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Preface

The course of high-performance computing (HPC) system architecture is at crossroads.
Heterogeneous systems like the current Summit and Sierra, and the up-and-coming
systems such as Perlmutter, Frontier, and El Capitan, all have graphics processing units
(GPUs). On the other hand, ARM-based systems such as GW4 Isambard and the future
Isambard 2 and Fugaku are relatively homogeneous. Nonetheless, system performance
relies heavily on acceleration through existing ever-improving vector units in the
homogeneous systems or dedicated acceleration units in heterogeneous systems.

With increasing complexity to exploit the maximum available parallelism, the
importance of sophisticated programming approaches that can handle performance,
scalability, and portability is increasing. Programmers, especially, prefer to keep a
single code base to help ease maintenance and avoid the need to debug multiple
versions of the same code. In the literature, it has been shown that the abstraction can
be raised at different levels - at the high level using directives and frameworks or at a
relatively lower level by language modifications.

Software abstraction-based programming models such as OpenMP and OpenACC
have been serving this purpose over the past several years and are likely to represent
one path forward. These programming models address the ‘X’ component in a hybrid
MPI+X programming approach by providing programmers high-level directives and
delegating some burden to the compiler. Such programming paradigms have played a
decisive role in establishing heterogeneous node architectures as a valid choice for a
multitude of HPC workloads. In addition, frameworks like Kokkos and Raja, along
with modifications to the language, are trying to help improve the performance as well
as portability.

These proceedings contain the papers accepted for presentation at the 7th Workshop
on Accelerator Programming using Directives (WACCPD 2020) held on November 13,
2020. WACCPD is one of the major forums for bringing together users, developers, and
the software and tools community to share knowledge and experiences when pro-
gramming emerging complex parallel computing systems (https://www.waccpd.org).

Like in the previous years, the workshop highlighted improvements to the state
of the art through the accepted papers and prompted discussion through keynotes that
drew the community’s attention to key areas that will facilitate the transition to
accelerator-based high-performance computing (HPC). The workshop aimed to
showcase all aspects of heterogeneous systems, discussing innovative high-level lan-
guage features, lessons learned while using directives to migrate scientific legacy code
to parallel processors, compilation, and runtime scheduling techniques, among other
subjects.

The WACCPD 2020 workshop received seven submissions out of which five were
accepted to be presented at the workshop and published in these proceedings. The
Program Committee of the workshop comprised 27 members spanning universities,
national laboratories, and several industries. Each paper received a minimum of six

https://www.waccpd.org


single-blind reviews. Similar to WACCPD 2019, we encouraged all authors to add the
Artifact Description (AD) to their submissions and make their code and data publicly
available (e.g. on GitHub, Zenodo, Code Ocean, etc.) in support of the reproducibility
initiative. Of the five accepted papers, 40% had reproducibility information and these
manuscripts are highlighted with an ‘artifacts available’ logo in this book.

The program co-chairs invited Prof. Mary Hall from the University of Utah to give a
keynote address on “Achieving Performance Portability for Extreme Heterogeneity.”
Mary Hall is the Director of the School of Computing at the University of Utah. Her
research focus brings together compiler optimizations and performance tuning targeting
current and future high-performance architectures on real-world applications. Professor
Hall is an IEEE Fellow, an ACM Distinguished Scientist, and a member of the
Computing Research Association Board of Directors. She actively participates in
mentoring and outreach programs to encourage the participation of groups underrep-
resented in computer science.

Nicholas Malaya from AMD gave an invited talk titled “Enabling Portable
Directive-Based Programming at Exascale.” Nicholas Malaya is a computational sci-
entist at AMD Research, and is AMD’s technical lead for the Frontier and El Capitan
Centers of Excellence (COEs). These COEs are focused on close collaborations
between AMD, DOE, and HPE to ensure application readiness, so that key workloads
can run on the computers from Day-1 of machine deployment. Nick’s research interests
include Exascale Computing, CFD, Bayesian Inference, and Machine Learning.

Usually, the text of the preface focuses on factual content only. However, 2020 was
(unfortunately) different – we feel that we cannot leave this unmentioned: the
COVID-19 pandemic hit the world really hard in 2020. It has affected the daily lives of
all of us and cost way too many lives. To limit the spread of the virus, the most
important action has become social distancing. With that, big events were cancelled all
over the world. However, in the HPC community, we have been rather lucky to be able
to “easily” switch to solely digital and virtual conference formats. To this end,
Supercomputing 2020 was held online, and so was WACCPD 2020 for the first time in
its seven-year history. Thanks to all of you that contributed to this success! Hopefully,
we will be able to meet in-person again next time. Stay tuned!

February 2021 Sridutt Bhalachandra
Sandra Wienke

Sunita Chandrasekaran
Guido Juckeland

vi Preface
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Evaluating Performance Portability
of OpenMP for SNAP on NVIDIA, Intel,

and AMD GPUs Using the Roofline
Methodology

Neil A. Mehta1(B), Rahulkumar Gayatri1, Yasaman Ghadar2,
Christopher Knight2, and Jack Deslippe1

1 NERSC, Lawrence Berkeley National
Laboratory, Berkeley, USA

neilmehta@lbl.gov
2 Argonne National Laboratory,

Lemont, USA

Abstract. In this paper, we show that OpenMP 4.5 based implementa-
tion of TestSNAP, a proxy-app for the Spectral Neighbor Analysis Poten-
tial (SNAP) in LAMMPS, can be ported across the NVIDIA, Intel, and
AMD GPUs. Roofline analysis is employed to assess the performance of
TestSNAP on each of the architectures. The main contributions of this
paper are two-fold: 1) Provide OpenMP as a viable option for appli-
cation portability across multiple GPU architectures, and 2) provide a
methodology based on the roofline analysis to determine the performance
portability of OpenMP implementations on the target architectures. The
GPUs used for this work are Intel Gen9, AMD Radeon Instinct MI60,
and NVIDIA Volta V100.

Keywords: Roofline analysis · Performance portability · SNAP

1 Introduction

Six out of the top ten supercomputers in the list of Top500 supercomputers
rely on GPUs for their compute performance. The next generation of supercom-
puters, namely, Perlmutter, Aurora, and Frontier, rely primarily upon NVIDIA,
Intel, and AMD GPUs, respectively, to achieve their intended peak compute
bandwidths, the latter two of which will be the first exascale machines. The
CPU, also referred to as the host and the GPU or device architectures that will
be available on these machines are shown in Table 1.

The diversity in the GPU architectures by multiple vendors has increased the
importance of application portability. A wide range of programming frameworks
such as, Kokkos, [1] SYCL, [2] and HIP [3] have risen to address this challenge.
These languages provide a single front-end for application developers to express
parallelism in their codes while the frameworks provide an optimized backend
c© Springer Nature Switzerland AG 2021
S. Bhalachandra et al. (Eds.): WACCPD 2020, LNCS 12655, pp. 3–24, 2021.
https://doi.org/10.1007/978-3-030-74224-9_1
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Table 1. CPUs and GPUs on upcoming supercomputers.

System Perlmutter Aurora Frontier

Host AMD Milan Intel Xeon Sapphire Rapids AMD EPYC Custom

Device NVIDIA A100 Intel Xe Ponte Vecchio AMD Radeon Instinct Custom

implementation on the chosen architecture. However, these programming mod-
els require an extensive rewrite of the application codes in C++, including the
GPU kernels. Compiler directive-based programming models, such as OpenMP
and OpenACC, present an attractive alternative for their ease of use and non-
intrusive approach to parallelizing applications. OpenMP has been a popular
compiler directive-based programming framework for CPUs and, OpenMP 4.0
onward has included directives that allow application developers to offload blocks
of code onto GPUs for execution. OpenMP 4.5 and OpenMP 5.0 have increased
the number of directives that will enable effective utilization of the available
GPU resources. Compilers such as LLVM/Clang, XL (IBM), Cray, and GCC
have already provided backend implementations to offload OpenMP directives
on NVIDIA GPUs. Intel and AMD compilers are committed to supporting
OpenMP 5.0 directives on their respective GPUs. Meanwhile, NVIDIA has a
contract with NERSC to support a subset of OpenMP 5.0 directives for its
compiler on the upcoming Perlmutter supercomputer, demonstrating long term
investment in supporting OpenMP.

In this paper, we present an OpenMP 4.5 based implementation for the Spec-
tral Neighborhood Analysis Potential (SNAP) module in LAMMPS. [4] Test-
SNAP is a stand-alone proxy app for SNAP that can be run independently of
LAMMPS and is written in C++. While we have developed Kokkos, CUDA,
and HIP versions of TestSNAP that we could have used for this profiling study,
the wider use of OpenMP and its support by the GPU vendors makes it the
perfect candidate for this study. The goal of this work was to create and test a
single source-code implementation that can be compiled and scheduled on the
NVIDIA, Intel, and AMD GPUs.

Application “Portability” implies the ability to compile and execute a single
source code on multiple architectures. “Performance Portability” includes the
ability to efficiently utilize available resources on the said architectures. A more
formal definition states that a code can be considered “performance portable” is
it consistently achieves consistent ratio of time-to-solution with the best time-to-
solution on each platform with minimal platform specific changes to the code. In
our study, the use of OpenMP 4.5 ensures that no platform specific changes are
required. However, because GPUs from various vendors have different compute
architectures, the “time-to-solution” is an inefficient metric for comparison. To
assess the efficiency of an application on the target hardware, we have used the
roofline analysis to test our OpenMP implementation of TestSNAP by comparing
its arithmetic intensity (AI) with the peak achievable AI of the hardware.

We have compiled and executed TestSNAP on testbeds for each of the super-
computers mentioned above, i.e., Perlmutter, Aurora, and Frontier. Testbeds
contain intermediary hardware that will fall somewhere between the Summit
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Table 2. CPUs and GPUs available on test beds.

Test bed Cori-GPU JLSE Tulip

Host Intel Skylake Intel Xeon AMD EPYC

Device NVIDIA V100 Intel Gen9 AMD MI60

and exascale systems in terms of power and capabilities. The GPU racks on Cori
at NERSC, the Iris node on Joint Laboratory for System Evaluation (JLSE)
at Argonne National Lab, and the Hewlett Packard Enterprise built Cray Tulip
machine serve as testbeds for Perlmutter, Aurora, and Frontier machines, respec-
tively. GPUs available on each testbed are shown in Table 2. Even though, Intel’s
Gen9 GPU will not be used on the upcoming HPC machines, it does serve as a
good platform to test performance portability of the code on the upcoming next
generation discrete GPUs from Intel.

2 OpenMP Offload Implementation of TestSNAP

SNAP is an interatomic potential provided as a component of the LAMMPS
MD toolkit. [4] When using the SNAP model, the potential energy of each atom
is evaluated as a sum of weighted bispectrum components. The bispectrum, also
known as the descriptor, describes the positions of neighboring atoms and the
local energy of each atom based on its location for a given structural config-
uration. This bispectrum is represented by its components, which are used to
reproduce the local energy [5]. The neighboring atom positions are first mapped
over a three-dimensional sphere using the central atom as the origin to gen-
erate the bispectrum components. The mapping ensures that the bispectrum
components are dependent on the position of the central atom and three neigh-
boring atoms. Next, we calculate the sum over a product of elements of Wigner
D-matrix, a smoothing function, and the element dependent weights. Because
this product is not invariant under rotation, we modify it by multiplying with
coupling coefficients, analogous to Clebsch-Gordan coefficients for rotations on
the 2-sphere, to generate the bispectrum components. The band limit for bispec-
trum components is set by J, which determines how many and which bispectrum
components are used for the simulation. We do not provide a detailed discussion
on the SNAP algorithm since it is not in the scope of this paper. Instead, we
provide the reader with the implementation details of TestSNAP, the proxy-app
for SNAP, since they are necessary to understand it’s OpenMP 4.5 implementa-
tion. The SNAP algorithm is explained in [6] by the original authors Thompson,
et al.

2.1 Refactoring Routines for GPUs

The pseudo-code for TestSNAP is shown in Listing 1.1. Each of the compute
routines shown in Listing 1.1 iterate over the bispectrum components and store
their individual contributions in a 1D array.
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Listing 1.1. TestSNAP code
1 for(int natom = 0; natom < num_atoms; ++ natom)
2 {
3 // build neighbor -list for all atoms
4 build_neighborlist ();
5

6 // compute atom specific coefficients
7 compute_U (); //Ulist[idx_max] and Ulisttot[idx_max]
8 compute_Y (); //Ylist[idx_max]
9

10 // for each (atom ,neighbor) pair
11 for(int nbor = 0; nbor < num_nbor; ++nbor)
12 {
13 compute_dU (); // dUlist[idx_max ][3]
14 compute_dE (); // dElist [3]
15 update_forces ()
16 }
17 }

idx max represents the maximum number of bispectrum components and is
determined by the value of J. TestSNAP problem sizes 2J14, 2J8, and 2J2 rep-
resent an idx max size of 15, 9, and 3, respectively. For all three problem size,
we use 2,000 atoms with 26 neighbors for each atom. The three problem sizes
denote the number of descriptors used to describe the energy of the atom with
respect to its surrounding. Therefore, even though the number of atoms for all
three problem sizes remain the same, the number of descriptors used to describe
the energy of these atoms ranges as 15, 9, and 3.

The for-loop in line 1 of Listing 1.1 loops over all atoms in the simula-
tion to compute forces in a given time-step. First, a list of neighboring atoms
within a certain Rcut distance, is generated for each atom inside the routine
build neighborlist. The compute U routine calculates expansion coefficients
for each (atom, neighbor) pair and stores this information in Ulist. The expan-
sion coefficients for each atom are summed over all its neighbors and stored
in Ulisttot. Next, the Clebsch-Gordon products for each atom are calculated
in the routine compute Y and stored in Ylist. As a precursor to force calcu-
lations, derivatives of expansion coefficients, stored in Ulist, are computed by
compute dU in all 3 dimensions using spherical co-ordinates and stored in dUlist.
Using dUlist and Ylist, the force vector for each (atom,neighbor) pair is com-
puted by compute dE and stored in dElist. Finally, the force on each atom is
computed from dElist in update forces. A correctness check is built-in, which
compares the proxy code output against a reference solution.

Based on the strategy used by newer SNAP implementation [7], the basic
TestSNAP algorithm discussed above was refactored to prioritize the completion
of each stage/routine for all atoms over the completion of all stages/routines for
a single atom. In the algorithm shown above, which is based on the older GPU
implementation of SNAP, [8], the work of each atom is mapped onto a GPU
thread block, and hierarchical parallelism is used to exploit additional parallelism
over the neighbor loop and the bispectrum components. However, converting the
four major routines, namely, compute [U,Y,dU,dE] as GPU kernels allow better
utilization of GPU resources. In the refactored code, the atom loop is placed
inside compute [U,Y] and similarly, the atom and neighbor loops are placed
inside compute [dU,dE]. As an example, the refactored compute U, shown in
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Listing 1.2 is further refactored into two nested for loops, one to calculate Ulist
and the other for Ulisttot.

Listing 1.2. compute U
1 void compute_U ()
2 {
3 compute_uarray ();
4 add_uarraytot ();
5 }
6 void compute_uarray ()
7 {
8 for(int natom = 0; natom < num_atoms; ++ natom)
9 for(int nbor = 0; nbor < num_nbor; ++nbor)

10 for(int j = 0; j < idx_max; ++j)
11 Ulist(natom ,nbor ,j) = ...
12 }
13 void add_uarraytot ()
14 {
15 for(int natom = 0; natom < num_atoms; ++ natom)
16 for(int nbor = 0; nbor < num_nbor; ++nbor)
17 for(int j = 0; j < idxu_max; ++j)
18 Ulisttot(natom ,j) += Ulist(natom ,nbor ,j);
19 }

2.2 Use of Multidimensional (MD) Data Structures

One of the disadvantages of refactoring is that it makes it necessary to store the
atom and/or neighbor information as individual data structures across all rou-
tines. After refactoring, we need to store atom specific information in Ulisttot
and Ylist, and (atom, neighbor) specific information in Ulist, dUlist and
dElist arrays. To store this additional information, we create classes that mimic
the behavior of multi-dimensional (MD) arrays, such that all elements are stored
in a contiguous block of memory to improve memory locality. To achieve this
behavior, we have created C++ classes that include a pointer to the contiguous
block of memory and the information about the dimensions to calculate indexes
of individual elements based on the access pattern.

Listing 1.3. Array2D
1 template <class T>
2 struct Array2D
3 {
4 int n1, n2, size;
5 T *dptr;
6

7 Array2D(int in1 , int in2)
8 :n1(in1), n2(in2)
9 {

10 size = n1*n2;
11 dptr = new T[size];
12 }
13

14 inline T& operator () (int in1 , int in2)
15 {
16 return dptr[in1*n2 + in2];
17 }
18

19 Array2D(const Array2D& p)
20 {



8 N. A. Mehta et al.

21 n1 = p.n1; n2 = p.n2; size = 0;
22 dptr = p.dptr;
23 }
24

25 ~Array2D ()
26 {
27 if(size && dptr)
28 delete[] dptr;
29 }
30 };

A bare bone structure of a 2D class is shown in Listing 1.3. The first and second
dimensions of the 2D array are stored as n1 and n2, while size represents the
total number of elements, i.e., n1 × n2. dptr points to a contiguous block of
memory for size number of elements. The operator overload of () allows us to
implement a FORTRAN style indexing for the exact element that is requested.
Hence on line 18 of Listing 1.2, the element accessed by Ulisttot will evaluate
to Ulisttot.dptr[natom*idx max + j]. The copy constructor assigns size to
zero, which allows us protection against multiple deletions of the same memory
block, as shown in the destructor of the class on lines 22–26 of Listing 1.3.
Similar to Array2D, Array3D and Array4D classes are created to represent 3D
and 4D arrays respectively. Array[2,3,4]D, i.e., ArrayMD classes, are templated
over the data type of their elements for generalization. ArrayMD objects of
complex-double type are created using a simple structure of two doubles to
represent a complex number as shown in line 1 of Listing 1.4. We are aware
that there are standard multi-dimensional array classes available through C++
libraries. However, we wanted the ability to control on data storage and array
access patterns specific to their usage on CPUs versus on GPUs. Therefore, these
classes were created for the purposes of representing MD arrays in TestSNAP
and only contain features that are needed by the application.

Listing 1.4. ArrayMD definitions of TestSNAP data structures.
1 struct SNAcomplex {double re,im;};
2

3 Array2D <SNAcomplex > Ulisttot(num_atoms ,idx_max);
4 Array2D <SNAcomplex > Ylist(num_atoms ,idx_max);
5 Array3D <SNAcomplex > Ulist(num_atoms ,num_nbor ,idx_max);
6 Array4D <SNAcomplex > dUlist(num_atoms ,num_nbor ,idx_max ,3);

Data has to be moved from CPU to GPU memory space before distributing
the work across GPU threads. We use the map clause in OpenMP to move data
between CPU and GPU. Ulist, Ylist, dUlist are only needed on the GPU
to store intermediary results between the compute routines. Hence, we use the
alloc mapper-type with the map clause to avoid unnecessary memory allocation
on CPU. ArrayMD classes are provided with a member function that creates
an object without memory allocation, specifically for this purpose. In contrast,
dElist is required for computing forces on the CPU after it is updated on the
GPU. Therefore, we create a block of memory on the CPU and use the to and
from mapper-type for data movement. Listing 1.5 shows how we achieve these
two distinct mappings. On line 1 of Listing 1.5, we map Ulist and dElist data
structures on to the device using the to mapper-type, which performs a shallow
copy of data structures on the device. On line 2, the alloc mapper type is used to
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allocate a block of memory on the device for size number of elements associated
with Ulist, whereas, in line 3, a deep copy of the memory block pointed by the
dptr of object dElist is performed. We use line 5 to copy the updated dElist
array back to the CPU.

Listing 1.5. Use of OpenMP directives to map data
1 #pragma omp target enter data map(to: Ulist , dElist)
2 #pragma omp target enter data map(alloc: Ulist.dptr [0: Ulist.size])
3 #pragma omp target enter data map(to: dElist.dptr [0: dElist.size])
4

5 #pragma omp target exit data map(from: dElist.dptr [0: dElist.size])

2.3 Optimizing Routines for OpenMP Offload

In addition to refactoring TestSNAP routines, it is also necessary to understand
data access patterns and OpenMP directives for further optimization of Test-
SNAP performance. We implemented three optimization strategies, each build-
ing on the previous one to make the final TestSNAP version highly performant
on all three GPUs.

Fig. 1. Code speed-up improvement relative to naive OpenMP 4.5 implementation
after array structure and loop access modifications at problem size 2J14.

Code performance is measured using grind-time, which is the average time
taken per atom per time-step to complete the force calculation and is calculated
in microseconds. The effectiveness of each optimization is measured in terms of,

Speed− up =
new grind time

naive grind time
. (1)

The naive grind time is obtained by running the most trivial GPU paralleliza-
tion on each architecture. The speed-up measured in this way ensures a fair
way of comparing optimization gains specific to each architecture. If the bar
is lower than one, it represents speed-up compared to baseline, and a greater
than one measurement implies performance degradation. Our results for each of
these optimizations are shown in Figs. 1 and 2. The performance plot is divided
into three categories, one for each GPU under consideration. Improvement gains
due to each optimization step are measured with respect to the naive OpenMP
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implementation, referred to as Case 1. All optimizations are discussed with the
help of add uarraytot kernel shown in Listing 1.2.

Case 1: We need a baseline to compare the efficiency of our optimizations. Case
1 refers to the naive OpenMP implementation where the atom-loop is distributed
across the GPU threads for compute [U,Y,dU,dE] routines.

Listing 1.6. Atom loop parallelization in add uarraytot
1 void add_uarraytot ()
2 {
3 #pragma omp target teams distribute parallel for
4 for(int natom = 0; natom < num_atoms; ++ natom)
5 for(int nbor = 0; nbor < num_nbor; ++nbor)
6 for(int j = 0; j < idxu_max; ++j)
7 ulisttot(natom ,j) += ulist(natom ,nbor ,j);
8 }

An example of our naive OpenMP implementation on add uarraytot is shown
in Listing 1.6.

Case 2: Except in compute Y, each atom loops over its neighbors in all other
routines. A logical progression to parallelizing the atom loop is to include the
neighbor loop in the parallelization effort wherever possible. We can achieve
this by using the collapse clause in OpenMP. An unavoidable consequence of
the collapse clause makes it necessary to use atomic operations when updating
Ulisttot, as shown in Listing 1.7.

Listing 1.7. Atom and neighbor loop parallelization in add uarraytot
1 void add_uarraytot ()
2 {
3 #pragma omp target teams distribute parallel for collapse (2)
4 for(int natom = 0; natom < num_atoms; ++ natom)
5 for(int nbor = 0; nbor < num_nbor; ++nbor)
6 for(int j = 0; j < idxu_max; ++j)
7 {
8 #pragma omp atomic
9 ulisttot(natom ,j) += ulist(natom ,nbor ,j);

10 }
11 }

While atomic calls are expensive, in this case, the benefits of increase in paral-
lelism achieved by looping over the neighbor dimension outweighs the overhead
incurred due to atomic operations. Distributing work over the atom and neigh-
bor dimension by the use of collapse clause gave us a 1.7× performance boost
on Intel Gen 9, while on AMD and Volta GPUs it gave us a 5.4× and 4.3×
performance improvement respectively.

Case 3: One of the most common optimizations on GPUs is the use of column
major data access pattern to improve memory coalescing. However, as shown on
line 16 of Listing 1.3, we use the row-major style of indexing into the elements
of ArrayMD structures which helps to avoid cache thrashing and false sharing
on CPUs. Because of the modular design of ArrayMD structure, we can easily
modify the operator overload to support column major data access, as shown in
Listing 1.8.
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Listing 1.8. Column major indexing in Array2D
1 inline void operator ()(int in1 , int in2) {return dptr[in2*n1 + in1];}

But this modification does not lead to the intended speed-up. In fact, it leads to
performance degradation on all GPUs compared to case 2, as shown in Fig. 1.
The reason for this performance degradation is explained in Case 4.

Case 4: The advantage of column major data access on GPUs is the alignment
of memory accesses to reduce memory latency on SIMD architectures. In our
case this leads to atom dimension being accessed first by consecutive threads.
Collapsing the loops makes the index of the innermost loop as the fastest moving
index, which implies that the neighbor index becomes the fastest moving index.
In order to gain benefit from the column major access pattern, we swap the loop
order of atoms and neighbor in each of the routines, as shown on lines 4 and 5
in Listing 1.9.

Listing 1.9. Atom and neighbor loop swap
1 void add_uarraytot ()
2 {
3 #pragma omp target teams distribute parallel for collapse (2)
4 for(int nbor = 0; nbor < num_nbor; ++nbor)
5 for(int natom = 0; nbor < num_atom; ++natom)
6 for(int j = 0; j < idxu_max; ++j)
7 {
8 #pragma omp atomic
9 ulisttot(natom ,j) += ulist(natom ,nbor ,j);

10 }
11 }

This allows us to take the advantage of coalesced memory access and gives us the
best performance across all 3 GPUs. Speed-ups obtained for problem size 2J8
are similar to those for 2J14, as shown in Fig. 2. Applying case 3 optimization to
the 2J8 problem did not degrade the performance to the extent observed in 2J8,
which may be because 2J8 problem size relies on smaller ArrayMD structs. The
performance gains after case 4 optimizations, although not as high as those for
2J14, are still significant highlighting the efficacy of the applied optimizations.

Fig. 2. Code speed-up improvement relative to naive OpenMP 4.5 implementation
after array structure and loop access modifications at problem size 2J8.

Compiler maturity plays a significant role in our ability to efficiently map
OpenMP directives on GPUs. Because the support for OpenMP directives on
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GPUs is still in its early stages, each new version of the compiler can give a signif-
icant advantage in terms of new features and increased efficiency of the existing
directives. Our OpenMP version of TestSNAP can be successfully compiled and
executed on an NVIDIA V100 GPU with the LLVM/10.0 compiler. However,
with LLVM/11.0 [9] as well as Intel’s®DPC++/C++ (ICX), the code triggers
a bug, which results in the compiler being unable to map our SNAcomplex struc-
ture, shown in Listing 1.4, on to the device memory. To bypass this bug, we have
modified our ArrayMD structures of complex-doubles to structures of doubles
with twice the size, such that even and odd indices point to real and imagi-
nary values, respectively. On AMD M160 we have used AOMP version 11.5.1,
which is based on LLVM/11.0. The bug reported to LLVM 11.0 has since been
fixed in version 12.0 and has been under review by Intel compiler developers.
It is important to note that we allowed the compiler to optimize the number
of teams and threads when running TestSNAP on all three GPUs. We observed
that the compiler optimized teams and threads input always provided better run
times compared to runs with manual input.

Fig. 3. Schematic of roofline plot, showcasing typical kernel placements.

3 Methodology of Roofline Analysis

Modern computing architectures are varied and are considered guarded propri-
etary information of the vendor. Therefore, for a fair comparison, the roofline
model utilizes a simplified memory model, which assumes that all caches are
perfect. Under this assumption, the data flows between DRAM to cache with
sufficient bandwidth to not affect performance. Other assumptions include, the
communication and computation perfectly overlap, and cores can attain peak
floating point operations per second (FLOPs) on local data. These assumptions
allow one to measure kernel performance in terms of FLOPs capped by either
the peak attainable machine FLOPs or the amount of data that can be moved
based on the peak bandwidth throughput.
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The measure of how well a kernel can benefit from the data reuse and device
bandwidth is quantified by the AI, which is calculated as the number of FLOPs
executed per byte of memory transferred to the memory level and is calculated
for each level of the memory hierarchy. A roofline plot is formed by plotting
attainable FLOPs as a function of AI for a given kernel on a log-log plot. The x-
and y-axis represent AI and performance, i.e., FLOPs, respectively. A schematic
of a typical roofline plot is shown in Fig. 3. The solid blue line represents the
peak attainable bandwidth for a particular memory hierarchy, in this case, the
HBM or DRAM of a given machine. No kernels can lie to the left of this line
as the attainable FLOP rate will always be bottle-necked by the throughput
capacity of the device. At any performance (FLOPs), for a kernel to lie to the
left of the bandwidth line, the denominator, i.e., the data transfer rate, will
have to be greater than the peak bandwidth of the memory hierarchy. Similarly,
the solid green line represents the peak FLOP rate of the machine, which is
determined by the machine cycle and is dependent on the compute architecture.
The point at which these two bounds meet is known as the “elbow”, and the
line joining the elbow to the x-axis is called an elbow line. All kernels to the left
of this elbow line are termed as “memory-bound” because their performance is
strongly affected by the memory bandwidth of the machine. Kernels to the right
of the elbow line are classified as “compute-bound” because they are bound by
the compute capability of the machine.

A roofline helps determine kernels where optimization efforts are most ben-
eficial. A couple of kernels are shown in blue, green, and red in Fig. 3. Kernels
shown in blue lie to the left of the 50% peak bandwidth line. While these kernels
have low AI, any additional improvement which increases the FLOPs will lead
to a relatively small gain in code performance as these kernels are “memory-
bound”. Kernels represented by green dots lie above the 50% peak FLOPs rate
line and are therefore making good utilization of the machine. In contrast, the
kernels shown in red have higher AI than many of the kernels shown in blue, but
they have not yet reached 50% of either compute or memory capacity. Optimiz-
ing these kernels will provide maximum gains in performance compared to other
kernels, which are already capped by either the bandwidth or peak FLOP rate of
the machine. The roofline plot also allows one to estimate the kernel performance
on future machine architectures. Assuming that an application has a majority
of kernels that are “memory-bound”, running this application on machines with
higher compute capability but the same memory bandwidth will provide only a
small improvement in the run-time and vice versa. Ideally, for modern GPUs,
where we have more compute power than the memory bandwidth, developers
should aspire to make their kernels compute-bound.

4 Results and Discussion

4.1 Profiling Code Performance

To understand the performance difference between LLVM/11.0 and
Intel®DPC++/C++ compilers, we have profiled TestSNAP on the Skylake
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8180 processor. As shown in Table 3, the step and grind times are similar for
LLVM/11.0 and Intel®DPC++/C++ for the serial TestSNAP code on the Sky-
lake processor. The LLVM/11.0 compiler is marginally better, which we suspect
may be due to the maturity of the LLVM/11.0 compilers in terms of performance
refinement compared to the newly introduced Intel®DPC++/C++. However,
for the intent of our comparison, the performance of both compilers on the Sky-
lake processor is considered equal.

Table 3. Comparison of OpenMP offload profiles on GPU measured for the 2J14
problem size for 100 time steps.

Version Serial (Skylake) OpenMP offload GPU

LLVM/11 ICX Gen9 MI60 V100

Step time (s/step) 9.7671 9.8669 1.8215 0.1394 0.0565

Grind time (ms/atm-stp) 4.8835 4.9334 0.9107 0.0697 0.0282

compute U (s) 0.6211 0.6221 0.1975 0.0153 0.0099

compute Y (s) 7.6839 7.6789 1.2005 0.0748 0.0271

compute dU (s) 1.2008 1.3363 0.3484 0.0389 0.0155

compute dE (s) 0.2604 0.2288 0.0741 0.0086 0.0028

Table 4. Comparison of OpenMP offload kernel time loads of top 5 kernels, measured
for problem size 2J14, 2000 atoms, and 100 time steps.

Version Intel Gen9 AMD MI60 NVIDIA V100

Rank Time (%) Kernel Time (%) Kernel Time (%) Kernel

1 65.65 compute Y 57.01 compute Y 45.32 compute Y

2 19.15 compute dU 31.53 compute dU 25.80 compute dU

3 10.58 compute U 8.61 compute U 15.75 compute U

4 4.02 compute dE 2.44 compute dE 8.60 memcpy HtoD

5 0.41 WriteBuffer 0.29 zero uarraytot 3.96 compute dE

We use the IProf, ROCProf, and NVProf to profile our OpenMP implemen-
tation of TestSNAP on Intel, AMD, and NVIDIA GPUs, respectively. The rela-
tive time required by the individual kernels is shown in Table 4. While all three
GPUs spend the highest amount of time in compute Y followed by compute dU
and compute U, the individual percentages vary. compute Y is computationally
the most expensive kernel followed by compute dU, and hence they are propor-
tionally the most expensive on each architecture. The initial data movement
from device to host on V100, shown in Table 4 as memcpy HtoD contributes
8.6% to the total runtime. Currently, we are unable to obtain the time spent in
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the data movement on the MI60 GPU using ROCProf, and therefore they are
absent in the table. The data movement cost on the Gen9 GPU, represented
as WriteBuffer, is much lower because of the non-discrete nature of the Gen9
GPU design. zero uarraytot only initializes Ulisttot to zero and therefore
has very low cost.

It should be noted that the percentage times for the kernels shown in Table 4
are obtained for problem size 2J14 and 100 timesteps. Reducing the number of
time steps leads to an increase in the fraction of time spent on data movement.
Similarly, reducing the problem size to 2J8 changes the order of kernel time
contribution, such that compute dU is most expensive followed by compute Y,
compute U, and compute dE. As noted previously, problem size 2J2 is too small
to obtain meaningful data for real-world applications. However, we will discuss
the roofline results for 2J2 because it highlights some interesting differences
between the three GPUs.

4.2 Roofline Analysis of TestSNAP Code

Performance on Intel Gen9 GPU. A high-level building block of Intel Gen
9 GPUs is the slice, and for an Intel Xeon Processor E3-1585 v5 with Iris Pro
Graphics P580 (GT4e), which was used in this work, contains 3 GPU slices.
Each GPU slice consists of 3 sub-slices, an L3 data cache bank, and shared local
memory. A sub-slice has 8 execution units (EUs), each containing 7 threads. Intel
processors include fast high bandwidth embedded DRAM (EDRAM) of 128 MB
into which the GPU may allocate memory.

We have used Intel® Advisor to collect the relevant metrics necessary to
generate the roofline plot and obtain the memory and compute peaks of the
Gen9 GPU. Metrics were obtained using the command shown in Listing 1.10.

Listing 1.10. Command to collect the metrics for Intel Gen9
1 advixe -cl --collect=roofline --enable -gpu -profiling --project -dir=$PRJ --

search -dir src:r=$SRC -- ./ test_snap.exe -ns 100

here, $PRJ and $SRC denote the locations of user defined project directory into
which roofline results are stored and the code source directory, respectively. The
roofline plot of TestSNAP running on the Gen9 GPU is shown in Fig. 4 for
problem sizes 2J14, 2J8, and 2J2. The numbers in Fig. 4, next to the symbol,
correspond to the kernel names shown in the legend. Of note, from the Gen9
GPU roofline plot, while indicating the performance of kernels, it is also possible
to obtain details of data flow specific to the Gen9 compute architecture. As
a rule, kernel roofline symbols should never cross the memory hierarchy peak
bandwidths for which they are measured. For the roofline shown in Fig. 4, the
roofline data is generated at the DRAM level for all three problem sizes. However,
for 2J14 problem size, the roofline symbols are placed left of the DRAM peak
bandwidth line. This indicates that the data movement is not measured across
DRAM but across the faster embedded-DRAM or eDRAM, a special feature of
the Gen9 GPU.
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Fig. 4. DRAM roofline plot on Intel Gen9. Arrows point from 2J14->2J8->2J2.
Problem sizes 2J14, 2J8, and 2J2 are represented by full, half, and open symbols,
respectively.GTI and SLM are abbreviations of “Graphics Technology Interface” and
“Shared Local Memory”, respectively. The SLM is analogous to L3 cache.

All the kernels for the 2J14 and 2J8 problem sizes are bound by the peak
bandwidth of DRAM, as indicated by the kernel symbols located close to the
DRAM bandwidth line. compute Y is located close to the elbow created between
DRAM bandwidth and DP vector FMA peaks, which represents the region sepa-
rating “compute” and “memory-bound” regions. This indicates the simultaneous
usage of the available compute and memory resources. The other three kernels
are not as close to the elbow and are “memory-bound”. Finally, based on the
location of the 2J14 and 2J8 kernels, it is observed that all kernels are “memory-
bound”. When running a smaller problem size of 2J8, less data movement is
required than 2J14, leading to higher AI for similar performance numbers, lead-
ing to a rightward shift of the kernel roofline positions. When running the small-
est problem size 2J2, the required number of FLOPs is much less than the data
moved, which leads to a large downward shift of the kernel roofline positions,
markedly demonstrating poor use of compute resources.

Performance on AMD Radeon Instinct MI60 GPU. We have used the
ROC profiling tool to obtain the metrics required for the roofline plot on AMD
MI60. ROCProf used in this work is a part of the AMD ROCm version 3.6,
which is an open-source code development platform. Unlike Intel Advisor or
NVIDIA NSight Compute, we could not obtain the FLOP count of each kernel.
Instead, we have used the instruction based roofline model [10] to evaluate the
roofline performance of TestSNAP kernels on MI60. To calculate the number of
instructions executed, we have used metrics SQ INSTS VALU and SQ INSTS SALU
to obtain the number of vector and scalar instructions issued, respectively. We
have used metrics FETCH SIZE and WRITE SIZE, to gather read and write data
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movements, respectively. These metrics are listed in the input.xml and provided
to ROCProf using the command shown in Listing 1.11. Compute and memory
bandwidth peaks were obtained from Richards, et al. [11]

Listing 1.11. Command to collect metrics for MI60
1 ROCProf -i input.xml -o roofline.csv ./ test_snap.exe -ns 100

Fig. 5. DRAM roofline plot on AMD Instinct MI60. Arrows point from 2J14->2J8-
>2J2. Problem sizes 2J14, 2J8, and 2J2 are represented by full, half, and open symbols,
respectively.

The instructions based roofline data generated using the metric collected at
the DRAM level is shown in Fig. 5. compute dU, compute U, and compute dE are
all “memory-bound”. Similar to the roofline plots discussed previously, kernel
compute Y is the most compute-intensive and, therefore, has the highest AI. It
is also close to the DRAM peak bandwidth line as well as the compute-bound
region, which indicates that compute Y is well-optimized and makes good use of
MI60 resources.

Comparing the roofline data of problem size 2J8 with 2J14, except compute Y,
all kernels retain their position on the roofline plot. This is because all the
necessary data required to run these kernels for problem sizes 2J14 and 2J8 are
bound by the DRAM bandwidth, meaning that almost all the required data is
fetched from DRAM for both cases. This leads to similar AI and performance
numbers for both 2J14 and 2J8. However, this is not the case for compute Y,
where the amount of data moved required for instructions executed is lower when
running the smaller problem size, 2J8. compute Y relies on the beta coefficients
stored in the database files, and at a smaller problem size of 2J8, a lesser number
of coefficients are used, and therefore, less data has to be moved. This is definitely
the case for all kernels at the smallest problem size 2J2, and consequently, all
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Fig. 6. DRAM roofline plot on NVIDIA Volta V100. Arrows point from 2J14->2J8-
>2J2. Problem sizes 2J14, 2J8, and 2J2 are represented by full, half, and open symbols,
respectively.

kernels shift to the “compute-bound” region. The location of the kernels for
2J2 roofline indicates poor use of AMD MI60 GPU resources but shows better
utilization at problem size 2J14 and 2J8.

Performance on NVIDIA Volta V100 GPU. The V100 belongs to the
Volta family of NVIDIA GPUs and, compared to Intel’s Gen9 and AMD’s MI60,
has been more widely adopted. Metrics necessary to generate the roofline plot
were collected using NVIDIA NSight Compute, an interactive kernel profiler.
NSight Compute functionality is supported for applications running on NVIDIA
GPUs and is provided with CUDA toolkit version 11.0. A total of 11 metrics are
collected to obtain the average elapsed time, the number of single and double
precision add, multiply, and fused multiply and add (FMA) operations. The data
movement across dram, and L2 and L1 caches is tracked for each kernel using
metrics dram bytes, lts t bytes, and l1tex t bytes, respectively. Metrics
necessary for roofline analysis are collected using Listing 1.12.

Listing 1.12. Command to collect metrics for V100
1 nv-nsight -cu-cli --metrics $metrics --csv ./ test_snap.exe -ns 100 >

metrics.log

where, $metrics refers to the metrics discussed above. Compute and memory
bandwidth peaks were also obtained from the NSight Compute toolkit.

The DRAM memory roofline of V100, for the three problem sizes, is shown in
Fig. 6. Similar to the roofline plots from other GPUs, even for V100, all kernels
are positioned in the “memory-bound” regime and are close to the DRAM peak
bandwidth line. However, it is possible to observe smaller differences between
MI60 and V100 performance. For example, the roofline of compute Y, is com-
paratively farther away from the DRAM peak bandwidth line in Fig. 6 than in
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Fig. 7. Hierarchical roofline plot on Volta V100, for problem size 2J14. L1, L2, and
DRAM performance are represented by open, half, and full symbols, respectively.

Fig. 5. Also, the AI of this kernel is lower than that on MI60. This can poten-
tially be attributed to better communication optimization of TestSNAP kernels
on MI60.

This assessment can be made by comparing roofline differences of compute Y
for problem sizes 2J14 and 2J8 on these two machines. For problem size 2J8, not
as much data has to be moved across the memory levels, which pushes compute Y
into “compute-bound” region on MI60, whereas, on V100, the kernel still stays in
“memory-bound” region. This suggests that data movement was better for this
kernel on MI60 compared to that on V100. Not surprisingly, kernels that are not
heavily reliant only on data movement sit closer to the DRAM peak bandwidth
line on V100 compared to MI60. The rooflines of kernels for problem size 2J2
are significantly different on the two machines. On MI60, all kernels are located
in the “compute-bound” region with relatively higher AI as shown in Fig. 5. In
contrast, all the kernels are located in the “memory-bound” region with poor
AI, as shown in Fig. 6. Looking at the raw metrics, we can observe that a lot
more data is moved across DRAM memory on V100 compared to MI60, and as
a consequence, the AI of 2J2 problem size is higher on MI60.

NSight Compute profiler provides an additional level of detail with the ability
to capture data transfer not only across DRAM but also across the L2 and L1
cache levels. This data movement can then be used to generate cache specific
AI numbers and plot roofline, which can pinpoint data reuse and kernel cache
level bounds. Note that the kernel performance is ultimately a minimum of the
AI obtained across all memory levels. Roofline models generated in this manner
are categorized as hierarchical rooflines.

The L1, L2, and DRAM specific, i.e., the hierarchical roofline plot of Test-
SNAP kernels, for problem size 2J14 on V100, is shown in Fig. 7. The noticeable
difference in the AI of compute Y indicates that the actual AI of this kernel is
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not greater than one, but it is approximately 0.3. The proximity of L1 and L2
roofline symbols to the L2 cache peak bandwidth line suggests that compute Y
is L2 cache bound. Similarly, except for compute U, the performance of all other
profiled kernels is L2 cache bound. For all memory levels, roofline symbols of
compute U lie below the DRAM peak bandwidth roof, and therefore, it is con-
sidered DRAM bound.

The hierarchical roofline model provides additional details regarding the use
of memory hierarchy. In Fig. 7, for compute Y, compute dU, and compute dE,
there is a large shift in their AI between DRAM and L2-L1 rooflines. This is a
sign of high data reuse and good utilization of memory hierarchy. In contrast,
the shift in AI is almost negligible between L2 and L1 cache levels, representing
poor utilization of hierarchy, which results from these kernels having to access
data from the L2 cache to perform operations. For kernel compute U, because
data has to be accessed from DRAM, there is very little shift in AI across L1, L2,
and DRAM rooflines, indicating little use of memory hierarchy. The performance
of these kernels can be improved by having a larger bandwidth L2 cache and
DRAM memory and optimizing and reducing the data movement necessary to
execute the kernels.

5 Related Work

Because of the early adoption of OpenMP directives, we were able to learn from
the experiences of Vergara Larrea, et al. [12] who used OpenMP 4.0 directives to
port codes to NVIDIA GPUs. The challenges of using OpenMP 4.5 for perfor-
mance portability has been documented in detail in work by Gayatri, et al. [13]
This study laid the groundwork for improving TestSNAP serial version using
OpenMP. From this study, it was observed that the collapse clause would be
better optimized using the column-major data storage format for 2D and higher
dimensional arrays. This early experience helped improve the overall perfor-
mance of TestSNAP on all tested GPUs. However, for the previous study, the
compiler was not as mature in supporting OpenMP offload features. This study
demonstrates performance analysis of a real-world application using a mature
compiler that is supported by two of the three major GPU architectures.

The roofline model was introduced by Williams, et al. [14] in 2009, which
made it possible for researchers to measure performance across multiple archi-
tectures objectively. Previous works, [15–17] in particular by Yang, et al. [18]
have been instrumental in developing the theory of the roofline model, tabulat-
ing the metrics, and providing a recipe to generate roofline plots. While roofline
models have been measured on all three GPU architectures separately, to the
best of our knowledge, this is the first time a single application has been analyzed
using the roofline model on three GPU architectures with no modifications to
the code. This is truly unique because it provides a common standard to measure
compiler and GPU architecture improvements.
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6 Conclusions and Future Work

In this work, we show that it was possible to create a single source code imple-
mentation of TestSNAP using OpenMP 4.5 directives, which is portable across
NVIDIA, Intel, and AMD GPUs. To our knowledge, this is the first study the
same code was run on three GPU architectures without architecture specific
modifications using OpenMP. We also show that standard GPU optimizations
such as column-major data access patterns and exploiting more performance by
collapsing loops give performance benefits across all GPUs.

TestSNAP run- and grind-times show that the NVIDIA’s V100 GPU achieved
the highest speed-up with a grind-time of 0.0282 ms/atom-step compared to the
serial grind-time of 9.797 ms/atom-step on Intel’s Skylake architecture. However,
grind-times do not show a complete picture, and this is demonstrated by the
roofline models, which show that the TestSNAP kernels are memory-bound on
all three GPU architectures. Roofline plots of Gen9, MI60, and V100 indicate
that all significant kernels are bound by the DRAM bandwidth. These kernels
are positioned in the “memory-bound” region of the roofline plot, and therefore,
performance can be improved by changing the algorithm to increase the AI. The
ability to collect additional cache level, data movement metrics using CUDA’s
NSight Compute profiler meant that hierarchical roofline models could be built
for TestSNAP on V100 GPU.

As observed from the kernel roofline symbols, the majority of the TestSNAP
kernels are “memory-bound”. Ideally, kernels should be “compute-bound” and
should be closer to the peak compute capacity line. To achieve this, we will work
towards better memory access patterns and higher data reuse, particularly for
kernel compute Y, as it has the largest time footprint. Furthermore, we will also
work towards better cache utilization to improve the overall AI of the TestSNAP
code.

7 Reproducibility

The compiler flags used to compile TestSNAP OpenMP offload on Intel Gen9,
AMD MI60, and NVIDIA V100 are provided in Listings 1.13, 1.14, and 1.15,
respectively.

Listing 1.13. Compiler flags for Intel Gen9
1 icx -O3 -fstrict -aliasing -Wno -openmp -target -Wall -Wno -unused -variable -

std=c++11 -qnextgen -fiopenmp -fopenmp -targets=spir64 *.cpp -o
test_snap.exe

Listing 1.14. Compiler flags for AMD MI60
1 clang++ -O3 -fstrict -aliasing -Wno -openmp -target -Wall -Wno -unused -

variable -std=c++11 -lm -fopenmp -fopenmp -targets=amdgcn -amd -amdhsa -
Xopenmp -target=amdgcn -amd -amdhsa -march=gfx906 -ffp -contract=fast *.
cpp -o test_snap.exe
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Listing 1.15. Compiler flags for NVIDIA V100
1 clang++ -O3 -fstrict -aliasing -Wno -openmp -target -Wall -Wno -unused -

variable -std=c++11 -lm -fopenmp -fopenmp -targets=nvptx64 -nvidia -cuda
--cuda -path=$(CUDA_PATH) -I/$(CUDA_LIB) -ffp -contract=fast *.cpp -o
test_snap.exe

8 Data Availability Statement

The results shown in this work are reproducible by downloading the code from
the git repository: https://github.com/FitSNAP/TestSNAP/tree/OpenMP4.5.
However, as mentioned previously, if the code does not compile due to regres-
sion test failure, an alternate version of the TestSNAP code without the array
of structs is available from github repository: https://github.com/namehta4/
TestSNAP/tree/mod OpenMP4.5. Both these versions have similar compute
performance [19].

Summary of the Experiments Reported

We performed roofline analysis of TestSNAP OpenMP 4.5 on Cori GPU, Iris,
and Tulip systems at NERSC, JLSE Argonne National Lab, and HPE. We used
LLVM/11, Intel ICX, and AOMP compilers for this work. The TestSNAP code
version used for this work is available at DOI: 10.6084/m9.figshare.13681816.

Artifact Availability

Software Artifact Availability: All author-created software artifacts are main-
tained in a public repository under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hardware artifacts.

Data Artifact Availability: There are no author-created data artifacts.

Proprietary Artifacts: None of the associated artifacts, author-created or other-
wise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

[breaklines=true, breakanywhere=true]
10.6084/m9.figshare.13681816

https://github.com/FitSNAP/TestSNAP/tree/OpenMP4.5
https://github.com/namehta4/TestSNAP/tree/mod_OpenMP4.5
https://github.com/namehta4/TestSNAP/tree/mod_OpenMP4.5
http://10.0.23.196/m9.figshare.13681816
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Baseline Experimental Setup, and Modifications Made for
the Paper

Relevant hardware details: Intel Gen9, AMD MI60, NVIDIA Volta V100

Compilers and versions: clang++ v11.0, Intel ICX, AOMP 11.5-1

Applications and versions: TestSNAP

Libraries and versions: OpenMP 4.5

Key algorithms: Molecular dynamics

Paper Modifications: We refactored the baseline TestSNAP code to optimize for
OpenMP offload feature. We have created C++ classes that are comprised of a
pointer to a contiguous block of memory and the information about the dimen-
sions to calculate indexes of individual elements based on the access pattern. We
also optimized loop structures and data access patterns in the application for
offloading to GPUs.

Output from scripts that gathers execution environment information

[breaklines=true, breakanywhere=true]
Details regarding baseline experimental setup, and modifications
made for the paper are available at [19].
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Abstract. Heterogeneous systems are becoming increasingly prevalent.
In order to exploit the rich compute resources of such systems, robust
programming models are needed for application developers to seamlessly
migrate legacy code from today’s systems to tomorrow’s. Over the past
decade and more, directives have been established as one of the promising
paths to tackle programmatic challenges on emerging systems. This work
focuses on applying and demonstrating OpenMP offloading directives on
five proxy applications. We observe that the performance varies widely
from one compiler to the other; a crucial aspect of our work is report-
ing best practices to application developers who use OpenMP offloading
compilers. While some issues can be worked around by the developer,
there are other issues that must be reported to the compiler vendors.
By restructuring OpenMP offloading directives, we gain an 18x speedup
for the su3 proxy application on NERSC’s Cori system when using the
Clang compiler, and a 15.7x speedup by switching max reductions to add
reductions in the laplace mini-app when using the Cray-llvm compiler
on Cori.

Keywords: Directive-based programming · Performance portability ·
Heterogeneous systems · OpenMP · GPU · NVIDIA · V100

1 Introduction

Of the 500 supercomputers on the Top500 list, a full thirty percent (150 systems)
use many-core technologies, such as NVIDIA Volta GPUs or Intel Xeon Phi
many-core co-processors [28]. This is up from 133 systems in the list one year ago.
Furthermore, seven of the top ten supercomputers on the latest list use many-
core technology. Heterogeneous architectures, those which use co-processors or
accelerators in addition to a main processor, are valued for their energy efficiency
and promise significant performance gains for applications that can make use of
c© Springer Nature Switzerland AG 2021
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them. However, programming for these platforms, and in particular, porting
existing applications to these platforms, poses a significant challenge. Scientific
programmers look forward to taking advantage of these powerful architectures
without having to learn the exact hardware details or make significant changes
to their applications, which can often exceed tens of thousands of lines of code.

Numerous programming models and tools exist for programming heteroge-
neous systems, including CUDA [21], OpenCL [13], and Kokkos [15]. Directive-
based models such as OpenACC [23] and OpenMP [24] are popular solutions, as
they offer a useful degree of abstraction over various hardware types with a uni-
fied interface, and reduce the work needed to accelerate an application, requiring
only “hints” or annotations to be added to the compiler. The OpenMP model
introduced support for offloading code (with the target directive) to accelerators,
co-processors, or many-core processors from version 4.0 (released 2013), and has
continued to add and update features through versions 4.5 (released 2015) and
5.0 (released 2018).

To understand the value of offloading support in OpenMP, we highlight the
following points from the 2018 NERSC-10 workload analysis: more than eighty
percent of the NERSC community uses OpenMP for parallel programming, mak-
ing OpenMP far and away the most widely-adopted model in use at NERSC,
and fifty-one percent of the NERSC workload is already either fully or partially
implemented on GPUs [1]. Meanwhile, the 2019 OLCF Operational Assessment
indicates that its three allocation programs all used more than 75% of their
hours spent on Summit running GPU-enabled jobs, with INCITE reaching 94%
GPU-enabled hours [22].

Knowing that heterogeneous architectures are only continuing to grow in
popularity, it is critical that users understand the status of the various vendor
compilers which support OpenMP offloading. Application developers must be
able to make an informed choice of compiler based on which particular offloading
features their application uses. Understanding cases in which identical OpenMP
directives can show highly variable performance across compilers is essential to
making such a decision. And, where compilers exhibit performance differences,
understanding the underlying reasons in the implementation for those differences
is useful not only for improving the portability of an application between com-
pilers but also for giving specific feedback to vendors about the limitations of
their existing implementations.

The main contributions of this work are as follows:

– Identify five benchmarks and proxy applications (mini-apps) which character-
ize the performance of OpenMP offloading features used by major applications
and exhibit performance differences across compilers that are of interest to
developers.

– Quantify performance differences across state-of-the-art compilers for the
benchmarks and proxy applications selected.

– Explain the observed differences in performance between implementations by
using profiling tools and performance metrics, making use of an execution
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time decomposition methodology, where needed, to quantify the impacts of
kernel launch latency and OpenMP runtime overhead.

– Make recommendations to application developers regarding the best practices
for performance portable OpenMP offloading, guided by insights into the
causes of slowdowns in kernels derived from real-world applications.

The remainder of this paper is organized as follows. In Sect. 2 we discuss related
work in compiler comparison for heterogeneous architectures. In Sect. 3 we
describe the five mini-apps selected, as well as the environment and method-
ology used to test these mini-apps. Section 4 shows the results for each of the
five mini-apps, both in terms of general performance and specific insights gained
from profiling, and Sect. 5 sets out recommendations to application develop-
ers based on the insights gained. Finally, in Sect. 6 we conclude the paper and
identify directions for future work.

2 Related Work

Several existing works narrate the use of OpenMP offloading features for many-
core processors and accelerators such as GPUs. These include performance
analysis of TeaLeaf and CloverLeaf [18], as well as LULESH [2], which uses
OpenMP 4.0. Larrea et al. [17] show preliminary lessons learned writing portable
code using OpenMP 4.0. Gayatri et al. [10] used a material science application
with OpenMP 4.5 to compare and contrast with OpenACC, showing that an
unchanged OpenMP GPU version of the code was ill-suited for CPU execu-
tion. ExaHyPE, an Exascale Hyperbolic PDE design [30] used a pragma-based
GPU parallelization approach for object-oriented code, and documented lessons
learned. Several other related works include demonstrating GPU support for
OpenMP offloading features in compilers in Flang/Clang [3,25], a proof-of-
concept implementation of offloading for FPGA based accelerators [14,26], and
an interprocedural statical analysis heuristic at runtime to select optimal grid
sizes for offloaded target team constructs [27], among others.

There are publicly available benchmark suites to evaluate heterogeneous
application performance, e.g. SPEC-ACCEL [11,12] and Rodinia [6]. The per-
formance of the SPEC-ACCEL benchmark suite was evaluated on multiple plat-
forms using multiple OpenMP offloading and OpenACC compilers by Boehm
et al. [4]. Here, the authors reported a list of compilation/runtime errors for
individual benchmarks as well as benchmark execution time, however, there was
little detail about reasons for the observed performance with different compilers.
The Rodinia benchmark suite was used to evaluate OpenMP offloading Uni-
fied Memory performance by Mishra et al. [19]. The OpenMP offloading and
OpenACC performances of four mini-apps were evaluated across platforms and
compilers by Larrea et al. [29]. Larrea et al. described the development coding
challenges, portability issues and performance, but did not go into detail about
the reasons for poor performance reported. A detailed evaluation of the overhead
of different OpenMP compilers was performed by Diaz et al. [20], however, this
had a narrow focus on the overhead of individual OpenMP constructs.
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In contrast to existing related work, this paper focuses on a set of mini-
applications, thus forming a suite of codes using two major systems: NERSC
Cori and ORNL Summit. We explore the compatibility of the mini-apps with 7
compilers including 5 OpenMP offloading, 1 OpenACC, and 1 CUDA compiler
to quantify and document performance differences across compilers and offer
recommendations to application developers for usability and best practices for
OpenMP offloading compilers.

3 Mini-apps Suite and Experimental Setup

3.1 Mini-apps Suite

The suite is made up of mini-apps chosen for their focus on offloading kernels,
diverse characteristics, and their ability to be compiled by all available compilers.
The following benchmarks and proxy applications were selected for this paper:

1. su3 [8] is a matrix-matrix multiply code using complex numbers. It is
extracted from MILC (MIMD Lattice Computation), a Lattice QCD (Quan-
tum Chromodynamics) code.

2. babelStream [7] is a memory bandwidth benchmark implemented in mul-
tiple programming models. It measures the rate of transfer to and from the
global device memory with a number of computational kernels, including dot,
add, mul, copy, and triad.

3. laplace (ported from [5]) is an implementation of an iterative Jacobi method
Laplace equation solver, which launches multiple small stencil update kernels
and uses the OpenMP reduction clause to check for convergence.

4. gpp [9] is a proxy application for the generalized plasmon-pole model from
BerkeleyGW, a many-body perturbation theory code. gpp relies on an reduc-
tion to compute its final result.

5. ToyPush (ported from [16]) is a proxy application for the electron push
phase in XGC1, a particle-in-cell simulation code for magnetically-confined
fusion plasma. It is similar to laplace in that it launches a large number of
short-running kernels.

3.2 Systems and Compilers

All results shown in this paper use NERSC’s Cori machine (GPU testbed nodes)
and the Summit supercomputer at the Oak Ridge National Laboratory (ORNL).
Table 1 shows the hardware details of these systems.

Table 2 shows the compilers tested for each mini-app, where possible. Because
PGI support for OpenMP offloading is still under development, PGI was tested
using an OpenACC equivalent implementation of each code. Note that the Clang
11 versions used on Cori are both the same in-development version. The Cray
Classic compiler (CCE 9.0.0) refers to the Cray C/C++ compiler that uses
proprietary Cray compiler technology, in Cray CCE 10.0.0 the C/C++ compilers
have been replaced with Cray enhanced LLVM and clang. This not only means
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Table 1. Overview of the Cori-GPU and Summit systems.

Cori-GPU Summit

Node architecture Cray CS-Storm 500NX IBM AC922

Node CPUs 2 × Intel Skylake 2 × IBM Power 9

Available cores per CPU 20 @ 2.40 GHz 21 @ 3.07 GHz

Node GPUs 8× 16 GB NVIDIA V100 6× 16 GB NVIDIA V100

CPU-GPU interconnect PCIe 3.0 switch NVLink 2.0

that nearly all of the compiler flags are different, but also that the performance
will be different. Table 3 shows which of our mini-apps can be compiled and
run with which compilers. A status of NI indicates that the mini-app is not
implemented in the required programming model for that compiler, while CE and
RE indicate compiler and runtime errors, respectively. LLVM’s Fortran compiler
Flang does not have complete support for OpenMP offloading features, so for
the ToyPush application (the sole Fortran app tested) LLVM results cannot be
shown.

Throughout this paper, application results are verified whenever the app runs
to completion. Each compiler was used with the most aggressive optimization
flags enabled, i.e. -Ofast (or equivalent if named differently).

Table 2. Compilers and GPU offloading methods evaluated on the Cori-GPU and
Summit systems

Compiler GPU offload Cori-GPU version Summit version

NVCC CUDA 10.2.89 –

NVIDIA/PGI OpenACC 20.4 –

Cray CCE OpenMP 10.0.0 (LLVM version) –

Cray CCE OpenMP 9.0.0 (Classic version) –

IBM XL OpenMP – 16.1.1-5

LLVM/Clang OpenMP 11.0.0-git (#17d8334) 11.0.0-git (#17d8334)

GNU/GCC OpenMP – 9.1.0

3.3 Profiling Methods and Tools

Our approach for understanding performance differences across compilers starts
from identifying where such performance differences exist. For each mini-app,
tested across all compilers it is compatible with (see Table 3), we first record a
metric of performance, which varies depending on the nature of the application.
For example, su3 has a figure of merit of GFLOPs. For more complex apps such
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Table 3. Compatibility of mini-apps with each compiler. (NI: No implementation for
required programming model; RE: Runtime Error)

Compiler su3 babelStr. laplace gpp ToyPush

NVCC (CUDA) � � NI NI NI

PGI (OpenACC) � � � � �
Cray-llvm � � � � �
Cray-classic � � � � �
XL � � � � �
Clang � � � � –

GCC � � � � RE

as ToyPush or laplace, execution time was used, while for babelStream, which
is memory-bound, we measured memory bandwidth. If the chosen metric for a
given application is relatively poor for one compiler compared to others, that
indicates this compiler is generating inefficient code.

Knowing which compilers perform poorly for a given application, we use pro-
filing tools to uncover the underlying reasons for such poor performance. The
two profiling tools used in this study are nvprof and Nsight Compute, both
NVIDIA products. nvprof is a command-line profiler for NVIDIA GPUs, which
we use to identify GPU activities and kernels that are most time intensive and
collect hardware metrics relating to memory use and instruction counts. Nsight
Compute, which has a command-line and graphical component, we use to pro-
file the kernels of an application in-depth. Nsight Compute indicates high-level
bottlenecks, creates roofline plots, and features a source analysis view which we
use to identify high-latency sections of a kernel in both the original source and
generated assembly code.

The choice of metrics to focus on for a particular application depends on
our understanding of what the application is computing, as well as the bot-
tlenecks indicated by Nsight Compute. For example, Nsight Compute tells us
babelStream’s dot kernel is latency bound when compiled with Clang, with low
compute and memory utilization. Knowing this, we use source analysis to iden-
tify which source lines have the most latency samples, confirming the impact of
the OpenMP reduction specifically. Viewing the SASS (Shader Assembly) along-
side the source can provide a deeper understanding of where latency specifically
arises, such as constant memory load instructions that appear in some codes
compiled with Cray-classic.

In other cases, there is less to be learned from the hardware metrics to gain
a deep understanding of a kernel, as the application launches many small ker-
nels rather than a few large kernels. In these cases, we expect kernel launch
latency and overhead of the OpenMP runtime to be a major cause of perfor-
mance degradation. The NVTX (NVIDIA Tools Extension) API provides a set
of CPU functions to tag parts of software for GPU profiling. With NVTX, we
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are able to wrap an OpenMP target region in an NVTX range, so that nvprof
will specifically time the region. The general form of this approach is shown in
Listing 1.1, using the code structure of the laplace mini-app (see Sect. 4.3).

1 id1 = nvtxRangeStartA("launch");

2 #pragma omp target teams distribute parallel for reduction

(..) collapse (2)

3 for (i = 1; i <= height; ++i) {

4 // stencil update ...

5 }

6 nvtxRangeEnd(id1);

Listing 1.1. NVTX range markers

The nvprof profiler then gives us an average duration of the range as well as
the average time spent on kernels and data movement in that region. Assuming
no overlap, this breakdown is made up of three parts, as shown in Eq. 1.

NV TXRangeT ime = GPUTime + CPUTime + DataMovementT ime (1)

Intuitively, this means that starting with the NVTX range total time reported
by nvprof and subtracting the average data movement and GPU kernel time
leaves us with the CPU time. This time is accounted for primarily as overhead
of the OpenMP runtime.

Note that all profiling and sampling data collected has less than 5% variation
between runs. Profiling overhead varies depending on the tool and configuration.
Nsight Compute can show 3x–20x slowdowns, while nvprof without metric col-
lection shows a minimal slowdown, around 1.1x to 1.2x from our tests. nvprof
with metric collection shows a 1.3x to 7x slowdown. All execution times shown
are measured without profiling tools.

Section 4 will show the results collected for each mini-app across compil-
ers, as well as our insights into causes for performance differences taken from
performance metrics and profiling.

4 Results

As described in Sect. 3.3, our investigation starts from identifying which applica-
tions show drastic performance differences across compilers. Figure 1 shows, for
each application version and compiler, the degree of variance in performance of
the tested compilers. The differences between versions shown for each mini-app
will be described in the following subsections. Performance for this figure is on
relative scale from zero to one, where one represents the performance of the best-
performing compiler, using the most appropriate metric for each benchmark. For
example, because babelStream is a memory bandwidth benchmark, the memory
bandwidth achieved is used as the performance metric for comparing compiler
performance, while laplace uses total execution time. The following subsections
will describe the differences between versions for each mini-app, and examine
the performance variation in detail.
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Fig. 1. Relative performance for each mini-app and compiler.

4.1 su3

The su3 mini-app is a matrix-matrix multiply code. Figure 2 shows the GFLOPs
per compiler, computed using the observed execution time based on the known
number of operations the kernel performs. The theoretical peak performance on
NVIDIA V100 GPUs based on the calculated arithmetic intensity of the kernel
is 1,270 GFLOPs.

Compared to the CUDA baseline, GCC, Clang and Cray-classic stand out as
poorly-performing, with <1%, 3% and 5% of the CUDA performance, respec-
tively. Using Nsight Compute profiling, we attribute Cray-classic performance
to small grid size, and therefore poor device utilization as well as latency issues
arising from rapid, intense use of global constant memory. Small grid size is
compensated for by increasing the number of teams using the num teams clause.
By raising the number of teams from 1200, the Clang-tuned value, to 10000,
Cray-classic reaches approximately 240 GFLOPs, or a 4.6x speedup.1 In com-
parison, the best-performing compiler (NVCC) used a grid size of 294912, and
the worst-performing compiler (GCC) used a grid size of 1600.

To further investigate Clang performance, we examine DRAM transactions
for each compiler. Data is collected using the nvprof command-line profiler.
According to the DRAM read and write transaction metrics, su3 performs excess

1 This is also a 2.03x speedup compared to the performance of the Cray-classic-chosen
default value, which is 81920 teams. Note that Cray-classic ignores num threads, as
it only considers teams and SIMD parallelism.
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Fig. 2. GFLOPs per compiler for su3-v0. Performance results are obtained on Cori-
GPU, except for “XL”, “GCC” and “Clang (Summit)” data points.

DRAM data movement when compiled with Clang, over 20x more write trans-
actions and 3x more read transactions when compared to the CUDA baseline.

Listing 1.2 shows the OpenMP construct arrangement in su3. According to
the Clang documentation, this arrangement of directives, specifically, the inter-
leaving for loop between the teams and parallel constructs, causes Clang to
choose the non-SPMD mode for code generation. To test if the use of non-SPMD
mode is responsible for elevated DRAM transactions, we modify the OpenMP
directive structure of su3, as shown in Listing 1.3. This optimized version removes
interleaving code between the teams and parallel constructs, and manually
distributes the loop iterations between teams.

1 #pragma omp target teams distribute

2 for(int i = 0; i < total_sites; ++i) {

3 #pragma omp parallel for collapse (3)

4 // 3 for loops ...

Listing 1.2. OpenMP directives in su3-v0

1 #pragma omp target teams

2 #pragma omp parallel

3 {

4 // compute istart , iend for each team ...

5 for(int i = istart; i < iend; ++i) {

6 #pragma omp for collapse (3)

7 // 3 for loops ...

Listing 1.3. OpenMP directives in su3-v1

With su3-v1’s modifications, the DRAM transactions for all compilers except
Clang remain approximately the same, while Clang DRAM transactions fall to
a level matching the other compilers. Examining the GFLOPs per compiler, as
shown in Fig. 3 for su3-v1, shows that this change to the OpenMP directives
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improves Clang performance substantially, approximately 18x.1 GCC perfor-
mance remains 2–3 orders of magnitude worse than all other compilers even with
this optimization. The Cray-classic data point did not use our tuned num teams
value, for comparison purposes.

Fig. 3. GFLOPs per compiler for su3-v1. Performance results are obtained on Cori-
GPU, except for “XL”, “GCC” and “Clang (Summit)” data points.

4.2 babelStream

The babelStream memory bandwidth benchmark uses a number of simple com-
pute kernels to test memory bandwidth, called dot, copy, add, mul, and triad.
The dot kernel is unique in that, unlike the other kernels, it uses a reduction
clause in its computation. As babelStream is a global device memory bandwidth
benchmark, we expect it to be memory-bound, reaching near-peak memory band-
width (900 GB/s). Figure 4 shows the measured memory bandwidth for the dot,
copy, and add kernels for each compiler.

The dot kernel compiled with Clang stands out in Fig. 4 as performing poorly.
GCC performance for all babelStream kernels is also relatively poor. Nsight
Compute identifies the dot kernel, when compiled with Clang, as latency-bound,
rather than bandwidth-bound as expected. Nsight Compute Warp State Analysis
points out that the kernel has stall issues, with each warp on average spending
28.7 cycles waiting on a barrier, and Source view shows that there are a large
number of barrier latency samples collected on the OpenMP directive that has
the reduction clause. Taking into account the lack of similar latency issues on
any other babelStream kernel, we infer that these barrier samples must arise due
to the introduction of the reduction clause.

1 Note that after these modifications, Clang chooses default num teams and
num threads values of 128 and 128, which do not perform as well as our tuned
values of 1600 and 64 (4.45x speedup with tuned values compared to defaults).
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Fig. 4. Fraction of peak memory bandwidth per compiler for babelStream.

4.3 laplace

The laplace mini-app has two features which we suspect to be possible perfor-
mance impediments: first, it uses a reduction clause to determine if the compu-
tation has converged, and second, it executes a large number of short-running
kernels, which would increase the impact of the OpenMP runtime overhead and
of any kernel launch latency. As described in Sect. 3.3, NVTX range markers
allow us to measure the composition of execution time for a given offloading
region, following Eq. 1. Figure 5 shows the results of this approach for each
compiler.

Cray-llvm performs poorly, due to high GPU time, while Clang and GCC also
perform poorly, due to high CPU and GPU time. This high CPU time in Clang
indicates a high overhead of the OpenMP runtime, which negatively impacts
performance. Clang GPU time is longer on Summit compared to on Cori, which
according to Nsight Compute profiling, is caused by elevated (about 10x higher)
barrier latency on the max reduction for Clang on Summit, specifically on one
move instruction compared to Clang on Cori. This is causing far more warp
stalling and thus lower compute and memory utilization.

The most significant limiter of laplace performance is the use of a max
reduction clause. Add reductions are shown in the babelStream study to be
a source of latency issues in Clang, but did not pose a problem for Cray-llvm.
To confirm that the max reduction specifically causes the high Cray-llvm GPU
Time seen in Fig. 5, we create a version of the laplace app that uses an add reduc-
tion rather than a max reduction. Rather than detecting convergence, it merely
iterates a fixed number of times, the number of iterations the max reduction
version needed to converge. Most compilers show little performance difference
between the max and add reduction versions, but Cray-llvm shows a significant
difference, a 15.7x speedup in GPU Time using add reduction version.

Profiling with Nsight Compute shows the reasons for this extreme difference
in max and add reduction performance in Cray-llvm. Source analysis indicates
that the max reduction clause has a large number of Long Scoreboard latency
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Fig. 5. Breakdown of execution time in laplace. Results are shown in seconds.

samples. Each warp of the kernel spends on average 53.6 cycles stalled waiting
for a L1TEX (global memory) operation, meaning that the kernel is using global
memory heavily. Further investigation into the assembly generated for the reduc-
tion shows the source: an atomic operation on global memory. By comparison,
the add reduction in Cray-llvm has far fewer latency samples, and no similar
atomic operation.

The difference between the max and add reduction implementations in Cray-
llvm can be further confirmed with hardware metrics. nvprof profiling finds
that the metrics atomic transactions and l2 atomic transactions are both
approximately 2740 times higher for the max reduction version compared to the
add reduction version.

Nsight Compute SASS view shows specifically that Cray-llvm uses fewer
hardware atomic-add instructions, implying the use of tuned reduction algo-
rithms, e.g. 5-stage hierarchical shuffle-based algorithms. This is not the case
for the Clang compiler, which uses a relatively large number of general purpose
compare-and-swap atomic instructions. Detailed analysis of the Clang compiler
shows a similar count of compare-and-swap atomic instructions for the max and
add reductions, implying reuse of the compiler code. The Cray-llvm compiler uses
4 orders of magnitude more atomic instructions than Cray-classic implying use
of a general purpose slower code path. Only three compilers, PGI, Cray-classic
and XL, generate an efficient max reduction according to Fig. 5.

4.4 gpp

gpp is a larger mini-app, which uses an add reduction to compute its final result.
There are two versions tested for gpp: gpp-portable, which includes the default
reduction reconfiguration described below, and gpp-naive, which removes that
reconfiguration. Measuring execution time of gpp-portable across compilers we
observe consistency across compilers, save for GCC. Examining the use of the
reduction clause in gpp-portable, we see a reconfiguration approach to miti-
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gate the impact of reduction slowdowns in some cases, which explains this gen-
erally consistent good performance. To understand the possible benefits of this
approach, consider how the reduction would usually be done (i.e., as it is in
gpp-naive), shown in a simplified form in Listing 1.4.

1 #pragma omp target teams distribute parallel for simd

collapse (2) reduction (+: sum)

2 for(/* iterate over ngpown */) {

3 for(/* iterate over num_bands */) {

4 for(/* interate over ncouls */) {

5 // compute values ...

6 sum += computed_value;

7 }

8 }

9 }

Listing 1.4. gpp-naive reduction usage

The reduction operator in gpp-naive is placed in the innermost loop, as per
usual, so that every iteration of the innermost loop adds to the reduction
variable. By comparison, gpp-portable moves the reduction operations one loop
up, after the innermost loop inside the middle loop. The innermost loop instead
sequentially stores the results of the innermost loop in a local variable, which
is only reduced after the inner loop is complete. Listing 1.5 demonstrates the
approach, simplified.

1 #pragma omp target teams distribute parallel for simd

collapse (2) reduction (+:sum)

2 for(/* iterate over ngpown */) {

3 for(/* iterate over num_bands */) {

4 double local_sum = 0.0;

5 for(/* interate over ncouls */) {

6 // compute values ...

7 local_sum += computed_value

8 }

9 sum += local_sum;

10 }

11 }

Listing 1.5. gpp-portable reduction usage

Figure 6 compares the execution time of gpp-portable and gpp-naive, and as
expected, gpp-naive is generally slower than gpp-portable. gpp-portable, com-
pared to gpp-naive, shows a 1.02x to 1.05x speedup in kernel time for the Clang,
Cray-llvm, and PGI compilers, a 13.4x speedup for Cray-classic, and a 0.88x
and 0.95x slowdown for XL and GCC (meaning the change harms GCC and
XL performance, and only slightly improves performance for other compilers
except Cray-classic). GCC is also relatively poorly-performing compared to other
compilers. The particularly poor Cray-classic performance on gpp-naive can be
attributed to elevated device memory activity, as it shows approximately 3714
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times more bytes transferred to and from device memory compared to Clang’s
version of gpp-naive.

Fig. 6. Comparing execution time of gpp-portable and gpp-naive.

4.5 ToyPush

ToyPush provides an example of a larger mini-app, taken from a real-world
application, that exemplifies the pattern shown in laplace. Like laplace, ToyPush
launches a large number of short-running kernels. Figure 7 shows the results,
using the NVTX range technique shown in Sect. 3.3. The time shown in this
figure is the total time spent on each activity type within the OpenMP offloading
region, as demarcated in Listing 1.1.

The relatively elevated CPU Time for XL and PGI corresponds with the
total time taken to execute the mini-app, as XL and PGI were the two poorest-
performing compilers by that metric. While Clang was shown in the laplace
analysis to have the highest OpenMP runtime overhead, the Flang (LLVM For-
tran) compiler is not able to compile this OpenMP offloading code and was thus
not used in our study. Even so, Fig. 7 confirms that elevated runtime overhead
impacts mini-apps derived from real-world applications, and if the future Flang
compiler has a similar high overhead as in Clang, ToyPush performance would
be expected to be poor.

Unlike laplace, total GPU time in ToyPush is consistent across compilers.
However, note that data movement time for both Cray compilers appears ele-
vated. nvprof profiling indicates that while the Cray compilers use pageable
memory, XL and PGI used pinned memory. From discussion with compiler engi-
neers, this is evidence that XL and PGI are performing a memory optimization,
copying data to pinned memory before transfer to the GPU, broken into chunks
sized to fit into pinned memory.
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Fig. 7. Breakdown of execution time in ToyPush. Results are shown in milliseconds.

5 Discussion

In this section, we summarize and discuss the results. The results in Fig. 1 show
that benchmark performance can sometimes vary by up to an order of magni-
tude across compilers. In Sect. 5.1 we will outline the main reasons for these
performance differences and in Sect. 5.2 we will give guidelines to help applica-
tion developers achieve higher performance across today’s OpenMP offloading
compilers.

5.1 Performance Issues Across Compilers

Three mini-apps/kernels were impacted by poor OpenMP reduction perfor-
mance: laplace, gpp, babelStream-dot. We find that all the compilers generate an
efficient OpenMP add reduction except for LLVM/Clang, which uses a relatively
large number of general purpose compare-and-swap atomic instructions to imple-
ment an OpenMP reduction. We also find that only PGI, Cray-classic and XL
compilers generate an efficient max reduction. The Cray-llvm implementation
uses 4 orders of magnitude more atomic instructions than Cray-classic implying
the use of a general purpose slower code path. The LLVM/Clang compiler show
a similar count of compare-and-swap atomic instructions for the max and add
reductions implying reuse of the compiler code. It is likely that Cray-llvm per-
formance will improve over time as HPE incorporates more of the optimizations
from Cray-classic into Cray-llvm. We hope to see OpenMP reduction perfor-
mance become a priority optimization in the open-source LLVM/Clang com-
piler. This is because many applications, including laplace and gpp, benefit from
high performance reductions. We also note that the Clang compiler, the only
compiler we test on both Cori and Summit, generally shows similar performance
between the two platforms.

The su3-v0 and gpp-naive mini-apps are impacted by unexpected data move-
ment between GPU device memory and GPU registers. The su3-v0 mini-app is
characterized by teams distribute and parallel for directives on separate
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loops. Our results show that the Clang compiler generated approximately 20x
more data movement than the other tested compilers. The excess data move-
ment is due to the LLVM/Clang compiler using a general purpose code gener-
ation path when OpenMP directives are split in this way. It is needed because
it is unknown whether each GPU thread will execute identical code on inde-
pendent data. Given the uncertainty, the compiler flushes memory to ensure a
consistent view of memory between successive parallel regions as well as between
the team master and the parallel threads. The other compilers do not generate
excess data movement for su3-v0 because of compiler optimization passes, e.g.
the XL compiler uses interprocedural static compiler analysis to determine that
all threads in a team execute the same code [27]. The second mini-app, gpp-
naive, sums data contributions over 4 nested loops. We find that Cray-classic
generated code has 4 orders of magnitude more device data movement than the
corresponding Clang generated code. The data movement significantly decreases
in the gpp-portable version of the mini-app, where the programmer uses extra
private variables to do a per-thread sum over the inner two loops before adding
this sum to the OpenMP reduction variable. This indicates that it is sometimes
necessary to manually exploit data reuse rather than relying on the compiler.

Finally, the Laplace mini-app is impacted by OpenMP runtime overhead for
the LLVM/Clang compiler. This mini-app uses a small problem size that makes it
sensitive to target region latency. The surprising observation is that target region
latency can be significantly larger than kernel launch latency. In the absence of
reductions, we measure 50µs target region time for the LLVM/Clang compiler
and 7–20µs target region time for the proprietary compilers. This indicates that
the management of an OpenMP device data environment is particularly high
for the LLVM/Clang compiler. CPU profiling of this overhead to determine its
cause is an area for future study.

5.2 Recommendations to Programmers

The results in the paper draw attention to some mini-apps/kernels which perform
relatively well across all tested compilers. The babelStream-triad/mul/copy/add
kernels and ToyPush mini-app perform consistently well. If we expand the list
to include mini-apps with a median performance of >0.8 relative to the best
performing compiler then it also includes babelStream-dot, gpp-portable and
gpp-naive. The characteristics of these applications include

– Minimal data movement between CPU and GPU
– Combined teams distribute parallel for constructs
– Minimal use of OpenMP reductions
– Average GPU kernel runtime > 50µs

None of the mini-apps spent a large fraction of time moving data between
CPU and GPU, however, this is often the biggest bottleneck in newly ported
applications. We found non-negligible time spent in ToyPush and identified an
interesting optimization in the PGI and XL compilers where pinned memory was
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used to efficiently transfer data between CPU and GPU. This could be important
for users who have applications more bound by CPU-GPU data movement time
than the mini-apps in our sample.

We recommend that the combined teams distribute parallel for con-
structs are used where possible. In cases where this is not possible, we draw atten-
tion to our experience with su3-v0, which has teams distribute and parallel
for on separate loops. We found two different reasons for poor performance with
the Cray-classic and LLVM/Clang compiler. The Cray-classic compiler performs
poorly because the compiler selected a poor kernel launch configuration; we were
able to improve performance by manually increasing the number of teams. The
LLVM/Clang compiler performs poorly because the compiler used a general pur-
pose code generation mode which resulted in more memory flushes.

We recommend that OpenMP reductions are used only where necessary
because we found mixed performance across compilers. In addition, max reduc-
tions sometimes perform significantly worse than add reductions. One sug-
gested method to improve reduction performance in Clang is to add the
option -fopenmp-cuda-teams-reduction-recs-num=<num>, with <num> set to
the number of loop iterations. However, in our experience this never led to more
than a 10% speedup with any mini-app. Our experience with gpp-portable and
gpp-naive is inconclusive about whether it is beneficial for the programmer to use
additional private variables to reduce thread local contributions before reducing
into OpenMP reduction variables. Using this technique we see significant per-
formance improvement for the Cray-classic compiler but results in a slow down
for the XL compiler. In general, we hope that compiler developers prioritize
the performance of OpenMP reductions because it is a frequently used parallel
pattern.

We also want to make programmers aware of OpenMP runtime overheads.
We found that Laplace mini-app performance is very sensitive to OpenMP target
region latency. The overhead is highest for the GCC and LLVM/Clang compiler.
It should be noted that OpenMP provides a huge convenience to the programmer
by enabling a single variable name to refer to data in a host and a device data
environment. The cost of this convenience is that launch latencies are higher than
using CUDA or some other lower-level API. Therefore programmers must make
sure to send sufficient work to the GPU to justify the data transfer overhead.

We specifically recommend that, at this time, programmers use the GCC
compiler primarily for correctness, not for performance. GCC was consistently
a low-end outlier in our study. We hope this is temporary as OLCF is working
with Mentor Graphics to improve the performance of OpenMP 5.0 features while
specifically focusing on GPU offloading directives.

It is common for many developers to use roofline analysis to evaluate perfor-
mance on CPU+GPU systems. We suggest that developers supplement this anal-
ysis with some additional measurements based on our experience with OpenMP
mini-apps. These measurements are DRAM read/write transactions, average ker-
nel runtime, and atomic instructions for at least 2 compilers. We have seen that
DRAM read and write transactions can sometimes be much higher for some
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compilers than for others. If one were to rely on roofline analysis only, then
it can seem like the mini-apps are achieving close to the memory bandwidth
roofline, even though this would just be artifact of excessive data movement.
We suggest that average kernel runtime should be measured to identify cases
where runtime is less than <50µs. Some compilers, e.g. LLVM/Clang, would
likely spend at least this much time in just CPU runtime overhead. In this case,
developers should look for opportunities to fuse target region code or investigate
opportunities to launch target regions asynchronously using nowait or through
multiple host threads. Finally, we suggest measuring atomic instruction latency
to understand if a compiler OpenMP reduction implementation is the reason for
poor OpenMP reduction performance.

6 Conclusions and Future Work

This paper fills a gap in the literature, comparing OpenMP offloading compilers
with multiple mini-applications derived from real-world apps and most impor-
tantly examining performance differences in detail, uncovering the specific causes
for slowdowns in implementations. We do so in a way that allows us to make
specific and useful recommendations to application developers. These recom-
mendations should allow developers to avoid common performance snags found
in the available compilers. Broadly, our findings regarding compiler performance
show that runtime overhead in compilers tends to have a bigger negative impact
on performance than architecture-specific vendor optimizations have a benefit.
Without changes in the compilers, these overheads will not go away when moving
to the next generation of GPUs or accelerators; the issues are more fundamental
to the compilers.

Future work in this area includes studying additional GPUs, such as those
produced by Intel and AMD, as well as NVIDIA Ampere (to be used in the
upcoming Perlmutter system). With the addition of these hardware platforms,
there is the opportunity to test additional compilers, such as Intel ICC and
AMD AOMP. Further, the PGI compiler will support OpenMP offloading in
the future. Beyond merely expanding coverage, a long-term goal would be cre-
ating a suite similar to the OpenMP Verification and Validation project [20],
a publicly-available, well-documented suite, with a comprehensive set of kernel-
only mini-apps extracted from real applications. This would provide application
and compiler developers a tool for understanding the performance strengths and
weaknesses of the available compilers, on various architectures, with open source
and transparent tests that anyone can run.
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Abstract. OpenACC has been highly successful in adapting legacy
CPU-only applications for modern heterogeneous computing environ-
ments equipped with GPUs, as demonstrated by many projects as well
as our previous experience. In this work, OpenACC is leveraged to trans-
form another Computational Fluid Dynamics (CFD) high order solver
FINE/FR to be GPU-eligible. On the Summit supercomputer, impres-
sive GPU speedup ranging from 6X to 80X has been achieved using up to
12,288 GPUs. Techniques critical to achieving good speedup include
aggressive reduction of data transfers between CPUs and GPUs, and
optimizations targeted at improving exposed parallelism to GPUs. We
have demonstrated that OpenACC offers an efficient, portable and easily-
maintainable approach to achieve fast turnaround time for high-fidelity
industrial simulations.

Keywords: Heterogeneous computing · OpenACC · Computational
Fluid Dynamics

1 Introduction

Heterogeneous architectures that encompass both CPUs and accelerators have
become increasingly popular in the HPC community. One decade ago in 2010,
only 9 supercomputers in the Top 500 list were equipped with accelerators, but
the number has since grown fast, reaching 90 in 2015 and 144 in the latest June
2020 Top 500 list [1]. While various accelerators exist to accommodate different
needs, such as Graphical Processing Unit (GPU), Intel Xeon Phi coprocessor
and Tensor Processing Unit (TPU) etc., the best performing supercomputers
tend to rely heavily on GPUs. In fact, it is the computing power from GPUs
that makes exa-scale computing within reach in a manner that is economically
viable and energy friendly.

To take advantage of GPUs, it is inevitable to adapt existing CPU-only appli-
cations. Since most legacy applications have been developed for a long time with
rich features, it is often not practical to rewrite them in GPU-native languages,
c© Springer Nature Switzerland AG 2021
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such as CUDA. On the other hand, OpenACC serves as a useful tool in porting
the codes to a variety of heterogeneous systems. As a high-level directives-based
programming model, OpenACC successfully helped us adapt a computational
fluid dynamics (CFD) codes FINE/TURBO (which specializes in turbomachin-
ery simulations) to be GPU-eligible, and on the Titan supercomputer at the Oak
Ridge National Lab (ORNL) a 2X+ GPU speedup in time-to-solution has been
demonstrated with a real-world example [4].

While a 2X+ GPU speedup was satisfactory in 2015, the growing interest
from the CFD community to complete high-fidelity fluid simulations with less
turnaround time has called for more aggressive GPU performance. In this paper,
we present recent efforts to leverage OpenACC in achieving 6X to 80X GPU
speedup on the Summit supercomputer, using up to 12,288 GPUs. In Sect. 2,
we give a brief introduction of the CFD flow solver FINE/FR used for GPU
adaptation. Then in Sect. 3, we discuss in detail the techniques leading to the
favorable GPU performance, including reduction of data transfers between CPU
and GPU, and targeted optimizations that increase the degree of exposed paral-
lelism to GPUs. Strong scalability performance on Summit is presented in Sect. 4
before we conclude the work.

2 The FINE/FR CFD Solver

2.1 Programming Model of FINE/FR

Based on the high order flux-reconstruction (FR) method [5], FINE/FR uses
compact computational stencils where the dense mathematical calculations are
highly parallelizable. Such workload is well suited for GPUs as they offer signif-
icantly more hardware threads to carry out computing with high throughput.
On the CPU side, FINE/FR uses a distributed-memory parallel MPI program-
ming model, where the unstructured grids employed are statically partitioned
via ParMETIS [6]. By formulation, FR method offers a high degree of accuracy
in resolving fine-scale motions compared to conventional Reynolds-Averaged
Navier-Stokes (RANS) solutions. As demonstrated by Fig. 1, the shock wave
boundary layer interaction (SWBLI) [7], a phenomenon critical in the study of
compressor stall mechanisms, is highly visible in the high order simulation in the
form of lambda shocks on the upper blade surface. The bulk of the execution
time is spent on the Runge-Kutta iteration loop, which contains multiple calls to
BLAS matrix-matrix multiplication routines, and dozens of additional correction
and calculation routines. Written in C++11 standard, FINE/FR uses object-
oriented programming throughout the code, and in the core solver algorithms
templatization is extensively used. Both the polymorphism and templatization
pose some challenges to a neat OpenACC implementation (see discussions in
Sect. 5), but good GPU speedup is not negatively affected.

2.2 Considerations for GPU Execution

Since FINE/FR is based on a legacy NUMECA framework, it is prohibitively
expensive in terms of developer-hours to drastically change the underlying code
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Fig. 1. Relative Mach number at (a) 50% of the blade span and (b) 95% of the
blade span using the conventional RANS solution. (c) Instantaneous density snapshot
using FINE/FR at polynomial order 4, where shock wave boundary layer interaction
(SWBLI) in the form of the lambda-shock can be seen on the upper blade surface

structures. Yet it is useful to list a few considerations for efficient GPU executions
of the FINE/FR codes.

– Linearized “flat” arrays favor data transfers: Multiple pointer indirections
were natively used in FINE/FR to access array elements, and such usage
is supported since OpenACC 2.0. However, current OpenACC implementa-
tion transfers each guaranteed-contiguous chunk of memory separately, which
can then result in many transfers whose overheads negatively impact the
performance. We have replaced multiple pointer indirections by a linearized
“flat” array class which stores the data contiguously in memory. Moreover, as
explained in Sect. 3.2, this array class has flags that track the last modified
location of the data (CPU or GPU), thus reducing data transfers substan-
tially.

– Sufficient workload and exposed parallelism: As GPUs become more powerful,
it is important to saturate GPUs with sufficient workload to obtain significant
speedup. While humongous deep learning workloads are a good candidate, we
are fortunate that kernels in high-order FR methods usually have plenty of
dense math to fully load GPUs too, especially at higher polynomial orders.
However, at larger MPI process count, the number of cells/elements in a
given partition becomes small and the amount of parallelism exposed to the
GPUs is limited. Therefore, GPU speedup inevitably declines at higher MPI
process count, and in fact GPU execution may no longer be cost-effective if
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the exposed parallelism is too low to outweigh the overheads. Approaches to
increase the exposed parallelism are discussed in Sect. 3.3.

3 Acceleration with OpenACC

Using OpenACC to adapt and accelerate FINE/FR for GPU execution is a nat-
ural choice because it does not require a rewriting of the solver in a low-level
GPU language, and we had positive experience in adapting another legacy flow
solver with OpenACC before [4]. Moreover, OpenACC offers good portability
which allows us to conduct rapid code development on local workstations with
Intel X86 architectures, and then directly ship the codes to the Summit super-
computer with IBM POWER architecture for scalability tests and production
runs. Table 1 shows the system specifications used in this study. In this section,
we show various optimizations with performance timed on the local workstation,
and in Sect. 4, scalability performance on Summit is presented.

Table 1. System specifications for OpenACC development and large-scale testing

System Local workstation Summit supercomputer

CPU/Host 8 core AMD EPYC 42 core IBM POWER9 node

GPU/Device 1 Nvidia P6000 6 Nvidia V100 per node

PGI compiler 19.4 19.9

MPI library OpenMPI 2.1.6 Spectrum MPI, 10.2.1.2

3.1 Incremental Acceleration of the Most Time-Consuming
Routines

Generally, it is intuitive to identify the most time-consuming routines and look
for opportunities for GPU acceleration. Figure 2 shows a representative stack
trace of FINE/FR, using the low-overhead, sample-based profiler HPCToolkit
[2]. As noted before, the time marching loop, composed of successive Runge-
Kutta iteration steps, constitutes the bulk computation time. The most time-
consuming routines were found to be BLAS calls for matrix-matrix multiplica-
tion and some thread-safe user routines, both of which are amenable to GPU
acceleration via OpenACC. As a first step of acceleration, the following were
implemented:

– Replace all BLAS calls with CuBLAS, the CUDA counterpart. Similar
changes can be made for non-Nvidia architectures, such as AMD GPUs.

– Instrument remaining user routines (3D loops) with OpenACC pragmas for
parallel execution. Minor code changes were necessary to avoid race condi-
tions, for example, by using private variables properly.
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– Offload static data such as coordinates and constants to the GPU persistently
at the beginning of the program, so that they are readily available on GPUs
whenever needed.

– To ensure correct results, all input and output data for each GPU-eligible
routine are forced to synchronize in a conservative manner.

The first set of optimizations leads to a 1.5X GPU speedup on the local work-
station, and Fig. 3 shows the updated resulting stack trace. It is clear that the
time-consuming BLAS calls in the CPU run become negligible after using the
CuBLAS counterpart, but numerous data transfers between CPUs and GPUs
(i.e. between host and device) now dominate the execution time. In fact the
amount of data transfers is excessively high due to the conservative approach of
data synchronization, which always ensures that data on the host is the most
up-to-date. Such an approach is useful to retain correct results when the code
undergoes active development, but incurs huge waste for production runs. One
alternative is to tailor-code for a particular application where unnecessary data
transfers are eliminated and essential host-device communication is overlapped
with computations using asynchronous queues. However the lack of generality
prevents tailor-coded executables from handling various industrial settings, and
would eventually demand continued investment of development efforts. As a
result, a systematic and robust solution to minimize the data transfers with low
maintenance cost is necessary.

Fig. 2. Stack trace of the CPU-only execution of FINE/FR
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Fig. 3. Stack trace of the CPU+GPU execution of FINE/FR, after the first round of
incremental optimization described in Sect. 3.1

3.2 Minimization of Data Transfer

The solution to excessive data transfers between host and device is the location-
aware arrays. Essentially all major data arrays are wrapped in a container class,
which, in addition to holding the linearized array data and host/device update
methods, contains a “last modified” flag indicating where the array was last
updated. We illustrate the usage in an example as follows.

As frame (a) of Fig. 4 shows, the conditional data synchronization between
the host and device only occurs when the current access location differs from
the saved last accessed location, for the particular array concerned. To ensure
coherent data access, in the actual programming shown in frame (b) of Fig. 4,
it is the developer’s responsibility to flag the input and output arrays to GPU-
eligible routines, using “sync” and “setLastAccess” calls (see “doubleValues”
in the example). In this way, developers can focus on the algorithmic details
of a particular routine while data transfers are automatically minimized. For
example, the “doubleValues” routine is GPU-eligible but the “addValue” call
is forced to run on the host. As a result, data transfers have to occur under
the hood. However, should the “addValue” routine be made GPU-eligible, the
approach demonstrated would completely avoid data transfers between host and
device for the “addValue” call.

Since “sync” and “setLastAccess” calls are prevalent throughout the code,
they are referred to as the “GPU boilerplate”. The main advantage of “GPU
boilerplate” is that through its consistent usage, developers are allowed to follow
a “blind incremental acceleration” approach. In other words, as long as the GPU
boilerplate is well in place, developers can simply tackle the most time-consuming
routines one after another, and an efficient implementation with minimized data
transfers would naturally follow. Moreover, new functionalities may be reliably
introduced to the host-side codes, with less risk of breaking the data management
in a heterogeneous workflow. Yet, it should be stressed that usage of GPU boil-
erplate must be mandatory for this approach to work. Moreover, existing data
structures, especially Arrays of Structures (AoS), can be difficult to retrofit. We
also note that other established framework exists [3] to automatically mange the
issue of data locality.
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Fig. 4. Code sample demonstrating strategies to minimize data transfer

Performance-wise, Fig. 5 confirms that minimized data transfer has signif-
icantly improved the GPU performance, leading to a 5.1X speedup compared
to the CPU-only execution. In fact, the “GPU boilerplate” has reached a point
where all bulk 3D data remain on the device and only 2D data along the partition
boundaries needs to be transferred over MPI. Profiling shows that the time to
stage the relatively small partition data is too little to warrant further optimiza-
tion in data transfers, such as GPUDirect and Remote Direct Memory Access.
Nevertheless, updated profiling pointed to a handful of routines with poor device
performance, which motivated the continued optimization to increase the paral-
lelism exposed to the GPUs as discussed in Sect. 3.3.

3.3 Optimization to Increase Exposed Parallelism

The high-order FR method routinely goes through a pattern of nested loops,
where the outer one loops over element faces and the inner one loops over all
the points per face. For unstructured grids, the number of points per face varies
depending on the element type and the solution order. For example, Fig. 6
shows that the number of flux points is 12 for a quad element, while it is 9
for a triangular element. In the original CPU-only implementation as shown in
frame (a) of Fig. 7, the code strictly follows the workflow, and a naive OpenACC
adaptation would only parallelize the outer loop, leaving the inner loop sequential
thus limiting the degree of parallelism exposed to the GPUs.



54 X. M. S. Zhai et al.

Fig. 5. Comparisons of stack trace in (from top to bottom) CPU-only run; CPU+GPU
run, including incremental optimizations and minimized data transfers; CPU+GPU
run, fully optimized with increased degree of exposed parallelism

Fig. 6. Demonstration of solution points and flux points on the side of a quad and a
trianglular element

Usually when the partition size is sufficiently large, each MPI process contains
enough number of faces to saturate the GPUs with computations. However,
limited exposed parallelism becomes an issue when the partition size is too small
(at a large MPI process count), or when too few elements are treated, such as
the boundary data. It turns out that collapsing the loops offers a solution to this
problem. Frame (b) of Fig. 7 shows the refactored loops in a tightly nested form,
where the upperbound of the inner loop is replaced by the maximum value for all
iterations. The degree of exposed parallelism can increase by about one order of
magnitude at the cost of some threads branching idle. Luckily there is no thread
divergence issue involved, and the test on the local workstation showed a 9.5X
GPU speedup compared to the CPU-only run (see Fig. 5). More detailed tuning
of gang/vector parameters for the parallel loops may yield further improved
performance, but the optimal parameters are likely problem-dependent. As a
result, to avoid reducing portability the default parameters set by the compiler
have been used.
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Fig. 7. Code refactoring with loop collapse for improved exposed parallelism

4 Scalability of FINE/FR on Summit

The Summit supercomputer represents the state of the art heterogeneous com-
puting architecture in the HPC community, and we are granted access through
the INCITE project. Each Summit node contains 42 usable IBM POWER9 CPU
cores and 6 Nvidia V100 GPUs, and applications can spawn MPI processes occu-
pying all the 42 CPU cores per node. However as noted before, a large MPI
process count gives a small partition size, which may limit the degree of paral-
lelism exposed to the GPUs at scale. Moreover, mapping more than one CPUs
per GPU, as managed by CUDA MPS server, may potentially lead to traffic
congestion when all data transfers occur at the same time. As a result, Table 2
shows the strong scalability performance of the optimized FINE/FR solver on
Summit where one GPU is only paired with one CPU (i.e. NbCPU = NbGPU) to
maximize the partition size at large node count. Effectively it means that while
GPU runs utilize all 6 GPUs per node in the GPU runs, the CPU runs only use
6 CPUs out of all the available cores as a compromise. A high resolution 8M
cells mesh is used in the test with an order 3 polynomial flux reconstruction,
and the effective degree of freedom is 8 × 106 × 43 ≈ 5 × 108.

Table 2. Strong scalability using a 8 × 106 cells mesh at order 3 (5 × 108 DoF)

NbNodes NbCPU &

NbGPU

Time (s)

CPU

Time (s)

CPU+GPU

GPU

speedup

NbCell/Partition NbDoF/Partition

8 48 226.00 2.75 82.18 166667 10666667

16 96 117.56 1.54 76.34 83333 5333333

32 192 59.78 0.86 69.51 41667 2666667

64 384 30.59 0.58 52.74 20833 1333333

128 768 15.94 0.47 33.91 10417 666667

256 1536 7.76 0.29 26.76 5208 333333

512 3072 3.57 0.17 20.99 2604 166667

1024 6144 2.15 0.18 11.94 1302 83333

2048 12288 1.00 0.16 6.25 651 41667

The near linear scalability for the CPU-only run through the sweep reflects
a well-parallelized and streamlined CPU implementation of FINE/FR and the
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underlying framework. The GPU implementation attains impressive speedup
ranging from 6X+ to 80X+, which not only confirms that performance tuned
on the local workstation is easily portable to another system, but also demon-
strates the quality of the GPU optimizations. However the GPU runs see a
gradual deviation from linear scalability accompanied with a reduction of GPU
speedup. As shown by the “number of cells per partition” (NbCell/Partition)
column in Table 2, the substantial decrease of partition size is responsible for
the performance loss as the computational intensity becomes too low to saturate
the GPUs. Runs with higher orders on larger meshes can increase the amount of
math available to the GPUs, and relax the issue. Continued development work of
further code refactoring to expose more parallelism to the device is undertaken.

The 80X+ GPU speedup needs to be interpreted with some caution. For CPU
runs, it appears the Intel MKL library is highly optimized for BLAS calculations
than the math library available on Summit. While for GPU runs, the CuBLAS
routines give optimal performance on the Nvidia V100 cards. Therefore, the GPU
speedup on Summit may not act as a perfectly fair performance comparison, and
it would be interesting to revisit the GPU speedup on another supercomputer
equipped with a well-tuned Intel MKL library.

5 Discussions and Conclusions

In this work, we have demonstrated the successful adaptation of FINE/FR, a
Flux-Reconstruction based CFD high order solver for heterogeneous CPU/GPU
architectures using OpenACC. A highlight of the present work is the use of
location-aware arrays, which tracks the location where the array is last accessed.
We showed that by consistently adding the “GPU boilerplate”, the developers
could worry less about the data synchronization between CPUs and GPUs, and
focus more on introducing new features and “blindly” optimizing existing bot-
tlenecks one by one. We also showed that increasing the exposed parallelism
to GPUs added a 2X boost in parallel performance. It is encouraging to note
the 9.5X GPU speedup obtained from incremental optimizations on the local
workstation seamlessly translates to impressive speedup on the state of the art
supercomputer, which has different CPU architectures and GPU cards, thus
demonstrating the nice performance portability of OpenACC. At scale FINE/FR
computations using 48 to 12,288 GPUs show favorable speedup in the range of
80X to 6X, and we stress that sufficient computation capable of saturating the
GPUs is key to achieving superior GPU performance. It is worth noting that
only one version of codes and executable is maintained, and overall the CPU-
only execution sees neglible performance impact by the optimization.

OpenACC and the supporting PGI compiler remain actively evolving tech-
nologies, and occasionally we have to work around features that are currently
not supported. For example, virtual functions and vectors in C++ had to be
replaced by non-virtual ones and C-style arrays, and somewhat duplicated codes
annotated by OpenACC had to exist for templated classes. Ease of use will
certainly improve as OpenACC becomes more mature.
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Abstract. A linear solver algorithm used by a large-scale unstructured-
grid computational fluid dynamics application is examined for a broad
range of familiar and emerging architectures. Efficient implementation of
a linear solver is challenging on recent CPUs offering vector architectures.
Vector loads and stores are essential to effectively utilize available mem-
ory bandwidth on CPUs, and maintaining performance across different
CPUs can be difficult in the face of varying vector lengths offered by
each. A similar challenge occurs on GPU architectures, where it is essen-
tial to have coalesced memory accesses to utilize memory bandwidth
effectively. In this work, we demonstrate that restructuring a computa-
tion, and possibly data layout, with regard to architecture is essential to
achieve optimal performance by establishing a performance benchmark
for each target architecture in a low level language such as vector intrin-
sics or CUDA. In doing so, we demonstrate how a linear solver kernel can
be mapped to IntelR© XeonTM and Xeon PhiTM, MarvellR© ThunderX2R©,
NECR© SX-AuroraTM TSUBASA Vector Engine, and NVIDIAR© and
AMDR© GPUs. We further demonstrate that the required code restruc-
turing can be achieved in higher level programming environments such
as OpenACC, OCCA, and IntelR© OneAPITM/SYCL, and that each gen-
erally results in optimal performance on the target architecture. Relative
performance metrics for all implementations are shown, and subjective
ratings for ease of implementation and optimization are suggested.

Keywords: Programming models · Performance portability ·
Emerging architecture · CFD · HPC · CUDA · OpenACC · OCCA ·
AVX-512 intrinsics · Neon intrinsics · Arm · GPU · V100 · A100 ·
MI50 · Xeon Phi · SX-Aurora · ThunderX2

1 Introduction

A diverse array of new hardware architectures continues to emerge across the
High Performance Computing (HPC) landscape. The application developer is
faced with the considerable challenge of providing near-optimal performance
across these systems. This goal requires a detailed understanding of each target

c© Springer Nature Switzerland AG 2021
S. Bhalachandra et al. (Eds.): WACCPD 2020, LNCS 12655, pp. 61–79, 2021.
https://doi.org/10.1007/978-3-030-74224-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74224-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-74224-9_4


62 A. C. Walden et al.

architecture and some means to accommodate specific data layouts and algo-
rithm implementations that map appropriately. Ideally, this would be achieved
in a unified code base that is easily maintained. In this vein, a number of general
portability approaches have recently been introduced that attempt to insulate
the application developer from intricate details of the underlying hardware, yet
still provide near-optimal performance on each. Unfortunately, some applica-
tions can require significant restructuring to achieve optimal performance on a
particular system, which can be challenging to automate using general abstrac-
tions and run-time environments. In such cases, the developer may be required
to address the needs of the underlying architecture at the application level.

The work reported here describes an ongoing effort to explore performance
portability issues for the FUN3D computational fluid dynamics solver main-
tained at the NASA Langley Research Center [7]. FUN3D solves the Navier-
Stokes (NS) equations, a system of highly nonlinear, tightly-coupled time-
dependent partial differential equations. FUN3D is routinely used for a broad
range of aerodynamics applications across the speed range, on both conven-
tional x86-based systems [20], as well as GPU-based systems such as Summit
at Oak Ridge National Laboratory (ORNL) [14]. FUN3D uses an implicit time-
integration strategy with a node-based, finite-volume spatial discretization on
general mixed-element unstructured grids. An approximate nearest-neighbor lin-
earization of the discrete residual equations within each control volume gives rise
to a large tightly-coupled system of block-sparse linear equations that must be
solved at each time step. The block size is determined by the number of govern-
ing equations and may range from five to several dozen. To facilitate a practical
investigation of the broad array of potential performance portability issues, the
scope of the current effort is limited to optimization of the linear solver ker-
nel used within FUN3D. The study is carried out across several familiar and
emerging HPC architectures using a wide range of available programming mod-
els. While this study focuses on motifs related to linear algebra, parallel efforts
aimed at unstructured-grid traversals with complex gather-scatter operations
supporting flux and Jacobian construction are also ongoing but are beyond the
current scope.

The block-sparse linear solver used here is memory-bound with a low arith-
metic intensity. In such cases, it is critical to understand the increasingly com-
plex memory hierarchies of today’s advanced architectures and how memory
bandwidth and potential reuse of computations can be effectively leveraged. For
example, in the case of an NVIDIA R© GPU, it is important to understand how
to accommodate the application data layout and to restructure the solver algo-
rithm to utilize the registers, shared memory, L1 and L2 caches, and DRAM
effectively.

The dominant computation in the linear solver used here is a block-sparse
matrix-vector product; for a broad range of applications encountered in practice,
5 × 5 blocks are common. The off-diagonal matrix coefficients are stored in a
compressed sparse row (CSR) format [25], where two integer arrays capture the
sparsity pattern of the nonzero blocks in the matrix. The nonzero blocks in a
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row are stored contiguously in memory, and the scalar entries within a block are
stored in column-major order.

Efficient processing of such a matrix is challenging on recent CPUs offering
vector architectures. Vector loads and stores are essential to effectively utilize
available memory bandwidth on CPUs, and maintaining performance across dif-
ferent CPUs can be difficult in the face of varying vector lengths offered by each.
For a sparse matrix with relatively large block sizes, it is reasonably straightfor-
ward to leverage vector loads and stores. For smaller block sizes, the computation
calls for a restructuring based on the available vector length. For example, if the
processor supports a vector length of 32 floating-point numbers, it is desirable
to map a full dense block to a vector and organize the computation to work
with this mapping. Alternatively, a CPU offering a vector length of 4 floating-
point numbers may demand the mapping of a partial column of a dense block
to a vector. For vector engines where the vector length may be large, say 256
elements, the data layout itself may require a substantial restructuring, leading
to performance portability issues arising from different data layout requirements
across architectures.

A similar challenge occurs on GPU architectures, where it is essential to
have coalesced memory accesses to utilize memory bandwidth effectively. Mod-
ern GPUs support the Single Instruction Multiple Thread (SIMT) model, with
a group of threads referred to as a warp (or wavefront). The dimension of this
thread group can vary from one GPU to another, and the group must pro-
cess consecutive memory locations to achieve coalesced memory accesses. This
requires mapping the warp (or wavefront) to one or more blocks of a sparse
matrix and restructuring the computation accordingly. In summary, restructur-
ing the computation is essential, and in some cases, modifications to the under-
lying data layout may even be required.

The goal of this project is to assess the performance and portability of a
wide variety of programming frameworks when applied to a production-scale
CFD simulation code. The current work advances that goal in two ways. First,
it attempts to establish, for both familiar and nascent HPC architectures, an
optimal performance benchmark. In doing so, we demonstrate how a linear
solver kernel can be mapped to Intel R© XeonTM and Xeon PhiTM, Marvell R©

ThunderX2 R©, NEC R© SX-AuroraTM TSUBASA Vector Engine, and NVIDIA R©

and AMD R© GPUs. Second, this effort explores the ability of different program-
ming frameworks to achieve the performance established by the benchmark for
a subset of the target architectures.

2 Algorithm

For a spatial mesh containing n grid vertices, the implicit approach used within
FUN3D requires frequent solutions of a large n × n linear system of equations
of the form AΔQ = R, where R represents the vector of discrete residual equa-
tions, A is an n × n block-sparse matrix composed of dense nb × nb blocks, and
ΔQ is the vector of unknowns required to advance the nonlinear solution Qk
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Algorithm 1 Multicolor Linear Solver

1: ΔQ = 0
2: for i ← 1 to niter do
3: for c ← 1 to nc do
4: Δr ← Rc − OcΔQ
5: ΔQc ← D−1

c Δr
6: end for
7: end for

at time-level k to k + 1. The coefficient matrix A is based on a strictly nearest-
neighbor stencil. To provide flexibility in the implementation, A is segregated
into diagonal and off-diagonal components stored separately, namely

A ≡ D + O (1)

where D and O represent the diagonal and off-diagonal blocks of A, respectively.
The implementation in FUN3D uses 32-bit precision for O and ΔQ, while 64-bit
precision is used for D and R.

The block-sparse n × n matrix O contains nnz nonzero nb × nb blocks that
are stored using a compressed sparse row (CSR) format [25]. Each of the n
rows and columns containing nb × nb blocks are referred to as a brow and a
bcol, respectively. Two integer arrays ia and ja are used to efficiently capture
the sparsity pattern of the matrix. The array ia is a rank-1 array of size n + 1
whose i-th entry indicates the leading nonzero block index in the i-th brow of O.
The array includes a fictitious n + 1 entry to facilitate traversal of the elements
through the n-th brow. The ja array is a rank-1 array of size nnz that provides
the bcol index for each nonzero block. A third array is used to store the block
entries proceeding from ia(1) to ia(n + 1) − 1, where the scalar entries within
each nb × nb block are stored in column-major order.

Several linear-solver options are provided within FUN3D; the scheme most
commonly used in practice is the multicolor point-implicit relaxation shown in
Algorithm 1 [27,28]. In this approach, the grid vertices are grouped into nc color
groups, such that no two adjacent vertices are assigned the same color. Typical
values of nc for meshes encountered in practice are 10–15. Since the matrix A
involves only a nearest-neighbor stencil, unknowns within a color may be updated
in parallel in a Jacobi-like fashion. Color groups are processed sequentially, where
solution updates within each color depend solely on the latest values of ΔQ
in neighboring color groups. The overall process may be repeated using niter

sweeps over the entire system; a value of 15 is often observed to result in suitable
convergence of the nonlinear solution.

To improve cache performance, the system of equations is renumbered such
that unknowns within a color appear in consecutive order. In Algorithm 1, Oc

and Dc represent submatrices of O and D, respectively, for the unknowns con-
tained in color c. Rc represents the nonlinear residual subvector defined by
unknowns belonging to color c. Line 4 of Algorithm 1 represents a standard block-
sparse matrix-vector product. Line 5 requires an inversion of each nb×nb block of
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the matrix Dc. Here, a lower-upper (LU) decomposition of these blocks is com-
puted beforehand and stored in place. The solution for the current block row is
then obtained through a forward-backward substitution procedure. Throughout
this work, the terms block row and row are used interchangeably, both referring
to a matrix row of 5 × 5 dense blocks.

In addition to the shared-memory programming models to be presented
here, the solver also accommodates an MPI message-passing approach using
a standard domain-decomposition strategy for architectures with multiple sock-
ets and/or multiple NUMA domains, as well as general multi-node, distributed-
memory environments necessary for large-scale simulations. To recover the serial
algorithm when using this approach, halo exchanges of partition boundary data
are required at the completion of each color group before processing of the next
color may proceed. To hide communication latencies associated with these halo
exchanges each color group is further subdivided into values along partition
boundaries and those remaining values lying entirely interior to the partition.
When processing the unknowns within a color group, values along partition
boundaries are determined first, then nonblocking MPI calls are used to initiate
halo exchanges with neighboring partitions. Values interior to the partition are
then evaluated while halo values are in flight. At the completion of the current
color, each process waits for communication to complete prior to initiating the
next color.

3 Architectures

Table 1 summarizes the relevant characteristics of the target architectures
detailed in this section. Only characteristics relevant to the current study, which
focuses on memory performance, are shown.

Table 1. Relevant characteristics of target architectures. NUMA Domains Used is
the number of domains used (if configurable) to obtain optimal performance in this
study. Cores refers to physical CPU cores, streaming multiprocessors, or compute units.
SP refers to the single-precision (32-bit) vector length. Peak Bandwidth refers to the
theoretical, as opposed to measured, peak.

SKL KNL TX2 VE V100 A100 MI50

NUMA Domains Used 2 1 2 2 1 1 1

Cores 40 64 56 8 80 128 60

Vector/Warp Length, SP 16 16 4 512 32 32 64

Peak Bandwidth, GB/s 256 485 318 1220 900 1600 1024
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SKL. Intel R© XeonTM Gold 6148 (SKL) is a dual-socket CPU with 20 physical
cores per socket and 2 threads per core. Its theoretical peak aggregate memory
bandwidth is 256 GB/s. It has two vector units per core with 512-bit SIMD
registers that support most AVX-512 instructions.

KNL. Intel R© Xeon PhiTM Knights Landing (KNL) is a family of manycore x86
processors equipped with up to 72 low-frequency cores each with four hardware
threads, two 512-bit vector units per core, and up to 16 GB of configurable high-
bandwidth (at least 485 GB/s) 3D-stacked MCDRAM. The KNL 7230 used in
this study has 64 cores. All results are run in flat mode, where MCDRAM is
exposed as a NUMA domain, as our test case requires less than 16 GB of memory.

TX2. The Marvell R© ThunderX2 R© (TX2) used in this study is a dual-socket
processor with 28 cores per socket. The theoretical peak memory bandwidth for
a dual-socket system is 318 GB/s. STREAM Triad results [26] suggest that the
maximum bandwidth achievable on the system is approximately 240 GB/s, or
roughly 120 GB/s for each NUMA node. The TX2 in the current study was
of unknown SKU, and STREAM Triad results were at best 201 GB/s. The
system can be configured to use up to four-way SMT; however, the system was
configured for two-way SMT for the testing considered here.

VE. The NEC R© SX-AuroraTM TSUBASA Vector Engine (VE) is a floating
point coprocessor that interfaces with an x86 host through PCIe. Legacy CPU
code can be compiled by the NEC R© compiler and run through a seamless offload-
ing process that does not require explicit data transfer between the host and
coprocessor. Thus, legacy applications are ported and run with minimal effort.
The VE is a long vector architecture with a 256 × 8-byte vector length, an order
of magnitude beyond even the most recent AVX-512-equipped CPUs. Each VE
has eight out-of-order 1.6 GHz cores and up to 48 GB of second generation High
Bandwidth Memory (HBM2) with a theoretical peak aggregate memory band-
width of 1.22 TB/s. The VE has a NUMA mode [19] that partitions its cores into
two sets of four which share equal amounts of the last level cache and memory,
decreasing cache conflicts. All results in the current study use this mode, which
improves performance by a small amount (∼1%).

V100 and A100. NVIDIA R© TeslaTM V100 and A100 are the previous and
current (as of this writing) generation of NVIDIA R© TeslaTM GPUs. They are
equipped with 16–32 and 40 GB of HBM2 memory with approximately 900 and
1600 GB/s of theoretical peak memory bandwidth, respectively. NVIDIA R© GPU
hardware leverages a SIMT approach distributed across a number of streaming
multiprocessors (SMs), which in turn consist of multiple cores. Threads are orga-
nized in blocks, or cooperative thread arrays, where one or more blocks run on an
SM. The threads in a block are further partitioned into subgroups of 32 threads
known as warps. A warp runs on eight or sixteen cores of an SM in multiple



Performance and Portability of a Linear Solver 67

clock cycles. The NVIDIA R© GPUs used in the current study are of the SXM2
variant.

MI50. AMD R© RadeonTM InstinctTM GPUs, which will comprise the ORNL
exascale Frontier system [24], are based on the Vega architecture and there
are several models currently available, including the MI50 used in this study,
MI25, and MI60. The MI50 has 60 compute units with 64 stream processors per
compute unit for a total of 3,840 stream processors [4]. It has 16 GB of HBM2
memory with a theoretical peak memory bandwidth of 1,024 GB/s. From the
application developer’s perspective, major differences between the NVIDIA R©

TeslaTM V100 and the AMD R© MI50 include (a) memory bandwidth (900 GB/s
and 1 TB/s, respectively); (b) the warp size of 32 threads on V100 and wavefront
size of 64 threads on MI50; and (c) the lack of hardware support for floating-point
atomic operations on MI50.

4 Test Case

The test case used here is based on transonic turbulent flow over the semispan
wing-body configuration described in Ref. [16]. The freestream Mach number
is 0.85, the angle of attack is zero degrees, and the Reynolds number based on
the mean aerodynamic chord is 5 million. The computational mesh consists of
1,123,718 grid vertices, 1,172,171 prisms, 3,039,656 tetrahedra, and 7,337 pyra-
mids. This problem size is representative of the workload that would typically
be placed on a single compute node in practice. For the purposes of the current
study, a single linear system is extracted from an arbitrary time step during the
nonlinear convergence. The linear system contains a total of 18,998,518 nonzero
off-diagonal blocks, or an average of approximately 17 off-diagonal blocks per
mesh vertex. Timings reported below are for 15 sweeps over the entire system.

5 Fortran Implementation

The legacy FUN3D solver implementation is written in Fortran 90 and supports
both MPI [3] and MPI+OpenMP [2] programming models. In the latter case,
a separate MPI rank is typically placed on each NUMA domain. The memory
layout is the CSR layout described in Sect. 1 and this implementation is referred
to as “Fortran (CSR)” throughout, where it is used as a performance baseline
(if applicable). Figure 1 shows the loop executed for each color. The outer loop
is over matrix block rows in the color. The inner loop is over blocks in a matrix
row. The matrix-vector product is manually unrolled over the inner nb × nb

dimensions and computed using scalar variables. Forward-backward substitution
is also manually unrolled. This structure has been determined to perform best
on common CPUs such as Intel R© XeonTM processors. When using OpenMP,
parallelization occurs over block rows of the matrix. Unless stated otherwise,
benchmark results use the MPI+OpenMP model with one rank per NUMA
domain and one thread per hardware thread.
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Fig. 1. Baseline FUN3D Fortran point-implicit multicolor solver.

6 Optimized Performance Benchmarks

Each section herein describes the optimization of the solver for the section’s
respective architecture. The resulting optimized performance is shown in Table 2.

Table 2. Optimized solver results. The time given is for 15 sweeps through the lin-
ear system in milliseconds. % Peak Bandwidth is the application requested bandwidth
divided by the theoretical peak bandwidth for the architecture (see Table 1). Appli-
cation requested bandwidth is computed by dividing the amount of bytes that must
pass at least once through main memory (DRAM/MCDRAM/HBM2) by the execution
time. It does not consider cache effects.

SKL KNL TX2 VE V100 A100 MI50

Optimized Time, ms 166.0 140.0 167.0 102.0 48.8 30.9 64.9

% Peak Bandwidth 78.3 52.8 62.7 26.7 75.8 67.3 51.3

6.1 Intel R© XeonTM and Xeon PhiTM Knights Landing

The Fortran solver implementation (see Sect. 5) did not perform as expected
for a bandwidth-bound code given KNL’s main memory bandwidth of approx-
imately 485 GB/s. For this reason, an AVX-512 vector intrinsic [10] solver was
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developed. AVX-512 vector intrinsics are an abstraction just above the assembly
level that can be used in a higher level language such as C++ and give the
programmer fine-grained control over a thread’s vector registers. There are also
intrinsic instructions for memory prefetching, which is of interest in part due to
the high latency of MCDRAM.

AVX-512 Intrinsic Solver. The AVX-512 intrinsic solver processes a single
matrix block row, computing the matrix-vector product of each 5 × 5 block and
the vector ΔQ, performing forward-backward substitution using the resultant
vector, and storing the updated ΔQ.

The matrix-vector product is performed on chunks of three 5×5 blocks. The
vector length of 512 bits holds up to 16 32-bit values. Three columns of O are
loaded into a vector register with the final lane being zero. Avoiding splitting the
columns across registers minimizes code complexity and load instructions while
retaining over 90% vector efficiency. Corresponding values of the vector ΔQ
are broadcast to 5 vector lanes in groups of three to fill a vector register using
the mm512 mask extload ps intrinsic. These two registers are multiplied and
subtracted from an accumulator register using the mm512 fnmadd ps intrinsic.
This process is repeated over the entire row. This produces 15 partial sums in
the accumulator register. This register is permuted and summed to produce b
in the first 5 lanes of the accumulator register. See Fig. 2a for an illustration of
the matrix-vector product on a chunk of three 5 × 5 blocks. A remainder loop
handles rows with lengths not divisible by three.

Fig. 2. AVX-512 solver.

Forward-backward substitution cannot achieve efficient vectorization with-
out processing multiple matrix rows. The implementation instead attempts to
minimize register usage and maximize vectorization through register permuta-
tion intrinsics. D is loaded once into three vector registers and permuted into
operand registers as needed. Appropriate values of b are broadcast into multiple
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lanes using register permutations and summed using mm512 mask3 fnmadd pd
with an appropriate mask. The resulting ΔQ is stored to main memory. Stream-
ing stores are not used as ΔQ may reside in cache. See Fig. 2b for an illustration
of AVX-512 forward-backward substitution.

The SSE and KNCI intrinsic sets contain a memory prefetch intrinsic,
mm prefetch, with a hint argument that specifies L1, L2, and nontemporal
prefetches with additional exclusivity options (for memory to be modified). The
AVX-512 intrinsic solver uses this intrinsic to prefetch data for the current matrix
row into L1 followed by prefetching of the next row’s data into L2.

Processing three matrix rows simultaneously seems a natural extension of
this algorithm that would triple vectorization efficiency of the forward-backward
substitution and ΔQ writes, but improved performance has not been observed
for this variant.

Though originally developed for KNL, the AVX-512 intrinsic solver is also
used on Intel R© XeonTM processors that support common AVX-512 instructions.

6.2 Marvell R© ThunderX2 R©

The ThunderX2 R© architecture offers Neon vector units capable of supporting
128-bit vector lengths. Effective use of these vector units is challenging for block-
sparse matrix-vector operations when the block size is not a multiple of the
vector length. This becomes particularly difficult for a Fortran or C compiler
to address in an automated fashion, and experiments confirmed that compiler-
generated code yields suboptimal performance on the ThunderX2 R©. For this
reason, an implementation based on Neon intrinsics is described here.

The ThunderX2 R© can be configured to use up to four-way SMT; however, the
system was configured for two-way SMT for the testing considered here. Optimal
performance was observed while executing a single thread per core, where the
thread has access to nearly all of the resources on the core. To address NUMA
issues, a hybrid approach based on the use of MPI and OpenMP is used, with
one MPI rank assigned to each of the two NUMA domains.

Vectorization Using Neon Intrinsics. Processing a row of blocks for a sparse
matrix-vector product involves multiplying each dense 5 × 5 block with a dense
vector of size 5 corresponding to the column index of the block. This operation
is repeated across the row, with results accumulated into a resultant vector
of size 5. Since the vector length available on ThunderX2 R© is 128 bits, four
simultaneous single-precision multiplies are possible. For nb = 4, vectorization is
straightforward. However, for the value of nb = 5 used in the current study, each
column of the 5 × 5 block is partitioned into two segments. The first segment
consists of four elements that can be processed as a vector, while the remaining
element is processed as a scalar. Figure 3a shows this partitioning and the Neon
intrinsics instructions necessary to load the first four elements of each column as
a vector and the remaining element as a scalar. Prefetching as shown in Fig. 3b
is used to further improve performance.
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Fig. 3. ThunderX2R© optimization strategies.

6.3 NEC R© SX-AuroraTM TSUBASA Vector Engine

The primary challenge in achieving performance on the SX-AuroraTM is effective
utilization of the long vector. The Fortran solver implementation (see Sect. 5)
initially performed an order of magnitude slower on SX-AuroraTM than a conven-
tional CPU (Intel R© XeonTM Gold 6148). To allow the NEC R© Fortran compiler
to vectorize over matrix block rows, the loops over rows and blocks were inter-
changed. Because each row may have a different number of blocks, a maximum
number of blocks is computed for each color and used as the block loop range.
Rows with fewer blocks than the maximum are conditionally computed and it
is assumed the compiler will efficiently mask these operations when vectoriz-
ing. These changes increased the baseline performance by approximately 4.5×,
but no further attempts at optimization using the original matrix memory lay-
out were successful. In principle, one could extend the AVX-512 implementation
described in Sect. 6.1 to a longer vector by vectorizing over the matrix rows.
However, the AVX-512 implementation relies heavily on arbitrary register lane
permutations, which are not easily done with the SX-AuroraTM instruction set.

SX-AuroraTM Optimizations Using Modified ELLPACK Memory
Layout. The ELLPACK memory layout [13] regularizes a sparse matrix by
treating each matrix row as having the same length, padding with zero values to
extend short rows up to the maximum row length. We modified this format and
applied it to the matrix O as follows. The dimensions of the matrix (Fortran
order) become neq × nb × nb × lm where neq is the number of matrix rows, nb is
5 in this case, and lm is the maximum matrix row length. For the case described
in Sect. 4, lm is 29 and the average number of rows is approximately 17, thus
significant padding is introduced.

This implementation uses the interchanged loop described in the previous
section. It also makes use of the NEC R© Fortran compiler’s vreg directives
[18], which direct the compiler to treat local arrays as vector registers. The
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documentation states that packed registers (pvreg) of 512 floats are supported,
but the pvreg directive did not produce working code in these experiments.
An unroll directive was added to the outermost loop. The modified ELLPACK,
loops, and directives improve performance by approximately another 3×, sur-
passing the performance of Intel R© XeonTM Gold 6148 for this kernel.

SX-AuroraTM Optimizations Using Modified SELL-C-σ Memory Lay-
out. The SELL-C-σ memory layout [15] improves upon ELLPACK at the cost of
additional complexity. Matrix rows are sorted in groups of σ and zero-padded to
the maximum row length in chunks of C rows. For the case described in Sect. 4,
the parameters C = 256 and σ = nc were used, where nc is the number rows in
each color group. This results in less than 2% padding. The SELL-256-nc layout
improves performance by 1.25× over the modified ELLPACK layout.

6.4 NVIDIA R© TeslaTM V100 and A100 GPUs

CUDA [22] is a nonportable C++ language extension offering low-level control
of NVIDIA R© GPU hardware. To develop an efficient GPU implementation of the
multicolor point-implicit solver, functions provided by the cuSPARSE [23] and
cuBLAS [21] libraries were initially considered. The function cusparseSbsrmv
multiplies a block-sparse matrix with a vector, and the function cublasStrsm-
Batched solves block systems of equations by performing forward and backward
substitutions using an LU-decomposition of the diagonal block. Experiments
showed that this approach yields suboptimal performance for linear systems
representative of those encountered in typical FUN3D simulations.

Instead, optimized CUDA implementations of these functions were developed
in Ref. [28]. To perform a block sparse matrix-vector product, the proposed
algorithm allocates a number of warps to process a subset of the blocks in a single
row of the sparse matrix. The mapping of a warp to process a block of a sparse
matrix with nb = 5 is illustrated in Fig. 4. To perform forward and backward
substitutions, a second kernel is invoked that assigns a single warp to process one
diagonal block. Several challenges were encountered, including a variable extent
of available parallelism, indirect memory addressing, low arithmetic intensity,
and the need to accommodate different block sizes. To address these challenges,
particular emphasis was placed on coalesced memory loads, the use of shared
memory and prefetching, minimal thread divergence within warps, and strategic
use of shuffle instructions available on recent hardware. Depending on the value
of nb, the new implementations realized performance gains of up to 7× over
existing cuSPARSE and cuBLAS library functions [28].

6.5 AMD R© RadeonTM MI50 GPU

The restructuring of the computation required for AMD and NVIDIA GPUs
(see Sect. 6.4) is very similar. Since the AMD hardware calls for 64 threads per
wavefront, two versions of the algorithm have been implemented: (a) one block-
row per wavefront with two nonzero blocks mapped to a wavefront, and (b) two
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A Sparse Row
BlockThread #24 of warp

Thread #0 of warp

Fig. 4. Assignment of a warp to process a complete 5 × 5 block to ensure that consec-
utive threads of the warp load and process data from consecutive locations of device
memory. The warp processes a complete row one block at a time, and aggregates par-
tial results into a 5 × 5 block. The columns of the final aggregated block are reduced
using shuffle instructions or shared memory (not shown here).

block-rows per wavefront with half of a wavefront mapped to a nonzero block
of a row. We used HIP to develop an optimized implementation on AMD GPU.
HIP, or Heterogeneous-Computing Interface for Portability [6], is a C++ API
similar to CUDA that has been developed by AMD.

One Block-Row per Wavefront. In this algorithm, a wavefront processes two
consecutive nonzero blocks of a row concurrently. Since a wavefront on the AMD
GPU consists of 64 threads, 14 threads remain idle. The wavefront processes a
row of the block-sparse matrix in a loop, where 2 consecutive nonzero blocks
are processed by the wavefront at each iteration. The wavefront handles 50 (2 ×
(5 × 5)) matrix entries during each iteration. The appropriate elements of ΔQ
are also loaded from the read-only data cache, multiplied by the corresponding
elements of the matrix, and then results are accumulated. After completion of
the loop, the 50 partial results are aggregated into an output of 5 elements. The
code segment to illustrate this computation is shown in Fig. 5.

Fig. 5. Code for one block-row per wavefront on AMD GPU.
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Two Block-Rows per Wavefront. In this algorithm, a wavefront is assigned to pro-
cess two consecutive block-rows with the first set of 32 threads (half-wavefront)
processing the first block-row and the second set of 32 threads processing the
second block-row. A half-wavefront processes one nonzero block of a row concur-
rently. Note that in this algorithm, it is not necessary that the two consecutive
block-rows have an identical number of nonzero blocks. Consequently, not all of
the 50 threads of a wavefront will always be active. The implementation of this
algorithm is similar to the NVIDIA GPU version discussed in Sect. 6.4.

7 Optimization of Programming Frameworks

This section attempts to address the question of whether a given programming
framework allows the programmer to map a computation efficiently onto an
architecture and recover the performance of an optimized implementation writ-
ten in a sufficiently low level language (see Sect. 6).

7.1 OpenACC

The OpenACC programming model [1] is based on the use of compiler direc-
tives and offers the potential for portable implementations across multiple GPU
architectures.

NVIDIA R© TeslaTM V100 and A100 GPUs. Prior development of an opti-
mal CUDA implementation provided valuable insight in achieving a straightfor-
ward OpenACC implementation. Here, the launch parameters for each CUDA
kernel were replaced with for-loops over thread blocks and the threads within
each block. The sequential code annotated with OpenACC directives is shown
in Fig. 6; note the similarities with the CUDA implementation shown in Fig. 4.

7.2 SYCL

SYCL is a cross-platform programming model based on C++ with support for
different architectures [12]. SYCL implements a single-source, multiple compiler-
passes model that allows the integration of source code for different architectures.
The Intel R© Data Parallel C++ (DPC++) compiler is based on SYCL with
additional extensions, and provides support for a variety of OpenCL [11] devices
including CPUs, FPGAs and GPUs [9]. Codeplay recently added experimental
SYCL support for NVIDIA R© GPUs, which avoids the use of OpenCL through
use of the LLVM compiler [8]; OpenCL implementations for NVIDIA R© GPUs
are generally not effective due to limited NVIDIA support for OpenCL 1.2.
Instead, this approach provides a plugin to DPC++ that enables compilation of
SYCL code with direct CUDA support. This approach is used to evaluate SYCL
performance for the NVIDIA R© Tesla V100 GPU.

NVIDIA R© TeslaTM V100 GPU. A SYCL implementation of the solver ker-
nel has been developed and compiled with the Codeplay LLVM implementation.



Performance and Portability of a Linear Solver 75

Fig. 6. Listing of sequential code with OpenACC directives. Note the similarity of this
code to the CUDA code shown in Fig. 4, illustrating an identical restructuring of the
computation.

The SYCL code for the solver kernel is shown in Fig. 7. Note the similarity of
the SYCL implementation to the CUDA code in Fig. 4, illustrating that SYCL
exposes sufficient features to achieve a CUDA-like implementation. This flexi-
bility is useful in expressing the restructured SYCL computation in a manner
necessary to achieve good performance on NVIDIA GPUs.

7.3 HIP

The HIPify tool provided by AMD [5] has been used to convert the CUDA kernel
implementation to HIP for execution on the NVIDIA R© TeslaTM V100 GPUPUs.
In this experiment, the HIPify tool did not alter any of the original CUDA kernel
code.

7.4 OCCA

OCCA is an open source approach that enables development for a variety of
devices including CPUs, GPUs, and FPGAs [17]. Back-end support is provided
for targets such as CUDA, OpenMP, HIP, and OpenCL. The implementation is a
simple extension to C and uses “attributes” to map code to a particular device.
An implementation of the solver kernel using OCCA is shown in Fig. 8. The
@outer attribute in the outer for-loop indicates that the computation inside the
loop can be parallelized, and this loop is mapped to thread blocks when using the
CUDA back-end. The @inner(0) and @inner(1) loops map to the two dimensions
of the thread block. The @shared attribute indicates the use of shared memory.
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Fig. 7. SYCL implementation of the solver kernel.

Note that the code shown in Fig. 8 is quite similar to the OpenACC and CUDA
implementations.

8 Results

Table 3 summarizes all results. Although the vector intrinsic results are no more
than 1.16× higher than Fortran (CSR) for SKL and TX2, this is due to their
limited memory bandwidth as the performance bottleneck. Run on a single core
of SKL, the AVX-512 solver speedup over Fortran is greater than 1.5×. More-
over, the AVX-512 vector intrinsic solver on SKL achieves the highest percent
of theoretical peak memory bandwidth among all codes in this study.

TX2 performance should not be interpreted as representative of the architec-
ture. The machine used in this study was an anomalous prototype with seemingly
lower memory bandwidth than that reported by other TX2 users.

Optimizations for SX-AuroraTM should not be considered complete. Though
considerable speedup was achieved, a lower level approach such as intrinsics has
yet to be implemented.

For the additional programming frameworks considered (OpenACC, HIP
on V100, SYCL, and OCCA), optimized implementations were able to match
(within ∼ 3%) the optimized benchmark for the architecture. In this work, each
code is specific to a single architecture, so, for example, there are two HIP imple-
mentations, one for V100 and one for MI50. The exception to that is A100, where
both the CUDA benchmark and the OpenACC version were developed and opti-
mized for V100 (i.e., the V100 OpenACC and CUDA codes were timed on A100
without any A100-specific optimizations).
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Fig. 8. OCCA implementation of the solver kernel.

Table 3. Summary of results across two portability dimensions: architecture and pro-
gramming model. Numeric values indicate performance relative to Fortran (CSR) on
SKL (higher is better). Subjective ratings represent ease of implementation (i.e., the
code runs correctly) and optimization, respectively: E – easy, M – moderate, and H
– hard. Percent values show the percent of theoretical peak bandwidth achieved. Red
values indicate the highest performing implementation for a given architecture, which
establishes the optimized benchmark. A “-” indicates an invalid or unimplemented
combination.

SKL KNL TX2 VE V100 A100 MI50

Fortran
(CSR)

1.0 E/M
69.1%

0.79 E/M
31.1%

0.97 E/M
53.9%

0.53 M/M
7.7%

- - -

Fortran
(SELL-C-σ)

- - -
1.84 M/H

26.7%
- - -

OpenACC - - - -
3.77 E/H

74.1%
5.22 E/H

57.8%
-

CUDA - - - -
3.86 M/H

75.8%
6.08 M/H

67.3%
-

HIP - - - -
3.85 M/H

75.8%
-

2.90 M/H
51.3%

SYCL for
CUDA

- - - -
3.79 M/H

74.5%
- -

Vector
Intrinsics

1.13 H/H
78.3%

1.34 H/H
52.8%

1.13 H/H
62.6%

- - - -

OCCA - - - -
3.76 M/H

74.0%
-

2.89 M/H
51.2%
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9 Conclusions and Future Work

Optimized implementations of the linear solver kernel have been established for
the target architectures. For each additional programming framework consid-
ered, a solver has been implemented for a subset of the target architectures.
Performance relative to the original Fortran (CSR) implementation on SKL has
been reported, as well as the percent of theoretical peak bandwidth attained.
Subjective ratings of implementation and optimization difficulty have been given
for each combination. For this linear solver kernel, we conclude that, for the addi-
tional programming frameworks considered (OpenACC, HIP on V100, SYCL,
and OCCA), it is possible to match the performance of a lower level imple-
mentation optimized specifically for the architecture. In this work, only GPU
architectures were studied using the higher-level programming frameworks. Per-
formance of a single code across multiple architectures has not been considered
and that is to be the subject of future work. A more optimized benchmark for
SX-AuroraTM will also be developed.
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Abstract. Solving dense systems of linear equations is essential in
applications encountered in physics, mathematics, and engineering.
This paper describes our current efforts toward the development of
the ADELUS package for current and next generation distributed,
accelerator-based, high-performance computing platforms. The package
solves dense linear systems using partial pivoting LU factorization on
distributed-memory systems with CPUs/GPUs. The matrix is block-
mapped onto distributed memory on CPUs/GPUs and is solved as if
it was torus-wrapped for an optimal balance of computation and com-
munication. A permutation operation is performed to restore the results
so the torus-wrap distribution is transparent to the user. This package
targets performance portability by leveraging the abstractions provided
in the Kokkos and Kokkos Kernels libraries. Comparison of the perfor-
mance gains versus the state-of-the-art SLATE and DPLASMA GESV
functionalities on the Summit supercomputer are provided. Preliminary
performance results from large-scale electromagnetic simulations using
ADELUS are also presented. The solver achieves 7.7 Petaflops on 7600
GPUs of the Sierra supercomputer translating to 16.9% efficiency.

Keywords: Dense linear systems of equations · Distributed
computing · GPU acceleration · LU factorization · Performance
portability

1 Introduction

Solving a dense linear equations system is one of the most fundamental problems
in numerous applications in the mathematical sciences and engineering, such as
biology [1], economics [2], electrical network analysis, aircraft design, radar tech-
nology [3], etc. We can find dense linear systems of equations in many applica-
tions involving the solutions of linear partial differential equations formulated as
boundary integral equations (a.k.a. boundary element method) including acous-
tics, electrochemistry, fluid mechanics [4], elastodynamics, fracture mechanics
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[5], electromagnetics (method of moments) [6]. In these applications, the bound-
aries of the objects of interest are discretized and the integral equations are
formulated into the form of A *x=b where A is a dense, square matrix, b
is (are) the corresponding right-hand-side (RHS) vector(s), and x is (are) the
unknown solution vector(s).

In order to solve A *x=b, one typically uses direct solvers with lower-upper
(LU) factorization, which decomposes the matrix A into a lower triangular
matrix L and an upper triangular matrix U such that A=L *U, due to its
high accuracy and robustness. However, dense LU factorization has a high com-
putational complexity of O(N 3), and a memory requirement of O(N 2) which
might prevent itself from simulations of extremely large problems. To reduce the
heavy computational burden of direct solvers, one can use iterative solvers with
their computational complexities of O(N2√κ) where κ is the condition number
of matrix A [7]. Many efforts have also been devoted to further accelerate the
iterative solvers. For instance, in the area of method of moments, many fast
factorization schemes have been proposed in the literature to reduce the cost of
matrix-vector multiplications in iterative solutions using some suitable expan-
sions of the underlying integral kernel with some sacrifices of accuracy. Two
well-known techniques are the fast multiple method (FMM) [8] and the multi-
level fast multipole algorithm (MLFMA) [9] which can reduce the computational
complexity to O(N1.5√κ) and O(Nlog(N)

√
κ), respectively.

Despite its high computational complexity, a direct solver often provides more
robust results in cases where many iterative solvers fail to solve accurately and/or
fail to converge because the system matrices are extremely ill-conditioned. Such
problems, e.g. structures supporting high-quality factor resonances or extremely
large problems compared to the wavelength, are very common in real-world appli-
cations. Therefore, it is essential to have efficient implementations of dense direct
solvers. The dense formulation of the problem is also memory-intensive. Most
problems of interest require several hundreds or thousands of nodes/GPUs to be
able to fit in memory. Therefore the dense direct solvers have to be distributed-
memory parallel as well. Dense LU factorizations are also compute-intensive algo-
rithms (O(N 3) FLOPS). Hence the distributed-memory, dense LU factorization
has to be able to utilize the hardware accelerators available on several of the top
supercomputers extremely well. This could mitigate their aforementioned compu-
tational cost and allow them to target extremely large-scale problems while pro-
viding robust solutions to applications. Some problems of interest to us such as the
boundary element method applied to electromagnetics in the frequency domain [6]
result inmatricesA that are dense, complex.Henceweneed to support accelerator-
focused, distributed, dense LU factorizations that can handle real and complex
matrices. This is a challenging problem by itself. The challenge is made even harder
by the diversity in the accelerator architectures.

The current second fastest machine on the TOP500 list is the Summit system
[10] located at the Oak Ridge National Laboratory (ORNL). Each compute
node of the Summit system has two POWER9 CPUs and six NVIDIA V100
GPUs. The peak double-precision floating-point performance of the CPUs and
the GPUs per compute node are 1.08 TFLOPS and 46.8 TFLOPS, respectively.
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The third fastest supercomputer is the Sierra system [11] located at the Lawrence
Livermore National Laboratory (LLNL). Each node of Sierra has two POWER9
CPUs at 1.08 TFLOPS, and four V100 GPUs for 31.2 TFLOPS. We present
performance results on both these systems (Sect. 6).

We also highlight three architectures that are of interest to us in the near
future. Recently, the U.S. Department of Energy has announced plans for
three exascale-class supercomputers: (1) Aurora system [12], at the Argonne
National Laboratory, will be delivered in 2021 with sustained performance of 1
ExaFLOPS. Each Aurora node will contain two Intel Xeon scalable processors
and six Xe architecture-based GPUs; (2) Frontier system [13] at the ORNL. It
will be delivered in 2021 with 1.5 ExaFLOPS of theoretical peak performance.
Each Frontier node will contain one AMD EPYC CPU and four purpose-built
AMD Radeon Instinct GPUs; (3) El Capitan system [14] at the LLNL is sched-
uled for early 2023 with 2 ExaFLOPS of theoretical peak performance. Each El
Capitan node will contain one AMD EPYC CPU and four next-generation AMD
Radeon Instinct GPUs. These next generation exascale HPC architectures are
continuously evolving to allow for solving larger, more computationally intensive
problems. At the same time, they have introduced new challenges to algorithm
designs and implementations due to significantly different architectures and pro-
gramming models. Therefore, it is important to develop the dense LU solver
based on algorithms and implementations that are portable to future platforms.

This paper presents ADELUS, a performance-portable dense LU solver for
current and next generation distributed-memory hardware-accelerated HPC
platforms. ADELUS computes the LU factorization with partial pivoting and
solves real/complex dense linear systems in distributed-memory using the mes-
sage passing interface (MPI). The matrix is block-mapped onto the MPI tasks
(either stored on CPU memory or GPU memory). In this work, the torus-wrap
mapping scheme [15], which is transparent to the users, was adopted for an
optimal balance of computation and communication. MPI processes compute
the factorization and solve the portion of the linear system as if the matrix
was torus-wrapped. A permutation operation is performed to restore the results
when the solve completes. In this work, we provide performance portability by
leveraging the abstractions provided in the Kokkos programming model [16] and
Kokkos Kernels library [17].

The main contributions of this paper are the following:

– A parallel, dense, performance-portable, LU factorization algorithm based on
torus-wrap mapping.

– An implementation of the real/complex LU factorization algorithm for tradi-
tional and accelerator-based architectures that can achieve 1.397 PFLOPS on
900 GPUs on the Summit (the world’s second fastest) supercomputer. The
ADELUS software is available at https://github.com/trilinos/Trilinos.

– Comprehensive analysis of the performance, scalability, and the effect of using
different memory spaces on distributed-memory.

https://github.com/trilinos/Trilinos
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– Integration of the dense LU solver into an electromagnetic application and a
demonstration of application performance on 7600 GPUs with 7.720 PFLOPS
on the Sierra (the world’s third fastest) supercomputer.

2 Related Work

Dense LU factorization has been studied for several decades. In this section, we
list the most popular software packages which implement LU solvers related to
distributed memory and/or GPU accelerators. These algorithms and implemen-
tations are the most relevant with respect to our work. Distributed-memory LU
factorization implementations are available in:

– ScaLAPACK [18]: ScaLAPACK is the standard library for high-performance
dense linear algebra routines on distributed-memory computers. ScaLAPACK
leverages BLAS and BLACS (Linear Algebra Communication Subprograms)
for extending LAPACK routines to distributed-memory computing. The
library is currently written in Fortran;

– Elemental [19]: Elemental is a C++ library for distributed-memory, dense
and sparse-direct linear algebra, using C++ templates for multiple precision
support. It interestingly distributes the matrix by elements, which is similar to
the torus-wrap mapping scheme used in ADELUS. Since 2016, the Elemental
library was forked by the LLNL team under the name Hydrogen, to make use
of GPU accelerators. But the supported functionality is only limited to the
basic utilities and BLAS-1,-3 operations;

– DPLASMA [20]: the DPLASMA library relies on the PaRSEC [21] runtime to
schedule tasks from task dependency graphs, allowing for overlapping of com-
munication and computation. DPLASMA, however, does not support either
GPU acceleration for LU solver or C++ templates.

On the other hand, node-level hardware-accelerated implementations of the
LU solvers are available in:

– CULA [22]: CULA Dense is a GPU-accelerated implementation of dense linear
algebra routines providing a wide set of LAPACK and BLAS capability;

– MAGMA [23]: The MAGMA library aims to provide LAPACK functionalities
for heterogeneous/hybrid architectures;

– cuSOLVER [24]: The cuSOLVER library is a high-level package based on the
cuBLAS and cuSPARSE libraries. It provides useful LAPACK-like features,
such as dense matrix factorization and solve routines such as LU, QR, etc.

The SLATE library [25] is the state-of-the-art library that targets multi-
GPU-accelerated distributed-memory systems. SLATE provides coverage of
existing ScaLAPACK functionalities, both accelerated CPU-GPU based and
CPU based. SLATE uses a modern C++ framework with communication-
avoiding algorithms, lookahead panels to overlap communication and computa-
tion, and task-based scheduling. To the best of our knowledge, ADELUS is the
first effort addressing performance portability for LU solver via Kokkos/Kokkos
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Kernels libraries on distributed-memory accelerator-based architectures. We
compare ADELUS’ performance against some of these implementations in
Sect. 6.

3 Overview of Kokkos and Kokkos Kernels

As the systems with several different accelerators become common, the need
for portable programming model and portable algorithms has become criti-
cal. Portability can be addressed using several different approaches such as a
directive-based approach (using OpenMP [26], OpenACC [27]), a library-based
approach (using Kokkos [16], RAJA [28]) or by writing portable domain-specific
languages (DSLs) if the target domain is small. Each one of these approaches
has their advantages and disadvantages. In this work, we focus on the Kokkos
performance-portable library to develop the dense LU solver. The primary rea-
son we choose the library-based portable approach is due to the ability of this
option to be used immediately with CPUs and GPUs effectively, and the avail-
ability of an ecosystem where options to call BLAS or LAPACK functionality is
available through the Kokkos Kernels library [17].

Kokkos is a templated C++ library that uses meta-programming so users of
the library will write the code once in templated C++. At compile time, these
codes are mapped to an appropriate backend depending on compile time tem-
plate parameters. There are backends available for OpenMP, CUDA for NVIDIA
GPUs, and experimental backends for HIP for AMD GPUs, and SYCL for Intel
GPUs. We use the OpenMP and CUDA backends in this work. Kokkos uses an
execution space to determine where the computation is mapped and a memory
space to determine where data structures live. Both aspects are key to perfor-
mance. A Kokkos View is a data structure to store multidimensional arrays
with reference counting. We utilize the Kokkos Views for storing the matri-
ces and vectors. The matrices and vectors use different layouts depending on
whether the data structures live on the CPUs or GPUs. In Kokkos library this
is called HostSpace and CudaSpace. Furthermore, we also use CudaHost-
PinnedSpace for MPI buffers for better performance. Switching the data struc-
tures from one memory space to another is controlled completely at compile time
with template parameters. The solver code remains the same for all the options.

Once the data structures are in place and an execution space is chosen,
the key requirement for a dense linear solver is the availability of BLAS and
LAPACK functionality. Kokkos Kernels library [17] provides portable sparse/-
dense linear algebra and graph kernels. It is implemented using Kokkos for porta-
bility. Kokkos Kernels also has interfaces to vendor-optimized BLAS/LAPACK
when appropriate. There are custom BLAS/LAPACK kernels implemented for
performance or functionality reasons as well. We depend on the Kokkos Ker-
nels library for BLAS and LAPACK functionality on CPUs and GPUs. Kokkos
Kernels uses the dense matrices stored in layouts optimized for CPU/GPU archi-
tecture and provides the BLAS/LAPACK functionality needed by the solver.
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4 Application: Method of Moments for Linear
Electromagnetics

An important class of problems that can be solved with the ADELUS solver are
those encountered in the solution of the boundary element method applied to
electromagnetics in the frequency domain. Instead of solving Maxwell’s equa-
tions in 3D space via wave equations, one solves them on the boundary between
regions. This class of problems solves the integral form of Maxwell’s equations
by using the equivalence principle and employing divergence conforming basis
functions for the currents on the surfaces of interest [6,29]. In the electromag-
netic’s community, this is termed the method of moments. The matrix produced
by this numerical technique is then solved by using ADELUS. Depending on
how the boundary condition is applied, it can be categorized into two main
approaches: (i) Electric Field Integral Equation (EFIE) where the boundary
condition is applied on the electric field; (ii) Magnetic Field Integral Equation
(MFIE) where the boundary condition is applied on the magnetic field. The
EFIE can be applied to both open and closed objects whereas the MFIE applies
only to closed objects. Without loss of generality, we provide a brief of summary
of the method of moments for EFIE in this section.

Enforcing the boundary condition at the surface, that is, the tangential com-
ponent of the total field is equal to zero yields the integral equation on the surface
S : L(J) = E, where L is the linear operator derived from the EFIE, J is the
unknown induced surface current, and E is the corresponding right hand side
related to the incident field. L contains kernels in the form of Green’s function
G(r, r′) = e−jk|r−r′|/|r − r′|, where r and r′ are an observation point on S and
a source point on S, respectively, and k is the wave number. Let the current on
S be approximated in terms of a basis function fn defined on the surface as

J ∼=
N∑

n=1

Infn. (1)

Typically, a triangular disretization of the surface is employed and the well-
known Rao-Wilton-Glisson (RWG) function [29] is used as basis functions in
(1). Applying (1) to the EFIE L(J) = E and using the Galerkin method to test
each side of the equation yield a dense, complex, double-precision linear system

N∑

n=1

〈fm,Lfn〉In = 〈fm, E〉, (2)

where m = 1, 2, ..., N . Equation (3) has the form of A ∗ x = b which can be
solved by ADELUS for {In}Nn=1. Elements of A are given by

Amn =
∫

fm

∫

fn

[
jωμfm.fn − j

ωε
∇.fm∇′.fn

]e−jk|r−r′|

4π|r − r′| , (3)

Note that the discretization required to solve problems of interest forces the
usage of capability machines that are efficient in both message passing (MPI)
and threading on advanced architectures (GPUs).



86 V. Q. Dang et al.

To this end, ADELUS has been successfully integrated with the method of
moments code EIGER [30]. This production Fortran code has been used effec-
tively for a large class of problems and on a variety of compute platforms – its
utility has been extended by the ADELUS solver. The next generation version
of EIGER, GEMMA [31], is currently being developed to use the Kokkos library
to increase performance in the filling of the matrix as well.

5 Parallel LU Solver Implementation

In this section, we describe the implementation of ADELUS, including the matrix
implementation using Kokkos, the torus-wrap mapping scheme, and the parallel
LU solver using torus-wrap mapping (factorization, backward solve and permu-
tation).

5.1 ADELUS Interface and Storage

ADELUS accepts a dense matrix and vectors that are block-mapped to the
MPI processes. The matrix is distributed to the MPI processes such that the
maximum difference in the number of rows (or columns) assigned to each MPI
processes is at most one. The same rule is applied to the right hand side (RHS)
vectors. ADELUS provides a distribution utility function for users to calculate
the workload on each MPI process based on the number of columns (rows) of the
matrix, the number of the RHS vectors and the number of processes assigned to a
matrix row. The function returns the number of rows, columns and RHS vectors
assigned to the process, the row and column addresses of the matrix portion
in the global matrix, and the row and column indices of the matrix portion in
the local block map. Figure 1a shows an example of mapping the original matrix
and two RHS vectors to six MPI processes with three processes per row. This
utility function is used by our applications to assemble the portions of the matrix
and the RHS vectors in the 2D block format correctly on each MPI process and
provide them as input to ADELUS. ADELUS is then called by MPI processes
taking the portions of matrix packed with RHS vectors as their inputs.

Similar to traditional dense linear solver packages, ADELUS stores its data
(matrix and RHS vector portions) in each MPI process contiguously in the
column-major order. For portability, the ADELUS data container is implemented
by the Kokkos View with layout as Kokkos::LayoutLeft. Kokkos::LayoutLeft
essentially forces Kokkos to use column-major order. The Kokkos Views are
allocated either in the host memory (HostSpace) or in the device memory
(CudaSpace) depending on the desired execution backend (i.e. CPU, GPU,
etc.). We use Kokkos::complex so the matrices and vectors remain portable on
CPUs and GPUs. For example, one can allocate a 2D view (matrix) of complex
values in the host memory by:

Kokkos : : View<Kokkos : : complex<double>∗∗ ,
Kokkos : : LayoutLeft ,
Kokkos : : HostSpace>
A(”A” ,my rows , my cols ) ;
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Fig. 1. ADELUS workload distribution and torus-wrap mapping for 6 MPI processes
(3 processes in a row), and 2 RHS vectors. The MPI process indices are shown in the
boxes: (a) Workload distribution; (b) Torus-wrap mapping.

or in the CUDA device memory by:

Kokkos : : View<Kokkos : : complex<double>∗∗ ,
Kokkos : : LayoutLeft ,
Kokkos : : CudaSpace>
A(”A” ,my rows , my cols ) ;

Note that the constructor takes a string that is primarily used for debugging
and profiling purposes. The my rows and my cols are local number of rows and
columns in each MPI rank. The current ADELUS solver requires the matrix and
RHS vectors are packed together and computed before ADELUS is called since
the forward solve is integrated with the factorization of the matrix with the RHS
appended next to the matrix. This scenario is very common in the computational
electromagnetics where users usually compute the matrix and the RHS vectors
before calling the solvers. In order to comply with other LU solvers, we are going
to provide the GETRF and GETRS functionalities separately in the upcoming
ADELUS versions.

In the current version of ADELUS, the implementation is exclusive to one
architecture, that is, the matrix resides in either host memory (if running on
CPU backend) or device (CUDA) memory (if running on GPU backend). We
plan to target a hybrid implementation where host memory and device memory
are both utilized in the future versions.

5.2 Torus-Wrap Mapping

The torus-wrap mapping scheme [15] is adopted for workload distribution in
ADELUS. The advantages of this mapping are each process has nearly the same
workload and the process idle time is minimized. Assuming the number of MPI
processes P can be factored as P = Pr ×Pc, where Pr is the number of processes
per column and Pc is the number of processes per row, one can construct a block
mapping with the block sizes of Mp×Np, where Mp = N/Pr and Np = N/Pc. If N
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is not divisible by Pr or Pc, some processes will be assigned one more row and/or
column than others. Internally, ADELUS, which uses the torus-wrap mapping
scheme, assigns columns 1, Pc + 1, 2Pc + 1, ... to processes 1, Pc + 1, 2Pc + 1,
...; columns 2, Pc + 2, 2Pc + 2, ... to processes 2, Pc + 2, 2Pc + 2, ... For rows,
ADELUS assigns rows 1, Pr + 1, 2Pr + 1, ... to processes 1, 2, ..., Pc; rows 2,
Pr+2, 2Pr+2, ... to processes Pc+1, Pc+2, ... In other words, the column indices
assigned to a MPI process constitute a linear sequence with step size Pc, and the
row indices are in a sequence separated by Pr. It is not necessary to redistribute
the block-mapped matrix among processes for torus-wrapped solver [15]. More
specifically, a block-mapped system can be solved by a solver assuming a torus-
wrapped system. In ADELUS, the solution vectors are corrected afterwards by
straightforward permutations. The details are transparent to the users. Figure 1b
shows an example of matrix elements torus-wrap mapped to 6 MPI processes
with 3 processes per row. It should be noted that the performance of ADELUS
depends on the distribution of matrix on MPI processes (i.e. the selection of Pc

and Pr). It is common to choose Pc � Pr for better performance. More detailed
discussion is given in Sect. 6.3.

5.3 LU Solver

In ADELUS, the LU solver comprises three main steps: LU factoriza-
tion+forward solve, backward solve, and permutation. We detail the algorithms
for these steps in this section.

LU Factorization and Forward Solve. As the forward solve is similar to
the LU factorization in terms of data use/reuse, we merge the forward solve
with the factorization for performance and coding simplicity. We implement the
right-looking variant of the LU factorization with partial pivoting of a dense
N × N matrix. The algorithm is summarized in Algorithm 1. Each iteration in
Algorithm 1 has 4 steps:

– Step 1 is to find the pivot. An MPI column sub-communicator is formed for
the processes that own column j. Each process finds its own local maximum
entry in the column and then exchanges within the sub-communicator for the
global pivot value.

– Step 2 is to scale the current column j of Z with the pivot value and generate
column update vector from the column j. The pivot row index and the column
update vector are communicated to processes sharing the same row sets.

– Step 3 is to exchange pivot row and diagonal row. The pivot row is first
updated and then broadcasted within each column sub-communicator. The
row owner processes also send the diagonal row to processors owning the
pivot row.

– Step 4 is to update the current column, and if saving enough columns, to
update Z via the outer product.

Each MPI process handles its own local matrices while using Kokkos Kernels
BLAS interfaces which are implemented in a simple, generic way so that the
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resulting code is able to run on a wide range of architectures. The BLAS inter-
faces enable straightforward, convenient calls to vendor library BLAS routines
well-optimized for multi-threaded CPU and massively parallel GPU architec-
tures. In this work, Kokkos Kernels calls IBM’s ESSL BLAS when called with the
CPU backend and calls cuBLAS when called with the CUDA backend. There are
some exceptions where Kokkos Kernels calls its own implementations but they
do not get used for our experiments in this work. Depending on where the data
resides, Kokkos Kernels calls the right BLAS routines for the targeted backend.
The BLAS operations needed in ADELUS include: (i) KokkosBlas::iamax for
finding the local pivot entry in a column (Line 5 of Algorithm 1), (ii) Kokkos-
Blas::scal for scaling the column with the inverse of pivot value (Line 10), (iii)
KokkosBlas::copy for copying back and forth between the matrix and tempo-
rary containers (Lines 15, 20, 23, 25, 27, 31, and 33), (iv) KokkosBlas::gemm
for updating the matrix (Lines 22, 38, and 40). It should be noted that Kokkos
Kernels BLAS interfaces require Kokkos Views as their arguments. Since the
algorithm needs to access subsets of the matrix, its columns and rows, we use
a convenient feature of Kokkos known as the subview. A subview is a slice of a
View, which is also a View of a subset of the original View. The subview types
can be derived with the auto keyword.

Our algorithm requires only simple communication patterns consisting of
point-to-point communication: MPI Send, MPI Recv, MPI Irecv (Lines 16, 18,
29, 31, and 33 of Algorithm 1) and collective communication: MPI Bcast, MPI
Allreduce (Lines 7 and 24). Furthermore, CUDA-aware MPI is exploited on GPU
architectures which allows direct communication among GPUs without the need
of buffering GPU data through host memory. ADELUS also has the option of
using host pinned memory to buffer GPU data before communication which can
be used for computer systems not having a high performance implementation of
CUDA-aware MPI.

We employ the delay-updating technique (Line 39 of Algorithm 1) to take
advantage of the better efficiency of level-3 BLAS gemm as compared to level-1
and level-2 BLAS operations. An appropriate block size parameter BLKSZ can
help enhance the solver performance. A typical value of BLKSZ for CPU backend
is 96 while a typical value of BLKSZ for GPU backend is 128. We determine
these using several evaluations for different matrices. These numbers are used
in our performance evaluation in Sect. 6. The algorithm utilizes an overlapping
technique which performs column updates within a block one column at a time
(Line 38). To minimize the waiting time, the algorithm attempts to do row work
while waiting for a column to arrive (Line 35).

Backward Solve. In this phase, the elimination of the RHS/solution vec-
tors is performed by the process owning the current column using the Kokkos
parallel for across the RHS/solution vectors (Line 4 through Line 6 of Algo-
rithm 2). The results from the elimination step are broadcasted to all the
processes within the MPI column sub-communicator (Line 7). The Kokkos-
Blas::gemm is then called to update the RHS/solution (Line 8). To prepare
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Algorithm 1. LU factorization and forward solve on MPI process p

Require: Matrix portion Z (Mp×(Np+Nrhs
p ))

1 MPI process p owns row set rp and column set cp
// number of columns saved for update

2 colcnt = 0
3 for j = 1 to N do

// Step 1: Find pivot

4 if j ∈ cp then
5 sp ← KokkosBlas :: iamax(Zi∈rp,j)
6 γp ← Zsp , j
7 Exchange to compute γ ← maxpγ

p

8 s ← row index containing the entry γ

// Step 2: Generate column update vector v from column j of Z
9 if j ∈ cp then

10 KokkosBlas :: scal(Zi∈rp,j , 1/γ)
11 if j ∈ rp then
12 Zj,j = Zj,j ∗ γ// Restore diagonal

13 if s ∈ rp then
14 Zs,j = Zs,j ∗ γ// Restore diagonal

15 Copy Zrp,j to vrp,colcnt

16 Send column vrp,colcnt and s to processes sharing row set rp
17 else
18 Receive s

// Step 3: Exchange pivot row and diagonal row, and broadcast

pivot row

19 if j ∈ rp then
20 Copy [Zj,cp , vj,1:colcnt] to w2
21 if s ∈ rp then
22 KokkosBlas :: gemm(vs,1:colcnt, u1:colcnt,cp , Zs,cp)
23 Copy [Zs,cp , vs,1:colcnt] to w3
24 Broadcast w3 to processes sharing column set cp
25 Copy w3 to us,cp

26 else
27 Receive w3 and copy to us,cp

28 if j ∈ rp then
29 Send w2 to pivot owner
30 if s ∈ rp then
31 Receive w2 and copy to [Zs,cp , vs,1:colcnt]
32 if j ∈ rp then
33 Copy w3 to [Zj,cp , vj,1:colcnt]
34 if j /∈ cp then
35 Receive vrp,colcnt

36 Remove j from rp and from cp
37 colcnt + +

// Step 4: Column update and outer product update

38 KokkosBlas :: gemm(vrp,j , us,1:colcnt, Zrp,1:colcnt)
39 if colcnt = BLKSZ then
40 KokkosBlas :: gemm(vrp,1:colcnt, u1:colcnt,cp , Zrp,cp)
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for the next iteration, the newly-computed RHS/solution vectors are sent to the
processes to the left processes.

Algorithm 2. Backward Solve on MPI process p

Require: Matrix portion Z (Mp×(Np+Nrhs
p ))

1 MPI process p owns row set rp
2 for j = N downto 1 do
3 if j ∈ rp then

// Do an elimination step on the column and the rhs owned by

process p

4 for k = 1 to Nrhs
p do

5 u1(k) ← Zj,Np+k/Zj,j

6 Zj,Np+k ← u1(k)

7 Broadcast u1 in the column communicator
// Update rhs

8 KokkosBlas :: gemm(Zrp,j , u1(:, Nrhs
p ), Zrp,Nrhs

p
)

9 Send rhs to the processes on the left
10 Receive rhs from the processes on the right

Permutation. Since the torus-wrap mapping scheme is assumed by the solver
while the input matrix is not torus-wrapped, a permutation of the solution
vectors must be carried out to “unwrap the results”. The algorithm is quite
straightforward. Each process that owns local solution vectors creates a tempo-
rary buffer for global solution vectors. The permutation simply involves Kokkos
parallel fors to fill the local vectors to the right locations in the global vectors
and an MPI Allreduce to collectively update the change from other processes.

6 Results

6.1 Experimental Setup

We use the second and the third the fastest supercomputers in the world at the
time of this writing for all our experiments, namely the Summit system at the
Oak Ridge Leadership Computing Facility (OLCF), and the Sierra system at
the Lawrence Livermore National Laboratory.

The Summit system contains 256 racks, each with eighteen IBM POWER9
AC922 nodes, for a total of 4,608 nodes. Each node contains two POWER9
CPUs, twenty two cores each, and six V100 GPUs. Each node has 512 GB of
DDR4 memory. Each GPU has 16 GB of HBM2 memory. The processors within
a node are connected by NVIDIA’s NVLink 2.0 interconnect. Each link has a
peak bandwidth of 25 GB/s (in each direction). The nodes are connected with a
Mellanox dual-rail enhanced data rate (EDR) InfiniBand network. The software
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environment used for the experiments on Summit includes GNU Compiler Col-
lection (GCC) 7.4.0, CUDA 10.1.243, Engineering Scientific Subroutine Library
(ESSL) 6.2.0, Spectrum MPI 10.3.1.

The Sierra system has 240 racks, each with eighteen IBM POWER9 AC922
nodes, for a total of 4,320 nodes. Each node contains two POWER9 CPUs,
twenty two cores each, and four V100 GPUs. Each node has 256GB of DDR4
memory. Each GPU has 16GB of HBM2 memory. The processors within a node
are connected by NVIDIA’s NVLink 2.0 interconnect. The nodes are connected
with a Mellanox dual-rail enhanced data rate (EDR) InfiniBand network. The
software environment used for the experiments on Sierra includes GNU Com-
piler Collection (GCC) 7.2.1, CUDA 10.1.243, Engineering Scientific Subroutine
Library (ESSL) 6.2.0, Spectrum MPI 10.3.0.

In the next two sections, we demonstrate the performance of ADELUS. First,
we investigate the performance of ADELUS solving matrices that are randomly
generated on the Summit system. This is reasonable as the performance of the
solver is not very different based on the values. The pivoting is the only part that
could get affected. Random matrices always require pivoting, making this a good
test. Second, we integrate ADELUS into a production application code, EIGER,
and demonstrate performance on the linear systems from the electromagnetic
application on the Sierra system.

6.2 Performance Results with Randomly-Generated Matrices

In our performance analysis, we run experiments to solve for a linear equation
system with a single RHS vector and the matrix size is increased as we increase
the hardware resource1. Note that the single right hand side problem is typically
harder than multiple right hand side problem as there is one less dimension to
exploit the parallelism. For the GPU backend, ADELUS runs with one MPI
rank per GPU. For the CPU backend, there are three possible MPI rank con-
figurations on the Summit system: (a) 1 MPI rank per node (42 cores each), 1
MPI rank per sockets (21 cores each), or 6 MPI ranks per node (7 cores each).
It should be noted that the CPU computation time, which heavily depends on
BLAS operations (in which matrix-matrix multiply for the matrix updates is the
most time-consuming), dominates the total CPU execution time, as compared
to the communication time. We observe that the best performance for CPU exe-
cution is reached by assigning all 42 cores for 1 MPI rank. Consequently, in our
experiments, ADELUS runs with one 42-core CPU node per MPI process on
CPU backend. Since the CPU memory capacity is much larger than the GPU
memory capacity, it is difficult to determine a fair comparison scheme between
the two backends. In this study, we opt to use the memory occupied by a matrix
(N ×N) represented in double complex precision in a single GPU as the baseline.
As the number of MPI processes increases, the problem (i.e. matrix) sizes are
increased so that each MPI process holds the same amount of matrix portion

1 The driver code used for our ADELUS experiments can be found in https://github.
com/trilinos/Trilinos/tree/master/packages/adelus/example.

https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example
https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example
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(N × N). The baseline N × N matrix is chosen with N = 27,882 which takes
77.7% of 16GB GPU memory. The matrix sizes will be N × N , 2N × 2N , ...√

pN × √
pN , where p is the number processes, in the 1, 4 (2 processes/row),

... p processes (
√

p processes/row), respectively. It is noted that ADELUS can
handle non-square matrix portion in MPI processes. In Sect. 6.3, we will show
the results of different matrix distributions. For the GPU backend, we test MPI
data buffers allocated in GPU memory (CUDA-aware MPI) and host pinned
memory.

Load Balancing Verification. We first look at the execution time on all
MPI processes by picking the matrix size of 6N × 6N running on 36 GPUs.
Figure 2a and Fig. 2b show the timing breakdowns for each of the 36 processes
(36 GPUs) for the factorization step in solving the 167, 292 × 167, 292 problem
in double complex precision using CUDA-aware MPI and host pinned memory,
respectively. The timing breakdown includes the time to find the local maximum
entries (called Local pivot), the time for MPI communication (called Msg pass-
ing), the time for internal copying (called Copying), and the time for updating
matrix (called Update). In case of using host pinned memory for MPI, the time
for copying back and forth between the device memory and the host pinned
memory is included (called Host pinned mem copying). It is observed that the
workload (computation and communication) is almost perfectly balanced across
all the MPI processes while the process idle time is kept minimized due to the
torus-wrap mapping scheme. When host pinned memory is used for MPI commu-
nication, extra memory copying is explicitly made which results in the increase
in the total time. We observe that the communication and the update contribute
the most to the total time and the communication time is even higher than the
update time (1.47x–1.6x) with this certain problem size on 36 MPI processes.
This ratio is expected to increase as more nodes are added. More analysis of the
communication and computation is provided in the following sections.

CPU vs. GPU Performance Comparisons. The CPU and GPU (using host
pinned memory for MPI) computation time and communication time where the
problem size varies from N × N on 1 MPI rank to 10N × 10N matrix using 100
MPI ranks are shown in Fig. 3a and Fig. 3b, respectively. The computation time
is defined by subtracting the overhead associated with MPI communication from
the total execution time. We can make several observations. First, when a single
GPU is compared to 42 cores of the CPU we see a speedup of 4.9 (23 s vs 113 s).
Second, the GPU times increase from 23 s to 361 s from 1 rank to 100 ranks as
the problem size grows one hundred times while the FLOPS grow O(N3). For
the same increase in problem size, the CPU times increase from 113 to 1368 from
1 rank to 100 ranks. Finally, we can see that the GPU total execution for the
10N ×10N problem on 100 processes outperforms the CPU total execution with
a speedup factor of 3.8. The ratios between communication and computation
are 0.43 (CPU) and 2 (GPU) for the 10N × 10N problem. As processing larger
problems (by more MPI processes), communication overhead increases. This
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Fig. 2. Timing breakdowns of the factorization for the 6N × 6N problem on 36 MPI
processes using: (a) Cuda-aware MPI; (b) host pinned memory for MPI.

communication overhead is mostly contributed by the cost of broadcasting pivot
rows (Line 24 of Algorithm 1–Factorization and Forward solve) and the cost of
exchanging rhs vectors to left and right processes (Line 9 and 10 of Algorithm
2–Backward solve). It is noted that messages sizes depend on the size of the
matrix portion held by MPI processes and these two communications happen
at each iteration of the algorithms. In spite of that, CPU computation is still
the dominant component in the total CPU time. However, in GPU computation,
due to the fact that the computation cost is reduced by the increased parallelism
on the GPUs, the communication overhead now becomes the bottleneck.

Fig. 3. ADELUS execution times (double complex precision): (a) CPU execution times.
The total CPU time at 10N × 10N is1368 s; (b) GPU execution times with host pinned
memory. The total GPU time at 10N × 10N is 361s.

Performance Comparison with DPLASMA and SLATE. ADELUS is
compared against the two state-of-the-art solver packages DPLASMA [20] (CPU
runs) and SLATE [25] (CPU and GPU runs) on the Summit system using the
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GESV testing programs accompanied with the packages. It should be highlighted
that IBM XL C/C++ Compiler 16.1.1 is used to build DPLASMA, instead of
GCC 7.4.0. For building SLATE, we use GCC 6.4.0 and ESSL 6.1.0, Netlib
SCALAPACK 2.0.2. DPLASMA’s and SLATE’s testing programs have multiple
tuning parameters. We identify the values of these parameters that could give the
best performance on CPUs and GPUs. We do not use the default parameters
for these third party libraries. We tune them to obtain the best performance
out of them. We also compare against DPLASMA despite it having the option
to do only incremental pivoting while ADELUS does partial pivoting. More
specifically, for DPLASMA with GESV functionality on CPUs, a square tile
with size of 352 is exploited. For SLATE on CPUs, we can achieve the best
performance with nb = 320, ib = 32, panel threads = 4. For SLATE’s GESV
runs on GPUs, the best performance can be obtained with nb = 640, ib = 32,
panel threads = 1. Figure 4a gives GFLOPS performance of the three packages
solving up to a 10N × 10N matrix with 100 MPI processes on CPUs. The CPU
performance of ADELUS is higher than the CPU performance of SLATE (43
TFLOPS vs. 38 TFLOPS). This can be explained by the fact that SLATE uses
OpenMP threads explicitly for multitasking on individual tiles and uses BLAS
functions in sequential mode while ADELUS uses multi-threaded BLAS routines.
DPLASMA, with its use of the PaRSEC runtime to overlap computation and
communication and to dynamically manage and schedule tasks, outperforms
ADELUS on CPUs (57 TFLOPS vs. 43 TFLOPS). However, it is noted that
DPLASMA does not provide the GESV testing with partial pivoting. We use
the incremental pivoting for DPLASMA runs instead.

The GPU performance comparison is given in Fig. 4b. Due to the job time
limit on Summit, we could not run SLATE further than 144 GPUs solving for
12N × 12N matrix. As we can see, ADELUS delivers superior performance com-
pared to SLATE. Using 144 GPUs, ADELUS can be 4.57x faster than SLATE.
Two possible reasons are the use of batched BLAS calls on batches of tiles in
SLATE and extra complication of layout translation for row swapping operation
in SLATE’s GPU acceleration. Another possible reason for the inferior perfor-
mance of SLATE could be the overhead of simultaneous OpenMP tasks issuing
MPI communications during the panel factorization in the SLATE’s LU imple-
mentation. ADELUS can achieve 1,316 TFLOPS (1.3 PFLOPS) when running
on 900 GPUs. To the best of our knowledge, this is the first time that a com-
plex, dense LU solver can reach PFLOPS performance. We also emphasize that
ADELUS code is identical for the CPU and GPU evaluations except one tem-
plate parameter and any use of host pinned memory for MPI communication.

Scalability Analysis. In order to investigate the scalability of ADELUS, we
compare how the GFLOPS performance improves with more GPUs or more
nodes while we increase the matrix size, as shown in Fig. 5a. Scalability is defined
as the normalized GFLOPS performance of multiple MPI processes in reference
to GFLOPS performance of a single MPI process. In general, the increase of
communication overhead results in less than ideal scalability in both CPU and
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Fig. 4. GFLOPS (double complex precision): (a) ADELUS vs. DPLASMA and SLATE
on Power9 CPUs; (b) ADELUS vs. SLATE on V100 GPUs.

GPU runs. It can be seen that ADELUS running on CPUs scales more closely
to the theoretical ideal scalability than ADELUS running on GPUs. This can
be explained by the increase in the communication costs on GPUs. This also
demonstrates the fact that ADELUS clearly benefits from GPU acceleration.
However, notice that the GPU’s single GPU GFLOPS was already quite high,
so the increase in communication cost shows in the scaling plots.

Fig. 5. ADELUS (a) Scalability (double complex precision, host pinned memory for
MPI is used with GPU backend); (b) CUDA backend execution - using Cuda Host
Pinned Memory vs Cuda Memory for MPI.

MPI Buffers on Different Memory Spaces. ADELUS has an option which
allows one to choose whether using host pinned memory as MPI buffers or use
CUDA-aware MPI during the communication. Figure 5b shows the GFLOPS
performance of the GPU execution with respect to the increase of problem size.
Both memory spaces, namely CudaSpace and CudaHostPinnedSpace, can attain
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Table 1. ADELUS Solver Performance on Large Scale EM Simulations. Nodes are
shown. Number of GPUs are four times the number of nodes.

Order(N ) Nodes Solve Time(s) TFLOPS Procs/Row (Pc)

226,647 25 240.5 1291 10

1,065,761 310 1905.1 1694.5 31

1,322,920 500 6443.9 958.1 20

1,322,920 500 2300.2 2684.1 50

1,322,920 500 2063.6 2991.9 100

2,002,566 1200 3544.1 6042.6 100

2,564,487 1900 5825.2 7720.7 80

performance above 1000 TFLOPs. Using CUDA-aware MPI can improve the
performance by 6% since we do not need to explicitly buffer data on host memory
before or after calling the MPI function.

6.3 Performance Results from Large-Scale EM Simulation

We demonstrate ADELUS performance on a real computational science appli-
cation on 100 GPUs to 7600 GPUs by integrating it with the electromagnetics
simulation code EIGER (written in Fortran). Several numerical simulations were
performed on the Sierra platform available at the LLNL using EIGER coupled
with the ADELUS solver. The performance results are shown in Table 1. The
NVIDIA GPUs were used in the solve and since there are 4 GPUs per node, the
number of MPI processes is four times the number of nodes.

A number of observations can be made from Table 1. First, the performance
of the solver increases with the number of nodes. ADELUS reaches 7.72 Petaflops
when using 7600 GPUs. This translates to 16.9% of theoretical double precision
floating point performance if we only account for computation cost in theory.
In addition, the performance is affected by the distribution of the matrix on
the MPI processes. This is revealed by the 1.3 million unknown problem where
assigning more processes per row yields higher performance. We hypothesize this
is due to the reduction of communication cost of broadcasting pivot rows during
partial pivoting (Line 24 of Algorithm 1). However, the overhead of communi-
cating rhs vectors to left and right processes (Line 9 and 10 of Algorithm 2) also
contributes to the total performance. As we have more processes per row, this
communication overhead in the backward solve increases. Therefore, we observe
the performance improvement of 1.1x when going from 50 processes/row to 100
processes/row (as compared to 2.8x going from 20 processes/row to 50 process-
es/row) in Table 1. The selection of the number of processes per row Pc (and the
number of processes per column Pr) for best performance is heuristic-based and
should be a compromise to both the aforementioned communication overheads.
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It is common to choose Pc = Pr or Pc slightly greater than Pr for an acceptably
good performance. Not shown in Table 1 is the per process performance and for
the problems and distributions used has a maximum value of 1.5 Tflops/rank.

7 Conclusions and Future Work

In this paper, we present a parallel, dense, performance-portable, LU solver
based on torus-wrap mapping and LU factorization algorithm. Using the porta-
bility provided by Kokkos, the solver can be portable to CPUs and GPUs. The
performance evaluation of ADELUS is demonstrated on the Summit system,
in which it achieves 1.397 PFLOPS on 900 GPUs. It is shown that, the GPU
execution outperforms the CPU execution (with 42 cores) in terms of speedup
by a factor of 3.8. We also demonstrate the integration of the ADELUS solver
into an electromagnetic application achieving a performance of 7.720 PFLOPS
on 7600 GPUs when solving a problem of 2.5M unknowns on the Sierra system.
ADELUS scalability on the GPU backend could be resolved by exploiting more
computation-communication overlapping techniques and/or by using a mixed-
precision algorithm that allows factoring a matrix in low-precision and using
iterative refinement to eventually achieve a high precision results. The mixed-
precision approach can accelerate data transfers rates, reduce communication
overhead, especially on GPUs with Tensor Core support for mixed-precision.
Another issue that remains to be resolved is the limitation of the GPU memory.
Since ADELUS execution is exclusive to one memory space, when the problem
size exceeds the GPU memory limit, more GPUs need to be accommodated. One
possible solution to overcome this limitation is a hybrid implementation where
both CPU and GPU resources are fully utilized. Our future investigation would
address these issues.
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Appendix: Data Availability Statement

Summary of the Experiments Reported

We ran ADELUS tests on ORNL’s Summit supercomputer using gcc 7.4.0,
CUDA 10.1.243, IBM ESSL 6.2.0, IBM Spectrum MPI 10.3.1, and on LLNL’s
Sierra supercomputer using gcc 7.2.1, CUDA 10.1.243, IBM ESSL 6.2.0, IBM
Spectrum MPI 10.3.0, as described in the paper. For comparison, we also ran
DPLASMA’s gesv and SLATE’s gesv tests on ORNL’s Summit supercomputer.
For DPLASMA tests, IBM XL C/C++ Compiler 16.1.1 was used. For SLATE
tests, we used gcc 6.4.0, IBM ESSL 6.1.0, Netlib SCALAPACK 2.0.2.
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Artifact Availability

Software Artifact Availability: All author-created software artifacts are main-
tained in a public repository under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hardware artifacts.

Data Artifact Availability: There are no author-created data artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available: DOI: 10.6084/m9.fig
share.13647497

Baseline Experimental Setup, and Modifications Made
for the Paper

Relevant hardware details: Summit, Sierra

Operating systems and versions: Red Hat Enterprise Linux Server 7.6 running
Linux kernel 4.14.0

Compilers and versions: GCC 7.40, GCC 7.2.1, IBM XL C/C++ Compiler
16.1.1, GCC 6.4.0

Applications and versions: ESSL 6.2.0, ESSL 6.1.0, SCALAPACK 2.0.2

Libraries and versions: CUDA 10.1.243, Spectrum MPI 10.3.1, Spectrum MPI
10.3.0

Key algorithms: gesv
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