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4.1	 �Introduction on the Genus Mycobacterium

After the first description of Bacillus leprae in 1875 by Hansen and the following 
discovery of Mycobacterium tuberculosis by Robert Koch in 1882, the genus finally 
emerged as a taxonomic group of pathogens named Mycobacterium as proposed by 
Lehmann and Neumann in 1896 [1]. The genus is composed of aerobic rod-shaped 
Gram-positive acid-fast microorganisms, most of them exhibiting facultative intra-
cellular growth and having varied environmental reservoirs. Some Mycobacterium 
spp. also are associated with important well-known historical human diseases such 
as leprosy and tuberculosis, among others, while also being pathogenic for animals, 
some of them with zoonotic potential.

The use of the term “atypical acid-fast microorganisms” was introduced in 1935 
to designate a mycobacterial isolate that caused human disease but could not be dif-
ferentiated from M. tuberculosis by morphology, pigmentation, and virulence in 
animals [2]. Three years later, Costa Cruz isolated a fast-growing Mycobacterium 
from a human abscess that he named M. fortuitum [3]. A series of mycobacteria dif-
ferent from the tuberculosis bacillus started to be recognized as etiologic agents of 
human diseases, including M. marinum 1926 [4], M. ulcerans (1950) [5], M. 
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intracellulare (initially named as Nocardia intracellularis in 1949 and later on 
renamed as M. intracellulare in 1965) [6], M. kansasii (1953) [7], and M. scrofula-
ceum (1956) [8], as main examples [9, 10].

It is known for decades that natural habitats of NTM are aquatic and soil environ-
ments [11]. The majority of Mycobacterium species have no impact on human 
health and occasionally, as opportunists, are responsible for human infections. 
However, some species are both environmental and pathogenic, while some are 
obligatory pathogenic. Contamination probably occurs through aerosolization or 
aspiration of water and/or soil particles and through exposure to traumatized skin 
and is generally not transmitted person to person. Therefore, it is important to iden-
tify the species that cause an infection in cases where the symptoms are sufficient to 
support sample collection [12–14].

4.1.1	 �The Taxonomy of Mycobacteria

Considering the present version of the List of Prokaryotic Names with Standing in 
Nomenclature (LPSN) database (available at http://www.bacterio.net/m/mycobac-
terium.html), a total of 192 validly published taxa are included in the genus 
Mycobacterium, including species and subspecies that are distributed in three major 
groups: (i) the Mycobacterium tuberculosis complex (MTBC), (ii) the distinct spe-
cie Mycobacterium leprae, and (iii) the nontuberculous mycobacteria (NTM), also 
called mycobacteria other than the MTBC. Traditionally, mycobacteria have been 
divided into rapidly (RGM) and slowly growing mycobacteria (SGM), the former 
needing less than 7 days for visible colony formation on solid culture media, the 
latter more than 7.

Through the years, the systematic taxonomy of this genus has evolved consider-
ably based on grouping of phenotypic properties, analysis of chemotaxonomic char-
acteristics, and sequence comparison of the 16S rRNA; of the 65-kDa heat-shock 
protein; of the genes recA, rpoB, gyrA, gyrB, secA1, sodA, tuf, and smpB; of the 
tmRNA; and of the 16S-23S rRNA intergenic spacer (ITS) region, performing a 
multilocus sequence analysis approach of concatenating several gene sequences, by 
interspecific DNA-DNA hybridization technique and/or, most recently, by genomic 
comparison.

Recent studies have suggested a new taxonomic classification and phylogenomic 
structure for mycobacteria based on datasets of genes/proteins from the genomes of 
different species. In 2018, Gupta et al. [15] suggested the redefinition of mycobacte-
rial taxa based on amino acid insertions or deletions of fixed lengths within a spe-
cific position at a conserved region, named conserved signature indels (CSIs). These 
clade-specific marker gene sequences were proposed as a better definition of rela-
tionships among mycobacteria for determining the vertical inheritance and phyloge-
netic tree building as performed on datasets of concatenated protein sequences and 
proposed to relocate the mycobacterial taxa into five distinct genera: Mycobacterium, 
Mycobacteroides, Mycolicibacillus, Mycolicibacter, and Mycolicibacterium. 
However, Tortoli et al. [16] and most of the researchers in this study field preferred 
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Table 4.1  Nomenclature for the main Mycobacterium species as summarized by Tortoli et al. [16]

Classical nomenclature
Nomenclature adjustment 
proposed by Tortoli et al. [16]a

Nomenclature according to 
Gupta et al. [15]

Mycobacterium abscessus 
subsp. abscessus

Mycobacteroides abscessus 
subsp. abscessus

Mycobacterium abscessus 
subsp. bolletii

Mycobacteroides abscessus 
subsp. bolletii

Mycobacterium abscessus 
subsp. massiliense

Mycobacteroides abscessus 
subsp. massiliense

Mycobacterium avium subsp. 
avium

Mycobacterium avium subsp. 
avium var. avium

Mycobacterium avium subsp. 
paratuberculosis
Mycobacterium avium subsp. 
silvaticum

Mycobacterium avium subsp. 
avium var. silvaticum

Mycobacterium chelonae 
subsp. chelonae

Mycobacteroides chelonae

Mycobacterium chelonae 
subsp. bovis
Mycobacterium chelonae 
subsp. gwanakae

Mycobacterium chelonae 
subsp. bovis

Mycobacterium fortuitum 
subsp. fortuitum

Mycobacterium fortuitum Mycolicibacterium fortuitum

Mycobacterium fortuitum 
subsp. acetamidolyticum

Mycobacterium fortuitum Mycolicibacterium fortuitum

Mycobacterium gordonae
Mycobacterium 
immunogenum

Mycobacteroides 
immunogenum

Mycobacterium 
intracellulare subsp. 
intracellular
Mycobacterium 
intracellulare subsp. 
chimaera

Mycobacterium chimaera

Mycobacterium 
intracellulare subsp. 
yongonense

Mycobacterium intracellulare 
subsp. chimaera

Mycobacterium kansasii
Mycobacterium 
parafortuitum

Mycolicibacterium 
parafortuitum

Mycobacterium smegmatis Mycolicibacterium 
smegmatis

Mycobacterium tuberculosis 
complex

Mycobacterium tuberculosis

Mycobacterium ulcerans
aEmpty field: nomenclature identical to the one of the first column
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to use the classical nomenclature and reinforced the use of genome comparison for 
taxonomic classification.

By using the average nucleotide identity (ANI) and genome-to-genome distance 
(GGD) to analyze all the Mycobacterium taxa, Tortoli et  al. [16] performed a 
detailed review and suggested specific adjustments for this genus. We detached the 
main species citing the classical and previously proposed nomina in Table 4.1.

4.1.2	 �Mycobacterium tuberculosis and Mycobacterium leprae

The two major human mycobacterioses are tuberculosis and leprosy. In 2018, ten 
million people fell ill of tuberculosis worldwide, killing 1.5 million of these, and 
1 in 6 coinfected with HIV [17]. Although the disease is curable, a major problem 
is resistance to rifampicin, evolving often to multidrug and sometimes extreme 
drug-resistant disease, difficult to cure with long, toxic, and expensive treatment 
schemes and high mortality rates.

Almost 210,000 new cases of leprosy were reported in the same year, and just 
like TB, these are curable with a multidrug therapy and fortunately still presenting 
relatively low drug resistance levels [18]. However, relapse is quite common, and 
the World Health Organization recommends vigilance for drug resistance. The 
major problems regarding this disease are late diagnosis causing physical disability 
and stigma.

Tuberculosis is caused by organisms belonging to the MTBC that was recently 
redefined as a single species [19], disease being mostly caused by M. tuberculosis 
var. tuberculosis and M. tuberculosis var. bovis. Leprosy is caused mostly by M. lep-
rae although a second species called M. lepromatosis and described mainly in 
Mexico is causing a particular clinical form of leprosy called Lucio syndrome [20, 
21]. However, both disease characteristics and geographic distribution of the latter 
pathogen are under active study.

During the last two decades, basically since the availability of the complete 
genome sequences of M. tuberculosis [22] and M. leprae [23], a large number on 
studies on genetic variability between strains in either species have been described. 
Procedures for detection of strain variability have been used in studies on definition 
of species, phylogeny, evolution, strain virulence, transmissibility, molecular epide-
miology, drug resistance, and host response, and these topics have been covered in 
several good reviews. Because another review on this is beyond the objective of this 
chapter, we refer to some recent papers and chapter, respectively, for MTBC [24–
26] and for leprosy [27].
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4.2	 �Clinical Significance of Nontuberculous Mycobacteria

4.2.1	 �Disease Caused by Infection with Rapidly 
Growing Mycobacteria

The clinically most prevalent RGM species are M. abscessus, M. chelonae, and 
M. fortuitum. While M. abscessus is mostly isolated from clinical respiratory speci-
mens, M. fortuitum is recovered more frequently from non-respiratory specimens. 
The spectrum of diseases varies among the main species of the group [28–32]:
•	 M. abscessus – Pulmonary infections, primarily associated with bronchiectasis 

associated with cystic fibrosis or other comorbidities, skin and soft tissue infec-
tions after cosmetic procedures or surgeries, prosthetic device infection, tenosy-
novitis, and osteomyelitis

•	 M. chelonae – Surgical wound infections, abscesses, keratitis, catheter-related 
bacteremia, and hematogenously disseminated disease in immunosupressed 
individuals

•	 M. fortuitum – Skin and soft tissue infections (surgical or other traumatic lesions), 
chronic discharging sinuses, pulmonary infections among individuals harboring 
underlying pulmonary diseases, superficial lymphadenitis, prosthetic device 
infection, catheter-related sepsis, prosthetic valve endocarditis, and others

4.2.2	 �Disease Caused by Infection with Slowly 
Growing Mycobacteria

The major clinical syndromes associated with SGM include progressive pulmonary 
disease, skin and soft tissue infection due to direct inoculation, lymphadenitis, and 
disseminated disease in severely immunocompromised individuals by M. avium 
complex (MAC) and other NTM [31, 33]. The major clinical syndromes caused by 
specific species are:
•	 MAC – Lung diseases in HIV-negative patients, commonly associated with cys-

tic fibrosis or middle-aged or elderly men, alcoholics, and/or smokers presenting 
or not underlying chronic obstructive pulmonary disease (COPD), mainly non-
smoking women over 50. MAC also causes disseminated disease in severely 
immunocompromised patients (such as AIDS or other syndromes and upon use 
of immunosuppressive drugs), solitary pulmonary nodules, and hypersensitivity 
pneumonitis syndrome [34, 35].

•	 M. avium subsp. paratuberculosis (MAP) – One of the possible etiological 
agents of Crohn’s disease (CD) due to the characteristic tuberculous-like gastro-
enteritis in humans and similarities to the clinical and histopathological findings 
to the Johne’s disease in ruminants caused by MAP. Some studies have described 
the isolation of this pathogens from lymph nodes and blood of patients with 
CD [36].
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•	 M. kansasii – Considered the second most common respiratory NTM and associ-
ated with pulmonary disease similar to tuberculosis in patients with COPD, 
malignancy, immunosuppressive drugs, pneumoconiosis, alcohol abuse, and/or 
HIV infection. This species has also been described causing disseminated dis-
ease, mainly in HIV-positive individuals [37].
Other human pathogenic SGM include M. malmoense, M. marinum, M. simiae, 

and M. xenopi, all associated with similar pathologies caused by other NTMs [38]. 
Mycobacterium ulcerans is particularly related to localized skin lesions progressing 
to extensive ulceration that may result in functional disabilities [39].

4.2.3	 �Considerations on Virulence and Drug Resistance

Because both virulence and drug resistance are important characteristics of NTM 
that can vary considerably both on a species and strain level, we mention these in 
this chapter as strain typing can be beneficial for the patient. Nonetheless, few data 
exist on direct correlation of these characteristics and characterization of NTM 
strains, and this in contrary to strains belonging to the MTBC (see part 1.2).

Virulence of NTM is related to their complex lipid-rich cell wall and cholesterol 
catabolism as a source of energy and material for the synthesis of the cell wall, pro-
teins, and cell envelope lipoproteins responsible for bacterial adherence and their 
ability to form biofilms. Due to the hydrophobic nature of the cell wall, NTMs can 
adhere to a wide range of organic and inorganic materials, promoting as such colo-
nization followed by either pseudo-infections or true infections. In the last few 
decades, there has been a report of an increase in outbreaks and diseases caused by 
NMT [40].

NTM are naturally resistant to a wide spectrum of antibiotics that include most 
TB drugs. The selective pressure imposed by other microorganisms in the soil and 
in the water, probably producing antimicrobials, may have led NMTs to develop 
innumerable resistance mechanisms to maintain their survival [41]. One of these is 
the thick hydrophobic double-membrane cell envelope of mycobacteria that also 
acts as a major permeability barrier. It was shown already in the 1990s that isolates 
of the then called M. chelonae-M. abscessus complex have a cell envelope about 
10–20 times less permeable than that of M. tuberculosis. In addition, morphotypic 
antibiotic resistance, a phenomenon of varying degrees of drug resistance in 
M. avium which is associated with a reversible colony morphology switch (white/
red on Congo red containing agar, transparent/opaque), is also attributed to changes 
in permeability owing to cell wall modifications [42]. Such morphologic changes 
might have a genetic basis and should therefore be traceable by genotyping.

Efflux pumps contribute to intrinsic drug resistance by preventing accumulation 
of antibiotics in the bacteria and have been mainly described for fluoroquinolones 
and macrolides [43]. The NTM species also induce the expression of certain genes 
resulting in the modification of the target binding site of the drug, the so-called 
inducible drug resistance, and in the case of macrolide resistance in M. abscessus 
which is mediated by the erm(41) gene, encoding a ribosomal methylase and 

E. C. Conceição et al.



107

sequencing of this gene and rrl can predict susceptibility to clarithromycin in strains 
of the M. abscessus group [44], but this correlation does not seem to be absolute 
[45]. The use of strain typing for prediction of drug resistance in this group and 
more particular M. abscessus subsp. massiliense was demonstrated very recently by 
MLST and WGS [46]. The differentiation of the subspecies of the M. abscessus 
complex is indeed important because they differ in resistance to antibiotics and in 
treatment response.

Some genotyping tools allow simultaneous differentiation of NTM to the species 
and/or subspecies level and inform on drug susceptibility. GenoType NTM-DR 
(NTM-DR, Hain Lifescience, Nehren, Germany) line probe assay (LPA) is such a 
tool that enables identification of the MAC species (M. avium, M. intracellulare, 
and M. chimera), M. chelonae, and subspecies of the M. abscessus complex. The 
assay also allows for detection of antibiotic resistance to macrolides and aminogly-
cosides, including polymorphisms in the erm (41) gene.

4.3	 �Molecular Identification and Genotyping 
of Mycobacteria

Among the NTM species, only about one third is familiar to microbiologists and 
doctors, so their identification guides therapeutic treatment and provides clues 
regarding the source and route of exposure. Due to the presence of these mycobac-
teria in the environment, a laboratory control monitoring the growth of NMT is 
established following clinical and microbiological criteria known for decades. 
When dealing with sterile clinical specimens such as in pleural fluid, blood, cere-
brospinal fluid, and tissues, among others, a single NTM is confirmative for infec-
tion, while for diagnosis of lung disease, positivity in two samples of spontaneous 
sputum or in one bronchoalveolar lavage sample is needed [47].

Traditional phenotypic identification procedures for NTM to the complex and 
sometimes species level are laborious and based on time-consuming biochemical 
and morphology-based tests, including their initial differentiation form the 
MTBC. For these tests, confluent growth is required, may take more than 20 days to 
achieve adequate growth, and has the limitation to be basically species-specific [48, 
49]. Time for identification has much been reduced due to the development of 
molecular tools for NTM identification. Nevertheless, the combination of conven-
tional and nucleic acid-based procedures is still used in many laboratories for pre-
cise diagnosis and eventual strain typing.

The molecular identification methods for diagnosis have expanded significantly, 
and among the most widely used are:
•	 The polymerase chain reaction restriction enzyme analysis of the hsp65 gene 

(PRA-hsp65 method) [50]
•	 Direct PCR (partial) gene sequencing with the principal target genes 16S, hsp65, 

and rpoB including single target or MLST analysis [51, 52]
•	 Commercial rapid test based on DNA-strip technologies: INNO-LiPA 

Mycobacteria v2 (Fujirebio, H.U.  Group, Japan); Speed-oligo® (Vircell, 
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Granada, Spain); GenoType CMdirect VER 1.0 (Hain Lifescience GmbH, 
Nehren, Germany), detecting MTBC and more than 20 clinically relevant NTM 
from patient specimens; and GenoType Mycobacterium CM VER 2.0 (Hain 
Lifescience GmbH, Nehren, Germany), detecting MTBC and more than 20 clini-
cally relevant NTM from cultures
Despite being useful for identification of the species level and thus for accurate 

diagnosis, (most of) these methods do not discriminate within the specie and sub-
species levels, with an exception of sequencing.

Hence, molecular typing procedures that characterize below the species level 
have been developed almost simultaneously and almost exclusively based on nucleic 
acid analysis (Fig. 4.1). They have been used for improving the epidemiological 
vigilance of mycobacteriosis based on detection of strain variability, transmission, 
outbreak investigations, as well as differentiation of reinfection and persistence/
resistance. Through genotyping, the general idea was created that infection with 
NTM normally occurs from environmental sources [53]. Nonetheless, patient-to-
patient transmission has been demonstrated between cystic fibrosis (CF) patients 
[54], and more studies are needed to evaluate the extend of such transmission events. 
To illustrate the major typing procedures used for NTM and their main applications, 
we summarize literature according to publication data in Table 4.2.

Fig. 4.1  The main molecular typing methods applied to Nontuberculous Mycobacteria

Repetitive Extragenic Palindromic-PCR (REP-PCR) Sample2
Control

Marker Sample1 Negative
Control

Positive

Random amplified polymorphic DNA (RAPD)

Amplified fragment length polymorphism (AFLP)

Pulsed field gel electrophoresis (PFGE)

Restriction fragment length polymorphism (RFLP)

Amplification of particular
regions containing tandem

repeats

Enterobacterial repetitive intergenic consensus-PCR
(ERIC-PCR)

Amplification of particular
regions containing tandem

repeats 126 bp

Digestion of
chromosomal DNA by

restriction enzymes

Gel electrophoresis based

Multilocus sequence typing (MLST) Housekeeping genes

Multilocus based

Variable number of tandem repeats (VNTR)
Amplification of particular
regions containing tandem

repeats

Whole genome sequencing (WGS)
DNA fragments

covering the whole
genome

Sequencing based

MOLECULAR TYPING METHOD PRINCIPLE PROCEDURE
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Table 4.2  Application and limitations of the main molecular genotyping methods applied to non-
tuberculous mycobacteria classified chronologically

Molecular typing 
method Applications Limitations
Repetitive 
extragenic 
palindromic-PCR 
(REP-PCR) [55]

Pseudo-outbreak [56], identification of 
source of infection [57], outbreak, and 
genetic diversity [58]

It is not an accurate tool for 
identifying organisms to the 
subspecies level. Low 
discriminatory power

Enterobacterial 
repetitive 
intergenic 
consensus-PCR 
(ERIC-PCR) [99, 
100]

Genetic diversity [53, 59], distinguish 
M. paratuberculosis from other 
mycobacteria (IS900/ERIC-PCR) [60], 
study of clonality [61], genetic 
diversity and infection control [62], 
outbreak [63–65]

It has necessarily a higher DNA 
quality. It has difficult 
reproducibility once it generates 
many bands, and thus, it is 
difficult to analyze

Random amplified 
polymorphic DNA 
(RAPD) [66]

Study of clonality [61, 67, 68], 
genotypic diversity and infection 
control [62, 69], outbreak [70], 
differentiation of infection and 
pseudo-infection/pseudoendemic [71], 
characterization of novel specie 
proposal [72], genetic diversity [73], 
identification of source of infection 
[74–77], clonality [78], strain 
discrimination [79], pseudo-outbreak 
[80, 81], outbreak [82]

Lacks inter-test and 
interlaboratory reproducibility; 
potential for misinterpretation is 
greater than that by 
PFGE. There is not a universal 
primer; we must test a set of 
primers. It generates many 
bands, and thus, it is difficult to 
analyze

Amplified 
fragment length 
polymorphism 
(AFLP) [83]

Identification of source of infection 
[84, 85], molecular epidemiology [86], 
genetic diversity [87, 88]

It is not an accurate tool for 
identifying organisms to the 
subspecies level. Low 
discriminatory power

Pulsed field gel 
electrophoresis 
(PFGE)

Outbreak [63–65, 89–94] and 
pseudo-outbreak [95, 96], molecular 
epidemiology [97], novel specie 
proposal [72], genetic diversity [58], 
identification of source of infection 
[98–104], study of clonality [59], 
differentiation of relapse from 
reinfection [105], specie differentiation 
[60, 106, 107]

PFGE depends on DNA quality, 
and the typing results can be 
influenced by a method of DNA 
isolation, electrophoresis/
running conditions [108]. 
Inability to type M. abscessus 
due to DNA degradation [107]. 
High cost of reagents compared 
to ERIC and RAPD [62]

Restriction 
fragment length 
polymorphism 
(RFLP) [109]

Genetic diversity [59, 108, 110], specie 
differentiation [106, 111], 
identification of source of infection 
[98, 112–115], specie identification 
and differentiation [116–120]

It is labor-intensive and requires 
a high level of operator skill

Multilocus 
sequence typing 
(MLST)

Specie identification [97, 110, 121, 
122], molecular epidemiology [123], 
differentiation of infection from 
reinfection [124], phylogeny [97] and 
characterization of novel specie 
proposal (Mycobacterium 
paraintracellulare sp. nov. [125])

High cost of reagents compared 
to ERIC and RAPD [62]

(continued)
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Because methods are based on different procedures that might include enzymatic 
digestion, PCR amplification, agarose gel analysis, sequence or fragment analysis, 
and fragment size estimation or counting, among others, their applicability depends 
on the diagnostic or typing purpose, and choice is therefore based on a combination 
of characteristics such as simplicity and speed of execution, cost, and differentiating 
power. However, one of the most important characteristics of a genotyping tech-
nique for strain differentiation is the discriminatory power, and in the case of several 
NTM species, PFGE presents the highest value and could in some way be consid-
ered as the reference technique [152].

Alternative fragment analysis-based procedures such as REP, AFLP, RAPD, and 
ERIC-PCR might be easier to perform but have the limitation that patterns and 
interlaboratorial comparison can be more complex. Moreover, simple variations on 
the DNA extraction protocol can have serious impact on the result.

One interesting application of such procedures was a study on M. fortuitum iso-
lates from mammaplasty patients belonging to ITS genotype V that had indistin-
guishable RAPD-PCR and ERIC-PCR patterns, confirming that infections at other 
hospitals were caused by different M. fortuitum genotypes and that there was no 
clonal dissemination between hospitals [65]. Another study using the same tools 
demonstrated that ERIC-PCR has the potential to be used as a screening tool and 
useful for rapid epidemiological typing tools for M. fortuitum infections [62].

When compared to ERIC, both PFGE and RFLP demonstrated a higher resolu-
tion [60]; however, ERIC is still valid as a complementary or alternative tool for 
outbreak investigation, especially when working with M. abscessus. Compared to 
RAPD, however, ERC demonstrates either a higher [62, 64, 65] or a similar dis-
criminatory power [61].

In other studies, PFGE showed similar results as REP-PCR for M. abscessus typ-
ing [153, 154]. Combined with VNTR typing, PFGE demonstrated a nice tool for 
discrimination within M. kansasii [108], a species that was described as being 

Table 4.2  (continued)

Molecular typing 
method Applications Limitations
Variable number 
of tandem repeats 
(VNTR) [126]

Influence of genotype [127], 
transmission [128, 129], genetic 
diversity [108, 130–134], phylogeny 
and association of genotypes to drug 
susceptibility [135–137], genotypes 
associated with clinical aspects [138], 
phylogeny [139, 140], identification of 
coinfection, source of infection [141, 
142]

The genetic diversity can be 
influenced by homoplasy [143]

Whole-genome 
sequencing 
(WGS)

Transmission assessment [144], novel 
mutation proposal [46], strain 
discrimination [145], identification of 
source of infection [146, 147], 
taxonomy/phylogeny [148–151].

Higher cost compared to others
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composed of seven subtypes [155]. Recently, six of these subspecies have been 
elevated to a species rank and named M. kansasii (former type I), M. persicum (II), 
M. pseudokansasii (III), M. ostraviense (IV), M. innocens (V), and M. attenuatum 
(VI) [150, 156, 157]. Even so, this organism is still presenting considerable vari-
ability as presented by division of M. kansasii (type I) into two hsp65 subtypes as 
observed also by the overall genome organization [158]. This was confirmed in a 
later study adding more genomes [159], so WGS seems WGS a promising tool for 
future strain typing studies.

Despite being time-consuming, labor-intensive, and resource- and expertise-
demanding, turning PFGE difficult to perform on a large-scale basis, it is still con-
sidered by many as the pillar method for molecular typing of NTM because of its 
high discriminatory power [93]. However, for some species, particular caution 
needs to be taken such as the case for M. abscessus that may present DNA degrada-
tion [152]. The subjectivity part of comparison of PFGE restriction patterns can 
reduce guideline focused on interpretation and using rigid algorithms but not totally 
eliminated [160].

The MLST technique has shown the highest sensitivity and specificity for iden-
tification to the species level of NTM [51], including discrimination of M. abscessus 
from other NTM species [97, 121]. But for typing of isolates of this species, again, 
PFGE was superior [161]. In another study, as expected, WGS showed a clearly 
higher discriminatory power in comparison with VNTR and therefore in practice 
the only molecular tool suitable to effectively discriminate isolates of M. abscessus 
subsp. abscessus and M. abscessus subsp. bolletii, with clonal groups with different 
drug resistance patterns and suggesting transmission between patients [145]. 
Interestingly, a recent study compared a large amount of clinical strains completing 
a total of 175 NTM species by comparing whole-genome data and developing a new 
MLST algorithm based on 184 genes [122]. Their MLST-based identification 
showed higher accuracy than conventional MLST, and besides the potential to rap-
idly detect pathogens, the higher amount of data might, future wise, allow the use of 
this combined MLST-WGS approach for strain typing.

A sometimes very severe infection of subcutaneous tissue is observed during 
Buruli ulcer (BU), a neglected tropical skin disease caused by M. ulcerans [162], 
and molecular tools have contributed considerably to understanding the transmis-
sion and disease reservoirs [129, 151, 163]. Among these, VNTR has demonstrated 
a large genetic diversity [128] also adequate for phylogenetic assessment [132] of 
this species. Recently, the application of WGS through a phylogeographic analysis 
revealed a predominant sublineage of M. ulcerans that arose in Central Africa and 
proliferated in its different regions of endemicity during the Age of Discovery [151].

A recent excellent review by Shin et al. [164] focuses on genotyping of MAC/
MAP and demonstrated that these species are mostly isolated from environmental 
sources such as in water and soil, therefore being the ecological niche for M. avium 
and M. intracellulare. Despite M. avium being excreted from infected animals and 
contaminates the environment, there seems to be no evidence for similar environ-
mental contamination by M. intracellulare. Typing methods for strains from this 
complex can improve our understanding of estimating the infection pathway among 
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animals, humans, and the environment and evaluation of the treatment outcomes 
and the pattern of recurrence of MAC infection. The transmission of MAC species 
is not yet clearly defined, and together with the complex drug susceptibility pattern, 
more reliable and feasible genotyping methods of MAC are urgently needed,

The RGM M. chelonae, besides causing infections as related above, is com-
monly associated with skin and soft tissue infections and postsurgical infections 
after implants, transplants, and injections such as sclerotherapy and mesotherapy 
[165, 166]. Detection of source of infection is possible by molecular epidemiology 
studies on [56] and outbreaks by PFGE [90, 99] and/or ERIC-PCR [64]. Although 
considered a single species with M. abscessus until 1992, when M. chelonae was 
elevated to the species status, they share partial 16S rRNA signatures and are there-
fore still called the M. chelonae-M. abscessus group [167]. Among other phenotypi-
cal and molecular tools, RFLP was used to propose a division of this group [168] 
separating these species [111]. Genotyping by MLST to what were apparently par-
ticular stains of M. chelonae [169, 170] or of the M. chelonae-M. abscessus group 
[171] has also led to the identification of new (sub)species of these organisms.

Among the molecular tools, the only non-nucleic acid-based identification and 
typing technique for Mycobacterium isolates that we cover here is that based on 
matrix-assisted laser desorption ionization-time-of-flight mass spectrometry 
(MALDI-TOF MS), a technique that during the last decade has turned into a timely 
and cost-effective identification procedure in routine microbiology laboratories 
[172]. In brief, a small amount of bacterial mass from a log phase culture is col-
lected, heat inactivated, and treated with ethanol and the dried cell pellet vortexed or 
sonicated with beads in acetonitrile and formic acid before covering the dried extract 
with a special matrix. Identification is obtained both at the genus and species level 
between a range of 80% and 98% depending on the study [173]. The method has 
some limitations that have been only partly resolved. One is the impossibility to 
identify subspecies within the so-called Mycobacterium complexes that is still not 
possible for the MTBC. In the case of the M. abscessus complex, an algorithm for 
differentiation of the three subspecies was described [174], while the same was 
obtained by the use of principal component analysis [175]. Interesting also is that 
the formerly single species M. kansasii composed of seven genotypes resulted in 
reproducible and unique MALDI-TOF spectra that differentiated six of these [176], 
now separate species [150, 156, 157]. Another example of the promising evolution 
of this identification technique is the recently described algorithm for the differen-
tiation of M. intracellulare from M. chimaera [177].

Two commercially systems for MALDI-TOF, each with their own Mycobacterium 
reference library, that of Bruker Biotyper with Mycobacterial Library v5.0.0 (164 
species) and bioMérieux VITEK MS with v3.0 database, were recently compared 
and yielded similar results, although some problems were encountered in both sys-
tems for differentiation within complexes [178]. Because of the increasing number 
of Mycobacterium species and redefinition of their taxonomy, the constant need of 
updating of such databases to maintain accuracy of the identification is obvious 
[168]. Such databases have been constructed for MALDI-TOF users and can be 
accessed at https://microbenet.cdc.gov.
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To our opinion, combined MALDI-TOF and genotyping analysis might be use-
ful future wise, but the recent tentative to use the former technique alone for strain 
typing or lineage definition within the MTBC seems nothing but what the author’s 
nicely called “a dream for the moment” [179].

4.4	 �Summary

Mycobacterium is a genus of Actinobacteria that are acid-fast bacilli closely related 
to Corynebacteria, Rhodococcus, and Nocardia. The genus now contains almost 
200 recognized species with pure pathogenic species with best known examples 
Mycobacterium tuberculosis and Mycobacterium leprae and many environmental 
species that are sometimes also opportunistic pathogens. Mainly due to the evolu-
tion of genotyping techniques, many new species have been described during the 
last (two) decades, and many are to follow. Besides recognition of species, identifi-
cation to the subspecies or strain level can teach us about disease transmission and 
bacterial population genetics and speeds up diagnosis, prediction of drug suscepti-
bility, and evolution of disease and can therefore improve treatment. This chapter 
concentrates on current knowledge of strain typing of the main clinically important 
mycobacteria.
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