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Abstract. A linear solver algorithm used by a large-scale unstructured-
grid computational fluid dynamics application is examined for a broad
range of familiar and emerging architectures. Efficient implementation of
a linear solver is challenging on recent CPUs offering vector architectures.
Vector loads and stores are essential to effectively utilize available mem-
ory bandwidth on CPUs, and maintaining performance across different
CPUs can be difficult in the face of varying vector lengths offered by
each. A similar challenge occurs on GPU architectures, where it is essen-
tial to have coalesced memory accesses to utilize memory bandwidth
effectively. In this work, we demonstrate that restructuring a computa-
tion, and possibly data layout, with regard to architecture is essential to
achieve optimal performance by establishing a performance benchmark
for each target architecture in a low level language such as vector intrin-
sics or CUDA. In doing so, we demonstrate how a linear solver kernel can
be mapped to IntelR© XeonTM and Xeon PhiTM, MarvellR© ThunderX2R©,
NECR© SX-AuroraTM TSUBASA Vector Engine, and NVIDIAR© and
AMDR© GPUs. We further demonstrate that the required code restruc-
turing can be achieved in higher level programming environments such
as OpenACC, OCCA, and IntelR© OneAPITM/SYCL, and that each gen-
erally results in optimal performance on the target architecture. Relative
performance metrics for all implementations are shown, and subjective
ratings for ease of implementation and optimization are suggested.
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1 Introduction

A diverse array of new hardware architectures continues to emerge across the
High Performance Computing (HPC) landscape. The application developer is
faced with the considerable challenge of providing near-optimal performance
across these systems. This goal requires a detailed understanding of each target
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architecture and some means to accommodate specific data layouts and algo-
rithm implementations that map appropriately. Ideally, this would be achieved
in a unified code base that is easily maintained. In this vein, a number of general
portability approaches have recently been introduced that attempt to insulate
the application developer from intricate details of the underlying hardware, yet
still provide near-optimal performance on each. Unfortunately, some applica-
tions can require significant restructuring to achieve optimal performance on a
particular system, which can be challenging to automate using general abstrac-
tions and run-time environments. In such cases, the developer may be required
to address the needs of the underlying architecture at the application level.

The work reported here describes an ongoing effort to explore performance
portability issues for the FUN3D computational fluid dynamics solver main-
tained at the NASA Langley Research Center [7]. FUN3D solves the Navier-
Stokes (NS) equations, a system of highly nonlinear, tightly-coupled time-
dependent partial differential equations. FUN3D is routinely used for a broad
range of aerodynamics applications across the speed range, on both conven-
tional x86-based systems [20], as well as GPU-based systems such as Summit
at Oak Ridge National Laboratory (ORNL) [14]. FUN3D uses an implicit time-
integration strategy with a node-based, finite-volume spatial discretization on
general mixed-element unstructured grids. An approximate nearest-neighbor lin-
earization of the discrete residual equations within each control volume gives rise
to a large tightly-coupled system of block-sparse linear equations that must be
solved at each time step. The block size is determined by the number of govern-
ing equations and may range from five to several dozen. To facilitate a practical
investigation of the broad array of potential performance portability issues, the
scope of the current effort is limited to optimization of the linear solver ker-
nel used within FUN3D. The study is carried out across several familiar and
emerging HPC architectures using a wide range of available programming mod-
els. While this study focuses on motifs related to linear algebra, parallel efforts
aimed at unstructured-grid traversals with complex gather-scatter operations
supporting flux and Jacobian construction are also ongoing but are beyond the
current scope.

The block-sparse linear solver used here is memory-bound with a low arith-
metic intensity. In such cases, it is critical to understand the increasingly com-
plex memory hierarchies of today’s advanced architectures and how memory
bandwidth and potential reuse of computations can be effectively leveraged. For
example, in the case of an NVIDIA R© GPU, it is important to understand how
to accommodate the application data layout and to restructure the solver algo-
rithm to utilize the registers, shared memory, L1 and L2 caches, and DRAM
effectively.

The dominant computation in the linear solver used here is a block-sparse
matrix-vector product; for a broad range of applications encountered in practice,
5 × 5 blocks are common. The off-diagonal matrix coefficients are stored in a
compressed sparse row (CSR) format [25], where two integer arrays capture the
sparsity pattern of the nonzero blocks in the matrix. The nonzero blocks in a
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row are stored contiguously in memory, and the scalar entries within a block are
stored in column-major order.

Efficient processing of such a matrix is challenging on recent CPUs offering
vector architectures. Vector loads and stores are essential to effectively utilize
available memory bandwidth on CPUs, and maintaining performance across dif-
ferent CPUs can be difficult in the face of varying vector lengths offered by each.
For a sparse matrix with relatively large block sizes, it is reasonably straightfor-
ward to leverage vector loads and stores. For smaller block sizes, the computation
calls for a restructuring based on the available vector length. For example, if the
processor supports a vector length of 32 floating-point numbers, it is desirable
to map a full dense block to a vector and organize the computation to work
with this mapping. Alternatively, a CPU offering a vector length of 4 floating-
point numbers may demand the mapping of a partial column of a dense block
to a vector. For vector engines where the vector length may be large, say 256
elements, the data layout itself may require a substantial restructuring, leading
to performance portability issues arising from different data layout requirements
across architectures.

A similar challenge occurs on GPU architectures, where it is essential to
have coalesced memory accesses to utilize memory bandwidth effectively. Mod-
ern GPUs support the Single Instruction Multiple Thread (SIMT) model, with
a group of threads referred to as a warp (or wavefront). The dimension of this
thread group can vary from one GPU to another, and the group must pro-
cess consecutive memory locations to achieve coalesced memory accesses. This
requires mapping the warp (or wavefront) to one or more blocks of a sparse
matrix and restructuring the computation accordingly. In summary, restructur-
ing the computation is essential, and in some cases, modifications to the under-
lying data layout may even be required.

The goal of this project is to assess the performance and portability of a
wide variety of programming frameworks when applied to a production-scale
CFD simulation code. The current work advances that goal in two ways. First,
it attempts to establish, for both familiar and nascent HPC architectures, an
optimal performance benchmark. In doing so, we demonstrate how a linear
solver kernel can be mapped to Intel R© XeonTM and Xeon PhiTM, Marvell R©

ThunderX2 R©, NEC R© SX-AuroraTM TSUBASA Vector Engine, and NVIDIA R©

and AMD R© GPUs. Second, this effort explores the ability of different program-
ming frameworks to achieve the performance established by the benchmark for
a subset of the target architectures.

2 Algorithm

For a spatial mesh containing n grid vertices, the implicit approach used within
FUN3D requires frequent solutions of a large n × n linear system of equations
of the form AΔQ = R, where R represents the vector of discrete residual equa-
tions, A is an n × n block-sparse matrix composed of dense nb × nb blocks, and
ΔQ is the vector of unknowns required to advance the nonlinear solution Qk
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Algorithm 1 Multicolor Linear Solver

1: ΔQ = 0
2: for i ← 1 to niter do
3: for c ← 1 to nc do
4: Δr ← Rc − OcΔQ
5: ΔQc ← D−1

c Δr
6: end for
7: end for

at time-level k to k + 1. The coefficient matrix A is based on a strictly nearest-
neighbor stencil. To provide flexibility in the implementation, A is segregated
into diagonal and off-diagonal components stored separately, namely

A ≡ D + O (1)

where D and O represent the diagonal and off-diagonal blocks of A, respectively.
The implementation in FUN3D uses 32-bit precision for O and ΔQ, while 64-bit
precision is used for D and R.

The block-sparse n × n matrix O contains nnz nonzero nb × nb blocks that
are stored using a compressed sparse row (CSR) format [25]. Each of the n
rows and columns containing nb × nb blocks are referred to as a brow and a
bcol, respectively. Two integer arrays ia and ja are used to efficiently capture
the sparsity pattern of the matrix. The array ia is a rank-1 array of size n + 1
whose i-th entry indicates the leading nonzero block index in the i-th brow of O.
The array includes a fictitious n + 1 entry to facilitate traversal of the elements
through the n-th brow. The ja array is a rank-1 array of size nnz that provides
the bcol index for each nonzero block. A third array is used to store the block
entries proceeding from ia(1) to ia(n + 1) − 1, where the scalar entries within
each nb × nb block are stored in column-major order.

Several linear-solver options are provided within FUN3D; the scheme most
commonly used in practice is the multicolor point-implicit relaxation shown in
Algorithm 1 [27,28]. In this approach, the grid vertices are grouped into nc color
groups, such that no two adjacent vertices are assigned the same color. Typical
values of nc for meshes encountered in practice are 10–15. Since the matrix A
involves only a nearest-neighbor stencil, unknowns within a color may be updated
in parallel in a Jacobi-like fashion. Color groups are processed sequentially, where
solution updates within each color depend solely on the latest values of ΔQ
in neighboring color groups. The overall process may be repeated using niter

sweeps over the entire system; a value of 15 is often observed to result in suitable
convergence of the nonlinear solution.

To improve cache performance, the system of equations is renumbered such
that unknowns within a color appear in consecutive order. In Algorithm 1, Oc

and Dc represent submatrices of O and D, respectively, for the unknowns con-
tained in color c. Rc represents the nonlinear residual subvector defined by
unknowns belonging to color c. Line 4 of Algorithm 1 represents a standard block-
sparse matrix-vector product. Line 5 requires an inversion of each nb×nb block of
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the matrix Dc. Here, a lower-upper (LU) decomposition of these blocks is com-
puted beforehand and stored in place. The solution for the current block row is
then obtained through a forward-backward substitution procedure. Throughout
this work, the terms block row and row are used interchangeably, both referring
to a matrix row of 5 × 5 dense blocks.

In addition to the shared-memory programming models to be presented
here, the solver also accommodates an MPI message-passing approach using
a standard domain-decomposition strategy for architectures with multiple sock-
ets and/or multiple NUMA domains, as well as general multi-node, distributed-
memory environments necessary for large-scale simulations. To recover the serial
algorithm when using this approach, halo exchanges of partition boundary data
are required at the completion of each color group before processing of the next
color may proceed. To hide communication latencies associated with these halo
exchanges each color group is further subdivided into values along partition
boundaries and those remaining values lying entirely interior to the partition.
When processing the unknowns within a color group, values along partition
boundaries are determined first, then nonblocking MPI calls are used to initiate
halo exchanges with neighboring partitions. Values interior to the partition are
then evaluated while halo values are in flight. At the completion of the current
color, each process waits for communication to complete prior to initiating the
next color.

3 Architectures

Table 1 summarizes the relevant characteristics of the target architectures
detailed in this section. Only characteristics relevant to the current study, which
focuses on memory performance, are shown.

Table 1. Relevant characteristics of target architectures. NUMA Domains Used is
the number of domains used (if configurable) to obtain optimal performance in this
study. Cores refers to physical CPU cores, streaming multiprocessors, or compute units.
SP refers to the single-precision (32-bit) vector length. Peak Bandwidth refers to the
theoretical, as opposed to measured, peak.

SKL KNL TX2 VE V100 A100 MI50

NUMA Domains Used 2 1 2 2 1 1 1

Cores 40 64 56 8 80 128 60

Vector/Warp Length, SP 16 16 4 512 32 32 64

Peak Bandwidth, GB/s 256 485 318 1220 900 1600 1024
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SKL. Intel R© XeonTM Gold 6148 (SKL) is a dual-socket CPU with 20 physical
cores per socket and 2 threads per core. Its theoretical peak aggregate memory
bandwidth is 256 GB/s. It has two vector units per core with 512-bit SIMD
registers that support most AVX-512 instructions.

KNL. Intel R© Xeon PhiTM Knights Landing (KNL) is a family of manycore x86
processors equipped with up to 72 low-frequency cores each with four hardware
threads, two 512-bit vector units per core, and up to 16 GB of configurable high-
bandwidth (at least 485 GB/s) 3D-stacked MCDRAM. The KNL 7230 used in
this study has 64 cores. All results are run in flat mode, where MCDRAM is
exposed as a NUMA domain, as our test case requires less than 16 GB of memory.

TX2. The Marvell R© ThunderX2 R© (TX2) used in this study is a dual-socket
processor with 28 cores per socket. The theoretical peak memory bandwidth for
a dual-socket system is 318 GB/s. STREAM Triad results [26] suggest that the
maximum bandwidth achievable on the system is approximately 240 GB/s, or
roughly 120 GB/s for each NUMA node. The TX2 in the current study was
of unknown SKU, and STREAM Triad results were at best 201 GB/s. The
system can be configured to use up to four-way SMT; however, the system was
configured for two-way SMT for the testing considered here.

VE. The NEC R© SX-AuroraTM TSUBASA Vector Engine (VE) is a floating
point coprocessor that interfaces with an x86 host through PCIe. Legacy CPU
code can be compiled by the NEC R© compiler and run through a seamless offload-
ing process that does not require explicit data transfer between the host and
coprocessor. Thus, legacy applications are ported and run with minimal effort.
The VE is a long vector architecture with a 256 × 8-byte vector length, an order
of magnitude beyond even the most recent AVX-512-equipped CPUs. Each VE
has eight out-of-order 1.6 GHz cores and up to 48 GB of second generation High
Bandwidth Memory (HBM2) with a theoretical peak aggregate memory band-
width of 1.22 TB/s. The VE has a NUMA mode [19] that partitions its cores into
two sets of four which share equal amounts of the last level cache and memory,
decreasing cache conflicts. All results in the current study use this mode, which
improves performance by a small amount (∼1%).

V100 and A100. NVIDIA R© TeslaTM V100 and A100 are the previous and
current (as of this writing) generation of NVIDIA R© TeslaTM GPUs. They are
equipped with 16–32 and 40 GB of HBM2 memory with approximately 900 and
1600 GB/s of theoretical peak memory bandwidth, respectively. NVIDIA R© GPU
hardware leverages a SIMT approach distributed across a number of streaming
multiprocessors (SMs), which in turn consist of multiple cores. Threads are orga-
nized in blocks, or cooperative thread arrays, where one or more blocks run on an
SM. The threads in a block are further partitioned into subgroups of 32 threads
known as warps. A warp runs on eight or sixteen cores of an SM in multiple
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clock cycles. The NVIDIA R© GPUs used in the current study are of the SXM2
variant.

MI50. AMD R© RadeonTM InstinctTM GPUs, which will comprise the ORNL
exascale Frontier system [24], are based on the Vega architecture and there
are several models currently available, including the MI50 used in this study,
MI25, and MI60. The MI50 has 60 compute units with 64 stream processors per
compute unit for a total of 3,840 stream processors [4]. It has 16 GB of HBM2
memory with a theoretical peak memory bandwidth of 1,024 GB/s. From the
application developer’s perspective, major differences between the NVIDIA R©

TeslaTM V100 and the AMD R© MI50 include (a) memory bandwidth (900 GB/s
and 1 TB/s, respectively); (b) the warp size of 32 threads on V100 and wavefront
size of 64 threads on MI50; and (c) the lack of hardware support for floating-point
atomic operations on MI50.

4 Test Case

The test case used here is based on transonic turbulent flow over the semispan
wing-body configuration described in Ref. [16]. The freestream Mach number
is 0.85, the angle of attack is zero degrees, and the Reynolds number based on
the mean aerodynamic chord is 5 million. The computational mesh consists of
1,123,718 grid vertices, 1,172,171 prisms, 3,039,656 tetrahedra, and 7,337 pyra-
mids. This problem size is representative of the workload that would typically
be placed on a single compute node in practice. For the purposes of the current
study, a single linear system is extracted from an arbitrary time step during the
nonlinear convergence. The linear system contains a total of 18,998,518 nonzero
off-diagonal blocks, or an average of approximately 17 off-diagonal blocks per
mesh vertex. Timings reported below are for 15 sweeps over the entire system.

5 Fortran Implementation

The legacy FUN3D solver implementation is written in Fortran 90 and supports
both MPI [3] and MPI+OpenMP [2] programming models. In the latter case,
a separate MPI rank is typically placed on each NUMA domain. The memory
layout is the CSR layout described in Sect. 1 and this implementation is referred
to as “Fortran (CSR)” throughout, where it is used as a performance baseline
(if applicable). Figure 1 shows the loop executed for each color. The outer loop
is over matrix block rows in the color. The inner loop is over blocks in a matrix
row. The matrix-vector product is manually unrolled over the inner nb × nb

dimensions and computed using scalar variables. Forward-backward substitution
is also manually unrolled. This structure has been determined to perform best
on common CPUs such as Intel R© XeonTM processors. When using OpenMP,
parallelization occurs over block rows of the matrix. Unless stated otherwise,
benchmark results use the MPI+OpenMP model with one rank per NUMA
domain and one thread per hardware thread.
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Fig. 1. Baseline FUN3D Fortran point-implicit multicolor solver.

6 Optimized Performance Benchmarks

Each section herein describes the optimization of the solver for the section’s
respective architecture. The resulting optimized performance is shown in Table 2.

Table 2. Optimized solver results. The time given is for 15 sweeps through the lin-
ear system in milliseconds. % Peak Bandwidth is the application requested bandwidth
divided by the theoretical peak bandwidth for the architecture (see Table 1). Appli-
cation requested bandwidth is computed by dividing the amount of bytes that must
pass at least once through main memory (DRAM/MCDRAM/HBM2) by the execution
time. It does not consider cache effects.

SKL KNL TX2 VE V100 A100 MI50

Optimized Time, ms 166.0 140.0 167.0 102.0 48.8 30.9 64.9

% Peak Bandwidth 78.3 52.8 62.7 26.7 75.8 67.3 51.3

6.1 Intel R© XeonTM and Xeon PhiTM Knights Landing

The Fortran solver implementation (see Sect. 5) did not perform as expected
for a bandwidth-bound code given KNL’s main memory bandwidth of approx-
imately 485 GB/s. For this reason, an AVX-512 vector intrinsic [10] solver was
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developed. AVX-512 vector intrinsics are an abstraction just above the assembly
level that can be used in a higher level language such as C++ and give the
programmer fine-grained control over a thread’s vector registers. There are also
intrinsic instructions for memory prefetching, which is of interest in part due to
the high latency of MCDRAM.

AVX-512 Intrinsic Solver. The AVX-512 intrinsic solver processes a single
matrix block row, computing the matrix-vector product of each 5 × 5 block and
the vector ΔQ, performing forward-backward substitution using the resultant
vector, and storing the updated ΔQ.

The matrix-vector product is performed on chunks of three 5×5 blocks. The
vector length of 512 bits holds up to 16 32-bit values. Three columns of O are
loaded into a vector register with the final lane being zero. Avoiding splitting the
columns across registers minimizes code complexity and load instructions while
retaining over 90% vector efficiency. Corresponding values of the vector ΔQ
are broadcast to 5 vector lanes in groups of three to fill a vector register using
the mm512 mask extload ps intrinsic. These two registers are multiplied and
subtracted from an accumulator register using the mm512 fnmadd ps intrinsic.
This process is repeated over the entire row. This produces 15 partial sums in
the accumulator register. This register is permuted and summed to produce b
in the first 5 lanes of the accumulator register. See Fig. 2a for an illustration of
the matrix-vector product on a chunk of three 5 × 5 blocks. A remainder loop
handles rows with lengths not divisible by three.

Fig. 2. AVX-512 solver.

Forward-backward substitution cannot achieve efficient vectorization with-
out processing multiple matrix rows. The implementation instead attempts to
minimize register usage and maximize vectorization through register permuta-
tion intrinsics. D is loaded once into three vector registers and permuted into
operand registers as needed. Appropriate values of b are broadcast into multiple
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lanes using register permutations and summed using mm512 mask3 fnmadd pd
with an appropriate mask. The resulting ΔQ is stored to main memory. Stream-
ing stores are not used as ΔQ may reside in cache. See Fig. 2b for an illustration
of AVX-512 forward-backward substitution.

The SSE and KNCI intrinsic sets contain a memory prefetch intrinsic,
mm prefetch, with a hint argument that specifies L1, L2, and nontemporal
prefetches with additional exclusivity options (for memory to be modified). The
AVX-512 intrinsic solver uses this intrinsic to prefetch data for the current matrix
row into L1 followed by prefetching of the next row’s data into L2.

Processing three matrix rows simultaneously seems a natural extension of
this algorithm that would triple vectorization efficiency of the forward-backward
substitution and ΔQ writes, but improved performance has not been observed
for this variant.

Though originally developed for KNL, the AVX-512 intrinsic solver is also
used on Intel R© XeonTM processors that support common AVX-512 instructions.

6.2 Marvell R© ThunderX2 R©

The ThunderX2 R© architecture offers Neon vector units capable of supporting
128-bit vector lengths. Effective use of these vector units is challenging for block-
sparse matrix-vector operations when the block size is not a multiple of the
vector length. This becomes particularly difficult for a Fortran or C compiler
to address in an automated fashion, and experiments confirmed that compiler-
generated code yields suboptimal performance on the ThunderX2 R©. For this
reason, an implementation based on Neon intrinsics is described here.

The ThunderX2 R© can be configured to use up to four-way SMT; however, the
system was configured for two-way SMT for the testing considered here. Optimal
performance was observed while executing a single thread per core, where the
thread has access to nearly all of the resources on the core. To address NUMA
issues, a hybrid approach based on the use of MPI and OpenMP is used, with
one MPI rank assigned to each of the two NUMA domains.

Vectorization Using Neon Intrinsics. Processing a row of blocks for a sparse
matrix-vector product involves multiplying each dense 5 × 5 block with a dense
vector of size 5 corresponding to the column index of the block. This operation
is repeated across the row, with results accumulated into a resultant vector
of size 5. Since the vector length available on ThunderX2 R© is 128 bits, four
simultaneous single-precision multiplies are possible. For nb = 4, vectorization is
straightforward. However, for the value of nb = 5 used in the current study, each
column of the 5 × 5 block is partitioned into two segments. The first segment
consists of four elements that can be processed as a vector, while the remaining
element is processed as a scalar. Figure 3a shows this partitioning and the Neon
intrinsics instructions necessary to load the first four elements of each column as
a vector and the remaining element as a scalar. Prefetching as shown in Fig. 3b
is used to further improve performance.
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Fig. 3. ThunderX2R© optimization strategies.

6.3 NEC R© SX-AuroraTM TSUBASA Vector Engine

The primary challenge in achieving performance on the SX-AuroraTM is effective
utilization of the long vector. The Fortran solver implementation (see Sect. 5)
initially performed an order of magnitude slower on SX-AuroraTM than a conven-
tional CPU (Intel R© XeonTM Gold 6148). To allow the NEC R© Fortran compiler
to vectorize over matrix block rows, the loops over rows and blocks were inter-
changed. Because each row may have a different number of blocks, a maximum
number of blocks is computed for each color and used as the block loop range.
Rows with fewer blocks than the maximum are conditionally computed and it
is assumed the compiler will efficiently mask these operations when vectoriz-
ing. These changes increased the baseline performance by approximately 4.5×,
but no further attempts at optimization using the original matrix memory lay-
out were successful. In principle, one could extend the AVX-512 implementation
described in Sect. 6.1 to a longer vector by vectorizing over the matrix rows.
However, the AVX-512 implementation relies heavily on arbitrary register lane
permutations, which are not easily done with the SX-AuroraTM instruction set.

SX-AuroraTM Optimizations Using Modified ELLPACK Memory
Layout. The ELLPACK memory layout [13] regularizes a sparse matrix by
treating each matrix row as having the same length, padding with zero values to
extend short rows up to the maximum row length. We modified this format and
applied it to the matrix O as follows. The dimensions of the matrix (Fortran
order) become neq × nb × nb × lm where neq is the number of matrix rows, nb is
5 in this case, and lm is the maximum matrix row length. For the case described
in Sect. 4, lm is 29 and the average number of rows is approximately 17, thus
significant padding is introduced.

This implementation uses the interchanged loop described in the previous
section. It also makes use of the NEC R© Fortran compiler’s vreg directives
[18], which direct the compiler to treat local arrays as vector registers. The
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documentation states that packed registers (pvreg) of 512 floats are supported,
but the pvreg directive did not produce working code in these experiments.
An unroll directive was added to the outermost loop. The modified ELLPACK,
loops, and directives improve performance by approximately another 3×, sur-
passing the performance of Intel R© XeonTM Gold 6148 for this kernel.

SX-AuroraTM Optimizations Using Modified SELL-C-σ Memory Lay-
out. The SELL-C-σ memory layout [15] improves upon ELLPACK at the cost of
additional complexity. Matrix rows are sorted in groups of σ and zero-padded to
the maximum row length in chunks of C rows. For the case described in Sect. 4,
the parameters C = 256 and σ = nc were used, where nc is the number rows in
each color group. This results in less than 2% padding. The SELL-256-nc layout
improves performance by 1.25× over the modified ELLPACK layout.

6.4 NVIDIA R© TeslaTM V100 and A100 GPUs

CUDA [22] is a nonportable C++ language extension offering low-level control
of NVIDIA R© GPU hardware. To develop an efficient GPU implementation of the
multicolor point-implicit solver, functions provided by the cuSPARSE [23] and
cuBLAS [21] libraries were initially considered. The function cusparseSbsrmv
multiplies a block-sparse matrix with a vector, and the function cublasStrsm-
Batched solves block systems of equations by performing forward and backward
substitutions using an LU-decomposition of the diagonal block. Experiments
showed that this approach yields suboptimal performance for linear systems
representative of those encountered in typical FUN3D simulations.

Instead, optimized CUDA implementations of these functions were developed
in Ref. [28]. To perform a block sparse matrix-vector product, the proposed
algorithm allocates a number of warps to process a subset of the blocks in a single
row of the sparse matrix. The mapping of a warp to process a block of a sparse
matrix with nb = 5 is illustrated in Fig. 4. To perform forward and backward
substitutions, a second kernel is invoked that assigns a single warp to process one
diagonal block. Several challenges were encountered, including a variable extent
of available parallelism, indirect memory addressing, low arithmetic intensity,
and the need to accommodate different block sizes. To address these challenges,
particular emphasis was placed on coalesced memory loads, the use of shared
memory and prefetching, minimal thread divergence within warps, and strategic
use of shuffle instructions available on recent hardware. Depending on the value
of nb, the new implementations realized performance gains of up to 7× over
existing cuSPARSE and cuBLAS library functions [28].

6.5 AMD R© RadeonTM MI50 GPU

The restructuring of the computation required for AMD and NVIDIA GPUs
(see Sect. 6.4) is very similar. Since the AMD hardware calls for 64 threads per
wavefront, two versions of the algorithm have been implemented: (a) one block-
row per wavefront with two nonzero blocks mapped to a wavefront, and (b) two
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A Sparse Row
BlockThread #24 of warp

Thread #0 of warp

Fig. 4. Assignment of a warp to process a complete 5 × 5 block to ensure that consec-
utive threads of the warp load and process data from consecutive locations of device
memory. The warp processes a complete row one block at a time, and aggregates par-
tial results into a 5 × 5 block. The columns of the final aggregated block are reduced
using shuffle instructions or shared memory (not shown here).

block-rows per wavefront with half of a wavefront mapped to a nonzero block
of a row. We used HIP to develop an optimized implementation on AMD GPU.
HIP, or Heterogeneous-Computing Interface for Portability [6], is a C++ API
similar to CUDA that has been developed by AMD.

One Block-Row per Wavefront. In this algorithm, a wavefront processes two
consecutive nonzero blocks of a row concurrently. Since a wavefront on the AMD
GPU consists of 64 threads, 14 threads remain idle. The wavefront processes a
row of the block-sparse matrix in a loop, where 2 consecutive nonzero blocks
are processed by the wavefront at each iteration. The wavefront handles 50 (2 ×
(5 × 5)) matrix entries during each iteration. The appropriate elements of ΔQ
are also loaded from the read-only data cache, multiplied by the corresponding
elements of the matrix, and then results are accumulated. After completion of
the loop, the 50 partial results are aggregated into an output of 5 elements. The
code segment to illustrate this computation is shown in Fig. 5.

Fig. 5. Code for one block-row per wavefront on AMD GPU.
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Two Block-Rows per Wavefront. In this algorithm, a wavefront is assigned to pro-
cess two consecutive block-rows with the first set of 32 threads (half-wavefront)
processing the first block-row and the second set of 32 threads processing the
second block-row. A half-wavefront processes one nonzero block of a row concur-
rently. Note that in this algorithm, it is not necessary that the two consecutive
block-rows have an identical number of nonzero blocks. Consequently, not all of
the 50 threads of a wavefront will always be active. The implementation of this
algorithm is similar to the NVIDIA GPU version discussed in Sect. 6.4.

7 Optimization of Programming Frameworks

This section attempts to address the question of whether a given programming
framework allows the programmer to map a computation efficiently onto an
architecture and recover the performance of an optimized implementation writ-
ten in a sufficiently low level language (see Sect. 6).

7.1 OpenACC

The OpenACC programming model [1] is based on the use of compiler direc-
tives and offers the potential for portable implementations across multiple GPU
architectures.

NVIDIA R© TeslaTM V100 and A100 GPUs. Prior development of an opti-
mal CUDA implementation provided valuable insight in achieving a straightfor-
ward OpenACC implementation. Here, the launch parameters for each CUDA
kernel were replaced with for-loops over thread blocks and the threads within
each block. The sequential code annotated with OpenACC directives is shown
in Fig. 6; note the similarities with the CUDA implementation shown in Fig. 4.

7.2 SYCL

SYCL is a cross-platform programming model based on C++ with support for
different architectures [12]. SYCL implements a single-source, multiple compiler-
passes model that allows the integration of source code for different architectures.
The Intel R© Data Parallel C++ (DPC++) compiler is based on SYCL with
additional extensions, and provides support for a variety of OpenCL [11] devices
including CPUs, FPGAs and GPUs [9]. Codeplay recently added experimental
SYCL support for NVIDIA R© GPUs, which avoids the use of OpenCL through
use of the LLVM compiler [8]; OpenCL implementations for NVIDIA R© GPUs
are generally not effective due to limited NVIDIA support for OpenCL 1.2.
Instead, this approach provides a plugin to DPC++ that enables compilation of
SYCL code with direct CUDA support. This approach is used to evaluate SYCL
performance for the NVIDIA R© Tesla V100 GPU.

NVIDIA R© TeslaTM V100 GPU. A SYCL implementation of the solver ker-
nel has been developed and compiled with the Codeplay LLVM implementation.
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Fig. 6. Listing of sequential code with OpenACC directives. Note the similarity of this
code to the CUDA code shown in Fig. 4, illustrating an identical restructuring of the
computation.

The SYCL code for the solver kernel is shown in Fig. 7. Note the similarity of
the SYCL implementation to the CUDA code in Fig. 4, illustrating that SYCL
exposes sufficient features to achieve a CUDA-like implementation. This flexi-
bility is useful in expressing the restructured SYCL computation in a manner
necessary to achieve good performance on NVIDIA GPUs.

7.3 HIP

The HIPify tool provided by AMD [5] has been used to convert the CUDA kernel
implementation to HIP for execution on the NVIDIA R© TeslaTM V100 GPUPUs.
In this experiment, the HIPify tool did not alter any of the original CUDA kernel
code.

7.4 OCCA

OCCA is an open source approach that enables development for a variety of
devices including CPUs, GPUs, and FPGAs [17]. Back-end support is provided
for targets such as CUDA, OpenMP, HIP, and OpenCL. The implementation is a
simple extension to C and uses “attributes” to map code to a particular device.
An implementation of the solver kernel using OCCA is shown in Fig. 8. The
@outer attribute in the outer for-loop indicates that the computation inside the
loop can be parallelized, and this loop is mapped to thread blocks when using the
CUDA back-end. The @inner(0) and @inner(1) loops map to the two dimensions
of the thread block. The @shared attribute indicates the use of shared memory.
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Fig. 7. SYCL implementation of the solver kernel.

Note that the code shown in Fig. 8 is quite similar to the OpenACC and CUDA
implementations.

8 Results

Table 3 summarizes all results. Although the vector intrinsic results are no more
than 1.16× higher than Fortran (CSR) for SKL and TX2, this is due to their
limited memory bandwidth as the performance bottleneck. Run on a single core
of SKL, the AVX-512 solver speedup over Fortran is greater than 1.5×. More-
over, the AVX-512 vector intrinsic solver on SKL achieves the highest percent
of theoretical peak memory bandwidth among all codes in this study.

TX2 performance should not be interpreted as representative of the architec-
ture. The machine used in this study was an anomalous prototype with seemingly
lower memory bandwidth than that reported by other TX2 users.

Optimizations for SX-AuroraTM should not be considered complete. Though
considerable speedup was achieved, a lower level approach such as intrinsics has
yet to be implemented.

For the additional programming frameworks considered (OpenACC, HIP
on V100, SYCL, and OCCA), optimized implementations were able to match
(within ∼ 3%) the optimized benchmark for the architecture. In this work, each
code is specific to a single architecture, so, for example, there are two HIP imple-
mentations, one for V100 and one for MI50. The exception to that is A100, where
both the CUDA benchmark and the OpenACC version were developed and opti-
mized for V100 (i.e., the V100 OpenACC and CUDA codes were timed on A100
without any A100-specific optimizations).
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Fig. 8. OCCA implementation of the solver kernel.

Table 3. Summary of results across two portability dimensions: architecture and pro-
gramming model. Numeric values indicate performance relative to Fortran (CSR) on
SKL (higher is better). Subjective ratings represent ease of implementation (i.e., the
code runs correctly) and optimization, respectively: E – easy, M – moderate, and H
– hard. Percent values show the percent of theoretical peak bandwidth achieved. Red
values indicate the highest performing implementation for a given architecture, which
establishes the optimized benchmark. A “-” indicates an invalid or unimplemented
combination.

SKL KNL TX2 VE V100 A100 MI50

Fortran
(CSR)

1.0 E/M
69.1%

0.79 E/M
31.1%

0.97 E/M
53.9%

0.53 M/M
7.7%

- - -

Fortran
(SELL-C-σ)

- - -
1.84 M/H

26.7%
- - -

OpenACC - - - -
3.77 E/H

74.1%
5.22 E/H

57.8%
-

CUDA - - - -
3.86 M/H

75.8%
6.08 M/H

67.3%
-

HIP - - - -
3.85 M/H

75.8%
-

2.90 M/H
51.3%

SYCL for
CUDA

- - - -
3.79 M/H

74.5%
- -

Vector
Intrinsics

1.13 H/H
78.3%

1.34 H/H
52.8%

1.13 H/H
62.6%

- - - -

OCCA - - - -
3.76 M/H

74.0%
-

2.89 M/H
51.2%
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9 Conclusions and Future Work

Optimized implementations of the linear solver kernel have been established for
the target architectures. For each additional programming framework consid-
ered, a solver has been implemented for a subset of the target architectures.
Performance relative to the original Fortran (CSR) implementation on SKL has
been reported, as well as the percent of theoretical peak bandwidth attained.
Subjective ratings of implementation and optimization difficulty have been given
for each combination. For this linear solver kernel, we conclude that, for the addi-
tional programming frameworks considered (OpenACC, HIP on V100, SYCL,
and OCCA), it is possible to match the performance of a lower level imple-
mentation optimized specifically for the architecture. In this work, only GPU
architectures were studied using the higher-level programming frameworks. Per-
formance of a single code across multiple architectures has not been considered
and that is to be the subject of future work. A more optimized benchmark for
SX-AuroraTM will also be developed.
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