modestly
revised.

The experimental videos that appear on the Aeroelasticity website at Duke
University are discussed extensively in the chapter Aeroelastic Models Design/
Experiment and Correlation with New Theory, a new chapter of the sixth edition,
and represent about 20 years of aeroelasticity experiments conducted on a range of
nonlinear aeroelastic models at Duke University. Much of this work was led by Dr.
Deman Tang. The chapter Aeroelastic Models Design/Experiment and Correlation
with New Theory complements the chapter Experimental Aeroelasticity which
provides an introduction to experimental methods that have traditionally been used
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based upon the concepts of linear aeroelastic models. Also, in the sixth edition
of the book, a chapter on hypersonic aeroelasticity or fluid structural thermal
dynamics interaction(FSTDI), the chapter Fluid/Structural/Thermal/Dynamics
Interaction (FSTDI) in Hypersonic Flow, is included with contributions from
Kevin McHugh and Maxim Freydin. Currently, hypersonic aeroelasticity or FSTDI
is a particularly active area of research and development including a number of
fascinating experimental programs at several universities and governmental labo-
ratories. An overview of these current and prospective programs is given including
an assessment of the state of the art and the identification of outstanding challenges.

The Duke University Aeroelasticity Team hopes that you will enjoy all of this
old and new material. Special acknowledgement and appreciation are extended to
Dr. Deman Tang and Dr. Dani Levin for their contributions to the new edition
of the book and to the Aeroelasticity website, respectively.

Durham, USA Earl H. Dowell
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Preface to the Fifth Edition

In this fifth edition, a new chapter is added, Chap. 14, Some Recent Advances in
Nonlinear Aeroelasticity: Fluid-Structure Interaction in the Twenty-First Century,
with a discussion of some of the most recent research results that have been
obtained in the last decade. Also, a new author and distinguished colleague, Dr.
Deman Tang, has joined us. And the opportunity has been taken to correct all the
typographical errors that we and our readers have found.

With this edition, the first author is making available upon request video/audio
recordings of his semester-long lectures that cover Chaps. 1-4 as well as selected
lectures on current research topics. It is planned to continually update these
video/audio lectures and these updates will also be made available to those to
purchase the new edition. Also available are lecture notes and additional homework
problems and their solutions augmenting those already included in the text.

Earl H. Dowell
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Preface to the Fourth Edition

In this edition, several new chapters have been added and others substantially
revised and edited. Chapter 6 on Aeroelasticity in Civil Engineering originally
authored by Robert Scanlan has been substantially revised by his close colleague,
Emil Simiu. Chapter 9 on Modeling of Fluid-Structure Interaction by Earl Dowell
and Kenneth Hall is entirely new and discusses modern methods for treating linear
and nonlinear unsteady aerodynamics based upon computational fluid dynamics
models and their solutions. Chapter 11 by Earl Dowell, John Edwards and Thomas
Strganac on Nonlinear Aeroelasticity is also new and provides a review of recent
results. Chapter 12 by Robert Clark and David Cox on Aeroelastic Control is also
new and provides an authoritative account of recent developments. Finally, Chapter
13 by Kenneth Hall on Modern Analysis for Complex and Nonlinear Unsteady
Flows in Turbomachinery is also new and provides an insightful and unique
account of this important topic. Many other chapters have been edited for greater
clarity as well and author and subject indices are also provided.

Dr. Deman Tang has provided invaluable contributions to the production of the
text and all of the authors would like to acknowledge his efforts with great
appreciation.

Earl H. Dowell
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Preface to the Third Edition

The authors would like to thank all those readers of the first and second editions
who have written with comments and suggestions. In the third edition, the
opportunity has been taken to revise and update Chapters 1 to 9. Also, three new
chapters have been added, i.e., Chapter 10, Experimental Aeroelasticity; Chapter
11, Nonlinear Aeroelasticity and Chapter 12, Aeroelastic Control. Chapter 10 is a
brief introduction to a vast subject; Chapter 11 is an overview of a frontier of
research and Chapter 12 is the first connected, authoritative account of the feedback
control of aeroelastic systems. Chapter 12 meets a significant need in the literature.
The authors of the first and second editions welcome two new authors, David Peters
who has provided a valuable revision of Chapter 7 on rotorcraft and Edward
Crawley who has provided Chapter 12 on aeroelastic control. It is a privilege and a
pleasure to have them as members of the team. The author of Chapter 10 would also
like to acknowledge the great help he has received over the year from his distin-
guished colleague, Wilmer H. “Bill” Reed, III, in the study of experimental
aeroelasticity. Mr. Reed kindly provided the figures for Chapter 10. The author of
Chapter 12 would like to acknowledge the significant scholarly contribution of
Charrissa Lin and Ken Kazarus in preparing the chapter on aeroelastic control.
Finally, the readers of the first and second editions will note that the authors and
subject indices have been omitted from this edition. If any reader finds this an
inconvenience, please contact the editor and we will reconsider the matter for the
next edition.

Earl H. Dowell
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Preface to the Second Edition

The authors would like to thank all those readers who have written with comments
and errata for the First Edition. Many of these have been incorporated into the
Second Edition. They would like to thank Professor Holt Ashley of Stanford
University who has been most helpful in identifying and correcting various errata.

Also, the opportunity has been taken in the Second Edition to bring up-to-date
several of the chapters as well as add a chapter on unsteady transonic aerodynamics
and aeroelasticity. Chapters 2, 5, 6 and 8 have been substantially revised. These
cover the topics of Static Aeroelasticity, Stall Flutter, Aeroelastic Problems of Civil
Engineering Structures and Aeroelasticity in Turbomachines, respectively. Chapter
9, Unsteady Transonic Aerodynamics and Aeroelasticity, is new and covers this
rapidly developing subject in more breadth and depth than the First Edition. Again,
the emphasis is on fundamental concepts rather than, for example, computer code
development per se. Unfortunately due to the press of other commitments, it has not
been possible to revise Chapter 7, Aeroelastic Problems of Rotorcraft. However, the
Short Bibliography has been expanded for this subject as well as for others. It is
hoped that the readers of the First Edition and also new readers will find the Second
Edition worthy of their study.

Earl H. Dowell
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Preface to the First Edition

A reader who achieves a substantial command of the material contained in this book
should be able to read with understanding most of the literature in the field. Possible
exceptions may be certain special aspects of the subject such as the aeroelasticity of
plates and shells or the use of electronic feedback control to modify aeroelastic
behavior. The first author has considered the former topic in a separate volume. The
latter topic is also deserving of a separate volume.

In the first portion of the book, the basic physical phenomena of divergence,
control surface effectiveness, flutter and gust response of aeronautical vehicles are
treated. As an indication of the expanding scope of the field, representative
examples are also drawn from the non-aeronautical literature. To aid the student
who is encountering these phenomena for the first time, each is introduced in the
context of a simple physical model and then reconsidered systematically in more
complicated models using more sophisticated mathematics.

Beyond the introductory portion of the book, there are several special features
of the text. One is the treatment of unsteady aerodynamics. This crucial part of
aeroelasticity is usually the most difficult for the experienced practitioner as well as
the student. The discussion is developed from the fundamental theory underlying
numerical lifting surface analysis. Not only the well-known results for subsonic and
supersonic flow are covered but also some of the recent developments for transonic
flow, which hold the promise of bringing effective solution techniques to this
important regime.

Professor Sisto’s chapter on Stall Flutter is an authoritative account of this
important topic. A difficult and still incompletely understood phenomenon, stall
flutter, is discussed in terms of its fundamental aspects as well as its significance in
applications. The reader will find this chapter particularly helpful as an introduction
to this complex subject.

Another special feature is a series of chapters on three areas of advanced
application of the fundamentals of aeroelasticity. The first of these is a discussion of
Aeroelastic Problems of Civil Engineering Structures by Professor Scanlan. The
next is a discussion on the Aeroelasticity of Helicopters and V/STOL aircraft by
Professor Curtiss. The final chapter in this series treats Aeroelasticity in
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Turbomachines and is written by Professor Sisto. This series of chapters is unique
in the aeroelasticity literature and the first author feels particularly fortunate to have
the contributions of these eminent experts.

The emphasis in this book is on fundamentals because no single volume can
hope to be comprehensive in terms of applications. However, the above three
chapters should give the reader an appreciation for the relationship between theory
and practice. One of the continual fascinations of aeroelasticity is this close inter-
play between fundamentals and applications. If one is to deal successfully with
applications, a solid grounding in the fundamentals is essential.

For the beginning student, the first course in aeroelasticity could cover Chapters
1-3 and selected portions of Chapter 4. For a second course and the advanced
student or research worker, the remaining chapters would be appropriate. In the
latter portions of the book, more comprehensive literature citations are given to
permit ready access to the current literature.

The reader familiar with the standard texts by Scanlan and Rosenbaum, Fung,
Bisplinghoff, Ashley and Halfman and Bisplinghoff and Ashley will appreciate
readily the debt the authors owe to them. Recent books by Petre (Theory of
Aeroelasticity. Vol. I Statics, Vol. II Dynamics. In Romanian Publishing House
of the Academy of the Socialist Republic of Romania, Bucharest, 1966) and
Forsching (Fundamentals of Aeroelasticity. In German. Springer-Verlag, Berlin,
1974) should also be mentioned though these are less accessible to an
English-speaking audience. It is hoped the reader will find this volume a worthy
successor.

Earl H. Dowell
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Introduction

Earl H. Dowell

Abstract This brief chapter touches on the basic questions to be addressed in the
book and provides some historical context for the development of the field of aeroe-
lasticity.

Several years ago, Collar suggested that aeroelasticity could be usefully visualized
as forming a triangle of disciplines, dynamics, solid mechanics and (unsteady) aero-
dynamics (Fig. 1).

Aeroelasticity is concerned with those physical phenomena which involve sig-
nificant mutual interaction among inertial, elastic and aerodynamic forces. Other
important technical fields can be identified by pairing the several points of the trian-
gle. For example,

• Stability and control (flight mechanics) = dynamics + aerodynamics
• Structural vibrations = dynamics + solid mechanics
• Static aeroelasticity = steady flow aerodynamics + solid mechanics

Conceptually, each of these technical fields may be thought of as a special aspect
of aeroelasticity. For historical reasons only the last topic, static aeroelasticity, is
normally so considered. However, the impact of aeroelasticity on stability and control
(flight mechanics) has increased substantially in recent years.

Inmodern aerospace vehicles, the relevant physical phenomenamay be evenmore
complicated. For example, stresses induced by high temperature environments can
be important in aeroelastic problems, hence the term

aerothermoelasticity

In other applications, the dynamics of the guidance and control system may signifi-
cantly affect aeroelastic problems, or vice versa, hence the term
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Fig. 1 Collar diagram
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For a historical discussion of aeroelasticity including its impact on aerospace vehicle
design, consult in this chapter of Bisplinghoff andAshley [2] andAGARDCPNo.46,
“Aeroelastic Effects from a Flight Mechanics Standpoint” [6].

We shall first concentrate on the dynamics and solid mechanics aspects of aeroe-
lasticity with the aerodynamic forces taken as given. Subsequently, the aerodynamic
aspects of aeroelasticity shall be treated from first principles. Theoretical methods
will be emphasized, although these will be related to experimental methods and
results where this will add to our understanding of the theory and its limitations. For
simplicity, we shall begin with the special case of static aeroelasticity.

Although the technological cutting edge of the field of aeroelasticity has centered
in the past on aeronautical applications, applications are found at an increasing rate
in civil engineering, e.g., flows about bridges and tall buildings; mechanical engi-
neering, e.g., flows around turbomachinery blades and fluid flows in flexible pipes;
and nuclear engineering; e.g., flows about fuel elements and heat exchanger vanes.
It may well be that such applications will increase in both absolute and relative num-
ber as the technology in these areas demands lighter weight structures under more
severe flow conditions. Much of the fundamental theoretical and experimental devel-
opments can be applied to these areas as well and indeed it is hoped that a common
language can be used in these several areas of technology. To further this hope we
shall discuss subsequently in some detail several examples in these other fields, even
though our principal focus shall be on aeronautical problems. Separate chapters on
civil engineering, turbomachinery and helicopter (rotor systems) applications will
introduce the reader to the fascinating phenomena which arise in these fields.

Since most aeroelastic phenomena are of an undesirable character, leading to loss
of design effectiveness or even sometimes spectacular structural failure as in the
case of aircraft wing flutter or the Tacoma Narrows Bridge disaster, the spreading
importance of aeroelastic effects will not be warmly welcomed by most design engi-
neers. However, the mastery of the material to be discussed here will permit these
effects to be better understood and dealt with if not completely overcome. Moreover
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in recent years, the beneficial effects of aeroelasticity have received greater attention.
For example, the promise of new aerospace systems such as uninhabited air vehicles
(UAVs) and morphing aircraft will undoubtedly be more fully realized by exploiting
the benefits of aeroelasticity while mitigating the risks.



Static Aeroelasticity

Earl H. Dowell

Abstract The basics of static aeroelasticty, in contrast to dynamic aeroelasticity, are
reviewed and some classic subjects such as divergence and control surface reversal
are treated. The discussion starts with simple mathematical and physical models and
progresses to more complex models and solution methods. Most of these models and
methods prove to be useful in dynamic aeroelasticity as well.

1 Typical Section Model of an Airfoil

We shall find a simple, somewhat contrived, physical system useful for introducing
several aeroelastic problems. This is the so-called ‘typical section’ which is a popular
pedagogical device.1 This simplified aeroelastic system consists of a rigid, flat, plate
airfoil mounted on a torsional spring attached to a wind tunnel wall. See Fig. 1; the
airflow over the airfoil is from left to right.

The principal interest in this model for the aeroelastician is the rotation of the
plate (and consequent twisting of the spring), α, as a function of airspeed. If the
spring were very stiff or airspeed were very slow, the rotation would be rather small;
however, for flexible springs or high flow velocities the rotation may twist the spring
beyond its ultimate strength and lead to structural failure. A typical plot of elastic
twist, αe, versus airspeed, U , is given in Fig. 2. The airspeed at which the elastic
twist increases rapidly to the point of failure is called the ‘divergence airspeed’,
UD . A major aim of any theoretical model is to accurately predict UD . It should
be emphasized that the above curve is representative not only of our typical section
model but also of real aircraft wings. Indeed the primary difference is not in the basic
physical phenomenon of divergence, but rather in the elaborateness of the theoretical
analysis required to predict accurately UD for an aircraft wing versus that required
for our simple typical section model.

1See chapter ‘Aeroelasticity in Civil Engineering’, BA, especially pp. 189–200.
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Fig. 1 Geometry of typical
section airfoil
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To determine UD theoretically we proceed as follows. The equation of static
equilibrium simply states that the sum of aerodynamic plus elastic moments about
any point on the airfoil is zero.By convention,we take the point aboutwhichmoments
are summed as the point of spring attachment, the so-called ‘elastic center’ or ‘elastic
axis’ of the airfoil.

The total aerodynamic angle of attack, α, is taken as the sum of some initial angle
of attack, α0 (with the spring untwisted), plus an additional increment due to elastic
twist of the spring, αe.

α = α0 + αe (1.1)

In addition, we define a point on the airfoil known as the ‘aerodynamic center’.2 This
is the point on the airfoil about which the aerodynamic moment is independent of
angle of attack, α. Thus, we may write the moment about the elastic axis as

2 For two dimensional, incompressible flow this is at the airfoil quarter-chord; for supersonic flow
it moves back to the half-chord. See Ashley and Landahl [1]. References are given at the end of
each chapter.
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My = MAC + Le (1.2)

where

My moment about elastic axis or center
MAC moment about aerodynamic center, both moments are positive nose up

L lift, net vertical force positive up
e distance from aerodynamic center to elastic axis, positive aft.

From aerodynamic theory [1] (or experiment plus dimensional analysis) one has

L = CLqS (1.3a)

MAC = CMACqSc

where

CL = CL0 + ∂CL

∂α
α, lift coefficient (1.3b)

CMAC = CMAC0 , a constant, aerodynamic center moment coefficient in which

q = ρU 2

2
, dynamic pressure and

ρ air density
U air velocity
c airfoil chord
l airfoil span
S airfoil area, c × 1

Equation (1.3a) defines CL and CMAC (1.3b) is a Taylor Series expansion of CL for
small α. CL0 is the lift coefficient at α ≡ 0. From (1.2), (1.3a) and (1.3b), we see the
moment is also expanded in a Taylor series. The above forms are traditional in the
aerodynamic literature. They are not necessarily those a nonaerodynamicist would
choose.

Note that CL0 , ∂CL/∂α, CMAC0 are nondimensional functions of airfoil shape,
planform and Mach number. For a flat plate in two-dimensional incompressible flow
[1]

∂CL

∂α
= 2π, CMAC0 = 0 = CL0

In what follows, we shall take CL0 ≡ 0 for convenience and without any essential
loss of information.
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From (1.2), (1.3a) and (1.3b)

My = eqS

[
∂CL

∂α
(α0 + αe)

]
+ qScCMAC0 (1.4)

Now consider the elastic moment. If the spring has linear moment-twist character-
istics then the elastic moment (positive nose up) is −Kααe where Kα is the elastic
spring constant and has units of moment (torque) per angle of twist. Hence, summing
moments we have

eqS

[
∂CL

∂α
(α0 + αe)

]
+ qScCMAC0 − Kααe = 0 (1.5)

which is the equation of static equilibrium for our ‘typical section’ airfoil.
Solving for the elastic twist (assuming CMAC0 = 0 for simplicity) one obtains

αe = qS

Kα

e ∂CL
∂α

αo

1 − q Se
Kα

∂CL
∂α

(1.6)

This solution has several interesting properties. Perhaps most important is the fact
that at a particular dynamic pressure the elastic twist becomes infinitely large. This
is, when the denominator of the right-hand side of (1.6) vanishes

1 − q
Se

Kα

∂CL

∂α
= 0 (1.7)

at which point αe → ∞.
Equation (1.7) represents what is termed the ‘divergence condition’ and the cor-

responding dynamic pressure which may be obtained by solving (1.7) is termed the
‘divergence dynamic pressure’,

qD ≡ Kα

Se(∂CL/∂α)
(1.8)

Since only the positive dynamic pressures are physically meaningful, note that only
for e > 0 will divergence occur, i.e., when the aerodynamic center is ahead of the
elastic axis. Using (1.8), (1.6) may be rewritten in a more concise form as

αe = (q/qD)α0

1 − q/qD
(1.9)

Of course, the elastic twist does not become infinitely large for any real airfoil;
because this would require an infinitely large aerodynamic moment. Moreover, the
linear relation between the elastic twist and the aerodynamic moment would be
violated long before that. However, the elastic twist can become so large as to cause
structural failure. For this reason, all aircraft are designed to fly below the divergence
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dynamic pressure of all airfoil or lifting surfaces, e.g., wings, fins, control surfaces.
Now let us examine Eqs. (1.5) and (1.9) for additional insight into our problem,
again assuming CMAC0 = 0 for simplicity. Two special cases will be informative.
First, consider α0 ≡ 0. Then (1.5) may be written

αe

[
qS

∂CL

∂α
e − Kα

]
= 0 (1.5a)

Excluding the trivial case αe = 0 we conclude from (1.5a) that

qS
∂CL

∂α
e − Kα = 0 (1.7a)

which is the ‘divergence condition’. This will be recognized as an eigenvalue prob-
lem, the vanishing of the coefficient of αe in (1.5a) being the condition for nontrivial
solutions of the unknown, αe.3 Hence, ‘divergence’ requires only a consideration of
elastic deformations.

Secondly, let us consider another special case of a somewhat different type, α0 �=
0, but αe � α0. Then (1.5) may be written approximately as

eqS
∂CL

∂α
α0 − Kααe = 0 (1.10)

Solving

αe = qSe(∂CL/∂α)α0

Kα
(1.11)

Note this solution agrees with (1.6) if the denominator of (1.6) can be approximated
by

1 − q
Se

Kα

∂CL

∂α
= 1 − q

qD
≈ 1

Hence, this approximation is equivalent to assuming that the dynamic pressure
is much smaller than its divergence value. Note that the term neglected in (1.5)
is the aerodynamic moment due to the elastic twist. This term can be usefully
thought of as the ‘aeroelastic feedback’.4 Without this term, solution (1.11) is valid
only when q/qD � 1; and it cannot predict divergence. A feedback diagram of
Eq. (1.5) is given in Fig. 3. Thus, when the forward loop gain,G, exceeds unity,
G ≡ qeS(∂CL/∂α)/Kα > 1, the system is statically unstable, see Eq. (1.8). Hence,
aeroelasticity can also be thought of as the study of aerodynamic + elastic feed-

3 Here in static aeroelasticity q plays the role of the eigenvalue; in dynamic aeroelasticity q will be
a parameter and the (complex) frequency will be the eigenvalue. This is a source of confusion for
some students when they first study the subject.
4 For the reader with some knowledge of feedback theory as in, for example, Savant [2].
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Fig. 3 Feedback
representation of aeroelastic
divergence

αo αeG

1

back systems. One might also note the similarity of this divergence problem to
conventional ‘buckling’ of structures.5 Having exhausted the interpretations of this
problem, we will quickly pass on to some slightly more complicated problems, but
whose physical content is similar.

1.1 Typical Section Model with Control Surface

We shall add a control surface to our typical section of Fig. 1, as indicated in Fig. 4.
For simplicity, we take α0 = CMAC0 = 0; hence, α = αe. The aerodynamic lift is
given by

L = qSCL = qS

(
∂CL

∂α
α + ∂CL

∂δ
δ

)
positive up (1.12)

and the moment by

MAC = qScCMAC = qSc
∂CMAC

∂δ
δ positive nose up (1.13)

and the moment about the hinge line of the control surface by

H = qSHcHCH = qSHcH

(
∂CH

∂α
α + ∂CH

∂δ
δ

)
positive tail down (1.14)

where SH is the area of control surface, cH the chord of the control surface and
CH the (nondimensional) aerodynamic hinge moment coefficient. As before, ∂CL

∂α
,

∂CL
∂δ

, ∂CMAC
∂δ

, ∂CH
∂α

, ∂CH
∂δ

are aerodynamic constants which vary with Mach and airfoil
geometry. Note ∂CH

∂δ
is typically negative.

The basic purpose of a control surface is to change the lift (or moment) on the
main lifting surface. It is interesting to examine aeroelastic effects on this lift.

To write the equations of equilibrium, we need the elastic moments about the
elastic axis of the main lifting surface and about the hinge line of the control surface.
These are −Kαα (positive nose up), −Kδ(δ − δ0) (positive tail down), and δe ≡
δ − δ0, where δe is the elastic twist of control surface in which δ0 is the difference

5 Timoshenko and Gere [3].



Static Aeroelasticity 11

Fig. 4 Typical section with
control surface

αU

δ
CONTROL
SURFACE

between the angle of zero aerodynamic control deflection and zero twist of the control
surface spring.

The two equations of static moment equilibrium are

eqS

(
∂CL

∂α
α + ∂CL

∂δ
δ

)
+ qSc

∂CMAC

∂δ
δ − Kαα = 0 (1.15)

qSHcH

(
∂CH

∂α
α + ∂CH

∂δ
δ

)
− Kδ(δ − δ0) = 0 (1.16)

The above are two algebraic equations in two unknowns, α and δ, which can be
solved by standard methods. For example, Cramer’s rule gives

α =

∣∣∣∣ 0 eqS ∂CL
∂δ

+ qSc ∂CMAC
∂δ−Kδδ0 qSHCH

∂CH
∂δ

− Kδ

∣∣∣∣∣∣∣∣ eqS
∂CL
∂α

− Kα eqS ∂CL
∂δ

+ qSc ∂CMAC
∂δ

qSHCH
∂CH
∂α

qSHCH
∂CH
∂δ

− Kδ

∣∣∣∣
(1.17)

and a similar equation for δ. To consider divergence we again set the denominator
to zero. This gives a quadratic equation in the dynamic pressure q. Hence, there are
two values of divergence dynamic pressure. Only the lower positive value of the two
is physically significant.

In addition to the somewhat more complicated form of the divergence condition,
there is anewphysical phenomenon associatedwith the control surface called ‘control
surface reversal’. If the two springs were rigid, i.e.,Kα → ∞ and Kδ → ∞, then
α = 0, δ = δ0, and

Lr = qS
∂CL

∂δ
δ0 (1.18)

With flexible springs, however,

L = qS

(
∂CL

∂α
α + ∂CL

∂δ
δ

)
(1.19)
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where α, δ are determined by solving the equilibrium Eqs. (1.15), and (1.16). In
general, the latter value of the lift will be smaller than the rigid value of lift. Indeed,
the lift may actually become zero or even negative due to aeroelastic effects. Such
an occurrence is called ‘control surface reversal’. To simplify matters and show the
essential character of control surface reversal, we will assume Kδ → ∞ and hence,
δ → δ0 from the equilibrium condition (1.16). Solving the equilibrium Eq. (1.15),
we obtain

α = δ0

∂CL
∂δ

+ c
e

∂CMAC
∂δ

Kα

qSe − ∂CL
∂α

(1.20)

But

L = qS

(
∂CL

∂δ
δ0 + ∂CL

∂α
α

)

= qS

(
∂CL

∂δ
+ ∂CL

∂α

α

δ0

)
δ0 (1.21)

so that, introducing (1.20) into (1.21) and normalizing by Lr , we obtain

L

Lr
= 1 + q Sc

Kα

∂CMAC
∂δ

(
∂CL
∂α

/ ∂CL
∂δ

)
1 − q Se

Kα

∂CL
∂α

(1.22)

Control surface reversal occurs when L/Lr = 0

1 + qR
Sc

Kα

∂CMAC

∂δ

(
∂CL

∂α
/
∂CL

∂δ

)
= 0 (1.23)

where qR is the dynamic pressure at reversal, or

qR ≡
−Kα

Sc

(
∂CL
∂δ

/ ∂CL
∂α

)
∂CMAC

∂δ

(1.24)

Typically, ∂CMAC/∂δ is negative, i.e., the aerodynamic moment for positive control
surface rotation is nose down. Finally, (1.22) may be written

L

Lr
= 1 − q/qR

1 − q/qD
(1.25)

where qR is given by (1.24) and qD by (1.8). It is very interesting to note that when
Kδ is finite, the reversal dynamic pressure is still given by (1.24). However, qD is
now the lowest root of the denominator of (1.17). Can you reason physically why
this is so?6

6 See, [3], pp. 197–200.
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Fig. 5 Lift versus dynamic
pressure q

1.0

0

-1.0

-2.0

1.0 2.0

D / q
R

=2

q / q
D

L / L r

Agraphical depiction of (1.25) is given in the Fig. 5 where the two cases, qD > qR
and qD < qR , are distinguished. In the former case L/Lr , decreases with increasing
q and in the latter the opposite is true. Although the graphs are shown for q > qD ,
our analysis is no longer valid when the divergence condition is exceeded without
taking into account nonlinear effects. It is interesting to note that the qR given by
(1.24) is still the correct answer even for finite Kδ . Consider (1.15). For reversal or
zero lift, L = 0, (1.15) simplifies to

qRSc
∂CMAC

∂δ
δ − Kαα = 0 (1.15_R)

and (1.12) becomes
∂CL

∂α
α + ∂CL

∂δ
δ = 0 (1.12_R)

Eliminating α, δ from these two equations (or setting the determinant to zero for
nontrivial solutions) gives

Kα
∂CL

∂δ
+ ∂CL

∂α
qRSc

∂CMAC

∂δ
= 0 (1.26)

Solving (1.26) for qR gives (1.24). Note that by this approach an eigenvalue problem
has been created. Also note the moment equilibrium about the control surface hinge
line does not enter into this calculation. See Appendix B, Chapter 2 for a more
conceptually straightforward, but algebraically more tedious approach.

At the generalized reversal condition, when α0 �= 0,CMAC0 �= 0, the lift due to a
change in δ is zero, by definition. In mathematical language,

dL

dδ
= 0 at q = qR (1.27)

To see how this generalized definition relates to our earlier definition of the rever-
sal condition, consider again the equation for lift and also the equation for overall
moment equilibrium of the main wing plus control surface, viz.
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L = qS

[
∂CL

∂α
α + ∂CL

∂δ
δ

]
(1.19)

and

qScCMAC0 + qSc
∂CMAC

∂δ
δ + eqS

[
∂CL

∂α
α + ∂CL

∂δ
δ

]
− Kα(α − α0) = 0 (1.28)

From (1.19)
dL

dδ
= qS

[
∂CL

∂α

dα

dδ
+ ∂CL

∂δ

]
(1.29)

where dα
dδ

may be calculated from (1.29) as

dα

dδ
=

−
[
qSc ∂CMAC

∂δ
+ qSe ∂CL

∂δ

]
eqS ∂CL

∂δ
− Kα

(1.30)

Note that neitherCMAC0 norα0 appear in (1.30).Moreover when (1.30) is substituted
into (1.29) and dL/dδ is set to zero, the same expression for qR is obtained as before,
(1.24), when reversal was defined as L = 0 (for α0 = CMAC0 = 0).

This result may be given a further physical interpretation. Consider a Taylor series
expansion for L in terms of δ about the reference condition, δ ≡ 0. Note that δ ≡ 0
corresponds to a wing without any control surface deflection relative to the main
wing. Hence the condition δ ≡ 0, may be thought of as a wing without any control
surface.

The lift at any δ may then be expressed as

L(δ) = L(δ = 0) + ∂L

∂δ

∣∣∣
δ=0

δ + · · · (1.31)

Because a linear model is used, it is clear that higher order terms in this expansion
vanish. Moreover, it is clear that dL/dδ is that same for any δ, cf. (1.29) and (1.30).

Now consider L(δ = 0). From (1.19)

L(δ = 0) = qS
∂CL

∂α
α(δ = 0) (1.32)

But from (1.28)

α(δ = 0) = Kαα0 + qScCMAC0

Kα − eqS ∂CL
∂α

(1.33)

Note thatα(δ = 0) = 0 forα0 = CMAC0 = 0. Thus, in this special case, L(δ = 0) =
0, and

L(δ) = dL

dδ

∣∣∣
δ=0

δ = dL

dδ

∣∣∣
anyδ

δ (1.34)
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and hence

L(δ) = 0 or
dL

dδ

∣∣∣
anyδ

δ = 0 (1.35)

are equivalent statements when α0 = CMAC0 = 0.
For α0 �= 0 and/or CMAC0 �= 0, however, the reversal condition is more meaning-

fully defined as the condition when the lift due to δ �= 0 is zero, i.e.

dL

dδ
= 0 at q = qR (1.27)

In this case, at the reversal condition from (1.32) and (1.33),

L(δ)|at reversal = L(δ = 0)|at reversal =

qS
∂CL

∂α

⎡
⎣α0 + qSc

Kα
CMAC0

1 − eqS ∂CL
∂α

Kα

⎤
⎦ (1.36)

and hence the lift at reversal per se is indeed not zero in general unlessα0 = CMAC0 =
0.

1.2 Typical Section Model—Nonlinear Effects

For sufficiently large twist angles, the assumption of elastic and/or aerodynamic
moments proportional to twist angle becomes invalid. Typically the elastic spring
becomes stiffer at larger twist angles; for example the elastic moment-twist relation
might be

ME = −Kααe − Kα3α
3
e

where Kα > 0, Kα3>0. The lift angle of attack relation might be

L = qS[(∂CL/∂α)α − (∂CL/∂α)3α
3]

where ∂CL/∂α and (∂CL/∂α)3 are positive quantities. Note the lift decreases for a
large α due to flow separation from the airfoil. Combining the above in a moment
equation of equilibrium and assuming for simplicity thatα0 = CMAC = 0, we obtain
(recall (1.5))

eqS[(∂CL/∂α)αe − (∂CL/∂α)3α
3
e] − [Kααe + Kα3α

3
e] = 0

Rearranging,

αe[eqS(∂CL/∂α) − Kα] − α3
e[eqS(∂CL/∂α)3 + Kα3] = 0
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Solving, we obtain the trivial solution αe ≡ 0, as well as

α2
e =

[
eqS ∂CL

∂α
− Kα

]
[
eqS( ∂CL

∂α
)3 + Kα3

]

To be physically meaningful αe must be a real number; hence the right hand side of
the above equation must be a positive number for the nontrivial solution αe �= 0 to
be possible.

For simplicity let us first assume that e > 0. Thenwe see that only for q > qD (i.e.,
for eqS(∂CL/∂α) > Kα) are nontrivial solutions possible. See Fig. 6. For q < qD ,
αe ≡ 0 as a consequence of settingα0 ≡ CMAC ≡ 0. Clearly for e > 0,αe �= 0when
q > qD where

qD ≡ Kα

eS∂CL/∂α

Note that two (symmetrical) equilibriumsolutions are possible forq > qD . The actual
choice of equilibrium position would depend upon how the airfoil is disturbed (by
gusts for example) or possibly upon imperfections in the spring or airfoil geometry.
α0 may be thought of as an initial imperfection and its sign would determine which

Fig. 6 (Nonlinear)
equilibria for elastic twist:
e > 0. (top) e < 0. (bottom) α e

q qD

α

qD

q

α e

3

e

q
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of the two equilibria positions occurs. Note that for the nonlinear model αe remains
finite for any finite q. For e < 0, the equilibrium configurations would be as shown
in the Fig. 6 where

qD3 = −Kα3/[eS(∂CL/∂α)3]

and

α2
e∞ = ∂CL/∂α/(∂CL/∂α)3

As far as the author is aware, the behavior indicated in Fig. 6 has never been observed
experimentally. Presumably structural failure would occur for q > qD , even though
αe∞ is finite. It would be most interesting to try to achieve the above equilibrium
diagram experimentally.

The above discussion does not exhaust the possible types of nonlinear behavior
for the typical section model. Perhaps one of the most important nonlinearities in
practice is that associated with the control surface spring and the elastic restraint of
the control surface connection to the main lifting surface.7

2 One Dimensional Aeroelastic Model of Airfoils

2.1 Beam-Rod Representation of Large Aspect Ratio Wing

We shall now turn to a more sophisticated, but more realistic beam-rod model which
contains the same basic physical ingredients as the typical section.8 A beam-rod is
here defined as a flat platewith rigid chordwise sectionswhose span, l, is substantially
larger than its chord, c. See Fig. 7. The airflow is in the x direction. The equation of
static moment equilibrium for a beam-rod is

d

dy

(
GJ

dαe

dy

)
+ My = 0 (2.1)

αe(y) nose up twist about the elastic axis, e.s., at station y
My nose up aerodynamic moment about e.a., per unit distance in the spanwise,

y, direction
G shear modulus
J polar moment of inertia (= ch3/3 for a rectangular cross-section of thickness,

h, h � c)
GJ torsional stiffness

7 Woodcock [4].
8 See chapter ‘Aeroelastic Response of Rotorcraft’, BA, pp. 280–295, especially pp. 288–295.
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l

c

z

y

x

e
a.c.

e.c.

Fig. 7 Beam-rod representation of wing

GJ
αed

My

GJ d α e

d
dy GJ( d α e )

dy

dy dy +

dy

Fig. 8 Differential element of beam-rod

Equation (2.1) can be derived by considering a differential element dy (see Fig. 8) The
internal elastic moment is GJ from the theory of elasticity.9 Note for dαe/dy > 0,
GJ (dαe/dy) is positive nose down. Summing moments on the differential element,
we have

−GJ
dαe

dy
+ GJ

dαe

dy
+ d

dy

(
GJ

dαe

dy

)
dy + H.O.T . + Mydy = 0

In10 the limit, as dy → 0,

d

dy

(
GJ

dαe

dy

)
+ My = 0 (2.1)

Equation (2.1) is a second order differential equation in y. Associated with it are
two boundary conditions. The airfoil is fixed at its root and free at its tip, so that the
boundary conditions are

αe = 0 at y = 0 GJ
dαe

dy
= 0 at y = l (2.2)

9 Housner, and Vreeland [5].
10 Higher Order Terms.
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Turning now to the aerodynamic theory,we shall use the ‘strip theory’ approximation.
That is, we shall assume that the aerodynamic lift and moment at station y depends
only on the angle of attack at station y (and is independent of the angle of attack at
other spanwise locations.) Thus moments and lift per unit span are, as before,

My = MAC + Le (2.3a)

L ≡ qcCL (2.3b)

where now the lift and moment coefficients are11 given by

CL(y) = ∂CL

∂α
[α0(y) + αe(y)] (2.3c)

MAC = qc2cMAC (2.3d)

Equations (2.3b) and (2.3d) define CL and CMAC respectively.
Using (2.3) in (2.1) and nondimensionalizing (assuming for simplicity, constant

wing properties)

ỹ ≡ y

l

λ2 ≡ qcl2

GJ

∂CL

∂α
e

K ≡ −qcl2

GJ

(
e
∂CL

∂α
α0 + CMAC0c

)

Equation (2.1) becomes
d2αe

d ỹ2
+ λ2αe = K (2.4)

which is subject to boundary conditions (2.2). These boundary conditions have the
nondimensional form

α = 0 at ỹ = 0 (2.5)

11 A more complete aerodynamic model would allow for the effect of an angle of attack at one
spanwise location, say η, on (nondimentional) lift at another, say y. This relation would then be
replaced byCL (y) = ∫ A(y − η)[α0(η) + αe(η)]dη where A is an aerodynamic influence function
which must be measured or calculated from an appropriate theory. More will be said about this later.
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dαe

d ỹ
= 0 at ỹ = 1

The general solution to (2.4) is

αe = A sin λỹ + B cosλỹ + K

λ2
(2.6)

Applying boundary conditions (2.5), we obtain

B + K

λ2
= 0, λ[A cosλ − B sin λ] = 0 (2.7)

Solving equation (2.7), A = −(K/λ2) tan λ, B = −K/λ2, so that

αe = K

λ2
[1 − tan λ sin λỹ − cosλỹ] (2.8)

Divergence occurs when αe → ∞, i.e., tan λ → ∞, or cos λ → 0.12 Thus, for
λ = λm = (2m − 1) π

2 (m = 1, 2, 3, . . .),αe → ∞. The lowest of these, λ1 = π
2 is

physically significant. Using the definition of λ preceding Eq. (2.4), the divergence
dynamic pressure is

q = (π/2)2
GJ

l
/ lce(∂CL/∂α) (2.9)

Recognizing that S = lc, we see that (2.9) is equivalent to the typical section value,
(1.8), with

Kα =
(π

2

)2 GJ

l
(2.10)

Consider again (2.8).A further physical interpretation of this resultmaybehelpful.
For simplicity, consider the case when CMAC0 = 0 and thus K = −λ2α0. Then the
expression for αe, (2.8), may be written as

αe = α0[−1 + tan λ sin λỹ + cosλỹ] (2.8a)

The tip of twist of ỹ = 1 may be used to characterize the variation of αe with λ, i.e,

αe(ỹ = 1) = α0

[
1

cosλ
− 1

]
(2.8b)

and thus
α = α0 + αe = α0/ cosλ (2.8c)

12 Note λ ≡ 0 is not a divergence condition! Expanding (2.8) for λ � 1, we obtain αe = K
λ2 [1 −

λ2 ỹ − (1 − λ2 ỹ2

2 ) + · · · ] → K [ ỹ22 − ỹ] as λ → 0.
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From (2.8)c, we see that for low flow speeds or dynamic pressure, λ → 0,α = α0.
As λ → π/2, αmonotonically increases and α → ∞ as λ → π/2. For a given wing
design, a certain twist might be allowable. From (2.8)c, or its counterpart for more
complex physical and mathematical models, the corresponding allowable or design
λ may be determined.

Another design allowable might be the allowable structural moment,
T ≡ GJdαe/dy. Using (2.8) and the definition of T , for a given allowable T the
corresponding allowable λ or q may be determined.

2.2 Eigenvalue and Eigenfunction Approach

One could have treated divergence from the point of view of an eigenvalue problem.
Neglecting those terms which do not depend on the elastic twist, i.e., setting α0 =
CMAC0 = 0, we have K = 0 and hence

d2α

d ỹ2
+ λ2α = 0 (2.11)

with

α = 0 at y = 0

dα

d ỹ
= 0 at y = 1 (2.12)

The general solution is
α = A sin λỹ + B cosλỹ (2.13)

Using (2.12) and (2.13)

B = 0

λ[A cosλ − B sin λ]

we conclude that

A = 0

or
λ cosλ = 0 and A �= 0 (2.14)
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The latter condition, of course, is ‘divergence’. Can you show that λ = 0, does not
lead to divergence? What does (2.13) say? For each eigenvalue, λ = λm = (2m −
1) π

2 there is an eigenfunction,

αm ∼ sin λm ỹ = sin (2m − 1)
π

2
ỹ (2.15)

These eigenfunctions are of interest for a number of reasons:

1. They give us the twist distribution at the divergence dynamic pressure as seen
above in (2.15).

2. They may be used to obtain a series expansion of the solution for any dynamic
pressure.

3. They are useful for developing an approximate solution for variable property
wings.

Let us consider further the second of these. Now we let α0 �= 0,CMAC0 �= 0 and
begin with (2.4)

d2αe

d ỹ
+ λ2αe = K (2.4)

Assume a series solution of the form

αe =
∑
n

anαn(ỹ) (2.16)

K =
∑
n

Anαn(ỹ) (2.17)

where an , An are to be determined. Now it can be shown that

∫ 1

0
αn(ỹ)αm(ỹ)d ỹ = 1

2
for m = n

= 0 for m¬n (2.18)

This is the so-called ‘orthogonality condition’. We shall make use of it in what
follows. First, let us determine An . Multiply (2.17) by αm and

∫ 1
0 · · · d ỹ.

∫ 1

0
Kαm(ỹ)d ỹ =

∑
n

An

∫ 1

0
αn(ỹ)αm(ỹ)d ỹ = Am

1

2

using (2.18). Solving for Am ,

Am = 2
∫ 1

0
Kαm(ỹ)d ỹ (2.19)
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Now let us determine an . Substitute (2.16) and (2.17) into (2.4) to obtain

∑
n

[
an

d2αn

d ỹ2
+ λ2anαn

]
=
∑
n

Anαn (2.20)

Now each eigenfunction, αn , satisfies (2.11)

d2αn

d ỹ2
+ λ2

nαn = 0 (2.11)

Therefore, (2.20) may be written

∑
n

an[−λ2
n + λ2]αn =

∑
Anαn (2.21)

Multiplying (2.21) by αm and
∫ 1
0 · · · d ỹ,

[λ2 − λ2
m]am 1

2
= Am

1

2
(multiplication)

Solving for am ,

am = Am[
λ2 − λ2

m

] (2.22)

Thus,

αe =
∑

anαn =
∑
n

An[
λ2 − λ2

m

]αn(ỹ) (2.23)

where An is given by (2.19).13

Similar calculations can be carried out for airfoils whose stiffness, chord, etc.,
are not constants but vary with spanwise location. One way to do this is to first
determine the eigenfunction expansion for the variable property wing as done above
for the constant property wing. The determination of such eigenfunctions may itself
be fairly complicated, however. An alternative procedure can be employed which
expands the solution for the variable property wing in terms of the eigenfunctions
of the constant property wing. This is the last of the reasons previously cited for
examining the eigenfunctions.

13 For a more detailed mathematical discussion of the above, see Hildebrand [6], pp. 224–234. This
problem is one of a type known as ‘Sturm-Liouville Problems’.
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2.3 Galerkin’s Method

The equation of equilibrium for a variable property wing may be obtained by sub-
stituting (2.3) into (2.1). In dimensional terms

d

dy

(
GJ

d

dy
αe

)
+ eqc

∂CL

∂α
αe = −eqc

∂CL

∂α
α0 − qc2CMAC0 (2.24)

In nondimensional terms

d

dy

(
γ
dαe

d ỹ

)
+ λ2αeβ = K (2.25)

where

γ ≡ GJ

(GJ )re f
K = − qcl2

(GJ )re f

[
e
∂CL

∂α
α0 + cCMAC0

]

λ2 ≡ ql2cre f
(GJ )re f

(
∂CL

∂α

)
re f

ere f β = c

cre f

e

ere f

(
∂CL
∂α

)
(

∂CL
∂α

)
re f

Let

αe =
∑
n

anαn(ỹ)

K =
∑
n

Anαn(ỹ)

As before. Substituting the series expansions into (2.25), multiplying by αm and∫ 1
0 · · · d ỹ,

∑
an

{∫ 1

0

d

d ỹ

(
γ
dαn

d ỹ

)
αm d ỹ + λ2

∫ 1

0
βαnαm d ỹ

}
=

∑
n

An

∫ 1

0
αnαm d ỹ = Am

2
(2.26)

The first and second terms cannot be simplified further unless the eigenfunctions or
‘modes’ employed are eigenfunctions for the variable property wing. Hence, an is
not as simply related to An as in the constant property wing example. Equation (2.26)
represents a system of equations for the an . In matrix notation
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[Cmn]{an} = {Am}1
2

(2.27)

where

Cmn ≡
∫ 1

0

d

d ỹ

(
γ
dαn

d ỹ

)
αmd ỹ + λ2

∫ 1

0
βαnαm d ỹ

By truncating the series to a finite number of terms, we may formally solve for the
an ,

{an} = 1

2
[Cmn]−1{Am} (2.28)

The divergence condition is simply that the determinant of Cmn vanish (and hence
an → ∞)

|Cmn| = 0 (2.29)

which is a polynomial in λ2. It should be emphasized that for an ‘exact’ solu-
tion, (2.27), (2.28) etc., are infinite systems of equations (in an infinite number of
unknowns). In practice, some large but finite number of equations is used to obtain
an accurate approximation. By systematically increasing the terms in the series, the
convergence of the method can be assessed. This procedure is usually referred to
as Galerkin’s method or as a ‘modal’ method.14 The modes, αn , used are called
‘primitive modes’ to distinguish them from eigenfunctions, i.e., they are ‘primitive
functions’ for a variable property wing even though they are eigenfunctions for a
constant property wing.

3 Rolling of a Straight Wing

We shall now consider a more complex physical and mathematical variation on our
earlier static aeroelastic lifting surface (wing) studies. For variety, we treat a new
physical situation, the rolling of a wing (rotation about the root axis). Nevertheless,
we shall meet again our old friends, ‘divergence’ and ‘control surface effectiveness’
or ‘reversal’.

The present analysis differs from the previous one as follows:

a integral equation formulation versus differential equation formulation
b aerodynamic induction effects versus ‘strip’ theory
c ‘lumped element’ method of solution versus modal (or eigenfunction) solution.

The geometry of the problem is shown in Fig. 9.

14 Duncan [7].
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Fig. 9 Rolling of a straight
wing
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3.1 Integral Equation of Equilibrium

The integral equation of equilibrium is

α(y) =
∫ 1

0
Cαα(y, η)My(η)dη (3.1)

Before15 deriving the above equation, let us first consider the physical interpretation
of Cαα:

Apply a unit point moment at some point, say y = γ, i.e.,

My(η) = δ(η − γ)

Then (3.1) becomes

α(y) =
∫ 1

0
Cαα(y, η)δ(η − γ)dη = Cαα(y, γ) (3.2)

ThusCαα(y, γ) is the twist a y due to a unit moment at γ, or alternatively,Cαα (y, η)

is the twist at y due to a unit moment at η. Cαα is called a structural influence
function.

Also note that (3.1) states that to obtain the total twist, one multiplies the actual
distributed torque,My , byCαα and sums (integrates) over the span. This is physically
plausible.

15 For simplicity, α0 ≡ 0 in what follows.
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Cαα plays a central role in the integral equation formulation.16 The physical
interpretation of Cαα suggests a convenient means of measuring Cαα in a labora-
tory experiment. By successively placing unit couples at various locations along
the wing and measuring the twists of all such stations for each loading position we
can determine Cαα. This capability for measuring Cαα gives the integral equation a
preferred place in aeroelastic analysis where Cαα and/or GJ are not always easily
determinable from purely theoretical considerations.

3.2 Derivation of Equation of Equilibrium

Nowconsider a derivation of (3.1) taking as our starting point the differential equation
of equilibrium. We have, you may recall,

d

dy

(
GJ

dα

dy

)
= −My (3.3)

with

α(0) = 0 and
dα

dy
(l) = 0 (3.4)

as boundary conditions.
As a special case of (3.3) and (3.4) we have for a unit torque applied at y = η,

d

dy
G J

dCαα

dy
= −δ(y − η) (3.5)

with

Cαα(0, η) = 0 and
dCαα

dy
(l, η) = 0 (3.6)

Multiply (3.5) by α(y) and integrate over the span,

∫ 1

0
α(y)

d

dy

(
GJ

dCα,α

dy

)
dy = −

∫ 1

0
δ(y − η)α(y)dy = −α(η) (3.7)

Integrate LHS of (3.7) by parts,

αGJ
dCαα

dy

∣∣∣1
0
− GJ

dα

dy
Cαα

∣∣∣1
0
+
∫ 1

0
Cαα d

dy

(
GJ

dα

dy

)
dy = −α(η) (3.8)

16 For additional discussion, see the following selected references: Hildebeand [6] pp. 388–394 and
BAH, pp. 39–44.
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Using boundary conditions (3.4) and (3.6), the first two terms of LHS of (3.8)
vanish. Using (3.3) the integral term may be simplified and we obtain,

α(η) =
∫ 1

0
Cαα(y, η)My(y)dy (3.9)

Interchanging y and η,

α(y) =
∫ 1

0
Cαα(η, y)My(η)dη (3.10)

Equation (3.10) is identical to (1), if

Cαα(η, y) = Cαα(y, η) (3.11)

We shall prove (3.11) subsequently.

3.3 Calculation of Cαα

We shall calculate Cαα from (3.5) using (3.6). Integrating (3.5) with respect to y
from 0 to y1,

GJ (y1)
dCαα

dy
(y1, η) − GJ (0)

dCαα

dy
(0, η)

= −1 if y1 > η

= 0 if y1 < η ≡ S(y1, η) (3.12)

3.4 Sketch of Function S( y1,η)

0

-1

y = η

S 
( y

 1
,

)
η

y
1

1
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Dividing (3.12) by GJ (y1) and integrating with respect to y1 from 0 to y2,

Cαα(y2, η) − Cαα(0, η) − GJ (0)
dCαα

dy
(0, η)

∫ y2

0

1

GJ
dy1

=
∫ y2

0

S(y1, η)

GJ (y1)
dy1 = −

∫ y2

η

1

GJ (y1)
dy1 for y2 > η

= 0 for y2 < η (3.13)

From boundary conditions, (3.6),

(a) Cαα(0, η) = 0

(b)
dCαα

dy
(l, η) = 0

These may be used to evaluate the unknown terms in (3.12) and (3.13). Evaluating
(3.12) at y1 = l

(c) GJ (l)
dCαα

dy︸ ︷︷ ︸
−→0

(l, η) − GJ
dCαα

dy
(0, η) = −1

Using (a) and (c), (3.13) may be written,

Cαα(y2, η) =
∫ y2

0

1

GJ
dy1 −

∫ y2

η

1

GJ
dy1

=
∫ η

0

1

GJ
dy1 for y2 > η

=
∫ y2

0

1

GJ
dy1 for y2 < η

One may drop the dummy subscript on y2, of course. Thus

Cαα (y, η) =
∫ y

0

1

GJ
dy1 for y < η

=
∫ η

0

1

GJ
dy1 for y > η (3.14)
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Fig. 10 Coordinate system
and velocity diagram
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Note from the above result we may conclude by interchanging y and η that

Cαα(y, η) = Cαα(η, y)

This is a particular example of a more general principle known as Maxwell’s
Reciprocity Theorem17 which says that all structural influence functions for linear
elastic bodies are symmetric in their arguments. In the case of Cαα these are y and
η, of course.

3.5 Aerodynamic Forces (Including Spanwise Induction)

First, let us identify the aerodynamic angle of attack; i.e., the angle between the
airfoil chord and relative airflow. See Fig. 10. Hence, the total angle of attack due to
twisting and rolling is

αTotal = α(y) − py

U

The control surface will be assumed rigid and its rotation is given by

δ(y) = δR for l1 < y < l2 = 0 otherwise

From aerodynamic theory or experiment

CL ≡ L

qc
=
∫ 1

0
ALα(y, η)αT (η)

dη

l
+
∫ 1

0
ALδ(y, η)δ(η)

dη

l
(3.15)

17 Bisplinghoff, Mar, and Pian [8], p. 247.



Static Aeroelasticity 31

Here ALα, ALδ are aerodynamic influence functions; as written, they are nondi-
mensional. Thus, ALδ is nondimensional lift at y due to unit angle of attack at η.
Substituting for αT and δ, (3.15) becomes,

CL =
∫ 1

0
ALαα

dη

l
− pl

U

∫ 1

0
ALα η

l

dη

l
+ δR

∫ l2

l1

ALδ dη

l

CL =
∫ 1

0
ALαα

dη

l
+ pl

U

∂CL

∂
(

pl
U

) + δR
∂CL

∂δR
(3.16)

where

∂CL

∂
(

pl
U

) (y) ≡ −
∫ 1

0
ALα η

l

dη

l

and

∂CL

∂δR
(y) ≡

∫ l2

l1

ALδ dη

l

Physical Interpretation of ALα and ALδ:ALα is the lift coefficient at y due to unit
angle of attack at n. ALδ is the lift coefficient at y due to unit rotation of control
surface at η.

Physical Interpretation of ∂CL/∂ (pl/U ) and ∂CL/∂δR :∂CL/∂ (pl/U ) is the
lift coefficient at y due to unit rolling velocity, pl/U . ∂CL/∂δR is the lift coefficient
at y due to unit control surface rotation, δR .

As usual

CMAC ≡ MAC

qc2
= ∂CMAC

∂δR
δR (3.17)

is the aerodynamic coefficientmoment (about a.c.) at y due to control surface rotation.
Note

∂CMAC/∂αT ≡ 0

by definition of the aerodynamic center. Finally the total moment loading about the
elastic axis is

My = MAC + Le = qc[CMACc + CLe] (3.18)

Using (3.16) and (3.17), the above becomes
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My = qc

⎡
⎣c∂CMAC

∂δR
δR + e

⎧⎨
⎩
∫ 1

0
ALδα

dη

l
+ ∂CL

∂
(

pl
l

)
(
pl

U

)
+ ∂CL

∂δR
δR

⎫⎬
⎭
⎤
⎦
(3.19)

Note that ALα, ALδ are more difficult to measure than their structural counterpart,
Cαα. One requires an experimental model to which one can apply unit angles of
attack at various discrete points along the span of the wing. This requires a rather
sophisticated model and also introduces experimental difficulties in establishing and
maintaining a smooth flow over the airfoil. Conversely

∂CL

∂ pl
U

,
∂CL

∂δR
and

∂CMAC

∂δR

are relatively easy to measure since they only require a rolling or control surface
rotation of a rigid wing with the same geometry as the flexible airfoil of interest.

3.6 Aeroelastic Equations of Equilibrium and Lumped
Element Solution Method

The key relations are (3.1) and (3.19). The former describes the twist due to an
aerodynamic moment load, the latter the aerodynamic moment due to twist as well
as rolling and control surface rotation.

By substituting (3.19) into (3.1), one could obtain a single equation for α. How-
ever, this equation is not easily solved analytically except for some simple cases,
which are more readily handled by the differential equation approach. Hence, we
seek an approximate solution technique. Perhaps the most obvious and convenient
method is to approximate the integrals in (3.1) and (3.19) by sums, i.e., the wing
is broken into various spanwise segments or ‘lumped elements’. For example, (3.1)
would be approximated as:

α (yi ) ∼=
N∑
i=1

Cαα (yi , η j )My (η j )�η i = 1, . . . , N (3.20)

where�η is the segment width and N the total number of segments. Similarly, (3.19)
may be written

My(yi ) ∼=qc

{[
c
∂CMAC

∂δR
+ e

∂CL

∂ pl
U

pl

U

+e
∂CL

∂δR
δR

]
+ e

N∑
j=1

ALα(yi , η j )α(η j )
�η

l

⎫⎬
⎭ i = 1, . . . , N (3.21)
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To further manipulate (3.20) and (3.21), it is convenient to use matrix notation. That
is,

{α} = �η[Cαα]{My} (3.20)

and

{My} = q

⎡
⎣ \
c2

\

⎤
⎦{∂CM AC

∂δR

}
δR + q

⎡
⎣ \
ce
\

⎤
⎦
{

∂CL

∂ pl
U

}
pl

U

+ q

⎡
⎣ \
ce
\

⎤
⎦{∂CL

∂δR

}
δR + q

⎡
⎣ \
ce
\

⎤
⎦ [ALα]{α}�η

l
(3.21a)

All full matrices are of order N × N and row or column matrices of order N ..
Substituting (3.21) into (3.20), and rearranging terms gives,

⎡
⎣
⎡
⎣ \

1
\

⎤
⎦− q

(�η)2

l
[E][ALα]

⎤
⎦ {α} = { f } (3.23)

where the following definitions apply

{ f } ≡ q[E]
⎡
⎣{∂CL

∂δR

}
δR +

⎧⎨
⎩

∂CL

∂
(

pl
U

)
⎫⎬
⎭

pl

U

⎤
⎦�η

+q[F]
{

∂CMAC

∂δR

}
δR �η

[E] ≡ [Cα α]
⎡
⎣ \
ce
\

⎤
⎦

[F] ≡ [Cα α]
⎡
⎣ \
c2

\

⎤
⎦

Further defining

[D] ≡
⎡
⎣ \

1
\

⎤
⎦− q

(�η)2

l
[E][ALα]
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Fig. 11 Characteristic
determinant versus dynamic
pressure D N=1

q

Dq FOR N=1

N=2

N=3

we may formally solve (3.23) as

{α} = [D]−1{ f } (3.24)

Now let us interpret this solution.

3.7 Divergence

Recall that the inverse does not exist if

| D |= 0 (3.25)

and hence,
{α} → {∞}

Equation (3.25) gives rise to an eigenvalue problem for the divergence dynamic
pressure, qD . Note (3.25) is a polynomial in q.

The lowest possible root (eigenvalue) of (3.25) gives the q of physical interest,
i.e.,qDivergence. Rather than seeking the roots of the polynomial we might more
simply plot |D| versus q to determine the values of dynamic pressure for which the
determinant is zero. A schematic of such results for various choices of N is shown
below in Fig. 11. From the above results we may plot qD (the lowest positive q for
which |D| = 0) versus N as shown below in Fig. 12. The ‘exact’ value of qD is
obtained at N → ∞. Usually reasonably accurate results can be obtained for small
values of N , say 10 or so. The divergence speed calculated above does not depend
upon the rolling of the wing, i.e.,p is considered prescribed, e.g., p = 0.
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Fig. 12 Convergence of
divergence dynamic pressure
with modal number
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3.8 Reversal and Rolling Effectiveness

In the above we have taken pl/U as known; however,in reality it is a function of δR
and the problem parameters through the requirement that the wing be in static rolling
equilibrium, i.e., it is an additional degree of freedom. For rolling equilibrium at a
steady roll rate, p, the rolling moment about the x-axis is zero.

MRolling ≡ 2
∫ 1

0
Lydy = 0 (3.26)

Approximating (3.26), ∑
i

Li yi�y = 0 (3.27)

or, in matrix notation,
2	y
{L}�y = 0 (3.28)

or
2q	cy
{CL}�y = 0

From (3.16), using the ‘lumped element’ approximation and matrix notation,

{CL} = �η

l
[ALα]{α} +

{
∂CL

∂δR

}
δR +

⎧⎨
⎩

∂CL

∂
(

pl
U

)
⎫⎬
⎭

pl

U
(3.16)

Substitution of (3.16) into (3.28) gives



36 E. H. Dowell

Fig. 13 Roll rate versus
dynamic pressure

p l
U

q / q

δ R

D

	cy

⎧⎨
⎩

�η

l
[ALα]{α} +

{
∂CL

∂δR

}
δR +

⎧⎨
⎩

∂CL

∂
(

pl
U

)
⎫⎬
⎭

pl

U

⎫⎬
⎭ = 0 (3.29)

Note that (3.29) is a single algebraic equation. Equation (3.29) plus (3.20) and (3.21)
are 2N + 1 linear algebraic equations in the N (α) plus N (My) plus 1(p) unknowns.
As before {My} is normally eliminated using (3.21) in (3.20) to obtain N , Eq. (3.22),
plus 1, Eq. (3.29), equations in N (α) plus 1(p) unknowns. In either case the diver-
gence condition my be determined by setting the determinant of coefficients to zero
and determining the smallest positive eigenvalue, q = qD .

For q < qD , pl/U (and α) may be determined from (3.23) and (3.29). Since our
mathematical model is linear

pl/U ∼ δR

and hence a convenient plot of the results is as shown in Fig. 13. As

q → qD,
pl

U
(and{α}) → ∞

Another qualitatively different type of result may sometimes occur. See Fig. 14. If

pl

U/δR
→ 0 for q → qR < qD
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Fig. 14 Roll rate versus
dynamic pressure
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then ‘rolling reversal’ is said to have occurred and the corresponding q = qR is
called the ‘reversal dynamic pressure’. The basic phenomenon is the same as that
encountered previously as ‘control surface reversal’. Figures13 and 14 should be
compared to Fig. 5a, b.

It is worth emphasizing that the divergence condition obtained above by permit-
ting p to be determined by (static) rolling equilibrium will be different from that
obtained previously by assuming p = 0. The latter physically corresponds to an air-
craft constrained not to roll, as might be the case for some wind tunnel models. The
former corresponds to a model or aircraft completely free to roll.18

The above analysis has introduced the simple yet powerful idea of structural and
aerodynamic influence functions.While the utility of the concept has been illustrated
for a one-dimensional aeroelastic model, not the least advantage of such an approach
is the conceptual easewithwhich the basic notion canbe extended to two-dimensional
models, e.g., plate-like structures, or even three-dimensional ones (though the latter
is rarely needed for aeroelastic problems).

In a subsequent section we briefly outline the generalization to two-dimensional
models. Later this subject will be considered in more depth in the context of dynamic
aeroelasticity.

3.9 Integral Equation Eigenvalue Problem and the
Experimental Determination of Influence Functions

For the special case of a constant section wing with ‘strip theory’ aerodynamics one
may formulate a standard integral equation eigenvalue problem for the determination

18 This distinction between the two ways in which the aircraft may be restrained received renewed
emphasis in the context of the oblique wing concept. Weisshaar and Ashley [9].
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of divergence. In itself this problem is of little interest. However, it does lead to some
interesting results with respect to the determination of the structural and aerodynamic
influence functions by experimental means.

For such a wing,

My = Le + MAC = eqc
∂CL

∂α
α + · · ·

where the omitted terms are independent of twist and may therefore be ignored for
the divergence (eigenvalue) problem. Also the coefficients of α may be taken as
constants for a constant section wing. Substituting the above expression into the
integral equation of structural equilibrium we have

α(y) = eqc
∂CL

∂α

∫ 1

0
Cαα(y, η)α(η)dη

This is an eigenvalue problem in integral form where the eigenvalue is

λ ≡ eqc
∂CL

∂α

One may solve this problem for the corresponding eigenvalues and eigenfunctions
which satisfy the equation

αn(y) = λn

∫ 1

0
Cαα(y, η)αn(η)dη

Incidentally, the restriction to a constant section wing was unnecessary and with a
moderate amount of effort one could even use a more sophisticated aerodynamic
model. Such complications are not warranted here.

These eigenfunctions or similar functions may be usefully employed to deter-
mine by experimental means the structural, Cαα, and aerodynamic, Alα, influence
functions. The former is not as attractive as the use of point unit structural loads as
we shall see; however, the procedure outlined below for the determination of ALα

probably deserves more attention than it has previously received.
Assume the structural influence function can be expanded in terms of the eigen-

functions
Cαα(y, η) =

∑
n

Cn(y)αn(η) (3.30)

where the Cn are to be determined. Also recall that

αn(y) = λn

∫ 1

0
Cαα(y, η)αn(η)dη (3.31)
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and the αn are the eigenfunctions and λn the eigenvalues of Cαα satisfying (3.31)
and an orthogonality condition

∫
αnαmdy = 0 for m �= η

Then multiply (3.30) by αm(η) and integrate over the span of the wing; the result is

Cm(y) =
∫ 1
0 Cαα(y, η)αm(η)dη∫ 1

0 α2
m(η)dη

and from (3.31)

Cmcyl = αm(y)

λm
∫ 1
0 α2

m(η)dη
(3.32)

Hence (3.32) in (3.30) gives

Cαα(y, η) =
∑
n

αn(y)αn(η)

λn
∫ 1
0 α2

n(η)dη
(3.33)

Thus if the eigenfunctions are known then the Green’s function is readily determined
from (3.33). Normally this holds no special advantage since the determination of the
αn , theoretically or experimentally, is at least as difficult as determining the Green’s
function, Cαα, directly. Indeed as discussed previously if we apply unit moments at
various points along the span the resulting twist distribution is a direct measure of
Cαα. A somewhat less direct way of measuring Cαα is also possible which makes
use of the expansion of the Green’s (influence) function. Again using (3.30)

Cαα(y, η) =
∑
n

Cnαn(η) (3.29)

and assuming the αn are orthogonal (although not necessarily eigenfunctions of the
problem at hand) we have

Cn(y) =
∫ 1
0 Cαα(y, η)αn(η)dη∫ 1

0 α2
n(η)dη

(3.34)

Now we have the relation between twist and moment

α(y) =
∫ 1

0
Cαα(y, η)My(η)dη (3.35)

Clearly if we use a moment distribution
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My(η) = αn(η)

the resulting twist distribution will be (from (3.34))

α(y) = Cn(y)
∫ 1

0
α2
n(η)dη (3.36)

Hence we may determine the expansion of the Green’s function by successively
applying moment distribution in the form of the expansion functions and measuring
the resultant twist distribution. For the structural influence function this offers no
advantage in practice since it is easier to apply point moments rather than moment
distributions.

However, for the aerodynamic Green’s functions the situation is different. In the
latter case we are applying a certain twist to the wing and measuring the resulting
aerodynamic moment distribution. It is generally desirable to maintain a smooth (if
twisted) aerodynamic surface to avoid complications of flow separation and rough-
ness and hence the application of a point twist distribution is less desirable than a
distributed one. We quickly summarize the key relations for determining the aero-
dynamic influence function. Assume

ALα(y, η) =
∑
n

ALα
n (y)αn(η) (3.37)

We know that

CL(y) =
∫ 1

0
ALα(y, η)α(η)dη (3.38)

For orthogonal functions, αn we determine from (3.37) that

ALα
n (y) =

∫ 1
0 ALα(y, η)αndη∫ 1

0 α2
n(η)dη

(3.39)

Applying the twist distribution α = αn(η) to the wing, we see from (3.38) and (3.39)
that the resulting lift distribution is

CL(y) = ALα
n (y)

∫ 1

0
α2
n(η)dη (3.40)

Hence by measuring the lift distributions on ‘warped wings’ with twist distributions
αn(η) we may completely determine the aerodynamic influence function in terms of
its expansion (3.37). This technique or a similar one has been used occasionally,19

but not as frequently as one might expect, possibly because of the cost and expense
of testing the number of wings sufficient to establish the convergence of the series.

19 Covert [10].
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In this regard, if one uses the αn for a Galerkin or modal expansion solution for the
complete aeroelastic problem one can show that the number of Cn , ALα

n required is
equal to the number of modes, αn , employed in the twist expansion.

4 Two Dimensional Aeroelastic Model of Lifting Surfaces

We consider in turn, structural modeling, aerodynamic modeling, the combining of
the two into an aeroelastic model, and its solution.

4.1 Two Dimensional Structures—Integral Representation

The two dimensional or plate analog to the one-dimensional or beam-rod model is

w(x, y) =
∫∫

Cwp(x, y; ξ, η)p(ξ, η)dξ dη (4.1)

where

w vertical deflection at a point, x , y, on plate
p force/area (pressure) at point ξ, η on plate

Cwp deflection at x , y due to unit pressure at ξ, η

Note that w and p are taken as positive in the same direction. For the special case
where

w(x, y) = h(y) + xα(y) (4.2)

and

Cwp(x, y; ξ, η) = ChF (y, η) + xCαF (y, η) + ξChM(y, η) + xξCαM(y, η) (4.3)

with the definitions

ChF is the deflection of y axis at y due to unit force F
CαF is the twist about the y axis at y due to unit force F , etc.,

we may retrieve our beam-rod result. Note that (4.2) and (4.3) may be thought of as
polynomial (Taylor Series) expansions of deflections.

Substituting (4.2), (4.3) into (4.1), we have

h(y) + xα(y) =
[∫

ChF

(∫
p(ξ, η)dξ

)
dη

+
∫

ChM

(∫
ξ p(ξ, η)dξ

)
dη

]
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+ x

[∫
CαF

(∫
p(ξ, η)dξ

)
dη

+
∫

CαM

(∫
ξ p(ξ, η)dξ

)
dη

]
(4.4)

If y, η lie along an elastic axis, then ChM = CαF = 0. Equating coefficients of like
powers of x , we obtain

h(y) =
∫

ChF (y, η)F(η) dη (4.5)

α(y) =
∫

CαM(y, η)M(η) dη (4.6)

where

F ≡
∫

p dξ, M ≡
∫

pξ dξ

Equation (4.6) is our previous result. Since for static aeroelastic problems, M is
only a function of α (and not of h), (4.6) may be solved independently of (4.5).
Subsequently (4.6) may be solved to determine h if desired. Equation (4.5) has no
effect on divergence or control surface reversal, of course, and hencewewere justified
in neglecting it in our previous discussion.

4.2 Two Dimensional Aerodynamic Surfaces—Integral
Representation

In a similar manner (for simplicity we only include deformation dependent aerody-
namic forces to illustrate the method),

p(x, y)

q
=
∫∫

Apwx (x, y; ξ, η)
∂w

∂ξ
(ξ, η)

dξ

cr

dη

l
(4.7)

where

Apwx nondimensional aerodynamic pressure at x , y due to unit ∂w/∂ξ at point ξ, n
cr reference chord, l reference span

For the special case

w = h + xα

and, hence,
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∂w

∂x
= α

we may retrieve our beam-rod aerodynamic result.
For example, we may compute the lift as

L ≡
∫

pdx = qcr

∫ 1

0
ALα(y, η)α(η)

dη

l
(4.8)

where

ALα ≡
∫∫

Apwx (x, y; ξ, η)
dξ

cR

dx

cr

4.3 Solution by Matrix-Lumped Element Approach

Approximating the integrals by sums and using matrix notation, (4.1) becomes

{w} = �ξ�η[Cwp]{p} (4.9)

and (4.7) becomes

{p} = q
�ξ

cr

�η

l
[Apwx ]

(
∂w

∂ξ

)
(4.10)

Now
(

∂w

∂ξ

)
∼= wi−1 − wi−1

2�ξ

is a difference representation of the surface slope. Hence

(
∂w

∂ξ

)
= 1

2�ξ
[W ]{w} = 1

2�ξ

⎡
⎢⎢⎣

[W ] [0] [0] [0]
[W ] [0] [0]

[W ] [0]
[W ]

⎤
⎥⎥⎦ {w} (4.11)

is the20 result shown for four spanwise locations, where

20 For definiteness consider a rectangular wing divided up into small (rectangular) finite difference
boxes. The weighting matrix[(W)] is for a given spanwise location and various chordwise boxes.
The elements in the matrices, {∂w/∂ξ} and {w}, are ordered according to fixed spanwise location
and then over all chordwise locations. This numerical scheme is only illustrative and not necessarily
that which one might choose to use in practice.
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[W ] =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 ·
−1 0 1 0 ·
0 −1 0 1 ·

· · ·
· · · 0 0 −1 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
number of chordwise location

(4.12)

is a numerical weighting matrix. From (4.9), (4.10), (4.11), we obtain an equation
for w,

[D]{w} ≡
⎡
⎣
⎡
⎣ \
1
\

⎤
⎦− q

(�ξ)2

cr

(�η)2

l

1

2�ξ
[Cwp][Apwx ][W ]

⎤
⎦ {w} = {0} (4.13)

For divergence

|D| = 0

which permits the determination of qD .

5 Other Physical Phenomena

5.1 Fluid Flow Through A Flexible Pipe

Another static aeroelastic configuration exhibiting divergence is a long slender pipe
with a flowingfluid.21 SeeFig. 15.We shall assume thefluid is incompressible and has
no significant variation across the cross-section of the pipe. Thus, the aerodynamic
loading per unit length along the pipe is (invoking the concept of an equivalent fluid
added mass moving with the pipe and including the effect of convection velocity22

U ),

− L = ρA

[
∂

∂t
+U

∂

∂x

]2
w = ρA

[
∂2w

∂t2
+ 2U

∂2w

∂x∂t
+U 2 ∂2w

∂x2

]
(5.1)

where

A ≡ πR2 open area for circular pipe
ρ,U fluid density, axial velocity
w transverse deflection of the pipe

21 Housner [11].
22 See Sect. 4.

http://dx.doi.org/10.1007/978-3-030-74236-2_3
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Fig. 15 Fluid flow through a
flexible pipe

U
W

x

a

x axial coordinate
t time

The equation of motion for the beam-like slender pipe is

E I
∂4w

∂x4
+ mp

∂2w

∂t2
= L (5.2)

where

mp ≡ ρp2πRh for a thin hollow circular pipe of thickness h, mass per unit length
E I beam bending stiffness

Both static and dynamic aeroelastic phenomena are possible for this physical
model but for themomentwe shall only consider the former. Furtherwe shall consider
for simplicity simply supported or pinned boundary conditions, i.e.,

w = 0

and

M ≡ E I
∂2w

∂x2
= 0 at x = 0, a (5.3)

where M is the elastic bending moment and a, the pipe length.
Substituting (5.1) into (5.2) and dropping the time derivatives consistent with

limiting our concern to static phenomena, we have

E I
∂4w

∂x4
+ ρAU 2 ∂2w

∂x2
= 0 (5.4)

subject to boundary conditions

w = ∂2w

∂x2
= 0 at x = 0, a (5.5)
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The above equations can be recognized as the same as those governing the buckling
of a beam under a compressive load of magnitude,23 P . The equivalence is

P = ρU 2A

Formally we may compute the buckling or divergence dynamic pressure by assum-
ing24

w =
4∑

i=1

Aie
pi x

where the pi are the four roots of the characteristic equation associated with (5.4),

E I p4 + ρU 2Ap2 = 0

Thus

p1,2 = 0

p3, p4 = ±i

(
ρU 2A

E I

) 1
2

and

w = A1 + A2x + A3 sin
λx

a
+ A4 cos

λx

a
(5.6)

where

λ2 ≡
(

ρU 2A

E I

)
a2

Using the boundary conditions (5.5) with (5.6) we may determine that

A1 = A2 = A4 = 0

and either A3 = 0 or sin λ = 0
For nontrivial solutions

A3 �= 0

23 Timoshenko and Gere [3].
24 Alternatively one could use Galerkin’s method for (5.4) and (5.5) or convert them into an integral
equation to be solved by the ‘lumped element’ method.
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and

sin λ = 0

or
λ = π, 2π, 3π, etc. (5.7)

Note that λ = 0 is a trivial solution, e.g., w ≡ 0.
Of the several eigenvalue solutions the smallest nontrivial one is of the greatest

physical interest, i.e.,

λ = π

The corresponding divergence or buckling dynamic pressure is

ρU 2 = E I

Aa2
π2 (5.8)

Note thatλ2 is a nondimensional ratio of aerodynamic to elastic stiffness;we shall call
it and similar numbers we shall encounter an ‘aeroelastic stiffness number’. It is as
basic to aeroelasticity as Mach number and Reynolds number are to fluid mechanics.
Recall that in our typical section study we also encountered an ‘aeroelastic stiffness
number’, namely,

qs ∂CL
∂α

Kα
e

as well as in the (uniform) beam-rod wing model,

q(lc)e ∂CL
∂

α
GJ
l

5.2 (Low Speed) Fluid Flow Over A Flexible Wall

A mathematically similar problem arises when a flexible plate is embedded in an
otherwise rigid surface. See Fig. 16. This is a simplified model of a physical situation
which arises in nuclear reactor heat exchangers, for example. Aeronautical appli-
cations may be found in the local skin deformations on aircraft and missiles. Early
airships may have encountered aeroelastic skin buckling.25

For a one dimensional (beam) structural representation of the wall, the equation
of equilibrium is, as in our previous example,

25 Shute [12], p. 95.
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Fig. 16 Fluid flow over a
flexible wall
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E I
∂4w

∂x4
= L

Also, as a rough approximation, it has been shown that the aerodynamic loading may
be written as26

L ∼ ρU 2 ∂2w

∂x2

Hence using this aerodynamic model, there is a formal mathematical analogy to the
previous example and the aeroelastic calculation is the same. For more details and a
more accurate aerodynamic model, the cited references should be consulted.

6 Sweptwing Divergence

A swept wing, one whose elastic axis is at an oblique angle to an oncoming fluid
stream, offers an interesting variation on the divergence phenomenon. Consider
Fig. 17. The angle of sweep is that between the axis perpendicular to the oncom-
ing stream (y axis) and the elastic axis (y axis). It is assumed that the wing can be
modeled by the bending-torsion deformation of a beam-rod. Thus the two structural
equations of equilibrium are

Bending equilibrium of a beam-rod

d2

d ȳ2

(
EL

d2h

d ȳ2

)
= −L̄ (6.1)

Torsional equilibrium of a beam-rod

d2

d ȳ2

(
GJ

dαe

d ȳ

)
+ M̄y = 0 (6.2)

Here h is the bending displacement of the elastic axis and is assumed positive down-
ward. αe, the elastic twist about the y axis, is positive nose up.

26 Dowell [13], p. 19, Kornecki [14], Kornecki, Dowell and O’Brien [15].
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Fig. 17 Sweptwing
geometry U
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Fig. 18 Velocity diagram in
the x, y(x̄, ȳ) plane
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Now consider the aerodynamic model. Consider the velocity diagram, Fig. 18. A
strip theory aerodynamic model will be invoked with respect to chords perpendicular
to the y axis. Thus the lift and aerodynamic moment per unit span are given by

L̄ = C̄L c̄q (6.3)

and

M̄y =L̄ ē + M̄AC

=C̄L ¯cqe + C̄MAC c̄
2q̄ (6.4)

where q̄ = 1
2ρ(U cos�)2 = q cos2 �. Also C̄L is related to the (total) angle of attack,

αT , by

C̄L(ȳ) = ∂C̄L

∂α
αT (ȳ) (6.5)

where

αT = αe + dh

d ȳ
tan� (6.6)

To understand the basis of the second term in (6.6), consider the velocity diagram of
Fig. 19. From this figurewe see the fluid velocity normal to thewing isU sin�dh/d ȳ
and thus the effective angle of attack due to bending of a swept wing is
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Fig. 19 Velocity diagram in
ȳ, z̄ plane

y

U sin Λ dh
dy

U sin Λ

z

U sin�
dh

d ȳ
/U cos� = U

dh

d ȳ
tan� (6.7)

From (6.1) to (6.6), the following form of the equations of equilibrium is obtained.

d2

d ȳ2

(
E I

d2h

d ȳ2

)
= −∂C̄L

∂α

[
αe + dh

d ȳ
tan�

]
c̄q cos2 � (6.7)

d

d ȳ

(
GJ

dαe

d ȳ

)
+ ∂C̄L

∂α

[
αe + dh

d ȳ
tan�

]
c̄q cos2 �ē + C̄MAC c̄

2q cos2 � = 0

(6.8)
Special cases;

• If the beam is very stiff in bending, E I → ∞, then from (6.7), h → 0. Equation
(6.8) then is very similar to the torsional equation for an unsweptwingwith slightly
modified coefficients.

• If the beam-rod is very stiff in torsion,GJ → ∞, then from (6.8),α → 0.Equation
(6.7) then reduces to

d2

d ȳ2

(
E I

d2h

d ȳ2

)
+ ∂C̄L

∂α
sin� cos�c̄q

dh

d ȳ
= 0 (6.9)

As we shall see, divergence in bending alone is possible even for a swept wing which
is very stiff in torsion. This is not possible for an unswept wing.

To illustrate this, consider a further special case, namely a beam with con-
stant spanwise properties. Introducing appropriate non-dimensionalization then (6.9)
becomes

d4h

d ỹ4
+ λ

dh

d ỹ
= 0 (6.10)

where ỹ ≡ ȳ/ l and
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λ =
∂C̄L
∂α

qc̄l
3

E I
sin � cos �

The boundary conditions associatedwith this differential equation are zero deflec-
tion and slope at the root:

h = dh

d ỹ
= 0 @ ỹ = 0 (6.11)

and zero bending moment and shear force at the tip

E I
d2h

d ỹ2
= E I

d3h

d ỹ3
= 0 @ ỹ = 1 (6.12)

Equations (6.10)–(6.12) constitute an eigenvalue problem. The eigenvalues of λ are
all negative and the lowest of these provides the divergence condition.

λD = −6.33 = ∂C̄L

∂α

sin� cos�c̄l̄3q

E I
(6.13)

The only way the right hand side of (6.13) can be less than zero is if sin� < 0 or
� < 0.

Thus only swept forward wings can diverge in bending without torsional defor-
mation. This suggests that swept forward wings are more susceptible to divergence
than swept back wings. This proves to be the case when both bending and torsion
are present as well.

For many years, the divergence tendency of swept forward wings precluded their
use. In recent years composite materials provide a mechanism for favorable bending-
torsion coupling which alleviates this divergence. For a modern treatment of these
issues including the effects of composite structures two reports by Weisshaar [16,
17] are recommended reading.

A final word on how the eigenvalues are calculated. For (6.10)–(6.12), classical
techniques for constant coefficient differential equationsmaybe employed. SeeBAH,
pp. 479–489. Even when both bending and torsion are included (6.7), (6.8), if the
wing properties are independent of spanwise location, then classical techniques may
be applied.Although the calculation does becomemore tedious. Finally, for a variable
spanwise properties Galerkin’s method may be invoked, in a similar though more
elaborate manner to that used for unswept wing divergence.
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Dynamic Aeroelasticity

Earl H. Dowell

Abstract Dynamic aeroelasticty is considered and the dynamic stability (Flutter)
of linear aeroelastic systems is considered as well as the response to external dis-
turbances including atmospheric turbulence (Gusts). The discussion proceeds from
simpler physical models andmathematical methods to more complex ones. An intro-
duction to themodeling of aerodynamics forces is also provided to prepare the reader
for the material in chapter ‘Nonsteady Aerodynamics of Lifting and Non-lifting Sur-
faces’.

In static aeroelasticity we have considered various mathematical models of aeroelas-
tic systems. In all of these, however, the fundamental physical content consisted of
two distinct phenomena, ‘divergence’ or static instability, and loss of aerodynamic
effectiveness as typified by ‘Control surface reversal’. Turning to dynamic aeroe-
lasticity we shall again be concerned with only a few distinct fundamental physical
phenomena. However, they will appear in various theoretical models of increasing
sophistication. The principal phenomena of interest are (1) ‘flutter’ or dynamic insta-
bility and (2) response to various dynamic loadings asmodified by aeroelastic effects.
In the latter category primary attention will be devoted to (external) aerodynamic
loadings such as atmospheric turbulence or ‘gusts’. These loadings are essentially
random in nature and must be treated accordingly. Other loadings of interest may be
impulsive or discrete in nature such as the sudden loading due to maneuvering of a
flight vehicle as a result of control surface rotation.

To discuss these phenomenawemust first develop the dynamic theoreticalmodels.
This naturally leads us to a discussion of how one obtains the equations of motion
for a given aeroelastic system including the requisite aerodynamic forces. Our initial
discussion of aerodynamic forces will be conceptual rather than detailed. Later,
in chapter ‘Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces’, these
forces are developed from the fundamentals of fluid mechanics. We shall begin
by using the ‘typical section’ as a pedagogical device for illustrating the physical
content of dynamic aeroelasticity. Subsequently using the concepts of structural and
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aerodynamic influence and impulse functions,we shall discuss a rather generalmodel
of an aeroelastic system. The solution techniques for our aeroelastic models are for
the most part standard for the modern treatment of the dynamics of linear systems
and again we use the typical section to introduce these methods.

We now turn to a discussion of energy and work methods which have proven very
useful for the development of structural equations of motion. In principle, one may
use Newton’s Second Law (plus Hooke’s Law) to obtain the Equations of motion
for any elastic body. However, normally an alternative procedure based on Hamil-
ton’s Principle or Lagrange’s Equations is used.1 For systems with many degrees of
freedom, the latter are more economical and systematic.

We shall briefly review these methods here by first deriving them from Newton’s
Second Law for a single particle and then generalizing them formany particles and/or
a continuous body. One of the major advantages over the Newtonian formulation is
that we will deal with work and energy (scalars) as contrasted with accelerations and
forces (vectors).

1 Hamilton’s Principle

1.1 Single Particle

Newton’s Law states

�F = m
d2�r
dt2

(1.1)

where F̄ is the force vector and �r is the displacement vector, representing the actual
path of particle. m is the particle mass.

Consider an adjacent path, �r + δ�r , where �r is a ‘virtual displacement’ which is
small in some appropriate sense. If the time interval of interest is t = t1 → t2 then
we shall require that

δ�r = 0 at t = t1, t2

although this can be generalized. Thus, the actual and adjacent paths coincide at
t = t1, or t2

Now form the dot product of (1.1) with δ�r and ∫ t2
t1

· · · dt . The result is
∫ t2

t1

(

m
d2�r
dt2

· δ�r − �F · δ�r
)

dt = 0 (1.2)

The second term in brackets can be identified as work or more precisely the ‘virtual
work’. The ‘virtualwork’ is defined as theworkdoneby the actual forces beingmoved

1 See, for example, Meirovitvh [1].
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through the virtual displacement. We assume that the force remains fixed during the
virtual displacement or, equivalently, the virtual displacement occurs instantaneously,
i.e., δt = 0.

It follows that the first term must also have the dimensions of work (or energy).
To see this more explicitly, we manipulate the first term by an integration by parts as
follows:

m
∫ t2

t1

d2�r
dt2

· δ�rdt = m
d�r
dt

· δ�r
�
��
∣
∣
∣
t2

21

− m
∫ t2

t1

d�r
dt

· d

dt
(δ�r)dt

= −m
∫ t2

t1

d�r
dt

· δ
d�r
dt

dt

= −m

2

∫ t2

t1

δ

(
d�r
dt

· d�r
dt

)

dt

(1.3)

Hence (1.2) becomes

∫ t2

t1

[
1

2
mδ

(
d�r
dt

· d�r
dt

)

+ F · δ�r
]

dt = 0

or ∫ t2

t1

δ[T + W ]dt = 0 (1.4)

where

δT ≡ δ
1

2
m
d�r
dt

· d�r
dt

(1.5)

is defined as the ‘virtual kinetic energy’ and

δW ≡ �F · δ�r (1.6)

is the ‘virtual work’. Hence, the problem is cast in the form of scalar quantities, work
and energy. Equation (1.4) is Hamilton’s Principle. It is equivalent to Newton’s Law.

Before proceeding further it is desirable to pause to consider whether we can
reverse our procedure, i.e., starting from (1.4), can we proceed to (1.1)? It is not
immediately obvious that this is possible. After all, Hamilton’s Principle represents
an integrated statement over the time interval of interest while Newton’s Second Law
holds at every instant in time. By formally reversing our mathematical steps however,
we may proceed from (1.4) to (1.2). To take the final step from (1.2) to (1.1) we must
recognize that our choice of δ�r is arbitrary. Hence, if (1.2) is to hold for any possible
choice of δ�r , (1.2) must follow. To demonstrate this we note that, if δ�r is arbitrary
and (1.1) were not true, then it would be possible select δ�r such that (1.2) would not
be true. Hence (1.2) implies (1.1) if δ�r is arbitrary.
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1.2 Many Particles

The previous development is readily generalized to many particles. Indeed, the basic
principle remains the same and only the work and energy expressions are changed
as follows:

δT =
∑

i

m1

2
δ

(
d�ri
dt

· d�ri
dt

)

(1.7)

δW =
∑

i

�Fi · δ�ri (1.8)

where
mi is the mass of i th particle,

�ri is the displacement of i th particle, and

�Fi is the force acting on i th particle.

(1.9)

1.3 Continuous Body

For a continuous body (1.7) and (1.8) are replaced by (1.10) and (1.11)

δT =
∫ ∫ ∫

volume

ρ

2
δ
d�r
dt

· d�r
dt

dV (1.10)

where ρ is the density (mass per unit volume), V is the volume, and δW is the virtual
work done by external applied forces and internal elastic forces. For example, if �f
is the vector body force per unit volume and �p the surface force per unit area then

δW =
∫∫∫

volume

�f · δ�rdV +
∫∫

surface area

�p · δ�rd A (1.11)

1.4 Potential Energy

In a course of elasticity2 it would be shown that the work done by internal elastic
forces is the negative of the virtual elastic potential energy. The simplest example is
that of an elastic spring. See sketch below.

2 Bisplinghoff, Mar, and pian [2], Timoshenko and Goodier [3].
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The force in the spring is
−Kx

where the minus sign arises from the fact that the force of the spring on the mass
opposes the displacement, x . The virtual work is

δW = −Kxδx

= −δ
Kx2

2

The virtual change in potential energy is

δU ≡ −δW

= δ
Kx2

2
= δ

(
Fx

2

)
(1.12)

Considering the other extreme, the most complete description of the potential
energy of an elastic body which satisfies Hooke’s Law is (see Bisplinghoff, Mar and
Pian [2])

U = 1

2

∫∫∫

v

[σxxεxx + σxyεxy + σxyεxy + · · · ]dV (1.13)

where σxx is the stress component (analogous to F) and εxx is the strain component
(analogous to x), etc.

From this general expression for potential (strain) energy of an elastic body we
may derive some useful results for the bending and twisting of beams and plates.
For the bending of a beam, the usual assumption of plane sections over the beam
cross-section remaining plane leads to a strain-displacement relation of the form

εyy = −z
∂2w

∂y2

where z is the vertical coordinate through the beam andw is the vertical displacement
of the beam. Hooke’s Law reads,

σyy = Eεyy = −Ez
∂2w

∂y2
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and we assume all other stresses are negligible

σyz = σxy = σxz = σxx = σzz = 0

If we further assume w(x, y, z) = h(y) where y is the lengthwise coordinate axis of
the beam, then

U = 1

2

∫
E I

(
∂2h

∂y2

)2

dy

where

I ≡
∫

z2dz
∫

dx

For the twisting of a thin beam , analogous reasoning leads to similar results. Assume
w = αx and α is the angle of twist about the y axis. Then

εxy = −z
∂2w

∂x∂y

σxy = E

(1 + v)
εxy = E

(1 + v)
z

∂2w

∂x∂y

Thus

U = 1

2

∫
GJ

(
∂α

∂y

)2

dy

where

G ≡ E

2(1 + v)
, J ≡ 4

∫
z2dz

∫
dx

The above can be generalized to the bending of a plate in two dimensions.

εyy = −z
∂2w

∂y2

εxx = −z
∂2w

∂x2

εxy = −z
∂2w

∂x∂
y

σxx = E

(1 − v2)
[εxx + vεyy]

σyy = E

(1 − v2)
[εyy + vεxx ]
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σxy = E

(1 + v)
εxy

and

U = 1

2

∫ ∫
D

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2v
∂2w

∂x2
∂2w

∂y2
+ 2(1 − v)

(
∂2w

∂x∂y

)2
]

dx dy

where

D ≡ E

(1 − v2)

∫ +h/2

−h/2
z2dy, plate bending stiffness

and
w = w(x, y)

1.5 Nonpotential Forces

Now, if one divides the virtual work into potential and nonpotential contributions,
one has Hamilton’s Principle in the form

∫
[(δT − δU ) + �FNC · �δr

︸ ︷︷ ︸
δWNC

]dt = 0 (1.14)

where FNC includes only the nonpotential (or nonconservative) forces.
In our aeroelastic problems the nonconservative virtual work is a result of aerody-

namic loading. For example, the virtual work due to the aerodynamic pressure (force
per unit area) on a two-dimensional plate is clearly

δWNC =
∫∫

p δw dx dy

Note that if the deflection is taken to be a consequence of a chordwise rigid rotation
about and bending of a spanwise elastic axis located at, say x = 0, then

w = −h(y) − xα(y)

and hence

δW =
∫ [

−
∫

pdx

]

δh dy +
∫ [

−
∫

px dx

]

δα dy

where

L = ∫
p dx net vertical force/per unit span

My ≡ − ∫ px dx net moment about y axis per unit span
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Thus, for this special case,

δW =
∫

−L δh dy +
∫

Myδαdy

Can you derive equations for T and U in terms of h and α?

2 Lagrange’s Equations

Lagrange’s equationsmay be obtained by reversing the process bywhichwe obtained
Hamilton’s Principle. However to obtain a more general result than simply a retrieval
of Newton’s Second Law we introduce the notion of ‘generalized’ coordinates. A
‘generalized’ coordinate is one which is arbitrary and independent (of other coordi-
nates). A set of ‘generalized’ coordinates is sufficient3 to describe the motion of a
dynamical system. That is, the displacement of a particle or point in a continuous
body may be written

�r = �r(q1, qq2, q3, . . . , t) (2.1)

where qi is the ith generalized coordinate. From (2.1) it follows that

T = T (q̇i , qi , t) (2.2)

U = U (q̇i , qi , t)

Thus Hamilton’s Principle may be written

∫ t2

t1

[δ(T −U ) + δWNC ]dt = 0 (1.14)

Using (2.2) in (1.14)

∑

i

∫ t2

t1

[
∂(T −U )

∂q̇i
δq̇i + ∂(T −U )

∂qi
δqi + Qiδqi

]

dt = 0 (2.3)

where the Generalized forces, Qi , are known from

δWNC ≡
∑

i

Qiδqi (2.4)

As we will see (2.4) defines the Qi as coefficients of δqi in an expression for δWNC

which must be obtained independently of (2.4). Integrating the first term of (2.3) by

3 And necessary, i.e., they are independent.
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Fig. 1 Geometry of typical
section airfoil

h

α x

xcg

parts (noting that δqi = 0 t = ti , t2) we have

∑

i �����∂(T −U )

∂qi
δqi |t2t1 +

∫ t2

t1

[
− d

dt

∂(T −U )

∂q̇i
δqi

+ ∂(T −U )

∂qi
δqi + Qiδqi

]
dt = 0

(2.5)

Collecting terms

∑

i

∫ t2

t1

[

− d

dt

∂(T −U )

δq̇i
+ ∂(T −U )

∂qi
+ Qi

]

δqidt = 0 (2.6)

Since the δqi are independent and arbitrary it follows that each bracketed quantity
must be zero, i.e.,

− d

dt

∂(T −U )

δq̇i
+ ∂(T −U )

∂qi
+ Qi = 0 i = 1, 2, . . . (2.7)

These are Lagrange’s equations (Fig. 1).

2.1 Example—Typical Section Equations of Motion

x is measured along chord from e.a.; note that x is not a generalized coordinate, e.g.,
it cannot undergo a virtual change.

generalized coordinates {q1 = h, q2 = α}

The displacement of any point on the airfoil is
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�r = u�i + w�k (2.8)

where u is the horizontal displacement component, w is the vertical displacement
component, and �i, �k are the unit, cartesian vectors.

From geometry

u = x[cosα − 1] � 0

w = −h − x sinα ∼= −h − xα

}

for α � 1 (2.9)

Hence,

T = 1

2

∫ [(
dw

dt

)2

+
(
du

dt

)2
]

ρdx

� 1

2

∫ (
dw

dt

)2

ρdx

= 1

2

∫
(−ḣ − α̇x)2ρdx

= 1

2
ḣ2
∫

ρdx + 1

2
2ḣα̇

∫
xρdx + 1

2
α̇2
∫

x2ρdx

= 1

2
ḣ2m + 1

2
2ḣα̇Sα + 1

2
α̇2 Iα

where m ≡
∫

ρ dx total mass

Sα ≡
∫

ρxdx ≡ xc.g.m mass unbalance

Iα ≡
∫

ρx2dx moment of intertia

ρ ≡ mass per unit chord length

(2.10)

The potential energy is

U = 1

2
Khh

2 + 1

2
Kαα2 (2.11)

where Kn and Kα are the spring stiffnesses For our system, Lagrange’s equations
are

− d

dt

(
∂(T −U )

∂ḣ

)

+ ∂(T −U )

∂h
+ Qh = 0

− d

dt

(
∂(T −U )

∂α̇

)

+ ∂(T −U )

∂α
+ Qα = 0

(2.12)

where
δWNC = Qhδh + Qαδα (2.13)
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Now let us evaluate the terms in (2.12) and (2.13). Except for Qh these are
readily obtained by using (2.10) and (2.11) in (2.12). Hence, let us first consider
the determination of Qh, Qα. To do this we calculate independently the work done
by the aerodynamic forces.

δWNC =
∫

pδwdx

=
∫

p(−δh − xδα)dx

= δ

(

−
∫

pdx

)

+ δα

(

−
∫

pxdx

)

= δh(−L) + δα(My)

(2.14)

where we identify from (2.13) and (2.14)

L ≡
∫

pdx = Qh

My ≡ −
∫

pxdx = Qα

Note the sign convention is that p is positive up, L is positive up and My is positive
nose up. Putting it all together, noting that

∂(T −U )

∂h
= −Khh etc.

we have from Lagrange’s equations

− d

dt
(mṁ + Sαα̇) − Khh − L = 0

− d

dt
(Sαḣ + Iαα̇) − Kαα + My = 0

(2.15)

These are the equations of motion for the ‘typical section’ in terms of the particular
coordinates h and α.

Other choices of generalized coordinates are possible; indeed, one of the principal
advantages of Lagrange’s equations is this freedom to make various choices of gen-
eralized coordinates. The choice used above simplifies the potential energy but not
the kinetic energy. If the generalized coordinates were chosen to be the translation
of an rotation about the center of mass the kinetic energy would be simplified, viz.

T = m

2
ḣ2cm + Icm

2
α̇2
cm
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but the potential energy would be more complicated. Also the relevant aerodynamic
moment would be that about the center of mass axis rather than that about the elastic
axis (spring attachment point).

Another choice might be the translation of and rotation about the aerodynamic
center axis though this choice is much less often used than those discussed above.

Finally we note that there is a particular choice of coordinates which leads to
a maximum simplification of the inertial and elastic terms (though not necessarily
the aerodynamic terms). These may be determined by making some arbitrary initial
choice of coordinates, e.g., h and α, and then determining the ‘normal modes’ of
the system in terms of of these.4 These ‘normal modes’ provide us with a coordinate
transformation from the initial coordinates, h and α, to the coordinates of maximum
simplicity. We shall consider this matter further subsequently.

3 Dynamics of the Typical Section Model of An Airfoil

To study the dynamics of aeroelastic systems, we shall use the ‘typical section’5 as
a device for exploring mathematical tools and the physical content associated with
such systems. To simplify matters, we begin by assuming the aerodynamic forces
are given where p(x, t) is the aerodynamic pressure, L , the resultant (lift) force and
My the resultant moment about the elastic axis. See Fig. 2. The equations of motion
are

mḧ + Khh + Sαα̈ = −L (3.1)

Sαḧ + Iαα̈ + Kαα = My (3.2)

where

L ≡
∫

p dx

My ≡
∫

px dx

We will find it convenient also to define the ‘uncoupled natural frequencies’,

ω2
h ≡ Kh/m, ω2

α ≡ Kα/Iα (3.3)

These are ‘natural frequencies’ of the system for Sα ≡ 0 as we shall see in a moment.

4 Meirvovitch [4].
5 BA, pp. 201–246.



Dynamic Aeroelasticity 65

Fig. 2 Typical section
geometry

p(x,t)

3.1 Sinusoidal Motion

This is the simplest type of motion; however, as we shall see, we can exploit it
systematically to study more complicated motions.

Let
L = L̄eiωt , My = M̄ye

iωt

h = h̄eiωt , α = ᾱeiωt
(3.4)

Substituting (3.4) and (3.3) into (3.2) we have in matrix notation

[
m(−ω2 + ω2

h) −Sαω2

−Sαω2 Iα(−ω2 + ω2
α)

]{
h̄
ᾱ

}

=
{−L̄
M̄y

}

(3.5)

Solving for h̄, ᾱ we have the transfer function, HhL

h̄

L̄
=

−[1 − (ω/ωα)2] + d/b xα

r2α

(
ω
ωα

)2

Kh

{

[1 − (ω/ωα)2][1 − (ω/ωh)2] − x2α
r2α

(
ω
ωα

)2 (
ω
ωh

)2}

≡ HhL

(

ω/ωα; ωh

ωα
, d/b, xα, rα

)
(3.6)

where
d ≡ M̄y/L̄

and b is the reference length (usually selected as half-chord by tradition),

xα ≡ Sα

mb
= xc.g.

b
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Fig. 3 Transfer function

-1

KhHhL

ω 1/ωα

ω/ωα

ω3/ωα

ω 2 /ωα

and

r2α ≡ Iα
mb2

A plot of HhL is shown below in Fig. 3. ω1
ωα

, ω2
ωα

are the roots of the denominator, the
system ‘natural frequencies’.

ω2
1

ωhωα
,

ω2
2

ωhωα
=

[
ωh
ωα

+ ωα

ωh

]
±
{[

ωh
ωα

+ ωα

ωh

]2 − 4
[
1 − x2α

r2α

]} 1
2

2[1 − x2α/r2α] (3.7)

A similar equation may be derived for

ᾱ

L̄
≡ HαL

(

ω/ωα; ωh

ωα
, d/b, xα, rα

)

(3.8)

ω1 and ω2 are again the natural frequencies. HhF , HαF are so-called ‘transfer func-
tions’; they are ‘mechanical’ or ‘structural transfer functions’ as they describe the
motion of the structural system under specified loading. Later on we shall have
occasion to consider ‘aerodynamic transfer functions’ and also ‘aeroelastic transfer
functions’. ω3/ωα is the root of the numerator of HhL (but not in general of HαL

which will vanish at a different frequency),

(
ω3

ωα

)2

= 1

1 + (d/b)xα/r2α
(3.9)

Note that infinite response occurs at the natural frequencies, ω1 and ω2, for both
HhL and HαL . This is not an instability; it is a ‘resonance’ with the infinite response
due to the absence of any damping in the system. Had structural or aerodynamic
damping been included as will be done in later examples, then the transfer functions
would become complex numbers which is a mathematical complication. However,
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the magnitude of the transfer functions would remain finite though large at ω = ω1,
ω2 which is an improvement in the realism of the physical model. With L and M
assumed given, which admittedly is somewhat artificial, the question of instability
does not arise. We will elaborate on this point later when we discuss the notion of
instability in a more precise way.

From sinusoidal motion we may proceed to periodic (but not necessarily sinu-
soidal) motion.

3.2 Periodic Motion

The above analysis can be generalized to any periodic motion by expanding the
motion into a Fourier (sinusoidal) series. Define:

T0 ≡ basic period

ω0 ≡ 2π/T0, fundamental frequency

Then a periodic force, L(t), may be written as

L(t) =
∞∑

n=−∞
Lne

+inω0t (3.10)

where

Ln = 1

T0

∫ T0/2

−T0/2
L(t)e−inω0t dt (3.11)

Using (3.10) and (3.6)

h(t) =
∑

n

HhL

(
ω0n

ωα

)

Lne
inω0t (3.12)

From periodic motion we may proceed to arbitrary time dependent motion.

3.3 Arbitrary Motion

By taking the limit as the basic period becomes infinitely long, T0 → ∞, we obtain
results for non-periodic motion.

Define

ω ≡ nω0
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�ω ≡ �nω0
6=ω0 = 2π/T0 frequency increment

L∗(ω) ≡ Ln
�ω

= LnT0
2π force per frequency increment

Then (3.10) becomes

L(t) =
∫ ∞

−∞
L∗(ω)e+iωt dω (3.10)

Equation (3.11) becomes

L∗(ω) = 1

2π

∫ ∞

−∞
L(t)e−iωt dt (3.11)

Equation (3.12) becomes

h(t) =
∫ ∞

−∞
HhL(ω/ωα)L∗(ω)eiωt dω (3.12)

An interesting alternate form of (3.12) can be obtained by substituting (3.11) into
(3.12). Using a dummy time variable, τ , in (3.11) and interchanging order of inte-
gration in (3.12), gives

h(t) =
∫ ∞

−∞
IhL(t − τ )L(τ )dτ (3.13)

where

IhL(t) ≡ 1

2π

∫ ∞

−∞
HhL(ω/ωα)eiωt dω (3.14)

Comparing (3.12) and (3.14), note that IhL is the response to L∗(ω) = 1
2π or from

(3.10) and (3.11), L(t) = δ(t). Hence, I is the response to an impulse force and is
thus called the impulse function.

Equations (3.10)–(3.11) are a pair of Fourier transform relations and (3.13) is a
so-called convolution integral.

Note (3.13) is suitable for treating transient motion; however, a special case of the
Fourier transform is often used for transient motion. This is the Laplace transform.

Laplace transform. Consider

L(τ ) = 0 for τ < 0

also
IhL(t − τ ) = 0 for t − τ < 0

The latter will be true for any physically realizable system since the system cannot
respond before the force is applied.

6 Note �n = 1 since any n is an integer.
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Define
p ≡ iω; thus ω = −i p

and
L† ≡ 2πL∗(−i p)

then (3.10) becomes

L(t) = 1

2πi

∫ i∞

−i∞
L†eptdp

Equation (3.11) becomes

L† =
∫ ∞

0
L(t)e−ptdt (3.15)

Equation (3.13) becomes

h(t) =
∫ t

0
IhL(t − τ )L(τ )dτ

where

IhL(t) = 1

2πi

∫ i∞

−i∞
HhL

(−i p

ωα

)

eptdp

Utilizationof Transform IntegralApproach forArbitraryMotion.There are several
complementary approaches in practice. In one the transfer function, HhL , is first
determined through consideration of simple sinusoidal motion. Then the impulse
function is evaluated from

IhL(t) = 1

2π

∫ ∞

∞
HhL(ω)eiωt dω (3.14)

and the response is obtained from

h(t) =
∫ t

0
IhL(t − τ )L(τ )dτ (3.13)

Alternatively, knowing the transfer function, HhL(ω), the transform of the input force
is determined from

L∗(ω) = 1

2π

∫ ∞

−∞
L(t)eiωt dω (3.11)

and the response is calculated from

h(t) =
∫ ∞

−∞
HhL(ω)L∗(ω)eiωt dω (3.12)
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Both approaches give the same result, of course.
As a simple example we consider the translation of our typical section for Sα ≡ 0,

i.e., the center of mass coincides with the elastic axis or spring attachment point.
This uncouples the rotation from translation and we need only consider

mḧ + Khh = −L (3.1)

We assume a force of the form

L = e−at for t > 0

= 0 for t < 0
(3.16)

From our equation of motion (or (3.6) for Sα = xα = 0) we determine the transfer
function as

HhL(ω) = −1

m[ω2
h − ω2] , ω2

h ≡ Kh/m (3.6)

From (3.14), using the above and evaluating the integral, we have

IhL(t) = 1

mωh
sinωht for t > 0

= 0 for t < 0
(3.17)

From (3.13), using above (3.17) for IhL and given L , we obtain

h(t) = − 1

mωh

{
ωhe−at − ωh cosωht + a sinωht

a2 + ω2
h

}

(3.18)

We can obtain the same result using our alternative method. Calculating L∗ from
(3.11) for our given L , we have

L = 1

2π

1

a + iω

Using above and the previously obtained transfer function in (3.12) we obtain the
response. The result is, of course, the same as that determined before. Note that in
accordance with our assumption of a system initially at rest, h = h = 0 at t = 0.
Examining our solution, (3.18), for large time we see that

h → − 1

mωh

{−ωh cosωht + a sinωht

a2 + ω2
h

}

as t → ∞

This indicates that the system continues to respond even though the force L
approaches zero for large time! This result is quite unrealistic physically and is a
consequence of our ignoring structural damping in our model. Had we included this
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effect in our equation of motion using a conventional analytical damping model7

m[ḧ + 2ζnωh ḣ] + Khh = −L (3.1)

the response would have been

h = 1

mωh

{
ωhe−at + [−ωh cosωht + a sinωht]e−ζhωh t

a2 + ω2
h

}

(3.19)

for small damping, ζh � 1, which is the usual situation. Now h → 0, for t → ∞.
Furthermore, if the force persists for a long time, i.e., a → 0, then

h(t) → − 1

mωh

{
ωh

ω2
h

}

= − 1

Kh

which is the usual static or steady state response to a force of unit amplitude. The
terms which approach zero for a large time due to structural damping are usually
termed the transient part of the solution. If

a � ζhωh

the transient solution dies out rapidly compared to the force and we usually are
interested in the steady state response. If

a 
 ζhωh

the ‘impulsive’ force dies out rapidly and we are normally interested in the transient
response. Frequently the maximum response is of greatest interest. A well known
result is that the peak Dynamic response is approximately twice the static response
if the force persists for a long time and the damping is small. That is, if

ζh � 1

a � ωh

then hmax occurs when (see (3.19))

cos ωnt ∼= −1 or t = π

ωh

sin ωnt ∼= 0

and

7 Meirovicth [4].
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hmax = − 1

mωh

ωh

ω2
h

[1 − (−1)]

= − 2

Kh

The reader may wish to consider other special combinations of the relative sizes of

a force time constant
ωh system natural time constant
ζhωh damping time constant

A great deal of insight into the dynamics of linear systems can be gained thereby.
The question arises which of the two approaches is to be preferred. The answer

depends upon a number of factors, including the computational efficiency and phys-
ical insight desired. Roughly speaking the second approach, which is essentially a
frequency domain approach, is to be preferred when analytical solutions are to be
attempted or physical insight based on the degree of frequency ‘matching’ or ‘mis-
matching’ of HhL and L∗ is desired. Clearly a larger response will be obtained if the
maxima of H and L∗ occur near the same frequencies, i.e., they are ‘matched’, and
a lesser response will be obtained otherwise, i.e., the maxima are ‘mismatched’. The
first approach, which is essentially a time domain approach, is generally to be pre-
ferred when numerical methods are attempted and quantitative accuracy is of prime
importance.

Other variations on these methods are possible. For example the transfer function,
HhL , and the impulse function, IhL , may be determined experimentally. Also the
impulse function may be determined directly from the equation of motion, bypassing
any consideration of the transfer function. To illustrate this latter remark, consider
our simple example

mḧ + Khh = −L (3.1)

The impulse function is the response for h due to L(t) = δ(t). Hence, it must satisfy

mÏhl + Kh Ihl = −δ(t) (3.20)

Let us integrate the above from t = 0 to ε.

∫ ε

0
[mÏhl + Kh Ihl ]dt = −

∫ ε

0
δ(t)dt

or

mİhl |ε0 + Kh

∫ ε

0
Ihldt = −1

In the limit as ε → 0+, we obtain the ‘initial condition’,

İhl(0
+) = − 1

m
(3.21)
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and also
İhl(0

+) = 0

Hence, solving (3.20) and using the initial velocity condition, (3.21), we obtain

Ihl = − 1

mωh
sinωht for t > 0 (3.17)

which is the same result obtained previously.
Finally, all of these ideas can be generalized to many degrees of freedom. In

particular using the concept of ‘normal modes’ any multi-degree-of-freedom system
can be reduced to a system of uncoupled single-degree-of-freedom systems.8 As will
become clear, when aerodynamic forces are present the concept of normal modes
which decouple the various degrees of freedom is not as easily applied and one must
usually deal with all the degrees of freedom which are of interest simultaneously.

3.4 Random Motion

A randommotion is by definition onewhose response is neither repeatable nor whose
details are of great interest. Hence attention is focused on certain averages, usually the
mean value and also themean square value. Themean value may be treated as a static
loading and response problem and hence we shall concentrate on the mean square
relations which are the simplest characterization of random, dynamic response.

Relationship between mean values. To see the equivalence between mean value
Dynamic response and static response, consider

h(t) =
∫ ∞

−∞
Ihl(t − τ )L(τ )dτ (3.13)

and take the mean of both sides (here a bar above the quantity denotes its mean,
which should not be confused with that symbol’s previous use in our discussion of
sinusoidal motion). By definition

h̄ ≡ lim
1

2T

∫ T

−T
h(t)dt and thus

h̄ = lim
1

2T

∫ T

−T

∫ ∞

−∞
Ihl(t − τ )L(τ )dτdt

Interchanging the order of integration and making a change of variables, the right
hand side becomes

8 Meirovitch [4].
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h̄ =
∫ ∞

−∞
{lim 1

2T

∫ T

−T
L(t − τ )dt}IhL(τ )dτ

= L̄
∫ ∞

−∞
Ihl(τ )dτ

= L̄ Hhl(ω = 0)

= − L̄

Kh

which is just the usual static relationship between h and L . Unfortunately, no such
simple relation exists between the mean square values. Instead all frequency com-
ponents of the transfer function, Hhl , contribute. Because of this it proves useful to
generalize the definition of a square mean.
Relationship between mean square values. Amore general and informative quantity
than the mean square, the correlation function, φ, can be defined as

φLL(τ ) ≡ lim
1

2T

∫ T

−T
L(t)L(t + τ )dt (3.22)

The mean square of L , L̄2, is given by

L̄2 = φLL(τ = 0) (3.23)

As τ → ∞, φLL → 0 if L is truly a random function since L(t) and L(t + τ ) will
be ‘uncorrelated’. Indeed, a useful check on the randomness of L is to examine φ for
large τ . Analogous to (3.22), we may define

φhh(τ ) ≡ lim
1

2T

∫ T

−T
h(t)h(t + τ )dt

φhL(τ ) ≡ lim
1

2T

∫ T

−T
h(t)L(t + τ )dt

(3.24)

φhL is the ‘cross-correlation’ between h and L . φhh and φLL are ‘autocorrelations’.
The Fourier transform of the correlation function is also a quantity of considerable
interest, the ‘power spectra’,

�LL(ω) ≡ 1

π

∫ ∞

−∞
φLL(τ )eiωτdτ (3.25)

(Note that a factor of two difference exists in (3.25) from the usual Fourier transform
definition. This is by tradition.) From (3.25), we have
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φLL(τ ) = 1

2

∫ ∞

−∞
�LL(ω)eiωt dω

=
∫ ∞

0
�LL(ω) cosωτdω

(3.26)

The latter follows since �LL(ω) is a real even function of ω. Note

L̄2 = φLL(0) =
∫ ∞

0
�LL(ω)dω (3.27)

Hence a knowledge of �LL is sufficient to determine the mean square. It turns out
to be most convenient to relate the power spectra of L to that of h and use (3.27) or
its counterpart for h to determine the mean square values.

To relate the power spectra, it is useful to start with a substitution of (3.13) into
the first of (3.24).

φhh(τ ) = lim
1

2T

∫ T

−T

{∫ ∞

−∞
L(τ1)IhL(t − τ1)dτ1

}

×
{∫ ∞

−∞
L(τ2)IhL(t + τ − τ2)dτ2

}

dt

Interchanging order of integrations and using a change of integration variables

t ′ ≡ t − τ1; τ1 = t − t ′

t ′′ ≡ t + τ − τ2; τ2 = t + τ − t ′′

we have

φhh =
∫ ∞

−∞

∫ ∞

−∞
IhL(t

′)IhL(t ′′)φLL(τ + t ′ − t ′′)dt ′dt ′′ (3.28)

Once could determine h̄2 from (3.28)

h̄2 = φhh(τ = 0) =
∫ ∞

−∞

∫ +∞

−∞
IhL(t

′)IhL(t ′′)φLL(t
′ − t ′′)dt ′dt ′′ (3.29)

However we shall proceed by taking the Fourier transform of (3.28).

�hh ≡ 1

π

∫ ∞

−∞
φhh(τ )e−iωt dτ

= 1

π

∫ ∫ ∫
IhL(t

′)IhL(t ′′)φLL(τ + t ′ − t ′′)e−iωt dt ′dt ′′dτ

= 1

π

∫ ∫ ∫
IhL(t

′)e+iωt ′ IhL(t
′′)e−iωt ′′

× φLL(τ + t ′ − t ′′) exp−iω(τ + t ′ − t ′′)dt ′dt ′′dτ
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Defining a new variable
τ ′ ≡ τ + t ′ − t ′′

dτ ′ = dτ

we see that
�hh(ω) = Hhl(ω)Hhl(−ω)�LL(ω) (3.30)

One can also determine that

�hL(ω) = HhL(−ω)�LL(ω)

�hh(ω) = HhL(−ω)�hL(ω)
(3.31)

Equation (3.30) is a powerful and well-known relation.9 The basic procedure is to
determine �LL by analysis or measurement, compute �hh from (3.30) and h̄2 from
an equation analogous to (3.26)

h̄2 =
∫ ∞

0
�hh(ω)dω =

∫ ∞

0
|HhL(ω)|2�LL(ω)dω (3.32)

Let us illustrate the utility of the foregoing discussion by an example.

Example Airfoil response to a gust. Again for simplicity consider translation only.

mḧ + Khh = −L (3.1)

Also for simplicity assume quasi-steady aerodynamics.10

L = qS
∂CL

∂α

[
ḣ

U
+ wG

U

]

(3.33)

wG taken as positive up, is a vertical fluid ‘gust’ velocity, which varies randomly
with time but is assumed here to be uniformly distributed spatially over the airfoil
chord. Various transfer functions may be defined and calculated. For example

h̄

L̄
≡ HhL = −1

m[−ω2 + ω2
h]

, ω2
h ≡ K/m (3.34)

is the structural transfer function11 (motion due to lift) (cf. (3.6))

L̄

h̄
≡ HLh = qS

∂C L

∂α

iω

U
(3.35)

9 Crandall and Mark [5].
10 ḣ

U + ωG
U is an effective angle of attack, α.

11 Here we choose to use a dimensional rather than a dimensionless transfer function.
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is the aerodynamic transfer function (lift due to motion)

L̄

w̄G
≡ HLwG = qS

∂C L

∂α

1

U
(3.36)

is the aerodynamic transfer function12 (lift due to gust velocity field) and

HhwG ≡ h̄

w̄G
= −HLwG[

− 1
HhL

+ HLh

] (3.37)

is the aeroelastic transfer function (motion due to gust velocity field).
The most general of these is the aeroelastic transfer function which may be

expressed in terms of the structural and aerodynamic transfer functions, (3.37). Using
our random force-response relations, we have from (3.32)

h̄2 =
∫ ∞

0
|HhwG |2�wGwG dω

=
∫ ∞

0

[
qS ∂CL

∂α
1
U

]2

[−mω2 + Kh]2 + [qS ∂CL
∂α

ω
U

]2 �WGWGdω

Define an effective damping constant as

ζ ≡ qS ∂CL
∂α

1
U

2
√
mKh

(3.38)

then

h̄2 =
[
qS ∂CL

∂α
1
U

]2

m2

∫ ∞

0

�wGwG dω

[−ω2 + ω2
h]2 + 4ζ2ω2

hω
2

which, for small ζ may be evaluate as13

h̄2 ∼= qS ∂CL
∂α

π

2Kh

�wGwG (ω = ωh)

U
(3.39)

Typically,14

12 We ignore a subtlety here in the interest of brevity. For a ‘frozen gust’, we must take ωG =
ω̄G exp iω(t − x/U∞) in determining this transfer function. See later discussion in Sects. 6, 2 and
3.
13 Crandell and Mark; the essence of the approximation is that for small ζ,�wGwG (ω) ∼=
�wGwG(ωh) and maybe taken outside the integral. See the subsequent discussion of a graphi-
cal analysis.
14 Houbolt, Steiner and Pratt [6]. Also see later discussion in Sect. 6.

http://dx.doi.org/10.1007/978-3-030-74236-2_4
http://dx.doi.org/10.1007/978-3-030-74236-2_4
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Fig. 4 Aeroelastic transfer
function

ωω/ω

H wG
| | 2

h

h

�wGwG (ω) = w̄2
G

LG

πU

1 + 3
(

ωLG
U

)2

[
1 + (ωLG

U

)2]2
(3.40)

as determined from experiment or considerations of the statistical theory of atmo-
spheric turbulence. Here, LG is the ‘scale length of turbulence’; which is not to be
confused with the lift force. Nondimensionalizing and using (3.39) and (3.40), we
obtain

h̄2/b2

w̄2
G/U 2

= qS

2

∂CL
∂α

Khb

ωh LG
U

ωhb
U

⎧
⎪⎨

⎪⎩

1 + 3
(

ωh LG
U

)2

[
1 + (ωh LG

U

)2]2

⎫
⎪⎬

⎪⎭
(3.41)

Note as ωh LG
U → 0 or∞, h̄2/b2 → 0.Recall LG is the characteristic length associated

with the random gustfield. Hence, for very large or very small characteristic lengths
the airfoil is unresponsive to the gust. For what ωh LG

U does the largest response occur?
As an alternative to the above discussion, a correlation function approach could

be taken where one uses the time domain and the aeroelastic impulse function.

IhwG

b
= −qS ∂CL

∂α
1
U e

−ζωh t

mbω2
h

√
1 − ζ2

sin
√
1 − ζ2ωht (3.42)

but we shall not pursue this here. Instead the frequency domain analysis is pursued
further.

It is useful to consider the preceding calculation in graphical form for a moment.
The (square of the) transfer function is plotted in Fig. 4. and the gust power spectral
density in Fig. 5.

We note that the power spectral density is slowly varying with w relative to the
square of the transfer function which peaks sharply near ω = ωh . Hence one may, to
a close approximation, take the power spectral density as a constant with its value
determined at ω = ωh in computing the mean square response. This is a simple
but powerful idea which carries over to many degrees-of-freedom, and hence many
resonances, provided the resonant frequencies of the transfer function are known.
For some aeroelastic systems, locating the resonances may prove difficult.
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Fig. 5 Gust (auto) power
spectral density

wG

ω

wGΦ

There are other difficulties with the approach which should be pointed out. First
of all we note that including the (aerodynamic) damping due to motion is neces-
sary to obtain a physically meanful result.Without it the computed response would
be infinite! Hence, an accurate evaluation of the effective damping for an aeroe-
lastic system is essential in random response studies. It is known that in general
the available aerodynamic theories are less reliable for evaluating the (out-of-phase
with displacement) damping forces than those forces in-phase with displacement.15

Another difficulty may arise if instead of evaluating the mean square displacement
response we instead seek to determine the mean square of acceleration. The latter
quantity is frequently of greater interest from the standpoint of design. The relevant
transfer function is given by

HḧwG
= (iω)2HhwG (3.43)

and the mean square is therefore

ḧ2 =
∫∞
0 ω4

[
qS ∂CL

∂α
1
U

]2
�wGwG dω

[−mω2 + Kn]2 + [qS ∂CL
∂α

ω
U

]2 (3.44)

If we make the same approximation as before that �wGwG is a constant, we are in
difficulty because |HḧwG

|2 does not approach zero as ω → ∞ and hence the inte-
gral formally diverges. This means greater care must be exercised in evaluating the
integral and in particular considering the high frequency behavior of the gust power
spectral density. Also, one may need to use a more elaborate aerodynamic theory.
In the present example we have used a quasi-steady aerodynamic theory which
is reasonably accurate for low frequencies;16 however, to evaluate the acceleration
response it will frequently be necessary to use a full unsteady aerodynamic theory
in order to obtain accurate results a high frequencies in (3.44).
Measurement of power spectra.We briefly digress to consider an important applica-
tion of (3.27) to the experimental determination of power spectra. For definiteness
consider the measurement of gust power spectra. Analogous to (3.27) we have

15 Acum [7].
16 Acum [7].
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w̄2
G =

∫ ∞

0
�wGwG (ω)dω (3.45)

It is assumed that a device is available to measurewG over a useful range of frequen-
cies. The electronic signal from this device is then sent to an electronic ‘filter’. The
latter, in its most ideal form, has a transfer function given by

HFwG = 1 for ωc − �ω

2
ω < ωc + �ω

2
= 0 otherwise

where ωc ≡ ωccenter frequency of the filter

�ω ≡ frequency bandwidth of the filter

(3.46)

Now if we assume that the power spectrum varies slowly with w and we choose
a filter with �ω � ωc, then (3.45) may be approximated by taking �wGwG (ω) ∼=
�wGwG (ωc) and moving it outside the integral. The result is

w̄2
G

∼= �wGwG (ωc)�ω

Solving for the power spectrum,

�wGwG (ωc) = w̄2
G

�ω
(3.47)

By systematically changing the filter center frequency, the power spectrum may be
determined over the desired range of frequency. The frequency bandwidth, �ω, and
the time length overwhich w̄2

G is calculatedmust be chosenwith care. For a discussion
of these matters, the reader may consult Crandall and Mark [5], and references cited
therein.

For a more extensive discussion of random motion of two-dimensional plate-like
structures with many degrees of freedom, see Appendix I, ‘A Primer for Structural
Response to Random Pressure Fluctuations’.

3.5 Flutter—An Introduction to Dynamic Aeroelastic
Instability

The most dramatic physical phenomenon in the field of aeroelasticity is flutter, a
dynamic instability which often leads to catastrophic structural failure. One of the
difficulties in studying this phenomenon is that it is not one but many. Here we
shall introduce one type of flutter using the typical section structural model and
a steady flow aerodynamic model. The latter is a highly simplifying assumption
whose accuracy we shall discuss in more detail later. From (3.1) and with a steady



Dynamic Aeroelasticity 81

aerodynamic model, L = qS ∂CL
∂α

α, My = eL , the equations of motion are

mḧ + Sαα̈ + Khh + qS
∂CL

∂α
α = 0

Iαα̈ + Sαḧ + Kαα − qSe
∂CL

∂α
α = 0

(3.48)

To investigate the stability of this system we assume solutions of the form

h = h̄ept

α = ᾱept
(3.49)

and determine the possible values of p, which are in general complex numbers. If
the real part of any value of p is positive, then the motion diverges exponentially
with time, (cf. (3.49)), and the typical section is unstable.

To determine p, substitute (3.49) into (3.48) and use matrix notation to obtain

[ [mp2 + Kh] Sα p2 + qS ∂CL
∂α

Sα p2 Iα p2 + Kα − qSe ∂CL
∂α

]{
h̄ept

ᾱept

}

=
{
0
0

}

(3.50)

For nontrivial solutions the determinant of coefficients is set to zerowhich determines
p, viz.

Ap4 + Bp2 + C = 0 (3.51)

where
A ≡ mIα − S2α

B ≡ m

[

Kα − qSe
∂CL

∂α

]

+ Kh Iα − SαqS
∂CL

∂α

C ≡ Kh

[

Kα − qSe
∂CL

∂α

]

Solving (3.51)

p2 = −B ± [B2 − 4AC] 1
2

2A
(3.52)

and taking the square root of (3.52) determines p.
The signs of A, B andC determine the nature of the solution. A is always positive

for any distribution of mass; C is positive as long as q is less than its divergence
value, i.e. [

Kα − qSe
∂CL

∂α

]

> 0

which is the only case of interest as far as flutter is concerned. B may be either
positive or negative; re-writing
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B + mKα + Kh Iα − [me + Sα]qSe∂CL

∂α
(3.53)

If [me + Sα] < 0 then B > 0 for all q. Otherwise B < 0 when

Kα + Kh Iα
m

−
[

1 + Sα

me

]

qSe
∂CL

∂α
< 0

Consider in turn two possibilities, B > 0 and B < 0.
B > 0: Then the values of p2 from (3.52) are real and negative provided

B2 − 4AC > 0

and hence the values of p are purely imaginary, representing neutrally stable oscil-
lations. On the other hand if

B2 − 4AC < 0

the values of p2 are complex and hence at least one value of p will have a positive
real part indicating an unstable motion. Thus

B2 − 4AC = 0 (3.54)

gives the boundary between neutrally stable and unstable motion. From (3.54) one
may compute an explicit value of q at which the dynamic stability, ‘flutter’, occurs,
i.e.,

Dq2
F + EqF + F = 0

or qF = −E ± [E2 − 4DF] 1
2

2D
(3.55)

where

D ≡
{

[me + Sα]S ∂CL

∂α

}2

E ≡ {−2[me + Sα][mKα + Kh Iα] + 4[mIα − S2α]eKh}S ∂CL

∂α

F = [mKα + Kh Iα]2 − 4[mIα − S2α]KhKα

In order for flutter to occur at least one of the qF determined by (3.55) must be real
and positive. If both are, the smaller of the two is the more critical; if neither are,
flutter does not occur. Pines17 has studied this example in some detail and derived a
number of interesting results. Perhaps the most important of these is that for

17 Pines [8].
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Sα ≤ 0

i.e., the center of gravity is ahead of the elastic axis, no flutter occurs. Conversely
as Sα increases in a positive sense the dynamic pressure at which flutter occurs qF
is decreased. In practice, mass is often added to a flutter prone structure so as to
decrease Sα and raise qF . Such a structure is said to have been ‘mass balanced’. Now
consider the other possibility for B.
B < 0: B is positive for q ≡ 0 (cf. (3.51) et. seq.) and will only become negative for
sufficiently large q. However, the condition

B2 − 4AC = 0

will occur before
B = 0

since A > 0, C > 0. Hence, to determine when flutter occurs, only B > 0 need be
considered.

In concluding this discussion, let us study the effect of Sα in more detail following
Pines.

Consider the first special case Sα = 0. Then

D =
[

meS
∂CL

∂α

]2

E = 2me{IαKh − mKα}S ∂CL

∂α

F = {mKα − Kh Iα}2

and one may show that
E2 − 4DF = 0

Using this result and also (3.55) and (2.18), it is determined that

qF/qD = 1 − ω2
h/ω

2
α (3.56)

Thus if qd < 0 and ωh/ωα < 1, qF < 0, i.e., no flutter will occur. Conversely if
qD > 0 and ωh/ωα > 1, then qF < 0 and again no flutter will occur.

Now consider the general case, Sα �= 0. Note that D > 0 and F > 0 for all param-
eter values. Thus from (3.55), qF < 0 if E > 0 and no flutter will occur. After some
rearrangement of the expression for E , it is found that (in non-dimensional form)
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Ē ≡ E/

(

2m2 Iαω2
αS

∂CL

∂α

)

=

e

[

−1 + (ωh/ωα)2 − 2
x2cg
r2cg

(ωh/ωα)2

]

− xcg
[
1 + (ωh/ωα)2

]

(3.57)

From this equation, the condition for no flutter, E > 0 or Ē > 0, gives the following
results.

• If xcg = 0, then no flutter occurs for e > 0 and ωh/ωα > 1 or for e < 0 and
ωh/ωα < 1.

• If e = 0, then no flutter occurs for xcg < 0 and any ωh/ωα.
• For small xcg , i.e., if

x2cg/r
2
cg � 1

then Ē > 0 implies

e
[−1 + (ωh/ωα)2]
[1 + (ωh/ωα)2] − xcg > 0

For ωh/ωα small (the usual case), this implies

−e − xcg > 0

while for wh/wα large, this implies

e − xcg > 0

as the conditions for no flutter.

3.6 Quasi-Steady, Aerodynamic Theory

Often it is necessary to determine p by numerical methods as a function of q in order
to evaluate flutter. For example, if one uses the slightly more complex ‘quasi-steady’
aerodynamic theory which includes the effective angle of attack contribution, ḣ/U ,
so that

qS
∂CL

∂α
α

becomes

qS
∂CL

∂α

[

α + ḣ

U

]

= ρ
US

2

∂CL

∂α
[Uα + ḣ]
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Fig. 6 Dimensionless
frequency ω/ωα and
damping pR/ωα of the
aeroelastic modes of the
typical section, estimated
using steady-state
aerodynamic operators and
plotted versus reduced
airspeed U/bωα. System
parameters are xα =
0.2, rα = 0.5, ωh/ωα =
0.5, (2m/πρ∞bS) = 10,
e/b = 0.4, ∂CL

∂α = 2π. Solid
curves − with aerodynamic
damping. Dashed
curves—without
aerodynamic damping 0 .2 .4 .6 .8 1.
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then (3.51) will contain terms proportional to p and p3 and the values of p must be
determined numerically. An example of such a calculation is given in Fig. 30 of B.A.
which is reproduced below as Fig. 6.

Denote
p = pR + iω

ω2
h ≡ Kh/m, ω2

α ≡ Kα/Iα

xα ≡ Sα/mb, r2α ≡ Iα/mb2

b = a reference length

Since the values of p are complex conjugates only half of them are shown. The
solid lines are for the ḣ/U or aerodynamic damping effect included and the dash
lines for it omitted. There are several interesting points to be made.

(1) With aerodynamic damping omitted the typical section model is neutrally stable
until U = UF . For U = UF the bending and torsion frequencies merge and for
U > UF the system is unstable.

(2) With aerodynamic damping included, for small U all values of p are stable and
flutter occurs at sufficiently large U where pR changes sign from negative to
positive. There is a tendency for the frequencies to merge but complete merging
does not occur.

(3) In this example for this approximate aerodynamic theory, the addition of aerody-
namic damping reduces the flutter velocityUF . This last result has been a source
of consternation (and research papers). Whether it occurs in the real physical
problem or whether it is a consequence of our simplified theoretical model is
not known. No experiment has yet been performed where the aerodynamic (or
structural) damping has been systematically varied to verify or refute this result.

http://dx.doi.org/10.1007/978-3-030-74236-2_6
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Finallywementionone further general complicationwhich commonlyoccurs in anal-
ysis. When even more elaborate, fully unsteady aerodynamic theories are employed,
the aerodynamic forces are usually only conveniently known for neutrally stable
motion, i.e.,

p = iω, pR ≡ 0

Hence, indirect or iterative methods are usually required to effect a solution for
U = UF and often no information is obtained for U < UF or U > UF . We shall
return to this issue later.

4 Aerodynamic Forces for Airfoils-An Introduction and
Summary

Having developed the mathematical tools for treating the dynamics of our aeroelastic
system, we now turn to a topic previously deferred, the determination of the aero-
dynamic forces. Usually, we wish to relate the aerodynamic lift and moment to the
motion of the airfoil. In order not to break unduly the continuity of our discussion of
aeroelastic phenomena, we give a brief summary of known results here and defer a
discussion of the aerodynamic theory from first principles until chapter ‘Nonsteady
Aerodynamics of Lifting and Non-lifting Surfaces’.

From aerodynamic theory we know that the motion appears in the aerodynamic
force relation through the ‘downwash’, wa i.e.,

wα ≡ ∂za
∂t

+U∞
∂za
∂x

(4.1)

where za is vertical displacement of airfoil at point x , y at time t . We shall not give
a formal derivation of (4.1) here but shall indicate the physical basis from which
it follows. For an inviscid fluid the boundary condition at a fluid-solid interface,
e.g., at the surface of an airfoil, requires that the fluid velocity component normal
to the surface be equal to the normal velocity of the surface on the instantaneous
position of the surface. (If we have a nearly planar solid surface undergoing small
motions relative to its own dimensionswemay apply the boundary condition on some
average position of the body, say z = 0, rather than on the instantaneous position
of the surface, z = za .) In a coordinate system fixed with respect to the fluid the
boundary condition would read

wa = ∂za
∂t

where wa is the normal fluid velocity component, the so-called ‘downwash’, and ∂za
∂t

is the normal velocity of the body surface. In a coordinate system fixed with respect
to the body there is an additional convection term as given in (4.1). This may be
derived by a formal transformation from fixed fluid to fixed body axes.
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Finally if in addition to the mean flow velocity, U∞, we also have a vertical gust
velocity, wG , then the boundary condition is that the total normal fluid velocity at
the body surface be equal to the normal body velocity, i.e.,

wtotal ≡ wa + wG = ∂za
∂t

+U∞
∂za
∂x

where wa is the additional fluid downwash due to the presence of the airfoil beyond
that given by the prescribed gust downwash wG . The pressure loading on the airfoil
is

p + pG

where p is the pressure due to

wa = −wG(x, t) + ∂za
∂t

+U∞
∂za
∂x

and pG is the prescribed pressure corresponding to the given wG . Note, however,
that pG is continuous through z = 0 and hence gives no net pressure loading on
the airfoil. Thus, only the pressure p due to downwash wa is of interest in most
applications.

For the typical section airfoil example,

za = −h − αx (4.2)

and
wa = −wG − ḣ − α̇x −Uα︸ ︷︷ ︸

α

From the first and last terms we note that wG
U∞ is in some sense equivalent to an angle

of attack, although it is an angle of attack which varies with position along the airfoil,
wG = wG(x, t)!

Using the concept of aerodynamic impulse functions, we may now relate lift and
moment to h, α and wG . For simplicity let us neglect wG for the present.

The aerodynamic force and moment can be written

L(t) ∼
∫ ∞

−∞
ILḣ(t − τ )[ḣ(τ ) +U∞α(τ )]dτ

+
∫ ∞

−∞
ILα̇(t − τ )α̇(τ )dτ

(4.3)

Equation (4.3) is the aerodynamic analog to (3.13). Note that ḣ +U∞α always
appear in the same combination in wa from (4.2). It is conventional to express (4.3)
in nondimensional form. Thus,
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L

qb
=
∫ ∞

−∞
ILḣ(s − σ)

[
d h

b (σ)

dσ
+ α(σ)

]

dσ

+
∫ ∞

−∞
ILα̇(s − σ)

[
dα(σ)

dσ

]

dσ

(4.4)

and
My

qb2
=
∫ ∞

−∞
IMḣ(s − σ)

[
d h

b (σ)

dσ
+ α(σ)

]

dσ

+
∫ ∞

−∞
IMα̇(s − σ)

[
dα(σ)

dσ

]

dσ

where

s ≡ tU∞
b

, σ ≡ τU∞
b

For the typical section, the ‘aerodynamic impulse functions’, IL|doth , etc., depend
also upon Mach number. More generally, for a wing they vary with wing platform
geometry as well, e.g., aspect ratio.

Equation (4.4)may be used to develop relations for sinusoidalmotion by reversing
the mathematical process which led to (3.13). Taking the Fourier transform of (4.4),

L̄(k)

qb
≡
∫ ∞

−∞
L(s)

qb
e−iksds =

∫ ∞

−∞

∫ ∞

−∞
ILḣ(s − σ)

[
d h

b

dσ
+ α

]

e−iksdσds + · · ·
(4.5)

where the reduced frequency is given by

k ≡ ωb

U∞

Defining
γ ≡ s − σ, dγ = ds

L̄(k)

qb
=
∫ ∞

−∞

∫ ∞

−∞
ILḣ(γ)

[
d h

b

dσ
+ α

]

e−ikγeikσdσ dγ + · · ·

= HLḣ(k)

[

ik
h̄

b
+ ᾱ

]

+ · · ·
(4.6)

where
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HLḣ(k) ≡
∫ ∞

−∞
ILḣ(γ)e−ikγdγ

h̄

b
≡
∫ ∞

−∞
h(σ)

b
e−ikσdσ

ᾱ ≡
∫ ∞

−∞
α(σ)e−ikσdσ

HLḣ etc., are ‘aerodynamic transfer functions’. From (4.4), (4.6) we may write

L̄

qb
= HLḣ

[

ik
h̄

b
+ ᾱ

]

+ HLα̇ikᾱ

M̄y

qb2
= HMḣ

[

ik
h̄

b
+ ᾱ

]

+ HMα̇ikᾱ

(4.7)

Remember that ‘transfer functions’, aerodynamic or otherwise, may be determined
from a consideration of sinusoidal motion only. Also note that (4.2), (4.3) and (4.7)
are written for pitching about an axis x = 0. That is, the origin of the coordinate
system is taken as the pitch axis. By convention, in aerodynamic analysis the origin
of the coordinate system is usually taken at mid-chord. Hence

za = −h − α(x − xe.a.) (4.2)

wa = −ḣ − α̇(x − xe.a.) −U∞α

= (−ḣ −U∞α) − α̇(x − xe.a.)

= (ḣ −Uαα + α̇xe.a.) − α̇x

where
xe.a. = distance form mid-chord to e.a.

Equation (4.4) and (4.7) should be modified accordingly, i.e.

d h
b

dσ
+ α

is replaced by
d h

b

dσ
+ α − α̇a where a ≡ xe.a.

b

In the following table we summarize the state-of-the-art for the aerodynamic
theories normally used in industrial practice in terms of Mach number range and
geometry. All of these assume inviscid, small perturbation potential flow models.
The transonic range, M ≈ 1, is a currently active area of research.
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4.1 Aerodynamic Theories Available

Mach number Two dimensional Geometry
three dimensional

M � 1 Available Rather elaborate numerical methods
available for determining transfer
functions

M ≈ 1 Available but of Rather elaborate numerical methods
limited utility available for determining (linear,
because of inherent inviscid) transfer functions; nonlinear
three dimensionality and/or viscous effects may be important,
of flow however.

M 
 1 Available and Available and simple because of weak
simple because of three dimensional effects.
weak memory effect.

The results for high speed (M 
 1) flow are particularly simple. In the limit of
large Mach number the (perturbation) pressure loading on an airfoil is given by

p = ρ
U 2∞
M

[
∂za
∂t +U∞ ∂za

∂x

U∞

]

or

p = ρa∞
[
∂za
∂t

+U∞
∂za
∂x

]

This is a local, zero memory relation in that the pressure at position x , y at time t
depends only on the motion at the same position and time and does not depend upon
the motion at other positions (local effect) or at previous times (zero memory effect).
This is sometimes referred to as aerodynamic ‘piston theory’18 since the pressure is
that on a piston in a tube with velocity

wa = ∂za
∂t

+U∞
∂za
∂x

This pressure-velocity relation has been widely used in recent years in aeroelasticity
and is also well known in one-dimensional plane wave acoustic theory. Impulse and
transfer functions are readily derivable using aerodynamic ‘piston theory’.

The ‘aerodynamic impulse functions’ and ‘aerodynamic transfer functions’ for
two-dimensional, incompressible flow, although not as simple as those for M 
 1,

18 Ashley, and Zartarian [9]. Also see chapter ‘Nonsteady Aerodynamics of Lifting and Non-lifting
Surfaces’.
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are especially well-known.19 They were the first available historically and provided
a major impetus to aeroelastic investigations. The forms normally employed are
somewhat different from the notation of (4.4) and (4.7). For example, the lift due to
transient motion is normally written

L

qb
= 2π

[
d2 h

b

ds2
+ dα

ds
− a

d2α

ds2

]

+ 4π
{
φ(0)

[
d h

b

ds
+ α +

(
1

2
− a

)
dα

ds

]

+
∫ s

0

(
d h

b

dσ
+ α +

(
1

2
− a

)
dα

dσ

)

φ̇(s − σ)dσ
}

(4.8)

One can put (4.8) into the form of (4.4) where

ILḣ = 2πD + 4πφ̇ + 4πφ(0)δ

ILα̇ = 4π

(
1

2
− a

)

φ̇ + 4π

(
1

2
− a

)

φ(0)δ − 2πaD
(4.9)

Here δ is the delta function and D the doublet function, the latter being the derivative
of a delta function. In practice, one would use (4.8) rather than (4.4) since delta and
doublet functions are not suitable for numerical integration, etc. However, (4.8) and
(4.4) are formally equivalent using (4.9) Note that (4.8) is more amenable to physical
interpretation also. The terms outside the integral involving ḧ and α̈may be identified
as inertial terms, sometimes called ‘virtual mass’ terms. These are usually negligible
compared to the inertial terms of the airfoil itself if the fluid is air.20 The quantity

−
[
d h

b

ds
+ α +

(
1

2
− a

)
dα

ds

]

may be identified as the downwash at the 3
4 chord. Hence, the 3

4 chord has been
given a special place for two-dimensional, incompressible flow. Finally, note that
the ‘aerodynamic impulse functions’, ILh , ILi , can be expressed entirely in terms of
a single function φ, the so-called Wagner function.21 This function is given below in
Fig. 7. A useful approximate formulae is

φ(s) = 1 − 0.165e−0.0455s − 0.335e0.3s (4.10)

19 See chapter ‘Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces’.
20 For light bodies or heavy fluids, e.g., lighter-than-airships or submarines, they may be important.
21 For a clear, concise discussion of transient, two-dimensional, incompressible aerodynamics, see
Sears [10], and the discussion of Sears’ work in BAH, pp. 288–293.
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Fig. 7 Wagner function
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Fig. 8 Kussner function
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For Mach numbers greater than zero, the compressibility of the flow smooths out
the delta and doublet functions of (4.9) and no such simple form as (4.8) exists.
Hence, only for incompressible flow is the form, (4.8), particularly useful. Finally,
we should mention that analogous impulse functions exist for gust loading due to
gust vertical velocity, wG .

LG

qb
=
∮ ∞

−∞
ILG(s − σ)

wG(σ)

U
dσ

MyG

qb2
=
∫ ∞

−∞
IMG(s − σ)

wG(σ)

U
dσ

(4.11)

For incompressible flow
ILG = 4πψ̇

IMG = ILG

(
1

2
+ a

)

where ψ, the Kussner function, can be approximated by (See Fig. 8)

ψ(s) = 1 − 0.5e−0.13s − 0.5e−s (4.12)

TheWagner and Kussner functions have been widely employed for transient aerody-
namic loading of airfoils. Even for compressible, subsonic flow they are frequently
used with empirical corrections for Mach number effects. Relatively simple, exact
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formulae exist for two-dimensional, supersonic flow also.22 However, for subsonic
and/or three-dimensional flow the aerodynamic impulse functions must be deter-
mined by fairly elaborate numerical means. Finally we note that (4.11) may be
written in the frequency domain as

L̄G

qb
= HLG(ω)

w̄G

U

M̄y

qb2
= HMG(ω)

w̄G

U

(4.13)

Equations (4.7) and (4.13) will be useful when we treat the gust problem as a random
process and make use of power spectral techniques. For further discussion of gust
aerodynamics, see Sects. 2 and 3.

4.2 General Approximations

Frequently simplifying assumptions are made with respect to the spatial or temporal
dependence of the aerodynamic forces. Here we discuss three widely used approxi-
mations.

4.2.1 ‘Strip Theory’ Approximation

In this approximation, one employs the known results for two-dimensional flow
(infinite span airfoil) to calculate the aerodynamic forces on a lifting surface of finite
span. The essence of the approximation is to consider each spanwise station as though
it were a portion of an infinite spanwingwith uniform spanwise properties. Therefore
the lift (or, more generally, chordwise pressure distribution) at any spanwise station is
assumed to depend only on the downwash at that station as given by two-dimensional
aerodynamic theory and to be independent of the downwash at any other spanwise
station.

4.2.2 ‘Quasisteady’ Approximation

The strip theory approximation discussed above is unambiguous and its meaning is
generally accepted.Unfortunately, this is not true for the quasi-steady approximation.
Its qualitative meaning is generally accepted, i.e., one ignores the temporal memory
effect in the aerodynamic model and assumes the aerodynamic forces at any time
depend only on the motion of the airfoil at that same time and are independent of

22 See BAH, pp. 367–375, for a traditional approach and chapter ‘Nonsteady Aerodynamics of
Lifting and Non-lifting Surfaces’ for an approach via Laplace and Fourier Transforms.

http://dx.doi.org/10.1007/978-3-030-74236-2_4
http://dx.doi.org/10.1007/978-3-030-74236-2_4
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the motion at earlier times. That is, the history of the motion is neglected as far
as determining aerodynamic forces. For example, the piston theory aerodynamic
approximation is inherently a quasi-steady approximation.

As an example of the ambiguity that can develop in constructing a quasi-steady
approximation, consider the aerodynamic forces for two-dimensional, incompress-
ible flow, e.g., see (4.8). One such approximation which is sometimes used is to
approximate the Wagner function by

φ = 1

and hence
φ(0) = 1, φ̇ = 0

This is clearly a quasi-steady model since the convolution integral in (4.8) may now
be evaluated in terms of the airfoil motion at the present time, s ≡ tU∞

b , and thus the
aerodynamic forces are independent of the history of the airfoil motion.

An alternate quasi-steady approximation which is used on occasion is to first
obtain the aerodynamic forces for steadymotion, e.g., only those termswhich involve
α in (4.8)and then to define an equivalent unsteady angle of attack.

α + dh

dt

1

U∞

to replaceα everywhere in the steady aerodynamic theory. Clearly this second quasi-
steady approximation is different from the first. (An interesting and relatively short
exercise for the reader is to work out and compare these two approximations in detail
using (4.8).) However, both are used in practice and the reader should be careful to
determine exactly what a given author means by ‘quasi-steady approximation’.

The ambiguity could be removed if there were general agreement that what is
meant by the quasi-steady approximation is an expansion in reduced frequency for
sinusoidal airfoil motion. However, even then, there would have to be agreement
as to the number of terms to be retained in the expansion. (Recall that powers of
frequency formally correspond to time derivatives.)

4.3 Slender Body or Slender (Low Aspect Ratio) Wing
Approximation

Another approximation based upon spatial considerations is possible when the lift-
ing surface is of low aspect ratio or one is dealing with a slender body. In such
cases the chordwise spatial rates of change (derivatives) may be neglected com-
pared to spanwise rates of change and hence the chordwise coordinate effectively
becomes a parameter rather than an independent coordinate. This approach is gen-
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erally attributed to R. T. Jones.23 It is useful as an asymptotic check on numerical
methods for slender bodies and low aspect ratio wings. However it is useful for
quantitative predictions for only a modest range of practical lifting surfaces.

A particulary interesting result is available for the external flow about a slender
body when the body has rigid cross-sections and deforms only in the direction, i.e.,

za(x, y, t) = za(x, t)

The lift force per unit chordwise distance is given by24

L = − ρ∞
dS

dx
U

[

U
∂za
∂x

+ ∂za
∂t

]

− ρ∞S

[

U 2 ∂2za
∂x2

+ 2U
∂2za
∂x∂t

+ ∂2za
∂t2

] (4.14)

Equation (4.14) may be more compactly and insightfully written as

L = −ρ∞
[

∂

∂t
+U

∂

∂x

]{

S

[
∂za
∂t

+U
∂za
∂x

]}

(4.14)

For a cylinder of constant, circular cross-section

S = πR2,
dS

dx
= 0

and (4.14) becomes

L = −ρ∞S

[

U 2 ∂2za
∂x2

+ 2U
∂2za
∂x∂t

+ ∂2za
∂z2

]

(4.15)

It is interesting to note that (4.15) is the form of the lift force used by Paidoussis
and other for internal flows. Recall Sect. 5, Eq. (5.2). Dowell and Widnall, among
others, have shown under what circumstances (4.15) is a rational approximation for
external and internal flows.25

5 Solutions to the Aeroelastic Equations of Motion

With the development of the aerodynamic relations, we may now turn to the question
of solving the aeroelastic equations of motion. Substituting (4.4) into (3.1) and (3.2),
these equations become:

23 Jones [11].
24 BAH, p. 418.
25 Dowell and Widnall [12], Widnall and Dowell [13], Dowell [14].

http://dx.doi.org/10.1007/978-3-030-74236-2_2
http://dx.doi.org/10.1007/978-3-030-74236-2_2
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mḧ + Sαα̈ + Khh = −L =
{

−
∫ s

0
ILḣ(s − σ)

[
d h

b

dσ
+ α

]

dσ

−
∫ s

0
ILα̇(s − σ)

dα

dσ
dσ

−
∫ s

0
ILG(s − σ)

wG

U
dσ
}
qb

and
Iαα̈ + Sαḧ + Kαα =My

=
{ ∫ s

0
IMḣ(s − σ)

[
d h

b

dσ
+ α

]

dσ

+
∫ s

0
IMα̇(s − σ)

dα

dσ
dσ

+
∫ s

0
IMG(s − σ)

wG

U
dσ
}
qb2

(5.1)

where

s ≡ tU∞
b

and ILḣ , etc. are nondimensional impulse functions. Equation (5.1) are linear,
differential-integral equations for h andα. Theymay be solved in several ways, all of
which involve a moderate amount of numerical work. Basically, we may distinguish
between those methods which treat the problem in time domain and those which
work in the frequency domain. The possibilities are numerous and we shall discuss
representative examples of solution techniques rather than attempt to be exhaustive.

5.1 Time Domain Solutions

In this day and (computer) age, perhaps the most straightforward way of solving
(5.1) (and similar equations which arise for more complicated aeroelastic systems)
is by numerical time integration using finite differences. Such integration is normally
done on a digital computer. A simplified version of the procedure follows:

Basically, we seek a step by step solution for the time history of the motion. In
particular, given the motion at some time, t , we wish to be able to obtain the motion
at some later time, t + �t . In general �t must be sufficiently small;just how small
we will discuss in a moment. In relating the solution at time, t + �t , to that at time,
t , we use the idea of a Taylor series, i.e.,
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h(t + �t) = h(t) + dh(t)

dt
�t + 1

2

d2h(t)

dt2
(�t)2 + · · ·

α(t + �t) = α(t) + dα(t)

dt
�t + 1

2

d2α(t)

dt2
(�t) + · · ·

(5.2)

If we think of starting the solution at the initial instant, t = 0, we see that normally
h(0), dh(0)/dt , α(0), dα(0)/dt , are given as initial conditions since we are dealing
with (two) second order equations for h and alpha. However, in general, d2h(0)/dt2,
d2α(0)/dt2 and all higher order derivatives are not specified. They can be determined
though from equations of motion themselves, (5.1). Equation (5.1) are two algebraic
equations for d2h/dt2, d2α/dt2, in terms of lower order derivatives. Hence, they
may readily be solved for d2h/dt2, d2α/dt2. Moreover, by differentiating (5.1)
successively the higher order derivatives may also be determined, e.g., d3h/dt3, etc.
Hence, by using the equations of motion themselves the terms in the Taylor Series
may be evaluated, (5.2), and h at t = �t determined. Repeating this procedure, the
time history may be determined at t = 2�t , 3�t , 4�t , etc.

The above is the essence of the procedure. However, there are many variations on
this basic theme and there are almost as many numerical integration schemes as there
are people using them.26 This is perhaps for two reasons: (1) an efficient scheme is
desired (this involves essentially a trade-off between the size of�t and the number of
terms retained in the series, (5.2), or more generally a trade-off between �t and the
complexity of the algorithm relating h(t + �t) to h(t)); (2) some schemes including
the one outlined above, are numerically unstable (i.e., numerical errors grow expo-
nentially) if �t is too large. This has led to a stability theory for difference schemes
to determine the critical �t and also the development of difference schemes which
are inherently stable for all�t . Generally speaking, a simple difference scheme such
as the one described here will be stable if �t is small compared to the shortest natu-
ral period of the system, say one-tenth or so. A popular method which is inherently
stable for all �t is due to Houbolt.27

Finally, analytical solutions or semi-analytical solutions may be obtained under
certain special circumstances given sufficient simplification of the system dynamics
and aerodynamics. These are usually obtained via a Laplace Transform. Since the
Laplace Transform is a special case of the Fourier transform, we defer a discussion
of this topic to the following section on frequency domain solutions.

5.2 Frequency Domain Solutions

An alternative procedure to the time domain approach is to treat the problem in the
frequency domain. This approach is more popular and widely used today than the
time domain approach. Perhaps the most important reason for this is the fact that

26 Hamming [15].
27 Houbolt [16].



98 E. H. Dowell

the aerodynamic theory is much more completely developed for simple harmonic
motion that for arbitrary time dependentmotion. That is, the unsteady aerodynamicist
normally provides HLḣ , for example, rather than ILḣ . Of course, these two quantities
form a Fourier transform pair,

HLḣ(k) =
∫ ∞

−∞
ILḣ(s)e

−iksds

ILḣ(s) = 1

2π

∫ ∞

−∞
HLḣ(k)e

iksdk
(5.3)

where

k ≡ ωb

U
, s ≡ tU

b

and, in principle, given HLḣ one can compute ILḣ(s). However, for the more complex
(and more accurate) aerodynamic theories HLḣ is a highly oscillatory function which
is frequently only known numerically at a relatively small number of frequencies, k.
Hence, although there have been attempts to obtain ILḣ by a numerical integration
of HLḣ over all frequency, they have not been conspicuously successful. Fortunately,
for a determination of the stability characteristics of a system, e.g., flutter speed, one
need only consider the frequency characteristics of the system dynamics, per se, and
may avoid such integrations.

Another reason for the popularity of the frequency domainmethod is the powerful
power spectral description of random loads such as gust loads, landing loads (over
randomly rough surfaces), etc. These require a frequency domain description. Recall
(3.25) and (3.40).

The principal disadvantage of the frequency domain approach is that one performs
two separate calculations; one, to assess the system stability, ‘flutter’, and a second,
to determine the response to external loads such as gusts, etc. This will become
clearer as we discuss the details of the procedures.

Let us now turn to the equations ofmotion, (5.1), and convert them to the frequency
domain by taking the Fourier transform of these equations. The result is

−ω2mh̄ − ω2Sαᾱ + Knh̄ = −L̄

=
{

− HLḣ(k)

[
iωh̄

U
+ ᾱ

]

− HLα̇(k)
iωb

U
ᾱ

− HLG(k)
w̄G

U

}
qb

− ω2 Iαᾱ − ω2Sαb̄ + Kαᾱ = M̄y (5.4)

=
{
HMḣ(k)

[
iωh̄

U
+ ᾱ

]

+ Hmα̇(k)
iωb

U
ᾱ
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+HMG
w̄G

U

}
qb2

where

h̄ ≡
∫ ∞

−∞
h(t)eiωt dt, etc.

Collecting terms and using matrix notation,

[−ω2m + Kh + HLḣ
iω
U qb −ω2Sα + (HLḣ + HLα̇

iωb
U )qb

−ω2Sα − (HMḣ
iω
U )qb2 −ω2 Iα + Kα − (HMḣ + HMα̇

iωb
U )qb2

]

.

{
h̄
ᾱ

}

= qb
w̄G

U

{−HLGHMGb
}

(5.5)

Formally, we may solve for h̄ and ᾱ by matrix inversion. The result will be

h̄
b

w̄G
U

≡ HhG

which is one of the aeroelastic transfer functions to a gust input and

ᾱ
w̄G
U

≡ HαG (5.6)

It is left to the reader to evaluate these transfer functions explicitly from (5.5). Note
these are aeroelastic transfer functions as opposed to the purely mechanical or struc-
tural transfer functions, HhF and HαF , considered previously or the purely aero-
dynamic transfer functions, HLh̄ , etc. That is, HhG include not only the effects of
structural inertia and stiffness, but also the aerodynamic forces due to structural
motion.

With the aeroelastic transfer functions available one may now formally write the
solutions in the frequency domain

h(t)

b
= 1

2π

∫ ∞

−∞
HhG(ω)F

(wG

U

)
e−iωt dω (5.7)

where the Fourier transform of the gust velocity is written as

FwG ≡
∫ ∞

−∞
wG(t)eiωt dt (5.8)

Compare (5.7) with (3.12).
Alternatively, one could write
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h(t)

b
=
∫ ∞

−∞
IhG(t − τ )

wG(t)

U
dτ (5.9)

where

IhG(t) ≡ 1

2π

∫ ∞

−∞
HhG(ω)eiωt dω (5.10)

Compare (5.9) and (5.10) with (3.13) and (3.14). As mentioned in our discussion
of time domain solutions, the integrals over frequency may be difficult to evaluate
because of the oscillatory nature of the aerodynamic forces.

Finally, for random gust velocities one may write

�(h/b)(h/b) = |HhG(ω)|2�(wg/U )(wG/U ) (5.11)

where �(h/b)(h/b), �(wg/U )(wG/U ), are the (auto) power spectra of h
b and wg

U , respec-
tively. Thus

(
h̄

b

)2

=
∫ ∞

−∞
|HhG |2�(wg/U )(wG/U )dω (5.12)

Compare (5.12) with (3.25). Since the transfer function is squared, the integral (5.12)
may be somewhat easier to evaluate than (5.7) or (5.10). The gust velocity power
spectra is generally a smoothly varying function. Equation (5.12) is commonly used
in applications.

To evaluate stability, ‘flutter’, of the system one need not evaluate any of these
integrals over frequency. It suffices to consider the eigenvalues (or poles) of the
transfer function. A pole of the transfer function, ωp, will give rise to an aeroelastic
impulse function of the form

IhG ∼ eiωpt = ei(ωp)Rt e−(ωp)I t

see (5.10). Hence, the system will be stable if the imaginary part, (ωp)I , of all poles
is positive. If any one (or more) pole has a negative imaginary part, the system is
unstable, i.e., it flutters. The frequency of oscillation is (ωp)R , the real part of the
pole. Note that the poles are also the eigenvalues of the determinant of coefficients
of h̄ and ᾱ in (5.5).

Having developed the mathematical techniques for treating dynamic aeroelastic
problems wewill now turn to a discussion of results and some of the practical aspects
of such calculations.
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6 Representative Results and Computational
Considerations

We will confine ourselves to two important types of motion, ‘flutter’ and ‘gust
response’.

6.1 Time Domain

If we give the typical section (or any aeroelastic system) an initial disturbance due
to an impulsive force, the resultant motion may take one of two possible forms as
shown in Figs. 9 and 10. ‘Flutter’ is the more interesting of these two motions, since,
if it is present, it will normally lead to catastrophic structural failure which will result
in the loss of the flight vehicle. All flight vehicles are carefully analyzed for flutter
and frequently the structure is stiffened to prevent flutter inside the flight envelope
of the vehicle.

Even if flutter does not occur, however, other motions in response to continuous
external forces may be of concern with respect to possible structural failure. An
important example is the gust response of the flight vehicle. Consider a vertical gust
velocity time history as shown in Fig. 11. The resulting flight vehicle motion will
have the form shown in Fig. 12. Note that the time history of the response has a
certain well defined average period or frequency with modulated, randomly varying
amplitude. The more random input has been ‘filtered’ by the aeroelastic transfer
function and only that portion of the gust velocity signal which has frequencies near
the natural frequencies of the flight vehicle will be identifiable in the response. This
characteristic is perhaps more readily seen in the frequency domain than in the time
domain.

Fig. 9 Time history of
unstable motion or “flutter”

h

U > U F

T f
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Fig. 10 Time history of
stable motion

T

h(t)
U < U F

t

Fig. 11 Time history of gust
velocity

t

wG
U

Fig. 12 Time history of
motion due to gust velocity

h(t)

t

6.2 Frequency Domain

To assess flutter, we need only examine the poles of the transfer function. This is
similar to a ‘root locus’ plot.28 Typically, the real,wR , and imaginary,wI , parts of the
complex frequency are plotted versus flight speed. For the typical section there will
be two principal poles corresponding to two degrees of freedom and at small flight
speed or fluid velocity, these will approach the natural frequencies of the mechanical
or structural system.See Fig. 13. Flutter is identified by the lowest airspeed for which
one of thewI becomes negative. Note the coming together or ‘merging’ of the wR of
the two poles which is typical of some types of flutter . There are many variations on
the above plot in practice but we shall defer a more complete discussion until later.

28 Savant [18].
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Fig. 13 Real and imaginary
components of frequency
versus air speed
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Fig. 14 Gust power spectra

wG

ω

wGΦ

Next, let us turn to the gust problem.A typical gust spectrumwould be as in Fig. 14.
The transfer function (at some flight speed) would be as shown in Fig. 15. Thus, the
resultant response spectrum would appear as in Fig. 16. As U approaches UF , the
resonant peaks of |HhG |2 and �hh would approach each other for the system whose
poleswere sketchedpreviously. ForU = UF the twopeakswould essentially collapse
into one and the amplitude becomes infinite. For U > UF the amplitude predicted
by the analytical model would become finite again for the power spectral approach
and this physically unrealistic result is a possible disadvantage of the method.
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Fig. 15 Transfer function

Hh G( ω)| 2
|

ω

Fig. 16 Power spectra of
motion

ω

Φhh

=2πf

6.3 Flutter and Gust Response Classification Including
Parameter Trends

Here we shall study some of the important parameters which affect flutter and gust
response of the typical action as well as more complex flight vehicles.

6.3.1 Flutter

If one nondimensionalizes the typical section equations of motion, one finds that
the motion can be expressed formally as

h

b
= F1

(

ωαt; Sα

mb
,

Iα
mb2

,
m

ρ(2b)2
,
e

b
,
ωh

ωα
, M,

U

bωα

)

α = F2(wαt . . .)

(6.1)

where the functions F1, F2, symbolize the results of a calculated solution using one
of the several methods discussed earlier.

The choice of nondimensional parameters is not unique but a matter of conve-
nience. Some authors prefer a nondimensional dynamic pressure, or ‘aeroelastic
stiffness number’

λ ≡ 1

μk2α
= 4ρU 2

mω2
α

, (aeroelastic stiffness)



Dynamic Aeroelasticity 105

to the use of a nondimensional velocity, U/bωα.
The following short-hand notation will be employed:

ωαt nondimensional time

xα ≡ Sα

mb
static unbalance

r2α ≡ Iα
mb2

radius of gyration (squared)

μ ≡ m

ρ(2b)2
mass ratio

a ≡ e

b
location of elastic axis measured from aerodynamic center

or mid-chord
ωh

ωα
frequency ration

M Mach number

kα = ωαb

U
inverse of refuced velocity

Time is an independent variable which we do not control; however, in some sense
we can control the parameters, xα, rα, etc., by the design of our airfoil and choice
of where and how we fly it. For some combination of parameters the airfoil will be
dynamically unstable, i.e., it will ‘flutter’.

An alternative parametric representation would be to assume sinusoidal motion

h = h̄eiωt

α = ᾱeiωt

and determine the eigenvalues, ω. Formally, recalling ω = ωR + iωI ,

ωR

ωα
= GR

(

xα, rα,μ, a,
ωh

ωα
, M,

U

bωα

)

ωI

ωα
= GI

(

xα, rα,μ, a,
ωh

ωα
, M,

U

bωα

) (6.2)

If for some combination of parameters, ωI < 0, the system flutters.
Several types of flutter are possible. Perhaps these aremost easily distinguished on

the basis of the eigenvalues,ωR/ωα,ωI/ωα and their variation with airspeed,U/bωα.
Examples are shown below of the several possibilities with brief discussions of each.

In one type of flutter (called coupled mode or bending-torsion flutter) the distin-
guishing feature is the coming together of two (or more) frequencies, ωR , near the
flutter condition, ωI → 0 and U → UF . See Fig. 17. For ‘Coalescense’ or Merging
Frequency’ Flutter U > UF one of ωI becomes large and positive (stable pole) and
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Fig. 17 Real and imaginary
components of frequency
versus air speed
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the other which gives rise to flutter becomes large and negative (unstable pole) while
the corresponding ωR remain nearly the same. Although one usually speaks of the
torsion mode as being unstable and the bending mode stable, the airfoil normally is
undergoing a flutter oscillation composed of important contributions of both h and
α. For this type of flutter the out-of-phase or damping forces of the structure or fluid
are not qualitatively important. Often one may neglect structural damping entirely
in the model and use a quasi-steady or even a quasi-static aerodynamic assumption.
This simplifies the analysis and, perhaps more importantly, leads to generally accu-
rate and reliable results based on theoretical calculations.

‘Single-Degree-of-Freedom’ Flutter
In another type of flutter, the distinguishing feature is the virtual independence of the
frequencies,ωR , with respect to variations in airspeed,U/bωα. See Fig. 18.Moreover
the change in the true damping, ωI , with airspeed is also moderate. However, above
some airspeed one of the modes (usually torsion) which has been slightly positively
damped becomes slightly negatively damped leading to flutter. This type of flutter
is very sensitive to structural and aerodynamic out-of phase or damping forces.
Since these forces are less well described by theory than the in-phase forces, the
corresponding flutter analysis generally gives less reliable results. One simplification
for this type of flutter is the fact that the flutter mode is virtually the same as one of
the system natural modes at zero airspeed and thus the flutter mode and frequency
(though not flutter speed!) are predicted rather accurately by theory. Airfoil blades
in turbomachinery and bridges in a wind often encounter this type of flutter.

There is yet another one-degree-of-freedom type of flutter, but of a very special
type. The flutter frequency is zero and hence this represents the ‘Divergence’ or
‘Zero Frequency’ Flutter.
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Fig. 18 Real and imaginary
components of frequency
versus air speed
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Fig. 19 Real and imaginary
components of frequency
versus air speed
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Static instability which we have previously analyzed in our discussion of static
aeroelasticity under the name of ‘divergence’. See Fig. 19. Because it is a static type
of instability, out-of-phase forces are again unimportant and the theory is generally
reliable.

We note that in all of the above we have considered only positive ωR even though
there are negative ωR as well and these are physically meaningful. There are at
least two reasons why this practice is usually followed. For those models where the
aerodynamic transfer functions can be (approximately) expressed as a polynomial
in p ≡ iω, the negative ωR plane is (nearly) the mirror image of the positive ωR

plane and the ωI are identical, i.e., all poles are complex conjugates in p. Secondly,
some of the structural damping models employed in flutter analysis are only valid for
ωR < 0; hence, the ωR < 0 in such cases cannot be interpreted in a physically valid
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way. However, there are some types of travelling wave flutter in planes and shells for
which a consideration of negative ωR is essential. In such cases a change in sign of
ωR represents a change in direction of a travelling wave.

Flutter Calculations in Practice

At this point it should be emphasized that, in practice, one or another of several
indirect methods is often used to compute the flutter velocity, e.g., the so called
‘V − g method’. In this approach structural damping is introduced by multiplying
the structural frequencies squared

ω2
h,ω

2
α

by 1 + ig where g is a structural coefficient and pure sinusoidal motion is assumed,
i.e., ω = ωR with ωI ≡ 0. For a given U , the g is that required to sustain pure
sinusoidal motion for each aeroelastic mode. The computational advantage of this
approach is that the aerodynamic forces only need be determined for real frequen-
cies. The disadvantage is the loss of physical insight. For example, if a system (with
no structural damping ) is stable at a given airspeed, U , all the values of g so deter-
mined will be negative, but these values of g cannot be interpreted directly in terms
of ωI . Moreover, for a given system with some prescribed damping, only at one
airspeed U = UF (where ω = ωR and ωI ≡ 0) will the mathematical solution be
physically meaningful. The limitations of the ‘V − g method’ are fully appreciated
by experienced practitioners and it is a measure of the difficulty of determining the
aerodynamic forces for other than pure sinusoidal motion, that this method remains
very popular. Here we digress from our main discussion to consider this and related
methods in some detail.

For sinusoidal motion
h = h̄eiωt

α = ᾱeiωt

L = L̄eiωt

My = M̄ye
iωt

The aerodynamic forces (due to motion only) can be expressed as

L̄ = 2ρ∞b2ω2(2b)

{

[L1 + i L2] h̄
b

+ [L3 + i L4]ᾱ
}

M̄y = −2ρ∞b3ω2(2b)

{

[M1 + iM2] h̄
b

+ [M3 + iM4]ᾱ
} (6.3)

This form of aerodynamic forces is somewhat different from that previously used
in this text and is only one of several (equivalent) alternative forms employed in the
literature. Here L1, L2, L3, L4 are (nondimensional) real aerodynamic coefficients
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which are functions of reduced frequency and Mach number. L1, L2, L3, L4 are the
forms in which the coefficients are generally tabulated for supersonic flow.29

Using the above aerodynamic forms for L̄ and M̄y in (74) and setting the determi-
nant of coefficients of h̄ and ᾱ to zero to determine nontrivial solutions, one obtains

�(ω) ≡
{

m

2ρ∞b(2b)

[

1 +
(ωα

iω

)2 (ωh

ωα

)2
]

− [L1 + i L2]
}

×
{

m

2ρ∞b(2b)
r2α

[

1 +
(ωα

iω

)2]− [M3 + iM4]
}

−
{

mxα

2ρ∞b(2b)
− [L3 + i L4]

}{
mxα

2ρ∞b(2b)
− [M1 + iM2]

}

= 0

(6.4)

Because L1, L2, etc. are complicated, transcendental functions of k (andM) which
are usually only known for real values of k (and hence real values of ω), often one
does not attempt to determine from (6.4) the complex eigenvalue, ω = ωR + iωI .
Instead one seeks to determine the conditions of neutral stability when w is purely
real. Several alternative procedures are passible; two are described below.

In the first the following parameters are chosen.

ωh

ωα
, rα, xα, M and (a real value of)k

Equation (6.4) is then a complex equation whose real and imaginary parts may be
used independently to determine the two (real) unknowns

(
ω

ωα

)2

and
m

2ρ∞bS

From the imaginary part of (6.4), which is a linear equation in these two unknowns,
one may solve for (ω/ωα)2 in terms of m/2ρ∞bS. Substituting this result into the
real part of (6.4) one obtains a quadratic equation in m/2ρ∞b2 which may be solved
in the usual manner. Of course, only real positive values of m/2ρ∞bS are meaning-
ful and if negative or complex values are obtained these are rejected. By choosing
various values of the parameters one may determine under what physically meaning-
ful conditions flutter (neutrally stable oscillations) may occur. This procedure is not
easily extendable to more than two degrees of freedom and it is more readily applied
for determining parameter trends than the flutter boundary of a specific structure.
Hence, a different method which is described below is frequently used.

This method has the advantage of computational efficiency, though from a phys-
ical point of view it is somewhat artificial. Structural damping is introduced as an
additional parameter by multiplying ω2

α and ω2
h by 1 + ig where g is the structural

damping coefficient. The following parameters are selected ωh/ωα, rα, xα, M , (a real

29 Garrick [19].



110 E. H. Dowell

Fig. 20 Structural damping
and frequency required for
neutrally stable motion
versus air speed
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value) of k, andm/2ρ∞bS. Equation (6.4) is then identified as a complex polynomial
in the complex unknown

(ωα

ω

)2
(1 + ig)

Efficient numerical algorithms have been devised for determining the roots of such
polynomials. A complex root determines

ωα

ω
and g

From ωα/ω and the previously selected value of k ≡ ωb/U∞ one may compute

ωαb

U∞
= ωα

ω
k

One may then plot g versus U∞/bωα.30 A typical result is shown in Fig. 20 for two
roots (two degrees of freedom). g is the value of structural damping required for
neutral stability. If the actual structural damping is gAV AI L ABLE then flutter occurs
when (see Fig. 20)

g = gAV AI L ABLE

It is normally assumed in this method that for g < gAV AI L ABLE and U < UF no
flutter will occur. Sometimes more complicated velocity-damping or V − g curves
are obtained, however. See Fig. 21. Given the uncertainty as to what gAV AI L ABLE

may be for a real physical system, it may then be prudent to define the flutter speed
as the minimum value of U∞/bωα for any g > 0. Here the physical interpretation
of the result becomes more difficult, particularly when one recalls that the factor
1 + ig is only an approximate representation of damping in a structure. Despite this

30 (For each complex root of the polynomial.)
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Fig. 21 Structural damping
required for flutter versus air
speed
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qualification, the V − g method remains a very popular approach to flutter analysis
and is usually only abandoned or improved upon when the physical interpretation of
the result becomes questionable.

One alternative to the V − g method is the so-called p − k method.31 In this
approach time dependence of the form h, α ∼ ept is assumed where p = σ + iω. In
the aerodynamic termsonly ak ≡ ωb/U isassumed. The eigenvalues p are computed
and the new ω used to compute a new k and the aerodynamic terms re-evaluated.
The iteration continues until the process converges. For small σ, i.e., |σ| � |ω|, the
σ so computed may be interpreted as true damping of the system (Fig. 22).

Nonlinear Flutter Behavior

There are two other types of flutter which are of importance, ‘transonic buzz’ and
‘stall flutter’. Both of these involve significant aerodynamic nonlinearities and are,
therefore, not describable by our previousmodels. Indeed, both are poorly understood
theoretically compared to classic flutter and recourse to experiment and/or empirical
rules-of-thumb is often made. Recent advances in numerical solution of the nonlin-
ear equations of fluid mechanics (computational fluid dynamics) have provided an
improved methodology for modeling these types of flutter. See chapters ‘Modeling
of Fluid-Structure Interaction’ and ‘Nonlinear Aeroelasticity’.

Typically an oscillating control surface gives rise to an oscillating shock which
produces an oscillating pressure fieldwhich gives rise to an oscillating control surface
which gives rise to an oscillating shock and so on and so forth (Fig. 23).

31 Hassig [20].
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Fig. 23 Schmatic of
separated flow geometry

SEPARATED  FLOW

‘ Stall’  flutter

The airfoil profile shape is known to be an important parameter and this fact
plus the demonstrated importance of the shock means that any aerodynamic theory
which hopes to successfully predict this type of flutter must accurately account for
the nonuniform mean steady flow over the airfoil and its effect on the small dynamic
motions which are superimposed due to control surface and shock oscillation. An
early and insightful theoretical model is that of Eckhaus; also see the discussion
by Landahl. Lambourne has given a valuable summary of the early experimental
and theoretical evidence.32 See chapters ‘Modeling of Fluid-Structure Interaction’
and ‘Nonlinear Aeroelasticity’ for the most recent literature on this topic. An airfoil
oscillating through large angles of attack will create a time lag in the aerodynamic
moment which may give rise to negative aerodynamic damping in pitch and, hence,
flutter, even though for small angles of attack the aerodynamic damping would be
positive. This is associated with separation of the flow, an effect of fluid viscosity
Compressor, turbine andhelicopter blades are particularly prone to this type of flutter,
since they routinely operate through large ranges of angle of attack. Chapter ‘Stall
Flutter’ discusses this type of flutter in some detail. Also see chapters ‘Modeling of
Fluid-Structure Interaction’ and ‘Nonlinear Aeroelasticity’.

Parameter Trends for Flutter

Coalescence flutter is perhaps most common for airfoils under conventional flow
conditions (no shock oscillation and no stall). It is certainly the best understood.
Hence, for this type of flutter, let us consider the the variation of (nondimensional)
flutter velocity with other important parameters.

Static Unbalance. xα:
If xα < 0 (i.e., c.g. is ahead of e.a.) frequently no flutter occurs. If xα < 0 the surface
is said to be ‘mass balanced’.

Frequency Ratio. ωh
ωα
:

Not unexpectedly, for coalescence flutter UF/bωα is a minimum when ωh/ωα � 1.
That is, ifωh andωα are closer in value, then the aeroelastic frequencies will coalesce
more readily and at a lower flow velocity (Fig. 24).

32 Eckhaus [21], Landahl [22], Lambourne [23].
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Fig. 24 Flutter airspeed
versus frequency ratio

ωαbUF/

ω h /ωα 
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Mach Number. M :
The aerodynamic pressure on an airfoil is normally greatest nearMach number equal
to one33 and hence, the flutter speed (or dynamic pressure) tends to be a minimum
there. For M 
 1 the aerodynamic piston theory predicts that the aerodynamic pres-
sure, p, varies as

p ∼ ρ
U 2

M

Hence, UF ∼ M
1
2 for M 
 1 and constant μ. Also

λF ∼ (ρU 2)F ∼ M

Compatibility Conditions:
Note that for flight at constant altitude of a specific aircraft ρ (hence, μ) and a∞
(speed of sound) are fixed. Since

U = Ma∞

U/bωα and M are not independent, but are related by

(
U

bωα

)

= M

(
a∞
bωα

)

Thus, a compatibility relation must also be satisfied for physically meaningful in a
flight flutter conditions as indicated by dashed line in Fig. 25. By repeating the flutter
calculation for various altitudes (various ρ, a∞ and hence various μ and a∞/bωα),
one may obtain a plot of flutter Mach number versus altitude as given in Fig. 26.

33 See chapter ‘Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces’.
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Fig. 25 Flutter airspeed
versus mach number
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There is a counterpart to this compatibility condition for testing of aeroelastic
models in a compressible wind tunnel.

Mass ratio. μ:
For large μ the results are essentially those of a constant flutter dynamic pressure;
for small μ they are often those of constant flutter velocity as indicated by the dashed
line in Fig. 27. However, for M ≡ 0 and two-dimensional airfoils theory predicts
UF → ∞ for some small but finite μ (solid line). This is contradicted by the experi-
mental evidence and remains a source of some controversy in the literature.34 Crisp35

has suggested that the rigid airfoil chord assumption is untenable for small μ and that
by including elastic chordwise bending the discrepancy between theory and experi-
ment may be resolved. See Fig. 27.

Flutter Prevention

After one has ascertained that there is a flutter problem then there is more than a
casual curiosity as to how to fix it, i.e., increase UF , without adding any weight, of
course. There is no universal solution, but frequently one or more of the following
are tried.

34 Abramson [24]. Viscous fluid effects are cited as the source of the difficulty.
35 Crisp [25].
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Fig. 27 Flutter air speed
versus mass ratio

ωαbU
F/

μ

λ =1/μ(U
F

b/ ωα)2
F

= CONSTANT  FOR 
LARGE μ

.

(1) add mass or redistribute mass so that xα < 0, ‘mass balance’
(2) increase torsional stiffness, i.e., increase ωα

(3) increase (or decrease) ωh
ωα

if it is near one (for fixed ωα)
(4) add damping to the structure, particularly for single-degree-of-freedom flutter

or stall flutter
(5) require the aircraft to be flown below its critical Mach number (normally used

as a temporary expedient while one of the above items is studied)

More Complex Structural Models

The above discussion was in the context of the typical section. For more complex
aerospace vehicles, additional degrees of freedom, equations of motion and param-
eters will appear. Basically, these will have the form of additional frequency ratios
(stiffness distribution) and inertial constants (mass distribution). Hence, for example,
we might have ωh

ωα
replaced by ω1

ωα
, ω2

ωα
, ω3

ωα
, etc. and xα, rα replaced by

∫
ρx dx,

∫
ρx2dx,

∫
ρx3dx, etc.

∫
ρxy dx dy,

∫
ρy dy,

∫
ρy2dy, etc.

We will turn to such issues in Sect. 7.

6.4 Gust Response

To the parameters for flutter we add

wG

U
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Fig. 28 Sharp edged gust

w

z’, z

U

x

x’
G

for gust response.36 SincewG is a time history (deterministic or random) we actually
add a functional as a parameter rather than a constant. Hence, various gust responses
will be obtained depending on the nature of the assumed gust time history.

The several approaches to gust response analysis can be categorized by the type
of atmospheric turbulence model adopted. The simplest of these is the sharp edged
gust; a somewhat more elaborate model is the 1-COSINE gust. Both of these are
deterministic; a third gust model is now increasingly used where the gust velocity
field is treated as a random process.

Discrete Deterministic Gust:

An example of a useful gust time history is a sharp edged gust,

wG = 50ft/s for x < Ut

or t >
x

U

}
, x ′ < 0

= 0 for x > Ut,x ′ > 0

x ′, t ′ fixed in atmosphere

x, t fixed with aircraft

(Galilean transformation) x ′ = xUt (if x ′ = x = 0 at t = t ′ = 0)

t ′ = t

In this model wG is constant with respect to space and time in the atmospheric fixed
coordinate system for all x ′ < 0. We shall deal with the aerodynamic consequences
of this property in the next chapter (Fig. 28).

A somewhat more realistic gust model allows for the spatial scale of the gust
field. In this model wG is independent of time, t ′, but varies with distance, x ′, in
the atmospheric fixed coordinate system, x ′, t ′. For obvious reasons it is called a
1-COSINE gust i.e.,

36 Houbolt, Steiner and Pratt [6].
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Fig. 29 1-COSINE gust

w

x’
G

z

x G

max

Fig. 30 Response to
deterministic gust

d 2 h-
b

ds2

d 2 h-
b

ds2

h
b-

2

ds2
d

max

S=tU   /b

S

xG / b

FOR SOME Gx / b

MAXMUM OF
MAXIMA; MOST
CRITICAL DESIGN
CONDITION

SHARP EDGE GUST

1-COSINE GUST

MAXIMUM

MAXIMUM

wG = wGmax

2

[

1 − cos
2πx ′

xG

]

for t <
xG
U

, x ′ < 0

= 0 for t >
xG
U

, x ′ > 0

Recall
x ′ = x −U∞t

xG is normally varied to obtain the most critical design condition (largest response
to the gust excitation) and typically wGmax � 50ft/sec. See sketch below. Schematic
results for flight vehicle response to these deterministic gust models are shown below
(Figs. 29 and 30).
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Random Gust:
In a random gust field, we still adopt the assumption that wG , though now a random
variable, varies only with x ′ and is independent of t ′. In the theory of isotropic
turbulence this is usually referred to as Taylor’s hypothesis37 or the ‘frozen gust’
assumption. Thus

wG(x ′) = wG(x −U∞t)

Since x and t only appear in the above combination, we may consider the alternative
functional form

wG = wG

(

t − x

U∞

)

The correlation function may then be defined as

φwGwG (τ ) ≡ lim
1

2T

∫ ∞

−∞
wG

(

t − x

U∞

)

wG

(

t − x

U∞
+ τ

)

dt

and the power spectral density as

�wGwG (ω) ≡ 1

π

∫ ∞

−∞
φwGwG (τ )e−iωt dt

The power spectral density is given in Fig. 31. A useful approximate formula which
is in reasonable agreement with measurements is38

�wGwG = w̄2
GπLG

U

1 + 3
(

ωLG
U

)2

[
1 + (ωLG

U

)2]2

Typically,
w̄2

G � 33 ft/s

LG � 50−500 ft; gust scale length

We conclude this discussion with a representative vehicle responses to random
gust fields drawn from a variety of sources.39 The analytical results are from mathe-
matical models similar to those described above, but with more elaborate structural
and aerodynamic ingredients as described in succeeding pages in this chapter and
chapter ‘Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces’.

37 Houbolt, Steiner and Pratt [6]. The basis for the frozen gust assumption is that in the time interval
for any part of the gust field to pass over the flight vehicle (the length/U∞)the gust field does
not significantly change its (random) spatial distribution. Clearly this becomes inaccurate as U∞
becomes small.
38 Houbolt, Steiner and Pratt [6].
39 These particular examples were collected and discussed in Ashley, Dugundji and Rainey [24].
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Fig. 31 Gust power spectral
density
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Fig. 32 Acceleration power
spectral density. From
Stenton [26]

0

0.4

0.8

1.2

1.6

2.0

2.4

0 1 2 3 4 5 6 7
FREQUENCY, cps

φa (f)

a 2

φa(f)

a 2

7

0

df=1.0

MEASURED
CALCULATED

In the Fig. 32, the measured and calculated power spectral densities for acceler-
ation at the pilot station of the XB-70 aircraft are shown. The theoretical structural
model allows for rigid body and elastic degrees of freedom using methods such
as those described later in this chapter. The aerodynamic theory is similar to those
described in chapter ‘Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces’.
The dramatic conclusion drawn from his figure is that theory and experiment do not
necessarily agree closely! If one assumes the peaks in the measured and calculated
spectra are associated with resonances at natural frequencies of the (aeroelastic) sys-
tem, then one concludes the theoretical model is not predicting these adequately.
Since the resonances are determined primarily by mass and stiffness (springs), one
concludes that for real vehicles even these characteristics may be difficult to model
mathematically. This is quite aside from other complications such as structural damp-
ing and aerodynamic forces.
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Fig. 33 ȳ = nondimensional distance along span. From Houbolt [6]

Usually when one is dealing with a real vehicle, physical small scale models are
built and with these (as well as the actual vehicle when it is available) the resonant
frequencies are measured (in the absence of any airflow). The results are then used
to ‘correct’ the mathematical model, by one method or another, including a possible
direct replacement of calculated resonant frequencies by their measured counterparts
in the equations of motion. When this is done the peak frequencies in the measured
and calculated spectra will then agree (necessarily so) and the question then becomes
one of how well the peak levels agree.

A comparison for another aircraft, theB-47, is shown inFig. 33.Here themeasured
and calculated resonant frequencies are in good agreement. Moreover the peak levels
and indeed all levels are in good correspondence. The particular comparison shown
is for the system transfer function which relates the acceleration at a point on the
aircraft to the random gust input. The calculated transfer function has been obtained
from an aeroelastic mathematical model. Themeasured transfer function (from flight
test) is inferred from ameasurement of gust power spectra and cross-spectra between
the vehicle acceleration and gust velocity field using the relation (c.f. e.g. (3.31))

HḧwG
= �ḧwG

�wGwG
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Both the amplitude and phase of the transfer function are shown as a function of
frequency for various positions along thewing span (ȳ = 0 is at thewing root and ȳ =
1 at the wing tip). Such good agreement between theory and experiment is certainly
encouraging. However, clearly there is a major combined theoretical-experimental
effort required to determine accurately the response of structures to gust loading. It
should be noted that according to [6], Fig. 33 is the bending strain transfer function.
‘The dimensions of the ordinates . . . are those for acceleration because the responses
of the strain gages were calibrated in terms of the strain per unit normal acceleration
experienced during a shallow pull-up maneuver.’

7 Generalized Equations of Motion for Complex Structures

7.1 Lagrange’s Equations and Modal Methods
(Rayleigh–Ritz)

The most effective method for deriving equations of motion for many complex
dynamical systems is to use Lagrange’s Equations.40

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi

where
L ≡ T-U, Lagrangian

T ≡ kinetic energy

U ≡ potential energy

Qi ≡ generalized forces

qi ≡ generalized coordinates

The essential steps in the method are, first, a suitable choice of qi and then an
evaluation of T,U and Qi in terms of Qi and q̇i .

Lagrange’s equations have, as one of their principal advantages, the ability to
obtain the equations of motion for complex systems with little or no more difficulty
than that required for rather simple ones, such as the ‘typical section’. Here we shall
consider a two-dimensional (planar) representation on a flight vehicle. (See Fig. 34).

We note that this formulation can include ‘rigid’ body as well as flexible body
modes. For example, the following choices of modal functions, zm , include rigid
body vertical translation, pitching (rotation about y axis) and rolling (rotation about
x axis), respectively.

40 Recall Sect. 2.
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Fig. 34 Two-dimensional (planar) representation of a flight vehicle

z1 = 1 vertical translation

z2 = x pitching

z3 = y rolling

For such modes the potential elastic or strain energy is zero; however, in general,
strain energy must be included for the flexible body modes.

The use of Lagrange’s equations, while formally compact, does not reveal explic-
itly all of the complications which may arise in deriving equations of motion for an
unrestrained vehicle or structure. These are seen more clearly in the discussion in a
later section of integral equations of equilibrium.

7.2 Kinetic Energy

The x − y plane is the plane of the (aircraft) structure. We consider deformations
perpendicular to the x − y plane (in the z direction). The normal displacement with
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respect to a fixed inertial reference plane we call za(x, y, t). We may then express
the kinetic energy as

T = 1

2

∫∫
m (̇z)2adx dy (7.1)

wherem—mass/area and ża ≡ ∂za
∂t . If we expand the displacement in a modal series,

say
za =

∑

m

qm(t)zm(x, y) (7.2)

then the kinetic energy may be written as

T = 1

2

∑

m

∑

n

q̇mq̇nMmn (7.3)

where the generalized mass is given by

Mmn ≡
∫∫

mzmzndx dy

For small motions the above integral over the body may be taken as over the unde-
formed structure.

If the chosen modes, zm , satisfy an orthogonality condition

Mmn = Mmδmn δmn = 1 for m = m

= 0 for m �= n

Then (7.3) simplifies to

T = 1

2

∑

m

q̇2
mMm (7.4)

7.3 Strain (Potential Elastic) Energy

For the strain energy, we may write a similar relation to (7.3).

U = 1

2

∑

m

∑
qmqnKmn (7.5)

where Kmn is a generalized spring constant which is determined from an appropri-
ate structural theory.41 Indeed if the zm are the ‘natural’ or ‘normal’modes of the
structure, one may show that

41 Recall Sect. 2.
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Kmn = ω2
mMmδmn (7.6)

where ωm is the mth ‘natural frequency’.42

Equations (7.3)–(7.6) are the keys to the Lagrangian approach. Before continuing,
we pause to consider Kmn in more detail.

Alternative Determination of Kmn

A stiffness influence function, K (x, y, ξ, η), may be defined which is the (static)
force/area required at point x, y to give a unit deflection at point ξ, η. Hence

p(x, y) =
∫∫

K (x, y; ξ, η)za(ξ, η)dξ dη (7.7)

A simple spring analog of (7.7) is

F = Kd simple spring analog, d = spring displacement

The potential energy stored in the elastic body is thus

U = 1

2

∫∫
p(x, y)za(x, y)dx dy

U = 1

2
Fd simple spring analog

(7.8)

Using (7.8) in (7.7),

U = 1

2

∫∫ ∫∫
K (x, y; ξ, η)za(ξ, η)za(x, y)dξ dηdx dy (7.9)

U = 1

2
Kd2 simple spring analog

Using our modal expansion

za(x, y, t) =
∑

m

qm(t)zm(x, y)

in (7.9) we obtain

U = 1

2

∑

m

∑
nKmnqmqn

where

42 Meirovitch [4].



Dynamic Aeroelasticity 125

Kmn ≡
∫∫ ∫∫

K (x, y; ξ, η)zm(ξ, η)zn(x, y)dξ dηdx dy

U = 1

2
Kd2 simple spring analog

(7.10)

From Maxwell’s Reciprocity Theorem

K (x, y; ξ, η) = K (ξ, η; x, y)

and hence
Kmn = Knm (7.11)

K (x, y; ξ, η) can be determined by a suitable theoretical analysis or it can be inferred
from experiment. For the additional insight to be gained, let us consider the latter
alternative. It is a difficult experiment tomeasure K directly since wemust determine
a distribution of force/areawhich gives unit deflection at one point and zero deflection
elsewhere. Instead it ismuch easier tomeasure the inverse of K , a flexibility influence,
C(x, y; ξ, η) which is the deflection at x, y due to a unit force/area at ξ, η. For
C(x, y; ξ, η) we have the following relation (recall Sect. 4)

za(x, y) =
∫∫

C(x, y; ξ, η)p(ξ, η)dξ dη (7.12)

Using (7.7) and (7.12) it can be shown that

∫∫
C(x, y; ξ, η)K (ξ, η; r, s)dξ dη = δ(r − x, s − y) (7.13)

where δ is a Dirac delta function. Equation (7.13) is an integral equation for C or K
given the other. However, it is rarely, if ever, used. Instead (7.6) and (7.1) are attacked
directly by considering a finite number of loads and deflections over small (finite)
areas of size �x�y = �ξ�η. Hence (7.7) and (7.12) are written

p(xi , yi ) =
∑

i

K (xi , yi ; ξ j , η j )za(ξ j , η j )�ξ�η (7.7)

za(x j , y j ) =
∑

j

C(x j , y j ; ξi , ηi )p(ξi , ηi )�ξ�η (7.11)

In matrix notation
{p} = [K ]{za}�ξ�η (7.7)

{za} = [C]{p}�ξ�η (7.11)

Substitution of (7.12) into (7.7) and solving, gives

http://dx.doi.org/10.1007/978-3-030-74236-2_2
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[K ] = [C]−1/(�ξ)2(�η)2 (7.14)

Equation (7.14) is essentially a finite difference solution to (7.13). Hence, in practice,
if (7.10) is used to compute Kmn , one measures C , computes K from (7.14) and then
evaluates Kmn by numerical integration of (7.10). For a fuller discussion of influence
functions, the reader may wish to consult Bisplinghoff, Mar and Pian [2].

There is one further subtlety which we have not discussed as yet. If rigid body
motions of the structure are possible, then one may wish to use a C measure with
respect to afixedpoint. For example itmaybe convenient tomeasureC with the center
of the mass fixed with respect to translation and rotation. This matter is discussed
for fully later in the chapter when integral equations of equilibrium are reviewed.

We now continue the general discussion from which we digressed to consider
Kmn . Two examples will be considered next.

Examples

(a) Torsional Vibrations of A Rod
To illustrate the key relations (7.3)–(7.6) in a more familiar situation, consider the
torsional vibrations of a rod. Here

za = −xα(y, t) (cf. 7.2)

and thus (7.1) becomes

T = 1

2

∫
Iαα̇2dy (7.15)

where

Iα ≡
∫

mx2dx

α ≡ angle of twist

From structural theory [2],

U = 1

2

∫
GJ

(
dα

dy

)2

dy (7.16)

Let

α =
M∑

m=1

qα
mαm(y) (7.17)

then
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T = 1

2

∑

m

∑

n

q̇α
mq̇

α
n Mmn (7.18)

where

Mmn ≡
∫

Iααmαndy (cf. 7.3)

and

U = 1

2

∑

m

∑

n

qα
mq

α
n Kmn (7.19)

where

Kmn =
∫∫

GJ
dαm

dy

dαn

dy
dy (cf. 7.5)

The specific structural model chosen determines the accuracy with which the
generalized and stiffness are determined, but they always exist.

(b) Bending-Torsional Motion of A Beam-Rod
The above is readily generalized to include bending as well as torsional vibration of
a beam-rod.

Let
za(x, y, t) = −xα(y, t) − h(y, t) (cf. 7.2)

α ≡ twist about elastic axis

h ≡ bending deflection of elastic axis

and thus (7.1) becomes

T = 1

2

{∫
Mḣ2dy + 2

∫
Sα

˙hαdy +
∫

Iαα̇2dy

}

(7.20)

where

M ≡
∫

m dx, Sα ≡
∫

mx dx, Iα ≡
∫

mx2 dx

Also from structural theory [2],

U = 1

2

{∫
GJ

(
∂α

∂y

)2

dy +
∫

E I

(
∂2h

∂y2

)2

dy

}

(7.21)

Let
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h =
R∑

r=1

qh
r hr (y)

α =
M∑

m=1

qα
mαm(y)

(7.22)

Then

T = 1

2

∑

m

∑

n

q̇α
mq̇

α
n M

αα
mn

+ 2
∑

m

∑

r

q̇α
mq̇

h
r M

αh
mr +

∑

r

∑

s

˙̇qh
r q̇

h
s M

hh
rs

(7.23)

where

Mαα
mn ≡

∫
Iααmαndy, Mαh

mr ≡
∫

Sααmhrdy, Mhh
rs ≡

∫
mh hsdy (7.24)

and

U = 1

2

{
∑

m

∑

n

qα
mq

α
n K

αα
mn +

∑

r

∑

s

qh
r q

h
s K

hh
rs

}

(cf. 7.5)

where

K αα
mn ≡

∫
GJ

dαm

dy

dαn

dy
, Khh

rs ≡
∫

E I
d2hr
dy2

d2hs
dy2

dy (7.25)

Off all possible choices of modes, the ‘free vibration, natural modes’ are often
the best choice. These are discussed in more detail in the next section.

7.4 Natural Frequencies and Modes-Eigenvalues and
Eigenvectors

Continuing with our general discussion, consider Lagrange’s equationswith the gen-
eralized forces set to zero,

d

dt

(
∂(T −U )

∂q̇i

)

+ ∂U

∂qi
= 0 i = 1, 2, . . . , M

and thus obtain, using (7.3) and (7.5) in the above,

∑
Mmi q̈m + Kmiqm = 0 i = 1, . . . , M (7.26)

Consider sinusoidal motion



Dynamic Aeroelasticity 129

qm = q̄me
iwt (7.27)

then, in matrix motion, (7.26) becomes

− ω2[M]{q} + [K ]{q} = {0} (7.28)

This is an eigenvalue problem for the eigenvalues, ω j , j = 1, . . . , J and correspond-
ing eigenvalues, (q) j . If themodal functions originally chosen, zm orαm and hr , were
‘natural modes’ of the system then the M and K matrices will be diagonal and the
eigenvalue problem simplifies.

− ω2

⎡

⎣
\
M
\

⎤

⎦ {q} +
⎡

⎣
\
Mω2

j

\

⎤

⎦ {q} = {0} (7.29)

and

ω2
1,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q1
0
0
0
0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
1

ω2
2,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0
q2
0
0
0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
2

etc.

ω2
M ,

⎧
⎪⎪⎨

⎪⎪⎩

0
0
0
qM

⎫
⎪⎪⎬

⎪⎪⎭
M

If this is not so then the eigenvalues may be determined from (7.22) and a linear
transformation may be made to diagonalize the M and K matrices. The reader may
wish to determine the eigenvalues and eigenvectors of the typical section as in
exercise.

For our purposes, the key point is that expression like (7.3)–(7.6) exist. For a more
extensive discussion of these matters, the reader may consult Meirovitch [4].
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7.5 Evaluation of Generalized Aerodynamic Forces

The Generalized forces s in Lagrange’s equations are evaluated from their definition
in terms of Virtual work.

δWNC =
∑

m

Qmδqm (7.24-2)

Now the virtual work may be evaluated independently from

δWNC =
∫∫

pδzαdx dy (7.25-2)

where p is the net aerodynamic pressure on an element of the structure with (differ-
ential) area dx dy. Using (7.2) in (7.25-2)

δWNC =
∑

m

δqm

∫∫
pzmdx dy (7.26-2)

and we may identify from (7.25-2) and (7.24-2)

Qm ≡
∫∫

pzmdx dy (7.27-2)

From aerodynamic theory,43 one can establish a relationship of the form

p(x, y, t) =
∫∫ ∫ t

0
A(x − ξ, y − η, t − τ )

×
[
∂za
∂τ

(ξ, η, τ ) +U
∂za
∂ξ

(ξ, η, τ )

]

︸ ︷︷ ︸
‘downwash’

dξ dηdτ
(7.28-2)

A may be physically interpreted as the pressure at point x, y at times t due to a unit
impulse of downwash at point ξ, η at time τ . Using (7.2) and (7.28-2) in (7.27-2) we
may evaluate Qm in more detail,

Qm =
∑

n

∫ t

0
[q̇n(τ )Inmq̇(t − τ ) + qn(τ )Inmq(t − τ )]dτ (7.29-2)

where

43 See chapter ‘NonsteadyAerodynamics ofLifting andNon-liftingSurfaces’, and earlier discussion
in Sect. 4.
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Inmq̇(t − τ ) ≡
∫∫ ∫∫

A(x − ξ, y − η, t − τ )zn(ξ, η)zm(x, y)dx dydξ dη

Inmq(t − τ ) ≡
∫∫ ∫∫

A(x − ξ, y − η, t − τ )

×U
∂zn
∂ξ

(ξ, η)zm(x, y)dx dydξ dη

Inmq̇ , Inmq may be thought of as generalized aerodynamic impulse functions.

7.6 Equations of Motion and Solution Methods

Finally applying Lagrange’s equations, using ‘normal mode’ coordinates for sim-
plicity,

Mm[q̇m + ω2
mqm] =

M∑

n=1

∫ 1

0
[q̇n(τ )Inmq̇(t − τ ) + qn(τ )Inmq(t − τ )]dτ

m = 1, . . . , M

(7.30)

Note the form of (7.30). It is identical, mathematically speaking, to the earlier results
for the typical section.44 Hence similar mathematical solution techniques may be
applied.

Time domain solutions. A Taylor Series expansion is

qn(t + �t) = qn(t) + q̇n

∣
∣
∣
∣t�t + q̈n

2

∣
∣
∣
∣
t

(�t)2

One may solve for q̈n from (7.30) and hence qn(t + �t) is determined. qn(t), q̈n(t)
are known from initial conditions and

q̇n(t + �t) = q̇n(t) + q̈n(t)�t + · · · (7.31)

Frequency domain solutions. Taking a Fourier transform of (7.30)

Mm[−ω2 + ω2
m]q̄m =

M∑

n

[iωHnmq̇ + Hnmq]q̄n

where

q̄m ≡
∫ ∞

−∞
qme

−iωt dt

44 Provided Sα ≡ 0 so that h,α are normal mode coordinates for the typical section.
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In matrix notation
⎡

⎣

⎡

⎣
\
Mm(−ω2 + ω2

m)

\

⎤

⎦− [iωHnmq̇ + Hnmq ]
⎤

⎦ {q̄n} = {0} (7.32)

By examining the condition for nontrivial solutions

|[· · · ]| = 0

we may find the ‘poles’ of the aeroelastic transfer functions and assess the stability
of the systems.

Response to gust excitation. If we wish to examine the gust response problem then
we must return to (7.28) and add the aerodynamic pressure due to the gust loading

pG(x, y, t) =
∫∫∫

A(x − ξ, y − η, t − τ )wG(ξ, η, τ )dξ dηdτ

The resulting Generalized forces s are

QmG(t) =
∫∫∫∫∫

A(x−ξ, y − η, t − τ )

× wG(ξ, η, τ )zm(x, y)dξ dη dx dy dτ

(7.33)

Adding (7.33) to (7.30) does not change the mathematical technique for the time
domain solution. In the frequency domain, the right hand column of (7.32) is now
(Q̄mG)

Q̄mG =
∫ ∞

−∞
QmGe

−iωt dt

Hence by solving (7.32) we may obtain generalized aeroelastic transfer functions

q̄n
Q̄mG

≡ HqnQmG (ω; · · · ) (7.34)

and employ the usual techniques of the frequency domain calculus including power
spectral methods.

7.7 Integral Equations of Equilibrium

As an alternative approach to Lagrange’s Equations, we consider an integral equation
formulation using the concept of a structure influence (Green’s) function. We shall
treat a flat (two-dimensional) structure which deforms under (aerodynamic) loading
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in an arbitrary way. We shall assume a symmetrical vehicle and take the origin of our
coordinate system at the vehicle center of mass with the two axes in the plane of the
vehicle as principal axes, x, y. See Fig. 34. Note the motion is assumed sufficiently
small so that no distinction is made between the deformed and undeformed axes of
the body. For example the inertia and elastic integral properties are evaluated using
the (undeformed) axes x, y. The axes x, y are inertial axes, i.e., fixed in space. If we
consider small deflections normal to the x, y plane, the x, y axes are approximately
the principal axes of the deformed vehicle.

It will be useful to make several definitions.

za absolute vertical displacement of a point from x, y plane, positive up
m mass/area
pE external applied force/area, e.g., aerodynamic forces due to gust, pG
pM force/area due to motion, e.g., aerodynamic forces (but not including inertial

forces)

pZ = pE + pM − m
∂2za
∂t2

total force/area, including inertial forces. Let us first consider equilibrium of rigid
body motions.

Translation: ∫∫
pZdx dy = 0 (7.35)

Pitch: ∫∫
xpZdx dy = 0 (7.36)

Roll: ∫∫
ypZdx dy = 0 (7.37)

Now consider equilibrium of deformable or elastic motion.

zelastica ≡ za(x, y, t) − za(0, 0, t) − x
∂za
∂x

(0, 0, t) − y
∂za
∂y

(0, 0, t)

=
∫∫

C(x, y; ξ, η)pZ (ξ, ηt)dξ dη

(7.38)

where

zelastica ≡ deformation (elastic) of a point on vehicle
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C ≡ structural influence or Green’s function; the (static) elastic deformation a x, y
due to unit force/area at ξ, η for a vehicle fixed45 at the origin, x = y = 0.

Since the method of obtaining the subsequent equations of motion involves some
rather extensive algebra, we outline the method here.

1 Set pE = pM = 0.
2 Obtain ‘natural frequencies and modes’; prove orthogonality of modes.
3 Expand deformation, za for nonzero pE and pM in terms of normal modes or

natural modes and obtain a set of equation for the (time dependent) coefficients
of the expansion. The final result will again be (7.30).

7.8 Natural Frequencies and Modes

Set pE = pM = 0. Assume sinusoidal motion, i.e.,

za(x, y, t) = z̄a(x, y)e
iωt (7.39)

then (7.38) becomes

z̄a(x, y) − z̄a(0, 0) − x
∂ z̄a
∂x

(0, 0) − y
∂ z̄a
∂y

(0, 0)

= ω2
∫∫

C(x, y; ξ, η)m(ξ, η)z̄a(ξ, η)dξ dη

(7.40)

The frequency ω has the character of eigenvalue. Equation (7.40) can be put into the
form of a standard eigenvalue problem by solving for za(0, 0),

∂ z̄a
∂x (0, 0), ∂ z̄a

∂y (0, 0)
and substituting into (7.40). For example, consider the determination of za(0, 0).
Multiply (7.40) by m and integrate over the flight vehicle area. The result is:

∫∫
mz̄adx dy − z̄a(0, 0)

∫∫
m dx dy

− ∂ z̄a
∂x

(0, 0)
∫∫

mx dx dy − ∂ z̄a
∂y

(0, 0)
∫∫

mx dx dy

= ω2
∫∫

m(x, y)

[∫∫
C(x, y; ξ, η)z̄a(ξη)dξ dη

]

· dxdy

(7.41)

Examining the left hand side of (7.41), the first integral is zero from (7.35), the third
and fourth integrals are zero because of our use of center-of-mass as our origin of
coordinates. The second integral is identifiable as the total mass of the vehicle.

45 By fixed we mean ‘clamped’ in the sense of the structural engineer, i.e., zero displacement and
slope. It is sufficient to use a static influence function, since invoking by D’Alambert’s Principle
the inertial contributions are treated as equivalent forces.
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M =
∫∫

m dx dy

Hence

z̄a(0, 0) = −ω2

M

∫∫
m(x, y)

[∫∫
Cmz̄adξ dη

]

dx dy

= −ω2

M

∫∫
m(ξ, η)z̄a(ξ, η)

×
[∫∫

C(x, y; ξ, η)m(x, y)dx dy

]

dξ dη

(7.42)

where the second line follows by change of order of integration. In a similar fash-
ion ∂ z̄a

∂x (0, 0), ∂ z̄a
∂y (0, 0) may be determined by multiplying (7.40) by mx and my

respectively with integration over the flight vehicle. The results are

∂ z̄a
∂x

(0, 0) = − ω2

Iy

∫∫
m(ξ, η)z̄a(ξ, η)

[∫∫
C(x, y; ξ, η)xm(x, y)dx dy

]

· dξ dη
(7.43)

etc. where

I y ≡
∫∫

x2m(x, y)dx dy

I y ≡
∫∫

y2m(x, y)dx dy

In (7.42) and (7.43) note that x, y are now dummy integration variables, not to be
confused with the x, y which appear in (7.40). Using (7.41), (7.42), (7.43) in (7.40)
we have

za(x, y) = ω2
∫∫

G(x, y; ξ, η)m(ξ, η)za(ξ, η)dξ dη (7.44)

where

G(x, y; ξ, η) ≡ C(x, y; ξ,η)

−
∫∫

C(r, s; ξ, η)

[
1

M
+ xr

Iy
+ ys

Ix

]

m(r, s)dr ds

Equation (7.44) has the form of a standard eigenvalue problem. In general, there
are infinite number of nontrivial solutions (eigenfunctions), φm with corresponding
eigenvalues, wm , such that

φm(x, y) = ω2
m

∫∫
G(x, y; ξ, η)m(ξ, η)φm(ξ, η)dξ dη (7.45)
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These eigenfunctions could be determined in a number of ways; perhaps the most
efficient method being the replacement of (7.45) by a system of linear algebraic
equations through approximation of the integral in (7.45) by a sum.

φm(xi , yi ) = ω2
m

∑

j

G(xi , yi ; ξ j , η j )m(ξ j , η j )φm(ξ j , η j )�ξ �η (7.46)

In matrix notation,

{φ} = ω2[Gi j �ξ �η]
⎡

⎣
\
m
\

⎤

⎦ {φ}

or ⎡

⎣

⎡

⎣
\
1
\

⎤

⎦− ω2[Gi j �ξ �η]
⎡

⎣
\
m
\

⎤

⎦

⎤

⎦ {φ} = {0} (7.47)

Setting the determinant of coefficients to zero, we obtain a polynomial in ω2 which
gives us (approximate) eigenvalues as roots. The related eigenvector of (7.47) is an
approximate description of the eigenfunctions of (7.46).

An important and useful property of eigenfunctions is their orthogonality, i.e.,

∫∫
φm(x, y)φn(x, y)dx dy = 0 for m �= n (7.48)

We shall digress briefly to prove (7.48).

7.8.1 Proof of Orthogonality

Consider two different eigenvalues and eigenfunctions .

φm(x, y) = ω2
m

∫∫
Gmφmdξ dη (7.49a)

φn(x, y) = ω2
n

∫∫
Gmφndξ dη (7.49b)

Multiply (7.49a) and (7.49b) by mφn(x, y) and mφm(x, y) respectively and
∫ ∫

· · · dx dy.
1

ω2
m

∫∫
φnφmm dx dy =

∫∫
φnm

[∫∫
Gφmm dξ dη

]

· dx dy (7.49c)
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1

ω2
n

∫∫
φmφnm dx dy =

∫∫
φmm

[∫∫
Gφnm dξ dη

]

· dx dy (7.49d)

Interchanging the order of integration in (7.49c) and interchanging x, y and ξ, η, and
vice versa on the right-hand side gives:

1

ω2
m

∫∫
φmφnm dx dy =

∫∫
φmm[

∫∫
G(ξ, η; x, y)

· φn(ξ, η)m(ξ, η)dξ dη]dx dy
(7.50)

If G were symmetric, i.e.,

G(ξ, η; x, y) = G(x, y; ξ, η) (7.51)

then the right-hand side of (7.49d) and (7.49c) would be equal and hence one could
conclude that [

1

ω2
m

− 1

ω2
n

] ∫∫
φmφnm dx dy = 0

or ∫∫
φmφnm dx dy = 0 for m �= n (7.52)

Unfortunately, the situation is more complicated sinceG is not symmetric. However,
from (7.44), et. seq., one can write

G(ξ, η; x, y) − G(x, y; ξ, η)

=
∫∫

C(r, s; ξ, η)

[
1

M
+ ys

Ix
+ xr

Iy

]

m(r, s)dr ds

−
∫∫

C(r, s; x, y)
[
1

M
+ ηs

Ix
+ ξr

Iy

]

m(r, s)dr ds

(7.53)

Using the above to substitute for G(ξ, η; x, y) in (7.50) and using (7.35)–(7.37) to
simplify the result, one sees that the terms on the right-hand side of (7.53) contribute
nothing. Hence, the right-hand sides of (7.49d) and (7.49c) are indeed equal.

The orthogonality result follows. Note that the rigid body modes

ω1 = 0 φ1 = 1

ω2 = 0 φ2 = x

ω3 = 0 φ3 = y

(7.54)

are orthogonal as well. One can verify readily that the above satisfy the equations
of motion, (7.35)–(7.38), and that the orthogonality conditions follow from (7.35)–
(7.37).
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7.9 Forced Motion Including Aerodynamic Forces

Wewill simplify the equations of motion to a system of ordinary integral-differential
equations in time by expanding the deformation in terms of normal modes.

za(x, y, t) =
∞∑

m=1

qm(t)φm(x, y) (7.55)

Recall the natural modes, φm , must satisfy the equations of motion with pE = pM =
0 and

za ∼ eiωmt

Substituting (7.55) in (7.35)–(7.37) and using orthogonality, (7.52), and (7.54),

q̈1

∫∫
m dx dy =

∫∫
[pE + pM ]dx dy (7.56)

q̈2

∫∫
x2m dx dy =

∫∫
x[pE + pM ]dx dy (7.57)

q̈3

∫∫
y2m dx dy =

∫∫
y[pE + pM ]dx dy (7.58)

The reader should be able to identify readily the physical significance of the several
integrals in the above equations. Substituting (7.55) into (7.38) gives

∞∑

m=1

qm
[
φm(x, y) − φm(0, 0) − x

∂φm

∂x
(0, 0) − y

∂φm

∂y
(0, 0)

]

=
∫∫

C(x, y; ξ, η)

[

pE + pM − m
∞∑

m=1

q̈mφm(ξ, η)

]

dξ dη

(7.59)

Now the normal modes, φm , satisfy

φm(x, y) − φm(0, 0) − x
∂φm

∂x
(0, 0) − y

∂φm

∂y
(0, 0)

= ω2
m

∫∫
C(x, y; ξ, η)m(ξ, η)φm(ξ, η)dξ dη m = 1, . . . ,∞

(7.60)

Also the left-hand side of (7.59) is identically zero for the rigid body modes, m =
1, 2, 3. Further using (7.60)in the right-hand side of (7.59) for m = 4, 5, . . ., gives
finally
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∞∑

m=4

(

qm + q̈m
ω2
m

)[

φm(x, y) − φm(0, 0) − x
∂φm

∂x
(0, 0) − y

∂φm

∂y
(0, 0)

]

=
∫∫

C(x, y; ξ, η)[pE + pM − mq̈1 − mξq̈2 − mηq̈3]dξ dη

(7.61)

Multiplying (7.61) by m(x, y)φn(x, y) and
∫ ∫ · · · dx dy, invoking orthogonality,

gives

Mn

(

qn + q̈n
ω2
n

)

=
∫∫

φnm
{ ∫∫

C[pE + pM − mq̈1 − mξq̈2

− mηq̈3]dξ dη
}
dx dy

(7.62)

where the ‘generalized mass’, Mn , is defined as

Mn ≡
∫∫

φ2
nm dx dy

Now the structural influence function, C , is symmetric, i.e.,

C(x, y; ξ, η) = C(ξ, η; x, y) (7.63)

This follows from Maxwell’s reciprocity theorem46 which states that the deflection
at x, y due to a unit load at ξ, η is equal to the deflection at ξ, η due to a unit load at
x, y.

Using (7.63) and interchanging the order of integration in (7.62), one obtains

Mn

(

qn + q̈n
ω2
n

)

=
∫∫

[pE + pM − mq̈1 − mξq̈2 − mηq̈3]

·
{∫∫

C(ξ, η; x, y)φn(x, y)m(x, y)dx dy

}

· dξ dη

(7.64)

Using (7.60) in (7.64),

Mn

(

qn + q̈n
ω2
n

)

= 1

w2
n

∫∫
[pE + pM − mq̈1 − mξq̈2 − mηq̈3]

·
[

φn(ξ, η) − φn(0, 0) − ξ
∂φn

∂ξ
(0, 0) − η

∂φn

∂η
(0, 0)

]

· dξ dη

(7.65)

By using orthogonality, (7.52) and the equations of rigid body equilibrium, (7.56)–
(7.58), one may show that the right-hand side of (7.65) can be simplified as follows:

46 Bisplinghoff, Mar and Pian [2].
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Mn

(

qn + q̈n
ω2
n

)

= 1

ω2
n

∫∫
[pE + pM ]φndξ dη (7.66)

Defining the Generalized forces,

Qn ≡
∫∫

[pE + pM ]φndξ dη (generalized force)

one has
Mn[q̈n + ω2

nqn] = Qn n = 1, 2, 3, 4, . . . (7.67)

Note that there is no inertial or structural coupling in the Eq. (7.67), However pM
generally depends upon q1, q2, . . . and hence the equations are aerodynamically
coupled.47 The lack of inertial and structural coupling is due to our use of natural or
normal modes. Finally, note that the rigid body equation of motions, (7.56)–(7.58),
also have the form of (7.67). Hence n may run over all integer values.

Examples

(a) Rigid Wing Undergoing Translation Responding to A Gust
One mode only φ1 = 1, q1 (≡ −h was notation used previously in typical section
model) and thus

M1q̈1 = QM
1 + QE

1 (7.68)

QM
1 =

∫∫
pMφ1dx dy =

∫
LM dy (7.69)

QE
1 =

∫∫
pEφ1 dx dy =

∫
LG dy (7.70)

where

LM ≡
∫

pM dx lift/span (7.71)

LG ≡
∫

pE dx lift/span (7.72)

Introducing nondimensional time, s ≡ tU/b, (7.68) may be written

U 2

b2
M1q

′′ =
∫ t

0
LM dy +

∫ t

0
LG dy (7.73)

47 Cf. (7.31).
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where
′ ≡ d

ds
(nondimensional)

Assuming strip-theory, twodimensional, incompressible flowaerodynamics, one has
(recall Sect. 4 and see chapter ‘Nonsteady Aerodynamics of Lifting and Non-lifting
Surfaces’)

LM(s) = −πρU 2
∞

[

q ′′(s) + 2
∫ s

0
q ′′(σ)φ(s − σ)dσ

]

(7.74)

Note we have assumed q ′
1(0) = 0 in the above. Similarly

LG = 2πρU∞b

[

wG(0)ψ(s) +
∫ s

0

dwG(σ)

dσ
ψ(s − σ)dσ

]

= 2πρU 2b

[∫ s

0

wG(σ)

U
ψ′(s − σ)dσ

] (7.75)

where

ψ′(s) ≡ dψ

ds

Here we have assumed thatwG is independent of y for simplicity. Substituting (7.74)
and (7.75) into (7.73) we have

U 2∞
b2

Mq ′′
1 (s) = πρU 2

∞(2bl)
[

− q ′′
1

2b
− 1

b

∫ s

0
q ′′
1 (σ)φ(s − σ)dσ

+
∫ s

0

wG(σ)

U∞
ψ′(s − σ)dσ

] (7.76)

M ≡ ∫∫ mφ1 dx dy, total mass of wing

Note
∫
L dy = l L since we have assumed b is a constant and l ≡ half-span of wing.

Equation (7.76) may be solved in several ways which have previously been discussed
in the context of the typical section airfoil. Here, we shall pursue the method of
Laplace Transforms. Transforming (7.76) (p is the Laplace Transform variable)
gives

U 2

b2
Mp2q̄1(p) = πρU 2(2bl)

[
w̄G

U
pψ̄

p2q̄1
2b

− p2q̄1
b

ψ̄

]

(7.77)

We have taken q(0) = q ′(0) = 0 while using the convolution theorem, i.e.,

{∫ s

0
wG(σ)ψ′(s − φ)dσ

}

= w̄G pφ̄ (convolution theorem 1)

{∫ s

0
q ′′
1 (σ)φ′(s − σ)dσ

}

= p2q̄1φ̄ (convolution theorem 2)
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and a bar (̄ ) denotes Laplace Transform. Solving (7.77) for q̄1 gives

q̄1(p) =
b
2

w̄G
U ψ̄

p(μ
2 + 1

4 + 1
2 φ̄)

(7.78)

where

μ ≡ M

π(2bl)bρ
, mass ratio.

To complete the solution we must invert (7.78). To make this inversion tractable, φ
and ψ are approximated by

ψ(s) = 1 − 0.5e−0.13s − 0.5e−s

φ(s) = 1 − 0.165e−0.0455s − 0.335e−0.3s
(7.79)

Thus
ψ̄ = (0.565p + .013)/p(p + 0.0455)(p + 0.3)

φ̄ = 0.5p2 + 0.02805p + 0.01365

p3 + 0.3455p2 + 0.01365p

(7.80)

and

q̄1 = b w̄G
U 0.565(p3 + 0.575p2 + 0.093p + 0.003)

(μ + 0.5)p(p + 0.13)(p + 1)(p3 + a1 p2 + a2 p + a3)
(7.81)

where

a1 ≡ 0.3455μ + 0.67

μ + 0.5

a2 ≡ 0.01365μ + 0.28

μ + 0.5

a3 ≡ 0.01365

μ + 0.5

Often one is interested in the acceleration,48

q̈1 = U 2

b2
q ′′
1 q̈1 = U 2

b2
L1{p2q̄1}

= 0.565

μ + 0.5

∫ s

0

U∞
b

wG(σ){A1e
−0.13(s−σ)

+ A2e
−(s−σ) + B1e

γ1(s−σ)

+ B2e
γ2(s−σ) + B3e

γ3(s−σ)}dσ

(7.82)

48 For q1(0) = q̇(0) = 0.L1 ≡ inverse Laplace Transform.
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where

A1 = N (−0.13)

D′(.013)

A2 = N (−1)

D′(−1)

Bk=1 2 3 = N (γk)

D′(γk)

and
N (p) ≡p(p3 + 0.5756p2 + 0.09315p + 0.003141)

D(p) ≡(p + 0.13)(p + 1)(p3 + a1 p + a3)

γk are the roots of p3 + a1 p
2 + a1 p + a3 = 0

Note that bracketed term in (7.82) must be a real quantity though the components
thereof may be complex (conjugates). Also, what does it mean physically if the real
part of γ1, γ2 or γ3 is positive?

An even simpler theory of gust response is available if one further approximates
the aerodynamic forces. Foe example, using a quasi-static aerodynamic theory (recall
Section 3.4), one has

ψ = 1 and thus LG = 2πρU 2∞b wG
U∞

and

φ = 0, and thus LM = 0 (ignoring virtual inertia term)
Hence

M1q̈1 =
∫

LG dy = 2πρU 2bl
wG

U

q̈1s = π
ρU 2

M
(2bl)

wG

U∞
= U∞

b

wG

μ

(7.83)

The subscripted quantity, q̈1, is called the static approximation to the gust response.
Figure35 is a schematic of the result from the full theory, (7.82), referenced to the
static result, (7.83). Here we have further assumed a sharp-edge gust, i.e., wG=
constant. After Fig. 22 BAH. The maxima of the above curves are presented in
Fig. 36. As can be seen the static approximation is a good approximation for large
mass ratio, μ. For smaller μ the acceleration is less than the static result. Hence the
quantity, q̈1max

q̈1s
is sometimes referred to as a ‘gust alleviation’ factor.

A somewhat more sophisticated aerodynamic approximation is to let (again recall
Sect. 4)

ψ = 1 and thus LG = 2πρU 2b
wG

U
φ = 1 and thus LM = −πρU 2[q ′′(s) + 2q ′(s)]

(7.84)
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Fig. 35 Acceleration time
history
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assuming q ′(0) = 0. In the motion induced lift, the LMfirst term is a virtual inertial
term which is generally negligible compared to the inertia of the flight vehicle.
However, the second term is an aerodynamic damping term which provides the
only damping in the system and hence may be important. It is this aerodynamic
damping, even in the guise of the full (linear)aerodynamic theory, which gives results
substantially different from the static approximation. Equation (7.84) is termed a
quasi-steady aerodynamic approximation.

Using the approximation (7.84), (7.68) becomes for a constant chord, b, wing of
span, l, (in nondimensional form)

(μ + 0.5)q ′′
1 (s) + q ′

1(s) = bwG(s)

U∞
(7.85)

where

μ ≡ M1

πρ(2bl) · b
Taking the Laplace transform of (7.85) with initial conditions

q ′
1(0) = q(0) = 0, wG(0) = 0 (Laplace transform)
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we have

(μ + 0.5)p2q̄1(p) + pq̄1(s) = bw̄G(p)

U∞
(Laplace with 7.85)

Solving

q̄1(p) =
b

U∞ w̄G(p)

p{(μ + 0.5)p + 1}
and thus

q ′′
1 (s) = L−1 p2q̄1(p)

= 1

(μ + 0.5)
L−1 b

U∞
w̄G(p) ·

[

1 −
1

μ+0.5

p + 1
μ+0.5

]

= 1

μ + 0.5

∫ s

0

b

U∞
wG(σ) ·

{

δ(s − σ) − 1

μ + 0.5
exp

(

− s − σ

μ + 0.5

)}

dσ

(7.86)
or

q̈1 =U 2∞
b2

q ′′
1 (s) = 1

μ + 0.5

∫ s

0

U∞
b

wG(σ)

×
{

δ(s − σ) − 1

μ + 0.5
exp

(

− s − σ

μ + 0.5

)}

Since

q̈1s = U∞
b

wG(s)

μ
(static result),

q̈1
q̈1s

= μ

μ + 0.5

1

wG(s)

∫ s

0
wG(σ)

×
{

δ(s − σ) − 1

μ + 0.5
exp

(

− s − σ

μ + 0.5

)}

dσ

(7.87)

For a sharp edge gust
wG = w0 : const (s > 0),

= 0 (s < 0)

Equation (7.87) becomes

q̈1
q̈1s

= μ

μ + 0.5
exp

(

− s

μ + 0.5

)

(7.88)

Equation (7.88) is presented graphically in the Fig. 37. From (7.88) one may plot
the maxima (which occur at s = 0 for the quasi-steady aerodynamic theory) vs. μ.
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Fig. 37 Acceleration time
history: Quasi-steady
aerodynamics
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QUASI-STEADY

STATIC AND QUASI-STEADY ASYMPTOTE

FULL UNSTEADY AERODYNAMICS

These are shown in Fig. 38 where the results are compared with those using the full
unsteady aerodynamic theory and the static aerodynamic theory. What conclusion
do you draw concerning the adequacy of the various aerodynamic theories?

(b) Wing Undergoing Translation and Spanwise Bending

Mnq̈n + Mnω
2
nqn = QM

n + QG
n n = 1, 2, 3, . . . (7.89)

q1 rigid body mode of translation
q2, q3 . . . beam bending modal amplitudes of wing The mode shapes are denoted
by φn(y) and are normalized such that the generalized masses are given by

Mn ≡
∫∫

φ2
nm dx dy =

∫ [∫
m dx

]

φ2
ndy = M (7.90)

The Generalized forces are given by
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QM
n =

∫∫
PMφn dx dy =

∫
LMφn dy

QG
n =

∫∫
PGφn dx dy =

∫
LGφn dy

(7.91)

Introduce s ≡ Ut
br

where br is reference half chord. Also let the chord vary spanwise,
i.e.,

b(y) = br g(y) (7.92)

where g is given from the wing geometry. Equation (7.89) may be written

U 2

b2r
Mq ′′

n + Mω2
nqn = QM

n + QG
n (7.93)

Using two-dimensional aerodynamics in a ‘strip theory’ approximation and assum-
ing the gust velocity is uniform spanwise, the aerodynamic lift forces are

LM(y, s) = − πρ(br g)
2U

2

b2r

∑

m

φmq
′′
m

− 2πρU

(
U

br

)

(br g)
∫ s

0

(
∑

m

φmq
′′
m(σ)

)

φ(s − σ)dσ

and

LG(y, s) = 2πρU (br g)
∫ s

0
wG(σ)ψ′(s − σ)dσ (7.94)

Substituting (7.94) into (7.91) and the result into (7.89) gives (when nondimension-
alized)

μ[q ′′
n + �2

nqn] +
∞∑

m=1

Anmq
′′
m + 2

∑

m

Bnm

∫ s

0
q ′′
m(σ)φ(s − σ)dσ

= 2br B1n

∫ s

0

wg(σ)

U
ψ′(s − σ)dσ n = 1, 2, 3, . . .

(7.95)

where
μ ≡ M

πρSbr
, �n ≡ ωnbr

U

Anm ≡ br
S

∫ 1/2

−1/2
g2φnφmdy

Bnm ≡ br
S

∫ 1/2

−1/2
gφnφmdy

S ≡
∫ 1/2

−1/2
2b dy = 2br

∫ 1/2

−1/2
g dy, wing area

(7.96)
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Equation (7.95) is a set of integral-differential equations in one variable, time. They
are mathematically similar to the typical section equations. If we further restrict
ourselves to consideration of translation plus the first wing bending mode, we have
two equations in two unknowns. These may be solved as in Examples (a) by Laplace
Transformation. Alternatively, Examples (a) and (b) could be handled by numerical
integration in the time domain. Yet another option is to work the problem in the
frequency domain.
(c) Random Gusts Solution in the Frequency Domain
Pursuing the latter option, we only need replace the Laplace transform variable, p,
by iw where w is the Fourier frequency. For simplicity, consider again Example (a).
Equation (7.81) may be written

q̄1
b

= HqG(ω)
wG(ω)

U
(7.97)

where

HqG(ω) ≡ 0.565[(iω)3 + 0.5756(iω)2 + 0.093iω + 0.003]
(μ + 0.5)(iω)[iω + 0.13][iω + 1][(iω)3 + a1(iω)2 + a2(iω)a3]

is a transfer function relating sinusoidal rigid body response to sinusoidal gust veloc-
ity. The poles of the transfer function can be examined for stability. The mean square
response to a random gust velocity can be written as (cf. Eq. (7.40) in Sect. 3)

¯(q1
b

)2
=
∫ ∞

0
|HqG(ω)|2�(wG/U )(wG/U )dω (7.98)

Similar expressions can be obtained for two or more degrees of freedom.

8 Other Fluid-Structural Interaction Phenomena

8.1 Fluid Flow Through a Flexible Pipe: “Firehose” Flutter

This problem has received a good deal of attention in the research literature. It has
a number of interesting features, including some analogies to the flutter of plates.
Possible technological applications include oil pipelines, hydraulic lines, rocket pro-
pellant fuel lines and human lung airways.49 The equation of motion is given by
(Fig. 39)50

49 Weaver and Paidoussis [27] Also see Daidoussis [28].
50 Note that slender body aerodynamic theory is used.



Dynamic Aeroelasticity 149

Fig. 39 Geometry of pipe

x
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U
OPEN AREA, A
CROSS-SECTION OF

E I
∂4w

∂x4
+ m

∂2w

∂t2
+ ρA

[
∂2w

∂t2
+ 2U

∂2w

∂x ∂t
+U 2 ∂2w

∂x2

]

= 0 (8.1)

E I bending stiffness of pipe A open area of pipe
m mass/length of pipe w transverse deflection of pipe
ρ fluid density a pipe length
U fluid velocity

We consider a cantilevered pipe clamped at one end of and free at the other.
Previously we had considered a pipe pinned at both ends and discovered that a static
instability occurred.51 The present boundary conditios lead to a dynamic instability,
flutter. We shall consider a classic eigenvalue analysis of this differential equation.
Let

w = w̄(x)eiωt (8.2)

where theω are to be determined by the requirement that nontrivial solutions, w̄(x) �=
0, are sought. Substituting (8.2) into (8.1) we have cancelling out the common factor,
eiωt

{

E I
d4w̄

dx4
− mω2w̄ + ρA

[

−ω2w̄ + 2Uiω
dw̄

dx
+U 2 d

2w̄

dx2

]}

��eiωt = 0 (8.3)

This ordinary differential equation may be solved by standard methods. The solution
has the form

w̄(x) =
4∑

i=1

Cie
pi x

where p1,. . ., p4 are the four roots of

E I p4 − mω2 + ρA[−ω2 + 2Uiω p +U 2 p2] = 0 (8.4)

The four boundary conditions give four equations for C1, . . . ,C4. These are

51 Sections5.

http://dx.doi.org/10.1007/978-3-030-74236-2_2
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w(x = 0) = 0 ⇒ C1 + C2 + C3 + C4 = 0

∂w

∂x
(x = 0) = 0 ⇒ C1 p1 + C2 p2 + C3 p3 + C4 p4 = 0

E I
∂2w

∂x2
(x = a) = 0 ⇒ C1 p

2
1e

p2a + C2 p
2
2e

p2a + C3 p
2
3e

p3a + C4 p
2
4e

p4a = 0

E I
∂3w

∂x3
(x = a) = 0 ⇒ C1 p

3
1e

p2a + C2 p
3
2e

p2a + C3 p
3
3e

p3a + C4 p
37
4 ep4a = 0

(8.5)
Setting the determinant of coefficients of (8.5) equal to zero gives

D ≡

∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 1
p1 p2 p3 p4

p21e
p1a p22e

p2a p23e
p3a p24e

p4a

p31e
p1a p32e

p2a p33e
p3a p34e

p4a

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (8.6)

Equation (8.6) is a transcendental equation for ω which has no known analytical
solution. Numerical solution are obtained as follows. For a given pipe at a given U
onemakes a guess forω (in general a complex numberwith real and imaginary parts.)
The p1, . . . , p4 are then evaluated from (8.4). D is evaluated from (8.6); in general
it is not zero and one must improve upon the original guess for ω (iterate) until D is
zero. A new U is selected and the process repeated. For U = 0, the ω will be purely
real and correspond to the natural frequencies of the pipe including the virtual mass
of the fluid. Hence, it is convenient to first setU = 0 and then systematically increase
it. A sketch of ω versus U is shown below in nondimensional form. These results
are taken from a paper by Paidoussis who has worked extensively on this problem.
When the imaginary part ofωI becomes negative, flutter occurs. The nondimensional
variables used in presenting these results are (we have changed the notation from
Paidoussis with respect to frequency)

β ≡ ρA/(ρA + m)

u ≡(ρ
AU 2

E I
)
1
2 a

� ≡ [(m + ρA)/E I ] 1
2 ωa2

Also shown are the results obtained by a Galerkin procedure using the natural
modes of a cantilevered beam (Fig. 40).

The stability boundary for this system may be presented in terms of u and β as
given in Fig. 41. Also shown is the frequency, �F , of the flutter oscillation. These
results have been verified experimentally by Gregory and Paidoussis.52 For a very
readable historical and technical review of this problem, see the paper by Paidoussis
and Issid.53 A similar physical problem arises in nuclear reactor fuel bundles where

52 Gregory and Paidoussis [29].
53 Paidoussis and Issid [30].
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(a)

(b)

Fig. 40 a The dimensionless complex frequency of the four lowest modes off the system as a func-
tion of the dimensionless flow velocity for β = 0.200.—Exact analysis—four-mode approximation
(Galerkin). Numbers on graph are values of u. b The dimensionless complex frequency of the four
lowest modes of the system as a function of the dimensionless flow velocity for β = 0.295

one has a pipe in an external flow. The work of Chen is particularly noteworthy.54 For
an authoritative discussion of this class of phenomena, see the book by Paidoussis
[31].

54 Chen [31].
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Fig. 41 Flutter boundary for
flexible pipe

Fig. 42 Geometry of elastic
plate

8.2 (High Speed) Fluid Flow Over a Flexible Wall—A Simple
Prototype for Plate or Panel Flutter

One type of flutter which becomes of considerable technological interest with the
advent of supersonic flight is called ‘panel flutter’. Here the concern is with a thin
elastic plate or panel supported at its edge. For simplicity consider two dimensional
motion. The physical situation is sketched below.

Over the top of the elastic plate, which is mounted flush in an otherwise rigid wall,
there is an airflow. The elastic bending of the plate in the direction of the airflow
(streamwise) is the essential difference between this type of flutter and classical flutter
of an airfoil as exemplified by the typical section. It is not our purpose to probe deeply
into this problem here; for a thorough treatment the reader is referred toDowell.55 We

55 Dowell [32]. Also see Bolotin [33].
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Fig. 43 Geometry of rigid
plates with hinges

U
x x x

l

shall instead be content to consider a highly simplified model (somewhat analogous
to the typical section model for airfoil flutter)which will bring out some of the
important features of this type of problem. Thus we consider the alternative physical
model shown in Fig. 42.56 Here our model consists of three rigid plates each hinged
at both ends. The hinges between the first and second plates and also the second
and third plates are supported by springs. The plates have mass per unit length, m,
and are of length, l. At high supersonic Mach number, M >> 1, the aerodynamic
pressure change (perturbation) p, due to plate motion is modelled by (see chapter
‘Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces’) a quasi-steady or
quasi-static form

p = ρ∞U 2∞
M∞

∂w

∂x
(8.7)

where w(x, t) ∂w
∂x are deflection and slope of any one of the rigid plates (Fig. 43).

To write the equations of motion for this physical model we must recognize
that there are two degrees of freedom. It is convenient to choose as generalized
coordinates, q1, q2, the vertical deflections of the springs.

The potential energy of the model is then

U = 1

2
kq2

1 + 1

2
kq2

2 (8.8)

The kinetic energy requires expression for w in terms of q1 and q2 since the mass is
distributed. For each plate we have, in turn,

Plate 1: w = q1
x

l
,

∂w

∂x
= q1/ l

Plate 2: w = q1
[
1 − x

l

]
+ q2x/ l,

∂w

∂x
= q2 − q1

l

Plate 3: w = q2
[
1 − x

l

]
,

∂w

∂x
= −q2

l
(8.9)

56 This was suggested by Dr. H. M. Voss.
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Because the plates are rigid, the slopes are constant within each plate. x is measured
from the front (leading) edge of each plate. The kinetic energy is

T = 1

2

∫
m

(
∂w

∂t

)2

dx (8.10)

Using (8.9) in (8.10), we obtain after integration

T = 1

2
ml

[(
2

3

)

q̇2
1 +

(
2

3

)

q̇2
2 + 2

6
q̇1q̇2

]

(8.11)

The virtual work done by the aerodynamic pressure is given by

δW =
∫

(−p)δw dx (8.12)

and using (8.9) in (8.12) we obtain

δW = Q1δq1 + Q2δq2 (8.13)

where

Q1 ≡ −ρ∞U 2∞
M∞

q2/2

Q2 ≡ ρ∞U 2∞
M∞

q1/2

Using Lagrange’s equations and (8.8), (8.11), (8.13) the equations of motion are

2

3
mlq̈1 + ml

6
q̈2 + kq1 + ρ∞U 2∞

2M∞
q2 = 0

ml

6
q̈1 + 2

3
mlq̈2 + kq2 − ρ∞U 2∞

2M∞
q1 = 0

(8.14)

In the usual way we seek an eigenvalue solution to assess the stability of the system,
i.e., let

q1 = q1e
iωt

q2 = q2e
iωt

then (8.14) becomes (in matrix notation)

[

−ω2ml

[ 2
3

1
6

1
6

2
3

]

+
[
k 0
0 k

]

+ ρ∞U 2∞
2M∞

[
0 1

−1 0

]]{
q̄1eiωt

q̄2eiωt

}

=
{
0
0

}

(8.15)
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We seek nontrivial solutions by requiring the determinant of coefficients to vanish
which gives the following (nondimensional) equation after some algebraic manipu-
lation

15

36
�4 − 4

3
�2 + 1 + λ2 = 0 (8.16)

where

�2 ≡ ω2ml

k
, λ ≡ ρ∞U 2∞

2M∞k

Solving (8.16) for �2 we obtain

�2 = 8

5
± 2

5
[1 − 15λ2] 1

2 (8.17)

When the argument of the square root becomes negative, the solutions for�2 becomes
a pair of complex conjugates and hence one solution for � will have a negative
imaginary part corresponding to unstable motion. Hence, flutter will occur for

λ2 > λ2
F ≡ 1

15
(8.18)

The frequency at this λF is given by (8.17).

�F =
[
8

5

] 1
2

For reference the natural frequencies(λ ≡ 0) are from (8.17).

�1 = (
6

5
)
1
2 and �2 = (2)

1
2

From (8.15) (say the first of the equations) the eigenvector ratio may be determined

1st Natural Mode:
q̄1
q̄2

= +1 for � = �1 at λ = 0

2nd Natural Mode:
q̄1
q̄2

= −1 for � = �2 at λ = 0

and at flutter:

Flutter Mode:
q̄1
q̄2

= −4 + 15
1
2 for � = �F , λ = λ f

Sketches of the corresponding plate shapes are given below. The important features
of this hinged rigid plate model which carry over to an elastic plate are:
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Fig. 44 Natural modes and
flutter mode

FLUTTER MODE

MODE

MODE

1

2nd

st

(1) The flutter mechanism is a convergence of natural frequencies with increasing
flow velocity. The flutter frequency is between the first and second natural frequen-
cies. In this respect it is similar to classical bending-torsion flutter of an airfoil.

(2) The flutter mode shape shows a maximum nearer the rear edge of the plate
(rather than the front edge) (Fig. 44).

There are, of course, some oversimplifications in the rigid plate model. For exam-
ple, the plate length does not affect the flow velocity at which flutter occurs. For an
elastic plate, it would. Also in subsonic flow the curvature of the plate has a strong
influence on the aerodynamic pressure. In the rigid plate model, the curvature is iden-
tically zero, of course. Nevertheless the model serves a useful purpose in introducing
this type of flutter problem. For a review of the recent literature on panel flutter, see
Mei et al. [34].
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Nonsteady Aerodynamics of Lifting and
Non-lifting Surfaces

Earl H. Dowell

Abstract The classical theory for unsteady potential flow models in the supersonic,
Subsonic and transonic mach number ranges is presented including representative
computational methods and results. The discussion with the simplest case of super-
sonic flow in two dimensions and then proceeds to consider the generalization to
three dimensional flow, then subsonic flow and finally transonic flow. The discussion
proceeds from the simplest to themost complex case anddoes not follow the historical
order in which these subjects were treated. Also fourier and laplace transforms are
used to obtain the key results even though other methods were used historically to
first derive the governing integral equations.

Nomenculture

A aerodynamic influence function; see Eq. (5.36)
a, b see definitions following Eq. (5.1)
am, bn see equation preceding (5.10)
ã0 see equation following (5.26)
a∞ free stream speed of sound
B ≡ −b0
Cp ≡ 2(p − p∞)/ρ∞U 2∞; pressure coefficient due to airfoil

motion
Cpms mean steady pressure coefficient due to airfoil finite

thickness at zero angle of attack
CLα

lift curve slope per degre
c airfoil chord
d see equation following (5.26)
d̃ see equation following (5.35)
e see Eq. (5.30)
f vertical airfoil displacement
h rigid body translation of airfoil
Im imaginary part
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i ≡ (−1)
1
2

K aerodynamic kernel function; see Eq. (5.55)
k ≡ ωc

U∞
k̃ see equation following (5.45)
L lift
M pitching moment about leading edge
M∞ free stream Mach number
p perturbation pressure; also Laplace Transform variable
Re Real part
r see Eqs. (5.37), (5.47) and (5.56)
t time
U∞ free stream velocity
wa downwash
x, y, z spatial coordinated
x ′, y′, z′ spatial coordinates
x̃ ≡ a0x

2b0
xc.p. center of pressure; measured from leading edge
x0 see equation preceding (5.10)
α angle of attack
γ ratio of specific heats; also Fourier transform variable
� see Eq. (5.41)
φ velocity potential
ψ see Eq. (5.47)
ρ∞ free stream density
� see Eq. (5.42)
ω frequency of airfoil oscillation
ξ,λ, η dummy integration variables for x, y, z

Superscripts

0 basic solution
′ correction to basic solution
∗ Laplace Transform
† Fourier transform

Subscripts

U, L upper, lower surfaces
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1 Basic Fluid Dynamic Equations

Nonsteady aerodynamics is the study of time dependent fluid motion generated by
(solid) bodies moving in a fluid. Normally (and as distinct from classical acuostics)
the body motion is composed of a (large) steady motion, plus a (small) time depen-
dent motion. In classical acoustics no (large) steady motions are examined. On the
other hand, it should be said, in most of classical aerodynamic theory small time
dependent motions are ignored, i.e. only small steady perturbations from the origi-
nal steady motion are usually examined. However in a number of problems arising
in aeroelasticity, such as a flutter and gust analysis, and also in fluid generated noise,
such as turbulent boundary layers and jet wakes, the more general case must be
attacked. It shall be our concern here.1 The basic assumptions about the nature of the
fluid are that it be inviscid and its thermodynamic processes be isentropic. We shall
first direct our attention to a derivation of the Equations of motion, using the appa-
ratus of vector calculus and, of course, allowing for a large mean flow velocity Let
us recall some purely mathematical relationships developed in the vector calculus.
These are all variations of what is usually termed Gauss’ theorem.2

I
∫∫

c�n d A = ∫∫∫ ∇c dV
II
∫∫ �b · �n d A = ∫∫∫ ∇ · �b dV

III
∫∫ �a(�b · �n) d A = ∫∫∫ [�a(∇ · �b) + (�b · ∇)�a] dV

Also

I V ∇(�a · �a) = 2(�a · ∇)�a + 2�a × (∇ × �a) (IV)

In the above, V is an arbitrary closed volume, A its surface area and �a and �b are
arbitrary vectors and c an arbitrary scalar.

1.1 Conservation of Mass

Consider an arbitrary but fixed volume of fluid, V , enclosed by a surface, A. �q is
the (vector) fluid velocity, d A is the surface elemental area, �n is the surface normal,
�q · �n is the (scalar) velocity component normal to surface,

∫∫
ρ�q · �n d A is the rate of

mass flow (mass flux) through surface, positive outward, ∂/∂t
∫∫∫

ρ dV is the rate
of mass increase inside volume and = ∫∫∫

(∂ρ/∂t)dV since V , through arbitrary, is
fixed.

1References: Chap.7, Liepmann [1]. Chapters4, BA pp.70–81, Brief Review of Fundamentals;
pp. 82–152, Catalog of available results with some historical perspective (1962). Chapters “Stall
Flutter”–Aeroelastic Response of Rotorcraft, BAH, Detailed discussion of the then state-of-the art
(1955) now largely of interest to aficionados. Read pp.188–200 and compare with Chap.4, BA.
AGARD, Vol., II.
2Hildebrand [2].
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The physical principle of continuity of mass states that the fluid increase inside
the volume = rate of mass flow into volume through the surface.

∫ ∫ ∫
∂ρ

∂t
dV = −

∫ ∫
ρ�q · �nd A (1.1)

Using II, the area integral may be transformed to a volume integral. Equation (1.1)
then reads: ∫∫∫

∂ρ

∂t
dV = −

∫∫∫
∇ · (ρ�q)dV

or
∫ ∫ ∫

[∂ρ

∂t
+ ∇ · (ρ�q)]dV = 0

(1.2)

Since V is arbitrary, (1.2)
∂ρ

∂t
+ ∇ · (ρ�q) = 0 (1.3)

This is the conservationofmass, differential equation in three dimensions.Alternative
forms are:

∂ρ

∂t
+ ρ∇ · �q + (�q · ∇)ρ = 0

Dρ

Dt
+ ρ(∇ · �q) = 0 (1.4)

where
D

Dt
≡ ∂

∂t
+ (�q · ∇)

1.2 Conservation of Momentum

The conservation or balance of momentum equation may be derived in a similar way.

∫ ∫ ∫
∂

∂t
(ρ�q)dV

is the rate of momentum increase inside the volume
∫ ∫

ρ�q(�q · �n)d A

is the rate of momentum flow (momentum flux) through surface, positive outward

∫ ∫
−p�n d A
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is the (pressure) force acting on the surface area enclosing the volume (recall �n is
positive outward)

The physical principal is that the total rate of change of momentum= force acting
on V .

∫ ∫ ∫
∂(ρ�q)

∂t
dV +

∫ ∫
ρ�q(�q · �n)d A =

∫ ∫
−p�n d A (4.1)

Using I and III to transform the area integrals and rearranging terms,

∫ ∫ ∫
{ ∂

∂t
(ρ�q) + ρ�q(∇ · �q) + (�q · ∇)ρ�q + ∇ p}dV = 0 (1.6)

Again because V is arbitrary,

∂

∂t
(ρ�q) + ρ�q(∇ · �q) + (�q · ∇)ρ�q = −∇ p (1.7)

Alternative forms are
D

Dt
(ρ�q) + ρ�q(∇ · �q) = −∇ p

or

ρ
D�q
Dt

+ �q[ρ∇ · �q + Dρ

Dt
] = −∇ρ (1.8)

where the bracketed term in (1.8) vanishes from (1.4).
Finally to complete our system of equations we have the isentropic relation,

p/ργ = constant (1.9)

Equations (1.3),(1.8) and (1.9) are five scalar equations (or two scalar plus one vector
equations) in five scalar unknowns: p, ρ and three scalar components of the (vector)
velocity, �q .

1.3 Irrotational Flow, Kelvin’s Theorem and Bernoulli’s
Equation

To solve these nonlinear, partial differential equations we must integrate them. Gen-
erally, this is an impossible task except by numerical procedures. However, there is
one integration that may be preformed which is both interesting theoretically and
useful for application.
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Consider the momentum equation which may be written

D�q
Dt

= −∇ p

ρ
(1.10)

On the right-hand side, using Leibnitz’ Rule,3 we may write

∇ p

ρ
= ∇

∫ p

pre f

dp1
ρ1(p1)

(1.11)

where ρ1, p1 are dummy integration variables, and pre f some constant reference
pressure on the left-hand side

D�q
Dt

≡ ∂ �q
∂t

+ (�q · ∇)�q

In the above the second term may be written as

(�q · ∇)�q = ∇ (�q · �q)

2
from IV

and if we assume the flow is irrotational,

�q = ∇φ (1.12)

where φ is the scalar velocity potential. Equation (1.12) implies and is implied by

∇ × �q = 0 (1.13)

The vanishing of the curl of velocity is a consequence of Kelvin’s Theorem which
states that a flow which is initially irrotational, ∇ × �q = 0, remains so at all sub-
sequent time in the absent of dissipation, e.g., viscosity or shock waves. It can be
proven using (1.3), (1.8) and (1.9). No additional assumptions are needed.

Let us pause to prove this result. We shall begin with the momentum equation.

D�q
Dt

= −∇ p

ρ

First form ∇× and then dot the result into �nA d A and integrate over A. �nA is a unit
normal to A and A itself is an arbitrary area of the fluid. The result is

D

Dt

∫ ∫
(∇ × �q) · �nA d A = −

∫ ∫
[∇ × (

∇ p

ρ
)] · �nA d A

3Hildebrand [2], pp. 348–353.
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From Stokes Theorem,4

−
∫ ∫

[∇ × (
∇ p

ρ
)] · �nA d A = −

∫ ∇ p

ρ
· d�r

= −
∮

dp

ρ

d�r ≡ arc length along contour of the bounding arc of A. Since the bounding contour
is closed, and ρ is solely a function of p,

∮
dp

ρ
= 0

Hence
D

Dt

∫ ∫
(∇ × �q) · �nA d A = 0

Since A is arbitrary
∇ × �q = constant

and if ∇ × �q = 0 initially, it remains so thereafter.
Now let us return to the integration of the momentum equation, (1.10). Collecting

the several terms from (1.10)–(1.12), we have

∂

∂t
(∇φ) + ∇ (∇φ · ∇φ)

2
+ ∇

∫ p

pre f

dp1
ρ1

= 0 (1.14)

or

∇[∂φ

∂t
+ ∇φ · ∇φ

2
+
∫ p

pre f

dp1
ρ1

] = 0

or
∂φ

∂t
+ ∇φ · ∇φ

2
+
∫ p

pre f

dp1
ρ1

= F(t) (1.15)

We may evaluate F(t) by examining the fluid at some point where we know its state.
For example, if we are considering an aircraft or missile flying at constant velocity
through the atmosphere we know that far away from the body

�q = U∞�i

φ = U∞x

p = p∞

4Hildebrand [2], p. 318.
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If we choose as the lower limit, pre f = p∞ then (1.15) becomes

0 + U 2∞
2

+ 0 = F(t)

and we find that F is a constant independent of space and time. Hence finally

∂φ

∂t
+ ∇φ · ∇φ

2
+
∫ p

p∞

dp1
ρ1

= U 2∞
2

(1.16)

(1.16) is usually referred to as Bernoulli’s equation although the derivation for non-
steady flow is due to Kelvin.

The practical value of Bernoulli’s equation is that it allows one to relate p to φ.
Using

p

p∞
= (

ρ

ρ∞
)γ

one may compute from (1.16) (the reader may do the computation)

Cp = p − p∞
γ
2 p∞M2

= 2

γM2
{[1 + γ − 1

2
M2(1 − (�q · �q + 2 ∂φ

∂t )

U 2∞
)]γ/(γ−1) − 1} (1.17)

where the Mach number is

M2 ≡ U 2∞
a2∞

and

a2 ≡ dp

dρ
= γ p

ρ

a is the speed of sound.

1.4 Derivation of a Single Equation for Velocity Potential

Most solutions are obtained by solving this equation.
We shall begin with the conservation of mass equation (1.14)

1

ρ

∂ρ

∂t
+ �q · ∇ρ

ρ
+ ∇ · �q = 0 (1.4)

Consider the first term. Using Leibnitz’ rule we way write

∂

∂t

∫ p

p∞

dp1
ρ1

= ∂ρ

∂t

dp

dρ

d

dp

∫ p

p∞

dp1
ρ1

= ∂ρ

∂t
a2

1

ρ
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Thus
1

ρ

∂ρ

∂t
= 1

a2
∂

∂t

∫ p

p∞

dp1
ρ1

= 1

a2
∂

∂t
[∂φ

∂t
+ ∇φ · ∇φ

2
+ U 2∞

2
] (1.18)

from Bernouilli’s equation (1.16).
In similar fashion, the second term may be written

�q · ∇ρ

ρ
= −�q · ∇

a2
[∂φ

∂t
+ ∇φ · ∇φ

2
] (1.19)

Finally, the third term
∇ · �q = ∇ · ∇φ = ∇2φ (1.20)

Collecting terms, and rearranging

− 1

a2

{
∂2φ

∂t2
+ ∂

∂t

(∇φ · ∇φ

2

)

+ ∇φ · ∂

∂t
∇φ + ∇φ · ∇

(∇φ · ∇φ

2

)}

+ ∇2φ = 0

∇2φ − 1

a2

[
∂

∂t
(∇φ · ∇φ) + ∂2φ

∂t2
+ ∇φ · ∇

(∇φ · ∇φ

2

)]

= 0

(1.21)

Note we have not yet accomplished what we set out to do, since (1.21) is a single
equation with two unknowns, φ and a. A second independent relation between φ and
a is needed.

The simplest method of obtaining this is to use

a2 ≡ dp

dρ

and p

ργ
= constant

in Bernoulli’s equation. The reader may verify that

a2 − a2∞
γ − 1

= U 2∞
2

− (
∂φ

∂t
+ ∇φ · ∇φ

2
) (1.22)

1.5 Small Perturbation Theory

Equations (1.21) and (1.22) are often too difficult to solve. Hence a simpler approx-
imate theory is sought.
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As in acoustics we shall linearize about a uniform equilibrium state. Assume

a = a∞ + â

p = p∞ + p̂

ρ = ρ∞ + ρ̂

�q = U∞�i + �̂q
φ = U∞x + φ̂

∇φ = U∞�i + ∇φ̂

(1.23)

Note in the present case we linearize about a uniform flow with velocity,U∞. Using
(1.23) in (1.21) and retraining lowest order terms:

First term:
∇2φ → ∇2φ̂

Second term:

∂

∂t
(∇φ · ∇φ) + ∂2φ

∂t2
+ ∇φ · ∇(

∇φ · ∇φ

2
)

=2[U∞�i + ∇φ̂] · ∂

∂t
[U∞�i + ∇φ̂] + ∂2φ̂

∂t2

+ [U∞�i + ∇φ̂] · ∇[U
2∞
2

+U∞�i · ∇φ̂ + 1

2
∇φ̂ · ∇φ̂]

=2U∞
∂2φ̂

∂x∂t
+ ∂2φ̂

∂t2
+U 2

∞
∂2φ̂

∂x2
+ O(φ̂2)

Thus the linear or small perturbation equation becomes

∇2φ̂ − 1

a2∞
[∂

2φ̂

∂t2
+ 2U∞

∂2φ̂

∂x∂t
+U 2

∞
∂2φ̂

∂x2
] = 0 (1.24)

Note that we have replaced a by a∞ which is correct to lowest order. By examining
(1.22) one may show that

â = −γ − 1

2

[ ∂φ̂
∂t +U∞ ∂φ̂

∂x ]
a∞

(1.25)

Hence it is indeed consistent to replace a by a∞as long as M is not too large where
M ≡ U∞/a∞.

In a similar fashion the relationship between pressure and velocity potential,
(1.17), may be linearized
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Cp 	 p̂
γ
2 p∞M2

= − 2

U∞
∂φ̂

∂x
− 2

U 2∞

∂φ̂

∂t

or

p̂ = −ρ∞[∂φ̂

∂t
+U∞

∂φ̂

∂x
] (1.26)

1.5.1 Reduction to Classical Acoustics

By making a transformation of coordinates to a system at rest with respect to the
fluid, we may formally reduce the problem to that of classical acoustics.

Define
x ′ ≡ x −U∞t

y′ ≡ y

z′ ≡ z

t ′ ≡ t

then
∂

∂x
= ∂

∂x ′

∂

∂t
= ∂x ′

∂t

∂

∂x ′ + ∂t ′

∂t

∂

∂t ′

= −U∞
∂

∂x ′ + ∂

∂t ′

and (1.24) becomes the classical wave equation

∇′2φ̂ − 1

a2∞

∂2φ̂

∂t ′2 = 0 (1.27)

and (1.26) becomes

p̂ = −ρ∞
∂φ̂

∂t ′

The general solution to (1.27) is

φ̂ = f (αx ′ + βy′ + εz′ + a∞t ′) + g(αx ′ + βy′ + εz′ − a∞t ′)

where
α2 + β2 + ε2 = 1
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Unfortunately the above solution is not very useful, nor is the primed coordinate
system, as it is difficult to satisfy the boundary conditions on the moving body in a
coordinate system at rest with respect to the air (and hence moving with respect to
the body). That is, obtaining solutions of (1.24) or (1.27) is not especially difficult
per se. It is obtaining solutions subject to the boundary conditions of interest which
is challenging.

1.5.2 Boundary Conditions

We shall need to consider boundary conditions of various types and also certain
continuity conditions as well. In general we shall see that, at least in the small
perturbation theory, it is the boundary conditions, rather than the equation of motions
per se, which offer the principal difficulty.

The BODY BOUNDARY CONDITION states the normal velocity of the fluid at
the body surface equals the normal velocity of the body.

Consider a body whose surface is described by F(x, y, z, t) = 0 at some time,
t , and at some later time, t + �t , by F(x + �x, y + �y, z + �z, t + �t) = 0. See
Fig. 1

Now
�F ≡ F(�r + ��r , t + �t) − F(�r , t) = 0

and also

�F = ∂F

∂x
�x + ∂F

∂y
�y + ∂F

∂z
�z + ∂F

∂t
�t

= ∇F · ��r + ∂F

∂t
�t

Thus

∇F · ��r + ∂F

∂t
�t = 0 (1.28)

Now

Fig. 1 Body geometry F(x+ x, y+ z, t+ t)=0y, z+

F(x,y,z,t)=0

r + r

r
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�n = ∇F

|∇F | unit normal (1.29)

also
�V ≡ lim

�t→0

��r
�t

≡ body velocity

Thus the body normal velocity is

�V · �n = ��r
�t

· ∇F

|∇F |
= −∂F

∂t

1

|∇F | from (4.1.28)
(1.30)

The boundary condition on the body is, as stated before, the normal fluid velocity
equals the normal body velocity on the body. Thus, using (1.28) and (1.29) one has

�q · �n = �q · ∇F

|∇F | = −∂F

∂t

1

|∇F | (1.31)

or
∂F

∂t
+ �q · ∇F = 0 (1.32)

on the body surface
F = 0

Example. Planar (airfoil) surface

F(x, y, z, t) ≡ z − f (x, y, t)

where f is the height above the plane, z = 0, of the airfoil surface. See Fig. 2.
Equation (1.32) may be written:

Fig. 2 Airfoil geometry

z u
zl

UPPER SURFACE OF
AIRFOIL

LOWER  SURFACE OF AIRFOIL
x

z
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−∂ f

∂t
+ [(U∞ + u)�ı + v �j + w�k] ·

[

−∂ f

∂x
�ı − ∂ f

∂y
�j + �k

]

= 0

or
∂ f

∂t
+ (U∞ + u)

∂ f

∂x
+ v

∂ f

∂y
= w (1.33)

on
z = f (x, y, t) (1.34)

One may approximate (1.33) and (1.34) using the concept of a Taylor series about
z = 0 and noting that u 
 U∞.

∂ f

∂t
+U∞

∂ f

∂x
+ v

∂ f

∂y
= w on z = 0 (1.35)

Note

wz= f = wz=0 + ∂w

∂z

∣
∣
∣
z=0

f + H.O.T.

	 wz=0

to a consistent approximation within the context of small perturbation theory.

1.5.3 Symmetry and Anti-symmetry

One of the several advantages of linearization is the ability to divide the aerodynamic
problem into two distinct cases, symmetrical (thickness) and anti-symmetrical (lift-
ing) flow. If one denotes the upper surface by

fupper = zu(x, y, t)

and the lower surface by
flower = zl(x, y, t)

then it is useful to write
zu ≡ zt + zL (1.36)

zl ≡ −zt + zL

where (1.36) defines zt , thickness, and zL , lifting contributions to zu and zl .
One may retreat the thickness and lifting cases separately (due to linearity) and

superimpose their results for any zu and zl . The thickness case is much simpler than
the lifting case as we shall see.

Recall (1.35), (we henceforward drop the ∧ on φ, p)
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∂ f

∂t
+U∞

∂ f

∂x
= ∂φ

∂z

∣
∣
∣
z=0+ or 0−

(1.35)

where + denotes the upper surface and—denotes the lower. From (1.35) and (1.36),
one sees that

Thickness case

∂φ

∂z
is anti-symmetric with respect to z (discontinuous across airfoil)

hence φ is symmetric (and also p).

Lifting case

∂φ

∂z
is symmetric with respect to z (continuous across airfoil)

hence φ is anti-symmetric (and also p).
Consider now the pressure difference across the airfoil.

�p ≡ pl − pu = −ρ

[
∂�φ

∂t
+U∞

∂�φ

∂x

]

Thus �p = 0 for the thickness case, i.e., there is no lift on the airfoil.
The OFF-BODY BOUNDARY CONDITIONS (these are really continuity con-

ditions), state that p and �q · �n are continuous across any fluid surface. In particular,
for z = 0,

pu = pl and
∂φ

∂z

∣
∣
∣
u

= ∂φ

∂z

∣
∣
∣
l

(1.37)

(1.37) may be used to prove some interesting results.

Thickness case
∂φ

∂z
= 0 off wing

This follows from the fact that since ∂φ/∂z is anti-symmetric, one has

∂φ

∂z

∣
∣
∣
0+

= −∂φ

∂z

∣
∣
∣
0−

But from the second of (1.37), this can only be true if

∂φ

∂z

∣
∣
∣
0+

= ∂φ

∂z

∣
∣
∣
0−

= 0
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Lifting case
p = 0 off wing

This follows in a similar way using the anti-symmetry of p and the first of (1.37).
The BOUNDARY CONDITIONS AT INFINITY are conditions of finiteness

or outwardly propagating waves (Sommerfeld radiation condition) which will be
imposed at infinity, z → ±∞.

2 Supersonic Flow

It is convenient to distinguish between various flow regimes on the basis of geometry
(two or three dimensions) and Mach number (subsonic or supersonic). We shall not
give a historical development, but shall instead begin with the simplest regime and
proceed to the more difficult problems. Our main focus will be the determination of
pressure distributions on airfoils and wings.

2.1 Two-Dimensional Flow

This flow regime5 is the simplest as the fluid ahead of the body remains undisturbed
and that behind the body does not influence the pressure distribution on the body.
These results follow from themathematics, but they also can be seen from reasonably
simple physical considerations. Take a body moving with velocity, U∞, through a
fluid whose undisturbed speed of sound is a∞, where M ≡ U∞/a∞ > 1. At any
point in the fluid disturbed by the passage of the body, disturbances will propagate
to the right with velocity,+a∞, and to the left,−a∞ with respect to the fluid. That is,
as viewed in the prime coordinate system. The corresponding propagation velocities
as seen with respect to the body or airfoil will be:

U∞ − a∞ and U∞ + a∞

Note these are both positive, hence thefluid ahead of the airfoil is never disturbed; also
disturbance behind the airfoil never reach the body. For subsonic flow, M < 1, the
situation is more complicated. Even for three-dimensional, supersonic flow onemust
consider possible effects of disturbances off the side edges in the third dimension.
Hence the two-dimensional, supersonic problems offers considerable simplification.

One of the consequences of the simplicity, as we will see, is that no distinc-
tion between thickness and lifting cases need be made as far as the mathematics is
concerned. Hence the body boundary conditions is (considering z > 0)

5See van der Vooren [3].
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∂φ

∂z

∣
∣
∣
z=0

= ∂za
∂t

+U∞
∂za
∂x

≡ wa (2.1)

where one may use the notation za ≡ f interchangeably and the equation of fluid
motion is

∇2
x,zφ − 1

a2∞
[ ∂

∂t
+U∞

∂

∂x
]2φ = 0 (2.2)

2.2 Simple Harmonic Motion of the Airfoil

Most of the available literature is for simple harmonic motion, that is:

za = z̄a(x)e
iωt

wa = w̄a(x)e
iωt

φ = φ̄(x, z)eiωt

p = p̄(x, z)eiwt

(2.3)

Hence we shall consider this case first. Thus (2.1) becomes:

∂φ̄

∂z�
�eiωt = w̄a��eiωt (2.4)

and (2.2)

φ̄xx + φ̄zz − 1

a2∞
[−ω2φ̄ + 2iωU∞

∂φ̄

∂x
+U 2

∞
∂2φ̄

∂x2
] = 0 (2.5)

Since φ̄, ∂φ̄/∂x , etc., are zero for x < 0, this suggests the possibility of using a
Laplace Transform with respect to x , i.e.,

�(p, z) ≡ L{φ̄} =
∫ ∞

0
φ̄e−pxdx (2.6)

W (p) ≡ L{w̄a} =
∫ ∞

0
w̄ae

−pxdx (2.7)

Taking a transform of (2.4) and (2.5) gives:

d�

dz

∣
∣
∣
z=0

= W (2.8)

d2�

dz2
= μ2� (2.9)
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where

μ2 ≡ (M2 − 1)p2 + 2Mi
ω p

a∞
− ω2

a2∞

= (M2 − 1){[p + iMω

a∞(M2 − 1)
]2 + ω2

a2∞(M2 − 1)2
}

Note M ≡ U∞/a∞. Equations (2.8) and (2.9) are now equations we can solve. The
solution to (2.9) is

� = Aeμz + Be−μz (2.10)

Select A ≡ 0 to keep � finite as z → +∞. Hence

� = Be−μz

where B can be determined using (2.8). From the above,

d�

dz
|z=0 = −μB

Using this result and (2.8), one has

−μB = W

or
B = −W/μ

and hence
� = −(W/μ)e−μz (2.11)

Inverting (2.11), using the convolution theorem,

φ̄ = −
∫ x

0
w̄a(ξ)L−1{e

−μz

μ
}dξ (2.12)

and, in particular,

φ̄(x, z = 0) = −
∫ x

0
w̄a(ξ)L−1{ 1

μ
}dξ

From H. Bateman, ‘Table of Integral Transforms’, McGraw-Hill, 1954 [6].

L−1{ 1
√
p2 + α2

} = J0(αx)

L−1{F(p + a)} = e−ax f (x)



Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces 177

where L−1{F(p)} ≡ f (x). Thus

L−1{ 1
μ

} = exp[− iMω
a∞(M2−1) (x − ξ)]
(M2 − 1)

1
2

J0[ ω

a∞(M2 − 1)
(x − ξ)] (2.13)

L−1{eμz/μ} may be computed by similar methods. In nondimensional terms,

φ̄(x∗, 0) = − 2b

(M2 − 1)
1
2

∫ x∗

0
w̄(ξ∗) exp[−i ω̄(x∗ − ξ∗)]J0[ ω̄

M
(x∗ − ξ∗)]dξ∗

(2.14)
where

ω̄ ≡ kM2

M2 − 1
, k ≡ 2bω

U∞
is a reduced frequency and

x∗ ≡ x/2b, ξ∗ ≡ ξ/2b

One can now use Bernoulli’s equation to compute p

p = −ρ∞[∂φ

∂t
+U∞

∂φ

∂x
]

or

p̄ = −ρ∞[iωφ̄ +U∞
∂φ̄

∂x
]

= ρ∞U∞
2b

[ ∂φ̄

∂x∗ + ikφ̄]

Using Leibnitz’ rule,

p̄ = − ρ∞U 2∞
(M2 − 1)

1
2

{
∫ x∗

0
[ik w̄a

U∞
+ 1

U∞
dw̄a

dξ∗ ]e−··· J0[· · · ]dξ∗

+ w̄(0)

U∞
e−iωx∗

J0[ ω̄

M
x∗]}

(2.15)

2.3 Discussion of Inversion

Formally the inversion formula reads:

φ̄(x, z) = 1

2πi

∫ i∞

−i∞
�(p, z)epxdp (2.16)

Define α ≡ i p, (α can be thought of as a Fourier transform variable), then
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φ̄(x, z) = 1

2π

∫ ∞

−∞
�(−iα, z)e−iαxdα (2.17)

and

μ =
√
M2 − 1

√

−[−α + Mω

a∞(M2 − 1)
]2 + ω2

a2∞(M2 − 1)2

where

� = ±W

μ
e±μz (2.18)

Consider now μ as α = −∞ → +∞. The quantity under the radical changes sign
at

α = α1, α2 = w

a∞
1

M ± 1

where μ = 0. Thus

μ = ±i |μ| for α < α1 or α > α2

= ±|μ| for α1 < α < α2

where

|μ| =
√

(M2 − 1)
∣
∣
∣− [−α + Mω

a∞(M2 − 1)
]2 + ω2

a2∞(M2 − 1)2

∣
∣
∣
1
2

In the interval,α1 < α < α2, we have seen wemust select the minus sign so that� is
finite at infinity. What about elsewhere? In particular, when α < α1 and/or α > α2?

The solution for φ = φ̄eiωt has the form for α1 < α < α2,

φ = − 1

2π

∫ ∞

−∞
±W

μ
exp(±μz − iαx + iωt)dα (2.19)

In the intervals α < α1 and/or α > α2, (2.19) reads:

φ = − 1

2π

∫ ∞

−∞
±i

W

|μ|exp(±i |μ|z − iαx + iωt)dα (2.20)

To determine the proper sign, we require that solution represent an outgoing wave
in the fluid fixed coordinate system, i.e., in the prime system. In the prime system
x ′ = x −U∞t, z′ = z, t ′ = t and thus

φ = − 1

2π

∫ ∞

−∞
±i

W

|μ|exp[±i |μ|z′ − iαx ′ + i(ω −U∞α)t ′]dα (2.21)
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Consider a z′, t ′ wave for fixed x ′. For a wave to be outgoing, if ω −U∞α > 0 then
one must choose—sign while if ω −U∞α < 0 then choose + sign. Note that

ω −U∞α = 0

when
α = α3 ≡ ω

U∞
= ω

a∞M

also note that ω

a∞(M + 1)
≡ α1 < α3 < α2 ≡ ω

a∞(M − 1)

Thus the signs are chosen as sketched below.

Here again

α1 ≡ ω

a∞
1

M + 1
α2 ≡ ω

a∞
1

M − 1
α3 ≡ ω

a∞
1

M

The reader may find it of interest to consider the subsonic case, M < 1, using similar
reasoning.

Knowing the appropriate choice for μ in the several intervals, (2.19)–(2.21) may
be integrated numerically, or by contour integration. The inversion formula used
previously were obtained by contour integration.

2.4 Discussion of Physical Significance of the Results

Because of the complicated mathematical form of our solution, it is difficult to
understand its physical significance. Perhaps it is most helpful for this purpose to
consider the limits of low and high frequency.
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One may show that (from (2.11) et. seq. or (2.15))6

ω → 0: steady flow

p(x) → ρ∞U 2∞√
M2 − 1

wa

U
(x), p(x, z) = ρ∞U 2∞

β

wa(x − βz)

U∞

wa

U∞
→ ∂ f

∂x
β ≡

√
M2 − 1

ω → ∞:highly unsteady flow

p(x, t) → ρ∞U 2∞
M

wa(x, t)

U∞
, p(x, z, t) = ρ∞U 2∞

M

wa

U∞
(x − Mz, t)

wa

U∞
→ 1

U∞
∂ f

∂t
+ ∂ f

∂x

The latter result may be written as

p = ρ∞a∞wa

which is the pressure on a piston in a long, narrow (one-dimensional) tube with ω
the velocity of the piston. It is, therefore, termed ‘piston theory’ for obvious reasons.
Note that in the limits of low and high frequency the pressure at point x depends
only upon the downwash at the same point. For arbitrary ω, the pressure a one point
depends in general upon the downwash at all other points. See (2.15). Hence the
flow has a simpler behavior in the limits of small and large ω than for intermediate
ω. Also recall that low and high frequency may be interpreted in the time domain
for transient motion as long and short time respectively. This follows from the initial
and final value Laplace Transform theorems.7 For example, if we consider a motion
which corresponds to a step change in angle of attack, α, we have

f = −xα for t > 0

= 0 for t < 0

wa = −α for t > 0

wa/U∞ = 0 for t < 0

6See the appropriate example problem in Appendix II for details.
7Hildebrand [2].
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Hence for short time, (large w)

p = −ρ∞U 2∞
M

α

and long time, (small ω)

p = −ρ∞U 2∞α√
M2 − 1

The result for short time may also be deduced by applying a Laplace Transform with
respect to time and taking the limit t → 0 of the formal inversion.

2.4.1 General Comments

A few general comments should be made about the solution. First of all, the solution
has been obtained for simple harmonic motion. In principle, the solution for arbitrary
time dependent motion may be obtained via Fourier superposition of the simple
harmonic motion result. Actually it is more efficient to use a Laplace Transform with
respect to time and invert the time variable prior to inverting the spatial variable, x .
Secondly, with regard to the distinction between the lifting and thickness cases, one
can easily show by direct calculation and using the method applied previously that

thickness z = 0+ w = wa p = p+

z = 0− w = −wa p = p+

lifting z = 0+ w = wa p = p+

z = 0− w = wa p = −p+

where p+ is the solution previously obtained. Of course these results also follow
from our earlier general discussion of boundary conditions.

2.5 Gusts

Finally it is of interest to consider how aerodynamic pressures develop on a body
moving through a nonuniform flow, i.e., a ‘gust’. If the body is motionless, the body
boundary condition is that the total fluid velocity be zero on the body.

∂φ

∂z

∣
∣
∣
z=0

+ wG = 0
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where wG is the specified vertical ‘gust’ velocity and ∂φ/∂z is the perturbation
fluid velocity resulting from the body passing through the gust field. Hence in our
previous development we may replacew by—wGand the same analysis then applies.
Frequently one assumes that the gust field is ‘frozen’, i.e., fixed with respect to the
fluid fixed coordinates, x ′, y′, z′, t ′. Hence

wG = wG(x ′, y′)

= wG(x −U∞t, y)

Further a special case is a ‘sharp edge’ gust for which one simply has

wG = w0 for x ′ < 0

= 0 for x ′ > 0

or
wG = w0 for t > x/U∞

= 0 for t < x/U∞

These special assumptions are frequently used in applications.
Solutions for the sharp edge gust can be obtained through superposition of (sim-

ple harmonic motion) sinusoidal gusts. However, it is more efficient to use methods
developed for transient motion. Hence before turning to three-dimensional super-
sonic flow, we consider transient motion. Transient solutions can be obtained directly
(in contrast to Fourier superposition of simple harmonic motion results) for a two-
dimensional, supersonic flow.

2.6 Transient Motion

Taking a Laplace transform with respect to time and a Fourier transform with respect
to the streamwise coordinate, x , the analog of (2.11) is

LF{φ}at z=0 = −LFwa

μ
(2.22)

iω ≡ s is the Laplace Transform variable (where ω was the frequency in the simple
harmonic motion result), α is the Fourier transform variable (where iα ≡ p was the
Laplace transform variable used in the previous simple harmonicmotion result),L ≡
Laplace transform, F ≡ Fourier transform, and
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μ2 ≡ −(M2 − 1)α2 + 2
Msi

a∞
α + s2

a2∞

Inverting the Laplace Transform, and using ∗ to denote a Fourier transform

φ∗|at z=0 = −
∫ t

0
w∗(τ )L−1{ 1

μ
}|t−τdτ

= −a∞
∫ t

∞
w∗(τ ) exp[−iαMa∞(t − τ )]J0[a∞α(t − τ )]dτ

(2.23)

Now from (1.26),

p∗ = −ρ∞
[
∂φ∗

∂t
+U∞iαφ∗

]

Thus using (2.23) and the above,

p∗ = ρ∞
{

a∞w∗(t) − a2∞

∫ t

0
w∗(τ )αexp[−iαMa∞(t − τ )]J1[αa∞(t − τ )]dτ

}

≡ p∗
0 + p∗

1
(2.24)

Finally, a formal solution is obtained using

p = 1

2π

∫ ∞

−∞
p∗eiαxdα (2.25)

The lift is obtained by using (2.24) and (2.25) in its definition below.

L ≡ −2
∫ 2b

0
p dx = −2ρ∞a∞

∫ 2b

0
w dx − 1

π

∫ ∞

−∞
p∗
1

[
eiα2b − 1

iα

]

dα (2.26)

In the second term the integration over x has been carried out explicitly.

2.7 Lift, Due to Airfoil Motion

Considering a translating airfoil, wa = −dh/dt , for example, we have

w∗ = −dh

dt

[e−iα2b − 1]
−iα

and
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L = 2ρ∞a∞
dh

dt
(2b)

+ ρ∞a2∞

∫ t

0

dh

dt
(τ )K (t − τ )dτ

(2.27)

where

K (t − τ ) ≡ − 1

π

∫ ∞

−∞
exp[−iαMa∞(t − τ )]

α
J1[eiα2b − 1][e−iα2b − 1]dα

K may be simplified to

K (t − τ ) = − 4

π

∫ ∞

0

J1[a∞α(t − τ )] cos[αMa∞(t − τ )]
α

· [1 − cosα2b]dα

One can similarly work out aerodynamic lift (and moment) for pitching and other
motions.

2.8 Lift, Due to Atmospheric Gust

wG(x −U∞t) = wG(x ′)

x, t are coordinates fixed with respect to airfoil and x ′, t ′ are coordinates fixed with
respect to atmosphere. At t = t ′ = 0 the airfoil enters the gust; the boundary con-
dition is wa + wG = 0 or wa = −wG on airfoil. See Fig. 3. Short and long time
correspond to high and low frequency; hence it is of interest to use our previously
developed approximate theories for these limits. Subsequently we treat the full tran-
sient case.
(i) Piston Theory (short t) on the upper and lower airfoil surfaces

pu = −ρ∞a∞wG

and
pl = ρ∞a∞wG

Fig. 3 Frozen gust
geometry in fluid fixed
coordinate system
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Thus

L(t) =
∫

(pl − pu)dx

= 2ρ∞a∞
∫ 2b

0
wG(x −U∞t)dx

For simplicity, we first consider a sharp edge gust.
Let

wG = w0 for x ′ < 0 or x < U∞t, t > x/U∞
= 0 for x ′ > 0 or x > U∞t, t < x/U∞

Thus

L(t) = 2ρ∞a∞w0

∫ U∞t

0
dx

= 2ρ∞a∞w0U∞t for t <
2b

U∞

= 2ρ∞a∞w02b for t >
2b

U∞

(2.28)

(ii) Static Theory (large t)

L(t) = 2ρ∞U 2∞√
M2 − 1

w0

U∞

∫ 2b

0
dx = 4b

ρ∞a∞w0M√
M2 − 1

(2.29)

(iii) Full Transient Theory from (2.24),

p = ρ∞a∞[wa(x, t) − a∞
∫ t

0
αw∗

a(α, τ )e−(··· ) J1(· · · )dτ ] (2.24)

Special case. Sharp Edge Gust

wa = −wG(x −U∞t) = −w0 for x < U∞t

= 0 for x > U∞t

Thus

w∗
a(α, τ ) = −

∫ ∞

−∞
e−iαxwG(x −U∞τ )dx

= −w0

∫ U∞τ

−∞
e−iαxdx

= −w0

−iα
eiαx

∣
∣
∣
U∞τ

−∞

= w0

iα
eiαU∞τ
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Using the above and (2.24),

p = ρ∞a∞[−wG(x −U∞t) − a∞w0

2π

×
∫ ∞

−∞

∫ t

0
α
e−iαU∞t

iα
e−(·) J1( )dτeiαxdα]

(2.30)

Again one may proceed further by computing the lift.

L = 2ρ∞a∞w0 U∞t, for U∞t < 2b

2b, for U∞t > 2b

+2ρ∞
a2∞w0

2π

∫ 2b

0

∫ ∞

−∞

∫ t

0
· · · dτdαdx

Integrating over x first, and introducing non-dimensional notation

s ≡ tU∞
2b

α∗ ≡ α2b

σ ≡ τU∞
2b

one obtains
L

2ρ∞U 2∞2b
= w0

U∞

[
s

M
− 1

M2

∫ s

0
F(s, σ)dσ

]

(2.31)

where

F(s, σ) ≡ Wo

U

1

π

∫ ∞

0

[− cosα∗s + cosα∗(1 − s)]J1[α∗ (s−σ)

M ]
α∗ dα∗

General case. Arbitrary Frozen Gust

w∗
a(α, τ ) = −

∫ ∞

−∞
e−iαxwG(x −U∞τ )dx

= −
∫ Uτ

−∞
e−iαxwG(x −U∞τ )dx

Let x ′ = x −U∞t, dx ′ = dx , then

w∗
a = −e−iαU∞τ

∫ 0

−∞
e−iαx ′

wG(x ′)dx ′

= −e−iαU∞τw∗
G(α)
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Using above in (2.24), the pressure is

p = ρ∞a∞[−wG(x −U∞t)

+ a∞
2π

∫ ∞

−∞

∫ t

0
w∗

Gαe−iαU∞τe−( ) J1( )dτeiαxdα]

and the lift,

L =2ρ∞a∞
∫ 2b

0
wG(x −U∞t)dx

− 2ρ∞a2∞
2π

∫ 2b

0

∫ ∞

−∞

∫ t

0
· · · dτ dα dx

Integrating over x first,

L

2ρ∞U 2∞2b
=
∫ 2b

0

wG/U∞
M

dx

2b
− 1

M2

∫ s

0
F(s,σ)dσ (2.32)

where now

F(s,σ) ≡ 1

π

∫ ∞

0
{W ∗

I {cos[α∗(1 − s)] − cosα∗s}J1[α
∗(s − σ)

M
]

+ W ∗
R{sin[α∗(1 − s)] + sinα∗s}J1[α

∗(s − σ)

M
]}dα∗

and

W ∗ ≡ w∗

U∞2b

For an alternative approach to transient motion which makes use of an anal-
ogy between two-dimensional time dependent motion and three-dimensional steady
motion, the reader may consult Lomax [4].

This completes our development for two-dimensional, supersonic flow. We now
have the capability for determining the aerodynamic pressures necessary for flutter,
gust and even, in principle, acoustic analyses for this type of flow. For the latter the
pressure in the ‘far field’ (large z) is usually of interest. Now let us consider similar
analyses for three-dimensional, supersonic flow.8

2.9 Three Dimensional Flow

We shall now add the third dimension to our analysis. As we shall see there is no
essential complication with respect to solving the governing differential equation;

8References: BA, pp. 134–139; Landahl and Stark [5], Watkins [6].
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the principal difficulty arises with respect to satisfying all of the relevant boundary
conditions.

The convected wave equation reads in three spatial dimensions and time

∇2φ − 1

a2∞
[∂

2φ

∂t2
+ 2U∞

∂2φ

∂x∂t
+U 2

∞
∂2φ

∂x2
] = 0 (2.33)

As before we assume simple harmonic time dependance.

φ = φ̄(x, y, z)eiωt

Further taking a Laplace transform with respect to x , gives

∂2�

∂z2
+ ∂2�

∂y2
= μ2� (2.34)

where

� ≡ Lφ̄ =
∫ ∞

0
φ̄e−pxdx

μ =
√
M2 − 1

[(

p + iωM

a∞(M2 − 1)

)2

+ ω2

a2∞(M2 − 1)2

] 1
2

To reduce (2.33) to an ordinary differential equation in z, we take a Fourier
transform with respect to y. Why would a Laplace transform be inappropriate? The
result is:

d2�∗

dz2
= (μ2 + γ2)�∗ (2.35)

where

�∗ ≡ F� =
∫ ∞

−∞
�e−iγydy

The solution to (2.34) is

�∗ = A exp[+(μ2 + γ2)
1
2 z] + B exp[−(μ2 + γ2)

1
2 z]

Selecting the appropriate solution for finiteness and/or radiation as z → +∞, we
have

�∗ = B exp[−(μ2 + γ2)
1
2 z] (2.36)

Applying the body boundary condition (as transformed)

d�∗

dx

∣
∣
∣
z=0

= W ∗ (2.37)
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we have from (2.36) and (2.37)

B = − W ∗

(μ2 + γ2)
1
2

and hence

�∗
z=0 = − W ∗

(μ2 + γ2)
1
2

Using the convolution theorem

φ̄(x, y, z = 0) = −
∫ x

0

∫ ∞

−∞
w̄a(ξ, η)L−1F−1 1

(μ2 + γ2)
1
2

dξdη (2.38)

Now let us consider the transform inversions, The Laplace inversion is essentially
the same as for the two-dimensional case.

L−1 1

(μ2 + γ2)
1
2

= exp[− iMωx
α∞(M2−1) ]√
M2 − 1

J0([ ω2

a2∞(M2 − 1)2
+ γ2

(M2 − 1)
] 1
2 x)

To perform the Fourier inversion, we write

F−1{L−1{ 1

(μ2 + γ2)
1
2

}}

= exp[− iMωx
α∞(M2−1) ]

2π
√
M2 − 1

∫ ∞

−∞
J0

([
ω2

a2∞(M2 − 1)2
+ γ2

(M2 − 1)

] 1
2

x

)

eiγydγ

= exp[− iMωx
α∞(M2−1) ]

π
√
M2 − 1

∫ ∞

0
J0(· · · ) cos γy dγ

where the last line follows from the evenness of the integrand with respect to γ. The
integral has been evaluated in Bateman, [7], p. 55.

∫ ∞

0
J0(· · · ) cos γy dγ = [ x2

M2 − 1
− y2] 1

2 cos[ ω

a∞(M2 − 1)
1
2

(
x2

M2 − 1
− y2)

1
2 ]

for |y| <
x√

M2 − 1

= 0 for |y| >
x√

M2 − 1

Thus finally



190 E. H. Dowell

F−1L−1{ 1

(μ2+γ2)
1
2
} = 1

π

exp[− iMω

a∞(M2−1)
]x√

M2−1

cos

[
ω

a∞(M2−1)
1
2
( x2

M2−1 − y2)
1
2

] [
x2

M2−1 − y2
] 1

2

for |y| < x√
M2−1= 0 for |y| > x√

M2−1

Using the above in (2.37) and nondimensionalizing by s ≡ wing semi-span and
b ≡ reference semi-chord,

φ̄(x∗, y∗, z = 0)

= −s

π

∫ s∗

0

∫ y∗+(2b/s)(x∗−ξ∗)/β

y∗−(2b/s)(x∗−ξ∗)/β
w̄a(ξ

∗, η∗) exp[−i ω̄(x∗ − ξ∗)]cos
ω̄r∗
M

r∗ dξ∗ dη∗

(2.39)
where

r∗ ≡ [(x∗ − ξ∗)2 − β2(
s

2b
)2(y∗ − η∗)2] 1

2

β ≡
√
M2 − 1

x∗, ξ∗ ≡ x/2b, ξ/2b y∗, η∗ ≡ y/s, η/s

k ≡ ω2b

U∞
, ω̄ ≡ kM2

(M2 − 1)

If w̄ is known everywhere in the region of integration then (2.39) is a solution to our
problem. Unfortunately, in many cases of interest, w̄a is unknown over some portion

of the region of interest. Recall that w̄a is really
∂φ̄
∂z |z=0. In general this vertical fluid

velocity is unknown off the wing. There are three principal exceptions to this:
(1) If we are dealing with a thickness problem then ∂φ

∂z |z=0 = 0 everywhere off the
wing and no further analysis is required.
(2) Certain wing geometries above a certain Mach number will have undisturbed
flow off the wing even in the lifting case. For these so-called ‘supersonic planforms’,
∂φ
∂z |z=0 = 0 off wing as well.
(3) Even in the most general case, there will be no disturbance to the flow ahead
of the rearward facing Mach lines, η = ±ξ/β, which originate at the leading most
point of the lifting surface.

To make case (2) more explicit and in order to discuss what must be done for
those cases where the flow off the wing is disturbed, let us consider the following
figure; Fig. 4. Referring first to case (2), we see that if the slopes of the forward
facing Mach lines (integration limits of (2.39)) and the rearward facing Mach lines

η = y ± (x − ξ)

β
and η = ±ξ/β

are sufficiently small, i.e., | 1
β
| → 0, then the regions where w̄a is unknown, will

vanish. This is what wemean by a ‘supersonic planform’. Themathematical problem
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Fig. 4 Lifting surface
geometry. A representative
delta wing is shown

x

y,

,
x,y

wA KNOWN,, φ UNKNOWN

η= ξ / β

η

ξ

y (x- ξ )/βη =

η = - / β ξ
η y- (x- ξ )/ β

wA UNKNOWN

KNOWNφ
φ = 0i.e.

+

wA= φ= 0

=

for these planforms is essentially the same as for a ‘thickness problem’ whether or
not lift is being produced.

Finally let us consider the most difficult case where we have mixed boundary
condition problems. In general analytical solutions are not possible and we resort
to numerical methods. One such is the ‘box’ method. In this approach, the integral
equation (2.39) is approximated by differences and sums, i.e.,

φ̄(x∗
i , y

∗
j )

U∞s
=

K∑

k=1

L∑

l=1

A(i j)(kl)
w̄a(ξ

∗
k , η

∗
l )

U∞
(2.40)

where

A(i j)(kl) ≡ − 1

π
exp[−i ω̄(x∗

i − ξ∗
k )]

cos ω̄
M r∗

(i j)(kl)

r∗
(i j)(kl)

�ξ∗�η∗

and

r∗
(i j)(kl) ≡ [(x∗

i − ξ∗
k )

2 − β2(
s

2b
)2(y∗

j − η∗
l )

2] 1
2

�ξ∗,�η∗ ≡ dimensions of aerodynamic box

A(i j)(kl) aerodynamic influence coefficients; the velocity potential at point,

i j, due to a unit ‘downwash’, w̄a, at point kl

Equation (2.40) can be written in matrix notation as:

{
φ̄
}

=
⎡

⎣ A

⎤

⎦
{

w̄a
}

(2.41)
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The system of linear equation may be separated as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ̄(N1 × 1)
unknown
− − −

φ̄(N2 × 1)
known

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎣

A1 | A2

(N1 × N1) | (N2 × N1)
− − −− + − − −−

A3 | A4

(N1 × N2) | (N2 × N2)

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w̄a(N1 × 1)
known
− − −

w̄a(N2 × 1)
unknown

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2.42)

where

N1 number of boxes where w̄a is known, and φ̄ is unknown (on wing)
N2 number of boxes where w̄a is unknown, and φ̄ is known (on wing)

Using last N2 equations of (2.42)

{
φ̄known

} = [A3]{w̄aknown} + [A4]{w̄aunknown} (2.43)

Solving for w̄aunknown

{w̄aunknown} = [A4]−1{{φ̄known} − [A3]{w̄aknown}}
= −[A4]−1[A3]{w̄aknown} (2.44)

where we have noted that φ̄known = 0. Using (2.44) in the first N1 equations of
(2.42),

{φ̄unknown} = [A1]{w̄aknown} + [A2]{w̄aunknown}
= [[A1] − [A2][A4]−1[A3]]{w̄aknown} (2.45)

Computer programs have been written to preform the various computations.9 Also
it should be pointed out that in the evaluations of the ‘aerodynamic’ influence coef-
ficients it is essential to account for the singular nature of the integrand along the
Mach lines. This requires an analytical integration of (2.39) over each box with w̄

assumed constant and taken outside the integral.
Extensions to this technique have beenmade to includemore complicated geome-

tries, e.g., nonplanar and multiple surfaces,10and also efforts have been made to
include other physical effects.11

9Many Authors, Oslo AGARD Symposium [8].
10Many Authors, Oslo AGARD Symposium [8].
11Landahl and Ashley [9].
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3 Subsonic Flow

Subsonic flow12 is generally a more difficult problem area since all parts of the flow
are disturbed due to the motion of the airfoil. To counter this difficulty an inverse
method of solution has been evolved, the so-called ‘Kernel Function’ approach.
To provide continuity with our previous development we shall formulate and solve
the problem in a formal way through the use of Fourier Transforms. Historically,
however, other methods were used. These will be discussed after we have obtained
our formal solution. To avoid repetition, we shall treat the three-dimensional problem
straight away.

Bernoulli’s equation reads:

p = −ρ∞[∂φ

∂t
+U∞

∂φ

∂x
] (3.1)

It will prove convenient to use this relationship to formulate our solution in term of
pressure directly rather than velocity potential.

3.1 Derivation of the Integral Equation by Transform
Methods and Solution by Collocation

As before we will use the transform calculus. Since there is no limited range of
influence in subsonic flow we employ Fourier transforms with respect to x and y.
We shall also assume, as before, simple harmonic time dependent motion. Thus

φ = φ̄(x, y, z)eiωt (3.2)

and transformed

�∗ =
∫ ∞

−∞

∫
φ̄(x, y, z) exp(−iαx − iγy)dx dy (3.3)

Hence (3.1) may be transformed

P∗ = −ρ∞[iω +U∞iα]�∗ (3.4)

where
p = p̄(x, y, z)eiωt

P∗ ≡
∫ ∞

−∞

∫
p̄ exp(−iαx − iγy)dx dy (3.5)

12BA, pp. 125–133; Landahl and Stark, [5], Williams [10].
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As in supersonic flow we may relate the (transformed) velocity potential to the
(transformed) ‘upwash’ (see(2.26)et. seq.)

�∗|z=0 = −W ∗

(μ2 + γ2)
1
2

(3.6)

Substituting (3.6) into (3.4),

P∗ = ρ∞
[iω +U∞iα]
(μ2 + γ2)

1
2

W ∗

or
W̄ ∗

U∞
= P∗

ρ∞U 2∞

(μ2 + γ2)
1
2

[ iω
U∞ + iα] (3.7)

Inverting
w̄

U∞
(x, y) =

∫ ∞

−∞

∫
K (x − ξ, y − η)

p̄

ρ∞U 2∞
(ξ, η)dξ dη (3.8)

where

K (x, y) ≡ 1

(2π)2

∫ ∞

−∞

∫
(μ2 + γ2)

1
2

[ iω
U∞ + iα] exp(iαx + iγy)dα dγ

K is physically interpreted as the (non-dimensional) ‘upwash’, w̄/U∞ at x, y due
to a unit (delta-function) of pressure, p̄/ρ∞U 2∞, at ξ, η. For lifting flow (subsonic or
supersonic), p̄ = 0 off the wing; hence in (3.8) the (double) integral can be confined
to the wing area. This is the advantage of the present formulation.

Now we are faced with the problem of extracting the pressure from beneath the
integral in (3.9). By analogy to the supersonic ‘box’ approach we might consider
approximating the integral equation by a double sum

w̄i j

U∞
	 �ξ �η

∑

k

∑

l

K(i j)(kl)
p̄kl

ρ∞U 2∞
(3.9)

In matrix notation [
w̄

U∞

]

= [K�ξ �η]
[

p̄

ρ∞U 2∞

]

and formally inverting

[
p̄

ρ∞U 2∞

]

= (K�ξ�η)−1

[
w̄

U∞

]

(3.10)
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This solution is mathematically incorrect; worse, it is useless. The reason is that it is
not unique unless an additional restriction is made, the so-called ‘Kutta Condition’.13

This restriction states that the pressure on the trailing edge of a thin airfoilmust remain
finite. For a lifting airfoil this is tantamount to saying it must be zero. This constraint
is empirical in nature being suggested by experiment. Other constraints such as zero
pressure at the leading edge would also make the mathematical solution unique;
however, this would not agree with available experimental date. Indeed these data
suggest a pressure maxima at the edge; the theory with trailing edge Kutta condition
gives a square root singularity at the leading edge.

Although, in principle, one could ensure zero pressure at the trailing edge by using
a constraint equation to supplement (3.9) and/or (3.10), another approach has gained
favor in practice. In this approach the pressure is expanded in a series of (given)
modes

p̄ =
∑

k

∑

l

pkl Fk(ξ)Gl(η) (3.11)

where the functions Fk(ξ) are chosen to satisfy the Kutta condition. (If the wing
platform is other than rectangular, a coordinate transformation may need to be made
in order to choose such functions readily.) The pkl are, as yet, unknown.

Substituting (3.11) into (3.8) and integrating over the wing area

w̄

U∞
(x, y) =

∑

k

∑

l

pkl
ρ∞U 2∞

K̃kl(x, y) (3.12)

where

K̃kl(x, y) =
∫ ∫

K (x − ξ, y − η)Fk(ξ)Gl(η)dξ dη

K̄ is singular at x = ξ, y = η (as we shall see later) and the above integral must be
evaluated with some care.

The question remains how to evaluate the unknown coefficient, pkl in terms of
w̄/U∞(x, y)? The most common procedure is collection. Equation (3.12) is evalu-
ated at a number of points xi , y j , equal to the number of coefficients, pkl . Thus (3.12)
becomes

w̄(xi , y j )

U∞
=
∑

k

∑

l

pkl
ρ∞U 2∞

K̃kl(xi , y j ) (3.13)

Defining K̃i jkl ≡ K̃kl(xi , y j ), (3.13) becomes

{ w̄i j

U∞
} = [K̃(i j)(kl)]{ pkl

ρ∞U 2∞
}

13See Landahl and Stark or Williams, ibid.
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Inverting

{ p̄

ρ∞U 2∞
} = [K̃ ]−1{ w̄

U∞
} (3.14)

This completes our formal solution. Relative to the supersonic ‘box’ method, the
above procedure, the so-called ‘Kernel Function’method, has proven to be somewhat
delicate. In particular, questions have arisen as to:

1. the ‘optimum’ selection of pressure modes
2. the ‘best’ method for computing K̃
3. convergence of the method as the number of pressure modes becomes large

It appear, however, that as experience is acquired these questions are being satisfac-
torily answered at least on an ‘ad hoc’ basis.

In a later development an alternative approach for solving (3.8) has gained pop-
ularity which is known as the ‘double lattice’ method. In this method the lifting
surface is divided into boxes and collocation is used for both the downwash and the
pressure.14

3.2 An Alternative Determination of the Kernel Function
Using Green’s Theorem

The transform methods are most efficient at least for formal derivations, however
historically other approaches were first used. Many of these are now only of interest
to history, however we should mention one other approach which is a powerful tool
for non-steady aerodynamic problems. This is the use of Green’s Theorem.

First let us review the nature of Green’s Theorem.15 Our starting point is the
Divergence Theorem or Gauss’ Theorem.

∫ ∫ ∫
∇ · �bdV =

∫ ∫
�b · �ndS (3.15)

S surface area enclosing volume V
�n outward normal
�b arbitrary vector

Let �b = φ1 ∇φ2 where φ1,φ2 are arbitrary scalars. Then (3.15) may be written as:

∫ ∫ ∫
∇ · φ1∇φ2dV =

∫ ∫
�n · φ1∇φ2dS

14Albano and Rodden [11]. The downwash is placed at the box three-quarters chord and pressure
concentrated at the one-quarter chord. For two-dimensional steady flow this provides an exact solu-
tion which satisfies the Kutta conditions. Lifanov, T.K. and Polanski, T.E., ‘Proof of the Numerical
Method of “Discrete Vortices” for Solving Singular Integral Equations’, PMM (1975), pp. 742–746.
15References: Hildebrand [2] p. 312, Stratton [12], pp. 165–169.
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Now use the vector calculation identity

∇ · c�a = c∇ · �a + �a · ∇c

c arbitrary scalar
�a arbitrary vector

then ∇ · φ1∇φ2 = φ1∇2φ2 + ∇φ2 · ∇φ1 and (3.15) becomes

∫ ∫ ∫
[φ1∇2φ2 + ∇φ2 · ∇φ1]dV =

∫ ∫
�n · φ1∇φ2dS (3.16)

This is the first form of Green’s Theorem. Interchanging φ1 and φ2 in (3.16) and
subtracting the result from (3.16) gives

∫ ∫ ∫
[φ1∇2φ2 + φ2∇2φ1]dV =

∫ ∫
�n · (φ1∇φ2 − φ2∇φ1)dS

=
∫ ∫

(φ1
∂φ2

∂n
− φ2

∂φ1

∂n
)dS

(3.17)

This is the second (and generally more useful) form of Green’s Theorem. ∂/∂n
denotes a derivative in the direction of the normal. Let us consider several special
but informative cases.

(a) φ1 = φ2 = φ in (4.3.16)

∫ ∫ ∫
[φ∇2φ + ∇φ · ∇φ]dV =

∫ ∫
φ

∂φ

∂n
dS (3.18)

(b) φ1 = φ,φ2 = 1 in (4.3.17)

∫∫∫
∇2φ dV =

∫∫
∂φ

∂n
dS (3.19)

(c) ∇2φ1 = 0, φ2 = 1/r, r ≡
√

(x − x1)2 + (y − y1)2 + (z − z1)2 in (4.3.17)

∫∫∫
φ1∇2(1/r)dV =

∫∫ [

φ1
∂

∂n
− ∂φ1

∂n

]
1

r
dS (3.20)

Now ∇2(1/r) = 0 everywhere except at r = 0. Thus

∫∫∫
φ1∇2(1/r)dV = φ1(r = 0)

∫∫∫
∇2(1/r)dV

= φ1(r = 0)
∫∫∫

∇ · ∇ 1

r
dV
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and from the Divergence Theorem (3.15), this volume integral may be written as a
surface integral, viz

= φ1(r = 0)
∫∫

∇(1/r) · ∇r

|∇r |dS

= φ1(r = 0)
∫ 2π

0

∫ π

0
− 1

r2
r2 sin θ dθ dφ

= −4πφ1(r = 0)

where we consider a small sphere of radius, ε, say, in evaluating the surface integral.
Now

φ1(r = 0) = φ1(x1 = x, y1 = y, z1 = z) = φ1(x, y, z)

Thus (3.20) becomes

φ1(x, y, z) = − 1

4π

∫∫ [

φ1
∂

∂n
− ∂φ1

∂n

]
1

r
dS (3.21)

The choice of φ2 = 1/r may seem rather arbitrary. This can be motivated by
noting that

∇2φ2

4π
= −δ(x − x1)δ(y − y1)δ(z − z1)

Hence we seek a φ2 which is the response to a delta function. This is what leads to
the simplification of the volume integral.

3.3 Incompressible, Three-Dimensional Flow

To simplify matters we will first confine ourselves to M = 0. However, similar,
but more complex calculations subsequently will be carried out for M = 0.16 For
incompressible flow, the equation of motion is

∇2φ = 0

or
∇2 p = 0

where φ and p are (perturbation) velocity potential and pressure respectively. Hence
we may identify φ1 in (3.21) with either variable as may be convenient. To confirm
to convention in the aerodynamic theory literature, we will take the normal positive
into the fluid and introduce a minus sign into (3.21) which now reads:

16Watkins, Woolston and Cunningham [13], Williams [14].
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Fig. 5 Airfoil and flow field
geometry

z

x

z  = 0

z  = 01

1
+

-

SAIRFOIL
WAKE

S2

1

φ1(x, y, z) = 1

4π

∫∫ [

φ1
∂

∂n
− ∂φ1

∂n

]
1

r
dS (3.22)

For example for a planar airfoil surface

n on S at z1 = 0+ is + z1
n on S at z1 = 0− is − z1

Note x, y, z is any given point, while x1, y1, z1 are (dummy) integration variables.
See Fig. 5 (top).

Let us identify the area S as composed of two parts, the area of the airfoil plus
wake, call it S1, and the area of a sphere at infinity, call it S2. See Fig. 5 (bottom).
(i) Thickness problem (nonlifting). Let φ1 = φ, velocity potential. Because φ is
bounded at r → ∞, there is no contribution from S2. Hence

φ(x, y, z) = 1

4π

∫∫ [

φ
∂

∂z1
− ∂φ

∂z1

]
1

r
dS

S1 at z1 = 0+

+ 1

4π

∫∫ [

φ

(

− ∂

∂z1

)

−
(

− ∂φ

∂z1

)]
dS

r

S1 at z1 = 0−

Now φz1=0+ = φz1=0− for thickness problem and

∂φ

∂z1

∣
∣
∣
z1=0+

= − ∂φ

∂z1

∣
∣
∣
z1=0−
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Thus

φ(x, y, z) = − 1

2π

∫∫
∂φ

∂z1
|z1=0+

dS

r

and using the body boundary condition

= − 1

2π

∫∫
wa

dS

r
(3.23)

where

wa = ∂za
∂t

+U∞
∂za
∂x

Note this solution is valid for arbitrary time-dependent motion. Time only appears as
a parameter in the solution φ(x, y, z) = φ(x, y, z, t). This is a special consequence
of M ≡ 0.
(ii) Lifting problem. For the lifting problem it again will prove convenient to use
pressure rather than velocity potential. Equation (3.22) becomes

p(x, y, z) = 1

4π

∫∫ [

(pz=0+ − pz=0− )
∂

∂z1

(
1

r

)

−
(

∂ p

∂z1

∣
∣
∣
z1=0+ − ∂ p

∂z1

∣
∣
∣
z1=0−

)
1

r

]

dS

Now
pz1=0+ = pz1=0−

for the lifting problem and

∂ p

∂z1

∣
∣
∣
z1=0+

− ∂ p

∂z1

∣
∣
∣
z1=0−

= 0

Thus

p(x, y, z) = 1

4π

∫∫
�p

∂

∂z1

(
1

r

)

dS (3.24)

where
�p = pz=0+ − pz=0−

Equation (3.24) as it stands is not particularly helpful. We do not know either p or
�p. However we can relate p to something we do know, w. To simplify matters we
shall specify harmonic motion,

p = p̄eiωt

φ = φ̄eiωt

hence from Bernoulli’s equation
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p̄ = −ρ∞

[

iωφ̄ +U∞
∂φ̄

∂x

]

(3.25)

Solving (3.25), by variation of parameters,

φ̄(x, y, z) = −
∫ x

−∞
p̄

ρ∞U∞
(λ, y, z) exp

[

i
ω

U∞
(λ − x)

]

dλ (3.26)

and using (3.24), one has

φ̄(x, y, z) = −
∫ x

−∞
exp

[

i
ω

U∞
(λ − x)

]

·
{

1

4π

∫∫
� p̄

ρ∞U∞
(x1, y1, z1 = 0)

∂

∂z1

(
1

r(λ)

)

dS

}

dλ

where
r(λ) ≡

√
(λ − x1)2 + (y − y1)2 + (z − z1)2

dS ≡ dz1 dy1

Define
ξ = λ − x1, dλ = dξ,λ = ξ + x1

and interchange order of integration with respect to ξ and S, then

φ̄(x, y, z) = − 1

4π

∫∫
� p̄

ρ∞U∞
(x1, y1, z1 = 0)

·
{∫ x−x1

−∞
∂

∂z1
(

1

r(ξ)
) exp

{

i
ω

U∞
[ξ − (x − x1)]

}

dξ

}

dS

Compute ∂φ̄/∂z and set it equal to w̄a from body boundary condition, on z = 0.

w̄a = − 1

4π
lim
z→0

∫∫
� p̄

ρ∞U∞

×
{

∂

∂z

∫ x−x1

−∞
∂

∂z1
(
1

r
) exp

{

i
ω

U∞
[ξ − (x − x1)]

}

dξ

}

dS

Now
∂

∂z
(
1

r
) = − ∂

∂z1
(
1

r
)

therefore

w̄a

U∞
=
∫∫

� p̄

ρ∞U 2∞
(x1, y1, z1 = 0)K (x − x1, y − y1, 0)dx1dy1 (3.27)
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where

K (x − x1, y − y1, 0) ≡ 1

4π
lim
z→0

∂2

∂z2

∫ x−x1

−∞

exp
{

iω
U∞ [ξ − (x − x1)]

}
dξ

r

and where
r ≡

√
ξ2 + z2 + (y − y1)2

Equation (3.27), of course, has the same form as we had previously derived by trans-
form methods.

The expression for the Kernel function may be simplified.

K (x − x1, y − y1, 0) =
exp

[
− iω

U∞ (x − x1)
]

4π

∫ x−x1

−∞
exp

[
iωξ

U∞

]

lim
z→0

∂2

∂z2
1

r
dξ

Now
∂2

∂z2
1

r
= −1

2
r−32 + (−1/2)(−3/2)r−5(2z)2

thus

lim
z→0

∂2

∂z2
1

r
= −[ξ2 + (y − y1)

2]−3/2

and finally

K = −
exp

[
− iω

U∞ (x − x1)
]

4π

∫ x−x1

−∞

exp
[
+ iωξ

U∞

]

[ξ2 + (y − y1)2]+3/2
dξ (3.28)

The integral in (3.28) must be evaluated numerically.

3.4 Compressible, Three-Dimensional Flow

For the more general case of M = 0, we have an additional complication since

∇2φ = 0

For simple harmonic motion, the equation of motion reads

∇2φ̄ + Lφ̄ = 0 (3.29)

where
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L ≡ − 1

a2

[

(iω) +U
∂

∂x

]2

By making a coordinate transformation we may reduce the compressible equation to
a simpler form.17 Defining

x1 ≡ x, y1 ≡ βy, z1 ≡ βz

β =
√
1 − M2

φ̄ ≡ exp

[

i
M2

(1 − M2)

ω

U∞
x

]

φ∗

The equation for φ∗ is

exp

[

i
M2

(1 − M2)

ω

U∞
x1
]

[∇2φ∗ + k2φ∗] = 0 (3.30)

where

k ≡
[

M

(1 − M2)

]
ω

U∞

Note this equation is essentially the reduced wave equation. We shall use Green’s
Theorem on φ∗ and then transform back to φ̄. Let

∇2φ∗
1 + k2φ∗

1 = 0 (3.31)

∇2φ∗
2 + k2φ∗

2 = δ(x1 − x11)δ(y
1 − y11)δ(z

1 − z11)

Solving for φ∗
2,

φ∗
2 = −e−ikr

4πr

where

r =
√

(x1 − x11)
2 + (y1 − y11)

2 + (z1 − z11)
2

From (3.17),

∫∫∫
[φ∗

1(δ − k2φ∗
2) − φ∗

2(−k2φ∗
1)]dV =

∫∫ [

φ∗
1
∂φ∗

2

∂n
− φ∗

2
∂φ∗

1

∂n

]

dS (4.3.17a)

or

17By assuming a transformation of the form e�xφ∗ = φ̄, one can always determine � such that
(3.29) reduces to (3.31).
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φ∗
1(x, y, z) = − 1

4π

∫∫ [

φ∗
1

∂

∂n
− ∂φ∗

1

∂n

]
e−ikr

r
dS (4.3.21a)

or

φ∗
1(x, y, z) = + 1

4π

∫∫ [

φ∗
1

∂

∂n
− ∂φ∗

1

∂n

]
e−ikr

r
dS (4.3.22a)

(if we redefine the positive normal). Using symmetry and anti-symmetry properties
of ∂φ∗

1
∂n and φ∗

1

φ∗
1(x, y, z) = 1

4π

∫∫
�φ∗

1
∂

∂z1

{
e−ikr

r

}

dS (4.3.24a)

where
�φ∗

1 = φ∗
1z1=0+ − φ∗

1z1=0−

and

−∂φ∗
1

∂z1

∣
∣
∣
z1=0+

+ ∂φ∗
1

∂z1

∣
∣
∣
z1=0−

= 0

Note dS ≡ dx1dy1 and

(
∂

∂z1
)dx1 dy1 = (

∂

∂z11
)dx11dy

1
1 ; x1 = x11

From (4.3.24a) and the definition of φ∗

φ̄1 = exp

[

i
M2

(1 − M2)

ω

U∞
x

]

φ∗
1(x, y, z)

=
exp

[
i M2

(1−M2)
ω
U∞ x

]

4π

×
∫∫

�φ̄1 exp

[

− M2

(1 − M2)

ω

U∞
x1

]
∂

∂z1

{
e−ikr

r

}

dS

(3.32)

Identifying φ̄1 with p̄ and using (3.32) in (3.26),

φ̄(x, y, z,ω) = − 1

4π

∫ x

−∞
exp

[

i
M2

(1 − M2)

ω

U∞
λ

]

exp

[

i
ω

U∞
(λ − x)

]

·
∫∫

� p̄

ρ∞U∞
exp

[

−i
M2

(1 − M2)

ω

U∞
x1

]
∂

∂z1

{
e−ikr

r

}

dS dλ

Define ξ ≡ λ − x1, dλ = dξ,λ = ξ + x1 and interchange order of integration with
respect to ξ and S,
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φ̄(x, y, z,ω) = − 1

4π

∫∫

z1=0

� p̄

ρ∞U∞
(x1, y1, z1)

·
{ ∫ x−x1

−∞
∂

∂z1

{
eikr

r

}

exp

[

−i
M2

(1 − M2)

ω

U∞
ξ

]

· exp
(

i
ω

U∞
ξ

)

exp

[

−i
ω

U∞
(x − x1)

]

dξ
}
dS

= − 1

4π

∫∫

z1=0

� p̄

ρ∞U∞
(x1, y1, z1) exp

[

− iω

U∞
(x − x1)

]

·
{∫ x−x1

−∞
exp

[

i
1

(1 − M2)

ω

U∞
ξ

]
∂

∂z1

{
eikr

r

}

dξ

}

dS

Compute ∂φ̄/∂z and set it equal to w̄a from the body boundary condition on z = 0,
noting that

∂

∂z

{
e−ikr

r

}

= − ∂

∂z1

{
eikr

r

}

The final result is

w̄a

U∞
=
∫∫

� p̄

ρ∞U 2∞
(x1, y1, z1 = 0)K (x − x1, y − y1, 0)dx1dy1 (3.33)

where

K (x, y) = lim
z→0

exp
(
−i ω

U∞ x
)

4π

∫ x

−∞
exp

[
i

(1 − M2)

ω

U∞
ξ

]
∂2

∂z2

{
eikr

r

}

dξ

r ≡ [ξ2 + (1 − M2)(y2 + z2)] 1
2

That expression for K may be simplified as follows: Define a new variable, τ , to
replace ξ by

(1 − M2)τ ≡ ξ − Mr(ξ, y, z)

where one will recall
r(ξ, y, z) ≡ [ξ2 + β2(y2 + z2)] 1

2

and
β2 ≡ 1 − M2

After some manipulation one may show that

dτ

[τ 2 + y2 + z2] 1
2

= dξ

r
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and

exp

(

+ iω

U∞
ξ

(1 − M2)

)

e−ikr = exp

[

i
ω

U∞
τ

]

Thus

K = lim
z→0

exp
(
−i ωx

U∞

)

4π

∂2

∂z2

∫ [x−Mr(x,y,x)]/(1−M2)

−∞

exp
(
iωτ
U∞

)

[τ 2 + y2 + z2] 1
2

dτ (3.34)

Taking the second derivative and limit as indicated in (3.34) and using the identity

[
Mx + r

(x2 + y2)

]2
≡ 1
[

x−Mr
(1−M2)

]2 + y2

one finally obtains

K = − 1

4π
{ M(Mx + r)

r(x2 + y2)
exp

[

i
ω

U∞
M

(1 − M2)
(Mx − r)

]

+ exp

(

−i
ωx

U∞

)∫ (x−Mr)/(1−M2)

−∞

exp
(
i ωτ
U∞

)

[τ 2 + y2] 3
2

dτ }
(3.35)

This is one form often quoted in the literature. By expressing K in nondimensional
form we see the strong singularity in K as y → 0.

y2K (x, y) = − 1

4π

{M(Mx/y + r/y)

r/y[(x/y)2 + 1] exp

[

i
ωy

U∞
M

(1 − M2)

(

M
x

y
− r

y

)]

+ exp

(

−i
ωx

U∞

)∫ [x/y−M(r/y)]/(1−M2)

−∞

exp
(
iωy
U∞ z

)

[z2 + 1] 3
2

dz
}

z ≡ τ/y

Note that the compressible Kernel, K , has the same strength singularity as for incom-
pressible flow and is of no more fundamental complexity.

There is a vast literature on unsteady aerodynamics within the framework of lin-
earized, potential flowmodels.Among standard references onemaymention thework
of A. Cunningham18 on combined subsonic-supersonic Kernel Function methods
including an empirical correction for transonic effects and also the work of Morino19

using Green’s Theorem in a more general form for both subsonic and supersonic

18Cunningham [29].
19Morino, Chen and Suciu [15].
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flow. For an authoritative overview, the papers by Rodden20 and Ashley are recom-
mended. The reader who has mastered the material presented so far should be able
to pursue this literature with confidence. Before turning to representative numerical
results the historically important theory of incompressible, two-dimensional flow
will be presented.

3.5 Incompressible, Two-Dimensional Flow

A classical solution is due to Theodorsen21 and others. Traditionally, the coordinate
systemorigin is selected atmid-chordwithb ≡half-chord.Thegoverningdifferential
equation for the velocity potential, φ, is

∇2φ = 0 (3.36)

with boundary conditions for a lifting, airfoil of

∂φ

∂z

∣
∣
∣
z=0+,0−

= wa ≡ ∂za
∂t

+U∞
∂za
∂x

(3.37)

on airfoil, −b < x < b, on z = 0 and

p = −ρ∞
[
∂φ

∂t
+U∞

∂φ

∂x

]

= 0 (3.38)

off airfoil, x > b or x < −b, on z = 0 and

p,φ → 0 as z → ∞ (3.39)

From (3.36), (3.37) and (3.39) one may construct an integral equation,

wa = ∂φ

∂z
|z=0 = − 1

2π

∫ ∞

−b

γ(ξ, t)

x − ξ
dξ (3.40)

where

γ(x, t) ≡ ∂φ

∂x

∣
∣
∣
U

− ∂φ

∂x

∣
∣
∣
L

(3.41)

and
U ⇒ z = 0+, L ⇒ z = 0−

20Rodden [16], Ashley and Rodden [17].
21Theodorsen [18]. Although this work is of great historical importance, the details are of less
compelling interest today and some readers may wish to omit this section on a first reading. The
particular approach followed here is a variation on Theodorsen’s original theme byMarten Landahl.
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Further definitions include

‘Circulation’ ≡ �(x) ≡
∫ x

−b
γ(ξ)dξ ⇒ ∂�

∂x
= γ(x)

�φ = φL − φU

Cp ≡ p
1
2ρ∞U 2∞

�Cp ≡ CpL − CpU

From the above, and (3.41),

�(x, t) =
∫ x

−b
γ(ξ)dξ =

∫ x

−b

[
∂φU

∂ξ
− ∂φL

∂ξ

]

dξ = −�φ(x), (3.42)

Note: �φ(x = −b) = 0. Also from (3.38) and (3.41),

�Cp = −2

U 2∞

[
∂�φ

∂t
+U∞

∂�φ

∂x

]

and using (3.42)

�Cp = 2

U 2∞

[
∂�

∂t
+U∞

∂�

∂x

]

(3.43)

Thus once γ (and hence �) is known,�Cp is readily computed.We therefore seek to
solve (3.40) for γ. The advantage of (3.40) over (3.36)–(3.39) is that we have reduced
the problem by one variable, having eliminated z. A brief derivation of (3.40) is given
below.

Derivation of integral equation (3.40). A Fourier transform of (3.36) gives

d2φ∗

dz2
− α2φ∗ = 0 (4.3.36a)

where

φ∗(α, z, t) ≡
∫ ∞

−∞
φ(x, z, t)e−iαxdx

Equation (3.37) becomes

dφ∗

dz

∣
∣
∣
z=0

= w∗
a (4.3.37a)

The general solution to (4.3.36a) is
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φ∗ = Ae+|α|z + Be−|α|z (4.3.38a)

From the finiteness condition, (3.39), we see that one must require that A = 0 for
z > 0 (and B = 0 for z < 0). Considering z > 0 for definiteness, we compute from
(4.3.38a)

dφ∗

dz
|z=0 = −|α|B (4.3.39a)

From (4.3.39a) and (4.3.37a),

B = −w∗
a

|α| (4.3.40a)

and from (4.3.38a) and (4.3.40a)

φ∗|z=0+ = −w∗
a

|α| (4.3.41a)

From (3.41)

γ∗ =
(

∂φ

∂x

)∗ ∣
∣
∣
z=0+

−
(

∂φ

∂x

)∗ ∣
∣
∣
z=0−

and using (4.3.41a)

γ∗ = −2iα
w∗

a

|α| (4.3.42a)

Re-arranging (4.3.42a),

w∗
a = − |α|

2iα
γ∗

and inverting back to physical domain (using the convolution theorem) we obtain
the desired result.

wa = − 1

2π

∫ ∞

−b

γ(ξ, t)

x − ξ
dξ (3.40)

where
1

2π

∫ ∞

−∞
− |α|
2iα

e+iαxdα = − 1

2πx

The lower limit x = −b in (3.40) follows from the fact that p = 0 for x < −b (on
z = 0) implies that φ = φx = 0 for x < −b. This will be made more explicit when
we consider x > b where p = 0 does not imply φ = φx = 0! See discussion below.

Also one can calculate γ for x > b in terms of γ for b < x < b by using the
condition that �Cp = 0 (continuous pressure) for x > b. This is helpful in solving
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(3.40) for γ in terms of wa . From (3.43)

�Cp = 0 ⇒ ∂�

∂t
+U∞

∂�

∂x
= 0

� = �(t − x

U∞
) (3.44)

3.5.1 Simple Harmonic Motion of an Airfoil

For the special case of simple harmonic motion, one has

wa(x, t) = w̄a(x)e
iωt

γ(x, t) = γ̄(x)eiωt

� = �̄eiωt
(3.45)

(3.44) and (3.45) imply

�(x, t) = A exp(iω[t − x/U∞])

The (integration) constant A may be evaluated by considering the solution at x = b.

�(x = b, t) = A exp(iω[t − b/U∞])

�(x, t) = �̄(b) exp{iω[t − (x − b)/U∞]}

and

γ̄ = ∂�̄

∂x
= −iω

U∞
�̄(b) exp[−iω(x − b)/U∞] (3.46)

Introducing traditional nondimensionalization

x∗ ≡ x

b
, ξ∗ ≡ ξ/b, k ≡ ωb

U∞

a summary of the key relations is given below

w̄a(x
∗) = − 1

2π

∫ ∞

−1

γ̄(ξ∗)
x∗ − ξ∗ dξ∗ from (4.3.40)

where
γ̄(x∗)
U∞

= −ik
�̄(b)

U∞b
exp[−ik(x∗ − 1)]
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for x∗ > 1 from (3.46)

γ̄(x∗)
U∞b

=
∫ x∗

−1

γ̄(ξ∗)
U∞

dξ∗ definition

�C̄ p = 2

[
γ̄(x∗)
U∞

+ ik
γ̄(x∗)
U∞b

]

from (4.3.43) (3.47)

Special Case: Steady flow. For simplicity let us first consider steady flow, ω ≡ 0.
From (3.46) or (3.47)

γ = 0 for x∗ > 1

and hence we have

wa(x
∗) = − 1

2π

∫ 1

−1

γ(ξ∗)
x∗ − ξ∗ dξ∗ (3.48)

To solve (3.48) for γ, we replace x∗ by u, multiply both sides of (3.48) by the ‘the
solving kernel’ √

1 + u

1 − u

1

u − x∗

and integrate
∫ 1
−1 . . . du. The result is

∫ 1

−1

√
1 + u

1 − u

wa(u)

u − x∗ du = − 1

2π

∫ 1

−1

[√
1 + u

1 − u

1

u − x∗

∫ 1

−1

γ(ξ∗)
u − ξ∗ dξ∗

]

du

Now write γ(ξ∗) = γ(x∗) + [γ(ξ∗) − γ(x∗)], then above may be written as

∫ 1

−1

√
1 + u

1 − u

wa(u)

u − x∗ du = − 1

2π
γ(x∗)

∫ 1

−1

{√
1 + u

1 − u

1

u − x∗

∫ 1

−1

dξ∗

u − ξ∗

}

du

− 1

2π

{∫ 1

−1

√
1 + u

1 − u

1

u − x∗

∫ 1

−1

(ξ∗ − x∗)
u − ξ∗ F(ξ∗, x∗)dξ∗du

}

(3.49)
where

F(ξ∗, x∗) ≡ γ(ξ∗) − γ(x∗)
ξ∗ − x∗

To simplify (3.49) we will need to know several integrals. To avoid a diversion, these
are simply listed here and are evaluated in detail at the end of this discussion of
incompressible, two-dimensional flow.
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I0 ≡
∫ 1

−1

dξ∗

x∗ − ξ∗ = ln

(
1 + x∗

1 − x∗

)

for x∗ < 1

= ln

(
x∗ + 1

x∗ − 1

)

for x∗ > 1

I1 ≡
∫ 1

−1

√
1 + u

1 − u

du

u − x∗ = π for x∗ < 1

= π

[

1 −
√
x∗ + 1

x∗ − 1

]

for x∗ > 1

I2 ≡
∫ 1

−1

√
1 + u

1 − u
ln|1 − u

1 + u
| du

u − x∗ = −π2

√
1 + x∗

1 − x∗ for − 1 < x∗ < 1 (3.50)

Now we can proceed to consider the several terms on the RHS of (3.49)

1st term. Now ∫ 1

−1

dξ∗

u − ξ∗ = ln|1 + u

1 − u
| from I0

I3 ≡
∮ 1

−1

√
1 + u

1 − u

1

u − x∗

∫ 1

−1

dξ∗

u − ξ∗ du

=
∫ 1

−1

√
1 + u

1 − u

1

u − x∗ ln|1 + u

1 − u
|du = +π2

√
1 + x∗

1 − x∗ from I2

1st term = −γ I3
2π

= −γ(x∗)
2

π

√
1 + x∗

1 − x∗

2nd term. Interchange order of integration;

I4 ≡
∮ 1

−1
[ξ∗ − x∗]F(ξ∗, x∗)

∫ 1

−1

√
1 + u

1 − u

du

(u − x∗)(u − ξ∗)
dξ∗

Now
1

(u − x∗)(u − ξ∗)
= 1

x∗ − ξ∗

[
1

u − x∗ − 1

u − ξ∗

]

from a partial fractions expansion.

I4 = −
∮ 1

−1
F(ξ∗, x∗)

{∫ 1

−1

√
1 + u

1 − u

[
1

u − x∗ − 1

u − ξ∗

]

du

}

dξ∗

= −
∮ 1

−1
F(ξ∗, x∗)[���π − π0]dξ∗ from I1
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Finally then, from above and (3.49),

∫ 1

−1

√
1 + u

1 − u

wa(u)

u − x∗ du = −π

2
γ(x∗)

√
1 + x∗

1 − x∗

or

γ(x∗) = − 2

π

√
1 − x∗

1 + x∗

∫ 1

−1

√
1 + u

1 − u

wa(u)

u − x∗ du (3.51)

Note: Other ‘solving kernels’ exist, but they do not satisfy the Kutta condition, γ(x∗)
finite at x∗ = 1, i.e., finite pressure at the trailing edge.

Onemight reasonably inquire, howdoweknowwhat the solving kernel should be?
Perhaps the most straightforward way to motivate the choice is to recognize that the
solution for steady flow can be obtained by other methods. Probably the simplest of
these alternative solution methods is to use the transformations x∗ cos θ, ξ∗ = cos φ
and expand γ and wa in Fourier series in φ and θ. See BAH, p. 216. Once the
answer is known, i.e., (3.51), the choice of the solving kernel is fairly obvious. The
advantage of the solving kernel approach over the other methods is that it is capable
of extension to unsteady airfoil motion where an analytical solution may be obtained
as will be described below. On the other hand a method that is based essentially
on the Fourier series approach is often employed to obtain numerical solutions for
three-dimensional, compressible flow. This is the so-calledKernel Function approach
discussed earlier.

In the above we have obtained the following integral relation: Given

f (x∗) = − 1

2π

∫ 1

−1

g(ξ∗)
x∗ − ξ∗ dξ∗

with g(1) finite or zero, then

g(x∗) = − 2

π

√
1 − x∗

1 + x∗

∫ 1

−1

√
1 + ξ∗

1 − ξ∗
f (ξ∗)

ξ∗ − x∗ dξ∗ (3.52)

General case: Oscillating motion. We may employ the solving kernel approach to
attack the unsteady problem also. Recall from (3.40), (3.43), (3.46) one has

w̄a(x
∗) = − 1

2π

∫ 1

−1

γ̄(ξ∗)
x∗ − ξ∗ dξ∗ − 1

2π

∫ ∞

1

γ̄(ξ∗)
x∗ − ξ∗ dξ∗ (3.53)

�Cp = 2γ̄(x∗)
U∞

+ 2ik
�̄(x∗)
U∞b

= 2
γ̄(x∗)
U∞

+ 2ik
∫ x∗

−1

γ̄(ξ∗)
U∞

dξ∗ (3.54)

γ̄(x∗)
U∞

= −ik
�̄(1)

U∞b
exp[−ik(x∗ − 1)] for x∗ > 1 (3.55)
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Substituting (3.55) into (3.53).

w̄a(x
∗) = − 1

2π

∫ 1

−1

γ̄(ξ∗)
x∗ − ξ∗ dξ∗ + Ḡ(x∗) (3.56)

where

Ḡ(x∗) ≡ ik�̄(1)

2πb

∫ ∞

+1

exp[−ik(ξ∗ − 1)]
x∗ − ξ∗ dξ∗

Invert (3.56) to determine γ(x∗); recall the steady flow solution, (3.52).

γ̄(x∗) = − 2

π

√
1 − x∗

1 + x∗

∫ 1

−1

√
1 + ξ∗

1 − ξ∗

{
w̄a(ξ

∗) − Ḡ(ξ∗)
ξ∗ − x∗

}

dξ∗ = − 2

π

√
1 − x∗

1 + x∗

×
∫ 1

−1

√
1 + ξ∗

1 − ξ∗

{
w̄a(ξ

∗) − ik�̄(1)
2πb

∫∞
1 exp[−ik(u − 1)]/(ξ∗ − u)du

ξ∗ − x∗

}

dξ∗ (3.57)

Interchanging the order if integration of the term involving �̄(1) on the RHS side of
(3.57) we may evaluate the integral over ξ∗ and obtain

γ̄(x∗) = + 2

π

√
1 − x∗

1 + x∗
{∫ 1

−1

√
1 + ξ∗

1 − ξ∗
w̄a(ξ

∗)
(x∗ − ξ∗)

dξ∗ + ik
�̄(1)

b
eik
∫ ∞

1

e−iku

x∗ − u
du

} (3.58)

(3.58) is not a complete solution until we determine �̄(1) which we do as follows.
Integrating (3.58) with respect to x∗ we obtain

�̄(1)

b
≡
∫ 1

−1
γ̄(x∗)dx∗ = − 2

∫ 1

−1

√
1 + ξ∗

1 − ξ∗ w̄a(ξ
∗)dξ∗

− ik
�̄(1)

b
eik
∫ ∞

1

[√
u + 1

u − 1
− 1

]

e−ikudu

(3.59)

where the integrals in the right hand side with respect to x∗ have been evaluated
explicitly. We may now solve (3.59) for �̄(1). Recognizing that

∫ ∞

1

[√
u + 1

u − 1
− 1

]

e−ikudu = −π

2
[H (2)

1 (k) + i H (2)
0 (k)] − e−ik

ik
(3.60)
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we determine from (3.59) and (3.60) that

�̄(1)

b
= 4

e−ik
∫ 1
−1

√
1+ξ∗
1−ξ∗ w̄a(ξ

∗)dξ∗

πik[H (2)
1 (k) + i H (2)

0 (k)] (3.61)

H (2)
1 , H (2)

0 are standardHankel functions.22 Equations (3.58) and (3.61) constitute
the solution for γ̄ in terms of w̄a . From γ̄, we may determine �Cp by using

�Cp = 2
γ̄(x∗)
U∞

+ 2ik
∫ x∗

−1

γ̄(ξ∗)
U∞

dξ∗

After considerable, but elementary, algebra

�Cp = 4

π

√
1 − x∗

1 + x∗

∫ 1

−1

√
1 + ξ∗

1 − ξ∗

{
w̄a(ξ

∗)/U∞
x∗ − ξ∗

}

dξ∗

+ 4

π
ik
√
1 − x∗2

∮ 1

−1

W (ξ∗)dξ∗

U∞
√
1 − ξ∗2(x∗ − ξ∗)

+ 4

π
[1 − C(k)]

√
1 − x∗

1 + x∗

∫ 1

−1

√
1 + ξ∗

1 − ξ∗
w̄a(ξ

∗)
U∞

dξ∗ (3.62)

where

W (ξ∗) ≡
∫ ξ∗

−1
w̄a(u)du

and

C(k) ≡ H (2)
1

[H (2)
1 + i H (2)

0 ]
is Theodorsen’s well known Function.

The lift may be computed as the integral of the pressure.

L̄ ≡ρU 2∞
2

b
∫ 1

−1
�Cpdx

∗ = ρU 2∞
2

b

{

−C(k)
∫ 1

−1

√
1 + ξ∗

1 − ξ∗
w̄a(ξ)

U∞
dξ∗ − ik

∫ 1

−1

√
1 − ξ∗2 w̄a(ξ

∗)
U∞

dξ∗
} (3.63)

22Abramowitz and Stegun [19].
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Fig. 6 The functions F and
G against 1

k . After
Theodorsen [18]
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Similarly for the moment about the point x = ba,

M̄y ≡ ρU 2∞
2

b2
∫ 1

−1
�Cp[x∗ − a]dx∗ (3.64)

In particular, for
za = − h − α(x − ba)

z̄a = − h̄ − ᾱ(x − ba)

one has
w̄a = −iωh̄ − iωᾱ(x − ba) −U∞ᾱ (3.65)

Thus (3.65) in (3.63) and (3.64) give

L̄ =πρb2[−ω2h̄ + iωU∞ᾱ + baω2ᾱ]
+ 2πρU∞bC(k)[iωh̄ +U∞ᾱ + b(

1

2
− a)iωᾱ]

M̄y =πρb2[−baω2h̄ −U∞b(
1

2
− a)iωᾱ + b2(

1

8
+ a2)ω2ᾱ]

+ 2πρU∞b2(
1

2
+ a)C(k)[iωh̄ +U∞ᾱ + b(

1

2
− a)iωᾱ]

(3.66)

Theodorsen’s Function, C(k) = F + iG, is given below in Fig. 6.

3.5.2 Transient Motion

Using Fourier synthesis one may now obtain results for arbitrary time dependent
motion from the simple harmonic motion results; using Fourier summation (integra-
tion) and (3.66),
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L(t) = 1

2π

∫ ∞

−∞
L̄(ω)due to h h̄(ω)eiωt dω

+ 1

2π

∫ ∞

−∞
L̄(ω)due to αᾱ(ω)eiωt dω

= 1

2π

∫ ∞

−∞
{πρb2(−ω2) + 2πρU∞bC(k)(iω)} · h̄(ω)eiωt dω

+ 1

2π

∫ ∞

−∞
{πρb2(iωU∞ + baω2) + 2πρU∞bC(k)(U∞ + b(

1

2
− a)iω)}

ᾱ(ω)eiωt dω
(3.67)

where
h̄(ω) =

∫ ∞

−∞
h(t)e−iωt dω

and
ᾱ(ω) =

∫ ∞

−∞
α(t)e−iωt dω (3.68)

Now ∫ ∞

−∞
(iω)nᾱeiωt dω = dnα

dtn
n = 1, 2 . . . (3.69)

Thus

L =πρb2
[
d2h

dt2
+U∞

dα

dt
− ba

d2α

dt2

]

+ ρU∞b
∫ ∞

−∞
C(k) f (ω)eiωt dω

where
f (ω) ≡iωh̄(ω) +U∞ᾱ(ω) + b(

1

2
− a)iωᾱ(ω)

∫ ∞

−∞

[
dh

dt
+U∞α + b(

1

2
− a)

dα

dt

]

e−iωt dt
(3.70)

Physically,
dh

dt
+U∞α + b(

1

2
− a)

dα

dt
= −wa at x = b/2;

x = b/2 is
3

4
chord of airfoil.

Similarly,

My =πρb2
[

ba
d2h

dt2
−U∞b(

1

2
− a)

dα

dt
− b2(

1

8
+ a2)

d2α

dt2

]

+ ρU∞b2(
1

2
+ a)

∫ ∞

−∞
C(k) f (ω)eiωt dω

(3.71)
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Example I. Step change in angle of attack.

h ≡ 0

α = 0 for t < 0

= α0 ≡ constant for t > 0

dα

dt
= d2α

dt2
= dh

dt
= d2h

dt2
= 0 for t > 0

f (ω) = U∞α0

∫ ∞

0
e−iωt dt

= U∞α0

−iω
e−iωt |∞0 = U∞α0

iω

L =ρU 2
∞bα0

∫ ∞

−∞
C(k)

iω
eiωt dω

=ρU 2
∞bα0

∫ ∞

−∞
C(k)

ik
eiksdk

where s ≡ Ut
b . Finally,

L = 2πρU 2
∞bα0

{
1

2πi

∫ ∞

−∞
C(k)

k
eiksdk

}

(3.72)

{· · · } ≡ φ(s) is called the Wagner Function, see Fig. 7. Note that if α is precisely
a step function, then L has a singularity a t = 0 from (3.70). Also shown is the
Küssner function, ψ(s), to be discussed subsequently. Note also that φ is the lift of
the airfoil due to step change in angle of attack or more generally due to step change
in −wa/U∞ at 3

4 chord.

Fig. 7 Wagner’s function
φ(s) for indicial lift and
Küssner’s function ψ(s) for
lift due to a sharp-edged
gust, plotted as functions of
distance travelled in
semichordlengths. After
BAH, Fig. 5.21

0
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Thus using the Duhamel superposition formula

L(t) =πρb2
[
d2h

dt2
+U∞

dα

dt
− ba

d2α

dt2

]

− 2πρU∞b

[

wa 3
4
(0)φ(s) +

∫ s

0

dwa 3
4

dσ
(σ)φ(s − σ)dσ

] (3.73)

Example II. Entrance into a sharp edged gust.

In the primed coordinate system, i.e., fixed with respect to the atmosphere, one
has

wG =0 for x ′ > 0

= w0 for x ′ < 0

Note: The general transformation between fluid fixed and body fixed coordinate
systems is

x ′ − x = b −U∞t, x + b = x ′ +U∞t ′

t ′ = t t = t ′

The leading edge enters the gust at t = t ′ = 0 at

t = 0, x ′ = x + b

t ′ = 0.

Thus in the coordinate system fixed with respect to the airfoil, one has

wG = 0 for x + b > U∞t or
x + b

U∞
> t (3.74)

= w0 for x + b < U∞t or
x + b

U∞
< t

wG(ω) ≡
∫ ∞

−∞
wGe

iωt dt

=w0

∫ ∞

(x+b)/U∞
e−iωt dt

=w0

iω
e−iωt

∣
∣
∣
∞
(x+b)/U∞

=w0

iω
exp

[

−iω
(x + b)

U∞

]

= w0

iω
e−ikeikx

∗

where
x∗ ≡ x/b (3.75)
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For
w̄a = −wG

(
= −w0

iω
e−ikeikx

∗)

one finds from the oscillating airfoil motion theory that

L̄ = 2πρU∞b{C(k)[J0(k) − i J1(k)] + i J1(k)}w0

iω
e−ik

and
M̄y = b(

1

2
+ a)L̄

L(t) = 1

2π

∫ ∞

−∞
L̄(ω)eiωt dω

=ρU∞bw0

∫ ∞

−∞
{· · · }
ik

e−ikeiksdk

=2πρU∞bw0ψ(s)

(3.76)

where
ψ(s) ≡ 1

2πi

∫ ∞

−∞
{· · · }
k

exp[ik(s − 1)]dk (3.77)

is called the Küssner function and was shown previously in Fig. 7. Finally then, using
Duhamel’s integral,

L = πρUb

{

wG(0)ψ(s) +
∫ s

0

dwG

dσ
(σ)(s − σ)dσ

}

(3.78)

A famous controversy concerning the interpretation of Theodorsen’s function
for other than real frequencies (neutrally stable motion) took place in the 1950s.
The issue has arisen again because of possible applications to feedback control of
aeroelastic systems. For a modern view and discussion, the reader should consult
Edwards, Ashley, and Breakwell [20]. Also see Sears, [10] in Chap.3.

3.5.3 Evaluation of Integrals

For x∗ < 1

I0 ≡
∮ 1

−1

dξ∗

x∗ − ξ∗ = lim
ε→0

[∫ x∗−ε

−1

dξ∗

x∗ − ξ∗ +
∫ 1

x∗+ε

dξ∗

x∗ − ξ∗

]

= lim
ε→0

[

−
∫ x∗−ε

−1

d(x∗ − ξ∗)
(x∗ − ξ∗)

−
∫ 1

x∗+ε

d(ξ∗ − x∗)
(ξ∗ − x∗)

]

= − ln(x∗ − ξ∗)
∣
∣
∣
x∗−ε

ξ∗−1
− ln(ξ∗ − x∗)

∣
∣
∣
1

x∗+ε

= − [ln ε − ln(x∗ + 1)] − [ln(1 − x∗) − ln ε] = ln

(
1 + x∗

1 − x∗

)
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Fig. 8 Integral contour

+1-1

x

v

u

For x∗ > 1, there is no need for a Cauchy Principal Value and

I0 =ln

(
x∗ + 1

x∗ − 1

)

I1 : I1 ≡
∮ 1

−1

√
1 + u

1 − u

du

u − x∗

Use contour integration. Define w ≡ u + iv (a complex variable whose real part is
u) and

F(w) ≡
(

w + 1

w − 1

) 1
2 1

w − x∗

Choose a contour as follows (Fig. 8).
Now

w + 1

w − 1
= [R2 + I 2] 1

2 e−iθ

where

R ≡ (u + 1)(u − 1) + v2

(u − 1)2 + v2
, I ≡ −2v

(u − 1)2 + v2

θ = tan−1 I/R

(i) on top, v = 0+, u − 1 < 0

R < 0, I = 0− ⇒ θ = −π

(ii) on bottom, v = 0−, u − 1 < 0

R < 0, I = 0+ ⇒ θ = +π
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Thus (
w + 1

w − 1

) 1
2

=
√
1 + u

1 − u
e−iπ/2 on top

=
√
1 + u

1 − u
e+iπ/2 on bottom

Now dw = du on top or bottom and w − x∗ = u − x∗ except on arcs near u = x∗.
On the arcs w − x∗ = εeiθ, dw = εeiθidθ where ε is radius of arc. Also

(
w + 1

w − 1

) 1
2

=
√
1 + u

1 − u
(−i) on top

and = · · · (+i) on bottom. Thus

ζ1 ≡
∫

C
F(w)dw =

bottom
︷ ︸︸ ︷
∫ x∗−ε

−1
+
∫ 1

x∗+ε

i

√
1 + u

1 − u

du

u − x∗

+

top
︷ ︸︸ ︷
∫ x∗+ε

1
+
∫ −1

x∗−ε

−i

√
1 + u

1 − u

du

u − x∗ +
+ contributions from arcs which cancel each other

lim
ε→0

ζ1 = 2i
∫ 1

−1

√
1 + u

1 − u

du

u − x∗ = 2i I1

ζ1 can be simply evaluated by Cauchy’s Theorem. As w → ∞, F(w) → 1/w.

ζ1 =
∫

around arc at ∞
dw

w
= 2πi

I1 = ζ1

2i
= 2πi

2i
= π

For x∗ > 1, I1 is still equal to ζ1/2πi ; however, now ζ1 = ∫
arc at infinity f (w)dw−

Residue of F at x∗

= 2πi − 2πi

√
x∗ + 1

x∗ − 1

I1 = ζ1

2πi
= π

[

1 −
√
x∗ + 1

x∗ − 1

]

A similar calculation gives I2.
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Evaluations of I2

−I2 ≡
∫ 1

−1

√
1 + u

1 − u
ln

∣
∣
∣
∣
1 + u

1 − u

∣
∣
∣
∣

du

u − x∗

Define
w ≡ u + iv

and

F(w) ≡ ln

∣
∣
∣
∣
w + 1

w − 1

∣
∣
∣
∣

√
w + 1

w − 1

1

w − x∗

The contour is the same as for I1.
As before (

w + 1

w − 1

) 1
2

=
√
1 + u

1 − u
e−iπ/2 on top

=
√
1 + u

1 − u
e+iπ/2 on bottom

Also

ln

(
w + 1

w − 1

)

= ln
√
R2 + I 2 + iθ

= ln

∣
∣
∣
∣
u + 1

u − 1

∣
∣
∣
∣− iπ on top

= ln

∣
∣
∣
∣
u + 1

u − 1

∣
∣
∣
∣+ iπ on bottom

Now dw = du on top or bottom and w − x∗ = u − x∗ except on arcs near u = x∗.
On the arcs w − x∗ = εeiθ, dw = εeiθi dθ where ε is radius of arc. Thus

ζ2 ≡
∫

C
F2(w)dw =

∫ x∗−ε

−1
+
∫ 1

x∗+ε

i

{√
1 + u

1 − u

[

ln

∣
∣
∣
∣
1 + u

1 − u

∣
∣
∣
∣− iπ

]}

× du

u − x∗ bottom

+
∫ x∗+ε

1
+
∫ −1

x∗−ε

−i

{√
1 + u

1 − u

[

ln

∣
∣
∣
∣
1 + u

1 − u

∣
∣
∣
∣− iπ

]}
du

u − x∗ top

−
∫ π

0
iπ

√
1 + x∗

1 − x∗ dθ −
∫ 0

−π

iπ

√
1 + x∗

1 − x∗ dθ arcs

Note: ln terms cancel and thus are omitted in the arc contributions. Cancelling π
terms from bottom and top and adding arc terms, gives
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ζ2 =
∫ x∗−ε

−1
+
∫ 1

x∗+ε

i

√
1 + u

1 − u
ln

∣
∣
∣
∣
1 + u

1 − u

∣
∣
∣
∣

du

u − x∗

+
∫ x∗+ε

1
+
∫ −1

x∗−ε

−i

√
1 + u

1 − u
ln

∣
∣
∣
∣
1 + u

1 − u

∣
∣
∣
∣

du

u − x∗

− 2iπ2

√
1 + x∗

1 − x∗

Adding bottom and top terms,

lim
ε→0

ζ2 = 2i
∫ 1

−1

√
1 + u

1 − u
ln

∣
∣
∣
∣
1 + u

1 − u

∣
∣
∣
∣

du

u − x∗ − 2iπ2

√
1 + x∗

1 − x∗

= − 2i I2 − 2iπ2

√
1 + x∗

1 − x∗

ζ2 can be simply evaluated by Cauchy’s Theorem. As w → ∞, F2(w) → 0.

ζ2 = 0 ⇒ I2 = −π2

√
1 + x∗

1 − x∗

4 Representative Numerical Results

Consider a flat plate airfoil, initially at zero angle of attack, which is given a step
change in α, i.e.,

w = −U∞α for t > 0

= 0 for t < 0

Although most calculations in practice are carried out for sinusoidal time dependent
motion, for our purposes examining aerodynamic pressures due to this step change
leads to more insight into the nature of the physical system. Of course, in principle,
the results for sinusoidal motion (or a step change) may be superposed to obtain
results for arbitrary time dependent motion.

It is traditional to express the pressure in nondimensional form

p
ρ∞U 2∞α

2

≡ p

qα

as a function of nondimensional time,

s ≡ tU∞
c/2
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Fig. 9 Chordwise lifting
pressure distributions
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and M∞. The results shown below are from an article by Lomax23; both subsonic
and supersonic, two- and three dimensional results are displayed.

In Fig. 9 the chord-wise pressure distribution for two-dimensional flow is shown
at several times, s, for a representative subsonic Mach number. For s = 0, the result
is given by piston theory (as in supersonic flow)24

p = ρ∞a∞w

For a step change in α, piston theory gives

�p
ρ∞U 2∞α

2

= pL − pU
ρ∞U 2∞α

2

= 4

M

For s → ∞, the result is alsowell known, with a square root singularity at the leading
edge. Of course, the Kutta condition, �p = 0, is enforced at the trailing edge for all
s. As s → ∞

�p
ρ∞U 2∞α

2

= 4

(1 − M2)
1
2

√
c − x

x

This result is implicit in the analysis of Sect. 3.
In Fig. 10 the chord-wise pressure distribution is shown at several times, s, for a

representative supersonic Mach number. For s = 0 the result is again that given by
piston theory

23Lomax [21].
24This can be shown by considering the transient analysis of Sect. 2 and noting it still applies for
t = 0+.
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Fig. 10 Chordwise lifting
pressure distribution
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For s → ∞, the result is (as previously cited in our earlier discussion, Sect. 2)

�p
ρ∞U 2∞α

2

= 4

(M2 − 1)
1
2

Indeed the pressure reaches this final steady state value at a finite s which can be
determined as follows. All disturbances propagate in the fluid with the speed of
sound, a∞, but the airfoil moves faster with velocity U∞ > a∞. Hence, the elapsed
time for all disturbances (created by the step change of α for the airfoil) to move off
the airfoil is the time required for a (forward propagating in the fluid) disturbance at
the leading edge to move to the trailing edge, namely

t = c/(U∞ − a∞)

or, in nondimensional form,

s ≡ tU∞
c/2

= 2M∞
M∞ − 1

For

s >
2M∞

M∞ − 1

steady state conditions are obtained all along the airfoil. As can be seen from Fig. 10
for s = 0+ the leading edge pressure instantly reaches its final steady state value. As
s increases the steady state is reached by increasing portions of the airfoil along the
chord. Note that the initial results, s = 0, and steady state results,

s ≥ 2M∞
M∞ − 1
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Fig. 11 Time history of lift curve slope

have a constant pressure distribution; however, for intermediate s, the pressure varies
along the chord.

The pressure distributions may be integrated along the chord to obtain the total
force (lift) on the airfoil.
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Fig. 12 Time history of lift
curve slope
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∫ c
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ρ∞U 2∞cα
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Again the s = 0 result is that given by piston theory

CLα
= 4

M

and the steady-state result is

CLα
= 4

(M2 − 1)
1
2

for M∞ > 1

and it is also known that

CLα
= 2π

(1 − M2∞)
1
2

for M∞ < 1

see Sect. 3. Results for CLα
are shown in Fig. 11 for various Mach number.

Finally some representative results for three-dimensional, supersonic flow are
shown in Fig. 12. The effect of three-dimensionality is to reduce the lift. For small
aspect ratio, A, where
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Fig. 13 Lift coefficient of plunging wing-tail combination for various vertical separation distances;
simple harmonic motion

Fig. 14 Rolling moment coefficient of horizontal stabilizer for simplified T-tail oscillating in yaw
about fin mid-chord; simple harmonic motion

A ≡ maximum span squared/wing area it is known from slender body theory25 (an
asymptotic theory for A → 0) that

CLα
= π

2
A

for s → ∞. Note however, that the s = 0+ result is independent of A and is that
given by piston theory.

Hence, piston theory gives the correct result for s = 0+ for two- and three-
dimensional flows, subsonic as well as supersonic. However, only for relatively high

25See Lomax, for example [21].
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Fig. 15 Distribution of span load for wing with and without engine nacelle. a Plunging b pitching;
simple harmonic motion

Fig. 16 Comparison of experimental and calculated lifting pressure coefficient on a wing-nacelle
combination in plunge; simple harmonic motion

supersonic and nearly two-dimensional flow does it give a reasonable approximation
for all s.

For subsonicflows, the numericalmethods are in an advanced state of development
and results have been obtained for rather complex geometries including multiple
aerodynamic surfaces. In Figs. 13, 14, 15, 16 and 17representative data are shown.
These are drawn from a paper by Rodden et al.,26 Which contains an extensive

26Rodden, Giesing and Kálmán [22].
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Fig. 17 Comparison of experimental and calculated lifting pressure coefficient on a wing-nacelle
combination oscillating in pitch; simple harmonic motion

discussion of such data and the numerical techniques used to obtain them. Simple
harmonicmotion is consideredwhere k is a non-dimensional frequency of oscillation.
Comparison with experimental data are also shown.

5 Transonic Flow

Major progress has been made in recent years on this important topic. Here we
concentrate on the fundamental ideas and explore one simple approach to obtaining
solutions using the same mathematical methods previously employed for subsonic
and supersonic flow.

The failure of the classical linear, perturbation theory in transonic flow is well
known and several attempts have been made to develop a theoretical model which
will give consistent, accurate results. Among the more successful approximate meth-
ods that builds upon the classical approaches for subsonic and supersonic flow is the
‘local linearization’ concept of Spreiter which has been generalized to treat oscil-
lating airfoils in transonic flow [23]. Another valuable method is that of parametric
differentiation as developed by Rubbert and Landahl [24]. ‘Local linearization’ is
an ad hoc approximation while parametric differentiation is a perturbation proce-
dure from which the result of local linearization may be derived by making further
approximations. Several authors [25–28] have attacked the problem in a numerical
fashion using finite differences and results have been obtained for two and three-
dimensional, high subsonic flow. This continues to be an active subject of research
and will be discussed further in chapter “Modeling of Fluid-Structure Interaction”.
Cunningham [29]. Has suggested a relatively simple, empirical modification of the
classical theory.
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In the present section a rational approximation method27 is discussed which is
broadly related to the local linearization concept. It has the advantages of (1) being
simpler than the latter (2) capable of being systematically improved to obtain an
essentially exact solution to the governing transonic equation. Although the method
has been developed for treating infinitesimal dynamic motions of airfoils of finite
thickness, it may also be employed (using the concept of parametric differentiation)
to obtain solutions for nonlinear, steady nonlifting flows. This is a problem for which
local linearization’ was originally developed.

First, the basic idea will be explained for an infinitesimal steady motion of an
airfoil of finite thickness in two-dimensional flow. Results will also be given for
dynamic motion. The aerodynamic Green’s functions for three-dimensional flow
have also been derived. These are needed in the popular Mach Box and Kernel
Function methods [31]. Using Green’s functions derived by the present methods,
three-dimensional calculations are effectively no more difficult than for the classical
theory.

Analysis

From (1.21), Sect. 1, the full nonlinear equation for φ is

a2∇2φ −
[

∂

∂t
(∇φ · ∇φ) + ∂2φ

∂t2
+ ∇φ · ∇

(∇φ · ∇φ

2

)]

= 0

In cartesian, scalar notation and re-arranging terms

φxx (a
2 − φ2

x ) + φyy(a
2 − φ2

y) + φzz(a
2 − φ2

z )

− 2φyzφyφz − 2φxzφxφz − 2φxyφxφy

− ∂

∂t
(φ2

x + φ2
y + φ2

z ) − ∂2φ

∂t2
= 0

(5.1)

Also we previously determined that ((1.22), Sect. 1)

a2 − a2∞
γ − 1

= U 2∞
2

−
(

∂φ

∂t
+ ∇φ · ∇φ

2

)

(5.2)

Now let φ = U∞x + φ̂, then (5.2) becomes

a2 − a2∞
γ − 1

= −
⎡

⎢
⎣

∂φ̂

∂t
+

2U∞ ∂φ̂
∂x +

(
∂φ̂
∂x

)2 +
(

∂φ̂
∂y

)2 +
(

∂φ̂
∂z

)2

2

⎤

⎥
⎦

27This section is a revised version of Dowell [30]. A list of nomenclature is given at the end of this
section.
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∼= −
[

∂φ̂

∂t
+U∞

∂φ̂

∂x

]

or

a2 ∼= a2∞ − (γ − 1)

[
∂φ̂

∂t
+U∞

∂φ̂

∂x

]

(5.3)

(5.1) becomes

φ̂xx

(

a2∞ − (γ − 1)

[
∂φ̂

∂t
+U∞

∂φ̂

∂x

]

−U 2
∞ − 2U∞

∂φ̂

∂x

)

+ φ̂yya
2
∞ + φ̂zza

2
∞ − ∂

∂t

(

2U∞
∂φ̂

∂x

)

− ∂2φ̂

∂t2
∼= 0

(5.4)

where obvious higher order terms have been neglected on the basis of φ̂x , φ̂y, φ̂z 

U∞ and a∞.

The crucial distinction in transonic perturbation theory is in the coefficient of φ̂xx .
In the usual subsonic or supersonic small perturbation theory one approximated it as
simply

a2∞ −U 2
∞

However ifU∞ = a∞ or nearly so then the terms retained above become important.
The time derivative term in the coefficient of φ̂xx may still be neglected compared
to the next to last term in (5.4), but no further simplification is possible, in general.
Hence, (5.4) becomes (dividing by a2∞)

φ̂xx [1 − M2
L ] + φ̂yy + φ̂zz − 1

a2∞

[

2U∞
∂2φ̂

∂x∂t
+ ∂2φ̂

∂t2

]

= 0 (5.5)

where

M2
L ≡ M2

∞

[

1 + (γ + 1)φ̂x

U∞

]

, M∞ ≡ U∞/a∞

It may be shown that ML is the consistent transonic, small perturbation approx-
imation to the local (rather than free stream) Mach number. Hence, the essence of
transonic small perturbation theory is the allowance for variable, local Mach num-
ber rather than simply approximating the local Mach number by M∞ as in the usual
subsonic and supersonic theories.

We digress briefly to show that in (5.4) the term

φ̂xx

[

−(γ − 1)
∂φ̂

∂t

]

(5.6)
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may be neglected compared to

− 2U∞
∂2φ̂

∂t∂x
(5.7)

This is done both for its interest in the present context as well as a prototype for
estimation of terms in analyses of this general type.

We assume that a length scale, L , and a time scale, T , may be chosen so that

x∗ ≡ x/L ‘is of order one’

t∗ ≡ t/T ‘is of order one’

Hence, derivatives with respect to x∗ or t∗ do not, by assumption, change the order
or size of a term. Thus (5.6) and (5.7) may be written (ignoring constants of order
one like γ − 1 and 2) as

A ≡ φ̂x∗x∗

L2

φ̂t∗

T
(5.6)

and

B ≡ U∞
φ̂t∗x∗

T L
(5.7)

Hence
(A)

(B)
∼ 0

[
φ̂

U∞L

]

This ratio however, is much less than one by our original assumption of a small
perturbation, viz.

φ = U∞Lx∗ + φ̂

In the beginning we have assumed

φ̂

U∞Lx∗ 
 1

Hence (5.6) may be neglected compared to (5.7).
Equation (5.5) is a nonlinear equation even though we have invoked small pertur-

bation ideas. One may develop a linear theory by considering a steady flow due to
airfoil shape, φ̂s and an infinitesimal time dependent motion of the airfoil superim-
posed, φ̂d . For definiteness, one may consider φs as due to an airfoil of symmetric
thickness at zero angle of attack. Thus let

φ̂(x, y, z, t) = φ̂s(x, y, z) + φ̂d(x, y, z, t) (5.6)

and substitute into (5.5). The equations for φs is (by definition)
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φ̂sx x [1 − M2
Ls

] + φ̂sy y + φ̂sz z = 0 (5.7)

where

M2
Ls

≡ M2
∞

[

1 + (γ + 1)
φ̂sx

U∞

]

The equation for φ̂d (neglecting products of φ̂d and its derivatives which is acceptable
for sufficiently small time dependent motions) is

φ̂dz z + φ̂dy y − 1

a2∞
φ̂dt t − 2

U∞
a2∞

φ̂dx t − bφ̂dx x − aφ̂dx = 0 (5.8)

where

b ≡
[

M2
∞ − 1 + (γ + 1)

φ̂sx

U∞
M2

∞

]

a ≡ (γ + 1)M2
∞

φ̂sx

U∞

From Bernoulli’s equation

Cpms ≡ P̂s
ρ∞U 2∞

2

= −2φ̂sx

U∞

Hence, a and b may be written as

b ≡
[

M2
∞ − 1 − (γ + 1)M2∞Cpms(x)

2

]

a ≡ −(γ + 1)
M2∞
2

dCpms(x)

dx

φ̂d is velocity potential due to the infinitesimalmotion (henceforthˆand d are dropped
for simplicity). Cpms is the mean steady pressure coefficient due to airfoil finite
thickness and is taken as known. In general, it is a function of x, y, z and the method
to be described will, in principle, allow for such dependence. However, all results
have been obtained ignoring the dependence on y and z. See Refs. [23, 24, 32] for
discussion of this point.

The (perturbation) pressure, p, is related to φ by the Bernoulli relations

p = −ρ∞
[
∂φ

∂t
+U∞

∂φ

∂x

]

and the boundary conditions are
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∂φ

∂z
|z=0 = wa ≡ ∂ f

∂t
+U∞

∂ f

∂x

on airfoil where

f (x, y, t) ≡ vertical displacement of point x, y on airfoil

wa ≡ upwash velocity

and
p|z=0 = 0 off airfoil

plus appropriate finiteness or radiation conditions as z → ∞.
Note that Eq. (5.7) is nonlinear in φ̂s . If one linearizes, as for example in the

classical supersonic theory, one would set ML = M∞ and obtain as a solution to
(5.7)

p̂s = ρ∞U 2∞
(M2∞ − 1)

1
2

∂ f

∂x

where∂ f/∂x is the slopeof airfoil shape.AsM∞ → 1, p̂ → ∞which is a unrealistic
physical result of the linear theory. On the other hand if one uses

ML = M∞

[

1 + (γ − 1)
φ̂sx

U∞

] 1
2

a finite result is obtained for p̂s as M∞ → 1 which is in reasonable agreement with
the experimental data.28

Equation (5.7) with the full expression for ML is a nonlinear partial differential
equation which is much more difficult to solve than its linear counterpart. How-
ever two types of methods have proven valuable, the numerical Finite difference
methods 29 and various techniques associated with the name ‘local linearization’ as
pioneered by Oswatitsch and Spreiter [33].

Once φ̂s is known (either from theory or experiment) (5.8) may be used to deter-
mine φ̂d . Equation (5.8) is a linear differential equation with variable coefficients
which depend upon φ̂s . Hence, the solution for the lifting problem, φ̂d , depends
upon the thickness solution, φ̂s , unlike the classical linear theory where the two may
be calculated separately and the results superimposed. Again either finite difference
methods or ‘local linearization’ may be employed to solve (5.8). Here we pursue
an improved analytical technique to determine φ̂d , which has been developed in the
spirit of ‘local linearization’ ideas [30].

To explain the method most concisely, let φy = φt = 0 in Eq. (5.8), i.e., consider
two-dimensional, steady flow.

28Spreiter [33].
29Ballhaus, Magnus and Yoshihara [34].
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Assume30

a =
∞∑

m=0

am(x − x0)
m

b =
∞∑

n=0

bn(x − x0)
n

and φ = φ0 + φ′ where, by definition,

φ0
zz − b0φ

0
xx − a0φ

0
x = 0 (4.5.8a)

and φ0 satisfies any nonhomogeneous boundary conditions on φ. The equation for
φ′ is thus from (5.8) and using the above

φ′
zz − b0φ

′
xx − a0φ

′
x =

∞∑

n=1

bn(x − x0)
n[φ0

xx + φ′
xx ] (4.5.8b)

+
∞∑

m=1

am(x − x0)
m[φ0

xx + φ′
xx ]

with homogeneous boundary conditions on φ′.
If φ′ 
 φ0, i.e., φ0 is a good approximation to the solution, then φ′ may be

computed from (4.5.8b) by neglecting φ′ in the right hand side. The retention of
a0 (but not b1) in (4.5.8a) is the key to the method, even though this may seem
inconsistent at first.

We begin our discussion with steady airfoil motion in a two-dimensional flow.
This is the simplest case from the point of view of computation, of course; how-
ever, it is also the most critical in the sense that, as Landahl [32] and others have
pointed out, unsteadiness and/or three-dimensionality alleviate the nonlinear tran-
sonic effects. Indeed, if the flow is sufficiently unsteady and/or three-dimensional,
the classical linear theory gives accurate results transonically for thin wings.

Steady airfoil motion in two-dimensional, ‘supersonic’ (b0 > 0) flow

Solution for φ0. For b0 > 0, x is a time-like variable and the flow is undisturbed
ahead of the airfoil (as far as φ0 is concerned). Hence, solutions may be obtained
using a Laplace transform with respect to x . Defining

φ0∗ ≡
∫ ∞

0
φ0(x, z)e−pxdx

Equation (4.5.8a) becomes

30We expand in a power series about x = x0; however, other series might be equally or more useful
for some applications. Results suggest the details of a and b are unimportant.
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φ0∗
zz − μ2φ0∗ = 0 (5.9)

with
μ2 ≡ [b0 p2 + a0 p]

Solving (5.9)
φ0∗ = A0

1e
−μz + A0

2e
+μz (5.10)

In order to satisfy finiteness/radiation condition at infinity, one selects A0
2 ≡ 0. A0

1 is
determined from the (transformed) boundary condition,

φ0∗
z |z=0 = w∗ (5.11)

From (5.10) and (5.11),

φ0∗ |z=0 = −w∗

μ
(5.12)

Inverting (5.12)

φ0|z=0 = −
∫ x

0
b

− 1
2

0 exp

(−a0ξ

2b0

)

I0

[
a0ξ

2b0

]

w(x − ξ)dξ (5.13)

It is of interest to note two limiting cases. As a0ξ/2b0 → 0,

φ0|z=0 = −
∫ x

0
b

− 1
2

0 w(x − ξ)dξ (5.14)

the classical result. But, more importantly, as a0ξ/2b0 → ∞,

φ0|z=0 = −
∫ x

0
(πa0ξ)

− 1
2 w(x − ξ)dξ (5.15)

Hence, even when the effective Mach number at x = x0 is transonic, i.e., b0 ≡ 0,
the present model gives a finite result. Before computing the correction, φ′, to the
velocity potential we shall exploit φ0 to obtain several interesting result. For this
purpose we further restrict ourselves to an airfoil at angle of attack, w = −U∞α.
From (5.15),

φ0
z=0

U∞α
= 2b

1
2
0

a0
x̃e−x [I0(x̃) + I1(x̃)]; x̃ ≡ a0x

2b0
(5.16)

and the pressure on the lower aerodynamic surface is

Cp

α
≡ p0

ρ0U 2∞α
2

= 2φ0
x

U∞α
|z=0 = 2b

− 1
2

0 e−x I0(x̃) (5.17)
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The lift, moment and center of pressure may be computed.

L0 ≡
∫ C

0
2p0dx = ρ∞U 2

∞αc4(πa0c)
− 1

2 L̃0

L̃0 ≡ (π/2)
1
2 c̃

1
2 e−c̃[I0(c̃) + I1(c̃)]; c̃ ≡ a0c

2b0

(5.18)

M0 =
∫ c

0
2p0x dx = L0c − ρ∞U 2

∞c2
8

3
(πa0c)

− 1
2 M̃0

M̃0 ≡3

4
(3π)

1
2 {e−c̃ I1(c̃)[c̃− 1

2 + 2

3
c̃

1
2 ] + 2

3
e−c̃ I2(c̃)c̃

1
2 }

(5.19)

The center of pressure may be obtained from L0 and M0 in the usual way. We shall
use and discuss these results for a particular airfoil later. But first let is consider the
computations of φ′.

Solutions for φ′. For simplicity, we shall consider only a linear variation in mean
pressure, Cpms , along the airfoil chord. hence, a0, b0 and b1 are not zero and b1 = a0.
All other am and bn are zero. Assuming φ′ 
 φ0, the equation for φ′ is

φ′
zz − a0φ

′
x − b0φ

′
xx = b1(x − x0)φ

0
xx (5.20)

Taking a Laplace transform of (5.20),

φ
′∗
zz − μ2φ

′∗ = −b1

[

2pφ0∗ + p2
dφ0∗

dp
+ x0 p

2φ0∗
]

(5.21)

A particular solution of (5.21) is

φ
′∗
p = (C0z + C1z

2)e−μz (5.22)

where

C0 ≡ b1

[
A

2μ
+ B

4μ2

]

; C1 ≡ b1
4μ

B

A ≡−2pw∗

μ
+ p2w∗

μ3

[2b0 p + a0]
2

− x0
p2w∗

μ
− p2

μ

dw∗

dp

B ≡ p2w∗

μ2

[2b0 p + a0]
2

Thehomogeneous solution forφ′ is of the same formas forφ0.After somecalculation,
applying homogeneous boundary condition to φ′, we determine

φ
′∗|z=0 = C0

μ
(5.23)
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Inverting (5.23) using the definitions ofC0, A, B above, and assumingw = −U∞α
for simplicity, we have

φ′

U∞α
|z=0 =b

1
2
0

a0
{ 2e−x̃ x̃ I1(x̃) −

[
d2

dx̃2
+ d

dx̃

]

[e−x̃ x̃2 I2(x̃)]

+ c̃2x0
c

e−x̃ x̃[I0(x̃) + I1(x̃)] } ; c̃ ≡ a0c

2b0

(5.24)

The pressure coefficient corresponding to φ′ is given by

C0
p = C ′

p1 + C ′
p2

where
b

1
2
0 C

′
p1

α
≡ e−x̃ {(2I1 − I0)(x̃ − x̃2) + I2 x̃

2}

b
1
2
0 C

′
p2

α
≡ c̃

2x0
c

e−x̃ {2x̃(I1 − I0) + I0}
(5.25)

As may be seen C ′
p1 is always a small correction to C0

p; however, C
′
p2 may be large

or small (particularly near the leading edge as x̃ → 0) depending on the size of

x0
c

a0c

2b0

Since we are free to choose x0 in any application, it is in our interest to choose it so
that

C ′
p2 
 C0

p

More will be said of this in the following section.
We note that higher terms in the power series for a and b may be included and a

solution for φ′ obtained in a similar manner. The algebra becomes more tedious, of
course.

Results and comparisons with other theoretical and experimental data

We have calculated two examples, a Guderley airfoil and a parabolic arc airfoil,
both of 6% thickness ratio, τ , and for Mach numbers near one. These were chosen
because they have smoothmean steady pressure distributions (at least for someMach
number range) and because other investigators have obtained results for these airfoils.
These two airfoils and their mean, steady pressure distributions are shown in [23].
The Guderley airfoil had a linear mean pressure variation while the parabolic arc
has a somewhat more complicated variation including a (theoretical) logarithmic
singularity at the leading edge. For M∞ = 1, whenCpms = 0 the local Mach number
along the chord equals one and if one expanded about the point then b0 = 0, and our
procedure would fail in that φ′ � φ0. Hence, one is lead to believe that one should
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Fig. 18 Pressure
distribution for Guderley
airfoil at constant angle of
attack
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choose x0 as far away from the sonic point, Cpms ≡ 0 at M∞ ≡ 1, as possible. To fix
this idea more concretely, we first considered the Guderley airfoil. Guderley airfoil.
We have calculated C0

p and C
0
p + C ′

p for M∞ = 1. Two different choices of x0 were
used, x0 = c/2 (Fig. 18) and c (Fig. 19). Results from Stahara and Spreiter [23] are
also shown for reference. As can be seen for x0 = c/2, the ‘correction’ term, C ′

p2,
dominates the basic solution, C0

p, as x/c → 0. For x0 = c, on the other hand, the
correction term is much better behaved, in agreement with our earlier speculation
about choosing x0 as far as possible from the sonic point. Note that if, for example,
we choose x0 = 0 this would alsowork in principle, but now b0 < 0, and a ‘subsonic’
solution would have to be obtained for φ0.

Parabolic arc airfoil. Similar results have been obtained and are displayed in
Fig. 20 (x0 = c/2) and Fig. 21 (x0 = c0). Both of these solutions are well behaved
in the sense that C ′

p < C0
p, though again the results for x0 = c appear to be better

than those for x0 = c/2. The relatively better behavior of the x0 = c/2 results for the
parabolic arc as compared with the Guderley airfoil is probably related to the sonic
point being farther ahead of x0 = c/2 for the former than the latter. See [23]. Also
shown in Figs. 20 and 21 are the theoretical results of Stahara-Spreiter [23] and the
experimental data of Knechtel [35]. Knechtel indicates the effective Mach number
of his experiments should be reduced by approximately 0.03 due to wall interface
effects. Also he shows that the measured mean steady pressure distributions at zero
angle of attack, Cpms , agree well with the theoretical results of Spreiter [23, 36] for
M∞ ≥ 1. However, for M∞ ≤ 1,Cpms deviates from that theoretically predicted; see
Fig. 22 taken from [35]. The change in slope for Cpms near the trailing edge may be
expected to be important for computing the lifting case. In Fig. 23 results are shown
for M∞ = 0.9 which dramatically make this point. Shock induced separation of the
boundary layers is the probable cause of the difficulty.
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Fig. 19 Pressure
distribution for Guderley
airfoil at constant angle of
attack
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Fig. 20 Pressure
distribution for parabolic arc
airfoil at constant angle of
attack

C
α

p

STAHARA-SPREITER

GUDERLEY AIRFOIL 
τ = 60.0

0 1.0x/c

1

2

3

4

5

6

7

THEORY
M =1 x DOWELL, Cop

DOWELL, Cop + Cp’
xo = c/2 ao =0.62/c
bo

,
=0.25

EXPERIMENT KNECHTEL
M =1.026

x

x

x
x

x

x



Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces 243

Fig. 21 Pressure
distribution for parabolic arc
airfoil at constant angle of
attack
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Finally, we present a graphical summary of lift curve slope and center of pressure
for the parabolic arc airfoil comparing results of Knechtel’s experimental data and
the present analysis. See Fig. 24.

All things considered the agreement between theory and experiment is rather good;
however, it is clear that is Cpms varies in a complicated way one must go beyond the
straight line approximation used in obtaining the present result. In principle this can
be done; how much effort will be required remains to be determined.

Non-steady airfoil motion in two-dimensional, ‘supersonic’ b0 > 0 flow

Solutions for φ0. Again taking a Laplace transform with respect to x of (5.8) (for
φyy ≡ 0 and a = a0, b = b0) we obtain

φ0∗
zz − μ2φ0∗ = 0 (5.26)

where μ ≡ [b0 p2 + ã0 p − d] 1
2 and b0 is as before

ã0 ≡ a0 + 2U∞
a2∞

iω; d ≡
(

ω

a∞

)2

and we have assumed simple harmonic motion in time. Solving (5.26) subject to the
boundary condition, (5.11), and appropriate finiteness and/or radiation condition at
infinity we have (after inversion).
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Fig. 22 Representative experimental pressure distribution for 6-percent-thick circular-arc airfoil
with roughness elements near the leading edge

φ0|z=0 = −
∫ x

0
b

− 1
2

0 exp

(−ã0ξ

2b0

)

I0

⎧
⎨

⎩

[(
ã0
2b0

)2

+ d

b0

] 1
2

ξ

⎫
⎬

⎭
wa(x − ξ)dξ

(5.27)
The perturbation pressure on the lower surface is given by

p0 = ρ∞[φ0
t +U∞φ0

x ] (5.28)

which may be evaluated from (5.27) directly using Leibnitz’ rule
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Fig. 23 Pressure distribution for parabolic arc airfoil at constant angle of attack

Fig. 24 Effects of boundary-layer trip in the variation with Mach number of lift-curve slope and
center pressure of the circular-arc airfoil at αo 	 0o
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C0
p = p0

ρ∞U 2∞
2

= −2b
− 1

2
0

⎧
⎨

⎩
exp

(−ã0x

2b0

)

I0

[(
ã0
2b0

)2

+ d

b

] 1
2

x

⎫
⎬

⎭
wa(0)

U∞

+
∫ x

0
exp

(−ã0ξ

2b0

)

I0

⎧
⎨

⎩

[(
ã0
2b0

)2

+ d

b0

] 1
2

ξ

⎫
⎬

⎭

·
[

iω
wa(x − ξ)

U 2∞
+ w′

a(x − ξ)

U∞

]

dξ

where

w′
a(x) ≡ dwa

dx
(5.29)

Analternative form forC0
p maybeobtained byfirst interchanging the arguments x and

x − ξ in (5.27). For a0 = 0, b0 ≡ M2∞ − 1 the above reduces to the classical result.
For any a0 and b0 and k ≡ ωc/U∞ large the results approach those of the classical
theory and for k → ∞ approach the ‘piston’ theory [31]. For the specific case of an
airfoil undergoing vertical translation, w = −ht , where h is vertical displacement
and the ht is the corresponding velocity, we have the following results,

φ0|z=0 = htb
− 1

2
0

[(
ã0
2b0

)2

+ d

b0

]− 1
2

e−ex̃ x̃

{

I0(x̃) + I1(x̃)

e

}

where

x̃ ≡
[(

ã0
2b0

)2

+ d

b0

] 1
2

x

e ≡ ã0
2b0

[(
ã0
2b0

)2

+ d

b0

]− 1
2

(5.30)

In the limit as b0 → 0, (corresponding to M∞ → 1 in the classical theory)

[(
ã0
2b0

)2

+ d

b0

] 1
2

→ ã0
2b0

; e → 1

and

φ0|z=0 → ht2

(
x

ã0π

) 1
2

(5.31)

Using (5.30) or (5.31) in (5.28) gives the perturbation pressure. The latter form is
particularly simple
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Fig. 25 Pressure
distribution for Guderley
airfoil oscillating in rigid
body translation

Cp

ik h̄
c e

iωt
≡ p

ρ∞U 2∞
ik h̄

c e
iωt

= (πã0c)
− 1

2

[

2(x/c)−
1
2 + i4k

( x

c

) 1
2

]

(5.32)

where
h ≡ h̄eiωt ; k ≡ ωc

U∞

Solution for φ′. Park [37] has computed φ′ and made comparisons with available
experimental and theoretical data. It is well-known, of course, that for sufficiently
large k the classical theory itself is accurate transonically [32]. Hence, we also expect
the present theory to be more accurate for increasing k.

Results and comparison with other theoretical data

We have calculated a numerical example for the Guderley airfoil for M = 1 and
k = 0.5 in order to compare with the results of Stahara-Spreiter [23].We have chosen
x0 = c/2 for which

b0 = 0.12; a0 = 1.2/c

For such small b0, wemay use the asymptotic form for b0 → 0, (5.32), and the results
are plotted in Figs. 25 and 26 along with the results of [23].

As k → 0, the phase angle, � is a constant at 90◦ and the pressure coefficient
amplitude is the same as that of Fig. 18. Presumably somewhat more accurate results
could be obtained by choosing x0 = c and computing the correction, C ′

p. However,
the agreement is already good between the present results and those of [23].

As Stahara-Spreiter [23] point out even for k as large as unity there are still sub-
stantial quantitative differences between their results (and hence the present results)
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Fig. 26 Pressure-translation
phase angle distribution

and those of the classical theory. However, for k � 1, one may expect the present
theory and that of [23] to give results which approach those of the classical theory.

Non-steady airfoil motion in three-dimensional ‘supersonic’ (b0 > 0) flow

Solution for φ0. We begin with (5.1) and take a Fourier transform with respect to
y,

φ† ≡
∫ ∞

−∞
φe−iγydy (5.33)

and a Laplace transform with respect to x ,

(φ†)∗ ≡
∫ ∞

0
(φ†)e−pxdx (5.34)

Equation (5.1) becomes
φ0∗†
zz − μ2φ0∗† = 0 (5.35)

where
μ ≡ [b0 p2 + ã0 p − d̃] 1

2 ; b0, ã0 as before

and
d̃ ≡ (ω/a∞)2 − γ2

Solving (5.35) subject to the boundary condition, (5.11), and appropriate boundary
finiteness/radiation conditions at infinity we have (after inversion)
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φ0|z=0 =
∫ x

0

∫ ∞

−∞
A(x − ξ, y − η)w(ξ, η)dξ dη (5.36)

where

A(x, y) =
− exp

(
−ã0
2b0

x
)

π
r−1 cosh

⎧
⎨

⎩

[( ω
a∞
b0

)2

+
(

ã0
2b0

)2
] 1

2

r

⎫
⎬

⎭

for r2 > 0, i.e.

0 < |y| < xb
− 1

2
0

= 0 for r2 < 0, i.e.

xb
− 1

2
0 < |y|

and
r2 ≡ x2 − b20 y

2 (5.37)

A is the aerodynamic Green’s function required in the Mach Box numerical lifting
surface method [31].

For b0 → M2∞ − 1; a0 → 0; ã0 → 2(iωU∞/a2∞) and A reduces to the classical
results. For b0 → 0, Reã0 > 0,

A → − 1

2πx
e−ã0 y2/4x for x > 0; |y| < ∞ (5.38)

For b0 → 0, Reã0 < 0,

A → − 1

2πx
exp

(−ã0x

b0

)

for x > 0; |y| < ∞ (5.39)

Non-steady airfoil motion in three-dimensional ‘subsonic’ (b0 < 0 ) flow

Solution for φ0. We begin with (5.1), assuming simple harmonic motion,

− b0φ
0
xx − ã0φ

0
x + dφ0 + φ0

yy + φ0
zz = 0 (5.40)

where ã0, b0, d as before.
To put (5.40) in canonical form by eliminating the term φx , we introduce the new

dependent variable, �
φ0 ≡ e�x� (5.41)

where � is determined to be
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� = −ã0/2b0 (5.42)

and the equation for � is

B�xx + �

[−ã2

4B
+ d

]

+ �yy + �zz = 0 (5.43)

and
B ≡ −b0 > 0

We further define new independent variables,

x ′ ≡ x, y′ ≡ B
1
2 y, z′ ≡ B

1
2 z (5.44)

then (5.43) becomes
�x ′x ′ + �y′ y′ + �z′z′ + k̃2� = 0 (5.45)

where

k̃2 ≡
(

d − a2

4B

)

/B

We are now in a position to use Green’s theorem

∫∫∫
[�∇2ψ − ψ∇2�]dV =

∫∫

s

[

�
∂ψ

∂n
− ψ

∂�

∂n

]

dS (5.46)

V volume enclosing fluid
S surface area of volume indented to pass over airfoil surface and wake
n outward normal.

We take � to be the solution we seek and choose ψ as

ψ ≡
(
e−i k̃r

r

)

(5.47)

where
r ≡ [(x ′ − x ′

1)
2 + (y′ − y′

1)
2 + (z′ − z′

1)
2]

Note that

[∇2 + k̃2]
(
e−i k̃r

r

)

= −4πδ(x ′ − x ′
1)δ(y

′ − y′
1)δ(z

′ − z′
1) (5.48)

Thus the LHS of (5.7) becomes −4π�(x ′, y′, z′). On the RHS, there is no contribu-
tion from the surface area of sphere at infinity. Thus (5.46) becomes
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4π�(x, y, z) =
∫∫

S airfoil plus wake

[
(�U − �L)

∂

∂z1

(
e−i k̃r

r

)

−
(
e−i k̃r

r

)
∂

∂z1
(�U − �L)

]
dx1dy1

(5.49)
where

�U ,�L upper, lower surface
∂
∂n = −∂

∂z1
on upper/lower surface andwe have returned to the original independent

variables, x, y, z and x1, y1, z1. Since � is an odd function of z1, z1,

∂

∂z1
(�U − �L) = 0 (5.50)

Also
∂

∂z1

(
e−i k̃r

r

)

= ∂

∂z

e−i k̃r

r
(−1) (5.51)

Thus (5.49) becomes, re-introducing the original dependent variable, φ0

φ0(x, y, z) = −e−�x

4π

∫∫
�φe−�x1

∂

∂z

{
e−i k̃r

r

}

dx1dy1 (5.52)

where
�φ ≡ φ0

U − φ0
L

Up to this point we have implicitly identified φ0 with the velocity potential. However,
within the approximation, a = a0, b = b0, φ = φ0, p = p0,φ and p satisfy the
same equation, (5.40); hence, we may use (5.54) with φ0 replaced by p0. Further
using Bernoulli’s equation, (5.5), we may relate φ0 to p0

φ0(x, y, z) = −
∫ x

−∞
p0(λ, y, z)

ρ∞U∞
exp

[
iω(λ − x)

U∞

]

dλ (5.53)

Substituting (5.52) into (5.53) (where (5.52) is now expressed in terms of p0); intro-
ducing a new variable ξ and x1, y1; gives

φ0(x, y, z) = 1

4π

∫∫
�p

ρ∞U∞
(x1, y1) exp

[−iω(x − x1)

U∞

]

·
{∫ x−x1

−∞
exp

( [� + iω]ξ
U∞

)
∂

∂z

{
e−i k̃r

r

}

dξ

}

dx1 dy1

(5.54)

Finally, computing from (5.56)
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w = ∂φ

∂z

∣
∣
∣
z=0

we obtain

w(x, y)

U∞
=
∫∫

�p

ρ∞U 2∞
(x1, y1)K (x − x1, y − y1)dx1 dy1 (5.55)

where

K ≡ lim
z→0

exp
[

−iω(x−x1)
U∞

]

4π

∫ x−x1

−∞
exp

([

� + iω

U∞

]

ξ

)
∂2

∂z2

{
e−i k̃r

r

}

dξ (5.56)

and
r2 ≡ [ξ2 + B(y − y1)

2]

The above derivation, though lengthy, is entirely analogous to the classical one. For
a0 → 0, B → 1 − M2∞ we retrieve the known result [31].

It should be noted that in the above derivationwe have assumedRe ã0 > 0 and thus
Re � < 0. This permits both the radiation and finiteness conditions to be satisfied as
z → ±∞. For Re ã0 < 0 one may not satisfy both conditions and one must choose
between them.

Asymmetric Mean Flow

In the above derivations we have assumed a mean flow about symmetrical airfoils
at zero angle of attack and considered small motions of that configuration. It is of
interest to generalize this to a mean flow about asymmetrical airfoils at nonzero
angles of attack. First consider the Mach box form of the integral relation between
velocity potential and downwash, cf. Eq. (5.36),

φU =
∫∫

AU (x − ξ, y − η)wU (ξ, η)dξ dη (5.57)

Here we have written the relation as though we knew wU everywhere on z = 0+.
We do not, of course, and thus the need for the Mach box procedure [31]. Here
AU is that calculated using upper surface parameters, ignoring the lower surface. A
similar relation applies for the lower surface with AU replaced by −AL . Hence, we
may compute from (5.57) (for lifting motions where wU = wL ≡ w on and off the
airfoil)

φU − φL =
∫∫

A(x − ξ, y − η)w(ξ, η)dξ dη (5.58)

where
A ≡ AU + AL
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is the desired aerodynamic influence function. Note that AU and AL are the same
basic function, but in one the upper surface parameters are used and in the other the
lower surface parameters.

Using the Kernel Function approach the situation is somewhat more complicated.
Here we have, cf. Eq. (5.55),

wU =
∫∫

KU (x − ξ, y − η)pU (ξ, η)dξ dη (5.59)

Note KU = 2K�p where K�p is the Kernel Function for �p when the lower surface
mean flow parameters are the same as those of the upper surface.

A similar equationmay bewritten forwL and pL with KU replaces by−KL . Again
we notewL = wU ≡ w. These two integral equations must be solved simultaneously
for pU and pL with given w. Hence, the number of unknowns one must deal with is
doubled for different upper and lower surface parameters. This poses a substantial
addition burden on the numerics. There is a possible simplification, however. Define

K ≡ KU + KL

2
; �K ≡ KU − KL

2
(5.60)

If (�K/K )2 
 1, then onmay simply use K , i.e., the average of the upper and lower
surface kernel functions. Formally, onemaydemonstrate this using perturbation ideas
as follows.

Using (5.59) (and its counterparts for the lower surface) and (5.60) one may
compute

wu + wL ≡ 2w =
∫∫

[K (pU − pL) + �K (pU + pL)]dξ dη

and

wu − wL ≡ 0 =
∫∫

[K (pU + pL) + �K (pU − pL)]dξ dη (5.61)

From the second of these equations, the size of the terms may be estimated.

pU + pL
pU − pL

∼ 0

(
�K

K

)

Thus in the first of (5.61) the two terms on the right hand side are of order

K (pU − pL) and
(�K )2

K
(pU − pL)

The second terms may be neglected if

(�K/K )2 
 1 (5.62)
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and (5.61) may be approximated as

w(x, y) ≈
∫∫

K

2
(x − ξ, y − η)�p(ξ, η)dξ dη (5.63)

where
�p ≡ pU − pL

Equation (5.62) would not appear to be unduly restrictive condition for some appli-
cations.

The development in this section is not dependent upon the particular method used
to compute KU and/or KL elsewhere in the text. The crucial assumptions are that (1)
the oscillating motion is a small perturbation to the mean flow and (2) the difference
between the upper and lower surface Kernel functions is small compared to either.

6 Concluding Remarks

A relatively simple, reasonably accurate and systematic procedure has been devel-
oped for transonic flow. A measure of the simplicity of the method is that all numer-
ical results presented herein were computed by hand and analytical forms have
been obtained for general ‘supersonic’ Mach number and airfoil motion for two-
dimensional flow. For three-dimensional flow the relevant Green’s functions have
been determined which may be used in the Kernel Function and Mach Box numeri-
cal lifting surface methods.

This approach has been extended to include a more accurate form of Bernoulli’s
equation and airfoil boundary condition. Also numerical examples are now available
for two dimensional airfoils in transient motion and three dimensional steady flow
over a delta wing. Finally a simple correction for shock induced flow separationhas
been suggested.31

For a highly readable survey of transonic flow, the reader should consult the paper
by Spreiter and Stahara [39].

Also important advances in finite difference and finite element solutions are dis-
cussed in the following papers (all presented at the AIAA Dynamic Specialists Con-
ference, San Diego, March 1977): Chan and Chen [40], Ballhaus and Goorjian [41]
and Isogai [42].

In an important, but somewhat, neglected paper Eckhaus [43] gave a transonic flow
model including shock waves which considered a constant supersonic Mach number
ahead of the shock and a constant subsonic Mach number behind it. An obvious
next step is to combine the Eckhaus and Dowell models. M.H. Williams [44] has
extended Eckhaus’ results by utilizing a somewhat broader theoretical formulation
and obtaining more accurate and extensive solutions. He has compared his results

31Dowell [38].
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Fig. 27 a (top) In phase
pressure, and b (bottom) out
of phase pressure
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to those of Tijdeman and Schippers [45] (experiment) and Ballhaus and Goorjian
[41] (finite difference solutions) and obtain good agreement. The comparison with
experiment is shown here in Fig. 27 for a NACA 64 A006 airfoil with a trailing
edge quarter chord oscillating flap. The measured steady state shock strength and
location for no flap. Themeasured steady state shock strength and location for no flap
oscillation is used as an input to the theoreticalmodel. Since the flap is downstream of
the shock, the theory predicts no disturbance upstream of the shock. The experiment
shows the upstream effect is indeed small. Moreover the agreement on the pressure
peaks at the shock and at the slap hinge line is most encouraging. It would appear
the transonic airfoil problem is finally yielded to a combination of analytical and
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numerical methods. As Tijdeman and other have emphasized, however, the effects of
the viscous boundary layer may prove significant for some applications. In particular
the poorer agreement between theory and experiment for the imaginary pressure
peak at the shock in Fig. 27 is probably due to the effects of viscosity. The same
theoretical model has also been studied by Goldstein et al. for cascades with very
interesting results [46]. Rowe, a major contributor to subsonic aerodynamic solution
methods, has in the same spirit discussed how the classical boundary conditions and
Bernoulli’s equation can be modified to partially account for transonic effects as the
airfoil critical mach number is approached [47].

For a broad-ranging survey of unsteady fluid dynamics including a discussion of
linear potential theory, transonic flow, unsteady boundary layers, unsteady stall, vor-
tex shedding and theKutta-Joulowski trailing edge condition the paper byMcCroskey
[48] is recommended. For a discussion of the fundamentals of computational fluid
dynamics of unsteady transonic flow, see chapter “Modeling of Fluid-Structure Inter-
action”.
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Stall Flutter

Fernando Sisto

Abstract Stall flutter is an inherently nonlinear dynamic aeroelastic phenomena and
this chapter presents phenomenological models that provide fundamental insights
into this complex topic.

As the name implies, stall flutter is a phenomenon which occurs with partial or
complete separation of the flow from the airfoil occurring periodically during the
oscillation. In contrast to classical flutter (i.e., flow attached at all times) the mech-
anism for energy transfer from the airstream to the oscillating airfoil does not rely
on elastic and/or aerodynamic coupling between two modes, nor upon a phase lag
between a displacement and its aerodynamic reaction. These latter effects are neces-
sary in a linear system to account for an airstream doing positive aerodynamic work
on a vibrating wing. The essential feature of stall flutter is the nonlinear aerodynamic
reaction to the motion of the airfoil/structure. Thus, although coupling and phase lag
may alter the results somewhat, the basic instability and its principal features must
be explained in terms of nonlinear normal force and moment characteristics.

1 Background

Stall flutter of aircraft wings and empennages is associated with very high angles of
attack. Large incidence is necessary to induce separation of the flow from the suction
surface. This type of operating condition and vibratory response was observed as
long ago as World War I at which time stall flutter occurred during sharp pull-up
maneuvers in combat. The surfaces were usually monoplane without a great deal
of effective external bracing. The cure was to stiffen the structure and avoid the
dangerous maneuvers whenever possible.

Electric power transmission cables of circular cross-section, or as modified by
bundling or by ice accretion, etc., and structural shapes of various description are
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classified as bluff bodies. As such they do not require large incidence for flow sepa-
ration to occur. In fact incidence is chiefly an orientation parameter for these airfoils
rather than an indication of the level of steady aerodynamic loading. Again, largely
attributable to the nonlinearity in the force and moment as a function of incidence,
such structures are prone to stall flutter. These vibrations are sometimes called ‘gal-
loping’ as in the case of transmission lines. The number and classes of structures
that potentially could experience stall flutter are very great, and include such diverse
examples as suspension bridges, helicopter rotors and turbomachinery blades. More
mundane examples are venetian blind slats and air deflectors or spoilers on automo-
biles.

The stall flutter of non-airfoil structures is described at greater length in chapter
‘Aeroelasticity in Civil Engineering’, along with galloping and buffeting. These are
all closely related bluff body phenomena from the point of view of vortex method
aerodynamics, a subjectwhich is introduced later in the present chapter. The stall flut-
ter of rotorcraft blades is described in greater detail in chapter ‘Aeroelastic Response
of Rotorcraft’ where the special kinematic restraints of these rotating structures
lead to a unique aeroelastic description. The stall flutter of turbomachinery blades
is described more fully in chapter ‘Aeroelasticity in Turbomachines’, wherein it is
observed that the aeroelastic behavior in stall flutter is distinct from both non-airfoil
structures and rotorcraft blades.

When the flow field is measured or visualized during stall flutter oscillations it
is observed that free vortices are generated in the vicinity of the separation points.
These large vortical structures are shed periodically creating regions of reduced and
even reversed velocity in the vicinity of the airfoil. For this reason the aforemen-
tioned technique known as the vortex method has been developed recently for the
computational modelling of unsteady separation aerodynamics.

It may be shown that the mutual induction, or interaction, of as few as three
vortices leads to chaotic behavior. Thus it is confirmed by computation that use of
vortex method aerodynamics displays many of the nonlinear aeroelastic phenomena
actually observed experimentally in conjunction with stall flutter.

2 Analytical Formulation

Although analysis of stall flutter based on computational unsteady aerodynamics is
becoming feasible, it is nevertheless instructive to couch the problem in analytical
terms so as to discriminate clearly the actual mechanism of instability [1]. We will
consider two important cases: bending and twisting.

In the case of bending, or plunging displacement of a two-dimensional ‘typical
section’ airfoil, let us assume that the force coefficient, including penetration well
into the stall regime, is given by a polynomial approximation in α,
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Fig. 1 Velocity triangle

− Cn =
v∑

n=0

an(αss)α
n a0 ∼= −Cnss(αss) (2.1)

where α is the instantaneous departure from the steady state value of angle of attack,
αss , attributable to vibration of the airfoil. Thismethod of expressing the normal force
characteristic gives a good local fit with a few terms. However, the coefficients, αn ,
dependon themean angle of attack,αss . Force has been taken to bepositive in the same
direction as positive displacement h. (In the usual (static) theory of thin unstalled and
uncambered profiles −Cn = π sin 2αss . The αn could then be obtained by deriving
the Maclaurin series expansion of π sin 2(αss + α) considered as a function of α).
In general the −Cn function is an empirically determined function, or characteristic,
when stall occurs on a cambered airfoil, but the procedure is still the same. The αn

are in fact given by the slope and higher order derivatives according to

an = − 1

n!
dnCn

dαn

∣∣∣
α=0

(2.2)

We next consider a small harmonic bending oscillation

h = h0 cosωt

to exist and enquire as to the stability of that motion: Will it amplify or decay?
Under these circumstances, it is possible to interpret the instantaneous angle of

attack perturbation to be given by (see Fig. 1)

α = arctan

(
tanαss + ḣ

V cosαss

)
− αss (2.3)

with Maclaurin series expansion in powers of ḣ as follows
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α = cosαss

(
ḣ

V

)
− 1

2
sin 2αss

(
ḣ
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)2

− 1

3
cos 3αss

(
ḣ

V

)3

+ 1

4
sin 4αss

(
ḣ

V

)4

+ · · · (2.4)

It should be noted that this incidence is relative to a coordinate system fixed to the
airfoil. The dynamic pressure also changes periodically with time in this coordinate
system according to

qrel = 1

2
ρV 2

rel = 1

2
ρV 2

[
1 + 2 sinαss

(
ḣ

V

)
+

(
ḣ

V

)2
]

(2.5)

It is assumed for simplicity that the single static characteristic of normal force
coefficient versus angle of attack continues to be operative in the dynamic application
described above. Thus, the expanded equation for the normal force N = q(2b)Cn is
given by

N = − 1

2
ρV 2(2b)

[
1 + 2 sinαss

(
ḣ

V
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+

(
ḣ
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4
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+ · · ·
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(2.6)

with
ḣ

V
= −ωh0

V
sinωt = −k

h0
b

sinωt (2.7)

A slight concession to the dynamics of stallingmay be introduced by the inclusion
of a time delay, �/ω, in the oscillatory velocity term appearing in the Cn expansion,
i.e., within the summation of (2.6), but not in the development of qrel . The latter is
assumed to respond instantaneously to α or ḣ.

3 Stability and Aerodynamic Work

As is common with single degree of freedom systems such as that postulated above,
the question of amplification or subsidence of the amplitude of the initial motion
can easily be decided on the basis of the work done by this force acting on the
displacement. Thus

Work/Cycle =
∫ T

0
Nḣ dt = 1

ω

∫ 2π

0
Nḣd(ωt) (3.1)
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and since the frequency is effectively the number of cycles per unit time, the power
may be expressed as

P = Power = (Work/Cycle)(Cycles/Seconds) = 1

2π

∫ 2π

0
Nḣd(ωt) (3.2)

Using the previous expression for N and ḣ, it is clear that only even powers of sin ωt
in the integrand of the power integral will yield nonzero contributions. Also, terms
of the form sinn ωt cosωt will integrate to zero for any integer value of n including
zero. Restricting the series expansions for −Cn and α to their leading terms such
that the power integral displays terms of vibratory amplitude up to the sixth power
(i.e., up to h60) results in

P = 1

2
ρV 3b

[
A(ωh0/V )2 + B(ωh0/V )4 + C(ωh0 V )6 + · · · ] (3.3a)

where

A = − 2a0 sinαss − a1 cosαss cosψ

B = − 1

4
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[
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(
1 + 1

2
cos 2ψ

)

+ (3 cosαss − cos 3αss) cosψ]

− 1

4
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[
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(
1 − 3

2
cosψ + 1

2
cos 2ψ
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− 3

16
a3 [(3 cos αss + cos 3αss) cosψ]

C = − 1

16
a1

[
(cos 3αss − cos 5αss)

(
3

2
+ cos 2ψ

)

− 1

16
(3 cos 3αss − 2 cos 5αss) cosψ − 1

3
cos 3αss cos 3ψ

]
− · · · (3.3b)

The cubic dependence on V is a consequence of the dimensions of power, or work
per unit time.

4 Bending Stall Flutter

The analytical expression for the aerodynamic power in a sinusoidal bending vibra-
tion is too cumbersome for easy physical interpretation. However, for very small
amplitudes of motion, as might be triggered by turbulence in the fluid, or other
‘noise’ in the system, it is clear that the sign of the work flow will be governed by
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the coefficient of (ωh0/V )2. Assuming a small to moderate positive mean incidence,
αss , the coefficient α0 will be positive. With cos� near unity, a positive power can
only occur if α1 is sufficiently negative, i.e., if the −Cn versus α characteristic has
a negative slope at the static operating incidence. More precisely, if |ψ| < 90◦ and

a1 < −2a0 tan αss sec ψ (4.1)

the small amplitude vibration is unstable and the work flow will be such as to feed
energy into the vibration and increase its amplitude.

In the previous expression for the power, (3.3a),

P/

(
1

2
ρV 3b

)
= A (ωh0/V )2 + B (ωh0/V )4 + C (ωh0/V )6 (4.2)

the coefficients A, B and C are complicated functions of ψ, αss and the αn , the
coefficients of the power series representation of the normal force characteristic. For
example in the highly simplified case of αss = ψ = 0, we obtain

A = a1 = dCn

dα

∣∣∣
α=0

, B = 1

2

dCn

dα

∣∣∣
α=0

+ 1

8

d3Cn

dα3

∣∣∣
α=0

and

C = 1

12

dCn

dα

∣∣∣
α=0

+ 1

192

d5Cn

dα5

∣∣∣
α=0

(4.3)

In the general case A, B and C individually may be either positive, zero or negative.
The several possible cases are of fundamental interest in describing possible bending
stall flutter behavior. I. A < 0, B < 0, C < 0 No flutter is possible.

II. A > 0, B > 0, C > 0 Flutter amplitude grows from zero to very large values.
III. A > 0, B < 0, C < 0 Flutter amplitude grows smoothly from zero to a finite

amplitude given by

(ωh0/V )2III =
(
−|B| +

√
B2 + 4A|C |

)
/2|C |

At this amplitude the power once again becomes zero.
IV. A < 0, B > 0, C > 0 No flutter at small amplitudes; if an external ‘trigger’

disturbance carries the system beyond a certain critical vibratory amplitude given by

(ωh0/V )2IV = (−B +
√
B2 + 4|A|C)/2C

the flutter will continue to grow beyond that amplitude up to very large values. At
the critical amplitude the power is zero.

V. A > 0, B > 0, C < 0This is similar to case III except that the finite amplitude,
or equilibrium, flutter amplitude
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(ωh0/V )2V = (B +
√
B2 + 4A|C |)/2|C |

might be expected to be somewhat larger.
VI. A > 0, B < 0, C > 0 This is similar to case IV except that the critical vibra-

tory amplitude beyond which flutter may be expected to grow

(ωh0/V )2VI = (|B| +
√
B2 + 4|A|C)/2C

is perhaps a larger value.
VII. A > 0, B < 0, C > 0 This case has behavior similar to case II if B is very

small and similar to case III if C is very small and also very large amplitudes are
excluded from consideration.

VIII. A < 0. B > 0, C < 0 This case behavior is similar to case I if B is very
small and similar to case IV if C is very small and also very large amplitudes are
excluded from consideration.

5 Nonlinear Mechanics Description

A number of these variations of power dependency on amplitude have been sketched
in Fig. 2. Case II is an example ofwhatmay be termed ‘soft flutter’; given an airstream
velocity V , incidence αss and time delay ψ/ω such as produce values of A, B and
C according to case II, the vibratory amplitude of flutter might be expected to grow
smoothly from zero.

Cases III and V similarly are examples of soft flutter; in these cases however,
the amplitude of vibration reaches a steady value and does not increase further.
An equilibrium flutter amplitude is attained after a period of time and maintained
thereafter. If, in either of these cases, one were to plot h versus ḣ/ω with time as a

Fig. 2 Power versus amplitude
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parameter, it would be found that the ‘trajectory’ of the ‘characteristic point’ would
be a spiral around the origin, beginning at the origin at t = 0 and asymptotically
approaching a circle of radius h0 for very large time. In the parlance of nonlinear
mechanics the circular path is a ‘limit cycle’ and hence most instances of stall flutter
may be termed limit cycle vibrations.

Case IV, or alternatively caseVI, describes a type of behaviorwhichmaybe termed
‘hard flutter’. In this situation when flutter appears as a self-sustaining oscillation, the
amplitude is immediately a large finite value. Here the motion spirals away from the
circular limit cycle to either large or smaller amplitudes in the phase plane (i.e., the
h, ḣ/ω plane). This example is an instance in which the limit cycle is unstable. The
slightest perturbation from an initially pure circular path, either to larger or smaller
radii, will result in monotonic spiralling away from the limit cycle. The previous
example of case III illustrated the case of a stable limit cycle.

The origin of the phase plane is also a degenerate limit cycle in the sense that the
limit of a circle is a point in which case only path radii larger than zero have physical
meaning. However, the origin may be an unstable limit cycle (soft flutter) or a stable
limit cycle (hard flutter).

It is clear from a consideration of cases VII and VIII that more than two limit
cycles may obtain; it is a theorem of mechanics that the concentric circles which are
limit cycles of a given system are alternately stable and unstable.

6 Torsional Stall Flutter

With pure twisting motion of the profile, the analytical formulation is more complex
stemming from the fact that the dynamic angle of incidence is compounded of two
effects: the instantaneous angular displacement and the instantaneous linear velocity
in a directionnormal to the chordposition; the secondmagnitude is linearly dependent
upon the distance along the chord from the elastic axis and upon the frequency of
vibration. Both components, of course, vary harmonically with the frequency ω.
Thus, assuming a displacement θ0 cosωt the ‘local’ angle of attack becomes

α = θ0 cosωt + arctan

[
tan αss − (x − x0)ωθ0

V cos αss
sin ωt

]
− αss (6.1)

and the relative dynamic pressure becomes

qrel = 1

2
ρV 2

rel = 1

2
ρV 2

⎡

⎣1 + 2 sin αss
θ̇(x − x0)

V
+

(
θ̇(x − x0)

V

)2
⎤

⎦ (6.2)

Since the local incidence varies along the chord in the torsional case, it is not possible
to formulate the twisting problem in a simple and analogous manner to the bending
case unless a single ‘typical’ incidence is chosen. For incompressible potential flow,
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Fig. 3 Geometry

thin airfoil theory, it is known [2] that the three-quarter chord point is ‘most repre-
sentative’ in relating changes in incidence to changes in aerodynamic reaction for an
unstalled thin airfoil with parabolic camber. Replacing x − x0 by a constant, say eb,
for simplicity, one has by analogy with bending (Fig. 3)

α =θ0 cosωt + cos αss(−ekθ0) sinωt − 1

2
sin 2αss(−ekθ0)

2

· sin2 ωt − 1

3
cos 3αss(−ekθ0)

3 sin3 ωt + 1

4
· · · (6.3)

where α is, again, the departure in angle of attack from αss . The constant e will
normally be of order unity for an elastic axis location forward of midchord.

From this point onward, the illustrative analysis involves the substitution ofα into
an analytical approximation for the aerodynamic moment coefficient

Cm =
v∑

n=0

bn(αss)α
n (6.4)

In this equation, the bn may be associated with the slope and higher order derivatives
i.e.,

bn = 1

n!
dnCm

dαn
|α=0 (6.5)

at the mean incidence point, in a manner analogous to the role of the an in the normal
force coefficient.

The work done by the aerodynamic moment acting on the torsional displacement
is given by

Work/Cycle =
∫ T

0
M θ̇ dt = 1

ω

∫ 2π

0
M θ̇ d(ωt) (6.6)

and hence the work flow, or power, is
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P = 1

2π

∫ 2π

0
M θ̇d(ωt) (6.7)

Using the previously derived expressions contributing to themomentM = q(2b)2Cm

leads to

M =1

2
ρV 2(2b)2
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⎣1 + 2 sinαss
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θ̇eb

V

)
+
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θ̇eb

V

)2
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·
v∑

m=0

bn(αss)[θ0 cosωt − cosαss(ekθ0) sinωt

−1

2
sin 2αss(ekθ0)

2 sin2 ωt + 1

3
cos 3αss(ekθ0)

3 sin3 ωt + · · ·
]n

(6.8)

and this expression, in turn inserted into the integrand of (6.7), will allow an analytical
expression to be derived by quadrature.

At this stage in the development of torsional stall flutter, a key difference emerges
more clearly when compared to bending stall flutter; a fundamental component of the
moment coefficient appears (b1θ0 cosωt) which is out of phase with the torsional
velocity (θ̇ = −ωθ0 sinωt). Noting that θ̇ is the second factor in the integrand, it
is seen that the final integrated expression for the power will have terms similar in
nature to the expression derived for the bending case, and in addition may have terms
proportional to

b1θ0, b2θ
2
0, b2θ0, b3θ

3
0, b3θ

2
0, etc.,

It is not particularly instructive to set out this result in full detail.
However, let us consider briefly the case of very slow oscillations, so that terms

proportional to higher powers of the frequency can be ignored. Then

P = −1

2
ρV 2(2b)2

ωθ0

2π

v∑

n=0

bnθ
n
0

∫ 2π

0
cosn(ωt − ψ) sin ωt d(ωt)

= −1

2
ρV 3(4b)k sinψ

v∑

n=odd
bnθ

n+1
0

1 · 3 · 5 · · · n
2 · 4 · 6 · · · (n + 1)

(6.9)

We conclude from this equation that the work flow again will be proportional to a
sum of terms in even powers of the vibratory amplitude, but in this instance, the low
frequency torsional stall flutter is critically dependent on the time lag ψ/ω between
the oscillatory motion and the response of the periodic aerodynamic moment.

Torsional stall flutter is thus seen to be a muchmore complex phenomenon, with a
greater dependence on time lag and exhibiting very strong dependence on the location
of the elastic axis. For example, if the elastic axis were artificially moved rearward
on an airfoil such as to reduce the effective value of the parameter e to zero, the airfoil
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flutter behavior would be governed by exactly the same specialization of the analysis
aswas just termed ‘low frequency’. Exactly the same termswould be eliminated from
consideration. In qualitative terms one may also conclude that the actual behavior in
torsional flutter in the general case (with e �= 0) is some intermediate state between
the low frequency behavior (critical dependence on sin ψ) and a type of behavior
characteristic of bending stall flutter (critical dependence on the slope of a dynamic
characteristic at the mean incidence).

7 General Comments

An interesting by-product of the nonlinear nature of stall flutter is the ability, in prin-
ciple, to predict the final equilibrium amplitude of the vibration. This is in contradis-
tinction to classical flutter in which only the stability boundary is usually determined.
The condition for constant finite flutter amplitude is that the work, or power flow,
again be zero. As we have seen this can be discerned when the power equation is
set equal to zero; the resulting quadratic equation is solved for the squared flutter
amplitude, either (h0/b)2 or θ20 as the case may be. Since all the an or bn coefficients
are functions ofαss , the two types of flutter are displayed in Fig. 4 as presumed func-
tions of this parameter. Hard flutter displays a sudden jump to finite amplitude as a
critical parameter is varied and a lower ‘quench’ value of that parameter where the
vibration suddenly disappears. The two effects conspire to produce the characteristic
hysteresis loop indicated by arrows in Fig. 4.

In summary then, stall flutter is associated with nonlinearity in the aerodynamic
characteristic; the phenomenon may occur in a single degree of freedom and the
amplitude of vibratory motion will often be limited by the aerodynamic nonlinear-
ities. Although structural material damping has not been considered explicitly, it is
clear that since damping is an absorber of energy its presence will serve to limit the
flutter amplitudes to smaller values; damping limited amplitudes will obtain when

Fig. 4 Flutter amplitude versus steady state angle of attack
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the positive power flow from airstream to airfoil equals the power conversion to heat
in the mechanical forms of damping.

It is also clear that motion in a third degree of freedom is possible. Oscillatory
surging of the airfoil in the chordwise direction can be related to a nonlinear behavior
in the drag acting on the profile. However, airfoils are usually very stiff structurally
in the chordwise direction and the drag/surging mechanism would normally be of
importance only for bluff structural shapes such as bundles of electric power con-
ductors suspended between towers, etc.

Under certain circumstances such as the example noted directly above, stall flutter
in more than one degree of freedom may occur. In these cases, the dynamic charac-
teristics of normal force, aerodynamic moment (and drag) become functions of an
effective incidence compounded of many sources: plunging velocity, torsional dis-
placement, torsional velocity and surging velocity. The resultant power equation will
also contain cross-product terms in the various displacement amplitudes, and hence
the equation cannot be used to predict stability or equilibrium flutter amplitudes
without additional information concerning the vibration modes.

Perhaps the greatest deficiency in the theory, however, is the fact that even in
pure bending motion or pure torsional motion, the dynamic force and moment are
in fact frequency dependent: an = an(αss, k) and bn = bn(αss, k). And in general
a0 �= −Cnss and b0 �= −Cmss . In analogy with classical flutter it may be shown that
even this dependence is deficient in that the characteristics in practice may be double
valued. That is, for the same value of effective incidence α, the characteristic may
have different values depending upon whether α is decreasing or increasing with
time. Such a hysteretic characteristic is usually more pronounced at high frequencies
of oscillation; an airfoil may have two lift or moment coefficients at a particular
angle of attack even in the static case, depending upon how the operating point was
approached.

It is for these reasons that practical stall flutter prediction has been at best a semi-
empirical process, and often entirely empirical. A model is oscillated in torsion, or
bending, in a wind tunnel under controlled conditions with parametric variation of
reduced frequency, mean incidence and oscillatory amplitude. Various elastic axis
locations also may be studied. Data which are taken may vary from instantaneous
normal force and moment down to the actual time-dependent pressure distribution
on the profile. Data reduction consists essentially of cross-plotting the various data
so that flutter prediction for prototype application is largely a matter of interpolation
in model data using dimensionless groups. Specific representative data will be taken
up in subsequent chapters where stall flutter applications are studied.

An exception to the previous reliance on experimental data is a theory [3] which
postulates that the departure of the normal force and/or aerodynamic moment from
the classical (attached flow) values can be modelled by considering a flat plate with
separated flow on the suction side. As the plate oscillates harmonically in time, the
position of the separation point (from which emanates a free streamline) is also
considered to move periodically with the same frequency as the oscillation. The
movement of the separation point along the suction surface is between two arbitrarily
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Fig. 5 Dynamic moment loops

specified upstream and downstream limits and with an arbitrarily specified phase
angle with respect to the oscillatory motion.

Under these circumstances, it is possible to solve the unsteady flow problem (anal-
ogous to the classical Theodorsen solution for attached flow) with separation present.
In effect the appropriate dynamic force and moment characteristics are generated for
each function specifying the separation point movement and airfoil motion. The
empirical part of the flutter prediction technique then resides in correlation of the
separation point behavior as a function of the airfoil attitude and oscillatory motion.
To illustrate the potential of the technique, two moment loops from the reference
are shown in Fig. 5. The one on the left is from an experimental program [4], the
one on the right is from [3]. Although the variation of moment with torsional dis-
placement is remarkably similar, it must be emphasized that the particular choice of
elastic axis location is different in experiment and theory, and the assumed separation
point behavior in the theory was reasonable, but quite arbitrary and unrelated to the
unknown separation point behavior in the experiment.

The method of modelling the separation region on the suction surface of the
airfoil by a free streamline issuing from the ‘separation’ point has been generalized
subsequently [5]. The method employs simultaneous integral equations and may be
applied to subsonic, small perturbation flows of aeroelastic significance. In particular,
for cascades of airfoils of interest in axial-flow compressors [6], the method has
shown promise of improved stall flutter prediction. A type of stall resulting in a
leading edge ‘bubble’ is also amenable to this type of small perturbation analysis
[7] and is more appropriate for sharp leading edges with onset flows that result in
reattachment of the separation streamline.

These free-streamline methods are useful when the reattachment point and/or
separation point behavior can be predicted beforehand and the mean incidence is
not excessive. An example is the thin airfoil with small leading edge radius at mod-
erate incidence where the separation point is ‘anchored’ at the leading edge and
reattachment does not occur.
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8 Reduced Order Models

As noted in chapter ‘Nonlinear Aeroelasticity’, Nonlinear Aeroelasticity, reduced
order models have been developed to help account for the effect of airfoil vibratory
displacement, velocity and acceleration on the associated aerodynamic responses.
Since the theoretical underpinning for these models is not firmly established for
conditions of massive flow separation, the characteristics must be developed by
model fitting from experimental data. For this reason these models have also been
termed “semi-empirical”.

In fact, a low order model is the quasisteady development presented in Sect. 2
for the nonlinear normal force and moment characteristics. The linear quasisteady
development in chapter ‘Dynamic Aeroelasticity’ is another low order model. The
steady flow aerodynamics example of that same chapter is of course the model of
lowest possible order.

Reduced order modelling for stall flutter and bluff body aeroelasticity has been
studied by a number of investigators. Some of these studies are described in chapter
‘Nonlinear Aeroelasticity’ and references to much of the recent literature may be
found there. One important and representative study is that by Tang and Dowell
[16] in which many of the characteristics attributable to aerodynamic nonlinearities
appear. Example are the asymptotic approach to limit cycles and the development of
chaotic pitch displacement and moment coefficient histories for particular values of
the advance ratio.

9 Computational Stalled Flow

In recent years the so-called vortexmethod has begun to be used tomodel periodically
separated flow from bluff bodies [8, 9] as well as streamlined shapes [10] such as
airfoils. The vortex method is essentially a computational algorithm which tracks a
large collection of discrete vortices in time. Since it is a time-marching procedure,
the aerodynamic reactions are obtained with an evolving flow and the aeroelastic
response of the structure must evolve in like manner. Hence stability of a specific
structure oriented in a specific flow cannot be discriminated ab initio. The aeroelastic
vibration develops in the course of time; hence the method might equally be termed
computational fluid elasticity (CFE). The power of the method may be appreciated
when it is realized that highly nonlinear aerodynamics (and structure as well) may
be modelled and finite amplitudes of the flutter vibration may be predicted. The cost
of computation is high since fairly long runs on supercomputers are required for
acceptable accuracy.

The vortex method for modelling unsteady separated flow as initiated in [10] and
modified in [11, 12] for oscillating airfoils, is based upon the following fluid dynamic
system of equations.
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For two-dimensional, viscous, incompressible flow past an infinite linear cascade
of airfoils at high Reynolds number, the basic aerodynamic equations that govern
the vorticity field derived in [8] are as follows. (For a single airfoil the formulation
may be simplified from what is shown here).

Conservation of vorticity in the fluid requires

Dω

Dt
= v∇2ω (9.1)

where the vorticity in the fluid field is

ω = ∂v

∂x
− ∂u

∂y
(9.2)

Vorticity within the solid is a continuation of the fluid field and represents the motion
(vibration) of the solid

ω = 2�m (9.3)

The boundary conditions in terms of vorticity can be written as [8]

∮ (
v
∂ω

∂n

)
ds = −2Rm

d�m

dt
(9.4)

The system of equations governing the vorticity and the system governing the
velocity and pressure are equivalent. A stream function ψ can be defined to satisfy
the continuity equation

u = −∂ψ

∂y
and v = ∂ψ

∂x
(9.5)

Combining (9.2) and (9.5) results in the Poisson equation

∇2ψ = ω (9.6)

The vortex method represents the vorticity field as the sum of a large number (N )
of vortex blobs

ω =
N∑

k−1

ωk (9.7)

and the stream function induced by a collection of vortices is �ψk , where

ψk = (�k/4π)ln| sin[(2π/p)(z − zk)]|2 (9.8)
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Here i = √−1 and the complex variable notation z = x + iy is used.
The instantaneous coordinates of themth airfoil surface [x(t), y(t)] under coupled

bending-torsion with a frequency of f Hertz are given by

x(t) = x0 − h sin(2π f t + μ + mσ) sin β − y0 θ sin(2π f t + mσ) (9.9a)

y(t) = y0 + h sin(2π f t + μ + mσ) cosβ + x0 θ sin(2π f t + mσ) (9.9b)

where (x0, y0) are coordinates for each airfoil without vibration and are measured
from its centroid, assumed here for simplicity to coincidewith the center of twist. The
quantity μ refers to the intrablade phase angle which is the phase difference between
the bending and torsional modes. On the other hand, the interblade phase angle, σ,
represents the phase shift between neighboring blades. To obtain the corresponding
boundary conditions, the nonpenetration condition is imposed as expressed by (1.32).

With the definition of the stream function ∂ψ/∂s = Vn where s and n are local
coordinates parallel and normal to the wall, respectively, the incremental value of
stream function along each airfoil surface can be determined by

dψ|s =
∫ s0+�s

s0

Vnds =
∫ s0+�s

s0

(ẋbnx + ẏbny)ds (9.10)

This equation is used to determine the distribution of the values of the stream function
along the boundary points of the airfoils, and then to solve the vorticity-stream
function equations. As a consequence of the airfoil motion the values of the stream
function are not constant along the boundary of the airfoil. It should also bementioned
that the no-slip condition reflecting the nonzero viscosity of the fluid is satisfied in a
weak sense, as discussed in [8].

Computations based on this system of equations have shown [12] that the two-
dimensional unsteady flow, as exemplified in a linear cascade of oscillating airfoils, is
properly predicted for a range of reduced frequencies at low incidence.Results similar
to those derivable analytically by the methods of Sect. 3 in chapter ‘Nonsteady Aero-
dynamics of Lifting and Non-lifting Surfaces’, and also in chapter ‘Aeroelasticity
in Turbomachines’ for cascades, are confirmed by these computational procedures.
With this validation in hand it is possible then to consider larger values of the mean
incidence until stall is encountered, and compute the aerodynamic response under
intermittent separation, and finally, under complete or ‘deep’ stall. The rapid change
in amplitude and phase for lift due to plunging motion as the mean incidence is
increased in steps is shown in the following table, along with streamline pattern at
one instant for the highest incidence case, Fig. 6.

The presence of strong vortices in the flow illustrates an important stability mod-
ification mechanism present in stalled flow. These coherent structures are subject to
a nonlinear eigenfunction/eigenfrequency interpretation associated entirely with the
flow. A completely rigid airfoil (cascade of airfoils) is (are) subject to a flow instabil-
ity identified as Karman vortex shedding [13] (propagating stall phenomenon). This
unsteady periodic behavior has a characteristic frequency and the associated flow
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Fig. 6 Streamline pattern at several instants for bending vibrations in stall

Fig. 7 Effect of vibration amplitude on lift amplitude and frequency
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patten is in the guise of an eigenfunction. Thus stall flutter, in a modern interpreta-
tion, may be thought of as the aeroelastic coupling of fluid and structure through the
vortex shedding and convection mechanism. If an airfoil natural frequency lies close
to a natural frequency of the flow instability (either Karman vortex or propagating
stall), the vibration of the blade can ‘entrain’ the stall frequency, resulting in the shift
from a forced excitation at the ‘stall natural frequency’ to a self-excitation at the
flutter frequency. This duality of frequencies may be observed in the lift response
spectrum during the first few instants of the prescribed motion, Fig. 7, for several
bending amplitudes.

In this figure two distinct frequencies are evident, one associated with the propa-
gating stall that would be present in the absence of any vibration, and the other at the
same frequency as the impressed vibration. At a later time the propagating frequency
has shifted and is essentially equal to the vibration frequency (which is always taken
to include the effect of apparent mass). Frequency synchronization has taken place.

Results of this nature have led to further modelling and computation with the
conclusion that stall flutter can be predicted by a computational algorithm in which
the airfoil motion is not prescribed beforehand. In [14, 15] the vortexmethod aerody-

Fig. 8 Influence of blade-reduced frequency on the stall-reduced frequency for a cascade in tor-
sional vibration. The plot shows the entrainment of stall frequency on a certain interval of blade
frequency
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namic subprogram is executed in parallel and interactivelywith a structural dynamics
subprogram, the entire computation being carried forward in a timemarching fashion.

Figure8 from [14] is a computational confirmation of the frequency entrainment
phenomenon previously hypothesized to occur for free vibrations. The temporal evo-
lution of the streamline pattern and the accompanying blade vibratory motion for one
datum point of Fig. 8 is shown in Fig. 9. The propagating stall frequency of a cascade
of blade s with fixed geometry and onset flow is seen to be relatively unaffected by the
presence of flexible blades except in the neighborhood of those blades having natural
frequency near the intrinsic stall frequency. Within the interval of entrainment, how-
ever, the stall frequency is physically modified so as to synchronize with the blade

Fig. 9 Instantaneous streamline pattern for a cascade in torsional vibration at different time levels
over a single period of oscillation (Cascade periodicity is three; stagger = 0 deg., inflow angle =
55 deg., blade natural frequency in vacuum = 0.13Hz, and the corresponding reduced frequency =
0.408.)
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natural frequency. Within the entrainment interval stall flutter may be said to occur.
In chapter ‘Aeroelasticity in Civil Engineering’ the synchronization phenomenon as
applied to bluff bodies is discussed in greater detail. Further studies are underway
to define the interval of synchronization as a function of the governing aeroelastic
parameters and to further define the stall flutter behavior within this interval.

The vortex method possesses inherent limitations which are related to the two-
dimensionality of the assumed flow and the necessity for a separation criterion
embedded in a boundary layer subroutine. These limitations would be removed with
the alternative development of Navier–Stokes solvers for full three-dimensional,
unsteady, compressible flows. The principal difficulty to be overcome is the provi-
sion of an accurate turbulence model that will result in the necessary resolution of
the scale of turbulence for typical cascade geometry. And the much greater number
of computations required for this computational model, stemming from the multi-
plicity of blade passages, makes the forthcoming increase in computational speed
a necessary adjunct. Supercomputers, probably involving parallel processing, are a
necessity for reliable large scale Navier–Stokes solutions.
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Aeroelasticity in Civil Engineering

Emil Simiu

Abstract Fluid-structure interaction occurs in civil engineering applications toflexi-
ble long span bridges and tall slender buildings. This chapter provides an authoritative
account of current best practices and modeling methods.

Certain types of civil engineering structures can be subjected to aerodynamic forces
generated by structural motions. These motions, called self-excited, are in turn
affected by the aerodynamic forces they generate. Behavior associated with self-
excited motions is called aeroelastic. The flutter of the Brighton Chain Pier Bridge
(Fig. 1) and,more than one century later, the original Tacoma-NarrowsBridge (Fig. 2)
are notorious examples of aeroelastic behavior. Tall chimneys and buildings may
also respond aeroelastically and need to be designed accordingly. The John Hancock
building in Boston, which has a relatively flat shape in plan (Fig. 3), has experienced
across-wind and torsional motions of sufficient severity to warrant the installation
of a large tuned-mass damper system at its top. These motions may have been due
to aeroelastic effects.1 Under certain conditions power lines experience aeroelastic
behavior referred to as galloping.

Aeroelastic phenomena of interest in civil engineering differ from those studied
in aeronautical engineering in two important ways. First, civil engineering structures
are typically bluff, although in modern suspended-span2 bridge design streamlined
box-like deck shapes are increasingly being used. Second, unlike flows typically con-
sidered in aeronautical engineering, the flows in which civil engineering structures
are immersed are in most cases turbulent. Atmospheric turbulence depends upon the
thermal stratification of the flow. At very high wind speeds mechanical turbulence
is dominant and the air flow may therefore be assumed to be neutrally stratified.

1Recent research on tall buildings with relatively large ratio between depth and width suggests that
this was indeed the case—see Sect. 2.2.2. To the writers’ knowledge, for legal or other reasons,
detailed technical reports on the wind-induced behavior of the John Hancock building are not
available in the public domain.
2 The term “suspended-span bridge” covers both suspension bridges and cable-stayed bridges.
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Fig. 1 Brighton Chain Pier Bridge failure, Nov. 29, 1836, as sketched by W. Reed. From J.S.
Russell (1841) On the Vibration of Suspension Bridges and Other Structures, and the Means of
Preventing Injury from this cause. Trans. Royal Scottish Soc. Arts, quoted in [113]

Standard atmospheric models commonly used in wind engineering are applicable
in this case. However, atmospheric flows are not necessarily neutrally stratified—
even at relatively high wind speeds. The actual flow turbulence may therefore differ
substantially from, and in some cases be considerably weaker than, the turbulence
inherent in standard models.

To estimate the effects of the interaction between aerodynamic forces and struc-
tural motions it is in principle necessary to solve the Navier–Stokes equations for
turbulent flow with time-dependent boundary conditions dependent on the solutions
themselves. This problem defies analytical capabilities. It is also difficult to solve
dependably by computational fluid dynamic (CFD) methods, although continual
progress is being made in this field, especially for non-turbulent flows.

Given the limitations of analytical and numerical procedures, the aeroelastic char-
acterization of civil engineering structures relies largely on laboratory testing and
empiricalmodeling. Such testing is not alwayswithout its problems, however, and for
certain conditions it is necessary to assess carefully the applicability to the prototype
of laboratory test results and the associated empirical models. There are two reasons
for this. First, wind tunnels that achieve Reynolds numbers comparable to those typi-
cal of most types of civil engineering structures (e.g., high-pressure wind tunnels) are
currently not capable of simulating atmospheric turbulence, which can significantly
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Fig. 2 Flutter of the Tacoma Narrows Bridge, November 10, 1940. From F.B. Farquharson (ed.),
Aerodynamic Stability of Suspension Bridges, 1949–1954

affect bluff body aerodynamic and aeroelastic behavior. Second, wind tunnels that
simulate the features of atmospheric turbulence usually violate Reynolds number
similarity requirements by factors of the order of 100–1,000. Nevertheless, for most
structures with sharp edges at which flow separationmust occur both in the prototype
and the model, and for properly modeled structures with rounded shapes and rough
or ribbed surfaces, it is assumed in most cases that the violation of Reynolds number
similarity is relatively inconsequential, and that prudent use of laboratory test results
is warranted.

This chapter is divided into two main parts. The first part is devoted to bluff
body aeroelasticity fundamentals pertaining to vortex-shedding related phenom-
ena (Sect. 1.1), galloping (Sect. 1.2), divergence (Sect. 1.3), flutter, and buffeting in
the presence of aeroelastic effects (Sect. 1.4). The second part is concerned with
applications to suspended-span bridges (Sect. 2.1), and tall chimneys and buildings
(Sect. 2.2).
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Fig. 3 John Hancock Building, Boston (by permission of Dr. DongHun Yeo)
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1 Fundamentals

1.1 Vortex-Induced Oscillation

1.1.1 Vortex Shedding

The aeolian harp (named after Aeolus, the Greek god of winds) consists of a set of
parallel strings which, when exposed to wind, experience vibrations that produce
acoustical tones. The vibrations are caused by periodic lift forces associated with
vortex shedding, and were studied by Strouhal in 1878 [1]. The shedding of vortices
in the wake of circular cylinders was studied in 1908 by Bénard [2], after whom the
vortices are named in France. A few years later it was also studied by vonKármán [3].
The orderly array of vortices that forms in the wake of a cylinder is known as a von
Kármán street.3 The character of the vortex sheddingdependsuponReynolds number,
the turbulence present in the oncoming flow, and the turbulence in the boundary layer
that develops on the circular cylinder’s surface. These factors control the interplay
between viscous and inertial forces that determines the position of the boundary
layer’s separation point. Vortex shedding is not limited to circular cylinders; it also
occurs in the wake of prismatic bodies (Fig. 4), and of non-cylindrical elongated
bodies such as tapered chimneys.

For long rigid cylindrical bodies in flow with uniform mean speed, around which
the flow may be assumed to be two-dimensional, the vortex shedding frequency fs
satisfies the relation

S = fs D/U (1.1)

where D is the across-flow dimension of the cylinder, U is the mean speed of the
oncoming flow, and the Strouhal number S depends upon the cross-section of the
cylinder. (The assumption that the flow is two-dimensional means that end effects
are assumed to affect negligibly the overall model behavior.) For smooth circular
cylinders S changes drastically at certain critical values of the Reynolds number
(see, e.g., [4]). However, for circular cylinders with rough surfaces no such critical
phenomena appear to have been observed [5, 6, p. 151]. The Strouhal number is
listed in [6] for a variety of shapes of interest in structural engineering under uniform,
smooth flow conditions.

The shedding of vortices in the wake of a body gives rise to an asymmetric flow
(Fig. 4) and, therefore, to an asymmetric pressure field which induces on the body
fluctuating lift forces, as well as relatively small drag force fluctuations. In air flow
the latter may inmost applications be assumed to be negligibly small. Various aspects
of vortex shedding, including the dependence of the fluctuating lift force acting on a
square cylinder upon the turbulence in the oncoming flow, are discussed, for example,
in [6, 7].

3 The late ProfessorWallaceHayes of PrincetonUniversity sometimes called it “boulevardBénard.”.
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Fig. 4 Flow around rectangular cylinder, Reynolds number Re=200. From Y. Nakamura, “Bluff
Body Aerodynamics and Turbulence” J. Wind Eng. Ind. Aerodyn., 49 (1993) 65–78

If the body is not perfectly rigid, or if it has elastic supports, it will experience
motions due to the aerodynamic forces and, in particular, to the fluctuating lift force.
As long as the motions are sufficiently small they do not affect the vortex shedding,
and Eq.1.1 remains valid. If the vortex-shedding frequency fs , and therefore the
frequency of the associated lift force, is equal to the natural frequency of vibration of
the body fn , then a relatively large motion amplification occurs. Experiments show
that this is the case not only at the flow speed fn D/S, but also at any flow speed
U within an interval fn D/S − �U < U < fn D/S + �U , where �U/U depends
upon cross-sectional shape and themechanical damping, and is usually of the order of
few percent. Within that interval the vortex shedding frequency no longer conforms
to Eq.1.1; rather, it aligns itself to the frequency of vibration of the body.

This is an aeroelastic effect: while the flow affects the body motion, the body
motion in turn affects the flow insofar as it produces a synchronization of the vortex-
shedding frequency with the frequency of vibration of the body. Synchronization
occurs in awide variety of physical, biological, andmathematical non-linear systems,
including clocks attached to the same deformable wall, which tick in unison, women
sleeping in the same room, who according to [8] tend to have their menses on the
same day, and the famous van der Pol equation, among other nonlinear equations. In
the vortex-shedding case the synchronization is referred to as lock-in.

Figure5 shows measurements of the across-flow oscillations of an elastically
supported circular cylinder in smooth flow and their spectral densities, and of flow
velocity fluctuations and their spectral densities at 2.5 diameters downstream of and
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(a)

(b)

Fig. 5 a Response forU/ fn D = 4.294; ζ = 0.15%. bResponse forU/ fn D = 5.003; ζ = 0.15%.
c Response for U/ fn D = 5.475; ζ = 0.15%
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Fig. 5 (continued)

one diameter above the cylinder axis [9]. Note the significant increase in amplitude
for fs = fn . However, even for fs = fn the ratio of the amplitude to the diameter of
the cylinder remains relatively small. This is typical of vortex-induced oscillations.

Up to a certainmagnitude of the displacement the bodymotion results in a transfer
of energy from the flow to the body. This transfer may be viewed as equivalent to
a flow-induced negative aerodynamic damping. For larger displacements, however,
there occurs a transfer of energy from the body to the flow. This helps to limit the
amplitude of the motion and may be viewed as equivalent to a flow-induced positive
damping.

Figure6 reflects another aeroelastic phenomenon of interest in practice: the
increased along-span correlation of the pressures acting on a circular cylinder as
the oscillation amplitudes increase.

1.1.2 Modeling of Vortex-Induced Oscillations

The aeroelastic behavior of an oscillator is described by its equation of motion, in
which the excitation term is the resultant of the flow-induced pressures. As was
mentioned earlier, the latter can in principle be obtained from the solution of the
Navier–Stokes equationwith boundary conditions dependent upon the solution itself.

For many years mathematicians and engineers have tried to develop simplified
empirical models. One justification for such models is that the collective behavior of
a wide variety of systems with large numbers of degrees of freedom can be similar to
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Fig. 6 Effect of increasing
oscillation amplitude a/2 of a
circular cylinder of diameter
D on correlation between
pressures at points separated
by distance d along a
cylinder generator: a smooth
flow; b flow with turbulence
intensity 11%. Reynolds
number: Re = 2 × 104

the behavior of simple low-degree-of-freedom systems representing them. (A flow
interacting with a body is a system with an infinity of degrees of freedom.) The
various empirical vortex-induced oscillation models contain adjustable parameters
fitted to match experimental results. By construction, the solutions of the model
equations with parameters fitted to those results provide a reasonable description
of the observed aeroelastic motions. The user must be aware that the empirical
model may not be valid as a motion predictor for conditions that differ significantly
from the experimental conditions in which the fitted parameters were obtained. For
long elastically-supported cylinders in uniform smooth flow we review a number of
two-degree-of-freedom models, and a simpler but useful single-degree-of-freedom
model.

1.1.3 Coupled Two-Degree-of-Freedom Equations: Wake Oscillator
Models

Two-degree-of-freedom models entail two coupled equations, one describing the
body motion, and one describing the wake motion. Various models, all derived from
a generic model, were reviewed by Scanlan [10], whom we follow in the sequel. The
generic model includes the equation of body motion
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m[ÿ + 2ζωn ẏ + ω2
n y] = F(φ, φ̇, φ̈), (1.2)

where y is the across-flowbody displacement,m is the bodymass, ζ is themechanical
damping ratio, ωn = 2π fn, φ is a representative wake variable, and

F(φ, φ̇, φ̈) = a2φ̈ +
N∑

n=1

a2n−1φ̇
2n−1 + a0φ, (1.3)

and the equation of wake motion

φ̈ +
M∑

m=1

b2m−1φ̇
2m−1 + b0φ = G(y, ẏ, ÿ,

...
y ,

....
y ), (1.4)

where

G(y, ẏ, ÿ,
...
y ,

....
y ) = c4

....
y + c3 ÿ + c2 ÿ +

R∑

r

c2r−1 ẏ
2r−1 + c0y. (1.5)

The constants ai , bi , ci must be identified by a combination of physical reasoning
and experimental work. The system 1.2–1.5 is autonomous. Various models differ
according to the meaning ascribed to the variable φ and the choice of non-zero
constants a, b, and c.

The first wake oscillator model was proposed in 1955 by the great American
mathematician Birkhoff4 [11]. In the Birkhoff model the variable φ is the angle,
denoted by α, between the axis of the vortex street and a fictitious lamellar mass,
“something like the tail of a swimming fish,” that extends a distance L aft of the
cylinder, and oscillates at the Strouhal frequency from side to side across the wake.

Funakawa [12] pursuedBirkhoff’s basic idea by attributing to thewake oscillator a
physical meaning associatedwith themass of the “dead fluid” region in the near wake
of the cylinder. He conducted experiments in uniform smooth flow inwhich a circular
cylinder was subjected to harmonic oscillations at the Strouhal frequency. Details on
the behavior of the “dead fluid” region were inferred from flow visualizations under
lock-in conditions. The wake oscillator was assumed to act as a horizontal pendulum
coupled to the cylinder motion and described by the equation

I α̈ + cα̇ + k(α + ẏ

U
) = ω2

s I ᾱ sinωs t (1.6)

where I = 1
4ρLH(D + L)2 is the moment of inertia of the wake oscillator, H =

1.25D, L = 2.2D, k = 1
2ρU

2(2π)L(D + L)/2 is the oscillator’s moment stiffness,
and ᾱ = 2y0/(D + L). Equation (1.6) was used by Funakawa to calculate drag and

4 Birkhoff’s contributions to the field of dynamical systems rank in importance with those of
Poincaré, with whom he had close and fruitful scientific interactions.
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lift forces induced by the wake oscillator on the cylinder throughMagnus effects, and
dependent on y, ẏ, and ẏ3. There results from this model a van der Pol-type equation
of motion of the body that contains two terms of aerodynamic origin. The first term is
of the form c1,aero ẏ and reflects the transmission of energy from theflow into the body.
Unlike a mechanical damping coefficient—which is associated with loss of energy
by the system,—the aerodynamic damping coefficient c1,aero < 0. The second term
has the form c2,aero ẏ3, where the aerodynamic damping coefficient c2,aero > 0. For
small ẏ the net aerodynamic damping due to the linear and nonlinear terms in ẏ
is negative, so that the displacement increases. For large ẏ the net aerodynamic
damping becomes positive, thereby limiting the amplitude of the body motion. A
critique of Funakawa’s model work led Nakamura [13] to propose a modified form
of theMagnus lift force. A further modification was proposed by Tamura andMatsui
[14].

In another family of circular cylinder vortex-induced oscillation models the
parameter φ of Eq. (1.2) is taken to be the lift coefficient CL . Hartlen and Currie
[15] proposed the following model:

Mÿ + C ẏ + Ky = 1

2
ρU 2DCL(t) (1.7)

C̈L − aωsĊL + γ

ωs
Ċ3

L + ωsCL = bẏ (1.8)

where b is an adjustable parameter, α = ρD2/8π2S2M, y = 4α/3CL0 , and CL0 is
the measured amplitude of the fluctuating lift coefficient on the stationary cylinder.
Hartlen and Currie’s model was subsequently modified by Skop [16] and Griffin
[17], Landl [18], Wood [19], and Wood and Parkinson [20].

Dowell [21] developed a model in which CL was also used as the wake oscillator
variable. The model is based on four requirements:

1. At high frequencies a virtual mass relationship is preserved between lift and
cylinder acceleration, that is,

8CL = −B1ρD
2 ÿ

2

2
(ω → ∞) (1.9)

where B1 is a constant.
2. At low frequencies quasi-steady conditions hold between CL and y, that is, for

∞ → 0

CL = f (
ẏ

U
) = A1(

ẏ

U
) − A3(

ẏ

U
)3 + · · · (1.10)

where A1, A3 . . . are constants.
3. For small CL and y ≡ 0 the fluid oscillation has the Strouhal frequency, that is,

C̈L + ω2
s CL = 0. (1.11)
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4. Characteristics of the van der Pol oscillator are included in the response of CL .
Conditions 1 to 4 lead to the equation

C̈L − ε

[
1 − 4

(
CL

CL0

)2
]

ωsĊL + ω2
s CL

= −B1

(
D

U 2

)
....
y + ω2

s

[
A1

ẏ

U
− A3

(
ẏ

U

)3

+ A5

(
ẏ

U

)5

− A7

(
ẏ

U

)7
]

(1.12)

in which the parameter ε must be determined experimentally. Two special fea-
tures of Dowell’s model are that it contains a fourth order coupling of y to CL ,
and that the model can describe oscillations in a broader frequency range than
is the case for other models. For details and comparisons with experiments see
[21].

1.1.4 Single-Degree-of-Freedom Model of Vortex-Induced Response

The following simple single-degree-of-freedom model proposed by Scanlan [22]
exhibits features of a van der Pol oscillator:

m(ÿ + 2ζωn ẏ + ω2
n y) = 1

2ρU
2D

[
Y1(K )

(
1 − ε

y2

D2

)
ẏ
U

+Y2(K )
y
D + CL(K ) sin(ωt + φ)

]
.

(1.13)

In Eq. (1.13) K = Dω/U , and the circular frequencyω satisfies the Strouhal relation
ω = 2π SU/D; Y1, Y2, ε, and CL , a measure of the lift force that would occur in
the absence of lock-in, must be fitted to experimental results. This model allows for
negative and positive aerodynamic damping at low and high body displacements,
respectively, that is, for the aeroelastic transfer of energy from the flow to the body
or from the body to the flow according as the displacements are small or large.
At lock-in ω ≈ ωn , and Y2(ωn) = 0, CL(ωn) = 0, since the last two terms within
the square bracket of Eq. (1.13) are much smaller than the term—dominant by far—
reflecting the aerodynamic damping effects. At steady amplitudes the average energy
dissipation per cycle is zero, so that

∫ T

0

∣∣∣∣4mζω − ρUDY1(1 − ε
y2

D2
)

∣∣∣∣ ẏ
2dt = 0 (1.14)

where T = 2π/ω. The assumption that, for practical purposes, y is harmonic, that
is, y = y0 cosωt , implies ∫ T

0
ẏ2(t)dt = ωy20π. (1.15)
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∫ T

0
y2 ẏdt = ωy20

π

4
. (1.16)

Equation (1.14) then yields

y0
D

= 2

[
Y1 − 8π Sscr S

εY1

] 1
2

(1.17)

where Sscr denotes the Scruton number, defined as

Sscr = ζm

ρD2
. (1.18)

The parameters Y1 and ε may be evaluated from model tests. At the lock-in velocity
the body is displaced to an initial amplitude A0 > y0 and then released. The body
will then undergo a decaying oscillation until it levels out to the steady state motion
with amplitude given by Eq. (1.17). It is shown in [23] that the amplitude of the
decaying oscillation can be described by the expression

y(t)

D
= y0/D

[1 − ((A2
0 − y20 )/A

2
0) exp(−αy20Ut/4D3)] 1

2

(1.19)

in which

α = ρD2Y1
2m

ε. (1.20)

The value of α is determined from the model tests as follows. Defining Rn =
A0/An , where An is the amplitude of the decaying oscillation at n cycles after the
release,

α = −4SD2

ny20
ln

[
A2
0 − R2

n y
2
0

A2
0 − y20

]
. (1.21)

It follows that

Y1 = m

2ρD2

[
α
y20
D2

+ 16πζ S

]
, (1.22)

ε = 2mα

ρD2Y1
. (1.23)

Y1 may be obtained by alternative identification techniques from section model tests
of the type used to measure flutter coefficients (Sect. 2.1). Scanlan’s model is the
basis of procedures for the estimation of vortex-shedding effects on bridge decks
(Sect. 2.1.3) and tall chimneys (Sect. 2.2).
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Fig. 7 Maximum amplitude as a function of Scruton number

Experimental data used in conjunction with a model similar to Eq. (1.17) yielded
the values plotted in Fig. 7 [9]. Also plotted in Fig. 7 is the following empirical
formula developed in [23]:

y0
D

= 1.29

[1 + 0.43(8π2S2Sscr )]3.35 . (1.24)

For additional basic material on vortex-induced oscillation, see [24–28] and refer-
ences listed in [10].

1.2 Galloping

In this section we study two types of galloping. Across-wind galloping is a large-
amplitude oscillation (one to ten or more across-wind dimensions of the body) exhib-
ited in a plane normal to the oncoming flow velocity by slender structureswith certain
types of cross-section. For example, ice-laden cables subjected to winds approxi-
mately normal to their span exhibit galloping oscillations in a vertical plane. For
brevity we will refer to across-wind galloping simply as galloping. Wake gallop-
ing refers to oscillations of a downstream cylinder induced by the wake flow of an
upstream cylinder, and has been observed in bundled power transmission-line cables.
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Fig. 8 Lift L and drag force
D on a fixed bluff object

1.2.1 Equation of Motion of Galloping Bodies: The Glauert-Den
Hartog Necessary Condition for Galloping instability

Pioneering contributions to the galloping problem are due to Glauert [29] and Den
Hartog [30, 31]. Experience has shown that knowledge of the mean lift and drag
coefficients obtained under static conditions as functions of angle of attack is suffi-
cient for building a satisfactory analytical description of the galloping phenomenon;
that is, galloping is governed primarily by quasi-steady forces. Deviations of the
actual drag and lift forces from their mean static counterparts that occur during the
galloping motion have a second-order effect, unless the oscillator can experience
chaotic transitions, as suggested in Sect. 6.1.2.3.

We assume that the problem is two-dimensional, and consider the cross-section of
a prismatic body in smooth flow (Fig. 8). Assume the body is fixed and that the angle
of attack of the flow velocity Ur is α. The mean drag (mean force in the direction of
Ur ) and the mean lift (mean force in the direction normal to Ur ) are, respectively,

D(α) = 1

2
U 2

r BCD(α) (1.25)

L(α) = 1

2
U 2

r BCL(α) (1.26)

Their projection on the direction y is

Fy(α) = −D(α) sin α − L(α) cosα (1.27)

We write Fy(α) in the alternative form

Fy(α) = 1

2
U 2BCFy(α) (1.28)

where
U = Ur cos α. (1.29)
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Fig. 9 Effective angle of
attack on an oscillating bluff
object

It follows from Eqs. (1.27) and (1.28) that

CFy = −[CL(α) + CD(α) tan α] secα. (1.30)

We now consider the case in which the same body oscillates in the across-wind
direction y in flow with velocity U (Fig. 9).

The magnitude of the relative velocity of the flowwith respect to the moving body
is denoted by Ur and can be written as

Ur = (U 2 + ẏ2)
1
2 . (1.31)

The angle of attack, denoted by α, is

α = arctan
ẏ

U
. (1.32)

If the body has mass m per unit length, elastic supports, and linear viscous damp-
ing, its equation of motion is

m[ÿ + 2ζωn ẏ + ω̇2
n y] = Fy (1.33)

where ζ is the damping ratio, ωn is the circular natural frequency, and Fy is the
aerodynamic force acting on the body. It is assumed that the mean aerodynamic drag
and lift coefficients CD(α) and CL(α) for the oscillating body and for the fixed body
are the same, so Fy(α) is given by Eqs. (1.28)–(1.32).

For incipient motion, where a may be assumed to be small,

α ∼= ẏ

U
∼= 0,

Fy(α)|α=0
∼= ∂Fy

∂α
|α=0α. (1.34)
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For small α, Eqs. (1.28), (1.34) (in which it is recalled thatU is constant), (1.30),
and (1.32) yield

Fy(α)|α=0
∼= −1

2
ρU 2B

(
dCL

dα
+ CD

)

0

, (1.35)

and the equation of motion of the body is

m[ÿ + 2ζωn ẏ + ω2
n y] = −1

2
ρU 2B

(
dCL

dα
+ CD

)

0

ẏ

U
(1.36)

In the right-hand side of Eq. (1.36) the coefficient of ẏ may be viewed as an
aerodynamic damping coefficient. The total aerodynamic damping coefficient—the
factor d multiplying the derivative ẏ—is

2mζωn + 1

2
ρUB

(
dCL

dα
+ CD

)

0

= d. (1.37)

If d > 0 the fixed point y = 0, ẏ = 0 is stable, that is, small oscillations from the
position of equilibrium y = 0 due to a small initial deviation from that position will
decay in time, and the body will revert to its position of equilibrium. The body is
then said to be aerodynamically stable. However, if d < 0, the fixed point y = 0,
ẏ = 0 is unstable, and the body is said to be aerodynamically unstable.

A necessary condition for the occurrence of galloping motion is then

(
dCL

dα
+ CD

)

0

< 0. (1.38)

The inequality (1.38) is known as the Glauert-Den Hartog criterion. (A sufficient
condition for the occurrence of galloping is d < 0.) Note, however, that Eq. (1.38)
is applicable to galloping motion that starts from rest; a large triggering disturbance
can in certain instances cause the occurrence of galloping even if Eq. (1.38) is not
satisfied.

For reasons of symmetry circular cylinders cannot gallop: since the quasi-static
mean lift force is identically zero for any angle of attack, dCL/dα ≡ 0. For an
octagonal prism the lift and drag coefficients measured under static conditions are
depicted in Fig. 10. It can be seen that for angles of attack −5◦ < α < 5◦, where α

is defined in Fig. 10, the Glauert-Den Hartog criterion is satisfied.

1.2.2 Description of Galloping Motion

In Sect. 1.3 we were concerned with obtaining a necessary condition for the occur-
rence of galloping. In this sectionwe consider bodies for which the total aerodynamic
coefficient d < 0, and discuss the evolution in time of their galloping motion.
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Fig. 10 Force coefficients on an octagonal cylinder

As shownbyEqs. (1.28), (1.30), and (1.32), the equation ofmotion of the galloping
body (Eq.1.33) is nonlinear. The description of the galloping motion is based on the
development of the aerodynamic coefficient CFy in powers of ẏ/U Since ẏ/U =
tan α, [33] proposed the polynomial expression

CFy = A1
ẏ

U
− A2

(
ẏ

U

)2 ẏ

|ẏ| − A3

(
ẏ

U

)3

+ A5

(
ẏ

U

)5

− A7

(
ẏ

U

)7

, (1.39)

where the constants Ai are determined by a least squares fit or another appropri-
ate technique. The steady-state solution of the resulting equation of motion for a
prismatic body with square cross-section is obtained by assuming
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Fig. 11 Basic types of lateral force coefficients C fy and the corresponding galloping response
amplitudes. From [32]

y = a cos(ωnt + φ) (1.40a)

ẏ = −aωn sin(ωnt + φ), (1.40b)

in which α and φ are slowly varying functions of time, and by applying the Krylov
and Bogoliuboff technique to the resulting equation of motion [34]. This leads to
the identification of three basic types of curves CFy as functions of α, and of the
corresponding curves α as functions of the reduced velocityU/Dωn . The observable
amplitudes are those depicted in solid lines in Fig. 11. They correspond to stable limit
cycles. Interrupted lines correspond to unstable limit cycles, which are not observable
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in physical experiments. For A1 > 0, if the speed increases from U1 to U2 a jump
occurs from the lower to the upper curve; if the speed decreases from U2 to U0 the
jump occurs from the upper to the lower curve.

The effect upon the galloping of non-uniform deflections along the span and of
turbulence in the oncoming flow is discussed in [32]. Turbulence helps to render the
oscillations unsteady and, depending upon its scale and intensity, it can reduce the
magnitude of the aerodynamic damping to a degree that will prevent the occurrence
of galloping. For additional studies of galloping see [35–37].

1.2.3 Chaotic Galloping of Two Elastically Coupled Square Bars

Experiments on a double galloping oscillator consisting of two elastically supported
and coupled square prisms (Fig. 12) are described in [38]. The bars were observed to
gallop in phase, but except for relatively lowflow speedsU this oscillatory form alter-
nated irregularly with a second oscillatory form wherein the two bars galloped with
higher frequency in opposite phases (Fig. 13). The mean time between transitions
from the first to the second oscillatory form decreased as the flow speed increased.

Fig. 12 Schematic of
double galloping oscillator
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(a)

(b)

Fig. 13 a Observed time history of displacement y1; b observed time history of displacement
displacements y1 (solid line) and y2 (interrupted line). From [38]
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Fig. 14 Schematic of single
galloping oscillator

A similar simple galloping oscillator is shown in Fig. 14. Observations show that
its motion exhibits small deviations from periodicity (Fig. 15) that may be attributed
to irregular flow fluctuations in the wake flow and to turbulence caused by exper-
imental appurtenances. It follows that the actual aerodynamic forces acting on the
oscillator deviate from the quasi-static model assumed in Sect. 6.1.2.1. Numerical
simulations of the double galloping oscillator in which small random excitations
were superimposed on the quasi-static aerodynamic forces yielded results similar to
the experimental results of Fig. 13 [38].

It has been conjectured that galloping motions of the type shown in Fig. 13 are
chaotic. The experimental results just reviewed have led to the development of a
theory of chaotic dynamics occurring in a wide class of stochastic systems that can
exhibit transitions between distinct oscillatory forms [39].

1.2.4 Wake Galloping: Physical Description and Analysis

Wenowconsider the case of twocircular cylinders ofwhichone is located upstreamof
the other. Under certain conditions the downstream cylinder may experience wake
galloping that is galloping induced by the wake of the upstream cylinder. Wake
galloping arises in power transmission lines grouped in bundles as for example in
Fig. 16. Since it occurs between spacers, it is referred to as subspan galloping.

We noted earlier that circular cylinders cannot experience across-wind galloping
in uniform oncoming flow. However, the flow in the wake of an upstream cylinder is
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Fig. 15 Observed time history of displacement y

Fig. 16 Spacer in four-bundle power line
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Fig. 17 Amplitude trace of a wake galloping orbit (courtesy of National Aeronautical Establish-
ment, National Research Council of Canada)

Fig. 18 Coordinates for wake galloping analysis [43]

sheared (i.e., non-uniform). If the distance between the upstream and the downstream
cylinder is a few cylinder diameters, and the downstream cylinder is displaced into
approximately the outer quarter of the wake, a galloping motion will begin from
that displaced position, which grows in amplitude until it reaches a steady state
elliptical orbit—a limit cycle—with the long axis oriented approximately along the
flowvelocity. An oscillograph trace of the gallopingmotion of a downstream cylinder
supported elastically in both the flow direction and the direction normal to the flow
is shown in Fig. 17. The direction of the motion on that orbit is downstream near the
outer portion of the wake and upstream near the center of the wake, or clockwise in
Fig. 17.

Wake galloping is analyzed by assuming two-dimensionality (i.e., uniform
upstream flow and large ratio of subspan to cylinder diameter). The downstream
cylinder is assumed to be elastically supported in both the horizontal and vertical
direction about a position (X,Y ), where X,Y are along-flow and across-flow coor-
dinates centered on the upstream cylinder (Fig. 18). The equations of motion of the
downward cylinder are written in terms of its excursions (x, y) away from the posi-
tion (X,Y ):
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mẍ + dx ẋ + Kxx x + Kxy y = Fx (1.41a)

mÿ + dy ẏ + Kyx x + Kyy y = Fy (1.41b)

where m is the mass per unit length of the downstream cylinder, dx , dy are damping
constants, Krs (r, s = x, y) are spring constants, and Fx , Fy are the flow-induced
force components in the X and Y direction, written as

Fx = 1

2
ρU 2D

{(
∂Cx

∂x
x + ∂Cx

∂y
y

)
+ Cy

ẏ

Uw

− 2Cx
ẋ

Uw

}
(1.42a)

Fy = 1

2
ρU 2D

{(
∂Cy

∂x
x + ∂Cx

∂y
y

)
− Cx

ẏ

Uw

− 2Cy
ẋ

Uw

}
(1.42b)

where U is the free upstream flow velocity, Uw is the average wake velocity in the
U direction at (X, Y ), and D is the cylinder diameter [40]. Expressions similar to
Eq.1.42a were first developed in [41, 42]. Cx ,Cy are aerodynamic drag and lift
coefficients. They, and their derivatives, are obtained by direct measurements of
time-averaged values in the wind tunnel. The corresponding forces are self-excited:
they vanish if the excursions x, y and their derivatives vanish. Cases of interest have
included smooth circular cylinders and stranded wire cables.

An analytical solution of the problem can be obtained by assuming in Eqs. 1.41a
and1.42a

x = x0e
λt (1.43a)

y = y0e
λt (1.43b)

and using the condition that the determinant of the coefficients of Eq.1.41a vanishes.
The motions are unstable if the real part of the eigenvalue λ is smaller than zero.
Stability boundaries can be obtained by seeking the vanishing real part of λ for a
number of points X,Y . The agreement between theory and experiment was found
to be reasonably good (Fig. 19) [43]. The corresponding orbits [x(t), y(t)] may be
calculated by using Eqs. 1.42a and1.43a. For applications to cables see [40, 44, 45].

1.3 Torsional Divergence

Torsional divergence is an aeroelastic phenomenon that, like galloping, can be
described by using aerodynamic properties measured on the body at rest. It can
occur in bodies with relatively flat shapes, such as airfoils and lifting surfaces (see
Sccts. 2.1–2.2) or bridge decks. It is also referred to as lateral buckling, and represents
the condition wherein, given a slight deck twist, the drag load and the self-excited
aerodynamic moment will precipitate a torsional instability.
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Fig. 19 Measured and predicted stabiloity boundaries for wake galloping [43]

Fig. 20 Parameters for torsional divergence problem

We illustrate the divergence phenomenon by considering the bridge deck section
of Fig. 20, in whichU is the horizontal wind velocity, α is the angle of rotation about
the bridge section’s elastic center, and kα is the torsional stiffness. The aerodynamic
moment per unit span may be written as

M(α) = 1

2
ρU 2B2CM(α) (1.44)

where CM(α) is the aerodynamic moment coefficient about the torsional axis and
B is the bridge deck width. Typically CM(α) is a monotonically increasing function
of α. We denote CM(0) by CM0. For small angles α, M(α) may be approximated to
first order as

M(α) = 1

2
ρU 2B2

[
CM0 + dCM

dα
|α=0α

]
. (1.45)
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Byequating the aerodynamic torsionalmomentM(α)givenbyEq.1.45 to the internal
torsional moment kαα we obtain

(kα − λC ′
M0) = λCM0 (1.46)

where λ = 1
2ρU

2B2 and C ′
M0 = dCM

dα
|α=0, or

α = λCM0

kα − λC ′
M0

. (1.47)

Since λ > 0, it follows fromEq. (1.47) that, providedC ′
M0 > 0, α approaches infinity

(diverges) for λ = kα

C ′
M0
. (For C ′

M0 < 0, a case that occurs for some types of bridge
decks, divergence does not occur.) The critical divergence velocity is therefore

Ucr =
√

2kα

ρB2C ′
M0

. (1.48)

The generalization of the problem to three dimensions and the role of the shape of the
curveCM(α) in the solution of the divergence problem are discussed in Sect. 6.2.1.2.

1.4 Flutter and Buffeting in the Presence of Aeroelastic
Effects

Flutter is the term applied to aeroelastic phenomena occurring in flexible bodies
with relatively flat shapes in plan (e.g., airfoils, rotor blades, turbomachinery blades,
bridge decks) and involving oscillations with amplitudes that grow in time and can
result in catastrophic structural failure. The term flutter is relatively recent and was
first introduced in an aeronautical context; note that in Fig. 6.1 flutter is referred to as
“undulation.” As late as 1971 it has also been used to designate the wake galloping
of conductor cables [42, 44], a usage that now appears to be obsolete. Like other
aeroelastic phenomena, flutter entails the solution of equations of motion involving
inertial, structural damping, restoring, and aerodynamic forces dependent upon the
ambient flow and the shape and motion of the body.

For phenomena of interest in civil engineering the bodymotion is said to be stable
from a flutter point of view if, assuming the absence of forcing terms, and given a
sufficiently small disturbance from the body’s position of equilibrium, the oscillations
initiated by that disturbance will gradually die out, that is, the body will revert to its
position of equilibrium. In dynamical systems theory that position is referred to as
a stable fixed point (or a sink). In the presence of small forcing, solutions near the
fixed point stay nearby, and the system is referred to as linearly stable. As the flow
velocity increases, the aerodynamic forces acting on the body will also increase, and
for a certain value of the flow velocity, called critical flutter velocity, or simply flutter
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velocity, the stable fixed point in the dynamical system representing the body motion
becomes neutrally stable—a center. At that velocity, in the absence of forcing, an
initial small disturbance from equilibrium will result in steady harmonic, rather than
decaying, oscillations. For velocities larger than the critical velocity the center turns
into an unstable fixed point, also known as a source, and the oscillations initiated by
a small disturbance will grow in time. The nonlinear dependence upon the motion
of the aerodynamic forces and/or the body restoring force can result in a dynamical
system in which the oscillations reach a periodic steady state by evolving on a stable
limit cycle. In general, for flow velocities in excess of the critical velocity, the body
will perform unacceptably from a service point of view, or can experience structural
damage or collapse during the growing transient motion, that is, before its motion
reaches a steady state.

The greatest difficulty in solving the flutter problem for bridges is the development
of appropriate expressions for the aerodynamic forces due to the bridge deck motion.
For thin airfoil flutter in incompressible flow it has been shown by Theodorsen [46]
that the aerodynamic forces due to small oscillations can be derived from basic
potential flow theory. To date perhaps the most influential contribution to solving the
bridge flutter problem is a simple conceptual framework developed by Scanlan, who
noted that the aerodynamic forces due to relatively small bridge deck oscillations can
be characterized by fundamental quantities—aerodynamic derivatives or transforms
thereof—obtained from measurements performed on the oscillating, rather than the
fixed, body [47].

Computational fluid dynamics approaches currently being developed rest on the
same basic idea. For some bridge decks it is possible to perform numerical compu-
tations of the motion-dependent aerodynamic forces, at least for smooth oncoming
flow [48]. The latter restriction is not trivial, since turbulence, like the Reynolds
number, can affect the aerodynamics and therefore aeroelastic behavior.

Althoughflutter is accompanied at all times by sheddingof vorticeswith frequency
equal to the flutter frequency, it is a phenomenon distinct fromvortex-induced oscilla-
tion. The latter entails aeroelastic flow-structure interactions only for flow velocities
at which the vortex-shedding frequency is close or equal to the structure’s natural
frequency. For velocities higher than those at which lock-in occurs the oscillations
are significantly weaker than at lock-in (see Sect. 2.1). In contrast, for velocities
higher than the critical flutter velocity the strength of flutter oscillations increases
monotonically with flow velocity. As was pointed out by Scanlan and Billah [49],
the statement made in some physics textbooks that the flutter of the original Tacoma
Narrows bridge was a vortex-induced resonant oscillation conflates two distinct phe-
nomena, and is therefore incorrect.

In Sect. 6.1.4.1 we consider the case of two-dimensional bridge deck behavior in
smooth flow. Section6.1.4.2 is concerned, in a two-dimensional context, with bridge
deck flutter and buffeting in the presence of aeroelastic phenomena.
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1.4.1 Formulation and Analytical Solution of the Two- Dimensional
Bridge Flutter Problem in Smooth Flow

The equations of motion of a thin airfoil with linear restoring forces are written as

mḧ + Sα̈ + chḣ + Chh = Lh (1.49a)

Sḣ + I α̈ + cαα̇ + Cαα = Mα (1.49b)

where h and α are the displacement due to vertical bending and the torsional angle,
respectively. A unit span is acted upon by the aerodynamic lift Lh and moment Mα ,
and has mass m, mass moment of inertia I , static imbalance S (equal to m times the
distance a between the center of mass and the elastic center), vertical and torsional
restoring forces characterized by the stiffness Ch and Cα , respectively, and viscous
damping coefficients ch and cα . Theodorsen showed that for small oscillations the
expressions for Lh and Mα are linear in h and α and their first and second derivatives
[46]. The coefficients in these expressions are referred to as aerodynamic coefficients
or, more commonly, flutter derivatives, and are functions of the reduced frequency
bω/U , where b is the half-chord of the airfoil, ω denotes circular frequency, and U
is the smooth flow velocity.

Bridge decks are typically symmetrical, so the distance a and the imbalance S
are zero. Scanlan and Tomko proposed expressions applicable to small oscillations
that, like Theodorsen’s expressions, are linear in h and α and their first and sec-
ond derivatives [47]. However, as was noted earlier, the flutter derivatives must be
obtained from laboratory measurements (or, if possible, by using computational fluid
dynamics to solve the Navier–Stokes equation numerically). Tests showed that, just
as for airfoils, the flutter derivatives are functions of the reduced frequency. In bridge
engineering the reduced frequency is customarily defined as Bω/U , where B is the
whole width of the deck (unlike in aeronautical engineering, in which the half-chord
is used), and U is the mean wind flow velocity; in addition, it is customary to write
the expressions for the lift and moment in terms of real parameters and variables,
rather than complex ones, as is common in aeronautical engineering. If the horizontal
displacement p is also taken into account—which was not done in Scanlan’s original
formulation—the equations of motion of a two-dimensional section of a symmetrical
bridge deck with linear viscous damping and restoring forces in smooth flow can be
written as

mḧ + chḣ + Chh = Lh

I α̈ + cαα̇ + Cαα = Mα

m p̈ + cp ṗ + Cp p = Dp

(1.49c)

where h,α, and p are the displacement due to vertical bending, torsion, and horizontal
bending, respectively. A unit span is acted upon by the aerodynamic lift Lh , moment
Mα , and drag Dp, respectively, has mass m, mass moment of inertia I , vertical,
torsional and horizontal restoring forces with stiffness Ch , Cα , and Cp, respectively,
and viscous damping coefficients ch , cα , and cp. The expressions for the aeroelastic
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forces, including those induced by the horizontal bridge deck displacements p, are
written in the form

Lh = 1
2ρU

2B
[
K H∗

1 (K ) ḣ
U + K H∗

2 (K ) Bα̇
U + K 2H∗

3 (K )α + K 2H∗
4 (K ) h

B

+K H∗
5

ṗ
U + K 2H∗

6 (K )
p
B

]

(1.50a)

Mα = 1
2ρU

2B
[
K A∗

1(K ) ḣ
U + K A∗

2(K ) Bα̇
U + K 2A∗

3(K )α + K 2A∗
4(K ) h

B

+K A∗
5
ṗ
U + K 2A∗

6(K )
p
B

] (1.50b)

Dp = 1
2ρU

2B
[
K P∗

1 (K ) ḣ
U + K P∗

2 (K ) Bα̇
U + K 2P∗

3 (K )α + K 2P∗
4 (K ) h

B

+K P∗
5

ṗ
U + K 2P∗

6 (K )
p
B

] (1.50c)

Equations (1.50a)–(1.50c) do not explicitly include terms in ḧ, α̈ and p̈ (i.e., added
mass terms) which are negligible in wind engineering applications; however, they
include terms in h and p whose function is to account for changes in the frequency
of vibration of the body due to aeroelastic effects. Since these terms are out of phase
with their first derivatives but in phasewith addedmass terms, the latter are in practice
absorbed in the terms in h and p. The quantities α, ḣ/U and Bα̇/U are effective
angles of attack and are therefore nondimensional, as are the coefficients H∗

i , A∗
i and

P∗
i , to which the designation “flutter derivatives” or “Scanlan derivatives” is usually

applied. Each term in Eqs. (1.50a)–(1.50c) can be viewed as similar in form to terms
of the type

L = 1

2
ρU 2BCL = 1

2
ρU 2B

dCL

dα
α (1.51)

for small angle of attack α. Terms such as K H∗
i and K 2A∗

i are thus analogous to lift
coefficient derivatives dCL/dα. These terms are motional aerodynamic derivatives,
which go over into steady-state aerodynamic derivatives such as dCL/dα for K → 0
(zero frequency), meaning that they are obtained for the oscillating body, rather than
under static conditions. The terms K H∗

i , K
2A∗

i , and so forth, could be denoted by
single symbols. Also, the asterisks could be omitted from the coefficients H∗

i and
A∗
i . However, for historical reasons the notation that has gained currency is that of

Eqs. (1.50a)–(1.50c). There is no fundamental reason why this could not change, as
was suggested for example by Starossek, an advocate of complex, as opposed to real,
notation [50]. The perception by some bridge engineers that real notation is more
intuitive and transparent undoubtedly accounts for its current wider acceptance.

If plots of the flutter derivatives H∗
i , A

∗
i and P∗

i are available from measurements
as functions of reduced frequency K , the solution of the flutter equations can be
obtained as follows. It is assumed that the expressions for h, α and p are proportional
to eiωt . These expressions are inserted in the equations of motion

mḧ + chḣ + Chh = Lh (1.52a)
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I α̈ + cαα̇ + Cαα = Mα (1.52b)

m p̈ + cp ṗ + Cp p = Dp (1.52c)

The determinant of the amplitudes of h, α, and p is then set to zero. For each value
of K a complex equation in ω is obtained. For the lowest value of K denoted by Kc

the corresponding equation yields a real (or nearly real) solution denoted by ωc. The
flutter velocity is

Uc = Bωc

Kc
. (1.53)

In Eqs. (1.50a)–(1.50c) the terms containing first derivatives of the displacements
are measures of the aerodynamic damping. If, among these terms, only those asso-
ciated with the coefficients H∗

1 , A
∗
2, and P∗

1 are significant, the total (structural plus
aerodynamic) damping can be written as

ch − 1

2
ρU 2BK H∗

1 (1.54a)

cα − 1

2
ρU 2BK A∗

2 (1.54b)

cp − 1

2
ρU 2BK P∗

1 (1.54c)

for the vertical, torsional, and horizontal degree of freedom, respectively. For the
airfoil case horizontal displacements are negligible, and H∗

1 and A∗
2 are both negative

for all K [6, 46]. The total damping is therefore positive for both h and α. It follows
that, in incompressible flow, the airfoil is not capable of experiencing flutter in a
single—vertical or torsional—mode. The mechanism for the occurrence of flutter in
airfoils therefore always involves coupling between the vertical and torsional modes.

However, under the two-dimensionality assumption, anddepending upon the coef-
ficients H∗

1 and A∗
2, such coupling is not always involved in the flutter of bridge decks.

The original Tacoma Narrows bridge, which collapsed in November 1940, had neg-
ligible H∗

1 values for all K , meaning that flutter in the vertical degree of freedom
was not possible. However, A∗

2 was positive for K > 0.16 or so. Assuming that the
effect of horizontal deck motions was negligible, it is easy to see that, for sufficiently
high flow velocity, the total damping given by Eq. (1.54b) is negative, and flutter
involving only the torsional degree of freedom would occur. Torsional flutter has in
fact occurred (Fig. 6.2) in wind with mean velocity of about 20m/s. The bridge’s sus-
ceptibility to flutter was due to the use of a section with an “H” shape (the horizontal
line in the “H” representing the deck, and the vertical lines representing the girders
supporting it). Owing to its inherent instability this type of bridge section should no
longer be used.
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An alternative approach to the assessment of a bridge’s stability with respect to
flutter involves aerodynamic indicial functions of a bridge deck section, representing
the aerodynamic response of the section to a step change in angle of attack. These
functions are derivable from the aerodynamic derivatives. Under the assumption that
linear superposition is permissible they allow estimates of transient response. For
basic material concerning aerodynamic indicial functions as applied to bridge decks
see [51].

1.4.2 Bridge Section Response to Excitation by Turbulent Wind in the
Presence of Aeroelastic Effects

The aerodynamic forces induced on a bridge by turbulent wind are due to

1. Aeroelastic forces associated with flutter derivatives
2. Vortex-induced forces
3. Randomly fluctuating forces induced by turbulent flow (buffeting forces).

The expressions for the aeroelastic forces have the same form as for the smooth
flow case [Eqs. (1.50a)–(1.50c)]. However, the aerodynamic coefficients H∗

i , A
∗
i , P

∗
i

should be obtained frommeasurements in turbulent flow, since turbulence may affect
the aerodynamics of the bridge deck by changing the configuration of the separation
layers and the positionof reattachment points.As a simple examplewe show inFig. 21
separation layers observed at the upwind corners of a rectangular shape in smooth
and turbulent flow. Nearer the body the turbulence transports particles with higher

Fig. 21 Separation layers in smooth flow (solid line) and in turbulent flow (interrupted line). After
[115]
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momentum from the outer flow, thus bringing the separation layers closer to the body
and causing reattachment of the flow. This change affects the aerodynamic response;
in this particular example the turbulence results in a decreased drag force. Through
more complex aerodynamic mechanisms, turbulence can affect the flutter derivatives
and, therefore, the flutter velocity—in many instances favorably but possibly also
unfavorably. Vortex-induced forces may be neglected unless lock-in occurs. The
buffeting forces per unit span may be written as follows:

Lb = 1

2
ρU 2B

[
2CL

u(t)

U
+
(
dCL

dα
+ CD

)
w(t)

U

]
(1.55a)

Mb = 1

2
ρU 2B

[
2CM

u(t)

U
+
(
dCM

dα

)
w(t)

U

]
(1.55b)

Db = 1

2
ρU 2B

[
2CD

u(t)

U

]
. (1.55c)

For example, Eq. (1.55c) is derived from the expression for the total (mean plus
fluctuating) drag force D, where

D = D̄ + Db = 1

2
ρCDB[U + u(t)]2, (1.56a)

U is themean flow velocity, u(t) is the horizontal component of the turbulent velocity
fluctuation at time t , the mean drag force is defined as

D̄ = 1

2
ρCDBU

2, (1.57a)

and the drag coefficientCD is measured under turbulent flow conditions. For the two-
dimensional case the solution of the buffeting problem in the presence of aeroelastic
effects is obtained from Eqs. (1.52a)–(1.52c) in which the right-hand sides consist
of the sums Lh + Lb, Mα + Mb, Dp + Db, respectively. However, even though the
two-dimensional case can in some instances provide useful insights into the behav-
ior of a bridge, to be useful in applications to actual bridges the solution must be
obtained for the three-dimensional case where the bridge deformation and the aero-
dynamic forces are functions of position along the span. Such a solution is presented
in Sect. 6.2.1.4.
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2 Applications

2.1 Suspension-Span Bridges

This section is devoted to practical methods and results applicable to bridge design
for wind. Section6.2.1.1 is a brief overview of current wind tunnel testing methods.
It includes examples of mean drag, lift, and moment coefficients measured on a
fixed section model for various angles of inclination of the deck with respect to the
horizontal, and examples of flutter derivatives obtained from an oscillating section
model. Section6.2.1.2 discusses the three-dimensional torsional divergence analysis
of a full bridge. Section 6.2.1.3 is concerned with bridge response to vortex shedding.
Section6.2.1.4 is devoted to the flutter and buffeting analysis of a full-span bridge.
Section6.2.1.5 discusses factors that affect, and methods used to enhance, stability
against flutter. Cables in cable-stayed bridges can exhibit severe vibrations due to
the combined action of wind and rain. The excitation mechanism of the dynamic
wind-water-cable interaction is discussed in [52]. The vibrations can be reduced by
using various types of vibration mitigation devices, or by the mechanical processing
of the cable surfaces (e.g., the creation on those surfaces of dimples or various
protuberances) to prevent the formation of water rivulets on the cables [52–57].

2.1.1 Wind Tunnel Testing of Suspended-Span Bridges

Three types of wind tunnel tests are commonly used for suspended-span bridges:

1. Tests on models of the full bridge. Usual model scales are about 1:300–1:500.
An example is shown in Fig. 22.

2. Three-dimensional partial bridge models. The supports for such partial models
may consist of taut wires, and the tests are usually designed to mimic motion in
the fundamental vibration mode of the bridge.

3. Tests on section models. Such tests are relatively inexpensive and yield basic
information usable in parametric studies. They afford more flexibility than tests
on models of the full bridge, which may be used to verify results of analyses
based on section model tests. Also, they can be conducted in conventional wind
tunnels at relatively largemodel scales (1:50 or even 1:25), thus allowing a better
modeling of possibly important details and reducing possible distortions due to
Reynolds number effects (Fig. 23).

Such distortions can be significant. Figure24a, b show results of tests conducted
in smooth flow in the high-pressure wind tunnel at Göttingen on a section model of
the bridge over the Great Belt, Denmark [58]. It may be surmised that the presence
of turbulence in the oncoming flow—which was not simulated in the high-pressure
wind tunnel—would reduce those distortions by entraining fluid particles with higher
momentumfrom theouter flow into the separation region, thus bringing the separation
layers of Fig. 24a closer to those of Fig. 24b. It was concluded in [58] that the drag
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Fig. 22 Model of Akashi Strait suspension bridge (courtesy of T. Miyata, Yokohama National
University, and M. Kitagawa, Honshu-Shikoku Bridge Authority, Tokyo)

coefficient obtained at the lower Reynolds numbers typical of conventional wind
tunnels was in this case conservative for bridge design. Frommeasurements reported
for a series of deck shapes it was stated in [59] that, for those shapes, results obtained
in conventional wind tunnel tests were conservative from the overall point of view of
bridge design for wind. Whether or not such statements can be made in more general
terms is not clear at this time.
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Fig. 23 Section model of the Halifax Narrows Bridge (courtesy of Boundary-Layer Wind Tunnel
Laboratory, University of Western Ontario)

The information sought in section model tests consists of mean drag, lift, and
moment coefficients measured under static conditions as functions of angle α, and of
flutter derivatives. For some bridge decks flutter derivatives obtained under turbulent
wind conditions yield higher critical flutter velocities than their smooth flow coun-
terparts (e.g., [60]), but there are instances where this is not the case. For example,
based on section model tests, the prototype flutter velocity for the renovated Lion’s
Gate Bridge was the same, to within about 2%, for both smooth and turbulent flow
[61]. For important bridges it is prudent to perform tests under low or no turbulence
conditions and under standard turbulence conditions.

For a section model of the New Burrard Inlet Crossing measured mean drag, lift,
and moment coefficients plotted against the angle α are shown in Fig. 25 [62]. For a
study of the Golden Gate Bridge measured flutter derivatives at a 0◦ mean angle of
attack (angle of inclination between themean position of the deck and the horizontal)
are shown in Figs. 26 and 27 [6, 63]. Flutter derivatives measured at a 5◦ mean angle
of attack are shown in Fig. 28 [63].

Measurements of flutter derivatives can be made with the section model being
subjected to forcedoscillations, orwith the sectionmodel undergoing free oscillations
[63]. Note that for an adequate modeling of the flutter of very long bridges (e.g., the
Akashi-Kaikyo bridge, whose main span is 1,990m long) all 18 flutter derivatives
[see Eqs. (1.50a)–(1.50c)] are needed in the calculations [79].
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Fig. 24 Interpretation of oil flow pictures indicating flow fields at (a) low Reynolds numbers
(sub-critical conditions) and (b) high Reynolds numbers (super-critical conditions)

Research on the identification of (i) coefficients for time domain flutter analysis
and (ii) flutter derivatives, and on a suspension system for section model studies, is
reported in [65–68].

2.1.2 Torsional Divergence Analysis for a Full Bridge

A linear torsional divergence analysis requires knowledge of the moment coefficient
CM(α) measured under static conditions and of the torsional flexibility matrix CT ,
whose elements ci j represent the torsional angles αi at x = xi induced by a unit
torsional moment acting at x = x j . Let the torsional moments acting at x = x j be
denoted by Mj . We de/note by {α} and {M}, respectively, the column vectors of the
torsional angles αi and of the moments

Mj = 1

2
ρU 2B2�L jCM(αJ ) (2.1)

where �L j is the length of the span element associated with x j , and CM(α j ) is the
moment coefficient corresponding to the angle α j . The following matrix equation
holds:
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Fig. 25 Drag. lift, and aerodynamic coefficients for proposed deck of New Burrard Inlet Crossing
[61] (courtesy of the National Aeronautical Establishment, National Research Council of Canada)

{α} = CT {M}. (2.2)

In Eq. (2.2) the variables are torsional angles along the span. The velocity Uc for
which the solution of Eq. (2.2) diverges is the critical torsional divergence velocity.
If CM(α) can be approximated by the linear function

CM(α) ≈ dCM

dα
α + CM0 (2.3)

where CM0 = C (0)
M , then, using the notation
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Fig. 26 Aerodynamic coefficients H∗
i (i = 1, 2.3.4), Golden Gate Bridge (courtesy of Dr. J. D.

Raggett, West Wind Laboratory, Carmel, CA)

Fig. 27 A∗
i flutter derivatives of Golden Gate bridge at 0◦(i = 1, 2.3.4)

1

p
= 1

2
ρU 2B2�Li (2.4)

where �Li = �L for all i , Eq. 2.2 can be written as
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Fig. 28 A∗
i flutter derivatives of Golden Gate bridge at 5◦(i = 1, 2.3.4). From [63]

{α} = CT
1

p

{
dCM

dα
+ CM0

}
(2.5)

or [
pI − dCM

dα
CT

]
{α} = CT {CM0}. (2.6)

Equation (2.6) has divergent solutions if the determinant
∣∣∣∣pI − dCM

dα
CT

∣∣∣∣ = 0. (2.7)

The largest eigenvalue of Eq. (2.7) yields the critical torsional divergence velocity
through Eq. (2.4).

Note that if the moment induced by the mean wind speed is negative (i.e., if the
bridge deck subjected to the action of the mean wind speed twists so that the wind
approaches the upper side of the deck), according to the linear analysis torsional
divergence will not occur. The case of the nonlinear dependence of CM upon α can
be dealt with by solving Eq. (2.2) in whichCM is expressed in terms of a power series
in α.

2.1.3 Locked-In Vortex-Induced Response

Bridge decks supported by open trusses usually do not experience vortex-induced
oscillations, owing to the shredding of the vorticity by the truss members. However,
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vortex-induced response can be a problem for bluff bridge decks with a box or open-
box shape. Aerodynamic design can help to reduce significantly or even eliminate
this problem, as is seen in Fig. 29 [69], which shows the measured amplitudes of
vortex-induced deflections for alternative shapes of the bridge section. The largest
deflections occurred for the open-box section. A closed box fared better, possibly
owing to its greater stiffness, rather than for aerodynamic reasons. However, the
provision of fairings is advantageous from an aerodynamic viewpoint, as is, more
generally, the extent to which the bridge section is streamlined. Flow visualizations
showed that added fairings are effective in streamlining the flow when the deck
is in a twisted position. This can be seen in Fig. 30b in which, owing in part to

Fig. 29 Vertical amplitudes of vortex-induced deflections for various bridge deck sections of the
proposed Long Creek’s bridge [65] (courtesy of the National Aeronautical Establishment, National
Research Council of Canada)
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those fairings, the turbulence zone above the upper part of the deck is considerably
smaller than for the section shown in Fig. 30a. For the Great Belt Bridge in Denmark
vortex-induced response suppression was achieved with remarkable effectiveness by
appending guide vanes to the bridge [70]. The steady-state amplitude h0 of the vortex-
induced response may be calculated by using Eq. (1.20), in which we substitute the
notation K H∗

1 (K ) for Y1(K ). The result is

h0
B

= 2

[
H∗

1 − 4 ζm
ρB2

εH∗
1

] 1
2

(2.8)

Equation (2.8) is applied to a full bridge as follows [6]. In the equation of motion
of the bridge

m(ḧ + 2ζωh ḣ + ω2
hh) = 1

2
ρU 2BK H∗

1 (1 − ε
h2(x, t)

B2
)
ḣ(x, t)

U
(2.9)

[see Eq. (1.20)], it is assumed

h(x, t) = φ(x)Bξ(t), (2.10)

whereφ(x) is the dimensionlessmodewith frequencyωn that responds to the locked-
in vortex shedding, and the corresponding generalized coordinate is

ξ(t) = ξ0 cosωht. (2.11)

Inserting h from Eq. (2.10) into (2.9) and multiplying the result by Bφ(x), the
motion of a segment of length dx associated with the spanwise coordinate x is
described by the equation

m(x)B2 φ2(x)[ξ̈ (t) + 2ζωh ξ̇ (t) + ω2
hξ(t)]dx

= 1
2ρUB3K H∗

1 [1 − εφ2(x)ξ 2(t)]ξ̇ (t)φ2(x) f (x)dx
(2.12)

in which we introduced a function f (x) to account for the spanwise loss of
coherence of the vortex-related forces. It is suggested in [6] that it may be appropriate
to model the function f (x) by the mode shape φ(x), normalized to unit value at its
maximum ordinate. For example, if φ(x) is a half-sinusoid over a span l, it would
be assumed

f (x) = sin πx/ l. (2.13)

Integration of Eq. (2.12) over the full length of the bridge yields the equation

I
[
ξ̈ + 2ζωh ξ̇ + ω2

hξ
] = 1

2
ρUB2LK H∗

1 [C2 − εC4]ξ̇ (2.14)
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where I denotes the full-bridge generalized inertia of the mode φ(x), and

C2 =
∫ l

0

φ2(x) f (x)dx

l
, C4 =

∫ l

0

φ4(x) f (x)dx

l
. (2.15)

Under the assumption (2.13), C2 = 0.42 and C4 = 0.34. At steady-state amplitude,
Eq. (2.14) and conditions similar to those that led to Eqs. (1.17) and (1.20) yield the
amplitude

ξ0 = 2

[
C2H∗

1 − 4ζ I/(ρB4l)

εC4H∗
1

] 1
2

. (2.16)

Numerical example: Response to vortex-shedding of the original TacomaNarrows
bridge [6]

The original Tacoma Narrows bridge experienced considerable vortex-induced
oscillations before its collapse due to torsional flutter. Pertinent data are: n1 =
0.66Hz (natural frequency), B = 11.9m, ρ = 1.23 kg/m3,m = 4250 kg/m,

I ∼= ∫ l
0 mB2φ2dx, φ = sin πx/ l, so I = mB2l/2 kg m2. It is assumed ζ = 0.0025,

K= Bω/U = 3.13,U = 15.7 m/s, H∗
1 = 1.19, ε = 4170 [6]. Inserting these val-

ues into Eq. (2.16), and remembering that C2 = 0.42 and C4 = 0.34, we obtain
ξ0 = 0.03. Equation (2.10) yields a peak-to-peak amplitude 2ξ0B = 0.71m. This
is reasonably consistent with observations at the site, according to which for the
mode of the type considered in our calculations the double amplitude did not exceed
0.9m.

According to [75], the vortex-induced response of a bridge in flow with low-
frequency fluctuations is smaller than would be the case in smooth flow; this is
attributed to the weakening effect on the vorticity shed in the bridge’s wake of
phase differences between the low-frequency flow fluctuations on the one hand and
the bridge oscillations on the other. Wind tunnels tend to reproduce atmospheric
turbulence scales inadequately. Therefore low-frequency flow fluctuations tend also
to be reproduced inadequately, as are the inhibiting effects of those fluctuations on the
vortex-induced oscillations. The latter may therefore be overestimated by laboratory
test results.

2.1.4 Flutter and Buffeting of a Full-Span Bridge

In this sectionwe extend to a full bridge themethods developed in Sect. 6.1.4.2 for the
two-dimensional analysis of flutter and buffeting for bridge sections. We assume that
the deformations are small so that the behavior of the bridge and of the aeroelastic
and buffeting forces is linear.

Let h(x, t), p(x, t), and α(x, t) denote, respectively, the vertical, horizontal
(sway), and torsional (twist) displacements of the spanwise station defined by the
coordinate x; hi (x), pi (x), and αi (x) the i th modal displacements at x ; and ξi (t),
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Ii , ωi and ζi the generalized coordinate, generalized inertia, natural frequency, and
damping ratio in the i th mode. We have

h(x, t) =
N∑

i=1

hi (x)Bξi (t) (2.17a)

p(x, t) =
N∑

i=1

Pi (x)Bξi (t) (2.17b)

α(x, t) =
N∑

i=1

αi (x)ξi (t). (2.17c)

The equation of motion in the i th mode is

Ii (ξ̈i + 2ζiωi ξ̇i + ω2
i ξi ) = Qi (2.18)

where the Generalized force Qi is defined by

Qi =
∫ l

0
[(Lae + Lb)hi B + (Dae + Db)pi B + (Mae + Mb)αi ]dx, (2.19)

the aeroelastic lift, drag, and moment are

Lae = 1
2ρU

2B
[
K H∗

1
ḣ
U + K H∗

2
Bα̇
U + K 2H∗

3 α

+K 2H∗
4

h
B + K H∗

5
ṗ
U + K 2H∗

6 (K )
p
B

] (2.20a)

Dae = 1
2ρU

2B
[
K P∗

1
ḣ
U + K P∗

2
Bα̇
U + K 2P∗

3 α

+K 2P∗
4

p
B + K P∗

5
ṗ
U + K 2P∗

6 (K ) h
B

] (2.20b)

Mae = 1
2ρU

2B2
[
K A∗

1
ḣ
U + K A∗

2
Bα̇
U + K 2A∗

3α

+K 2A∗
4
h
B + K A∗

5
ṗ
U + K 2A∗

6(K )
p
B

] (2.20c)

respectively, and the buffeting forces are

Lb = 1

2
ρU 2B

[
2CL

u(x, t)

U
+
(
dCL

dα
+ CD

)
w(x, t)

U

]
= 1

2
ρU 2BL̆b(x, t)

(2.21a)

Db = 1

2
ρU 2B

[
2CD

u(x, t)

U

]
= 1

2
ρU 2BD̆b(x, t) (2.21b)
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Mb = 1

2
ρU 2B2

[
2CM

u(x, t)

U
+
(
dCM

dα

)
w(x, t)

U

]
= 1

2
ρU 2B2M̆b(x, t).

(2.21c)
The aerodynamic coefficients and derivatives in Eqs. (2.21a)–(2.21c) should be based
on measurements performed in turbulent flow, unless the flow is assumed to be
smooth, in which case there is no buffeting by oncoming flow turbulence. Effects
of turbulence created by the flow-structure interaction (signature turbulence) are
assumed to be negligible. This assumption needs to be verified, and may not be
acceptable (for example in the case of Fig. 30a). Effects of vortices shed in the wake
of the deck may be assumed to be negligible unless the flow speed being considered
is close to the speeds associated with lock-in.

The multimodal system of equations of motion of the bridge can be written in
matrix notation:

Iξ ′′ + Aξ ′ + Bξ = Qb(s) (2.22)

where ξ is the generalized coordinate vector, s = Ut/B, and I is an identitymatrix.A
and B are the damping and stiffness matrices of the system, respectively, and include
terms associated with both structural and aerodynamic damping and stiffness. Qb is
the generalized buffeting force vector. The terms of the matrices A, B, and Qb are

Ai j (K ) = 2ζi Kiδi j − ρB4lK
2Ii

[
G

H∗
1

hi h j
+ G

H∗
2

hi a j
+ G

H∗
5

hi p j
+ G

P∗
1

Pi Pj

+G
P∗
2

piα j + G
P∗
5

pi h j
+ G

A∗
1

αi h j
+ G

A∗
2

αiα j + G
A∗
5

αi p j

] (2.23a)

Bi j (K ) = K 2
i δi j − ρB4lK 2

2Ii

[
G

H∗
3

hiα j
+ G

H∗
4

hi h j
+ G

H∗
6

hi p j
+ G

P∗
3

Pi Pj

+G
P∗
4

pi p j + G
P∗
6

pi h j
+ G

A∗
3

αiα j + G
A∗
4

αi h j
+ G

A∗
6

αi p j

] (2.23b)

Qbi (K ) = ρB4l

2Ii

∫ l

0
[L̆b(x, s)hi + D̆b(x, s)pi + M̆b(x, s)αi ]dx

l
(2.23c)

where δi j is the Kronecker delta symbol, and the modal integrals are given by expres-
sions of the type

G
H∗
3

hiα j
=
∫ l

0
H∗

3 (K , x)hi (x)αi (x)
dx

l
. (2.24)

The coordinate x indexes information on the deck cross-section (which may vary
along the span) and themean angle of attack induced by themeanflowspeed. For each
vibration mode that angle of attack varies along the span. The flutter derivatives are
therefore included under the integral sign [as in Eq. (2.24)] even if the cross-section
of the deck is uniform along the span. Expressions of the type (2.24) imply that the
aeroelastic forces are perfectly correlated along the span. This is not truly the case,
but some measurements suggest that the error inherent in this assumption is small
[76]. The equations of motion obtained by taking into account only diagonal terms
(i = j) in the matrices A and B represent the single-degree-of-freedom, uncoupled
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(a)

(b)

Fig. 30 a Visualization of water flow over a bridge model deck section (courtesy of the National
Aeronautical Establishment, National Research Council of Canada). b Visualization of water flow
over a partially streamlined bridge model deck section (courtesy of the National Aeronautical
Establishment, National Research Council of Canada)
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equations. The off-diagonal terms (corresponding to i 
= j) introduce the aeroelastic
coupling.

Flutter analysis

Denote the Fourier transform of ξi by

ξ̄i (K ) = lim
T→∞

∫ T

0
ξi (s)e

− j K sds (2.25)

where j = √−1. The Fourier transform of Eq. (2.22) is

Eξ̄ = Q̄b (2.26)

where the terms of the matrix E are

Ei j = −ω2(B/U )2δi j + jω(B/U )K Ai j (K ) + Bi j (K ). (2.27)

The flutter condition is identified by solving the eigenvalue problem

E ξ̄ = 0. (2.28)

Equation (2.28) has nontrivial solutions if the real and imaginary parts of the deter-
minant of E vanish. The solutions of interest are sought as follows. For a fixed value
of K seek the value of ω in the frequency range of interest until the real part of the
determinant of E vanishes. Repeat the process for successive values of K until both
the real part and the imaginary part of the determinant of E vanish for the same value
of ω. That value of ω is the flutter frequency. The flutter speed is equal to ωB/K ,
where K has the value that yielded the flutter frequency ω. For a multi-modal prob-
lem the same procedure must be carried out a number of times equal to the number
of modes. The largest solution of K corresponds to the critical flutter condition. The
mode corresponding to that solution is the dominant mode in the flutter condition.
The eigenvector ξ yields the shape of the flutter oscillatory motion, that is, the rela-
tive participation in the flutter motion of each vibration mode [Eqs. (2.17a)–(2.17c)].
Note that in the linear formulation just described the flutter condition is independent
of the buffeting excitation.

The flutter derivative P∗
1 may be obtained by equating the following two expres-

sions for the drag:

D = 1

2
ρ(U = ṗ)2BCD (2.29a)

D = 1

2

ρU 2BK P∗
1 ṗ

U
. (2.29b)
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If the term in ṗ2 is neglected from Eq. (2.29a),

P∗
1 = −2CD/K . (2.30)

For a streamlined box and anH-shape sectionEq. (2.30)was consistentwithmeasure-
ments up to reduced frequencies of Un/B = 15. However, for higher frequencies
Eq. (2.30) was found to underestimate the measured values of P∗

1 .

Buffeting analysis

We develop the buffeting analysis with a view to obtaining expressions for the spec-
tral density of the bridge deck response. The Fourier transform of the generalized
buffeting force may be written as

Q̄b = 1

2
ρB4l

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
I1

∫ l
0 F̄b1

dx
l

1
I2

∫ l
0 F̄b2

dx
l

·
·
·

1
In

∫ l
0 F̄bn

dx
l

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (2.31)

Fbi (x, K ) = L̆b(x, K )hi (x) + D̆b(x, K )pi (x) + M̆b(x, K )αi (x, K ) (2.32)

or, in view of Eqs. (2.21a)–(2.21c) and (2.23c),

Fbi (x, K ) = 1
U {[2CLhi (xA) + 2CD pi (xA) + +2CMαi (xA)]u(K )

+[(C ′
L + CD)hi (xA) + C ′

D pi (xA) + C ′
Mαi (xA)]w(K )}. (2.33)

Denoting the transpose of the complex conjugate of the vector Qb by Q
∗T
b , we have

QbQ
∗T
b =

(
ρB4l

2

)2

⎡

⎢⎢⎢⎢⎢⎣

1
I1 I1

∫ l
0

∫ l
0 Fb1F

∗
b1

dxA
l

dxB
l · · · 1

I1 In

∫ l
0

∫ l
0 Fb1F

∗
bn

dxA
l

dxB
l

·
·

1
In I1

∫ l
0

∫ l
0 Fbn F

∗
b1

dxA
l

dxB
l · · · 1

In In

∫ l
0

l∫

0
Fbn F

∗
bn

dxA
l

dxB
l

⎤

⎥⎥⎥⎥⎥⎦
(2.34)

By definition, the power spectral density of a function φ is
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Sφφ(ω) = lim
T→∞

2

T
φφ (2.35)

where φ ≡ φ(xA) is a stationary stochastic process at a point with coordinate xA.
A similar expression holds for the cross-spectral density of φ(xA)φ(xB). From
Eqs. (2.34) and (2.35) a spectral density matrix with the following terms can be
developed:

SQbi
SQb j

(K ) =
(

ρB4l

2U

)2 1

Ii I j

∫ l

0

∫ l

0
{qi (xA)q j (xB)Suu(xA, xB, K )

+ r̄i (xA)r j (xB)Sww(xA, xB, K )

+ [qi (xA)r j (xB)

+ r i (xA)q j (xB)]Cuw(xA, xB, K )}dxAdxB,

(2.36)

qi (x) = 2[CLhi (x) + CD pi (x) + CMαi (x)], (2.37)

r j (x) = (C ′
L + CD)h j (x) + C ′

D p j (x) + C ′
Mα j (x), (2.38)

Suu(xA, xB, K ) is the cross-spectral density of the horizontal wind speed fluctua-
tions u at the spanwise coordinates xA and xB, Sww(xA, xB, K ) is the cross-spectral
density of the vertical wind speed fluctuations w at xA and xB , Cuw(xA, xB, K ) is
the co-spectrum of u at xA and w at xB . It is assumed in Eq. (2.36) that the quadra-
ture spectrum of u and w is negligible. Aerodynamic admittances are assumed to
be equal to unity; in other words the dependence upon frequency of the relation
between wind speed fluctuations and the fluctuating forces they induce is neglected.
This may lead to a slight but likely negligible overestimation of the response. The
power spectral density matrix Sξξ of the generalized coordinate vector ξ is obtained
from Eq. (2.39) in terms of the matrix E and the matrix SQbQb of the spectral density
of the generalized force vector Qb, that is,

Sξξ (K ) = E−1SQbQb{[E∗]T }−1 (2.39)

The coupling between modes is due to the off-diagonal terms in the matrix E. The
power spectral density of the displacements, obtained from Eqs. (2.17a)–(2.17c), is

Shh(x, K ) =
∑

i, j

∑

i, j

B2hi (x)h j (x)Sξi ξ j (K ) (2.40a)

Spp(x, K ) =
∑

i, j

∑

i, j

B2 pi (x)p j (x)Sξi ξ j (K ) (2.40b)

Sαα(x, K ) =
∑

i, j

∑

i, j

αi (x)α j (x)Sξi ξ j (K ) (2.40c)
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where the summations are carried out over the number of modes being considered.
The mean square values of the displacements are

σ 2
h (x) =

∫ ∞

0
Shh(x, n)dn (2.41a)

σ 2
p(x) =

∫ ∞

0
Spp(x, n)dn (2.41b)

σ 2
α (x) =

∫ ∞

0
Sαα(x, n)dn (2.41c)

where n = ω/2π is the frequency.
The cross-spectral density of the horizontal velocity fluctuations u, the cross-

spectral density of the vertical fluctuations w, and the co-spectrum of u acting at x1
and w acting at x2 may be described empirically by the expressions

Suu(x1, x2, n) ∼= Suu(ω) exp

[
cun|x1 − x2|

U

]
(2.42a)

Sww(x1, x2, n) ∼= Sww(ω) exp

[
cwn|x1 − x2|

U

]
(2.42b)

Cuw(x1, x2, n) ∼= Cuw(ω) exp

[
cuwn|x1 − x2|

U

]
(2.42c)

respectively, where tentative values of the exponential decay coefficients in
Eqs. (2.42a)–(2.42c) and (2.43a)–(2.43c) are cu ∼= 15, cw

∼= 8, cuw
∼= 8 [6]

Suu(ω) ≡ Suu(x, x, ω) = 200zu2∗
U (1 + 50nz/U )

5
3

(2.43a)

Sww(ω) ≡ Sww(x, x, ω) = 3.36zu2∗
U (1 + 10nz/U )

5
3

(2.43b)

Cuw(ω) ≡ Cuw(x, x, ω) = 14zu2∗
U (1 + 9.6nz/U )2.4

, (2.43c)

u∗ = kU (z)

ln(z/z0)
(2.44)

is the friction velocity, k = 0.4 is von Kármán’s constant, z is the height of the bridge
deck above water, and it may be assumed that for flow over water the roughness
length is z0 = 0.003–0.01m, say. If the bridge span is over ground, rather than
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over water, z0 depends upon the terrain roughness, see, e.g., [6]. If topographic
effects are significant, models such as Eqs. (2.43a)–(2.43c) and (2.44) may not be
appropriate, and micrometeorological measurements should be performed (see, e.g.,
[78]). However it should be kept in mind that measurements conducted at low wind
speeds, at which stable or unstable stratification effects could be significant, may
not be representative of conditions occurring at the relatively high speeds for which
aeroelastic and buffeting responses are significant.

To perform and validate calculations pertaining to a full bridge model tested in
the wind tunnel it is necessary to use turbulence models consistent with the mea-
sured properties of the wind tunnel flow [78, 79]. It is noted in [76] that the large
uncertainties associated with the spatial structure of low-frequency turbulence result
in similarly large uncertainties in the estimation of buffeting response to which low-
frequency vibration modes contribute significantly.

Details of the implementation of the flutter and buffeting analysis based on
Eq. (2.26) are reported for the Akashi-Kaikyo Bridge (1,990m main span) in [84].
One conclusion of the Akashi-Kaikyo flutter analyses was that disregarding cross-
modal effects (off-diagonal terms in the matrix E) yielded incorrect estimates of the
flutter velocity. This conclusion was verified by observations on the full-scale model
of the bridge. For a full model of the Straits of Messina Bridge calculations and wind
tunnel measurements are reported in [80].

Analyses can be conducted by taking into account the buffeting response not only
of the deck, but also that of a dynamic model of the entire bridge, including the
cables and the bridge towers. Buffeting response calculations indicated that, for the
TsingMa bridge in Hong Kong (1,377mmain span), the effect of including the cable
and tower dynamics in the modeling was relatively small [109]. However, the longer
the bridge, the more the effect of the tower dynamics becomes significant from an
aeroelastic point of view. For example, according to calculations for a three-span
bridge with a 3,000m main span and 1,500m side spans, replacing flexible steel
pylons by stiffer, reinforced concrete pylons resulted in an increase of the critical
flutter speed of about 25%, while for a bridge with a 2,000m main span and 1,000m
side spans the increase was about 10% [81]. For the latter bridge replacing cables
with allowable stress of about 1,000MPa or less by cables with allowable stress of
about 1,200MPa or more (and a correspondingly lower moment of inertia) resulted
in a decrease of the critical flutter speed of about 25%.

A case study: The Golden Gate Bridge

The Golden Gate bridge has a 1,280m center span and two 343m side spans. The
elevation of the deck above water is 67m. The calculated vibration modes, the modal
frequencies, and themodal integrals (Eqs. 2.14) are given inTable1 for the first eleven
modes, ranked by order of increasing frequencies. Static force coefficients are listed
in Table2. A surface roughness length of 0.009m was used in the calculations. The
flutter derivatives were assumed to be independent of position along the span. How-
ever, the flutter velocities were calculated for five distinct sets of flutter derivatives,
corresponding to −5◦,−2.5◦, 0◦, 2.5◦, and 5◦ mean angles of attack. Figures26, 27
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Table 1 Frequencies , Types of Modal Forms, and Modal Integrals for Golden Gate Bridge

Mode Freq. Type Ghi hi Gαiαi G pi pi

number (Hz)

1 0.0490 LS 3 × 10−16 8 × 10−5 0.33

1 0.0490 LS 3 × 10−16 8 × 10−5 0.33

2 0.0870 VAS 0.3 1.9 × 10−15 7.7 × 10−15

3 0.1124 LAS 1.7 × 10−14 1.24 × 10−2 0.32

4 0.1285 VS 0.19 1.4 × 10−14 8.3 × 10−14

5 0.1340 VAS 0.34 2.7 × 10−14 6.0 × 10−14

6 0.1638 VS 0.34 1.8 × 10−14 4.0 × 10−14

7 0.1916 TAS 6.7 × 10−13 0.32 0.033

8 0.1972 TS 2.5 × 10−12 0.18 0.25

10 0.1988 VAS 0.18 9.6 × 10−12 4.6 × 10−13

11 0.2021 VS 0.26 8.0 × 10−15 1.5 × 10−15

Note Lateral; V: Vertical; T: Torsional; S; Symmetric; AS: Anti-symmetric

Table 2 Static Force Coefficients at 0◦ Angle of Attack for Golden Gate Bridge

CD CL CM C ′
D C ′

L C ′
M

0.304 0.211 0.0044 0 3.25 −0.177

and28 shows flutter derivatives H∗
i and A∗

i (i = 1, 2, 3, 4) obtained in smooth flow
from a 1:50 section model of the Golden Gate bridge for a zero-degree mean angle
of attack [69]. For comparison flutter derivatives are shown in Fig. 28 for a 5◦ mean
angle of attack [70]. Only the flutter derivatives H∗

i , A∗
i (i = 1, 2, 3, 4), and P∗

1
(given by Eq.2.30) were accounted for in the calculations.

Buffeting calculations were carried out using flutter derivatives for the bridge at
0◦ mean angle of attack under a 22.2m/s mean velocity. The largest values along the
deck calculated for 2% modal damping ratios and a mean wind speed of 34m/s at
the deck elevation were σhh = 0.31m and σαα = 0.77 × 10−3 rad. Smaller assumed
damping ratios would result in larger buffeting response (Tables1 and 2).

For flutter calculations it was assumed that the damping ratios were 0.5%. Calcu-
lations showed that, under the assumptions used, no flutter occurred for combinations
including only the first six modes. Inclusion of the seventh mode, and of the seventh
and eighth modes, yielded the reduced frequencies K , the circular frequencies ω,
and the critical flutter velocities Uc listed in Table3 for each of the five mean angles
of attack. If a 1% modal damping was assumed in the calculations, the multimodal
flutter analysis yielded a flutter velocity of 44.6m/s, rather than 22.0m/s, as was the
case for the assumption of a 0.5% modal damping.

In addition to amultimodal analysis, a single-mode analysiswas performed.Mode
7 yielded the lowest flutter velocity in all cases. The single-mode flutter velocities
obtained were almost identical to those obtained by a multimodal analysis based on
a combination of seven modes. This result, as well as the calculated shape of the
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Table 3 Flutter Velocities for Golden Gate Bridge (0.5% Modal Damping Ratios)

Angle −5◦ −5◦ −2.5◦ −2.5◦ 0◦ 0◦ 2.5◦ 2.5◦ 5◦ 5◦

Modes 7 8 7 8 7 8 7 8 7 8

K 1.27 1.27 1.28 1.28 1.34 1.34 1.43 1.43 1.49 1.49

ω(rad.) 1.18 1.18 1.17 1.17 1.18 1.18 1.19 1.19 1.19 1.19

Uc(m/s) 25.5 25.5 25.2 25.2 24.1 24.1 22.7 22.7 22.0 22.0

oscillatory flutter motion, suggests that the flutter is dominated by mode 7, which is
the first torsional asymmetric mode (i.e., the type of mode in which the flutter of the
Tacoma Narrows bridge occurred—see Fig. 6.2).

In addition to section model tests in smooth flow, tests in flow with turbulence
intensities 7.4 and 11% were conducted for a 1:150 scale model of half the central
span. Depending upon turbulence intensity, mean flutter velocities were about 10–
20% higher than the flutter velocity for smooth flow conditions [69, 83] (Table3).

Before concluding this section we mention the development in [110] of a time
domain approach for full bridges. The approach uses aerodynamic impulse response
functions obtained from flutter derivatives by Fourier transformation. Unlike calcu-
lations in the frequency domain, which assume that the aeroelastic forces depend
upon the mean deformation of the bridge, the time domain calculations use models
of the aeroelastic forces that depend upon the instantaneous deformation induced by
the buffeting. A numerical example included in [110] indicates that, for a 2,000m
span bridge with specified aeroelastic properties, the effect of this refinement on the
flutter velocity and the buffeting response was relatively small.

We also refer the reader to research on the behavior of suspended-span bridges
during construction [84–86], and on the effects of winds skewed with respect to the
direction normal to the bridge span [69, 83].

2.1.5 Reduction of Bridge Susceptibility to Flutter

It has already been noted that “H-section” decks are prone to flutter. This is due both to
their weak torsional stiffness and to their unfavorable aerodynamic properties. Road-
ways with slots, vents, or grills can significantly improve aeroelastic performance
[91]. Even minor details such as deck railings can affect structural performance [92].

The design of long bridges to achieve satisfactory performance economically
requires efficient aeroelastic design both through the selection of cross-sectional deck
shapes with favorable flow patterns, and through aeroelastically effective structural
design resulting in a reduction of modal and cross-modal integrals [see Eqs. (2.23a)–
(2.23c) and (2.24)], particularly for torsional motions. Modal shapes consistent with
such reduction can be achieved through the selection of a favorable ratio of side
spans to main span, cross-sections stiffer near the supports and along the side spans
than in the central part of the main span, stiff pylon towers, and stiff cables. For the
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Fig. 31 Schematic of Akashi-Kiokyo suspension bridge . Note spanwise non-uniformity of the
deck shape. From [71]

Akashi-Kiokyo Bridge the decks were of equal width throughout the bridge but had
torsionally stronger and more bluff shapes near the supports and along the side spans
(Fig. 31). The spindle-type suspension bridge concept depicted in Fig. 32 is aimed at
achieving similar features more elegantly [92].

As an example of the role of aerodynamic refinements we briefly consider the
“π -section” deck (Fig. 33). It was found that a ratio C/D′ = 2.0 was optimal aero-
dynamically [73] (C = deck floor overhang, D′ = girder depth). In addition the
aeroelastic performance depends on the ratio r of solid traffic barrier height to outer

Fig. 32 Spindle-type suspension bridge concept. From [72]
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Fig. 33 A “π -section” deck. From [73]

Fig. 34 Cross-section of slotted box girder. From [74]

pedestrian traffic stripwidth. For θ = tan−1r = 30◦ the torsional aerodynamic damp-
ing was found to be almost negligible in comparison with the case θ = 90◦ [93]. For
this value of θ flow separation patterns result in aeroelastically beneficial reductions
of unsteady pressures on the upper surface of the deck. It would be of interest to
determine whether the reductions observed in the wind tunnel are Reynolds-number
independent.

According to tests and calculations reported in [74], the slotted box girder shown
in Fig. 34 is effective aerodynamically, as well as being efficient structurally, for a
hypothetical suspension bridge with a 2,800m main span and 1,100m side spans.
For a similar study of a suspension bridge with 2,500m main span and 1,250m side
spans, with a deck consisting of a two-box girder over the mid-1,230m of the central
span and a box girder over the rest of the bridge, see [96].
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2.2 Tall Chimneys and Stacks, and Tall Buildings

2.2.1 Tall Chimneys and Stacks

Tall chimneys and stacks can be affected by locked-in vortex-induced response. As
was mentioned in Sect. 1.3, at lock-in Eq. (1.16) can be written approximately as

m(ÿ + 2ζω1 ẏ + ω2
1 y) = 1

2
ρU 2DY1(K )(1 − ε

y2

D2
)
ẏ

U
. (2.45)

InEq.2.45 K = Dω/U, D is the diameter,U is the velocity, the circular frequency
ω satisfies the Strouhal relation ω = 2π SU/D, ω1 is the fundamental natural fre-
quency, and Y1(K ) and ε must be fitted to experimental results. The right-hand side
of Eq.2.45 is approximated in [97] by the simplified expression

2ω1ρD
2Ka0(

U

Ucr
)

[
1 − η2

rms

λ2

]
ẏ (2.46)

where

η2
rms =

1
T

∫ T
0 y2dt

D2
, (2.47)

the numerator of Eq.2.47 is an estimate of the variance of the fluctuating response,
Kα0(U/Ucr ) > 0 is an aerodynamic coefficient,Ucr = ω1D(2π S), S is the Strouhal
number, and T is a sufficiently long time interval. If (2.45) is equated to the product
−2mζaωn , where ζα denotes the aerodynamic damping ratio, we may define a total
damping ratio

ζt = ζ + ζa, (2.48)

where

ζa = −2
ρD2

m
Ka0(

U

Ucr
)

[
1 − η2

rms

λ2

]
ẏ (2.49)

If ηrms = λ, then ζa = 0. The response, including the effects of the aeroelastic forces,
is obtained simply by substituting the total damping ratio ζt for the structural damp-
ing ratio ζ in the homogeneous equation of motion of the body. If ηrms < λ, then
ζa < 0, and the body extracts energy from the flow, that is, it can experience self-
excited oscillations. If ηrms > λ, then ζa > 0, and the body experiences no destabi-
lizing aeroelastic effects. The approximate validity of the approach just described
was verified against wind tunnel measurements of chimney response conducted at
Reynolds numbers Re ≈ 600, 000 [97]. For reinforced concrete chimneys [98] sug-
gests λ ≈ 0.4.

It may be inferred from some measurements conducted in smooth flow that the
largest value of the aerodynamic coefficient Kα0, denoted by Kα0max, is of the order
of unity (about 1.0 for Re ≤ 104, about 1.4 for 104 < Re < 105, and about 0.8 for
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Fig. 35 Steel chimney with helical strakes. From J. Wind Eng. Ind. Aerodyn. 1 (1976) 341–347

Re ≥ 105—see [98]). Ratios Kα0/Kα0max proposed in [98] as functions of the ratio
U/Ucr and of turbulence intensity are shown in Fig. (35). More elaborate models
of Kα0, applicable to chimneys with non-negligible end effects, are proposed in
[98]; see also [6]. For response involving more than one mode of vibration [97]
proposes, for each mode, expressions for the total damping similar to Eq. (2.48). In
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these expressions modal aerodynamic damping ratios are derived by assuming that
aeroelastic effects are linearly superposable.

The calculation of the total response of a chimney or stack towind loading requires
information or assumptions on the drag coefficient, Strouhal number, spectral den-
sity of the lift coefficient, spanwise wind loading correlation parameter, and aeroe-
lastic parameter Kα0. The aerodynamic and aeroelastic information depends upon
Reynolds number, chimney surface roughness, chimney aspect ratio and taper, and
terrain roughness. For details see [6, 98, 99].

To reduce the vortex-induced response chimneys may be provided with hydraulic
dampers or tuned mass dampers [100], or with aerodynamic devices referred to as
spoilers. The latter are aimed at reducing or destroying the shed vortices’ coherence
along the height. A spoiler commonly used in the past for steel stacks with very light
damping was developed on the basis of wind tunnel tests. It consists of three thin
helical strakes applied over the top 33–40% of the chimney (Fig. 35) [6, 101]. The
strakes in use are rectangular in cross-section, with a height of 0.1–0.13 diameters,
and a pitch of one revolution in 5 diameters. They increase significantly the drag
force acting on the stacks. According to full-scale observations reported in [102],
for large vibration amplitudes (e.g., 3–5% of the diameter) the vortices re-establish
themselves and the strakes become ineffective. An alternative type of spoiler device
is a perforated shroud placed over the top 25% of the stack [6, 103].

2.2.2 Tall Buildings

The response of tall (high-rise) buildings to wind loading may be divided into three
categories:

• along-wind response, which consists of (a) the static response induced by the
mean flow speed, and (b) the dynamic (buffeting) response induced mainly by
longitudinal turbulent fluctuations in the oncoming flow (contributions by along-
wind components of the signature turbulence, that is, of flow fluctuations due to
the flow-structure interaction, are typically small)

• across-wind response due to signature turbulence, including vorticity shed in the
building wake (contributions by lateral turbulent fluctuations in the oncoming flow
are typically small)

• torsional response, due to the non-zero distance between the building’s elastic
center and the instantaneous point of application of the resultant wind loading.

This terminology pertains to the case where the mean wind speed is parallel to a
principal axis of the building’s horizontal cross section.

For isolated buildings in horizontal terrain with specified roughness simple pro-
cedures are available for relating the along-wind response to the oncoming turbulent
flow (see, e.g., [6]). Expressions based on first principles are not available, how-
ever, for the estimation of the across-wind and torsional response. Nevertheless,
some tentative empirical criteria have been developed from wind tunnel measure-
ments. Let hrms denote the rms value of the across-wind oscillations at the top of
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the building. According to those criteria aeroelastic effects become significant if
hrms > hrms cr , where hrms cr is a critical value. For buildings with a square shape
in plan experiments reported in [104, 105] suggest that, if B denotes the side of
the horizontal cross-section, it is conservative to assume hrms cr/B = 0.015 for open
terrain, hrms cr/B = 0.025 for suburban terrain and, under the assumption that no
neighboring building affects significantly the turbulentwindfield, hrms cr/B = 0.045
for centers of cities. For a variety of shapes tentative, crude empirical expressions
and attendant data are available to describe the across-wind and torsional response
for hrms < hrms cr [6, 106]. According to [107], for some building shapes estimates
based on those expressions appear to be significantly at variance with results based
on [94].

Figure36 [94] shows results of wind tunnel experiments obtained for four pris-
matic building shapes in smooth flow, flow over open terrain, and flow over urban
terrain. Results for each case are given for three values of the structural damping
ratio. The model scale was estimated to be about 1/600, and for all models the height
H , the sectional area BD, and the specific mass were 0.5m, 0.0025m2, and 120kg/
m3, respectively. In Fig. 36, f0,U , and hrms denote, respectively, natural frequency
of vibration in the fundamental mode, wind speed at building top, and rms of across-
wind response at the building top. Additional results are reported in [108] for winds
acting from various directions on the models described in [94] and on a model with
a triangular shape in plan.

For tall buildings higher vibration modes typically do not make major contribu-
tions to the total response. In engineering practice information provided by sources
such as [94, 104–108] is seldom if at all used for design purposes. Rather, each
important tall structure is subjected to an ad-hoc aeroelastic wind tunnel test that
reproduces the structure’s main mechanical characteristics and built environment
and allows testing for a sufficient number of wind speeds and directions. Recently,
however, efforts have been made to develop for tall buildings an approach similar to
the approach used for suspended-span bridges. Those efforts are still in the incipient
stage. They entail primarily measurements used to estimate aerodynamic damping.
For a tall building with a depth-to-width ratio of 2, H/(BD)

1
2 = 5, and a linear

fundamental modal shape, measurements of wind forces induced by across-wind
harmonic forcing as well as by torsional harmonic forcing in smooth and turbulent
flows were reported in [94], the wind direction being parallel to the long dimen-
sion of the rectangle. As is the case for chimneys (Eq.2.47), the total damping ratio
may be written as a sum of structural damping and aerodynamic damping. For flow
over suburban terrain and for four values of the structural damping, Fig. 37 shows,
for various structural across-wind and torsional damping ratios, denoted by hsx and
hsθ , nondimensional across-wind and torsional rms responses based on direct wind
tunnel measurements and on analyses in which the measured aerodynamic damping
ratios were used. In Fig. 37 UH denotes the mean velocity at elevation H, B is the
short dimension of the horizontal cross-section of the building, and nx , nθ denote the
across-wind and torsional natural frequencies. Similar studies conducted on models
with ratios D/B = 1 and D/B = 3 are reported in [111]. The framework developed
in [95, 111] provides a useful basic understanding of aeroelastic effects on tall build-
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Fig. 36 Wind tunnel measurements of across-wind response of rectangular buildings (circles and
triangles indicate damping ratios). From [94]
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Fig. 37 Displacements of wind response obtained from response analysis accounting for measured
aerodynamic damping and from wind tunnel tests on elastic model; shear flow corresponding to
suburban terrain. From [95]

ings. However, until a sufficiently comprehensive database is developed, it cannot
serve as a substitute for individual, ad-hoc wind tunnel tests, the more so as lock-in
or galloping effects not accounted for in [95, 111] can play an important role in the
response for reduced velocities larger than 5 or so [108].

Reference [112] discusses corrections to estimates of aeroelastic responseobtained
by current wind tunnel techniques.
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Aeroelastic Response of Rotorcraft

David A. Peters

Abstract Rotorcraft have particularly complex and often nonlinear aeroelastic phe-
nomena. This chapter deals with those challenges including ground resonance, air
resonance and various forms of aeromechanical instabilities.

In this chapter we will examine a number of aeroelastic phenomena associated with
helicopters and other rotor or propeller driven aircraft. Certain areas have been
selected for treatment to illustrate some significant stability problems which are
associated with the design of helicopters. The approach to be followed employs sim-
plified modelling of various problems such that physical insight into the nature of
the phenomena can be obtained. In general, a complete and precise formulation of
many of the problem areas discussed is highly complex and the reader is referred to
the literature for these more detailed formulations.

A basic introduction to the mechanics and aerodynamics of helicopters may be
found in [1, 2]. Extensive reviews of helicopter aeroelasticity may be found in [3,
4]. Reference [4] provides an excellent discussion of the considerations necessary
in modelling helicopter aeroelasticity and illustrates the complexity of a general
formulation as well as the care required to obtain a complete and precise analytical
model.

Helicopter rotors in use may be broadly classified in four types, semi-articulated
or teetering, fully-articulated, hingeless and bearingless. This classification is based
on the manner in which the blades are mechanically connected to the rotor hub. The
teetering rotor is typically a two-bladed rotor with the blades connected together and
attached to the shaft by a pin which allows the two-blade assembly to rotate such
that tips of the blades may freely move up and down with respect to the plane of
rotation (flapping motion). In the fully-articulated rotor, each blade is individually
attached to the hub through two perpendicular hinges allowing rigid motion of the
blade in two directions, out of the plane of rotation (flapping motion) and in the plane
of rotation (lag motion). The third type is the hingeless rotor in which the rotor blade
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is a cantilever beam, but with soft flexures near the root, simulating hinges. Fourth,
bearingless rotors further replace the pitch bearing by the softness in torsion of the
root of the blade. Thus, pitch changes are introduced through torsional deformations.

Because of their greater flexibility, elastic deformations of hingeless and bearing-
less rotors are significant in the analysis of the dynamics of the vehicle. Bending out
of the plane of rotation is referred to as flap bending and in-plane as lag bending.
These three rotor configurations are shown schematically in Fig. 1. Rotation of the
blade about its long axis is controlled by a pitch change mechanism suitably con-
nected to the pilot’s stick. For further details see [1] for articulated rotors and [5] for
hingeless rotors. Other variations in rotor hub geometry are found such as the gim-
balled rotor described in [6]. We will concentrate our discussion on the aeroelastic
behavior of fully-articulated and hingeless rotors. However, it is important to realize
that, for the aeroelastic analysis of rotors, the precise details of the hub and blade
geometry must be carefully modelled.

Phenomena in helicopter aeroelasticity may be classified by the degrees-of-
freedomwhich are significantly coupled. Typically, the dynamics of a single blade are
of interest although coupling among blades can be present through the elasticity of
the blade pitch control system or the aerodynamic wake [7]. The degrees-of-freedom
of a single blade include rigid body motion in the case of the articulated system as
well as elastic motion. Elastic motions of interest include bending in two directions
and twisting or torsion. These elastic deformations are coupled in general. In addition
to individual blade aeroelastic problems, the blade degrees-of-freedom can couple
with the rigid body degrees-of-freedom of the fuselage in flight as well as the elastic
deformations of the fuselage [8–10] or with the fuselage/landing gear system on the
ground [10]. In fact, a complete aeroelastic model of the helicopter typically involves
a dynamic model with a large number of degrees-of-freedom. We do not propose to
examine these very complex models, but rather will consider simple formulations of
certain significant stability problemswhichwill give some insight into the importance
of aeroelasticity in helicopter design. Avoiding resonances is also of considerable
significance, but is not discussed here. First, aeroelastic phenomena associated with
an individual blade are described and then those associated with blade/body coupling
are examined. Finally, we will consider phenomena associated with the dynamics of
the wake.

1 Blade Dynamics

Classical flutter and divergence of a rotor blade involving coupling of flap bending
and torsion have not been particularly significant due to the fact that, in the past, rotor
blades have been designed with their elastic axis, aerodynamic center, and center of
mass coincident at the quarter chord.

In addition, blades are often torsionally stiff (a typical torsional frequency of a
modern rotor blade is about 5–8 per revolution) which minimizes coupling between
elastic flap bending and torsion. It is important to note that torsional stiffness con-
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Fig. 1 Various rotor hub configurations
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trol system flexibility is included as well as blade flexibility. Rotor systems with
low torsional stiffness [11] have experienced flutter problems; and on hingeless and
bearingless rotors, the blade section center of mass and elastic axis position can be
moved from the quarter chord to provide a favorable effect on the overall flight sta-
bility [12] which may mean that these classical phenomena will have to be reviewed
more carefully in the future. Sweep has also been employed on rotor blades [13]
and this couples flap bending with torsion. However, we will not consider flutter
and divergence here, but will instead concentrate on phenomena more frequently
encountered in practice. Further discussion of classical bending-torsion flutter and
divergence of rotor blade may be found in [3, 14].

1.1 Articulated, Rigid Blade Motion

In order to introduce the nature of rotor blade motion we first develop the equations
of motion for the flapping and lagging of a fully articulated blade assuming that the
blade is rigid. Consider a single blade which has only a flapping hinge located on
the axis of rotation as shown in Fig. 2. The blade flapping angle is denoted by βs

and the blade rotational speed by �. We proceed to derive the equation of motion
of the blade about the flapping axis. We assume that the rotor is in a hovering state
with no translational velocity. It is most convenient to use a Newtonian approach to
this problem. Since the flapping pin is at rest in space, we may write the equation of
motion for the blade as follows [15]

¯̇HP + �̄B × H̄P =
∫ R

0
ϒ̄ × d F̄A (1.1)

A blade-body axis system denoted by the subscriptB is employed and H̄P is the
moment of momentum of the blade with respect to the flapping pin. d F̄A is the
aerodynamic force acting on the blade at the radial station r̄ . The gravity force on
the blade is neglected owing to the comparatively high centripetal acceleration.
Figure 2 also shows the coordinate system and variables involved. The blade is
modelled as a very slender rod, and the body axes are principal axes such that the
inertia characteristics of the blade are

IB ∼= Iy ∼= Iz; Ix ∼= 0

Therefore
H̄ = (IBqB) j̄B + (IBrB)k̄B (1.2)

where
�̄ = pBīB + qB j̄B + rBk̄B (1.3)
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Fig. 2 Coordinate systems and aerodynamics for blade flapping analysis

The equation of motion, (1.1), becomes

IB[q̇B − pBrB] j̄B + IB[ṙB + pBqB]k̄B =
∫ R

0
r̄ × d F̄A (1.4)

Now we must express the angular body rates in terms of the variables of interest in
the problem,� the angular velocity, and βs the flap angle. The angular velocity must
be resolved into the blade axis system by rotation through βs , and then the flapping
velocity β̇s added.

⎧⎨
⎩

pB
qB
rB

⎫⎬
⎭ =
⎧⎨
⎩

cosβs 0 sin βs

0 1 0
− sin βs 0 cosβs

⎫⎬
⎭
⎧⎨
⎩

0
0
�

⎫⎬
⎭
⎧⎨
⎩

0
−β̇s

0

⎫⎬
⎭

That is
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pB = � sin βs

qB = −β̇s

rB = � cosβs

(1.5)

Substitution of (1.5) into (1.4) gives

IB[−β̈s − �2 cosβs sin βs] j̄B + [−2� sin βs β̇s]k̄B =
∫ R

0
r̄ × d F̄A (1.6)

The first term on the left hand side is the angular acceleration of the blade about
the yB axis and the second term is the angular acceleration of the blade about the
zB axis (i.e., in the lag direction), which arises as a result of out-of-plane (flapping)
motion of the blade. The aerodynamic force on the blade element is comprised of
the lift and drag and is formulated from strip theory (usually called blade-element
theory) [1, 2]. Also, see the discussion in Sect. 4 in Chap. ‘Dynamic Aeroelasticity’.
Three-dimensional effects are obtained by including the induced velocity which, for
our purposes, may be calculated by momentum theory [1]. Thus from Fig. 2.

d F̄A = dLk̄B + (−dD − φdL) j̄B (1.7)

where the inflowangleφ is assumed to be small and ismade up of the effect of induced
velocity (downwash) and the induced angle due to flapping velocity. Therefore

dL = 1

2
ρ(�r)2c dra(θ − φ)

dD = 1

2
ρ(�r)2c drδ

φ = r β̇s + v

�r

Define

x ≡ r

R
; λ ≡ − v

�R
; γ ≡ ρacR4

IB
(the Lock number) (1.8)

Here the blade chord, c, and pitch angle, θ, are taken to be independent of x , for sim-
plicity, although rotor blades are usually twisted. The blade section drag coefficient
is denoted by δ and is also assumed to be independent of the radial station. Thus

dL = IBγ�2

R

[
θ − β̇s

�
+ λ

x

]
x2dx

dD = IBγ�2

R

(
δ

a

)
x2dx (1.9)

http://dx.doi.org/https://doi.org/10.1007/978-3-030-74236-2_3
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and
r̄ = x RīB

The total rotor thrust is found by integrating the lift along the radius, averaging over
one revolution, and multiplying by the number of blades to give [1]

2CT

aσ
= θ

3
+ λ

2
(1.10)

where

σ = bc

πR

and b is the number of blades. The thrust coefficient is

CT = T

ρπR2(�/R)2

Momentum theory results in the following expression for the induced velocity

λ = −
√
CT

2

so that the integral on the right-hand side of Eq. (1.6) becomes

∫ R

0
r̄ × d F̄A = − IBγ�2

8

[
θ + 4λ

3
− β̇s

�

]
j̄b

+ IBγ2

8

[
− δ

a
+ β̇s

�

(
β̇s

�
− θ

)
+ 4

3

(
θ − 2

β̇s

�

)
λ + 2λ2

]
k̄B

(1.11)

The j̄B components contribute to the flapping equation of motion which may be
expressed from Eqs. (1.6) and (1.11) as

β̈s + γ�

8
β̇s + �2 cosβs sin βs = γ�2

8

[
θ + 4λ

3

]
(1.12)

The k̄B component of Eq. (1.11) is the aerodynamic torque about the zB axis or in the
lag direction. There is a steady component and a component proportional to flapping
velocity. Each of these components is important either for loads or for stability of
the inplane motion.

If we assume that the flapping motion is small as is typical of rotor blade motion
then the flapping equation becomes linear.

β̈s + γ�

8
β̇s + �2βs = γ�2

8

[
θ + 4λ

3

]
(1.13)
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Fig. 3 Direction of
centrifugal force for flap and
lag motion

The linearized blade flapping equation may be recognized as a second order system
with a natural frequency equal to the rotor angular velocity and a damping ratio
equal to γ/16 which arises from the aerodynamic moment about the flapping pin.
Thismotion iswell damped as γ is between 5 and 15 for typical rotor blades. It is good
that the system is well damped since the aerodynamic inputs characteristically occur
in forward flight at �, and thus the blade flapping motion is forced at resonance.

The spring or displacement term can be interpreted as arising from the centrifugal
force [1]. This same stiffening effect will appear in the flexible blade analysis and
will increase the natural frequency as rotational speed is increased.

If the more general case of flapping in forward flight is considered, then the
equation of motion for flapping (1.12) will contain periodic coefficients which can
lead to instabilities [16]. However, the flight speed at which such instabilities occur
is well beyond the performance range of conventional helicopters, unless they have
positive pitch-flap coupling.

Now we include the lag degree-of-freedom to obtain a complete description of
rigid motion of a fully-articulated rotor blade . The complete development of this
two-degree-of-freedom problem is quite lengthy and will not be reproduced here
[17].

Following the approach given above, assuming that the flap angle and lag angle
are small and that the lag hinge and flap hinge are coincident and located a small
distance e (hinge offset) from the axis of rotation as shown in Fig. 3, and further
accounting for the effect of lag velocity on the aerodynamics forces acting on the
blade, the lift is given by

dL = 1

2
ρ[� + ζ̇sr ]2c dra

[
θ − (r β̇s + υ)

(� + ζ̇s)r

]
(1.14)
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where the effect of the small distance e on the aerodynamics is neglected. The lag
angle is defined as positive in the direction of rotor rotation. Care must be taken in
formulating the inertial terms since we have noted above that a term like β̇s sin(βs)

is of significance in the equations of motion, and thus the small angle assumption
must not be made until after the expressions for the acceleration have been obtained.
Rotating by the flap angle first and then by the lag angle, the angular rates in the
blade body axis system are given by

⎧⎨
⎩

pB
qB
rB

⎫⎬
⎭ =
⎡
⎣ cos ζs sin ζs 0

− sin ζs cos ζs 0
0 0 1

⎤
⎦
⎡
⎣ cosβs 0 sin βs

0 1 0
− sin βs 0 cosβs

⎤
⎦
⎧⎨
⎩

0
0
�

⎫⎬
⎭

+
⎡
⎣ cos ζs sin ζs 0

− sin ζs cos ζs 0
0 0 1

⎤
⎦
⎧⎨
⎩

0
−β̇s

0

⎫⎬
⎭+
⎧⎨
⎩

0
0
ζ̇s

⎫⎬
⎭ (1.15)

We must also account for the fact that the hinge point of the blade is no longer at rest
but is accelerating [15]. Since the hinge point is located at a distance e from the axis
of rotation, the equation of motion, (1.1), must be modified to read

˙̄HP + �̄B × H̄P =
∫ R

0
r̄ × d F̄A + Ē × MBāP (1.16)

where āP is the acceleration of the hinge point

āP = �̄ × (�̄ × Ē) + ˙̄� × Ē (1.17)

Ē is the offset distance and MB is the blade mass.
Accounting for all of these factors, and assuming that the flapping and lagging

motion amplitudes are small, the equations of motion for this two-degree-of-freedom
system may be expressed [17, 18] as

−β̈s − �2

(
1 + 3

2
ē

)
βs − 2βs ζ̇s� = −γ�2

8
[ θ + 4

3
λ − β̇s

�
+

(
2θ + 4

3
λ

)
ζ̇s

�
] − 2βs β̇s� + ζ̈s + 3

2
ē�2ζs = γ�2

8
[ −
(

θ + 8

3
λ

)
β̇s

�
−

(
2
δ

a
− 4

3
λθ

)
ζ̇s

�
− − δ

a
+ 4

3
λθ + 2λ2 ]

(1.18)
where

ē = e

R
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It has been assumed that the blade has a uniform mass distribution. These results
can be displayed more conveniently by nondimensionalizing time by rotor angular
velocity � and also expressing the variables as the sum of a constant equilibrium
part and a perturbation

βs = β0 + β (1.19)

ζs = ζ0 + ζ

Retaining only linear terms, the equilibrium equations are

β0 = γ

8(1 + 3
2 ē)

[
θ + 4λ

3

]

ζ0 = γ

12ē

[
− δ

a
+ 4

3
λθ + 2λ2

]
= −1

3

γ

ē

(
2Cq

aσ

) (1.20)

The steady value of the flapping, β0, is referred to as the coning angle. The steady
value of the lag angle, ζ0, is proportional to the rotor torque coefficient, cq [1].

The perturbation equations are

β̈ + γ

8
+
(
1 + 3

2
ē

)
β +
[
2β0 − γ

8

(
2θ + 4

3
λ

)]
ζ̇ = 0

[
−2β0 + γ

8

(
θ + 8

3
λ

)]
β̇ + ζ̈ + γ

8

(
2
δ

a
− 4

3
λθ

)
ζ̇ + 3

2
ēζ = 0

(1.21)

These equations describe the coupled flap-lag motion of a rotor blade. A number of
features can be noted. The effect of the blade angular velocity on the lag frequency
is much weaker than on flap frequency. The uncoupled natural frequency in flap
expressed as a fraction of the blade angular velocity is

ωβ

�
=
√
1 + 3

2
ē (1.22)

and the coupled frequency in lag is

ωζ

�
=
√
3

2
ē (1.23)

For a typical hinge offset of ē = 0.05, the rigid flap frequency is

ωβ

�
= 1.04

and the rigid lag frequency is
ωζ

�
= 0.27
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The flap natural frequency is thus somewhat higher than the rotational speed, and
the lag frequency is roughly one-quarter of the rotational speed. This difference is
due to the weaker effect of the restoring moment due to centrifugal force in the lag
direction as indicated in Fig. 3.

The uncoupled lag damping arises primarily from the blade drag and is equal to

DL ≡ 2
δ

a

(γ
8

)
(1.24)

The lift curve slope of the blade, a, is the order of 6 per radian and the drag coefficient,
δ, is the order of 0.015 giving a physical lag damping which is 0.005 times the flap
damping or characteristically negligible. The damping ratio of the uncoupled lag
motion for a Lock number of 8 is

ζL = 0.009

This low value of aerodynamic damping indicates that structural damping will be of
significance in estimating the lag damping. Any coupling between these equations
which reduces the lag damping tends to result in an instability. Equation (1.21) can
be rewritten

β̈ + γ

8
β̇ +
(
1 + 3

2
ē

)
β +
(
β0 − γ

8
θ
)

ζ̇ = 0

− γ

8
θβ̇ + ζ̈ + γ

8

[
2
δ

a

]
ζ̇
3

2
ēζ = 0

(1.25)

where the equilibrium relationship for β0 has been introduced (1.20) with the effect
of hinge offset on coning neglected. It can be shown that the coupling present in this
two-degree-of-freedom system arising from inertial and aerodynamic forces will not
lead to an instability. However, the hinge offset or changes in minor features of the
hub geometry can lead to instability. The equilibrium lag angle is proportional to
rotor torque (Eq. (1.20)); and, consequently, it varies over a wide range from high
power flight to autorotation as a result of the weak centrifugal stiffening. Thus, the
simple pitch link geometry shown in Fig. 4 will produce a pitch change with lag
depending upon the equilibrium lag angle. The blade pitch angle variation with lag
angle can be expressed as

�θ = θζζ

This expression is inserted into Eq. (1.18). Retaining only the linear homogeneous
terms, the perturbation equations are

β̈ + γ

8
β̇ +
(
1 + 3

2
ē

)
β +
(
β0 − γ

8
θ
)

ζ̇ − γ

8
θζζ = 0

−γ

8
θβ̇ + ζ̈ + γ

8

[
2
δ

a

]
ζ̇
3

2
ēζ − γ

6
λθζζ = 0

(1.26)
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Fig. 4 Pitch-lag coupling due to pitch link geometry. Articulated rotor

We can now sketch a root locus for the effect of θζ on the dynamics of this system.
Expressing the equations of motion in operational notation, the root locus equation
for variations in θζ is

−θζ
γλ
6

[
s2 + 3

4
β0

λ
s + 1 + 3

2 ē
]

[s2 + γ
8 s + (1 + 3

2 ē)][s2 + γ
8 [2 δ

a ]s + 3
2

¯e] + γ
8 θ(β0 − γ

8 θ)s
2

= −1 (1.27)

The root locus shown in Fig. 5 illustrates the effect of this geometric coupling,
indicating that the critical case where instability occurs corresponds to the 180◦ locus
(θζ is positive). Recall that λ is negative. Thus, if forward lag produces an increase
in pitch, an instability is likely to occur for a soft-inplane rotor. The effect is also
proportional to thrust coefficient indicating that the instability is more likely to occur
as the thrust is increased [18, 19]. Increasing thrust also increases the steady-state lag
angle, hence increasing the geometric coupling for the geometry shown. In general,
this instability tends to be of a rather mild nature, but it has destroyed tail rotors.
Mechanical dampers are often installed about the lag axes for reasons to be discussed
and these also provide additional lag damping and thus can alleviate the instability.

This example serves to illustrate that great care must be taken in the geomet-
ric design of the articulated rotor hub to avoid undesirable couplings and possible
instabilities. We now turn to the elastic hingeless blade.

1.2 Elastic Motion of Hingeless Blades

The dynamics of a single hingeless blade will now be examined. Again we will use
a simplified analysis which yields the essential features of the dynamic motion, and
the reader is referred to the literature for a more detailed approach. In general, the
flap and lag elastic deformations (as referred to a shaft axis system) are coupled as
a result of the fact that the principal elastic axes of the blade will be inclined with
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Fig. 5 Effect of pitch-lag coupling on flap-lag stability

respect to the shaft due to pitch angle. In fact, the term flexible “blade”, as used here,
includes the hub as well as the blade itself. “Hub” is used to refer to the portion of
the blade structure inboard of the radial location where the pitch change takes place.
The rotation of the blade principal elastic axes with blade pitch will depend upon
the relative stiffness of the hub and the blade. It can be seen physically that, if the
hub is soft in comparison to the blade, then the principal axes of this flexible system
tend to remain fixed as the pitch of the blade is changed. However, if the hub is stiff
and the blade is soft, the principal elastic axes rotate in a 1:1 relationship with blade
pitch. An additional source of elastic coupling between flap and lag deflections arises
from the built-in blade twist. A third source of elastic coupling between flap and lag
arises from inclusion of torsion as a degree-of-freedom. For the typical rotor blade
with a high torsional frequency, the effect of torsional flexibility on flap-lag coupling
can be obtained through a quasistatic approximation to the torsional motion. That
is, for a first-order estimate, the torsional inertia and damping can be neglected; and
the coupling effects of torsional flexibility can be expressed in terms of geometric
coupling similar in form to the hub geometry effects described in connection with
the fully-articulated rotor. A detailed analysis of the flap-lag-torsion motion of a
hingeless rotor blade may be found in [20, 21], and the complete equations of motion
for elastic bending and torsion of rotor blades may be found in [22].

We now proceed to examine the flap-lag motion of a hingeless rotor blade from
a simplified viewpoint.
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If it is assumed that the rotor blade is untwisted, has zero pitch, and is torsionally
rigid; the natural frequencies of the rotating blade can be expressed in terms of its
mode shapes, φ, and derivatives with respect to radial distance φ′ and φ′′ as [23–25]

ω2
β =
∫ R
0 E Iβ(φ

′′
β)2dr + �2

∫ R
0

(
φ

′
β

)2
(
∫ R
r mn dn)dr

∫ R
0 mφ2

βdr
(1.28)

ω2
ζ =
∫ R
0 E Iζ(φ

′′
ζ)

2dr + �2

{∫ R
0

(
φ

′
ζ

)2
(
∫ R
r mn dn)dr − ∫ R0 mφ2

ζdr

}

∫ R
0 mφ2

ζ dr

m is the running mass of the blade and E I is the stiffness these expressions gives
the nonrotating natural frequency and the second term gives the effect of centrifugal
stiffening due to rotation. The coefficient of the square of the angular velocity� in the
expression for flapping frequency is usually referred to as the Southwell coefficient.
Note that the effect of the centrifugal stiffening is considerably weaker in the lag
direction than in the flap direction as would be expected from the previous discussion
of the articulated rotor.

The Southwell coefficient is denoted by Ks

Ks =
∫ R
0 (φ

′
β)2
(∫ R

r mn dn
)
dr

∫ R
0 mφ2

βdr
(1.29)

and the nonrotating frequencies are denoted by

ω2
β0

=
∫ R
0 E Iβ(φ

′′
β)2dr∫ R

0 mφ2
βdr

ω2
ζ0

=
∫ R
0 E Iζ(φ

′′
ζ)

2dr∫ R
0 mφ2

ζdr

(1.30)

If the flap and lag mode shapes are assumed to be the same, the rotating frequencies
can be written as

ω2
β = ω2

β0
+ Ks�

2

ω2
ζ = ω2

ζ0
+ (Ks − 1)�2

(1.31)

It is interesting to note that, if the mode shape is assumed to be that of a rigid
articulated blade with hinge offset, ē, i.e.,

φ = 0 0 < x < ē

φ = (x − ē) ē < x < 1
(1.32)
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for a uniform mass distribution and small ē, then from (1.29)

Ks ≡ 1 + 3

2
ē (1.33)

Thus the natural frequencies are from (1.30), (1.31) and (1.33)

ω2
β = �2

(
1 + 3

2
ē

)

ω2
ζ = �2

(
3

2
ē

)
(1.34)

reducing to the results for the rigid blade. For typical blade mass and stiffness dis-
tributions, the Southwell coefficient is of the order of 1.2 [24].

A simplified model for the elastic rotor blade follows. The elastic blade is mod-
elled as a rigid blade with hinge offset ē and two orthogonal springs (Kβ and Kζ )
located at the hinge to represent the flap and lag stiffness characteristics. The natural
frequencies for this model of the blade are

ω2
β = Kβ

IB
+
(
1 + 3

2
ē

)
�2

ω2
ζ = Kζ

IB
+
(
3

2
ē

)
�2

(1.35)

The spring constants Kβ and Kζ can be chosen to match the nonrotating frequencies
of the actual elastic blade, and the offset is chosen to match the Southwell coefficient.
In this way the dependence of frequency on rotor angular velocity is matched. Owing
to the fact that the Southwell coefficient is close to unity (i.e., the equivalent offset,
ē is small), in many investigations the dependence of the Southwell coefficient on ē
is neglected [17] giving

ω2
β = Kβ

IB
+ �2

ω2
ζ = Kζ

IB

(1.36)

Thus, with this approximation there is no centrifugal stiffening in the lag direction.
We will use this approximation in the analysis which follows. Recall that these
frequencies are assumed to be uncoupled and therefore are defined with respect to
the blade axes. Thus, they will appear coupled in a shaft oriented axis system. In
order to include the effect of hub flexibility in the analysis, the hub (the portion of
the blade system which does not rotate with pitch) is modelled by a second pair of
orthogonal springs which are oriented parallel and perpendicular to the shaft and do
not rotate when the blade pith is changed [17]. These spring constants are denoted
KβH and KζH . The springs representing blade stiffness, ζB , are also located at the
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Fig. 6 Spring model for elastic blade and hub

root since offset has been neglected. However, this pair of springs rotate with the
blade as pitch is changed. Figure 6 shows the geometry.

This model for the hub and blade gives rise to elastic coupling between flap
and lag motion. Essentially, a mode shape φ = x is being employed to describe
the elastic deflection of the blade in both directions such that the aerodynamic and
inertial coupling terms developed for the articulated blade model (Eq. (1.21)) apply
directly to this approximate model of the hingeless blade. The equations of motion
for flap-lag dynamics are therefore

β̈ + γ

8
β̇ + p2β −

{
γ

8

(
2θ + 4

3
λ

)
− 2β0

}
ζ̇ + z2ζ = 0

[
−2β0 + γ

8

(
θ + 8

3
λ

)]
β̇ + z2β + ζ̈ + γ

8

(
2
δ

a
− 4

3
λθ

)
ζ̇ + q2ζ = 0

(1.37)

where the difference between these equations of motion and those presented for the
articulated blade (1.21) arise from the terms p, q, and z. p and q are the ratios of the
noncoupled natural frequencies (i.e., those at zero pitch) to the rotor rpm, and z is
the elastic coupling effect. For the spring model described above these terms can be
expressed as [17]

p2 = 1 + 1

�
(ω̄2

β + R(ω̄2
β) sin2 θ)

q2 = 1

�
(ω̄2

ζ − R(ω̄2
ζ ) sin

2 θ)
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z2 = R
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R is referred to as the elastic coupling parameter. The physical significance of this
parameter can be understood by examining the relationship between the rotation of
the principal axes of the blade-hub system, η, and the blade pitch angle, θ, [26]

tan 2η = R sin 2θ

R cos 2θ + (1 − R)
(1.39)

It can be seen from this expression that if R = 0 the principal axes remain fixed as
blade pitch is changed and consequently there is no elastic coupling. The flap and
lag natural frequencies are

p2 = ω̄2
β + 1

q2 = ω̄2
ζ

where ω̄2
β and ω̄2

ζ are the dimensionless nonrotating frequencies. This is the case in
which the hub is flexible and the blade is rigid. At the other limit R = 1, Eq. (1.39)
indicates that the principal axes rotate in a 1:1 relationship with the blade pitch
(η = θ). In this case elastic coupling is present, and expressions for the natural
frequencies (1.38) simply represent the fact that, as the blade is rotated through
90◦ pitch, the nonrotating frequencies must interchange. In addition to the case
R = 0 where the elastic coupling between flap and lag vanishes, another interesting
case exists in which no elastic coupling is present. This is the case referred to as
matched stiffness, i.e., when the nonrotating frequencies of the blade are equal in
both directions (ω̄ζ = ω̄β). Various advantages accrue from this particular design
choice as will be discussed below.

In principle, the designer has at his or her disposal the selection of the nonrotating
frequencies of the blade. Consider some of the options in this regard. For simplicity,
only the behavior of the rotor at zero pitch is examined. One choice is the matter of
the hub stiffness relative to the blade stiffness which has an important impact on the
flap-lag behavior of the rotor through the parameter R as will be discussed below.
The flap frequency is largely chosen on the basis of the designed helicopter stability
and control characteristics [5, 12]. Since the rotor blade is, in general, a long slender
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member, the flap frequency will tend to be relatively near to the rotor rpm. Typical
ratios of flap frequency to blade angular velocity for hingeless rotor helicopters are
of the order of p = 1.05 − 1.15 [25] although at least one helicopter has flown with
a flap frequency ratio of 1.4 [27]. The second major design decision is the choice
of the lag frequency. Characteristically, the nonrotating lag frequency will tend to
be considerably higher than the flap frequency owing to the larger dimensions of
the blade and hub in the chordwise direction compared to the flapwise direction. As
mentioned above, lag hinges are provided on articulated rotors to relieve lag stresses
arising from flapping. Owing to the fact that the flap frequency is only slightly larger
than once per revolution on a typical hingeless blade there will be considerable flap
bending of the rotor blades. In fact, the amplitude of the vertical displacement of
the blade tip on a hingeless blade will be quite similar to the flapping amplitude of
the fully articulated rotor. The relationship between amplitude of tip motion of the
hingeless blade and the flapping amplitude of the articulated blade is given by [28]

|βH | = |βA|{
1 +
(
8
γ
(p2 − 1)

)2} 1
2

Therefore, the inplane forces due to flap bending will cause the significant root
stresses on a hingeless rotor. The dependence of these stresses on the selection of lag
frequency can be seen by assuming that the flap and lag bending are loosely coupled
(z = 0). The lag bending amplitude arising from sinusoidal flap bending at one per
rev can be expressed from the Eq. (1.37), neglecting the lag damping, as

| ζ
β

| =
[
2β0 − γ

8 (θ + 8
3λ)
]

(q2 − 1)
(1.40)

The lag bending moment at the blade root, Kζζ, thus varies as q2/(q2 − 1) as shown
in Fig. 7. It can be seen that if the lag frequency is selected above one per rev,
large root bending stresses occur. The bending moment is reduced by choosing a lag
frequency well below one per rev. A lag frequency below one per rev incidentally
would be characteristic of a matched stiffness blade. For example, if

p2 = 1.2 = ω̄2
β + 1

and
ω̄2

ζ = ω̄2
β

then
ω̄ζ = 0.45

Rotor blades are usually characterized by their lag frequency as soft inplane (ω̄ζ < 1)
or stiff inplane (ω̄ζ > 1). Thus, rotor blade lag stresses an be reduced by choosing a
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Fig. 7 Dependance of lag
bending stress on lag
frequency

soft inplane blade design and it should be kept in mind in the discussion that follows
that there is a significant variation in the root bending stress with lag frequency. In
the following, the influence of lag frequency on the dynamics of a hingeless blade is
examined. Also it may be noted at this point that in contrast to the articulated rotor, in
which large mechanical motion in lag allows mechanical lag dampers to be effective,
this is usually more difficult with the hingeless rotor. Nevertheless, hingeless rotor
helicopters have been equipped with lag dampers [10, 29].

Note also that if the lag frequency is selected such that the operating condition of
the rotor is less than one per rev, then resonance in the lag mode will be encountered
as the rotor is run up to operating speed.

Flap-lag stability characteristics as predicted by the equations of motion given by
Eq. (1.37) are now examined. First consider the case in which the hub is considerably
more flexible than the blade (R = 0). In Fig. 8 the stability boundaries given by
Eq. (1.37) are shown as a function of flap and lag frequency and blade pitch angle
for a typical rotor blade. This figure was obtained by determining the conditions
under which Routh’s discriminant equals zero. It can be seen that an approximately
elliptical region of instability occurs which increases in extent as blade pitch is
increased. It is centered around a lag bending frequency of 1.15 and flap frequency
of 1.15 indicating that, in this particular case, flap-lag instability is more likely
to be a problem for stiff inplane rotors. It can be seen that the stiff inplane blade
(1.1 < ω̄ζ < 1.2) is destabilized with increasing pitch. Figure 9 shows root location
of blade damping versus pitch angle (which relates to thrust coefficient). Clearly, the
instabilities occur at high thrust. A family of plots can be seen for various values wζ .
One can see that the stiff inplane rotors are more likely to be unstable. Figure 10
shows the effect of various ratios of hub stiffness to blade stiffness (different values
of R) indicating the importance of careful modelling of the blade and hub in the
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Fig. 8 Flap lag stability
boundaries. R = 0, no
elastic coupling [17]

study of flap-lag stability. This theory has been correlated with experiment in [30].
At large pitch angles where the blade encounters stall, wider ranges of instability
occur as shown in [30]. This increase in the region of instability is primarily a result
of the loss in flap damping owing to reduction in blade lift curve slope, a.

Various other configuration details have an impact on the flap-lag stability such
as precone (the inclination of the blade feathering or pitch change axis with respect
to a plane perpendicular to the hub). Precone is usually employed to relieve the root
bending stresses that arise from the steady flap bending moment due to average blade
lift. The blade may also have droop and sweep [21] (the inclinations of the blade axis
with respect to the pitch change axis in the flap and lag directions respectively) which
will also have an impact on the flap-lag stability. The presence of kinematic pitch-
lag coupling will have important effects on hingeless blade stability which depend
strongly on the lag stiffness and the elastic coupling parameter R [17]. Reference [31]
provides a closed-form damping expression with a physical exploration of the effect
of each parameter.

If torsional flexibility is included, elastic coupling between pitch, lag and flap will
exist. This can be most readily understood by extending the simple spring model of
blade flexibility to include a torsion spring. Consider a blade hub system as shown
in Fig. 11 with a flap angle β and a lag angle ζ. Owing to the root spring orientation,
there will be torques exerted about the torsion axis which depend on the respective
stiffnesses in the two directions. Representing the torsional stiffness of the blade and
control system by Kθ, the equation for torsional equilibrium is (neglecting torsional
inertia and damping )

Kθθ = (Kβ − Kζ)βζ (1.41)
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Fig. 9 Locus of roots for increasing blade pitch. R = 0, no elastic coupling

Linearizing about the blade equilibrium position, β0, ζ0,

�θ = 1

Kθ
[(Kβ − Kζ)β0�ζ + (Kβ − Kζ)ζ0�β] (1.42)

That is, torsional flexibility results in both pitch-lag coupling

θζ =
(
Kβ − Kζ

Kθ

)
β0 (1.43)
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Fig. 10 Locus of roots for increasing blade pitch with various levels of elastic coupling [17]
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Fig. 11 Simplified blade model for flap-lag-torsion coupling

and pitch-flap coupling

θβ =
(
Kβ − Kζ

Kθ

)
ζ0 (1.44)

These couplings depend both on the relative stiffness of the blade in the flap and lag
directions and on the equilibrium values of the flap deflection and the lag deflection.
Amatched stiffness blade (Kβ = Kζ ) eliminates these couplingswhich is perhaps the
primary reason for interest in amatched stiffness blade. For typical blade frequencies,
Kζ is larger than Kβ and therefore θζ tends to be negative and θβ positive. θβ is
equivalent to what is usually referred to as a δ3 hinge on an articulated blade. In
powered flight ζ0 is negative (1.20), and the sign of the effect is equivalent to negative
ζ3 [32]. This pitch change arising from flapping is statically destabilizing in the
sense that an upward flapping produces an increase in pitch. If this term becomes
sufficiently large, flapping divergence can occur. In autorotation, this coupling would
change sign, as the equilibrium lag angle is positive. The characteristically negative
value of pitch-lag coupling θζ tends to produce a stabilizing effect in most cases
as may be seen from the articulated rotor example. Negative values of θζ can be
destabilizing for a stiff inplane rotor with small values of R [17]. Precone, that is
rotation of the pitch change axis in the flap direction, has a significant effect on
the pitch-lag coupling. The coning angle β0, in Eq. (1.43) refers only to the elastic
deflection of the blade. Consequently, with perfect precone, that is, when the precone
angle is equal to the equilibrium steady flap angle given by Eq. (1.20), the elastic
deflection is zero and the pitch-lag coupling is zero. For excessive precone (i.e., if
the rotor is operated well below its design thrust), β0 is negative and a destabilizing
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Fig. 12 Flap-lag stability boundaries as a function of pitch-lag coupling and elastic coupling [17]

pitch-lag coupling occurs. It should be noted that hub flexibility will also have an
important impact on these kinematic couplings since it will determine the deflection
of the pitch change axis. A precise formulation of flap-lag-torsion coupling as well as
further discussion of its influence onblade stability can be found in [12].Comparisons
of theory and experiment can be found in [33].

In summary, a soft-inplane rotor blade tends to be less susceptible to isolated
blade instabilities while the stiff-inplane blade tends to exhibit instabilities along
with a considerably more complex behavior with changes in parameters. Figure 12
contrasts the effect of pitch-lag coupling on these two rotor blade types illustrating
the complexity of the stability boundaries for the stiff inplane case in contrast to the
soft inplane case which is quite similar to the articulated rotor.

2 Stall Flutter

A single degree-of-freedom instability encountered by helicopter blades which also
occurs in gas turbines is referred to as stall flutter. The reader should consult
Chap. ‘Stall Flutter’ for a discussion of stall flutter on a nonrotating airfoil. Stall flut-
ter is primarily associated with high speed flight andmaneuvering of a helicopter and
arises from the fact that stalling of the rotor blade is encountered at various locations
on the rotor disc. For a rotor blade, stall flutter does not constitute a destructive insta-
bility but rather produces a limit cycle behavior owing to the varying aerodynamic
conditions encountered by the blade as it rotates in forward flight.

Consider the aerodynamic conditions existing on a rotor blade in high speed flight.
On the advancing side of the rotor disc, the dynamic pressure depends on the sum
of the translation velocity of the helicopter and the rotational velocity, while on the
retreating side of the disc it depends on the difference between these two velocities.
Consequently, if the rollingmoment produced by the rotor is equal to zero, as required
for equilibrium flight, the angle-of-attack of the blade is considerably smaller on the
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Fig. 13 Angle of attack distribution of helicopter rotor at 140 knots (advance ratio = 0.33) [34]

advancing side than on the retreating side. A typical angle-of-attack distribution at
an advance ratio of 0.33 (140 kts) is shown in Fig. 13. This resulting distribution is
produced by a combination of flapping or flap bending motion and the pilot’s control
input.

Note that on the advancing side the angle-of-attack is small and varies compara-
tively slowly with azimuth angle. On the retreating side the angle-of-attack is large
and changes rapidly with azimuth angle. Consequently, prediction of the airload
on the blade requires a model for the aerodynamics of the blade element which
includes unsteady effects both in the potential flow region as well as in the stalled
region. The source of the stall flutter instability is related to the unsteady aerodynamic
characteristics of an airfoil under stalled conditions. Since the stalled region is only
encountered by the blade over a portion of the rotor disc, however, if an instability of
the aerodynamics at stall, it will not give rise to continuing unstable motion since a
short time later the blade element will be at a low angle-of-attack, well below stall.

Owing to the complexity of the flow field around a stalled airfoil, we must have
recourse to experimental data in order to determine the unsteady aerodynamic charac-
teristics of an airfoil oscillating a high angle-of-attack. Experimental data are avail-
able in recent years on typical helicopter airfoil sections [34–36], which make it
possible to characterize the aerodynamics of an airfoil oscillating about stall . In
addition, a number of investigations have been conducted which give insight into
the nature and complexity of the aerodynamic flow field under stalled conditions
[37–39].

For a simplified treatment of stall flutter, it is assumed that the blade motion
can be adequately described by a model involving only the blade torsional degree-
of-freedom. The influence of flapping or heave motion of the section is neglected
such that θ = α. The equation of motion for this single degree-of-freedom system is
therefore

α̈ + ω2
θα =
(

ρ(�R)2c2

2Iθ

)
CM(α̇) (2.1)
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where aerodynamic strip theory analysis is employed. Since the aerodynamic damp-
ing is a complex function of the angular velocity, it is convenient to express Eq. (2.1)
as an energy equation by multiplying by dα and integrating over one cycle to obtain

�

{
α̇2

2
+ ω2

θ

α2

2

}
= ρ(�R)2c2

2Iθ

∫
CM(α̇)dα (2.2)

The left hand side of Eq. (2.2) expresses the change in energy over one cycle which
is produced by the dependence of aerodynamic pitching moment on angle-of-attack
rate as given by the right hand side. Figure 14 shows the time history of the pitching
moment and normal force coefficients as a function of angle-of-attack for an airfoil
oscillating at a reduced frequency typical of one per rev motion at three mean angles-
of-attack. The arrows on the figure denote the direction of change ofCN andCM . Note
the large hysteresis loop which occurs in the normal force in the dynamic case when
themean angle-of-attack is near stall. In the potential flow region the effects are rather
small and are predicted by Theodorsen’s aerodynamic theory (see Chap. ‘Nonsteady
Aerodynamics of Lifting and Non-lifting Surfaces’). Proper representation of the
unsteady lift behavior does have an important bearing on the prediction of rotor

Fig. 14 Typical oscillating
airfoil data [35]
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performance, but will not be discussed further. The pitching moment characteristics
are of primary interest here.

The pitching moment is well behaved in the potential flow region, and well above
stall, resulting in small elliptically shaped loops over one cycle. In the vicinity of lift
stall, two interesting effects occur; the average pitching moment increases markedly
in a nose down sense, a phenomenon that is referred to as moment stall [35], and the
moment time history looks like a figure eight. The change in energy over one cycle
given by Eq. (2.2) is proportional to

∫
CM(α̇)dα

The value of this integral is qual to the area enclosed by the loop, and its sign is
given by the direction in which the loop is traversed. If the loop is traversed in a
counter clockwise direction, then this integral will have a negative value indicating
that energy is being removed from the structure or that there is positive damping.
Thus the low and high angle-of-attack traces indicate positive damping. Near the
angle-of-attack at which moment stall occurs statically, however, the figure-eight-
like behavior indicates that there is essentially no net dissipation of energy over a
cycle or possibly that energy is being fed into the structure (the integral on the right
hand side of Eq. (2.2) is positive). This pitching moment characteristic gives rise to
the phenomenon referred to as stall flutter. To actually encounter stall flutter, this
behavior must occur over some appreciable span of the blade [40]. Reference [40]
also discusses the importance of the rate of change of angle-of-attackwith time on the
dynamics of this process and concludes that delay in the development of dynamic stall
depending upon α̇ is responsible for stall occurring over a significant radius of the
blade with consequent effects on the rotor loads and vibrations. Of course, the rotor
blade only encounters this instability over a small azimuth range and, consequently,
the complete motion is essentially a limit cycle. The loss in damping at stall coupled
with the marked change in the average pitching moment gives rise to large torsional
motion with perhaps 2 or 3 cycles of the torsion excited before being damped by the
low angle-of-attack aerodynamics. A typical time history of blade torsional motion
and angle-of-attack when stall flutter is encountered is shown in Fig. 15. The domi-
nant effect of the occurrence of stall flutter on a helicopter is to give rise to a marked
increase in the vibratory loads in the blade pitch control system [40]. Reference [40]
discusses approximate methods for incorporating unsteady stall aerodynamics into
the rotor blade equations of motion. The most significant assumption in the analy-
sis of rotor blade stall flutter relates to the applicability of two-dimensional data on
airfoils oscillating sinusoidally to a highly three-dimensional flow field in which the
motions are nonsinusoidal.

Further understanding of the aerodynamics of stall may make it possible to
design airfoil sections that would minimize the occurrence of stall flutter and the
associated control loads. Blade section design, however, has many constraints owing
to the wide range in aerodynamic conditions encountered in one revolution; and the
aerodynamic phenomena described appear to be characteristic of airfoils oscillating
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Fig. 15 Typical time history
of blade motion for blade
encountering stall flutter [42]

about an angle-of-attack beyond the onset of static stall. Inmore recent work, analytic
methods have been developed to model dynamic stall [41, 42]; and CFD codes have
been formulated to predict dynamic stall [43].

3 Rotor-Body Coupling

Another important topic is the aeroelastic instability of helicopters associated with
coupling of blade motion and body motion. This problem is of considerable signifi-
cance in articulated and hingeless rotor helicopter design, and was first encountered
on autogiros. This violent instability was at first attributed to rotor blade flutter until
a theory was developed during the period 1942–1947 showing it to be a new phe-
nomenon. The instability is called ground resonance, and was first analyzed and
explained by Coleman [44] who modelled the essential features of the instability
for articulated rotor helicopters. The name ground “resonance” is somewhat confus-
ing since, in fact, the dynamic system of the helicopter and blades is unstable. The
instability occurs at a particular rotor angular velocity; and therefore it appears in
some sense like a resonance, but it is not. Further, the ground enters the problem
owing to the mechanical support provided the helicopter fuselage by the landing
gear. The particularly interesting result obtained by Coleman is that the instability
can be predicted neglecting the rotor aerodynamics; that is, ground resonance is
purely a mechanical instability, the energy source being the rotor angular velocity. In
the discussion below, Coleman’s development is followed. Then there is qualitative
discussion of the more complex formulation of this problem as applied to hingeless
rotors. For an articulated rotor, the aerodynamics tend to be unimportant and only
the lag degree-of-freedom needs to be included. For hingeless rotors, the flapping
degree-of-freedom is important aswell and aerodynamic forces play a significant role
[10]. The addition of the flapping degrees-of-freedom leads to a similar instability
in flight referred to as air resonance.
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Following Coleman’s analysis we consider a simplified model of a helicopter
resting on the ground. The degrees-of-freedom assumed are: pitch and roll of the
rotor shaft or pylon which arise from the landing gear oleo strut flexibility, and
the lag degree-of-freedom of each rotor blade. Discussion is restricted to the case in
which the rotor has three or more rotor blades and thus has polar symmetry. The two-
bladed rotor is a somewhat more complex problem, and a few remarks on this special
case are made at the end of this section. A four-bladed rotor system is used as the
example since the approach is most easily visualized in this case. The generalization
to three or more blades is described at the end of this section.

Consider the helicopter shown in Fig. 16. The system has six degrees-of-freedom:
the lag motion of each of the four rotor blades and the two pylon deflections. Each
rotor blade ismodelled as an articulated bladewith hinge offset ē. A spring is included
at the root since a centering spring may be employed about the lag hinge.

A coordinate system is chosen that is fixed in space in order to allow the sim-
plest mathematical treatment of the asymmetric stiffness and inertia characteristics
associated with pitch and roll motion of the fuselage on the landing gear. If a rotat-
ing coordinate system is employed, then the differential equations describing the
dynamics would involve periodic coefficients with attendant problems in unravel-
ling the solution. In fact, it is this difference in the form of the equations of motion
in fixed and rotating coordinate systems which gives rise to difficulties in analyzing
the two-bladed rotor system with asymmetric pylon characteristics. The two-bladed
rotor lacks polar symmetry; and, therefore, a fixed coordinate system approach will
give rise to periodic coefficients from the rotor, while a rotating coordinate system
analysis will give rise to periodic coefficients arising from the asymmetric pylon
characteristics. Thus, periodic coefficients cannot be eliminated in the two-bladed
case unless the pylon frequencies are equal. For a rotor with three or more blades, the
use of a fixed coordinate system allows treatment of asymmetric pylon characteristics
without encountering the problem of solving equations with periodic coefficients.

First we consider the equations of motion describing blade lag dynamics in a
fixed coordinate system to illustrate the influence of coordinate system motion. All
of our previous examples have used a coordinate system rotating with the blade.
Simplification of this problemcan be effected by defining newcoordinates to describe
the rotor lag motion. These new coordinates are linear combination of the lag motion
of the individual blades. They usually are referred to as multi-blade coordinates [45]
and are defined for a four-bladed rotor as

γ0 = ζ1 + ζ2 + ζ3 + ζ4

4

γ1 = ζ1 − ζ3

2

γ2 = ζ2 − ζ4

2

γ3 = (ζ1 + ζ3) − (ζ2 + ζ4)

4

(3.1)
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Fig. 16 Mechanical degrees of freedom for ground resonance analysis



Aeroelastic Response of Rotorcraft 375

The new coordinates, γ1 and γ2, describe the motion of the center of mass of the rotor
system with respect to the axis of rotation and thus are responsible for coupling of
rotor motion to pylon motion, while γ0 and γ3 describe motions of the rotor in which
the center of mass of the rotor system remains on the axis of rotation. If γ1 = γ2 = 0,
thenmotions corresponding to γ0 and γ3 are such that opposite bladesmove as though
rigidly attached together with a vertical pin at the root. These motion variables, γ0
and γ3, are uncoupled for the dynamic problem of interest; and, consequently, the
system is reduced to four degrees-of-freedom by introducing these coordinates as
will be shown.

Now the equations of motion for γ1 and γ2 are developed in a moving coordinate
system and then transformed to a stationary coordinate system. With the hub fixed,
the lag motion of each blade without aerodynamics is, as shown earlier,

ζ̈i + �2(ω̄2
ζ )ζi = 0 i = (1, 2, 3, 4) (3.2)

The natural frequency, ω̄2
ζ arises from amechanical spring on the hinge and the offset

or centrifugal stiffening effect and is given by Eq. (1.35). The equations of motion
for γ1 and γ2 are from (3.1) and (3.2)

γ̈1 + �2(ω̄2
ζ )γ1 = 0

γ̈2 + �2(ω̄2
ζ )γ2 = 0

(3.3)

These equations may be thought of as describing the motion of the center of mass
of the rotor system in two directions with respect to the coordinate system rotating
at the rotor angular velocity �. Resolving to a fixed coordinate system as shown in
Fig. 17,

γ1 = �1 cos�t + �2 sin�t

γ2 = −�1 sin�t + �2 cos�t
(3.4)

Differentiating and substitution (3.4) into (3.3) we obtain the equations

Fig. 17 Axis system and
coordinates for ground
resonance analysis
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[�̈1 + 2��̇2 + {�2(ω̄2
ζ − 1)}�1] cos�t

+ [�̈2 − 2��̇1 + {�2(ω̄2
ζ − 1)}�2] sin�t = 0

[�̈1 + 2��̇2 + {�2(ω̄2
ζ − 1)}�1] sin�t

− [�̈2 − 2��̇1 + {�2(ω̄2
ζ − 1)}�2] cos�t = 0 (3.5)

The second equation appears similar to the first with the coefficients of the sine and
cosine terms reversed. Although the variables have been transformed to a fixed sys-
tem, the equations of motion are still referred to a moving frame which accounts for
the presence of the cosine and sine terms. To complete the transformation, multi-
ply the first equation by cos(t) and add to the second equation multiplied by sin(t)
to obtain one fixed-axis equation. Multiplying the first equation by sin(t) and sub-
tracting from the second multiplied by cos(t) yields the second equation. The two
equations of motion are

�̈1 + 2��̇2 + {�2(ω̄2
ζ − 1)}�1 = 0

�̈2 − 2��̇1 + {�2(ω̄2
ζ − 1)}�2 = 0

(3.6)

These are the equations of motion for the new lag coordinates (or CMmotion) in the
nonrotating coordinate system. Note that the variables are coupled due to the effects
of rotation. The characteristic equation for the dynamics of the lag motion is now
obtained from Eq. (3.6) as

{s2 + �2(ω̄2
ζ − 1)}2 + 4�2s2 = 0 (3.7)

The roots of this characteristic equation are

s1,2. = ±i�(ω̄ζ + 1)

s3,4. = ±i�(ω̄ζ − 1)
(3.8)

Thus, the coordinate transformation has resulted in natural frequencies in the fixed
coordinate system which are equal to the natural frequencies in the rotating system
given by Eq. (3.3) (ω̄ζ�) plus or minus the rotational speed (the angular velocity of
the coordinate system). This is a basic characteristic of natural frequencies when
calculated in rotating and fixed coordinate systems which must be kept in mind
in analyzing rotating systems. At this point we consider one other aspect of the
dynamics of this type of system which is helpful in visualizing the motion. Consider
the eigenvectors describing the amplitude and phase of the two variables in transient
motion. These ratios are obtained from the equations of motion and the characteristic
roots. ∣∣∣∣�1

�2

∣∣∣∣ = −2�s

s2 + �2(ω̄2
ζ − 1)

|s1,2,3,4

Therefore
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∣∣∣∣�1

�2

∣∣∣∣ = ±i |s1,2∣∣∣∣�1

�2

∣∣∣∣ = ∓i |s3,4
(3.9)

The upper sign corresponds to the upper sign in the roots (3.8).
In either of these characteristic motions, �1 and �2 are of equal amplitude and

�1 either leads or lags �2 by 90◦. Thus the transient motion of the rotor system
center of mass is a circular motion. This symmetry which occurs in many rotating
systems permits an elegant formulation using complex coordinates [28, 44]. The
two variables �1 and �2 can be combined into one single complex variable, as will
be discussed below. Further, since the transient motion is circular, these modes are
referred to as whirling modes; and the whirling may be described as either advancing
or regressing depending upon whether the mode of motion corresponds to transient
motion in the direction of rotor rotation or against the direction of rotation. Consider
the root

s1 = +i�(ω̄ζ + 1)

corresponding to a counter clockwise rotation of the variables �1 and �2 in Fig. 17.
From the eigenvectors (3.9), we see that �1 leads �2 by 90◦. Thus �1 reaches a maxi-
mum and then �2 reaches a maximum and so the oscillation proceeds in the direction
of rotation and is an advancing mode. Similarly, s2 = −�(ω̄ζ + 1), corresponds to
the two vectors rotating in a clockwise direction, but now�1 lags�2 and so this is also
an advancing mode. Hence, the mode with frequency (ω̄ζ)� is an advancing mode.
Following a similar argument for the mode (ω̄ζ − 1)� we find that it is a regressing
mode, when ω̄ζ is greater than 1. One must be careful of this terminology, since in
a rotating coordinate system modes are also described as advancing and regressing
modes, but because of the change in coordinate system angular velocity, modes may
be regressing in the rotating system and advancing in the stationary system. From
a geometric point of view, there are two whirling modes corresponding to the four
characteristic roots. Use of complex coordinates helps to visualize the direction of
rotation of the modes simply [28].

Thus, the transient motion of the center of mass of the rotor system may be
described in terms of two circular or whirling modes. When viewed in the fixed
frame of reference, one is an advancing whirl (in the same direction as the rotation
of the rotor) and one is a regressing whirl at low rotor angular velocity (ωζ > �)
and a slow advancing whirl at larger angular velocities (ωζ < �). Recall that the
frequencies as seen in the rotating frame are simply equal to ±ωζ and one is an
advancing mode while the other is always a regressing mode.

Now the effect of the pylon motion is added. It is assumed that the pylon is
sufficiently long and the angular deflections are sufficiently small such that the hub
motion lies in a horizontal plane. The equations of motion are developed using a
Newtonian approach. First, a single blade is considered; and then the effects of the
other blades are added. It is most convenient to derive the equations with the pylon
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Fig. 18 Free body diagram for ground resonance analysis

or fuselage motion referred to a fixed axis system and the lag angle referred to a
moving axis system and then to transform the lag angle to a fixed coordinate system.
This will illustrate the manner in which periodic coefficients enter the equations. The
equations of motion for the blade ad fuselage system may be written from the free
body diagram shown in Fig. 18, as

H̄B + �̄B × H̄B = P̄CM × R̄

MBāCM = −R̄

˙̄HF = H̄ × R̄
(3.10)

where R̄ is the reaction force at the hinge, H̄B is the moment of momentum of the
blade about its center of mass and H̄F is the moment of momentum of the fuselage
about its center of mass which is assumed fixed in space. �̄B is the angular velocity
of the blade, P̄CM is the distance from the hinge to the blade center of mass and H̄
is the height of the rotor hub above the CM . The acceleration of the blade enter of
mass in terms of the acceleration at the hinge point is

āCM = āE + �̄B × (�̄B × P̄CM) + �̇B × P̄CM (3.11)

and the acceleration of the hinge in terms of the acceleration of the hub, ā0, and the
rotational velocity of the hub is

āE = ā0 + �̄ × (�̄ × ē) + ˙̄� × ē (3.12)

The angular velocity of the hub is assumed constant. Three sets of unit vectors are
defined. The subscript B refers to the set of unit vectors fixed to the blade, the subscript
H to the set fixed in the hub and the subscript F refers to a set fixed in space. The lag
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angle is assumed to be small, so that the relationships among these unit vectors for
blade number 1 (Fig. 17) are

⎧⎨
⎩

ī F
j̄F
k̄F

⎫⎬
⎭ =
⎡
⎣ cosψ1 − sinψ1 0
sinψ1 cosψ1 0
0 0 1

⎤
⎦
⎧⎨
⎩

īH
j̄H
k̄H

⎫⎬
⎭ (3.13)

⎧⎨
⎩

īH
j̄H
k̄H

⎫⎬
⎭ =
⎡
⎣ 1 −ζ1 0

−ζ1 1 0
0 0 1

⎤
⎦
⎧⎨
⎩

ī B
j̄B
k̄B

⎫⎬
⎭ (3.14)

The various quantities involved in the equations of motion are

H̄B = ICM(� + ζ̇1)k̄B + ICM(θ cosψ1 + θ̇ sinψ1)

H̄F = Ix θ̇ī F + Iyφ̇ j̄F

�̄ = �k̄H + θ̇i F + φ̇ j F

�̄B = (� + ζ̇1)k̄B + θ̇i F + φ̇ j F

H̄ = hk̄F

ē = eīH

P̄CM = rCM īB

ā0 = ẍH īF + ÿH j̄F = hφ̈ī F − hθ̈ j̄F

(3.15)

Substituting Eqs. (3.11)–(3.15) into the equations of motion (3.10) for the blade and
body motion, noting that R̄ = −MBāCM , we obtain one blade equation of motion
and two body equations of motion

ζ̈1 + erCMMB

IB
�2ζ1 = MBrCMh

IB
(θ̈ cosψ1 + φ̈ sinψ1)

(Iy + MBh
2)φ̈ = MBh[e�2 + rCM(� + ζ̇1)

2] cosψ

+ MBrCMh(ζ̈1 − �2ζ1) sinψ1

(Ix + MBh
2)θ̈ = − MBh[e�2 + rCM(� + ζ̇1)

2] sinψ1

+ MBrCMh(ζ̈1 − �2ζ1) cosψ1

(3.16)

The subscript 1 has been added to note that only one blade has been considered.
The equations of motion for the other three blades are identical to blade one with

the azimuth angle suitably shifted, i.e., the equation of motion of blade 2 in terms of
the azimuth angle of blade 1 is

ζ̈2 + erCMMB

IB
�2ζ2 = MBrCMh

IB

(
θ̈ cos
(
ψ1 + π

2

)
+ φ̈ sin

(
ψ1 + π

2

))
(3.17)
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The equations ofmotion for the new coordinates, γ0, γ1, etc., are formulated by linear
combinations of the blade equations and are

γ̈0 + erCMMB

IB
�2γ0 = 0

γ̈1 + erCMMB

IB
�2γ1 = MBrCMh

IB
(θ̈ cosψ1 + φ̈ sinψ1)

γ̈2 + erCMMB

IB
�2γ2 = MBrCMh

IB
(−θ̈ sinψ1 + φ̈ cosψ1)

γ̈3 + erCMMB

IB
�2γ3 = 0

(3.18)

We thus see as discussed earlier that γ0 and γ3 are not coupled to the hub motion
and thus do not need to be considered further. Note that the equations of motion for
γ1 and γ2 have periodic coefficients since ψ1 = �t . The influence of the other three
blades must be added to the fuselage equations. The first equation becomes

(Iy + 4MBh
2)φ̈ =

υ∑
i=1

MBh(e�2 + rCM(� + ζ̇i )
2) cos

(
ψ1 + (i − 1)π

2

)

+ MbrCMh(ζ̈i − �2ζi ) sin

(
ψ1 + (i − 1)π

2

) (3.19)

and a similar form is obtained for the other fuselage equation. Using trigonometric
identities and the definitions of the multi-blade coordinates (3.1) the two fuselage
equations become, retaining only linear terms,

(Iy + 4MBh
2)φ̈ =2MBrCMh{(γ̈1 − 2�γ̇2 − �2γ1) sinψ1

+ (γ̈2 + 2�γ̇1 − �2γ2) cosψ1}
(Iy + 4MBh

2)θ̈ =2MBrCMh{(γ̈1 − 2�γ̇2 − �2γ1) cosψ1

− (γ̈2 + 2�γ1 − �2γ2) sinψ1}

(3.20)

Again we see that the coordinates γ0 and γ3 do not appear.
These equations involve periodic coefficients. The periodic coefficients are a con-

sequence of defining the lag motion in a rotating system and the fuselage motion
in a fixed system as noted earlier. The periodic coefficients can eliminated by trans-
forming the lag motion to fixed coordinates as described above. This transformation
involves the relationships given by Eq. (3.4). A centering spring about the lag hinge
is incorporated in the lag equations such that the lag frequency is given by

ω2
ζ = Kζ

IB
+ erCMMB

IB
�2
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This is equivalent to Eq. (1.35) without the assumption of a uniform blade mass
distribution. Employing Eq. (3.4) the blade Eq. (3.18) become

�̈1 + (ω2
ζ − �2)�1 + 2��̇2 = MBrCMh

IB
θ̈

−2��̇1 + �̈2 + (ω2
ζ − �2)�2 = MBrCMh

IB
φ̈

(3.21)

The fuselage equations, including the effects of the supporting springs kφ and kθ are

(Iy + 4Mbh
2)φ̈ + kφφ = 2MBrCMh�̈2

(Ix + 4Mbh
2)θ̈ + kθθ = 2MBrCMh�̈1

(3.22)

Equation (3.22) can be placed in the form given in [44] by converting the pylon
rotations θ and φ to linear hub translations x and y. From Fig. 17, dropping the
subscripts F on x and y,

x = hφ, x̄ = x

R

y = −hθ, ȳ = y

R

A uniform mass blade is assumed such that

IB = MB
R2

3

Define effective fuselage mass and spring constants by

MFx = Iy
h2

kx = kφ

h2

MFy = Ix
h2

ky = kθ

h2

These definitions eliminate the parameter h from Eqs. (3.21) and (3.22). Equa-
tions (3.21) and (3.22) become

�̈1 + (ω2
ζ − �2)�1 + 2��̇2 = −3

2
ÿ

−2��̇1 + �̈2 + (ω2
ζ − �2)�2 = 3

2
ẍ

(MFx + 4MB)ẍ + kx x̄ =MB�̈2

(MFy + 4MB)ÿ + ky ȳ = − MB�̈1

(3.23)
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Note that the periodic coefficients will not be eliminated if we attempt to transform
the body motion into rotating coordinates except in the special case where fuselage
inertias and springs are identical about both axes. The procedure followed above for
four blades will produce identical results for three or more blades. A generalized
description of this procedure may be found in [6].

If the rotor has two blades, the only way to eliminate the periodic coefficients is
to convert the pylon motion to rotating coordinates. Only in the special case of equal
inertia and stiffness will the periodic coefficients be eliminated [44]. In general, if
there is polar symmetry in one frame of reference and a lack of symmetry in the
other frame, expressing the equation of motion in this latter frame will eliminate the
necessity of dealing with periodic coefficients. With a two bladed rotor, the rotor
lacks polar symmetry. If the support system also lacks polar symmetry, the periodic
coefficients cannot be eliminated, and Floquet theory must be employed to analyze
the stability of the system. The simplest case (equal support stiffness) of the two-
bladed rotor is analyzed in the rotating system and the three or more bladed rotor in
the fixed frame.Recall from the previous discussion that thiswill give quite a different
picture of the variation of system natural frequencies with rpm. For simplicity, only
the multibladed rotor with pylon symmetry is discussed which may be treated in
either reference frame. The pylon characteristics are assumed to be

MFx = MFy = MF

kx = ky = kF

The important parameter governing the coupling between the blade motion and the
fuselage motion is the ratio of the total blade mass to the total system mass defined
by μ,

μ = 4MB

MF + 4MB

It is convenient to nondimensionalize the time by the support frequency with the
blade mass concentrated at the hub

ω2
F = kF

MF + 4MB

since rotor angular velocity is considered to be the variable parameter. The frequen-
cies nondimensionalized in this fashion are denoted by ω̂ζ and �̂. Introducing these
definitions, Eq. (3.23) becomes,
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�̈1 + (ω̂2
F − �̂2)�1 + 2�̂�̇2 + 3

2
ÿ = 0

− 2�̂�̇1 + �̈2(ω̂
2
F − �̂2)�21 − 3

2
ẍ = 0

μ

4
�̈1 + ¨̄y + ȳ = 0

μ

4
�̈2 + ¯̈x + x̄ = 0

(3.24)

The stability of the system defined by Eq. (3.24) is examined as a function of the
various physical parameters of the problem. First, consider the limiting case in which
the blade mass is zero (μ = 0). This eliminates the coupling between the fuselage
motion and the blade motion. The natural frequencies of the system are composed
of the uncoupled blade dynamics and the fuselage dynamics. The roots of the char-
acteristic equation are therefore

±i(�̂ + ω̂ζ), ±i(�̂ − ω̂ζ), ±i, ±i

The latter two pairs correspond to the fuselage motion and the former to the blade
motion. The modes of motion are whirling or circular modes owing to polar sym-
metry. Figure 19 shows the whirling modes, i.e., only the four frequencies with
signs that correspond to the direction of whirling, positive being an advancing mode.
The frequencies are shown as a function of rotor angular velocity. In the numerical
example shown, a centering spring (Kζ ) is included such that ω̂ = 0.3 when the
rotor is not rotating (�̂ = 0) and the hinge offset ē = 0.05. (�̂ − ω̂ζ ) is a regressing
mode when negative, (�̂ + ω̂ζ ) is an advancing mode. The fuselage modes (±i) are
advancing and regressing modes respectively. These four whirling modes constitute
the dynamics of the system in the limiting case of no hub mass. For comparison
purposes, if the system is analyzed in the rotating frame, the result will be equivalent
to subtracting the angular velocity �̂ from the frequencies shown in Fig. 19 resulting
in the diagram shown in Fig. 20. Thus, the appearance of the figure depends upon
the coordinate system. For two bladed rotors, one is likely to see a graph similar to
Fig. 20; while, for multibladed rotor analysis, one usually sees the fixed coordinate
plot shown in Fig. 19. It may be noted that at two rotor angular velocities (�̂ = 0.65
and �̂ = 1.51) the frequency of one of the blade modes is equal to a pylon mode. It
would be expected that the coupling effects due to blade mass are most significant
in these regions.

Next the influence of the mass ratio μ on the dynamics of the system is examined.
It would be most convenient if root locus techniques could be used. This is not
possible directly with Eq. (3.24) since μ does not appear linearly in the characteristic
equation. Through introduction of complex coordinates, root locus techniques can
be employed [28]. Define

z̄ = x̄ + i ȳ

δ = �2 − i�1
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Fig. 19 Uncoupled whirling
modes (μ = 0). Fixed
coordinate system

This coordinate change reduces the four Eq. (3.24) to two equations owing to the
symmetry properties of these equations, i.e.,

δ̈ − 2i�̂δ̇ + (ω̂2
ζ − �̂2)δ − 3

2
z̈ = 0 (3.25)

−μ

4
δ̈ + z̈ + z̄ = 0

We now have a fourth order system in place of an eighth order system (Eq. (3.24)),
and the roots of this system are the whirling modes only, i.e.,

i(�̂ + ω̂ζ)

i(�̂ − ω̂ζ)

±i

The characteristic equation of this system can now be written as

(s2 + 1)(s2 − 2i�̂s + (ω̂2
ζ − �̂2)) − 3

8
μs4 = 0
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Fig. 20 Uncoupled whirling modes (μ = 0). Rotating coordinate system

Now μ appears as a linear parameter and the characteristic equation can be written
as

3
8μs

4

(s2 + 1)(s2 − 2i�̂s + (ω̂2
ζ − �̂2))

= 1 (3.26)

Equation (3.26) is in root locus form with μ as the variable parameter and a zero
degree locus is indicated. The usual root locus rules apply to equations with complex
coefficients as well as to those with real coefficients. Figure 21 shows root loci for
increasing μ for two values of �̂ (0.2 and 1.3) and indicates that the influence of
μ on the dynamics is quite different depending upon the sign of (�̂ − ω̂ζ )1. When
(�̂ − ω̂) is negative, it can be seen from Fig. 21 that the coupling effect of increasing
μ is to separate the system frequencies. However, when (�̂ − ω̂ζ ) is positive, the
two intermediate frequencies come together; and, if μ is sufficiently large, instability
occurs. The most critical case occurs at intersection B of Fig. 19 (i.e., when the

1 Recall ω̂ζ = 0.3
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Fig. 21 Root locus for increasing blade mass ratio (μ) for two operating conditions

regressing mode frequency (�̂ − ω̂ζ ) = 1 such that the two intermediate frequencies
are equal). At this operating condition, any value of μ causes instability. Intersection
A is not critical because of the large separation of the two intermediate frequencies
(�̂ + ω̂ζ and �̂ − ω̂ζ ). In the typical case, for an articulated rotor ω̂ζ is the order 1.0
and �̂ at the operating condition (�̂OP ) is the order of 3.0, so that intersection B
occurs below operating rpm. That is

�̂CR = 1 + ω̂ζ ≡ 2

Thus, to completely eliminate the possibility of this instability which is called ground
resonance, one must have �̂CR > ω̂OP = 3, and a very large offset is required since
ω̂ζ > 2 and therefore, ω̄ζ = 0.67 which corresponds to a hinge offset of 0.3 (1.35)
without a centering spring. Note that this ratio �̂OP is largely determined by con-
siderations other than rotor stability, such as the rotor operating rpm and the shock
absorbing character of the landing gear. Since this large hinge offset is not practical,
a centering spring may be employed to increase ω̄ζ ; however this will increase the
root bending moment, the reason for which the lag hinge was installed.
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Fig. 22 Extent of unstable
region for various mass ratios

The unstable region extends below and above this intersection to an extent depend-
ing upon the mass ratio as well as the other geometric parameters. Various criteria
can be found in the literature as to the size of the unstable region as a function of
mass ratio. A typical graph of the frequencies as well as the extent of the unstable
region as a function of μ is shown in Fig. 22 taken from [10]. This result applies to
the case where the pylon has only one degree-of-freedom in contrast to the example
here where the pylon has two degrees-of-freedom.

Next we examine the influence of mechanical damping on the stability of the
system. Damping in the rotating system (lag damping ) and in the nonrotating system
(pylon damping ) are considered separately. Consider first the influence of damping
on the pylon. This leads to termsCF φ̇ andCF θ̇ in Eq. (3.22). Adding this in complex
form to the second of Eq. (3.25) and expressing the characteristic equation in root
locus form yields

ĈFs[s2 − 2i�̂s + (ω̂2
ζ − �̂2)]

(s2 + 1)(s2 − 2i�̂s + (ω̂2
ζ − �̂2)) − 3

8μs
4

= −1 (3.27)

where

ĈF = CFωF

k f h2

This root locus has two zeros at the uncoupled lag-mode frequencies. Figure 23
shows the influence of increasing damping for two cases. In the first, μ is small so
that the basic system is neutrally stable. Adding only fixed axis damping destabilizes
the system. In the second case, where μ is large enough such that the basic system
is unstable, no amount of damping will stabilize the system.

Now consider adding damping to the lagmotion of the blades. Itmust be noted that
this dampingwill be in the rotating coordinate system (about the blade hinge); and so,
to directly add damping terms to the equations ofmotion, the rotating frame equations
must be used. The damping then appears as CR γ̇1 and CR γ̇2. If the transformations
are followed, this will ultimately result (in the rotating frame with complex notation)
in the damping appearing in the first of Eq. (3.25) as
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Fig. 23 Root locus for increasing pylon (fixed axis) damping on ground resonance stability

ĈR(δ̇ − i�̂δ)

The i�̂ term appears because rotating coordinate system damping is expressed with
respect to a fixed frame. Adding this damping to the first of the two equations and
expressing the characteristic equation in root locus form as

ĈR(s − i�̂)(s2 + 1)

(s2 + 1)(s2 − 2i�̂s + (ω̂2
ζ − �̂2)) − 3

8μs
4

= −1 (3.28)

the root locus shown in Fig. 24 is obtained. Again it is interesting to note that adding
damping only in the rotating frame results in destabilizing one of the fuselage modes
when the system is initially neutrally stable (small μ). For large μ the situation is
similar to the fixed axis damping case. These rather surprising effects of damping
in a rotating system indicate that damping must be handled with considerable care.
Owing to the order of the system, it is rather difficult to obtain physical insight
into the source of these effects. A combination of damping in the rotating frame
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Fig. 24 Root locus for increasing lag (rotating axis) damping on ground resonance stability

(blades) and stationary frame (pylon) is required to stabilize the system; although,
as can be seen from the root locus sketches, there will always be one zero near to the
fuselage blade lag mode making it difficult to provide a large amount of damping
in one of the modes. There would, of course, generally be damping in the pylons.
Particularly on articulated rotors, blade lag dampers are added since, as noted, this
region of instability must be traversed in bringing the rotor speed to operating rpm.
Reference [44] presents boundaries showing the damping required to eliminate the
instability region for articulated rotor helicopters.

The treatment of more general problems, including the blade flapping degrees of
freedom and discussion of its importance in the hingeless rotor case, may be found
in [8–10]. The two-bladed rotor is treated in [44].

Flapping motion of articulated rotors with small hinge offset does not produce
appreciable hub moments; and, consequently, there is only weak coupling between
the flapping motion and the pylon motion. The hingeless rotor, however, produces
large hub moments; and, consequently, the flapping motion coupled into the pylon
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Fig. 25 Influence of flap
frequency on ground
resonance stability
boundaries [10]

Fig. 26 Frequency and
damping of rotor-body
system. Flap, lag and pylon
pitch degrees of freedom. No
aerodynamics [10]

and lag dynamics [10]. Figure 25 shows the influence of the flapping frequency on
the stability boundaries for μ = 0.1.

There are now three frequencies involved in the problem: the pylon frequency,ωF ,
the lag frequency, �̂ − ω̂ζ and the flap frequency p (p - 1 in the stationary frame). In
addition to the destructive instabilitywhich occurswhen the coupled pylon frequency
is equal to the lag frequency (�̂ − ω̂ζ ), a mild instability occurs when the coupled
flap frequency is equal to the lag frequency (�̂ − ω̂ζ ) as shown by Fig. 26. Note that
pylon and flap frequencies are significantly changed by the coupling. The ground
resonance problem for hingeless rotors thus becomes quite complex and difficult to
generalize. The reader is referred to [10] for further details. It may be noted that
a more detailed model of the rotor blades must be employed for hingeless rotors.
Since both flap and lag degrees-of-freedom are involved, it is important to model the
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coupling between these motions, which occurs as a result of hub and blade geometry.
Aerodynamic forces and structural damping are also significant.

Air resonance refers to the form this dynamic problem takes with the landing
gear restraint absent, that is, with the vehicle in the air. Coupling of flapping motion,
bodymotion and lagmotion is involved. Fuselage inertia and damping characteristics
can have a significant impact on the stability. The air resonance problem is clearly
asymmetrical; and, characteristically, the roll axis is more critical owing to its low
inertia and small aerodynamic damping [8]. Furthermore, air resonance generally
involves the unsteady flow field [46].

Since the primary source of damping in this physical system arises from flap
bending, it is possible that the nature of the flight control system can have an impact
on air resonance stability as shown in [47]. Essentially an attitude feedback from the
body to cyclic pitch tends to maintain the rotor in a horizontal plane thus effectively
removing the aerodynamic damping from the flapping/body dynamics. There are also
other indications that the flight control system feedbacks have an impact on rotor
system stability [48]; however, this problem does not appear to be well understood.

Another problem associated with propeller and prop/rotor driven aircraft which
involves a blade motion-support coupling is whirl flutter which has been experienced
on conventional aircraft [49] as well as on V/STOL aircraft [6]. This instability in the
case of the conventional aircraft can be explained by considering only the wing as
flexible (i.e., the propeller blades may be assumed to be rigid). For the tilt prop/rotor
aircraft, where blade flexibility is important, the primary source of the instability is
the same as in the rigid propeller case. It is a result of the aerodynamics characteristics
of propellers and prop rotors at high inflows typical of cruising flight. It can be shown
that the source of the whirl flutter instability is primarily associated with the fact that
an angle-of-attack change on a propeller produces a yawing moment, and a sideslip
angle produces a pitching moment. Further, the magnitude of this moment change
grows with the square of the tangent of the inflow angle [6] and results in a rapid
onset of the instability.

For the prop/rotor, a complex model with a large number of degrees-of-freedom
is required to predict the dynamics of the system accurately [6]. The whirl flutter
instability can occur on articulated rotors as well as hingeless rotors although for
somewhat different physical reasons [50]. Here inplane force dependence on angular
rate produces unstable damping moments acting on the support. The hingeless rotor
which produces significant hub moments is similar to the rigid propeller. Young [51]
has shown by a simplified analysis that, under certain circumstances, the occurrence
of this instability can be minimized by a suitable selection of the flapping frequency.
Reference [6] contains an excellent discussion of these various problem areas.

A typical predicted variation of damping with flight speed for a tilt-prop-rotor
aircraft is shown in Fig. 27. As mentioned earlier, it is important in modelling this
dynamic system to insure that the structural details of the hub, blade and pitch control
system are precisely modelled. Reference [52] indicates the impact that relatively
small modelling details can have on the flutter speed, as well as describing in detail
the modelling requirements for prop-rotor whirl flutter.
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Fig. 27 Damping of wing bending modes as a function of airspeed. Tilt prop/rotor aircraft with
gimballed rotor [6]

Aeroelastic analysis of two-bladed rotors requires special considerations since the
two blades are connected together. The reader is referred to [53, 54] for the analysis
of two-bladed rotors.

4 Unsteady Aerodynamics

Thus far in this chapter,wehave utilized only the simplest quasi-steady,blade-element
aerodynamics. However, it is well-known that the unsteady dynamics of the rotor
flow field can have a profound effect on rotorcraft. This effect is routinely included in
rotor vibration and performance codes through vortex-lattice wakingmodelling [55].
However, in rotor aeroelastic computations, which involve eigenvalue computations,
the vortex wake is usually frozen in time. When not frozen in time, the eigenvalue
computation can take hours of computing time [56]. Therefore, more approximate
methods have been developed to include the important effects of wake dynamics in
rotorcraft aeroelasticity. Some of the more useful ones are explained below.
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4.1 Dynamic Inflow

Amer [57] analyzed the problem of rotor damping in roll and correlated the predicted
data with flight test measurements in hover and forward flight. Amer observes that
a discrepancy in damping is “due primarily to changes in induced velocity which
occur during rolling (or pitching) because of changes in the distribution of thrust
around the rotor disk”. This observation more or less forms the stimulus for most of
the subsequent dynamic inflow work. It fell to Sissingh [58], however, to explain this
discrepancy by quantifying Amer’s observation with the inclusion of variable inflow
or, more precisely, of changes in induced velocities caused by transient changes in
rotor disk loading. Starting from Glauert’s classical momentum theory postulate, he
gives the formula

k(δλ/λ) = δCT /CT (4.1)

where k = 2 in hovering and k = 1 in forward flight with V > 40 mph (μ � λ). For
transitional flight conditions when induced flow λ cannot be neglected in comparison
to μ, Sissingh suggests an “appropriate” value for k(1 < k < 2) on an ad hoc basis.

It is easily seen that Eq. (4.1) follows from the classical results

λ = −√CT /2, μ = 0 (4.2)

λ = −CT /2μ, μ � λ (4.3)

Sissingh was probably the first to initiate a systematic exposition that established a
relation between instantaneous perturbations (or transients) in thrust δT , and per-
turbations in induced flow, δλ. The induced flow λ is an involved function of both
radius, r , and spatial azimuth position, ψ. To arrive at a tractable model, he uses first
harmonic inflow and lift distributions, without radial variation,

λ = λo + λs sinψ + λc cosψ (4.4)

Here, λ0 is the uniform inflow, while λs and λc are side-to-side and fore-to-aft inflow
variations. His analysis convincingly shows that the inclusion of induced velocity
perturbations, as typified in Eq. (4.4), improves correlation of predicted damping
valueswith those of the flight test data ofAmer. (Sissingh’s distribution has been used
by several other investigators [59–61].) As seen from this equation, the distribution
has two disadvantages. first, it neglects the effects of radial variation completely.
Second, it exhibits a discontinuity at r = 0. As a means of improving the inflow
distribution to account for radial variation to some degree and to avoid discontinuity,
Peters [62] approximates dynamic inflowperturbations in inducedflowby a truncated
fourier series with a prescribed radial distribution. The dynamic flow ν is perturbed
with respect to the steady inflow λ such that the total inflow is

− λ = λ̄ + ν (4.5)
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and dynamic inflow is

ν = νo + νs
r

R
sinψ + νc

r

R
cosψ (4.6)

Similar to the development of [58], the inflow takes the form

⎧⎨
⎩

vo
vs
vc

⎫⎬
⎭ = 1

V

⎡
⎣1/2 0 0

0 2 0
0 0 2

⎤
⎦
⎧⎨
⎩

δCT

−δCL

−δCM

⎫⎬
⎭ (4.7)

where δCT , δCL , and δCM are perturbations in thrust, roll-moment, and pitch-
moment coefficients andwhere themass-flowparameter,V , is obtained frommomen-
tum theory as

V = μ2 + λ̄(λ̄ + ν̄)√
μ2 + λ̄2

(4.8)

where ν̄ is the part of λ̄ due to thrust (the remainder is due to climb) and 4μ is the
ratio of forward speed to tip speed.

The preceding development from Eq. (4.7) implies that perturbations in disk
loading (δCT , δCL , δCM ) create instantaneous perturbations in inflow (λ0, λs , λc).
In other words, the feedback between changes in disk loading and inflow takes place
without time lag. However, in transient downwash dynamics, a large mass of air
is involved; and it is natural to expect that mass effects will have an influence on
the complete build up of inflow perturbations due to disk-loading perturbations and
vice versa. That is, the feedback will have some form of time delay due to mass
effects. This aspect of the problem was investigated by Carpenter and Fridovich [63]
during the early 1950s. The inclusion of the mass effects forms an integral part of the
development of unsteady inflow models as an extension of the quasi-steady inflow
treated in the preceding paragraph. Substantial data-correlation experience with the
quasi-steady momentummodel clearly demonstrates that unsteadywake effects (not
quasi-steady alone) play a dominant role in hover, in transitional flight, and at low
collective pitch [61, 62]. We will bypass the mathematical details [64] and include
the rate terms, [M], in the quasi-steady equation:

1

�
[M]
⎧⎨
⎩

v̇o
v̇s
v̇c

⎫⎬
⎭+ [L]−1

⎡
⎣ vo

vs
vc

⎤
⎦ =
⎧⎨
⎩

δCT

−δCL

−δCM

⎫⎬
⎭ (4.9)

where [L] is the matrix of influence coefficients in Eq. (4.7); or, symbolically

1

�
[M]{U̇ } + [L]−1{U } = {δF} (4.10)

When premultiplied by [L], Eq. (4.10) takes the form
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[τ ]{U̇ } + {U } = [L]{δF} (4.11)

where [τ ] = [L][M]/�.
In Eq. (4.11), [r ] and [L] have the physical significance of time constants and

gains, respectively. The elements of [τ ] can also be treated as filter constants. This
means, unsteady inflow can be simulated by passing the quasi-steady inflow through
a low-pass filter.

We now turn to the problem of evaluating these rate (or apparent mass) terms.
This problem has been the subject matter of extensive studies. In [63], apparent mass
terms are identified in terms of reaction forces (or moments) of an impermeable disk
which undergoes instantaneously acceleration (or rotation) in still air. The problem of
finding reactions on an impermeable disk basically leads to the solution of a potential
flow problem in terms of elliptic integrals. The values for the apparent mass of air
mA and apparent inertia of air IA are [64]:

mA = 8

3
ρR3 and IA = 16

45
ρR5 (4.12)

In other words, these values represent 64 per cent of the mass and 57 percent of the
rotary inertia of a sphere of air or radius R; and we have a diagonal [M] matrix with

m11 = mAρπR3 = 8/(3π) (4.13)

m22 = m33 = IAρπR5 = 16/(45π) (4.14)

which give time constants of 0.4244/V for δCT and 0.2264/V for δCL or δCM . Given
the complexity of the actual apparent mass terms of a lifting rotor, it would seem that
the methodology adopted to arrive at the time constants is at best a crude approx-
imation. Surprisingly, tests of Hohenemser et al. [59], and more recent analytical
studies of Pitt and Peters [64] arrive at time constants or mass terms which are within
a few percent of those given by Eq. (4.12). From the symmetry of the flow problem
in hover, it is clearly seen that M is a diagonal matrix with m22 = m33. Therefore,
we have

[M] =
⎡
⎣

8
3π 0 0
0 16

45π 0
0 0 16

45π

⎤
⎦ (4.15)

Equation (4.9) with [M] and [L]−1 from Eqs. (4.15) and (4.7) forms the theory
of dynamic inflow in hover. Numerous correlations with experimental data have
shown the model accurate and crucial in rotor aeroelastic modelling. This includes
frequency response [59, 62], control derivatives [62], and air and ground resonance
[65]. Figures 28 and 29, taken from [65], show measured and computed frequencies
of a ground-resonance model versus rotor speed. Figure 28 has no dynamic inflow
modelling, and Fig. 29 includesmodelling of the type of Eq. (4.9).We are particularly
interested in the range 300 < � < 1000 in which ground resonance can occur. The
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Fig. 28 Influence of unsteady aerodynamics on hingeless rotor ground resonance. Comparison of
measured modal frequencies, and calculations without dynamic inflow

modes, labelled on the basis of theoretical eigenvectors are: regressing inplane (ζR),
regressing flapping (βR), roll (φ), pitch (θ). Note that in Fig. 28, the regressing inplane
mode shows good frequency correlation; but all other modes are significantly off of
the correct frequency. In Fig. 29, a newmode appears (due to the added inflowdegrees
of freedom). It is labelled λ and is a mode dominated by inflow motions. The new
results show excellent correlation of all frequencies with the exception of a roll-
pitch coupling for 200 < � < 400. The results show that the regressing flap mode
becomes critically damped at � = 750, and that the measured modes are crucially
impacted by the dynamic inflow.

One of the interesting aspects of the dynamic inflow theory refers to the for-
mulation of equivalent Lock number and drag coefficient (γ∗ and C∗

d ) [66]. This
formulation reveals that there is an intrinsic correlation between downwash dynam-
ics and unsteady airfoil aerodynamics. After all, any three-dimensional automatically
includes induced flow theory as a local approximation to transient downwash dynam-
ics. Further,dynamic inflow decreases lift and increases profile drag. Therefore, we
should expect an equivalent γ (or γ∗) that is lower than γ, and an equivalent Cd

(or C∗
d ) that is higher than Cd . Thus, the γ∗ − C∗

d concept leads to one of the sim-
plestmethods of crudely accounting for dynamic inflow in conventional “no-inflow”-
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Fig. 29 Influence of unsteady aerodynamics on hingeless rotor ground resonance. Comparison of
measured modal frequencies, and calculations including dynamic inflow

programs. One simply must change γ to γ∗ and Cd to C∗
d . Furthermore, the concept

brings out the physics of dynamic inflow in a simple and visible manner.
In quasi-steady inflow theory, apparent mass effects are neglected. Therefore, the

inflow differential equations reduce to algebraic equations without increasing the
system dimension. If we stipulate the condition of axial flow (e.g., μ = 0) in the
quasi-steady formulation, we may obtain γ∗ and C∗

d , directly as detailed in [66].

γ∗ = γ/(1 + aσ

8V
) (4.16)

and

(Cd/a)∗ = Cd

a

(
1 + aσ

8V

)
+ aσ

8V
(θ̄ − φ)2 (4.17)

where (θ̄ − φ) can be approximated by 6CT /aσ.
In forward flight, the model of Eq. (4.9) can be used but with alterations to the

[L] matrix. In [64], a general [L] matrix is defined based on potential flow theory.
A new parameter, X , is introduced which is defined as the tangent of one-half of the
wake skew angle. In hover or axial flight, X = tan(0) = 0 and, in edgewise flight, X
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= tan(π/4) = 1. Thus, S varies from zero to one as we transition from axial flight to
edgewise flight. The corresponding [L] matrix is

[L] = 1

V

⎡
⎣

1
2 0 − 15π

64 X
0 2(1 + X2) 0

15π
64 X 0 2(1 − X2)

⎤
⎦ (4.18)

In axial flow, X = 0; and this matrix reduces to the momentum-theory values in
Eq. (4.7). In edgewise flow, significant couplings develop between thrust and the fore-
to-aft gradient in flow (and between pitchmoment and uniformflow). Equation (4.18)
has been proven accurate by exhaustive correlations with forward-flight data [67].

4.2 Frequency Domain

The theory of dynamic inflow treats low-frequency inflow effects in the range of
0/rev to 2/rev. For high-frequency effects, investigators traditionally have relied upon
frequency-domain aerodynamics such as the Theodorsen function [68]. However, the
wake model for Theodorsen theory is flat two-dimensional for rotor work. A very
useful alternative is Loewy theory [69]. The model for the Loewy theory is similar to
that for the Theodorsen theory except that the wake is assumed to return in an infinite
number of layers spaced apart by a fixed distance, h semi-chords. The resultant lift-
deficiency function (the Loewy function) takes the following form

C ′(k) = 1

1 + A(k)
(4.19)

A(k) = Y0(k) + i J0(k)(1 + 2W )

J1(k)(1 + 2W ) − iY1(k)
(4.20)

W = [exp(kh + 2πiω/Q) − 1]−1 (4.21)

where k is the rotating-system reduced frequency, Yn and Jn are Bessel Functions,
ω is the frequency per revolution as seen in the non-rotating system, and Q is the
number of blades.

W is called thewake-spacing function. For infinite wake spacing (h → ∞),W →
0; and consequently, Eq. (4.19) reduces toTheodorsen theory. Forfinitewake spacing,
W becomes largest whenω is an integer multiple of Q, and the resultingC ′(k) is low.
Thus, lift is lost when the shed vorticity of successive layers is aligned. For small k,
the near-wake approximation for A(k) is [71]

A(k) ≈ πk

(
1

2
+ W

)
(4.22)
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The above theory has a connection to dynamic inflow theory (although the latter
is in the time-domain). In particular, when ω is an integer multiple of Q and k is
small, we can write

A(k) ≈ πk

(
1

kh

)
= π

h
(4.23)

Now, if we note that a = 2π for Loewy theory and that h = 4v/σ, where σ =
2bQ/πR (where b = semi-chord). Then

A = σa

8V
, C ′(k) = 1

1 + σa
8V

(4.24)

which is the quasi-steady approximation for dynamic inflow, γ∗/γ.
Thus, C ′(k) tends to oscillate between 1

1+σa/8V and 1 (as ω is varied). The lowest
points are at integer multiple of Q, and the highest points are at odd multiples of
Q/2.

An alternative theory for C ′(k) is given by Miller [70], which neglects the W in
the denominator of A/(k). Both theories have the same near-wake approximation.
In order to apply a lift deficiency function to rotor problems, one must also account
for the effect of C ′(k) on lift and drag. This can be accomplished through the C∗

D
approach.

a∗ = aC ′(k) = a

1 + A(k)
(4.25)

C∗
D = CD + A(k)

1 + A(k)
(θ̄ − φ)2 (4.26)

Despite the elegance and power of lift-deficiency functions, their use in rotor prob-
lems has been limited by several shortcomings. First, the theories are limited to a two-
dimensional approximation in axial flow. Second, they are in the frequency domain,
which is inconvenient for periodic-coefficient eigen-analysis (although finite-state
approximations can be obtained) [72]. Third, Loewy theory exhibits a singularity as
ω and k approach zero simultaneously. Due to these drawbacks, investigators often
use dynamic inflow for the low-frequency effects (since it is a three-dimensional
neglect wake effects in other frequency ranges.

4.3 Finite-State Wake Modelling

More recently, a complete three-dimensional wake model has been developed that
includes dynamic inflow and the Loewy function implicitly [73]. In this theory,
the induced flow on the rotor disk is expressed as an expansion in a Fourier series
(azimuthally) and in special polynomials (radially) in powers of r̄ = r/R.
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ν(r̄ , ψ, t) =
∞∑

m=0 n=m+1

∞∑
m+3

φ̂n(r̄)[αm
n cosmψ + βm

n sinmψ] (4.27)

where

φ̂m
n (r̄) = 1

2

√
π(2n + 1)

n−1∑
q=m,m+2,...

r̄ q
(−1)(q−m)/2(n + q)!

(q − m)!(q + m)!(n − q − 1)! (4.28)

and αm
n and βm

n are the expansion coefficients. Thus, α0
1, α

1
2, and β1

2 take on the role
of νo, νc and νs in dynamic inflow; and the higher-order terms allow a more detailed
inflow model to any order desired. When the above expansion is combined with an
acceleration-potential for the three-dimensional flow field, differential equations are
formed that are similar in character to dynamic inflow.

1

�
{α̇m

n } + [Lc]−1{αm
n } = {τmc

n } (4.29)

1

�
{β̇m

n } + [Ls]−1{βn
m} = {τms

n } (4.30)

The [L] matrices are influence coefficients that depend on X (tangent of one-half
of the wake skew angle). They are partitioned by the harmonic numbers m, r (m =
inflow harmonic, r = pressurewithin each mr partition) there is a row-column pair
( j , n) for the inflow and pressure shape function, respectively.

[Lom
jn ]c = 1

V
Xm�0m

jn

[Lrm
jm]c = 1

V
[X |m−r | + (−1)�X |m+1|]�rm

jn

[Lrm
jn ]c = 1

V
[X |m−r | − (−1)�X |m+r |]�rm

jn

(4.31)

where � = min(r,m) and

�rm
jn = (−1) n+ j−2r

2 4
√

(2n + 1)(2 j + 1)

π( j + n)( j + n + 2)[( j − n)2 − 1] for r + m even

�rm
jn = sgn(r − m)√

(2n + 1)(2 j + 1)
for r + m odd, j = n ± 1

�rm
jn = 0 for r + m odd, j �= n ± 1

(4.32)

The right hand sides of Eqs. (4.29)–(4.30) are generalized forces obtained from the
integral over each blade of the circulatory lift per unit length (and then summed over
all the blades, the q-th blade being at ψq ).
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τ oc
n = 1

2π
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q=1
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0

Lq

ρ�2R3
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n(r̄)dr̄

]

τmc
n = 1

π
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]
cos(mψq)
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n = 1

π
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q=1

[∫ 1

0

Lq

ρ�2R3
φ̂m
n (r̄)dr̄

]
sin(mψq)

(4.33)

It is interesting to note that τ 0c
1 , τ 1c

2 , and τ 1s
2 are proportional to CT , CM , and CL

(respectively). Thus, when only these three are present, we recover dynamic inflow.
The higher expansion terms are taken to the same order as we take velocity expan-
sions.

The Lq terms (lift per unit length of q-th blade ) can be inserted in Eq. (4.33)
from any lifting theory. When they are taken from blade element theory (and when
the radial direction is neglected), one can prove that the system of Eqs. (4.29)–(4.30)

Fig. 30 Experimental induced inflow distribution. Tapered blade, μ = 0.15
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Fig. 31 Theoretical induced inflow distribution, tapered, blades with fuselage, μ = 0.15, Cr =
0.0064, α = 3◦, M = 4, S = 33

reduces to the Loewy theory for X = 0 (axial flow) [73]. It should be pointed out
that these equations are perturbation equations with ν and Lq taken as perturbations
with respect to a steady state. A complete, nonlinear theory is available [74] but is
not presented here.

Figures 30 and 31 show measured and calculated induced flows on a rotor at
μ = 0.15, from [74]. The calculations are based on the finite-state model. The major
features of the flow-field are captured by the model. In [33], the new wake model
is used to greatly improve correlation of stability computations with experimental
data.

5 Summary

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic
modelling to improve predictive capabilities. Themajor modelling tools are dynamic
inflow, lift-deficiency functions, and finite-state modelling. The last of these includes
the other two as special cases.
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Aeroelasticity in Turbomachines

Fernando Sisto

Abstract Turbomachines also prone to various types of dynamic instabilities and
responses that in some respects are similar to those of classical aeroelasticity as
described in earlier chapters. However the complications of rotating flows and struc-
tures provide new challenges as described in this chapter, also see the related discus-
sion in chapters “Modeling of Fluid-Structure Interaction and Modern Analysis for
Complex” and “Nonlinear Unsteady Flows in Turbomachinery”.

The advent of the jet engine and the high performance axial-flow compressor toward
the end of World War II focussed attention on certain aeroelastic problems in turbo-
machines.

The concern for very light weight in the aircraft propulsion application, and the
desire to achieve the highest possible isentropic efficiency by minimizing parasitic
losses led inevitably to axial-flow compressors with cantilever airfoils of high respect
ratio. Very early in their development history these machines were found to experi-
ence severe vibration of the rotor blades at part speed operation; diagnosis revealed
that these were in fact stall flutter (see chapter “Stall Flutter”) oscillations. The seri-
ousness of the problem was underlined by the fact that the engine operating regime
was more precisely termed the ‘part corrected speed’ condition, and that in addition
to passing through this regime at ground start up, the regime could be reentered dur-
ing high flight speed conditions at low altitude. In either flight condition destructive
behavior of the turbojet engine could not be tolerated.

In retrospect it is probable that flutter had occurred previously in some axial
flow compressors of more robust construction and in the later stages of low pres-
sure axial-flow stream turbines as well. Subsequently a variety of significant forced
and self-excited vibration phenomena have been detected and studied in axial-flow
turbomachinery blades.

In 1987 and 1988 two volumes of the AGARD Manual on Aeroelasticity in Tur-
bomachines [1, 2] were published with 22 chapters in all. The sometimes disparate
topics contributed by nineteen different authors and/or co-authors form a detailed
and extensive reference base related to the subject material of the present chapter.
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The reader is urged to refer to the AGARD compendium for in-depth development
and discussion of many of the topics to be introduced here, and for related topics
(such as the role of experimentation) not included here.

1 Aeroelastic Environment in Turbomachines

Consider an airfoil or blade in an axial flow turbine or compressor which is running
at some constant rotational speed. For reasons of steady aerodynamic and structural
performance the blade has certain geometric properties defined by its length, root and
tip fixation, possiblemechanical attachment to other blades and by the chord, camber,
thickness, stagger and profile shape which are functions of the radial coordinate.
Furthermore, the blade may be constructed in such a manner that the line of centroids
and the line of shear centers are neither radial nor straight, but are definedby schedules
of axial and tangential coordinates as functions of radius. In fact, in certain cases,
it may not be possible to define the elastic axis (i.e., the line of shear centers). The
possibility of a built-up sheet metal and spar construction, a laid-up plastic laminate
construction, movable or articulated fixations and/or supplemental damping devices
attached to the blade would complicate the picture even further.

The blade under consideration, which may now be assumed to be completely
defined from a geometrical and kinematical point of view, is capable of deforming1

in an infinite variety of ways depending upon the loading to which it is subjected.
In general, the elastic axis (if such can be defined) will assume some position given
by axial and tangential coordinates which will be continuous functions of the radius
(flapwise and chordwise bending). About this axis a certain schedule of twisting
deformations may occur (defined, say by the angular displacement of a straight
line between leading and trailing edges). Finally, a schedule of plate type bending
deformations may occur as functions of radius and the chordwise coordinate. (Radial
extensions summoned by centrifugal forces may further complicate the situation).

Although divergence is not a significant problem in turbomachines, an alternative
static aeroelastic problem, possibly resulting in themeasurable untwist and uncamber
of the blades, can have important consequences with respect to the steady perfor-
mance and with respect to the occurrence of blade stall and surge.

One has now to distinguish between steady and oscillatory phenomena. If the
flow through the machine is completely steady in time and there are no mechanical
disturbances affecting the blade through its connections to other parts of themachine,
the blade will assume some deformed position as described above (and as compared
to its manufactured shape) which is also steady in time. This shape or position will
depend on the elastic and structural properties of the blade and upon the steady
aerodynamic and centrifugal loading. (The centrifugal contribution naturally does
not apply to a stator vane.)

1 Deformations are reckoned relative to a steadily rotating coordinate system in the case of a rotor
blade.
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Consider the situation, however, where dynamic disturbances may exist in the
airstream, or may be transmitted through mechanical attachments from other parts o
the structure. Due to the unsteadiness of the aerodynamic and/or the external forces
the blade will assume a series of time-dependent positions. If there is a certain
repetitive nature with time of the displacements relative to the equilibrium position,
the blade is said to be executing vibrations, the term being taken to include those
cases where the amplitude of the time-dependent displacements is either increasing,
decreasing or remaining constant as time progresses.

It is the prediction and control of these vibrations with which the turbomachine
aeroelastician is concerned.Once the blade is vibrating the aerodynamic forces are no
longer a function only of the airstreamcharacteristics and the blade’s angular position
and velocity in the disturbance field, but depend in general upon the blade’s vibratory
position, velocity and acceleration as well. There is a strong interaction between the
blade’s time-dependent motion and the time-dependent aerodynamic forces which it
experiences. It is appropriate at this point to note that in certain cases the disturbances
may be exceedingly small, serving only to ‘trigger’ the unsteady motion, and that the
vibration may be sustained or amplified purely by the interdependence or feedback
between the harmonic variation with time of the blade’s position and the harmonic
variation with time of the aerodynamic forces (the flutter condition).

A further complication is that a blade cannot be considered as an isolated struc-
ture. There exist aerodynamic and possibly structural coupling between neighboring
blades which dictate a modal description of the entire vibrating bladed-disk assem-
bly. Thus an interblade phase angle, σ , is defined and found to play a crucial role in
turbomachine aeroelasticity . Nonuniformities among nominally ‘identical’ blades
in a row, or stage, are found to be extremely important in turbomachine aeroelas-
ticity; stemming from manufacturing and assembly tolerances every blade row is
‘mistuned’ to a certain extent, i.e., the nominally identical blades in fact are not
identical.

2 The Compressor Performance Map

The axial flow compressor, and its aeroelastic problems, are typical; the other major
important turbomachine variant being the axial flow turbine (gas or steam). In the
compressor the angle of attack of each rotor airfoil at each radius r is compounded
of the tangential velocity of the airfoil section due to rotor rotation and the through
flow velocity as modified in direction by the upstream stator row. Denoting the axial
component by Vx and the angular velocity by � as in Fig. 1, it is clear that the angle
of attack will increase inversely with the ratio φ = Vx/(r�). In the compressor, an
increase in angle of attack (or an increase in ‘loading’) results in more work being
done on the fluid and a greater stagnation pressure increment �p0 being imparted
to it. Hence the general aspects of the single ‘stage’ (i.e., pair of fixed and moving
blade rows) characteristics in Fig. 2 are not without rational explanation. Note that
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Fig. 1 Velocity triangle in an axial compressor

Fig. 2 Work and pressure ratio relationships

themassflow through the stage equals the integral over the flowannulus of the product
of Vx and fluid density.

When the various parameters are expressed in dimensionless terms, and the com-
plete multistage compressor is compounded of a number of states, the overall com-
pressor ‘map’, or graphical representation of multistage characteristics, appears as in
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Fig. 3 Compressor map

Fig. 3, where ṁ is massflow, γ and R are the ratio of specified heats and gas constant,
respectively; T0 is stagnation temperature and A is a reference flow area in the com-
pressor. Conventionally the constants γ and R are omitted where the identity of the
working fluid is understood (e.g., air). The quantity A is a scaling parameter relating
the absolute massflow of geometrically similar machines and is also convention-
ally omitted. The tangential velocity of the rotor blade tip, �rtip, is conventionally
replaced by the rotational speed in rpm. The latter omission and replacement are
justified when discussing a particular compressor.

An important property of the compressor map is the fact that to each point there
corresponds theoretically a unique value for angle of attack (or incidence) at any
reference airfoil section in the compressor. For example, taking a station near the tip
of the first rotor blade as a reference, contours of incidence may be superposed on
the map coordinates. In Fig. 4 such angle contours have been shown for a specific
machine. As defined here, ai is the angle between the relative approach velocity W
and the chord of the airfoil. Here again axial velocity Vx (or massflow) is seen to dis-
play an inverse variation with respect to angle of attack as a line of constant rotational
speed is traversed. The basic reason such incidence contours can be established is
that the two parameters which locate a point on the map, ṁ

√
T0/p0 and�r/

√
T0, are

effectively a Mach number in the latter case and a unique function of Mach number
in the former case. Thus the ‘Mach number triangles’ are established which yield
the same ‘angle of attack’ as the velocity triangles to which they are similar, Fig. 5.

As a matter for later reference, contours of V/(vω) for a particular stator airfoil,
or else W/(bω) for a particular rotor airfoil, can be superimposed on the same map,
provided the environmental stagnation temperature, T0, is specified. These contours
are roughly parallel, though not exactly, to the constant rotational speed lines. The
natural frequency of vibration, ω, tends to be constant for a rotor blade at a given
rotational speed; and of course a stator blade’s frequency does not depend directly on
rotation. However, upon viewing the velocity triangles in Fig. 5, it is clear that if �r
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Fig. 4 Map showing incidence as a parameter

Fig. 5 Velocity and Mach number correspondence

is kept constant and the direction of V is kept constant, the size of W may increase
or decrease as Vx (or massflow) is changed. In fact, if the angle between V and W is
initially close to 90 degrees, a not uncommon situation, the change in the magnitude
of W will be minimal. For computing the stator parameter, V/(bω), the direction
of W leaving a rotor is considered to be virtually constant, and the corresponding
changes in V (length and direction) as Vx is varied lead to similar conclusions with
regard to angle of attack and magnitude of V experienced y the following stator. The
values of W/(bω) increase with increasing value of �rtip, since the changes in W
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(or V ) will dominate the somewhat smaller changes in the appropriate frequency ω,
at least in the first few stages of the compressor. Compressibility phenomena, when
they become significant will sometimes alter these general conclusions.

3 Blade Mode Shapes and Materials of Construction

Flutter andvibration of turbomachinery blades can anddooccurwith awide variety of
these beam -like structures and their degrees of end restraint. Rotor blades in use vary
from cantilever with perfect root fixity all the way to a single pinned attachment such
that the blade behaves in bending like a pendulum ‘flying out’ and being maintained
in a more or less radial orientation by the centrifugal (rather than a gravity) field.
Stator vanes may be cantilevered from the outer housing or may be attached at both
ends, with degrees of fixity ranging from ‘encastred’ to ‘pinned’.

The naturalmodes and frequencies of these blades, or blade -disc systemswhen the
blades are attached to their neighbors in the same row or the discs are not effectively
rigid, are obtainable by standard methods of structural dynamics. Usually twisting
and twodirections of bending are incorporated in a beam -typefinite element analysis.
If plate-type deformations are significant, the beam representation must be replaced
bymore sophisticated plate or shell elementswhich recognize static twist and variable
thickness.

In predicting the first several natural modes and frequencies of rotor blades it
is essential to take into account the effect of rotor rotational speed. Although the
description is not analytically precise in all respects, the effect of rotational speed
can be approximately described by stating ω2

n = ω2
0n + Kn�

2 where ω0n is the static
(nonrotating) frequency of the rotor blade and the Southwell coefficient Kn is a pro-
portionality constant for any particular blade in the nth mode. The effect is most pro-
nounced in the natural modes which exhibit predominantly bending displacements;
the modes associated with the two gravest frequencies are usually of this type, and it
is here that the effect is most important. A positive Southwell coefficient represents
a centrifugal stiffening of the blade, increasing the natural frequency. Disk rotation
rate also produces a softening effect that can reduce the Southwell coefficient. This
softening effect is typically significant for only the first mode. High temperatures
in high pressure turbines operating at high power levels can reduce the modulus of
elasticity of the blades, reducing the static natural frequency ω0n . As high engine
power tends to occur at high rotor speeds, thermal effects can cause the frequency
of some blade modes to decrease with increasing speed. Other factors also need to
be considered, such as blade fixity boundary condition (fixed-fixed in stators versus
fixed-free in rotors), and disk flexibility.

Materials of construction are conventionally aluminum alloys, steel or stainless
steel (high nickel and/or chromiumcontent).However, in recent applications titanium
and later beryllium have become significant. In all these examples, considering flutter
or forced vibration in air as the surrounding fluid, the fluid/structural mass ratios are
such that the critical mode and frequency may be taken to be one or a combination
of the modes calculated, or measured, in a vacuum.
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More recently there has been a reconsideration of using blades and vanes made of
laminated materials such as glass cloth, graphite or metal oxide fibers laid up in poly-
meric or metal matrix materials and molded under pressure to final airfoil contours.
Determining the modes and frequencies of these composite beams is more exacting.
However, once determined, these data may be used in the same manner as with con-
ventional metal blades. It should also be noted that aeroelastic programs related to
turbomachinery often make a great deal of practical use out of mode and frequency
data determined experimentally from prototype and development hardware.

A major consideration in all material and mode of construction studies is the
determination of mechanical damping characteristics. Briefly stated the damping
may be categorized as material or structural. The former is taken to describe a
volume-distributed property in which the rate of energy dissipation into heat (and
thus removed from the mechanical system) is locally proportional to a small power
of the amplitude of the local cyclical strain. The proportionality constant is deter-
mined by many factors, including the type of material, state of mean or steady strain,
temperature and other minor determinants.

The structural dampingwill usually be related to interfacial effects, for example in
the blade attachment to the disk or drum, and will depend on normal pressure across
the interface, coefficient of friction between the surfaces, mode shape of vibration,
and modification of these determinants by previous fretting or wear. Detailed knowl-
edge about damping is usually not known with precision, and damping information
is usually determined and used in ‘lumped’ or averaged fashion. Comparative calcu-
lations may be use to predict such gross damping parameters for a new configuration,
basing the prediction on the known information for an existing and somewhat similar
configuration. By this statement it is not meant to imply that this is a satisfactory
state of affairs.More precise damping prediction capabilities would be very welcome
in modern aeroelastic studies of turbomachines, and some studies of this nature are
reported in Refs. [1, 2].

The aeroelastic response is central to the analysis of fatigue and fracture of turbo-
machinery blades. The question of crack initiation, crack propagation and destructive
failure cannot be addressed without due attention being given to the type of exci-
tation (forced or self-excited) and the parametric dependencies on the nonsteady
aerodynamic forces. This may be appreciated when it is noted that the modal shape
functions, frequencies and structural damping of a blade change with the crack
growth of the specimen. This concatenation of aeroelasticity and blade failure pre-
diction is presently an active area of research and development.

4 Nonsteady Potential Flow in Cascades

Unwrapping an annulus of differential height dr from the blade row flow passage
of an axial turbomachine results in a two-dimensional representation of a cascade of
airfoils and the flow about them. The airfoils are identical in shape, equally spaced,
mutually congruent and infinite in number.
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Fig. 6 Cascade camberlines modelled by vortex sheets

When a cascade is considered, as opposed to a single airfoil, the fact that the
flexible blades may be vibrating means that the relative pitch and stagger may be
functions of time and also position in the cascade. The steady flow, instead of being
a uniform stream, will now undergo turning; large velocity gradients may occur in
the vicinity of the blades and in the passages between them. These complications
imply that the blade thickness and steady lift distribution must be taken into account
for more complete fidelity in formulating the nonsteady aerodynamic reactions. See
chapters by Whitehead and Verdon in Ref. [1].

A fundamental complication which occurs is the necessity for treating the wakes
of shed vorticity from all the blades in the cascade.

Assume the flow is incompressible. Standard methods of analyzing steady cas-
cade performance provide the steady vorticity distribution common to all the blades,
γs(x), and its dependence on W1 and β1. As a simple example of cascading effects
consider only this steady lift distribution on each blade in the cascade and compute
the disturbance velocity produced at the reference blade by a vibration of al the blades
in the cascade.

In what follows the imaginary index j for geometry and the imaginary index i
for time variation (i.e., complex exponential) cannot be ‘mixed’. That is i j �= −1.
Furthermore, it is convenient to replace the coordinate normal to the chord, z, by y
and the upwash on the reference airfoilwa by υ. The velocities induced by an infinite
column of vortices of equal strength, τ , are given by (Fig. 6)

δ[u(z) − jv(z)] = j�

2π

∞∑

n=−∞

1

Z − ζn
(4.1)

where the location ζn of the nth vortex
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ζn = ξ + jnse− jβ + jYn(ξn, t) + Xn(t) (4.2)

indicates small deviations from uniform spacing s, (Yn � s, Xn � c). The point Z
is on the zeroth or reference blade

Z = x + jY (x, t) + X (t) (4.3)

and the location of the vortices will ultimately be congruent points on different blades
so that

ξn = ξ + ns sin β (4.4)

(The subscript naught, indicating the zeroth blade, is conventionally omitted.)
Finally, harmonic time dependencewith time lag−r between themotions of adjacent
blades2 is indicated by

Yn(ξn, t) = einωr Y (ξ, t) (4.5)

With these provisions the Cauchy kernel in (4.1) may be written

1

Z − ζn
= 1

x − ξ − jnse− jβ + j[Y (x, t) − Yn(ξn, t)] + X (t) − Xn(t)
(4.6)

and summing (4.5) over all blades

n=∞∑

n=−∞

1

Z − ζn
= 1

x − ξ + j[Y (x, t) − Y (ξ, t)] +
∞′∑

n=−∞

1

Z − ζn
(4.7)

where the primed summation indicates n = 0 is excluded. The first term on the
RHS of (4.7) is a self-induced effect of the zeroth foil. The part Y (x, t) − Y (ξ, t) is
conventionally ignored in the thin-airfoil theory; it is small compared to x − ξ and
vanishes with x − ξ . Hence the first term supplies the single airfoil or self-induced
part of the steady state solution. Expanding the remaining term yields

′∑ 1

Z − ζn

∼=
′∑ 1

x − ξ − jns e− jβ
+ j

′∑ Yn(ξn, t) − Y (x, t)

(x − ξ − jns e− jβ)2

+
′∑ Xn(t) − X (t)

(x − ξ − jns e− jβ)2
+ · · ·

(4.8)

2 This so-called ‘periodicity assumption’ of unsteady cascade aerodynamics lends order, in principle
and often in practice, to the processes of cascade aeroelasticity. The mode of every blade is assumed
to be identical, with the same amplitude and frequency but with the indicated blade-to-blade phase
shift. Such a blade row, would be termed ‘perfectly tuned’. Absent this assumption, the cascade
representing a rotor of n blades could have n distinct components (type of mode, modal amplitude,
frequency).
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where the last two summations on the RHS of (4.8) are the time-dependent por-
tions. The corresponding unsteady induced velocities from (4.1) may be expressed
as follows using the preceding results

δ[ũ(x ′)− j ṽ(x ′)] � −γs(ξ
′)δξ ′

2πc
P2

{ ′∑ einωτY (ξ ′, t) − Y (x ′, t)
(χ − jnπ)2

+ 1

j

′∑ einωτ X (t) − X (t)

(χ − jnπ)2

} (4.9)

where the primed variables are dimensionless w.r.t. the chord,

P = πe jβc/s (4.10)

χ = P(x ′ − ξ ′) (4.11)

and ũ, υ̃ are the time dependent parts of u, υ. The local chordwise distribute vortex
strength γs(ξ)dξ has replaced τ the discrete vortex strength in the last step, (4.9).
With the notation

q = 1 − ωτ/π (4.12)

the summations may be established in closed form. For example, when the blades
move perpendicular to their chordlines with the same amplitude all along the chord
(pure bending) the displacement function is a constant

Y = −h̄eiωt = −h (4.13)

and, upon integrating over the chord in (4.9), one obtains

ũ(x ′) − j ṽ(x ′) = P2

2πc

∫ 10γs

(ξ ′)
∑ ′ e

inωτh(t) − h(t)

(χ − jnπ)2
dξ ′ (4.14)

or

ũ = − h

2πc

∫ 1

0
γs(ξ

′)[F − i I ]dξ ′ (4.15a)

ṽ = − h

2πc

∫ 1

0
γs(ξ

′)[G + i H ]dξ ′ (4.15b)

where

F + iG = P2 q sinh χ sinh qχ − cosh χ cosh qχ + 1

sin h2χ
(4.15c)

H + i I = P2 q sinh χ cosh qχ − cosh χ sinh qχ

sin h2χ
(4.15d)



418 F. Sisto

Similar disturbance velocity fields can be derived for torsional motion, pure chord-
wise motion, etc. Another separate set of disturbance fields may be generated to take
account of the blade thickness effects by augmenting the steady vorticity distribution
γ (x) by, say − jε(x), the steady source distribution, in the above development.

The net input to the computation of oscillatory aerodynamic coefficients is then
obtained by adding the υ̃ of all the effects so described to the LHS of the integral
equation which follows

on y=0, 0<x<c︷ ︸︸ ︷
v1(x) + v2(x) + v3(x) = 1

2π

∫ c

0
[γ1(ξ) + γ2(ξ) + γ3(ξ)]K (ξ − x)dξ

+ 1

2π

∫ ∞

c
[γ1(ξ) + γ2(ξ) + γ3(ξ)]K (ξ − x)dξ

(4.16)

In this formulation υ1 may be identified with the unsteady upwash, if any, convected
as a gust with the mean flow and υ2 is the unsteady upwash attributable to vibratory
displacement of all the blades in the cascade, where each blade is represented by
steady vortex and source/sink distribution. It is υ2 that was described for one special
component (pure bending) in the derivation of υ̃ leading to (4.15b).

The component υ3 may be identified with the unsteady upwash elative to the
zeroth airfoil occasioned by its harmonic vibration.

Since we are dealing here with a linear problem each of the subscripted sub-
problems may be solved separately and independently of the others. It is also impor-
tant to note that since the vortex distributions γ1, γ2 and γ3 representing the lift
distributions on the cascade chordlines are unsteady they must give rise to distribu-
tions of free vortices in the wake of each airfoil of the cascade. In other words vortex
wakes emanate from the trailing edge of each airfoil and are convected downstream:
at a point with fixed coordinates in thewake, the strength of the vortex element instan-
taneously occupying that point will vary with time. Hence, the integral equation will
in general contain a term that is an integral over the wake (c < ξ < ∞) to account
for the additional induced velocities from the infinite number of semi-infinite vortex
wakes. The kernel 1

2πK (ξ − x) accounts in every case for the velocity induced at
(x , 0) by a vortex element at the point (π , 0) on the chord or wake of the reference,
or zeroth, airfoil plus an element of equal strength located at the congruent point
(π + ns sin β, ns cosβ) of every other profile of the cascade or its wake. The form
of K may in fact be derived by returning to the previous derivation for υ̃ in (4.9) and
(4.15b) and extracting the terms

isolated airfoil︷ ︸︸ ︷
1

ξ − x
+

cascade effect︷ ︸︸ ︷
∞∑

n=−∞

1

ξ − x + jns e− jβ
(4.17)

In this expression the signs have been changed to imply calculations of positive υ

(rather than − jυ) and with each term it is now necessary to associate a strength
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γr (ξ) exp(inωr) (r = 1, 2 or 3) since the inducing vortexes now pulsate rather than
being steady in time. The kernel now appears as

1

2π
K (ξ − x) = 1

2π

∞∑

n=−∞

einωτ

ξ − x + jns exp(− jβ)
(4.18)

which may be summed in closed form to yield

1

2π
K (ξ − x) = e jβ

2s

· cosh[(1 − σ/π)π exp( jβ)(ξ − x)/s] + i j sinh[(1 − σ/π)π exp( jβ)(ξ − x)/s]
sinh[π exp( jβ)(ξ − x)/s]

(4.19)
where σ = ωτ is known as the interblade phase angle, an assumed constant.

The term for n = 0 in the summation (4.18) is

1

2π
K0(ξ − x) = 1

2π

1

ξ − x
(4.20)

which is the kernel for the isolated airfoil. Hence, the added complexity of solving
the cascaded airfoil problem is attributed to the additional terms giving the more
complicated kernel displayed in (4.19).

In contradistinction to the isolated airfoil case, solutions of the unsteady aerody-
namics integral equation cannot be solved in closed form, or in terms of tabulated
functions, for arbitrary geometry (β and s/c) and arbitrary interblade phase angle, σ .
In fact, as noted previously, the thickness distribution of the profiles and the steady
lift distribution become important when cascades of small space/chord ratio are con-
sidered to vibrate with nonzero interblade phasing. Consequently, solutions to the
equation are always obtained numerically. It is found that the new parameters β,
s/c and σ are strong determinants of the unsteady aerodynamic reactions. A tabular
comparison of the effect of these variables on the lift due to bending taken from
the data in [3] appears below. In this chart, the central stencil gives the lift coeffi-
cient for the reference values of s/c = 1.0, β = 45◦, σ = 0.4pi . Other values in the
matrix give the coefficient resulting from changing one and only one of the governing
parameters.
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β s/c σ

STENCIL

k=0

π1 45 .4

-.8670
-.3085

1 45 π.8 75 .4 π1

-.0232
-.8734 -.7606

-.5298

1 45 .4 π 45 .4 π2

1 1 145 45 .4 ππ0 4. 0

k=1.0

s/cs/c
-.7318
-.1558

-.6903
-.0991

-.6963
-.4343

-.6004 -.4261 -.6079

otherwise noted
k=0.5 unless

σ β 

β σ

k

k

-.0580 -.2267 -.4034

o oo

o o

oo

imag. part
real part

The effects of thickness and steady lift cannot be easily displayed, and are con-
ventionally determined numerically for each application. See Chap. III in [1].

5 Compressible Flow

The linearized problem of unsteady cascade flow in a compressible fluid may be
conveniently formulated in terms of the acceleration potential,−p/ρ, where p is the
perturbation pressure, i.e., the small unsteady component of fluid pressure. Using
the acceleration potential as the primary dependent variable, a number of compact
solutions have been obtained for the flat plate cascade at zero incidence. The most
reliable in subsonic flow is that due to Smith [4], and in supersonic flow the solutions
of Verdon [5] and Adamczyk [6] are representative.

Supersonic flow relative to the blades of a turbomachine is of practical importance
in steam turbines and near the tips of transonic compressor blades. In these cases
the axial component of the velocity remains subsonic; hence analytic solutions in
this flow regime (the so-called subsonic leading edge locus) are of the most interest.
It may be that in future applications the axial component will be supersonic. In
this event the theory actually becomes simper so that the present concentration on
subsonic values of Maxial represents the most difficult problem. Currently efforts
are underway to account for such complicating effects as changing back-pressure on
the stage, flow turning, shock waves, etc.

To illustrate the effect of varying the Mach number from incompressible on up to
supersonic, a particular unsteady aerodynamic coefficient has been graphed in Fig. 7
as a function of the relativeMach number. It is seen that the variation of the coefficient
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Fig. 7 The aerodynamic resonance phenomenon

in the subsonic regime is not great except in the immediate neighborhood of the
so-called ‘resonant’ Mach number, or the Mach number at which ‘aerodynamic
resonance’ occurs.

It is possible to generalize the situation with respect to compressibility by indi-
cating that the small disturbance approximations are retained, but the velocities,
velocity potential, acceleration potential, or pressure (in every case the disturbance
component of these quantities) no longer satisfy the Laplace equation, but rather an
equation of the following type.

(1 − M2)φxx + φyy = 1

a2
φt t − 2

M

a
φxt = 0 (5.1)

Here M is the relative Mach number and a is the sound speed. Note that the presence
of time derivatives make this partial differential equation hyperbolic whatever the
magnitude of M , a situation quite different from the steady flow equation.

Although the above equation is appropriate to either subsonic or supersonic flow,
the resonance phenomenon occurs in the regime of subsonic axial component of the
relative velocity when geometric and flow conditions satisfy a certain relationship.

Equating the time of propagation of a disturbance along the cascade to the time
for an integral number of oscillations to take place plus the time lag associated with
the interblade phase angle, σ , yields

s

V+
p

= 2πv

ω
− σ

ω
(5.2a)

s

V−
p

= 2πv

ω
+ σ

ω
(5.2b)

where V±
p , the velocity of propagation, has two distinct values associated with the

two directions along the cascade, see Fig. 8.
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Fig. 8 Resonant values of
governing parameters

V±
p = a[

√
1 − M2 cos2 β ± M sin β] (5.3)

These expressions can be reduced to the equation

ωs

a
= (2vπ ± σ)(

√
1 − M2 cos2 β ∓ M sin β) (5.4)

where v may be any positive integer, and with the upper set of signs may also be
zero.

Equation (5.4) may be graphed and potential acoustic resonances discerned by
plotting the characteristics of a given stage on the same sheet for possible coinci-
dence. (It is convenient to take β as the parameter with axes ωs/a and M .) Acoustic
resonances of the variety described abovemay be dangerous because they account for
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the vanishing, or near vanishing, of all nonsteady aerodynamic reactions including
therefore the important aerodynamic damping. Although it is difficult to establish
with certainty, several cases of large vibratory stresses have been correlated with
the onset of acoustic resonance. It should be recognized that the effects of blade
thickness and nonconstant Mach number throughout the field are such as to render
the foregoing formulation somewhat approximate.

The foregoingdevelopmentmay also be basedmore rigorously on the theoretically
derived integral equation relating the harmonically varying downwash on the blade
to the resulting harmonically varying pressure difference across the blade’s thickness.
Symbolically

v̄a(x) =
∫ c

0
K (ξ − x)� p̄a(ξ)dξ (5.5)

and the acoustic resonance manifests itself by a singularity appearing in the kernel K
for special values of k, s, c, τ and β of which K is a function. Under this circumstance
the downwash υa can only remain finite, as it must physically, by a vanishing of
�pa as noted above. The previous development shows why the compressible flow
solutions have received such an impetus from, and are so closely related to, the
acoustic properties of compressor and fan cascades.

Thus the field of aeroacoustics, as exemplified in the text of Goldstein [7], and the
field of turbomachine aeroelasticity are in a synergistic relationship. This is discussed
more fully in [1].

The acoustic resonance phenomenon, as just described results from standing
waves in blade-fixed coordinates, albeit with impressed throughflow velocity, of
the fluid occupying the interblade passages.

6 Periodically Stalled Flow in Turbomachines

Rotating, or propagating, stall are terms which describe a phenomenon of circum-
ferentially asymmetric flow in axial compressors. Such a flow usually appears at
rotationally part-speed conditions and manifests itself as one or more regions of
reduced (or even reversed) throughflow which rotate about the compressor axis at a
speed somewhat less than rotor speed, albeit in the same direction.

A major distinction between propagating stall and surge is that in the former case
the integrated massflow over the entire annulus remains steady with time whereas
in the latter case this is not true. The absolute propagation rate can be brought to
zero or even made slightly negative by choosing pathological compressor design
parameters.

If the instigation of this phenomenon can be attributed to a single blade row (as
it obviously must in a single-stage compressor) then insofar as this blade row is
concerned, it represents a periodic stall ing and unstall ing of each blade in the row.
Later or preceding blade rows (i.e., half-stage) may or may not experience individual



424 F. Sisto

blade stall periodically, depending on the magnitude of the flow fluctuation at that
stage, as well as the cascade stall limits in that stage.

The regions of stall ed flowmay extend across the flow annulus (full span) or may
be confined either to the root or tip regions of the blades (partial-span stall ) The
number of such regions which may exist in the annulus at any one time varies from
perhaps 1 to 10 with greater numbers possible in special types of apparatus.

The periodic loading and unloading of the blades may prove to be extremely
harmful if a resonant condition of vibration obtains. Unfortunately the frequency of
excitation cannot be accurately predicted at the present time so that avoidance of
resonance is extremely difficult.

The results of various theories concerning propagating stall are all moderately
successful in predicting the propagational speed.However the number of stall patches
which occur (i.e., the circumferential wavelength of the disturbance) seems to be ana-
lytically unpredictable so that the frequency of excitation remains uncertain. Further-
more, the identification of the particular stage which is controlling the propagating
stall , in the sense noted above, is often uncertain or impossible.

This situation with regard to propagating stall has recently been impacted by a
CFD approach using the vortex method of description. In chapter “Stall Flutter” the
vortex method was applied to the analysis of stall flutter. The earlier application,
however, was to propagating (or rotating) stall, i.e. for the flow instability which
can occur with completely rigid blades. The vortex method has been intensively
developed for propagating stall prediction and results [9] indicate that success in
the long sought objective of wavelength prediction is at hand. Improvements that are
required for more useful results are in the boundary layer subroutine executed at each
time step for each blade) and in the enlargement of computing capacity to handle
the number of blades in realistic annular cascades. A further improvement that is
desirable is in the vortex merging algorithm. The vortex method is a time-marching
CFD routine inwhich the location of a large number of individual vortices are tracked
on the computational domain. New vortices are created at each time step to satisfy
the boundary conditions and separation criteria. Hence, to limit the total number of
vortices in the field after many time steps, it is necessary tomerge individual vortices,
preferably downstream of the cascade. Many merging criteria may be considered,
related to the strength and position of the candidate vortices.

Although the precise classification of vibratory phenomena of an aeromechanical
nature is often somewhat difficult in turbomachines because of the complication due
to cascading and multistaging, it is nevertheless necessary to make such distinctions
as are implied by an attempt at classification. The manifestation of stall flutter in
turbomachines is a good example of what is meant. When a given blade row, or
cascade, approaches the install ing incidence in some sense (i.e., stall ing defined by
rapid increase of relative total pressure loss, or defined by rapid increase in deviation
angle, or defined by the appearance of flow separation from the suction surface of the
blades, etc.) it is found experimentally that a variety of phenomena may exist. Thus
the region of reduced throughflowmay partially coalesce into discrete patches which
propagate relative to the cascade giving rise to the type of flow instability previously
discussed under rotating stall. There is no dependence on blade flexibility.
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Under certain other overall operating conditions it is found that in the absence
of, or even coexistent with, the previous manifestation, the blades vibrate somewhat
sporadically at or near their individual natural frequencies. There is no immediately
obvious correlation between the motions of adjacent blades, and the amplitudes of
vibrations change with time in an apparently random manner. (We exclude here all
vibration attributable to resonance with the propagating stall frequency, should the
propagation phenomenon also be present.) This behavior is termed stall flutter or stall
ing flutter and the motion is often in the fundamental bending mode. Another term is
random vibration. Since the phenomenon may be explained on the basis of nonlinear
mechanics, (see the chapter on Stall Flutter) the sporadicity of the vibration can be
attributed provisionally to the fact that the excitation has not been strong enough
to cause ‘entrainment of frequency’, a characteristic of many nonlinear systems.
Hence, each blade vibrates, on the average, as if the adjacent blades were not also
vibrating. However, a careful analysis demonstrates that the instantaneous amplitude
of a particular blade is effected somewhat by the ‘instantaneous phase difference’
between its motion and the motion of the adjacent blade(s). One must also speak
of ‘instantaneous’ frequency since a frequency modulation is also apparent. As a
general statement it must be said that the frequency, amplitude and phase of adjacent
blades are functionally linked in some complicated aeromechanical manner which
results in modulations of all three qualities as functions of time. While the frequency
modulation will normally be small (perhaps less than 1 or 2%) the amplitude and the
phase modulations can be quite large. Here the term phase difference has been used
rather loosely to describe the relationship between two motions of slightly different
frequency. Since this aerodynamic coupling would also depend on the instantaneous
amplitude of the adjacent blade(s), it is not surprising that the vibration gives a
certain appearance of randomness. On the linear theory for identically tuned blades
one would not expect to find sporadic behavior as described above. However, it is
just precisely the failure to satisfy these two conditions that accounts for the observed
motion; the average blade system consists of an assembly of slightly detuned blades
(nonidentical frequencies ) and furthermore the oscillation mechanism is nonlinear.

Application of vortex method aerodynamics to a cascade of elastically supported
blades recently has demonstrated [12], in a computational sense, the features of
randomness and sporadicity as described above.

When the relative magnitudes of the nonsteady aerodynamic forces increase it
may be expected that entrainment of frequency will occur. In certain nonlinear sys-
tems it can be shown that the ‘normalized’ frequency interval (ω − ω0)/ω (where ω

is the impressed frequency and ω0 is the frequency of self-excitation) within which
one observes entrainment, is proportional to h/h0, where h is the amplitude of the
impressed motion and h0 is the amplitude of the self-excited oscillation. In case of
entrainment onewould expect to find a common phase difference between themotion
of adjacent blades which implies also motion with a common flutter frequency. This
latter phenomenon is also termed stalling flutter, although the term limit-cycle vibra-
tion is sometimes used to emphasize the constant-amplitude nature of the motion,
which is often in the fundamental torsional mode.
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Finally it should be noted that the distinction between blade instability (flutter)
and flow instability (rotating stall ) is not always perfectly distinct.When the sporadic
stall flutter occurs it is clear that there is no steady tangentially propagating feature of
the instability. Similarly,when propagating stall occurswith little or no vibration (stiff
blades away from resonance) it is apparent that the instability is not associated with
vibratorymotion of the blade.However, the limit cycle type of behavior can be looked
upon (due to the simultaneously observed constant interblade phase relationship) as
the propagation of a disturbance along the cascade. Furthermore, the vorticity shed
downstream of the blade row would have every aspect of a propagation stall region.
For instance if the interblade phasing was 180 degrees the apparent stall region
would be on one blade pitch in tangential extent and each would be separated by one
blade pitch of unstall ed throughflow. The tangential wavelength is two blade pitches.
Because of the large number of such regions, and the small tangential extent of each,
this situation is still properly termed stall flutter since the blades are controlling and
the blade amplitudes are constant. At the other extremewhen one or two stall patches
appear in the annulus it is obvious that the flow instability is controlling and then
the phase relationships between adjacent blade’s motions may appear to be rather
sporadic. At any rate, in the middle ground between these extremes it is probable
that a strong interaction between flow stability and blade stability exists and the two
phenomena cannot be easily separated.

Another distinction may be attempted to assist in understanding the operative
phenomena. When a single airfoil is subjected to an increasing angle of attack an
instability of the fluid may arise, related to the Karman vortex frequency or the
extension of this concept to a distributed frequency spectrum. If the frequency of
this fluid instability coincides with the natural frequency of the blade in any mode
the phenomenon is termed buffeting. If the dynamic moment coefficient (or force
coefficient) attains a negative slope a self-excited vibration known as stall flutter
occurs. The two phenomena may merge when airfoil vibration exerts some influence
on the vortex shedding frequency. Stall -flutter is usually observed in the torsional
mode and buffeting in the bending mode, but this distinction is not always possible.
These concepts cannot be carried over directly to the cascade where steady bending
amplitudes of the limit cycle variety have been observed. The explanation rests on
the additional degrees of freedom present in the cascaded configuration.

7 Stall Flutter in Turbomachines

On account of the foregoing complications and the very recent emergence of quanti-
tative CFD-based theories noted in chapter “Stall Flutter” it is not surprising that past
prediction for turbomachines has rested almost entirely on correlation of experimen-
tal data. The single most important parameter governing stall ing is the incidence,
and the reduced frequency has been seen in all aeroelastic formulations to exert a
profound influence. Hence it is not surprising that these variables have been used to
correlate the data.
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Fig. 9 Experimental stall flutter correlation

Typically stall flutter will occur at part-speed operation and will be confined to
those rotor stages operating at higher than average incidence. With luck the region
of flutter will be above the operating line on a compressor map and extend up to
the surge line. Under less fortunate circumstances the operating line will penetrate
the flutter region. The flutter boundary will have the appearance shown on Fig. 9.
Contours of constant flutter (or limit cycle oscillation) stress (or tip amplitude) will
run more or less parallel to, and within, the boundary. Traditional parameters for
this typical experimental correlation are reduced velocity, W/bω, (the inverse of
reduced frequency) and incidence, at some characteristic radius such as 75% or 80%
of the blade span for a cantilever blade. The curve is typical of data obtained in
turbomachines or cascades; essentially a new correlation is required for each major
change of any aerodynamic variable (Mach number, stagger, blade contour, etc.). The
structural mode shape will usually be first torsion. The single contour shown in the
previous figure is for that level of cyclic stress (or strain) in the blade material that is
arbitrarily taken to represent some distinct and repeatable measurement attributable
to the flutter vibration and discernible above the ‘noise’ in the strain measuring
system. A typical number might be a stress of 10,000 kPa used to define the flutter
boundary. However, small changes in relative airspeed, W , may increase the flutter
stress substantially, or, in the case of ‘hard’ flutter, a small increase in incidence
might have a similar effect. Hence, in keeping with the nonlinear behavior described
in chapter “Stall Flutter”, the contours of constant flutter stress may be quite closely
spaced in some regions of the correlation diagram.

Naturally, when considering three-dimensional effects it is the net energy passing
from airstream to airfoil that determines whether flutter will occur, or not. The stall
ed tip of a rotor blade, for example, must extract more energy from the airstream than
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Fig. 10 Stall flutter boundary

is put back into the airstream by airfoil sections at smaller radii and that is dissipated
from the system by damping.

This total description of stall flutter in turbomachine rotor blades is consistent
with the appearance of the stall flutter boundary as it appears on the following typical
compressor performancemap (Fig. 10), the vibrations are usually confined to the first
two or three stages. This figure may be viewed in conjunction with the performance
maponFig. 4which shows typical angles of attack for a rotor blade tip in the first stage
of a compressor. Keeping in mind that the mass flow parameter ṁ

√
T0/p0 is virtually

proportional to the throughflow velocity in the first few stages of a compressor, it is
clear that any typical operating line as shown on the compressor map will traverse
the flutter boundary somewhat as the dotted line on Fig. 9.

This explains the general shape and location of the region of occurrence of stall
flutter. Experimental determinations confirm increasing stresses as the region is pen-
etrated from below and the specific behavior is a function of the aeroelastic properties
of the individual machine, consistent with the broad principles enunciated here.

8 Choking Flutter

In the middle stages of a multistage compressor it may be possible to discern another
region on the compressor map wherein so-called choking flutter will appear. This
will normally occur at part-speed operation and will be confined to those rotor stages
operating at lower than average incidence (probably negative values are encountered).
The region of flutter will normally lie below the usual operating line on a compressor
map, but individual stages may encounter this type of instability without greatly
affecting operating line; this is particularly true when the design setting angle of
a particular row of rotor blades has been arbitrarily changed from the average of
adjacent stages through inadvertence or by a sequence of aerodynamic redesigns.

The physical manifestation of choking flutter is usually discriminated by a plot
of a stage’s operating line on coordinates of relative Mach number vs. incidence, as
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Fig. 11 Choking flutter
correlation

in Fig. 11. On these same coordinates the choke boundaries are shown; a coincidence
or intersection of these graphs indicate the possible presence of choking flutter and
is usually confined to a very small range of incidence values. The mechanism of
choking flutter is not fully understood. It is related to compressibility phenomena
in the fluid and separation of the flow is probably also involved. The graph labelled
‘2 × Loss ′

min is a locus of constant aerothermodynamic loss coefficient (closely
related to the drag coefficient of an airfoil); the interior of the nose-shaped region
representing low values of loss, or efficient operation of the compressor stage. The
curve labelled ‘choke boundary’ represents the combination of relativeMach number
and flow angle at which the minimum flow area between adjacent blades (the throat)
is passing the flow with the local sonic velocity. Presumably separation of the flow
at the nose of each airfoil on the pressure surface, and the relative motion between
adjacent blades as they vibrate, conspire to change the effective throat location in
a time dependent manner. These oscillatory changes effect the pressure distribution
on each blade in such a fashion (including a phase angle) as to pump energy from
the airstream into the vibration and thus sustain the presumed motion.

Experimental results [13, 14] bear out the general description of choking flutter
described above. The analytically-based predictions [15, 16] lend further credence
to the mechanism, although the aerodynamic formulation is confined to quasisteady
time dependence. Ultimately a satisfactory explanation and prediction technique will
be likely attained with a timemarching computational capability using the compress-
ible Navier-Stokes equations.

Choking flutter occurs in practice with sufficient frequency and destructive poten-
tial as to be an important area for current research efforts as noted above.

9 Aeroelastic Eigenvalues

Traditionally the analytical prediction of flutter has been conducted by computa-
tion of the aeroelastic eigenvalues for the particular system under investigation. In
turbomachines the eigenvalue determinations have been conducted in the frequency
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domain, and the unsteady aerodynamics, excluding separated or choked flow, have
been based on the solutions of the small disturbance equations as described in [3–6]
and elsewhere, and as reviewed effectively in the AGARD Manual [1]. A repre-
sentative sample analysis for the steady loading effect in an infinite cascade was
introduced in Sect. 4. In the literature a large number of additional effects are treated,
including compressibility, finite flow deflection, three-dimensionality, finite shock
strength and shock movement, section thickness and turbine-type geometry.

In every case, however, the initial formulation of the eigenvalue problem for an N -
bladed annular cascade results in a system of mN equations, where m is the number
of degrees of freedom (or else structural modes) assigned to each blade. Since the
disc on which the turbomachine blades are attached will not be completely rigid,
these modeshapes will be ‘system’ modes in which nodal circles and diameters may
be discerned on the disc proper (and its extension into the flow annulus).

− ω2[Mn]{qn} + [Mnω
2
n(1 + ign)]{qn} = πb3ω2[F]{qn} (9.1)

In (9.1) the aeroelastic equation has been specialized for one degree of freedom
per blade (m = 1); hence n ranges from 0 to N -1. This equation, adapted from
Crawley’s Chap.19 in [2], assumes harmonic time dependence at frequency ω and
the nth blade has its individual mass, Mn , natural frequency, ωn , and the structural
damping coefficient, gn . The development leading to (9.1) parallels that for (3.7.32)
for a single foil. (The principal result of considering m > 1 is to replace each matrix
element by a submatrix and enlarge the displacement vector, {qn}).

When the blades on the disc are structurally uncoupled (rigid disc and no inter-
connecting shrouds or lacing wires) the square matrices on the LHS are diagonal and
the equations are coupled only through the aerodynamic force matrix

[F] =

⎡

⎢⎢⎢⎢⎣

F0 FN−1 FN−2 . . . F1

F1 F0 FN−1 . . . F2

· · · ·
· · · ·

FN−1 FN−2 FN−3 . . . F0

⎤

⎥⎥⎥⎥⎦
(9.2)

The matrix is completely populated and each element is an aerodynamic influ-
encecoefficient: the force effect on the row-identified blade due to the motion of the
column-identified blade. These are the terms derivable from the previously described
analytical theories under the assumption of constant interblade phase angle, σ , and
harmonic displacement given by

qn = Re[q̄n exp(iωt)] (9.3)

although Fourier decomposition of the aerodynamic force is necessary to obtain the
form implied by (9.1) and (9.2).

For a ‘tuned’ stage the mass, natural frequency and damping coefficient for every
blade are the same so that the N equations are identical ([F] is circulant) and the

http://dx.doi.org/10.1007/978-3-030-74236-2_3
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complex eigenvalues
ω = ωR + iωI (9.4)

may be obtained from any one of the individual blade equations. Since there are N
possible tuned values of σ , there are N possible [F] matrices and N corresponding
eigenvalues. The particular eigenvalue that obtains in practice will be for those values
of airspeed W (embedded in F) and gn that just produce ωI = 0. That is, the typical
V , g plot is replaced by a family of contours with σ as the parameter. The critical
flutter speed is then obtained by minimizing W with respect to σ , see [10]. In this
sense the aeroelastic behavior of tuned cascades is a straightforward extension of
the single airfoil procedure, to include an additional parameter, the interblade phase
angle.

One of the most intensive recent efforts in turbomachine aeroelastic studies has
been in the area of ‘mistuned’ blade rows. When the mass and/or stiffness of all
airfoils are not identical, or the coupling through the discs or shrouds is not uniform,
then structural mistuning is present. Analogous aerodynamic mistuning results from
nonuniform blade spacing, setting angle of section profile. Such mistuned stages are
inevitably manufactured, subject in degree to inspection and tolerance acceptance
procedures at assembly. The general effect of mistuning is to reduce the symmetry
and cyclical nature of the matrices in the flutter equation, (8.9.1). The character of
the eigenvalue plots and the eigenfunctions become more varied. Thus, at flutter, all
blades are found to vibrate with the same frequency; the relative blade amplitudes
and phase angles are constant with respect to time, but not with respect to location
in the blade row. For each of the eigensolutions, however, there may be associated
a ‘tuned’ interblade phase angle [2]. The most significant effect of mistuning is to
change the value of ωI . If the shift of the least stable eigenvalue is in the direction
of increased stability, the proclivity to flutter is reduced and it is for this reason
that mistuning is considered to be a powerful design tool for improving aeroelastic
stability in cascaded airfoils. Figures12a and 12b adapted from [11] show the effect
of mistuning on the position of the eigenvalues (actually iω rather than ω) for a
14-blade cascade.

It is demonstrated that a necessary but not sufficient condition for aeroelastic sta-
bility is that the blades be self-damped; the effect of a blade’s motion upon itself must
be to contribute positive aerodynamic damping. The unsteady interactions amongst
or between blades in the cascade are destabilizing for at least one possible σ . This
blade-to-blade destabilizing interference is reduced by mistuning and is hence desir-
able.Mistuning, however, can never produce stability when self-damping is negative.
With nonzero structural damping, blades of larger (blade to air) mass ratio are rela-
tively more stable.

The effect of kinematic coupling (e.g. the presence of somebending displacements
in a predominantly torsional mode) may be quite important in determining stability
whereas dynamic coupling (e.g. through the aerodynamic reactions) is usually not
strong enough to be of significance. The effect of mean loading is speculated as being
a possible source of flutter near stall, and stability trends with reduced velocity are
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Fig. 12 a Aeroelastic eigenvalues of a 14-bladed tuned rotor. b Eigenvalues of the same rotor with
‘optimal’ mistuning

discussed qualitatively in [2], noting both structural and aerodynamic implications
of the reduced frequency parameter.

Optimal mistuning as an intentional manufacturing procedure at assembly is an
important concept, although it must be tempered with the knowledge that, under
forced aerodynamic resonance, so-called ‘rogue’ blades may be identified which
will vibrate at dangerously high amplitude. More research on mistuning may be
expected to yield increasingly practical results for the turbomachine aeroelastician
to apply beneficially, see [17–19].
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Fig. 12 (continued)

10 Recent Trends

A number of supersonic flutter regimes have been encountered in practice, see
Regions III, IV and V in Fig. 13. Only Region III flutter, in either pitching or plung-
ing, will usually be encountered along a normal operating line, and then only at
corrected overspeed conditions. Supersonic aerodynamic theories have been devel-
oped to explain and confirm Region III flutter. Low incidence formulations were
reported by a number of investigators, with greatest interest being attached to the
onset flows having a subsonic axial component. The survey papers by Platzer [21–
24] give an excellent summary of the early aerodynamics literature and experience
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Fig. 13 Axil compressor or fan characteristic map showing principle types of flutter and region of
occurrence

up to 1982 including summaries of relevant papers by authors in the former Soviet
Union.

Regions IV and V in Fig. 13 are at higher compressor pressure ratio, above the
normal equilibrium operating line, and, in Region V, may involve stall ing at super-
sonic blade relative Mach number. Unsteady aerodynamic analyses appropriate to
this regime have been presented [25, 26]. For the first time account was taken of the
effect of shock waves which may appear when the surface Mach number exceeds
unity. Flutter observed in these regions have beenmostly flexural, although not exclu-
sively. In Region V stall ing of the flow has been implicated since the region is in
the neighborhood of the surge or stall limit line. Hence Region V is provisionally
termed ‘supersonic bending stall flutter’ and it is assumed that there is a detached
bow shock at each blade passage entrance; i.e., the passage is unstarted. By contrast,
the flutter mechanism in Region IV is thought to involve an in-passage shock wave
whose oscillatory movement is essential for the instability mechanism.

A counterclockwise continuation around Fig. 13 returns one to Region I, divided
earlier in Fig. 10 and which, it now appears, should be divided into more than one
subregion. The so-called system mode instability seems to be associated with the
upper end of this region, and although the blade loading is high, flutter may not
involve flow separation as an essential part of the mechanism. Instead it has been
hypothesized [27] that even with a subsonic onset flow the surface Mach number
can exceed unity locally and oscillating shocks may help explain the appearance
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of negative aerodynamic damping. It seems that these instability mechanisms (sep-
aration, oscillating shocks) may both appear in this general region of the fan or
compressor map, although not both at the same time in a particular machine. Thus
the non-aerodynamic factors, which are not revealed by the map parameters and are
discussed in Sect. 1, may determine which, if any, of these flutter types will manifest
itself in any particular instance. The clarification of this matter is still required so that
Region I is now provisionally labelled Subsonic/Transonic Stall Flutter and System
Mode Instability. Region II, discussed in Sect. 8 and of relatively lesser importance,
is associated with choking of the passage and is labelled Choke Flutter. As such
the role of oscillatory shock waves is again indicated to be important. Hence for
relatively low negative incidence and high enough subsonic relative Mach numbers,
appropriate to a middle stage of a multistage compressor, the mechanism of choke
flutter has many similarities to the transonic stall flutter of Region I. In addition,
some authors [28] add a second sub-region at a larger negative incidence and lower
relative Mach number, and term it negative incidence stall flutter. The choke flutter
mechanism is still controversial; it may involve the type of machine (fan, compressor
or turbine), type of stage (front, middle, or rear) and structural details (shrouded vs
unshrouded, disc vs drum, etc.).

Three-dimensional unsteady cascade flow was first formulated in the 1970s [29,
30]. In order to apply two-dimensional theory to the aeroelastic problems of real blade
systems one must either use a representative section analysis or else apply the strip
hypothesis; i.e., the aerodynamics at one radius is uncoupled from the aerodynamics
at any other radius. In particular, it is known that at ‘aerodynamic resonance’ the
strip theory breaks down and the acoustic modes are strongly coupled radially.

Along with aerodynamic advances the structural description of the blade d-disc
assembly [31, 32], has received a great impetus, and the importance of forward and
backward travelling waves has been firmly established. Within a particular number
of nodal diameters, coupling between modes has been shown to be significant [33]
and the role of the ‘twin modes’ (i.e. sin nφ and cos nφ) in determining propagation
has been clarified. Ford and Foord [34] have used the twin mode concept in both
analysis andfluttermeasurement. Furthermore, the number of nodal diameters affects
the fundamental natural frequencies slightly so that they cluster together. Coupling
of modes with closely spaced frequencies by aerodynamic means therefore becomes
appreciable and the resulting flutter mode may contain significant content from two
or three modes with consecutive numbers of diametral nodes.

A great concentration of studies recently has been in the area of Computational
Fluid Dynamics (CFD) coupled with a Finite Element Method (FEM) description of
the blade and disk structure. Typically these sets of governing equations are solved
interactively in a time marching fashion to yield the developing flutter amplitudes.
Stability limits are not determined directly per se. For nonlinear systems the limit
cycle amplitudes are predictedwhile for linear systems the temporal growth of ampli-
tude identifies those values of the operating variables that lie within the instability
boundary.

Usually in these models only spanwise displacements in plunging, pitching and
surging are allowed, leading to beam -type finite elements for representing a tapered,
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twisted blade of variable cross-section [35, 36]. Consequently, when plate- or shell-
type elements are necessitated by airfoil thicknesses on the order of 4 or 5%, the
chordwise deformations cannot be neglected and full three-dimensional FEM pack-
ages must be utilized. Essentially the camber schedule of the blade profiles change
with time in these cases.

The FEM-based structural analysis is also essential for static aeroelastic studies
in the nascent field of compliant blade performance modification. The compliance
of the blade in an annular cascade represents a passive means of controlling the
aerothermodynamic performance of the turbomachine by aeroelastic tailoring. This
topic comes under the overarching subject of aeroservoelasticity, the application of
automatic control theory to fundamental aeroelastic problems. In the blading of turbo-
machinery the enhanced compliance, and its chordwise distribution, are introduced
intentionally by design. The resulting configuration must be checked for freedom
from dynamic aeroelastic instability, or flutter, over the entire operating range of the
compressor map such as that appearing in Fig. 4. It may be remarked that the concept
of performance “map” will have to be extended to include the parametric ependence
of performance on a representative value of a new dimensionless quantity: the ratio
of the dynamic pressure of the fluid to the Young’s modulus of the structure. In effect
the augmentation of compliance introduces variable geometry into the turbomachine
blading.

The small compliance, or conversely great rigidity, of conventional blades is
responsible for only slight amounts of untwist and uncambering. In the design and
development of traditional turbomachines these effects, in turn, have been reflected
in very slight corrections to the aerothermodynamic performance as compared to
assuming complete rigidity of the airfoils. This situation will be changed with the
application of static aeroservoelasticity to the design of turbomachines with compli-
ant blades.

Applications of unsteadyNavier-Stokes codes to cascaded airfoils appear in refer-
ences [37][38] and [39]. These early studies usingNavier-Stokes solvers for unsteady
flows with moving boundaries are chiefly of interest for computational prediction.
At present the needed confidence and accuracy are not being obtained because of the
inadequacy of the turbulence model in the CFD code and the extreme requirements
on computer capacity alluded to above.

Subjects receiving attention recently that have not been treated fully include such
topics as finite shock motion, variable shock strength, thick and highly cambered
blades in a compressible flow, and the effects of curvilinear wakes and vorticity
transport. These and other large amplitude and therefore nonlinear perturbations,
which prevent the linear super-position implicit in classical modal analysis, have
certain implications relative to the traditional solutions of the aeroelastic eigenvalue
problem. The field of aeroelasticity in turbomachines continues to be under active
investigation, drivenby theneeds of aircraft powerplant, gas turbine and steam turbine
designers.
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Modeling of Fluid-Structure Interaction

Earl H. Dowell and Kenneth Hall

Abstract Modeling of aerodynamic forces has now moved beyond the classical
potential flow theory at least in the research community and to some degree in
engineering practice. Thesemore sophisticated fluidmodels are based upon the Euler
or Navier- Stokes equations and require substantial computer resources. This has led
to the search for reduced order models that retain the higher physical fidelity of such
flow models while still permitting computationally feasible solutions as described in
this chapter.

In the course of preparing this chapter, a bibliography of over 500 references was
prepared and is available from the authors in electronic form upon request.

1 The Range of Physical Models

1.1 The Classical Models

The physical models used in treating fluid-structure interaction phenomena vary
enormously in their complexity and range of applicability. The simplest model is the
very popular “piston theory,” which may be thought of as the limit of potential-flow
models as the frequency of an oscillating body in a fluid becomes large. It also may
be thought of as the double limit as theMach number becomes large, but the product
of the Mach number and amplitude of oscillation normalized by body chord remains
small compared with unity. This simplest theory expresses the fluid pressure p on
the oscillating body at some point x,y and some time t as a simple linear function of
the motion at that same point and instant in time. That is,

p = (ρU/M)

[
∂w

∂t
+U

∂w

∂x

]
, (1)
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where w is a function of x, y and t and is the instantaneous deflection of the body
in the fluid stream, p,U , and M are the free-stream density, velocity, and Mach
number, respectively. This simple fluid mechanics model has been very popular with
structural engineers because it allows the fluid pressure to be incorporated into a
standard structural dynamic with a minimum of additional complexity. But this fluid
model is physically useful over only a limited rangeofflowconditions, and its primary
value is in checking the results from more complex fluid models in the appropriate
limit. There is a nonlinear version of the piston theory, but it still is limited in the
frequency or Mach number range where it is useful. Lighthill [29], in a classic paper
on the subject, notes the analogy with the pressure on a piston face with a certain
oscillating velocity.

The full-potential theory is a much more formidable model to consider, however.
Even if one assumes the flow is inviscid and irrotational, the full potential-flow theory
requires the solution of a nonlinear wave equation for the velocity potential whose
gradient gives the local fluid velocity components and from which the fluid pressure
may be determined via Bernoulli’s equation. See, for example, Dowell et al. [8]. A
well-known simplification is to assume that the motion of the body is small and the
body profile is thin and thus derive a small-perturbation form of the potential-flow
theory that leads to the celebrated linear convected-wave equation for the velocity
potential �; that is,

∇2� − D2�

Dt2
= 0. (2)

where ∇2 is the Laplacian operation and D/Dt is the substantial derivative, which
is, in turn,

D

Dt
≡ ∂

∂t
+U

∂

∂x
, (3)

The solution of the linear convected-wave equation forms the basis for many of
the fluid-structure interaction models that have been used for fluid-structure interac-
tion stability and response analyses of aircraft. These are termed “flutter” or “gust
response” analyses. See for example the texts by Bisplinghoff et al. (1955) and
Fung [16]. Note that, in deriving Eq. 2, the steady flow about which dynamic per-
turbations are taken is a simple, uniform-constant-velocity flow. While a great deal
of understand of unsteady flows has been gained from the study of Eq. 2, for some
flows of interest, a more complex steady flow must be considered, as is discussed
below.

Solving the convected-wave equation per se is not the primary difficulty in deter-
mining the pressure on a wing; rather it is the satisfaction of appropriate boundary
conditions. For example, for a thin wing undergoing bending structural oscillations,
it is required that the (small-perturbation) pressure be zero in the plane of the wing
off the wing surface, but that the fluid velocity normal to the wing surface be equal
to the body or structural velocity on the body surface. Note that, from symmetry and
antisymmetry considerations, one need only consider the fluid in the region above (or
below) the plane defined by the wing (which is treated as a planar body undergoing
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oscillations normal to its surface within the small-perturbation approximation). This
gives rise to a mixed-boundary value problem since the boundary conditions involve
both the unknown velocity potential and its gradient over different portions of the
fluid boundary or solution domain.

The solution to thismixed-boundary problem can be obtained by invokingGreen’s
theorem or Fourier transforms methods to reduce the convected-wave equation, a
partial differential equation in three spatial dimensions with suitable boundary con-
ditions, to an integral equation that relates the downwash created by the body oscil-
lations (the bracketed term in Eq. 1) to the pressure on the wing. In some contexts
this would be called a boundary element approach. Formally,

[
∂w

∂t
+U

∂w

∂x

]
=

∫ t

0

[ ∫ ∫
wing

K (x − x∗, y − y∗, t − t∗) ×

p(x∗, y∗, t∗)dx∗dy∗
]
dt∗ (4)

Here K is a Green’s function, also sometimes called a kernel function, which can be
expressed in terms of elementary functions although in a rather elaborate form. Form
the standpoint of the fluid mechanician, to determine a solution to Eq. 4 is to find
the unknown pressure p for a prescribed downwash. Of course the structural analyst
thinks of solving a companion structural model to determine the body motion and
hence the downwash for a prescribedpressure. Thefluid-structure interaction solution
requires that we solve the fluid and structuralmodels simultaneously for the unknown
pressure and body motion. Normally the solution of Eq. 4 is the more difficult part of
the fluid-structure interaction analysis, not least because the Green’s function K is a
highly singular function that varies as (y − y∗)−2 as y approaches y∗. Nevertheless,
successful numerical techniques have been devised to effect solutions to Eq. 13.4.
Most such solutions are for the special but important case of simple harmonic motion
in time. Of course, from Fourier theory one can in principle determine solutions
for arbitrary time-dependent motion by superposition of the solutions for harmonic
motion. For a thorough elaboration of solution techniques for Eq. 4 for both subsonic
and supersonic flow, see the well-known text by Fung [16], Bisplinghoff et al. (1955),
and Dowell et al. [8]. These solutions today remain the most commonly used in the
design aircraft and are still important for turbomachinery applications as well. Even
so, it has been known for many years that the classical small-perturbation theory has
some substantial limitations. For example, when the flow is transonic with the Mach
number near unity, then shock waves may form, and these must be taken into account
for a physically faithful analysis. Also, in turbomachinery flows, the turning angles
are often so large as to require a nonlinear modeling of the steady flow at the very
least.

http://dx.doi.org/10.1007/978-3-030-74236-2_13
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1.2 The Distinction Between Linear and Nonlinear Models

There are two distinct approaches here. The simplest, although still more complex
than the classical theory of the linear convected-wave equation, is to first determine a
fully nonlinear solution for the steady (time-independent) flow about the body when
the body is not in motion. Thus, the steady-flow solution varies with spatial position
unlike the assumed uniform steady flow of the classical theory. For a transonic flow,
the nonlinear static solution may include a shock wave. Then one considers a small
dynamic perturbation about this steady flow or static solution and assumes that the
subsequent shock motion and all other flow variable vary in a linear fashion with
the body motion. This is usually called a time-linearized or dynamically linear (but
statically linear) model. Such models are discussed in more depth later, in the section
entitled Time-Linearized Models. The governing equation for the dynamically per-
turbed flow is still a linear convected-wave equation, but now the coefficients in the
partial differential equation depend on the steady flow and hence vary with the spatial
coordinates throughout the flow field. For subsonic flow or supersonic flow or super-
sonic flow with a Mach Number well removed from unity, this steady flow may be
approximated by a uniform steady flow with a constant flow velocity U everywhere
in the flow field as in the classical theory for airfoils and wings. Again, for flows in
turbomachinery, one may find the classical approximation less useful.

The solution of the time-linearized equations rather than the full nonlinear equa-
tions usually leads to at least an order ofmagnitude reduction in computer costs and is
often sufficient for describing accurately many interesting physical phenomena, for
example, the onset of instabilities of the fluid-structure system or even of the fluid
alone. The concept of time linearization may be used not only for potential-flow
models, but also in the context of the more elaborate and general Euler equations for
an inviscid rotational flow or even the Navier-Stokes equations for a viscous flow.
As an example of a time-linearized analysis for the Navier-Stokes equations, one
may recall the much studied hydrodynamic stability theory; for example, see the
well-known text by Lin [30].

The other approach is of course to attempt to determine a fully dynamically
nonlinear solution. This approach is discussed in more depth in the section entitled
Nonlinear Dynamical Models and involves the numerical solution of a nonlinear
convected-wave equation for potential flow and more elaborate equations for the
Euler or Navier-Stokes models. Once one is committed to determining nonlinear
solutions, be they steady (static) or unsteady, then normally a finite-difference scheme
in the spatial variable will be required that converts the nonlinear partial differential
equation model in space and time to a very large system of ordinary differential
equations (ODEs) in time only. The size of the system is often very large indeed,
involving 104 to ≥ 106 ODEs. This is the field of computational fluid dynamics
(CFD). See, for example, various review articles on the CFD approach to unsteady
aerodynamics by Tijdeman and Seebass [45], McCroskey [32], Seebass et al. (1986)
and Nixon [34] and Edwards et al. [10].
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1.3 Computational Fluid Dynamics Models

With a CFD approach, one can in principle consider not only the potential-flowmod-
els of irrotational flow, but also the inviscid rotational models of the Euler equations
and indeed the viscous models of the Navier-Stokes equations. As is well known,
however, the computational resources required to treat the Navier-Stokes equations
de novo even today are beyond our capabilities, and therefore various empirical
models of turbulence have been developed so that solutions to the Navier-Stokes
equations can be made computationally tractable. Such empirical models of tur-
bulence effectively allow one to construct a mathematical model that avoids the
nonlinear dynamics of the transition from laminar to turbulent flow. In this review,
we discuss only briefly the basic elements of the CFD approach. However, as will
be emphasized, the important work that has been done over many years by the CFD
community is now beginning to bear fruit for fluid-structure interaction analysis with
the advent of what is usually called reduced-order modeling.

1.4 The Computational Challenge of Fluid Structure
Interaction Modeling

The fluid-structure interaction analyst has a special challenge. If one wished to obtain
solutions for many difference combinations of structural and fluid parameters, then
the solutions to the CFD and other fluid models must be made as computationally
efficient as possible. Typically a design team may wish to evaluate thousands of
parameter variations as various structural elements are changed in the design process.
For many years, in the analysis of complex structures, the finite-element model
for a structural body undergoing oscillations has been “reduced” in size by first
finding the natural or eigenmodes of the structure and then recasting the finite-
element structural model in terms of these modes, using, for example, Lagrange’s
equations from classical dynamics. Typically a finite-element structural model of a
few thousand degrees of freedom has been reduced to a modal model with a few
tens of degrees of freedom. See, for example, Dowell et al. [8]. This reduces not
only the size of the model but also the computational cost by orders of magnitude,
while providing new insights into the physical phenomena through a consideration
of the structural modal behavior. Such an approach has only recently been proposed
and successfully pursued for fluid models. However in the last few years it has been
shown that such an approach gives remarkable benefits in terms of computational cost
savings and also in terms of increasing our insight into the dynamics of fluid models
by considering their modal structure. Hence, in this review considerable attention is
given to these new developments. See the section entitled Reduced-Order Models
below. Now, we turn to a more thorough exposition of some of the issues we have
touched upon so far.
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2 Time-Linearized Models

Time-linearized models are a broad and very interesting class of fluid models that are
extremely powerful and useful in dealingwith fluid-structure interaction phenomena.
First, a few special cases that are well known in the literature are considered, and
then the general case is treated. For the reader who prefers deductive to inductive
reasoning, the general case is treated at the end of this section and may be consulted
first. The basic notion is that a steady-flowfield is first determined that is the base flow
about which a dynamic, small perturbation is considered. Only linear terms in the
dynamic perturbation are retained, and thus the governing equations for the dynamic
perturbation are linear in the dynamic or time-dependent unknowns with coefficients
that depend on the (nonlinear) base steady-flow or static-equilibrium solution.

2.1 Classical Aerodynamic Theory

In classical aerodynamics, the base flow is taken to be the simplest imaginable, that
is, a uniform steady flow. Physically this may be thought of as the flow around an
infinitesimally thin, flat plate aligned with a uniform oncoming flow velocity. Or
to say it another way, any thickness or profile deviation from a thin flat plate gives
rise to a small perturbation to the uniform flow itself so that the effects of finite
thickness, airfoil or wing profile (camber or curvature), and airfoil or wing motion
can be treated separately as linear perturbations to the uniform steady flow, and
therefore their effects may simply be added together or superimposed. Hence, the
governing equation for a potential flow is Eq. 13.2, as previously discussed. Much
of the literature on fluid-structure interaction uses this model. And it is perhaps the
simplest model that is based on time linearization. However there are others.

2.2 Classical Hydrodynamic Stability Theory

One of the most fascinating issues in unsteady fluid mechanics is the transition from
laminar to turbulent flow. Some of the most famous investigators in the field of
fluid mechanics have addressed this issue, for example, Werner Heisenberg, G.I.
Taylor, and Theodore Von Karman (see Lin [30]). A central question is under what
circumstances a laminar flow loses its stability and begins the process of transition to
turbulence. Hydrodynamic-stability theory examines the small dynamic perturbation
of a laminar flowfield and determines the condition for the loss of stability. The theory
is a subtle one, and a connected and authoritative account is provided by Lin [30]
in his celebrated book. The best known aspect of this theory is that which considers
the stability of a parallel shear flow. In this model the underlying steady flow is a
nonlinear viscous solution to Navier-Stokes equations, but to simplify the model and

http://dx.doi.org/10.1007/978-3-030-74236-2_13
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subsequent calculations, the steady flow is often assumed to vary only normal to a
flat plate of infinite extent, but not to vary in the flow direction or in the spanwise
direction. Hence, the steady flow is a function of only one spatial variable in the
direction transverse to the plate and the flow. Therefore, in the dynamic perturbation
analysis, the governing equation is a linear one show coefficients depend only on
the transverse spatial variable. This allows a Fourier decomposition in both time
and the spatial direction aligned with the flow (and in the spanwise direction as
well). This leads then to the famous Orr-Sommerfeld equation which has challenged
fluid mechanicians for many years. The assumption of a parallel shear flow over
an infinite plate may or may not model all the interesting physics of a spatially
evolving viscous steady flow on an airfoil, of course. The invocation of this severe
assumption is a measure of the complexity of considering the spatially developing,
steady-boundary layer and its dynamic perturbationwhen the hydrodynamic-stability
theory was first being developed more than 50 years ago. This restrictive assumption
has been attacked by subsequent investigators, but the range of geometries considered
to date has still been somewhat limited.

2.3 Parallel Shear Flow with An Inviscid Dynamic
Perturbation

A further simplification to hydrodynamic-stability theory that is sometimes useful
is to neglect the viscous terms in the dynamic perturbation per se, but still include
their effect in determining the steady flow. This may be thought of as an inviscid
perturbation about the viscous steady flow. While such a model clearly cannot treat
the stability of the viscous steady-flow field per se, it may be useful in computing
the pressure on a wall over which the boundary layer thickness does not vary greatly.
By scaling arguments, one may deduce when the neglect of the viscous terms in
the dynamic perturbations may be justified. Such a model has been proposed by
Miles [33] andAnderson and Fung [1] in the context of fluid-structure interaction and
has been applied successfully by Dowell [6] to the determination of the stability of an
elastic plate interactingwith aflowstream, the so-called panel flutter problem.Dowell
has shown that the boundary layer effect on the unsteady aerodynamic pressure is
most pronounced for transonic flows and is relatively less important for subsonic
and supersonic flows, in agreement with the experimental evidence.

Formally, for a slowly varying boundary layer thickness, one may also determine
the solution for the pressure on an airfoil or wing, using the shear flow model.
Specifically, one may derive a new Kernel or Green’s function so that the solution
techniques of classical aerodynamics may be applied. But this model has not been
widely used, although it may have some utility for treating the effect of a boundary
layer on a wing control surface, for example (see Chi and Dowell [4]).
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2.4 General Time-Linearized Analysis

To consider the most general case, we consider a generic form of a CFD model
in which, for example, a finite-difference technique is used to convert the partial
differential equations of a nonlinear flow model, whether potential, Euler, or Navier-
Stokes, to a large system of ODEs in time. Thus, formally, one has

∂

∂t
{q} = {Q(q)} + {B(x, y, z, t)}. (5)

Here q is a vector of unknown variable to be determined throughout the flow field,
Q is a known function of the q (i.e. for a given q, one knows Q), and B is some
known function that expresses the motion of a structure or body in the fluid. Of
course there are additional parameters determined by the far upstream conditions
and the properties of the fluid, for example, the upstream Mach number. Formally, a
dynamic-perturbation analysis may proceed as follows: one sets

B = B0 + B̂(t),

q = q0 + q̂(t). (6)

WhereB0 and q0 depend only on x, y, z, but not on t , that is, they form a steady-flow
solution to Eq. 13.5. Substituting Eq. 13.6 into Eq. 13.5 and retaining only linear
terms in q̂, one has the governing linear small-perturbation equations for q̂ which
have coefficients that depend on the steady-flow solution, q0 , as follows:

∂

∂t
{q} =

[
∂Q
∂q

∣∣∣
q=q0

]
{q̂} + {q̂}. (7)

Standard and novel means for solving large systems of such equations have been
developed.

Note that if B̂ = 0 in Eq. 7, then one has a eigenvalue problem. This can be
exploited effectively by first solving the eigenvalue/eigenvector problem and recon-
stituting Eq. 7 in terms of a small number of eigenvectors or eigenmodes. This leads
to one class of so-called reduced-order models (ROMs). All such ROMs, which are
discussed in more detail below, are based on this notion of a few dominant modes
that may be represented by some relatively small linear combination of eigenmodes.
However, even without appealing to eigenmodes per se, the solution of Eq. 7 offers
an attractive and powerful way of describing unsteady flows. This is especially the
case if we consider simple harmonic motion and use a Fourier series (for periodic
motion) or Fourier integral (for arbitrary time-dependent motion) to construct the
solution for any time dependence from the basic solution of harmonic motion.

Here we emphasize the physical effects that such time-linearized models may
include. For example, the steady flow may include shock waves and also separated
flows. The dynamic perturbation ansatz does require that the oscillations of shocks

http://dx.doi.org/10.1007/978-3-030-74236-2_13
http://dx.doi.org/10.1007/978-3-030-74236-2_13
http://dx.doi.org/10.1007/978-3-030-74236-2_13
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or separated flow regions be sufficiently small, but there are many flow conditions
in which that is true. For example, if a small dynamic perturbation is assumed, it is
required that shock wave motions be small compared with the airfoil or wing chord
and that the dynamic variation in shock strength, for example, the jump in pressure
through the shock, be small compared with that of the steady shock. Similar restric-
tions apply to separated flow regions. Also, of course, limit cycle oscillations due to
fluid nonlinearities are not modeled when time linearization is assumed. Note, how-
ever, that the effects of turbulence can be included formally within the framework of
the empirical turbulence models frequently used in CFD application, e.g. Baldwin-
Lomax models, k − ε models, etc. In this regard it is worth noting that to construct
a dynamical perturbation model one needs to be able to differentiate Q with respect
to q. Doing this for the original fluid equations, e.g. Euler or Navier-Stokes, is not
a problem, at least formally. However some empirical turbulence models introduce
nondifferentiable functions that can pose practical computational difficulties in con-
structing dynamic-perturbation models. Of course, if one has an exact steady-flow
solution of the steady Navier-Stokes equations, then a dynamic-perturbation anal-
ysis follows without any especial difficulty. In particular it may be noted that such
models allow, in principle, a hydrodynamic-stability analysis that fully accounts for
the spatial distribution of a laminar steady flow prior to its becoming unstable.

2.5 Some Numerical Examples

As a typical example, we show results from a computation by Florea et al. [14] for a
separated flow over a cascade of airfoils. One purpose of this example is to show that
one can calculate quantities such as the time variation of boundary layer thickness
and skin friction as well as pressure or pitching moment on an airfoil with such
models. Here an empirical turbulence model has been used in the CFD code, and a
time-linearized solution has been developed. See Figs. 1 and 2.

3 Nonlinear Dynamical Models

A nonlinear dynamical model is almost invariably cast in the form of a CFD model
with spatial discretization by finite-difference techniques or other methods. Thus one
starts with a system of ODEs such as those of Eq. 13.5. The most popular form of
solution for such equations has been a time-marching technique. However, there are
severe practical computational difficulties associated with the size of such system of
equations, which may be on the order of 106, and equally important, with the small
step in time that one must take with such equations because of numerical stability
considerations. In the language of numerical analysis, these equations are “stiff.”
The end result has been that such models have been infrequently used beyond the
research community. Even for research purposes, when such CFD models are used

http://dx.doi.org/10.1007/978-3-030-74236-2_13
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Fig. 1 Real and imaginary
(Imag) pitching moment for
airfoils pitching about a point
near midchord for a range of
reduced frequencies.
� = 620; σ = 900.
(Republished from Florea et
al. [14] with permission)
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in combination with structural models, the range of the parameter space that can
be explored has been relatively modest. Nevertheless, substantial progress has been
made and some techniques have been developed tomake suchmodels more attractive
computationally. Three are discussed here. First to be discussed are harmonic-balance
techniques, which effect a solution in the frequency domain. Second are system
identification techniques that allow the nonlinear (and linear) models to be expressed
more compactly. The latter, used in combinationwith the third approach, i.e. reduced-
order-modeling techniques, offers considerable promise for future development, as
does the harmonic-balance methodology.

3.1 Harmonic Balance Method

In the harmonic-balance method, one takes the time dependence of the solution to
be a Fourier series in time, for example,
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Fig. 2 Real and imaginary
(Im) parts of unsteady
displacement thickness for
airfoils pitching about a
point near midchord.
� = 620; σ = 900; ω̄=0.5.
(Republished from Florea et
al. [14] with permission)
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q =
∑
m

qmeiω0mt . (8)

Lan and his coworkers (Greco et al. [17, 18] and Hwang and Lan [26]) have used a
single term in such a Fourier expansion and investigated the nonlinear potential-flow
model in a series of interesting papers. Of course for sufficiently small amplitudes
of airfoil or wing motion (and therefore fluid motion), a single-term approximation
may suffice. In the limit of infinitesimal motion, such an analysis becomes a time-
linearized model. More recently, Hall and his coworkers (2000) have considered
multiple harmonic terms in theFourier series and developed computationally efficient
methods for extracting the nonlinear solution to the Euler equations. Lan and his
coworkers (Greco et al. [17, 18] and Hwang and Lan [26]) have applied his method
to airfoils and wings, while Hall developed his methodology for turbomachinery
applications to cascades of airfoils. Hall et al. [19] have shown that a few harmonics
are normally sufficient to describe the flow field accurately, even for rather large



450 E. H. Dowell and K. Hall

airfoil and fluid motions. Both Lan and Hall note that a harmonic balance approach
allows the analyst to take advantage of the many computational-solution techniques
that have been developed for steady-flow solvers over the years.

3.2 System Identification Methods

Several authors have considered system identification methods. Among these,
Silva [40, 41] has suggested the adaptation of the Volterra/Wiener approach that
has been developed in the field of signal processing. Formally, by considering a
small number of inputs (structural motions) and outputs (e.g. lift and moment on
an airfoil), the nonlinear input/output relationships can be modeled with a relatively
small number of equations. This approach has considerable promise; however, if the
inputs or outputs of interest change, then the model must be reconstructed. Also the
dynamics of the system are essentially treated as a “black box”, and the internal
dynamics of the total governing equations and hence the fluid are to some degree
masked by this approach.

Silva chooses the integral formulation for the input/output model and defines a
hierarchy of impulse or temporal Green’s functions. For example, if y(t) is a typical
output and u an input, then following Volterra andWiener, one may postulate a form
of input/output relationship as follows:

y(t) =
∑
n

∫ ∞

−∞
hn(σ

∗
1 , σ ∗

2 , .....)u(t − σ ∗
1 )u(t − σ ∗

2 )....dσ ∗
1 dσ

∗
2 ... (9)

The corresponding differential equation form is

∂y

∂t
= A0 + A1y + A2y

2 + ...... + An y
n + Bu (10)

Silva suggests techniques for deducing hn in Eq. 9, and there are also methods in the
literature for deducing the coefficients, A0, A1, .....An, etc, in Eq. 10, given u and
with y determined by a numerical simulation. Please note that, formally, Eq. 10 may
be obtained from Eq. 5 by expanding Q(q) in a Taylor series and noting that there
exists a linear transformation between y and q. Note that, while Eqs. 9 and 10 are
written here as scalar equations for simplicity, there are generalizations to a vector
form available.

3.3 Nonlinear Reduced-Order Models

Of course formally one may determine a modal representation for q from a time-
linearized analysis and use these modes to reduce the full nonlinear dynamical model
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(see Eq. 5). Such a technique has been used for structural models of relatively high
dimension for some years, (e.g. see Dowell [7]), but it is only now being explored
for CFD models. The nonlinear dynamic models are a subject of current research,
but it does appear that there are several promising alternatives that may lead to
advances in our ability to deduce more compact models, which will lead to a greater
understanding of such models and improve their computational efficiency.

3.4 Reduced-Order Models

The use of CFDmodels for systematically investigating unsteady aerodynamic flows
has been a goal since the advent of the computer age. Many investigators have
demonstrated the potential utility of CFD for improving the physical modeling of
complex unsteady flows. However, until recently the computational cost associated
with the high dimensionality of these models has precluded their use in routine
applications for studying aeroelastic phenomena. Thus the research literature has
been voluminous, but the applications in industry have been relatively few in number.

Recent work on a conceptually novel and computationally efficient technique for
computing unsteady flows based on the modal character of such flows is described
below. Eigenmode-based, reduced-order models (ROMs) are given prominence
although other related modal descriptions also prove useful and are discussed as
well.

Why study the eigenmodes of unsteady aerodynamic flows? This is perhaps the
fundamental question most often asked, although occasionally someone will express
surprise that eigenmodes even exist for these flows. The reason are several:

1. Eigenvalues and eigenmodes for these flows do exist! So perhaps they can tell us
something about the basic physical behavior of the flow field.

2. Indeed, if a relatively small number of eigenmodes are dominant, this immediately
suggests a way to construct an efficient computational aerodynamic model using
these dominant modes.

3. Constructing the aerodynamic model in eigenmodal form is a particularly attrac-
tive way to combine the eigenmode aerodynamic model with a number of degrees
of freedom for a given desired level of accuracy. These aeroelastic models will be
especially useful for design studies, including the active control of such systems.

4. Finally, as will be seen, alternative modal descriptions are available. While their
usefulness is predicated on the existence of eigenmodes, these other modal
descriptions seek to induce more information on the flow response to enhance the
accuracy of a reduced model of a given dimension or reduce the dimension for
a required accuracy compared with a standard eigenmode representation. More-
over, for one descriptor, the so-called proper orthogonal decomposition (POD)
modes, one may avoid the necessity of a tedious direct eigenvalue evaluation of
the CFD equations, a major advantage of using these modes.
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For a more in depth discussion of this work, see, for example, Hall [21], Dowell
et al. [5, 9]; earlier work is noted in those references.

3.5 Constructing Reduced Order Models

There are two distinct ways of going about constructing ROMs, although there are
manyvariations on the basic themes.One approach is to characterize the aerodynamic
flow field in terms of a relatively small number of global modes. By a mode we mean
a distribution of flow field variables that characterizes a gross motion of the flow.
The conceptually simplest way of choosing such a set of modes is to consider the
eigenmodes of the flow field. Of course, such modes form a complete set, and any
flow field distribution can be expressed in terms of such eigenmodes. Formally,
the eigenvectors are used to effect a linear transformation from the original set of
(local) flow variables used in the CFD model, such as pressure, density, and velocity
components at a spatial grid point, to a new modal set of global coordinates. The
new modal equations are uncoupled due to the orthogonality of the eigenvectors. In
particular any alternative modal selection, and we consider several, can always be
expressed in terms of such eigenmodes.

Indeed, it is the existence of eigenmodes that underpins any modal description of
the flow. As with other simpler mechanical systems, it is the hope and expectation,
borne out in the results to be shown later, that a relatively small number of modes
will prove adequate to describe the flow. Thus, a typical CFD model, which may
have 104 to 106 or more degrees of freedom, may be reduced to a model containing
only 101 to 102 modes, which is capable of accurately describing the pressure on an
oscillating aerodynamic surface.

The second category of ROMs does not explicitly rely on a modal description per
se, but rather appeals to the idea that only a small number of inputs, that is, structural
motions or modes, and a correspondingly small number of outputs, that is, general-
ized forces or specific integrals of the aerodynamic pressure distribution weighted
by the structural mode shapes, are of interest. Hence one may construct, for example,
a transfer function matrix whose size is determined by the number of inputs and out-
puts. Typically the size of this matrix will be on the order of the number of structural
modes. The transfer functions are determined numerically using a systems identi-
fication technique from time simulations calculated by using the CFD code. If the
number or type of inputs, that is, the structural modes, changes during an aeroelastic
simulation, then the aerodynamic-transfer functions may need to be recalculated. On
the other hand, the CFD code does not require deconstruction to determine aerody-
namic modal information, thereby saving this additional effort but also foregoing
the additional insight and flexibility gained by knowing the aerodynamic modes.
Changes in the structural modes do not change the aerodynamic eigenmodes, of
course, but changes in the structural modes may require recalculation of the transfer
functions of aerodynamic input/output models.
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3.6 Linear and Nonlinear Fluid Models

Two points that arise in the use of a model representation are worthy of mention. For
nonlinear dynamical systems, it is possible to extend the idea of a linear eigenmode
itself to nonlinear eigenmodes. See, for example, the book by Troger and Steindl [46]
and Chap. 7 of the present book for a readable account of these ideas. This point has
some theoretical interest. However, these nonlinear eigenmodes still lead to coupled
modal equations, so their value in practice is often not substantially greater than
that of linear eigenmodes for ROM systems of several (say 10 or more) degrees of
freedom.

The second noteworthy point is that, if one determines the linear eigenmodes for
say one airfoil-Mach number combination and then uses an eigenvector transforma-
tion for another airfoil-Mach number combination, then the corresponding modal
equations will also be coupled even in the linear terms. This, of course, is because
we have used the eigenmodes of one fluid system to represent the dynamics of a dif-
ferent fluid system. That is, orthogonality of the modes only holds for eigenmodes
used for the same dynamical system from which they are derived. Nevertheless, if
the eigenvectors do not change appreciably with, for instance, Mach number, these
coupled modal equations may still be adequate, and thus one may avoid recomputing
the eigenvector for each change in Mach number.

3.7 Eigenmode Computational Methodology

For the simpler (lower dimensional) fluid models, for example, a two-dimensional
vortex lattice model of unsteady flow about an airfoil, the size of the eigenvalue
matrix is on the order of 100× 100. For suchmatrices, standard eigenvalue extraction
numerical procedures may be used. We have used EISPACK, a standard algorithm
and computer code available in most computational centers in the United States.

Formore complicatedfluidmodels (e.g. the full potentialmodels or Eulermodels),
the order of the eigenvalue matrix may be in the range of 1000–10,000 squared or
greater. For matrices of this size, new developments in eigenvalue extraction have
been required. We have used methods based on the Lanczos algorithm. For the full-
potential equation (1000 × 1000), an efficient and effective algorithm is described
by Hall et al. [22]. For the Euler equations (104 × 104 ), the paper by Romanowski
and Dowell [37] will be of interest. The discussion by Mahajan et al. [31] is also
recommended to the reader. As the extensions to three-dimensional and viscous
flows are made, further developments in eigenvalue and eigenmode determination
will likely be required or desired.

To improve the convergence of the eigenmode ROM representation, that is, to
reduce the number of eigenvectors retained, a so-called static-correction method is
useful, as was first noted by Hall. In this approach, Eq. 7 is first solved by setting the

http://dx.doi.org/10.1007/978-3-030-74236-2_7
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left-hand side to zero, and then a correction is determined by expanding the difference
between this solution and the full solution of Eq. 7 in terms of eigenmodes.

However an alternative method may be preferable, as described below.

3.8 Proper Orthogonal Decomposition Modes

Given the difficulty of extracting eigenmodes for very high-dimensional systems (e.g.
> 104 ), it is of great interest to note that a simpler modal approach is available, as
recently developed by Romanowski [36]. This approach adapts a methodology from
the fields of nonlinear dynamics and signal processing, that is, the POD or Karhunen-
Loeve (KL) modal representation. See Romanowski [36] for an introduction to the
relevant literature in this field.

Here we quote Romanowski’s account of the essence of the method.

Karhunen-LoeveDecomposition (KLDecomposition) [also calledproper orthogonal decom-
position (POD)] has been used for a broad range of dynamic system characterization and
data compression applications. The procedure, which is briefly summarized below, results
in an optimal basis for representing the given data ensemble.

The instantaneous flow field vector, q j , is retained at J discrete times, such that j =
1, 2, 3, ....J. A caricature flow field, q̄ j , is defined as the deviation of each instantaneous
flow field from the mean flow field, q̄ j , of the ensemble:

q̃ j = q j − q̄ j . (9)∗ (11)

A1 matrix � is formed as the ensemble of the two-point correlation of the caricature flow
fields, such that

� jk = q̃Tj q̃
T
k . (10) (12)

References (10) and (12) [of Romanowski 1996] show that solving the eigenvalue problem

[�]{v} = λ{v} (11) (13)

produces an optimal set of basis vectors, [V] = [{v1}, {v2}, ....{v j }] for representing the
flow field ensemble. Additionally, the magnitude of the eigenvalue, λ j gives a measure of
the participation of the j th KL [or POD] eigenvector in the ensemble. Therefore, a reduced
set of basis vectors can easily be found by limiting the set to only those KL eigenvectors
corresponding to sufficiently large eigenvalue.

Since the number of time steps and thus the order of matrix needed to compute
a reasonable and useful set of KL or POD modes is typically on the order of 1000,
the determination of POD modes is computationally very inexpensive, especially
as compared to determining the eigenmodes of the original fluid dynamics model.
In the subsequent section, results using POD modes are shown to be in excellent
agreement with those obtained from the full-order model and also the ROM based
on eigenmodes. It also might be noted that one can first use the POD decomposition
to reduce the order of the original model and then do a further eigenmode analysis
of the ROM, a technique that may be useful for some applications.

1 The first equation number is from the original reference Romanowski [36].



Modeling of Fluid-Structure Interaction 455

As a final comment on the POD or KL methodology, it is important to note that
a similar calculation may be done in the frequency domain by assuming simple
harmonic solutions and replacing the data at discrete time steps with data at dis-
crete frequencies over a frequency internal of interest. Kim [28] has used the POD
frequency domain method for a vortex lattice fluid model and Hall et al. [20] and
Thomas et al. [44] have done so for an Euler fluid model, including shock waves at
transonic conditions.

3.9 Balanced Modes

Baker et al. [2] have used this methodology originally developed in the controls
community to develop reduced-order aerodynamic models. Rule et al. [38] have
explored this method as well. This basic notion is that balanced modes are in some
sense an optimal descriptor within the framework of POD modes for a given family
of inputs or structural motions and the aerodynamic outputs of interest. See also the
discussion of balanced modes in the Appendix.

3.10 Synergy Among the Modal Methods

In light of the above discussion, the following methodology appears to be a practical
andperhaps even anoptimumapproach.With a givenCFDmodel, a set of PODmodes
can be constructedwith on the order of 102 − 103 degrees of freedom. Then, using the
POD modes and the corresponding ROM (POD/ROM), a further reduction may be
obtained by extracting eigenmodes or balancedmodes from thePOD/ROM.For some
applications in which the smallest possible model is desired, for example, design
for active control of an aeroelastic system, this further reduction will be desirable
and perhaps essential. However, for validation studies where the identification and
understanding of the most critical modes for stability are the primary issue, one may
prefer to retain a POD/ROM or an eigenmode ROM.

3.11 Input/Output Models

There is a long tradition of developing aerodynamic transfer function representations
from numerical data for simple harmonic motion dating from the time of Jones’s
approximation to the Theordorsen function. Much of the relevant literature is sum-
marized by Karpel [27], whose own contribution was to develop a state-space or
transfer function representation of minimum order for a given level of accuracy
by using transfer function ideas based on data for simple harmonic motion. Hall et
al. [20] have recently discussed suchmodels in light of themore recent developments
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in aerodynamic modal representations. Their discussion follows. See Bisplinghoff
et al. (1955) and Karpel [27] for references to the original literature.

Investigators have developed a number of techniques to reduce the complexity of unsteady
aerodynamic models. R.T. Jones approximated indicial lift functions with series of exponen-
tials in time. Such series have particularly simple Laplace transforms, i.e., rational polynomi-
als in theLaplace variables,making themespecially useful for aeroelastic computations. Pade
approximants are rational polynomials whose coefficients are found by least-squares curve
fitting the aerodynamic loads computed over a range of frequencies. Vepa [48], Edwards [11],
and Karpel [27] developed various forms of the matrix Pade approximant technique. Their
approach reduces the number of so-called augmented states needed to model the various
unsteady aerodynamic transfer functions (lift due to pitching, pitching moment due to pitch-
ing, etc.) by requiring that all the transfer functions share common poles.

. . . [A POD or eigenmode model] is similar in form to that obtained using a matrix Pade
approximate for the unsteady aerodynamics...and has some of the same advantages of the
Pade approach. Both methods produce low degree-of-freedom models. Furthermore, both
require the aerodynamic lift and moment transfer functions to share common eigenval-
ues (although the zeros are obviously different). This is appealing because physically the
poles should be independent of the type of transfer function. However, the present (modal)
approach has several advantages over the matrix Pade approximate method. The present
method attempts to compute the actual aerodynamic poles, or at least the poles of a rational
CFD model. The Pade approach, on the other hand, selects pole locations by some form of
curve fitting (of aerodynamic data for simple harmonic motion). In fact, some Pade tech-
niques can produce unstable aerodynamic poles, even for stable aerodynamic systems.

It is interesting that the notion of a transfer function can be extended to nonlinear
dynamical systems where the counterpart is usually called a describing function.
Ueda and Dowell [47] pioneered and discussed this approach. The describing func-
tion may be considered a single harmonic-balance method.

In the time domain transfer functions can be inverted to form convolution inte-
grals. Silva [40, 41] has recently pioneered the extension of these ideas to nonlinear
aerodynamic models, using the concept of a Volterra integral.

3.12 Structural, Aerodynamic, and Aeroelastic Modes

Structural modes have a long and rich tradition. The novelty of much that is being
discussed here is to extend such ideas to aerodynamic flows that also possess a modal
character, albeit a more complex one. And finally there are aeroelastic modes one
may consider.

For the determination of structural modes, one normally neglects dissipation or
damping and thus only models kinetic energy (or inertia) and potential strain energy
(or stiffness) of the structure. The eigenvalues are real (the natural frequencies
squared) as are the corresponding eigenmodes. Physically, if one excites the structure
with a simple harmonic oscillation at a frequency near that of an eigenvalue, the
structure will perform a simple harmonic oscillation at that same frequency, whose
spatial distribution is given by the corresponding eigenvector.
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For aerodynamic modes (and also for aeroelastic modes), the physical interpreta-
tion as well as the mathematical determination of the eigenvalues and eigenvectors
or eigenmodes is more subtle and difficult, but still rewarding. First of all, the eigen-
values are complex, with the real and imaginary parts of the eigenvalue giving the
oscillation frequency and rate of growth or decay (damping ) of the eigenmode. As
for a structural modes, if one is clever enough to excite only a single aerodynamic
eigenmode, then an oscillation will occur whose spatial distribution is given by the
corresponding eigenvector. However, the eigenvalues of an aerodynamic flow are
closely spaced together, typically much more closely than the eigenvalues for struc-
tural modes. Indeed, if the aerodynamic computational domain were extended to
infinity, then the eigenvalues would no longer be discrete but rather would form a
continuous distribution for most aerodynamic flows. Thus, exciting only a single
aerodynamic mode experimentally is a difficult feat. For some turbomachinery flows
with bounded flows between blades in a cascade, discrete well-spaced eigenvalues
are possible that have a resonant character (see Hall et al. [22]). This is also true for
some aerodynamic eigenmodes in a wind tunnel, of course. And these have been
observed experimentally (see Parker [35]).

Aeroelasticmodes are those that exist when the structural and aerodynamicmodes
are fully coupled; that is, oscillations of a fluid mode excite all structural modes and
vice verse. In general, these aeroelastic modes also have complex eigenvalues and
eigenvectors. At low speeds (well below the flutter speed, for example) one may usu-
ally identify the structural and aerodynamic eigenvalues separately, because struc-
tural/aerodynamic coupling is weak. However, as the flutter speed if approached, the
eigenvalues and eigenvectors may change substantially, and the fluid and structural
modes become more strongly coupled. It is even possible for a mode that is aerody-
namic in origin at low speeds to become the critical flutter mode at higher speeds,
although normally it is one or more of the structural modes that become unstable as
the flow velocity approaches the flutter speed.

Winther et al. [49] have suggested using aeroelastic modes to reduce the total
number of modes to be used in a simulation of overall aircraft motion. This seems
like an idea worth exploring, although aeroelastic modes by definition vary with
flow condition, that is, dynamic pressure and Mach number, and thus the aeroelastic
modes at one flight condition will not be the aeroelastic modes at another. Of course,
if one uses a sufficient number of aeroelastic modes, they will be able to describe
accurately the system dynamics at any flight condition, but that tends to defeat the
purpose of minimizing the number of modes in the representation.

Also it should be noted that the particular implementation of aeroelastic modes
in Winther et al. [49] does not include aerodynamic states or modes per se, which
limits that particular approach when the aerodynamic modes themselves are active
and couple strongly with the structural modes. This is probably the exceptional case,
but one which can occur.
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3.13 Representative Results

Dowell et al. [9] have discussed (a) comparisons of the ROM to classical unsteady,
incompressible aerodynamic theory, (b) reduced-order calculations of compressible
unsteady aerodynamics based on the full-potential equation, (c) reduced-order cal-
culations of unsteady flow about an isolated airfoil based on the Euler equations, (d)
reduced-order calculations of unsteady viscous flows associated with cascade stall
flutter, and (e) linear flutter analyses using ROMs.

In the present discussion, recent results for transonic flows with shock waves,
including viscous and nonlinear effects, are emphasized. Before turning to these,
however, we consider some fundamental results concerning the effects of spatial
discretization and a finite computational domain.

3.13.1 The Effects of Spatial Discretization and A Finite
Computational Domain

For simplicity, we use a classical numerical model, the vortex lattice method, for an
incompressible potential fluid, to illustrate the points wewish tomake. Compressible
potential-flow models and Euler flow CFD models have provided numerical results
consistent with those obtained from the vortex lattice models in this regard. The
results discussed here are from Heeg and Dowell [24].

In CFD there are two approximations that are nearly universal to all such models.
One is the construction of a computational grid that determines the limits of spatial
resolution of the computational model. The second is the approximation of an infi-
nite fluid domain by a finite spatial domain. It is a principal purpose of the present
discussion to note that the computational grid determines not only the spatial reso-
lution obtainable by the CFD model, but also the frequency or temporal resolution
that can be obtained. Further, as is shown, the finiteness of computational domain
determines the resolution of the eigenvalue distribution for a CFD model. Both of
these observations have important ramifications for assessing the CFDmodel and its
ability to provide an adequate approximation to the original fluid model on which it
is founded, as well as being helpful in constructing and understanding ROMs.

In the following discussion, we consider both discrete-time and continuous-time
eigenvalues. Even in a high dimensional system such as usually encountered with
CFD, the relationship between anydynamical variable, such as vortex strength, veloc-
ity potential, flow velocity, density, pressure, etc, and its time evolution as expressed
for the determination of eigenvalues and eigenvectors is a simple one. For a given
dynamic variable q̂, which changes with time t , the eigenvalue relationship from a
time-linearized model is

q̂ = Aeλt , (14)

where λ is the continuous-time eigenvalue. For a discrete time representation in
which the time step is 
t , we define the discrete-time eigenvalue z as the ratio of q̂
to its value one time step earlier. It is easily seen then that
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Fig. 3 Influence of varying the number of aerodynamic elements of the vortex-lattice model,
while maintaining the number of elements. Shown are continuous-time real and imaginary (Imag)
eigenvalues, λ. (Republished from Heeg and Dowell [24] with permission)

z = eλ
t

or
λ = log(z/
t). (15)

It will be useful in our discussion to consider both λ and z.
Here we use the vortex lattice model, because (a) it is one of the simplest CFD

models, (b) it has been widely used, and (c) among practitioners, it is thought to be
well understood in terms of its capability and limitations. As noted earlier, similar
results are obtained from more elaborate CFD models, which include the effects of
flow compressibility, rotationality, and/or viscosity.

As an example, we consider the flow over an airfoil with a certain number of
vortex elements on the airfoil and in the wake. Initially, we select 20 elements on
the airfoil and 360 elements in the wake. The length of the finite wake extends 18
chord lengths. The eigenvalues and eigenmodes of the flow can be computed by
now well-established methods for a relatively small eigenvalue system, for example,
< 1000.

The eigenvalue distribution for λ is shown in Fig. 3. Note that the real part of the
eigenvalue is the damping and the imaginary part is the frequency of the eigenvalue.
We now study the effects of (a) refining the vortex lattice grid and (b) changing the
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Fig. 4 Influence of varying the number of aerodynamic elements in the wake of the vortex-lattice
model, while maintaining the element size. Shown are continuous-time real and imaginary (Imag)
eigenvalues, λ. (Republished from Heeg and Dowell [24] with permission)

extent of the wake length. Note that, In Fig. 3, the baseline configuration’s eigenvalue
with the largest imaginary part has the value of 10π . When we next halve the element
size while maintaining the same number of wake elements, thus shortening the wake,
the total number of eigenvalues remains constant. However, the frequency range of
the original eigenvalues has doubled. Thus we see that refining the grid has led to
increasing the frequency range of the eigenvalue distribution. The spacing of the
eigenvalues has also increased by about a factor of two. As is seen in the next
paragraph, the latter result is because the computational domain has been reduced
by nearly half, that is, the wake length is shorter.

Now consider what happens as the extent of the wake length is decreased while
the grid spacing is held constant. In Fig. 4, the baseline configuration is compared
to an aerodynamic model that has half as many aerodynamic elements in the wake.
Now we see that the spacing between eigenvalues has increased by about a factor
of two, but the largest imaginary part of the eigenvalue distribution (frequency) is
unchanged. Hence, the effect of extending the wake length (for a fixed-grid resolu-
tion) is to refine the resolution of the eigenvalue distribution, but not to change the
maximum frequency of the eigenvalue distribution. A more in-depth interpretation
of this behavior is given by Heeg and Dowell [24] along with further details and
numerical examples.
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Fig. 5 Full aerodynamic eigenspectrums. Re, real; Im, imaginary, M, Mach number. Flat-plate
airfoil (16 × 8 mesh). (Republished from Thomas et al. [44] with permission)

3.13.2 The Effects of Mach Number and Steady Angle of Attack:
Subsonic and Transonic Flows

Here we examine some recent results from Hall et al. [20] and Thomas et al. [44]
and also Florea et al. [15]. Hall et al. used an Euler equation flow model with a
frequency domain POD method, and Thomas et al. used a transonic potential-flow
model with a now standard eigenvalue, eigenmode formulation. Although different
flow models and modal representations were used, the results of these two studies
lead to similar conclusions regarding the nature of the flow and the efficacy of a
modal representation of the aerodynamic flow.

In Fig. 5, the full eigenvalue spectrum for a flat plate airfoil using a coarse com-
putational grid is shown to elucidate the effects of Mach number from M = 0 to
M = 1.1. These results are from Thomas et al. [44]. Interestingly, the eigenvalue
spectrum changes notably over this range. For M = 0 , all of the eigenvalues are
real and negative. Hence none of the eigenmodes have an oscillatory character. For
any M > 0, however, eigenvalues that are complex conjugates appear along with
real eigenvalues. The eigenvalue pattern continues to evolve as the Mach number
increases, with another significant change in character occurring in the transonic
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Fig. 6 A comparison of the full and ROM aerodynamic eigenspectrums. Re (λ), real eigenvalues;
Im(λ), imaginary eigenvalues; M, Mach number; α, angle of attack. (Republished from Thomas et
al. [44] with permission)

range from M = 0.9 to M = 1.1. The corresponding eigenmodes have also been
determined, including the characteristic pressure distributions on the airfoil. Typi-
cally, the eigenmode that corresponds to the smallest negative real eigenvalue has a
pressure distribution similar to that for steady flow at a constant angle of attack.

As an aside, it is very interesting that the eigenvalues for M = 0 are distributed
along the real axis in Fig. 5, whereas in Fig. 3 they are distributed along the imaginary
axis. In both cases these represent discrete approximation to a branch cut. It is well
known from Theordorsen’s theory for that the branch cut can be placed along a line
emanating from near the origin of the complex plane (see Dowell et al. [8]). The
results of Figs. 3 and 5 indicate that different CFDmodels for the same physical flow
may place this branch cut along distinctly different rays from the origin. In Fig. 6,
results are shown for a flat plate M = 0.2 and 0.9 and an NACA 0008 airfoil at
M = 0.85. For the latter, a shock is present. Results are shown for a finer mesh that
is typical of CFD calculations, and results are shown from the full eigenspectrum and
those eigenvalues of the flow obtained by using 100 PODmodes to construct a ROM.
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The POD modes were determined using solutions at discrete values, often called
snapshots in the POD literature, computed at uniformly distributed frequencies in
the range−1.0 < Im[λ] < 1.0. The dominant eigenmodes arewell approximated by
the POD/ROMmodel. Note the characteristic distribution pattern of the eigenvalues
as a function of Mach number, including with and without shock. Further results
have been obtained for an NACA 64A006 airfoil (see Florea et al. [15]). The CFD
grid is shown in Fig. 7, and the steady-flow pressure distribution is shown in Fig. 8.

Fig. 7 Computational grid
used for an NACA 64A006
airfoil. (Republished from
Hall et al. [20] with
permission)
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Fig. 8 Steady-background-
flow surface pressure
coefficient. M, Mach
number. (Republished from
Hall et al. [20] with
permission)
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Note that a shock is distinctly present forM > 0.86. For this airfoil, a bending/torsion
flutter analysis is conducted over theMach number range M = 0.5 − 0.9. The flutter
boundary is shown in Fig. 9. Root loci for the two dominant aeroelasticmodes (which
originate in the plunging and pitching structural modes at low Mach number) are
shown in Fig. 10 for Mach numbers in the range M = 0.8 − 0.9. These root loci
show that in the Mach number range where the position of the shock on the airfoil
moves appreciably, the critical eigenmode for flutter changes from the plunging
mode to the pitching mode. There is a corresponding and sharp change in the flutter
boundary (cf Fig. 9). One of the benefits of a reduced-order-modal representation
of the aerodynamic flow is the capability and ease of constructing such root loci,
which provide a significantly improved understanding of transonic flutter over other
methods of stability analysis, for example, time-marching solutions.
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Fig. 10 Loci of pitching and plunging roots of aeroelastic system. Re(λ), real eigenvalues; Im(λ),
imaginary eigenvalues; M, Mach number; V, variation. (Republished from Hall et al. [20] with
permission)

We now turn to some complementary results from Florea et al. [15], who have
studied an NACA 0012 airfoil and an MBB A3 airfoil. We present results only for
the former airfoil here. The grids used for the CFD models are shown in Fig. 11. In
addition to the basic grid, a refined grid in the vicinity of the shock wave was also
considered. In Fig. 12, the steady flow pressure distribution is shown form M = 0.75
and several steady angles of attack. The corresponding eigenvalue distributions are
shown in Fig. 13. Somewhat surprisingly perhaps, the eigenvalue distribution does
not change radically with angle of attack changes, even though the flow at zero angle
of attack is shockless, while that at a 20 angle of attack has a strong shock.

Another comparison of eigenvalue distributions is shown in Fig. 14 where the
angle of attack is held at 0, but a range of Mach numbers is considered. Although
over the full range of Mach numbers the eigenvalue distribution does change, there
is not radical change in the high subsonic, transonic range per se.

Finally, in Fig. 15, a comparison is shown between the results of the full CFD
model (> 5000 degrees of freedom) and those from aROM.Two different versions of
theROMare usedwith 67 and 160 degrees of freedom, respectively. Good correlation
is obtained between the full CFD model and the ROM for lift and moment on an
oscillating airfoil over a wide range of reduced frequencies.

The Effects of Viscosity

Epureanu et al. (2000) have considered the effects of viscosity by using the POD
methodology in the frequency domain. Also see the earlier results by Florea et al. [13]
using the direct eigenvalue approach. The results of Epureanu et al. (2000) are for
a cascade of airfoils. The basic flow model uses a potential description in the outer
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Fig. 11 Typical 129 ×
43-node grid about an
NACA 0012 isolated airfoil.
(Top) initial grid; (bottom)
locally refined grid.
(Republished from Florea et
al. [15] with permission)
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Fig. 12 Steady Mach
number (M) and pressure
distribution on surface of
NACA 0012 airfoil at
different angles of attack.
Freestream Mach number
M∞ = 0.75. (Republished
from Florea et al. [15] with
permission)
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Fig. 14 Real [Real(λ)] and
imaginary [Imag(λ)]
eigenvalues of unsteady flow
about NACA 0012 airfoil for
different Mach number (M)
at zero angles of attack.
(Republished from Florea et
al. [15] with permission)
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inviscid region and a simplified integral boundary layer model in the inner region.
The solution domain is shown in Figs. 16 and 17. A comparison of results from this
model wit a Navier-Stokes solver has shown reasonable agreement. Comparisons
have also been made with experimental data showing reasonable correlation.

Representative comparisons are shown between the full CFD model and a
POD/ROM in Fig. 18 for a pressure distribution at fixed interblade phase angle
and frequency, in Fig. 19 for lift versus interblade phase angle for a fixed frequency,
and in Fig. 20 for lift versus reduced frequency for a fixed interblade phase angle. The
results are in generally good agreement given the complexity of the flow. A reduc-
tion in degrees of freedom by two orders of magnitude or more is realized for this
example. Note that no more degrees of freedom are required to model viscous flows
than those required for inviscid flows, when considering aerodynamic pressures on
a airfoil.

3.13.3 Nonlinear Aeroelastic Reduced-Order Models

One of the remaining challenges is to construct nonlinear aerodynamic ROMs. An
example of a shock wave undergoing large oscillations in a one-dimensional channel
has been treated by Hall in an as yet unpublished work (KC Hall, unpublished
observations). However, no results from ROMs for flows about an airfoil undergoing
large motions have yet been reported in the literature.
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chord ROM, reduced-order model. Mean flow conditions: θ = 20, M∞=0.75. Locally refined grid.
(Republished from Florea et al. [15] with permission)
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Fig. 16 Solution domain and boundary conditions used to calculate the inviscid flow. (Republished
with permission from Epureanu et al. [12])
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Fig. 17 Solution domain used to calculate the inviscid flow. Special local analytic solution is used
at the stagnation point. The system of coordinates along the airfoil surface is indicated by ξ and
η. A typical displacement thickness is sketched along the airfoil and wake. (Republished with
permission from Epureanu et al. [12])

On the other hand, an example wing problem has been examined with a linear
ROM vortex lattice aerodynamic model and a nonlinear structural model for a delta
wing. The details are presented by Tang et al. [43]. Physically, a low Mach number
and small angle of attack flow about a platelike structure undergoing oscillations
on the order of the plate thickness are considered. For a plate, oscillations of this
magnitude give rise to strong geometric structural nonlinearity. The consequence
of this structural nonlinearity is that, once the flutter speed is exceeded, the wing
goes into a limit cycle oscillation (LCO) of bounded amplitude. Of course, a purely
linear aeroelastic model would predict exponentially growing oscillations for flow
conditions beyond the flutter boundary. The use of ROMs for the fluid and structure
makes calculations of this type of LCO practical.
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Fig. 18 Real part of the
coefficient of pressure Cp
obtained by using 25 POD
modes when the interblade
phase angle σ is 900, the
reduced frequency k is 0.85,
and the upwind far-field
Mach number M is 0.5.
(Republished with
permission from Epureanu et
al. [12])
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Fig. 19 Real part of the
coefficient of lift CL
obtained by using 25 POD
modes when the reduced
frequency k is 0.85, and the
upwind far-field Mach
number M is 0.5.
(Republished with
permission from Epureanu et
al. [12])
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The geometry of the delta wing and its wake is shown if Fig. 21. A comparison
between theory and experiment is shown in Fig. 22 for the flutter boundary and in
Fig. 9.23 for the limit cycle oscillation.

4 Concluding Remarks and Directions for Future Research

With the construction of ROMs based on rigorous fluid dynamical theory, it is now
possible to (a) provide a practical approach for constructing highly efficient, accurate,
unsteady aerodynamic models suitable for fluid/structure modeling, (b) calculate
true damping and frequency for all coupled fluid/structural (aeroelastic) modes at
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Fig. 20 Real part of the
coefficient of lift CL
obtained by using 25 POD
modes when the interblade
phase angle σ is 900 and the
upwind far-field Mach
number M is 0.5.
(Republished with
permission from Epureanu et
al. [12])
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Fig. 21 Aeroelastic model
of delta wing using
vortex-lattice aerodynamic
model. (Republished with
permission from Tang et
al. [43])
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all parameter conditions, and (c) provide greater physical insight from aeroelastic
analysis.

What more might the future bring?
Using fully (dynamically) nonlinear models, one should be able to develop rigor-

ous ROMs that will accurately model large and violent aircraft motions, for exam-
ple. For aeroacoustics phenomena in which the far-field radiation pattern is of prime
interest, the eigenmode-ROM concept should work well also, but far-field boundary
conditions will need special attention for this (or any other) approach. See Hardin
and Hussaini [23] for a discussion of the present state-of-the-art in computational
aeroacoustics. Finally, regarding turbulence and turbulence models, if we use a stan-
dard turbulence model, for example, κ- ε, etc, then the present method formally goes
through. However, it is possible that the real value of the eigenmodal ROM approach
will be to encourage the development of better turbulence models.

Is it possible that one could attack the full Navier-Stokes equations using the
eigenmode-ROM methodology? The answer is that in some sense such work
has already begun. The classical hydrodynamic-stability theory is an eigenmode
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Fig. 22 Variation of flutter
velocity index (top) and
flutter frequency ratio
(bottom) with sweep angle.
(Republished with
permission from Tang et
al. [43])
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approach based on the boundary layer approximation combined with a highly sim-
plified geometry, a flat plate of infinite extent. However, the work per se, now some
50–70 years ago in its origins, did not lead to advances much beyond the limitations
of the classical infinite geometry. Already, models with an outer inviscid model com-
bined with viscous boundary layer theory have been developed, and some encourag-
ing preliminary results are emerging. See Florea et al. [13] and Epureanu et al. 2000.
Thus, one might hope to overcome that classical geometrical limitation and treat the
larger-scale viscousmotions about an airfoil or wingwith amodern ROM.With these
large-scale motions determined, it might even be possible to refine the eigenmode
representation to determine local flow behavior. Clearly this is only a hypothesis,
but a very intriguing one. It is certainly an open question as to the resolutions of tur-
bulence length scales one may achieve with a given eigenmode or POD expansion.
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The recent work of K.Y. Tang et al. [42] on ROMs in low-Reynolds-number flows
using KL or POD modes is interesting in this regard. Also, see the pioneering work
of Holmes et al. [25] discussed in their stimulating book.

Appendix: Singular-Value Decomposition, Proper
Orthogonal Decomposition, and Balanced Modes

Let qn
j be the nth flow variable at some spatial point at some time j where n =

1, 2, ....N and j = 1, 2, ....J . Now from the matrix, Q̃, as

[Q̃] =

⎡
⎢⎢⎢⎢⎣

q1
1 . . . q1

J
. .

. .

. .

qN
1 . . . qN

J

⎤
⎥⎥⎥⎥⎦ . (16)

Again note that total number of time step is J , and the total number of flow
variables is N . For a typical CFD calculation, J might be 1000, and N might be
10000 or more. Hence N is much greater than J .

Now assume a singular value decomposition of Q̃; that is

Q̃ = U�VT , (17)

where U is a unitary matrix of dimension N × n and V is also a unitary matrix of
dimension J × n. We may select n and typically n will be less than J . Note that

[UTU] = [I]n×n , [VTV] = [I]n×n, (18)

and � is a diagonal matrix of singular values; that is,

[�] =

⎡
⎢⎢⎣

σ1

σ2

.

σn

⎤
⎥⎥⎦ . (19)

We order these singular values such that

σ1 ≥ σ2 ≥ ..... ≥ σn. (20)

Now form �, the correlation matrix for the POD method:

� = Q̃T Q̃ = V�TUTU�VT = V�T�VT . (21)
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Equation 21 implies that V is the eigenvector of the correlation matrix and the cor-
responding eigenvalues are the squares of the singular values.

From Eq. 17, one may computer (assuming that V is normalized so that the
magnitude of each eigenvector is unity),

Q̃V = U�VTV = U�. (22)

One may also compute U from Eq. 22, and further one may compute Q̃ from a
knowledge of U,V, and the singular values using Eq. 17. Usually it is easier to
compute Q̃ directly from Eq. 16, however. The representation of Eq. 17 may be
useful if we choose to decompose Q̃ such that

Q̃(U�
1
2 )(�

1
2VT ). (23)

With this decomposition the POD modes are said to be “balanced,” and these are
often put forth as an optimum choice for mode selection.

If there is a truncation in the singular values, that is, if we choose n to be less than
J which is much less than N , then Eq. 17 may be written in a reduced form. The
corresponding reduced form for Q̃ approaches the original Q̃ if the neglected singular
values or POD eigenvalues are sufficiently small compared with those retained.

Denoting V as the eigenvector matrix for the correlation matrix of dimension
J × n, noting that Q̃ is a matrix N × J , and defining a as the new unknowns to be
determined, which are the n modal amplitudes of the POD modes, then one may
write the original flow variables, q, as

{q(t)}N×1 = [Q̃]N×J [V]J×n{a}n×1. (24)

Substituting this expression into Eq. 5 of the main text, that is,

∂

∂t
{q} = {Q(q)} + {B}u, (25)

and premultiplying by the transpose of Q̃ [ V ] gives a ROM in terms of the new
unknowns a, where the dimension of the vector a is n × 1with n chosen to be less than
J . For simplicity, in Eq. 25, only a single scalar input, u, is shown. The generalization
to multiple inputs is clear. If Q(q) in Eq. 25 is expanded in a Taylor series about a
steady-flow solution (the time-linearized model corresponds to retaining only linear
terms in q in the Taylor series), then a particularly simple and attractive form of the
ROM is obtained.

There is another interesting case to consider which may arise when experimental
data rather than numerical data from a CFD code are used to construct a ROM. In this
case the number of low variables that are observed or measured, N , will be relatively
small and typically N will be less than J , the total number of time steps for which
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data are obtained. Formally the calculation still goes through, but now the number
of flow variables modeled is much smaller than for a CFD code. Ideally these flow
variables would be related to the amplitudes of the dominant modes of the flow.
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Experimental Aeroelasticity

Earl H. Dowell

Abstract This is a brief account of the basic elements underlying experiments in
Aeroelasticity.

Much of this text has been devoted tomathematical modeling of physical phenomena
in the field of aeroelasticity. Yet one of the most challenging and important aspects
of the subject is the conduct of physical experiments. Experiments are useful for
many purposes, e.g. to assess the accuracy and validity of theoretical models, to
study phenomena beyond the current reach of theory, and/or to verify the safety and
integrity of aeroelastic systems through wind tunnel tests or flight tests. A thorough
exposition of this topicwould require a volume in itself.Here a fewof the fundamental
aspects of experimental aeroelasticity are discussed. The focus is on aeroelastic tests
per se rather than structural dynamic tests or unsteady aerodynamic measurements.
However the latter will be touched on as well insofar as they are relevant to our
principal topic.

For authoritative treatment of this subject the discussion by Ricketts [1] is highly
recommended.

Before an aeroelastic experiment is conducted, it is usual to make measurements
of the natural modes and frequencies of the structural model. Hence our discussion
begins there.

1 Review of Structural Dynamics Experiments

In the jargon of the practitioners, these are referred to as ground vibration tests or
GVT. The basic requirements are a means for exciting (forcing) the structure into
its resonant, natural modes and also a means for measuring the response of the
structure. For excitation systems a variety of devices have been used including those
that provide mechanical forces, electromagnetic forces and acoustical excitation.
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The choice of excitation depends primarily upon the level of force required and the
range of frequency to be covered. For lightly damped systems excited in a resonant
mode, the force level needed can be estimated as the mass of the structure times the
frequency squared times (twice) the critical damping ratio times the amplitude of
response required, i.e. the inertial and stiffness terms nearly cancel and the excit-
ing force is balanced by structural dissipation or damping. The response amplitude
required is typically determined by the sensitivity of available responsemeasurement
instrumentation or perhaps the need for the response to be in a certain linear (or less
usually, nonlinear) range of response.

In practical termsmechanical excitation systems are used for low frequencies (say
1–100Hz), electromagnetic exciters (shakers) are used formoderate frequencies (say
10–1000 Hz) and acoustic excitation at high frequencies (say 100–10000 Hz).

The response measurement systems may be either mechanical (strain gauges or
accelerometers), electromagnetic (some electromagnetic devices may be used as
either exciters or response measurement devices) or, more recently piezoelectric
devices1 that may be used to either serve as exciter or responder.

The basicmeasurement technique is to excite the systemat its resonant frequencies
(usually having theoretical calculations as a guide) with the excitation and response
devices placed at locations on the structure expected to have large response. Multi-
ple exciters are used to distinguish between symmetric and anti-symmetric natural
modes or to excite modes with complex shapes. In principle, a continuous distribu-
tion of excitation with a distribution of force amplitude proportional to the expected
(mass weighted) natural mode (and therefore orthogonal to all other natural modes)
is optimum. Rarely can so many exciters be used in practice to approach this ideal.

If a pure frequency excitation is used, then a transient decay time history or a half-
power frequency response plot may be used to estimate modal natural frequency and
damping (e.g. see Thomson2 or any standard text on vibration theory).

Also a random excitation over the range of relevant frequencies may be used
to identify multiple modes with one excitation. This is used only when test time
is limited. Another possibility is pulse excitation in the time domain and the use
of Fast Fourier transform theory to extract information on multiple natural modes.
Commercial hardware and software is now widely available to perform the latter
measurement.3 However for precise work the old fashioned methods may still be
preferred.

Of course, if any significant nonlinearities are present, nonlinear theory must be
used to guide the form of excitation, measurement and data interpretation. The range
of possibilities is too extensive to be easily summarized. But the presence of higher
harmonics in the response measurement is often a key observation that suggests
nonlinearities are present and important.

1 See Crawley [2].
2 See Thomson [3].
3 See, e.g., ZONIX, HEWLETT PACKARD and other manufacturers’ catalogs and equipment
manuals.
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2 Wind Tunnel Experiments

With the presence of flow the environment for excitation and measurement of
response is more complex, but the basic devices for creating, measuring and inter-
preting the responses remain the same as for the simpler structural dynamics exper-
iments. Sometimes the aerodynamic turbulence in the tunnel is used to provide a
random excitation and, of course, for self-excited instabilities (e.g. flutter) no special
requirements are (in principle) necessary to excite the aeroelastic system. Never-
theless, where practicable, it is desirable to have an excitation system available of
the conventional sort, e.g. mechanical, electromagnetic, acoustic, or perhaps, piezo-
electric. Such excitations allow one to conduct sub-critical response experiments(i.e.
experiments conducted below the flutter boundary). One of the principal challenges
in flutter testing is to be able to extrapolate to flutter (critical) conditions from sub-
critical measurements.

2.1 Sub-critical Flutter Testing

By monitoring the change of modal damping with change in flow dynamic pressure,
for example, one may try to anticipate the value of dynamic pressure for which
the modal damping will become zero and then negative. However, because of the
sometimes complicated and rapid variation of damping with dynamic pressure and
the necessity to monitor several potentially critical modes, it is often difficult to
extrapolate to this flutter condition. Indeed extrapolation techniques for this purpose
remain an active area of research.4

For certain types of flutter, monitoring the changes in modal frequencies may also
be a useful guide to help predict the onset of flutter.

2.2 Approaching the Flutter Boundary

For low speed (incompressible flow) flutter tests, the flutter boundary is normally
approached by increasing the flow velocity in suitable increments. For high speed
(compressible flow) flutter tests, the Mach number is normally fixed, and the flutter
boundary is approached by increasing the wind tunnel stagnation pressure, and hence
dynamic pressure, in suitable increments. Then the Mach number is changed and the
process repeated. At very high Mach numbers, a blow-down (transient flow) wind
tunnel may be the only flow facility available. However, a continuous flow, closed
return tunnel is to be preferred when available in order to assure well defined flow
conditions and give adequate time for accurate response measurements.

4 See Matsuzaki [4].
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2.3 Safety Devices

Normally some provision will be made for suppression of the flutter response by
a rapidly applied restraint to the flutter model, in order to protect the model from
damage due to flutter.

2.4 Research Tests Versus Clearance Tests

Research tests are normally conducted to provide experimental data for comparison
with theory and hence usually rather detailed data sets are obtained over a wide
range of flow and/or structural parameters. Clearance tests are designed simply to
show a particular flutter model is unlikely to encounter an instability over a range of
anticipated operational conditions.

2.5 Scaling Laws

By expressing the aeroelastic equations of motion in non-dimensional form or by
simply using dimensional analyses, it is possible to relate the behavior of the small
scale models typically tested in wind tunnels so that of full-scale aircraft in flight.5

Often not all relevant non-dimensional parameters can be matched between tunnel
scale and flight scale due to the imitations of modal fabrication and wind tunnel
flow conditions. Selecting an appropriate set of scaling parameters is a matter of
intelligent application of theory (i.e. matching those non-dimensional parameters
that are most important and sensitive as predicted by analysis) and judgement based
uponexperience.Normallymodal frequency ratios, reduced frequency,Machnumber
and a non-dimensional ratio of dynamic pressure to model stiffness are matched.
Frequently fluid/structural mass ratio is not.

Wind tunnel tests are extraordinarily valuable and often fill in gaps in our knowl-
edge where theory is unavailable or unreliable.

3 Flight Experiments

Virtually all the previous comments for wind tunnel tests apply to flight tests as
well. However the need for safety is now paramount and the challenges of providing
a well defined excitation force are considerably higher. Also the test procedure is
necessarily different.

5 See Dugundji and Calligeros for a particularly valuable discussion [5].
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3.1 Approaching the Flutter Boundary

Normally the flutter boundary has been estimated from a suitable combination of
analysis and wind tunnel experiment prior to the flight test and presented in terms
of altitude (corresponding to a certain static or dynamic pressure) vs Mach number.
Usually the Mach number at which flutter will occur increases with increasing alti-
tude. Hence flutter testing normally begins at high altitude (this also provides more
margin for emergency procedures including the pilot leaving the aircraft). At fixed
altitude the Mach number is increased in small increments until flutter occurs or the
maximum Mach number capability of the aircraft is reached.

When is flight flutter testing required?

For new aircraft, for substantial modifications of existing aircraft and for new uses
of an existing aircraft, flutter testing is usually required.

3.2 Excitation

Several excitation methods have been proposed and used. None are clearly superior.
Use of existing hardware, e.g. control stick raps, electronic inputs to the control
system, or atmospheric turbulence, obviously minimize cost. On the other hand, add-
ondevices, such as oscillatingvanes, inertialmass oscillations, or pyrotechnic devices
presumably give greater control and range to the excitation. The rotating slotted
cylinder device proposed by Reed6 shows promise of being a good compromise
between cost and performance. Examples of excitation systems that have been used
in practice are shown in Fig. 1.7

3.3 Examples of Recent Flight Flutter Test Programs

To remind the reader of the danger inherent in such tests, Fig. 2 shows the loss of a
substantial portion of the tail surface from the recent flutter testing of the F-117A
Stealth fighter. Other examples of recent programs are described in Table I (Fig. 3).

6 See Reed [6].
7 After Reed [6]. All Figures and Tables in this chapter are drawn from [6].
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STICK RAPS ATMOSPHERIC TURBULENCE

INPUT TO FLIGHT CONTROL SYSTEM INERTIA  EXCITER

PYROTECHNIC (BONKER)

FLUTTER EXCITATION METHODS

FLIGHT FLUTTER TESTING

OSCILLATING VANE 

Fig. 1 Various devices for exciting an aircraft structure

4 The Role of Experimentation and Theory in Design

In designing a new aircraft with acceptable aeroelastic behavior, a synergistic com-
bination of theory, wind tunnel tests and flight tests is normally employed. Here a
brief overview is presented of how this is usually done.

One measure of the relative importance of each of these synergistic elements is
their cost. Baird8 has estimated these for the F-14 aircraft. See Table II (Fig. 4).

In Table III (Fig. 5) a flow chart is shown that indicates the interaction among
these elements. Note that each element normally influences another. For example,
analysis and wind tunnel tests help define the flight flutter test program. Conversely
any anomalies determined during flight test will almost assuredly lead to additional
analysis and wind tunnel tests.

8 Baird [7].
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FLIGHT  FLUTTER  TESTING 

X X1 1

50 /
INCREASE
IN  AREA

Z

Fig. 2 Loss of aircraft tail structure due to flutter

Finally, although the emphasis here has been on flutter experiments, gust response
experiments or static aeroelastic behavior may be the subject of tests as well. The
techniques employed are similar to those for flutter, with pilot and aircraft safety
usually not as much a critical concern as with flutter tests.
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EXAMPLES OF RECENT FLIGHT FLUTTER TEST PROGRAMS

X-29 FORWARD SWEPT WING DEMONSTRATOR
THREE DIFFERENT FLIGHT CONTROL SYSTEMS TO TEST
NEW STRUCTURE
218+ TEST POINTS TO CLEAR THE FLIGHT ENVELOPE
EXCITATION: TURBULENCE AND ROTATY INERTIA SHAKERS FOR
THE FLAPERONS 

F-18 HARV AIRPLANE (TO BE TESTED SUMMER 1991)
MODIFICATION: TURNING VANES-STRUCTURE AND FLIGHT 
CONTROL LAWS
EXCITATION: COMMANDS TO THE FLIGHT CONTROL SURFACES
TWO DIFFERENT FLIGHT  CONTROL SYSTEMS TO TEST
ESTIMATE OVER 80 TEST POINTS TO CLEAR FLIGHT ENVELOPE

       ANGLE OF ATTACK RANGE: 0 TO 70
MACH NUMBER:MULTIPLE POINTS UP TO 0.7 MACH

SCHWEIZER 1-36 DEEP-STALL SAILPLANE
MODIFICATION:HORIZONTAL STABILIZER MODIFIED TO PIVOT TO 70
FOR CONTROLLABITY RESEARCH WITH COMPLETELY STALLED
GROUND TEST PERFORMED PRIOR TO FLIGHT TEST DUE TO NONLINEAR
STRUCTURAL DYNAMICS BEHAVIOR OF TAIL
EXCITATION: TURBULENCE- DATA ACQUIRED AT CONSTANT SPEED
DURING CONTINUOUS DESCENT IN ALTITUDE BANDS OF 1000 FEET
ABOUT TEST ALTITUDE
STABILITY ANALYSIS: CLEARED IN REAL TIME BY MONITORING STRIP 
CHARTS

EXCITATION: TURBULENCE AND STICK RAPS
MODIFICATION: DIGITAL FLIGHT CONTROL SYSTEM AND CANARDS

STABILITY ANALYSIS: RECURSIVE IDENTIFICATION ALGORITHM USED
TO SEPARATE CLOSELY SPACED MODES

AFTI/F-16 AEROSERVOELASTIC AND FLUTTER TEST

-+

FLIGHT FLUTTER TESTING

Fig. 3 Table I for flight flutter testing

Fig. 4 Table II for F-14
flutter prevent program
relative costs

RELATIVE COSTS

ANALYSIS

WIND TUNNEL

FLIGHT FLUTTER TEST

GVT

D   COST and R 

29

27

25

19

0.5

71

F-14   FLUTTER PREVENT PROGRAM

/

/

/

/

/

/
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GROUND
VIBRATION

FLUTTERVIBRATION
UNSTEADY AERO
FLUTTER

WIND

TESTS

FLIGHT
TUNNEL
TESTS

ANALYTICAL MODEL

FLUTTER CLEARANCE

TESTS (GVT)

AIRCRAFT FLUTTER CLEARANCE PROCESS
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Nonlinear Aeroelasticity

Earl H. Dowell

Abstract This is an introduction and overview of the work that has been done in
nonlinear aeroelasticity prior to the last decade.Many of the issues discussed here are
still under active investigation. Of particular interest are the limit cycle oscillations
that may occur once the dynamic stability (flutter) boundary has been exceeded.

1 Introduction

Nonlinear aeroelasticity has been a subject of high interest for the last decade and
the literature is now extensive.1 An account of the state of the art is provided as
of this writing with an emphasis on key ideas and results. These demonstrate our
current theoretical, computational and experimental capabilities and the degree to
which correlation among results from these several approaches agree or disagree.
An exhaustive literature survey is not attempted here; however a bibliography of
over eight hundred citations is available in electronic form from the first author upon
request. The particular results and methods described must inevitably reflect the
authors’ knowledge and experience, but we have made an effort to be comprehensive
in terms of ideas and representative with respect to results.

The chapter begins with a discussion of generic nonlinear aeroelastic behavior
especially as it relates to Limit Cycle Oscillations (LCO); then the important studies
that come from flight experience with LCO are noted which have stimulated much of
the other research on the subject. Next a summary is provided of the primary physical
sources of fluid and structural nonlinearities that can lead to nonlinear aeroelastic
response in general and LCO more particularly.

A broad overview of unsteady aerodynamic models, both linear and nonlinear,
is then given before turning to the heart of the chapter that provides a critique of

1This chapter is based upon an invited paper prepared byE.H.Dowell, J.W.Edwards andT. Strganac,
“Nonlinear Aeroelasticity,” Journal of Aircraft, Vol. 40, No .5, 2003, pp.857–874.
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the results obtained to date via various methods, using as a framework correlations
between theory and experiment or alternative theoretical models. For these correla-
tions unsteady aerodynamic forces per se, flutter boundaries and limit cycle oscilla-
tions are each considered in turn. For limit cycle oscillations (1) airfoils with stiffness
nonlinearities, (2) delta wings with geometrical plate nonlinearities, (3) very high
aspect ratio wings with both structural and aerodynamic nonlinearities, (4) nonlinear
structural damping and (5) aerodynamic flows with large shock motions and flow
separation are each discussed. A brief mention is alsomade of recent studies of active
control of nonlinear aeroelastic systems.

The chapter concludes with a summary of major lessons learned by the research
and development community to date and offers suggestions for future work that
appear particularly attractive at this time.

2 Generic Nonlinear Aeroelastic Behavior

There are several basic concepts that will be helpful for the reader to keep in mind
throughout the discussion to follow. The first is the distinction between a static non-
linearity and a dynamic one. In the aeroelasticity literature the term “linear system”
may either mean a (mathematical or wind tunnel) model or flight vehicle that is both
statically and dynamically linear in its response or one that is nonlinear in its static
response, but linear in its dynamic response. So we will usually qualify the term
“linear model” further by noting whether the system is dynamically linear or both
statically and dynamically, i.e. wholly, linear.

An example of a systemwhich is wholly linear is a structure whose deformation to
either static or dynamic forces is (linearly) proportional to those forces. An aerody-
namic flow is wholly linear when the response (say change in pressure) is (linearly)
proportional to changes in downwash or fluid velocities induced by shape or motion
of a solid body in the flow. This is the domain of classical small perturbation aerody-
namic theory and leads to a linear mathematical model (convected wave equation)
for the fluid pressure perturbation or velocity potential. Shock waves and separated
flow are excluded from such flow models that are both statically and dynamically
linear. A wholly linear aeroelastic model is of course one composed of wholly linear
structural and aerodynamic models.

A statically nonlinear, but dynamically linear structure is one where the static
deformations are sufficiently large that the static response is no longer proportional
to the static forces and the responses to the static and dynamic forces cannot be simply
be added to give meaningful results. Buckled skin panels (buckling is a nonlinear
static equilibrium that arises from a static instability) that dynamically respond to (not
too large) acoustic loads or the prediction of the onset of their dynamic aeroelastic
instability (flutter) are examples where a statically nonlinear, but dynamically linear
model may be useful.

In aerodynamic flows, shock waves and separated flows are themselves the result
of a dynamically nonlinear process. But once formed they may often be treated in



Nonlinear Aeroelasticity 491

the aeroelastic context as part of a nonlinear static equilibrium state (steady flow).
Then the question of the dynamic stability of the statically nonlinear fluid-structural
(aeroelastic) system may be addressed by a linear dynamic perturbation analysis
about this nonlinear static equilibrium. Sometime such aerodynamic flow models
are call time linearized.

Of course if one wishes to model nonlinear limit cycle oscillations and the growth
of their amplitude as flow parameters are changed, then either or both the struc-
tural and the aerodynamic model must be treated as dynamically nonlinear. Often a
single nonlinear mechanism is primarily responsible for the limit cycle oscillation.
However, one may not know a priori which nonlinearity is dominant unless one has
designed a mathematical model, wind tunnel model or flight vehicle with the chosen
nonlinearity. Not the least reason why limit cycle oscillations are more difficult to
understand in flight vehicles (compared to say mathematical models) is that rarely
has a nonlinearity been chosen and designed into the vehicle. More often one is deal-
ing with an unanticipated and possibly unwanted nonlinearity. Yet sometimes that
nonlinearity is welcome because without it the limit cycle oscillation would instead
be replaced by catastrophic flutter leading to loss of the flight vehicle.

It must be emphasized that the variety of possible nonlinear aeroelastic response
behaviors is not limited to ‘Limit Cycle Oscillations (LCO)’ per se. In the context of
nonlinear system theory [1], an LCO is one of the simplest dynamic bifurcations, a
‘first stop on the road to chaos,’ so to speak.Other commonpossible behaviors include
higher harmonic and subharmonic resonances, jump-resonances, entrainment, beat-
ing (which can be due to either linear or nonlinear coupling), and period doubling to
name only a few. These behaviors have been delineated and studied using low order
model problems in the nonlinear dynamics literature; however in aeroelastic wind
tunnel and flight testing, the detailed knowledge required to identify these nonlinear
behaviors has rarely been available. Also, experience indicates that the concept of
LCO is a good general description for many nonlinear aeroelastic behaviors. Thus,
we will limit ourselves herein to the use of the generic term, LCO, acknowledging
that this is an oversimplification.

Now let us turn to the generic types of nonlinear dynamic response that may occur,
i.e. limit cycle oscillations and the variation of their amplitude with flight speed (or
wind tunnel velocity). Of course the frequency of the LCO may vary with flight
parameters as well, but usually the frequency is near that predicted by a classical
linear dynamic stability (flutter) analysis.

The generic possibilities are indicated in Fig. 1 where the limit cycle amplitude
is plotted verses some system parameter, e.g. flight speed. In Fig. 1a, an aeroelastic
system is depicted that is stable to small or large disturbances (perturbations) below
the flutter (instability) boundary predicted by a linear dynamical model. Beyond the
flutter boundary, LCO arise due to some nonlinear effect and typically the amplitude
of the LCO increases as the flight speed increases beyond the flutter speed. In Fig. 1b,
the other generic possibility is shown. While again LCO exist beyond the flutter
boundary, now LCO may also exist below the flutter boundary, if the disturbances
to the system are sufficiently large. Moreover both stable (solid line) and unstable
(dotted line) LCO now are present. Stable LCO exist when for any sufficiently small
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Fig. 1 Schematic of Limit Cycle Oscillation response

disturbance, the motion returns to the same LCO at large time. Unstable LCO are
those for which any small perturbation will cause the motion to move away from the
unstable LCO and move toward a stable LCO. Theoretically, in the absence of any
disturbance both stable and unstable LCO are possible dynamic, steady state motions
of the system. Information about the size of the disturbance required to move from
one stable LCO to another can also be obtained from data such as shown in Fig. 1b.
Note also the hysteretic response as flight speed increases and then decreases.

3 Flight Experience with Nonlinear Aeroelastic Effects

Much of the flight experience with aircraft has been documented by the Air Force
Flight Test Center at Eglin AFB and is described in several publications by Denegri
and his colleagues, [3–6]. Most of this work has been in the context of the F-16 air-
craft. Denegri distinguishes among three types of LCO based upon the phenomeno-
logical observations in flight and as informed by classical linear flutter analysis.
“Typical LCO” is when the LCO begins at a certain flight condition and then with
say an increase in Mach number at constant altitude the LCO response smoothly
increases. “Flutter”, as distinct from LCO, is said to occur when the increase in LCO
amplitude with change in Mach number is so rapid that the safety of the vehicle is in
question. And finally “atypical LCO” is said to occur when the LCO amplitude first
increases and then decreases and perhaps disappears with changes in Mach number.
Often changes in flight vehicle angle of attack lead to similar generic LCO responses
to those observed with changes in Mach number.

It has long been recognized [7] that the addition of external stores to aircraft
changes the dynamic characteristics and may adversely affect flutter boundaries.
Limit cycle oscillations (LCO) remain a persistent problem on high performance
fighter aircraft with multiple store configurations. Using measurements obtained
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from flight tests, Bunton and Denegri [8] describe LCO characteristics of the F-16
and F/A-18 aircraft. While LCO can be present in any sort of nonlinear system, in
the context of aeroelasticity, LCO typically is exhibited as an oscillatory torsional
response of the wing, the amplitude of which is limited, but dependent on the nature
of the nonlinearity as well as flight conditions, such as speed, altitude, and Mach
number. The LCO motion is often dominated by antisymmetric modes. LCO are
not described by standard linear aeroelastic analysis, and they may occur at flight
conditions below those at which linear instabilities such as flutter are predicted.
Although the amplitude of the LCO may be above structural failure limits, more
typically the presence of LCOs results in a reduction in vehicle performance, leads to
airframe-limiting structural fatigue, and compromises the ability of pilots to perform
critical mission-related tasks. When LCO are unacceptable for flight performance,
extensive and costly flight tests for aircraft/store certification are required.

Denegri [3, 4] suggests that for the F-16, the frequencies of LCOmight be identi-
fied by linear flutter analysis; however, linear analysis fails to predict the oscillation
amplitude or the onset velocity for LCO. No definitive theory has been forwarded to
explain completely the mechanisms responsible for F-16 LCO. Denegri notes that
while linear techniques have been used to predict the frequency of LCOs, linear
analysis cannot consistently predict where within the flight envelope the onset of
the oscillations will occur. Thus, nonlinear analysis will be necessary to predict the
onset of the LCO and their amplitudes with changing flight conditions. Such non-
linear analysis would be a useful and valuable tool for reducing the amount of flight
testing necessary for aircraft/store certification.

3.1 Nonlinear Aerodynamic Effects

There are several other flight experiences with limit cycle oscillations in addition to
the F-16 including those for example with the F-18, the B-1 and B-2. Most of these
LCO have been attributed by a majority of investigators to nonlinear aerodynamic
effects due to shock wave motion and/or separated flow. However, there is the possi-
bility that nonlinear structural effects involving stiffness, damping or freeplay may
play a role as well. Indeed, much of the present day research and development effort
is devoted to clarifying the basic mechanisms responsible for nonlinear flutter and
LCO. For an authoritative discussion of these issues see Cunningham et al., [9–11];
Denegri et al. [3–6] on the F-16 and F-18, Dobbs et al. [12]; Hartwich et al. [13] on
the B-1 and Dreim et al., [14] on the B-2. Recent experimental evidence from wind
tunnel tests is beginning to shed further light on these matters as are advances in
mathematical and computational modeling.

In addition to the above studies, many aircraft with freeplay in their control sur-
faces have experienced LCO as well.
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3.2 Freeplay

There have been any number of aircraft that have experienced flutter induced limit
cycle oscillations as a result of control surface freeplay. Not surprisingly perhaps
these are not well documented in the public literature, but are more known by word
of mouth among practitioners and perhaps documented in internal company reports
and/or restricted government files.

A recent and notable exception is the account in Aviation Week and Space Tech-
nology [15] of a flutter/limit cycle oscillation as a result of freeplay. In many ways
this account is typical. The oscillation is of limited amplitude and therewas a reported
disagreement between the manufacturer and the regulating governmental agency as
to whether this oscillation was or was not sufficiently large as to be a threat to the
structural integrity of the aircraft structure.

3.3 Geometric Structural Nonlinearities

Another not infrequently encountered and documented case is the limit cycle oscil-
lation that follows the onset of flutter in plate-like structures. The structure has a
nonlinear stiffening as a result of the tension induced by mid-plane stretching of
the plate that arises from its lateral bending. This is most commonly encountered in
what is often called panel flutter where a local element of a wing or fuselage skin
encounters flutter and then a limit cycle oscillation. There have been many incidents
reported in the literature dating back to the V-2 rocket of World War II, the X-15,
the Saturn Launch Vehicle of the Apollo program and continuing on to the present
day. Some of these are discussed in a monograph by Dowell [16] and also a NASA
Special Publication Dowell [17].

It has been recently recognized that low aspect ratio wings may behave as struc-
tural plates and the entire wing may undergo a form of plate-like flutter and limit
cycle oscillations. This has been seen in both wind tunnel models and computations.
However there is not yet a clearly documented case of such behavior in flight.

4 Physical Sources of Nonlinearities

These have been identified through mathematical models (in almost all cases), wind
tunnel tests (in several cases) and flight tests (less often). Among those most com-
monly studied and thought to be among the more important are the following. Large
shock motions may lead to a nonlinear relationship between the motion of the struc-
ture and the resulting aerodynamic pressures and forces that act on the structure. If the
flow is separated (perhaps in part induced by the shock motion) this may also create
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a nonlinear relationship between structural motion and the consequent aerodynamic
flow field.

Structural nonlinearities can also be important and are the result of a given (aero-
dynamic) force on the structure creating a response that is no longer (linearly) propor-
tional to the applied force. Freeplay and geometric nonlinearities are prime examples
(already mentioned). But the internal damping forces in a structure may also have a
nonlinear relationship to structural motion, with dry friction being an example that
has received some attention. Because the structural damping is usually represented
empirically even within the framework of linear aeroelastic mathematical models,
not much is known about the fundamental mechanisms of damping and their impact
on flutter and LCO.

All of these nonlinear mechanisms have nevertheless received attention by the
mathematical modeling community and several have been the subject of wind tunnel
tests as well. In some cases good correlation between theory and experiment has
been obtained for limit cycle oscillation response.

5 Efficient Computation of Unsteady Aerodynamic Forces:
Linear and Nonlinear

The literature on unsteady aerodynamic forces alone is quite extensive. A compre-
hensive assessment of current practice in industry is given by Yurkovich, Liu and
Chen [18]. An article that focuses on recent developments is that of Dowell and Hall
[19]. They also developed a bibliography of some five hundred items available in
electronic form from the authors. Other recent and notable discussions include those
of Bennett and Edwards [20] and Beran and Silva [21]. Much of the present focus
of work on unsteady aerodynamics is on developing accurate and efficient compu-
tational models. Standard computational fluid dynamic [CFD] models that include
the relevant fluid nonlinearities are simply too expensive now and for some time to
come for most aeroelastic analyses. Thus there has been much interest in reducing
computational costs while retaining the essence of the nonlinear flow phenomena.

There are three basic ideas that are currently being pursued with some success in
retaining the accuracy associated with state-of-the-art CFD models while reducing
aerodynamic model size and computational cost, [19, 21]. One is to consider a small
(linear) dynamic perturbation about a (nonlinear) mean steady flow. The steady flow
may include both the effects of a shock wave and flow separation, but any shock or
flow separation regionmotion is considered in the dynamically linear approximation.
That is, it is assumed that the shock motion or the separation point motion, for
example, is linearly proportional to the motion of the structure. This is sufficient
to assess the linear stability of the aeroelastic system, but not to determine LCO
amplitudes due to nonlinear aerodynamic effects. Of course in those cases where
the structural nonlinearities are dominant, this simpler aerodynamic model is all one
needs to determine LCO. This approach has enormous computational advantages as
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the computational cost is comparable to that of a steady flow CFD model since the
unsteady calculation per se uses a linear model. And if a structural parameter study
is conducted to determine the flutter boundary, the computational cost is no more
than for classical aerodynamic methods.

Moreover this approach can be extended to NONLINEAR unsteady flows by
expanding the flow solution in terms of a Fourier series in time. This assumes the
flow motion is periodic in time of course and is most effective if the number of
important harmonics needed in the Fourier Series is small. However this is true of
many (but not all) flows of interest. Here the computational cost is a small multiple
(say a factor of three) of the cost of a steady flow solution. This is the second major
idea, and the harmonic balance method is much faster for determining the LCO than
a time marching methods typically by one to two orders of magnitude.

The third major idea is to determine the dominant spatial modes of the flow field
and use these, rather than many local grid points, to represent the flow. This is a class
of so called Reduced Order Models. The reduction is from the very large number
of local grid points (on the order of a million or more) to a small number of spatial
modes (typically less than one hundred). The reduction in computational cost for
aeroelastic analysis is several orders of magnitude, i.e., a factor of one thousand or
more. This approach has been used for potential flow, Euler flow and Navier-Stokes
flows (with a turbulence model) for small dynamic perturbations about a nonlinear
mean steady flow (recall the first major idea discussed above). Current research
is underway to consider nonlinear unsteady flows. Kim and Bussoletti [22] have
discussed how one can construct an optimal reduced-order aeroelastic model within
the framework of time linearized CFD models. While in principle fluid eigenmodes
can be used, and indeed they provide the underlying framework for reduced order
modeling, the technique known as proper orthogonal decomposition has proven to be
themost computationally attractive method for constructing a set of global modes for
the reduced order model. With a reduced order model, the aeroelastic computations
are nomore expensive than using classical aerodynamics.Moreover one can compute
the true aeroelastic damping and frequency of each system mode.

A parallel approach to the last idea is to use the ideas of transfer functions (some-
times called describing function s in the nonlinear case) in the frequency domain or
Volterra series in the time domain to create small computational models from large
CFD codes [19, 21]. In this approach the form of the transfer function or describing
function (or its time series equivalent) is assumed and the coefficients of the reduced
order model are determined from data generated by the CFD code in a time simu-
lation. A good discussion of this approach is contained in Beran and Silva [21] and
in a series of papers by Silva [23–28]. Again this approach is most fully developed
for the dynamically linear case and the dynamically nonlinear case is currently a
subject of active research. Raveh, Levy and Karpel [29] have offered a recent and
useful discussion of how these ideas can be implemented within the framework of
an Euler based, CFD model and provided an example of the well studied AGARD
445.6 wing. Also see Raveh [30].

All of these ideas, individually or in combination, provide the promise of dramatic
reductions in computational costs for unsteady transonic flows including the effects
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of shock motion and flow separation. In addition progress continues to be made in
improving the computational efficiency of time marching simulations Farhat et al.
[31, 32]. And the ideas of dynamic (time) linearization and reduced order modeling
can be used in either the time or frequency domains. For a more thorough discussion
of these ideas, see chapter “Modeling of Fluid-Structure Interaction”.

6 Correlations of Experiment/Theory and Theory/Theory

Much of what we know about the state of the art with respect to nonlinear aeroe-
lasticity comes from the study of correlations between experiment and theory and
between various levels of theoretical models. Hence the remainder of this chapter
is largely devoted to such correlations and the lessons learned from them. The cor-
relations selected are to the best of our knowledge representative of the state of the
art. We shall consider correlations for aerodynamic forces per se, transonic flutter
boundaries, and limit cycle oscillations.

6.1 Aerodynamic Forces

Roughen, Baker and Fogarty [33] have compared the results of several theoretical
models with the experimental data from the Benchmark Active Controls Technology
(BACT) wing. The BACT wing is a rectangular planform with a NACA 0012 airfoil
profile. The model has a trailing edge control surface extending from 45–75% span.
PreviouslySchuster et al. [34] had compared results fromaNavier-StokesCFDmodel
(ENS3DAE) to these experimental data. Roughen et al. used an alternative Navier-
Stokes CFD model (CFL3D) and also a classical potential flow model (Doublet
Lattice). Correlations were made at several subsonic to transonic Mach numbers. As
they note.

“For the purely subsonic condition (M=0.65)....there is relatively good agreement
between the doublet-lattice results, the Navier-Stokes results and the test data. This
is not surprising because the flow is entirely subsonic and well behaved (there is no
shockwave and noflowseparation).”However atM=0.77 “transonic effects begin to
become apparent in these results. For the most part, the observations about the results
and the qualitative correlation between doublet lattice, Navier-Stokes, and experi-
mental results are similar to the subsonic results. However, there are some important
differences that appear in the neighborhood of the supersonic pocket (near the mild
and relatively weak shock wave).....There is clearly a bump in the unsteady pressure
magnitude (near the shock wave position).....Little nonlinear amplitude dependence
is seen (however) except near the trailing edge.”

For M = 0.82 there is a strong shock near 40% chord. “The presence of the shock
is also clearly evident in the steady-state pressure distribution shown in Fig. 2. The
effects of the shock are also quite obvious in the unsteady pressure results. See Fig. 3.
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Fig. 2 Steady state pressure distribution for BACT odel

In the unsteady pressure magnitudes, there is a clear peak in the unsteady pressure at
approximately 35% local chord in the experimental results and at 40% local chord
in the Navier-Stokes results. The peak, which represents the shock doublet Ashley
[35] caused by the unsteady motion of the shock, is absent in the linear doublet
lattice results [N5K code]. Quantitatively, the correlation of the shock doublet peak
between experimental and Navier-Stokes results is disappointing. The CFD results
predict a shock doublet of approximately double the amplitude of that seen in the
experimental results.... possible contributors to this inaccuracy (in the theory) are the
chordwise grid resolution and the Baldwin-Lomax turbulence model. Correlation
between CFD solutions and the experiment is excellent away from ...the shock.”

More recent calculations for this configuration have improved the quantitative
results from the CFD mathematical models, but not wholly resolved the differences
between theory and experiment at the highestMach number, M= 0.82. See the valu-
able and insightful discussion of results using the CFL3D and ENS3DAE computer
models by Bartels and Schuster [36].

Another valuable correlation among several theoretical results and that of exper-
iment is based upon the experimental work of Davis and Malcolm [37]. Several
investigators have compared the results of transonic potential flow and Euler flow
models with these experimental data. A NACA 64A010A airfoil was studied, again
in the high subsonic/transonic Mach number range. See Fig. 4 for a comparison
of lift and moment magnitude and phase for a pitching airfoil. As can be seen the
general trends are well predicted by all theories with the Euler model being in some-
what better agreement with the experimental data overall. The most recent Euler
results were obtained using the Harmonic Balance method and the number of data
points calculated were correspondingly more numerous. For this comparison the
mean angle of attack of the airfoil was a 0 degrees. However Davis and Malcolm
also considered a mean angle of attack of 4 degrees for which the flow is separated
and results for the magnitude of the unsteady lift are shown in Fig. 5 for both mean
angles of attack as a function of the amplitude of the oscillating or unsteady angle of
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Fig. 3 Unsteady pressure distribution of BACT model

attack. What is immediately clear is that for the mean angle of attack of zero there
is a significant range of unsteady angle of attack for which the aerodynamic flow
is dynamically linear. However that range is much smaller when the mean angle of
attack is increased to 4 degrees and the flow is separated. Results from both potential
flow and Euler flow models correlate well with the experiment for a mean angle
of attack of 0 degrees when the flow is attached, but not for the case of a mean
angle of attack of 4 degrees when the flow is separated. It would be very valuable
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Fig. 4 a Lift Magnitude due to pitching +/ − 1◦ at the quarter-chord for M = 0.8 verses reduced
frequency k ≡ ωb

U∞ for NACA64A010 airfoil. b Lift phase. cMoment magnitude. dMoment phase
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Fig. 4 (continued)
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Fig. 5 Unsteady lift magnitude verses unsteady angle of attack magnitude

to have results from a Navier-Stokes model for the latter case. McMullen, Jameson
and Alonso [38] have also done calculations for this set of experimental data using
the harmonic balance method and obtained similar results. They have done a careful
grid convergence study as well.

Finally the valuable study of Krieiselmaieer and Laschka [39] is noted. In this
work they develop a time linearized Euler model and compare the results obtained
to those from a fully dynamically nonlinear Euler model. The cases considered are
a NACA 0012 airfoil in subsonic flow, the NACA 64A010 in transonic flow and a
3% parabolic arc airfoil in supersonic flow, as well as the three-dimensional flow
about the LANN wing. Their principal conclusions are that the computational cost
of the time linearized code is about an order of magnitude less than that of the fully
nonlinear code (consistent with the findings of other investigators) and that the results
from the two theoretical models are in good agreement for the cases and parameter
ranges investigated. As already noted previously, a time linearized flow model is
sufficient to predict the flutter boundary per se, but of course cannot predict LCO
amplitudes.

A recent NATO report by a Research and Technology Organization Working
Group Ruiz-Calavera [40] provides a comprehensive experimental data base drawn
from many sources in the literature for the verification and validation of computa-
tional unsteady aerodynamic computational codes. Comparisons of the experimental
data with selected aerodynamic computer models and codes are also provided. Addi-
tional such theoretical/experimental correlations may be expected using this unique
collection of data. See especially the paper 8C by Schuster and Bartels in [40].
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7 Flutter Boundaries in Transonic Flow

7.1 AGARD 445.6 Wing

Bennett and Edwards [20] have discussed the state of the art of Computational Aeroe-
lasticity (CAE) in a relatively recent paper and made several insightful comments
about various correlation studies. The NASA Langley team pioneered in providing
correlations for the AGARD 445.6 wing in the transonic flow region. In Fig. 6 a
comparison of flutter speed index (FSI) and flutter frequency is shown as a function
of Mach number between the results from experiment and theory. The theoretical
results are for transonic nonlinear potential flow theory without (CAP-TSD) and
with (CAP-TSDV) a boundary layer model to account for viscous flow effects; and
also for an Euler (CFL3D-Euler) and Navier-Stokes (CFL3D-NS) flow model. For
this thin wing, there are no significant transonic effects in the steady flow over the
wing surface at the Mach numbers with experimental results except for M = 0.96
where there is a very weak shock on the surface. For the subsonic conditions, all
computational results are in very good agreement with experiment. The two low
supersonic test conditions have been problematic for CAE. Inviscid computations
have produced high flutter speed index values relative to the experimental FSI and
viscous computations have accounted for about one half the difference between the-
ory and experiment. Several investigators have now done similar Euler calculations
and obtained similar results Farhat and Lesoinne [41–43]; Ravfeh, Levy and Karpel
[44]; Thomas, Dowell and Hall [45, 46]. The excellent agreement of the wholly lin-
ear theory results with experiment should probably be regarded as fortuitous. Also

Fig. 6 a Flutter speed index and flutter frequency verses mach number for AGARD 445.6 wing. b
Flutter frequency verses mach number
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and interestingly, Gupta [47], who also used an Euler based CFD model, obtains
results in better agreement with experiment at the low supersonic conditions, though
in less good agreement with experiment than the other Euler based results at subsonic
conditions. Thus, CAE computations for this low supersonic region have unresolved
issues which probably involve details such as wind tunnel wall interference effects
and flutter test procedures, as well as CAE modeling issues.

7.2 HSCT Rigid and Flexible Semispan Models

Two semispan models representative of High Speed Civil Transport (HSCT) con-
figurations were tested in the NASA Langley Research Center Transonic Dynamics
Tunnel (TDT) in heavy gas. A Rigid SemispanModel (RSM) was tested mounted on
an Oscillating Turn Table (OTT) and on a Pitch And Plunge Apparatus (PAPA). The
RSM/OTT test Scott et al. [48] acquired unsteady pressure data due to pitching oscil-
lations and theRSM/PAPA test acquired flutter boundary data for simple pitching and
plunging motions. The FSM test Silva et al. [49] involved an aeroelastically-scaled
model and was mounted to the TDT sidewall. The test acquired unsteady pressure
data and flutter boundary data. Figure7 Scott et al. [48] shows the unexpectedly large
effect of mean angle of attack upon the flutter boundaries for the RSM/PAPAmodel.
Flutter of thin wings at subsonic conditions is typically independent of angle-of-
attack within the linear flow region. Figure8 Silva et al. [49] shows a summary of the
flutter and high dynamic response regions for the RSM. Squares indicate conditions
where forced responsemeasurements due to trailing edge control surface oscillations
were made. The ‘analysis’ flutter boundary is from an early finite element model.

Fig. 7 Flutter dynamic
pressure verses mach
number for various mean
angles of attack
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Fig. 8 Dynamic pressure
verses mach number:
depicting regions of distinct
response for HSCT model

Updated modeling places the (linear) flutter boundary slightly above the indicated
‘hard flutter’ point. A region of increased response in first wing bending (8.5Hz.)
was encountered in the Mach number range of 0.90–0.98. Finally, an narrow region
of LCO behavior, labelled ’chimney’, was encountered forM= 0.98–1.00 and over a
wide range of dynamic pressures. Response frequency ranged from 11.9 to 14.0Hz.
And the region was traversed a number of times prior to encountering the hard flutter
point at M = 0.979 and q = 246 pounds per square foot where the model was lost.

7.3 Benchmark Active Control Technology (BACT) Model

This rectangular wingmodel had a panel aspect ratio of two and a NACA 0012 airfoil
section. See Bennett et al. [50, 51] and Ruiz-Calavera [40, 52]. It was mounted on
a pitching and plunging apparatus which allowed flutter testing with two simple
degrees of freedom. It was extensively instrumented with unsteady pressure sensors
and accelerometers and it could be held fixed (static) for forced oscillation testing or
free for dynamic response measurements. Data sets for trailing-edge control surface
oscillations and upper-surface spoiler oscillations for a range ofMach numbers, angle
of attack, and static control deflections are available. Themodel exhibited three types
of flutter instability illustrated in Fig. 9.

A classical flutter boundary is shown, for α = 2 deg as a conventional boundary
versus Mach number with a minimum, the transonic ‘dip’, near M = 0.77 and a
subsequent rise. Stall flutter was found, for α > 4 deg near the minimum of the
flutter boundary (and at most tunnel conditions where high angles of attack could
be attained). Finally, a narrow region of instability occurs near M = 0.92 consisting
of plunging motion at the plunge mode wind-off frequency. This type of transonic
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Fig. 9 Dynamic pressure verses mach number: depicting regions of distinct response for BACT
model

instability has sometimes been termed single-degree-of-freedom flutter. It is caused
by the fore and aft motion of symmetric shocks on the upper and lower surfaces
for this wing. It was very sensitive to any biases and does not occur with nonzero
control surface bias or nonzero alpha. Such a stability boundary feature is often
termed a ‘chimney’ since the oscillations are typically slowly diverging or constant
amplitude (LCO) and it is found, sometimes, that safe conditions can be attained
with small further increases in Mach number. Note that the Mach number for the
plunge instability decreases slightly with increasing pressure.

7.4 Isogai Case a Model

Another benchmark case often used for theoretical/theoretical comparisons is the
famous Isogai Case A, again for a NACA 64A010 airfoil with certain structural
parameters that lead to a complex transonic flutter boundary for a plunging and
pitching airfoil. A recent study is that by Hall, Thomas and Dowell [53, 54] that
includes comparisons with the earlier results of Isogai [55], Ehlers and Weatherill
[56] and Edwards et al. [57]. The latter results were all obtained using nonlinear
potential flowmodels (in some cases theywere time linearized,which shouldmake no
difference for determining the flutter boundary per se), while the results of Hall et al.
were obtained using a time linearized Euler model. There is encouraging agreement
among all models for this complex transonic flutter boundary as seen in Fig. 10. Note
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Fig. 10 Flutter speed index
verses mach number for
Isogai case A

the rapid change influtter speed index as theMachnumber is varied. This is associated
with a change in the critical flutter mode (eigenvector). Two additional studies by
Prananta et al. [58] and Bohbot and Darracq [59] have included turbulence modeling
for this case. Their results show that viscosity reduces the extent of the transonic dip
in the flutter boundary significantly and eliminates the double valued FSI that are
seen over a portion of the Mach number range in the inviscid calculations. Bohbot
and Darracq also show a significant decrease in LCO amplitude due to viscosity at
M = 0.9025.

Bendiksen[60–62] has made two important observations about transonic flutter
boundaries. One is with respect to an experimental study done some years ago at
NASA Langley to consider the effects of airfoil thickness ratio Dogget, Rainey and
Morgan [63] for the same airfoil profile. Bendiksen notes that the family of results
for the variation of flutter speed index with Mach number for the several thickness
ratios can be reduced to a single curve when the data are replotted using (nonlinear
potential flow) transonic steady flow similarity variables. These similarity parameters
rescale the aerodynamic pressure using non-dimensional parameters that combine
theMach number and thickness ratio. Essentially this rescaling shows an equivalence
between changes in Mach number and thickness ratio in the transonic range. As the
rescaling is based upon steady flow similarity variables, it presumably works best
when the reduced frequency is small as might be the case for bending/torsion flutter,
but perhaps not for single degree of freedom flutter due to negative damping. See, for
example, Dowell et al. [64] for a discussion of various types of flutter that may occur.
Implicitly the success of this rescaling also supports the more general observation
that for transonic flow it is important to model accurately the position and strength of
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the shock wave for steady flow conditions before attempting unsteady aerodynamic
or aeroelastic calculations.

The other important point made by Bendiksen is that in the transonic range the
flutter speed index may vary rapidly, not only because of a change in flutter type or
mode (as has been noted by several investigators), but also because of the substantial
changes inmass ratio thatmay occur inwind tunnel test trajectories. Thismay explain
in part the so called “chimneys” in flutter boundaries that have been observed in
transonic flutter wind tunnel test data.

In this regard it is interesting to note that Denegri [3] presents flight test data
showing LCO at nearly constant Mach number over large variations of altitude.
Many “typical LCO” encounters result in termination of testing due to increasing
response levels with each increase in Mach number because of concern for aircraft
safety. Some “non-typical LCO” encounters are reminiscent of the “chimney” feature
in that response levels increased to a maximum and then decreased with increasing
Mach number.

8 Limit Cycle Oscillations

8.1 Airfoils with Stiffness Nonlinearities

Many investigators have considered such a configuration with a variety of nonlinear
stiffness modes. For a description of the work on freeplay nonlinearities including a
discussion of the literature, see the article by Dowell and Tang [65] which focuses on
correlations between theory and experiment. In general good quantitative correlation
is found for simple wind tunnel models and the basic physical mechanism that leads
to LCO appears well understood. Among the important insights developed include
the demonstration that the LCO amplitude and the effect of mean angle of attack on
LCO amplitude both simply scale in proportion to the range of freeplay present in
the aeroelastic system.

Here we consider in more depth the valuable and recent work of the Texas A&M
team [66–71]. They have conducted experiments with their Nonlinear Aeroelastic
Test Apparatus (NATA) in a low speed wind tunnel, and these investigations of
typical section models provided validation of their theoretical models. See Fig. 11.
The NATA testbed has been used to investigate both linear and nonlinear responses
of wing sections as well as the development of active control methods. Three wing
sections have been used in their research: a NACA 0015 wing section without a
control surface; a NACA 0015 wing section with a 20% chord full span trailing
edge control surface; and, a NACA 0012 wing section with a 15% chord, full span
leading edge and a 20% chord, full span trailing edge control surfaces. The pitch
and plunge stiffness of the NATA is provided by springs attached to cams with
shapes prescribed to impart specific response. For example, a parabolic pitch cam
yields a spring hardening response tailored to mimic the response of interest. With
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Fig. 11 The nonlinear aeroelastic test apparatus (NATA) in Texas A&M’s 2’x3’ wind tunnel

such a nonlinear pitch cam in place, the system will experience LCO response. It is
noteworthy that similar nonlinear spring hardening behavior has been observed in
static measurements of the F/A-18 wing Thompson and Strganac [71]. A polynomial
representation of the spring hardening behavior provides a quite effective model of
the response. Encoders are use to measure all motions.

The experimental and analytical efforts of O’Neil, et al. used a model with a non-
linear structural stiffness. In these studies, the stiffness grew (i.e., spring-hardened)
in a smooth, continuous manner with amplitude of motion. The effect on flutter of a
structure with stiffness that grew in a cubic manner was investigated, and the results
showed that LCOs occurred and the stability boundary was insensitive to initial con-
ditions. As the freestreamvelocitywas increased, the amplitude of the LCO increased
and less time was required to reach the LCO. A representative result for LCO shown
as phase plane diagrams is presented in Fig. 12.

8.2 Nonlinear Internal Resonance Behavior

Unusual findings from a wind tunnel experiment have been a motivation for stud-
ies of the possible presence of internal resonance’s in aeroelastic systems. Internal
resonance (IR) occurs as a result of nonlinearities present in the system, and leads
to an exchange of energy between the system modes. The amount of energy that
is exchanged depends on the type of nonlinearity and the relationship of the linear
natural frequencies. IR exists when the linear natural frequencies of a system are
commensurable, or nearly so, and the nonlinearities of the system provide a source
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Fig. 12 Large amplitude LCO’s, induced by a hardening in structural stiffness, as measured with
the NATA

of coupling. Commensurability is defined as

m1ω1 + m2ω2 + . . . + mnωn ≈ 0

where mn are positive or negative integers, and ωn are the natural frequencies of the
system. Although an integer natural frequency ratio does not guarantee IR, it does
form a necessary condition for IR. IR has been shown to exist in many systems, and
its presence depends on the geometry, composition of nonlinearities and boundary
conditions.

Duringwind tunnel tests by Cole [72] intended to verify the aeroelastic stability of
a newwingdesign, anunexpectedflutter-type responseoccurred at dynamicpressures
much lower than analysis had predicted. It is important to note that predictive tools
based upon linear theory were used. For the physical structure, the natural frequency
of the second bending mode of the wind tunnel model was slightly more than twice
the natural frequency of the first torsional mode. However, since frequencies in an
aeroelastic system depend on the aerodynamic loads, a system’s frequencies may be
tuned as the velocity changes. In Cole’s experiments, a resonance-type conditionmay
have been reached before linear flutter conditions. Consequently, it was considered
that the inaccurate predictions were due to the limitations presented by the use of
linear theory.

In an attempt to explain the unexpected experimental results, Oh, Nayfeh and
Mook [73] developed an experiment to examine the structural dynamic behavior
of Cole’s experiments. These experiments were conducted in the absence of any
aerodynamic loads. They determined, theoretically and experimentally, the linear
natural frequencies and the mode shapes, and also experimentally showed that an
antisymmetric vibration mode of a cantilever metallic plate was indirectly excited by
a2:1 internal resonancemechanism.To explain the experimental results, they referred
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to the study of Pai and Nayfeh [74] in which they considered nonlinear beam theory.
The two-to-one IR was present since the natural frequency of the second bending
mode being nearly twice the natural frequency of the first torsional mode. Their
experiment consisted of a base excitation being applied to a cantilevered plate with
the same aspect ratio as Cole’s wing. However, in this study the second bending
mode was excited by a shaker rather than by aerodynamic forces.

Internal resonance has been used to suppress the vibrations of flexible structures.
Studies show that during the resonance, the nonlinear modal amplitudes exchanged
energy back and forth over time, even in the presence of damping. It was also shown
that in the presence of an external excitation, the internal resonances give rise to
coupling between themodes, leading to severalmotions including nonlinear periodic,
almost periodic, and chaos.

Although many researchers have investigated IR in various types of mechanical
systems, relatively little attention has been given to the study of IR in aeroelastic
systems. Stearman, et al. [75] studied resonances in aeroelastic systems, and showed
that both combination-type and parametric resonances can occur. These resonances
occurred if

� f ≈ 2ωn/k and � f ≈ |ωi ± ω j |/k

where k is an integer, � f is the frequency of the external forcing function, ωi , ω j

and ωn are normal mode frequencies. Their study explored the use of statistical
techniques to analyze flight test data.

Gilliatt et al. [76] and Chang et al. [77] both studied the possible presence and
effects of internal resonances in aeroelastic systems. Gilliatt, in particular, was moti-
vated by the experimental findings of Cole. The two degree-of-freedom model of
O’Neil’s research was a basis for the study, and a quasi-steady aerodynamic model
was extended to include stall effects which introduced strong cubic nonlinearities
into the equations of motion. The system parameters were selected to permit the
aeroelastic frequencies to pass through a 3:1, 2:1, and 1:1 ratio as the flowfield
velocity was increased. Gilliatt found that the presence of cubic nonlinearities in the
aeroelastic system led to a 3:1 internal resonance.

8.3 Delta Wings with Geometrical Plate Nonlinearities

At low Mach numbers, see for example Tang and Dowell [78], good correlation has
been demonstrated between theory and experiment for LCO amplitudes and frequen-
cies. Since these results are well documented elsewhere, see also Dowell and Tang
[65], here the recent work of Gordnier et al. [79, 80] that has extended these correla-
tions into the transonic range is emphasized. In Fig. 13 a cropped delta wing planform
is shown. This configuration had been investigated experimentally by Schairer and
Hand [81] and the theoretical calculations were done by Gordnier et al. using both
Euler and Navier-Stokes flowmodels. Initially the theoretical calculations were done
using a linear structural model, which gave predicted LCO amplitudes much greater
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Fig. 13 Planform of a
cropped delta wing

Fig. 14 LCO response
verses dynamic pressure:
correlation of experiment
with various theoretical
models for cropped delta
wing

than those observed experimentally. This led Gordnier to include nonlinearities in
the structural model (tension induced by bending) via Von Karman’s nonlinear plate
theory that provided much improved correlation between theory and experiment.
See Fig. 14 which shows a plot of LCO amplitude versus flow dynamic pressure at
a fixed transonic Mach number. Note that the effects of viscosity are modest based
upon the comparisons of results using the Euler verses Navier-Stokes models. Also
the much improved agreement obtained with the nonlinear structural model suggests
that aerodynamic nonlinearities per se are not as significant for this configuration
as are the structural nonlinearities as Gordnier notes in his conclusions. Perhaps the
most significant impact of this example is to illustrate that even for a transonic flow,
there are cases where structural nonlinearities may be dominant.
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It is also interesting to note that for this example that the most significant aero-
dynamic nonlinearity was associated with leading edge vortices rather than shock
motion. This nonlinear aerodynamic flowmechanism has also been studied byMook
and colleagues, e.g. Preidikman et al. [82] at lowMach numbers in a series of papers.
As Gordnier and Mook note nonlinear vortex flow phenomena may be important
when structural nonlinearities are weaker and the corresponding structural motions
greater. Of course if the mean angle of attack is sufficiently large (say 10 degrees or
more) then vortex formation may be important for even smaller wing oscillations.

8.4 Very High Aspect Ratio Wings with Both Structural and
Aerodynamic Nonlinearities

Notable contributions have been made by Patil, Hodges and Cesnik [83, 84] and
Tang and Dowell [85]. This case has been discussed in some depth by Dowell and
Tang [65] and that discussion will not be repeated here. In summary, however, both
structural geometrical nonlinearities (associated with torsional motion and bending
both transverse and parallel to the beam /rod chord) and aerodynamic nonlinearities
(associated with flow separation and wing stall ) have been shown to be important.
Also wing stall has been shown to lead to hysteretic LCO response with increases
and decreases in flow velocity. The correlation of theory and experiment is good,
albeit the extant theory uses a semi-empirical model to account for wing stall. Again
it would be highly desirable to use a Navier-Stokes flow model for correlation with
this experiment and indeed this case is a good benchmark for such flow models.

Further recent work has been done by Kim and Strganac [86] who used the equa-
tions of Crespo da Silva [87] to examine store-induced LCOs for the cantilevered
wing-with-store configuration. These equations contain structural coupling terms
and quadratic and cubic nonlinearities due to curvature and inertia. Several pos-
sible nonlinearities, including aerodynamic, structural, and store-induced sources,
were considered. Structural nonlinearities were derived from large deformations.
Aerodynamic nonlinearities were introduced through a stall model. Store-induced
nonlinearities were introduced by kinematics of a suspended store. All of these non-
linearities retained cubic nonlinear terms. To examine systematically the response
characteristics, phase plane analysis was performed and the effect of each nonlin-
earity, as well as combinations of the nonlinearities were studied. Although various
forms of nonlinear responses were found, of interest was the finding of LCO response
at speeds below the flutter velocity. Furthermore, an unstable boundary was found,
above which responses were attracted to the LCO and below which the responses
were attracted to the nominal static equilibria. Of special importance, such subcritical
response was found for only the case in which complete consideration of structural,
aerodynamic, and store-induced nonlinearities was given. This suggested that studies
of nonlinear aeroelasticity must sometimes consider a full aircraft configuration. A
representative result is shown in Fig. 15.
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Fig. 15 LCO response of the
cantilevered wing-with-store
configuration

Thompson and Stragnac [71] studied the effects of structural nonlinearities and
store configuration nonlinearity. Thompson showed that although store-induced kine-
matic nonlinearities might be considered negligible in practice, they may introduce
atypical behavior that would not be predicted by linear system analysis.

8.5 Nonlinear Structural Damping

Even linear aeroelasticmodels often use empiricalmodels of structural damping; thus
little is known fundamentally about how tomodel structural damping for LCO. How-
ever an interesting and insightful hypothesis has been offered by Chen, Saarhaddi
and Liu [88]. If one assumes that the structural damping increases with amplitude
of structural motion (there is some experimental evidence to suggest this may be
the case), and if the negative aerodynamic damping associated with flutter remains
sufficiently small beyond the flutter boundary, then the nonlinear increase in struc-
tural damping may offset the negative aerodynamic damping and this will lead to a
nonlinear, neutrally stable motion, i.e., LCO. Liu et al. have performed calculations
based upon this hypothesis that appear consistent with some of the LCO observed in
the F-16 aircraft.

8.6 Large Shock Motions and Flow Separation

These aerodynamic nonlinearities are both the most difficult to model theoretically
and also to investigate experimentally. Hence it is perhaps not surprising that our
correlations between theory and experiment are not yet what we might like them to
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be. As a corollary one might observe that it will in all likelihood be easier to design a
favorable nonlinear structural element to produce a benign LCO, than to assure that
flow nonlinearities will always be beneficial with respect to LCO.

8.6.1 NACA 64A010A Conventional Airfoil Models

In Fig. 16 recent results are shown for the LCO of a NACA 64A010 airfoil in plunge
and pitch as predicted by an Euler flow model Kholodar, Thomas, Dowell and Hall
[89]. Here the LCO amplitude is plotted versus the flutter speed index (FSI) for a
range of Mach number. As can be seen the LCO is relatively weak (the curves of
the figure are nearly vertical) for most Mach numbers. And for those Mach numbers
where the LCO is relatively strong, it can be either benign (the curves bend to the
right) or detrimental (the curves bend to the left) leading to LCO below the flutter
boundary. This example also points out the substantial amount of data needed to
assess LCO under these circumstances. A Navier-Stokes model has also been used
to assess LCO of this configuration for a more limited range of parameters. The
results (not shown) indicate a modest effect of viscosity provided the mean angle of
attack is sufficiently small and no flow separation occurs.

8.6.2 NLR 7301 Supercritical Airfoil Models

Another configuration of interest is the supercritical airfoil, NLR 7301, which has
been studied experimentally by Schewe and his colleagues [90–93]. This has in turn

Fig. 16 LCO amplitude verses reduced velocity for NACA 64A010 airfoil
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Fig. 17 LCO amplitude
verses reduced velocity for
NCR 7301 supercritical
airfoil

inspired several theoretical studies using either anEuler orNavier-Stokes flowmodel.
A correlation among several theoretical models and the result of experiment is shown
in Fig. 17. This figure is drawn from the paper by Thomas, Dowell and Hall [94] who
used a harmonic balance LCO solutionmethod. Results are also shown fromWeber et
al. [95] and Tang et al. [96] both of whom used the more computationally demanding
time marching technique. Note that there is only a single data point from the latter as
is the case from the experiment. However it is clear that to have a more meaningful
correlation it is highly desirable to provide results for LCO amplitude over a range
of FSI and Mach number. Hence it is not yet clear what the conclusion should be
with respect to correlation between theory and experiment. It does appear that the
several theoretical results are in reasonable agreement. More correlations with the
experimental data are needed.

Computational conditions are sensitive and care must be taken to achieve rea-
sonable steady initial pressure distributions for this configuration. Also, the LCO
conditions appear to be very sensitive to details of the computations. Tang et al. give
results from the CFL3D-NS code illustrating effects of turbulence models, single-
block and multi-block (parallel), multigrid subiterations, and time step. Agreement
for the LCOmotion amplitudes has been difficult to achieve for this case even includ-
ing the effects of wind tunnel wall interference. Castro et al. [97].

8.6.3 AGARD 445.6 Wing Models

The AGARD 445.6 wing has been discussed earlier in terms of its flutter boundary;
nowwe turn to very recent results from Thomas, Dowell and Hall [9i8] for LCO. The
correlation between theory and experiment for the flutter boundary is again shown
in Fig. 18 where the Euler flow model is that of Thomas et al. The flutter boundary
correlation is consistent with that discussed earlier relative to Fig. 6. But now we
have in additional results for LCO amplitude versus FSI for various Mach number.
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Fig. 18 Flutter speed index verses mach number for AGARD wing 445.6: comparison of theory
and experiment

See Fig. 19. Note that a value of first mode non-dimensional modal amplitude of
ξ = .012 as shown in this figure corresponds to a wing tip deflection equal to one
fourth of the wing half-span. Note also that in general the LCO is predicted to be
weak and there is no Mach number for which a benign LCO is predicted. Indeed the
strongest LCO is detrimental and occurs at the low supersonic Mach numbers, i.e.
M = 1.141 and 1.072. This means that LCO may occur below the flutter boundary
at these two Mach numbers and perhaps this explains at least in part why flutter (or
LCO) in the experiment occurs below the predicted flutter boundary.

Small amplitude LCO behavior for the AGARD 445.6 wing has also been calcu-
lated by Edwards [99]. The majority of published calculations for this wing model
(actually a series of models with similar planforms) are for the “weakened model
�3” tested in air, since this test covered the largest transonic Mach number range and
showed a significant transonic dip in the flutter boundary. The focus on this partic-
ular configuration may be in some ways unfortunate, in that the model tested in air
resulted in unrealistically largemass ratios and small reduced frequencies.Weakened
models �5 and �6 were tested in heavy gas and had smaller mass ratios and higher
reduced frequencies. Very good agreement was obtained with experiment for flutter
speed index using the CAP-TSDV code over the Mach number range tested. For the
highest Mach number tested, M = 0.96, it was noted that damping levels extracted
from the computed transients were amplitude dependent, an indicator of nonlinear
behavior. It was also found that small amplitude divergent (in time) responses used
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Fig. 19 LCO amplitude verses reduced velocity for various mach numbers: AGARD 445.6 wing

to infer the flutter boundary would transition to LCO when the calculation was con-
tinued further in time. The wing tip amplitude of the LCO was approximately 0.12
inches peak-to-peak, a level that is unlikely to be detected in wind tunnel tests given
the levels of model response to normal wind tunnel turbulence.

8.6.4 MAVRIC Wing Flutter Model

This business jet wing-fuselagemodel Edwards [99, 100] was chosen byNASALan-
gley Research Center’s Models For Aeroelastic Validation Involving Computation
(MAVRIC) project with the goal of obtaining experimental wind-tunnel data suitable
for Computational Aeroelasticity (CAE) code validation at transonic separationonset
conditions. LCO behavior was a primary target. An inexpensive constructionmethod
of stepped-thickness aluminum plate covered with end-grain balsa wood and con-
toured to the desired wing profile was used. A significant benefit of this method
was the additional strength of the plate that enabled the model to withstand large
amplitude LCO motions without damage.

The model was instrumented with three chords of unsteady pressure transduc-
ers and eight accelerometers. It was tested in air and in heavy gas and with three
wingtip configurations: clean, winglet, and pencil tipstore. Figure20 shows the Flut-
ter Speed Index (FSI) boundary versusMach number froman earlier test of thismodel
Edwards [101], including computed CAE code comparisons. The experimental flut-
ter boundary shows a gradual decrease in dynamic pressure, reaching a minimum
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Fig. 20 Flutter speed index
verses mach number for
MAVRIC model

at M = 0.89. The structural modifications and added instrumentation resulting in
the MAVRIC model had very little effect upon the flutter boundary. Both the Tran-
sonic Small Disturbance CAP-TSDV and the higher level CFL3D codes are in good
agreement with experiment at the lower Mach numbers. Both inviscid codes, CAP-
TSD and CFL3D-Euler, increasingly depart from experimental values approaching
the minimum FSI value. This emphasizes the necessity of the inclusion of viscous
shock-boundary layer interaction effects for LCO-like motions. Both viscous codes,
CAP-TSDV and CFL3D-NS, are in good agreement with experiment at M = 0.89
where small amplitude, time-marching responses were used to identify the flutter
boundary.

The behavior of the MAVRIC model as flutter was approached during the wind
tunnel test indicated that wing motions tended to settle to a large amplitude LCO
condition, especially in the Mach number range near the minimum FSI conditions.
Figure21 [Edwards [102]] indicates the ability of the CAP-TSDV code to simulate
these large amplitude LCO motions. Large and small initial condition disturbance
transient responses clearly show the six inch peak-to-peak wingtip motions observed
in the tests. Such large amplitude aeroelastic motions have not been demonstrated
by RANS codes which have difficulty maintaining grid cell structure for significant
grid deformations. Figure22 Edwards et al. [100] shows the map of the regions of
LCO found in the MAVRIC test in the vicinity of the minimum FSI (clean wingtip,
deg.). Numbers for the several contours in the figure give the half-amplitude of
wingtip LCOmotions, in g’s, in the indicated regions. Two regions, signified by ‘B’,
are regions where ‘beating’ vibrations were observed. For this test condition, wing



520 E. H. Dowell

Fig. 21 Transient response
leading to a LCO: simulation
for MAVRIC wing

Fig. 22 Dynamic pressure
verses mach number
contours of constant LCO
amplitude for MAVRIC wing
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motions are predominantly of the wing first bending mode at a frequency of 7–8Hz.
(wind-off modal frequency is 4.07Hz.). Two chimney features are seen, at M = 0.91
and at M = 0.94. Edwards discusses flutter model responses which are indicative
of more complex nonlinear behaviors than are commonly attributed to LCO. Thus,
flutter test engineers are familiar with responses such as ‘bursting’ and ‘beating,’
commonly used as indicators of the approach to flutter (and LCO).

8.6.5 Clipped-Tip Delta Wing Control Surface Buzz Model

Parker et al. [103] describe a test of a clipped-tip delta wing model with a full span
control surface. The leading-edge sweep was 60◦, the biconvex wing profile had
thickness of 3% of local chord, and the constant chord control surface length was
approximately 13% of the root chord. The control surface was mounted on two
flexure springs. The tests were conducted in air which is of concern since there
are known to be severe Reynolds number and/or transition effects for this tunnel at
dynamic pressures below 50–75 pounds per square foot Edwards et al. [100]. Pak and
Baker [104] have performed computational studies of this case. They compare the
experimental buzz boundary with time-marching transient responses calculated with
the CFL3D-NS code and the CAP-TSDV code, respectively. Both codes capture
LCO behavior near the experimental buzz conditions with the higher level code
appearing to have better agreement for the experimental trend versus Mach number.
The responses offer excellent insight into issues and problems of the use of CAE
time-marching codes for LCO-like studies. The record lengths of a number of the
responses, which are extremely expensive to compute, are not sufficient for clear
determination of the response final status. Also, LCO behaviors can result from very
delicate force balances and settling times to final LCO states can require many cycles
of oscillation.

8.6.6 Residual Pitch Oscillations on the B-2

The B-2 bomber encountered a nonlinear aeroelastic Residual Pitch Oscillation
(RPO) during low altitude high speed flight. See Dreim et al. [14]. Neither the RPO
or any tendency of lightly damped response had been predicted by wholly linear
aeroelastic design methods. The RPO involved symmetric wing bending modes and
rigid body degrees of freedom. It was possible to augment theCAP-TSDVaeroelastic
analysis code with capability for the longitudinal short-period rigid body motions,
vehicle trim, and the full-time active flight control system including actuator dynam-
ics. This computational capability enabled the analysis of the heavyweight, forward
center of gravity flight condition. The simulation predicts open loop instability at M
= 0.775 and closed loop instability at M = 0.81 in agreement with flight test. In order
to capture the limit cycle behavior of the RPO it was necessary to include modeling
of the nonlinear hysteretic response characteristic of the B-2 control surfaces for
small amplitude motions. This is caused by the small overlap of the servohydraulic
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control valve spool flanges with their mating hydraulic fluid orifices.With this realis-
tic actuator modeling also included, limited amplitude RPOmotions similar to those
measured in flight were simulated as shown. A lighter weight flight test configura-
tion exhibited very light damping near M = 0.82 but did not exhibit fully developed
RPO. Instead damping increased with slight further increase in speed, typical of
hump mode behavior. The CAP-TSDV simulations did not capture this hump mode
behavior.

8.6.7 Rectangular Goland Wing Model with Tip Store

We conclude this section with a discussion of the recent and valuable papers by
Beran et al. [105] and Huttsell et al. [106]. In the paper by Beran et al. comparisons
were made between the predictions of a fully nonlinear potential flow plus boundary
layer model (CAP-TSDV) and the results from classical fully linear theory (doublet
lattice). The Goland wing was used for this study which is a rectangular planform
with a 4%parabolic arc airfoil. In Fig. 23 flutter boundaries andwhat is termed a LCO
boundary are shown for the two theoretical methods. Results for the wing alone and
for a wing with a tip store are given. Beran et al. note that for this configuration the
aerodynamic effect of the tip store is small, but the effect of tip store dynamics (inertia)

Fig. 23 Flutter and LCO boundaries: velocity verses mach number for goland wing
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Fig. 24 LCO response verses flow velocity. An example of hysteresis for goland wing

is important as seen in the figure. Note also that the two flow models give results in
good agreement for the subsonic Mach number range, but differ substantially in the
transonic range. Beran et al. distinguish between the flutter boundary (for the wing
plus tip store) and the LCO boundary. However based upon the work of others that
show that rapid changes in flutter (and LCO) modes may occur, it seems likely that
these are both flutter boundaries per se. At the subsonic Mach number it is likely
that no LCO was observed in these time simulations because the LCO is very weak.
That is at subsonic Mach numbers the time simulation shows a rapidly exponentially
diverging oscillation typical of a linear dynamical system. LCO was observed over a
narrow range of transonic Mach number (again consistent with the findings of other
investigators for other configurations) where the aerodynamic nonlinearity is strong
enough that a time simulation will reach a finite steady state LCO amplitude in a
reasonable amount of computational time. However if the initial disturbance to the
system is small enough or there is little hysteresis in the dependence of LCO steady
state amplitude on speed index, then the boundary for the onset of LCO should be
essentially the same as the flutter boundary. There is some mild hysteretic LCO
behavior for this configuration as is discussed further in the paragraph after next.

In Fig. 24a the LCO amplitude is shown as a function of flow velocity for various
theoretical models. Results are shown with and without store aerodynamics (again
the differences are small) and with and without the effects of viscosity. As can be
seen there is little effect of viscosity on the flow velocity at the onset of flutter and
LCO, but the effect on LCO amplitude per se is substantial. (The abrupt increase in
LCO response for the inviscidmodel may be indicative of unrealistic shockmotions.)
Recall the results of Thomas, Dowell and Hall [94] for the NLR 7301 airfoil which
showed similar behavior when comparing LCO response from inviscid and viscous
flow models. And also recall the results of Bohbot and Darracq [59] for the Isogai
Case A.
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Fig. 25 LCO response verses flow velocity for goland wing

In Fig. 24b inviscid flow results are shown for various mean angles of attack.
The results are qualitatively similar, but the effect of increased angle of attack is to
increase the flow velocity at which flutter and LCO occur.

In Fig. 25, the results of Fig. 24 are shown again for increasing flow velocity
(Perturbed Rigid IC) and decreasing flow velocity (Path Following IC). The results
display hysteresis with the LCO amplitude observed being path dependent. As the
flow velocity is increased and given a sufficiently small initial condition (IC) distur-
bance, no flutter or LCO is seen until a velocity of about 390 ft/s; but when the airfoil
is then allowed to oscillate in the LCO and the flow velocity is now decreased, LCO
continues until a lower velocity is reached of about 385 ft/s. Although the range of
flow velocity over which hysteresis is observed is relatively small in this example,
there is every reason to expect that for other parameter choices the range of hysteresis
can be greater.

8.6.8 Time Marching Codes Compared to Various Experimental
Results

In the paper by Huttsell et al. [106] several state of the art time marching CFD
codes are used to investigate flutter and LCO for challenging cases drawn from flight
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or wind tunnel tests. The CAP-TSD, CAP-TSDV, CFL3D and ENS3DAE codes
are all used. The results are extremely helpful in providing a realistic assessment
of the state of the art of these codes and they are also indicative of future needs
for improvements. For the F-15 example, difficulty was encountered in producing
a computational grid with negative fluid volumes being encountered. For the AV8-
B a steady state flow field could not be found due to oscillations in the numerical
solver from one iteration to the next. These difficulties are not unusual for CFD
codes in the present authors’ experience. Sometimes the difficulty in achieving a
steady flow solution is attributed to shedding in the flow field, but in the absence of
a full nonlinear dynamic CFD calculation, that must remain a speculation. For the
B-2 example encouraging agreement was obtained for the frequency and damping
variation of the critical flutter (and LCO) mode as a function of flight speed using
the CAP-TSDV code. For the B-1 estimates of the damping associated with LCO
were favorably compared to those found in wing tunnel tests using the CFL3DAE
code. It is not entirely clear what the “damping” of an LCOmeans, however, since by
definition LCO is a neutrally stable motion. Two control surface “buzz” cases were
considered and CFL3DAE had some success in predicting the behavior observed in
the wind tunnel for a NASP like configuration.

As Huttsell et al. note, additional work is needed to improve CFD model robust-
ness, computational efficiency and grid generation deformation strategies.

8.7 Abrupt Wing Stall

Although not usually classified as a nonlinear aeroelastic response or LCO, abrupt
wing stall (AWS) appears to share some of the same basic characteristics. A joint
Navy/NASA/ Air Force program over the last several years has addressed this class
of phenomena Woodson [107]. Chambers [108] has presented a valuable historical
account of AWS and drawn lessons learned from a number of aircraft programs.
Much of the recent work on AWS has been motivated by experiences with the F-18.

Briefly AWS is encountered when the aircraft is at a sufficiently high angle of
attack for flow separation to occur and the flow then begins to oscillate including
shock oscillations if the local Mach number is large enough. For large angles of
attack sonic conditions may be reached locally even for relatively low free stream
Mach numbers. This oscillating flow may be asymmetric from one wing to the other
and therefore the aircraft will roll. If this rolling motion is a transient the motion
is usually called “wing drop” while if it is periodic in the roll angle it is called
“wing rock”. Wing rock has been modeled Nayfeh, Elzebda, Mook [109], Ericcson
[110] as a limit cycle oscillation due to nonlinear self-excited coupling between
the aerodynamic flow and the rolling motion of the aircraft. Wing drop has been
modeled by including this effect Kokolios and Cook [111] and also the oscillating
aerodynamic rolling moment that may occur even in the absence of aircraft motion.
This oscillating aerodynamic moment is due to a nonlinear self-excitation of the flow
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in the absence of aircraft motion and thus this moment is an “external” excitation as
far as the vehicle motion is concerned.

Since the dominant aircraft motion is rigid body roll rather than the an elastic
structural mode of the wing, for example, abrupt wing stall is not usually thought
of as being an aeroelastic issue per se. Yet from a dynamics perspective many of
the issues with respect to aerodynamic modeling and aircraft motion are similar to
those nonlinear phenomena discussed previously in this paper. Valuable free-to-roll
wind tunnel model studies have been performed at NASA Langley Research Center
by Lamar et al. [112] as have some CFD simulations of AWS. Several sessions and
papers devoted to this topic have been presented at the recent 2003 AIAAAerospace
Sciences Meeting.

8.8 Uncertainty Due to Nonlinearity

There has been recent and renewed interest in the impact of uncertainties on aerospace
system response. Here two scenarios that have been reported by operators of current
aerospace systems are discussed and the relationship of uncertainty to nonlinearity
is noted.

8.8.1 Scenario I

One scenario that has been reported is the following. An aircraft in straight and level
flight does not experience flutter or LCO; however when the aircraft is maneuvered
LCO does occur and then when the aircraft is returned to straight and level flight the
LCO persists. The question is, how has the maneuver generated LCO that persists in
straight and level flight when LCO did not occur before the maneuver?

With the framework of a linear aeroelasticmodel, such behavior is not possible, but
an explanation is possible for a nonlinear aeroelastic system as a result of hysteresis.
That is, if the disturbance to a nonlinear system is sufficiently small, LCO will
not occur, but if a sufficiently large disturbance is applied to the system, e.g., a
maneuver, then LCO may be induced. And once LCO exists, it may persist even if
one returns to the nominal original flight condition. Such behavior has been observed
in bothmathematical and experimentalwind tunnelmodelswhere the nonlinear effect
producing the LCO and hysteretic response is due to either structural freeplay or flow
separation.

In this scenario the uncertainty is because two different nonlinear response states
are possible at the same parameter condition (flight speed and altitude) and the prior
history of the system is critical in determining its response.
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8.8.2 Scenario II

In another scenario that has been observed, two distinct, but nominally identical
systems (aircraft) are flown through the same trajectory and one encounters LCO
but the other does not. The question is, how is this possible? Again insights obtained
from nonlinear aeroelastic models may offer an explanation.

Consider an aircraft with freeplay as an example. Now it is very difficult to main-
tain the same amount of freeplay in each and every aircraft. So what might happen
if two otherwise identical aircraft have different amounts of freeplay? For the air-
craft with the smaller freeplay, the LCO amplitude (which scales in proportion to the
magnitude of freeplay) might not be noticeable because it is too small. However for
the aircraft with the larger freeplay the LCO may be detectable. From recent theo-
retical and experimental studies of freeplay as discussed by Dowell and Tang [65],
not only is it known that LCO amplitudes increase in proportion to the magnitude of
the freeplay, but also that the magnitude of the angle of attack required to suppress
LCO due to freeplay scales in proportion to the magnitude of the freeplay. Thus the
aircraft with the larger freeplay will not only have a LCO of larger amplitude, but it
will also experience freeplay over a larger range of angle of attack, again making it
more likely that LCO will be observed.

These two scenarios and their possible explanation point up the importance of
developing a fundamental understanding of the underlying structural and fluid non-
linearities that may occur in aeroelastic systems in dealing with the uncertainties and
apparent paradoxes that have been observed in practice.

9 Concluding Remarks

Substantial progress has been made in modeling and understanding nonlinear aeroe-
lastic phenomena. Experimental and theoretical investigations have shown good cor-
relation for a number of nonlinear physical mechanisms. As a broad generalization,
one may say that our understanding of and correlation among alternative theoretical
models and experiment is further advanced for nonlinear structural mechanisms such
as freeplay and large deflection geometric nonlinearities of beam s and plates, than it
is for nonlinear fluid mechanisms such as large shock motions and separated flows.
Nevertheless accurate and much more computationally efficient theoretical models
are now becoming available for nonlinear aerodynamic flows and there is cause for
optimism in addressing these issues going forward.

As has been emphasized throughout this chapter, a number of physical mecha-
nisms can lead to nonlinear aeroelastic response including the impact of steady flow
fluid or static structural nonlinearities in changing the flutter boundary of an aeroelas-
tic system. Of course dynamic nonlinearities play a critical role in the development
of limit cycle oscillations, hysteresis in flutter and LCO response, and the sensitivity
of both to initial and external disturbances.
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The good news for the flight vehicle designer is that because of nonlinear aeroelas-
tic effects, finite amplitude oscillations can in some cases replace what would other-
wise be the rapidly growing and destructive oscillations of classical flutter behavior.
A careful consideration and design of favorable nonlinearities offers a new oppor-
tunity for improved performance and safety of valuable wind tunnel models, flight
vehicles, their operators and passengers. And once nonlinear aeroelastic models have
reached a state of maturity sufficient for their consideration in the design process,
then active and adaptive control can potentially provide for even greater flight vehicle
performance. The discussion of active and adaptive control is beyond the scope of
this paper, but the reader may wish to consult the work of Heeg [113], Lazarus, et
al. [114, 115], Ko, et al. [68–70], Block and Strganac [67], Vipperman, et al. [116],
Bunton and Denegri [8], Clark et al. [117], Frampton et al. [118], Rule et al. [119],
Richards et al. [120] and Platanitis and Strganac [121].
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Aeroelastic Control

Robert Clark

Abstract Active control of aeroelastic systems is a subject of continuing interest
and this chapter provides an introduction to this fascinating topic.

1 Introduction

Aeroelastic phenomena, as described throughout this text, occur due to a feedback
effect between the unsteady aerodynamics and the structural dynamics of an airfoil or
vehicle. This two-way exchange of energy is what distinguishes aeroelastic phenom-
ena from driven vibration problems in structural dynamics. The presence of feedback
also provides much common ground between the disciplines of control theory and
aeroelasticity. In particular, the concept of stability is central to both fields, and the
accuracy of models are judged largely on the ability to predict the conditions under
which an instability will occur.

In control theory, linear time invariant (LTI) models form the basis for most types
of analysis and design. Models of this form, and extensions to linear parameter
varying systems, will be assumed for the methods discussed in this chapter. The
dynamics of lightly damped structures are well described by this type of model.
Using spatial expansions based on orthogonal functions [1], low order models can
be constructed that predict vibration accurately, particularly for small displacements.
Fluid dynamics, however, exhibit behavior on a wide range of scales and often are
sensitive to nonlinearities present in the physics. Nevertheless, as was discussed in
Chap. 9, many important cases of aeroelastic phenomena can be predicted with time-
linearized aerodynamic models. These models can account for effects such as shock,
separation and even turbulence in the steady solution, and the dynamic behavior is
treated as a linear perturbation about this solution. With this linear dynamic simplifi-
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cation, tools such as eigenvector analysis or singular value analysis become possible,
and aerodynamic models may be reduced in order similar to what is commonly done
with finite element structural models.

In this chapter somebasic concepts fromcontrol theorywill be reviewed, including
state-space modeling, balanced realization theory, and extensions to linear parameter
varying models. This is a relatively narrow presentation of control theory, and the
content is in no way meant to be comprehensive. Rather the intent is to introduce
the reader to possibilities with simple examples serving as vehicles for the concepts
presented. The broader area of controlling aeroelastic vehicles is described in the
work on aeroservoelasticity from Noll [2], the literature survey of Livne [3], and a
series of results from NASA sponsored research programs [4, 5].

Specifically, active flutter suppression is developed for two example systems, a
typical section model and aflexible deltawing. Experimental results are presented for
bothwith feedback control based upon fixed aswell as gain-scheduled compensators.
A unifying theme to the presentation is the applicability of Hankel singular values
from the initial model reduction stage, aerodynamic, structural, or aeroelastic, to the
design of actuator and sensor systems for selectively targeting modes of the system.
Thus, we have chosen to provide an integrated design perspective for the presentation
of aeroelastic control.

2 Linear System Theory

The design of feedback control systems is dominated by the use of linear time invari-
ant (LTI) input/output models. The concepts described below are detailed in standard
linear systems texts including [6–9], and are provided here largely to introduce the
notation and terminology, which are also standard but may vary somewhat from
previous notation in this book.

2.1 System Interconnections

The state-space model of an LTI system that is driven by inputs u ∈ Rp and observed
by outputs y ∈ Rq is, [

ẋ
y

]
=

[
A B
C D

] [
x
u

]
(1)

where A ∈ Rn×n, B ∈ Rn×p,C ∈ Rq×n , and D ∈ Rq×p. This complete model is
often denoted by a single symbol, G, that can be either the transfer function matrix

G(s) = C(s I − A)−1B + D, (2)
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Fig. 1 Interconnection of systems G1 and G2

where s is a Laplace transform variable [8], or equivalently a state space realization

G(s) :=
[
A B
C D

]
. (3)

State-space models can be developed at a subsystem level and combined by various
interconnections into full system models. Several important interconnections are
shown in the block diagrams of Fig. 1. Note that outputs appear on the left in these
block diagrams, consistent with the equations they represent. The series connection
of two systems G1 and G2, as shown in Fig. 1a, is

G1(s)G2(s) :=
⎡
⎣ A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

⎤
⎦ (4)

and the parallel connection, as shown in Fig. 1b, is

G1(s) + G2(s) :=
⎡
⎣ A1 0 B1

0 A2 B2

C1 C2 D1 + D2

⎤
⎦ (5)

Finally the feedback connection of systems G1 and G2 as shown in Fig. 1c is,

⎡
⎣ A1 + B1R−1

u D2C1 B1R−1
u C2 B1(I + R−1

u D2D1)

B2R−1
y C1 A2 + B2R−1

y D1C2 B2R−1
y D1

(I + D1D2R−1
y )C1 D1R−1

u C2 D1(I + D2R−1
y D1)

⎤
⎦ (6)

where
Ru = (I − D2D1)

−1, Ry = (I − D1D2)
−1 (7)

and simplifies considerably if either system is strictly proper (i.e., D1 or D2 is zero).
The feedback connection is often defined in terms of a linear fractional trans-

formation (LFT) on the systems involved. The LFT is a convenient formalism for
feedback effects and is commonly used in robust control design. It provides the abil-
ity to view uncertainty in a model as an unknown feedback effect and in so doing
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Fig. 2 Linear fractional transformation of � on M

unifies many methods of analysis and design [9, 10]. To understand the mechanics
of an LFT explicitly, consider the mapping

[
z
q

]
=

[
M11 M12

M21 M22

] [
w

v

]
(8)

and the feedback relationship v = �q, as shown in Fig. 2a. The relationship between
z and w is given by the lower LFT,

z = (
M11 + M12�(I − M22�)−1M21

)
w

= F l(M,�)w
(9)

Similarly, the upper LFT results if � relates w and z as shown in Fig. 2b, and this
is given by,

q = (
M22 + M21�(I − M11�)−1M12

)
v

= Fu(M,�)v
(10)

A useful property of the LFT is that algebraic combinations of LFTs which occur
due to parallel, series, or feedback connections preserve the LFT structure. There-
fore, systems with multiple LFTs can be represented by a single LFT of augmented
dimensions. The general linear robust control problem is represented by the block
diagram of Fig. 3, where � represents the effect of uncertainty on the system model,
and K represents a feedback control law. The closed-loop transfer function of interest
is

Tzw = Fl(Fu(T,�), K ). (11)

The linear optimal control problem involves finding K to minimize Tzw with � = 0,
while robust control seeks the same objective with only limited knowledge of the
uncertainty model �.

In principle the uncertainty � can be made large enough to contain all the feed-
back effects of aerodynamics on a system. Then the aeroelastic control problem is
just regulation of the structural model while retaining stability in the presence of the
uncertainty. Such a design is a first pass at including aerodynamics in a structural
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vibration problem, however, the performance would be limited by the large uncer-
tainty. To obtain acceptable performance an explicit model for the aerodynamics is
needed. A method for obtaining suitable reduced order models will be outlined in
Sect. 3.

2.2 Controllability and Observability

The LTI system of (1) is said to be controllable if for any initial condition, x(0), any
target state, x1, and any final time, t f , there exists an input signal, u(t), defined in
the interval t ∈ [0, t f ] that will cause the system to satisfy x(t f ) = x1. In fact this
control signal can be explicitly calculated as,

u(τ ) = −BT eA
T (t f −τ)Wc(t f )

−1(eAt f x(0) − x1); (12)

where Wc, the controllability Gramian, is

Wc(t f ) =
∫ t f

o
eAτ BBT eA

T τdτ. (13)

The condition for existence of this signal is the invertibility of the matrix Wc(t f ) for
any final time t f . For stable systems, only the infinite time Gramian,Wc(∞) need be
calculated. The solution to (13) with infinite final time can be found from the positive
definite solution to the Lyapunov equation,

AWc + WcA
T + BBT = 0 (14)
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If the matrix Wc is full rank, and therefore invertible, the system is said to be con-
trollable. Otherwise the system has at least some states which are not controllable
from the input.

A dual problem to that of system controllability is observability. A system is said
to be observable if for any time t f > 0, the initial state x(0) can be determined from
the output history y(t) over the interval t ∈ [0, t f ]. The infinite time observability
Gramian can be found as the solution to,

ATWo + WoA + CTC = 0. (15)

and the system is observable if Wo is full rank.
Controllability and observability of a system is a standard assumption for many

problems involving the design of optimal control laws. In practice it is rare to
find models built from physical principles that contain non-obvious unobservable
or uncontrollable subspaces. However these Gramians can provide more informa-
tion about a system than just a discrete test of controllability or observability. The
numerical conditioning of Wc (Wo) provides measure of the relative degree of con-
trollability (observability). For example if the singular values ofWc are spread over a
wide range, then the inverse will be ill-conditioned and from (12) one would expect
large control forces to reach a nominal x1, say on the unit ball, ‖x1‖ = 1.

Clearly the conditioning of thismatrix depends upon the units, andmore generally
on the coordinates, of the internal state vector x . These coordinates are not unique
and an LTI system will have a family of equivalent models related by similarity
transformations. Transforming the state vector by any nonsingular matrix T as x̂ =
T x , yields equivalent realizations with the same input/output properties.

G(s) = C(s I − A)−1B + D :=
[
T−1AT T−1B
CT D

]
. (16)

A particularly useful coordinate system is called balanced coordinates, and is
defined as the coordinate system inwhich the observability and controllabilityGrami-
ans are diagonal and equal, Wc = Wo. For a stable, observable and controllable sys-
tem such a realization always exists and is, by convention, ordered in such a way as
to relate the first state of the model to the largest singular value of Wc, the second
state to the second largest singular value of Wc, and so forth. These singular values
are called the Hankel singular values (HSV) and they play an important role in model
reduction as well as system realization theory [11, 12]. The technique for calculating
transformations to balanced coordinates was first introduced in [13] and is described
in detail in several textbooks, including [7, 9, 10].

It should also be noted that the absence of controllability and/or observability
isn’t always a negative thing. Control system design can be accomplished as long
as one can control or observe the modes of the system that are important for the
desired performance. As will be discussed later in Sect. 4, we can use the concept of
Hankel singular values in the context of controllability andobservability to selectively
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couple to some modes and intentionally minimize coupling to others. This leads to
the incorporation of control concepts in the physical design of a system.

3 Aeroelasticity: Aerodynamic Feedback

From spacecraft pointing to automotive ride quality many problems in structural
dynamics involve the response of a system to external disturbances. Aeroelastic
responses differ from these in that the source of the disturbance is strongly influ-
enced by the structural response. This coupling is itself a feedback effect with the
aerodynamics providing a flow-dependent feedback that can destabilize the system
either through divergence or flutter. To study the aeroelastic problem as a feedback
interconnection it is convenient to develop approximate LTI models in state-space
form.

In this section state-space LTI models are constructed for two simple aeroelastic
systems. The first is a typical section airfoil coupled with reduced order 2D potential
flow. The combined system is shown to match standard results in the prediction of
flutter, and also tomatch published results in the prediction of limit cycle oscillations.
The second system is a uniform delta wing coupled to a reduced-order 3D potential
flowmodel. Both thesemodels are sizedwith consideration to available experimental
hardware.

3.1 Development of a Typical Section Model

The typical section airfoil shown in Fig. 4 is standard in the analysis of rigid-body
aeroelastic flutter [14, 15] andwas covered in some detail in Chap. 3 of this book. The
structuralmodel for the systemcanbe obtained by expressing the kinetic and potential
energies in a set of generalized coordinates and applying Lagrange’s equation [1].
The potential energy is stored exclusively in the systems springs and can be written
as

U = 1

2

(
Khh

2 + Kαα2 + Kββ2
)
. (17)

where the coordinates and spring constants are as shown in Fig. 4. The kinetic energy
is given by

T = 1

2

∫ b

−b
ρ(x)ṙ(x)2dx . (18)

where ρ(x) is the linear density, r(x) gives the position of the airfoil in an inertial
frame and b is the semi-chord. For small angles, motion in the horizontal direction
is negligible and the motion in the vertical direction can be written

http://dx.doi.org/10.1007/978-3-030-74236-2_3
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Fig. 4 Typical section airfoil model

r(x) ≈
{

−h − (x − e)α −b < x < c

−h − (x − e)α − (x − c)β c < x < b
(19)

where e is the elastic axis, c is the flap hinge-line, and by convention h, the vertical
displacement of the elastic axis, is positive downward. Substituting this approxima-
tion into (18) yields,

T = 1

2
(Mḣ2 + Iαα̇2 + Iββ̇2) + α̇ḣSα + β̇ ḣSβ + α̇β̇(Iβ + (c − e)Sβ). (20)

where the mass is

M =
∫ b

−b
ρ(x)dx, (21)

and the inertias and mass imbalance terms are defined as,

Iα =
∫ b

−b
ρ(x)(x − e)2dx Sα =

∫ b

−b
ρ(x)(x − e)dx (22)

Iβ =
∫ b

c
ρ(x)(x − c)2dx Sβ =

∫ b

c
ρ(x)(x − c)dx . (23)

Lagrange’s equation,

∂

∂t

(
∂(T −U )

∂q̇i

)
− ∂(T −U )

∂qi
= Qi , (24)



Aeroelastic Control 543

relates the motion in coordinates qi to forces Qi in those coordinates. Choosing
generalized coordinates as pitch(α), flap(β), and plunge(h) and substituting (20) and
(17) into (24) yields the following equations of motion,

⎛
⎝ Iα Iβ + (c − e)Sβ Sα

Iβ + (c − e)Sβ Iβ Sβ

Sα Sβ M

⎞
⎠

⎛
⎝α̈

β̈

ḧ

⎞
⎠ +

⎛
⎝Kα 0 0

0 Kβ 0
0 0 Kh

⎞
⎠

⎛
⎝α

β

h

⎞
⎠ =

⎛
⎝Mα

Mβ

−L

⎞
⎠

(25)

where Mα, Mβ, L are torque about the elastic axis, torque about the flap hinge, and
lift force, respectively. With the choice of state vector,

xs = [
α β h α̇ β̇ ḣ

]T
(26)

and position measurements, y, this can be written in state-space form as,

[
ẋs
y

]
=

⎡
⎣ 0 I 0
M−1K 0 M−1

I 0 0

⎤
⎦

[
xs
u

]
(27)

where the mass matrix M is first term in (25) and K is the diagonal stiffness matrix
from (25).

3.2 Aerodynamic Model, 2D

The structural model above must be coupled to an aerodynamic model to form the
complete system. Analytic aerodynamic models, such as those of Theodorsen [14],
have been used to study harmonic oscillations of the aeroelastic structure and used
to predict important features, such as the flutter boundary. Approximations to these
solutions are possible, both in the frequency and time domain [16–18], and have been
used to study a variety of aeroelastic problems, including the typical section model
[19–21].

In this work a vortex lattice formulation is used to represent the aerodynamics,
and balanced model reduction is applied to generate a reduced-order model. The
vortex-lattice approach admits general non-harmonic motions, as well as harmonic
oscillations and can be extended to airfoils with more complex geometries. Balanced
model reduction retains fidelity in the aerodynamic model with respect to external
effects on the structure. Extensions of this type of model reduction to larger andmore
complex fluid dynamic models is an active area of research [22–24].
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Fig. 5 Arrangement of point vortices and control points for two dimensional vortex lattice aero-
dynamic model

The fluid is assumed to be incompressible, irrotational, and inviscid. Following the
development in [25] the 2D airfoil and a finite portion of the wake behind the airfoil
is divided into N equal length elements, as shown in Fig. 5. Each panel element has
a point vortex of strength γ at the quarter chord and a collocation point at the three-
quarter-chord. The 2D wash at the collocation points on the airfoil can be described
by the potential equation,

wn
i =

N∑
j=1

Ki jγ
n
j , i = {1, 2, . . . , M} (28)

where the wash, wi is described at M points on the airfoil, and influenced by vortex
strength γ j both on the airfoil (1 ≤ j ≤ M) and in the wake (M + 1 ≤ j ≤ N ). For
a 2D system the kernel function Ki j is given by,

Ki j = 1

2π(xi − ζ j )
(29)

where xi and ζ j are the i th wash collocation and j th point vortex locations, respec-
tively.

The first wake term, γ n
M+1, is given by the time rate of change of the circulation

about the airfoil, as shown in (30). The vorticity simply convects along the wake
with the freestream, as in (31). Since the wake is finite, vorticity on the final wake
element is allowed to accumulate with a relaxation factor α̂ < 1, as given in (32).
Together these conditions,

γ n+1
M+1 = −

M∑
j=1

(γ n+1
j − γ n

j ) (30)

γ n+1
i = γ n

i−1, for i = {M + 2, M + 3, . . . N − 1} (31)

γ n+1
N = γ n

N−1,+α̂γ n
N (32)
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along with (28) constitute N linear equations in the N unknowns γi . The set of N
equations can be written in matrix form,

�n+1 = A�n + Bwn (33)

whereA ∈ RN×N ,B ∈ RN×M are constants, � = [γ1, γ2, . . . γn]T is a state vector.
The input to this system is the normal wash and is fully defined by the airfoil motion.
Enforcing a non-penetration condition on the airfoil, for the geometry of Fig. 4 and
small angle conditions, the wash is given by,

w j =
{

αU + α̇(x j − e) + ḣ for x j < c

(α + β)U + (α̇ + β̇)(x j − e) + ḣ for x j > c
(34)

Finally, outputs from the aerodynamic model relevant to the coupled system are the
moment about the elastic axis, moment about the flap hinge, and the lift. These can
be calculated as,

Mα =
∫ b

−b
ρ(e − x)�p

Mβ =
∫ b

−b
ρ(c − x)�p

L =
∫ b

−b
ρ�p

(35)

where the pressure difference across the airfoil is given by Bernoulli’s equation,

�p = Uγ (x) + d

dt

∫ x

−b
γ (x̂)dx̂ (36)

The discretization of these integrals yields the expression of lift and moments as
linear sums of γi and so forms an output equation for the state model,

y = C�n + Dwn (37)

where the outputs are lift and moments, y = [
Mα, Mβ, L

]T
.

3.3 Balanced Model Reduction

The model described by (33) and (37) is conveniently in the form of a discrete-time
state-space system. This model can be converted to continuous-time, and coupled
directly with (25) for aeroelastic analysis. However the vortex lattice model can be
quite large, with a state for each discrete vortex. For efficient control design this
model needs to be reduced to one of lower order.
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One method of model reduction is to transform the aerodynamic model into a
new coordinate system where the new states are orthogonal distributions of vorticity,
ordered by their coupling to the input/output mapping. Such an ordering is achieved
by transformation of the model into balanced coordinates. Model reduction then
involves simply truncating the less important states.

For the reduced model to be applicable to the widest range of conditions it is
useful to non-dimensionalize the inputs and outputs before balancing. Here we take
non-dimensional time to be s = tU/b and the non-dimensional input from the airfoil
to be,

û =
[
α, β,

h

b
,
dα

ds
,
dβ

ds
,
dh/b

ds

]T

(38)

and the outputs to be lift and moment coefficients,

ŷ = [
Cα,Cβ, CL

]T
=

[
Mα

2πρU 2b2
,

Mβ

2πρU 2b2
,

L

2πρU 2b

]T (39)

To illustrate the level of model reduction possible, a vortex lattice model was
constructed for a simple flat plate airfoil with 20 vortices along the plate, and an
additional 160 vortices in the wake. Figure 6 shows the Hankel singular values for
each state in the balanced system. Since the states are ordered, simply truncating the
model will yield a reduced order model whose magnitude error is, at worst, twice
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Fig. 6 Hankel singular values for balanced realization of flat-plate aerodynamic model
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the sum of the truncated Hankel singular values [9]. Therefore, if a system Ga is a
state-space model corresponding to the N vortex lattice equations and Ĝa is a nth
order model found through balancing, the following holds

‖Ĝa − Ga‖∞ < 2
N∑
i=n

σi (40)

where σi is the i th Hankel singular value. For practical purposes states whose con-
tribution to the input/output map is three or four orders of magnitude below the
dominant state may be truncated without significant errors. For the simple flat-plate
airfoil a 5th order model was realized, corresponding to truncating all states whose
contribution was three orders of magnitude down from the dominant state. The error
bound for this case, calculated as twice the sum of the truncated singular values,
is 1.6%. This is an upper bound on magnitude error (over all frequencies) in the
prediction of lift and moment outputs, from harmonic plunge and pitch inputs.

Figure 7 shows the transient response of this system to a step input in angle of
attack. The response matches well with the Wagner function, an analytic solution to
this problem [15] given as

φ(s) = 2

π

∫ ∞

0

(
J1(J1 + Y0) + Y1(Y1 − J0)

(J1 + Y0)2 + (Y1 − J0)2

)
sin(ks)

k
dk (41)

where Ji and Yi are Bessel functions of the first and second kind, respectively, and
are functions of the reduced frequency, k.
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3.4 Combined Aeroelastic Model

The structural and aerodynamic models developed above can be coupled to form a
model for the aeroelastic system. At a given flowspeed the dynamics are linear, and
we can use eigenvalues of the system to assess stability properties. Figure 8 shows
a root locus type plot of the system’s eigenvalues as flowspeed is varied. The two
oscillatory poles are related to the pitch and plunge dynamics of the typical section
model. The real poles, and others outside the range of the plot, are related to flap
dynamics and to the 5th order reduced-order aerodynamic model. For this example,
the typical section has an elastic axis at 0.4 semichords forward of the center, and
flap hinge 0.6 semichords aft of the center. Mass and inertial properties are also
chosen as in reference [19], where a similar analysis is done using both an analytic
solution to the aerodynamics and an approximation using rational functions. The
results here, which are based on the reduced order vortex lattice code, compare well
with these previous results. This root locus plot shows a behavior typical of bending-
torsion flutter. From an undamped structural model, the initial effect of flow is to
add damping to the all the modes. As the frequencies of pitch and plunge dominated
motions coalesce the lower frequency becomes undamped, eventually destabilizing
at the flutter boundary.

Finally, although the dynamics predicted by this model are linear it is possible to
incorporate structural non-linearities into the model without dramatically changing
the formulation. Previous studies on a typical section model [20, 21, 26] have shown
a nonlinear spring response in the flapwill produce limit-cycle behavior at flowspeeds
well below the linear flutter boundary. To incorporate such an effect into the model it
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Fig. 8 Root locus showing variation of system eigenvalues with reduced order aerodynamicmodel,
parameters chosen as in [19]
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Table 1 Physical parameters for typical section model

Elastic axis 1/4 chord e −0.063 m

Hingeline 3/4 chord c 0.063 m

Mass M 1.72 Kg

Pitch inertia Iα 7.07e-3 Kg m2

Flap inertia Iβ 1.68e-4 Kg m2

Wing mass imbalance Sα 4.49e-2 Kg m

Flap mass imbalance Sβ 2.03e-3 Kg m

Pitch stiffness Kα 19.6 Nm/rad

Flap stiffness Kβ 2.0 Nm/rad

Plunge stiffness Kh 1480 N/m

is useful to isolate the nonlinearity as a feedback effect. This corresponds to having a
nominal linear model in an LFT configuration with the nonlinearity. In the structural
model of (25) the flap spring stiffness, Kβ , can be set to zero, and its effect replaced
with an outer feedback loop between flap position and the moment applied to the
flap. Such an arrangement is shown in Fig. 9, where the nonlinearity is deadband in
the response of the flap spring.

This system has two distinct linear regions. Within the deadband region it appears
that there is no physical restoring spring in the flap position, and outside the region
it has the a nominal stiffness Kβ . The switching between these systems, however, is
discontinuous and occurs twice per flap oscillation. The dynamics, therefore, exhibit
a variety of nonlinear behavior. The work here uses physical parameters as in Table 1,
consistent with those used in [20] and a 5th order aerodynamic model as described
above. The simulations were executed directly from the diagram of Fig. 9 using inte-
gration routines within the commercially available (Mathworks, Inc.) Simulink
software. With the deadband set to zero, the system was linear and had a predicted
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flutter boundary of 23.4 m/s, with an unstable oscillation at 6.1 Hz. With a deadband
of 2.12 degrees, however, the system exhibited limit cycles starting at about 28% of
the linear flutter speed. These limit cycles, shown in Fig. 10 at 30% of the flutter
speed, compare well with earlier results [20].

3.5 Development of a Delta Wing Model

True flutter phenomena occur due to distributed flexibility in an aircraft wing, condi-
tions which are only coarsely approximated by the rigid body dynamics of the typical
section model. A more realistic system, that still lends itself to analytic study, is a
uniform and flexible delta wing [27, 28]. Here a delta wingmodel is developedwhich
incorporates piezoelectric sensors and actuators to allow for aeroelastic control. The
model also serves as a basic design platform for shaping the open-loop dynamics of
the structure through optimal actuator and sensor placement, as detailed in the next
section.

Basic physics of the delta wing model include the structural and transduction
device dynamics, and their interaction with the unsteady aerodynamic loads. The
structural model is readily developed through finite element analysis or an assumed
modes approach as outlined by Richard et al. [29]. For the purpose of this example,
the structuralmodel is formed using the assumedmodesmethod outlined in [30]. This
general approach follows the work of Anderson et al. [31] by finding the assumed
mode shapes applicable to a clamped-free-free-free (CFFF) rectangular plate and
transforming these functions into a trapezoidal domain. A one-hundred mode (two-
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hundred state) model is generated with Lagrange’s equations (the products of ten
assumed chordwise and ten assumed spanwise beam modes), and the model is later
reduced to include fifty states.

Initially, the out-of-plane assumed modal displacements of a rectangular CFFF
plate are represented as the product of clamped-free (η) and free-free (μ) beam
modes for a given assumed plate mode (i) as in Eq. 42, where the i indice extends
over all combinations of j and k. These beam mode products are used for simplicity
since they satisfy the geometric (and natural) boundary conditions for the CFFF
plate.

�i (x, y) = η j (x)μk(y) (42)

The beam modes are defined based upon the general beam solution Eq. (43) with
boundary conditions specific to the problem.

W (x) = A1sin(γi x) + A2cos(γi x) + A3sinh(γi x) + A4cosh(γi x) (43)

The free-free case requires: W ′′(0) = 0, W ′′′(0) = 0, W ′′(L) = 0, and W ′′′(L) = 0,
giving the mode shapes described in Eq. (44). The clamped-free case requires the
conditions: W (0) = 0, W ′(0) = 0, W ′′(L) = 0, and W ′′′(L) = 0, which yields the
mode shapes described by Eq. (45). The eigenvalues are represented by parameters
α j and βk , and Lx and Ly are the x and y dimensions of the plate.

η j (x) = cos(α j x) + cosh(α j x) + A[sin(α j x) + sinh(α j y)]
A =

[
cos(α j Lx ) − cosh(α j Lx )

sin(α j Lx ) − sinh(α j Lx )

]
(44)

μk(y) = cos(βk y) + cosh(βk y) + B [− sin(βk y) + sinh(βk y)]

B =
[
sin(βk L y) − sinh(βk L y)

cos(βk L y) + cosh(βk L y)

]
(45)

Using the assumed mode shapes developed for the rectangular plate, a coordinate
transformation is performed to map them into non-dimensional trapezoidal coordi-
nates. The transformation is shown in Fig. 11. The transformation is normalized by
span (Sp) and root chord (C) dimensions to yield a unit square, and the taper ratio
(T R) is defined as the tip chord dimension divided by the root chord. By this defi-
nition, the delta wing would have a taper ratio of zero but numerical considerations
limit this value to a finite taper ratio: T R = ε > 0. In addition to this transformation,
the Jacobian is required due to integration of the shape functions necessary in the
model development. Allowing for the intermediate step of non-dimensionalizing x
and y byC and Sp respectively (yielding x̂ and ŷ), the Jacobian is defined as follows:

J
(
x̂, ŷ

u, v

)
≡

∣∣∣∣∣∣
∂ x̂
∂u

∂ x̂
∂v

∂ ŷ
∂u

∂ ŷ
∂v

∣∣∣∣∣∣ = Sp

2C
[1 − v (1 − T R)] (46)



552 R. Clark

Fig. 11 Coordinate transformation from dimensionalized rectangular to non-dimensional trape-
zoidal domain

Table 2 Delta wing model parameters

Geometry 45o LE × 90o TE delta, clamped at root

Proportions 0.381 m (15 × 15 in.)

Material Acrylic

Thickness (hs ) 1.58 × 10−3 m (0.062")

Elastic modulus (Es ) 4.2 × 109 N/m

Poisson ratio (vs ) 0.45

Density (ρs ) 1.009 × 103 kg/m3

These transformations along with the Jacobian allow for the integration of assumed
rectangular plate mode shape functions necessary for the calculation of energy func-
tions used to develop the equations of motion.

Upon developing expressions for the kinetic and potential energy, Lagrange’s
equations Eq. (24) can be applied to obtain the structural equations of motion, which
upon solving the discrete eigenvalue problem resulting from the assumed-modes
approach, can be expressed in the following well recognized form:

[
ṙ
r̈

]
=

[
0 I

−ω2 −2ζω

] [
r
ṙ

]
+

[
0
I

] [
R

]
(47)

with r and R representing modal states and forces. The ζ matrix is a diagonal rep-
resentation of approximate proportional modal damping coefficients, introduced to
bound the response at resonance, and ω is the matrix of system natural frequencies.

For the example presented, the geometric and material parameters were selected
to model a wing of appropriate mass and stiffness to facilitate experimental imple-
mentation in the low-speed wind tunnel located at Duke University (Table 2). These
parameters correspond to a model of appropriate dimensions and sufficient flexibil-
ity to produce flutter within the operating range of the wind tunnel. The material
properties were obtained from [32] as average properties for acrylic.
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Fig. 12 Invaccuo mode shape node-line predictions for first four structural modes

At this point in the development, themodel can be used to predict the no-flowmode
shapes of the wing and associated natural frequencies for a given set of parameters.
Plots of these predicted mode shapes with nodal lines can be seen in Fig. 12.

3.6 Transducer Effects

To complete the design model, one must incorporate the dynamics of the transduc-
tion devices. Here, induced-strain, surface-mounted, piezoelectric transducers were
selected for actuators and sensors.

A technique for incorporating the electro-mechanical coupling effects of surface
mounted piezostructures was developed in [33]. A brief presentation of the model
is discussed herein; however greater details of the modeling specific to the example
here can be found in [34]. The piezoelectric patches relate to the structure through
the � and Cp matrices shown in Eqs. (48) and (49).

[
Ms + Mp

]
q̈ + [

Ks + Kp
]
q = B f F + �V (48)

Y = �T q + CpV (49)

The general definitions of the � and Cp matrices are shown in Eqs. (50) and (51),
with the first part of the integrand in Eq. (50) representing the mechanical portion
and the later electrical part being coupled to it through the piezoelectric material
constant matrix, eT . The Mp and Kp terms in Eqs. (48) and (49) represent the mass
and stiffness characteristics of the patches and are generally small compared to the
corresponding terms for the wing structure. The details of Eqs. (50) and (51) can be
found in [33] or [30].

� =
∫
Vp

[Lw�r Rs]T eT [RE Lϕ�v]dVp (50)

Cp =
∫
Vp

[�vLϕRE ]T εS[RE Lϕ�v] dVp (51)
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These equations can be substantially simplified for cases involving thin patches
with symmetric strain constants (d31 = d32), which are part of the eT and εS terms.
The simplified equations are taken from [30] and are shown in Eqs. (52) and (53) for
mode j . In the simplified � equation, the electro-mechanical coupling constant is
composed of the piezoelectric strain constant for the x and y directions, the piezo-
electric modulus of elasticity and the Poisson’s ratio (d31, Ep, νp). The integrated
potential distribution term consists of the plate and patch thicknesses, (hs, h p), and
the chord length, (C). The integrand involves only the j th mode shape function for
the plate with the limits of integration corresponding to the x and y domains of the
patch. The full matrix has rows corresponding to particular modes ( j) and columns
corresponding to patches (m). For this simplified case, the capacitance function (Cp)
forms a diagonal matrix whose entries consist of the piezoelectric-dielectric con-
stants, area, and thicknesses (εSm, Apm, h pm). The diagonal nature of Eq. (53) reflects
the fact that capacitance is only relevant for the collocated sensoriactuator case (i.e.,
when the transducer is used for both sensing and actuation [35].)

� j =
(
d31Ep

1 − νp

) (
hs + h p

2C2

)
∫ y2

y1

∫ x2

x1

[
∂2� jm(x, y)

∂x2
+ ∂2� jm(x, y)

∂y2

]
dxdy (52)

Cp =
⎡
⎢⎣

εS1 Ap1
h p1

0

↘
0 εSm Apm

h pm

⎤
⎥⎦ (53)

These equations are used to model the effect of piezoelectric patches (sensors or
actuators) mounted on the delta wing structure. The computational difficulties in this
approach result from the integral in Eq. (52). As long as the patches are rectangu-
lar and orthogonal to the base, simple numerical integration schemes can be used.
However, for calculating odd-shaped, rotated, or numerous patches, straightforward
use of this method is too computationally intensive.

To address this issue, a contiguous grid was developed over the entire surface
of the wing [36]. A compromise between computational efficiency and accuracy
determines the resolution of the grid. The general idea is to save, in advance, the
calculated electromechanical coupling characteristics of very small piezoelectric
elements, which can be used later, through numerical integration, to compute the
electromechanical coupling coefficient for individual actuator or sensor patches.
The size of these elements allow for further simplification of Eq. (52) as shown in
Eq. (54). The justification for this is quite straightforward. If the individual elements
used to represent a distributed sensor or actuator are sufficiently small compared to
the wavelengths of the modes of interest, a zero-order approximation to the integral
can be used. Therefore, by taking the value of the shape function at the center of an
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element (xc, yc) and multiplying by the area (AE ), the integral can be approximated
as follows:

∫ y2

y1

∫ x2

x1

[
∂2� jm(x, y)

∂x2
+ ∂2� jm(x, y)

∂y2

]
dxdy ≈

[
∂2� jm(xc, yc)

∂x2
+ ∂2� jm(xc, yc)

∂y2

]
AE (54)

Due to the linear nature of the electro-mechanical coupling effects of the patches,
large patches can be constructed by summing the effects of elements within the
large patch boundaries as illustrated in Eq. (55) with the variables �m and �E

corresponding to an overall patch and its component elements respectively, and N
being the number of constituent elements. Similarly, the capacitance effects can be
determined by summing the component element capacitance effects. Since all of the
elements are of constant dimensions, the capacitance is the same for all elements and
the summation reduces to the simple expression of Eq. (56).

�m =
N∑

E=1

�E (55)

Cpm = NCpE (56)

Using this approach allows for the necessary element characteristics to be cal-
culated once for a given wing geometry. The process requires that the �E and CpE
vectors be calculated for all of the elements and saved for later patch construction.
The computational advantages gained from this approach result from the fact that
much of the required computations are performed outside of the optimization routine
- apriori. Thus, the cost of calculating the elements’ coupling does not factor into
the efficiency needs of the algorithm. Computational gains and modeling errors that
result from this approach can be found in the work of Richard [34] (Fig. 13).

Fig. 13 Patch building
through summation of
piezoelectric elements
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3.7 Aerodynamic Model, 3D

A reduced order aerodynamic model was developed based upon the vortex lattice
approach. Thus, assumptions include subsonic, inviscid, incompressible, and irrota-
tional flow as has been previously discussed in this chapter and book. The first step
in the process is to develop a grid for the wing and wake as illustrated in Fig. 14
with vorticity points at the quarter chord, and downwash observation points at the
three-quarter chord of each grid block. The grid is structured such that the grid blocks
are of like size and shape in the unit square computational domain consistent with the
structural model. The grid used in this example has 8 chordwise blocks, 15 spanwise
blocks, and 4 chords of wake leading to a model with 600 vorticity states.

As detailed in the previous section, the order of this model can be readily reduced
using balanced realization theory. Applying this model reduction technique, it was
possible to reduce the number of states included in the aerodynamic model from 600
to 50. The relative magnitudes of the balanced system Gramians (i.e., the HSVs) are
illustrated in Fig. 15. The sum of all of the truncated Gramians totals less than 5%
of the non-truncated Gramian sum.

Fig. 14 Vortex lattice
construction grid for wing
and wake

Fig. 15 Relative magnitude
of Gramians in balanced
system
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3.8 Coupled System

The aeroelastic system is developed by coupling the structural and aerodynamic
models through feedback. The two systems were constructed with this goal in mind
and their input/output requirements were modeled so as to facilitate this step. Once
coupled, the model can be used to predict characteristics such as flutter speed, flutter
frequency, mode shape progression with flow, and general system response traits for
any flow speed below the linear instability boundary. It is now possible to use this
model to predict the onset of flutter (based on the assumption of linear instability
being the driving mechanism). By plotting the aeroelastic system roots at progres-
sively increasing flow speeds, trends of root migration can be followed that clearly
show the roots of the second mode moving into the right half plane (Fig. 16). In
contrast, each of the other modes show substantially increased damping, and thus,
reduced response. The instability takes place at a flow speed of 31.5m/s for the system
parameters outlined in Table 2. Although the non-linear effects involved with flutter
can be expected to somewhat alter the frequency of oscillation, it can be expected to
be in the vicinity of the 18 Hz prediction of the linear model.

The aeroelastic model can also be used to predict the progression of mode shapes
with increasing flow speed. Since the rootmigration identifies the secondmode as the
mode of interest, the emphasis here is placed on how that mode shape changes as the
system approaches flutter. The areas of lowest average maximum displacements are
shown in Fig. 17 with respect to increasing flow speed. This figure clearly shows the
nodal centers moving toward the interior of the wing as the flow speed is increased.
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Fig. 16 Aeroelastic root migrations with flow
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Fig. 17 Mode shape progression of second aeroelastic mode with flow speed

This pre-flutter, combined torsional/bending mode, in addition to the clear trend
shown in Fig. 16, points to the fact that flutter results from a coalescence of the
first structural mode (primarily bending) and the second structural mode (primarily
torsional). This is consistent with the concept of modal coalescence described in this
text. There is also the implication that the ideal placement of sensors and actuators
for control of this mode should change between the no-flow case and the pre-flutter
case.

4 Open-Loop Design Considerations

In a feedback control system, the actuator input signals are created by modifying the
temporal response of the sensor signals with a compensator. The optimum controller
- temporal compensator, is usually realized by frequency-shaping the system open-
and closed-loop transfer functions [30]. Although much can be accomplished with
the optimization (and in practice the iterative tuning) of a control law, the final
performance of a system depends very much on how difficult the problem is to begin
with. Previous work in adaptive structures has also shown that optimum compensator
design may be augmented by considering the design of the spatial compensator of
the control system [30]. Spatial compensation is defined as the influence of the type,
placement, size, and shape of the transducers on the open-loop response and, as a
result, the closed-loop temporal compensator design. When combined, the temporal
and spatial compensator’s form the complete control system for any structure.
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While much of an airframe design may be fixed by other criteria, the choice
of actuator and sensor locations is often determined by a combination of physical
restraints and requirements of the control system. These choices frame the dynamics,
and if possible, it is best to make those decisions an integral part of the design, with
an eye toward the final control objectives. The Hankel Singular Values (HSVs) that
play a key role in model reduction can also be utilized early in the design to facilitate
the choice of actuator and sensor locations.

HSVs and the Modal Model

In models with lightly damped dynamics the HSVs can be related directly to modal
parameters through a very simple expression. For the purpose of development, cast
the structural model from the actuator input, u(t), to the measured output of the
sensor, y(t), in modal form such that

q̈ + diag(2ζiωi )q̇ + diag(ω2
i )q = B̂u

y = Ĉq (57)

where ωi and ζi are the natural frequency and damping ratio of the i th mode,
respectively. Defining the state vector as

x = [q̇1, ω1q1, . . . , q̇Nm , ωNmqNm ]T (58)

produces a state space representation such that

ẋ = Ax + Bu

y = Cx (59)

where A = diag(Ai), B = [BT
1 , . . . ,BT

Nm
]T , C = [C1, . . . ,CNm ]. The submatrices

are defined as

Ai =
[−2ζiωi −ωi

ωi 0

]
(60)

Bi =
[
bT
i
0

]
(61)

and

C j = [
c j , 0

]
(62)

where bT
i is the i th row of B̂ and c j is the j th column of Ĉ [37].

Williams [37] demonstrated that the square of the i th HSV of a lightly damped
structure can be approximated by the following expression:
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σ 2
i ≈

[
bT
i bi

] [
cTi ci

]
(4ζiωi )

2 , (63)

where σi is the approximation of the i th HSV. As indicated in Eq. (63), the i th HSV
is proportional to the time constant (τi = 1/(ζiωi )) of the i th structural mode and
the modal participation coefficients for each actuator and sensor. The numerator of
Eq. (63) thus provides a measure of the degree of coupling between the actuator
inputs and measured outputs relative to the structural modes. Physically, the HSV is
a measure of the amount of energy that can be stored in the system from the inputs
and the amount of energy that can be retrieved by the outputs [38]. Thus, the HSV can
be used to measure the effectiveness of a particular actuator/sensor pair for coupling,
or not coupling, to structural modes.

Fromapractical perspective, it should be noted that not allmodels can be described
purely in modal form, and in fact, most experimental models, obtained from system
identification, will often incorporate first-order dynamics as well with real poles.
However, when optimizing actuator/sensor designs, one usually targets the lightly
damped modes of the system since the actuator/sensor design is an integral part of
the structural dynamics. Thus, one can effectively ignore the first order dynamics in
this portion of the design, but certainly not in the design of the temporal compensator.

4.1 Optimization Strategy

There are numerous means for optimization; however, the one thing common to all
schemes is the choice of the cost function, which effectively defines the problem.
Since the Hankel singular values provide a measure of the degree of coupling for a
chosen path, one must decide how to use this information in design.

The design metric for frequency-shaping with spatial compensators is developed
from the work presented by Smith and Clark [39], Clark and Cox [40], Lim [41], and
Lim and Gawronski [42]. As detailed in these references, methods for optimizing or
selecting the appropriate spatial aperture (i.e, size and location) of actuators and sen-
sors using Hankel singular values of the open-loop controllability and observability
Gramians are developed.

The first step in developing any compensator design metric is to cast the control
problem into proper form. Figure 18 shows a block diagram of the two-port or two-
input, two-output (TITO) closed-loop system. The system T (s) is composed of the
generalized plant, P(s), with controller, K (s). The transfer matrix P(s) in Fig. 18
represents the dynamics of the adaptive structure and transducer coupling, and is
written in equation form as:

[
z(s)
y(s)

]
=

[
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

] [
w(s)
u(s)

]
. (64)
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Fig. 18 Block diagram of generalized plant with feedback controller

As shown byFig. 18 andEq. (64), P(s) is partitioned according to the input-output
variables, and four sub-matrices are identified. The upper-left transfer matrix, Pzw,
represents the path from the input disturbance signals to the measured performance.
The lower-right transfer matrix, Pyu , is the path from the input actuator signal to
the response of the sensor, and is determined by the selection of transducer type,
placement, size, and/or shape. The cross transfer matrices Pzu and Pyw show that
the design of the control transducers also affects system performance and that the
disturbance signals affect the measured outputs, respectively.

Each transfer matrix is formed from the states of the system and the respective
input-output characteristics. When optimized, the design of the spatial compensators
ideally alters the coupling characteristics of the system for increased performance
and robustness.

The Hankel singular values (HSVs) from the input actuator signal to the sensor
output are written as

σyu = diag(σyu1, . . . , σyun, . . . , σyuNm ). (65)

The HSVs defined by Eq. (65) provide a measure of the degree of coupling between
each of the Nm modes associated with the transducer path of the control problem.

A spatial compensator design metric based entirely upon evaluating Eq. (65) was
presented by Lim and Gawronski [42]. In this case, the HSVs defined by Eq. (65)
were computed from a predetermined set of candidate transducer locations and the
optimum location is defined by the path which provided the greatest HSV measure-
ment. The conclusion being that selecting transducer locationswith the largest degree
of coupling increases control system efficiency and, thus, performance.

Lim [41] recognized that the purpose of the control problem defined in Fig. 18 is to
reduce/control themeasure of performance, z(s), and that Eq. (65) could be weighted
by a measure of the system performance to provide for spatial compensator designs
that are efficient at coupling the modes with the greatest effect on the measured
performance.
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Again using HSVs, a measure of the degree of coupling of each mode associated
with the performance-disturbance path, Pzw, is

�zw = diag(σzw1, . . . , σzwn, . . . , σzwNm ) (66)

and the design metric defined by Lim [41] is written as

Jqp ≡
Nm∑
i=1

σ 2
ypuq i

σ̄ 2
yui

σ 2
zwi , (67)

where Jqp is the metric for the q-th candidate sensor and p-th candidate actuator.
The value σ̄ 2

yui is the squared HSVs of the system where all possible actuators and
sensors are considered; it is used to normalize the HSV calculations. As shown in
[41], Eq. (67) is a computationally efficient means of determining transducer designs
that increase system performance.

Based upon Eq. (67), Clark and Cox [40] developed a design metric which also
provided for system robustness. Thismetric emphasizes coupling tomodeswithin the
bandwidth of control, but de-emphasizes coupling to modes outside the performance
bandwidth. This metric was later refined by Smith and Clark [39] as well as Richard
and Clark [34]. Defining a binary selection vector with 1’s corresponding to the tar-
getedmodes of the system and 0’s elsewhere, ametric can be developed to emphasize
actuator/sensor selection that provides desired coupling to select modes and effec-
tively penalizes coupling to modes unimportant in the control system design. Thus,
one can effectively impose a level of roll-off in the frequency response by penalizing
coupling to higher-order modes. This can be readily implemented by constructing
binary selection vectors related to modes desired for performance, �per f (with unity
on-switches and zeros as off-switches), and a binary selection vector to identify
modes unimportant for performance, identified as �robust here. It should be noted
that an ideal actuator/sensor choice would be one that coupled only to the modes
desired for enhanced control system performance. This would lead to an identified
system model with very few modes in the identified path and thus a low-order com-
pensator – an inherently simpler design problem. The two metrics (desirable and
undesirable) can be expressed in terms of the HSVs as follows:

Jper f =
N∑
i=1

�per f
σyui

σ̄yui

σzwi (68)

Jrobust =
N∑
i=1

�robust
σyui

σ̄yui

σyui (69)

These two metrics yield scores for a given actuator/sensor pair that correspond to
their beneficial and detrimental modal coupling. Note that each metric is normalized
by σ̄yui , which as detailed by Lim, represents the root-mean-square of the sum of
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the HSVs over all possible actuator-sensor paths for a given mode. This approach
works well when one is trying to select an actuator and sensor from a fixed array
of candidate sensors and actuators (i.e., when all possible actuator-sensor paths are
known in advance). However, when designing without such constraints, one must
provide a normalizing estimate, and the simplest estimate is to use the maximum for
each mode over a given set of actuator-sensor candidates. This does not guarantee
that the normalized metric will be less than unity, but it will be of order unity for
scaling purposes. The performance metric used in the delta wing model presented
can be expressed as follows:

J = Jper f
Jrobust

(70)

Thus, J is maximized when Jper f is large and Jrobust is small, indicating that the
actuator-sensor path maximizes coupling to the desired modes and minimizes cou-
pling to modes that are not important for controlling the desired dynamic response
of the structure.

4.2 Optimization Results

A genetic algorithm was used to optimize the design of the actuator and sensor
concurrently so as to achieve the desired coupling and decoupling to modes within
the bandwidth of interest. Details of the optimization can be found in the work of
Richard [34]. However, the primary mode targeted for coupling is the second mode
since this mode is observed to destabilize as the flutter boundary is approached. Cou-
pling to higher order modes (greater than the sixth mode) is penalized to impose a
level of roll-off in the frequency response from input to output and reduce coupling
to modes unimportant for control. Coupling to other structural modes (below mode
seven) is neither emphasized or penalized so as not to overly constrain the design.
Thus �per f = [0 1 0 0 . . . ] and �robust = [0 0 0 0 0 0 1 1 1 . . . ]. A genetic algo-
rithm was structured so as to allow for optimization of the angle of orientation and
dimensions of the actuator and sensor. For the case presented, the dimensions of the
actuator were constrained to a maximum of 2 inches in both x and y.

The initial conditions for actuator and sensor dimensions and orientation were
selected arbitrarily, and hundreds of cases were executed to determine if the opti-
mization would lead to similar results. The design results are presented in Fig. 19.
Several design results are depicted in this figure, and it should be noted that the
results emphasized in bold are representative of the design used for the experimental
test system. The optimal actuators are located closest to the leading edge of the delta
wing and the sensors are depicted near the trailing edge. The dominant peak in the
frequency response corresponds to the second structural mode, and the diminished
coupling at higher frequency is readily noted, which is a form of “loop-shaping”
by design. A plot of the performance metric as a function of the number of itera-
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Fig. 19 Optimization results for patches with maximum 2 × 2 inch actuators

tions within the optimization routine is also displayed. As indicated by the results,
despite the fact that the initial conditions for the actuator and sensor dimensions and
orientation were selected arbitrarily, the optimal results are very similar.

5 Control Law Design

The general diagram of Fig. 3 provides a basis for understanding much of modern
and robust control design. The control objectives are best viewed in terms of the
transfer function path through the system Tzw. This path is defined by the control
designer and not limited by physical inputs or outputs of the system. Through the
application of static, or possibly dynamic, weighting functions on this path a wide
variety of possible performance objectives may be defined.

With � = 0 the problem of finding a K that minimizes the performance path
‖Tzw‖ is a linear optimal control problem. With appropriately chosen inputs, w, and
outputs, z, minimizing the H2 norm is equivalent to the linear quadratic regulator
problem with optimal estimation (LQR/LQG) [43]. In addition to minimizing ‖Tzw‖
when � = 0, requiring stability for the interconnection Fl(Fu(T,�), K ) for non-
zero � is the robust control problem. Typically, � is an unknown but norm bounded
and the problem is scaled such that ‖�‖∞ < 1. Then the stability requirement can be
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enforced (with some conservatism) by the small-gain condition ‖Tqv‖∞ < 1. This
forms the basis of robust control design via H∞ methods [9].

In both the case of quadratic regulation and robust control the optimization prob-
lem is to find a state-space system K that will minimize ‖Tzw‖. With the controller K
an LTI model of the same order as the augmented plant matrix T , this optimization
problem reduces to the solution of two coupled second order algebraic equations,
called Riccati equations. Although the algebraic Riccati equations must be evalu-
ated numerically, efficient procedures exist to do this and the time required to solve
the problem depends on the order of the system, and not the problem data. This
avoids some of the pitfalls of nonlinear optimization, and helps account for the wide
generality of modern control theory.

In this section quadratic optimal control laws (the H2 problem) are posed for both
the typical section and delta wing models. Rationale for the system augmentation
and control weightings are detailed and predicted extension of the flutter boundary
under active control is shown for both models.

5.1 Control of the Typical Section Model

Consider the typical section model defined above with the trailing edge flap as the
control surface and position measurements available from each axis.

The control design includes weights typical of Linear Quadratic Gaussian (LQG)
control laws, including a trade-off between performance and control effort and
between sensor noise and process noise. This basic design technique has been suc-
cessfully applied to a typical section airfoil under a variety of experimental conditions
[44–46].

Pitch-plunge coupling is known to be the flutter mechanism in this system, with
the system destabilizing quickly (with respect to variations in flow speed) after the
frequencies of thesemotions coalesce.With the goal of extending the flutter boundary
a reasonable control objectivewould be to reduce coupling in the system for themodel
just below the flutter boundary. To achieve this an objective function, Tzw, is defined
as the transfer function from a disturbance in plunge to the response in pitch. This
will cause the control action to try and alter dynamics of the closed-loop system such
that the coupling between these motions is reduced. Without further augmentation,
however, the optimization problem is not well posed. The coupling can be made very
small, but this will require control authority exceeding that available from the flap.
To limit control effort, outputs of the the objective path, Tzw, are augmented with the
control signal. In a similar fashion the plunge disturbance input is augmented with
additive inputs at the sensors, and this is used to reduce the sensitivity of the control
action to sensor noise.

Figure 20 shows the problem in block diagram form, with the design weights
shown as triangular signal gain blocks. Without loss of generality the performance
weight, Q, and the level of disturbance input Qw can be set to unity, as these weights
are trade-offs in the optimization problem with the control effort R and sensor noise
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Fig. 20 Block diagram showing system augmentation for H2 control design problem

Qv , respectively. The sensor noise level Qv was set independently for each channel,
and at a level which gives a physically appropriate sensor/noise ratio. Here, given
the resonate response near the flutter boundary, the sensor noise is scaled to be two
orders of magnitude below the peak harmonic response at the sensors from a unit
disturbance input. The only remaining design freedom is the level of the control
effort penalty. This was determined through iterative design, checking closed-loop
response to ensure the system does not saturate the control surface, in either harmonic
or transient response.

In Fig. 21 the open and closed loop transfer functions are shown from the distur-
bance (a force in plunge) to the change in angle of attack. Although the closed loop
response is still lightly damped, it is significantly attenuated due to the action of con-
trol. Therefore, although this model may not have significantly more damping than
the open-loop model, the attenuated coupling should allow for an increased flutter
boundary. The root loci of Fig. 22 confirms that this is the case. Under closed loop
control the flutter boundary is extended by 19% to 27.8 m/s, and the locus is altered
such that flowspeed variations cause a change in frequency, rather than damping, in
the region near the design condition.

There are, however, some obvious limitations to this approach. In the design only
the performance of the control law at a single flowspeed is considered. By choosing
an open-loop model near the flutter boundary we have operated on a critical region,
however, at points off of this flow condition the performance is not optimized. From
the loci in Fig. 22 it can be seen that the closed loop system is actually unstable for all
flowspeeds up to 11.2 m/s. Also, although the flutter boundary is extended damping
is actually decreased at most flowspeeds in the closed-loop response. In practice
this may lead to unacceptably large vibrations, or show a sensitivity to model errors.
Some of this could be addressed by tuning the control weights and by including
additional transfer functions in the performance path. However, as will be seen in a
later section, by using linear parameter varying models and convex optimization for
the control design it is possible to incorporate eigenvalue constraints directly and to
optimize performance over a range of flow conditions.
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Fig. 21 Open and Closed loop gain from a force disturbance in plunge to motion in the pitch axes
for the typical section model atU = 23 m/s near the open-loop flutter boundary ofU f = 23.4 m/s
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(a) Open-loop root locus,
Uf = 23.4 m/s

(b) Closed-loop root locus,
Uf = 27.8 m/s

Fig. 22 Root Loci as flowspeed is varied from 0m/s (Circle) to 30 m/s (X). The closed-loop system
is unstable below 11.2 m/s and above 27.8 m/s

5.2 Control of the Delta Wing Model

Through H2-synthesis, a temporal compensator can be designed so as to minimize
the response of the second mode in order to extend the flutter boundary. Since the
dynamics of the system vary as a function of flow-speed, one must select a flow
speed for design unless gain scheduling is incorporated. For the example presented,
the pre-flutter condition of 30 m/s was selected for design.

Figure 20 shows the H2 design problem in block diagram form as detailed in the
previous section. Control design for the delta wing is consistent with the approach
outlined for the typical section model, and uses the same system augmentation in
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Fig. 23 Closed-loop aeroelastic root migrations

defining the optimization path Tzw. The performance weight, Q, and the level of
disturbance input Qw are again set to unity. The sensor noise level Qv was set at
a level which gives a physically appropriate sensor/noise ratio, approximately two
orders of magnitude below the peak response.

Given that the actuator-sensor path was designed so as to provide roll-off at higher
frequencies, this results in a control design that effectively precludes any significant
emphasis on high-frequency dynamics since the signal to noise ratio is poor by design
at higher frequencies . The remaining degree of freedom in design is the level of the
control effort penalty. An iterative design process was conducted, checking closed-
loop response to ensure the system does not saturate the piezoelectric transducer.

Results illustrating the migration of the closed-loop poles as a function of flow-
speed are depicted in Fig. 23 along with the migration of the open-loop poles. As
indicated, the predicted instability of the closed-loop system occurs at a flow-speed
of 39 m/s, yielding a 20% extension of the flutter boundary.

6 Parameter Varying Models

Gain scheduling of control laws is a technique for overcoming some of the limitations
of single-point designs, and has been successfully applied in a variety of aerospace
and industrial systems [47]. Of relatively recent interest in control theory is the use
of Linear Matrix Inequalities to design gain-scheduled controllers [48, 49] using an
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extension of linear models to systems with linear or affine parametric dependence.
Such models are called Linear Parameter Varying (LPV) and take the form,

S(θ) =
[
A(θ) B(θ)

C(θ) D(θ)

]
(71)

for a parameter vector θ ∈ RN . Since the dependence of the state matrices on θ is
affine we can write,

S(θ) = S0 +
N∑
i=1

θi Si (72)

This structure includes a much wider range of dynamic models than LTI systems,
and provides acceptable approximations to many nonlinear problems of engineering
significance. Stability, system norms, and other properties can be established for
modelswhere the variations are slow, remainwithin constant bounds, or are arbitrarily
fast. By allowing this same form for the control law, controllers can be designedwhich
are implicitly gain-scheduled and vary with parameters of the plant.

6.1 Linear Matrix Inequalities

The design of LPV gain-scheduled control laws follows a similar development as
linear optimal control, but the optimization problem results in a series of linear
matrix inequalities (LMIs) as constraints, with an objective function that is linear
or affine in the problem’s unknowns. With constraints posed as an LMI, or combi-
nations of LMIs, the resulting optimization problems are convex, and very efficient
numerical techniques exist for their solution [50, 51]. The development of control
synthesis methods using LMIs is an active area of research and will be summa-
rized only briefly here. The interested reader is referred to the references for back-
ground on the use of LMIs in system theory [52–54], the formulation of LMI control
objectives [55–58], and the design of gain-scheduled controllers for LPV systems
[48, 49, 59, 60].

ALinearMatrix Inequality (LMI) is a systemof equations inwhich someunknown
or decision variable is written as an affine function of symmetric matrix quantities.
The equation is satisfied if the matrix function is either strictly positive (or negative)
definite. The canonical form for such an equation is,

F(x) = F0 +
m∑
i=0

xi Fi > 0 (73)
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where x ∈ Rm , and Fi = FT
i ∈ Rn×n . The greater-than symbol implies that F(x) is

positive definite, that is,
qT F(x)q > 0, ∀q ∈ Rn (74)

Individual LMIs can be combined in a straightforward manner by diagonally aug-
menting the equations into a larger LMI. For example, the pair of conditions that
F(x) > 0 and G(x) < 0 can be written as the single LMI,

[
F(x) 0
0 −G(x)

]
> 0 (75)

All LMIs can be written in the canonical form of (73), however, sometimes these
equations arise more naturally in matrix form with the unknowns appearing as ele-
ments of a symmetric matrix. So long as products of unknowns do not appear in
these equations, the LMIs still have a convex solution and can be transformed into
the form of (73) by finding the terms Fi as a basis for F(x) corresponding to the ith
variable [52].

6.2 LMI Controller Specifications

In this section two useful controller specifications, the H2 norm of a transfer function
and a regional pole placement condition, are developed in terms of linear matrix
inequalities involving the state-space models. With these criteria defined in terms
of LMIs, it will be possible to pose convex optimization problems for control laws
which address the issues of control design for various flow conditions and allow
direct control over system eigenvalues.

The H2 norm of a system is the sum of the root-mean-square (RMS) responses to
unit impulses and can be written,

‖G‖2 =
√√√√ m∑

i=1

∫ ∞

0
ŷ2i (t)dt . (76)

where ŷi is the response to a unit impulse δ(t) on the i th input. For a finite H2 norm
the system’s feed through matrix D must be zero, and the output is given by,

ŷi (t) = CeAt Biδ(t). (77)

Substituting ŷ into (76) yields,
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‖G‖22 = trace
∫ ∞

0
ŷT ŷ dt

= trace BT

(∫ ∞

0
eA

T tCTCeAtdt

)
B

= trace BTWoB

(78)

where Wo, the observability Gramian, is calculated as the solution to the following
Lyapunov equation,

ATWo + WoA + CTC = 0. (79)

Therefore, a system’s H2 norm will be below a level, γ , if a solution P > 0 exists
such that,

AT P + PA + CTC < 0 (80)

trace BT PB < γ 2 (81)

Making the variable substitution Q = P−1 and introducing a free variable Z > 0
this condition can be written,

QAT + AQ + QCTCQ < 0

BT Q−1B − Z < 0

trace Z < γ 2

(82)

Finally, the Schur complement (see e.g. [52]) of (82) yields the following LMIs,

[
AQ + QAT QCT

CQ −I

]
< 0,

[
Z BT

B Q

]
> 0, trace Z < γ 2 (83)

which are jointly convex in the unknowns Q, Z , and γ 2.
Existence of Q > 0 and Z > 0 that satisfy the inequalities in (83) establish that

the system’s H2 norm is below γ . Determination of such solutions can be found
numerically as a convex feasibility problem. Furthermore, a convex optimization
problem may be posed that exploits the freedom in Q and Z to find a minimal value
γ 2. This value of γ is the system H2 norm.

In order to address system damping directly it is desirable to specify in the con-
troller design that closed loop poles are contained in regions of the left-half plane.
Pole-placement is a traditional technique in control design, but it is seldom used
in high order systems because uniquely specifying all the eigenvalue locations pro-
duces a highly constrained problem, and can require large amounts of control effort.
Regional pole placement defines regions of the left half plane where closed loop
poles may reside, and unlike exact pole-placement allows additional design freedom
for minimizing the control effort required.
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Following the development in [57, 61], let a region of the complex plane, D be
defined by the symmetric matrix L , square matrix M , and the condition,

D = {z ∈ C | L + Mz + MT z̄ < 0}, (84)

where z̄ is the complex conjugate of z. The matrix A will have its eigenvalues in the
region D if there exists a matrix X > 0 such that,

L ⊗ X + M ⊗ (AX) + MT ⊗ (X AT ) < 0 (85)

where ⊗ is the Kronecker product. The Kronecker product of two matrices creates
a block matrix, whose (ith, jth) block is the second operand scaled by an element of
the first. Specifically for C = A ⊗ B we have,

C =
⎡
⎢⎣
A11B · · · A1m B

...
. . .

...

An1B · · · Anm B

⎤
⎥⎦ (86)

Several important regions can be described by (84), for example with

L = α, M = 0 (87)

the region is defined by z + z̄ < −α which requires eigenvalues to have a real com-
ponent more negative then −α/2. In this case of L = 0 the region is just the left-half
plane and the LMI condition of (85) reduces to the familiar Lyapunov equation for
stability of state-space systems,

AX + X AT < 0, X > 0 (88)

A condition of minimum damping, ζ = cos(θ), is a region of the left half plane
bounded by cones of angle θ off the real axis. This region is described by (84) with
L = 0 and

M =
[

cos(θ) − sin(θ)

− sin(θ) cos(θ)

]
, (89)

and the LMI constraint is the existence of a matrix X > 0 that solves,

[
sin(θ)(AX + X AT ) cos(θ)(AX − X AT )

cos(θ)(X AT − AX) sin(θ)(AX + X AT )

]
< 0 (90)

More complex geometries are possible with other choices for L and M , and
arbitrary convex regions can be defined by looking at the intersection of the regions
outlined above. Since in all cases the constraint equation is an LMI, the solutions to
multiple constraints remains convex and numerically tractable.
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6.3 An LMI Design for the Typical Section

It is possible to use these LMI equations to pose convex optimization problems and
solve for Lyapunov matrices that verify if a system’s H2 norm is below a certain
bound or its eigenvalues exist within a specified region. However, the power in
this method is not in the analysis of systems, but it is in the ability to work directly
from a set of analysis equations to pose a control synthesis problem, and to extend
this to the synthesis of controllers for parameter varying plants. There are several
additional steps which must be taken to achieve this end. Specifically these steps
are: the assumption of a common Lyapunov function for all constraints, a nonlinear
substitution of variables to restore convexity to the synthesis problem, and a finite
parameter expansion on which to gain schedule the resulting controller. We treat
these conditions only briefly here, and refer the reader to the references for a more
complete development.

The synthesis of a controller requires that a single common Lyapunov function
be used to enforce the design constraints. This means that the term Q in the H2

norm bound of (83) and the term X in the pole placement criteria of (90) must be
equal. This is the primary source of conservatism in the control law synthesis. It is
possible for a system to meet both criteria, but this may not be provable with a single
Lyapunov function. Although it is difficult to quantify the conservatism in general, in
practice many problems allow sufficient freedom that this process, sometimes called
Lyapunov shaping, yields suitable results.

In the control synthesis problem, the system of interest for the LMI conditions is
the closed-loop model after feedback has been applied. With the controller model
unknown, this introduces additional unknowns into the LMI conditions as can be
seen from substituting (6) for the system in (83) and (90). These unknowns appear
in the equations in products with one another, and therefore the resulting matrix
inequality is not linear in the unknowns and cannot be solved by convex optimization.
However, as was developed in [58], a combination of congruence transformation and
substitution of variables existswhich converts this problem into onewhich has a linear
dependence on a new set of unknowns. Once solved this variable substitution can be
inverted to yield a state-space model for the controller.

The extension of the control synthesis problem to LPVmodels is straightforward.
Since changes in flowspeed will be slow compared to the dynamics of the system
the dynamic effects due to the rate of change in flowspeed can be safely ignored.
The aerodynamic model depends on flowspeed and dynamic pressure, and it can be
written in state-space form in terms of an expansion with U and U 2,

Sa(θ) =
[
A(θ) B(θ)

C(θ) D(θ)

]

=
[
A0 B0

C0 D0

]
+

[
A1 B1

C1 D1

]
U +

[
A2 B2

C2 D2

]
U 2

(91)
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The design constraints are then written for systems over a grid of speeds throughout
the range of interest. Solving the optimization problem over the grid of constraints
will yield a fixed control law that can operate over this range. However, the proposed
control structure may be given the same functional dependence as the plant model,
and performance greatly improved through gain scheduling. That is, each unknown
of the optimization problem is written as a quadratic function of flowspeed. This
triples the number of unknowns, but gives rise to a resulting control law that is
gain-scheduled as a function of the aerodynamics.

The procedure outlined above was followed for the typical section model, pro-
ducing a gain-scheduled controller for flutter suppression, see Cox [70]. For the H2

norm condition the system was given the same performance weights as the previous
example, except now the H2 norm optimization is carried out over grid of flowspeeds
extending to 30 m/s, approximately 27% past the open loop flutter boundary. Fur-
thermore, the pole placement condition was also part of the constraint set and this
required that all the system’s eigenvalues have at least 5% damping throughout the
flow range.

Performance of the resulting gain-scheduled controller is shown in the root locus
plot of Fig. 24 for a flowspeed range of 5m/s to 30m/s. The flowspeed range here does
not extend to zero speed, as it was too difficult for the system to achieve the damping
specification at these low flowspeeds with only an inertial response from the flap
actuator. The transfer function of the path from a disturbance force in plunge to the
response in pitch at a flowspeed of 23m/s is shown in Fig. 25. The peak attenuation of
this path is less than for the single objective, single-point design shown in Fig. 21. The
response, however, is much more damped due to the inclusion of the pole placement
constraint and, unlike the single-point design, well damped responses occur over the
entire range of flow conditions.
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Fig. 24 Root Loci as flowspeed is varied from 5 m/s (Circle) to 30 m/s (X) with gain-scheduled
LPV control law. Closed-loop system retains minimum of 5% damping through the design range
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Fig. 25 Open and Closed loop (LPV controller) gain from a force disturbance in plunge to motion
in the pitch axes for the typical section model at U = 23 m/s near the open-loop flutter boundary
of U f = 23.4 m/s

7 Experimental Results

In this section experimental results are presented for aeroelastic control of both
the typical section and delta wing models. Physical parameters for these models
correspond to those detailed in Tables 1 and 2. The delta wing results are based
on a system with sensor and actuator placement designed for optimal coupling to
the destabilizing flutter mode. The control law design is based on an identified LTI
model for a flow condition just below the flutter speed. The typical section design is
also based upon identified models, however, these models have an LPV form and the
design criteria includes performance specifications over a range of flow conditions.
The resulting typical section control law is also in LPV form, and therefore operates
as a gain scheduled controller.

7.1 Typical Section Experiment

The typical section model provides a convenient analytic tool due to its relatively
tractable modeling, yet it exhibits may of the dynamic features of more complex
systems. Experimental investigations based on a typical section rig can also be infor-
mative, if for nothing else, in order to verify the practicality of control designs and to
expose any sensitivity in the methods to more realistic conditions. The model shown
in the photographs of Fig. 26 is a rigid airfoil with a NACA-0012 profile with an
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(a) Full span typical section model (b) Actuator and flexible support
rig

Fig. 26 Photos of typical section model mounted in flexible support wind tunnel mount

actuated full length trailing edge flap. Similar hardware has been the focus of pre-
vious studies in both active control of flutter [44] and in experimental investigations
of limit cycle oscillations [20, 21, 26, 62–64]. The model was mounted in the Duke
University wind tunnel in a support system that provides flexible and lightly damped
response to motions in both pitch and plunge. The flap was also held with a restor-
ing spring and connected to a linear induction motor for control. The model was
instrumented with variable differential transformers (RVDTs) that provide position
measurements in each axis. Physical properties for the model are similar to those
provided in Table 1, with the addition of a 0.32 Kg motor mounted near the elastic
axis.

7.2 LPV System Identification

Under different flow conditions the typical section model varies dramatically. In
order to apply system identification, data was taken at a number of flowspeeds below
the flutter boundary. The system’s flap actuator was driven bywhite noise and outputs
from the three position sensors were recorded. Independently each of these data sets
could be fit quite accurately with a low order model using subspace identification
algorithms [11, 12, 65]. However, the coordinate system used for these realizations
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is not consistent and it cannot be made consistent without full measurement of the
state. Here full measurement is clearly not possible since the state includes dynamics
associated with modes of the unsteady flow.

The ambiguity of coordinatesmakes this collection of identifiedmodels unsuitable
for LPV control. Solving for a parameter dependent Lyapunov function over a grid
of models is not meaningful if the internal state vector is not consistent among
these different grid points. One method to determine an LPV model that reflects
the experimental data is to use the identified model of the system at zero flowspeed
and couple this to an analytic model for the aerodynamics. In order to couple this
model to the aerodynamic model, however, inputs are required for forces in the pitch
and plunge directions. To obtain these experimentally would require calibrated force
transducers in these directions that did not impart mass or stiffness loading to the
structure.

Here an alternative approach was taken using optimization codes designed for
tuning of specific parameters in a model [70]. The model at zero flowspeed was
identified using a subspace identification algorithm. This was reduced to 8 states with
little loss of fidelity. The missing information in coupling the identified structural
model and the analytic aerodynamic model is the influence matrix, B, that defines
the effect of moment and force inputs on the identified state. Moments in the flap
should closely follow inputs to the flap actuator, however there is no guidance in
choosing influence coefficients for forces in pitch and plunge. With the pitch and
plunge influence coefficients free and the flap constrained to be a scaled version of
the actuator input, the problem has 17 unknown parameters. A key to improving
the solvability of this problem was to choose a decoupled coordinate system for the
structural model. In modal coordinates the A matrix is block diagonal and the effect
of perturbations in elements of the B matrix is more clearly delineated, improving
convergence of the nonlinear optimization.

With the structural model in modal canonical form a set of parameters was found
that allowed the model to fit well at a flowspeed of 21 m/s. This is a condition
where the influence of aerodynamics is significant but far enough below the flutter
point where the response is not dominated by a single resonance. The model was
most accurate at this condition, however, it was still fairly accurate at other flow
conditions indicating that the optimization problem was not over-parameterized. A
comparison of the experimentally determined spectra and the frequency responses
of the LPV identified model is shown in Fig. 29, at the end of this section.

Another measure of the models accuracy is is ability to predict the transition to
flutter. The LPV model can be evaluated at any flowspeed, and used to determine
the systems eigenvalues. Figure 27a shows a root locus for the identified model as
a function of increasing flowspeed. The locus starts with lightly damped motion in
pitch, plunge and flap. As flow increases both initially gain damping, then the plunge
mode starts to lose damping, and eventually becomes unstable. This is similar to the
behavior of the analytic typical section model shown in Fig. 22a. The most notable
difference being the lower flap frequency (due to loading from the control actuator),
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(a) Open-Loop Locus, 0 m/s to 30 m/s
(b) Closed-Loop Locus, 8 m/s to
30m/s

Fig. 27 Root Locus of a open-loop identified LPV model, with a flutter prediction at 26.8 m/s. In
b, predicted closed-loop locus with LPV design and constraint of 5% damping

and the presence of damping in the identified model. An experimental test of the
model revealed that flutter occurred at 25.1 m/s, slightly below the predicted flutter
speed of 26.8 m/s from the identified LPV model.

7.3 Closed-Loop Results

A controller was designed using the identified LPV model and following the same
multiobjective procedure described in Sect. 5. The goal was a reduced H2 transfer
function from a plunge disturbance to an output that included both pitch and plunge.
The regional pole-placement conditions were set to 5% damping in all the modes,
over a flow range that extended from 8 m/s to 30 m/s. The solution to this problem
was found through convex optimization of the resulting LMIs, using semidefinite
programming software described in [66]. The resulting continuous controller was
discretized through a Tustin transformation, and implemented digitally at a sample
rate of 250 Hz.

A series of manual disturbance tests were performed for the open and closed loop
system at several flowspeeds below the flutter boundary. These results, presented in
Fig. 30, show the increase in damping of plungemotion in the closed loop system.The
damping increase is greatest at the intermediate flowspeed of 16 m/s, and decreases
again at higher flowspeeds. There is also an increase in the frequency of the response
with flowspeed. This is consistent with the location of the dominant poles in the
predicted closed-loop root locus of Fig. 27b. The system remains stable and relatively
well damped past the open-loop flutter boundary as shown in the response plots of
Fig. 28.
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Fig. 28 Closed loop disturbance response in plunge for flow conditions above the open-loop flutter
boundary

Finally, a white noise dither signal was added at the flap for both open and closed
loop operation. This provided a calibrated input fromwhich full bandwidth responses
could be computed from the signals auto and cross spectra. The open and closed-
loop frequency responses below the flutter boundary are shown in Fig. 31. Above the
flutter boundary only closed loop response is available, and this is shown in Fig. 32
(Fig. 29).

7.4 Delta Wing Experiment

Material properties for the experimental test-rig were provided in Table 2. In order
to test the no-flow simulation results against experimental measurements, the test rig
is driven by an acoustic disturbance, and point velocities are measured with a laser
vibrometer (VPI 4000 scanning laser). The first step in the process is to measure
the frequency response between the band-limited random acoustic disturbance and
point velocity measurements. From these measurements, the resonant frequencies of
the structure are easily identified. The structure is then driven with a harmonic input
corresponding to each of the measured resonant frequencies, with velocity measure-
ments being obtained over a grid covering the entire wing. These grid measurements
yield an RMS velocity magnitude map over the entire surface for a given frequency,
providing a graphical image of the mode shape. A comparison of these simulated
and measured structural mode shapes for the wing without transducers can be seen
in Fig. 33.

The frequencies of these modes, and the analytic predictions, are listed in Table 3.
These frequencies prove to be somewhat sensitive to certain parametermodifications,
most notably thickness. Tests showed a variation of nearly±3% over the entire wing
structure which may contribute to the observed errors.
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Fig. 29 Comparison of LPVmodel obtained through tuned aeroelastic coupling (solid) and transfer
functions based on spectra from experimental data (dashed)
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Fig. 32 Closed loop transfer functions from spectral data with flap excitation
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Fig. 33 Comparison of predicted and measured delta wing mode shapes

Table 3 Comparison of predicted and measured delta wing frequencies

Predicted (Hz) Measured (Hz) % Error

Mode 1 6.5 5.75 3.8%

Mode 2 25 24.75 1%

Mode 3 33 32.5 1.5%

Mode 4 60 59.75 0.5%

The actuator for the active wing is constructed from 0.015 inch nominally thick
PZT material with silver electrode layers. The sensor is made from two layers of
0.003 inch polyvinylidene fluoride (PVDF) material. These dual sensor layers are
wired in parallel and oriented orthogonal to each other in order to eliminate the
directional bias typically associated with this material.

For control system design, system identification was employed to obtain an esti-
mate of the transfer function from actuator to sensor. Since the structural response
of the wing is modified upon attaching the actuator and sensor, system identification
is important to the successful implementation of a compensator. Although analytic
models are critical to understating a physical system and its dynamic behavior, there
is no substitute for an experimentally identified model of the system when designing
a controller. Factors such as damping, actuator dynamics, and phase effects from
signal conditioning circuitry are often omitted or ignored in analytical models, but
are critical to the accurate prediction of the system response.

Subspace system identification techniques, such as the Eigensystem Realization
Algorithm (ERA) [67], and the N4SID algorithm [68], allow for the generation
of state-space models from multivariable input/output data sets generated with a
frequency rich input signal. Order for the identified model can be prescribed, or
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determined by over-fitting the data and choosing a reasonable truncation point by
looked at the Hankel singular values. The later approach was taken for this work.

Wind tunnel testing of the non-active wing demonstrates a flutter boundary of
35 m/s at 19 Hz showing a 10% variation in the observed flutter boundary from the
predicted response of 31.5 m/s at 18.5 Hz. Here, the flutter boundary is considered
to be the point at which clear harmonics appear in the measured frequency response.
The analysis and design presented is restricted to linear modeling techniques. As was
shown in [69], structural non-linearities can lead to limit cycle oscillations (LCOs)
consistent with those observed in this experiment. However, as will be shown, the
LCO can be eliminated and the onset of flutter delayed by designing a compensator
based on a pre-flutter, linear model of the system.

As predicted by the analytical model, the wing response is dominated by the
second mode as the flow speed progresses toward the flutter boundary. Additionally,
a gradual reduction in the frequency of the second mode from a no-flow frequency
of 25 Hz toward a flutter frequency in the vicinity of 18 Hz is also observed and
consistent with the predicted response.

To demonstrate the progression of the mode shape as a function of flow speed,
the second mode was driven harmonically, and the laser vibrometer was used to
measure point-velocities over a grid sufficient for generating a contour plot of the
mode shape. These plots are generated for flow speeds varying from 0 m/s to the pre-
flutter condition of 31 m/s. A comparison of the experimentally determined mode
shape progression with the predicted progression can be seen in Fig. 34. The inferred
nodal regions in the experimental plots demonstrate a tendency in low velocity areas
similar to that found in the analytical model. The experimental results are limited
by noise due to turbulence as well as nonlinearities in the response associated with
LCO that dominates at the onset of flutter.

Given the observed correlation between the experimental and analytical model,
the final test involves the design and implementation of a dynamic compensator
using the optimally designed actuator and sensor. The compensator is designed from
an identified model of the experimental test structure. However, the chosen inputs
and outputs for the design are consistent with that of the analytical model, and the
compensator is designed through H2 synthesis. The controller is implemented on a
digital signal processor and interfaced through analog to digital and digital to analog
converters with the hardware.

Experimental results from the closed-loop response are presented in Fig. 35. The
flutter boundary is increased from 33.5 m/s to 37.8 m/s – a 13% increase. The
magnitude of both the open-loop frequency response (measured at 33.5 m/s) and
the closed-loop frequency response (measured at 37.5 m/s) from the actuator to the
measured velocity at the tip of the wing is illustrated in Fig. 35. The harmonics used
to define the onset of flutter are clearly observed as evidenced by the dramatic spikes
in frequency intervals of approximately 18 Hz in the open-loop response. The lack
of harmonics in the closed-loop response, in addition to the substantial reduction in
magnitude of the second mode, shows significant control effect.
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Fig. 34 Progression of second mode shape with flow speed
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8 Closing Comments on Aeroelastic Control

Within this chapter, we have presented a unified approach to aeroelastic system
modeling and control based upon linear analysis tools. These models capture the
basic physics (structural, aerodynamic, or aeroelastic) and are often suitable for
designpurposes, even in systemswhere nonlinear considerations are required for final
verification analysis.Model reductionwas shown to enable significant simplification,
without a critical loss of accuracy, by focusing on physically relevant input/output
paths and a bandwidth of interest. Such model reduction was shown to be not only
useful in the design of compensators, but also in the physical design of systems to
determine optimal actuator and sensor placement. These models were also extended
to encompass parameter varying systems, and shown to permit explicit design of
gain scheduled control laws.

Although the models presented within this chapter are relatively simple, the basic
tools used are applicable to more complex aeroelastic systems and afford the same
advantages to designers. The “great divide” in design frequently occurs when the
design of the structure and that of the control system are separated. When properly
integrated, one can effectively design the structure to be controlled, which can greatly
reduce the order of the compensator required to achieve the desired objective and
further improve robustness with respect to performance and stability.

There are a number of frontiers yet to be addressed if we are to transition these
tools to modern day design practice. Reduced-order aerodynamic models which
incorporate the effects of compressibility, viscosity, and/or nonlinearity are critical
to extending the applicability of the approach presented to a wider range of missions
and models. Furthermore, one must also address the impact of model uncertainty in
such systems and develop design philosophies which minimize the effect of uncer-
tainties on closed-loop performance. Finally, although gain scheduling overcomes
some of the pitfalls of single-point control designs, the final answer may be in adap-
tive control systems that combine both the identification of parameter dependent
models and the design of control laws. Each of these are topics of active research
interest, and exploiting the progress in these areas in the multidisciplinary field of
aeroservoelasticity will provide opportunities to improve radically the design and
performance of future aircraft.
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Modern Analysis for Complex and
Nonlinear Unsteady Flows in
Turbomachinery

Kenneth Hall

Abstract The field of turbomachinery is undergoing major advances in aeroelas-
ticity and this chapter provides an overview of these new developments in the key
enabling methodology of unsteady aerodynamic modeling. Also see the earlier dis-
cussions in chapters “Aeroelasticity in Turbomachines” and “Modeling of Fluid-
Structure Interaction.”

In this chapter, we review the state of the field of computational unsteady aerodynam-
ics, particularly frequency domain methods used for the calculation of the unsteady
aerodynamic forces arising in turbomachinery aeroelasticity problems 1. While the
emphasis here is on turbomachinery aerodynamics, the methods described in this
chapter have analogues for the analysis of isolated airfoils, wings, and even whole
aircraft, as well as rotorcraft.

The two main aeromechanics problems in turbomachinery are flutter and gust
response. In the flutter problem, the unsteady aerodynamic loads acting on a cascade
of turbomachinery airfoils arise from the motion of the airfoils themselves. In the
gust response problem, the original excitation arises away from the blade row in
question. Typical sources of excitation are wakes or potential fields from neighboring
blade rows or support structures (struts), inlet distortions, and hot streaks from the
combustor.

More recently, a third class of aeromechanical problems has been identified [1].
This class of problems is akin to galloping of power lines or buffeting of aircraft
wings. Examples include so-called separated flow vibrations and non-synchronous
vibrations. In separated flow vibrations, the flow over a row of airfoils is separated, or
nearly so. The flow itself is unstable, producing unsteady air loads with broadband
frequency distributions that excite the airfoil at all frequencies producing a large
response at the natural structural frequencies of the airfoil. Non-synchronous flow
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vibrations, on the other hand, are similar to separated flow vibrations in that the
source of the excitation is thought to be a fluid dynamics instability (rather than an
aeroelastic instability), except that non-synchronous vibrations can also occur well
away from a stalled condition and the response tends to be at a single frequency.
If this fluid dynamic natural frequency happens to be close to a structural natural
frequency, then the fluid dynamic instability frequency can “lock on” to the structural
frequency of the airfoils resulting in a large-amplitude vibration.

Most unsteady flows of interest in turbomachinery aeromechanics are periodic
in time, and for many of these flows, the unsteadiness in the flow is also relatively
small compared to the mean steady flow. Thus, the flowmay be decomposed into two
parts: a nonlinear steady or mean flow, plus a dynamically linear small perturbation
unsteady flow. In general, the steady flow is described by a set of nonlinear partial
differential equation, whereas the unsteady small-perturbation flow is described by
a set of linear variable coefficient partial differential equations that are hyperbolic in
time. Because the unsteady perturbation flow is periodic in time,wemay,without loss
of generality, represent the unsteady flow as a Fourier series in time with coefficients
that vary spatially. Each Fourier coefficient is described by a set of partial differential
equations in which time does not appear explicitly. Such equations are called “time-
linearized” equations, and their solution is one of the main topics of this chapter.

Working in the frequency domain rather than the time domain has a number of
distinct advantages. The available frequency solution techniques tend to be much
more computationally efficient than the equivalent time domain techniques. Addi-
tionally, certain parts of the unsteady flow problem—for instance, the description
of the behavior of acoustic, vortical, and entropic waves—are simplified in the fre-
quency domain.

In the casewhere the unsteadiness in theflow is large, the time-linearized equations
are not valid. Fortunately, however, the unsteady flow may still be calculated in the
frequency domain using a recently developed harmonic balance technique.

Finally, although the emphasis in this chapter is on unsteady aerodynamics asso-
ciated with aeromechanical problems, frequency domain techniques can be used to
solve of wide variety of problems, including performance, unsteady heat transfer,
aeroacoustic, and flow stability problems.

1 Linearized Analysis of Unsteady Flows

Recently, a number of investigators have developed linearized Euler and Navier–
Stokes solvers to predict unsteady flows in turbomachinery. To motivate these meth-
ods, consider the two-dimensional Euler equations, given by

∂Û
∂t

+ ∂F̂
∂x

+ ∂Ĝ
∂y

= 0 (1.1)
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where Û is the vector of conservation variables, and F̂ and Ĝ are so-called flux
vectors. These are given by

Û =

⎡
⎢⎢⎣

ρ̂
ρ̂û
ρ̂v̂

ê

⎤
⎥⎥⎦ , F̂ =

⎡
⎢⎢⎣

ρ̂û
ρ̂û2 + p̂

ρ̂ûv̂

ρ̂ûĥ0

⎤
⎥⎥⎦ , Ĝ =

⎡
⎢⎢⎣

ρ̂v̂

ρ̂ûv̂

ρ̂v̂2 + p̂
ρ̂v̂ĥ0

⎤
⎥⎥⎦ (1.2)

where ρ̂ is the density, û and v̂ are the x and y components of velocity, p̂ is the static
pressure, ê is the total internal energy, and ĥ0 is the total enthalpy. The pressure,
energy, and total enthalpy can in turn be expressed in terms of the conservation
variables.

The flow is assumed to be composed of a mean flow plus an unsteady perturbation
flow that is harmonic in time, so that

Û(x, y, t) = U(x, y) + u(x, y)e jωt (1.3)

where the perturbation amplitudeu(x, y) is small compared to themeanflowU(x, y),
and ω is the frequency of the unsteadiness. This assumption is substituted into the
Euler equations, Eq. (1.1), and the result is expressed as a perturbation series in the
small parameter. The collected zeroth-order terms result in the steadyEuler equations,
which are solved using now conventional computational fluid dynamic techniques.
The collected first-order terms give the linearized Euler equations, i.e.,

jωu + ∂

∂x

(
∂F
∂U

u
)

+ ∂

∂y

(
∂G
∂U

u
)

= 0 (1.4)

where ∂F/∂U and ∂G/∂U are steady flow Jacobians. These equations are solved
subject to appropriate “upwash” boundary conditions at the airfoil surface, far-field
boundary conditions, and periodicity conditions that allow the computational domain
to be reduced to a single blade passage.

One of the earliest linearized Euler solvers was developed by Ni and Sisto [2]. So
that they could make use of more traditional time marching CFD algorithms, Ni and
Sisto introduced a pseudo-time term τ into the linearized Euler equations, i.e.,

∂u
∂τ

+ jωu + ∂

∂x

(
∂F
∂U

u
)

+ ∂

∂y

(
∂G
∂U

u
)

= 0 (1.5)

where now u = u(x, y, τ ). This additional term makes the equations hyperbolic
in pseudo time, and hence they may be marched in pseudo time using traditional
CFD techniques. As time advances, the solution reaches a steady state and the addi-
tional term goes to zero. Thus the solution to the original linearized Euler equations
[Eq. (1.4)] is obtained. The results of this early analysis, however, were limited to
flat plate cascades with homentropic flows.
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Hall and Crawley [3] discretized the linearized Euler equations using a finite
volume scheme, and assembled the resulting equations into a large sparse set of
matrix equations which were then solved using LU decomposition. Shock fitting
and shock capturing were used to explicitly model the motion of wakes and shocks.
However, due to the complexity of the shock fitting algorithm, only a few model
transonic flows problems were computed. Nevertheless, this work demonstrated the
feasibility of using the linearized Euler equations to model transonic flows, at least
for cases where the motion of the shock is not too large.

In recent years, a number of investigators [4–8] have continued to develop the
linearized Euler technique using pseudo time marching.

The time-linearized technique has been extended to three-dimensional inviscid
(Euler) flows [9, 10] and to two and three-dimensional viscous (Navier–Stokes)
flows [11–13] in turbomachinery.

The time-linearized frequency-domain approach has a number of distinct advan-
tages over a conventional time-domain approach. By using pseudo time marching,
conventional steady CFD techniques may be used to solve the time-linearized equa-
tions. Thus, acceleration techniques such as local time stepping and multiple grid
acceleration techniques may be used to accelerate convergence. Furthermore, by
using complex periodicity conditions, the computational domain can be reduced to
a single blade passage. The result is that time-linearized solutions can be obtained in
computational times comparable to the time required to obtain a steady flow solution.

One feature of most linearized Euler and Navier–Stokes solvers is the use of
harmonically deforming computational meshes [7]. The use of the deforming grid
eliminates the need for a troublesome extrapolation term appearing in the upwash
boundary condition applied at the airfoil surface, but also produces an inhomoge-
neous term in the linearized Euler equation, Eq. (1.4), that depends on the mean flow
and the prescribed grid motion.

One important aspect of a linearized Euler analysis is how shocks are treated. Two
approaches have been used. Hall and Crawley [3] used shock fitting to model shocks
within a linearized framework. Shock fitting, while providing explicit descriptions
of the shock motion, is somewhat difficult to implement for general cascade flows
whichmay have rather complicated shock features. For this reason, shock capturing is
favored. However, until recently it was not known whether shock capturing correctly
predicts the unsteady aerodynamic loads induced by the unsteady shock motion.

The situation is shown graphically in Fig. 1. Shown are the mean and unsteady
shock trajectories on the surface of an airfoil or channel. Also shown are typical
unsteady flow quantities, e.g., pressure. In a linearized analysis, the motion of the
shock appears as an impulse in pressure. At this impulse, the pressure is not small
(in fact it is of the same order as the mean flow pressure), and therefore, one might
conclude that the linearization would break down at this point. Lindquist and Giles
[14] argued that to obtain the proper shock impulse, one must faithfully linearize a
conservative discretization of the Euler equations. Hall et al. [8] demonstrated that
the correct shock impulse is produced if a conservative discretization of the Euler
equations is used, and further, that the shock is smoothed so that it is smeared over
several grid points.
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Fig. 1 Trajectory of shock in a channel or on airfoil surface and corresponding effect on unsteady
flow quantities. After Hall, Clark, and Lorence [8]. Published with permission from ASME

A typical transonic analysis is shown in Figs. 2 and 3. Shown in Fig. 2 is the
computed steady distribution for the Tenth Standard Configuration [15, 16], one of
a series of Standard Configurations used to validate unsteady aerodynamic models.
Shown in Fig. 3 is the computed unsteady pressure distribution on the airfoils of this
cascade for the case where the airfoils vibrate in plunge with a reduced frequency
ω of 1.287 with an interblade phase angle σ of −90 deg. Shown are two solutions,
one computed with a time-linearized flow solver, and one computed using a conven-
tional time-domain flow solver [17]. Note the very good agreement between the two
solutions everywhere except at the shock impulse. However, even though the details
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Fig. 2 Steady surface pressure for the Tenth Standard Configuration transonic compressor cascade.
After Hall, Clark, and Lorence [8]. Published with permission from ASME

of the shock impulse differ between the two solutions, the integrated force is very
nearly equal. The integrated unsteady lift differs by just 2%.

The time-linearized approach can also be applied equally well viscous flows using
the Reynolds averaged Navier–Stokes equations and/or three-dimensional flows. As
an example, consider the case of the front stage of a modern front stage transonic
compressor rotor shown in Fig. 4. Shown are the blades of the rotor together with
the computed streamlines associated with the steady flow at a particular operating
condition. These results were computed using a steady Navier–Stokes flow solver
that uses the Spalart–Allmaras [18] turbulence model to predict turbulent viscosity.
Note the clearly visible tip vortex due to leakage flow through the tip clearance.

Next, the rotor blades are assumed to vibrate in their first bending mode (and
at the natural frequency of that mode) with zero interblade phase angle. Figure5
shows the computed steady and unsteady pressure distributions for this compressor
rotor near the midspan of the blade computed using the time-linearized technique.
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Fig. 3 Real and imaginary unsteady surface pressure for the Tenth Standard Configuration cascade
vibrating in plunge with a reduced frequency ω of 1.287 with an interblade phase angle σ of −90
deg. After Hall, Clark, and Lorence [8]. Published with permission from ASME
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Fig. 4 Computed steady streamline patterns for a modern front stage compressor rotor
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Fig. 5 Unsteady pressure distribution near the midspan station of a front stage compressor rotor.
The airfoil vibrates in its first bending mode with an interblade phase angle of zero. After Hall et
al. [34]

A shock impulse is seen in the unsteady pressure distribution on the surface of the
airfoil at about 35% of the chord.
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Fig. 6 Kinematics of mode scattering and frequency shifting in a multistage machine. After
Silkowski and Hall [20]. Published with permission from ASME

2 Analysis of Unsteady Flows in Multistage Machines

2Unsteady fluid motion is essential to gas turbine engine operation. Only through
unsteadyflowprocesses can amachine dowork on afluid to increase its total enthalpy.
This unsteadiness is provided in compressors and turbines by relative motion of
adjacent stators and rotors. Unfortunately, this motion also produces undesirable
aeroacoustic and aeroelastic phenomena, i.e., tonal noise and forced blade vibrations
induced by rotor/stator interactions. Furthermore, the aeroelastic (flutter) stability of
a rotor can be profoundly influenced by the presence of nearby stators and rotors.

Most current unsteady aerodynamic theories model a single blade row in an
infinitely long duct, ignoring potentially important multistage effects. However,
unsteady flows are made up of acoustic, vortical, and entropic waves. These waves
provide a mechanism for the rotors and stators of multistage machines to commu-
nicate with one another. For example, consider the case of a row of vibrating rotor
blades (see Fig. 6).

The blades will respond aerodynamically, producing acoustic, vortical, and
entropic waves which propagate away from the rotor. Some of these waves will then
impinge on the neighboring stators. The stators will in turn respond aerodynami-
cally, again producing waves, some of which will impinge upon the original rotor,
and so on. In other words, wave behavior makes unsteady flow in turbomachinery
fundamentally a multistage phenomenon.

The basic time-linearized Euler and Navier–Stokes approach can be extended to
the case of multistage flows [19]. For a given multistage fan or compressor, one first
generates a computational mesh for each blade row. Unlike time-domain multistage

2 Portions of this section originally appeared in [20] and are reprinted here with permission from
ASME.
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analyses, the computational mesh for each blade row need only include a single
passage.

Having generated a computational mesh, the steady flow is computed using
the steady Euler or Navier–Stokes equations and conventional computational fluid
dynamic (CFD) techniques, with so-called “mixing planes” (the inter-row compu-
tational boundaries of the computational grid) used to couple together the solutions
computed in the individual blade rows. The solution in each blade row is computed
independently, except that at each time step in the pseudo time marching, the flow at
the inter-row computational boundaries between two blades rows is updated so that
the circumferentially averaged flow at the inlet (or exit) of one blade row is matched
the circumferentially averaged flow at the exit (or inlet) of the neighboring blade
row.

For the unsteady flow solution, the process is similar. However, instead of a single
solution in each passage, several linearized unsteady flow calculations are performed
simultaneously in each blade row, one corresponding to each spinningmode retained
in the model. Each spinning mode is identified by a set of integers that describe the
scattering process that creates the mode (n and k in Fig. 6). These integers, along
with the frequency and interblade phase angle of the initial disturbance and the blade
counts in each blade row, determine the interblade phase angle and frequency of
the mode. The only coupling among the various spinning modes is at the inter-row
boundaries.

The advantages of this approach are several. First, unlike time-domain techniques
where many blade passages are required to model each blade row, only a single
passage is required for each row. Second, as in the single blade row computations,
a pseudo time marching technique is used to march the solution to steady state, and
acceleration techniques such as multigrid may be used. Finally, as a practical matter,
only a handful of spinning modes are usually needed to obtain accurate solutions.
These three factorsmean that memory requirements and computational time required
to compute the unsteady multistage solution are greatly reduced compared to time
domain solvers. A typical unsteady multistage flow calculation might take on the
order of just ten times the computational time required for a single steady blade row
flow computation.

As an example, consider the case of the front stage of a modern compressor.
This three-dimensional configuration consists of three blade rows (IGV/rotor/stator).
Figure7 shows the static pressure distribution near the midspan location computed
using a steady Euler multistage flow solver. Note, that the contours at the inter-row
boundaries are not continuous since only the circumferential averages of the flows
in each blade row match at the boundaries.

Next, the middle blade row (rotor) is assumed to vibrate in its first bending mode
and frequency. Figure8 shows the real and the imaginary parts of the unsteady pres-
sure on the rotor row for an interblade phase angle of −30. deg. The multistage
solution was computed using one and eight spinning modes in the coupling proce-
dure. One can see that there is significant difference between the isolated and coupled
(multistage) computations.
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Fig. 7 Pressure contours at the midspan of a front stage compressor. After Hall et al. [34]

The unsteady pressure distribution can be integrated to obtain the unsteady modal
force acting on the rotor blades due to their vibration. Figure9 shows the real and
imaginary parts of the computed generalized forces on the rotor blades as a func-
tion of interblade phase angle. Note the significant difference between the forces
computed using a single blade row (the rotor) and three blade rows (the rotor and
the upstream IGV and downstream stator). Clearly, multistage effects are important.
However, the generalized force computed using just one spinning mode is in very
good agreement with the force computed using eight spinning modes, indicating the
dominant coupling is in the fundamental mode.

These results, and earlier two-dimensional results produced byHall and Silkowski
[20–22], confirm that the aerodynamic damping of a blade row that is part of a mul-
tistage machine can be significantly different than that predicted using an isolated
blade row model. This is an important result since most unsteady aerodynamic theo-
ries currently used in industry assume that the blade row can be modeled as isolated
in an infinitely long duct. However, a good estimate of the aerodynamic damping
can be obtained using just a few spinning modes in the model. In fact, most of
the unsteady aerodynamic coupling between blade rows occurs in the fundamental
spinning mode, that is, the spinning mode associated with the original disturbance.
Scattered modes are relatively less important.

Although not shown here, Hall and Silkowski [20–22] have shown that the two
neighboring stator blade rows adjacent to a rotor have the strongest influence on the
unsteady aerodynamic response of the rotor. The next nearest blade rows are less
important, but can have a modest influence. As a practical matter, this means that
only three blade rows need to be included in most unsteady flow computations.

Finally, we note that while the frequency domain multistage analysis presented
here is for small disturbance (linearized) flows, the method has been extended to
model nonlinear unsteadymultistageflowsusing the harmonic balance technique [23,
24].
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Fig. 8 Unsteady pressure
distribution on the surface of
rotor blades vibrating in first
bending with σ =-30◦. After
Hall et al. [34]

3 The Harmonic Balance Method for Nonlinear Unsteady
Aerodynamics

A number of investigators have developed frequency domain analyses of nonlinear
unsteady flows [25–33]. While the methods differ somewhat in detail, most can be
viewed as a form of harmonic balance. To motivate the development of the harmonic
balance analysis, and for simplicity,we assume for themoment that the flow in a blade
row is two-dimensional, inviscid, and non-heat-conducting, with constant specific
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Fig. 9 Generalized force
acting on rotor blades
vibrating in first bending.
After Hall et al. [34]

heats. Thus, the flow may be modeled by the two-dimensional Euler equations,
Eq. (1.1).

In this section, we consider unsteady flows that are temporally and spatially peri-
odic. In particular, temporal periodicity requires that

U(x, y, t) = U(x, y, t + T ) (3.1)

where T is the temporal period of the unsteadiness. Similarly, for cascade flow
problems arising from vibration of the airfoils with fixed interblade phase angles σ,
or incident gusts that are spatially periodic, spatial periodicity requires that

U(x, y + G, t) = U(x, y, t + �T ) (3.2)

where G is the blade-to-blade gap, and �T is the time lag associated with the
interblade phase lag. As an example, consider a cascade of airfoils where the source
of aerodynamic excitation is blade vibration with a prescribed interblade phase angle
σ and frequency ω. Then T = 2π/ω and �T = σ/ω.

Because the flow is temporally periodic, the flow variables may be represented as
a Fourier series in time with spatially varying coefficients. For example, the conser-
vation variables may be expressed as

ρ(x, y, t) =
∑
n

Rn(x, y)e
jωnt

ρu(x, y, t) =
∑
n

Un(x, y)e
jωnt
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ρv(x, y, t) =
∑
n

Vn(x, y)e
jωnt

ρe(x, y, t) =
∑
n

En(x, y)e
jωnt (3.3)

where in principle the summations are taken over all integer values of n. In practice,
these series are truncated to a finite number of terms, −N ≤ n ≤ +N .

Next, at least conceptually, we substitute the series expansions for ρ, ρu, ρv, and
ρe into the Euler equations, Eq. (1.1). The result is expanded in a Fourier series,
with terms grouped by frequency. Using a traditional harmonic balance approach,
each frequency component must vanish. Collecting the resulting harmonic balance
equations together into one vector equation gives

∂F̃(Ũ)

∂x
+ ∂G̃(Ũ)

∂y
+ S̃(Ũ) = 0 (3.4)

where

Ũ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0

U0

V0

E0

R+1

U+1

V+1

E+1
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, S̃ = jω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 · R0

0 ·U0

0 · V0

0 · E0

+1 · R+1

+1 ·U+1

+1 · V+1

+1 · E+1
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

The vectors F̃ and G̃ are muchmore complicated, but can be written as a nonlinear
functions of the vector of Fourier coefficients of the conservation variables Ũ.

Finally, we note the conservation variables are real quantities, so that

U−n = Un (3.6)

where Un is the complex conjugate of Un . Thus, we only need to store Fourier
coefficients for non-negative n. If N harmonics are retained in the Fourier series
representation of the flow, then 2N + 1 coefficients are stored for each flow variable
(one for the zeroth harmonic or mean flow, and 2N for the real and imaginary parts
of the remaining harmonics).

Computation of the harmonic fluxes is difficult and computationally expensive;
on the order of N 3 operations are required, so that the cost of the harmonic bal-
ance analysis grows rapidly with the number of harmonics. Also, this approach is
not readily applicable to viscous flows, because turbulence models tend to be quite
complex, and not readily expressed in simple algebraic forms.
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To alleviate these problems, we note that alternatively, one can reconstruct the
Fourier coefficients of the conservation variables Ũ and the flux vectors F̃ and G̃
from a knowledge of the temporal behavior ofU, F, andG at 2N + 1 equally spaced
points over one temporal period. In other words,

Ũ = EU∗ (3.7)

where U∗ is the vector of conservation variables at 2N + 1 equally spaced points in
time over one temporal period, and E is matrix that is the discrete Fourier transform
operator. Conversely,

U∗ = E−1Ũ (3.8)

where E−1 is the corresponding inverse Fourier transform operator. Similar expres-
sions hold for the flux vectors.

Substitution of Eq. (3.7) into Eq. (3.3) gives

∂EF∗

∂x
+ ∂EG∗

∂y
+ jωNEU∗ = 0 (3.9)

whereN is a diagonal matrix with n in the entries corresponding to the nth harmonic.
Pre-multiplying Eq. (3.9) by E−1 gives

∂F∗

∂x
+ ∂G∗

∂y
+ S∗ = 0 (3.10)

where

S∗ = jωE−1NEU∗ ≈ ∂U∗

∂t
(3.11)

The product jωE−1NE is just the spectral operator that approximates ∂/∂t . The
advantage of Eq. (3.10) over the original form of the harmonic balance equations,
Eq. (3.4), is that the fluxes in Eq. (3.10) are much easier to compute. The fluxes are
simply computed at each of the 2N + 1 time levels in the usual way, using Eq. (1.2).
Also, the alternate form of the harmonic balance equations can easily be applied
to more complex flow equations, such as the Navier–Stokes equations, whereas the
original form, Eq. (3.4), cannot.

To solve the harmonic balance equations, we introduce a “pseudo-time” term so
that the equations may be marched to a steady state condition using a conventional
computational fluid dynamic scheme. Using the harmonic balance form of the Euler
equations as an example, we let

∂U∗

∂τ
+ ∂F∗

∂x
+ ∂G∗

∂y
+ S∗ = 0 (3.12)
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where τ is a fictitious time, used only to march Eq. (3.12) to steady state, driving
the pseudo time term to zero. Note that pseudo-time harmonic balance equations,
Eq. (3.12), are similar in form to the original time-domain formof theEuler equations,
Eq. (3.7). However, the conservation variable vector, U∗ and flux vectors F∗ and
G∗ are now 2N + 1 larger than the original vectors U, F, and G. Furthermore, the
physical time derivative term is replaced by the time spectral term S∗, and the pseudo
time term is added.

The time spectral termS∗ requiresO(N 2) operations to compute (orO(N log(N ))

if an FFT is used). However, the calculation of the flux vector terms is greatly simpli-
fied, requiring onlyO(N ) computations. As a practical matter, the flux calculations,
and other calculations requiring O(N ) computations, require much more computa-
tional time than the relatively simple time derivative term. Thus, the computational
time scales like the number of Fourier terms retained in the solution, at least for
modest sized N .

Although the harmonic balance technique has been described using the Euler
equations, the method can be readily applied to the Reynolds averaged Navier–
Stokes equations. As an example, we apply the harmonic balance technique to a
representative flutter problem. We consider a two-dimensional section near the tip
of the front stage transonic rotor of a modern high pressure compressor.

At this spanwise station, the inflow Mach number M is 1.27, the inflow angle
�, measured from the axial direction, is 59.3◦, and the Reynolds number Re is
about 1.35×106. The computational grid used is an H-O-H grid, which has good
resolution near the airfoil surface for resolving viscous boundary layers, as well as
good resolution in the far field for modeling outgoing waves.

Shown in Fig. 10 is the steady flow (i.e., no unsteady disturbances) in the blade
row computed using a grid with 193×33 nodes in the O-grid section. Note the
fairly complex shock structure, with a shock extending from the leading edge both
above and below the airfoil. This shock impinges on the suction surface of the airfoil,
causing a local strong adverse pressure gradient, which causes the boundary layer to
separate. The rapid growth of the boundary layer results in an oblique shock forming
just upstream of the separation point. Also, the flow accelerates over the front portion
of the pressure surface resulting in a weak normal shock at about 40% of the chord
on the pressure surface.

Next, we consider the unsteady aerodynamic response of the rotor for the case
where the airfoils vibrate harmonically in pitch about their midchords with a reduced
frequency ω equal to 1.0 (based on chord and upstream velocity), an interblade
phase angle σ equal to 30◦, and amplitude α. Shown in Fig. 11 is the mean pressure
distribution (the zeroth Fourier component) computed for a pitching amplitude α =
1.0◦. The harmonic balance solution was computed using one, three, five, and seven
harmonics (N = 1, 3, 5, and 7). Note that the mean pressure distributions computed
with various numbers of harmonics are different. However, the solutions converge
rapidly as the number of harmonics is increased.

Next, we consider the first harmonic of the unsteady pressure distribution on the
airfoil surface. This component is important, because it is the only component that
contributes to aerodynamic damping for harmonic pitching motion of the airfoil.
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Fig. 10 Computed steady
pressure (top) and Mach
number (bottom) contours
for transonic viscous flow
through front stage
compressor rotor. After Hall,
Thomas, and Clark [32]
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Fig. 11 Zeroth harmonic
(mean flow) of unsteady
pressure distribution for
front stage compressor rotor
airfoils vibrating in pitch
with ω = 1.0 and σ = 30◦,
and α = 1.0◦. After Hall,
Thomas, and Clark [32]
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Shown in Fig. 12 is the first harmonic of the unsteady pressure on the airfoil surface,
scaled by the amplitude of the pitching amplitude. As in the case of the mean flow,
the unsteady pressure distributions computed with various numbers of harmonics
are different, but again the solutions converge rapidly as the number of harmonics is
increased.

To demonstrate the influence of nonlinearities on the unsteady flow, we again
plot the zeroth and first harmonics of the unsteady flow in Fig. 13. In these results,
the larger amplitude motion solutions are computed using five harmonics so that the
results are converged in the harmonic balance sense. The pressure distributions are
plotted for several pitching amplitudes. The pressure distributions associated with
the larger amplitude pitching motion is seen to be substantially different from the
small amplitude case. In the small-amplitude case, the mean pressure distribution
shows signs of very sharp shocks. For the larger amplitude motion, the shocks get
“smeared” out. Physically, this is because the shocks oscillate, and when temporally
averaged, the shocks appear smeared. Of course, when viewed at any instant in time,
the shocks are sharp. Also shown are the real and imaginary parts of the first harmonic
of the unsteady pressure. In the small-amplitude case, very large and narrow peaks
of pressure are seen. These are the so-called “shock impulses” associated with the
unsteadymotion of the shock. As the amplitude of the pitching vibration is increased,
these peaks are reduced and spread out, because the shock motion is larger and the
resulting shock impulse is spread over a larger chordwise extent.

By appropriate integration of the first harmonic of the unsteady pressure distri-
bution, one can obtain the first harmonic of the pitching moment. The imaginary
part determines the aeroelastic stability of the rotor. In the absence of mechanical
damping, the rotor is stable only if the imaginary moment is less than zero for all
interblade phase angles. Shown in Fig. 14 is the pitching moment as a function of
interblade phase angle for several pitching amplitudes. For small amplitude motions,
the rotor is unstable for interblade phase angles σ between−10◦ and+60◦. Thus, the
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Fig. 12 First harmonic of unsteady pressure distribution for front stage compressor rotor airfoils
vibrating in pitch with ω = 1.0, σ = 30◦, and α = 1.0◦. After Hall, Thomas, and Clark [32]

amplitude of an initially infinitesimal motion will grow. As the motion grows, how-
ever, the aerodynamic damping of the least stable interblade phase angle goes to zero.
This is seen more clearly in Fig. 15. Shown is the pitching moment for σ = +30◦ as
a function of pitch amplitude computed using one, three, five and seven harmonics.
Clearly, the solution computed with just one harmonic is not converged (except at
very small amplitudes), and gives erroneous results. However, with three or five har-
monics, the solution is converged to engineering accuracy. Note that the imaginary
moment is positive (unstable) for small amplitude motions, but goes to zero at a
pitching amplitude of about 0.7◦. Thus, the blade will vibrate in a stable limit cycle
with with this pitch amplitude. It is also remarkable that the nonlinear fluid dynamics
effects are important at such a small geometric displacement.
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Fig. 13 Unsteady pressure
distribution for front stage
compressor rotor airfoils
vibrating in pitch with
ω = 1.0 and σ = 30◦. Top:
zeroth harmonic. Middle and
bottom: first harmonic. After
Hall, Thomas, and Clark [32]
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Fig. 14 First harmonic of unsteady pitching moment for front stage compressor rotor airfoils
vibrating in pitch with ω = 1.0. After Hall, Thomas, and Clark [32]

We next consider the computational efficiency of the present method. Shown
in Fig. 16 are the convergence histories for the steady flow and harmonic balance
calculations.Note that except for N = 7, the steady flow solver and harmonic balance
flow solver converge in about the same number of iterations. For the N = 7 case,
the harmonic balance solution does not converge. Fortunately, we have found that
three to five harmonics are more than adequate to obtain mode converged solutions
of the zeroth and first harmonic components of the unsteady flow, and the harmonic
balance solver usually converges for this number of harmonics.

Finally, the CPU time per iteration of the harmonic balance flow solver for one,
three, five, and seven harmonics was found to be 2.15, 4.62, 7.45, and 10.29 times
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Fig. 15 First harmonic of unsteady pitching moment for front stage compressor rotor airfoils
vibrating in pitch with σ = 30◦. After Hall, Thomas, and Clark [32]

the cost per iteration of the steady flow solver. Even using seven harmonics, the cost
to compute the fully nonlinear, viscous, transonic flow about a vibrating blade row
is only about ten times the cost of a comparable steady flow calculation.

The instability found in the example shown in Fig. 16 merits further discus-
sion. The computational scheme used to compute the solution in this case used
an explicit Lax–Wendroff scheme. For a conventional time-marching analysis, the
Lax–Wendroff scheme is stable for CFL numbers less than some finite number. In
one-dimensional inviscid problems, for example, the CFL number on a cartesian grid
is defines as
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Fig. 16 Convergence history for steady flow solver (top) and harmonic balance flow solver (bottom)
with σ = 30◦, ω = 1.0, and α = 1.0◦. After Hall, Thomas, and Clark [32]

C =
( |umax|

�x

)
�t (3.13)

where |umax| is the largest characteristic speed of the flow. For a conventional
time-domain analysis, one finds that the Lax–Wendroff scheme is stable so long as
C ≤ 1. For CFL numbers greater than unity, the unstable modes are short wavelength
“sawtooth” modes.

For the harmonic balance analysis, however, the source term S∗ in Eq. (3.12)
renders the Lax–Wendroff scheme unconditionally unstable on very large grids, and
conditionally stable on grids of finite extent. A Fourier stability analysis (which is
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valid on large grids) shows that the unstable modes for the harmonic balance method
are long wavelength modes, and the boundary conditions help stabilize the scheme.

In general, the stability computational schemes applied to the harmonic balance
equations depends on two non-dimensional numbers, the CFL number and the grid
reduced frequency, defined by

ω = Nω�x∣∣umin
∣∣ (3.14)

where
∣∣umin

∣∣ is the smallest characteristic speed. Large values of ω tend to make
explicit schemes unstable, even with the stabilizing influence of boundary condi-
tions, which explains the non-convergence seen in Fig. 16 for the N = 7 case. More
recently, a number of researchers have developed implicit schemes to improve the
stability of the method [35–38].

4 Conclusions

Frequency domain techniques for computing unsteady flows in turbomachinery have
evolved considerably over the past several decades. These techniques are capa-
ble of computing both small-disturbance unsteady flows (using the time-linearized
approach) and large amplitude flows (using the harmonic balance approach). In addi-
tion, the frequency domain approaches have been applied to the difficult but important
problem of computing unsteady flows in multistage machines. In all cases, the fre-
quency domain solvers have a number of distinct advantages over their time-domain
equivalents. Using complex periodicity conditions, the computational domain can be
reduced to a single blade passage (in each row). Furthermore, using the pseudo time
marching technique, the governing Euler and Navier–Stokes equations can be solved
using steady-state acceleration techniques such as local time stepping and multigrid
acceleration. The result is that computing these very complex unsteady flows in
turbomachinery—and other problems involving temporally and spatially periodic
flows—is only modestly more expensive than solving a steady flow problem.
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Some Recent Advances in Nonlinear
Aeroelasticity

Earl H. Dowell

Abstract This brings the discussion of nonlinear aeroelasticity up to date. See the
earlier discussion in Chap. 11. Much of the recent advances are based on new under-
standing of such subjects as limit cycle oscillations due to structural non-linearities,
including freeplay, and fluid nonlinearities associated with unsteady separated flow
including self excited flow oscillations variously called buffet or non-synchronous
vibration.

As the reader now knows, aeroelasticity is the field that examines, models and seeks
to understand the interaction of the forces from an aerodynamic flow and the defor-
mation of an elastic structure. The forces produce deformation, but the structural
deformation in turn changes the aerodynamic forces. This feedback between force
and deformation leads to a variety of dynamic responses of the fluid and the structure
including flutter (a Hopf bifurcation), limit cycle oscillations and sometimes chaos.
Selected recent advances in nonlinear aeroelasticity and fluid-structure interaction
are reviewed to identify and model the fundamental elements that they share. Topics
discussed include the following. following.1

• Transonic and Subsonic Panel Flutter
• Freeplay Induced Flutter and Limit Cycle Oscillations (LCO)
• Reduced Order Modeling (ROM) of Unsteady Aerodynamics
• Eigenmodes and POD Modes
• High Dimensional Harmonic Balance (HDHB)
• Nonlinear ROM based upon POD and HDHB
• Transonic Flutter and LCO of Lifting Surfaces
• Flight Experience
• Efficient and Accurate Computation of Aerodynamic Forces
• Experimental/Theoretical Correlations
• Aerodynamic LCO: Buffet, Abrupt Wing Stall and Non-Synchronous Vibration

1This chapter is based upo a AIAA SDM lecture given in 2010.
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1 Introduction

Some twenty plus years ago I had the pleasure of giving the SDM lecture in Mobile,
Alabama and am happy to have the opportunity to do so again here in Orlando.
When asked to give this SDM lecture, I mentioned my previous experience and
suggested that being asked to do so again might be considered double jeopardy. But
I was assured that no one would remember my earlier talk! However, I do recall
that twenty years ago a then radical idea was discussed in the lecture, i.e. that one
could use the eigenmodes of an aerodynamic flow to construct a modal model of the
flow much as has been done for many years for structures. Whether that suggestion
inspired anyone other than our group at Duke, I cannot be sure. But in any event,
reduced order modeling of flow fields and their interaction with structural response
is today a flourishing topic. Indeed reduced order modeling is now pervasive in many
fields of engineering and science, no doubt having been discovered and rediscovered
many times bymany investigators. And the topic has been generalized in at least three
significant ways that I will discuss in this lecture. Given the title of this lecture you
will not be surprised that one of the generalizations is to treat the nonlinear as well
as linear dynamics of aeroelastic or fluid-structural systems. Thus the major theme
of this talk is the modeling of nonlinear aeroelastic systems both mathematically and
computationally as well as experimentally.

2 Motivation and Goals

Themotives for pursuing research and developing methods that are useful in practice
are many. But to provide a context and rationale for much of the work to be described
in this lecture, perhaps a few words about goals will be helpful.

Whenmy contemporaries and I first began the study and practice of aeroelasticity,
and for a number of years thereafter, any difference between theory and experiment of
design and reality was often attributed to nonlinear effects. However, it was generally
understood that trying to model such nonlinear effects was not to be expected or
attempted. Since then many studies of nonlinear effects have been undertaken and
today the subject is treated in review articles [1–4] and indeed in textbooks [5,
6]. An engineer today no longer has the luxury of simply ignoring such effects
and one of my predictions is that some years from now an SDM Lecturer will be
discussing the favorable effects that can be created by a judicious analysis and design
of nonlinearities in aeroelastic systems. Of course there are unfavorable and indeed
potentially catastrophic consequences of nonlinearities in aeroelastic systems aswell,
as is also the case when an aeroelastic system is analyzed and designed with linear
models.

The motivation for reduced order modeling is much the same for fluid systems as
for structural systems. In either case, a relative small number of modes is often (but
not always!) sufficient to describe the dynamics of a structural or fluid system. In
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the case of a structure an initial mathematical/computational model may consist of
a finite element representation with several thousand degrees of freedom while for
a computational fluid dynamics (CFD) model there may be millions of degrees of
freedom. If one can use say one hundred modes or less to describe the structure or the
fluid, then clearly there is a great potential for savings in the cost of the computation.
Indeed at any given point in time of the state of the art in computer hardware and
software, there will be computations that are only feasible if one uses a reduced order
model.

But here it is worth noting that another very important advantage of reduced order
models is the greater physical insight they may give to the investigator. While a
dynamical system with one hundred degrees of freedom or less may be still one of
considerable complexity, it pales in complexity compared to a systemwith thousands
not to mention millions of degrees of freedom. Moreover it is often the case that
the response of the aeroelastic system is governed by an even smaller number of
modes than the structural or fluid system individually. This is because the fluid and
structural modes of greatest interest will be those that match most closely in both the
spatial (wavelength) and temporal (frequency) domains. In the field of acoustics this
matching of frequency and wavelength is called “coincidence”. Lest one think this
means that reduced order models may be smaller than in fact they reasonably can
be, it is well to point out two important facts. First, it cannot always be anticipated
which fluid and structural modes will bemost important for an aeroelastic system and
thus more modes must be retained than would otherwise be the case (once the most
dominant aeroelastic modes are determined!). Secondly, if one wishes to control or
modify the aeroelastic system, some of the fluid, structural, and/or aeroelastic or
coupled fluid-structural modes that may not have been important before can now
become important. Therefore and again, more modes must be retained as control of
the system is considered.

It is sometimes said that the use of modes is only possible for a linear system.
It is now widely, though not universally, appreciated that modes can be used for
nonlinear systems as well. Having said that, for linear systems the use of eigenmodes
is almost always the preferred choice for constructing a reduced order model. But
for nonlinear systems other choices of modes may be preferred, e.g. the modes that
can be constructed from Proper Orthogonal Decomposition, so called POD modes.
These modes have been used very successfully by Dowell and colleagues at Duke,
Beran and colleagues at the Air Force Research Laboratory (AFRL) and by Farhat
and colleagues at Stanford.

Finally, one can think of modes as a form of generalized Fourier series in the
spatial domain. Therefore it is perhaps not surprising that a Fourier Series in time
can also be very useful if the temporal response is periodic. As was the case for
eigenmodes versus POD modes for the representation of the spatial domain of non-
linear systems, for nonlinear systems a standard Fourier Series or classical Harmonic
Balance method may not be the best choice for describing the temporal response.
The Higher Order Harmonic Balance method developed by Hall and his colleagues
at Duke has proven to be a very effective method and it has now also been adopted
and exploited by Jameson and colleagues at Stanford and Badcock and colleagues



620 E. H. Dowell

at Liverpool. A related method has also been developed by Beran and colleagues at
AFRL.

The remainder of the chapter is organized as follows. In Sect. 3. A transonic
panel flutter and the effect of a viscous boundary layer is treated, in Sect. 3. B the
structural nonlinearity of freeplay and its effect on flutter and limit cycle oscilla-
tions (LCO) is discussed, in Sect. 3. C reduced order modeling is summarized, in
Sect. 4 transonic flutter and LCO of lifting surfaces is reviewed and, finally, in Sect. 5
aerodynamic limit cycle oscillations are discussed, e.g. buffet, abrupt wing stall and
non-synchronous vibration. The present discussion is not meant to be exhaustive
of the study of either nonlinear aeroelasticity or the reduced order modeling. For
example, the nonlinear aeroelasticity of very high aspect ratio, flexible wings is not
treated here (for an introduction to that topic, see [2]) or the use of Volterra series
for reduced order modeling (for an introduction to that topic see [4]). Also rotorcraft
and turbomachinery aeroelasticity, morphing aircraft and other important topics are
not treated here, but are nonetheless active areas of research as seen in papers in the
literature. The topics that have been chosen for this chapter are representative of the
active and productive work underway and are those for which the present authors
can claim some personal experience.

3 Current Examples of Recent Advances

3.1 Transonic and Subsonic Panel Flutter

Although the vast majority of the literature on panel flutter analysis is devoted to high
supersonic/hypersonic flow, many of the flutter incidents in practice have occurred
in the low supersonic/transonic Mach number regime. A recent paper by Hashimoto,
Aoyama and Nakamura [7] provides new insight into the importance of a viscous
fluid boundary layer on the transonic flutter boundary. Previous work by Dowell [8]
had shown this effect as well. But whereas Dowell used what is sometimes called
a shear flow model that dates back to work of Lighthill and others, the more recent
work of Hashimoto et al. uses a modern CFD code that solves the Navier-Stokes
equations within the framework of a Reynolds Averaged Navier-Stokes model. The
shear flowmodel by contrast uses a mean flow that represents the boundary layer, but
neglects the viscosity in the small perturbation equations of the fluid that arise from
the panel oscillation. Themore rigorous fluidmodel shows improved agreement with
the excellent experiments of Muhlstein, Gaspers and Riddle [9].

Figure 1 is a schematic of the panel and flow geometry. Figure 2 shows the
comparison between theory and experiment where the experimental data have been
extrapolated to zero boundary layer thickness, δ/a = 0, where δ is the boundary
layer thickness and a is the panel length. The theoretical results from Dowell are for
transonic potential flow and those from Hashimoto et al. are for inviscid Euler flow.
The plot is of a non-dimensional dynamic pressure versus Mach number. The good
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Fig. 1 Schematics of panel flutter problem

agreement among all results is encouraging. Turning now to the case for a boundary
layer thickness of δ/a = 0.1, a similar comparison is shown in Fig. 3. Note that
the flutter boundary predicted by theory and that determined experimentally has
been very substantially changed from that for δ/a = 0, especially in the lower Mach
number range. The dynamic pressure for flutter at M = 1.1 has been increased by
a factor of 2–3 due to the viscous boundary layer. While the shear flow model used
by Dowell is a substantial improvement over an inviscid analysis that neglects the
boundary layer effect, the RANS flow model of Hashimoto et al. is a notable further
improvement and agrees better with experiment.

Moreover, as Hashimoto et al. note this is an excellent test case for new develop-
ments in CFDmethodology for aeroelastic analysis in general and gives considerable
confidence in the basic theory. They have also shown that in this particular case the
results are not sensitive to the empirical turbulence model used in the RANS flow
model.
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Fig. 2 Flutter boundary (Inviscid Case)

Fig. 3 Flutter boundary (Viscous Case)
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While subsonic panel flutter is unusual in aerospace applications it has been
known for many years that panel flutter may occur at subsonic conditions under
some circumstances [10]. Most notably if the trailing edge of the panel is free, then
flutter will occur in subsonic flow. But, if the trailing edge, as well as the leading
edge, of the panel is fixed then divergence (a static aeroelastic instability) will occur
rather than flutter. Panel divergence is a form of aeroelastic buckling and, when the
panel is in a buckled state, then oscillations in the flow due for example to engine or
boundary layer noisemay cause a buckled panel to “oil can” fromone buckled state to
another. This is sometimes referred to as “dynamic buckling” [10]. In experiments as
well as in nonlinear numerical simulations it may be difficult to distinguish between
limit cycle oscillations due to flutter and oil canning due to dynamic buckling.

The classical example of subsonic panel flutter was described in the paper by
Dugundji and colleagues [11] who considered a panel on an elastic foundation that
can lead to a form of traveling wave flutter. Here recent work on subsonic flutter is
emphasized. See [12, 13]. The work of Tang, Yamamoto and Dowell [12] is for a
panel clamped at its leading edge, but free on both side edges and, most importantly,
free on its trailing edge.Both theoretical and experimentalwork has been done and the
agreement between theory and experiment is very good for the prediction of flutter
flow velocity and frequency. However, in the experiments, hysteresis is observed
that this is not predicted by the theory which includes a nonlinear structural model
and a nonlinear vortex lattice aerodynamic model [12, 13]. Moreover the amplitude
of the limit cycle oscillation (LCO) that is observed in the experiment after the
onset of flutter and indeed at lower flow velocities due to hysteresis is some two
to three times greater than that predicted by the theoretical model. Currently the
most plausible hypothesis for the differences between theory and experiment is that
vortex shedding and flow separation may occur at the large amplitudes of the LCO.
These effects are not included in the vortex lattice aerodynamic model, but would be
included in a viscous flow model based upon the Navier-Stokes equations.

Because the LCO amplitudes are on the order of the panel chord (LCO amplitudes
of panels which are fixed on two opposing edges are typically much smaller and on
the order of the panel thickness [11]), Tang, Paidoussis and Jiang [13] have suggested
such a LCO is a prime candidate for energy harvesting. And they have analyzed this
configuration inter alia using a similar theoretical model and obtained similar results.

Figure 4 shows a stroboscopic picture of the panel in LCO during a wind tunnel
test [12]. Note the amplitude of the LCO relative to the panel chord.

This configuration is also an example of what is sometimes referred to as “flag
flutter”, but here the bending stiffness of the panel is dominant over the ten-
sion/membrane stiffness of the panel where the latter might be induced by gravity
or shear stresses produced by a viscous flow. So this is a rather stiff “flag”. Current
applications tomicro airvehicles and coverings for gaps in conventional wing/control
surfaces during landing may give rise to renewed interest in subsonic panel flutter
for panels and/or thin membranes where both the bending stiffness and membrane
stiffness may be important.
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(a)

(b)

Fig. 4 a Flutter oscillations of an elastic panel with a clamped leading edge and all other edges
free. Subsonic flow is from right to left for a small amplitude. b For a large amplitude
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3.2 Freeplay Induced Flutter and Limit Cycle Oscillations

Freeplay is a concern with respect to control surface attachments, but it has also been
suggested as a possible source of flutter and limit cycle oscillations in wing/store
attachments. The latter is still an open area of investigation, but recent progress for
freeplay in control surfaces offers an opportunity to enhance both analysis and design
methods and may lead to a paradigm shift in design criteria.

Here a brief review of history is provided, the results of recent advances in under-
standing based upon computations and wind tunnel testing are summarized and the
current design criteria and the data on which they are based are reinterpreted in light
of recent advances.

Figure 5 is taken from one of a series of early reports [14] on the effect of freeplay
on control surface flutter and limit cycle oscillations (LCO) conducted at the Wright
Air Development Center, the predecessor to the Air Force Research Laboratory. It is
plot of the putative flutter velocity versus the total angular freeplay in an all movable
control surface. The relevant conclusions drawn at that time from these data were
the following.

The test data also show the variation in flutter speed as a function of free-play....

Fig. 5 Flutter velocity versus freeplay
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Fig. 6 Photograph of the experimental model with gust generator in the wind tunnel test

Free-play in all movable controls should be limited to + or −1/64◦ unless it can be shown
by means of experimental flutter model data that reasonable deviations from this free-play
limit can be tolerated for the particular all-movable control design being considered.

This limit of + or −1/64◦ remains today more than fifty years later as the basic
design criterion to preclude freeplay induced flutter (and limit cycle oscillations).

Recent computational and experimental work [15–18] has shed new light on these
earlier results. It is now understood that in fact, for an unloaded control surface, the
flow velocity at which limit cycle oscillations (LCO) begins is independent of the
degree of freeplay. Note that even in Fig. 5 the early tests concluded that the flutter
velocity was independent of the freeplay angle as this angle became large.

However, it is now known that the amplitude of the LCO and the amount of
loading required to preclude LCO is strongly dependent on the degree of freeplay.
In fact the LCO amplitude scales in proportion to the degree of freeplay and the
amount of loading required to suppress flutter/LCO does as well. For example, the
LCO amplitude will be of the order of the degree of freeplay and if the loading is
due to placing the airfoil at an angle of attack, the angle of attack required to totally
eliminate freeplay is about five times the degree of freeplay. Thus for a freeplay
of 1/64◦ the LCO amplitude will be about 1/64◦ and an angle of attack of 5/64◦
is sufficient to suppress the LCO altogether. This then likely explains the apparent
variation of the flutter speed with freeplay angle shown in Fig. 5 from the earlier tests.
For small freeplay angles, it is likely the LCO amplitude was undetectable and/or
unavoidable small amounts of angle of attack were sufficient to load the wing so that
LCO was suppressed.

More recent investigations by Tang and Dowell [15, 16], Lee et al. [17] and
Schlomach [18] have confirmed the effect of freeplay and loading on LCO. Figures
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Fig. 7 Close-Up of freeplay mechanism

6 (full model view) and 7 (close up of the wire beam that moves between two rigid
stops to produce freeplay) show the wind tunnel model from [11–13]. Figure 8
shows the LCO amplitude of the model versus flow velocity for plunge, pitch and
flap (control surface) degrees of freedom of this model as well as the LCO frequency.
Note the computational results are in very good agreement with the wind tunnel test
data. These results are for zero angle of attack and a freeplay angle of 2.12◦. If the
angle of attack is increased to 8◦, as shown in Fig. 9 the range of flow velocity for
which LCO exists is much decreased and a further increase in angle of attack to 10◦
suppresses the LCO altogether. Note however that the flow velocity at which the
LCO begins is not much changed by the angle of attack change. Results (not shown)
also show that varying the degree of freeplay simply changes the LCO amplitude in
proportion while the LCO frequency is unchanged [15–17].

Current work is underway to include the effect of a feedback control system in
this model.

The excellent work of Schlomach [18] for the F-35 program has provided inde-
pendent verification of the above results and extended them into the high sub-
sonic/transonic flow regime. As expected the quantitative agreement between theory
and experiment is less satisfactory in the transonic regime because of the challeng-
ing environment for modeling the aerodynamic forces. However, even so, the same
scaling laws for the effect of freeplay and loading were also found in this study.
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Fig. 8 Theoretical and experimental LCOR.M.S. Response amplitudes and frequency for the initial
pitch angles of α = 0 and δ = 2.12◦

3.3 Reduced Order Modeling of Unsteady Aerodynamics

For an expanded discussion and reviews of this topic, see [1–6].

3.3.1 Eigenmodes and POD Modes

The original impetus for such models was the thought that by using the eigenmodes
of a computational fluid dynamics (CFD) model, one might construct a modal model
of the fluid that is the counterpart for the modal model of a structure obtained from
a finite element model (FEM). [1–6] And this turns out to be possible with some
notable caveats. First of all, finding the eigenmodes of a CFD model is itself a
formidable task because of the very large number of degrees of freedom in a typical
CFDmodel. And indeed the use of Proper Orthogonal Decomposition (POD) to find
a suitable set of fluid modes proves to be far more practical. However it is worth
noting in passing that using POD modes one may find a good approximation to the
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Fig. 9 Theoretical and experimental LCOR.M.S. Response amplitudes and frequency for the initial
pitch angles of α = 8◦ and δ = 2.12◦

dominant eigenmodes of a CFD model. Normally however one uses the PODmodes
themselves in an aeroelastic analysis. [3]

Also it is worth noting that the fluid modal model is non-self adjoint and thus
the fluid eigenvalues are complex with each fluid mode eigenvalue having both a
frequency and a damping. Thus both the system and its adjoint must be considered
when constructing the orthogonality relations for the complex eigenmodes. And
perhaps most importantly, the eigenmodes and the PODmodes can be very sensitive
to small changes in system parameters, most notably there is a sensitivity to Mach
number. Thus when using POD modes it is most convenient to fix the Mach number
and vary the altitude or flow density for example. However Farhat [19–21] and
his colleagues have made very good progress in showing how one may interpolate
POD modes obtained at two different Mach numbers to obtain a good ROM model
at intermediate Mach numbers thereby expanding the range of application of such
ROMs. This interpolation proves to be surprisingly subtle.
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For a chronological development of this approach including the seminal paper
by Romanowski [22], the reader may consult [22–29]. There is a discussion of the
eigenmode and/or POD mathematical technique in most of these papers and readily
accessible accounts are available in [3–6].

3.3.2 High Dimensional Harmonic Balance

Here the essential idea is that most aeroelastic responses of interest are periodic in
time. As those who have tried to compute the periodic in time limit cycle oscillation
(LCO) using a time marching CFD code have observed, it takes a very long time to
do so while waiting for the transient oscillation to decay in order to reach the steady
state LCO. Indeed at the flutter point in parameter space which is usually the point
at which LCO also begins, the damping in the critical aeroelastic mode is strictly
speaking zero and the transient never decays. But even near the flutter point, the
transients are usually very long.

Thus it is natural to ask can one avoid computing the transient solution and com-
putei the LCO directly. Classical Harmonic Balance has been used successfully in
pursuit of this goal for low dimensional systems, e.g. the Duffing and Van der Pol
oscillators. However for the high dimensional systems of interest using a nonlinear
CFD model, the classical method becomes practically impossible. Thus Hall and
colleagues [3] developed a significant extension to the classical Harmonic Balance
method that is particularly useful for high dimensional dynamical systems such as
those arising from CFD models. Other investigators have found this approach useful
as well. See the work of Jameson et al. [30, 31] and Badcock [32].

For a chronological development of this approach including the seminal paper
by Hall, Thomas and Clark [33], see [33–39]. For an accessible account of the
mathematical formulation of the High Dimensional Harmonic Balance method, see
[34, 40]. Beran and Lucia [35] have developed a related approach that has some
interesting alternative ideas.

For systems that are not strictly periodic in time, but have two fundamental periods
or frequencies, the classical and Higher Order Harmonic Balance Methods can also
be useful if a Fourier Series for each period is constructed. If the system is nonlinear
then the coupling between the (as well as within each of the) components of the two
Fourier Seriesmust be taken into account.While a systemwith only two fundamental
periods may be thought to be rather limited from a mathematical point of view, in
point of fact it includes systems of interest to aeroelasticians, e.g. an aeroelastic
system undergoing a limit cycle oscillation of a certain period or frequency which is
then excited by an external dynamic force such as a gust with its own characteristic
frequency.
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3.3.3 Nonlinear Reduced Order Models Based Upon POD Modes and
High Dimensional Harmonic Balance

Thomas, Dowell andHall [40] have recently combined the advantages of PODmodes
and High Dimensional Harmonic Balance to construct nonlinear reduced order mod-
els. In this approach, the solution is expanded in a Taylor Series with respect to CFD
code parameters including variables such asMach and the amplitude of the structural
motion. If this expansion were done for each of the many fluid variable degrees of
freedom that may number in the millions or more, the computation would quickly
get out of hand. However if one relates the many flow variables through a coordi-
nate transformation to the modal amplitudes of a relatively small number of POD
modes, then the computational model can be made very efficient. The key then is
to be able to differentiate the CFD code and its flow variables with respect to the
POD modal amplitudes and this can be accomplished using adjoint automatic dif-
ferentiation software that is now widely available [40]. In [40] this reduced order
model is constructed in combination with a High Dimensional Harmonic Balance
(HDHB) solver. In principle this POD approach could also be combined with a time
marching solution algorithm, but that would not exploit the considerable advantages
of the HDHB method.

A representative result [40] is shown in Fig. 10 where the results of the full CFD
model and the reduced order model (ROM) are compared in a plot of LCO amplitude
versus a reduced (non-dimensional) velocity. Results are shown for both a first and
second order ROM. As can be seen the second order ROM is a distinct improvement
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over the first order ROM. Of course in principal one can go to a third order ROM
etc. However in practice a better strategy is to choose a small number of full order
solutions and expand in a Taylor Series up to say second order about each of them.
Referring to Fig. 10, it is seen that the common point on the three curves is the point
about which the Taylor Series has been expanded. By choosing a few more such
points, the several Taylor Series can be blended to produce the entire LCO response
with sufficient accuracy.

4 Transonic Flutter and LCO of Lifting Surfaces

This section2 begins with a discussion of generic nonlinear aeroelastic behavior of
wings especially as it relates to Limit Cycle Oscillations (LCO); then the important
studies that come from flight experience with LCO are noted which have stimulated
much of the other research on the subject. Next a summary is provided of the pri-
mary physical sources of fluid and structural nonlinearities that can lead to nonlinear
aeroelastic response in general and LCO more particularly.

A brief summary of unsteady aerodynamic models, both linear and nonlinear,
is then given before turning to the heart of the section that provides a critique of
the results obtained to date via various methods using as a framework correlations
between theory and experiment.

4.1 Generic Nonlinear Aeroelastic Behavior

There are several basic concepts that will be helpful for the reader to keep in mind
throughout the discussion to follow. The first is the distinction between a static non-
linearity and a dynamic one. In the aeroelasticity literature the term “linear system”
may either mean a (mathematical or wind tunnel) model or flight vehicle that is both
statically and dynamically linear in its response or one that is nonlinear in its static
response, but linear in its dynamic response. So we will usually qualify the term
“linear model” further by noting whether the system is dynamically linear or both
statically and dynamically, i.e. wholly linear.

An example of a systemwhich is wholly linear is a structure whose deformation in
response to either static or dynamic forces is (linearly) proportional to those forces.
An aerodynamic flow is wholly linear when the response (say change in pressure)
is (linearly) proportional to changes in downwash or fluid velocities induced by the
shape or motion of a solid body in the flow. This is the domain of classical small
perturbation aerodynamic theory and leads to a linearmathematicalmodel (convected
wave equation) for the fluid pressure perturbation or velocity potential. Shock waves
and separated flow are excluded from such flow models that are both statically and

2 This section is an abbreviated and revised version of [1]
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dynamically linear. A wholly linear aeroelastic model is of course one composed of
wholly linear structural and aerodynamic models.

A statically nonlinear, but dynamically linear structure is one where the static
deformations are sufficiently large that the static response is no longer proportional
to the static forces and the responses to the static and dynamic forces cannot simply
be added to give meaningful results. Buckled skin panels (buckling is a nonlinear
static equilibrium that arises from a static instability) that dynamically respond to (not
too large) acoustic loads or the prediction of the onset of their dynamic aeroelastic
instability (flutter) are examples where a statically nonlinear, but dynamically linear
model may be useful.

In aerodynamic flows, shock waves and separated flows are themselves the result
of a dynamically nonlinear process. But once formed they may often be treated in
the aeroelastic context as part of a nonlinear static equilibrium state (steady flow).
Then the question of the dynamic stability of the statically nonlinear fluid-structural
(aeroelastic) system may be addressed by a linear dynamic perturbation analysis
about this nonlinear static equilibrium. Sometime such aerodynamic flow models
are call time linearized.

Of course if one wishes to model limit cycle oscillations and the growth of their
amplitude as flow parameters are changed, then either or both the structural and the
aerodynamic model must be treated as dynamically nonlinear. Often a single non-
linear mechanism is primarily responsible for the limit cycle oscillation. However,
one may not know apriori which nonlinearity is dominant unless one has designed a
mathematical model, wind tunnel model or flight vehicle with the chosen nonlinear-
ity. Not the least reason why limit cycle oscillations are more difficult to understand
in flight vehicles (compared to say mathematical models) is that rarely has a nonlin-
earity been chosen and designed into the vehicle. More often one is dealing with an
unanticipated and possibly unwanted nonlinearity. Yet sometimes that nonlinearity
is welcome because without it the limit cycle oscillation would instead be replaced
by catastrophic flutter leading to loss of the flight vehicle.

It must be emphasized that the variety of possible nonlinear aeroelastic responses
is not limited to ’Limit Cycle Oscillations (LCO)’ per se. In the context of nonlinear
system theory [41], an LCO is one of the simplest dynamic bifurcations. Other
common possible nonlinear responses includei higher harmonic and subharmonic
resonances, jump-resonances, entrainment, beating and period doubling to name
only a few. These responses have been studied using low order model problems
in the nonlinear dynamics literature; however in aeroelastic wind tunnel and flight
testing the detailed knowledge required to identify these nonlinear responses has
rarely been available.

Now consider the generic types of nonlinear dynamic response that may occur,
i.e. limit cycle oscillations and the variation of their amplitude with flight speed (or
wind tunnel velocity). Of course the frequency of the LCO may vary with flight
parameters as well, but usually the frequency is near that predicted by a classical
linear dynamic stability (flutter) analysis.

The generic possibilities are indicated in Fig. 11a and b where the limit cycle
amplitude is plotted versus some system parameter, e.g. flight speed. In Fig. 11a, an
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Fig. 11 a Schematic of limit cycle oscillation response for benign nonlinearity. b Schematic of
limit cycle oscillation response for detrimental nonlinearity

aeroelastic system is depicted that is stable to small or large disturbances (perturba-
tions) below the flutter (instability) boundary predicted by a linear dynamical model.
Beyond the flutter boundary, LCO arise due to some nonlinear effect and typically
the amplitude of the LCO increases as the flight speed increases beyond the flutter
speed. In Fig. 11b, the other generic possibility is shown. While again LCO exist
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beyond the flutter boundary, now LCO may also exist below the flutter boundary,
if the disturbances to the system are sufficiently large. Moreover both stable (solid
line) and unstable (dotted line) LCO now are present. Stable LCO exist when for
any sufficiently small disturbance, the motion returns to the same LCO at large time.
Unstable LCO are those for which any small perturbation will cause the motion to
move away from the unstable LCO and move toward a stable LCO. Theoretically, in
the absence of any disturbance both stable and unstable LCO are possible dynamic,
steady state motions of the system. Information about the size of the disturbance
required to move from one stable LCO to another can also be obtained from data
such as shown in Fig. 11b. Note also the hysteretic response as flight speed increases
and then decreases.

4.2 Flight Experience with Nonlinear Aeroelastic Effects

Much of the flight experience with aircraft LCO has been documented by the Air
Force SEEK EAGLE Office at Eglin AFB and is described in several publications
by Denegri and his colleagues [42–45]. Most of this work has been in the context of
the F-16 aircraft. Denegri distinguishes among three types of LCO based upon the
phenomenological observations in flight and as informed by classical linear flutter
analysis. “Typical LCO” is when the LCObegins at a certain flight condition and then
with say an increase inMach number at constant altitude the LCO response smoothly
increases. “Flutter”, as distinct from LCO, is said to occur when the increase in LCO
amplitude with change in Mach number is so rapid that the safety of the vehicle is in
question.i And finally “atypical LCO” is said to occur when the LCO amplitude first
increases and then decreases and perhaps disappears with changes in Mach number.
This is also sometimes called a “hump” mode. Often changes in flight vehicle angle
of attack lead to similar generic LCO responses to those observed with changes in
Mach number.

It has long been recognized [46] that the addition of external stores to aircraft
changes the dynamic characteristics and may adversely affect flutter boundaries.
Limit cycle oscillations (LCO) remain a persistent problem on high performance
fighter aircraft with multiple store configurations. Using measurements obtained
from flight tests, Bunton and Denegri [47] describe LCO characteristics of the F-16
and F/A-18 aircraft. While LCO can be present in any sort of nonlinear system, in
the context of aeroelasticity, LCO typically is exhibited as an oscillatory response
of the wing, the amplitude of which is limited, but dependent on the nature of the
nonlinearity as well as flight conditions, such as speed, altitude, and Mach num-
ber. The LCO motion is often dominated by antisymmetric modes. LCO are not
described by standard linear aeroelastic analysis, and they may occur at flight condi-
tions below those at which linear instabilities such as flutter are predicted. Although
the amplitude of the LCO may rise above structural failure limits, more typically the
presence of LCOs results in a reduction in vehicle performance, leads to airframe-
limiting structural fatigue, and compromises the ability of pilots to perform critical
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mission-related tasks. When LCO are unacceptable, extensive and costly flight tests
for aircraft/store certification are required.

Denegri [42, 43] suggests that for the F-16, the frequencies of LCOmight be iden-
tified by linear flutter analysis; however, linear analysis fails to predict the oscillation
amplitude or the onset velocity for LCO. Thus, nonlinear analysis will be necessary
to predict the onset of the LCO and their amplitudes with changing flight conditions.

4.2.1 Nonlinear Aerodynamic Effects

There are several other flight experiences with limit cycle oscillations in addition
to the F-16 including those for example with the F-18, the B-1 and B-2. Most of
these LCO have been attributed by investigators to nonlinear aerodynamic effects
due to shock wave motion and/or separated flow. However, there is the possibility
that nonlinear structural effects involving stiffness, damping or freeplay may play
a role as well. Indeed, much of the present day research and development effort
is devoted to clarifying the basic mechanisms responsible for nonlinear flutter and
LCO. For an authoritative discussion of these issues see Cunningham et al. [48–50],
Denegri [41–45] on the F-16 and F-18, Dobbs [51], Hartwich [52] on the B-1 and
Britt, Jacobsen and Dreim [53] on the B-2. Recent experimental evidence from wind
tunnel tests is beginning to shed further light on these matters as are advances in
mathematical and computational modeling.

4.2.2 Freeplay

There have been any number of aircraft that have experienced flutter induced limit
cycle oscillationsi as a result of control surface freeplay. These are not well doc-
umented in the public literature, but are more known by word of mouth among
practitioners and perhaps documented in internal company reports and/or restricted
government files.

A recent and notable exception is the account in Aviation Week and Space Tech-
nology by Croft [54] of a flutter/limit cycle oscillation as a result of freeplay. In many
ways this account is typical. The oscillation is of limited amplitude and there was
a reported disagreement between the manufacturer and the regulating governmental
agency as to whether this oscillation was or was not sufficiently large as to be a threat
to the structural integrity of the aircraft structure. See also Sect. 3 of this paper.

4.2.3 Geometric Structural Nonlinearities

Another not infrequently encountered and documented case is the limit cycle oscil-
lation that follows the onset of flutter in plate-like structures. The structure has a
nonlinear stiffening as a result of the tension induced by mid-plane stretching of
the plate that arises from its lateral bending. This is most commonly encountered in
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what is often called panel flutter where a local element of a wing or fuselage skin
encounters flutter and then a limit cycle oscillation.i There have been many incidents
reported in the literature dating back to the V-2 rocket of World War II, the X-15,
the Saturn Launch Vehicle of the Apollo program and continuing on to the present
day. Some of these are discussed in a monograph by Dowell [55] and also a NASA
Special Publication by Dowell [56]. See also Sect. 3 of this paper.

It has been recently recognized that lowaspect ratiowingsmaybehave as structural
plates and thus the entire wingmay undergo a form of plate-like flutter and limit cycle
oscillations. This has been seen in both wind tunnel models and computations to be
discussed later. However there is not yet a clearly documented case of such behavior
in flight.

4.3 Physical Sources of Nonlinearities

Several physical sources of nonlinearities have been identified through mathematical
models (in almost all cases), wind tunnel tests (in several cases) and flight tests (less
often). Among those most commonly studied and thought to be important are the
following. Large shock motions may lead to a nonlinear relationship between the
motion of the structure and the resulting aerodynamic pressures and forces that
act on the structure. If the flow is separated (perhaps in part induced by the shock
motion) this may also create a nonlinear relationship between structural motion and
the consequent aerodynamic flow field.

Structural nonlinearities can also be important and are the result of a given (aero-
dynamic) force on the structure creating a response that is no longer (linearly) propor-
tional to the applied force. Freeplay and geometric nonlinearities are prime examples
(already mentioned). But the internal damping forces in a structure may also have a
nonlinear relationship to structural motion, with dry friction being an example that
has received limited attention to date. Because the structural damping is usually rep-
resented empirically even within the framework of linear aeroelastic mathematical
models, not much is known about the fundamental mechanisms of damping and their
impact on flutter and LCO.

All of these nonlinear mechanisms have nevertheless been considered by the
mathematical modeling community and several have been the subject of wind tunnel
tests as well. In some cases good correlation between theory and experiment has
been obtained for limit cycle oscillation response.
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4.4 Efficient and Accurate Computation of Unsteady
Aerodynamic Forces: Linear and Nonlinear

The literature on unsteady aerodynamic forces alone is quite extensive. A compre-
hensive assessment of current practice in industry is given by Yurkovich, Liu and
Chen [57]. An article that focuses on recent developments is that of Dowell and
Hall [3]. Other recent and notable discussions include those of Bennett and Edwards
[58] and Lucia, Beran and Silva [4]. Much of the present focus of work on unsteady
aerodynamics is on developing accurate and efficient computational models. Stan-
dard computational fluid dynamic [CFD] models and solution methods that include
the relevant fluid nonlinearities are simply too expensive now and for some time to
come for most aeroelastic analyses. Thus there has been much interest in reducing
computational costs while retaining the essence of the nonlinear flow phenomena.
See Sect. 3 of this paper.

4.5 Experimental/Theoretical Correlations

Much of what we know about the state of the art with respect to nonlinear aeroe-
lasticity comes from the study of correlations between experiment and theory and
between various levels of theoretical models. Hence the remainder of this discus-
sion is largely devoted to such correlations and the lessons learned from them. The
correlations selected are representative of the state of the art for transonic flutter
boundaries and limit cycle oscillations.

4.5.1 Flutter Boundaries in Transonic Flow

AGARD 445.6 WING MODELS
Bennett and Edwards [58] have discussed the state of the art of Computational Aeroe-
lasticity (CAE) in a relatively recent paper and made several insightful comments
about various correlation studies. The NASA Langley team pioneered in providing
correlations for the AGARD 445.6 wing in the transonic flow region. For this thin
wing, there are no significant transonic effects in the steady flow over the wing sur-
face at the Mach numbers with experimental results except for M= 0.96 where there
is a very weak shock on the surface. For the subsonic conditions, all computational
results are in very good agreementwith experiment. However, the two low supersonic
test conditions have been problematic for CAE. Inviscid flow (Euler) computations
have produced high flutter speed index (FSI) values relative to the experimental FSI
and viscous flow (Navier-Stokes) computations have accounted for about one half
the difference between theory and experiment. Several investigators have now done
similar Euler calculations and obtained similar results [59–61]. The excellent agree-
ment of the wholly linear theory results with experiment should probably be regarded
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as fortuitous. Interestingly, Gupta [62], who also used an Euler based CFD model,
obtains results in better agreement with experiment at the low supersonic conditions,
though in less good agreement with experiment than the other Euler based results at
subsonic conditions. Thus, CAE computations for this low supersonic region have
unresolved issues which probably involve details such as wind tunnel wall interfer-
ence effects and flutter test procedures, as well as CAE modeling issues.

HSCT Rigid and Flexible Semispan Models
Two semispan models representative of High Speed Civil Transport (HSCT) con-
figurations were tested in the NASA Langley Research Center Transonic Dynamics
Tunnel (TDT) in heavy gas. A Rigid Semispan Model (RSM) was tested mounted
on an Oscillating Turn Table (OTT) and on a Pitch And Plunge Apparatus (PAPA).
The RSM/OTT test [63] acquired unsteady pressure data due to pitching oscilla-
tions and the RSM/PAPA test acquired flutter boundary data for simple pitching
and plunging motions. The RSM test [64] involved an aeroelastically-scaled model
and was mounted to the TDT sidewall. The test acquired unsteady pressure data
and flutter boundary data. The results show the unexpectedly large effect of mean
angle of attack upon the flutter boundaries for the RSM/PAPA model. Flutter of thin
wings at subsonic conditions is typically independent of angle-of-attack within the
linear flow region. A region of increased response in first wing bending (8.5 Hz.)
was encountered in theMach number range of 0.90–0.98. Finally, a narrow region of
LCO behavior, labeled ‘chimney’, was encountered for M = 0.98 − 1.00 and over
a wide range of dynamic pressures.

Benchmark Active Control Technology (BACT)
This rectangular wing model had an aspect ratio of two and a NACA 0012 airfoil
section [65, 66]. It was mounted on a pitching and plunging apparatus which allowed
flutter testingwith two structural degrees of freedom. It was extensively instrumented
with unsteady pressure sensors and accelerometers and it could be held fixed (static)
for forced oscillation testing or free for dynamic response measurements. Data sets
for trailing-edge control surface oscillations and upper-surface spoiler oscillations
for a range of Mach numbers, angle of attack, α, and static control deflections are
available. The model exhibited three types of flutter instability.

A classical flutter boundary was found for α = 2◦, as a conventional boundary
of flow density versus Mach number with a minimum, the transonic ‘dip’, near M
= 0.77 and a subsequent rise. Stall flutter was found, for near the minimum of the
flutter boundary (and at most tunnel conditions where high angles of attack could be
attained). Finally, a narrow region of instability occurred near M = 0.92 consisting
of plunging motion at the plunge mode wind-off frequency. This type of transonic
instability has sometimes been termed single-degree-of-freedom flutter. It is caused
by the fore and aft motion of symmetric shocks on the upper and lower surfaces for
this wing. It was very sensitive to any biases and did not occur with nonzero control
surface bias or nonzero alpha. Such a stability boundary feature is sometimes termed a
’chimney’ since the oscillations are typically slowly diverging or constant amplitude
(LCO) and it is found, sometimes, that safe conditions can be attained with small
further increases in Mach number.
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Computational studies byKholodar et al. [67]were conducted to correlatewith the
flutter boundary obtained experimentally by Rivera et al. [67]. Kholodar’s inviscid
calculation agreed very well with the experimental findings except for M ≈ 0.88 to
M ≈ 0.95 where a “plunge instability region” occurred.

Experimental data for the flutter boundary were not obtained at Mach numbers
just below the plunge instability region. Using an inviscid aerodynamic model in
the flutter calculations, no flutter solutions could be obtained for 0.82 < M < 0.92
except at very low flow densities (inverse mass ratios). This is approximately the
same region for which experimental results were unavailable. Kholodar conjectured
this indicated that in this region, the flutter mass ratio (inversely proportional to flow
density or dynamic pressure) rose precipitously as the airfoil entered a single degree-
of-freedom flutter mode. Conversely, flow density (or inverse mass ratio) dropped
precipitously.

Viscous CFD results obtained by Schwarz et al. [68] revealed a number of sur-
prising characteristics. First, whereas inviscid aerodynamics made flutter solutions
difficult to find in the region 0.82 ≤ M ≤ 0.91 due to the sharp increase in flutter
mass ratio, µ; by contrast, viscous results on a 193 x 49 CFD grid yielded readily
detectable solutions. However, these viscous solutions showed some sensitivity to
Mach number.

A grid refinement study was performed by Schwarz et al. [68] to verify the results
obtained on the nominal 193 x 49 grid. The flutter condition was recomputed on a
coarser 97 x 25 grid and also a fine 385 x 97 grid at select Mach numbers, chosen
to be representative of the range of Mach numbers examined. This study showed
that the coarse 97 x 25 grid had insufficient resolution and produced results in poor
agreement with experiment at low subsonic as well as transonic Mach numbers.

Results on the 385 x 97 computational mesh agreed with those on the nominal 193
x 49mesh except for a narrow range of transonicMach numbers. ForM≈ 0.84–0.86,
computations on this mesh showed flow shedding to be occurring, a phenomenon
not seen on the coarser meshes (shedding or buffeting is an LCO of the flow alone,
even in the absence of structural motion). The range in which this shedding occurred
agrees very closely with theMach number range for which experimental results were
not obtained, approximately 0.82 < M < 0.88. As seen in Fig. 12, predictions on the
193 x 49 and 385 x 97 viscous grids largely agreed outside of this shedding region.

Shedding or buffeting prohibits a linear flutter analysis at the Mach numbers
for which it occurs, because it violates the assumption that the flow behaves in a
dynamically linear way for small motions of the airfoil. Still, the present calculation
provides an insight into the flutter experiment. The occurrence of shedding correlates
with the range of Mach numbers for which airfoil motions became erratic in the
experiments, indicating that shedding may have led to this unusual behavior.

F-16
The computed flutter boundaries for eight F-16 wing/store configurations are shown
in Fig. 13 in terms of altitude versus Mach number based upon standard atmospheric
conditions. Note theMach number range overwhich fluttermay occur varies substan-
tially from one configuration to the next. In these calculations, the viscous Reynolds
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Fig. 12 Flutter inverse mass ratio versus Mach number from viscous and inviscid CFD results and
experimental data from Rivera [67]

Averaged Navier Stokes (RANS) version of the Duke University harmonic balance
solver was used [69]. Calculations for some of these configurations were also done
using an Euler version of the CFD code. In general, the Euler code provides similar
trends for the flutter onset boundary, but there are some quantitative differences, i.e.
as much as 25

Note that in Fig. 13 there are no results for Configuration #7. This is because no
flutter or LCO was found in the Mach number range shown which is in agreement
with the flight test results. Also for configuration #6, flight tests were stopped atMach
numbers less than the highest shown in Fig. 13. Again no flutter or LCO was found
in the flight test in agreement with the computations. Moreover the computed flutter
boundaries shown inFig. 13 generally agree reasonablywellwith theflight test results
as seen in Fig. 14. Note that a range of Mach number is shown for configuration #5
for both computed and flight test results in Fig. 14. This is because flutter and LCO
occur over a range of Mach number for configuration #5 with flutter/LCO starting
at the lowest Mach number shown and ending at the highest Mach number shown.
Recall Fig. 13. This is sometimes called a “hump” flutter/LCO mode.

A comparison betweenmeasured and computed frequencies atMach numbers just
beyond the onset of LCO for the several configurations where LCO was observed
shows the agreement is generally quite good and it is noted that the LCO frequency
does not vary rapidly with Mach number [69].
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Fig. 13 Computed F-16
fighter flutter onset altitude
versus mach number
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4.5.2 Limit Cycle Oscillations

Airfoils with structural stiffness and freeplay nonlinearities
Some investigators have considered configurations with a variety of nonlinear stiff-
ness and freeplay structural nonlinearities. For a description of the work on freeplay
nonlinearities, see the article by Dowell and Tang [70] which focuses on correlations
between theory and experiment as well as Sect. 3.2 of the present paper. In general
good quantitative correlation is found for simple wind tunnel models and the basic
physical mechanism that leads to LCO appears well understood. Among the impor-
tant insights developed include the demonstration that the LCO amplitude and the
effect of mean angle of attack on LCO amplitude both simply scale in proportion
to the range of freeplay present in the aeroelastic system. This result has received
further confirmation from the excellent study of Schlomach for the F-35 aircraft
program [18]. An example of another stiffness nonlinearity is described next.

Delta wings with geometrical plate nonlinearities
At low Mach numbers good correlation has been demonstrated between theory and
experiment for LCO amplitudes and frequencies. Since these results are well docu-
mented elsewhere, see Dowell and Tang [70], here the recent work of Gordnier et al.
[71, 72] that has extended these correlations into the transonic range for a cropped
delta wing planform is emphasized. This configuration had been investigated exper-
imentally by Schairer and Hand [73] and the theoretical calculations were done by
Gordnier et al. using both Euler andNavier-Stokes flowmodels. Initially the theoreti-
cal calculationswere done using a linear structural model, which gave predicted LCO
amplitudes much greater than those observed experimentally. This led Gordnier to
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Fig. 14 Flutter mach
number characteristics for
each F-16 fighter
configuration
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include nonlinearities in the structuralmodel viaVonKarman’s nonlinear plate theory
that provided much improved correlation between theory and experiment. Note that
the effects of viscosity are modest based upon the good agreement of results using
the Euler vs Navier-Stokes models. Also the much improved agreement obtained
with the nonlinear structural model suggests that aerodynamic nonlinearities per se
are not as significant for this configuration as are the structural nonlinearities.

Large shock motions and flow separation
These aerodynamic nonlinearities are both the most difficult to model theoretically
and also to investigate experimentally. Hence it is not surprising that our correlations
between theory and experiment are not yet what we might like them to be. As
a corollary one might observe that it will in all likelihood be easier to design a
favorable nonlinear structural element to produce a benign LCO, than to assure that
flow nonlinearities will always be beneficial with respect to LCO.

4.5.3 AGARD 445.6 Wing Models

The AGARD 445.6 wing has been discussed earlier in terms of its flutter boundary;
now we turn to results from Thomas, Dowell and Hall [74] for LCO. The correlation
between theory and experiment for the flutter boundary is shown in Fig. 15 where
the Euler flow model is that of Thomas et al. But now we have in addition results
for LCO amplitude versus FSI for various Mach number. See Fig. 16. Note that a
value of first mode non-dimensional modal amplitude of ξ = 0.012 as shown in this
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Fig. 15 Flutter speed index
versus mach number for
AGARD wing 445.6:
comparison of theory and
experiment

Fig. 16 LCO amplitude
versus flutter speed index
(Reduced Velocity) for
various mach number for
AGARD 445.6 Wing

figure corresponds to a wing tip deflection equal to one fourth of the wing half-span.
Note there is no Mach number for which a benign LCO is predicted and subcritical
LCO is predicted at M = 1.141 and 1.072. This means that LCO may occur below
the flutter boundary at these two Mach numbers and perhaps this explains at least in
part why flutter (or really an unstable LCO) occurred in the experiment below the
predicted flutter boundary.

Small amplitude LCO behavior for the AGARD 445.6 wing has also been calcu-
lated by Edwards [75]. The majority of published calculations for this wing model
(actually a series of models with similar planforms) are for the “weakened model
#3” tested in air, since this test covered the largest transonic Mach number range and
showed a significant transonic dip in the flutter boundary. The focus on this partic-
ular configuration may be in some ways unfortunate, in that the model tested in air
resulted in unrealistically largemass ratios and small reduced frequencies.Weakened
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models #5 and #6 were tested in heavy gas and had smaller mass ratios and higher
reduced frequencies. Very good agreement was obtained with experiment for flutter
speed index using the CAP-TSDV code over the Mach number range tested. For the
highest Mach number tested, M = 0.96, it was noted that damping levels extracted
from the computed transients were amplitude dependent, an indicator of nonlinear
behavior. It was also found that small amplitude divergent (in time) responses used
to infer the flutter boundary would transition to LCO when the calculation was con-
tinued further in time. The wing tip amplitude of the LCO was approximately 0.12
inches peak-to-peak, a level that is unlikely to be detected in wind tunnel tests given
the levels of model response to normal wind tunnel turbulence.

4.5.4 MAVRIC Wing Flutter Model

This business jet wing-fuselage model (see Edwards [76, 77]) was chosen by NASA
Langley Research Center’s Models For Aeroelastic Validation Involving Computa-
tion (MAVRIC) project with the goal of obtaining experimental wind-tunnel data
suitable for Computational Aeroelasticity (CAE) code validation at transonic sep-
aration onset conditions. LCO behavior was a primary target. An inexpensive con-
struction method of stepped-thickness aluminum plate covered with end-grain balsa
wood and contoured to the desired wing profile was used. A significant benefit of this
method was the additional strength of the plate that enabled the model to withstand
large amplitude LCO motions without damage.

The behavior of the MAVRIC model as flutter was approached during the wind
tunnel test indicated that wing motions tended to settle to a large amplitude LCO
condition, especially in the Mach number range near the minimum FSI conditions.
Figure 17 demonstrates [77] the ability of the CAP-TSDV code to simulate these
large amplitude LCOmotions. Large and small initial condition disturbance transient
responses clearly show the six inch peak-to-peak wingtip motions observed in the
tests. Such large amplitude aeroelasticmotions have not been demonstrated byRANS
CFD codes which have difficulty maintaining grid cell structure for significant grid
deformations. Figure 18 shows the map of the regions of LCO found in theMAVRIC
test in the vicinity of the minimum FSI (clean wingtip, α = 6◦) [77]. Numbers for the
several contours in the figure give the half-amplitude of wingtip LCOmotions, in g’s,
in the indicated regions. Two regions, signified by ’B’, are regions where ’beating’
vibrations were observed. For this test condition, wing motions are predominantly
of the wing first bending mode at a frequency of 7–8 Hz. (wind-off modal frequency
is 4.07 Hz.). Two chimney features are seen, at M ∼ 0.91 and at M ∼ 0.94. Edwards
discusses flutter model responses which are indicative of more complex nonlinear
behaviors than are commonly attributed to LCO. Thus, flutter test engineers are
familiarwith responses such as ’bursting’ and ’beating’, commonly used as indicators
of the approach to flutter (and LCO).
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Fig. 17 Transient response
leading to a LCO: simulation
for mavric wing

4.5.5 Clipped-Tip Delta Wing Control Surface Buzz Model

Parker et al. [78] describe a test of a clipped-tip delta wing model with a full span
control surface. The tests were conducted in air which is of concern since there
are known to be severe Reynolds number and/or transition effects for this tunnel at
dynamic pressures below 50–75 pounds per square foot. Pak and Baker [79] have
performed computational studies of this case. They compare the experimental buzz
boundary with time-marching transient responses calculated with the CFL3D-NS
code and the CAP-TSDV code, respectively. Both codes capture LCO behavior near
the experimental buzz conditions with the higher level code appearing to have better
agreement for the experimental trend versus Mach number. The record lengths of a
number of the responses,which are extremely expensive to compute, are not sufficient
for clear determination of the response final status. Also, LCO behaviors can result
from very delicate force balances and settling times to final LCO states can require
many cycles of oscillation.
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Fig. 18 Dynamic pressure
versus mach number
contours of constant LCO
amplitude for mavric wing

4.5.6 Residual Pitch Oscillations on the B-2

The B-2 bomber encountered a nonlinear aeroelastic Residual Pitch Oscillation
(RPO) during low altitude high speed flight [53]. Neither the RPO nor any tendency
of lightly damped response had been predicted by wholly linear aeroelastic design
methods. The RPO involved symmetric wing bending modes and rigid body degrees
of freedom. It was possible to augment the CAP-TSDVaeroelastic analysis codewith
capability for the longitudinal short-period rigid body motions, vehicle trim, and the
full-time active flight control system including actuator dynamics. This computa-
tional capability enabled the analysis of the heavyweight, forward center of gravity
flight condition [53]. The simulation predicts open loop instability at M = 0.775 and
closed loop instability at M = 0.81 in agreement with flight test. In order to capture
the limit cycle behavior of theRPO itwas necessary to includemodeling of the nonlin-
ear hysteretic response characteristic of the B-2 control surfaces for small amplitude
motions. This is caused by the small overlap of the servohydraulic control valve
spool flanges with their mating hydraulic fluid orifices. With this realistic actuator
modeling also included, limited amplitude RPO motions similar to those measured
in flight were simulated. A lighter weight flight test configuration exhibited very light
damping near M = 0.82 but did not exhibit fully developed RPO. Instead damping
increased with slight further increase in speed, typical of hump mode behavior. The
CAP-TSDV simulations did not capture this hump mode behavior.
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Fig. 19 F-16 configuration #1 computed and flight test forward wingtip launcher accelerometer
LCO response level versus mach number for an altitude of 2000 feet and a mean angle-of-attack of
α = 1.5◦

4.5.7 F-16

In Fig. 19, a comparison of computational and flight test results is shown for Con-
figuration #1 for both the flutter boundary and also for LCO response [69]. This is a
plot of wing tip acceleration response versusMach number at a fixed altitude of 2000
feet. The flight test results are shown by the curve with open circles. Three different
computational results are shown. The curve with open squares shows the results for
the nominal configuration with the aerodynamics of the stores neglected. The curve
with open triangles includes the effects of the aerodynamics of the wing tip launcher
using slender body aerodynamic theory. Note this curve is in better agreement with
the flight test data. Finally the curve with open diamonds is for a one percent change
in one of the structural frequencies. Here the computational model has been “tuned”
to the experiment to give better agreement with themeasured LCO frequency. That in
turn has led to better agreement between computation and measurement for the LCO
amplitude. Of course if a change in structural frequency in the opposite direction is
made, this leads to poorer agreement between computations and flight test with the
LCO response curve moving a similar amount from the nominal response but in the
opposite direction. So what has been shown by the “tuning” is that the results for this
configuration are sensitive to small plausible changes in the structural frequencies.
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Fig. 20 Buffet boundary: angle of attack versus mach number

A final word about the correlation between computations and flight test is war-
ranted. Note that the computations show a precise Mach number at which flutter and
the onset of LCO occurs, i.e. when the wing tip acceleration is zero. This is because
we have neglected the gust response of the aircraft to atmospheric turbulence as is
traditional in flutter and LCO calculations. Of course in the flight test there is always
some (small) response even when there is no flutter or LCO due to atmospheric tur-
bulence. Thus it is impossible to define a preciseMach number at which flutter begins
from the flight test data shown in Fig. 20. Indeed inferring a flutter Mach number
from flight test data is a difficult art and requires a deeper study of the test data than
simply a plot such as shown in Fig. 19. On the other hand, for the present purpose,
this is not crucial. From Fig. 19, it is clear that neither flutter nor LCO is occurring
for Mach numbers less than M∞ = 0.8, but flutter onset and LCO do occur for Mach
numbers greats than M∞ = 0.85. And thus one can compare the computed flutter
Mach number to this range from the test data. For LCO per se, the major goals are
predicting the maximum LCO response level and the frequency and structural modal
content of the LCO. The frequency and modal content are well predicted by the
computational model [69], and the maximum response is reasonably well predicted
as well for this configuration. See Fig. 19. Note in particular that both flight test and
computations show the flutter and LCO motion is anti-symmetric.

4.5.8 Time Marching Codes Compared to Various Experimental
Results

In the paper byHuttsell et al. [80] several state of the art timemarchingCFDcodes are
used to investigate flutter and LCO for challenging cases drawn from flight or wind
tunnel tests. The CAP-TSD, CAP-TSDV, CFL3D and ENS3DAE codes are all used.
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The results are extremely helpful in providing a realistic assessment of the state of the
art of these codes and they are also indicative future needs and improvements. For the
F-15 aircraft example, difficulty was encountered in producing a computational grid
with negative volumes being encountered. For the AV8-B aircraft a steady state flow
field could not be found due to oscillations in the numerical solver from one iteration
to the next. These difficulties are not unusual for CFD codes in the present authors’
experience. Sometimes the difficulty in achieving a steady flow solution is attributed
to shedding in the flow field, but in the absence of a full nonlinear dynamic CFD
calculation, that must remain a speculation. For the B-2 aircraft example encouraging
agreement was obtained for the frequency and damping variation of the critical flutter
(and LCO)mode as a function of flight speed using the CAP-TSDV code. For the B-1
estimates of the damping associated with LCO were computed using the CFL3DAE
code and favorably compared to those found in wind tunnel tests. It is not entirely
clear what the “damping” of an LCO means, however, since by definition LCO is
a neutrally stable motion. Two control surface “buzz” cases were considered and
CFL3DAE had some success in predicting the behavior observed in the wind tunnel
for a NASP like configuration.

As Huttsell et al. [80] note, additional work is needed to improve CFD model
robustness, computational efficiency and grid deformation strategies.

5 Aerodynamic LCO: Buffet, AWS and NSV

The aerodynamic flow field itself can become unstable even in the absence of any
structural motion. Of course, once the flow field becomes unstable, then oscillations
in the flow will begin and due to aerodynamic nonlinearities such as shock motion
and/flow separation a limit cycle oscillationmay (and usually will) occur. This purely
aerodynamically generated LCO may then drive the structure into motion and the
structural motion may in turn modify the LCO. Often in practice it is difficult to
distinguish this type of LCO from one that occurs because of an inherent aeroelas-
tically generated LCO in which the aerodynamic flow per se is stable. Of course in
mathematical models this distinction can be (but is not always) made clear. But in a
wind tunnel or flight test it is more difficult to distinguish between these two different
LCO scenarios.

Even so, in recent years considerable progress has been made in understanding
aerodynamically generated LCO and subsequent aeroelastic effects. This progress
is briefly summarized here and the promise of greater progress in the future is sub-
stantial.

In classical aerodynamics the transition from laminar to turbulent flow is one of
the most important examples of a steady (laminar) fluid flow becoming unstable
and thus leading to a (turbulent) fluid flow LCO. Determining the properties of this
LCO of turbulence remains one of the great unresolved issues of all of science and
engineering. However there are also other examples of flow instabilities which go by
such names as buffet, abruptwing stall (AWS) and non synchronous vibration (NSV),
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that have received much attention in aerospace (and other) research and engineering
applications. Typically, in these examples the flow is already turbulent, but a further
dynamic instability occurs whose intensity is far greater than typical turbulence (e.g.
the oscillating lift coefficient is of order unity) and whose length scale is of the order
of the airfoil or wing dimensions. By contrast, turbulence per se occurs over a great
range of length scales including length scales much smaller than a wing chord or
span and the intensity is a small fraction of the mean flow values.

Here we discuss the work of Edwards [81], Barakos [82] and Raveh [83–85] on
buffet and are content to cite some of the key literature on AWS and NSV.

There is a well known experiment by McDevitt and Okuno [86] that considers
the dynamic instability of the flow about a NACA 0012 airfoil in transonic flow
conditions at certain prescribed angles of attack. The airfoil itself does not move,
but the flow oscillates in what today might be called a limit cycle oscillation (LCO),
but is more commonly referred to as a buffeting flow. Several investigators have
undertaken computations to compare with these experiments. Edwards [77] has con-
sidered a potential flow model for the outer flow coupled to an integral boundary
layer model and shown excellent agreement with the measured data for the buffet
(LCO) boundary. This boundary is expressed in terms of angle of attack versusMach
number and separates the no buffet (no LCO) region from the buffet (LCO) region.
Barakos [78] has also done an interesting study where various turbulence models are
used in a Reynolds Averaged Navier-Stokes (RANS) computation and shown that
the k-omega and Spalart-Allmaras turbulence models also give good correlation for
the buffet (LCO) boundary and the buffet (LCO) frequency. Figure 20 is a compar-
ison of the computed and measured buffet boundary from Barakos [78], who also
shows that other commonly used turbulence models such as k-epsilon fail altogether
to predict the buffet boundary. Hence buffet experiments [82] and correlations with
computational models may give essential and fundamental insights into the required
computational fluid dynamics (CFD) models for unsteady aerodynamic flows.

Very recently Raveh et al. [83–85] have studied the effect of a prescribed airfoil
motion on a buffeting flow.Many interesting findings have been uncovered including
the possibility of “lock-in”. Lock-in occurs when response at the inherent flow buffet
frequency is suppressed and the flow as well as the airfoil oscillates at the frequency
of the prescribed airfoil motion. This occurs for certain combinations of the airfoil
motion amplitude and frequency. The larger the airfoil motion, the wider the range
of structural frequency (near the buffet flow frequency) for which lock-in will occur.
Recently Raveh et al. [84] have considered the case of an elastically mounted airfoil
which is free to move, but for which there is no prescribed motion. Again lock in is
found under certain conditions. It is an open question of how often this may occur
in wind tunnel tests or flight tests of aeroelastic systems. However the BACT wind
tunnel model discussed earlier [65–68], an elastically mounted rigid wing with a
NACA 0012 airfoil profile, is an intriguing example of where such oscillations may
have occurred.

Figure21 is from [85] and shows the time histories of lift on the NACA 0012
airfoil as the angle of attack is increased in prescribed steps of 0.5◦ from 4.5◦ and
then decreased in steps starting from 8.5◦. Outside the range of angle of attack for
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(a)

(b)

Fig. 21 a Lift coefficient versus time in response to the step-up increments to the mean flow angle
of attack; Mach 0.72, Re 1E7. b Lift coefficient versus time in response to the step-down increments
to the mean flow angle of attack; Mach 0.72, Re 1E7

which buffet occurs, a transient decay of the lift illustrates the approach to a time
independent steady flow. By contrast, inside the range of angle of attack for which
buffet occurs, the long time response is a periodic oscillation of the lift (and other
flow variables).
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Fig. 22 Frequency content of lift coefficient response to prescribed airfoil motion of various ampli-
tudes and frequencies: αm = 6◦, Mach 0.72, Re 1E7

Then a prescribed airfoil motion is added and the effect of this motion on the
buffet limit cycle oscillation is found. Figure 22 is also from [85] and shows the
lift response on the airfoil for various cases of prescribed airfoil motion amplitudes
and frequencies. This illustrates the approach to lock in when the frequency and
amplitude of the prescribed motion are in the appropriate ranges. Figure 23 shows
the range for which lock-in occurs in a plot of motion amplitude versus frequency.

The study of buffeting (and its counterparts of abrupt wing stall and non-
synchronous vibration) appears ripe for even more significant advances and also
suggests the need for further experiments building on the earlier wind tunnel tests
of McDevitt and Okuno and the NASA Langley team with the BACT wind tunnel
model. In particular the computational results suggest that one can exit the buffet
region by continuing to increase the angle of attack at a given Mach number. Also
the computational models are now capable of predicting the buffeting (LCO) ampli-
tudes. Neither of these predictions have yet been validated by experiments, but these
important issues could be addressed in new experiments that extend the earlier test
results.
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Fig. 23 Lock-in map of shock buffet; αm = 6◦, Mach 0.72, Re 1E7

Abrupt Wing Stall (AWS) appears to be a particular form of buffet, but with two
possible caveats. First of all, the instability of the aircraft flow field appears to be
asymmetric and/or anti-symmetric with respect to the fuselage and thus gives rise to
an oscillating rolling moment that leads to what is sometimes called “wing drop”.
At least a dozen distinct aircraft have encountered this phenomenon over several
decades, but the ability to predict when it will occur is still beyond current com-
putational modeling methods. Nevertheless there is real hope that this will become
possible with a suitable CFD model in the near to mid-term future. Also it is still
uncertain to what degree aeroelastic feedback is an issue including the rigid body
motions in roll. Much of the recent work on AWS has been done in the context of the
F-18 program which devoted very substantial effort to resolving this issue for that
aircraft. For a summary and citation to recent literature, see for example [1].

Non-Synchronous Vibration (NSV) appears to be in substantial part a form of
buffet encountered in turbomachinery. For an introduction to the literature on NSV,
see [87]. It has also been called “Vortex Induced Vibration (VIV)”. This first attempt
by Duke University to investigate NSV was in 2003 by Kielb, Hall, Barter and
Thomas. This study presented experimental evidence of NSV in the form of strain
gauge data on a compressor test rig aswell as unsteady casing pressuremeasurements.
Using computational fluid dynamics, the NSV frequency was determined, and was
within 9 percent of the experimental frequency. Other results from this study include
identifying NSV as arising from an unsteady suction side vortex and a tip flow
instability.

While a large-scale computational fluid dynamic simulation was a good way to
search for NSV, Sanders points out in 2005 that the underlying flow physics must
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first be understood, then increasingly complex configurations can be studied [88]. As
a result, several works focused on cylinders, symmetric airfoils, and cascades, rather
than full annulus compressors and turbines. In addition, advanced computational
methods such as the Harmonic Balance method and Reduced Order Modeling (see
chaps. 13 and 9 respectively) replace traditional time-marching simulations when
applicable.

Spiker analyzed a cylinder under enforced motion near the lock-in region [89].
Lock-in occurs when the shedding frequency jumps onto the enforced frequency.
This behavior was validated experimentally as well. Results agreed very well for
a two-dimensional cylinder, moderately well for a two-dimensional airfoil, yet not
so well for the three-dimensional case. In addition, the harmonic balance method
was used to analyze the behavior of flow through cascades. The design methods
resembled those of linear flutter analyses, but for the nonlinear behavior of LCO
associated with NSV.

Clark’s work primarily focused on coupled mode flutter; however, work was
also completed on NSV [90]. He proposed a Reduced Order Model to study NSV
around a cylinder. It was a coupled model, one degree of freedom captured the
motion of a cylinder with mass, stiffness, and damping while the other captured
the oscillatory motion of the wake. The latter utilized a Van der Pol Oscillator to
capture the lock-in behavior of a cylinder experiencing NSV as well as a stable limit
cycle oscillation (LCO). Clark later expanded on the model, incorporating Proper
Orthogonal Decomposition (POD).

To further explore cylinders, Besem expanded on the work using POD to study
cylinders vibrating transversely and in line with the flow [91]. It was concluded that
transverse oscillations lead to alternating shedding while inline oscillations lead to
symmetric shedding. These conclusions came from utilizing PODmethods to create
a ROM,which can predict results faster and as accurate as full computational models,
requiring at least two degrees of freedom and two harmonics. In addition, Besem
and Tang performed experimental studies on the lock-in region for a NACA 0012
airfoil [92]. They found that the lock-in region to experiments is wider, capturing the
chaotic edge region between locked and unlocked. In addition, the locked-in region
can be split into two groups: positive and negative equivalent aerodynamic damping.

Current work includes extending the van der Pol based ROM, further experimen-
tal studies, and more complex CFD simulations. Results by Hollenbach [93] show
greater agreement to experimental LCO lock-in data using a 2 DOFROM for a cylin-
der in transverse flow, utilizing system identification methods to tune the coefficients
and including nonlinear stiffness terms. Figure 24 shows the improved results, which
can be compared to those found in [94]. In addition, further studies on lock-in for the
flow around a NACA 0012 airfoil are being conducted to develop an understanding
of the behavior of the unsteady pressures for increasing oscillation amplitude.

One of themost interesting aspects of buffet is the relatively benign time signatures
of the lift (and moment) oscillations on an airfoil or wing. See Fig. 21. The lift
oscillation is not only periodic, but nearly simple harmonic. Yet this is a result of a
nonlinear limit cycle oscillationof thefluid and involves substantial shockoscillations
and in at least some cases separated flow. How can this be?

http://dx.doi.org/10.1007/978-3-030-74236-2_13
http://dx.doi.org/10.1007/978-3-030-74236-2_9
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Fig. 24 Normalized LCO amplitude of ROM compared data. a Amplitude of cylinder forward and
backward LCO versus fluid reduced frequency and b reduced frequency of the system versus fluid
Reynold’s number

Some years ago, Williams [95] showed using transonic potential flow theory that
as the motion of an airfoil or wing becomes small, the shock displacement is linearly
proportional to the airfoil or wing motion and the lift and moment (and indeed
all generalized forces) are linearly proportional to the airfoil or wing motion. This
is a remarkable result because the pressure distribution along the airfoil is highly
nonlinear even for small motions if one examines a position on the airfoil over which
the shockmoves.Williamswas able to show these results analytically for the potential
flow model and subsequent numerical computations using Euler and Navier-Stokes
fluid models have confirmed a similar result.

A recent paper by Woodgate and Badcock [96] has a nice result that graphically
illustrates this point for an Euler flow model. At the many points along the airfoil
that are not traversed by the shock motion, the pressure is nearly harmonic in time
as illustrated by the nearly elliptical phase plane plot of pressure versus angle of
oscillating motion of the airfoil (not shown here). On the other hand at the points
along the airfoil that are traversed by the shock motion, the pressure time history
although periodic has many higher harmonics as well. These computations were
done using a harmonic balance method [3, 4] and Woodgate and Badcock show that
many higher harmonics are indeed needed to resolve the local pressure time history
when the point on the airfoil is traversed by the shock. In Fig. 25 results are shown
for one, two, four, eight and sixteen harmonics. The good news for the modeling of
aeroelastic systems is that the generalized forces including lift and moment do not
usually have this higher harmonic content unless the airfoil or wing motions are very
large (an effective angle of attack near the stall angle) because of the spatial filtering
that occurs due to integration over the airfoil chord or wing area when computing
lift, moment and other generalized forces.
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Fig. 25 Pressure versus angle of attack

6 Concluding Remarks

Substantial progress has been made in modeling and understanding nonlinear aeroe-
lastic phenomena. Experimental and theoretical investigations have shown good cor-
relation for a number of nonlinear physical mechanisms. As a broad generalization,
one may say that our understanding of and correlation among alternative theoreti-
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cal models and experiment is further advanced for nonlinear structural mechanisms
such as freeplay and large deflection geometric nonlinearities of beams and plates,
than it is for nonlinear fluid mechanisms such as large shock motions and separated
flows. Nevertheless more accurate and much more computationally efficient theoret-
ical models are now becoming available for nonlinear aerodynamic flows and there
is cause for optimism in addressing these issues going forward.

As has been emphasized throughout this paper, a number of physical mechanisms
can lead to nonlinear aeroelastic response including the impact of static (steady flow)
fluid or static structural nonlinearities in changing the flutter boundary of an aeroelas-
tic system. Of course dynamic nonlinearities play a critical role in the development
of limit cycle oscillations, hysteresis in flutter and LCO response, and the sensitivity
of both to initial and external disturbances.

The good news for the flight vehicle designer is that because of nonlinear aeroelas-
tic effects, finite amplitude oscillations can in some cases replace what would other-
wise be the rapidly growing and destructive oscillations of classical flutter behavior.
A careful consideration and design of favorable nonlinearities offers a new oppor-
tunity for improved performance and safety of valuable wind tunnel models, flight
vehicles, their operators and passengers.

Finally and inevitably some important topics have been omitted due to space
and time limitations. The insightful article on rotorcraft aeroelasticity by Friedmann
[97] is highly recommended; for turbomachinery aeroelasticity, see the authoritative
volume edited by Hall, Kielb and Thomas [98] and for an entrée to the literature
on morphing aircraft such as the folding wing concept see the paper by Attar et al.
[99]. The work of Batina [100] on advanced concepts in transonic small disturbance
potential flow theory and computation also reminds us that there are still valuable
opportunities for significant advances in that field as well.
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Aeroelastic Models Design/Experiment
and Correlation with New Theory

Deman Tang and Earl H. Dowell

Abstract Several examples of experimental model designs, wind tunnel tests and
correlation with new theory are presented in this chapter. The goal is not only to
evaluate a new theory, new computational method or new aeroelastic phonomenon,
but also to provide new insights into nonlinear aeroelastic phenomena, flutter, limit
cycle oscillation (LCO), gust response and energy harvesting from a large flapping
flag response. The experiments are conducted in a standard low speed wind tunnel.
Similar experiments in a high speed wind tunnel would be very valuable.

1 Introduction

A very important function of wind tunnel models and testing is to verify a new
aeroelastic theory or a new computational method. For this purpose, experimental
aeroelastic model design and manufacturing of scaled models, model ground vibra-
tion test and wind tunnel testing are essential to success. In the past 20 years, the
Duke aeroelastic group has designed many aeroelastic models and conducted wind
tunnel tests to evaluate new theoretical aeroelastic theories and new computations
methods. They include:

1. A high aspect ratio wing model. Several correlation studies for flutter and limit
cycle oscillation [1], limit cycle hysteresis response [2], gust response for clamped
and flexibly suspended models [3, 4] and Flutter/LCO suppression [5] were per-
formed.

2. Wing like plate models, delta wing-store, flapping flag, yawed plate and folding
wing. The wind tunnel tests were used to evaluate the von Karman nonlinear plate
theory and a new nonlinear inextensible beam and plate theory and also some high
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fidelity computational methods. Based on thesemodels several correlation studies
for flutter/LCO [6–16] and gust response studies [17–19] were performed.

3. Airfoil section with control surface freeplay. The wing tunnel tests were used to
evaluate new approachs for the freeplay nonlinear and gust responses including
Duke computational codes using the Peter’s finite state airload aerodynamic the-
ory, harmonic balance method and the time marching integration based on state
space equations [20–24] and the ZAERO code [25] based on the computational
fluid dynamic (CFD) theory conducted by ZONA Technology, Inc.

4. All-movable tail with freeplay model at the root [26, 27] to similar horizontal tail
in the actuating mechanism freeplay nonlinearity of aircraft. Based on this model
a computational code has been developed and evaluated.

5. A free-to-roll fuselage flutter model [28]. From measured wind tunnel data, one
evaluates the predicted symmetric and anti-symmetric flutter/LCO theory.

6. A experimental oscillating airfoil model at high angles of attack for measuring
aerodynamic response. A frequency “Lock-in” phenomenon is found in buffeting
flow and compared to the theoretical results [29]. Also a experimental airfoil
modelwith a partial-span control surface is conducted tomeasure theflap response
of the partial-span induced by the buffeting flow [30].

7. The structural design of RSC/airfoil gust generator that is used to create a lateral
gust in the Duke University low speed wind tunnel has been developed. The
design principle of this generator has been verified by the coorelation between the
experimental and numerical simulation when the RSC rotating angle is statically
rotated from 0◦ to 180◦, see [59, 60]. Using this gust generator, the theoretical
and experimental correlation study of gust response for a high-aspect-ratio wing
modelwas used to evaluate the gust flowfield andnonlinear beamstructural theory.

8. Two experimental models are constructed, i.e. partially covered and fully covered,
cantilevered plates with piezoelectric patch and film sensor that are used to study
energy harvesting from a large flapping flag response, see [63–65]. Two different
experimental methods are used to obtain large flapping vibrations, a mechanically
forced vibration and a limit cycle oscillation from an aeroelastic responses. AC
voltage outputs from the piezo patch or film sensors and a DC power extraction
through a AC/DC convert circuit are obtained. These experiments are used to
evaluate a new computational model and code for an aero-electromechanical
interaction system.

Several examples of model designs, wind tunnel tests and experimental/theoretical
correlation studieswith the theory are presented in this chapter. The goal is not only to
evaluate a new theory, new computational method or new aeroelactic phonomenon,
but also to provide new insights into nonlinear aeroelastic phenomena, flutter/LCO
and gust response and energy harvesting.
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2 Experimental Models for Measuring Flutter/Limit Cycle
Oscillation (LCO) Response to Evaluate A Nonlinear
Structural Theory

Theoretical and experimental correlation study for the aeroelastic stability and
response of an aircraft with a high-aspect-ratio wing and low-aspect-ratio wing have
been studied for many years from subsonic to supersonic flow. Most investigators
have used linear beam and plate theories to simplify the wing structural model. How-
ever, a geometric structural nonlinearity may arise from the coupling between elastic
flap or vertical bending, chordwise or edgewise bending and torsion for very high
aspect ratio wings typical of Uninhabited Air Vehicles (UAV) and also for the low
aspect ratio wings. Here, two kinds of experimental wingmodels, a high altitude long
endurance (HALE) model and a wing-like (plate) model are considered to evaluate
the new nonlinear structural theories.

2.1 High Altitude Long Endurance Models (Nonlinear Beam
Structural Theory and ONERA Aerodynamic Model)

An experimental high-aspect ratio wing aeroelastic model with a tip mass has been
constructed and a wind tunnel test conducted to measure the static aeroelastic
response, flutter and limit cycle oscillations. The goal is to assess experimentally
the theoretical results using nonlinear structural and aerodynamic theories. The the-
oretical structural equations ofmotion are based on nonlinear beam theory byHodges
and Dowell [31] and the ONERA aerodynamic stall model [32].

The experimentalmodel includes twoparts: a high-aspect ratiowingwith a slender
body at the tip and a root support mechanism. The wing is rectangular, untwisted
and flexible in the flap, lag and torsional directions. The wing is constructed from
a precision ground flat steel spar with mass uniformly distributed along the wing
span. The spar is 45.72cm in length, 1.27cm in width and 0.127cm in thickness. It is
inserted tightly into the wing root mechanism. In order to reduce torsional stiffness,
the spar hasmultiple thin flanges along the span. The flangewidth is 0.127cm and it is
0.318cm in deep. There are 2 × 33 flanges uniformly and symmetrically distributed
along the wing span and center line of the spar. There are 18 pieces of NACA 0012
airfoil plate uniformly distributed along the span. The pieces of the airfoil plate are
made of aluminum alloy with 0.254cm thickness. A precision aerodynamic contour
of the wing model is obtained. Each airfoil plate has a slot 1.27cm in width and
0.127cm in thickness at the symmetry line. The spar is inserted through these airfoil
plate slots and they are permanently bonded together. Each space between two airfoil
plates is filled with a light wood (bass) covering the entire chord and span which
provides the aerodynamic contour of thewing. This wood provides a slight additional
mass and a small addition to the bending and torsion stiffness.
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A slender body is attached to the elastic axis of thewing tip. The slender body is an
aluminum bar, 0.95cm in diameter and 10.16cm in length. A paraboloidal forebody
and an aftbody with 1.14cm length are fixed to two ends of the bar. The forebody
and aftbody are made of brass.

The slender body is symmetrical and is designed to provide enough torsional
inertia to reduce the natural torsional frequency sufficiently to induce flutter in the
velocity range of the wind tunnel.

The root support mechanism is a socket that allows a change of the steady angle
of attack at the root. The root socket is mounted to the mid point of side-wall of the
wind tunnel

Figure1a shows a photograph of the aeroelastic wing model in the wind tunnel.
Axial strain gages for bending modes and a 45◦ oriented strain gage for torsional

modes were glued to the root spar to measure the bending-torsional deflections of
the wing. Signals from the strain gages were conditioned and amplified before their

(a) Photograph (b) Static deflection

(c) LCO amplitude (d) LCO frequency

Fig. 1 HALE experimental model and correlation analyses; a photograph of model, b static aeroe-
lastic deflections at the wing tip c LCO amplitude, d LCO frequency versus flow velocity for pitch
angle of attack θ0 = 1.0◦
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Table 1 Experimental wing model data

Wing properties

Span (L) 0.4508m

Chord (c) 0.0508m

Mass per unit length 0.2351kg/m

Mom. Inertia (50% chord) 0.2056 × 10−4 kgm

Spanwise elastic axis 50% chord

Center of gravity 49% chord

Flap bending rigidity (E I1) 0.4186Nm2

Chordwise bending rigidity (E I2) 0.1844 × 102 Nm2

Torsional rigidity (GJ ) 0.9539Nm2

Flap structural modal damping (ξW ) 0.02

Chordwise structural modal damping (ξv) 0.025

Torsional structural modal damping (ξφ) 0.031

Slender body properties

Radius (R) 0.4762 ×10−2 m

Chord length (cSB) 0.1406m

Mass (M) 0.0417kg

Mom. Inertia (Ix ) 0.9753 ×10−4 kgm2

Mom. Inertia (Iy) 0.3783 ×10−5 kgm2

Mom. Inertia (Iz) 0.9753 ×10−4 kgm2

measurement through a gage conditioner and a low-pass filter.Amicro-accelerometer
is mounted at the mid-span of the wing. The output signals from these transducers
are directly recorded on a computer with data-acquisition and analysis software,
Lab-VIEW 5.1.

A Helium-Neon Laser with 0.8mw randomly polarized and wavelength 633 (nm)
is mounted on the top of the tunnel. The top of the tunnel is made of a glass plate
with a thickness of 1.27cm. A mirror, 1.27cm in diameter, is fixed on the tip of the
wing. A “mirror” deflection technique is used to determine the geometric twist angle
and the vertical or flapwise bending slope at the wing tip.

All static, flutter and LCO response tests were performed in the Duke University
low speedwind tunnel. Thewind tunnel is a closed circuit tunnel with a test section of
0.7 × 0.53m2 and a length of 1.52 m. The maximum air speed attainable is 89.3m/s.

The basic parameters of the experimentalwingmodelwere obtained fromstandard
static and vibration tests and are listed in the Table1.

We use a “mirror” deflection technique to measure the tip static aeroelastic deflec-
tions of thewing.Apoint determinedby a reflected light source ismarkedon a readout
grid paper placed on the top of the wind tunnel when the wing is undeflected. The
readout grid paper is calibrated in the tip flap and twist deflections before the test.
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The reflected light source point with wing deflection as marked on the readout paper
is then determined as the flow velocity is varied.

Figure1b shows the the theoretical and experimental results of the tip flapwise
deflection for a steady angle of attack, θ0 = 1◦. The solid line indicates the theoretical
results and the bar indicates the measured data. The experimental data appear have
some scatter due to the turbulent aerodynamic noise, although the noise is small.
A very high measurement sensitivity is obtained from the mirror technique. We
use a bar in the figure to indicate the magnitude of the response uncertainty. As
shown Fig. 1b, the tip deflection increase with increasing flow velocity, but the tip
deflection is always negative until the flow velocity reaches 34.5m/s. At that velocity
the aerodynamic forces provide sufficient lift to overcome the effect of gravity. At
U = 34.5m/s, the system enters into the flutter instability range. The consequent
LCO has a certain non-zero mean or temporal average and this is shown by a dashed
line in Fig. 1b. Also with LCO, aerodynamic stall occurs and the lift coefficient Cl

suddenly decreases. The measured data in Fig. 1b are acquired before the onset of
flutter and LCO. The experimental data fall near the theoretical curves in Fig. 1b. In
general, the agreement is good except for some points at U = 10 and 15m/s. In the
higher flow velocity range, the data fluctuation increases due to greater aerodynamic
turbulence.

A typical LCO amplitude and LCO frequency versus flow velocity for θ0 = 1◦
and at the mid span position are shown in Fig. 1c and d, respectively. The theoretical
and experimental amplitudes are taken as rms average values from a 50s sampling
interval. The symbols, ◦ and •, indicate the experimental results for increasing and
decreasing flow velocity, respectively. The solid and broken lines (without symbols)
indicate the theoretical results for increasing and decreasing flow velocity, respec-
tively. The symbol,�, indicates the linear flutter velocitywhich is calculated from the
perturbation eigenvalue solution. For the increasing flowvelocity case, the theoretical
limit cycle oscillation occurs when the flow velocity is larger than the perturbation
flutter velocity and the amplitude has a jump from almost rest to a larger value.
Once the onset of LCO occurs, the amplitude increases smoothly with increasing the
flow velocity. When U > 38.6m/s, a numerical or possibly a physical divergence is
found in the theoretical model. For the case of decreasing flow velocity, as shown
by the broken line, the LCO amplitude decreases, but does not exactly coincide with
those for the increasing velocity case. Also there is a jump in the LCO response at
U = 33.5 m/s which is a distinctly lower velocity than that found for the increasing
velocity case (i.e. U = 34.5m/s).

The present experimental and theoretical results provide new insights into non-
linear aeroelastic phenomena of LCO beyond the linear flutter speed for high aspect
ratio wings. Also these results show the nonlinear equations and stall aerodynamic
equations provided by Hodges and Dowell and ONERA, respectively, provide useful
and accurate results for HALE vehicles.
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2.2 Flapping Flag and Yawed Plate Models (Nonlinear
Inextensible Beam and Plate Theory)

There is a substantial literature on inextensible beam theory, but relatively little on
inextensible plate theory. A notable exception is the work of J. G. Simmonds and
colleagues [33–36] on inextensible plate theory. His approach is quite different from
the present one and ultimately leads to a system of ordinary differential equations
for the plate deformation for a one dimensional generator curve from which the
entire plate deformation may then be deduced. In the present new inextensible theory
of beam and plate deformation as described in [37], the formulation is based upon
Hamilton’s Principle in terms of a single unknown, i.e. the beam or plate deformation
normal to its surface. The present approach has some substantial computational
advantages, but certainly the work of Simmonds is elegant and pioneering.

The interaction between a cantilevered elastic plate and a uniform axial flow
is a canonical fluid-structure interaction problem. If the flow is oriented parallel
to the clamped leading edge the system is described as a wing-like configuration.
If the flow is oriented normal to the clamped edge then the system is referred to
as flag-like. There is extensive research on the aeroelastic response of the wing-
like configuration due to the similarities between the simple cantilevered beam and
aircraft wings. The present study differs from the classic explorations of the swept
wing due to the application of the clamped boundary condition. For a traditional
swept wing configuration the clamp is applied parallel to the flow, changing the
shape of the structure for every angle (it is called the yaw angle, β, in the present
paper). For the current study the clamped edge is rotated with the structure. In this
case the second classic fluid structure interaction problem for a clamped-free elastic
plate will be considered, i.e. the flag-like configuration.

References [12, 13] focus on exploring the transition of the limit cycle oscillation
(LCO) response from a small yaw angle (flapping flag response for β = 0) to a large
yaw angle (wing-like response, β = 90◦) of a cantilever plate as the angle between
the clamped edge and free stream velocity changes. In particular, [37] presents a
nonlinear structural model for the rotated aeroelastic system. One creates the aeroe-
lastic model by coupling this newly developed inextensible nonlinear plate struc-
tural model with a rotated vortex lattice aerodynamic model. The theoretical pre-
dictions were validated with aeroelastic experiments. Three distinct configurations,
β = 0◦, 45◦ and 90◦ were explored that show markedly different LCO transition
behaviors.

Table2 contains thematerial properties and geometry of the configuration. Table3
shows the results of the ground vibration experiments in bending and torsion. The
first column has the theoretical predictions using a ANSYS structural model with
the parameters listed in Table2. There is very good agreement between the theory
(ANSYS code) and the experiment for all of the bending and torsion modes.

The goal of the aeroelastic experiments was to quantify the LCO amplitude of the
flapping flag (β = 0◦) as shown in Fig. 2a. To capture the LCO amplitude, a Light
Emitting Diode, LED, was placed at the tip and mid-span of the structure. Using 3D
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Table 2 Experimental plate properties

ρs E h L C

2840kg/m3 70.6E9 N/m2 0.381mm 275mm 151mm

Table 3 Vibration test results

Mode ANSYS code
Freq (Hz)

Experiment
Freq (Hz)

Error
(%)

1st Bending 4.16 3.95 5.06

2nd Bending 25.84 24.98 3.3

3rd Bending 72.12 69.91 3.06

4th Bending 144.06 142.37 1.1

1st Twist 15.91 15.13 3.45

2nd Twist 45.73 49.05 7.16

RPS video the path of the LED can be traced. Additionally the color coherence of the
LED light, made it easier to use automated filtering in Matlab to track the path. To
determine the amplitude of the oscillation, the code averages the snapshots from a full
second of the video (30 frames) to get the average path. The script then automatically
identifies the pixel of the far left and far right portion of the path and calls this the
LCO amplitude. This amplitude is then synchronized with the wind tunnel velocity
data to get the amplitude as a function of the velocity. The amplitude is converted
to a real length using the camera calibration conducted before the experiment that
calculates the pixels per centimeter in the plane of the LED. This method is able to
provide the LCO amplitude to +/− 1cm. This could be improved by using a camera
with a higher resolution. For the detail experimental measurement, see Ref. [12].

The experimental data are presented as the measured nondimensional peak dis-
placement from the panel tip. Figure2b shows the nondimensional rms flap amplitude
versus the flow velocity. The theoretical results include two nonlinear cases: a full
stiffness nonlinearity only and a full stiffness nonlinearity plus an inertia nonlinearity.
The experimental results contain the LCO amplitude data for all of three different
runs. The theoretical LCO responses are bursts or intermittent motion while the
experimental results are primarily a single harmonic oscillation.

The experimental linear flutter speed can be estimated using an extrapolation
method (this method is also used for other yaw angles), i.e. an extrapolation of LCO
response to zero amplitude. The experimental flutter speed is U f = 21.35m/s and
the theoretical flutter speed is U f = 20.45m/s for β = 0◦.

It is interesting that the theoretical results for the full nonlinearities (inertia plus
stiffness) agree best with experiment for the LCO amplitude. However when only
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Fig. 2 Yawed plate models and correlation analyses; a, c and e for photographs and b, d and e
for LCO rms amplitude versus the flow velocity for the yaw angle of β = 0◦, 45◦ and β = 90◦,
respectively

the stiffness nonlinearity is included the response is a single dominant frequency as
found in the experiment.

For β = 45◦ and β = 90◦ yawed plates, to capture the LCO amplitude, a micro-
accelerometer was placed at the trailing edge of these plate structuries. Even though
the micro-accelerometer is only 2.6g, we include this weight in the computational
model.
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Figure2c, d show the computational and experimental correlations of the LCO
displacement response rms amplitude versus the flow velocity for the yaw angle of
β = 45◦. The correlation between the computations and experiments is reasonably
good beyond the flutter speed. There are some smaller response amplitudes at lower
flow velocities (U < 15.75m/s) in the experiment. From the experimental curve
of the LCO amplitude versus the flow velocity, the experimental flutter speed is
U f = 15.6m/s and the theoretical flutter speed is U f = 16.2m/s for β = 45◦.

For β = 90◦, the plate is a wing-like. Figure2e, f show the computational and
experimental correlations of the LCO displacement response rms amplitude and
corresponding LCO frequency versus the flow velocity for the yawed angle of β =
90◦. The correlation between the computations and experiments is fair beyond the
flutter speed. There are some smaller response amplitudes at lower flow velocities
(U < 19m/s) in the experiment due to flow turbulence. The experimental flutter
speed is U f = 19.3m/s and theoretical flutter speed is U f = 18.7m/s for β = 90◦.

By comparing computations and experiments for the LCO response of the several
yawed plate configurations, it is shown that the present inextensible beam or plate
theory as provided by Dowell and Tang [37] produces results in good agreement
with the measured rms LCO amplitude. These theories have only a single unknown
variable, i.e. the transverse deflection of the beam or plate structure. This is very
attractive for computations.

2.3 Free-to Roll Fuselage Flutter Model (Symmetric and
Anti-symmetric Flutter/LCO Theory)

A flutter model is often made using a semi-span wind-tunnel model with the root
of the semi-span wing model clamped on the tunnel side wall. The experimental
data obtained from such a model is suitable for computational aeroelasticity code
validation. References [38–41] are studies with typical subsonic and transonic flutter
semi-span models. The boundary conditions of these experimental flutter modes are
different from those of an actual aircraft, but the experimental data from the wind
tunnel test may still be useful for evaluating the theory.

A fuselage which is free to roll is designed, but the vertical rigid body translation
(plunge) and rotation (pitch) of the fuselage are constrained.The full span wing is
a cropped delta wing plate for simplicity. The right and left wings are structurally
symmetric. The full span wing dynamics are modeled using a linear plate wing
structure theory. A three-dimensional time domain vortex lattice aerodynamic model
is also used to investigate flutter of the linear aeroelastic system and results are
correlated with experiment. See Ref. [28] for more detail.

The experimental model consists of a right and left wing and a fuselage (slender
body). For simplicity, the wing model is a cropped delta wing configuration which is
constructed from a aluminum plate of thickness 0.0127cm and has 40◦ leading edge
sweep and 0◦ trailing edge sweep. The root chord is 12.7cm and the halfspan length
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is 11.68cm. Thematerial properties of the wing are: mass density of 0.00284kg/cm2,
Young’s modulus of 720000kg/cm2 and a Poisson’s ratio of 0.3.The right and left
wing model is assumed to be rigidly clamped along the full root chord of the wing.
The total rolling inertia about the fuselage center axis for the right and left wings is
Jw = 3.859e−5 kgm2. A photograph of the aeroelastic model in the wind tunnel is
shown in Fig. 3a.

The fuselage has a circular cross-section with a diameter of 2.54 cm. It includes
two parts. The front part is a slender body with a parabolic forebody which can rotate
about the fuselage center axis and supports the wings. The rear part is a non-rotating
slender body with a parabolic aftbody which is used to support the front portion of
the slender body and is connected to the wind tunnel floor by a support or sting rod.
The rolling inertia about the fuselage center axis for the rotating slender body is
J f = 11.19e−5 kgm2.

The wings are allowed to rotate (roll) about the center axis of the fuselage. The
free or clamped mechanism for the rotation is provided by an electrical magnet brake
that is used to provide rolling free or rolling clamped boundary conditions. Two strain
gauges attached near the root of the two wings are used to measure the wing elastic
deflections.

Because the experimental structuralmodel has nonlinear behavior, the self-excited
aeroelastic response represents a limit cycle oscillation(LCO) when the flow velocity
is higher than the linear flutter speed. The linear critical flutter boundary is estimated
from the LCO responses. The structural nonlinearity arises from a nonlinear strain-
displacement relationship due to large structural deformations of the plate-likewings.

Figure3b shows the measured rms LCO amplitude (microstrain) from the strain
guage at the wing root versus the flow velocity from U = 14m/s to 18m/s for three
cases.One is for the symmetricmode, i.e. in the rolling fixed case. The other two cases
are for the anti-symmetric mode with J f /Jw = 2.9 and 13.5. The data are acquired
when the response achieves a steady state limit cycle oscillation.The response is given
by a rms value over the total sampling length. For the rolling fixed case, there are
very small rms amplitudes from U = 14 to 17m/s. It is believed that these responses
are induced by the randomly fluctuating flow of the wind tunnel. At U = 17.1m/s,
the LCO rms amplitude jumps to a high amplitude response with a certain oscillating
frequency. As the flow velocity continues to increase from U = 17.1m/s, the LCO
rms amplitude increases. An intersection between the extrapolated LCO amplitude
curve and the flow velocity axis is defined as the linear critical flutter speed. This
estimated value is aboutU f = 17.05m/s. Similar to the symmetricmode case, for the
anti-symmetric mode flutter at J f /Jw = 2.9 and 13.5, the experimentally estimated
linear critical flutter speeds are U f = 16.6m/s and 16.7m/s, respectively.

Figure3c shows the theoretical and experimental (estimated) critical flutter bound-
ary versus J f /Jw from J f /Jw = 0 to 50. For the theoretical anti-symmetric mode
flutter, the flutter speed increases as J f /Jw increases but the increase is small. For
the theoretical symmetric mode flutter, the flutter boundary does not change with
J f /Jw as expected. When J f /Jw becomes large, the linear flutter speed for the anti-
symmetric mode approaches that for the symmetric mode. The experimental results
for the anti-symmetric mode at J f /Jw = 2.9, 13.5 and 38 are plotted in this figure as
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Fig. 3 Free-to-roll experimental model and correlation analyses; a photograph of the model, b
measured LCO rms amplitude versus flow velocity for symmetric mode (rolling fixed) and anti-
symmetric mode at J f /Jw = 2.9 and 13.5, c and d flutter speed and frequency versus J f /Jw

indicated by symbol of • and for the symmetric mode (rolling fixed case) is indicated
by symbol of a black triangle. The maximum difference is 3.5% for the flutter speed.
Figure3d shows the corresponding flutter frequency. The maximum difference is
3.5% for the flutter speed and 7.5% for the flutter frequency.

The experimentally observed flutter mode is anti-symmetric, although theory sug-
gests the symmetric mode flutter speed is only modestly higher than that for the anti-
symmetric modes. Correlation between theory and experiment for flutter speed and
frequency is good including the trends obtained when varying the ratio of fuselage
to wing inertia.

3 Experimental Models for Measuring Flutter/LCO
Response to Evaluate Nonlinear Freeplay Theory

The freeplay nonlinearity usually occurs in the following components of an air-
craft: (a) between the main wing and the control surface actuating mechanism; (b)
between the all-movable horizontal or vertical tail and the stabilizer or control actuat-
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ing mechanism. In this section, two typical experimental models have been designed
and constructed to simulate these freeplay nonlinearities. 1. an airfoil section with
control surface freeplay and 2. all-movable tail with stabilizer freeplay.

3.1 Airfoil Section with Control Surface Freeplay

Early theoretical studies of aeroelastic systems with structural freeplay were car-
ried out on analog computers by linearizing the system about the nonlinearity via
describing functions or harmonic balance or by time marching integration based on
the state-space model. One of the compelling advantages of using harmonic balance
or describing functions for aeroelastic systems is that traditional linear analytical
tools, such as eigenanalysis, can be used for the determination of system stability
while still allowing for the prediction of some nonlinear behavior. However, the
response of a true nonlinear system may be dependent on the initial conditions, and
the describing function approach does not permit a full exploration of this effect. The
dependence on initial conditions and the wide variety of nonlinear behavior exhib-
ited by systems with freeplay show the importance of incorporating this common
physical nonlinearity into the theoretical model. In addition, the freeplay nonlinear-
ity will likely have a significant effect on the response of the system to a control law
designed for the nominal linear system.

In the present correlation study, a new nonlinear aerodynamic model, a finite
state incompressible airloads model, developed by Peters [42] called “Duke code”
and a ZAERO code based on CFD technology and nonlinear structural dynamics
developed by ZONAT Technology, Inc [25] have been used.

3.1.1 Experimental Model and Measurement System

The two-dimensionalNACA0012 rectangularwingmodel includes two parts: amain
wing with a 19cm chord and 52cm span; and a flap with a 6.35cm chord and 52cm
span, which ismounted at the trailing edge of themainwing using two pairs ofmicro-
bearing with a pin. The main wing is constructed from an aluminum alloy circular
spar beam with a diameter of 2.54cm and a wall thickness of 0.32cm. The beam
runs through 14 pieces of NACA 0012 aluminum airfoil plate and serves as the pitch
axis, located at the quarter-chord location from the leading edge. A 0.254 mm thick
aluminum sheet covers the entire chord and span, providing the aerodynamic contour
of the wing. In addition, an aluminum tube with 1.27cm diameter is mounted from
wing tip to wing tip at a location of 3.175cm from the leading edge. The chordwise
center of gravity can be adjusted by adding or subtracting a balance weight from this
tube.

The flap is constructed in a similar manner with an aluminum alloy tube spar beam
(1.27cm diameter and 0.158cm wall-thickness) passed through the leading edge of
14 pieces of NACA 0012 wood airfoil plate. The flap is also covered with the same
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(a) Experimental model (b) Schematic

Fig. 4 Photograph of the experimental model a and schematic of freeplaymechanism and restoring
moment with a symmetric freeplay region b

type of aluminum sheet. Figure4a shows the photograph of the experimental model
including the ground vibration test.

A rotational axis comprised of the micro-bearings and pin allows the flap to have a
rotational degree of freedom relative to the main wing. A steel leaf-spring is inserted
tightly into a slot of the tube spar beam at one end of the flap. The free end of the leaf
spring is inserted into a support block mounted on the main wing. The schematic
of freeplay mechanism and restoring moment with a symmetric freeplay region,
see Fig. 4b. The amount of structural stiffness that the leaf-spring provides can be
adjusted by moving the support block toward or away from the rotational axis of the
flap or by changing the diameter of the leaf-spring. Freeplay is incorporated by using
a support block that allows the free end of the leaf-spring to move through a given
range of motion before encountering resistance.

The support mechanisms for the entire model are mounted outside of the wind
tunnel, at the top and bottom. The support mechanism at each end is a bi-cantilever
beam made of two steel leaf-spring which are 20.32cm long, 2.86cm wide, and
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0.102cm thick. The distance between the two cantilever beams is 15.24cm.A support
block joins the free ends of the bi-cantilevered beams on both the top and the bottom
and is free to move in the plunge direction. Figure4a shows the plunging motion
of the support structure. An identical structure is located on the bottom side of the
wind tunnel. The two support blocks are the only parts of the support mechanism that
move with the model, and this motion is restricted to the plunge degree of freedom.
The pitch axis of the main wing is mounted to the upper and lower support blocks
through a pair of precision bearings which have small amount of dry friction in the
ball. This design allows the model to have a plunge motion that is independent of the
pitch degree of freedom. At the upper bracket, there is a spring wire inserted tightly
into the pitch axis of the wing. The ends of the spring wire are simply supported on
the bracket, which provides an adjustable pitch stiffness. The bracket is mounted on
the upper support mechanism by three screws. The bracket allows rotation around
the pitch axis when the screws are used to adjust the initial pitch angle.

The pitch angle of the main wing is measured by a rotational velocity displace-
ment transducer, R30, which is fixed at the upper end of the pitch axis. The angular
displacement transducer was calibrated and showed excellent linear response charac-
teristic and high sensitivity. The plunge displacement is measured using another R30
which determines the motion of the upper support block. The flap rotational motion
relative to the main wing is measured by a micro-RVDT which is mounted on the
flap axis outside of the main wing. These three measurement signals are independent
of one another.

The output from these transducers is amplified and directly recorded by data
acquisition system, LabView 8.0 version in the computer. The digitized response data
can be graphically displayed either on-line or off-line as a time history, phase plane
plot, FFT, PSD, or Poincare map. In order to make a comparison of the theoretical
and experimental data, a measurement system calibration was completed before
the wing tunnel test. The dynamic calibration coefficients were determined by a
ground vibration test. The system parameters for the experimental model are shown
in Table4.

From the experimental ground vibration results, a comparison of the structural
natural frequencies for the numerical and experimental systems is given in Table5.

3.1.2 Correlation Study α0 = 0◦

For the flutter/LCO test, a freeplay gap, 2 × δ = 2 × 2.12◦, is used. A nondimen-
sional r.m.s amplitude normalized by the freeplay gap is introduced here for LCO
amplitude. The pitch and flap motions are nondimensionalized by the freeplay gap,
i.e. by 2 × δ. For the plunge motion, it is nondimensionalized by 2 × πδb/180◦.

When the freeplay gap is set zero, the measured flutter flow velocity is 26.5m/s
for zero initial angle of attack. Because in this flow velocity range the model motion
is very large we use an external device to limit the plunge motion amplitude. The
measured flutter frequency is about 6.25Hz.
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Table 4 Experimental plate properties

Model parameters:

Chord 0.254m

Span 0.52m

Semi-chord (b) 0.127

Elastic axis (a) w/r/t (b) −0.5

Hinge line (c) w/r/t (b) 0.5

Mass parameters:

Mass of wing 0.713kg

Mass of aileron 0.18597kg

Mass/length of wing-aileron 1.73kg/m

Mass of support blocks 0.467 × 2kg

Total mass per span, Mh 3.625kg/m

Inertial parameters:

Sα (per apn) 0.0726kg

Sβ (per span) 0.00393kg

Iα (per span) 0.0185kgm

Iβ (per span) 0.00025kgm

Stiffness parameters:

Kα (per span) 46.88kgm/s2

Kβ (per span) 2.586kgm/s2

Kh (per span) 2755.4kg/ms2

Damping parameters:

ζα (half-power) 0.0175

ζβ (half-power) 0.032

ζh (half-power) 0.0033

Table 5 Model natural frequencies

Computational Experimental % Difference

ωα (coupled) 8.32Hz 8.45Hz 1.6

ωβ (coupled) 17.64Hz 17.37Hz 1.5

ωh (coupled) 4.37Hz 4.45Hz 1.83

UF (m/s) 27.3 26.5 2.9

ωF (Hz) 6.05 6.25 3.3
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Fig. 5 Theoretical and experimental LCO rms response amplitudes and frequency for the initial
pitch angle of α0 = 0 and δ = 2.12◦

Figure5 shows the nondimensional plunge, pitch, flap LCO amplitudes and LCO
frequency versus the flow velocity for the initial pitch angle, α0 = 0. The motion
may be periodic or non-periodic or chaotic. Here we use r.m.s amplitude to present
the LCO motion versus the flow velocity.

As shown Fig. 5, when the flow velocity, U, is less than 4.67m/s no LCO occurs
both for the theory and experiment. When U is between 4.67 and 13.26m/s for
the experiment and 4.55 and 14.1m/s for the theory, the motion is dominated by the
plunge degree of freedom and has an oscillation frequency of about 4.5–5Hz for both
the theory and experiment.WhenU is between 13.26 and 25.6m/s for the experiment
and 14.1 and 27.4m/s for the theory, the motion is dominated by the flap degree of
freedom and has an oscillation frequency of about 10–10.5Hz for the experiment
and 9–9.5Hz for the theory. When U is greater than 25.6m/s, the experimental LCO
amplitude abruptly increases and the test is stopped to protect themodel (this is called
the catastrophic flutter speed). This flow velocity is close to the experimental flutter
speed (26.5m/s) of the linear structure without freeplay. However the theoretical
catastrophic flutter speed is 27.4m/s and is slightly higher than the theoretical linear
flutter speed (27.3m/s). For comparison, the computational results using CFD code,
ZAERO, provided by ZONA Technology, Inc, are also presented in this figure.
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Fig. 6 Theoretical and experimental LCO rms response amplitudes and frequency for the initial
pitch angle of α0 = 6◦ and δ = 2.12◦

3.1.3 Correlation Study for α0 �= 0

Experimental measurement for the several initial pitch angles of attack fromα0 = 2◦
to 8◦ are made to study the correlation. Here only one case (α0 = 6◦) is shown
Fig. 6. Summarizing the correlation results from α0 = 2◦, to α0 = 8◦, the following
observations may be made.

1. The flow velocity corresponding to a change in the LCO behavior from a lower
frequency oscillation to a higher frequency oscillation changes modestly in the
experiments as α0 increases.

2. The flow velocity corresponding to catastrophic flutter (very large LCO ampli-
tude) also decreases as the initial pitch angle increases. The experimental results
are 25.6m/s forα0 = 0◦; 25.05m/s forα0 = 2◦; 23.96m/s forα0 = 4◦; 21.48m/s
for α0 = 6◦ and 20.43m/s for α0 = 8◦.

3. When α0 equals 8◦, the flow velocity range for the LCO becomes quite small and
when α0 is larger than 8◦ the LCO disappears both for the theory and test.
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3.2 All-Movable Tail Model with Freeplay

Experimental models have been constructed by previous investigators that had
freeplay nonlinearity in an all-movable tail in the actuating mechanism at the root,
see Ref. [43–45]. These early experiments were interpreted in terms of a reduction
in flutter speed due to freeplay. However, the early works did not provide a LCO cor-
relation analysis induced by the freeplay nonlinearity. Inspired by the early WADC
(Wright Air Development Center) all-movable tail model, a similar experimental
model was designed and tested. A computational code based on the linear three-
dimensional time domain vortex lattice aerodynamic model and freeplay structural
nonlinerarity has been developed to study the flutter and also nonlinear limit cycle
oscillations induced by a freeplay gap in the actuating mechanism at the root of the
tail as well as the effects of the root rotation angle (nominal angle of attack) on
LCO response. The tail model is mounted vertically in the wind tunnel. The effect
of the gravity load is not considered in the computations and experiment discussed
here although a later study included the effects of gravity by testing the model in a
horizontal mount.

rotation
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Fig. 7 a Schematic of the all-movable tail model with free play in the root rotation mechanism, b
and c photographs of the model configuration and freeplay at root support mechanisms, d natural
frequency versus uncoupled rotation frequency, ωφ at the root
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3.2.1 Experimental Model and Measurement System

A uniformly tapered wing from root to tip was designed to simulate a conventional
unswept horizontal stabilizer. The schematic of the all-movable horizontal tail model
with free play gap in the root rotation mechanism is shown in Fig. 7a. The experi-
mental model includes two parts: a tapered wing and an actuating mechanism with
torsional free play gap at the root. The tail wing is untwisted and flexible in the flap,
lag and torsional directions. The root chord is 24.7cm and tip chord is 13.2cm and
the span is 39.7cm. The sweep angle of the lead edge is 5.7◦.

The wing is constructed from a precision ground flat steel spar with mass uni-
formly distributed along the wing span. The spar is 39.7cm in length, 1.905cm in
width and 0.127cm in thickness. It is inserted tightly into the wing root mechanism.
The spar elastic axis is located at 33% of the local chord aft of the leading edge which
is consistent with the location for the axis of rotation of the tail, see Fig. 7b

There are 14 pieces of 2.6cm wide sections uniformly attached to the spar along
the span. Each section consists of a pair of ribs with NACA 0012 airfoil plate made of
plastic material with 0.15cm thickness. Each airfoil plate is fabricated using a Laser
Printer and CAD software. Each airfoil section is constructed from two plastic airfoil
plates and balsa wood. The wing is assembled by inserting the steel spar through
a small slot cut through each of the sections. An additional 0.2 cm thick sheet of
balsa wood is placed between each section and the wing is permanently bonded. The
balsa wood placed between the airfoil sections provides some additional mass and
stiffness in the bending and in torsion.

The support mechanism for the entire tail model is mounted outside of the wind
tunnel at the top. The wing spar axis is mounted to support blocks through a pair of
precision bearings which have a small amount of dry friction in the ball, but this dry
friction is not accounted for in the computational code. There is a springwire inserted
tightly into a rotational axis between two bearings. The free end of the spring wire is
simply supported on a bracket of the support block. The amount of rotational stiffness
that the spring wire provides can be adjusted by moving the support block toward
or away from the rotational axis of the wing. Each freeplay gap is incorporated by
using a support block with a different size hole that allows the free end of the spring
wire to move through a given range of motion before encountering resistance. A
photograph of the spring wire assembly for the rotation stiffness (with freeplay) is
shown in Fig. 7c. The bracket is mounted on the support mechanism by screws. The
bracket allows rotation around the pitch axis when the screws are used to adjust the
nominal pitch angle.

The root pitch angle of the wing is measured by a rotational velocity displacement
transducer, R30, which is fixed at free end of the support block. The angular displace-
ment transducer was calibrated and showed excellent linear response characteristic
and high sensitivity. A 45◦ oriented strain gage for torsional modes were glued to
the root spar to measure the torsional elastic deflections of the tail. Signals from
the strain gages were conditioned and amplified before their measurement through
a gage conditioner and a low-pass filter. A micro-accelerometer is mounted at the
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tip-span of the tail. The output signals from these transducers are directly recorded
on a computer with data-acquisition and analysis software, Lab-VIEW 7.1.

A ground vibration test of themodel was used to determine the natural frequencies
and the modal damping. Figure7d shows the theoretical and experimental natural
frequencies at zero airspeed versus the uncoupled rotation frequency, ωφ. The first
mode is dominated by the first bending and the second is dominated by the first
torsion. The third mode is dominated by the second bending. When the tail wing
is cantilevered, ωφ = ∞, the first two theoretical bending frequencies 3.99, 23.1Hz
and the first torsion frequency is 30.2Hz. The experimental results are 4.0, 25.1 for
bending and 27.75Hz for torsion. In this case the agreement between the theory and
experiment is good.Also it is found that the frequencies are close to the corresponding
ωφ = ∞ values (as shown in Fig. 7d) over the higher ωφ range. This means the
coupling between the bending and torsion modes is weak.

3.2.2 LCO Correlation Study for α0 = 0◦

Four typical freeplay gaps are selected. These are δ = 0.1◦, 0.25◦, 0.5◦ and 1◦. The
military specification (MIL-SPEC) confines the freeplay limit of all-moveable control
surfaces to be less than 0.034◦ (peak-to peak value) to achieve the goal of no freeplay
induced LCO during normal operation of aircraft. In the present study, the maximum
freeplay gap is limited to ±1◦. The uncoupled rotation frequency, ωφ, is chosen to
be 7.5Hz, corresponding to root rotation stiffness, ks = 2.895N-m. Considering the
effects of flight loads on tail freeplay induced LCO, the initial angles of attack vary
from α0 = 0◦ to 6◦. The purpose of these computations is to determine the nominal
angles of attack for which when the freeplay induced LCO disappears.

Depending on the initial conditions and physical parameters, the response may be
either LCOs or chaotic oscillations, i.e. the oscillation is generally around one of two
equilibrium positions (±δ), and the particular equilibrium position depends upon
the initial conditions. Thus the oscillating displacement is essentially random with
respect to time. In this study, we used a velocity response for the bending motion and
a torsional rate for the torsional motion to present the LCO response behavior. A rms
amplitude for the bending displacement velocity at the tail tip and a rms amplitude
for the rotation angle at the root are calculated.

Figure8a and b show the rms LCO amplitude of the bending velocity and at the
tail tip (a) and the rms LCO amplitude of the root rotational angle motion (b) versus
the flow velocity for the initial disturbance angle, +δ at the root. The flow velocity
range is from 0 to 22m/s. Note that the linear flutter speed without freeplay is 23m/s.
In these figures results are included for four freeplay gaps, δ = 0.1◦, 0.25◦, 0.5◦ and
1◦. From Fig. 8, the following observations may be made.

(1). The theoretical LCO occurs over essentially the whole flow velocity range for
whichwhenU > 0. There is an oscillating divergence from theLCOmotionwhen the
flow velocity is greater than the linear flutter speed, i.e. U ≥ U f . The experimental
LCO occurs when flow velocity is larger than about 5m/s. Below 5m/s there is no
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Fig. 8 Correlation analyses for the all-movable model; a tip bending velocity at tip and b root
rotational angle at root versus the flow velocity for α0 = 0◦ and c, d for α0 = 2◦

measured LCO due to a dry friction torque in the root rotation mechanism. Without
this dry friction torque, LCO is predicted to occur at even lower flow velocities.

(2). The rms amplitude for both the bending and torsional response increases as
the flow velocity increases.

(3). The rms amplitude for the root rotational angle response oscillates around
the gap region. The amplitude varies with the flow velocity which depends upon the
initial conditions.

(4). As expected the rms amplitude for both the bending and torsional response
increases as the freeplay gap increases.

3.2.3 LCO Correlation Study for α0 �= 0◦

Five typical nominal angles of attack, α0 = 1◦, 2◦, 4◦, 6◦ and 8◦ and four freeplay
gap values as described before. Only one case is presented here. Figure8c, d show
the rms LCO amplitude for a nominal angle of attack, α0 = 2◦. For two free play
gaps, δ = 0.1◦ and δ = 0.25◦, LCO disappears above a certain flow velocity. The
corresponding flow velocities for which LCO disappears, Uno−LCO , are 12m/s for
the theory and 13.5 for the test in the case of δ = 0.1◦ and 16m/s for the theory and



Aeroelastic Models Design/Experiment and Correlation … 685

Table 6 Flow velocity at which LCO disappeared, Uno−LCO m/s

α0 / δ 0.1◦ 0.25◦ 0.5◦ 1.0◦

1◦ 17/(15.7)m/s None None None

2◦ 12/(13.5)m/s 16/(14.6)m/s None None

4◦ 8/(0)m/s 13/(11)m/s 16/(14.1) None

6◦ 0/(0)m/s 10/(0)m/s 15/(13) 17/(14.7)

8◦ 0/(0)m/s 0/(0)m/s 13.5/(0) 15.5/(12)

14.6m/s for the test in the case of δ = 0.25◦ respectively. When δ > 0.25◦, LCO
response occurs over the whole flow velocity range U f > U > 0.

Summarizing the theoretical and experimental results for α0 = 1◦ to 8◦, a dis-
appearance of the LCO boundary is listed in Table6. Note that the values in the
parenthesis show the results from the tests. Also as the nominal angles of attack
increases from 1◦ to 8◦, the following observations may be made.

(1). The flow velocity for LCO disappearing increases when the angle of attack
decreases for a given freeplay gap.

(2). The freeplay boundary for LCO disappearing increases when the angle of
attack increases for a given flow velocity.

(3). As expected the LCO rms amplitude for both the bending and torsional
responses increases with increased freeplay gaps. These results are similar to those
for α0 = 0◦.

(4). Note that LCO also disappears for flow velocities less than about 6.5m/s
which is attributed again to the presence of friction in the root support mechanism.

The quantitative agreement between the theory and experiment is reasonably
good for zero and non-zero angles of attack. The fair to good quantitative agree-
ment between theory and experiment verifies that the present method has reasonable
accuracy and good computational efficiency for the flutter/LCO analysis.

4 Experimental Models for Measuring Aerodynamic
Response Phenomenon in Buffeting Flow

In earlier computational work by Raveh and Dowell, Ref. [46, 47], large shock
oscillations (buffet oscillations) are observed for a certain combination of Mach
number and steady mean angle of attack even in the absence of structural motion.
Also in lower Reynolds number flow, bluff bodies in cross flow [48], and a flat plate at
high angles of attack [49] are observed to have the nonlinear oscillations induced by
the buffeting flow. In the buffeting flow there is a very interesting phenomenon called
“frequency Lock-in”. Under certain flow conditions, the shedding frequency can
lock into the natural frequency of the structure. In this Lock-in region, the structural
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response amplitude can reach a limit cycle oscillation that may cause high cycle
fatigue and eventually failure.

Two experimental models were constructed to observe the buffeting flow oscil-
lation. One is to find lock-in region by measuring the pressure variation on the
oscillating airfoil surface at high angles of attack. Another is to construct a partial-
span control surface (flap) attached to near the mid-span of a NACA0012 airfoil
model with and without freeplay gaps at high angle of attack and to measure the flap
response induced by the buffeting flow.

4.1 An Oscillating Airfoil Section Model in Buffeting Flow

4.1.1 Experimental Model and Measurement System

In order to observe the dynamic and static pressure distribution and measure the
aerodynamic loading due to a high nominal angle of attack and a small pitching
oscillation through wind tunnel tests, a typical section wing model was constructed.
Design of the typical section took into account the fact that it must accommodate
a root pitching oscillation, mount 20 micro-pressure sensors, PCB model 103B01,
for dynamic pressure measurement and 20 orifices for the static pressure taps at the
mid-span and also be mounted in the Duke University wind tunnel using an existing
pitch oscillating testing rig.

The profile of the typical section is a NACA 0012 symmetrical airfoil, having a
chord length of 0.2554 m, which nicely accommodates 20 dynamic pressure sensors
and 20 static pressure taps. The span, l = 0.52m of the typical section was dictated
by the height of the wind tunnel, as the typical section is to be mounted vertically.
Eight pieces of NACA0012 airfoil ribs made of aluminum material with 0.64cm
thickness are used for high chordwise stiffness and for adequate housing for bearings
supporting the small strip hinge. In addition,a mid-span aluminum rib with 1.27cm
thickness provides support for 20 pressure sensors, see Fig. 9a. The airfoil ribs are
placed on three spars that, in addition to being structural elements, have specific
functional roles.The spar placed at the quarter chord is an aluminum tube and serves
to mount the model on the testing rig that is connected to a pitch oscillating testing
rig to create an airfoil pitch oscillation.

The mid-span airfoil rib is specially made to measure the dynamic pressure dis-
tribution at mid-span and provide support for the 20 micro-pressure sensors. There
are 20 orifices of 1.16 mm diameter for the pressure taps which are symmetrically
distributedover the upper and lower surfaces, respectively. The orifice positions in
terms of percentage chord from the leading edge are 0.06, 0.12, 0.18, 0.3, 0.42, 0.49,
0.54, 0.61,0.74 and 0.92. The pressure sensor is bolted on themid-span airfoil rib and
installed with an adhesive mounting ring to prevent a pressure leak between the pres-
sure surface of the sensor and the airfoil orifice.The dimensions of the pressure sensor
are 9.5 mm diameter, 7 mm height. The weight is 3.26 g. The signal/noise is 60db,
i.e. the uncertainty is 0.1%. The dynamic range is 77db and the frequency range
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Fig. 9 Oscillating airfoil model in the buffeting flow and correlation analyses; a schematic of
pressure measurement, b experimental model in wind tunnel at high angles of attack, c buffet
frequency varies flow velocity and Reynolds number, Re, for “onset” boundary of the buffet flow
for nominal angles of attack, α = 30◦ to 60◦, d experimental and theoretical lock-in region for
α = 40◦ and the Reynolds number, Re = 100000 (U = 5.8m/s)

is 5Hz–13kHz. Details of the dynamic pressure measurement device are shown in
Fig. 9a. All the structural elements are held together by epoxy resin and mechanical
elements (bolts, pins etc). They are covered with 0.25 mm in thick aluminum foil
(called skin).

The root airfoil pitch excitation was performed by a pitch oscillatory shake table
which is mounted to a very heavy support frame that is attached to the ground. The
shake table is driven using a DC servo motor through a cam.The driving frequency is
controlled by a D/A NB-MIO-16 system. A nearly pure single harmonic excitation
is provided. A photograph of the wind tunnel model and the pressure measurement
system in the model is shown in Fig. 9b.

For the dynamic pressure measurement, the output of each pressure sensor and
pitch oscillating displacementwas directly recorded on a PC computer through signal
conditioners, PCB models481A02, 442C04 and a data acquisition package which
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consisted of a 20-channel analog to digital (A/D) plug-in interface board, a BNC
termination box,and data acquisition and analysis software, LabVIEW version 9.0.

4.1.2 Correlation Analyses for Frequency Lock-in Region

In this section, for comparison with the experimental results, the computational fluid
dynamic analyses of NACA0012 are conducted using a nonlinear, frequency domain,
harmonic balance (HB) code [50]. The viscous, Reynolds-averaged Navier–Stokes
equations are solved for a 2D slice using a Spalart–Allmaras turbulence model. The
O-grid contains 385 points in the circumferential direction, 97 points in the radial
direction and extent approximatery 20 diameters from the airfoil.

Aerodynamic response at buffet flow conditions with no pitch excitation were
measured for different flow velocities fromU= 5m/s to 27.5m/s and several nominal
angles of attack,α = 30◦ to 60◦. The results are shown in Fig. 9c in a plot of buffeting
frequency versus flow velocity and corresponding Reynolds number for the “onset”
boundary of the buffet flow.

For aerodynamic response to pitch exciton in the buffeting flow, a pitch sinusoidal
excitation at the airfoil root is added. The pitch excitation amplitudes, θ0, are con-
sidered in the present experiment from θ0 = 0.8◦ to 3.4◦. The excitation frequency,
fe (ωe = 2π fe) varies from 5 to 12.5Hz for the nominal angle of attack, α = 40◦
and the flow velocity, U = 5.8m/s and Reynolds number Re = 100,000.

Figure9d shows the experimental lock-in region found by enforcing the airfoil
oscillations at a fixed amplitude and frequency. The non-dimensionalized frequency
is defined as fe/ fb. The angle of attack is 40◦ and the Reynolds number is 100000
(U = 5.8m/s). Figure9d and other comparable data may be found in Besem et al.
[51]. The diamond symbols represent conditions where the shedding and enforced
frequencies are unlocked, the circle symbols show lockin conditions, and the square
symbols have a chaotic behavior that can be attributed to the edge of the lock-in
region. The “V” shape is similar to the numerical results conducted by HB code
[50], though the lock-in region is narrower numerically, which can be attributed
to the chaotic behavior on the edges of the lock-in region. In the experiments, it is
difficult to separate the frequencies due to themotion and due to the shedding because
of the noise in themeasurements. However, the computational code solutionwill only
converge if the two frequencies are perfectly Locked-in. This explains why the edges
of the Lock-in region are difficult to compare with the experiments.

From Fig. 9c and 9d the following observations may be made.
(1). The buffeting frequency is almost directly proportional to the flow velocity

or Reynolds number for any nominal angle of attack.
(2). The buffeting frequency (the starting points of the curves) depends on a

combination of nominal angle of attack and flow velocity or Reynolds number.
(3). As the nominal angle of attack increases the buffeting frequency decreases

for a certain flow velocity or Reynolds number.
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4.2 An Airfoil with and without Freeplay Control Surface in
Buffeting Flow

4.2.1 Experimental Model and Measurement System

The airfoil experimental model and the pressure measurement system are the same
as described above. This model is mounted vertically to a very heavy support frame
that allows one to adjust the nominal angle of attack of this model. The rotation
center is at the one quarter chord of the airfoil. A photograph of the experimental
model is shown in Fig. 10a.

Based on the above model, a partial span control surface (flap) with 5.08cm chord
and 5.08cm span is mounted on the wing model at span location, y = 28cm and
chord location of x = 20cm. The flap pitch rotation axis is placed at x = 20cm.
The rotation axis is comprised of two micro-bearings and allows the flap to have a
rotational degree of freedom relative to the main wing. A steel leaf-spring is inserted
tightly into a slot of the rotation axis of the flap.The free end of the leaf-spring is
inserted into a support block mounted on the main wing. The amount of structural
stiffness that the leaf-spring provides can be adjusted by moving the support block
toward or away from the rotational axis. Freeplay is incorporated by using a support
block that allows the free end of the leaf-spring to move through a given range of
motion before encountering resistance. A schematic of the leaf spring assembly for
the partial control surface (with freeplay) is shown in Fig. 10b.

Two strain gauges are glued to both sides near the fixed end of the leaf-spring
and are used to measure the flap pitch angle. The pitch angle calibration has been
made from the strain gages. There is almost a linear relationship between the output
voltage and the input pitch angle within 15◦. The average sensitive coefficient is
1.115 degree/voltage. For the dynamic pressure and flap pitch angle measurements,
the output of each pressure sensor and pitch angle were directly recorded on a PC
computer through signal conditioners and a data acquisition packagewhich consisted
of a 20-channel analog to digital (A/D) plug-in interface board, a BNC termination
box, and data acquisition and analysis software, LabVIEW version 9.0.

Because of unavoidable freestream and boundary layer turbulence irregularities,
the free stream turbulence levels are about 1% of the nominal velocity. In order to
remove this randomness from the pressure data, an ensemble averaging procedure
over a total of 20 records was carried out. The response is given by a rms value over
the total sampling length for the experimental data. For the FFT analysis of these
experimental data, an ensemble averaged FFT analysis has been used. Twenty (20)
test time samples are taken to do the FFT analysis and an averaged FFT amplitude
and frequency are determined.
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Fig. 10 Experimental Freeplay model and correlation analyses in buffet flow; a photograph of
model, b schematic of a portion of main wing-partial span surface assembly, c dynamic rms flap
pitch amplitude versus buffet frequency for α = 30◦ to 50◦ without freeplay, d dynamic rms flap
pitch amplitude versus flow velocity for α = 40◦ and freeplay gap, δ = 0.25◦ to 1.0◦

4.2.2 Measured Aeroelastic Response of the Flap Induced by Buffeting
Flow

The experimental flap pitch stiffness is kp = 0.0569Nm/rad and the flap pitch
moment of inertia is Jp = 0.42155E−5 kgm2 and the corresponding flap pitch nat-
ural frequency is f p = 18.25Hz. All aeroelastic flap response tests were performed
for nominal angles of attack from α0 = 30◦ to 50◦ and the flow velocity varies from
5m/s to 26m/s. Four freeplay gap ranges are considered in the wind tunnel tests,
δ = ±0.25◦, ±0.5◦,±0.75◦ and ±1.0◦.
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Figure10c shows flap rms pitch amplitude versus the buffeting frequency, for the
nominal angles of attack α0 = 30◦ to 50◦ without freeplay gap. There is a local peak
amplitude for each nominal angle of attack. Corresponding to these peak amplitudes,
the flap is excited by a larger aerodynamic load with a certain excitation frequency,
i.e the buffet frequency, fb.1 At the peak response values, the buffeting frequencies
are close to the flap natural frequency, f p. We use a dotted line to connect these peak
points in this figure. The rms dynamic flap responses are created by two different
types of flow separation: one is due to a randomly fluctuating flow as shown for
α0 < 28◦ and the other is due to a von Karman street vortex flow that has a dominant
frequency when α0 > 30◦. The fluctuating flow has a white noise characteristic and
the noise strength increases as the flow velocity increases. This noise excitation
always leads to an increase in rms flap amplitude with increased flow velocity, but
the von Karman street vortex flow or buffeting flow significantly increases the rms
flap amplitude when the buffeting frequency is close to the flap natural frequency.

Generally, the rmsflap response amplitude increases as the nominal angle of attack
increases. For example, whenα0 = 30◦, the buffet flow strength, i.e the peak value at
the buffeting frequency, is relatively weak. Indeed, for the range of 28◦ < α0 < 30◦
it is difficult to identify the dominant buffeting frequency from the measured flap
response due to the weak buffeting flow. When α0 > 40◦ the buffet flow strength is
stronger and the effect on the flap response is significant.

The dynamic rms amplitude of the flap pitch angle versus the flowvelocity for four
freeplay gaps at nominal angle of attack,α0 = 40◦ is shown in Fig. 10d. The dynamic
rms amplitude does not increase monotonically with an increased flow velocity.
There is a local peak amplitude for each freeplay gap. Corresponding to these peak
amplitudes, the flap is excited by a larger aerodynamic load with a buffeting flow
frequency, fb and these buffeting frequencies are close to the flap natural frequency,
f p. Corresponding to the peak amplitude, the flow velocity, Up−p = 13.1m/s and
frequency fb = 18.5Hz for no freeplay gap. The Up−p values for different freeplay
gaps are also very close toU= 13.1m/s. The corresponding f p−p values for different
freeplay gaps are very close to the buffeting frequency, fb. It is interesting to note
that the peak rms amplitude for different freeplay gaps are also close to the value for
no freeplay case. This means the effect of the freeplay gap on the dynamic response
of the flap motion is small.

Due to the larger static preload of the aerodynamic forces, the flap pitch motion
is always near to one side of the freeplay boundary. The flow buffeting frequency
versus the flow velocity can be determined from measured flap motion. The results
show that the flow buffeting frequency is almost independent of the freeplay gaps,
as expected.

The buffet flow occurs at large angles of attack and leads to a larger preload
due to the aerodynamic forces and thus a larger static pitch equilibrium position. In
this case no limit cycle oscillations (LCO) of the flap pitch motion induced by the
freeplay gap were found. The flap pitch motions are around the upper boundary of

1 Recall that the buffet frequency is given in Fig. 9c as a function of flow velocity for the various
angles of attack.



692 D. Tang and E. H. Dowell

the freeplay gap only. Buffeting flow excitation leads to a large dynamic response
when the buffeting frequency is close to the flap natural frequency.

5 Design of A Gust Generator and Gust Responses to
Linear and Nonlinear Structural Models

In recent years, various mechanisms for creating an oscillating flow in a wind tunnel
have been developed for the purpose of studying the response of linear and nonlinear
structural modes to gust excitation. These methods include oscillating biplane vanes
mounted on the side walls of the test section entrance [52], a cascade of oscillating
airfoils [53], fixed airfoils with oscillating flaps [54], fixed airfoils with oscillating
jet flaps [55] and airfoils with circulation control [56]. These conventional gust
generators require mechanical complexity to achieve the required sinusoidal lateral
and longitudinal gust amplitude over a useful frequency range. Thus, there is a need
for a new concept for a gust generator with a high degree of mechanical simplicity,
controllability and reliability. A flight flutter excitation system invented by Reed
[57] has been employed successfully in aircraft aeroelastic response investigations.
This excitation system has a very simple configuration and can produce high-force
aerodynamic excitation with minimal power and torque input.

5.1 Structural Design of RSC Gust Generator and
Measurement of Gust Angles

5.1.1 Structural Design of RSC Gust Generator

The design of the new gust generator is similar to that of two parallel airfoils with
circulation control or oscillating jet flaps. The latter needs an air supply source and
a more complex airfoil configuration to control the circutation or jet, and thus, the
gust magnitude. The former uses the local inflow airstream as an energy source.
The gust generator can induce a controlled gust field in the test section by means
of a fixed airfoil with a rotating slotted cylinder (RSC) at its trailing edge. Here the
lateral and longitudinal gust intensities are controlled by the RSC. The extremely
simple RSC/airfoil system combined with low cost is a major advantage of this gust
system. A gust generator based on the previous flight flutter excitation system was
designed by Dynamic Engineering Incorporated and made and installed by the Duke
aeroelastic group in the Duke University low speed wind tunnel.

The structural design of gust generator can be used to create a lateral gust or a
longitudinal gust that depends on RSC rotation direction. If two parallel RSC/airfoils
have the same rotating direction, it creates lateral gust else is longitudinal gust. Here
the structural design for lateral gust generator is described below.
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The basic design of the gust generator consists of an aluminum frame as a drive
support system that is inserted at the bottom near the test section entrance of the wind
tunnel. The frame holds two SRC/airfoils and also a motor drive system. The photo-
graph of the gust generator is shown in Fig. 11a. Each RSC/airfoil is a symmetrical
airfoil with a 2.54cm diam. RSC located at the trailing edge. The RSC/airfil is sim-
ply constructed using a fine-grain wood over an aluminum spar, with a chord length
of 10.16cm, spar length of 52.6cm and a NACA 0015 airfoil profile. The distance
between adjacent RSC/airfoil is 30.5cm. The cylinder is made from an aluminum
tube with an o.d. of 2.54cm and thickness of 0.32cm. The slot is symmetrical with
a 45◦ center angle. The slot is divided into two spanwise segments, supported by
an intermediate ring with a diameter of 2.54cm and a width of 0.25cm. The gap
between the o.d. of RSC and the trailing edge of the airfoil is 0.32cm. A photograph
of the RSC/airfoil is shown in Fig. 11c.

The RSC has two tip bearings that are centrally mounted on the ceiling plate of the
wind tunnel and the bottom plate of the frame. The frame is mounted to a very heavy
support table that is attached to the ground. A photograph of the frame is shown in
Fig. 11d. The frame is 15.24cm in width and 10.16cm tall.

Rotation of the RSC is provided by a DC servomotor DM-326. The interface
between the motor and cylinder is located on the lower part of the frame through a
motor drive system of timing belts and lightweight pulleys.

There are two modes of gust excitation considered in this generator: sine dwell
with a single frequency and linear frequency sweep. These are controlled by a Mac-
intosh II-Ci personal computer. The control program is included so that the experi-
mentalist can stop the frequency sweep and dwell at any frequency during the test
run.

5.1.2 Gust Flowfield Measurement

The lateral velocity�w (or hence, αg , which is equal to�w/U ), was measured with
a differential pressure probe mounted on a bar that is located a certain position in the
gust flowfield. The bar was attached to a stand fixed on a support table that can be
adjusted to any position.

The pressure probe consisted of two tubes or claws, oriented at 90◦ to one another
in the horizontal plane for measuring the lateral gust and a pitot tube at the center
of the probe for measuring the longitudinal gust. The photograph of probe is shown
in Fig. 11b. The ends of the tubes protrude from a slender aerodynamic housing,
which is oriented in the wind tunnel such that the angle between the tubes is bisected
by the freesteam. The tubes are connected to two ±0.1804-psi differential pressure
transducers with a high level voltage output, which is located ourside of the wind
tunnel andmeasures the pressure difference in the lateral direction. The configuration
of this probe is similar to a yaw meter of the five-hole probe. For the principle of
the gust flowfield measurement, see Ref. [58]. The relationship between the output
voltage from the differential pressure transducers and lateral gust angle was obtained
by using a statical or a dynamical calibration.
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(a) Photograph of gust generator (b) Photograph of probe

(c) Photograph of RSC/airfoil (d) Photograph of side frame

Fig. 11 Structural design of RSC/airfoil gust generator and gust angle measurement in Duke
University low speed wind tunnel; a photograph of the RSC/airfoil gust generator, b photograph of
the probe, c photograph of the RSC/airfoil, d photograph of the frame

5.2 Verification of Design Principle of RSC Gust Generator

The design principle is based on Biot–Savart law of the aerodynamic theory. The
lift generated by each RSC/airfoil can be considered as a linear segment vortex of
a circulation located at the quarter chord of the combinated RSC/airfoil. A static
equivalent lift coefficient from both a numerical computation and an experiment
study can be used to verify the design principle of gust generator and obtain an
optimal design of this gust generator. The equivalent lift coefficient is defined as

CLeq = 2(Lair f oil + Lrsc)/[ρU 2(c + d)]

where Lair f oil is airfoil lift force per span length and Lrsc is RSC lift force per span
length, c and d is airfoil chord length and cylinder diameter.
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5.2.1 Experimentally Measured Lift Forces of Arfoil and RSC

The experimental model and measurement technique are described below.
A two-dimensional NACA 0012 airfoil model measuring 30.48cm in chord and

53.3cm in span was mounted vertically across the test section from the tunnel floor.
The airfoil is set at zero angle of attack. A gap of approximately 0.16cm existed
between the ends of the model and the wind tunnel walls. There are 35 orifices
0.12cm in diameter used for pressure taps that are symmetrically distributed over the
upper and lower surfaces of the midspan, respectively. These orifices are connected
to a scanivalve system, a standard static pressure measurement system in the wind
tunnel.

The RSC is made by using a special manufacturing technique. The cylinder itself
is made from a special tube with an o.d. of 7.62cm and thickness of 0.95cm. The
slot is symmetrical with a 45◦ center angle. A top plate with a thickness of 0.635cm
is mounted on the top end of the RSC and a root bracket fixed on the bottom end of
RSC that is connected to a rotating support of a wind tunnel balance. The RSC is
mounted vertically and cantilevered from the rotating support behind the airfoil. The
gap between the top of RSC and the ceiling of tunnel is 0.16cm. The gap between
the o.d. of the RSC and the trailing edge of airfoil can be adjusted by moving the
airfoil root support.

The RSC is statically rotated from 0◦ to 180◦ and then the pressure distribution on
the airfoil surface and the lift force, Lair f oil , of the RSC are measured. The output of
the measured static pressure through the scanivalve system was directly recorded on
a Macintosh IIci computer through a data acquisition package. NB-MIO-16 board
and an analysis software, LabVIEW 2. The wind tunnel balance with a readout
instrument was used to measure directly the lift force, Lrsc, of the RSC system. A
rotating controller was used to control the rotational angle of the RSC from 0◦ to
180◦.

5.2.2 Correlation Between Experiment and Numerical Simulation

Based on the experimental model, the flowfield around a combinated RSC/airfoil is
numerically simulated using the general purpose finite element program FIDAP. The
flow is assumed to be quasisteady, turbulent, incompressible and two dimensional.
The turbulence is modeled far from the walls by a high Reynolds number κ − ε
model. In the near wall region, which includes the viscous sublayer, the mixing
length concept is used to model turbulence. The variation of lift as a function of the
rotation angle and as a function of the gap between the airfoil and RSC is calculated.

Three typical RSC/airfoil gaps are selected in the experiment and computation. A
nondimensional gap, ē is normalized by the airfoil chord length. There are ē = 0.03,
0.08 and 0.3. The flow velocity is U= 20m/s. A typical theoretical and experimental
equivalent lift coefficients CLeq versus statically rotational angle of RSC is shown in
Fig. 12a for nondimensional gap ē = 0.08 and U = 20m/s. From the FFT analysis
of these data, the theoretical and experimental equivalent lift coefficient are 0.31 and
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0.39, respectively, for the dominant periodic component. The maximum lift response
is located at a rotational angle, φs = 20◦ and the minimum lift response is located
at φs = 70◦. At φs = 45◦ and φs = 135◦ the lift response are zero. These results are
physically plausible due to the RSC symmetry at a zero lift position. The agreement
between theory and experiment is good.

The purpose of these test and computation is not only to do verification of design
principle of RSC gust generator, but also to observe the variation of the lift coefficient
induced by rotating the RSC and the effects of the RSC position. As shown in
Fig. 12b and c, it is found that the lift coefficient decreases as the gap value increases.
It is believed that the lift coefficient should be zero when the gap value is large
enough. Also note that the differences between the experimental and the numerically
simulated lift coefficients increases as the gap decreases.

For more details of the experimental measurements and numerical simulation
method see Refs. [59, 60].

5.3 Gust Responses for High-Aspect-Ratio Wing

Theoretical and experimental correlation analyses of the static aeroelastic response,
flutter and limit cycle oscillations have been discussed in the Sect. 2.1. The exper-
imental wing model and experimental measured system are also described in this
Sect. 2.1 and also used in this gust response correlation analysis. The goal of this
section is to assess experimentally the theoretical correlation of gust responses to
a single harmonic and sweep frequency gust excitations using nonlinear structural
beam theory and linear gust aerodynamic theories. The experimental model is verti-
cally mounted on the ceiling of the wind tunnel and behind the RSC gust generator
that is described above. A photograph of the experimental model and gust generator
in the wind tunnel is shown Fig. 13. Dur to the wing is in the vertical status, the
effects of wing gravity is neglected in the correlation study.

5.3.1 Responses to A Single Harmonic Gust Excitation

In order to obtain a more meaningful correlation between theory and experiment, the
gust angles of attack for a single harmonic aremeasured and quantitatively calibrated.
A typical time history and corresponding FFT analysis of the gust angle of attack
are shown in Fig. 14a and b for U = 25m/s and gust frequency ω = 18.5Hz. As
shown in the FFT analysis of Fig. 14b, the gust load is not a pure sinusoid. The
second harmonic component is small however. Similar results are found for other
gust frequencies. Figure14c shows themeasured gust angle of attack (αG ) versus gust
excitation frequency (Hz) for a flow velocity ofU = 25m/s. In this figure, a symbol,
◦, indicates the measured first harmonic component and the symbol, •, indicates
the second harmonic component. The solid line is a least-square curve fitting of the
experimental data. A formula based upon the measured experimental gust angle of
attack is constructed as
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Fig. 12 Theoretical and experimental static equivalent left coefficients of RSC/airfoil versus stati-
cally rotational angle of RSC for nondimensional gap between the RSC and the airfoil trailing edge
and flow velocity U = 20m/s; a for ē = 0.08, b for ē = 0.03 and c ē = 0.3

αG(t) = αG1 sinωt + αG2 sin(2ωt + �φ)

where �φ is a possible phase difference between first and second gust frequencies.
However, it is difficult to determine �φ due to the flow field created by the present
RSC gust generator. Thus we assume �φ = 0 as an approximation in the theoretical
computations.

Using experimental gust angle versus gust frequency (Fig. 14c), the correlation
analyses between the theoretical and experimental results for the mid-span velocity
response (rms) versus gust excitation frequency at the flow velocity U = 25m/s is
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Fig. 13 Photograph of the
experimental model and gust
generator in the wing tunnel

shown in Fig. 14d (θ0 = 2◦). Two dominant peaks are found. One is at a frequency,
19Hz, which corresponds to the second flapwise bending mode and the other is
near 22–23Hz, which corresponds to the first torsional mode. The theoretical and
experimental results verify that the correlation is good.

5.3.2 Responses to A Frequency Sweep Gust Excitation

Before the test, the frequency sweep gust excitation values are measured and quan-
titatively calibrated. The measured point of the probe is located at the position of
the wing model. Figure15a shows a measured time of continuous linear frequency
sweep gust angle of attack for U = 25m/s. The gust strength (angle of attack) is
not constant with time as expected from theory. For the measured lateral gust, the
minimum and maximum frequencies are 0 and 40Hz, and the sweep duration T is
4 s. For convenient application in the gust response analysis, a formula based upon
experimental gust angle of attack data is constructed,

αG(t) = αG(t) sin

(
ω1 + ω2 − ω1

2T
t

)
t

and where αG(t) is given by

αG(t) =
4∑

i=0

ci t
i

and c0, . . . c4 are determined by the least-square curve fitting method of the experi-
mental data.
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Fig. 14 Gust response to a harmonic excitation for the flow velocity U = 25m/s; a time history of
single harmonic gust excitation for gust frequency, ω = 18.5Hz, b FFT analysis of the time history,
c gust angle of attack versus gust frequency, experimental data points are indicated by the circles.
Solid lines are curve fits, d theoretical and experimental velocity response (rms) to gust excitation
frequency at mid-span for θ0 = 2◦

An envelope of the numerical gust simulation is plotted in Fig. 15a as indicated
by the broken line that is applied to the theoretical computations.

Figure15b shows a corresponding power spectra density (PSD) plot and compar-
ison between the measured continuous linear frequency sweep gust (solid line) and
the numerical gust simulation (broken line) for U = 25m/s. The experimental PSD
is based on an average over 20 sweep periods.

Using the above formula of the experimental frequency sweep gust envelope,
(Fig. 15a), the correlation analyses between the theoretical and experimental results
for the mid-span flapwise velocity at flow velocity ofU = 25m/s and a steady angle
of attack, θ0 = 2◦ are shown in Fig. 16a–c. There are ten sweep periods in 40s and
the total sampling length is 51,200 points for the measured data. Figure16a and b is
one sweep period of the total sampling length for the theoretical and experimental
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time histories of the mid-span flapwise velocity response. Corresponding to Fig. 16a
and b, theoretical (solid line) and experimental (dashed line) PSD results are shown
in Fig. 16c for an average over 10 sweep periods. The agreement between theory
and experiment is reasonably good. The peak frequencies of the PSD analysis are
very similar to Fig. 14d. It further confirms our previous conclusions for the single
harmonic excitation.

In addition to the high-aspect-ratio wing model [3], studies of gust response for
other linear and nonlinear structural models have been made. These are:

1. A flexibly suspended high-aspect-ratio wing model [4];
2. A delta wing model [17, 18];
3. A wing-store model including a freeplay in the store support [19];
4. An airfoil section wing control surface freeplay [22, 23];
5. An airfoil with electro-magnetic dry friction damper [24];
6. An All-movable tail model including a freeplay in the control system [26].

6 Aero-Electromechanical Interaction: Theoretical and
Experimental Correlation of Energy Harvesting

Recently energy harvesting from fluid-structural interaction has been studied theo-
retically and experimentally. Many papers on nonlinear beams and plates in axial
flow from Paidoussis’ group [61] (Cantilevered flexible plates in axial flow: Energy
transfer and the concept of flutter-mill; The dynamics of variants of two-dimensional
cantilevered flexible plates in axial flow) and also fromMichelin’s group [62] (Energy
harvesting efficiency of piezoelectric flags in axial flows; Influence and optimization
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Fig. 15 Gust response to a linear frequency sweep excitation for the flow velocity U = 25m/s; a
time history of frequency sweep gust excitation, b for PSD analysis of the gust excitation.
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Fig. 16 Gust response to a linear frequency sweep excitation for the flow velocity U = 25m/s; a
theoretical velocity time history of mid-span flapwise for θ0 = 2◦, b for measured time history at
mid-span flapwise, c PSD analyses for both the theoretical and experimental times for θ0 = 2◦

of the electrodes position in a piezoelectric energy harvesting flag) have developed
new computational methods about fluid-electric-mechanical coupling system and
provided very useful information.

Modeling of aero-electromechanical interaction in active flutter suppression and
in energy harvesting extraction from a large nonlinear aeroelastic response has been
studied anddeveloped theoretically and experimentally in theDukeAeroelastic group
[63–65]. For the former, two typical example systems, a typical section model and
a flexible delta wing have been described by David Cox in chapter “Aeroelastic
Control”. For the energy harvesting project, the inextensible beam and plate theory
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developed by this group has provided a strong theoretical foundation. This theoret-
ical approach has been applied to nonlinear aeroelastic response analysis and aero-
electromechanical coupling model analysis and also correlated with results from
wind tunnel experiments.

The studies of energy harvesting include experimentally aeroelastic model design
with partly and fully covered piezoelectric and piezo film sensor attached to a beam
or plate, experimentally electromechanical model design and power energymeasure-
ment from large structural response and also the theoretical and experimental corre-
lation both for the flapping response from wind tunnel testing and energy harvesting.
Theoretically, the structural dynamic equation includes the effects of the mass and
stiffness of piezoelectric sheets and the stiffness nonlinearity form inextensible beam
and plate theory. Also the linear electric equation includes these nonlinear terms from
the above effects. To find a optimal energy extraction, the fully covered piezoelectric
plate is rotated from a positionwith the clamped edge normal to the flow (0◦) towhere
the clamped edge is aligned with the flow (90◦), i,e the yaw angle, β varies from
0◦ to 180◦. Thus, this numerical simulation provides a better option of the yawed
plate. Two cases of the theoretical and experimental correlation are considered. One
is an experiment for a large flapping response created by an external force vibration
excitation near the second bending natural frequency. This experiment not only eval-
uates the theoretical aero-electromechanical coupling model, but also the nonlinear
inextensible beam theory when the electric circuit is closed. Another experiment is
for a large flapping response created by a limit cycle oscillation of a fluttering flag
providing an aeroelastic energy harvester created for piezoelectric power genera-
tion in an aerodynamic flow field. AC voltage outputs from the piezo patch or film
sensors and a DC power extraction through a AC/DC convert circuit are obtained.
These experiments are used to evaluate a new computational model and code for an
aero-electromechanical system. These provide a good physical understanding of the
flutter/LCO and the energy harvester characteristics of this aero-electromechanical
system.

There are several alternative strategies for energy harvesting including energy
harvesting from fluid-structural interaction. Based upon the present and prior work
the following may stated with some confidence. Self excited nonlinear oscillations
arising from the dynamic instability of the corresponding linear fluid-structural sys-
tem will provide larger energy/power levels than alternative concepts based upon
stable dynamical systems excited into resonance. Most of the concepts previously
studied in the literature lead to milliwatts of power typically, with a few that might
reach a watt. As shown in Ref. [64] by the numerical simulation for a comparable
sized system, the tens of watts can be theoretically achieved and scaling laws have
been developed that allow one to to increase power levels to even greater levels
with systems of greater size and improved piezoelectric patches with larger coupling
coefficient.
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Table 7 Geometric and material properties

Parameter P-876A12 DT2-028K/L DT4-028K/L

Piezo-Sheet numbers,
m

#1, 2, 3 #6, 7, 9 #4, 5, 8

Length (l p, lt1, lt2, L)

(mm)
61 73 171

Width (bp, bt , b)
(mm)

35 16 16

Thickness (tp, tt , ts )
(mm)

0.5 0.04 0.04

Mass density
(ρp, ρt , ρs ) (kg/m3)

4666 1789 1789

Elastic modulus
(Ep, Et , Es ) (GPa)

23.3 3.0 3.0

Coupling coefficient
(ep31, e

t
31) (C/m

2)
−0.6 −0.01 −0.01

Permitivity constant
(εp33, ε

t
33) (F/m)

33.63e−9 107e−12 107e−12

6.1 Experimental Model and Measurement System

6.1.1 Experimental Model for Partly Covered Piezoelectric Patch and
Piezo Film Sensors

A 6061-T6 aluminum elastic plate was used as a substrate lamination. One end was
clamped to a heavy support that was fixed on the ground and the other end is free.
The length, width and thickness are 513, 101.6 and 0.375 (mm) of the substrate plate
and the mass density and elastic modulus are 2840kg/m3 and 68.9GPa. Two kinds of
piezoelectric patches, P-876A12 and piezo film sensors, DT2-028K/L, DT4-028K/L
were bonded to the substrate on both surfaces or only on one surface. A schematic
of the distribution of the piezoelectric patches and piezo film sensors is shown in
Fig. 17a. The material properties and geometry of the substrate laminate and the
piezoelectric patches and piezo film sensors are shown in Table7.

6.1.2 Experimental Model for Full Covered Piezo Film Sensors

The same cantilever elastic plate was used as a substrate, but twelve (12) piezo film
sensors, DT4-028K/L were bonded to the substrate on both sides. A photograph of
the distribution of the piezo film sensors is shown in Fig. 17b.

The flexible plate has several piezoelectric patches and piezo film sensors attached
and is placed in a uniform axial flow. This flexible system can be considered as a flap-
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(a) Schematic

(b) Photograph (c) Photograph

Fig. 17 Schematic of the distribution of the partly corvered piezoelectric patches and piezo film
sensors (a), photograph of the aeroelastic model (fully covered model) in the wind tunnel (b), and
photograph of the forced vibration test setup (c)

ping flag model, i.e a non-uniform beam model. The stiffness and mass distributions
are variable along the elastic axis.

6.1.3 Experimental Setup and Measurement Data Acquisition

In both cases the aluminumplate is cantilevered horizontally, flag configuration, from
a stiff vertical aluminum profile. The data is acquired with m+p VibPilot 24bit 8ch
DAQ. The AC voltages from piezo elements are rectified through full-wave DF04S
rectifier. Tip acceleration is measured with PCB 352C22 accelerometer.

Dynamic responses and energy harvesting from a forced vibration test.
The plate is excited through B&K 4809 shaker, positioned horizontally and

attached to the plate through Dytran 1022V force sensor. The shaker is controlled
through the DAQ unit with compatible amplifier. The applied force and tip accel-
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eration are acquired directly. The excitation is pure sine with pre-set frequency. A
photograph of the forced vibration test setup is shown in Fig. 17c.

LCO aeroelastic response and energy harvesting from the wind tunnel test.
The cantilevered plate is placed inside thewind tunnel, with aluminumprofile cov-

ered with 3d printed plastic shroud to reduce vortex shedding. Air speed is measured
with a pitot tube sensor and acquired directly together with tip acceleration and volt-
age outputs in the DAQ unit. The air speed is increased manually with data recorded
constantly during the tests. The tip deflection was measured with an accelerome-
ter and the defection inferred from that. Given a dominant single frequency in the
response, this is straightforward. A photograph of the aeroelastic model (fully cov-
ered model) in the wind tunnel is shown in Fig. 17b.

6.2 Theoretical/Experimental Correlations

6.2.1 Dynamic Response and Power Extraction from Force Vibration
for Partly Covered Beam Model

Figure18a shows the stiffness and mass per length distribution for the partly covered
piezoelectric patch and piezo film sensors. The piezoelectric patch of P-876A12
provides a large additional stiffness and mass near the root of the cantilever beam.
However the piezo film sensors ofDT2-028K/L andDT4-028K/L provide very small
additional stiffness and mass. The weight of the accelerometers is accounted for in
the computational model. The weight of the wires was added as distributed mass in
the model. A finite element method (FEM) is used to calculate the eigenvalues and
eigenvectors. The first five (5) natural frequencies of the beam are 1.74, 8.67, 22.85,
45.53 and 73.73Hz.

A standard hammer test was performed in order to identify the dynamic properties
of the experimental model. The first two natural frequencies are 1.23 and 8.6Hz.
An experimental model to be subjected to a dynamic loading was constructed. A
periodic dynamic point force, f0 sin(ωt)δ(x f − L) is applied near the root of the
cantilever beam,whereω is the external frequency and is set close to the experimental
second natural frequency, 8.6Hz. Note that the theoretical second natural frequency
is 8.67Hz. The force driving point is at x = 60 mm. First five bending modes are
considered in the calculations and the modal damping is ξ = 0.015 for all modes.
The external force f0 varies from 0.4 N to 14.4 N.

Figure18b shows the nondimensional response amplitude, wtip/L at the tip for the
external force amplitude from 0.4 N to 14.4 N for the theoretical computations and
1.42 N to 13.2 N for the experiment. For comparison the results without the electric
coupled equations are also plotted in this figure. It is found that the nonlinear forces
are dominated by those of the structure. The linear and nonlinear electric forces
induced by the piezoelectric patch and piezo film sensor are smaller. The correla-
tion is reasonably good, but there are some differences between the computations
and experiment. The source of the difference may come from both the computa-
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tional model and the experimental measurement. The theoretical modal damping
does not exactly match the experimental model, because it varies when the excita-
tion frequency is equal to the second natural frequency. Also for the experimental
measurement it is difficult to control the excitation frequency to be at exactly the
second natural frequency. Although there are some differences, these results still
provide a good experimental verification of the inextensible beam theory.

The theoretical output sinusoidal voltage signal generated from the piezoelectric
patch converts to a DC voltage through an AC/DC convert circuit and is directly con-
nectedwith the capacitor. The algorithm of the conversion is based on the assumption
that the external electric circuit has a small effect on the voltage output of the piezo-
electric patch, and hence the amplitude of the voltage output on the patch remains
unchanged during the charging process. The DC amplitude remains the AC ampli-
tude. The experimental output voltage signal generated from the piezoelectric patch
converts to a DC voltage through an AC/DC convert circuit. The electric circuit is
shown in Fig. 18c.
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Fig. 19 Power extraction from a force vibration: output DC voltage (a) and power extraction (b)
from #4 piezo film sensor

Figure19a shows the DC output voltage at #4 piezo film sensor and the external
force amplitude from 0.4 N to 14.4 N. As expected the DC output voltage increases
as the external force increases. The correlation is reasonably good, but there are some
differences between the computations and experiments. The source of the error may
come from the determination of the piezoelectric properties such as the coupling
constants, ep31, e

t
31 and permittivity constants, εp33, ε

t
33. Here the piezo film coupling

constant is obtained from the experimental tip response and the corresponding AC
output voltage using the linear electric equation. Also the differences may come
from the AC/DC conversion. The theoretical AC/DC conversion assumes that the
peak value of the generated AC voltage from the piezo film sensor is close to the
converted DC voltage. The experimental AC/DC convert has difference in these
voltages of about 8–10

Corresponding to this output voltage of the #4 film sensor, the power extraction
can be calculated as

PDC = V 2
DC/R

where R is an effective resistance, R = 430k Ohm.
The theoretical and experimental correlation of a typical element is shown in

Fig. 19b for the power output for piezoelectric patch, P-876A12 at #4. The correlation
is good.

6.2.2 Aeroelastic Response and Power Extraction from Flag Flutter for
Partly Covered Model

A linear vortex lattice aerodynamic model was used. For the structural modal equa-
tion, the Runge–Kutta Fourth order algorithm is used and for the aerodynamic and
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Fig. 20 Tip response from a large aeroelastic response of partially covered model: tip acceleration
responses versus flow velocity, U (a), LCO frequency (b)

electric network equations the finite-difference method is used to calculate the non-
linear responses, peak output voltage and power extraction of this piezoelectric-
aeroelastic system.

Figure20a shows the acceleration peak amplitude in g at the tip for flow speeds
from 18.8m/s to 25m/s for the theory and 10 to 29.7m/s for the experiment. The the-
oretical tip acceleration as indicated by solid line rapidly increases as flow speed
increases. For the experimental measurement, two different LCO responses for
increasing and decreasing flow velocity were observed. The symbols, ◦ plus bro-
ken line and • plus solid line, indicate the experimental results for increasing and
decreasing flow velocity, respectively. With increasing flow velocity, we find a jump
atU = 20.6m/s which is similar to the theoretical results atU = 18.8m/s as shown
by the solid line. As the flow velocity increases further, the LCO amplitude that is
measured has a larger increase than that found from theory. When the flow velocity
is decreased, we find another jump at U = 18.87m/s as shown in Fig. 21a and as
indicated by the symbol, • with a solid line. The experimental linear critical flutter
boundary is estimated from this figure. An intersection between the extrapolated
LCO amplitude curve and the flow velocity axis is defined as the linear critical flutter
boundary. The estimated experimental flutter velocity is 20.36m/s and frequency is
6.4Hz. Corresponding to the experimental acceleration peak response, the measured
dominant LCO frequency are obtained. The theoretical and experimental LCO fre-
quencies are shown in Fig. 20b. The experimental LCO frequency is similar to the
theoretical frequency. As shown in Fig. 20a a hysteresis response was observed in
the experimental measurement but not in the theoretical response.

Corresponding to the DC voltage outputs of #3, P-876-A12 patch and the film
sensors of #4 and 6, the DC power extraction can be calculated with the effective
resistance, R = 750k Ohm. Figure21a–c show the theoretical and experimental cor-
relation of power extraction versus increasing flow velocity for patches #3, 4 and 6.



Aeroelastic Models Design/Experiment and Correlation … 709

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25  30

Po
w

er
 e

xt
ra

ct
io

n,
 m

ic
ro

 W
at

t

Flow velocity,m/s

Theory
Ref. power

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  5  10  15  20  25  30

Po
w

er
 e

xt
ra

ct
io

n,
 m

ic
ro

 W
at

t

Flow velocity,m/s

Theory
Ref. power

(a) #3 (b) #4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  5  10  15  20  25  30

Po
w

er
 e

xt
ra

ct
io

n,
 m

ic
ro

 W
at

t

Flow velocity,m/s

Theory
Ref. power

(c) #6

Fig. 21 Power extraction from a large aeroelastic response of partially covered model: power
extraction from piezoelectric patch at #3 (a) and piezo film sensors at #4 (b) and #6 (c)

Considering the effect of experimental AC/DC converter on the power extraction, a
reference power, (PRef.) concept is introduced. This is defined as

PRef. = V 2
AC,test/R

This means the AC/DC converter has zero voltage drop, i.e no energy loss in the con-
vert process. Thus, PDC = PRef.. Here VAC,test is the measured AC voltage output.
This reference power, “Ref. power”, is indicated in the figure. The electric power
extraction increases as the flow velocity increases as expected. Film sensor #6 pro-
vides much lower power extraction than patch #4 although they are both film sensors.
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This is because #6 patch is near the beam tip and the bending curvature velocity at #6
is smaller than those at #4 and also #3. Piezo patch #3 provides much larger power
extraction than patch #4. This is because #3 patch has a larger electric-mechanical
coupling coefficient, e31, than those of film sensor although the bending curvature
velocity at #3 is smaller than those at #4. It is also found that the theoretical results
are closer to the “Ref. power” results, i.e. the experimental results when the non-ideal
experimental AC/DC converter is neglected.

6.2.3 Aeroelastic Response and Power Extraction from Flag Flutter for
Fully Covered Model

As shown in Fig. 17b of the fully covered model by the film sensors, DT4-028 K/L,
the aeroelastic model is considered as a uniform flag plate. The structural natural
frequencies and mode shapes can be calculated for a uniform cantilevered beam.
The experimental first natural bending frequency is f1 = 1.44Hz. The theoretical
first five (5) bending natural frequencies are 1.44, 9.02, 25.27, 49.5 and 81.86Hz. The
theoretical linear flutter speed and frequency areU f = 21.25m/s and ω f = 6.24Hz.
The theoretical computations for the fully covered plate are similar to those for
the partly covered plate for the nonlinear structural modal and linear electric and
aerodynamic equations. The same algorithm and aerodynamic parameters are used.

Figure22a shows the acceleration peak amplitude in g at the beam tip for flow
speeds from 19.27m/s to 28.15m/s. The theoretical tip acceleration as indicated by
solid line rapidly increases as the flow speed increases. For the experimental mea-
surement, two different LCO responses for increasing and decreasing flow velocity
were observed. The symbols, ◦ plus broken line and • plus solid line, indicate the
experimental results for increasing and decreasing flow velocity, respectively. With
increasing flow velocity, we find a jump at U = 23.03m/s which is similar to the
theoretical results at U = 23.03m/s as shown by the solid line. As the flow velocity
increases further, the LCO amplitudemeasured has dropped down, but the theoretical
LCO amplitude continues to increase. This drop down phenomenon in the experi-
ment may be created by a effect similar to that of a nonlinear stalled airfoil because of
the large flag motions.When the flow velocity is decreased, another jump range from
U = 21.7m/s to 19.1m/s was found as shown in Fig. 22a and as indicated by the
symbol, • with a solid line. The experimental linear critical flutter boundary is esti-
mated from this figure. The experimental flutter speed and frequency are 20.36m/s
and 7.25Hz. The correlation is reasonably good.

Figure22b show the theoretical and experimental AC output voltage from the
film sensors, DT4-028K/L at #2. Due to different positions in the x axis, the output
voltages for #1 and #3 are different with #2. Near the root of the plate, #1 film
provides a lower AC voltage output and #2 patch provides a higher AC voltage
output. This is because the bending curvature velocity at #2 is larger than those at #1
and also at #3. Due to hysteresis, the measured AC output voltage has two different
results for increasing and decreasing flow velocity. The theoretical results are closer
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Fig. 22 Power extraction from a large aeroelastic response of fully coveredmodel: peak amplitudes
versus flow velocity for the tip acceleration (a), the theoretical and experimental AC output voltage
from #2 (b), DC power extraction from film sensors at #2 (c), total DC power extraction (d) versus
increasing flow velocity

to those from the experiment for increasing flow velocity than from the experiment
for decreasing flow velocity.

Figure22c shows the theoretical and experimental correlation of power extraction
versus the increasing flow velocity for the film sensor of #2. Considering the effect of
experimental AC/DC converter on the power extraction, “Ref. power” is also plotted
in this figure. The electric power extraction increases as the flow velocity increase
as expected. The film sensor of #2 provides much higher power extraction than the
patches of #1 and 3. This is because #2 has the larger bending curvature velocity.
The theoretical results are reasonably close to both the “Ref. power” and the real
“Test” results.

Figure22d shows the total theoretical and experimental power extraction versus
the increasing flow velocity for the fully covered plate. The fully covered plate
has total 24 film sensors bonded to the substrate for both surfaces and each power
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extraction is based on a single film sensor. The total power extraction should be and
is assumed to be the sum of each single film sensor. The theoretical and experimental
correlation is reasonably good. In the total power extraction analysis, it found that
#2 film sensor provides maximum contribution over the total power for both the
theoretical and experimental results. More than half of the total power extraction
comes from the film sensors at #2 position. This means that it is very important to
consider the optimal position of the piezo patch or film sensor.

Summarizing the correlation results, the following conclusion may be made.
1. The inextensible beam theory has been verified by the dynamic force vibra-

tion test with larger flapping response. A good correlation between the theory and
experiment was obtained for the structural motion.

2. A large LCO response beyond the linear flutter speed was observed from the
wind tunnel experiment and correlated with results from the computational model
for both experimental models. A good correlation for the linear flutter speed verifies
that the theoretical linear piezoelectric-aeroelastic model is accurate. A reasonably
good correlation for the LCO response shows the new computational code and the
nonlinear inextensible beam theory is useful. A hysteresis response of LCO in the
experimentalmeasurement and amplitude drop down in the higher flowvelocitywere
observed in the experiment, but not found in the computations.

3. The DC power extraction from the piezoelectric network equation depends on
the dynamic vibration amplitude or the LCO amplitude as well as the LCOmode and
the position of piezo patch or film sensor along the flow direction. This is because
the best position with a larger bending curvature velocity provides a larger power
extraction. Also the DC power extraction depends on AC/DC convert circuit and
there is an opportunity for improvement in the experimental model in this respect.

4. Given the complexity of the interaction among the structural deformation, the
aerodynamic flow field and the electrical field, the agreement between experiment
and the computational model is in fact encouraging. The basic structural plus aerody-
namic model has been studied by the authors and others and reported separately. Not
surprisingly, the added complexity of the electrical field leads to larger differences
in the results between the experiment and the computational model compared to that
of the aerodynamic plus structural model alone. However, it is clear that the basic
physics of the experiment is being captured by the theoretical/computational model.
But there is always room for improvement of course.

7 Conclusions

This overview of wind tunnel model design and testing conducted at DukeUniversity
over the last twenty years has demonstrated that a standard low speed wind tunnel
may be used as a test bed for a wide range of models to investigate linear and
nonlinear phenomena in aeroelasticity. The data acquired have been used to validate
and improve theoretical/computational models that in turn have provided a basis for
high speed flow prediction of comparable phenomena. Flutter, gust response, limit
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cycle oscillations and energy harvesting have been among the fundamental physical
phenomena that have been studied for models with a range of nonlinear elements in
the structures (including freeplay and nonlinear geometric, i.e. strain-displacement
relations) or aerodynamic flows (including flow separation over bluff bodies and
airfoils at high angles of attack). Correlation between theory and experiment has
been encouraging and ever better as the state of the art has progressed.
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Fluid/Structural/Thermal/Dynamics
Interaction (FSTDI) in Hypersonic Flow

Earl H. Dowell

Abstract Hypersonic flight is a major technical challenge and substantial efforts
are currently underway to provide the understanding and technology required to
design and operate effectively and safely a hypersonic aircraft for commercial or
military purposes. Leyva [1] has recently described the essence of this challenge.
The present chapter provides a summary of the past, present and proposed work for
fluid/structural/thermal dynamics interaction.

1 An Introduction and Overview

There are several key physical phenomena that can occur in hypersonic flight that
involve fluid/structural/thermal/dynamics interaction (FSTDI). This chapter is not
a review of the all the many papers that have been published that one might cite;
there are literally thousands. It is an effort to bring some order to this complex
multidisciplinary topic for the benefit of current and future research teams. In the
beginning of the discussion, issues involving only two disciplines are identified that
need further work as well as issues that are relatively well understood. Then the
discussion moves to issues involving three disciplines (FSI) and finally to FSTDI in
its full four discipline form.

To bring some order to the complexity, the focus will be on (1) response of struc-
tures to known turbulent flows, (2) global dynamic instability of the flow field due to
shock wave/boundary layer interaction, (3) dynamic instability of the combined fluid
structural system (flutter and limit cycle oscillations), and (4) effects of the thermal
fields on the foregoing as well as vice versa.

The discussion is inspired by the notion of simpler “unit projects” that are impor-
tant components of the full FSTDI challenge. In any of these projects a close inter-
action of theory/computations and experiments is needed. Theory/computation can
be a great help in designing and interpreting the results of experiments and of course
experiments can help assess the validity of the theoretical/computational model as
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well as uncover previously unknown physical phenomena. In thinking about the role
of theory/computation in designing and interpreting experiments, it is useful to con-
sider theory/computation as being a map to our ultimate destination. Even if the map
is imperfect (as it always is), we are more likely to have a more productive and less
costly journey when using a map to design and interpret the results of experiments.

As Peretz Friedmann [2] has pointed out, building on the seminal work of John
Dugundji and John Calligeros [3] on aerothermoelastic scaling, the total number
of significant non-dimensional parameters relevant to FSTDI and which must be
accounted for in both theory and experiment is very large. Indeed it is not possible to
design a model scale experiment that has all of the same (and potentially important)
non-dimensional parameters as a full scale vehicle. Hence any experiment can at
most represent an idealization of what the full scale vehicle will experience; but
model scale experiments can be very valuable if all the relevant non-dimensional
parameters are taken into account in the design of the experiment and the results
correlated with current and future theoretical/computational models.

Thesenon-dimensional parameters include the following:Machnumber,Reynolds
Number, the ratio of flow dynamic pressure to structural stiffness, the ratio of fluid
mass to structural mass, the ratio of static pressure loading to structural stiffness, and
the ratio of thermal stress induced by a temperature difference between the flexible
structure and its surrounding structure to flexible structure stiffness as well as the
geometry (e.g. length to width ratio) and boundary conditions of the structure. When
multiple disciplines are involved the number of relevant non-dimensional parameters
is indeed daunting.

Even for classical wing flutter, in experimental models, usually only the Mach
number and flow dynamic pressure to structural stiffness are the same at model scale
and full scale while the Reynolds number and the ratio of fluid mass to structural
mass are not. This choice is dictated in part by necessity and in part by theory which
suggests that the results are usually less sensitive to these latter two parameters. For
the greater number of relevant parameters for FSTDI in hypersonic flow, theory and
computations are even more valuable as a guide to the design and interpretation of
experiments.

1.1 Two Disciplines Interaction

These multidisciplinary interactions can be usefully depicted in the form of a matrix
as shown in Fig. 1 where both the horizontal and vertical components are four dimen-
sional, i.e. representing the (F) fluid, (S) structural, (T) thermal and (D) dynamics
disciplines.

The elements of this matrix have either XXX suggesting this two discipline inter-
action is very challenging and important to FSTDI; XX suggesting it is challenging
and may be important or X suggesting the interaction is not as challenging to model
and may usually be considered separately from FTSDI per se. Of course different
observers may have different views on this categorization of the several elements
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Fig. 1 Two disciplines interaction

and indeed as advances or new discoveries are made, the assessment of the elements
of this matrix may change. Note that the matrix is symmetric.

Also note that there are only six unique elements in the matrix. The evaluation
of the six X, XX, or XXX elements (at least in the authors’ minds) are justified as
follows.

Fluid/Structural (FS) Interaction: This describes the static deflection of the struc-
ture under fluid loading and also a possible change in the steady flow over the
structure due to the static structural deformation. This is a well-studied issue and the
interaction is usually modest and well understood.

Fluid/Thermal (FT) Interaction: This is the heating due to fluid flow and is well
studied even without reference to FSTDI per se.

Fluid/Dynamics (FD): This name can be confusing because the study of fluids in
general is often called fluid dynamics. But here we are concerned with time depen-
dent phenomena and, in particular, the dynamics of turbulence due to the transition
from laminar to turbulent flow as a consequences of the laminar flow becoming
dynamically unstable. Note however that even when the flow has become turbulent
a further dynamic instability may occur due to separated flow arising from shock
wave-boundary layer interaction. Some would say that this interaction is the most
demanding to model in all of FSTDI both theoretically/computationally and exper-
imentally. The dynamics of turbulence and shock-wave boundary layer interaction
represent two of the great unsolved problems in engineering and science and both pro-
vide an important source of excitation thatmay lead to significant structural response.
Given that both phenomena represent the nonlinear dynamics of a fluid arising from
dynamic instabilities they may prove to share certain fundamental characteristics.

Thermal/Structural (TS): Buckling of the structure due to thermal stress is perhaps
the most important issue here and again this issue is well studied even without
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considerations of FSTDI. However there is a concern that a buckled structural may
increase the heat transfer to the structure from the fluid and this is the theme of a
wind tunnel investigation byMichael Spottswood and his team at AFRL [4] that was
conducted in 2019.

Structural/Dynamics (SD): Determining the natural modes and frequencies of
a structure is an essential part of any FSDI or FSTDI investigation. However when
flexible plates are clamped (or pinned or otherwise fixed) on all edges or two opposite
edges, they will often have natural modes and frequencies that are sensitive to static
pressure and thermal loadings. Thus the SD investigation needs to be more extensive
when these two types of loadings are important, as they often are in high speed flows.

Thermal/Dynamics (TD): Usually the dynamics of the thermal field is not a major
concern on the time scale of interest for FSDI and FSTD, though one should always
check make sure that neglecting this effect is well founded in a given experiment or
flight vehicle design.

1.2 Three Disciplines (FSD) Interaction

Next, interactions among three disciplines are considered. There are several distinct
physical phenomena that may be of interest and a brief summary of the state of the
art and the need for further investigation is provided. Later in the chapter a more
extended discussion of available theoretical/computational results and experimental
results and their correlationwill be provided.This is the basis for the brief assessments
of the state of the art provided below.

Flutter And Limit Cycle Oscillations

There is a well characterized set of experimental data [5, 6] for flutter in the Mach
number range of M = 1.1–5 for plates clamped on all edges that has been well corre-
lated with theoretical/computational models. Qualitative experimental data are also
available for limit cycle oscillations that are consistent with theory and computations.
However quantitative experimental data for limit cycle oscillations are lacking. For
cantilevered plates, flutter and limit cycle oscillation data are available for low sub-
sonic flow that agree well with theory/computation [7]. However experimental flutter
data are lacking for all M > 1 for a cantilevered plate.

Plate Response To Turbulent Boundary Layer Pressure Oscillations And/Or
Engine Exhaust Flow Oscillations

A well-established theoretical/computational approach is available for determining
such responses given the oscillating pressures from measurements over rigid sur-
faces. It is thought that the aerodynamic damping due to structural motion can be
determined from a range of theoretical fluid models, but experimental confirmation
is lacking [6].
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Buffet Or Flow Oscillations Due To Shock-Boundary Layer Interaction Lead-
ing To Separated Flow

It is nowwell established that such flow oscillations are often due to a global dynamic
instability of the flow (which may already be turbulent) and some success has been
obtained in correlating experiments and theoretical/computational model for airfoils
and wings. Most of the work has been in the transonic range where such phenomena
have been observed on high performance aircraft and in wind tunnel models. See
Gianellis et al. [8] for a recent reviewof the literature. The shock oscillations observed
in hypersonic flow over ramps may have a similar character, but the theory is less
well developed and no successful correlation between theory and experiment has yet
been achieved [9–11].

Once the flow oscillations are established then the structure may respond and
changes in the flow pressure oscillations due to structural motion are thought to be
important. The flow over a blunt cylinder that induces a Von Karman vortex street
is broadly analogous and successful correlations between theory and experiment
have been achieved for a cylinder supported on springs as an example of a flexible
body. In this case, fully coupled fluid structure dynamic interaction occurs. However
experiments are lacking for M > 1 for any structure including airfoils and wings [6].

Changes In The Flow Dynamics Due To Structural Motion

These changes are usually modeled theoretically by potential flow theory or RANS
models for structural response investigations including flutter. However a long sought
goal is to modify the dynamics of the flow so that (1) the transition from laminar to
turbulent flow is delayed or (2) the intensity level of turbulence is reduced. Despite
great efforts over many years at low speeds as well as higher speeds, this goal has
remained elusive. In a recent supersonic experiment over a ramp with a compliant
material (rubber) ahead of the ramp, Narayanaswamy [12] found that the pressure
oscillation on the flexible wall near the shock location could be reduced. This is an
interesting result and provides a challenge to theoretical/computational models to
correlate with this experimental result.

1.3 Four Disciplines (FSTD) Interaction

The role of the thermal field may be several fold. First of all the structure may buckle.
A buckled structure is more likely to flutter if near the onset of the buckled condition
and the limit cycle oscillations may be larger than for an unbuckled plate. Indeed this
is true for any form of fluid excitation of the structure, e.g. due to turbulent boundary
layer pressure oscillations or those due to an engine exhaust. For flutter and limit
cycle oscillations there is a key experiment for a single elastic plate at M = 3 [5]
that has been well correlated with a theoretical/computational model. But additional
experimental data for a wider range of parameters is highly desirable.
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Some investigators are also concerned about material degradation due to high
temperatures, but this is a concern quite aside from FSTD interactions. As noted
previously there is concern that structural response may in turn increase the heat flux
to the structure. Also, for some reentry vehicles, striations have been observed on
the nose cone that it is suggested are due to the interaction of the fluid forces and
viscoelastic nature of the structure induced by high heating rates. However the data
in the open literature are not yet conclusive.

1.4 Distinction Between a Plate with All Fixed (Clamped)
Edges and a Cantilevered Plate (Clamped on One Edge
Only)

Much of the recent interest in FSTDI has been for plates that are clamped on all edges
or a cantilevered plate that is clamped only at its leading edge [13–23]. Within the
framework of linear structural theory, there is no fundamental distinction between
the two configurations with respect to the natural modes, the onset of flutter or the
response to fluid fluctuations in the boundary layer (with or without shock waves and
flow separation). However in experiments and within the framework of nonlinear
theory for plate response to boundary layer pressure oscillations or the onset of
flutter and the nature of the limit cycle oscillations, there are important fundamental
differences between the two plate configurations as follows [5–7].

In a well-designed experiment for plates clamped on all edges, the static pressure
differential across the plate and the thermal stresses must be controlled as they can
substantially change the plate natural frequencies, the plate dynamic response to
turbulent pressure oscillations, the onset of flutter and the amplitude of the limit
cycle oscillations. Also it is desirable to measure the natural modes and frequencies
for the anticipated range of static pressure differentials and thermal stresses.

By contrast for a cantilevered plate, with flow on both sides of the plate the static
pressure differential need not be controlled to the same degree, provided the flow is
unobstructed and flows smoothly on both sides of the plate. However the flows on
both sides of the panel may interact through the motion of the plate and this must be
taken into account in the theoretical/computational models. Also the thermal stresses
will be relieved because of the free edges of the cantilevered plate; thus the control
of thermal stresses is less of an issue for a cantilevered plate than a plate with more
restrained boundary conditions.

In the post flutter/limit cycle regime the response of plates clamped on all sides
is also quite different from the response of a cantilevered plate. For an all clamped
panel the amplitude of the limit cycle oscillations (LCO) will be on the order of the
thickness of the plate if the plate is initially flat. If the plate has curvature (either
due to its manufactured shape or due to plate buckling), then the amplitude of the
LCO will be on the order of the height of the plate above the plane formed by the
plate edges (rise height). By contrast, for a cantilevered plate, the amplitude of LCO
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will be on the order of a significant fraction of the plate chord. For subsonic flows,
both theory and experiment show that the flow over a cantilevered plate remains
attached and nonlinear fluid effects are modest. The dominant nonlinearities are in
the plate. However if the flow has shocks and/or the flow is separated then nonlinear
aerodynamic effects may be expected as well. The cantilevered plate is relatively
unexplored both theoretically/computationally and experimentally for M > 1 [7].

Also it might be noted that in subsonic flow, plates with various other edge support
conditions have been studied including plates with only side edges clamped and also
all edges clamped except for the trailing edge which is free. Also studied in subsonic
flow is the case of a cantilevered plate at various yaw angles to the oncoming fluid
flow. It would be very valuable to extend these studies to M > 1.

2 Correlations of Theory and Experiment

2.1 Introduction

There are several physical phenomena of interest as described below. Usually in a
given experiment or computational model, only one of these is the principal focus.
However it has happened that more than one of these have occurred in a single
experiment, though not always planned.

2.2 Physical Phenomena of Interest

The principal physical phenomena of interest are the following:

1. A turbulent boundary layer or jet excites a flexible structure (panel or control
surface) with random-like pressure fluctuations possibly leading to short-time
or long-time (fatigue) failure. An open question is to what degree the structural
motion might in turn change the fluid flow.

2. A shock wave oscillates ahead of or on the flexible structure. The basic physical
mechanism that causes the shock oscillations (even in the absence of structural
motion) is still unresolved. The two prime candidates are (1) the shock and flow
field are excited into a resonance due to the turbulent boundary layer pressure
fluctuations as considered by Touber and Sandham [24] and/or (2) the flow field
becomes dynamically unstable and creates a limit cycle oscillation that is most
visible in the shock motion, e.g. see Crouch [25]. Both physical mechanisms
involve shock wave boundary layer interaction. There is a substantial literature
on the second physical mechanism at lower Mach numbers especially in the
transonic range, e.g. see the recent review paper by Giannellis [8].

3. A fully coupled fluid structure interaction (FSI) may lead to a dynamic insta-
bility (flutter) and subsequent limit cycle oscillation of the structure and flow.



724 E. H. Dowell

This may include shock wave boundary layer interaction (SWBLI) as well, but
can occur even when SWBLI is not a major contributor. Structural failure is the
primary concern when flutter and/or limit cycle oscillations occur.

4. Fluid flow-structural-thermal coupling may lead to (1) buckled structures and (2)
possibly substantial increases in heat fluxes. Often this issue can be treated as a
static (rather than a dynamic) phenomenon. However if oscillating fluid forces
act on a buckled structure, the structural response may be substantially greater
than for an unbuckled structure, if near the onset of buckling. Conversely, if the
structure is well into the buckled regime, it may be stiffer than the unbuckled
structure.

2.3 Key Parameters for Experiments and Theory

One of the major challenges of fluid structure interaction at any Mach number is the
large number of physical parameters that must be taken into account in designing an
experiment and must be included in a mathematical model that hopes to correlate
with experimental results. On the fluid side there is the Mach number and Reynolds
Number, while on the structural side there are of course the geometrical and mate-
rials constants. But when fluid structure interaction is important there are several
additional non-dimensional parameters that are of interest including the ratio of fluid
to structural mass, the ratio of fluid pressure to structural stiffness forces and also the
ratio of static pressure differential across the structure to stiffness forces and the ratio
of thermal stress forces to structural stiffness forces. Formally other non-dimensional
parameters appear as discussed in some depth by Dugungji and Calligeros [3] and
more recently by Friedmann [2]. But even the parameters mentioned above lead to
the following formidable list.

M : Mach number (almost always matched in a wind tunnel experiment or flight
test program)

Re: Reynolds number (almost never matched in a wind tunnel experimental pro-
gram, unless there is substantial evidence that viscous effects are important)

μ: Ratio of fluid to structural mass; typically this fluid density multiplied by
a characteristic length (e.g. wing chord) divided by structural mass per unit
area or fluid density multiplied by a characteristic length cubed divided by
the total mass of the structure (often not matched in wind tunnel experiments
and usually less important than the next parameter)

�: Ratio of fluid pressure forces (e.g. fluid dynamic pressure) to structural stiff-
ness forces (e.g. mass per unit area multiplied by a natural frequency squared
multiplied by a characteristic length) (almost always matched in wind tunnel
experiments and flight tests)

�P: As above with dynamic pressure replaced by the static pressure differential
acting across the structure. (For thin panels this parameter is critical and in
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early wind tunnel experiments this parameter was uncontrolled and unmea-
sured which often led to great scatter in the measured data.)

�T : As above with pressure replaced by the temperature differential between the
flexible structure and a connected fixed structure multiplied by the thermal
expansion coefficient and the modulus of elasticity. (Thin panels are easily
buckled due to thermal stresses in a high speed fluid flow and this parameter
is critical to modeling this effect.)

2.4 Representative Correlations of Theory and Experiment

Here several representative results are discussed for the various physical phenomena
of interest which will give insights into the state of the art for both computational
models and experiments.

Structural Response to PressureOscillations from aTurbulent Boundary Layer
or Jet Noise

The standard theoretical/computational model on this topic dates to early work of
Coe and colleagues at NASA Ames Research Center and Maestrello and colleagues
at NASA Langley Research Center. Readily accessible treatments of the standard
model are available in the books by Lin [26], Dowell [27] and Dowell and Tang
[28]. In the standard theoretical and computational models the pressure oscillations
are taken from measured data and simple scaling laws are used to make a universal
model for the pressure acting on the structure. The key parameters for expressing the
pressures, p, are the flowdynamic pressure, q;Mach number; and reduced frequency,
k = ωc/U where c is a characteristic length which might be the boundary layer
thickness or the jet engine nozzle diameter.

This the following non-dimensional relationship is often assumed with a possible
(usually weaker) dependence on Reynolds number,

p/q = F(M, k)

Note the pressure is usually expressed in the frequency domain in terms of its power
spectra. With the pressure modeled, standard methods random vibration analysis are
then used to compute the structural response. A compact discussion of this approach
appears in Crandall and Mark [29] and Dowell [27].

A key uncertainty in such an analysis is the representation of the damping.
Although it is common to include a structural damping term in the model, usu-
ally the dominant physical source of the damping is the change in fluid pressure due
to structural motion. This aerodynamic damping can be modeled and indeed often
requires the same model as that needed for dynamic stability (flutter) analysis.

There are various comparisons between theory and experiment in literature, but
the uncertainties in the representation of the pressure loading and damping have often
led to at best only qualitative agreement between theory and experiment for structural
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response levels. On the other hand, there is usually good agreement on the resonant
response frequencies and the theoretical models are often useful in comparing the
relative response of one structural configuration to another. Also for intense noise
levels from a jet for example, the structuremay respondwell into the nonlinear range.
See the review of the literature by Clarkson [30].

Shock Wave Oscillations Arising from Interaction with a Boundary Layer

There are three relative recent overviews of this topic that are highly recommended
due to Dolling [9], Clement and Narayanaswamy [10] and Gaitonde [31]. The title
of the 2001 article by David Dolling, “Fifty Years of Shock Wave/Boundary Layer
Interaction Research:What Next?”, is a reminder that this is a long standing and chal-
lenging issue.Determining the cause of shock oscillation is important for applications
and still an open question. It is often perceived to be a low frequency phenomenon
since a reduced frequency based upon boundary layer thickness is much less than 1.
Or to say it another way, if we assume the proper scaling for frequency is in terms of
reduced frequency, then the characteristic length scale is much larger than a bound-
ary layer thickness. This is perhaps initially surprising, but recent work at transonic
Mach numbers has shown that in fact shock oscillations may occur due to interaction
of the shock with a separated flow and the characteristic length scale is the airfoil or
wing chord. Thus the reduced frequency with this characteristic length is of order 1.

Note that it is now accepted that shock oscillations in flow over ramps in hyper-
sonic flow do involve interaction of the shock with flow separation. See Clemens and
Narayanaswamy [10]. They present a reduced frequency based upon the amplitude of
the shock oscillation and it is also much less than 1; but is essentially and remarkably
constant for a wide range of flow geometries. They also note the shock oscillation
when it occurs has an amplitude proportional to the separation length. Since the sep-
aration length is much larger than the shock oscillation amplitude, it may be that the
characteristic length scalemight better be based upon the former rather than the latter.
However both shock oscillation amplitude and separation length are outputs (results)
rather than inputs (causes), so that still leaves open the question of what length scale
is best used to predict the onset of shock oscillations. Recent work suggests it may
be the distance from the leading edge to the shock location.

Dynamic Instability (Flutter) and Limit Cycle Oscillations

Whenflutter and limit cycle oscillations occur, the integrity and possible failure of the
structure is of great concern. A fuller discussion of some of these results is available
in Dowell [5] including citations to the original research articles.

As seen in Fig. 2, there is good correlation between theory and experiment for the
Mach number range from 2 to 5. For the lower Mach number range the measured
dynamic pressure for flutter was above that computed by an inviscid aerodynamic
model. Later it was discovered that the viscous boundary layer accounted for this
difference was associated with a change in the flutter mechanism from coalescing
frequency flutter for the higher the Mach numbers to single degree of freedom flutter
in the first panel mode at the lower (but still supersonic) Mach numbers.
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Fig. 2 Flutter boundary for a rectangular plate; flow dynamic pressure versus M from M = 1.2–5

The now classic experiment ofMuhlstein andGaspers [5] for the lower supersonic
Mach number range controlled the thickness of the boundary layer. Results are shown
in Fig. 3a for zero boundary layer thickness (as extrapolated) and a boundary layer
thickness to panel length ratio of 0.1.Also shown inFig. 3b are theoretical results from
a shear layermodel (where viscosity is included in themean steady flow, but not in the
dynamic perturbation due to panel motion) and also from a full RANS computation
by Hashimoto et al. [32]. The agreement between experiment and the two theoretical
models is very satisfying and suggests a good fundamental understanding of the
flutter phenomenon for M < 5. Later experiments and computations by Vedeneev
[33] suggested that single degree of freedom flutter in higher panel modes may also
occur when great efforts are made to minimize the boundary layer thickness and the
structural damping as well.

It is now well established that a static pressure differential across the panel can
stiffen the panel. This nonlinear effect raises the natural frequencies of the panel and
also increases the dynamic pressure required for flutter. Figure4 shows theoretical
results for completely clamped edges and for edges which are clamped with respect
to motion normal to the panel but free to move in the plane of the panel. Also shown
are experimental results which agree more closely with the free in plane motion
model. This was also found to be true when comparing theoretical and experimental
results for the panel natural frequencies [not shown]. Citations on Figs. 3, 4 and 5
are to the original references as discussed in [5].

A key experiment was performed at NASA Langley Research Center [5] and the
results are shown in Fig. 5 in a plot of [non-dimensional] dynamic pressure at which
flutter (and thus limit cycle oscillations) were observed versus a [non-dimensional]
temperature difference between the panel and its support structure. Typically the
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Fig. 3 a Flutter boundary for a rectangular plate including the effects of a viscous boundary layer;
b flow dynamic pressure versus Mach number with different ratios of boundary layer thickness to
panel length

Fig. 4 Flutter boundary for a rectangular plate including the effects of static pressure differential:
flow dynamic pressure versus static pressure differential for fixed Mach number
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Fig. 5 Flutter boundary for a rectangular plate including the effects of thermal stress; flow dynamic
pressure versus non-dimensional temperature differential for fixed M = 3 and fixed static pressure
differential

panel temperature is higher and thus a compressive thermal stress is induced into the
panel that may lead to buckling. For the range of temperatures shown buckling did
indeed occur and thus there is hysteresis in the flutter boundary. For a given level
of flow dynamic pressure flutter occurs at a certain temperature differential and then
flutter stops at a yet higher temperature. This is because a buckled panel stiffens at
sufficiently high temperatures and thus stops the flutter. This was the experimental
protocol followed and produces the “large disturbance” flutter boundary shown in
the figure for both theory and experiment. However the theory also predicts a small
disturbance flutter boundary that might be seen if the panel was initially buckled at
some temperature and then the flow dynamic pressure was increased to reach this
flutter boundary.

Another example of the subtlety of the flutter phenomenon is that a curved plate
which is stiffer than a flat platemay in fact have a lower dynamic pressure for flutter if
the curvature is in the direction of the flow. This is because the effect of the curvature
on panel stiffness is selective in that it raises the first mode frequency, but does
not change the second mode frequency. Thus the two modal frequencies are closer
together due to curvature and flutter is more likely. The experimental results are due
to Anderson [5] and the theoretical results are due to Dowell [5] and Amirzadegan
and Dowell [34]. In Fig. 6 the flutter dynamic pressure is plotted versus H/h where
H is the maximum rise height of the curved plate and h is the plate thickness. Note
that there is a theoretically predicted change in flutter mode for H/h near 8 and a
near jump in the dynamic pressure. However the flutter frequency does not change
radically (not shown).

There is also an early literature on flutter of cylindrical shells and it would now
seem timely to revisit that configuration. A recent paper by Cesnik [35] et al. on this
topic suggests renewed interest in this configuration.AlsoGoldman et al. have studied
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Fig. 6 Flutter boundary for a square plate with streamwise curvature

conical shells in the context of the Hypersonic Inflatable Aerodynamic Decelerator
that was motivated by a wind tunnel experiment at NASA Langley which showed
flutter oscillations [36].

Limit Cycle Oscillations

There are few measurements of limit cycle oscillation (LCO) amplitude for M > 1.
However it is generally found that for flat plates the LCO amplitude is of the order
of the panel thickness, h, while for a streamwise curved plate the LCO amplitude is
of the order of the rise height, H , as predicted by theory. There are more detailed
and quantitative measurements for M < 1 for a cantilevered plate, as well as other
boundary conditions, and these agree well with the appropriate structural theory, [7].

Fluid Flow-Structural-Thermal Interaction

Thermal stresses can substantially decrease the stiffness of the structure and this in
turn reduces the natural frequencies and make the structure more prone to experience
flutter and limit cycle oscillations. If one of the resonant frequencies goes to zero
as the thermal stress reaches a critical level, then buckling may occur. Buckling is
a static instability, as distinct from a dynamic instability, and in some cases may be
tolerated. Moreover a buckled structure may recover its stiffness in the post-buckled
region.However the large static deformations associatedwith bucklingmay lead to an
increase in the heat flux due the “aerodynamic roughness” of the deformed structure.
This is an important issue that is not well explored in the open literature. However
there is experimental and theoretical/computational work underway to address this
concern [4]. This is discussed elsewhere in this chapter and it is to be expected that
correlations between measurements and computations will be available in the near
future. Also one may buckle a relatively stiff structure with mechanical forces (rather
than thermal stresses) and measure the increase in heat flux. The current experiment
by Spottswood and colleagues at AFRL is a notable effort in this regard [4].
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2.5 Summary of the State of the Art Based upon Correlations
of Theory and Experiment and Opportunities to Advance
the State of the Art

Structural Response to PressureOscillations from aTurbulent Boundary Layer
or Jet Noise

A standard computational approach is available that relies on measurement of ran-
dom pressures due to a turbulent boundary layer or jet noise and an empirical model
of damping. Opportunities exist to improve this approach by using computational
fluid dynamics (CFD) simulations to compute these random pressure fields and var-
ious levels of aerodynamic modeling (from potential flow theory to a Navier-Stokes
model) to represent the fluid damping due to structural motion.

Shock Wave Oscillations Arising from Interaction with a Boundary Layer

The basic physical mechanism that leads to shock oscillations is still uncertain.
There is an opportunity for both Navier-Stokes based computational models and for
experiments to determinewhether the basicmechanism is a result of a global dynamic
instability of the flow field (bifurcation) or the resonant response of the global flow
to pressure fluctuations in the boundary layer or possibly some combination of the
two mechanisms.

For recent developments in the transonic flow range, see [37–39].

Dynamic Instability (Flutter) and Limit Cycle Oscillations (LCO)

There is a now a substantial body of theoretical-experimental correlation evidence
for M < 5 that gives a basis for future progress in investigating the hypersonic
Mach number range, M > 5. Experiments for M > 5 are needed and these will
be challenging. However using the best available theoretical/computational models
should provide a firm basis for design of these experiments and correlation with
measurements. Thermal stresses may and likely will be important.

For recent work on the effect of a shock standing on the panel for flutter and LCO,
see [40–43]. For a computational design study in support of a proposed hypersonic
plate flutter experiment, see [44].

Fluid Flow-Structural-Thermal Interaction

It is well established that buckling of flexible structures may occur in high speed
flows and considerable effort in structural design is devoted to avoiding buckling or
making sure that a buckled panel does not lead to plastic deformation of the material.
However even elastic buckling (buckling deformation that occurs below the yield
stress of the material) may be a concern if it leads to higher heat fluxes. Current
experiments are exploring this important issue [4].
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3 Current Experimental Programs and Complementary
Computational Results

There are several experiments underway in hypersonic FSTDI. A brief description of
each is provided including preliminary comparisons between theory/computations
and experiment.

3.1 Air Force Research Laboratory (SM Spottswood, R Perez,
T Berberniss) with Computational Support from Duke
University (M Freydin, EH Dowell)

Several experiments were conducted at the AFRL Research Cell 19 (RC-19) facility
between the years 2011 and 2017 and they are continuing. The RC-19 is a continuous
Mach 1.5–3 supersonic wind tunnel modified to test elastic plates with an optional
impinging shock. The most recent set of experiments is described in detail in [45]
including an overview of previous related work. The experimental campaign was
aimed at testing new measurement techniques and produce data for validation of
computational methods and theoretical models. Full-field measurement techniques
(3DDIC, PSP, TSP) allowedmeasuring the deformation, static pressure, and temper-
ature across the plate at sufficiently high sampling rates to allow dynamic analysis
of the fluid-structure system.

Notable experiments include a transient wind tunnel start-up where a 30s mea-
surement of the plate deformation showed the onset of flutter, a sporadic limit cycle
oscillation, and the final stabilization of the plate which is attributed to buckling due
to aerodynamic heating. In a recent theoretical computation by Freydin et al. [46] a
qualitative correlationwith experiment was demonstrated and the stability transitions
were analyzed using stability maps in the freestream static pressure versus tempera-
ture differential plane. Figure7 shows the measured and computed displacement at
25% chord versus time during the transient, supersonicwind tunnel start where flutter
starts around 5s and stops near 25s. Temperature differential was measured during
the experiment near the edge of the plate and used in the theoretical computations.
However because the thermocouple was installed near one of the edges of the plate,
the measurement is not likely representative of the mean (or maximum) temperature
on the plate. To address this issue, several temperature differential scaling values
were considered. Figure8 shows a stability map for static pressure differential of
3kPa, which remained approximately constant during the experiment. Three temper-
ature differential scaling values are considered and their respective trajectory in the
stability plane is plotted with ‘x’ marking 5s intervals. Note that for scaling of one
the trajectory ends inside the flutter region and the plate does not stabilize during the
30s transient. Also note that the stability map includes instability regions attributed
to two coupled mode instability labelled ‘Flutter’ as well as a cavity-plate coupling
instability labelled ‘A’ and ‘B’. For more details on Figs. 7 and 8 see [46].
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Fig. 7 Experiment (red) and theory (black)—displacement versus time, computed with cavity
dynamics and a scaled, uniform temperature differential 1.25 × �T (t) [46]

Fig. 8 Stability map for a static pressure differential of 3kPa and with cavity dynamic coupling
[46]

In another experiment, the static pressure differential was decreased by modulat-
ing the pressure inside a cavity and the freestream conditions were held constant.
An increase in LCO amplitude was measured at first, while subsequent decrease in
static pressure differential caused the plate to intermittently transition between large
and small amplitude response. A similar behavior was observed in the theoretical
computations [46]. At the end of the set of experiments a high-cycle fatigue crack
was identified near the trailing edge of the plate.
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3.2 University of New South Wales (A Neely and G Currao)
with Computational Support from Duke University (M
Freydin, K McHugh and EH Dowell)

Several experiments [47] have been conducted in a heated Ludwieg (hypersonic
expansion) tube, a facility in which compressed gas in a tube is suddenly released
and forms a pressurewave as it travels the length of a tube to the test section apparatus.
In this system, test times are on the order of less than one second. In the experiments
of interest, plates have been studied with varying boundary conditions to represent
several structural components of aircraft.

One experiment tested a cantilevered plate clamped at its leading edge to represent
a flexible control surface. The plate was positioned with an initial angle of attack of
20◦ to the freestream flow, and the flow conditions were well below the predicted
flutter boundary. A schematic is shown in Fig. 9. As expected, the plate statically
deflected due to the pressure differential across the plate, and measured motion was
a damped oscillation with a frequency near the fundamental resonant frequency of
the plate. Shown in Fig. 10 are Schlieren images of the deflected plate at select times,
which show several characteristics of the system. Firstly, the leading edge shock
can be clearly seen, and the static as well as dynamic deflection of the plate can be
discerned by comparing time points. For this case, the damping was well predicted
by aerodynamic theory. It is interesting to note that the aerodynamic theory used to
correlate with experiment was piston theory which is the correct limit of potential
flow theory at highMachnumber. The free streamconditionwas that behind the shock
of course. The Euler equations would also be expected to provide good correlation

Fig. 9 Schematic of cantilevered trailing edge with initial angle of attack
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Fig. 10 Schlieren imagery of the cantilevered plate subject to Mach 5.85 flow. The leading edge
shock is clearly seen. Several time points illustrate oscillatory behavior of the system. PT1-3 are
Pressure Transducers

Fig. 11 Schematic of system with rigid wedge to generate a steady oblique shock impinging on
a compliant cantilevered flat plate. Note that the wedge shock generator is wide enough such that
the entire test plate is within the core flow. The thick solid line on the Side View represents the
compression shock and the dotted lines are the expansion fan

with experiment and agree with potential flow theory for the relatively small motions
measured. The good correlation between theory and experiment also suggests that
viscous flow effects were not significant for predicting the damping of the model.

Another experiment tested a flat plate clamped at its leading edge with zero angle
of attack, butwith an oblique shock impinging upon it to create a pressure differential.
A schematic of this system is shown in Fig. 11. Again, the freestream flow was
below the flutter boundary, the plate experienced a static deflection with dynamic
oscillations around this deflection, and piston theory predicted nicely the pressure
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Fig. 12 Schlieren imagery of the deflected cantilevered plate fixed at its leading edge with an
impinging shock. Note the labeled characteristics. The dark line (2) is the impinging shock, which
causes the recirculation zone marked by the dark region under the dividing shear layer (5). Shocks
(3) and (7) stem from the separation and reattachment points, respectively

on the plate due to the flow field. However, there was more of an offset in pressure—
i.e. the system was not quasi-steady—because the deflection of the plate altered the
effects of the impinging shock. In otherwords, the deflected plate resulted in aweaker
shock because it introduces expansion waves. Figure12 shows the Schlieren imagery
from this case. In this experiment, it was shown that the boundary layer transitions
from laminar to turbulent in the area of separation over the plate, and that RANS
calculations under-predicted the heat transfer to the plate.

Plans are currently underway for a flat plate clamped on its leading and trailing
edges to be tested with a nominal freestream Mach number of M = 5.8 and a local
Mach number behind the shock of M = 4.27. The plate is mounted on a wedge and
the angle of inclination of the wedge can be varied to change the local flow including
the Mach number. The plate is designed to encounter flutter for the flow conditions
expected, which include a static pressure differential across the panel and thermal
stress within the panel, which raises and lowers the flutter boundary, respectively.
Experimental challenges include the relative short test time—less than 1s—due to the
nature of the hypersonic expansion tube constraints. Flutter frequencies of several
hundred Hz are predicted and flutter and subsequent limit cycle oscillations will
occur if, as designed, the effects of static pressure differential and thermal stresses
are offsetting. Figure13 shows a schematic of themodel andFig. 14 shows a predicted
time history of the plate in a flutter/limit cycle oscillation [44].

3.3 Sandia (K Caspers) with Supporting Computations from
the Duke Team

A flexible plate with spanwise curvature is fixed at its edges and embedded in an
otherwise rigid cone structure. It was tested in a hypersonic flow at M = 6 and 8
and was well below the flutter boundary as computed by the Duke University team.
Limited correlations between measured and computed natural frequencies showed
good agreement. The panel was responding to the random pressure fluctuations in
the turbulent boundary layer augmented by spark excitation. Figure15a, b shows a
picture of the experimental model.
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Fig. 13 Schematic of proposed experiment in which a flat plate clamped at its leading and trailing
edges and free on sides parallel to the flow is acted upon by heated flow such that the panel flutters

Fig. 14 Displacement at x/a = 0.8, linear and nonlinear solutions past flutter onset condition (left),
and nonlinear solution reaching limit cycle oscillation (right)

Fig. 15 a Flexible panel mounted flush in a rigid cone. b Close up view of flexible panel
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Fig. 16 Schematic of wind tunnel experimental model

3.4 North Carolina State University (V Narayanaswamy)
with Computational and Experimental Support from
Duke University (M Freydin, D Levin, EH Dowell)

A flat flexible plate clamped on all edges has been tested at M = 4 with a shock
impinging on the plate. The plate has been constructed and correlations between the-
ory and experiment havemade for the plate natural frequencies andmodes. A shallow
cavity beneath the panel allows the static pressure across the panel to be controlled.
The acoustic dynamics of this cavity can change the lowest natural frequency of the
plate. This change can be accounted for by a well established theoretical model. A
schematic of the experimental model is shown in Fig. 16.

In recent experiments [48], natural frequencies of the plate were measured in
several configurations: mounted with/without cavity, with static pressure differen-
tial, and with a uniform temperature differential. The cavity was found to have a
small stiffening effect on the first natural frequency and a negligible effect on higher
modes. Static pressure differentials of up to 10psi was also shown to have negligible
effect on the natural frequencies. The relative insensitivity of the plate to these effects
allows the isolation of other effects planned for the wind tunnel experiment (shock-
wave boundary-layer interaction, aerodynamic heating). Lastly, the plate was heated
uniformly and the variation of natural frequencies versus temperature was measured
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Fig. 17 Frequencies vs �T from experiment (dashed with crosses) and calibrated theory with
in-plane stiffness K̂ = 0.5 (lines) shown for 7 leading natural modes [48]

and plotted in Fig. 17. The experimental results were correlated with a recently theo-
retical model that allows setting the stiffness of the in-plane boundary support [54].
It was shown that the tested plate has relatively soft in plane edge supports and that a
uniform temperature difference of up to 35K is expected to reduce the leading natural
frequencies of the plate by less than 10%. Note that for the limiting case of rigidly
fixed in-plane edges, the plate is expected to buckle at 35K.

3.5 University of Maryland (S Laurence, T Whalen) and
NASA Langley Research Center (G Buck) with
Computational Support from Duke University (M
Freydin, EH Dowell)

A flexible square plate clamped on all edges has been tested at M = 6 in a NASA
Langley Research Center wind tunnel with flow conditions well below the com-
puted flutter boundary. The plate was mounted on a compression corner (with its
leading edge at the corner) and deformation was measured using photogrammetry
in response to the ramp-induced shock-wave boundary layer interaction. A picture
of the experimental model is shown in Fig. 18. Static deformation on the order of
the plate thickness was measured and correlated with theory. Good agreement was
obtained when the combined effects of static pressure and temperature differentials
were considered with the nonlinear plate model.
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Fig. 18 Flexible panel mounted on a ramp in the wind tunnel

Preliminary correlations between computations and experiment show that the nat-
ural frequencies of the fluid-structure system are changed due to the flow with the
static pressure differential and thermal stresses being the major contributors to these
frequency changes. Figure19 shows frequency (normalized by value measured out-
side of thewind tunnel f (2,2)

Exp = 3 kHz) versus ramp anglemeasured in the experiment

and obtained using theory with and without the effects of static pressure and temper-
ature differentials. Two papers have been published [49, 50] describing this work.
Initial correlations between theory and experiment are encouraging and further wind
tunnel experiments are planned in which the temperature distribution across the plate
as well as flow properties behind the corner will bemeasured. Also the cavity beneath
the panel will be sealed and the pressure measured there. These additional measure-
ments will allow for a more complete and accurate correlation between theory and
experiment.

4 Computational Models and Methods

4.1 Computational Models (Fluids)

Fluid models may be at one of several levels including:

Model 1: Potential flowmodel (with piston theory as the limiting case when M � 1)
Model 2: Euler flow model (includes the effects of shocks but ignores viscosity)
Model 3. Navier-Stokes model (includes shocks and viscosity)
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Fig. 19 Normalized frequency vs. θ for mode (2, 2) [45]

In principle the models are more physically accurate as one moves from Model 1
toModel 2 toModel 3. However because the computational challenges also increase,
it is not always the case that amore accurate answer is obtained because of theoretical
and computational limitations. In particular the use of empirical turbulence models
remains a source of fundamental concern with respect to Reynolds Average Navier-
Stokes (RANS) models. While Large Eddy Simulation (LES) models (still empirical
but said to be an improvement on RANS models) and even Direct Navier-Stokes
(DNS) models are in principle feasible, only now are such computations underway
which show promise. But these are not currently and routinely used for FSTDI work.

4.2 Computational Models (Structures)

Model 1: Plates with all edges fixed

Here the primary nonlinear physical effect is nonlinear stiffness which is well
described by the Von Karman plate theory for flat and curved plates for which the
deflections are small (enough) compared to the plate length and width. Typically the
deflections are on the order of the thickness for a flat plate and on the order of the rise
height for a curved plate. Efficient and accurate computational methods are available
using a modal expansion. For simple geometries these modes are known and can
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Fig. 20 Schematic of cantilevered plate fixed at its leading edge with supersonic flow moving over
both sides

be prescribed analytically. For more complex geometries these modes need to be
determined by finite element computations or by using a component mode model.

Model 2: Plates with only one edge fixed

Here the nonlinear deflections are much larger than those on the fully clamped plate,
i.e. on the order of the plate length. See Fig. 20 for a schematic of a plate fixed at its
leading edge with the trialing edge free. Flowmoves over both sides of the plate from
left to right at high Mach number. For the cases examined to date, an inextensible
beam or plate model has proven accurate and again a modal based computational
method is efficient. The inextensibility condition states that the arclength of the beam
(or the arclength of the fibers in the two planar dimensions of the plate) is constant.
This allows for a simplification of the potential energy expression of the beam or
plate, which is advantageous for FSTDI computations.

Recent work at Duke University [51] has explored the post-critical behavior of
a cantilevered plate in supersonic and hypersonic flow. Researchers used the inex-
tensible beam model as the structural model (because spanwise bending is small)
coupled with Piston Theory as the aerodynamic theory of choice for flows between
2 < M < 6. It was found that the model was very sensitive to the inclusion of sev-
eral nonlinearities in the mathematical model. For deflections on the order of the
beam length, the geometric nonlinearities include third order nonlinear stiffness and
nonlinear inertia. For these large deflections, third order Piston Theory was shown
to be more accurate than first order Piston Theory. In addition, because of the large
slope of the beam, a geometric modification to Piston Theory was added to ensure
that the pressure always acted normal to the instantaneous slope of the plate. This
modification is normally negligible for cases of fully clamped or fully pinned beams
and plates, but for these large deflections it was shown that its inclusion is necessary
to develop bounded limit cycle oscillation (LCO) solutions. In fact, the nonlinearity
introduced by this modification is strong enough to produce bounded LCO behavior
even for modeling cases with linear fluid and structural models.

Figure21 compares the plate’s LCO behavior at Mach 4 for various modeling
conditions, and illustrates the sensitivity of the models to various nonlinear terms. It
shows the root mean square (RMS) of the beam tip during LCO versus the nondi-
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Fig. 21 Limit Cycle Oscillation behavior from various models including first order Piston Theory
(1st PT), third order Piston Theory (3rd PT), linear structure (LIN) and a fully nonlinear struc-
ture (FNL). Note the system’s high sensitivity to included nonlinearities which drive the response
magnitude upwards

mensional fluid dynamic pressure parameter lambda. For each case the nonlinear
modification to Piston Theory is included to ensure that pressure always acts normal
to the plate surfaces. For the case of linear first order Piston Theory (1st PT) and
linear structural theory (LIN) in purple, the structural response is the smallest of
the group. Including third order Piston Theory (3rd PT) but keeping linear structural
theory, the result is slightly larger. This is due to the higher order Piston Theory terms
adding more dynamic pressure to the structure. However even larger is the case with
first order Piston Theory but a fully nonlinear structure (FNL), offering insight into
the considerable effect of the nonlinear structural inertia which increases deflection
levels. Finally, the case with the largest deflection is that which employs third order
Piston Theory and fully nonlinear structural modeling. This case includes the most
physical nonlinearities in the model and therefore is thought to be the most accurate
to model a potential experiment. Note that the RMS response of this case is more
than double that of the linear fluid and structural model, and this result should be
considered when planning an experimental effort.

To assess the accuracy of Piston Theory for this configuration, an Euler CFD
simulation was performed at Mach 4 using the structural motion computed from
the modal solution to calculate pressures on the plate. See Fig. 22 for a pressure
contour plot from the Euler CFD solution and Fig. 23 for the comparison between
aerodynamic theories at the plate’s largest deflection. It can be seen that third order
Piston Theory is very accurate compared to the Euler solution for the range of lambda
values considered, whereas first order Piston Theory is only accurate at lower lambda
levels.
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Fig. 22 Pressure contour plots from Euler CFD solution of beam in Mach 4 flow at beam’s largest
deflection

Because in this configuration the plate is free on three sides, thermal expansion
is not a cause of instability. Therefore, for this computational study thermal effects
were not included.

4.3 Computational Models (Thermal)

If the computation of the thermal field can be done prior to the modeling of the fluid
and structure and if the structural motion does not significantly change the thermal
field, then the thermal field can be taken as an input to the fluid-structure-dynamic
interaction computation. This approach has often proved sufficiently accurate and is
computationally efficient. Thus the thermal field is said to be “uncoupled” from the
rest of the computational model.

However, in those cases where the thermal field is changed by the FSTDI, then
a more complex approach must be pursued including the coupled interaction of the
thermal field model with the fluid and structural models. When coupling the heat
equation with the structure and fluid dynamics there are two main questions. First,
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Fig. 23 Maximum aerodynamic pressure versus Lambda ratio of fluid dynamic pressure to struc-
tural stiffness for Euler CFD, 1st order Piston Theory, and 3rd order Piston Theory

there is the question of time scale differences between the thermal and fluid-structure
dynamics whichmay affect how the dynamic coupling is implemented. Thermal time
scales are typically orders ofmagnitude larger than that of the fluid-structure and thus
the possible thermal model change is usually held constant for several fluid-structure
time steps. The sensitivity of the solution to this assumption should be investigated for
each problem separately. It is expected that problems with complicated geometries
and impinging shocks should bemore sensitive to the coupling time step than simpler
geometries with uniform flow and without shocks.

The second question is how one models the heat flux from the boundary layer
to the structure in super/hypersonic flow. A widely used semi-empirical model is
the Eckert’s reference enthalpy method [52]. See Anderson [53] for an insightful
discussion of this model. In a temperature range where the heat capacity can be
assumed constant, the method is simplified to the reference temperature method.
This approach provides a simple relation between the flow conditions at the edge of
the boundary layer above a point on the elastic structure, the local temperature of the
structure, and the local heat flux. The accuracy of this model is well established for
rigid structures, but for the coupled FSTI experimental data is lacking.

The enthalpy reference method can be thought of as the rough equivalent of
Piston Theory for the aerodynamic heat flux. However, in contrast to Piston Theory,
it is not easily incorporated in a modal fluid-structure solver due to complicated
dependency of the heat flux on the motion of the structure. Two main approaches
were considered to address this problem. One is solving the heat equation in physical
coordinates. This increases computational complexity because it adds an additional
step of transforming the thermal field to modal coordinates and the displacement
field to physical coordinates to implement the coupling. However because the time
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scale of the thermal field is substantially longer than that of the fluid-structure, the
heat equation terms may be evaluated less often. A second approach that is currently
under investigation is to linearize the temperature reference method in terms of the
local transverse downwash and the structure temperature. In physical coordinates,
this will result in the following heat flux term,

Qaero ≈ Awa + BTw + C, wa = ∂w

∂t
+U1

∂w

∂x

And in modal coordinates

Qaero = Ankẇk +U1Ankwk + BnkT
w
j + Cn

The coefficients A, B, and C depend only on the chordwise coordinates x (due to
variation of the local Reynolds number) and can easily be incorporated in a modal
structural solver. The local downwash term can be used with (1st or higher order)
Piston Theory to evaluate the local pressure change at the edge of the boundary layer
(and compute all other parameters) to include the effect of structure motion on the
thermal field.

More accurate models for aerodynamic heating include the boundary layer theory,
on which the semi-empirical method of reference enthalpy is based. And of course
the above discussed Navier-Stokes model can be used. When strong gradients in the
temperature field of the fluid are expected, for example due to shock-wave boundary-
layer interaction, only the latter flow model is expected to provide accurate results
for the local heat flux near the surface of the structure.

5 Concluding Remarks on the State of the Art and
Prospects for Future Work

A turbulent boundary layer or jet excites a flexible structure

To predict the response of a flexible structure one needs to know (1) the oscillating
pressures from the flow field even in the absence of structural motion and (2) then
also the fluid pressures due to the structural motion. Computations and experiments
are underway to determine (1) and, if good correlations are obtained, this will give
important confidence in the use of CFD models. Such models may be at the RANS,
LES or DNS level. For (2) the flow model need not be the same as for (1). Indeed
what is sometimes called Enhanced Piston Theory (i.e. piston theory with the local
spatial flow parameters such as Mach number and static pressure determined from
steady flow CFD computations or experiment) may often be sufficient.

Once the panel motion is determined, a CFD simulation with now known panel
motion may be used to assess the change in the flow field due to panel motion.
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Studies to determine the elements of all of the above are underway by various
investigators.

A shock wave oscillates ahead of or on the flexible structure

Determination of the physical source of the shock oscillations due to shock wave
boundary layer interaction is a challenge of long standing and still an active area of
research. As mentioned earlier there is still some uncertainty about the fundamental
physical mechanism. However recent work suggests that a global dynamic instability
of the flow field may occur under certain conditions, e.g. when a ramp angle reaches
a certain critical value. This fascinating subject is discussed in detail from a FSTDI
perspective in an Appendix C with citations to the relevant literature. An assessment
of the current state of the art and the identification of tasks to advance the state of
the art are also provided in the appendix.

A fully coupled fluid structure interaction leading to flutter and limit cycle
oscillations (LCO)

The state of the art is generally satisfactory when the flow is attached and Enhanced
Piston Theorymay be used to describe the oscillating fluid pressures due to structural
motion. But for separated flows this is a topic of active research. Often the challenge
is to characterize fully all the many flow and structural parameters that may influence
the onset of flutter and LCO. Recent studies have emphasized the importance of in
plane as well as out of plane boundary conditions, curvature, and mechanical and
thermal loadings for the structure.

Fluid flow-structural-thermal coupling may lead to (1) buckled structures and
(2) possible substantial increases in heat fluxes

Experiments are underway and new computational models have been developed and
correlations of experimental and theoretical data are now possible. There is reason
for cautious optimism.
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Appendix A
A Primer for Structural Response to Random
Pressure Fluctuations

A.1 Introduction

In this appendix1 we shall treat the response of a structure to a convecting - decaying
random pressure field. The treatment follows along conventional lines after Powell
[1] and others. That is, the pressure field is modelled as a random, stationary process
whose correlation function (and/or power spectra) is determined from experimental
measurements. Using this empirical description of the random pressure, the response
of the structure is determined using standard methods from the theory of linear
random processes [2,3]. The major purpose of the appendix is to provide a complete
and detailed account of this theory which is widely used in practice (in one or another
of its many variants). A second purpose is to consider systematic simplifications to
the complete theory. The theory presented here is most useful for obtaining analytical
results such as scaling laws or even, with enough simplifying assumptions, explicit
analytical formulae for structural response.

It should be emphasized that, if for a particular application the simplifying assump-
tions which lead to analytical results must be abandoned, numerical simulation of
structural response time histories may be the method of choice [4,5]. Once one is
committed to any substantial amount of numerical work (e.g., computer work) then
the standard power spectral approach loses much of its attraction.

A.2 Excitation-Response Relation For The Structure

In the present section we derive the excitation-response relations for a flat plate. It
will be clear, however, that such relations may be derived in a similar manner for any
linear system.

1 This Appendix is based upon a report by E.H. Dowell and R. Vaicaitis of the same title Princeton
University AMS Report No. 1220, April 1975.
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The equation of motion of the small (linear) deformation of a uniform isotropic
flat plate is

D∇4w + m
∂2w

∂t2
= p (A.1)

wherew is the plate deflection, p the pressure loading and the other terms are defined
in the Nomenclature. Associated with (I.1) are the natural modes and frequencies
of the plate which satisfy

D∇4ψn − ω2
nmψn = 0 (A.2)

whereωn is the frequency andψn(x, y) the shape of the nth natural mode. In standard
texts it is shown that the ψn satisfy an orthogonality condition

∫∫
ψnψmdxdy = 0 for m �= n (A.3)

If we expand the plate deflection in terms of the natural modes

w =
∑
n

qn(t)ψn(x, y) (A.4)

then substituting (A.4) into (A.1), multiplying by ψm and integrating over the plate
area we obtain

Mm[q̈m + ω2
mqm] = Qm m = 1, 2, . . . (A.5)

where we have used (A.2) and (A.3) to simplify the result. Mm and Qm are defined
as

Mm ≡
∫∫

mψ2
mdxdy

Qm ≡
∫∫

pψmdxdy

· ≡ d/dt

(A.6)

For structures other than a plate the final result would be unchanged, (A.5) and (A.6);
however, the natural modes and frequencies would be obtained by the appropriate
equation for the particular structure rather than (A.1) or (A.2). Hence, the subsequent
development, which depends upon (A.5) only, is quite general.

Before proceeding further we must consider the question of (structural) damping.
Restricting ourselves to structural damping only we shall include its effects in a gross
way by modifying (A.5) to read

Mm[q̈m + 2ζmωmq̇m + ω2
mqm] ≡ Qm (A.7)

where ζm is a (nondimensional) damping coefficient usually determined experimen-
tally. This is by no means the most general form of damping possible. However,
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given the uncertainly in our knowledge of damping from a fundamental theoretical
viewpoint (see [6]) it is generally sufficient to express our meager knowledge. If
damping is inherent in the material properties (stress-strain law) of the structure, the
theory of viscoelasticity may be useful for estimating the amount and nature of the
damping. However, often the damping is dominated by friction at joints, etc., which
is virtually impossible to estimate in any rational way.

Now let us turn to the principal aim of this section, the stochastic relations between
excitation (pressure loading), and response (plate deflection or stress).We shall obtain
such results in terms of correlation functions and power spectra.

The correlation function of the plate deflection w is defined as

Rw(τ ; x, y) ≡ lim
T→∞

1

2T

∫ T

−T
w(x, y, t)w(x, y, t + τ )dt (A.8)

Using (A.4) we obtain

Rw(τ ; x, y) =
∑
m

∑
n

ψm(x, y)ψn(x, y)Rqmqn (τ ) (A.9)

where

Rqmqn (τ ) ≡ lim
T→∞

1

2T

∫ T

−T
qm(t)qn(t + τ )dt (A.10)

is defined to be the cross-correlation of the generalized coordinates , qm . Defining
power spectra

�w(ω; x, y) = 1

π

∫ ∞

−∞
Rw(τ ; x, y)e−iωτdτ (A.11)

�qmqn (ω) ≡ 1

π

∫ ∞

−∞
Rqmqn (τ )e−iωτdτ (A.12)

we may obtain from (A.9) via a Fourier transform

�w(ω; x, y) =
∑
m

∑
n

ψm(x, y)ψn(x, y)�qmqn (ω) (A.13)

(A.9) and (A.13) relate the physical deflection, w, to the generalized coordinates ,
qm .

Consider next similar relations between physical load p and Generalized force
Qm . Define the cross-correlation.

RQmQn (τ ) ≡ lim
T→∞

1

2T

∫ T

−T
Qm(t)Qn(t + τ )dt (A.14)

Using the definition of Generalized force (A.6)
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Qm(t) ≡
∫∫

p(x, y, t)ψm(x, y)dxdy

Qn(t + τ ) ≡
∫∫

p(x∗, y∗, t + τ )ψn(x
∗, y∗)dx∗dy∗

and substituting into (A.14) we obtain

RQmQn (τ ) =
∫∫∫∫

ψm(x, y)ψn(x
∗, y∗)

·Rp(τ ; x, y, x∗, y∗)dxdy dx∗dy∗
(A.15)

where we define the pressure correlation

Rp(τ ; x, y, x∗, y∗) ≡ lim
T→∞

1

2T

∫ T

−T
p(x, y, t)p(x, y, t)p(x∗, y∗, t + τ )dt

(A.16)
Note that a rather extensive knowledge of the spatial distribution of the pressure is
required by (A.16).

Again defining power spectra

�QmQn (ω) ≡ 1

π

∫ ∞

−∞
RQmQn (τ )eiωτdτ (A.17)

�p(ω; x, y, x∗, y∗) ≡ 1

π

∫ ∞

−∞
Rp(τ ; x, y, x∗, y∗)e−iωτdt (A.18)

we may obtain from (A.15)

�QmQn (ω) =
∫∫∫∫

ψm(x, y)ψn(x
∗, y∗)

·�p(τ ; x, y, x∗, y∗)dxdy dx∗dy∗
(A.19)

Finally, we must relate the generalized coordinates to the generalized forces .
From (A.7) we may formally solve (see [2], for example or recall Sect. 3.3)

qn(t) =
∫ ∞

−∞
In(t − t1)Qn(t1)dt1 (A.20)

where the ‘impulse function’ is defined as

In(t) ≡ 1

2π

∫ ∞

−∞
Hn(ω)eiωτdω (A.21)

and the ‘transfer function’ is defined as

http://dx.doi.org/10.1007/978-3-030-74236-2_3
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Hn(ω) ≡ 1

Mn[ω2
n + 2ζniωnω − ω2]

Also

Hn(ω) =
∫ ∞

−∞
In(t)e

−iωτdt

which is the other half of the transform pair, cf (A.21).
From (A.20) and (A.10)

Rqmqn (τ ) = lim
T→∞

1

2T

∫∫∫ T

−T
Im(t − t1)In(t + τ − t2)Qm(t2)dt1dt2dt

Performing a change of integration variables and noting (A.14),

Rqmqn (τ ) =
∫∫ ∞

−∞
Im(ξ)In(η)RQmQn (τ − η + ξ)dξdη (A.22)

Taking a Fourier transform of (A.22) and using the definitions of power spectra
(A.12) and (A.17), we have

�qmqn (ω) = Hm(ω)Hn(−ω)�QmQn (ω) (A.23)

Summarizing, the relations for correlation functions are (A.9), (A.15) and (A.22)
and for power spectra (A.13), (A.19) and (A.23). For example, substituting (A.19)
into (A.23) and the result into (A.13) we have

�w(ω; x, y)
∑
m

∑
n

ψm(x, y)ψn(x, y)Hm(ω)Hn(−ω)

·
∫∫∫

ψm(x, y)ψn(x
∗, y∗)

· �p(ω; x, y, x∗, y∗)dxdy dx∗dy∗ (A.24)

This is the desired final result relating the physical excitation to the physical response
in stochastic terms.

A.3 Sharp Resonance or Low Damping Approximation

Often (I.24) is approximated further. Two approximations are particularly popular
and useful. The first is the ‘neglect of off-diagonal coupling’. This means omitting
all terms in the double sum except those for which m = n. The second is the ‘white
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noise’ approximation which assumes that �p is essentially constant relative to the
rapidly varying transfer functions Hm(ω). Making both of these approximations in
(A.24) we may obtain the mean square response

w̄2(x, y) ≡ Rw(τ = 0; x, y) =
∫ ∞

0
�w(ω; x, y)dω

≈ π

4

∑
m

ψ2
m(x, y)

M2
mω3

mζm

∫∫∫
ψm(x, y)ψm(x∗, y∗)

· �p(ωm; x, y, x∗, y∗)dxdy dx∗dy∗ (A.25)

Of course, only one or the other of these approximations may be made, rather than
both. However, both stem from the same basic physical idea: The damping is small
and hence, Hm has a sharp maximum near ω = ωm . That is

Hm(ωm)Hn(−ωm) 	 |Hm(ωm)|2

Hm(ωn)Hn(−ωn) 	 |Hn(ωn)|2

and the ‘neglect of off-diagonal coupling’ follows. Also

∫
�p|Hm(ω)|2dω ≈ �p(ωm)

∫
|Hm(ω)|2dω

and (A.25) follows by simple integration.
Not that if we take the spatial mean square of (A.24) then using orthogonality

(for a uniform mass distribution)one may show that the off-diagonal terms do not
contribute (see Powell [1]).

Finally note that if we desire stress rather than deflection, then it may be shown
that analogous to (A.25)one obtains

σ̄2 = π

4

∑
m

σ2
m(x, y)

M2
mω3

mζm

∫∫∫∫
ψm(x, y)ψm(x∗, y∗)

· �p(ωm; x, y, x∗, y∗)dxdy dx∗dy∗ (A.26)

where σm is stress due to w = ψm .

Nomenclature

a Plate length
b Plate width
D Eh3/12(1 − v2), Plate bending stiffness
E Modulus of elasticity



Appendix A: A Primer For Structural Response To Random Pressure Fluctuations 757

Hn Plate transfer function
h Plate thickness
In; I Plate impulse function; see equation (A.21)

K 2
n = mω2

na
4

D
Mm Plate generalized mass
m Plate mass/area
n normal
p Pressure on plate
Qm Generalized force on plate
qn Generalized plate coordinate
R Correlation function
t Time
w Plate deflection
x, y, z Cartesian Coordinates
∇2 Laplacian
� Power spectral density
ρm Plate density
σ stress
τ Dummy time
ζm Modal damping
ωm Modal frequency
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Appendix B
Some Example Problems

Problems such as these have been used successfully as homework assignments.When
used as a text, the instructor may wish to construct variations on these problems.

B.1 For Chapter “Static Aeroelasticity”

Questions

Typical section with control surface, see Fig.B.1.

1. Compute qREV ERSAL for finite Kδ and show it is the same as computed in the text
for Kδ → ∞.
2. Compute qDIV ERGENCE explicitly in terms of Kα, Kδ , etc.

Beam-rod model

3. Compute qDIV ERGENCE using one and two models with uniform beam-rod eigen-
functions.

Assume
GJ = GJ0[1 − y/ l]

How do these results compare to those for

GJ = GJ0 ∼ constant?

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2022
E. H. Dowell (ed.), A Modern Course in Aeroelasticity, Solid Mechanics
and Its Applications 264, https://doi.org/10.1007/978-3-030-74236-2
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https://doi.org/10.1007/978-3-030-74236-2


760 Appendix B: Some Example Problems

α

δ

δ

α 

δ HINGE

ELASTIC AXIS

o

K

K

Fig. B.1

Answers

1. The two equations of static moment equilibrium are as follows:

eqS

(
∂CL

∂α
α + ∂CL

∂δ
δ

)
+ qSc

∂CMAC

∂δ
δ − Kαα = 0 (about elastic axis)

qSc

(
∂CH

∂α
α + ∂CH

∂δ
δ

)
− Kδ(δ − δ0) = 0 (about high axis)

These equations are given in matrix form as follows:

[ eqS ∂CL
∂α

− Kα eqS ∂CL
∂δ

+ qSc ∂CMAC
∂δ

qSc ∂CH
∂α

qSc ∂CH
∂δ

− Kδ

][α
δ

]
=

[ 0
−Kδ · δ0

]

Solving for α and δ, one obtains

α =

∣∣∣∣ 0 eqS ∂CL
∂δ

+ qSc ∂CMAC
∂δ−Kδ · δ0 qSc ∂CH

∂δ
− Kδ

∣∣∣∣
�

=
Kδ · δ0qS

(
e ∂CL

∂δ
+ c ∂CMAC

∂δ

)

�
(B.1)

δ =

∣∣∣∣ eqS · ∂CL
∂α

− Kα 0̇
qSc ∂CH

∂α
−Kδ · δ0

∣∣∣∣
�

= −Kδ · δ0
(
eqS ∂CL

∂α
− Kα

)
�

(B.2)

where

� ≡
∣∣∣∣ eqS

∂CL
∂α

− Kα eqS ∂CL
∂δ

+ qSc ∂CMAC
∂δ

qSc ∂CH
∂α

qSc ∂CH
∂δ

− Kδ

∣∣∣∣ (B.3)
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If control surface reversal occurs when q = qR , then

L = qS

[
∂CL

∂α
α + ∂CL

∂δ
δ

]
= 0

for q = qR , i.e., [
∂CL

∂α
α + ∂CL

∂δ
δ

]
= 0 (B.4)

at q = qR

Substitution of (B.1) and (B.2) into (B.4) gives

0 = ∂CL

∂α
· Kδ · δ0

�
qRS

(
e
∂CL

∂δ
+ c

∂CMAC

∂δ

)
− ∂CL

∂δ
· Kδ · δ0

�

(
eqRS

∂CL

∂δ
− Kα

)

= Kδ · δ0

�

(
�������
eqRS

∂CL

∂α

∂CL

∂δ
+ qRS

∂CL

∂α

∂CMAC

∂δ
− eqRS�����∂CL

∂α

∂CL

∂δ
+ Kα

∂CL

∂δ

)

= Kσ · δ0

�

(
qRSc

∂CL

∂α

∂CMAC

∂δ
+ Kα

∂CL

∂α

)

Thus the reversal dynamic pressure qR for finite Kδ is

qR =
Kα

Sc

(
∂CL
∂δ

/
∂CL
∂α

)
−∂CMAC

∂δ

which is identical with qR when Kδ→∞!
2. The divergence dynamic pressure is determined by � = 0. That is,

(
eqS

∂CL

∂α
− Kα

)(
qSc

∂CH

∂δ
− Kδ

)
− qSc

∂CH

∂α

(
eqS

∂CL

∂δ
+ qSc

∂CMAC

∂δ

)
= 0

q2S2c2
(
ē · ∂CL

∂α

∂CH

∂δ
− ē

∂CH

∂α

∂CL

∂δ
− ∂CMAC

∂δ

)

−qSc

(
Kα · ∂CH

∂δ
+ Kδ · ē∂CL

∂α

)
+ KαKδ = 0

(ē ≡ e/c) (B.5)

If A �= 0 (A is defined below),

q = 1

Sc
· B ± √

B2 − 4AC

2A
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where

A ≡ ē

(
∂CL

∂α

∂CH

∂δ
− ∂CH

∂α

∂CL

∂δ

)
− ∂CMAC

∂δ

B ≡ Kα
∂CH

∂δ
+ Kδ ē

∂CL

∂α
C ≡ KαKδ

Then divergence occurs when AB > 0 and B2 − 4AC ≥ 0 (for which e.g., (B.5) has
two positive roots), and the divergence dynamic pressure q is

qD = min

[
1

Sc
· B + √

B2 − 4AC

2A
,
1

Sc

B − √
B2 − 4AC

2A

]

If A = 0, then divergence occurs when B > 0, and the divergence dynamic pressure
qD is

qD = 1

Sc
· C
B

To sum up, divergence occurs when
(a)

{
ē

(
∂CL

∂α

∂CH

αδ
− ∂CH

∂α

∂CL

∂δ

)
− ∂CMAC

∂δ

}(
Kα

∂CH

∂δ
+ Kδ ē

∂CL

∂α

)
> 0

and(
Kα

∂CH

∂δ
− Kδ ē

∂CL

∂α

)2

+ 4KαKδ

(
ē
∂CH

∂α

∂CL

∂δ
+ ∂CMAC

∂δ

)
≥ 0

and the divergence dynamic pressure qD is

Kα
∂CH

∂δ
+ Kδ ē

∂CL

∂α
−

√(
Kα

∂CH

∂δ
− Kδ ē

∂CL

∂d

)2

qD =
+4KαKd

(
ē ∂CH

∂α
∂CL
∂δ

+ ∂CMAC
∂δ

)

2Sc
{
ē
(

∂CL
∂α

∂CH
∂δ

− ∂CHL
∂α

∂CL
∂δ

) − ∂CMAC
∂δ

}

when

ē

(
∂CL

∂α

∂CH

∂δ
− ∂CH

∂α

∂CL

∂σ

)
− ∂CMAC

∂δ
> 0

and

Kα
∂CH

∂δ
+ Kδ ē

∂CL

∂α
+

√(
Kα

∂CH

∂δ
− Kδ ē

∂CL

∂α

)2



Appendix B: Some Example Problems 763

Fig. B.2

l

c

dy

qD =
+4KαKδ

(
ē ∂CH

∂α
∂CL
∂δ

+ ∂CMAC
∂δ

)

2Sc
{
ē
(

∂CL
∂α

∂CH
∂δ

) − ∂CH
∂α

∂CL
∂δ

}

when

ē
∂CL

∂α

∂CH

∂δ
− ∂CH

∂α

∂CL

∂δ
− ∂CMAC

∂δ
< 0

or,
(b)

ē

(
∂CL

∂α

∂CH

∂δ
− ∂CH

∂α

∂CL

∂δ

)
− ∂CMAC

∂δ
= 0

and

Kα
∂CH

∂δ
+ Kδ ē

∂CL

∂α
> 0

and the divergence dynamic pressure qD is

qD = KαKδ

Sc
(
Kα

∂CH
∂δ

+ Kδ ē
∂CL
∂α

)

3. The equation of static torque equilibrium for a beam rod, see Fig.B.2, is

d

dy

(
GJ

dαe

dy

)
+ My = 0 (B.6)

where
My = MAC + Le

= qc2CMAC0 + eqc
∂CL

∂α
(α0 + αe)

(B.7)

If we put γ = [1 − y/ l] and y = l ȳ, then, from (B.6) and (B.7), we have
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d

d ȳ

(
γ
dαe

d ȳ

)
+ qcel2 ∂CL

∂α

GJ0
αe = −qcl2

GJ0

(
c · CMAC0 + e

∂CL

∂α
α0

)
(B.8)

(1) Eigenvalues and functions for constant wing properties. Putting

λ2 ≡ qcel2 ∂CL
∂α

GJ0

we have the characteristic equation as follows

(B.7) → d2αe

d ȳ2
+ λ2αe = 0 (γ = 1 for constant wing properties)

Hence, αe = A sin λȳ + B cosλȳ.
As boundary conditions are

αe =0 at ȳ = 0 → B = 0

dαe

d ȳ
=0 at ȳ = 1 → Aλ cosλ − Bλ sin λ → cosλ = 0

(If λ = 0 then αe ≡ 0, which is of no physical interest.)
So

Eigenvalues: λm = (2m − 1)
π

2
,m = 1, 2 . . .

Eigenfunctions: αm = sin λm ȳ

We first find the divergence dynamic pressure for the wing with constant properties.
Let

αe =
∑
m

anαn, K ≡ − qcl2

(GJ )0

(
cCMAC0 + e

∂CL

∂α
α0

)
=

∑
n

Anαn

Then ∑
n

an

(
d2αn

d ȳ2
+ λ2αn

)
= K

As
d2αn

d ȳ2
= −λ2

nαn

so ∑
n

an(λ
2 − λ2

n)αn = K
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∑
n

an

∫ 1

0
(λ2 − λ2

n)αnαmd ȳ =
∫ 1

0
Kαmd ȳ = 1

2
Am

since ∫ 1

0
αnαmd ȳ = 1

2
δmn

= 1

2
m = n

= 0m �= n

Hence
am
2

(λ2 − λ2
m) = 1

2
Am

am = Am

λ2 − λ2
m

Thus

αe =
∑
n

An

λ2 − λ2
n

· αn

αe → ∞ when

λ = λm = (2m − 1)
π

2

hence, the divergence dynamic pressure qD , corresponds to the minimum value of
λm , i.e., π/2. Thus

qD = GJ0
cel2 ∂CL

∂α

π2

4

for constant wing properties.
(2) GJ = GJ0(1 − y/ l) = GJ0(1 − ȳ), variable wing properties. We assume for
simplicity that only the torsional stiffness varies along span and that other character-
istics remain the same.

Putting

αe =
∑
n

bn · αn, K ≡ −qcl2

GJ0

(
cCMAC0 + e

∂CL

∂α
α0

)
=

∑
n

Anαn

and

λ2 ≡ qcel2

GJ0

∂CL

∂α

we get from (B.8) ∑
n

bn

{
d

d ȳ

(
γ
dαn

d ȳ

)
+ λ2αn

}
= K
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therefore
∑
n

bn

∫ 1

0

{
d

d ȳ

(
γ
dαn

d ȳ

)
+ λ2αn

}
αmd ȳ =

∫ 1

0
Kαmdy = 1

2
Am

therefore [Cmn]{bn} = 1

2
Am(for finite n) (B.9)

where

Cmn =
∫ 1

0

{
d

d ȳ

(
γ
dαn

d ȳ

)
+ λ2αn

}
αmd ȳ

= −
∫ 1

0
γ
dαn

d ȳ

dαm

d ȳ
d ȳ + λ2

2
δmn

(γ dαn
d ȳ αm = 0 at ȳ = 0 and 1 because of the boundary conditions for eigenfunctions.)

(1) One mode model. The assumed mode is as follows:

α1 = sin λ1 ȳ = sin
π

2
ȳ → dα1

d ȳ
= π

2
cos

π

2
ȳ

Equation (B.9) is

C11b1 = A1

2
(B.10)

where

C11 = −
∫ 1

0
(1 − ȳ)

(
dα1

d ȳ

)2

d ȳ + λ2

2

therefore C11 = λ2

2
− π2 + 4

16

From (B.10),

b1 = A1

λ2 − π2+4
8

Then divergence occurs when

λ2 = π2 + 4

8

and

qD = GJ0
cel2 ∂CL

∂α

π2 + 4

8
= (qD)const. wing prop. × 0.703
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(2) Two mode model. Assumed modes are

α1 = sin λ1 ȳ = sin
π

2
ȳ ⇒ dα1

d ȳ
= π

2
cos

π

2
ȳ

α2 = sin λ2 ȳ = sin
3

2
π ȳ ⇒ dα2

d ȳ
= 3

2
π cos

3

2
π ȳ

Equation (B.9) is as follows:

[
C11 C12

C21 C22

] [
b1
b2

]
= 1

2

[
A1

A2

]
(B.11)

where

C11 = −
∫ 1

0
(1 − ȳ)

(
dα1

d ȳ

)2

d ȳ + λ2

2
= λ2

2
− π2 + 4

16

C12 = −
∫ 1

0
(1 − ȳ)

dα2

d ȳ

dα1

d ȳ
d ȳ = −3

4

C21 = −
∫ 1

0
(1 − ȳ)

dα1

d ȳ

dα2

d ȳ
d ȳ = C12 = −3

4

C22 = −
∫ 1

0
(1 − ȳ)

(
dα2

d ȳ

)2

d ȳ + λ2

2
= λ2

2
− 9π2 + 4

16

Then equation (B.11) is as follows:

[
λ2 − π2+4

8 − 3
2

− 3
2 λ2 − 9π2+4

8

][
b1
b2

]
=

[
A1

A2

]

Thus divergence occurs when

∣∣∣∣∣
λ2 − π2+4

8 − 3
2

− 3
2 λ2 − 9π2+4

8

∣∣∣∣∣ = 0

therefore λ2 = 5π2 + 4

8
± 1

2

√
π4 + 9

qD is given by the smaller value of λ2, i.e.,

qD = GJ0
cel2 ∂CL

∂α

×
(
5π2 + 4

8
− 1

2

√
π4 + 9

)

=(qD)const.wingprop. × 0.612
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Fig. B.3

ξ

η
e

a.c
a

b

c , e.a

x

y

Question

Beam-rod model, see Fig.B.3

4. For a constant GJ , etc. wing, use a two ‘lumped element’ model and compute the
divergence dynamic pressure. Neglect rolling. Compare your result with the known
analytical solution. How good is a one ‘lumped element’ solution?

Answer
4.
(a) Two lumped element model

α(y) =
∫ 1

0
CαM(y, η)M(η)dη (B.12)

where
CαM(y, η): twist about y axis at y due to unit moment at η

M(η) =
∫ b

a
p(ξ, η)ξdξ

Equation (B.12) in matrix form is

{α} = [CαM ]{M}�η (B.12)

where from structural analysis,

[CαM ] =
[ l/4

GJ
l/4
GJ

l/4
GJ

3l/4
GJ

]
(B.13)

and CαM(i, j) is the twist at i due to unit moment at j . Using an aerodynamic ‘strip
theory’ approximation, the aerodynamic moment may be related to the twist,
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{M} = qce
∂CL

∂α

[
1 0
0 1

]
{α} = qce

∂CL

∂α
{α} (B.14)

From (B.12) and (B.14), one has

{α} = [CαM ]{M}�η = qCe
∂CL

∂α
[CαM ]�η{α}

or rewritten, using �η = l/2,

[[
1 0
0 1

]
− 1

2
qce

∂CL

∂α

l2

4GJ

[
1 1
1 3

]]
{α} =

{
0
0

}
(B.15)

Setting the determinant of coefficients to zero, gives

| | = 0 → 2Q2 − 4Q + 1 = 0 (B.16)

where

Q = l2

8GJ
qce

∂CL

∂α

Solving (B.16), on obtains

Q = 2 ± √
2

2

The smaller Q gives the divergence qD

qD =4(2 − √
2)

GJ/ l

(lc)e ∂CL
∂α

.=2.34
GJ/ l

(lc)e ∂CL
∂α

(b) One lumped element model

α = qce
∂CL

∂α
CαM�ηα

where

�η = l, CαM = l/2

GJ
(
1 − qCe

∂CL

∂α

l/2

GJ

)
α = 0

therefore qD = 2
GJ/ l

(lc)e ∂CL
∂α
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2.46

2.0

1.0

1 2 3 NUMBER  OF  ELEMENTS

ANALYTICAL  SOLUTION

8Q

Fig. B.4

Fig. B.5

x

l

w

Recall that the analytical solution is (cf. Section2.2)

qD =
(π

2

)2 GJ

l
/(lc)e

∂CL

∂α

= 2.46 · · ·

Acomparison of the several approximations is given below. In the two elementmodel
the error is about 5%, see Fig.B.4.

Question

5. Consider a thin cantilevered plate of length l and width b which represents the
leading edge of a wing at supersonic speeds. See Fig.B.5.

The aerodynamic pressure loading (per unit chord and per unit span) at high
speeds is given by (Sect. 3.4 and 4.2)

p = 2ρU 2

(M2 − 1)
1
2

∂w

∂x
Sign convention: p down, w up

http://dx.doi.org/10.1007/978-3-030-74236-2_2
http://dx.doi.org/10.1007/978-3-030-74236-2_3
http://dx.doi.org/10.1007/978-3-030-74236-2_4
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where M is the mach number andw is the transverse deflection (not the downwash!).
Compute the divergence speed.
(1) Work out a formal mathematical solution, without numerical evaluation, using
classical differential equation methods.
(2) How would you use Galerkin’s method with an assumed mode of the form

w = a{2(1 − x/ l)2 − 4

3
(1 − x/ l)3 + 1

3
(1 − x/ l)4}

to obtain a numerical answer? What boundary conditions on w does the assumed
mode satisfy?

Answer

(1) The governing equilibrium equation is

E I
∂4w

∂x4
= −p = − 2ρU 2

(M2 − 1)
1
2

∂w

∂x

Define

K ≡
[

2ρU 2

(M2 − 1)
1
2

] [
1

E I

]

then the equation above becomes

∂4w

∂x4
+ K

∂w

∂x
= 0 (B.17)

The boundary conditions are:

w(l) = ∂w

∂x
(l) = ∂2w

∂x2
(0) = ∂3w

∂x3
(0) = 0 (B.18)

The characteristic equation of differential equation (B.17) is

γ4 + Kγ = 0 (B.19)

The roots are γ1 = 0 and γ2, γ3, γ4 such that γ3 = −K . Now

(−K )
1
3 = K

1
3 ei

1
3 (π+2nπ), n = 0, 1, 2

and defining K 1 = K
1
3 the roots γ2, γ3, γ4 become
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γ2 = K 1eiπ/3 = K 1[cosπ/3 + i sin π/3] = K 1

[
1

2
+ i

√
3

2

]

γ3 = K 1eiπ = K 1[cosπ + i sin π] = K 1[−1]

γ4 = K 1ei5π/3 = K 1

[
cos

5π

3
+ i sin

5π

3

]
= K 1

[
1

2
− i

√
3

2

]

Therefore w(x) has the form:

w(x) = b1 + b2e
−K 1x + eK

1(x/2)

[
b3 cos

(
K 1

√
3

2
x

)
+ b4 sin

(
K 1

√
3

2
x

)]

w′(x) = −b2K
1e−K 1x + K 1

2
eK

1(x/2)
[
(b3+b4

√
3) cos

(
K 1

√
3

2
x

)

+ (b4 − b3
√
3) sin

(
K 1

√
3

2
x

)]

w′′(x) = b2K
12e−K 1x +

(
K 1

2

)
eK

1(x/2)
[
(2

√
3b4 − 2b3) cos

(
K 1

√
3

2
x

)

+ (2
√
3b3 + 2b4) sin

(
K 1

√
3

2
x

)]

w′′′(x) = −b2K
13e−K 1x − K 13eK

1(x/2)

[
b3 cos

(
K 1

√
3

2
x

)
+ b4 sin

(
K 1

√
3

2
x

)]

(B.20)
Using boundary conditions (B.18), we obtain from (B.20),

w(l) = 0 = b1 + b2e
−K 1l + eK

1 1

2

[
b3 cos

(
K 1

√
3

2
l

)
+ b4 sin

(
K 1

√
3

2
l

)]

∂w

∂x
(l) = 0 = − − b2K

1e−K 1l + K 1

2
eK

1 l

2

[
(b3 + b4

√
3) cos

(
K 1

√
3

2
l

)

+ (b4 − b3
√
3) sin

(
K 1

√
3

2
l

)]

∂2w

∂x2
(0) = 0 = b2K

12 +
(
K 1

2

)2

(2
√
3b4 − 2b3)
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Fig. B.6 z
x

y

h

∂3w

∂x3
(0) = 0 = −b2K

13 − b3K
13 (B.21)

The condition for nontrivial solutions is that the determinant of coefficients of the
system of linear, algebraic equations given by (B.21) be zero. This leads to

e− 3
2 K

′′ = −2 cos

(√
3

2
K ′′

)
(B.22)

where
K ′′ ≡ K 1l

In order to find the solution to equation (B.22), one would plot on the same graph
as a function of K ′′ the right and left sides of this equation and note the points (if
any) of intersection. The first intersection for K ′′ > 0 is the one of physical interest.
Knowing this particular K ′′, call it K ′′

D , one may compute

U 2
D = K

′′3
D (M2 − 1)

1
2 E I

2ρl3

to find the speed U at which divergence occurs (Fig.B.6).
(2) This is left as an exercise for the reader.

Questions

Sweptwing divergence

6. Derive the equations of equilibrium and associated boundary conditions, (2.6.1,
2.6.2, 2.6.11 and 2.6.12) from Hamilton’s Principle. Note that Hamilton’s Principle
is the same as the Principle of Virtual Work for the present static case.

For a constant property sweptwing undergoing bending only, use classical solution
techniques to compute the lowest eigenvalue corresponding to divergence. That is
from (2.6.10)–(2.6.12), show that λd = −6.33.

http://dx.doi.org/10.1007/978-3-030-74236-2_2
http://dx.doi.org/10.1007/978-3-030-74236-2_2
http://dx.doi.org/10.1007/978-3-030-74236-2_2
http://dx.doi.org/10.1007/978-3-030-74236-2_2
http://dx.doi.org/10.1007/978-3-030-74236-2_2
http://dx.doi.org/10.1007/978-3-030-74236-2_2
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• Now use Galerkins method to compute an approximate λD . For h, assume that

h = a0 + a1 ỹ + a2 ỹ
2 + a3 ỹ

3 + a44̃

From the boundary conditions (2.6.11), (2.6.12) show that

a0 = b0 = 0

a3 = −4a4
a2 = 6a4

and thus h = a4(ỹ3 − 4ỹ3 + 6ỹ2). Using this representation for h, compute λD . How
does this compare to the exact solution?

• Now consider both bending and torsion for a constant property wing. Assume

α = b0 + b1 ỹ
2 + b2 ỹ

3

Determine the possible form of α from the boundary conditions.
Determine λD for GJ/E I = 1, ē/c̄ = 0.5, l/c̄ = 10. Compare to the earlier

result for bending only. Plot your result in terms of λ̃D vs�where λ̃D ≡ q(∂C̄L/∂α)

(c̄l3/E I ).

B.2 For Sect. 3.1

Question

Starting from

U = 1

2

∫∫∫
[σxxεxx + σxyεxy + σyxεyx + σyyεyy] dx dy dz

and

εxx = −z
∂2w

∂x2

εyy = −z
∂2w

∂y2

εxy = −z
∂2w

∂x∂y

σxx = E

(1 − ν2)
[εxxνεxy]

σyy = E

(1 − ν2)
[εyyνεxx ]

σxy = εxy = σyx

w = w(x, y) only

http://dx.doi.org/10.1007/978-3-030-74236-2_2
http://dx.doi.org/10.1007/978-3-030-74236-2_2
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1. Compute U = U (w)

2. For w = −h(y) − aα(y), compute U = U (h,α)

3. Using a kinetic energy expression

T = 1

2

∫∫∫
ρ

(
∂w

∂t

)2

dx dy dz

compute T = T (h,α)

4. Assume h(y) = qh f (y)
α(y) = qαg(y)

where f, g are specified.
Determine equations of motion for qh, qα using Lagrange’s Equations, where the

virtual work done by aerodynamic pressure, p, is given by

δw =
∫∫

pδw dx dy

5. Return to 1; now assume

w =
∑
m

qmψm(x, y)

where ψm is specified. Determine equations of motion for qm .

Answer

1. Potential energy U :

U = 1

2

∫∫∫
(σxxεxx + σxyεxy + σyxεyx + σyyεyy) dx dy dz

where

εxx = −z
∂2w

∂x2

εxy = −z
∂2w

∂x∂y
= εyx

εyy = −z
∂2w

∂y2

σxx = E

1 − ν2
(εxxνεyy)

σxy = E

1 + ν
εxy

σyy = E

1 − ν2
(εyyνεxx )
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Thus
σxxεxx + σxyεxy + σyxεyx + σyyεyy

= E

1 − ν2
(εxx + νεyy) · εxx + 2

E

1 + ν
ε2xy + E

1 − ν2
(εyy + νεxx )εyy

= E

1 − ν2
(ε2xx + 2νεxx + ε2yy) + 2E(1 − ν)

1 − ν2
ε2xy

= E

1 − ν2

{
z2

(
∂2w

∂z2

)2

+ 2ν · z2
(

∂2w

∂x2

)(
∂2w

∂y2

)
+ z2

(
∂2w

∂y2

)2

+2(1 − ν)z2
(

∂2w

∂x∂y

)}

= Ez2

1 − ν2

{(
∂2w

∂x2

)
+

(
∂2w

∂y2

)2

+ 2ν

(
∂2w

∂x2

)(
∂2w

∂y2

)
+ 2(1 − ν)

(
∂2w

∂x∂y

)2
}

U = 1

2

∫∫∫
Ez2

1 − ν2

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2ν

(
∂2w

∂x2

)

(
∂2w

∂y2

)
+ 2(1 − ν) ×

(
∂2w

∂x∂y

)2 ]
dx dy dz

= 1

2

∫∫
D

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2ν

(
∂2w

∂x2

)(
∂2w

∂y2

)
+ 2(1 − ν)

(
∂2w

∂x∂y

)2
]
dx dy

(B.23)
where

D ≡ E

1 − ν2

∫
z2dz

2. For w = −h(y) − xα(y)

∂2w

∂y2
= −∂2h

∂y2
− x

∂2α

∂y2

∂2w

∂x∂y
= − ∂α

∂y

∂2w

∂x2
=0

Hence, from (B.23), we have

U = 1

2

∫∫
D
[(

∂2h

∂y2

)2

+ 2

(
∂2h

∂y2

)(
∂2α

∂y2

)
· x +

(
∂2α

∂y2

)2

· x2

+ 2(1 − ν)

(
∂α

∂y

)2 ]
dx dy

(B.24)
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Using the estimates,
∂α

∂y
∼ α

l
, x ∼ c,

h

l
∼ α

we see the second and third terms can be neglected compared to the first and fourth
for c/ l 	 1. Thus U becomes

U = 1

2

∫
E I

(
∂2h

∂y2

)2

dy + 1

2

∫
GJ

(
∂α

∂y

)2

dy

where

E I =
∫

Ddx, GJ =
∫

2D(1 − ν)dx

Note that if h
c ∼ α is used as an estimate, then to deduce the final expression for

U from (B.24), it is required that
∫

Dxdx = 0 which defines the position of the
“elastic axis”.
3. For w = −h(y, t) − α(y, t)x ,

T = 1

2

∫∫∫
ρ

(
∂w

∂t

)2

dxdydz

= 1

2

∫
[mḣ2 + 2Sαḣα̇ + Iαα̇2]dy

where: m ≡ ∫
ρ dxdz; Sα ≡ ∫

ρx dx dz; and Iα ≡ ∫
ρx2dxdz.

Recall

δW =
∫

−Lδhdy +
∫

Myδαdy

Using the above expression for U, T and δW , one can derive the governing par-
tial differential equations for h and α and the associated boundary conditions from
Hamilton’s principle.
4. Now w(z, y, t) = qh(t) · f (y) + qα(t)g(y)x and therefore

∂w

∂t
= q̇h f (y) + q̇αg(y)x · ≡ d

dt
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T =1

2

∫∫∫
ρ

(
∂w

∂t

)2
dxdydz

=1

2

∫∫∫
ρ(q̇h f (y) + q̇αg(y)x)

2dxdydz

=
∫∫∫

ρρ(q̇2h { f (y)}2 + 2q̇h q̇α f (y)g(y)x + q̇2α{g(y)}2x2)dxdydz

=1

2

[
q̇2h

∫∫∫
ρ{ f (y)}2dxdydz + 2q̇h q̇α

∫∫∫
ρ f (y)g(y)x dxdydz

+ q̇2α

∫∫∫
{g(y)}2x2dxdydz

]

=1

2
(q̇2h Mhh + 2q̇h q̇αMhα + q̇2αMαα)

(B.25)

where

Mhh ≡
∫∫∫

ρ{ f (y)}2dxdydz

Mhα ≡
∫∫∫

ρ f (y)g(y)x dxdydz

Mαα ≡
∫∫∫

ρ{g(y)}2x2dxdydz

(B.26)

For w = qh(t) f (y) + qα(t)g(y)x the potential energy is given as follows:

′ ≡ d

dy(
∂2h

∂y2

)
= qh f

′′(y),
∂α

∂y
= qαg

′(y),
∂2α

∂y2
= qαg

′′(y) into (II.24)

U = 1

2

∫∫
D[{qh f ′′(y)}2 + 2qh f

′′(y)qαg
′′(y)x + {qαg

′′(y)}2x2

+ 2(1 − ν){qαg
′(y)}2]dxdy

= 1

2

∫∫
D[q2

h { f ′′(y)}2 + 2qhqα f ′′(y)g′′(y)x + q2
α[{g′′(y)}2y2

+ 2(1 − ν){g′(y)}62]]dxdy
= 1

2

[
q2
h

∫∫
D{ f ′′(y)}2dxdy + 2qhqα

∫∫
Df ′′(y)g′′(y)x dxdy

+ q2
α

∫∫
D{g′′(y)}2x2 + 2(1 − ν){g′(y)}2

]
dxdy

= 1

2
[q2

h Khh + 2qhqαKhα + q2
αKαα]

(B.27)

where
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Khh ≡
∫∫

D{ f ′′(y)}2dxdy

Khα ≡
∫∫

Df ′′(y)g′′(y)x dxdy

Kαα ≡
∫∫

D[{g′′(y)}2x2 + 2(1 − ν){g′(y)}2]dxdy

(B.28)

Virtual work

δW =
∫∫

pδw dxdy

where

δw = δh + δαx = f (y)δqh + g(y)xδqα

Therefore δW =
∫∫

p( f (y)δqh + g(y)xδqα)dxdy

= δqh

∫∫
p f (y)dxdy + δqα

∫∫
pg(y)x dxdy

= Qhδqh + Qαδqα

where

Qh ≡
∫∫

p f (y)dxdy

Qα ≡
∫∫

pg(y) · x dxdy
(B.29)

The Lagrangian, L ≡ T −U , may be written

= 1

2
(q̇2

h Mhh + 2q̇hq̇αMhα + q̇2
αMαα)

−1

2
(q2

h Khh + 2qhqαKhα + q2
αKαα)

∂L

∂q̇h
= q̇hMhh + q̇αMhα,

∂L

∂qh
= −qh · Khh − qαKhα

Therefore
∂L

∂q̇α
= q̇hMhα + q̇αMαα,

∂L

∂qα
= −qhKhα − qαKαα
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Then Lagrange’s equations of motion are

d

dt

(
∂L

∂q̇h

)
− ∂L

∂qh
= Qh → Mhhq̈h + Mhαq̈α + Khhqh + Khα · qα = Qh

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= Qα → Mhαq̈h + Mααq̈α + Khαqh + Kααqα = Qα

(B.30)

where Mhh, Mhα, Mαα, Khh, Khα, Kαα, Qh and Qα are given in (B.26), (B.28) and
(B.29).
5. When

w(x, y, t) =
∑
m

qm(t)ψm(x, y)

∂2w

∂x2
=

∑
m

qm
∂2ψm

∂x2

∂2w

∂y2
=

∑
m

qm
∂2ψm

∂y2

∂2w

∂x∂y
=

∑
m

qm
∂2ψm

∂x∂y

(
∂2w2

∂x2

)
=

∑
m

∑
n

qmqn
∂2ψm

∂x2
∂2ψn

∂x2(
∂2w2

∂y2

)
=

∑
m

∑
n

qmqn
∂2ψm

∂y2
∂2ψn

∂y2(
∂2w2

∂x2

)(
∂2w

∂y2

)
=

∑
m

∑
n

qmqn
∂2ψm

∂x2
∂2ψn

∂y2(
∂2w2

∂x∂y

)
=

∑
m

∑
n

qmqn
∂2ψm

∂x∂ y

∂2ψn

∂x∂y

Then from (B.23) the potential energy is
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U =1

2

∫∫
D
[∑

m

∑
n

qmqn
∂2ψm

∂x2
∂2ψn

∂x2
+

∑
m

∑
n

qmqn
∂2ψm

∂y2
∂2ψn

∂y2

+2ν
∑
m

∑
n

qmqn
∂2ψm

∂x2
∂2ψn

∂y2
+ 2(1 − ν)

∑
m

∑
n

qmqn
∂2ψm

∂x∂y

∂2ψn

∂x∂y

]
dxdy

=1

2

∑
m

∑
n

qmqn

∫∫
D
[∂2ψm

∂x2
∂2ψn

∂x2
+ ∂2ψm

∂y2
∂2ψn

∂y2
+ 2ν

∂2ψm

∂x2
∂2ψn

∂y2

+2(1 − ν)
∂2ψm

∂x∂y

∂2ψn

∂x∂y

]
dxdy

=1

2

∑
m

∑
n

qmqn · Kmn

(B.31)
where

Kmn ≡
∫∫

D
[∂2ψm

∂x2
∂2ψn

∂x2
+ ∂2ψm

∂y2
∂2ψn

∂y2
+ 2ν

∂2ψm

∂x2
∂2ψn

∂y2

+ 2(1 − ν)
∂2ψm

∂x∂y

∂2ψn

∂x∂y

]
dxdy

Note Kmn �= Knm!
Kinetic energy

∂w

∂t
=

∑
m

q̇mψm(x, y)

therefore

(
∂w

∂t

)2

=
∑
m

∑
n

q̇mq̇nψmψn

T = 1

2

∫∫∫
ρ

(∑
m

∑
n

q̇mq̇nψmψn

)
dxdydz

= 1

2

∑
m

∑
n

q̇mq̇n

∫∫∫
ρψmψn dxdxdz

= 1

2

∑
m

∑
n

q̇mq̇nMmn

(B.32)

where

Mmn ≡
∫∫∫

ρψmψn dxdydz

Virtual work
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δW =
∫∫

pw dxdy

=
∫∫

p

(∑
m

δqmψm

)
dxdy

δW =
∑
m

δqm

∫∫
pψmdxdy

=
∑
m

Qmδqm

(B.33)

where

Qm ≡
∫∫

pψmdxdy

Lagrangian:

L = T −U = 1

2

∑
m

∑
n

q̇mq̇nMmn − 1

2

∑
m

∑
n

qmqnKmn

∂L

∂q̇ j
= 1

2

∑
n

q̇nM jn + 1

2

∑
m

q̇mMmj = 1

2

∑
m

q̇m(Mjm + Mmj )

=
∑
m

q̇mMmj (Mmj = Mjm)

∂L

∂q j
= −1

2

(∑
n

qnK jn +
∑
m

qmKmj

)
= −1

2

∑
m

(Kmj + K jm)

Lagrange’s equations of motion

d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
=

∑
m

q̈mMmj + 1

2

∑
m

qm(Kmj + K jm) = Q j ( j = 1, 2 . . .)

(B.34)
Note: Kmj + K jm = K jm + Kmj , i.e., coefficient symmetry is preserved in final
equations.

B.3 For Sect. 3.3

Question.

Use the vertical translation of and angular rotation about the center of mass of the
typical section, see Fig.B.7, as generalized coordinates.
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Fig. B.7

α h

x

L
e x

MEASURED  FROM cmx  

cm

k

a. Derive the equations of motion.
b. Determine the flutter dynamic pressure and show that it is the same as discussed

in text. Use steady or quasi-steady aerodynamic theory.

Answer

T = m

2
ḣ2cm + Icm

2
α̇2

U = 1

2
Kh(hcm − αxk)

2 + 1

2
Kαα2

δW =
∫

pδw dx where w = −hcm − xα

is the vertical displacement of a point on airfoil. Thus

δW =
∫

p(−δhcm − xδα)dx

= δhcm

(
−

∫
pdx

)
+ δα

(
−

∫
pxdx

)

= δhcm(−L) + δα(My)

where My is the moment about c.m and



784 Appendix B: Some Example Problems

M

MQhcm = −L ≡ −
∫

pdx

Qα = My ≡ −
∫

pxdx

T −U = m

2
ḣ2cm + Icm

2
α̇2 − Kh

2
(hcm − αxk)

2 − Kα

2
α2

From Lagrange’s equations,

− mḧcm − Kh(hcm − αxK ) −
∫

pdx = 0

− Icmα̈ + KhxK (hcm − αxK ) − Kαα −
∫

pxdx = 0
(B.35)

Substituting

∫
pdx = qS

∂CL

∂α
,

∫
pxdx = −qS(e + xk)

∂CL

∂α
α, h = h̄ept

and α = ᾱept into the above equations, we obtain

[
(mp2 + Kh) −Khxk + qS ∂CL

∂α−KhxK Icm p2 + Khx2k + Kα − qS
(
e + xk

∂CL
∂α

)
] {

h̄ept

ᾱept

}
=

{
0
0

}

The condition that the determinant of the coefficient matrix is zero gives

Ap4 + Bp2 + C = 0 (B.36)

where

A = mIcm = mIα − S2α (Icm = Iα − mx2k , Sα = mxk)

B = m

[
Khx

2
k + Kα − qS(e + xk)

∂CL

∂α

]
+ Kh Icm

= m

[
Kα − qSc

∂CL

∂α

]
+ Khα − SαqS

∂CL

∂α

C = Kh

[
�����
Khx

2
k + Kα − qS(���e + xk)

∂CL

∂α

]
+ Khxk

(
����−Khxk +

�
�

��
qS

∂CL

∂α

)

= Kh

[
Kα − qSe

∂CL

∂α

]

These A, B, and C are the same as in equation (3.3.51), Sect. 3.3, in the text. Thus
we have the same flutter boundary.

http://dx.doi.org/10.1007/978-3-030-74236-2_3
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p2 = −B + [B2 − 4AC] 1
2

2A

(a) B > 0 (A > 0, C > 0 ← divergence free.) If p2 is complex (not real), then
instability occurs.

Therefore B2 − 4AC = 0 gives the flutter boundary, i.e.,

Dq2
F + EqF + F = 0

or

q f = −E ± [E2 − 4DF]
2D

where

D ≡
{
(me + Sα)S

∂CL

∂α

}2

E ≡
{
−2(me + Sα)[mKα + Kh Iα] + 4[mIα − S2α]eK S

∂CL

∂α

}

F ≡ [mKα + Kh Iα]2 − 4[mIα − S2α]KhKα

The smaller, real, and positive q f is the flutter dynamic pressure.
(b) B < 0. Note that B = 2

√
AC before B = 0 as q increases. Hence flutter always

occurs for B > 0.

Question

Prove that
1.

φhF (τ ) = φFh(−τ )

and
2.

�hF (ω) = HhF (−ω)�FF (ω)

This is a useful exercise to confirm one’s facility with the concepts of correlation
function and power spectral density.

Answer
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1. Prove that φhF (τ ) = φFh(−τ ). We start with the definition of the cross-correlation
function2:

φhF (τ ) = lim
T→∞

1

2T

∫ +T

−T
h(t)F(t + τ )dt (B.37)

The response h(t) is given by

h(t) =
∫ t

0
IhF (t − τ1)F(τ1)dτ1 (B.38)

Here we have taken h(t) in dimensional form and IhF (t) represents the response to
an impulse. Substituting (B.38) into (B.37),

φhF (τ ) = lim
T→∞

1

2T

∫ +T

−T

∫ +∞

−∞
IhF (t − τ1)F(τ1)F(t + τ )dτ1dt

(Onemay change the limit (0, t) in the inner integral to (−∞,+∞) since the impulse
will be zero for (t − τ1) < 0.) Let t ′ ≡ t − τ1 ⇒ τ1 = t − t ′ and interchange the
order of integration. Then dτ1 = −dt ′ and

φhF (τ ) = −
∫ −∞

+∞
IhF (t ′) lim

T→∞
1

2T

∫ +T

−T
F(t − t ′)F(t + τ )dtdt ′

= −
∫ −∞

+∞
IhF (t ′)φFF (τ + t ′)dt ′

Thus

φhF (τ ) = +
∫ +∞

−∞
IhF (λ)φFF (τ + λ)dλ (B.39)

where λ ≡ t ′ = dummy variable.
We follow the same procedure for φFh(τ ).

φFh(τ ) = lim
T→∞

1

2T

∫ +T

−T
F(t)h(t + τ )dt

= lim
T→∞

1

2T

∫ +T

−T
F(t)

{∫ +∞

−∞
IhF (t + τ − t2)F(t2)dt2

}
dt

let t ′′ = t + τ − τ2. ⇒ dt ′′ = −dτ2, τ2 = τ + t − t ′′

2 A short proof goes as follows. Define η ≡ t − τ . Then dη = dt and t = η − τ ; using these and
(B.37) the proof follows by inspection.
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φFh(τ ) = −
∫ −∞

+∞
IhF (t ′′)

{
lim
T→∞

1

2T

∫ +T

−T
F(t − t ′′ + τ )F(t)dt

}
dt ′′

= −
∫ −∞

+∞
IhF (t ′′)φFF (τ − t ′′)dt ′′

= −
∫ +∞

−∞
IhF (λ)φFF (τ − λ)dλ

Let τ → −τ :

φFh(−τ ) = +
∫ +∞

−∞
IhF (λ)φFF (−τ − λ)dλ

but φFF (τ ) = φFF (−τ ) and hence

φFh(−τ ) = +
∫ +∞

−∞
IhF (λ)φFF (+τ + λ)dλ (B.40)

Comparing (B.39) and (B.40) we see that

φhF (τ ) = φFh(−τ )

2. Prove that �hF (ω) = HhF (−ω)�FF . By definition, the spectral density function
is the Fourier transform of the correlation function.
Transforming the cross correlation function defined by (B.39).

�hF (ω) ≡ 1

π

∫ +∞

−∞
φhF (τ )e−iωτdτ

�hF (ω) = 1

π

∫ +∞

−∞

∫ +∞

−∞
IhF (t)φFF (τ + t)eiωτdtdτ

= 1

π

∫ +∞

−∞

∫ +∞

−∞
IhF (t)e+iωτφFF (τ + t)e−iωτ−iωt dtdτ

=
∫ +∞

−∞
IhF (t)

{
1

π

∫ +∞

−∞
φFF (τ + t)e−iω(τ+t)dτ

}
e+iωt dt

By definition
1

π

∫ +∞

−∞
φFF (τ ′)e−iωτ ′

dτ ′ = �FF (ω)

Let τ ′ ≡ τ + t , and substitute in RHS of equation for �hF . Then

�hF (ω) =
∫ +∞

−∞
IhF (t)e+iωt�FF (ω)dt

Now, since



788 Appendix B: Some Example Problems

HhF (ω) =
∫ +∞

−∞
IhF (t)e−iωt dt it follows that

�hF (ω) =HhF (−ω)�FF (ω)

B.4 For Sect. 3.6

Typical section flutter analysis using piston theory aerodynamics

Pressure: p = ρa
[

∂za
∂t + ∂za

∂x

]
Motion: za = −h − α(x − xE A)

3

Upper surface: pU = ρa
[−ḣ − α̇(x − xE A) −Uα

]
Lower surface: pL = −ρa

[−ḣ − α̇(x − xE A) −Uα
]

Net pressure: pL − pU = 4ρU 2

2M

[
ḣ
U + α̇

U (x − xE A) + α
]

Lift: L ≡ ∫ 2b
0 (pL − pU )dx = 4ρU 2

2M

{[
ḣ
U − α̇xE A

U + α
]
2b + α̇

U
(2b)2

2

}

Moment: My = − ∫ 2b
0 (pL − pU )(x − xE A)dx = xE AL − 4ρU2

2M

[
ḣ
U − α̇ xE A

U + α
]

(2b)2

2

− 4ρU 2

2M

α̇

U

(2b)2

3
(B.41)

Assume simple harmonic motion,

h = h̄eiωt

α = ᾱe1ωt

L = L̄eiωt

My = M̄ye
1ωt

L̄ = 4ρU 2

2M

{ iω
U

2bh̄

+
[−iωxE A

U
+ 1 + iω

U

(2b)

2

]
2bᾱ

}

≡ 2ρb2ω2(2b)

{
(L1 + i L2)

h̄

b
+ [L3 + i L4]ᾱ

}

Thus from Eq. (3.6.3) in Sect. 3.6,

L1 + i L2 =
2ρU 2

M
iωρ2b
U

2ρb2ω2(2b) 1b
= i

M

U

ωb
(B.42)

3 x is measured from airfoil leading edge: b is half-chord of airfoil.

http://dx.doi.org/10.1007/978-3-030-74236-2_3
http://dx.doi.org/10.1007/978-3-030-74236-2_3


Appendix B: Some Example Problems 789

and

L3 + i L4 =
2ρU 2

M

[
−iωxE A

U + 1 + iω(2b)
U 2

]
2b

2ρb2ω2(2b)

= 1

M

(
U

bω

)2 [−iωb

U

xEA

b
+ 1 + iωb

U

] (B.43)

Questions

(1) Derive a similar equation for

M1 + iM2 and M3 + iM4

(2) Fix ωh
ωα

= 0.5, rα = 0.5, xα = 0.05

xea
b

= 1.4, M = 2

Choose several k, say k = 0.1, 0.2, 0.5, and solve for

(
ω

ωα

)2

and
m

2ρ∞bS
≡ μ (S ≡ 2b)

from (3.6.4) using the method described on pp. 107 and 108. Plot k verses μ and
ω/ωαvs μ.

Finally plot U
bωα

≡ ω/ωα

k vsμ. This is the flutter velocity as a function ofmass ratio.

Answers

Recall Eq. (3.6.3) and again from Sect. 3.6,

M̄y = −2ρb3ω2(2b)

{
[M1 + iM2] h̄

b
+ [M3 + iM4]ᾱ

}

Comparing the above and (B.41), one can identify

M1 + iM2 = iU

Mbω

[
1 − xea

b

]

M3 + iM4 = 1

M

(
U

bω

)2 [
− xea

b

]
+ i

1

M

U

bω

{[
1 − xea

b

]2 + 1

3

} (B.44)

Recall the method described in Sect. 3.6 for determining the flutter boundary.

http://dx.doi.org/10.1007/978-3-030-74236-2_3
http://dx.doi.org/10.1007/978-3-030-74236-2_3
http://dx.doi.org/10.1007/978-3-030-74236-2_3
http://dx.doi.org/10.1007/978-3-030-74236-2_3
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1. Evaluate real and imaginary parts of equation (3.6.4) and set each individually
to zero.
2. Solve for (ωα/ω)2 in terms of the mass ratio,μ, from the imaginary part of the
equation.
3. Substituting this result into the real part of the equation, obtain a quadratic in μ.
Solve for possible values of μ for various k. To be physically meaningful, μ must be
positive and real.
4. Return to 2. To evaluate ω/ωα

5. Finally determine U
bωα

= U
bω

ω
ωα

= 1
k

ω
ωα
.

In detail these steps are given below.

1. Real part

μ2

{[
1 −

(ωα

ω

)2
(

ωh

ωα

)2
]
r2α

[
1 −

(ωα

ω

)2
]

− x2α

}

+μ

{
−1

k2M

(
1 − xea

b

)[
1 −

(ωα

ω

)2
(

ωh

ωα

)2
]

+ xα

k2M

}
− 1

3k2M2
= 0

(B.45)

Imaginary part

μr2α

[
1 −

(ωα

ω

)2
]

− 1

k2M

(
1 − xea

b

)

+
[(

1 − xea
b

)2 + 1

3

][
1 −

(ωα

ω

)2
(

ωh

ωα

)2
]

μ

−
[
1 − xea

b

]
μxα −

[
1 − xea

b

] [
μxα − 1

k2M

]
= 0

(B.46)

2. Solving for (ωα/ω)2 from (B.46),

(ωα

ω

)2 = r2α + (
1 − xea

b

)2 + 1
3 − 2xα

(
1 − xea

b

)

r2α +
(

ωh
ωα

)2 [(
1 − xea

b

)2 + 1
3

] (B.47)

Note (B.47) is independent of μ and k; this is a consequence of using piston theory
aerodynamics and would not be true, in general, for a more elaborate (and hopefully
more accurate) aerodynamic theory.

Substituting the various numerical parameters previously specified into (B.47)
gives (ωα

ω

)2 = 2.099 or
ω

ωα
= 0.69 (B.48)

http://dx.doi.org/10.1007/978-3-030-74236-2_3
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3. Using (B.48) in (B.45) along with the other numerical parameters gives

− 0.133μ2 + 0.121

k2
μ − 1

12k2
= 0 (B.49)

Solving for μ,

μ1,2 = 0.45

k2
± 1

k

[
0.21

k2
− 0.63

] 1
2

(B.50)

Note that there is a maximum values of k possible, kMAX = [0.21/0.63] 1
2 . Larger k

gives complex μ which are physically meaningless. Also note that μ → 0.67, ∞ as
k → 0.
4. ω/ωα is evaluated in (B.48) and for these simple aerodynamics does not vary with
μ or k.
5. From (B.48) and a knowledge of k, U/bωα is known.

The above results are tabulated below.

k μ1 μ2 U/bωα

0.0 0.67 ∞ ∞
0.1 0.69 89.6 6.9
0.2 0.72 22 3.45
0.3 0.75 9.28 2.3
0.4 0.81 4.3 1.73
0.5 0.937 2.66 1.38
0.57 1.39 1.39 1.21

From the above table (as well as Eq. (B.50)) one sees that for 4μ < 0.67, no
flutter is possible. This is similar to the flutter behavior of the typical section at
incompressible speeds. At these low speeds mass ratios of this magnitude may occur
in hydrofoil applications. Although no such applications exist at high supersonic
speeds, it is of interest at least from a fundamental point of view that this somewhat
surprising behavior at small μ occurs there as well.

B.5 For Sect. 4.1

Question

1. Starting from Bermoulli’s equation, show that

â

a∞
∼ M2

∞
û

U∞
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2. Previously we had shown that the boundary condition on a moving body is (within
a linear approximation)

∂φ̂

∂z

∣∣∣
z=0

= ∂za
∂t

+U∞
∂za
∂x

What is the corresponding boundary condition in terms of p̂?
3. Derive approximate formulae for the perturbation pressure over a two-
dimensional airfoil at supersonic speeds for very low and very high frequencies.

Answer

1. Bernoulli’s equation is

∂φ

∂t
+ ∇φ · ∇φ

2
+

∫ p

p∞

dp1
ρ1(p1)

= U 2∞
2

Since

a2 ≡ ∂ p

∂ρ
and

p

ργ
= constant

we may evaluate integral in the above to obtain

U 2∞
2

∂φ

∂t
+ u2

2
= a2 − a2∞

γ − 1
, u ≡ |∇φ|

Assume
a =a∞ + â

u =U∞ + û

φ =U∞x + φ̂

where â 	 a∞, etc. To first order

−M2
∞

û

U∞
− 1

a2∞

∂φ̂

∂t
= 2

γ − 1

â

a∞
+ terms (â2, etc.)

This means that M2∞(û/U∞) and â/a∞ are quantities of the same order, at least for
steady flow where ∂φ̂/∂t ≡ 0.
2.

∂φ̂

∂z

∣∣∣
z=0

= Dza; D ≡ ∂

∂t
+U∞

∂

∂x
(B.51)

By the linearized momentum equation

−∂ p̂

∂x
= ρ∞Dû
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but

û = ∂φ̂

∂x

therefore p̂ = −ρ∞Dφ̂

therefore − ∂ p̂

∂z
= ρ∞

∂

∂z
(Dφ̂)

= ρ∞
∂

∂z
(D(φ̂)) = ρ∞D

(
∂

∂z
φ̂

)

From (B.51) and the above

−∂ p̂

∂z

∣∣∣
z=0

= ρ∞D2za

∂ p

∂z
= −ρ∞D2za at z = 0 (B.52)

3.

∇2φ − 1

a2∞

[
∂

∂t
+U∞

∂

∂x

]2

φ = 0

where
∂φ

∂z

∣∣∣
z=0

= ∂

∂t
za +U∞

∂

∂x
za ≡ w

off wing
∂φ

∂z

∣∣∣
z=0

= 0 thickness case

This does not matter here, because there are no disturbances ahead of wing in super-
sonic flow.

φ
∣∣∣
z=0

= 0 lifting case,

For a two dimensional solution, let φ(x, z, t) = φ̄(x, z)eiωt and w = w̄eiωt . Thus

∂2φ̄

∂x2
+ ∂2φ̄

∂z2
− 1

a2∞

[
−ω2φ̄ + 2iωU∞

∂φ̄

∂x
+U 2

∞
∂2φ̄

∂x2

]
= 0

Recall u, v, w = 0 for x ≤ 0 (leading edge) in supersonic flow. Taking a Laplace
transform (quiescent condition at x = 0)

� ≡
∫ ∞

0
φ̄e−pxdx

then
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p2� + ∂2�

∂z2
− 1

a2∞
[−ω2� + 2iω pU∞� + p2U 2

∞�]

or
d2�

dz

[
−p2 − ω2

a2∞
+ 2iω pM

a∞
+ p2M2

]
� ≡ μ2�

Thus
� = Be−μz

Now
d�

dz

∣∣∣
z=0

= W, W ≡
∫ ∞

0
w̄e−pxdx

Thus
d�

dz

∣∣∣
z=0

= −μB, B = −W

μ

Hence
� = −w

μ
e−μz

so

φ̄|z=0 =
∫

L−1

{
− 1

μ

}
w̄(ξ,ω)dξ

For low frequencies , we can ignore the ω2 terms so

μ2 ∼= (M2 − 1)

{
p + iMω

a∞(M2 − 1)

}2

− 1

μ
= −1√

M2 − 1

(
1

p + iMω
a∞(M2−1)

)

L−1

(−1

μ

)
= −1√

M2 − 1
exp[−iMωx/a∞(M2 − 1)]

and

φ̄|z=0 = −1√
M2 − 1

∫ x

0
exp[−iMω(x − ξ)/a∞(M2 − 1)]w̄(ξ,ω)dξ

and if we select our coordinate system such that w(0) = 0, for low frequencies the
perturbation pressure, p̂, is from Bernoulli’s equation
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p̂ = ρ∞eiωt√
M2 − 1

[
− iω exp[iω(t − Mx/a∞(M2 − 1))]

(M2 − 1)

×
∫

exp[iMωξ/a∞(M2 − 1)]w̄(ξ,ω)dξ +U∞w̄(x,ω)
]

∼= ρ∞eiωt√
M2 − 1

U∞w̄(x)

(B.53)

For high frequencies,

d2�

dx2
=

[−ω2

a2∞
+ 2iω pM

a∞
+ (M2 − 1)p2

]
�

∼=
[
iω

a∞
+ pM

]2

�

when we ignore the (−p2) term compared to those involving ω. Then,

−1

μ
∼= −1

pM + iω
a∞

and

φ̄|z=0 =
∫

L−1

(−1

μ

) ∣∣∣
x−ξ

w̄(ξ,ω)dξ

by the convolution theorem. Now

L−1

[
−1

pM + iω
a

]
= −1

M
exp(−iωx/a∞M)

so

φ̄|z=0 = − 1

M

∫ x

0
exp[−iω(x − ξ)/a∞M]w̄(ξ, x)dξ

and from Bernoulli’s equation therefore

p̂ =�
��

ρ∞
M

iω exp[iω(x − x/a∞M)]
∫ x

0
exp(iωξ/a∞M)w̄(ξ,ω)dξ

+ ρ∞U∞
M

exp[iω(t − x/a∞M)] exp(iωx/a∞M)w̄(x,ω)

−
������

ρ∞U∞
M

iω

a∞M
exp[iω(t − x/a∞M)]

∫ x

0
exp(iωξ/a∞M)w̄(ξ,ω)dξ

p̂ ∼= ρ∞U∞
M

w̄(x,ω)eiωt f orhigh f requencies
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This is known as the (linearized, small perturbation) piston theory approximation.
It is a useful and interesting exercise to determine pressure distributions, lift and
moment for translation and rotation of a flate plate using the piston theory.4 The low
frequency approximation considered earlier is also useful in this respect.

4 Ashley, H. and Zartarian, G., ‘Piston Theory - A New Aerodynamic Tool for the Aeroelastician’,
J. Aero. Sciences, 23 (December 1956) pp. 1109–1118.



Appendix C
Shock Wave Boundary Layer Interaction in
Hypersonic Flow—A Fluid Structures Thermal
Dynamics Interaction (FSTDI) Perspective

The field of fluid dynamics has had many successes over the years in providing a
rigorous and practical framework for developing basic understanding of complex
physical phenomena of great interest. Yet some phenomena are still not well under-
stood fundamentally or in practice. Perhaps foremost of these is turbulence, but
surely not far behind in terms of importance and lack of understanding is shock
wave/boundary layer interaction in high speed flows. Here a discussion of proposed
work to study the linear and nonlinear dynamics of shock wave/boundary interaction
is provided for a canonical geometry to test the hypothesis that the dangerous shock
oscillations and enhanced heating that has been observed in wind tunnel experiments
and in flight are due to a global instability arising from a bifurcation of the steady
flow field when key parameters are changed including geometry, Mach number and
Reynolds number.

C.1 Shock Wave Boundary Layer Interaction in
Hypersonic Flow—A Brief Review of the Literature
and a Proposed Research Approach

Shock Wave Boundary Layer Interaction (SWBLI) has been studied for many years
and several excellent reviews of this challenging and still not well understood topic
have been published [1–4]. The first of these was published in 2001 byDavid Dolling
with the title “Fifty Years of Shock-Wave Boundary Layer Interaction Research:
What Next?” That is still the question nearly 20years later. More recent reviews by
Clemens and Narayanaswamy [2] and Gaitone [3] and Girannelis, Vio and Levinski
[4] are informative, but the source of the basic physical mechanism that leads to
shock oscillations and hence enhanced heating and strong excitation of a flexible
structure underneath the shock is still in question.

One hypothesis is that the shock oscillations arise from the pressure fluctuations
in a turbulent boundary layer forcing the shock in a resonant fluid mode [5]. Yet
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2022
E. H. Dowell (ed.), A Modern Course in Aeroelasticity, Solid Mechanics
and Its Applications 264, https://doi.org/10.1007/978-3-030-74236-2
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(a) (b)

Fig. C.1 a Incident impinging shock, after Robinet and b ramp, after Mallinson, Gai, andMudford

a different hypothesis is that there is a global instability of the flow field. Recent
work in transonic flow supports the latter hypothesis [4,6–8], but little has been done
in the hypersonic regime except for the study by Robinet [9]. Robinet has studied
a laminar boundary layer on flat surface with an incident shock impinging on the
surface from above and found that indeed a global dynamic instability may occur
in his computational model. See Fig.C.1. Moreover in the flow geometry that he
studied there is a leading edge and the flow separation that occurs is a significant
fraction of the distance from the leading edge to the point of shock impingement.
And using this same characteristic length the reduced frequency, i.e. frequency (in
radians per unit time) multiplied by the characteristic length and divided by the flow
speed, is of order 1. This is consistent with a scaling analysis of the Navier-Stokes
equations, e.g. see [10].

It would be especially valuable and timely to study the possibility of a dynamic
global instability at hypersonic speeds for two geometries, a two-dimensional flow
over a flat plate with a leading edge and (1) an impinging shock [9] or (2) followed
by a ramp [11]. The three-dimensional counterpart of the ramp configuration would
be an axi-symmetric flow over cone followed by a flare. Note that even though the
geometry is axi-symmetric, the bifurcation to a global instability may lead to an
oscillating flow that is three-dimensional and no longer axi-symmetric.

C.2 Proposed Approach

The proposed work is mathematical and computational, but with a close eye on
creating a computational base that can be evaluated and validated by experiment.
Indeed one of the goals of the research is to inspire and help guide a new approach to
experimental studies. The incident impinging shock, ramp and cone/flare geometries
have been often studied in experiments, but not yet from a dynamical bifurcation
global instability perspective.
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There are basically two approaches that can be taken in computational studies.
One is to do time simulations and that is the approached suggested here. However
an eigenvalue and frequency domain, harmonic balance approach is currently being
undertaken by Professor Kenneth Hall. The two approaches are complementary and
mutually supporting and will provide greater confidence in the results of each study.

C.2.1 Flat Plate with a Leading Edge Followed by a Ramp

For definiteness and brevity the two dimensional flow over a flat (splitter) plate with
a leading edge followed by a ramp will be discussed here. See Fig.C.1.

To begin the study we plan to do time simulations with various levels of
fluid modeling, i.e. Euler, RANS and Direct Navier-Stokes using the well-known
ANSYS/Fluent CFD code. It will be an advantage to use the same code for all three
fluidmodels. Note this code has been used successfully recently to do transonic buffet
computations where the buffet arises due to shock wave boundary layer interactions
[8]. It is now established that buffet in transonic flow is a limit cycle oscillation due
to a global dynamic instability of the flow. Some investigators claim that the onset
of buffet (the onset of shock oscillations) can be approximately determined using a
Euler code, though this assertion remains controversial. We will explore that possi-
bility. However it is clear that to determine the flow separation and the consequent
(limit cycle) oscillations of the shock require at least a RANS and possibly a DNS
computational model.

C.2.2 Computational Protocol

The ramp will be allowed to move. It will be given a motion that may include a
step change in ramp angle or an oscillating ramp angle about a mean ramp angle.
The purpose of the ramp motion is to excite the flow field including of course the
shock and the separated flow region. By varying themotion of the ramp the dynamics
of flow may be determined even in the absence of flow separation as well as with
flow separation. Specifically the frequency and damping of the dominant fluid modes
well be determined. More particularly the damping in the fluid mode that leads to
a bifurcation as the mean ramp angle is increased will be tracked as the damping
of the dominant modes tends to a zero as a parameter is changed, e.g. mean ramp
angle, Mach number or Reynolds number. Then once the dynamic instability occurs
when the damping goes to zero and then changes sign, the amplitude of the shock
motion and separation length (and other flow variables that may prove to be of
interest) will be tracked with systematic variations in ramp angle, Mach number
and/or Reynolds number. Also the amplitude of the oscillating ramp can be varied
to examine whether there is hysteresis in the bifurcation (global dynamic instability)



800 Appendix C: Shock Wave Boundary Layer Interaction in Hypersonic …

boundary and subsequent limit cycle oscillations. A similar protocol may be used
for an incident shock with the shock angle allowed to move.

C.2.3 Expected Outcomes

A reduced frequency (2π times the Strouhal number) will be computed based upon
various length scales in the configuration to see if it indeed is of order 1 when based
upon the length from the leading edge to the beginning of the ramp or location of
the incident shock.

A theoretical scaling analysis will be done [10] to provide a qualitative check on
the computational results with respect to reduced frequency and amplitude of the
shock oscillations.

Perhaps most importantly the basic physical mechanism for shock oscillations
due to a global instability will be established and the dependence of this physical
mechanism on key physical parameters such as geometrical lengths, Mach number
and Reynolds will be explored.

Also this work will naturally lead to a consideration of axi-symmetric conical
flows and other geometries of interest in the future.

And finally and importantly, the computational/theoretical results will provide a
foundation for new and creative experiments.
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