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Abstract. Heterogeneous systems are becoming increasingly prevalent.
In order to exploit the rich compute resources of such systems, robust
programming models are needed for application developers to seamlessly
migrate legacy code from today’s systems to tomorrow’s. Over the past
decade and more, directives have been established as one of the promising
paths to tackle programmatic challenges on emerging systems. This work
focuses on applying and demonstrating OpenMP offloading directives on
five proxy applications. We observe that the performance varies widely
from one compiler to the other; a crucial aspect of our work is report-
ing best practices to application developers who use OpenMP offloading
compilers. While some issues can be worked around by the developer,
there are other issues that must be reported to the compiler vendors.
By restructuring OpenMP offloading directives, we gain an 18x speedup
for the su3 proxy application on NERSC’s Cori system when using the
Clang compiler, and a 15.7x speedup by switching max reductions to add
reductions in the laplace mini-app when using the Cray-llvm compiler
on Cori.

Keywords: Directive-based programming · Performance portability ·
Heterogeneous systems · OpenMP · GPU · NVIDIA · V100

1 Introduction

Of the 500 supercomputers on the Top500 list, a full thirty percent (150 systems)
use many-core technologies, such as NVIDIA Volta GPUs or Intel Xeon Phi
many-core co-processors [28]. This is up from 133 systems in the list one year ago.
Furthermore, seven of the top ten supercomputers on the latest list use many-
core technology. Heterogeneous architectures, those which use co-processors or
accelerators in addition to a main processor, are valued for their energy efficiency
and promise significant performance gains for applications that can make use of
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them. However, programming for these platforms, and in particular, porting
existing applications to these platforms, poses a significant challenge. Scientific
programmers look forward to taking advantage of these powerful architectures
without having to learn the exact hardware details or make significant changes
to their applications, which can often exceed tens of thousands of lines of code.

Numerous programming models and tools exist for programming heteroge-
neous systems, including CUDA [21], OpenCL [13], and Kokkos [15]. Directive-
based models such as OpenACC [23] and OpenMP [24] are popular solutions, as
they offer a useful degree of abstraction over various hardware types with a uni-
fied interface, and reduce the work needed to accelerate an application, requiring
only “hints” or annotations to be added to the compiler. The OpenMP model
introduced support for offloading code (with the target directive) to accelerators,
co-processors, or many-core processors from version 4.0 (released 2013), and has
continued to add and update features through versions 4.5 (released 2015) and
5.0 (released 2018).

To understand the value of offloading support in OpenMP, we highlight the
following points from the 2018 NERSC-10 workload analysis: more than eighty
percent of the NERSC community uses OpenMP for parallel programming, mak-
ing OpenMP far and away the most widely-adopted model in use at NERSC,
and fifty-one percent of the NERSC workload is already either fully or partially
implemented on GPUs [1]. Meanwhile, the 2019 OLCF Operational Assessment
indicates that its three allocation programs all used more than 75% of their
hours spent on Summit running GPU-enabled jobs, with INCITE reaching 94%
GPU-enabled hours [22].

Knowing that heterogeneous architectures are only continuing to grow in
popularity, it is critical that users understand the status of the various vendor
compilers which support OpenMP offloading. Application developers must be
able to make an informed choice of compiler based on which particular offloading
features their application uses. Understanding cases in which identical OpenMP
directives can show highly variable performance across compilers is essential to
making such a decision. And, where compilers exhibit performance differences,
understanding the underlying reasons in the implementation for those differences
is useful not only for improving the portability of an application between com-
pilers but also for giving specific feedback to vendors about the limitations of
their existing implementations.

The main contributions of this work are as follows:

– Identify five benchmarks and proxy applications (mini-apps) which character-
ize the performance of OpenMP offloading features used by major applications
and exhibit performance differences across compilers that are of interest to
developers.

– Quantify performance differences across state-of-the-art compilers for the
benchmarks and proxy applications selected.

– Explain the observed differences in performance between implementations by
using profiling tools and performance metrics, making use of an execution
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time decomposition methodology, where needed, to quantify the impacts of
kernel launch latency and OpenMP runtime overhead.

– Make recommendations to application developers regarding the best practices
for performance portable OpenMP offloading, guided by insights into the
causes of slowdowns in kernels derived from real-world applications.

The remainder of this paper is organized as follows. In Sect. 2 we discuss related
work in compiler comparison for heterogeneous architectures. In Sect. 3 we
describe the five mini-apps selected, as well as the environment and method-
ology used to test these mini-apps. Section 4 shows the results for each of the
five mini-apps, both in terms of general performance and specific insights gained
from profiling, and Sect. 5 sets out recommendations to application develop-
ers based on the insights gained. Finally, in Sect. 6 we conclude the paper and
identify directions for future work.

2 Related Work

Several existing works narrate the use of OpenMP offloading features for many-
core processors and accelerators such as GPUs. These include performance
analysis of TeaLeaf and CloverLeaf [18], as well as LULESH [2], which uses
OpenMP 4.0. Larrea et al. [17] show preliminary lessons learned writing portable
code using OpenMP 4.0. Gayatri et al. [10] used a material science application
with OpenMP 4.5 to compare and contrast with OpenACC, showing that an
unchanged OpenMP GPU version of the code was ill-suited for CPU execu-
tion. ExaHyPE, an Exascale Hyperbolic PDE design [30] used a pragma-based
GPU parallelization approach for object-oriented code, and documented lessons
learned. Several other related works include demonstrating GPU support for
OpenMP offloading features in compilers in Flang/Clang [3,25], a proof-of-
concept implementation of offloading for FPGA based accelerators [14,26], and
an interprocedural statical analysis heuristic at runtime to select optimal grid
sizes for offloaded target team constructs [27], among others.

There are publicly available benchmark suites to evaluate heterogeneous
application performance, e.g. SPEC-ACCEL [11,12] and Rodinia [6]. The per-
formance of the SPEC-ACCEL benchmark suite was evaluated on multiple plat-
forms using multiple OpenMP offloading and OpenACC compilers by Boehm
et al. [4]. Here, the authors reported a list of compilation/runtime errors for
individual benchmarks as well as benchmark execution time, however, there was
little detail about reasons for the observed performance with different compilers.
The Rodinia benchmark suite was used to evaluate OpenMP offloading Uni-
fied Memory performance by Mishra et al. [19]. The OpenMP offloading and
OpenACC performances of four mini-apps were evaluated across platforms and
compilers by Larrea et al. [29]. Larrea et al. described the development coding
challenges, portability issues and performance, but did not go into detail about
the reasons for poor performance reported. A detailed evaluation of the overhead
of different OpenMP compilers was performed by Diaz et al. [20], however, this
had a narrow focus on the overhead of individual OpenMP constructs.
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In contrast to existing related work, this paper focuses on a set of mini-
applications, thus forming a suite of codes using two major systems: NERSC
Cori and ORNL Summit. We explore the compatibility of the mini-apps with 7
compilers including 5 OpenMP offloading, 1 OpenACC, and 1 CUDA compiler
to quantify and document performance differences across compilers and offer
recommendations to application developers for usability and best practices for
OpenMP offloading compilers.

3 Mini-apps Suite and Experimental Setup

3.1 Mini-apps Suite

The suite is made up of mini-apps chosen for their focus on offloading kernels,
diverse characteristics, and their ability to be compiled by all available compilers.
The following benchmarks and proxy applications were selected for this paper:

1. su3 [8] is a matrix-matrix multiply code using complex numbers. It is
extracted from MILC (MIMD Lattice Computation), a Lattice QCD (Quan-
tum Chromodynamics) code.

2. babelStream [7] is a memory bandwidth benchmark implemented in mul-
tiple programming models. It measures the rate of transfer to and from the
global device memory with a number of computational kernels, including dot,
add, mul, copy, and triad.

3. laplace (ported from [5]) is an implementation of an iterative Jacobi method
Laplace equation solver, which launches multiple small stencil update kernels
and uses the OpenMP reduction clause to check for convergence.

4. gpp [9] is a proxy application for the generalized plasmon-pole model from
BerkeleyGW, a many-body perturbation theory code. gpp relies on an reduc-
tion to compute its final result.

5. ToyPush (ported from [16]) is a proxy application for the electron push
phase in XGC1, a particle-in-cell simulation code for magnetically-confined
fusion plasma. It is similar to laplace in that it launches a large number of
short-running kernels.

3.2 Systems and Compilers

All results shown in this paper use NERSC’s Cori machine (GPU testbed nodes)
and the Summit supercomputer at the Oak Ridge National Laboratory (ORNL).
Table 1 shows the hardware details of these systems.

Table 2 shows the compilers tested for each mini-app, where possible. Because
PGI support for OpenMP offloading is still under development, PGI was tested
using an OpenACC equivalent implementation of each code. Note that the Clang
11 versions used on Cori are both the same in-development version. The Cray
Classic compiler (CCE 9.0.0) refers to the Cray C/C++ compiler that uses
proprietary Cray compiler technology, in Cray CCE 10.0.0 the C/C++ compilers
have been replaced with Cray enhanced LLVM and clang. This not only means
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Table 1. Overview of the Cori-GPU and Summit systems.

Cori-GPU Summit

Node architecture Cray CS-Storm 500NX IBM AC922

Node CPUs 2 × Intel Skylake 2 × IBM Power 9

Available cores per CPU 20 @ 2.40 GHz 21 @ 3.07 GHz

Node GPUs 8× 16 GB NVIDIA V100 6× 16 GB NVIDIA V100

CPU-GPU interconnect PCIe 3.0 switch NVLink 2.0

that nearly all of the compiler flags are different, but also that the performance
will be different. Table 3 shows which of our mini-apps can be compiled and
run with which compilers. A status of NI indicates that the mini-app is not
implemented in the required programming model for that compiler, while CE and
RE indicate compiler and runtime errors, respectively. LLVM’s Fortran compiler
Flang does not have complete support for OpenMP offloading features, so for
the ToyPush application (the sole Fortran app tested) LLVM results cannot be
shown.

Throughout this paper, application results are verified whenever the app runs
to completion. Each compiler was used with the most aggressive optimization
flags enabled, i.e. -Ofast (or equivalent if named differently).

Table 2. Compilers and GPU offloading methods evaluated on the Cori-GPU and
Summit systems

Compiler GPU offload Cori-GPU version Summit version

NVCC CUDA 10.2.89 –

NVIDIA/PGI OpenACC 20.4 –

Cray CCE OpenMP 10.0.0 (LLVM version) –

Cray CCE OpenMP 9.0.0 (Classic version) –

IBM XL OpenMP – 16.1.1-5

LLVM/Clang OpenMP 11.0.0-git (#17d8334) 11.0.0-git (#17d8334)

GNU/GCC OpenMP – 9.1.0

3.3 Profiling Methods and Tools

Our approach for understanding performance differences across compilers starts
from identifying where such performance differences exist. For each mini-app,
tested across all compilers it is compatible with (see Table 3), we first record a
metric of performance, which varies depending on the nature of the application.
For example, su3 has a figure of merit of GFLOPs. For more complex apps such
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Table 3. Compatibility of mini-apps with each compiler. (NI: No implementation for
required programming model; RE: Runtime Error)

Compiler su3 babelStr. laplace gpp ToyPush

NVCC (CUDA) � � NI NI NI

PGI (OpenACC) � � � � �
Cray-llvm � � � � �
Cray-classic � � � � �
XL � � � � �
Clang � � � � –

GCC � � � � RE

as ToyPush or laplace, execution time was used, while for babelStream, which
is memory-bound, we measured memory bandwidth. If the chosen metric for a
given application is relatively poor for one compiler compared to others, that
indicates this compiler is generating inefficient code.

Knowing which compilers perform poorly for a given application, we use pro-
filing tools to uncover the underlying reasons for such poor performance. The
two profiling tools used in this study are nvprof and Nsight Compute, both
NVIDIA products. nvprof is a command-line profiler for NVIDIA GPUs, which
we use to identify GPU activities and kernels that are most time intensive and
collect hardware metrics relating to memory use and instruction counts. Nsight
Compute, which has a command-line and graphical component, we use to pro-
file the kernels of an application in-depth. Nsight Compute indicates high-level
bottlenecks, creates roofline plots, and features a source analysis view which we
use to identify high-latency sections of a kernel in both the original source and
generated assembly code.

The choice of metrics to focus on for a particular application depends on
our understanding of what the application is computing, as well as the bot-
tlenecks indicated by Nsight Compute. For example, Nsight Compute tells us
babelStream’s dot kernel is latency bound when compiled with Clang, with low
compute and memory utilization. Knowing this, we use source analysis to iden-
tify which source lines have the most latency samples, confirming the impact of
the OpenMP reduction specifically. Viewing the SASS (Shader Assembly) along-
side the source can provide a deeper understanding of where latency specifically
arises, such as constant memory load instructions that appear in some codes
compiled with Cray-classic.

In other cases, there is less to be learned from the hardware metrics to gain
a deep understanding of a kernel, as the application launches many small ker-
nels rather than a few large kernels. In these cases, we expect kernel launch
latency and overhead of the OpenMP runtime to be a major cause of perfor-
mance degradation. The NVTX (NVIDIA Tools Extension) API provides a set
of CPU functions to tag parts of software for GPU profiling. With NVTX, we
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are able to wrap an OpenMP target region in an NVTX range, so that nvprof
will specifically time the region. The general form of this approach is shown in
Listing 1.1, using the code structure of the laplace mini-app (see Sect. 4.3).

1 id1 = nvtxRangeStartA("launch");

2 #pragma omp target teams distribute parallel for reduction

(..) collapse (2)

3 for (i = 1; i <= height; ++i) {

4 // stencil update ...

5 }

6 nvtxRangeEnd(id1);

Listing 1.1. NVTX range markers

The nvprof profiler then gives us an average duration of the range as well as
the average time spent on kernels and data movement in that region. Assuming
no overlap, this breakdown is made up of three parts, as shown in Eq. 1.

NV TXRangeT ime = GPUTime + CPUTime + DataMovementT ime (1)

Intuitively, this means that starting with the NVTX range total time reported
by nvprof and subtracting the average data movement and GPU kernel time
leaves us with the CPU time. This time is accounted for primarily as overhead
of the OpenMP runtime.

Note that all profiling and sampling data collected has less than 5% variation
between runs. Profiling overhead varies depending on the tool and configuration.
Nsight Compute can show 3x–20x slowdowns, while nvprof without metric col-
lection shows a minimal slowdown, around 1.1x to 1.2x from our tests. nvprof
with metric collection shows a 1.3x to 7x slowdown. All execution times shown
are measured without profiling tools.

Section 4 will show the results collected for each mini-app across compil-
ers, as well as our insights into causes for performance differences taken from
performance metrics and profiling.

4 Results

As described in Sect. 3.3, our investigation starts from identifying which applica-
tions show drastic performance differences across compilers. Figure 1 shows, for
each application version and compiler, the degree of variance in performance of
the tested compilers. The differences between versions shown for each mini-app
will be described in the following subsections. Performance for this figure is on
relative scale from zero to one, where one represents the performance of the best-
performing compiler, using the most appropriate metric for each benchmark. For
example, because babelStream is a memory bandwidth benchmark, the memory
bandwidth achieved is used as the performance metric for comparing compiler
performance, while laplace uses total execution time. The following subsections
will describe the differences between versions for each mini-app, and examine
the performance variation in detail.
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Fig. 1. Relative performance for each mini-app and compiler.

4.1 su3

The su3 mini-app is a matrix-matrix multiply code. Figure 2 shows the GFLOPs
per compiler, computed using the observed execution time based on the known
number of operations the kernel performs. The theoretical peak performance on
NVIDIA V100 GPUs based on the calculated arithmetic intensity of the kernel
is 1,270 GFLOPs.

Compared to the CUDA baseline, GCC, Clang and Cray-classic stand out as
poorly-performing, with <1%, 3% and 5% of the CUDA performance, respec-
tively. Using Nsight Compute profiling, we attribute Cray-classic performance
to small grid size, and therefore poor device utilization as well as latency issues
arising from rapid, intense use of global constant memory. Small grid size is
compensated for by increasing the number of teams using the num teams clause.
By raising the number of teams from 1200, the Clang-tuned value, to 10000,
Cray-classic reaches approximately 240 GFLOPs, or a 4.6x speedup.1 In com-
parison, the best-performing compiler (NVCC) used a grid size of 294912, and
the worst-performing compiler (GCC) used a grid size of 1600.

To further investigate Clang performance, we examine DRAM transactions
for each compiler. Data is collected using the nvprof command-line profiler.
According to the DRAM read and write transaction metrics, su3 performs excess

1 This is also a 2.03x speedup compared to the performance of the Cray-classic-chosen
default value, which is 81920 teams. Note that Cray-classic ignores num threads, as
it only considers teams and SIMD parallelism.
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Fig. 2. GFLOPs per compiler for su3-v0. Performance results are obtained on Cori-
GPU, except for “XL”, “GCC” and “Clang (Summit)” data points.

DRAM data movement when compiled with Clang, over 20x more write trans-
actions and 3x more read transactions when compared to the CUDA baseline.

Listing 1.2 shows the OpenMP construct arrangement in su3. According to
the Clang documentation, this arrangement of directives, specifically, the inter-
leaving for loop between the teams and parallel constructs, causes Clang to
choose the non-SPMD mode for code generation. To test if the use of non-SPMD
mode is responsible for elevated DRAM transactions, we modify the OpenMP
directive structure of su3, as shown in Listing 1.3. This optimized version removes
interleaving code between the teams and parallel constructs, and manually
distributes the loop iterations between teams.

1 #pragma omp target teams distribute

2 for(int i = 0; i < total_sites; ++i) {

3 #pragma omp parallel for collapse (3)

4 // 3 for loops ...

Listing 1.2. OpenMP directives in su3-v0

1 #pragma omp target teams

2 #pragma omp parallel

3 {

4 // compute istart , iend for each team ...

5 for(int i = istart; i < iend; ++i) {

6 #pragma omp for collapse (3)

7 // 3 for loops ...

Listing 1.3. OpenMP directives in su3-v1

With su3-v1’s modifications, the DRAM transactions for all compilers except
Clang remain approximately the same, while Clang DRAM transactions fall to
a level matching the other compilers. Examining the GFLOPs per compiler, as
shown in Fig. 3 for su3-v1, shows that this change to the OpenMP directives
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improves Clang performance substantially, approximately 18x.1 GCC perfor-
mance remains 2–3 orders of magnitude worse than all other compilers even with
this optimization. The Cray-classic data point did not use our tuned num teams
value, for comparison purposes.

Fig. 3. GFLOPs per compiler for su3-v1. Performance results are obtained on Cori-
GPU, except for “XL”, “GCC” and “Clang (Summit)” data points.

4.2 babelStream

The babelStream memory bandwidth benchmark uses a number of simple com-
pute kernels to test memory bandwidth, called dot, copy, add, mul, and triad.
The dot kernel is unique in that, unlike the other kernels, it uses a reduction
clause in its computation. As babelStream is a global device memory bandwidth
benchmark, we expect it to be memory-bound, reaching near-peak memory band-
width (900 GB/s). Figure 4 shows the measured memory bandwidth for the dot,
copy, and add kernels for each compiler.

The dot kernel compiled with Clang stands out in Fig. 4 as performing poorly.
GCC performance for all babelStream kernels is also relatively poor. Nsight
Compute identifies the dot kernel, when compiled with Clang, as latency-bound,
rather than bandwidth-bound as expected. Nsight Compute Warp State Analysis
points out that the kernel has stall issues, with each warp on average spending
28.7 cycles waiting on a barrier, and Source view shows that there are a large
number of barrier latency samples collected on the OpenMP directive that has
the reduction clause. Taking into account the lack of similar latency issues on
any other babelStream kernel, we infer that these barrier samples must arise due
to the introduction of the reduction clause.

1 Note that after these modifications, Clang chooses default num teams and
num threads values of 128 and 128, which do not perform as well as our tuned
values of 1600 and 64 (4.45x speedup with tuned values compared to defaults).
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Fig. 4. Fraction of peak memory bandwidth per compiler for babelStream.

4.3 laplace

The laplace mini-app has two features which we suspect to be possible perfor-
mance impediments: first, it uses a reduction clause to determine if the compu-
tation has converged, and second, it executes a large number of short-running
kernels, which would increase the impact of the OpenMP runtime overhead and
of any kernel launch latency. As described in Sect. 3.3, NVTX range markers
allow us to measure the composition of execution time for a given offloading
region, following Eq. 1. Figure 5 shows the results of this approach for each
compiler.

Cray-llvm performs poorly, due to high GPU time, while Clang and GCC also
perform poorly, due to high CPU and GPU time. This high CPU time in Clang
indicates a high overhead of the OpenMP runtime, which negatively impacts
performance. Clang GPU time is longer on Summit compared to on Cori, which
according to Nsight Compute profiling, is caused by elevated (about 10x higher)
barrier latency on the max reduction for Clang on Summit, specifically on one
move instruction compared to Clang on Cori. This is causing far more warp
stalling and thus lower compute and memory utilization.

The most significant limiter of laplace performance is the use of a max
reduction clause. Add reductions are shown in the babelStream study to be
a source of latency issues in Clang, but did not pose a problem for Cray-llvm.
To confirm that the max reduction specifically causes the high Cray-llvm GPU
Time seen in Fig. 5, we create a version of the laplace app that uses an add reduc-
tion rather than a max reduction. Rather than detecting convergence, it merely
iterates a fixed number of times, the number of iterations the max reduction
version needed to converge. Most compilers show little performance difference
between the max and add reduction versions, but Cray-llvm shows a significant
difference, a 15.7x speedup in GPU Time using add reduction version.

Profiling with Nsight Compute shows the reasons for this extreme difference
in max and add reduction performance in Cray-llvm. Source analysis indicates
that the max reduction clause has a large number of Long Scoreboard latency
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Fig. 5. Breakdown of execution time in laplace. Results are shown in seconds.

samples. Each warp of the kernel spends on average 53.6 cycles stalled waiting
for a L1TEX (global memory) operation, meaning that the kernel is using global
memory heavily. Further investigation into the assembly generated for the reduc-
tion shows the source: an atomic operation on global memory. By comparison,
the add reduction in Cray-llvm has far fewer latency samples, and no similar
atomic operation.

The difference between the max and add reduction implementations in Cray-
llvm can be further confirmed with hardware metrics. nvprof profiling finds
that the metrics atomic transactions and l2 atomic transactions are both
approximately 2740 times higher for the max reduction version compared to the
add reduction version.

Nsight Compute SASS view shows specifically that Cray-llvm uses fewer
hardware atomic-add instructions, implying the use of tuned reduction algo-
rithms, e.g. 5-stage hierarchical shuffle-based algorithms. This is not the case
for the Clang compiler, which uses a relatively large number of general purpose
compare-and-swap atomic instructions. Detailed analysis of the Clang compiler
shows a similar count of compare-and-swap atomic instructions for the max and
add reductions, implying reuse of the compiler code. The Cray-llvm compiler uses
4 orders of magnitude more atomic instructions than Cray-classic implying use
of a general purpose slower code path. Only three compilers, PGI, Cray-classic
and XL, generate an efficient max reduction according to Fig. 5.

4.4 gpp

gpp is a larger mini-app, which uses an add reduction to compute its final result.
There are two versions tested for gpp: gpp-portable, which includes the default
reduction reconfiguration described below, and gpp-naive, which removes that
reconfiguration. Measuring execution time of gpp-portable across compilers we
observe consistency across compilers, save for GCC. Examining the use of the
reduction clause in gpp-portable, we see a reconfiguration approach to miti-
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gate the impact of reduction slowdowns in some cases, which explains this gen-
erally consistent good performance. To understand the possible benefits of this
approach, consider how the reduction would usually be done (i.e., as it is in
gpp-naive), shown in a simplified form in Listing 1.4.

1 #pragma omp target teams distribute parallel for simd

collapse (2) reduction (+: sum)

2 for(/* iterate over ngpown */) {

3 for(/* iterate over num_bands */) {

4 for(/* interate over ncouls */) {

5 // compute values ...

6 sum += computed_value;

7 }

8 }

9 }

Listing 1.4. gpp-naive reduction usage

The reduction operator in gpp-naive is placed in the innermost loop, as per
usual, so that every iteration of the innermost loop adds to the reduction
variable. By comparison, gpp-portable moves the reduction operations one loop
up, after the innermost loop inside the middle loop. The innermost loop instead
sequentially stores the results of the innermost loop in a local variable, which
is only reduced after the inner loop is complete. Listing 1.5 demonstrates the
approach, simplified.

1 #pragma omp target teams distribute parallel for simd

collapse (2) reduction (+:sum)

2 for(/* iterate over ngpown */) {

3 for(/* iterate over num_bands */) {

4 double local_sum = 0.0;

5 for(/* interate over ncouls */) {

6 // compute values ...

7 local_sum += computed_value

8 }

9 sum += local_sum;

10 }

11 }

Listing 1.5. gpp-portable reduction usage

Figure 6 compares the execution time of gpp-portable and gpp-naive, and as
expected, gpp-naive is generally slower than gpp-portable. gpp-portable, com-
pared to gpp-naive, shows a 1.02x to 1.05x speedup in kernel time for the Clang,
Cray-llvm, and PGI compilers, a 13.4x speedup for Cray-classic, and a 0.88x
and 0.95x slowdown for XL and GCC (meaning the change harms GCC and
XL performance, and only slightly improves performance for other compilers
except Cray-classic). GCC is also relatively poorly-performing compared to other
compilers. The particularly poor Cray-classic performance on gpp-naive can be
attributed to elevated device memory activity, as it shows approximately 3714
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times more bytes transferred to and from device memory compared to Clang’s
version of gpp-naive.

Fig. 6. Comparing execution time of gpp-portable and gpp-naive.

4.5 ToyPush

ToyPush provides an example of a larger mini-app, taken from a real-world
application, that exemplifies the pattern shown in laplace. Like laplace, ToyPush
launches a large number of short-running kernels. Figure 7 shows the results,
using the NVTX range technique shown in Sect. 3.3. The time shown in this
figure is the total time spent on each activity type within the OpenMP offloading
region, as demarcated in Listing 1.1.

The relatively elevated CPU Time for XL and PGI corresponds with the
total time taken to execute the mini-app, as XL and PGI were the two poorest-
performing compilers by that metric. While Clang was shown in the laplace
analysis to have the highest OpenMP runtime overhead, the Flang (LLVM For-
tran) compiler is not able to compile this OpenMP offloading code and was thus
not used in our study. Even so, Fig. 7 confirms that elevated runtime overhead
impacts mini-apps derived from real-world applications, and if the future Flang
compiler has a similar high overhead as in Clang, ToyPush performance would
be expected to be poor.

Unlike laplace, total GPU time in ToyPush is consistent across compilers.
However, note that data movement time for both Cray compilers appears ele-
vated. nvprof profiling indicates that while the Cray compilers use pageable
memory, XL and PGI used pinned memory. From discussion with compiler engi-
neers, this is evidence that XL and PGI are performing a memory optimization,
copying data to pinned memory before transfer to the GPU, broken into chunks
sized to fit into pinned memory.
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Fig. 7. Breakdown of execution time in ToyPush. Results are shown in milliseconds.

5 Discussion

In this section, we summarize and discuss the results. The results in Fig. 1 show
that benchmark performance can sometimes vary by up to an order of magni-
tude across compilers. In Sect. 5.1 we will outline the main reasons for these
performance differences and in Sect. 5.2 we will give guidelines to help applica-
tion developers achieve higher performance across today’s OpenMP offloading
compilers.

5.1 Performance Issues Across Compilers

Three mini-apps/kernels were impacted by poor OpenMP reduction perfor-
mance: laplace, gpp, babelStream-dot. We find that all the compilers generate an
efficient OpenMP add reduction except for LLVM/Clang, which uses a relatively
large number of general purpose compare-and-swap atomic instructions to imple-
ment an OpenMP reduction. We also find that only PGI, Cray-classic and XL
compilers generate an efficient max reduction. The Cray-llvm implementation
uses 4 orders of magnitude more atomic instructions than Cray-classic implying
the use of a general purpose slower code path. The LLVM/Clang compiler show
a similar count of compare-and-swap atomic instructions for the max and add
reductions implying reuse of the compiler code. It is likely that Cray-llvm per-
formance will improve over time as HPE incorporates more of the optimizations
from Cray-classic into Cray-llvm. We hope to see OpenMP reduction perfor-
mance become a priority optimization in the open-source LLVM/Clang com-
piler. This is because many applications, including laplace and gpp, benefit from
high performance reductions. We also note that the Clang compiler, the only
compiler we test on both Cori and Summit, generally shows similar performance
between the two platforms.

The su3-v0 and gpp-naive mini-apps are impacted by unexpected data move-
ment between GPU device memory and GPU registers. The su3-v0 mini-app is
characterized by teams distribute and parallel for directives on separate
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loops. Our results show that the Clang compiler generated approximately 20x
more data movement than the other tested compilers. The excess data move-
ment is due to the LLVM/Clang compiler using a general purpose code gener-
ation path when OpenMP directives are split in this way. It is needed because
it is unknown whether each GPU thread will execute identical code on inde-
pendent data. Given the uncertainty, the compiler flushes memory to ensure a
consistent view of memory between successive parallel regions as well as between
the team master and the parallel threads. The other compilers do not generate
excess data movement for su3-v0 because of compiler optimization passes, e.g.
the XL compiler uses interprocedural static compiler analysis to determine that
all threads in a team execute the same code [27]. The second mini-app, gpp-
naive, sums data contributions over 4 nested loops. We find that Cray-classic
generated code has 4 orders of magnitude more device data movement than the
corresponding Clang generated code. The data movement significantly decreases
in the gpp-portable version of the mini-app, where the programmer uses extra
private variables to do a per-thread sum over the inner two loops before adding
this sum to the OpenMP reduction variable. This indicates that it is sometimes
necessary to manually exploit data reuse rather than relying on the compiler.

Finally, the Laplace mini-app is impacted by OpenMP runtime overhead for
the LLVM/Clang compiler. This mini-app uses a small problem size that makes it
sensitive to target region latency. The surprising observation is that target region
latency can be significantly larger than kernel launch latency. In the absence of
reductions, we measure 50µs target region time for the LLVM/Clang compiler
and 7–20µs target region time for the proprietary compilers. This indicates that
the management of an OpenMP device data environment is particularly high
for the LLVM/Clang compiler. CPU profiling of this overhead to determine its
cause is an area for future study.

5.2 Recommendations to Programmers

The results in the paper draw attention to some mini-apps/kernels which perform
relatively well across all tested compilers. The babelStream-triad/mul/copy/add
kernels and ToyPush mini-app perform consistently well. If we expand the list
to include mini-apps with a median performance of >0.8 relative to the best
performing compiler then it also includes babelStream-dot, gpp-portable and
gpp-naive. The characteristics of these applications include

– Minimal data movement between CPU and GPU
– Combined teams distribute parallel for constructs
– Minimal use of OpenMP reductions
– Average GPU kernel runtime > 50µs

None of the mini-apps spent a large fraction of time moving data between
CPU and GPU, however, this is often the biggest bottleneck in newly ported
applications. We found non-negligible time spent in ToyPush and identified an
interesting optimization in the PGI and XL compilers where pinned memory was



Performance Assessment of OpenMP Compilers for V100 GPUs 41

used to efficiently transfer data between CPU and GPU. This could be important
for users who have applications more bound by CPU-GPU data movement time
than the mini-apps in our sample.

We recommend that the combined teams distribute parallel for con-
structs are used where possible. In cases where this is not possible, we draw atten-
tion to our experience with su3-v0, which has teams distribute and parallel
for on separate loops. We found two different reasons for poor performance with
the Cray-classic and LLVM/Clang compiler. The Cray-classic compiler performs
poorly because the compiler selected a poor kernel launch configuration; we were
able to improve performance by manually increasing the number of teams. The
LLVM/Clang compiler performs poorly because the compiler used a general pur-
pose code generation mode which resulted in more memory flushes.

We recommend that OpenMP reductions are used only where necessary
because we found mixed performance across compilers. In addition, max reduc-
tions sometimes perform significantly worse than add reductions. One sug-
gested method to improve reduction performance in Clang is to add the
option -fopenmp-cuda-teams-reduction-recs-num=<num>, with <num> set to
the number of loop iterations. However, in our experience this never led to more
than a 10% speedup with any mini-app. Our experience with gpp-portable and
gpp-naive is inconclusive about whether it is beneficial for the programmer to use
additional private variables to reduce thread local contributions before reducing
into OpenMP reduction variables. Using this technique we see significant per-
formance improvement for the Cray-classic compiler but results in a slow down
for the XL compiler. In general, we hope that compiler developers prioritize
the performance of OpenMP reductions because it is a frequently used parallel
pattern.

We also want to make programmers aware of OpenMP runtime overheads.
We found that Laplace mini-app performance is very sensitive to OpenMP target
region latency. The overhead is highest for the GCC and LLVM/Clang compiler.
It should be noted that OpenMP provides a huge convenience to the programmer
by enabling a single variable name to refer to data in a host and a device data
environment. The cost of this convenience is that launch latencies are higher than
using CUDA or some other lower-level API. Therefore programmers must make
sure to send sufficient work to the GPU to justify the data transfer overhead.

We specifically recommend that, at this time, programmers use the GCC
compiler primarily for correctness, not for performance. GCC was consistently
a low-end outlier in our study. We hope this is temporary as OLCF is working
with Mentor Graphics to improve the performance of OpenMP 5.0 features while
specifically focusing on GPU offloading directives.

It is common for many developers to use roofline analysis to evaluate perfor-
mance on CPU+GPU systems. We suggest that developers supplement this anal-
ysis with some additional measurements based on our experience with OpenMP
mini-apps. These measurements are DRAM read/write transactions, average ker-
nel runtime, and atomic instructions for at least 2 compilers. We have seen that
DRAM read and write transactions can sometimes be much higher for some
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compilers than for others. If one were to rely on roofline analysis only, then
it can seem like the mini-apps are achieving close to the memory bandwidth
roofline, even though this would just be artifact of excessive data movement.
We suggest that average kernel runtime should be measured to identify cases
where runtime is less than <50µs. Some compilers, e.g. LLVM/Clang, would
likely spend at least this much time in just CPU runtime overhead. In this case,
developers should look for opportunities to fuse target region code or investigate
opportunities to launch target regions asynchronously using nowait or through
multiple host threads. Finally, we suggest measuring atomic instruction latency
to understand if a compiler OpenMP reduction implementation is the reason for
poor OpenMP reduction performance.

6 Conclusions and Future Work

This paper fills a gap in the literature, comparing OpenMP offloading compilers
with multiple mini-applications derived from real-world apps and most impor-
tantly examining performance differences in detail, uncovering the specific causes
for slowdowns in implementations. We do so in a way that allows us to make
specific and useful recommendations to application developers. These recom-
mendations should allow developers to avoid common performance snags found
in the available compilers. Broadly, our findings regarding compiler performance
show that runtime overhead in compilers tends to have a bigger negative impact
on performance than architecture-specific vendor optimizations have a benefit.
Without changes in the compilers, these overheads will not go away when moving
to the next generation of GPUs or accelerators; the issues are more fundamental
to the compilers.

Future work in this area includes studying additional GPUs, such as those
produced by Intel and AMD, as well as NVIDIA Ampere (to be used in the
upcoming Perlmutter system). With the addition of these hardware platforms,
there is the opportunity to test additional compilers, such as Intel ICC and
AMD AOMP. Further, the PGI compiler will support OpenMP offloading in
the future. Beyond merely expanding coverage, a long-term goal would be cre-
ating a suite similar to the OpenMP Verification and Validation project [20],
a publicly-available, well-documented suite, with a comprehensive set of kernel-
only mini-apps extracted from real applications. This would provide application
and compiler developers a tool for understanding the performance strengths and
weaknesses of the available compilers, on various architectures, with open source
and transparent tests that anyone can run.
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