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Abstract. In a fundus image, Vessel local characteristics like direction,
illumination and noise vary considerably, making vessel segmentation a
challenging task. Methods based upon deep convolutional networks have
consistently yield state of the art performance. Despite effective, of the
drawbacks of these methods is their computational complexity, whereby
testing and training of these networks require substantial computational
resources and can be time consuming. Here we present a multi-scale ker-
nel based on fully convolutional layers that is quite lightweight and can
effectively segment large, medium, and thin vessels over a wide variations
of contrast, position and size of the optic disk. Moreover, the architecture
presented here makes use of these multi-scale kernels, reduced application
of pooling operations and skip connections to achieve faster training. We
illustrate the utility of our method for retinal vessel segmentation on the
DRIVE, CHASE DB and STARE data sets. We also compare the results
delivered by our method with a number of alternatives elsewhere in the
literature. In our experiments, our method always provides a margin of
improvement on specificity, accuracy, AUC and sensitivity with respect
to the alternative.
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1 Introduction

Retinal fundus images contain important features often used to diagnose eye-
related illnesses such as diabetic retinopathy (DR), glaucoma, age-related macu-
lar degeneration (AMD) and systemic illnesses such as arteriosclerosis and hyper-
tension. Among these diseases, DR and AMD are the major causes of blindness
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[1,2]. Fundus images, acquired during an ophthalmic exam, are used to inspect
and monitor DR and AMD disease progression. As a result, a computer-aided
diagnosis system that can significantly reduce the burden on the ophthalmolo-
gists and alleviate the inter and intra observer variability is highly desired.

Here, we focus on the segmentation of retinal blood vessels. These originate
from the centre of optic disc and spread over the other regions of the retina.
The blood vessels are responsible for supplying blood to the entire region of the
retina, whereby microaneurysm, hemorrhages and exudate lesions are formed in
the retinal image due to leakages taking place and appear as bright spots in
the fundus image. Recently, convolutional neural networks (CNNs) have gained
significant importance in semantic segmentation [3]. Methods such as those pre-
sented in [4–6] have yielded state of the art performance. Moreover, approaches
such as that in [7] are able to address the pixel-wise classification problem by
mapping low resolution features produced by the encoder back to the input res-
olution through a decoder. The advantage of such mapping resides in the fact
that they can preserve fine-grained information, which is of capital importance
for effective boundary detection.

As related to retinal vessel segmentation, the authors in [8] explore a deep
learning approach that focuses on the thickness of the retinal vasculature. In [9],
the authors present a skip connection encoder-decoder architecture that is quite
effective detecting vessel boundaries. Gu et al. [10] present a context encoder
for vessel segmentation network. Yan et al. [8] introduced a joint-loss including
both a pixel-wise and a segmentation-level cost. Despite the higher accuracy of
these deep learning methods, there are still many problems that demand signifi-
cant attention from researchers. One of the drawbacks of these methods is their
computational complexity, whereby both the pre-processing and post-processing
tasks needed for deep learning approaches require substantial computational
resources, training and testing times.

This paper presents a residual multiscale full convolutional network (RM-
FCN) for retinal vessel segmentation. The proposed method is quite lightweight
compared to other methods elsewhere in the literature, with only 6 convolutional
layers with 3 multi-scale fully convolutional kernels per layer. The proposed
model not only is able to accurately detect thick vessels but, when applied to the
thin ones, these are also segmented due to the use of our multi-scale architecture.
In our networks only two max-pooling operations are required and these are
paired with external skip-connections. This yields an architecture that makes
use of reduced convolutional layers, multi-scale kernels and reduced application
of pooling operations so as to achieve a faster training. The rest of the paper
is organized as follows. Our architecture is in Sect. 2. We then present results
for retinal image segmentation and compare to alternatives in Sect. 3. Finally,
in Sect. 4, we conclude on the developments presented here.

2 Residual Multiscale Network

Recall that, in retinal vessel segmentation applications, the vessel size may
vary considerably across patients with a variety of medical conditions. Diabetic
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Fig. 1. Block diagram of the proposed method

retinopathy can cause the swelling of the retinal vessels and can also encourage
the development of smaller, newer ones. Hypertensive retinopathy, in the other
hand, can cause the shrinkage of retinal vessels. As mentioned above, here we
employ multi-scale kernels to develop a neural network architecture that can
cope with large size variations.

Neural networks elsewhere in the literature often employ a single sized convo-
lutional kernel which often focuses in larger vessels and, therefore, is not quite
effective for the segmentation of smaller vascular structures. This accounts for
the notion that very thin vessels may not affect overly affect the overall perfor-
mance in terms. This is debatable since several diagnosis in medical applications
heavily rely upon small-sized vessels. Our multiscale kernels are based on 3 × 3,
5 × 5, and 7 × 7 convolutions for large, medium, and very small vessels, respec-
tively. The architecture of our RM-FCN is illustrated in Fig. 1.

To construct our network, we have used multiscale convolutional blocks with
important design concerns. The first of these is to keep to a minimum the use of
pooling layers which are used to reduce the dimension of the feature maps. This is
since these pooling operations also cause the loss of spatial information. Secondly,
we employ multi-scale kernels so as to account for the large variation in retinal
vessel sizes. Thirdly, we reduce the overall number of convolutions in the network.
These can also be responsible for spatial information loss. Finally, we employ fine-
grained information and residual skip paths to improve the segmentation results
and make training more computationally efficient. Figure 2 shows the overall archi-
tecture of our proposed multi-scale convolutional blocks within the network. The
network has six multi-scale convolutional blocks, where the first block is an input
one, followed by two down multi-scale blocks. There is an intermediate block which
connects down and up blocks. This is followed by the two up-multiscale convolu-
tional blocks with a final output one which is equipped with a softmax loss layer.

In Fig. 2 presents the example up multi-scale convolutional block, which
receives the feature map F from the pooling layer and distributes them to the
convolutions CA

3 , CA
5 , CA

7 and CA
1 . Note that CA

1 is, in fact, part of the skip
connection. These kernels have sizes 3 × 3, 5 × 5, 7 × 7, 1 × 1, respectively.
Each of the multi-scale convolutional kernels CA

3 , CA
5 , CA

7 outputs the features
Fa, Fb, Fc, respectively. These are given by
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Fig. 2. Block diagram of the proposed multiscale convolutional block.

Fa = F ∗ CA
3

Fb = F ∗ CA
5

Fc = F ∗ CA
7

(1)

which are then used to obtain S, which is given by

S = Fa + Fb + Fc (2)

Thus, S can be viewed as a combined feature map which can later be fed
into a ReLU and batch normalized. This is done after an additional convolution
CB

3 is applied so as to obtain the feature map S′ given by

S′ = S ∗ CB
3 (3)

where S′ is the multi-scale feature map. To further improve the feature map
quality S′ is combined with F ′, which arises from the skip path comprising CA

1 (a
1 × 1 convolutional kernel). This yield the feature map Z given by Z = F ′ + S′.

As shown it the figure, the encoder blocks generate the respective feature
maps using convolutions between the input image and a multi-scale filter bank.
Here, we have followed [11] and applied batch normalisation on the features
followed by a ReLU. For the down sampling blocks, the resulting feature maps
are fed to the a 2 × 2, non-overlapping max-pooling with a stride of size 2.
In this manner, the down-sampled feature maps created from the final down-
sampling block can be used for the up-sampling procedure. This is carried out
by using the indices of the max-pooling information. In our architecture, the
feature maps yielded by the down-sampling blocks are unpooled. These maps,
which are sparse in nature, are augmented in the up-sampling blocks by the
multi-scale filter banks. These dense feature maps are then normalized by using
batch normalization. The size of the feature maps yielded by the up-sampling
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blocks are identical to those obtained by the respective down-sampling blocks.
The only difference is in the final layer of the decoder, where a multi-channel
function map is obtained as an output compared to the three-channel RGB data
of the first encoder. At output, our network yields a final map where pixels are
labelled as vessels or not on the basis of a soft-max classifier.

Fig. 3. Segmentation results of the RM-FCN model on three noisy test images i.e.
image number 1, 3 and 8 from the DRIVE dataset. From left-to-right, we show the
input images, the ground truth segmentation map and that yielded by our method.

3 Experiments

3.1 Datasets

We now turn our attention to the evaluation of our method on three publicly
available retinal image databases. These are the CHASE [12]1, DRIVE [13]2 and
STARE [14]3 data sets. The DRIVE dataset covers a wide age range of diabetic

1 The dataset can found at https://blogs.kingston.ac.uk/retinal/chasedb1/.
2 The dataset is widely available at https://drive.grand-challenge.org/.
3 More information regarding the STARE project can be found at https://cecas.

clemson.edu/∼ahoover/stare/.

https://blogs.kingston.ac.uk/retinal/chasedb1/
https://drive.grand-challenge.org/
https://cecas.clemson.edu/~ahoover/stare/
https://cecas.clemson.edu/~ahoover/stare/
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patients and consists of 20 color images for training and 20 color images for
testing. The STARE dataset is a collection of 20 color retinal fundus images
captured at 35◦ FOV with an image size of 700 × 605 pixels. Out of these 20
images, 10 images contain pathologies. Two different manual segmentation as
ground truth are available. Here we employ the first experts segmentation as
ground truth where available. There is no dedicated test dataset available for
STARE. The CHASE dataset consists of 28 color images of 14 school children
in England. Two different manual segmentation maps are available as ground
truth. Again, here we employ the first experts segmentation for our experiments.
The CHASE dataset doesn’t contain any dedicated training or testing sets. Here
we have used the first 20 images for training and the last 8 images for testing.

Fig. 4. Segmentation results of the RM-FCN model on images number 5, 6 and 8 from
the CHASE DB dataset. From left-to-right, we show the input images, the ground
truth segmentation map and that yielded by our method.

3.2 Results and Comparison

Here we compare the results obtained by our approach on the three data sets
above with those yielded by a number of alternatives. For all the methods under
consideration we have used four common performance parameters. These are
Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and AUC. These results are
shown in Tables 1, 2 and 3.
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Fig. 5. The segmentation results of the RM-FCN model on the two noisy test images
i.e. image number 1, 2 and 3 from the STARE dataset. From left-to-right, we show the
input images, the ground truth segmentation map and that yielded by our method.

We also show qualitative results in Figs. 3, 4 and 5 for the three data sets
under consideration. In all figures we show, from left-to-right the input imagery,
the segmentation ground truth provided by the hand-labeled vessel maps and

Table 1. Performance comparison of our RM-FCN on DRIVE data set with respect
to other methods elsewhere in the literature

Method Year Se Sp Acc AUC

Guo et al. [15] 2019 0.7891 0.9804 0.9561 0.9806

Ma et al. [16] 2019 0.7916 0.9811 0.9570 0.9810

Wang et al. [17] DU-Net 2019 0.7940 0.9816 0.9567 0.9772

Wu et al. [18] 2019 0.8038 0.9802 0.9578 0.9821

Gu et al. [10] CE-Net 2019 0.8309 – 0.9545 0.9779

Arsalan et al. [19] VessNet 2019 0.8022 0.9810 0.9655 0.9820

Wang et al. [20] 2020 0.7991 0.9813 0.9581 0.9823

Yin et al. [21] 2020 0.8038 0.9837 0.9578 0.9846

Segnet-Basic 2020 0.7949 0.9738 0.9579 0.9720

Our method 2020 0.8342 0.9825 0.9695 0.9830
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the results yielded by our method. From the figures, we can see that our method
can cope well with thinner vessels, preserving well the fine-grained detail while
being quite robust to different conditions, variations in contrast and optic disk
position and size.

From Table 1, it is clear that our method’s accuracy is the highest amongst
the alternatives for the DRIVE data set. The second best accuracy on the Drive
data set is that delivered by the method of Arsalan et al. [19]. In terms of sen-
sitivity, on the DRIVE dataset, our method also achieve the highest value. The
second best sensitivity on DRIVE dataset is that of the method in [10] (CE-Net).
Similarly, the results presented in Table 2 indicate that method proposed here
has the best overall performance on the CHASE data set across all the measures
used. The sensitivity achieved by the Arsalan et al. [19] is the second highest in
Table 2. The accuracy of Yin et al. [21] is the best among all the approaches under
consideration. Finally, Table 3 shows that is also the best performing method on
the STARE data set. The sensitivity achieved by the Arsalan et al. [19] is again
the second highest.

Table 2. Performance comparison of our RM-FCN on CHASE DB1 data set with
respect to other methods elsewhere in the literature

Method Year Se Sp Acc AUC

Zhang et al. [22] 2016 0.7626 0.9661 0.9452 0.9606

Khawaja et al. [23] 2019 0.7974 0.9697 0.9528 NA

Jin et al. [24] 2019 0.7595 0.9878 0.9641 0.9832

Arsalan et al. [19] VessNet 2019 0.8206 0.9800 0.9726 0.9800

Wang et al. [20] 2020 0.8186 0.9844 0.9673 0.9881

Yin et al. [21] 2020 0.7993 0.9868 0.9783 0.9869

Segnet-basic 2020 0.8190 0.9735 0.9638 0.9780

Our method 2020 0.8463 0.9828 0.9735 0.9810

Table 3. Performance comparison of our RM-FCN on STARE database with respect
to other methods elsewhere in the literature

Method Year Se Sp Acc AUC

Chen et al. [25] Deeplab v3++ 2018 0.8320 0.9760 0.9650 0.9735

Jin et al. [24] 2019 0.8155 0.9752 0.9610 0.9804

Guo et al. [15] 2019 0.7888 0.9801 0.9627 0.9840

Wang et al. [17] 2019 0.8074 0.9821 0.9661 0.9812

Wu et al. [18] 2019 0.8132 0.9814 0.9661 0.9860

Arsalan et al. [19] VessNet 2019 0.8526 0.9791 0.9697 0.9883

Wang et al. [20] 2020 0.8239 0.9813 0.9670 0.9871

SegNet-Basic 2020 0.8118 0.9738 0.9543 0.9728

Our method 2020 0.8565 0.9834 0.9739 0.9890
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4 Conclusions

In this paper we have presented a residual multi-scale network for retinal ves-
sel segmentation that employs skip connections, multiscale filters and a reduced
number of pooling operations so as to segment large, medium and thin vascu-
lature under large variations of contrast, optic disk position and size. We have
illustrated the utility of the method for the task in hand by performing experi-
ments on three publicly accessible databases, namely CHASE DB1, STARE and
DRIVE. In our experiments, our network outperformed a number of state-of-
the-art alternatives. For our comparison, we have used well-known measurement
parameters, namely sensitivity, balanced accuracy and accuracy.
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