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Abstract. Image steganography refers to the process of hiding infor-
mation inside images. Steganalysis is the process of detecting a stegano-
graphic image. We introduce a steganalysis approach that uses an ensem-
ble color space model to obtain a weighted concatenated feature activa-
tion map. The concatenated map helps to obtain certain features explicit
to each color space. We use a levy-flight grey wolf optimization strategy
to reduce the number of features selected in the map. We then use these
features to classify the image into one of two classes: whether the given
image has secret information stored or not. Extensive experiments have
been done on a large scale dataset extracted from the Bossbase dataset.
Also, we show that the model can be transferred to different datasets
and perform extensive experiments on a mixture of datasets. Our results
show that the proposed approach outperforms the recent state of the art
deep learning steganalytical approaches by 2.32% on average for 0.2 bits
per channel (bpc) and 1.87% on average for 0.4 bpc.

Keywords: Steganalysis · Color spaces · Greywolf optimization ·
Concatenated feature maps

1 Introduction

Steganography is a means of covert communication in which secret information
is embedded into some form of digital media, such as an image, video or text
file [3]. Usually, this form of embedding is done such that there is no apparent
perceptible change in the embedding file. In multimedia security, steganography
forms a critical research topic [4]. The difference between steganography and
cryptography is that in cryptography data is encrypted and although difficult
to break, raises a doubt in the mind of an attacker about the presence of secret
information. Steganography, on the other hand, aims to reduce the risk of being
detected. In general, images are considered as the embedding medium due to
minute changes in an image being imperceptible to the human eye [4]. There are
three main properties that a steganographic algorithm should possess: security,
robustness, and capacity. In case of an image steganographic algorithm, security
would mean how securely the algorithm can hide information, i.e., how little
visual change is caused on an image using an image steganography algorithm.
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Robustness refers to the invariability of the steganographic algorithm when an
image is subject of different transforms such as scaling, resizing, rotation, etc.
The capacity for a steganographic algorithm represents the amount of data that
can be embedded in an image before there is a noticeable visual change in the
image [5]. Steganalysis is the process of detecting if a given image has information
hidden in it or not [27]. In this regard, we can convert this problem into that of a
simple classification problem. To detect if an image is embedded with information
we propose the use of an ensemble color space model. Recently, it was seen an
ensemble colorspace model [1] obtained excellent results on large scale image
classification datasets such as imagenet [2]. Based on [1] we propose a novel
steganalysis approach.

Steganalysis is the process of detecting if a given image has information hid-
den in it or not. In this regard, we can convert this problem into that of a simple
classification problem. To detect if an image is embedded with information, we
propose the use of an ensemble color space model.

We do the following:

– We use a colorspace approach to determine if an image is hiding information
or not. We use ColorNet [1] and take the final activation map from each
colorspace.

– We use weighted averaging to obtain a single feature map from all the indi-
vidual feature maps that are generated by each colorspace. It was seen [1]
that each color space had features explicit to themselves and this would help
us detect minute changes in the image.

– We then use a levy-flight grey wolf optimization method (meta-heuristic app-
roach) to select a smaller subset of features. Using these features, we classify
the given image into one of two classes: containing concealed information or
not.

1.1 Steganography

Most steganography algorithms can be expressed in Fig. 1. An image is bro-
ken down to it’s RGB (Red Green Blue) channels and pixels in the individual
channels are modulated with some cost function ‘C’ which embeds information
into that channel. The most straightforward steganography algorithm is the LSB
(Least Significant Bit) algorithm. Here, as the name suggests the least significant
bit is taken, and one bit of information is stored (either as a 1 or a 0).

Steganography algorithms can be classified broadly into four categories: 1)
cover image size 2) embedding domain-based algorithms 3) nature of retrieval
based algorithms 4) adaptive steganographic algorithms. In the case of 2-D
images, the information is embedded onto the 2-D plane of the cover image.
This embedding can be done over transform domain coefficients (such as dis-
crete cosine transforms, Fourier transforms, etc.) or on the spatial domain (an
example is LSB). The 3-D approaches essentially follow the same general proce-
dure. However, the procedure is repeated on multiple planes (for instance RGB
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Fig. 1. Pipeline of a standard steganography algorithm (Color figure online)

in a color image has 3 planes that can embed information). Image steganogra-
phy on 3-D images can be made in either geometrical domain [5], representation
domain [6] or topological domain [7].

Some of the transform-based steganographic algorithms include discrete
Fourier transform (DFT) [9], discrete cosine transform (DCT), discrete wavelet
transform [10], complex wavelet transform [11] among others. Here, frequency
coefficients obtained after applying transforms are used to hide secret bits. Along
with the security being improved, these algorithms are robust to image compres-
sion, cropping, scaling, etc. Off late, machine learning approaches have been pro-
posed such as SVM (Support Vector Machine)[12], genetic algorithm approaches
[13], neural network-based steganography [14]. Though these approaches are
black-box approaches, they have shown good results.

1.2 Steganalysis

Steganalysis is the method of trying to either determine a stego image (image
where information is hidden) or extract the secret information. Our method deals
with the former. We treat the problem at hand to be a classification problem,
wherein, each image either contains some hidden information or not.

There are two basic approaches to steganalysis: signature steganalysis and
statistical steganalysis. Signature steganalysis is the method wherein patterns,
or signatures relevant to various steganographic algorithms are searched for.
The presence of a pattern indicating that secret information is being hidden in
the image. The quintessential process here is the repetition of patterns due to
embedded secret information. The statistical approach searches for mathemati-
cal results to determine if the information is being hidden. Signature steganalysis
is further classified into specific embedding [16] and universal blind steganalysis
[15]. Specific embedding approaches are impractical because we need to know
what steganography approach has been used to embed information. Hence, uni-
versal blind steganalysis [8,17] is preferred. These approaches help in the extrac-
tion of high dimensional features. However, the curse of dimensionality occurs.
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Hence, a need to reduce feature size occurs. Some commonly used algorithms
to do the same include wrappers, filters, etc. Filters are less complex; however,
they perform poorly. Wrapper methods evaluate feature subset using predictive
models [18]. However, wrappers are complex and time-consuming.

To overcome this, meta-heuristic approaches have been deployed. These
approaches solve optimization problems by utilizing natural phenomena [19,20].
It was seen that Grey Wolf Optimization (GWO) performed better than other
metaheuristic approaches for solving non-linear problems in a multi-dimensional
space [19]. However, it has a slow convergence rate and gets trapped in local
optima at times. It has been seen that GWO can be optimized by modifying it’s
parameter A to obtain a quick convergence rate, better convergence precision
and higher agility for global searching.

2 Proposed Approach

2.1 Overall Architecture and Effect of Using Color Spaces

We consider steganalysis as a 2 class classification problem. The overall architec-
ture is described in Fig. 2. The experimental analysis along with details regarding
training set etc. are explained in the next section. Recently, the effect of color
spaces on image classification has been explored [1]. It was seen that individual
color spaces inherited classification features explicitly to themselves. This helped
us ponder about the ability to extract information in an image where there is
secret information being embedded. Colornet [1] being an ensemble model, that
could extract features specific to each colorspace, was an excellent choice to
utilize to help us in determining if an image could have information hidden in
it. The output of Colornet is a high-dimensional vector, which causes a com-
putationally intensive execution. To reduce the number of features selected we
have to use an optimization approach for feature selection. Figure 1 shows the
architecture of the model.

2.2 Optimization Process for Feature Selection

Feature Selection Using LF-Grey Wolf Optimization. In GWO, the head
of the pack is the α. The next level of the hierarchy is β, δ and finally followed by
ω. GWO models the social hierarchy and mathematically illustrates the hunting
procedure as an optimization problem. If Xp(t) and X(t) represent the position
of prey and wolf at iteration ‘t’, we can mathematically model the encircling pro-
cess [19] with two coefficients A and C as shown in (1). A and C are calculated
by (2).

D = |C.Xp(t) − X(t)|;X(t + 1) = Xp(t) − A.D (1)

A = 2a.r1 − a;C = 2.r2 (2)
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Fig. 2. Two phases involved in the overall architecture of the model: training the model
using colornet and detecting stego-image using feature map aggregation

Here, r1 and r2 are random vectors in [0,1], a is a parameter that decreases
linearly from 2 to 0 over iterations and also helps to control step size D of a grey
wolf. Implementation of the end of the hunting process is done by decreasing the
value of A which in turn depends on a. Once a turns zero, it means that the
wolves have stopped moving. The linear decrease in A helps to exploit search
space with minimal exploration. Hence, this traps a local optimum.

The size of the aggregated feature map creates an issue in terms of the
complexity of the algorithm and the overall time needed for execution. To deal
with this, we propose the use of levy flight-based grey wolf optimization (LF-
GWO) for feature selection based on Levy probability function in (3). Here, μ

represents position parameter, γ represents scale parameter and η represents the
collection of samples in the distribution. The above equation holds good for all
positive values of μ and 0 otherwise. The parameter A is modified by the Levy
flight function as A = L(S)*r1. This makes A take up values in a non-linear
decrease. S is the position of the wolf and r1 is a random vector.

L(η, γ, μ) =
√

γ

2π
exp[− γ

2(η − μ)
]

1

(η − μ)
3
2

(3)

The reason for selection of LF-GWO is based in the statistical results
obtained in [21]. It was seen that for 15 defined benchmark functions,
the wilcoxon rank sum test of LF-GWO outperforms existing optimization
approaches in terms of mean fitness values. For further technical analysis please
refer [21].

3 Experimental Analysis

3.1 Datasets and Training

Most commonly used steganalysis datasets are the Bossbase [22] and BOWS2
[23]. Each contains 10000 grayscale images. However, the approach proposed is
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dependent on color, and as such, we use a dataset with color images. Hence,
starting with the 10000 images of Bossbase [22] dataset, we generate a dataset
by following the process done in [24]. We downsampled the full-resolution images
to a size of 512 × 512. We then followed the process in [25], so that the train-
ing and testing scenarios were conducted in a similar environment. In [25], two
datasets were created by using two demosaicing algorithms: Patterned pixel
grouping (PPG) and Adaptive Homogeneity-Directed (AHD) and named BOSS-
PPG-LAN and BOSS-AHD-LAN correspondingly. Further, by removing the
down-sampling method, we can obtain two more datasets: BOSS-PPG-CRP and
BOSS-AHD-CRP. By pairing a demosaicing algorithm with bilinear or bicubic
kernels, we obtain four more datasets: BOSS-PPG-BIL, BOSS-AHD-BIL, BOSS-
AHD-BIL, and BOSS-AHD-BIC.

We train our model by utilizing mini-batch stochastic gradient descent with
the following parameters: learning rate: 0.0001, weight decay: 0.0005, step size:
5000, momentum: 0.75, gamma: 0.75, batch size: 32, maximum iterations: 40 ×
104. Testing of the trained model was done for every 5000 iterations and accuracy
in 40 × 104 iterations. HILL, SUNIWARD, CMD-C-SUNIWARD and CMD-C-
HILL: 4 state of the art color steganography algorithms, were used as attacking
targets for experimental analysis. The embedding payload was set to 0.2 bpc
(bits per channel/band pixel) and 0.4 bpc. In order to select the most challenging
scenarios and also follow similar conditions for result comparison, we followed
the process executed in WISERNet [25].

3.2 Results Comparison

To compare our results, we considered three deep learning approaches for color
steganalyzers, that are widely considered state of the art approaches: WISERNet
[25], Deep Hierarchical Representations (DHR) [26] and Deep-CNN [27]. Experi-
ments were conducted on the same datasets and using similar resources for a fair
comparison. Popular steganography methods such as SUNIWARD [28], MiPOD
[29], HILL [30] adopt an additive embedding distortion approach for minimizing
framework [31]. Recently, CMD-C was proposed [32] by improvising the CMD
approach for color images. We denote the CMD-C method using SUNIWARD
and HILL as CMD-C-SUNIWARD and CMD-C-HILL respectively. Although
DHR [26] and D-CNN [27] can be executed in channel-wise convolution, normal
convolution and input concatenation as seen in [25], we show results only for the
normal convolution as WiserNet [25] outperforms DHR and D-CNN in all cases.
We also compare results with channel gradient correlation (CGC) [34].

The parameters used in terms of batch size and iterations were the same
for all the comparisons. The other parameters were used as described in the
original paper. Each experiment constituted 75% training images, i.e., 7500
images and 2500 images were used for testing. All experiments were performed
10 times and the average accuracy of testing was used. Table 1 compares the
results of our approach with WISERNet (W-Net) [25], DHR [26], D-CNN [27],
on BOSS-PPG-LAN (B-P-L), BOSS-PPG-BIC (B-P-Bc), BOSS-PPG-BIL (B-
P-Bl), BOSS-AHD-BIC (B-A-Bc) and BOSS-AHD-BIL (B-A-Bl) with 0.2 bpc
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and Table 2 with 0.4 bpc. As can be seen, the proposed method outperforms
other state of the art methods for all but one case and also the percentage
increase in detection is significant when patterned pixel grouping is performed
on the datasets.

Table 1. Comparison of results for CMD-C-HILL stego images with 0.2 bpc. D-CNN
is executed with 30 fixed SRM kernels. The best results are represented in bold font.

Dataset DHR D-CNN W-Net CGC Proposed

B-P-L 0.6474 0.6562 0.7139 0.7231 0.7741

B-P-Bc 0.6589 0.7124 0.7318 0.7278 0.7912

B-P-Bl 0.7611 0.7487 0.8033 0.8120 0.8316

B-A-Bc 0.6614 0.6627 0.7369 0.7168 0.7368

B-A-Bl 0.7622 0.7647 0.8022 0.7981 0.8044

Table 2. Comparison of results for CMD-C-HILL stego images with 0.4 bpc. D-CNN
is executed with 30 fixed SRM kernels. The best results are represented in bold font.

Dataset DHR D-CNN W-Net CGC Proposed

B-P-L 0.7568 0.7941 0.8361 0.8268 0.8724

B-P-Bc 0.7732 0.8068 0.8435 0.8314 0.8814

B-P-Bl 0.87211 0.9045 0.9169 0.9165 0.9381

B-A-Bc 0.7728 0.8141 0.8448 0.8412 0.8468

B-A-Bl 0.8738 0.9067 0.9144 0.9044 0.9088

Further experimental analysis is done by mixing datasets as shown in [27].
Table 3 shows how the datasets were mixed. We further label the datasets in
roman numerals for simplicity to display in the comparison of steganalyzers in
Table 4 and 5. BPL, BPBc, BPBl, BABc, BABl, BAL are further abbreviations of
BOSS-PPG-LAN, BOSS-PPG-BIC, BOSS-PPG-BIL, BOSS-AHD-BIC, BOSS-
AHD-BIL and BOSS-AHD-LAN. Similarly to Tables 1 and 2, Table 4 compares
results on the above-mentioned mixture of datasets with 0.2 bpc. Table 5 com-
pares the results with 0.4 bpc. As can be seen, the proposed method outperforms
recent state of the art approaches, by a significant margin.
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Table 3. Representation of mixture of datasets. � implies dataset has been selected
and - implies otherwise.

Name BPL BPBc BPBl BABc BABl BAL

Set-I � � � – – –

Set-II – – – � � �
Set-III � – – – – �
Set-IV � � � � � �

Table 4. Comparison of results for CMD-C-HILL stego images with 0.2 bpc on mix-
ture of datasets. D-CNN is executed with 30 fixed SRM kernels. The best results are
represented in bold font.

Dataset DHR D-CNN W-Net CGC PVC Proposed

Set-I 0.7237 0.7259 0.7675 0.7712 0.7734 0.8029

Set-II 0.7214 0.7217 0.7714 0.7710 0.7684 0.8026

Set-III 0.6722 0.6865 0.7284 0.7412 0.7388 0.7648

Set-IV 0.7164 0.7182 0.7671 0.7782 0.7684 0.8048

Table 5. Comparison of results for CMD-C-HILL stego images with 0.4 bpc on mix-
ture of datasets. D-CNN is executed with 30 fixed SRM kernels. The best results are
represented in bold font.

Dataset DHR D-CNN W-Net CGC PVC Proposed

Set-I 0.8241 0.8289 0.8594 0.8788 0.8641 0.9041

Set-II 0.8231 0.8417 0.8806 0.8762 0.8661 0.9021

Set-III 0.7812 0.7892 0.8316 0.8411 0.8421 0.8598

Set-IV 0.8161 0.8214 0.8893 0.8796 0.8812 0.9013

4 Conclusion

With recent developments of color based steganography algorithms, the need for
a powerful steganalyzer is needed. We saw recently, that an ensemble model of
colorspaces has a significant impact on classification results. We propose StegCol-
Net as a powerful color image steganalyzer. We employ an ensemble colorspace
strategy to determine if an image is protecting information or not. We use Col-
orNet and take the final activation map from each colorspace. We use weighted
averaging to obtain a single feature map from all the feature maps that are
generated by each colorspace. We then use a levy-flight grey wolf optimization
method to select a smaller subset of features. Using these features, we classify
the given image into one of two classes: containing concealed information or not.
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