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Abstract. PCANet is a simple deep learning baseline for image clas-
sification, which learns the filters banks by PCA instead of stochastic
gradient descent (SGD) in each layer. It shows a good performance for
image classification tasks with only a few parameters and no backprop-
agation procedure. However, PCANet suffers from two main problems.
The first problem is the features explosion which limits its depth to
two layers. The second issue is the binarization process which leads to
discriminative information loss. To handle these problems, we adopted
CNN-like convolution layers to learn the PCA filter-bank and reduce
the number of dimensions. We also used second-order pooling with z-
score normalization to replace the histogram descriptor. The late fusion
method is used to combine the class posteriors generated each layer. The
proposed network has been tested on image classification tasks including
MNIST, Cifar10, Cifar100 and Tiny ImageNet databases. The experi-
mental results show that our model achieves better performance than
standard PCANet and is competitive with some CNN methods.

Keywords: PCANet · PCANet+ · PCANet II · CNN · Spatial
pyramid pooling · Second-order pooling · Fusion Neural Network

1 Introduction

Convolutional neural networks (CNNs) have witnessed immense success in image
classification since Alexnet won the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2012 [19]. Some of the famous CNNs include VGGNet
[23], ResNet [24] and in general, architectures have become complicated with
more layers. For example, one common realization of ResNet has 152 layers. The
filters learning process in CNNs relies on optimization via gradient descent using
backpropagation, making the whole process unexplainable and computationally
expensive, particularly with more layers.

As a response to this, PCANet [2] was proposed in 2015 as a simple baseline
for image classification problems. PCANet is trained using a closed-form non-
iterative and unsupervised procedure and is an order of magnitude faster to train
than a traditional CNN. Although the performance is not state-of-the-art, it is
remarkably effective for such a simple architecture. PCANet has led to a family
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of related techniques, and the network proposed in this paper is broadly part of
this family. While PCANet achieved good performance in various benchmarks,
it suffers from some problems:

– The network is shallow, potentially causing a loss of performance on more
complex datasets.

– Due to the way PCANet convolves the images and uses histogram-pooling,
there is an explosion in the number of features with more layers or filters.

– Feature binarization restricts the filter responses to only 1’s, and 0’s, leading
to discriminative-information loss.

– Since filter learning is unsupervised, later layers may not preserve important
classification information from earlier layers.

In this paper, we propose a new network with some innovations. Firstly, we
generate feature maps from all network layers and use late fusion to combine class
posteriors. This introduces an element of supervised learning while preserving the
single-pass strategy of PCANet. We are then able to preserve essential features
from early network layers. Secondly, to improve the amount of discriminative
information, we use second-order pooling which has recently become popular
in CNNs and is used in PCANet-II [11]. We refined the approach by using z-
score normalization to provide more stable and informative features. Finally,
we adopt multi-channel convolution layers typically used in CNNs (but not in
PCANet) and PCANet+ [1]. This helps to reduce the size of the feature maps.
The performance of this new network is good and comparable to old NNs-based
architectures but not the recent architectures.

2 Related Work

PCANet [2] is a simple feedforward network which does not require backprop-
agation to learn the filter-bank. Instead, they adopted the PCA eigenvectors
learnt from stacking patches of images to be their candidate filters. After several
convolutional layers, the features are encoded employing a binary hashing fol-
lowed by block-wise histograms. In fact, this network generates (unsupervised)
features, and the classification is left to a final stage. The filters were applied
on a one-channel basis, i.e. each filter operates on one channel and produces one
new grayscale image. As a result, the number of channels at the next level is
channels × filters and rises quickly. The histogram pooling also generates many
features, leading to a feature explosion if more layers are added.

The design of PCANet has led to other related variants. For example, DCT-
Net [20], LBP-Net [21] and ICANet [22] changed the type of filters used by
PCANet while pursuing with the same structure. PCANet-II [11] also used the
same PCANet architecture but replaced the histogram-pooling with the second-
order pooling to reduce the number of features. PCANet+ [1] tried to change
the PCANet filters’ topology by proposing PCA filter ensemble learning. Other
research such as [23] and [31] attempted to learn a non-linear representation of
the PCA filters using kernel methods.
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3 Multi-layer PCA Network Structure

Assume we have a set of N training samples X(0) that feed into the network,
where X(0) = {{Xi}N1 : Xi ∈ R

m×n×d} and d ∈ {1, 3} represents the grayscale
and the coloured images respectively. Figure 1 describes the architecture of the
network. The first layers are convolution layers, where the input to each con-
volution layer (X(L−1)) is the previous layer’s output. The following equation
defines the output of each convolution layer (defined in the next section):

XL = WL ∗ X(L−1) (1)

Where XL represents the output of the layer (L), WL is the PCA-based filters
learned for the current layer (L), and (∗) is the convolution operator.

For every convolution layer’s output, we extract the features using the second-
order pooling and then, optionally, apply multi-level spatial pyramid pooling
(SPP) as in [2]. Finally, we run a classifier for each layer which outputs the class
posteriors and send the fused posteriors to a classifier for final prediction. Details
about the network structure are discussed in the following sections.

Fig. 1. Multi-layer PCA network architecture

3.1 PCA Convolution Layers

The PCA filters are calculated as in [1]. For N samples XL−1 = {Xi}N1 , where
Xi ∈ R

m×n×dL−1 , and dL−1 is the number of filters in the layer (L-1), or dL−1 ∈
{1, 3} for the input layer, we find the PCA filters as the following:

1. Extract all overlapping patches of size kL × kL × dL−1 in each image Xi and
subtract the mean-patch, where kL represents the filter’s size in layer (L).

2. Calculate X̄i ∈ R
k2
LdL−1×Nm̃ñ by concatenating all the vectorized zero-mean

patches from all sample images, where m̃ = (m−kL)+1 and ñ = (n−kL)+1
, m and n are the width and the height of the image.

3. Solve the following equation to find dL principle components of (X̄L−1

X̄L−1T ).

min
V ∈R(kL×kL)×dL−1

||X̄L−1 − V V T X̄L−1||2F , V TV = IdL−1 (2)

Where IdL−1 is the identity matrix of size dL−1 × dL−1 .
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4. The PCA filters can be expressed as the following:

WL
s = mat

kL×kL×dL−1
qs, s = 1, 2, . . . , dL. (3)

Where mat
kL×kL×dL−1

(v) is the function that maps the vector v ∈ R
k2
LdL−1 to

tensor W ∈ R
kL×kL×dL−1 , qs is the sth principal eigenvector of X̄L−1X̄L−1T

and dL is the number of filters chosen for the layer (L).
5. The output of each convolution layer is obtained by convolving each filter

with the sample images:

XL
i = X̄L−1

i ∗ WL
s ∈ R

m×n×dL (4)

where s = 1, 2, . . . , dL and X̄L−1
i is zero-padded to get the same image size.

3.2 Second-Order Features

Figure 2 illustrates the mechanism of calculating second-order features from
each convolution layer’s output. So, for each output XL

i ∈ R
m×n×dL , where

i = [1, 2, . . . , N ], N is the number of samples, and dL is the number of responses
in layer L. We first divide the tensors into patches of the same size and normalize
each patch using z-score normalization. Then, we find the channel-wise covari-
ance matrix for each patch, representing the second-order features related to that
position in the image (determined by the patch size). Details about covariance
calculation have been discussed in the following subsection.

Fig. 2. Second order features for every convolution output

Covariance Computation. Assume X ∈ R
M×d is sampled from the normal

distribution, where M is the number of instances, and d is the number of dimen-
sions. The following equation defines the covariance matrix of X.

Σ =
1
M

M
∑

k=1

(xk − μ)T (xk − μ) (5)

Where μ is the sample mean.
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The covariance matrix Σ is a symmetric positive definitive matrix that forms
a Riemannian manifold [5]. Most of the classifiers, such as SVM, deals with
Euclidean data so direct use of covariance matrix entries for features is not
ideal. We should first map Σ to the Euclidean tangent space using log matrix
log Σ [5], or square-root matrix Σ1/2 [3,4,6]. Empirically, the square-root matrix
seems to produce better performance than logarithmic matrix [3].

The covariance matrix is difficult to estimate robustly when the number of
samples is small compared to the number of dimensions [4,7], and so the square-
root covariance cannot be accurately calculated directly. Therefore, we used the
following equation as in [7] to estimate the covariance matrix.

˜Σ = Udiag(δi : i = 1, 2, . . . , d)UT , δi =

√

(

1 − α

2α

)2

+
λi

2α
− 1 − α

2α
(6)

Where U is the orthogonal matrix consisting of the eigenvectors, (λi, i = 1 . . . d)
are the eigenvalues in decreasing order, α is regularizing parameter and set to
be 1

2 in all experiments as in [4]. This gives ˜Σ as a regularized estimate of Σ1/2.
After computing the estimated covariance matrix, we combine the mean and the
estimated covariance using the following positive-definitive matrix as in [7].

N (μ, ˜Σ) ∼
(

˜Σ + μμT μ
μT 1

)

(7)

Where ˜Σ and μ are the estimated covariance and the sample mean, respectively.
Because this matrix is symmetric, the number of features for each convolution
layer is (dL + 1)(dL + 2)/2 − 1× the number of patches.

3.3 Late Fusion

The intermediate activations’ outputs could provide informative clues about the
images, including local parts, boundaries, and low-level textures. Therefore, inte-
grating information from all layers is essential for better performance and reliable
prediction [8]. Generally, there are two standard fusion methods, namely early
fusion and late fusion [9,10]. The difference between the two methods is explained
in Fig. 3. The early fusion works in the features level, where we fuse the features
first using one of the methods discussed in Table 1 and send the fused features
to a classifier to predict the classes’ labels. On the other hand, the late fusion
works by running a classifier each level, combine the posteriors using one of the
methods described in Table 1 and send them to the primary classifier for the
final prediction. The researchers [9,10] showed that the late fusion method could
provide comparable or better performance than the early fusion. We used the
late fusion method in our experiments, where the class posteriors were averaged
to predict the final results. This produces a large reduction in the number of
features used in the final classifier.
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Fig. 3. Late fusion versus early fusion

Table 1. Fusion methodology

Fusion method Definition

Concatenation f = [f1, f2, . . . , fN ], where fi ∈ R
di f ∈ R

∑N
k=1 dk

Max fk = maxd
i=1(f

i
k), where k = 1, . . . , N and f ∈ R

N

Sum fk =
∑d

i=1(f
i
k), where k = 1, . . . , N and f ∈ R

N

4 Experiments and Results

We investigated several architectures to test our model in 4 benchmarks: CIFAR-
10 [29], CIFAR-100 [29], MNIST [26] and Tiny ImageNet [30]. Table 2 presents
the best configurations we found for the four datasets. Each entry gives the
receptive field size and the number of output filters for that layer. The filter size
for all of our experiments has fixed to 3 × 3. The classifier we ran for every
convolution layer is the linear discriminant analysis (LDA), and the posteriors
generated of the LDA classifiers were averaged and sent to SVM [28] to produce
the final prediction. More details about these configurations and their accuracies
have been discussed in the following subsections.

Table 2. Configurations for CIFAR-10/100, MNIST and Tiny ImageNet

CIFAR-10 CIFAR-100 MNIST Tiny ImageNet

Input Image 32 × 32 × 3 Input Image 28 × 28 Input Image 64 × 64 × 3

3 × 3 conv-27 3 × 3 conv-9 3 × 3 conv-27

[3 × 3 conv-50] ×7 [3 × 3 conv-50] ×4 [3 × 3 conv-40] ×8 2 × 2 max-pooling, stride = 2

[3 × 3 conv-70] ×3

4.1 Experiment on CIFAR-10 Database

CIFAR-10 database [29] consists of 50,000 coloured images for training and
10,000 images for testing. Each class contains objects that come with differ-
ent angles and poses. The model used for testing CIFAR-10 as described in
Table 2 consists of 8 layers with 27 filters for the first layer and 50 for the rest.
We divided the feature maps of each layer into patches of size 8 × 8 with a
stride = 1. Each convolution layer’s second-order features are reduced using
3-levels SPP of 4 × 4, 2 × 2 and 1 × 1 subregions. The number of the first
convolution layer features is 8508, and 27825 from the remaining layers.
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Table 3 compares our model’s accuracy with PCANet-2 and the current state
of the art results (without data augmentation). The accuracy of our model
is 4.58% better than PCANet-2. While the current state of the art methods
achieved around 12% accuracy better than our model, our model is competi-
tive with some simpler deep learning methods and learns features in a one-pass
closed-form algorithm. So, the result is still promising.

Table 3. Comparison of the accuracy (%) of some methods on the CIFAR-10/CIFAR-
100 database with no data augmentation

Method CIFAR-10 CIFAR-100

Stochastic pooling [12] 84.87 57.49

Maxout network [13] 88.32 61.43

Network in network [14] 89.59 64.32

ALL-CNN [15] 90.2 –

Fractal network [16] 89.82 64.66

110 ResNet reported by [17,18] 86.82 55.26

ResNet stochastic depth [17] – 62.20

164-ResNet(pre-activation) reported by [18] – 64.42

Dense network(k = 24) [18] 94.08 76.58

Dense network-BC (k = 24)[18] 94.81 80.36

PCANet-2 [2] 77.14 51.62

PCANet-2 (combined) [2] 78.67 –

Multi-layer PCANet (ours) 81.72 57.86

4.2 Experiment on CIFAR-100 Database

CIFAR-100 database [29] is similar to CIFAR-10 but with 100 classes. The model
we used in this experiment is identical to the one we used for CIFAR-10 but with
5 convolutional layers. We choose the number of layers to be five because there
is no improvement in the accuracy when using eight layers as in CIFAR-10.

Table 3 compares the results achieved by our model with PCANet and other
neural networks-based models (without data augmentation) including Residual
network, Fractal network [16] network in network [14] and dense network [18].
The PCANet result has been achieved by running the same model used for
CIFAR-10 [2], but with the CIFAR-100 database. The results show that our 5-
layers PCANet accuracy is 6.24% better than the 2-layers PCANet and 2.60%
better than ResNet with 110 layers, and about the same error rate as the stochas-
tic pooling method [12]. The dense-network achieved the best performance with
an error rate of 22% less than our model. Again our method improves on PCANet
and is competitive with some older CNN-based methods, although it is not as
good as more recent ones.
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4.3 Experiment on the MNIST Database

The MNIST dataset [26] consists of 60,000 training examples and 10,000 test
samples organized into 10 classes. Testing on this dataset was also performed
without data augmentation. As described in Table 2, we used 9 convolutional
layers, with 9 filters for the first layer and 40 for the rest. The performance
reported here is the last convolution layer’s accuracy, where we divided the
40 feature-maps into patches of size = 7 × 7 and stride = 1. The number of
dimensions of the last layer has reduced using 3-level SPP of 16, 4 and 1 bins.
The classifier used here is also the LDA, and the number of dimensions is 18060.

Table 4 compares the results obtained in this study with those obtained by
PCANet [2]. The performance of our model is equivalent to those of PCANet-2,
LDANet-2 and PCANet-1 (k = 13). Our interpretation of this situation is that
the accuracy was good, and could not improve much by adding more layers.

Table 4. Comparison of cthe MNIST database with no data augmentation

Method Accuracy(%)

PCANet-1 [2] 99.06

PCANet-2 [2] 99.34

LDANet-1 [2] 99.02

LDANet-2 [2] 99.38

PCANet-1 (k = 13) [2] 99.38

Multi-layer PCANet (ours) 99.40

4.4 Experiment on Tiny ImageNet

Tiny ImageNet database [30] consists of 100,000 training images divided into
200 categories. The validation and the test sets contain 10,000 images each,
with 50 images per class. The test set is not labelled, and the results here are
reported on the validation set. The model used for this experiment, as described
in Table 2 consists of 4 convolution layers and one max-pooling layer with 27
filters generated from the first layer and 70 filters produced by the next layers. We
introduced the max-pooling layer here to reduce the size of the output images.
We divided the output images into patches of size 16 × 16 with stride = 1. The
first layer’s covariance features were pooled using 3-level SPP with 16, 4 and 1
bins. The next convolution layers have been connected to 2-level SPP with 4 and
1 bins. The number of features generated = 8508 from the first layer and 9450
from the remaining convolution layers.

Table 5 displays our model’s accuracy compared to PCANet-2, ResNet34
and ResNet-50 reported by [27] without data augmentation. We tried to choose
the best parameters to run PCANet-2 on 1TB memory. Therefore, PCANet-2
was trained with filter size k1 = k2 = 5, the number of filters L1 = 30, L2 =
8, and the block size = 16×16 with overlapping ratio = 0.5. To the best of our
knowledge, we obtained the best error rate with no data augmentation.
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Table 5. Comparison of the accuracy of some methods on the Tiny ImageNet database
with no data augmentation

Method ResNet-34 [27] ResNet-50 [27] PCANet-2 Multi-layer PCANet
(ours)

Accuracy(%) 33.50 26.20 30.00 40.87

5 Conclusions

In this paper, we have presented some new refinements to the PCANet family of
image classification methods to improve the performance and reduce the number
of features. We introduced late fusion to preserve the information from all lay-
ers, adopted multi-channel convolutional layers and used second-order pooling
with z-score normalisation. These substantially reduce the number of generated
features and allow us to use deeper networks. We have shown that this offers
improved performance over PCANet and results which are competitive with
some simpler CNN architectures. We believe this is promising for a method
where the features are unsupervised, but this is also a weakness of the architec-
ture because we cannot learn which features are important for classification. In
future work, we intend to study supervised convolutional layers where the filters
are learnt with simple closed-form solutions in the same spirit as PCANet.
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