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1Introduction

Fabrice Jotterand and Marcello Ienca

Artificial intelligence (AI) has the potential to transform the delivery and manage-
ment of health care and improve biomedical research. Brain and mental health could 
significantly benefit from this technological transformation. Some of the most prom-
ising applications of AI in brain and mental health include the use of deep learning 
algorithms for early detection and diagnosis, as well as automated learning and the 
infusion of AI capabilities in everyday technologies such as smartphones, assistive 
social robots, and intelligent assistive technologies for continuous health monitoring 
and screening (e.g., Alzheimer’s disease and schizophrenia) or for the assistance of 
psychogeriatric and neurorehabilitation patients. In addition, machine learning (ML) 
can also be used to improve existing neuropsychiatric therapies and allow new indi-
cations for existing drugs and tailor them to the individual patient through precision 
medicine approaches. For example, Watson, an AI-driven question- answering com-
puting system developed by IBM, has proven to make similar treatment recommen-
dations as human experts in 99% of the cases, and in 30% of the cases, Watson found 
treatment options missed by human physicians [1]. In addition, Watson can perform 
tasks such as data integration and aggregation, assessment of patients’ risk to develop 
a particular disease or to require high cost treatment [2].

Further, big data analytics can be helpful to improve the epistemic power of 
neuropsychological explanations and unlock the etiology of brain and mental dis-
orders by revealing relevant patterns across big and heterogeneous data volumes. 
In particular, multidimensional models integrating multiple biomarker data—for 
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example, neuroimaging biomarkers and digital phenotyping data—could help sci-
entists overcome current reductionist approaches based on single explanatory neu-
robiological hypotheses. The automation of healthcare management processes via 
intelligent software to optimize healthcare delivery and reduce administrative cost 
is another promising implementation of AI technology.

The transformative potential of AI in brain and mental health does not limit to 
transforming the mode of generating scientific knowledge or assisting medical 
decision- making. In addition to that, it also portends to transform social and profes-
sional practices. For example, AI could redefine the therapeutic relationship. A 
study performed by researchers from the Dartmouth-Hitchcock health system, the 
American Medical Association (AMA), Sharp End Advisory, and the Australian 
Institute of Health Innovation revealed that physicians spend on overage 27% of 
their total time on direct clinical face time and 49.2% of their time on administrative 
work and Electronic Health Records (EHRs) [3]. The incorporation of AI in medical 
practice could help clinicians spend more time with patients and make health care 
more personal, albeit using more technology [4].

Such promissory outlook, however, has not materialized yet, at least, not entirely. 
The deployment of AI in neurology, psychiatry, neuropsychology, and brain research 
is still limited to sparse domains of application, often with suboptimal outcomes. 
Whether AI will re-humanize or de-humanize health care remains an open question 
as it is too early to understand the real impact long term of AI on clinical practice [5]. 
It is therefore paramount to cast light on emerging AI approaches in brain and men-
tal health and provide an anticipatory impact assessment, with special focus on the 
assessment of emerging technical, scientific, ethical, and regulatory challenges. 
Such assessment is needed not only to chart the route ahead for scientific innovation 
in this domain but also to appraise such innovative dynamics within its broader 
socio-cultural and regulatory context. A broad spectrum of philosophical, ethical, 
regulatory, and social implications is rapidly emerging at the cross-section of AI and 
brain and mental health. Many of these implications have not been assessed in a 
comprehensive and systemic way. To this end, this unique volume provides an inter-
disciplinary collection of essays from leaders in various fields to address the current 
and future challenges arising from the implementation of AI in brain and men-
tal health.

The volume is structured according to three main sections, each of them focus-
ing on different types of AI technologies. Part I, Big Data and Automated Learning: 
Scientific and Ethical Considerations, specifically addresses issues arising from 
the use of AI software, especially machine learning, in the clinical context or for 
therapeutic applications. In Chap. 2 (“Big Data in Medical AI: How Larger Datasets 
Lead to Robust, Automated Learning for Medicine”), Ting Xiao and Mark V. Albert 
review the implications of the use of vast data sets in the context of medical 
research and clinical practice. They show how machine learning strategies can 
assist clinicians in various ways such as helping in the process of automatizing data 
selection for better diagnosis, improving the predictive power of statistical models 
tailored to specific hospitals or patient groups, or establishing the factor(s) that 
explains symptoms. However, Xiao and Albert point out that the collection of 
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massive data sets is not without challenges such as data security, the interpretation 
and validation of data, and the accuracy of automated decision-making. In Chap. 3 
(“Automatic Diagnosis and Screening of Personality Dimensions and Mental 
Health Problems”), Yair Neuman likewise addresses issues related to automatic 
diagnosis and screening but in the context of personality research. Computational 
Personality Analysis, as Neuman puts it, refers to the use of machine learning algo-
rithms to measure variables in personality dimensions and disorders. As one can 
expect, such approach for the diagnosis of mental disorders or antisocial behaviors 
must be scientifically valid, ethically safe, and pragmatically relevant. So while 
“the promise of computational personality analysis is huge,” Neuman concludes 
that the implementations of such technologies must be sensitive and critical to 
some of its challenges such as a good understanding of the complexity of human 
personality in light of the fact that automatic analysis of personality relies on “low-
level features” in its categorization of personality. The other challenge is the fact 
that personality is a cluster of dynamic phenomena difficult to capture without a 
clear sense of the trajectory of the mental state captured. In Chap. 4 (“Intelligent 
Virtual Agents in Behavioral and Mental Healthcare: Ethics and Application 
Considerations”), David Luxton and Eva Hudlicka provide an overview of embod-
ied Intelligent Virtual Agents (IVAs) and non-embodied conversational agents and 
examine the implications of their use in the context of behavior and mental health 
care. In particular, their analysis focuses on concerns about risks associated with 
the breach of privacy, the safety of individuals interacting with IVAs, and the ethi-
cal issues arising from artificial relationships. In Chap. 5 (“Machine Learning in 
Stroke Medicine: Opportunities and Challenges for Risk Prediction and 
Prevention”), Julia Amman examines issues related to the use of risk prediction 
and prevention tools such as novel machine learning-driven methods to reduce the 
global burden of stroke (incidence and mortality rates). There are many advantages 
for physicians and researchers to use such approaches as the increased accuracy of 
their predictions allow them to suggest interventions tailored to the specific needs 
of patients predisposed to strokes. But the implementation of such technology is 
not without challenges and limitations. These include issues of data sourcing, 
application development, and implementation in clinical setting, which, in 
Amman’s estimation, should be fully recognized and addressed in order to benefit 
maximally from ML approaches to stroke predication and prevention. In the final 
chapter of the first section (Chap. 6, “Respect for Persons and Artificial Intelligence 
in the Age of Big Data”), Ryan Spellecy and Emily E. Anderson explore the extent 
to which traditional ways to honor respect for persons (in particular, informed 
consent) are challenged by AI and big data. In particular, they point out that in big 
data models where consent is not practicable due to the high data volume and 
velocity, waiving consent can be tempting for researchers for practical reasons but 
is ethically inadequate. They therefore argue that alternative approaches should be 
explored to hold the ethical standard of respect for persons. According to Spellecy 
and Anderson, “in discussions of ethics of AI and big data health research,” there 
should be “less focus on the technical aspects of informed consent and more imagi-
nation regarding ways to demonstrate respect for persons” (p. 10 manuscript).
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Part II, AI for Digital Mental Health and Assistive Robotics: Philosophical and 
Regulatory Challenges, examines philosophical, ethical, and regulatory issues aris-
ing from the use of an array of technologies beyond the clinical context. In Chap. 7 
(“Social Robots and Dark Patterns: Where Does Persuasion End and Deception 
Begin?”), Naveen Shamsudhin and Fabrice Jotterand look at some of the challenges 
associated with the deployment of social robots for applications in areas such as 
entertainment, companionship, mental health, and well-being. The anthropomor-
phic design of these robots takes advantage of insights gained through human and 
social psychology, communication, and behavior which makes human beings vul-
nerable to manipulation and deception. Using digital media and web technologies, 
dark patterns are developed to deceive people to behave certain ways leading to 
addictive demeanor, hence undermining the autonomy of the users. The authors 
conclude that advances in robotics (i.e., social robots) should move forward but 
without the use of dark patterns. Nicole Martinez-Martin in Chap. 8 (“Minding the 
AI: Ethical Challenges and Practice for AI Mental Health Tools”) directs her atten-
tion to fundamental questions of privacy, bias, and the potential impact of AI in the 
therapeutic relationship within the context of mental health. She contends that 
biases (i.e., systematic errors in a computer system that can cause unfair outcomes) 
may occur in the process of gathering data and health information and/or may 
depend on how algorithms are configured. These biases can cause inequities in the 
delivery of or access to mental health services. However, she also points out that the 
use of AI can be designed to address injustices. Martinez-Martin also examines how 
the implications of AI tools might affect the clinical encounter and provide recom-
mendations for best practices. The use of digital behavioral technology (DBT) in 
combination with deep learning is the focus of Chap. 9 (“Digital Behavioral 
Technology, Deep Learning, and Self-Optimization”), authored by Karola Kreitmair. 
In her analysis, she considers technologies such as wearables, mobile health tech-
nologies, various smartphone apps, and noninvasive neurodevices that collect a 
large amount of data about individuals including brain activity, bodily functions, 
and behavioral patterns. Her analysis shows how the preferred way to process the 
data and make it relevant and useful for self-optimization (for instance, change of 
behavior through neurostimulation) is through an approach to AI known as deep 
learning. However, such technology presents many ethical challenges that are evalu-
ated carefully by Kreitmair. In the next contribution, (Chap. 10, “Mental Health 
Chatbots, Moral Bio-enhancement and the Paradox of Weak Moral AI”), Jie Yin 
provides a philosophical exploration of the implications of the potential use of chat-
bots to enhance behavior in mental health. Hypothetically, her idea would be to use 
“a weak moral artificial intelligence” to enhance cognitive capacities, in particular 
moral deliberation. In principle, if such technology would be available, be safe, and 
respect human agency, it could be used for therapeutic purposes, although Yin 
argues, such approach would undermine essential elements of morality (such as 
motivation). However, she notes that mere philosophical argumentation is not suf-
ficient for a final assessment of a weak moral artificial intelligence. Only once 
empirical evidence is available, we will be able to determine whether this type of 
technology ought to be implemented. In Chap. 11 (“The AI-Powered Digital Health 
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Sector: Ethical and Regulatory Considerations When Developing Digital Mental 
Health Tools for the Older Adult Demographic”), Camille Nebeker, Emma Parrish, 
and Sarah Graham examine the social benefits but also the potential ethical and 
regulatory pitfalls and risks associated with a widespread implementation of AI in 
day-to-day living, including “airline reservation systems, loan eligibility programs, 
college admissions, transportations systems, judicial decisions, and healthcare.” In 
their analysis, they specifically focus on questions associated with the development 
of tools to help elderly people suffering from dementia which raise ethical questions 
regarding informed consent and agency. As more AI tools find their way into the 
marketplace and more data is collected, Nebeker et al. argue that new approaches to 
the governance of these technologies are needed in order to optimize their respon-
sible implementation in the social context. Extra layers of protection should be put 
in place, particularly when dealing with vulnerable population such as elderly peo-
ple with dementia. In Chap. 12 (“AI Extenders and the Ethics of Mental Health”), 
Karina Vold and José Hernandez-Orallo consider the extended mind thesis in the 
context of mental health and in light of AI technology. They examine the use of 
what they call “AI extenders” which is, in their view, different from previous cogni-
tive extension based on simple technologies like a notebook or a smartphone. As 
they note, the “increased use of machine learning, and other functionalities brought 
by artificial intelligence, is importantly different from the kinds of cognitive exten-
sion that preceded it in many ways: these system can perceive, navigate, make com-
plex decisions, understand and produce language, plan, understand emotions, etc., 
all in complex and changing situation”. When applied to mental health to better 
diagnose and treat mental disorders, these technologies offer many opportunities to 
improve care but also raise many ethical challenges carefully outlined by Vold and 
Hernandez-Orallo.

In the final section of the volume, Part III entitled AI in Neuroscience and 
Neurotechnology: Ethical, Social and Policy Issues, contributions examine some of 
the implications of AI in neuroscience and neurotechnology and the regulatory gaps 
or ambiguities that could potentially hamper the responsible development and 
implementation of AI solutions in brain and mental health. The first contribution of 
this section by Pim Haslager and Giulio Mecacci (Chap. 13, “The Importance of 
Expiry Dates: Evaluating the Societal Impact of AI-Based Neuroimaging”) ana-
lyzes the ethical and societal implications emerging from AI-powered neuroimag-
ing. Such technology increases our ability to make predictive inferences about 
mental information and to recognize behavioral dispositions based on brain activity. 
However, Haselager and Mecacci argue that as more advances in AI-powered neu-
roimaging occur, further analysis must take place concerning the future implica-
tions of technologies for brain reading and the evaluative framework used in 
computational processing regarding neuroimaging. To this end, their contribution 
offers some fundamental recommendations for the regulation of the technology 
with a specific caveat: expiry dates for informed consent, data storage, and data 
analysis. In the next contribution, (Chap. 14, “Does Closed-Loop Deep Brain 
Stimulation for Treatment of Psychiatric Disorders Raise Salient Authenticity 
Concerns?”), Ishan Dasgupta, Andreas Schoenau, Tim Brown, Eran Klein, and Sara 
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Goering investigate issues associated with the new generation of deep brain stimula-
tion (DBS)  technology for the treatment of psychiatric disorders that employs arti-
ficial intelligence technologies as a means to “facilitate closed-loop implants that 
are adaptive and continuously modified by neural feedback”. One major issue they 
examine is the impact of closed-loop DBS on authenticity. This chapter provides a 
salient empirical and philosophical analysis of the phenomenological implications 
of closed-loop neurostmulation for neuropsychiatric patients. Next, in Chap. 15 
(“Matter Over Mind: Liability Considerations Surrounding Artificial Intelligence in 
Neuroscience”), Lucy Tournas and Gary Marchant address issues of liability. They 
recognize the benefits of the implementation of AI in the clinical setting for diag-
nostic and therapeutic purposes, but they also point out that there are risks and 
potential harms associated with the collection of neurological health data and an 
eagerness to deploy the technology without a careful consideration of liability con-
cerns. They suggest building a “liability framework” that reconsiders informed con-
sent in light of AI technology, increased education of physicians about AI, and an 
update of FDA regulations to include AI technology. In the last contribution of the 
volume (Chap. 16, “A Common Ground for Human Rights, AI and Brain and Mental 
Health”), Monika Sziron explores international regulations of AI in the context of 
health care and how human rights may be integrated in regulatory frameworks. The 
integration of human rights in international guidelines, however, is confronted to an 
important challenge: There are no agreed-upon international standards that regulate 
health care and AI. As she points out, “as philosophical and ethical environments 
vary across nations, subsequent policies reflect varying conceptions and fulfillments 
of human rights”. She argues that despite this challenge, the development of ethical 
guidelines that encompass human rights may be possible at an international level if 
variations in their application and understanding are carefully acknowledged, which 
provide the common ground necessary to adapt policies and regulations. Finally, the 
epilogue (“Brains, Minds, and Machines: Brain and Mental Health in the Era of 
Artificial Intelligence”) by Marcello Ienca concludes the volume by taking stock 
retrospectively of the work contained in this book and outlining the open challenges 
for future research in this field.

In light of its comprehensiveness and multidisciplinary character, this book 
marks an important milestone in the public understanding of the ethics of AI in 
brain and mental health and provides a useful resource for any future investigation 
in this crucial and rapidly evolving area of AI application.
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2Big Data in Medical AI: How Larger  
Data Sets Lead to Robust, Automated 
Learning for Medicine

Ting Xiao and Mark V. Albert

2.1  Why the Big Data Revolution?

Machine learning is having a dramatic impact on the way we leverage information 
to make decisions [1, 2]. The success has been obvious in commercial business set-
tings where data from advertising [3], supply logistics [4], and even social media  
[5, 6] is collected and processed in real time, enabling decisions at speeds and scales 
that would be impossible for hired employees. Medical applications present unique 
challenges due to risks but also provide satisfying targets due to the potential for 
improving health outcomes [7–10].

Many steps of the medical decision-making process can benefit from the tools of 
machine learning (Table 2.1). For example, we can consider a common sequence of 
choices made during the course of a medical treatment.

 1. The clinician is tasked with collecting the relevant information.
 2. A judgement about the cause is made based on the information available.
 3. A treatment is proposed when possible.
 4. Response to treatment is periodically evaluated and altered when needed.
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Medical professionals are trained to perform each of these steps taking into 
account what they observe directly or measure, and they then relate that information 
to their own personal experience and the medical research. However, it is worth not-
ing that each of these steps can loosely be associated with a related approach used 
in machine learning techniques which are particularly valuable for large data sets 
and suggest recommendations for complex decision-making problems. For exam-
ple, here we can list four machine learning strategies that can be directly mapped to 
the four steps above to assist the clinician in certain cases:

 1. Feature selection: With enough data, the process of determining which informa-
tion is more or less important can be automated. If the data is difficult or invasive 
to collect, a ranking of the importance can be provided to help the clinician 
choose the best measures to collect for a diagnosis [11].

 2. Factor analysis: Notwithstanding the philosophical arguments of truly establish-
ing cause and effect relationships, much of approach to understand a collection 
of symptoms is finding the underlying factor or factors explaining the symptoms 
presented. This goes well beyond disease diagnosis. Underlying factors may be 
more fine-grained than disease states, or emerge from comorbid diseases—a fac-
tor analysis would be able to identify groups of common concern in an auto-
mated way to allow patients with similar conditions to be grouped and treated 
more effectively [12].

 3. Predictive modeling: The choice of treatment relies on the belief of which option 
is expected to lead to the greatest improvement, while weighing appropriate 
risks. Clinical researchers use statistical models to evaluate the superiority of one 
treatment over another, and in ambiguous cases, medical practitioners also use 
internal estimates of future improvement through their years of medical experi-
ence. However, with larger data sets, such predictions can be explicit and even 
tailored to the particular hospital, patient group, clinician, surgical technique 
using available data on past outcomes to provide an additional point of reference 
to help make a treatment recommendation [13].

Table 2.1 Definitions

Artificial 
intelligence (AI)

The development of computer systems performing tasks commonly 
associated with intelligent beings, either through explicit programming or 
by learning from data

Machine 
learning

A large subset of AI which makes data-driven inferences. Notably, this is 
the area in which the vast majority of AI advances are made

Big data A term to describe the tools and techniques of inference that are particular 
to large data sets, which enable more robust, automated learning

Deep learning Machine learning using multilayer (“deep”) neural networks. Currently the 
state of the art in solving challenging inference problems with large data 
sets by learning intermediate features directly from raw data

TensorFlow, 
PyTorch

The two dominant deep learning frameworks

GPU Graphics Processing Unit. A processor designed to handle graphics 
operations that can be used to dramatically speed up neural network training 
due to the similarly simple, distributed processing needs
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 4. Automated outcome data collection and synthesis: For long-term treatments, 
follow-up is necessary to judge compliance, efficacy, and make adjustments as 
needed. However, visits to the clinic are costly in terms of clinician time and 
associated financial costs. Questions regarding symptoms in a clinical visit can 
be subjective or incomplete, and physical measures may differ based on a variety 
of factors. Sensor technologies exist now which enable convenient, continuous, 
and objective measures of a variety of symptoms, with associated analytics to 
distill the measures to clinically relevant information [14].

In short, machine learning, and the associated use of large data sets to improve 
the process of learning, can augment the process of clinical decision-making. Such 
analytics provide a unique perspective for each decision. Notably, such tools per-
form a similar function to a secondary consult or collective review among clini-
cians, without the associated time, costs, or overhead—enabling rapid, often 
automated assistance to inform medical care.

2.1.1  More Samples, More Features

One of the reasons for the explosion of machine learning is the availability of data 
for training decision-making systems. The amount of data varies along two dimen-
sions that are particularly relevant to learning systems—additional samples and 
additional features. Samples generally represent more examples or cases. Features, 
on the other hand, are new types of information that can be collected for each sam-
ple. Modern technology has made it possible to dramatically increase both dimen-
sions of data to build learning models. More data enable systems to be more capable 
of automated decision-making.

To understand why this is the case, let us begin with a common rule of thumb for 
collected data to train many standard machine learning prediction models.

 
n nsamples features � �2  

That is, the number of samples collected should be substantially greater than the 
square of the number of features. Double the number of features, and so the number 
of samples has to be quadruped, etc. Note this is only a rough “rule of thumb” with 
many exceptions. This is not as critical for some simpler prediction algorithms 
(such as Naive Bayes), but it is reasonably accurate for a number of common 
machine learning models which are sufficiently flexible and powerful to learn for a 
wider variety of prediction problems. Why is this true? That is beyond the scope of 
this chapter, but some motivation is provided in the footnote.1

1 Succinctly, the goal of machine learning is roughly stated as the ability to group similar sample 
points together in a nfeatures dimensional space. Most ways of flexibly grouping points in a 
n- dimensional space require more than n2 parameters (groups of planes, multidimensional ellipses, 
etc.), and a well-known fact of estimation is that you generally need more data points than you 
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The implication of a rule like this is that if there are not many samples, it is nec-
essary to a priori select features for a learning model based on prior experience and 
intuition (which is often built based on prior experience); otherwise, there is not 
enough data for reliable learning. It is this limited hand-selection of features that 
generally leads to weaker performance when more data is available. If a massive 
amount of data can be collected prior to hand-selecting features, the process of 
selecting features becomes automated and in many cases more reliable than per-
sonal judgement.

In fact, the advantage of big data as a tool in medical decision-making primarily 
comes from this ability to automatically select, weigh, and combine features. 
Although many statistical tools have existed which can use features similarly, mod-
ern machine learning approaches built upon these techniques enable a slightly larger 
number of features relative to samples through a variety of strategies. Recall that 
including more relevant features universally improves predictive accuracy—includ-
ing features that may seem irrelevant according to personal intuition. There are 
approaches which stray far from the approach of building a single model. We will 
discuss ensemble learning, which effectively polls disparate machine learning algo-
rithms to arrive at an answer better than any algorithm alone [15]. Similarly, deep 
learning can combine the features present in raw data to create more complex fea-
tures sets that can be leveraged to improve learning [16]. However, both ensemble 
learning and deep learning require a larger amount of data as they are hierarchical 
in nature needing well-trained component models to perform well.

Ultimately, however, even without these recent modeling advances, much of the 
improvement relies on the availability of larger data sets and computing systems 
capable of processing these vast quantities of data efficiently.

2.1.2  Hardware Improvements

The collection and processing of massive data sets has required new paradigms of 
data management. In industry, this has led to the creation of positions for data engi-
neers whose primary role is to collect and manage the acquired data for later 
machine learning researchers and data scientists [17]. In addition to collection, the 
processing tasks are challenging with substantially more data requiring parallel 
architectures for processing, ranging from distribution between machine, cores, or 
even across GPUs for very low-level distributed processing. We will address each of 
these in turn.

Data collection has been made simpler and more standardized through enterprise 
data systems with shared resources. In commercial systems, this has occurred 
through large cloud-based data management architectures with scalable data reposi-
tories and shared processing repositories. To enable efficient use of centralized data 
management systems, virtualization has made it possible to access such systems 

have parameters to estimate, suggesting most learning algorithms require significantly more than 
(nfeatures)2 samples.
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with a variety of tools. Different operating systems, with different analysis tools and 
programming languages, can work in tandem on a shared repository of information, 
significantly speeding up adoption of centralized data management systems. 
Additionally, the ability to allocate a variable number of processors to tasks allows 
not only efficient data storage, but also processing resources which can scale larger 
for data mining and model learning tasks, and scale smaller for daily incremental 
development and deployment tasks.

High-performance computing has also enabled real-time processing tasks over 
terabytes of data. Architectures based on the concept of map-reduce (e.g., Hadoop, 
Spark) speed up queries through separating the computation on different processors 
and/or sections of the data set (map) and combining the results (reduce) [18, 19]. 
With a sufficiently resourced architecture, queries that traditionally would take 
hours or days are shortened to seconds. Tasks that involve preparing data for analy-
sis, including data visualization and cleaning, are significantly sped up using such 
strategies.

One of the most recent advances in machine learning is the supremacy of deep 
learning for complex learning problems such as visual object recognition, speech 
recognition, and natural language processing. Deep learning neural network models 
are capable of learning directly from raw acquired data by building layers of fea-
tures derived from earlier layers. This permits successively more complex feature 
extraction. However, due to the large number of learned parameters, deep learning 
neural networks are particularly resource intensive to train. Luckily, because the 
computations of individual neural elements are relatively simple, it is possible to 
distribute them among simpler processing units. As graphics processing tradition-
ally relied on a large series of fast, simple linear computations, graphics processing 
units (GPUs) were built to efficiently distribute such low-level processing tasks. 
Deep learning neural network frameworks, such as TensorFlow and PyTorch, are 
able to shift processing from CPUs to GPUs with the speed of processing increasing 
by orders of magnitude.

These hardware advances enable large, centralized data repositories with share-
able and configurable processor allocation. Standard data analysis tasks can be dis-
tributed among processors across terabytes of data in seconds speeding data 
preparation and standard analysis approaches. And finally, readily available GPU 
processing has enabled high-speed training of deep learning neural network models 
for progressively more challenging modeling tasks.

2.2  Precision Medicine

The traditional approach to medicine has been to treat patients in a similar manner 
to how all patients with similar causes or measured symptoms would be treated. 
However, this one-size-fits-all approach to medicine has been gradually replaced by 
precision medicine approaches which attempt to tailor prevention, diagnosis, treat-
ment, and evaluation to the particular patient under consideration [20, 21].
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On one extreme for preventative care, advances in genomics provided an ideal-
ized case of data-driven medical intervention. For example, by identifying particu-
lar genetic anomalies, cancer risks can be assessed, and patients can make informed 
decisions to minimize the chance of developing a cancer before any symptoms have 
been identified. However, lifestyle analytics provide an alternate extreme where the 
data may be noisy and causal inferences unclear, but the resolution of advice about 
changing lifestyle may permit improved health outcomes on a massive scale—for 
example, precisely determining what quantity and manner of exercise is ideal for 
each person given their health needs, career requirements, and compliance concerns.

Precision diagnosis and treatment can rely on more than simply demographic 
information to increase or decrease the probability of a particular diagnosis. 
Clinicians are aware that individuals respond to different treatments depending on 
aspects of their physiology, mental health, compliance, and lifestyle. Instead of 
relying on clinician judgement, given these factors to influence how treatment 
choices are selected and presented to the patient, predictive models can be provided 
additional information on the state of the patient to systematically rank potential 
treatments.

Precision evaluation and follow-up depend upon reliable, readily acquired infor-
mation on a subject’s well-being. Reliability can be obtained by more frequent, 
more objective measures. Such information can often be acquired by passively worn 
wearable devices that can measure movements [22]; these devices can range from 
simple consumer step counters and calorie estimators [23–25] to research-grade 
wearables [26, 27] or even smartphones [28–31]. The interpretation of such move-
ments to clinically relevant activities can often require analytics tailored to the indi-
vidual population movements [32, 33] and potentially even the context such as 
at-home versus in the clinic [27, 34]. The convenience of wearable devices and 
other passively recorded health outcome measures has a definite impact on the 
future of medicine.

2.2.1  Challenges and Opportunities Unique to Mental Health 
and Wellness

Mental health has particular challenges in precision medicine. The first distinction 
from physical health is the lack of straightforward physical metrics to measure. For 
example, someone who suffers from depression can readily list a variety of symp-
toms which can be used to make a clinical diagnosis; however, affixing a sensor to 
them to collect data to make as certain of a diagnosis would be challenging.

One way of addressing limited mental health measures is to provide ways of 
allowing people undergoing treatment to periodically self-assess. However, this suf-
fers from a number of drawbacks. First, questions require self-reflection or a recall 
of past experiences, both of which are known to be error, subjective and prone to 
error, or misrepresentation [35]. Additionally, compliance can be challenging, par-
ticularly in the case of individuals whose desire to respond regularly is affected by 
the very mental state that is being assessed.
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Wearable device analytics paired with predictive methods on summary metrics 
prove a potential avenue for real-time assessment. For example, subjects suffering 
from depressive episodes may move less, speak less, and engage in more passive 
forms of entertainment. Any individual measure alone may not provide sufficient 
information for an estimate that a depressive episode occurred, however, taken in 
aggregate in the form of a prediction algorithm they would provide a reliable way of 
probabilistically estimating a depressive episode occurred. This could provide real- 
time scoring and large-scale data collection to assess the efficacy of group therapies 
and construct interventions particular to individual populations.

2.3  Tools for Big Data in Medicine

2.3.1  Standardization Tools

One of the greatest impairments in large-scale machine learning projects is the cap-
ture of data in formats readily available for analysis. This is particularly problematic 
in medical contexts where clinicians in different hospitals may record information 
in ways which are not compatible—for example, using different metrics or different 
units to quantify a given symptom. Even with the same type of data, the electronic 
systems may use different data formats, query languages, or permissions. This het-
erogeneity limits the application of big data for solving more challenging problems 
in medicine.

There are different approaches to standardizing data sets. One is to use a shared 
vocabulary for acquired data. For example, the International Classification of 
Diseases (ICD) and the Systematized Nomenclature of Medicine and Clinical Terms 
(SNOMED CT) are available standards [36, 37]; however, these are limited to fairly 
narrow data sets and terminology. More expansive common data models are being 
developed, including the Observational Medical Outcomes Partnership (OMOP) 
[38]. Notably, the standardization of data fields is not only helpful for big data ana-
lytics approaches. Standardization also enhances the ability for models to be trained, 
validated, and tested in different settings, increasing the level of scientific rigor pos-
sible prior to standardization. In addition to shared standards, shared access to com-
putational tools for data storage, queries, and analytics support the use of centralized 
access of the data collected across institutions. This standardization of data and 
analytics tools enables rapid development and testing of predictive models on 
acquired health data.

2.3.2  Analytics to Leverage Big Data

A variety of machine learning techniques are available to exploit collected data for 
improved understanding; however, a subset of them have been particularly valuable 
in making inferences on large, often noisy data sets as is typical in medical contexts.
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2.3.2.1  Unsupervised and Semi-Supervised Learning Methods
Measuring the extent of diseases or disease progression, particularly with mental 
health, can be challenging. Many more types of information can be collected rela-
tive to the number of individuals participating in the study—this is particularly the 
case with continuously collected observational data (e.g., from wearable devices). 
As discussed previously, in order to make valid inferences, the number of features 
must be reduced when fewer samples are available.

One approach to shrink the number of features in a learning model is to synthe-
size a large number of features into fewer, more reliable aggregate factors. Principal 
components analysis (PCA) and related factor analysis techniques provide one 
means of achieving this; however, a variety of methods now exist to parameterize a 
larger data set with a large number of features into a smaller, more meaningful set 
of features. Some are based on analytical assumptions about the distribution of 
underlying causes, such as with PCA or ICA (independent components analysis), 
while other reductions are made possible through a nonparametric combination of 
features using the hidden layers of neural network models to effectively compress 
the data.

Additionally, one of the challenges in building machine learning models in medi-
cine is properly vetting the quality of decisions the model is using for learning. For 
example, some scoring methods may have low inter-rater reliability and require 
group consensus for high reliability. When high-quality labeled data is scarce for 
training, but unlabeled collected data is plentiful, there are two particular machine 
learning strategies that work well to exploit the large amount of unlabeled data—
anomaly detection and semi-supervised learning. If the positive diagnoses are 
exceptionally rare, and are the main source of “unusual” observations, anomaly 
detection techniques use the deviation from typical to better identify potential future 
cases. However, if there are multiple classes and there is sufficient labeled data for 
all classes being considered, semi-supervised learning techniques provide a means 
of estimating labels for all samples. In label spreading, a standard semi-supervised 
learning technique, the unlabeled samples that are easiest to classify are labeled first 
until all samples have been classified. In general, this allows clusters around labeled 
values in the feature space to be grouped according to similarity, giving standard 
machine learning models access to larger, labeled data sets.

2.3.2.2  High-Throughput Model Selection and Testing
A standard approach to statistical modeling involves selecting the features and sta-
tistical model prior to analysis—this greatly simplified the problems inherent in 
iteratively trying many different models when making statistical inferences. 
However, now there are a wide variety of models with many modeling parameters 
and options, which can all be trivially tried and adapted to each data set by altering, 
in many cases, only a single line of code. For example, the following variations can 
be easily attempted to fit the best model:

 1. Changing the input features through feature selection or feature engineering 
(e.g., dimensionality reduction or clustering).
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 2. Setting hyperparameters of a model (e.g., the degree of a polynomial, the regu-
larization strength of lasso regression).

 3. Selecting different models (e.g., support vector machines vs. random forest).
 4. Combining models through ensemble learning (more in the next subsection).

If we systematically test all these variants on a single set of data, the best fitting 
model would likely overfit. Generally, the most complex models can readily fit a 
given data set for training, but without proper tuning to prevent overfitting, they 
would perform poorly on newly acquired samples.

A regiment of separating the data sets into training, validation, and testing sets is 
standard practice in machine learning, and critical for proper selection among all 
these alternate models and parameterizations. This will be addressed further in Sect. 
2.4.1.1.

Fortunately, each combination of modeling options can be tested independently. 
The space of options can be explored rigorously through a grid search or can be 
optimized adaptively using a variety of available optimization strategies based on 
model performance. Different model combinations can readily be tasked to differ-
ent CPU cores, greatly increasing the opportunity to tune a variety of models for a 
given predictive problem.

2.3.2.3  Ensemble Methods
In predictive analytics competitions, it is not uncommon for competing groups to 
“team up” to improve their predictive accuracy beyond either classifier alone using 
ensemble methods. This is a common enough strategy that many competitions ban 
the practice; however, if the goal is to increase prediction quality, this is precisely a 
strategy worth exploring. Models which may bear no resemblance to each other 
analytically can combine their results to form a prediction which is generally at least 
as good as the best individual model. In fact, this ensemble approach is the basis for 
a very effective predictive model, random forest, which is aptly built from the sys-
tematic combination of predictions from individual decisions trees.

2.3.2.4  Deep Learning
Generally, machine learning algorithms require designers to extract features from 
the raw signals using their intuition or previous experience to identify features 
where a fair amount of the extracted features are at least weakly capable of assisting 
classification. For many problems, this procedure works well—it is the standard 
means of generating predictive models for hundreds of years. However, this require-
ment for human implementation and selection of features is a major impediment in 
many machine learning tasks. Many problems require a complex series of interme-
diate feature combinations which are not readily built by human designers. For 
example, object identification occurs in the brain through a series of processing 
stages moving from simple features to complex feature combinations. Similarly, the 
best performing visual object identification systems also process visual information 
through a series of layers of processing of artificial neurons. The intermediate fea-
tures are often impossible to describe plainly, but such data-driven low-level 
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features are essential for the algorithm to make distinctions in rich, complex, raw 
data sets.

Currently, the field of machine learning has developed many tools related to deep 
learning analytics to speed programming and processing. TensorFlow and PyTorch 
are the de facto standards of frameworks for coding and training deep learning neu-
ral network models. By creating models in TensorFlow or PyTorch, designers also 
benefit from an ability to readily power their models to run on available GPUs for 
significant speed improvements.

Ultimately, these data management and analytic tools provide a great deal of 
power to model designers, particularly for those with access to large data sets.

2.4  Big Data Concerns

Medicine presents a unique set of challenges in the development of predictive mod-
els. There are high stakes in assuring that model predictions not only are accurate in 
the original context but also function robustly in other contexts. In some cases, lives 
literally depend on high accuracy or robust behavior. Beyond concerns of predictive 
ability, the medical data necessary to make such predictions is particularly sensitive 
and personal, requiring extra care to keep it secure. And finally, even with accurate 
models and adequate precautions for individual data security, the results of predic-
tive models can be as biased as the human medical decisions on which they are 
based—care must be taken to avoid systematic bias and identify when particular 
populations may not be adequately represented which affects accuracy as well as 
the potential for bias.

2.4.1  The Need for Proper Validation

Accuracy is paramount in medical decision-making; however, there are a variety of 
factors in machine learning which can affect the accuracy of real-world applicabil-
ity of machine learning models. We address each major concern in turn.

2.4.1.1  Test Models with Separating Training, Validation, 
and Test Sets

When a large number of models are tested, it becomes more critical to have separate 
training and test sets to avoid overfitting which causes both inflated expected perfor-
mance and the selection of models which perform poorer on new data sets. However, 
when an exceptionally large number of models are iteratively tested using a valida-
tion set (a test set used for model selection), as is the case with modern automated 
machine learning model fitting and selection procedures, it is critical to properly 
evaluate any selected model on an independent test set. This is easily automated 
with sufficient data availability, though many cases of applied machine learning 
models do not evaluate their models with proper test sets after model selection. We 
recommend anyone using machine learning approaches to not only consider 
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traditional cross-validation in model selection with a hold-out data set, but also 
consider nested cross-validation techniques to avoid overfitting and reporting accu-
rate quality metrics for the selected, trained models.

2.4.1.2  Assure Samples Adequately Represent the Reported 
Populations and Contexts

Many researchers are aware of the need to have an appropriate representation of 
sexes and races for their results to generalize across the population; however, there 
are a number of other factors to consider that can be equally important for proper 
statistical representation. For example, it may be necessary to design not only a 
model for a particular disease population but also a subpopulation of that group with 
particular characteristics or comorbidities. Similarly, if assessing behavior, it may 
be necessary to acquire data in particular contexts, for example, not only in the 
clinic but also at home.

2.4.1.3  Avoid Contamination Between Training and Test Sets
For proper model validation, the test set should be independent of the training 
and validation sets to avoid inflating reported model accuracy. However, this 
understood rule can often be broken without realizing it. One common example 
of this is having the same subject’s data in both the training set and test set. Even 
if the data samples are independent, the individual may introduce a dependency 
between samples that promote overfitting. This may not be a concern with a 
model that will be trained with an individual’s own data for personal use, but 
most models in medical practice are trained, fixed, and deployed without adapta-
tion to a single individual. For this reason, training and test sets should involve 
separate individuals—commonly performed using subject-wise cross-validation. 
This often leads to lower predictive accuracy which makes it less palatable of a 
result to emphasize in publication, but provides a much more realistic assessment 
of models in a deployed context.

2.4.1.4  Select the Right Performance Metrics
The need for proper metrics to evaluate models is particularly strong in medical 
context and, without proper consideration metrics, can be selected by marketers of 
prediction systems that can border on fraud. For a classic example, a system can 
report a 99% accuracy for tumor detection in radiological scans, but fail to indicate 
the model just naively reports for every scan that no tumor is present, which is accu-
rate for 99% of the population.

Various metrics exist to tease apart the behavior of a system for a clearer estimate 
of efficacy. The classic metrics for binary classification are sensitivity and positive 
predictive value. However, given the increase of multiclass classification problems, 
an introduction and emphasis of recall and precision, their multiclass equivalents, 
may be more appropriate. In cases where it is unclear whether recall or precision is 
favored, F1 score is the harmonic mean of precision and recall. By averaging across 
all classes, average F1 score provides a metric more in line with a sense of practical 
efficacy.
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In regression, many models are designed to optimize mean squared error by default. 
However, there are a variety of other metrics which may be more appropriate. Mean 
absolute error is more forgiving of errors in outliers to better minimize more moderate 
errors. Additionally, there are log error metrics which are best to minimize the relative 
or percent error rather than the absolute scale of errors. For example, a model predict-
ing medical care costs across a wide range of scales would likely benefit from using log 
error rather than mean squared error. A $1000 error in an expensive surgery should be 
penalized less than a $1000 error in low-cost routine care, whereas a 1% error for the 
surgery may be comparable to a 1% error in routine care depending on the use case of 
the cost of care model. The key point is that it may be important to select an appropriate 
metric rather than rely on defaults, as all metrics make assumptions either explicitly or 
implicitly about which errors are more important to improve the model.

2.4.2  Security

Models in medical decision-making often rely on sensitive information that is pro-
tected by various regulations including HIPAA, the Health Insurance Portability 
and Accountability Act in the United States [39], and GDPR, the General Data 
Protection Regulations in the European Union [40], which restrict the ways in which 
health information can be shared. Primary among the protocols for data sharing are 
the information is inaccessible outside the healthcare provider or intended original 
use, and the assumption that analytics and results derived from this data do not 
adversely affect an individual.

For data collected in a hospital setting and saved on centralized hospital servers, 
standard data security concerns are applicable with protocols vigilantly adhered to in 
order to avoid data security breaches. However, as we enter an era of wearable 
devices, phone-acquired data, smart home health, etc., the constellation of “Internet 
of Things” data security can be more challenging. This is particularly relevant as 
users may not be aware of all the inferences that can be made from data they consider 
innocuous. For example, on a mobile phone alone, the accelerometer can be used to 
not only estimate step counts and calories but also predict personal activities such as 
trips to the bathroom or bedroom sleeping habits. For this reason, it is important that 
all information used for medical decision making be collected securely and encrypted 
not only when stored locally but also en route to a centralized repository.

2.4.3  Ethical Challenges

Hardware and analytics advances have led to the potential for powerful and accurate 
automated decision-making; however, there are problems that more powerful pre-
diction algorithms may not only avoid addressing but also make far worse. It is 
important to take the broader context of predictive algorithms into account. For 
example, imagine one group of patients is diagnosed improperly in a systematic 
way (e.g., based on race, sex), which can often occur when decision-making is done 
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by humans with their own implicit biases. Due to the nature of machine learning 
algorithms, the training data in this case will also lead to systematic errors in this 
group of patients. One might naively assume that if we simply remove the label of 
that group from the features a machine learning system can use, that might solve the 
potential for discrimination, but that is not true. Even without use of the group label 
during training or application of a model, or even if it is not collected during the 
training phase, a developed system can become biased against that group by propa-
gating the poor choices that were made in the original data set.

Although humans can report on aspects of their decision-making, and we have 
developed relatively sophisticated means of establishing if someone is biased 
through a combination of nonverbal cues, past decisions, and history, the same level 
of insight is more challenging for automatic decision systems. This is particularly 
true for deep learning neural networks which, though quite powerful for complex 
decision-making, are also more challenging to explain the steps of decision-making. 
Tools are available to observe bias in automated decision-making systems, but this 
requires additional data collection and discussion of fairness using statistical argu-
ments that may not be standard practice in machine learning or clinical teams.

2.5  Conclusion

Medical decision-making has relied on collected evidence and experience to generate 
models to predict outcomes and influence the choice of treatment options. Until rela-
tively recently in history, this process has been limited to human experience and deci-
sion-making; however, the advent of technologies to collect and curate massive data 
sets has led to new capabilities not previously possible. Consumers are observing cars 
that can drive themselves by identifying objects in real-time at high speeds, systems 
that can generate narrative prose and speech which sounds natural, and systems that 
regularly win at strategic games like chess or go. Medicine is currently embracing the 
same big data technologies that enable these feats that were previously thought unique 
to human capability and experience. By leveraging the larger data sets available, sys-
tems can learn to pay attention to relevant features, weigh them, and combine them 
systematically to arrive at more accurate decisions than human decision-making 
alone. This will not only aid clinical research to help provide human-interpretable 
insights to improve standard clinical care as it is practiced today, but it will increas-
ingly be integrated in an automated way to clinical care and early prevention and 
screening, dramatically shaping the practice of medicine going forward.
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3Automatic Diagnosis and Screening 
of Personality Dimensions and Mental 
Health Problems

Yair Neuman

3.1  Introduction: Automatic Analysis of Personality

3.1.1  Personality and Diagnosis

The idea of personality [1–6] suggests that human beings, and other nonhuman 
organisms (e.g., [7]), exhibit unique patterns of thought, emotion, and behavior that 
may be used as a kind of a psychological “signature.” These patterns are not unique, 
in the sense that a genetic signature is unique or a fingerprint is unique. For exam-
ple, a person may be characterized as having an introvert type of personality—but 
being introvert does not uniquely characterize that particular individual, as there are 
many other introverts. Although each of us is unique in a very profound sense, the 
idea of personality suggests that we may be characterized by measuring a limited 
number of personality dimensions that are shared by other human beings. Measuring 
personality dimensions can be used for diagnosis or in screening, or in a clinical or 
a nonclinical context.

3.1.2  Diagnosis Versus Screening

The difference between diagnosis and screening should be clarified [8]. The aim of 
diagnosis is to confirm, or rule out, the hypothesis that a specific individual has a 
certain personality dimension. For example, a teenager is sent to a clinical psy-
chologist, after being involved in too many accidents. Reasonably dismissing other 
explanations, the psychologist may hypothesize that the improbable cluster of 
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accidents is indicative of a self-harming behavior. The psychologist may therefore 
use a variety of tools to diagnose the teenager as having some kind of accidental 
personality. By diagnosing this specific individual, the psychologist is trying to 
conclude whether a particular personality, or personality dimension, validly charac-
terizes the teenager. Diagnosis is highly important, as it organizes a cluster of 
behaviors, emotions, and cognitions into an interpretable pattern that may be used 
for prognosis, treatment, and prediction.

Unlike diagnosis, which is focused on the individual, screening is broadly used 
to determine which member of a large group of individuals has the attribute in ques-
tion [8]. In other words, the group—rather than the individual—is the focus of anal-
ysis. For instance, a computer program might automatically screen a large group of 
Facebook users for signs of depression and suicidal thoughts, rank them according 
to their depressivity and risk level, and send the top-ranked individuals a recom-
mendation for an in-depth personal diagnosis. Such automatic screening for depres-
sion has indeed been found to be effective (e.g., [9]), and one may use it in cases 
where personal clinical diagnosis is not easily available, at least in the initial phase 
of a process.

3.1.3  The Clinical Versus the Nonclinical Context

Personality dimensions may have both clinical and nonclinical aspects. The clinical 
context of diagnosis focuses on emotional, mental, and behavioral disorders. In 
other words, the aim of a clinical diagnosis is to determine the presence of a certain 
personality disorder. In contrast, diagnosis in the nonclinical context is broadly used 
to measure the personality dimensions of an individual, for use outside the clinical 
context. For example, one of the dimensions measured by the SWAP-200 personal-
ity test [6] is the narcissistic personality disorder [10]. When imagining a narcissist 
personality, we usually think about an individual with an exaggerated sense of self- 
importance, accompanied by a nonadaptive behavior. However, narcissism is a 
spectrum, ranging from a healthy form of self-love, to a pathological conflict over 
self-value. The typical narcissist has an exaggerated sense of self-importance—but 
narcissism is not necessarily pathological, and identifying and measuring the “soft” 
levels of narcissism may be used for practical purposes. Here are two examples 
where we may be interested in measuring nonpathological versus pathological 
narcissism.

Example 1 An intelligent targeted advertising engine might analyze the texts writ-
ten by its “target” in social media to conclude that she scored highly on both extro-
version and narcissism. In this case, the engine might send her a personalized 
advertisement for a rock-n-roll concert, but when designing the ad text, it might 
place strong emphasis on themes that resonate with an extrovert narcissist 
personality—for example, by appealing to her sense of self-importance (e.g., “The 
Greatest Rock Concert, for the Greatest People”). By first identifying the target’s 
personality dimensions, then appealing to those dimensions at the unconscious 
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level, the engine appears to have better chances of achieving its major aim of “seduc-
ing” the individual to click on the ad.

Example 2 Let us imagine that we are asked to design an automated system for 
determining the risk factor of violent men who might pose a threat to their spouses, 
in order to take preventive steps and reduce the danger of homicide. A forensic psy-
chologist might teach us that one of the dimensions worth examining is pathologi-
cal narcissism—as a man who cannot see beyond his self-centered perspective is 
more dangerous than someone who cognitively, emotionally, and behaviorally 
understands that he is not the center of the universe. The engine that we may build 
should therefore run on data produced by violent men under inspection—such as 
the text messages they send to their (ex-)wives. By analyzing the texts, the engine 
should score the text for signs of pathological narcissism, and using machine learn-
ing (ML) algorithms, we may examine whether narcissism is a risk factor that dis-
tinguishes between dangerous husbands and those are merely “barking” with no 
real danger of “biting.” In this context, of course, great emphasis should be placed 
on the selection and engineering of the appropriate features, as we are not simply 
seeking general signs of narcissism, but signs of pathological narcissism that may 
point to the risk of a potentially harmful husband. In this regard, the success of the 
automatic personality engine is measured by its ability to classify dangerous vs. 
non-dangerous husbands, based on their respective exhibited levels of pathological 
narcissism.

A similar idea may be applied to the context of depression and depressivity as a 
personality dimension. Depression, in its pathological form, is a risk factor for sui-
cide. There are contexts in which we would like to screen for individuals who suffer 
from depression, as they may pose a threat to themselves and to their surroundings. 
To avoid a straw-man type of fallacious reasoning, I must emphasize that I am mak-
ing no argument here about depression and dangerousness. The overwhelming 
majority of depressed individuals would not harm others, or themselves. However, 
in certain contexts, screening for individuals with pathological depressivity and sui-
cidal intentions may save lives, and this is only one example in which computational 
personality analysis may contribute to the field of diagnosis [11, 12]. One manifest 
example is the one of the Germanwings Flight 9525. On March 2015, this Airbus 
plane crashed in the Alps, resulting in 150 casualties. This was not an accident: it 
was deliberately planned and executed by the co-pilot, Andreas Lubitz, who had 
been treated for suicidal tendencies. It was not only an act of suicide, but of murder 
(i.e., homicide-suicide), since by crashing the plane, Lubitz took the lives of many 
innocent people, who paid the price of the failure to screen out individuals such as 
himself, who suffered from suicidal tendencies, from serving as a pilot. As a rule, 
the aviation industry is highly sensitive to the safety of its passengers, as any mis-
take, improbable as it may be, may result in a humanitarian and economic catastro-
phe. The pilots are clearly one of the vulnerabilities of the system, as attested by the 
case of Germanwings Flight 9525. Had they been less zealous in protecting per-
sonal privacy, the German authorities could have used Lubitz’s medical 
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records—coupled with other sources of information—to prevent him from taking 
the lives of so many innocent people. In designing such an alarm system, ethical 
issues could have easily been resolved, and these should not be used to counter the 
necessity of verifying the mental health of pilots.

3.2  Computational Personality Analysis

In the previous sections, I explained the idea of personality, the difference between 
screening and diagnosis, and the expression of personality in clinical and non-
clinical contexts. Traditionally, personality analysis is conducted by a human 
expert or by means of questionnaires that require the voluntary collaboration of 
the person being diagnosed, and the validity of her self-reported personality 
dimensions. However, when massive datasets are involved, the use of a human 
expert and manual data analysis is impractical. Moreover, in such contexts, it is 
usually extremely difficult, if not impossible, to gain the voluntary participation 
of the diagnosed subjects, or a valid measure of their personality dimensions. 
Here we have a clear answer to the questions “Why are automated approaches to 
personality analysis useful for mental health?” and “Why are they preferable to 
conventional (non- automated) approaches?” To clarify these points, let us exam-
ine an example.

It has been recently reported1 that suicides among active-duty members of the 
U.S. Air Force surged to its highest level in over three decades. Given the ratio of 
mental health experts in the U.S. military to active-duty personnel, it is almost 
impossible to diagnose depression among the soldiers in a reasonable space of time. 
Moreover, using questionnaires may be the wrong strategy, as the soldiers may fail 
to answer them honestly, due to lack of self-awareness or fear of being “exposed” 
and dismissed from duty. In such contexts, automated approaches are the only solu-
tion, as they provide a valid means of diagnosing large numbers of people in a very 
short time, by using texts (written or spoken) that they naturally produce. Automated 
systems are therefore preferable whenever human experts cannot provide diagnosis, 
due to the constraints of number or time, or whenever the use of questionnaires or 
other conventional methods is less appropriate.

The same rationale and justification that apply to medical diagnosis also 
apply to the diagnosis of personality through automated tools. Google has 
recently demonstrated2 how an automated system can identify skin diseases—a 
massive, quick, and valid diagnosis that can match the performance of human 
experts. Google justifies the use of such tools by the dearth of dermatologists, 
coupled with the relatively high number of individuals seeking diagnosis and 
treatment—the same justification as the one cited for using tools of computa-
tional personality analysis.

1 https://time.com/5780447/air-force-suicide-surge/.
2 https://ai.googleblog.com/2019/09/using-deep-learning-to-inform.html.
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3.2.1  The Relevance of Computational Personality Analysis 
in the Current Culture

The idea of personality analysis, and automatic personality analysis in particular, is 
particularly relevant for the modern and post-modern societies, where the individual 
has become the focus of interest, and where digital traces of individuals are evident 
everywhere. In the past, the idea of “personalized medicine” was irrelevant, as med-
icine was at an embryonic stage and the individual was not at the center. However, 
today we expect medicine—as an advanced practice supported by a wealth of data 
and technological tools—to address our particular signatures, uniqueness, and 
needs, in a manner that maximizes the effectiveness of diagnosis and treatment. The 
same is true for other fields as well—particularly that of personality analysis.

When the famous Edward Bernays launched a sophisticated pro-smoking cam-
paign for women at 1929, he marketed it under the slogan “Torches of Freedom.” 
Instead of seeing cigarettes as deadly poison, women were encouraged to perceive 
smoking as a feminist and emancipatory act. The campaign was extremely success-
ful, and in retrospect, one may wonder whether the benefits of emancipation were 
worth the price paid by women who have joined the “cancer club.” In any case, 
Bernays’s campaign was extremely clever in its targeting of women instead of the 
public at large—but today, a more individualized campaign would probably have 
been called for. Although women share certain distinct needs and characteristics as a 
group, the unique attributes of each individual woman are such that—as with person-
alized medicine—they should be taken into account for maximum effectiveness.

In sum, although the identification of personality dimensions for any practical pur-
pose is a long-established practice, it has become particularly important in modern- 
day, technologically oriented societies, where it is easier to identify such patterns by 
analyzing the digital traces left by everyone almost everywhere. For this reason, we 
use tools of AI—or more specifically, machine-learning tools—to automatically ana-
lyze the data and perform screening or diagnosis. Computational personality analysis, 
as its name suggests, is the field where methodologies and tools are developed for 
automated analysis of personality dimensions. In the following sections, this general 
approach is presented in a nutshell through a specific example, then elaborated further.

3.2.2  Computational Personality Analysis in a Nutshell

A project in computational personality analysis usually starts with a clear idea of (1) 
Why (i.e., Why do we need automated personality analysis?), (2) Which (i.e., Which 
personality dimensions are relevant for the task?), and (3) How (i.e., How are we 
going to measure the personality dimensions?).

When constructing a system for automatically measuring personality dimen-
sions, we usually use a supervised form of learning, where the ML algorithms are 
trained on a tagged dataset—namely a training set of examples and their  diagnosis/
tag. For example, if we would like to teach the computer to measure depression 
among teenagers, we might provide it with personal text passages (e.g., diary 
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entries) that they have written. After each text is read and scored by several experts 
according to clear criteria, it is given a “depression score,” on the assumption that 
the level of depression evident in the text reveals its author’s depressivity. If possi-
ble, we can even diagnose the people who wrote the texts, and score them on a 
depressivity scale, to validate the performance of our algorithm.

The training set is therefore composed of a set of documents, each scored accord-
ing to the depression level, as measured by the human experts. In a simpler case, we 
do not score the text on a spectrum, and the expert may be required only to tag the 
text as either clinically depressed, or not. In instances where we would like to pre-
dict a continuous score, we use an ML model fit for regression; in categorical 
instances, we use a ML algorithm designed for classification.

There are various ML algorithms for regression and classification—from Naïve 
Bayes, to SVM, XGBoost, and Deep Neural Networks (DNN). The decision as to 
which ML algorithm to use is governed by the particular details of our task and data, 
and usually several ML algorithms are trained and tested on the dataset.

To teach the computer to diagnose depression using texts, we should provide it 
with a set of features that characterize each document. These features, sometimes 
called variables or attributes, are supposed to reveal whether or not the text is indic-
ative of depressivity. There are various features that we can measure in each text, 
and in this case, too, the decision which features to analyze is determined by the 
particular characteristics of the project. For the diagnosis of depression, for exam-
ple, the most intuitive attributes that we may want to measure are content categories, 
such as those we can measure using Empath.3 Let us assume the computer is pro-
vided with the following text, which an expert has tagged as “depressed”:

I’ sad and lonely. No one loves me and I feel abandoned and neglected. Life is hopeless and 
there is no hope, just despair.

This almost caricature-like example clearly represents depressivity—one need 
not be a certified psychologist to see that. After running the text through automatic 
analysis, Empath provides a list of content categories, and the extent in which they 
are expressed in the text. This reveals the following content categories, and the 
extent (i.e., frequency) to which they are expressed in the text:

Content category Score
Shame 2
Negative emotion 1
Body 1
Love 1
Violence 1
Sadness 1
Contentment 1
Pain 1
Emotional 1
Nervousness 1
Cold 1

3 http://empath.stanford.edu/.
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We can see that the content categories identified by the computer can be theoreti-
cally associated with depressivity. The computer than learns that a “depressed text” 
(i.e., a depressed person), at least according to the above example, has a “signature”—
a particular combination of content categories and their “weight” in the text—which 
may be optimally used to classify a text as “depressed” or “nondepressed.”

When fed with enough examples and with the appropriate features, the machine 
learning algorithm learns a model that optimally classifies a text as “depressed” or 
“nondepressed.” To test how well the machine has learned to identify depressed 
texts, we present it with another set of texts, which serves as the test set. The machine 
learning algorithm then uses the model that it built in the previous learning phase to 
identify nontagged texts as “depressed” or “nondepressed.” These are new texts that 
the algorithm has not seen before, and therefore its ability to successfully classify 
the new texts is an indication to the extent in which it can validly classify/diagnose 
a text as “depressed.” At this point, we measure the performance of the model 
through various diagnostic measures—such as precision, and recall—and by vali-
dating the results.

One important way of validation is through the k-fold cross-validation proce-
dure. This procedure aims to address the problem of over-fitting our model to the 
data. In each run of the cross-validation, we divide the dataset into a training set and 
a test set: we train the model on one set and test it on the other, and the performance 
of the model is tested by averaging the results over several runs. If the model per-
forms well, we may apply it in practice, and use it as a kind of a “digital 
psychologist.”

How good is the performance of such computational personality analysis tools? 
In many cases, they provide a highly successful and efficient diagnosis. For exam-
ple, [9] have provided 84% accuracy in diagnosing depression, and current studies 
provide much better results. In a recent study [12], we designed a computer algo-
rithm for identifying a psychopathic signature in texts. The test set included 2333 
texts—only 4% of which were texts with a distinctive psychopathic signature. 
Identifying such a text by chance has a very low probability (p = 0.04), but when 
applying our automated methodology, we were able to identify them with 67% pre-
cision, which is an enormous improvement over the base-rate of “psychopathic” 
texts in the dataset.

Having presented the idea of computational personality analysis in a nutshell, I 
shall now detail and elaborate it in the next section.

3.3  Computational Personality Analysis Further Detailed

For automatically measuring personality dimensions and disorders, we need data, 
which may come in various forms and modalities.

It is generally assumed that the language we use is a window onto our personal-
ity. If someone says: “I’m depressed and lonely,” then given the appropriate context 
of interpretation, we may hypothesize that he is trying to convey his despair, and 
when the incidence of words such as depressed, lonely, helplessness, etc. is mea-
sured automatically, we may score the depressivity level of the text as indicating the 
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depressivity level of its author. However, the person may be joking, or being ironic, 
or simply citing something that he heard from someone else—which is why we 
must also take into account contextual knowledge to gain a valid conclusion about 
the depressivity level as expressed in the text, and whether it truly represents the 
depressivity level of the author. In any event, there is a wealth of evidence that the 
language that we use is an enormously rich mine of information for personality 
analysis. Other sources of information may also be identified and used if possible. 
For example, when analyzing depression among individuals, we may analyze their 
medical records and the visual images they upload to social media. In a past unpub-
lished study, we analyzed the images uploaded to Instagram by young people—
mostly women involved in self-harming behavior. It was clear from the images that 
these young people were depressed and self-harming: dark images, with signs of 
loneliness, blood, and cuts, were everywhere. An automatic image analysis algo-
rithm could have easily classified them. Therefore, when using the term text, I may 
use it in the most generic sense to include visual images, facial expressions, body 
posture, and so on.

It is important to emphasize that when analyzing texts, we use a corpus of per-
sonal texts produced by the individuals. Why is it so important to use such personal 
texts? The reason is that a scientific report is probably not a good source for diagno-
sis, but personal texts—of the sort published in social media, diaries, stories, con-
versations in informal settings—are all better candidates, because in principle, at 
least, they reveal the individuals’ inner life. Thus, if an accountant is preparing a 
financial statement for a company, we should not expect his inner life or personality 
dimensions to be expressed in the statement. However, if she keeps a journal, cor-
responds with others on Facebook, or writes a personal essay, then a personality 
signature should be evident. Gaining access to a personal text is a necessary step. In 
addition, and for the first phase of building a personality analysis system, each text 
is labeled/tagged. There are various ways in which we might do so, for example, by 
asking the subject who completed a personality questionnaire, by interviewing the 
subject, by scoring the text according to well-defined protocol and criteria.

At this point, and for each individual, we should have a personal text and person-
ality tags and/or the specific score she has gained on each of the required personality 
dimensions. The text is then pre-processed, cleaned, and expanded upon using a 
variety of Natural Language Processing (NLP) tools, to prepare it for the main anal-
ysis. For example, we may be interested in analyzing only certain parts of speech of 
the text—such as nouns, verbs, or adjectives—in which case, we would use a Part- 
of- Speech Tagger. Next, various textual features are extracted from the text—such 
as the degree in which the person uses various words or word categories. For exam-
ple, we may use LIWC [13], or Empath, [14] to measure the prevalence of positive 
vs. negative sentiment in the text—since a high level of negative emotion expressed 
in the text may be an important indicator of depressivity. Next, an ML algorithm is 
trained and tested to find the optimal model that can best “predict” (i.e., classify) the 
individuals’ respective personality labels/scores. What do we mean by an optimal 
model? An ML algorithm is basically a sophisticated optimization engine. Given the 
tag of the text and the list of personality features and their score, it builds a 
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classification model that assigns weights to the various features, so the classification 
performance is maximized. For example, the ML algorithm may show us that some 
features that we believed to be valuable in fact contribute nothing to the perfor-
mance, and therefore can be ignored. The selection of attributes or features is there-
fore an important phase in constructing a successful model. Moreover, the algorithm 
can calculate the weights—or “importance”—that should be attributed to each fea-
ture. Different features may have a different predictive value, and the ML algorithm 
knows how to identify it. A computational personality project is ultimately judged 
by its success. The impetus for any given project is the specific of task that we 
would like to perform—such as choosing the best CEOs among many candidates, 
identifying depressed individuals, screening for lone-wolf perpetrators.

If the ML algorithm has produced good results according to some relevant stan-
dards, we can use the system. Deciding what performance is good enough must be 
clarified within a wider context of decision-making. For example, diagnosing PTSD 
through the use of human experts is costly. Let us assume that only 1% of people 
suffering from PTSD are diagnosed in time: if an automated system improves this 
diagnosis rate by 1%, should it be considered effective enough to be adopted? The 
answer depends on the wider context.

This, then, in a nutshell, is the essence of automatic personality analysis. In some 
contexts—the automatic profiling of shooters [15]; the measurement of disorders 
[16]; the screening of suicide ideation [17]; and the measurement of the “Big Five” 
personality dimensions (neuroticism, extraversion, consciousnesses, openness, 
agreeableness)—this general approach seems to work quite well.

In conclusion, here is an example, from a nonclinical context.
Targeted advertising is a type of online advertising that targets audiences with 

certain traits, based on the product or person the advertiser is promoting. By way of 
example, let us assume that we are developing a targeted advertisement engine that 
promotes music concerts. In a past study, in the context of computational personality 
analysis, we found a link between the lyrics of various music genres and certain per-
sonality types [18]. This finding can be used for automatically and optimally target-
ing advertisements, by analyzing texts written by individuals and deciding whether 
they are of the extrovert “Rock-n-Roll” type of person, or the introvert “Mellow” 
kind of personality. For a targeted advertising engine seeking to improve its perfor-
mance, it may be highly informative to know whether a given individual is an extro-
vert or an introvert: if they are an extrovert, the engine might decide to send them an 
advertisement for a rock concert; if they are of the introvert type, they would get an 
advertisement for a mellow jazz show. In this case, determining the correct approach 
to the individual based on their particular personality type is justifiable.

3.4  A Critical Perspective

What are the problems in applying computational personality analysis? First, we 
should be careful when choosing a personality theory and personality dimensions. 
For example, the Big Five is a dogma with many theoretical and empirical problems 
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[19]. (See the paper by [20] for one possible criticism.) Therefore, although it is the 
main theory used in automatic personality analysis, one should critically decide 
whether and when to use it. Given the problem-oriented perspective that I have 
presented, the personality theory and personality dimensions that we choose should 
be carefully selected by their clear relevance to the challenge that we aim to address. 
The fact that the Big Five model is simple and easy to understand does not mean that 
it is relevant everywhere. For example, it is highly questionable whether it is of any 
relevance in the analysis of suicidal intentions. Clearly, one may find a statistical 
correlation between depressivity and neuroticism, since both involve negative emo-
tion. However, the real challenge is not to identify statistical correlations of their 
p-values, but to construct methodologies that are meaningful in real-world chal-
lenges, by using the powerful tools of ML. From algorithmic finance to the auto-
matic identification of lone-wolf perpetrators, one finds almost the same 
methodological criticisms and the same calls for a meaningful, relevant, and reality- 
based approach to the design of intelligent systems. In my experience of academic 
and non-academic/commercial projects to do with automatic personality analysis—
including those in which we measured the Big Five—I must admit that, in hind-
sight, the Big Five model has no significant value for most real-world applications 
that I have encountered.

In the context of identifying suicidal intentions, for example, one may prefer the 
modern psychodynamic approach to personality [21], with its focus on the conflicts 
and defense mechanisms [22] that constitute the human personality. However, the 
psychodynamic approach is also fraught with difficulties, as it was designed for the 
clinical context. In addition, it is very difficult to translate the theory’s ideas into 
measurable features. For example, splitting—seeing the world in binary terms of 
good and bad, black and white—is a primitive defense mechanism that some people 
use in order to cope with their anxieties. You can see it in action when you hear zeal-
ous ideologists—be they Islamic fundamentalists, zealous vegetarians, or fanatical 
BDS supporters—when presenting their worldview.

In some problem-oriented contexts, it may be important to identify the most zeal-
ous individuals—those who see the world in black and white. For example, suppose 
that we are interested in a new European apocalyptic sect similar to the Order of the 
Solar Temple, whose members committed mass suicide. Specifically, we would like 
to know how zealous are its members? In a case of this sort, measuring the degree 
of splitting within the texts (written or spoken) produced by the sect members is 
very important, and although it proved to be a challenge, we have shown that it is 
feasible to measure splitting in a text, and its relevance for the forensic context [23].

In sum, choosing the right approach and the right features is crucial. Now, by 
using specific examples, let me underline the problem of conducting an automatic 
personality analysis without due regard to the pragmatic aspect.

Lone-wolf perpetrators are a pressing issue for law enforcement agencies in the 
United States and in Europe. In a study conducted by [24], the researchers used “A 
unique dataset of 119 lone-actor terrorists and a matched sample of group-based 
terrorists” and compared the prevalence of mental illness (Yes/No) among lone-wolf 
terrorists and group terrorists. They found a significant difference between the two 
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groups in this regard: among the lone-wolfs, the prevalence of mental illness was 
32%, while among “group-based” terrorists it was 3%. The authors concluded that 
“…mental health professionals may have a role in preventing lone-actor terrorist 
attacks” (my emphasis) and that “…screening processes can be carried out by secu-
rity agencies on patients that present similar antecedents and behaviors in medical 
evaluations.” These scientifically invalid—and ethically dangerous—conclusions 
seem to ignore the simple lessons of reasoning, since the question is not whether 
there is a difference between lone-wolf and group-based terrorists, but whether 
mental illness is a significant risk factor and a relevant feature for intervention and 
prevention.

To address this question, one must ask what is the probability of someone engag-
ing in acts of terrorism given their mental illness. The answer is almost nil. It might 
be inferred from the above study that people who suffer from mental illness pose a 
danger to society—but such an inference is scientifically invalid, ethically danger-
ous, and pragmatically irrelevant. Therefore, in the context of personality analysis, 
which is problem-oriented, one should clearly examine whether:

 1. The findings are scientifically valid.
 2. Pragmatically meaningful and usable.
 3. Whether the implications are ethically justified.

3.5  Summary and Conclusions

The above critique is imperative for the reflective scientist, data engineer, or practi-
tioner. However, critical reflections must not mask the achievements and future 
potential of computational personality analysis. Automatic personality analysis can 
have enormous benefits in improving our understanding of people in contexts rang-
ing from screening for mental health problems, to the effective recruitment of 
human resources in companies. This field is still in its infancy, and there are several 
challenges to be addressed:

 1. Most of the approaches to the automatic analysis of personality rely on low-level 
features (such as words), or their simple categorization. However, the complex-
ity of human personality cannot be easily encompassed by low-level features 
alone. There is a need for more sophisticated methods that use deep syntactic- 
semantic analysis and infer personality dimensions through higher and more 
abstract features, that are extracted from the text.

Almost all the studies in the field rely on a tagged corpus, where texts are pro-
duced by individuals who are tagged according to their personality dimensions. In 
some cases, such corpora are extremely difficult to obtain—and even when they are, 
their artificial nature means that they lack ecological validity. In addition, their 
“shelf life” is limited, due to the contextual, dynamic, and changing nature of 
language.
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 2. Personality is a dynamic phenomenon that “lives” in time, and sometimes the 
most important information is identified by analyzing the behavior of personality 
dimensions along the timeline. When trying to identify whether the mental state 
of a teenager is moving toward a tipping-point of despair, for example, we must 
take the trajectory of the mental state into account.

In conclusion, most ML approaches to computational personality analysis adopt 
a “ready-to-wear” approach, whereby ML classifiers are trained, validated, and 
tested on a tagged corpus. However, as with any ready-to-wear approach, this 
approach is limited in its ability to provide the “client” with the best fit. The promise 
of computational personality analysis is huge [25], and addressing the challenge of 
building such a system in vivo requires reflectivity and sensitivity to various issues, 
such as the ones discussed above.
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4Intelligent Virtual Agents in Behavioral 
and Mental Healthcare: Ethics 
and Application Considerations

David D. Luxton and Eva Hudlicka

4.1  Introduction

The past 10  years have witnessed rapid growth in the development and use of 
embodied intelligent virtual agents (IVAs) and nonembodied conversational agents 
(CAs), such as chatbots, and their application in behavioral and mental healthcare. 
IVAs and CAs have been successfully used as coaches to support behavior change 
(e.g., smoking cessation, starting exercise programs, nutrition), to provide support 
for caregivers, and to provide limited treatment functions, in areas where highly 
scripted protocols are applicable (e.g., elements of cognitive behavioral therapy, 
dialectical behavior therapy, or motivational interviewing) [1].

Along with significant new technological development and promising applica-
tions in this area, ethical issues have emerged regarding the most appropriate use of 
this technology. In addition to privacy issues, which are particularly critical in 
healthcare applications, there are issues regarding the safety of persons who interact 
with them. For example, how should an agent handle a situation where the user 
expresses suicidal ideation? Another ethical issue regards the possibility of decep-
tion, in situations when users may not know whether they are interacting with an 
IVA that is autonomous or one controlled by a human.

Our objective of this chapter is to summarize the state-of-the-art in the use of 
IVAs and CAs in behavioral care, and to discuss the range of applications of these 
agents, including their potential use in therapeutic gaming environments and virtual 
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or augmented reality applications. We then discusses the ethical issues associated 
with their use, including ethical considerations associated with artificial relation-
ships, bias (e.g., cultural, demographic, or linguistic implicit biases introduced dur-
ing development), and the black-box problem (lack of transparency regarding the 
agent’s behavioral choices). We conclude with recommendations to begin to address 
these ethical issues.

4.1.1  Technical Overview

Conversational agents (CAs) are software programs that emulate human communi-
cation through verbal dialogue. The most common forms are chatbots that employ 
basic text interface for communication. Speech recognition, natural language pro-
cessing, and speech synthesis technologies can also give CAs ability to conduct 
limited conversations with human users through verbal conversation.

Intelligent virtual agents (IVAs) add more realism to conversational emulation 
through computer-generated, animated, embodied, artificially intelligent virtual 
characters. IVAs can have the visual appearance of humans or any other form, rang-
ing from simple cartoonish characters to highly detailed and lifelike three- 
dimensional forms [1–5]. The visual appearance and the interaction capabilities of 
IVAs vary greatly, and designers can customize them to match the human user’s 
needs and preferences; that is, customize physical appearance and mannerisms, 
speech dialect, use of local colloquialisms, and other characteristics that match 
them to a user’s cultural background, race/ethnicity, gender, or socioeconomic 
status [6].

Conversational agents are most commonly deployed on the Internet, or as per-
sonal assistants such as Amazon’s Alexa, Apple’s Siri, and Microsoft’s Cortana. 
CAs can also be accessed on personal computers, kiosks, and mobile devices (i.e., 
smartphones, tablet computers, and smartwatches) [7], and IVAs are also used on 
the displays of some robots to make them interactive and more personable [8]. IVAs 
are typically deployed as components of tutoring or coaching systems, or as agents 
providing support or guiding the user through some therapeutic protocol in behav-
ioral health technologies. The majority of the behavioral healthcare applications are 
still the research phase.

A significant development in CA and IVA technologies is the addition of capa-
bilities supporting affective interaction [9–15], that is, recognition of the human 
user’s emotions, expression of the agent’s synthetic emotions to the human user, and 
affect-adaptive interaction with the user, including the development of “empathic” 
relationship between the agent and the user [2, 16–18]. Affective-adaptive interac-
tion refers to a human–agent interaction where the agent is able to recognize (some 
of) the human’s emotions, and respond appropriately, thereby exhibiting aspects of 
emotional and social intelligence humans expect from human interaction partners. 
The term “synthetic emotions” refers to models and expressions of emotions in 
machines. The term intends to highlight the fact that machines do not “experience” 
emotions as humans do, but can model (aspects of) affective processing and can 
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display affective expressions using the channels available in the agent’s embodi-
ment, e.g., face, gestures, as outlined above. It is beyond the scope of this chapter to 
describe how synthetic emotions are modeled within agents. A detailed discussion 
of emotion modeling can be found in [1].

In the case of IVAs, embodiment provides specific expressive channels that are 
available to display affective expressions, which the human user perceives as a par-
ticular emotion. For example, a “talking head” agent has two available expressive 
channels: the face (to display facial expressions) and the head (to convey nonverbal 
information via head movement, such as nods or shaking). An agent with the 
embodiment of an upper torso augments these channels with hand gestures and 
upper body movements, and a fully embodied agent then adds body posture and 
full-body technologies mentioned above. Embodied agents thus have the capabili-
ties to communicate affective and conversational states nonverbally, via the avail-
able channels. For example, in response to a human user’s statement such as “I’m 
feeling depressed today” or “I’ve had a rough week,” an affective virtual agent 
might display an expression of caring interest and empathy via facial expression 
(empathic caring), head movement (tilt), hand gestures (open arms), and torso 
movement (leaning forward).

Affective agents may also employ affective user modeling and explicitly model 
synthetic emotions within their architectures, to support affect-adaptive interaction 
and to dynamically produce affectively realistic agent behavior (e.g., [3, 10]) 
Affective user modeling refers to the ability of the agent to represent information 
about aspects of the user’s affective behavior; for example, which events are likely 
to trigger which emotions, how are different emotions expressed by the user and 
how do they influence the user’s behavior.

An essential component of affect-adaptive interaction is the ability of the agent 
to recognize the human interaction partner’s emotions. Emotion recognition involves 
the collection of user data reflecting his/her emotional state, such as facial expres-
sions, head movement, hand gestures, posture and body movement, as well as 
speech prosody and physiological data such as skin conductance. Pattern recogni-
tion classification algorithms and machine learning are then used to map the data 
onto a set of emotional states. Currently, emotion recognition techniques are able to 
recognize the “basic” emotions (e.g., fear, anger, sadness, and happiness) with accu-
racy rates approaching those of humans [19], and progress is being made in the 
ability to recognize nuanced and complex emotions, such as guilt, shame, and pride 
[20]. Nonetheless, recognition of naturalistic emotions (i.e., emotions displayed in 
non-laboratory settings and during unconstrained interactions) is more complicated 
and remains one of the significant challenges in emotion recognition research [19].

Together, these capabilities enable the agents to display aspects of emotional and 
social intelligence (e.g., awareness of social cues and user goals) and allow them to 
adapt to the changing states and needs of the human users. This, in turn, contributes 
to the development of what the human user perceives as a supportive, understand-
ing, and empathic human–agent relationship. The existence of such has been shown 
to improve user engagement and thus make the agents more effective in their tasks, 
for example, behavior change coaching or providing support [1, 14, 17, 18, 21].
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4.2  Practical Applications in Healthcare and Benefits

4.2.1  Use in Care Settings

Conversational agents provide many potential benefits, including the capability to sup-
port clinical care and provide health behavior coaching [22–25]. In terms of the more 
straightforward logistical benefits, CAs offer 24/7 availability and availability in remote 
areas where access to mental health professionals may be limited. Because IVAs have 
the ability to engage in naturalistic interactions with humans through dialog and non-
verbal expression, interaction with them requires minimal training or no training at all 
on the part of the human user, again enhancing accessibility and usability. The ability 
to interact with human users who do not have prior training is especially beneficial for 
populations such as children, the elderly, and individuals with disabilities [1].

A major benefit of using conversational agents and virtual embodied agents is 
their ability to provide an interactive and engaging experience, and make users feel 
understood, while also reducing social anxiety [26–29]. For example, Bickmore and 
colleagues [30] tested a virtual nurse named “Elizabeth” that helped patients to 
understand hospital discharge information such as follow-up care and medication 
requirements. Displayed on a touchscreen, the virtual character used a synthetic 
voice to speak, and displayed animated nonverbal behavior (e.g., facial expressions, 
hand gestures, shifts in posture). Evaluation of user satisfaction revealed that 
patients preferred to receive the discharge planning information from the virtual 
nurse versus a doctor or nurse because it spent more time with them and never 
seemed rushed by other demands.

In another study, Mccue and colleagues [31] tested the use of CAs in treating 
patients with chronic pain and depression in inner city outpatient clinics and found 
that persons who interacted with a CA reported full compliance with the CA sug-
gestions to reduce stress as well as high degree of compliance (89%) with healthy 
eating suggestions. Furthermore, 78% said they trusted the ECA “very much” and a 
significant subset of the participants (44%) indicated that they would prefer interac-
tion with an EVA over interaction with a clinician. While results support the use of 
CAs and IVAs for these purposes, further validation is needed to assess for whom 
and when these agents are most appropriate.

4.2.2  IVAs in Serious Games

In addition to deployment as standalone agents or as components of an interactive sys-
tem, IVAs can also be incorporated into computer games as non-playing characters. 
This is the case for both games designed for entertainment and serious games, includ-
ing games developed for training and learning purposes, and to support psychotherapy 
(e.g., provide opportunities for the practice of specific skills, such as conversational 
skills to address social anxiety). Games have a unique ability to engage the players and 
to provide highly immersive learning, training, and therapeutic environments that can 
be customized to the user’s specific learning needs or therapeutic goals [1].
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Serious games represent the fastest-growing segment of the global gaming mar-
ket [32]. Just as with games for entertainment, serious games typically include a 
game “storyline,” which evolves across distinct physical contexts within the simu-
lated game world [23]. Serious games also involve multiple nonplaying characters 
(NPCs) and different tasks that the player aims to achieve as she or he progresses 
through game levels. The skills to be learned and practiced by the player are embed-
ded within the gameplay, and levels of the game provide progressively more chal-
lenging tasks. Depending on the type of training, coaching, or task to be learned, as 
well as on the age and abilities of players, the gameplay may focus on the “serious” 
task, or it may incorporate these tasks with segments of gameplay designed only for 
entertainment. The latter is more common for games aimed at children and younger 
users. Games provide an opportunity to create highly customized learning, training, 
and therapeutic environments and protocols.

Game developers can customize the storyline, gameplay levels, the NPCs, and 
the reward structure to provide an optimum training and learning experience for the 
user. As we noted previously in this chapter in regard to IVAs, the NPC appearance 
and behavior can be designed to match players’ individual and cultural preferences 
as well as specific learning and training needs. Both of these technologies men-
tioned above take advantage of two innate human needs and capabilities: the desire 
and ability to “connect” (i.e., to attach) emotionally and the desire and need to “play.”

One example of a serious game with embodied virtual agents (EVAs) is Ricky and 
the Spider (https://www.rickyandthespider.uzh.ch/en.html). Developed at the 
University of Zurich and intended for children ages six through 12 with OCD, the 
game integrates evidence-based CBT techniques. The game is intended to be played 
under the supervision of a human therapist and includes a psychoeducation component 
(i.e., information about OCD symptoms, techniques to reduce symptoms, and elements 
of controlled exposure therapy) and EVAs that model persons with OCD symptoms as 
well as provide therapeutic support. The agents help children to address their symp-
toms in a fun, interactive environment by leveraging their desire to game play.

In summary, IVAs are emerging as a useful technology to assist and augment 
tasks typically carried out by human care providers. Evidence of their effectiveness 
is also growing; however, reviews of studies testing clinical applications of IVAs 
have emphasized the limitations of the existing research and the need for trials that 
examine efficacy and safety [33–35]. Most published studies are quasi- experimental, 
involving the testing and evaluation of CAs by users and only a few randomized 
controlled trials (RCTs) of interventions delivered by IVAs have been reported in 
the literature (e.g., [36, 37]). As we noted earlier, further validation studies are 
needed to determine for whom and when these agents are most appropriate.

4.3  Ethical Issues

As can be expected, the introduction of advanced technologies such as IVAs also 
raises several ethical issues. These span the range from privacy concerns, through 
questions regarding client safety, to the much more complex matters of artificial 
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empathy and artificial relationships. In this section, we discuss some of the catego-
ries of ethical issues that need to be addressed by both the clinical and the technical 
communities involved in developing and using IVA technologies in behavioral health.

4.3.1  User Safety

With increased use of intelligent autonomous or semi-autonomous systems, there is 
a potential risk of harm to people if a system does not adequately address situations 
when a user needs immediate crisis support or if other action related to safety is 
required. Consider the following scenarios where a person is seeking counseling 
from an online chatbot. A person seeking help for depression discloses they are 
experiencing suicidal thoughts and have a plan to end their life. A person seeking 
relationship counseling discloses that they would like to kill their spouse. A person 
completing a health assessment indicates that they are suddenly having radiating 
chest pains. What should the chatbot program be required to do?

Designers of autonomous and semi-autonomous systems that interact with peo-
ple should consider giving agents the capability to detect these types of risks and 
take appropriate action. In some scenarios, the detection of threat could be auto-
mated by the system, which could then respond in an appropriate manner, for exam-
ple, to immediately display available resources to the user (e.g., suicide prevention 
hotline) or to contact a specific person (relative, psychotherapist, or another pro-
vider). Procedures for keeping a human-in-the-loop, when feasible, represent 
another approach toward addressing this issue [6]. That is, when threat is detected, 
a human can review the information and then, if appropriate, contact the user and 
directly intervene or make an appropriate referral.

Presently, IVAs and online chatbots are generally considered to serve as “coaches” 
and not replacements for healthcare professionals. Therefore, many of the ethical and 
legal requirements that human healthcare professionals are expected to follow, such 
as duty-to-warn, may not seem to apply. However, in user safety scenarios such as 
those we describe in this section, and as these technologies become more accepted 
and commonplace, it is conceivable that the same ethics and legal requirements 
expected of human professionals will become increasingly important. It is, therefore, 
essential that developers and administrators of these systems provide adequate infor-
mation to patients regarding the scope of use, risks, limits, and expectations.

4.3.2  Risks Associated with Overreliance on Technology

Another potential risk to users is overreliance on technology (CAs or IVAs) and the 
assumption the technology is adequately addressing their healthcare needs. While 
the use of CAs for counseling may be appropriate for some cases, their use may not 
be appropriate for more severe or comorbid health conditions when the user should 
seek the advice of a professional healthcare provider. Luxton [38] has highlighted 
the problem caused when virtual care systems are inadequately controlled based on 
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the scope of their tested capabilities. Services accessible on the Internet or on mobile 
apps, for example, that claim to provide particular clinical services or benefits may 
not be adequate or appropriate to do the services they are purported to provide.

Here, again, the system developers and administrators (i.e., the company or gov-
ernment organization making the service available) should include an explicit warn-
ing to the user, and outline circumstances under which the help of a healthcare 
professional should be sought, rather than reliance on the technology. Furthermore, 
this problem could be at least partially addressed by requiring system developers and 
administrators to show users the “credentials” of the virtual care providers. These 
credentials may include information about how the technology was developed based 
on evidence-based clinical practices, how the system was tested, and how it is updated 
and monitored. Furthermore, end-users should also be provided with the means to 
voice any concerns regarding safety or quality of services provided by virtual care 
providers and to have those issues appropriately reviewed and resolved [38, 39].

4.3.3  Risks to Privacy

Just as with any other technology that collects and processes health data, the use of 
CAs has the potential to increase the risk for misuse of user information and data 
breaches. Given that our thoughts and emotions are the most personal and private 
aspects of our lives, the development and use of technologies that sense, infer, or 
track our emotions, therefore, create significant ethical challenges [1, 38]. User 
modeling and especially affective user modeling presents an ethical challenge 
because the models may contain the most guarded personal information about the 
users: the emotions they feel, including “undesirable” emotions and the events that 
trigger those emotions, including triggers that may be considered inappropriate by 
others [1]. This is especially the case in any behavioral health applications where 
the users may be addressing a particularly painful experience, or reveal issues, 
thoughts, and emotions that could have adverse repercussions if they were made 
public or disclosed to other parties (e.g., employers, insurance companies). Luxton 
[38] also emphasizes that the risks to privacy resulting from the use of virtual care 
providers extends to abuse by governments or other entities who wish to control 
individuals for political reasons or suppress dissent. Hackers also present a risk and 
could potentially exploit sensitive data of users.

Consider a situation where a member of a company’s executive team is seeking treat-
ment for substance abuse via an IVA due to privacy concerns and the possibility that 
sensitive information, if compromised, could harm her career and reputation, or poten-
tially information could be used for malicious purposes by a competitor. Again, appro-
priate disclosures and descriptions of privacy measures should be provided to the users, 
and, of course, the software should employ state-of-the-art methods for ensuring pri-
vacy, including encryption and local storage of sensitive data. In situations where it 
might be necessary to disclose personal data, such as for insurance reimbursement or to 
share records with other medical providers, the user should be provided with complete 
description of the protocols governing such disclosures and have the choice of opting out.
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4.3.4  Deception

Deception occurs when the users may not know whether they are interacting with a 
human who’s controlling the IVA, or whether the IVA is autonomous [38, 39]. 
Miller [40] and Riek and Watson [41] have described this as “Turing deceptions,” 
whereby a person is unable to determine whether they are interacting with a machine 
(i.e., software program) or not. This creates an ethical problem, especially when 
working with intellectually challenged and psychologically vulnerable persons [8] 
and represents an active area of research (e.g., [42]). For example, some types of 
patients, such as those with dementia or delusional or psychotic psychopathologies 
may be especially at risk of harm if they experience challenges discerning a machine 
from a real person [24]. In all healthcare situations, disclosure regarding the control 
of the machine’s behavior (autonomous or human-controlled) and informed consent 
regarding the service to be provided are prudent ways to address this issue.

4.3.5  Artificial Relationships

Modern IVAs can have the appearance of empathetic concern that is highly interac-
tive and human-like. Even when a patient is consciously aware that a care provider 
is an artificial agent (i.e., CA or IVA) running as a simulation on a computer, the 
patient can be expected to experience intense emotions during the interaction and 
may develop feelings about, and attachments to, the simulated agent. Even when 
disclosure is made that the system is “just a machine,” some patients may believe 
that the machine is “alive.” Relatedly, there is the issue of when the artificial rela-
tionship with an agent should end. We demonstrate these issues with the following 
example vignette.

Mrs. T is an 85-year-old widow, with mild to moderate vascular dementia, who 
recently moved to a nursing home from her residence. She reluctantly agreed to 
move at the strong urging of her three adult children, who all live more than 
1500  miles away and, therefore, cannot visit frequently, and who were worried 
about her safety.

Three weeks after moving to the facility, Mrs. T developed symptoms of depres-
sion and was diagnosed with a depressive disorder. Although a low dose of an SSRI 
medication alleviated the symptoms, Mrs. T continued to experience intense periods 
of sadness and continued to isolate in her room and not take part in the social activi-
ties offered by the nursing home.

The nursing home facility where Mrs. T now lives is one of the sites for a National 
Institutes of Health-funded study exploring the effectiveness of IVAs as social com-
panions for the elderly. Mrs. T’s two sons and daughter, as well as her long-time 
primary care physician, were consulted regarding her possible participation in the 
study, and all agreed that this would be a good idea. Mrs. T was informed of the 
possibility to participate in the 6-month study, and also agreed, albeit somewhat 
reluctantly. Informed consent process was completed by study research assistance. 
The effects of her dementia resulted in some short-term memory loss, the condition 
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was not so far advanced as to affect her judgment, and she was considered fully 
capable of understanding the informed consent form.

Informed consent was administered by one of the study research assistants, 
which included a detailed description of the study, and informed Mrs. T that the 
verbal interaction between her and the IVA companion would be recorded and ana-
lyzed by the study staff and that her mood data would be collected. The mood data 
collection consisted of a daily mood tracking and a weekly administration of a mod-
ified version of the PHQ-9.

The study involved three 1-h sessions with a social, relational agent acting as a 
companion. At study onset, Mrs. T acknowledged that she was fully aware that the 
IVAs are computer-generated, have no emotions or capacity for such, even though 
the virtual companion can display facial expressions corresponding to the basic 
emotions. It is also able to conduct a limited dialog in natural language, which 
revolves around simple questions regarding Mrs. T’s well-being. The IVA’s func-
tionality includes the ability to convey empathic expressions (verbal and nonverbal) 
to Mrs. T when she expresses sadness or feelings of loneliness.

Three weeks following the enrollment in the study, Mrs. T’s mood began to 
improve. She began to look forward to the visits with the IVA, and her enjoyment 
was evident by her observable behavior (facial expressions and verbalizations). She 
also became increasingly relaxed with the IVA, and began to share more of her 
thoughts and feelings with it.

Five weeks after enrollment, Mrs. T began to ask for more extended and more 
frequent visits. She also asked whether the IVA could remain with her. After the 
researchers told her that this was not possible due to study protocol, Mrs. T expressed 
disappointment, sadness, and some frustration. The study staff then began to observe 
that she began to withdraw and expressed angry feelings to IVA.

The study staff analyzing the verbal data also noted that she was telling the vir-
tual companion that she was angry at her children for putting her in the nursing 
home. Both the frequency and the intensity of these feelings began to increase rap-
idly after Mrs. T was told that she could not spend more time with the virtual agent.

Although constructed for illustrative purposes, the situation represented by this 
vignette is well within the realm of possibilities given the rapid expansion of these 
technologies into behavioral healthcare. As can be seen from the example, numer-
ous complex and as yet unresolved ethical issues arise as we begin to venture into 
the realm of empathic agents and artificial relationships with such agents. Significant 
research and changes in the administration of healthcare services will need to take 
place to begin to adequately address these issues.

4.3.6  Bias in Design

As we noted earlier, developers can design IVAs to have changeable physical 
appearance and mannerisms, speech dialects, use of local colloquialisms, and other 
characteristics that make them consistent with a user’s cultural background and 
preferences. The goal of these variations in the agent’s appearance and behavior is 
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to help establish rapport with users, enhance engagement, and thereby help improve 
adherence to treatment and health outcomes [38]. The design of the IVA appearance 
and behavior is, however, susceptible to biases. For example, an IVA design may be 
based on a particular race or ethnicity that is not representative of the users who are 
intended to interact with it. Thus, designers must carefully consider the users’ pref-
erences and the context of use during the development and deployment process.

IVAs also employ a knowledge engine with information that it uses in conversa-
tion to enable it to recognize and reason with information. This knowledge base, 
and how an IVA may produce new knowledge through machine learning, is suscep-
tible to bias that may not be as obvious as overt physical biases. Algorithmic bias 
occurs when a computer program makes systematic and repeatable errors that lead 
to unfair outcomes, such as when privileging one group of users over others [43]. 
The causes of algorithmic bias may include problems with missing data, small sam-
ple size and underestimation, persons (i.e., patients) not identified by algorithms, 
and misclassification and measurement error. Moreover, the values of the program-
mers and organizations collecting, choosing, or using data to train the algorithm 
may also introduce bias [43].

Take, for example, an IVA app intended by its developers to provide counseling 
for persons with depression across multiple countries around the world. Even when 
the well-intentioned programmers used translators to develop the IVA’s natural lan-
guage dialogue, they may not have built the underlying conversational and knowl-
edge engine components with adequate attention to the cultural contexts and 
nuances applicable in the target areas of use. The developers may have also designed 
the system to learn the patterns and preferences of its users through interaction with 
them over time via machine learning. If particular behavioral characteristics of end 
users are not adequately factored into in the design of the system due to statistical 
underestimation, for example, the IVA system may adapt in a less than optimal way, 
leading to unsuitable counseling recommendations and low user satisfaction with 
the system. Thus, the deployment of this IVA app may result in inequitable and 
unfair outcomes for particular end user groups. It is therefore essential that design-
ers consider and test for potential biases before deployment of systems, and monitor 
for them afterwards.

4.3.7  Black-Box Problem

The complexity of the AI algorithms that make CA and IVAs possible can make 
them seem like a mysterious black-boxes when the algorithms associated with their 
decision-making and behavior are not easily audited or understood by humans [6]. 
For example, the use of sophisticated, multi-layer neural networks and distributed 
knowledge bases can result in complexities that humans cannot easily visualize or 
grasp conceptually.

Liability risks may increase considerably with the use of highly autonomous 
CAs and IVAs because of the difficulty in predicting the actions of these systems 
across every situation. Consider a scenario where an IVA using highly complex data 
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and neural networks tells a patient to use a particular medication. If the medication 
proves to cause harm to the person, and the person sues the company who developed 
the IVA, wouldn’t you expect that the company be able to describe how the IVA 
system made its decision? If the developers cannot explain how the system works, 
then it can be said that it is operating as a black-box. Requirements for an audit trail 
to describe the decision process of autonomous systems has been proposed as one 
way to help address the “black-box” issue [38, 39].

4.3.8  Legal Responsibility and Liability

Consider again a scenario whereby a CA or IVA system fails to appropriately assess 
for or alert when a user discloses that they are suicidal. If a person dies, could the 
family sue the company who provided the service for failing to appropriately detect 
or respond to the risk? Should responsibility also be with the developers of the tech-
nology, not just the company using the service? What about scenarios where auton-
omous agents are making independent decisions about the care of patients? Should 
the developer, the administrator, or both be liable?

It is conceivable that the company or organization, such as a public healthcare 
provider, could be liable if harm comes to a patient while using the system. This 
could occur if the providers of the service failed to adequately disclose the risks and 
limitations involved with using the agent.

The issue of responsibility and liability becomes more complicated when the 
IVA is designed to be autonomous. A moral agency refers to when a person can 
discern right from wrong and can be held accountable for his or her actions. Sullins 
[44] proposes that intelligent machines (e.g., robots ) are moral agents when there is 
a reasonable level of abstraction under which the machine has autonomous inten-
tions and responsibilities. If this is the case, then the machine may also be seen as 
responsible at some level for the actions it makes or does not make. However, auton-
omous behavior may not be enough to hold an intelligent machine responsible for 
its actions. Another requirement is that the agent would have to have acted freely. 
This raises the question as to whether an agent that is built by and controlled by 
humans can have free will and act freely. Moreover, unlike human care providers, 
IVAs cannot accept appropriate responsibility for their actions nor do they have the 
moral consequences that humans do [38].

4.4  Recommendations

One way to begin to help address the current and emerging ethical challenges associ-
ated with the use of IVAs is to revise or develop new professional ethics codes and 
practical guidelines [8, 38]. While several mental healthcare professional organiza-
tions have included provisions regarding the use of current technology (see Luxton 
et al. [39] for review), most existing professional ethics codes and practice guidelines 
do not yet address the use of technologies that stand-in for human professionals.
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In regard to both addressing user safety and responsibility and liability associ-
ated with CAs and IVAs, we recommend the following:

 1. The agent or the responsible party must discuss with the user any potential risks 
to their emotional or physical well-being that might result from the interaction 
with the agent. This could include, for example, relying on the agent more than 
on human caregiver and becoming more attached to the agent than to family 
members.

 2. The human user always has the right to know if s/he is interacting with a human, 
an autonomous agent, or a human controlling a virtual agent or chatbot.

 3. The human user has the right to terminate the interaction with the virtual agent 
at any point, for any reason, and not to require any explanation.

 4. The agent should be able to detect if the user is becoming too emotionally depen-
dent or attached, broach this topic with the user, and discuss possible risks with 
the user.

While these recommendations are not inclusive of all ethical issues or address 
every possible application of CAs in behavioral healthcare, they do serve as a start-
ing point. We suggest review of the recommendations of Luxton [38] regarding the 
design and use of virtual care providers in healthcare.

4.5  Summary and Conclusions

Now that we have entered into the age of virtual care providers, we must understand 
the benefits, risks, and ethical and legal requirements regarding their use. Developers 
of these systems must be aware of the legal and ethical issues, and integrate capa-
bilities into the design and deployment of these systems that consider these. 
Healthcare providers who use these systems as part of their care should seek train-
ing regarding the benefits and the appropriate use of IVAs. The public also needs to 
be aware of the benefits and limitations of these systems. These requirements will 
necessitate the development of new educational curricula and may require special-
ized types of certification to ensure that the users’ rights are adequately protected.

The use of CAs also has the potential for substantial cost savings for both health-
care providers and persons seeking care. CAs can be replicated and scaled to meet 
the growing needs for services, and unlike human care providers, CAs do not need 
years of training, or salaries that human providers require [38]. Luxton [21] notes 
that AI technology, including virtual care providers, could lead to significant reduc-
tions in the long-term costs from untreated behavioral and mental health conditions 
as well as improved productivity resulting from a healthier population. Luxton cau-
tions, though, that healthcare insurance companies or governments could require 
the use of AI care providers without allowing consumers the choice to seek services 
from human care providers. Consequently, Luxton speculates that the helping pro-
fessions could lose something inherent to the helping professions: human-to-human 
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expression of empathy, care, and compassion in exchange for automated systems 
with simulated expressions of empathy.

We must emphasize that the discussion in this chapter in no way intends to imply 
that IVAs or serious games should replace human mental health providers or tradi-
tional face-to-face therapy. These technologies cannot function at the level of an 
experienced, empathic human therapist. Rather, they have a unique role in the deliv-
ery of behavioral healthcare, both supportive of and distinct from the functions of 
human healthcare providers, including enhancing dissemination of evidence-based 
treatment, making treatment more accessible, supporting treatment between ses-
sions with a human provider (facilitating homework and skills practice), and adapt-
ing to individual needs and cultural preferences. We are hopeful that this technology 
will continue to serve those in need of services and improve the well-being of peo-
ple around the world.
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Machine Learning in Stroke Medicine: 
Opportunities and Challenges for Risk 
Prediction and Prevention

Julia Amann

5.1  Introduction

“The essence of practicing medicine has been obtaining as much data about the patient’s 
health or disease as possible and making decisions based on that. Physicians have had to 
rely on their experience, judgement, and problem-solving skills while using rudimentary 
tools and limited resources.” [1]

Precision medicine aims to individualize prevention, diagnostics, and therapeutics 
by understanding differences in individuals’ genetics, lifestyle, and environment 
[2]. Over the past years, we have been witnessing an unprecedented push toward a 
more data-driven approach in healthcare that promises to take precision medicine to 
the next level, in part through artificial intelligence (AI). Simply put, AI can be 
understood as a set of sophisticated computational methods that seek to mimic 
human cognitive functions, including visual perception, speech recognition, and 
decision-making [3, 4]. AI uses certain machine learning (ML) algorithms to “learn” 
features from large datasets [3] and recognize patterns that are often invisible to the 
human eye [5–7]. Capitalizing on the availability of big data and ever-increasing 
computational power and storage capacities [1, 8], these novel tools seek to improve 
population health and well-being and to reduce healthcare costs.

A surge in scientific publications documents the potential to harness artificial 
intelligence in healthcare to prevent, diagnose, and treat diseases [9]. One of the 
pressing disease areas in focus for AI researchers is stroke, a leading cause of dis-
ability and mortality worldwide [3, 8]. Researchers aim to develop applications to 
optimize stroke diagnosis, treatment, and rehabilitation [10–12], and they also use 
AI to better understand risk. Several well-established risk prediction models have 
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been developed as tools for stroke prevention [13]. Prevention plays an instrumental 
role in reducing the global burden of stroke [14], and the strategic adoption and 
development of AI-driven prediction tools can contribute substantially to this mis-
sion [1, 13]. These new tools open welcome opportunities and introduce new ques-
tions for us, of course. We find ourselves only at the beginning of this exciting 
journey that will without a doubt confront us with novel ethical, societal, and regu-
latory challenges.

This chapter surveys the global burden of stroke and describes current practices 
for reducing stroke incidence and stroke mortality rates. In particular, the chapter 
reviews how ML applications are applied to stroke risk prediction and prevention 
and identifies important technological and methodological challenges for using AI 
in these contexts. The chapter concludes by drawing the readers’ attention to some 
of the questions and ethical challenges that arise as clinicians widely adopt 
ML-based applications in practice.

5.2  Burden of Stroke

Stroke is one of the leading causes of disability and mortality worldwide [14–
17]. Even though a decrease in stroke mortality and incident rates was observed 
from 1990 to 2016, absolute numbers show an increase in stroke-related mortal-
ity and disability [15, 16]. The absolute number of people affected by stroke 
almost doubled during this time [16] with incidence rates in low- to middle-
income countries exceeding those observed in high-income countries [18]. 
Researchers estimate that in 2016, there were over 80 million people affected by 
stroke, many of them younger than 70 years of age [15, 16]. In 2017, Europe 
counted 1.5 million stroke diagnoses and nine million stroke survivors, with 1.2 
million experiencing severe limitations in their activities of daily living [19]. 
That same year, 0.4 million people died because of stroke [19]. The increase in 
absolute numbers is largely attributed to population aging and growth [20, 21]. 
Yet, a noteworthy increase was also recorded in stroke incidence rates in younger 
age groups (15- to 49-year olds) [16].

The global increase in stroke incidents poses major challenges for healthcare 
systems, and these challenges extend beyond a patient’s hospital stay. Patients who 
survive a stroke long to return to normality [22]. However, following hospital dis-
charge, stroke survivors and their families must cope with the aftermath of stroke. 
People who suffered a stroke often experience more or less severe physical, cogni-
tive, and emotional deficits that may limit their ability to perform certain activities 
in daily life [23, 24]. As a result, they remain at least partially dependent on an 
informal caregiver, usually a family member or partner [25]. Stroke survivors and 
informal caregivers commonly report physical, emotional, social, and financial 
challenges and concerns [26, 27]. They also face service deficiencies in health and 
social care, limited options for service offers outside of healthcare, and a paucity of 
options for continuity of care. All of this lays an additional burden on those affected 
by stroke, leaving them frustrated and under emotional strain [27].
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In addition to the impact of stroke on individuals, societies are faced with the 
economic burden of stroke [28]. Healthcare utilization, informal care provision, and 
the loss of productivity in the workforce contribute to these rising costs [21, 29, 30]. 
A recent study analyzing stroke-related costs for 32 European countries estimates 
that total costs added up to €60 billion in 2017. This includes €27 billion (45%) 
incurred by healthcare systems, €5 billion (8%) incurred by social care systems, an 
estimated €16 billion (27%) for informal care costs, and €13 billion (20%) owed to 
lost productivity due to early death or absence from work [19]. While lower total 
costs to the healthcare system have been reported for the United States for 2014/2015 
[31], per capita healthcare-related spending on stroke was higher in the USA com-
pared to Europe [19]. Similar costs were reported for stroke-related healthcare costs 
per stroke survivor living in the USA and Europe [19].

5.3  Stroke Prevention: A Public Health Priority

As the global stroke burden increases, researchers and policymakers call for more 
efficient stroke prevention and management strategies and improved access to 
stroke services [16, 17, 32, 33]. In 2006, the World Health Organization (WHO) 
highlighted neurological disorders, including stroke, as a public health priority [34]. 
With its Global Status Report on Noncommunicable Diseases 2014, WHO aimed to 
unite and support nations in the fight against stroke and vascular diseases [32, 33].

There is common agreement that prevention is one, if not the most, promising 
strategy to reduce the burden of stroke [16, 35–37]. It is well established that there 
are non-modifiable (e.g., sex, gender, genetics) and modifiable (e.g., smoking ces-
sation, physical inactivity) risk factors for stroke [38, 39]. Modifiable risk factors 
are the obvious targets of stroke prevention efforts. In an international case-control 
study, researchers found that ten risk factors (history of hypertension, current smok-
ing, waist-to-hip ratio, diet risk score, regular physical activity, diabetes mellitus, 
binge alcohol consumption, psychosocial stress and depression, cardiac diseases, 
and ratio of apolipoproteins B to A1) were associated to 90% of the risk of stroke 
[39]. The authors concluded that lifestyle interventions targeting blood pressure 
reduction, smoking cessation, and the promotion of physical activity and a healthy 
diet could help to significantly reduce the burden of stroke.

There are two main approaches in stroke prevention [40]: population-wide pre-
vention strategies and prevention strategies that target high-risk individuals. 
Population-wide strategies aim at modifying behavioral and lifestyle risk factors in 
the entire population to promote health maintenance [41]. In doing so, they can also 
contribute to preventing other diseases and chronic conditions (e.g., hypertension 
and diabetes mellitus) that constitute known stroke risk factors [14]. Recent 
advances in our ability to accurately assess individual risk for cardiovascular dis-
eases have motivated some countries to prioritize risk-based screening approaches 
to identify individuals at risk [42, 43].

Despite a formal distinction between these two approaches, it is important to 
note that stroke risk is a continuum with no determined threshold at which certain 
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interventions are automatically indicated. Therefore, it may not be appropriate to 
categorize individuals into low-, moderate-, and high-risk groups when communi-
cating absolute cardiovascular risk [44]. To effectively reduce stroke incidence and 
mortality rates, efforts must be undertaken to educate the general population about 
known behavioral risk factors [14, 43]. In addition, inexpensive screening strategies 
should be adopted to assist clinicians in identifying and protecting high-risk indi-
viduals [14, 43].

5.4  The Advent of Data-Driven Risk Prediction Models

Early prediction of stroke risk is the cornerstone of stroke prevention [45]. 
Identifying individuals who could benefit most from specific therapeutics or inter-
ventions helps them get the care they need and simultaneously helps avoid unnec-
essary treatments for others [10, 46, 47]. To date, several well-established 
statistically derived risk prediction models have been developed to provide long-
term risk prediction [42, 45, 48, 49]. Clinicians commonly rely on these models 
to assess long- term risk, because the models provide parameters that are easy to 
interpret, such as odds ratios, relative risks, and hazard ratios [50]. However, these 
traditional models are subject to several limitations. They can, for example, only 
include a small number of risk factors (predictors) and generally do not include 
image-based morphological characteristics [13, 50, 51] nor behavioral risk factors 
(except smoking) or independent genetic factors [43]. Moreover, traditional 
approaches rely on certain assumptions of linearity, thus forcing models to behave 
in a certain way [51]. Often, traditional models are not generalizable across dif-
ferent populations due to the specific characteristics of the cohorts they were 
derived from [13]. This may lead clinicians to over- or underestimate risk for their 
patients [52].

Researchers are now trying to use ML in cardiovascular diseases and stroke risk 
assessment to overcome some of the challenges associated with traditional risk pre-
diction models. ML methods use computational algorithms to relate all or some 
predictor variables of a given set to an outcome variable [50]. Classification and 
regression are the two primary tasks performed by ML-based algorithms [13]. Put 
simply, classification tasks categorize input data into predefined labels or outcomes 
(e.g., event or no event), whereas regression tasks predict some real-valued output 
(e.g., real-valued percentage risk between 0% and 100%). Despite various common-
alities, ML differs from traditional statistical approaches in some aspects [53–55]. 
Contrary to classical statistics, ML is a data-driven approach that does not rely on a 
predefined model and assumption of data normality [53, 56]. Moreover, unlike tra-
ditional statistics which are focused on the “typical patient,” ML is capable of mak-
ing inferences at the individual level, taking into account individual differences in 
the data [53]. ML is also inherently a multivariate approach that can be used to 
analyze complex and heterogeneous kinds of data and incorporate them into risk 
prediction models, making it a promising solution for stroke risk prediction [53, 
54, 57].
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Studies investigating the use of these techniques in cardiovascular diseases and 
stroke prediction indicate that ML-based approaches can boost prediction accuracy. 
A recently published review found that the most common ML-based algorithms 
used in cardiovascular risk assessment are support vector machines, artificial neural 
networks, linear and logistic regression, and tree-based algorithms, such as random 
forests and gradient tree boosting [13]. In their review, Jamthikar et  al. further 
showed that ML-based algorithms performed better compared to traditional 
regression- based methods for risk assessment, and that including both image-based 
features and conventional cardiovascular risk factors drives prediction accuracy. 
Indeed, imaging plays a pivotal role in cardiovascular and stroke risk detection. 
Ultrasound, in particular carotid ultrasound screening, can also easily be performed 
in routine clinical practice—unlike other non-invasive techniques, such as com-
puted tomography or magnetic resonance imaging [47]—making ultrasound an 
invaluable tool for stroke prevention. In line with these findings, Ambale-Venkatesh 
et al. [58] emphasized the importance of subclinical disease markers obtained from 
imaging, electrocardiography, and blood tests. The authors found that ML in con-
junction with deep phenotyping (i.e., multiple evaluations of different aspects of a 
specific disease process) enhanced prediction accuracy of cardiovascular events 
compared to traditional risk scores.

Several other studies provide similar evidence. In a prospective cohort study 
using routine clinical data, for example, researchers compared four machine- 
learning algorithms (random forest, logistic regression, gradient boosting machines, 
neural networks) to an established algorithm (American College of Cardiology 
guidelines) for first cardiovascular event prediction over 10 years [46]. Their find-
ings show that ML techniques outperformed the established algorithm, leading to a 
significantly more accurate risk prediction. Similarly, a team of researchers demon-
strated that their hybrid ML approach to stroke prediction significantly reduced the 
false-negative rate in comparison to conventional approaches, while the overall 
error increased only slightly [59]. In addition to increasing prediction accuracy, 
authors also recognize the potential of ML-based approaches to help identify new 
potential risk factors and to generate a better understanding of the role of novel 
biomarkers [59, 60].

5.5  From Data-Driven Risk Prediction to Stroke Prevention

Accurate risk prediction allows clinicians and patients to act. Enabled by advances 
in AI technologies that can analyze vast volumes of health data in an efficient and 
accurate manner [4], precision medicine aims to provide treatment and prevention 
tailored to individuals’ variability in genetics, environment, and lifestyle [1]. At 
present, doctors recommend lifestyle changes to their patients, advising them to 
change known, modifiable risk factors to prevent stroke. Yet, their advice often goes 
unheeded. We should eat healthy, refrain from smoking and eschew excessive alco-
hol consumption, exercise regularly, stay hydrated, and the list goes on and on. To 
adhere to all these health-promoting recommendations in a world full of competing 
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priorities, temptation, and imposed restrictions (e.g., financial constraints, poor 
access) may be too much to ask and simply not a realistic goal for many people. 
Earlier work has shown that there are incongruities between what people know they 
should do and their actual health behavior. So even though interventions (e.g., pub-
lic health campaigns) may help to improve people’s knowledge, these interventions 
may ultimately fail to induce, and more importantly, sustain behavior change—a 
phenomenon commonly referred to as the knowledge-behavior gap [61, 62].

Precision medicine is a promising approach to bridge this gap. It enables physi-
cians and researchers to predict more accurately which prevention strategies will be 
most effective for which groups of people [1]. Understanding their natural predispo-
sition to stroke may, in turn, motivate individuals to take on a more active role in 
their own health to reduce their individual stroke risk [14, 63]. In this context, the 
potential of mobile monitoring devices with real-time feedback systems has been 
highlighted as a tool for stroke prevention [10, 60, 64–67]. However, despite the 
promise these novel technologies hold for enabling personalized risk assessment 
and promoting stroke prevention, achieving stroke prevention via these means will 
largely depend on patients’ acceptance and uptake of the technology. Tran et  al. 
investigated chronic patients’ perceptions of wearable biometric monitoring devices 
and AI systems that enable remote measurement and analysis of patient data in real-
time [68]. In addition to capturing the perceived benefits and dangers of using these 
new technologies, the authors also assessed patients’ readiness for using them. 
Their findings indicated that only half of the patients who participated in the study 
viewed digital tools and AI in healthcare as an opportunity, while 11% even consid-
ered them a danger, fearing that these will lead to the replacement of humans. In 
light of these findings, it is not surprising that 35% of patients indicated that they 
would refuse to integrate such devices into their care. More research is needed to 
better understand individuals’ underlying motivations and fears that influence their 
attitudes toward the use of mobile monitoring devices and AI in healthcare. It is 
currently also unclear how well these new tools will be received by healthcare pro-
fessionals. So, while AI-powered technologies are evolving rapidly, providing 
unprecedented opportunities for precision medicine in stroke prevention, the inte-
gration of these technologies into clinical practice raises several questions.

A project that will shed light on some of these questions is PRECISE4Q, a proj-
ect funded under the European Union’s Horizon 2020 Research and Innovation 
Program [69–71]. PRECISE4Q aims to identify and quantify risk factors and indi-
vidual risk factor patterns. To do so, it combines heterogeneous data from a variety 
of sources, including large retrospective longitudinal stroke registry data, biobank 
data, and insurance data. What distinguishes PRECISE4Q from many other efforts 
in the field is its hybrid modeling approach, which combines ML methods and 
theory- driven (mechanistic modeling) approaches to risk prediction. Within the 
course of the project, a Digital Stroke Patient Platform will be established to collect 
and integrate large- scale data sets. This platform will also feature novel hybrid 
model architectures, structured prediction models, complex deep learning and gra-
dient boosting models, as well as Clinical Decision Support Systems (CDSS) for 
stroke risk assessment, treatment outcomes, rehabilitation programs, and a 
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socio-economic planning tool. A thorough validation of the models is planned with 
clinical data generated by prospective clinical studies and retrospective analyses of 
health registries, cohort studies, health insurance data, and electronic health records. 
The CDSS envisioned by PRECISE4Q will allow clinicians to simulate how an 
individual’s stroke risk will evolve and change under different circumstances over 
time. In other words, clinicians will be able to simulate how different risk factors 
(e.g., smoking) will contribute to disease occurrence and how the individual will 
respond to different possible interventions (e.g., lifestyle intervention, medication). 
This will assist them in providing individuals with tailored recommendations based 
on their natural predisposition. For individuals, this means that they will learn not 
only their individual stroke risk but also what they can do to reduce this risk.

Another promising avenue for future research is the use of natural language pro-
cessing to automatically extract information on lifestyle modification assessment and/
or advice in clinical practice from electronic health records [72–74]. Such analyses 
can provide an objective evaluation of current clinical practice and improve our under-
standing of the timing of lifestyle modification and patient, clinic, and provider char-
acteristics that are associated with or predictive of lifestyle modification documentation 
[73]. Understanding how and when clinicians assess lifestyle modification and pro-
vide advice to patients holds important implications for the development of preven-
tion strategies. These insights can inform the improvement of care delivery and 
documentation in practice. Combining tools aimed at understanding current clinical 
practice with sophisticated risk prediction models, such as the ones described earlier, 
constitutes an opportunity to deepen our understanding of stroke prevention.

5.6  Technological, Methodological, and Ethical Challenges

Machine learning holds great promise for stroke prevention, yet it is also subject to 
some challenges and limitations. There are three common areas of challenges that cli-
nicians and researchers should be mindful of as they seek to maximize the advantages 
of ML in stroke prevention, and in healthcare more generally: (1) challenges in data 
sourcing; (2) challenges in application development; (3) challenges in deployment in 
clinical practice [75]. Given that patients’ health and well-being are at stake, it is of 
critical importance to investigate the technological and methodological challenges that 
arise at each stage and to consider their potential real-life consequences. It is also 
important to note that challenges occurring at one stage may have consequences for the 
subsequent stages. Challenges and limitations at the stage of data sourcing, for exam-
ple, inevitably affect application development and deployment in clinical practice.

5.6.1  Data Sourcing

High-quality big data is key to accurate predictions. To develop ML systems that 
can be deployed in clinical practice, a continuous supply of large datasets is needed 
initially to train, validate, and improve algorithms [3, 76]. Yet, inadequate access to 
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well-established patient and population-based datasets constitutes a major chal-
lenge for many ML-based data scientists and developers [13]. These professionals 
lack access to data partly because effective data sharing is currently not sufficiently 
incentivized by the medical scientific community [3, 10, 13, 77]. International 
research collaborations can help to mitigate this challenge. In the long run, effective 
data sharing strategies also need to be in place to facilitate and incentivize data shar-
ing across institutions.

Another challenge to data sourcing relates to data protection and privacy regula-
tions. Personal data are often subject to protective regulations that may impede data 
sharing. The European General Data Protection Regulation (GDPR), for example, 
entails a comprehensive set of regulations for the collection, storage, and use of 
personal information that will affect AI implementation in healthcare in several 
ways [76, 78]. The GDPR requires that individuals give explicit and informed con-
sent before any organization collects personal data. It also grants individuals the 
right to track what data organizations are collecting about them, and it empowers 
them to direct an organization to discard their data. While these regulations rightly 
aim to protect patient privacy, they of course also impose certain restrictions on 
researchers and clinicians who seek to utilize these data. At present, the long-term 
impact of the GDPR and similar regulations on the implementation of AI in health-
care remains to be seen.

Closely related to data sourcing, data harmonization across different sources can 
also be quite problematic for data scientists. Given that very few studies provide 
comprehensive datasets for large numbers of participants, collaborative efforts are 
currently underway in the scientific community to harmonize and synthesize hetero-
geneous data across studies [79]. However, data harmonization is a time-consuming 
task that demands significant technological and scientific investments [80, 81].

5.6.2  Application Development

As outlined in this chapter, there is substantial evidence to suggest that ML-based 
algorithms can provide robust and accurate models for cardiovascular and stroke 
risk assessment, and can often outperform traditional regression-based approaches. 
Yet, there are several potential challenges and pitfalls to be mindful of when it 
comes to developing apps based on these algorithms. One of the key challenges in 
application development is algorithmic bias, which leads to systemic and unfair 
discrimination against certain individuals or groups of individuals [82, 83]. Even if 
no discrimination is intended, we know that the way data is collected, selected, 
prepared, and used to train ML-based algorithms can introduce bias [82]. Datasets 
used to develop stroke risk prediction models may, for example, suffer from missing 
data, misclassification, and measurement error, which can lead researchers and cli-
nicians to make inaccurate predictions for subgroups of patients [84]. In other 
words, bias can occur when data sources do not reflect the true epidemiology within 
a given demographic [75]. As an example, consider that cardiovascular disease is 
often underdiagnosed in women because their symptoms are described as atypical 
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[85, 86]. Using such data to train ML-based algorithms may further reinforce 
this trend.

It has also been shown that ML methods perform poorly on imbalanced datasets, 
as they will be biased towards the majority group [59, 87, 88]. In other words, insuf-
ficient training samples and imbalanced class distribution will limit predictive per-
formance in cases of rare occurrences [89]. In the case of stroke risk prediction, this 
may, for instance, pose limitations when we aim to develop predictive models for 
younger populations since the vast majority of available records likely describe 
older age groups [89]. Even though several balancing techniques have been devel-
oped, it is still a challenge to detect and address this bias in ML models [88].

But what does persistent algorithmic bias mean in practice? Algorithmic bias can 
cause enormous harm and contribute to increasing existing health inequalities in the 
real world [83]. A prominent example is the case of racial bias in commercial algo-
rithms used in the U.S. healthcare system. In their 2019 study, Obermeyer et al. [90] 
found evidence indicating that a widely used algorithm was significantly biased 
against black patients. Due to this racial bias, a significantly lower number of black 
patients were identified for extra care. The authors demonstrated that bias occurred 
because the algorithm predicted healthcare costs rather than illness, not accounting 
for the fact that unequal access to care means that healthcare spending is lower for 
black patients than for white patients. The study carried out by Obermeyer et al. [90] 
serves as a striking example of how ML-based algorithms can reinforce existing 
inequalities and cause harm. It also raises the question: how many biased algorithms 
are still out there operating day in, day out? Importantly, this kind of bias is by no 
means limited to the US or to US race demographics. Similar problems can just as 
well be embedded in European algorithms, hiding similar (or different) kinds of 
social disparity.

5.6.3  Deployment in Clinical Practice

Finally, the practical implementation of AI technologies in healthcare is not without 
its own challenges [76, 91]. Trust plays a fundamental role in the implementation 
process. To obtain acceptance, AI-powered tools must first gain healthcare provid-
ers’ and patients’ trust [92]. As a first important step to gaining trust, tools should 
comply with existing data protection requirements and be transparent as to how 
outcomes and recommendations are derived [75]. However, at present, many ML 
models are considered black boxes that do not explain how their predictions are 
derived in a way that humans can grasp [93]. Unlike well-established regression- 
based methods where a clear relationship can be observed between the input vari-
ables and the output variable, the internal workings of ML algorithms are not easy 
to interpret for most clinicians [10]. As a result, clinicians may be wary of ML-based 
algorithms and reluctant to adopt them in practice [13]. This may also have to do 
with the fact that clinicians owe their patients explanations as to how certain recom-
mendations were derived. Patients may, in turn, be more likely to follow recommen-
dations regarding stroke prevention if they receive a clear explanation of why certain 
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prevention measures (e.g., exercise regime, medication) are preferable over others 
in their particular situation. Even though concepts like AI explainability, interpret-
ability, and transparency have gained traction in the scientific community, there is a 
need for strengthening cooperation among medical practitioners and data scientists 
to tackle these issues in a collaborative manner [13].

There is also uncertainty regarding who can be held liable for adverse events that 
result from the use of ML-based algorithms. This uncertainty may, in turn, hamper 
trust and impede the adoption of these technologies in practice [75]. This point is 
also linked to clinical validation and efficacy. To foster trust in ML-based algo-
rithms, data scientists and researchers have to show that their algorithms yield accu-
rate predictions and that they can be integrated into clinical practice securely and 
efficiently for the benefit of patients [10]. In the case of stroke risk prediction and 
prevention, this means that novel ML-based approaches will have to compete 
against established models to win over clinicians’ and patients’ trust. Clinicians and 
patients, in turn, will have to exercise good judgment about what and whom to trust.

5.7  Conclusion

Novel ML-driven approaches to stroke risk prediction allow researchers to overcome 
some of the challenges frequently associated with traditional risk prediction models. 
Capitalizing on the advantages of ML, physicians, and researchers will also be able 
to predict more accurately which type of interventions will be most effective for 
which groups of people. This will, in turn, help them to provide patients with tailored 
recommendations based on their natural predisposition, empowering them to reduce 
their individual risk of suffering a stroke. Yet, while ML methods offer unprece-
dented opportunities for precision medicine in stroke prevention, several technologi-
cal and methodological challenges remain. As outlined in this chapter, challenges 
can be grouped into three broad categories: (1) challenges in data sourcing, (2) chal-
lenges in application development, (3) challenges in deployment in clinical practice.

Having identified some of the opportunities and challenges of machine learning 
in stroke risk prediction and prevention, it is time to ask ourselves what impact these 
dynamics will have on individuals and the delivery of care, more generally. Even 
though it will certainly take some time before ML-based tools can (at least partially) 
replace established approaches for stroke risk assessment and prevention, we should 
already prepare for the questions that will arise as these applications are broadly 
adopted in practice: how will they impact the doctor-patient relationship? How will 
they affect public trust in the healthcare system? As great strides are made in preci-
sion medicine for stroke, how can we ensure everyone will benefit from these 
gains—what about low- to middle-income countries where stroke incidence rates 
exceed those observed in high-income countries? What about individuals who 
refuse to have their data collected and analyzed? These and several other questions 
raise important ethical concerns that require further investigation. Only by commit-
ting to ethical conduct, methodological rigor, and patient safety will we harness the 
full potential of data-driven predictive modeling in stroke.
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6Respect for Persons and Artificial 
Intelligence in the Age of Big Data
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6.1  Introduction

Calls to revise the US system of human research protections to adapt to changes in 
the practice of medicine and biomedical research are not new. Pragmatic clinical 
trials [1], community engaged research [2], and learning health systems [3] all pose 
unique ethical challenges that could not have been envisioned when the regulatory 
system was developed in the 1970s. Similarly, the use of “big data” in medical 
research has received increased attention in recent years as conducting such research 
has become cheaper and easier due to advances in computing technology. “Big 
data” is a somewhat vague term and used in a variety of different ways [4–8]. Here 
we focus specifically on the use of existing patient data combined across institutions 
in research that is subject to the Common Rule (e.g., federally funded or conducted 
at research institutions that choose to uniformly apply the Common Rule), and the 
application of artificial intelligence (AI) to that big data, particularly in research 
related to mental health.

The relationship between big data and AI in medical research is essential in 
some regards. IBM defines big data in terms of the three “V”s of volume, vari-
ety, and velocity [8]. Volume is obvious, and we will discuss the application of 
this to medical data below. Velocity refers to the speed at which data can be 
created and accessed and is relevant to big data and AI in medical research. 
However, the most salient “V” for this topic is variety. Daniel O’Leary describes 
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the multiple sources and varieties of data, including wearable electronic devices 
that monitor our health, social media, phones, and radio frequency identification 
(RFID) [9]. AI’s influence on variety becomes essential when we discuss 
“unstructured data,” meaning data that are simply amassed and lack patterns or 
structure. To remedy this, “Under situations of large volumes of data, AI allows 
delegation of difficult pattern recognition, learning, and other tasks to com-
puter-based approaches [10].”

This intersection of AI and big data raises ethical challenges, specifically for 
privacy, confidentiality, and informed consent [11–13]. Privacy and confidentiality 
concerns are only magnified when the focus of research is on mental illness or other 
stigmatized health conditions. Therefore, we argue, this intersection necessitates 
novel thinking around how to best fulfill the Belmont principle of respect for per-
sons when conducting such research, particularly in the absence of any specific 
guidance from current research regulations for research using AI.

6.2  Big Data and AI in Biomedical Research

Opportunities abound for health researchers to aggregate and analyze data origi-
nally collected for non-research purposes. Perhaps the best example of the cre-
ation of very large, inter-institutional data sets for health research is PCORnet. 
PCORnet is an initiative funded by PCORI (Patient-Centered Outcomes Research 
Institute) that seeks to combine 11 Clinical Data Research Networks (CDRNs), 18 
Patient Powered Research Networks (PPRNs), and one coordinating center to cre-
ate a database of 100 million covered lives [9]. The CDRNs are health system-
based networks, created by linking the clinical data warehouses of large 
institutions, while the PPRNs are operated and governed by patients and their 
partners. For example, the Mental Health Research Network (MHRN), a CDRN, 
combines data from13 health systems that serve approximately 12.5 million 
patients across 15 states (17% of whom have a mental health condition) [14]. The 
MoodNetwork PPRN aims to enroll at least 50,000 patients with major depressive 
disorder and bipolar disorder to provide longitudinal data through medical records 
and surveys and potentially participate in prospective comparative effectiveness 
studies [15].

The data in repositories such as PCORNET exists in both structured and unstruc-
tured formats, and AI can enable researchers to create structure where it is lacking. 
A unique challenge for big data research on electronic medical records (EMR) lies 
in data mining the typed “free text” notes that clinicians enter into the EMR. Notes 
have great research potential, but placing them in a structure that allows researchers 
to analyze them requires AI, as it would be impossibly complex and time consum-
ing for people to do this unassisted. As O’Leary notes “Natural language, natural 
visual interpretation, and visual machine learning will become increasingly impor-
tant forms of AI for big data.” Natural language in particular can enable AI to comb 
through free text notes in the EMR, provide structure, and ultimately enable their 
use in research.
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6.3  Big Data Health Research and the Belmont Principles

Perhaps most obviously, PCORnet and similar research that relies on large data sets 
poses challenges to informed consent. Whether or not this was the original intention 
of its authors, the Belmont framework for ethical human subjects research and the 
resulting federal regulations elevate individual prospective informed consent above 
all other ethical considerations, prioritizing the principle of respect for persons 
above beneficence and justice while also making respect for persons synonymous 
with informed consent. Therefore it is no surprise that discussions of the ethics of 
health research using big data tend to focus on the challenges of informed consent. 
Simply stated, the key ethical challenge of big data health research lies in balancing 
respect for persons with the potential benefits. However, when respect for persons is 
inappropriately and narrowly conceived as individual prospective informed consent, 
as many have argued, [16, 17] this sets up big data research for ethical failure. Given 
the size of some data networks, the problem of informed consent in the context of 
big data seems intractable. Consent from all subjects is not merely “impracticable” 
(to use a regulatory term), it is impossible. In minimal risk research, when informed 
consent is not possible, the alternative is usually simply to waive consent and be 
done with it. However, we argue that a waiver, even when ethically permissible, 
does not demonstrate respect for persons, if we interpret the spirit of the principle of 
respect for persons to require extra protections not just for those with diminished 
autonomy, such as persons with mental illnesses that impair their capacity to con-
sent, but for those who cannot give truly informed consent due to practical con-
straints. Here, we would like to stimulate discussion and analysis of other processes 
and measures that might be capable of demonstrating respect for persons in research 
more broadly defined, when informed consent is not possible. In order to do this, we 
must first discuss privacy and confidentiality in the context of health research that 
relies on big data, as the most likely and potentially most severe harms in such 
research would be from an informational breach.

6.4  Privacy and Confidentiality

In research, privacy is commonly understood as pertaining to information about 
which an individual has a reasonable expectation that access is controlled by the 
individual, whereas confidentiality is commonly understood as pertaining to infor-
mation that an individual has entrusted to another, with an understanding that the 
information will only be used for certain purposes. The primary risks to subjects in 
research that uses large data networks are those potential harms that might result 
from a breach of confidential information. There is also the risk of dignitary harm 
as a result of a perceived invasion of privacy.

When patients discuss symptoms with their therapists, agree to take medications, 
or discuss mental health diagnoses, they generally believe that this information will 
not be shared with anyone except other health care providers and third-party payers. 
However, in reality, this information is frequently accessed by researchers, most 
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commonly in chart review studies. Such research is done with Institutional Review 
Board (IRB) approval in a manner consistent with the Code of Federal Regulations 
that govern research, and without the patient’s consent. In ethical terms, the patient 
provides her physician with information, often sensitive information, in confidence 
with the understanding that it will be kept private, and that information (de- 
identified) is then shared with a researcher the patient has never even heard of with-
out her consent. In a strict sense, the patient’s privacy has been violated, her 
confidentiality has been breached. This scenario occurs innumerable times every 
day across the United States…and importantly, it is allowable by the federal regula-
tions as long as other protections are in place to. It is important to recognize that we 
do violate privacy and we do breach confidentiality when we engage in such 
research, and it is deemed ethically acceptable when appropriate steps are taken to 
minimize the possibility of data breaches (e.g., by not collecting and storing 
identifiers).

While under HIPAA, any disclosure of mental health therapy notes require 
patient authorization, there are certain parts of an electronic health record related to 
mental health that are NOT considered therapy notes, such as prescriptions and 
medication monitoring, modalities of treatment, results of clinical tests, and sum-
maries of treatment plans, symptoms, and progress. Additionally, persons with 
mental illness also confide details of their symptoms, diagnoses, and medications to 
non-mental health practitioners, and these details, which may have serious legal or 
employment ramification if breached, may end up in various places in the medical 
record, including as free text notes that are not protected as therapy notes.

Because of potential dignitary harms of invasion of privacy, the sensitive nature 
of mental illness, and the significant harms that could result from a breach of confi-
dential mental health related information, we will later propose that, as an ethical 
requirement, researchers should think proactively about how to engage patients and 
communities to conduct AI research in mental health that uses data from electronic 
health records.

6.5  Notification and Broad Consent: Ethically Insufficient

Research suggests that people generally favor the use of their data for health research 
[18]. This is used to justify the use of both notification (informing without getting 
consent) and broad consent (getting consent without fully informing) practices. 
While many institutions seek legal and ethical cover by including a notification to 
patients that data might be used for research, this is ethically insufficient for two 
reasons. First, these notices are often buried in a HIPAA privacy notice in the clini-
cal consent, and so are read by few patients. Second, such notices offer no opt out 
option. Let’s say the patient did read and understand such a notice in her hospital’s 
privacy policies and simply decides that it is consistent with her values to allow her 
data to be used for research. In this case, then there is no violation of confidentiality 
or privacy. She need not even have full information concerning the research to be 
conducted, nor even information beyond that her data may be used for future 
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unspecified research (with standard protections). Perhaps one of her deep moral 
convictions is that people should help others, she sees such research as an instance 
of helping others, and so agrees to allow her data to be used for research. Perhaps 
she is passionate about reducing stigma associated with mental illness and as a 
result, believes strongly in sharing her mental health information with researchers. 
The specific ethical reason is not important. Competent adults do not need full and 
comprehensive information to make autonomous, informed choices [19]. What is 
important, ethically, is whether or not the patient or subject consents to the data use.

There have been novel proposals to reevaluate the means by which we obtain 
consent, including blanket, broad, and dynamic consent [19–22]. However, these 
proposals still fall short of the traditional aims of informed consent in the context of 
big data, as potential research subjects cannot know at the time of consent the stud-
ies to which they are in essence consenting. Instead, they consent to vague catego-
ries of research.

6.6  A Broader Conceptualization of Respect for Persons 
and a Balance with Other Principles

No Belmont principle is absolute, and the Belmont report exhorts us to identify the 
relevant ethical principles and balance them against one another. There are great 
potential benefits to big data health research, especially when balanced against the 
very small chance of potential harms that may result from an unintended informa-
tional breach. The ethical consideration typically becomes whether or not the ben-
efit of such data research outweighs the affront to respect for persons. This balancing, 
however, is not straightforward as respect for persons and beneficence in this case 
appeal to fundamentally different ethical concerns.

We seek to reframe the issue: If the risks are minimal and consent impracticable, 
and appropriate confidentiality protections are in place, waiving informed consent 
can only be ethically permissible if research demonstrate some effort towards dem-
onstrating respect for persons through one or more of the strategies we sug-
gest below.

The Federal Regulations that govern research recognize the ethical tension 
between respect for persons and beneficence. 45 CFR 46.116(d) contains a provi-
sion for waiving informed consent for certain types of research, such as research on 
data from clinical records. To grant such a waiver, an IRB must document that four 
conditions are met, the second of which is that the waiver or alteration will not 
adversely affect the rights and welfare of the subjects. The difficulty with this rec-
ommendation is it makes perfect sense to consider whether or not waiving the 
requirement for informed consent will adversely affect the welfare of potential 
research subjects. This is a simple application of beneficence, and is a simply risk/
benefit calculation. Of course, in big data research on mental illness, stigma and the 
unique harms that could result from breach of confidential information, including 
legal and employment harms, must be taken into account, but the likelihood and 
magnitude of these harms can be anticipated and weighed against potential benefits 
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of the research. What does not make sense is whether or not the rights of a potential 
subject will be adversely affected. While benefit and harm are terms that are ame-
nable to considerations of degrees, rights are not. Rights are simply either violated 
or not. They cannot be “adversely affected.” If an individual is denied his right to 
vote, we do not say that his rights have been adversely affected, as though his right 
was decreased. It has been violated. Rights simply do not admit of degrees as harms 
and benefits do. So, to attempt to balance one Belmont principle (beneficence) that 
admits of degrees and can be increased, decreased, balanced, or ignored, with 
another Belmont principle (respect for persons) that, at least in this case, is simply 
upheld or not, is futile.

We could simply state that in evaluating such research, we recognize the great 
potential for benefit and the minimal potential for harm, and so are justified in 
waiving informed consent. However, it does not follow that our ethical responsi-
bilities with regard to respect for persons have been completed. This is the key to 
the concern noted above, that thinking about respect for persons only in terms of 
informed consent will lead us to waive consent and be done with it. We argue 
that, in the era of AI and big data, we can and should conceptualize respect for 
persons as something broader than the right to self-determination through 
informed consent. Doing so develops respect for persons as something that 
admits of degrees, and the ethical obligation of researchers and IRBs then 
becomes thinking through how to better balance respect for persons with benefi-
cence, rather than simply determine if/when consent can be waived. To do this, 
we should explore other potential means of demonstrating respect for persons 
that do not rely solely on informed consent and shift focus away from rights-
based thinking. We can look to other models of research for means of doing this, 
primarily through patient and other stakeholder engagement and apply this to AI 
research on mental health.

6.7  Beyond Informed Consent

We would like to suggest ways that researchers might demonstrate respect for per-
sons, not through individual informed consent but through patient and other stake-
holder engagement. These suggestions are heavily influenced by the traditions of 
community engaged (CEnR) and community-based participatory research (CBPR), 
research conducted under the emergency exception for informed consent (EFIC) 
regulations, as well as some of the recent work in biobanking. Ranging from least 
to most “engaged,” we recommend notifying potential research participants that 
research using their personal health data may occur; sharing information about 
research results with the public; consulting with individuals who represent the inter-
ests of potential research participants; and including public members in research 
oversight activities at the institutional level.

CEnR and CBPR in mental health research are not new. These strategies have 
been used in mental health research for some time, and guidance exists on the over-
all ethical approach to mental health research [23, 24], as well as utilizing such 
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methods in mental health research in specific populations [23, 25]. What presents a 
novel challenge is utilizing these methods in mental health research that leverages 
big data an AI. Identifying representative stakeholders from large data sets being 
used for multiple types of studies may be challenging. Additionally, when engaging 
stakeholders in clinical trials of medication or community-based intervention 
research the research is easier to explain and the aims more tangible than in AI 
research. However, as AI becomes more integrated with our daily lives, citizens are 
becoming more interested in the potential harms and benefits and may be likely to 
want to engage in research partnerships.

Notification There is tremendous value in letting the community of potential 
research participants know what research you are planning to do. Time and time 
again institutional transparency has proven to have great extrinsic as well as intrin-
sic value. Many academic medical centers use a variety of strategies to let their 
patients know about the kinds of research that is going on and the fact that their 
medical records may be accessed appropriately for certain kinds of research. One 
common example is Research Match, a registry developed and utilized by a consor-
tium of Clinical and Translational Sciences Award (CTSA) institutions [26]. Such 
practices should be implemented more widely, as they promote public awareness of 
research. To be sure, the regulatory conditions for waiving consent in minimal risk 
research have a requirement for notification “after participation,” but they are vague 
about which studies require notification, and it’s unclear why notification should 
wait until “after participation.” Notification should be considered across many more 
types of research, although evidence is needed regarding the most effective and 
respectful forms of notification.

Information There is also tremendous value in letting people know the results of 
research—positive or negative. Initiatives are underway to improve dissemination 
of results of federally funded research and of clinical trials that are federally funded 
or conducted to gather data for applications to the FDA (NIH Open Access Policy, 
clinicaltrials.gov). However, the research community could be doing a lot better at 
this, including ensuring that results are published where lay people are likely to read 
them. This practice is common in CBPR and CEnR, and can maintain and improve 
community/academic partnerships [27–29]. For example, Dirks et al. report on how 
community member involvement in disseminating the results of research with a 
decision-support tool to aid in depression management can broaden reach and 
increase acceptability of the information [30].

Consultation Asking potential research participants “What do you think about 
what we’re planning to do?”, which is qualitatively different from simply notifying, 
not only demonstrates respect for persons, it can also improve the relevance of 
research questions and findings (Note: this really only demonstrates RFP when 
researchers actually listen.).

6 Respect for Persons and Artificial Intelligence in the Age of Big Data
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EFIC research invokes a specific regulatory framework (the “Final Rule,” 21 
CFR 50.24) that allows researchers to conduct research that is greater than minimal 
risk yet waives the requirement for informed consent, as long as certain require-
ments of the Final Rule are met. This research is conducted in settings in which 
consent is not possible (i.e., heart attack victims who are unable to provide consent 
due to their condition and cannot be proactively consented as it is unknown who 
will suffer a heart attack), yet the research is essential to advancing healthcare 
knowledge. This is important, as this is the only research that is greater than mini-
mal risk that the regulations permit without informed consent, and so the additional 
safeguards become key [31–33]. It is also important because it establishes a prece-
dent for regulating other means of demonstrating respect for persons beyond pro-
spective written informed consent. One of those safeguards is that the researchers, 
with approval and oversight from the IRB, must conduct community consultation 
for the research study. The point of community consultation is not to gain commu-
nity consent or proxy consent. Rather, the point is to consult with the community 
and learn whether or not the community thinks that this kind of research ought to be 
done in their community and what changes, if any, should be made to the research 
plan to make it more acceptable to the community. This provides an ethical model 
for using data for research purposes without consent. If it can be established that, 
just as in EFIC research, consent is not feasible and the benefit is great, a preferable, 
ethical alternative to doing nothing at all would be to engage the community in 
conversations about the research or use of data.

Several different models of community consultation have been employed in 
EFIC studies. Models include querying a convenience sample, random digit tele-
phone surveys, targeted focus groups, large community meetings/public forums, 
community advisory boards, or some combination of these methods [34–40]. Each 
of these approaches has distinct advantages and disadvantages, and the appropriate-
ness of each approach will vary depending on the purpose of the research.

Even better is to obtain ongoing consultation through mechanisms like commu-
nity advisory boards (CABs), which are common in community engaged research 
(CEnR) [41]. CEnR is an approach to research that “provides communities with a 
voice and role in the research process beyond providing access to research partici-
pants” and may include working with communities to identify research priorities, 
systematically studying the views of community members regarding research pro-
tocols prior to implementation, community advisory and review boards, hiring com-
munity members as part of the research team, and including community members 
as co-investigators [24] Unlike EFIC, CEnR is not a regulatory model but rather an 
approach to research that follows a set of principles aimed at fulfilling ethical and 
process goals, such as establishment of an equitable, sustainable partnership 
between academic researchers and community partners (CTSA Principles of 
Engagement). Funders of AI research might consider requiring consultation or other 
forms of engagement when individual informed consent is not practical.

In CEnR, stakeholder engagement is not meant to be a replacement for individ-
ual informed consent, but when done correctly can demonstrate respect for per-
sons—as well as for communities qua communities. The challenge is how best to 
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engage key stakeholders in the research process in a manner that is not merely ad 
hoc or after the fact, but one that does so in the spirit of respect for persons. 
Developing plans and guidelines before engaging stakeholders will fail to involve 
community members in decisions regarding data use and will not foster a sense of 
ownership. A successful CEnR partnership requires engaging the community early 
in and frequently throughout the process eliciting input on all aspects (i.e., identify-
ing concerns and needs of the community, employing community members as 
members of the research team, forming a community advisory council, etc.), and 
actually incorporating community input into the research design, implementation, 
analysis, and dissemination.

6.8  Include Participant Representatives 
in Project Leadership

In CEnR, relationships are ideally bi-directional, that is, respect for all parties is 
encouraged, acknowledging that the researcher has as much to learn from the 
community as the community does from the researcher. In some research, particu-
larly when individual prospective informed consent is not possible, including 
community partners as part of the research leadership team can be essential in 
understanding how to best approach the community regarding the use of their data 
in research.

Specific to the use of AI in big data research in mental health, CEnR can help to 
truly engage the public in the oversight and goals of such research. Additionally, by 
engaging communities in a bi-directional manner in such research, the research will 
be improved by addressing the research priorities of communities as well as making 
the research more transparent, which can help ameliorate some of the well- 
publicized concerns that the public has about AI research [42, 43].

Increase Public Participation in Institutional Research Oversight This sugges-
tion is a bit different from others in that it refers to including the lay members of the 
public in research activities at the institutional level and is therefore not necessarily 
something that can be implemented in a specific study. Many calls have been made 
throughout the past several decades for more public members on IRBs [44]. Such 
calls note that while the regulations require non-affiliated and non-scientist mem-
bers to serve on the IRB, a non-scientist might be an administrative assistant from 
the institution, and a non-affiliated might be a retired physician. Such examples 
likely fall short of providing a community voice for the lay public. Such an effort 
also broadens respect for persons to communities and not just individuals.

Many if not all of these activities can also be justified on other ethical grounds 
beyond respect for persons, but thinking of them in terms of what they can do to 
demonstrate respect for persons is helpful for big data health research studies in 
which individual informed consent would be impossible to obtain from every poten-
tial participant.
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6.9  Stakeholder Engagement in AI Mental Health Research

AI research specific to mental health is beginning to grow but most is still in the 
proof-of-concept phase. Such research uses not only EMR data but also data from 
patient reported outcomes, brain imaging, novel monitoring systems such as smart 
phones, and social media. Much of this research has been aimed at improving diag-
nostic clarity, identifying mental illness earlier, personalizing treatment, or identify-
ing patients at increased risk of suicide [45]. The extent to which patient stakeholders 
have been engaged in this research is unclear.

How might the lessons of community engagement be applied to AI research 
that uses big data in mental health? CABs are a ready example. Local and national 
mental health advocacy organizations could be contacted to provide representa-
tion on advisory boards for mental health research with big data. Such CABs 
could also be asked to weigh in on research priorities, use of confidential patient 
data, and broader community engagement strategies. . For example, in the 
MoodNetwork, patient stakeholders from a variety of different advocacy groups 
were involved in developing the network website, patient surveys, and recruit-
ment materials [46].

A unique strength of the mental health community is the number of advocacy 
groups, many of which are already actively engaged in research. Groups like the 
National Alliance on Mental Illness (NAMI) and Mental Health America serve per-
sons with mental illnesses and their loved ones daily, and could be ideal groups to 
engage in the guidance and oversight of this research. Additionally, there are orga-
nizations that advocate on behalf of specific diseases or populations. Dry Hooch is 
a veteran-led organization that provides, among other things, peer counseling for 
veterans in mental health and substance use disorders.

Researchers could use CEnR strategies to work with Dry Hooch to apply AI 
research on issues of veterans’ mental health. In such a scenario, veterans them-
selves would identify the mental health issues of relevance and importance to them, 
in conjunction with their academic partners. Additionally, veterans would have a 
seat at the table in the design of the research and data analysis, lending credibility to 
the use of AI in big data research on veterans’ mental health and building trust in the 
research enterprise.

6.10  Conclusion

The use of AI in conducting research on big data for purposes other than the reason 
for which was initially collected poses unique ethical challenges. Fortunately, there 
are examples particularly from EFIC research and CEnR that provide models for 
conducting this important work in a manner that adheres to the highest ethical stan-
dards. Engaging patient and other community stakeholders in meaningful, bi- 
directional, sustainable partnerships can help researchers demonstrate respect for 
research participants, even in the absence of direct interaction with individual 
participants.
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In discussions of ethics of AI and big data health research, we encourage less 
focus on the technical aspects of informed consent and more imagination regard-
ing ways to demonstrate respect for persons. This can be accomplished through 
implementation of some or all of the engagement strategies we have outlined. The 
engagement strategies presented here also promote other ethical aims, such as the 
requirement of social or scientific value, the incorporation of more and diverse 
public voices into the process of independent review, and the elevation of the val-
ues of good stewardship of research resources and transparency and public 
accountability.

References

 1. Califf RM, Sugarman J. Exploring the ethical and regulatory issues in pragmatic clinical trials. 
Clin Trials Lond Engl. 2015;12(5):436–41.

 2. Ross LF, Loup A, Nelson RM, Botkin JR, Kost R, Smith GR, et al. Human subjects protections 
in community-engaged research: a research ethics framework. J Empir Res Hum Res Ethics. 
2010;5(1):5–17.

 3. Faden RR, Kass NE, Goodman SN, Pronovost P, Tunis S, Beauchamp TL. An ethics frame-
work for a learning health care system: a departure from traditional research ethics and clinical 
ethics. Hast Cent Rep. 2013;Spec No:S16–27.

 4. Boyd D, Crawford K. Critical questions for big data. Inf Commun Soc. 2012;15(5):662–79.
 5. Gandomi A, Haider M. Beyond the hype: big data concepts, methods, and analytics. Int J Inf 

Manag. 2015;35(2):137–44.
 6. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Ullah Khan S. The rise of “big data” 

on cloud computing: review and open research issues. Inf Syst. 2015;47:98–115.
 7. Wu X, Zhu X, Wu G, Ding W.  Data mining with big data. IEEE Trans Knowl Data Eng. 

2014;26(1):97–107.
 8. Zikopoulos P, de Roos D, Parasuraman K, Deutsch T, Giles J, Corrigan D. Harness the power 

of big data the IBM big data platform. 1st ed. New York; Singapore: McGraw-Hill Education; 
2012. 280 p.

 9. Collins FS, Hudson KL, Briggs JP, Lauer MS. PCORnet: turning a dream into reality. J Am 
Med Inform Assoc JAMIA. 2014;21(4):576–7.

 10. O’Leary DE. Artificial intelligence and big data. IEEE Intell Syst. 2013;28(2):96–99.
 11. Ienca M, Ferretti A, Hurst S, Puhan M, Lovis C, Vayena E. Considerations for ethics review 

of big data health research: a scoping review. PLoS One. 2018;13(10) Available from: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC6181558/.

 12. Rothstein MA. Ethical issues in big data health research: currents in contemporary bioethics. 
J Law Med Ethics J Am Soc Law Med Ethics. 2015;43(2):425–9.

 13. Vayena E, Blasimme A. Health research with big data: time for systemic oversight. J Law Med 
Ethics. 2018;46(1):119–29.

 14. Building capacity for stakeholder engagement in the mental health research network [Internet]. 
2018 [cited 2020 Mar 30]. Available from: https://www.pcori.org/research- results/2018/
building- capacity- stakeholder- engagement- mental- health- research- network.

 15. Mood patient-powered research network  - phase I [Internet]. 2014 [cited 
2020 Mar 30]. Available from: https://www.pcori.org/research- results/2013/
mood- patient- powered- research- network- phase- i.

 16. May T, Craig J, Spellecy R. Viewpoint: IRBs, hospital ethics committees, and the need for 
“translational informed consent”. Acad Med. 2007;82(7):670–4.

 17. Secko DM, Preto N, Niemeyer S, Burgess MM. Informed consent in biobank research: a delib-
erative approach to the debate. Soc Sci Med. 2009;68(4):781–9.

6 Respect for Persons and Artificial Intelligence in the Age of Big Data

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181558/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181558/
https://www.pcori.org/research-results/2018/building-capacity-stakeholder-engagement-mental-health-research-network
https://www.pcori.org/research-results/2018/building-capacity-stakeholder-engagement-mental-health-research-network
https://www.pcori.org/research-results/2013/mood-patient-powered-research-network-phase-i
https://www.pcori.org/research-results/2013/mood-patient-powered-research-network-phase-i


84

 18. Kim J, Kim H, Bell E, Bath T, Paul P, Pham A, et al. Patient perspectives about decisions to 
share medical data and biospecimens for research. JAMA Netw Open. 2019;2(8):e199550.

 19. Blasimme A, Moret C, Hurst SA, Vayena E. Informed consent and the disclosure of clinical 
results to research participants. Am J Bioeth AJOB. 2017;17(7):58–60.

 20. Grady C, Eckstein L, Berkman B, Brock D, Cook-Deegan R, Fullerton SM, et al. Broad consent 
for research with biological samples: workshop conclusions. Am J Bioeth. 2015;15(9):34–42.

 21. Spellecy R. Facilitating autonomy with broad consent. Am J Bioeth AJOB. 2015;15(9):43–4.
 22. Wendler D. Broad versus blanket consent for research with human biological samples. Hast 

Cent Rep. 2013;43(5):3–4.
 23. Maiter S, Simich L, Jacobson N, Wise J. Reciprocity: an ethic for community-based participa-

tory action research. Action Res. 2008;6(3):305–25.
 24. Dubois JM, Bailey-Burch B, Bustillos D, Campbell J, Cottler L, Fisher CB, et  al. Ethical 

issues in mental health research: the case for community engagement. Curr Opin Psychiatry. 
2011;24(3):208–14.

 25. Stacciarini J-MR, Shattell MM, Coady M, Wiens B. Review: community-based participatory 
research approach to address mental health in minority populations. Community Ment Health 
J. 2011;47(5):489–97.

 26. Harris PA, Scott KW, Lebo L, Hassan N, Lighter C, Pulley J. ResearchMatch: a national registry 
to recruit volunteers for clinical research. Acad Med J Assoc Am Med Coll. 2012;87(1):66–73.

 27. Chen PG, Diaz N, Lucas G, Rosenthal MS.  Dissemination of results in community-based 
participatory research. Am J Prev Med. 2010;39(4):372–8.

 28. Kamaraju S, Olson J, DeNomie M, Visotcky A, Banerjee A, Asan O, et al. Community breast 
health education for immigrants and refugees: lessons learned in outreach efforts to reduce 
cancer disparities. J Cancer Educ [Internet]. 2018 [cited 2019 Sep 26]. Available from: https://
doi.org/10.1007/s13187- 018- 1412- y.

 29. Lopez EDS, Brakefield-Caldwell W. Disseminating research findings Back to partnering com-
munities: lessons learned from a community-based participatory research approach. Metrop 
Univ. 2005;16(1):59–76.

 30. Dirks LG, Avey JP, Hiratsuka VY, Dillard DA, Caindec K, Robinson RF. Disseminating the 
results of a depression management study in an urban Alaska native health care system. Am 
Indian Alsk Native Ment Health Res Online. 2018;25(1):62–79.

 31. Spellecy R. Unproven or unsatisfactory versus equipoise in emergency research with waived 
consent. Am J Bioeth. 2006;6(3):44–5.

 32. Derse AR. Emergency research and consent: keeping the exception from undermining the rule. 
Am J Bioeth. 2006;6(3):36–7.

 33. Kipnis K, King NMP, Nelson RM. Trials and errors: barriers to oversight of research con-
ducted under the emergency research consent waiver. IRB Ethics Hum Res. 2006;28(2):16–9.

 34. Baren JM, Anicetti JP, Ledesma S, Biros MH, Mahabee-Gittens M, Lewis RJ. An approach to 
community consultation prior to initiating an emergency research study incorporating a waiver 
of informed consent. Acad Emerg Med Off J Soc Acad Emerg Med. 1999;6(12):1210–5.

 35. Contant C, McCullough LB, Mangus L, Robertson C, Valadka A, Brody B. Community con-
sultation in emergency research. Crit Care Med. 2006;34(8):2049–52.

 36. Dix ES, Esposito D, Spinosa F, Olson N, Chapman S. Implementation of community consulta-
tion for waiver of informed consent in emergency research: one Institutional Review Board’s 
experience. J Investig Med Off Publ Am Fed Clin Res. 2004;52(2):113–6.

 37. Kasner SE, Baren JM, Le Roux PD, Nathanson PG, Lamond K, Rosenberg SL, et al. Community 
views on neurologic emergency treatment trials. Ann Emerg Med. 2011;57(4):346–354.e6.

 38. Kremers MS, Whisnant DR, Lowder LS, Gregg L.  Initial experience using the Food and 
Drug administration guidelines for emergency research without consent. Ann Emerg Med. 
1999;33(2):224–9.

 39. Lowenstein DH, Alldredge BK, Allen F, Neuhaus J, Corry M, Gottwald M, et al. The prehos-
pital treatment of status epilepticus (PHTSE) study: design and methodology. Control Clin 
Trials. 2001;22(3):290–309.

R. Spellecy and E. E. Anderson

https://doi.org/10.1007/s13187-018-1412-y
https://doi.org/10.1007/s13187-018-1412-y


85

 40. Mosesso VN, Brown LH, Greene HL, Schmidt TA, Aufderheide TP, Sayre MR, et  al. 
Conducting research using the emergency exception from informed consent: the Public Access 
Defibrillation (PAD) Trial experience. Resuscitation. 2004;61(1):29–36.

 41. McRae AD, Bennett C, Brown JB, Weijer C, Boruch R, Brehaut J, et al. Researchers’ per-
ceptions of ethical challenges in cluster randomized trials: a qualitative analysis. Trials. 
2013;14(1):1.

 42. van Dijck J. Datafication, dataism and dataveillance: big data between scientific paradigm and 
ideology. Surveill Soc. 2014;12(2):197–208.

 43. Ekbia H, Mattioli M, Kouper I, Arave G, Ghazinejad A, Bowman T, et al. Big data, bigger 
dilemmas: a critical review. J Assoc Inf Sci Technol. 2015;66(8):1523–45.

 44. Anderson EE. A qualitative study of non-affiliated, non-scientist institutional review board 
members. Account Res. 2006;13(2):135–55.

 45. Graham S, Depp C, Lee EE, Nebeker C, Tu X, Kim H-C, et al. Artificial intelligence for mental 
health and mental illnesses: an overview. Curr Psychiatry Rep. 2019;21(11):116.

 46. Sylvia LG, Hearing CM, Montana RE, Gold AK, Walsh SL, Janos JA, et al. MoodNetwork: an 
innovative approach to patient-centered research. Med Care. 2018;56(Suppl 10):S48–52.

6 Respect for Persons and Artificial Intelligence in the Age of Big Data



Part II

AI for Digital Mental Health and Assistive 
Robotics: Philosophical and Regulatory 

Challenges



89© Springer Nature Switzerland AG 2021
F. Jotterand, M. Ienca (eds.), Artificial Intelligence in Brain and Mental Health: 
Philosophical, Ethical & Policy Issues, Advances in Neuroethics, 
https://doi.org/10.1007/978-3-030-74188-4_7

N. Shamsudhin (*) 
Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland 

F. Jotterand 
Center for Bioethics and Medical Humanities, Medical College of Wisconsin,  
Milwaukee, WI, USA 

Institute for Biomedical Ethics, University of Basel, Basel, Switzerland

7Social Robots and Dark Patterns: Where 
Does Persuasion End and Deception 
Begin?

Naveen Shamsudhin and Fabrice Jotterand

7.1  Introduction

Technologists, at both academic and corporate research centers, in collaboration 
with behavioral psychologists, neuroscientists, and sociologists, are developing 
socially interactive robots, seemingly emotionally and socially intelligent, for long- 
term interactive and assistive relations with humans. To allow for a seamless illu-
sion of mutually empathic interaction to be experienced by the human user, these 
robots are being endowed with the technical capabilities to multi-modally read 
human cognitive and emotional “states” and appropriately respond in both verbal 
and non-verbal manners using its various sensors and actuators. Unfortunately, even 
with state-of-the-art socially interactive robots, humans are only able to engage for 
a short period of time or for sporadic contacts, before losing interest [1]. For suc-
cessful long-term social interaction, robots need to be programmed with the ability 
to perceive and interpret their environment based on past experiences, identify and 
model mental states of humans. Most importantly, these robots need to understand, 
model, and exhibit the rich dynamics of human social and cultural communicative 
behavior and norms. When the nuances and paradigms of human to human com-
munication are ported to robots, we must confront and accept some of the uncom-
fortable facets of human nature and psychology. Our cognitive biases—including 
our tendency to anthropomorphize, our persuasive styles of communication, and our 
stereotypes such as those on gender and culture, among many others—are being 
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used by robot programmers to design the future of long-term human–robot 
interactions.

Similar to the situation faced by social roboticists, the pressure to increase user 
engagement time, a key metric of product performance, is being felt by designers at 
non-robotic technology companies as well. For many of these companies, the rev-
enue stream is directly related to the amount of time users engage with their ser-
vices. Over the last two decades, companies and digital designers have increasingly 
employed design techniques, which are now collectively known as dark patterns. 
This approach exploits knowledge of human and social psychology to create habit- 
forming, privacy-intrusive products, which are not always in the best interest of the 
users, and detrimentally affect the user’s mental and physical well-being. Look no 
further than your pockets, for a habit-forming exemplar: the smartphone and its app 
ecosystem.

In this work, we argue that the adoption and embodiment of these dark pattern 
strategies by roboticists is imminent and potentially harmful. While some of these 
dark patterns may be benign, others raise serious ethical and legal concerns. 
Compared to other digital technologies, such as web or smartphone interfaces, dark 
pattern harboring robots are potent social actors, and could more effectively com-
promise user trust and autonomy, and erode the overall well-being (mental and 
physical) of its users. This work further documents evidence of dark patterns sur-
rounding commercially available social robots.

This chapter is structured into four sections. Section 7.2 explores the state of the 
art in socially interactive robotics, their application areas, and the challenges it 
faces. Section 7.3 highlights the use of anthropomorphic principles in social robot 
design to sustain long-term human–robot interaction. Section 7.4 introduces dark 
patterns with examples and considers cases of their deployment in social robots. 
Section 7.5 contains the normative analysis and discussions and finally Sect. 7.6 
offers concluding remarks with suggestions for the development of social robots 
while avoiding the adoption of the use of dark patterns.

7.2  Robots in the Wild

7.2.1  Robots in the Realm of Personal Human Experience

Robots are increasingly entering the realm of personal human experience. Over 25 
million service robots are estimated to have been sold in 2019 worldwide, vastly 
outnumbering industrial robot sales (see Fig. 7.1). Personal service robots which 
make up the majority of sales are mostly household robots designed to perform 
singular and useful tasks, such as vacuuming, mopping, lawn-moving (e.g., iRo-
bot’s Roomba™), or for entertainment and hobby purposes (e.g., Sony’s aibo™). 
Assistance robots for personal healthcare applications, such as for the elderly and 
for the handicapped, currently only constitute a small fraction, numbering a few 
thousand units annually. Professional service robots, which require a properly 
trained operator for its functioning, can be found in a variety of applications areas 
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such as in healthcare, in transportation, agriculture, and more popularly in public 
relations at reception desks of hotels and banks as well as at museums, malls, and 
supermarkets to guide and make recommendations to visitors and consumers (e.g., 
SoftBank Corporation’s Pepper™). Within the next decade, our homes and work-
places, spaces of rich human and social experiences, will be crowded with a multi-
tude of interconnected robotic devices. Hundreds of start-ups and corporations are 
busy at work attempting to bring to market more such service robots, that can deliver 
shopping to homes, prepare meals in the kitchen, deliver them to your table, per-
form a dance routine when you are bored, and recite bed-time stories to children. 
Alas, the all-in-one humanoid butler robot that can perform all the tasks above with-
out malfunctioning is still confined to science fiction for the moment, and at best, 
decades away from reality, as the technical and social challenges are very complex.

7.2.2  Socially Interactive Robots

Not all robots need to be social. Most industrial robots work in environments cor-
doned off for humans, and do repetitive tasks, such as painting and welding, and do 
not need social skills for interacting with humans. Once programmed by a human 
operator, they work repetitively in their stationary workspaces. Other industrial 
robots, that are mobile and move around factory floors picking and delivering goods, 
have the ability to detect objects in their vicinity and avoid collision, a primitive 
form of environmental awareness.

Fig. 7.1 Estimated worldwide annual robot unit sales [2]
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For the purposes of this chapter, we are interested in robots that engage in per-
sonalized social interaction with humans (see Fig. 7.2a), and not in robots that are 
designed to exhibit collectivistic insect-like or bird-like social behaviors [4, 5] or to 
tele-operational robots such as surgical robots (see Fig. 7.2b). We use the definition 
proposed by Fong and colleagues who define “socially interactive robots” as simply 
“robots for which social human–robot interaction is important” [6]. They argue that 
such socially interactive robots possess (or will soon be upgraded to possess) the 
following social characteristics associated with humans: (1) the ability to perceive 
and/or to express emotions; (2) to communicate with high-level dialogue (for exam-
ple, through speech synthesis); (3) to learn and recognize computational models of 
other agents; (4) to establish and maintain social relationships; (5) to use natural 
social cues such as gaze and gesture; (6) to exhibit a distinctive personality and 
character; and (7) the ability to learn and develop social competencies. We will use 
the term social robot and socially interactive robot interchangeability throughout 
the rest of the chapter. These include service robots like Pepper, which are mostly 
used in commercial applications, and aibo which is marketed for personal entertain-
ment and companionship. However, they exclude service robots like Roomba and 
most industrial robots.

The relational features of socially interactive robots outlined above qualify them 
as social actors. In 1998, Fogg proposed a functional triad diagram [3], where he 
placed various technologies on a triangular map categorizing them as either tools, 

a b

c

Fig. 7.2 (a) Social robots may be completely anthropomorphic (Sophia, Harmony), or zoomor-
phic (aibo), or hybrid entities (Pepper, Jibo, Kirobo Mini, Misty). (b) Tele-operated robots for 
medicine or surgery are also designed with a human–robot interaction in mind, but they are not 
considered social robots. (c) Extending the functional triad of technologies proposed in Fogg so as 
to include social robots that have emerged post-1999 [3]
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mediums, or social actors or somewhere in between. Social robots are not mere 
tools nor mediums, but they are social actors capable of creating and “maintaining” 
relationships with humans. In light of these considerations, we can now extend his 
functional triad (see Fig. 7.2c) by placing social robots at the social actor vertex, 
displacing the digital pets (like Tamagotchi) which were the state of the art at the 
time of his proposal.

7.2.3  The Challenge of Long-Term Interaction 
with Social Robots

Though social robots are used in research labs, and pilot studies have been con-
ducted in a multitude of application areas, only very few have seen large-scale com-
mercialization with practical use and adoption, such as aibo, a robotic dog for 
entertainment and companionship applications [7, 8], and Pepper for business, 
retail, and home applications [9].

One of the biggest design challenges, if not the biggest, facing the introduction 
of social robots into the wild, is the challenge of sustaining long-term human–robot 
interaction and engagement over days, weeks, and years, beyond the initial period 
of novelty [1, 10]. Currently most human–robot social interactions are short-lived, 
except for the structured interactions used in elderly and differentially abled care 
[11]. They usually last a few minutes to utmost an hour of one-off interaction, or 
sporadic interactions such as an information robot at an airport or at the bank lobby. 
We note that aibo is a notable exception to this norm, which thanks to its clever (but 
potentially deceptive) design principles [8, 12] has users that use it on a day-to-day 
basis for several years [13].

To increase the length and the depth of these interactions between humans and 
robots, social robots must communicate with humans much like humans communi-
cate with each other, or in ways that humans are familiar with and find natural, such 
as with similarity in form and appearance, personalized interaction based on history 
of previous interactions, usage of behavioral norms like maintaining eye gaze and 
nodding, etc. There must be an establishment of trust, and an ability to connect at a 
“deeper and meaningful” level than just an exchange of information. To mimic the 
features of a human to human interaction, social robots would need to be able to 
express emotions such as empathy and compassion or demonstrate higher level of 
rationality and communication skills. Social roboticists have found various design 
strategies that collectively help in this effort which are detailed in Sect. 7.3.

7.3  Social Robot Design

7.3.1  Anthropomorphism in Social Robot Design

Roomba is the most successful robot on the market found in millions of homes 
around the world. Roomba does a single task, that is, vacuuming floors. It is not a 
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socially interactive robot, even though it operates in our private social space, our 
homes. What is surprising is that even though Roomba has no models of social intel-
ligence programmed into it, nor looks neither like a human or an animal, and has no 
ability to express human social cues, a large number of its owners give it names, 
ascribe personality traits to it, feel that it deserves credit for doing a good job at 
cleaning, and also get sad when it is damaged or has to be replaced.

The human response to Roomba is an excellent robotic example of anthropomor-
phism. Anthropomorphism generally refers to the attribution of human traits (such 
as cognition, personality, emotions, and intentionality) and human behavior to non- 
human entities such as animals, cartoon characters, and technological devices. From 
the point of view of Dennett [6, 14], for complex systems for which we may not 
have complete knowledge about its full physical characteristics nor its internal 
design and functions, we tend to ascribe an intentionality and agency to the system 
and assume that the actions of the systems arise from its internal beliefs and desires. 
Robots do seem to fall under the category of such complex systems.

Anthropomorphism is considered as a cognitive bias, a limitation or as a hin-
drance. For social robotics design, however, it has been a very useful and indispens-
able design ingredient and has been extensively investigated and implemented to 
shape human–robot interactions [15, 16]. Applied anthropomorphism in robot 
design functions “as a mechanism through which social interaction can be facili-
tated. Thus, the ideal use of anthropomorphism is to present an appropriate balance 
of illusion (to lead the user to believe that the robot is sophisticated in areas where 
the user will not encounter its failings) and functionality (to provide capabilities 
necessary for supporting human-like interaction)” [6]. Achieving this delicate bal-
ance between the illusion of mutually reciprocative social and affective relation and 
delivering the desired functionality is the golden aim of social roboticists.

Anthropomorphic design principles guide not only the external physical form of 
social robots but also its external behavior to amplify their sense of animation or 
“being alive,” its likeability or attractiveness, and ultimately trust and a sense of 
mutual acceptance with the user. Physical design parameters include the size of the 
robot, its appearance such as the humanoid or zoomorphic form (Fig. 7.2), facial 
features such as having an eye, its apparent gender, etc., and behavioral parameters 
include robot posture, its change in eye gaze and facial expressions, and empathic 
responses like head nodding and action mirroring. A large two-meter social robot, 
purely by virtue of its size, might appear menacing, but if it was designed with the 
proportions and behavioral characteristics of a baby or with an overall cute aesthet-
ics, it can evoke a positive emotional response in users [17].

7.3.2  Social Robot Design Is Not Neutral

Design is not neutral. Ask any practitioner. Stephen P Anderson [18], for instance, 
writes in his influential article “Towards an Ethics of Persuasion” that “[a]ll design 
influences behavior, even if we’re not intentional about the desired behaviors” 
whereas Colin Gray points out, “[d]esign is inherently a persuasive act, where the 
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designer creates intentional change in the world that either directly or indirectly 
induces behavioral or social change.” [19]. Cynthia Breazeal, MIT professor and 
social robot entrepreneur remarks that “[s]ocial robots are designed to interact with 
people in a socio-emotional way during interpersonal interaction” [20]. She also 
points out that there are several application-specific design goals in building social 
robots. One is to have a research platform to “gain a scientific understanding of 
social intelligence and human sociality,” while design goals for successful commer-
cial social robots could be framed as follows: “The commercial success of these 
robots hinges on their ability to be part of a person’s daily life. As a result, the robots 
must be responsive to and interact with people in a natural and intuitive manner” 
[21]. Softbank’s innovation department, for instance, made no qualms about report-
ing that the design goal of its robot Pepper was to “intrigue and attract consum-
ers” [9].

The short-term overarching goal for the success of social robots is creating an 
illusion to the user of a personalized, natural, and reciprocative empathic and social 
interaction with the robot, while the long-term goal of developing a strong artificial 
intelligence (AI) is at works [16]. With its carefully designed form and behavior, the 
social robot design intent can be alternatively framed as persuasion of the user into 
believing, at least temporarily, that the robot is human-like, has life-like properties, 
can be trusted, and there is value in the creation and maintenance of this human–
robot relationship. Clearly, social robot design is not neutral and has a persuasive 
intent. The design of social robots is an example of persuasive design.

7.3.3  Social Robots as Exemplars of Persuasive Design

BJ Fogg defined Persuasive Technologies as “a computing system, device, or appli-
cation intentionally designed to change a person’s attitudes or behavior in a prede-
termined way” [3]. We use the term Persuasive Design to imply the design of 
persuasive technologies (see Fig. 7.3). Social robots are exemplars of persuasive 
design. With their combination of physical embodiment, presence, and mobility, 
their anthropomorphic design features and use of affective computing, they are 
capable of persuading us into the illusion of natural, reciprocative empathic com-
munication. They are social actors, far more effective than conventional persuasive 
technologies [22, 23]. They not only can deploy fact or expert-based logical and 
rational arguments using high-level language to persuade but can also use tech-
niques that appeal to the emotions or the use of social cues for change, i.e., non- 
verbal communication such as bodily language and gestures.

Social robots have applications in healthcare; in informing, educating and per-
suading people about and into positive personal behavioral change or for the social 
good. While purely information or fact-giving is less effective as we know from 
human to human communication (for example in doctor–patient relationships), add-
ing a persuasive component can increase effectiveness or likelihood of behavior 
change such as increased treatment adherence [24]. Think of a social robot that 
reminds or informs the patient to take medication versus a robot that can persuade 
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patients to take medication by providing arguments from analogy, from popular 
practice, or from expert opinion [25]. It is clear that the latter one will be more 
effective.

It should be noted that in Fogg’s definition above, he does not specify or mention 
the mechanisms or cognitive processes through which the change is introduced in 
the receiver of the persuasive message by the technology. Attitude and behavior 
changing technologies are potent but at the same time social robot designers must 
be careful as to the methods they use in persuasion. It is tempting to deploy decep-
tive design to amplify behavior change so as to better benefit the designer rather 
than the user. The presence of dark patterns in a persuasive design may not always 
be evident [26]. To qualify as a dark pattern (1) the intent to persuade must be neces-
sary, (2) the resulting user action is not in the user’s best interest and is in the interest 
of the persuader, and (3) the methods employed are deceptive and covert. We could 
imagine a drug company designing a persuasive social robot which is given to 
patients who receive the drug sold with the drug to remind patients to take that drug 
but would increase consumption by manipulating slightly the dosage, or would vary 
the dosage to sub-populations to carry out trials without the knowledge of the 
patients.

Fig. 7.3 A conceptual map of design. All design has a persuasive effect, whether the designer 
intends for persuasion or not. Persuasive design is a conscious strategy to persuade the user to 
change his or her beliefs, behavior, or attitudes. Deceptive designs are persuasive designs that 
employ deceptive techniques that undermine user autonomy and manipulate users into actions that 
are not in their best interest. These techniques are also known as dark patterns. The most abusive 
forms of dark patterns may be harmful, unethical, and/or illegal such as designing for addiction or 
for physical harm. This diagram encompasses design of all technologies including that of 
social robots
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7.4  Dark Patterns Meet Robotics

7.4.1  What Are Dark Patterns?

Dark Patterns is an umbrella term referring to a collection of practices used by 
designers, that exploit individual and social psychology and behavior to create user 
interfaces and user experiences that deceive or manipulate users (even create addic-
tion) into doing things that they might not generally want to do. The user action thus 
performed is not in the user’s best interest and benefits the designer or the company 
in question. The collection of dark patterns constitute deceptive design (see Fig. 7.3). 
Dark patterns may deceive users into making unwanted purchases, adopting exces-
sive data mining configurations, creating unwanted negative habits [27], resulting in 
their incurring financial loss, increased intrusion of privacy, and addiction, respec-
tively, while the designer gets increased revenue, increased user reach, and access to 
valuable user datasets. The phrase dark patterns was coined in 2011 by design spe-
cialist Harry Brignull with the registration of www.darkpatterns.org where he main-
tains a repository of such patterns found on e-commerce websites. Since then, more 
such instances of dark patterns in digital media and tools—websites, in video games 
[26], in mobile applications [28], in social media [29]—have been identified, com-
piled, and classified by vigilant netizens (see hashtags #darkpattern, #darkpatterns 
on Twitter), designers [19], community groups (for [30]), academic researchers [28, 31], 
and governmental organizations [32].

To illustrate examples of frequently encountered dark patterns on websites and 
apps, we have compiled a few of them in Fig. 7.4. Figure 7.4a shows screenshots of 
website interface elements of a search result on www.booking.com, one of the most 
widely used online hotel booking service. A structured combination of design ele-
ments such as colored text, pop-ups, icons, buttons, and numbers populate each 
hotel search result, creating a feeling of scarcity and fear-of-missing-out (FOMO) 
which encourages impulsive bookings. Why do we need to be informed with the 
message “You missed it!” in bold red text with an exclamation mark? It is fairly 
clear that most of these interface elements are irrelevant to the actual needs or inter-
ests of the user, and is in place only to benefit the company with increased bookings. 
Please note that such forms of dark patterns are very frequent on other e-commerce 
websites and is not restricted to www.booking.com.

Figure 7.4b displays a collection of mobile app and website screenshots high-
lighting visual dark patterns deployed by Facebook and Instagram to increase user 
engagement on their platforms. Collectively, the design elements such as “likes,” 
push notifications, and the bright red spots known as badges, loading animations, 
along with other non-visual dark patterns such as notification sounds and the algo-
rithms that use intermittent variable reward strategies and tailor the content shown 
to the user on the News Feed, to name a few of many, have adversely impacted user 
psychology. Users show symptoms of attachment and addiction [27] and reduced 
self-esteem and depression due to negative social comparisons [33, 34]. In addition, 
these design elements have seduced users into accepting privacy configurations that 
give away more user data than a user would generally want to share [28]. This 
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specific privacy-centered dark pattern is frequently named as Privacy Zuckering 
[19]. Such dark pattern deployment is not restricted to the Facebook group of com-
panies alone, but are also used by the other four technology giants, namely Alphabet 
(Google), Apple, Amazon, and Microsoft. Collectively they deliver and serve digital 
services to practically everyone in the world with an internet connected smartphone 
or a computer.

7.4.2  Pervasiveness of Dark Patterns

Dark patterns have become so pervasive that it has almost become standard industry 
practice. In the last couple of years, various books and tutorials for designers have 
been published that serve as guides to create irresistible, tempting, evil, habit- 
forming and seductive digital products (adjectives have been borrowed from the 
book titles) [35–38]. Digital products, both software and hardware, compete for the 
attention of its users. Human attention has become an extremely valuable and scarce 
commodity in this information-rich digital world. With the multitude of distractions 

a

b

Fig. 7.4 Examples of design elements of dark pattern strategies found on popular website and 
smartphone applications. Purple arrows point towards visual and dynamic elements, which include 
texts in high-contrast color, push notifications, “likes,” bright red colored badges, and loading 
animations that collectively contribute to a dark pattern strategy: (a) Screenshot of a single search 
result on www.booking.com that encourages impulsive purchasing. (b) Design elements on the 
web and app versions of Facebook and Instagram that increase engagement time but potentially 
increase user anxiety, attachment, and addiction
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around, companies employ tactics to increase the time spent on their software, from 
games, to digital newspapers, and to social media websites. Hoover and Eyal rightly 
remark that “[a]s infinite distractions compete for our attention, companies are 
learning to master novel tactics to stay relevant in users’ minds.” [37].

Dark patterns aim at encouraging users to maximize user engagement time (at 
the loss of user’s time), to make faster and more expensive purchase decisions (at 
the financial loss for user), to give up their personal identifiable data (resulting in 
privacy loss for user), and ultimately to undermine their own sense of personal iden-
tity (at the risk of technology redefining the user’s sense of self). Both purchases and 
engagement time drive company profits through various means such as through 
third-party revenues like targeted advertisements, selling user data to data brokers, 
or by hooking customers to buy costly add-ons. The demands for massive year-on 
business growth demanded by shareholders and venture capitalists who fund these 
companies, have forced teams of designers, engineers, and marketers with the 
power of data and psychology to design products with dark patterns. What may have 
started as harmless ways of using knowledge of user psychology and behavior to 
improve user experience and engagement, has turned dark.

7.4.3  When Social Robots Meet Dark Patterns

The adoption and embodiment of dark pattern strategies into social robots seems 
imminent. We point out that the main challenge faced by social roboticists and other 
digital product and service companies is essentially the same: how to increase user 
engagement. Social robots, as pointed out, are potent social actors that can inform, 
educate, entertain, motivate, persuade, and provide companionship, while at the 
same time are engineered to maintain a delicate balance between illusion and trust.

Recently, a few academic studies have demonstrated the potential to program 
robots to manipulate or deceive humans. One such study [39] involved a mobile 
robot with speech synthesis capabilities that attempted to gain access to an unau-
thorized building. Using a well-known technique called piggybacking or tailgating, 
physically disguised and verbally addressing itself as a food delivery robot, the 
robot was able to convince authorized people to let the robot into the secure facility. 
Another recent study showed the ability of robots to extract valuable information 
from people by “lying” about their motivation [40]. These dark pattern practices 
used by robots can be also defined as robot social engineering [41], a term well-
known in computer security, where humans manipulate humans to get hold of valu-
able information.

Are dark patterns already being deployed in commercially available social 
robots? To explore the presence and potential for dark patterns in robots beyond 
research labs, and to aid and focus our discussion, we use examples of two social 
robots available on the market, namely, (1) aibo, an entertainment and companion-
ship robot, and (2) Pepper, an enterprise and home multi-application robot. The 
general concerns and implications that we raise here span the whole class of social 
robots and its development. Where and when appropriate, the identified robot dark 
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patterns will be matched with the previously developed classification schemes 
developed for digital products and services [19, 28].

7.4.3.1  aibo
aibo™ is a robotic dog, developed by Sony Corporation and has the status of the 
world’s first mass-market consumer robot for entertainment applications. Since its 
introduction in 1998, it has been a widely successful product having sold more than 
150,000 units. The latest edition (model ERS1000) is available for sale in the United 
States at a price of $ 2899.99, and comes with a compulsory 3 years AI cloud ser-
vice. It is also available for sale in Japan, but our analysis only covers the version 
offered in the USA. aibo can respond to voice commands and can perform up to 30 
pre-programmed “tricks” (sequences of movements). Additional tricks can also be 
user programmed. It communicates non-verbally through bodily movements and 
gestures, noises, body temperature changes and through its multi-LED display in its 
eyes. It can recognize up to one hundred different user faces through the 20.7 mega 
pixel camera in its nose, which can also be set up to automatically take pictures a 
few times a day.

Dark patterns by definition, are deceptive and are not overt. To look out for 
potential dark patterns in the aibo ecosystem, we bring to consideration here three 
citations found on Sony’s aibo website (https://us.aibo.com) and in its online mar-
keting material; (1) “Your aibo can’t wait to meet you” (see Fig. 7.5a), (2) “[aibo is] 
capable of forming an emotional bond with members of the household while pro-
viding them with love, affection, and the joy of nurturing and raising a companion.” 
and (3) “Aibo keeps on growing and changing, constantly, updating it’s data in the 
cloud. Over time, your approach to nurturing your aibo will gradually shape it’s 
personality—it could be a doting partner, a wild fun-loving companion, or any-
where in between.”

Phrase (1) projects onto us, what one of Sony’s former lead robotics researcher 
Frédéric Kaplan calls the first of two clever design principles involved in the cre-
ation of aibo, “its apparent autonomy in the choice of its goals,” that is the engi-
neered illusion of aibo as a free creature [8]. Phrase (1) is featured on a website 
banner along with the picture of an expectant aibo in a kneeling position and a 
bright red colored “Store” button (see Fig. 7.5a). Here instead of using the scarcity 
effect or FOMO typically seen in e-commerce websites (Fig. 7.4a), the interface 
design of the aibo online store pushes our darwinian buttons of anthropomorphism, 
which attributes an intentional stance or agency to aibo, to make the purchase deci-
sion. Clearly, aibo, the robot, is not waiting for you to make that purchase.

Phrase (2) urges us to project love and affection to aibo and to nurture its growth 
as it is capable of emotionally bonding with humans. The joy of nurturing aibo that 
user’s experience has clearly been a commercial success for Sony judging by aibo’s 
sales figures, and this has come from the second design principle behind aibo, which 
in Kaplan’s words is a kind of “[a]ffective blackmail. The owner must feel guilty if 
he doesn’t take care of his pet” [8, 12]. The user is pressured to be responsible to 
provide care so that aibo develops and matures. As Phrase (2) and Kaplan confirm, 
the user’s actions shape its personality, with a tricky feedback loop; the more the 
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user interacts with the pet, the more crucial it becomes for the user to make sure that 
the pet does not get sad, grow improperly, or even “die.” Such affective feedback 
loops have been used in the design of other digital toys for companionship, such as 
the extremely popular Tamagotchi.

The two key design principles behind aibo, paraphrased here as, the creation of 
the notion of aibo’s apparent autonomy in the mind of its users, and designing aibo 
for affective blackmail of its users, are not transparent to the user and has only 
appeared in two relatively obscure technical publications [8, 12]. These design prin-
ciples combined with the marketing claims detailed above, both of which play to 
our inherent anthropomorphic biases, is suggestive of a dark pattern strategy spread 
across departments of a multi-national corporation, that ultimately serves its eco-
nomic interests and undermines the agency of users. To the author’s best knowl-
edge, there has been no attempt by Sony to clarify or make transparent as to how 
aibo’s affective computing principles, as described by Kaplan, operate to its users. 
The aibo ecosystem now includes a variety of purchasable hardware (such as play 
toys and food bowls) and software add-ons (such as virtual coins). Isn’t there a risk 
of creating an extreme form of emotional dependency through the implicit threat of 
aibo’s improper growth? Shouldn’t there be an approach of more transparency and 
explanation of aibo’s internal algorithms to the users? Not doing so, but cloaking 
them could constitute a dark pattern [42].

Phrase (3) provides clues to another dark pattern. aibo’s “growth and personal-
ity” development, a key feature of the companion robot, does not work unless users 
use Sony’s cloud package and consent to the continuous upload of data to Sony’s 
and third-party servers, which may include personally identifiable images, audio, 
and video. According to Sony, the cloud connectivity “is necessary to take 

a
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Fig. 7.5 Marketing material as seen on the websites of aibo and Pepper. The texts extensively play 
with anthropomorphism to convince viewers to purchase the robots. Additionally, the non- 
neutrality of the social robot design is also evident in the descriptive text accompanying Pepper
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advantage of aibo’s full functionality and learning capabilities” and “With the aibo 
AI Cloud Plan, you get the essentials of the whole experience: name your aibo, 
watch your aibo grow, and communicate with your aibo via a special app. You’ll 
need aibo AI Cloud Plan subscription to begin your aibo journey—and it’s definitely 
worth it.” aibo’s website FAQ section mentions that, once activated, the cloud-based 
service cannot be temporarily disabled. In our opinion, the need to pay and use 
cloud-based services for aibo’s prime functionality and the inability to disable it 
thereafter, taken together, constitute a Forced Action dark pattern [19]. Gray and 
colleagues define Forced Action as “any situation in which users are required to 
perform a specific action to access (or continue to access) specific functionality. 
This action may manifest as a required step to complete a process, or may appear 
disguised as an option that the user will greatly benefit from.” aibo’s cloud function-
ality is at multiple instances lauded to be of great use to the user and is a require-
ment for aibo’s key functionality. Another example of Forced Action within the 
product is the requirement to agree to automatic software upgrades without the 
option to opt-out or disable them, as stipulated in aibo’s user agreement terms [43].

Clocking a word count close to 12,500 spread across 23 pages, aibo’s privacy 
statement and user terms of agreement [43, 44], are likely not read in depth or in 
detail when users first start using aibo, as studies with privacy policies of other 
digital products and services show [28, 45]. Included within aibo’s privacy state-
ment is a clause which requires a blanket agreement by the user to the processing 
of personal data, including recordings from the microphone and camera, to improve 
other unnamed products in Sony’s offering, and also its transfer to unspecified 
third parties for service improvement and for advertising. Yet another clause in the 
user agreement [43] specifies that user content rights have to be granted to “Sony, 
its parents, subsidiaries, affiliates, successors, licensees and assigns, a non-exclu-
sive, worldwide, perpetual, sublicensable, royalty-free license to use, host, store, 
modify, reproduce, distribute, create derivative works, publish, publicly perform 
and publicly display your User Content with respect to the Services. You hereby 
waive any moral rights you may have in and to any of your User Content, even if 
the User Content or a derivative work is altered or changed in a manner not agree-
able to you.”

The combined use of mandatory and non-opt-out cloud data processing, and the 
embedding of several blanketing and privacy-intrusive and data collection maximiz-
ing clauses, in a user unfriendly legal terminology within the privacy and user 
agreement policies, are suggestive of a privacy dark pattern strategy [28]. There are 
no technical or legal restraints that prevents human employees at Sony or at their 
third-party contract partners from accessing and viewing personal intimate data of 
aibo’s users.

The privacy dark strategy deployed on aibo, including its non-opt out nature of 
aibo’s cloud services and data processing, would be illegal in the European Union, 
under the new General Data Protect Regulation (GDPR). As of the time of writing 
this chapter, aibo (ERS-1000) has not been available for sale in the European Union. 
We also note that aibo is not offered for sale in the US state of Illinois, as its facial 
recognition system violates Illinois’s data protection laws [44].
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While aibo is marketed as an entertainment product, it has also been used in 
therapy of cognitively vulnerable populations to improve their psychological status 
and overall well-being [46], e.g., individuals with dementia, (Toshimitsu [47]), in 
social facilitation [48], and for loneliness reduction or companionship [49]. These 
cognitive vulnerable groups, which also includes contexts of children’s education 
[50], may also be at risk of increased violation of privacy because of their inability 
to read or comprehend the complex terminology of the privacy policy or user agree-
ment terms.

7.4.3.2  Pepper
Pepper is a socially proactive 1.2 meter tall humanoid robot, developed by Softbank 
Robotics, initially designed for business-to-business (B2B) applications with the 
goal to “intrigue and attract consumers” [9]. Introduced in 2014, approximately 
20,000  units have been sold and are in operation in malls, retail stores, banks, 
schools, in elderly care and medical facilities worldwide. Only in Japan can it be 
found in homes, where it is available as a consumer product. Pepper is extremely 
versatile in its technical capabilities and also complex from a product point of view. 
Pepper available for enterprise applications adopts a robotics-as-a-platform model, 
where Pepper is sold or leased through regional third-party robotics companies to 
business customers who in turn operate these robots in retail, banking, educational, 
hospitality, and healthcare environments.

Pepper, as a mobile social robot platform operational in multiple public and com-
mercial spaces worldwide, has the potential to harbor dark patterns. The presence of 
multiple actors, i.e., Softbank and its third-party service providers, the regional 
robot provider, the business/retail client and its employees, app developers, etc. in 
the Pepper ecosystem is a serious source of data privacy concern. One of the suppli-
ers of Pepper in Europe, Humanizing Technologies, provides a content management 
system which can monitor every interaction that a user has made with Pepper. On 
their website the company writes that “We are tracking all behaviors and apps that 
are installed on your Pepper robot…This data helps you understand which behav-
iors of Pepper trigger emotions of your customers.” Pepper utilizes an emotion 
engine powered by a third-party provider (Affectiva) to detect and classify subtle 
differences in facial expressions and voice. The partnership between Softbank and 
Affectiva raises further privacy concerns, as it is not transparent regarding how the 
data is handled and stored between these partners. Furthermore, researchers have 
reported the presence of several security flaws in Pepper’s software which can allow 
a malicious third party to take control and command the robot [51].

Pepper can acquire personal persuasion histories about users, which contain 
information about the types of influences an individual is especially susceptible to 
and under what circumstances [52]. Personal persuasion profiles (including a vari-
ety of human signatures such as voice data, facial and affective data) of customers 
acquired by mobile social robots like Pepper in spaces like supermarkets and banks, 
open up opportunities for dark pattern deployment.

“Pepper gathers data over the course of conversations, learning people’s tastes, 
traits, preferences, and habits to help personalize responses and better address 
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needs. Pepper also collects new info to help you better understand both your cus-
tomers and your business.” appears on Softbank’s website. Imagine a scenario 
where you enter a hardware store, when Pepper the sales assistant, recognizes you 
with its face recognition algorithms and your store visit history, and combining it 
with knowledge of your internet search history accessed through online data bro-
kers, would guide you to the exact product you are looking for even without you 
saying a word, perhaps even recommending you a higher-priced product with better 
margins for the store. This is upselling, one of the touted opportunities for using 
Pepper (see Fig 7.5b).

7.5  Discussion

Social robots with its anthropomorphic design can potentially develop far more 
intimate and emotional relationships with its users than any other technology. 
Social robots are being developed to beneficially support humans in a wide range 
of contexts such as for entertainment, in education, for physical and emotional 
assistance and support, for elderly care, etc. Empirical data, such as from social 
robot intervention studies in psychosocial health contexts, indicate generally posi-
tive outcomes [53]. Other generally positive reviews point out reduced agitation 
and anxiety, increased social interaction, reduced loneliness, better use of medica-
tions amongst the elderly [54], more relaxation, more smiling, lesser pain, and 
openness and better communication within hospitalized children [55], etc. While 
the beneficial narrative of social robots is generally touted by robot researchers 
and designers, we question if the relationships formed between users and social 
robots particularly embedded with dark patterns negatively impact user’s mental 
health and well-being?

We have seen the rise in user engagement on typical digital devices and associ-
ated services, such as smartphones and apps. Deployment of dark patterns utilizing 
behavioral psychology has a significant role to play in this upswing of user engage-
ment. The time spent, however, may not always be in the user’s best interest and 
could have a negative impact on various parameters of a user’s psychosomatic well- 
being (quality and duration of sleep, levels of self-esteem, state of anxiety, etc.), 
hence raising issues about mental health as a matter of public health [29, 34, 56]. 
The extent of the public recognition of (potential) harm can be seen in the two acts 
introduced in 2019 by lawmakers in the USA in a bid to legally stop a sub-set of 
dark patterns deployed by large technology and social media companies, namely the 
Deceptive Experiences To Online Users Reduction (DETOUR) Act “to prohibit the 
usage of exploitative and deceptive practices by large online operators and to pro-
mote consumer welfare in the use of behavioral research by such providers.” [57] 
and the Social Media Addiction Reduction Technology (SMART) Act “to prohibit 
social media companies from using practices that exploit human psychology or 
brain physiology to substantially impede freedom of choice, to require social media 
companies to take measures to mitigate the risks of internet addiction and psycho-
logical exploitation, and for other purposes” [58].
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Realizing these negative user effects and fears of upcoming legal consequences, 
some companies have regulated themselves by rolling out screen time or engage-
ment time monitoring add-ons to their digital products (such as Apple’s Screen 
Time and Google’s Digital Wellbeing). Some technology users are also intention-
ally staying away from tech products for periods of time, a phenomenon known as 
digital detox [59, 60], in the pursuit of well-being. While it can be said that the 
intensity of the harm on well-being is dependent on individual user susceptibility 
and usage context [26], aren’t highly engaging interfaces directly effecting our abil-
ity to disengage, or in other words attenuating our personal autonomy of action?

Building upon the conceptual map of design (Fig. 7.3), we introduce a frame-
work (illustrated in Fig. 7.6) to analyze design (of robots and in general all tech-
nologies) in terms of their effect on user autonomy which captures the gradative 
effects of design from being harmless to being harmful, unethical, and illegal.

Design (or the resultant technology) can deny user autonomy across four specific 
dimensions: (1) temporal—if we are not able to stop ourselves from spending valu-
able time on the design artifact, (2) monetary—if we are not able to stop ourself 
from spending money on the service, (3) data privacy—if we are not able to put a 
plug on giving up data, and consequently our privacy away, and (4) personal 
identity—if the technology undermines our sense of personal identity. An autonomy 
affirming technology would allow the user to freely stop using and paying for the 
product or service at will. Such a technology would also allow adequate informing 
and the freedom of choice in determining the optimum level of privacy as desired by 
the user.

It is important to remember that the process of development and market launch 
of a commercially viable or a “socially successful” social robot is a complex and 
expensive endeavor which requires a large amount of private and venture capital, 
even though the preliminary effort might have been funded by public funding in 
science and technology. Gray and colleagues write “complex entanglement among 
designer responsibility, organizational pressures, and neoliberal values often politi-
cizes and prioritizes the profitability of design above other social motivations” [19]. 

Fig. 7.6 Figurative 
schematic of our proposed 
framework for analysis
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It is worth noting that out of the six organizers of the recent workshop titled Social 
Robots in the Wild which took place at the thirteenth ACM/IEEE International 
Conference on Human-Robot Interaction only one was an academic researcher 
while the rest were employees of technology companies developing social robots. 
Considering that deceptive design or the use of dark patterns in digital products is 
fairly common industry practice, if not a standard practice, the rise of deceptive 
design in commercial social robots is imminent. While empirical work on the nega-
tive effects of social robots on the psychosomatic health and well-being is an open 
field of research [61–63], we believe that prior research on the harm to mental health 
(in thematic areas such as dependency, addiction, loss of autonomy, loneliness, and 
anxiety) of users of well-established digital products and services (computers, 
smartphones, video games, social media, etc.) lays strong groundwork in this 
direction.

7.6  Conclusions

The dark patterns, and the underlying human cognitive biases and social factors that 
they exploit, we have identified in social robots are by no means exhaustive. We 
note that our investigation has been conducted only through publically available 
information and we have not purchased or used any of the aforementioned robots. It 
can be very well assumed that during actual usage, more potential dark patterns may 
emerge. We hope that these preliminary findings will form the basis of rigorous 
investigation and research in the future to develop a dark pattern typology that spans 
both software (web/app) based technologies and physical intelligent technologies 
like social robots. Dark pattern categorization in social robots requires a classifica-
tion scheme quite different from the ones that have been developed for web or 
mobile applications, primarily because of the multi-modality of HRI, the physical 
embodiment, and their social context.

While users are increasingly becoming aware of dark patterns on websites and 
mobile applications, dark patterns embedded in robots are a relatively new phenome-
non and hence harder to detect. With robot designers deliberately overplaying with 
our anthropomorphic biases, a certain degree of alertness and critical awareness is 
necessary on the part of users to avoid being misled by neither the marketing terminol-
ogy nor the exhibited behaviors of the robot. Public information and education is para-
mount. Identifying, collecting, and compiling these dark patterns in social robots will 
help make it easier to identify recurrences of such patterns in other robotic products 
both for the public and for policy makers. Our suggestion would be to create a website 
with croudsourced dark patterns detected in robots and other embodied technology 
products. Websites like www.darkpatterns.org and www.darkpatterns.uxp2.com have 
done a remarkable job at compiling dark patterns in web-based tools and services. 
Additionally, a metric could be derived to indicate the number of appearances and 
severity of usage of dark patterns in a single product. It would be valuable if such a 
dark pattern score could be incorporated in the evaluation criteria of the upcoming 
Quality Mark from the Foundation for Responsible Robotics [64].
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We urge social robot designers and their employers to avoid the usage of dark 
patterns and deceptive design. We encourage the adoption of an ethical design pro-
cess by incorporating approaches such as Privacy by Design [65], Value Sensitive 
Design [66], Humane Design [30], and the IEEE’s Ethically Aligned Design [67].

Social robots have immense potential for positive interventions in a society and 
to support human flourishing and well-being, and consequently, we point out to all 
social robot engineers and designers, an excellent ethical heuristic to prevent dark 
patterns creeping into their design process [68, 69]:

The creators of a persuasive technology should never seek to persuade a person or persons 
of something they themselves would not consent to be persuaded to do.
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8Minding the AI: Ethical Challenges 
and Practice for AI Mental  
Health Care Tools

Nicole Martinez-Martin

8.1  Introduction

The use of artificial intelligence (AI) for mental health applications raises questions 
regarding the potential impact on fiduciary obligations in the therapeutic relation-
ship, oversight, bias, and data protection. Health technologies utilizing AI present 
particular challenges for regulation. AI technologies that address mental and behav-
ioral health may be used in different domains, from healthcare to education and 
consumer uses, and in some domains, there are not regulations or practices that 
provide protections for users’ health data. There are also ways that bias can enter 
into AI tools, such as during the data collection and preparation stages. It is there-
fore necessary to consider how to utilize AI for mental health applications so that 
the resulting tools do not reflect and reinforce existing social problems and inequal-
ity. At the same time, AI can present opportunities for addressing existing inequali-
ties and discrimination in mental health care. There is the potential for misuse of 
data and health information gathered from individual users, and users may not be 
sufficiently aware of negative repercussions from sharing their data. Finally, AI 
tools will likely impact the fiduciary obligations generally expected in the therapeu-
tic relationship and it will be necessary to carefully consider likely areas of concern 
in order to prepare processes for integrating these tools appropriately into mental 
health care. This article chapter will engage emerging recommendations for best 
practices in this area, along with areas for empirical ethics research.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74188-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-74188-4_8#DOI
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8.2  Artificial Intelligence

“Artificial intelligence” generally refers to the use of machines to perform tasks that 
resemble cognitive functions that we associate with human intelligence, such as 
learning or solving problems [1]. Artificial intelligence (AI) can take different 
forms, as software or hardware, including intelligent autonomous agents, distrib-
uted networks, or robotics [2]. Although the term “machine learning” (ML) is some-
times used interchangeably with AI, ML more specifically applies to approaches 
that train computers to “learn”—recognizing patterns in massive datasets, including 
complex data interactions, and in the algorithms that are used within AI applications 
[3]. Machine learning has been used for data mining, image recognition, natural 
language programming, statistical learning methods, and neural networks, among 
other applications [4]. The ability of ML to detect patterns and connections that the 
humans programming the model would not have necessarily known to look for can 
bring significant benefits to scientific research. For example, ML can be used in 
order to analyze large quantities of data, such as electronic health records, in order 
to detect patterns and associations that may be relevant to patient health and out-
comes [5]. These patterns can, in turn, be used for the purpose of predictive analyt-
ics and decision-making models, in ways that outperform traditional clinical 
prediction models [6]. ML has also been used to examine social media and websites 
in order to determine patterns in health-related behaviors [7]. ML and neural net-
works have been applied to constructing expert systems and clinical decision sup-
port systems, which are systems meant to provide and supplement the type of 
knowledge and skills generally supplied by human experts [8]. By incorporating 
ML, clinical decision support systems can provide recommendations without need-
ing preprogrammed knowledge. As will be discussed more below, while the benefits 
of using ML to analyze massive datasets are considerable, the reasons or reasoning 
underlying the output of ML can be difficult to scrutinize, sometimes even for those 
who set up the ML system [9]. This is one reason that ML can present a challenge 
for regulation and oversight.

Natural language processing (NLP) is a subfield of AI that has a number of appli-
cations in mental health care [10]. NLP uses computational techniques to examine 
and classify language. NLP can be used for analysis of social media or vocal data to 
identify patterns relevant to mental health and behavior [11]. For example, NLP can 
be used as part of scanning clinical text for identifying symptoms of severe mental 
illness [12, 13], or for providing and analyzing psychotherapy encounters [14]. NLP 
can also be used to construct chatbots or virtual humans who can interact with 
people through text or voice [15]. AI techniques, such as ML and NP, have also been 
used for virtual reality and augmented reality technologies in order to make the 
virtual environments more engaging and interactive for the participant [16]. In look-
ing at the different types of AI, one can note features that contribute to the challeng-
ing aspects of ethical applications of AI for mental health. The use of massive data 
sets presents areas of tension with data protection and privacy. The difficulty in 
knowing the reasoning or potential for bias in algorithms generated by ML can 
make evaluation of these technologies more difficult. Furthermore, when it comes 
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to chatbots and VR in particular, AI-generated mental health technologies will have 
an impact on the therapeutic relationship in ways that go beyond traditional health-
care tools. Some of that impact could be positive, such as providing useful options 
for patients who may prefer sharing their feelings and information with a non- 
human. Potential negative repercussions include insufficient data protection or lack 
of clarity regarding liability for mistakes, which can also undermine trust overall in 
AI approaches to mental health care. The impact on the therapeutic relationship will 
need to be studied in order to better understand the benefits and burdens of AI men-
tal health tools.

8.3  AI Mental Health Applications

AI is being integrated into a number of technologies for mental health care, from 
computing methods that can use massive data sets to assist in clinical decision- 
making, diagnosis, and treatment, to apps and wearables that can be used by patients 
and consumers for mental health assistance, and public health applications that 
assist in identifying behavioral health risks and solutions [17]. Some applications of 
AI involve boosting the capabilities of existing techniques and treatments, such as 
utilizing AI for deep brain stimulation approaches that respond dynamically to the 
needs of the patient [18]. It should be noted that the contexts for these different 
applications influence the types of ethical challenges encountered for that use. In the 
USA, for example, there are statutes that provide some protection for health infor-
mation; however, these statutes and regulations generally apply to health informa-
tion generated within the context of healthcare institutions and healthcare providers 
[19]. Even though some consumer AI applications can generate information about a 
person’s mental health or behavior, that information may not have the same privacy 
protections that health information in the healthcare domain would be afforded [20]. 
Thus, as AI is being increasingly applied to mental health, it is important to note that 
many of these applications may be used in domains to which different privacy and 
user protection concerns are relevant, such as healthcare, consumer, or government 
institutions.

AI tools are being incorporated in the construction of expert systems [21, 22]. In 
clinical contexts, AI-informed expert systems may be used for such purposes as 
suggesting appropriate medications for a patient [23]. Predictive analytics are being 
increasingly utilized in healthcare environments, with AI often utilized for analyz-
ing the data [24] These expert systems have traditionally been used in order to 
derive clinical rules or recommendations from the large amounts of data available in 
health systems, but, with the advent of more sophisticated AI, have become more 
focused on assisting with choices of differing probabilistic pathways [23]. Some 
have raised concerns that these decision-making tools will eventually replace the 
role of physicians, but the general goal is to make clinicians more effective with 
these tools. Providing sufficient training and support so that clinicians can utilize 
the information and findings provided by these AI-enhanced tools effectively 
remains a challenge [25]. In developing these decision-making tools, it is important 
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to take account for how they may be influenced and affected by the context in which 
they are placed. In other words, the treatment decisions that are recommended by an 
AI tool will, in turn, impact the clinical environment, thus becoming another factor 
that will need to be accounted for in the analyses performed by the AI tools [26]. It 
is therefore important to carefully consider how the expert system will be imple-
mented, so that it can be appropriately aligned with its environment and stakeholders.

AI has also become useful for development of technologies that provide simula-
tions for therapeutic purposes. Autonomous conversational agents can be used to 
engage with a person, respond to text or vocal queries, and even provide some 
aspects of therapeutic interactions [16]. Chatbots can be used to respond to basic 
text queries regarding mental health needs in order to inform or direct the user to 
resources or services, and also for more complex interactions meant to provide 
aspects of therapy [27]. For example, Woebot is a conversational agent meant to 
address people with depression that incorporates tools drawn from cognitive behav-
ioral therapy and can assist in monitoring mood, find learning videos and resources, 
and walk the user through “self-directed” therapy [28]. There is also an increasing 
role for robotics technology, incorporating AI, for mental health purposes. Robotics 
can be useful in cases where there may not be a person who can fill the role, such as 
robotics that can serve a companionship and support role (e.g., assisting users with 
getting exercise) for a patient [29]. Robots may be particularly useful in cases where 
the user may have reasons to prefer not to interact with a human for the therapy 
service. For example, robots have shown promise in assisting people on the autism 
spectrum develop skills, such as play [30] or social interaction [31]. With both chat-
bots and robotic technology, one of the ethical challenges relates to the possibility 
of blurred boundaries in user interactions with the bot, where users may lose sight 
of the fact that they are sharing information with a technology that can collect and 
pass along that data. It will be key to ensure that users are adequately informed 
about how privacy and confidentiality apply to the interactions, and how the design 
of the technologies may be used to address these types of concerns (such as switches 
or signals to the user when information is being recorded) [32].

Virtual reality (VR) is a technology that allows a user to experience a computer- 
generated simulated environment and interact with virtual persons or beings in that 
environment [33]. VR has become a tool for addressing a variety of mental health 
concerns, from use in PTSD treatments to assisting with diagnosis [34]. VR can also 
be used as a way to provide a virtual therapy space for real-time therapeutic interac-
tions [35]. Augmented reality (AR) refers to the combination of VR with the world 
around someone by placing computer-generated images into the live video. AR has 
been used to help train mental health clinicians, remind psychiatric patients to take 
medications, and assist children who have autism learn to recognize facial emo-
tions [33].

Mobile mental health applications also have been incorporating features through 
the use of AI. “Digital phenotyping” is a term commonly used to refer to approaches 
in which smartphones and mobile sensors are used to gather personal data from 
users, which is then analyzed in order to assess the user’s cognitive and mental state, 
as well as make predictions [36, 37]. The data collected could be physiological 
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functions, such as pulse, location information, tapping and keyboard interactions, or 
voice features [38]. Some approaches to digital phenotyping include analysis of 
social media posts and other internet use in order to assess behavioral health risks 
[39]. For clinical uses, the user would generally be asked to give informed consent 
and download an app onto their phone, which would passively collect the relevant 
personal data as the user goes about their usual daily activities. Beyond clinical 
usage, there are a range of institutions and organizations that may utilize digital 
phenotyping tools, such as educational institutions interested in assessing risk of 
suicide or of a student dropping out, the military assessing behavioral risks of 
recruits, insurance companies using such tools to set rates, employers, or consumer 
digital phenotyping for marketing purposes [40, 41].

As noted above, ethical concerns will differ depending upon the context of the 
application (e.g., different regulations and guidelines for data protection generally 
apply in healthcare contexts as opposed to consumer contexts). For uses that take 
place outside of healthcare, it is particularly important to examine the potential 
repercussions of inferences that can be drawn from an individual’s personal 
data [42].

8.4  Ethical Challenges

Ethical challenges related to safety, effectiveness, or privacy are familiar areas of 
concern for new health technologies. Of course, AI tools in mental health care will 
raise varying ethical concerns according to their function. A conversational agent, 
for example, will likely raise concerns regarding how users interact with it therapeu-
tically, that are different than concerns regarding how predictive analytics impact 
mental health care. Generally speaking, AI has some features that can pose difficul-
ties for the traditional frameworks for addressing such ethical issues. The use of ML 
to generate algorithms, which puts the “reasoning” behind decisions into a prover-
bial “black box” can make it particularly challenging to examine and review the 
reasons behind the outputs generated by the algorithms. Thus agencies, such as the 
FDA, which is responsible for oversight of medical devices in the USA, have had to 
consider how to appropriately evaluate the accuracy and applications of AI tech-
nologies [43, 44]. A second issue, the use of these technologies in domains outside 
of healthcare, also impacts accountability and oversight. Information gathered in a 
healthcare setting would generally need to follow HIPAA privacy protections and 
involve informed consent procedures, which include protecting health and identify-
ing information [45]. Digital phenotyping tools that could generate information and 
predictions about behavior and mental health, but are for consumer use, generally 
have fewer protections for user data or need for informed consent, often confined to 
notice about data practices on associated “terms and conditions” page. In some 
cases, the terms and conditions are misleading, not letting know the companies who 
may be receiving the data [46].

In the current big data environment, information that previously might be consid-
ered mundane or uninteresting, such as a grocery purchase or location at a particular 
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moment, can be combined with other information and be transformed into health 
information [47]. Yet the paradigm for protection of health information is still based 
on traditional frameworks in which healthcare institutions and physicians are envi-
sioned as the main domain for healthcare information [47]. Moreover, the massive 
amounts of data and techniques used for ML are often characterized as providing 
more objective results, but need to be carefully scrutinized for ways that bias may 
enter into the findings [48, 49]. Finally, while some argue that AI tools should just 
be seen as the same kind of device as any previous methods of assessing health 
risks, there are indications that people may regard AI tools as more objective than 
the human clinician or even as a third party involved in the clinical interaction [50]. 
For that reason, AI tools will likely influence the therapeutic relationship [51]. 
Because many ethical obligations are rooted in the therapeutic relationship, it is 
important to empirically study how AI impacts the therapeutic relationship in order 
to address any repercussions for associated ethical duties.

8.5  Therapeutic Relationship

The therapeutic relationship or alliance refers to the relationship that develops 
between a patient and the mental health care provider in order to achieve the goals 
for the patient [52]. In mental health care, the therapeutic relationship can involve 
the patient providing sensitive and emotionally charged personal information. The 
mental health care provider has professional obligations to protect the patient from 
harm and provide a foundation for achieving desired treatment outcomes [53]. For 
this reason, ethical values such as trust and confidentiality are key to the therapeutic 
relationship [54]. When it comes to the use of AI technologies for mental health 
care, there are many questions that may impact the therapeutic relationship. How 
might continuous monitoring affect trust? How do clinicians manage the massive 
amounts of data in order to extract meaningful information and communicate it to 
patients? Is the technology experienced as a “third party” in the clinical relation-
ship? How will clinicians evaluate and incorporate findings from AI tools into their 
professional judgment and how patients will respond in terms of perceived stigma 
or bias in the predictions? There will be a need for empirical research to investigate 
the impact on trust in the clinician or digital tool, as well as how physicians rely and 
communicate health information and how patients view the competence of physi-
cians and devices. Elderly and people with severe mental illness may face particular 
challenges in understanding the risks and benefits of using AI technology, or have 
different views regarding prioritizing ethical values, such as privacy [55]. When it 
comes to AI technologies such as conversational agents or robots that are used to 
interact with patients, designers and healthcare obligations must consider how the 
devices will affect these ethical obligations associated with the therapeutic relation-
ship. Conversely, when these applications are used outside of healthcare institu-
tions, are there ethical obligations generally found in the therapeutic relationship 
that should be addressed—for example, if a website analyzes its users’ behavior, are 
there any duties to warn or direct users to resources that should be instituted [56]. 
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For clinical use of these tools, organizations such as the American Psychiatric 
Association have been proactive in trying to establish recommendations for appro-
priate integration of these tools into clinical practice [57].

8.6  Safety and Effectiveness

Oversight for safety and efficacy of health technologies utilizing AI is still evolving. 
Regulation of health devices based on machine learning presents challenge because 
the reasons for particular results or findings may not be accessible for evaluation. In 
the USA, medical devices that utilize AI are subject to regulation by the Federal 
Drug Administration (FDA). The FDA has made significant efforts in recent years 
to establish effective approaches to regulate digital health technologies, including 
those that incorporate AI. The FDA has announced a Digital Health Program and a 
Pre-certification Program for manufacturers, which involves a shift from a product- 
based approach to a more process-based approach and does not address the issue of 
evaluating specific machine learning devices [58]. Professional organizations for 
computer science and AI have also discussed the need for designing AI systems that 
include mechanisms for a clinician or other user to receive more explanation of the 
bases of the results or findings that they have received [59].

Going forward, one significant issue for clinical applications of AI will be 
embedding established clinical standards in the ways that the tool is designed and 
used. ML approaches require large datasets and population sizes in order to produce 
validated models for expert systems and predictive analytics, and so issues of data 
sharing are important to consider. As systems and tools based on AI are increasingly 
integrated into healthcare, professionals will need to consider what the appropriate 
applications of AI for mental health care are, as well as the scope and limitations of 
the systems. In particular, interdisciplinary collaboration is needed for assessing if, 
when, and how AI applications are implemented, and different end users (clinicians, 
healthcare administrators, or patients) should be included in the development pro-
cess in order to support ethical design and use of these tools [60]. As AI-based sys-
tems and tools are placed into different contexts and used among different 
populations, professionals using the system will need information on how the tools 
may best be used among different populations. Systems may need safeguards in 
place in order to ensure that the technologies are being used in the manner and for 
the population in which they have been validated. Of course, for technologies such 
as mental health apps or digital phenotyping, that may be used outside of healthcare 
institutions or, particularly, by consumers, it can be more difficult to establish lines 
of accountability and oversight that can ensure appropriate understanding and scope 
of use of the tools. In those instances, regulations that protect user data and require 
more robust user consent can help to inform users and require consent for use of 
their data.

Accountability for AI systems also involves questions regarding which entities 
are responsible for monitoring how the systems are functioning and being used, as 
well as liabilities for problems. If an AI tool causes harm or is not working as 
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expected in a particular context, who is responsible for reporting and to whom they 
report? Furthermore, there will need to be consideration of how technologies such 
as expert systems or digital phenotyping may need to capability of monitoring risks 
of harm to patients or other users. In mental health contexts, where patients may 
disclose information that indicates a potential to harm self or others, how should 
tools monitor and assess such information and to whom will they need to report? 
These questions have come up in relation to conversational agents, in terms of 
whether these agents need to be programmed to provide resources or alert others if 
suicide risk is found [61]. Digital phenotyping is an area where, even if there is not 
direct disclosure from the patient about harming self or others, inferences could 
potentially be drawn from user data that leads to a prediction of harm [62]. Design 
of such tools need to incorporate consideration of monitoring and reporting poten-
tial harms, and institutions utilizing such systems need plans about how predictive 
tools and monitoring of potential for harm will be undertaken. Depending upon the 
jurisdiction, laws regarding duty-to-warn and other requirements will need to be 
taken into account.

8.7  Bias/Fairness

An important issue related to effectiveness and scope of use is methods for address-
ing the potential for bias in ML tools. The potential for bias can be viewed in terms 
of the potential for bias in the data used to construct the algorithms and bias in the 
algorithms themselves, as well as the potential for bias in how the algorithms may 
be used within a particular local context [63]. Because massive datasets are used in 
order to train ML systems to identify patterns in the data, the accuracy of the result-
ing algorithm depends on the quality of data in those training and validation sets 
[64]. Furthermore, if the dataset do not accurately reflect the population to the tech-
nology will be applied, then the bias in the data will be seen in the outcomes gener-
ated by the ML algorithm [65]. Thus ML systems could unfortunately both reflect 
and reinforce biases that are found in society. In terms of mental health applications 
of AI, social factors such as race, gender, and class can influence many aspects of 
mental health diagnosis outcomes. If the data used to generate an algorithm does not 
contain a representative sample, then the findings of the algorithm can be skewed. 
One of the reasons that it can be important to design “explainability” of the algo-
rithm’s reasoning into a tool is that algorithms may not have sufficient information 
(beyond the issue of a representative sample) to take into account why there may be 
certain associations between social factors and a particular mental health outcome. 
For example, an algorithm used for criminal justice sentencing may make an asso-
ciation between race and recidivism, but not have the data to take into account the 
impact of existing racial biases on recidivism [66]. These kinds of issues can not 
only limit the benefits that people from underrepresented racial and ethnic popula-
tions may receive from AI tools, but can exacerbate discrimination against particu-
lar groups. Efforts to increase the diversity of populations in datasets used for ML 
mental health research are critical. Professional organizations, such as the Institute 
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of Electrical and Electronics Engineers (IEEE), have been conducting efforts to 
formulate recommendations and methods for reducing bias in ML algorithms 
[67, 68]. One important aspect is to include input from stakeholders for stakehold-
ers, in order to provide feedback from clinicians and mental health consumers that 
can inform efforts to reduce bias. In implementation of ML-informed tools and 
systems, some institutions have also taken an approach to create an impact assess-
ment of the tool beforehand, so that a plan can be developed and implemented to 
inform relevant stakeholders of potential impacts of the tool and make efforts to 
minimize that impact [69]. There needs to be reflection on the ethical implications 
of potential AI applications in mental health throughout the stages of development. 
As early as the stage formulation of the question or goal of the AI application, 
reflection on the ethical issues may be needed, because algorithms designed to iden-
tify psychiatric genetic risk for purposes or decide on allocation of healthcare 
resources can potentially raise ethical challenges regarding discrimination. In 
domains such as insurance or employment, there is also potential for discrimination 
in the construction of algorithms. In the USA, because laws regarding discrimina-
tion often rely on finding discriminatory intent, it may be more difficult to address 
such algorithmic discrimination through the courts [70]. There may be a need to 
consider regulations that would make certain types of discrimination based on 
behavioral predictions unlawful.

8.8  Privacy/Trust

Privacy and data protection have been identified as particularly important issues 
when it comes to big data approaches and AI technologies. In the mental health 
context, an important issue is that for some AI technologies, such as digital pheno-
typing, data may be collected in ways that individuals may not ordinarily associate 
with health information or even as sensitive data (such as speed of typing or tapping 
patterns on digital devices). Data may be collected outside of contexts in which 
healthcare information is protected by existing standards, such as HIPAA. Next, the 
data may be highly granular, especially in combination. Some data may be de- 
identified, but individuals may not be aware that, in combination with other data, the 
risk of identifiability may increase. Currently, patients or mental health consumers 
may not be aware of the ways that their personal data may be shared or sold to dif-
ferent organizations and companies, or that those companies can generate additional 
behavioral or health inferences about individuals. The data protection policies of 
mental health applications can have repercussions for individuals in areas such as 
employment, insurance, litigation that people may not reasonably have expected. At 
the same time, privacy concerns need to be balanced against data sharing practices 
that advance scientific research. In Europe, the General Data Protection Regulation 
presents a model for stronger data protections, including stricter consent provisions 
for the collection of data [71]. California has enacted similar provisions in the 
California Consumer Privacy Act [72]. While these regulations are useful for pro-
tecting personal data, the inferences that can be drawn from the data people share 
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may still pose concern [73]. A reliance on consent as an approach to mitigate data 
protection concerns can also be problematic if not giving consent means that the 
user will be barred from using useful services. Stronger consent rules for use of 
personal data are necessary, particularly in contexts outside of healthcare, and pro-
vided at appropriate reading levels. At the same time, a focus on individual consent 
can overlook the need to include a broader range of people for broader discussion of 
how data may be ethically collected and the appropriate societal goals in doing 
so [74].

8.9  Surveillance

Technologies utilizing AI to monitor people’s behavior may also have surveillance 
applications that are ethically challenging [75]. There are a number of institutions 
and companies that have an interest in monitoring individual behavior and conduct-
ing predictive analysis of mental states for a variety of reasons. Recently, the US 
government had proposed monitoring data from a range of wearables and apps to 
identify individuals for their potential to conduct mass shootings [76]. People diag-
nosed with mental illness were mentioned as a particular focus of such monitoring. 
While there was immediate pushback to this proposal from mental health and pri-
vacy advocates, the desire to use AI technologies to monitor people with mental 
illness for such purposes is not surprising. The use of facial recognition and genetic 
technologies for surveillance purposes in China has also received attention and criti-
cism, as these technologies have been used to conduct behavioral surveillance, par-
ticularly targeting ethnic minority populations [77, 78]. There have been some laws 
passed on a local level to limit the use of facial recognition technology for surveil-
lance [79], and there is a need to consider whether more regulation is needed. The 
use of technologies for behavioral and mental health surveillance can undermine the 
trust that people have in these technologies, use of their data, and the healthcare 
system. In the consumer domain, the massive collection and brokering of personal 
data is a part of what has been termed “surveillance capitalism.” Beyond the issue 
of access to personal data, the inferences from these data can be used in attempts to 
influence and manipulate individuals for marketing and political purposes that raise 
ethical concerns on a societal level [80].

8.10  Conclusion

As efforts move forward to formulate guidelines and identify solutions to the ethical 
challenges presented by AI applications in mental health, there is a need for stake-
holders with expertise in a range of disciplines, as well as patients and consumers, 
to come together and provide input. Transparency and informed consent have been 
commonly identified as goals, particularly in order to address some of the data pro-
tection and privacy challenges, in order to educate users and advise them of the 
potential repercussions of sharing their data. With AI technologies that are used for 
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identifying and addressing behavioral issues outside of healthcare, ensuring mean-
ingful consent of individuals remains challenging and elusive. Even though trans-
parency and informed consent are important components of ethical use of mental 
health applications of AI, there remains a need to consider regulation to protect the 
privacy and safety of consumers, guard against discrimination in relation to predic-
tive technologies, and overall ensure broader discussion and action take place 
regarding realizing societal as well as individual benefits from behavioral and men-
tal health applications of AI.
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9Digital Behavioral Technology, Deep 
Learning, and Self-Optimization

Karola Kreitmair

9.1  Introduction

Digital behavioral technology (DBT), which includes wearables, mobile health 
technology, certain smartphone apps, and various neurodevices, is a rapidly expand-
ing class of technology that increasingly permeates all areas of human life. 
Individuals use such technology to shape themselves physiologically, psychologi-
cally, behaviorally, and socially, in order to become healthier, more mindful, better 
rested, more creative, and more intelligent versions of themselves.

While previously DBT may have been used in an offline manner, allowing an 
individual to measure her own performance, e.g., a heart rate belt to be used during 
running, DBT now consists of massively interconnected sensor and logging tech-
nology that yields a comprehensive picture of the physiological, environmental, 
behavioral, neurological, genomic, and social dimensions of a given individual. 
Moreover, the quantity of data this technology produces is so enormous, that the 
only viable means of gleaning robust insights from these data is through deep learn-
ing and AI.

While AI can gain valuable inferences from data, it is also prone to some serious 
flaws that are ethically problematic. Rather than producing objective results, as it is 
largely perceived to do by the public [1], AI propagates biases that are inherent in 
the data. Moreover, deep learning, the learning architecture that many AIs used in 
DBT are built on, operates in a way that may be opaque to human observers. This 
means that humans cannot explain or control how an AI comes up with a particular 
solution or organization. Furthermore, algorithms can game the reward functions 
designed to force them to learn, and deliver useless or harmful results.
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Within a broader societal context of the reponsibilization of the individual with 
respect to her health and well-being, DBT is increasingly used for all manner of 
self-optimization. AI factors into this self-optimization work, and along with it so 
do such issues as algorithmic bias, opacity, and reward hacking. Unbeknownst to 
the DBT user, these flaws in AI may affect how she is pursuing self-optimization.

In what follows I will provide an overview of DBT and explain how it is involved 
in self-optimization. I will then address how AI is incorporated into DBT. Next I 
will look at some issues with AI that have ethical ramifications. Finally, I will con-
sider how these issues impact the self-optimization work that the user is doing with 
the help of her AI-enabled DBT.

9.2  Digital Behavioral Technology

Digital behavioral technology (DBT) is a class of technologies that is used by indi-
viduals to attempt to alter some aspect of their physiological, neurological, psycho-
logical, or behavioral selves. It comprises wearables, mobile health technologies, 
smartphone apps, and a variety of neurotechnologies [2]. Individuals want to shape 
their bodies, minds, and lives in ways they (or in some cases others) deem desirable, 
such as, for example, being more productive at work, improving cognition, meditat-
ing better, becoming fitter and healthier, sleeping better, being more creative, being 
a better lover, kicking undesirable habits, and losing weight. They believe that by 
using DBT such goals become more achievable.

While there is variety amongst these technologies, most DBT tends to be per-
sonal, digital, and mobile. It is personal, because it tends to be used by only one 
individual at a time and monitors or modulates only that individual’s functioning. It 
is digital, because it utilizes binary computing systems that enable powerful pro-
cessing and online connectivity. Finally, it is often mobile, because it is small and 
lightweight enough that individuals can carry it around on their persons [2]. For 
example, DBT includes sensor-driven technologies such as the Fitbit, that keep 
track of a user’s location and activity levels [3], as well as stimulation technologies 
such as the transcranial direct current stimulation (tDCS) device BrainStimulator 
[4] that promise to improve cognition and help with depression, chronic pain, and 
anxiety.

What makes all these technologies instances of digital behavioral technology, is 
that they are all technologies intended to alter an individual’s behavior. Often such 
behavior is sought to be improved for instrumental reasons, e.g., for a particular 
person, eating less may lead to weight loss which may lead to better health and well- 
being. Sometimes changing the behavior is an end in itself, as for instance with 
technologies that seek to limit symptoms of obsessive compulsive disorder [5]. Note 
that this does not mean that what is being measured or directly affected is always 
behavior itself. With much of this technology, what is being measured or affected 
are physiological or neurological properties of the user. However, it is behavior that 
is sought to be affected.
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9.2.1  Functionalities

DBT operates through a vast array of functionalities (see Table 9.1).
One of the most common functionalities is tracking. Tracking is the passive reg-

istering and recording of a particular dynamic feature of an individual. It is passive, 
because the user need not actively input data into a device. Tracked dimensions 
include a wide array of features, such as, for example, an individual’s location, her 
heart rate, her ECG, her breathing volume, the composition of her sweat, her EEG, 
and her blood alcohol level (see Table 9.2 for a list of the dimensions that can be 
tracked). In general, tracked dimensions lend themselves to quantification, which 
makes them amenable to analysis.

Tracking is distinct from logging, in which an individual uses the technology to 
record various features. Logging is commonly used for features that are not readily 
amenable to quantification, such as keeping track of qualitative dimensions such as 
mood or satisfaction. For example, the mobile app eMoods allows the user to note 
daily mood, irritability, and anxiety levels [14], while the mobile app Semistry 
allows the user to log, classify, and rate sexual encounters and activities [15].

Vocal analysis is a further functionality of DBT.  Smartphone apps such as 
Cogito’s Companion [16] detect speech patterns that are associated with mental 
health conditions like bipolar disorder and depression. Vocal analysis, such as pro-
vided by Voicesense, can also be used as a predictor of individual behavior, from the 
likelihood of someone defaulting on a loan to whether an employee is suffering 
early signs of burnout [17].

Visual analysis is also a functionality of DBT. Programs like Google Lens per-
mits users to gain information about objects they capture with their smartphone’s 
camera [18]. Users can scan a flower, find out what kind it is, and where the nearest 
florist is located. Or they can scan someone’s outfit and receive information on the 
brand of the item, as well as similar items available for purchase.

Table 9.1 Functionalities Functionalities
Type Example
Tracking See Table 9.2 for categories
Logging Sex logging (e.g., Semistry)
Vocal analysis Speech pattern recognition (e.g., 

Companion)
Visual 
analysis

Visual object recognition (e.g., 
Google Lens)

Gamification Mental health app (e.g., SuperBetter)
Stimulation TDCS (e.g., Foc.Us Go Flow)
Drug delivery Nicotine delivery (e.g., Chrono 

Therapeutics)
Virtual reality Haptic VR suit (e.g., Teslasuit)
Assistant Sleep assistant (e.g., Neurogixs Alpha 

AI)
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A further functionality of DBT is gamification. By introducing game-like ele-
ments such as competition (against others or oneself), badges, points, and levels, 
DBT seeks to capitalize on the appeal of games to compel users to adhere to their 
use of the technology. Apps like SuperBetter provide users with games that involve 
completing quests and defeating “bad guys” in an effort to improve mental health, 
including tackling anxiety, depression, chronic pain, and recovering from concus-
sions [19].

DBT may also function by directly stimulating the body or the brain. For exam-
ple, transcutaneous electrical nerve stimulation devices such as the Thync Relax Pro 
[20] and transcranial direct current stimulation devices such as the foc.us Go Flow 
[21] deliver low-intensity electric currents to particular areas of the brain in an 
attempt to facilitate or inhibit neuronal activity in that area [22]. This is done to 
modulate brain functioning and improve cognition, relieve symptoms of anxiety 
and depression, combat cravings, and enhance meditation [23].

Another functionality of DBT is to directly deliver drugs that impact the body. 
Chrono Therapeutics for example, delivers medication such as nicotine transder-
mally in specific dosages timed to coincide with detected symptoms [24].

DBT also includes virtual reality (VR) systems. VR systems create a computer- 
generated environment into which the user can immerse herself. Such systems were 
once clunky, expensive, and required precise positioning of computers and sensors 
throughout a room. Today, they have shrunken to affordable untethered headsets, 
like Oculus Go [25]. VR can also be extended to include “tactile” or “haptic respon-
siveness.” For example, the Teslasuit consists of a full body suit that uses nerve and 
muscle stimulation to generate haptic sensations for a fully bodily immersive VR 
experience. This allows users to feel a virtual breeze, the warmth of a virtual sun, 
or the touch of an avatar [26].

Finally, a new functionality of DBT is that of AI-enabled assistant. For example, 
Google Assistant, which is integrated into Google’s Smartwatch, can listen and talk 
to the user, integrate questions with data analyzed from various other DBT, and 
provide the user with information and recommendations regarding a vast array of 
individual-specific information in a multitude of domains [27]. Examples of 
domain-specific AI assistants are: (1) Baby Connect [28] [29], which helps parents 

Table 9.2 Tracked dimensions

Tracked Dimensions

Location E.g., Strava [6]
Activity E.g., Fitbit Versa 2 [3]
Sleep E.g., Fitbit Versa 2 [3]
ECG E.g., Qardio [7]
EEG E.g., Muse [8]
HR E.g., Fitbit PurePulse [9]
Respiration rate and volume [10]
BAC E.g., Bactrack Skyn [11]
Ingestion events E.g., Proteus Ingestible Sensor [12]
Sweat composition [13]
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keep track of the quantity and quality of soiled diapers and expressed breast milk, 
computes the average duration of breastfeeding sessions, recommends when to 
nurse and when to switch breasts, and even sends information directly to Twitter; (2) 
Symptomate [30] [31], which analyzes the medical symptoms a user reports and 
uses AI to generate a differential diagnosis; (3) Neurogixs Alpha AI [32], which 
analyzes sleep conditions including EEG measurements and provides customized 
curation and recommendations; (4) CarePod from Sensory Health Systems [33], 
which provides lifestyle solutions for the elderly and those with limited mobility; 
(5) Good Morning Routine [34] and Bedtime Routine [35], which turns on/off 
lights, sets alarms, opens blinds, and briefs/debriefs you on the day; (6) Controlicz 
[36], which allows the user to speak to and give commands to smart objects and 
appliances around the home; (7) WorkAssist AI [37], which analyzes information 
collected from health and fitness wearables, mobile apps, and online behavior, to 
determine if the user’s behavior is “beneficial or detrimental to productivity,” and 
accordingly generate “clear instructions/recommendations to increase productivity” 
[38]; and (8) Girlfriend Maya [39], a chatbot who replies to a user’s utterances, like 
“Good night, darling,” with appropriately “girlfriend”-like responses.

Having identified the functionalities of DBT, let us turn to the types of users of 
this technology.

9.2.2  Usage Profiles

DBT is used in different circumstances and by different actors. There are thus dif-
ferent usage profiles of DBT. Some DBT is employed within the parameters of a 
clinical context, in which a healthcare provider oversees use of the technology. For 
instance, the Proteus ingestible sensor, which is embedded in pills and tablets, 
allows healthcare providers to monitor their patients’ medication adherence [40]. A 
further usage profile of DBT is the research context. This includes both research that 
is conducted in academic settings and research by those developing DBT intended 
for sale, either with or without FDA approval. A third usage profile of DBT is the 
direct-to-consumer (DTC) context. As with clinical use, DBT is used here in order 
to “treat” the user (in some broad sense), but this is not done within the parameters 
of a clinical, provider–patient relationship. In this context, users simply purchase 
DBT products, the vast majority of which are not FDA-regulated, and apply them as 
they themselves see fit [2, 41]. The final usage profile is the third-party context. In 
this arena, DBT is used by a party that is not a healthcare provider, a researcher, nor 
the individual herself, in order to track or affect other individuals. Employee well-
ness programs, schools monitoring students, military applications all fall within this 
usage profile.

The focus of this chapter is self-optimization and so the primary usage profile 
with which I am concerned is DTC use. DTC DBT has gained hugely in popularity 
in the past 5–10 years. Reports by market research firms show that between 2010 
and 2014 there was a 500% increase in the number of non-invasive neurotechnology 
patents filed [42]. The global wearables industry alone was valued at 32.63 billion 
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US dollars in 2019, and is expected to grow to over 100 billion US dollars by 2021 
[43]. This growth suggests a perception on the part of the user that DTC DBT is 
useful in achieving one's goals [44]. The next section will discuss how this technol-
ogy is implicated in the pursuit of self-optimization.

9.3  Digital Behavioral Technology and Self-Optimization

As described above, DBT can be used in the context of different usage profiles. 
Self-optimization is generally done within the DTC context, although it can some-
times occur in the third-party and even the clinical relationship contexts as well. 
Individual consumers are increasingly using DBT in order to optimize themselves. 
This is occurring as patients and consumers take on more of the burden of their own 
health and well-being. Sometimes referred to as the “democratization of health-
care,” numerous observers [45] [46] have argued that technology is contributing 
towards the “responsibilization” of patients and consumers. Thanks to DBT, indi-
viduals now have the capability of using technology for the purpose of monitoring 
their own health and well-being, and use such technology to attempt to improve 
these [47]. This capability has contributed to an expectation that individuals now 
have a responsibility of improving their own health and well-being, as we will 
see below.

Much of the language around DBT includes this exhortation towards self- 
optimization. In the media, DBT is praised as a means to take on responsibility for 
improving oneself. Headlines like “This New Generation of Wearables Empowers 
People to Take Charge” [48] and claims that “wearables empower ‘busy lives’ to 
develop a more responsible approach towards themselves” [49], illustrate how DBT 
is perceived as increasing consumers’ agency in their quest for well-being and health.

In the bioethics literature the term “e-patient,” short for “empowered patient,” 
has been coined to describe “health consumers participating fully in their medical 
care” [50, p. 2]. On this view of patients, individuals have an obligation to be 
informed about conditions and treatment options. Access to information gives 
patients a responsibility to take control in medical decision-making. The acquisition 
of this information has been facilitated by technology, specifically DBT. Thus, the 
“e” in “e-patient” has come to stand for “‘electronic’, ‘equipped’, ‘enabled’, […] 
‘engaged’ or ‘expert’” [50, p. 2]. As Schmietow & Marckmann [46] note, “[s]elf-
empowerment turns into a self-obligation to be ‘digitally engaged’ and at the same 
time expresses a shift of priorities from externally induced healthcare to a more 
elusive health and self-management” (p. 627).

Sociologist Deborah Lupton has documented this embrace of self-optimization. 
In her extensive research on self-quantification, i.e., the phenomenon of individuals 
embracing the tracking functionality of DBT (see Table 9.1), she identifies a desire 
of improving the self as a central focus of self-tracking activities that are designed 
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to radically expand self-knowledge [45, 51, 52]. As a subject from one of her inter-
views puts it: “Unless something can be measured, it cannot be improved”  
[45, p. 67]. Another states, “[y]ou want to be your best self. […] It’s studying your-
self as an interesting topic in ways that you couldn’t study yourself before […] this 
is just giving you self-awareness into previously invisible aspects of your life” [45, 
p. 65]. Lupton describes this as a practice “of self-hood that conforms to cultural 
expectations concerning self-awareness, reflection and taking responsibility for 
managing, governing oneself and improving one’s life chances” [45, p. 68]. “Self-
tracking therefore represents the apotheosis of the neoliberal entrepreneurial citizen 
ideal” [45, p. 68].

This conception of the self is in line with the existential notion of the self as 
something to be fashioned or created. In his analysis of the Nietzschean self, 
Anderson [53, p. 229] describes this concept of self-hood as something normative, 
i.e., a task that one is continually setting for oneself. In this way, the self is not a 
static component of an individual, but is constantly fashioned through the actions an 
individual undertakes. As Anderson notes, there appears to be a paradox in this 
notion of self-creation, for surely the thing being created must already exist to do 
the creating. But this paradox, he points out, can be dissolved if one distinguishes 
between a descriptive conception of the self, that carries out the plan of self-creation 
[54], and a normative conception of an ideal self that is the telos of one’s self- 
fashioning pursuit [53]. In short, self-optimization as it is embraced by users of 
DBT (and as it is advertised by its manufacturers) presupposes something like the 
existential conception of a self that is continually being created [2].

Rather than focusing on the social determinants of health and well-being, DBT 
shifts the onus of responsibility to the individual. Here the assumptions are that this 
individual ought to be both equipped and motivated to take up DBT in pursuit of 
optimization. As becomes clear from Lupton’s research, individuals see this tech-
nology as central in the project of fashioning themselves in the existential sense 
discussed above. DBT is used to craft the body and mind in a way that the individual 
endorses, as individuals believe that using this technology enables them to create 
the conditions to become the kinds of persons they want to become.

Such an outlook is grounded in a belief of what matters. It matters to be the best 
version of oneself, to be optimal. The idea of “working on the self” is central to how 
users of DBT see themselves in the world. But it is also embedded in a larger culture 
of productivity. Individuals who are responsible for all aspects of their goings-on 
populate the workplace. Productivity in the workplace is enmeshed with productiv-
ity at home. The same devices that are used for productivity at work are used in the 
private sphere and vice versa.

Thus, the picture that emerges is one in which DBT enables self-optimization to 
a point where individuals are expected to take on responsibility for all dimensions 
of the self. I identify three avenues of self-optimization: information, parameteriza-
tion of behavior, and direct interaction.

9 Digital Behavioral Technology, Deep Learning, and Self-Optimization



134

9.3.1  Information

Individuals can use DBT to gain information about various dimensions of them-
selves. Specifically, DBT provides information on physiological (e.g., heart rate 
[9]), psychological (e.g., mood logging [14]), and neurological (e.g., EEG [55]) 
features of the self. Often, such information is then used by individuals to adjust 
behavior in ways to favorably affect these dimensions. Lupton talks about individu-
als achieving “knowledge, awareness, problem-solving” [56].

This kind of tracked (or logged) self-knowledge is a departure from how we 
standardly acquire self-knowledge. It encourages the user to gather information 
about the self through the processing of quantitative representation, rather than 
gaining self-knowledge through embodied situated unconscious cognition. This 
places the process of gaining information about the self on par with that of gaining 
information about objects external to the self. As such, the individual takes a third- 
person approach to herself, as she encounters her body, mind, and brain as a quan-
tifiable object that permits of manipulation [2].

9.3.2  Parameterization of Behavior

A further use of DBT is the parameterization of behavior. DBT can issue signals or 
alarms when certain tracked values fall outside of desired parameters. For example, 
fitness trackers can alert an individual when her heart rate drops below a certain 
value. Signals can be used in this way to help users refrain from behaviors they find 
undesirable. Alternatively, users can also be rewarded, such as with badges or 
points, when values are within desired parameters. These methods give users incen-
tives to behave well and disincentivizes poor behavior.

One technology that explicitly utilizes the principles of conditioning is the 
Pavlok 2 [57]. The Pavlok 2 is an aversive conditioning device, that emits small 
electric shocks when a user engages in behavior, e.g., nail-biting, smoking, eating 
sweets, sleeping too late, or spending too much time on time-wasting websites, that 
she is seeking to curtail. In this way, it aims to reinforce desirable behavior traits.

VR is a functionality of DBT that can also be used for behavior parameterization. 
VR generates alternative visual and auditory phenomenological experiences and 
can be extended to generate embodied virtual reality experiences including “tactile” 
or “haptic responsiveness.” For example, the Teslasuit consists of a full body suit 
that uses nerve and muscle stimulation to generate haptic sensations for a fully 
bodily immersive VR experience [26]. One use of VR is in the addiction recovery. 
Patients can practice saying no to drugs in triggering environments, such as crack 
houses or bars [58]. While such addiction recovery is usually performed within the 
usage profile of a clinical relationship, there are many DTC applications that are 
either already being used or may be used in the future. For instance, consumers can 
use VR in a DTC setting to attend to their nicotine cravings. Alternatively, VR can 
gamify one’s fitness routine by allowing a user to immerse herself into an alternate 
reality where she is boxing with a virtual opponent [59].
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9.3.3  Direct Interaction

An additional use of DBT that contributes to self-optimization is direct interaction. 
For instance, DTC neurostimulation devices directly stimulate (or inhibit) parts of 
the brain in an attempt to impact brain function. Much of this direct interaction use 
is based on speculative scientific claims. For instance, technology that seeks to har-
ness the effects of non-invasive vagus nerve stimulation to dampen the sympathetic 
nervous system response claims to enhance focus, promote positive thinking, and 
curb cravings [60]. In these cases, the user attempts to self-optimization not through 
conscious action, but rather through direct intervention in the relevant brain region. 
Various other neurostimulation technologies, such as the tDCS BrainStimulator, 
also operate in this way [4]. A further form of direct interaction is DBT that delivers 
medication. For instance, wearable devices by Chrono Therapeutics assist individu-
als in quitting smoking by monitoring nicotine levels in the blood and administering 
nicotine transdermally when individuals most require it [24].

9.4  Digital Behavioral Technology and Artificial Intelligence

DBT increasingly involves artificial intelligence (AI) in order to perform the func-
tionalities mentioned above. The AI employed in this arena is trained through deep 
learning. Deep learning is a class of machine learning, in which an artificial neural 
network extracts patterns from data with which it is supplied. Deep learning extracts 
these patterns at multiple layers of abstraction, ranging from the specific to the more 
abstract. Given enough data and a large enough network, these networks can learn 
very complex patterns, such as recognizing faces from visual content, meaningful 
elements from natural language, and medical conditions from health data. Moreover, 
AI learns inductively from experience. Algorithms are iteratively updated when new 
data are provided. Such updating occurs without being explicitly programmed by 
human programmers. Rather, neural networks absorb new data and adjust connec-
tion weights between nodes in a stochastic fashion. This means both that the struc-
ture of neural networks is entirely dependent on the data that are inputted, and that 
there are no explicit programming rules discernable by humans [61–63].

Deep learning functions thanks to the availability of big data. Data scientists 
from IBM describe big data as being made up of four dimensions: volume, variety, 
velocity, and veracity [64]. The volume of available data is staggering. 2.3 trillion 
gigabytes are generated every day [65], with 90% of all currently existing data hav-
ing been generated in the last 2 years. Experts believe 1.7 megabytes of data are cre-
ated every second for every person on earth [65].

These data come from a variety of sources. Five new Facebook profiles are cre-
ated every second and more than 300 million photos are uploaded to Facebook 
every day [66]. Every minute, 16 million text messages are sent [66]. At the same 
time, the number of connected wearable devices worldwide has increased from 325 
million in 2016 to 722 million in 2019, with forecasts predicting this number to 
reach one billion by 2022 [67]. Meanwhile, the internet of things (IoT) has 
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grown  from two billion connected objects in 2006 to 200 billion in 2020 [68]. 
Moreover, an estimated 2.3 trillion gigabytes of electronic healthcare record data 
were produced in 2020 [69].

Different kinds of DBT generate different kinds of data, from location informa-
tion to EEG, from photographic content to blood alcohol levels. Given the diversity 
of sources, combining the variety of data can yield extremely well-rounded repre-
sentations of individuals and populations. The only way such large quantities of 
data can be processed in time is through powerful transaction processing systems 
(TPS). This is captured in the velocity of the four Vs.

Finally, veracity refers to the quality (accuracy and applicability) of the data. 
Much of the data that are available are of poor quality. They are inaccurate, incom-
plete, and even inconsistent. Data often needs to be cleaned so that so-called “dirty 
data” are kept from accumulating [70].

Thanks to the availability of AI, today’s DBT user need no longer be satisfied 
with an n-of-1 trial, where she tracks or logs her own physiological, neurological, or 
emotional goings-on and pores over them in an attempt to discover behaviors that 
are conducive to self-optimization. Today’s DBT is “smart” in that the wealth of 
data that are produced by the DBT is combined with enormous amounts of data 
produced by other devices, including data integrated across different devices and 
platforms, in order to be fed into powerful machine learning programs that use deep 
learning to glean insights from the combined data. Thus, the data from an individu-
al’s wrist-worn fitness tracker, or an individual’s EEG device, or an individual’s 
location are just a small fraction of an ocean of information that reveals much more 
powerful insights about aspects of people’s selves (their bodies, minds, environ-
ment), than any individual could glean on her own.

There are multiple ways in which AI can be integrated with DBT. First and fore-
most, DBT uses AI for data analytics. As noted above, the vast quantity of data 
requires deep learning in order to glean usable insights. In turn, deep learning makes 
such data incredibly valuable. Companies learn a considerable amount about indi-
viduals’ health, behavior, activities, and beliefs from such AI-aided data analysis 
[71]. These insights not only reveal patterns at the population level, but also the 
individual level [72]. In addition to companies using this information in their own 
product and service development, it is standardly sold to other companies, such as 
marketing and health insurance companies. Moreover, with the increasing involve-
ment of “Big Tech” in the healthcare arena, companies like Google are mining 
medical records [73], to expand their reach.

A further way AI may be integrated with DBT is for restorative purposes. Deep 
learning can be harnessed to allow individuals who are blind to regain some of the 
capabilities of sighted people. For example, AIServe [74] combines computer vision 
and AI to provide users with a wearable device that analyzes the environment, 
detects different elements in the surroundings, such as bikes, cars, and people, and 
then gives voice navigation instructions to the user. Deep learning is also employed 
in hearing aids. Thanks to AI, devices can learn what kind of environments a user 
tends to be in and learn to filter out desirable sounds from non-desirable ones, e.g., 
an interlocutor’s voice from background noise [75]. AI-enhanced hearing aids can 
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also directly translate language, transcribe what is being heard and said by the user, 
monitor brain functioning, and interface with a smart assistant [75].

Beyond restoration, AI-enabled DBT may also be used for enhancement pur-
poses. Neurostimulation devices, such as the BRAINtellect 2, may be worn during 
sleep and employ AI to translate the user’s brain waves into engineered music-like 
sound waves that are believed to enhance memory, learning, and wellness [76].

AI is increasingly employed to improve VR and augmented reality experiences. 
Thanks to deep learning, user preferences and virtual environment layouts can be 
updated in real time. For example, the Hololens2 is a deep learning enabled mixed 
reality system that generates constantly updated realities for the user which allow 
users to visually and tactilely interact with objects in their environment [77]. 
Hololens2 can also create avatars that deliver the words an individual is speaking in 
a different language [78].

AI is also used to enhance DBT to include assistants. In a previous section, I 
outline the various assistant functionalities. Given the self-optimization purpose of 
DBT, AI-enabled assistants are employed for health and wellness recommenda-
tions. AI is used to integrate vast quantities of data from DBT and other sources to 
provide recommendations to the user. Companies like LifeQ, for instance, use deep 
learning to develop models and algorithms that translate data from wearables and 
mobile apps into usable information. LifeQ provides individualized information for 
consumers on how to modify their behavior in real time to achieve their health and 
well-being goals, for insurance companies and corporate wellness programs on the 
health risks of individuals, and for clinicians on the treatment options, progress, and 
compliance of their patients [79]. Other assistants go beyond health and wellness, 
integrating advice from both “life and work.” Galahad AI has introduced a virtual 
personal assistant, VYou, that helps individuals forgo short-term temptations in 
favor of long-term goals. Explicitly set up to allow users to engage in self- 
optimization, VYou “empower[s] people to better manage the most important and 
challenging aspects of their personal lives including their time, health, relationships, 
and money” [80].

Clearly, there are many ways in which AI is integrated into DBT. Particularly 
interesting from the perspective of self-optimization are smart assistants that advise 
and guide users on their quest to better themselves. Such assistants may even be 
enhanced via “affective computing”—a form of computing that allows assistants to 
deliberately involve and influence emotions and other affective phenomena [81].

Users gain beliefs about themselves through AI-enabled DBT that go beyond 
data captured by the technology. The technology takes on the role of guide and advi-
sor, and can impact a user’s reflective beliefs of self-worth. It can prompt a user to 
feel good about herself, for instance when a DBT assistant explicitly commends her 
for her behavior, or implicitly when the user recognizes that her behavior is within 
desirable parameters. An individual can also be made to feel poorly by DBT, either 
by being explicitly admonished by an assistant, or by finding herself failing at 
remaining within measurable parameters. Affective computing may increase 
this effect.
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Of note, deep learning not only affects the insights that are gleaned from this 
technology, but in turn also affects the very way DBT functions. The AI-driven 
insights from data are fed into the functioning of the devices themselves. For 
instance, as a technology learns patterns from the behavior of a particular user along 
with the behavior of all the other users, it updates the parameters of what counts as 
“normal” and even “desirable” behavior.

9.5  Problems with Artificial Intelligence

As described, AI is a driving force for this technology. But there are well- documented 
flaws with deep learning. Learning algorithms are not static, yielding results through 
mathematical models. Rather they are iterative, constantly updating themselves as a 
result of the inputted data [1]. As already noted, inputted data are increasingly 
emerging from more and more sources, with the internet of things contributing to 
the well-spring of big data. This iterative process is vulnerable to systemic bias. If 
the data on which an algorithm is trained and which it uses to update itself contain 
bias, then the insights that such algorithms yield will be systematically biased. This 
can shift parameters of what may count as “normal,” “correct,” or “desirable.”

Such algorithmic bias has been seen in healthcare decision-making—where 
black patients’ needs are underestimated compared to those of white patients [82], 
and job hiring—where women’s resumes were systematically scored lower than 
those of comparable men [83].

A further concern about AI is algorithmic opacity. Deep learning is not built on 
explicit theoretical rules inputted by human users. Rather, the internal workings of 
such an AI system are a “black box,” that operates in whatever way yields the appro-
priate results. This means that users have no way of knowing how or why a certain 
system generates a particular result [84]. It also means that beyond pointing to an 
algorithm that has yielded correct results in other instances, no justification can be 
provided for a particular result in a particular instance [85].

A widely cited example of problematic algorithmic opacity is the Correctional 
Offender Management Profiling for Alternative Sanctions (COMPAS) tool. This is 
a decision support tool intended to help US judges to predict the likelihood of a 
defendant’s risk of recidivism [86]. Judges can use a defendant’s risk score to deter-
mine an appropriate length and severity of sentence. However, an investigation by 
ProPublica showed that COMPAS systemically overestimates the risk of recidivism 
for black offenders and underestimates the risk of recidivism for white offenders, 
even though race is not a data point that is available to the deep learning algorithm 
[87, 88]. But since COMPAS’s inner workings are hidden from users, defendants 
have no recourse for arguing that in their case, the algorithm’s results are unjusti-
fied. Moreover, since programs such as COMPAS are proprietary and thus subject 
to trade secrecy, defendants cannot even find out what inputted data were used in 
determining their recidivism score [89].

A further concern regarding AI is reward hacking [1]. The principle way in which 
so-called AI “agents” (i.e., algorithms) learn is through reinforcement learning. As 
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in Skinnerian behaviorist psychology, correct behavior is sought to be reinforced. In 
reinforcement learning, an agent performs an action and is provided with feedback 
for that action from the environment. The feedback after each action is provided as 
a “reward” or a “punishment,” where the size of the reward or punishment is a mea-
sure of how close the agent’s action came to the correct action [90]. The goal of the 
AI agent is to maximize its rewards and minimize punishment. This way, through 
trial-and-error, the agent iteratively hones in on the correct result. However, this 
behaviorist approach can be gamed. An often-cited example is a cleaning robot who 
is rewarded for minimizing the amount of dirt it sees. Such a robot can simply close 
its eyes and thus receive a reward, even though this obviously does not fulfill the 
purpose intended by the human designer [91].

The problems of algorithmic bias and reward hacking are tenacious. Even when 
a given instance of bias or hacking is rectified, this provides no guarantee that a 
further instance will not arise. The opacity with which deep learning operates makes 
any attempt to correct structural biases or failures difficult.

9.6  Possible Effects of Problems with AI on DBT’s Role 
in Self-Optimization

Given AI’s prevalence in DBT, the aforementioned problems with AI may well 
manifest themselves in the self-optimizing function of DBT. I will look at how algo-
rithmic bias, algorithmic opacity, and reward hacking affect the three avenues of 
self-optimization identified previously, i.e., direct interaction, information, and 
parameterization of behavior.

As mentioned above, neurostimulation devices use direct interaction for enhance-
ment purposes. Tracked EEG sleep data is processed through deep learning algo-
rithms in order to generate and emit music-like waves intended to improve wellness 
and cognition. Meanwhile devices like the Neuvana stimulate the Vagus nerve in 
order to enhance mental acuity, promote positive thinking, or curb cravings [60]. As 
AI is increasingly used by such devices, the risk of algorithmic bias becomes more 
significant. What the AI recognizes as a desirable EEG state will depend on a big 
data set sourced from many users over many individual instances. But any biases 
that inhere in the incoming data will be reflected in the parameters that the algo-
rithm identifies as “normal” or “desirable.” Perhaps users of this technology are 
more likely than the general population to aim for mental acuity or heightened con-
centration—a supposition that is plausible given that such individuals are more likely 
to employ such technology in the first place. As a result, parameters “endorsed” by 
the AI may be skewed. This is problematic, because an EEG state that is in fact 
representative of the general population would be identified as inadequate or unde-
sirable. With the technologies discussed here, this may result in individuals receiv-
ing neurostimulation at times or in ways that are not in fact beneficial. Egregious 
instances of unwarranted neurostimulation may be rather noticeable and thus may 
quickly be weeded out. But slight shifts in desirable parameters may be less obvious 
and thus more insidious as they may contribute to a skewing of what is considered 
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normal. Beyond neurostimulation, such an effect can be problematic within the self- 
optimization modes of information and parameterization of behavior.

Self-optimization through information relies heavily on the data analytics action 
of the AI. Algorithmic bias that corrupts such analytics may lead to a number of 
problematic consequences. As described previously, vocal analysis is used to iden-
tify a range of conditions, including which users suffer from depression or are likely 
to default on a loan. Algorithmic bias in such functionalities can lead to individuals 
being categorized as suffering from a condition when in fact they are not, or being 
categorized as not suffering from a condition when in fact they are. This could result 
both in users being discriminated against, and in users not receiving the assistance 
that the technology is intended to provide. If we consider the use of vocal analysis 
in determining something like an individual’s likelihood to default on a loan, it is 
easy to see how algorithmic bias could yield unfair results on the basis of non- 
praiseworthy and non-blameworthy properties, much like was the case with the 
COMPAS tool in criminal contexts. Vocal analysis might indirectly discriminate 
against individuals with certain properties. This can occur even if these properties 
are ommitted from the data, because they are considered too sensitive. For instance, 
an individual’s socioeconomic status (SES) may not be a data point that is available 
to an algorithm, because it might be discriminatory. However, individuals of low 
SES reliably have higher rates of smoking, of being exposed to secondhand smoke, 
and of being sick from smoking-related diseases than individuals of higher SES 
[92]. Whether an individual smokes or is exposed to secondhand smoke is reflected 
in that individual’s vocal qualities, and is thus useable data for analytic algorithms. 
Consequently, even if the data available to an AI is free of any mention of SES, the 
algorithm may still carve up the population along SES dimensions, thanks to cor-
related proxy features. Moreover, because of algorithmic opacity, affected parties 
may have no way of knowing how an algorithm arrives at a particular categoriza-
tion, and thus cannot assess whether such results are justified in a given case.

As noted previously, vocal analysis is also used for restorative purposes, for 
instance in AI-enabled hearing aids that filter out voices from background noise. 
Certain vocal features are reliably correlated with racial groups [93]. Algorithmic 
bias may lead to certain kinds of voices, possibly the voices of certain racial groups, 
being less audible to users of smart hearing aids than others. If we assume that in 
general people prefer talking to people whom they can understand well, then such 
bias might subtly affect the kinds of people with whom users choose to spend time. 
What’s more, this effect may happen unbeknownst to users, who may not be able to 
point to why they are engaging in conversation with one group of people rather than 
another.

Alternatively, with AI-enabled translation performed by such smart hearing aids, 
thanks to algorithmic bias, translated utterances may contain words that inade-
quately express the speaker’s intended semantic content. While this may merely be 
frustrating if it occurs in a morally neutral way, it is worrisome if utterances exhibit 
unintended discriminatory or offensive language. The latter has been shown by 
Microsoft’s chatbot Tay to be a real risk [94]. Not only might this portray users as 
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unfairly racist, sexist, or prejudiced in some other way, with prolonged use it may 
even erode a user’s beliefs about her own views, as I have argued elsewhere [95].

The clearest example of how the flaws in AI may clash with the self-optimization 
function of DBT is within the mode of parameterization of behavior. As already 
mentioned, algorithmic bias can cause parameters of what counts as “normal” or 
“desirable” to shift. This is particularly the case with AI-enabled tracking technol-
ogy, which is designed to identify appropriate values or value-ranges of trackable 
dimensions (see Table 9.2) and alert, praise, punish, or reward the user on the basis 
of her adherence to those values or value-ranges. We see this, for instance, in the 
Pavlok 2 that administers a small electric shock to the user if she falls outside of 
certain parameters, for instance if she exercises for too short of a duration. An 
AI-enabled version of such behavior-parameterizing tracking technology will obvi-
ate the need for human input on what constitute acceptable parameters, e.g., an 
appropriate duration for exercising, by arriving at such parameters on the basis of 
big data, including from users of the technology and a wide array of other sources. 
Then, this DBT can simply punish a user if she deviates from what the algorithm 
has deemed as desirable.

Thanks to algorithmic bias, however, the parameters towards which the DBT is 
steering the user may not actually correspond to parameters that should be sought 
after. Moreover, because of algorithmic opacity, a user may not be able to see why 
parameters are what they are, and thus why she falls short. This might result in users 
feeling unjustifiably discouraged about their performance, or conversely unwarrant-
edly accomplished. The ramifications of such effects will vary. For some users 
falsely appearing to fall outside of parameters or erroneously appearing to fall 
within them will have little consequence. For others who perhaps place great impor-
tance on being within certain bounds, wrongful categorization may be unduly bur-
densome. Users who exhibit compulsive behaviors, such as individuals with eating 
or exercising disorders, already employ DBT to contribute to their disorders [96, 
97]. Skewing parameters of what counts as “normal” or “desirable” could exacer-
bate this harmful phenomenon.

Beyond the DTC context, such skewing of parameters may be problematic in the 
third-person context. When tracking technology is used by corporate wellness pro-
grams to dole out rewards and punishments [98], or by insurance companies to 
determine premiums [99], miscategorizations of users may lead to injustices in the 
same vein that have occurred with the COMPAS tool. Moreover, just as with 
COMPAS, the presence of algorithmic opacity makes redressing any such injustices 
hard if not impossible.

Finally, smart assistants are becoming widespread amongst AI-enabled DBT. As 
noted earlier, there are life assistants designed to help users with a huge array of 
tasks, including determining whether their behavior is beneficial or detrimental to 
productivity [37], whether their behavior will help them achieve their health and 
well-being goals [79], and whether they are successfully forgoing short-term temp-
tations in favor of long-term goals [80]. Such DBT also assists insurance companies 
and corporate wellness programs in determining the health risks of individuals [79].
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However, such smart assistants may be vulnerable to reward hacking. Assistants 
are “rewarded” for giving “good” “instructions and recommendations” [38] to 
users, where “good” is determined by running algorithms that mine big data from a 
plethora of sources. But honing in on what exactly constitutes “good” instructions 
and recommendations may be algorithmically burdensome. It may, for some algo-
rithmically opaque reason, be easier to generate instructions and recommendations 
that can appear as “good,” but are actually not. This is an instance of reward hack-
ing. When the AI manages to find such “imposter” results, it receives its reward and 
has thus fulfilled its purpose. Of course, while this may be beneficial from the per-
spective of the AI, it is not beneficial at all for the human user. But again, weeding 
out such reward hacking issues is aggravated by algorithmic opacity. As humans 
rely more on their smart assistants to guide them in their pursuits of healthier, hap-
pier, more productive lives, issues of reward hacking will become more and more 
serious, as they threaten to undermine individuals’ autonomy in fashioning them-
selves. Similarly, when corporate wellness reward and punishment structures, as 
well as insurance premiums, depend on a user’s adherence to assistant-provided 
instructions and recommendations, reward hacking can contribute to an unjust dis-
tribution of burdens and benefits.

9.7  Conclusion

AI-enabled DBT has enormous potential to affect the way users engage in activities 
of self-optimization. Individuals are increasingly taking on the burden of engineer-
ing their own health, wellness, and productivity in explicitly engaged and active 
roles. This surging involvement is predicated on a belief that technology now exists 
to facilitate this effective self-fashioning. Algorithmic bias, algorithmic opacity, and 
reward hacking undermine this pursuit, often in ways that are unknown to the user. 
If individuals truly are to be empowered, these issues with deep learning must be 
addressed.
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10.1  Major Concerns Regarding Moral Bio-Enhancement

When artificial intelligence (AI) is used to enhance cognitive skills, especially for 
moral deliberation, the ethical concerns that have been discussed in most literature 
center around two major issues are: privacy and autonomy [1]. The use of advanced 
neurotechnology, such as transcranial magnetic stimulation, leads to concerns about 
privacy. The downside of moral bio-enhancement, such as negative effects on auton-
omy, has been frequently discussed. For example, John Harris (2011) argues that the 
use of biochemicals such as SSRIs to enhance morality poses a threat to moral 
agency because it deprives the recipients of the freedom to fail [2]. Huang (2019) 
recently argued for the same view from a different perspective, claiming that moral 
bio-enhancement is objectionable in that it undermines human moral agency by 
obstructing accurate self-reflection and choice-making on that basis [3].

The abovementioned objections to moral bio-enhancement address its desirabil-
ity yet place less focus on its feasibility. The trend of talking about what should be 
done and needs to be done is mostly shaped by philosophers concentrating on the 
normative questions instead of scientific ones because science has not yet revealed 
a detailed guide to implementing moral bio-enhancement. Despite his belief in a 
possible future when moral enhancement can be achieved, Wiseman (2016) does 
not consider mainstream biological and neuroscientific methodology work, such as 
taking blood samples or using fMRIs. He contends that “the present brain-reductive 
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approach to studying moral functioning might be intrinsically incapable of handling 
such a complex set of phenomena as moral functioning encompasses and thus they 
make for a very poor foundation if moral enhancement enthusiasts want to present 
a credible scientific basis for the neuromodulation of moral behavior and judgment 
through pharmaceutical or other means” ([4], pp. 134–135]).

10.2  Weak Moral AI as a Socratic Assistant

On the other hand, the idea of moral AI, which added an extra layer to the already 
complex problem of moral bio-enhancement, encounters doubts as well as applause. 
Despite the similar concerns briefly discussed above, the development and progress 
of computer science seem to bring us new hope of making moral machines by 
advancing moral info-enhancement rather than moral bio-enhancement.

Savulescu and Maslen (2015) propose a model of moral AI, arguing that the 
common objections against moral AI will not be a problem for their model, as moral 
AI helps agents to overcome their natural psychological and physiological limita-
tions [5]. Owing to the limitations of human psychology and evolutionary mecha-
nisms, humans are disposed to develop an in-group affinity, which is simply a 
natural tendency that cannot be denied, so moral development will not extend its 
application to out-group people. Persson and Savulescu (2017) argue that because 
of “moral hard-wiring,” sociocultural intervention cannot be the only way of achiev-
ing moral progress, and biomedical enhancement, albeit not being the only one, 
must be one of the most important ways to enhance morality [6]. Savulescu believes 
that human morality is hard-wired in some ways but also agrees that a weak moral 
AI can be useful even if it merely assists moral deliberation without having much 
effect on motivation.

Savulescu and Maslen (2015) argue that what they have in mind resembles what 
Lara and Deckers (2019) propose as “weak moral AI” [7]. They hold that for moral 
enhancement, motivation should not be the only important thing to consider. If we 
can bypass the motivation and use “exhaustive enhancement,” we leave all moral 
decisions to machines. For instance, a computer chip can be implanted into the brain 
and tell the body to follow the instructions, an AI system can be set up to give us the 
order to follow, or a political system that sanctions such actions can be guided by 
the AI system. The difference lies in the fact that the direct model can force humans 
to act according to the AI system output, but the latter is external and needs the 
compliance of humans. Both models make humans redundant, albeit saving the 
hard work of moral deliberation and possible errors and avoiding the issue of under-
mining privacy and autonomy.

Lara and Deckers (2019) argue for a comparatively “modest” model of an AI assis-
tant, and such weak moral AI merely asks questions in a Socratic way in which the 
assumption of the agent might be questioned, the concept they understand might be 
clarified, useful information that is necessary for the best inference and decision- 
making is provided, or the coherency of the argument is examined [7]. In other words, 
weak moral AI does not make the decision for the agent and merely helps to strengthen 
the argumentation itself in the form of dialogue. In this way, the ethics machine as a 
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robot does not aim to internalize any moral doctrine within a moral agent. It is differ-
ent from an autonomous moral machine that can function by itself, without relying on 
humans. For this reason, the usual concern over trust will not be an issue because 
humans ultimately make the call, not machines. If our trust is about whether comput-
ers can offer reliable guidance on strengthening the argument, as Lara and Deckers 
would argue, such concern is not necessary, as machines are much more reliable in 
accomplishing those tasks, as long as the algorithm is technically feasible.

By interacting with the ethics machine, one learns how to conduct their thinking 
in a conceptualized, well-informed, and logical manner. This is a cognitive “purifi-
cation” or “improvement” process. Like a logic teacher, the machine can detect 
illogical reasoning and conceptual fallacy while conversing and interacting with a 
user, asking questions such as the following: “do you think you hold consistent 
moral views regarding justice in the previous two cases?,” “do you think you are 
impartial in treating the two?,” “what makes you think these two cases are differ-
ent?” These questions seem to head in the right direction because they resemble the 
pedagogy adopted by Socrates in Plato’s dialogues. The concern, however, is not 
whether such interaction is genuinely Socratic but whether such pedagogy can func-
tion well for the purpose of being able to provide advice based on fixed rules set by 
the algorithm, as this might not render the artificial intelligence sufficient for mak-
ing morally better people. However, the good side of the story is that Lara and 
Deckers remove the burden of accountability from the assistant to the agent who 
uses and interacts with the ethics machine. It is indeed in this way that the agent 
themselves can retain autonomy and authenticity.

10.3  The Paradox of a Weak Moral AI: 
A Philosophical Argument

10.3.1  The Impotence of Moral Judgment: Humeanism Vs. 
Anti-Humeanism

A defense of moral AI enhancement seems to be plausible in some respects, accord-
ing to Lara and Deckers (2019) [7]. They argue that such a Socratic assistant has 
quite a few advantages over “traditional” enhancement via motivation. It avoids the 
problem of undermining autonomy and privacy. It is certainly safer because no 
computer chip or device needs to be implanted in the human brain or body. Further, 
it leaves the final moral judgment open to the agent, allowing sufficient space for 
respecting moral pluralism. Moreover, it functions not only as the midwife for 
moral deliberation but also as a method for education toward the goal of moral 
progress. However, it does not seem to fit moral psychology if a moral AI model 
merely bypasses motivation. Humans simply do not bypass motivation and act in 
accordance with moral judgment. A reasonable inquiry would be whether a moral 
AI assistant would be useful without having any influence on motivation. I suggest 
framing the question in another way, asking whether any moral judgment can func-
tion by itself without effecting any motivation change.
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To answer the question of how to understand the relationship between moral 
judgment and motive, philosophers come up with contrasting views and explana-
tions. In meta-ethics, there is a more general and commonly discussed theme of 
moral motivation, in which Humeanism and Anti-Humeanism contribute signifi-
cantly to the literature [8]. Philosophers aim to explore whether there is a necessary 
connection between moral judgment and motivation. Another way to frame the 
question would be to ask whether the mere presence of moral judgment enables a 
motivation to act. Humeanism holds that moral judgment cannot by itself motivate 
the agent to act but requires an additional act that can generate desire, or there is 
preexisting desire or “conative” state, which is sometimes called “pro-attitudes.” A 
strong and even radical version of anti-Humeanism comes from Plato, holding that 
the apprehension of the forms of moral ideas should be able to provide overriding 
motivation for the agent to act. A similar view holds that a moral judgment will not 
count as genuine if it does not provide sufficient motivation to act in accordance 
with the judgment that recommends certain action. Thus, when one speaks of moral 
judgment, he/she has to understand that attributing moral judgment to someone 
already means the one to whom the very moral judgment is attributed has a corre-
sponding moral motivation.

However, we do not have to take such a view for granted. The central debate on 
whether moral judgment can by itself render sufficient motivation to act illuminates 
the algorithm design of moral AI. This is because if Humeanism is true and addi-
tional resources are necessary for generating motivation, a weak moral AI as a 
Socratic assistant does not provide much help, as it can at most provide sound moral 
judgment. Moral AI acting as a Socratic assistant cannot handle anything like moti-
vational or noncognitive elements, the point of which resembles what Persson and 
Savulescu discuss. I do not have to enumerate all Humean arguments to argue 
against the weak moral AI model. However, if there is still a question as to whether 
moral judgment alone can provide motivation, Socratic assistant moral AI may not 
be able to motivate the agent to act according to what the moral judgment provides.

The ethics machine seems extremely similar to the online tests in which we par-
ticipate. Think of the classic MIT media lab research on the moral decision-making 
of autonomous vehicles. The online survey comprises all types of ethical dilemmas, 
from which the tester is asked to choose between different options. The typical 
question is whether the participant would prefer to continue with the original route 
of a car and kill person A on the pedestrian line or whether they would select the 
option of steering the wheel and killing person B on the other side of the road. The 
test confers various combinations of values to A and B, such as that of an old man 
and a baby, or that of one person with high socioeconomic status (SES) and the 
other with low SES. Most people would find it difficult to come up with a satisfying 
answer, as it is always bad to kill anyone. However, the test is designed to force the 
participant to rank valuable things (including human beings and animals). Let us 
assume that we have a detailed picture about the composition of choices made by 
different groups of people and that the data allows us to, based on the ranking of 
valuable things in life, design an algorithm and build an interactive AI as moral 
assistant that imitates the response and reaction of actual human beings. Thus, we 
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might possibly “communicate” with the machine such that through getting the input 
of our beliefs and preferences, we could engage in a kind of dialogue that will result 
in a recommendation. However, it is not clear whether such dialogue will influence 
motivation. More importantly, it is not even clear what kind of answer should be 
recommended. Empirical studies do not, in principle, entail normative answers as 
regards what ought to be adopted for solving ethical dilemmas, although the result 
of such studies might help analyze human moral psychology. However, moral rea-
soning is far more complicated than current empirical studies have informed us. 
Psychologists sometimes perceive moral judgment as an ad hoc rationalization of 
one’s intuitive responses to conflicting cases, and this view also endorses the idea 
that cognitive and affective processing work separately. For example, Greene et al. 
(2004) hold that our intuitive response to moral dilemmas depends on which sub-
system has more force at any given time [9], but quite a few philosophers think 
Greene et al.’s argument is based on a problematic hypothesis regarding morally 
irrelevant factors and that such a hypothesis rests on a questionable view of the 
neurobiological underpinnings of moral reasoning [10].

10.3.2  Moral Hard-Wiring and the Limits of Weak Moral AI

A weaker moral AI might not work because those “hard” parts in our morality are 
simply impossible to remove through valid and even sound moral arguments. In 
their paper “Moral Hard-wiring and Moral Enhancement,” Persson and Savulescu 
propose that because of the characteristics of human moral psychology, biomedical 
moral enhancement might not be the only way of making moral progress but should 
be one of the most important ways. They aimed Powell and Buchanan’s view that 
sociocultural means are more efficient and safer than biomedical means making the 
latter unnecessary. Persson and Savulescu (2017) hold that, while some attitudes 
can be changed by sociocultural intervention through understanding and accepting 
better rational arguments such as what we see in the case of racism and sexism, they 
face difficulty in explaining motivational or noncognitive elements [6].

In other words, what Persson and Savulescu (2017) hold to be “moral hard- 
wiring” refers to the part in humans that is hardly changed in a moral developmental 
environment and not sensitive to rational persuasion [6]. Unlike racism and sexism, 
nepotism and cronyism cannot be eradicated by sociocultural intervention. The 
existence of the hard-wiring part shows that some stubborn prejudices are not easily 
corrected. Under such circumstances, the application of a weak moral AI is 
extremely limited and seems to be impotent, if it can only raise some questions that 
aim to make the agent aware of the hidden logical fallacy or conceptual ambiguity. 
For some people, pointing out the inconsistency in their logical reasoning does work 
in that they actually admit such a mistake when they are cognitively capable of 
doing so, which further affects their motivation and might trigger moral acts. 
However, this does not work for all. Some people are entirely cognitively capable of 
realizing their fault in logical reasoning but will not change, or will merely stick to 
their assumption and not put themselves into others’ shoes, which makes any moral 
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persuasion, not to mention a moral AI assistant, useless. Amoralists also fall into the 
latter category by not acting on what they understand as right or good.

10.3.3  Motivation Ethics: The Evaluation of Moral Agents 
and Actions

Motivation matters not only because intuitively we do value the act conducted for 
the sake of morality. The answer to the question above hinges on how much we 
ought to value motivation compared to logical and reasonable moral deliberation. A 
coherent moral theory, including both moral acts and agents, might be helpful in 
understanding how important motivation could be and what it means to bypass 
motivation. Moral theories, as Matthew Coakley (2017) writes, either tackle the 
agent or the behavior. For example, when morally evaluating objects, either we 
evaluate what people do, asking questions such as whether what the agent does is 
right or wrong, or we evaluate the moral character of the agent, asking questions 
such as whether they are virtuous or have a specific moral character [11]. The major 
ethical theories, as one sees in the history of ethics or moral theory, fall into the 
category of discussing the rightness either of the action or of the agent. Coakley 
raises an interesting and meaningful question, namely, if under the framework of 
one of the moral theories some action can be judged as right, can this be compatible 
with the conclusion drawn from another moral theory that judges the moral charac-
ter of the very agent? Intuitively, there seems to be an easy answer for this question 
because we tend to assume coherency among different types of moral evaluations, 
but Coakley displays how difficult it is by examining major theories such as conse-
quentialism and deontology and concludes by proposing motivation ethics as a pos-
sible alternative. By motivation ethics, he means “agents are morally better the more 
motivated they are to promote the [overall] good” ([12], p. 59), thereby combining 
the evaluation of motive and act. Stonestreet points out that Coakley’s project hinges 
on whether readers accept his conception of the [overall] good as “the moral good” 
(italics from quote) [12], which seems to be a very fair objection that Coakley needs 
to address. However, setting that assumption aside, Coakley does propose some-
thing important that is easily missed, namely, the moral agent problem, which says 
that if an ethical theory places too much emphasis on the evaluation of the action, it 
falls short of evaluating the agent, thus causing the problem of incoherency among 
different routes of moral evaluation. We do not need to accept Coakley’s version of 
motivation ethics, but he reminds us of an important question, namely, the need to 
consider both motivation and act. The theoretical reflection on the importance of 
motivation shows how weak a Socratic assistant moral AI might be because motiva-
tion is bypassed. Although the model proposed by Savulescu and Maslen and Lara 
and Deckers seems to avoid the problem that is mostly discussed in the name of 
privacy and autonomy because motivation is bypassed, the reason that they might be 
self-defeating is that they drop this dimension.

Emphasizing an act without taking care of motivation is certainly against Kantian 
ethics doctrine, which holds that moral worth merely comes from the act done from 
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the motive of duty [13]. Motives other than those of duty cannot be morally right; 
even compassion and sympathy do not count. Albeit intuitively unappealing, 
Kantian doctrine tells us something important about the essence of morality. As 
Savulescu and Maslen envisage, a weak moral AI can function as a monitor of the 
moral environment, moral organizer, moral prompter, moral adviser, protection 
from immorality, and, finally, as preserver of moral autonomy and group-level 
moral AI. However, if none of these functions can somehow indirectly generate a 
motive of duty in the agent who uses or interacts with such AI, then one who takes 
Kantian doctrine seriously will think that a Socratic assistant as moral AI is useless.

If a weak moral AI could successfully work as envisaged, then at most it could 
offer assistance to generate a fairly reasonable moral decision, rather than making 
the actual decision for the agent herself or himself, not to mention acting morally. 
The agent, no matter how much information they acquire from the moral AI 
machine, has to make the final call on what to do and execute the act that they 
choose. This leaves a gap in which moral AI might be impotent, namely, if we adopt 
a view of “motivation ethics” and evaluate the agent rather than merely focusing on 
the act, then we do not merely care about the output of a moral act done by the 
agent. Under such circumstances, although it is not necessarily the case that the 
agent will not act in accordance with what is recommended by the moral machine, 
it is very likely that the motives of the agent are unknown and thus suspicious. From 
a strong Kantian viewpoint, there is no moral value in any act that is not purely 
motivated by duty. This probably will not be a problem for anyone who holds a 
view, say, merely evaluates the consequence of the action. For example, in cases in 
which the group-level AI helps distribute resources, usually the collective decision 
instead of an individual effect will be the subject of evaluation. In such cases, crite-
ria based on consequentialism or utilitarianism are usually adopted. It is unlikely 
that the view from motivation ethics has to be applied in such a scenario.

10.4  Chatbots Used in Mental Health and How the Case 
Sheds Light on the Feasibility of a Weak Moral AI

In order to get close to achieving feasibility, it is better to have a concrete case at 
hand. Unfortunately, there seems to be no concrete case for a weak moral AI as a 
Socratic assistant until now, but AI applications, such as chatbots, have been tar-
geted at alleviating mental health disorders, which might reveal something different 
from what I just discussed.

Chatbots, as systems that can converse and interact with humans by using text 
messages, audio messages, or even videos, have been recently used for the purpose 
of providing first-line support for patients [14], mostly afflicted by depression and 
autism, but there is little evidence for their effectiveness, and there are no consistent 
outcome measures [15]. The general conclusion on the use of chatbots for psychiat-
ric purposes is that they have not been shown to be extensively effective but have 
therapeutic potential [16]. Currently, most innovations in chatbots for mental health 
and therapy have been implemented at the industry or entrepreneur level, and very 
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few hospitals or psychiatric clinics have adopted such practices. The rationale 
behind this might be that clinics and hospitals are still waiting for further improve-
ment and refinement of chatbots, or it is reasonable for the professionals to hold the 
view that chatbots might not be able to replace the real-life diagnosis and treatment 
in psychiatric clinics or hospitals.

For now, whichever form they take (virtual or non-virtual), chatbots used for 
mental health can merely provide people who need initial self-checks of their men-
tal states and mentoring with mood and behavior adjustment in an accessible and 
convenient way. In most cultural contexts, psychiatric diseases are still stigmatized. 
AI applications can perfectly match the needs of those who prefer not to go public 
with their records, but such convenience also brings about limitations in effective-
ness. Compared to traditional on-site psychiatric diagnosis and therapy, there is 
invariably missing information on such encounters between users and chatbots. 
However, on the positive side, users report that chatbots are helpful in monitoring 
moods and changing behavior. Researchers are also optimistic, holding that AI tech-
nology should be able to detect the irregularity in human response and, based on the 
well-designed embedded algorithm, try to “nudge” the user in the direction of posi-
tive feelings and thoughts. Vaidyam et al. (2019) reviewed conversational agents or 
chatbots in the field of psychiatry and concluded that the mental health field has the 
opportunity to gain more from chatbots than any other field of medicine [16].

While it is one thing to say that, implemented correctly and ethically, chatbots 
can be a useful psychiatric tool, it is another thing to say that they can nudge human 
beings at a more ethical level. Although both kinds of practice seem to endorse cer-
tain character traits such as being prosocial, moral enhancement, even in a weak 
sense as a Socratic assistant, is much more complex. Borenstein et al. (2016) con-
sidered moral enhancement practiceas “robotic nudges” that could withstand the 
challenge of moral paternalism [17]. Doubt is mainly cast on why we have to create 
“better people.” The very idea of morally enhancing human beings, no matter what 
form it takes, through biomedical means or chatbots, can be objectionable because 
of the very nature of intrusion on humans. Criticism from such a perspective, as 
readers might be aware, is very commonly directed at moral enhancement in gen-
eral. Besides, Borenstein et al. (2016) also raise concerns around issues of infeasi-
bility as well as undesirableness, questioning how we would be able to confirm what 
kind of framework is suitable for defining what “ethical” means [17].

Despite these doubts, by proposing and analyzing the case of “nudging toward 
social justice,” they conclude that robots can be useful in nurturing certain character 
traits in human beings. Although reasonable doubts around which prosocial behav-
iors are worthy of pursuit remain to be discussed, they hold that strategies can 
always be found to get us to know which prosocial behavior we aim at promoting as 
long as we confirm first what robots can do. It is worth noting that confirming what 
robots can do requires us to constantly acquaint ourselves with the innovation of AI 
technology before jumping hastily to any conclusion merely based on moral chal-
lenges that are hard to meet at first. What this means is that speculation on what AI 
technology might do could be limited by our imagination. Philosophy can evolve 
together with the development of technological innovation, especially regarding the 
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terminology in the field of applied ethics. If that is true, then we might update our 
views on what can be done through moral enhancement by AI or, specifically, weak 
moral AI as a Socratic assistant. We do not know whether such weak moral AI can 
indirectly influence motivation, and maybe it can. However, someone might raise a 
doubt by saying that this is an empirical question, not a philosophical one. Then the 
question turns into something like this: if weak moral AI does influence motivation 
in an indirect manner, can the Humeanism regarding moral judgment be accommo-
dated? I think the answer can be affirmative, since Humeanism, while insisting on a 
pro-attitude component, is compatible with the alternative that a moral judgment is 
never a purely epistemic one but already integrated with the “conative” part. This 
can happen when, as a matter of fact, weak moral AI elicits or changes moral moti-
vation in the agent through Socratic dialogue around things such as the consistency 
of the argument or the clarity of the definition of concept, although it might not aim 
to achieve such a bold goal or have a precise account of how such mechanism was 
at first when the project was launched. In a nutshell, it is known to all that the psy-
chological mechanism is unclear at the moment, so we cannot say with certainty 
whether a weak moral AI is feasible, but given the chatbot case, if mood and behav-
ior can be changed, then moral attitude or character is probably not a very long way 
to go unless further empirical evidence shows an unbridgeable barrier to nudging.

10.5  Can Moral Info-enhancement Interventions 
Be “Medically Indicated”?

Setting aside the goal of ultimately affecting moral motivation, moral info- 
enhancement as a “weak” version might also be therapeutically useful. Casal (2015) 
raises the interesting point that moral bio-enhancement can be useful in certain cir-
cumstances, as “moral therapy” rather than for the general purpose of enhancement 
[18]. Carter (2017) specifically argues that moral enhancement can be “medically 
indicated” [19]. The contention is based on the view that empathy plays a core role 
in moral decision-making and behavior. According to Persson and Savulescu 
(2012), empathy is “a capacity to imagine vividly what it would be like to be another, 
to think, perceive, and feel as they do” [20]. Empathy can further contribute to sym-
pathy, resulting in altruism necessary for moral decision and action. Those who 
cannot imagine the experiential state of others and/or cannot respond to the state are 
(cognitively) deficit in moral reasoning.

To claim for a therapeutic use presupposes considering a lack of empathy as a 
case of mental disorder. It remains to be discussed whether a lack of empathy can 
be classified as mental disease, since there is no unanimous definition on mental 
disorder. However, as Carter (2017) notes, if a deficiency of empathy fits the criteria 
for mental disorder, then we would at the very least be able to consider such defi-
ciency as candidate for treatment through moral enhancement techniques [19]. But 
treating a deficit of empathy or excess of aggression can face serious challenges. 
Moral enhancement might not be agreeable or acceptable among those who are 
diagnosed with a lack of empathy. Although on the whole societal level, moral 
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compliance definitely contributes to social collaboration; for individuals, moral 
deficiency can be a kind of advantage, because in most circumstances empathy 
makes life easier. This does not exclude the indirect benefit brought by saving one 
from being put in jail or being the victim of violence due to those actions resulting 
from a lack of empathy.

Meanwhile, since considering empathy as the core of moral deficit is open to 
further discussion, advocating for providing moral enhancement as treatment is not 
without its problems. It raises further ethical and regulatory concerns when moral 
enhancement technology is considered to be akin to therapeutics, such as, when the 
enhancement (as treatment) should be implemented, to whom it might be applica-
ble, and where to draw the line between therapy and enhancement [21], the same old 
question that enhancement technology-related ethical concern always cen-
ters around.

However, if we accept a normative definition of mental disease and consider a 
lack of empathy as mental disorder, we might be inclined to consider it as a candi-
date for moral therapy through moral bio-enhancement. The worry is, given so 
many concerns mentioned above, moral bio-enhancement as therapy might has a 
long way to go. But if empathy is a genuinely cognitive deficit, in principle, it can 
be cultivated through clarifying concepts, providing and emphasizing mostly rele-
vant information for the judgment, correcting logical fallacy, etc. These are exactly 
what moral info-enhancement could accomplish, and so a weak moral AI may work 
as a middle ground between traditional moral education and innovative but contro-
versial moral bio-enhancement. As compared to traditional moral education, moral 
info-enhancement has better efficacy, convenience, and possible economic utility. 
As compared to moral bio-enhancement, it is safer and can eliminate worries about 
autonomy and privacy.

Weak moral AI, as is envisaged, aims at enhancing moral agent’s ability of infor-
mation processing, and thus mainly works on cognitive level, so it does not expect 
mood or emotion change as the effect. It is “weak” in that it merely purifies moral 
reasoning by facilitating the processing of morally relevant information through 
dialogue. The very nature of weak moral AI as such avoids abovementioned prob-
lems for moral bio-enhancement, such as infringement on privacy and autonomy. 
But even if ignoring those concerns and considering moral bio-enhancement as 
promising instrument for better moral compliance, weak moral AI can always work 
as a safer first step, that is, a trial implemented before moral bio-enhancement tech-
nology is ready to step in.

Instead of facing the situation that most people are disinclined to accept the bio- 
enhancement therapy, info-enhancement offers a solution as it merely tries to help 
the agent achieve better moral reasoning through a “soft” method. In this way, the 
medicalization worry is gone, too. As Conrad (1992) defines, medicalization con-
sists of “defining a problem in medical terms, using medical language to describe a 
problem, adopting a medical framework to understand a problem, or using a medi-
cal intervention to ‘treat’ it” ([22], p. 211). As I see it, the definition of medicaliza-
tion as such is not value-laden, and its being good or not depends on how it is used. 
Medicalization has one use that we should be aware, and as Carter (2017) points 
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out, it is the “medicalization of deviance to provide medical social control” ([19], 
p. 350). If moral bio-enhancement is considered to be applicable in serious cases 
such as psychopathy and “moral deficiency disorder” thereby unavoidably faces the 
charge on medical social control through medicalization, then moral info- 
enhancement as therapy can play a moderate role in a much accessible way, for a 
much larger group of people that simply believe they could achieve better moral 
compliance and better social life through cognitive training on moral reasoning.

10.6  Concluding Remarks

Now we can get back to asking whether there is a paradox inherent in the model of 
weak AI and what we can learn from such inquiry. From a philosophical point of 
view, the paradox of a weak moral AI as a Socratic assistant seems to lie in the fact 
that, by bypassing motivation, moral info-enhancement avoids the problem of 
infringement of privacy and undermining autonomy. However, setting feasibility 
problems aside, without having such an effect on the agent, mere moral info- 
enhancement is external and impotent, and based on motivation ethics and Kantian 
ethics, it is undesirable by diminishing the essence of being moral.

Nevertheless, as the recent chatbot case shows, mood and behavior can be altered 
by conversing and interacting with AI applications, implying the possibility that 
mental states can be changed through similar weak AI methods, and moral enhance-
ment in this sense might as well head in a feasible direction. Of course, this is not to 
assert that weak moral AI or any other kind of moral enhancement can be success-
ful. Admittedly, the hope of augmenting moral functioning requires tremendous 
work on biochemical and neurobiological mechanisms as well as on the psychoso-
cial environmental context that has shaped moral behavior and character. The dis-
cussion on moral info-enhancement as an alternative or middle-ground therapy in 
brain and mental health also shows promising application of a weak moral AI 
model. We could be even more optimistic when finding mental health chatbots fea-
sible, especially regarding its possibility of changing mental states. Besides, the 
whole discussion also shows that the philosophical argument that initially goes 
against the feasibility of such weak moral AI can be referred back and reconsidered 
once empirical evidence is available, which reminds us of the dubiousness of purely 
theoretical arguments in dealing with practical issues, especially around future sci-
ence and technology, for which human imagination can never be wild 
enough.FundingThis work was supported by NSFC (National Natural Science 
Foundation of China). Grant Number 71843009.
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11The AI-Powered Digital Health Sector: 
Ethical and Regulatory Considerations 
When Developing Digital Mental Health 
Tools for the Older Adult Demographic

Camille Nebeker, Emma M. Parrish, and Sarah Graham

11.1  Introduction

Globally, the population of older adults is rapidly growing with estimates of those 
over 60 years of age doubling by 2050—an increase from representing 12% to 22% 
of the population—and it is predicted that 80% of these older adults will live in low- 
to- moderate–income countries [1]. Mental illness affects nearly 20% of the older 
adult population (60 years above) in the United States and approximately 15% glob-
ally with 6.6% of all disabilities facing older adults attributed to mental and neuro-
logical disorders [1]. Moreover, older adults are less likely to perceive the need for 
or use mental healthcare [2]. The majority of these individuals have limited or no 
access to mental healthcare and those who potentially have access may not be able 
to afford care [3]. These data support careful consideration of how information and 
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communication technologies (ICTs) that support digital health research, including 
the use of AI-powered tools, can be used to support older adults generally and, par-
ticularly, those with mental illness.

The use of digital strategies to advance health promotion, disease prevention, and 
treatment research has exploded over the past decade. A recent study that assessed 
funding for digital health research by the National Institute of Health (NIH) revealed 
that the National Institute of Mental Health was among the top investors across all 
NIH institutes, along with the National Cancer Institute and the National Institute of 
Drug Abuse [4]. Based on NIH funding and the scientific literature, digital tools 
employed in health research are used to support observational and intervention stud-
ies via mobile apps, remote and wearable sensors, and social media platforms. As 
examples, one study used a SenseCam device, which is an outwardly facing wear-
able camera that records a first-person point of view and can help the wearer with 
recalling events of the day to assist older adults with memory loss [5]; smartphones 
are ubiquitous tools that can be used for brief assessments like real-time ecological 
momentary assessment (EMA), an alternative to retrospective self-report that is 
used for repeated sampling of users’ current behaviors and experiences [6]; and 
social media platforms are being leveraged to identify and mitigate health risk fac-
tors like social isolation and loneliness; for example, a study conducted by Quinn 
(2018) enrolled residents of a retirement community to evaluate the effects of social 
media use on cognitive decline and found positive effects on information processing 
and cognitive function [7]. There is evidence to suggest that higher social technol-
ogy use is associated with better self-rated health, fewer chronic illnesses, higher 
subjective well-being, and fewer depressive symptoms [8] and that older adults have 
similar levels of online social connectedness to younger adults [9]. Yet, the literature 
also reports that high use of social media among teens and young adults may be 
detrimental to mental health and well-being [10–12]. Clearly, more research is 
needed to better understand both potential benefits and risks to health.

Digital health research has increased among the older adult demographic due, in 
some part, to the increased adoption of smartphone technologies by those over 60 
[13]. Smart phones can host apps designed to improve mood, avert loneliness, and 
promote self-reliance, the latter which is critical for aging independently [14]. 
However, while there is increasing interest and growth in the use of technology to 
support independent and healthy living, it is important to consider both the potential 
benefits in the use of assistive technologies along with risks of potential harm—
especially when involving older adults combined with mental illness. Factors that 
influence willingness to adopt technology among older adults include trustworthi-
ness of the vendor, practices that align with privacy expectations, and usability of 
the product [15, 16]. For example, a study conducted by Andrews et  al. (2019) 
found that mobile app graphics and jargon familiar to digital natives negatively 
impacted adoption for the older adult demographic; whereas Wang et  al. (2019) 
identified privacy preferences and control of data to be important factors in technol-
ogy adoption [14, 17].

Smart homes offer another potential digital solution for the ongoing mental and 
physical healthcare of aging adults. Smart home technology is designed to gather 
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data about the dweller’s health, location, and environment. Smart homes first 
emerged in the late 1990s and can serve to monitor various aspects of a person’s 
activity, behavior, and health through digital technology, particularly the use of 
video, audio, wearable, and environmental sensors combined with artificial intelli-
gence analytic techniques. Due to the complexity of collecting these data, most 
research is in the pilot or planning stage and sample sizes are limited [18]. Many 
smart home applications are focused primarily on monitoring the daily activities of 
an older adult within their home environment to aid in the clinical detection and/or 
diagnosis of aging-related impairments like dementia in a real-world (as opposed to 
laboratory) environment, such as the Dem@Home platform [19, 20].

Key features of a smart home are: (a) automation (ability to accommodate auto-
matic devices or perform automatic functions), (b) multifunctionality (ability to 
perform various duties), (c) adaptability (ability to adjust to meet the needs of 
users), (d) interactivity (ability to interact with or allow for interaction among 
users), and (e) efficiency (ability to perform functions in a time-saving, cost-saving, 
and convenient manner) [21]. In order to provide support for an individual with 
dementia, and promote aging in place, a smart home could advance beyond moni-
toring and assist with routine things like self-care, medication adherence, meal 
preparation, and safety support (e.g., prevent falls, wandering behavior, or danger-
ous situations like a fire) and provide socialization [22]. Problems with the detection 
and diagnosis approach include lack of evidence that sensor signals, activities, 
behaviors, etc., and are indeed causal to diagnosis of dementia or other mental 
health disorders, lack of standardization across algorithms that evaluate these data, 
and the fact that these platforms do not necessarily interact with the individual with 
dementia in a meaningful way that could promote aging in place [18, 23–25].

In this chapter, we describe regulatory and ethical frameworks used in the US 
and challenges with conducting ethical digital health research including special 
considerations when developing tools to meet the needs of older adults, particularly 
those who suffer from a mental illness. We narrow the scope of mental illness to 
those with dementia, as dementia is one of the most common mental illnesses affect-
ing older adults [26, 27] and is a priority target of the digital therapeutic sector [28]. 
Dementia is defined as a major neurocognitive disorder by the DSM-5 that affects 
six cognitive domains: complex attention, executive function, learning and memory, 
language, perceptual-motor function, and social cognition [29]. People living with 
dementia are a particularly vulnerable group who may warrant additional protec-
tions from harms associated with biomedical and behavioral research studies due to 
reduced cognitive ability impacting decisional capacity [30]. Furthermore, cogni-
tive impairments may impact their ability to provide true informed consent, high-
lighting the need for special protections [31].

What may be unique about big data and digital technologies that are powered by 
AI-tools is the extent to which our existing regulations apply to, and are able to be 
carried out by, ethics review boards. First, we briefly reflect upon regulations that 
guide current human research protections and speak to gaps exposed when not all 
involved in the digital health research sector are bound by regulations. We then 
describe three commonly accepted ethical principles used in the review of 
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biomedical and behavioral research (Belmont Report) [32] and introduce a fourth 
principle advanced by authors of the Menlo Report in response to increased avail-
ability of information and communication technologies (ICT) (e.g., smartphones 
and wearables) [33]. To contextualize challenges introduced by digital health 
research designed for use by older adults, we provide a use case based on smart 
home technologies. We then apply a decision-making checklist developed to assist 
behavioral scientists that includes five intersecting domains including ethical prin-
ciples, risk/benefit assessment, access and usability, privacy, and data manage-
ment [34].

11.2  Regulatory Gaps

As health research is an international endeavor, it is important to acknowledge 
global efforts to elevate ethical practices in research involving humans. The 
Declaration of Helsinki developed by the World Medical Association [35] governs 
much human research globally. The Common Rule is the rule of ethics that governs 
research supported by the US Department of Health and Human Services [36]. 
Globally, there are standards and procedures for operationalizing ethical health 
research involving humans that are country and/or organization specific [37], each 
with a goal to communicate expectations that speak to the ethical and responsible 
conduct of biomedical and behavioral research. In addition to regulations, profes-
sional societies (e.g., American Psychiatric Association, World Health Organization) 
have established codes of ethics that address professional expectations and in addi-
tion speak to research participant protections specific to the discipline to foster 
norms among affiliated members [38, 39].

An exception to these regulatory requirements has emerged over the past decade. 
New forms of research have emerged that are un- or underregulated as organizations 
began leveraging big data from a plethora of sources to conduct predictive analytics 
concurrent with the emergence of direct to consumer mobile apps and passive sen-
sor technologies [40]. As noted, US federal regulations are in place to guide research 
supported by the federal government and that which falls under the US Food and 
Drug Administration’s oversight (e.g., developing drugs or devices, including some 
digital therapeutics). This means that regulations apply to those in the more tradi-
tional research settings like universities yet do not necessarily apply to research 
being planned or carried out by citizens or digital therapeutic (DTX) start-ups and 
technology giants that have entered the digital health sector. In fact, much of the 
research taking place in the digital health sector is unregulated because the products 
fall under the “wellness” domain (e.g., Fitbit), which the FDA may not evaluate 
[41]. The FDA considers a product to be a medical device when the intended use 
refers to a specific disease or condition [42]. For regulated researchers who include 
wellness devices or apps as tools for research, they do receive review by an ethics 
review committee. This regulatory gap is problematic for many reasons including 
inconsistency between regulated and unregulated researchers specific to: (a) formal 
training in research design and methods and (b) acculturation with respect to 
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awareness of ethical norms and practices. The potential impact on society is impor-
tant to consider, especially to vulnerable populations, as consumers are not likely 
familiar with these regulatory gaps nor the potential risks of harm introduced by AI 
and sensor technologies [43]. Furthermore, the FDA requires patient engagement in 
device development for those products that will be used in digital medicine [44]. 
The involvement of patients in the development of digital health devices is a critical 
step forward, as historically patients have not had a voice at the table, particularly 
older adults [45].

11.3  Ethical Principles

The ethical principles that undergird much of biomedical and behavioral research 
described in the Belmont Report include Respect for Persons, Beneficence, and 
Justice [32]. These principles, published in 1979, later inspired the US federal regu-
lations for human research protections [46], which were adopted by 18 federal 
agencies and are now referred to as the Common Rule. These principles were 
deemed relevant for guiding ethical research practices and have, for the most part, 
stood the test of time. Several years ago, and in response to the increase in informa-
tion and communication technologies (ICTs) and related ICT research (ICTR), the 
Menlo Report was developed, which applied the three Belmont principles to ICTR 
and added a fourth principle of Respect for Law and Public Interest [33].

The important contribution of the Menlo Report is its attention to how existing 
regulations and practices are not sufficient to address the current challenges intro-
duced by interactions between people and communication technologies. Those 
developing the report included cybersecurity experts working with the federal 
department of homeland security and who were familiar with the potential impact 
of ICTs. Digital research is built upon complex and ubiquitous computing commu-
nication technologies, and our discordant regulatory structures, law, and social 
norms create ethical gaps. The Menlo Report speaks to our limited understanding of 
the scale and speed with which risks can manifest and begins to elevate awareness 
of these gaps and potential harms as well as provide solutions. A key factor in the 
Menlo Report is recognizing that ICTs create distance between the researchers and 
people who participate in the research, elevating the potential risks of harm beyond 
an individual human research participant to include a range of stakeholders who 
may be affected. As such, the report encourages contemplation of harms that extend 
beyond the direct research subject and suggests that researchers and ethics review 
boards carefully evaluate the impact of technologies and information communica-
tions across various stakeholders, including bystanders. This includes becoming 
familiar with laws (e.g., information privacy, trespass statues) and regulations and 
committing to accountable practices. The overlay of ICTR consideration to the 
existing principles is to both enhance awareness and increase understanding as we 
use these tools to support health research while at a crossroads of policy and gover-
nance gaps. A revised Ethical Impact Assessment has been created to reflect new 
principles added in the Menlo Report [47].
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Collectively, the principles, each briefly described below, are useful in making 
the research process more transparent and for engaging in dialogue about the ethical 
dimensions of research.

Respect for Persons. The principle of “Respect for Persons” speaks to study par-
ticipation being voluntary and that people are recognized as autonomous agents 
who are able to determine what is in their best interest. It is demonstrated through 
the informed consent process whereby a person who is eligible to participate in a 
research study, and has the decisional capacity, is given information deemed neces-
sary to make a choice about volunteering as a study participant. Even in more con-
ventional biomedical research, there is much debate about the effectiveness of the 
consent document and communication process as well as efforts to make improve-
ments [48]. The concerns primarily focus on how complex study information is 
delivered, who delivers the information, and how information is influenced by cul-
ture, religion, and literacy [49]. In digital health research where thousands of people 
can be enrolled via a mobile phone, the consent delivery may be occurring via an 
e-consent process which introduces a number of new challenges, primarily how 
users process information on a screen and their tendency to click and agree without 
reviewing the content [50]. While e-consent is feasible for older adults, additional 
challenges are introduced specific to technology-enabled research that may com-
promise their ability to provide informed consent, including unfamiliarity with ter-
minology used and lack of technological literacy [51].

Beneficence. The goal of the principle of “Beneficence” is to minimize possible 
harms and maximize possible benefits. This occurs when an ethics review board 
systematically evaluates the risk of harms to the individual participant against the 
possible benefits of knowledge gained from the study to those represented by 
participants and society [32]. Evaluating the probability and magnitude of poten-
tial harms is challenging, yet ethics review boards typically have the expertise 
necessary to make risk assessment and management decisions that allow the 
research to move ahead. If not, they can outsource to obtain the necessary exper-
tise. If the risk to benefit determination identifies risks that are unacceptable in 
relation to possible benefits, reviewers may decline approval such that a study will 
not be conducted. When ICTs support digital health research, it is often difficult 
to identify possible risks in advance and subsequently understand how best to 
manage those risks, and moreover, the appropriate expertise may not be readily 
available. This is in part due to the scale and speed at which a risk can develop and 
our limited understanding of the dynamics between the physical and connected 
world. The Cambridge Analytica fiasco is one example of ICTR with unknown 
downstream risks of harm. In this case, an academic researcher deployed a per-
sonality survey via the Facebook platform. Responses were then used to profile 
participants, including those who were contacts of the initial participant and ulti-
mately were believed to have influenced how citizens voted in the US 2016 presi-
dential election [52]. In the connected world of today, there are information-centric 
harms that need to be considered with respect to data confidentiality and sensitiv-
ity of information, recognizing that the potential risk of harm will vary by indi-
vidual and also extend beyond the individual. When it comes to older adults, there 
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are privacy considerations to incorporate when assessing risk. In a recent study of 
older adult privacy preferences, researchers noted a significant difference in pri-
vacy attitudes when compared to younger adults and adolescents, with older 
adults being significantly more likely to identify as fundamentalists (40%) com-
pared to younger adults (6.7%) [53]. What this means is that older adults: have a 
high value for privacy, believe they own and have control of their information, 
support laws and regulations to secure privacy rights, and may be willing to share 
personal data with a trusted entity [53]. While technologies can add value to aging 
in place and may be acceptable due to the potential benefits, privacy, and the risk 
of privacy violations, is an important factor to consider [54]. Clearly, applying the 
principle of beneficence will require input from diverse stakeholders to better 
understand the potential risks of harm and how best to mitigate those in digital 
health research targeting older adults.

Justice. The principle of “Justice” is to encourage the fair selection of research 
participants and equitable distribution of risks and possibility of benefit [32]. 
Those who are included in the research should represent people who may benefit 
from the knowledge gained. In conventional regulated research, it is possible to 
review the research protocol and evaluate the study inclusion and exclusion crite-
ria to determine alignment with the principle of justice. However, in unregulated 
digital health, the idea of justice is difficult to evaluate in that those who have 
access to a product or app are those who become the data source upon which 
algorithms are derived [55]. Issues of bias in training data used to inform algo-
rithm development are well documented [56, 57]. That being said, managing the 
bias is dependent on organizational standards for accountability and transparency 
that drive fair and ethical decision processes—these standards are only now being 
developed (see Ethically Aligned Design, IEEE) [58]. Recently the National 
Science Foundation in the US allocated funding to examine Fair, Ethical, 
Accountable and Transparent AI [59], and there are a number of initiatives glob-
ally working to advance ethical AI [60]. There are studies underway to assess the 
acceptability of in-home monitoring systems that can communicate cognitive 
changes and other health problems to caregivers and clinicians [25, 61, 62]. The 
promise of tech-enabled health research, particularly, digital geriatric mental 
health research, is the potential benefit of creating greater access to services 
needed by a growing older adult demographic [63].

Respect for Law and Public Interest. The Menlo Report, published by the 
Department of Homeland Security in 2012, applied the Belmont Report principles 
(above) to ICT and cybersecurity research and added this fourth principle of 
“Respect for Law and Public Interest.” The goal of this report was to encourage 
those involved in ICT research to engage in legal due diligence and be transparent 
and accountable in methods and results. This principle, if and when applied, may 
bridge the gap in our current regulatory environment where wellness products are 
unregulated and not bound by existing regulations for human research protections. 
That being said, there is no requirement for any unregulated research to adhere to 
either the Belmont or Menlo Reports. This is concerning, especially when consider-
ing digital geriatric mental health research and the vulnerability of this 
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demographic. The future of this research is of critical public health relevance, and 
plans to advance this work need to be supported [63].

Drawing on ethical principles along with factors relevant to digital research, 
Table 11.1 presents questions that researchers, ethics boards, research participants, 
and technologists may consider across the research cycle of development, imple-
mentation, and reporting. This list is not intended to be comprehensive, but more 
practical ideas for how to think about ethics when involving older adults in digital 
mental health research.

With this background on our current regulatory environment and ethical prin-
ciples developed to guide responsible research practices, we present a use case to 
contextualize how digital health research, including AI-powered tools, are 
deployed. Our use case describes the development of a smart home platform 
intended to be interactive with the user—it simulates a type of assisted-living 
facility in the home environment that may enable aging in place for older adults 
with dementia.

11.4  Smart Home Use Case

Amiribesheli and Bouchachia in 2019 introduced a smart home platform specifi-
cally tailored for three end users: persons with mild dementia symptoms, their care-
givers, and geriatric psychiatrists. These researchers first identified problem 
scenarios specific to this population including repetitive speech, dehydration, lone-
liness, learning to use new devices, nighttime wandering, forgetfulness, and chal-
lenges with vision. They developed smart home technology that can intervene on 
five different levels to assist with these problems: (1) inviting awareness, (2) sug-
gesting, (3) prompting, (4) urging, and (5) performing. For example, in the case of 
monitoring dehydration, the system would be preprogrammed by a caregiver regard-
ing the number of times an individual should drink per day; environmental sensors 
would detect movements; software would recognize the activity of drinking; the 
system would log the number of times this activity occurred throughout the day; if 
the individual was not drinking enough, the system would prompt the individual to 
drink more through inviting awareness and suggesting; if the individual ignored 
these prompts, the system would send an alarm to the caregiver; and finally, the 
system would maintain logs over time that could be viewed by the individual’s phy-
sician to assess trends.

11.5  Discussion and Case Analysis: Ethical Dimensions 
of Smart Home Technologies

With this use case as an example of technology and AI at the intersection of geriatric 
mental health, we evaluate responsible practices across the key domains of consent, 
access and usability, risks and benefits, privacy, and data management.
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Table 11.1 Prompts to guide application of ethical principles to geriatric digital mental health 
research

Key factors
Access and 
usability Risks and benefits Privacy

Data 
management

Ethical principles
Respect for 
persons

Consent provides:
Relevant 
information within 
Terms of 
Service/Privacy 
policy in plain 
language
Access to 
definitions
Access to visual 
and audio versions 
of information
Possibility of 
bystander 
involvement

Consent conveys:
Risks and risk 
management 
strategies
Evidence 
unknown risks 
possible benefits 
to the person, 
people like them, 
and to society

Consent 
conveys:
Nature of 
personal 
information 
collected
Data sharing 
plan
Privacy policy 
risks

Consent conveys:
Data collection 
process
Data storage and 
security who will 
have data access 
protocols for data 
sharing

Beneficence Includes a plan for 
return of group 
and individual 
study information
Study design 
includes features 
to increase access 
and usability for 
older adults
Short and 
long-term use has 
been or will be 
tested with older 
adults
Rights of all 
stakeholders are 
considered

Study design is 
responsive to 
privacy 
preferences
Evidence to 
support tech 
reliability/validity
Evidence is 
peer-reviewed
Risks are known 
and mitigated
Risks are 
unknown
Potential benefits 
outweigh possible 
risks of harm

Privacy 
expectations are 
respected
Participant data 
are not shared or 
sold to a third 
party
Participant 
contact 
information is 
not exploited

Data collection 
by party external 
to the research 
team
Potential of data 
collected on or 
about a bystander
Data are 
accessible to the 
participant
Data are 
transferrable to 
the EHR
Data ownership 
is clear

Justice Device or App 
tested with older 
adults
Requires internet
Requires 
smartphone
AI trained on data 
inclusive of older 
adults

Legal harms are 
known
Potential risk of 
discrimination is 
transparent
Risks of harm no 
greater for 65+ 
demographic

Bias is managed 
to reduce:
Economic harm
Social harm
Discrimination
Profiling

System 
vulnerabilities 
are publicly 
disclosed
Data are not used 
to target groups 
or people

(continued)
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11.5.1  Informed Consent and Agency

Informed consent becomes especially important when such a large volume of per-
sonal data is collected in digital research and needs to account for both the content 
of the information to deliver and the process for delivery and cognitive capacity. 
When it comes to enrolling in a smart home study, it may be that our norms and 
practices for obtaining informed consent need to change—especially in the era of 
big data [31]. To be effective and to mitigate low technology literacy, informed 
consent needs to be adapted to the unique needs of older adults. A qualitative study 
of older adults found that adults are concerned about the potential intrusiveness of 
smart home technologies, but may not be aware of the extent of security risks, high-
lighting the need of informed consent that is adapted to technological literacy [65]. 
This suggests that presenting information so that the text is visually accessible and 
incorporates options for accessing unfamiliar terms (i.e., cloud storage) is needed. 
Moreover, how data is collected, transferred, stored, and shared must be clearly 
stated in the consent delivery and in a manner that conveys the granularity, volume, 
and personal nature of the data collected. How to do this well is a topic for further 
research.

11.5.1.1  Content and Delivery
An example of how informed consent can be improved was the subject of an exer-
cise conducted with residents of a retirement community in southern California 
who were enrolled in a longitudinal study designed to assess the extent to which 
AI could detect cognitive and physical decline. The study received approval from 
the local ethics review board and used a traditional method for obtaining informed 
consent—which being several pages of paper with a 12-point font and little white 
space. Several residents were asked to take that consent form and imagine what it 
would look like if it was designed for them. Comments included less information, 
adjustable text size, clearly defined sections, progress indicator, video explana-
tions, definitions, and electronic receipts. This human-centered design process 

Table 11.1 (continued)

Key factors
Access and 
usability Risks and benefits Privacy

Data 
management

Respect for 
Law and 
Public 
Interest

AI is accountable
Algorithms are 
documented and 
transparent

Data and privacy 
protections are 
compliant

Increase trust
Protect privacy

Data encryption 
meets expected 
standards
Storage is 
HIPAA 
compliant
Data are 
deidentified

Source: This work is published with permission and reflects an adaptation of the Digital Health 
Checklist developed for Researchers (DHC-R). It was developed by Camille Nebeker, EdD, MS, 
licensed under a Creative Commons Attribution-Non-Commercial 4.0 International License 
2018 [64]
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resulted in a prototype (see Fig.  11.1) that is now being tested through design 
workshops [66].

11.5.1.2  Cognitive Capacity
Another consideration when obtaining consent to involve older adults is the poten-
tial for cognitive decline, either at the time of consent due to cognitive impairment 

Fig. 11.1 Informed Consent Prototype. Informed by older adults, the panels show how informa-
tion can be presented to increase accessibility to content that influences decision-making
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or over the course of a longitudinal study. Ienca et al. [31] suggest that the inclusion 
of advanced directives may be important at the time of consent. Perhaps there could 
even be a plan to assess decisional capacity regularly and consult with doctors to 
ensure that the individual is still capable of consenting. Tools developed to assist 
with assessing decisional capacity exist [67, 68] and could be adapted to detect bar-
riers introduced by low technology and data literacy. For example, when an indi-
vidual is no longer able to give ongoing consent, or when the initial decision to 
enroll in a smart home study is made by a caregiver or physician [69], the ethical 
principle of Respect for Persons entitles those with diminished capacity to added 
protections [32].

11.5.1.3  Bystanders
With smart home sensor technologies, the risk for bystanders to be captured and 
subsequent rights and agency comes into play [70]. A guest in the home of an older 
adult with an AI listening device may not explicitly consent to having their voice 
recorded and analyzed. If an older adult points out this device to see if the guest 
would consent to having their voice recorded, they then may need to self-disclose 
that they have smart home technology to monitor their physical and mental health. 
This could be an added burden, but also potentially stigmatizing to the individual 
who may not wish to disclose their personal health information. Perhaps one avenue 
around this would be to have the AI device turn off automatically when detecting the 
voice of an unfamiliar individual.

11.5.2  Usability and Accessibility

11.5.2.1  Usability
In the case of smart home technology, an individual may view the technology aides 
as unnecessary and, perhaps, intrusive. Assessing need and perceived usability is an 
important first step when designing technologies for older adults [17, 71]. 
Customizability may be important to help increase accessibility as an individual 
could tailor their smart home tools and functionality based on their desires and 
comfort. The research protocol and subsequent deployment of a smart home sur-
veillance and intervention system must allow the user to make decisions about what 
actions are monitored and what actions remain private. The user could also have a 
dialogue with their healthcare provider to determine what interventions would be 
most helpful considering their comfort level.

11.5.2.2  Accessibility
Smart home technologies are costly to install and maintain. This presents a problem 
for the researcher, who will need to acquire large amounts of funding to acquire 
enough data to prove efficacy. Perhaps more importantly is that the users who may 
ultimately benefit from these technologies may not be able to afford them, further 
widening a healthcare gap across different socioeconomic statuses. Additionally, 
the smart home case begs the question of whether these technologies would be 
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appropriate for the non-technologically savvy individuals who may be overwhelmed 
by this technology in their homes.

11.5.3  Risks and Benefits

The first step is to identify potential risks of harm and determine if those harms are 
manageable and, if so, whether the benefits of knowledge to be gained outweigh 
these risks.

Risks, including physical, psychological, legal, and social risks, have their con-
ceptual roots in traditional behavioral and biomedical research, yet remain relevant 
when using new technologies whether it be in research or in clinical care [47]. 
Specific to clinical applications, a user may be exposed to a physical risk if the 
equipment malfunctions or fails to perform as intended (e.g., fails to report critical 
data), resulting in harm to the user. A psychological risk might be the perceive threat 
of the technology invading their personal space. Another psychological (and physi-
cal) risk may be management of expectations that someone is “watching” in real 
time and will intervene if there is a need for assistance, which could be something 
agreed upon in advance or not [72]. Whether and the extent to which a clinical care 
team may intervene (or not) should be made clear during the informed consent pro-
cess so that a user understands what to expect. With respect to the law, there is a lack 
of current legal guidance regarding smart home use, and thus, no solutions in place 
to address conflicts between smart home service providers and users [73]. Socially, 
users may feel as if the presence of the technology in their home is stigmatizing or 
fear it may reduce opportunities for face-to-face contact; however, more often than 
not, the benefits of increased social inclusion are thought to outweigh these 
risks [73].

With respect to possible benefits, smart home technologies can facilitate access 
to quality healthcare, enhance comfort, monitor health conditions, provide support 
to users, and foster social inclusion [73]. It is important to evaluate the probability 
and magnitude of potential harms against the potential benefits prior to making an 
informed decision. In a research context, the evaluation of risks and benefits associ-
ated with studies involving health technologies falls to the ethics review board (i.e., 
IRB in the US, REC in EU) and the research team. This risk to benefit evaluation 
includes consideration of the study design and the potential of the research to con-
tribute new knowledge to the scientific enterprise. Within the healthcare application, 
the decision to adopt new technologies must put benefits of use ahead risks by 
selecting technologies, including smart home technology, that are properly vetted 
through rigorous research. Lastly, the informed consent process is critical to 
decision- making and information conveyed to the users, whether they be patients or 
research participants, must include a description of the possible risks of health tech-
nologies, how those risks are managed, and ultimately be acceptable by those 
choosing to accept. Moreover, it is important that not only consumers consider the 
direct and indirect effects of health technologies but that developers, clinicians, and 
researchers be aware of known and unknown downstream effects.
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11.5.4  Privacy

The inclusion of new technologies expands the scope to include a broader concep-
tualization of risk specific to privacy [33]. Notably, new digital health technologies 
invite a risk of data security and privacy breaches [74, 75]. One of the primary cat-
egories of risk associated with ICTs are those of confidentiality, and the possibility 
that one’s personal data may be stolen and misused, [47] which may become espe-
cially important when dealing with a technology that is in someone’s home. There 
is also risk of third parties intercepting and subsequently modifying or falsifying 
personal data (e.g., cyberattacks) [76]. It is important that these risks are explicitly 
discussed with older adults when considering the use of new smart home technolo-
gies, along with risk mitigation solutions and related limitations.

One important consideration associated with pervasive sensor technologies in 
smart homes is the potential to violate privacy preferences for those who live in the 
home. It is necessary to understand the privacy attitudes of older adults in order to 
prevent privacy-related harm. Privacy may be a barrier to adopting technology for 
older adults, but that the practical utility of the technology outweighs this [69]. A 
2008 participatory evaluation of smart home interventions found that older adults 
were not concerned about privacy in regard to smart homes [77]. However, the tech-
nology studied in this chapter does not include newer interventions such as AI, 
which should be examined. One study also notes that older adults found monitoring 
acceptable if they were able to decide who could view their data and the circum-
stances under which their data could be accessed [65]. However, it does not provide 
a clear guideline for how to establish this customized data sharing in practice. To 
best meet the needs of older adults, privacy settings should be transparent, adapt-
able, and customizable.

11.5.5  Data Management

Specific to data management and confidentiality, knowing how data are collected, 
transmitted, stored, and shared are factors that can influence the risk to benefit eval-
uation in deciding whether a smart home is suitable for a potential research partici-
pant. A careful assessment of who has access to these data (caregivers, physicians, 
social workers, family/friends, associations) as well as how data are transmitted and 
stored is important to convey during the consent process. Moreover, in the era of 
rapidly changing ICTs, data management must be dynamic and monitored as risks 
may arise due to instability within the platform supporting or other intermediaries 
supporting the research [47]. Dynamic data management can be achieved through 
continuous updating and monitoring of database management systems to ensure it 
is up to date, usable, and that the participant continues to be safe while using the 
technology. This will require development of new software and methods capable of 
managing and processing big data obtained from users (e.g., Health-cyber-physical 
systems) [78].
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11.6  Conclusion

There is much promise in the use of AI and technological innovations to promote 
healthy aging [25, 62, 77]. However, the field must have a better gauge on the asso-
ciated perils, including understanding what are known, as well as unknown risks of 
potential harms to move forward. All stakeholders must be mindful of barriers to 
obtaining meaningful informed consent for the direct, as well as indirect partici-
pants of research that intersects with information and communication technologies. 
Moreover, when considering whether potential research benefits outweigh the prob-
ability and magnitude of potential harms, evaluating the complex systems that are 
undergirding data collection, transmission, storage, and sharing of personal needs to 
be informed by experts through a dynamic “living” review process. Moving for-
ward, considerations of diverse stakeholders, laws, and public interests are essential 
to informing ethical principles that will guide responsible digital health research 
across all demographics [31].
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12.1  Introduction

Consider two scenarios. Helen is an 80-year-old woman who was diagnosed with 
Alzheimer’s a few years ago. She used to use physical labels and other cues at home 
to help support her memory. But she now wears augmented reality glasses that label 
objects in her vision range, detect hazards when she is manipulating objects, indi-
cate where things are, keep her agenda, recognize the faces of family and friends, 
and help her while navigating beyond her home and in many other everyday sce-
narios. Helen’s grandson, Lewis, is a 10-year-old boy with ADHD (attention deficit 
hyperactivity disorder). He uses a special device that monitors his activity (move-
ments, speech, gaze, etc.), issues recommendations through a gamified scoring sys-
tem, sends indicators to teachers and family, and performs other well-thought 
smooth interventions. The device has boosted Lewis’s self-confidence and focus, 
and his academic results are improving. Lewis is also allowed to use his device for 
exams, becoming the envy of his classmates.

While scenarios such as those above are not yet possible with current clinical 
technologies, with current trends moving toward digital health applications, they 
may become commonplace in the future. The distinctive features of both these cases 
are: (1) the person is tightly coupled with a tool (a device, such as a smartphone, or 
a wearable, such as an augmented reality headset) and (2) the tool integrates 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74188-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-74188-4_12#DOI
mailto:karina.vold@utoronto.ca
mailto:jorallo@upv.es


178

artificial intelligence (AI)  capabilities (image recognition, face detection, naviga-
tion, event recognition, natural language processing, speech recognition, prediction, 
etc.). Together these features put tension on an “internalist” view of the mind, 
according to which any process outside the brain is considered as subsidiary to 
human cognition. In contrast, these two characteristics are in perfect alignment with 
the extended mind thesis (EMT), the view that the human mind and cognition are 
sometimes constituted by more than just the brain [1].

In Hernández-Orallo and Vold, we introduced the notion of “AI extenders,” as 
any external tool that uses AI capabilities and is sufficiently tightly coupled with a 
person’s cognitive system that it should be considered a cognitive extender more 
broadly [2]. While in contemporary philosophy, there has been quite a lot of discus-
sion of the theory and potential of EMT; these discussions focus on relatively sim-
ple technologies. There has been almost no consideration of what more sophisticated 
emerging AI and data-enabled technologies can do qua cognitive extenders. We 
argue that with the use of artificial intelligence, there is a strong case that some of 
our cognition is taking place outside our brains and having deeper effects for replac-
ing, enhancing, or regulating parts of our cognitive activity. In the examples above, 
we have two cases of AI extenders being used to help people with very different 
mental conditions. How are “AI extenders” going to serve and affect mental health, 
as well as our philosophical and ethical interpretation of treatments and interven-
tions? Answering this question is the goal of this chapter.

The range of mental conditions is structured in well-known classifications, such 
as the ICD-10 Classification of Mental and Behavioral Disorders published by the 
World Health Organization (WHO) [3]. We will analyze some of these conditions 
under the perspective of the EMT and will investigate how current and future AI 
extenders, according to the capabilities they provide, may lead us to new therapeutic 
possibilities, new ethical challenges and a philosophical re-understanding of some 
aspects of mental health.

The rest of the chapter is organized as follows. Section 12.2 reviews the EMT 
and its evolution toward more flexible interpretations. Section 12.3 gives a defini-
tion of AI extenders, as a particular case of cognitive extenders, making it distinctive 
from other uses of technology for mental health. Section 12.4 selects a few mental 
conditions and interprets them under the EMT. Section 12.5 is more explicit about 
the capabilities that AI tools can extend, how these tools can be applied to a diver-
sity of mental conditions, and how this can change in the future, especially if the 
EMT is accepted by clinicians and patients. Section 12.6 explores some of the posi-
tive and negative impacts of AI extenders, when used either with or without a thera-
peutic motivation. Finally, Sect. 12.7 gives a series of recommendations to AI 
designers and clinicians, and open questions for future research.

12.2  What Is the Extended Mind Thesis?

For a long time now, most scientific investigation into the mind, e.g., in neurosci-
ence and cognitive science, has considered the brain to be the sole physical locus of 
the mind. According to these brain sciences, the mind is an information processing 
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system that sits in between sensory inputs and motor outputs, and which functions 
by performing computations on inner representations of the world [4]. This “inter-
nalist” view is “neuro-centric” in the sense that all of the relevant inner representa-
tions and computations are thought to be instantiated in neural networks in the 
brain, while everything beyond the brain is considered an input source or an arena 
for outputs [5]. A result of this demarcation of the mind is that mental disorders 
have also tended to be demarcated based on this assumed boundary of the mind, that 
is, mental disorders are thought to be brain disorders.

Over the past two decades, however, a new picture of the mind has gained popu-
larity, which, if true, would challenge this orthodox view. The EMT maintains that 
human thought and reason are not entirely “in the head.” Instead, the effective cir-
cuits of human thought and reason sometimes crucially involve the technologies we 
use and even our social networks and institutional structures, such that the physical 
locus of the mind is “extended” beyond the brain [1]. The technologies that are often 
cited as examples of “extenders” range from humble writing utensils, such as pens 
and pencils, and the external symbols they create [1], to more sophisticated tech-
nologies, such as smartphones, as well as many things in between, including 
Scrabble tiles and Venn diagrams. We can state the EMT as follows:

Extended Mind Thesis (EMT) = Representational vehicles (or information-bearing struc-
tures) located beyond the brain can be partly constitutive of an agent’s mental states and 
processes.

The EMT accepts the claim that the mind is an information processing system—
a core commitment of cognitive science—but maintains that the relevant information- 
bearing structures, that is, the vehicles of mental representations can sometimes be 
instantiated by non-biological elements, beyond the brain. To put it simply, if the 
EMT is correct, then there is more to the mind than the brain. And, accordingly, at 
least in some cases, in order to explain and treat mental disorders, we may need to 
look beyond the brain. Indeed, a number of defenders of the EMT have argued that 
certain disorders, such as Alzheimer’s, borderline personality disorder, and autism, 
can be better understood, assessed, and treated by taking a wider lens on physical 
locus of the mind—we will discuss these examples in Sect. 12.4. But first we will 
discuss some of the arguments that have been used to support the EMT.

In their seminal paper titled, “The Extended Mind,” Clark and Chalmers moti-
vate the EMT by considerations of parity between external representational vehicles 
and internal cognitive parts [1]. They describe a scenario intended to motivate their 
view which involves two people—Otto and Inga. Inga has a well-functioning bio-
logical memory that allows her to recall the location of a museum she wishes to visit 
and to successfully navigate her way there. Despite having Alzheimer’s, Otto also 
performs this task quite well, but he does so by relying on a notebook, which he uses 
as an external memory tool—recording important information and consulting his 
notes whenever needed. Clark and Chalmers argue that “in all the relevant respects,” 
Otto’s notebook plays the same functional role in guiding his behavior as Inga’s 
biological memory does for her, and so the information stored in Otto’s notebook 
should count as a part of the constitutive machinery of Otto’s mind just as the infor-
mation stored in Inga’s brain does for her. Hence, their argument is based on the 
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idea that external resources can make equivalent functional contributions to one’s 
cognitive processes as internal resources can. They write:

“If, as we confront some task, a part of the world functions as a process which, were it done 
in the head, we would have no hesitation in recognizing as part of the cognitive process, 
then that part of the world is (so we claim) part of the cognitive process.” [1]

(p. 8; emphasis in the original)

This idea has come to be known as the “parity principle.” Arguments based on 
considerations of functional parity, like Clark and Chalmers, represent the first wave 
of arguments for the EMT. They have come under criticism on several fronts, which 
eventually led to the second-wave of arguments for the EMT. While we will not 
rehearse all of these criticisms here, there are a few worth mentioning because they 
are particularly relevant to the discussion at hand.

One long-standing debate around the appeal to functional parity has been over 
how to characterize the relevant functional role that Clark and Chalmers appeal to 
(this amounts to a commitment to the view that philosophers call “role functional-
ism”). This functional role determines in what ways external components must be 
similar to internal ones, in order to count as a genuine part of the mind. Clark and 
Chalmers, for example, mention three features they think are important for captur-
ing the ways in which the information in Otto’s notebook is on par with the informa-
tion in Inga’s brain: (1) both are a constant in the agent’s life, (2) both are readily 
accessible when the agent needs them, and (3) both are relied upon, such that the 
agent trusts and endorses the information without hesitation. Among other objec-
tions, these features have come under criticism as being too coarse, for at least two 
reasons. Some argue that certain important features are missing and that if the par-
ticular nuances of human biological cognitive functions were included, then it 
would be unlikely that Otto’s notebook, or indeed any external resources could 
really count as extensions [6]. While others have argued that these three conditions 
alone are too coarse as they would allow for all sorts of external objects to count as 
extenders, leading to absurd scenarios where everything that one reads on the 
Internet, for example, or the entire library that one visits, is a part of their mind [7].

The parity argument has further been criticized for relying on an overly norma-
tive picture of the mind: by letting some notion of a “healthy” biological mind set, 
the baseline for what could count as a possible extension of the mind. For example, 
imagine a “healthy” biological mind, like Inga’s, started to rely on external objects 
to enhance her memory. Extended mind theorists are generally quite supportive of 
the idea that cognitive extenders enhance healthy minds—they allow us to go 
beyond what the naked brain can do. But in order for the parity principle to support 
these cases, one would have to imagine a case that involved someone (e.g., a Martian 
with superhuman cognitive capacities) who (purely internally) had mental capaci-
ties that go beyond those of a “normal” human. It is a roundabout way of arguing for 
what should be a straightforward commitment of the EMT.

Ultimately these limitations, along with other philosophical challenges facing 
the parity principle, were in part what motivated “second-wave” extended mind 
theorists to instead appeal to a criterion of functional contributions rather than func-
tional parity. Second-wave arguments focus on the different but complementary 
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contributions that external and internal resources make to bring about cognitive 
functions [8, 9]. This style of argument can straightforwardly defend the possibility 
of enhancing “normal” or “healthy” minds, and hence is able to overcome the first- 
wave focus on compensation for biological deficits. For this reason, it is likely that 
AI extenders, as we will define them in the next section, will need to appeal to 
complementarity arguments. Part of what makes AI applications so useful for 
humans is how they can go beyond our own cognitive capacities: processing more 
information, at faster speeds, and in new ways.

Complementarity arguments tend to focus on how external resources can be 
appropriately integrated with internal resources such that they can jointly govern 
cognitive activities and behavior, even though their functional contributions are not 
strictly analogous (as parity had demanded). One of the central issues for these 
views is articulating exactly how inner and outer resources need to be integrated. 
Some version and selection of the features that Clark and Chalmers defend—con-
stancy, accessibility, and reliability—are often endorsed, though rarely the exact set 
[9–11]. Heersmink, for example, has recently defended a multidimensional frame-
work, including the dimensions of information flow, reliability, durability, trust, 
procedural transparency, informational transparency, individualization, and trans-
formation [11]. We will not engage this debate here, but for the purposes of this 
chapter, we broadly endorse Heersmink’s definition of “coupling” as well as his 
view that each of these dimensions is a matter of degree. Perhaps it is most impor-
tant to note that all of these dimensions are relational. That is, they depend on how 
a particular agent stands in relation to the tool—Does the agent rely on the tool in 
order to complete a cognitive task? Does the agent trust the information provided by 
the tool (rarely questioning its veracity)? How individualized is the tool for that 
particular agent (i.e., how difficult would it be for another agent to use it)? This 
would have to be assessed on a case-by-case basis.

The EMT also includes cases beyond non-biological artifacts; sometimes people 
rely on the minds of others as cognitive extenders. Such cases are known as “socially 
extension.” Clark and Chalmers, for example, discuss the possibility of Otto relying 
on Inga’s mind, rather than on his notebook [1]. So long as Inga is constantly in his 
life, the information in her mind (about where the museum is located) is accessible 
to him when he needs it, and he relies on the information (trusting its veracity), 
thereby we could say that Otto’s mind extends into Inga’s. Supporting this idea is a 
growing body of research on the social distribution of cognition, which tends to 
focus on the psychology of memory and group decision-making. The theory of 
transactive memory developed by Daniel Wegner, for example, maintains that mem-
ory processes (including encoding, storage, and retrieval) are sometimes shared 
across stable dyads (with a particular focus on highly interdependent couples) and 
groups [12, 13]. Wegner explains that transactive memory systems involve a “set of 
individual memory systems in combination with the communication that takes 
place between individuals” ([12], p. 186). Memory processes are, thus, not reduc-
ible to the internal processes of any particular individual in the system, as the com-
munication between individuals is an essential part of the process. Extended mind 
theorists have appealed to this paradigm as one example of how a single agent’s 
cognitive process can be distributed across multiple agents [14].

12 AI Extenders and the Ethics of Mental Health



182

One reason that AI extenders present a paradigm shift, as we will argue in the 
next section, is that in some important respects they are more like cases of social 
extension than extension into static artifacts. For one, AI extenders have some 
sophisticated cognitive capacities that have previously only existed in humans, e.g., 
speech recognition, facial recognition, pattern recognition, and so forth. This means 
that while traditionally there may have been some cognitive tasks that could have 
only been completed through socially distributed systems, in the future there may 
be opportunities for individuals to rely on AI extenders rather than other people. 
This could have plenty of upside for people who are deficient in certain capacities, 
like executive control functions, and who have traditionally had to rely on members 
of their social network for help—we will discuss the condition of borderline person-
ality disorder as an example of this in the next section.

There are several advantages to relying on an AI extender over another person. 
For one, in the case of highly interdependent couples it is often found that each 
individual relies on the other in various ways (e.g. Inga remembers where the 
museum is located, while Otto remembers the best place to park), so there is typi-
cally some degree of reciprocity, or symmetry [13]. But asymmetric socially 
extended beliefs might also be possible. For example, Clark and Chalmers discuss 
the possibility that someone relies on his regular waitress at the restaurant he fre-
quents to determine what food he should order, thereby offloading his decision- 
making [1]. These asymmetric cases seem to imply, however, that one person is 
always being paid or “used” for cognitive labor. AI extenders present the opportu-
nity to asymmetrically rely on a cognitively sophisticated device. Furthermore, 
other agents may be less stable than an AI extender device, which one can own and 
carry with them everywhere they go.

12.3  What Is an “AI Extender”? How This Differs 
from Standard Kinds of Cognitive Extension

As mentioned, the tools that are often cited as examples of cognitive extenders 
include both simple technologies, such as Otto and his notebook [1], as well as more 
advanced tools, such as smartphones [15]. Both of these technologies had transfor-
mative effects on human cognition. The use of writing tools to create external sym-
bols and write words down represented a major shift in human intellectual history: 
a move from the oral tradition to literacy. The smartphone has likewise been trans-
formative—a democratized and powerful personal computer that travels with users 
wherever they go. While extended mind theorists have discussed smartphones [15], 
it rarely gets mentioned how the computational power of smartphones has grown 
dramatically over the last few years, not only because of their processors, but also 
because of the connected use of cloud services, with many apps running or refining 
pre-trained deep neural networks and other technologies. We argue that this 
increased use of machine learning, and other functionalities brought by artificial 
intelligence, is qualitatively different from the kinds of cognitive extension that pre-
ceded it in several ways: these systems can perceive, navigate, make complex deci-
sions, recognize and produce language, plan, identify emotions, etc., all in complex 
and changing situations.
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To more precisely characterize what an AI extender is, we start from a definition 
of cognitive extender as given by Hernández-Orallo and Vold, which was adapted 
from Hutchins [2, 16]:

A cognitive extender is an external physical or virtual element that is coupled to enable, aid, 
enhance, or improve cognition, such that all – or more than – its positive effect is lost when 
the element is not present.

Again, crucially, the external physical or virtual element must be appropriately 
“coupled” to be considered a cognitive extender. That is, the right conditions must 
be met in order for an artifact to count as a literal part of an agent’s mind (i.e., on a 
par with the brain); and only when these conditions are met is the mind extended.

In contrast, AI extenders are an increasingly important and distinctive subkind of 
cognitive extender that are distinguished by their use of a particular kind of technol-
ogy—AI—and their distinct implications (to be discussed in later sections). Here is 
a more precise definition:

An AI extender is a cognitive extender that is “fueled” by AI. This means that some AI 
technology is directly responsible for the cognitive capability that the extender is able to 
deploy, in conjunction with its user.

With the above two definitions, what counts as an AI extender is precise, as far 
as what count as AI is precise. Today, we associate AI with a range of possibilities 
such as image and speech recognition, machine translation and planning, many of 
them realized through machine learning. However, AI will cover more and more 
cognitive capabilities, as we further characterize in Sect. 12.5.

Those working in psychiatry and clinical neuroscience may be familiar with 
related terminologies such as “cognitive assistants” or “cognitive prosthetics.” It is 
therefore important to be clear about what distinguishes AI extenders from these 
well-entrenched applications and what justifies the introduction of this new cate-
gory. The crucial distinction here is that, as a subspecies of cognitive extenders, AI 
extenders challenge the internalist view of the mind: AI extenders are a part of an 
agent’s wide existing cognitive system, they perform cognitive functions for a 
human agent—just as the brain does. It is this rather strong metaphysical claim that 
distinguishes them from mere “cognitive assistants” or “cognitive prosthetics.” This 
metaphysical claim is important for many ethical and policy implications that we 
will discuss in the next sections, and how these systems have to be regulated and 
built. For instance, following the examples we gave in the introduction, the defini-
tion above includes Helen’s augmented reality glasses, which means that they have 
to be designed, in the first place, by considering how Helen’s cognitive processing 
is going to change with their use. This may be an important, but secondary design 
principle, when considering some other devices that the above definition excludes, 
such as autonomous vehicles or cognitive robots that interact with humans occa-
sionally (but are not tightly coupled), or an exoskeleton or a “smart” shoe that use 
ML algorithms to stabilize the body, but are not really providing cognitive functions 
to the user.

To be more precise, we might say that AI extenders (and cognitive extenders 
more broadly) are themselves a subset of cognitive assistants, while not all cognitive 

12 AI Extenders and the Ethics of Mental Health



184

assistants are extenders. Certainly, AI extenders provide cognitive assistance or 
“cognitive services” [17]. For example, Helen’s augmented reality glasses and 
Lewis’s monitor system perform sophisticated cognitive processes: from perception 
to planning, and as such they both serve as cognitive assistants. But AI extenders are 
distinguished from the broader category of cognitive assistants by the degree of 
coupling (following, e.g., the dimensions from Heersmink, as mentioned above) 
[11]. It is this tight coupling that, so the argument for the EMT maintains, warrants 
us calling them a part of the agent’s mind and thereby challenges the commitment 
to internalism. A cognitive extender is not merely processing inputs and producing 
outputs (such as an online machine translator); it is the locus of states that are cre-
ated and accessed at any time by the human agent.

AI extenders should similarly be distinguished from cognitive prosthetics  (some-
times also referred to as “orthosis”), a term that comprises many systems that can be 
attached to (and detached from) humans and can help or completely replace some 
lost or nonexistent cognitive human function. Originally, a cognitive prosthesis was 
defined as “a compensatory strategy that changes the environment and focuses on 
functional activities […] designed specifically for rehabilitation purposes” ([18], 
p. 41). However, many so-called cognitive prosthetics are simple software or hard-
ware devices that are not tightly coupled and that are not “fueled” by AI; in some 
cases, there is no information processing or otherwise intelligent processing hap-
pening on them, like a stick compared to a leg. In other cases, no attachment (or 
coupling) takes place. In learning environments, for example, any device in a class-
room is said to be cognitive prosthetics [19]. In our view, even if the trend today is 
to use the notion of cognitive prosthetics for interventions that involve some com-
puting technology [20], many of these cannot be considered AI extenders due to a 
lack of appropriate coupling. As a result, many cognitive prosthetics do not carry 
with them any interesting metaphysical claim. They do not challenge the internalist 
picture of the mind, and as a result they come with a distinct (though perhaps over-
lapping) set of risks and opportunities from those we will discuss around AI 
extenders.

The categories of AI extenders and cognitive prostheses may be overlapping at 
times (i.e., they are not mutually exclusive), but they are also not identical. Some 
cognitive prostheses really are appropriately coupled to an agent and do make use 
of AI technologies. For instance, one of the early AI extenders was COACH 
(Cognitive Orthosis for Assisting aCtivities in the Home), a device that uses AI to 
observe, supervise, and assist people with dementia, “learn from his or her actions, 
and issue prerecorded cues of varying detail” [21] or Solo, another prototype that 
used planning and other AI techniques to help “cognitively impaired clients and 
their caregivers in managing their daily activities” [22]. These intelligent assistance 
devices for people with dementia are perhaps the best current clinical examples of 
AI extenders. Many of these research prototypes are now superseded by commercial 
products, and in cases targeting the general public, such as Ellie, Woebot, and Tess, 
with some of them known as virtual cognitive behavior therapists [23] a term bor-
rowed from the early days of ELIZA, the famous computer therapist [24]. Because 
the relevant dimensions that characterize the appropriate coupling necessary for 
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cognitive extension are relational in nature, these AI-driven cognitive prosthetics 
may in some cases also count as AI extenders.

Our definition of AI extenders also suggests why second-wave arguments for the 
extended mind thesis are better able to support the possibility of AI extenders. This 
is because the way that machine learning systems process information is likely to be 
relevantly dissimilar from the ways that humans do. Furthermore, as we have seen, 
the performance capacities of AI extenders far exceed what a notebook or a calcula-
tor can do, or even (in some respects) what a human mind can do. Indeed, AI can do 
much more than analogous functions (as a parity-driven argument for the EMT 
would require). As covered by this and other volumes, AI can lead to better diagno-
sis, prognosis, and treatments in mental health [25], and robotic and virtual systems 
are treating people with dementia, autism, and other conditions, educating children 
with developmental disabilities, on top of a range of possibilities for training, con-
sultation, and healthcare management. Meanwhile, the area of affective computing 
is making machines able to detect and react to emotional states, where machine 
learning can create high-level representations from sensors on the body and brain–
computer interfaces, detecting normal and abnormal situations.

Under the scope of AI extenders, we consider all these possibilities, with the 
condition that the system must be appropriately coupled with the person such that 
the effect is lost without the extender. An occasional or detached use of a robotic 
therapist is not an AI extender (not coupled). The use of augmented reality to treat 
a phobia (so that the patient is “cured”) is not either (the effect is permanent) though 
both of these technologies might be considered as cognitive assistants [26].

Finally, this range of examples of AI extenders is indicative of just how broad 
and inclusive the category is intended to be. It can include a rather heterogenous set 
of technological applications. A companion robot could be an AI extender for the 
same reasons that we consider social extenders to be, for example. Some kinds of 
ambient intelligence (beyond smart homes and buildings), such as the persuasive 
mirror, could also count [27]. Probably the most obvious cases will involve soft-
ware tools, such as decision-making support systems, or tools that are designed in 
ways that easily satisfy the relevant dimensions of coupling: applications on one’s 
smartphone, for example, are well-suited to fit these criteria, because of how por-
table our phones are, how much personal information they track, how readily 
accessible their applications are to us, how likely we are to trust and rely on the 
information they provide us, and so forth. Even though AI extenders can be heter-
ogenous in terms of their physical properties and instantiations, what makes them 
a cohesive category (distinct from cognitive assistances, cognitive prosthetics, and 
even other kinds of cognitive extenders), worthy of discussion is the role they play 
in the cognitive lives of humans and the ethical and design considerations that 
emerge from this context. This is true even though we are still in early stages of 
developing AI for use in clinical settings (especially systems that interact directly 
with the user). For this reason, our chapter focuses more on future possibilities 
around how AI could be used to extend cognition, in the context of mental health, 
exploring the risks, and the design and policy implications around how we might 
deal with these future scenarios.
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12.4  How the Extended Mind Can Change Our 
Understanding, Assessment, and Treatment 
of Cognitive Disorders

By now, numerous authors have described how the EMT can improve either how 
we understand, assess, or treat mental and behavioral disorders though few have 
focused specifically on the kinds of intelligent assistive technologies that we 
have termed “AI extenders” [28–33]. In this section, we will review some of 
these works.

When it comes to understanding disorders, the central point that extended mind 
theorists tend to make is that there can be constitutive factors that lie outside the 
brain, and hence to fully understand a disorder, one cannot look to the brain alone. 
Simply put, there are cases of cognitive impairment that do not involve impairments 
of the brain. The issue of assessment is related to this point. Some of the standard-
ized tests for cognitive function assume an internalist picture, focusing only on what 
the brain of a patient is capable of (e.g., by testing them without tools or assistive 
technologies). In doing so, these tests often disregard the real-life circumstances of 
the individual, which may involve the use of tools that make essential contributions 
to their cognitive functioning [31–33]. As a result, test scores can skew the picture 
of how “well” a patient is really doing and what they are really capable of. Hence, 
even if a patient has a cognitive impairment with a neuro-explanation, this might not 
impair their functioning in everyday life.

Finally, the matter of treatment is about how to view the different techniques 
available for rehabilitation. Researchers working on cognitive impairment in vari-
ous domains have drawn distinctions between different kinds of rehabilitative strat-
egies [34, 35], which several extended mind theorists have employed to help draw 
out the difference between the internalist and externalist views on treatment [31, 
33]. “Restorative” strategies aim to directly address an individual’s cognitive 
impairment by restoring their ability to perform tasks in just the same way that a 
non-impaired individual would. “Compensatory” strategies, on the other hand, 
attempt to circumvent impairment by helping the individual perform the same tasks 
but in different ways, namely by using assistive technologies [31]. Cognitive pros-
thetics and cognitive orthosis tools, like COACH and SOLO discussed above, were 
built as compensatory strategies—ways of substituting for biological deficits that 
could not be directly addressed [18, 21]. Because the internalist picture says that all 
cognition is a function of the brain alone, on this view restorative strategies must 
involve repairing one’s internal neuro-capacities, as this is the only “true” way to 
improve a person’s cognition. King explains that an internalist would view compen-
satory strategies as a second-best option; while assistive technologies might help an 
individual compensate for impairment, they do not actually fix the problem [31]. In 
contrast, because the EMT sees cognition as constitutively involving more than just 
the brain, it can view both rehabilitative strategies as genuinely restoring cognitive 
capabilities.

In what follows we will discuss five illustrative examples of cognitive disorders 
that extended mind theorists have argued can be understood in light of the EMT.

K. Vold and J. Hernández-Orallo



187

12.4.1  Alzheimer’s Disease

In their now much-discussed example, Clark and Chalmers describe Otto as suffer-
ing from Alzheimer’s disease, a degenerative cerebral condition characterized by a 
slow deterioration of multiple higher cognitive functions [1, 3]. They describe Otto 
as being able to function normally, despite his deteriorating biological memory, by 
relying on his “extended” memory, namely the information that he records in his 
notebook. The example suggests that by taking this wider view of the mind, we 
might develop new ways of assessing and treating Alzheimer’s, as well as other 
kinds of dementia.

Drayson and Clark discuss a compelling real-life case that brings this point to 
life [33]. An inner-city group of Alzheimer’s sufferers had scored so dismally on 
standard tests for Alzheimer’s, such as the Consortium to Establish a Registry for 
Alzheimer’s Disease (CERAD) protocol that doctors had anticipated the patients 
would need to be relocated to full-care hospitals. Yet, the patients perplexed doctors 
as they continued to be able to cope with the demands of daily life and to success-
fully live alone in a complex urban environment. Upon making home visits, doctors 
found that these patients had each transformed their home environments, creating 
ingenious personalized cognitive tools, props, and aids that supported their mem-
ory: from open storage cabinets, to notes and labels indicating what to do and when, 
as well as who each person was in their family photos.

Because the CERAD protocol only tests biological memory, it could not explain 
how these patients continued to effectively function in the world. What is more, if 
doctors had taken the tests of internal memory as the only standard, these patients 
might have been forcefully relocated to controlled hospital settings much sooner 
than necessary. Drayson and Clark note that the relocation of Alzheimer’s patients 
is often a fateful turning point in which their conditions become more severe [33]. 
From the EMT perspective, this is not surprising; one would predict that removing 
patients from their supportive environments would have a detrimental effect on their 
functioning. The same could be said about the example of Helen, who we discussed 
in our introduction. Helen relied on augmented reality glasses that had been designed 
to support her memory and perception. Her case is an evolution where most of the 
physical cognitive tools, props, and aids in her home are replaced by a single tightly 
coupled device, an AI extender, going much beyond what Drayson and Clark found 
in the real case. Hence, by taking the wider “extended” view of memory and other 
cognitive functions not only are we able to explain how these patients could con-
tinue to function, despite low test scores, we might also rethink how we assess and 
treat sufferers of Alzheimer’s.

12.4.2  Learning Disabilities and Disorders

A learning disability affects the way a person is able to problem-solve, plan, and 
acquire new knowledge and skills [3]. King argues that adopting the neurocentric inter-
nalist view of the mind commits one to problematic views about the cognitive 
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capabilities of learning-disabled individuals, whereas the EMT allows us to more accu-
rately assess and treat them [31]. King describes the fictional case of learning- disabled 
woman named Dana. Without any tools, Dana struggles to compare and evaluate vari-
ous relevant factors for making decisions. She is, however, perfectly capable of making 
good complex decisions when she uses a graphic organizer such as a Venn diagram. 
This visuospatial way of representing information allows her to evaluate relevant fac-
tors and to reach a good conclusion. Indeed, when using this assistive technology, 
Dana’s decision-making skills are just as good as anyone else’s ([31], p. 49). So is Dana 
capable of making decisions or not? How should we assess her capacities?

Notice that Dana’s use of an assistive technology counts as a compensatory reha-
bilitative strategy—much like the Alzheimer’s patients who had relied on external 
resources in their environments. Hence, internalists would have to maintain that Dana 
has not really been “cured” because her capacities have not been restored, and so, even 
with the assistive technology, she cannot really make good complex decisions. Indeed, 
King nicely explains that the internalist is committed to an inverse relation between 
the extent to which an individual relies on external tools and the extent to which she, 
as an agent, is really engaging in some cognitive process. This means that Dana is only 
“doing” as much, cognitively speaking, as her neurons are doing ([31], p. 56). And 
therefore, she only merits “cognitive credit” for what her neurons do, not the cognitive 
work that is done by whatever assistive devices she employs. The internalist is, thus, 
forced to say that Dana has less cognitive capacities and deserves less cognitive credit 
than someone who could perform the same task “intracranially.” This carries practical 
implications, as by adopting the stricter restorative conception of “cure,” we may give 
preference for alternative internalist treatments, even if they are less effective (or have 
undesirable side effects) for the well-being of the patient.

King argues that we should resist internalism in favor of the EMT, which instead 
allows us to say that while Dana may need to rely on graphic organizers, she is quite 
capable of making complex decisions. On this view, teaching Dana how to effec-
tively use assistive technologies (that will be readily available in her everyday life) 
is as good as any restorative strategy. Furthermore, Dana should get the same “cog-
nitive credit” as someone who is able to complete a similar task without the assistive 
technology (i.e., internally) [31]. Heersmink and Knight have similarly argued that 
education and assessment should take into account how agents are able to assemble 
and use tools in their environment as extended cognitive systems, discussing in 
particular students’ use of the Internet during exams [32]. We can draw a similar 
lesson for the 10-year-old Lewis, who (as we described in our introduction) relies 
on an AI extender to help aid some of the learning related symptoms of ADHD. If 
one takes the extended approach, Lewis should get recognition and credit for his 
improved academic results, even though he could not achieve these results without 
his assistive device.

12.4.3  Addiction

The ICD-10 clinical definition of dependence syndrome, henceforth “addiction,” 
includes a cluster of physiological, behavioral, and cognitive phenomena in which 
the use of a substance takes on a much higher priority or value in one’s life than is 
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usual ([3], p. 69). Diagnostic symptoms include a compulsion to take the substance, 
difficulties in controlling substance taking behavior, and neglect of alternative plea-
sures or interests. Levy argues that adopting the EMT is useful in treating addiction 
because of how it can help support self-control interests [28].1

Internalism promotes the idea that the only way to recover from addiction is to 
change one’s mind: addiction is entirely a matter of “will-power” and the addict just 
needs to “say no” to their cravings ([28], pp. 219–220). On this view, addicts tend 
to be held more responsible for not overcoming their addictions. But Levy cites 
research on “ego-depletion”—the idea that self-control draws on a limited pool of 
(internal) mental resources—which suggests that addicts have depleted self-control, 
and thus, they experience more difficulty in resisting their cravings than one who 
craves but is not addicted. If this is true, then it may be “literally impossible” for an 
addict to resist, taking the substance they crave when it is available to them and their 
will-power is depleted ([28], p. 219). The EMT is useful here as it points us to the 
agent’s wider environment to look for new methods of treatment. Levy suggests, for 
example, that environmental modifications, including the use of technology and 
social support systems, can be quite effective at helping overcome addiction (other 
work in “positive computing” also supports this) [36]. Social support is perhaps 
closer to the use of AI extenders insofar as they can detect when a person is feeling 
weak in controlling their impulses and needs coaching or nudging.

As just one example, a system could learn what kind of situations make self- 
control more difficult for a particular individual. For instance, smokers usually asso-
ciate tobacco with some situations (e.g., pubs, coffee) and less with others (e.g., 
going for a walk). So for a particular person, a machine learning system could detect 
that the person is likely to have depleted self-control when meeting with certain 
friends or going to certain places where they used to smoke. Suggesting walking 
routes that avoid smoking zones, or even reminding the agent that these situations 
may be challenging (and perhaps directing them to resources) might help them in 
controlling their impulses.

12.4.4  Borderline Personality Disorder

Bray argues that the EMT can offer a better understanding of certain personality 
disorders, such as borderline personality disorder (BPD) [29]. Personality disorders 
usually involve lasting and inflexible adverse patterns of thinking and feeling about 
oneself and others that impair how an individual functions in many aspects of life 
[3]. Because they can include affective dysregulation, cognitive and perceptual dis-
tortions, and impulsive behavior, they tend to be thought of as a subclass of mental 
and behavioral disorders [3].2 BPD is characterized by emotional instability and 
disorders of mood that affect how a person relates with others. Its symptoms include 
a deficit in one’s ability to perform certain high-level cognitive tasks, such as 
emotional regulation and impulse control, disturbed patterns of thinking or 

1 This is not an exhaustive list, but rather a selection from the ICD-10 Diagnostic guidelines for 
dependence syndrome.
2 They are categorized as mental disorders in the ICD-10.
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self- perception, and “a liability to become involved in intense but unstable relation-
ships” ([3], p. 160).

Bray suggests that because people with BPD have a meta-cognitive deficit, it is 
possible that they are more likely to rely on those around them as a way to help 
supplement their internal, biological deficit [29]. Recall the possibility of social 
cognitive extension—where one agent relies on the information and abilities of 
another agent as an “extension” of her cognitive system. Bray argues that people 
with BPD may form particularly close dyads with others, especially romantic part-
ners, friends, or family members, in an attempt to make use of their executive func-
tions, as this is the only kind of coupling that can fill the deficit in their own 
biological cognitive system.

This could explain why people with BPD tend to form “unusually intense” rela-
tionships, why they suffer from a fear of abandonment, and why they are typically 
“devastated” when these relationships end [29]. As we say above, in order to cogni-
tively extend, one needs a tight coupling with the external element, e.g., a stable, 
reliable, and high-bandwidth connection with the “extender” (among, perhaps, 
other features) [11]. But reliance on others has certain inherent drawbacks, Bray 
explains: “Imagine what it would be like if important parts of your own brain were 
able to detach themselves at will and wander away for indeterminate periods, per-
haps never to return.” [29] For the BPD sufferer, this is how he views the people in 
his life, with whom he has formed close “couplings.” If these people up and leave, 
he would be left without the ability to self-regulate, to control his emotions or 
impulses. This also points to one way in which AI extenders could be used for treat-
ment—AI extenders could replicate some of these metacognitive skills while at the 
same time being more reliable than social extenders. We will pick up on this below 
where we discuss the benefits of AI extenders.

12.4.5  Autistic Disorders

Autistic disorders are “pervasive developmental disorders” characterized by deficits 
in social interactions and social communication, and restricted and repetitive pat-
terns of behaviors, interests, or activities ([3], p. 198). Krueger and Maiese maintain 
that while there is no current consensus on the cause of autism, the most popular 
explanations over the last several decades appeal to a theory of mind deficit [37]. 
The result of this has been to think of the disorder as a disturbance confined to the 
head of the individual—that is, to assume an internalist perspective. This in turn has 
shaped the typical treatment and intervention strategies, which are generally aimed 
at helping individuals develop their mind-modeling capacities. While this may be 
one helpful technique, Krueger and Maiese argue this perspective overlooks the 
fundamentally embodied and relational factors which contribute to autism and in 
doing so also overlooks potential treatment strategies [37].

Krueger and Maiese argue, for example, that people with autism typically suffer 
from “style blindness”—they have “a perceptual inability to extract socially salient 
information from the qualitative kinematics of others’ actions” ([37], p. 24). This 

K. Vold and J. Hernández-Orallo



191

explains why they often cannot pick up on subtle social cues (e.g., non-verbal com-
municative behaviors, such as gestures and facial expressions) and why they strug-
gle to understand figurative language.

But there is evidence that this lack of access to social norms is not “in principle,” 
as people with autism can access and abide by social norms of their own group (i.e., 
other autistics) and when norms are made explicit ([37], p. 23). Hence, instead of 
only employing restorative strategies with the expectation that people with autism 
need to develop their internal mind modeling capacities, we might also use AI 
extenders for compensatory strategies aimed at making social cues (such as catego-
rizing the tone of voice or body language for the user) and the meaning of figurative 
language more “visible”.

Another example is how we think about and treat the characteristic movements 
and behaviors of people with autism, which can consist of “hand-flapping, finger- 
snapping, tapping objects, repetitive vocalizations, or rocking back and forth” ([37], 
p. 27). According to Krueger and Maiese, these are typically viewed as meaningless 
reflexes or nervous tics, but in fact these behaviors (sometimes called “self- 
stimulations” or “self-stims”) may be strategic deployments used to organize incom-
ing sensory information—for example, to occlude signal noise when incoming 
information threatens to be overwhelming or to heighten arousal in order to better 
access salient information (ibid). But standard “internalist” treatment programs 
have traditionally tried to eliminate or suppress self-stims, whereas a wider approach 
could recognize their important role as embodied cognitive coping strategies, and 
even try to foster these strategies. For instance, an AI extender could be designed to 
find and produce appropriate stims (the most effective and least visible for other 
people).

12.5  The Specific Effects of AI Extenders on Mental Health

An AI extender can come in different forms: a device (e.g., a tablet), a wearable 
(e.g., a watch), or an app or service that is available across different platforms (phys-
ical personal assistant and computer). These tools can be generic (e.g., a navigation 
system or an agenda), can be addressed to a range of mental health issues (e.g., a 
monitoring system), or can be devised for a particular condition (e.g., an anti- 
stress app).

If we start with generic AI extenders, they are usually devised to improve or 
compensate for one or more cognitive abilities. In Hernández-Orallo and Vold, we 
identified 14 cognitive abilities in which AI can extend cognition (the full definition 
can be found in that paper) [2]. These capabilities are reproduced in Table 12.1. The 
table also includes examples of AI extenders for each ability, either in general (non- 
clinical applications, second column) or for mental health (clinical application, third 
column). General applications may be motivated by comfort or efficiency; e.g., 
most people do not use GPS navigation devices to compensate for any limitation, 
but as an enhancement. Clinical applications of AI extenders aim at—although not 
exclusively—compensatory uses. The capabilities in Table  12.1 have effects on 

12 AI Extenders and the Ethics of Mental Health



192

Table 12.1 The left-hand column indicates 14 cognitive capabilities that can be extended by AI, 
the middle column provides examples of the kind of AI application that can achieve this (full 
account in Hernández-Orallo and Vold 2019). The right-hand column shows particular clinical 
examples in mental health

Capability General examples Clinical examples
MP: Memory 
processes

Automated reminders or prompts; new 
customized mnemonics to improve 
long-term memory, or tag our experiences 
with related people, concepts and other 
situations to improve episodic memory

Apps telling an 
Alzheimer’s patient 
whether something has 
already been done, said or 
visited before

SI: Sensorimotor 
interaction

Pattern-recognition systems; mixing 
representations through generative 
models; intelligent sensors and actuators

Haptic/robotic clothing 
aides for people with 
Parkinson’s disease

VP: Visual 
processing

Object and scene recognition or color-
recognition tools for visually impaired; 
facial recognition; augmented reality; 
intelligent filters; and lens

Scene sketchers to contrast 
visual hallucinations in 
patients with 
schizophrenia

AP: Auditory 
processing

Voice-to-text applications for hearing-
impaired; highlighting parts of speech that 
might be missed; following multiple 
conversations and prompting the user 
based on modeled interests; music apps

Ambient and speech 
recognition systems to 
contrast auditory 
hallucinations in patients 
with schizophrenia

AS: Attention and 
search

Modeling user interests and goals to focus 
our attention; e.g., through text search or 
summaries, web search engines, or with 
object recognition

Attention focusing devices 
for patients with attention 
deficit disorders

Pl: Planning Automated agendas, daily task planners, 
and prompts based on modeling of user’s 
goals and interests

Daily task organizers for a 
patient with moderate 
mental retardation

CE: Comprehension 
and expression

Digital writing assistance tools using 
natural language processing (e.g., 
Grammarly); automated re-writing or 
re-rendering to improve interpretability 
(for reading, watching films, listening to 
music)

Vocabulary and grammar 
assistance tools for a 
patient with some 
language disorders

CO: Communication Automated emails, social media posts; 
improved intelligence in communication; 
effective spreading memes or ideas

Effective communication 
tools for people with 
Asperger’s

ES: Emotion and 
self-control

Systems that predict and inform us of our 
emotional states and those of others, help 
us detect fake emotions in others, or 
trigger our emotional responses

Systems recognizing 
emotional states of people 
for patients with autism

NV: Navigation GPS apps (e.g., Waze), building 
associations between places, routes, and 
our cognitive states to help with route-
finding, safe-walking, or orientation

Route assistants to safely 
navigate surroundings for 
people with dementia

CL: 
Conceptualization, 
learning and 
abstraction

Machine learning apps helping find new 
categories, concepts or possibilities, e.g., 
new patterns about daily or public events; 
new personalized learning strategies

Personalized learning 
assistants for people with 
learning disorders or 
disabilities

QL: Quantitative and 
logical reasoning

AI systems that process uncertainty (e.g., 
risk or number of accidents), or quantities 
(e.g., people in a room) in real time

Diet analyzers and 
estimators for patients 
suffering from anorexia
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many daily tasks and are expected to generate a range of applications as soon as AI 
can enhance or compensate them.

Having limitations for one or more of them can indirectly (i.e., as a side effect) 
cause many mental conditions, such as stress, depression, or loss of self-esteem, as 
the subject feels unable to do things that other people do easily. All these capabili-
ties have effects on cognition and development, so they are linked to mental and 
behavioral disorders in one way or another (i.e., the consequences and side effects 
can be numerous). In other words, any extender using AI that can alleviate or com-
pensate some cognitive limitations could have, in principle, positive effects on some 
of these conditions. This is sometimes referred to as the “mental capital—the cogni-
tive and emotional resources that influence how well an individual is able to contrib-
ute to society and experience a high quality of life,” and increasing this capital could 
“mitigate the risk of disorders such as depression, substance-use disorders, bipolar 
disorder and dementia” (Sahakian, p.c.) [38].

In order to determine the way AI extenders can impact on various mental condi-
tions, we analyzed one standard classification of mental and behavioral conditions, 
the WHO’s ICD-10 Classification of Mental and Behavioral Disorders [3]. This 
classification (as explained in the ICD-10 “blue book”) is a comprehensive list 
including the clinical descriptions of the conditions. One shortcoming is that it 
excludes some related conditions, such as Parkinson’s disease, which are classified 
as diseases of the nervous system, but whose symptoms might nonetheless be 
improved by AI extenders addressing the 14 capacities in Table 12.1 (e.g., changes 
in communication, or sensorimotor function).

From this list of conditions (each with an ICD assigned code starting with “F”), 
we identified those that are associated with each of the cognitive capabilities shown 
in Table 12.1. By “associated” we mean that a variation in the cognitive capacity, 
i.e., either an increase or decrease, will have a direct effect on the mental or behav-
ioral condition. For each capability, we searched through the ICD-10 for a series of 
tokens.3 For instance, for sensorimotor interaction (SI), we looked for “sensor*” and 
“moto*,” and checked (manually) whether the reference made sense (e.g., was it 
actually talking about an association in the form of a cause or a symptom?). 
Table 12.2 shows the result of this analysis. It highlights which of the 14 cognitive 
capabilities have a direct effect on mental health conditions.

There are a few things to note about Table 12.2. First, it must be understood as 
showing “direct” effects of AI extenders rather than any potential side effects they 

3 The full list of items used for each capability can be found in the Appendix.

Capability General examples Clinical examples
MS: Mind modeling 
and social interaction

Modeling social networks to help 
anticipate decisions, actions, and interests 
of other people

Apps determining double 
meanings in conversations, 
for people with Asperger’s

MC: Metacognition Self-tracking and analysis can help 
identify the potential and limitations of 
users, making users more aware of their 
own capacities

Systems monitoring 
self-esteem and confidence 
in depression episodes

Table 12.1 (continued)
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might have on mental conditions. For instance, a visual processing system (so pro-
viding VP capabilities) that objectively describes what is on the patient’s scene 
might help discard the false perceptions that come from hallucinations (as captured 
by “F05 Delirium”). This applies not only to visual and auditory inputs but also 
some other misperceptions (e.g., “that person is looking at me all the time” or “he is 
following me”). In this way, AI systems can be an alternative source to perceive 
reality, which can help, in some cases, discard those false perceptions (sensory, 
emotional, etc.) that are common in many mental conditions. Note that in this exam-
ple, the AI extender has a direct effect on mental conditions that involve hallucina-
tions. These same systems might also have the side effect of improving conditions 
that involve one’s reasoning or planning, e.g., personality disorders, but we do not 
include these in the corresponding right-hand column.

Second, for many of these conditions, the ICD-10 explicitly states that the cause 
is unknown, and the clinical descriptions include lists of symptoms and diagnostic 
guidelines that are based on an assessment of the presence or absence of certain 
features or characteristics. Hence, in many cases, the best that we can predict is that 
AI extenders will have a direct effect on alleviating the symptoms (rather than 
addressing the causes) of the conditions listed.

Table 12.2 Association between mental conditions (rows) and the capabilities that can be 
extended by AI (columns, as per Table 12.1)

A black solid cell means that the whole category of mental conditions is affected by the capability, 
a gray cell means that this is the case only for some of the subcategories (the code of the affected 
subcategory or subcategories appears in the cell), and empty cells mean no association
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Finally, Table 12.2 can be used to recognize the potential of an AI extender fea-
turing a capability (or research in one particular area of AI) for a range of mental 
conditions. For instance, it is no surprise that MS (mind modeling and social inter-
action) is associated with many conditions, but it was less expected perhaps that AP 
(auditory processing) had such a number of repercussions. This is especially inter-
esting as the state of the art of AI in auditory perception has improved significantly 
during the years, and its integration with hearing aids may be on its way. Table 12.2 
can also be read in the other direction. If we want to treat or improve the state of 
patients having some particular condition, we must look at the matrix and see what 
cognitive capabilities we need to imbue on a system. For instance, sleepwalking (or 
“somnambulism”) could be treated with some device that, through the use of AI, 
could follow where the patient is moving and check for obstacles and hazards. The 
table is the first approximation, but it can be valuable to have a first understanding 
of the many possibilities of AI (and AI extenders in particular) for mental health.

From all the abilities in Table 12.1, metacognition is perhaps the most critical 
one to discuss. This is for two reasons: first because of the methodology, we had to 
employ in searching the ICD-10 bluebook for associated conditions in Table 12.2, 
and second because of how it is (we believe) associated with so many different dis-
orders. In the first case, we note that the term “metacognition” does not appear at all 
in the ICD-10 bluebook.4 Nonetheless we believe that metacognition has wide asso-
ciations with many of the conditions listed because of how a patient must realize 
their own limitations related to their particular condition. Many patients, for exam-
ple, improve simply by being diagnosed (“Now I understand what is happening to 
me”). Relatedly, treatment and care are much easier when this is known [39]. In the 
context of cognitive extension, however, it is very important that the person realizes 
how the added AI extenders change the person’s capabilities, so what the person 
does and what the person thinks she or he does—which the diagnosis clarified—are 
kept aligned with the use of AI extenders. A planned and temporary removal of an 
AI extender can be very helpful for this alignment, in the same way that hearing- 
impaired people realize how bad their condition is when they compare hearing with 
and without their hearing aids. This is also related to a placebo effect that may 
appear with the use of AI extenders, simply because the person thinks that he or she 
now has “superpowers” or a subsystem to rely on, which may boost his or her 
confidence.

Other AI extenders may be more focused toward monitoring and intervention 
rather than enhancing or replacing some cognitive capabilities. A monitoring sys-
tem using machine learning to determine when a person is more likely to have an 
outburst or a crisis can be considered an AI extender as much as it extends our self- 
awareness, in the sense of an internal perception of indicators in our bodies that we 
can understand and react to accordingly. If the tool also makes recommendations or 
interventions, we can still consider it an AI extender, which helps the patient with 
self-control, awareness of the situation, or simply suggesting the best actions, and 

4 We instead had to search for related terms such as awareness, capabilities, limitations, conscious-
ness, self-confidence, etc. (see Appendix for a complete list).
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so forth. In other words, monitoring and recommendations can be seen as extenders 
at the metacognition and decision-making levels.

12.6  Potentialities and Challenges of AI Extenders

There are many potential benefits of the use of AI extenders for mental health—both 
for helping those who are cognitively impaired (which is our focus in this chapter) 
and for healthy users, who rely on digital devices as cognitive enhancers. In this 
section, we will focus on five benefits, followed by five risks.

 1. AI extenders inherit all the benefits of using noninvasive treatments, something 
that is shared with (physical) orthopedics, in terms of flexibility, updates, repair, 
and removal. The use of machine learning can (a) improve the degree of personal-
ization, as systems can learn and improve their behavior from the information they 
collect, and (b) make sense of a wider data set about one’s lifestyle (i.e., one that 
looks beyond the biological individual) than a doctor ever could—including infor-
mation about one’s social life, screen time, the environments one spends time in, 
etc. Collecting and analyzing this wider data set could eventually allow for a better 
understanding, assessment, and treatment of mental health conditions. These ben-
efits are available for both cognitively impaired and cognitively health users.

 2. Under the lens of the EMT, we can consider the use of an AI extender as a genu-
ine cure provided the system is reliable and integrated. Traditionally, a “cure” is 
some intervention that aims to directly address the cognitive deficit by making 
underlying mechanistic functions work better or by limiting their negative effects 
(what we describe as “restorative” strategies above). With an AI extender, how-
ever, we instead aim to design a system that is able to compensate for those 
malfunctioning underlying mechanisms. With the right kind of device integra-
tion (or “coupling”), if a person gets used to giving a description of a scene or 
determining false memories or perceptions from true ones using a device, this 
could ultimately be incorporated as part of their cognition, and help cancel or 
replace those malfunctioning biological processes. When this happens, we argue, 
the new situation can be assimilated to being “cured” or “back to a safe condition.”

 3. AI extenders may be a good option for those cases where restorative strategies 
through internal interventions, such as medications (e.g., antipsychotic drugs) 
for improving conditions like meta-cognition or mind modeling, may not yet be 
available. There is no known restorative strategy for dementia, for example, but 
Ienca et al. note that a wide range of intelligent assistive technologies are being 
developed to provide general cognitive support aimed at “empowering” adults 
with dementia [40].

 4. The tight coupling of AI extenders makes it easier to give “cognitive credit” to 
the person for their accomplishments. Returning to the case of Lewis, who relies 
on a device to help him cope with symptoms of ADHD that affect his learning, 
the EMT allows us to still credit Lewis as learning, while the regular presence of 
the extender makes it easier (like a pair of glasses). We described Lewis as being 
allowed to use his assistive device during examination, for example, which also 
makes sense under the EMT, as the device is really part of the substrate of his 
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cognition. Under the EMT we would have to give a similar analysis of the cogni-
tive accomplishments of cognitively healthy users of AI extenders as well: they 
deserve credit for what they achieve with their device.

 5. Finally, AI extenders can provide more sophisticated resources than regular 
extenders. Consider again the case of BPD discussed above. Bray had hypothe-
sized that people with BPD tend to rely on others in order to compensate for their 
internal deficits of executive functions because this is the only available option 
to them, and that this explained their characteristic fears of abandonment, and 
losing their autonomy [29]. But AI extenders could potentially provide the same 
support for meta-cognitive deficits as other people could, only with increased 
stability and reliability. Again, this can be a benefit both in clinical settings and 
for the cognitively healthy, looking to enhance their abilities.

The negative side effects of AI extenders for mental health can be varied. Some 
of them are also shared by other extenders or cognitive enhancers and are related to 
the four basic principles of medical ethics—respect for autonomy, justice, benefi-
cence, and nonmaleficence [41, 42], but others are more specific to AI extenders 
(when used both in clinical settings by the cognitively impaired and for enhance-
ment purposes by the cognitively healthy). The reason is that the use of AI technol-
ogy and the tight coupling of an extender can make interactions less predictable. We 
will focus on five areas of concern:

 1. The first consideration is autonomy. In medical ethics, the principle of autonomy 
includes respect for both an individual’s right to decide and for the freedom of 
whether to decide [43]. One risk is that, for the sake of having the patient under 
control, some AI extenders will make use of interventions and nudges that effec-
tively bypass the agent’s right to decide. By encouraging actions without appeal-
ing to the agent’s rationality (e.g., by presenting them with reasons to act), these 
devices could risk becoming manipulative. These scenarios become particularly 
concerning when we consider the technology to be a genuine part of the person’s 
mind—the innermost space of private information, where one’s intentions are 
formed and decisions are made [44]. As such, any manipulative interventions 
would clearly deviate from the maxim of nonmaleficence. Indeed, in the worst 
case, some of these systems could be hacked and used with malicious purposes.

 2. In another important sense, autonomy should also protect one’s ability to safely 
act in the ways one decides, ensuring short-term and long-term reliability. We 
can imagine cases of overreliance in which a person is put in risky situations (in 
terms of mental health), by becoming overly dependent on an AI extender which 
is liable to unexpectedly fail, as any technology can. This goes beyond the clas-
sical problems of cognitive laziness and atrophy that may be caused by the use 
of AI extenders [45, 46]. A somewhat related concern is a scenario in which 
patients feel so integrated with the extender that they resist changes to the sys-
tem, as these would imply a change of personality and cognitive capabilities.

 3. The third problem derives from an unregulated or recreational use of these AI 
extenders for mental health, where the appropriate validation and certification of 
procedures and tools do not follow the standards of medical practice with some 
other treatments, putting beneficence (good practice) at risk. This is particularly 
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worrisome when mentally healthy people experiment with AI extenders, leading 
to some pathological mental situations (e.g., similar to either substance abuse or 
dependence syndrome), but with some technological and AI components that 
could be new to the analysis. This is also related to the above points on auton-
omy, as an overreliance would negatively affect one’s autonomy.

 4. The fourth problem regards moral status and privacy. This goes beyond the risk 
that an extender may be stolen or accessed by the third party (or by the clinician 
or family beyond some established parameters)—a risk that applies to essen-
tially any medical device. Under the EMT, an AI extender really is a part of the 
person’s mind, and hence gaining access to the personal information stored in a 
device would be like reading the brain of a person, especially as these extenders 
may contain memories, experiences, decisions, and other very sensitive informa-
tion [47, 48]. This is the classic double-edged sword in AI: while collecting more 
information about the individual can fuel powerful and highly personalized pre-
dictions (a benefit we discuss above), it also threatens personal privacy.

 5. Finally, there may be problems with their allowance in the public space caused 
by a misunderstanding (or strong disagreement) of the EMT. This may lead to 
limitations on when and where these devices are allowed (exams, recruitment, 
etc.), and for how long they can be removed (airport security, other hospital 
treatments, etc.). This is of course related to the medical ethical principle of jus-
tice, and to the question (discussed above in “benefits”) of whether we should 
consider AI extenders as cures.

There is a broader concern worth being mentioned, which is common to many 
kinds of enhancement. A widespread use of AI extenders can change our conception 
of what humans are capable of, and in the particular case of mental health, our 
notion of “mental normality.” As more and more capabilities can be enhanced or 
modified with these devices, the diversity of behaviors and capabilities may change 
as people can increasingly choose what cognitive profile they prefer for themselves. 
The principle of justice also demands that we consider future scenarios that could 
arise for society—such as a moment when everybody has access to enhancements.

Determining what profiles are safe for the person (typically in the long term) and 
for society is going to require a deeper understanding of what mental health is, to 
what degree mental conditions are pathological, and what enhancements people 
should be allowed to make. Such considerations are well beyond the scope of this 
chapter, but what is clear is that the notion of a “standard” or “normal person,” only 
comprising what the brain can do, if it ever made sense, will likely have to be com-
pletely discarded, especially when associated with a goal of being “cured.”

12.7  Recommendations

In the previous sections, we have argued that a widespread use of AI extenders, and 
their understanding as such, may have important implications in the analysis and 
practice of mental health. For instance, the attachment of a patient with their AI 
extender can be so close that any change on the device or its software may require a 
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deeper consideration for which the professionals involved may not be used to yet. It 
is then these professionals—the designers of AI extenders, coming from different 
areas of engineering and especially AI, and the clinicians, from physicians to nurses 
and other careers—who need a re-understanding of what these AI extenders mean 
for the evolution of the mental health and all the possible side effects on a patient.

The most urgent recommendations should be addressed to AI designers. The 
regulations and expectations that are put on an app or another kind of “software” or 
“hardware” extender should be no less stringent than those put on drugs or other 
kinds of treatment. The reference to take here is similar to the area of orthopedics, 
where manufacturers must include diverse research and development teams, includ-
ing clinicians, and perform careful tests. Likewise for any digital monitoring app, 
development teams must determine an ethically acceptable way of designing these 
systems so that we can avoid these potentially negative effects [40]. But AI extend-
ers must be more reliable than physical orthopedics. If Helen or Lewis’s AI extend-
ers fail, the consequences may be serious and even dangerous; hence, designing for 
safety and reliability is essential. But, on top of this, from the point of view of cogni-
tive extensions, the manufacturer must understand that the software and the hard-
ware become part of the mind, so no updates, discontinuations, or access to the data 
can be done without informed consent. Under a strict interpretation of the EM the-
sis, modifying an AI extender should be compared to modifying the brain.

Clinicians, too, must be aware that new gadgets imbued with obscure AI are 
going to become a regular part of their repertoire of diagnostic, treatment, and mon-
itoring tools. They need to understand their basics, and how they couple with the 
human mind in order to create some new behaviors unseen in their careers. A good 
starting point for training and information for clinicians could be based on the six 
issues raised by Bauer et al.: (1) decide when to recommend an extender, (2) observe 
what other extenders the patients use (and consider how different extenders might 
potentially interact), (3) understand how their monitoring works, (4) explain the 
effects to the patients, (5) keep themselves informed about the state of the art of AI 
extenders, and (6) scrutinize and validate them [49]. With the inception of technol-
ogy, and especially AI, human minds are changing, and mental health must change 
too, in terms of categories and the consideration of normality. Even if clinicians are 
not familiar with the philosophical underpinnings of the EMT, they know well what 
orthopedics is, and understand the feeling of many patients that an artificial arm, 
say, is a real arm. A similar analogy can be used for AI extenders, but going beyond 
the idea of mimicking the original functions exactly in the same way that a titanium 
leg may be more effective and elegant than a more realistic plastic prosthetic.

Finally, there are many future directions for research for a better understanding 
of AI extenders in the context of mental health, for which this chapter is just a begin-
ning. Table 12.2, and future refinements, can be used to spot gaps and limitations or 
ways in which some devices can be used for some other conditions. But beyond 
each particular set of capabilities and conditions, we need more general guidelines, 
methodologies, and well-designed experiments to help in the development of the 
future AI extenders used for mental health. The EMT can leverage this research, but 
we also need better structural incentives to create intelligent assistive health tech-
nologies, rather than focusing only on biological causes and cures.
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 Appendix

The following table includes the search tokens that we used to look for the condi-
tions in the ICD-10 blue book for each capability, in order to construct Table 12.2 in 
the chapter

Cognitive capability Tokens used for the search in the ICD-10
Memory processes memor*
Sensorimotor interaction sensor*, moto*
Visual processing visu*, percept*
Auditory processing audi*, percept*
Attention and search atten*
Planning plan*, organiz*
Comprehension and expression expres*, compre*
Communication commun*, lang*
Emotion and self-control emot*, control* and affect*

Navigation orient*, naviga*
Conceptualization, learning, and 
abstraction

learn*, conceptual*

Quantitative and logical reasoning calculat*, mathemat*
Mind modeling and social interaction social*
Metacognition Aware*, capab*, limitations, conscio*, self*, 

incompetent
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13.1  Introduction

The combination of artificial intelligence and neuroimaging (AINI), specifically the 
combination of machine learning (ML) and functional magnetic response imaging 
(fMRI), has increased the possibilities for brain reading, i.e., decoding mental con-
tent or identifying behavioral dispositions from brain activity. Although brain read-
ing currently is at the beginning stage, consisting mainly of proofs of principle, 
further progress could lead to societally relevant applications. For instance, in the 
domains of finance, law, health, and sexuality, the usage of such applications 
requires a careful analysis of the associated ethical, legal, and societal implications 
(ELSI). In order to contribute to such an analysis, we will focus, in this chapter, on 
the following themes. First of all, we will discuss the quandaries inherent to the 
early assessment of technological impact: how can we meaningfully analyze future 
implications of a technology that is currently being developed? Second, we will 
analyze the implications of the combination of artificial intelligence and neuroimag-
ing for brain reading. What does AI add to the standard computational processing 
involved in acquiring imagery data and statistical analysis? What consequences 
could this have from the perspective of our evaluative framework? Finally, we will 
conclude the chapter by providing some recommendations for regulation and fur-
ther research. In a situation of “moral overload” [1], responsible research and inno-
vation should bring about technology that overcomes the trade-off between 
incompatible values, e.g., a person’s mental privacy and public security. While tech-
nology is being developed, we suggest that various forms of expiry dates (for 
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informed consent, data storage, and data analysis) could be, at least temporarily, 
useful in avoiding some undesirable implications of AINI.

13.2  The Risks of an Early Technology Assessment

When examining potential ethical, legal, or societal implications of a rapidly devel-
oping science and its associated technologies, there is a risk of either over or under-
estimating the potential of a technology within a certain timeframe. Overestimating 
the possibilities of a developing technology can create hype: exaggerated claims or 
excessive publicity or discussion surrounding specific research field, technology, or 
application (e.g., [2–6]). Hype can occur both in relation to the expected positive 
and negative possibilities or consequences. Positive hype leads to unrealistic expec-
tations, negative hype to unjustified concerns. Both should be avoided as much as 
possible.

The problem, of course, is that no one knows exactly what can be expected. 
Oftentimes technological developments occur much slower than expected (leading 
to, e.g., “AI winters,” [7]), although recently the field of AI has also experienced the 
opposite, in that certain results were achieved faster or in different fields than 
expected (e.g., moving from beating the world champions in chess to beating them 
in Go). Given the potentially large economic and political implications of scientific 
and technological developments, the difficulty of technology extrapolation has 
sometimes led to accusations of “hyping” (the implication sometimes being that this 
would be a deliberate or personal interest-based form of distortion). It is not clear, 
however, whether such statements can be based on more than the observation that 
the discussed technological developments are currently unlikely to be achieved, or 
at least seem still far removed from being achievable. Although one may debate to 
what extent future developments can be accurately assessed, it is not immediately 
apparent that overestimating the possibilities of a certain technology or research 
field amounts to hyping. Moreover, ethical debates and societal procedures to regu-
late the application of technology generally require substantial amounts of time. 
Hence, the risk of being “too late” in discussing the broader implications of a par-
ticular technological innovation is not negligible. This is especially the case when 
the relative novelty of a certain technology does not give raise to direct and immedi-
ate concerns, making responsible stakeholders prone to the so-called “delay fallacy” 
[8], which results in repeatedly postponing risk-related discussions. For example, 
the necessity of “horizon scanning” has been mentioned ([9], p. 292; see also [10]), 
as an activity important to anticipate coming developments and potential (legal) 
implications before a new technology is used in court. Elsewhere [11], one of us 
discussed the possibility of an “ELSI gap” between what currently is possible given 
the state of science and technology and the kind of ethical, legal, or societal implica-
tions that could be considered relevant to discuss before the technology “gets there.” 
After all, the price society may have to pay for being too late, can turn out to be 
quite high. Technology tends to contribute to the creation of habits and practices 
that are hard to change once they are established, even if there is agreement about 
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their undesirability. Hence, in what follows, the cases and analyses are to be taken 
as future-oriented, with all the uncertainties and risks involved in such an enterprise.

The difficulties of estimating the societal impact of a technology, especially 
under time constrains, are not the only concern. In the context of developing and 
controlling technological innovation in a societal context, estimations are only the 
first part of a double-bind problem, as highlighted by the so-called “Collingridge 
Dilemma” [12]. On the one hand, the impacts of a certain technology, and the kind 
of potentially affected stakeholders, can hardly be predicted before such a technol-
ogy is widely distributed and adopted. On the other hand, once the technology has 
become entrenched, it becomes harder to change or control it. Different methods 
have been proposed in the philosophy of technology to contain the risks of this 
dilemma. As emphasized by the advocates of value-sensitive design and responsible 
innovation [1, 13], articulating moral and value considerations at the earliest stages 
of technological development, together with an early involvement of the greater 
possible number of stakeholders, are essential contributors to the successful devel-
opment of a technology. This is the case despite the uncertainties that such early 
stage brings about. The risk of mistaken extrapolations and not entirely accurate 
optimism or concerns regarding future technologies is the natural result of a still 
partial or insufficient knowledge. We accept our share of responsibility for them 
while discussing this topic.

13.3  Evaluating Implications of AI in Combination 
with Neuroimaging (AINI)

A realistic technological risk assessment requires sufficient knowledge of what a 
given technology can and cannot do. AI and neuroimaging—we will focus particu-
larly on machine learning and fMRI here—are relative well-established fields. 
However, the combination of AI and neuroimaging is relatively young and multidis-
ciplinary, making it a fast moving—and slightly blurred—target when trying to 
define its state-of-the-art and current possibilities. This partially prevents a mean-
ingful discussion about its ethical, legal, and societal implications. To make a step 
in the direction of building up relevant knowledge for a sound assessment, we pro-
posed a conceptual framework composed of five criteria, specifically aimed at 
investigating the potential implications of brain reading technology for privacy [14, 
15]. Those criteria are meant to aid a potential assessor of the technology in isolat-
ing a manageable set of values that are relevant for that inquiry. Their abstractness 
allows to apply them to both current and future technology, as they do not depend 
on the specific characteristics of any given brain reading method.

Brain reading technology entails a risk for privacy in the sense that it might 
potentially make public, either against a subject’s will or unbeknownst to them, 
personal information about their thoughts, opinions, dispositions, traits, and so 
on. We argued that the extent to which this might be made possible for each given 
technology is highly dependent on five aspects: accuracy, reliability, informativ-
ity, concealability, and enforceability. It will not be necessary in the present 
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context to enter into the nitty gritty details, but we think it is useful to point out 
briefly what those aspects represent. Accuracy represents the performance of a 
given technology: its capacity to correctly (in probabilistic terms) identify a 
mental state, and its resilience to false positives and false negatives. Reliability 
represents how well a certain technology’s accuracy is preserved both between 
different subjects (in spite of structural and functional variability) and within the 
same subject over time (in spite of functional plasticity). Whereas accuracy and 
reliability are quantitative aspects, the other three are qualitative ones. 
Informativity has to do with the quality of the information that can be produced 
by the means of a certain brain scanning technology. For instance, recent devel-
opments in cognitive neuroimaging have achieved a relatively solid accuracy in 
recognizing certain mental states. However, these mental states consist of cate-
gories that are very general, and the level of detail of the information extracted 
does not consent to obtain an important amount of sensitive information, if any. 
Concealability represents the degree to which a technology can be applied to 
subjects without them being aware of it. A subject might be partially or fully 
aware of being scanned but not of the type of information that is being extracted. 
The context might be such that a subject is misled by an ill-intentioned applier of 
the technology, or it might be that data extracted in bona fide reveals to be very 
sensitive after further analysis, or thanks to future analytical instruments and 
methods. We will consider this aspect more in detail later in this text. Finally, 
enforceability indicates the extent to which a technology can be used against 
one’s will. Current neuroimaging methods, e.g., lie detection or to identify one’s 
sexual orientation can be intentionally disrupted by a noncompliant subject with 
relative ease. But if such disruptions can be reliably detected, the threat of sanc-
tions upon discovery may lead to enforceable practices.

There are several aspects of AINI that deserve discussion. Below we will limit 
ourselves to three points. First of all, what is the promise of using AI in neuroim-
aging? We will focus here on the promise of improved analysis of brain data due 
to AI’s capacity to process them in large quantities, and the possibility to find 
informative new clustering via unsupervised learning. Machine learning plays a 
vital role here. Second, there are questions regarding the standards that AINI has 
to fulfill in order for its insights to be usable in societally relevant scenarios. How 
accurate, reliable, and informative need the results of AINI be, e.g., in the context 
of neuroprediction, before the results can be considered legitimately actionable in 
real-world applications such as insurance, mortgage, or in a court of law? Third, 
we suggest that the enforceability of AINI-based information is relevant for the 
possibilities that this technology might grant in terms of mental privacy invasion. 
The expected rapid developments in the capacities of AI and machine learning 
methods, together with its increasing use in surveillance, e.g., to promote national 
security and counterterrorism [16], might lead to potential abuse of brain reading 
technology. This, in turn, could lead to unbalancing the already precarious trade-
off between privacy and security [17]. Hence, we will consider the implications of 
applying new analysis methods to old data, from the perspective of informed con-
sent and data ownership.
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13.4  AINI in Society: Are We Ready Just Yet?

Computational processing has long played a vital role in measuring brain structure 
and function. It is required for collecting and cleaning the brain data, transforming 
the data into formats that are more understandable for human brains (e.g., by turn-
ing them into pictures), and for performing the complex statistical analysis of data 
in relation to hypotheses. Increasingly, the role of computers is extended by allow-
ing artificial intelligence to interpret data, e.g., through machine learning. In this 
section, we will try to sketch some implications of this combination of AI and neu-
roimaging in the attempt to find relevant patterns in brain data, and by suggesting 
interpretations of the data that can assist in generating explanations or predictions of 
cognition and behavior.

AI techniques, especially machine learning, in combination with neuroimaging 
data can predict psychiatric phenomena and/or treatment response, in increasingly 
better and novel ways (see also [9], p. 304–305 and p. 307). In a recent review of 
AINI applications for psychiatry, Nielsen et al. [18] indicate that supervised learn-
ing can be applied to predict, e.g., attention-deficit and hyperactivity disorder 
(ADHD), autism, depression, schizophrenia, and Tourette syndrome. Age-related 
deviations from standard development may be identified, and this can be used to 
predict real-world risky behavior [19]. Furthermore, unsupervised learning tech-
niques may result in the identification of novel subgroups of patients, despite differ-
ences in neuroimaging data. For instance, subtypes of depression that are responsive 
to a particular treatment, such as transcranial direct current stimulation (tDCS) 
could be identified [20]. Just et al. [21] indicate that highly accurate classifications 
of suicidal youth can be obtained by applying machine learning to neural represen-
tations of suicide and emotion concepts.

However, the extent and exact nature of the improvements in psychiatric predic-
tions is debated [22], and the appropriate standards and methodologies for AINI 
have not crystalized yet. For example, Vilares et al. [23] indicate that AINI might 
enable a potentially legally relevant differentiation between knowing and reckless 
subjects, i.e., by establishing on the basis of brain scanning whether suspects knew 
about the illegality of their behavior or were (partially) unaware of this, but took the 
risk. Different legal consequences, including greater punishments, are applied to 
individuals who act in a state of knowledge about the consequences of their actions, 
compared with a state of recklessness. They indicate that AINI can be of help in 
making this distinction, but they also emphasize that the differentiation is quite 
context dependent. Vieira et al. ([24], p. 17) note inconsistent results of applying 
ML to neuroanatomical data (in relation to first episode psychosis detection), per-
haps related to small sample sizes, single-site studies, and notice that various impor-
tant methodological issues are recently becoming clearer. As they say:

“Despite the high level of interest in the use of machine learning (ML) and neuroimaging to 
detect psychosis at the individual level, the reliability of the findings is unclear due to poten-
tial methodological issues that may have inflated the existing literature. (...) Findings from 
this study suggest that, when methodological precautions are adopted to avoid overoptimis-
tic results, detection of individuals in the early stages of psychosis is more challenging than 
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originally thought. In light of this, we argue that the current evidence for the diagnostic 
value of ML and structural neuroimaging should be reconsidered toward a more cautious 
interpretation.”

The performance considerations made in the previous paragraph become espe-
cially important in cases where legally relevant distinctions or predictions are 
involved. The Daubert standard is a rule of federal law of the USA regarding the 
admissibility of expert witness testimony. It explicitly states (Rule 702, clause b & 
c, as amended Apr. 26, 2011, eff. Dec. 1 [25]) that a testimony of an expert witness 
has not only to be based on sufficient facts or data, but also that the testimony is the 
product of reliable principles and methods. Given discussions in the literature as 
provided above, it stands to reason to suggest that at least some forms of AINI in 
some types of applications do not yet hold up to requirement (c) of the Daubert 
standard.

Moreover, Paulus et al. [26] and Jollans et al. [27] discuss the intricacies of AINI 
applied to predicting individual behavior, in particular to find an optimum in the 
bias-variance tradeoff, i.e., avoiding both overly complex models that fit the data 
(too well) but do not generalize, and overly simple models that do not fit the data 
(see also [28]). The most accurate predictions are usually obtained through an inten-
sive training of a single subject on tasks that evoke clear and extensive neuronal 
activation. However, this comes at the price of a reduced reliability, which is the 
applicability to a larger pool of different brains, and to a constantly transforming 
brain at different times. Good predictions should be sufficiently specific to reliably 
recognize a certain mental task, and sufficiently generic to recognize across the 
many ways this can be represented in one, or even different, brains. Paulus et al. 
suggest that while there is clear room for progress,

“there is no single generically applicable machine learning tool, or one that performs uni-
formly better than others, to make individual level predictions based on neuroimaging data 
([26], p. 660).

In addition, they note that although a specific approach can be optimized, “this 
often comes at the cost of difficult interpretability of how the various features of the 
workflow contribute to the predictions.” (ibid.). Hence, even in such cases, there still 
is a trade-off between making practically accurate, reliable, and informative predic-
tions, and a clear understanding how such correct predictions come about.

13.5  AINI and Expiry Dates

Taken together, the increased capacity for brain reading due to rapidly improving 
AINI, as well as the potential risk of misunderstanding the current possibilities, 
leads to questions regarding the current practices of informed consent. The European 
Court on Human Rights (ECHR) has indicated that medical interventions against 
the subject’s will or without the free, informed, and express consent of the subject 
constitute an interference with his or her private life ([9], p.  299). As a first 
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observation, because of the rapidly growing possibilities granted by technology, 
informed consent requires a further analysis of its temporal dimension. Simply put, 
as AI improves and novel types of information may be extracted from once sampled 
brain data, how long can the consent given at the moment of sampling be considered 
to remain valid? We suggest that the possibility of an expiry date for informed con-
sent about the storage and analysis of personal data should be further explored, at 
least for the time that the trade-off between accuracy and interpretability is not 
optimized.

Secondly, our discussion above illustrates the importance of an EU policy regard-
ing AINI. Article 5 of the EU General Data Protection Regulation ([29]; https://
gdpr.eu/article- 5- how- to- process- personal- data/) states that personal data should 
only be collected and processed for a legitimate specific purpose and that the data 
should only be retained and stored for as long as necessary to satisfy the specified 
purpose. The question raised here is whether progress in ML will require a further 
specification of the concept “purpose.” Do improvements in ML amount to qualita-
tively similar types of processing of brain data or could the differences in analyses 
be so substantial that it should be evaluated as implying a difference in purpose? 
How do we establish a move from more of the same to substantially different in the 
context of AINI? More generally, what standards for the interpretation of AINI 
results should be formulated and what procedures should be followed to establish 
that they have been achieved? More specifically, how are the criteria of accuracy, 
reliability, and informativity to be operationalized and contextualized? Given the 
fast developments in the field of AINI, it seems timely to start working on such 
questions, especially if we consider the further possibility that, under certain socio-
political circumstances, brain reading technology might be utilized against one’s 
awareness or consent.

Third, the implications of AINI in the light of the recent responses to terroristic 
threats to national security deserve attention. Surveillance methods are recently 
turning into large-scale data collections as opposed to targeted espionage and intel-
ligence gathering [30]. The novel possibilities to gather personal information that 
might be offered by, e.g., consumer neurotechnology [31], are a risk that should be 
carefully evaluated in this particular sociopolitical scenario. In our framework, this 
aspect is addressed in relation to the criterion of enforceability. As a starting point, 
we are in full support of Ienca and Andorno’s [32] defense of an individual’s right 
to the protection from coercive collection of brain-based information about a per-
son’s mind, and its further storage and use. However, as Ligthart [9] indicates that 
societal interests might sometimes override such basic rights, and he provides an 
interesting analysis of coercive neuroimaging in the context of EU criminal law. He 
distinguishes physical from legal coercion. Regarding the physical form of coer-
cion, Ligthart suggests that it is unlikely to prevent countermeasures, because prac-
tically speaking it is very easy to disturb the brain measurements by, e.g., minute 
movements of head or tongue, voluntarily focusing on random thoughts. Although 
this in itself is true, we suggest that the issue of enforceability may not just be the 
(lack of) effectiveness of the physical coercion, but also whether resistance can be 
reliably discovered. Via minute movements, or by not complying with instructions, 
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the data subject may sabotage the measurement, but if the sabotage is consistently 
detectable, the mere fact of resistance will be noticed and potentially has conse-
quences. The knowledge that one’s resistance can be discovered may in itself form 
a deterrent against resistance. Therefore, the issue underlying enforceability is not 
only, or even primarily, the effectivity of physical coercion, but rather the detect-
ability of countermeasures. As it is not obvious that there will be significant limita-
tions on AI-based countermeasure detection techniques, the issue of physical 
coercion is more important than it may appear on first sight.

Legal coercion implies foreseeable negative consequences for withholding 
consent, such as punishment, diminished chance for parole, or adverse inferences 
regarding the innocence of a subject. Article 8(2) of the European Convention of 
Human Rights [33] holds that legal coercion may be justified when in a demo-
cratic society it is in the interest of, e.g., national security, public safety, or the 
protection of the rights and freedoms of others. Important here is the question 
whether the legally enforced obtained brain information could be used in the 
future for other applications or analyses than the ones that originally led to or 
justified the legal coercion, undergoing what has been called a “function creep” 
[34]. This phenomenon has been identified in relation to, e.g., big data [35, 36] 
and DNA information, to refer to “changes in, and especially additions to, the use 
of a technology” [37]. Ligthart notices that “the results that may be obtained from 
DNA and fingerprints may be used in the future to demonstrate information about 
someone’s involvement, or future involvement, in a crime” and goes on to propose 
that “the same applies mutatis mutandis to coercive forensic neuroimaging” 
(p. 296–297). Although we are in general agreement with the author, we think that 
the latter claim might downplay the potential of AINI. One of the earliest cases of 
genetic profiling in combination with structural neuroimaging turned into a now 
notoriously controversial legal case in Italy [38]. During this legal proceeding, a 
lighter sentence was granted to the defendant in virtue of a certain genetic makeup 
that was deemed responsible for seemingly abnormal brain structures [39]. 
However, DNA analysis provides close to no information in regard to the onto-
genesis of certain behavioral dispositions that are acquired due to external influ-
ences, e.g., as a consequence of a certain upbringing. Information about specific 
brain structures is usually insufficient to univocally determine behavior and leaves 
space for great subjective variability. However, the complexity and type of cogni-
tive information that can be derived via AINI goes far beyond the use of DNA and 
fingerprints for identification purposes. Machine learning- enabled functional neu-
roimaging could enable the decoding of occurring mental states, such as thoughts, 
desires, and intentions. These might be detected not only during their occurrence 
(real time) but also recorded and timestamped in the collected data, potentially 
becoming accessible once adequate analytical methods become available. This 
makes AI-enabled neuroimaging qualitatively different from genetic proofs, and 
its data significantly more complex, detailed, and individualized. It is precisely in 
this area that the to-be-expected significant advances in AI could have important 
implications for the analysis of earlier recorded and archived data. Here too, 
therefore, a temporal window for brain data usage deserves consideration. Hence, 
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we propose that an expiry date for the storage and analysis of brain data should 
be investigated, especially in cases where the newly derived information or clas-
sification goes beyond the purposes for which the original data was collected. We 
need to establish to what extent increased ML power could lead to the disclosure 
of relevant information about a subject’s cognition or behavioral disposition that 
extends beyond the original informed consent declaration. If such be the case, the 
introduction of an expiry date on the obtained brain data is recommended. Actions 
could range from guaranteed (irreversible) anonymization to, in sensitive cases, 
the obligation to delete data.

The exact relation between our proposal for a brain data analysis expiry date 
and the neuro-specific right to mental privacy recommended by Ienca and Andorno 
[32] requires further analysis. Our current thoughts are that whereas the neuro-
specific right to mental privacy is a very general and principled one, asserting the 
basic protection of an individual’s right to resist extracranial externalization of 
brain derived mental information, our suggestion may be seen as a more specific 
way (one among several) to ensure the exercise of that right. In other words, our 
suggestion could be taken as a means toward the end specified by Ienca and 
Andorno [32]. In passing, we would also like to draw attention to the potential 
parallel that can be drawn between our suggestion for brain data expiry dates and 
the right to be forgotten. Of course, Articles 5 and 17 of the GDPR (https://gdpr.
eu/article- 17- right- to- be- forgotten/) are complex and specify various grounds for 
both its legitimate invocation and its exclusion. We merely mention it here to 
indicate that if a right to be forgotten exists in relation to ICT data, at the very 
least expiry dates regarding the potentially even more sensitive brain data should 
be open for discussion.

13.6  Conclusion

In a nutshell, our main argument is that, because of the expected rapid progress in 
AI, especially the field of machine learning, it cannot be excluded that AINI could 
reveal significantly more and/or different types of information than originally 
thought of or aimed at on the basis of past or currently obtained brain data. We sug-
gest that this could imply a usage of brain reading unbeknownst to the subject (at the 
time of the scanning), and possibly also against somebody’s will (at the time of the 
scanning). In addition, these later occurring possibilities could also occur without 
the knowledge or will of the researchers or technicians involved in the brain scan-
ning and data collection. Hence, in relation to this possibility, we have suggested 
that brain measurements should come with expiry dates for brain data-related con-
sent, storage, and analysis.

In essence, this finishes our contribution. However, just before submitting this 
chapter, the EU white paper appeared [40]. We notice that the topic of AINI is not 
yet discussed in it, and we would like to take the opportunity to make a plea to do 
so in further versions or follow-ups. We welcome the attention given to importance 
of setting standards:
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“The following requirements relating to the data set used to train AI systems could be envis-
aged: Requirements aimed at providing reasonable assurances that the subsequent use of 
the products or services that the AI system enables is safe, in that it meets the standards set 
in the applicable EU safety rules (existing as well as possible complementary ones). For 
instance, requirements ensuring that AI systems are trained on data sets that are sufficiently 
broad and cover all relevant scenarios needed to avoid dangerous situations.” ([40], p. 19)

Moreover, the temporal aspects of data control we emphasized are mentioned 
as well:

“The records, documentation and, where relevant, data sets would need to be retained dur-
ing a limited, reasonable time period to ensure effective enforcement of the relevant legisla-
tion.” ([40], p. 19).

In our view, such statements emphasize the importance of standards and tempo-
ral aspects of data expressed in our chapter as well. If anything, AINI deals with 
even more sensitive data than other types of AI. That, in our view, implies that the 
EU needs to address the societal implications of AINI with urgency.
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14Does Closed-Loop DBS for Treatment 
of Psychiatric Disorders Raise Salient 
Authenticity Concerns?
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14.1  Introduction

Deep brain stimulation (DBS) is used by over 160,000 people worldwide to treat a 
range of neurological disorders including Parkinson’s disease (PD), essential 
tremor, and dystonia [1]. By implanting electrodes in specific brain regions, clini-
cians are able to provide stimulation in order to manage symptoms that are not 
responsive to traditional pharmacological approaches. Despite these successes, thus 
far DBS technologies have shown limited efficacy for treating psychiatric disorders 
such as depression, eating disorders, and addiction [1]. This has sparked immense 
interest in developing the next generation of DBS technologies to treat psychiatric 
disorders. Where the current DBS systems are open-loop—applying a constant or 
intermittent electrical current to the brain—the new generation of DBS devices will 
utilize artificial intelligence technologies, such as machine learning algorithms, to 
facilitate closed-loop implants that are adaptive and continuously modified by neu-
ral feedback [2]. Closed-loop DBS devices read neural data, interpret the signals to 
make a clinical decision, and stimulate the brain dynamically. This process occurs 
continuously and without active input from users or clinicians, allowing for far 
fewer adjustments and improving treatment specificity.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74188-4_14&domain=pdf
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Since we invite the possibility of automating the modulation of our brain, we 
must also consider the ways in which such devices may change the end user and the 
way they interact with their world. These worries are backed up by empirical evi-
dence showing that at least some users of open-loop DBS report changes to aspects 
of their personal identity, agency, or sense of self [3–6]. These reports have been the 
catalyst for a robust and still ongoing debate over implanted neurostimulators and 
the nature of the impact they have on users [7]. For example, is it worth treating an 
illness if people no longer feel like themselves? What if friends and loved ones no 
longer recognize the person they knew? Some of these worries are not entirely 
new—they have been raised around the issue of authenticity and the use of antide-
pressants [8] or open-loop DBS devices [9]. On the other hand, some have noted 
that closed-loop DBS technologies raise salient authenticity concerns, especially 
when they are used to treat psychiatric conditions [10, 11].

In this chapter, we explore the ways in which closed-loop DBS systems can 
introduce changes to the self that are different from open-loop DBS. At each step of 
the closed-loop process—reading neural signals, interpreting data, and stimulating 
the brain—new complexities around authenticity are introduced by the increased 
reliance on automated systems. Threats to privacy, traditional clinical relationships, 
and agency raise concerns about whether users can still live authentically. These 
concerns can be mitigated by developing new ethical guidance to address the unique 
setting of closed-loop DBS.

14.2  Deep Brain Stimulation and Psychiatric Disorders

The treatment of psychiatric disorders has taken many forms over history. Starting 
with psychoanalytic psychotherapy, the field of psychiatry eventually developed 
pharmacological and surgical interventions. The emergence of DBS technologies in 
the early 1990s [12, 13] introduced an alternative to ablative psychosurgeries for 
patients with a wide range of refractory psychiatric disorders. DBS offered the abil-
ity to deliver electric stimulation “into specific targets within the brain and the deliv-
ery of constant or intermittent electricity from an implanted battery source” [1]. 
Over the last 30 years, the use of DBS has been investigated in the treatment of 
psychiatric conditions such as major depressive disorder (MDD), obsessive com-
pulsive disorder (OCD), bipolar disorder, Tourette syndrome, schizophrenia, addic-
tion, and anorexia [1].

Although the exact mechanism differs according to the disease being treated, the 
basic concept behind open-loop DBS for psychiatric disorders is similar. Researchers 
identify a candidate for surgery based on a symptom-based tool like the DSM V, a 
cognitive measure, such as the Montgomery-Asberg Depression Rating Scale 
(MADRS), and history of inadequate response to other forms of treatment. In the 
well-known RECLAIM trial for MDD, participants must have had failed treatment 
trials with at least four antidepressants [14]. If the patient meets the criteria for a 
clinical trial, electrodes (one or two, depending on the study) are placed in a specific 
region of the brain thought to be responsive to stimulation. After the surgery, 
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stimulation is turned on and the voltage set in order to manage the symptoms of the 
condition. Stimulation is adjusted in trial visits based on assessments of symptoms 
and side effects. This stimulation is either continuous or follows a predetermined 
schedule. In certain cases, users may have individual control over their stimulation 
and may be able to turn the device on and off, as well modulate the voltage setting.

DBS offers large improvements over prior psychosurgeries, such as being able to 
directly interface with brain circuitry while avoiding permanent lesioning. Due to 
its efficacy, DBS, as opposed to ablative psychosurgery, is now considered the treat-
ment of choice for some individuals with treatment refractory PD, essential tremor, 
and epilepsy [15]. Regrettably, there has been limited success in using DBS to treat 
psychiatric disorders. Initial studies using DBS for OCD and MDD showed prom-
ise, but randomized clinical trials failed to show similar efficacy [14, 16]. Researchers 
argue there are explanations for the discrepancy in results [2, 17, 18]. Our under-
standing of neural circuitry responsible for mental illness is lacking when compared 
to motor disorders. Additionally, psychiatric disorders are often the result of multi-
ple dysfunctional circuits as opposed to one network. For instance, what we classify 
as MDD may actually be a collection of unique conditions. Furthermore, the lack of 
reliable biomarkers for symptoms makes it difficult to determine whether modula-
tion is responsible for clinical success. Taken together, researchers argue that more 
targeted stimulation that is modulated according to neural feedback across different 
neural circuits may be a solution to using DBS to treat psychiatric disorders.

Closed-loop DBS systems have been proposed as an alternative to open-loop 
DBS and can succeed where their predecessors failed [17]. While open-loop DBS 
works in a unidirectional fashion by providing a constant level of stimulation to 
targeted brain areas without integrating any sort of neural feedback, the new genera-
tion of DBS devices is “closing the loop” by recording neural data, analyzing it for 
salient features utilizing machine learning algorithms, and using these analyses to 
alter stimulation parameters like amplitude and frequency. This loop of reading 
data, analyzing data, and stimulation addresses some concerns about authenticity 
raised by open-loop DBS but raises salient issues in the closed-loop context.

14.3  Authenticity and Treatment of Psychiatric Disorders

In a colloquial sense, to be authentic means to be “true to oneself.” For many, being 
true to oneself is not a complicated calculus. We all can intuitively point to some-
thing about ourselves that is more foundational than everything else. For example, 
one can change one’s hair color easily, but it is much more difficult to become an 
outgoing person if one is born as an introvert. On the other hand, we also understand 
that people change their conceptions of self over time and are not permanently 
bound to traits they acquired early in life. A once lazy student who becomes more 
disciplined about coursework by using a new mindfulness technique can reinvent 
her identity to become a hardworking person. As long as she is able to conform her 
actions to her new conception of self as a responsible student, it seems uncontrover-
sial that most people in her life would be willing to grant that she has changed a part 
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of her former identity. This example illustrates that choices affecting authenticity 
run a spectrum from minor to fundamental. It also shows that there are different 
ways of thinking about authenticity. Since a comprehensive discussion of all types 
of authenticity are beyond the scope of this chapter, below we highlight three ways 
that have been prominently discussed in the neuroethical literature on DBS.

14.3.1  Sense of Authenticity

As early as 2006, Schupbach et al. reported that patients receiving deep brain stimu-
lation (DBS) for PD felt alienated after receiving their device even though they 
experienced a reduction in measured clinical symptoms: “Now I feel like a machine, 
I’ve lost my passion. I don’t recognize myself anymore” [5]. Recent studies of DBS 
for psychiatric indications have echoed similar concerns. A study by De Haan et al. 
discusses one DBS user with OCD who felt like a different person because of the 
change in their libido following implantation: “I did not like that at all…No, that 
clearly didn’t fit with who I am…it was really too much; that really wasn’t me, you 
know; I really felt as if there was someone [else] standing next to me…” [11]. 
Goering et al. interviewed end users, some of whom expressed that they were no 
longer able to act in ways that were consistent with their pre-DBS self: “I can’t 
really tell the difference. There are three things—there’s me, as I was, or think I 
was; and there’s the depression, and then there’s depression AND the device and, it, 
it blurs to the point where I’m not sure, frankly, who I am” [10, 11]. This empirical 
data suggests, at the very least, that DBS can cause changes to users that make them 
feel as if they are no longer like their prior self.

One way we think about authenticity is in terms of our sense of self in a particu-
lar moment. Does changing the color of my hair make me feel more like my authen-
tic self or like an imposter? This sense of authenticity captures the way in which an 
individual experiences their self from the first-person perspective. A sense of 
authenticity is paramount to ensuring that people feel comfortable living their 
everyday lives. It is also the type that is most intuitively thought of when discussing 
DBS technologies. For example, after a patient undergoes implantation, how they 
feel once stimulation begins is of significant concern. DBS devices differ from phar-
macological interventions in that the effects are typically sudden and can be jarring 
in nature rather than slow and iterative [13]. It is possible that feelings of alienation 
are due to the lack of time users have to adjust to major changes in mood. Many 
traditional pharmacological treatments, such as SSRIs, take weeks to months to 
reach their full effects allowing users to experience changes more gradually [19]. In 
this context, it may be difficult to determine whether feelings of inauthenticity are 
caused by the stimulation from the DBS itself or from changes the user experiences 
to their personality due to amelioration of a disease condition. That is to ask, is the 
device stimulating areas of the brain in ways that cause these new changes, or are 
these changes the result of reducing the negative effects of depression? [11]. 
Regardless of the cause of the changes, there is a very real sense in which end users 
of open-loop DBS experience feelings of inauthenticity.
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14.3.2  Narrative Authenticity

A second way of thinking about authenticity is how the person aligns their actions 
with their true self [20, 21]. On a practical level, some of the worries about end users’ 
feelings of inauthenticity after receiving DBS are tied to the prevalence of the con-
cept of autonomy in modern bioethics. Generally, the worry is that a person will be 
autonomous, capable of understanding the consequences of their actions and choos-
ing freely, but not authentic [22]. For example, in a classic example from the litera-
ture, a man undergoing DBS for PD becomes manic and develops a new interest in 
gambling [23]. When the device is turned on, the man claims that this new version of 
himself, where he is more impulsive and risk taking, is his real self and that his for-
mer self was an inauthentic version. Thus, if our gambling man is deemed to have 
retained his autonomy, under a traditional bioethical inquiry it may be inappropriate 
to deny him the right to make all medical decisions on his behalf. On the other hand, 
giving autonomy more weight than authenticity may presume an inappropriate 
dichotomy between the two. Under this view, it may be impossible for one to act 
autonomously if they cannot act in a way that is consistent with their true self. If we 
are to subscribe to this view, however, in what ways would we integrate authenticity 
into our current legal system for informed consent and medical decision- making? 
For example, at present, we have an established framework for determining whether 
a person is capable of autonomous behavior and can be legally responsible for their 
own medical decision-making [24]. Integrating authenticity would require that in 
cases like the man who gambles, clinicians would have some power to restrict the 
man’s decision-making if his actions are not consistent with his prior self.

14.3.3  Assessing Authenticity

A third way of thinking about authenticity is how to determine whether someone is 
truly acting authentically. The way one approaches this question has to do with their 
views regarding the nature of the true self. Those who hold an essentialist view of 
the self argue that the self is composed of an unchanging and fixed core that repre-
sents one’s true self [25]. Any departures from this fixed self would result in an 
inauthentic self. Those with existentialist views generally believe that the self is 
ever-changing and is constantly redefined by the individual through self- 
determination [25]. Under this view, people are free to change their true self 
throughout their life and can reinvent themselves if they choose. Finally, according 
to relational conceptions of the self, identity is constructed through repeated recali-
bration based on feedback from others, rather than in isolation [26]. These views are 
not mutually exclusive, and most people will likely subscribe to some hybrid ver-
sion of the self that incorporates aspects from each framework. We do not attempt 
to settle this long-standing debate here. Rather, we argue that irrespective of which 
view one holds, in practice there are often disagreements between the user, their 
family members, and clinicians about whether or not the person is acting authenti-
cally after receiving treatment for psychiatric disorders.
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Although there is an understandable preference to defer to the end user in these 
cases, there may be practical value in involving others in clinical decision-making 
when determining authenticity. Feedback from friends and family may help a clini-
cian determine whether an end user will effectively integrate a device into their life. 
Given that most patients receiving these devices are likely to continue to have care-
givers substantially involved in their daily lives, if DBS creates changes in personal-
ity that are too extreme, it may not be advisable to go through with the procedure 
even if it offers reduction of clinical symptoms. That being said, it is worth asking 
whether we are only concerned about feelings of inauthenticity when third-party 
perspectives disagree with one’s first-person narrative? If the gambling man had 
become more thoughtful and loving, would clinicians and family members object? 
These are some of the questions that arise when considering issues related to assess-
ing authenticity.

As discussed above, one way to evaluate feelings of inauthenticity is to rely on 
first-person reports from end users. Whether one believes the true self is fixed or 
changing, the end user will ultimately be in the best position to determine what is 
her true self and in what ways she wants to change that self and embrace a future 
identity. For example, if the gambling man is content with his new identity and is 
not breaking laws or harming himself or others, some may argue that he has a right 
to reinvent his new identity (even if those around him would prefer that he not). 
Furthermore, if this change is coupled with an improvement in clinical outcomes, 
one might argue that the change in the man’s personality is a risk worth taking given 
the benefit he is experiencing from the DBS. On the other hand, what is to be made 
of the man’s values and desires before he received the implant? For example, what 
are we to do if upon turning the DBS off we find that the man reflects upon and 
rejects his recent impulsive self? We are then left with two first-person accounts—
both of which feel like they are authentic. Along these lines, a difficulty has emerged 
in the neuroethics literature about how to objectively determine when an end user’s 
self-reported claims of inauthenticity are to be trusted [27]. How are clinicians and 
family members to resolve the discrepancy between the calm and thoughtful person 
they knew before implantation and the rash and offensive man they see before 
them now?

14.3.4  Why Authenticity?

Before starting our discussion of the differences between open and closed-loop 
DBS technologies, we must briefly consider why authenticity, as opposed to other 
ethical principles, should be the focus of our inquiry. We focus on authenticity for a 
few reasons. First, the empirical evidence, as we have seen above, illustrates that 
when end users talk about changes to their self, many intuitively utilize the language 
of authenticity. Second, authenticity is often a central concern expressed by people 
suffering from psychiatric disorders [28]. Psychiatric disorder can often lead to 
people feeling less like themselves, and treatment with DBS is sought in order to 
improve authenticity. In this way, when we consider closed-loop systems for 
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treatment, we must examine both how they might reduce symptoms of the disease 
that implicate authenticity and the ways in which the device itself introduces new 
concerns about authenticity. Third, authenticity can offer practical utility in guiding 
clinical decision-making [29]. Since traditional bioethical inquiry heavily favors 
concepts such as autonomy as being paramount for medical decision-making, 
authenticity may offer a way to check our typical intuitions about treatment deci-
sions. Finally, using DBS for psychiatric disorders, rather than motor or sensory 
disorders, raises an additional layer of complexity because treatment will seek to 
change the users’ beliefs, desires, and emotions—key components of their self—
directly rather than such changes occurring as an unintended consequence [11]. 
Therefore, authenticity, rather than autonomy, or other bioethical principles, may 
help us better understand the journeys end users take in coming to terms with the 
changes to the self-introduced by DBS.

14.4  Authenticity and Closed-Loop DBS

In what follows, we discuss three different technological improvements made by 
closed-loop DBS and how they may alleviate or exacerbate the types of authenticity 
we discussed earlier.

14.4.1  Reading Data

Unlike other treatments used for psychiatric disorders, closed-loop systems will 
directly measure neural data from the surface of the brain as opposed to measuring 
symptoms based on clinical observation and anecdotal reports [2]. This introduces 
a new range of possible data that is considered when treating psychiatric disorders. 
Traditionally, clinicians are limited to subjective evaluations and indirect behavioral 
assessments to monitor clinical progress. For example, when a patient with MDD is 
prescribed a new SSRI, a clinician typically waits for some time before conducting 
a clinical assessment of the drug’s efficacy. Similarly, in open-loop DBS, the clini-
cian is using clinical data to adjust the stimulation parameters in order to get the 
desired reduction in symptoms. The process, in both pharmacological and open-
loop DBS, involves much trial and error and can be burdensome for end user and 
clinician alike [30].

In contrast, in closed-loop DBS, the device will measure neural activity related 
to a disease symptom directly from the brain. For instance, neural signals gathered 
by implantable ECoG electrodes can potentially be used to measure dysfunctional 
states in neural networks associated with psychiatric disorders [2]. The goal would 
be to develop a list of common phenotypes that are associated with the disorder and 
then try to identify these phenotypes autonomously. The ability for closed-loop 
devices to read neural data in this way can help to improve the treatment of psychi-
atric disorders and thereby reduce issues related to authenticity that are the result of 
the disease.
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First, since the device is continuously reading out brain data, the gathered infor-
mation is valuable for providing ongoing health monitoring and screening. This 
real-time characteristic of the system may be used to offer preventive care. Here, 
individual brain readings are potentially useful for early detection and diagnosis of 
other related diseases that may be leading to feelings of inauthenticity in the end 
user. For instance, if a patient is implanted with a closed-loop DBS to treat depres-
sion, the monitoring of neural data may alert the clinician to a comorbid condition 
that needs treatment. An early intervention can help the patient avoid further feel-
ings of inauthenticity as a result of their disease. The additional neural data can also 
be used for reconfiguring settings (see below) that make the patient feel less alien-
ated, rather than having to wait for an appointment where one has to describe the 
ways in which they feel different. Second, on a large scale, aggregation of neural 
data on a population level can accelerate our understanding of neuroscience by har-
nessing big-data and machine learning algorithms [18]. This gathered data might be 
used to understand the underlying biology of psychiatric disorders [18]. In the long 
run, this cumulative knowledge from numerous patient cohorts might help to gener-
ate a better conceptual understanding of the brain functions that implicate feelings 
of inauthenticity. This could improve treatment by tailoring it towards the end user’s 
reports of how they feel.

However, one current obstacle, especially for psychiatric disorders, is the lack of 
reliable biomarkers for usefully differentiating between pathological and healthy 
states [18]. Closed-loop devices will only be as useful if they are able to measure 
data that is relevant to a user’s condition. If these devices are unable to measure 
accurate neural phenotypes, they may be as (in)effective as our current observation- 
based and self-reported measures of mental illness.

Another issue raised in the literature when it comes to ongoing recordings is 
the exploitation of sensitive data. In order to process the large amounts of data 
collected and for clinicians to be able to make remote adjustments, closed-loop 
devices may have to be connected wirelessly to external systems that have more 
computing power or allow clinician access. This may make them vulnerable to 
hackers, who can potentially access private information and even control the 
device [31]. In the literature, this risk is discussed under the umbrella term of 
“neurocrime” that refers to individuals aiming at “illicit access to and manipula-
tion of neural information and computation.” [32]. Here, hackers might gain 
access to information that represents the patient in a way he feels uncomfortable 
in being represented with. Exploiting this information can change interpersonal 
dynamics of privacy that may result in authenticity issues. If we take seriously 
the likelihood that closed-loop devices will introduce new security issues, hack-
ers could not only steal private information but also alter stimulation (see below) 
in a way that affects motor function, impulse control, and emotions [33]. Here, 
the ability to externally change stimulation patterns can be exploited to intention-
ally impact the end user’s experience of authenticity. Designing future medical 
devices with a specific standard of neurosecurity that implements relevant secu-
rity principles could help to provide neural devices with adequate security mech-
anism [34].
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14.4.2  Analyzing Data

Once the patient’s data is read, it will be analyzed through an algorithm that utilizes 
artificial intelligence or machine learning technologies. The closed-loop device 
must correctly interpret the user’s neural data and associate it with a corresponding 
disease state. If the appropriate criteria are met, the system will determine that the 
user is experiencing symptoms of their illness and that stimulation needs to be pro-
vided. In the pharmacological and open-loop context, a clinician would utilize the 
DSM to tabulate a patient’s anecdotes in order to make a diagnosis or would rely on 
observation.

There are two important implications for this stage of the process. First, making 
disease assessments using various biomarkers and data sources instantaneously 
allows for the system to make individualized diagnosis based on a user’s unique 
brain activity. Second, population level data will be utilized to train the system so 
that it recognizes brain activity that is considered dysfunctional as indicated by it 
falling outside the normal range found in the training set. Both implications mark a 
considerable step forward compared to the manual tinkering necessary in open-loop 
devices. Patients report that the trial-and-error phase for adjusting the stimulation to 
meet their individual needs is one of the most frustrating aspects during clinician 
visits [3].

Closed-loop devices allow us to directly tackle this issue. Here, the device takes 
the role of the clinician in changing parameter settings but does so infinitely more 
times than a person could. In theory, the patient can benefit from less personally 
demanding visits for recurring parameter adjustments in clinical settings [35]. At 
the same time, the adaptivity of the system may result in more effective, personal-
ized treatments that prevent potential overstimulation and unintended side effects 
[18]. For instance, in the case of DBS for PD, stimulation can be turned off when 
the patient is at rest while it can be turned back on when a new movement is recog-
nized. Here, tailoring the system towards the current needs of the individual through 
adaptive data analysis is a tremendous improvement from the ongoing stimulation 
provided by open-loop DBS. Since the system permits the user to forget about the 
ongoing stimulation, the discontinued need to constantly reflect about their current 
state might prove helpful to provide a background setting in which the user feels 
comfortable, presumably resulting in a more authentic state.

On the other hand, there are ways in which we can imagine a system that makes 
diagnoses based on machine learning algorithms may introduce bias against certain 
types of people. For example, what data-set will the artificially intelligent systems be 
trained on? There are ethical concerns about how our existing societal biases might 
be integrated into machine learning algorithms and become further automated, mak-
ing them more difficult to recognize or address [36]. These biases are not limited to 
gender or race and can include negative views regarding people who do not exhibit 
neurotypical behavior [37]. There are ways in which closed-loop systems can under-
mine a user’s authenticity if they misdiagnose legitimate feelings or emotions as 
being pathological rather than justified in a particular situation. For example, what if 
a user is angered as a result of experiencing racial injustice. Would a closed-loop 
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device trained on users who never experienced that type of stress be able to distin-
guish between anger felt in response to a legitimate trigger from anger that is due to 
dysfunction in neural networks? These types of misdiagnoses have the potential to 
make some users feel as if the system is forcing them into behavior that is inauthentic.

14.4.3  Stimulation

Adaptive systems will utilize the results of data analysis to formulate a treatment 
plan. This will be based on two levels of data: personal data indicating an individu-
al’s normal variation in symptoms and population level data indicating the range of 
functional neural activity. In this way, the device can calculate the stimulation needs 
of an individual user within the proven range for the therapy. This will allow the 
closed-loop system to provide a more precise stimulation at multiple brain locations 
at varying voltages without the need for clinical manipulation. As in prior sections, 
the promise of closed-loop devices is that they may mitigate concerns about authen-
ticity by offering better treatment of underlying psychiatric disorders.

Executing this treatment plan, however, relies on the human brain to simultane-
ously adapt to ongoing changes in stimulation. This immediate connection between 
end user and device can lead to problems of authenticity that may be manifested in 
feelings of alienation [6] or autonomy concerns [22]. From a phenomenological 
perspective, some patients report an impact on their perception of themselves and 
their bodies, resulting in statements that they are feeling like a robot or like an elec-
tric doll [5]. Here, the pressing neuroethical issue consists in the difficulty a user has 
in differentiating between what he is doing and what the device is doing.

In the literature, this concern is addressed as the potential danger of closed-loop 
DBS to undermine agency in a way that the individual’s capacity to regulate mood 
may not allow the normal range of emotional responsiveness [10, 11]. Imagine a 
patient with a psychiatric DBS who attends a funeral but is not able to produce the 
expected emotion of crying. Since the stimulation is delivered automatically, the 
patient would not be able to control the device or change any settings intentionally. 
Even worse, the patient might not even be able to recognize whether the current 
emotional setting is a consequence of the device’s adaptive stimulation or actually a 
part of his “original” self without the device. As a result, the device being always on 
with its adaptive, self-learning mechanisms may put the user into a state of constant 
uncertainty. While a user can always stop taking prescribed pills when problems 
occur, an equivalent action of stopping the stimulation may not be possible while 
using closed-loop DBS [10, 11]. While a drug cannot change its method of modifi-
cation mid-treatment to account for unwanted side effects, a closed-loop device 
could make it so the user never even feels alienated. The AI-assisted device, so it 
seems, is always in control since it autonomously determines the time and intensity 
of the stimulation. Even when it is not stimulating, it is doing so for a reason that is 
unbeknownst to the user. This shows that, especially in psychiatric DBS, the imple-
mentation of an AI is not necessarily beneficial for the individual’s experience of 
living with the device. Instead, the addition of another layer of treatment decisions 
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utilizing an integrated AI potentially exacerbates the user’s uncertainty about who is 
responsible for mainting their well-being.

This uncertainty may also motivate concerns about whether the user is in control 
over their actions. Imagine a closed-loop DBS causing a cramp by overstimulating 
a patient who, as a consequence, unintentionally turns the steering wheel of his car. 
Who is responsible for the resulting accident? The patient, clinician, or the pro-
grammer of the AI? This general issue of responsibility ascription in stimulating 
neural devices is coined in the literature as a “responsibility gap” [38]. The integra-
tion of AI into this control scheme adds additional complexity to the already exist-
ing black box nature of neural devices, which makes recognizing and understanding 
the inner workings of the closed-loop device and the influence it has on the patient 
immensely difficult. For our current discussion, we are less concerned about who is 
morally or legally responsible for an involuntary action caused by a closed- loop 
DBS, but rather how the user may feel less in control.

There are two ways in which the user may feel less control. First, they may feel 
as if the device is acting instead of them leading to feelings of alienation. Second, if 
one feels less in control, they may also be less motivated to enact positive behavioral 
change in their lives thereby implicating issues related to narrative authenticity. For 
example, it is possible that users, even if they feel that they are in control over their 
actions, may nonetheless cede responsibility to the device because they believe that 
an artificially intelligent system will address all their treatment needs. A patient suf-
fering from depression who may have exercised in the past to improve their mood 
in conjunction with an SSRI may now feel less motivated, since they have a system 
that provides more precise stimulation and obviates the need for the user to take 
personal responsibility for improving their mood. This raises concerns about 
whether someone is still authentic when they no longer have to put in the hard work 
of improving themselves [8].

In this case, one might note that the patient can always check in with the physi-
cian if there are problems with the stimulation parameters. As a response, the clini-
cian might check whether the device is stimulating correctly according to its 
readings, but will be unable to significantly change the programming, since that 
will probably require updates or changes made by the manufacturer. Furthermore, 
since the device is stimulating solely on the basis of neural data that does not take 
the patient’s unique experience of having a psychiatric disorder into account for 
providing treatment, it is unlikely to be able to handle the task of processing the 
patient’s phenomenological experience when calculating stimulus [17]. Here, cli-
nicians need to be sensitive about keeping a personal relationship with their patients 
by including their anecdotally related symptoms into the therapeutic process [35].

14.5  Future Directions

We have identified several features of closed-loop DBS that may impact users’ feel-
ings of authenticity in morally salient ways. Our discussion elucidated that closed-
loop devices, if developed to their full potential, can reduce concerns about 
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authenticity by reducing disease-related symptoms. In this way, users may feel 
more like themselves, be able to better construct their own narrative identities 
because of improved mood or control over their behavior, and others may start to 
recognize the person they were before being impacted by disease. Conversely, this 
discussion also highlighted the ways in which new technological aspects of closed-
loop systems raise salient concerns about authenticity. Reading of neural data can 
raise issues about whether the correct information is being recorded and opens the 
door for unauthorized access to neural data. The machine learning systems involved 
in analyzing the data can introduce a variety of biases into the systems, thereby 
automating many of the problems we already have in treating and diagnosing men-
tal illness. Finally, adaptive stimulation can exacerbate existing worries about DBS 
causing changes in the self, as well as introducing new worries about whether a user 
will be in control over their own actions and future behavior.

To ensure safe and responsible use of this emerging technology, it is essen-
tial that we not only predict these future issues, but also flesh out initial steps 
towards possible solutions. Here, a potential first step would be to create ethi-
cal guidelines that structure the ongoing debate in a way that any anticipated 
negative consequences of closed-loop technology are prevented or mitigated 
significantly. One way forward could be to recognize that authenticity has an 
important function in medical decision-making without giving it more power 
than it currently holds. Since our legal systems are not yet equipped to deal 
with issues related to authenticity, we can attempt to deal with feelings of 
inauthenticity through additional care for end users while keeping autonomy 
as the dispositive concept when it comes to deciding whether a person is able 
to make their own decisions.

Second, since closed-loop systems make use of algorithms that require train-
ing and including users in the training process can either foster authenticity or 
exacerbate inauthenticity, potential end users should get a thorough explanation 
of what will (or might) happen to them and what they can do if they feel alien-
ated, isolated, or odd post-surgically. In order to achieve this, clinicians should 
make sure that their patients are well-informed about potentially occurring 
changes in authenticity by offering background knowledge about all three stages 
(reading, analyzing, and stimulation) of the neural device. Additionally, ethical 
guidance should focus on the ways in which developers of closed-loop systems 
are cognizant of the different biases that can be introduced into their devices if 
careful attention is not paid to the data sets they are trained on. Guidelines should 
be developed in order to guide developers when they are creating these devices 
so that they include enough training data in order to capture a multitude of diverse 
neural data.

Third, as touched on above, the relationship between the patient and clinician 
will need adapting as closed-loop systems become introduced in clinical practice 
[38]. Here, patients should be given the option of participating in the tuning process 
if they desire it. This may include deeper training on how their stimulator works, 
how its algorithms work, what data is collected, how the data is analyzed, and how 
the stimulation is influencing different parts of the brain. In terms of privacy, this 
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may include an overview on the measures that are in place to protect their recorded 
brain data and secure their implant from security breaches. In terms of alienation, 
this could include thoroughly informing the patient about possible changes on a 
psychological level as well as providing guidance on who end users can turn to if 
they experience a sudden change in authenticity.

Another way clinicians can help users guard against potential unwanted changes 
to the self is to utilize legal instruments like advanced directives. For example, Klein 
has argued that in cases like the gambling man, the user may use a Ulysses contract 
to prospectively note behaviors they find unacceptable and situations where they 
would want their device turned off, even if this goes against the will of the post-DBS 
person: “If I ever become a compulsive gambler, please intervene” [39]. Named 
after the hero from Homer’s Odyssey who famously instructed his crew to leave him 
tied to the mast and ignore his future self, Ulysses contracts could serve as a DBS 
analog to advanced directives used in patients with dementia. Utilizing Ulysses con-
tracts in conjunction with preimplantation consultation with family members and 
loved ones could help the user establish a series of conditions under which clini-
cians would remove the treatment against the patient’s wishes. This could include 
the ability for people close to the user to raise a red flag if they sense the person’s 
behavior is changing but the user themselves does not notice the change or does not 
mind the change. This can guard against concerns about assessing authenticity and 
determine which autonomous self to respect when there is a conflict between a per-
son before and after they receive a closed-loop DBS.

Finally, we saw earlier that authenticity, along with identity more broadly, is a 
relational concept; people evaluate the authenticity of their actions with the help of 
others, and what counts as an authentic action is constrained by others as well. 
Closed-loop DBS users could look to other users to figure out if their actions are 
authentic to them, or if they are a by-product of how the device operates. Research 
on and development of closed-loop devices should facilitate communication 
between users of these devices by coordinating meetups and recording honest testi-
monials (not just in the form of positive marketing materials).

While these and other considerations still need to be discussed more thoroughly 
in the ongoing debate, once fleshed out and put into place, they offer valuable sup-
port for end users to successfully adapt to living with closed-loop devices.
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15.1  Introduction

Artificial intelligence (AI) has already begun to transform healthcare. While AI is 
not currently poised to replace human physicians, it is showing tremendous promise 
in revolutionizing healthcare [1]. From administrative systems to the diagnosis, 
prognosis, and even treatment of challenging diseases and disorders, AI systems 
have gained success and have been integrated into more complex medical situa-
tions. One emerging area of promise for AI is in neurological devices. As neurologi-
cal diseases are notoriously difficult to diagnose and treat, the use of AI for their 
diagnosis and treatment could be uniquely helpful. However, with these potential 
rewards could come high risk, both clinically and ethically. Specifically, even small 
errors when manipulating the human brain can be devastating. Additionally, there 
will be risks associated with the collection of sensitive neurological health data that 
redefines concepts centering around harm. As such, patients that may benefit from 
such neuro-technologies maybe both simultaneously eager to utilize them, while 
being uniquely vulnerable to serious harm.

Liability is one mechanism for addressing such harms. While the enthusiasm for 
neuro-technology integrated with AI is warranted, it is crucial to consider the unique 
liability concerns that will come with the inevitable glitches in these systems. This 
emergence of new technology creates further liability exposure for providers, device 
manufacturers, and healthcare institutions [1].
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As such, the question of who is liable for a glitch in AI technologies becomes 
increasingly more difficult to answer. The potentially liable party will include the 
treating physician overseeing the AI, the manufacturer of the AI system itself, or the 
healthcare institution the patient is receiving said care [1].

The first section of this chapter will begin with an explanation of traditional tort liabil-
ity in the context of healthcare. The second section will then discuss what exactly is 
machine learning and what its role will be. Then, the third section will explore neuro-
devices and the unique liability concerns posed within. The fourth section will suggest 
the importance of data collection in redefining traditional harm. Lastly, pathways towards 
safe, transparent, and responsible use of AI in neuro- technologies will be set forth.

15.2  Traditional Tort Liability

Liability for harm caused by medical errors or device glitches falls under tort law. 
Primarily, injured patients may recover from physicians, hospitals, as well as medi-
cal device manufacturers. Each of the entities mentioned above has a liability 
scheme: negligence, vicarious liability, and product liability, respectively. This brief 
foundation is essential in understanding the role of each liability scheme. While 
these differing schemes will play a significant role in the management of AI in 
healthcare, they are not always an ideal fit.

15.2.1  Physicians

Medical injuries deriving from physician error are held to a negligence standard. Under 
this standard, a physician is liable if their conduct “falls below the standard established 
by law forth protection of others against unreasonable risk of harm.”1 In these cases, a 
physician’s conduct is compared to those of a reasonable physician, which includes 
similar knowledge, skills, and expertise, under similar circumstances.2 As this standard 
of care is based on the skills of peers, it will continuously evolve, including in response 
to technology changes. This system allows flexibility for physicians to meet an average 
standard, rather than the highest standard. Unfortunately, it also means physicians may 
be uncertain of their liability when utilizing emerging technologies, such as tools based 
on AI to make the decision, that may shift the standard of care.

15.2.2  HealthCare Organizations

Healthcare organizations can be held directly responsible for their own negligence, 
or they may be held vicariously liable for the negligent acts of its employees, under 

1 Restatement (Second) of Torts §282 (Am Law Inst 1965).
2 Restatement (Third) of Torts §12 (Am Law Inst 2010).
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the legal doctrine of “respondeat superior.”3 Additionally, they may be liable for not 
properly training employees, which will become significant as hospitals are often 
the purchasing agents for new technologies. This doctrine is enticing to plaintiffs, as 
usually, the hospital has more financial resources than an individual physician.

15.2.3  Medical Device Manufactures

Medical device manufacturers are held to a product liability scheme. Here, manu-
facturers are strictly liable for harm by a defective product. In the case of a device 
defect, the manufacturers are responsible simply because the injury happened and if 
there is a reasonably available alternative design. As companies profit from selling 
these devices that patients rely on, they are held to a high standard in case of harm.

Additionally, the method by which the FDA regulates medical devices has con-
sequences on the manufacturer’s liability for product defects. Class III devices are 
those that pose a high risk to the patient/user. This class typically represents life- 
sustaining implanted devices such as pacemakers or implanted cardiac defibrilla-
tors. While Class III devices comprise less than 10% of all medical devices, their 
potential for harm warrants extra consideration. As such, most Class III devices 
require a Premarket Approval Application (PMA) before entering the market. PMA 
is a determination that the FDA has sufficient valid clinical evidence of the safety 
and efficacy of the device. Significantly, according to Riegel v. Medtronic, Inc., once 
the device has been approved through a PMA, the manufacturer is protected by 
preemption, which blocks state tort claims.4

Occasionally, manufacturers may argue the learned intermediary rule. This 
defense argues that the physician is the end consumer of medical devices as they are 
in the best position to consider the risk and benefits and make a recommendation to 
the patient.5 The doctrine exists as patients cannot be expected to understand for 
themselves the risks of sophisticated medical technologies. As such, the scientific 
knowledge needed to make the best use of these devices is provided to the physi-
cians. If a physician fails to warn an injured patient adequately, they will face liabil-
ity. This may play an essential role in the AI-backed neuro-technologies that will be 
discussed below.

15.3  Machine Learning

Machine learning is a method of data collection and analysis on which the system 
itself learns from data, identifies patterns, and can make predictions and recommen-
dations with very little to no human involvement [2]. The machine can do this pro-
cess far faster and more effective than the human brain. There is also a smaller 

3 27 Am Jur 2d Employment Relationship §356 (Thomson Reuters 2002).
4 Riegel v. Medtronic, Inc., 552 U.S. 312 (2008).
5 Restatement (Third) of Torts, § 6(d).
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subset of machine learning called reinforcement learning in which the machine 
learns through trial and error, much like how human knowledge is acquired [3]. This 
type of reinforcement learning is best explained with DeepMind’s AlphaGo Zero. 
DeepMind first created AlphaGo, which became dominant at the abstract strategy 
game Go after being programmed with rules and all foreseeable moves [4]. While 
impressive, DeepMind then launched AlphaGo Zero, which was only given the 
rules of the game and the gameboard to “learn” from [3]. The system played against 
itself, learning moves that had not yet been found by man. It quickly dominated 
AlphaGo and any human Go player [3].

These technologies have vast potential to revolutionize many facets of health-
care. For example, an AI system can be loaded with every medical article, electronic 
medical record (EMR) entry, and clinical trial to offer the most up to date look at 
disease and treatments. By way of comparison, the average physician only reads 
3–4 h of medical journals each month, and often that information is not integrated 
into their practice [5]. This has massive potential to improve the diagnosis and treat-
ment of neurological and psychiatric disorders, which can be notoriously tricky to 
diagnose and treat.

For instance, a recent machine learning-based AI system is capable of identify-
ing a variety of acute neurological disorders from a patient’s CT scan within sec-
onds [6]. This tool will help physicians prioritize the urgency, diagnosis, and 
treatment of patients, which allows faster intervention and minimizes damage [6]. 
The machines are becoming as good if not better than human physicians in several 
medical areas, including pathology and radiology [7]. Additionally, the collection of 
large sets of data can be used for data mining, an ability that eclipses their human 
counterparts to discover trends and extract medically relevant information [8].

While the technology is exciting, it also will likely not fit seamlessly into our 
existing liability scheme. As these AI systems move from tools utilized by physi-
cians to the decision-makers, some legal and regulatory adaption will be needed. 
The next section will explore potential liability issues when a glitch allegedly harms 
a patient.

15.4  Liability Surrounding Neurological Medical Devices 
That Utilize AI

15.4.1  Physicians

As physicians rely more heavily on algorithms that they do not fully understand but 
still oversee, they may be particularly vulnerable. This black box situation may be 
best illustrated by the Mount Sinai program named “Deep Patient.” It was created to 
absorb the data from over 700,000 patients records in order to extrapolate data for 
high-level predictive modeling. Without expert opinion, Deep Patient became par-
ticularly apt at predicting the onset of psychiatric disorders such as schizophrenia. 
As schizophrenia is notoriously difficult to predict, this is significant for researchers 
looking to mitigate symptoms or intervene prior to symptoms [9].
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This is not without concern, however, as the program is unable to explain its ratio-
nale to physicians [9]. This black box issue likely puts physicians in a precarious 
position. They have a powerful tool; however, they are basing treatment on biomark-
ers they do not understand. This is counterintuitive to evidence-based medicine. In 
the case the algorithm makes a recommendation in error, the physician would be 
unable to double-check the underlying decision-making and fully understand the 
recommendation used in treatment. If the AI should make a mistake that causes harm 
to the patient, the physician may face liability for relying on such a flawed system. 
On the other hand, if some physicians elect not to utilize an AI system because they 
do not understand its decision-making process, they may face liability if the AI sys-
tem would have produced a better outcome in a specific patient. Thus, physicians 
may be put in a “damned if they do, damned if they do not” liability predicament.

While the General Data Protection Regulation (GDPR) in the E.U. requires 
explainable AI, the U.S. has no such legislation.6 Although Explainable AI (XAI) is 
a developing field within machine learning that aims to address how AI systems are 
making these black box decisions [10]. XAI is a new field in machine learning that 
aims to shed light on the black box. One method may be to create explainable algo-
rithms. Black box problems have been a trade-off for powerful neural network algo-
rithms; however, programmers have worked to add traceability into them. The 
Department of Defense (DoD) through the Defense Advanced Research Projects 
Agency (DARPA) is investing heavily in XAI, to manage concerns over autono-
mous weapons [11]. Until a major breakthrough, however, physicians are going to 
be in the position of making decisions without explainable evidence.

Additionally, manufacturers being sued for product defects may try to shift liabil-
ity to the physician through the aforementioned learned intermediary defense. In the 
situation of neuro-devices, the learned intermediary doctrine is likely more important 
than ever, as it will encourage a thorough and suitable informed consent procedure. 
Informed consent is a process by which a patient is given knowledge of a procedure’s 
potential risks and benefits. It allows patients to receive not only information but also 
the opportunity to ask questions in order to agree to a specific medical intervention 
confidently. Even in these cases in which the devices are shifting from simple physi-
cian tools to mechanisms that look like the decision-maker, a human physician is still 
overseeing the devices and going over risks and benefits. Here, the physician needs 
to be transparent regarding overall device risks, black box issues, and rules of data 
collection, including which types of data will be collected and the scope of their use.

15.4.2  Hospitals

Interventions utilizing neuro-devices most frequently take place in a hospital set-
ting, which leaves the hospital vulnerable. Robotic surgical tools bring many bene-
fits to the surgeon, and they once again change the liability structure of traditional 

6 95/46/EC, Article 22, EU GDPR. “Automated individual decision-making, including profiling”, 
http://www.privacy-regulation.eu/en/22.htm
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surgery. For example, the da Vinci surgical system offers the surgeon robotic instru-
ments, guided via console, providing a better range of motion, better 3D views, and 
the ability to operate through smaller incisions.7 While both the physician and man-
ufacturer are apparent targets for tort claims if an injury occurs, hospitals may also 
face claims. In one lawsuit, the facts of the case demonstrated that the surgeon chose 
to ignore the recommendations of the manufacturer and perform robotic surgery on 
a patient who was not an appropriate candidate.8 The operation had multiple com-
plications, which left the patient with a poor quality of life and ultimately premature 
death. Both the jury and court of appeals found that the company adequately warned 
the physician of the nature of the robotic system, and they did not need to warn the 
hospital. Despite this, the Washington State Supreme Court extended the company’s 
duty to warn past the physician, to the hospital themselves, as the purchasing 
agents.9

Cases such as this will be particularly significant as there is much promise in the 
use of robotic assistance to perform cutting-edge brain surgeries. For example, 
Brain Navi Biotechnology, a Taiwan-based company, has developed a robotic- 
assisted surgical system specifically for brain surgery, called the NaoTrac.10 This 
machine combines AI, computer vision, and robotics to allow physicians to plan a 
surgery under AI, has the advantage of computer vision during the procedure, and 
facilitates the procedure with precise robotic arms. The company ran its first human 
trial in November 2018. The NaoTrac executed external ventricular drainage (EVD) 
on a hydrocephalus patient. The machine performed the procedure in 30 seconds, 
and the postsurgical C.T. scan showed that the placement was in the exact location 
the surgeon had planned.

Similar to the da Vinci surgical system, hospital systems are the likely purchasers 
of such cutting-edge surgery tools and as such may be vicariously liable for error, 
even in the case of product defect.

15.4.3  Manufacturers

Neuro-technologies using AI transform the device from a physician’s tool to a 
decision- maker itself. The algorithms used are continually learning, much like the 
development of a human physician, synthesizing assimilated data over time [12]. 
However, unlike a human physician, who is held to a negligence standard of liabil-
ity, which allows a reasonableness standard to apply, the machine will be held to a 
product liability standard, which means a strict liability standard applies. Here, the 
device could be punished for learning, even when it may be performing with more 
accuracy than its human counterpoints [13].

7 Intuitive, About da Vinci Systems, accessed at https://www.davincisurgery.com/da-vinci- systems/
about-da-vinci-systems
8 Taylor v. Intuitive Surgical, Inc., 355 P.3d 309 (Wash. Ct. App. 2015).
9 Taylor v. Intuitive Surgical, Inc., 389 P.3d 517 (Wash. 2017).
10 Brain Navi Biotechnology, About, accessed at brainnavi.com/about
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In particular, these types of lawsuits will be particularly alluring to plaintiff attor-
neys, as device companies and the hospitals that purchase their products may be 
viewed as having deep pockets and will be subject to strict liability and potential for 
punitive damages [13]. The example of robotic surgery from above demonstrates 
this as well.

In the case of NaoTrac, the precision of a robot can aid in lessening neurological 
problems through human mistakes during surgery, as even microscopic errors can 
be dangerous.11 Additionally, it is particularly helpful during extended neurological 
operations that are plagued by physician fatigue. An in-depth study demonstrated 
that neurosurgeons were particularly susceptible to burnout and low satisfaction of 
work–life balance, which simultaneously encourages early retirement and discour-
ages medical students from pursuing the specialty [14]. However, despite these 
novel aids, the brain is far more sensitive than other organs. Compared to other 
robotic surgery, robot-assisted neurosurgery could see greater potential harms and 
lawsuits, with more substantial rewarded damages.

In the instance that the machine malfunctions, it is a clear case of product liabil-
ity and the company will be sued directly. The majority of claims against da Vinci 
concern complaints around malfunctions causing leaks of electrical currents and 
arcing, which is when sparks from a surgical instrument land in the patient’s body, 
causing burns [15]. While these can occur with traditional surgery, it is far more 
prevalent in robotic surgeries [16]. In 2014, Intuitive, the manufacturer of the da 
Vinci surgical system, acknowledged that it carved out $67 million to settle approxi-
mately 3000 claims related to its device, some dating back to 2012 [15].

These concerns over malfunctions become magnified when looking to future 
technologies, such as brain–computer interface technology (BCI). An example is 
Elon Musk’s recent announcement that his company, Neuralink, has developed thin 
“thread-like” electrodes and a “sewing machine for the brain” designed to implant 
those electrodes directly into the brain through tiny holes in the skull. He aims to 
test this device in humans within a year. BCIs are machines that allow brain signals 
to communicate with an external device. While the timeline may be unrealistic, this 
technology is being developed by Facebook, as well as by Kernel, helmed by Bryan 
Johnson, another Silicon Valley entrepreneur [17]. These devices aim to treat mental 
illness, neuromuscular conditions, as well as work on focus and cognition [17]. 
With such ambitious technology, the risk and responsibility for glitches are 
significant.

15.4.4  Regulatory Considerations

15.4.4.1  Software
While traditional medical devices have the opportunity to go through a PMA and 
gain preemption from state tort claims, the software itself poses an exciting chal-
lenge. Specifically, software that relies on machine learning is always changing, 

11 Brain Navi Biotechnology, About, accessed at brainnavi.com/about
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which does not pair well with traditional static regulatory structures. In April 2019, 
the FDA released a white paper that laid out the agency’s outline of managing soft-
ware as a medical device (SaMD) that uses AI or machine learning.12 It acknowl-
edges the complexity of AI or machine learning and is taking a risk-based approach 
to organizing SaMDs based on the intended use. Here, it identifies the importance 
of the information provided by the SaMD to the healthcare decision as well as the 
severity of the healthcare situation. It lays out four principles for regulation. First, 
good machine learning practices (GMLP), which sets the expectation that manufac-
turers have an established quality system that corresponds to suitable standards and 
regulations. Specifically, for SaMDs, the FDA proposes relying on software Pre- 
Cert, in which manufacturers are approved rather than individual products. Second, 
it outlines a framework for modifications to SaMDs, including an anticipated modi-
fication, “SaMD Pre-Specifications” (SPS) and the “Algorithm Change Protocol” 
(ACP), that would allow for changes in a controlled manner, serving patient needs. 
Third, it outlines that companies can document modifications on their own unless 
they are outside the scope of the SPS and ACP, in which case the modification 
would go before a “focused review.” Lastly, the FDA expects manufacturers to 
agree to the principles of transparency and performance monitoring.

While there is no mention of liability, it is unlikely preemption would be extended 
to SaMDs as this necessarily flexible process would be quite different from a PMA. In 
the Riegel decision, the Supreme Court noted that “the FDA requires a device that 
has received premarket approval to be made with almost no deviations from the spec-
ifications in its approval application.”13 As mentioned, SaMDs are definitionally in 
constant deviation, so it is unlikely preemption would be extended to them.

15.4.4.2  Devices
The neuro-devices highlighted above will likely pose a high risk to the patient or 
will be implanted in the brain. In the case of NaoTrac, it may be classified as a Class 
II device, similar to the da Vinci surgical system. This would mean it could go to 
market without a PMA and the company would be liable for any device glitches. 
Consequently, companies should be aware of potential lawsuits against them as 
compared to the cost of preemption. With that in mind, the article will move onto 
the complexities around the liability scheme for software with machine learning, 
which is far more complex.

While Neuralink’s implantable device is a far more likely candidate for Class III 
categorization, companies like Facebook and Kernel are looking to develop nonin-
vasive interfaces. This may challenge traditional thinking on risk, as devices that 
merely slip over our head to interact with our brainwaves may be viewed as less 
risky, even though they may still be quite powerful. For example, Muse is a 

12 FDA, Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine 
Learning (AI/ML)-Based Software as a Medical Device (SaMD)-Discussion Paper and 
Request for Feedback (2019), accessed at https://www.regulations.gov/document?D=FDA-
2019-N-1185-0001
13 Riegel v. Medtronic, Inc., 552 U.S. 312,323 (2008).
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direct- to- consumer EEG device that interprets mental activity in order to guide the 
user to a more calm, mindful, focused state.14 While there has not been any associ-
ated harm with the Muse, these types of direct-to-consumer brain wearables may 
become more advanced, with more potential to harm. However, under recent FDA 
guidance, such devices targeted at patient “wellness” rather than diagnosis or treat-
ment of specific diseases are outside the scope of FDA regulation. Such devices will 
be spared the burden of regulatory approval, but will also lack any liability protec-
tion that would be provided by an FDA PMA.

15.5  Data Collection Consideration

While the most obvious harm to patients comes in the form of device glitches, it is 
important to note that there is also a significant risk to patients and consumers through 
data collection. These neuro-devices will be collecting large amounts of neurological 
data, which may be particularly vulnerable, including private thoughts and compro-
mising medical information. While those devices used through a physician would be 
covered by the Health Insurance Portability and Accountability Act (HIPAA), that 
legislation will likely be too outdated to cover these new technologies adequately.

15.5.1  Invasive BCIs

In the case of an invasive brain–computer interface, as proposed by Neuralink, that will 
enter the brain and manage a neurological defect the resulting data would fall under 
HIPAA. However, patients are free to share their own information. Meaning, a patient 
could theoretically give his or her information to Neuralink to use if they were to set up 
an associated app, have patient data linked to other researchers and companies, and have 
the patient sign away rights to said data. Patients may not be aware of what they are 
protected from and what they are not. As health data is particularly valuable,15 it is likely 
companies will try to find a workaround to collect and use their data, even in the most 
controlled setting. With machine learning, the availability of large data sets is critical to 
effective applications, so companies will be eager to gain access to such data sets.

15.5.2  Neurowearables

What is even more fascinating is the potential for data collection in noninvasive, 
direct-to-consumer, neurowearables. These products will generally not be pre-
scribed by physicians, and so the data generated will be outside of HIPAA 

14 Muse, How it works (2019), accessed at https://choosemuse.com/how-it-works/
15 Yao, Mariya, Your Electronic Medical Records Could be Worth $1000 to Hackers (April 2017), 
accessed at https://www.forbes.com/sites/mariyayao/2017/04/14/your-electronic-medical-records-
can-be-worth-1000-to-hackers/
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protections. These devices are small, affordable, and may offer continual brain 
monitoring [18]. This ease also increases the number of people utilizing them 
and the amount of data collected, which is immensely valuable to neuroscien-
tists [19]. As mentioned, the Muse device is an EEG that interprets an individu-
al’s mental activity. While it is helping the user focus and meditate, it is also 
connected to the user’s mobile device via Bluetooth, offering results and prog-
ress. While Muse states that customers’ information is anonymized and confi-
dential, one can imagine they, or others in the space, may wish to sell the data 
they are collecting.

Similarly, 23andMe collects the data of its users and offers a click button to 
donate your genetic data to the system for research. They now have the genetic data 
of over five million customers [20]. This has provided the company the ability to 
partner with GlaxoSmithKline to solve complex medical issues through data min-
ing.16 While these large data sets will be essential to evolving precision medicine, 
there is less thought going into the potential concerns around data collection.

The notion of harm, system glitch, and liability will need to be completely rei-
magined. Cardiff University launched a Data Justice Lab, which aims to record 
examples of harm caused by big data, including the following categories.17 First, 
data breaches may expose individuals to unwanted exposure. Additionally, individ-
uals may face discrimination, imagine that corporations buy data sets from Muse or 
the like and choose employees based on mental capacity. There may be data errors 
that incorrectly exclude or include an individual from medical intervention. Lastly, 
there will likely be social harms. For example, data collection from social media has 
led to widespread political manipulation.18 Neurological data will probably be far 
more meaningful than what we share on social media, and that should not be taken 
lightly.

15.6  Pathways Forward

While we need to allow AI systems to “learn,” much like human physicians, that 
must be balanced against patient safety. A patient’s first approach to implementing 
AI neuro-technology is central to building a system that is transparent, responsible, 
and accountable. To this end, we will discuss AI informed consent updated, increased 
education for physicians, and FDA updates to working with AI.

16 GSK, GSK and 23andMe Sign Agreement to Leverage Genetic Insights for the Development of 
Novel Medicines (2018), accessed at https://www.gsk.com/en-gb/media/press-releases/gsk-
and-23andme-sign-agreement-to-leverage-genetic-insights-for-the-development-of-novel- 
medicines/
17 Data Justice Lab, About, accessed at https://datajusticelab.org/about/
18 The Computational Propaganda Project, Computational Propaganda Worldwide: Executive 
Summary, accessed at http://comprop.oii.ox.ac.uk/publishing/working-papers/computational-pro-
paganda-worldwide-executive-summary/
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15.6.1  Ethics of Informed Consent

Neuro-technologies bring new ethical considerations centered on balancing the col-
lective good associated with the future of medicine against individual rights. 
Theoretically, informed consent gives the patient the knowledge to make an empow-
ered and autonomous decision on their health, however, in practice it can be lacklus-
ter. Real-life consent forms are often boiler plate, written in a language not easily 
understood by patients, and rushed through to complete an EMR [21]. This will 
likely be intensified with the addition of artificial intelligence.

In order to move forward ethically, informed consent needs to be truly centered 
around the patient. The technological progression cannot move solely from a place 
of what is best for the future good of medicine, but also respecting the individual 
rights of those patients who will be used for early adoption. Physicians need to 
explain traditional risks and benefits, as well as how AI impacts the patient’s neu-
rotreatment. In the case of black box issues, patients should be made aware of what 
the physician is uncertain of in order to assess risk for themselves. Patients should 
also be made aware of the role of data collection in the AI device. Namely, what 
types of neurological information will be collected, how it will be stored, how will 
it be protected, and what it will be used for. Data collection is central for these tech-
nologies to improve but introduces the potential for new existential harms. Here, 
patients should sign specific, informed consent over all collection and uses of their 
data, separate from the consent they give for treatment itself.

Likewise, for in-home wearable devices, terms and agreements cannot be a sim-
ple click box with pages of background information. Data should be explained, with 
line-by-line checkboxes. Patients should be made aware of whether their data is 
protected by HIPAA, if the device company owns the data, how the device company 
is using the data and if the device company will sell the data to other companies.

15.6.2  Neuro Rights

There has also been a growing movement to establish specific neuro rights as an 
intersection of neuroscience and human rights. Specifically, individuals should have 
the right to cognitive liberty, the right to mental privacy, the right to mental integrity, 
and the right to psychological continuity [22]. Knowing that this revolution of 
neuro-technologies will challenge existing legal and ethical framework, creating 
this baseline of rights allows human rights to be built into the rapid development of 
these nascent technologies. These neuro rights will likely have to develop as new 
concern develop but will serve as a foundation for protecting individuals.

15.6.3  Physician Education

Informed consent can only be improved if physicians are better educated about 
AI. Physicians should be responsible for understanding all that can be known about 
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the technologies they are utilizing, especially when dealing with neurological 
AI. They need to be made aware not only of the technology itself but also the data 
considerations, as that may not seem like their responsibility at first glance. 
Additionally, they should be responsible for articulating this knowledge to their 
teams and make sure they are following all standards and guidelines. Even if physi-
cians cannot fully understand the process and output of an AI system, they need to 
have a sound basis for knowing when they can trust an AI system and when 
they cannot.

15.6.4  Hospitals

Similarly, a hospital may be vicariously liable for device harm, and they should be 
responsible for establishing best practices for the use of AI in their hospitals. This 
includes ensuring physicians are adequately trained, providing continuing educa-
tion on the product, as well as establishing and implementing standards for cross-
checking both physicians and AI.

15.6.5  FDA Updates

While the FDA has outlined frameworks for managing machine learning, they have 
not yet moved to the draft guidance, let alone rules. Creating a regulatory frame-
work that is both flexible and fosters innovation, as well as puts patient safety first, 
is not an easy task. Here the FDA should build in privacy and transparency into the 
rules. Companies developing XAI should be rewarded with the fastest approvals. 
Similarly, those that make AI with constructs to manage bias and patient privacy 
should be given more trust.

This task to get guidelines early, while not truly understanding the technology 
is an illustration of the Collingridge dilemma. This predicament arises when there 
is a lack of information until the technology is widely used; however, making 
changes to technology is very difficult once it is well-established [23]. For exam-
ple, this is one reason managing Facebook has been so difficult. We are playing 
catch up and trying to control the data of a system that was built to collect data. If 
privacy concerns were built into the rules at the beginning, it would have been 
much more manageable. On the other hand, very few people, including Mark 
Zuckerberg, likely realized the power of big data associated with digital platforms 
such as Facebook.

Here, the FDA has the benefit of seeing the use of AI and data collection in 
other areas. They do not need to understand every possible development from 
neurological AI, but only to recognize its significance and vulnerability, against 
the goal of patient safety. Much will be learned as these develop, but the setting 
for standards for data collection, error reporting, and built-in privacy measures 
will be crucial.
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15.7  Conclusion

The use of AI in aiding neuro-technologies is nothing short of revolutionary. These 
systems offer hope to those unable to walk, those who live in constant fear of an 
epileptic seizure, and others with debilitating mental illness. As these particular 
diseases or injuries are particularly challenging to diagnose, prognose, and treat, 
breakthroughs at this level would be life-changing to patients, as well as caretakers.

All medical treatment carries inherent risk, and striking a balance in how liability 
is managed can serve as an important tool in both patient care and fostering innova-
tion. These new tools challenge existing tort theory as machine learning transforms 
the tools used by physicians to the medical decision-makers themselves. Additionally, 
the much-needed data collections used by these systems will both accelerate medi-
cal knowledge and challenge existing notions of harm and ownership.

While all forms of risk will never be removed, as risk is inherent in most high- 
risk medical interventions, we can build a liability framework to minimize risk and 
keep patients informed. In the realm of neuro-technologies, patients’ need should be 
at the forefront. As such, algorithms and processes should be created to improve 
informed consent practices, as well as protect and explain patient privacy.
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16.1  Introduction

There is no shortage of dreams for implementing artificial intelligence (AI) in brain 
and mental health. Elon Musk’s launch of Neuralink is just one of those recent 
dreams. The possibilities and potentials of AI in brain and mental health are numer-
ous. However, there is also no shortage of fears and criticisms as many dreams of AI 
in brain and mental health unfold. As these potentials and fears have boiled, it has 
been the interdisciplinary job of ethicists, social scientists, computer scientists, 
legal experts, neurologists, and neurosurgeons, to name a few, to try and understand 
not only how to proceed but also how to understand each other. The current and 
future challenges of implementing AI in brain and mental health, which are of con-
cern here, are to untangle not only the complexities of human rights but also some 
of the complexities of these fields working together. There is already extensive work 
on the implementation of human rights in AI and healthcare. The goal of this chap-
ter is to unravel some of the complexities of guidelines, regulations, policies, trea-
ties, and implementation of human rights for future development of ethical AI in 
brain and mental health.

To untangle, trail, and read the hundreds of documents, guidelines, regulations, 
policies, treaties, and ethics codes of AI, let alone healthcare, is an overwhelming 
assignment. It is an assignment that researchers in these areas are, quite frankly, 
unlikely to find time to do. It is an assignment that not many students in these fields 
are required to interpret. It is clear that there are several common threads between 
many of these documents, principles that require respecting human rights. The term 
“human rights” is often used but less often explained in detail. International human 
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rights doctrines burgeon after the wake of World War II. The atrocities and disre-
spect humanity witnesses proves that this sort of regulation and rights for humanity 
needs to be manifested internationally. Subsequently, the Universal Declaration of 
Human Rights (UDHR) is proclaimed to be the “common standard of achievements 
for all peoples and all nations” on December 10, 1948 [1]. The declaration serves as 
a precedent for subsequent, national, international, and intergovernmental, cove-
nants, charters, and conventions on human rights [2–8]. There are many treaties 
affirming human rights, and while many nations have signed these various treaties, 
not all have ratification, acceptance, or approval. A signature binds the nation to 
follow the treaty so as to not defeat the objective and purpose of the treaty but does 
not officially bind that nation to the treaty, like that of ratification or acceptance [9]. 
The United Nations provides documentation of the status of ratification for each 
nation and treaty in its UN Treaty Body Database [10]. In some countries, the 
UDHR, as many have realized, is fulfilled in name only. Nations also include 
inalienable rights in their constitutions, yet these are not always internationally reli-
able, as there are differences in adaptations.

Human rights-based approaches (HRBA) are surfacing as ways to frame interna-
tional development, technology development, healthcare, and policy development, 
to name a few. Using a HRBA means that one does not internalize their develop-
ment efforts as charity or philanthropic business, but as their duty-bearer obligation 
to acknowledge humans, as rights holders, claiming their human rights. In a HRBA, 
humans are not seen as passive subjects of development but as active partners in the 
process of development due to their being rights holders [11]. It is important to 
understand, as Broberg and Sano assert, that there is no “one-size-fits-all” HRBA 
[11]. These variations will play a vital role in the ethical development of AI in brain 
and mental health. Even if every corporation, nation, and continent were to adopt a 
HRBA in the development of AI in brain and mental health, there is a great likeli-
hood that the human rights chosen as foundations for these approaches would not be 
uniform due to variations in culture, ideology, politics, institutions, and resources. 
Decades of contention between the United States and China pertaining to actualiz-
ing human rights provide several examples of how human rights are not globally 
uniform or implemented due to political, ideological, and cultural differences [12]. 
The United States Congressional-Executive Commission on China archives an 
extensive list of purported human rights issues in China. Some countries lack 
HRBAs due to deficiencies in institutions, resources, or capital devoted to human 
rights development. Universal human rights will only be achieved when all coun-
tries are able to participate in their development, yet the list of least developed 
countries (LDC), as of May 2021, lists 46 countries. Fortunately, there are efforts to 
integrate LDCs in the Human Rights Council. In 2012, the Voluntary Technical 
Assistance Trust Fund to Support the Participation of Least Developed Countries 
and Small Island Developing States in the Work of the Human Rights Council was 
established to promote participation from LDCs. The fund supports “activities 
designed to enhance the institutional and human capacity of least developed coun-
tries and small island developing States, to enable their delegations to participate 
more fully in the work of the Human Rights Council” [13]. A vital resource for a 
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HRBA is an authority (often a State) that will serve as a duty-bearer providing rep-
resentation, courts, and law-enforcement for rights holders. HRBAs are not easily 
applied in scenarios where these resources are lacking. Another vital challenge with 
a HRBA is educating target groups of their rights, as rights holders, and encourag-
ing them to claim them from duty-bearers, like the State. It should not be assumed 
that all rights holders are alike, there is no guarantee that once educated, a rights 
holder will claim their rights, want to claim their rights, or value the same rights. 
This yields questions like, what human rights principles should guide the develop-
ing policies of AI in brain and mental health internationally? Is it possible to develop 
an international policy of this sort? Should these human rights principles be the 
same in the developing policies of general AI? How should they be the same 
or differ?

AI’s influence in healthcare is recognized by many. AI has altered the way physi-
cians make clinical choices and diagnoses, and how patient information is stored 
and retrieved. AI assists physicians by parsing data quickly and more efficiently. AI 
must “learn” via large data sets that include patient demographics, medical informa-
tion, lab results, images, and recordings to name a few. Data privacy and patient 
confidentiality regulations have addressed ethical concerns that have risen from 
these applications. AI is arguably influencing every sector of healthcare, from radi-
ology to management and pharmaceuticals [14]. AI in healthcare is primarily used 
in two forms, machine learning and natural language processing, and is used in 
cancer, nervous system, cardiovascular disease research [15], in medical diagnosis, 
surgery, hospital management, and even virtual health assistants. However, as AI 
and brain–computer technologies are increasingly unified, new ethical concerns 
arise in the areas of AI in brain and mental health. As AI has surged into medical 
devices, the Food and Drug Administration in the United States has realized the 
pressing need to regulate AI in medicine. The Academy of Medical Royal Colleges 
has also realized the urgency of developing guidelines for ethical and safe AI for 
healthcare [16].

16.2  Human Rights in AI and Healthcare

The vastness of human rights can be overwhelming. Human rights not only have a 
long and complex history but have been, and still are, the subject of debate [17]. 
There is a generous number of human rights and a generous number of ways human 
rights can be interpreted and actualized. These varieties in interpretations can cause 
confusion and miscommunication. By 2003, human rights-based approaches to 
development had become so convoluted that the United Nations agencies were com-
pelled to address their own discrepancies, as “each agency has tended to have its 
own interpretation of approach and how it should be operationalized” [18]. Thus, 
breaking down the fundamental background of human rights before interpreting the 
establishment of human rights in AI and healthcare is necessary.

The fundamental background of human rights, which is often overlooked, is the 
jurisprudence that serves as the foundation for human rights. It is rare to find the 
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mention of jurisprudence in literature pertaining to human rights in AI and some-
what more common in discussions of human rights and healthcare. Examining 
jurisprudence, as in the philosophy or theory behind law, is a crucial first step in 
understanding how human rights are applied and from where debates surrounding 
human rights stem. This is becoming increasingly important as the number of guide-
lines, ethics codes, and reports coming from nonlegal actors using the concept of 
human rights escalates. One could spend years defining various jurisprudence con-
cepts and theories, but a quick jurisprudence tool is determining who is using the 
concept of human rights and identifying their background. In general, the concept 
of human rights is used by ethicists and legal scholars alike. Ethicists are often 
interpreting human rights from a moral natural law theory that see human rights as 
deriving from moral principles and the objective reality of being human. From this 
perspective, human rights are granted regardless of the State, political order, or posi-
tive law, because we are human we have human rights. Legal scholars, in contrast, 
do view human rights as positive laws that have been approved by a court or State. 
To avoid such generalizations, more effort should be put on communicating inter-
pretations of human rights beyond the sentiment that they are “universally binding,” 
as we have seen this is not always the case. Distinguishing who is using the concept 
of human rights is an important indicator of the underlying theories behind their use 
of the concept. How the concept is being interpreted has important implications for 
how the specified ethics code, report, or guideline can be actualized.

There is a prevalent consensus that AI already is and will continue to violate 
human rights [19–21]. The rights likely to be violated are antidiscrimination, free-
dom of speech, freedom of expression, right to privacy, right to equality, right to 
security of person, and the right to self-determination. These rights have been, and 
continue to be, challenged by our technologies, but a pressing concern is that our 
previous technologies were not as powerful nor have the reach of AI. Concerns are 
that the values of AI will not align with human values, this has been designated as 
the value-alignment problem. It has been predicted that AI will bolster the digital 
divide leading to significant economic and social inequalities. Yet, the power and 
reach of AI also delivers new positive potentials that humanity has never seen. Thus, 
we find ourselves trying to balance the concerns and excitement for AI. Using a 
HRBA has been proposed by several as the scale for this balancing act. Advocates 
for HRBAs see human rights as the solution that will stabilize the future of human-
ity and AI. Advocates propose that a HRBA should not only be a part of the regula-
tion of AI but also a part of AI development [21]. Advocates of HRBA believe 
human rights should be the universally agreed upon values that guide AI develop-
ment and regulation around the globe [19, 20, 22]. Developing AI to support and 
respect human rights values would ostensibly resolve the current and future viola-
tions of human rights. It would also address the potential social and economic 
inequalities created by AI, as certain human rights would provide legal language for 
defense against States and corporations [23]. The Asilomar AI Principles also assert 
that ethical AI is designed with human values, human dignity, human rights, human 
freedoms, and cultural diversity in mind [24]. These are aspirational and progressive 
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solutions that seek to benefit humanity. However, after closer inspection designing 
AI with these characteristics in mind raises its own ethical concerns and challenges.

Deciding which human values and rights to implement and who gets to decide 
which human values and rights to implement in AI is not an easy task. Fears of ethi-
cal imperialism have been vocalized as some AI companies have more money and 
power than others. There is also concern that different countries will either not 
design AI with human values in mind or will pick human values that do not align 
with theirs [21]. This has become a secondary iteration of the value-alignment prob-
lem. Not only does AI need to be designed with human values in mind but humans 
have to align their own values with each other. This second value-alignment prob-
lem has highlighted a major issue in implementing a HRBA for AI, that is, what 
happens when human rights values conflict, cannot be fully actualized, or cannot 
support every human right? If a certain AI application violates one human right but 
supports another, what is the solution? This is a problem Cansu Canca, founder of 
AI Ethics Lab, says can only be solved with the use of ethical reasoning. This 
becomes particularly important when considering AI in healthcare. If an artificially 
intelligent BCI will fulfill the right to equality and health, but violate the right to 
privacy and self-determination, what is the solution? Not only will the solution lead 
to a subjective answer, but the UDHR, and other regulatory frameworks, do not 
provide answers on how to go about choosing one human right over another. These 
decisions are made by using ethical theories like utilitarianism, deontology, or vir-
tue ethics [25].

In 2005, Leslie London stated, “We live in an increasingly globalized environ-
ment, characterized by growing tensions between our technological capacities and 
the abilities of our social policies to meet basic human health needs.” Statements 
like these are ostensibly timeless. Just a decade later, we are still struggling as aca-
demics, lawyers, ethicists, politicians, and scientists to cope with our increasingly 
technological society while maintaining the dignity and rights of the humans that 
live in it. Human rights in healthcare, similarly to human rights in AI, are debated 
and not always universally applied. It has been argued that the only example of 
protecting human rights in biomedical settings at an international level is the 
European Convention on Human Rights and Biomedicine of 1997. This is due to the 
convention’s focus on developing human rights principles in the biomedical field 
that makes it such an ideal example [26]. However, its vague use of human dignity 
as a normative pillar of health law does not sit well universally. This is due, in part, 
to perspectives that see the normative pillar of health law as healthcare problems, 
focusing on “rules of civil, criminal and administrative law” [26]. There are also 
variations in perspectives on health law that stem from varying philosophical per-
spectives. For example, healthcare in the United States is primarily concerned with 
principles of self-determination and autonomy, whereas European healthcare is 
concerned with principles of human dignity and solidarity. There have always been 
philosophical differences, but there is also another major growing historical differ-
ence in outlooks towards healthcare. That is, definitions of health and those that are 
defining health are changing and in some cases have already changed [26]. Health, 
at one point in time, was defined exclusively by medical professionals and 
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physicians. The primary responsibility of physicians was to “cur[e] illnesses rather 
than satisf[y] individuals” [26]. Today, healthcare can be portrayed as a contracted 
service in which the patient decides, based on transparent information from their 
physician, how they would like their care to be actualized. It is then the ethical and 
legal responsibility of the physician to respect the patient’s autonomy and follow 
through with their patient’s decision.

At first glance, it may seem that the responsibilities and professional conduct of 
a computer scientist versus a healthcare professional are quite dissimilar. However, 
over time these two professions have started to resemble one another more and 
more, especially from a regulatory perspective. Medical professionals were once the 
authoritative voice for healthcare, just as computer scientists have been for com-
puter science. The United States in the 1930s began thinking of patients as custom-
ers due to rising costs, then the 1960s entertained the patients’ rights movement, and 
today medical professionals are subject to contractual obligations that if not fulfilled 
may lead to civil lawsuits [27]. While the relationship between medical profession-
als and patients is different than computer scientists and end users, both can be 
considered service providers. Medical professionals are obligated to execute good 
care that is skilled and competent and respects patients’ rights. Some of those 
patients’ rights include control over one’s treatment, control over their information, 
the right to nondiscriminatory care, and the ability to cease care [27]. These patient 
rights are not wildly dissimilar from what citizens are asking of from AI regulation. 
Perhaps 1 day, rather than directing and defining computer science for themselves, 
it will be the ethical and legal responsibility of computer scientists to satisfy indi-
vidual citizens and/or maintain the digital “health” of populations. If AI is to become 
just as critical to human society as medical care, there may be much more that can 
be learned about potential regulation of AI by comparing the professions of com-
puter scientists and medical professionals currently, historically, and globally.

Regulation of AI in healthcare does have a growing global network. The 
International Medical Device Regulators Forum (IMDRF) is a voluntary forum con-
sisting of representatives from Australia, Brazil, Canada, China, Europe, Japan, 
Russia, Singapore, South Korea, and the United States. The forum works to estab-
lish medical device regulatory harmony and convergence. Many instances of AI in 
healthcare can be defined under the term “software as a medical device” (SaMD). 
The term was officially defined by IMDRF, as “software intended to be used for one 
or more medical purposes that perform these purposes without being part of a hard-
ware medical device,” and several examples of what can and cannot be considered 
SaMD are provided [28]. While the forum is a promising step in the direction of 
global regulation, it only represents one sector of healthcare, medical devices. It is 
important to note that not all AI that is utilized in healthcare falls under SaMD clas-
sifications and regulations. AI that may handle workflow, clinical communication, 
and patient registration and visits and AI that searches and queries a database for 
records are not SaMD. Thus rendering the question, who or what is regulating these 
“other” AI in healthcare settings? It is likely that these AI systems are not regulated 
with the same global perspective in mind. Since IMDRF’s work in SaMD in 2014, 
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individual nations have established and drafted their own regulatory frameworks 
for SaMD.

Discussions of regulations of SaMD have only recently come to the policy- 
making attention of the Federal Drug Administration in the United States [29]. 
However, these discussions are only commencing, as the discussion paper explicitly 
states, “This document is not intended to communicate FDA’s proposed (or final) 
regulatory expectations but is instead meant to seek early input from groups and 
individuals outside the Agency prior to development of a draft guidance” [29]. The 
paper currently does not use a HRBA, or mention rights, instead focuses on manu-
facturers and risk management. In 2017, the EU passed The EU Medical Device 
Regulation, which also regulates SaMD, requiring that all manufacturers in the EU 
single market comply with the regulations by May 2020. The regulation is similar 
to the FDA regulation in prioritizing safety and risk management for the lifecycle of 
the device [30]. However, this regulation does mention subjects’ rights in develop-
ment and clinical investigations.

Some corporations and associations have also been active in regulating them-
selves and producing documentation of these regulations. IEEE, Institute of 
Electrical and Electronics Engineers, has published the second version of Ethically 
Aligned Design that is devised to “establish ethical and social implementations for 
intelligent and autonomous systems and technologies, aligning them to defined val-
ues and ethical principles that prioritize human well-being in a given cultural con-
text” [31]. Citing several human rights treaties, the first principle of the document is 
for the consideration of human rights in design. Microsoft has also initiated a human 
rights impact assessment (HRIA) on their products, detailed in their Human Rights 
Annual Report [32]. The 2018 report mentions that a specific section of the HRIA 
will be dedicated to AI for the foreseeable future. It was found that, based on a 
“broad range of AI applications,” human rights risks included nondiscrimination 
and equality; right to life and personal security; privacy, including protecting against 
unlawful governmental surveillance; freedom of thought, conscience, and religious 
belief and practice; freedom of expression and to hold opinions without interfer-
ence; freedom of association and the right to peaceful assembly; right to decent 
work; and right to an adequate standard of living [32].

Human rights in AI and healthcare are broad topics that unfortunately cannot be 
fully detailed here. However, from this discussion, there are several key takeaways:

 1. It is becoming increasingly important for authors to explicitly mention their 
interpretation of human rights, as the number of guidelines, ethics codes, and 
reports coming from nonlegal actors using the concept of human rights escalates.

 2. Human rights and HRBA are being contemplated in the regulation of AI on cor-
porate, national, and international scales. However, the success of using only a 
HRBA to regulate AI is unlikely to solve value-alignment problems.

 3. Human rights have played an integral role in healthcare; however, the changing 
dynamics of the profession overtime have changed the obligations of medical 
professionals.
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 4. Regulations of AI in healthcare depend on the purpose of the AI. Some AI tech-
nologies used in healthcare are not considered medical devices, which promote 
changes in health, but rather tools that enhance medical knowledge. Software 
used for administrative purposes or to store, retrieve, transfer patient data are not 
categorized as medical devices and are thus regulated differently.

16.3  Future of Human Rights in Brain and Mental Health AI

It is an exciting time for AI in brain and mental health. AI can take on many forms 
in brain and mental health including artificial neural networks (ANN), machine 
learning (ML), natural language processing (NLP), machine perception, affective 
computing, virtual and augmented reality, robotics, implants, brain–computer inter-
faces (BCI), and supercomputing. While it is true that it is still inconclusive whether 
AI has more positive than negative outcomes in brain and mental health [33], the 
restorative capabilities of AI technologies for patients are beyond astounding. While 
AI and neuroscience have a shared history, we are in the advent of implementing AI 
in brain and mental health. This of course means that there are still many unan-
swered questions, ethical concerns, and unknowns. Thus far, there have been several 
documented benefits of implementing AI in mental healthcare. AI is simply better at 
some things, like not fatiguing or forgetting. AI has improved self-care and access 
to mental healthcare. AI has allowed for a greater customization of behavioral and 
mental healthcare. Finally, AI has numerous economic benefits, reducing labor 
costs and cost of healthcare in some cases [34].

With novelty comes advantages and disadvantages for regulation of AI in brain 
and mental health. An advantage is that several regulations that have been tried and 
tested in AI and healthcare are already developed and can be applied towards brain 
and mental health AI. A disadvantage is that current regulations of AI may not be 
suitable for the specificities of the field and reworking will be necessary. While there 
is a growing list of AI ethics guidelines globally [35], Rafael Yuste and Sara Goering 
assert that current ethics guidelines for AI are insufficient concerning developments 
in brain and mental health neurotechnologies. Specifically, new ethical concerns 
arise in the areas of privacy and consent, agency and identity, augmentation, and 
bias [36], and, as of late, these are not top concerns in general AI ethics guidelines, 
which are transparency, justice and fairness, and non-maleficence [35]. As neuro-
technologies for brain and mental health continue to evolve, it is likely new ethical 
concerns beyond these will arise as well. Considering the current regulation status 
of AI and healthcare and emphases on human rights, it is likely that analyses of 
human rights will reveal itself for brain and mental health AI regulation. Brain and 
mental health AI also has the advantage of learning from what AI and healthcare 
have not done well, namely not including interdisciplinary and consumer/patient 
perspectives in the process of developing regulations. More work on lived patient 
experiences will greatly benefit the field. There is still only a small percentage of the 
human population that have experience living with brain and mental health AI on a 
daily basis. While we must anticipate the needs of future patients in brain and 
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mental health AI, we must beware that generalizing future human rights and ethics 
from this currently small percentage will most likely need revisiting if we wish to 
develop policies that suit the needs of an inevitably more dynamic group of patients 
in the future. Gilbert et al. have recorded some of the perceptions of lived experi-
ence with AI-enabled BCIs thus far. Their results pose interesting questions for 
applying human rights in brain and mental health AI.

Collecting insights from patients with AI-enabled BCIs found that the technol-
ogy was able to satisfy the right to self-determination for some patients and violate 
rights to self-determination for others [33]. The subjective reality is that while some 
patients may feel their human rights are satisfied, others may feel that those same 
rights are violated. While lived experiences are subjective in nature, the varied 
results shed light on the potential violations of human rights and the need for patient 
perspectives. Many already established regulations could have benefited from the 
inclusion of a more perspectives. The following is a perspective on including human 
rights in brain and mental health regulation based on regulations of AI and healthcare.

Human rights are essential for the safety and care of patients. As such, human 
rights should play an integral role in the regulation of brain and mental health 
AI. However, human rights should not be the only values that are taken into consid-
eration as, like we have seen, they are sometimes only supported in name, not prac-
tice. Thus, ethics still need to be a part of regulation. Ethics will prove to be very 
important for the regulation of those working in brain and mental health AI. An 
ethics code should be established that is specifically suitable for the field which 
acknowledges the variability of human rights globally and which acts as a safety net 
where human rights may not be developed, implemented, or supported. Human 
rights and ethics in this field should work together. A generalized definition of what 
the field is, including the variety of disciplines and studies involved, could spear-
head the development of an ethics code. This definition would also determine the 
initial scope of the field, aptly identifying what is and is not a part of the field. 
Whoever is using and developing brain and mental health AI should regularly con-
duct HRIAs on their technologies and adjust their practices according to the human 
rights risks found. Brain and mental health professionals will need to continue 
working together nationally and internationally. Despite idealistic goals at the out-
set, AI’s ability to influence the delivery of brain and mental healthcare will ulti-
mately depend on the visions and resources from leaders and governments [37]. 
Thus, it is important to understand the goals of the field from within and be able to 
share the possibilities outward.

16.4  Conclusion

Human rights are dynamic and will continuously change. Throughout history, the 
rights of women, children, minorities, people of color, humans with disabilities, 
LGBTQIA, etc., have evolved and will continue to do so. The human right to health 
could very well be altered by developments in brain and mental health AI. Humanity 
could reach a point when the right to health “highest standard of physical and 
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mental health” means using AI. However, it is less clear to this day how access to AI 
is a right and in what circumstances. It is inevitable that the regulations of AI in 
brain and mental health will change and adjust according to technological and soci-
etal adaptations. There are not many shared global understandings for many terms 
and concepts discussed in this chapter. The terms health, human rights, AI, intelli-
gence, and healthcare are all subject of international debate, and it is doubtful that 
there will ever be a true global consensus. It is not necessarily idealistic, philosophi-
cal, or political variations on a global scale that may hamper the ethical develop-
ment of AI in brain and mental health, these have always been present. Ethical 
developments may be hampered by not acknowledging these variations, not learn-
ing from other perspectives, and failing to identify contrasting values, as there is no 
one-size-fits-all solution to regulation. These variations, rather than sinkholes, can 
be the common grounds that guide discussions and promote innovative policies and 
regulations.

References

 1. United Nations. Universal declaration of human rights. 1948. https://www.un.org/en/universal- 
declaration- human- rights/. Accessed 14 May 2019.

 2. African Union. African charter on human and peoples’ rights. 1981. https://au.int/en/treaties/
african- charter- human- and- peoples- rights. Accessed 14 May 2019.

 3. AICHR.  ASEAN human rights declaration. 2012. https://aichr.org/wp- content/
uploads/2018/10/ASEAN- Human- Rights- Declaration.pdf. Accessed 14 May 2019.

 4. ECHR, Council of Europe. European convention on human rights. 1950. https://www.echr.
coe.int/Pages/home.aspx?p=basictexts&c. Accessed 14 May 2019.

 5. European Commission. EU charter of fundamental rights. 2012. https://ec.europa.eu/info/aid- 
development- cooperation- fundamental- rights/your- rights- eu/eu- charter- fundamental- rights_
en. Accessed 24 May 2019.

 6. OHCHR. International covenant on economic, social and cultural rights. 1966. https://www.
ohchr.org/en/professionalinterest/pages/cescr.aspx. Accessed 14 May 2019.

 7. Organization of American States. American convention on human rights. 1969. http://www.
oas.org/dil/treaties_B- 32_American_Convention_on_Human_Rights.htm. Accessed 14 
May 2019.

 8. UNICEF.  Convention on the rights of the child. 1989. https://www.unicef.org/child- rights- 
convention/convention- text. Accessed 14 May 2019.

 9. United Nations. Vienna Convention on the Law of Treaties. 1969. https://treaties.un.org/Pages/
ViewDetailsIII.aspx?src=TREATY&mtdsg_no=XXIII- 1&chapter=23&Temp=mtdsg3&cl
ang=_en. Accessed 14 May 2019.

 10. United Nations. Status of ratification interactive dashboard. 2019. http://indicators.ohchr.org. 
Accessed 15 May 2019.

 11. Broberg M, Sano HO. Strengths and weaknesses in a human rights-based approach to interna-
tional development—an analysis of a rights-based approach to development assistance based 
on practical experiences. Int J Hum Rights. 2018;22(5):664–80.

 12. Qi Z. Conflicts over human rights between China and the US. Human Rights Quarterly. 
2005;27(1):105−124.

 13. United Nations. Human Rights Council Nineteenth session. 2012. https://documents- dds- ny.
un.org/doc/RESOLUTION/GEN/G12/130/62/PDF/G1213062.pdf?OpenElement. Accessed 8 
Mar 2020.

M. Sziron

https://www.un.org/en/universal-declaration-human-rights/
https://www.un.org/en/universal-declaration-human-rights/
https://au.int/en/treaties/african-charter-human-and-peoples-rights
https://au.int/en/treaties/african-charter-human-and-peoples-rights
https://aichr.org/wp-content/uploads/2018/10/ASEAN-Human-Rights-Declaration.pdf
https://aichr.org/wp-content/uploads/2018/10/ASEAN-Human-Rights-Declaration.pdf
https://www.echr.coe.int/Pages/home.aspx?p=basictexts&c
https://www.echr.coe.int/Pages/home.aspx?p=basictexts&c
https://ec.europa.eu/info/aid-development-cooperation-fundamental-rights/your-rights-eu/eu-charter-fundamental-rights_en
https://ec.europa.eu/info/aid-development-cooperation-fundamental-rights/your-rights-eu/eu-charter-fundamental-rights_en
https://ec.europa.eu/info/aid-development-cooperation-fundamental-rights/your-rights-eu/eu-charter-fundamental-rights_en
https://www.ohchr.org/en/professionalinterest/pages/cescr.aspx
https://www.ohchr.org/en/professionalinterest/pages/cescr.aspx
http://www.oas.org/dil/treaties_B-32_American_Convention_on_Human_Rights.htm
http://www.oas.org/dil/treaties_B-32_American_Convention_on_Human_Rights.htm
https://www.unicef.org/child-rights-convention/convention-text
https://www.unicef.org/child-rights-convention/convention-text
https://treaties.un.org/Pages/ViewDetailsIII.aspx?src=TREATY&mtdsg_no=XXIII-1&chapter=23&Temp=mtdsg3&clang=_en
https://treaties.un.org/Pages/ViewDetailsIII.aspx?src=TREATY&mtdsg_no=XXIII-1&chapter=23&Temp=mtdsg3&clang=_en
https://treaties.un.org/Pages/ViewDetailsIII.aspx?src=TREATY&mtdsg_no=XXIII-1&chapter=23&Temp=mtdsg3&clang=_en
http://indicators.ohchr.org
https://documents-dds-ny.un.org/doc/RESOLUTION/GEN/G12/130/62/PDF/G1213062.pdf?OpenElement
https://documents-dds-ny.un.org/doc/RESOLUTION/GEN/G12/130/62/PDF/G1213062.pdf?OpenElement


257

 14. Tsang L, Kracov DA, Mulryne J, et al. The impact of artificial intelligence on medical innovation 
in the European Union and the United States. Intellect Prop Technol Law J. 2017;29(8):3–11.

 15. Jiang F, Jiang Y, Zhi H, et  al. Artificial intelligence in healthcare: past, present and future. 
Stroke Vasc Neurol. 2017;4:230–43.

 16. Academy of Medical Royal Colleges. Artificial intelligence in healthcare. 2019. https://www.
aomrc.org.uk/reports- guidance/artificial- intelligence- in- healthcare/. Accessed 25 Jul 2019.

 17. Alston P. The populist challenge to human rights. J Hum Rights Pract. 2017;9:1–15.
 18. United Nations. The human rights based approach to development cooperation towards a 

common understanding among UN agencies. 2003. https://undg.org/document/the- human- 
rights- based- approach- to- development- cooperation- towards- a- common- understanding- 
among- un- agencies/. Accessed 15 May 2019.

 19. Access Now. Human rights in the age of artificial intelligence. 2018. https://www.accessnow.
org/cms/assets/uploads/2018/11/AI- and- Human- Rights.pdf. Accessed 24 May 2019.

 20. Latonero M. Governing artificial intelligence: upholding human rights & dignity. 2018. https://
datasociety.net/output/governing- artificial- intelligence/. Accessed 25 Jul 2019.

 21. Risse M. Human rights and artificial intelligence: an urgently needed agenda. 2018. https://
www.hks.harvard.edu/publications/human- rights- and- artificial- intelligence- urgently- needed- 
agenda. Accessed 24 May 2019.

 22. Pielemeier J. AI & global governance: the advantages of applying the international human 
rights framework to artificial intelligence. In:  Digital technology and global order. New York: 
United Nations University Centre for Policy Research; 2019. https://cpr.unu.edu/ai- global- 
governance- the- advantages- of- applying- the- international- human- rights- framework- to- 
artificial- intelligence.html. Accessed 24 May 2019.

 23. Van Veen C. Artificial intelligence: what’s human rights got to do with it? In: Data & Society: 
points. Medium. 2018. https://points.datasociety.net/artificial- intelligence- whats- human- 
rights- got- to- do- with- it- 4622ec1566d5. Accessed 26 Jun 2019.

 24. Future of Life Institute. Asilomar AI principles. 2017. https://futureoflife.org/ai- principles/. 
Accessed 24 May 2019.

 25. Canca C. AI & global governance: human rights and AI ethics—why ethics cannot be replaced 
by the UDHR. In:  Digital technology and global order. New York: United Nations University 
Centre for Policy Research; 2019. https://cpr.unu.edu/ai- global- governance- human- rights- 
and- ai- ethics- why- ethics- cannot- be- replaced- by- the- udhr.html. Accessed 25 July 2019.

 26. Juškevičius J, Balsienė J. Human rights in healthcare: some remarks on the limits of the right 
to healthcare. Jurisprudencija: mokslo darbai. 2010;122(4):95–110.

 27. Peled-Raz M.  Human rights in patient care and public health—a common ground. Public 
Health Rev. 2017;38:1–10.

 28. IMDRF. “Software as a medical device”: possible framework for risk categorization and cor-
responding considerations. 2014. http://www.imdrf.org/workitems/wi- samd.asp. Accessed 20 
May 2019.

 29. FDA.  Proposed regulatory framework for modifications to artificial intelligence/machine 
learning (AI/ML)-based software as a medical device (SaMD). 2019. https://www.fda.gov/
medical- devices/software- medical- device- samd/artificial- intelligence- and- machine- learning- 
software- medical- device. Accessed 20 May 2019.

 30. Council of the European Union. Regulation (EU) 2017/745 of the European Parliament 
and of the Council of 5 April 2017 on medical devices. 2017. https://eurlex.europa.eu/eli/
reg/2017/745/2017- 05- 05. Accessed 20 Jul 2019.

 31. IEEE. Ethically aligned design: a vision for prioritizing human well-being with autonomous 
and intelligent systems, version 2. 2017. https://standards.ieee.org/content/dam/ieeestandards/
standards/web/documents/other/ead_ v2.pdf. Accessed 25 Jul 2019.

 32. Microsoft. Human rights annual report. 2018. https://www.microsoft.com/en- us/corporate- 
responsibility/human- rights. Accessed 26 Jul 2019.

 33. Gilbert F, Cook M, O’Brien T, et al. Embodiment and estrangement: results from a first-in- 
human “intelligent BCI” trial. Sci Eng Ethics. 2019;25:83–96.

16 A Common Ground for Human Rights, AI, and Brain and Mental Health

https://www.aomrc.org.uk/reports-guidance/artificial-intelligence-in-healthcare/
https://www.aomrc.org.uk/reports-guidance/artificial-intelligence-in-healthcare/
https://undg.org/document/the-human-rights-based-approach-to-development-cooperation-towards-a-common-understanding-among-un-agencies/
https://undg.org/document/the-human-rights-based-approach-to-development-cooperation-towards-a-common-understanding-among-un-agencies/
https://undg.org/document/the-human-rights-based-approach-to-development-cooperation-towards-a-common-understanding-among-un-agencies/
https://www.accessnow.org/cms/assets/uploads/2018/11/AI-and-Human-Rights.pdf
https://www.accessnow.org/cms/assets/uploads/2018/11/AI-and-Human-Rights.pdf
https://datasociety.net/output/governing-artificial-intelligence/
https://datasociety.net/output/governing-artificial-intelligence/
https://www.hks.harvard.edu/publications/human-rights-and-artificial-intelligence-urgently-needed-agenda
https://www.hks.harvard.edu/publications/human-rights-and-artificial-intelligence-urgently-needed-agenda
https://www.hks.harvard.edu/publications/human-rights-and-artificial-intelligence-urgently-needed-agenda
https://cpr.unu.edu/ai-global-governance-the-advantages-of-applying-the-international-human-rights-framework-to-artificial-intelligence.html
https://cpr.unu.edu/ai-global-governance-the-advantages-of-applying-the-international-human-rights-framework-to-artificial-intelligence.html
https://cpr.unu.edu/ai-global-governance-the-advantages-of-applying-the-international-human-rights-framework-to-artificial-intelligence.html
https://points.datasociety.net/artificial-intelligence-whats-human-rights-got-to-do-with-it-4622ec1566d5
https://points.datasociety.net/artificial-intelligence-whats-human-rights-got-to-do-with-it-4622ec1566d5
https://futureoflife.org/ai-principles/
https://cpr.unu.edu/ai-global-governance-human-rights-and-ai-ethics-why-ethics-cannot-be-replaced-by-the-udhr.html
https://cpr.unu.edu/ai-global-governance-human-rights-and-ai-ethics-why-ethics-cannot-be-replaced-by-the-udhr.html
http://www.imdrf.org/workitems/wi-samd.asp
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://eurlex.europa.eu/eli/reg/2017/745/2017-05-05
https://eurlex.europa.eu/eli/reg/2017/745/2017-05-05
https://standards.ieee.org/content/dam/ieeestandards/standards/web/documents/other/ead_ v2.pdf
https://standards.ieee.org/content/dam/ieeestandards/standards/web/documents/other/ead_ v2.pdf
https://www.microsoft.com/en-us/corporate-responsibility/human-rights
https://www.microsoft.com/en-us/corporate-responsibility/human-rights


258

 34. Luxton D.  An introduction to artificial intelligence in behavioral and mental health care. 
In: Luxton D, editor. Artificial intelligence in behavioral and mental health care. 1st ed. San 
Diego: Academic Press; 2016. p. 1–26.

 35. Jobin A, Ienca M, Vayena E. The global landscape of AI ethics guidelines. Nat Mach Intell. 
2019;1:389–99. https://doi.org/10.1038/s42256- 019- 0088- 2.

 36. Yuste R, Goering S.  Four ethical priorities for neurotechnologies and AI.  Nature. 
2019;551(7679):159–63. https://www.nature.com/news/four- ethical- priorities- for- 
neurotechnologies- and- ai- 1.22960. Accessed 8 Mar 2020.

 37. Patel VL, Shortliffe EH, Stefanelli M, et  al. The coming of age of artificial intelligence in 
medicine. Artif Intell Med. 2009;46(1):5–17. https://doi.org/10.1016/j.artmed.2008.07.017.

M. Sziron

https://doi.org/10.1038/s42256-019-0088-2
https://www.nature.com/news/four-ethical-priorities-for-neurotechnologies-and-ai-1.22960
https://www.nature.com/news/four-ethical-priorities-for-neurotechnologies-and-ai-1.22960
https://doi.org/10.1016/j.artmed.2008.07.017


Part IV

Epilogue



261© Springer Nature Switzerland AG 2021
F. Jotterand, M. Ienca (eds.), Artificial Intelligence in Brain and Mental Health: 
Philosophical, Ethical & Policy Issues, Advances in Neuroethics, 
https://doi.org/10.1007/978-3-030-74188-4_17

M. Ienca (*) 
Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
e-mail: marcello.ienca@hest.ethz.ch

17Brain and Mental Health in the Era 
of Artificial Intelligence

Marcello Ienca

In the decade just beginning, artificial intelligence (AI) is and will increasingly be a 
fundamental catalyst for medical innovation. Due to its technological novelty, abil-
ity to process large volumes of data, capacity for autonomous action, and general- 
purposive nature, AI holds potential for transforming medicine and healthcare at 
greater pace and in greater magnitude compared to any other technology. The trans-
formative potential of AI has been deemed “revolutionary” by experts [1, 2], with 
authors referring to the introduction of AI techniques in healthcare as a socio- 
technical revolution capable of reshaping entire areas of medicine. In recent years, 
most attention has been devoted to the use of AI systems in medical domains such 
as pathology [3] and radiology [4]. In particular, a rapidly growing body of research 
is showing how approaches to AI such as machine learning (ML) can improve the 
delivery of healthcare services by improving prognostics, diagnostics, treatment, 
clinical workflow, and expanding the availability of clinical expertise [5].

Addressing the ethical and social challenges of such socio-technical advances is 
a complex task, which requires a meticulous scrutiny of both the technology itself 
and the socio-cultural context in which the technology is embedded. Many of these 
ethical-social challenges are inherent in the very application of automatic and self- 
learning systems to medical data, regardless of the physical implementation of those 
systems (e.g., embodied vs disembodied), the type of data being processed, the 
institutional setting, medical specialty, patient population, and clinical purpose in 
which or for which such systems are deployed. For example, aligning AI systems 
with data privacy requirements, minimizing the effects of algorithmic bias, and 
achieving transparency have been notably recognized as cross-domain normative 
requirements which extend to the whole medical domain. However, several ethical 
and social implications of medical AI are qualitatively dependent on the technologi-
cal medium, clinical setting, patient group, socio-cultural context as well as on the 
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ontological properties, values, power structures, and discourses which characterize 
those technological mediums, settings, or groups.

Compared to other areas of medicine, the use of AI to improve brain and mental 
health has not yet received sufficient attention and systematic assessment. This gap 
in the scientific literature raises both oddity and concern in the light of the intimate 
historical nexus between AI and the sciences of the mind and brain. In fact, the his-
tory of AI is inextricably intertwined with the history of neuroscience and psychol-
ogy. Since the first conceptualizations of AI, scientists and philosophers turned to 
the human brain as a source of guidance for the development of intelligent machines 
[6]. Still today, AI borrows most of its lexicon from neuropsychological categories 
(e.g., machine learning, computer vision, natural language processing) while many 
areas of AI research such as artificial neural networks are based on and inspired by 
neurobiological structures and processes.

Most importantly, brain and mental health constitute a domain of fundamental 
ethical significance. This is primarily because neural processes and mental phenom-
ena are the closest correlates of fundamental ethical categories such as moral 
agency, personal identity, and free will. Furthermore, faculties of the brain such as 
memory, consciousness, and language represent the core set of properties that make 
us human and through which we self-identify as persons. Therefore, the use of AI in 
brain and mental health elicits a complex interactive dynamics between artificial 
and human cognition, whose effects may have profound implications for both indi-
viduals and humanity at large. Anticipating and proactively assessing the ethical 
and social implications of this interactive dynamic between brains, minds, and cog-
nitive technology is of paramount importance to responsibly navigate the AI revolu-
tion [7]. A context-specific ethical assessment of AI for brain and mental health is 
all the more important as people with chronic mental conditions, people with neu-
rocognitive or physical disabilities, elderly adults, and people with dementia all 
belong to vulnerable groups, and hence experience higher risk of harm and conse-
quently require special protective and some degree of priority consideration, even in 
the face of severe resource constraints. As AI advances fast, we have a moral obliga-
tion to ensure the responsible development and deployment of artificial intelligence 
for the benefit of millions of neurological and psychiatric patients worldwide.

This book attempted to fill this gap in the scientific and ethical literature by pro-
viding a comprehensive overview of the key applications of AI for brain and mental 
health and a systematic assessment of their ethical and social implications. The vari-
ous chapters of this volume explored a wide spectrum of AI systems for brain and 
mental health such as social robots, chatbots, automated text analysis programs, 
predictive analytics software, brain-computer interfaces, neurostimulation tools, 
neurorehabilitation aids, smartphone-based mental health apps, neuromonitoring 
and neurofeedback tools. This comprehensive overview adds to previous work on 
the ethics of AI-driven technological trends such as intelligent assistive technolo-
gies for dementia [8], digital mental health [9], clinical neuroimaging [10], neural 
motor prostheses [11], and other neural devices [12].

Much editorial attention, in this volume, was devoted to ensuring that such tech-
nological innovations were not presented as value-free artifacts but as 

M. Ienca



263

socio- technical systems embedded in a socio-cultural context, designed for or 
accessible to specific patient groups, influenced by pre-existing values, and inscribed 
in a rich grid of ethical-legal norms. The fifteen chapters here contained depict a 
rich set of AI-enabled opportunities to improve the health and mental wellbeing of 
both patients and healthy citizens. At the same time, they identify complex areas of 
ethical problematicity which require careful considerations.

Featuring contributions from world-leading experts from the areas of computer 
science, robotics, neurology, psychiatry, clinical psychology, bioethics, neuroethics, 
and the law, this book marks an important milestone in the public understanding of 
the ethics of AI in brain and mental health. Furthermore, it provides a useful resource 
for any future investigation in this crucial and rapidly evolving area of AI application.
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