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Abstract. We are facing the challenge of rapidly increasing amounts
of data. Moreover, we observe that in many applications the underlying
data contains strongly related entities making graphs the most appropri-
ate structure for data modeling. When data is represented by means of a
graph, querying corresponds to a graph matching problem. The present
paper introduces a novel graph that models information from the medi-
cal domain with about 110,000 nodes and 220,000 edges. Additionally we
present several basic benchmark queries, i.e. specific subgraphs, from dif-
ferent categories that can be found multiple times in the medical graph.
Both the graph and the benchmark can be used to implement, test, and
compare novel graph matching algorithms in a real world scenario.

Keywords: Subgraph isomorphism · Graph matching · Graph
database

1 Introduction and Related Work

Many of the information repositories available are diverse, large, and often con-
tain strongly related entities. To cope with numerous and arbitrary relations
more efficiently, graph based databases are more and more recognized as versatile
alternative to relational databases [1]. In fact, in contrast with tabular structures
that use foreign keys for relationship modeling, graphs are able to represent not
only the values of entities, but can be used to explicitly model structural rela-
tions that might exist between different objects by means of edges [2,3]. More-
over, the user’s mental model of the data and the actual data structure stored on
a device are fully congruent. Hence, visualizations of graphs typically provide an
intuitive and clearly understandable overview of the underlying structures and
relationships.
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When a graph is employed for the purpose of data storage, the informa-
tion retrieved in response to a certain query is typically also a graph, which
may be, for instance, a subgraph of the underlying database graph [3]. In the
present paper, we employ the concept of subgraph isomorphism [4] for informa-
tion retrieval. Subgraph isomorphism indicates that a smaller graph is contained
in a larger graph. Let us assume that we represent a query by means of an
attributed graph q, termed query graph. Given q and the database graph G, we
can check whether the query graph q is contained in the underlying database G.

About a decade ago one of the authors of the present paper introduced a gen-
eralized form of graph isomorphism that is particularly well suited for informa-
tion retrieval from graphs [5]. This generalized subgraph isomorphism method-
ology allows to mask out attributes in query graphs that are irrelevant for a
particular question. Moreover, the algorithm also allows the definition of certain
variables in order to retrieve values of predefined attributes as well as the defini-
tion of constraints (for example variables that can assume only certain values).
In the meantime these basic concepts for subgraph matching in large graphs
have been implemented in many commercial software products (e.g. Neo4j or
Amazon Neptune, to name just two prominent examples).

Despite the fact that graph based databases have reached a mature level,
graph matching [6], information retrieval on graph-like structures [7], or human
interaction with graph models [8] are still active fields of research. The major
contribution of the present paper in this particular field is twofold. First, we
present a novel large graph that models heterogeneous information from the
medical domain by means of about 110,000 nodes and 220,000 edges. Second,
we present 21 benchmark queries, i.e. specific subgraphs, from seven different
categories that can be found multiple times in the large graph. These categories
represent important application scenarios and therefore we need to know how
efficiently they can be answered. The present paper is similar in spirit to [9–12]
where graphs and benchmark tasks for (sub)graph isomorphism or error-tolerant
graph matching are presented.

The remainder of the present paper is organized as follows. In Sect. 2 the basic
definitions are introduced. Next, in Sect. 3 the novel medical graph is introduced
and thoroughly described. Eventually, in Sect. 4, we define the benchmark tasks
in the form of subgraphs that can be found in the medical graph together with
the respective matching results and run times. Finally, in Sect. 5, we conclude
the paper and discuss some future work ideas.

2 Preliminary Definitions

We employ the property-graph-model in our approach. Formally, a graph is a
4-tuple g = (V,E, μ, ν), where

– V is the finite set of nodes
– E ⊆ V × V is the set of edges
– μ : V → {(t,x(t))|t ∈ Tnodes,x(t) ∈ (D1(t) × . . . × Dnt

(t))} is the node
property function

– ν : V × V → P({t|t ∈ Tedges}) \ ∅ is the edge type function.
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Through the node property function μ, each node u ∈ V in a graph is labeled
by a (type, property)-pair (t,x(t)). The first component, the type t, is an element
of a finite set of node types Tnodes. The node types group nodes together and
specify the roles they play within the graph. For example, some nodes could
represent objects of type Disease, while others represent nodes of type Symptom
or Treatment.

In our scenario, nodes also contain properties modeled by means of the second
component, i.e. x(t) = (x1, . . . , xnt

). In this property vector each attribute xi

belongs to some domain Di(t). The dimension of vector x(t), i.e. the number
nt of attributes, as well as each individual attribute domain Di(t) depends on
the actual type t of the node [5]. Possible properties for nodes of type Disease
would be, for instance, an ID, the name of the disease, or others.

Formally, edges are pairs of nodes, (u, v) ∈ V ×V and structure the graph. In
our scenario, edges are always directed and always connect exactly one start- with
one end-node. In some applications, however, it might be necessary to include
more than one edge between the same pair of nodes, because of the existence
of multiple relations. In the formal graph model provided above, this can be
accomplished by assigning several edge types to the same edge (u, v) by means
of the edge type function ν, i.e. ν(u, v) = {t1, . . . , tn}. Note that the range of
function ν is the power set of all edge types from the finite set Tedges. Assigning
n types {t1, . . . , tn} to edge (u, v) by means of ν is equivalent to providing n
individual edges from node u to node v [5]. In our scenario the edges do not
contain any further properties1.

A possible type of an edge between nodes of type Disease and Symptom
might be, for instance, causes. The adjacent nodes, the edge’s direction and the
label of the edge provide semantic clarity to the relationship.

3 Medical Graph

In the present paper we use the data structure g = (V,E, μ, ν) defined in the
previous section to model diverse information from the medical domain. To this
end, we automatically parse data from the following four public domains:

1. Wikidata: wikidata.org
2. SemMED: skr3.nlm.nih.gov/SemMed/
3. Medline: medlineplus.gov
4. DisGeNET: disgenet.org

From Wikidata we parse entities of five different types, viz. diseases, symp-
toms, treatments, behaviours (such as tobacco addiction or similar), and diag-
nostic tests. Next, we complement the set of diseases with entities extracted
from SemMED. From the same domain as well as from Medline we extract fur-
ther diagnostic tests (we select the most frequent diagnostic tests by means of a
simple heuristic). Also from SemMED we parse research papers and two patient

1 This can be generalized in a straightforward manner.
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characteristics (gender and age group) that might be typical for certain dis-
eases. The number of research papers is limited to eight papers per disease and
we require the title of the paper to include the name of the respective disease.
Finally, From DisGeNET we parse genes and proteins (we select genes with a
GeneSymbol-Score greater than, or equal to, 0.3).

All of these entities are modeled by means of nodes of different types and
with different sets of properties. In total 110,774 nodes of nine different types
are built by means of this procedure. In Table 1 the node types, the number
of nodes per type and the properties available in the different node types are
summarized.

Table 1. The node types, the number of nodes per type and the properties available
in the different node types.

Node type t ∈ Tnodes Count Properties x(t)

ResearchPaper 60,895 PMID, Abstract
Disease 28,000 CUID, Name, Description,

DOID
Protein 9,281 uniprodID
Gene 8,490 Name, GeneID, GeneSymbol

Score (level of evidence)
Treatment 1,606 CUID, Name
DiagnosticTest 1,384 CUID, Name
Symptom 588 CUID, Name
Behaviour 489 Name
PatientCharacteristic 41 CUID, Name
Total count 110,774

We use nine different edge types in order to connect the different nodes with
each other and build the graph (in total 221,920 edges are inserted). Actually,
we build a graph according to the star like scheme with nodes of type Disease
as most central nodes (see Fig. 1). In Table 2 the edge types, the number of edges
per type and the start- and end-node that are connected with the respective edge
are summarized. The complete graph is publicly available in a comma separated
file at https://github.com/kaspar-riesen/medical-graph.

4 Benchmark Tasks and Results

We divide our benchmark queries on the medical graph into the following seven
categories or patterns (see also Fig. 2): Single, Double, Triple, Triangle, Growing

https://github.com/kaspar-riesen/medical-graph
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Fig. 1. The nine types of nodes are connected by means of nine different edge types.

Table 2. The edge types, the number of edges per type and the start- and end-node
that are connected with the respective edge type.

Edge type t ∈ Tedges Count From To

mentions 62,940 ResearchPaper Disease
falseStructureCauses 43,088 Protein Disease
associatedWith 42,610 Disease Gene
indicates 29,702 DiagnosticTest Disease
isTypicalFor 26,671 Disease PatientCharacteristic
encodes 9281 Gene Protein
treats 5523 Treatment Disease
causes 1358 Disease Symptom
hasRiskFactor 747 Disease Behaviour
Total count 221,920

Star, Top Hub, and Max Overlap. Each category represents a different informa-
tion need ranging from finding information of a single symptom to differentiation
between diseases. For each pattern three different specific queries are defined and
described in the next paragraphs.

Single (see Fig. 3 (a)). We search for all nodes of . . .

Query 1 . . . type DiagnosticTest where the property name contains . . .
Query 2 . . . type Disease where the property name contains . . .
Query 3 . . . any type where any of the available properties contain . . .

. . .the search string liver.

Double (see Fig. 3 (b)). We search for all nodes of type. . .
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Fig. 2. The seven types of queries.

Query 4 . . . Treatment that are connected with an edge treats . . .
Query 5 . . . DiagnosticTest that are connected with an edge indicates . . .
Query 6 . . . Gene that are connected with an edge associatedWith . . .

. . .to a node of type Disease with the property name that contains the search
string breast cancer.

Triple (see Fig. 3 (c)). We search for all nodes of both types DiagnosticTest
and . . .

Query 7 . . . Symptom that are indirectly connected with two edges indicates
and causes via a node of type Disease whose property name contains the
search string deficiency.

Query 8 . . . Treatment that are indirectly connected with two edges indicates
and treats via a node of type Disease whose property name contains the
search string periodontitis.

Query 9 . . . Behaviour that are indirectly connected with two edges indicates
and hasRiskFactor via a node of type Disease whose property name contains
the search string arteriosclerosis.

Triangle (see Fig. 4 (a)). We search for all nodes of both types Protein or Gene
that are directly connected with an edge encodes with each other and simulta-
neously connected via edges associatedWith and falseStructureCauses with
a node of type Disease whose property name contains the search string . . .

Query 10 . . . type 1 diabetes.
Query 11 . . . hypothermia.
Query 12 . . . skin cancer.

Growing Star (see Fig. 4 (b)). We search for all nodes of type Disease that are
directly connected via edge causes with at least . . .
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(c) Queries of type Triple

Fig. 3. Queries of different types. Grey colored nodes represent the nodes being
searched for.

Query 13 . . . two nodes of type Symptom where the property name of the first and
second symptom contain the search string fever and fatigue, respectively.

Query 14 . . . three nodes of type Symptom where the property name of the first,
second, and third symptom contain the search string fever, fatigue, and
anorexia, respectively.

Query 15 . . . four nodes of type Symptom where the property name of the first,
second, third, and fourth symptom contain the search string fever, fatigue,
anorexia, and diarrhea, respectively.

Top Hub (see Fig. 4 (c)). We search for the five nodes of type Disease that have
the most edges of type . . .

Query 16 . . . treats (to nodes of type Treatment).
Query 17 . . . indicates (to nodes of type DiagnosticTest).
Query 18 . . . associatedWith (to nodes of type Gene).

Max Overlap (see Fig. 4 (d)). We search for maximum five nodes of type Disease
that share the most . . .

Query 19 . . . symptoms with a node of type Disease whose property name
contains the search string gastroenteritis.
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Fig. 4. Queries of different types. Grey colored nodes represent the nodes being
searched for.

Query 20 . . . treatments with the node of type Disease whose property name
contains the search string hypertension.

Query 21 . . . mentions in research papers with the node of type Disease whose
property name contains the search string pulmonary.

In Table 3 the size of the result, i.e. the number of nodes that match the
given subgraphs, as well as the run time for the actual matching are shown for all
queries. We run our experiment on a Intel Core i7 with 16 GB RAM and we have
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implemented the graph model by means of the graph database implementation
Neo4j’s developer edition2. The size of the result sets varies from only one
node to more than 1,000 nodes per query. Also for the matching times quite
large differences are observable. The ground truth results for these matchings
can be found at https://github.com/kaspar-riesen/medical-graph.

Table 3. The result size and matching times of queries 1 to 21.

Query Size of result Time [ms]

1 7 nodes 3
2 90 nodes 77
3 1066 nodes 834
4 40 nodes 36
5 30 nodes 82
6 1089 nodes 276
7 19 nodes 7
8 45 nodes 13
9 10 nodes 7

10 6 nodes 155
11 14 nodes 114
12 59 nodes 112
13 18 nodes 12
14 7 nodes 4
15 2 nodes 7
16 5 nodes 84
17 5 nodes 7
18 5 nodes 40
19 5 nodes 3
20 5 nodes 12
21 1 node 41

5 Conclusions and Future Work

Several areas in science and industry are facing the challenge of rapidly increasing
amounts of data available, making scalable search methods inevitable. The vast
majority of efficient search methods are built for traditional, i.e. tabular data

2 One can define indexes on properties in Neo4j – however, we have omitted this
possibility in our evaluation.

https://github.com/kaspar-riesen/medical-graph
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representations. Yet, we observe that in many modern applications the under-
lying data is inherently complex, making this limited representation formalism
rather inappropriate. Graphs actually allow us to explicitly model relationships
between entities. When data is represented by means of a graph, a search for
information, or a pattern, exactly corresponds to a graph matching problem.
The present paper introduces a novel graph that models information from the
medical domain with about 110,000 nodes and 220,000 edges. Additionally we
present several basic benchmark queries, i.e. specific subgraphs, from seven dif-
ferent categories that can be found multiple times in the medical graph.

We see several rewarding avenues to be pursued in future work. First, we
invite the research community to test their own algorithms for subgraph isomor-
phism on the publicly available graph. Second, we see great potential to define
more complex and more time-consuming benchmark queries. Last but not least,
the medical graph could be substantially increased in the number of nodes and
edges by accessing and integrating further repositories.
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