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5.1	 �Introduction

“The essence of practicing medicine has been obtaining as much data about the patient’s 
health or disease as possible and making decisions based on that. Physicians have had to 
rely on their experience, judgement, and problem-solving skills while using rudimentary 
tools and limited resources.” [1]

Precision medicine aims to individualize prevention, diagnostics, and therapeutics 
by understanding differences in individuals’ genetics, lifestyle, and environment 
[2]. Over the past years, we have been witnessing an unprecedented push toward a 
more data-driven approach in healthcare that promises to take precision medicine to 
the next level, in part through artificial intelligence (AI). Simply put, AI can be 
understood as a set of sophisticated computational methods that seek to mimic 
human cognitive functions, including visual perception, speech recognition, and 
decision-making [3, 4]. AI uses certain machine learning (ML) algorithms to “learn” 
features from large datasets [3] and recognize patterns that are often invisible to the 
human eye [5–7]. Capitalizing on the availability of big data and ever-increasing 
computational power and storage capacities [1, 8], these novel tools seek to improve 
population health and well-being and to reduce healthcare costs.

A surge in scientific publications documents the potential to harness artificial 
intelligence in healthcare to prevent, diagnose, and treat diseases [9]. One of the 
pressing disease areas in focus for AI researchers is stroke, a leading cause of dis-
ability and mortality worldwide [3, 8]. Researchers aim to develop applications to 
optimize stroke diagnosis, treatment, and rehabilitation [10–12], and they also use 
AI to better understand risk. Several well-established risk prediction models have 
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been developed as tools for stroke prevention [13]. Prevention plays an instrumental 
role in reducing the global burden of stroke [14], and the strategic adoption and 
development of AI-driven prediction tools can contribute substantially to this mis-
sion [1, 13]. These new tools open welcome opportunities and introduce new ques-
tions for us, of course. We find ourselves only at the beginning of this exciting 
journey that will without a doubt confront us with novel ethical, societal, and regu-
latory challenges.

This chapter surveys the global burden of stroke and describes current practices 
for reducing stroke incidence and stroke mortality rates. In particular, the chapter 
reviews how ML applications are applied to stroke risk prediction and prevention 
and identifies important technological and methodological challenges for using AI 
in these contexts. The chapter concludes by drawing the readers’ attention to some 
of the questions and ethical challenges that arise as clinicians widely adopt 
ML-based applications in practice.

5.2	 �Burden of Stroke

Stroke is one of the leading causes of disability and mortality worldwide [14–
17]. Even though a decrease in stroke mortality and incident rates was observed 
from 1990 to 2016, absolute numbers show an increase in stroke-related mortal-
ity and disability [15, 16]. The absolute number of people affected by stroke 
almost doubled during this time [16] with incidence rates in low- to middle-
income countries exceeding those observed in high-income countries [18]. 
Researchers estimate that in 2016, there were over 80 million people affected by 
stroke, many of them younger than 70 years of age [15, 16]. In 2017, Europe 
counted 1.5 million stroke diagnoses and nine million stroke survivors, with 1.2 
million experiencing severe limitations in their activities of daily living [19]. 
That same year, 0.4 million people died because of stroke [19]. The increase in 
absolute numbers is largely attributed to population aging and growth [20, 21]. 
Yet, a noteworthy increase was also recorded in stroke incidence rates in younger 
age groups (15- to 49-year olds) [16].

The global increase in stroke incidents poses major challenges for healthcare 
systems, and these challenges extend beyond a patient’s hospital stay. Patients who 
survive a stroke long to return to normality [22]. However, following hospital dis-
charge, stroke survivors and their families must cope with the aftermath of stroke. 
People who suffered a stroke often experience more or less severe physical, cogni-
tive, and emotional deficits that may limit their ability to perform certain activities 
in daily life [23, 24]. As a result, they remain at least partially dependent on an 
informal caregiver, usually a family member or partner [25]. Stroke survivors and 
informal caregivers commonly report physical, emotional, social, and financial 
challenges and concerns [26, 27]. They also face service deficiencies in health and 
social care, limited options for service offers outside of healthcare, and a paucity of 
options for continuity of care. All of this lays an additional burden on those affected 
by stroke, leaving them frustrated and under emotional strain [27].
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In addition to the impact of stroke on individuals, societies are faced with the 
economic burden of stroke [28]. Healthcare utilization, informal care provision, and 
the loss of productivity in the workforce contribute to these rising costs [21, 29, 30]. 
A recent study analyzing stroke-related costs for 32 European countries estimates 
that total costs added up to €60 billion in 2017. This includes €27 billion (45%) 
incurred by healthcare systems, €5 billion (8%) incurred by social care systems, an 
estimated €16 billion (27%) for informal care costs, and €13 billion (20%) owed to 
lost productivity due to early death or absence from work [19]. While lower total 
costs to the healthcare system have been reported for the United States for 2014/2015 
[31], per capita healthcare-related spending on stroke was higher in the USA com-
pared to Europe [19]. Similar costs were reported for stroke-related healthcare costs 
per stroke survivor living in the USA and Europe [19].

5.3	 �Stroke Prevention: A Public Health Priority

As the global stroke burden increases, researchers and policymakers call for more 
efficient stroke prevention and management strategies and improved access to 
stroke services [16, 17, 32, 33]. In 2006, the World Health Organization (WHO) 
highlighted neurological disorders, including stroke, as a public health priority [34]. 
With its Global Status Report on Noncommunicable Diseases 2014, WHO aimed to 
unite and support nations in the fight against stroke and vascular diseases [32, 33].

There is common agreement that prevention is one, if not the most, promising 
strategy to reduce the burden of stroke [16, 35–37]. It is well established that there 
are non-modifiable (e.g., sex, gender, genetics) and modifiable (e.g., smoking ces-
sation, physical inactivity) risk factors for stroke [38, 39]. Modifiable risk factors 
are the obvious targets of stroke prevention efforts. In an international case-control 
study, researchers found that ten risk factors (history of hypertension, current smok-
ing, waist-to-hip ratio, diet risk score, regular physical activity, diabetes mellitus, 
binge alcohol consumption, psychosocial stress and depression, cardiac diseases, 
and ratio of apolipoproteins B to A1) were associated to 90% of the risk of stroke 
[39]. The authors concluded that lifestyle interventions targeting blood pressure 
reduction, smoking cessation, and the promotion of physical activity and a healthy 
diet could help to significantly reduce the burden of stroke.

There are two main approaches in stroke prevention [40]: population-wide pre-
vention strategies and prevention strategies that target high-risk individuals. 
Population-wide strategies aim at modifying behavioral and lifestyle risk factors in 
the entire population to promote health maintenance [41]. In doing so, they can also 
contribute to preventing other diseases and chronic conditions (e.g., hypertension 
and diabetes mellitus) that constitute known stroke risk factors [14]. Recent 
advances in our ability to accurately assess individual risk for cardiovascular dis-
eases have motivated some countries to prioritize risk-based screening approaches 
to identify individuals at risk [42, 43].

Despite a formal distinction between these two approaches, it is important to 
note that stroke risk is a continuum with no determined threshold at which certain 
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interventions are automatically indicated. Therefore, it may not be appropriate to 
categorize individuals into low-, moderate-, and high-risk groups when communi-
cating absolute cardiovascular risk [44]. To effectively reduce stroke incidence and 
mortality rates, efforts must be undertaken to educate the general population about 
known behavioral risk factors [14, 43]. In addition, inexpensive screening strategies 
should be adopted to assist clinicians in identifying and protecting high-risk indi-
viduals [14, 43].

5.4	 �The Advent of Data-Driven Risk Prediction Models

Early prediction of stroke risk is the cornerstone of stroke prevention [45]. 
Identifying individuals who could benefit most from specific therapeutics or inter-
ventions helps them get the care they need and simultaneously helps avoid unnec-
essary treatments for others [10, 46, 47]. To date, several well-established 
statistically derived risk prediction models have been developed to provide long-
term risk prediction [42, 45, 48, 49]. Clinicians commonly rely on these models 
to assess long-term risk, because the models provide parameters that are easy to 
interpret, such as odds ratios, relative risks, and hazard ratios [50]. However, these 
traditional models are subject to several limitations. They can, for example, only 
include a small number of risk factors (predictors) and generally do not include 
image-based morphological characteristics [13, 50, 51] nor behavioral risk factors 
(except smoking) or independent genetic factors [43]. Moreover, traditional 
approaches rely on certain assumptions of linearity, thus forcing models to behave 
in a certain way [51]. Often, traditional models are not generalizable across dif-
ferent populations due to the specific characteristics of the cohorts they were 
derived from [13]. This may lead clinicians to over- or underestimate risk for their 
patients [52].

Researchers are now trying to use ML in cardiovascular diseases and stroke risk 
assessment to overcome some of the challenges associated with traditional risk pre-
diction models. ML methods use computational algorithms to relate all or some 
predictor variables of a given set to an outcome variable [50]. Classification and 
regression are the two primary tasks performed by ML-based algorithms [13]. Put 
simply, classification tasks categorize input data into predefined labels or outcomes 
(e.g., event or no event), whereas regression tasks predict some real-valued output 
(e.g., real-valued percentage risk between 0% and 100%). Despite various common-
alities, ML differs from traditional statistical approaches in some aspects [53–55]. 
Contrary to classical statistics, ML is a data-driven approach that does not rely on a 
predefined model and assumption of data normality [53, 56]. Moreover, unlike tra-
ditional statistics which are focused on the “typical patient,” ML is capable of mak-
ing inferences at the individual level, taking into account individual differences in 
the data [53]. ML is also inherently a multivariate approach that can be used to 
analyze complex and heterogeneous kinds of data and incorporate them into risk 
prediction models, making it a promising solution for stroke risk prediction [53, 
54, 57].
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Studies investigating the use of these techniques in cardiovascular diseases and 
stroke prediction indicate that ML-based approaches can boost prediction accuracy. 
A recently published review found that the most common ML-based algorithms 
used in cardiovascular risk assessment are support vector machines, artificial neural 
networks, linear and logistic regression, and tree-based algorithms, such as random 
forests and gradient tree boosting [13]. In their review, Jamthikar et  al. further 
showed that ML-based algorithms performed better compared to traditional 
regression-based methods for risk assessment, and that including both image-based 
features and conventional cardiovascular risk factors drives prediction accuracy. 
Indeed, imaging plays a pivotal role in cardiovascular and stroke risk detection. 
Ultrasound, in particular carotid ultrasound screening, can also easily be performed 
in routine clinical practice—unlike other non-invasive techniques, such as com-
puted tomography or magnetic resonance imaging [47]—making ultrasound an 
invaluable tool for stroke prevention. In line with these findings, Ambale-Venkatesh 
et al. [58] emphasized the importance of subclinical disease markers obtained from 
imaging, electrocardiography, and blood tests. The authors found that ML in con-
junction with deep phenotyping (i.e., multiple evaluations of different aspects of a 
specific disease process) enhanced prediction accuracy of cardiovascular events 
compared to traditional risk scores.

Several other studies provide similar evidence. In a prospective cohort study 
using routine clinical data, for example, researchers compared four machine-
learning algorithms (random forest, logistic regression, gradient boosting machines, 
neural networks) to an established algorithm (American College of Cardiology 
guidelines) for first cardiovascular event prediction over 10 years [46]. Their find-
ings show that ML techniques outperformed the established algorithm, leading to a 
significantly more accurate risk prediction. Similarly, a team of researchers demon-
strated that their hybrid ML approach to stroke prediction significantly reduced the 
false-negative rate in comparison to conventional approaches, while the overall 
error increased only slightly [59]. In addition to increasing prediction accuracy, 
authors also recognize the potential of ML-based approaches to help identify new 
potential risk factors and to generate a better understanding of the role of novel 
biomarkers [59, 60].

5.5	 �From Data-Driven Risk Prediction to Stroke Prevention

Accurate risk prediction allows clinicians and patients to act. Enabled by advances 
in AI technologies that can analyze vast volumes of health data in an efficient and 
accurate manner [4], precision medicine aims to provide treatment and prevention 
tailored to individuals’ variability in genetics, environment, and lifestyle [1]. At 
present, doctors recommend lifestyle changes to their patients, advising them to 
change known, modifiable risk factors to prevent stroke. Yet, their advice often goes 
unheeded. We should eat healthy, refrain from smoking and eschew excessive alco-
hol consumption, exercise regularly, stay hydrated, and the list goes on and on. To 
adhere to all these health-promoting recommendations in a world full of competing 
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priorities, temptation, and imposed restrictions (e.g., financial constraints, poor 
access) may be too much to ask and simply not a realistic goal for many people. 
Earlier work has shown that there are incongruities between what people know they 
should do and their actual health behavior. So even though interventions (e.g., pub-
lic health campaigns) may help to improve people’s knowledge, these interventions 
may ultimately fail to induce, and more importantly, sustain behavior change—a 
phenomenon commonly referred to as the knowledge-behavior gap [61, 62].

Precision medicine is a promising approach to bridge this gap. It enables physi-
cians and researchers to predict more accurately which prevention strategies will be 
most effective for which groups of people [1]. Understanding their natural predispo-
sition to stroke may, in turn, motivate individuals to take on a more active role in 
their own health to reduce their individual stroke risk [14, 63]. In this context, the 
potential of mobile monitoring devices with real-time feedback systems has been 
highlighted as a tool for stroke prevention [10, 60, 64–67]. However, despite the 
promise these novel technologies hold for enabling personalized risk assessment 
and promoting stroke prevention, achieving stroke prevention via these means will 
largely depend on patients’ acceptance and uptake of the technology. Tran et  al. 
investigated chronic patients’ perceptions of wearable biometric monitoring devices 
and AI systems that enable remote measurement and analysis of patient data in real-
time [68]. In addition to capturing the perceived benefits and dangers of using these 
new technologies, the authors also assessed patients’ readiness for using them. 
Their findings indicated that only half of the patients who participated in the study 
viewed digital tools and AI in healthcare as an opportunity, while 11% even consid-
ered them a danger, fearing that these will lead to the replacement of humans. In 
light of these findings, it is not surprising that 35% of patients indicated that they 
would refuse to integrate such devices into their care. More research is needed to 
better understand individuals’ underlying motivations and fears that influence their 
attitudes toward the use of mobile monitoring devices and AI in healthcare. It is 
currently also unclear how well these new tools will be received by healthcare pro-
fessionals. So, while AI-powered technologies are evolving rapidly, providing 
unprecedented opportunities for precision medicine in stroke prevention, the inte-
gration of these technologies into clinical practice raises several questions.

A project that will shed light on some of these questions is PRECISE4Q, a proj-
ect funded under the European Union’s Horizon 2020 Research and Innovation 
Program [69–71]. PRECISE4Q aims to identify and quantify risk factors and indi-
vidual risk factor patterns. To do so, it combines heterogeneous data from a variety 
of sources, including large retrospective longitudinal stroke registry data, biobank 
data, and insurance data. What distinguishes PRECISE4Q from many other efforts 
in the field is its hybrid modeling approach, which combines ML methods and 
theory-driven (mechanistic modeling) approaches to risk prediction. Within the 
course of the project, a Digital Stroke Patient Platform will be established to collect 
and integrate large-scale data sets. This platform will also feature novel hybrid 
model architectures, structured prediction models, complex deep learning and gra-
dient boosting models, as well as Clinical Decision Support Systems (CDSS) for 
stroke risk assessment, treatment outcomes, rehabilitation programs, and a 
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socio-economic planning tool. A thorough validation of the models is planned with 
clinical data generated by prospective clinical studies and retrospective analyses of 
health registries, cohort studies, health insurance data, and electronic health records. 
The CDSS envisioned by PRECISE4Q will allow clinicians to simulate how an 
individual’s stroke risk will evolve and change under different circumstances over 
time. In other words, clinicians will be able to simulate how different risk factors 
(e.g., smoking) will contribute to disease occurrence and how the individual will 
respond to different possible interventions (e.g., lifestyle intervention, medication). 
This will assist them in providing individuals with tailored recommendations based 
on their natural predisposition. For individuals, this means that they will learn not 
only their individual stroke risk but also what they can do to reduce this risk.

Another promising avenue for future research is the use of natural language pro-
cessing to automatically extract information on lifestyle modification assessment and/
or advice in clinical practice from electronic health records [72–74]. Such analyses 
can provide an objective evaluation of current clinical practice and improve our under-
standing of the timing of lifestyle modification and patient, clinic, and provider char-
acteristics that are associated with or predictive of lifestyle modification documentation 
[73]. Understanding how and when clinicians assess lifestyle modification and pro-
vide advice to patients holds important implications for the development of preven-
tion strategies. These insights can inform the improvement of care delivery and 
documentation in practice. Combining tools aimed at understanding current clinical 
practice with sophisticated risk prediction models, such as the ones described earlier, 
constitutes an opportunity to deepen our understanding of stroke prevention.

5.6	 �Technological, Methodological, and Ethical Challenges

Machine learning holds great promise for stroke prevention, yet it is also subject to 
some challenges and limitations. There are three common areas of challenges that cli-
nicians and researchers should be mindful of as they seek to maximize the advantages 
of ML in stroke prevention, and in healthcare more generally: (1) challenges in data 
sourcing; (2) challenges in application development; (3) challenges in deployment in 
clinical practice [75]. Given that patients’ health and well-being are at stake, it is of 
critical importance to investigate the technological and methodological challenges that 
arise at each stage and to consider their potential real-life consequences. It is also 
important to note that challenges occurring at one stage may have consequences for the 
subsequent stages. Challenges and limitations at the stage of data sourcing, for exam-
ple, inevitably affect application development and deployment in clinical practice.

5.6.1	 �Data Sourcing

High-quality big data is key to accurate predictions. To develop ML systems that 
can be deployed in clinical practice, a continuous supply of large datasets is needed 
initially to train, validate, and improve algorithms [3, 76]. Yet, inadequate access to 
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well-established patient and population-based datasets constitutes a major chal-
lenge for many ML-based data scientists and developers [13]. These professionals 
lack access to data partly because effective data sharing is currently not sufficiently 
incentivized by the medical scientific community [3, 10, 13, 77]. International 
research collaborations can help to mitigate this challenge. In the long run, effective 
data sharing strategies also need to be in place to facilitate and incentivize data shar-
ing across institutions.

Another challenge to data sourcing relates to data protection and privacy regula-
tions. Personal data are often subject to protective regulations that may impede data 
sharing. The European General Data Protection Regulation (GDPR), for example, 
entails a comprehensive set of regulations for the collection, storage, and use of 
personal information that will affect AI implementation in healthcare in several 
ways [76, 78]. The GDPR requires that individuals give explicit and informed con-
sent before any organization collects personal data. It also grants individuals the 
right to track what data organizations are collecting about them, and it empowers 
them to direct an organization to discard their data. While these regulations rightly 
aim to protect patient privacy, they of course also impose certain restrictions on 
researchers and clinicians who seek to utilize these data. At present, the long-term 
impact of the GDPR and similar regulations on the implementation of AI in health-
care remains to be seen.

Closely related to data sourcing, data harmonization across different sources can 
also be quite problematic for data scientists. Given that very few studies provide 
comprehensive datasets for large numbers of participants, collaborative efforts are 
currently underway in the scientific community to harmonize and synthesize hetero-
geneous data across studies [79]. However, data harmonization is a time-consuming 
task that demands significant technological and scientific investments [80, 81].

5.6.2	 �Application Development

As outlined in this chapter, there is substantial evidence to suggest that ML-based 
algorithms can provide robust and accurate models for cardiovascular and stroke 
risk assessment, and can often outperform traditional regression-based approaches. 
Yet, there are several potential challenges and pitfalls to be mindful of when it 
comes to developing apps based on these algorithms. One of the key challenges in 
application development is algorithmic bias, which leads to systemic and unfair 
discrimination against certain individuals or groups of individuals [82, 83]. Even if 
no discrimination is intended, we know that the way data is collected, selected, 
prepared, and used to train ML-based algorithms can introduce bias [82]. Datasets 
used to develop stroke risk prediction models may, for example, suffer from missing 
data, misclassification, and measurement error, which can lead researchers and cli-
nicians to make inaccurate predictions for subgroups of patients [84]. In other 
words, bias can occur when data sources do not reflect the true epidemiology within 
a given demographic [75]. As an example, consider that cardiovascular disease is 
often underdiagnosed in women because their symptoms are described as atypical 
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[85, 86]. Using such data to train ML-based algorithms may further reinforce 
this trend.

It has also been shown that ML methods perform poorly on imbalanced datasets, 
as they will be biased towards the majority group [59, 87, 88]. In other words, insuf-
ficient training samples and imbalanced class distribution will limit predictive per-
formance in cases of rare occurrences [89]. In the case of stroke risk prediction, this 
may, for instance, pose limitations when we aim to develop predictive models for 
younger populations since the vast majority of available records likely describe 
older age groups [89]. Even though several balancing techniques have been devel-
oped, it is still a challenge to detect and address this bias in ML models [88].

But what does persistent algorithmic bias mean in practice? Algorithmic bias can 
cause enormous harm and contribute to increasing existing health inequalities in the 
real world [83]. A prominent example is the case of racial bias in commercial algo-
rithms used in the U.S. healthcare system. In their 2019 study, Obermeyer et al. [90] 
found evidence indicating that a widely used algorithm was significantly biased 
against black patients. Due to this racial bias, a significantly lower number of black 
patients were identified for extra care. The authors demonstrated that bias occurred 
because the algorithm predicted healthcare costs rather than illness, not accounting 
for the fact that unequal access to care means that healthcare spending is lower for 
black patients than for white patients. The study carried out by Obermeyer et al. [90] 
serves as a striking example of how ML-based algorithms can reinforce existing 
inequalities and cause harm. It also raises the question: how many biased algorithms 
are still out there operating day in, day out? Importantly, this kind of bias is by no 
means limited to the US or to US race demographics. Similar problems can just as 
well be embedded in European algorithms, hiding similar (or different) kinds of 
social disparity.

5.6.3	 �Deployment in Clinical Practice

Finally, the practical implementation of AI technologies in healthcare is not without 
its own challenges [76, 91]. Trust plays a fundamental role in the implementation 
process. To obtain acceptance, AI-powered tools must first gain healthcare provid-
ers’ and patients’ trust [92]. As a first important step to gaining trust, tools should 
comply with existing data protection requirements and be transparent as to how 
outcomes and recommendations are derived [75]. However, at present, many ML 
models are considered black boxes that do not explain how their predictions are 
derived in a way that humans can grasp [93]. Unlike well-established regression-
based methods where a clear relationship can be observed between the input vari-
ables and the output variable, the internal workings of ML algorithms are not easy 
to interpret for most clinicians [10]. As a result, clinicians may be wary of ML-based 
algorithms and reluctant to adopt them in practice [13]. This may also have to do 
with the fact that clinicians owe their patients explanations as to how certain recom-
mendations were derived. Patients may, in turn, be more likely to follow recommen-
dations regarding stroke prevention if they receive a clear explanation of why certain 
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prevention measures (e.g., exercise regime, medication) are preferable over others 
in their particular situation. Even though concepts like AI explainability, interpret-
ability, and transparency have gained traction in the scientific community, there is a 
need for strengthening cooperation among medical practitioners and data scientists 
to tackle these issues in a collaborative manner [13].

There is also uncertainty regarding who can be held liable for adverse events that 
result from the use of ML-based algorithms. This uncertainty may, in turn, hamper 
trust and impede the adoption of these technologies in practice [75]. This point is 
also linked to clinical validation and efficacy. To foster trust in ML-based algo-
rithms, data scientists and researchers have to show that their algorithms yield accu-
rate predictions and that they can be integrated into clinical practice securely and 
efficiently for the benefit of patients [10]. In the case of stroke risk prediction and 
prevention, this means that novel ML-based approaches will have to compete 
against established models to win over clinicians’ and patients’ trust. Clinicians and 
patients, in turn, will have to exercise good judgment about what and whom to trust.

5.7	 �Conclusion

Novel ML-driven approaches to stroke risk prediction allow researchers to overcome 
some of the challenges frequently associated with traditional risk prediction models. 
Capitalizing on the advantages of ML, physicians, and researchers will also be able 
to predict more accurately which type of interventions will be most effective for 
which groups of people. This will, in turn, help them to provide patients with tailored 
recommendations based on their natural predisposition, empowering them to reduce 
their individual risk of suffering a stroke. Yet, while ML methods offer unprece-
dented opportunities for precision medicine in stroke prevention, several technologi-
cal and methodological challenges remain. As outlined in this chapter, challenges 
can be grouped into three broad categories: (1) challenges in data sourcing, (2) chal-
lenges in application development, (3) challenges in deployment in clinical practice.

Having identified some of the opportunities and challenges of machine learning 
in stroke risk prediction and prevention, it is time to ask ourselves what impact these 
dynamics will have on individuals and the delivery of care, more generally. Even 
though it will certainly take some time before ML-based tools can (at least partially) 
replace established approaches for stroke risk assessment and prevention, we should 
already prepare for the questions that will arise as these applications are broadly 
adopted in practice: how will they impact the doctor-patient relationship? How will 
they affect public trust in the healthcare system? As great strides are made in preci-
sion medicine for stroke, how can we ensure everyone will benefit from these 
gains—what about low- to middle-income countries where stroke incidence rates 
exceed those observed in high-income countries? What about individuals who 
refuse to have their data collected and analyzed? These and several other questions 
raise important ethical concerns that require further investigation. Only by commit-
ting to ethical conduct, methodological rigor, and patient safety will we harness the 
full potential of data-driven predictive modeling in stroke.
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