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Abstract. OpenACC has been highly successful in adapting legacy
CPU-only applications for modern heterogeneous computing environ-
ments equipped with GPUs, as demonstrated by many projects as well
as our previous experience. In this work, OpenACC is leveraged to trans-
form another Computational Fluid Dynamics (CFD) high order solver
FINE/FR to be GPU-eligible. On the Summit supercomputer, impres-
sive GPU speedup ranging from 6X to 80X has been achieved using up to
12,288 GPUs. Techniques critical to achieving good speedup include
aggressive reduction of data transfers between CPUs and GPUs, and
optimizations targeted at improving exposed parallelism to GPUs. We
have demonstrated that OpenACC offers an efficient, portable and easily-
maintainable approach to achieve fast turnaround time for high-fidelity
industrial simulations.
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1 Introduction

Heterogeneous architectures that encompass both CPUs and accelerators have
become increasingly popular in the HPC community. One decade ago in 2010,
only 9 supercomputers in the Top 500 list were equipped with accelerators, but
the number has since grown fast, reaching 90 in 2015 and 144 in the latest June
2020 Top 500 list [1]. While various accelerators exist to accommodate different
needs, such as Graphical Processing Unit (GPU), Intel Xeon Phi coprocessor
and Tensor Processing Unit (TPU) etc., the best performing supercomputers
tend to rely heavily on GPUs. In fact, it is the computing power from GPUs
that makes exa-scale computing within reach in a manner that is economically
viable and energy friendly.

To take advantage of GPUs, it is inevitable to adapt existing CPU-only appli-
cations. Since most legacy applications have been developed for a long time with
rich features, it is often not practical to rewrite them in GPU-native languages,
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such as CUDA. On the other hand, OpenACC serves as a useful tool in porting
the codes to a variety of heterogeneous systems. As a high-level directives-based
programming model, OpenACC successfully helped us adapt a computational
fluid dynamics (CFD) codes FINE/TURBO (which specializes in turbomachin-
ery simulations) to be GPU-eligible, and on the Titan supercomputer at the Oak
Ridge National Lab (ORNL) a 2X+ GPU speedup in time-to-solution has been
demonstrated with a real-world example [4].

While a 2X+ GPU speedup was satisfactory in 2015, the growing interest
from the CFD community to complete high-fidelity fluid simulations with less
turnaround time has called for more aggressive GPU performance. In this paper,
we present recent efforts to leverage OpenACC in achieving 6X to 80X GPU
speedup on the Summit supercomputer, using up to 12,288 GPUs. In Sect. 2,
we give a brief introduction of the CFD flow solver FINE/FR used for GPU
adaptation. Then in Sect. 3, we discuss in detail the techniques leading to the
favorable GPU performance, including reduction of data transfers between CPU
and GPU, and targeted optimizations that increase the degree of exposed paral-
lelism to GPUs. Strong scalability performance on Summit is presented in Sect. 4
before we conclude the work.

2 The FINE/FR CFD Solver

2.1 Programming Model of FINE/FR

Based on the high order flux-reconstruction (FR) method [5], FINE/FR uses
compact computational stencils where the dense mathematical calculations are
highly parallelizable. Such workload is well suited for GPUs as they offer signif-
icantly more hardware threads to carry out computing with high throughput.
On the CPU side, FINE/FR uses a distributed-memory parallel MPI program-
ming model, where the unstructured grids employed are statically partitioned
via ParMETIS [6]. By formulation, FR method offers a high degree of accuracy
in resolving fine-scale motions compared to conventional Reynolds-Averaged
Navier-Stokes (RANS) solutions. As demonstrated by Fig. 1, the shock wave
boundary layer interaction (SWBLI) [7], a phenomenon critical in the study of
compressor stall mechanisms, is highly visible in the high order simulation in the
form of lambda shocks on the upper blade surface. The bulk of the execution
time is spent on the Runge-Kutta iteration loop, which contains multiple calls to
BLAS matrix-matrix multiplication routines, and dozens of additional correction
and calculation routines. Written in C++11 standard, FINE/FR uses object-
oriented programming throughout the code, and in the core solver algorithms
templatization is extensively used. Both the polymorphism and templatization
pose some challenges to a neat OpenACC implementation (see discussions in
Sect. 5), but good GPU speedup is not negatively affected.

2.2 Considerations for GPU Execution

Since FINE/FR is based on a legacy NUMECA framework, it is prohibitively
expensive in terms of developer-hours to drastically change the underlying code
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Fig. 1. Relative Mach number at (a) 50% of the blade span and (b) 95% of the
blade span using the conventional RANS solution. (c) Instantaneous density snapshot
using FINE/FR at polynomial order 4, where shock wave boundary layer interaction
(SWBLI) in the form of the lambda-shock can be seen on the upper blade surface

structures. Yet it is useful to list a few considerations for efficient GPU executions
of the FINE/FR codes.

– Linearized “flat” arrays favor data transfers: Multiple pointer indirections
were natively used in FINE/FR to access array elements, and such usage
is supported since OpenACC 2.0. However, current OpenACC implementa-
tion transfers each guaranteed-contiguous chunk of memory separately, which
can then result in many transfers whose overheads negatively impact the
performance. We have replaced multiple pointer indirections by a linearized
“flat” array class which stores the data contiguously in memory. Moreover, as
explained in Sect. 3.2, this array class has flags that track the last modified
location of the data (CPU or GPU), thus reducing data transfers substan-
tially.

– Sufficient workload and exposed parallelism: As GPUs become more powerful,
it is important to saturate GPUs with sufficient workload to obtain significant
speedup. While humongous deep learning workloads are a good candidate, we
are fortunate that kernels in high-order FR methods usually have plenty of
dense math to fully load GPUs too, especially at higher polynomial orders.
However, at larger MPI process count, the number of cells/elements in a
given partition becomes small and the amount of parallelism exposed to the
GPUs is limited. Therefore, GPU speedup inevitably declines at higher MPI
process count, and in fact GPU execution may no longer be cost-effective if
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the exposed parallelism is too low to outweigh the overheads. Approaches to
increase the exposed parallelism are discussed in Sect. 3.3.

3 Acceleration with OpenACC

Using OpenACC to adapt and accelerate FINE/FR for GPU execution is a nat-
ural choice because it does not require a rewriting of the solver in a low-level
GPU language, and we had positive experience in adapting another legacy flow
solver with OpenACC before [4]. Moreover, OpenACC offers good portability
which allows us to conduct rapid code development on local workstations with
Intel X86 architectures, and then directly ship the codes to the Summit super-
computer with IBM POWER architecture for scalability tests and production
runs. Table 1 shows the system specifications used in this study. In this section,
we show various optimizations with performance timed on the local workstation,
and in Sect. 4, scalability performance on Summit is presented.

Table 1. System specifications for OpenACC development and large-scale testing

System Local workstation Summit supercomputer

CPU/Host 8 core AMD EPYC 42 core IBM POWER9 node

GPU/Device 1 Nvidia P6000 6 Nvidia V100 per node

PGI compiler 19.4 19.9

MPI library OpenMPI 2.1.6 Spectrum MPI, 10.2.1.2

3.1 Incremental Acceleration of the Most Time-Consuming
Routines

Generally, it is intuitive to identify the most time-consuming routines and look
for opportunities for GPU acceleration. Figure 2 shows a representative stack
trace of FINE/FR, using the low-overhead, sample-based profiler HPCToolkit
[2]. As noted before, the time marching loop, composed of successive Runge-
Kutta iteration steps, constitutes the bulk computation time. The most time-
consuming routines were found to be BLAS calls for matrix-matrix multiplica-
tion and some thread-safe user routines, both of which are amenable to GPU
acceleration via OpenACC. As a first step of acceleration, the following were
implemented:

– Replace all BLAS calls with CuBLAS, the CUDA counterpart. Similar
changes can be made for non-Nvidia architectures, such as AMD GPUs.

– Instrument remaining user routines (3D loops) with OpenACC pragmas for
parallel execution. Minor code changes were necessary to avoid race condi-
tions, for example, by using private variables properly.
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– Offload static data such as coordinates and constants to the GPU persistently
at the beginning of the program, so that they are readily available on GPUs
whenever needed.

– To ensure correct results, all input and output data for each GPU-eligible
routine are forced to synchronize in a conservative manner.

The first set of optimizations leads to a 1.5X GPU speedup on the local work-
station, and Fig. 3 shows the updated resulting stack trace. It is clear that the
time-consuming BLAS calls in the CPU run become negligible after using the
CuBLAS counterpart, but numerous data transfers between CPUs and GPUs
(i.e. between host and device) now dominate the execution time. In fact the
amount of data transfers is excessively high due to the conservative approach of
data synchronization, which always ensures that data on the host is the most
up-to-date. Such an approach is useful to retain correct results when the code
undergoes active development, but incurs huge waste for production runs. One
alternative is to tailor-code for a particular application where unnecessary data
transfers are eliminated and essential host-device communication is overlapped
with computations using asynchronous queues. However the lack of generality
prevents tailor-coded executables from handling various industrial settings, and
would eventually demand continued investment of development efforts. As a
result, a systematic and robust solution to minimize the data transfers with low
maintenance cost is necessary.

Fig. 2. Stack trace of the CPU-only execution of FINE/FR
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Fig. 3. Stack trace of the CPU+GPU execution of FINE/FR, after the first round of
incremental optimization described in Sect. 3.1

3.2 Minimization of Data Transfer

The solution to excessive data transfers between host and device is the location-
aware arrays. Essentially all major data arrays are wrapped in a container class,
which, in addition to holding the linearized array data and host/device update
methods, contains a “last modified” flag indicating where the array was last
updated. We illustrate the usage in an example as follows.

As frame (a) of Fig. 4 shows, the conditional data synchronization between
the host and device only occurs when the current access location differs from
the saved last accessed location, for the particular array concerned. To ensure
coherent data access, in the actual programming shown in frame (b) of Fig. 4,
it is the developer’s responsibility to flag the input and output arrays to GPU-
eligible routines, using “sync” and “setLastAccess” calls (see “doubleValues”
in the example). In this way, developers can focus on the algorithmic details
of a particular routine while data transfers are automatically minimized. For
example, the “doubleValues” routine is GPU-eligible but the “addValue” call
is forced to run on the host. As a result, data transfers have to occur under
the hood. However, should the “addValue” routine be made GPU-eligible, the
approach demonstrated would completely avoid data transfers between host and
device for the “addValue” call.

Since “sync” and “setLastAccess” calls are prevalent throughout the code,
they are referred to as the “GPU boilerplate”. The main advantage of “GPU
boilerplate” is that through its consistent usage, developers are allowed to follow
a “blind incremental acceleration” approach. In other words, as long as the GPU
boilerplate is well in place, developers can simply tackle the most time-consuming
routines one after another, and an efficient implementation with minimized data
transfers would naturally follow. Moreover, new functionalities may be reliably
introduced to the host-side codes, with less risk of breaking the data management
in a heterogeneous workflow. Yet, it should be stressed that usage of GPU boil-
erplate must be mandatory for this approach to work. Moreover, existing data
structures, especially Arrays of Structures (AoS), can be difficult to retrofit. We
also note that other established framework exists [3] to automatically mange the
issue of data locality.
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Fig. 4. Code sample demonstrating strategies to minimize data transfer

Performance-wise, Fig. 5 confirms that minimized data transfer has signif-
icantly improved the GPU performance, leading to a 5.1X speedup compared
to the CPU-only execution. In fact, the “GPU boilerplate” has reached a point
where all bulk 3D data remain on the device and only 2D data along the partition
boundaries needs to be transferred over MPI. Profiling shows that the time to
stage the relatively small partition data is too little to warrant further optimiza-
tion in data transfers, such as GPUDirect and Remote Direct Memory Access.
Nevertheless, updated profiling pointed to a handful of routines with poor device
performance, which motivated the continued optimization to increase the paral-
lelism exposed to the GPUs as discussed in Sect. 3.3.

3.3 Optimization to Increase Exposed Parallelism

The high-order FR method routinely goes through a pattern of nested loops,
where the outer one loops over element faces and the inner one loops over all
the points per face. For unstructured grids, the number of points per face varies
depending on the element type and the solution order. For example, Fig. 6
shows that the number of flux points is 12 for a quad element, while it is 9
for a triangular element. In the original CPU-only implementation as shown in
frame (a) of Fig. 7, the code strictly follows the workflow, and a naive OpenACC
adaptation would only parallelize the outer loop, leaving the inner loop sequential
thus limiting the degree of parallelism exposed to the GPUs.
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Fig. 5. Comparisons of stack trace in (from top to bottom) CPU-only run; CPU+GPU
run, including incremental optimizations and minimized data transfers; CPU+GPU
run, fully optimized with increased degree of exposed parallelism

Fig. 6. Demonstration of solution points and flux points on the side of a quad and a
trianglular element

Usually when the partition size is sufficiently large, each MPI process contains
enough number of faces to saturate the GPUs with computations. However,
limited exposed parallelism becomes an issue when the partition size is too small
(at a large MPI process count), or when too few elements are treated, such as
the boundary data. It turns out that collapsing the loops offers a solution to this
problem. Frame (b) of Fig. 7 shows the refactored loops in a tightly nested form,
where the upperbound of the inner loop is replaced by the maximum value for all
iterations. The degree of exposed parallelism can increase by about one order of
magnitude at the cost of some threads branching idle. Luckily there is no thread
divergence issue involved, and the test on the local workstation showed a 9.5X
GPU speedup compared to the CPU-only run (see Fig. 5). More detailed tuning
of gang/vector parameters for the parallel loops may yield further improved
performance, but the optimal parameters are likely problem-dependent. As a
result, to avoid reducing portability the default parameters set by the compiler
have been used.
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Fig. 7. Code refactoring with loop collapse for improved exposed parallelism

4 Scalability of FINE/FR on Summit

The Summit supercomputer represents the state of the art heterogeneous com-
puting architecture in the HPC community, and we are granted access through
the INCITE project. Each Summit node contains 42 usable IBM POWER9 CPU
cores and 6 Nvidia V100 GPUs, and applications can spawn MPI processes occu-
pying all the 42 CPU cores per node. However as noted before, a large MPI
process count gives a small partition size, which may limit the degree of paral-
lelism exposed to the GPUs at scale. Moreover, mapping more than one CPUs
per GPU, as managed by CUDA MPS server, may potentially lead to traffic
congestion when all data transfers occur at the same time. As a result, Table 2
shows the strong scalability performance of the optimized FINE/FR solver on
Summit where one GPU is only paired with one CPU (i.e. NbCPU = NbGPU) to
maximize the partition size at large node count. Effectively it means that while
GPU runs utilize all 6 GPUs per node in the GPU runs, the CPU runs only use
6 CPUs out of all the available cores as a compromise. A high resolution 8M
cells mesh is used in the test with an order 3 polynomial flux reconstruction,
and the effective degree of freedom is 8 × 106 × 43 ≈ 5 × 108.

Table 2. Strong scalability using a 8 × 106 cells mesh at order 3 (5 × 108 DoF)

NbNodes NbCPU &

NbGPU

Time (s)

CPU

Time (s)

CPU+GPU

GPU

speedup

NbCell/Partition NbDoF/Partition

8 48 226.00 2.75 82.18 166667 10666667

16 96 117.56 1.54 76.34 83333 5333333

32 192 59.78 0.86 69.51 41667 2666667

64 384 30.59 0.58 52.74 20833 1333333

128 768 15.94 0.47 33.91 10417 666667

256 1536 7.76 0.29 26.76 5208 333333

512 3072 3.57 0.17 20.99 2604 166667

1024 6144 2.15 0.18 11.94 1302 83333

2048 12288 1.00 0.16 6.25 651 41667

The near linear scalability for the CPU-only run through the sweep reflects
a well-parallelized and streamlined CPU implementation of FINE/FR and the
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underlying framework. The GPU implementation attains impressive speedup
ranging from 6X+ to 80X+, which not only confirms that performance tuned
on the local workstation is easily portable to another system, but also demon-
strates the quality of the GPU optimizations. However the GPU runs see a
gradual deviation from linear scalability accompanied with a reduction of GPU
speedup. As shown by the “number of cells per partition” (NbCell/Partition)
column in Table 2, the substantial decrease of partition size is responsible for
the performance loss as the computational intensity becomes too low to saturate
the GPUs. Runs with higher orders on larger meshes can increase the amount of
math available to the GPUs, and relax the issue. Continued development work of
further code refactoring to expose more parallelism to the device is undertaken.

The 80X+ GPU speedup needs to be interpreted with some caution. For CPU
runs, it appears the Intel MKL library is highly optimized for BLAS calculations
than the math library available on Summit. While for GPU runs, the CuBLAS
routines give optimal performance on the Nvidia V100 cards. Therefore, the GPU
speedup on Summit may not act as a perfectly fair performance comparison, and
it would be interesting to revisit the GPU speedup on another supercomputer
equipped with a well-tuned Intel MKL library.

5 Discussions and Conclusions

In this work, we have demonstrated the successful adaptation of FINE/FR, a
Flux-Reconstruction based CFD high order solver for heterogeneous CPU/GPU
architectures using OpenACC. A highlight of the present work is the use of
location-aware arrays, which tracks the location where the array is last accessed.
We showed that by consistently adding the “GPU boilerplate”, the developers
could worry less about the data synchronization between CPUs and GPUs, and
focus more on introducing new features and “blindly” optimizing existing bot-
tlenecks one by one. We also showed that increasing the exposed parallelism
to GPUs added a 2X boost in parallel performance. It is encouraging to note
the 9.5X GPU speedup obtained from incremental optimizations on the local
workstation seamlessly translates to impressive speedup on the state of the art
supercomputer, which has different CPU architectures and GPU cards, thus
demonstrating the nice performance portability of OpenACC. At scale FINE/FR
computations using 48 to 12,288 GPUs show favorable speedup in the range of
80X to 6X, and we stress that sufficient computation capable of saturating the
GPUs is key to achieving superior GPU performance. It is worth noting that
only one version of codes and executable is maintained, and overall the CPU-
only execution sees neglible performance impact by the optimization.

OpenACC and the supporting PGI compiler remain actively evolving tech-
nologies, and occasionally we have to work around features that are currently
not supported. For example, virtual functions and vectors in C++ had to be
replaced by non-virtual ones and C-style arrays, and somewhat duplicated codes
annotated by OpenACC had to exist for templated classes. Ease of use will
certainly improve as OpenACC becomes more mature.
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