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1Corynebacterium: Molecular Typing 
and Pathogenesis of Corynebacterium 
diphtheriae and Zoonotic Diphtheria 
Toxin-Producing Corynebacterium 
Species

Verônica Viana Vieira, Juliana Nunes Ramos, 
Louisy Sanches dos Santos, 
and Ana Luíza Mattos-Guaraldi

1.1  Introduction

Molecular typing techniques have been successfully applied for determining viru-
lence potential, origin, and routes of diphtheria and atypical invasive infections, 
confirming endemicity, outbreaks, and trace cross-transmission caused by 
Corynebacterium diphtheriae and zoonotic toxin-producing Corynebacterium 
species.
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1.2  Clinical Significance and Epidemiology of Diphtheria 
Toxin-Producing Corynebacterium spp.

Corynebacterium diphtheriae is a major etiologic agent of classic respiratory diph-
theria, including local pharyngeal symptoms and systemic manifestations, mainly 
caused by the action of diphtheria toxin (DT). Symptoms typically begin 2 to 5 days 
after infection. C. diphtheriae usually localizes in the upper respiratory tract, ulcer-
ates the mucosa, and induces the formation of an inflammatory pseudomembrane. 
Systemic toxicity increases as the pseudomembrane spreads from the tonsillopha-
ryngeal area. A form of malignant diphtheria is associated with extensive “membra-
nous pharyngitis” plus massive swelling of the tonsils, uvula, cervical lymph nodes, 
submandibular region, and anterior neck (the so-called bull neck of toxic diphthe-
ria). Acute disease of the respiratory tract usually involves one or more of the fol-
lowing: tonsillar zones, larynx, soft palate, uvula, and nasal cavities or, less 
commonly, in the stomach or lungs. The exceedingly potent DT is absorbed into the 
circulation, and lesions may also occur in vital organs, including the heart (myocar-
ditis), nervous system, and kidneys, potentially resulting in death [1].

Diphtheria toxin is an extracellular protein that inhibits protein synthesis and 
ultimately exerts death of susceptible eukaryotic cells. DT was the first member to 
be identified of a group of bacterial protein toxins that act by ADP ribosylation of a 
target protein. DT contains a toxic A subunit (active toxin with enzymatic activity) 
and the receptor binding B subunit. The B subunit (fragment) facilitates transloca-
tion of the A subunit from the phagosome to the cytosol, followed by separation, 
allowing full activity of the A subunit on its target protein elongation factor-2 
(EF-2). EF-2 transfers polypeptidyl-transfer RNA from acceptor to donor sites on 
the ribosome of the host cell. The A subunit catalyzes the transfer of adenine, ribose, 
and phosphate from NAD to EF-2 (ADP ribosylation), inactivating EF-2 and turn-
ing off inhibiting protein synthesis. DT causes local destruction at the site of mem-
brane formation and may be also absorbed into the bloodstream and distributed, 
resulting in systemic complications including demyelinating neuritis and myocardi-
tis. The tox gene that encodes DT is present in β and ω corynephages, and DT is 
only produced by C. diphtheriae isolates that harbor tox+ corynephages. Although 
the tox gene is part of the phage genome, the regulation of DT expression is under 
bacterial control, as the corresponding iron-sensing regulator DtxR is encoded by a 
gene on the C. diphtheriae chromosome [2–4].

Cutaneous diphtheria is the most common nonrespiratory clinical manifestation 
of infection due to C. diphtheriae strains. The disease is characterized by the pres-
ence of shallow skin ulcers, usually chronic, which can occur anywhere on the body, 
mostly on the legs, feet, and hands. This type of diphtheria may cause pain, redness, 
and swelling similar to other bacterial cutaneous infections. Cutaneous diphtheria is 
likely to be diagnosed less quickly than respiratory infection due to the nonspecific 
clinical appearance and often coinfections with pathogens, mostly Staphylococcus 
aureus and Streptococcus pyogenes. Cutaneous diphtheria frequently occurs in 
warm tropical climates and is normally associated with colonization of preexisting 

V. V. Vieira et al.
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skin lesions, including surgical wounds, burns, impetigo, psoriasis, leishmaniotic 
ulcers, and insect bites [5, 6].

In the United Kingdom, cases of travel-related cutaneous diphtheria were 
reported, including patients with high diphtheria vaccination coverage and from 
tropical countries. The authors emphasized that with increasing travel to and from 
diphtheria-endemic countries, more cases may occur. These lesions are an impor-
tant reservoir of infection and can cause respiratory and cutaneous infections in 
contacts as well as outbreaks. In several outbreaks, secondary transmission has been 
higher in contacts of patients with cutaneous infection than in those with respiratory 
tract infection. Cutaneous diphtheria may also cause greater environmental con-
tamination, through dust and fomites. The potential for secondary transmission 
leads to a large number of contacts requiring follow-up, especially children at school 
[6]. Therefore, awareness of clinicians and microbiologists of the importance of 
obtaining swab specimens from any chronic nonhealing skin lesions in patients who 
have traveled to or a disease-endemic area is necessary, especially in tropical coun-
tries. Wound swab samples from these patients should be examined for diphtheria 
toxin-producing Corynebacterium species. Early diagnoses and reporting are cru-
cial to trigger effective public health control measures (skin ulcers, which can occur 
anywhere on the body and are usually chronic) [5–8].

In many countries, diphtheria is considered an infrequent disease once there are 
treatment and diphtheria toxoid-containing vaccines to prevent it. Since 1990, diph-
theria reemerged in the Russian Federation and spread to all Newly Independent 
States (NIS) and Baltic states. Awareness of characteristics of the largest diphtheria 
epidemic in the last decades that seized several European countries should be used 
to help predict the spread of future epidemics. The epidemic demonstrated conclu-
sively the potential susceptibility of adults to diphtheria in the vaccine era. Important 
characteristics included, among several other factors, the emergence of distinct epi-
demic clonal group, a progressive spread of disease from urban centers to rural 
areas. However, epidemic diphtheria outbreaks remain poorly understood and con-
tinues to challenge industrialized and developing countries. Higher risk of acquiring 
C. diphtheriae infections and potentially life-threatening complications may be pos-
sible related to inadequately immunized or unimmunized conditions of persons and 
travelling from/to countries with endemic diphtheria [5, 9–12].

Although immunization is one of the most successful and cost-effective health 
interventions known, there are still many regions of the world with low vaccine 
coverage. Diphtheria caused by C. diphtheriae is still endemic worldwide, mostly 
among developing countries, including Nigeria, Venezuela, India, and Brazil. 
Diphtheria resurgence or epidemic outbreaks remain an important cause of morbid-
ity and mortality that may occur in places where vaccination programs are not main-
tained or there is a proportion of adults susceptible to disease due to decline in 
antibody levels provided by vaccine, especially in low socioeconomic and health 
conditions areas (Fig. 1.1) [14–21]. Previous investigations reported an epidemic 
outbreak in Dhule, a predominantly tribal and rural district in Northern Maharashtra, 
India, with diphtheria cases mostly observed among adolescents (10–15  years), 
despite poor immunization coverage (below 50%) [17]. A diphtheria outbreak was 
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also verified in villages of three municipalities of Maranhão, a northern state from 
Brazil. Most cases occurred in partially or completely immunized patients, includ-
ing pharyngitis without pseudomembrane formation [22].

Clinical features of diphtheria in partially vaccinated patients may still be similar 
to those that were observed in the pre-vaccine era. However, mass vaccination has 
also altered clinical features of some diphtheria cases, independent of immunization 
status and age of individuals. Therefore, health professionals should be aware of the 
possibility of atypical cases of DT-producing C. diphtheriae infections, including 
pharyngitis without pseudomembrane formation. Cases of coincidental respiratory 
diphtheria with infectious mononucleosis were also reported [5, 17, 22, 23].

C. diphtheriae has been increasingly reported not only as the etiological agent of 
diphtheria but also as the causative agent of atypical invasive infections. C. diphthe-
riae was originally characterized as an extracellular pathogen with local growth 
pharynx mucosa. During the last decades, cases of atypical and/or invasive infec-
tions caused by both non-DT-producing and DT-producing C. diphtheriae strains 
have been reported, such as pneumonia, arthritis, endocarditis, bacteremia, and 
catheter-related infections, including cancer patients, leading patients to death in 
varied opportunities independent of age and sex. Septicemia, renal failure, and/or 
arthritis are frequently reported in patients with C. diphtheriae endocarditis [24–30].

C. diphtheriae is usually transmitted by respiratory droplets, direct contact, and 
fomites when individuals are at home or during occupational activities, especially in 
laboratory and hospital environments. In 1941, during the pre-vaccine era, the 
occurrence and persistence of diphtheria bacilli in floor dust of hospital wards and 
the resultant contamination of the air were verified. DT-producing C. diphtheriae 
strains were found capable to survive in dust and clothing for an extended period of 
time [31]. Once considered a strictly human pathogen, C. diphtheriae strains have 
been found to be able to infect animals, including cows, horses, and cats [32–35].

Fig. 1.1 Diphtheria global immunization 1980–2019. Global coverage from three doses of a diph-
theria toxoid-containing vaccine (DTP) at 85% in 2019 [13]

V. V. Vieira et al.
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Changes of varied aspects in the epidemiology of diphtheria pathogens have 
been occurring worldwide. Starting in the middle of the 1980s, DT-producing and 
non-DT-producing Corynebacterium ulcerans have been increasingly identified as 
the etiologic agent of diphtheria of zoonotic nature and extrapharyngeal infections 
in varied industrialized and developing countries, including immunized individuals 
in the American continent [8, 12, 36–40]. Similar to C. diphtheriae strains, C. ulcer-
ans strains were found to produce clinical syndromes of the lower respiratory tract, 
such as pneumonia and pulmonary granulomatous nodules, independent of DT pro-
duction [36, 41–44]. At first, zoonotic diphtheria cases were mainly restricted to 
rural populations and associated with contact with dairy cattle and consumption of 
unpasteurized dairy products. Lately, C. ulcerans has been increasingly isolated as 
emerging zoonotic agent from companion animals such as cats and dogs. Therefore, 
there is a potentially large reservoir of infection with little knowledge about the 
risks of zoonotic transmission, since C. ulcerans strains were already found among 
animals from farms, domestic and natural settings [8, 37–39, 45].

Since the epidemic in European countries during the 1990s, the number of diph-
theria cases due to C. ulcerans was found to exceed the number of reported cases 
related to C. diphtheriae [45]. Although C. ulcerans have been increasingly recog-
nized in several industrialized countries as an emerging zoonotic pathogen, its 
capacity to cause disease in humans, including among the inhabitants of urban cen-
ters, is still often neglected [38]. Detection of C. ulcerans strains in Canada, during 
the period of 2006–2019, showed that 77% of the isolates were from humans and 
mostly obtained from cutaneous sites and 23% were from animals – mink (lung), 
dog (ear), and cat and horse (abscess and skin) – comprising 45% DT-producing 
strains [39]. In Brazil, a case of concurrent zoonotic diphtheria by C. ulcerans and 
infectious mononucleosis (IM) was first reported in the literature [46]. Moreover, a 
case of fatal pulmonary disease caused by a unusual penicillin and clindamycin 
resistant non-DT-producing C. ulcerans disseminated from primary nonhealing 
lesions on lower legs was documented. Both legs of the elderly patient with 
C. ulcerans- invasive infection presented skin ulcers covered by yellowish mem-
branes [36]. Previous studies also reported the isolation of C. ulcerans strains from 
nares and/or skin wounds of asymptomatic dogs (companion dogs or kept in animal 
shelter), from Duque de Caxias and Niterói cities, located at the metropolitan area 
of Rio de Janeiro [37, 47].

Similar to C. ulcerans, Corynebacterium pseudotuberculosis is also a zoonotic 
etiologic agent and also considered a public health concern. C. pseudotuberculosis 
is a diphtheria toxin-producing pathogen of medical, veterinary, and biotechnologi-
cal interest that mainly affects small ruminants, causing caseous lymphadenitis 
(CLA), throughout the world and generates significant economic losses. Sheep and 
goats are the most common animals infected within the broad spectrum of hosts in 
which C. pseudotuberculosis causes clinical disease. This zoonotic pathogen may 
also infect bovines, pigs, and equines. Therefore, contamination of meat and milk 
by C. pseudotuberculosis may possibly occur, putting children and adult consumers 
at risk. However, human infections due to C. pseudotuberculosis remain apparently 
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rare and have been mostly reported among those with close contact to animals, 
including farm workers and travelers to rural areas [48–50].

In many countries, routine procedures for identification of DT-producing 
Corynebacterium spp. are uncommonly undertaken by diagnostic laboratories due 
to a low prevalence of diphtheria cases alongside the difficulties of diagnosis 
through conventional biochemical tests and the ever-increasing need for cost- 
effectiveness. This fact contributes to justify the low number of reported cases of 
human infections by zoonotic C. pseudotuberculosis strains over the years [49].

In a previous investigation of zoonotic potential of C. pseudotuberculosis, a sum-
mary data from all 33 cases of human infections reported over a period of 42 years 
(from 1966 to 2008) showed that a main group of non-DT-producing C. pseudotu-
berculosis strain-infected patients presented a characteristic of lymphadenopathy. 
Profiles of most of these patients included adult males, 21–40 years old, and previ-
ously exposed to raw milk or meat, farm animals (mostly sheep), and/or rural areas. 
Only two cases involved clinical presentations other than the characteristic lymph-
adenopathy: from the United States, a 28-year-old (male) veterinary student who 
worked with equines, diagnosed with eosinophilic pneumonia, and from China, a 
63-year-old (male) with ocular infection post-retinal reattachment intervention. 
Until the present moment, only one case of human infection due to DT-producing 
C. pseudotuberculosis was reported. The zoonotic pathogen was isolated in the 
United Kingdom from the aortic root vegetation of an intravenous drug user with 
endocarditis [50–53].

1.3  Treatment and Prevention of DT-Producing 
Corynebacterium spp. Infections

Antibiotics are needed to kill DT-producing Corynebacterium spp., eliminate diph-
theria toxin production, limit carriage that may persist even after clinical recovery, 
and prevent further transmission from asymptomatic carriers and colonization of 
close contacts. Penicillin and erythromycin have long been the drugs of choice for 
the eradication of DT-producing strains of Corynebacterium spp. The World Health 
Organization (WHO) has recently added azithromycin as part of the standard anti-
biotics for these pathogens. However, the increasing problems of resistance to peni-
cillin, oxacillin, erythromycin, and other drugs including rifampicin, tetracycline, 
and clindamycin are examples of challenges confronting both industrialized and 
developing countries. Resistance to ß-lactams should also be considered in invasive 
infections, since failure to eliminate C. diphtheriae in cases of endocarditis treated 
with penicillin has been reported. Data emphasize the need for a continuous survey 
of antibiotic susceptibility for these pathogens, especially in tropical and developing 
countries where diphtheria is endemic and invasive infections may occur [20, 22, 
28, 46, 54–57].

In cases of classic and zoonotic diphtheria, patients with severe infections should 
be immediately admitted to a hospital intensive care unit and given diphtheria anti-
toxin (DAT), consisting of antibodies isolated from the serum of horses that have 
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been challenged with diphtheria toxin. Since antitoxin does not neutralize toxin that 
is already bound to tissues, delaying its administration increases risk of death. 
Therefore, the decision to administer diphtheria antitoxin is based on clinical diag-
nosis, and should not await laboratory diagnosis [20]. Administration of diphtheria 
vaccine is recommended during convalescence because diphtheria infection does 
not always confer immunity [53].

In the early 1880s, C. diphtheriae was first visualized in stained specimens from 
pseudomembranes and shown to be the cause of diphtheria isolated by bacteriolo-
gists Edwin Klebs and Friedrich Loeffler. In 1890, Emil von Behring isolated the 
first diphtheria antitoxin from blood samples of an infected horse. A few years later, 
William H. Park and Anna W. Williams isolated a C. diphtheriae strain that pro-
duced an unusually large amount of diphtheria toxin, later named the Park- Williams 
no. 8 (PW8) strain. Since the 1920s, a diphtheria toxoid vaccine has been produced 
from diphtheria toxin treated with formalin to inactivate the toxicity and to maintain 
the immunogenicity of the protein. C. diphtheriae PW8 is lysogenized by two cop-
ies of corynephage ωtox+, suggesting that the enhanced DT synthesis is due to a gene 
dosage effect of the tox gene [3].

Protection against diphtheria is mainly due to the development of neutralizing 
toxin antibodies. Diphtheria antitoxin production, primarily of IgG type, can be 
induced by absorption of native toxin during clinical infection or in the carrier state 
or by immunization with diphtheria toxoid. It is believed that a circulating diphthe-
ria antitoxin level of 0.01 IU/ml, as determined by the neutralization test in animals 
or in cell culture, provides clinical immunity against disease. The outcome of revac-
cination of adults depends on several factors, including the immunization schedule, 
potency, and time since the last dose of toxoid [58, 59]. In developing countries 
where diphtheria is endemic, the process of maintaining immunity usually operates 
through natural mechanisms, including frequent skin infections caused by C. diph-
theriae. Nowadays, adults might become susceptible to diphtheria due to reduced 
opportunities of subclinical infections. Since diphtheria infection may also occur 
among previously vaccinated persons, the immunity gap observed among adults 
should be closed by regular diphtheria boosters [9, 60–62].

1.4  Identification of DT-Producing Corynebacterium spp. 
in Diagnostic Laboratories

Accurate and fast diphtheria laboratory diagnosis is not only a matter of acute 
patient management but also an important issue in public health due to international 
notification and management requirements, and there is an urgent need for a reli-
able, robust, and fast laboratory method for diagnosing DT-producing 
Corynebacterium spp., especially in the light of the continuing loss of laboratory 
expertise even in national reference laboratories for diphtheria [5, 7, 8, 22, 63].

Phenotypic characterization of C. diphtheriae, C. ulcerans, and C. pseudotuber-
culosis may be performed by conventional biochemical assays and semiautoma-
tized systems, including API Coryne System (bioMérieux). However, it takes at 
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least 16  hours after isolation of suspicious colonies from screening plates of 
catalase- positive irregular Gram-positive bacilli (IGPB) [7, 22, 29, 36, 64].

In many countries, routine procedures for identification of C. diphtheriae and 
C. ulcerans are not commonly undertaken by diagnostic laboratories due to a low 
prevalence of diphtheria cases in recent years alongside the ever-increasing need for 
cost-effectiveness. Consequently, many diagnostic laboratories have suspended 
screening for diphtheria etiologic agents, further increasing the potential for missed 
and delayed diagnoses. Therefore, screening tests remain currently essential for the 
presumptive identification of these pathogens in clinical microbiology laboratories 
[5, 8, 22, 28, 65].

The use of DNase screening test provided a substantial improvement in the exist-
ing standard identification algorithm of DT-producing Corynebacterium spp. of 
routine diagnostic laboratories. DNase assays have been useful for differentiating 
DNAse-positive C. diphtheriae and C. ulcerans from DNAse-negative C. pseudotu-
berculosis and other suspected pathogenic corynebacteria, particularly in the sur-
veillance of cases of diphtheria, asymptomatic carriers, and invasive infections in 
endemic or epidemic areas with unfavorable economic conditions [64]. The reverse 
CAMP test is particularly a screening assay effectively used as part of the identifica-
tion of C. ulcerans and C. pseudotuberculosis zoonotic pathogens. A reverse CAMP 
test is based on the inhibition of hemolytic activity of beta-hemolysin from S. aureus 
through the production of phospholipase D by C. ulcerans and C. pseudotuberculo-
sis [36].

The application of molecular techniques for the identification of bacterial patho-
gens has been expanded for use in clinical microbiology laboratories. Molecular 
procedures have been also proposed for the identification of Corynebacterium spe-
cies. Improvements should become widely available for the rapid and precise detec-
tion of DT-producing Corynebacterium spp., including direct analysis of swabs and 
other clinical samples, as already done with C. diphtheriae and C. ulcerans in some 
laboratories [66–68].

1.5  MALDI-TOF Assays

Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry 
(MALDI-TOF MS) is one of the most recently established technologies used for 
species identification based on the protein composition of microbial cells. MALDI- 
TOF MS has been increasingly applied worldwide in routine analysis of clinical 
microbiology laboratories due to easy procedure, rapid results (15 minutes), and 
accurate identification of several bacterial species, including misidentified patho-
gens in specific clinical specimens. MALDI-TOF MS became a powerful tool that 
has initiated a revolution in the clinical microbiology laboratory for identification of 
nosocomial pathogens, including Corynebacterium spp. Misidentification of some 
human-pathogenic clinical isolates commonly occurs when using conventional and 
commercially available methods in microbiology laboratories. The ability to rapidly 
identify bacterial species, including rarely described as pathogens in specific 
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clinical specimens, may help to study the clinical burden resulting from the emer-
gence of these species as human pathogens and MALDI-TOF MS may be consid-
ered an alternative to DNA-based methods in clinical laboratories. Due to the 
difficulties of diagnosis in the laboratory routine through conventional biochemical 
tests, MALDI- TOF MS also represents an important alternative method for the 
identification of C. diphtheriae, C. ulcerans, and C pseudotuberculosis strains [39, 
46, 69–71].

1.6  DNA-Based Methods

The timely and precise diagnosis of corynebacterial infections, especially those 
involving DT-producing strains, is indispensable for the patient management and 
for establishment of surveillance and control strategy of the disease. Consequently, 
different molecular methods, such as end-point and real-time PCR (polymerase 
chain reaction), have been used since the 1990s for the characterization of C. diph-
theriae, C. ulcerans, and C. pseudotuberculosis [7, 49, 66, 68, 72–78]. Since the 
investigation of the toxigenic potential of clinical isolates is one of the most critical 
aspects of diphtheria diagnosis, conventional end-point PCR assays targeting the 
tox gene were the first to be developed. Subsequently, the tox gene detection was 
combined with species identification PCR targets, as dtxR (diphtheria toxin repres-
sor gene) from C. diphtheriae, in multiplex assays [7, 49, 66, 68, 72, 73]. Since 
detection of the tox gene only provides presumption of toxigenicity, additional phe-
notypic investigations such as Elek test and Vero cell cytotoxicity assays have been 
currently used to demonstrate DT production by Corynebacterium strains [7, 
66, 74].

Multiplex PCR represents a fast, simple, and reliable methodology for identifica-
tion and differentiation between DT-producing and non-DT-producing strains of 
C. diphtheriae, C. ulcerans, and C. pseudotuberculosis. In Brazil, an mPCR proto-
col was developed, and it has been used for clinical diagnosis and epidemiological 
and virulence research, during the last decade. Direct analyses of swabs and other 
clinical samples have also been done. Brazilian mPCR allows the detection of tox 
gene from potentially DT-producing Corynebacterium spp., in addition to 16S 
rRNA from both C. pseudotuberculosis and C. ulcerans, pld from C. pseudotuber-
culosis, dtxR from C. diphtheriae, and rpoB from Corynebacterium spp. [22, 27, 
37, 46, 49].

Real-time PCR instruments are increasingly common in public health laborato-
ries, mostly in industrialized countries. Real-time PCR (qPCR for quantitative PCR) 
presents some advantages than classical PCR, including faster data collection, low 
contamination risks, and high sensitivity, especially for pathogen detection in host 
carriers and clinical samples which often contain components that inhibit PCR 
[69, 79].

During the last decades, different qPCR assays have been developed for detec-
tion of the tox gene and/or identification of C. diphtheriae, C. ulcerans, and C. pseu-
dotuberculosis directly from clinical samples. However, similarly to end-point PCR, 
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currently available qPCR assays allow only the detection of tox gene from 
Corynebacterium spp. strains. However, the confirmation of DT expression still 
requires phenotypic investigations [66, 69, 75, 80, 81].

1.7  rpoB Gene Sequencing Technique

The genus Corynebacterium is a heterogeneous group of species comprising human 
and animal pathogens and environmental bacteria. It is defined on the basis of sev-
eral phenotypic characters and the results of DNA-DNA relatedness and, more 
recently, 16S rRNA gene sequencing. The rpoB gene, encoding the beta-subunit of 
RNA polymerase, has emerged as a core gene candidate for phylogenetic analyses 
and identification of corynebacteria, especially when studying closely related iso-
lates. However, the 16S rRNA gene is not polymorphic enough to ensure reliable 
phylogenetic studies and needs to be completely sequenced for accurate identifica-
tion. Previous studies verified that higher proportions (91%) of corynebacterial iso-
lates were positively identified by partial rpoB gene determination than by that 
based on 16S rRNA gene sequences [82–84].

1.8  Diphtheria Toxin-Producing Group Becoming Diverse: 
A Novel C. diphtheriae Complex

C. diphtheriae was historically classified into four biovars – gravis, mitis, interme-
dius, and belfanti – based on biochemical phenotypic testing [4, 85]. Recent inves-
tigations documented C. diphtheriae to be genetically heterogeneous and that 
genomics does not support the use of biovars to reliably classify diphtheria bacilli 
isolates, since C. diphtheriae strains within a certain biovar were found to be geneti-
cally more distant than between biovars [3, 86, 87].

A switch in populations causing endemic infections from DT-producing to non- 
DT- producing isolates in the 1990s and the 2000s and other countries with vaccina-
tion coverage has been documented as a direct consequence of the large-scale use of 
diphtheria toxoid. In Brazil, several C. diphtheriae isolates were found capable of 
degrading sucrose, a phenotypic characteristic rarely described in other parts of the 
world. Results of rpoB sequence analysis confirmed all sucrose-fermenting isolates 
as C. diphtheriae species. Sucrose-fermenting and DT-producing C. diphtheriae 
strains were predominantly isolated from human respiratory tract of diphtheria 
patients. However, cases of endocarditis due to sucrose-fermenting C. diphtheriae 
phenotypes were also observed in South American countries [28, 88, 89].

During the 1980s and 1990s, studies dealing with C. diphtheriae biovar belfanti 
were occasionally reported in literature. C. diphtheriae biovar belfanti were mostly 
isolated from human respiratory samples. In Brazil, the case of pulmonary infection 
in a cancer patient was reported [90]. The tox gene, which codes for diphtheria 
toxin, was infrequently reported in isolates of biovar belfanti [7, 90–93].
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Taxonomic status of C. diphtheriae biovars has been increasingly investigated 
[91, 93, 94]. Phylogenic analysis described two lineages of non-DT-producing 
C. diphtheriae biovar belfanti obtained from 18 countries, covering a time period 
from 1957 to 2006 [91]. In France, the number of non-DT-producing C. diphtheriae 
biovar belfanti increased between 1977 and 2011, and it is the most frequent biovar 
recovered in recent years. Non-DT-producing belfanti isolates were mostly isolated 
from human respiratory samples, including from a woman presenting with rhinitis. 
However, there were also found belfanti phenotypes isolated from blood, skin, and 
bone lesions. Phylogenic analyses of French non-DT-producing C. diphtheriae 
biovar belfanti human isolates were distributed among three distinct lineages. 
Almost all belfanti isolates belonged to a single clonal complex. A third new lineage 
was composed of a single clinical isolate (rhinitis) and phylogenetically distant 
from other two partially studied belfanti lineages from France [91, 94].

Recent investigations by genomic sequencing, biochemical, and chemotaxo-
nomic analyses indicated that C. diphtheriae biovar belfanti represents a branch that 
is clearly demarcated from C. diphtheriae biovar mitis and gravis. Data, including 
the inability to reduce nitrate, allowed to differentiate biovar belfanti from other 
C. diphtheriae strains. Consequently, the name Corynebacterium belfantii sp. nov. 
for the group of nitrate-negative strains, previously considered as C. diphtheriae 
biovar belfanti, was recently reported [95].

In a further study, it was proposed that C. diphtheriae taxon should be subdivided 
into two subspecies, C. diphtheriae subsp. diphtheriae and nitrate-negative C. diph-
theriae subsp. lausannense [93]. However, given that C. belfantii was validly pub-
lished a few months before the taxonomic proposal C. diphtheriae subsp. 
lausannense was validated, the latter subspecies was suggested to be a heterotypic 
synonym of C. belfantii [92].

Most recently, a group of clinical isolates previously identified as C. diphtheriae 
biovar belfanti strains isolated from human cutaneous or peritoneum infections and 
from one dog were characterized by genomic sequencing, biochemical analysis, and 
MALDI-TOF assays as Corynebacterium rouxii sp. nov. for the novel group. 
Phenotyping data revealed an atypical negative or heterogeneous intermediate malt-
ose fermentation reaction for both human and animal isolates. Atypical, maltose- 
negative, and DT-negative C. diphtheriae biovar belfanti isolated from domestic 
cats, including with severe otitis, was also previously described in the United States 
[33, 92].

C. pseudotuberculosis are classified into biovars equi and ovis based on the abil-
ity to convert nitrate to nitrite, due to genetic characteristic that includes the pres-
ence of the nitrate reduction operon: equi, nitrate-positive strains, and ovis, 
nitrate-negative strains. Disease caused by C. pseudotuberculosis biovars has differ-
ent clinical manifestations in the susceptible hosts, and biovar identification is 
important for understanding the epidemiology of infection and consequently for 
disease control. C. pseudotuberculosis biovar equi strains are etiologic agents of 
ulcerative lymphangitis in horses, cows, camels, buffaloes, and occasionally 
humans. C. pseudotuberculosis biovar ovis strains are the causative agents of case-
ous lymphadenitis (CLA) in small ruminants, mostly ovine and caprine herds. CLA 
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causes important economic losses in ovine and caprine herds by reducing wool, 
meat, and milk production. Cases of human infections due to non-DT-producing 
C. pseudotuberculosis biovar ovis were more frequently described worldwide than 
cases by biovar equi. Lymphadenitis in human hosts due to C. pseudotuberculosis 
was also reported in literature, mostly occurring in those who were visitors or were 
occupationally exposed to animals in rural areas, especially sheep farms [78, 96, 97].

Only one case of DT-producing C. pseudotuberculosis was described in litera-
ture. The zoonotic pathogen was isolated from the aortic root vegetation of an intra-
venous drug user with endocarditis; this patient had no history of animal contact, 
and no possible source of infection was identified. This isolation occurred in the 
United Kingdom and biovar was not reported [53].

1.9  Pathogenomics of Potentially DT-Producing 
Corynebacterium spp.

Diphtheria toxin is one of the best investigated bacterial toxins and a leading viru-
lence factor of toxigenic C. diphtheriae and C. ulcerans strains. Different investiga-
tions demonstrated that tox genes of C. diphtheriae strains showed similar nucleotide 
sequence identity. Phylogenetic analyses of C. ulcerans revealed diverse diphtheria 
toxin suggesting that C. ulcerans tends to acquire mutations more frequently than 
C. diphtheriae. Two possible explanations for this phenomenon are that C. ulcerans 
strains are maintained by various animals and have a phage-independent pathway to 
acquire the DT-encoding gene, increasing its diversity compared with C. diphthe-
riae [2, 3, 98, 99].

The diphtheria toxin repressor DtxR is known as an iron-dependent regulator 
that controls the transcription of the diphtheria toxin gene tox and a complex gene 
regulatory network involved in iron homeostasis. Variations of dtxR genes and in 
the regulatory network of DtxR might lead to differences in iron supply of the bacte-
rial cell, thereby influencing the expression of the tox gene and the virulence of 
DT-producing Corynebacterium spp. [3, 100, 101]. Therefore, naturally occurring 
diversity of tox genes and variations on the expression of diphtheria toxin due to 
dtxR regulatory activities may exert influence on efficacy of diphtheria toxoid vac-
cine and diphtheria antitoxin for preventing and treating infections caused by 
DT-producing Corynebacterium spp. pathogens [3, 5, 99, 100].

The occurrence of diphtheria among immunized persons, as well as the increas-
ing frequency of cases of atypical and invasive diseases, caused by non-DT-invasive 
clones also points the relevance of multiple virulence factors of the potentially 
DT-producing Corynebacterium spp. [26, 30, 37, 102–105]. In previously reported 
cases of invasive infections, non-DT-producing C. diphtheriae and C. ulcerans 
strains were found capable of expressing additional proteins with cytotoxic effects 
similar to Shiga-like toxins, characterized as ribosome-binding proteins (Rbps). 
Experimental evidence for the cytotoxic function of Rbps toxins were provided by 
the interaction of C. diphtheriae and C. ulcerans wild-type, mutant, and comple-
mentation as well as overexpression strains with invertebrate model systems, 
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Caenorhabditis elegans and Galleria mellonella, and on various animal and human 
macrophage and epithelial cell lines, including Vero cells [28, 36, 105, 106].

The dermonecrotic phospholipase D (PLD) exotoxin may be also produced by 
both zoonotic pathogens that have been investigated as a prominent virulence factor, 
especially for C. pseudotuberculosis. The pld gene encoding the phospholipase D is 
included among the subset of genes homologous for C. pseudotuberculosis and 
C. ulcerans species. Studies with C. pseudotuberculosis strains with inactivated 
PLD have convincingly demonstrated the necessity of PLD for establishment of 
diseases in animals, including caseous lymphadenitis [8, 46, 98, 107, 108]. However, 
a case of diphtheria due to C. ulcerans strain that is unable to express both PLD and 
DT activities was recently reported. These data emphasize that virulence mecha-
nisms and pathogenic potential of C. ulcerans species may arise independent of 
PLD and DT production. C. ulcerans virulence potential and zoonotic pathogenicity 
traits need further investigation [36–38, 46, 98, 104, 105, 109].

Basic mechanisms and specific virulence determinants, other than DT, involved 
in the pathogenic potential of C. diphtheriae have been investigated for almost half 
a century [110]. Since 2003, data from whole-genome sequencing (WGS) of 
C. diphtheriae, including a pangenomic study with Brazilian clinical isolates from 
cases of classical diphtheria, endocarditis, and pneumonia, involving sucrose- 
fermenting C. diphtheriae strains, exposed horizontal gene transfer of virulence 
factors, such as adhesins, fimbrial proteins, and iron uptake systems [3, 111].

In an attempt to further investigate mechanisms that promote C. diphtheriae sur-
vival within different environmental conditions, infection and dissemination through 
host tissues, several features have been of concern [112–114]. A putative determi-
nant (CDCE8392_813 gene), coding for tellurite (TeO32−) –resistance (TeR) was 
detected, and the influence on virulence attributes of C. diphtheriae strains was veri-
fied. Tellurium (Te) is a metalloid that exists as a trace component in natural envi-
ronments. Although TeO32− is toxic to most microorganisms, TeR bacteria, including 
C. diphtheriae, exist in nature. The presence of TeR determinants in pathogenic 
bacteria might provide selective advantages in the natural environment. The C. diph-
theriae TeR-disrupted mutant strain expressed increased susceptibility to TeO32− 
and reactive oxygen species (hydrogen peroxide) but not to other antimicrobial 
agents. Moreover, TeR determinants contributed to the survival of C. diphtheriae 
strains by using in vivo and in vitro models of infection [115].

The ability of biofilm formation on varied biotic and abiotic surfaces was also 
investigated. Low-dose antibiotics was reported to favor biofilm formation by 
C. diphtheriae, similar to observations for other human pathogens. C. diphtheriae 
strains expressed higher cell-surface hydrophobicity and biofilm formation on dif-
ferent abiotic surfaces in the presence of penicillin and erythromycin. Moreover, 
C. diphtheriae was also recognized as a potential cause of catheter-related infec-
tions, independent of DT production [29, 89, 102, 115–118].

C. diphtheriae was also found to express the ability to invade and survive within 
different types of human cells and the capacity to cause invasive bloodstream infec-
tions. Systemic complications of C. diphtheriae bacteremia are not unusual and 
include endocarditis, joint infections, and peripheral embolic disease. A 
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strain- dependent ability to induce osteomyelitis by DT-negative C. diphtheriae 
strains was probed by an in vivo assay using Swiss Webster mice, as first reported 
for C. ulcerans [27, 104].

Mechanisms of interaction with different cell types have been also investigated, 
such as erythrocytes, macrophages, and endothelial and epithelial cells [26, 27, 30, 
102, 115, 119]. The pathogenic role of aggregative-adhering properties in C. diph-
theriae-invasive disease was investigated. C. diphtheriae biovar mitis and gravis, 
isolated from cases of endocarditis, expressed aggregative adherence (AA) patterns 
to human epithelial cells. The predominance of localized (LA) and diffuse adher-
ence (DA) patterns have been reported for C. diphtheriae strains mostly isolated 
from throat and skin lesions [26, 64]. C. elegans nematodes have been also applied 
as an infection model system for C. diphtheriae and C. ulcerans with invasive phe-
notypes [102, 115, 120–122].

During years of research, the adhesive properties of C. diphtheriae strains have 
been already defined as multifactorial, relying on specific and general mechanisms. 
Functions and mechanisms of action of fimbriae; non-fimbrial adhesins – 67-72p 
(DIP0733) and DIP2093  – trans-sialidase; hydrophobins; and sugar residues are 
already recognized at different levels, especially how they jointly participate in the 
adherence to the host cells and in the colonization of these cells during bacterial 
infection [113, 117, 123–125].

Genomic analysis of C. diphtheriae revealed the identification of three distinct 
pili clusters (spaABC, spaDEF, spaGHI) together with five sortase-encoding genes 
(srtA–E), which are essential for pilus assembly. Adherence rates are not strictly 
correlated with pili formation, and the pili repertoire of C. diphtheriae strains is 
highly variable. spaA-type is the pilus mostly detected among C. diphtheriae strains. 
As shown by genome comparisons, it is necessary to investigate various isolates on 
a molecular level to understand and to predict the colonization process of different 
C. diphtheriae strains [3, 123, 124, 126].

The DIP0733 was initially described as a non-fimbrial 67-72p protein responsi-
ble for the adherence of C. diphtheriae strains to human erythrocytes. Further stud-
ies demonstrated DIP0733 protein as a microbial surface component recognizing 
adhesive matrix molecule (MSCRAMM). The influence of DIP0733 in C diphthe-
riae interaction with human epithelial cells and macrophages in addition to the abil-
ity to induce host cell death, giving a signal for apoptosis in the early stages of 
infection, was also reported. These findings support the idea that DIP0733 is a mul-
tifunctional virulence factor of C. diphtheriae that enhances the ability to spread 
throughout the whole human body via the bloodstream [125, 127, 128].

1.10  Molecular Typing Methods for DT-Producing 
Corynebacterium spp.

Molecular typing methods are expected to be reproducible with high discriminatory 
power, stable and cost-effective, and easy to perform and interpret. Several typing 
methods have been developed to investigate epidemiological relationship of strains 
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in disease outbreaks. Investigation of outbreaks is possible due to phylogenetic 
analysis of origin of strains and patterns of local and global dissemination over the 
years, among other features [23, 129, 130].

In the past, epidemiological surveillance of diphtheria was limited, depended 
largely on phenotypic characterization of strains, first by differentiation into bio-
types and subsequently by serotyping and phage and bacteriocin typing. At the 
request of the World Health Organization Regional Office for Europe, the European 
Laboratory Working Group on Diphtheria (ELWGD) was formed in July 1993 
because of the re-emergence of diphtheria to epidemic levels in the Russian 
Federation and Newly Independent States. The main objectives were to form a net-
work of laboratories for microbiological surveillance, to standardize laboratory 
diagnostic methods, and to understand the molecular epidemiology and characteris-
tics of C. diphtheriae strains at that time. In 2001, the network was expanded to 
become a Diphtheria Surveillance Network (DIPNET) (http://www.dipnet.org) 
concerned with epidemiological and microbiological aspects of diphtheria and 
other infections caused by other DT-producing Corynebacterium species, including 
Brazilian scientists. The main purpose of DIPNET is to establish a Pan-European 
network of expertise for the prevention of diphtheria and other related infections 
across the EU Member States and beyond. Among the specific objectives of DIPNET 
are to (i) determine the disease prevalence and characteristics of toxigenic and non-
toxigenic C. diphtheriae and C. ulcerans in a variety of populations with emphasis 
upon higher-risk countries, (ii) expand the DIPNET external quality assurance 
schemes for laboratory diagnosis to include epidemiological typing and serological 
immunity, and (iii) develop novel tools for integrated molecular epidemiological 
characterization so as to gain a clearer understanding of the spread of epidemic 
clones throughout the WHO European Region [3, 23, 108, 131–136].

Over the years, several molecular typing methods have been applied for C. diph-
theriae, including ribotyping, pulsed-field gel electrophoresis (PFGE), random 
amplification of polymorphic DNA (RAPD), multilocus enzyme electrophoresis 
(MEE), multilocus sequence typing (MLST), and spoligotyping. Some of these 
genotyping approaches have been also used for epidemiologic investigations of 
both C. ulcerans and C. pseudotuberculosis zoonotic pathogens [92, 137–141].

1.10.1  Ribotyping Assays

Ribotyping methods, based on restriction patterns of ribosomal RNA genes, had 
been previously considered the gold standard procedure for C. diphtheriae epide-
miological surveillance, due to its high discriminatory power, reproducibility, and 
optimal typeability [142–144]. At the beginning, two ribotypes were identified by 
the restriction enzyme BstEII and were named G and M, since they seemed to be 
related to biovars gravis and mitis, respectively. However, G ribotypes were found 
in C. diphtheriae biovar mitis strains, and M ribotypes were also found in C. diph-
theriae biovar gravis strains. The ten most frequent ribotypes of C. diphtheriae 
strains from Russia during the period of 1984 to 1996 were shown in Fig.  1.2. 
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During an accurate interlaboratory comparative analysis, a revised nomenclature for 
the designation of ribotypes was proposed. Prefixes “G” and “M” were both replaced 
by prefix “D” (diphtheria). In 2004, an international ribotyping database was estab-
lished at the Pasteur Institute and several collaborating laboratories supported by 
ELWGD/WHO. The ribotype nomenclature was revised and named using the geo-
graphical origin to reflect the location where one of the strains was isolated or stud-
ied. Eighty-six ribotypes were identified by the restriction patterns using BstEII 
digestion of the DNA [142, 145].

Ribotyping methods have been also used in studies of C. ulcerans zoonotic 
pathogen. In Japan, DT-producing C. ulcerans strains isolated from pharyngeal 
swabs of two patients attended at a hospital unit were indistinguishable by PFGE 
analysis and distinguished by ribotyping methods [146].  In 2016, a case of asphyxia 
death due to pseudomembrane caused by a DT-producing C. ulcerans strain, also 
recovered from the patient’s domestic cat, was reported in a Japanese woman. 
Ribotyping analysis during this case in 2016 detected identical ribotype observed 
for C. ulcerans 0102 strain isolated from the first case in Japan during the year 2001 

Fig. 1.2 Ribotyping assay based on restriction patterns of ribosomal RNA genes. Predominant 
riboprofiles identified in Corynebacterium diphtheriae strains (n = 156) from Russia during the 
period of 1984 to 1996. Tox, diphtheria toxin-producing. G, gravis. M, mitis. (Reprinted from 
Popovic et al. [142])
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[57]. In a previous study, 9 different ribotypes, designated U1 to U9, were identified 
when evaluating 81 C. ulcerans strains, 50 of which were clinical isolates from the 
United Kingdom (90% toxigenic), 7 isolates from domestic cat, and the remaining 
from different places and sources of origin. The U1 ribotype was the predominant 
pattern found among human clinical isolates from the United Kingdom (20 isolates) 
and four isolates from other countries (Germany, France, Ukraine, and Italy). The 
seven domestic cat isolates also generated ribotypes found among human clinical 
isolates [147].

Limitations of ribotyping as a genotyping method for C. ulcerans were also 
reported. Genome sequence of C. ulcerans FH2016-1 isolated from the first fatal 
case described above was sequenced and compared with genomes of C. ulcerans 
strains of the first and second cases from Japan, 0102 and 0211, respectively. 
Although the analyses demonstrated a low variability between genomes, the isolate 
FH2016-1 was genetically distinct from 0102 and 0211, indicating that conven-
tional ribotyping did not accurately reflect the strain with consequent inaccurate 
classification [148].

1.10.2  Pulsed-Field Gel Electrophoresis (PFGE) Technique

PFGE technique consists of the separation of DNA fragments with high molecular
weight of bacterial genoma, obtained by using restriction enzymes [149]. PFGE 
technique consists of the separation of DNA fragments with high molecular weight 
of bacterial genoma, obtained by using restriction enzymes were used, and the SfiI 
restriction endonuclease was chosen, producing 18 to 25 DNA fragments ranging in 
size from 24 to 290 kb. In comparison with ribotyping, PFGE was not able to dis-
tinguish three ribotypes [137]. Thereafter, minor changes in the PFGE protocol 
were done, and both PFGE and ribotyping showed identical discriminatory ability. 
In that opportunity, all isolates grouped in one PFGE type were grouped in a ribo-
type, and vice versa. In addition to the PFGE protocol changes, some explanations 
seemed plausible for the results found [150]. A protocol using difference in three or 
more bands was used to distinguish C. diphtheriae PFGE types. In a later study, a 
difference in only two bands to distinguish the PFGE types of a limited number of 
C. diphtheriae strains was used [137, 150].

Nowadays, PFGE typing method has been scarcely used to investigate epidemio-
logical relationship of C. diphtheriae strains in disease outbreaks. During the diph-
theria outbreak in Northeastern Brazil in 2010, most of the confirmed cases occurred 
in partially or completely immunized children, including three fatal cases. Molecular 
analysis demonstrated the spread of predominant PFGE type related strains 
(Fig. 1.3) [22].

PFGE typing assays have been also used in investigations of origin, transmis-
sion, and dissemination of zoonotic C. ulcerans strains, especially in Japan. 
DT-producing C. ulcerans strains were isolated from pharyngeal swabs of two 
patients from the same hospital unit during 2001 and 2002 and were characterized 
by PFGE and ribotyping. The isolates could not be distinguished by PFGE; 
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however, ribotyping showed discriminatory results [146]. In contrast, a study of a 
fatal case due to a DT-producing C. ulcerans strain, PFGE analyses, and ribotyping 
of C. ulcerans strains from the patient and his cat belonged to the same molecular 
type [57].

1.10.3  Multilocus Enzyme Electrophoresis (MEE)

This electrophoresis technique detects amino acid substitutions capable of altering 
charge and structural conformation of cellular housekeeping enzymes. Each elec-
tromorph or mobility variants of the same enzyme are visualized in a starch gel 
matrix as bands with different migration rates. Twenty-seven enzymes are tested, 
and each electromorph is considered a different allele of the specific enzyme. An 
electromorph profile defines the electrophoretic type (ET) of each bacterial strain. 
The genetic distance of ET is calculated as a dendrogram generated by the average 
linkage method of clustering the ETs [151]. Several studies had used MEE methods 
to estimate C. diphtheriae genetic diversity and epidemiological features of endemic 
and epidemic diseases. Diphtheria epidemic in the 1990s, which initiated in the 
Russian Federation and dispersed to several European countries, was characterized 
by the simultaneous presence of different ET that were also detected in C. diphthe-
riae strains isolated during the pre-epidemic period. The majority of C. diphtheriae 
strains with D1 and D4 ribotype patterns (previously named G1 and G4) belonged 
to the clonal group called ET8 complex [139].

Fig. 1.3 Pulsed-field gel electrophoresis (PFGE) types of Corynebacterium diphtheriae biovar 
intermedius strains isolated from children with diphtheria living in the state of Maranhão, Brazil. 
Lane 1, λ DNA ladder PFGE marker; lanes 2–5, PFGE type Ia (MA19, MA23, MA52, MA131 
strains, respectively); lane 6, PFGE type II (MA136 strain); lane 7, PFGE type Ib (MA150 strain). 
Other Brazilian DT-producing C. diphtheriae strains: lane 8, profile III (sucrose-positive TR241 
biovar mitis strain); lane 9, profile IV (sucrose-negative VA01 biovar gravis strain). Toxoid vaccine 
producer strain: lane 10, profile V (PW8 strain). (Reprinted from Santos et al. [22])
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1.10.4  Random Amplification of Polymorphic DNA (RAPD) Assays

The RAPD technique aims to amplify random segments of DNA with single prim-
ers of arbitrary nucleotide sequence that may be used to construct genetic maps in a 
variety of species [152]. The RAPD assay for C. diphtheriae was recently standard-
ized by using C. diphtheriae strains isolated worldwide. Initially, C. diphtheriae 
strains from Russia (1985–1994) were evaluated, and primers 3 and 4 classified the 
isolates previously ribotyped into 19 and 24 genotypic profiles, respectively. 
However, epidemic ribotypes D1 and D4 could not be differentiated by primers 3 
and 4. Subsequently, 120 C. diphtheriae strains isolated from Russia (1994–1995), 
Kazakhstan (1996), and the Republic of Georgia (1995–1996) were included and 
presented RAPD profiles typical of the epidemic ribotypes D1 and D4 [153]. 
Difficulties in the standardization of RAPD assays for C. diphtheriae such as the 
use of crude DNA and different thermocyclers resulted in poor amplifications, and 
nonreproducible patterns were also verified [138]. RAPD assays have advantages 
for being simple, rapid, and inexpensive. However, RAPD assays for C. diphtheriae 
demonstrated low reproducibility in some opportunities [138, 150, 153].

In a previous study, DT-producing and non-DT-producing C. diphtheriae strains 
isolated from cases of infective endocarditis showed different RAPD profiles, dem-
onstrating the invasive properties and circulation of these different clones in Brazil 
[28]. Analysis performed with purified DNA of several C. diphtheriae strains from 
26 countries resulted in the differentiation of Eastern European epidemic ribotypes 
D1 and D4 corresponding to the RAPD profiles Rp1 and Rp4, respectively [143] 
(Fig. 1.4).

Fig. 1.4 Thirteen RAPD profiles of C. diphtheriae isolates illustrating the differentiation of epi-
demic ribotypes D1 e D4 as Rp1 and Rp4, respectively. (Reprinted from De Zoysa et al. [143])
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1.10.5  Amplified Fragment Length Polymorphism (AFLP)

AFLP technique is based on PCR amplification of restriction fragments from total 
genomic DNA digestion, by using generic primers that do not require prior informa-
tion of the target DNA sequence. DNA restriction and ligation of oligonucleotide 
adapters are made to form the binding sites. Subsequently, the selective amplifica-
tion of the restriction fragments occurs, and finally the fragments are visualized in 
gel [154]. Evaluation of the AFLP technique was verified during a study conducted 
with C. diphtheriae strains (n = 57) presenting nine different ribotypes. A total of 
ten AFLP profiles were assigned to C. diphtheriae tested strains; however, it was not 
able to discriminate the predominant ribotype during the Eastern European epi-
demic. AFLP is a PCR fingerprint method easy to perform, rapid, inexpensive, and 
suitable for most laboratories. Moreover, the AFLP standards are representative of 
the complete genome [155]. However, AFLP method was less discriminatory than 
ribotyping in some studies [143, 156].

1.10.6  Multilocus Sequence Typing (MLST) Method

MLST assays have been widely used in different countries for molecular typing of 
circulating C. diphtheriae strains and investigations of epidemic outbreaks. The 
method aims to group strains related to cloned complex after sequencing and ana-
lyzing fragments of seven constitutive genes that encode essential functions for 
microbial metabolism. C. diphtheriae MLST scheme uses fragments of the follow-
ing housekeeping genes: ATP synthase alpha chain (atpA), DNA polymerase III 
alpha subunit (dnaE), chaperone protein (dnaK), elongation factor G (fusA), 
2- isopropylmalate synthase (leuA), 2-oxoglutarate dehydrogenase E1 and E2 com-
ponents (odhA), and DNA-directed RNA polymerase beta chain (rpoB) [91, 144].

The PubMLST website hosts a collection of open-access, curated databases that 
integrate sequence data with phenotype information for many microbial species, 
including C. diphtheriae and C. ulcerans. Currently, more than 700 categorized 
types are deposited (October 2020) in the PubMLST database (http://pubmlst.org/
cdiphtheriae/). In 2010, the MLST scheme was proposed for C. diphtheriae by 
using the sequences of the 7 constitutive genes described above, with a total of 150 
tested strains (toxigenic isolates n  =  96) from 18 different countries, during the 
period of 1957–2006. The results were consistent with previous ribotyping data, 
which was considered the “gold standard” typing method of C. diphtheriae for 
many years [91].

Although MLST is recognized as a valuable fast and simple PCR-based method 
used for the tracking the spread of important clones and evolutionary investigation 
of bacteria, this methodology has some limitations, such as the identification of 
hypervirulent clones, since the MLST data are based on changes in the core genome, 
while changes in the accessory genome are responsible for C. diphtheriae virulent 
variants. Each ST can be represented by toxigenic noninvasive, nontoxigenic inva-
sive, and nontoxigenic noninvasive strains [157, 158]. Furthermore, some C. 
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diphtheriae strains with identical ST may differ in up to 290 genes; noncorrelated 
results between MLST and biotype tests may also occur [158, 159].

The ST-8 clone was responsible for the beginning of the Eastern European epi-
demic and spread of more than 157,000 registered cases of diphtheria, which 
resulted in approximately 5,000 deaths. Non-DT-producing profiles of ST-8 strains, 
previously isolated as toxigenic in Russia, were recently described in Poland. This 
change was attributed to the environmental pressure exerted by the increase in the 
number of vaccinated individuals. ST-8 continued to circulate after the epidemic 
period, as reported realized in Germany, which points to the persistence of ST-8 
until today [158, 160, 161]. From 2016 to 2017 in Germany, there was an increase 
in the circulation of nontoxigenic C. diphtheriae characterized mostly by the ST-8. 
This ST is the most abundant found in the MLST database for C. diphtheriae and 
probably in Europe [160].

Since invasive infections caused by C. diphtheriae in vaccinated and non- 
vaccinated individuals have been reported in Brazil, a genetic relationship of 
C. diphtheriae strains isolated from classic diphtheria and invasive infections in Rio 
de Janeiro metropolitan area was investigated by using MLST. Four strains pre-
sented an atypical sucrose-fermenting ability and corresponded to new STs. 
Interestingly, a sucrose-fermenting C. diphtheriae biovar mitis strain, isolated in 
1999 patient with endocarditis, formed a clonal complex with a DT-positive C. diph-
theriae biovar mitis strain isolated in Argentina (1995) causing classic diphtheria, 
suggesting a C. diphtheriae biovar mitis clonal complex circulation in South 
America. Moreover, a sucrose-negative strain isolated from a case of endocarditis in 
2003 generated an MLST profile that had been previously deposited in the database, 
ST128, a single locus variant (SLV) of ST-80, the clonal complex that comprises 
strains currently isolated in different countries including France (ST128) and 
Canada. These data indicated that C. diphtheriae clonal complexes comprising clin-
ical strains related to diphtheria disease may also include invasive phenotypes [9, 
28, 91, 94, 111, 162].

An MLST protocol C. ulcerans was based on protocol described for C. diphthe-
riae. The website PUBMLST comprises data for both species [91, 163, 164]. MLST 
methods have been also used in phylogenetic analyses, epidemiology, and zoonotic 
transmission investigations of C. pseudotuberculosis [55, 97, 163, 165].

1.11  In Silico-Based Approaches

Bacterial in silico typing based on repetitive DNA sequences has been also estab-
lished with the objective of genomic characterization and epidemiological surveil-
lance of diphtheria. Two approaches named CRISPR (clustered regularly interspaced 
short palindromic repeats) loci and VNTR (variable number tandem repeats) were 
investigated. In Poland, a study used the complete genome sequence of the NCTC 
13129 C. diphtheriae strain to identify 75 VNTR loci, of which 14 were selected. 
Primers were designed, and PCR conditions were optimized to amplify the selected 
VNTR markers. Fourteen markers were tested and eight were considered 
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potentially useful. This approach showed discriminatory genotyping ability for the 
C. diphtheriae tested strains (n = 28), but the preliminary results were not compared 
with other genotyping methods [166].

CRISPR-based spoligotyping, defined as a genotyping technique to identify 
C. diphtheriae strains at the phylogeographic level, was also described. According 
to the authors, this typing methodology presents a high level of discrimination and 
may be employed to study local epidemiology. One of the limitations is the need for 
expensive equipment or the use of external services, but the comparison of results 
between laboratories is easy, and the data generated can be compared in a database. 
In a study conducted with C. diphtheriae of Russia and Belarus epidemic clone, the 
156 strains tested were subdivided into 45 spoligotypes. A high level of discrimina-
tion in the study of the local epidemiology of diphtheria was observed. However, the 
three selected CRISPR loci were not present in all C. diphtheriae tested strains, and 
most of them had unique spaces in the leader sequence, indicating that they evolved 
independently after diverging from a common ancestor [141, 167, 168].

Whole-genome sequencing (WGS) has become an essential tool for molecular 
epidemiology of infectious disease studies. In recent years, WGS has become the 
gold standard of high-resolution typing methods, allowing the understanding of the 
molecular epidemiology and global transmission of pathogens. Genome sequencing 
remains expensive to be employed in routine genotyping. Nevertheless advances in 
C. diphtheriae genomics concern an increasing number of complete genomes in 
GenBank may benefit sequence-based genotyping methods as identification of 
SNPS, tandem repeats (VNTRs), and CRISPR-based spoligotyping. The develop-
ment of more inexpensive and discriminatory methodologies for use in epidemio-
logical studies will be crucial in our understanding of the molecular epidemiology 
and carriage of C. diphtheriae and C. ulcerans [23, 87, 144].

1.12  Conclusions

Molecular typing methods have become essential during the analysis of studies 
involving epidemiology outbreaks, endemic conditions, recurrent infections, trans-
mission, and virulence potential of C. diphtheriae and zoonotic diphtheria toxin- 
producing Corynebacterium species. Application of any typing method depends on 
the objectives of the study, the level of resolution desired (species vs. strain), and the 
laboratory conditions and technical expertise available. In studies of complex epide-
miological situations and strain-dependent virulence mechanisms, it is recom-
mended not to rely on a single method but to use combinations of methods for strain 
identification and to interpret results within the context of the epidemiological back-
ground and evolution of once acquired pathogenicity features during vaccine era 
[22, 23, 38, 55, 74, 97, 143, 155].

Epidemiological investigations demonstrated the prevalence of C. diphtheriae 
biovars gravis and mitis in Eastern Europe and most of Brazilian outbreaks, respec-
tively. Diphtheria cases and deaths caused by C. diphtheriae biovar intermedius 
were also documented in previously immunized individuals in India and during the 
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most recent diphtheria outbreak in Brazil [5, 17, 22, 169, 170]. Nowadays, molecu-
lar epidemiological investigations demonstrated the prevalence of different C. diph-
theriae genotypes in specific geographic regions, including epidemic outbreak: 
Thailand (ST-243), South Africa (ST 379), and Malaysia (ST453) [171–173].

The occurrence of diphtheria among immunized persons and the increasing fre-
quency of atypical infections caused by non-DT-producing clones indicated that 
other microbial factors should be used as one of the antigens in the potential vaccine 
development in the near future. In conclusion, molecular typing methods became a 
remarkable achievement in wide-ranging research to potentially DT-producing 
Corynebacterium species (C. diphtheriae complex), group of extremely dangerous 
human pathogenic species.

1.13  Summary

Corynebacterium diphtheriae is the leading causing agent of respiratory and cuta-
neous diphtheria, an acute disease with local and systemic manifestations, which 
remains as an important cause of morbidity and mortality in different continents. 
Diphtheria vaccination programs implemented in industrialized and developing 
countries led to an increasing number of atypical cases of diphtheria in addition to 
localized and systemic infections, including fully immunized adults. Changes in the 
clinical epidemiology and virulence features of diphtheria pathogens have been 
investigated. Cases of infections due to diphtheria toxin (DT)-producing and non- 
DT- producing C. diphtheriae and Corynebacterium ulcerans, a zoonotic pathogen, 
have been increasingly reported. The timely and precise diagnosis of DT-producing 
Corynebacterium strains is indispensable for the patient management and for estab-
lishment of surveillance and control strategy of disease. Different molecular meth-
ods, such as real-time PCR (polymerase chain reaction) and multiplex PCR, have 
been used for the characterization of C. diphtheriae, C. ulcerans, and C. pseudotu-
berculosis and the detection of the gene for DT (tox). Recent investigations by 
genomic sequencing and chemotaxonomic analyses reported DT-producing C. diph-
theriae subsp. lausannense and Corynebacterium belfantii sp. nov. in addition to 
Corynebacterium rouxii sp. nov. Genotyping methods have been used as essential 
epidemiological tools for C. diphtheriae and C. ulcerans infection prevention and 
control, including pulsed-field gel electrophoresis (PFGE), random amplification of 
polymorphic DNA (RAPD), and multilocus sequence typing (MLST) assays. 
Molecular typing methods are required in studies involving characterization, viru-
lence potential, and susceptibility to antimicrobial agents of C. diphtheriae and 
C. ulcerans clinical isolates; origin, routes, and transmission of diphtheria and atyp-
ical invasive infections; and endemicity, outbreaks, recurrent infections, and trace 
cross-transmission caused by non-DT-producing and DT-producing 
Corynebacterium spp.
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2.1  Introduction

The bacteria commonly referred to as mycoplasmas are included within the phylum 
Tenericutes, class Mollicutes which is comprised of 4 orders, 5 families, 8 genera, 
and about 200 known species distributed among humans, animals, insects, and 
plants (Table 2.1). There are 17 mollicute species isolated from humans, excluding 
species of animal origin that have been detected in humans, usually in immunosup-
pressed hosts, but which are generally considered transient colonizers.

There are at least six species known to be of pathologic significance for humans, 
either as primary pathogens or opportunists: Mycoplasma pneumoniae, M. hominis, 
M. genitalium, M. fermentans, Ureaplasma urealyticum, and Ureaplasma parvum. 
M. amphoriforme is the most recently described Mycoplasma species isolated from 
humans. While the true extent of its role as a human pathogen has not yet been 
firmly established, evidence is accumulating for person-to-person transmission 
and that it can cause illness in immunosuppressed as well as immunocompetent 
persons [1, 2].

Some important characteristics of individual mollicute species that occur in 
humans are shown in Tables 2.2 and 2.3. This chapter will focus primarily on 
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methods for detection, identification, and typing of pathogenic mollicutes of humans 
and will not include information on the many mycoplasmal pathogens of animals.

2.2  Class Mollicutes

Mollicutes are smaller than conventional bacteria in cellular dimensions as well as 
genome size, making them the smallest free-living organisms known. Some species 
such as M. pneumoniae and M. genitalium also possess distinct terminal attachment 
organelles. Mollicutes cannot be detected by light microscopy, and they rarely 

Table 2.2 Characteristics of Mycoplasma species that colonize and infect humans

Species

Primary site of colonization
Metabolic 
substrate

Role in human 
diseasesa

Respiratory 
tract

Urogenital 
Tract Glucose Arginine

M. 
amphoriformeb

+ ? + − Yes

M. buccale + − − + No

M. faucium + − − + No

M. fermentans + + + + Yes
M. genitalium ?+ + + − Yes

M. hominis + + − + Yes

M. lipophilum + − − + No

M. penetransc − + + + ?

M. pirumd ? ? + + No
M. orale + − − + No

M. pneumoniae + − + − Yes

M. primatum − + − + No

M. salivarium + − − + No

M. 
spermatophilum

− + − + No

aSome of the species listed as commensals, such as M. salivarium and M. orale, have occasionally 
been shown to produce invasive disease (e.g., arthritis) in persons with primary antibody defi-
ciency or other immunosuppressed states, but they are still considered nonpathogenic overall
bM. amphoriforme is the newest human Mycoplasma species to be identified. It has been recovered 
from the respiratory tract of persons with primary antibody deficiency and chronic bronchitis or 
bronchiectasis as well as immunocompetent persons, but not in healthy persons thus far [1, 2, 6]. 
Whether it occurs in sites other than the respiratory tract has not been evaluated
cM. penetrans has been detected in the urine, rectum, and throats of homosexual men with human 
immunodeficiency virus infection. However, this mycoplasma has not been conclusively shown to 
produce significant disease in any patient population, despite the fact that it possesses potentially 
pathogenic features such as a prominent terminal attachment organelle and has proven ability to 
invade host cells [19]
dM. pirum was first characterized in 1985, but its natural host was unknown. This mycoplasma has 
been isolated from peripheral blood lymphocytes and urines in persons with human immunodefi-
ciency virus infection and has been found by PCR in the rectums of homosexual men. It has also 
been detected in healthy persons and no conclusive evidence that it is a cause of human disease has 
been forthcoming [19]
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produce visible turbidity in liquid growth media. They do not possess a cell wall, but 
like mammalian cells, they are bounded by phospholipid bilayer membranes. The 
permanent lack of a cell wall barrier makes mollicutes unique among prokaryotes. 
Lack of a cell wall also renders mollicutes insensitive to the activity of beta-lactam 
antimicrobials, prevents them from staining by Gram stain, and is largely responsi-
ble for their pleomorphic form. Most mollicutes are nonmotile, but some species, 
including M. pneumoniae and M. genitalium, show gliding motility. Mollicutes con-
tain a single circular chromosome and a low G + C content. The extremely small 
genomes and limited biosynthetic capabilities explain their parasitic or saprophytic 
existence, their sensitivity to environmental conditions, and fastidious growth 
requirements. Type strains and clinical isolates of important mollicute pathogens of 
humans have undergone complete genomic sequencing in order to provide a better 
understanding of their comparative genomics and offer clues about pathogenic 
mechanisms at the molecular level.

Mollicutes require enriched growth medium supplemented with nucleic acid pre-
cursors, fatty acids, and amino acids. Except for acholeplasmas, asteroleplasmas, 
and mesoplasmas, mollicutes require sterols in growth media, supplied by the addi-
tion of horse or bovine serum. Although mollicutes can flourish in the osmotically 
stable environment of a eukaryotic host, they are extremely susceptible to desicca-
tion. In addition to the phospholipid bilayer membrane, mollicute cells typically 
have an underlying protein cytoskeleton network that provides structural support. 
Some mollicutes, including M. pneumoniae and Ureaplasma spp., also elaborate 
extracellular capsular material [3, 4]. Growth rates in culture medium vary among 
individual species, with generation times of approximately 1 hour for Ureaplasma 
spp., 6 hours for M. pneumoniae, and 16 hours for M. genitalium [5]. Typical mol-
licute colonies vary from 15 to 300 μm in diameter. Colonies of some species, such 
as M. hominis, often exhibit a “fried egg” appearance owing to the contrast in deeper 
growth in the center of the colony with more shallow growth at the periphery, while 
others, such as M. pneumoniae and M. genitalium, produce spherical colonies. 
Whereas colonies of some mycoplasmal species may be observed with the naked 

Table 2.3 Genomic characteristics of Mycoplasma and Ureaplasma speciesa

Species
(no. of genomes 
sequenced)b

Genome size 
(kbp)

Protein-coding 
genes

Mol% G + C of 
DNA

M. amphoriforme (1) 1031 715 32
M. fermentans (5) 921–1120 690–938 27
M. genitalium (6) 560–580 346–515 31–32
M. hominis (23) 633–768 502–606 27
M. pneumoniae (89) 778–858 661–743 4
U. parvum (14) 630–773 334–601 25–26
U. urealyticum (18) 644–947 435–698 25–28

aData obtained from https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/mycoplasma
bNumber may include more than one sequence for the same strain, sometimes performed by differ-
ent methods
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eye, those produced by ureaplasmas are typically 15–60 μm in diameter and require 
low-power microscopic magnification for visualization.

Mollicutes can be classified according to whether they ferment glucose, utilize 
arginine, or hydrolyze urea. Except for hydrolysis of urea, which is unique for urea-
plasmas, these biochemical features are not sufficient for species distinction. 
Anaeroplasmas and asteroleplasmas, which occur in ruminants, are strictly anaero-
bic and oxygen-sensitive, while most other mollicutes are facultative anaerobes. 
The type of media, pH, metabolic substrates, and optimum temperature for in vitro 
cultivation and colony development can vary considerably for the many different 
species that may be encountered in various hosts. No tricarboxylic acid cycle 
enzymes, quinones, or cytochromes have been found in this class. The 16S rRNA 
gene sequences place the mollicutes into several distinct phylogenetic groups 
(Fig. 2.1) and have also shown that certain noncultivable hemotropic bacteria previ-
ously classified among the rickettsiae belong to class Mollicutes [2].

Hominis

Pneumoniae

Aneroplasma

Mycoides

Fig. 2.1 Phylogenetic classification of mollicutes based on 16S rRNA gene. The six species of 
Mycoplasma and Ureaplasma that are proven human pathogens are noted with red stars. The four 
main taxonomic groups of the class Mollicutes are highlighted in different background colors
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2.2.1  Genus Mycoplasma

The genus Mycoplasma is the largest and most important in the class, comprised of 
well over 100 known species, which may occur as commensals or cause significant 
diseases in animals or humans.

2.2.1.1  Mycoplasma amphoriforme
M. amphoriforme was first isolated in 1999 from a patient with X-linked agamma-
globulinemia suffering from chronic bronchitis [6]. Subsequently, it has been 
detected in persons with primary antibody deficiencies with chronic bronchitis, as 
well as in immunocompetent adults with lower respiratory tract infections, but not 
in normal adult control subjects. M. amphoriforme has been detected on multiple 
occasions from patients with chronic respiratory symptoms, primarily a productive 
cough with mucopurulent sputum [7]. The full geographic distribution and patho-
genic role of M. amphoriforme in humans have not been firmly established. Scanning 
electron microscopy has revealed that the pleomorphic flask-shaped cells of 
M. amphoriforme exhibit one or more polar extensions terminating in a knob-like 
structure whose shape is distinct from that of the M. pneumoniae attachment organ-
elle [8]. M. amphoriforme exhibits gliding motility, but whether it possesses cytad-
herence properties associated with this terminal structure analogous to M. pneumoniae 
has not been investigated. M. amphoriforme grows poorly and very slowly on 
Hayflick’s/SP4 agar after 2–3 weeks of incubation in air plus 5% CO2. It produces 
spherical colonies similar in appearance to those of M. pneumoniae. Like M. pneu-
moniae, it is glycolytic [2].

2.2.1.2  Mycoplasma fermentans
M. fermentans can occur in many body fluids and tissues, but its primary site of 
colonization, mode of transmission, and pathogenic potential are incompletely 
understood. It has been detected in adults with an acute influenza-like illness [9] and 
in bronchoalveolar lavages, peripheral blood lymphocytes, and bone marrow from 
patients with acquired immunodeficiency syndrome (AIDS) and respiratory disease 
[10, 11]. Respiratory infection with M. fermentans is not necessarily linked with 
immunodeficiency, but it may also behave as an opportunistic pathogen. Several 
studies have implicated M. fermentans in a variety of human inflammatory arthriti-
des including rheumatoid arthritis. Considerable interest arose in the 1990s regard-
ing the possibility that M. fermentans could be a cofactor in the pathogenesis in 
AIDS and/or as an etiologic agent of fibromyalgia, Gulf War, and chronic fatigue 
syndromes. However, after several large-scale studies failed to demonstrate a con-
clusive role for this organism in these conditions, the belief that M. fermentans is 
pathogenic in such conditions has been abandoned [12]. M. fermentans is able to 
invade host cells and produces a potent immunomodulator, macrophage-activating 
lipopeptide 2, which stimulates macrophages to release cytokines that may increase 
neutrophilic infiltration locally where the organism resides [12]. M. fermentans 
does not have the specialized attachment organelle that occurs in some other spe-
cies. Additional virulence factors may include plasminogen activation and other 
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membrane surface proteins that mediate cell fusion, cytadherence, and antigenic 
variation [13]. M. fermentans grows well on SP4 or Hayflick’s agar supplemented 
with either arginine or glucose since it has the enzymatic systems to utilize both as 
substrates. It produces fried egg colonies after several days of incubation.

2.2.1.3  Mycoplasma genitalium
M. genitalium was initially isolated from men with urethritis in 1980 and is now 
known to be a significant cause of this condition as well as female cervicitis and 
pelvic inflammatory disease [14, 15]. M. genitalium possesses a terminal structure, 
the MgPa adhesin, which facilitates its attachment to epithelial cells. M. genitalium 
also attaches to spermatozoa and erythrocytes and invades epithelial cells with evi-
dence of nuclear localization [15]. A family of repetitive DNA elements with 
homology to the MgPa adhesin gene provides a reservoir of sequence that could 
contribute to variation in the protein of the MgPa adhesin gene. Sequence diver-
gence among strains of M. genitalium has been shown, and this antigenic variation 
may help avoid the host immune response and optimize adhesion [16]. Extensive 
variation of the MG192 sequence changes the antigenicity of the protein to allow 
immune evasion but also alter the mobility and adhesion ability of the organism to 
adapt to diverse host microenvironments, thus facilitating persistent infection [17]. 
M. genitalium is glycolytic, but cultivation is difficult and time-consuming, requir-
ing up to several weeks for typical spherical colonies to emerge on agar, although 
subcultures may grow more rapidly on agar. The best culture media are SP4 broth 
and agar incubated at 37 °C in air plus 5% CO2. Additional techniques designed to 
improve recovery of M. genitalium from clinical specimens have involved serial 
passages in Vero cells to allow adaptation for the organisms to grow in broth and 
eventually on agar [18]. Though various modalities have been developed to enhance 
the ability to detect M. genitalium in culture, the high failure rate and extremely 
slow growth make the culture approach impractical for diagnostic purposes.

2.2.1.4  Mycoplasma hominis
Approximately 21–53% of asymptomatic sexually active women may be colonized 
with this mycoplasma in the cervix or vagina, but the occurrence is somewhat lower 
in the male urethra [19]. It is often present concurrently with Ureaplasma spp. and 
is venereally and vertically transmissible. M. hominis is associated with a variety of 
conditions including pyelonephritis, pelvic inflammatory diseases, chorioamnion-
itis, postpartum endometritis, bacterial vaginosis, arthritis, osteoarthritis, wound 
infections, and several conditions in neonates including congenital pneumonia, 
meningitis, bacteremia, and abscesses. Systemic infections are usually, but not 
always, associated with immunocompromised hosts [19]. Henrich [20] demon-
strated the presence of the variable adherence-associated (Vaa) antigen, which dis-
plays high-frequency phase and size variation that is believed to be a major adhesin 
of M. hominis and may also assist in evasion of host immune responses. Additional 
surface proteins such as OppA, an oligopeptide permease substrate-binding protein, 
are also believed to be involved in cytadherence and may also induce ATP release 
from cells, resulting in apoptosis [21]. The pathogenic potential of M. hominis is 
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complicated by the high degree of genomic and antigenic heterogeneity observed 
within the species [22]. M. hominis is a coccoid organism without a prominent polar 
attachment organelle. It is non-glycolytic and synthesizes ATP through the arginine 
dihydrolase pathway [21]. M. hominis grows well in SP4 broth or agar medium 
supplemented with arginine at 37 °C in 5% CO2 in air, but it will also grow on A8 
agar and in 10B broth. Colonies develop in 2–3 days and exhibit the typical fried 
egg appearance.

2.2.1.5  Mycoplasma pneumoniae
M. pneumoniae is a common cause of upper and lower respiratory tract infections 
in children and adults worldwide. Details of the epidemiology, pathogenesis, and 
clinical manifestations of M. pneumoniae infections have recently been reviewed by 
Waites et al. [23]. It is easily spread through respiratory droplets and can cause a 
wide array of clinical manifestations including pharyngitis, tracheobronchitis, and 
pneumonia. Extrapulmonary manifestations involving any of the major organ sys-
tems sometimes occur following primary respiratory infection either by direct 
spread or autoimmune effects. Attachment of M. pneumoniae to host cells in the 
respiratory tract of humans is a prerequisite for colonization and infection. 
Cytadherence is mediated by the P1 adhesin and other accessory proteins [24] and 
is followed by induction of chronic inflammation, and cytotoxicity mediated by 
hydrogen peroxide, which also acts as a hemolysin. M. pneumoniae stimulates B 
and T lymphocytes and induces formation of autoantibodies which react with a 
variety of host tissues and I antigen on erythrocytes, which is responsible for pro-
duction of cold agglutinins. An ADP-ribosylating toxin with limited sequence 
homology to the pertussis toxin S1 subunit known as the community-acquired respi-
ratory distress syndrome toxin (CARDS TX) causes vacuolation and ciliostasis in 
cultured host cells and is now considered a significant virulence factor in M. pneu-
moniae [24, 25]. Although mycoplasmas are generally considered to be extracellu-
lar pathogens, intracellular localization is now appreciated for M. pneumoniae, 
M. fermentans, M. penetrans, and M. genitalium [26]. Intracellular localization may 
be responsible for protecting the organisms from antibodies and antibiotics, as well 
as contributing to disease chronicity and difficulty in cultivation in some cases. 
M. pneumoniae appears in electron micrographs as pleomorphic rods 0.1–0.2 μm in 
width with a prominent polar attachment organelle [3]. M. pneumoniae can be cul-
tivated at 37 °C in 5% CO2 in air in SP4 medium containing glucose at pH 7.4–7.6. 
Spherical colonies develop after several days.

2.2.2  Genus Ureaplasma

The genus Ureaplasma comprises those members of the family Mycoplasmataceae 
that hydrolyze urea and use it as a metabolic substrate for generation of ATP. Shepard 
provided the first description of ureaplasmas when he cultivated them from the ure-
thras of men with nongonococcal urethritis (NGU) [29]. Human ureaplasmas were 
originally considered to belong to a single species, U. urealyticum, until 2002 when 

K. B. Waites et al.



45

its two biovars were reclassified as the separate species U. parvum and U. urealyti-
cum [28]. There are 14 known serovars. U. parvum contains the serotypes 1, 3, 6, 
and 14, while the remaining serovars 2, 4, 5, and 7–13 are assigned to U. urealyt-
icum [2].

As many as 40%–80% of healthy adult sexually active women may harbor urea-
plasmas in their cervix or vagina. The organisms are venereally as well as vertically 
transmissible. Their occurrence is somewhat less in the lower urogenital tract of 
healthy men (approximately 20%–29%) [29]. U. parvum is more common than 
U. urealyticum as a colonizer of the male and female urogenital tracts and in the 
neonatal respiratory tract [12]. Ureaplasmas reside primarily on the mucosal sur-
faces of the urogenital tracts of adults or the respiratory tracts in infants. Despite 
their frequent occurrence in the lower urogenital tracts of healthy persons, 
Ureaplasma spp. may cause a variety of clinical conditions including urethritis, 
chorioamnionitis, postpartum endometritis, preterm birth and pneumonia, bactere-
mia, abscesses, meningitis, and chronic lung disease in preterm infants [2, 19]. 
Ureaplasmas are opportunistic pathogens, particularly in hosts with impaired anti-
body production and have been associated with arthritis, osteomyelitis, pneumonia, 
and other systemic conditions in this setting. Along with M. hominis, Ureaplasma 
spp. have recently been implicated as a cause of fatal hyperammonemia in lung 
transplant recipients [30].

Ureaplasmas are capable of attaching to urethral epithelial cells, spermatozoa, 
and erythrocytes [12]. The adhesins have not been characterized completely, but 
current evidence suggests the receptors are sialyl residues and/or sulfated com-
pounds [12]. A major family of surface proteins, the multiple banded antigens 
(MBA), is immunogenic during ureaplasma infections. MBAs have been used as a 
basis for the development of reagents for diagnostic purposes, but MBA expression 
is known to be phase variable, so false negatives using assays based on MBA pro-
tein or mba gene detection are possible [31]. Ureaplasmas produce nucleases, IgA 
protease, and release ammonia through urea hydrolysis, all of which are considered 
possible virulence factors [12]. An intact humoral immune response appears to be 
important in limiting invasion and dissemination of ureaplasma beyond mucosal 
surfaces. This is demonstrated by their tendency to cause chronic respiratory infec-
tions and arthritis in persons with hypogammaglobulinemia and to cause invasive 
disease in preterm neonates [12]. Variation in surface antigens may be related to 
persistence at invasive sites. Ureaplasmas typically appear as coccoid cells of about 
0.2–0.3 μm diameter under electron microscopy but may be as small as 0.1 μm. 
Ureaplasma spp. grow rapidly in 10B broth and A8 agar and will produce colonies 
15–60 μm colonies within 1–2 days after incubation at 37 °C in air plus 5% CO2. 
Colonies appear brown and granular in the presence of CaCl2 in A8 agar and may 
produce the fried egg effect.
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2.3  Detection of Mollicutes by Traditional Methods

2.3.1  Culture

Culture is a quick and reliable method for detection of Ureaplasma spp. and 
M. hominis in clinical specimens. These organisms will produce color change in 
broth, and colonies will develop on agar within 1–3 days if suitable growth media 
and incubation conditions are provided. Culture has an additional advantage in that 
it provides an isolate that can be studied further and on which antimicrobial testing 
can be performed. However, for M. fermentans, M. pneumoniae, and especially 
M. genitalium, culture is seldom used since it is insensitive for detection and may 
require several days to weeks for evidence of growth. M. amphoriforme has been 
detected by culture conditions comparable to what are used for M. pneumoniae, but 
very limited experience suggests it grows slowly and very poorly in vitro, which 
probably accounts for the paucity of clinical isolates that have been reported thus 
far. Detailed methods for obtaining specimens and culturing mycoplasmas and ure-
aplasmas of humans in vitro have been described in other reference texts [2, 32].

2.3.1.1  Identification of Mollicutes Grown in Culture
For Ureaplasma spp., the appearance of granular colonies on A8 agar in the pres-
ence of CaCl2 indicator is sufficient for genus identification. Growth of a myco-
plasma from a clinical specimen cannot be conclusively identified to species level 
based on phenotypic appearance or biochemical activities. Formerly, there were 
several phenotypic methods used to identify mycoplasmas detected by culture in 
clinical specimens. However, they have now been replaced by molecular methods 
such as PCR which is discussed in a separate section.

2.3.2  Serological Detection

2.3.2.1  M. pneumoniae
Serological testing was the first method for detection of M. pneumoniae infections. 
Disadvantages of serology are the need for both acute and convalescent paired sera 
collected 2–3 weeks apart that are tested simultaneously for IgM and IgG to confirm 
seroconversion, difficulty in distinguishing current or recent infection from past 
infection, and the need to wait 1–2 weeks until detectable antibody develops. This 
is especially important in adults who may not mount an IgM response. Moreover, 
IgM can sometimes persist for several weeks to months; antibody production may 
also be delayed in some infections or even absent if the patient is immunosup-
pressed. Serological testing of M. pneumoniae has been described in depth else-
where [23].
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2.3.2.2  Urogenital Mycoplasma and Ureaplasma spp.
Despite investigations over several years aimed at developing serological assays for 
genital mycoplasma and ureaplasma infections, such assays have never been stan-
dardized and are not generally available or recommended for diagnostic purposes.

2.4  Molecular-Based Mollicute Detection, Identification, 
and Genotyping

Over the past three decades, hundreds of publications have described various nucleic 
acid amplification tests (NAATs) and their applications to detect mycoplasmas and 
ureaplasmas in clinical specimens. These assays enable detection of small numbers 
of extremely fastidious species such as M. genitalium that might never be detected 
otherwise and identification of organisms to the species level as in the case of urea-
plasmas. Many different target genes have been used as described in subsequent 
sections. NAATs have also been adapted to detect antimicrobial resistance determi-
nants and to analyze genetic relatedness of clinical isolates. Real-time PCR is capa-
ble of amplifying and simultaneously detecting and quantifying the target DNA 
molecule as it accumulates during the reaction in real time after each amplification 
cycle. Examples of detection systems include agarose gel electrophoresis, SYBR 
green, TaqMan probes, hybridization probes, molecular beacons, and microchip 
electrophoresis [33]. Other NAATs applied to mollicutes include nucleic acid 
sequence-based amplification (NASBA) [34], loop-mediated isothermal amplifica-
tion (LAMP) [35], transcription-mediated amplification (TMA) [36], and recombi-
nase polymerase amplification (RPA) [37]. Since organism viability does not have 
to be maintained for NAAT-based detection, specimen collection, handling, and 
transport are much simpler than for culture. Moreover, NAAT is inherently more 
sensitive than culture, when optimum conditions and gene targets are employed, 
making it an attractive alternative in many clinical and research settings. Real-time 
PCR can potentially provide results the same day a specimen is received and pro-
vide quantitative data to determine the bacterial load in a clinical specimen. This 
can be important for interpretation of results for organisms that are known to colo-
nize asymptomatic persons. Some of the newer automated real-time PCR systems 
incorporate both DNA extraction and real-time PCR reactions such that no addi-
tional manipulation of a clinical specimen is required once it is placed into the 
instrument. This can be important from the standpoint that it substantially reduces 
risk for cross-contamination and lessens hands-on technologist time, further reduc-
ing turnaround time from when a specimen is received to when results can be 
reported. Both monoplex and multiplex PCR assays have been developed.

PCR and selective or whole-genome sequencing (WGS) are now popular meth-
ods for characterization of mollicutes and determining genetic relatedness, but other 
molecular-based methods provided some useful information before PCR-based 
methods were widely available. These include immunoblotting with monoclonal 
antibodies, two-dimensional gel electrophoresis or sodium dodecyl sulfate- 
polyacrylamide gel electrophoresis (SDS-PAGE), pulsed field gel electrophoresis 
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(PFGE), DNA-DNA hybridization, and restriction endonuclease cleavage. The gen-
eral conclusion of most studies has been that many of these organisms exhibit a 
great deal of heterogeneity as a result of antigenic variation and gene transfer within 
and among species.

Currently, there are four commercial NAATs for detection of M. pneumoniae and 
one for M. genitalium that are FDA-cleared, and others are currently under review. 
Various methods for strain typing such as P1 typing, multilocus tandem variable 
repeats (MLVA), and multilocus sequence typing (MLST) have been applied to 
improve understanding of the epidemiology of mollicute infections.

2.4.1  Mycoplasma spp.

2.4.1.1  M. amphoriforme
Pitcher described the first PCR for detection of M. amphoriforme based on 16S r 
RNA [38]. Subsequently, Ling developed a quantitative real-time PCR targeting 
uracil DNA glycosylase (udg) and one targeting the variable region of 23S rDNA 
[1]. A TaqMan real-time PCR targeting the M. amphoriforme gene MAMA39_00510 
was developed at the UAB Diagnostic Mycoplasma Laboratory and shown to be 
sensitive and specific. Primers and probes for the assay are Mam198-F: 5′-ATTT 
CCTTTTTTGCATTATGTCC-3′, Mam198-R: 5′-CTCGTTTTTCTTTCACTTATG 
TT-3′, and Mam198-TP: 5′-FAM-CACTTTTTTTGTTTTCGCGGCTTTT-TAM 
RA-3′.

WGS of the type strain A39 and 19 M. amphoriforme isolates found that most 
isolates from the United Kingdom and two from France and Tunisia were closely 
related, while others were more diverse [7]. WGS data also showed that patients can 
be chronically infected with M. amphoriforme and that transmission of strains 
occurred [7]. Antibiotic resistance mutations accumulated in isolates taken from 
patients who received multiple courses of antibiotics.

2.4.1.2  M. fermentans
The most commonly used PCR target has been the 16S rRNA gene [39, 40] although 
other targets such as insertion sequence IS1550 and malp (macrophage-activating 
lipopeptide gene) [41] have been used. The UAB Diagnostic Mycoplasma 
Laboratory has adapted and validated a real-time PCR procedure to detect M. fer-
mentans originally developed by Blanchard [40] for conventional PCR using the 
16S rRNA gene target. Primers from the 16S rRNA gene are RNAF1: 
5′-CAGTCGATAATTTCAAATACTC-3′ and RNAF2: 5′ GGCACCGTCAAAA 
CAAAAT-3′. Schaeverbeke genotyped seven strains isolated from synovial fluids of 
seven arthritis patients and compared them to three reference strains and a clinical 
isolate using arbitrarily primed PCR, conventional restriction enzyme analysis, 
PFGE, and Southern blotting. Four synovial fluid isolates were genetically related 
to the reference strain PG-18, while the remaining ones and a urethral isolate were 
related to reference strain K7 and incognitus strain. Campo [43] examined 21 
M. fermentans strains using PCR, Southern blotting and DNA hybridization, 
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SDS-PAGE, and Western blotting with monoclonal antibodies and determined that 
there were two genotypes represented which differed with respect to the sites of 
insertion of the IS element, but not in the sequence of the element itself. The hetero-
geneity of M. fermentans supports the need for larger studies. The published genome 
sequences for M. fermentans may also facilitate design of better PCR assays [44].

2.4.1.3  M. genitalium
Lack of reliable cultivation techniques for M. genitalium has necessitated intense 
study of molecular-based techniques for detection and characterization, especially 
as evidence accumulates for its importance as an etiologic agent of urethritis, cervi-
citis, and pelvic inflammatory disease [14]. PCR assays for detection of M. genita-
lium developed in the early 1990s to amplify various fragments of the MgPa adhesin 
protein derived from the original G37 type strain [45, 46]. Additional PCR assays 
have targeted various regions of the MgPa operon as shown in Table  2.4. Other 
reports soon followed with a variety of formats for PCR assays using this gene tar-
get and 16S rRNA [47–49]. Techniques including TMA have also been utilized for 
epidemiological purposes [50–52]. As with other mollicutes, quantitative, rapid, 
real-time PCR assays have been developed that allow measurement of bacterial load 
in clinical specimens using targets such as MgPa, 16S rRNA, 115-kDa gene, and 
gap encoding glyceraldehyde-3-phosphate dehydrogenase [49, 52–58]. Ma [58] 
examined the three genes of the M. genitalium MgPa operon and nine repetitive 
sequences (MGPar) to investigate their sequence variability and its potential impli-
cation for both pathogenesis and development of diagnostic tools. Operon sequences 
as well as all MgPars differed from each other more than from the published G37 
operon sequence at both the nucleotide and deduced amino acid levels. Due to con-
cerns for use of the MgPa target because of variations among M. genitalium strains, 
the UAB Diagnostic Mycoplasma Laboratory adapted the real-time PCR assay 
described by Svenstrup [56] which targets the conserved housekeeping gene gap 
(NCBI accession no. U39710) in a primer and probe system. This target is different 
from other species and is present in the genome as a single copy [56]. The forward 
primers (10 μm) are mg-gap-605f: 5′-GTGCTCGTGCTGCAGCTGT-3′, and 
reverse primers (10 μm) are mg-gap-794r: 5′-GTCCATCTGTTGAACAAGT 
AAATCAAGC-3′. Probes (4 μm) consist of a fluorescein-labeled probe are mg-
gap-669FL: 5′-TGTTGTTCCAGAAGCAAATGGCAAACTT-FL-3′ and (4 μm) 
Red640 probe mg-gap-700LC: 5′-LCRed640-GGGATGTCACTCCGTGTTCC 
AGTGT-phosphate-3′.

PCR-based systems for detection of M. genitalium alone or multiplexed with 
other sexually transmitted pathogens and/or other urogenital mollicute species are 
sold as kits in several countries using various formats, gene targets, and instrument 
platforms [59–63].

Hologic, Inc. (Marlborough, MA) developed TMA technology for commercial 
use targeting 16S rRNA for the detection of M. genitalium in clinical specimens [36, 
64]. This assay was cleared for clinical diagnostic testing in the United States in 
January 2019, making it the first molecular diagnostic test for M. genitalium avail-
able for commercial use in this country. Since that time, an additional molecular 
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test, the Roche Cobas TV/MG PCR (Roche Diagnostics, Indianapolis, IN) which 
detects both M. genitalium and Trichomonas vaginalis has also received FDA clear-
ance. The  Hologic Aptima assay displayed greater sensitivity than other lab- 
developed or CE-marked DNA-based tests in two comparison studies conducted in 
Europe [65, 66].

In M. genitalium, macrolide resistance has increased dramatically over the past 
several years [67]. Macrolide treatment failures for M. genitalium infections associ-
ated with mutations in domain V of the 23S rRNA gene that affect binding of the 
antibiotic at the target site are becoming more common over the past decade with 
pooled cure rates in 12 studies prior to 2009 of 85% compared to 67% in 9 studies 
since 2009 [68]. Resistance to the second-line drug, moxifloxacin, is also beginning 
to occur as a result of mutations in DNA gyrase and/or topoisomerase IV. According 
to a recent study from Alabama [67], 60% of African American couples had M. gen-
italium strains with mutations conferring macrolide resistance, 11% of whom also 
had strains with mutations conferring fluoroquinolone resistance highlighting the 
potential for potential treatment failure. The 2016 European guidelines on M. geni-
talium infections recommended complementing the molecular detection of M. geni-
talium with an assay capable of detecting macrolide resistance-associated mutations 
[69]. NAATs capable of detecting M. genitalium in clinical specimens simultaneous 
with detection of 23S rRNA mutations conferring macrolide resistance have been 
developed and used to study epidemiology of macrolide-resistant M. genitalium 
[70–75]. The ResistancePlus MG (SpeeDx, Australia) has been developed for com-
mercial distribution in Australia and Europe and is under development for eventual 
sale in the United States. This PCR utilizes PlexZyme/PlexPrime technology for the 
detection of M. genitalium (MgPa adhesin gene) and the five predominant 23S 
rRNA macrolide resistance-associated mutations. ResistancePlus MG has been 
compared to lab-developed assays [76–79], and its performance was generally sat-
isfactory. There are no commercial products for detection of fluoroquinolone resis-
tance in M. genitalium as of early 2022 [67].

The UAB Diagnostic Mycoplasma Laboratory currently utilizes a real-time PCR 
assay that detects M. genitalium in urine and vaginal specimens and determines 
whether macrolide resistance-associated mutations are present, based on a modifi-
cation of the PCR described by Touati [72]. Details of the assay are shown in 
Table 2.5. This PCR was shown to be superior to the PCR targeting gap gene [73] 
and enables simultaneous detection of M. genitalium and macrolide resistance- 
associated mutations in clinical specimens in a single procedure [73].

In 1999, Kokotovic typed M. genitalium isolates based on whole-genome finger-
printing involving selective amplification of restriction fragments obtained from 
purified DNA of cultured strains [80]. Typing methods that are not dependent on 
having a cultivated clinical isolate have since been developed because culture 
in vitro is so difficult. Molecular typing methods are based on PCR amplification of 
a specific genomic locus followed by DNA sequencing or restriction fragment 
length polymorphisms (RFLP) analysis. Specific methods have included short tan-
dem repeat (STR) analysis of putative lipoprotein gene MG309 [81], 
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single- nucleotide polymorphisms (SNPs) in the rRNA operon [81], RFLP of the 
mgpC gene [82], and SNPs in the mgpB gene [54, 83].

In one study [83], a PCR assay based on the mgp gene of the MgPa operon using 
the MgPa-1/MgPa-3 primer set was applied to urogenital specimens from multiple 
countries. This method identified 29 different sequences from 52 unrelated patients 
and also demonstrated that 79 M. genitalium-positive specimens from 19 couples 
had concordant sequence types, indicative of sexual transmission. They were also 
able to demonstrate acquisition of new strains concordantly in sexually active cou-
ples. Occurrence of a few large clusters indicated either spread of certain strains or 
particularly common sequence types that were detected in specimens from different 
countries. These findings indicate the heterogeneity of M. genitalium from clinical 
specimens.

MLVA is based on variable number of tandem repeats (VNTRs) located in differ-
ent genetic loci. Ma [84] used MLVA to identify 18 loci in the G37 M. genitalium 
reference strain containing short tandem repeat sequences (STRs) and determined 
that combination of mgpB SNPs and MG 309 STRs complements one another, 
thereby providing greater typing efficiency, and may define genetic relationships 
more accurately than other methods. We used MLVA to type clinical samples to 
study the concordance of the M. genitalium infection and occurrence of macrolide 
and fluoroquinolone resistance in 116 heterosexual couples [67]. MLVA typing of 
direct clinical samples not only reveals the source the infection but also tracks the 
spread of drug-resistant strains.

2.4.1.4  M. hominis
Conventional PCR assays for M. hominis have mainly utilized 16S rRNA and rDNA 
as gene targets [85–87]. Since heterogeneity has been reported in the 16S rRNA 
gene [88], other targets including the housekeeping genes such as yidC, ftsY, tuf, 
and gap have been used [89–91]. However, variations have been observed in clinical 
isolates in some of these genes that lead to false-negative results. The UAB 

Table 2.5 Primers and probes used in real-time PCR for primary detection and identification of 
macrolide resistance in M. genitaliuma

Sequence 
name

Reference 
name Sequence Reference

MGMR-F F1-Mg GAAGGAGGTTAGCAATTTATTGC [72]
MGMR-R R1-Mg TTCTCTACATGGTGGTGTTTTG [72]
MGMR-P1 Anchor 

probe
CGGGTGAAGACACCCGTTAGGC-fluorescein [72]

MGMR-P2-2 Sensor probe LC-Red 
705-AACGGGACGGAAAGACCCCG-phosphate

[73]

aThe MGMR PCR procedure developed at the UAB Diagnostic Mycoplasma Laboratory uses the 
fluorescence resonance energy transfer coupled with melting curve analysis method initially 
described by Touati [72] and performed on a LightCycler® 480 II (Roche Diagnostics, Indianapolis, 
IN). To improve the signal, the sensor probe was modified. Details of the PCR procedure that 
enables simultaneous detection of M. genitalium and macrolide resistance mutations are available 
in the publication by Xiao [73]
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Diagnostic Mycoplasma Laboratory has utilized a TaqMan real-time PCR assay to 
detect M. hominis in clinical specimens based on RNA polymerase beta subunit 
(rpoB) gene. Primers and probe for this assay are forward primer MH rpoB-F: 
5′-C0AACCAATATTAGAGCAACCAGA-3′, reverse primer MH rpoB-R: 
5′-TCGCCRGCCTTTGAATGT-3′, and a locked nucleic acid (LNA) probe MH 
rpoB-P: 5′-[FAM]tca[+c]at[+t]ga[+a]ga[+a]caatc[BHQ1]-3′. Analysis of the 
genome for the M. hominis PG21 type strain indicated that this organism has under-
gone horizontal gene transfer with Ureaplasma spp., but not with M. genitalium 
[21]. Ladefoged and Christiansen [92] constructed physical and genetic maps of the 
genomes of five M. hominis strains obtained from different individuals. Genome 
sizes obtained by PFGE ranged from 704 to 825  kb. Restriction patterns varied 
greatly, and none of the strains had identical patterns. Other methods including 
serology, DNA-DNA hybridization, two-dimensional gel electrophoresis, SDS- 
PAGE, RFLP, random amplified polymorphic DNA (RAPD), and immunoblotting 
with monoclonal antibodies have also confirmed heterogeneity [93–97]. Blanchard 
[93] used conventional PCR to evaluate genetic variation within the 16S rRNA gene 
of 51 M. hominis isolates confirming high intraspecies conservation within this 
gene. However, 16S rRNA gene sequencing also documented differences at five 
positions when one isolate was compared to the PG21 reference strain. Jensen [94] 
studied 60 M. hominis isolates from pregnant women and their offspring using SDS- 
PAGE and PFGE and determined that sequential isolates from the same women 
were identical or nearly identical, suggesting adaptation to the host environment, 
whereas those from different women exhibited considerable variation with respect 
to both genomic and antigenic profiles. On the basis of restriction band patterns of 
protein P75, M. hominis can be divided into several groups. Férandon [89] used 
MLVA to evaluate 210 urogenital and extragenital isolates of M. hominis collected 
in France over two decades and confirmed a high degree of genotypic heterogeneity 
with 40 different MLVA types identified. Multiple isolations from the same person 
indicated persistence or relapse rather than new infection with a different strain. 
They were also able to confirm vertical transmission from mother to neonate in two 
instances and showed that the high rate (66%) of tetracycline resistance in this col-
lection was not clonal.

2.4.1.5  M. pneumoniae
Gene targets for PCR assays have included 16S rRNA, 16S rDNA, P1 adhesin gene, 
tuf gene, parE gene, dnak gene, pdhA gene, ATPase operon, CARDS toxin gene, 
and noncoding repetitive element repMp1 [23].

The UAB Diagnostic Mycoplasma Laboratory adapted the real-time PCR assay 
of Dumke targeting the repMp1 noncoding DNA sequence for routine diagnostic 
use. Its theoretical advantage is that sensitivity may be improved by amplification of a 
multicopy gene [98]. The primers are MpLCrepF: 5′ TCTTTACGCGTTACG 
TATTC-3′ and MpCrepR: AGTGTGGAATTCTCTGGCA-3′. The probe consists of 
MpLCrepS: 5′FAM- CTGGTATAACCGGTTTGTTAAG- TAMRA-3′. This assay 
provides acceptable sensitivity and specificity when tested against several reference 
strains as well as a large group of specimens from patients with radiologically 

2 Mycoplasma and Ureaplasma



54

proven pneumonias, representing both major P1 subtypes, who were positive for 
M. pneumoniae by serology, culture, and/or conventional PCR. PCR has also been 
shown to be advantageous for diagnostic purposes for testing preserved lung tissue 
obtained at biopsy [99]. The advantage of real-time PCR in detection of systemic 
infection was demonstrated in a study which found 15 of 29 (52%) patients with 
serological evidence of M. pneumoniae infection had a positive assay, while con-
ventional PCR was uniformly negative [100].

For PCR-positive, culture-negative patients, it is important to ascertain whether 
clinically significant respiratory disease is actually present, since this may reflect 
asymptomatic carriage with a very low bacterial load, prior antibiotic therapy, per-
sistence of DNA after resolution of infection has occurred, organisms residing in an 
intracellular location not amenable to culture, or perhaps a nonspecific PCR target. 
A positive PCR assay in a patient who is serologically negative may indicate that the 
specimen was obtained too early in the infection for measurable antibody to have 
developed, antimicrobial therapy that may have blunted the immune response, or an 
inadequate immune response due to any type of immunosuppressive condition. 
Negative PCR results in patients who are culturally and/or serologically positive 
could indicate technical problems with the PCR or inhibitors. Combining PCR with 
serology has been advocated as a possible means to distinguish colonization from 
active disease, but this also adds to the cost of testing and will not overcome the 
problem common in adults who do not mount an acute phase IgM response.

There is no universal consensus regarding what constitutes the best respiratory 
specimen to be tested by PCR. Combining nasopharyngeal and oropharyngeal spec-
imens may provide the greatest diagnostic yield [101]. Another study reported that 
sputum was superior to oropharyngeal or nasopharyngeal specimens in young 
adults with serologically proven M. pneumoniae infection [102]. From a practical 
standpoint in sampling young children and many adults with fairly mild illness, 
sputum is not produced, so nasopharyngeal or oropharyngeal samples may be the 
only specimen types available.

A study from the Centers for Disease Control and Prevention [103] compared 
three real-time PCR assays to detect M. pneumoniae prospectively in an outbreak 
investigation utilizing the Applied Biosystems ABI 7500 system employing two 
different TaqMan primer-probe sets targeting the ATPase gene and a new assay tar-
geting the CARDS toxin gene on 54 respiratory samples. Primers/probes for the 
CARDS toxin were M181-F: TTTGGTAGCTGGTTACGGGAAT; M181-R: 
GGTCGGCACGAATTTCCATATAAG; and M181-P: TGTACCAGAGCACCCCA
GAAGGGCT. Eighteen cases were positive with all three assays. When dilutions of 
M. pneumoniae reference strains were tested, the CARDS toxin PCR assay consis-
tently detected 1–5 CFU, while the other two assays targeting the ATPase genes 
detected 5–50 CFU. These findings support further study of the CARDS toxin gene 
as a PCR target. Two published studies describing multicenter comparisons of vari-
ous NAATs for M. pneumoniae detection [104, 105] reported significant variations 
in test performance among participating laboratories, making a strong case for an 
organized proficiency test program, which has been used in Europe [106].
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Multiplex PCR assays have been developed in a variety of formats for detection 
of M. pneumoniae along with other respiratory pathogens such as Chlamydia pneu-
moniae and Legionella pneumophila. Multiplex assays for detection of M. pneu-
moniae and other respiratory pathogens have also been combined with other 
techniques including reverse line blot assays and microarrays [107–109].

The LAMP technique amplifies DNA under isothermal conditions with high effi-
ciency, specificity, and speed and has been applied to detection of M. pneumoniae 
in clinical specimens using the P1 gene sequences in direct comparison to real-time 
PCR with the P1 gene target [110]. They showed this assay to be specific with a 
detection limit of 200 copies and found 100% concordance with real-time PCR.

Real-time NASBA uses DNA hybridization probe molecular beacons that fluo-
resce only upon hybridization with their targets, and detection takes place in a fluo-
rescence reader [111]. NASBA can provide rapid results with sensitivity as good as 
or better than PCR, with reports of a detection threshold as low as 5–50 CFU [111, 
112]. The main advantage of NASBA is that it works at isothermal conditions. This 
assay has been described in monoplex and multiplex format and has been developed 
as a commercial kit (NucliSENS, bioMérieux). Multiplex NASBA has a slightly 
lower sensitivity than monoplex NASBA when applied to dilutions of wild-type 
in vitro-generated RNA [113].

Numerous commercial NAATs for detection of M. pneumoniae, including mono-
plex and multiplex systems, used in Europe for several years work in a comparable 
manner to noncommercial assays [23, 114–116]. There are now several commercial 
molecular-based systems that have received FDA clearance and are now sold in the 
United States. The BioFire Diagnostics FilmArray® Respiratory Panel (RP) (Salt 
Lake City, UT) detects nucleic acids in nasopharyngeal swabs for several viruses 
and bacteria, including M. pneumoniae. The newer FilmArray® Respiratory Panel 
(RP) EZ is a Clinical Laboratory Improvement Amendment (CLIA)-waived version 
that tests for 14 respiratory viruses and bacteria, including M. pneumoniae. The 
GenMark ePlex® Respiratory Panel (RP) (GenMarkDx, Carlsbad, CA), like the 
BioFire, combines extraction, amplification, and detection in one multiplex system 
for detection of respiratory viruses and bacteria, including M. pneumoniae, with 
results available in about an hour. The NxTAG Respiratory Pathogen Panel (Luminex 
Molecular Diagnostics, Inc., Toronto, ON, Canada) detects several viruses and bac-
teria, including M. pneumoniae. Up to 96 extracted samples are analyzed by multi-
plex PCR and bead hybridization and read on the MAGPIX instrument. The 
Meridian Bioscience (Cincinnati, OH) illumigene Mycoplasma Assay is a mono-
plex LAMP assay that can easily be incorporated into clinical microbiology labora-
tories that do not have extensive molecular diagnostic facilities. Another approach 
that has undergone preliminary evaluation to detect M. pneumoniae in a rapid and 
cost-effective manner is the utilization of a microfluidic real-time PCR platform in 
which it uses electrical fields to rapidly and precisely manipulate discrete nanoliter- 
sized droplets within an oil-filled chamber under the control of a software program. 
A summary of some of the more recently described NAAT assay formats for detec-
tion of M. pneumoniae, that have been included in published articles, including 
comparison studies, is provided in Table 2.6.
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The genome of M. pneumoniae M129 (type P1-1) was sequenced in 1996 and 
reannotated in 2000 [119, 120]. The sequence of the FH strain (type P1-2) was sub-
sequently published along with another strain designated 309 [121, 122]. Fifteen 
strains collected over a span of many years in the United States, China, and England 
have been sequenced and annotated using NGS technology, demonstrating an over-
all high degree of sequence similarity among them and conservation of most genes 
within the two major subtypes. The major variation was detected in the P1 and open 
reading frame (ORF) 6 of the adhesin complex with no evidence of horizontal gene 
transfer [123]. Study of another 23 clinical isolates, mainly from Europe along with 
transcriptomes and proteomes of two strains, one from each of the two main P1 
subtypes, revealed new subclasses related to geographic origin of the strains [25]. 
Initial genotyping studies for M. pneumoniae established two P1 subtypes based on 
type-specific repetitive elements [124, 125]. Recent advances in WGS have enabled 
more regions in the genome with high discriminatory power to be identified and 
utilized to develop typing systems such as MLST, MLVA, and SNP techniques that 
do not require bacterial isolates. A summary of these methods is provided in 
Table 2.7. RFLP uses several enzymes to digest the amplicon and group them based 
on their band patterns [126]. Denaturing gradient gel electrophoresis (DGGE), 
which can detect single-base differences, can also be employed to distinguish P1 
PCR products [127]. PCR high-resolution melt provides a rapid one-step method 
for typing M. pneumoniae isolates [128] that differentiates P1 subtypes without 
sequencing or hybridization procedures. To type M. pneumoniae directly in clinical 
specimens, a culture-independent amplification and sequencing method was devel-
oped by Dumke [129]. Random amplification of polymorphic DNA (RAPD) analy-
sis has also been used to classify M. pneumoniae strains according to P1 subtypes 
with results similar to those obtained by PCR-RFLP [126, 130]. NASBA has been 
used to amplify RNA under isothermal conditions followed by hybridization using 
16S rRNA to assess differences between the two P1 subtypes [131]. Another DNA 
amplification method for distinguishing the P1 subtypes is the amplified fragment 
length polymorphism (AFLP) technique. Although the sequence variation of the 
RepMp elements in the P1 gene was the initial basis on which to classify the two 
main M. pneumoniae subtypes, other sequence differences between the subtypes are 
observed throughout the genome [123, 132–134]. With the identification of more P1 
subtype variants that are generated by homologous recombination, P1 typing itself 
appears to be ambiguous to classify M. pneumoniae. However, according to WGS 
analysis of clinical isolates collected from various times and geographic regions, the 
two subtypes appear to be evolutionary stable lineages [25, 123, 134].

Differences in the two main P1 subtypes may be operative in the development 
and cycling of epidemics. One or the other subtype may predominate in specific 
geographic areas and that there can be changes in the predominance of one or the 
other subtype over time [23]. However, this is not always the case according to other 
studies in which both subtypes may occur in about the same proportions [135]. This 
predominance of one or another subtype may be due to development of subtype-
specific antibodies following initial infection that provide some degree of protection 
for that subtype but not the other. Dumke reported differences between the P1 
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Table 2.7 Summary of typing methods for Mycoplasma pneumoniaea

Typing scheme Technique Types Advantages Disadvantages References
Single-gene/locus typing Subtypes 

1 and 2, 
plus 
variants

Separate 
clinical 
isolates into 
two major 
stable subtypes

Not able to 
track strains

P1 typing Restriction 
fragment length 
polymorphism 
(RFLP)

[126, 138, 
213]

Denaturing 
gradient gel 
electrophoresis 
(DGGE)

[127]

Real-time PCR 
coupled with 
high-resolution 
melt (HRM) 
analysis

Fast [214]

PCR and 
sequencing

Culture- 
independent

[129]

16S rRNA 
gene

Nucleic acid 
sequence-based 
amplification 
(NASBA)

[131]

16S-23S 
rRNA gene 
spacer region

PCR and 
sequencing

[129]

SNPs in 
MPN528a 
and P1

Pyrosequencing [132]

MPN459 and 
MPNA5864

Duplex 
real-time PCR

Fast, 
culture- 
independent

[140]

Multilocus 
variable 
tandem repeat 
analysis 
(MLVA)

More 
discriminative 
than P1 typing

No correlation 
with P1 types

[135]

Five-locus 
scheme

Multiplex PCR 
and capillary 
electrophoresis/
sequencing

>26 
MLVA 
types

Strain tracking Locus 1 is not 
stable, too 
discriminative

[215, 216]

Four-locus 
scheme

Multiplex PCR 
and capillary 
electrophoresis/
sequencing

Less than 
major 
MLVA 
types

Stable locus, 
correlation 
with 
macrolide- 
resistant 
phenotype

Less 
discriminative 
than five-locus 
scheme

[217–219]

(continued)
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subtypes in their capacity to colonize and survive in a guinea pig model and that 
preinfection of the animals with the different subtypes induced subtype-specific 
immunity and affected the type of surviving bacteria [136]. However, Ursi found no 
relationship between subtype and degree of illness in 24 patients [130]. Subtype 1 
and subtype 2 strains form different biofilms in vitro [137], and subtype 2 strains 
may have higher expression of CARDS toxin [25]. Clearly, additional work needs 
to be done in this area to ascertain whether there is a relationship between P1 sub-
types and virulence.

Dorigo-Zetsma [138] carried the P1 subclassification further using RFLP analy-
sis of PCR products of the P1 gene. They identified 5 subtypes within the P1 type 1 
group and an additional 3 subtypes within the P1 type 2 group among a collection 
of 2 reference strains and 21 clinical isolates. The clinical or epidemiological sig-
nificance of this extended typing scheme has not been determined.

Table 2.7 (continued)

Typing scheme Technique Types Advantages Disadvantages References
Multilocus 
sequence 
typing 
(MLST)

More 
discriminatory 
than four-locus 
MLVA typing 
and P1 typing 
methods

Eight genes/
locus

Snapshot 
minisequencing

9 SNP 
types

Correlation 
with P1 types, 
fast, 
culture- 
independent

No correlation 
with MLVA 
types

[142]

Eight 
housekeeping 
genes

PCR and 
sequencing

12 
sequence 
types

Correlation 
with P1 types 
and MLVA 
types, 
culture- 
independent

Laborious and 
expensive 
sequencing

[141]

Whole bacterial cells
MALDI-TOF 
MS typing

Matrix-assisted 
laser desorption 
ionization-time- 
of-flight mass 
spectrometry 
(MALDI-TOF 
MS)

Subtype 
1 and 
subtype 
2, plus 
variants

Quickly 
identify and 
type in one 
step

Culture- 
dependent, 
cost of mass 
spectrometer

[189, 190]

NA-SERS 
typing

Nanorod 
array-surface- 
enhanced 
Raman 
spectroscopy 
(NA-SERS)

Subtype 
1 and 
subtype 
2, plus 
variants

Detect and 
type in one 
step, easy 
sample 
preparation

[193]

aTable has been reproduced from Waites et al. [23] in Clinical Microbiology Reviews with permis-
sion from the publisher

K. B. Waites et al.



61

NASBA has been used to detect differences between the subtypes using two 
type-specific probes [131]. Spuesens used pyrosequencing to discriminate the two 
subtypes based on an SNP in MPN528a and another SNP in the conserved region of 
the P1 coding gene [139]. Zhao developed a duplex real-time PCR assay targeting 
two subtype-specific genes to type M. pneumoniae directly from clinical specimens 
[140] and detected a subtype shift from type 1 to type 2 that occurred in 2013 in 
Beijing, China. PFGE of M. pneumoniae strains allows study of the whole genome 
as opposed to a single gene [126] and enables division of P1 subtype 2 into two 
additional subgroups, but it is a very time-consuming and tedious procedure to 
perform.

An early attempt to develop MLST for typing M. pneumoniae failed [134]. Using 
WGS analyses, a new MLST scheme was developed based on the polymorphisms 
of eight housekeeping genes [141]. Twelve sequence types (STs) were identified in 
57 clinical isolates, and 2 distinct genetic clusters were formed, representing the 2 
main subtypes. This scheme is more discriminatory than the four-locus MLVA typ-
ing and P1 typing methods. This method is PCR-based and does not require cultur-
ing the organism. The disadvantage is a large amount of laborious and expensive 
sequencing. This MLST scheme for strain typing is supported by a public web- 
based database (http://pubmlst.org/mpneumoniae). Another multilocus SNP typing 
method, using Snapshot technology, overcomes the sequencing disadvantage [142]. 
Similarly, eight genes were selected according to the extensive analysis of the 
whole-genome sequences of the clinical strains. The Snapshot minisequencing 
technology is based on the single-base extension of a specially designed minise-
quencing primer that anneals one base upstream of the SNP using a fluorochrome- 
labeled dideoxynucleotide (ddNTP). A strong correlation between the SNP types 
and P1 types was observed.

MLVA was developed for genotyping M. pneumoniae directly from clinical 
specimens by Dégrange [135]. Zhang reanalyzed the published NGS data of 
M. pneumoniae genomes and found 13 VNTRs displaying different levels of inter- 
and intra-strain copy number variations. Several new MLVA schemes were pro-
posed for different purposes of strain typing [143].

Dumke applied a nested PCR-based assay to M. pneumoniae in which part of the 
repMp2/3 element of the P1 gene was amplified followed by sequencing. The prod-
uct of the first amplification was then subjected to a semi-nested PCR to amplify the 
complete repetitive element repMp2/3 [129]. This new approach for molecular typ-
ing can theoretically expand epidemiological studies as well as identify emergence 
of new combinations of repetitive elements in the P1 gene that may occur through 
homologous recombination.

Macrolide resistance in M. pneumoniae is becoming a major problem in Asia and 
is now spreading to Europe and North America [23]. Real-time PCR assays have 
been developed to detect three major mutations in domain V of 23S rRNA that con-
fer macrolide resistance directly in clinical specimens [23, 144–146]. This method 
of direct detection of resistance genes is based on the fact that nucleic acid will melt 
at a precise temperature that is related to the nucleotide base composition. A rapid 
and inexpensive method that combines nested PCR, single-strand conformation 
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polymorphisms (SSCPs), and capillary electrophoresis (CE) detects macrolide- 
resistant mutants directly from throat swabs [147]. Pyrosequencing has also been 
applied for detection of macrolide resistance as well as for molecular strain typing 
[150, 139]. Other direct molecular methods for detection of macrolide resistance are 
a cycleave PCR method [148], a combination of nested PCR, single-strand confor-
mation polymorphisms (SSCPs) and capillary electrophoresis [149], simple probe 
PCR [150], and allele-specific PCR amplification [151].

The UAB Diagnostic Mycoplasma Laboratory performs a multiplex real-time 
PCR assay to detect point mutations in all three positions of the 23S rRNA gene as 
shown in Fig.  2.2. This assay, described in detail elsewhere [145], is performed 
reflexively whenever there is a positive real-time PCR assay for the presence of the 
organism.

For the detection of macrolide resistance mutations, primers MpnMR2063F and 
MpnMR2063R as shown in Table  2.8 define a 224  bp amplicon containing the 

Fig. 2.2 Real-time PCR detection of macrolide-resistant M. pneumoniae in clinical specimens. 
Genomic DNA of two patients containing the A2063G mutation conferring macrolide resistance 
verified by sequencing were purified and tested together with a wild-type (WT) control (M. pneu-
moniae strain M129, ATCC #29342). Melting curves (a, b) and corresponding melting peaks (c, d) 
are shown. A2063/A2064 mutations were analyzed in channel 610 (a, c). The WT melting peak 
was 67.31 °C, while Tm of A2063G mutants were 63.25 ± 0.04 °C. Thus, a 4 °C difference between 
WT and mutant was observed. The C2617 assay is shown in channel 705 (b, d). Because all sam-
ples did not have mutations at this position, they showed similar WT Tms of about 68  °C as 
predicted
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2063/2064 position where mutations are likely to occur that is recognized by probes 
MpnMR2063P1 and MpnMR2063P2.

Several studies carried out by French [135], German [153], Japanese [154, 155], 
and Chinese [159–161] investigators have examined macrolide-resistant M. pneu-
moniae in an attempt to ascertain how these infections have evolved and spread 
geographically. No clear association was observed between the macrolide- resistant 
isolates and P1 or MLVA types. Using the modified four-locus MLVA scheme, 
investigators  in China and the United States found that MLVA type 4-5-7-2 was 
associated with macrolide resistance [152, 159–161].

2.4.2  Ureaplasma spp.

Real-time PCR assays have targeted primarily the urease gene and its subunits [29, 
162–164] and the mba gene [29, 165]. Yoshida [86] described a conventional PCR- 
based method that can be applied to urine specimens of patients with NGU. The 
PCR targets are the 16S rRNA genes of M. genitalium, M. hominis, U. parvum, and 
U. urealyticum. When compared to direct sequencing, this technique produced 

Table 2.8 Primers and probes used in real-time PCR for primary detection and identification of 
macrolide resistance in M. pneumoniaea

Primers
MpLCrepF 5′- TCTTTACGCGTTACGTATTC-3′
MpLCrepR 5′- AGTGTGGAATTCTCTGGAA -3′
Probe
MpLCrepS 5′- FAM-CTGGTATAACCGGTTTGTTAAG-TAMRA-3′
Secondary assay performed on M. pneumoniae-positive specimens to detect 23S rRNA 
mutations
Primers
MpnMR2063F 5′-ATCTCTTGACTGTCTCGGC-3′
MpnMR2063R 5′-CCAATTAGAACAGCACACAACC-3′
MpnMR2617F 5′-GGCTGTTCGCCGATTAAAG-3′
MpnMR2617R 5′-TACAACTGGAGCATAAGAGGTG-3′
Probes
MpnMR2063P1 5′-GGCGCAACGGGACGGAAAGA-Fluorescein-3′
MpnMR2063P2 5′-LC Red 

610- CCGTGAAGCTTTACTGTAGCTTAATATTGATCAGG- 
Phosphate-3′

MpnMR2617P1 5′-GTCCCTATCTATTGTGCCCGTAGGAAG-Fluorescein-3′
MpnMR2617P2 5′-LC Red 

705- TGAAGAGTGTTGCTTCTAGTACGAGAGGACCGAA- 
Phosphate-3′

aDetection method uses Roche LightCycler with the repMp1 target and procedure originally 
described by Dumke [98] for primary detection of M. pneumoniae and the method described by Li 
Xiao [145] for identification of 23S rRNA mutations associated with macrolide resistance [145] 
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similar results and showed no cross-reactivity. Its advantages include less cost and 
a 2- to 3-hour turnaround time.

The UAB Diagnostic Mycoplasma Laboratory PCR assay for ureaplasmas [29] 
is based on the UU063 gene (NP_077893), which encodes a conserved hypothetical 
protein that is identical in all 4 U. parvum serovars and a 15,072 bp open reading 
frame (ORF), UUR10_0680, that is conserved (>99.97%) in all 10 U. urealyticum 
serovars. Primers and probes used in this procedure are provided in Table 2.9. This 
assay compares favorably with culture and will accurately detect and distinguish the 
two species. Several studies reported that U. urealyticum is more pathogenic than 
U. parvum, but conflicting results have been found by others [12]. Thus, the ques-
tion is not firmly settled. At present, it is not necessary for clinical diagnostic pur-
poses to identify ureaplasmas to the species level. Some molecular-based assays 
that include detection of Ureaplasma spp. in clinical specimens are commercially 
available in various European countries, but not in the United States at present. PCR 
can also be used in combination with other techniques including reverse line hybrid-
ization blotting combined with multiplex PCR (mPCR/RLB) and microarrays [107, 
108, 166–168]. The mPCR/RLB technique has been used to develop multiplex 
assays that detect numerous respiratory and urogenital pathogens [107, 109, 168]. 
In situ hybridization (ISH) is a non-PCR-based molecular technique that has been 
specifically utilized for detection of ureaplasmas. ISH allows visualization of the 
localized gene expression within the context of tissue morphology [169].

PCR assays to characterize the Ureaplasma spp. at the serovar level have mainly 
focused on primers based on the mba gene and its 5′-end upstream regions [162, 
165, 170, 171, 173]. Because of limited sequence variation in the mba genes, earlier 
PCR-based methods lacked the capacity for complete separation of all 14 serovars. 

Table 2.9 Primers and probes used in real-time PCR for detection and differentiation of U. par-
vum and U. urealyticuma

U. parvum primers
UP063#1F 5′-TGCGGTGTTTGTGAACT-3′
UP063#1R 5′- TGATCAAACTGATATCGCAATTATAGA -3′
Probes
UP063#1 
probe1

5′-TGG-TTT-AAC-GTG-TTT-TTG-AAG-TGC-TAC-AAA-AT- -
Fluorescein-3′

UP063#1 
probe2

5′- LC Red 640-CCC-ATT-TCA-GCC-ATG-GTG-CCA-TCA-Phosphate -3′

U. urealyticum primers
UU127#1F 5′- CAGTAGCAAATCGTGCTTACA-3′
UU127#R 5′- TCATTAAAATCATTTGCACTAGTCAAAATA-3′
Probes
UU127#1 
probe1

5′-GAT-AAT-AAC-ACT-TGG-ACA-ATT-TTT-AAC-CAA-AGC-GA-
Fluorescein

UU127#1 
probe2

5′-LC Red 
705-AAG-GAT-TAG-AGT-TTT-GTT-GCC-ATG-GTA-GTC-AAA-
Phosphate-3′

aDetails of procedure are available in the publication by Xiao [29]
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Moreover, whole-genome sequencing of all 14 serovars has shown mba to be part of 
a large gene family present in many variations in different serovars, and the gene is 
phase variable [29, 31]. In consideration of the limitations of earlier serotyping 
techniques, a 14 serovar-specific monoplex PCR assay was developed and shown to 
accurately distinguish between the 2 species and among all 14 serovars without 
cross-reactivities [29]. Data from examination of large numbers of clinical isolates 
using this serovar-specific PCR assay have shown that Ureaplasma pathogenicity is 
unlikely to be associated with specific individual serovars and that horizontal gene 
transfer among serovars results in many organisms expressing markers of multiple 
serovars simultaneously. These findings suggest that serotyping is impractical and 
of limited value for assessment of pathogenicity [174]. Primers and probes utilized 
to distinguish the 14 Ureaplasma serovar type strains are shown in Table 2.10.

PFGE is a widely accepted reference standard for genotyping. A simplified 
PFGE method has been used to differentiate U. parvum from U. urealyticum, to 
distinguish among the 14 serovars, and a limited number of clinical isolates of the 
same serovars, making it possible to separate readily the two Ureaplasma species 
from one another and most of the serovars, with the exception of some of the closely 
related serovars of U. urealyticum (Fig. 2.3). Using PFGE to evaluate all 14 serovar 
type strains and a large number of clinical isolates distributed among the 14 serovars, 
we were able to show a wide genotypic heterogeneity in U. parvum and U. urealyti-
cum type strains of different serovars as well as great genetic variation of strains 
within the same serovar for most of the 14 serovars. This degree of discrimination 
to and within the serovar level achievable by PFGE cannot be completely achieved 
by other molecular typing methods currently available which include PCR-based 
assays targeting single genes and intergenic regions [172].

The RAPD PCR method has been applied to Ureaplasma spp. by several inves-
tigators [173, 175–178]. It is quicker and less technically demanding than PFGE 
and is more discriminatory than the single-gene mba typing method, but there is no 
published study comparing PFGE and RAPD-PCR typing of Ureaplasma spp.

Glass published the first genome sequence of U. parvum, serovar 3 in 2000 [179], 
providing early insights into virulence factors. WGS of all 14 serovars and 5 addi-
tional clinical isolates [31] showed the mba gene was part of a large superfamily, 
which is a phase variable gene system, and that some serovars have identical sets of 
mba genes. Most differences among serovars are hypothetical genes, and in general 
the 2 species and 14 serovars are extremely similar at the genome level. U. urealyti-
cum appears to be more capable of acquiring genes horizontally, which may con-
tribute to its greater virulence for some conditions. Our data indicate that ureaplasmas 
exist as quasi-species rather than as stable serovars in their native environment. 
Therefore, differential pathogenicity and clinical outcome of a ureaplasma infection 
are most likely not on the serovar level, but rather may be due to the presence or 
absence of potential pathogenicity factors in an individual ureaplasma clinical iso-
late and/or patient-to-patient differences in terms of autoimmunity and microbiome 
[31, 174].

Zhang and coworkers developed an MLST scheme for Ureaplasma spp. based 
on four housekeeping genes [180]. Although it had the capacity to differentiate the 
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Table 2.10 Primers and probes used in real-time PCR to detect and differentiate Ureaplasma spp. 
serotypesa

Specificity Target gene/region Primer pair Probe Reference
Up and 
Uu

16S rRNA Ure-1S, Ure-1A Ure-P1 [220]

Up Urease gene subunits 
and adjacent regions

UPure F-M, Upure 
R-M

UPure1MGB [164]

Up Urease gene subunits 
and adjacent regions

UU-1524R, UU-1613F UU-parvo [163]

Up UU063 UU063#1F, 
UU063#1R

UP063#1 probe 
1, UP063#1 
probe 2

[29]

Uu mba gene and upstream 
regions

UU F, UU R [162]

Uu Urease gene subunits 
and adjacent regions

Uuure F-C, Uuure R-C Uuure FP [162]

Uu Urease gene subunits 
and adjacent regions

Uuure F-M, Uuure 
R-M

Uuure2MGB [164]

Uu Urease gene subunits 
and adjacent regions

UU-1524R, UU-1613F UU-T960 [163]

Uu UUR10_0554 UU127#1F,UU127#1R UU127#1 probe 
1, UU127#1 
probe 2

[29]

Serovar 1 mba gene and upstream 
regions

UP F, UP R UP FP1 [165]

Serovar 1 Member of mba gene 
family but not mba

UP1F1-2, UP1R1-2 UP1 probe 1 [29]

Serovar 2 Putative lipoprotein UU2_F_1, UU2_R_1 [29]
Serovar 3 mba gene and upstream 

regions
UP F, UP R UP FP3 [165]

Serovar 3 Conserved hypothetical 
protein

UP3F1-2, UP3R1-2 [29]

Serovar 4 Intergenic Uu04_1F, Uu04_1R Uu04_1 probe 
1, Uu04_1 
probe 2

[29]

Serovar 5 ATP-dependent RNA 
helicase

Uu05-3F, Uu05-3R Uu05-3 probe [29]

Serovar 6 mba gene and upstream 
regions

UP F, UP R UP FP6 [165]

Serovar 6 mba UP6F1, UP6R1 [29]
Serovar 7 mba UU7_F_1, UU7_R_1 [29]
Serovar 8 Intergenic UU8_F_1, UU8_R_1 [29]
Serovar 9 FtsK/spoIIIE family 

protein gene
UU9_F_1, UU9_R_1 [29]

Serovar 10 Member of mba gene 
family but not mba

UU10_F_4, 
UU10_R_4

UU10_P_4 [29]

Serovar 11 Intergenic UU11_F_1, 
UU11_R_1

UU11_P_1 [29]

(continued)
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2 species into cluster I (U. parvum) and cluster II (U. urealyticum), it was inade-
quate to separate the 14 serovars or associate sequence types with clinical outcomes. 
They subsequently developed an expanded MLST typing scheme [181] and per-
formed further studies on Ureaplasma isolates from infertile couples [182, 183]. 
Isolates from cluster II were more likely to transmit between infertile couples and 
be associated with clinical manifestations including impaired sperm motility. 
Fernández [184] utilized MLST to reveal a high degree of diversity with 14 clones 

Table 2.10 (continued)

Specificity Target gene/region Primer pair Probe Reference
Serovar 12 Conserved hypothetical 

protein
Uu12_1F, Uu12_1R Uu12_1 probe 

1, Uu12 _1 
probe 2

[29]

Serovar 13 Conserved domain 
protein, intergenic 
region, and putative 
single-strand binding 
protein

UU13_F_1, 
UU13_R_1

[29]

Serovar 14 mba gene and upstream 
regions

UP F, UP R UP FP14 [165]

Serovar 14 Intergenic UP14F1, UP14R1 [29]
aActual primer sequences are not included due to space limitations but they can be found in the 
individually cited publications

Fig. 2.3 PFGE banding patterns and dendrograms for 14 ATCC serovars of Ureaplasma spp. 
BamH I restriction pattern. The two species were separated. Except serovars 10 and 12, all of the 
serovars were also separated
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among U. parvum and U. urealyticum isolates from the United States. These find-
ings were similar to what was reported earlier in China [180] and Switzerland [185]. 
Most MLST clones found in the United States are the same as those from the other 
countries. Importantly, seven of the clones found in the United States study had 
been associated with fluoroquinolone resistance in the Swiss study. The MLVA typ-
ing method has not yet been developed and applied to Ureaplasma spp.

2.5  Real-Time PCR Procedures for Detection of Mycoplasma 
and Ureaplasma Species

Real-time PCRs for detection and characterization of mycoplasmas and ureaplas-
mas have utilized the ABI Prism 7900HT (Applied Biosystems, Carlsbad, CA), the 
iCycler iQ (Bio-Rad, Hercules, CA), and the LightCycler 2.0 (Roche Diagnostics, 
Indianapolis, IN).

2.5.1  Specimen Collection

Specimens should be collected in sterile tubes with caps secured tightly, frozen at 
−80 °C, transported on ice to the laboratory where the test will be performed and 
remain frozen until DNA isolation. Blood (minimum 0.5 ml) should be collected in 
a vacutainer tube containing acid citrate dextrose (ACD). PCR can be performed 
directly on undiluted fluids. Specimens can be inoculated into 0.3 ml to 0.7 ml of a 
commercial universal transport media or phosphate-buffered saline (PBS) at time of 
collection or as soon as possible thereafter. For swab specimens, use only Dacron, 
polyester, or eSwabs. Calcium alginate and cotton swabs can be inhibitory. Swab 
specimens should be rinsed in either transport media or PBS and the swab extracted. 
Excess fluid should be removed by pressing the swab against the inside of the tube 
or Cryovial before removing and discarding the swab. The 10B or SP4 broths used 
for mollicute culture do not have any deleterious effect on performance of the real- 
time PCR assays utilized with the Roche LightCycler, so they are suitable as a 
transport medium. It is mandatory to verify that culture broth or any other type of 
transport system is not inhibitory before using it for PCR transport. Each clinical 
specimen type must be validated separately before results can be used to direct 
patient care.

2.5.2  DNA Extraction

The simple lysis and proteinase K treatment usually yields PCR-detectable DNA 
unless the specimen is inhibitory [186]. Suitable specimens include body fluids 
(other than blood) and transport media containing material obtained from swabs. 
Potentially inhibitory specimens including blood, tissue samples, lower respiratory 
secretions, and subcultures should be purified by the QIAamp® DNA Blood Mini 
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Kit (Qiagen) or other commercial genomic DNA purification kits according to the 
manufacturer instructions.

Automated or semiautomated nucleic acid isolation methods, such as QIAGEN 
BioRobot EZ1 (Qiagen), NucliSENS® (bioMérieux), easyMAG (bioMérieux), or 
MagNA Pure LC (Roche Applied Science), can also be used to prepare samples. 
Each laboratory must perform an evaluation of every assay component from sample 
type, transport media, extraction method to final PCR amplification and detection 
procedures using the specific primers and probes, reaction conditions, and controls 
applicable to the assay to ensure the techniques are valid and there is no PCR inhibi-
tion at any step. The easyMAG nucleic acid extractor actually enabled superior 
amplification results for M. pneumoniae when compared to the QIAGEN blood 
mini kit and the NucliSENS miniMAG systems [34, 187]. Some of the newer auto-
mated commercial PCR systems are true sample-to-result instruments that incorpo-
rate DNA extraction and PCR amplification into their process so specimens do not 
have to be manipulated once they are loaded into the instrument.

2.5.3  PCR Programs and Operating Conditions

Many aspects of the real-time PCR procedures are instrument and protocol-specific, 
such that analytic sensitivity, specificity, primer selection, and all aspects of the 
operating program have to be validated separately for each method and instrument.

2.5.4  Quality Control

Careful attention to quality control procedures should limit the risk of false-positive 
and false-negative results of PCR assays. False-positive results from contamination 
are a major problem for conventional PCR but have been minimized with real-time 
PCR.  In addition to human errors, reasons for false-negative results include the 
presence of PCR inhibitors in the clinical specimen, suboptimal reagent preparation 
and reaction conditions, and inefficient extraction of the target DNA. Many sub-
stances, such as hemoglobin, polysaccharides, and mucolytic agents, and certain 
compounds used for DNA extraction, such as ethanol or detergents, are potent 
amplification inhibitors and as are swabs such as calcium alginate and those with 
aluminum shafts [188]. These inhibitory factors and suboptimal PCR conditions 
can be detected by simply mixing a positive control DNA with the sample after 
purification. However, this external control strategy cannot reveal inefficient DNA 
extraction. The use of an internal control overcomes the limitations of the external 
control. The internal control can be a plasmid or oligonucleotide containing a 
sequence similar to or unrelated to the target but can be differentiated from the assay 
PCR. It is essential in the initial validation of a PCR assay that all aspects that can 
potentially impact the results must be optimized so that once the assay has been 
validated the quality control procedures for individual runs will not be 
overwhelming.
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2.5.5  Determination of Assay Sensitivity and Specificity

PCR analytical sensitivity should be performed against serial dilutions of template 
DNA, either bacterial genomic DNA from a defined inoculum titer or a plasmid 
containing the target sequence, and can be expressed in terms of amount of DNA 
detected or numbers of organisms (CFU). The analytical specificity should also be 
tested against other pathogens that appear in the same body locations or show 
sequence similarities to the targets. Human genomic DNA should always be 
included because of its presence in clinical specimens and possible inhibitory 
effects. Real-time PCR assays for mollicutes such as Ureaplasma spp. may have 
detection limits of 5 to 10 copies/reaction mixture [29]. Assay reproducibility 
should be verified by testing the same samples multiple times.

The choice of which genes to use as PCR or other NAAT targets for optimum 
detection and characterization of the desired organism or component should be 
carefully considered. Too often the PCR targets used in early Mycoplasma and 
Ureaplasma assays were directed toward genes encoding antigens that upon addi-
tional study have proven inadequate due to sequence variation among different iso-
lates. It is important to test the PCR on well-characterized clinical specimens that 
are also tested by other methods such as culture and/or serology in order to establish 
clinical sensitivity.

2.5.6  Multiplex Real-Time PCR for Detection of Mycoplasma 
and Ureaplasma Species

The ELITech Group (Bothell, WA) MDx ELITe InGenius platform is a fully auto-
mated sample-to-result system integrating nucleic acid extraction and real-time 
PCR amplification, allowing for detection of microorganisms directly from clinical 
samples. The UAB Diagnostic Mycoplasma Laboratory has evaluated the ELITech 
MGB Alert Mycoplasma Ureaplasma Real Time PCR for Research Use Only and 
determined it provides results comparable to our laboratory developed PCRs. Gene 
targets are GADPH for M. genitalium and M. hominis and UreC for U. parvum and 
U. urealyticum. Instrument ease-of-use and decrease in hands-on time make ELITe 
InGenius platform attractive for clinical detection of urogenital mollicute spp. in a 
clinical laboratory setting. There are also reagents for detection of M. pneumoniae 
based on repMp4 that we have shown to perform in a comparable manner to the 
repMp1 assay [98].

2.6  Other Detection and Genotyping Systems

Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry 
(MALDI-TOF MS) is a common method for bacterial identification that is both 
rapid and accurate. This technique analyzes whole bacterial cells instead of nucleic 
acid. Although the initial cost for instrumentation is significant, the cost per test is 
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negligible, and organism identification can be achieved within minutes once an iso-
lated colony is available. Pereyre [189] used the Bruker Biotyper MALDI-TOF MS 
(Bruker Daltonics, Bremen, Germany) to correctly identify 96% of all mollicute 
isolates tested including 50 M. pneumoniae, which were distinguished from M. gen-
italium and M. amphoriforme, and clustered them into two groups, corresponding to 
their P1 subtypes. Xiao [190] used MALDI-TOF MS to subtype 38 M. pneumoniae 
isolates that had been identified by real-time PCR and classified as P1 subtype 1 or 
2 by full-length sequencing of the P1 gene. The time-consuming and insensitive 
nature of the prerequisite culture in order to perform MALDI-TOF MS potentially 
limits its usefulness for M. pneumoniae and makes it unsuitable for M. genitalium.

Silver nanorod array-surface-enhanced Raman spectroscopy (NA-SERS) is 
based on the acquisition of unique SERS spectra from clinical specimens without 
the need for amplification by growth or PCR. Hennigan used NA-SERS to distin-
guish M. pneumoniae strains M129, FH, and 11-3 and to classify spectra for ten 
specimens as positive or negative for M. pneumoniae with >97% accuracy in con-
centrations as low as 82 CFU per sample [191]. NA-SERS provided a detection 
limit similar to quantitative PCR and correctly classified the two main subtypes of 
M. pneumoniae and variants in 32 strains [192]. Thirty M. pneumoniae isolates from 
diverse geographic origins were distinguished by NA-SERS from a panel of 12 
other human mycoplasmal species with 100% accuracy and classified with 96% 
accuracy for type 1, 98% accuracy for type 2, and 90% accuracy for type 2V strains 
[193]. Another evaluation of Raman spectra that included 102 clinical isolates along 
with strains M-129 and FH identified 2 major clusters which together included 81% 
of the strains, but they did not correlate completely with P1 subtypes [194]. The 
major advantage of NA-SERS is its ability to detect and type M. pneumoniae in a 
single test.

2.7  Discussion and Summary

Development and application of molecular-based methods for mycoplasmas and 
ureaplasmas in human infections over the past three decades have significantly 
improved the ability to detect, identify, and genetically characterize these organisms 
resulting in expansion of knowledge about the diseases they cause and enabled 
more rapid and accurate diagnosis for diagnostic purposes. NAAT-based detection 
methods have lessened the reliance on serology for M. pneumoniae and have 
become the detection method of choice for M. pneumoniae and M. genitalium. 
When used for diagnostic or epidemiological purposes, there is justifiable concern 
over accuracy since most assays have never been sufficiently validated against other 
molecular or culture-based methods. The few comparative clinical studies of vari-
ous NAATs and preliminary studies of interlaboratory proficiency testing from 
Europe have indicated there are considerable differences with these assays for 
detection of mycoplasmal infections, as well as the capabilities of the individual 
testing laboratories.
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It is clear that the future of diagnostic mycoplasmology and epidemiological 
research rests with molecular-based technology, even though culture, phenotypic 
methods, and traditional antimicrobial susceptibility testing will continue to have an 
important role, especially for M. hominis and Ureaplasma spp. Therefore, it is very 
important that large-scale comparisons must be performed to compare reproduc-
ibility and accuracy of NAATs. This must include side-by-side comparisons of new 
assay formats and gene targets with existing assays using the same as well as differ-
ent targets and with other established methods, including culture when feasible. 
Such comparisons should ideally include a broad selection of specimen sources 
from different geographic areas.

Within the past few years, several NAATs have been FDA cleared for detection 
of M. pneumoniae and  M. genitalium. Testing for M. genitalium is expected to 
become much more common in persons with sexually transmitted infections as evi-
dence for its role in disease becomes more widely appreciated and understood. It is 
anticipated that more specific recommendations for testing and treatment guidelines 
from regulatory organizations, including the US Centers for Disease Control and 
Prevention, will be forthcoming, particularly as new NAATs enter the commercial 
market in the United States and become more readily available. True point-of-care 
tests that are uncomplicated and inexpensive that can be used in an ambulatory set-
ting for detection of M. pneumoniae and M. genitalium are urgently needed.

Another major advance in molecular-based testing in mycoplasmology has been 
use of genotyping of clinical isolates and original clinical specimens to track the 
epidemiology of antimicrobial resistance. The alarming increase in macrolide resis-
tance in both M. pneumoniae and M. genitalium has influenced development of 
commercial real-time PCR assays that detect macrolide resistance mutations.

Next-generation sequencing (NGS) makes it possible to sequence microbial 
genomes inexpensively and accurately within a few hours. As the turnaround time 
and costs continue to decrease, NGS utilization is expected to rise. As part of a 
worldwide effort to make modern infectious disease diagnostics available to the 
developing world, more and more nucleic acid-based diagnostic microchip and 
microdevice technologies are becoming available to test for specific diseases 
in locations where a lack of electrical grid access make more conventional diagnos-
tic assays and devices unavailable. These point-of-care devices typically employ 
isothermal amplification techniques, which require much less energy than other 
conventional NAATS and require samples of only a few microliters. Likely, in a 
very few years, handheld devices will be available to screen samples rapidly and 
cheaply for a broad range of pathogens, including mycoplasmas.

2.8  Summary

Several species of mycoplasmas and ureaplasmas are well-known human pathogens 
responsible for a broad array of conditions involving adults and infants, and they 
may cause severe systemic disease in susceptible hosts. Greater attention is now 
being given to these organisms as a result of improved methods for their laboratory 
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detection made possible by molecular-based techniques. PCR-based technology can 
be employed for primary detection in clinical specimens as well as to characterize 
the organisms genetically for epidemiological purposes. Complete genome 
sequences are now available for all of the important human pathogens in the 
Mycoplasma and Ureaplasma genera. Information gained from genome analyses 
and improvements in efficiency of DNA sequencing are continuing to advance the 
field of molecular detection and genotyping of these organisms. This chapter pro-
vides a summary and critical review of methods suitable for detection and charac-
terization of mycoplasmas and ureaplasmas of humans with emphasis on molecular 
genotypic techniques.
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3Neisseria meningitidis

C. R. Robert George, Helen V. Smith, and Monica M. Lahra

3.1  Introduction

Neisseria meningitidis infection is an ongoing cause of significant morbidity and 
mortality, despite prompt antibiotic use and medical support, worldwide across 
income settings. The organism is a human commensal and asymptomatic coloniser, 
primarily in the pharynx. Clinical manifestations vary ranging from a mild febrile 
illness to fulminant life-threatening bacteraemia with or without meningitis. 
Invasive meningococcal disease (IMD) occurs sporadically and in outbreaks.

There is significant value in typing invasive strains as this provides insight into 
ongoing epidemiological trends, facilitates clinical public health tracing, and 
strengthens the ability to inform public health strategies including vaccination 
schedules, development, and response, and as a result, there stands a long history of 
typing methods. Historically, typing was based on a stepwise confirmation of iden-
tification, often using biochemical testing, followed by serogrouping.

Progressively, methods of nucleic acid testing have been adopted, with the rela-
tively recent adoption of next-generation sequencing methodologies and whole- 
genome sequencing. This chapter overviews the classification, clinical significance, 
and identification of N. meningitidis, before assessing serological, enzymatic, and 
nucleic acid approaches to typing.
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3.2  Classification and Clinical Significance

Named after microbiologist Albert Ludwig Sigesmund Neisser, the genera Neisseria 
is classified within order Neisseriales, family Neisseriaceae, and was originally 
described in 1885 [1]. Currently, 29 species are recognised [2]. Two species are 
recognised as common human pathogens: N. gonorrhoeae (an obligate pathogen) 
and N. meningitidis (an opportunistic pathogen). Other Neisseria species rarely 
opportunistically infect humans.

N. meningitidis is found only in humans, where it asymptomatically colonises 
the nasopharynx; an estimated 8–25% of the population is believed to be colonised 
[3]. Colonisation rates are highest in adolescents and young adults. It spreads from 
human to human via respiratory droplet. Virulent strains can invade the blood stream 
from the respiratory tract with bacteraemia ensuing, and meningitis results when the 
blood-brain barrier is crossed. The clinical presentation varies but can involve 
pyrexia, purpura, petechiae, and shock in septicaemic cases (1 in 5 cases), and addi-
tionally vomiting, neck stiffness, headache, and photophobia in meningitis [4]. 
Importantly, there are manifold clinical presentations of IMD, and gastrointestinal 
and musculoskeletal signs are also reported – such as diarrhoea, vomiting, and leg 
pains [5, 6]. Where the adrenal glands fail, Waterhouse-Friderichsen syndrome can 
result [7]. The incubation time of IMD is estimated at 2–10 days [8].

Meningococci are armed with an array of virulence factors, such as endotoxins, 
capsule preventing phagocytosis, pili, and adhesions which are likely associated 
with poorer outcomes. The case fatality rate of untreated meningococcal meningitis 
is around 50%; meningococcal septicaemia is associated with an 8–15% case fatal-
ity [9]. Surviving patients may suffer from long-term morbidity, including limb 
amputation and adverse neurological outcomes including deafness.

Globally, it has been estimated up to 1,200,000 cases of IMD occur annually, 
resulting in up to 135,000 deaths [3]. Challenges exist due to underreporting, and 
typing remains a key component of surveillance. The greatest burden of disease is 
in Africa, where the meningitis belt spans from Senegal to Ethiopia [10]. Historically, 
outbreaks in the meningitis belt have resulted in attack rates reaching 10–1000 cases 
per 100,000 population, with the majority of cases historically being serogroup A 
[11]. The extensive serogroup A vaccination program in this area has now resulted 
in serogroups C, X, and W being the most prevalent [12]. In Latin America, the 
incidence is up to 1.8 cases per 100,000, although underreporting presents chal-
lenges. In Brazil, Chile, and Argentina, serogroups C, W, and B prevail [13]. Rates 
in Asia are similarly difficult to estimate due to underreporting, although these are 
suspected to be significant particularly in resource-poorer countries [14]. Rates in 
Europe, North America, and Australia are less than 0.5 to 1 per 100,000 where sero-
groups B, C, and increasingly W and Y are prevalent [11, 15, 16]. To reduce mortal-
ity, rapid diagnosis, and prompt, aggressive treatment is required [17].

Vaccination remains a pivotal component of global control, with preventative 
immunisation used to prevent outbreaks and reactive immunisation used to respond 
to outbreaks. A range of classes of vaccine exist, including polysaccharide (often in 
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outbreak response), conjugate (in prevention and outbreak response), and protein- 
based (for prevention or outbreak response) [9].

3.3  Identification

3.3.1  Phenotypic

Traditionally testing relied on phenotypic methods. Isolates can be derived from a 
range of sample types, including blood, CSF, site-specific samples, skin lesions, and 
the throat [18]. When visualised using light microscopy, N. meningitidis appear as 
Gram-negative diplococci and are frequently intracellular occurring within poly-
morphonuclear leukocytes. Sample materials can be cultured on a range of solid or 
liquid media. Blood culture bottles typically contain enriched media and alert when 
growth is detected. Enriched nonselective solid media (e.g. chocolate agar, blood 
agar) are frequently used for sterile site samples, where overgrowth from other bac-
teria is not anticipated. Culture of non-sterile site material, if indicated, can be per-
formed on selective media (e.g. modified New York City, Modified Thayer Martin) 
[18]. Isolates are typically incubated in 3–7% CO2, at 35–37  °C for 48  hours. 
Isolates typically have consistent Gram stain and are oxidase positive. Carbohydrate 
utilisation tests should reveal acid production with glucose and maltose but not with 
lactose or sucrose [19]. Enzyme substrate testing is gamma- glutamylaminopeptidase- 
positive, nitrate reduction testing is negative, and isolates are colistin-resistant [20]. 
Supplementary testing is frequently performed using various methods, such as:

• Matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF), 
although accuracy is imperfect [21] and confirmatory testing is required

• Agglutination serogroup testing, although performance varies with encapsula-
tion and isolate growth [19]

• DNA detection methods, such as PCR, which frequently target ctrA and sodC [22]

Susceptibility testing may be performed using a standardised testing system. 
EUCAST (version 11) provides antimicrobial breakpoints for benzylpenicillin, 
ampicillin and amoxicillin, cefotaxime and ceftriaxone, meropenem, ciprofloxacin, 
chloramphenicol, rifampicin, minocycline, and tetracycline [23]. CLSI (M100 
ED31:2021) provides breakpoints for penicillin, ampicillin, cefotaxime and ceftri-
axone, meropenem, azithromycin, minocycline, ciprofloxacin, levofloxacin,  sulfi-
soxazole, co-trimoxazole, chloramphenicol, and rifampicin [24]. Antimicrobial 
susceptibility data may provide supportive evidence interlinking with other typing 
data [25]. However, as a typing tool in itself, a range of considerations must be 
broached, including acquisition or loss of resistance, comparing categorical resis-
tance data with quantitative MIC data, differences between testing systems over 
time, laboratory capabilities and quality, and the potential failure to capture infor-
mation revealed using other typing modalities.
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3.3.2  Serology

Serological testing is not commonly used but potentially provides a retrospective 
diagnosis and may have value where diagnosis is required post-initiation of antibi-
otic therapy. However, cross-reactivity with some assays may occur postvaccina-
tion. Serum is typically used. Assays may target human immunoglobulin response 
to outer membrane proteins on invasive N. meningitidis isolates [26]. A high IgM or 
significant rise in IgM or IgG titre suggests infection. Serological testing has a good 
negative predictive value [18].

3.4  Typing Methods

Meningococcal typing is done for a number of reasons: to determine information on 
local cases, if sporadic or part of an outbreak, to determine vaccine implementation 
and/or efficacy, and to monitor global epidemiology. The reasons for the typing 
influence the selection of method. Typing of N. meningitidis can be performed 
through a number of modalities, each with varying merits. Some approaches are 
now historical and rarely used. Broadly speaking, typing can be performed on iso-
late material or potentially on clinical samples dependant on the methodology. 
Methods may be phenotypic (e.g. based on antibiotic susceptibility data, discussed 
above), serological (i.e. assessing immunogenic characteristics of isolates, such as 
based on capsular materials), enzymatic, or based on nucleic acid methodologies 
(i.e. assessing for genetic variability between isolates). The following description is 
not exhaustive, but attempts to overview key methods of current or historical 
importance.

3.4.1  Serological

Neisseria meningitidis is an antigenically complex organism. Isolates may be 
encapsulated, permitting them to cause invasive disease by evading the immune 
system. However, different capsule types present different antigenic signatures, 
resulting in variable immune responses. This characteristic can be leveraged by 
assays that characterise variations in these signatures.

3.4.2  Serogrouping

Serogrouping provided one of the earliest and traditional ways of typing N. menin-
gitidis and remains widely used. The approach is based on variable reactivity to 
groups of capsular polysaccharides, which can be ascertained using monoclonal 
antibodies [27]. Hierarchically, isolates are characterised by serogroup, serotype, 
subserogroup, and then immunotype. Currently, 12 serogroups are recognised, A, B, 
C, E, H, I, K, L, W, X, Y, and Z, with 6 serogroups A, B, C, W, X, and Y, accounting 
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for the majority of IMD worldwide [28]. A thirteenth group, D, is no longer recog-
nised [19].

Specifically, serogroups are based on capsular polysaccharide. For example, 
Group A polysaccharide primarily has O-acetylated residues at position C3 [29], 
whereas Group B polysaccharide is a homopolymer of α (2 → 8) N-acetyl neur-
aminic acid [30]. Serotypes are based on epitopes present on Porin B class 2 and 
class 3 outer membrane proteins and sub-serotypes are based on epitopes based on 
Porin A class 1 outer membrane proteins (e.g. P1.1, P1.16 [31, 32]). Twelve immu-
notypes (L1–L12) are based on variations in the composition of lipopolysaccharide 
[33]. The historical type of an isolate was represented as serogroup/serotype/sub- 
serotype/immunotype (e.g. B:15:P1.16:L3) [31, 34].

Historically, serogrouping and serotyping methods have included co- 
agglutination, dot-blot, and ELISA [35]. Rapid diagnostic testing for serogroup 
level has relied on immunochromatographic testing or latex agglutination testing, 
with several kits demonstrating variable performance characteristics commercially 
available [36].

Advantages of serogrouping include rapid determination of isolates associated 
with invasive disease. Consequently, serogrouping forms a foundation of global 
knowledge of type distribution. Additional advantages include reduced technical 
complexity for serogroup-level typing versus other methods, standardisation 
between laboratories, accessibility, and a long-standing history of use. Disadvantages 
of serogrouping include lower ability to discriminate. Additional reagents are 
required for finer-level typing studies that include outer membrane proteins and 
lipopolysaccharides, and reagents may be limited. An additional challenge includes 
the existence of non-serotypable strains. Non-typability may be due to the absence 
of capsular material, but also potentially due to masking or low expression of sur-
face antigens, and the potential establishment of new serological types requiring 
ongoing expansion of reagent panels [37].

3.4.3  Meningococcal Antigen Typing System (MATS)

The meningococcal antigen typing system (MATS) was relatively recently devel-
oped to aid in the determination of the expression and immunoreactivity of anti-
genic components in MenB strains that correlate with 4CMenB components (fHbp, 
NHBA, and NadA) and therefore provides an indication of vaccine coverage with 
the Bexsero® vaccine [38]. The approach utilises a modified sandwich enzyme- 
linked immunosorbent assay (ELISA) [39] to assess for the expression of antigen in 
bacterial culture material matching vaccine components (fHbp, NHBA, and NadA) 
[39]. MATS additionally includes information for the PorA serosubtype, deter-
mined by PCR for VR 2 and strain matching for PorA 1.4 [39]. For each target, the 
relative potency is compared against a positive bacterial threshold and scored as 
positive or negative, and the strain is determined to be PorA = P1.4 (positive or 
negative). The MATS method is quite labour-intensive, requires specialised reagents, 
and has been replaced in most laboratories doing sequencing by the Bexsero® 
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Antigen typing scheme which is implemented in the www.PubMLST.org/neisseria 
database [40]. This shows the presence of the genes but does not provide informa-
tion about the expression by the genes.

3.4.4  Enzymatic

3.4.4.1  Multilocus Enzyme Electrophoresis (MLEE)
Multilocus enzyme electrophoresis permits organisms to be typed by assessing vari-
ations in how intracellular enzymes electrophorese on starch gel between strains, 
with unique profiles being referred to as electrophoretic types (ET). Electrophoretic 
types that are closely related are considered a clonal complex. The mobility of 
enzymes under electrophoresis varies based on amino acid substitutions which alter 
electrostatic charge and are reflective of genetic mutations. A broad array of meta-
bolic housekeeping enzymes are used (e.g. see [41]). The approach has been used 
extensively for typing N. meningitidis, with an early use involving the analysis of 
the intercontinental spread of clones belonging to the ET-5 complex [42]. The meth-
odology has a range of strengths, including its ability to better characterise hyper-
virulent complexes versus serotyping alone. For example, ET37 can contain B, C, 
Y, or W [43]. Disadvantages, however, include interlaboratory variation, including 
in the number and selection of enzymes analysed, handling potential variability in 
gene expression, labour intensitivity, being time-consuming, and technical chal-
lenges [44]. The disadvantages of MLEE were overcome with the development of 
multilocus sequence typing which sequences the housekeeping genes.

3.4.5  Nucleic Acid-Based Methods

3.4.5.1  Pulsed-Field Gel Electrophoresis (PFGE)
PFGE is a gel-based approach which has historically been used extensively to type 
N. meningitidis [45]. The approach typically involves numerous steps, including 
culturing bacterial material, which is mixed with agarose and poured into a plug 
mould; lysed to release the DNA, which is cut with a restriction enzyme, typically 
Spe1 and Nhe1; loaded into a gel; and placed in an electric field that periodically 
changes direction to produce bands, which are then stained and read [44, 45]. 
Advantages of PFGE include its ability to detect clusters in the short term from 
specific sites with typically good levels of discrimination [18]. A key challenge 
includes difficulties in interlaboratory comparison due to differing methodologies 
and laboratory conditions [18].

3.4.5.2  Restriction Fragment Length Polymorphism (RFLP)
The use of RFLP for N. meningitidis is long-standing, with Fox et al. demonstrating 
its value in 1991 [37]. Historically, the process relies on the culture of N. meningiti-
dis, followed by DNA extraction, DNA fragmentation using specified restriction 
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endonucleases, and then gel electrophoresis to visualise the resultant bands. An 
advancement involved the use of PCR amplification (i.e. PCR-RLFP), whereby spe-
cific genetic targets (e.g. porA, porB) are amplified using PCR, with enzymatic 
restriction applied to the targets [46]. A range of restriction endonucleases have 
been used. Historically, the advantage of traditional RFLP was that it permitted finer 
separation of strains from epidemics that would have been indistinguishable using 
serotyping and serosubtyping [47]. Additionally, it permitted typing of isolates that 
cannot be fully serotyped and serosubtyped [48]. However, several downsides 
existed, including non-transferability of results and the need to have culture materi-
als. Given PCR-RFLP does not require viable culture material, it can be performed 
directly on clinical samples (e.g. in CSF from patients who have been treated with 
antibiotics) [49]. This method has been superseded in laboratories performing 
sequencing.

3.4.5.3  Ribotyping
Ribotyping constitutes a subset of RFLP and has had long-standing use in the typing 
of meningococcal isolates, with early use by Jorden et al. in 1991 [50]. The meth-
odology relies in the restriction of ribosomal RNA. Traditionally, meningococcal 
culture material was lysed and DNA extracted and purified. Restriction enzymes 
were then applied (e.g. ClaI, EcoRI, HindIII), with restricted DNA electrophoresed 
and blotted with hybridisation with a DNA probe [51]. Historical examples of the 
use of this methodology include analysis of the 1994 epidemic in Sao Paulo [51]. 
Modifications to the approach have been proposed, such as PCR-RFLP ribotyping 
which broadly uses the same principles as PCR-RFLP, which relies on amplification 
of the intergenic spacer region lying between 16S and 23S rRNA, and then digest-
ing the PCR product (e.g. with AluI and TaqI), although given the low rate of muta-
tion may be unable to characterise short-term epidemiological events as well as 
standard ribotyping [52]. Overall, the key advantage of ribotyping is that it provides 
good discrimination of strains [52], although this was historically dependent on the 
restriction enzyme selected [50]. Historically, a potential challenge involved cost 
[53]. This method has been superseded in laboratories performing sequencing.

3.4.5.4  Random Amplified Polymorphic DNA (RAPD)
RAPD is a long-standing typing methodology [54] that has been historically applied 
to meningococci, such as typing of a meningococcal university outbreak in 1994 
(e.g. [55]). The methodology involves culture of isolates, cell lysis, DNA extraction, 
application of predetermined arbitrary short primers, amplification using PCR, elec-
trophoresis, and pattern analysis (e.g. see [55]). Advantages include discrimination, 
speed, being relatively inexpensive, reproducible between laboratories, not requir-
ing prior sequence knowledge, and requiring less DNA versus some other methods 
(e.g. PFGE). Disadvantages include the inability to compare results between labo-
ratories, making it suitable for local outbreak investigation but not suitable for 
national or international comparison of results. This method has been superseded in 
laboratories that perform sequencing.
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3.4.5.5  Multilocus VNTR Analysis (MLVA)
MLVA examines repetitive DNA motifs that contain variable-number tandem 
repeats. Typically, the method involves lysing culture isolates, amplifying the 
nucleic acid using a series of primers (e.g. see [56]). The size of resultant PCR prod-
ucts is determined using capillary electrophoresis or other sequencing methods to 
produce a DNA fingerprint (e.g. see [57]). Given the high discriminatory ability, it 
has been suggested that MLVA is well suited to fine typing clonal complexes or 
performing rapid assessment of suspected outbreaks [58]; in particular, it can sepa-
rate epidemiologically separated meningococcal isolates from epidemiologically 
linked isolates that share the same MLST or MLEE types [59]. Historically, it has 
also been considered technically straightforward, low cost, relatively quick to per-
form, and able to provide transmissible and unambiguous results [58, 60]. 
Conversely, however, it may not be suited to typing samples collected over an 
extended period or across extensive areas [59]. This method has been superseded in 
laboratories that perform sequencing.

3.4.5.6  PorA Sequencing
Sequencing-based approaches to typing are becoming increasingly relevant, with 
the development of faster, cheaper, and more accessible technologies. Targeted 
sequencing of key meningococcal genes has been utilised historically to explore 
relationships between meningococcal isolates. Gene targets vary, but considerable 
work has focussed on the porA gene (e.g. [61–63]), which encodes the outer mem-
brane protein PorA and defines subtype; two variable regions (VR1, VR2) are of 
particular importance and consequently the focus of sequence analysis [64]. The 
porA protein carries epitopes (loop 1, VR1, and loop 4, VR2) which act as targets 
for monoclonal antibodies used in subtyping, and consequently the method acts as 
a molecular surrogate of serological typing analysis. Historically, the method has 
been PC-based, whereby primers specific to the target regions amplify the sequence 
of interest. Sequencing is performed and then typing performed by comparing the 
obtained sequence against known database. Advantages of the porA sequencing 
include it being rapid, portable, and highly discriminating and consequently suitable 
for the analysis of short-term clusters. An online database is available (https://
pubmlst.org/neisseria/PorA/). Additional benefits include having a finer resolution 
versus serological subtyping and characterisation of non-typable isolates.

3.4.5.7  Multilocus Sequence Typing (MLST)
MLST was first introduced by Maiden et al. in 1998, who looked at 107 isolates of 
N. meningitidis and 11 housekeeping genes [44]. The technique has subsequently 
been applied to a broad number of other pathogenic organisms, including bacteria, 
fungi, and parasites. Effectively, MLST is built on similar concepts to MLEE, but 
rather than assessing enzymes, it relies on a PCR-based approach, whereby a num-
ber of stable targets are amplified (e.g. using seven PCRs) that code for housekeep-
ing genes that mutate relatively slowly [65]. Target housekeeping genes frequently 
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include the housekeeping genes: putative ABC transporter (abcZ), adenylate kinase 
(adk), shikimate dehydrogenase (aroE), glucose-6-phosphate dehydrogenase (gdh), 
pyruvate dehydrogenase subunit (pdhC), and phosphoglucomutase (pgm) [65]. A 
range of modifications have also been proposed for MLST, including extended 
MLST (eMLST, [66]) and ribosomal MLST (rMLST, [67]). Whilst the method is 
often performed on culture material, methods of testing clinical samples directly 
have been proposed [68].

Traditional MLST has a range of key advantages regarding the typing of N. men-
ingitidis. The technique is portable, providing unambiguous results that are easily 
compared between laboratories nationally and internationally and are suitable for 
long-term comparisons [18, 60]. These factors have made MLST suitable for assess-
ing global epidemiology. Additional advantages include direct determination of 
genetic changes between isolates, versus, for example, MLEE. MLST may permit 
clonal relationships between organisms to be determined, which would otherwise 
be overlooked using serogrouping alone [68]. Widespread use has been facilitated 
by the development of a web-based comparison website https://pubmlst.org/neis-
seria/. Other advantages include portability, discrimination, reproducibility, and 
relative straightforward workflow [44, 65]. Cited disadvantages include cost and 
labour intensitivity [60].

Core genome MLST (cgMLST) is a more recent innovation that builds on the 
underlying premise of traditional MLST [69]. The typing methodology harnesses 
the power of next-generation sequencing and high-performance computing to anal-
yse 1605 core meningococcal loci, with distance matrices visualised phylogeneti-
cally using bioinformatic tools (e.g. using Neighbour-Net [70]). Examples of the 
recent use of this approach include the characterisation of serogroup C and W out-
break strains in Ireland [71], spatiotemporal analysis of invasive isolates in Tuscany 
[72], and analysis of invasive serogroup W isolates in Sweden [73]. The key advan-
tages of cgMLST include its level of discrimination, unambiguous typing, and 
reproducibility. Additionally, the presence of an online database facilitates analysis 
(https://pubmlst.org/neisseria/). Disadvantages include technical complexity and 
the requirement for specialised sequencing equipment and bioinformatics skills, 
which limit access and potentially increase costs.

The current internationally accepted typing nomenclature for meningococci, 
which utilises the typing results of a number of methods, is serogroup: PorA type: 
FetA type: multilocus sequence type (clonal complex), e.g. B: P1.19,15: F5-1: 
ST-33 (cc32) [74].

3.4.5.8  Next-Generation Sequencing
Next-generation sequencing, also known as massively parallel sequencing, has 
revolutionised the typing of N. meningitidis as it has made large-scale whole-
genome sequencing (WGS) practical for laboratories that are suitably resourced 
for the expensive equipment, computational power, and bioinformatic analysis 
capability required [75]. In recent years, the cost of WGS has decreased 
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dramatically, and the increase in technology and availability of automated analysis 
tools has meant public health laboratories have been able to implement this tech-
nology for the investigation of meningococcal outbreaks and for surveillance. 
Once sequenced, the data is stored allowing analysis of historical isolates. As the 
whole meningococcal genome is sequenced, the analysis can provide the results 
for a range of previous typing methods such as serogroup porA, MLST, cgMLST, 
fetA, and Bexsero® Antigen typing scheme. Dedicated workflows have been 
developed (e.g. see [76, 77]). As WGS can distinguish the difference in single-
nucleotide polymorphisms (SNPs), it can be used for cluster analysis both in local-
ised outbreaks and in meningococcal population epidemiology. Disadvantages 
include expense, technical complexity, and the requirement for specialised 
sequencing equipment and bioinformatics skills. Advantages include the results 
being comparable nationally and internationally and the ability to share sequence 
data between laboratories, to use bioinformatics, to reanalyse isolates without rese-
quencing, and to perform population cluster analysis.

3.5  Conclusion

Typing methodologies have advanced considerably since Dopter first reported a link 
between meningococcal isolates and antigenic responses in 1909 [78]. With the 
progressive development of more advanced serological, enzymatic, and nucleic 
acid-based schemes, facilitated by advancements such as EIA-based technologies, 
PCR, and sequencing technologies, the advancements in meningococcal typing 
have permitted greater characterisation of isolates and the ability to better discrimi-
nate and represent clonality. Broadly speaking, as the technologies have progres-
sively improved over the past century, the general goals of typing have remained 
constant: to aid in diagnosis and treatment, support and advance public health inves-
tigation, strengthen preventative activities (such as vaccine development), and ulti-
mately reduce the global rate of mortality associated with IMD. Undoubtedly, the 
advent and increased availability of next-generation sequencing will drive further 
advancements in meningococcal typing into the foreseeable future. Whilst provid-
ing a finer resolution understanding of organism genomics, when coupled with the 
appropriate bioinformatic tools, it also permits reverse compatibility with a range of 
historically important systems through in silico prediction and consequently will 
continue to revolutionise laboratory processes.
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4Nontuberculous Mycobacteria

Emilyn Costa Conceição, Maria Cristina S. Lourenço, 
Rafael Silva Duarte, and Philip Noel Suffys

4.1  Introduction on the Genus Mycobacterium

After the first description of Bacillus leprae in 1875 by Hansen and the following 
discovery of Mycobacterium tuberculosis by Robert Koch in 1882, the genus finally 
emerged as a taxonomic group of pathogens named Mycobacterium as proposed by 
Lehmann and Neumann in 1896 [1]. The genus is composed of aerobic rod-shaped 
Gram-positive acid-fast microorganisms, most of them exhibiting facultative intra-
cellular growth and having varied environmental reservoirs. Some Mycobacterium 
spp. also are associated with important well-known historical human diseases such 
as leprosy and tuberculosis, among others, while also being pathogenic for animals, 
some of them with zoonotic potential.

The use of the term “atypical acid-fast microorganisms” was introduced in 1935 
to designate a mycobacterial isolate that caused human disease but could not be dif-
ferentiated from M. tuberculosis by morphology, pigmentation, and virulence in 
animals [2]. Three years later, Costa Cruz isolated a fast-growing Mycobacterium 
from a human abscess that he named M. fortuitum [3]. A series of mycobacteria dif-
ferent from the tuberculosis bacillus started to be recognized as etiologic agents of 
human diseases, including M. marinum 1926 [4], M. ulcerans (1950) [5], M. 
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intracellulare (initially named as Nocardia intracellularis in 1949 and later on 
renamed as M. intracellulare in 1965) [6], M. kansasii (1953) [7], and M. scrofula-
ceum (1956) [8], as main examples [9, 10].

It is known for decades that natural habitats of NTM are aquatic and soil environ-
ments [11]. The majority of Mycobacterium species have no impact on human 
health and occasionally, as opportunists, are responsible for human infections. 
However, some species are both environmental and pathogenic, while some are 
obligatory pathogenic. Contamination probably occurs through aerosolization or 
aspiration of water and/or soil particles and through exposure to traumatized skin 
and is generally not transmitted person to person. Therefore, it is important to iden-
tify the species that cause an infection in cases where the symptoms are sufficient to 
support sample collection [12–14].

4.1.1  The Taxonomy of Mycobacteria

Considering the present version of the List of Prokaryotic Names with Standing in 
Nomenclature (LPSN) database (available at http://www.bacterio.net/m/mycobac-
terium.html), a total of 192 validly published taxa are included in the genus 
Mycobacterium, including species and subspecies that are distributed in three major 
groups: (i) the Mycobacterium tuberculosis complex (MTBC), (ii) the distinct spe-
cie Mycobacterium leprae, and (iii) the nontuberculous mycobacteria (NTM), also 
called mycobacteria other than the MTBC. Traditionally, mycobacteria have been 
divided into rapidly (RGM) and slowly growing mycobacteria (SGM), the former 
needing less than 7 days for visible colony formation on solid culture media, the 
latter more than 7.

Through the years, the systematic taxonomy of this genus has evolved consider-
ably based on grouping of phenotypic properties, analysis of chemotaxonomic char-
acteristics, and sequence comparison of the 16S rRNA; of the 65-kDa heat-shock 
protein; of the genes recA, rpoB, gyrA, gyrB, secA1, sodA, tuf, and smpB; of the 
tmRNA; and of the 16S-23S rRNA intergenic spacer (ITS) region, performing a 
multilocus sequence analysis approach of concatenating several gene sequences, by 
interspecific DNA-DNA hybridization technique and/or, most recently, by genomic 
comparison.

Recent studies have suggested a new taxonomic classification and phylogenomic 
structure for mycobacteria based on datasets of genes/proteins from the genomes of 
different species. In 2018, Gupta et al. [15] suggested the redefinition of mycobacte-
rial taxa based on amino acid insertions or deletions of fixed lengths within a spe-
cific position at a conserved region, named conserved signature indels (CSIs). These 
clade-specific marker gene sequences were proposed as a better definition of rela-
tionships among mycobacteria for determining the vertical inheritance and phyloge-
netic tree building as performed on datasets of concatenated protein sequences and 
proposed to relocate the mycobacterial taxa into five distinct genera: Mycobacterium, 
Mycobacteroides, Mycolicibacillus, Mycolicibacter, and Mycolicibacterium. 
However, Tortoli et al. [16] and most of the researchers in this study field preferred 
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Table 4.1 Nomenclature for the main Mycobacterium species as summarized by Tortoli et al. [16]

Classical nomenclature
Nomenclature adjustment 
proposed by Tortoli et al. [16]a

Nomenclature according to 
Gupta et al. [15]

Mycobacterium abscessus 
subsp. abscessus

Mycobacteroides abscessus 
subsp. abscessus

Mycobacterium abscessus 
subsp. bolletii

Mycobacteroides abscessus 
subsp. bolletii

Mycobacterium abscessus 
subsp. massiliense

Mycobacteroides abscessus 
subsp. massiliense

Mycobacterium avium subsp. 
avium

Mycobacterium avium subsp. 
avium var. avium

Mycobacterium avium subsp. 
paratuberculosis
Mycobacterium avium subsp. 
silvaticum

Mycobacterium avium subsp. 
avium var. silvaticum

Mycobacterium chelonae 
subsp. chelonae

Mycobacteroides chelonae

Mycobacterium chelonae 
subsp. bovis
Mycobacterium chelonae 
subsp. gwanakae

Mycobacterium chelonae 
subsp. bovis

Mycobacterium fortuitum 
subsp. fortuitum

Mycobacterium fortuitum Mycolicibacterium fortuitum

Mycobacterium fortuitum 
subsp. acetamidolyticum

Mycobacterium fortuitum Mycolicibacterium fortuitum

Mycobacterium gordonae
Mycobacterium 
immunogenum

Mycobacteroides 
immunogenum

Mycobacterium 
intracellulare subsp. 
intracellular
Mycobacterium 
intracellulare subsp. 
chimaera

Mycobacterium chimaera

Mycobacterium 
intracellulare subsp. 
yongonense

Mycobacterium intracellulare 
subsp. chimaera

Mycobacterium kansasii
Mycobacterium 
parafortuitum

Mycolicibacterium 
parafortuitum

Mycobacterium smegmatis Mycolicibacterium 
smegmatis

Mycobacterium tuberculosis 
complex

Mycobacterium tuberculosis

Mycobacterium ulcerans
aEmpty field: nomenclature identical to the one of the first column
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to use the classical nomenclature and reinforced the use of genome comparison for 
taxonomic classification.

By using the average nucleotide identity (ANI) and genome-to-genome distance 
(GGD) to analyze all the Mycobacterium taxa, Tortoli et  al. [16] performed a 
detailed review and suggested specific adjustments for this genus. We detached the 
main species citing the classical and previously proposed nomina in Table 4.1.

4.1.2  Mycobacterium tuberculosis and Mycobacterium leprae

The two major human mycobacterioses are tuberculosis and leprosy. In 2018, ten 
million people fell ill of tuberculosis worldwide, killing 1.5 million of these, and 
1 in 6 coinfected with HIV [17]. Although the disease is curable, a major problem 
is resistance to rifampicin, evolving often to multidrug and sometimes extreme 
drug-resistant disease, difficult to cure with long, toxic, and expensive treatment 
schemes and high mortality rates.

Almost 210,000 new cases of leprosy were reported in the same year, and just 
like TB, these are curable with a multidrug therapy and fortunately still presenting 
relatively low drug resistance levels [18]. However, relapse is quite common, and 
the World Health Organization recommends vigilance for drug resistance. The 
major problems regarding this disease are late diagnosis causing physical disability 
and stigma.

Tuberculosis is caused by organisms belonging to the MTBC that was recently 
redefined as a single species [19], disease being mostly caused by M. tuberculosis 
var. tuberculosis and M. tuberculosis var. bovis. Leprosy is caused mostly by M. lep-
rae although a second species called M. lepromatosis and described mainly in 
Mexico is causing a particular clinical form of leprosy called Lucio syndrome [20, 
21]. However, both disease characteristics and geographic distribution of the latter 
pathogen are under active study.

During the last two decades, basically since the availability of the complete 
genome sequences of M. tuberculosis [22] and M. leprae [23], a large number on 
studies on genetic variability between strains in either species have been described. 
Procedures for detection of strain variability have been used in studies on definition 
of species, phylogeny, evolution, strain virulence, transmissibility, molecular epide-
miology, drug resistance, and host response, and these topics have been covered in 
several good reviews. Because another review on this is beyond the objective of this 
chapter, we refer to some recent papers and chapter, respectively, for MTBC [24–
26] and for leprosy [27].
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4.2  Clinical Significance of Nontuberculous Mycobacteria

4.2.1  Disease Caused by Infection with Rapidly 
Growing Mycobacteria

The clinically most prevalent RGM species are M. abscessus, M. chelonae, and 
M. fortuitum. While M. abscessus is mostly isolated from clinical respiratory speci-
mens, M. fortuitum is recovered more frequently from non-respiratory specimens. 
The spectrum of diseases varies among the main species of the group [28–32]:
• M. abscessus – Pulmonary infections, primarily associated with bronchiectasis 

associated with cystic fibrosis or other comorbidities, skin and soft tissue infec-
tions after cosmetic procedures or surgeries, prosthetic device infection, tenosy-
novitis, and osteomyelitis

• M. chelonae – Surgical wound infections, abscesses, keratitis, catheter-related 
bacteremia, and hematogenously disseminated disease in immunosupressed 
individuals

• M. fortuitum – Skin and soft tissue infections (surgical or other traumatic lesions), 
chronic discharging sinuses, pulmonary infections among individuals harboring 
underlying pulmonary diseases, superficial lymphadenitis, prosthetic device 
infection, catheter-related sepsis, prosthetic valve endocarditis, and others

4.2.2  Disease Caused by Infection with Slowly 
Growing Mycobacteria

The major clinical syndromes associated with SGM include progressive pulmonary 
disease, skin and soft tissue infection due to direct inoculation, lymphadenitis, and 
disseminated disease in severely immunocompromised individuals by M. avium 
complex (MAC) and other NTM [31, 33]. The major clinical syndromes caused by 
specific species are:
• MAC – Lung diseases in HIV-negative patients, commonly associated with cys-

tic fibrosis or middle-aged or elderly men, alcoholics, and/or smokers presenting 
or not underlying chronic obstructive pulmonary disease (COPD), mainly non-
smoking women over 50. MAC also causes disseminated disease in severely 
immunocompromised patients (such as AIDS or other syndromes and upon use 
of immunosuppressive drugs), solitary pulmonary nodules, and hypersensitivity 
pneumonitis syndrome [34, 35].

• M. avium subsp. paratuberculosis (MAP) – One of the possible etiological 
agents of Crohn’s disease (CD) due to the characteristic tuberculous-like gastro-
enteritis in humans and similarities to the clinical and histopathological findings 
to the Johne’s disease in ruminants caused by MAP. Some studies have described 
the isolation of this pathogens from lymph nodes and blood of patients with 
CD [36].
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• M. kansasii – Considered the second most common respiratory NTM and associ-
ated with pulmonary disease similar to tuberculosis in patients with COPD, 
malignancy, immunosuppressive drugs, pneumoconiosis, alcohol abuse, and/or 
HIV infection. This species has also been described causing disseminated dis-
ease, mainly in HIV-positive individuals [37].
Other human pathogenic SGM include M. malmoense, M. marinum, M. simiae, 

and M. xenopi, all associated with similar pathologies caused by other NTMs [38]. 
Mycobacterium ulcerans is particularly related to localized skin lesions progressing 
to extensive ulceration that may result in functional disabilities [39].

4.2.3  Considerations on Virulence and Drug Resistance

Because both virulence and drug resistance are important characteristics of NTM 
that can vary considerably both on a species and strain level, we mention these in 
this chapter as strain typing can be beneficial for the patient. Nonetheless, few data 
exist on direct correlation of these characteristics and characterization of NTM 
strains, and this in contrary to strains belonging to the MTBC (see part 1.2).

Virulence of NTM is related to their complex lipid-rich cell wall and cholesterol 
catabolism as a source of energy and material for the synthesis of the cell wall, pro-
teins, and cell envelope lipoproteins responsible for bacterial adherence and their 
ability to form biofilms. Due to the hydrophobic nature of the cell wall, NTMs can 
adhere to a wide range of organic and inorganic materials, promoting as such colo-
nization followed by either pseudo-infections or true infections. In the last few 
decades, there has been a report of an increase in outbreaks and diseases caused by 
NMT [40].

NTM are naturally resistant to a wide spectrum of antibiotics that include most 
TB drugs. The selective pressure imposed by other microorganisms in the soil and 
in the water, probably producing antimicrobials, may have led NMTs to develop 
innumerable resistance mechanisms to maintain their survival [41]. One of these is 
the thick hydrophobic double-membrane cell envelope of mycobacteria that also 
acts as a major permeability barrier. It was shown already in the 1990s that isolates 
of the then called M. chelonae-M. abscessus complex have a cell envelope about 
10–20 times less permeable than that of M. tuberculosis. In addition, morphotypic 
antibiotic resistance, a phenomenon of varying degrees of drug resistance in 
M. avium which is associated with a reversible colony morphology switch (white/
red on Congo red containing agar, transparent/opaque), is also attributed to changes 
in permeability owing to cell wall modifications [42]. Such morphologic changes 
might have a genetic basis and should therefore be traceable by genotyping.

Efflux pumps contribute to intrinsic drug resistance by preventing accumulation 
of antibiotics in the bacteria and have been mainly described for fluoroquinolones 
and macrolides [43]. The NTM species also induce the expression of certain genes 
resulting in the modification of the target binding site of the drug, the so-called 
inducible drug resistance, and in the case of macrolide resistance in M. abscessus 
which is mediated by the erm(41) gene, encoding a ribosomal methylase and 
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sequencing of this gene and rrl can predict susceptibility to clarithromycin in strains 
of the M. abscessus group [44], but this correlation does not seem to be absolute 
[45]. The use of strain typing for prediction of drug resistance in this group and 
more particular M. abscessus subsp. massiliense was demonstrated very recently by 
MLST and WGS [46]. The differentiation of the subspecies of the M. abscessus 
complex is indeed important because they differ in resistance to antibiotics and in 
treatment response.

Some genotyping tools allow simultaneous differentiation of NTM to the species 
and/or subspecies level and inform on drug susceptibility. GenoType NTM-DR 
(NTM-DR, Hain Lifescience, Nehren, Germany) line probe assay (LPA) is such a 
tool that enables identification of the MAC species (M. avium, M. intracellulare, 
and M. chimera), M. chelonae, and subspecies of the M. abscessus complex. The 
assay also allows for detection of antibiotic resistance to macrolides and aminogly-
cosides, including polymorphisms in the erm (41) gene.

4.3  Molecular Identification and Genotyping 
of Mycobacteria

Among the NTM species, only about one third is familiar to microbiologists and 
doctors, so their identification guides therapeutic treatment and provides clues 
regarding the source and route of exposure. Due to the presence of these mycobac-
teria in the environment, a laboratory control monitoring the growth of NMT is 
established following clinical and microbiological criteria known for decades. 
When dealing with sterile clinical specimens such as in pleural fluid, blood, cere-
brospinal fluid, and tissues, among others, a single NTM is confirmative for infec-
tion, while for diagnosis of lung disease, positivity in two samples of spontaneous 
sputum or in one bronchoalveolar lavage sample is needed [47].

Traditional phenotypic identification procedures for NTM to the complex and 
sometimes species level are laborious and based on time-consuming biochemical 
and morphology-based tests, including their initial differentiation form the 
MTBC. For these tests, confluent growth is required, may take more than 20 days to 
achieve adequate growth, and has the limitation to be basically species-specific [48, 
49]. Time for identification has much been reduced due to the development of 
molecular tools for NTM identification. Nevertheless, the combination of conven-
tional and nucleic acid-based procedures is still used in many laboratories for pre-
cise diagnosis and eventual strain typing.

The molecular identification methods for diagnosis have expanded significantly, 
and among the most widely used are:
• The polymerase chain reaction restriction enzyme analysis of the hsp65 gene 

(PRA-hsp65 method) [50]
• Direct PCR (partial) gene sequencing with the principal target genes 16S, hsp65, 

and rpoB including single target or MLST analysis [51, 52]
• Commercial rapid test based on DNA-strip technologies: INNO-LiPA 

Mycobacteria v2 (Fujirebio, H.U.  Group, Japan); Speed-oligo® (Vircell, 
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Granada, Spain); GenoType CMdirect VER 1.0 (Hain Lifescience GmbH, 
Nehren, Germany), detecting MTBC and more than 20 clinically relevant NTM 
from patient specimens; and GenoType Mycobacterium CM VER 2.0 (Hain 
Lifescience GmbH, Nehren, Germany), detecting MTBC and more than 20 clini-
cally relevant NTM from cultures
Despite being useful for identification of the species level and thus for accurate 

diagnosis, (most of) these methods do not discriminate within the specie and sub-
species levels, with an exception of sequencing.

Hence, molecular typing procedures that characterize below the species level 
have been developed almost simultaneously and almost exclusively based on nucleic 
acid analysis (Fig. 4.1). They have been used for improving the epidemiological 
vigilance of mycobacteriosis based on detection of strain variability, transmission, 
outbreak investigations, as well as differentiation of reinfection and persistence/
resistance. Through genotyping, the general idea was created that infection with 
NTM normally occurs from environmental sources [53]. Nonetheless, patient-to- 
patient transmission has been demonstrated between cystic fibrosis (CF) patients 
[54], and more studies are needed to evaluate the extend of such transmission events. 
To illustrate the major typing procedures used for NTM and their main applications, 
we summarize literature according to publication data in Table 4.2.

Fig. 4.1 The main molecular typing methods applied to Nontuberculous Mycobacteria

Repetitive Extragenic Palindromic-PCR (REP-PCR) Sample2
Control

Marker Sample1 Negative
Control

Positive

Random amplified polymorphic DNA (RAPD)

Amplified fragment length polymorphism (AFLP)

Pulsed field gel electrophoresis (PFGE)

Restriction fragment length polymorphism (RFLP)

Amplification of particular
regions containing tandem

repeats

Enterobacterial repetitive intergenic consensus-PCR
(ERIC-PCR)

Amplification of particular
regions containing tandem

repeats 126 bp

Digestion of
chromosomal DNA by

restriction enzymes

Gel electrophoresis based

Multilocus sequence typing (MLST) Housekeeping genes

Multilocus based

Variable number of tandem repeats (VNTR)
Amplification of particular
regions containing tandem

repeats

Whole genome sequencing (WGS)
DNA fragments

covering the whole
genome

Sequencing based

MOLECULAR TYPING METHOD PRINCIPLE PROCEDURE
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Table 4.2 Application and limitations of the main molecular genotyping methods applied to non-
tuberculous mycobacteria classified chronologically

Molecular typing 
method Applications Limitations
Repetitive 
extragenic 
palindromic-PCR 
(REP-PCR) [55]

Pseudo-outbreak [56], identification of 
source of infection [57], outbreak, and 
genetic diversity [58]

It is not an accurate tool for 
identifying organisms to the 
subspecies level. Low 
discriminatory power

Enterobacterial 
repetitive 
intergenic 
consensus-PCR 
(ERIC-PCR) [99, 
100]

Genetic diversity [53, 59], distinguish 
M. paratuberculosis from other 
mycobacteria (IS900/ERIC-PCR) [60], 
study of clonality [61], genetic 
diversity and infection control [62], 
outbreak [63–65]

It has necessarily a higher DNA 
quality. It has difficult 
reproducibility once it generates 
many bands, and thus, it is 
difficult to analyze

Random amplified 
polymorphic DNA 
(RAPD) [66]

Study of clonality [61, 67, 68], 
genotypic diversity and infection 
control [62, 69], outbreak [70], 
differentiation of infection and 
pseudo-infection/pseudoendemic [71], 
characterization of novel specie 
proposal [72], genetic diversity [73], 
identification of source of infection 
[74–77], clonality [78], strain 
discrimination [79], pseudo-outbreak 
[80, 81], outbreak [82]

Lacks inter-test and 
interlaboratory reproducibility; 
potential for misinterpretation is 
greater than that by 
PFGE. There is not a universal 
primer; we must test a set of 
primers. It generates many 
bands, and thus, it is difficult to 
analyze

Amplified 
fragment length 
polymorphism 
(AFLP) [83]

Identification of source of infection 
[84, 85], molecular epidemiology [86], 
genetic diversity [87, 88]

It is not an accurate tool for 
identifying organisms to the 
subspecies level. Low 
discriminatory power

Pulsed field gel 
electrophoresis 
(PFGE)

Outbreak [63–65, 89–94] and 
pseudo-outbreak [95, 96], molecular 
epidemiology [97], novel specie 
proposal [72], genetic diversity [58], 
identification of source of infection 
[98–104], study of clonality [59], 
differentiation of relapse from 
reinfection [105], specie differentiation 
[60, 106, 107]

PFGE depends on DNA quality, 
and the typing results can be 
influenced by a method of DNA 
isolation, electrophoresis/
running conditions [108]. 
Inability to type M. abscessus 
due to DNA degradation [107]. 
High cost of reagents compared 
to ERIC and RAPD [62]

Restriction 
fragment length 
polymorphism 
(RFLP) [109]

Genetic diversity [59, 108, 110], specie 
differentiation [106, 111], 
identification of source of infection 
[98, 112–115], specie identification 
and differentiation [116–120]

It is labor-intensive and requires 
a high level of operator skill

Multilocus 
sequence typing 
(MLST)

Specie identification [97, 110, 121, 
122], molecular epidemiology [123], 
differentiation of infection from 
reinfection [124], phylogeny [97] and 
characterization of novel specie 
proposal (Mycobacterium 
paraintracellulare sp. nov. [125])

High cost of reagents compared 
to ERIC and RAPD [62]

(continued)
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Because methods are based on different procedures that might include enzymatic 
digestion, PCR amplification, agarose gel analysis, sequence or fragment analysis, 
and fragment size estimation or counting, among others, their applicability depends 
on the diagnostic or typing purpose, and choice is therefore based on a combination 
of characteristics such as simplicity and speed of execution, cost, and differentiating 
power. However, one of the most important characteristics of a genotyping tech-
nique for strain differentiation is the discriminatory power, and in the case of several 
NTM species, PFGE presents the highest value and could in some way be consid-
ered as the reference technique [152].

Alternative fragment analysis-based procedures such as REP, AFLP, RAPD, and 
ERIC-PCR might be easier to perform but have the limitation that patterns and 
interlaboratorial comparison can be more complex. Moreover, simple variations on 
the DNA extraction protocol can have serious impact on the result.

One interesting application of such procedures was a study on M. fortuitum iso-
lates from mammaplasty patients belonging to ITS genotype V that had indistin-
guishable RAPD-PCR and ERIC-PCR patterns, confirming that infections at other 
hospitals were caused by different M. fortuitum genotypes and that there was no 
clonal dissemination between hospitals [65]. Another study using the same tools 
demonstrated that ERIC-PCR has the potential to be used as a screening tool and 
useful for rapid epidemiological typing tools for M. fortuitum infections [62].

When compared to ERIC, both PFGE and RFLP demonstrated a higher resolu-
tion [60]; however, ERIC is still valid as a complementary or alternative tool for 
outbreak investigation, especially when working with M. abscessus. Compared to 
RAPD, however, ERC demonstrates either a higher [62, 64, 65] or a similar dis-
criminatory power [61].

In other studies, PFGE showed similar results as REP-PCR for M. abscessus typ-
ing [153, 154]. Combined with VNTR typing, PFGE demonstrated a nice tool for 
discrimination within M. kansasii [108], a species that was described as being 

Table 4.2 (continued)

Molecular typing 
method Applications Limitations
Variable number 
of tandem repeats 
(VNTR) [126]

Influence of genotype [127], 
transmission [128, 129], genetic 
diversity [108, 130–134], phylogeny 
and association of genotypes to drug 
susceptibility [135–137], genotypes 
associated with clinical aspects [138], 
phylogeny [139, 140], identification of 
coinfection, source of infection [141, 
142]

The genetic diversity can be 
influenced by homoplasy [143]

Whole-genome 
sequencing 
(WGS)

Transmission assessment [144], novel 
mutation proposal [46], strain 
discrimination [145], identification of 
source of infection [146, 147], 
taxonomy/phylogeny [148–151].

Higher cost compared to others
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composed of seven subtypes [155]. Recently, six of these subspecies have been 
elevated to a species rank and named M. kansasii (former type I), M. persicum (II), 
M. pseudokansasii (III), M. ostraviense (IV), M. innocens (V), and M. attenuatum 
(VI) [150, 156, 157]. Even so, this organism is still presenting considerable vari-
ability as presented by division of M. kansasii (type I) into two hsp65 subtypes as 
observed also by the overall genome organization [158]. This was confirmed in a 
later study adding more genomes [159], so WGS seems WGS a promising tool for 
future strain typing studies.

Despite being time-consuming, labor-intensive, and resource- and expertise- 
demanding, turning PFGE difficult to perform on a large-scale basis, it is still con-
sidered by many as the pillar method for molecular typing of NTM because of its 
high discriminatory power [93]. However, for some species, particular caution 
needs to be taken such as the case for M. abscessus that may present DNA degrada-
tion [152]. The subjectivity part of comparison of PFGE restriction patterns can 
reduce guideline focused on interpretation and using rigid algorithms but not totally 
eliminated [160].

The MLST technique has shown the highest sensitivity and specificity for iden-
tification to the species level of NTM [51], including discrimination of M. abscessus 
from other NTM species [97, 121]. But for typing of isolates of this species, again, 
PFGE was superior [161]. In another study, as expected, WGS showed a clearly 
higher discriminatory power in comparison with VNTR and therefore in practice 
the only molecular tool suitable to effectively discriminate isolates of M. abscessus 
subsp. abscessus and M. abscessus subsp. bolletii, with clonal groups with different 
drug resistance patterns and suggesting transmission between patients [145]. 
Interestingly, a recent study compared a large amount of clinical strains completing 
a total of 175 NTM species by comparing whole-genome data and developing a new 
MLST algorithm based on 184 genes [122]. Their MLST-based identification 
showed higher accuracy than conventional MLST, and besides the potential to rap-
idly detect pathogens, the higher amount of data might, future wise, allow the use of 
this combined MLST-WGS approach for strain typing.

A sometimes very severe infection of subcutaneous tissue is observed during 
Buruli ulcer (BU), a neglected tropical skin disease caused by M. ulcerans [162], 
and molecular tools have contributed considerably to understanding the transmis-
sion and disease reservoirs [129, 151, 163]. Among these, VNTR has demonstrated 
a large genetic diversity [128] also adequate for phylogenetic assessment [132] of 
this species. Recently, the application of WGS through a phylogeographic analysis 
revealed a predominant sublineage of M. ulcerans that arose in Central Africa and 
proliferated in its different regions of endemicity during the Age of Discovery [151].

A recent excellent review by Shin et al. [164] focuses on genotyping of MAC/
MAP and demonstrated that these species are mostly isolated from environmental 
sources such as in water and soil, therefore being the ecological niche for M. avium 
and M. intracellulare. Despite M. avium being excreted from infected animals and 
contaminates the environment, there seems to be no evidence for similar environ-
mental contamination by M. intracellulare. Typing methods for strains from this 
complex can improve our understanding of estimating the infection pathway among 
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animals, humans, and the environment and evaluation of the treatment outcomes 
and the pattern of recurrence of MAC infection. The transmission of MAC species 
is not yet clearly defined, and together with the complex drug susceptibility pattern, 
more reliable and feasible genotyping methods of MAC are urgently needed,

The RGM M. chelonae, besides causing infections as related above, is com-
monly associated with skin and soft tissue infections and postsurgical infections 
after implants, transplants, and injections such as sclerotherapy and mesotherapy 
[165, 166]. Detection of source of infection is possible by molecular epidemiology 
studies on [56] and outbreaks by PFGE [90, 99] and/or ERIC-PCR [64]. Although 
considered a single species with M. abscessus until 1992, when M. chelonae was 
elevated to the species status, they share partial 16S rRNA signatures and are there-
fore still called the M. chelonae-M. abscessus group [167]. Among other phenotypi-
cal and molecular tools, RFLP was used to propose a division of this group [168] 
separating these species [111]. Genotyping by MLST to what were apparently par-
ticular stains of M. chelonae [169, 170] or of the M. chelonae-M. abscessus group 
[171] has also led to the identification of new (sub)species of these organisms.

Among the molecular tools, the only non-nucleic acid-based identification and 
typing technique for Mycobacterium isolates that we cover here is that based on 
matrix-assisted laser desorption ionization-time-of-flight mass spectrometry 
(MALDI-TOF MS), a technique that during the last decade has turned into a timely 
and cost-effective identification procedure in routine microbiology laboratories 
[172]. In brief, a small amount of bacterial mass from a log phase culture is col-
lected, heat inactivated, and treated with ethanol and the dried cell pellet vortexed or 
sonicated with beads in acetonitrile and formic acid before covering the dried extract 
with a special matrix. Identification is obtained both at the genus and species level 
between a range of 80% and 98% depending on the study [173]. The method has 
some limitations that have been only partly resolved. One is the impossibility to 
identify subspecies within the so-called Mycobacterium complexes that is still not 
possible for the MTBC. In the case of the M. abscessus complex, an algorithm for 
differentiation of the three subspecies was described [174], while the same was 
obtained by the use of principal component analysis [175]. Interesting also is that 
the formerly single species M. kansasii composed of seven genotypes resulted in 
reproducible and unique MALDI-TOF spectra that differentiated six of these [176], 
now separate species [150, 156, 157]. Another example of the promising evolution 
of this identification technique is the recently described algorithm for the differen-
tiation of M. intracellulare from M. chimaera [177].

Two commercially systems for MALDI-TOF, each with their own Mycobacterium 
reference library, that of Bruker Biotyper with Mycobacterial Library v5.0.0 (164 
species) and bioMérieux VITEK MS with v3.0 database, were recently compared 
and yielded similar results, although some problems were encountered in both sys-
tems for differentiation within complexes [178]. Because of the increasing number 
of Mycobacterium species and redefinition of their taxonomy, the constant need of 
updating of such databases to maintain accuracy of the identification is obvious 
[168]. Such databases have been constructed for MALDI-TOF users and can be 
accessed at https://microbenet.cdc.gov.
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To our opinion, combined MALDI-TOF and genotyping analysis might be use-
ful future wise, but the recent tentative to use the former technique alone for strain 
typing or lineage definition within the MTBC seems nothing but what the author’s 
nicely called “a dream for the moment” [179].

4.4  Summary

Mycobacterium is a genus of Actinobacteria that are acid-fast bacilli closely related 
to Corynebacteria, Rhodococcus, and Nocardia. The genus now contains almost 
200 recognized species with pure pathogenic species with best known examples 
Mycobacterium tuberculosis and Mycobacterium leprae and many environmental 
species that are sometimes also opportunistic pathogens. Mainly due to the evolu-
tion of genotyping techniques, many new species have been described during the 
last (two) decades, and many are to follow. Besides recognition of species, identifi-
cation to the subspecies or strain level can teach us about disease transmission and 
bacterial population genetics and speeds up diagnosis, prediction of drug suscepti-
bility, and evolution of disease and can therefore improve treatment. This chapter 
concentrates on current knowledge of strain typing of the main clinically important 
mycobacteria.

References

 1. Lehmann KB, Neumann R (1896) Atlas und Grundriss der Bakteriologie und Lehrbuch der 
speziellen bakteriologischen Diagnostik, Fist Editi

 2. Atypical Acid-Fast Microörganisms | III.  Chromogenic Acid-Fast Bacilli from Human 
Beings1, 2 | American Review of Tuberculosis. https://www.atsjournals.org/doi/abs/10.1164/
art.1935.32.4.424?journalCode=art. Accessed 2 Sep 2020

 3. Da Costa Cruz J (1938) Mycobacterium fortuitum um novo bacillo acidoresistance patho-
genico para o homen. 1:297–301

 4. Aronson JD (1926) Spontaneous tuberculosis in salt water fish. J Infect Dis. https://doi.
org/10.1093/infdis/39.4.315

 5. Fenner F (1950) The significance of the incubation period in infectious diseases. Med J Aust. 
https://doi.org/10.5694/j.1326- 5377.1950.tb106945.x

 6. Runyon EH (1965) Pathogenic mycobacteria. Bibl Tuberc 21:235–287
 7. Hauduroy P (1965) Derniers aspects du monde des mycobactéries. Masson Cie
 8. Masson AM, Prissick FH (1956) Cervical lymphadenitis in children caused by chromo-

genic Mycobacteria. Can Med Assoc J. 15;75(10):798–803. PMID: 13364834; PMCID: 
PMC1823481.

 9. Runyon EH (1959) Anonymous mycobacteria in pulmonary disease. Med Clin North Am. 
https://doi.org/10.1016/S0025- 7125(16)34193- 1

 10. BUHLER VB, POLLAK A (1953) Human infection with atypical acid-fast organisms; 
report of two cases with pathologic findings. Am J Clin Pathol. https://doi.org/10.1093/
ajcp/23.4.363

 11. Gruft H, Loder A, Osterhout M, Parker BD, Falkinham JO III (1979) Postulated sources 
of Mycobacterium intracellulare and Mycobacterium scrofulaceum infection: isolation of 
mycobacteria from estuaries and ocean waters. Am Rev Respir Dis. https://doi.org/10.1164/
arrd.1979.120.6.1385

4 Nontuberculous Mycobacteria

http://dx.doi.org/10.1164/art.1935.32.4.424?journalCode=art
http://dx.doi.org/10.1164/art.1935.32.4.424?journalCode=art
https://doi.org/10.1093/infdis/39.4.315
https://doi.org/10.1093/infdis/39.4.315
https://doi.org/10.5694/j.1326-5377.1950.tb106945.x
https://doi.org/10.1016/S0025-7125(16)34193-1
https://doi.org/10.1093/ajcp/23.4.363
https://doi.org/10.1093/ajcp/23.4.363
https://doi.org/10.1164/arrd.1979.120.6.1385
https://doi.org/10.1164/arrd.1979.120.6.1385


114

 12. Böttger EC (2013) Transmission of M abscessus in patients with cystic fibrosis. Lancet. 
https://doi.org/10.1016/S0140- 6736(13)61708- 0

 13. Bryant JM, Grogono DM, Parkhill J, Floto RA (2013) Transmission of M abscessus in 
patients with cystic fibrosis – authors’ reply. Lancet 382:504

 14. Bryant JM, Grogono DM, Rodriguez-Rincon D et  al (2016) Emergence and spread of a 
human-transmissible multidrug-resistant nontuberculous mycobacterium. Science (80- ). 
https://doi.org/10.1126/science.aaf8156

 15. Gupta RS, Lo B, Son J (2018) Phylogenomics and comparative genomic studies robustly sup-
port division of the genus Mycobacterium into an emended genus Mycobacterium and four 
novel genera. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00067

 16. Tortoli E, Meehan CJ, Grottola A, Fregni Serpini G, Fabio A, Trovato A, Pecorari M, Cirillo 
DM (2019) Genome-based taxonomic revision detects a number of synonymous taxa in the 
genus Mycobacterium. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2019.103983

 17. Tuberculosis. https://www.who.int/news- room/fact- sheets/detail/tuberculosis. Accessed 31 
Aug 2020

 18. Leprosy. https://www.who.int/news- room/fact- sheets/detail/leprosy. Accessed 31 Aug 2020
 19. Riojas MA, McGough KJ, Rider-Riojas CJ, Rastogi N, Hazbón MH (2018) Phylogenomic 

analysis of the species of the mycobacterium tuberculosis complex demonstrates that myco-
bacterium africanum, mycobacterium bovis, mycobacterium caprae, mycobacterium microti 
and mycobacterium pinnipedii are later heterotypic synonyms of mycob. Int J Syst Evol 
Microbiol. https://doi.org/10.1099/ijsem.0.002507

 20. World Health Organization (2016) The use of molecular line probe assays for the detection of 
resistance to isoniazid and rifampicin: policy update. World Health Organization, Geneva

 21. Han XY, Seo YH, Sizer KC, Schoberle T, May GS, Spencer JS, Li W, Nair RG (2008) A new 
Mycobacterium species causing diffuse lepromatous leprosy. Am J Clin Pathol. https://doi.
org/10.1309/AJCPP72FJZZRRVMM

 22. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of mycobacterium tuber-
culosis from the complete genome sequence. Nature 393:537–544

 23. Cole ST, Eiglmeier K, Parkhill J et al (2001) Massive gene decay in the leprosy bacillus. 
Nature. https://doi.org/10.1038/35059006

 24. Merker M, Kohl TA, Niemann S, Supply P (2017) The evolution of strain typing in the myco-
bacterium tuberculosis complex. Adv Exp Med Biol 1019:43–78

 25. Gagneux S (2018) Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol. 
https://doi.org/10.1038/nrmicro.2018.8

 26. Chae H, Shin SJ (2018) Importance of differential identification of Mycobacterium tubercu-
losis strains for understanding differences in their prevalence, treatment efficacy, and vaccine 
development. J Microbiol. https://doi.org/10.1007/s12275- 018- 8041- 3

 27. Avanzi C, Singh PTR, Suffys P (2020) Molecular epidemiology of leprosy: an update. Inf 
Gen Evol 86:104581

 28. Uslan DZ, Kowalski TJ, Wengenack NL, Virk A, Wilson JW (2006) Skin and soft tissue 
infections due to rapidly growing mycobacteria: comparison of clinical features, treatment, 
and susceptibility. Arch Dermatol. https://doi.org/10.1001/archderm.142.10.1287

 29. Van Dissel JT, Kuijper EJ (2009) Rapidly growing mycobacteria: emerging pathogens in 
cosmetic procedures of the skin. Clin Infect Dis. https://doi.org/10.1086/606051

 30. Duarte RS, Lourenço MCS, Fonseca LDS et  al (2009) Epidemic of postsurgical infec-
tions caused by Mycobacterium massiliense. J Clin Microbiol. https://doi.org/10.1128/
JCM.00027- 09

 31. Koh W-J (2017) Nontuberculous Mycobacteria—overview. Microbiol Spectr. https://doi.
org/10.1128/microbiolspec.tnmi7- 0024- 2016

 32. Porvaznik I, Solovič I, Mokrý J (2017) Non-tuberculous mycobacteria: classification, diag-
nostics, and therapy. Adv Exp Med Biol. https://doi.org/10.1007/5584_2016_45

 33. Brode SK, Daley CL, Marras TK (2014) The epidemiologic relationship between tubercu-
losis and nontuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis. 
https://doi.org/10.5588/ijtld.14.0120

E. C. Conceição et al.

https://doi.org/10.1016/S0140-6736(13)61708-0
https://doi.org/10.1126/science.aaf8156
https://doi.org/10.3389/fmicb.2018.00067
https://doi.org/10.1016/j.meegid.2019.103983
https://www.who.int/news-room/fact-sheets/detail/tuberculosis
https://www.who.int/news-room/fact-sheets/detail/leprosy
https://doi.org/10.1099/ijsem.0.002507
https://doi.org/10.1309/AJCPP72FJZZRRVMM
https://doi.org/10.1309/AJCPP72FJZZRRVMM
https://doi.org/10.1038/35059006
https://doi.org/10.1038/nrmicro.2018.8
https://doi.org/10.1007/s12275-018-8041-3
https://doi.org/10.1001/archderm.142.10.1287
https://doi.org/10.1086/606051
https://doi.org/10.1128/JCM.00027-09
https://doi.org/10.1128/JCM.00027-09
https://doi.org/10.1128/microbiolspec.tnmi7-0024-2016
https://doi.org/10.1128/microbiolspec.tnmi7-0024-2016
https://doi.org/10.1007/5584_2016_45
https://doi.org/10.5588/ijtld.14.0120


115

 34. Stout JE, Koh WJ, Yew WW (2016) Update on pulmonary disease due to non-tuberculous 
mycobacteria. Int J Infect Dis. https://doi.org/10.1016/j.ijid.2016.03.006

 35. Wassilew N, Hoffmann H, Andrejak C, Lange C (2016) Pulmonary disease caused by non- 
tuberculous mycobacteria. Respiration. https://doi.org/10.1159/000445906

 36. Feller M, Huwiler K, Stephan R, Altpeter E, Shang A, Furrer H, Pfyffer GE, Jemmi T, 
Baumgartner A, Egger M (2007) Mycobacterium avium subspecies paratuberculosis and 
Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis. https://doi.
org/10.1016/S1473- 3099(07)70211- 6

 37. Henkle E, Winthrop KL (2015) Nontuberculous mycobacteria infections in immunosup-
pressed hosts. Clin Chest Med. https://doi.org/10.1016/j.ccm.2014.11.002

 38. Prevots DR, Marras TK (2015) Epidemiology of human pulmonary infection with nontuber-
culous mycobacteria a review. Clin Chest Med. https://doi.org/10.1016/j.ccm.2014.10.002. 
LK  – https://utrechtuniversity.on.worldcat.org/atoztitles/link?sid=EMBASE&sid=EMBAS
E&issn=15578216&id=doi:10.1016%2Fj.ccm.2014.10.002&atitle=Epidemiology+of+hum
an+pulmonary+infection+with+nontuberculous+mycobacteria+a+review&stitle=Clin.+Che
st+Med.&title=Clinics+in+Chest+Medicine&volume=36&issue=1&spage=13&epage=34&
aulast=Prevots&aufirst=D.+Rebecca&auinit=D.R.&aufull=Prevots+D.R.&coden=CCHMD
&isbn=&pages=13- 34&date=2015&auinit1=D&auinitm=R

 39. Zingue D, Bouam A, Tian RBD, Drancourt M (2018) Buruli ulcer, a prototype for ecosystem- 
related infection, caused by mycobacterium ulcerans. Clin Microbiol Rev. https://doi.
org/10.1128/CMR.00045- 17

 40. Tettelin H, Davidson RM, Agrawal S et  al (2014) High-level relatedness among 
Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. 
Emerg Infect Dis. https://doi.org/10.3201/eid2003.131106

 41. Van Ingen J, Boeree MJ, Van Soolingen D, Mouton JW (2012) Resistance mechanisms and 
drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat. https://doi.
org/10.1016/j.drup.2012.04.001

 42. Philalay JS, Palermo CO, Hauge KA, Rustad TR, Cangelosi GA (2004) Genes required for 
intrinsic multidrug resistance in Mycobacterium avium. Antimicrob Agents Chemother. 
https://doi.org/10.1128/AAC.48.9.3412- 3418.2004

 43. Machado D, Cannalire R, Santos Costa S, Manfroni G, Tabarrini O, Cecchetti V, Couto 
I, Viveiros M, Sabatini S (2016) Boosting effect of 2-phenylquinoline efflux inhibitors in 
 combination with macrolides against Mycobacterium smegmatis and Mycobacterium avium. 
ACS Infect Dis. https://doi.org/10.1021/acsinfecdis.5b00052

 44. Bastian S, Veziris N, Roux AL, Brossier F, Gaillard JL, Jarlier V, Cambau E (2011) Assessment 
of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group 
by erm(41) and rrl sequencing. Antimicrob Agents Chemother. https://doi.org/10.1128/
AAC.00861- 10

 45. Carneiro M d S, Nunes L d S, de David SMM, Barth AL (2017) Lack of association between 
rrl and erm(41) mutations and clarithromycin resistance in mycobacterium abscessus com-
plex. Mem Inst Oswaldo Cruz. https://doi.org/10.1590/0074- 02760170080

 46. dos Santos CM, de Lima-Morales D, Crispim MN, de Souza NL, Barth AL (2020) Novel 
mutations in the resistome of a new sequence type (ST262) of clarithromycin resis-
tant Mycobacterium abscessus subsp. massiliense. J Glob Antimicrob Resist. https://doi.
org/10.1016/j.jgar.2020.04.030

 47. Forbes BA, Hall GS, Miller MB, Novak SM, Rowlinson MC, Salfinger M, Somoskövi A, 
Warshauer DM, Wilson ML (2018) Practice guidelines for clinical microbiology laborato-
ries: Mycobacteria. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00038- 17

 48. Kent P, Kubica G, Kent K (1985) Public health mycobacteriology: a guide for the level III 
laboratory. Centers for Disease Control, Atlanta

 49. Springer B, Stockman L, Teschner K, Roberts GD, Bottger EC (1996) Two-laboratory col-
laborative study on identification of mycobacteria: molecular versus phenotypic methods. J 
Clin Microbiol. https://doi.org/10.1128/jcm.34.2.296- 303.1996

4 Nontuberculous Mycobacteria

https://doi.org/10.1016/j.ijid.2016.03.006
https://doi.org/10.1159/000445906
https://doi.org/10.1016/S1473-3099(07)70211-6
https://doi.org/10.1016/S1473-3099(07)70211-6
https://doi.org/10.1016/j.ccm.2014.11.002
https://doi.org/10.1016/j.ccm.2014.10.002
https://utrechtuniversity.on.worldcat.org/atoztitles/link?sid=EMBASE&sid=EMBASE&issn=15578216&id=doi:10.1016/j.ccm.2014.10.002&atitle=Epidemiology+of+human+pulmonary+infection+with+nontuberculous+mycobacteria+a+review&stitle=Clin.+Chest+Med.&title=Clinics+in+Chest+Medicine&volume=36&issue=1&spage=13&epage=34&aulast=Prevots&aufirst=D.+Rebecca&auinit=D.R.&aufull=Prevots+D.R.&coden=CCHMD&isbn=&pages=13-34&date=2015&auinit1=D&auinitm=R
https://utrechtuniversity.on.worldcat.org/atoztitles/link?sid=EMBASE&sid=EMBASE&issn=15578216&id=doi:10.1016/j.ccm.2014.10.002&atitle=Epidemiology+of+human+pulmonary+infection+with+nontuberculous+mycobacteria+a+review&stitle=Clin.+Chest+Med.&title=Clinics+in+Chest+Medicine&volume=36&issue=1&spage=13&epage=34&aulast=Prevots&aufirst=D.+Rebecca&auinit=D.R.&aufull=Prevots+D.R.&coden=CCHMD&isbn=&pages=13-34&date=2015&auinit1=D&auinitm=R
https://utrechtuniversity.on.worldcat.org/atoztitles/link?sid=EMBASE&sid=EMBASE&issn=15578216&id=doi:10.1016/j.ccm.2014.10.002&atitle=Epidemiology+of+human+pulmonary+infection+with+nontuberculous+mycobacteria+a+review&stitle=Clin.+Chest+Med.&title=Clinics+in+Chest+Medicine&volume=36&issue=1&spage=13&epage=34&aulast=Prevots&aufirst=D.+Rebecca&auinit=D.R.&aufull=Prevots+D.R.&coden=CCHMD&isbn=&pages=13-34&date=2015&auinit1=D&auinitm=R
https://utrechtuniversity.on.worldcat.org/atoztitles/link?sid=EMBASE&sid=EMBASE&issn=15578216&id=doi:10.1016/j.ccm.2014.10.002&atitle=Epidemiology+of+human+pulmonary+infection+with+nontuberculous+mycobacteria+a+review&stitle=Clin.+Chest+Med.&title=Clinics+in+Chest+Medicine&volume=36&issue=1&spage=13&epage=34&aulast=Prevots&aufirst=D.+Rebecca&auinit=D.R.&aufull=Prevots+D.R.&coden=CCHMD&isbn=&pages=13-34&date=2015&auinit1=D&auinitm=R
https://utrechtuniversity.on.worldcat.org/atoztitles/link?sid=EMBASE&sid=EMBASE&issn=15578216&id=doi:10.1016/j.ccm.2014.10.002&atitle=Epidemiology+of+human+pulmonary+infection+with+nontuberculous+mycobacteria+a+review&stitle=Clin.+Chest+Med.&title=Clinics+in+Chest+Medicine&volume=36&issue=1&spage=13&epage=34&aulast=Prevots&aufirst=D.+Rebecca&auinit=D.R.&aufull=Prevots+D.R.&coden=CCHMD&isbn=&pages=13-34&date=2015&auinit1=D&auinitm=R
https://utrechtuniversity.on.worldcat.org/atoztitles/link?sid=EMBASE&sid=EMBASE&issn=15578216&id=doi:10.1016/j.ccm.2014.10.002&atitle=Epidemiology+of+human+pulmonary+infection+with+nontuberculous+mycobacteria+a+review&stitle=Clin.+Chest+Med.&title=Clinics+in+Chest+Medicine&volume=36&issue=1&spage=13&epage=34&aulast=Prevots&aufirst=D.+Rebecca&auinit=D.R.&aufull=Prevots+D.R.&coden=CCHMD&isbn=&pages=13-34&date=2015&auinit1=D&auinitm=R
https://doi.org/10.1128/CMR.00045-17
https://doi.org/10.1128/CMR.00045-17
https://doi.org/10.3201/eid2003.131106
https://doi.org/10.1016/j.drup.2012.04.001
https://doi.org/10.1016/j.drup.2012.04.001
https://doi.org/10.1128/AAC.48.9.3412-3418.2004
https://doi.org/10.1021/acsinfecdis.5b00052
https://doi.org/10.1128/AAC.00861-10
https://doi.org/10.1128/AAC.00861-10
https://doi.org/10.1590/0074-02760170080
https://doi.org/10.1016/j.jgar.2020.04.030
https://doi.org/10.1016/j.jgar.2020.04.030
https://doi.org/10.1128/CMR.00038-17
https://doi.org/10.1128/jcm.34.2.296-303.1996


116

 50. Telenti A, Marchesi F, Balz M, Bally F, Bottger EC, Bodmer T (1993) Rapid identification 
of mycobacteria to the species level by polymerase chain reaction and restriction enzyme 
analysis. J Clin Microbiol

 51. Kim SH, Shin JH (2018) Identification of nontuberculous mycobacteria using multilocous 
sequence analysis of 16S rRNA, hsp65, and rpoB. J Clin Lab Anal. https://doi.org/10.1002/
jcla.22184

 52. M48Ed2 | Laboratory detection and identification of mycobacteria, 2nd edition. https://clsi.
org/standards/products/microbiology/documents/m48/. Accessed 9 Aug 2020

 53. Asiimwe BB, Bagyenzi GB, Ssengooba W et al (2013) Species and genotypic diversity of 
non-tuberculous mycobacteria isolated from children investigated for pulmonary tuberculo-
sis in rural Uganda. BMC Infect Dis. https://doi.org/10.1186/1471- 2334- 13- 88

 54. Jönsson BE, Gilljam M, Lindblad A, Ridell M, Wold AE, Welinder-Qlsson C (2007) 
Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis. J Clin 
Microbiol. https://doi.org/10.1128/JCM.02592- 06

 55. Stern MJ, Ames GFL, Smith NH, Clare Robinson E, Higgins CF (1984) Repetitive extra-
genic palindromic sequences: a major component of the bacterial genome. Cell. https://doi.
org/10.1016/0092- 8674(84)90436- 7

 56. Chroneou A, Zimmerman SK, Cook S, Willey S, Eyre-Kelly J, Zias N, Shapiro DS, Beamis 
JF, Craven DE (2008) Molecular typing of Mycobacterium chelonae isolates from a pseudo- 
outbreak involving an automated bronchoscope washer. Infect Control Hosp Epidemiol. 
https://doi.org/10.1086/591451

 57. Jaubert J, Mougari F, Picot S et  al (2015) A case of postoperative breast infection by 
Mycobacterium fortuitum associated with the hospital water supply. Am J Infect Control. 
https://doi.org/10.1016/j.ajic.2014.12.023

 58. Cooksey RC, Jhung MA, Yakrus MA et  al (2008) Multiphasic approach reveals genetic 
diversity of environmental and patient isolates of Mycobacterium mucogenicum and 
Mycobacterium phocaicum associated with an outbreak of bacteremias at a Texas hospital. 
Appl Environ Microbiol. https://doi.org/10.1128/AEM.02476- 07

 59. Candido PHC, Nunes L d S, Marques EA et al (2014) Multidrug-resistant nontuberculous 
mycobacteria isolated from cystic fibrosis patients. J Clin Microbiol 52:2990–2997

 60. Englund S (2003) IS900/ERIC-PCR as a tool to distinguish Mycobacterium avium subsp. 
paratuberculosis from closely related mycobacteria. Vet Microbiol. https://doi.org/10.1016/j.
vetmic.2003.08.004

 61. De Gusmão FA, Alvarenga L, Barbosa L, Sampaio J, Leão SC, Hofling-Lima AL, De 
Freitas D (2005) Deep stromal mycobacterial keratitis: viable bacteria after six months of 
treatment: case report and literature review. Arq Bras Oftalmol. https://doi.org/10.1590/
s0004- 27492005000400024

 62. Khosravi AD, Mehrabzadeh RS, Farahani A, Jamali H (2015) Molecular identification of clin-
ical isolates of mycobacterium fortuitum by random amplified polymorphic DNA (RAPD) 
polymerase chain reaction and ERIC PCR. J Clin Diagnostic Res. https://doi.org/10.7860/
JCDR/2015/15504.6909

 63. Sampaio JLM, Nassar D, De Freitas D, Höfling-Lima AL, Miyashiro K, Lopes Alberto F, 
Cardoso Leão S (2006) An outbreak of keratitis caused by Mycobacterium immunogenum. J 
Clin Microbiol. https://doi.org/10.1128/JCM.00656- 06

 64. Sampaio JLM, Viana-Niero C, de Freitas D, Höfling-Lima AL, Leão SC (2006) Enterobacterial 
repetitive intergenic consensus PCR is a useful tool for typing Mycobacterium chelonae and 
Mycobacterium abscessus isolates. Diagn Microbiol Infect Dis. https://doi.org/10.1016/j.
diagmicrobio.2006.01.006

 65. Sampaio JLM, Chimara E, Ferrazoli L, da Silva Telles MA, Del Guercio VMF, Jericó 
ZVN, Miyashiro K, Fortaleza CMCB, Padoveze MC, Leão SC (2006) Application 
of four molecular typing methods for analysis of Mycobacterium fortuitum group 
strains causing post- mammaplasty infections. Clin Microbiol Infect. https://doi.
org/10.1111/j.1469- 0691.2005.01312.x

 66. MacCannell D (2013) Bacterial strain typing. Clin Lab Med 33:629–650

E. C. Conceição et al.

https://doi.org/10.1002/jcla.22184
https://doi.org/10.1002/jcla.22184
https://clsi.org/standards/products/microbiology/documents/m48/
https://clsi.org/standards/products/microbiology/documents/m48/
https://doi.org/10.1186/1471-2334-13-88
https://doi.org/10.1128/JCM.02592-06
https://doi.org/10.1016/0092-8674(84)90436-7
https://doi.org/10.1016/0092-8674(84)90436-7
https://doi.org/10.1086/591451
https://doi.org/10.1016/j.ajic.2014.12.023
https://doi.org/10.1128/AEM.02476-07
https://doi.org/10.1016/j.vetmic.2003.08.004
https://doi.org/10.1016/j.vetmic.2003.08.004
https://doi.org/10.1590/s0004-27492005000400024
https://doi.org/10.1590/s0004-27492005000400024
https://doi.org/10.7860/JCDR/2015/15504.6909
https://doi.org/10.7860/JCDR/2015/15504.6909
https://doi.org/10.1128/JCM.00656-06
https://doi.org/10.1016/j.diagmicrobio.2006.01.006
https://doi.org/10.1016/j.diagmicrobio.2006.01.006
https://doi.org/10.1111/j.1469-0691.2005.01312.x
https://doi.org/10.1111/j.1469-0691.2005.01312.x


117

 67. García-Pedrazuela M, Frutos JM, Muñoz-Egea MC, Alcaide F, Tórtola T, Vitoria A, Cortés 
P, Esteban J (2015) Polyclonality among clinical strains of non-pigmented rapidly growing 
mycobacteria: phenotypic and genotypic differences and their potential implications. Clin 
Microbiol Infect. https://doi.org/10.1016/j.cmi.2014.12.004

 68. Chuang AY, Tsou MH, Chang SJ, Yang LY, Shih CC, Tsai MP, Chen YL, Liu TM, Liao CH, 
Hsueh PR (2012) Mycobacterium abscessus granulomatous prostatitis. Am J Surg Pathol. 
https://doi.org/10.1097/PAS.0b013e31823dafad

 69. Zhuo FL, Sun ZG, Li CY, Liu ZH, Cai L, Zhou C, Zhang JZ (2013) Clinical isolates of 
Mycobacterium abscessus in Guangzhou area most possibly from the environmen-
tal infection showed variable susceptibility. Chin Med J (Engl). https://doi.org/10.3760/
cma.j.issn.0366- 6999.20122495

 70. Correa NE, Cataño JC, Mejía GI et al (2010) Outbreak of mesotherapy-associated cutaneous 
infections caused by Mycobacterium chelonae in Colombia. Jpn J Infect Dis

 71. Zhang Q, Kennon R, Koza MA, Hulten K, Clarridge JE (2002) Pseudoepidemic due to a 
unique strain of Mycobacterium szulgai: genotypic, phenotypic, and epidemiological analy-
sis. J Clin Microbiol. https://doi.org/10.1128/JCM.40.4.1134- 1139.2002

 72. Cooksey RC, de Waard JH, Yakrus MA, Rivera I, Chopite M, Toney SR, Morlock GP, Butler 
WR (2004) Mycobacterium cosmeticum sp. nov., a novel rapidly growing species isolated 
from a cosmetic infection and from a nail salon. Int J Syst Evol Microbiol. https://doi.
org/10.1099/ijs.0.63238- 0

 73. Kauppinen J, Hintikka EL, Iivanainen E, Katila ML (2001) PCR-based typing of 
Mycobacterium avium isolates in an epidemic among farmed lesser white-fronted geese 
(Anser erythropus). Vet Microbiol. https://doi.org/10.1016/S0378- 1135(01)00330- 3

 74. Nakanaga K, Hoshino Y, Era Y, Matsumoto K, Kanazawa Y, Tomita A, Furuta M, Washizu M, 
Makino M, Ishii N (2011) Multiple cases of cutaneous Mycobacterium massiliense infection 
in a “hot spa” in Japan. J Clin Microbiol. https://doi.org/10.1128/JCM.00817- 10

 75. Marumo K, Nakamura H, Tazawa S, Kazumi Y, Kawano R, Shirata C, Taguchi K, 
Kikuchi T, Nagashima G (2010) Isolation of novel mycobacteria contaminating an 
aquarium fish tank in a Japanese university hospital. J Appl Microbiol. https://doi.
org/10.1111/j.1365- 2672.2010.04680.x

 76. Power EGM (1996) RAPD typing in microbiology – a technical review. J Hosp Infect. https://
doi.org/10.1016/S0195- 6701(96)90106- 1

 77. Lee MR, Tsai CJ, Hu JY, Lee SW, Ko JC, Wang HC, Yu CJ, Lee LN, Hsueh PR (2016) 
Acquisition of Mycobacterium abscessus among ventilator-dependent patients in Taiwan 
chronic respiratory care facilities. Future Microbiol. https://doi.org/10.2217/fmb.16.6

 78. Hsueh PR, Teng LJ, Yang PC, Chen YC, Ho SW, Luh KT (1998) Recurrent catheter-related 
infection caused by a single clone of Mycobacterium chelonae with two colonial morphot-
ypes. J Clin Microbiol. https://doi.org/10.1128/jcm.36.5.1422- 1424.1998

 79. Esteban J, Martín-De-Hijas NZ, Fernandez AI, Fernandez-Roblas R, Gadea I (2008) 
Epidemiology of infections due to nonpigmented rapidly growing mycobacteria diagnosed in 
an urban area. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096- 008- 0521- 7

 80. Esteban J, Fernández Roblas R, García Cía JI, Zamora N, Ortiz A (2007) Clinical signifi-
cance and epidemiology of non-pigmented rapidly growing mycobacteria in a university hos-
pital. J Infect. https://doi.org/10.1016/j.jinf.2006.02.017

 81. Esteban J, Fernández-Roblas R, Ortiz A, García-Cía JI (2006) Pseudo-outbreak of 
Mycobacterium gordonae: usefulness of randomly amplified polymorphic DNA 
analysis to assess the clonality of the isolates. Clin Microbiol Infect. https://doi.
org/10.1111/j.1469- 0691.2006.01450.x

 82. Sax H, Bloemberg G, Hasse B et al (2015) Prolonged outbreak of mycobacterium chimaera 
infection after open-chest heart surgery. Clin Infect Dis. https://doi.org/10.1093/cid/civ198

 83. Shin JH, Lee EJ, Lee HR, Ryu SM, Kim HR, Chang CL, Kim YJ, Lee JN (2007) Prevalence 
of non-tuberculous mycobacteria in a hospital environment. J Hosp Infect. https://doi.
org/10.1016/j.jhin.2006.10.004

4 Nontuberculous Mycobacteria

https://doi.org/10.1016/j.cmi.2014.12.004
https://doi.org/10.1097/PAS.0b013e31823dafad
https://doi.org/10.3760/cma.j.issn.0366-6999.20122495
https://doi.org/10.3760/cma.j.issn.0366-6999.20122495
https://doi.org/10.1128/JCM.40.4.1134-1139.2002
https://doi.org/10.1099/ijs.0.63238-0
https://doi.org/10.1099/ijs.0.63238-0
https://doi.org/10.1016/S0378-1135(01)00330-3
https://doi.org/10.1128/JCM.00817-10
https://doi.org/10.1111/j.1365-2672.2010.04680.x
https://doi.org/10.1111/j.1365-2672.2010.04680.x
https://doi.org/10.1016/S0195-6701(96)90106-1
https://doi.org/10.1016/S0195-6701(96)90106-1
https://doi.org/10.2217/fmb.16.6
https://doi.org/10.1128/jcm.36.5.1422-1424.1998
https://doi.org/10.1007/s10096-008-0521-7
https://doi.org/10.1016/j.jinf.2006.02.017
https://doi.org/10.1111/j.1469-0691.2006.01450.x
https://doi.org/10.1111/j.1469-0691.2006.01450.x
https://doi.org/10.1093/cid/civ198
https://doi.org/10.1016/j.jhin.2006.10.004
https://doi.org/10.1016/j.jhin.2006.10.004


118

 84. Zhang Y, Rajagopalan M, Brown BA, Wallace RJ (1997) Randomly amplified polymorphic 
DNA PCR for comparison of Mycobacterium abscessus strains from nosocomial outbreaks. 
J Clin Microbiol. https://doi.org/10.1128/jcm.35.12.3132- 3139.1997

 85. Ramasoota P, Chansiripornchai N, Källenius G, Hoffner SE, Svenson SB (2001) Comparison 
of Mycobacterium avium complex (MAC) strains from pigs and humans in Sweden by 
random amplified polymorphic DNA (RAPD) using standardized reagents. Vet Microbiol. 
https://doi.org/10.1016/S0378- 1135(00)00302- 3

 86. Achermann Y, Rössle M, Hoffmann M, Deggim V, Kuster S, Zimmermann DR, Bloemberg 
G, Hombach M, Hasse B (2013) Prosthetic valve endocarditis and bloodstream infection due 
to Mycobacterium chimaera. J Clin Microbiol. https://doi.org/10.1128/JCM.00435- 13

 87. Buijtels PCAM, Petit PLC, Verbrugh HA, Van Belkum A, Van Soolingen D (2005) Isolation 
of nontuberculous mycobacteria in Zambia: eight case reports. J Clin Microbiol. https://doi.
org/10.1128/JCM.43.12.6020- 6026.2005

 88. Blanco-Conde S, González-Cortés C, López-Medrano R, Palacios-Gutiérrez JJ, Diez- 
Tascón C, Nebreda-Mayoral T, Sierra-García MJ, Rivero-Lezcano OM (2020) A strategy 
based on Amplified Fragment Length Polymorphism (AFLP) for routine genotyping of non-
tuberculous mycobacteria at the clinical laboratory. Mol Biol Rep. https://doi.org/10.1007/
s11033- 020- 05420- 8

 89. Nunes L d S, Baethgen LF, Ribeiro MO, Cardoso CM, de Paris F, de David SMM, da Silva 
MG, Duarte RS, Barth AL (2014) Outbreaks due to Mycobacterium abscessus subsp. bolletii 
in southern Brazil: persistence of a single clone from 2007 to 2011. J Med Microbiol. https://
doi.org/10.1099/jmm.0.074906- 0

 90. Kennedy BS, Bedard B, Younge M et al (2012) Outbreak of Mycobacterium chelonae infec-
tion associated with tattoo ink. N Engl J Med. https://doi.org/10.1056/NEJMoa1205114

 91. Johnston DI, Chisty Z, Gross JE, Park SY (2016) Investigation of Mycobacterium abscessus 
outbreak among cystic fibrosis patients, Hawaii 2012. J Hosp Infect. https://doi.org/10.1016/j.
jhin.2016.04.015

 92. Carbonne A, Brossier F, Arnaud I, Bougmiza I, Caumes E, Meningaud JP, Dubrou S, Jarlier 
V, Cambau E, Astagneau P (2009) Outbreak of nontuberculous mycobacterial subcutane-
ous infections related to multiple mesotherapy injections. J Clin Microbiol. https://doi.
org/10.1128/JCM.00196- 09

 93. Carter KK, Lundgren I, Correll S, Schmalz T, McCarter T, Stroud J, Bruesch A, Hahn CG 
(2019) First United States outbreak of Mycobacterium abscessus hand and foot disease among 
children associated with a wading Pool. J Pediatric Infect Dis Soc. https://doi.org/10.1093/
jpids/piy036

 94. Cheng A, Sheng WH, Huang YC et  al (2016) Prolonged postprocedural outbreak of 
Mycobacterium massiliense infections associated with ultrasound transmission gel. Clin 
Microbiol Infect. https://doi.org/10.1016/j.cmi.2015.11.021

 95. Guimarães T, Chimara E, do Prado GVB, et al (2016) Pseudooutbreak of rapidly growing 
mycobacteria due to Mycobacterium abscessus subsp bolletii in a digestive and respiratory 
endoscopy unit caused by the same clone as that of a countrywide outbreak. Am J Infect 
Control doi:https://doi.org/10.1016/j.ajic.2016.06.019

 96. Scorzolini L, Mengoni F, Mastroianni CM, Baldan R, Cirillo DM, De Giusti M, Marinelli L, 
Cottarelli A, Fattorini L, Vullo V (2016) Pseudo-outbreak of Mycobacterium gordonae in a 
teaching hospital: importance of strictly following decontamination procedures and emerging 
issues concerning sterilization. New Microbiol 39(1):25–34

 97. Luo L, Li B, Chu H et al (2016) Characterization of mycobacterium abscessus subtypes in 
Shanghai of China: drug sensitivity and bacterial epidemicity as well as clinical manifesta-
tions. Med (United States). https://doi.org/10.1097/MD.0000000000002338

 98. Cardoso AM, Martins de Sousa E, Viana-Niero C, Bonfim de Bortoli F, Pereira das Neves ZC, 
Leão SC, Junqueira-Kipnis AP, Kipnis A (2008) Emergence of nosocomial Mycobacterium 
massiliense infection in Goiás, Brazil Microbes Infect doi:https://doi.org/10.1016/j.
micinf.2008.09.008

E. C. Conceição et al.

https://doi.org/10.1128/jcm.35.12.3132-3139.1997
https://doi.org/10.1016/S0378-1135(00)00302-3
https://doi.org/10.1128/JCM.00435-13
https://doi.org/10.1128/JCM.43.12.6020-6026.2005
https://doi.org/10.1128/JCM.43.12.6020-6026.2005
https://doi.org/10.1007/s11033-020-05420-8
https://doi.org/10.1007/s11033-020-05420-8
https://doi.org/10.1099/jmm.0.074906-0
https://doi.org/10.1099/jmm.0.074906-0
https://doi.org/10.1056/NEJMoa1205114
https://doi.org/10.1016/j.jhin.2016.04.015
https://doi.org/10.1016/j.jhin.2016.04.015
https://doi.org/10.1128/JCM.00196-09
https://doi.org/10.1128/JCM.00196-09
https://doi.org/10.1093/jpids/piy036
https://doi.org/10.1093/jpids/piy036
https://doi.org/10.1016/j.cmi.2015.11.021
https://doi.org/10.1016/j.ajic.2016.06.019
https://doi.org/10.1097/MD.0000000000002338
https://doi.org/10.1016/j.micinf.2008.09.008
https://doi.org/10.1016/j.micinf.2008.09.008


119

 99. Nascimento H, Viana-Niero C, Nogueira CL et al (2018) Identification of the infection source 
of an outbreak of mycobacterium chelonae keratitis after laser in situ keratomileusis. Cornea. 
https://doi.org/10.1097/ICO.0000000000001423

 100. Shachor-Meyouhas Y, Geffen Y, Arad-Cohen N, Zaidman I, Ben-Barak A, Davidson 
S, Kassis I (2014) Mycobacterium phocaicum bacteremia: an emerging infection in 
pediatric hematology- oncology patients. Pediatr Infect Dis J. https://doi.org/10.1097/
INF.0000000000000477

 101. Fernandes Garcia de Carvalho N, Rodrigues Mestrinari AC, Brandão A et al (2018) Hospital 
bronchoscopy-related pseudo-outbreak caused by a circulating Mycobacterium abscessus 
subsp. massiliense. J Hosp Infect. https://doi.org/10.1016/j.jhin.2018.07.043

 102. Abalain-Colloc ML, Guillerm D, Saläun M, Gouriou S, Vincent V, Picard B (2003) 
Mycobacterium szulgai isolated from a patient, a tropical fish and aquarium water. Eur J Clin 
Microbiol Infect Dis. https://doi.org/10.1007/s10096- 003- 1036- x

 103. Rodriguez JM, Xie YL, Winthrop KL, Schafer S, Sehdev P, Solomon J, Jensen B, Toney NC, 
Lewis PF (2013) Mycobacterium chelonae facial infections following injection of dermal 
filler. Aesthetic Surg J. https://doi.org/10.1177/1090820X12471944

 104. Wu TS, Yang CH, Brown-Elliott BA, Chao AS, Leu HS, Wu TL, Lin CS, Griffith DE, Chiu 
CH (2016) Postcesarean section wound infection caused by Mycobacterium massiliense. J 
Microbiol Immunol Infect. https://doi.org/10.1016/j.jmii.2015.06.010

 105. Boyle DP, Zembower TR, Qi C (2016) Relapse versus reinfection of mycobacterium avium 
complex pulmonary disease: patient characteristics and macrolide susceptibility. Ann Am 
Thorac Soc. https://doi.org/10.1513/AnnalsATS.201605- 344BC

 106. Tsao SM, Sen LK, Liao HH, Huang TL, Shen GH, Tsao Thomas CY, Lee YT (2014) The 
clinical management of cesarean section-acquired Mycobacterium abscessus surgical site 
infections. J Infect Dev Ctries. https://doi.org/10.3855/jidc.3821

 107. Zhang Y, Yakrus MA, Graviss EA, Williams-Bouyer N, Turenne C, Kabani A, Wallace 
RJ (2004) Pulsed-field gel electrophoresis study of Mycobacterium abscessus isolates 
previously affected by DNA degradation. J Clin Microbiol. https://doi.org/10.1128/
JCM.42.12.5582- 5587.2004

 108. Bakuła Z, Brzostek A, Borówka P et al (2018) Molecular typing of Mycobacterium kansasii 
using pulsed-field gel electrophoresis and a newly designed variable-number tandem repeat 
analysis. Sci Rep. https://doi.org/10.1038/s41598- 018- 21562- z

 109. Hoefsloot W, Van Ingen J, Andrejak C et al (2013) The geographic diversity of nontubercu-
lous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur 
Respir J 42:1604–1613

 110. O’Driscoll C, Konjek J, Heym B et al (2016) Molecular epidemiology of Mycobacterium 
abscessus complex isolates in Ireland. J Cyst Fibros. https://doi.org/10.1016/j.jcf.2015.05.007

 111. Khan IUH, Selvaraju SB, Yadav JS (2005) Occurrence and characterization of multiple novel 
genotypes of Mycobacterium immunogenum and Mycobacterium chelonae in metalworking 
fluids. FEMS Microbiol Ecol. https://doi.org/10.1016/j.femsec.2005.04.009

 112. Thomson R, Tolson C, Huygens F, Hargreaves M (2014) Strain variation amongst clinical 
and potable water isolates of M. kansasii using automated repetitive unit PCR.  Int J Med 
Microbiol. https://doi.org/10.1016/j.ijmm.2014.02.004

 113. Kobashi Y, Yoshida K, Niki Y, Oka M (2006) Sibling cases of Mycobacterium avium complex 
disease associated with hematological disease. J Infect Chemother. https://doi.org/10.1007/
s10156- 006- 0461- z

 114. da Costa ARF, Falkinham JO III, Lopes ML, Barretto AR, Felicio JS, Sales LHM, Bahia JRC, 
Conceição EC, Lima KVB (2013) Occurrence of nontuberculous mycobacterial pulmonary 
infection in an endemic area of tuberculosis. PLoS Negl Trop Dis. https://doi.org/10.1371/
journal.pntd.0002340

 115. Huang CC, Chen JH, Hu ST, Chiou CS, Huang WC, Hsu JY, Lu JJ, Shen GH (2012) 
Combined rpoB duplex PCR and hsp65 PCR restriction fragment length polymorphism with 
capillary electrophoresis as an effective algorithm for identification of Mycobacterial species 
from clinical isolates. BMC Microbiol. https://doi.org/10.1186/1471- 2180- 12- 137

4 Nontuberculous Mycobacteria

https://doi.org/10.1097/ICO.0000000000001423
https://doi.org/10.1097/INF.0000000000000477
https://doi.org/10.1097/INF.0000000000000477
https://doi.org/10.1016/j.jhin.2018.07.043
https://doi.org/10.1007/s10096-003-1036-x
https://doi.org/10.1177/1090820X12471944
https://doi.org/10.1016/j.jmii.2015.06.010
https://doi.org/10.1513/AnnalsATS.201605-344BC
https://doi.org/10.3855/jidc.3821
https://doi.org/10.1128/JCM.42.12.5582-5587.2004
https://doi.org/10.1128/JCM.42.12.5582-5587.2004
https://doi.org/10.1038/s41598-018-21562-z
https://doi.org/10.1016/j.jcf.2015.05.007
https://doi.org/10.1016/j.femsec.2005.04.009
https://doi.org/10.1016/j.ijmm.2014.02.004
https://doi.org/10.1007/s10156-006-0461-z
https://doi.org/10.1007/s10156-006-0461-z
https://doi.org/10.1371/journal.pntd.0002340
https://doi.org/10.1371/journal.pntd.0002340
https://doi.org/10.1186/1471-2180-12-137


120

 116. Salmanzadeh S, Honarvar N, Goodarzi H, Khosravi AD, Nashibi R, Serajian AA, 
Hashemzadeh M (2014) Chronic mycobacterial meningitis due to Mycobacterium chelonae: 
a case report. Int J Infect Dis. https://doi.org/10.1016/j.ijid.2014.04.004

 117. Bruijnesteijn Van Coppenraet LES, De Haas PEW, Lindeboom JA, Kuijper EJ, Van Soolingen 
D (2008) Lymphadenitis in children is caused by Mycobacterium avium hominissuis and 
not related to “bird tuberculosis”. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/
s10096- 007- 0440- z

 118. Zhang X, Liu W, Liu W, Jiang H, Zong W, Zhang G, Jin P, Wang H (2015) Cutaneous infec-
tions caused by rapidly growing mycobacteria: case reports and review of clinical and labora-
tory aspects. Acta Derm Venereol. https://doi.org/10.2340/00015555- 2105

 119. Mortazavi Z, Bahrmand A, Sakhaee F, Doust RH, Vaziri F, Siadat SD, Fateh A (2019) 
Evaluating the clinical significance of nontuberculous mycobacteria isolated from respira-
tory samples in Iran: an often overlooked disease. Infect Drug Resist. https://doi.org/10.2147/
IDR.S214181

 120. Aravindhan V, Sulochana S, Narayanan S, Paramasivam CN, Narayanan PR (2007) 
Identification & differentiation of Mycobacterium avium & M. intracellulare by PCR-RFLP 
assay using the groES gene. Indian J Med Res 126(6):575–579

 121. Kim BJ, Kim GN, Kim BR, Shim TS, Kook YH, Kim BJ (2019) New Mycobacteroides 
abscessus subsp. massiliense strains with recombinant hsp65 gene laterally transferred from 
Mycobacteroides abscessus subsp. abscessus: potential for misidentification of M. absces-
sus strains with the hsp65-based method. PLoS One. https://doi.org/10.1371/journal.
pone.0220312

 122. Matsumoto Y, Kinjo T, Motooka D, Nabeya D, Jung N, Uechi K, Horii T, Iida T, Fujita J, 
Nakamura S (2019) Comprehensive subspecies identification of 175 nontuberculous myco-
bacteria species based on 7547 genomic profiles. Emerg Microbes Infect. https://doi.org/1
0.1080/22221751.2019.1637702

 123. Hirama T, Marchand-Austin A, Ma J, Alexander DC, Brode SK, Marras TK, Jamieson FB 
(2018) Mycobacterium xenopi genotype associated with clinical phenotype in lung disease. 
Lung. https://doi.org/10.1007/s00408- 018- 0087- 9

 124. Kham-ngam I, Chetchotisakd P, Ananta P, Chaimanee P, Reechaipichitkul W, Lulitanond V, 
Namwat W, Faksri K (2019) Differentiation between persistent infection/colonization and 
re-infection/re-colonization of Mycobacterium abscessus isolated from patients in Northeast 
Thailand. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2018.12.001

 125. Lee SY, Kim BJ, Kim H et  al (2016) Mycobacterium paraintracellulare sp. Nov., for the 
genotype INT-1 of Mycobacterium intracellulare. Int J Syst Evol Microbiol. https://doi.
org/10.1099/ijsem.0.001158

 126. Sun Z, Li W, Xu S, Huang H (2016) The discovery, function and development of the variable 
number tandem repeats in different Mycobacterium species. Crit Rev Microbiol. https://doi.
org/10.3109/1040841X.2015.1022506

 127. Yoshida S, Tsuyuguchi K, Kobayashi T, Tomita M, Inoue Y, Hayashi S, Suzuki K 
(2018) Association between sequevar and antibiotic treatment outcome in patients with 
Mycobacterium abscessus complex infections in Japan. J Med Microbiol. https://doi.
org/10.1099/jmm.0.000661

 128. Dassi C, Mosi L, Narh CA, Quaye C, Konan DO, Djaman JA, Bonfoh B (2017) Distribution and 
risk of mycolactone-producing mycobacteria transmission within Buruli ulcer endemic com-
munities in Côte d’Ivoire. Trop Med Infect Dis. https://doi.org/10.3390/tropicalmed2010003

 129. Djouaka R, Zeukeng F, Bigoga JD et al (2018) Domestic animals infected with Mycobacterium 
ulcerans—implications for transmission to humans. PLoS Negl Trop Dis. https://doi.
org/10.1371/journal.pntd.0006572

 130. Kusuki M, Osawa K, Arikawa K et al (2018) Determination of the antimicrobial susceptibil-
ity and molecular profile of clarithromycin resistance in the Mycobacterium abscessus com-
plex in Japan by variable number tandem repeat analysis. Diagn Microbiol Infect Dis. https://
doi.org/10.1016/j.diagmicrobio.2018.02.008

 131. Imperiale BR, Moyano RD, Di Giulio AB, Romero MA, Alvarado Pinedo MF, Santangelo 
MP, Travería GE, Morcillo NS, Romano MI (2017) Genetic diversity of Mycobacterium 

E. C. Conceição et al.

https://doi.org/10.1016/j.ijid.2014.04.004
https://doi.org/10.1007/s10096-007-0440-z
https://doi.org/10.1007/s10096-007-0440-z
https://doi.org/10.2340/00015555-2105
https://doi.org/10.2147/IDR.S214181
https://doi.org/10.2147/IDR.S214181
https://doi.org/10.1371/journal.pone.0220312
https://doi.org/10.1371/journal.pone.0220312
https://doi.org/10.1080/22221751.2019.1637702
https://doi.org/10.1080/22221751.2019.1637702
https://doi.org/10.1007/s00408-018-0087-9
https://doi.org/10.1016/j.meegid.2018.12.001
https://doi.org/10.1099/ijsem.0.001158
https://doi.org/10.1099/ijsem.0.001158
https://doi.org/10.3109/1040841X.2015.1022506
https://doi.org/10.3109/1040841X.2015.1022506
https://doi.org/10.1099/jmm.0.000661
https://doi.org/10.1099/jmm.0.000661
https://doi.org/10.3390/tropicalmed2010003
https://doi.org/10.1371/journal.pntd.0006572
https://doi.org/10.1371/journal.pntd.0006572
https://doi.org/10.1016/j.diagmicrobio.2018.02.008
https://doi.org/10.1016/j.diagmicrobio.2018.02.008


121

avium complex strains isolated in Argentina by MIRU-VNTR. Epidemiol Infect. https://doi.
org/10.1017/S0950268817000139

 132. Reynaud Y, Millet J, Couvin D, Rastogi N, Brown C, Couppié P, Legrand E (2015) 
Heterogeneity among Mycobacterium ulcerans from French Guiana revealed by multilocus 
variable number tandem repeat analysis (MLVA). PLoS One. https://doi.org/10.1371/journal.
pone.0118597

 133. Zumárraga MJ, Arriaga C, Barandiaran S et  al (2013) Understanding the relationship 
between Mycobacterium bovis spoligotypes from cattle in Latin American countries. Res Vet 
Sci 94:9–21

 134. Genua F, Menichini M, Lari N, Rindi L (2018) Genotyping and clarithromycin susceptibility 
testing of Mycobacterium avium subsp. hominissuis isolated in Tuscany, Italy. Infect Genet 
Evol. https://doi.org/10.1016/j.meegid.2018.07.032

 135. Zhao X, Wang Y, Pang Y (2014) Antimicrobial susceptibility and molecular characteriza-
tion of Mycobacterium intracellulare in China. Infect Genet Evol. https://doi.org/10.1016/j.
meegid.2014.07.032

 136. Zheng HW, Pang Y, He GX, Song YY, Zhao YL (2017) Comparing the genotype and drug 
susceptibilities between Mycobacterium avium and Mycobacterium intracellulare in China. 
Biomed Environ Sci. https://doi.org/10.3967/bes2017.068

 137. Yamaba Y, Ito Y, Suzuki K et  al (2019) Moxifloxacin resistance and genotyping of 
Mycobacterium avium and Mycobacterium intracellulare isolates in Japan. J Infect 
Chemother. https://doi.org/10.1016/j.jiac.2019.05.028

 138. Chen K, Zhang Y, Peng Y (2017) Variable-number tandem repeat markers for mycobacterium 
intracellulare genotyping: comparison to the 16s rRNA gene sequencing. J Infect Dev Ctries. 
https://doi.org/10.3855/jidc.7669

 139. Yano H, Suzuki H, Maruyama F, Iwamoto T (2019) The recombination-cold region as an 
epidemiological marker of recombinogenic opportunistic pathogen Mycobacterium avium. 
BMC Genomics. https://doi.org/10.1186/s12864- 019- 6078- 2

 140. Ichikawa K, van Ingen J, Koh WJ et al (2015) Genetic diversity of clinical Mycobacterium 
avium subsp. hominissuis and Mycobacterium intracellulare isolates causing pulmonary 
diseases recovered from different geographical regions. Infect Genet Evol. https://doi.
org/10.1016/j.meegid.2015.09.029

 141. Barandiaran S, Pérez AM, Gioffré AK, Martínez Vivot M, Cataldi AA, Zumárraga MJ (2015) 
Tuberculosis in swine co-infected with Mycobacterium avium subsp. Hominissuis and 
Mycobacterium bovis in a cluster from Argentina. Epidemiol Infect. https://doi.org/10.1017/
S095026881400332X

 142. Narh CA, Mosi L, Quaye C, Dassi C, Konan DO, Tay SCK, de Souza DK, Boakye DA, 
Bonfoh B (2015) Source tracking Mycobacterium ulcerans infections in the Ashanti Region, 
Ghana. PLoS Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0003437

 143. Kalvisa A, Tsirogiannis C, Silamikelis I, Skenders G, Broka L, Zirnitis A, Jansone I, Ranka 
R (2016) MIRU-VNTR genotype diversity and indications of homoplasy in M. avium 
strains isolated from humans and slaughter pigs in Latvia. Infect Genet Evol. https://doi.
org/10.1016/j.meegid.2016.05.013

 144. Yoon JK, Kim TS, Kim J Il, Yim JJ (2020) Whole genome sequencing of Nontuberculous 
Mycobacterium (NTM) isolates from sputum specimens of co-habiting patients with NTM 
pulmonary disease and NTM isolates from their environment. BMC Genomics doi:https://
doi.org/10.1186/s12864- 020- 6738- 2

 145. Trovato A, Baldan R, Costa D, Simonetti TM, Cirillo DM, Tortoli E (2017) Molecular typ-
ing of Mycobacterium abscessus isolated from cystic fibrosis patients. Int J Mycobacteriol. 
https://doi.org/10.4103/ijmy.ijmy_33_17

 146. Hasan NA, Epperson LE, Lawsin A et al (2019) Genomic analysis of cardiac surgery- asso-
ciated Mycobacterium chimaera infections, United States. Emerg Infect Dis. https://doi.
org/10.3201/eid2503.181282

 147. Coudereau C, Besnard A, Robbe-Saule M et al (2020) Stable and local reservoirs of myco-
bacterium ulcerans inferred from the nonrandom distribution of bacterial genotypes, Benin. 
Emerg Infect Dis. https://doi.org/10.3201/eid2603.190573

4 Nontuberculous Mycobacteria

https://doi.org/10.1017/S0950268817000139
https://doi.org/10.1017/S0950268817000139
https://doi.org/10.1371/journal.pone.0118597
https://doi.org/10.1371/journal.pone.0118597
https://doi.org/10.1016/j.meegid.2018.07.032
https://doi.org/10.1016/j.meegid.2014.07.032
https://doi.org/10.1016/j.meegid.2014.07.032
https://doi.org/10.3967/bes2017.068
https://doi.org/10.1016/j.jiac.2019.05.028
https://doi.org/10.3855/jidc.7669
https://doi.org/10.1186/s12864-019-6078-2
https://doi.org/10.1016/j.meegid.2015.09.029
https://doi.org/10.1016/j.meegid.2015.09.029
https://doi.org/10.1017/S095026881400332X
https://doi.org/10.1017/S095026881400332X
https://doi.org/10.1371/journal.pntd.0003437
https://doi.org/10.1016/j.meegid.2016.05.013
https://doi.org/10.1016/j.meegid.2016.05.013
https://doi.org/10.1186/s12864-020-6738-2
https://doi.org/10.1186/s12864-020-6738-2
https://doi.org/10.4103/ijmy.ijmy_33_17
https://doi.org/10.3201/eid2503.181282
https://doi.org/10.3201/eid2503.181282
https://doi.org/10.3201/eid2603.190573


122

 148. Lande L, Alexander DC, Wallace RJ et al (2019) Mycobacterium avium in community and 
household water, suburban Philadelphia, Pennsylvania, USA, 2010-2012. Emerg Infect Dis. 
https://doi.org/10.3201/eid2503.180336

 149. Turenne CY (2019) Nontuberculous mycobacteria: insights on taxonomy and evolution. 
Infect Genet Evol. https://doi.org/10.1016/j.meegid.2019.01.017

 150. Jagielski T, Borówka P, Bakuła Z et  al (2020) Genomic insights into the Mycobacterium 
kansasii complex: an update. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02918

 151. Vandelannoote K, Phanzu DM, Kibadi K et al (2019) Mycobacterium ulcerans population 
genomics to inform on the spread of Buruli ulcer across Central Africa. mSphere. https://doi.
org/10.1128/msphere.00472- 18

 152. Wallace RJ, Zhang Y, Brown BA, Fraser V, Mazurek GH, Maloney S (1993) DNA large 
restriction fragment patterns of sporadic and epidemic nosocomial strains of Mycobacterium 
chelonae and Mycobacterium abscessus. J Clin Microbiol. https://doi.org/10.1128/
jcm.31.10.2697- 2701.1993

 153. Zelazny AM, Root JM, Shea YR et al (2009) Cohort study of molecular identification and 
typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bol-
letii. J Clin Microbiol. https://doi.org/10.1128/JCM.01688- 08

 154. Aitken ML, Limaye A, Pottinger P et  al (2012) Respiratory outbreak of Mycobacterium 
abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir 
Crit Care Med. https://doi.org/10.1164/ajrccm.185.2.231

 155. Taillard C, Greub G, Weber R et al (2003) Clinical implications of Mycobacterium kansa-
sii species heterogeneity: Swiss national survey. J Clin Microbiol. https://doi.org/10.1128/
JCM.41.3.1240- 1244.2003

 156. Tagini F, Aeby S, Bertelli C, Droz S, Casanova C, Prod’Hom G, Jaton K, Greub G (2019) 
Phylogenomics reveal that mycobacterium kansasii subtypes are species-level lineages. 
Description of mycobacterium pseudokansasii sp. nov., mycobacterium innocens sp. nov. 
and mycobacterium attenuatum sp. nov. Int J Syst Evol Microbiol. https://doi.org/10.1099/
ijsem.0.003378

 157. Shahraki AH, Trovato A, Mirsaeidi M, Borroni E, Heidarieh P, Hashemzadeh M, Shahbazi 
N, Cirillo DM, Tortoli E (2017) Mycobacterium persicum sp. Nov., a novel species closely 
related to mycobacterium kansasii and mycobacterium gastri. Int J Syst Evol Microbiol. 
https://doi.org/10.1099/ijsem.0.001862

 158. Machado E, Vasconcellos SEG, Cerdeira C et  al (2018) Whole genome sequence of 
Mycobacterium kansasii isolates of the genotype 1 from Brazilian patients with pulmo-
nary disease demonstrates considerable heterogeneity. Mem Inst Oswaldo Cruz. https://doi.
org/10.1590/0074- 02760180085

 159. Guan Q, Ummels R, Ben-Rached F, Alzahid Y, Amini MS, Adroub SA, van Ingen J, Bitter 
W, Abdallah AM, Pain A (2020) Comparative genomic and transcriptomic analyses of 
Mycobacterium kansasii subtypes provide new insights into their pathogenicity and taxon-
omy. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.00122

 160. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan 
B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed- field gel 
electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. https://doi.org/10.1128/
jcm.33.9.2233- 2239.1995

 161. Machado GE, Matsumoto CK, Chimara E et al (2014) Multilocus sequence typing scheme 
versus pulsed-field gel electrophoresis for typing Mycobacterium abscessus isolates. J Clin 
Microbiol. https://doi.org/10.1128/JCM.00688- 14

 162. Walsh DS, Portaels F, Meyers WM (2008) Buruli ulcer (Mycobacterium ulcerans infection). 
Trans R Soc Trop Med Hyg 102:969–978

 163. Qi W, Käser M, Röltgen K, Yeboah-Manu D, Pluschke G (2009) Genomic diversity and 
evolution of Mycobacterium ulcerans revealed by next-generation sequencing. PLoS Pathog 
5:e1000580

E. C. Conceição et al.

https://doi.org/10.3201/eid2503.180336
https://doi.org/10.1016/j.meegid.2019.01.017
https://doi.org/10.3389/fmicb.2019.02918
https://doi.org/10.1128/msphere.00472-18
https://doi.org/10.1128/msphere.00472-18
https://doi.org/10.1128/jcm.31.10.2697-2701.1993
https://doi.org/10.1128/jcm.31.10.2697-2701.1993
https://doi.org/10.1128/JCM.01688-08
https://doi.org/10.1164/ajrccm.185.2.231
https://doi.org/10.1128/JCM.41.3.1240-1244.2003
https://doi.org/10.1128/JCM.41.3.1240-1244.2003
https://doi.org/10.1099/ijsem.0.003378
https://doi.org/10.1099/ijsem.0.003378
https://doi.org/10.1099/ijsem.0.001862
https://doi.org/10.1590/0074-02760180085
https://doi.org/10.1590/0074-02760180085
https://doi.org/10.3389/fcimb.2020.00122
https://doi.org/10.1128/jcm.33.9.2233-2239.1995
https://doi.org/10.1128/jcm.33.9.2233-2239.1995
https://doi.org/10.1128/JCM.00688-14


123

 164. Shin JI, Shin SJ, Shin MK (2020) Differential genotyping of Mycobacterium avium complex 
and its implications in clinical and environmental epidemiology. Microorganisms. https://doi.
org/10.3390/microorganisms8010098

 165. Cooper JF (1989) Mycobacterium chelonae. Infect Dis Newsl 8:70–71
 166. Akram SM, Rathish B, Saleh D (2020) Mycobacterium Chelonae. StatPearls Publ. https://

www.ncbi.nlm.nih.gov/books/NBK430806/. Accessed 8 Sep 2020
 167. Williams KJ, Ling CL, Jenkins C, Gillespie SH, McHugh TD (2007) A paradigm for the 

molecular identification of Mycobacterium species in a routine diagnostic laboratory. J Med 
Microbiol. https://doi.org/10.1099/jmm.0.46855- 0

 168. Leao SC, Tortoli E, Viana-Niero C, Ueki SYM, Lima KVB, Lopes ML, Yubero J, Menendez 
MC, Garcia MJ (2009) Characterization of mycobacteria from a major Brazilian outbreak 
suggests that revision of the taxonomic status of members of the Mycobacterium chelonae-
 M. abscessus group is needed. J Clin Microbiol. https://doi.org/10.1128/JCM.00808- 09

 169. Kim BJ, Kim BR, Jeong J, Lim JH, Park SH, Lee SH, Kim CK, Kook YH, Kim BJ (2018) 
A description of mycobacterium chelonae subsp. gwanakae subsp. nov., a rapidly growing 
mycobacterium with a smooth colony phenotype due to glycopeptidolipids. Int J Syst Evol 
Microbiol. https://doi.org/10.1099/ijsem.0.003056

 170. Kim BJ, Kim GN, Kim BR et al (2017) Description of mycobacterium chelonae subsp. Bovis 
subsp. nov., isolated from cattle (bos taurus coreanae), emended description of mycobacte-
rium chelonae and creation of mycobacterium chelonae subsp. chelonae subsp. nov. Int J Syst 
Evol Microbiol. https://doi.org/10.1099/ijsem.0.002217

 171. Nogueira CL, Whipps CM, Matsumoto CK et al (2015) Mycobacterium saopaulense sp. Nov., 
a rapidly growing mycobacterium closely related to members of the mycobacterium chelo-
nae– mycobacterium abscessus group. Int J Syst Evol Microbiol. https://doi.org/10.1099/
ijsem.0.000590

 172. Rodríguez-Sánchez B, Cercenado E, Coste AT, Greub G (2019) Review of the impact of 
MALDI-TOF MS in public health and hospital hygiene, 2018. Eurosurveillance. https://doi.
org/10.2807/1560- 7917.ES.2019.24.4.1800193

 173. Alcaide F, Amlerová J, Bou G et al (2018) How to: identify non-tuberculous Mycobacterium 
species using MALDI-TOF mass spectrometry. Clin Microbiol Infect. https://doi.
org/10.1016/j.cmi.2017.11.012

 174. Fangous MS, Mougari F, Gouriou S, Calvez E, Raskine L, Cambau E, Payan C, Héry-Arnaud 
G (2014) Classification algorithm for subspecies identification within the Mycobacterium 
abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass 
spectrometry. J Clin Microbiol. https://doi.org/10.1128/JCM.00788- 14

 175. Kehrmann J, Wessel S, Murali R, Hampel A, Bange FC, Buer J, Mosel F (2016) Principal 
component analysis of MALDI TOF MS mass spectra separates M. abscessus (sensu stricto) 
from M. massiliense isolates. BMC Microbiol. https://doi.org/10.1186/s12866- 016- 0636- 4

 176. Murugaiyan J, Lewin A, Kamal E et al (2018) MALDI spectra database for rapid discrimi-
nation and subtyping of Mycobacterium kansasii. Front Microbiol. https://doi.org/10.3389/
fmicb.2018.00587

 177. Pranada AB, Witt E, Bienia M, Kostrzewa M, Timke M (2017) Accurate differentiation of 
mycobacterium chimaera from mycobacterium intracellulare by MALDI-TOF MS analysis. 
J Med Microbiol. https://doi.org/10.1099/jmm.0.000469

 178. Brown-Elliott BA, Fritsche TR, Olson BJ, Vasireddy S, Vasireddy R, Iakhiaeva E, Alame D, 
Wallace RJ, Branda JA (2019) Comparison of two commercial matrix-assisted laser desorp-
tion/ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for identifica-
tion of nontuberculous mycobacteria. Am J Clin Pathol 152:527–536

 179. O’Connor JA, Corcoran GD, O’Reilly B, O’Mahony J, Lucey B (2020) Matrix-assisted laser 
desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for investigation 
of mycobacterium tuberculosis complex outbreaks: a type dream? J Clin Microbiol. https://
doi.org/10.1128/JCM.02077- 19

4 Nontuberculous Mycobacteria

https://doi.org/10.3390/microorganisms8010098
https://doi.org/10.3390/microorganisms8010098
https://www.ncbi.nlm.nih.gov/books/NBK430806/
https://www.ncbi.nlm.nih.gov/books/NBK430806/
https://doi.org/10.1099/jmm.0.46855-0
https://doi.org/10.1128/JCM.00808-09
https://doi.org/10.1099/ijsem.0.003056
https://doi.org/10.1099/ijsem.0.002217
https://doi.org/10.1099/ijsem.0.000590
https://doi.org/10.1099/ijsem.0.000590
https://doi.org/10.2807/1560-7917.ES.2019.24.4.1800193
https://doi.org/10.2807/1560-7917.ES.2019.24.4.1800193
https://doi.org/10.1016/j.cmi.2017.11.012
https://doi.org/10.1016/j.cmi.2017.11.012
https://doi.org/10.1128/JCM.00788-14
https://doi.org/10.1186/s12866-016-0636-4
https://doi.org/10.3389/fmicb.2018.00587
https://doi.org/10.3389/fmicb.2018.00587
https://doi.org/10.1099/jmm.0.000469
https://doi.org/10.1128/JCM.02077-19
https://doi.org/10.1128/JCM.02077-19


125© Springer Nature Switzerland AG 2022
I. de Filippis (ed.), Molecular Typing in Bacterial Infections, Volume I, 
https://doi.org/10.1007/978-3-030-74018-4_5

M. I. Klein (*) 
Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State 
University, Araraquara, Brazil
e-mail: marlise.klein@unesp.br

5Oral Streptococci
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5.1  Introduction

The oral cavity is a complex environment because of its diverse habitats (soft and 
hard tissue surfaces, saliva), where distinct microorganisms preferentially colonize 
different ones. The oral microbiota has an abundance of bacteria species and har-
bors fungi, protozoa, archaebacteria, and viruses. Among bacteria, oral streptococci 
species are among the most abundant species found in the mouth. They are the pri-
mary colonizers of the oral cavity surfaces in microbial communities known as oral 
biofilms. Oral streptococci are early colonizers in the biofilm developmental pro-
cess because of their surface adhesins that interact with glycoproteins (derived from 
the host and microorganisms) present on the salivary pellicle that covers all surfaces 
in the oral cavity. From 1990 to 2010, there was a rush to genotype the oral strepto-
cocci, especially Streptococcus mutans and Streptococcus sobrinus, species associ-
ated with cariogenic biofilms (biofilms that causes dental caries) to determine the 
transmissibility of strains (genotypes) from caregivers to children.

However, as our understanding of the oral microbiota and its dynamics in a 
homeostatic versus a dysbiotic microbiota evolved, more and more researchers are 
looking for species (or a combination of species—community) present in the oral 
cavity associated with a specific condition or conditions. Thus, besides knowing 
what species (who) is there, investigations are focusing on what the species are 
doing there. However, to know ‘what’, it is paramount to identify correctly ‘who’, 
and there are several methods for this purpose. Some oral streptococci species can 
also migrate from the mouth to other human body sites, where they can colonize and 
cause infections, such as infective endocarditis. Thus, this chapter focuses on the 
tools available for typing known oral streptococci.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74018-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-74018-4_5#DOI
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5.2  The Oral Microbiota Is Diverse, and Several Methods 
Are Employed to Investigate Oral Streptococci

Oral streptococci can colonize the oral cavity immediately after delivery [1, 2] and 
are pivotal for the arrangement and construction of the oral microbiota, especially 
biofilms on soft and hard tissues [3]. In the past, most studies on oral microorgan-
isms used culturing combined with phenotyping methods, including serotyping. 
However, molecular methods are replacing them because of the technological 
advances and decrease in their costs. Nevertheless, culturing methods complement 
well the molecular strategies to characterize and identify the microorganisms pres-
ent in the oral cavity, primarily for species characterization of clinical strains (i.e., 
clinical isolates that can be strains of the same species or distinct species). Therefore, 
the strategy to be employed will depend on the question being asked (Fig. 5.1).

The process for the identification and classification of microorganisms by cultur-
ing includes several steps. It initiates with sample collection and transport (using an 
appropriate solution, buffer, or medium—transport medium). Once in the lab, these 
samples need to be dispersed by agitation or sonication, followed by sample dilu-
tion and plating onto Petri dishes containing selective or nonselective agar medium. 
These plates are incubated at adequate conditions (known oral streptococci are fac-
ultative anaerobes). After colony growth, microorganisms can be isolated for growth 
in pure cultures by selecting and transferring a colony to a new plate for subcultur-
ing. The microorganisms can be characterized and classified (identified) by several 

Fig. 5.1 Workflow to analyze samples from the oral cavity. Samples from the oral cavity can be 
saliva (stimulated or unstimulated), dental plaque (biofilm) from supragingival or subgingival 
areas and distinct teeth or teeth areas (also, root canal), and mucosa (tongue, palate, gingiva). Oral 
streptococci can be detected in all of them
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methods, such as biochemical tests (e.g., substrate consumption like glucose metab-
olization—sugar metabolism, exoenzyme production), microscopy (morphology, 
distinct staining), serotyping, and molecular typing. The molecular typing includes 
serotyping by polymerase chain reaction (PCR), identifying species by species- 
specific gene by PCR, sequencing of 16S ribosomal RNA (16S rRNA) gene, DNA 
relatedness methodologies (genotyping via PCR using random primers, multilocus 
sequence typing (MLST)), and genome sequencing (e.g., that can be used for the 
genome-wide association (GWA) studies). Although these steps are time- consuming 
and laborious, they can provide clinical isolates (strains of the same species or dis-
tinct species) that can be characterized further via antimicrobial and antibiofilm 
testing, for example, among other assays.

5.3  Main Known Oral Streptococci Species Involved 
in Biofilm Formation and Disease Occurrence

Currently, the Streptococcus genus is clustered in eight groups (mitis, sanguinis, 
anginosus, salivarius, downei, mutans, pyogenes, and bovis), and oral species 
belong to six of them— mitis, sanguinis, anginosus, salivarius, downei, and mutans, 
as shown in Table 5.1 [4–6]. The phylogeny and taxonomy of oral streptococci were 
extensively analyzed and revised recently [4–6]. The species linked to dental caries 
development include species of the mutans group S. mutans and S. sobrinus, associ-
ated with species of distinct genus and kingdoms [7, 8]. In contrast, the species of 
the mitis and sanguinis groups are abundant in biofilms associated with dental surface 
health. The exception is Streptococcus gordonii that has been implicated as an acces-
sory pathogen for periodontal disease development [9]. Thereby, here the focus will 
be on the assays available to study them. As more whole genomes of distinct strains 
become available, a reshuffle of groups and species may occur in the future. Also, 
potentially new species may be uncovered. For example, a Streptococcus strain, 
designated strain A12, was isolated from supragingival dental plaque of a caries-
free individual and is highly arginolytic, antagonizing S. mutans [10].

In addition, its capability to produce ammonia can help neutralize acids that 
could demineralize teeth to cause cavities, promoting a health-associated microbi-
ota, hindering dental caries development.

5.4  Typing Tools

Most studies evaluated S. mutans because of its association with the development of 
cariogenic biofilms. Thus, the following information on tools is mostly based on 
that species, with few exceptions. The most popular molecular typing tools are a 
form of PCR or have PCR (or its derivative) in its workflow. However, as sequenc-
ing cost decreases, it is becoming more popular, despite its drawbacks, as described 
below. In addition, additional methodology for identification and typing is being 
proposed, such as mass spectrometry.
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5.5  Endpoint PCR for Species Identification and Detection 
of Specific Genes

PCR can be used to identify a specific species by using species-specific primers and 
probes, detect the serotype of a species via serotype-specific primers, and verify the 
genotype of strains from the same species. Also, PCR products can be sequenced. 
Specifically, endpoint PCR followed by agarose gel to detect the PCR product is one 
of the simplest approaches to identify bacteria; an example is shown in Fig. 5.2. 
Several primers in the literature were developed to detect and type oral streptococci. 
The ones for S. mutans are extensively described in the first edition of this book 
[11]. However, some of them are mentioned here again, given their importance in 
the field, besides other species (Table 5.2).

Table 5.1 Streptococcus genus groups found in the oral cavity and the species in each group (in 
mid-2020)

Groupsa Species Notes References
Mitis S. 

pseudopneumoniae
S. pneumoniae
S. mitis
S. oralis
S. peroris
S. infantis
S. australis
S. parasanguinis
S. cristatus

S. cristatus was classified as belonging to the 
mitis group by Jensen et al. [5], but it was 
classified as part of the sanguinis group by 
Richards et al. [4]. Also, the former S. 
oligofermentans is classified as S. cristatus 
by Jensen et al. [5]
“S. dentisani is equivalent to ‘S. mitis biovar 
2′, and together with S. tigurinus and S. oralis 
are part of the same phylogenetic clade and, 
thus, should be considered a single species, 
with S. oralis comprising three subspecies: S. 
oralis subsp. oralis subsp. nov., S. oralis 
subsp. tigurinus comb. nov. and S. oralis 
subsp. dentisani comb. nov” [5]

[4, 5]

Sanquinis S. gordonii
S. sanguinis
S. cristatus

Same note as above for S. cristatus. [4]

Anginosus S. intermedius
S. constellatus 
subsp. pharyngis
S. anginosus

[4]

Salivarius S. salivarius
S. vestibularis

S. thermophilus is also in this group, but not 
as a common oral inhabitant

[4]

Downei S. downei
S. criceti

[4]

Mutans S. ratti
S. mutans
S. sobrinus
S. macacae

S. ratti and S. macacae are found in the 
mouth of hamsters/rats and monkeys, 
respectively. The study by Richards et al. [4] 
did not analyze S. sobrinus strains, which 
were previously classified in this group

[4]

aThe groups names are based on the classification made by Richards et al. [4]
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Several studies used PCR with primers designed for specific genes to detect their 
presence in a collection of strains of the same species or from the same genus. For 
example, the clinical isolates, as identified via PCR in Fig. 5.2, were subjected to 
fingerprinting via AP-PCR [15], and later, representative isolates of a specific geno-
type were selected to investigate whether the competence-associated genes known 
at that time were present via PCR in clinical isolates and whether they were poly-
morphic via Southern blot [19].

5.6  Quantitative PCR

Quantitative PCR (qPCR) is a PCR that uses, in addition to specific primers, moni-
toring technology via fluorescence to quantify the levels of a specific species or 
genus in a clinical sample, for example. There are several fluorescence approaches. 

Fig. 5.2 An agarose gel showing the results of PCRs with primers for identification of S. mutans 
(amplification of gtfB gene with primers GTFB-F and GTFB-R, product size of 517 bp) and S. sob-
rinus (amplification of gtfI gene with primers GTFI-F and GTFI-R, product size of 712 bp) ([12], 
Table 5.2). Lines 1 and 12: molecular size markers. Lines 2 and 13: positive controls (DNA tem-
plate from S. mutans and S. sobrinus, respectively). Lines 3 and 14: negative controls (absence of 
DNA template). Lines 4–7 and 9–11: DNA from clinical isolates identified as S. mutans. Lines 
15–17, 19, and 22: DNA from clinical isolates identified as S. sobrinus. Line 8: clinical isolate that 
was presumptive of mutans streptococci but was not confirmed as S. mutans by PCR. Lines 18, 20, 
and 21: clinical isolates that were presumptive of mutans streptococci but were not confirmed as 
S. sobrinus. Of note, all clinical isolates that were presumptive of mutans streptococci (total of 
1181 isolates via colony morphology on mitis salivarius bacitracin agar, [13, 14]) were first tested 
with primers for S. mutans because of its higher prevalence, and those that were negative were 
then tested using primers for S. sobrinus (less prevalent than S. mutans)—among the 1181 clinical 
isolates, 102 were not S. mutans or S. sobrinus, while 968 were S. mutans and 111 were S. sob-
rinus [15]
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The common ones are the TaqMan system (which uses an oligonucleotide probe 
beside the pair of primers needed for PCR) or a dye that fluoresces only when bound 
to double-stranded DNA (e.g., SYBR green). Both approaches can compare sam-
ples with unknown bacterium cell numbers to a standard curve to determine the 
quantity of the target sequence in a clinical sample. There are several reports in the 
literature. For example, a recent study used the primer pair Sm479F/Sm479R 
(Table 5.2) with SYBR to quantify S. mutans in clinical samples [20]. qPCR can 
also be used to detect variation in nucleotide sequences via single-nucleotide poly-
morphism (SNPs) analysis [21].

Table 5.2 Example of primers used to identify and serotype oral streptococci. The sensitivity of 
each pair of primers can vary (see references for details)

Species Target (gene) Name Sequence (5′ to 3′)
Product 
size (bp) References

S. 
mutans

gtfB GTFB-F ACT ACA CTT TCG 
GGT GGC TTG G

517 [12]

GTFB-R CAG TAT AAG CGC 
CAG TTT CAT C

S. 
sobrinus

gtfI GTFI-F GAT AAC TAC CTG 
ACA GCT GAC T

712

GTFI-R AAG CTG CCT TAA 
GGT AAT CAC T

S. 
mutans

htrA locus and an 
intergenic locus

Sm479F TCG CGA AAA AGA 
TAA ACA AAC A

479 [16]

Sm479R GCC CCT TCA CAG 
TTG GTT AG

S. 
mutansa

Serotype c SC-F CGG AGT GCT TTT 
TAC AAG TGC TGG

727 [17]

SC-R AAC CAC GGC CAG 
CAA ACC CTT TAT

Serotype e SE-F CCT GCT TTT CAA 
GTA CCT TTC GCC

517

SE-R CTG CTT GCC AAG 
CCC TAC TAG AAA

Serotype f SF-F CCC ACA ATT GGC 
TTC AAG AGG AGA

316

SF-R TGC GAA ACC ATA 
AGC ATA GCG AGG

Serotype k CEFK-F ATT CCC GCC GTT 
GGA CCA TTC C

296 [18]

K-R CCA ATG TGA TTC 
ATC CCA TCA C

aAmong S. mutans serotypes, c is the most prevalent, while f and k are the least frequent and are 
associated with extraoral infections, including infective endocarditis [11]
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5.7  Genetic Fingerprinting Studies: Determination 
of Clonal Diversity and Genotypes

Several methodologies have been employed to determine DNA relatedness to 
uncover clonal diversity and genotypes. The initial studies were performed with 
PCR-RFLP (restriction fragment length polymorphism), chromosomal DNA fin-
gerprint (CDF), and arbitrarily primed (AP)-PCR methods, as detailed before [11].

In addition, PCR-based DNA suppressive subtractive hybridization (SSH) [22] 
and comparative genomic hybridization (CGH) [23, 24] based on the S. mutans 
UA159 genome published in 2002 [25] were used to demonstrate that some isolates 
did not have some of the genes present in that reference strain. Furthermore, two 
MLST strategies were developed to evaluate clonal relationships among strains of 
S. mutans. The first strategy included eight conserved housekeeping genes [26], 
while the second comprised six housekeeping genes and two putative virulence 
genes [27]. Later, a study compared both approaches to validate data from repetitive 
extragenic palindromic polymerase chain reaction (rep-PCR) genotypes [28]. Both 
approaches can discriminate clonal or genotype complexes.

An indirect way of testing species diversity was to detect the presence of specific 
genes and the polymorphism of specific genes in a collection of clinical isolates. For 
example, a PCR strategy to study the TnSmu2 region identified important variations 
among distinct strains, suggesting a core genome and a dispensable genome [29]. 
Another study investigated whether the competence-associated genes known at that 
time were present via PCR in clinical isolates of S. mutans isolated from children 
with and without caries and whether they were polymorphic via Southern blot [19]. 
Later, a similar strategy combining PCR and Southern blot was used to evaluate 14 
sensor kinases in distinct isolates [30]. These are only some examples of studies 
performed over the years.

5.8  Sequencing

The development of next-generation sequencing (NGS) of the 16S rRNA gene pro-
vided the most robust and powerful technique for bacterial identification. The 
curated databases of 16 rRNA sequences [e.g., the Ribosomal Database Project 
[31], GenBank at https://www.ncbi.nlm.nih.gov/refseq/targetedloci/16S_process/, 
Greengenes, Silva, EzBioCloud], obtained early on by chain termination method 
(Sanger sequencing) and chemical degradation method, were of utmost importance 
to the methodology. The 16S rRNA gene encodes the RNA found in the small sub-
unit of the ribosome, responsible for translating DNA sequence (RNA from genes) 
into proteins using the universal genetic code. The fidelity and maintenance of this 
translation property are paramount; thereby, some regions of the rRNA gene are 
highly conserved. These sequences can be used to align genes from distinct species. 
However, some regions present variations so that each species has a unique sequence, 
allowing the distinction between similar species.
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Thus, an unknown bacterium can be identified via the DNA sequence of its 16S 
rRNA gene. It can be compared to the sequences curated in the databases using 
tools like the Basic Local Alignment Search Tool for nucleotide (BLASTn). 
Moreover, the conserved and variable regions of the 16S rRNA gene sequence can 
be used as targets for PCR, to detect either a specific-species by using species- 
specific primers or total bacteria via a universal primer that detects all bacteria spe-
cies or even a primer for genus identification. Furthermore, the comparison of 16S 
rRNA gene sequences can provide information on the species evolution or bacterial 
phylogeny. In this analysis, a tree diagram of evolutionary relationships can be con-
structed based on the conserved regions and differences in the variable regions. This 
approach also allows the determination of the relationship of bacteria at the genus 
and species level. The phylogenetic information can help to design primers that are 
homologous to all known oral streptococci. Of note, the ribosomal 16S phylogeny 
is limited because it does not account for the lateral transfer of genes, including 
virulence genes. As most known oral streptococci are naturally competent [32], 
ribosomal 16S phylogeny has its limitations. Hence, as more complete genomes 
become available, genomic comparisons via GWA analyses can be better tools for 
phylogenic classification. One example is the reclassification of some oral strepto-
cocci performed recently [5].

Another drawback of 16S rRNA gene sequencing in oral microbiology is that 
although it allows identification of bacteria at the level of species, it does not usually 
provide enough information to resolve oral communities at the subspecies level, nor 
it can detect eukaryotic microorganisms (fungi, protozoa) and/or viruses. 
Nevertheless, 16S rRNA gene sequencing has helped uncover essential information 
in the oral communities [33].

Furthermore, while the sequencing of 16S rRNA is used to identify the species 
(either from clinical isolates or in a community), the sequencing of the whole 
genome of a collection of strains from the same species can be used to pinpoint the 
pangenome and the core genome and variable or accessory genome (“dispensable” 
genome). Several reports have demonstrated that the variable part may contain sig-
nificant strain-specific virulence determinants, including antimicrobial resistance. 
Before the decrease in the cost for sequencing, to verify polymorphism of a specific 
gene in clinical isolates strains, strategies included PCR associated with Southern 
blot (e.g., S. mutans competence-related genes [19]). Currently, sequencing has 
replaced it, but because of the drawback of sequence coverage, quantitative PCR of 
SNPs is employed to complement the sequencing information [21]. As mentioned 
above, before the advent of whole-genome sequences, several genetic fingerprinting 
strategies were used to evaluate clonal relationships among strains. Also, the 
metagenomics of a microbial community can provide information on antimicrobial 
resistance genes present [34].

The sequencing of the whole genome of a collection of strains from the same 
species compared to other species of the same genus can reveal important traits of a 
species. For example, the sequencing of 57 isolates of S. mutans [via whole-genome 
shotgun (WGS) sequencing] from individuals of known dental caries status, besides 
some closely related species (Streptococcus ratti, Streptococcus macaccae, and 
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Streptococcus criceti), demonstrated several features that explain the successful 
adaptation of S. mutans to the oral cavity [35]. One of them was a set of genes pres-
ent in all isolates of S. mutans but absent in other species evaluated; among those 
genes were those associated with metabolic processes that may have evolved with 
human dietary changes over time. Next, 15 of these strains that presented a high 
degree of gene content diversity were subjected to further phenotypic characteriza-
tion and genetic analyses [36]. The outcomes were the species phenotypic diversity, 
where S. mutans evolved several adaptive strategies to persist in the mouth and 
participate in the disease process when conditions are favorable [36]. Of note was 
the confirmation of the absence of some specific genes performed via PCR, which 
corroborated previous findings of competence-associated genes in clinical isolates 
that were evaluated using PCR and Southern blot [19].

Recent studies investigated health-associated oral streptococci species that pres-
ent promising potential as probiotic candidates to prevent dental caries [37, 38]. The 
whole genomes of several streptococci isolates (encompassing ten species: S. aus-
tralis; A12-like; S. cristatus; S. gordonii; S. intermedius; S. mitis; S. oralis, includ-
ing S. oralis subsp. dentisani; S. parasanguinis; S. salivarius; and S. sanguinis) 
were sequenced. The sequencing information was used to verify the relationship 
with ammonia production via the arginine deiminase system (ADS). However, the 
study found that similar genotypes or specific oral streptococci species can present 
distinct phenotypes [37]. Next, bioinformatics was used to select genes for deletion, 
which then impaired the isolates/strains’ ability to compete with the pathogen 
S. mutans [38]. Thus, a combination of methodological tools can help determine 
whether a specific strain could be selected to promote oral health.

5.9  DNA Hybridization Assays

The methodologies checkerboard analysis and microarray hybridization required 
specific probes (known sequences of a specific species, e.g., 16S rRNA) and were 
once widely used to detect and quantify specific species in DNA isolated from clini-
cal samples but have now been replaced. For example, checkerboard analysis was 
employed to map the microbial complexes in subgingival [39] and supragingival 
[40] biofilms and associate those complexes with health and disease. Moreover, the 
quantitative Human Oral Microbe Identification Microarray (HOMIM) based on 
16S rRNA was used to assess several clinical samples [41, 42]. The HOMIM was 
replaced by the Human Oral Microbe Identification using Next Generation 
Sequencing (HOMINGS) technology, also based on 16S rRNA [43].

Moreover, as mentioned above, among the strategies of genetic fingerprinting 
studies, the screening of clinical isolate libraries or laboratory strains was performed 
using DNA hybridization approaches. For example, earlier efforts via PCR-based 
DNA suppressive subtractive hybridization (SSH) [22] and later via comparative 
genomic hybridization (CGH) [23, 24] were made based on the S. mutans UA159 
genome published in 2002 [25]. These studies demonstrated that some isolates did 
not have some of the genes in that reference strain.
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Another category of hybridization assay relies on undisturbed/intact samples 
where specific probes with fluorescence markers are hybridized in situ. The most 
popular is fluorescence in situ hybridization (FISH) with ribosomal RNA targeted 
oligonucleotide probes, followed by its variant PNA-FISH (peptide nucleic acid 
fluorescence in situ hybridization). The use of fluorescent markers in loco is advan-
tageous for the precise localization of microorganisms [44]. However, there are 
technical limitations for probe construction and detection of multiple species con-
comitantly (microscopy device restrictions). Some of these limitations are being 
overcome by a derivative method known as combinatorial labeling and spectral 
imaging FISH (CLASI-FISH), which is a strategy that uses genus- and family- 
specific probes to visualize simultaneously and differentiate microorganisms in 
intact samples [45–47], but still may be further improved.

Besides these hybridization assays, strategies can introduce intracellular or 
extracellular fluorescence markers to investigate how strains interact with host com-
ponents or other microorganisms in vitro and/or in vivo (e.g., animal models) by 
quantifying them using flow cytometry (less common due to limitations of analyz-
ing fluorescent signals in complex samples, such as biofilms, [48, 49]) or micros-
copy (more feasible, [50]).

5.10 Summary

The continued development of strategies to improve the understanding of oral strep-
tococci roles in oral microbiota will occur. Therefore, it is germane to keep in mind 
the research and/or diagnostic questions being asked to select the best approach to 
answer them. There will be a combination of classical microbiological, biochemi-
cal, molecular, and imaging approaches in most cases. For example, one study per-
formed whole-genome shotgun (WGS) sequencing of two S. mutans strains [21], 
one fluoride-sensitive and the other fluoride-resistant [51]. Next, it analyzed the 
sequence of genes identified as involved in fluoride resistance using PCR, Sanger 
sequencing, and qPCR to identify single-nucleotide polymorphisms (SNPs) respon-
sible for the resistant phenotype [21]. There are also efforts to use other approaches, 
such as matrix-assisted laser desorption ionization-time of flight mass spectrometry 
(MALDI-TOF MS), to identify streptococci species [52]. Using tools available will 
also help devise better approaches to prevent and/or treat diseases and maintain 
host health.
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6.1  Introduction

Streptococcus pneumoniae, also known as pneumococcus, is phylogenetically allo-
cated into the mitis group, within the viridans streptococci. Streptococcus pneu-
moniae is a highly important bacterial pathogen that frequently colonizes the human 
upper airways, especially in young children. It can spread from the nasopharynx or 
oropharynx to different body sites or, via droplets, to other individuals and lead to 
the development of invasive and noninvasive diseases in all age groups. Noninvasive 
pneumococcal diseases such as acute otitis media and sinusitis are more common 
and usually milder conditions [1]. Pneumococcal conjunctivitis, although less 
frequent, can also occur [2].

This pathogen is a major cause of community-acquired pneumonia. Pneumococcal 
pneumonia can be a noninvasive (non-bacteremic) or an invasive (bacteremic) dis-
ease. Up to 25–30% of patients with pneumococcal pneumonia develop bacteremia. 
Pneumococcal bacteremia can also occur without pneumonia. Sepsis is a condition 
frequently associated with pneumococcal bacteremia. Meningitis is another major 
life-threatening invasive pneumococcal disease (IPD). Other uncommon IPDs 
include septic arthritis, endocarditis, pericarditis, peritonitis, cellulitis, osteomyeli-
tis, and brain abscess [1, 3, 4].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-74018-4_6&domain=pdf
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6.2  Molecular Methods for Pneumococcal Typing

Molecular typing methods are crucial to understand the changes in the epidemiol-
ogy of pneumococcal infections and the dynamics of the evolution of pneumococcal 
population. Different selective factors have been driving pneumococcal epidemiol-
ogy and evolution, including antibiotic use and the introduction of pneumococcal 
vaccines.

Serotype determination has been the primary focus to understand the epidemiol-
ogy of pneumococcal strains for decades since vaccines have targeted their capsular 
polysaccharides [5]. Surveillance studies allowed the detection of the “serotype 
replacement” phenomenon, characterized by the reduction or elimination of vaccine 
serotypes and the emergence of non-vaccine types associated with both coloniza-
tion and disease, after the advent of pneumococcal conjugate vaccines (PCV) [6].

Motivated by the emergence of antimicrobial resistance in the 1990s and the 
global spread of drug-resistant organisms, various subtyping methods have been 
evaluated to differentiate pneumococcal strains [5]. Several genotyping methods 
such as ribotyping, BOX fingerprinting, pulsed-field gel electrophoresis (PFGE), 
and multilocus sequence typing (MLST) have been widely used to subtype pneumo-
coccal isolates [7, 8] and to identify “serotype switch” events, which consist in a 
change of serotype of a single clone by alteration or exchange of its capsule poly-
saccharide synthesis (cps) locus [9, 10].

The use of these typing methods combined with serotyping and antimicrobial 
resistance patterns has allowed isolates from different epidemiological regions to be 
examined for potential relationships and the identification of persistent local and 
global clones [5]. In this context, the Pneumococcal Molecular Epidemiology 
Network (PMEN) was established in 1997 to guide global surveillance of drug- 
resistant S. pneumoniae and to standardize laboratory methods and epidemiological 
definitions for identifying internationally disseminated clones ([11]; https://www.
pneumogen.net/pmen/criteria.html). Later, the PMEN has also decided to include 
major invasive drug-susceptible clones that are globally disseminated.

Data from numerous surveillance projects performed in various countries over 
the past 30 years show that although there is considerable diversity among resistant 
strains, a small number of highly successful clones have emerged within countries 
and in some cases have achieved massive geographical spread across both national 
and continental boundaries [5]. To date, the PMEN has recognized 43 clones. See 
https://www.pneumogen.net/pmen/criteria.html for nomenclature and criteria for 
inclusion as a global clone. Pneumococci belonging to some of these clones not 
only are geographically widespread but also represent a significant proportion of 
resistant strains in a given epidemiological setting. Isolates belonging or closely 
related to many of these clones have been associated with both disease and coloni-
zation in children and adults, even after widespread PCV use.

New candidates to PMEN clones need to be subjected to three different molecu-
lar typing methods to confirm they are unique: PFGE, MLST, and PBP fingerprint-
ing. PFGE and MLST will be discussed below. PBP fingerprinting is performed 
since alterations in penicillin-binding proteins (PBPs) are the major mechanism of 
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resistance to beta-lactams in S. pneumoniae. Most of the high-level penicillin resis-
tance is due to alterations in PBP 1a, 2b, and 2x, and methods for PBP fingerprinting 
include restriction fragment length polymorphism (RFLP) analysis or sequence 
comparisons of PCR products amplified from pbp1a, pbp2b, or pbp2x [12].

6.3  Serotyping

Serotype determination is an essential step to characterize pneumococcal strains. 
Serotypes are determined by biochemical and antigenic differences in the polysac-
charide capsule, the pneumococcal dominant surface structure that plays a critical 
role in virulence. Currently, there are around 100 recognized serotypes, which are 
grouped into more than 40 serogroups based on their antigenic similarities [13]. 
Serotype distribution varies greatly according to clinical source, patient’s age, geo-
graphical location, and over time. The pneumococcal capsule is the target of current 
pneumococcal vaccines, which provide serotype-specific protection. Widespread 
use of these vaccines has driven changes in serotype prevalence among both car-
riage and disease isolates. Thus, accurate identification of pneumococcal serotypes 
is of paramount importance for pathogen surveillance and evaluation of PCV 
impact. Two main approaches have been widely used for determining pneumococ-
cal capsular types: serologically by detecting serogroup- and serotype-specific cap-
sule epitopes and genetically by detecting nucleotide sequence of capsule genes.

6.3.1  Neufeld Test (Quellung Reaction)

The Quellung reaction was first described in 1902 and is still considered the gold 
standard method for pneumococcal serotyping [14, 15]. It is highly sensitive and 
specific and is based on the reaction of specific antibodies against the capsule poly-
saccharides. If the antibodies recognize a specific capsule epitope, they bind and 
produce a change in the refractive index of light passing through the capsule, which 
then appears “swollen” when visualized under a microscope [15]. Reaction can be 

Table 6.1 Streptococcus pneumoniae antisera pools used in the Quellung reaction

Pool Serotypes/serogroups included
A 1, 3, 4, 6, 8
B 14, 15, 18, 23, 28
C 7, 19, 20, 24, 40
D 5, 9, 11, 16
E 12, 13, 33, 44, 46
F 2, 10, 17, 22, 31
G 29, 34, 35, 39, 42, 43, 47
H 25, 36, 37, 38, 41
I 21, 27, 32, 45, 48
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viewed using oil immersion at a 1000× magnification in a light microscope. 
However, a counterstain (methylene blue) or phase-contrast microscopy can be used 
to further enhance visibility.

For Quellung-based serotyping, each pneumococcal isolate is sequentially tested 
against antisera pools, each one combining different mixtures of serotype/serogroup 
antisera (Table 6.1). When a positive reaction is observed with a certain pool, the 
isolate is then tested against individual serotype and serogroup antisera present in 
that pool. Serotypes within serogroups are further differentiated using panels of fac-
tor antisera, which give different profiles of positivity for each serotype in a certain 
serogroup. Thus, the Quellung reaction can be laborious and costly and requires 
technical expertise to generate accurate results. An example of how to differentiate 
serotypes within serogroup 19 with factor sera is shown in Table 6.2.

6.3.2  Latex

Serological determination of capsular types became faster and easier with the devel-
opment of latex agglutination tests, which use anti-rabbit IgG-coated latex particles 
sensitized to pooled and selected individual serotype-specific antisera. The aggluti-
nation reaction that occurs between the pneumococcal cell and the type-specific 
antibodies results in visible clumping, eliminating the requirement for microscopy 
[16]. However, the latex agglutination method is intended to narrow the identifica-
tion down to a group or pool of serotypes, and then Quellung can be done using 
specific antisera for each serotype in the group or pool. In addition, commercially 
available latex agglutination kits for pneumococcal serotyping are still of high cost 
and, thus, unfeasible for use in laboratories of low- and middle-income coun-
tries (LMIC).

6.3.3  Serotype Deduction

Due to the complexity and high costs to obtain and store antisera to perform direct 
pneumococcal serotyping, several alternative strategies have been developed to 
deduce pneumococcal capsular types. Such approaches do not characterize the 
polysaccharide capsule itself, but are usually simple and easy to perform. 
Consequently, they have greatly reduced reliance upon conventional phenotypic 
serotyping, providing capsular type-determining potential to laboratories that lack 

Table 6.2 Differentiation of serotypes comprised by serogroup 19 in the Quellung reaction

Serotype Factor 19b Factor 19c Factor 19e Factor 19f
19A − + − −
19B − − + −
19C − − − +

19F + − − −
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type-specific antisera and other reagents needed for conventional serotyping [5]. 
Since the 2000s, genotype-based approaches have been increasingly applied, per-
mitting the development of epidemiological surveillance in studies involving car-
riage and disease isolates, especially focusing on the impact of PCV introduction. 
The most widely used approaches involve PCR or sequencing, although DNA 
microarrays have also been developed [17, 18].

More recently, proteomic-based methods such as matrix-assisted laser desorp-
tion/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and Fourier- 
transform infrared spectroscopy (FTIR) have been tested to determine pneumococcal 
capsular types, consisting in promising alternatives [19, 20].

6.3.3.1  PCR-Based Approaches
Initially, some PCR-based approaches to deduce pneumococcal serotypes relied on 
RFLP assays, based on the amplification of partial or whole cps operon followed by 
digestion with one to three restriction enzymes [21, 22]. However, these assays have 
not been commonly used.

One widely used method for serotype deduction was developed by the US 
Centers for Disease Control and Prevention (CDC) and involves a sequential multi-
plex PCR-based scheme easily adjustable to different serotype distributions [23–
25]. Currently, this approach includes 41 oligonucleotide primer pairs used for 
conventional multiplex PCR assays capable of deducing 70 serotypes. Schemes of 
eight sequential multiplex PCR assays adapted to Africa, Latin America, and the 
United States are already available (https://www.cdc.gov/streplab/pneumococcus/
resources.html).

This approach has great application for deducing serotypes from clinical speci-
mens when causal pneumococcal strains cannot be recovered [26] and has been 
extended to deducing pneumococcal serotypes present in nasopharyngeal secretions 
[27]. However, some inaccuracy may occur when using this PCR assay for carriage 
isolates, since non-pneumococcal mitis group streptococci can carry cps locus 
homologs of pneumococcal strains. This is more likely when analyzing oropharyn-
geal specimens, especially those recovered from adult populations [28, 29].

More recently, real-time quantitative PCR (qPCR) assays have been explored to 
determine pneumococcal capsular types [30, 31]. Usually, qPCR methods are faster, 
more sensitive, and more specific than conventional PCR; however, they are more 
expensive and have limited capacity for multiplexing.

CDC has adapted the conventional sequential multiplex PCR assays to a triplex 
sequential real-time PCR format. This approach currently uses 21 oligonucleotide 
primer pairs distributed over 7 reactions to target 37 serogroups/serotypes. Schemes 
adjusted to four geographic areas are already available: Africa, Asia, Latin America, 
and the United States (https://www.cdc.gov/streplab/pneumococcus/resources.html).

A different multiplex real-time PCR protocol was also described. Eleven multi-
plex qPCR assays arranged in duplex, triplex, or quadriplex formats were designed 
to identify and quantify 40 prevalent pneumococcal serotypes directly from naso-
pharyngeal and blood specimens [32].
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It is important to realize that these methodologies and schemes are subjected to 
be continuously refined as additional serotypes are added and primer sets updated to 
improve specificity [5].

6.3.3.2  Sequencing-Based Approaches
The cpsB (wzh) gene is the main target of such approaches. One strategy involves 
the polymorphism analysis of partial cpsA (wzg)-cpsB sequence along with a 
serotype- specific PCR targeting the wzy gene [33].

Another approach, termed sequetyping, uses the whole cpsB gene sequence to 
increase resolution [34, 35]. A third approach, named capsular sequence typing 
(CST), relies on the partial cpsB sequencing [36]. Usually, these methodologies are 
followed by BLAST analysis (https://blast.ncbi.nlm.nih.gov/) against GenBank 
database. In a slightly modified version of the CST approach, isolates sharing 99.8% 
identity (maximum divergence in one single nucleotide) in partial cpsB gene 
sequences queried against GenBank were considered to belong to the same capsular 
type. Still, closely related serotypes such as serotypes 6C and 6D may not be distin-
guished from each other [37].

Next-generation sequencing (NGS) methodologies have already been used to 
determine pneumococcal serotypes. A target enrichment-based NGS method was 
developed to detect and predict all pneumococcal serogroups, but only 32 to the 
serotype level, directly from nasopharyngeal specimens and primary culture [38].

As costs for NGS continue to decrease, whole-genome sequencing (WGS) has 
been increasingly used, and serotype information can be extracted from WGS data. 
Some bioinformatics tools to predict pneumococcal serotype from genomic data 
such as PneumoCaT (pneumococcal capsular typing [39]) and SeroBA [40] have 
already been developed. These two approaches use WGS data generated with 
Illumina NGS technology and are freely available at https://github.com/.

PneumoCaT is a fully automated pipeline that uses a two-step approach for pre-
dicting capsular types from pneumococcal genomic data. By annealing and compar-
ing WGS data to cps operon reference sequences of 92 capsular types and 2 subtypes 
(new molecular variant patterns), a serotype is successfully assigned if a single cap-
sular locus matches >90%. If more than one capsular locus sequence matches, 
PneumoCaT then uses a capsular type variant database to differentiate serotypes 
within a serogroup. PneumoCaT requires a mean depth of 20 reads across the 
mapped sequence and minimum depth of 5 reads for mapping (https://github.com/
phe- bioinformatics/PneumoCaT) and demands significant computational and mem-
ory resources.

SeroBA is a k-mer-based pipeline that uses a database adapted from 
PneumoCaT. k-mers are subsequences of a specific length (k) within a nucleotide 
sequence. This approach can accurately predict serotypes by identifying the cps 
locus directly from raw WGS data at low depth of coverage, using computational 
resources more efficiently (https://github.com/sanger- pathogens/seroba).

CDC has also develop an in silico method to predict serotypes and additional 
characteristics, such as antimicrobial resistance, pilus type, and MLST, from 
Illumina paired-end WGS data [41]. The CDC pneumococcal typing pipeline is an 
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in-house tool, but scripts, database, and reference files can be accessed at https://
github.com/BenJamesMetcalf/Spn_Scripts_Reference.

6.4  Pulsed-Field Gel Electrophoresis

PFGE is a genotyping method for evaluation of total chromosomal DNA digested 
by restriction enzymes based on the pulsed-periodic reorientation of electrophoretic 
fields on an agarose gel, allowing a clear separation of DNA fragments of various 
sizes (from kb to Mb) [42, 43]. Clonal assignment of bacteria evaluated by PFGE is 
based on fingerprinting or banding patterns, and the number of different bands 
between two isolates can be correlated to the number of genetic events that led to 
their differentiation over time. Interpretation of results can be done visually (for 
instance, using the criteria established by [43]) or by using dedicated software such 
as BioNumerics (Applied Maths).

PFGE has long been considered the gold standard method for subtyping several 
microorganisms [42] and is especially useful to address short-term evolutionary 
questions. For pneumococcus, the most commonly used restriction enzyme is SmaI, 
and PFGE was one of the first widely used subtyping methods, revealing that certain 
drug-resistant pneumococcal clones were distributed worldwide [44]. Along with 
other characteristics, these findings culminated in the establishment of the PMEN as 
mentioned above.

PFGE, however, is laborious and time-consuming. Over time, faster and more 
practical approaches such as MLST have replaced PFGE as the method of choice 
for molecular typing of pneumococcal isolates.

6.5  Multilocus Sequence Typing

MLST is a genotyping method that has been consistently applied in molecular epi-
demiology and population structure and evolution of different organisms, especially 
pathogenic bacteria. MLST usually employs sequencing of seven genomically 
unlinked housekeeping genes that are then compared to previously identified 
sequences (or alleles). Identical sequences correspond to the same allele, designated 
by a number. The seven-number (or allelic) profile derived from the alleles assigned 
for each of the seven loci is then used to designate the sequence type (ST). MLST 
data are portable and available on online databases (https://pubmlst.org/). STs can 
be grouped into clonal complexes (CC), which typically include clones that share 
five or six alleles [45]. An MLST scheme for S. pneumoniae was developed in 1998 
using internal fragments (about 500  bp) of seven housekeeping genes [46]. 
Alternative MLST primers that provide slightly larger fragments for five of the 
seven loci can be found at the CDC website (https://www.cdc.gov/streplab/pneumo-
coccus/resources.html). Over 15,000 STs have already been described and are 
deposited at the S. pneumoniae MLST database (https://pubmlst.org/spneumoniae/). 
MLST can also be predicted from WGS data directly at https://pubmlst.org/ or in 
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websites and pipelines that use allele sequence and profile data obtained from the 
PubMLST database, such as the Center for Genomic Epidemiology (https://cge.cbs.
dtu.dk/services/MLST/) and the CDC pneumococcal typing pipeline.

Different algorithms such as eBURST and minimum spanning tree have been 
widely used to analyze MLST data. eBURST is an online version of the based upon 
related sequence types (BURST) clustering algorithm [47]. The original BURST 
algorithm has been adapted for use as a plug-in for the BIGSdb database software 
[48]. An optimized version termed global optimal eBURST (goeBURST) was 
developed to identify alternative patterns of descent [49] and is available at http://
www.phyloviz.net/goeburst/.

By eBURST, strains related to each other by sharing at least six of seven loci, 
designated single-locus variant, can be easily connected to create a clonal group. In 
addition, eBURST is able to predict the founding genotype within a group. In turn, 
goeBURST allows for the creation of groups with double-locus variant (DLV) and 
triple-locus variant STs. This algorithm has proved to be a powerful tool for pneu-
mococcal surveillance purposes, allowing for simple resolution of epidemiologi-
cally important CCs [5].

MLST combined with capsular type determination has allowed the research 
community to understand the dynamics of pneumococcal population genetic struc-
ture, especially following PCV implementation. It is also an effective means by 
which serotype switching can be identified and traced [50].

Several MLST-based studies have allowed for insightful analysis of population 
genetic structure, revealing clonal emergence and expansion within individual sero-
types, associated with carriage and disease. In addition, carriage surveillance stud-
ies are frequently conducted to measure PCV effects in a given population, since 
invasive pneumococcal isolates are not easily recovered from clinical specimens 
and colonization is an important step for the development of pneumococcal diseases 
and transmission of the microorganism.

For example, the emergence of multidrug-resistant (MDR) serotype 19A strains 
as a major IPD cause in all age groups has been largely documented in countries 
following seven-valent PCV (PCV7) or ten-valent PCV (PCV10) introduction [51]. 
MLST analyses have revealed that the major lineage associated with the emerging 
MDR serotype 19A strains in Brazil, Colombia, and the United States was 
CC320/27119A [8, 52, 53]. ST320 is a DLV of ST236, known as the PMEN clone 
Taiwan19F-14, suggesting the occurrence of capsular switching. In Europe, however, 
CC230, which includes the PMEN clone Denmark14–32-ST230, had already been 
identified as the major MDR serotype 19A lineage causing IPD before vaccine 
introduction but increased after PCV7 use [54]. These data reinforce the importance 
of surveillance programs in different geographical settings.

In some countries where the 13-valent PCV (PCV13) replaced PCV7, frequency 
of serotype 19A IPD has already been declining. However, other serotypes are 
likely to continue emerging, as additional serotypes are included in new vaccine 
formulations targeting the polysaccharide capsule. Ongoing surveillance is, there-
fore, warranted, and MLST or ideally WGS analyses will be important to under-
stand the dynamics of the ongoing changes.
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6.6  Whole-Genome Sequencing

The size of S. pneumoniae genome is approximately 2.0 Mb [55]. As mentioned 
above, WGS provide information that can be used to deduce serotype and MLST. The 
CDC pneumococcal typing pipeline also provides WGS-based identification of 
pilus islet type (PI-1 and PI-2) and resistance to beta-lactam and 11 non-beta-lactam 
antimicrobial agents. Through PBP 1a, 2b, and 2x sequence analysis, it can also 
predict minimum inhibitory concentration (MIC) to six beta-lactam agents, includ-
ing penicillin, amoxicillin, meropenem, cefotaxime, ceftriaxone, and cefurox-
ime [41].

Furthermore, advances in NGS have been allowing researchers to perform com-
parative genomics and investigate the pneumococcal population dynamics in greater 
detail. The identification of single-nucleotide polymorphisms (SNPs) across the iso-
lates can be highly informative and reveal evolutionary relationships. Two different 
strategies have been used: whole-genome SNP (wgSNP) and core genome SNP 
(cgSNP). Analysis of core genome appears to be more suitable for surveillance and 
phylogenetic purposes since it compares single-copy genes present in all genomes 
of a given species.

SNP analysis, however, considers each point mutation as a single evolutionary 
event. To overcome this issue, the allelic variation concept of MLST, in which inser-
tion, deletion, and recombination in multiple loci are considered unique evolution-
ary events, has been applied to the whole-genome level, which seems biologically 
more relevant. MLST-based approaches for comparative genomics include, for 
instance, whole-genome MLST (wgMLST) and core genome MLST (cgMLST). 
Both analyses provide higher resolution for strain characterization than the classical 
MLST scheme since more than a thousand loci are examined. The wgMLST 
approach analyzes a greater number of genes and maximizes the resolution but may 
also include highly variable elements such as repetitive genes and pseudogenes 
[56]. In contrast, cgMLST possesses higher epidemiological relevance and stability. 
A cgMLST scheme for S. pneumoniae, consisting of alleles from 1360 loci, was 
recently developed and is available in the PubMLST database. In addition, this data-
base also hosts a collection of over 9000 published pneumococcal genomes within 
the PubMLST Pneumococcal Genome Library (https://pubmlst.org/spneu-
moniae/; [48]).

Core genome analysis is the most widely used approach to assess the phyloge-
netic relationship and population structure of pneumococcal strains. An interesting 
approach to evaluate population genomics of post-PCV changes in pneumococcal 
carriage epidemiology in the United States involved phylogeny and population clus-
tering using maximum likelihood and Bayesian analyses based on SNPs in 1194 
core genes. Isolates were classified into 22 sequence clusters (SCs), which had sig-
nificantly different recombination rates. In addition, the evolution of the pneumo-
coccal population following PCV7 introduction was primarily driven by changes in 
the frequency of distinct genotypes extant before vaccine implementation [55, 57].

Another group used a set of 1160 core genes to generate a cgSNP-based tree and 
demonstrated that unencapsulated strains isolated from epidemic conjunctivitis 
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outbreaks belong to a diverse pneumococcal lineage (SC12), designated as the epi-
demic conjunctivitis cluster [2].

Recently, the Global Pneumococcal Sequencing (GPS) project was created to 
assist worldwide comparisons focusing on the pneumococcal evolution in the PCV 
era. The GPS project is the largest pneumococcal genomic surveillance study, and 
over 13,000 genomes are publicly available (http://www.pneumogen.net/gps/). To 
standardize genomic definition of pneumococcal lineages and provide a global 
understanding of pneumococcal population, 621 Global Pneumococcal Sequence 
Clusters (GPSCs) have been defined and can be assigned to any pneumococcal 
genomic dataset, providing important information on serotype distribution, antimi-
crobial resistance, and invasiveness [58].

6.7  Concluding Remarks and Future Perspectives

Molecular typing of bacterial pathogens is essential for studying the epidemiology 
of diseases associated, and many of such typing schemes have been applied for 
pneumococcus over the years. In addition to providing insights into clonal spread, 
infection transmission, and evolutionary changes, molecular typing of pneumococ-
cal isolates has been crucial for assessing the impact of pneumococcal vaccines. 
However, many of the most recent techniques are still inaccessible for many labora-
tories in LMIC due to the high cost associated and the requirement of technical 
expertise, hindering the gather of robust global information on pneumococci. Thus, 
the current challenge in molecular typing of pneumococcus is to develop a fast, 
accurate, reproducible, and widely accessible method. Limitations and disadvan-
tages of current typing methods have been fostering the development of many 
promising alternative proposals, such as those based on proteomic-based method-
ologies. In addition, the advent of more cost-effective WGS platforms has signifi-
cantly expanded our knowledge on pneumococcal epidemiology, and may be in a 
near future the new “gold standard” molecular typing approach for pneumococcus.

6.8  Summary

Streptococcus pneumoniae is a major pathogen associated with several invasive and 
noninvasive diseases, especially community-acquired pneumonia. Different selec-
tive factors have been driving pneumococcal epidemiology and evolution, including 
antibiotic use and the introduction of pneumococcal conjugate vaccines. In this 
chapter, we will approach molecular typing methods that have been widely used to 
characterize this species and to understand the changes in the epidemiology of 
pneumococcal infections and the dynamics of the evolution of pneumococcal 
population.
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7Neisseria gonorrhoeae
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7.1  Introduction

Neisseria gonorrhoeae is a human intracellular pathogen, the etiological agent of 
sexually transmitted infection (STI) gonorrhea. This microorganism infects the host 
mucous membranes, such as the oropharynx, conjunctiva, urethra, cervix, and rec-
tum. In male patients, gonorrhea symptoms are associated with urethritis and puru-
lent discharge; in contrast, in female patients, most cases are asymptomatic, which 
may lead to complications such as pelvic inflammatory disease (PID), infertility, 
and disseminated gonococcal infection (DGI) [1, 2].

Neisseria gonorrhoeae has become a worldwide health problem due to its ability 
to accumulate resistance mechanisms, mostly chromosomal. Currently, the World 
Health Organization (WHO) recommends dual therapy with ceftriaxone and 
azithromycin for the treatment of genital, anorectal, and oropharyngeal gonococcal 
infections [3]. However, the emergence of resistance to these drugs raises concerns. 
N. gonorrhoeae presently integrates the list of urgent threat pathogens of the CDC, 
which estimates 1.14 million infections per year in the United States, being 550,000 
of these infections caused by resistant gonococci [4–6].

Diagnosis of infections caused by N. gonorrhoeae is often clinical, based on 
symptomatology, but laboratory diagnosis may be necessary to confirm the etiologi-
cal agent, since Chlamydia trachomatis may cause similar diseases. Classical phe-
notyping techniques such as culture and antibiogram contribute to the detection of 
the microorganism and correct use of antimicrobial therapy, which is crucial to pre-
vent the selection of new resistant strains.
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7.2  Laboratory Diagnosis of N. gonorrhoeae

Culture and isolation of the microorganism is the most common strategy to diagnose 
gonorrhea. Specimen collection varies according to the site of infection, patient age, 
and gender, making use of specific swabs or, in some cases, urine. Collected swabs 
must be placed in a swab transport medium or inoculated in culture medium imme-
diately after sampling. N. gonorrhoeae is a fastidious bacterium; thus, enriched 
media such as chocolate agar or modified Thayer Martin (MTM) agar must be used. 
MTM is particularly recommended for the isolation of N. gonorrhoeae because it 
contains not only the nutrients to support the growth of the isolates but also antibiot-
ics (vancomycin, colistin, trimethoprim, and nystatin) that inhibit the growth of 
commensal bacteria and fungi. Optimal growth conditions are 35–37 °C in a moist 
3–7% CO2-enriched atmosphere. Better recovery rates are achieved by early incu-
bation in this environment, but this time depends on the transport methodology 
adopted. Other methods used to identify gonococci in clinical specimens are nucleic 
acid amplification tests (NAATs) [7–9].

Many different NAATs to detect N. gonorrhoeae have been developed, including 
amplification methods such as PCR, quantitative PCR (qPCR), real-time quantitative 
PCR (RT-qPCR), ligase chain reaction (LCR), transcription-mediated amplification 
(TMA), and strand displacement amplification (SDA), in conventional  protocols 
or commercial rapid tests. These tests also differ in the nucleic acid sequences used 
as a target; sequence part of the opa genes, 16S rRNA, a chromosomal pilin gene- 
inverting protein homolog, and a direct repeat region called DR-9 have already been 
used. Most commercial NAATs are able to identify the occurrence of N. gonor-
rhoeae in vaginal and endocervical swabs from women, urethral swabs from men, 
and first catch urine from both men and women [8, 10]. Moreover, some NAATs 
were designed to detect resistance mechanisms [11–13].

The application of NAATs has reduced the use of culture to identify N. gonor-
rhoeae of clinical samples. NAATs can detect the bacteria even when the cells 
are no longer viable and are frequently used to investigate the disease in non- 
symptomatic women. In this sense, according to CDC, its application is cost- 
effective, preventing sequelae due to these infections [8, 10, 14].

7.3  Evaluation of the Susceptibility to Antimicrobials

The antimicrobial susceptibility test for N. gonorrhoeae is performed in agar base 
GC with 1% defined growth supplement (supplement VX) [15]. Breakpoints for 
penicillin (PEN), tetracycline (TET), ciprofloxacin (CIP), spectinomycin (SPT), 
azithromycin (AZM), and ceftriaxone (CRO), among other drugs, are available for 
disk-diffusion and minimum inhibitory concentration (MIC), the last possibly exe-
cuted by gradient methods such as Etest® and MICE®, or agar dilution. Besides 
being used as a reference to evaluate susceptibility, MIC values may also indicate 
the occurrence of highly impacting resistance mechanisms. Currently, EUCAST 
and CLSI recognize isolates with MIC >1  μg/mL as non-wild-type (WT) or 
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non- susceptible (S) to azithromycin, respectively. Regarding ceftriaxone, the cutoff 
value adopted varies slightly; EUCAST considers isolates with MIC >0.125 μg/mL 
as resistant, and CLSI considers isolates with MIC ≤0.25  μg/L as susceptible 
[15, 16].

The antimicrobial resistance mechanisms in gonococcal strains are mostly chro-
mosomal encoded, such as alterations in the porin B structure or overexpression of 
the efflux pump MtrCDE (reduces the susceptibility to PEN, TET, AZM, and CRO), 
mutations in GyrA and ParC (confers resistance to CIP), mutations in 23S rRNA 
(confers resistance to AZM), and mosaic structure in the PenA peptidyl transferase, 
with or without additional point mutations (confers resistance to CRO). Moreover, 
plasmids that carry the beta-lactamase bla-TEM1 gene (Asia, Africa, Nimes, New 
Zealand, Rio/Toronto, Johannesburg, and Australia) or the gene tetM, encoding a 
ribosome protective protein (American and Dutch), increase MICs of PEN and TET 
to resistance levels, respectively [5, 6, 17]. Molecular resistance mechanisms in 
gonococcus may be identified by nucleic acid amplification tests (NAATs) or 
genome sequencing.

7.4  Molecular Typing of N. gonorrhoeae

Surveillance studies for N. gonorrhoeae are conducted in several countries around 
the world, mainly because the therapy is usually prescribed based on protocols, and 
it is necessary to monitor the emergence and dissemination of multidrug-resistant 
strains. In this context, typing methods are highly relevant, providing data that can 
discriminate the isolates, enabling the recognizing of antimicrobial-resistant or 
well-succeeded lineages. For these analyses, it is possible to use gel-based typing 
techniques, such as pulsed-field gel electrophoresis (PFGE), opa typing, and multi-
locus variable-number tandem repeat analysis (MLVA); strategies based on gene 
sequencing, as multilocus sequence typing (MLST), Neisseria gonorrhoeae mul-
tiantigen sequence typing (NG-MAST), and Neisseria gonorrhoeae sequence typ-
ing for antimicrobial resistance (NG-STAR); or sequencing of the complete genome. 
Generally, for surveillance purposes, molecular typing is associated with epidemio-
logical and phenotypic data.

7.4.1  Pulsed-Field Gel Electrophoresis (PFGE)

The PFGE method is based on the use of rare cutting endonucleases (such as XbaI, 
NheI, BgIII, and SpeI), which produces larger fragments of the genome [18]. These 
enzymes are used to treat an agarose plug containing lysed whole cells of the micro-
organisms. After this preparation, the plugs are inserted into an agarose gel, which 
is placed in particular electrophoresis equipment that emits electrical pulses in dif-
ferent orientations throughout the running process (PFGE equipment). The band 
profiles generated on the gel are called pulsotypes and may be analyzed by compari-
son. PFGE is appropriate for analysis of isolates prepared strictly in the same way, 

7 Neisseria gonorrhoeae



158

which makes the comparison of results from different studies or workgroups 
challenging [19]. For gonococci, PFGE presents good data congruence, especially 
when combined with other techniques, such as NG-MAST [20, 21].

7.4.2  Opa Test

Opa proteins consist of a family of outer membrane proteins that interact with the 
host cells and undergo phase variation during infection [22]. Opa test is based on the 
amplification of 11 opa genes (opaA–opaK), followed by digestion with a restric-
tion enzyme (TaqI) resulting in different band profiles on a polyacrylamide gel [23, 
24]. This method is highly discriminatory when applied to gonococci, and results do 
not suffer alterations with the phase variation process; however, a significant disad-
vantage is the difficulty of analyzing the electrophoretic profiles and correlating 
data with other laboratories [25]. Overall, it is more applicable for microepidemiol-
ogy purposes, such as characterization of clusters in a specific geographic region, 
identification of transmissions by sexual networks, and studies of cases suspicious 
of reinfection or mixed infections [26].

7.4.3  Multilocus Variable-Number Tandem Repeat 
Analysis (MLVA)

MLVA is a molecular typing technique based on the analysis of variable-number 
tandem repeat (VNTR) of multiple loci in the genome, using amplification and elec-
trophoresis as methods. The comparison of MLVA profiles can be visualized in 
minimum spanning trees, which enables this method for epidemiological purposes. 
This technique is considered very discriminatory for Neisseria meningitidis, which 
motivated its adaptation to gonococci, with five loci of VNTR [27, 28]. MLVA has 
not been extensively used, but offers high discriminatory power also for N. gonor-
rhoeae, and can be used as a sub-typing methodology for isolates that have similar 
PFGE profiles in a strategy that does not require sequencing of alleles. Similar to 
opa test, it is applicable for typing a defined, somehow correlated, collection of 
isolates.

7.4.4  Multilocus Sequence Typing (MLST)

The MLST method for genus Neisseria was first developed for Neisseria meningiti-
dis, applying seven housekeeping genes present in the chromosome of this species 
(abcZ, adk, aroE, fumC, gdh, pdhC, and pgm) selected due to their low variation 
throughout the evolutionary process. Later, the same scheme was adopted for 
N. gonorrhoeae. Target sequences of approximately 500 bp of the selected genes 
are sequenced, and based on their identity, alleles receive arbitrary numbers. After 
analyzing the entire multilocus profile, the combinations of the arbitrary number 
attributed to each of the seven alleles give origin to a sequence type (ST) [29].
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The MLST database (https://pubmlst.org/neisseria) reiterates that STs can be 
grouped into clonal complexes, according to their similarity to a central genotype. 
In the genus Neisseria, STs are arranged in a clonal complex when four or more 
allele sequences are similar to those of the central genotype [30]. MLST website 
also provides the Bacterial Isolate Genome Sequence database (BIGSdb) software, 
which allows comparison studies based on whole-genome sequences with reference 
strains (FA1090 and NCCP11945) [31].

MLST is widely used in surveillance studies in Neisseria gonorrhoeae with 
focus on antimicrobial resistance. Typing through this technique has allowed the 
detection of worldwide relevant STs. For instance, ST-1901 is related to critical 
resistance profiles to third-generation cephalosporins, due to the frequent occur-
rence of the penA mosaic gene in these strains. Ceftriaxone-resistant N. gonor-
rhoeae strains belonging to ST-1901 were described in France and Spain [32, 33], 
and reduced susceptibility to third-generation cephalosporins was reported in iso-
lates of the same ST in different parts of the world, including European countries, 
Japan, the United States, and Brazil [34–37]. Other STs identified associated with 
ceftriaxone resistance were ST-7363 in Japan and Australia [38, 39] and ST-1903 in 
Japan and Canada [40, 41].

Thus, MLST for N. gonorrhoeae is useful to correlate phenotypic and genotypic 
data from strains, allowing better traceability in surveillance studies. Since it is 
based on conserved genes, it is also a reliable strategy to evaluate the evolu-
tion of STs.

7.4.5  Neisseria gonorrhoeae Multiantigen Sequence Typing 
(NG-MAST)

NG-MAST is based on the analysis of internal and hyper-variant regions of genes 
porB and tbpB, which respectively encode an outer membrane porin and the beta 
subunit of a transferrin-binding protein. Forward and reverse reactions are per-
formed for each gene, resulting in fragments of 737 bp and 589 bp for porB and 
tbpB, respectively. After sequencing, sequences must undergo quality control, with 
trimming and alignment of the sequences with a preserved region pre-established by 
the technique (por, TTGAA, 490 bp, and tbpB, CGTCTGAA, 390 bp) [42, 43].

NG-MAST has been integrated to the online platform of PubMLST for analysis 
and attribution of  NG-MAST-STs to uploaded sequences  (https://pubmlst.org/). 
Currently, more than 19,000 NG-MAST STs have been assigned, which represents 
the approximate data of 11,403 alleles of porB and 2895 of tbpB, that keep increas-
ing. porB is generally more variable than tbpB and is considered to be responsible 
for the high discriminatory power of NG-MAST [35, 43].

Indeed, NG-MAST may be used to subtyping isolates assigned in the same 
MLST-ST for a more precise epidemiologic analysis [35, 44–46]. NG-MAST is 
also a simple sequencing-based method to be combined with PFGE, improving the 
identification of pulsotypes [26]. However, it is noteworthy that when compared 
with whole-genome sequence (WGS) data, the same NG-MAST-ST may be identi-
fied in not correlated isolates [45, 46].
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7.4.6  Neisseria gonorrhoeae Sequence Typing for Antimicrobial 
Resistance (NG-STAR)

Neisseria gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) 
is a molecular typing technique based on the molecular resistance profile of N. gon-
orrhoeae. Considering that antimicrobial resistance in N. gonorrhoeae is deter-
mined mostly by chromosomal mutations and is strongly associated with specific 
clones, NG-STAR can be an excellent tool for typing isolates and screening of 
relevant clones from an epidemiological perspective.

NG-STAR performs molecular typing based on the alleles of chromosomal genes 
related to antimicrobial resistance (penA, mtrR, porB, ponA, gyrA, parC, 23S 
rRNA), through analysis of the presence of specific mutations. The database and 
NG-STAR website (https://ngstar.canada.ca) is hosted by the Public Health Agency 
of Canada, National Microbiology Laboratory [47].

The inference of an NG-STAR-ST follows the same logic of MLST and 
NG-MAST assignments, after submission of the sequences of the seven selected 
genes. It is possible to send the data in a multi-FASTA file or to upload the complete 
genome. NG-STAR can also be accessed by PubMLST, through BIGSdb (https://
pubmlst.org/bigsdb?db=pubmlst_neisseria_seqdef), which allows more complete 
analysis of the isolates.

If after a preliminary analysis an NG-STAR type is not assigned due to the iden-
tification of alleles not previously reported, by the submission of a new allele, the 
user may enter additional information such as date and country of isolation of the 
bacteria, age and gender of the patient, presence or absence of a beta-lactamase 
gene, and antimicrobial resistance profile of the isolate, including MIC values for 
penicillin, cefixime, ceftriaxone, ciprofloxacin, azithromycin, spectinomycin, and 
tetracycline. It is also possible to add epidemiological information regarding the 
isolate. NG-STAR database has increased considerably in the last 2 years. When it 
was released in 2017, there were 215 STs, contrasting with the current 3893 STs.

The correlation of NG-STAR with other typing methodologies such as MLST and 
NG-MAST can be of great value for surveillance studies, allowing the screening of 
resistant clones circulating in several countries with higher reliability. In this sense, 
NG-MAST contributes to a more comprehensive epidemiological study, adding to 
other typing methods information associated with phenotypic aspects of gonococci.

7.4.7  Whole-Genome Sequencing Typing

Whole-genome sequencing (WGS) typing offers higher resolution than other 
molecular typing techniques based on selected genes such as MLST, NG-MAST, 
and NG-STAR. Complex studies related to phylogeny can be performed with WGS, 
using the analysis of single-nucleotide polymorphism (SNPs) or Bayesian analysis 
strategies, which can be performed with softwares like Parsnp, RAxML, and 
BEAST.  Finally, it is also possible to apply genome mapping methodologies 
adopting N. gonorrhoeae reference strains as a basis for comparison. WGS data 
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may be used to typify isolates by MLST, NG-MAST, and NG-STAR, as well as to 
identify chromosomal and plasmidial resistance mechanisms [48–52].

7.5  Conclusion

Neisseria gonorrhoeae is a microorganism with high genetic plasticity, mainly due 
to the presence of DNA uptake sequences (DUS) in its genome, which allows the 
exchange of genetic material during all phases of its growth [53], and also due to the 
absence of a CRISPR-Cas9 system, which helps to remove exogenous genetic 
material received [54]. Such plasticity makes molecular typing of this species chal-
lenging and raises attention to the fact that typing methods must be continuously 
evaluated and, if necessary, updated.

MLST, NG-MAST, and NG-STAR are very efficient in discriminating isolates 
based on housekeeping genes, hyper-variant regions of selected genes, or genes 
associated with antimicrobial resistance, respectively, and may be used complemen-
tarily. However, especially in studies aimed at surveillance of significant collections 
of isolates, the use of WGS can be of great value. From the analysis of sequenced 
genomes, it is possible not only to compare the strains in detailed phylogenetic trees 
but also to typify them by such methodologies based on alleles. Moreover, sequences 
uploaded in open-access databases enable the comparison of isolates obtained in 
different studies. Thus, WGS data aids in better discrimination of strains, as well as 
improves the monitoring of multidrug-resistant lineages circulating in the world. 
However, the high costs of WGS and the necessity of specialized professionals to 
perform the data analysis required may represent drawbacks for the adoption of 
WGS as a typing method in many studies.

Molecular methods based on electrophoretic profiles or gene sequencing are 
available for N. gonorrhoeae typing. Laboratories may elect a typing method con-
sidering the infrastructure and resources available. All typing strategies are valuable 
when results are correctly interpreted, respecting the limits of the applied technique. 
Still, in all and any study resembling typing of N. gonorrhoeae, composing a repre-
sentative collection of isolates is frequently more challenging than performing typ-
ing itself. Thus, efforts to facilitate the collection of strains in remote regions or 
low-income countries, ideally associated with epidemiological data, are necessary 
to improve the N. gonorrhoeae global surveillance.

7.6  Summary

Neisseria gonorrhoeae is the etiological agent of gonorrhea, a sexually transmitted 
infection. This microorganism is considered a worldwide health problem due to its 
ability to accumulate resistance mechanisms to different antimicrobial agents, 
including those currently recommended by the WHO to treat gonorrhea. Molecular 
typing of N. gonorrhoeae makes possible surveillance projects focused on epide-
miological aspects or antimicrobial resistance. Whereas some techniques are useful 
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to characterize well-defined collections of isolates, like the opa test and PFGE, oth-
ers, such as MLST and WGS analysis, can recognize internationally distributed 
clones, which are usually involved with the spread of resistance. This chapter pres-
ents the rationale, applicability, and limitations of several methods developed for 
N. gonorrhoeae typing, providing bases for choosing strategies according to the 
purpose of each study and leading proper interpretation of the results obtained.
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8.1  Introduction

Streptococcus agalactiae or group B streptococcus (GBS) is a gram-positive patho-
biont carrying the Lancefield group B polysaccharide antigen. It is an asymptomatic 
colonizer of the gastrointestinal and genitourinary tracts of up to 30% of healthy 
pregnant women [1]. GBS has emerged in the early 1930s as a veterinary pathogen 
and a frequent cause of bovine mastitis [2]. In 1938, the first human cases due to 
GBS were reported [3]. In the 1960s [4], GBS has been reported to cause severe 
perinatal infections, and since then, GBS remained a leading neonatal pathogen 
[5–7]. GBS diseases are divided into early-onset infections (EOD) which develop in 
the first week of life and late-onset infections which appear between 7 days after 
birth and 3 months of age (LOD). EOD usually manifest as sepsis and pneumonia 
and LOD as meningitis. Maternal carriage is a principal risk factor for GBS vertical 
transmission during birth [1, 8].

The current guidelines released by the Centers for Disease Control and Prevention 
(CDC) recommend intrapartum antibiotic prophylaxis (IAP) for positive carriers to 
prevent perinatal GBS disease [1]. The guidelines include a universal culture-based 
screening approach for pregnant women at 35–37 weeks of gestation in order to 
limit unnecessary IAP. The active implementation of the IAP program has resulted 
in a significant decline in neonatal mortality and morbidity [1, 9]. Despite being 
harmless to healthy women, GBS is also responsible for serious invasive and nonin-
vasive infections in pregnant women such as meningitis, endocarditis, osteomyeli-
tis, amnionitis, bacteriuria, endometritis, cellulitis, and fasciitis. In addition, GBS 
can cause severe invasive infections in elderly and immunocompromised patients 
with underlying disease such as HIV, cancer, and diabetes [7, 10–14].
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Proper IAP to the targeted risk group and successful treatment of GBS disease 
require carefully adapted detection protocols for GBS in clinical samples. The basic 
protocol released by CDC [1] includes selective enrichment broth cultures for clini-
cal samples prior to detection using different microbiological techniques. Several 
microbiological options are available for GBS detection and identification. These 
include blood agar, Granada-type media, chromogenic media, CAMP test, serologi-
cal testing, identification with soft ionization and mass spectrometry (MALDI-TOF 
MS), hybridization methods, and molecular-based methods.

8.2  Laboratory Detection of GBS

8.2.1  Timing of GBS Screening and Specimen Collection

The timing of specimen collection is of great importance as GBS colonization status 
is dynamic and can change during pregnancy. GBS colonization status early in preg-
nancy cannot be used as a proxy for intrapartum colonization. Hence, prenatal GBS 
culture in the late third trimester (≤5 weeks before delivery) is preferable to earlier 
trimesters [1, 15, 16]. Swabbing both the vagina and rectum increases GBS culture 
yield compared to the vagina or cervix alone without the rectum [1, 17–21]. 
Therefore, the current CDC guidelines recommend vaginal-rectal screening speci-
mens at 35–37 weeks of pregnancy [1]. When immediate laboratory processing is 
not possible, swabs should be kept in an appropriate transport medium, such as 
Amies or Stuart medium at 4 °C for up to 4 days. The GBS culture yield declines 
significantly at room temperature over time [1, 22–24].

8.2.2  Selective Enrichment

Direct agar plating alone results in missing about 50% of positive GBS colonizers, 
and their cultures are reported as false-negative carriers. Selective enrichment of 
collected swabs leads to a substantial increase in GBS detection [6, 25–27]. The 
commercially available selective culture broths are Lim broth (Todd-Hewitt broth 
supplemented with 10 μg/ml colistin and 15 μg/ml nalidixic acid) and TransVag 
broth (Todd-Hewitt broth supplemented with 8 μg/ml gentamicin and 15 μg/ml nali-
dixic acid) [6]. These broths are usually available without blood. However, the 
recovery of GBS from selective enrichment broth can be increased by the addition 
of 5% sheep blood, e.g., Baker broth (Todd-Hewitt broth with 8 μg/ml gentamicin, 
15 μg/ml nalidixic acid, and 5% sheep blood) [26]. It is noteworthy that Lim broth 
is preferable for selective enrichment. In contrary to TransVag broth where the 
absence of blood was reported to inhibit GBS growth, Lim broth has superior ability 
to inhibit gram-negative bacteria and promote GBS growth even without blood [27].

On the other hand, false-negative GBS carriage due to competitive growth inhi-
bition by Enterococcus faecalis in selective broth [28] can be avoided by inoculat-
ing swabs on an adequate plating medium in addition to the selective enrichment 
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broth such as blood agar or selective blood agar (neomycin-nalidixic acid agar 
[NNA] or colistin-nalidixic acid agar [CNA]), Granada agar, or chromogenic agar. 
Once GBS colonies are detected on the agar, parallel selective broth cultures can be 
discarded [6, 29].

8.2.3  Presumptive Identification

GBS strains are gram-positive cocci arranged in pairs or chains and show large 
colonies (3–4 mm in diameter) on defibrinated sheep blood agar. Most isolates are 
beta-hemolytic with a narrow zone of hemolysis. Separated beta-hemolytic colonies 
demonstrate a characteristic ring-like zone of hemolysis [30–32]. A small percent of 
human GBS (2–5%) are nonhemolytic [1, 6].

Almost all GBS [6, 33, 34] are positive for CAMP (Christie, Atkins, Munch- 
Petersen) test [35]. Up to 98% of GBS are CAMP-positive [30]. CAMP is a cyto-
lytic toxin which has the ability to lyse sheep erythrocytes, producing a unique 
synergistic zone of hemolysis when treated with sphingomyelinase (the staphylo-
coccal beta-lysin). A characteristic arrowhead zone of hemolysis is formed when 
streaking a GBS strain perpendicular to a streak of a strain of beta- lysin-producing 
Staphylococcus aureus on sheep blood agar. The arrowhead zone appears adjacent 
to the point where the two streaks come into proximity [34, 36]. Both beta- hemolytic 
and nonhemolytic strains are positive for the CAMP factor encoded by the cfp gene 
which is mainly used for the molecular detection of GBS [33].

GBS has the ability to produce carotenoid pigmented colonies when grown 
anaerobically on Granada-type media. These are starch-rich media where starch 
initiates the production of granadaene (red-orange pigment) with the aid of metho-
trexate and Bacto Proteose Peptone N3 (BD) [6, 37–39]. All beta-hemolytic strains 
of GBS produce pigmented colonies on Granada-type media [40]. The formulation 
was developed by de la Rosa et al. in 1992 [37]. Anaerobic incubation is necessary 
when culturing GBS on Granada agar and not in Granada broth (ChromID Granada 
Biphasic from bioMérieux or Strep B Carrot broth from Hardy Diagnostics) [6]. 
GBS also produce orange pigmented colonies under anaerobic conditions on GBS 
agar (Islam) [41] marketed by Oxoid and described by Islam in 1977 [42]. This 
medium lacks methotrexate, and pigmentation can be enhanced with trimethoprim 
and sulfonamides. No other streptococcal species produce granadaene; hence, it can 
be considered as specific single-step identification of beta-hemolytic GBS [6, 40] 
whereas nonhemolytic GBS do not produce the orange pigment [43]. However, 
nonhemolytic and nonpigmented GBS strains may not be potentially pathogenic 
and mostly have a bovine origin. That is why Granada-type media cannot be used in 
veterinary diagnostic settings for GBS [40].

GBS detection can also be achieved using commercially available chromogenic 
media such as Brilliance GBS (Oxoid), ChromID Strepto B (bioMérieux), StrepB 
Select (Bio-Rad), and CHROMagar StrepB (CHROMagar). These media are incu-
bated in the dark under normal atmospheric conditions. Anaerobic incubation ham-
pers the development of the colored GBS colonies. However, chromogenic media 
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are neither 100% specific nor 100% sensitive, and further confirmatory tests are 
required for reliable identification of GBS [6].

Furthermore, GBS can hydrolyze hippurate producing glycine which is easily 
detected by ninhydrin [44]. Benzoic acid is a second by-product due to hippurate 
hydrolysis and can be detected by ferric chloride [41]. Hippurate hydrolysis test is 
fast and easy to perform. However, due to low specificity, it is unreliable in GBS 
detection [41]. In addition, GBS can be distinguished from other beta-hemolytic 
streptococci such as S. pyogenes, S. porcinus, and beta-hemolytic enterococci by a 
negative pyrrolidonyl arylamidase (PYR) test, while the formers are PYR-positive 
[6, 45, 46]. Alternatively, commercially available biochemical profiling kits such as 
the RapID STR system and API Rapid Strep identification system manufactured by 
bioMérieux and Remel, respectively, can be used for GBS identification with high 
accuracy [6].

8.2.4  Serological Methods

Identification of GBS by agglutination with the Lancefield group B antigen is 
widely used for routine diagnostic purposes. It was first established by Lancefield 
and Hare in the 1930s for the identification and grouping of beta-hemolytic strepto-
cocci [47]. It is based on group-specific serological reactions with the carbohydrate 
antigens of the cell wall of streptococci. Commercial streptococcal latex grouping 
kits or coagglutination tests (containing nonviable staphylococci coated with a 
group-specific hyperimmune antiserum) are available where positive agglutination 
reactions show clumping of the latex particles or staphylococcal cells [6]. Direct 
latex agglutination testing on selective enrichment broths rather than pure cultures 
has shown acceptable sensitivity and was sometimes preferred for fast turnaround 
times and less workload [28, 48].

8.2.5  Matrix-Assisted Laser Desorption Ionization-Time- of- 
Flight Mass Spectrometry (MALDI-TOF MS)

More recently matrix-assisted laser desorption ionization-time-of-flight mass spec-
trometry (MALDI-TOF MS) has become available for GBS identification [49]. It is 
an emerging technique for bacterial identification to the species level within few 
minutes [50]. It is based on the analysis of the protein profiles using soft ionization 
methods. Results are visualized as spectra in the region between 2 and 20  kDa 
which are then matched with a database of known spectra. For automated analysis, 
raw data are processed with special software (MALDI Biotyper software, Bruker 
Daltonique, France) [49, 51, 52]. The maximum matching score value is 3. Scores 
≥2.0 are reliable for bacterial identification to the species level [49]. It should be 
noted that the accuracy of this method is mainly dependent on the reference data-
base which is carefully designed using strains representing the major phylogenetic 
lineages that represent the species under test [49]. The main advantages of 
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MALDI-TOF MS are speed and accuracy [49, 51, 52]. The MALDI-TOF MS tech-
nology has been adopted in many laboratories as a fast and powerful tool for bacte-
rial identification [53]. It is expected to replace traditional phenotypic methods in 
the near future.

Lartigue et al. (2009) [49] correctly identified 110 GBS isolates using MALDI- 
TOF MS showing 100% accuracy. The isolates were further characterized by sero-
typing and multilocus sequence typing (MLST). Interestingly, the authors observed 
significant variations in the score values according to serotypes and MLST types. 
The highest scores (≥ 2.3) were significantly obtained for serotype III compared to 
other serotypes and for MLST type 23 (ST23) compared to other STs. Binghuai 
et al. (2014) [51] used MALDI-TOF MS to confirm the identification of putative 
GBS colonies obtained on the chromogenic ChromID Strepto B agar (STRB). They 
recommended STRB combined with MALDI-TOF MS as a fast, sensitive, and 
accurate method for the identification of GBS carriers among pregnant women. 
However, one of the major limitations of the MALDI-TOF MS technology is that it 
still cannot be used for direct detection of GBS in clinical samples. Mixed cultures 
are also inappropriate for MALDI-TOF MS analysis, and identification is mostly 
restricted to pure isolates where an adequate number of pure colonies under test is 
required for a satisfactory mass spectrum [50].

8.2.6  Hybridization-Based Methods

The most commonly used hybridization kit for GBS identification is the Gen-Probe 
Accuprobe Group B Streptococcus culture identification kit [1, 30]. It is a non- 
amplified nucleic acid amplification test. It is based on a hybridization reaction of a 
chemiluminescent-labeled single-stranded DNA probe with a complementary 
rRNA strand of GBS for positive GBS cultures. The chemiluminescence of labeled 
DNA-rRNA hybrids is measured in a Gen-PROBE laminator [30]. The test has an 
acceptable sensitivity with a shorter turnaround time than traditional culture [54].

8.2.7  Nucleic Acid Amplification Tests (NAAT)

The CAMP factor gene cfb [33] and the scpB gene [55] were the first amplification 
candidates for GBS PCRs. Today, several gene targets have been developed and 
evaluated for GBS identification [6]. The US Food and Drug Administration (FDA) 
has approved a number of nucleic acid-based tests, which are commercially avail-
able, for GBS detection directly from clinical specimens or after selective broth 
enrichment, and three of these are available as fully automated real-time PCR sys-
tems for intrapartum GBS detection such as the SmartCycler and Xpert Technology 
(Cepheid), the Illumigene system (Meridian Bioscience), and the BD MAX system 
(Becton, Dickinson) [6]. Nucleic acid amplification tests (NAATs) demonstrate 
both higher sensitivities and rapid turnaround times compared to culture methods 
[56]. However, NAATs lack antibiogram results which are required in case of 
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penicillin allergy. According to the CDC guidelines, the usefulness of NAATs may 
be restricted for women at term with unknown GBS colonization status. Besides, 
when used for antenatal GBS screening, NAATs are recommended to be preceded 
with selective enrichment cultures for better detection results [1]. Couturier and 
coworkers investigated the effect of the period of selective broth enrichment on the 
sensitivities of three FDA-cleared NAATs. A selective enrichment incubation period 
of 18–24 hours provided optimal sensitivities for GBS detection in comparison to 
periods of 4–8 hours [56].

8.3  Molecular Typing Methods

Several techniques have been described for characterizing GBS and classifying 
strains for epidemiological purposes, and each tool provides a certain level of data 
in the context of epidemiological surveillance. These include capsular polysaccha-
ride serotyping, surface protein-based typing, pulsed-field gel electrophoresis 
(PFGE), multilocus sequence typing (MLST), multilocus variable-number tandem- 
repeat assay (MLVA), and clustered regularly interspaced short palindromic repeats 
(CRISPR).

8.3.1  Capsular Polysaccharide Serotyping

GBS strains can be classified into ten distinct serotypes (Ia, Ib, II–IX) based on the 
sialic acid-rich capsular polysaccharide (CPS) [57, 58]. The most common pheno-
typic methods for capsular typing are serological methods based on Lancefield cap-
illary precipitation or latex agglutination using commercially available kits [59, 60]. 
However, such methods are not reliable enough and always result in a percentage of 
non-typeability (NT) or serotyping errors due to variable or poor capsule expression 
which differs between GBS strains particularly bovine isolates which usually lack 
CPS [60]. Various genotypic protocols have been described for molecular capsular 
serotyping such as PCR and sequencing [61], PCR and DNA dot blot hybridization 
[62], multiplex PCR plus reverse line blot hybridization (mPCR/RLB) [63, 64], 
PCR and subsequent restriction enzyme digestion of amplified capsular polysac-
charide genes [65], serotype-specific DNA microarray [66], and paired sets of mul-
tiplex PCRs [67]. Despite reliable molecular serotyping techniques, all these 
methods are multistep techniques. Besides, all, except mPCR/RLB developed by 
Kong et al. in 2008 [63], were introduced prior to inclusion of the most recent dis-
covered serotype IX [58]. In 2010, Imperi and colleagues [68] published a one-step 
multiplex PCR for molecular capsular typing in GBS.  Such protocol accurately 
classifies strains into all known GBS CPS from Ia to IX. In comparison to former 
protocols, this method seems to be reliable, faster, and feasible to perform with 
basic molecular biology tools.

Distribution of GBS serotypes is geographically distinct and changes over time 
[69–71]. While serotypes Ia, Ib, II, III, and V are predominant colonizers in the 
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United States and Europe [8, 72–76], serotypes VI and VIII are dominant colonizers 
among pregnant women in Japan [77, 78], serotype IV in the United Arab Emirates 
[79], serotype V in Egypt [80], and serotype VI in Malaysia [81, 82]. The new GBS 
serotype IX was first reported in Denmark in 2007 [58]. Although rarely reported, a 
recent study in Ghana [83] demonstrated serotypes VII and IX as the most common 
colonizers in pregnant women.

Invasive GBS isolates show a different serotype distribution. Serotype III is 
strongly associated with late-onset meningitis in neonates [11, 76, 84–86], and sero-
types Ia and V are associated with invasive diseases in nonpregnant adults [11, 87–
89]. Interestingly, the emergence of serotypes IV, VI, VII, and VIII has been recently 
demonstrated among both invasive and colonizing isolates [83, 85, 90–98] pointing 
out the effect of time on the serotype distribution map and highlighting the impor-
tance of continuous monitoring of the circulating GBS serotypes worldwide.

8.3.2  Surface Proteins

In addition to CPS-based typing, GBS surface proteins have been found to be useful 
epidemiological markers. Similar to CPS, they are principle virulence factors and 
confer protection against GBS infection. Combined CPS and surface protein typing 
allows grouping of GBS into lots of serovariants [99]. The C protein (Ibc) was the 
first surface protein antigen identified in GBS [99], whereas the main surface- 
anchored proteins of GBS belong to the alpha-like protein (Alp) family proteins 
which include alpha-C protein, Rib, Alp2, Alp3, Alp4, and epsilon protein (alpha- 
protein- like proteins, Alp1). These are encoded by the bca, rib, alp2, alp3, alp4, and 
epsilon/alp1 genes, respectively [100]. The Alps are dominantly expressed among 
GBS strains, while negative Alps carriers are rarely reported representing up to 10% 
of the total isolates [101].

Protein typing of GBS was originally done using C and R antisera against the 
alpha-C protein and Rib protein. Identification was done using monoclonal antibod-
ies, polyclonal antibodies, or genes by hybridization with probes. However, the anti-
sera are not specific enough for surface protein identification, and cross-reactivity 
was frequently reported [100, 102]. Molecular protocols characterizing GBS sur-
face proteins were later published. These are PCR-based including PCR and DNA 
blot hybridization, parallel PCRs for different proteins, or multiplex PCR.  The 
PCR-based protein typing is preferred over serology due to reproducibility and bet-
ter discriminatory power [100, 102].

Correlations of serotypes with surface proteins have been reported. It was 
observed that the clinically important type III strains do not express the C protein 
which is also rarely found in serotype V strains although expressed by the common 
serotypes Ia, Ib, and II [99, 100, 103]. On the other hand, significant associations 
between serotype III and Rib [99, 100] and between serotype V with Alp3 were 
reported [80, 99, 100, 102]. In general, the Rib protein was reported to be strongly 
associated with the majority of serotype III and rarely with serotype V. Other nota-
ble associations were serotype VI strains expressing the epsilon surface protein [80] 
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and serotype VIII expressing Alp3 [100]. Of course, none of the associations was 
exclusive. The same surface protein was often expressed by different serotypes, and 
vice versa, various serotypes carried the same surface protein.

8.3.3  Pulsed-Field Gel Electrophoresis (PFGE)

Pulsed-field gel electrophoresis (PFGE) is a powerful typing tool that provides 
increased discrimination in resolving bacterial strains compared to capsular typing. 
The technique is based on the analysis of chromosomal DNA restriction endonucle-
ase profiles on an agarose gel [104]. A standard protocol for performing PFGE typ-
ing of GBS isolates was first described by Fasola et al. in 1993 [105]. It involved the 
evaluation of nucleic acid digestion fragment profiles with both conventional and 
pulsed-field electrophoresis to examine the genetic relatedness and diversity in 
GBS. A modified PFGE protocol was published in 2001 by Benson and Ferrieri 
[106]. The updated method was faster reducing the workflow time from 6 to 8 days 
to 3  days. Besides, it improved the resolution power both visually and 
quantitatively.

PFGE was proposed as an alternative to capsular typing. It was assumed that 
isolates sharing similar PFGE profiles may belong to the same serotype [105, 106]. 
However, no clear correlation between PFGE patterns and the assigned serotypes 
was found. A study on 78 epidemiological unrelated invasive GBS strains reported 
different PFGE patterns within each serotype where the greatest heterogeneity was 
observed among type IV, Ia, and II strains, while serotypes Ib, III, and V were more 
homogeneous [107]. Gherardi et al. (2007) [108] demonstrated identical serotypes 
shared by isolates of different PFGE groups, and conversely, isolates within the 
same PFGE groups belonged to different serotypes. Pillai et al. (2009) [109] con-
ducted a large PFGE investigation cross-capsular patterns using 872 GBS strains 
from 152 individuals. The investigators concluded that identical PFGE patterns not 
necessarily correspond to the same serotype. They found within the same individual 
that similar PFGE profiles corresponded to the same serotypes; however, isolates 
from different individuals sharing similar PFGE profiles sometimes belonged to 
different serotypes. Hence, PFGE cannot be used as a serotype predictor of GBS 
isolates across different subjects.

Although PFGE types are difficult to compare between studies [69], the method 
is of great importance in investigating the genetic relatedness, evolutionary diver-
gence, modes of transmission, and outbreaks. Thomas-Bories and colleagues [110] 
suggested a clonal relationship between the American and French serotype V GBS 
strains as they showed indistinguishable fragment patterns from the prevalent 
American clone. Bovine GBS strains sharing the same PFGE patterns with human 
isolates were proposed to have a close relation to the human isolates as well as their 
ability to infect humans or vice versa [111]. Common fragment profiles for GBS 
strains from mother-infant pairs suggested vertical transmission and maternal colo-
nization as a principal risk factor [112, 113]. Dissimilar PFGE patterns of the same 
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serotype for GBS isolates from paired specimens of mother and infants [113] pro-
posed contamination or mixed culture infection or horizontal gene transfer. 
Likewise, indistinguishable PFGE profiles with different serotypes from the same 
individuals [114] inferred capsular switching by horizontal gene transfer of capsular 
genes [113, 114]. Investigating a mastitis outbreak in ewes, which resulted in high 
morbidity and economic losses due to diminished milk production, revealed identi-
cal PFGE profiles of the isolated GBS strains [115].

8.3.4  Multilocus Sequence Typing (MLST)

Multilocus sequence typing (MLST) was first proposed by Maiden and coworkers 
in 1998 [116] as a powerful typing tool for bacterial pathogens. MLST is similar, in 
principle, to multilocus enzyme electrophoresis (MLEE) except that allele profiles 
are defined according to multilocus sequences of housekeeping genes (usually 
seven) instead of the electrophoretic migration of their amplified gene products 
[116, 117]. MLST is an unambiguous method as it classifies bacterial strains accord-
ing to the internal fragment sequences of defined housekeeping genes. Distinct 
allele numbers are assigned for every different sequence within a bacterial species. 
Then each isolate is defined by an allelic profile or sequence type (ST) [116, 117]. 
A seven-gene MLST scheme for GBS was developed by Jones and colleagues in 
2003 [118]. The scheme was based on seven housekeeping genes adhP, atr, glcK, 
glnA, pheS, sdhA, and tkt where each isolate is designated by a seven-digit allelic 
profile. The scheme was validated using a global capsule-typed strain collection. 
Isolates with the same allelic profile are assigned to the same sequence type (ST), 
and then STs are grouped into lineages or clonal complexes (CC). A particular CC 
is named after its ancestor ST or the most prevalent ST [119]. Sequences are submit-
ted to a public MLST data base at http://www.mlst.net. Hence, the most attractive 
about MLST compared to other typing methods is that MLST is a portable epide-
miological approach where electronic data are easily compared between laborato-
ries [117].

Almost all human isolates belong to six CCs, CC1, CC10, CC17, CC19, CC23, 
and CC26, whereas the majority of the bovine GBS strains are exclusively grouped 
into CC61 and CC67 that were never demonstrated for any human isolate before 
[120, 121]. It is noteworthy that a particular ST is not restricted to a certain capsular 
serotype and GBS strains with similar ST may demonstrate different serotypes 
[118]. However, a remarkable association between certain STs and defined sero-
types was found. STs 23, 24, and 7 are dominated by serotype Ia, and STs 8, 10, and 
12 are dominated by serotype Ib [69]. Serotype II strains predominately belonged to 
ST28, and strains of ST1 are mostly presented as serotype V [69, 71]. Interestingly, 
the hypervirulent invasive serotype III mostly belongs to ST17, while the colonizing 
isolates of the same serotype correspond to STs 19 and 182 [69, 71]. Moreover, 
several reports characterized the emerging serotype IV belonging to ST196 [49, 71, 
122–125].
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8.3.5  Multilocus Variable-Number Tandem-Repeat Assay (MLVA)

Multilocus variable-number tandem-repeat analysis (MLVA) is similar in principle 
to MLST; however, MLVA is a molecular typing method that is based on the differ-
ences in variable number tandem repeats (VNTRs). Clonal-specific profiles corre-
spond to a combination of VNTR loci instead of housekeeping genes [126]. 
According to MLVA, GBS clonal-specific profiles correspond to a pattern of five 
MLVA loci SATR1 to SATR5 which are the most diverse VNTR loci in GBS as 
described by Radtke and colleagues in 2010 [127]. The five loci were selected for a 
multiplex PCR protocol followed by capillary electrophoresis for size estimation. 
The allele number corresponds to the number of repeats at each locus. MLVA was 
found to provide higher strain resolution than other typing techniques such as 
MLST, PFGE, and combined CPS-protein types. The above study conducted by 
Radtke et al. [127] involved 126 GBS strains that were classified into 70 MLVA 
types (MTs) versus 36 STs by MLST and 19 combined CPS-protein types. In addi-
tion, a four-locus MLVA using STAR1 to STAR4 still provide higher discrimination 
power than MLST and combined CPS-protein typing. The four-locus MLVA was 
proposed by the authors as a simpler method for MLVA typing as it was able to 
resolve the 126 GBS strains into 34 MLST types. Furthermore, single MLVA loci 
were found to cluster some of the MLST or CPS types as well. A number of 54 or 
55 repeats in SATR3 corresponded to ST17, 0 repeat in SATR5 corresponded to 
ST19, and 15 repeats in SATR2 corresponded to serotype IX.

Later, an updated MLVA scheme for GBS genotyping was developed by 
Haguenoer and coworkers in 2011 [128]. This used six VNTR loci (including three 
VNTR loci from those described by Radtke et  al. [127]): SAG2, SAG3, SAG4 
(SATR1), SAG7 (SATR2), SAG21 (SATR5), and SAG22. The VNTRs are ampli-
fied and visualized on agarose gel electrophoresis. The number of repeats for each 
VNTR is deduced from amplicon size, by comparison with the reference strain, for 
which the number of repeats is known. The allele number corresponds to the num-
ber of repeats. The allelic profile of a strain corresponding to the number of repeats 
at each VNTR is listed in the order SAG2, SAG3, SAG4, SAG7, SAG21, and 
SAG22. The updated scheme was found to be rapid, cheap, and easy providing 
results suitable for exchange and comparison between different laboratories world-
wide. Similar to the original protocol proposed by Radtke et al. [127], the updated 
MLVA Scheme [128] has better discriminatory power than MLST. It could resolve 
186 isolates from human and cattle into 98 MLVA types versus 51 MLST types. The 
updated scheme also correlates well with MLST in GBS [128]. The generated 
MLVA clusters were represented by major clonal complexes in MLST. The MLVA 
cluster 9 corresponded to all human strains of the CC17, and GBS isolates belong-
ing to the CC23 were clustered in two groups: CC23-type III and CC23-type Ia.

Recent epidemiological studies started the implementation of MLVA for GBS 
genotyping instead of MLST. An investigation in Brazil including 83 commensal 
GBS isolates obtained from nonpregnant women utilized MLVA in order to assess 
the genetic relatedness between strains [129]. A total of 15 MTs were found. The 
authors observed that all isolates belonging to the capsular type II were clustered in 
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MT1 and all isolates except one had an identical MT profile. Another study in preg-
nant women in Brazil resolved 41 GBS strains into 30 MTs in comparison to only 4 
capsular types, Ib, II, III, and V [130]. The most predominant MTs were MT1 and 
MT2 representing 12.2% and 9.75%, respectively. The study suggested a highly 
diverse population structure and confirmed the MLVA discriminatory power. 
Furthermore, MLVA was reported as a useful high-resolution genotyping tool for 
bovine GBS strains within and between farms where most of the GBS isolates dem-
onstrated similar MLVA patterns specific for each farm [131].

8.3.6  Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR)

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR- 
associated (Cas) proteins, which comprise the CRISPR-Cas system, are promising 
targets which can be used as unique epidemiological markers for genotypic and 
phylogenetic characterization of GBS strains [132]. The CRISPR-Cas system has a 
crucial role in the adaptive immunity of bacteria against exogenic DNA elements 
invading the bacterial genome such as bacteriophages, plasmids, and mobile genetic 
elements (MGEs). The CRISPR-based defense confers specific immunization based 
on the invading nucleic acid sequences. The CRISPR-Cas system consists of highly 
conserved 25–40  bp short direct repeats (DRs) interspaced by spacer sequences 
which are non-repetitive and similar in size. Most CRISPR arrays are sided by a 
leader sequence upstream and a trailer-end sequence downstream of the terminal 
direct repeat (TDR). Spacer acquisition is polarized. New spacer sequences derived 
from foreign DNA are inserted at the leader-end, and the leader-end DR is concomi-
tantly duplicated. This initiates the expression of the CRISPR-Cas system to pro-
duce specific proteins which target foreign DNA sequences for cleavage within the 
sequence corresponding to the spacers. Hence, trailer-end sequences represent past 
encounters and can be considered as ancestral DNA sequences [132, 133].

Up to date, two CRISPR-Cas systems have been described in GBS, type II-A 
system which is associated with the CRISPR1 locus and type I-C system that is 
associated with the CRISPR2 locus [134]. The type II-A system is found to be ubiq-
uitous and functional, whereas the type I-C system is rare and most often incom-
plete [134, 135]. Lopez-Sanchez et  al. [134] reported similarities between the 
majority of the spacer sequences of CRISPR1 and MGEs commonly found in the 
GBS genomes. Accordingly, they proposed CRISPR1 to play a role in modulating 
the GBS mobilome through maintaining and controlling the diversity of the spacer 
sequences which may contribute to the fitness of GBS in diverse environments. In 
addition, they showed CRISPR1 to be a dynamic system with extensive spacer poly-
morphism. They described CRISPR1 as a powerful means for typing, subtyping, 
and tracing of GBS strains circulating worldwide overtime with higher strain dis-
crimination ability than other systems such as MLST. Beauruelle and coworkers 
[133] used CRISPR1 to follow the vaginal carriage of GBS among 100 women over 
an 11-year period. An investigation of 126 GBS isolates belonging to 31 distinctive 
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STs by MLST classification revealed 115 unique spacer sequences according to the 
CRISPR1 locus typing system [136]. Moreover, an interesting correlation between 
CRISPR and MLST has been reported. An investigation classifying 351 GBS iso-
lates based on CRISPR1 found clones sharing the spacer 8 and spacers 45, 89, and 
373 discriminate ST1 or ST196, ST19, and ST28, respectively [134]. Furthermore, 
the hypervirulent ST17 clone was found to harbor lower number of spacers in com-
parison with other lineages using the CRISPR1 system [136].

8.3.7  Other Genotyping Techniques

PCR fingerprinting techniques such as random amplified polymorphic DNA PCR 
(RAPD-PCR), repetitive extragenic palindromic PCR (REP-PCR), and enterobac-
terial repetitive intergenic consensus PCR (ERIC-PCR) have also been described 
for GBS [137–140]. RAPD-PCR is based on amplifying arbitrary DNA fragments 
using short (9–10  bp) random primers with low stringency annealing conditions 
[141]. REP-PCR involves the use of repetitive sequence target primers that are com-
plementary to highly conserved 33  bp inverted repeat sequences in the bacterial 
genome [142]. ERIC-PCR is similar to REP-PCR; however, ERIC elements are 
126 bp long [142]. All these PCR techniques result in fingerprinting strain-specific 
band patterns by gel electrophoresis. However, as with PFGE, results of fingerprint-
ing PCRs are difficult to compare between laboratories especially if different prim-
ers are used [69].

RAPD-PCR has been used to determine vertical and horizontal GBS transmis-
sion in neonates. Brzychczy-Wloch et al. (2008) [143] demonstrated similar mother- 
infant RAPD profiles for newborns born to colonized mothers suggesting vertical 
transmission, whereas Strus et al. [144] proposed nosocomial GBS transmission for 
colonized newborns of noncolonized mothers due to identical RAPD patterns with 
isolates in other hospital wards. Moreover, Brandolini and coworkers [145] used 
RAPD assay to investigate GBS transmission through maternal breast milk. Others 
utilized RAPD to cluster GBS isolates from different anatomical sites [146]. In 
addition, GBS isolates with resistant phenotypes were successfully clustered by 
RAPD [147–151]. Furthermore, RAPD assay was also used to reveal genetic relat-
edness of unrelated GBS clones associated with some invasive infections [138, 
152]. Although having less discriminatory power than MLST and PFGE, RAPD 
results are still acceptable for genotyping GBS strains. A major advantage of RAPD 
is that it is rapid, simple, and inexpensive with satisfactory discrimination level 
between clones and good reproducibility [69].

Studies assessing REP-PCR for GBS are limited. Most of the available literature 
demonstrates REP technique for genotyping GBS from fish. Besides, Al Nakib and 
others [153] assessed the discriminatory power of the semiautomated repetitive 
sequence-based PCR DiversiLab® system (DL) rather than the original REP proto-
col to reveal the genetic relatedness of GBS clones. They compared DL with MLST 
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and PFGE in classifying invasive GBS isolates. Weak clustering coincidence of DL 
with MLST and PFGE was found suggesting DL less favorable than MLST and 
PFGE to investigate the genetic diversity in GBS. Generally, a major drawback of 
REP-PCR is its poor reproducibility and sensitivity to variations in laboratory con-
ditions [153, 154].

Similar to REP-PCR, literature utilizing ERIC-PCR for GBS genotyping is 
scarce. The usefulness of ERIC-PCR in GBS typing was first investigated by 
Dabrowska-Szponar and Galiński in 2003 [155]. Later, the genetic diversity of 86 
GBS strains was investigated by ERIC-PCR in a Chennai-based hospital in 2008 
[137]. The authors reported ERIC-PCR to be a simple, fast, and inexpensive geno-
typing method with acceptable discriminatory power when characterizing a large 
number of GBS strains.

8.4  Conclusion

Precise detection of GBS carriages is largely dependent on the sampling procedure 
with respect to timing and source. Rectovaginal screening at 35–37 weeks of preg-
nancy is highly recommended for successful implementation of the IAP program 
and prevention of invasive neonatal infections. Despite the availability of advanced 
detection techniques, traditional phenotypic methods are still preferable and being 
used worldwide as the former are expensive and require special laboratory infra-
structure. Until now no vaccine is available to protect against GBS disease; how-
ever, the running clinical trials are expected to release a vaccine that is 
serotype-specific. Hence, continuous mentoring of circulating serotype strains is of 
great importance. Serotype predominance is geographically distinct, and prevalent 
types in one area are not in another. Currently, MLST represents the most attractive 
epidemiological tool for classifying GBS strains due to the presence of a portable 
MLST database where electronic data are easily compared between laboratories.

8.5  Summary

Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of 
neonatal morbidity and mortality worldwide. It is an asymptomatic pathobiont of 
gastrointestinal and genitourinary tracts of women, and maternal colonization is a 
major risk factor for vertical transmission. The current guidelines released by the 
Centers for Disease Control and Prevention (CDC) recommend intrapartum antibi-
otic prophylaxis (IAP) for positive carriers to prevent perinatal GBS disease. GBS 
is also responsible for serious invasive and noninvasive infections in pregnant 
women and can cause severe invasive infections in elderly and immunocompro-
mised patients with underlying disease such as HIV, cancer, and diabetes. Precise 
detection of GBS carriages is largely dependent on the sampling procedure with 
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respect to timing and source. Further investigation of the circulating strains in a 
given population is crucial in tracing pathogenic clones and important in providing 
a clear epidemiology picture that helps in GBS treatment and future implementation 
of prevention strategies. This chapter presents the most important tools for GBS 
detection and identification. Traditional and modern epidemiological techniques are 
also discussed in detail.
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9.1  Introduction

Treponemes that are pathogenic for humans include the causative agents of venereal 
syphilis (Treponema pallidum subspecies pallidum) (TPA), yaws (T. pallidum 
subsp. pertenue) (TPE), bejel (T. pallidum subsp. endemicum) (TEN), and pinta 
(Treponema carateum). In addition, some treponemal species commonly found in 
the oral cavity are highly associated with periodontal diseases [1]. However, in 
terms of economic, health, and social impact, venereal syphilis (hereafter referred 
to as syphilis) outweighs any of the conditions caused by other pathogenic trepo-
nemes. Syphilis is endemic in many countries, and there’s a resurgence among 
industrialized nations. In the United States, syphilis disproportionately affects 
minority populations, and recent data from the Centers for Disease Control and 
Prevention (CDC) shows a surge in primary and secondary syphilis cases among 
gay, bisexual, and men who have sex with men (MSM) [2].

Penicillin remains effective for the treatment of infections caused by the T. pal-
lidum subspecies. Azithromycin has been used as an alternative to penicillin ther-
apy, but treatment failures associated with mutations in the 23S rRNA gene have 
been documented in TPA strains [3–5], and resistant strains have been reported in 
many countries [6–8]. Resistance to azithromycin has also been noted in TPE strains 
from Papua New Guinea [9].

In the mid-twentieth century, yaws was prevalent in the tropics; syphilis was 
endemic in Afghanistan, North Africa, southern Africa, Southwest Asia, China, and 
Europe; and pinta was reported in Mexico and Central and South America. Yaws 
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control campaigns using penicillin aluminum monostearate and benzathine penicil-
lin were very effective in reducing the prevalence of the active form of the disease 
in countries such as Haiti, Indonesia, and Jamaica. This led to the epidemiological 
concept that penicillin treatment was necessary for asymptomatic household con-
tacts and presumed latent cases in order to eliminate the reservoir of infection and 
reduce further transmission [10]. Soon after its establishment in 1948, the World 
Health Organization (WHO) initiated a worldwide campaign together with the 
United Nations Children’s Fund to control yaws in 46 countries. Consequently, 50 
million people were treated over two decades, resulting in a decrease in the preva-
lence of the disease by about 95%, but foci of the disease still remain.

Compared to the endemic treponematoses, syphilis has garnered more attention 
because of its mode of transmission, morbidity in adults, and sequelae in infants 
born to infected mothers. Syphilitic ulcers have been associated with an increased 
risk of acquisition or transmission of the human immunodeficiency virus (HIV), and 
high rates of coinfection have been documented among MSM [11–14]. Syphilis 
rates peaked in western countries around World War II with a subsequent sharp 
decline in rates that coincided with the widespread use of penicillin for treatment. 
Syphilis rates have been on the rise in the past two decades, and novel tools are still 
needed to diagnose, treat, manage, and curb the rising numbers of syphilis cases in 
the United States and globally [15].

The lack of an in vitro cultivation system for T. pallidum, until very recently 
when a culture method was developed by Edmondson et al. [16], and the inability to 
genetically manipulate the bacterium are obstacles to elucidation of virulence fac-
tors involved in the pathogenesis of T. pallidum. In addition, the complex natural 
history of syphilis and the stigma associated with the infection have made epide-
miological studies of this pathogen challenging. Most studies have focused on syph-
ilis, so this chapter places emphasis on genotyping or genetic characterization of 
TPA, but advances made with the strain typing of the causative agent of yaws are 
also discussed.

9.2  Characteristics and Classification of Treponema

Members of the genus Treponema belong to the family Spirochaetaceae and have a 
unique cell structure, with the cell envelope consisting of an outer membrane, a 
peptidoglycan layer, an inner membrane, and a characteristic number of flagellar 
filaments located in the periplasmic space. The shape of the organism is often 
described as helical, coiled, or serpentine and exhibits a characteristic “corkscrew” 
motility in liquid media. Treponemal cells typically range in length from 5 to 20 μm 
and between 0.1 and 0.5  μm in diameter and are visualized best by dark-field 
microscopy. Treponemes are poorly stained by the amine dyes and, given their rela-
tively narrow cell dimensions, are a challenge to detect using standard light 
microscopes.

The genus Treponema has a diverse group of organisms which include patho-
genic or commensal microbial flora of humans, animals, and insects. These 
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organisms are also found in environmental sites such as contaminated aquifers. 
Bacterial species belonging to this genus are typically anaerobic and are host-asso-
ciated, and a few are known to be pathogenic for humans. Of the pathogenic trepo-
nemes, the etiologic agent of syphilis (TPA) is the most frequently studied and 
comprises of approximately 70% proteins, 20% lipids, and 5% carbohydrates. The 
lipid composition of T. pallidum is complex and is comprised mainly of phospholip-
ids (cardiolipin) and a poorly characterized glycolipid [17]. Another two very 
closely related human pathogens, TPE and TEN are responsible for yaws and bejel, 
respectively. T. carateum causes pinta, and while related to T. pallidum, it was 
placed in a separate species owing to the lack of genetic information. Treponema 
paraluiscuniculi causes venereal syphilis in rabbits and is closely related to the etio-
logic agents of yaws, bejel, and venereal syphilis in humans [18, 19]. Due to simi-
larities among the pathogenic T. pallidum subsp. in terms of disease manifestation 
and progression (typically painless skin lesions, spontaneous healing, asymptom-
atic periods, chronicity) and inability to differentiate them on the basis of morpho-
logic, antigenic, biochemical, or serological criteria, diagnosis has relied on a 
combination of geographic location, transmission route, clinical presentation, and 
serological tests [17]. However, molecular methods or tests are now available that 
can differentiate among the subspecies [20–22].

Treponemes found in oral cavities include Treponema denticola, Treponema vin-
centii, Treponema pectinovorum, Treponema medium, Treponema amylovorum, 
Treponema maltophilum, and Treponema socranski and have been shown to be 
associated with gingivitis and eventual progression to periodontitis or with persis-
tent periodontitis [19, 23]. Treponema refringens and Treponema phagedenis are 
commensals found in the genital tract of humans. Other species belonging to the 
genus Treponema, such as Treponema succinifaciens, Treponema bryantii, and 
Treponema primitia, have been isolated from the intestine of horses, the rumen of 
cows, and the hindgut of termites, respectively. Of the human-associated spiro-
chetes, Treponema refringens, Treponema phagedenis, Treponema denticola, and 
several other oral spirochetes can be cultured on artificial culture media. In contrast, 
TPA is primarily propagated through intratesticular inoculation of rabbit testes due 
to reproducibility, viability, and contamination issues noted for in  vitro culture 
methods over decades of research. Recent studies show promise for sustained prop-
agation of laboratory and clinical TPA isolates using a defined culture medium [16].

9.3  Epidemiology and Clinical Significance

9.3.1  Epidemiology

Current epidemiological data on the endemic treponematoses is difficult to obtain 
since most countries no longer collect data as a part of routine surveillance, owing 
in part to the stigma of underdevelopment associated with these diseases [24, 25]. 
The prevalence of yaws is common in Western or Central Africa, Southeast Asia, 
and Pacific Islands. Bejel is reported in Sahelian Africa and Saudi Arabia, and pinta 
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is found in Central and South America [26]. Data from the WHO spanning 1950 to 
2016 showed 99 countries and territories are endemic for yaws, 22 for bejel, and 19 
for pinta [25]. Only 15 countries have current data on yaws derived from routine 
surveillance systems. A WHO initiative to eliminate yaws globally by 2030 is cur-
rently underway [27].

Based on global sexually transmitted infection (STI) surveillance data from 
2018, there were an estimated six million new cases of syphilis reported worldwide, 
of which 1.6–1.7 cases per 1000 population were recorded for syphilis (men and 
women) and 473 cases per 100,000 live births for congenital syphilis suggesting a 
huge burden of TPA relative to other STIs [28]. Syphilis is endemic in many devel-
oping countries, while industrialized nations are characterized by low-level trans-
mission and sporadic outbreaks. In the United States, syphilis rates were on the 
decline from 1990, when the crack cocaine epidemic reached a nadir; however, 
since 2000 and 2001, the trend has reversed. The majority of cases have been 
reported among men, suggesting that the spread of the disease was occurring mainly 
among MSM. This increase in syphilis is characterized by high rates of HIV coin-
fection, high-risk sexual behaviors, and recreational drug use. Recent CDC surveil-
lance data for syphilis showed an increase in syphilis cases among men and women 
between 2017 and 2018 in the United States, with MSM accounting for the majority 
of primary and secondary syphilis cases [29]. During 2018, the total number of 
syphilis cases for all stages including congenital syphilis was 115,045. The highest 
rates of primary and secondary syphilis were noted among black men aged 25–29 in 
the United States. The rate of congenital syphilis in the United States has also 
increased significantly, reflecting a 185% increase relative to 2014. Syphilis is also 
on the rise in Australia, Canada, China, and Western European countries [30].

9.3.2  Clinical Significance

Endemic treponematoses are transmitted through skin-to-skin contact, affecting the 
skin and bone, and often occurs among children under 15 years of age or infre-
quently in adults [26]. In addition, bejel can also be transmitted via mucous mem-
branes and using contaminated utensils or drinking vessels, and the disease affects 
the oral and nasal mucosae and bone. Primary lesions normally appear on extremi-
ties (lower extremities in yaws) or, on rare occasion, on the oral mucosa as in the 
case of bejel. Untreated endemic treponematoses leads to a variety of late complica-
tions including destructive osteitis, saddle nose, and deterioration of the palate and 
nasal septum as evident in yaws and bejel and depigmented lesions over hands, 
wrists, elbows, ankles, and feet in pinta cases [26].

Syphilis exhibits a variety of clinical manifestations and may affect multiple 
body organs. An invasive infection of syphilis can be divided into distinct stages: 
primary, secondary, latent, and tertiary syphilis. Primary syphilis is usually charac-
terized by the presence of a solitary chancre, a painless ulcer that begins in most 
instances as a papule at the site of inoculation; however, some patients do present 
with multiple lesions. Extragenital lesions have been reported to occur but are less 
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frequent and tend to be painful compared to lesions in genital areas. The primary 
lesion usually appears 10–90 days postinfection with an average of 3 weeks. Typical 
primary syphilitic lesions appear in the genital area with bilateral inguinal lymph-
adenopathy observed in most individuals. The disease is systemic following initial 
infection, and 30% of untreated primary syphilis cases present with multiple sec-
ondary lesions of the skin or mucous membranes.

Secondary syphilis typically appears 6–8 weeks after the appearance of a pri-
mary chancre. It is characterized by evanescent macular rash followed by symmet-
ric papular eruption, which occurs on the entire trunk and the extremities including 
the palms of the hand and soles of the feet. Condylomata lata, which are raised, 
whitish, or gray lesions, are frequently observed in warm, moist areas such as the 
vulva or perianal region. Other symptoms include generalized lymphadenopathy, 
fever or malaise, sore throat, headache, and weight loss [31]. In about 30% of 
patients, primary lesions are still present when secondary manifestations appear. 
TPA invades the central nervous system (CNS) in at least 40% of secondary syphilis 
cases [32].

The secondary and tertiary stages are separated by a prolonged period of latency, 
which is characterized by a lack of clinical signs and symptoms of disease and posi-
tive serological test results. A presumptive diagnosis can be made based on reactive 
nontreponemal and treponemal tests with no history of prior treatment or, in the 
case of treatment, a fourfold increase in nontreponemal test titer [33]. The latent 
stage is separated into early or late latent phases depending on their approximate 
duration postinfection. The symptoms of late syphilis usually appear 10–20 years 
after initial infection, affecting any organ in the body and occurring in approxi-
mately a third of patient cases that fail to receive appropriate treatment [33]. Late or 
tertiary syphilis is also divided into neurosyphilis, cardiovascular syphilis, and late 
benign syphilis. Except for neurosyphilis, late benign syphilis is relatively uncom-
mon these days most probably as a result of inadvertent treatment of syphilis with 
treponemocidal antibiotics. In the pre-antibiotic era, about a third of patients with 
untreated syphilis developed tertiary disease, which manifested as neurosyphilis, 
gummas, or cardiovascular disease. Late neurosyphilis, which usually occurs in 15 
to 20% of patients, presents as paresis, tabes dorsalis, or meningovascular syphilis; 
however, some patients may have asymptomatic disease with cerebrospinal fluid 
(CSF) abnormalities such as pleocytosis, elevated protein levels, and a positive 
Venereal Diseases Research Laboratory (VDRL)-CSF test. Diagnosis of tertiary 
syphilis is based on a combination of clinical history, serological tests, examination 
of chest radiographs for suspected cardiovascular syphilis, and long bone radio-
graphs to detect bony gummas. Concomitant HIV infection has an impact on neuro-
logic involvement in syphilis, and several studies have documented the rapid 
progression from early syphilis to neurosyphilis characterized by meningitis or cra-
nial nerve defects. In settings where both endemic treponematoses and venereal 
syphilis are prevalent, disease history, clinical presentation, and serological test 
results are important considerations for patient management.

Congenital syphilis occurs when TPA enters the fetal circulation by transplacen-
tal passage from an infected mother and can lead to stillbirth, early fetal death, 
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premature delivery, low birthweight, neonatal death, and infection in infants [34]. 
Clinical signs of congenital syphilis include hepatosplenomegaly, cutaneous lesions, 
osteochondritis, and snuffles. About 50% of infants with congenital syphilis are 
asymptomatic at birth; however, teeth and bone malformation, deafness, blindness, 
and learning disabilities may develop later. In order to ensure effective prevention 
and detection of congenital syphilis, the CDC recommends that women are screened 
for syphilis during early pregnancy, beginning with the first prenatal visit, subse-
quent testing at 28 weeks of gestation and again at delivery for women who are at 
increased risk or live in communities with a high syphilis prevalence rate [35].

9.4  Laboratory Diagnosis

The diagnosis of treponematoses is dependent on clinical presentation, knowledge 
of geographic and epidemiological factors, and results of diagnostic tests. Laboratory 
tests are essential for confirmation of clinical findings and can be performed using 
direct detection methods or more commonly serological tests. The advances made 
with molecular techniques allow T. pallidum to be differentiated at the subspecies 
level using specific genetic signatures. Molecular methods such as PCR are also 
useful in identifying early infection when a lesion is present but antibodies are not 
yet detectable. Details on the laboratory methods used for the diagnosis of trepone-
matoses with an emphasis on syphilis are described in this section, together with the 
utility and limitations of currently available diagnostic procedures.

9.4.1  Serological Methods

The laboratory diagnosis of syphilis is challenging, owing to the varied clinical 
manifestations and, in some cases, the difficulty in obtaining adequate or appropri-
ate specimens for testing. Serological tests are the most commonly used diagnostic 
methods for syphilis, though venereal syphilis cannot be differentiated from non- 
venereal treponematoses based on serology alone. Serological methods can be 
grouped into nontreponemal and treponemal test types. The VDRL slide test, rapid 
plasma reagin (RPR), unheated serum reagin (USR), and toluidine red unheated 
serum test (TRUST) represent the nontreponemal group of tests that detect all 
classes of antibodies to cardiolipin, lecithin, and cholesterol in serum or plasma. 
One of the limitations of nontreponemal test is that it may yield a reactive result due 
to autoimmune conditions, HIV, malaria, injection drug use, or old age, thus requir-
ing a need for reflex testing with a treponemal test, which detects antibodies specific 
to T. pallidum. Treponemal assays include the fluorescent treponemal antibody 
absorption (FTA-ABS), T. pallidum hemagglutination assay (TPHA), T. pallidum 
particle agglutination assay (TPPA), enzyme immunosorbent assays (EIAs), chemi-
luminescent immunoassays (CIA), and line immunoassays (LIA) that detect anti-
body to whole bacterium or surface-exposed T. pallidum proteins. Automated EIAs 
and CIAs are being increasingly used in high-volume laboratories due to their 
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potential to improve workflow efficiency. In addition, treponemal tests have been 
described to show higher sensitivity for treponemal antibody detection especially 
for primary and latent stage syphilis cases [36]. The FTA-ABS was commonly used 
in the past but less common these days because of its poor sensitivity for primary 
syphilis [36], requirement for fluorescence microscopy equipment and reagents, 
and complexity of testing and result interpretation which require highly trained per-
sonnel. The TPHA has been largely replaced by TP-PA. However, the use of trepo-
nemal tests as a diagnostic method also has limitations. Treponemal tests cannot 
distinguish among the pathogenic treponemal species [37], and treponemal antibod-
ies typically remain detectable for life even in successful treatment, limiting its use 
for treatment monitoring. Follow-up testing with a quantitative nontreponemal test 
is a well-established approach for measuring syphilis treatment efficacy.

In the United States, traditional and reverse sequence screening algorithms are 
frequently used for syphilis diagnosis. The traditional algorithm begins by screen-
ing with a nontreponemal test, and if reactive, followed by testing with a treponemal 
test. The reverse sequence algorithm begins with a treponemal test, and if reactive, 
followed by nontreponemal testing. A reflex testing with TPPA is recommended 
when nontreponemal test results are discordant with the treponemal test results. The 
reverse algorithm is being increasingly used in current testing practices [38]. Of 
note, the European Centre for Disease Prevention and Control (ECDC) uses a dif-
ferent approach that begins with a treponemal test, and if reactive, followed by 
another treponemal assay (different than the first treponemal test used in this screen-
ing algorithm). The reactive result of the second treponemal tests is reflexed with a 
quantitative RPR to monitor treatment response. Both reverse and ECDC algorithms 
were evaluated in low syphilis prevalence populations and were described to have 
comparable performance for syphilis screening [39]. An analysis of all three algo-
rithms by Tong et  al. showed lower sensitivity of the traditional algorithm and 
higher diagnostic efficacy for reverse and ECDC algorithms in high-prevalence 
populations [40].

Delayed seroreactivity and false-negative serological results have been reported 
in patients coinfected with HIV, but it is relatively uncommon, and the vast majority 
of patients can be accurately and reliably diagnosed with serological tests in con-
junction with clinical evaluation [41].

In addition to serum antibody detection, serological assays are also used to aid in 
the diagnosis of neurosyphilis with the CSF-VDRL test most commonly used on 
CSF specimens [37, 42]. False-negative results may occur with the CSF-VDRL test, 
in which case an FTA-ABS test can be used since the latter test is highly sensitive 
although it lacks specificity. CSF-TPPA test has also been described for neurosyphi-
lis with a titer ≥1:640 shown to identify patients with neurosyphilis when CSF- 
VDRL was nonreactive [42, 43]. Additional studies are needed to determine the 
efficacy of treponemal tests for the diagnosis of neurosyphilis using CSF. The per-
formance characteristics of various serology tests have been described [44].

In contrast to standard serology assays that must be performed in a laboratory 
setting, rapid point-of-care tests that detect either treponemal or nontreponemal 
antibodies or both are currently in use for syphilis and endemic treponematoses at 
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the point of care or settings with limited resources [45–47]. The Syphilis Health 
Check is the only FDA-cleared rapid test in the United States and shows comparable 
performance to traditional serological assays [48]. Several other rapid syphilis tests 
are available and have gone through quality evaluations such as CE Mark, WHO 
Prequalification, or Brazilian National Health Surveillance Agency (ANVISA). 
Some rapid tests are also available with an automated reader or can be paired with 
smartphones, which eliminates the subjectivity of test interpretation [49]. Rapid 
tests are beneficial in outreach and point-of-care settings and will improve access to 
syphilis testing throughout the world.

9.4.2  Direct Detection Methods

Treponemes cannot be observed with an ordinary light microscope due to their nar-
row width; therefore, a microscope equipped with a dark-field condenser is required. 
Dark-field microscopy (DF) is useful to detect TPA in moist lesions of primary and 
secondary (e.g., ulcerative lesions and condyloma lata). The sensitivity of DF com-
pared to clinical findings and PCR or serology varies between 75% and 100% for 
primary syphilis and 58% and 71% for secondary syphilis [50–55]. DF is not rec-
ommended for oral lesions since the morphology of other treponemes such as 
T. denticola is indistinguishable from T. pallidum. The test cannot differentiate 
among the three T. pallidum subspecies. It is also not recommended for testing 
lymph node aspirate, cerebrospinal fluid (CSF), or other body fluids. A major 
advantage of DF is that it can be performed in a peripheral clinic with a very short 
wait time. However, the DF technique has some limitations in that it must be per-
formed within 20 minutes of specimen collection because it relies on observation of 
motile treponemes. Immunostaining is based on the direct fluorescent antibody test 
for T. pallidum (DFA-TP) and is used on the same specimen as DF except that the 
material on the slide is left to air dry for 15 minutes and fixative applied prior to 
staining [56]. The H9–1 monoclonal antibody is specific for pathogenic T. pallidum; 
therefore, the test can be used on oral lesions. Immunofluorescent detection is no 
longer available in the United States since monoclonal and polyclonal antibodies 
are not FDA-cleared and have not been validated for clinical diagnostic testing or 
quality control is not performed routinely. Immunohistochemistry (IHC) and silver 
staining are used to stain and examine tissue biopsies from the brain, placenta, 
umbilical cord, or skin from secondary, tertiary, or congenital syphilis; however, the 
sensitivity of silver staining is poor due to the difficulty with distinguishing spiro-
chetes from reticulum fibers and artifacts in tissue samples.

9.4.3  Molecular-Based Methods

A number of PCR assays have been described in the literature for the detection of 
TPA; however, the majority of studies use either polA or tpn47 as target genes [53, 
57–59]. Multiplex PCR (MPCR) assays that detect causative agents of genital ulcer 
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disease (GUD), which include TPA, H. ducreyi, and Herpes simplex virus 1 and 2, 
have also been developed [44]. PCR has not been widely adopted for clinical use, 
and serological tests remain the mainstay for diagnosis of syphilis. There are no 
FDA-cleared nucleic acid amplification tests (NAATs) for TPA in the United States. 
Quest Diagnostics (Secaucus, New Jersey) offers a laboratory-developed, CLIA 
(Clinical Laboratory Improvement Amendments)-regulated real-time PCR test for 
TPA for use on CSF, whole blood, serum, or a genital swab. Two commercial com-
panies offer CE Mark MPCR tests for use in Europe, Seegene (Seoul, South Korea) 
markets the Allplex Genital Ulcer Assay that detects seven pathogens [HSV-1 and 
HSV-2, H. ducreyi, TPA, lymphogranuloma venereum (LGV), cytomegalovirus 
(CMV), varicella-zoster virus (VZV)], and SpeeDx (Sydney, Australia) markets the 
PlexPCR® VHS assay that detects HSV-1 and HSV-2, TPA, varicella-zoster virus 
(VZV). PCR is most useful for exudative lesions of primary syphilis with a sensitiv-
ity ranging from 72% to 95% [53, 57–62]. The sensitivity of PCR on secondary 
lesions ranges from 20% to 86% with the higher sensitivity reflecting detection of 
TPA in moist lesions (i.e., mucous patches, condylomata lata) [53, 57–62]. PCR can 
be used on tissue biopsies from secondary syphilis provided samples are tested soon 
after collection or frozen immediately if testing will be performed at a later time 
[51, 63]. Yang and colleagues found that 40% of MSM patients with secondary 
syphilis did not present with oral ulcers but tested positive by PCR on oral swabs 
[59]. PCR can be used on CSF as an adjunct test to confirm the diagnosis of neuro-
syphilis in symptomatic seropositive adults and amniotic fluid, neonatal CSF, or 
neonatal blood in cases of suspected congenital infection; however, a negative result 
in any of these specimens does not rule out infection [64–68]. PCR is not recom-
mended for whole blood or blood fractions due to low sensitivity. A real-time PCR 
that detects and distinguishes among the three subspecies has been developed; how-
ever, the test has missed yaws cases in the Solomon Islands due to sequence varia-
tion in the PCR primer binding sites [69]. Currently, a pan treponemal PCR based 
on either polA or tpn47 is being used for lab confirmation of yaws, but modifications 
can be made to the real-time PCR assay to allow reliable detection of TPE, or alter-
nate species-specific assays can be used.

9.5  Typing Methods

9.5.1  CDC and Enhanced CDC Typing Schemes

Prior to development of the first typing system for syphilis [70], attempts at intra-
strain and interstrain differentiation of the three T. pallidum subsp. (pallidum, 
pertenue, and endemicum) using phenotypic methods such as protein profiles [71], 
lectin agglutination patterns [72], or serotyping system using monoclonal antibod-
ies raised against TPA proved unsuccessful [73]. In addition, attempts at molecular 
differentiation identified point mutations in several genetic loci, but these differ-
ences were insufficient for strain typing [18, 74]. The first typing system was based 
on PCR-restriction fragment length polymorphism (RFLP) analysis of the 
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treponemal repeat protein (tpr) genes and determination of the number of 60 bp 
repeats within the acidic repeat protein (arp) gene [70, 75] and is known as the CDC 
typing (CDCT) method. The typing system has since been enhanced by inclusion of 
a subtyping method which incorporates sequence analysis of a variable region in a 
hypothetical protein gene (tp0548) and is referred to as the enhanced CDC typing 
(ECDCT) method [76]. A second subtyping method which involves determining the 
number of guanine mononucleotide repeats (MNRs) in the ribosomal protein S1 
gene (rpsA) gene (tp0279) has since been added to ECDCT method to create a four- 
component typing system (Fig. 9.1).

The first component of the typing system involves nested PCR amplification of 
an approximately 1.8 kb region of subfamily II (E, G, J) of the tpr genes using prim-
ers B1 FP, 5’ACTGGCTCTGCCACACTTGA3’/A2 RP, 5’CTACCAGGAGAGG 
GTGACGC3’, and IP6 FP, 5’CAGGTTTTGCCGTTAAGC3’/IP7 RP, 5’AATC 
AAGGGAGAATACCGTC3’, followed by restriction digestion with MseI and anal-
ysis of fragment sizes by agarose gel electrophoresis or on an automated instrument 
such as a TapeStation 4200 (Agilent Technologies, Palo Alto, CA). The second 
component is PCR amplification of a 60 bp repeat region of the arp gene with prim-
ers N1 FP (5’ATCTTTGCCGTCCCGTGTGC3’) and N2 RP (5’CCGAGT 
GGGATGGCTGCTTC3’) and determining the number of repeats, which have been 
shown to vary from 3 to 25, except 21 and 24 repeats have not been reported [63, 70, 
75, 77–83]. The third component of the typing system entails PCR amplification of 
an 84 bp variable region of a hypothetical protein gene (tp0548) using primers FP2 
(5’ GGTCCCTATGATATCGTGTTCG3’) and RP2 (5’GTCATGGATCTGCGA 
GTGG3’), and subtypes are assigned a lowercase letter of the alphabet [76, 84]. The 

Fig. 9.1 Schematic diagram of the Treponema pallidum typing system showing the CDC, ECDC, 
and four-component typing methods
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fourth component of the typing system involves PCR amplification and sequencing of 
an MNR within the rpsA gene using primers 220I (5’GCGCCCCAGACCCGCTCT3’) 
and 220 J (5’GAGCGATGATCACGGTCCCCAT3’). Five repeat sizes (8, 9, 10, 11, 
12) have been reported to date [78]. A strain type is designated based on a combina-
tion of the number of 60 bp repeats, the RFLP pattern of the tpr genes, number of G 
residues within rpsA, and sequence pattern within tp0548. For example, a TPA 
strain with type 14d9g has 14 60 bp repeats, the d RFLP pattern, and 9 G repeats, 
and sequence pattern g.

The ECDCT method which incorporates tpr/arp/tp0548 has been applied in a 
number of studies, and more than 30 strain types have been described worldwide 
with 14d/f, 14d/g, and 14f/f being the predominate types [76, 79, 84–92]. Because 
the majority of strains fall into a few types worldwide with 14d being the most com-
mon, the rpsA subtyping method was introduced in an attempt to further character-
ize strains. Adding this component to ECDCT appears to have marginally increased 
the discrimination of strains, but additional studies are needed to determine its use-
fulness in different settings. Although different specimen types have been used for 
typing, samples from moist primary and secondary lesions and earlobe scrapings 
have thus far produced the best results [93].

There have been many molecular epidemiological studies on syphilis using the 
CDCT or ECDCT methods, and some studies report associations between strain 
type and patient characteristics or macrolide mutations. Sutton and colleagues 
found an association between the 14f strain type and white race in Arizona [94]. A 
study in China reported differences in strain type distribution among geographical 
regions [79]. Using the SBMT method, Grillova and colleagues analyzed samples 
over a 3-year period in Czech Republic and found associations between strains 
types and patient characteristics; the SU2R8 genotype was more common among 
individuals 35 years and older and in samples from Prague; the SU5R8 genotype 
was identified only in samples from the Brno area; and the SU2R8 genotype was 
more common among MSM; and macrolide resistance strains were prevalent among 
MSM patients [95]. Marra and colleagues reported an association between 14d/f 
and neurosyphilis where 50% (21/42) of patients with this strain type had neuro-
syphilis versus 10 (24%) patients infected with any other type [76]. Zhang and col-
leagues showed that strains with the 14i/a strain type correlated with serofast status 
versus patients who were serologically cured [96]. Martin et al. found 100% (38/38) 
of strains were resistant to macrolides with most strains being type 14f [97]. The 
14d/g strain type was the dominant strain in specimens analyzed in Sydney Australia 
with 99% (91/92) harboring the macrolide-resistant mutations versus 67% (68/99) 
of non-14d/g strains [89]. A study in Japan showed an association between hetero-
sexuals and 14d/f strains and macrolide resistance [88]. In 2015, two clusters of 
ocular syphilis were reported in California and Washington raising concerns about 
a potential outbreak; however, typing revealed that multiple strain types were 
involved [98]. Because typing relies on a few target genes, there may be other 
unidentified genetic markers that may correlate with increase in ocular syphilis 
cases or other clinical phenotypes which needs further investigation. Ocular syphilis 
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cases have also been reported in other countries even prior to these reported clusters 
[99–101].

The four-component typing scheme has been applied to TPE strains collected 
from yaws patients in Ghana and Vanuatu and laboratory strains isolated from yaws 
cases in Ghana, Indonesia, and the Republic of the Congo with 22 strain types found 
among 44 fully typed strains [102]. Interestingly, only two tpr RFLP patterns were 
observed among strains from multiple geographic origins, and arp repeats varied 
from 2 to 12, whereas in TPA the vast majority of strains have 14 repeats. In addi-
tion, for MNRs in tp0279, most strains had 11 or 12 repeats, whereas 9 repeats are 
common in TPA strains. Bejel is usually found in semiarid regions, but there have 
been two reports in Cuba and Japan suggesting sexual transmission of TEN [103, 
104] and other reports of imported cases from endemic areas [105–107]. Although 
the ECDC typing system has been widely used for over two decades, it is evident 
that the method is labor-intensive and difficulties have been reported with amplifica-
tion or stability of the arp and tpr E/G/J loci in clinical specimens resulting in 
inconsistent results with the number of arp repeats or RFLP patterns of the tpr 
E/G/J loci in samples from the same patient [81, 108]. These difficulties may arise 
from a combination of low abundance of genomic DNA in specimens resulting in 
either nontypeable samples or possible preferential amplification of the tpr genes 
resulting in aberrant RFLP patterns or differences in genotypes between lesion 
swabs and blood possible due to immunological differences between skin and blood 
compartments.

9.5.2  Sequence-Based Molecular Typing

The first sequence-based molecular typing (SBMT) method was introduced in 2006 
and is based on three targets: tp0136, tp0548, and 23S rRNA for strain typing [109]. 
The SBMT typing method was shown to further discriminate strains especially the 
14d strain type identified by the CDCT method. Antibiotic resistance mutations 
may not be stable targets for strain typing because mutations may appear due to 
antibiotic pressure, but resistance markers may not correlate with the background 
genome [84].

9.5.3  Multilocus Sequence Typing

Multilocus sequence typing (MLST) is usually based on PCR amplification and 
sequencing of 450–500  bp internal fragments of 7 housekeeping genes by the 
Sanger method. An MLST method for TPA was recently described by Grillova and 
colleagues, which targets three genetic loci (tp0136, tp0548, tp0705) [110]. Two of 
the three genes were first used in the SBMT method, while tp0548 sequencing is 
common to all typing methods (SBMT, CDCT, ECDCT, MLST), but MLST 
includes a much larger fragment (1095 bp) for tp0548 compared to the ECDCT 
method. The PCR primers used for MLST are shown in Table 9.1. The TPA MLST 
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scheme is based on allelic profiles that are assigned a three-letter code (e.g., 1.2.1), 
where the first number corresponds to the tp0136 allele, the second number to 
tp0548, and the third to tp0705. Allelic profiles 1.1.1 and 1.3.1 have been identified 
as the predominant MLST profiles in strains from Cuba, Czech Republic, France, 
and Switzerland [110–112], and based on previous sequence analysis of tp0136 and 
tp0548 [113], these strains belong to the SS14 clade. The allelic profile 1.3.1 [110, 
111, 114] and 1.26.1 [111] were shown to be associated with the A2058G mutation 
that confers macrolide resistance, while the A2059G mutation and macrolide sus-
ceptibility were associated with allelic variants 1.1.3 and 1.1.8, respectively [111]. 
Overall, MLST was shown to be more discriminatory than the previously described 
typing methods, and the 14d/g strain type was differentiated into 5 allelic profiles; 
however, more studies are needed to show its utility for studying the molecular epi-
demiology of syphilis. The TPA MLST database can be found at https://pubmlst.
org/tpallidum/.

An MLST method has been described for TPE that utilizes tp0136, tp0548, and 
tp0326 for strain characterization [115]. The PCR primers used for typing are shown 
in Table 9.2. Using this typing scheme, 7 MLST types (JG8, SE7, TG8, TD6, TG6, 
SD6, JD8) were identified among 194 specimens from children with yaws on Lihir 
Island in Papua New Guinea. JG8 was the predominant type observed over the 3.5- 
year study period, accounting for 82% of specimens.

9.6  Whole Genome Sequencing

Next-generation sequencing (NGS) technology continues to advance at a rapid pace 
making it possible to perform whole genome sequencing (WGS) at a fraction of the 
cost compared to two decades ago. Currently, there are about 122 published TPA 

Table 9.2 PCR primers used for MLST of T. pallidum subsp. pertenue

Gene Primer Sequence (5′-3′) PCR 
product 
size

ORF 
region 
(nt)

Source

tp0548 Sense 5’-GGTCCCTATGATATCGTGTTCG-3’ 300 130–
212

[76]
Antisense 5’-CGTTTCGGTGTGTGAGTCAT-3′
Sequencing 5’-GTCATGGATCTGCGAGTGG-3′ [115]

tp0136 Sense 5’-CCATCCAGTCGGAAGTGC-3′ 563 223–
675

[115]

Antisensea 5’-CATATCGAGAAACTGTTCGCC-3’
Antisenseb 5’-CGTGCAGGCAGAACTCATT-3’ 464
Sequencing 5’-CCATCCAGTCGGAAGTGC-3’

tp0326 Sense 5’-AAGAGCATTCGTTTCGCTCC-3’ 441 2031–
2342

[115]
Antisense 5’-CCGGACCGTAGCTCATTTTG-3’
Sequencing 5’-GACACCAAGGCCGAGTTCTA-3’

aAntisense primer for tp0136 subtypes A–F
bAntisense primer for tp0136 subtype G
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genomes [116–120], 14 for TPE [69, 121–123], and 2 for TEN [124, 125] available 
in the National Center for Biotechnology Information (NCBI) database. Published 
genomes include rabbit-passaged strains and direct sequencing of strains from clini-
cal specimens. All NGS studies for TPA used Agilent SureSelect target enrichment 
combined with Illumina-based sequencing with the exception of one study that used 
an anti-TP antibody enrichment method to describe the first whole genome sequence 
of TPA directly from a clinical specimen [126]. The first global phylogenetic analy-
sis of TPA directly from clinical specimens was described by Aurora and colleagues 
who showed that TPA strains belong to either an SS14 lineage or Nichols lineage 
and TEN and TPE strains formed a separate cluster [117]. The Nichols-like strains 
had a greater nucleotide diversity and were found mainly in North America, while 
SS14-like strains formed a genetically homogenous group (SS14-Ω cluster) and had 
a more wider geographic distribution with samples from Europe and North and 
South America. A study by Beale et al. showed that the SS14-Ω cluster could be 
further separated into two lineages composed of European and North American 
samples (SS14Ω-A) and Chinese and North American samples (SS14Ω-B) [119].
The SS14Ω-B lineage could be further separated based on origin of the samples. 
Marks and colleagues performed WGS on TPE strains obtained from yaws patients 
in the Solomon Islands located in the South Pacific and found that strains fell into 
two distinct clades and had a distinct lineage compared to previously sequenced 
laboratory strains. In addition, the TEN genomes from clinical specimens were 
highly conserved and were separated by a maximum pairwise distance of <20 SNPs. 
As WGS and target enrichment technology improve, it should provide better tools 
to study T. pallidum from clinical specimens, thus permitting a better understanding 
of the evolution and spread of the three subspecies and development of improved 
diagnostics and typing tools.

9.7  Conclusion and Future Perspectives

Although PCR has been proven for use on lesion specimens of early syphilis, serol-
ogy tests remain the mainstay for laboratory diagnosis. Unless there is a paradigm 
shift in the diagnostic approach for syphilis and clinical laboratories start to imple-
ment NAATs, particularly in the United States, these tests will continue to be unde-
rutilized. As a result of this, access to specimens for molecular surveillance or 
outbreak investigation will be challenging and reliant on research studies. The rising 
rates of syphilis in the United States and worldwide highlight the ongoing need for 
genotyping and WGS tools to better understand the phylogenetic and epidemiologi-
cal basis for the epidemic. While WGS will prove more useful for epidemiological 
studies of circulating strains, conventional genotyping remains important until 
WGS methodologies are more practical and widely adopted. The MLST methods 
described for TPA and TPE will be useful for future genotyping studies.
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9.8  Summary

The genus Treponema comprises a diverse group of bacteria with some well-known 
human pathogens including the causative agents of venereal syphilis (Treponema 
pallidum subspecies pallidum), yaws (T. pallidum subsp. pertenue), bejel or endemic 
syphilis (T. pallidum subsp. endemicum), and pinta (T. carateum). This chapter pro-
vides an update on genotyping and next-generation sequencing tools being used to 
study the molecular epidemiology and phylogenetics of T. pallidum. Diagnostic 
tests in use for syphilis and endemic treponematoses are also described. The 
enhanced Centers for Disease Control and Prevention typing (ECDCT) method has 
been applied to syphilis over the past two decades and more recently shown to be 
applicable to yaws; however, newer methods such as multilocus sequence typing 
(MLST) and whole genome sequencing (WGS) are being implemented for molecu-
lar epidemiological studies.
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