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2.1  Why the Big Data Revolution?

Machine learning is having a dramatic impact on the way we leverage information 
to make decisions [1, 2]. The success has been obvious in commercial business set-
tings where data from advertising [3], supply logistics [4], and even social media  
[5, 6] is collected and processed in real time, enabling decisions at speeds and scales 
that would be impossible for hired employees. Medical applications present unique 
challenges due to risks but also provide satisfying targets due to the potential for 
improving health outcomes [7–10].

Many steps of the medical decision-making process can benefit from the tools of 
machine learning (Table 2.1). For example, we can consider a common sequence of 
choices made during the course of a medical treatment.

 1. The clinician is tasked with collecting the relevant information.
 2. A judgement about the cause is made based on the information available.
 3. A treatment is proposed when possible.
 4. Response to treatment is periodically evaluated and altered when needed.
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Medical professionals are trained to perform each of these steps taking into 
account what they observe directly or measure, and they then relate that information 
to their own personal experience and the medical research. However, it is worth not-
ing that each of these steps can loosely be associated with a related approach used 
in machine learning techniques which are particularly valuable for large data sets 
and suggest recommendations for complex decision-making problems. For exam-
ple, here we can list four machine learning strategies that can be directly mapped to 
the four steps above to assist the clinician in certain cases:

 1. Feature selection: With enough data, the process of determining which informa-
tion is more or less important can be automated. If the data is difficult or invasive 
to collect, a ranking of the importance can be provided to help the clinician 
choose the best measures to collect for a diagnosis [11].

 2. Factor analysis: Notwithstanding the philosophical arguments of truly establish-
ing cause and effect relationships, much of approach to understand a collection 
of symptoms is finding the underlying factor or factors explaining the symptoms 
presented. This goes well beyond disease diagnosis. Underlying factors may be 
more fine-grained than disease states, or emerge from comorbid diseases—a fac-
tor analysis would be able to identify groups of common concern in an auto-
mated way to allow patients with similar conditions to be grouped and treated 
more effectively [12].

 3. Predictive modeling: The choice of treatment relies on the belief of which option 
is expected to lead to the greatest improvement, while weighing appropriate 
risks. Clinical researchers use statistical models to evaluate the superiority of one 
treatment over another, and in ambiguous cases, medical practitioners also use 
internal estimates of future improvement through their years of medical experi-
ence. However, with larger data sets, such predictions can be explicit and even 
tailored to the particular hospital, patient group, clinician, surgical technique 
using available data on past outcomes to provide an additional point of reference 
to help make a treatment recommendation [13].

Table 2.1 Definitions

Artificial 
intelligence (AI)

The development of computer systems performing tasks commonly 
associated with intelligent beings, either through explicit programming or 
by learning from data

Machine 
learning

A large subset of AI which makes data-driven inferences. Notably, this is 
the area in which the vast majority of AI advances are made

Big data A term to describe the tools and techniques of inference that are particular 
to large data sets, which enable more robust, automated learning

Deep learning Machine learning using multilayer (“deep”) neural networks. Currently the 
state of the art in solving challenging inference problems with large data 
sets by learning intermediate features directly from raw data

TensorFlow, 
PyTorch

The two dominant deep learning frameworks

GPU Graphics Processing Unit. A processor designed to handle graphics 
operations that can be used to dramatically speed up neural network training 
due to the similarly simple, distributed processing needs
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 4. Automated outcome data collection and synthesis: For long-term treatments, 
follow-up is necessary to judge compliance, efficacy, and make adjustments as 
needed. However, visits to the clinic are costly in terms of clinician time and 
associated financial costs. Questions regarding symptoms in a clinical visit can 
be subjective or incomplete, and physical measures may differ based on a variety 
of factors. Sensor technologies exist now which enable convenient, continuous, 
and objective measures of a variety of symptoms, with associated analytics to 
distill the measures to clinically relevant information [14].

In short, machine learning, and the associated use of large data sets to improve 
the process of learning, can augment the process of clinical decision-making. Such 
analytics provide a unique perspective for each decision. Notably, such tools per-
form a similar function to a secondary consult or collective review among clini-
cians, without the associated time, costs, or overhead—enabling rapid, often 
automated assistance to inform medical care.

2.1.1  More Samples, More Features

One of the reasons for the explosion of machine learning is the availability of data 
for training decision-making systems. The amount of data varies along two dimen-
sions that are particularly relevant to learning systems—additional samples and 
additional features. Samples generally represent more examples or cases. Features, 
on the other hand, are new types of information that can be collected for each sam-
ple. Modern technology has made it possible to dramatically increase both dimen-
sions of data to build learning models. More data enable systems to be more capable 
of automated decision-making.

To understand why this is the case, let us begin with a common rule of thumb for 
collected data to train many standard machine learning prediction models.

 
n nsamples features � �2  

That is, the number of samples collected should be substantially greater than the 
square of the number of features. Double the number of features, and so the number 
of samples has to be quadruped, etc. Note this is only a rough “rule of thumb” with 
many exceptions. This is not as critical for some simpler prediction algorithms 
(such as Naive Bayes), but it is reasonably accurate for a number of common 
machine learning models which are sufficiently flexible and powerful to learn for a 
wider variety of prediction problems. Why is this true? That is beyond the scope of 
this chapter, but some motivation is provided in the footnote.1

1 Succinctly, the goal of machine learning is roughly stated as the ability to group similar sample 
points together in a nfeatures dimensional space. Most ways of flexibly grouping points in a 
n- dimensional space require more than n2 parameters (groups of planes, multidimensional ellipses, 
etc.), and a well-known fact of estimation is that you generally need more data points than you 
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The implication of a rule like this is that if there are not many samples, it is nec-
essary to a priori select features for a learning model based on prior experience and 
intuition (which is often built based on prior experience); otherwise, there is not 
enough data for reliable learning. It is this limited hand-selection of features that 
generally leads to weaker performance when more data is available. If a massive 
amount of data can be collected prior to hand-selecting features, the process of 
selecting features becomes automated and in many cases more reliable than per-
sonal judgement.

In fact, the advantage of big data as a tool in medical decision-making primarily 
comes from this ability to automatically select, weigh, and combine features. 
Although many statistical tools have existed which can use features similarly, mod-
ern machine learning approaches built upon these techniques enable a slightly larger 
number of features relative to samples through a variety of strategies. Recall that 
including more relevant features universally improves predictive accuracy—includ-
ing features that may seem irrelevant according to personal intuition. There are 
approaches which stray far from the approach of building a single model. We will 
discuss ensemble learning, which effectively polls disparate machine learning algo-
rithms to arrive at an answer better than any algorithm alone [15]. Similarly, deep 
learning can combine the features present in raw data to create more complex fea-
tures sets that can be leveraged to improve learning [16]. However, both ensemble 
learning and deep learning require a larger amount of data as they are hierarchical 
in nature needing well-trained component models to perform well.

Ultimately, however, even without these recent modeling advances, much of the 
improvement relies on the availability of larger data sets and computing systems 
capable of processing these vast quantities of data efficiently.

2.1.2  Hardware Improvements

The collection and processing of massive data sets has required new paradigms of 
data management. In industry, this has led to the creation of positions for data engi-
neers whose primary role is to collect and manage the acquired data for later 
machine learning researchers and data scientists [17]. In addition to collection, the 
processing tasks are challenging with substantially more data requiring parallel 
architectures for processing, ranging from distribution between machine, cores, or 
even across GPUs for very low-level distributed processing. We will address each of 
these in turn.

Data collection has been made simpler and more standardized through enterprise 
data systems with shared resources. In commercial systems, this has occurred 
through large cloud-based data management architectures with scalable data reposi-
tories and shared processing repositories. To enable efficient use of centralized data 
management systems, virtualization has made it possible to access such systems 

have parameters to estimate, suggesting most learning algorithms require significantly more than 
(nfeatures)2 samples.
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with a variety of tools. Different operating systems, with different analysis tools and 
programming languages, can work in tandem on a shared repository of information, 
significantly speeding up adoption of centralized data management systems. 
Additionally, the ability to allocate a variable number of processors to tasks allows 
not only efficient data storage, but also processing resources which can scale larger 
for data mining and model learning tasks, and scale smaller for daily incremental 
development and deployment tasks.

High-performance computing has also enabled real-time processing tasks over 
terabytes of data. Architectures based on the concept of map-reduce (e.g., Hadoop, 
Spark) speed up queries through separating the computation on different processors 
and/or sections of the data set (map) and combining the results (reduce) [18, 19]. 
With a sufficiently resourced architecture, queries that traditionally would take 
hours or days are shortened to seconds. Tasks that involve preparing data for analy-
sis, including data visualization and cleaning, are significantly sped up using such 
strategies.

One of the most recent advances in machine learning is the supremacy of deep 
learning for complex learning problems such as visual object recognition, speech 
recognition, and natural language processing. Deep learning neural network models 
are capable of learning directly from raw acquired data by building layers of fea-
tures derived from earlier layers. This permits successively more complex feature 
extraction. However, due to the large number of learned parameters, deep learning 
neural networks are particularly resource intensive to train. Luckily, because the 
computations of individual neural elements are relatively simple, it is possible to 
distribute them among simpler processing units. As graphics processing tradition-
ally relied on a large series of fast, simple linear computations, graphics processing 
units (GPUs) were built to efficiently distribute such low-level processing tasks. 
Deep learning neural network frameworks, such as TensorFlow and PyTorch, are 
able to shift processing from CPUs to GPUs with the speed of processing increasing 
by orders of magnitude.

These hardware advances enable large, centralized data repositories with share-
able and configurable processor allocation. Standard data analysis tasks can be dis-
tributed among processors across terabytes of data in seconds speeding data 
preparation and standard analysis approaches. And finally, readily available GPU 
processing has enabled high-speed training of deep learning neural network models 
for progressively more challenging modeling tasks.

2.2  Precision Medicine

The traditional approach to medicine has been to treat patients in a similar manner 
to how all patients with similar causes or measured symptoms would be treated. 
However, this one-size-fits-all approach to medicine has been gradually replaced by 
precision medicine approaches which attempt to tailor prevention, diagnosis, treat-
ment, and evaluation to the particular patient under consideration [20, 21].

2 Big Data in Medical AI: How Larger Data Sets Lead to Robust, Automated Learning…



16

On one extreme for preventative care, advances in genomics provided an ideal-
ized case of data-driven medical intervention. For example, by identifying particu-
lar genetic anomalies, cancer risks can be assessed, and patients can make informed 
decisions to minimize the chance of developing a cancer before any symptoms have 
been identified. However, lifestyle analytics provide an alternate extreme where the 
data may be noisy and causal inferences unclear, but the resolution of advice about 
changing lifestyle may permit improved health outcomes on a massive scale—for 
example, precisely determining what quantity and manner of exercise is ideal for 
each person given their health needs, career requirements, and compliance concerns.

Precision diagnosis and treatment can rely on more than simply demographic 
information to increase or decrease the probability of a particular diagnosis. 
Clinicians are aware that individuals respond to different treatments depending on 
aspects of their physiology, mental health, compliance, and lifestyle. Instead of 
relying on clinician judgement, given these factors to influence how treatment 
choices are selected and presented to the patient, predictive models can be provided 
additional information on the state of the patient to systematically rank potential 
treatments.

Precision evaluation and follow-up depend upon reliable, readily acquired infor-
mation on a subject’s well-being. Reliability can be obtained by more frequent, 
more objective measures. Such information can often be acquired by passively worn 
wearable devices that can measure movements [22]; these devices can range from 
simple consumer step counters and calorie estimators [23–25] to research-grade 
wearables [26, 27] or even smartphones [28–31]. The interpretation of such move-
ments to clinically relevant activities can often require analytics tailored to the indi-
vidual population movements [32, 33] and potentially even the context such as 
at-home versus in the clinic [27, 34]. The convenience of wearable devices and 
other passively recorded health outcome measures has a definite impact on the 
future of medicine.

2.2.1  Challenges and Opportunities Unique to Mental Health 
and Wellness

Mental health has particular challenges in precision medicine. The first distinction 
from physical health is the lack of straightforward physical metrics to measure. For 
example, someone who suffers from depression can readily list a variety of symp-
toms which can be used to make a clinical diagnosis; however, affixing a sensor to 
them to collect data to make as certain of a diagnosis would be challenging.

One way of addressing limited mental health measures is to provide ways of 
allowing people undergoing treatment to periodically self-assess. However, this suf-
fers from a number of drawbacks. First, questions require self-reflection or a recall 
of past experiences, both of which are known to be error, subjective and prone to 
error, or misrepresentation [35]. Additionally, compliance can be challenging, par-
ticularly in the case of individuals whose desire to respond regularly is affected by 
the very mental state that is being assessed.
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Wearable device analytics paired with predictive methods on summary metrics 
prove a potential avenue for real-time assessment. For example, subjects suffering 
from depressive episodes may move less, speak less, and engage in more passive 
forms of entertainment. Any individual measure alone may not provide sufficient 
information for an estimate that a depressive episode occurred, however, taken in 
aggregate in the form of a prediction algorithm they would provide a reliable way of 
probabilistically estimating a depressive episode occurred. This could provide real- 
time scoring and large-scale data collection to assess the efficacy of group therapies 
and construct interventions particular to individual populations.

2.3  Tools for Big Data in Medicine

2.3.1  Standardization Tools

One of the greatest impairments in large-scale machine learning projects is the cap-
ture of data in formats readily available for analysis. This is particularly problematic 
in medical contexts where clinicians in different hospitals may record information 
in ways which are not compatible—for example, using different metrics or different 
units to quantify a given symptom. Even with the same type of data, the electronic 
systems may use different data formats, query languages, or permissions. This het-
erogeneity limits the application of big data for solving more challenging problems 
in medicine.

There are different approaches to standardizing data sets. One is to use a shared 
vocabulary for acquired data. For example, the International Classification of 
Diseases (ICD) and the Systematized Nomenclature of Medicine and Clinical Terms 
(SNOMED CT) are available standards [36, 37]; however, these are limited to fairly 
narrow data sets and terminology. More expansive common data models are being 
developed, including the Observational Medical Outcomes Partnership (OMOP) 
[38]. Notably, the standardization of data fields is not only helpful for big data ana-
lytics approaches. Standardization also enhances the ability for models to be trained, 
validated, and tested in different settings, increasing the level of scientific rigor pos-
sible prior to standardization. In addition to shared standards, shared access to com-
putational tools for data storage, queries, and analytics support the use of centralized 
access of the data collected across institutions. This standardization of data and 
analytics tools enables rapid development and testing of predictive models on 
acquired health data.

2.3.2  Analytics to Leverage Big Data

A variety of machine learning techniques are available to exploit collected data for 
improved understanding; however, a subset of them have been particularly valuable 
in making inferences on large, often noisy data sets as is typical in medical contexts.
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2.3.2.1  Unsupervised and Semi-Supervised Learning Methods
Measuring the extent of diseases or disease progression, particularly with mental 
health, can be challenging. Many more types of information can be collected rela-
tive to the number of individuals participating in the study—this is particularly the 
case with continuously collected observational data (e.g., from wearable devices). 
As discussed previously, in order to make valid inferences, the number of features 
must be reduced when fewer samples are available.

One approach to shrink the number of features in a learning model is to synthe-
size a large number of features into fewer, more reliable aggregate factors. Principal 
components analysis (PCA) and related factor analysis techniques provide one 
means of achieving this; however, a variety of methods now exist to parameterize a 
larger data set with a large number of features into a smaller, more meaningful set 
of features. Some are based on analytical assumptions about the distribution of 
underlying causes, such as with PCA or ICA (independent components analysis), 
while other reductions are made possible through a nonparametric combination of 
features using the hidden layers of neural network models to effectively compress 
the data.

Additionally, one of the challenges in building machine learning models in medi-
cine is properly vetting the quality of decisions the model is using for learning. For 
example, some scoring methods may have low inter-rater reliability and require 
group consensus for high reliability. When high-quality labeled data is scarce for 
training, but unlabeled collected data is plentiful, there are two particular machine 
learning strategies that work well to exploit the large amount of unlabeled data—
anomaly detection and semi-supervised learning. If the positive diagnoses are 
exceptionally rare, and are the main source of “unusual” observations, anomaly 
detection techniques use the deviation from typical to better identify potential future 
cases. However, if there are multiple classes and there is sufficient labeled data for 
all classes being considered, semi-supervised learning techniques provide a means 
of estimating labels for all samples. In label spreading, a standard semi-supervised 
learning technique, the unlabeled samples that are easiest to classify are labeled first 
until all samples have been classified. In general, this allows clusters around labeled 
values in the feature space to be grouped according to similarity, giving standard 
machine learning models access to larger, labeled data sets.

2.3.2.2  High-Throughput Model Selection and Testing
A standard approach to statistical modeling involves selecting the features and sta-
tistical model prior to analysis—this greatly simplified the problems inherent in 
iteratively trying many different models when making statistical inferences. 
However, now there are a wide variety of models with many modeling parameters 
and options, which can all be trivially tried and adapted to each data set by altering, 
in many cases, only a single line of code. For example, the following variations can 
be easily attempted to fit the best model:

 1. Changing the input features through feature selection or feature engineering 
(e.g., dimensionality reduction or clustering).
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 2. Setting hyperparameters of a model (e.g., the degree of a polynomial, the regu-
larization strength of lasso regression).

 3. Selecting different models (e.g., support vector machines vs. random forest).
 4. Combining models through ensemble learning (more in the next subsection).

If we systematically test all these variants on a single set of data, the best fitting 
model would likely overfit. Generally, the most complex models can readily fit a 
given data set for training, but without proper tuning to prevent overfitting, they 
would perform poorly on newly acquired samples.

A regiment of separating the data sets into training, validation, and testing sets is 
standard practice in machine learning, and critical for proper selection among all 
these alternate models and parameterizations. This will be addressed further in Sect. 
2.4.1.1.

Fortunately, each combination of modeling options can be tested independently. 
The space of options can be explored rigorously through a grid search or can be 
optimized adaptively using a variety of available optimization strategies based on 
model performance. Different model combinations can readily be tasked to differ-
ent CPU cores, greatly increasing the opportunity to tune a variety of models for a 
given predictive problem.

2.3.2.3  Ensemble Methods
In predictive analytics competitions, it is not uncommon for competing groups to 
“team up” to improve their predictive accuracy beyond either classifier alone using 
ensemble methods. This is a common enough strategy that many competitions ban 
the practice; however, if the goal is to increase prediction quality, this is precisely a 
strategy worth exploring. Models which may bear no resemblance to each other 
analytically can combine their results to form a prediction which is generally at least 
as good as the best individual model. In fact, this ensemble approach is the basis for 
a very effective predictive model, random forest, which is aptly built from the sys-
tematic combination of predictions from individual decisions trees.

2.3.2.4  Deep Learning
Generally, machine learning algorithms require designers to extract features from 
the raw signals using their intuition or previous experience to identify features 
where a fair amount of the extracted features are at least weakly capable of assisting 
classification. For many problems, this procedure works well—it is the standard 
means of generating predictive models for hundreds of years. However, this require-
ment for human implementation and selection of features is a major impediment in 
many machine learning tasks. Many problems require a complex series of interme-
diate feature combinations which are not readily built by human designers. For 
example, object identification occurs in the brain through a series of processing 
stages moving from simple features to complex feature combinations. Similarly, the 
best performing visual object identification systems also process visual information 
through a series of layers of processing of artificial neurons. The intermediate fea-
tures are often impossible to describe plainly, but such data-driven low-level 
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features are essential for the algorithm to make distinctions in rich, complex, raw 
data sets.

Currently, the field of machine learning has developed many tools related to deep 
learning analytics to speed programming and processing. TensorFlow and PyTorch 
are the de facto standards of frameworks for coding and training deep learning neu-
ral network models. By creating models in TensorFlow or PyTorch, designers also 
benefit from an ability to readily power their models to run on available GPUs for 
significant speed improvements.

Ultimately, these data management and analytic tools provide a great deal of 
power to model designers, particularly for those with access to large data sets.

2.4  Big Data Concerns

Medicine presents a unique set of challenges in the development of predictive mod-
els. There are high stakes in assuring that model predictions not only are accurate in 
the original context but also function robustly in other contexts. In some cases, lives 
literally depend on high accuracy or robust behavior. Beyond concerns of predictive 
ability, the medical data necessary to make such predictions is particularly sensitive 
and personal, requiring extra care to keep it secure. And finally, even with accurate 
models and adequate precautions for individual data security, the results of predic-
tive models can be as biased as the human medical decisions on which they are 
based—care must be taken to avoid systematic bias and identify when particular 
populations may not be adequately represented which affects accuracy as well as 
the potential for bias.

2.4.1  The Need for Proper Validation

Accuracy is paramount in medical decision-making; however, there are a variety of 
factors in machine learning which can affect the accuracy of real-world applicabil-
ity of machine learning models. We address each major concern in turn.

2.4.1.1  Test Models with Separating Training, Validation, 
and Test Sets

When a large number of models are tested, it becomes more critical to have separate 
training and test sets to avoid overfitting which causes both inflated expected perfor-
mance and the selection of models which perform poorer on new data sets. However, 
when an exceptionally large number of models are iteratively tested using a valida-
tion set (a test set used for model selection), as is the case with modern automated 
machine learning model fitting and selection procedures, it is critical to properly 
evaluate any selected model on an independent test set. This is easily automated 
with sufficient data availability, though many cases of applied machine learning 
models do not evaluate their models with proper test sets after model selection. We 
recommend anyone using machine learning approaches to not only consider 
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traditional cross-validation in model selection with a hold-out data set, but also 
consider nested cross-validation techniques to avoid overfitting and reporting accu-
rate quality metrics for the selected, trained models.

2.4.1.2  Assure Samples Adequately Represent the Reported 
Populations and Contexts

Many researchers are aware of the need to have an appropriate representation of 
sexes and races for their results to generalize across the population; however, there 
are a number of other factors to consider that can be equally important for proper 
statistical representation. For example, it may be necessary to design not only a 
model for a particular disease population but also a subpopulation of that group with 
particular characteristics or comorbidities. Similarly, if assessing behavior, it may 
be necessary to acquire data in particular contexts, for example, not only in the 
clinic but also at home.

2.4.1.3  Avoid Contamination Between Training and Test Sets
For proper model validation, the test set should be independent of the training 
and validation sets to avoid inflating reported model accuracy. However, this 
understood rule can often be broken without realizing it. One common example 
of this is having the same subject’s data in both the training set and test set. Even 
if the data samples are independent, the individual may introduce a dependency 
between samples that promote overfitting. This may not be a concern with a 
model that will be trained with an individual’s own data for personal use, but 
most models in medical practice are trained, fixed, and deployed without adapta-
tion to a single individual. For this reason, training and test sets should involve 
separate individuals—commonly performed using subject-wise cross-validation. 
This often leads to lower predictive accuracy which makes it less palatable of a 
result to emphasize in publication, but provides a much more realistic assessment 
of models in a deployed context.

2.4.1.4  Select the Right Performance Metrics
The need for proper metrics to evaluate models is particularly strong in medical 
context and, without proper consideration metrics, can be selected by marketers of 
prediction systems that can border on fraud. For a classic example, a system can 
report a 99% accuracy for tumor detection in radiological scans, but fail to indicate 
the model just naively reports for every scan that no tumor is present, which is accu-
rate for 99% of the population.

Various metrics exist to tease apart the behavior of a system for a clearer estimate 
of efficacy. The classic metrics for binary classification are sensitivity and positive 
predictive value. However, given the increase of multiclass classification problems, 
an introduction and emphasis of recall and precision, their multiclass equivalents, 
may be more appropriate. In cases where it is unclear whether recall or precision is 
favored, F1 score is the harmonic mean of precision and recall. By averaging across 
all classes, average F1 score provides a metric more in line with a sense of practical 
efficacy.
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In regression, many models are designed to optimize mean squared error by default. 
However, there are a variety of other metrics which may be more appropriate. Mean 
absolute error is more forgiving of errors in outliers to better minimize more moderate 
errors. Additionally, there are log error metrics which are best to minimize the relative 
or percent error rather than the absolute scale of errors. For example, a model predict-
ing medical care costs across a wide range of scales would likely benefit from using log 
error rather than mean squared error. A $1000 error in an expensive surgery should be 
penalized less than a $1000 error in low-cost routine care, whereas a 1% error for the 
surgery may be comparable to a 1% error in routine care depending on the use case of 
the cost of care model. The key point is that it may be important to select an appropriate 
metric rather than rely on defaults, as all metrics make assumptions either explicitly or 
implicitly about which errors are more important to improve the model.

2.4.2  Security

Models in medical decision-making often rely on sensitive information that is pro-
tected by various regulations including HIPAA, the Health Insurance Portability 
and Accountability Act in the United States [39], and GDPR, the General Data 
Protection Regulations in the European Union [40], which restrict the ways in which 
health information can be shared. Primary among the protocols for data sharing are 
the information is inaccessible outside the healthcare provider or intended original 
use, and the assumption that analytics and results derived from this data do not 
adversely affect an individual.

For data collected in a hospital setting and saved on centralized hospital servers, 
standard data security concerns are applicable with protocols vigilantly adhered to in 
order to avoid data security breaches. However, as we enter an era of wearable 
devices, phone-acquired data, smart home health, etc., the constellation of “Internet 
of Things” data security can be more challenging. This is particularly relevant as 
users may not be aware of all the inferences that can be made from data they consider 
innocuous. For example, on a mobile phone alone, the accelerometer can be used to 
not only estimate step counts and calories but also predict personal activities such as 
trips to the bathroom or bedroom sleeping habits. For this reason, it is important that 
all information used for medical decision making be collected securely and encrypted 
not only when stored locally but also en route to a centralized repository.

2.4.3  Ethical Challenges

Hardware and analytics advances have led to the potential for powerful and accurate 
automated decision-making; however, there are problems that more powerful pre-
diction algorithms may not only avoid addressing but also make far worse. It is 
important to take the broader context of predictive algorithms into account. For 
example, imagine one group of patients is diagnosed improperly in a systematic 
way (e.g., based on race, sex), which can often occur when decision-making is done 
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by humans with their own implicit biases. Due to the nature of machine learning 
algorithms, the training data in this case will also lead to systematic errors in this 
group of patients. One might naively assume that if we simply remove the label of 
that group from the features a machine learning system can use, that might solve the 
potential for discrimination, but that is not true. Even without use of the group label 
during training or application of a model, or even if it is not collected during the 
training phase, a developed system can become biased against that group by propa-
gating the poor choices that were made in the original data set.

Although humans can report on aspects of their decision-making, and we have 
developed relatively sophisticated means of establishing if someone is biased 
through a combination of nonverbal cues, past decisions, and history, the same level 
of insight is more challenging for automatic decision systems. This is particularly 
true for deep learning neural networks which, though quite powerful for complex 
decision-making, are also more challenging to explain the steps of decision-making. 
Tools are available to observe bias in automated decision-making systems, but this 
requires additional data collection and discussion of fairness using statistical argu-
ments that may not be standard practice in machine learning or clinical teams.

2.5  Conclusion

Medical decision-making has relied on collected evidence and experience to generate 
models to predict outcomes and influence the choice of treatment options. Until rela-
tively recently in history, this process has been limited to human experience and deci-
sion-making; however, the advent of technologies to collect and curate massive data 
sets has led to new capabilities not previously possible. Consumers are observing cars 
that can drive themselves by identifying objects in real-time at high speeds, systems 
that can generate narrative prose and speech which sounds natural, and systems that 
regularly win at strategic games like chess or go. Medicine is currently embracing the 
same big data technologies that enable these feats that were previously thought unique 
to human capability and experience. By leveraging the larger data sets available, sys-
tems can learn to pay attention to relevant features, weigh them, and combine them 
systematically to arrive at more accurate decisions than human decision-making 
alone. This will not only aid clinical research to help provide human-interpretable 
insights to improve standard clinical care as it is practiced today, but it will increas-
ingly be integrated in an automated way to clinical care and early prevention and 
screening, dramatically shaping the practice of medicine going forward.
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