
Augmenting Graph Convolutional Neural
Networks with Highpass Filters

Fatemeh Ansarizadeh(B) , David B. Tay , Dhananjay Thiruvady ,
and Antonio Robles-Kelly

School of IT, Deakin University, Waurn Ponds, VIC 3216, Australia
{f.ansarizadeh,david.tay,dhananjay.thiruvady,

antonio.robles-kelly}@deakin.edu.au

Abstract. In this paper, we propose a graph neural network that
employs high-pass filters in the convolutional layers. To do this, we depart
from a linear model for the convolutional layer and consider the case
of directed graphs. This allows for graph spectral theory and the con-
nections between eigenfunctions over the graph and Fourier analysis to
employ graph signal processing to obtain an architecture that “concate-
nates” low and high-pass filters to process data on a connected graph.
This yields a method that is quite general in nature applicable to directed
and undirected graphs and with clear links to graph spectral methods,
Fourier analysis and graph signal processing. Here, we illustrate the util-
ity of our graph convolutional approach to the classification using cita-
tion datasets and knowledge graphs. The results show that our method
provides a margin of improvement over the alternative.

Keywords: Citation graph · Graph convolutional neural networks ·
Knowledge graph

1 Introduction

Recent breakthroughs in machine learning techniques have resulted in substan-
tial progress in a wide range of areas, from image classification to natural lan-
guage understanding. Predominately, for convolutional neural networks (CNNs),
the input data, i.e. images, can be viewed as structured in an Euclidean space
and hence abstracted onto a planar graph on a lattice. However, in many fields
of research, including social networks and brain connectomes, input instances
can have non-planar structure and hence, be defined over non-Euclidean spaces.
Indeed, developing efficient implementations of CNNs for high-dimensional, non-
Euclidean domains such as non-planar graphs, polygonal meshes or manifolds
[4] its not a straightforward task [5].

The recent advent of graph neural networks provides the ideal basis for apply-
ing machine learning algorithms to datasets whose instances are not structured
as a lattice and that require the capacity to process more general graphs. In
particular, applying CNNs on data architectures in non-Euclidean domains was
c© Springer Nature Switzerland AG 2021
A. Torsello et al. (Eds.): S+SSPR 2020, LNCS 12644, pp. 77–86, 2021.
https://doi.org/10.1007/978-3-030-73973-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73973-7_8&domain=pdf
http://orcid.org/0000-0003-1680-6554
http://orcid.org/0000-0001-5285-7426
http://orcid.org/0000-0002-8011-933X
http://orcid.org/0000-0002-2465-5971
https://doi.org/10.1007/978-3-030-73973-7_8

78 F. Ansarizadeh et al.

initially conceived in 1998 [6] and further developed by Scarselli et al. [7]. The
resulting approach – graph neural networks (GNNs) – provide an efficient way to
model problems as a graph, which can be easily integrated with neural networks.
GNNs generally pose the problem of learning at each vertex of a graph using its
neighborhood information. Early approaches modelled this local support using
an information-theoretic standpoint whereby a signal on a graph with N vertices
can be viewed as the counterpart of a discrete-time signal with N samples in
classical signal processing. This has given rise to graph signal processing, where
the most serious hurdle on the application of classical signal processing methods
on graphs concerns discrete-time signals whereby dependencies arising from the
irregular data domain are difficult to detect [8].

Neural networks on graphs have been proposed elsewhere [2,5,7,12,22]. In
this paper, we propose a layer-wise GCN which employs a localized first-order
approximation of spectral graph convolution to process data on a connected
graph. This sort of architectures were presented in [22] and later advanced by
[12]. The main difference between these and that presented in this paper stems
from the fact that our architecture not only contains the equivalent of low-pass
filters, but augments these with high-pass ones. To combine low and high-pass
filters, we depart from graph-spectral theory. This yields a method to “concate-
nate” the low and high pass filter responses on the graph.

2 Background

In this paper, the focus is on the connections between graph convolutional net-
works (GCNs) and spectral graph theory. Recall that graph-spectral methods
[13] allow for a direct link to be made with the Fourier transform through Cheby-
chev polynomials. Thus, spectral methods carry a natural notion of frequency
conveyed through the natural relationship between eigenfuctions over the graph,
their corresponding eigenvalues, and the natural frequencies or “modes” of con-
nected graphs computed making use of the graph Laplacian. For example, eigen-
values that are small in value correspond to eigenfunctions on the graph that
vary smoothly and change gradually and, hence, can be viewed as representing
low frequencies. In contrast, large eigenvalues correspond to rapidly changing
functions, i.e. high frequencies. This is analogous to the treatment of eigenval-
ues and eigenvectors in classical Fourier analysis.

Throughout the paper we will extensively use graphs. Formally, in a graph
G = {V, E}, V and E are the set of vertices and edges, respectively. For the pur-
poses of inference and learning, instances are abstracted as vertices and the
relationship between them correspond to edges in the graph. For instance, when
applied to our sample citation datasets, the vertices V = {v1, v2, · · · , vN} repre-
sent documents under consideration and the edges E = {e1, e2, · · · , em} stand for
whether a document cites another or not, i.e. an edge ek = (vi, vj) implies that
document vj cites vi.

As mentioned above, graph-spectral methods are based upon the Laplacian
or adjacency matrix [15]. Recall that the graph connectivity can be described by
the adjacency matrix A ∈ R

N×N , where its element ai,j is the weight of the edge

Augmenting Graph Convolutional Neural Networks with Highpass Filters 79

connecting nodes i and j, and a zero weight indicates no connection. A graph can
have directed or undirected edges, whereby, for the latter case A is symmetric.
The normalized graph Laplacian matrix defined as L = I−D− 1

2 AD− 1
2 [9], where

D is a diagonal matrix called the degree matrix (the ith diagonal element corre-
spond to the degree of the node indexed i) and I is the N × N identity matrix.
Thus, [D]i,i ≡ ∑

j ai,j and [D]i,i represents the sum of the weights of all the
edges incident to vertex i. An important property of the normalized Laplacian
matrix (for undirected graphs) is that it is a real, symmetric, positive semidef-
inite matrix. As a result, the normalized Laplacian matrix can be factorized as
L = UΛUT , where U = [u0|u1| · · · |uN−1] is the orthogonal matrix of eigen-
vectors. These eigenvectors correspond to the eigenvalues given by the diagonal
matrix Λ ≡ diag(λ0, λ1, · · · , λN−1), i.e. Λii = λi. These eigenvalues define the
spectrum of the graph and provide a frequency interpretation of the “modes” for
the graph. Small eigenvalues correspond to low frequencies and vice-versa.

Many graph signal processing methods are spectrally-based [8] as it allows
for the analysis of the signals in terms of their frequency content. In a
connected graph, the eigenvalues of the normalized graph Laplacian, Λ =
[λ0, λ1, · · · , λN−1], satisfy the inequality, 0 = λ0 < λ1 � · · · � λMax � 2. More-
over, the eigenvectors of the normalized Laplacian matrix form an orthonormal
space, i.e. uT

i uj = δ(i − j). Let a graph signal x ∈ RN represent a feature vec-
tor for all nodes of a graph, where xi is the feature value for the ith node. The
graph Fourier transform of the signal x is defined as x̂ ≡ F(x) ≡ UT x, where
x̂ is the transformed signal. The inverse graph Fourier transform is defined as
x = F−1(x̂) ≡ U x̂.

The transformed signal x̂ possesses the coordinates of the graph signal in the
new orthogonal space U . Therefore, the input signal x can be expressed as x =∑∑∑

i x̂iui, which is the inverse graph Fourier transform expression. Considering
this, the spectral convolution in the Fourier domain between a signal and a filter
gθ ≡ diag(θ), where θ ∈ RN , is given by gθx̂ = gθ(UT x). This is equivalent to
the multiplication of each diagonal element of gθ with each element of x̂. The
filter output signal z ∈ RN in the vertex domain is then obtained by taking the
inverse Fourier transform of gθx̂ = gθ(UT x) as z ≡ gθ ∗ x = UgθU

T x.
The above definition of convolution is the basis of all spectral convolutions on

graph neural networks. Note that the only distinction among these spectral con-
volutions relies on the properties of the filter gθ. In a machine learning setting, θ
is the vector of learnable parameters. Furthermore, this spans a matrix Θ where
each column corresponds to a vector θ. This matrix can be viewed as the span of
“channels”, where each of these corresponds to a different filter gθ. In practice,
the computational complexity of the above graph convolution is of order O(N3),
which makes it impractical for large graphs. To circumvent this issue, Cheby-
shev polynomials are used to approximate the filter gθ and thereby reducing
the complexity to O(N) [5]. Thus, the filter gθ is approximated by Chebyshev
polynomials of the diagonal matrix of eigenvalues as gθ =

∑K
i=0 θiTi(Λ̂), where

Λ̂ = 2Λ/λmax −I contain the normalized eigenvalues in the interval [−1, 1], and
Ti(x) are Chebyshev polynomials of the first kind.

80 F. Ansarizadeh et al.

By defining L̃ ≡ 2L/λMax − I and using the property Ti(L̃) = UTi(Λ̃)UT ,
the filter output gθx̂ = gθ(UT x) can be written as z = gθ ∗ x =

∑K
i=0 θiTi(L̃)x.

Therefore, we can infer that approximating the filter by Chebyshev polynomials
makes GCNs to be locally supported in the vertex space, i.e. only signal values
in a neighbourhood of a given vertex are needed to compute the output value
of the vertex [8]. Using a first-order approximation of gθ ∗ x =

∑K
i=0 θiTi(L̃)x,

with K = 1 and λMax = 2, the simplified version of graph convolution becomes
gθ ∗ x = θ0x − θ1D

− 1
2 AD− 1

2 x [12]. To preclude over-fitting by limiting the
number of parameters, we assume θ = θ0 = −θ1. After substituting this equality
in previous equation we get gθ ∗ x = θ

(
I + D− 1

2 AD− 1
2

)
x.

We now consider multiple channels of input/output and introduce non-
linearities. This yields

H = gθ ∗ X = f
(
Θ

(
I + D− 1

2 AD− 1
2

)
X

)
, (1)

where X is a matrix of node feature vectors Xi, and f(·) is called an activation
function.

Since the numerical experiments show instability in the above GCN [9], we
opt to solve the problem via re-normalization. To this end, I + D− 1

2 AD− 1
2 is

replaced with D̃− 1
2 ÃD̃− 1

2 , where Ã ≡ A+I and D̃ is the diagonal degree matrix
D̃i,i =

∑
j Ã(i,j). As a result, the output of a single layer is then calculated using

this equation
H = f

(
ΘD̃− 1

2 ÃD̃− 1
2 X

)
, (2)

Thus, the forward propagation rule applied in a multi-layer graph convolu-
tional networks (GCNs) follows an iterative scheme given by:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 H(l)W (l)

)
. (3)

In Eq. (3), the filter θ and activation function f(·) are replaced by W and
σ, respectively. Additionally, the state of the lth layer is represented by H(l),
where the initial value of the state is H(0) = X.

3 Convolutional Filters for GCNs

The filter in equation gθ ∗ x = θ
(
I + D− 1

2 AD− 1
2

)
x is essentially a low-pass

one, which only captures low frequency components of a signal/feature[8]. This
low-pass filter essentially computes a weighted average of the signal values in a
localized neighbourhood about a given vertex. Here, by introducing high-pass
filtering, we aim to capture those high frequency components, which represent
variation of the signal values about the localized neighbourhood.

3.1 Layer-Wise Linear Model

To commence, we depart from a localized first-order approximation of spectral
graph convolution, which comprises an input layer, two convolutional layers and

Augmenting Graph Convolutional Neural Networks with Highpass Filters 81

one output layer. In previous section, the symmetric normalization in Eq. (3) is
only valid for undirected graphs. For the more general case of directed graphs,
left-normalization (also called row-normalization) is used [10]. Therefore, sym-
metric normalization in Eq. (3), D̃− 1

2 ÃD̃− 1
2 , is replaced by D̃−1Ã. This yields

the forward propagation rule on directed graphs as

H(l+1) = σ
(
D̃−1ÃH(l)W (l)

)
, (4)

where l represents the current layer index and l + 1 corresponds to that for the
layer immediately after. We further simplify this equation by replacing D̃−1Ã
by Â, which is defined below. This gives the final propagation rule as

H(l+1) = σ
(

ÂH(l)W (l)
)

. (5)

3.2 Low and High-Pass Filters

We now turn our attention to the modification of Ã, so as to incorporate both
low and high-pass filters, in each convolutional layer. Consider N instances in
each dataset and let A to be a symmetric adjacency matrix. We now define the
following matrices:

Ã = I + A and B̃ = I − A (6)

where I is the identity matrix. To understand these equations in terms of its
spectral filtering characteristics, consider the normalized Laplacian matrix which
can be written as L = I − A. The relationship between each eigenvalue of the
Laplacian and the adjacency matrices is given by λ = 1 − μ, [16], where λ
and μ are the eigenvalues of Laplacian and adjacency matrices, respectively.
The (diagonal) matrix form of λ = 1 − μ is Λ = I − M . Using the definition
of eigenvalues and eigenvectors, we have LU = λU , and furthermore, using
L = I − A, we get:

(I − A) U = ΛU =⇒ AU = (I − Λ) U . (7)

Recall that the spectrum of normalized Laplacian matrix lies in range 0 �
λ � 2. Therefore, since λ = 1 − μ, the spectrum of the corresponding adjacency
matrix is −1 � μ � 1. From a graph signal processing viewpoint, the frequency
response function 1+μ represents a low-pass filter corresponding to the matrix Ã.
When λ = 0, corresponding to the lowest frequency, μ = 1 and the filter function
value is 1 + μ = 2, corresponding to a large gain. When λ = 2, corresponding
to the highest frequency, μ = −1 and the filter function value is 1 + μ = 0,
corresponding to a zero gain. The opposite is true for the high-pass filter, with
frequency response function 1 − μ. This function takes the lowest and highest
values at the smallest λ = 0 and largest λ = 2, respectively, and corresponds to
the matrix B̃.

82 F. Ansarizadeh et al.

3.3 Incorporating Filters into the Convolutional Layers

Here, we proceed to apply row normalization to Ã and B̃ as expressed in Eqs.
(6). To compute Â and B̂:

Â = D̃−1Ã and B̂ = D̃−1B̃, (8)

where D̃ is the degree matrix and D̃i,i =
∑

j Ã. These two matrices, Â and
B̂, are sparse since D̃ is a diagonal matrix. This sparsity is crucial since real-
world datasets are often sparse and hence this approach prevents over-fitting
[17]. Here, Â and B̂ represent the low-pass and high-pass filters, respectively.
To combine the effect of both filters, we concatenate Â and B̂ horizontally.
Hence, in H(l+1) = σ

(
ÂH(l)W (l)

)
, Â is replaced by

[
Â B̂

]
, which results in

the rule H(l+1) = σ
([

Â B̂
]
H(l)W (l)

)
. To weight each of the filter matrices

separately, the state or feature matrix, H, is multiplied by Â and B̂ individually.
This gives

[
ÂH(l) B̂H(l)

]
. The purpose here is to be able to modify the classic

forward propagation rule so as to incorporate the low-pass and high-pass filters.
Note that, up to this step, the propagation rule is as follows:

H(l+1) = σ
([

ÂH(l) B̂H(l)
]
W (l)

)
. (9)

Here, we initialize the weight matrix making use of the Glorot or Xavier method
expressed in [18]. Since we are interested in analysing the influence of low-pass
and high-pass filters, the weight matrices for each of them is initialized separately.
Hence, two different weight matrices are allocated to the low-pass and high-pass
filters. The weight matrix, W , is a concatenated matrix formed by two other
weight matrices as Δ and Γ . To be mathematically compatible, these two sub-

matrices must be concatenated vertically W (l) =
[

Δ(l)

Γ (l)

]

. The final forward

propagation rule can then be written as:

H(l+1) = σ

([
ÂH(l) B̂H(l)

] [
Δ(l)

Γ (l)

])

. (10)

Now Δ(l) is multiplied by ÂH(l) and B̂H(l) is multiplied by Γ (l). By concatenat-
ing ÂH(l) and B̂H(l) horizontally, both the low and high-pass filters can simulta-
neously influence the output at each node. Note that the elements of the resulting
matrix, inside the activation function, consists of terms arising from both the low
and the high-pass filters. Furthermore, each layer’s output forms the input of the
next layer after passing through a nonlinear activation function, σ.

4 Implementation Issues

Figure 1 shows the schematic of our GCNN implementation. In our imple-
mentation, the feature matrix X, is provided at input. According to equation
gθ ∗ x = θ

(
I + D− 1

2 AD− 1
2

)
x, in the first layer, H(0) = X, we have:

Augmenting Graph Convolutional Neural Networks with Highpass Filters 83

Log-Softmax
Graph

X

.

.

.

First
convolutional layer

.

.

.

ReLU

Dropouts

Second
convolutional layer

Fig. 1. A schematic representing our two-layer convolutional graph neural network.
Each convolutional layer learns a hidden representation by aggregating feature infor-
mation using local support. After the first layer, a ReLU function and dropout with
probability of 0.5 is applied. In the output layer, a log-softmax is used for classification.

H(1) = ReLU

([
ÂX B̂X

] [
Δ(0)

Γ (0)

])

. (11)

The output of Eq. (11) is the input to the next layer, which can be expressed as:

H(2) =
[
ÂH(1) B̂H(1)

] [
Δ(1)

Γ (1)

]

. (12)

In our network, multiplication of the combined low and high-pass filtering,
expressed in

[
Â B̂

]
, with the features matrix, is followed by the first con-

volutional layer. The process of convolution entails multiplication by the weight
matrix. After convolution in the first layer, a ReLU activation function is applied.
To prevent over-fitting in the model, after compiling the first layer, a dropout
is introduced to the architecture. After the second convolutional layer, a log-
Softmax loss is used to perform classification for mutually exclusive classes in
the output layer.

5 Experiments

We now illustrate the utility of our GCNN for purposes of classification. To
this end, we show results and provide comparison with the method in [12]. Our
choice of alternative is based upon the notion that, as mentioned earlier, our

Table 1. Statistics of the citation network datasets used and results yielded by our
method and the alternative in [12]

Dataset Nodes Edges Classes Features Method in [12] Our method

Cora 2078 5429 7 1433 80.1% 82.5%

Citeseer 3327 4732 6 3703 67.9% 69%

84 F. Ansarizadeh et al.

Table 2. Statistics of the knowledge graph dataset WebKB used in our experiments
and results yielded by our method and the alternative in [12]

Dataset Nodes Edges Classes Features Method in [12] Our method

Cornell 195 304 5 1703 90% 90%

Texas 187 328 5 1703 42% 47.4%

Washington 230 446 5 1703 55.6% 77.8%

Wisconsin 265 530 5 1703 56% 60%

architecture is based on first order graph convolution approximation first pre-
sented in [22] and later advanced by [12].

All the datasets used to investigate the performance of our proposed app-
roach were trained for 200 epochs using the Adam optimizer, which involves
a first-order gradient-based optimization. Also, for purpose of providing a fair
comparison, we have set all hyper-parameters of our approach to the same values
as those reported in [12]. We implemented our network in Python with all layers
defined according to Fig. 1 with a learning rate of 0.01 and a dropout rate of
0.5. In order to avoid over-training the model, a L-2 regularisation method with
the term coefficient 5 × 10−4 is used in all our experiments.

5.1 Datasets

For our experiments, we have used three widely available datasets. These are
the Cora [19]1, Citeseer [20]2 and WebKB3 datasets. Here, and for the sake of
consistency in our comparison with the alternative in [12], both the Citeseer and
WebKB datasets were pre-processed before feeding them to the GCNs. A data
cleaning was applied to the CiteSeer dataset as described in [21]. In case of the
Cora dataset, we have used the same dataset splits as those employed in [12].
Regarding the other two datasets, we have used random 60%-20%-20-% dataset
splits for training, validation and testing. All necessary matrices are constructed
according to the metadata files provided with each dataset, which contain the
information on nodes and edges necessary for constructing the adjacency matri-
ces for the graph neural network. The number of nodes, features, classes and
other information for the datasets have been summarised in Tables 1 and 2.

5.2 Classification Results

The results of our proposed approach are summarized and compared with the
method in [12] in Table 1 and Table 2, which show the average accuracy and
improvement over 10 runs, where each run has a unique random initialization.
From these tables, we can appreciate improvements across datasets as compared

1 The dataset can be accessed at https://relational.fit.cvut.cz/dataset/CORA.
2 Widely available at http://networkrepository.com/citeseer.php.
3 For more information on WebKB, go to http://www.cs.cmu.edu/∼webkb/.

https://relational.fit.cvut.cz/dataset/CORA
http://networkrepository.com/citeseer.php
http://www.cs.cmu.edu/~webkb/

Augmenting Graph Convolutional Neural Networks with Highpass Filters 85

to the approach in the alternative, which only employs low-pass filters. The
WebKB-Cornell dataset is the only case where our approach shows the same
level of accuracy as the alternative. Breaking down the results, for the Cora and
Citeseer datasets, we find slightly improved accuracy whereas some of the differ-
ences in the WebKB dataset are substantial. The reasons for more improvement
in accuracy by adding highpass filters in these datasets can be attributed to the
structure of the datasets. In particular, we see that the WebKB datasets consist
of a smaller number of nodes, edges and classes. Moreover, the proportion of the
number of edges to nodes are: (1) Cora = 2.6, (2) Citeseer = 1.3, (3) WebKB
– Cornell = 1.5, (4) WebKB – Texas = 1.7, (5) WebKB – Washington = 1.94
and (6) WebKB – Wisconsin = 2. This hints that, increasing the density of the
graph also implies increasing the classification accuracy. This is consistent with
the results, where large gains can be seen with small problem instances whose
graph structure is denser. Another point of interest is the level of accuracy across
these datasets. We notice that the accuracy in the Cora dataset is higher as com-
pared to that yielded for the Citeseer dataset. This is consistent for both our
method and the alternative. Furthermore, we see that the range is large for the
WebKB datasets (47.4% to 90%), which is not dissimilar to previous results.
This is also consistent to the intuitive notion that, in a dense graph, the local
support is provided by more edges within a particular neighbourhood, leading
to improved classification accuracy.

6 Conclusions

In this paper, we have presented a method to integrate low and high-pass filters
into convolutional layers in GCNNs. Our method is quite general in nature and
applies to both, directed and undirected graphs. We used concepts from spectral
graph theory, and exploited the relationship between eigenvalues and the modes
of the graph to incorporate high-frequency information in the learning process.
We illustrated the utility of our method for classification making use of widely
available citation datasets and compared our results against those yielded by
an alternative. In our experiments, our method outperforms the alternative,
providing a margin of improvement in the classification accuracy.

References

1. Dou, W., Zhang, X., Liu, J., Chen, J.: HireSome-II: towards privacy-aware cross-
cloud service composition for big data applications. IEEE Trans. Parallel Distrib.
Syst. 2(26), 455–466 (2013)

2. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks. In: International Conference on Learning Representations (2016)

3. Fukushima, K., Miyake, S., Ito, T.: Neocognitron: a neural network model for
a mechanism of visual pattern recognition. IEEE Trans. Syst. Man Cybern. B
Cybern. 2(5), 826–834 (1983)

4. TaubinÝ, G.: Geometric signal processing on polygonal meshes. In: Proceedings of
EUROGRAPHICS 2000: state of the art report (2000)

86 F. Ansarizadeh et al.

5. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, pp. 3844–3852 (2016)

6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE, pp. 2278–2324. IEEE (1998)

7. Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 2(20), 61–80 (2008)

8. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The
emerging field of signal processing on graphs: extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2(30),
83–98 (2013)

9. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24
(2020)

10. Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M.:
Graph neural networks: a review of methods and applications. ArXiv preprint
arXiv:1812.08434 (2018)

11. Spielman, D.A.: Algorithms, graph theory, and linear equations in Laplacian matri-
ces. In: 4th Proceedings of the International Congress of Mathematicians, pp.
2698–2722. Plenary Lectures and Ceremonies Vols. II-IV: Invited Lectures, World
Scientific (2010)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (2017)

13. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

14. Sarkar, S., Boyer, K.L.: Quantitative measures of change based on feature organiza-
tion: Eigenvalues and Eigenvectors. Comput. Vis. Image Underst. 17(1), 110–136
(1998)

15. Narang, S.K., Ortega, A.: Perfect reconstruction two-channel wavelet filter banks
for graph structured data. IEEE Trans. Signal Process. 60(6), 2786–2799 (2012)

16. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: International Con-
ference on Computer Vision, pp. 975–982 (1999)

17. Xiang, G., Wei, H., Ongming, G.: Exploring structure-adaptive graph learning for
robust semi-supervised classification. In: 2020 IEEE International Conference on
Multimedia and Expo (ICME), pp. 1–6 (2020)

18. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256 (2010)

19. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction
of internet portals with machine learning. Inf. Retrieval 3(2), 127–163 (2000)

20. Giles, C.L., Bollacker, K.D., Lawrence, S.: CiteSeer: an automatic citation indexing
system. In: Proceedings of the third ACM conference on Digital libraries, pp. 89–98
(1998)

21. Wang, Y., et al.: A data cleaning method for citeseer dataset. In: Cellary, W.,
Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS,
vol. 10041, pp. 35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48740-3 3

22. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. In: International Conference on Learning Repre-
sentations (2014)

http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1312.6203
https://doi.org/10.1007/978-3-319-48740-3_3
https://doi.org/10.1007/978-3-319-48740-3_3

	Augmenting Graph Convolutional Neural Networks with Highpass Filters
	1 Introduction
	2 Background
	3 Convolutional Filters for GCNs
	3.1 Layer-Wise Linear Model
	3.2 Low and High-Pass Filters
	3.3 Incorporating Filters into the Convolutional Layers

	4 Implementation Issues
	5 Experiments
	5.1 Datasets
	5.2 Classification Results

	6 Conclusions
	References

