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Abstract. This paper proposes an approach for multi-label classification
based onmetric learning.The approach has been designed to dealwith gen-
eral classification problems, without any assumption on the specific kind
of data used (images, text, etc.) or semantic meaning assigned to labels
(tags, categories, etc.). It is based on clustering and metric learning algo-
rithm aimed at constructing a space capable of facilitating and improving
the task of classifiers. The experimental results obtained on public bench-
marks of different nature confirm the effectiveness of the proposal.
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1 Introduction and Related Works

Multi-label classification plays an important role in the context of data anal-
ysis in many different applications, ranging from text classification to multi-
media annotation or bioinformatics [9]. The general problem can be stated as
follows. Let Y = {yj , j = 1, ..,m} be a finite set of m class labels and let
D = {(xi, Yxi

), i = 1, .., n} be a generic set of labeled patterns, where xi is a
data pattern and Yxi ⊆ Y the set of related labels. In multi-label classifica-
tion each pattern xi is therefore generally assigned to more than one class. The
objective of multi-label classification is to determine a function f(xi) able to
correctly identify all the labels Yxi

that can be associated to each pattern in
the domain. Traditional classifiers are not feasible in this case, and an extension
to the multi-label case is needed. Most of the commonly used algorithms have
their own multi-label variant; as an alternative, some works in the literature
propose approaches able to transform multi-label problems into more canoni-
cal multi-class ones [4]. Interested readers can refer to [5] for a description of
the existing approaches. Recently, some approaches for multi-label classification
have been proposed, based on neural networks and deep learning, such as [18]
and [13]. These techniques achieve in general good performance but require, for
a proper training, a large amounts of data that are not always available. The
solution proposed in this work is aimed at designing a method for improving
performance of natively multi-label classifiers for general pattern classification
problems, in the presence of datasets of limited dimensions.
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In an ideal situation, just like in a traditional multi-class problem, the pat-
terns sharing the same labels should lay in the same sub-region of the feature
space. Unfortunately, this desirable situation seldom occurs in real cases, since
labels can generally represent high-level concepts used by humans for classifica-
tion that do not have a direct and immediate counterpart in terms of feature
similarity; of course, the multi-label scenario further complicates the problem. A
common approach to derive a better representation space is based on the use of
algorithms capable of learning a specific metric, which can properly group pat-
terns belonging to the same classes. To this purpose, several techniques based
on supervised learning have been proposed such as Local Fisher Discriminant
Analysis [16] (LFDA) or Large Margin Nearest Neighbor Metric Learning [19]
(LMNN). Unfortunately, such approaches cannot be easily extended to the multi-
label case. An easy and intuitive solution to this problem is to consider super-sets
of labels by transforming the multi-label problem into a multi-class one. This
approach is commonly referred to as label powerset (see for instance [17]) and
it maps each combination of labels to a unique class changing the nature of the
problem; each new class created corresponds to a list of labels of the original
problem. This approach is well-suited for problems where the number of labels
and their possible combinations are limited, otherwise the risk is to obtain an
extremely high number of super-sets, i.e. to many classes to deal with.

This paper proposes a novel approach aimed at improving the multi-label
classifier accuracy by the adoption of a metric learning algorithm. The authors
of [11] present a method in order to learn a new distance metric maximizing the
margin present between different instances. To achieve the expected result, they
project data and labels into the same embedding space imposing constraints on
distances such that instances with very different multiple labels will be moved
far away. Unlike the previous solutions, [8] proposes an innovative loss function
based on the Jaccard index able to determine how different two instances are
based on their labels set. Using the Adam optimisation algorithm, they learn a
new metric able to improve the classification performance.

The approach proposed in this work is based on label clustering, meaning that
the patterns in the dataset are clustered according to their labels rather than on
the basis of the related feature vectors. The information produced by clustering
is exploited to learn a metric aimed at improving classification accuracy. In [9]
the authors use clustering algorithms for pruning infrequent multi labels. They
assume that the elimination of infrequently multi label instances from the training
set leads to the identification of better label power sets. Another interesting use of
clustering can be found in [20]. The authors address the multi-label classification
problem using the classifier chain approach, training a single classifier for each
label. The use of a clustering algorithm, k-means in this case, allows to discover
any correlations present between the labels. This information allows to identify the
correct order in which to arrange the classifiers, maximizing the final performance.

The proposed approach has been designed as a general solution capable of deal-
ing with multi-label classification problems. For this reason the experimental eval-
uation will consider heterogeneous datasets containing data of different nature.
The paper is organized as follows: Sect. 2 presents the proposed approach, its
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characteristics and steps, Sect. 3 shows a complete overview of the results
achieved and Sect. 4 draws some conclusions and presents possible future research
directions.

2 The Proposed Approach

The main steps of the approach can be summarized as follows (detailed descrip-
tion in the following subsections):

1. Clustering: the patterns within the dataset are grouped on the basis of label
sharing;

2. Metric Learning: the original space is replaced thanks to the learning of a
metric capable of bringing together patterns belonging to the same cluster;

3. Multi-label Classification: a suitably trained classifier identifies the labels to
be associated with each pattern inside the new space.

2.1 Clustering

The idea of exploiting label clustering in this work is motivated by the obser-
vation that, in real life scenarios, patterns sharing the same set of labels not
always can be considered similar from the point of view of their respective
feature descriptors. Labels represent very general high-level concepts assigned
by humans, especially in case of multi-label classification; clustering techniques
based on data descriptors may work well for specific applications (e.g. image
retrieval in [14]), but could present limited generalization capabilities when deal-
ing with classification problems of different nature. Label clustering, on the con-
trary, allows to group together data with similar labels, even when they are
spread over the feature space.

The membership of a generic pattern x to the available labels can be
described through a binary vector l = {li, i = 1, ..,m} of size m equal to the
number of possible labels; each element of the vector li ∈ {0, 1}, representing
the membership of x to class yi. This kind of encoding defines a real space of the
labels, different from that of the features used to describe the single patterns.

The proposed approach applies a clustering algorithm to the label space,
ignoring at all the feature vectors associated to patterns, thus ensuring that
clusters are defined according to class membership regardless of the descriptors
used to encode them. The metric used for clustering is the hamming distance,
more suited than the Euclidean distance to deal with the specific label encoding
adopted. Clustering is performed by the HDBSCAN [3] technique, a density-
based clustering algorithm proposed by the same authors of DBSCAN, of which
it represents an evolution. The algorithm identifies clusters as high-density areas
in space. The traditional DBSCAN algorithm uses a single density value to
identify all clusters, while HDBSCAN extends this concept allowing to identify
clusters with different density levels.

The first step of the algorithm requires the estimation of the local density
for each pattern xi. The easiest way to get a density estimate is to evaluate
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the neighborhood of a point. If a large number of neighbors are placed in a
very narrow radius, that particular area can be considered dense. The distance
dcore−k(xi) is simply defined as the distance between xi and its k -th nearest
neighbor, using any metric. Based on this measure, the mutual reachability dis-
tance dreach−k(xi,xj) between two points xi and xj is defined as follows:

dreach−k(xi,xj) = max{dcore−k(xi), dcore−k(xj), d(xi,xj)} (1)

The practical effect of this metric is to preserve the distances of points laying
in dense regions and increasing the reciprocal distances of the points in sparse
ones. Clustering is then based on a weighted graph representation of the points
in the dataset. The points assume the role of the vertices, while the arc connect-
ing two points xi and xj is assigned a weight equal to dreach−k(xi,xj). The idea
is to eliminate the weakest arches, thus identifying the high density areas. This
can be accomplished extremely efficiently by calculating the minimum spanning
tree using a proper algorithm. Given the minimum spanning tree, the next step
is to convert that representation into a hierarchy of connected components by
grouping neighboring points. DBSCAN cuts the hierarchy tree horizontally by
identifying a single threshold used to locate clusters. This represents a strong
limitation if there are areas with heterogeneous densities in the dataset. HDB-
SCAN uses a different approach using the notion of minimum cluster size, which
is taken as input parameter for the algorithm. Each split in the tree represents a
subdivision of the data into multiple clusters. In fact, the root of the tree treats
all data as a single cluster. The deeper you go down, the more clusters you divide
your data with. Browsing through the tree, HDBSCAN makes an evaluation on
the validity of each split present. Only splits into two clusters each at least as
large as the minimum cluster size can be considered valid. Otherwise, that split is
eliminated by condensing that part of the tree. After walking through the whole
hierarchy, we end up with a much smaller condensed tree with a reduced number
of nodes. Given the tree, it is only a matter of choosing those nodes/clusters to
save.

2.2 Metric Learning

The output of the previous clustering stage is a set of clusters containing data
sharing large part of the respective labels. These new labels, found out by a
clustering algorithm, are used to learn a new metric in a supervised fashion from
the feature space. The metric learning step is aimed at reducing intra-cluster
distances while maximizing inter-cluster distances. The literature proposed sev-
eral supervised metric learning algorithms. The approach adopted in this work
is Neighbourhood components analysis (NCA) [7]. It is an algorithm that learns
a linear transformation, in a supervised fashion, to improve the classification
accuracy of a stochastic nearest neighbors rule in the transformed space. The
goal of NCA is to learn an optimal linear transformation matrix A such that the
average leave-one-out (LOO) classification performance is maximized. It identi-
fies the optimal transformation matrix by maximizing the sum over all samples
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of the probability of being correctly classified according to LOO classification.
This type of classification tries to predict the class label of a single data point
by consensus of its k -nearest neighbours, using a given distance metric. Unfor-
tunately, it is not so simple to identify the optimal matrix as any objective
function based on neighborhood points would be not differentiable. In particu-
lar, the set of neighbors for a point may undergo discrete changes in response to
regular changes in the elements of A. This difficulty is overcome by adopting an
approach based on stochastic gradient descent. The entire transformed dataset
is considered as stochastic nearest neighbours using a softmax function of the
squared euclidean distance between a point and each other point in the space.
Considering Ci as the set of points in the same class as sample i, the probability
of sample i being correctly classified is:

pi =
∑

j∈Ci

pij where pij =
exp(−||Axi − Axj ||2)∑

z �=i

exp−(||Axi − Axz||2) , pii = 0 (2)

At each iteration the algorithm adequately modifies the parameters of matrix
A in order to approach patterns belonging to the same class. It is possible to
proceed until convergence or until a maximum number of iterations is reached.
By limiting the number of iterations, the impact of the algorithm on the new
metric can be modulated, preserving part of the old space. NCA also offers the
possibility of reducing the dimensionality of the data if deemed excessive.

2.3 Multi-label Classification

The final step of the approach is represented by multi-label classification, which
takes place in the new space created by the metric learning algorithm. From
the results of this last phase it is possible to verify the effectiveness of the entire
proposal, which should lead to an improvement in the classification performance.
Among the different approaches in the literature, we decided to adopt in this
work two classifiers, Multi-label K-Nearest Neighbors [21] and Random Forest
[2], to evaluate the effectiveness of the proposed approach.

Multi-label K-Nearest Neighbors Classifier (ML-kNN). It is a multi-
label classification algorithm based on an extension of the well known K-Nearest
Neighbor. It assigns labels to a pattern by evaluating the labels of its neighbor-
hood based on a simple approach: it identifies the k closest patterns present in
the training set and then uses Bayesian inference to select the labels to assign.
Considering the main characteristics of this algorithm, it is essential to have an
adequate metric able to aggregate the patterns with the same labels in space.

Random Forest. It is a meta classifier algorithm that fits a number of decision
tree classifiers on various sub-samples of the dataset. The final result of the
classifier is the average of the results obtained by individual trees. This strategy
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allows to increase the classification accuracy and reduce the occurrence of over-
fitting. The random forest algorithm uses the technique of bagging. Every tree is
trained selecting a random sample with replacement of the training set. Feature
bagging is also used to reduce correlation between trees: during the learning
process only a random subset of the available features is used. The use of these
techniques leads to better model performance because it decreases the variance
of the model, without increasing the bias. While the predictions of a single tree
are very sensitive to noise in its training set, the average of many trees is not, as
long as the trees are not correlated. It is important to notice that this algorithm
is natively multi-label. Given a generic pattern x, each of the trees available will
return the predicted class y ∈ Y . The set of these labels represents the output
of the entire algorithm. Some more robust implementations only consider those
labels voted by a minimal number of classifiers.

3 Experiments and Results

3.1 Evaluation Protocol

To evaluate the effectiveness of this approach, it was chosen to use the main and
most known indicators in the field of multi-label classification. They represent a
multi-label variant of the most commonly used indicators in classification prob-
lems [6]. Let D be a multi-label test set. Let Yx be the set of labels associated
with the generic pattern x and Zx those predicted by the classification algorithm.
Accuracy, Precision and Recall are three of the most important indicators for
evaluating a classification approach. In their multi-label version they are defined
as:

Accuracy =
1

|D|
|D|∑

i=1

|Yxi

⋂
Zxi

|
|Yxi

⋃
Zxi

| (3)

Precision =
1

|D|
|D|∑

i=1

|Yxi

⋂
Zxi

|
|Zxi |

(4)

Recall =
1

|D|
|D|∑

i=1

|Yxi

⋂
Zxi |

|Yxi
| (5)

Accuracy measures the overall ability of the classifier of correctly classifying
patterns. Precision measures the portion of predicted labels that are correct,
while recall measures the portion of real labels that were correctly predicted.
Another key indicator within the multi-label classification is the hamming loss.
Its definition recalls the concept of hamming distance:

HammingLoss =
1

|D|
|D|∑

i=1

|Yxi
⊕ Zxi

|
|Yxi |

(6)
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where ⊕ is the XOR operator. This indicator is extremely significant in the
multi-label context as it summarizes the difference between the real label set
and the one predicted by the classifier. Despite the presence of all these specific
indicators for multi-label classification, it is still possible to evaluate the quality
of the results by counting the percentage of exact matches, i.e. the percentage
of test data for which all the required labels have been correctly predicted.

3.2 Datasets

Extensive experiments have been carried out to evaluate the effectiveness of our
proposal as well as its generality. To this purpose, three heterogeneous multi-
label datasets (see Table 1) have been selected:

– enron [15], a dataset of emails labelled with a set of categories; each email is
encoded using the Bag Of Words encoding;

– scene [1], an image dataset; the six labels available identify the characteristics
of the landscape depicted in the image itself; each image is described with
visual numeric features;

– bibtex [10], containing bibliographic data from the BibSonomy social book-
mark and publication sharing system, annotated with a subset of the tags
assigned by BibSonomy users; it uses the Bag Of Words model.

The three datasets are quite different from different points of view such as
content (text/image), features representation, size, number of labels, and how
they are distributed. Each dataset assigns a different meaning to the labels (cat-
egory, description, tag), so that they represent an interesting test bed. Table 1
also reports the training/testing partitioning suggested in the literature for the
datasets. Of course clustering, metric learning and classifier training were done
on the training set, while the test set was used to measure classification results.

Table 1. The main characteristics of the datasets.

Dataset Domain Instances (train/test) Attributes Labels Avg/Max labels
per instance

Enron Text 1702 (1123/579) 1001 53 3.38 / 12

Scene Image 2407 (1211/1196) 294 6 1.07 / 3

Bibtex Text 7395 (4880/2515) 1836 159 2.4 / 28

3.3 Results

Before analysing the classification performance, we briefly report the result pro-
duced in the clustering phase by the HDBSCAN algorithm. The minimum cluster
size required as an input parameter by the algorithm was arbitrarily fixed to 5
for our experiments. Table 2 shows some results related to clustering such as the
number of clusters identified in each dataset and their average size in terms of
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patterns. The number of clusters obtained is in line with the size and the number
of labels in the datasets. It is interesting to note the limited number of clusters
identified in the scene dataset, quite close to the number of labels. Another
important information reported by the table is the average number of clusters
in which a single label ends. It should provide an indication of how the patterns
presenting that label have been grouped. For example, if a label is present on the
majority of the dataset is highly unlikely that all patterns indicating the label
end up in a single cluster. Conversely, if a single or a group of labels characterize
a certain portion of the dataset, those data will probably shape a single cluster.
Of course, the occurrence of these situations is closely related to the meaning
that each dataset assigns to its labels. On average, each label in the enron and
scene datasets ends up in a very similar number of clusters (4/3) despite the
huge difference in the number of labels available. This is due to the different
distribution of the labels within the dataset.

Table 2. The results of clustering.

Dataset No. of clusters Cluster average size Avg No. of Clusters
per label

Enron 39 16.38 4.04

Scene 11 89.82 3.00

Bibtex 226 19.11 19.01

The second step of the method is focused on the NCA algorithm for learning
a better metric. The maximum number of iterations to be performed during
learning has been fixed for all datasets to 30, to avoid excessive flattening of
data on clusters, which proved to be counterproductive in terms of results. No
dimensionality reduction has been applied in our experiments. As regards the
classification, the two algorithms illustrated above were used: ML-kNN and Ran-
dom Forest. The results obtained by ML-kNN using the proposed approach are
compared with the benchmarks indicated in [12], following the same protocol. In
particular, the best results in the new space were obtained by assigning the value
10 to the hyper-parameter k. As for Random Forest, it was made a comparison
between the original space of the datasets and the built one using a model with
100 decision trees. Thanks to these comparisons, it is possible to evaluate the
effectiveness of the proposed method. The classification results, obtained using
the indicators shown above, are reported in Table 3.

The results clearly show that the proposed method is able to improve clas-
sification performance. In particular, ML-kNN improves significantly, especially
for the bibtex dataset. Given the characteristics of the classifier, it was reason-
able to expect a positive effect from the construction of a space more suitable
for classification. The results obtained show the ability of the previously identi-
fied clusters to group patterns with the same labels. In general, Random Forest
also seems to get benefits, though in a limited form. While on the one hand the
increase in performance on scene is remarkable, on the other hand the results
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Table 3. Classification results on selected datasets.

Accuracy Precision Recall Hamming D. Exact
match

Enron ML-kNN (Benchmark) 0.319 0.587 0.358 0.051 0.062

ML-kNN (Our method) 0.413 0.66 0.465 0.048 0.123

Random forest (Original Space) 0.401 0.694 0.449 0.047 0.119

Random forest (Our method) 0.413 0.7 0.456 0.046 0.123

Scene ML-kNN (Benchmark) 0.629 0.661 0.655 0.099 0.573

ML-kNN (Our method) 0.698 0.732 0.715 0.090 0.646

Random forest (Original space) 0.540 0.565 0.540 0.093 0.514

Random forest (Our method) 0.657 0.688 0.659 0.087 0.624

Bibtex ML-kNN (Benchmark) 0.129 0.254 0.132 0.014 0.056

ML-kNN (Our method) 0.257 0.390 0.271 0.013 0.156

Random forest (Original space) 0.217 0.362 0.219 0.013 0.135

Random forest (Our method) 0.186 0.316 0.188 0.013 0.114

on the other datasets are not so good. This is not accidental if we consider the
characteristics of the two datasets and those of the classifier. On average, enron
and bibtex have a much higher number of labels for each instance than scene.
The new space, by grouping different patterns, has evidently reduced the ability
of the trees to discriminate with respect to a single label, causing not exactly
exciting results. In summary, contrary to what happened with ML-kNN, the new
learned metric hindered the task of the Random Forest classifier.

Overall, the results obtained are very good and prove the capability of the
proposed method to build a more effective space for multi-label classification.

4 Conclusions and Future Works

In this work a metric-learning approach aimed at improving the performance
of a multi-label classifier has been presented. In particular, the use of a cluster
algorithm applied to pattern labels allowed to identify groups of data that share
most of their labels, subsequently used to build a new, more effective, representa-
tion space. The results obtained on three different multi-label datasets show how
the new space built by the proposed approach is able to significantly increase the
classification results. Future researches will be devoted to investigate the scala-
bility of this approach to larger datasets. Another future development involves
the introduction, in the metric learning step, of a neural network capable of
building a more suitable space for classifiers.
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