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Abstract. Proximities are at the heart of almost all machine learn-
ing methods. In a more generic view, objects are compared by a (sym-
metric) similarity or dissimilarity measure, which may not obey par-
ticular mathematical properties. This renders many machine learning
methods invalid, leading to convergence problems and the loss of gen-
eralization behavior. In many cases, the preferred dissimilarity measure
is not metric. If the input data are non-vectorial, like text sequences,
proximity-based learning is used or embedding techniques can be applied.
Standard embeddings lead to the desired fixed-length vector encod-
ing, but are costly and are limited in preserving the full information.
As an information preserving alternative, we propose a complex-valued
vector embedding of proximity data, to be used in respective learning
approaches. In particular, we address supervised learning and use exten-
sions of prototype-based learning. The proposed approach is evaluated on
a variety of standard benchmarks showing good performance compared
to traditional techniques in processing non-metric or non-psd proximity
data.

Keywords: Proximity learning · Embedding · Complex valued data ·
Learning vector quantizer · Krein space

1 Introduction

Machine learning has a growing impact in various fields and the considered input
data become more and more generic [9,12]. In particular non-vectorial data like
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text data, biological sequence data, graphs, and other input formats are used [14].
The vast majority of learning algorithms expect fixed-length real value vector
data as inputs and can not directly be used on non-standard data [12].

Using embedding approaches is one strategy to obtain a vectorial embed-
ding, but this is costly, needs large amounts of data to train the embedding and
information is only partially preserved [12]. In a more generic scenario, proxim-
ity measures, like alignment functions, can be applied to compare non-vectorial
objects to obtain a proximity score between two objects. If all N input objects
are pairwise compared, we obtain a proximity matrix P ∈ RN×N . If the mea-
sure is a metric dissimilarity measure, we have a distance matrix, which can
be used for the nearest-mean classifier. In the case of inner products like the
Euclidean inner product, a kernel matrix is obtained. If this kernel matrix is
positive semidefinite (psd), multiple kernel methods can be used [16]. Also, so-
called empirical feature space approaches have been considered, but with the
drawback of high model complexity and inherent data transformations [7].

Here we consider non-vectorial input data given either by a non-metric dis-
similarity measure or a non-standard inner product, leading to an indefinite
kernel function. As detailed in [14], learning models can be calculated on these
generic proximity data in very different ways. Most often, the proximities are
transformed to fit into classical machine learning algorithms, with a number of
limitations [14]. In this work, we propose the application of a complex-valued
embedding on these data to overcome some of the limitations. Recently different
classical learning algorithms have been extended to complex-valued inputs [18].
It is now possible to preserve the information provided in the generic proxim-
ity data while learning in a fixed-length vector space using a highly effective,
well-understood learning algorithm. The respective procedures are detailed in
the following and evaluated on classical benchmark data with strong results.

2 Background and Basic Notation

Consider a collection of N objects xi, i = {1, 2, ..., N}, in some input space X .
Given a similarity function or inner product on X , corresponding to a metric,
one can construct a Mercer kernel acting on pairs of points from X . For example,
if X is a finite-dimensional vector space, a classical similarity function in this
space is the Euclidean inner product (corresponding to the Euclidean distance).

2.1 Positive Definite Kernels - Hilbert Space

The Euclidean inner product is also known as linear kernel with k(x,x′) =
〈φ(x), φ(x′)〉, where φ is the identity mapping. Another prominent kernel func-
tion is k(x,x′) = exp

(
− ||x−x′||2

2σ2

)
, with σ > 0 as a free scale parameter. In any

case, it is assumed that the kernel function k(x,x′) is psd.
The transformation φ is, in general, a non-linear mapping to a high-

dimensional Hilbert space H and may not be given in an explicit form, but
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allowing linear techniques in H. Instead of providing an explicit mapping, a ker-
nel function k : X ×X �→ R is given, which encodes the inner product in H. The
kernel k is a positive (semi-) definite function such that k(x,x′) = 〈φ(x), φ(x′)〉H,
for any x,x′ ∈ X . The matrix Ki,j := k(xi,xj) is an N×N kernel (Gram) matrix
derived from the data. For general similarity measures, we use S to describe the
respective similarity matrix.

Kernelized methods process the embedded data points in a feature space
utilizing only the inner products 〈·, ·〉H [16], without the need to explicitly cal-
culate φ, known as kernel trick. Explicit mappings of psd kernel function are
also frequently used to employ linear methods. However, the underlying simi-
larity function may not be metric, but a domain-specific similarity measure, as
mentioned before. Such similarity measures imply indefinite kernels, preventing
standard “kernel-trick” methods developed for Mercer kernels to be applied.

2.2 Non-positive Definite Kernels - Krein Space

A Krein space is an indefinite inner product space endowed with a Hilbertian
topology. Let K be a real vector space. An inner product space with an indefinite
inner product 〈·, ·〉K on K is a bi-linear form where all f, g, h ∈ K and α ∈ R

obey the following conditions:

– Symmetry: 〈f, g〉K = 〈g, f〉K;
– linearity: 〈αf + g, h〉K = α〈f, h〉K + 〈g, h〉K;
– 〈f, g〉K = 0 implies f = 0.

A vector space K with inner product 〈·, ·〉K is called an inner product space. An
inner product space (K, 〈·, ·〉K) is a Krein space if we have two Hilbert spaces
H+ and H− spanning K such that ∀f ∈ K we have f = f+ + f− with f+ ∈ H+

and f− ∈ H− and ∀f, g ∈ K, 〈f, g〉K = 〈f+, g+〉H+ − 〈f−, g−〉H− .
Indefinite kernels are typically observed by means of domain-specific non-

metric similarity functions (such as alignment functions used in biology [17]), by
specific kernel functions - e.g., the Manhattan kernel k(x, x′) = −||x − x′||1 or
others. A finite-dimensional Krein-space is a so-called pseudo-Euclidean space.

3 Embedding for Non-psd Proximities

Embedding of a proximity matrix into a vector space is not a new consideration,
see e.g. [5], but was shown to be valid so far only in case of psd kernel functions.
Given a symmetric dissimilarity matrix with zero diagonal, an embedding of the
data in a pseudo-Euclidean vector space, determined by the eigenvector decom-
position of the associated similarity matrix S, is always possible [3]1. Given the

1 The associated similarity matrix can be obtained by double centering [12] of the
dissimilarity matrix. S = −JDJ/2 with J = (I − 11�/N), identity matrix I and
vector of ones 1.
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eigendecomposition of S = UΛU�, we can compute the corresponding vectorial
representation V in the pseudo-Euclidean space by

V = Up+q+z |Λp+q+z|1/2 (1)

where Λp+q+z consists of p positive, q negative non-zero eigenvalues, and z
zero eigenvalues. Up+q+z consists of the corresponding eigenvectors. The triplet
(p, q, z) is also referred to as the signature of the pseudo-Euclidean space. The
crucial point in Eq. (1) is the absolute operator used in the embedding, which is
also called a flip operation in the field of indefinite learning [14]. This very costly
operation makes the data metric and alters the underlying data structure [9].

The transformation of dissimilarities to obey metric properties, or of sim-
ilarities to be psd is at least technically useful because it permits to employ
many mathematical concepts [5], not available otherwise. We remove the abso-
lute function from the embedding in Eq. (1) and obtain Eq. (2), and show later
how the embedding can be made computational effective also for non-psd inputs.
Apparently, the new embedding does not modify the data, in particular, an inner
product of the embedded data reveals the input’s information again.

V = Up+q+zΛ
1/2
p+q+z (2)

The real-valued embedding in Eq. (1), leading to a psd formulation, and the
complex-valued embedding in Eq. (2) is straight forward but extremely costly.
Already in [5], the costs in Eq. (1) were addressed by using the Nyström approx-
imation, applicable to the psd case only. This approach can not be used directly
in our setting since the input is non-psd.

In our former work [2] (simplified in [11]), we have shown that the Nyström
approximation remains valid for generic proximity data, in particular non-psd
similarities. Hence the Nyström approximation becomes available to approximate
a non-psd matrix. In [2], we have further shown how the Nyström approximation
can also be used to have an approximated Double-Centering for dissimilarity
data. Our work helps twofold to permit an effective embedding in Eq. (2):

1. the input needs not to be a kernel but can also be a dissimilarity matrix
2. the Nyström matrix approximation can also be applied on non-psd similarities

which reduced the costs of the embedding

In the Nyström approximation, we have to specify the number m of landmarks
with m � N . The landmarks can be selected for non-psd matrices randomly
or by kmeans++ as shown in [11]. Our efficient approach to get an approx-
imated complex-valued, vectorial embedding of a non-psd matrix is shown in
Algorithm 1.

In the first step of Algorithm 1, the input matrix is approximated using the
Nyström approximation (potentially with an integrated double centering). this
can be done with linear costs and with guaranteed approximation bounds [2,11].
Subsequently, we calculate the essential part of the embedding function in Eq.
(2) combined with the projection matrix of the Nyström approximation, by
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Algorithm 1. Complex valued embedding of non-psd proximities
Embed proximities(P,m)
if P is dissimilarity then

Knm,Kmm := ApproximatedDoubleCentering(P,m) using [2] and kmeans++
else

Knm,Kmm := Approximate(P,m) using [2] for similarities and kmeans++
end if
[C,A] := eig(Kmm); with eigenvectors C and eigenvalues in A (diagonal)
W := diag(sqrt(1./diag(A))) · C’ complex-valued Nyström projection matrix
M := W · Knm’ complex-valued embedding
K∗ := M’ · M reconstruction (optional)
return M

taking the square root of the (pseudo-) inverse of the eigenvalue decomposition
of Kmm, done with linear costs. Details to costs and approximation procedure
are shown in [2]. The vectorial embedding M is finally done by mapping the
rectangular Nyström part Knm of the similarities to the projection matrix W 2

If the similarity matrix K is non-psd, A contains negative eigenvalues and the
embedding becomes complex-valued.

We now have an approximated complex-valued fixed-length vectorial embed-
ding of the proximity data P , whereby the respective reconstruction is exact
if the rank of P equals to the number of non-vanishing eigenvalues in A. Algo-
rithm 1 has a linear complexity (without K∗) as long as the number of landmarks
m � N , which is, in general, the case. The embedding procedure has a straight
forward out of sample extension. The mapping in Algorithm 1 can be done for
new points by evaluating the proximity function for the landmark point and
using the respective projection function.

For the complex-valued embedding (so far), only a limited number of machine
learning algorithms is available, like the complex-valued support vector machine
(cSVM) [22], the complex-valued generalized learning vector quantization (cGM-
LVQ) [18], or a complex-valued neural network (cNNet) [19]. Further, a nearest
neighbor (NN) classifier can be used by employing a standard norm operator.
While cSVM, cGMLVQ, cNNet are parametric methods, the NN classifier is
parameter-free and can be used directly. In particular, after applying the norm,
the obtained dissimilarity values are metric. Due to its good performance and
simplicity, we focus on cGMLVQ, briefly reviewed in the following.

4 Complex-Valued Generalized Learning Vector
Quantization

In Learning Vector Quantization (LVQ), the classification scheme is parameter-
ized by a set of labeled prototypes and a distance measure d(·, ·). New data is
classified according to the nearest prototype’s label with respect to the distance

2 Some heuristic ideas on Landmark MDS, which is imprecise, are discussed in [2].
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measure d(·, ·). In contrast to the NN classifier in which the full dataset is used,
the classes in LVQ schemes are represented by only very few prototypes. Hence,
in the algorithm’s working phase, LVQ methods require less computational effort
and storage. Moreover, LVQ is often praised for its white-box character, which
is beneficial in many applications [20].

4.1 Training an LVQ Classifier

Given a training dataset of N labeled inputs (xi, yi)N
i=1, in which xi ∈ Rd is

an input vector and yi ∈ {1, 2, ...,K} its class label. The aim of the training
procedure is the adaptation of M labeled prototypes {(wk, yk)}M

k=1, such that
the resulting classification scheme gives high classification accuracy with respect
to unseen data. The distance measure d(·, ·) is of central importance in the
training- and classification procedure. A common choice is squared Euclidean
distance measure (x − w)T (x − w). In [13], a valid cost function for the LVQ
heuristic was proposed, that can be minimized by, e.g., gradient descent:

EGLV Q =
N∑

i=1

Φ(μi), with μi =
d+(xi) − d−(xi)
d+(xi) + d−(xi)

. (3)

The argument μi is based on the difference between the distance d+(xi) from its
position to the closest prototype with the same label and the distance d−(xi) to
the closest prototype with a different label, normalized to the range μi ∈ [−1, 1].
The function Φ(·) is monotonically increasing and is usually chosen to be iden-
tity Φ(x) = x or the logistic function Φ(x) = 1/(1 + exp(−x)). The standard
Euclidean distance does not account for differences in the classification impor-
tance of the dimensions. To improve classification accuracy, matrix relevance
learning was introduced [15]. A full matrix of adaptive relevances Λ = ΩT Ω is
introduced in the distance measure:

dΛ(w,xi) = (xi − w)T ΩT Ω(xi − w) , (4)

The linear projection defined by the matrix Ω is adapted during training to
reflect the importance of the features and to account for correlations between
features.

The above cost function in Eq. (3) is minimized with respect to the proto-
types {wk}M

k=1 and the linear projection matrix Ω by either batch- or stochastic
gradient descent. To formulate the gradient descent update rules with respect to
w± and Ω for an example xi, one applies the chain rule:

w± = w± − αΦ′(μi)
∂μi

∂d±
∂d±
∂w±

, Ω± = Ω± − βΦ′(μi)
∂μi

∂d±
∂d±
∂Ω±

(5)

with the learning rates α and β. For all results reported in the following, we have
set α = 0.01 and β = 0.001.
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4.2 Learning Rules for Complex-Valued Data

When the data lives in the complex-valued space C
d and one uses the Hermi-

tian transpose in Eq. (4), the distance is always real-valued, since it is a sum
of squared magnitudes. Hence, only the innermost derivatives of the distance
measure in Eq. (5) have to be considered with respect to the complex-valued
variables. These can be done using the Wirtinger differential operators [21] as
proposed in [18]:

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z∗ =
1
2

(
∂

∂x
+ i

∂

∂y

)
, (6)

in which z = x+iy and z∗ = x−iy, the complex conjugate. Using the differential
operator with respect to z∗, the inner most derivatives in Eq. (5) are as follows:

∂d

∂w∗±
= −ΩHΩ(xi − w±),

∂d

∂Ω∗ = Ω(xi − w±)(xi − w±)H , (7)

which are conceptually similar to the derivatives of the real-valued variables.
The model update is implicitly done in a Krein space, while the predictions
are guided by the metric dissimilarities from the employed norm operator. The
cG(M)LVQ model can be trained with linear costs on the vectorial data.

5 Experiments

In this section, we show the effectiveness of the proposed embedding approach
on a set of benchmark data typically used in the area of proximity-based super-
vised learning and by employing appropriate classified models. The following
section contains a brief description of the datasets with details in the references.
Subsequently, we evaluate the performance of our embedding approach on these
datasets compared to some baseline classifier.

5.1 Datasets

All data sets used in this experimental setup are indefinite with different spec-
tral properties. If the data are given as dissimilarities, a corresponding similar-
ity matrix can be obtained by double centering, as mentioned before [12]. The
datasets used for the experiments are described in the following, with details
given in the references.

1. Balls3d/50d has 200/2000 samples in 2/4 classes. Dissimilarities are gener-
ated between balls with the shortest distance on the surfaces [12].

2. The Copenhagen Chromosomes data consist of 4,200 human chromosomes
from 21 classes represented by grey-valued images. These are transferred to
strings measuring their silhouettes and compared using an edit distance [10].

3. The Delft gestures (1500 points, 20 classes, signature: (963,536,1)), taken
from [1], is a set of dissimilarities generated from a sign-language interpreta-
tion problem. The dissimilarities are computed by dynamic time-warping.
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4. The Flowcyto dataset is based on 612 FL3-A DNA flowcytometer histograms
from breast cancer tissues labeled in 3 classes. Dissimilarities are computed
between normalized histograms using the L1 norm [1].

5. Protein: the Protein data set consists of sequence-alignment similarities for
213 proteins and is used for comparing and classifying protein sequences
according to its four classes of globins. The signature is (170,40,3), where
class one through four contains 72, 72, 39, and 30 points, respectively [4].

6. Sonatas dataset consists of 1068 sonatas from 5 composers (classes) encoded
as MIDI data and transformed by normalized compression distance [8].

7. Zongker dataset is a digit dissimilarity dataset. The dissimilarity measure
was computed between 2000 digits in 10 classes, 200 entries each [6].

5.2 Results

We evaluate the performance of the proposed embedding using cG(M)LVQ from
Sect. 4, with the fixed length complex-valued embedded data as inputs. The
cGLVQ was parametrized once with and once without relevance learning. To
show that our approach performs at least as well as classical embedding, the
methods were tested equally on data sets with classical embedding following the
same Nyström procedure as the complex embedding. We used one prototype
per class for the cG(M)LVQ. In the embedding step of Algorithm 1 we set the
meta parameter m (# of landmarks) by a rule of thumb: if N < 1000, m = 40,
if 1000 < N < 5000, m = 70, otherwise m = 100. As a baseline, we used a
nearest neighbor classifier (NN ), which is valid for generic, uncorrected input
data and embedded data, but very costly due to the storage of the full input
matrix. This is particular unattractive if the dataset is large. Experiments were
run in a ten-fold cross-validation. Mean prediction accuracy on the holdout test
data and the respective standard deviation is reported in Table 1.

If the data were left uncorrected, we often obtained a rather poor result using
the nearest neighbor classifier, sometimes even significantly worse compared to
(c)GLVQ and (c)GMLVQ (see balls3d, protein, zongker). In some cases, NN had
equal or slightly better performance than the two (c)G(M)LVQ variants (Chro-
mosomes, Sonatas). This is due to the spectrum of eigenvalues: Chromosomes
has many eigenvalues, which are almost negligible and close to zero. Sonatas
has only a few negative eigenvalues and these eigenvalues are also close to zero.
Relevance learning (cGMLVQ) significantly improves the results compared to
cGLVQ without relevance learning. However, even the mere use of the cGLVQ
without relevance learning leads to a significant increase in performance com-
pared to the NN with uncorrected data. Therefore, we assume that our embed-
ding approach, is indeed useful since the use of uncorrected non-psd data shows
a clear drop in accuracy using NN and the vectorial embedding permits a more
flexible weighting of input contributions. In summary, the presented approach,
applying an embedding of the indefinite input data into a complex-valued vector
space, shows promising results on a variety of data sets.
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Table 1. Prediction accuracy (mean ± standard-deviation) for the GLVQ/cGLVQ
variants and the nearest neighbor classifier.

Without
embedding

Classic (real) embedding Proposed (complex)
embedding

Dataset NN NN GLVQ GMLVQ NN cGLVQ cGMLVQ

Balls3d 0.49 0.54 0.78 0.98 0.54 0.67 1.0

±0.06 ±0.13 ±0.08 ±0.02 ±0.13 ±0.12 ±0.0

Balls50d 0.25 0.26 0.52 0.78 0.26 0.28 0.54

±0.04 ±0.04 ±0.04 ±0.18 ±0.04 ±0.03 ±0.11

Chromosomes 0.95 0.92 0.91 0.94 0.92 0.92 0.94

±0.01 ±0.02 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01

DelftGestures 0.96 0.88 0.94 0.96 0.87 0.95 0.96

±0.02 ±0.01 ±0.01 ±0.02 ±0.04 ±0.01 ±0.02

Flowcyto 0.62 0.63 0.62 0.67 0.59 0.66 0.70

±0.08 ±0.06 ±0.06 ±0.07 ±0.04 ±0.07 ±0.05

Protein 0.23 0.98 0.93 0.97 0.98 0.92 0.98

±0.1 ±0.02 ±0.05 ±0.05 ±0.02 ±0.07 ±0.02

Sonatas 0.89 0.87 0.82 0.88 0.87 0.80 0.90

±0.02 ±0.02 ±0.03 ±0.03 ±0.02 ±0.03 ±0.02

Zongker 0.58 0.68 0.88 0.92 0.70 0.89 0.93

±0.05 ±0.09 ±0.02 ±0.02 ±0.06 ±0.02 ±0.02

6 Conclusions

In this work, we proposed an efficient, complex-valued embedding and a pro-
cessing pipeline to analyze non-metric or non-psd proximity data. The app-
roach shows very promising performance on a variety of datasets and is easy
to employ. A careful combination of approximation techniques, derived by the
authors in former work, permits a valid and still effective calculation of the
embedding matrix. By processing the embedding matrix, a straight forward,
non-modifying out of sample extension is obtained, not available otherwise. The
low-rank embedding is fast and has the benefit that the reconstructed matrix
approximates the original indefinite kernel with low error; hence all major infor-
mation in the original data is preserved. In particular we can omit additional
modifiers or eigenvalue corrections which are costly and substantially alter the
data. The model of the proposed complex embedding implicitly exists in the
Krein space. Using learning algorithms for complex-valued data, predictive mod-
els can be obtained with low computational costs. In this initial work, we focused
on complex-valued G(M)LVQ and Nearest Neighbor to calculate classification
models, but this will be extended to other models in future work. Our initial
findings show that the suggested complex-valued embedding of indefinite prox-
imity data, combined with complex-valued classifier models, is a very effective
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and promising approach favorable over classical alternatives. Therefore, exper-
imental comparisons to more classical eigenspectrum approaches (like clipping,
flipping or shifting negative eigenvalues) or to models working in Krein space
[11] are also interesting for further research.
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