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Preface

This volume contains the papers presented at the joint IAPR International Workshops
on Structural and Syntactic Pattern Recognition (SSPR 2020) and Statistical Tech-
niques in Pattern Recognition (SPR 2020). S+SSPR 2020 was jointly organized by
Technical Committee 1 (Statistical Techniques in Pattern Recognition, chaired by
Battista Biggio) and Technical Committee 2 (Structural and Syntactical Pattern
Recognition, chaired by Antonio Robles-Kelly) of the International Association of
Pattern Recognition (IAPR).

Originally set to be held in Padua, Italy, in September 2020, due to the COVID-19
pandemic, the conference was first postponed to January 2021 and then moved to an
online format in a rich two-day event spanning January 21–22, 2021.

We received 81 submissions from 29 countries across 5 continents. Each submission
was reviewed by at least two and usually three Program Committee members. In total,
35 papers were accepted for presentation at the conference. The accepted papers cover
the major topics of current interest in pattern recognition, including classification and
clustering, deep learning, structural matching and graph-theoretic methods, and mul-
timedia analysis and understanding.

We were delighted to have four prominent keynote speakers: Nicholas Carlini, from
Google, USA; Prof. Michael Bronstein, from Twitter/Imperial College London,
UK/University of Lugano, Switzerland; Prof. Max Welling, from
Qualcomm/University of Amsterdam, Netherlands; and Fabio Roli, from the Univer-
sity of Cagliari, Italy, the IAPR TC1 Pierre Devijver Award winner for 2020. All the
presentations have been made available on the conference YouTube channel (S+SSPR
2020).

We would like to thank all the Program Committee members for their help in the
review process. We also wish to thank all the local organizers. They where ready to
adapt to the shifting global landscape caused by the pandemic and without their
contributions S+SSPR 2020 could not have happened. Finally, we express our
appreciation to Springer for publishing this volume. More information about the
workshops and organization can be found on the website: http://iapr.org/ssspr2020.

February 2021 Luca Rossi
Andrea Torsello

http://iapr.org/ssspr2020
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Target Robust Discriminant Analysis

Wouter M. Kouw1(B) and Marco Loog2,3

1 TU Eindhoven, Groene Loper 19, Eindhoven, The Netherlands
w.m.kouw@tue.nl

2 TU Delft, Van Mourik Broekmanweg 6, Delft, The Netherlands
3 University of Copenhagen, Universitetsparken 1, Copenhagen, Denmark

Abstract. In practice, the data distribution at test time often differs,
to a smaller or larger extent, from that of the original training data.
Consequentially, the so-called source classifier, trained on the available
labelled data, deteriorates on the test, or target, data. Domain adaptive
classifiers aim to combat this problem, but typically assume some par-
ticular form of domain shift. Most are not robust to violations of domain
shift assumptions and may even perform worse than their non-adaptive
counterparts. We construct robust parameter estimators for discriminant
analysis that guarantee performance improvements of the adaptive clas-
sifier over the non-adaptive source classifier.

Keywords: Domain adaptation · Robustness · Discriminant analysis

1 Introduction

Domain adaptation is a supervised learning setting where labelled training data
is drawn from one distribution (source domain) and unlabelled test data is drawn
from another distribution (target domain) [2,8]. Often, adapting a source domain
classifier, i.e., changing predictions to suit the target domain, is the only means
by which one can potentially obtain satisfactory performance. Unfortunately,
many domain adaptive classifiers assume some relationship between the domains,
such as that only the covariates have shifted between domains and not the pos-
terior distributions. They are not robust to violations of such assumptions and
can subsequently perform worse than non-adaptive classifiers.

We formulate a conservative adaptive classifier that always performs at least
as well as the non-adaptive one. More specifically, a core contribution of this
paper is that we construct estimators that produce estimates with an empirical
target risk that is always smaller or equal to the target risk of the source classifier.
Since only the performance of the given target samples is considered, our result
is transductive in nature [16]. Importantly, our guarantees are obtained without
making any domain shift assumptions such as covariate shift or the existence of a
domain-invariant subspace [8]. Furthermore, we show that in the case of classical
likelihood-based discriminant analyses [12], the estimator will produce strictly
smaller risks (i.e. larger log-likelihoods) almost surely, i.e., with probability 1.
To the best of our knowledge, this is the first demonstration of a performance
guarantee for a target classifier compared to the source classifier.
c© Springer Nature Switzerland AG 2021
A. Torsello et al. (Eds.): S+SSPR 2020, LNCS 12644, pp. 3–13, 2021.
https://doi.org/10.1007/978-3-030-73973-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73973-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-73973-7_1
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2 Robust Target Domain Estimator

Consider a feature space X ⊆ R
D and class labels Y = {1, . . . , K}. Let S denote

the source domain, with n samples drawn from the source domain’s joint dis-
tribution, pS(x, y), collected as the set {(xi, yi)}n

i=1. Similarly, let T denote the
target domain, with m samples drawn from the target domain’s joint distribu-
tion, pT (x, y), collected as {(zj , uj)}m

j=1. The goal is to predict the unknown
target labels u (transductive setting), using only the unlabelled target samples
{zj}m

j=1 and the labelled source samples {(xi, yi)}n
i=1.

The empirical risk in the source domain is defined as the average loss
� of a classification function h over the source samples: R̂ (h | x, y) �
1
n

∑n
i=1 � (h | xi, yi). The source classifier is the classifier that minimizes the

empirical source risk:

ĥS � arg min
h∈H

R̂ (h | x, y) , (1)

where H refers to the hypothesis space. Evaluating the source classifier is typi-
cally done through the classification error. Arguably, a more appropriate evalu-
ation is to consider the risk itself, given that it is the surrogate loss that is being
optimized [11]. We evaluate ĥS based on the empirical target risk:

R̂
(
ĥS | z, u

)
=

1
m

m∑

j=1

�
(
ĥS | zj , uj

)
. (2)

In our objective function, the source classifier’s target risk in (2) is subtracted
from the target risk of a prospective target classifier h:

R̂
(
h | z, u

)
− R̂

(
ĥS | z, u

)
. (3)

The target risk of the source classifier will act as a bound on the hypothesis
space during minimization:

Lemma 1. For fixed samples z and labels u, the difference in empirical target
risks between a classifier h ∈ H and hS ∈ H is less than or equal to 0:

min
h∈H

R̂
(
h | z, u

)
− R̂

(
ĥS | z, u

)
≤ 0 . (4)

Proof. Let h̃ � minh∈H R̂
(
h | z, u

)
− R̂

(
ĥS | z, u

)
. Since h̃ and ĥS are elements

of the same hypothesis space, h̃ = hS is a potential solution to the minimization
problem. In that case, the difference in target risks would be 0. The estimate
ĥS can always be recovered, which implies all h ∈ H that would lead to risk
differences greater than 0 are not valid minimizers. ��

Equation 3 still contains the unknown target labels u. To be able to guarantee
a better or equal performance to that of the source classifier, we use a worst-case
labelling, achieved by introducing a hypothetical labelling q and maximizing the
difference in risks: R̂ (h | z, u) ≤ maxq R̂ (h | z, q).
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Note that for any classifier h, the risk with respect to this worst-case labelling
will always be larger than the risk with respect to the true target labelling.
Combining the difference in risks from Eq. 3 with the hypothetical labelling q
results in the following risk function:

R̂T (
h | ĥS , z, q

)
� R̂(h | z, q) − R̂(ĥS | z, q) . (5)

We refer to the risk in Eq. 5 as the Target Robust (TR) risk. Minimizing it
with respect to a classifier h and maximizing it with respect to the hypothetical
labelling q, leads to a TR classifier:

ĥT � arg min
h∈H

max
q∈Ym

R̂T (
h | ĥS , z, q

)
. (6)

The TR risk only considers the given target samples {zj}m
j=1 and is, therefore,

a transductive approach [16].
The maximization over a set of discrete labels is a difficult combinato-

rial problem. Therefore, we apply a relaxation and represent the hypothetical
labelling probabilistically, qjk := p(uj = k | zj). That is, qj is a non-negative
vector of K elements that sum to 1. As such, it represents an element of the
standard K −1 simplex ΔK−1. For m samples, an m-dimensional K −1 simplex
Δm

K−1 is taken. This means that the loss for every element zj becomes a weighted
sum,

�
(
h | zj , qj

)
=

∑

k∈Y
qjk �

(
h | zj , k

)
, (7)

and the maximization in Eq. 6 will be over q ∈ Δm
K−1 instead of q ∈ Ym. Known,

deterministic labels can of course also be represented probabilistically, for exam-
ple yi = 1 ⇔ p(yi = 1 |xi) = 1 and p(yi �= 1 |xi) = 0. Hence, in practice, both yi

and uj can be represented as 1 × K-vectors with the k-th element marking the
probability that sample i or j belongs to class k (a.k.a. a one-hot encoding).

With the relaxation from “hard” to “soft” labels, we can say the following:

Lemma 2. For fixed samples z and source classifier ĥS , the Target Robust risk
will be lower or equal to 0 at its saddle point with respect to both h and q:

min
h∈H

max
q∈Δm

K−1

R̂T (
h | ĥS , z, q

)
≤ 0 . (8)

Proof. In the given minimax problem, we first go over all h ∈ H and find, for
every h, the qh ∈ Δm

K−1 that maximizes the Target Robust risk. In a second
step, we take the minimum of R̂T (

h | ĥS , z, qh

)
over all h. Given that qh is fixed,

Lemma 1 applies, which means the resulting Target Robust risk will be less than
or equal to 0. ��
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3 Discriminant Analyses

Lemma 2 tells us that our target classifier performs at least as well as the source
classifier on the given target samples. For classical linear and quadratic discrimi-
nant analysis, we are able to show that strict improvements are obtained almost
surely, i.e., with probability 1.

In discriminant analysis, the data from each class is modelled with a Gaus-
sian distribution, proportional to the class prior [12]. We maintain a param-
eter vector θk for each class, consisting of the prior, mean and covariance
matrix; θk = (πk, μk, Σk). One obtains an empirical risk minimization formu-
lation by taking the negative log-likelihoods as the loss function: �(θ | x, y) =
∑K

k=1 −yk log
[
πk N (x | μk, Σk)

]
. Note the resemblance to Eq. 7.

If each class is modelled with a separate covariance matrix, the resulting
classifier is known as quadratic discriminant analysis (QDA) [12]. For target
data z and probabilistic labels q, the risk is formulated as:

R̂QDA(θ | z, q) � 1
m

m∑

j=1

K∑

k=1

−qjk log
[
πk N (zj | μk, Σk)

]
. (9)

Note that the risk is now expressed in terms of classifier parameters θ, as opposed
to the classifier h. Plugging the risk from (9) into (5), the full TR-QDA risk
becomes:

R̂T
QDA(θ | θ̂S , z, q) � R̂QDA(θ | z, q) − R̂QDA(θ̂S | z, q) , (10)

where the estimate itself is:

θ̂T � arg min
θ∈Θ

max
q∈Δm

K−1

R̂T
QDA(θ | θ̂S , z, q) . (11)

If the model is constrained to share a single covariance matrix for each class,
the resulting classifier is a linear function of the feature values and hence is
termed linear discriminant analysis (LDA). The optimal overall class-covariance
matrix Σ can be determined with Σ =

∑K
k=1 πkΣk.

3.1 Performance Improvement Guarantee

Discriminant analysis has a special property: it obtains a strictly smaller risk. In
other words, this parameter estimator is guaranteed to improve its performance
- on the given target samples, and in terms of risk - over the source classifier.

Theorem 1. Let the number of target samples from a continuous target distri-
bution be greater than its number of features. The empirical discriminant analy-
sis risk R̂DA, i.e., the negative log-likelihood over the target samples, of the TR
estimated parameters θ̂T is almost surely strictly smaller than for the source
parameters θ̂S . In other words, with probability one we have the strict inequality

R̂DA

(
θ̂T | z, u

)
< R̂DA

(
θ̂S | z, u

)
.
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Proof. Let {(xi, yi)}n
i=1 be a data set of size n drawn i.i.d. from a continuous

source distribution defined over feature space X ⊆ R
D and label space Y =

{
y =

{0, 1}K :
∑

k=1 yk = 1
}
. Similarly, let {(zj , uj)}m

j=1 be a data set of size m > D,
drawn i.i.d. from a continuous target distribution defined over X ×Y. Consider a
discriminant analysis model parametrized by θ = (π1, .., πK , μ1, .., μK , Σ1, ..ΣK)
with empirical risk defined as

R̂QDA(θ | x, y) =
1
m

m∑

j=1

K∑

k=1

−yik log[πk N (xi | μk, Σk)] . (12)

Let θ̂S be the parameters estimated on labelled source data

θ̂S = arg min
θ∈Θ

R̂QDA

(
θ | x, y

)
(13)

and let (θ̂T , q∗) be the parameters and worst-case labelling estimated by mini-
maximizing the Target Robust risk:

θ̂T , q∗ = arg min
θ∈Θ

arg max
q∈Δm

K−1

R̂QDA

(
θ | z, q

)
− R̂QDA

(
θ̂S | z, q

)
. (14)

Lemma 2 tells us that

R̂QDA

(
θ̂T | z, q∗) − R̂QDA

(
θ̂S | z, q∗) ≤ 0 . (15)

Since this holds for the worst-case labelling q∗, it must also hold for the true
labelling u:

R̂QDA

(
θ̂T | z, u

)
≤ R̂QDA

(
θ̂S | z, u

)
. (16)

The Equality in (16) occurs with probability 0, which can be shown as follows.
Firstly, note that the total mean for the source classifier consists of the weighted
combination of the class means, resulting in the overall source sample average

μ̂S =
K∑

k=1

π̂S
k μ̂S

k =
K∑

k=1

∑n
i=1 yik

n

[
1

∑n
i=1 yik

n∑

i=1

yikxi

]

=
1
n

n∑

i=1

xi . (17)

The total mean for the TP-QDA estimator is similarly defined, resulting in the
overall target sample average:

μ̂T =
K∑

k=1

π̂T
k μ̂T

k =
K∑

k=1

∑m
j=1q

∗
jk

m

⎡

⎣ 1
∑m

j=1 q∗
jk

m∑

j=1

q∗
jkzj

⎤

⎦=
K∑

k=1

1
m

m∑

j=1

q∗
jkzj =

1
m

m∑

j=1

zj .

(18)

Because q∗ consists of probabilities, the sum over classes
∑K

k=1 q∗
jk in Eq. 18 is

1, for every sample j.
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Secondly, the TR objective function is quasi-convex-concave. In fact, it is lin-
ear in terms of q. Since its domain Δm

K−1 is compact, Sion’s theorem holds which
allows for interchanging the order of the minimization and the maximization [15].
This implies that the minimax solution is a saddle point and that the optimal
parameter estimates θ̂T for the discriminant analysis are unique, because the
objective function is strictly (quasi-)convex in terms of these parameters when
m > D [13].

Now, equal risks for the source and target parameter sets on the worst-
case labelling q∗, i.e., R̂QDA

(
θ̂T | z, q∗) = R̂QDA(θ̂S | z, q∗), implies equality of

the total means, μ̂T = μ̂S , because θ̂T is the unique minimizer of a strictly
convex risk. By Eqs. 17 and 18, equal total means implies equal sample averages:
1
m

∑m
j=1 zj = 1

n

∑n
i=1 xi. Given a set of source samples, drawing a set of target

samples such that its average is exactly equal to the average of the source samples,
is an event that has probability 0 under continuous distributions. Therefore, a
strictly smaller risk occurs almost surely. In other words, with probability 1, we
have that

R̂QDA

(
θ̂T | z, u

)
< R̂QDA

(
θ̂S | z, u

)
. (19)

This concludes the proof for the case of QDA. The proof for LDA follows from
plugging in Σ for Σk. Since this does not alter the mean estimators, the Equality
in (16) still occurs with probability 0. ��

3.2 Optimization

As pointed out in the proof of Theorem 1, we seek a saddle point to a quasi-
convex-linear problem. That can be found by first performing a gradient descent
step with respect to h (or, equivalently, θ), followed by a gradient ascent step with
respect to q. For discriminant analyses models, the minimization with respect
to θ has a closed-form solution:

πk =
1
m

m∑

j=1

qjk , μk =
( m∑

j=1

qjk

)−1
m∑

j=1

qjkzj ,

Σk =
( m∑

j=1

qjk

)−1
m∑

j=1

qjk(zj − μk)(zj − μk)� . (20)

One encounters the same solutions in the M step of EM-based Gaussian mixture
modelling, where data points also have probabilistic class assignments [13]. To
ensure the updated q remains on the simplex, it is projected back after each
gradient step. The projection P maps a point outside the simplex a to the
point b on the simplex that is closest in terms of Euclidean distance: P(a) =
arg minb∈Δ ‖a − b‖2 [4]. The projection complicates the computation of the step
size, which we replace by a learning rate αt decreasing over iterations t. This
results in the overall update: qt+1 ← P(qt + αt∇qt).

A gradient descent-gradient ascent procedure for globally convex-linear
objectives is guaranteed to converge to a saddle point (c.f. Proposition 4.4 and
Corollary 4.5 in [3]).
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4 Experiments

Our contribution is first and foremost theoretical. Nevertheless, we perform an
experiment on a natural data set comparing the empirical target risks of our
TR classifiers with source classifiers (S-LDA and S-QDA) as well as classifiers
trained on labelled target data (T-LDA and T-QDA), which represent the best
possible performance of the models. Furthermore, we perform an experiment
comparing our estimator to other domain-adaptive classifiers. Since these do not
incorporate the same loss as the DA models, we measure performance in area
under the ROC-curve (AUC).

The data set we used is split geographically into domains. The goal is to
predict heart disease in patients from 4 different hospitals [6]. These are located
in Hungary, Switzerland, California and Ohio. Each hospital can be considered
a domain because patients are measured on the same biometrics but the local
patient populations differ. For example, the age distributions are shifted between
countries. The data set was pre-processed using z-scoring.

We compared to Kernel Mean Matching (KMM) [7], Robust Covariate Shift
Adjustment (RCSA) [17], the Robust Bias-Aware (RBA) classifier [9] and Trans-
fer Component Analysis (TCA) [14]. KMM represents a standard importance-
weighted classifier, which assumes covariate shift between domains. RBA and
RCSA still assume covariate shift, but incorporate robust importance weight
estimators. TCA represents an alternative domain shift assumption, namely the
existence of a feature subspace common to both domains. These methods are dis-
cussed further in the Related Work section (Sect. 5.1). All methods were trained
with both a logistic and quadratic loss, and the better performing loss was cho-
sen. For RCSA, we used the authors’ implementation, which incorporates a sup-
port vector machine with Gaussian kernel. All methods use L2-regularization.
Since no labelled target data is available for validation, the regularization param-
eter was set to 0.01 for logistic and 0.01n for quadratic losses.

4.1 Results

Table 1 lists target risks for source, Target Robust and target classifiers for each
possible pair of domains in the data set. In most cases, the TR classifier is quite
close to the optimal target risk. Note that the source classifier performs terribly
in some settings (with target risks in the positive hundreds), while it is does not
differ much from the target classifier in others.

Table 2 lists AUCs of different classifiers in the heart disease data set. Perhaps
the most striking observation is that AUC’s are sometimes below 0.5; these
scenarios represent domain shifts so large that source classifiers perform worse
than chance in the target domain. Adaptive classifiers will not perform much
better if their shift assumptions are violated. Our own TR classifiers are merely
built to improve over their source counterpart: when the source classifier is poor
to begin with, a “better” performance may still be below chance. A few more
things to note: firstly, TR-LDA generally outperforms TR-QDA, indicating that
the additional flexibility of QDA does not outweigh the increase the complexity.
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Table 1. Target risks (average negative log-likelihoods) for all pairwise combinations
of domains in heart disease data set (O = ‘Ohio’, C = ‘California’, H = ‘Hungary’ and
S = ‘Switzerland’). Smaller values are better.

S T S-LDA TR-LDA T-LDA S-QDA TR-QDA T-QDA

O H −53.55 −57.18 −57.35 −53.55 −57.20 −57.62

O S −8.293 −16.76 −17.54 −8.293 −16.76 −17.54

O C −37.84 −53.88 −54.69 −37.83 −53.73 −54.89

H S −12.50 −16.08 −17.54 −12.80 −16.44 −17.54

H C −41.70 −53.91 −54.69 −40.08 −54.45 −54.89

S C 494.9 −54.49 −54.69 498.9 −54.44 −54.89

H O −48.91 −55.08 −55.23 −49.20 −54.84 −55.53

S O 709.9 −54.07 −55.23 709.9 −54.10 −55.53

C O −49.21 −55.00 −55.23 −49.17 −55.05 −55.53

S H 649.9 −56.09 −57.35 650.3 −56.19 −57.62

C H −53.05 −57.19 −57.35 −53.15 −57.17 −57.62

C S −15.45 −17.43 −17.54 −15.47 −17.44 −17.54

Table 2. AUC for all pairwise combinations of domains in heart disease data set (O
= ‘Ohio’, H = ‘Hungary’, S = ‘Switzerland’ and C = ‘California’).

S T S-LDA S-QDA TCA KMM RCSA RBA TR-LDA TR-QDA

O H 0.866 0.829 0.674 0.709 0.646 0.502 0.864 0.822

O S 0.674 0.674 0.597 0.591 0.667 0.670 0.675 0.675

O C 0.658 0.503 0.500 0.460 0.572 0.430 0.653 0.500

H S 0.671 0.660 0.453 0.503 0.641 0.636 0.673 0.661

H C 0.726 0.668 0.466 0.568 0.483 0.423 0.725 0.660

S C 0.527 0.484 0.530 0.552 0.459 0.582 0.555 0.432

H O 0.866 0.840 0.544 0.742 0.749 0.556 0.867 0.841

S O 0.500 0.500 0.439 0.302 0.626 0.366 0.424 0.422

C O 0.830 0.811 0.693 0.294 0.651 0.523 0.831 0.813

S H 0.559 0.502 0.408 0.345 0.685 0.396 0.717 0.565

C H 0.883 0.834 0.661 0.290 0.647 0.597 0.882 0.847

C S 0.440 0.452 0.572 0.508 0.343 0.412 0.447 0.414

Avg 0.683 0.647 0.545 0.489 0.597 0.508 0.693 0.638
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Secondly, TR-LDA and TR-QDA are either performing similarly or better than
S-LDA and S-QDA. Note that cases where the source classifiers perform well
correspond to cases where the source classifier’s target risk was small and close
to that of the target classifier (compare to Table 1). Thirdly, RCSA and RBA
do not always outperform KMM, indicating that robust weight estimation is
not always beneficial. Fourthly, TCA’s performance varies around chance level,
which means that its assumption is likely violated.

5 Discussion

As could be seen in the experimental results, an improvement in terms of the
classifier’s intrinsic loss does not imply an improvement in AUC. This is due
to the difference between optimizing a surrogate loss, here the negative log-
likelihood, and evaluating the 0/1-loss [1,11]. They do not necessarily have the
same minimizers. Note that the 0/1-loss is not differentiable, and cannot be
optimized over directly. We therefore argue that guarantees in terms of intrinsic
losses are the most one can expect.

One advantage of our estimator is that we do not explicitly require source
samples at training time. Our approach is therefore more memory-efficient than
other domain-adaptive classifiers and more suited to privacy-sensitive supervised
learning settings, such as federated learning.

5.1 Related Work

Most methods for domain adaptation rely on an assumption of how the domains
have shifted [8]. Examples of such assumptions include low joint-domain-error
[2], the existence of a domain-invariant subspace [14] and the assumption that
only the covariates have shifted but not the posterior distributions [5,7]. These
assumptions may be implicit, for example domain-adversarial neural networks
simultaneously minimize the divergence between the domains and train a source
classifier which amounts to the low joint-domain error assumption [2]. Violations
of assumptions mean adaptation could deteriorate performance. For example,
Transfer Component Analysis assumes a domain-invariant latent representation
where class separability is preserved [14]. When that assumption does not hold,
mapping data onto transfer components will mix the class-conditional distribu-
tions and classification will become harder.

Research into robust domain adaptation tends to revolve around importance
weight estimators for methods assuming covariate shift. Unfortunately, impor-
tance weight estimators may assign few samples large weights and many samples
near-zero weights, greatly reducing effective sample size and producing patho-
logical importance-weighted classifiers [5]. Robust Covariate Shift Adjustment
builds an importance-weighted classifier that is robust to poor importance weight
estimates by first maximizing risk with respect to the importance-weights and
subsequently minimizing with respect to classifier parameters [17]. However, it
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can perform worse than standard importance-weighted classifiers when it unnec-
essarily considers worst-case weights. The Robust Bias-Aware classifier employs
a similar mini-max strategy, but avoids accounting for worst-case importance
weights. It attempts to match the statistics, specifically the moments, of the
importance-weighted classifier’s labelling of the target samples with the statistics
of the source labels [9]. This favours more stable importance-weighted classifiers,
but the RBA classifier loses predictive power in areas of feature space where the
source distribution’s support is limited.

Similar research concerning improvement guarantees has been carried out:
Maximum Contrastive Pessimistic Likelihood estimation is a worst-case app-
roach to semi-supervised learning that ensures complete robustness to the
labelling of the unlabelled samples [10]. It also comes with performance guar-
antees in terms of the objective that the classifier actually optimizes, such as
log-likelihood, hinge loss, logistic loss, etc. [11].

6 Conclusion

We have designed a risk minimization formulation for a domain-adaptive clas-
sifier whose performance, in terms of empirical target risk, is always at least as
good as that of the non-adaptive source classifier. Furthermore, for the discrim-
inant analysis case, its risk is always strictly smaller. An experiment on data
gathered under a geographical bias supports the claim empirically and shows
competitive performance compared to other robust domain-adaptive classifiers.
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Abstract. Proximities are at the heart of almost all machine learn-
ing methods. In a more generic view, objects are compared by a (sym-
metric) similarity or dissimilarity measure, which may not obey par-
ticular mathematical properties. This renders many machine learning
methods invalid, leading to convergence problems and the loss of gen-
eralization behavior. In many cases, the preferred dissimilarity measure
is not metric. If the input data are non-vectorial, like text sequences,
proximity-based learning is used or embedding techniques can be applied.
Standard embeddings lead to the desired fixed-length vector encod-
ing, but are costly and are limited in preserving the full information.
As an information preserving alternative, we propose a complex-valued
vector embedding of proximity data, to be used in respective learning
approaches. In particular, we address supervised learning and use exten-
sions of prototype-based learning. The proposed approach is evaluated on
a variety of standard benchmarks showing good performance compared
to traditional techniques in processing non-metric or non-psd proximity
data.
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text data, biological sequence data, graphs, and other input formats are used [14].
The vast majority of learning algorithms expect fixed-length real value vector
data as inputs and can not directly be used on non-standard data [12].

Using embedding approaches is one strategy to obtain a vectorial embed-
ding, but this is costly, needs large amounts of data to train the embedding and
information is only partially preserved [12]. In a more generic scenario, proxim-
ity measures, like alignment functions, can be applied to compare non-vectorial
objects to obtain a proximity score between two objects. If all N input objects
are pairwise compared, we obtain a proximity matrix P ∈ RN×N . If the mea-
sure is a metric dissimilarity measure, we have a distance matrix, which can
be used for the nearest-mean classifier. In the case of inner products like the
Euclidean inner product, a kernel matrix is obtained. If this kernel matrix is
positive semidefinite (psd), multiple kernel methods can be used [16]. Also, so-
called empirical feature space approaches have been considered, but with the
drawback of high model complexity and inherent data transformations [7].

Here we consider non-vectorial input data given either by a non-metric dis-
similarity measure or a non-standard inner product, leading to an indefinite
kernel function. As detailed in [14], learning models can be calculated on these
generic proximity data in very different ways. Most often, the proximities are
transformed to fit into classical machine learning algorithms, with a number of
limitations [14]. In this work, we propose the application of a complex-valued
embedding on these data to overcome some of the limitations. Recently different
classical learning algorithms have been extended to complex-valued inputs [18].
It is now possible to preserve the information provided in the generic proxim-
ity data while learning in a fixed-length vector space using a highly effective,
well-understood learning algorithm. The respective procedures are detailed in
the following and evaluated on classical benchmark data with strong results.

2 Background and Basic Notation

Consider a collection of N objects xi, i = {1, 2, ..., N}, in some input space X .
Given a similarity function or inner product on X , corresponding to a metric,
one can construct a Mercer kernel acting on pairs of points from X . For example,
if X is a finite-dimensional vector space, a classical similarity function in this
space is the Euclidean inner product (corresponding to the Euclidean distance).

2.1 Positive Definite Kernels - Hilbert Space

The Euclidean inner product is also known as linear kernel with k(x,x′) =
〈φ(x), φ(x′)〉, where φ is the identity mapping. Another prominent kernel func-
tion is k(x,x′) = exp

(
− ||x−x′||2

2σ2

)
, with σ > 0 as a free scale parameter. In any

case, it is assumed that the kernel function k(x,x′) is psd.
The transformation φ is, in general, a non-linear mapping to a high-

dimensional Hilbert space H and may not be given in an explicit form, but
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allowing linear techniques in H. Instead of providing an explicit mapping, a ker-
nel function k : X ×X �→ R is given, which encodes the inner product in H. The
kernel k is a positive (semi-) definite function such that k(x,x′) = 〈φ(x), φ(x′)〉H,
for any x,x′ ∈ X . The matrix Ki,j := k(xi,xj) is an N×N kernel (Gram) matrix
derived from the data. For general similarity measures, we use S to describe the
respective similarity matrix.

Kernelized methods process the embedded data points in a feature space
utilizing only the inner products 〈·, ·〉H [16], without the need to explicitly cal-
culate φ, known as kernel trick. Explicit mappings of psd kernel function are
also frequently used to employ linear methods. However, the underlying simi-
larity function may not be metric, but a domain-specific similarity measure, as
mentioned before. Such similarity measures imply indefinite kernels, preventing
standard “kernel-trick” methods developed for Mercer kernels to be applied.

2.2 Non-positive Definite Kernels - Krein Space

A Krein space is an indefinite inner product space endowed with a Hilbertian
topology. Let K be a real vector space. An inner product space with an indefinite
inner product 〈·, ·〉K on K is a bi-linear form where all f, g, h ∈ K and α ∈ R

obey the following conditions:

– Symmetry: 〈f, g〉K = 〈g, f〉K;
– linearity: 〈αf + g, h〉K = α〈f, h〉K + 〈g, h〉K;
– 〈f, g〉K = 0 implies f = 0.

A vector space K with inner product 〈·, ·〉K is called an inner product space. An
inner product space (K, 〈·, ·〉K) is a Krein space if we have two Hilbert spaces
H+ and H− spanning K such that ∀f ∈ K we have f = f+ + f− with f+ ∈ H+

and f− ∈ H− and ∀f, g ∈ K, 〈f, g〉K = 〈f+, g+〉H+ − 〈f−, g−〉H− .
Indefinite kernels are typically observed by means of domain-specific non-

metric similarity functions (such as alignment functions used in biology [17]), by
specific kernel functions - e.g., the Manhattan kernel k(x, x′) = −||x − x′||1 or
others. A finite-dimensional Krein-space is a so-called pseudo-Euclidean space.

3 Embedding for Non-psd Proximities

Embedding of a proximity matrix into a vector space is not a new consideration,
see e.g. [5], but was shown to be valid so far only in case of psd kernel functions.
Given a symmetric dissimilarity matrix with zero diagonal, an embedding of the
data in a pseudo-Euclidean vector space, determined by the eigenvector decom-
position of the associated similarity matrix S, is always possible [3]1. Given the

1 The associated similarity matrix can be obtained by double centering [12] of the
dissimilarity matrix. S = −JDJ/2 with J = (I − 11�/N), identity matrix I and
vector of ones 1.
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eigendecomposition of S = UΛU�, we can compute the corresponding vectorial
representation V in the pseudo-Euclidean space by

V = Up+q+z |Λp+q+z|1/2 (1)

where Λp+q+z consists of p positive, q negative non-zero eigenvalues, and z
zero eigenvalues. Up+q+z consists of the corresponding eigenvectors. The triplet
(p, q, z) is also referred to as the signature of the pseudo-Euclidean space. The
crucial point in Eq. (1) is the absolute operator used in the embedding, which is
also called a flip operation in the field of indefinite learning [14]. This very costly
operation makes the data metric and alters the underlying data structure [9].

The transformation of dissimilarities to obey metric properties, or of sim-
ilarities to be psd is at least technically useful because it permits to employ
many mathematical concepts [5], not available otherwise. We remove the abso-
lute function from the embedding in Eq. (1) and obtain Eq. (2), and show later
how the embedding can be made computational effective also for non-psd inputs.
Apparently, the new embedding does not modify the data, in particular, an inner
product of the embedded data reveals the input’s information again.

V = Up+q+zΛ
1/2
p+q+z (2)

The real-valued embedding in Eq. (1), leading to a psd formulation, and the
complex-valued embedding in Eq. (2) is straight forward but extremely costly.
Already in [5], the costs in Eq. (1) were addressed by using the Nyström approx-
imation, applicable to the psd case only. This approach can not be used directly
in our setting since the input is non-psd.

In our former work [2] (simplified in [11]), we have shown that the Nyström
approximation remains valid for generic proximity data, in particular non-psd
similarities. Hence the Nyström approximation becomes available to approximate
a non-psd matrix. In [2], we have further shown how the Nyström approximation
can also be used to have an approximated Double-Centering for dissimilarity
data. Our work helps twofold to permit an effective embedding in Eq. (2):

1. the input needs not to be a kernel but can also be a dissimilarity matrix
2. the Nyström matrix approximation can also be applied on non-psd similarities

which reduced the costs of the embedding

In the Nyström approximation, we have to specify the number m of landmarks
with m � N . The landmarks can be selected for non-psd matrices randomly
or by kmeans++ as shown in [11]. Our efficient approach to get an approx-
imated complex-valued, vectorial embedding of a non-psd matrix is shown in
Algorithm 1.

In the first step of Algorithm 1, the input matrix is approximated using the
Nyström approximation (potentially with an integrated double centering). this
can be done with linear costs and with guaranteed approximation bounds [2,11].
Subsequently, we calculate the essential part of the embedding function in Eq.
(2) combined with the projection matrix of the Nyström approximation, by
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Algorithm 1. Complex valued embedding of non-psd proximities
Embed proximities(P,m)
if P is dissimilarity then

Knm,Kmm := ApproximatedDoubleCentering(P,m) using [2] and kmeans++
else

Knm,Kmm := Approximate(P,m) using [2] for similarities and kmeans++
end if
[C,A] := eig(Kmm); with eigenvectors C and eigenvalues in A (diagonal)
W := diag(sqrt(1./diag(A))) · C’ complex-valued Nyström projection matrix
M := W · Knm’ complex-valued embedding
K∗ := M’ · M reconstruction (optional)
return M

taking the square root of the (pseudo-) inverse of the eigenvalue decomposition
of Kmm, done with linear costs. Details to costs and approximation procedure
are shown in [2]. The vectorial embedding M is finally done by mapping the
rectangular Nyström part Knm of the similarities to the projection matrix W 2

If the similarity matrix K is non-psd, A contains negative eigenvalues and the
embedding becomes complex-valued.

We now have an approximated complex-valued fixed-length vectorial embed-
ding of the proximity data P , whereby the respective reconstruction is exact
if the rank of P equals to the number of non-vanishing eigenvalues in A. Algo-
rithm 1 has a linear complexity (without K∗) as long as the number of landmarks
m � N , which is, in general, the case. The embedding procedure has a straight
forward out of sample extension. The mapping in Algorithm 1 can be done for
new points by evaluating the proximity function for the landmark point and
using the respective projection function.

For the complex-valued embedding (so far), only a limited number of machine
learning algorithms is available, like the complex-valued support vector machine
(cSVM) [22], the complex-valued generalized learning vector quantization (cGM-
LVQ) [18], or a complex-valued neural network (cNNet) [19]. Further, a nearest
neighbor (NN) classifier can be used by employing a standard norm operator.
While cSVM, cGMLVQ, cNNet are parametric methods, the NN classifier is
parameter-free and can be used directly. In particular, after applying the norm,
the obtained dissimilarity values are metric. Due to its good performance and
simplicity, we focus on cGMLVQ, briefly reviewed in the following.

4 Complex-Valued Generalized Learning Vector
Quantization

In Learning Vector Quantization (LVQ), the classification scheme is parameter-
ized by a set of labeled prototypes and a distance measure d(·, ·). New data is
classified according to the nearest prototype’s label with respect to the distance

2 Some heuristic ideas on Landmark MDS, which is imprecise, are discussed in [2].
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measure d(·, ·). In contrast to the NN classifier in which the full dataset is used,
the classes in LVQ schemes are represented by only very few prototypes. Hence,
in the algorithm’s working phase, LVQ methods require less computational effort
and storage. Moreover, LVQ is often praised for its white-box character, which
is beneficial in many applications [20].

4.1 Training an LVQ Classifier

Given a training dataset of N labeled inputs (xi, yi)N
i=1, in which xi ∈ Rd is

an input vector and yi ∈ {1, 2, ...,K} its class label. The aim of the training
procedure is the adaptation of M labeled prototypes {(wk, yk)}M

k=1, such that
the resulting classification scheme gives high classification accuracy with respect
to unseen data. The distance measure d(·, ·) is of central importance in the
training- and classification procedure. A common choice is squared Euclidean
distance measure (x − w)T (x − w). In [13], a valid cost function for the LVQ
heuristic was proposed, that can be minimized by, e.g., gradient descent:

EGLV Q =
N∑

i=1

Φ(μi), with μi =
d+(xi) − d−(xi)
d+(xi) + d−(xi)

. (3)

The argument μi is based on the difference between the distance d+(xi) from its
position to the closest prototype with the same label and the distance d−(xi) to
the closest prototype with a different label, normalized to the range μi ∈ [−1, 1].
The function Φ(·) is monotonically increasing and is usually chosen to be iden-
tity Φ(x) = x or the logistic function Φ(x) = 1/(1 + exp(−x)). The standard
Euclidean distance does not account for differences in the classification impor-
tance of the dimensions. To improve classification accuracy, matrix relevance
learning was introduced [15]. A full matrix of adaptive relevances Λ = ΩT Ω is
introduced in the distance measure:

dΛ(w,xi) = (xi − w)T ΩT Ω(xi − w) , (4)

The linear projection defined by the matrix Ω is adapted during training to
reflect the importance of the features and to account for correlations between
features.

The above cost function in Eq. (3) is minimized with respect to the proto-
types {wk}M

k=1 and the linear projection matrix Ω by either batch- or stochastic
gradient descent. To formulate the gradient descent update rules with respect to
w± and Ω for an example xi, one applies the chain rule:

w± = w± − αΦ′(μi)
∂μi

∂d±
∂d±
∂w±

, Ω± = Ω± − βΦ′(μi)
∂μi

∂d±
∂d±
∂Ω±

(5)

with the learning rates α and β. For all results reported in the following, we have
set α = 0.01 and β = 0.001.
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4.2 Learning Rules for Complex-Valued Data

When the data lives in the complex-valued space C
d and one uses the Hermi-

tian transpose in Eq. (4), the distance is always real-valued, since it is a sum
of squared magnitudes. Hence, only the innermost derivatives of the distance
measure in Eq. (5) have to be considered with respect to the complex-valued
variables. These can be done using the Wirtinger differential operators [21] as
proposed in [18]:

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z∗ =
1
2

(
∂

∂x
+ i

∂

∂y

)
, (6)

in which z = x+iy and z∗ = x−iy, the complex conjugate. Using the differential
operator with respect to z∗, the inner most derivatives in Eq. (5) are as follows:

∂d

∂w∗±
= −ΩHΩ(xi − w±),

∂d

∂Ω∗ = Ω(xi − w±)(xi − w±)H , (7)

which are conceptually similar to the derivatives of the real-valued variables.
The model update is implicitly done in a Krein space, while the predictions
are guided by the metric dissimilarities from the employed norm operator. The
cG(M)LVQ model can be trained with linear costs on the vectorial data.

5 Experiments

In this section, we show the effectiveness of the proposed embedding approach
on a set of benchmark data typically used in the area of proximity-based super-
vised learning and by employing appropriate classified models. The following
section contains a brief description of the datasets with details in the references.
Subsequently, we evaluate the performance of our embedding approach on these
datasets compared to some baseline classifier.

5.1 Datasets

All data sets used in this experimental setup are indefinite with different spec-
tral properties. If the data are given as dissimilarities, a corresponding similar-
ity matrix can be obtained by double centering, as mentioned before [12]. The
datasets used for the experiments are described in the following, with details
given in the references.

1. Balls3d/50d has 200/2000 samples in 2/4 classes. Dissimilarities are gener-
ated between balls with the shortest distance on the surfaces [12].

2. The Copenhagen Chromosomes data consist of 4,200 human chromosomes
from 21 classes represented by grey-valued images. These are transferred to
strings measuring their silhouettes and compared using an edit distance [10].

3. The Delft gestures (1500 points, 20 classes, signature: (963,536,1)), taken
from [1], is a set of dissimilarities generated from a sign-language interpreta-
tion problem. The dissimilarities are computed by dynamic time-warping.
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4. The Flowcyto dataset is based on 612 FL3-A DNA flowcytometer histograms
from breast cancer tissues labeled in 3 classes. Dissimilarities are computed
between normalized histograms using the L1 norm [1].

5. Protein: the Protein data set consists of sequence-alignment similarities for
213 proteins and is used for comparing and classifying protein sequences
according to its four classes of globins. The signature is (170,40,3), where
class one through four contains 72, 72, 39, and 30 points, respectively [4].

6. Sonatas dataset consists of 1068 sonatas from 5 composers (classes) encoded
as MIDI data and transformed by normalized compression distance [8].

7. Zongker dataset is a digit dissimilarity dataset. The dissimilarity measure
was computed between 2000 digits in 10 classes, 200 entries each [6].

5.2 Results

We evaluate the performance of the proposed embedding using cG(M)LVQ from
Sect. 4, with the fixed length complex-valued embedded data as inputs. The
cGLVQ was parametrized once with and once without relevance learning. To
show that our approach performs at least as well as classical embedding, the
methods were tested equally on data sets with classical embedding following the
same Nyström procedure as the complex embedding. We used one prototype
per class for the cG(M)LVQ. In the embedding step of Algorithm 1 we set the
meta parameter m (# of landmarks) by a rule of thumb: if N < 1000, m = 40,
if 1000 < N < 5000, m = 70, otherwise m = 100. As a baseline, we used a
nearest neighbor classifier (NN ), which is valid for generic, uncorrected input
data and embedded data, but very costly due to the storage of the full input
matrix. This is particular unattractive if the dataset is large. Experiments were
run in a ten-fold cross-validation. Mean prediction accuracy on the holdout test
data and the respective standard deviation is reported in Table 1.

If the data were left uncorrected, we often obtained a rather poor result using
the nearest neighbor classifier, sometimes even significantly worse compared to
(c)GLVQ and (c)GMLVQ (see balls3d, protein, zongker). In some cases, NN had
equal or slightly better performance than the two (c)G(M)LVQ variants (Chro-
mosomes, Sonatas). This is due to the spectrum of eigenvalues: Chromosomes
has many eigenvalues, which are almost negligible and close to zero. Sonatas
has only a few negative eigenvalues and these eigenvalues are also close to zero.
Relevance learning (cGMLVQ) significantly improves the results compared to
cGLVQ without relevance learning. However, even the mere use of the cGLVQ
without relevance learning leads to a significant increase in performance com-
pared to the NN with uncorrected data. Therefore, we assume that our embed-
ding approach, is indeed useful since the use of uncorrected non-psd data shows
a clear drop in accuracy using NN and the vectorial embedding permits a more
flexible weighting of input contributions. In summary, the presented approach,
applying an embedding of the indefinite input data into a complex-valued vector
space, shows promising results on a variety of data sets.
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Table 1. Prediction accuracy (mean ± standard-deviation) for the GLVQ/cGLVQ
variants and the nearest neighbor classifier.

Without
embedding

Classic (real) embedding Proposed (complex)
embedding

Dataset NN NN GLVQ GMLVQ NN cGLVQ cGMLVQ

Balls3d 0.49 0.54 0.78 0.98 0.54 0.67 1.0

±0.06 ±0.13 ±0.08 ±0.02 ±0.13 ±0.12 ±0.0

Balls50d 0.25 0.26 0.52 0.78 0.26 0.28 0.54

±0.04 ±0.04 ±0.04 ±0.18 ±0.04 ±0.03 ±0.11

Chromosomes 0.95 0.92 0.91 0.94 0.92 0.92 0.94

±0.01 ±0.02 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01

DelftGestures 0.96 0.88 0.94 0.96 0.87 0.95 0.96

±0.02 ±0.01 ±0.01 ±0.02 ±0.04 ±0.01 ±0.02

Flowcyto 0.62 0.63 0.62 0.67 0.59 0.66 0.70

±0.08 ±0.06 ±0.06 ±0.07 ±0.04 ±0.07 ±0.05

Protein 0.23 0.98 0.93 0.97 0.98 0.92 0.98

±0.1 ±0.02 ±0.05 ±0.05 ±0.02 ±0.07 ±0.02

Sonatas 0.89 0.87 0.82 0.88 0.87 0.80 0.90

±0.02 ±0.02 ±0.03 ±0.03 ±0.02 ±0.03 ±0.02

Zongker 0.58 0.68 0.88 0.92 0.70 0.89 0.93

±0.05 ±0.09 ±0.02 ±0.02 ±0.06 ±0.02 ±0.02

6 Conclusions

In this work, we proposed an efficient, complex-valued embedding and a pro-
cessing pipeline to analyze non-metric or non-psd proximity data. The app-
roach shows very promising performance on a variety of datasets and is easy
to employ. A careful combination of approximation techniques, derived by the
authors in former work, permits a valid and still effective calculation of the
embedding matrix. By processing the embedding matrix, a straight forward,
non-modifying out of sample extension is obtained, not available otherwise. The
low-rank embedding is fast and has the benefit that the reconstructed matrix
approximates the original indefinite kernel with low error; hence all major infor-
mation in the original data is preserved. In particular we can omit additional
modifiers or eigenvalue corrections which are costly and substantially alter the
data. The model of the proposed complex embedding implicitly exists in the
Krein space. Using learning algorithms for complex-valued data, predictive mod-
els can be obtained with low computational costs. In this initial work, we focused
on complex-valued G(M)LVQ and Nearest Neighbor to calculate classification
models, but this will be extended to other models in future work. Our initial
findings show that the suggested complex-valued embedding of indefinite prox-
imity data, combined with complex-valued classifier models, is a very effective
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and promising approach favorable over classical alternatives. Therefore, exper-
imental comparisons to more classical eigenspectrum approaches (like clipping,
flipping or shifting negative eigenvalues) or to models working in Krein space
[11] are also interesting for further research.
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Abstract. This paper proposes an approach for multi-label classification
based onmetric learning.The approach has been designed to dealwith gen-
eral classification problems, without any assumption on the specific kind
of data used (images, text, etc.) or semantic meaning assigned to labels
(tags, categories, etc.). It is based on clustering and metric learning algo-
rithm aimed at constructing a space capable of facilitating and improving
the task of classifiers. The experimental results obtained on public bench-
marks of different nature confirm the effectiveness of the proposal.

Keywords: Metric learning · Multi-label classification · Clustering ·
Supervised learning.

1 Introduction and Related Works

Multi-label classification plays an important role in the context of data anal-
ysis in many different applications, ranging from text classification to multi-
media annotation or bioinformatics [9]. The general problem can be stated as
follows. Let Y = {yj , j = 1, ..,m} be a finite set of m class labels and let
D = {(xi, Yxi

), i = 1, .., n} be a generic set of labeled patterns, where xi is a
data pattern and Yxi ⊆ Y the set of related labels. In multi-label classifica-
tion each pattern xi is therefore generally assigned to more than one class. The
objective of multi-label classification is to determine a function f(xi) able to
correctly identify all the labels Yxi

that can be associated to each pattern in
the domain. Traditional classifiers are not feasible in this case, and an extension
to the multi-label case is needed. Most of the commonly used algorithms have
their own multi-label variant; as an alternative, some works in the literature
propose approaches able to transform multi-label problems into more canoni-
cal multi-class ones [4]. Interested readers can refer to [5] for a description of
the existing approaches. Recently, some approaches for multi-label classification
have been proposed, based on neural networks and deep learning, such as [18]
and [13]. These techniques achieve in general good performance but require, for
a proper training, a large amounts of data that are not always available. The
solution proposed in this work is aimed at designing a method for improving
performance of natively multi-label classifiers for general pattern classification
problems, in the presence of datasets of limited dimensions.
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In an ideal situation, just like in a traditional multi-class problem, the pat-
terns sharing the same labels should lay in the same sub-region of the feature
space. Unfortunately, this desirable situation seldom occurs in real cases, since
labels can generally represent high-level concepts used by humans for classifica-
tion that do not have a direct and immediate counterpart in terms of feature
similarity; of course, the multi-label scenario further complicates the problem. A
common approach to derive a better representation space is based on the use of
algorithms capable of learning a specific metric, which can properly group pat-
terns belonging to the same classes. To this purpose, several techniques based
on supervised learning have been proposed such as Local Fisher Discriminant
Analysis [16] (LFDA) or Large Margin Nearest Neighbor Metric Learning [19]
(LMNN). Unfortunately, such approaches cannot be easily extended to the multi-
label case. An easy and intuitive solution to this problem is to consider super-sets
of labels by transforming the multi-label problem into a multi-class one. This
approach is commonly referred to as label powerset (see for instance [17]) and
it maps each combination of labels to a unique class changing the nature of the
problem; each new class created corresponds to a list of labels of the original
problem. This approach is well-suited for problems where the number of labels
and their possible combinations are limited, otherwise the risk is to obtain an
extremely high number of super-sets, i.e. to many classes to deal with.

This paper proposes a novel approach aimed at improving the multi-label
classifier accuracy by the adoption of a metric learning algorithm. The authors
of [11] present a method in order to learn a new distance metric maximizing the
margin present between different instances. To achieve the expected result, they
project data and labels into the same embedding space imposing constraints on
distances such that instances with very different multiple labels will be moved
far away. Unlike the previous solutions, [8] proposes an innovative loss function
based on the Jaccard index able to determine how different two instances are
based on their labels set. Using the Adam optimisation algorithm, they learn a
new metric able to improve the classification performance.

The approach proposed in this work is based on label clustering, meaning that
the patterns in the dataset are clustered according to their labels rather than on
the basis of the related feature vectors. The information produced by clustering
is exploited to learn a metric aimed at improving classification accuracy. In [9]
the authors use clustering algorithms for pruning infrequent multi labels. They
assume that the elimination of infrequently multi label instances from the training
set leads to the identification of better label power sets. Another interesting use of
clustering can be found in [20]. The authors address the multi-label classification
problem using the classifier chain approach, training a single classifier for each
label. The use of a clustering algorithm, k-means in this case, allows to discover
any correlations present between the labels. This information allows to identify the
correct order in which to arrange the classifiers, maximizing the final performance.

The proposed approach has been designed as a general solution capable of deal-
ing with multi-label classification problems. For this reason the experimental eval-
uation will consider heterogeneous datasets containing data of different nature.
The paper is organized as follows: Sect. 2 presents the proposed approach, its
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characteristics and steps, Sect. 3 shows a complete overview of the results
achieved and Sect. 4 draws some conclusions and presents possible future research
directions.

2 The Proposed Approach

The main steps of the approach can be summarized as follows (detailed descrip-
tion in the following subsections):

1. Clustering: the patterns within the dataset are grouped on the basis of label
sharing;

2. Metric Learning: the original space is replaced thanks to the learning of a
metric capable of bringing together patterns belonging to the same cluster;

3. Multi-label Classification: a suitably trained classifier identifies the labels to
be associated with each pattern inside the new space.

2.1 Clustering

The idea of exploiting label clustering in this work is motivated by the obser-
vation that, in real life scenarios, patterns sharing the same set of labels not
always can be considered similar from the point of view of their respective
feature descriptors. Labels represent very general high-level concepts assigned
by humans, especially in case of multi-label classification; clustering techniques
based on data descriptors may work well for specific applications (e.g. image
retrieval in [14]), but could present limited generalization capabilities when deal-
ing with classification problems of different nature. Label clustering, on the con-
trary, allows to group together data with similar labels, even when they are
spread over the feature space.

The membership of a generic pattern x to the available labels can be
described through a binary vector l = {li, i = 1, ..,m} of size m equal to the
number of possible labels; each element of the vector li ∈ {0, 1}, representing
the membership of x to class yi. This kind of encoding defines a real space of the
labels, different from that of the features used to describe the single patterns.

The proposed approach applies a clustering algorithm to the label space,
ignoring at all the feature vectors associated to patterns, thus ensuring that
clusters are defined according to class membership regardless of the descriptors
used to encode them. The metric used for clustering is the hamming distance,
more suited than the Euclidean distance to deal with the specific label encoding
adopted. Clustering is performed by the HDBSCAN [3] technique, a density-
based clustering algorithm proposed by the same authors of DBSCAN, of which
it represents an evolution. The algorithm identifies clusters as high-density areas
in space. The traditional DBSCAN algorithm uses a single density value to
identify all clusters, while HDBSCAN extends this concept allowing to identify
clusters with different density levels.

The first step of the algorithm requires the estimation of the local density
for each pattern xi. The easiest way to get a density estimate is to evaluate
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the neighborhood of a point. If a large number of neighbors are placed in a
very narrow radius, that particular area can be considered dense. The distance
dcore−k(xi) is simply defined as the distance between xi and its k -th nearest
neighbor, using any metric. Based on this measure, the mutual reachability dis-
tance dreach−k(xi,xj) between two points xi and xj is defined as follows:

dreach−k(xi,xj) = max{dcore−k(xi), dcore−k(xj), d(xi,xj)} (1)

The practical effect of this metric is to preserve the distances of points laying
in dense regions and increasing the reciprocal distances of the points in sparse
ones. Clustering is then based on a weighted graph representation of the points
in the dataset. The points assume the role of the vertices, while the arc connect-
ing two points xi and xj is assigned a weight equal to dreach−k(xi,xj). The idea
is to eliminate the weakest arches, thus identifying the high density areas. This
can be accomplished extremely efficiently by calculating the minimum spanning
tree using a proper algorithm. Given the minimum spanning tree, the next step
is to convert that representation into a hierarchy of connected components by
grouping neighboring points. DBSCAN cuts the hierarchy tree horizontally by
identifying a single threshold used to locate clusters. This represents a strong
limitation if there are areas with heterogeneous densities in the dataset. HDB-
SCAN uses a different approach using the notion of minimum cluster size, which
is taken as input parameter for the algorithm. Each split in the tree represents a
subdivision of the data into multiple clusters. In fact, the root of the tree treats
all data as a single cluster. The deeper you go down, the more clusters you divide
your data with. Browsing through the tree, HDBSCAN makes an evaluation on
the validity of each split present. Only splits into two clusters each at least as
large as the minimum cluster size can be considered valid. Otherwise, that split is
eliminated by condensing that part of the tree. After walking through the whole
hierarchy, we end up with a much smaller condensed tree with a reduced number
of nodes. Given the tree, it is only a matter of choosing those nodes/clusters to
save.

2.2 Metric Learning

The output of the previous clustering stage is a set of clusters containing data
sharing large part of the respective labels. These new labels, found out by a
clustering algorithm, are used to learn a new metric in a supervised fashion from
the feature space. The metric learning step is aimed at reducing intra-cluster
distances while maximizing inter-cluster distances. The literature proposed sev-
eral supervised metric learning algorithms. The approach adopted in this work
is Neighbourhood components analysis (NCA) [7]. It is an algorithm that learns
a linear transformation, in a supervised fashion, to improve the classification
accuracy of a stochastic nearest neighbors rule in the transformed space. The
goal of NCA is to learn an optimal linear transformation matrix A such that the
average leave-one-out (LOO) classification performance is maximized. It identi-
fies the optimal transformation matrix by maximizing the sum over all samples
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of the probability of being correctly classified according to LOO classification.
This type of classification tries to predict the class label of a single data point
by consensus of its k -nearest neighbours, using a given distance metric. Unfor-
tunately, it is not so simple to identify the optimal matrix as any objective
function based on neighborhood points would be not differentiable. In particu-
lar, the set of neighbors for a point may undergo discrete changes in response to
regular changes in the elements of A. This difficulty is overcome by adopting an
approach based on stochastic gradient descent. The entire transformed dataset
is considered as stochastic nearest neighbours using a softmax function of the
squared euclidean distance between a point and each other point in the space.
Considering Ci as the set of points in the same class as sample i, the probability
of sample i being correctly classified is:

pi =
∑

j∈Ci

pij where pij =
exp(−||Axi − Axj ||2)∑

z �=i

exp−(||Axi − Axz||2) , pii = 0 (2)

At each iteration the algorithm adequately modifies the parameters of matrix
A in order to approach patterns belonging to the same class. It is possible to
proceed until convergence or until a maximum number of iterations is reached.
By limiting the number of iterations, the impact of the algorithm on the new
metric can be modulated, preserving part of the old space. NCA also offers the
possibility of reducing the dimensionality of the data if deemed excessive.

2.3 Multi-label Classification

The final step of the approach is represented by multi-label classification, which
takes place in the new space created by the metric learning algorithm. From
the results of this last phase it is possible to verify the effectiveness of the entire
proposal, which should lead to an improvement in the classification performance.
Among the different approaches in the literature, we decided to adopt in this
work two classifiers, Multi-label K-Nearest Neighbors [21] and Random Forest
[2], to evaluate the effectiveness of the proposed approach.

Multi-label K-Nearest Neighbors Classifier (ML-kNN). It is a multi-
label classification algorithm based on an extension of the well known K-Nearest
Neighbor. It assigns labels to a pattern by evaluating the labels of its neighbor-
hood based on a simple approach: it identifies the k closest patterns present in
the training set and then uses Bayesian inference to select the labels to assign.
Considering the main characteristics of this algorithm, it is essential to have an
adequate metric able to aggregate the patterns with the same labels in space.

Random Forest. It is a meta classifier algorithm that fits a number of decision
tree classifiers on various sub-samples of the dataset. The final result of the
classifier is the average of the results obtained by individual trees. This strategy
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allows to increase the classification accuracy and reduce the occurrence of over-
fitting. The random forest algorithm uses the technique of bagging. Every tree is
trained selecting a random sample with replacement of the training set. Feature
bagging is also used to reduce correlation between trees: during the learning
process only a random subset of the available features is used. The use of these
techniques leads to better model performance because it decreases the variance
of the model, without increasing the bias. While the predictions of a single tree
are very sensitive to noise in its training set, the average of many trees is not, as
long as the trees are not correlated. It is important to notice that this algorithm
is natively multi-label. Given a generic pattern x, each of the trees available will
return the predicted class y ∈ Y . The set of these labels represents the output
of the entire algorithm. Some more robust implementations only consider those
labels voted by a minimal number of classifiers.

3 Experiments and Results

3.1 Evaluation Protocol

To evaluate the effectiveness of this approach, it was chosen to use the main and
most known indicators in the field of multi-label classification. They represent a
multi-label variant of the most commonly used indicators in classification prob-
lems [6]. Let D be a multi-label test set. Let Yx be the set of labels associated
with the generic pattern x and Zx those predicted by the classification algorithm.
Accuracy, Precision and Recall are three of the most important indicators for
evaluating a classification approach. In their multi-label version they are defined
as:

Accuracy =
1

|D|
|D|∑

i=1

|Yxi

⋂
Zxi

|
|Yxi

⋃
Zxi

| (3)

Precision =
1

|D|
|D|∑

i=1

|Yxi

⋂
Zxi

|
|Zxi |

(4)

Recall =
1

|D|
|D|∑

i=1

|Yxi

⋂
Zxi |

|Yxi
| (5)

Accuracy measures the overall ability of the classifier of correctly classifying
patterns. Precision measures the portion of predicted labels that are correct,
while recall measures the portion of real labels that were correctly predicted.
Another key indicator within the multi-label classification is the hamming loss.
Its definition recalls the concept of hamming distance:

HammingLoss =
1

|D|
|D|∑

i=1

|Yxi
⊕ Zxi

|
|Yxi |

(6)
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where ⊕ is the XOR operator. This indicator is extremely significant in the
multi-label context as it summarizes the difference between the real label set
and the one predicted by the classifier. Despite the presence of all these specific
indicators for multi-label classification, it is still possible to evaluate the quality
of the results by counting the percentage of exact matches, i.e. the percentage
of test data for which all the required labels have been correctly predicted.

3.2 Datasets

Extensive experiments have been carried out to evaluate the effectiveness of our
proposal as well as its generality. To this purpose, three heterogeneous multi-
label datasets (see Table 1) have been selected:

– enron [15], a dataset of emails labelled with a set of categories; each email is
encoded using the Bag Of Words encoding;

– scene [1], an image dataset; the six labels available identify the characteristics
of the landscape depicted in the image itself; each image is described with
visual numeric features;

– bibtex [10], containing bibliographic data from the BibSonomy social book-
mark and publication sharing system, annotated with a subset of the tags
assigned by BibSonomy users; it uses the Bag Of Words model.

The three datasets are quite different from different points of view such as
content (text/image), features representation, size, number of labels, and how
they are distributed. Each dataset assigns a different meaning to the labels (cat-
egory, description, tag), so that they represent an interesting test bed. Table 1
also reports the training/testing partitioning suggested in the literature for the
datasets. Of course clustering, metric learning and classifier training were done
on the training set, while the test set was used to measure classification results.

Table 1. The main characteristics of the datasets.

Dataset Domain Instances (train/test) Attributes Labels Avg/Max labels
per instance

Enron Text 1702 (1123/579) 1001 53 3.38 / 12

Scene Image 2407 (1211/1196) 294 6 1.07 / 3

Bibtex Text 7395 (4880/2515) 1836 159 2.4 / 28

3.3 Results

Before analysing the classification performance, we briefly report the result pro-
duced in the clustering phase by the HDBSCAN algorithm. The minimum cluster
size required as an input parameter by the algorithm was arbitrarily fixed to 5
for our experiments. Table 2 shows some results related to clustering such as the
number of clusters identified in each dataset and their average size in terms of
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patterns. The number of clusters obtained is in line with the size and the number
of labels in the datasets. It is interesting to note the limited number of clusters
identified in the scene dataset, quite close to the number of labels. Another
important information reported by the table is the average number of clusters
in which a single label ends. It should provide an indication of how the patterns
presenting that label have been grouped. For example, if a label is present on the
majority of the dataset is highly unlikely that all patterns indicating the label
end up in a single cluster. Conversely, if a single or a group of labels characterize
a certain portion of the dataset, those data will probably shape a single cluster.
Of course, the occurrence of these situations is closely related to the meaning
that each dataset assigns to its labels. On average, each label in the enron and
scene datasets ends up in a very similar number of clusters (4/3) despite the
huge difference in the number of labels available. This is due to the different
distribution of the labels within the dataset.

Table 2. The results of clustering.

Dataset No. of clusters Cluster average size Avg No. of Clusters
per label

Enron 39 16.38 4.04

Scene 11 89.82 3.00

Bibtex 226 19.11 19.01

The second step of the method is focused on the NCA algorithm for learning
a better metric. The maximum number of iterations to be performed during
learning has been fixed for all datasets to 30, to avoid excessive flattening of
data on clusters, which proved to be counterproductive in terms of results. No
dimensionality reduction has been applied in our experiments. As regards the
classification, the two algorithms illustrated above were used: ML-kNN and Ran-
dom Forest. The results obtained by ML-kNN using the proposed approach are
compared with the benchmarks indicated in [12], following the same protocol. In
particular, the best results in the new space were obtained by assigning the value
10 to the hyper-parameter k. As for Random Forest, it was made a comparison
between the original space of the datasets and the built one using a model with
100 decision trees. Thanks to these comparisons, it is possible to evaluate the
effectiveness of the proposed method. The classification results, obtained using
the indicators shown above, are reported in Table 3.

The results clearly show that the proposed method is able to improve clas-
sification performance. In particular, ML-kNN improves significantly, especially
for the bibtex dataset. Given the characteristics of the classifier, it was reason-
able to expect a positive effect from the construction of a space more suitable
for classification. The results obtained show the ability of the previously identi-
fied clusters to group patterns with the same labels. In general, Random Forest
also seems to get benefits, though in a limited form. While on the one hand the
increase in performance on scene is remarkable, on the other hand the results
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Table 3. Classification results on selected datasets.

Accuracy Precision Recall Hamming D. Exact
match

Enron ML-kNN (Benchmark) 0.319 0.587 0.358 0.051 0.062

ML-kNN (Our method) 0.413 0.66 0.465 0.048 0.123

Random forest (Original Space) 0.401 0.694 0.449 0.047 0.119

Random forest (Our method) 0.413 0.7 0.456 0.046 0.123

Scene ML-kNN (Benchmark) 0.629 0.661 0.655 0.099 0.573

ML-kNN (Our method) 0.698 0.732 0.715 0.090 0.646

Random forest (Original space) 0.540 0.565 0.540 0.093 0.514

Random forest (Our method) 0.657 0.688 0.659 0.087 0.624

Bibtex ML-kNN (Benchmark) 0.129 0.254 0.132 0.014 0.056

ML-kNN (Our method) 0.257 0.390 0.271 0.013 0.156

Random forest (Original space) 0.217 0.362 0.219 0.013 0.135

Random forest (Our method) 0.186 0.316 0.188 0.013 0.114

on the other datasets are not so good. This is not accidental if we consider the
characteristics of the two datasets and those of the classifier. On average, enron
and bibtex have a much higher number of labels for each instance than scene.
The new space, by grouping different patterns, has evidently reduced the ability
of the trees to discriminate with respect to a single label, causing not exactly
exciting results. In summary, contrary to what happened with ML-kNN, the new
learned metric hindered the task of the Random Forest classifier.

Overall, the results obtained are very good and prove the capability of the
proposed method to build a more effective space for multi-label classification.

4 Conclusions and Future Works

In this work a metric-learning approach aimed at improving the performance
of a multi-label classifier has been presented. In particular, the use of a cluster
algorithm applied to pattern labels allowed to identify groups of data that share
most of their labels, subsequently used to build a new, more effective, representa-
tion space. The results obtained on three different multi-label datasets show how
the new space built by the proposed approach is able to significantly increase the
classification results. Future researches will be devoted to investigate the scala-
bility of this approach to larger datasets. Another future development involves
the introduction, in the metric learning step, of a neural network capable of
building a more suitable space for classifiers.
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comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104
(2012)
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Abstract. Isolation Forests are one of the most successful outlier detec-
tion techniques: they isolate outliers by performing random splits in each
node. It has been recently shown that a trained Random Forest-based
model can also be used to define and extract informative distance mea-
sures between objects. Although their success has been shown mainly
in the clustering field, we propose to extract these pairwise distances
between the objects from an Isolation Forest and use them as input to
a distance or density-based outlier detector. We show that the extracted
distances from Isolation Forests are able to describe outliers meaning-
fully. We evaluate our technique on ten benchmark datasets for outlier
detection: we employ three different distance measures and evaluate the
obtained representation using a density-based classifier, the Local Out-
lier Factor. We also compare the methodology to the standard Isolation
Forests scheme.

Keywords: Outlier detection · Isolation forests · Random forest-based
similarity

1 Introduction

Isolation Forests (IF) [16,18] represent a Random Forest-based technique for
outlier detection, which success have been assessed in many different contexts:
for example, in the comparative analysis shown in [9], they were proven to be
the most successful methodology to solve this task. In contrast to other Random
Forests approaches for outlier detection [7,23], which are based on a standard
classification Random Forest trained on normal data and artificially generated
outliers, Isolation Forests use trees in which splits are performed completely at
random (similarly to the Extremely Randomized Trees [10]). Given the trees,
IFs solve outlier detection using the concept of “isolation”, which encodes the
fact that outliers are probably well separated from the rest, thus being able to be
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“isolated” from the remainder of the data within the early splits of the tree. Thus,
the anomaly degree of a given point can be detected by looking at the depth of
the leaf it reaches. Isolation Forests have been extensively employed, extended
and improved in many different aspects [8,11,13,14,17,19,24]: most of these
extensions [8,11,13,14,17,24] were devoted to improve the training stage, for
example by defining novel ways to split a node; few of them focus on improving
the testing phase, i.e. the anomaly score [13,19].

In this paper we propose and investigate an alternative exploitation of the
Isolation Forests for outlier detection: instead of employing the isolation concept,
we investigate the possibility of exploiting the IF to derive pairwise distances
between objects, to be then used as input for a distance or density-based outlier
detection classifier.

The proposed approach starts from the following observation: Random
Forests (RF) are not used solely for classification or regression, but also as a
valid and flexible data description tool. For example, in the field of clustering,
there are different approaches which exploit the concept that the intrinsic nature
of Random Forests allows to describe data in a meaningful way. In all these tech-
niques –the so-called distance-based RF clustering methods [3,4,23,26,27]– the
idea is to exploit RFs to derive a dissimilarity measure between points, to be
subsequently used as input to a distance-based classifier. These measures have
been proven to be more descriptive than standard geometric-based distances
such as the Euclidean distance, and have been successfully applied in many
different domains [1,12,21,22]. In almost all these methods the trained forests
are standard binary classification RFs, built using the points to be clustered
and a synthetically generated negative class. Very recently [3], however, other
learning schemes have been investigated, able to work without generating a syn-
thetic negative class that tends to hide the true nature and complexity of the
data. Among other learning strategies, those based on random mechanisms were
shown to perform surprisingly well, permitting to derive meaningful and infor-
mative distances.

Following these findings, we propose an alternative IF-based outlier detec-
tion scheme, in which we exploit Isolation Forests to derive dissimilarities to
be used inside a distance-based outlier detector. In the paper we investigated
three different strategies for computing the dissimilarity, based on different
intuitions [23,27]. To investigate the suitability of the proposed framework we
employed ten different benchmark outlier detection datasets, evaluating the
different dissimilarities also in comparison with the standard Isolation Forest
scheme. Results were encouraging, confirming the richness of the information
that can be extracted from this particular type of Random Forests.

The remainder of the paper is divided as follows: in Sect. 2 we present the
Isolation Forests in detail; in Sect. 3 we describe the proposed methodology and
then we test it in Sect. 4. In Sect. 5 we make some conclusions.
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2 Isolation Forests

The most successful and used Random Forest-based technique for outlier detec-
tion is called Isolation Forest, or IF [16,18]. Differently from other RF-based
methodologies for outlier detection, which create artificial outliers in order to
employ RF for classification [7,23], IFs work in a completely unsupervised way.
They aim at separating each object from the rest of the dataset, independently
of the class it belongs to. The success of the IFs can be attributed to the way in
which they are built –the training phase– and secondly, by how the score of each
object traversing the forest is computed –the testing one. In the two following
Subsections we illustrate in detail such procedures.

2.1 Training Phase

An Isolation Forest is composed of several Isolation Trees (iTrees), which are
built using a random subsample of the training set drawn without replacement.
Each iTree is built recursively by partitioning each node into two children nodes
in a completely random way, inspired by the Extremely Randomized Trees [10].
An axis-parallel split is performed in the following way: a feature is chosen
completely at random, and then a random choice is made also for the value
along which to split, in the domain of the selected feature. The tree is built until
a stopping criterion is met: either we have reached the maximum established
depth or it is impossible to split the node.

This tree structure is able to well differentiate outliers from inliers due to the
fact that the former are usually fewer, different and heterogeneous with respect
to the rest of the dataset. Indeed early splits will have a higher probability to
separate outliers from the rest of the data due to the nature of outliers. Therefore
we can infer that on average outliers will tend to end up in leaves that have a
smaller depth than those that inliers will reach.

2.2 Testing Phase

In the testing phase an object x traverses each tree of a trained IF and a score
is inferred, indicating the probability of x being an outlier. The definition of
anomaly score s(x), given by Liu et al. [16,18], is as follows:

s(x, S) = 2−E(h(x))
c(S) (1)

where S is the number of training samples used to build a tree, c(S) is a nor-
malization factor needed for comparing differently built forests and E(h(x)) is
the average path length across all trees –for a more detailed explanation please
refer to [16,18]. The score, which varies in the range between 0 and 1 behaves
as expected: a smaller average depth will lead to a higher score which increases
the probability of a point to be an outlier.
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3 Methodology

The proposed methodology consists of three steps:

1. Train an Isolation Forest model F .
2. Extract from F a distance matrix D which contains in cell (x, y) the pairwise

distance between the xth and yth object. We call it the IF-distance.
3. Classify the objects using an outlier detector that takes D as input.

Step 1: Training of IF

The first step represents the standard training of Isolation Forests, as described
in Sect. 2. We train a forest F composed of T trees. Each tree t has been built
using S samples drawn without replacement from the training set. The recursive
building procedure continues until a maximum depth D is reached. Within each
tree t we define the following elements: (i) root is the root node of the tree; (ii)
n is either an internal node of the tree, i.e. a node which can be split and is
not the root, or a leaf node. Each node n contains < S objects: we indicate this
quantity with |n| and (iii) d() is the depth function which retrieves the depth of
each node, where d(root) = 0.

Step 2: Derivation of IF-distance

First, we introduce some useful notation. When objects x and y are travers-
ing a tree t, we define: i) lt(x) is the leaf node reached by x which has depth
dt(x) = d(lt(x)); ii) Px

t = {n1, n2, . . . ndt(x)} is the path traversed by x in t in
terms of set of nodes, excluding the root –since it is traversed by all objects. Note
that dt(x) = |Px

t |. iii) LCAt(x, y) is the lowest common ancestor of x and y, i.e.
the last node in which x and y are together. The split defined in this node will sep-
arate x from y; iv) λt(x, y) = d(LCAt(x, y)) and v) P(x,y)

t = {n1, ..., LCAt(x, y)}
is the path traversed by both objects, i.e. the subset of nodes traversed by both
x and y. Note that λt(x, y) = |P(x,y)

t |.
The IF-distance D has been computed using three different proposals, widely

and successfully employed in the clustering scenario [23,27].

1. In [4,23] two objects in a tree t are similar if they end up in the same leaf.
Therefore, in a forest, two objects are more similar if they reach the same
leaf in a greater number of trees. Formally, given objects x and y the Shi
similarity between the two objects is defined as:

SimShi(x, y) =
∑

t∈F 1(lt(x) = lt(y))
T

(2)

where 1 is the indicator function that returns 1 if the two leaves are equal
and T is the number of trees in F . This measure is then transformed into a
distance in the following way:

Shi(x, y) =
√

1 − SimShi(x, y). (3)
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The other two measures are defined by [27]. The authors generalize the concept
introduced by [22]: objects which do not arrive at the same leaf may share some
similarity, that can be measured via the length of their common path. The novel
measures introduced in [27] are ClustRF-Strct-Unfm and ClustRF-Strct-Adpt
which we will call SimZhu2 and SimZhu3 for the sake of simplicity:

2. Given two objects x and y that traverse a tree t, SimZhu2t is defined as:

SimZhu2t(x, y) =
λt(x, y)

max{|Px
t |, |Py

t |}
. (4)

The length of the common path is divided by the length of the longest path:
this is necessary since, given a fixed λ, the similarity between x and y should
be higher if the denominator is closer to λ. The measure is extended to F in
the following way:

SimZhu2(x, y) =
∑

t∈F SimZhu2t(x, y)
T

(5)

which is simply the average similarity between the two objects. We transform
the similarity into a distance as follows:

Zhu2(x, y) = 1 − SimZhu2(x, y). (6)

3. The variant called SimZhu3 is a weighted version of SimZhu2. Each node is
considered to have a depth-based importance since objects which are together
in a very deep node are more similar than objects which are together only,
for example, in the root. To account for this, in [27] they define the weight of
a node k to be 1

|k| since smaller nodes are usually deeper in a tree. Therefore
given objects x and y the similarity SimZhu3t in a tree t is:

SimZhu3t(x, y) =

∑
k∈P(x,y)

t

1
|k|

∑
k∈Pb

t

1
|k| + 1

|lt(b)|
(7)

where b = argmax
x,y

|Pb
t |. The measure is extended to F in the following way:

SimZhu3(x, y) =
∑

t∈F SimZhu3t(x, y)
T

. (8)

We transform the similarity into a distance as follows:

Zhu3(x, y) = 1 − SimZhu3(x, y). (9)

Step 3: Distance-based outlier detection

After having computed D, we can apply any distance-based outlier detection
method. Different techniques exist in the literature –for a detailed explanation
please refer to [6]. The most simple methods exploit the distance to the kth
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neighbor in different ways: an example is NNd [25]. NNd states that if the
distance between an object and its nearest neighbor is greater than the distance
between the latter and its nearest neighbor, then the object under analysis has
an increased probability of being an outlier.

Then there are more refined techniques which employ an estimation of the
relative density to solve the task, such as the Local Outlier Factor (LOF) [5]. LOF
works by comparing the neighborhood density of the object under analysis with
that of its neighbors. The object has a higher probability of being an outlier if at
least one of the neighbors has a denser neighborhood than its own. The classifier
has only one parameter to set: K, the neighborhood size. In our work we employ
LOF since it is more sophisticated than NNd.

4 Experimental Evaluation

In this Section we first describe the datasets and some experimental details and
then we present the obtained results and compare the methodology to the IFs.

4.1 Experimental Details

We evaluate the methodology on 10 UCI ML datasets1 which were transformed
into outlier detection datasets: in all of them nominal attributes were removed.
Then the outlier and inlier classes are defined based on previous works: for
Breastw, Ionosphere, Pima and Satellite see [16], for Glass and WBC see [15],
for Arrhythmia and Wilt refer to [11], for Musk follow [2] and for Letter refer
to [20] –as to this dataset further modifications were made other than defining
the classes2. In Table 1, datasets are described in terms of number of objects,
number of features and percentage of outliers. These datasets cover a large range
of situations: they differ greatly in the number of features (from 5 up to 164), in
the outlier percentage (from 3.17% up to 45.80%) and in the size (the smallest
one has 213 samples while the biggest 6435).

After a preliminary evaluation –not shown here–, we chose the following
parameters for the IF training: S = 256,D = log2(S), T = 150. The parameters
of the methodology are very easy to set, as shown in [16,18]: indeed we only
varied the forest size with respect to the default parametrizations since it shows
better performances. Each experiment was repeated 20 times. For each iteration
50% of the objects was randomly assigned to the training set and the other 50%
to the testing set, where the former did not contain any outlier.

Given the trained forests, we computed the IF-distances with the three vari-
ants described in Sect. 3: Shi, Zhu2 and Zhu3. As to the chosen classifier, LOF,
after preliminary analyses not shown here, we set K = 14 since it allows to
achieve the best performances on average. As accuracy measure, as often done
in outlier detection, we use the Area under the ROC Curve (AUC).
1 Available at https://archive.ics.uci.edu/ml/index.php.
2 All datasets adequately processed can be found at http://odds.cs.stonybrook.edu/,

except for Arrhythmia for which we use a different version [11].

https://archive.ics.uci.edu/ml/index.php
http://odds.cs.stonybrook.edu/
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Table 1. Overview of the 10 datasets used for the experimental evaluation.

Datasets Nr. of objects Nr. of features Outlier %

Arrhythmia 452 164 45.80%

Breastw 683 9 34.99%

Glass 214 9 4.21%

Ionosphere 351 32 35.90%

Letter 1600 32 6.25 %

Musk 3062 166 3.17%

Pima 768 8 34.90%

Satellite 6435 36 31.64%

WBC 378 30 5.56 %

Wilt 4839 5 5.39%

4.2 Results

The first analysis compares the three IF-distance measures we can compute from
the Isolation Forests. In Figs. 1 (a), (b) and (c) we present a pairwise comparison
between the distances: for each dataset we count for how many experiments the
first named measure is better than the second (blue bar), the second is better
than the first (orange bar) and for how many experiments the two distance
measures perform the same (yellow bar). The green line represents the maximum
number of experiments per dataset, which is 20. In Figs. 1 (a) and (c) we compare
Zhu2 with the other distances: its superiority is straightforward. Indeed for all
datasets except two it is better than the other distance measures and for one,
Musk, the performances are equal. Comparing instead Zhu3 and Shi, in Fig. 1
(b), we can observe that in many cases Zhu3 is the better choice, except for
Breastw, Pima and Wilt which are all rather small; for Musk we observe again
that the performances are independent of the used distance measure.

The second analysis compares the proposed methodology with the IF: we
present the results in Table 2. For each dataset we report the median across
the 20 repetitions. In detail, as to the proposed methodology we report the
accuracy achieved with the best distance measure, which is indicated between
parenthesis–if All is present, it means that all distances lead to the same accu-
racy. In addition we performed a Wilcoxon signed-rank test to assess whether
the differences between the methodologies are statistically significant. The scores
in bold are the best ones, and if a * is present, then the difference with the other
methodology is statistically significant. From Table 2 we can observe that on
seven datasets the best accuracy is reached when using the proposed methodol-
ogy. In detail in four cases it is achieved when using Zhu2 as distance measure
and for four out of these seven datasets the difference is statistically significant
–for Wilt and Letter the improvement is remarkable. In addition even though for
the remaining datasets IF is significantly better, only for Breastw the proposed
methodology actually fails. Finally if we observe the average results across all
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Fig. 1. Comparison between the proposed distances. Respectively each figure compares
(a) Shi with Zhu2 (b) Shi with Zhu3 and (c) Zhu3 with Zhu2.



42 A. Mensi et al.

Table 2. Accuracy comparison between the IF and the proposed methodology.

Dataset IF LOF (Best Dist.)

Arrhythmia 0.773 0.778(Shi)

Breastw 0.995* 0.582(Zhu2)

Glass 0.729 0.733(Zhu2)

Ionosphere 0.894 0.906(Zhu2)

Letter 0.641 0.861*(Zhu2)

Musk 0.988 1.000*(All)

Pima 0.738* 0.696(Zhu2)

Satellite 0.810 0.840*(Zhu2)

Wbc 0.954* 0.938(Zhu2)

Wilt 0.516 0.903*(Shi)

Average 0.804 0.824

the datasets the maximum accuracy is reached with the proposed technique.
We can thus conclude it is advantageous to employ the IF-distance: this is par-
ticularly true if the dataset is big enough, i.e. if it has > 1000 objects.

5 Conclusions

In this paper we propose a novel methodology for outlier detection that exploits
Isolation Forests. From the latter we extract a distance matrix which is then
input to an outlier detector: the novel representation should be able to meaning-
fully describe the objects and identify the outliers, thanks to the intrinsic nature
of the trees composing the forest. We employed different RF-based distance mea-
sures and evaluate the methodology on ten datasets: the proposed technique has
been proven to be advantageous with respect to using Isolation Forests alone.
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Abstract. The exponentially weighted moving average (EWMA) is an
important tool in time series analysis. So far the research on EWMA is
typically limited to the real (vector) space R

n. In this work we present
an extension of this concept to arbitrary spaces. It is based on an inter-
pretation of EWMA as a special case of weighted mean computation. We
develop three computation methods. In addition to the direct computa-
tion in the original space, we particularly study an approach to embed-
ding the data items of a time series into vector space. The feasibility
of our EWMA computation framework is exemplarily demonstrated on
strings.

1 Introduction

Time series data are omnipresent in the world. The analysis of such data leads
to unique problems and solutions [17] that, amongst others, should take the
inherent correlation of adjacent data items into account. There are several needs
to clean time series data, including dealing with data missing, data inconsistency
[3] and data errors [19].

The focus of this work is time series data smoothing for the latter purpose.
The weighted moving average gives different weights to data at different positions
in the sample window. Mathematically, it corresponds to the convolution of the
data items with a fixed weighting function. The exponentially weighted moving
average (EWMA) [7] is a popular technique of this class with the weighting for
each older datum decreasing exponentially. Given an original noisy time series
st, the EWMA results in a smoothed time series vt and is formally defined by:

vt+1 = β · vt + (1 − β) · st+1, β ∈ [0, 1] (1)

where the parameter β rules the degree of weighting decrease and a lower β
discounts older data items faster. Commonly, the computation is initialized by
setting v1 = s1. The (t+1)-th element of the smoothed series depends on all the
previous data items of the original series:

vt+1 = βts1 +
t−1∑

k=0

βk(1 − β) · st−k+1

c© Springer Nature Switzerland AG 2021
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where βn (n = t, k) represents the nth power of β. EWMA has a broad range
of applications. An important example is the momentum for gradient descent
optimization [13], which is also beneficial for training neural networks.

So far the research on EWMA is typically limited to the real (vector) space
R

n. In this work we study the general case of EWMA in arbitrary spaces. Based
on an interpretation of Eq. (1) as a special case of the so-called weighted mean
(to be detailed in Sect. 2), we develop three methods for computing the related
weighted mean. The feasibility of our EWMA computation framework is exem-
plarily demonstrated on strings. Potential applications include bioinformatics
(“denoising” sequences of proteins belonging to the same family) and video anal-
ysis (e.g. smoothing sequences of gradually changing actions).

The remainder of the paper is organized as follows. We first formally define
the problem of EWMA in arbitrary spaces in the next section. Then, Sect. 3
presents the fundamentals for the validation of our approach on strings. Section 4
describes three EWMA computation methods. For each method we present the
related experimental results. We choose this somewhat unconventional structure
(instead of presenting all experimental results in a single section) since our sec-
ond (third) algorithmic variant is motivated by the experimental results and
discussion of the first (second) method, respectively. For this reason we also
describe the test data used in our experiments at the very beginning in Sect. 3.
Finally, Sect. 5 concludes the paper.

2 Formal Problem Definition

Given an arbitrary space O with a distance function δ(oi, oj), the fundamental
concept of weighted mean õ between objects o1, o2 ∈ O with ratio α ∈ [0, 1] is
defined by:

δ(o1, õ) = α · δ(o1, o2), δ(õ, o2) = (1 − α) · δ(o1, o2) (2)

In other words, the weighted mean õ is a linear interpolation between objects
o1 and o2. In many cases, this weighted mean can be derived from the distance
function δ. Examples include strings [2], graphs [1] (adaptable to trees), graph
correspondences [12], clustering [6] and bi-clusterings [14]. Note that although
the relation between distances is theoretically exact in Eq. (2), it is not always
possible to compute õ with these exact distances. One example is the Levenshtein
string edit distance [18] (see Sect. 3.1) that usually returns a natural number (in
case of integer costs of edit operations), while α is typically a rational number.
In these cases, a string is returned that approximates this equation.

By replacing o1 with vt and o2 with st+1 in Eq. (2), it becomes clear that
the EWMA vt+1 in Eq. (1) is simply the weighted mean of vt and st+1 with
α = 1 − β,

δ(vt, vt+1) = (1 − β) · δ(vt, st+1), δ(vt+1, st+1) = β · δ(vt, st+1)

Thus, the general case of EWMA in arbitrary spaces, i.e. computing the
smoothed series vt+1, is converted to that of weighted mean computation.
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Weighted mean computation [1,2,6,12] belongs to those efforts that extend
popular concepts from vector space to arbitrary spaces. Another such example is
the generalized median computation [14]. Our current work follows this research
direction and studies times series smoothing.

3 Fundamentals of This Paper

3.1 String Edit Distance and Weighted Mean Computation

Strings are a fundamental representation in structural pattern recognition. In
order to apply our approach to strings two requirements have to be fulfilled.
First, a suitable distance function is needed to compare strings. Here, we use the
popular Levenshtein string edit distance [18].

Secondly, the weighted mean based on the edit distance has to be determined.
Given the optimal edit sequence from two strings x to z, the fundamental idea
behind the algorithm [2] for computing the weighted mean y with the desired
fraction a of the total distance δ(x, z) is as follows. Select a subset of all the edit
operations so that the sum of their costs (approximately) amounts to a. The
selected subset is applied to x (the remaining cost δ(x, z) − a is then realized by
the remaining edit operations for obtaining z from y). Note that the weighted
mean is generally not unique. However, it can be made unique if we select a
subset of total cost a based on the optimal edit operations between x and z in
their natural order from the edit distance computation.

3.2 Test Data

We use synthetic data to evaluate our algorithmic variants (and in fact to moti-
vate the algorithmic development). Two strings g1 and gn (n = 200) of length
500 each were chosen at random from the public domain book “Robinson Cru-
soe” by Daniel Defoe. String g1 was then gradually transformed into gn using
weighted mean computation and equally sampled α values. The series of strings
g1, g2, . . . , gn are guaranteed to be gradually changing and considered as ground
truth (GT). A second, distorted series of strings s1, s2, . . . , sn was created. For
this, each symbol of each string was changed with a probability of 12%. A change
had a 9% chance to be a deletion, a 4% chance to be an insertion and an 87%
chance to be a substitution. The purpose of EWMA is to smooth this series of
strings to achieve an output series of strings with smaller edit distances to GT
compared to the input series of strings. In total we generated 20 such GT series
and their distorted version. Experiments were done for the 20 distorted series
and average results are reported later in the paper.

4 EWMA Computation Methods

4.1 Direct Method

The formal definition presented in Sect. 2 immediately leads to a direct EWMA
computation method. Given a time series st in space O with distance function
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Algorithm 1. EWMA computation: Direct method
Input: Distorted series s1, s2, . . . , sn (sk ∈ arbitrary space O)
Output: Smoothed series v1, v2, . . . , vn
1: v1 = s1
2: for t = 1 to n − 1 do
3: Compute vt+1 as weighted mean of vt and st+1 according to Eq. (1)
4: end for

Fig. 1. Direct method: Average edit distance between distorted string st and GT gt
(red), average edit distance between smoothed string vt and GT gt (blue). (Color figure
online)

δ(oi, oj), we determine the (t + 1)-th element of the smoothed series vt+1 by
computing the weighted mean between vt and st+1 using some pre-specified
parameter β. The pseudo-code of this method is given in Algorithm1.

The results on the synthetic data as described in Sect. 3.2 are presented
in Fig. 1 for three β values 0.3, 0.5 and 0.7. For each input string st, t =
1, 2, . . . , 200, the figure shows the edit distance δ(st, gt) (between the distorted
string si and the related GT gt) in red and δ(vt, gt) (between the smoothed string
vt and GT gt) in blue. In each case the average over the 20 distorted series (of
the same length of 200) is reported.

These results indicate that the direct method may be ineffective. The edit
distance between the smoothed strings and GT sharply increases at a certain
point, after initially being slightly higher than the distorted series. For β = 0.7,
for instance, after about 30% of the steps has been smoothed, the quality of the
smoothed series deteriorates quickly.

The reason for this is the way how the weighted mean of strings is generated.
The original time series is created by increasing α. Each smoothed string vt for
t > 1 is created by using the first β percent of the symbols from st and the last
(1 − β) percent of symbols from vt−1, meaning that the last (1 − β) of sn are
never used in the smoothed string. After β percent has been smoothed, these
symbols make up an increasing part of each step st, thus increasing the edit
distance between the smoothed and original strings.

4.2 EWMA Computation: Vector Space Embedding Method

In contrast to general complex spaces, the vector space is much easier to han-
dle, where many operations have simple solutions. This observation motivates a
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Fig. 2. Overview of vector space embedding.

universal vector space embedding approach consisting of three steps (see Fig. 2
for an illustration):

– Embedding: The input data items are embedded to points in a vector space.
– Operation: The operation at hand is performed on the embedded points.
– Reconstruction: The result is transformed back into the original space.

In structural pattern recognition, this problem-solving strategy has been used to
solve a variety of instances of high-complex, partly NP-hard, generalized median
problems [5,9,14]. This is due to the fact that the generalized median in vec-
tor space can be efficiently determined by applying the well-known Welszfeld
algorithm [20].

Also the problem of EWMA computation is easily solvable in vector space
based on the computation scheme in Eq. (1). Thus, we study this problem-solving
strategy by embedding the distorted objects into vector space. The details of
the two key steps embedding and reconstruction are described as follows. The
pseudo-code of this method is presented in Algorithm2.

Vector Space Embedding. In the past this embedding is commonly performed
by the prototype embedding technique [5,9] using selected prototype objects.
Intuitively, one would expect that the embedding should be done in a distance-
preserving manner, i.e. find points x1, . . . , xn ∈ R

d such that

δe(xi, xj) = c · δ(si, sj), ∀ 1 ≤ i, j ≤ n, c > 0

with δe being the Euclidean distance between two points. Ideally, the scaling
factor c ∈ R should be 1 to ensure an exact representation of the objects in
vector space. The EWMA problem (likewise the generalized median), however,
is scale invariant. Thus, we allow a constant scaling factor c in the formula-
tion above. The rationale behind the distance-preserving requirement is to pre-
serve the original object configuration in vector space. Distance distortion in the
embedding process leads to distorted configuration in vector space and thus a
“biased” solution vector, which in turn will result in a similarly “biased” oper-
ation (e.g. EWMA computation) in the original space. The recent work [14]
shows that the commonly used prototype embedding technique does not satisfy
the distance-preserving requirement well. Several distance-preserving embedding
schemes were studied, which led to strong evidence of significantly improved
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Algorithm 2. EWMA computation: Vector space embedding method
Input: Distorted series s1, s2, . . . , sn (sk ∈ arbitrary space O)
Output: Smoothed series v1, v2, . . . , vn
1: v1 = s1
2: for t = 1 to n − 1 do
3: Embed s1, . . . , st+1 to p1, . . . , pt+1 in vector space
4: Compute the smoothed series p∗

1, . . . , p
∗
t+1 in vector space directly using Eq. (1)

5: Reconstruct vt+1 by transforming p∗
t+1 back to the original space

6: end for

quality of generalized median computation using distance-preserving embedding.
In particular, the curvilinear component analysis [4] turns out to be an excellent
choice. Thus, we will use this embedding method for our work here. Note that
in the formulation in Algorithm2, all data items s1, . . . , st+1 are used for the
embedding. This reflects our current implementation, but can be modified to
only incrementally embed the new data item st+1 while freezing the embedding
of the previous data items s1, . . . , st.

Reconstruction. The last step is to transform the smoothed points from vector
space back into the original space. Several inverse transformation methods have
been studied before [5,14]. Although this was done in the context of generalized
median computation, these transformation methods are of rather general nature
and can be applied for other tasks. They need a number of corresponding pairs
(si, pi), where pi represents the embedded point of distorted object si in vec-
tor space. In our case such pairs are given by the input distorted objects and
their embedded points and can be used for transforming the smoothed points
back to the original space. For the experimental work we apply the triangular
reconstruction method. We refer to [5,14] for technical details of this and other
reconstruction methods. In particular, we use the publicly available toolbox1

implementing these reconstruction methods as described in [14] for our work.
With increasing time t, the number of corresponding pairs (si, pi) used for

the reconstruction increases accordingly. To further augment such pairs, we also
study an additional variant of the vector space embedding method by including
the pairs (vi, p∗

i ) resulting from the reconstructions so far. Here p∗
i represents

the smoothed version of some embedding pi and vi its reconstruction.
In the following we report the experimental results of the vector space embed-

ding method using the same test data as in Sect. 4.1. The dimension of the
embedded vector space is set to �0.7 · min(|s1|, |s2|, . . . , |sn|)�, where |sk| repre-
sents the length of string sk. The study [14] indicated that a factor of 0.7 to 0.9
is a good choice for the dimension of embedding space. We thus used 0.7 in this
work. For visualization purposes, we show the first two dimensions of the embed-
dings in Fig. 3 (1st row). The decrease in distortion for the smoothed embedded
series is clearly visible in this figure with the smoothed points being much closer
to the original series. The 2nd row shows the Euclidean distance between the

1 https://www.uni-muenster.de/PRIA/forschung/dpe.html.

https://www.uni-muenster.de/PRIA/forschung/dpe.html
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Fig. 3. Vector space embedding method. 1st row: visualization of two dimensions of
the embeddings. 2nd row: average Euclidean distance between embedding of distorted
string st and GT gt (red), average Euclidean distance between embedding of smoothed
string vt and GT gt (blue). 3rd/4th row: average edit distance between distorted string
st and GT gt (red), average edit distance between smoothed string vt and GT gt (blue)
for the standard variant and the additional variant with (vi, p

∗
i ). (Color figure online)

different series, where we can clearly see clusters separating the embedding of
distorted and smoothed strings. Similar separation can be observed in the 3rd
row in the original string space, although somewhat weaker than in the vector
space in terms of the Euclidean distance for β = 0.7. For the additional vari-
ant with (vi, p∗

i ) the behavior differs considerably (4rd row). For most β values
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Algorithm 3. EWMA computation: Two-way vector space embedding method
Input: Distorted series s1, s2, . . . , sn (sk ∈ arbitrary space O)
Output: Smoothed series v1, v2, . . . , vn
1: Compute the forward smoothed series f1, f2, . . . , fn from s1, s2, . . . , sn
2: Compute the backward smoothed series bn, . . . , b2, b1 from sn, . . . , s2, s1
3: v1, v2, . . . .vn = (f1, . . . , fn/2, bn/2+1, . . . , bn)

the reconstructed series initially show a lower edit distance towards the original
series than the standard variant. From the middle of the series, however, an
increase in edit distance similar to the direct method in Fig. 1 is observable.

4.3 EWMA Computation: Two-Way Vector Space Embedding
Method

The vector space embedding method is certainly an improvement against the
direct method. Looking at the results of the variant with (vi, p∗

i ) in Fig. 3 (4th
row) reveals that approximately the first half is better reconstructed than the
second half. The reason for this phenomenon, in particular the distance spike
in the middle, is related to the reconstruction and rather complex (see [21] for
more details). This motivates us to suggest a two-way vector space embedding
method. In contrast to the methods before, this is an off-line approach. That is,
we assume to know the complete series s1, s2, . . . , sn. In a first step, we process
the series to obtain a forward smoothed series. Similarly, we also consider the
reversed series sn, . . . , s2, s1 to obtain a backward smoothed series. Then, we
concatenate the first half of the forward smoothed series and the first half of the
backward smoothed series (in reverse order). The pseudo-code of this method is
presented in Algorithm 3 for even n. For uneven n, the element in the middle
of either the forward or backward smoothed series can be inserted into the final
smoothed series.

The experimental results of this two-way vector space embedding method
are shown in Fig. 4. The two series of distorted and smoothed strings form a
clear separation with almost no overlap. The steep increase in edit distance as
observed before is no longer visible. A spike in edit distance, however, is notable
in the middle of the series.

4.4 Discussion

All the embedding methods discussed before (prototype embedding approach
[5] and distance-preserving embedding methods studied in [14]) are based on
explicit transformations into the vector space. In contrast, it is also possible
to use implicit transformations in terms of kernel functions. Kernel functions
are well-known from their application in kernel machine [11], support vector
machine, clustering, principal component analysis, etc. [16]. The development
of kernel functions on non-vectorial data, in particular structural data (strings,
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Fig. 4. Two-way vector space embedding method: Average edit distance between dis-
torted string st and GT gt (red), average edit distance between smoothed string vt and
GT gt (blue). (Color figure online)

Fig. 5. Kernel method: Average edit distance between distorted string st and GT gt
(red), average edit distance between smoothed string vt and GT gt (blue). (Color figure
online)

trees, graphs) [8,10,22], allows investigating kernel-based EWMA computation.
We also studied this idea [21], which is based on the - rather complex - tech-
nique recently developed in [15]. The preliminary results as reported in [21] are
comparable with the direct method, see Fig. 5. This is a direction worth further
study in future.

5 Conclusion

So far the research on EWMA is typically limited to the real (vector) space R
n.

In this paper we have extended the EWMA computation to arbitrary spaces. To
our knowledge this is the first extension of this kind reported in the literature. It
is based on weighted mean computation. In addition to the direct computation
in the original space, we particularly studied the vector space embedding app-
roach. The feasibility of our EWMA computation framework was exemplarily
demonstrated on strings.

The current experimental work provides an indication of the general feasibil-
ity of our approach to smoothing time series in arbitrary spaces. Future research
will extend the experimental basis, especially on additional spaces.
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Abstract. Ordinal classifier cascades (OCCs) are basic machine learn-
ing tools in the field of ordinal classification (OC) that consist of a
sequence of classification models (CMs). Each of the CMs is trained in
combination with a specific subtask of the initial OC task. OCC architec-
tures make use of a data set’s ordinal class structure by simply arrang-
ing the CMs with respect to the corresponding class order (e.g., small
- medium - large). Recently, we proposed bidirectional OCC (bOCC)
architectures that combine two basic one-directional OCCs, based on a
person-independent pain intensity recognition scenario, in combination
with support vector machines. In the current study, we further analyse
the effectiveness of bOCC architectures. To this end, we evaluate our
proposed approach based on different OC benchmark data sets. Addi-
tionally, we analyse the proposed bOCCs in combination with two dif-
ferent classification models. Our outcomes indicate that it seems to be
beneficial to replace basic pairwise one-directional OCCs by the pairwise
bOCC architecture, in general.

Keywords: Ordinal classification · Ordinal classifier cascades

1 Introduction

Ordinal classification (OC) is an important field of supervised learning. In OC
tasks, it is assumed that the classes constitute an ordinal structure. For instance,
different medical applications represent interesting examples of OC tasks, such as
the classification of pain intensities. More precisely, based on the pain intensity
recognition example, the classes could constitute the following structure, no pain
≺ low pain ≺ intermediate pain ≺ severe pain [17].

Ordinal classifier cascades (OCCs) constitute basic tools for OC tasks [11].
An OCC system is a classification architecture that consists of a sequence of
classification models (CMs). Each input sample is processed in sequential man-
ner. The architecture’s final decision is based on the prediction of one single CM
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from the sequence (see Sect. 2, for details). Thus, OCCs belong to the category
of selection ensembles [12].

Basic OCCs are simple methods that benefit from the class structure. There
is no need for an additional combination rule, as it is the case in common decision
fusion-based classifier ensembles [5,10]. However, there exist strongly performing
alternatives, such as the error correcting output codes (ECOC) [8], including the
one-versus-one approach. Therefore, OCC architectures became popular tools
for the detection of ordinal class structures [13,16], and substructures [15].

Aiming to improve the classification performance of basic OCCs, recently,
we proposed a straightforward combination of OCC architectures [3]. Based on
the BioVid Heat Pain Database [19], in [3], we provided a short ablation study
on basic OCC architectures, in combination with support vector machines [18].
Our outcomes showed that the addition of one single classification model that
is used to combine two OCCs significantly improved the corresponding person-
independent pain intensity classification performance, with respect to the basic
one-directional OCCs.

In the current study, we want to further analyse our recently proposed OCC
modification. To this end, we provide an experimental evaluation in combination
with different publicly available OC benchmark data sets. Moreover, we extend
the numerical analysis by additionally evaluating each of the OCC architectures
in combination with a decision tree classifier [6].

The remainder of the current work is organised as follows. In Sect. 2, we
briefly summarise the functionality of OCC architectures. Subsequently, we pro-
vide our proposed design for the combination of basic OCCs. The data sets that
will be evaluated in the experiments are described in Sect. 3. In Sect. 4, we first
provide the details on the evaluation protocol, including the choice of perfor-
mance measures and implementation software. Subsequently, we provide and
discuss the experimental outcomes. Finally, in Sect. 5, we conclude the current
study.

2 Ordinal Classifier Cascades

In the current section, we first provide the formalisation, followed by a brief
introduction of different OCC approaches. Subsequently, we recap our proposed
design of simply combined OCC architectures.

2.1 Formalisation

Let Ω = {ω1, . . . , ωc}, c ∈ N, c > 2, be the class label set of an ordinal c-class
classification task. Without loss of generality, we assume that the class labels
constitute an ordinal class structure with respect to the order ω1 ≺ . . . ≺ ωc.
We denote the class labels ω1 and ωc as edge classes, or simply edges.

By X ⊂ R
d, d ∈ N, we denote the d-dimensional training set of the cor-

responding classification task. By l(x), we denote the true label of data point
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x ∈ X. Moreover, by CMi,j , we denote the classification model that is trained
in combination with the set Xi,j ⊂ X, which is defined as follows,

Xi,j := {x ∈ X : l(x) = ωi ∨ l(x) = ωj}, ∀ i, j ∈ {1, . . . , c}, (i �= j).

Note that in the current work, we assume symmetrical classification models,
i.e. it holds, CMi,j = CMj,i, for all i, j ∈ {1, . . . , c}.

Ordinal classifier cascades consist of a sequence of c − 1 classification mod-
els. Each of the models is trained in combination with a binary subtask of the
initial multi-class task. A model’s output either provides the architecture’s final
decision, or indicates that the subsequent model has to process the current input
sample. Note that the last model in the sequence always provides the architec-
ture’s final decision.

2.2 Current vs. Next and Current vs. Previous Ordinal Cascades

In pairwise OCCs, each model CMi,j is trained in combination with one pair
of neighbouring classes. In [3], we confirmed that the direction of an OCC can
have a significant impact on the architecture’s output distribution. Therefore,
we divide the pairwise OCC approach into the following two architectures. In
the current vs. next (CvsN) OCC architecture, the i-th model in the sequence is
trained to separate the classes ωi and ωi+1. In the current vs. previous (CvsP)
OCC architecture, the i-th model in the sequence is trained to separate the
classes ωc−i+1 and ωc−i. Therefore, the CvsN architecture consists of the model
sequence CM1,2 → CM2,3 → . . . → CMc−1,c. Analogously, the CvsP architecture
consists of the model sequence CMc,c−1 → CMc−1,c−2 → . . . → CM2,1. Both
architectures are depicted in Fig. 1.

Note that both architectures, i.e. CvsN and CvsP, consist of the same set of
classification models, due to the symmetry of the models, as discussed above.
Therefore, the only difference between both models, which can lead to significant
performance changes, is based on the architecture’s direction, i.e. the choice of
the starting edge.

2.3 Bidirectional Pairwise Ordinal Classifier Cascades

In [3], we proposed to complement the set of classification models of pairwise
OCCs by a selector component that is trained in combination with the two edge
classes, i.e. CM1,c. Each input sample, z ∈ R

d, is first processed by the selector
model. In the case that the output CM1,c(z) is equal to ω1, the input is moved
to the CvsN sequence. In contrast, if the output CM1,c(z) is equal to ωc, the
current input is moved to the CvsP sequence. Figure 2 depicts the bidirectional
OCC (bOCC) architecture for the pairwise approach.

Note that there also exist different non-pairwise OCC architectures such
as the current vs. higher approach [3], in which the first CM separates the
class ω1 from the classes {ω2, . . . , ωc}. However, the outcomes in [13] show that
pairwise OCC approaches outperform the non-pairwise OCCs, with respect to
classification performance, in general. Thus, in accordance to the experiments in
[3], in the current study, we focus on the pairwise (b)OCC architectures.
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Fig. 1. Ordinal Classifier Cascades (Pairwise). Left: Current vs. Next (CvsN).
Right: Current vs. Previous (CvsP). x: Input. c: Number of classes. ωi: Class labels.
CMi,j : Classification model that separates the classes ωi and ωj . Arrowheads indicate
that the corresponding output is taken as the architecture’s final prediction.
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Fig. 2. Bidirectional Ordinal Classifier Cascade Architecture (Pairwise).
x: Input. CM1,c: Classification model that separates the edge classes ω1 and ωc.
CvsN/CvsP: Current vs. Next and Current vs. Previous architectures (see Fig. 1).

3 Data Sets

In the current study, we include the following five publicly available data sets
from the UCI machine learning repository [9] and the Weka website1.

The Contraceptive Method Choice (CMC) data set is part of the
National Indonesia Contraceptive Survey from the year 1987. The goal of this
data set-specific classification task is to predict a married woman’s contraceptive
method. The class labels are denoted as follows, no use ≺ short-term method ≺
long-term method. The features describe the women’s socio-economic and demo-
graphic characteristics, including age, level of education, and husband’s level of
education, amongst others.

The Car Evaluation (Cars) data set includes a set of class labels denoted
by unacceptable ≺ acceptable ≺ good ≺ very good. The provided features are the
buying price, the maintenance price, the number of doors, the number of seats,
the boot size, as well as the car’s estimated safety level.

1 https://waikato.github.io/weka-wiki/datasets/.

https://waikato.github.io/weka-wiki/datasets/
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The Grub Damage (Grub) data set represents a pasture damage estima-
tion task. The class labels are denoted as low ≺ average ≺ high ≺ very high.
The features consist of agriculture-specific characteristics. The Grub data set is
available on the Weka website, included in the file denoted by agridatasets.jar.

The Nursery data set constitutes a job application evaluation task. Initially,
this data set consists of five classes, including the class recommended. However,
since this class contains only two data points, we focus on the remaining four
classes, i.e. not recommended ≺ very much recommended ≺ priority acceptance
≺ special priority acceptance. The features describe the applicant’s housing, as
well as social and health conditions, amongst others.

The Forest Type Mapping (Forests) data set covers four types of forests.
Note that in [4], we identified the following ordinal structure of the class labels,
Hinoki ≺ Sugi ≺ Mixed Deciduous ≺ Non-Forest. The provided features consist
of spectral characteristics of visible-to-near infrared wavelengths.

The characteristics of all data sets are summarised in Table 1.

Table 1. Data Sets. #C: Number of classes. #F: Total number of features (number
of categorical features). #S: Number of samples.

Data set #C #F #S Class distribution

CMC 3 9 (7) 1473 629 − 511 − 333 − 0

Car Evaluation 4 6 (6) 1728 1210 − 384 − 69 − 65

Grub Damage 4 8 (6) 155 49 − 41 − 46 − 19

Forests 4 27 (0) 523 86 − 195 − 159 − 83

Nursery 4 8 (8) 12958 4320 − 328 − 4266 − 4044

4 Experimental Analysis

In the current section, we first provide the experimental settings, followed by
the presentation and discussion of the results.

4.1 Experimental Settings

Let z ∈ Z ⊂ R
d be a sample from the test set Z. For input z, we denote the

final output of a classification architecture (CA) simply by CA(z). Moreover, by
Δ : Ω × Ω → {0, . . . , c − 1}, we denote the absolute difference between CA(z)
and the true label of z, l(z), i.e.

Δ(ωi, ωj) := |i − j|, ∀ i, j ∈ {1, . . . , c}.

Additionally, by Zi ⊂ Z, we denote the subset of the test set Z, which includes
all samples from the class ωi, i.e.

Zi = {z ∈ Z : l(z) = ωi}, ∀ i ∈ {1, . . . , c}.
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Classification Models. We evaluate each architecture in combination with
two popular, basic machine learning classification models, i.e. a Support Vector
Machine (SVM) [1,18] with linear kernel, as well as an unpruned Decision Tree
(DT) [6] with the Gini Index as the node split criterion. More precisely, for each
OCC approach, each sequence model is either a linear SVM, or a single DT. As
these classifiers have different characteristics (connected/disconnected decision
regions) the corresponding OCCs can take advantage of different ordinal embed-
dings [14]. For the implementation, we use the Matlab2 software, in combination
with the default parameters.

Performance Measures. Note that most of the data sets are highly imbal-
anced (see Table 1). Therefore, as performance measures, we focus on the
weighted accuracy (wACC), as well as the weighted mean absolute error
(wMAE), i.e.

wACC :=
1
c

c∑

i=1

|{z ∈ Zi : CA(z) = l(z)}|
|Zi| ,

wMAE :=
1
c

c∑

i=1

∑

z∈Zi

Δ(CA(z), l(z))
|Zi| .

Evaluation Approaches. For each of the data sets, we apply a 10-fold cross
validation. Note that we ensure that the initial class distribution is reflected in
each of the folds, for all data sets. Moreover, for the statistical analysis, we apply
the two-sided Wilcoxon signed-rank test [20], at a significance level of 5%.

4.2 Results

Tables 2 and 3 depict the results for the SVM and DT-based OCC architectures,
respectively. From Tables 2 and 3, we can make the following observations.

First, considering the choice of classification models, there is no clear pref-
erence. Both model types, i.e. SVM and DT-based, outperform each other on
different data sets, in combination with each of the OCC architectures. This
is a natural outcome in many machine learning tasks, which is supported by
Wolpert’s No-Free-Lunch Theorem [21].

Second, in combination with SVM models, our proposed bOCC architecture
outperforms both of the basic OCC approaches statistically significant on three
of the five data sets, with respect to both performance measures, wACC and
wMAE. Based on the Cars data set, the bOCC architecture is tied with the
CvsP approach, also with respect to both performance measures. Based on the
Grub data set, the bOCC architecture is slightly outperformed by the CvsP
approach, also with respect to both performance measures.

2 www.mathworks.com.

www.mathworks.com
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Table 2. SVM Results. Averaged 10-fold cross validation performance values (±
standard deviations). CvsN: Current vs. Next. CvsP: Current vs. Previous. bOCC:
Bidirectional Ordinal Classifier Cascade. The best performing method is underlined.
An asterisk (*) indicates a statistically significant difference between the bOCC and the
best of the remaining architectures, according to the two-sided Wilcoxon signed-rank
test, at a significance level of 5%.

SVM Weighted accuracy Weighted mean absolute error

Data set CvsN CvsP bOCC CvsN CvsP bOCC

CMC 45.8 ± 4.8 46.0 ± 6.0 50.0 ± 5.3∗ 0.69 ± 0.06 0.68 ± 0.09 0.60 ± 0.07∗

Cars 86.4 ± 5.6 89.0 ± 5.2 89.0 ± 5.2 0.17 ± 0.08 0.12 ± 0.06 0.12 ± 0.06

Grub 44.6 ± 13 54.6 ± 14 52.9 ± 12 0.95 ± 0.32 0.65 ± 0.21 0.75 ± 0.20

Forests 84.3 ± 6.2 74.2 ± 9.5 87.9 ± 4.3∗ 0.21 ± 0.09 0.50 ± 0.25 0.13 ± 0.04∗

Nursery 63.9 ± 2.4 63.3 ± 2.3 88.3 ± 2.3∗ 0.77 ± 0.03 0.62 ± 0.02 0.12 ± 0.02∗

Table 3. DT Results. Averaged 10-fold cross validation performance values (± stan-
dard deviations). CvsN: Current vs. Next. CvsP: Current vs. Previous. bOCC: Bidi-
rectional Ordinal Classifier Cascade. The best performing method is underlined. An
asterisk (*) indicates a statistically significant difference between the bOCC and the
best of the remaining architectures, according to the two-sided Wilcoxon signed-rank
test, at a significance level of 5%.

DT Weighted accuracy Weighted mean absolute error

Data set CvsN CvsP bOCC CvsN CvsP bOCC

CMC 46.0 ± 6.2 45.6 ± 6.0 47.9 ± 6.5∗ 0.71 ± 0.07 0.71 ± 0.07 0.67 ± 0.07∗

Cars 84.8 ± 6.4 81.2 ± 5.5 92.1 ± 4.8∗ 0.25 ± 0.10 0.36 ± 0.08 0.11 ± 0.06∗

Grub 42.8 ± 9.3 46.9 ± 15 55.1 ± 12∗ 1.00 ± 0.19 0.78 ± 0.29 0.68 ± 0.26

Forests 80.6 ± 5.2 75.5 ± 5.9 84.7 ± 4.5∗ 0.32 ± 0.10 0.45 ± 0.16 0.18 ± 0.05∗

Nursery 72.7 ± 1.0 73.6 ± 0.8 98.6 ± 0.8∗ 0.69 ± 0.02 0.63 ± 0.01 0.01 ± 0.01∗

Third, in combination with DT models, our proposed bOCC architecture
outperforms both of the basic OCC approaches on all data sets, with respect
to both performance measures, wACC and wMAE. Based on the wACC mea-
sure, the improvement is always statistically significant. In combination with the
wMAE measure, only for the Grub data set, the improvement is not statistically
significant.

Finally, the best overall performance values, for both measures, are obtained
in combination with the proposed bOCC architecture. In almost all cases, the
improvement against both of the basic OCC approaches is statistically signifi-
cant, according to the two-sided Wilcoxon signed-rank test, at a significance level
of 5%. The highest improvements in performance are observed for the Nursery
data set.
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Table 4. SVM and DT Results. Averaged 10-fold cross validation class-specific
MAE values, based on the Nursery data set. CvsN: Current vs. Next. CvsP: Current
vs. Previous. bOCC: Bidirectional Ordinal Classifier Cascade. wMAE: Weighted MAE.

Nursery data set Support vector machines Decision trees

Approach ω1 ω2 ω3 ω4 wMAE ω1 ω2 ω3 ω4 wMAE

CvsN 0.00 0.28 0.94 1.88 0.77 0.00 0.02 0.88 1.84 0.69

CvsP 2.00 0.28 0.11 0.08 0.62 2.47 0.02 0.02 0.01 0.63

bOCC 0.00 0.28 0.11 0.08 0.12 0.00 0.02 0.02 0.01 0.01

4.3 Discussion

The obtained results indicate that the simple introduction of the selector com-
ponent, with the purpose of combining two basic OCC architectures, in most
cases, has a positive effect with respect to the classification performance. It
seems that, in general, choosing the appropriate direction merges the strengths
of two one-directional OCCs.

Surprisingly, for the Nursery data set, the weighted accuracy values improved
by more than 20%, in combination with both models, SVM and DT, respec-
tively (see Tables 2 and 3). Most likely, this is due to the specific class distri-
bution of the Nursery data set. This is the only data set, in which one of the
classes constitutes the minority class, with respect to both of the neighbouring
classes. More precisely, for the Nursery data set, the class distribution is equal
to 4320−328−4266−4044, with respect to the class order ω1 ≺ ω2 ≺ ω3 ≺ ω4

(see Table 1). The number of samples in class ω2 is much lower than the num-
ber of samples in the classes ω1 and ω3, respectively. This specific constellation
seems to have a strong negative impact on both of the one-directional OCC
architectures. Table 4 depicts the class-specific MAE values for the Nursery data
set. From Table 4, we can observe that the CvsN architecture performs poorly
specific to the classes ω3 and ω4. In contrast, the CvsP architecture performs
poorly specific to the class ω1. The combined bOCC architecture performs as
well as the CvsN approach specific to the class ω1, while performing as well as
the CvsP approach specific to the classes ω3 and ω4, based on both models.

Note that, with respect to basic OCCs, the issue of class imbalance could be
overcomed by applying some of the existing balancing approaches, such as the
SMOTE [7] method, or the recently proposed label manipulation approach [2].
In contrast, our proposed bOCC architectures seem to automatically overcome
the issue of class imbalances, as discussed above.

5 Conclusion

In the current work, we provided an extensive evaluation study for our recently
proposed bOCC architectures. To this end, we analysed the effectiveness of pair-
wise bOCCs, in comparison to basic pairwise one-directional OCC approaches,
based on a set of publicly available OC benchmark data sets. We conducted
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our experimental analysis in combination with two base classifiers, i.e. support
vector machines and decision trees. Additionally, we evaluated the performance
in combination with two measures, i.e. accuracy (ACC) and mean absolute error
(MAE). To address the data sets’ class imbalances, we focused on the weighted
versions of the ACC and MAE measures. For the statistical analysis, we included
the two-sided Wilcoxon signed-rank test. The obtained outcomes are discussed
in detail, in Sect. 4. In most cases, it seems to be beneficial to extend pairwise
OCC architectures by our proposed bOCC approach.

As future research, we aim at focusing on the analysis of our proposed selec-
tor component (SC). An optimised SC might further improve the classification
performance of bOCCs. For instance, in the case of imbalanced edge classes, one
could apply some of the existing balancing techniques. Alternatively, it might
be beneficial to include the data from all available classes, during the training
of the SC.
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Abstract. Deep Neural Networks (DNN) represent the state of the art
in many tasks. However, due to their overparameterization, their gen-
eralization capabilities are in doubt and still a field under study. Con-
sequently, DNN can overfit and assign overconfident predictions – effects
that have been shown to affect the calibration of the confidences assigned
to unseen data. Data Augmentation (DA) strategies have been proposed
to regularize these models, being Mixup one of the most popular due
to its ability to improve the accuracy, the uncertainty quantification and
the calibration of DNN. In this work however we argue and provide empir-
ical evidence that, due to its fundamentals, Mixup does not necessarily
improve calibration. Based on our observations we propose a new loss
function that improves the calibration, and also sometimes the accuracy,
of DNN trained with this DA technique. Our loss is inspired by Bayes
decision theory and introduces a new training framework for designing
losses for probabilistic modelling. We provide state-of-the-art accuracy
with consistent improvements in calibration performance. (Appendix and
code are provided here: GitHub link)

Keywords: Deep neural networks · Calibration · Data augmentation ·
Mixup training

1 Introduction

Deep Neural Networks (DNN) are probabilistic models (PM) that represent the
state of the art in many tasks, either as end-to-end models [20], or as part
of complex decision systems [6]. Many of the applications in which DNN has
widely overcome previous approaches require that the parameterized probability
distributions are interpretable. This means that both the prediction, (for instance
the class selected in a classification problem), and the probability assigned to
that prediction, are important for the correct performance of the whole system.
Examples of these applications are medical diagnosis [3] or language recognition
[1]. In all these problems, it is very different to decide towards an action with high
probability, than doing it with a more moderated one. The ultimate consequences
c© Springer Nature Switzerland AG 2021
A. Torsello et al. (Eds.): S+SSPR 2020, LNCS 12644, pp. 67–76, 2021.
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incurred in the decision process can be drastic if these probabilities are not
reliable i.e., are not well-calibrated. In other words, our model is calibrated if
the probabilities assigned reflect the uncertainty present in the data distribution.
Moreover, our PM must be able to discriminate between the different classes, i.e.
to separate them. Note that discrimination is inherent to the data distribution,
which means that we cannot expect to separate our data if our data is not
separable in its origins. Both good discrimination and a correct modelling of
data uncertainty are mandatory to achieve optimal classification performance
by the use of the Bayes Decision Rule (BDR).

The calibration and discrimination of a PM can be improved by optimizing
the expected value of a proper scoring rule (PSR), a scalar obtained by the addi-
tion of both quantities [4]. For that reason, this optimization is not a guarantee
of optimal calibration, as all the effort can be pushed into having better dis-
criminative capabilities. This effect has been recently observed in the context
of DNN where [7] showed that although these models are typically trained by
optimizing the Negative Log-Likelihood (NLL), the calibration performance is
compromised in the direction of over-confidence. This means that even though
the accuracy provided by these models on several benchmarks are among the
best published, the probabilities assigned are ultimately extreme and badly cal-
ibrated. One should not be surprised about this generalization limitation, as
many theories that study the generalization capabilities of probabilistic models,
such as the VC dimension [22] or the use of marginal likelihoods and Bayes rule
for model selection [14], are instances of the Occam’s Razor principle [14]. For
instance a recent work [25] has shown that DNN can memorize the data input
distribution and [18] has shown that many state of the art models overfit the
test set.

For that reason, the community has been exploring different regularization
techniques that can improve the generalization of these models, being Data Aug-
mentation (DA) one of the gold standards. These techniques aim to increase the
support on the input manifold, through transformations that are typically driven
by expert knowledge, e.g. rotations or translations when the inputs are images.
However, in many domains, it is not clear which kind of augmentations might
be useful, which motivates the analysis of general-purpose DA techniques such
as Mixup [26], whose fundamentals rely on empirical risk minimization (ERM)
[23]. However, both Mixup and human-driven DA techniques share a common
issue: they are not designed by analyzing the properties of the input distribution
and the intersection of these with the PM; mainly because modern instances of
these, such as DNN, are difficult to interpret. For that reason, the selection and
performance of DA techniques depend, basically, on cross-validation; but there
is no principled way to establish if a particular DA technique might boost the
performance of a particular application or not.

Motivated by the fundamentals and good performance of Mixup, a very recent
work [21] has studied how Mixup affects the uncertainty quantification and the
calibration performance on DNN. They show that Mixup improves the calibra-
tion, and they attribute this fact to the smoothness that Mixup induces in the
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decision regions learned by a PM. Our work is built on top of this observation.
We argue that the fundamentals of ERM and Mixup do not allow us to claim
that learning smoother decision thresholds are a sufficient condition for having
properly calibrated PM, because this decision is not based on the uncertainty
of our input distribution. This also extrapolates to other strategies that have
shown good regularization in terms of accuracy, uncertainty quantification or
calibration, such as label smoothing [19] or more recently DA techniques [11,17].

In this work, we first provide empirical evidence that Mixup can degrade
calibration. Secondly, we propose a new loss function to correct this calibra-
tion degradation by encouraging the PM to learn its discriminative capabilities,
through the incorporation of a simple measure of data uncertainty. Thus, our
loss function is inspired by how optimality is achieved in a BDR scenario, and we
claim that this has to be done to achieve reliable probability distributions. Note
that learning to assign {0, 1} probabilities only makes sense if the input distri-
bution does not present any kind of overlapping, which is something really hard
to assess. For that reason, it should not be surprising that a modern PM, such as
a DNN, can have undesirables effects such as memorization [25] or overconfident-
badly-calibrated probabilities [7] when forced to achieve this {0, 1} assignment,
as it happens by learning through the categorical cross-entropy (CE). Note that a
modern DNN, due to overparameterization, can successfully assign {0, 1} without
any guarantees of generalization, and they typically rely on learning highly oscil-
lating decision thresholds [24], which are also responsible for being vulnerable
to adversarial attacks. The results of this work open new perspectives to design
losses in this fashion, aiming at representing more sophisticated forms of data
uncertainty.

2 Related Work

The first work that showed the badly calibrated probabilities of DNN is found in
[7], where different classical calibration techniques are compared. The authors
proposed Temperature Scaling. On top of this work [15] has shown how com-
plex techniques can be employed for post-calibration if uncertainty is correctly
incorporated, through the use of Bayesian Neural Networks. On the other hand,
[9,10] has shown that using self-supervised learning and pre-trained models
improves model robustness, uncertainty and calibration. Moreover, the same
author has measured robustness against common perturbations [8], and [16]
has measured the performance on calibration and uncertainty of several strate-
gies under dataset shift. On the other hand, deep ensembles have also shown
good performance for uncertainty quantification and calibration [13]. Finally, on
the side of DA strategies, [21] measure the robustness and calibration of Mixup
training and [17] propose On-Manifold Adversarial Data Augmentation, which
attempts to generate challenging examples by following an on-manifold adversar-
ial attack path in the latent space of a generative model. Moreover, [24] propose
a similar technique to Mixup but on the hidden layers of a DNN, with good results
in robustness against perturbations. Finally, Augmix has been proposed in [11]
with good results in uncertainty quantification and robustness.
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3 Background

In this section we describe calibration in the context of image classification and
provide the fundamentals of Mixup before presenting our loss function in the
next section. We are given N pairs of observed i.i.d. samples O = {(xn, tn)}N

n=1

drawn from some unknown joint probability P (x, t). We then learn a categor-
ical posterior distribution pθ(t = k|x) by means of a function gθ that maps
input images x to class probabilities {k}C

k=1 by maximum a posteriori. To make
decisions we rely on BDR and chose the action αi that minimize Bayes Risk:

R(αi|x) =
∑

1≤k≤C

λik · p(t = k|x)

αi = argmin
1≤i≤C

R(αi|x)
(1)

where λik represents the loss incurred when taking the action i if the ground
truth is k. In this work we consider equal losses λik = 1, λii = 0 ∀i, k, which
means that we choose the class with maximum posterior probability. This rule
guarantees optimality when we plug in the data generating distribution [5]. In
practice this distribution is substituted with the model pθ(t|x) and thus, the
lower the gap between the model and the data generating distribution, the closer
we will be to an optimal decision.

In a classification scenario, we say that a model is calibrated if the confi-
dences assigned by this model to a set of samples X towards class k are equal
to the real proportion of samples in X that the model assigns to this class. This
means that to be calibrated, a model should assign confidences considering the
proportion of samples assigned to each of the classes. Moreover, in addition to
calibration, a model should also present a sharpened probability distribution,
a property known as discrimination or refinement [1,4]. With this property, we
guarantee that our model can discriminate between classes. Thus, both good
calibration and discrimination imply recovering how the data from the differ-
ent classes is distributed or, in other words, good calibration and discrimination
imply recovering data uncertainty. By doing so, our model will be forced to match
the data generating distribution and this will guarantee asymptotic optimality
in the decisions to be taken.

Note that the goal of a PM is to map any data distribution to a linear separa-
ble manifold. Thus, we can only achieve separability if: 1) the data is separable in
its origins and 2) the model has enough capacity to do so. Thus, if 1) or 2) does
not hold (which is something that we will not typically know), then it seems
unreasonable to force the model to learn towards {0, 1} probabilities; and we
should expect an overparameterized model to experiment different pathologies
such as overfitting [23], memorization [25] or bad calibration [7]. A very illustra-
tive example of this pathology is: Why should we push probabilities towards 1.0
in a 1-dimensional input generative Gaussian classifier if Gaussians have sup-
port over R? Based on this observation a training loss in a modern PM should
somehow consider this inherent structure (uncertainty) in the data to reliably
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target the underlying distribution, and avoid the great ability of DNN to assign
{0, 1} probabilities when we do not know if the distribution to be modelled is
or can be linearly separated. This is the core idea of our proposed loss function,
and we will further use it to justify why Mixup should not necessarily provide
calibrated distributions.

Mixup has its fundamentals in vicinal risk minimization (VRM) [2]1, which
is derived as a solution to the limitations present in ERM [22,23,26]. Contrary
to other vicinal distributions, Mixup assumes that the samples in the vicinity
distribution do not belong to the same class. For that reason, it is defined as
the expected value of a linear interpolation between two input samples and their
corresponding labels [26]. The interpolation is given by the coefficient γ, which is
drawn from a beta distribution. An unbiased estimate of the empirical risk can
be obtained by evaluating the average loss function on a set of samples drawn
from this distribution as follows:

γ ∼ Beta(β, β)
x̃ = γ · x1 + (1 − γ) · x2

t̃ = γ · t1 + (1 − γ) · t2

(2)

As a consequence, training with Mixup ensures a linear-soft transition between
the confidence assigned by a model in the different parts of the input space. How-
ever, this only ensures smoothness in the confidence assigned to different regions
of the input space, reducing the overconfidence but without any guarantee of
an improved calibration, because the uncertainty is not considered at all. Note
that Mixup just relies on an assumption on how the samples in the vicinity are
distributed but do not take into consideration the proportion of samples present,
which is at the core of a proper calibration.

As a consequence, only if the data distribution presents a linear relation
between their corresponding classes, one could expect the ultimate distribution
to be calibrated when applying this technique. In the experimental section, we
show that some models trained with Mixup do not necessarily improve the cali-
bration, as recently noted in [21]. In fact, we show that Mixup tends to worsen
the calibration in many cases.

4 Proposed Loss: Auto-Regularized-Confidence

As illustrated in previous sections, our objective is to benefit from the improved
accuracy of Mixup, but providing better calibrated distributions. To do so, we
introduce a new loss function, which is a weighted combination of our pro-
posed loss, named Auto-Regularized-Confidence (ARC), and the categorical cross
entropy (CE). The ARC loss is inspired by the Expected Calibration Error (ECE)
[7]2. The idea, as argued in above sections, is to incorporate data uncertainty
in the predictions. This is done by first partition the confidences p, assigned
1 For unfamiliar readers we provide a wider description in appendix A.
2 See appendix B for a detailed description of calibration metrics.
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to a batch of samples X, into M bins Bi; and match these confidences to the
accuracy μi in that bin, by means of any of these two variants:

ARC V1 =
1
M

M∑

i=1

⎡

⎣

⎛

⎝ 1
|Bi|

∑

0≤j≤|Bi|
pij

⎞

⎠ − μi

⎤

⎦
2

ARC V2 =
1
M

M∑

i=1

⎡

⎣ 1
|Bi|

∑

0≤j≤|Bi|
(pij − μi)

2

⎤

⎦

(3)

The difference lies in whether the average confidence (ARC V1) or the individual
confidences (ARC V2) are forced to match the accuracy. If we set M = 1 then
our loss function is computed over the entire batch. We make the accuracy μi

a constant value so learning gradients only depend on the confidence assigned
by the model. Our loss is combined with the CE to avoid the local minimum
in which the network parameterize a prior classifier (i.e., the one which assigns
prior confidences to samples), as we found in our initial analysis. This is because
a prior classifier is useless, but the trivial way of optimizing calibration. Thus
the overall loss is given by:

L(θ) =
1
N

∑

n

CE(θ, xn, tn) + β · ARC(θ, xn, tn) (4)

where β is a hyperparameter that controls the relative importance given to each
of the losses and is established with a validation set. As mentioned, this new loss
targets the uncertainty of the learned representation, through the accuracy. The
accuracy is used to summarize the proportion of samples from different classes
that are being “mixed”. So it somehow represents how the representations that
the model can learn are distributed. It is clear that the accuracy is a very simple
statistical summary of the data uncertainty and it is let to future work the
search for other quantifiers that could encode more useful information such as
how samples are distributed in the input space. Consequently, we can expect
that by evaluating the CE loss on the Mixup image x̃, and the ARC loss on the
mixing images x1 and x2, one can benefit from the improved discrimination
as learned by the CE, but the ultimate confidences are assigned by how the
classifier classifies samples x1, x2 from the generating distribution p(x, t) and
not those x̃ virtually generated by Mixup. It is then clear that ARC incorporates
data uncertainty, which will improve the model representation of the underlying
distribution, and thus its calibration. To validate this procedure, in our work
we experiment with variants that compute ARC loss over x1 and x2; and we also
compute ARC loss over x̃. In general, all datasets benefit more from the latter. A
discussion is provided in the experimental section.

An additional analysis of this loss function is provided in appendix C and
the experimental section. This includes the motivation beside experimenting with
ARC V1 and ARC V2 and an analysis of why this loss might improve the accuracy,
as we have found that some datasets improve this metric by applying the ARC
loss.
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Finally, we discuss one drawback of our proposal as being used as a general-
purpose calibration tool. Note that, if applied on a DNN that presents near 100%
accuracy on the training dataset (which is the case in many of the standard
databases tested) then the ARC loss will provide the same learning signal as the
CE, because it will for the average confidences to be 1.0. This means that it will
not work in datasets where the training error is overfitted, as in CIFAR100. To
solve this, we experiment with the following variant. We take a validation split
from the training dataset where the DNN presents uncalibrated over-confidences.
Let say that this validation set presents an 80% accuracy, with a 0.99 average
confidence. Thus, we use the validation set to compute the ARC loss while the
training dataset is only used for the CE.

5 Experiments

We perform several experiments that illustrate the main claims of this work. We
show average results in the main work and provide specific results in Github,
alongside code and details on loss hyperparameters (e.g. if the model uses
ARC V1 or ARC V2). We evaluate a collection of classical benchmarks for this task:
CIFAR100, CIFAR10, SVHN; and we also evaluate our model on more realistic
problems such as the ones provided by Caltech Birds and Standford Cars, which
contain bigger and more realistic images. Due to computational restrictions, we
did not evaluate our model on ImageNet. We experiment with state-of-the-art
configurations of computer vision DNN: Residual Networks, Wide Residual Net-
works and Densely Connected Neural Networks. Moreover, for each variant, we
evaluate several configurations and models with and without dropout. We use
pre-trained models on ImageNet for Birds and Cars. We evaluate different cali-
bration metrics, detailed in appendix B. In the main work, we report the accuracy
and ECE (with a partition of 15 bins) while the rest of the calibration metrics
are reported in appendix D.1. We compare to a recent technique designed for
implicitly calibrate a probabilistic DNN named MMCE over their best performing
approach [12]. More details provided in appendix D.

For the sake of illustration, we provide average results of all the models in
Table 1, and for the best-performing model per task in Table 2. First, as shown
in rows B (Baseline) and B+M (Baseline+Mixup) in the tables, we see how
Mixup degrades the calibration except in CIFAR100. By comparing with the
results reported in [21], we can conclude that Mixup behaves particularly well in
CIFAR100, probably because the intersection between classes can be explained
through a linear relation. However, our tables demonstrate that this is not a
general behaviour of Mixup as shown in the rest of datasets. It is surprising how
Mixup degrades calibration in Birds and Cars, even though the DNN used for
these datasets are pre-trained models which have been shown to provide better
calibrated distributions [9]. In general, our results contrast with those reported
in [21] where they provide general improvement in calibration performance due
to Mixup. We can explain this difference with the fact that different models are
used. For instance, while they use a VGG-16 and a ResNet-34, we are using much
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Table 1. Table showing average accuracy and ECE in (%) of all the models considered
in this work

CIFAR10 CIFAR100 SVHN Birds Cars

ACC ECE ACC ECE ACC ECE ACC ECE ACC ECE

Baseline (B) 94.76 3.41 77.21 11.57 96.32 1.90 78.51 2.39 86.74 2.06

Baseline + Mixup (B+M) 96.01 4.35 80.04 3.71 96.41 5.00 79.63 14.22 86.67 18.13

MMCE (M) 94.24 2.17 72.68 3.71 96.28 1.78 78.78 1.95 86.83 2.23

MMCE + Mixup (M+M) 91.90 5.69 78.52 5.48 96.59 2.83 79.99 12.37 86.03 13.07

ARC (A) 94.82 3.37 77.04 11.31 96.26 1.87 78.52 2.70 87.78 2.76

ARC + Mixup (A+M) 95.90 1.62 79.84 2.42 96.02 2.17 79.74 4.95 89.63 2.84

Table 2. Table showing the accuracy and ECE in (%) of the best model per task and
technique.

CIFAR10 CIFAR100 SVHN Birds Cars

ACC ECE ACC ECE ACC ECE ACC ECE ACC ECE

Baseline (B) 95.35 2.97 79.79 5.06 97.07 0.50 80.31 4.34 89.13 2.57

Baseline + Mixup (B+M) 97.19 4.65 82.34 1.42 96.97 4.91 82.09 10.14 89.45 18.10

MMCE (M) 95.58 1.21 74.98 7.04 96.90 0.49 80.64 3.28 89.40 2.70

MMCE + Mixup (M+M) 97.02 1.11 81.31 4.46 97.17 3.69 82.41 10.93 88.47 11.56

ARC (A) 95.99 2.01 80.77 4.73 97.08 0.37 80.32 4.44 90.09 1.92

ARC + Mixup (A+M) 97.09 1.03 82.02 0.98 96.82 2.20 82.45 1.28 91.13 2.40

deeper models, such as a ResNet-101 or a DenseNet-121. The difference can be
connected to the observation in [7] where they show that calibration is further
degraded by deeper architectures. Moreover, we shall emphasize that our results
on CIFAR10 are on the state-of-the-art (∼97% ACC) and much better calibrated
(1.03 top ECE and 1.62 average ECE) than in [21], while they report a 2.00 value
of ECE.

Analyzing our loss function, we see how it can correct the miscalibration
introduced by Mixup training. In CIFAR10 and CIFAR100 A+M is the best
performing approach. In SVHN we see that A+M corrects the calibration error
introduced in B+M, but the approach behaves similar to the others. SVHN is a
dataset that presents good calibration in many models over the test set, as noted
also in [7,15]. Finally, regarding Birds and Cars we see how our loss can highly
correct the miscalibration introduced by Mixup. This means that our approach
also performs well with pre-trained models on ImageNet. It should be noted
that in this case, we do not achieve the same ECE error in Birds and Cars as
with the baseline model. However, we have much better accuracy (over 3% on
average results in Cars). In fact, our work reports nearly state of the art accuracy
in Cars using a Dense-Net, where the best performing reported model has an
accuracy only two points above but using much more complex architectures such
as efficient net [20] or inception [19]. On the other hand, our method is better
than the recently proposed MMCE [12]. We found this method to be unstable in
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some cases, as some models saturated during training or tended to degrade the
accuracy, as shown in the tables.

Regarding the parameterization of the loss function, we found that most of
the times the best configuration of hyperparameters was obtained with ARC V1.
This can be explained by the fact that DNN typically learn invariant represen-
tations and thus, we avoid the pathological behaviour that ARC V1 can present,
which is discussed in appendix C. Besides, we found that only in Birds and
some CIFAR100 models, the ARC loss computed over the Mixup image x̃ worked
better than when computed over x1 and x2, even though this configuration also
improved the calibration. Thus, as we claim in Sect. 4, it seems reasonable that a
loss function that takes into account, separately, the underlying structure present
in the data can provide better calibrated uncertainties.

Finally, by looking at the results of applying ARC loss over the Baseline model
(A in the tables) we see that the improvements in calibration are not significant,
or at least not as when combined with Mixup. We have already argued the reason
in Sect. 4. We mentioned that a possible solution could be to apply the ARC loss
on a separate validation set. Surprisingly, the DNN learns to minimize the ARC
loss by increasing the accuracy of this validation set rather than by relaxing the
confidences assigned.

6 Conclusions and Future Work

This work has shown that Mixup does not ensure calibrated class distribu-
tions. The results and theory presented suggest that a similar analysis should
be employed over different DA techniques, which is let for future work. We have
also opened a new perspective to reduce overconfidence in DNN. As we cannot
control how a model might overfit the dataset to achieve high discriminative
performance, a good practice is to auto-regularize the model to incorporate the
uncertainty of the learned representations. This work has shown a way of doing
this on Mixup training, reporting state-of-the-art results in accuracy and cali-
bration. Future work is concerned with the exploration of new loss functions for
this purpose.
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Abstract. In this paper, we propose a graph neural network that
employs high-pass filters in the convolutional layers. To do this, we depart
from a linear model for the convolutional layer and consider the case
of directed graphs. This allows for graph spectral theory and the con-
nections between eigenfunctions over the graph and Fourier analysis to
employ graph signal processing to obtain an architecture that “concate-
nates” low and high-pass filters to process data on a connected graph.
This yields a method that is quite general in nature applicable to directed
and undirected graphs and with clear links to graph spectral methods,
Fourier analysis and graph signal processing. Here, we illustrate the util-
ity of our graph convolutional approach to the classification using cita-
tion datasets and knowledge graphs. The results show that our method
provides a margin of improvement over the alternative.

Keywords: Citation graph · Graph convolutional neural networks ·
Knowledge graph

1 Introduction

Recent breakthroughs in machine learning techniques have resulted in substan-
tial progress in a wide range of areas, from image classification to natural lan-
guage understanding. Predominately, for convolutional neural networks (CNNs),
the input data, i.e. images, can be viewed as structured in an Euclidean space
and hence abstracted onto a planar graph on a lattice. However, in many fields
of research, including social networks and brain connectomes, input instances
can have non-planar structure and hence, be defined over non-Euclidean spaces.
Indeed, developing efficient implementations of CNNs for high-dimensional, non-
Euclidean domains such as non-planar graphs, polygonal meshes or manifolds
[4] its not a straightforward task [5].

The recent advent of graph neural networks provides the ideal basis for apply-
ing machine learning algorithms to datasets whose instances are not structured
as a lattice and that require the capacity to process more general graphs. In
particular, applying CNNs on data architectures in non-Euclidean domains was
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initially conceived in 1998 [6] and further developed by Scarselli et al. [7]. The
resulting approach – graph neural networks (GNNs) – provide an efficient way to
model problems as a graph, which can be easily integrated with neural networks.
GNNs generally pose the problem of learning at each vertex of a graph using its
neighborhood information. Early approaches modelled this local support using
an information-theoretic standpoint whereby a signal on a graph with N vertices
can be viewed as the counterpart of a discrete-time signal with N samples in
classical signal processing. This has given rise to graph signal processing, where
the most serious hurdle on the application of classical signal processing methods
on graphs concerns discrete-time signals whereby dependencies arising from the
irregular data domain are difficult to detect [8].

Neural networks on graphs have been proposed elsewhere [2,5,7,12,22]. In
this paper, we propose a layer-wise GCN which employs a localized first-order
approximation of spectral graph convolution to process data on a connected
graph. This sort of architectures were presented in [22] and later advanced by
[12]. The main difference between these and that presented in this paper stems
from the fact that our architecture not only contains the equivalent of low-pass
filters, but augments these with high-pass ones. To combine low and high-pass
filters, we depart from graph-spectral theory. This yields a method to “concate-
nate” the low and high pass filter responses on the graph.

2 Background

In this paper, the focus is on the connections between graph convolutional net-
works (GCNs) and spectral graph theory. Recall that graph-spectral methods
[13] allow for a direct link to be made with the Fourier transform through Cheby-
chev polynomials. Thus, spectral methods carry a natural notion of frequency
conveyed through the natural relationship between eigenfuctions over the graph,
their corresponding eigenvalues, and the natural frequencies or “modes” of con-
nected graphs computed making use of the graph Laplacian. For example, eigen-
values that are small in value correspond to eigenfunctions on the graph that
vary smoothly and change gradually and, hence, can be viewed as representing
low frequencies. In contrast, large eigenvalues correspond to rapidly changing
functions, i.e. high frequencies. This is analogous to the treatment of eigenval-
ues and eigenvectors in classical Fourier analysis.

Throughout the paper we will extensively use graphs. Formally, in a graph
G = {V, E}, V and E are the set of vertices and edges, respectively. For the pur-
poses of inference and learning, instances are abstracted as vertices and the
relationship between them correspond to edges in the graph. For instance, when
applied to our sample citation datasets, the vertices V = {v1, v2, · · · , vN} repre-
sent documents under consideration and the edges E = {e1, e2, · · · , em} stand for
whether a document cites another or not, i.e. an edge ek = (vi, vj) implies that
document vj cites vi.

As mentioned above, graph-spectral methods are based upon the Laplacian
or adjacency matrix [15]. Recall that the graph connectivity can be described by
the adjacency matrix A ∈ R

N×N , where its element ai,j is the weight of the edge
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connecting nodes i and j, and a zero weight indicates no connection. A graph can
have directed or undirected edges, whereby, for the latter case A is symmetric.
The normalized graph Laplacian matrix defined as L = I−D− 1

2 AD− 1
2 [9], where

D is a diagonal matrix called the degree matrix (the ith diagonal element corre-
spond to the degree of the node indexed i) and I is the N × N identity matrix.
Thus, [D]i,i ≡ ∑

j ai,j and [D]i,i represents the sum of the weights of all the
edges incident to vertex i. An important property of the normalized Laplacian
matrix (for undirected graphs) is that it is a real, symmetric, positive semidef-
inite matrix. As a result, the normalized Laplacian matrix can be factorized as
L = UΛUT , where U = [u0|u1| · · · |uN−1] is the orthogonal matrix of eigen-
vectors. These eigenvectors correspond to the eigenvalues given by the diagonal
matrix Λ ≡ diag(λ0, λ1, · · · , λN−1), i.e. Λii = λi. These eigenvalues define the
spectrum of the graph and provide a frequency interpretation of the “modes” for
the graph. Small eigenvalues correspond to low frequencies and vice-versa.

Many graph signal processing methods are spectrally-based [8] as it allows
for the analysis of the signals in terms of their frequency content. In a
connected graph, the eigenvalues of the normalized graph Laplacian, Λ =
[λ0, λ1, · · · , λN−1], satisfy the inequality, 0 = λ0 < λ1 � · · · � λMax � 2. More-
over, the eigenvectors of the normalized Laplacian matrix form an orthonormal
space, i.e. uT

i uj = δ(i − j). Let a graph signal x ∈ RN represent a feature vec-
tor for all nodes of a graph, where xi is the feature value for the ith node. The
graph Fourier transform of the signal x is defined as x̂ ≡ F(x) ≡ UT x, where
x̂ is the transformed signal. The inverse graph Fourier transform is defined as
x = F−1(x̂) ≡ U x̂.

The transformed signal x̂ possesses the coordinates of the graph signal in the
new orthogonal space U . Therefore, the input signal x can be expressed as x =∑∑∑

i x̂iui, which is the inverse graph Fourier transform expression. Considering
this, the spectral convolution in the Fourier domain between a signal and a filter
gθ ≡ diag(θ), where θ ∈ RN , is given by gθx̂ = gθ(UT x). This is equivalent to
the multiplication of each diagonal element of gθ with each element of x̂. The
filter output signal z ∈ RN in the vertex domain is then obtained by taking the
inverse Fourier transform of gθx̂ = gθ(UT x) as z ≡ gθ ∗ x = UgθU

T x.
The above definition of convolution is the basis of all spectral convolutions on

graph neural networks. Note that the only distinction among these spectral con-
volutions relies on the properties of the filter gθ. In a machine learning setting, θ
is the vector of learnable parameters. Furthermore, this spans a matrix Θ where
each column corresponds to a vector θ. This matrix can be viewed as the span of
“channels”, where each of these corresponds to a different filter gθ. In practice,
the computational complexity of the above graph convolution is of order O(N3),
which makes it impractical for large graphs. To circumvent this issue, Cheby-
shev polynomials are used to approximate the filter gθ and thereby reducing
the complexity to O(N) [5]. Thus, the filter gθ is approximated by Chebyshev
polynomials of the diagonal matrix of eigenvalues as gθ =

∑K
i=0 θiTi(Λ̂), where

Λ̂ = 2Λ/λmax −I contain the normalized eigenvalues in the interval [−1, 1], and
Ti(x) are Chebyshev polynomials of the first kind.
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By defining L̃ ≡ 2L/λMax − I and using the property Ti(L̃) = UTi(Λ̃)UT ,
the filter output gθx̂ = gθ(UT x) can be written as z = gθ ∗ x =

∑K
i=0 θiTi(L̃)x.

Therefore, we can infer that approximating the filter by Chebyshev polynomials
makes GCNs to be locally supported in the vertex space, i.e. only signal values
in a neighbourhood of a given vertex are needed to compute the output value
of the vertex [8]. Using a first-order approximation of gθ ∗ x =

∑K
i=0 θiTi(L̃)x,

with K = 1 and λMax = 2, the simplified version of graph convolution becomes
gθ ∗ x = θ0x − θ1D

− 1
2 AD− 1

2 x [12]. To preclude over-fitting by limiting the
number of parameters, we assume θ = θ0 = −θ1. After substituting this equality
in previous equation we get gθ ∗ x = θ

(
I + D− 1

2 AD− 1
2

)
x.

We now consider multiple channels of input/output and introduce non-
linearities. This yields

H = gθ ∗ X = f
(
Θ

(
I + D− 1

2 AD− 1
2

)
X

)
, (1)

where X is a matrix of node feature vectors Xi, and f(·) is called an activation
function.

Since the numerical experiments show instability in the above GCN [9], we
opt to solve the problem via re-normalization. To this end, I + D− 1

2 AD− 1
2 is

replaced with D̃− 1
2 ÃD̃− 1

2 , where Ã ≡ A+I and D̃ is the diagonal degree matrix
D̃i,i =

∑
j Ã(i,j). As a result, the output of a single layer is then calculated using

this equation
H = f

(
ΘD̃− 1

2 ÃD̃− 1
2 X

)
, (2)

Thus, the forward propagation rule applied in a multi-layer graph convolu-
tional networks (GCNs) follows an iterative scheme given by:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 H(l)W (l)

)
. (3)

In Eq. (3), the filter θ and activation function f(·) are replaced by W and
σ, respectively. Additionally, the state of the lth layer is represented by H(l),
where the initial value of the state is H(0) = X.

3 Convolutional Filters for GCNs

The filter in equation gθ ∗ x = θ
(
I + D− 1

2 AD− 1
2

)
x is essentially a low-pass

one, which only captures low frequency components of a signal/feature[8]. This
low-pass filter essentially computes a weighted average of the signal values in a
localized neighbourhood about a given vertex. Here, by introducing high-pass
filtering, we aim to capture those high frequency components, which represent
variation of the signal values about the localized neighbourhood.

3.1 Layer-Wise Linear Model

To commence, we depart from a localized first-order approximation of spectral
graph convolution, which comprises an input layer, two convolutional layers and
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one output layer. In previous section, the symmetric normalization in Eq. (3) is
only valid for undirected graphs. For the more general case of directed graphs,
left-normalization (also called row-normalization) is used [10]. Therefore, sym-
metric normalization in Eq. (3), D̃− 1

2 ÃD̃− 1
2 , is replaced by D̃−1Ã. This yields

the forward propagation rule on directed graphs as

H(l+1) = σ
(
D̃−1ÃH(l)W (l)

)
, (4)

where l represents the current layer index and l + 1 corresponds to that for the
layer immediately after. We further simplify this equation by replacing D̃−1Ã
by Â, which is defined below. This gives the final propagation rule as

H(l+1) = σ
(

ÂH(l)W (l)
)

. (5)

3.2 Low and High-Pass Filters

We now turn our attention to the modification of Ã, so as to incorporate both
low and high-pass filters, in each convolutional layer. Consider N instances in
each dataset and let A to be a symmetric adjacency matrix. We now define the
following matrices:

Ã = I + A and B̃ = I − A (6)

where I is the identity matrix. To understand these equations in terms of its
spectral filtering characteristics, consider the normalized Laplacian matrix which
can be written as L = I − A. The relationship between each eigenvalue of the
Laplacian and the adjacency matrices is given by λ = 1 − μ, [16], where λ
and μ are the eigenvalues of Laplacian and adjacency matrices, respectively.
The (diagonal) matrix form of λ = 1 − μ is Λ = I − M . Using the definition
of eigenvalues and eigenvectors, we have LU = λU , and furthermore, using
L = I − A, we get:

(I − A) U = ΛU =⇒ AU = (I − Λ) U . (7)

Recall that the spectrum of normalized Laplacian matrix lies in range 0 �
λ � 2. Therefore, since λ = 1 − μ, the spectrum of the corresponding adjacency
matrix is −1 � μ � 1. From a graph signal processing viewpoint, the frequency
response function 1+μ represents a low-pass filter corresponding to the matrix Ã.
When λ = 0, corresponding to the lowest frequency, μ = 1 and the filter function
value is 1 + μ = 2, corresponding to a large gain. When λ = 2, corresponding
to the highest frequency, μ = −1 and the filter function value is 1 + μ = 0,
corresponding to a zero gain. The opposite is true for the high-pass filter, with
frequency response function 1 − μ. This function takes the lowest and highest
values at the smallest λ = 0 and largest λ = 2, respectively, and corresponds to
the matrix B̃.
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3.3 Incorporating Filters into the Convolutional Layers

Here, we proceed to apply row normalization to Ã and B̃ as expressed in Eqs.
(6). To compute Â and B̂:

Â = D̃−1Ã and B̂ = D̃−1B̃, (8)

where D̃ is the degree matrix and D̃i,i =
∑

j Ã. These two matrices, Â and
B̂, are sparse since D̃ is a diagonal matrix. This sparsity is crucial since real-
world datasets are often sparse and hence this approach prevents over-fitting
[17]. Here, Â and B̂ represent the low-pass and high-pass filters, respectively.
To combine the effect of both filters, we concatenate Â and B̂ horizontally.
Hence, in H(l+1) = σ

(
ÂH(l)W (l)

)
, Â is replaced by

[
Â B̂

]
, which results in

the rule H(l+1) = σ
([

Â B̂
]
H(l)W (l)

)
. To weight each of the filter matrices

separately, the state or feature matrix, H, is multiplied by Â and B̂ individually.
This gives

[
ÂH(l) B̂H(l)

]
. The purpose here is to be able to modify the classic

forward propagation rule so as to incorporate the low-pass and high-pass filters.
Note that, up to this step, the propagation rule is as follows:

H(l+1) = σ
([

ÂH(l) B̂H(l)
]
W (l)

)
. (9)

Here, we initialize the weight matrix making use of the Glorot or Xavier method
expressed in [18]. Since we are interested in analysing the influence of low-pass
and high-pass filters, the weight matrices for each of them is initialized separately.
Hence, two different weight matrices are allocated to the low-pass and high-pass
filters. The weight matrix, W , is a concatenated matrix formed by two other
weight matrices as Δ and Γ . To be mathematically compatible, these two sub-

matrices must be concatenated vertically W (l) =
[

Δ(l)

Γ (l)

]

. The final forward

propagation rule can then be written as:

H(l+1) = σ

([
ÂH(l) B̂H(l)

] [
Δ(l)

Γ (l)

])

. (10)

Now Δ(l) is multiplied by ÂH(l) and B̂H(l) is multiplied by Γ (l). By concatenat-
ing ÂH(l) and B̂H(l) horizontally, both the low and high-pass filters can simulta-
neously influence the output at each node. Note that the elements of the resulting
matrix, inside the activation function, consists of terms arising from both the low
and the high-pass filters. Furthermore, each layer’s output forms the input of the
next layer after passing through a nonlinear activation function, σ.

4 Implementation Issues

Figure 1 shows the schematic of our GCNN implementation. In our imple-
mentation, the feature matrix X, is provided at input. According to equation
gθ ∗ x = θ

(
I + D− 1

2 AD− 1
2

)
x, in the first layer, H(0) = X, we have:
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Fig. 1. A schematic representing our two-layer convolutional graph neural network.
Each convolutional layer learns a hidden representation by aggregating feature infor-
mation using local support. After the first layer, a ReLU function and dropout with
probability of 0.5 is applied. In the output layer, a log-softmax is used for classification.

H(1) = ReLU

([
ÂX B̂X

] [
Δ(0)

Γ (0)

])

. (11)

The output of Eq. (11) is the input to the next layer, which can be expressed as:

H(2) =
[
ÂH(1) B̂H(1)

] [
Δ(1)

Γ (1)

]

. (12)

In our network, multiplication of the combined low and high-pass filtering,
expressed in

[
Â B̂

]
, with the features matrix, is followed by the first con-

volutional layer. The process of convolution entails multiplication by the weight
matrix. After convolution in the first layer, a ReLU activation function is applied.
To prevent over-fitting in the model, after compiling the first layer, a dropout
is introduced to the architecture. After the second convolutional layer, a log-
Softmax loss is used to perform classification for mutually exclusive classes in
the output layer.

5 Experiments

We now illustrate the utility of our GCNN for purposes of classification. To
this end, we show results and provide comparison with the method in [12]. Our
choice of alternative is based upon the notion that, as mentioned earlier, our

Table 1. Statistics of the citation network datasets used and results yielded by our
method and the alternative in [12]

Dataset Nodes Edges Classes Features Method in [12] Our method

Cora 2078 5429 7 1433 80.1% 82.5%

Citeseer 3327 4732 6 3703 67.9% 69%
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Table 2. Statistics of the knowledge graph dataset WebKB used in our experiments
and results yielded by our method and the alternative in [12]

Dataset Nodes Edges Classes Features Method in [12] Our method

Cornell 195 304 5 1703 90% 90%

Texas 187 328 5 1703 42% 47.4%

Washington 230 446 5 1703 55.6% 77.8%

Wisconsin 265 530 5 1703 56% 60%

architecture is based on first order graph convolution approximation first pre-
sented in [22] and later advanced by [12].

All the datasets used to investigate the performance of our proposed app-
roach were trained for 200 epochs using the Adam optimizer, which involves
a first-order gradient-based optimization. Also, for purpose of providing a fair
comparison, we have set all hyper-parameters of our approach to the same values
as those reported in [12]. We implemented our network in Python with all layers
defined according to Fig. 1 with a learning rate of 0.01 and a dropout rate of
0.5. In order to avoid over-training the model, a L-2 regularisation method with
the term coefficient 5 × 10−4 is used in all our experiments.

5.1 Datasets

For our experiments, we have used three widely available datasets. These are
the Cora [19]1, Citeseer [20]2 and WebKB3 datasets. Here, and for the sake of
consistency in our comparison with the alternative in [12], both the Citeseer and
WebKB datasets were pre-processed before feeding them to the GCNs. A data
cleaning was applied to the CiteSeer dataset as described in [21]. In case of the
Cora dataset, we have used the same dataset splits as those employed in [12].
Regarding the other two datasets, we have used random 60%-20%-20-% dataset
splits for training, validation and testing. All necessary matrices are constructed
according to the metadata files provided with each dataset, which contain the
information on nodes and edges necessary for constructing the adjacency matri-
ces for the graph neural network. The number of nodes, features, classes and
other information for the datasets have been summarised in Tables 1 and 2.

5.2 Classification Results

The results of our proposed approach are summarized and compared with the
method in [12] in Table 1 and Table 2, which show the average accuracy and
improvement over 10 runs, where each run has a unique random initialization.
From these tables, we can appreciate improvements across datasets as compared

1 The dataset can be accessed at https://relational.fit.cvut.cz/dataset/CORA.
2 Widely available at http://networkrepository.com/citeseer.php.
3 For more information on WebKB, go to http://www.cs.cmu.edu/∼webkb/.

https://relational.fit.cvut.cz/dataset/CORA
http://networkrepository.com/citeseer.php
http://www.cs.cmu.edu/~webkb/
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to the approach in the alternative, which only employs low-pass filters. The
WebKB-Cornell dataset is the only case where our approach shows the same
level of accuracy as the alternative. Breaking down the results, for the Cora and
Citeseer datasets, we find slightly improved accuracy whereas some of the differ-
ences in the WebKB dataset are substantial. The reasons for more improvement
in accuracy by adding highpass filters in these datasets can be attributed to the
structure of the datasets. In particular, we see that the WebKB datasets consist
of a smaller number of nodes, edges and classes. Moreover, the proportion of the
number of edges to nodes are: (1) Cora = 2.6, (2) Citeseer = 1.3, (3) WebKB
– Cornell = 1.5, (4) WebKB – Texas = 1.7, (5) WebKB – Washington = 1.94
and (6) WebKB – Wisconsin = 2. This hints that, increasing the density of the
graph also implies increasing the classification accuracy. This is consistent with
the results, where large gains can be seen with small problem instances whose
graph structure is denser. Another point of interest is the level of accuracy across
these datasets. We notice that the accuracy in the Cora dataset is higher as com-
pared to that yielded for the Citeseer dataset. This is consistent for both our
method and the alternative. Furthermore, we see that the range is large for the
WebKB datasets (47.4% to 90%), which is not dissimilar to previous results.
This is also consistent to the intuitive notion that, in a dense graph, the local
support is provided by more edges within a particular neighbourhood, leading
to improved classification accuracy.

6 Conclusions

In this paper, we have presented a method to integrate low and high-pass filters
into convolutional layers in GCNNs. Our method is quite general in nature and
applies to both, directed and undirected graphs. We used concepts from spectral
graph theory, and exploited the relationship between eigenvalues and the modes
of the graph to incorporate high-frequency information in the learning process.
We illustrated the utility of our method for classification making use of widely
available citation datasets and compared our results against those yielded by
an alternative. In our experiments, our method outperforms the alternative,
providing a margin of improvement in the classification accuracy.
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Abstract. Capturing, storing, and analyzing high-dimensional time
series data are important challenges that need to be effectively tack-
led nowadays, as the extremely large amounts of such data are being
generated every second. In this paper, we introduce the recurrent neural
networks equipped with attention modules that quantify the importance
of features, hence can be employed to select only an informative subset of
all available features. Additionally, our models are trained in an end-to-
end fashion, hence are directly applicable to infer over the unseen data.
Our experiments included datasets from various domains and showed
that the proposed technique is data-driven, easily applicable to new use
cases, and competitive to other dimensionality reduction algorithms.

Keywords: Attention · RNN · Feature selection · Time series analysis

1 Introduction

The amount of generated data grows rapidly in many domains, hence collecting,
storing, and processing such massive datasets are critical problems that need
to be tackled in order to extract value from big data. Additionally, high data
dimensionality can easily lead to the problem of the curse of dimensionality which
refers to various phenomena that arise while analyzing such data that do not
occur in low-dimensional spaces. Since the number of required examples grows
exponentially with the number of features, capturing ground-truth sets which
could be used for training supervised learners is often infeasible in practice.

To circumvent the problem of high data dimensionality, we exploit various
dimensionality reduction techniques, encompassing feature selection and feature
extraction. The former methods elaborate a subset of informative features that
are already present in the data, whereas those features that are not relevant or
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are redundant should be filtered out. Such approaches include similarity-based
algorithms [11] (which often fail to handle feature redundancy, as they repeatedly
find correlated features), the techniques built upon the information theory and
statistical analysis [7] that require ground truth, sparse learning approaches that
are embedded into the learning process [6], and recent deep networks [4]. On the
other hand, feature extraction builds new low-dimensional data representations
that should retain the underlying data properties and characteristics [2]. Despite
the fact that many dimensionality reduction approaches do not consider the
temporal nature of data, they are commonly applied to time series with highly
correlated data points captured in consecutive time points.

We introduce a deep learning-powered feature selection method that is specif-
ically designed to capture temporal characteristics of time series. We build
upon our previous work concerning the attention-based convolutional neural net-
works [9], and propose recurrent neural networks (RNNs) equipped with atten-
tion modules (Sect. 2) that quantify the importance of specific features in the
time series data. Such networks may be used not only for reducing the dimen-
sionality of time series via selecting informative features, but also to elaborate
fully functional models that are ready to be deployed over the unseen data. In the
experimental study (Sect. 3), we verified the impact of attaching attention mod-
ules to long short-term memory (LSTM) networks, and confronted our method
with well-established feature selection and extraction algorithms.

2 Method

We present our model equipped with attention that determines the most infor-
mative features in the time series data. First, we discuss the baseline model
(Sect. 2.1), and then our attention-based models (Sect. 2.2). This section is con-
cluded with an illustrative example of our feature selection (Sect. 2.3).

2.1 Baseline Model

In our baseline recurrent model (Fig. 1), the time series sample of size T is
processed by the two-layered LSTM network and it is encoded into a single
latent vector, which is essentially the last hidden state of the second layer of
the RNN. Then, such vector is transferred to the classifier part of the model,
which is a simple multi-layer perceptron with one input, one hidden, and one
output layer combined with the parametric ReLU activations. The classifier con-
tains only one hidden layer, because—as the universal approximation theorem [5]
states—a feed-forward network with a single hidden layer can approximate any
continuous function for inputs within a specific range. The number of neurons n
in the input and hidden layers was kept small to minimize the number of train-
able parameters and ultimately avoid overfitting. Moreover, a larger number of
neurons would increase the processing time, and—with datasets containing a
large number of samples—that would hamper the practical deployment of such
models. The number of neurons in the last layer is dependent on the number of
classes C in the dataset. However, for binary classification, the number of output
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Fig. 1. The baseline model. The violet cells are the LSTM cells of the RNN, light gray
indicates activations, and dark gray are the fully-connected layers. (Color figure online)

neurons is set to one. The same stands true for the last activation function ϕ,
where softmax is used for multiclass scenario, and sigmoid for the binary one.

2.2 The Model with Attention Modules

The model with an additional attention module and attention classifier is pre-
sented in Fig. 2. Similarly to the baseline model, the time series sample of size
T is processed through the two-layered LSTM network. The original classifier
receives the last hidden state of the LSTM, and elaborates its own prediction.

The evaluation of features’ importance is performed by the attention module.
It accepts a hidden state y2

t at each time step t, processes it, and using the
sigmoid activation returns the attention score for each feature. When all hidden
states are evaluated in such a manner, the scores are collected into a vector,
which is then passed through the softmax activation to normalize the output
into a probability distribution. Such vector HT can be referred to as a heatmap
indicating the most important features. The larger the value in the heatmap is,
the more contribution it had into the model’s predictions.
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Fig. 2. The model with attention (n is the number of neurons in each fully-connected
layer). The violet shows the LSTM cells, light gray indicates activations, dark gray are
the fully-connected layers, and light orange marks arbitrary mathematical operations.
(Color figure online)

To take advantage of the heatmap, the matrix multiplication is performed:

Ỹh = Y ᵀ
ThHT , where

Ỹh ∈ R
m, YTh ∈ R

n×m and HT ∈ R
n.

(1)

Here, YTh is the matrix containing all the hidden states concatenated from the
second layer of the LSTM network, n is the size of a time step sample, and m is
the size of the hidden state. This process weights each hidden state based on its
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importance captured in the heatmap. Such weighted vector Ỹh is passed to the
attention classifier which evaluates it. Predictions from the standard classifier
and from the attention classifier are averaged to form the final prediction.

It should be pointed out that each component, i.e., classifier, attention mod-
ule, and attention classifier can be easily replaced, meaning that they could be
built out of any kind of a layer. For example, they could exploit convolutional
layers, which would take advantage of spatial relations within the data.

2.3 Illustrative Example

During the training phase, the heatmap is constantly updated as the attention
module learns to output higher values for entries which are more important.
When the training process is finished, cells with the higher values represent
features with higher importance. To better understand the process of feature
selection, Fig. 3 presents an example of the heatmap extraction. The vectors yT ,
where T = 4, represent time steps (features) returned by the last layer of the
LSTM model. Each of them is passed to the attention module. Such values are
concatenated for all vectors, and processed by softmax to form the final heatmap.
In the example, the second feature holds the highest score, so it should be picked
during the final selection. The first one achieved the lowest score, meaning that
attention considers it irrelevant—the higher is the value in the final heatmap,
the more important the feature becomes.

Fig. 3. The heatmap extraction example—the darker the cell of the heatmap becomes,
the more important the corresponding feature is.

3 Experiments

The objectives of the experiments are multifold. First, we compare the attention-
based RNNs with other dimensionality reduction approaches, and confront our
method with principal component analysis (PCA), and the mutual information
feature selection (MI) [1]. For all of the algorithms, we elaborate the reduced
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representations of sizes F ∈ {2, 5, 10, 15, 20, 25}. Additionally, we investigate the
classification abilities of the models applied over the full and reduced datasets
to verify if there are any differences in the overall performance of the models.
To quantify the performance of the classifiers, we report their overall accuracy
(OA), balanced accuracy (BA), being the recall averaged across all classes (we
tackle both binary and multiclass problems), F1 score (a harmonic mean of the
precision and recall—we report F1 for the binary problems), specificity (Spec.),
and the Cohen’s kappa (κ) for the multiclass problems [8]. The κ and F1 metrics
range from 0 to 1, where one means the perfect score, whereas OA, BA, and
Spec. are reported in %. We consider sets from various domains to show that
the attention RNNs are data-driven and can be applied to any time series data.

All the models were implemented in Python 3.7 with PyTorch, and trained
using ADAM with default parameters: the learning rate of 0.001, β1 = 0.9, and
β2 = 0.999. Each model was trained for 200 epochs, unless the stop criterion
was met (OA over the validation set V did not improve for 15 epochs).

3.1 Datasets

In our study, we focus on three experiments: (i) classifying smiles as posed and
spontaneous based on image sequences, (ii) segmenting hyperspectral images,
and (iii) classifying heartbeat electrocardiogram sequences. The following subsec-
tions discuss the corresponding datasets, alongside the followed setup for dividing
them into the training (T ), validation (V ), and test (Ψ) subsets. The T ’s are
used for training the supervised models, whereas the V ’s are utilized to monitor
the training process. The final results are quantified over unseen Ψ ’s.

Classifying Spontaneous and Posed Smiles. We exploit a database of RGB
image sequences (UvA-NEMO), where people either fake their smile, or smile
genuinely. It contains 1240 sequences (1920 × 1080 resolution, 50 fps, 44–606
frames), where 597 of them are spontaneous and 643 are posed, collected from
400 subjects (age of 8–76). We extract 17 Action Units (AU) [10] that encode
various facial movements caused by contraction of one or more facial muscles for
each frame. As the proposed attention-based model operates on samples having
the equal number of time steps, the frames count with their respective AUs in
each sequence have been interpolated to 44 to match the shortest one. We utilize
the two level 10-fold cross-validation, where each time a test fold is separated,
9-fold cross-validation is used to train/validate the model. During the 9-fold
cross-validation, one fold is separated for validation where the rest is used for
training. Hence, we execute 90 runs, and average the results.

Segmentation of Hyperspectral Images. Hyperspectral cubes capture mul-
tiple images acquired across a continuous range of wavelengths to reflect subtle
properties of the objects in the scene. Even though hyperspectral images are not
time series, they indeed could be treated as such. By considering each pixel’s
spectral dimension as a sequence, each consecutive band acts as a time step
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in a time series—the consecutive bands in the hyperspectral image are highly-
correlated. In this experiment, we use two benchmark scenes: Pavia University
(PU) and Salinas Valley (SV). The PU scene (of size 340 × 610, 103 bands,
430–850 nm, 9 classes of urban objects) was captured over the Pavia Univer-
sity in Lombardy, Italy using the Reflective Optics System Imaging Spectrom-
eter sensor. SV (217 × 512, 204 bands, 400–2450 nm, 16 vegetation classes) was
acquired over Salinas Valley in California, USA, using the NASA Airborne Vis-
ible/Infrared Imaging Spectrometer sensor. The Monte Carlo cross-validation
was used as the validation technique for both scenes—we divide them 30 times
into T , V , and Ψ with 80%, 10%, and 10% of all pixels, and average the results.

Classification of Heartbeat Electrocardiogram Sequences. This dataset
consists of 5000 time series, each with 140 time steps. Each sample corre-
sponds to a heartbeat from a single patient, obtained using the electrocardio-
gram (ECG). The set originally contains five classes, but because of the extreme
imbalance ratio between them, we merge all diseaseous classes into one, hence we
tackle binary classification with 2919 healthy and 2081 diseaseous samples. The
sequences are randomly divided into T and Ψ with 500 and 4500 examples [3].
Our models were trained 30× with different V ’s (10% of random T sequences).

Table 1. The quantitative results (best are boldfaced) obtained using all algorithms.

Alg. F UvA-NEMO PU SV ECG

OA BA F1 Spec. OA BA κ OA BA κ OA BA F1 Spec.

B All 67.7 67.9 0.70 65.3 90.9 88.7 0.88 81.5 81.9 0.93 0.79 91.8 0.90 94.2

B(A) All 68.1 68.6 0.70 65.8 88.7 86.5 0.85 85.1 88.4 0.92 0.83 90.6 0.90 93.0

A 25 64.3 64.7 0.67 62.5 78.6 72.7 0.70 84.6 88.7 0.84 0.83 82.8 0.80 82.8

PCA 25 53.7 29.1 0.69 4.5 78.9 70.6 0.70 83.2 85.5 0.76 0.81 72.9 0.73 65.9

MI 25 66.5 67.0 0.68 63.9 83.7 79.9 0.78 81.3 83.4 0.78 0.79 71.5 0.66 77.9

A 20 65.6 65.9 0.68 63.3 73.9 66.2 0.64 84.1 88.1 0.84 0.82 82.7 0.79 79.8

PCA 20 53.4 38.7 0.66 22.8 83.5 78.0 0.77 88.5 92.7 0.82 0.87 80.9 0.80 75.4

MI 20 66.1 66.4 0.68 63.6 81.6 76.2 0.75 78.7 79.8 0.84 0.76 79.6 0.76 83.8

A 15 65.3 65.6 0.68 63.1 78.4 71.8 0.70 84.3 85.7 0.85 0.83 79.9 0.81 78.4

PCA 15 53.2 42.0 0.63 28.9 84.4 79.7 0.79 89.4 93.6 0.88 0.88 88.4 0.89 83.9

MI 15 65.2 65.6 0.67 62.9 81.0 75.5 0.74 83.2 86.9 0.83 0.81 80.0 0.77 83.1

A 10 65.6 66.0 0.68 63.7 72.6 64.0 0.62 81.9 82.0 0.88 0.80 86.6 0.86 84.5

PCA 10 52.9 47.4 0.59 39.3 87.3 83.3 0.83 90.2 94.5 0.92 0.89 92.1 0.93 90.7

MI 10 65.6 66.1 0.68 64.1 70.1 57.2 0.59 83.7 87.8 0.76 0.82 68.5 0.62 74.2

A 5 63.8 63.9 0.67 61.5 62.9 52.6 0.48 76.7 76.4 0.81 0.74 79.5 0.80 76.4

PCA 5 53.7 50.5 0.59 44.4 84.4 80.8 0.79 88.7 92.9 0.93 0.87 92.4 0.92 93.8

MI 5 66.7 67.1 0.69 64.8 64.0 43.9 0.49 76.6 77.9 0.84 0.74 81.5 0.79 87.0

A 2 63.5 63.7 0.66 61.3 63.8 53.2 0.49 62.5 55.3 0.73 0.58 71.6 0.70 65.1

PCA 2 52.8 49.0 0.61 43.2 80.0 73.3 0.72 83.6 87.7 0.88 0.82 86.8 0.85 90.8

MI 2 64.0 64.4 0.68 62.4 64.6 44.4 0.50 64.8 56.0 0.78 0.61 72.6 0.68 79.2
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3.2 The Results

In Table 1, we gather the experimental results obtained over all datasets. We can
appreciate that attaching attention modules to the RNNs (A) not only allows us
to perform feature selection which does not significantly deteriorate the classifi-
cation in most cases, when compared to the full data, but also helps improve the
abilities of the baseline model (B) without attention—see B and B(A). Addition-
ally, incorporating attention into the model has little impact on the number of
its trainable parameters (11.0 · 104 vs. 13.7 · 104 for UvA-NEMO, and 0.94 · 104

vs. 12.1 · 104 for all other sets without and with attention, respectively), and
the corresponding floating point operations per seconds (883 vs. 1002, 1733 vs.

Fig. 4. The average values for each time step along with the standard deviation for
each class in UvA-NEMO (upper plot) and ECG5000 (bottom plot). The heatmaps
are displayed at the bottom—lighter areas indicate more important features.
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2009, 3430 vs. 3974, and 2355 vs. 2729 kilo FLOPs for UvA-NEMO, PU, SV, and
ECG without and with attention). The two-tailed Wilcoxon tests (at p < 0.01)
revealed that only for F = 2 selected features the differences were significantly
worse than those elaborated over a larger subset of features using attention RNNs
for almost all sets, with UvA-NEMO being an exception (the differences were not
statistically important for F = {2, 5, 15, 25}). Overall, B(A) delivered the best
OA across all sets and investigated techniques (20 variants in total, see Table 1)
with the average rank of 3.0, and the fourth best BA with the average rank of
6.25 (it was outperformed by PCA with 10, 15, and 5 principal components that
obtained the average rank of 2.50 and 4.50, and 5.00, respectively).

Fig. 5. The average values for each time step and for each class in Pavia University
(upper plot) and Salinas Valley (bottom plot). The heatmaps are displayed at the
bottom—lighter areas indicate more important features.
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Although the feature selection results are comparable with other data reduc-
tion techniques, the qualitative evaluation presented in Figs. 4 and 5 shows that
our approach can accurately capture the important information across the entire
feature space. In Fig. 5, we can observe that the most important part of the elec-
tromagnetic spectrum is determined with our attention-based models, indicat-
ing those hyperspectral bands that convey the most distinguishable information
about the underlying objects. Similarly, the most informative features in UvA-
NEMO and ECG reflect those parts of the signal that can be sufficient to classify
examples into two classes (see the initial parts of the signals in Fig. 4).

4 Conclusion

In this paper, we introduced attention-based RNNs—the attention modules
not only improved the classification performance of the models, but were also
exploited to select the most important features via quantifying their importance,
hence to decrease the data dimensionality. The experiments revealed that our
technique is competitive with other data reduction methods, and it is very flex-
ible, as can easily be deployed over various time series data. Additionally, the
attention modules are model-agnostic, easy to update, and may be incorporated
into any RNN. Also, they do not significantly increase the complexity of the
model, therefore can be seamlessly deployed in hardware-constrained settings.
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Abstract. Combining symbolic human knowledge with neural networks pro-
vides a rule-based ante-hoc explanation of the output. In this paper, we pro-
pose feature extracting functions for integrating human knowledge abstracted as
logic rules into the predictive behaviour of a neural network. These functions
are embodied as programming functions, which represent the applicable domain
knowledge as a set of logical instructions and provide a modified distribution of
independent features on input data. Unlike other existing neural logic approaches,
the programmatic nature of these functions implies that they do not require any
kind of special mathematical encoding, which makes our method very general
and flexible in nature. We illustrate the performance of our approach for sentiment
classification and compare our results to those obtained using two baselines.

Keywords: Neural logic · Feature extracting functions · Rule learning

1 Introduction

Deep Neural Networks tend to suffer from the Black Box problem, mainly because their
training is often purely data-driven, with no direct or indirect human intervention [17].
As a result, the interpretation of the input-output mapping is often challenging, if not
almost intractable. Moreover, they do not have an inherent representation of causality or
logical rule application. Indeed, previous work has shown that supervision purely in the
form of data can lead a model to learn some unwanted patterns and provide misleading
and incorrect predictions [13,19]. These drawbacks hinder their applications in a wide
range of domains such as cyber-security, healthcare, food safety, power generation and
environmental management, which require a level of trust or confidence associated with
the output of the network [18].

A common approach to make the predictions of a Neural Network explainable is
to encode the intended rules or patterns derived from human domain knowledge in its
trainable parameters [22]. This can be viewed as the process of combining structured
logical knowledge representing high-level cognition with neural systems [3]. Indeed,
logic rules provide a way to represent human knowledge in a structured format. How-
ever, logic rules need to be translated from natural language to logical representations.
Moreover, they require a suitable encoding format, which is not a straightforward task
because in most cases this encoding is application-specific.
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Fig. 1. (a) Overview of our proposed approach, which abstracts domain knowledge into the sen-
timent prediction of a neural network using feature extraction on the input data instead of dis-
tillation (bottom-way prediction). This achieves an ante-hoc rule based explanation of Neural
Network inferential process as compared to (b), a distillation approach (middle-way prediction),
which encodes knowledge into the network parameters or to (c), a straight application of a CNN
to the sentence-sentiment tuple (top-way prediction) devoid of neural logic.

One way to efficiently encode human knowledge abstracted as first order logic rules
into the parameters of a neural network is to use the iterative-knowledge distillation
method [7], a process summarized in Fig. 2a. Briefly, iterative-knowledge distillation
consists of representing structured human knowledge as a set of declarative first-order
logic rules using soft-logic [1], then, encoding these rules into the parameters of the net-
work via indirect supervision making use of knowledge distillation [5] at each training
iteration. However, while iterative knowledge distillation makes the network to learn
from both data and rules, we find that it implicitly makes an assumption of knowledge
to remain static and true for every data point in the data set. Also, it imprints the knowl-
edge into the network parameters permanently through distillation and do not provide
any mechanism to accommodate for any change in the existing rules or addition of new
ones. Thus, updating the rules requires to re-train the whole network. This can some-
times lead to a decrease in performance as shown in our experimental results.

To overcome the aforementioned issues, we propose to construct feature-extracting
functions instead of logic rules from human knowledge as summarized in Fig. 1. These
functions are analogous to decision rules [2] but modified to provide supervision simi-
lar to logic rules [7]. They are directly applied on the data so as to transfer the human
knowledge into a distribution of the input data and influence the output of the network.
We do this by viewing each function as a mini-batch processing step during each iter-
ation. Since the functions are applied directly to the data, we do not need to compute
the probability distributions nor construct a teacher network. This effectively reduces
the complexity of our method. Also, these feature-extracting functions can be modified
at any time during the training process, thus providing a lot of flexibility in adapting to
qualitative and quantitative characteristics of the data under consideration. This is con-
sistent with the well known properties of feature-extracting functions to express natural
language [11], exploiting these traits for the training of deep networks to provide a
more direct nature of supervision based upon the input data. Our method is quite gen-
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eral in nature, being a flexible manner of providing human knowledge supervision to
the network, hence, it can be applied to tasks beyond Natural Language Processing.

2 Related Work

A lot of research has been done in the past few years for incorporating domain knowl-
edge about a problem into machine learning models [4,7,12,20,21]. These methods
essentially use knowledge represented in logical and/or symbolic form to construct
posterior constraints on the model prediction and train the model to capture those con-
straints. Iterative Knowledge Distillation [7] sets itself apart from other neural symbolic
methods as it provides a very flexible framework for integrating knowledge represented
as first order logic rules with general purpose neural networks such as CNNs and RNNs.

A recent paper [9] gives a detailed analysis on the methodology used in [7], com-
paring its performance to other neural symbolic methods and arguing that it is not
very effective in transferring knowledge to the neural network model (student network).
Our work is consistent with this finding, achieving better performance by representing
knowledge purely in terms of data, which is directly given as input for training a neural
network. Moreover, since we have used the same data sets as those in [7], we employ
an identical type of supervision as that used for the iterative knowledge distillation.

Finally, the authors in [9] suggest using a deep contextualized word representation
model such as ELMo (Embeddings from Language Models [16]) and feed the embed-
ding to the neural network to better capture the rule knowledge. However, this still fails
to accommodate the dynamic nature of rules acquired from domain knowledge and its
only limited to Language-related tasks.

3 Feature-Extracting Functions and Neural Logic

In our approach, we develop feature-extracting functions from human knowledge
instead of constructing logic rules, which are expressed as programming functions and
take the data instances in terms of independent features as input. They enforce the
knowledge directly upon the neural network during training. This eliminates the need
for constructing a teacher network and provide the flexibility to allow these functions to
be applied either during the training process or during the pre-processing phase of the
data. Figure 2b summarizes our approach.

3.1 Distillation vs Feature Extraction

In iterative distillation, a parametric baseline neural network is used as a “student”,
which needs to be provided with logical knowledge by a non-parametric “teacher”
network. The teacher network is a projection of the student network over a regular-
ized sub-space whereby the training data is constrained by logical rules. These logic
rules are encoded using soft-logic [1] for the sake of constructing soft-boundaries and
for calculating rule-regularized distributions. Thus, the training data comprises a set
D = {(xn, yn)}N

n=1 of N tuples (xi, yi), where xi is an input instance (an independent
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Fig. 2. (a) shows an overview of the iterative knowledge distillation framework in [7]; (b) shows
an overview of the method we propose.

variable or a set of independent variables) and y is the corresponding target. The set
of logic rules are expressed as R = {(Rl, λl)}L

l=1 where Rl is the lth rule constructed
from human knowledge over D and λl is the corresponding confidence value. A logic
rule can be made up of several conditions or logic expressions. Each logic expression
when instantiated on D produces a set of groundings as {(rlg (D))}Gl

g=1 and thus, rep-
resent a rule as a set of ground expressions on D where each rlg is gth grounding of the
lth rule. The combined set of D and R is called learning resources.

For example, consider a set of movie reviews in which x comprises a set of tokens
and the target y represents the sentiment value (0 for negative and 1 for positive
reviews). From human knowledge, we know that, if a sentence has a syntactic structure
of “A-but-B”, then the sentiment of the sentence should be consistent with that of “B”
component. Therefore, we can express the “A-but-B” statement as a logic rule stated
as R1 with an assumption that at least one ground expression will evaluate to “True”
(λ1 = 1). To encode this formally, we define a Boolean random variable rlg (x, y) =
“has an A-but-B structure”, then apply an expectation operator on it to calculate sets of
valid distributions in D, which will be further used to construct a “teacher network”.
This process is complex and time consuming which is not applicable to different types
of datasets from different domains.

To tackle this drawback, our method combines the input and human knowledge to
provide a pre-processed data set, which can be used for training the neural network.
For the sake of consistency, we denote the input data D = {(xn, yn)}N

n=1 as a set of
N tuples (x, y), where xi is a set of input independent variables and its corresponding
target yi, and the human knowledge F = {(Fl(D)}L

l=1 as a set of L feature extracting
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Algorithm 1: Training process.

Input: The training batch set D = {(xn, yn)}N
n=1,

The functions set F = {(Fl(D)}L
l=1

Initialize the neural network parameters θ
while Iteration do

1: Calculate D∗ = {(x∗
n, yn)}N

n=1

2: Calculate the probability distribution pθ(Y |X∗)
3: Update the parameters θ using objective function in Eq.(2)

end
Output: Trained neural network

functions, which are applied on D. Revisiting the previous example, instead of using
soft-logic using auxiliary random variables, for the “A-but-B” rule we write a function
Fl = A − but − B(x, y), which outputs (x∗, y), where x∗ has only ’B’ features to be
is consistent with λl = 1 as presented above.

3.2 Feature-Extracting Functions

Consider the conditional probability distribution pθ(yi|xi) with parameter set θ as the
softmax output of a Neural Network. Here, inspired by the labeling functions used by
Ratner et al. [2], we use the input instance xi to compute a post-processed instance
x∗

i . We can view the post-processed instance x∗
i as an explicit representation of the

domain knowledge, expressed in the rule under consideration and mapped onto the input
instance xi. This is an important observation since it hints at a minimisation problem on
the cumulative output on the feature extracting functions so as to obtain the parameter
set θ which can be expressed formally as follows:

θ = argmin
θ∈Θ

1
N

ΣN
n=1L(yn, pθ(Y |X∗)) (1)

where L(·) is the loss function of choice and pθ(Y |X) is the conditional probability
distribution of the target set Y given the set X∗ of all the post-processed instances x∗

i .
Since the information is purely present in the modified feature-set, the feature extracting
functions become a post-processed input data for the network.

The treatment above also has the advantage of ease of implementation. We sum-
marise the training and testing process of our method in Algorithm 1. Note that at
each training iteration, we calculate the post-processed data set D∗ = {(x∗

n, yn)}N
n=1

using the feature extracting functions Fl ∈ F as applied on the input batch D =
{(xn, yn)}N

n=1. These are passed to the neural network to calculate the conditional
probability pθ(yi|x∗

i ) for each (x∗
i , yi) ∈ D∗.
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4 Experiments

We performed sentence-level binary sentiment classification and compared our method
(CNN-F) with a baseline network (CNN) devoid of knowledge support and its knowl-
edge distilled version (CNN-rule) created from Iterative knowledge Distillation [7]. We
used the same convolutional neural network architecture proposed in [8] employing it’s
“non-static” version with the exact same configuration as that presented by the authors.
We have compared our method CNN-F against the non-static version of the CNN in [8]
as published by the authors and the CNN-rule in [7], which is a knowledge distilled
version of CNN. Also, we have initialised word vectors using word2vec [10] and used
fine-tuning, training the neural network using stochastic gradient descent (SGD) with
the AdaDelta optimizer [23].

Since contrasting senses are hard to capture, we define a linguistically motivated
rule called “A-but-B” rule akin to that in [7]. It states that if a sentence has an “A-but-
B” syntactic structure, the sentiment of the whole sentence will be consistent with the
sentiment of it’s “B” component. For example, for the sentence S = “you can taste it,
but there’s no fizz”, its sentiment is decided by only the sentiment of its B component
= “there’s no fizz”. From this rule, we can define a feature-extracting function F1 =
A − but − B(x, y) on set D which takes the input pair of sentence-label (x, y) and
outputs (x∗, y) where x∗ is corresponding features of “B”.

We evaluate our method on three public data-sets:

1. The Stanford sentiment tree bank dataset (SST2) [15], which contains 2 classes (neg-
ative and positive), and 6,920/872/1,821 sentences in the train/dev/test sets respec-
tively. Following [8], we train the models on both, sentences and phrases.

2. The movie review one (MR) introduced in [14]. This data set consists of 10,662
one-sentence movie reviews with negative or positive sentiments.

3. The customer reviews of various products data set (CR) presented in [6], which
contains 2 classes and 3,775 instances1.

We also evaluate our method only on the sentences containing “A-but-B” structure
in the test sets of all three data sets under study to show that better performance of our
method CNN-F on the whole test set is indeed attributed to the better performance on
sentences having “A-but-B” structure. SST2 test set has a total of 1,821 instances out
of which 210 instances exhibit the “A-but-B” structure. For MR data, it has a total of
10,662 instances out of which 1603 instances are found to have “A-but-B” structures.
Finally, the CR data set has a total of 3,775 instances out of which 413 instances contain
sentences with “A-but-B” structures. For the MR and CR dataset, we use nested 10-fold
cross validation and report mean ±95% confidence interval for all performance metrics
over the ten trails corresponding to the 10-fold cross validation. For these results, we
have used the models of CNN, CNN-rule and CNN-F trained using the whole data sets.

1 As we present our method as an alternative to the iterative-knowledge distillation [7], a direct
comparison was necessary in terms of results and thus, we adopted the same methodology to
produce results as in [7]. The authors in [7] also employ 10-fold cross validation for the MR
and CR data sets.
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(a) SST2 (b) MR (c) CR

Fig. 3. Performance obtained using our method (CNN-F), the method in [7] (CNN-rule) and that
in [8] (CNN) on the data sets under study. Errors bars denote 95% confidence intervals around
the mean.

In Table 1 and Fig. 3, we show the precision, recall, F-1 score and accuracy for the
positive sentiment class yielded by our method (CNN-F), the method in [7] (CNN-
rule) and that in [8] (CNN). From the experimental results, we observe that our method
outperforms the two methods on both the SST2 and MR data sets for all measures.
Note that the performance decreases on the CR data set for both CNN-rule and CNN-F,
which indicates that the “A-but-B” rule cannot be generalized to data points coming
from similar distributions.

In Table 2 and Fig. 4, we show the results obtained only on sentences having the “A-
but-B” syntactic structure. At first glance, we note that our method works as intended
and is quite competitive, outperforming the two baselines despite using only one rule for
comparison. Since our method represents knowledge purely in terms of a distribution on
input data, we can argue that it was bound to perform better than iterative-knowledge
distillation [7] since the neural network will only process the input features that are
consistent with the human knowledge. Also, a decrease in performance is observed on
the CR data set for both CNN-rule and CNN-F, which is consistent with the fact that
the “A-but-B” rule cannot be generalized for every sentence and should not be encoded
in the parameters permanently.

(a) SST2 (b) MR (c) CR

Fig. 4. Performance obtained using our method (CNN-F), the method in [7] (CNN-rule) and that
in [8] (CNN) on the data sets under study making use only of sentences containing with A-but-B
structures. Errors bars denote 95% confidence intervals around the mean.
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Table 1. Performance obtained using our method (CNN-F), the method in [7] (CNN-rule) and
that in [8] (CNN) on the data sets under study.

Method SST2

Precision Recall F-1 Score Accuracy

CNN 0.853 0.912 0.881 0.877

CNN-rule 0.878 0.891 0.884 0.884

CNN-F 0.881 0.895 0.888 0.887

MR

Precision Recall F-1 Score Accuracy

CNN 0.826± 0.012 0.805± 0.008 0.815± 0.005 0.817± 0.005

CNN-rule 0.826± 0.012 0.810± 0.012 0.818± 0.008 0.820± 0.006

CNN-F 0.830± 0.009 0.810± 0.007 0.818± 0.004 0.820± 0.004

CR

Precision Recall F-1 Score Accuracy

CNN 0.881± 0.020 0.881± 0.018 0.880± 0.012 0.847± 0.014

CNN-rule 0.884± 0.017 0.869± 0.020 0.876± 0.011 0.844± 0.012

CNN-F 0.879± 0.016 0.863± 0.024 0.870± 0.013 0.836± 0.013

Table 2. Performance obtained using our method (CNN-F), the method in [7] (CNN-rule) and
that in [8] (CNN) on the data sets under study making use only of sentences containing with
A-but-B structures.

Method SST2

Precision Recall F-1 Score Accuracy

CNN 0.791 0.805 0.798 0.790

CNN-rule 0.867 0.787 0.825 0.829

CNN-F 0.895 0.870 0.883 0.887

MR

Precision Recall F-1 Score Accuracy

CNN 0.744± 0.029 0.702± 0.041 0.720± 0.025 0.740± 0.027

CNN-rule 0.750± 0.026 0.711± 0.042 0.730± 0.027 0.751± 0.024

CNN-F 0.773± 0.025 0.725± 0.030 0.747± 0.020 0.767± 0.017

CR

Precision Recall F-1 Score Accuracy

CNN 0.720± 0.055 0.775± 0.091 0.737± 0.060 0.731± 0.057

CNN-rule 0.729± 0.049 0.733± 0.098 0.721± 0.067 0.724± 0.063

CNN-F 0.708± 0.064 0.679± 0.087 0.679± 0.054 0.692± 0.036
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Finally, the results in both tables indicate that when there is a performance gain on
datasets SST2 and MR by incorporating A-but-B rule, it is best for CNN-F and when
there is a performance drop, it is worst for CNN-F. This suggests that the feature extract-
ing functions not only can be used as an alternative but also in conjunction with itera-
tive knowledge distillation in order to provide a “Maximum Performance Gain or Drop
value” from the constructed logic rules. This value can be used to select the best com-
bination of these rules via cross validation when using distillation. This also provides a
mechanism to quantitatively evaluate how effectively the rule knowledge was distilled
into the parameters of the neural network when applied to distillation approaches.

5 Conclusion

In this paper, we have shown how feature extracting functions can be employed to learn
logic rules for sentiment analysis. This provides a means to representing human knowl-
edge in neural networks via programmable feature extracting functions. Moreover, we
have shown that, using these feature extracting functions, we can obtain a model whose
posterior output can be influenced by domain knowledge expressed in terms of logic
rules without the need of transferring these into the network parameters. The approach
presented here is quite general in nature, being applicable to a wide variety of logic
rules that can be expressed using rule-to-knowledge conditional probability distribu-
tions. We have illustrated the utility of our method for textual sentiment analysis and
compared our results with those obtained using two baselines. In our experiments, our
method was quite competitive, outperforming the alternatives.
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Abstract. In recent years generative models of visual data have made a
great progress, and now they are able to produce images of high quality
and diversity. In this work we study representations learnt by a GAN gen-
erator. First, we show that these representations can be easily projected
onto semantic segmentation map using a lightweight decoder. We find
that such semantic projection can be learnt from just a few annotated
images. Based on this finding, we propose LayerMatch scheme for approx-
imating the representation of a GAN generator that can be used for unsu-
pervised domain-specific pretraining. We consider the semi-supervised
learning scenario when a small amount of labeled data is available along
with a large unlabeled dataset from the same domain. We find that the
use of LayerMatch-pretrained backbone leads to superior accuracy com-
pared to standard supervised pretraining on ImageNet. Moreover, this
simple approach also outperforms recent semi-supervised semantic seg-
mentation methods that use both labeled and unlabeled data during
training.

Keywords: Semi-supervised learning · Adversarial learning · Transfer
learning

1 Introduction

Generative models of visual data, and generative adversarial nets (GANs) in
particular, have made remarkable progress in recent years [8,9], and now they
are able to produce images of high quality and diversity. Generative models
have long been considered as a means of representation learning, with common
assumption that the ability to generate data from some domain implies under-
standing of the semantics of that domain. Thus, various ideas about using GANs
for representation learning have been studied in the literature [17]. Most of these
works are focused on producing universal feature representations by training a
generative model on a large and diverse dataset [4,5].
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Fig. 1. (a) Semantic projection implemented by a decoder built on top of a style-based
generator as described in Sect. 3.1; (b) LayerMatch scheme for pretraining a backbone
to approximate the activations of a GAN model as described in Sect. 4.1.

In this work we consider the task of unsupervised domain-specific pretrain-
ing. Rather than trying to learn a universal representation on a diverse dataset,
we focus on producing a specialized representation for a particular domain.
Our intuition is that GAN generators are most efficient for learning high-
resolution representations, as generating a realistically-looking image implies
learning appearance and location of different semantic parts. Thus, we exper-
iment with semantic segmentation as a target downstream task. To illustrate
our idea, we perform experiments with semantic projection of GAN generator
and show that it can be easily converted into a semantic segmentation model.
Based on this finding, we introduce a novel LayerMatch scheme that trains a
model to predict the activations of the internal layers of GAN generator. Since
the proposed scheme is trained on synthetic data and requires only a trained
generator model, it can be used for unsupervised domain-specific pretraining.

The rest of the paper is organized as follows. In Sect. 3.1 we explore semantic
projections of GAN generator and describe our experiments. In Sect. 4.1 we intro-
duce the LayerMatch scheme for unsupervised domain-specific pretraining that
is based on inverting GAN generator. Section 5 describes our experiments with
the models pretrained using LayerMatch. In Sect. 2 we discuss related works.

2 Related Work

Several works consider generative models for unsupervised pretraining [4,5,11,
15]. One of the approaches [17] uses representation learnt by a discriminator.
Another line of research extends GAN to bidirectional framework (BiGAN) by
introducing an auxiliary encoder branch that predicts the latent vector from a
natural image [4,5]. The encoder learnt via BiGAN framework can be used as
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Algorithm 1: Training semantic projection model
Input: GAN model (G, D)
Output: Semantic projection model P

1 Generate n images from the random latent vectors Ii = G(li), li ∼ N (0, σ),
i = 1 . . . n and store them along with their features {(Ii,Φi)}, i = 1 . . . n

2 Annotate the images and create semantic maps Li, i = 1 . . . n
3 Train a decoder P on pairs {(Φi, Li)}, i = 1 . . . n

feature extractor for downstream tasks [5]. The use of GANs as universal fea-
ture extractors has severe limitations. First, GANs are not always capable of
learning a multimodal distribution as they tend to suffer from mode collapse.
The trade-off between GAN precision and recall is still difficult to control [10].
Besides, training a GAN on a large dataset of high-resolution images requires
an extremely large computational budget, which makes ImageNet-scale exper-
iments prohibitively expensive. Our approach differs from this line of work, as
we use a GAN to specialize a model to a particular domain rather than try-
ing to obtain universal feature representations. We explore the representation of
a GAN generator that, to the best of our knowledge, has not been previously
considered for transfer learning.

While image-level classification has been extensively studied in a semi-
supervised setting, dense pixel-level classification with limited data has only
drawn attention recently. Most of the works on semi-supervised semantic seg-
mentation borrow the ideas from semi-supervised image classification and gener-
alize them on high-resolution tasks. [6] adopt an adversarial learning scheme and
propose a fully convolutional discriminator that learns to differentiate ground
truth label maps from probability maps of segmentation predictions. [16] use two
network branches that link semi-supervised classification with semi-supervised
segmentation including self-training.

3 Semantic Projection of a GAN Generator

Let us introduce the following notation. A typical GAN model consists of a
jointly trained generator G and a discriminator D. Generator G transforms a
random latent vector l ∈ R

k into an image Igen ∈ R
3×H×W and discriminator

D : R3×H×W → R classifies whether an image is real or fake. Let us denote the
activations of internal layers of G for latent vector l by Φ(l).

Semantic projection of a generator P is a mapping of the features Φ(l) onto
the dense label map L ∈ {1, . . . , C}W×H where C is the number of classes. It
can be implemented as a decoder that takes the features from different layers
of a generator and outputs the semantic segmentation result. An example of a
decoder architecture built on top of a style-based generator is shown in Fig. 1 (a).
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3.1 Converting Semantic Projection Model into a Segmentation
Model

Training procedure of a semantic projection model is shown in Algorithm 1.
First, we sample a few images using GAN generator G and store corresponding
activations {Φi},Φi = (φi

1, . . . , φ
i
k), i = 1 . . . n of internal layers. The latent

vectors are sampled from normal distribution. Then, we manually annotate a
few generated images. The decoder is trained in a supervised manner using
the segmentation masks from the previous step with corresponding intermediate
generator features. We use cross-entropy between the predicted mask and ground
truth as a loss function.

Once we have trained a semantic projection model P , we can obtain pixelwise
annotation for generated images. For this purpose, we can apply P to the features
produced by generator Lgen = P (Φ). However, the features of a generator are
not available for real images. Since semantic projection alone does not allow
obtaining semantic segmentation maps for real images, we propose Algorithm 2
for converting the semantic projection model into a semantic segmentation model
applicable to real images. The intuition is that training on a large number of
GAN-generated images along with accurate annotations provided by semantic
projection should result in an accurate segmentation model.

Algorithm 2: Converting semantic projection into semantic segmentation
model

Input: GAN model (G, D), semantic projection model P
Output: Semantic segmentation model S

1 Generate N images from the random latent vectors Ii = G(li), li ∼ N (0, σ)
i = 1 . . . N and store them along with their features {(Ii,Φi)}, i = 1 . . . N

2 Compute results of semantic projection {P (Φi)}, i = 1 . . . N
3 Train semantic segmentation model S on pairs {(Φi, P (Φi))}, i = 1 . . . N

3.2 Experiments with Semantic Projections

In this section we address the following questions: 1) Will a lightweight decoder
be sufficient to implement an accurate semantic projection model? 2) How many
images are required to train semantic projection to a reasonable accuracy? 3)
Will the use of Algorithm2 lead to improved performance on real images?

Experimental Protocol. We perform experiments with style-based generator
[7] on two datasets (FFHQ and LSUN-cars). In both experiments, we manually
annotate 20 randomly generated images for training the semantic projection
models. For FFHQ experiment we use two classes: hair and background. For
LSUN-cars we use car and background categories. We also train DeepLabV3+
[3] model using Algorithm 2 with semantic projection models trained on 20
images. In all experiments we use ResNet-50 as a backbone. For LSUN-cars we
experiment with both ImageNet-pretrained and randomly initialized backbones.
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Fig. 2. (a) - Evaluation results of the semantic projection model on two classes (back-
ground and hair) with respect to the number of images in training; (b) - outputs of
semantic projection model for test images generated by StyleGAN. Note that while the
model was trained just on 20 images, it provides quite accurate segmentation.

Table 1. Comparison of the segmentation models trained with equal amount of super-
vision. See text for more details.

Categories Method ImageNet-pretrained
backbone

Accuracy IoU

Hair/Background Training on 20 labeled images + 0.952 0.819

Algorithm 2 with 20 labeled images 0.968 0.876

Car/Background Training on 20 labeled images − 0.859 0.698

Algorithm 2 with 20 labeled images 0.979 0.941

Training on 20 labeled images + 0.964 0.905

Algorithm 2 with 20 labeled images 0.986 0.961

For comparison we train a similar DeepLabV3+ model on 20 labeled real images.
80 annotated real images are used for testing the semantic segmentation mod-
els. Pixel accuracy and intersection-over-union (IoU) are measured for methods
comparison.

Architecture of the Semantic Projection Model. The lightweight decoder
architecture for semantic projection is shown in Fig. 1. It has an order of mag-
nitude fewer parameters compared to the standard decoder architectures and 16
times fewer than DeepLabV3+ decoder. Each CBlock of the decoder takes the
features from corresponding SBlock of StyleGAN as an input. CBlock consists of
a 50% dropout, a convolutional and a batch normalization layers. Each RBlock
of a decoder has one residual block with two convolutional layers. The number
of feature maps in each convolutional layer of the decoder is set to 32, as wider
feature maps resulted in just minor improvement in our experiments.

Results and Discussion. Figure 2 (b) shows outputs of a semantic projection
model trained on 20 synthetic images using Algorithm 1. The results of varying
the size of a training set from 1 to 15 synthetic images is shown in Fig. 2 (a).
The test set in this experiment contains 30 manually annotated GAN-generated
images. We observe that even with a single image in training set, the model
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achieves reasonable segmentation quality, and the quality grows quite slowly
after 10 images.

Next, we compare two semantic segmentation models trained with equal
amount of supervision. The first one uses Algorithm 2 with semantic projection
model trained on 20 synthetic images. The second one uses ImageNet-pretrained
backbone and is trained on 20 real images. Table 1 shows quantitative com-
parison of the two models. One can notice that in case when the backbone
for DeepLabV3+ is randomly initialized, the model trained with Algorithm 2
is significantly more accurate compared to the baseline approach. When using
ImageNet-pretrained backbones, Algorithm 2 leads to 6% improvement in terms
of IoU for both datasets.

Our experiments of two datasets demonstrate that a lightweight decoder
is sufficient to implement an accurate semantic projection model. We observe
that just a few annotated images are enough to train semantic projection to a
reasonable accuracy. The Algorithm 2 leads to improved accuracy on real images
compared to simply training a similar model with the same number of annotated
images.

4 Transfer Learning Using Generator Representation

Training a semantic projection model introduced in Sect. 3.1 requires manual
annotation of GAN-generated images. Thus, we cannot use standard real-image
datasets for comparison with other works. Real images could potentially be
embedded into the GAN latent space, but in practice this approach has its
own limitations [2]. Besides, some of the images produced by GAN generators
can be hard to label.

A semantic segmentation network transforms an image I ∈ R
3×H×W into a

segmentation map. At the same time a GAN generator G transforms a random
vector l ∈ R

k into an image Igen ∈ R
3×H×W . Obviously, the input dimensions

of these two types of models do not match. Therefore, the models trained for
image generation cannot be directly applied to image segmentation. To overcome
this issue one can think of inverting a generator. Inverted GAN generators have
been widely used for the task of image manipulation [1,2]. For this purpose, an
encoder model is usually trained to predict the latent vector from an image.
Following [1,2] we train an encoder network, but predict the activations of a
fixed GAN generator instead of the latent vector. The backbone of the trained
encoder can then be used to initialize a semantic segmentation model.

4.1 Unsupervised Pretraining with LayerMatch

The scheme of the LayerMatch algorithm is shown in Fig. 1 (b). We can view
generator G as a function of the latent vector l and all the intermediate acti-
vations: G = G(l, φ1, φ2, .., φn), where intermediate features themselves depend
on the latent vector and all the previous features: φi = φi(l, φ1, φ2, .., φi−1).
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Fig. 3. Comparison of the models trained with Algorithm 3 to semi-supervised segmen-
tation methods for a varying number of annotated samples. (a) - FFHQ+CelebA-HQ
dataset. (b) - LSUN-church dataset

The generated image Igen is fed to the encoder E, which tries to predict the n

specified activation tensors: Φ̂ = E(Igen), where Φ̂ = (φ̂1, φ̂2, . . . , φ̂n).
The loss function for LayerMatch training consists of two terms:

L = Lrec + Lmatch, (1)

where matching loss Lmatch is the sum of the L2-losses between generated and
predicted features that penalizes difference between the outputs of the encoder
and the activations of the generator:

Lmatch =
1
n

n∑

i=1

‖φi − φ̂i‖22 (2)

Reconstructed image Irec is obtained by replacing random feature φm with
φ̂m, where 1 ≤ m ≤ n, and recalculating features:

φ̃j = φj(l, φ1, . . . , φm−1, φ̂m, φ̃m+1 . . . ˜φj−1),m < j ≤ n (3)

Irec = G(l, φ1, . . . , φm−1, φ̂m, φ̃m+1, .., φ̃n) (4)

Reconstruction loss Lrec is the L2-loss between the generated image and the
reconstructed image. This loss controls that the generator produces an image
which is close to the original one when generator activations are replaced with
the outputs of the backbone:

Lrec = ‖Irec − Igen‖22 (5)
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Algorithm 3: Unsupervised pretraining with LayerMatch
Input: GAN model (G, D) trained on a large unlabeled dataset, a small labeled

dataset (Ij , Lj), j = 1 . . . n
Output: Semantic segmentation model S

1 Generate N images from the random latent vectors Ii = G(li), li ∼ N (0, σ),
i = 1 . . . N and store them along with their features {(Ii,Φi)}, i = 1 . . . N

2 Train the backbone using LayerMatch using the pairs {(Ii,Φi)}, i = 1 . . . N
3 Train a semantic segmentation model S on the labeled part of the data

{(Ij , Lj)}, j = 1 . . . n

5 Experiments with LayerMatch

Evaluation Protocol. The standard protocol for evaluation of unsupervised
learning techniques proposed in [20] involves training a model on unlabeled
ImageNet, freezing its learned representation, and then training a linear clas-
sifier on its outputs using all of the training set labels. This protocol is based on
the assumption that the resulting representation is universal and applicable to
different domains. We rather focus on domain-specific pretraining, or “specializ-
ing” the backbone to a particular domain. We aim at high-resolution tasks, e.g.
semantic segmentation. Therefore, we apply a different evaluation protocol.

We assume that we have a high-quality GAN model trained on a large unla-
beled dataset from the domain of interest along with a limited number of anno-
tated images from the same domain. The unlabeled data is used for training a
GAN model, which in turn is used for pretraining the backbone model using
LayerMatch (see Algorithm 3). The pixelwise-annotated data is later used for
training a fixed semantic segmentation network with the pretrained backbone
using a standard cross-entropy loss. Then, we evaluate the resulting model on a
test set across the standard semantic segmentation metrics such as mIOU and
pixel accuracy. We perform experiments with varying fraction of labeled data. In
all our experiments we initialize the networks with ImageNet-pretrained back-
bones.

Comparison with Prior Work. For all compared methods we use the same
network architectures differing only in training procedure and loss functions
used. The first baseline uses a standard ImageNet-pretrained backbone without
domain-specific pretraining. The semantic segmentation model is trained using
available annotated data and does not use the unlabeled data.

The other two baselines are recent semi-supervised segmentation methods
using both labeled and unlabeled data during training. In the experiments with
these methods we used exactly the same amount of both labeled and unlabeled
data as for LayerMatch. Namely, for the experiments with Celeba-HQ we used
both the unlabeled part of CelebA and the FFHQ dataset, that was used for
GAN training. For the experiments with LSUN-church all the unlabeled data in
LSUN-church dataset was used during training.
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Table 2. Comparison of segmentation models trained on CelebA-HQ dataset with
equal amount of supervision. Notice that LayerMatch provides better results for almost
all categories and improves the IoU for eye glasses category by several times.
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ImageNet only .92 .62 .89 .89 .87 .01 .75 .77 .67 .68 .71 .72 .76 .74 .79 .87 0 .34 0 .77 .62

AdvSemiSeg [6] .91 .62 .89 .89 .85 .14 .75 .77 .66 .66 .71 .70 .77 .73 .78 .86 0 .29 0 .75 .59

Pseudo-labeling [13] .92 .63 .89 .90 .86 .01 .77 .78 .71 .70 .73 .72 .79 .75 .79 .86 0 .33 0 .77 .58

LayerMatch .93 .67 .90 .91 .87 .68 .78 .78 .70 .69 .75 .74 .79 .76 .80 .87 0 .34 0 .80 .64

The first semi-supervised segmentation method that we use for compari-
son is based on pseudo-labeling [13]. Unlabeled data is augmented by generating
pseudo-labels using the network predictions. Only the pixels with high-confidence
pseudo-labels are used as ground truth for training. The second one is an adver-
sarial semi-supervised segmentation approach [6]. In our experiments we used the
official implementation provided by the authors, and changed only the backbone.

Datasets. Celeba-HQ [12] contains 30,000 high-resolution face images selected
from the CelebA dataset [14], each image having a segmentation mask with
the resolution of 512 × 512 and 19 classes including all facial components and
accessories. We use a StyleGAN2 model trained on FFHQ dataset provided in [9]
that has a FID measure 3.31 and PPL 125. In the experiments with Celeba-HQ
we vary the fraction of labeled data from 1/1024 to the full dataset.

LSUN-church contains 126,000 images of churches of 256× 256 resolution.
We have selected top 10 semantic categories that occupy more than 1% of image
area, namely road, vegetation, building, sidewalk, car, sky, terrain, pole, fence,
wall. We use a StyleGAN2 model provided in [9] that has a FID measure 3.86
and PPL 342. As LSUN dataset does not contain pixelwise annotation, we take
the outputs of the Unified Scene Parsing Network [19] as ground truth in this
experiment similarly to [2]. In the experiments with Celeba-HQ we vary the
fraction of labeled data from 1/4096 to the full dataset.

Implementation Details. HRNet [18] is used as an encoder architecture. We
add K auxiliary heads for each of K activations that we want to predict (see
Fig. 1 (b)). After training, auxiliary heads are discarded and only the pretrained
backbone is used for transfer learning, similar to ImageNet pretraining. For pre-
training the encoder we use Adam optimizer with the learning rate 10−4 and
the cosine learning rate decay. We use source code from HRNet repository for
training semantic segmentation networks.

Results and Discussion. Figure 3 shows the comparison of the proposed Lay-
erMatch pretraining scheme to 3 baseline methods across 2 datasets with varying
fraction of annotated data. Pseudo-labeling is applicable in case when some part
of the dataset is unlabelled.

One can see that LayerMatch pretraining shows significantly higher IoU com-
pared to the baseline methods on Celeba-HQ (see Fig. 3 (a)) for any fraction of
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the labeled data. For LSUN-church it shows higher accuracy compared to other
methods in cases when up to 1/512 of the data is annotated. Table 2 shows
category-wise results for all four compared models trained with 1/512 of labeled
data. LayerMatch pretraining leads to significant accuracy improvement for the
eyeglasses category.

Overall, LayerMatch pretraining leads to improved results in semi-supervised
learning scenario compared to both simple ImageNet pretraining and to semi-
supervised segmentation methods. Lower accuracy for larger fraction of anno-
tated datasets on LSUN-church can be attributed to lower quality of LSUN-
church GAN generator compared to Celeba-HQ GAN generator. Another possi-
ble reason for this effect may be the imperfect annotation of both training and
test data, which may lead to inaccuracies in evaluation.

6 Conclusion

We study the use of GAN generators for the task of learning domain-specific rep-
resentations. We show that the representation of a GAN generator can be easily
projected onto semantic segmentation map using a lightweight decoder. Then, we
propose LayerMatch scheme for unsupervised domain-specific pretraining that is
based on approximating the generator representation. We present experiments in
semi-supervised learning scenario and compare to recent semi-supervised seman-
tic segmentation methods.
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Abstract. Polypharmacy is the combined use of multiple drugs, widely
adopted in medicine to treat patients that suffer of complex diseases.
Therefore, it is important to have reliable tools able to predict if the
activity of a drug could unfavorably change when combined with others.
State-of-the-art methods face this problem as a link prediction task on
a multilayer graph describing drug-drug interactions (DDI) and protein-
protein interactions (PPI), since it has been demonstrated to be the most
effective representation. Graph Convolutional Networks (GCN) are the
method most commonly chosen in recent research for this problem. We
propose to improve the performance of GCN on this link prediction task
through the addition of a novel relation-wise Graph Attention Network
(GAT), used to assign different weight to the different relationships in
the multilayer graph. We experimentally demonstrate that the proposed
GCN, compared with other recent methods, is able to achieve a state-
of-the-art performance on a publicly available polypharmacy side effect
network.

1 Introduction

The treatment of complex diseases often requires the combined use of multiple
drugs, called a polypharmacy therapy, with the expectation to improve the thera-
peutic effect. The drawback of such a therapy is the possibility that interactions
among the drugs can cause the onset of undesired side effects. Although many of
the side effects are well-known in the scientific literature, several are still undis-
covered, especially for new experimental therapies. Therefore, it is desirable to
have tools to predict if the activity of a drug could unfavorably change when
combined with others, possibly starting from already known interactions.

As for many problems in biology, graphs are the most natural way to repre-
sent the complexity of the structures and the interactions involved in biological
processes [14]. Noteworthy examples of the usage of graphs are protein and
molecule structures, protein interaction networks and recently graph represen-
tations of the human genome [2,4]. As described in [21], more complex repre-
sentations, obtained through the combination of different kind of networks, are
c© Springer Nature Switzerland AG 2021
A. Torsello et al. (Eds.): S+SSPR 2020, LNCS 12644, pp. 119–128, 2021.
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usually adopted to model the interactions among entities of different families,
such as genes, proteins or drugs. Graph representing these heterogeneous net-
works are named multilayer graphs where each layer is a subnetwork composed
of homogeneous entities. In particular, discovering polypharmacy side effects can
be formalized as a link prediction task on a multilayer undirected graph [3,13,20],
aiming to estimate the probability that a particular side-effect occurs due to the
interaction a pair of drugs. The use of a multilayer graph is justified in [20] where
the authors have shown that combining the known interactions among the drugs
with those of the proteins targeted by the drugs can effectively improve the
prediction accuracy. The proposed representation is a two-layer graph, shown
in Fig. 1, where the ground layer consists of a protein-protein interaction (PPI)
network, in which two proteins are connected if a biological interaction exists
between them (e.g. metabolic enyme-coupled interactions), and the upper layer
is a drug-drug interaction (DDI) network where a link between two drugs exists
if the combined use causes a side-effect. The two layers are interconnected by
a DTI (drug-target interaction) network where each drug is linked to its target
proteins.

Fig. 1. Structure of a polypharmacy side effect network as a multilayer graph. Triangles
represent drugs (layer 1) while circles are proteins (layer 2). Interactions are represented
by lines: lines in the upper layer are drug-drug interactions (DDIs), lines in the ground
layer are protein-protein interactions (PPIs) and interconnecting lines are drug-target
interactions (DTIs).

Before the wide diffusion of deep neural networks (DNN) a common approach
to perform machine learning tasks on graphs has been the use of hand crafted
features, through graph embedding or graph matching methods. The trend is
changing: Graph Neural Networks (GNN), a new class of machine learning meth-
ods, emerged, promising to be as disruptive as Convolutional Neural Networks
(CNN) have been for image analysis. Gori et al. discussed in [8] the first formu-
lation of a GNN, from that time on, different kind of GNNs have been proposed,
as exhaustively described in a recent survey of Wu et al. [18]. Among them,
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Graph Convolutional Networks (GCNs) [6,9,11,12] have been proved to be the
most suitable to process large and sparse graphs thanks to the definition of a
convolution-like operation on graphs that is performed by aggregating the infor-
mation considering only the local structures around the nodes. An effective way
to perform such a local convolution has been discussed by Gilmer et al. [7] with
the proposition of a new kind of spatial GCNs named Message Passing Neural
Networks (MPNMs). The basic idea is to propagate the local information among
the nodes as they are sending messages to each other. This is formalized as a
two steps process where the network propagates the messages (message passing
step) and then pools the received information (readout step) so as to produce a
new representation for the nodes and thus for the whole graph. A Convolution-
like operation is then performed during the first phase through a message and
an update function. Recently, methods based on the concept of self-attention
have proved to be very effective in discriminating significant messages coming
from adjacent nodes [5,16]. Giving different weights to different connections,
self-attention makes the neural network able to deal with large and complex
structures, that we usually face in biology, by considering only the connections
that are more relevant for the task at hand.

In the last years, different methods have been applied to the problem of
polypharmacy side effect prediction, that are mainly based on Knowledge Graph
Embedding (KGE) algorithms [13] and Unsupervised Graph Embedding [3].
KGE algorithms work directly over triples (node1, relation, node2) and aim
to find node embeddings that optimize a margin-like loss function. The distance
function is computed in the vector space generated by a relation-specific pro-
jection function. Unsupervised methods, likewise, learn latent representation on
nodes so that the distance among them reveals existing relations. A recent GCN
designed to work on multilayer graphs is Decagon [20]; it is characterized by
a two-stage architecture composed of a node embedding stage, having the aim
of learning message-sharing functions optimized to predict target relationships,
and a prediction stage.

In this paper we propose a relation-wise Graph Attention Network (GAT)
obtained by extending the architecture of Decagon with an additional layer real-
ized through a Relation Attention Module (RAM) having the purpose of weight-
ing each link on the base of the message exchanged. After a description of the
proposed architecture, we will present an experimental validation based on a
publicly available dataset, in which this new architecture has been demonstrated
to considerably improve the accuracy of the original Decagon method, and to
achieve state-of-the-art performance by halving the error rate with respect to
the most accurate method available in the literature.

2 Proposed Method

Multilayer graphs extend the expressive power of single layer graphs where all
the nodes belongs to same domain such as people, proteins, drugs, and so on;
however, they put additional complexity onto GCN working on them. This is
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Fig. 2. Embedding Network. The initial embeddings of the node are learned in the
heterogeneous node-embedding (HNE) layer which assign to each node its own embed-
ding. Then, the initial embedding are updated by the heterogeneous embedding network
(HEN). This layer generates the messages shared over the edges by each node in the
network and then, it computes the new embedding aggregating them in a weighted
manner through the Relation Attention Module (RAM)

where an attention mechanism comes into play, giving the GCN the capability
to discriminate which relationship is more important when learning the repre-
sentation of the nodes (Fig. 2).

The proposed GAT is composed of three stages: a heterogeneous node-
embedding, a heterogeneous embedding network based on a Relation Attention
Module end a predictor. Our GAT inherits the advantages of Decagon [20], i.e.
end-to-end trained node embeddings for the task we are dealing with and a mes-
sage passing approach able to share information through edges of different types;
but, it increases the expressiveness of the network by weighting the contribution
of the messages exchanged over different relations. This is obtained by extending
the architecture with the addition of the Relation Attention Module.

In more details, the first stage of the network aims at learning the repre-
sentation of the graph outputting a d-dimensional node embedding. This stage
is composed of a different embedding layer for proteins and drugs respectively,
each of them acting as mapping function between a node identifier and a feature
vector. The embedding is learned during the end-to-end training of the whole
GAT. The representations of the nodes obtained by the heterogeneous node-
embedding stage are then provided to the successive stage, the heterogeneous
embedding network; this latter generalizes the Message Passing Neural Network
paradigm [7] to multilayer graphs where a different message function is used for
each type of relation. This stage outputs a new node embedding, where the rep-
resentation of a node is obtained as the sum of the messages exchanged between
the node and its neighborhood. During this process, the additional attention
module is used to improve the representativeness of the new node embedding
by weighting differently the messages coming from the neighbours on the base
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of the relationships they have with a considered node. After N message passing
iterations, the new node embeddings will contain information depending on both
the local properties of the node and its surrounding.
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In Eq. 1 we provide a formalization of the update process realized by the
heterogeneous embedding network, where h

(k+1)
i represents the features vector

of the node i resulting from the k-th iteration of the Message Passing Network
(h(0)

i is the input embedding), φ is a non-linear activation function, the ReLU in
our case, r is the relationship type and m

(k)
ir are the aggregated messages coming

to the node i through an edge of type r. W
(k)
r is a projection weights matrix

associated to the relationship r, while cijr and cir are normalization constant that
scale the contribution of the neighbors Nr

i of the node i taking into account
only the edges of type r. Finally, αr ∈ [0, 1] is the attention weight resulting
from the Relation Attention Module, that we are going to describe in Sect. 2.1.
For the sake of readability, we avoid to explicitly show the dependence with the
messages m

(k)
ir coming from edges of different relations.

Finally, the predictor stage of the proposed method estimates the probability
of a polypharmachy side effect taking as input the embeddings of the nodes
representing the involved drugs. Similarly to [20], the prediction is performed
using a tensor factorization with a shared weights matrix between the different
side effects:

p(vi, r, vj) = σ(zTi DrRDrzj) (3)

where p(vi, r, vj) represents the probability that a side effect r is caused by
the combination of drugs vi and vj , σ is the sigmoid function, zi is the node-
embedding resulting from the message-passing steps, Dr is a learnable diagonal
projection matrix for the side effect r and R is a weights matrix which takes into
account all sides effects. Since the predictor function is symmetric the probability
of side effects is not influenced by the order of the drugs.

2.1 Relation Attention Module

As discussed above, the heterogeneous embedding network updates the node
embedding by aggregating the messages coming from different relationships to
the nodes; the contribution of each message is weighted on the base of the rela-
tionship r it comes through the attention weight αr that is computed by the
Relation Attention Module. We propose a novel self-attention mechanism for
multilayer graphs that works at relation level, inspired to the one proposed
in [17], where the attention weights are obtained as a function of the aggregated
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messages mir (see Eq. 1) transported by each relation. The proposed module can
deal with the absence of edges (i.e. knowledge) since it computes the weights as
a function of the effectively shared messages.

To this aim, we build a relation information matrix that is obtained by
arranging all the aggregated messages of every node in a tensor with dimen-
sions (features, nodes, relations). In Fig. 3 we show the way we compute the
attention weights starting from the relation information matrix. The first step
is to squeeze the messages dimension to obtain a feature vector ∈ R

1×relations.
To this aim, we apply both the average and max pooling, as suggested in [17],
in order to carry out more statistics useful for the weights estimation. Then, a
Multi-Layer Perceptron (MLP) takes independently the two feature vectors as
input and computes the channel attention maps. An hidden layer in the MLP
acts as bottleneck to extract the useful information for the descriptor and reduce
the parameters overhead. To this purpose the hidden layer has dimension C/rd,
where C is the number of relationships and rd is the reduction ratio. Finally, a
sigmoid activation function projects the sum of the two outputs of the MLP in
the range [0, 1]. Once the attention weights are computed, the node embeddings
are weighted and summed along the relation axis to obtain a single embedding
for each node (see Fig. 4).

Fig. 3. Relation Attention Module. The module takes as input the relation information
matrix and computes both global average and max pooling. The resulting feature
vectors are given in input to an bottleneck MLP with shared weights. Finally the
attention coefficient are computed by applying the sigmoid function to the sum of the
features vectors resulting from the MLP.

3 Experiments

We have compared the proposed relation-wise GAT with other seven state-of-the-
art algorithms facing the prediction polypharmacy side effects. The comparison
have been performed using the Decagon dataset proposed in [20]. It is a single
multilayer graph (see Table 1) composed of a PPI network of 19,085 proteins
and 715,612 interactions and a DDI network having 645 drugs and 4,651,131
side effect links. The dataset contains also 18,596 connection among proteins
and drugs.
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Fig. 4. Relation Attention Module. The embendings resulting from the module are
computed as a weighting sum of the aggregated messages transported by each relation.

Table 1. Composition of the dataset

Nodes Edges

Drugs 645 DDI 4,651,131

Proteins 19,085 DTI 18,596

PPI 715,612

The graph contains 964 commonly-occurring polypharmacy side effects which
are those ones that occur in at least 500 combinations. As suggested by [20], we
remove all polypharmacy side effects that occurs even with just one of the two
drugs allowing an unbiased estimation of the model performance. Being built
from real data, the dataset is strongly unbalanced with respect to the different
kinds of side effects.

As proposed by the authors of the dataset, we have randomly divided it
into training, validation and test sets, using 80%, 10% and 10% of the edges of
each side effect respectively. For each set and each kind of relation, we equally
sampled negative and positive edges.

Regarding the model parameters, we have used embedding layers of size 64
for both the nodes types. The heterogeneous embedding network is composed of
2 layers with sizes respectively equal to 64 and 32. The RAM uses a reduction
rate equal to 16. After each message passing step we add a dropout layer with
probability 0.056.

The weights of the model have been optimized using the RMSprop algorithm
with a learning rate equal to 4.4e−4. We have used the Binary Cross-Entropy
as loss function. Every time that the validation performance does not increase
for 5 consecutive epochs (plataue), we have reduced the learning rate using a
multiplicative factor equal to 0.1. Finally, we early stopped the model training
if the validation performance does not increase for 16 consecutive epochs. An
epoch is composed of 100 random batches. To deal with the imbalance of the
dataset, we have trained the model with random balanced batches for both
the negative/positive edges and the side-effects types. Each batch is composed
by 256 positive and 256 negative edges for each type of side effect. The edges
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considered to evaluate the loss function are excluded from the message passing
steps. All and only the training set edges have been used for the evaluation over
the validation and the test set. Finally, differently from [20] we applied graph
convolutions over the full graph without sampling strategies. Finally, all the
hyper-parameters have been tuned using the Bayesian optimization framework.

3.1 Results

The performance have been computed independently for each side-effect in terms
of area under the receiver-operating characteristic (AUROC) and area under the
precision recall curve (AUPRC). The overall performance of the method have
been computed as average of the individual scores.

In Table 2 we have reported the results, in terms of AUROC and AUPRC
obtained on the Decagon dataset, the row are ordered by an increasing AUROC.
The proposed method outperformed recent approaches proposed in [3,13,20] that
have achieved accuracies higher than 0.9.

Table 2. Results

Method Ref. AUROC AUPRC

Decagon [20] 0.872 0.832

KBLRN [10] 0.899 0.878

DisMult [19] 0.923 0.898

TransE [1] 0.949 0.934

ComplEx [15] 0.965 0.944

TriVec [13] 0.975 0.966

NBNE [3] 0.980 –

Our – 0.998 0.998

In particular the proposed method achieve an AUROC equal to 0.998 reduc-
ing the error of one order of magnitude w.r.t. the most accurate method in the
state-of-the-art [3].

It is worth to note that our method significantly outperforms Decagon with
a 12% margin. This results may be explained by the following reasons: (i) the
embeddings are specialized for the prediction of the side-effects instead of try-
ing to be suitable also for the DTI and PPI prediction; (ii) the choice of using
balanced batches allows to avoid the overfitting over more frequent side-effects;
(iii) the Relation Attention Module allows to reduce the bias error of the model
by weighting the information shared in the different layers of the heterogeneous
embedding network. In addition, the proposed method outperforms all KGE
models that focus their attention on the DDI network, such as those evaluated
in [13]. This result may be justified by the use of a message passing architecture
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together with the attention mechanism, making our network able to get infor-
mation from all the layers of the biological network. In fact, our predictor can be
seen as a KGE algorithm which, instead of using directly trained embeddings,
employs a representation resulting from structured dynamic knowledge.

4 Conclusions

In this paper we have proposed a Graph Attention Network (GAT) to deal with
the problem of predicting side effects due to drug interactions. It is an extension
of the Decagon GCN proposed by Zitnik et al. in [20] with the addition of
an attention module that have considerably improved the accuracy. We have
demonstrated that our GAT is very effective on this problem, achieving a state-
of-the-art accuracy on a public dataset realized from real data.

For the sake of completeness, it is important to point out that, although the
proposed method achieves the highest performance on the Decagon dataset, it
depends on the node-type embeddings learned in its first stage. This requires the
network to be retrained if new drugs or proteins are added to the graph, while
other methods adopt a node embedding that is able to incorporate more easily
new kinds of nodes.

In our future works, we will analyze the robustness of the method using new
nodes, drugs and side-effects in the test set that were not present in the training
phase.
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dings for simple link prediction. In: Proceedings of the 33rd International Confer-
ence on International Conference on Machine Learning (ICML), vol. 48 (2016)
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Abstract. In this article, we have developed a graph convolutional net-
work model LGL that can learn global and local information at the
same time for effective graph classification tasks. Our idea is to concate-
nate the convolution results of the deep graph convolutional network and
the motif-based subgraph convolutional network layer by layer, and give
attention weights to global features and local features. We hope that
this method can alleviate the over-smoothing problem when the depth
of the neural networks increases, and the introduction of motif for local
convolution can better learn local neighborhood features with strong
connectivity. Finally, our experiments on standard graph classification
benchmarks prove the effectiveness of the model.

Keywords: Graph convolutional networks · Graph classification

1 Introduction

In recent years, deep learning has achieved outstanding performance in many
fields such as computer vision and natural language processing. The existing
deep learning models can handle structured data such as images and speech
well, but they are difficult to apply to graph data directly. However, in real
life, there are a large number of non-Euclidean data represented in the form of
graphs. For example, graphs can be abstracted from social networks, citation
networks, protein-interaction networks and other scenarios. Graph is not only
ubiquitous, but also can flexibly describe the complex relationships between
real things and has a strong structured expression ability. These advantages
have inspired researchers to further expand their research horizons to the field
of deep learning and graph. However, unlike image data with a regular grid
structure, each node in the graph has a different number of neighbor nodes, so
basic convolution and pooling operations cannot be used, which poses a huge
challenge to the existing convolutional neural network.
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When extending CNN to the irregular grid structure of graph, two main
strategies are adopted, a) Spectral-based [1,2] and b) Spatial-based [3–5] meth-
ods. Most existing GCNs are designed under these two strategies. Specifically,
Spectral-based GCN defines convolution operations based on spectral graph the-
ory. This method requires graphs to have the same size of structure and is usu-
ally used for vertex classification tasks. Spatial-based GCN approximates the
spectral convolution operation by defining the layer-by-layer propagation of a
node-based one-hop neighborhood. It is not limited to the same size of graph
structure, and can be used for graph classification tasks. Although the Spatial-
based GCN model can handle graph classification problems, the particularity
of the graph structure still brings some difficult problems to GCN. One of the
most difficult problems is over-smoothing [6–8]. As the number of network layers
increases and the number of iterations increases, the representation of each node
tends to converge to the same value, which means that the global information of
the entire graph is synchronized to every node, rather than the local structural
features we expect.

To overcome the problem of over-smoothing, there are roughly two ways of
thinking at present. On the one hand, the SortPooling layer is used to replace
SumPooling. The SumPooling layer directly aggregates the learned local vertex
features from graph convolution operations into global features. It is difficult to
learn rich local vertex topological information from global features, resulting in
poor classification results. M. Zhang et al. [9] proposed a novel Deep Graph
Convolutional Neural Network (DGCNN), which uses a novel SortPooling layer
to sort the extracted multi-scale vertex features instead of summing. DGCNN
pays more attention to local vertex features, but only retains the top specified
number of vertices when sorting, which may cause a lot of information to be
lost. On the other hand, convolve the local subgraph of the node. Z. Zhang
et al. [10] designed a local convolution operation based on a subtree. Since the
local subgraph only retains the information of the nodes closer to the root node,
the design of the graph convolution operation on the subgraph can limit the
information interaction with remote nodes, but also loses global information.

The LGL model we proposed is inspired by the simultaneous attention and
fusion of global and local information. While using the graph convolutional layer
to learn global information, the subgraph convolutional layer is used to learn
local node features, and the attention mechanism is introduced to give differ-
ent weights to them. The framework of the proposed LGL is shown in Fig. 1.
Specifically, the main contributions of this paper are summarized as follows:

First, we designed a new local convolution operation based on motif. Motif
is a subgraph that appears frequently in graph. Each node in motif has strong
connectivity. The using of motif can effectively capture high-quality local neigh-
borhood information.

Second, We have developed a novel hybrid graph convolutional network
model for graph classification, which is the LGL model. The LGL model uses
the depth graph convolutional network and the subgraph convolutional network
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to learn global information and local information respectively, and the attention
mechanism gives weight to both.

Third, we evaluate the performance of the proposed LGL model on graph
classification tasks by means of experience. Experiments on benchmarks demon-
strate the effectiveness of the proposed method, when compared to state-of-the-
art methods.

Fig. 1. We use SCN and GCN to perform 3-layer convolution on graph respectively,
and splice the convolved features as shown in the figure. Then the spliced the features
are sorted into a grid structure, which can be directly subjected to 1-dimensional
convolution.



132 H. Li et al.

2 Related Works

In this section, we briefly review some important related work of LGL model,
including the Deep Graph Convolutional Neural Network (DGCNN) [9], the
Subgraph Convolutional Neural Networks (SCN) [10] and motif.

Deep Graph Convolutional Neural Network. Given a graph G with n
nodes, X ∈ R

n×c is the node feature vectors and A ∈ R
n×n is the graph

adjacency matrix. Spatially-based Deep Graph Convolutional Neural Network
(DGCNN) [9] model takes the following graph convolution operation

Z = f(D̃−1ÃXW ), (1)

where Ã = A + I means that graph is added to the self-loops, D̃ is its diagonal
degree matrix, W̃ ∈ R

c×c′
is a matrix of trainable convolution parameters, f is

a nonlinear activation function, and Z is the output after convolution operation.
For the graph convolution operation defined by Eq. 1, XW maps the features

of each node from the c dimension to the c′ dimension, ÃY (Y := XW ) spreads
the features information of each node to the neighboring nodes and the node
itself, thus realizing the aggregation of nodes information. However, the distance
between any two nodes in the graph is relatively close, and it takes only a few
steps from one node to another, so when the number of convolutions increases,
the problem of over-smoothing appears.

Subgraph Convolutional Neural Network. Different from DGCNN,
Quantum-based Subgraph Convolutional Neural Networks (QS-CNNs) model
[10] extract the neighborhood subgraph of each node through quantum walks,
and use graph grafting and graph pruning to generate an m-ary tree for each
node. The leaf nodes of the m-ary tree are further replaced by their own neigh-
boring m-ary trees, and this process is performed recursively until a K-level
and m-ary tree is constructed for each node. Since QS-CNNs generates a K-
level extended subtree for each node, it can effectively learn the local connection
structure information of the node.

Motif. Motif has a long history in network research. The concept of motif was
first introduced in 2002 [11], which represents the frequently repeated patterns
in complex networks and is the building block of complex networks. Some work
[12–14] proves that motif plays an important role in understanding and capturing
higher-order structure information of the biological networks, social networks,
academic networks, and so on. Capturing the motif structure and its interaction
can improve the quality of network embedding. But the current research basically
ignores the capture and application of Motif. Several common motifs are shown
in Fig. 2.
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Fig. 2. Several common motifs

3 Proposed LGL Model

In this section, we first give the overall framework of the proposed model LGL.
Subsequently, we introduce the subgraph convolutional layer based on motif, and
the feature fusion between subgraph convolutional layer and deep convolutional
layer based on attention mechanism.

A. Framework. We develop a novel hybrid convolution structure based on
GCN and SCN. Specifically, both GCN and SCN performed the convolution
operation three times, and we spliced the features of the convolutional layer as
shown in Fig. 1. Each node in SCN only aggregates adjacent motif neighbors,
representing the local node information of the graph, and GCN is based on the
one-hop neighbor propagation of the node, including the global topological char-
acteristics of the graph. Hybrid graph convolution operation can be described
by the following formula:

Z(l) = f(αg(l)D̃−1ÃXW ⊕ αs(l)D̃m
−1

MXWm), (2)

where Ã = A + I means that graph is added to the self-loops, M is motif adja-
cency matrix, W̃ ∈ R

c×c′
and W̃m ∈ R

c×c′
are matrix of trainable convolution

parameters, αg(l) and αs(l) are the attention weights of the GCN and SCN lay-
ers, f is a nonlinear activation function, and Z is the output after convolution
operation.

B. Motif-Based SCN. In order to better learn the strong connection relation-
ship between nodes, we introduced motif and designed SCN based on motif.
Specifically, SCN includes four key steps: (1) rank nodes according to their
degree; (2) find neighbors based on motif for each node; (3) map the subgraph
to the tree: construct a m-ary tree for each node. The leaf nodes of the i-level
m-ary tree are replaced by the neighboring m-ary trees, and a K-level m-ary tree
is recursively constructed for each node; (4) arrange the tree into a regular grid
structure (Fig. 3).
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Fig. 3. For the root node (dark blue), find its motif neighbor (light blue, pink) as the leaf
node of the root node. Then take the leaf node as the root node, continue to find the leaf
node based on the motif pattern, and iterate continuously until it grows into a K-layer
m-ary tree. Finally, the trees are arranged into a grid structure. (Color figure online)

C. Attention Layer. Similar to the attention equation mentioned by Vaswan
et al. [15], we introduce attention to the splicing process of GCN layer and SCN
layer:

Attention(l)(S(l), G(l)) = softmax(S(l)W (l)
s ⊕ G(l)W (l)

g ) (3)

where S(l) ∈ R
N×d is the last output of SCN, D(l) ∈ R

N×d is the last output
of GCN, d denotes the dimensions of each vertex and W

(l)
s ∈ R

d×d and W
(l)
g ∈

R
d×dout are two learnable matrices.

4 Experimental Results

We set up the experiments on benchmark datasets to evaluate the solid perfor-
mance of the proposed LGL model against both state-of-the-art graph kernels
and other deep learning methods on graph classification problems.

Datasets. We conducted the experiments using three bioinformatics datasets:
MUTAG, PROTEINS, PTC-MR and one social networks datasets: IMDB-B.
The details of the datasets are shown in Table 1.

Table 1. Information of the benchmark datasets

Datasets Graphs Classes Avg. nodes Avg. edges Labels Description

MUTAG 188 2 17.93 19.79 7 Bioinformatics

PROTEINS 1113 2 39.06 72.82 3 Bioinformatics

PTC-MR 344 2 14.29 14.69 19 Bioinformatics

IMDB-B 1000 2 19.77 96.53 – Social
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Experimental Setting. We compare the performance of the proposed LGL
model on graph classification tasks with a) four alternative state-of-the-art
graph kernels and b) five alternative state-of-the-art deep learning approaches
for graphs. To be specific, the graph kernels include 1) the Weisfeiler-Lehman
subtree kernel (WLSK) [16], 2) the shortest path graph kernel (SPGK) [17], 3)
the random walk graph kernel (RWGK) [18], and 4) the graphlet count kernel
(GK) [19]. The deep learning methods include 1) the deep graph convolutional
neural network (DGCNN) [9], 2) the quantum-based subgraph convolutional
neural networks (Qs-CNNs) [10], 3) the backtrackless aligned-spatial graph con-
volutional networks [20], 4) the deep graphlet kernel (DGK) [21], and 5) the
diffusion convolutional neural network (DCNN) [22].

Table 2. Classification accuracy (In% ± standard error) for comparisons

Datasets MUTAG PROTEINS PTC-MR IMDB-B

WLSK 82.88± 0.57 73.52± 0.43 58.26± 0.47 71.88± 0.77

SPGK 83.38± 0.81 75.10± 0.50 55.52± 0.46 71.26± 1.04

RWGK 80.77± 0.72 74.20± 0.40 55.91± 0.37 67.94± 0.77

GK 81.66± 2.11 71.67± 0.55 52.26± 1.41 65.87± 0.98

DGCNN 85.83± 1.66 75.54± 0.94 58.59± 2.47 70.03± 0.86

Qs-CNNs 93.13± 4.67 78.80± 4.63 65.99± 4.43 –

BASGCN 90.05± 0.82 76.05± 0.57 61.51± 0.77 74.00± 0.87

DGK 82.66± 1.45 71.68± 0.50 57.32± 1.13 66.96± 0.56

DCNN 66.98 61.29± 1.60 58.09± 0.53 49.06± 1.37

LGL 90.16± 1.39 78.41± 0.82 65.74± 1.80 66.51± 1.51

For the evaluation, we adjust a number of hyperparameters to get the best
performance of each dataset, as shown in Table 3. In SCN, we set up two motifs,
triangle and 4-cycle, to capture the neighbors of nodes, and construct 2-ary and
3-ary trees respectively. For our model, we perform 10-fold cross-validation to
compute the classification accuracy, with nine training folds and one validating
fold. For each dataset, we repeat the experiment 10 times and report the average
classification accuracy and standard errors in Table 2.

For the alternative graph kernels and deep learning methods except Qs-
CNNs, we report the best results collected and experimented by Bai et al. [23].
We report the best results for Qs-CNNs from the original paper [10]. Classifica-
tion accuracy and standard error of each competing approach are also shown in
Table 2.

Experimental Results and Discussions. Table 2 indicates that the proposed
LGL model can significantly outperform either the competing graph kernel meth-
ods or the deep learning methods for graph classification.
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Table 3. Hyperparameters settings for each dataset.

Parameters K m Motif conv conv1d fc fc num batch lr L2norm dropout

MUTAG 5 2 triangle 256 32 64 2 64 0.01 0 0.1

PROTEINS 4 3 4-cycle 32 32 256 3 16 0.0003 0 0

PTC-MR 4 3 4-cycle 256 32 128 2 32 0.01 0 0

IMDB-B 4 2 triangle 256 32 64 2 64 0.01 0 0

Overall, the reasons for the effectiveness of our method are threefold. First
of all, as mentioned earlier, most deep learning methods for graph classification
cannot well avoid the problems of oversmoothing and retention of rich global
and local information. On the contrary, the proposed LGL can alleviate these
problems and get better representation learning. Second, the graph kernels with
C-SVM classifier are shallow learning methods, while the proposed LGL model
can provide an end-to-end deep learning architecture. Thus LGL model can learn
better graph characteristics. Third, the use of motif to extract strongly connected
neighbor information for nodes simplifies the steps of quantum walk in Qs-CNNs.
The splicing of the results of local subgraph convolution and deep graph convo-
lution has achieved a performance exceeding DGCNN. This empirically proves
the effectiveness of the proposed LGL model.

5 Conclusions

In this paper, we have shown how to construct motif-based subgraph convolution
network for a graph and how to make use of both the global topological arrange-
ment information and local connectivity structures within a graph. Experimental
results on graph classification show our LGL model is superior to a number of
baseline methods.

It is interesting to notice that different practical problems have different
requirements for global and local information. For example, social networks may
rely more on the near-end neighbors of nodes, but the properties of chemical
molecules may depend on some remote nodes. In addition, the choice of motif
also greatly affects the effect of graph classification. Our future plan is to explore
the impact of more types of motifs on the experimental results, and a better way
to gather global and local information.
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Abstract. Graph classifications are significant tasks for many real-
world applications. Recently, Graph Neural Networks (GNNs) have
achieved excellent performance on many graph classification tasks. How-
ever, most state-of-the-art GNNs face the challenge of the over-smoothing
problem and cannot learn latent relations between distant vertices well.
To overcome this problem, we develop a novel Graph Transformer (GT)
unit to learn latent relations timely. In addition, we propose a mixed
network to combine different methods of graph learning. We elucidate
that the proposed GT unit can both learn distant latent connections
well and form better representations for graphs. Moreover, the proposed
Graph Transformer with Mixed Network (GTMN) can learn both local
and global information simultaneously. Experiments on standard graph
classification benchmarks demonstrate that our proposed approach per-
forms better when compared with other competing methods.

Keywords: Graph Convolutional Networks · Graph classification ·
Graph Transformer

1 Introduction

Graphs are widely used to model complex objects and their dependency rela-
tionships in many pattern recognition and machine learning tasks [19]. Along
with recent success of deep learning networks, booming interests are focalized
on utilizing these methods for analyzing large-scale and high-dimensional regular
or Euclidean data [19]. Particularly, Convolutional Neural Networks (CNNs) [20]
have become powerful tools to extract useful statistical patterns from large
datasets of images, videos, etc. However, because graph structure data is often
irregular or non-Euclidean, directly applying CNNs for analyzing such data is dif-
ficult. Therefore, great efforts have been devoted to extending CNNs to the graph
domain, and a great number of Graph Convolutional Networks (GCNs) [3,19]
have been developed for extracting meaningful features for graph classification.

In general, there are two main categories of GCNs, i.e., the spectral methods
and the spatial methods [3,19]. Specifically, the former defines convolution oper-
ation based on the spectral graph theory [5,6,12] by calculating the eigenvectors
c© Springer Nature Switzerland AG 2021
A. Torsello et al. (Eds.): S+SSPR 2020, LNCS 12644, pp. 139–149, 2021.
https://doi.org/10.1007/978-3-030-73973-7_14
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of Laplacian matrix. However, due to the heavy computational complexity of
calculating eigenvectors, these approaches cannot be expanded to big graphs
well. Instead, the latter methods are more flexible by defining operations on
neighbor vertices [2,18,19]. For example, Zhang et al. [19] introduced a Sub-
graph Convolutional Network (SCN) with quantum walk to facilitate regular
convolution operations computing on subgraphs. Zhang et al. [18] proposed a
novel Deep Graph Convolutional Neural Network (DGCNN) model to consider
vertex information both locally and globally. Nevertheless, two major problems
arising along with GCNs, i.e., over-smoothing and lack of capturing distant rela-
tions. For instance, SCN may lose sight of remote latent connections, DGCNN
also cannot learn these potential links well due to the over-smoothing problem.
Detailed explanation of these two major issues will be discussed in Sect. 3.1.

To overcome these issues, we propose Graph Transformer with Mixed Net-
work (GTMN) for graph classification problem. The framework of the proposed
GTMN is shown in Fig. 1. One important characteristic of the proposed GTMN
model is that it can learn latent relations between vertices without using the
adjacency matrix. Detailed discussions can be seen in Sect. 3.2 and Sect. 4.

Fig. 1. Overview of the proposed Graph Transformer with Mixed Network (GTMN)
architecture. At each step, the proposed Graph Transformer units (GT) take in the
input calculated by the Subgraph Convolution Network (SCN) model and the previous
output or the input graph. Each GT calculates the latent relationships between sub-
structures with different sizes. Up to K (depth of generated subtree) steps of GT are
performed. Outputs then are fed into a set of GCN layers. For n GCN layers, outputs
at layer i is concatenated and then n+1 big feature matrices are formed. Furthermore,
all of them are concatenated and fed into Layered SortPools hierarchically. The final
part of the network is to transmute graph features into grid structures and make a
prediction for the input graph.

2 Related Works

In this section, we briefly review some important related works of GTMN.
Specifically, we first introduce the Subgraph Convolution Network [19] (SCN).
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Then we show the operation of the Deep Graph Convolutional Neural Net-
work [18] (DGCNN). Finally, we elucidate the idea of the Transformer.

Subgraph Convolution Network. According to Zhang et al. [19], to operate
regular convolution, every vertex is given a QS-Score through quantum walk and
each node forms a m-ary subtree by grafting and pruning k-hop neighbor edges.
Then a subgraph of K-depth is generated from the subtree for a specific vertex.
Thus regular convolution operation is able to process on this subgraph, as shown
in Fig. 2.

(b)

(a)

Fig. 2. Detailed procedures of (a) SCN and (b) DGCNN.

Deep Graph Convolutional Neural Network. Zhang et al. [18] proposes
an spatially-based operation of GCN, i.e.

Z = f(D̃−1ÃXW), (1)

where Ã = A + I is the adjacency matrix of the graph with added self-loops, D̃ is
its diagonal degree matrix, W̃ ∈ R

c×c′
denotes a matrix of trainable parameters,

f is a nonlinear function, and Z is convolution’s output. For the defined Eq. 1,
it can be explained as each node’s aggregation with neighbor features.

Moreover, DGCNN introduces a pooling layer called SortPool based on the
Weisfeiler-Lehman (WL) algorithm. Vertices are sorted according to last outputs
of GCNs, which represent color labels reflecting topological importance. Detailed
procedures are shown in Fig. 2.

Transformer. Vaswan et al. [15] proposed an attention-based architecture
Transformer to replace traditional Recurrent Neural Networks (RNNs). The key
idea of the Transformer is a Multi-Head attention layer that can learn tokens’
connections. Numerous approaches have been developed to apply the transformer
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to graph domain tasks and have achieved great success [11,17]. Motivated by the
idea of transformer, we propose the Graph Transformer unit of our version in
Sect. 3.2.

Fig. 3. Detailed structure of Graph Transformer (GT) unit with SCN. Given previous
layer’s output or the input vertices’ features X(l−1) and preceding roots of all vertices’
sub-trees R(l−1) computed from SCN, multi-head attention can be calculated to learn
distant relations beyond original adjacency matrix. Then the output is concatenated
with X(l−1) and R(l−1) and layer-normalized. Next, the normed concatenation is fed
into one linear layer to constrain dimensions. After that, the final output of GT X(l)

is formed.

3 The Proposed Graph Transformer Unit

In this section, we first discuss the major existing problems in GCNs. Moreover,
we demonstrate the issue of learning latent relations between substructures.
Then we introduce our idea of Graph Transformer (GT) unit associated with
the random walk method. Finally, we illustrate how the GT can learn latent
relations well from the practical and theoretical perspectives.

3.1 Problems of Existing Spatial GCNs

Over Smoothing. Many spatial-based GCNs are facing the problem of over-
smoothing, for example, the typical graph convolution operation proposed by
DGCNN [18] in Eq. 1. This equation aims to aggregate each vertex’s neighbor
information and outputs a new graph representation. However, as the network
layer goes deeper, each vertex’s features appear to be similar and lose its distinct
information. This is called the over-smoothing problem [9]. As analyzed and
proved by Liu et al. [9], with more neighbors of larger distances aggregated,
each vertex will lose its distinction ultimately.
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Latent Relations Between Substructures. To overcome the over-smoothing
issue mentioned above, many methods are proposed [8,9]. In particular, it has
been shown that methods using random walks [19] are able to overcome this
problem through considering sub-graphs or substructures locally. Although more
efficient, the proposed methods suffer from the following issue, i.e., two distant
substructures’ latent relations cannot be learned well. Methods mentioned above
either learned these links too late or just ignored these distant links. This leads
to significant loss of latent information.

3.2 Graph Transformer Unit

To learn latent relations timely, we propose the Graph Transformer (GT) unit.
One main advantage of GT is that it can take distant nodes into consideration.
Concretely, the proposed GT unit is composed of a graph attention layer, a
layernorm layer and a linear layer. The detailed structure of GT can be seen in
Fig. 3. We specifically discuss the graph attention layer in this section.

Attention Layer. Similar to the attention equation mentioned by Vaswan et
al. [15], we propose our graph version:

Attention(l)(R(l−1),X(l−1)) = softmax(
R(l−1)W(l)

qkX
(l−1)T

√
d

)X(l−1)W(l)
v (2)

where R(l−1) ∈ R
N×d is the root vertices of SCN’s last output with shape N ×d,

X(l−1) ∈ R
N×d is the previous output of GT unit or the input graph features,

d denotes the dimensions of each vertex and W(l)
qk ∈ R

d×d and W(l)
v ∈ R

d×dout

are two learnable matrices. Usually, the attention layer requires three inputs
including query, key, and value. Here we define the last output of SCN as query,
and the previous output of GT unit or input graph features are considered as
key and value. Then we develop the graph multi-head attention layer as below.

MultiHead(l)(R(l−1),X(l−1)) = ||hi=1Attention
(l)
i (R(l−1),X(l−1))WO (3)

where || denotes concatenation of all attention heads and WO ∈ R
hd×out is a

projection matrix. Then we concatenate the output and the input altogether
and the concatenation is fed to the remaining layers.

3.3 Discussions of the Proposed GT Unit

Practically. Because of the advantages of multi-head attention and the local
information learned by SCN, these latent relations can be attained well. Accord-
ing to Eq. 2, similarity between the local info and graph representations are
calculated, thus similar substructures are guaranteed to be aggregated no mat-
ter how distant they are. Hence, the GT unit with multi layers can cap-
ture meaningful potential relations and learn better representations
of multiple scales.
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Theoretically. We show that the core of GT, i.e., a multi-head layer is a more
generic type of GCNs. Because each head of multi-head layer can learn a unique
adjacency matrix respectively, GT can aggregate vertices or substructures of
similar representations and learn both the local and global information well.
More specifically, for each headi, the calculation of softmax part in Eq. 2 is
Ãlatent ∈ R

N×N and it can be considered as a normalized latent adjacency
matrix, where Ai,j denotes the hidden relation between vertexi and vertexj .
Thus, Eq. 2 can be transformed to the following equation.

Attention(l)(R(l−1),X(l−1)) = ÃlatentX(l−1)W(l)
v (4)

which is quite similar to Eq. 1. Instead of using existing adjacency matrix,
GT is able to learn a better graph representation through a learnable
relation matrix. Hence, each head can learn a distinct latent relation and a
multi-head layer is able to learn multiple latent relations. With these better
learned representations on hand, GCNs can solve the problems mentioned above
better.

4 Mixed Graph Network

This section we propose a novel mixed network structure combined with GT
units. As shown in Fig. 1, the detailed procedure can be separated into three
main sections: 1. feature extraction (GT with SCN), 2. neighbor aggregation
(GCNs), 3. Classification (Layered SortPools with rest parts). Then we discuss
the advantages of the proposed mixed graph network.

Feature Extraction. We use the proposed GT units with SCN to learn better
graph representations, as GT can extract features without using the adjacency
matrix. Specifically, for each vertex of a graph, we generate its m-ary K-depth
subgraph for SCN [18]. Instead of using quantum walk, we sorted each node
by its degree for simplicity. Then we feed both the root of subgraphs and graph
vertices into GT for feature extraction. Note that the channels of GT’s output are
equal to the input. For K-depth subgraphs, we perform K-step GT extraction
and have K + 1 outputs (including the raw input).

Neighbor Aggregation. For each output of the first section, we separately
feed it to n-layer GCNs. Then we concatenate all outputs of GCN at layer i and
denote the concatenation as Xi (layer 0 contains all raw inputs). The GCN layers
help learn structural information that GT cannot well attain, because adjacency
matrix are concerned. After this section, n big feature maps are generated.

Classification. For graph classification task, we need to convert the irregular
feature maps into grid structures. Inspired by SortPool [18] and the hierarchical
approach of Bai et al. [2], we propose a multiple SortPooling layer called Lay-
ered SortPool. In general, this is a more generic version of DGCNN’s. Detailed
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procedures can be seen in Fig. 4. Moreover, we expand each output of Layered
SortPool and perform 1d-convolution with both step and kernel size equal to
the channels of feature maps. This extracts more features for each vertex and
outputs a reduction of a big feature map. Then for all conv1d outputs, we con-
catenate them altogether and feed the concatenation forward to get the final
probabilities for each class.

Fig. 4. Detailed procedures for Layered SortPool. Specifically, DGCNN’s SortPool uses
concatenation of all GCNs’ outputs. However, this may lead to some features’ loss.
Hence, we generalize the SortPool by making it layered, to learn features at different
levels.

Discussions of the Proposed Mixed Graph Network. First, because the
proposed GT units can learn latent relations between substructures, the pro-
posed GTMN can get better graph representations before feeding into GCN
layers. This helps avert the problem of over-smoothing as only a few convolution
operations need perform for learning neighboring information with the adja-
cency matrix. Second, we combine SCN with DGCNN through the proposed
GT units. More generally, each two graph approaches can be mingled by the
proposed GT. This helps the network to take advantages of the two underlying
methods and relieve their individual drawbacks. In conclusion, GTMN can
learn both local and global information simultaneously. With any two methods
combined, GTMN is able to well-extract latent relations between substructures
and learns better graph representations.

5 Experiments

In this section, we evaluate the performance of the proposed GTMN model,
and compare it with the state-of-the-art methods, i.e., traditional graph ker-
nels approaches and deep learning methods for graph classification on five graph
benchmarks [10]. Specifically, these benchmarks are abstracted from bioinfor-
matics and social networks. Details of these datasets are summarized in Table 1.
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Table 1. Details of the graph benchmarks

Datasets Graphs Classes Avg. nodes Avg. edges Labels Description

MUTAG 188 2 17.93 19.79 7 Bioinformatics

PTC 344 2 14.29 14.69 19 Bioinformatics

PROTEINS 1113 2 39.06 72.82 3 Bioinformatics

IMDB-B 1000 2 19.77 96.53 – Social

Experimental Setup. We compare the performance of the proposed GTMN
model on graph classification tasks with a) four alternative state-of-the-art
graph kernels and b) five alternative SOTA deep learning approaches for graphs.
Concretely, the graph kernels include 1) the Weisfeiler-Lehman subtree kernel
(WLSK) [13], 2) the shortest path graph kernel (SPGK) [4], 3) the random
walk graph kernel (RWGK) [7], and 4) the graphlet count kernel (GK) [14]. The
deep learning methods include 1) the deep graph convolutional neural network
(DGCNN) [18], 2) the quantum-based subgraph convolutional neural networks
(Qs-CNN) [19], 3) the backtrackless aligned-spatial graph convolutional net-
works (BASGCN), 4) the deep graphlet kernel (DGK) [16], and 5) the diffusion
convolutional neural network (DCNN) [1].

Table 2. Classification accuracy (In% ± standard error) for comparisons

Datasets MUTAG PROTEINS PTC IMDB-B

WLSK 82.88± 0.57 73.52± 0.43 58.26± 0.47 71.88± 0.77

SPGK 83.38± 0.81 75.10± 0.50 55.52± 0.46 71.26± 1.04

RWGK 80.77± 0.72 74.20± 0.40 55.91± 0.37 67.94± 0.77

GK 81.66± 2.11 71.67± 0.55 52.26± 1.41 65.87± 0.98

DGCNN 85.83± 1.66 75.54± 0.94 58.59± 2.47 70.03± 0.86

Qs-CNN 93.13± 4.67 78.80± 4.63 65.99± 4.43 –

BASGCN 90.05± 0.82 76.05± 0.57 61.51± 0.77 74.00± 0.87

DGK 82.66± 1.45 71.68± 0.50 57.32± 1.13 66.96± 0.56

DCNN 66.98 61.29± 1.60 58.09± 0.53 49.06± 1.37

GTMN 91± 3.14 81.08± 0.363 68.66± 2.49 69.9± 1.15

For the evaluation, we adjust a number of hyperparameters to get the best
performance of each dataset, as shown in Table 3. Note that every GT’s head
number is set equal to its input channel. We use tanh function in SCN and
GCNs, leakyReLU in each linear layer and conv1d layer. Also, each linear layer
is followed by a dropout rate. To optimize the GTMN model, we use the Adam
optimizer with the default parameters. For our model, we perform 10-fold cross-
validation to compute the classification accuracy, with nine training folds and



Graph Transformer: Learning Better Representations of GNNs 147

one validating fold. For each dataset, we repeat the experiment 10 times and
report the average classification accuracy and standard errors in Table 2.

For the alternative graph kernels and deep learning methods except Qs-CNN,
we report the best results collected and experimented by Bai et al. [2]. We report
the best results for Qs-CNN from the original paper [19]. Classification accuracy
and standard error of each competing approach are also shown in Table 2.

Table 3. Hyperparameters settings for each dataset.

Parameters K m gcn num conv conv1d fc fc num batch lr L2norm dropout

MUTAG 5 6 6 256 32 32 5 16 0.0001 0 0

PROTEINS 4 9 2 32 32 256 3 64 0.0003 0 0.05

PTC 4 5 3 256 64 64 3 128 0.0001 0 0

IMDB-B 4 9 2 64 256 256 2 256 0.001 0 0.5

Experimental Results and Discussions. Table 2 indicates that the proposed
GTMN significantly outperforms either the competing graph kernel methods or
the deep learning methods for graph classification.

Overall, the reasons for the effectiveness of our method are threefold. First,
the graph kernels with C-SVM classifier are shallow learning methods, while the
proposed GTMN can provide an end-to-end deep learning architecture. Thus
GTMN can learn better graph characteristics. Second, as elucidated earlier, most
deep learning approaches of graph classification can not well-avert problems of
over-smoothing and learn distant relations. Instead, the proposed GT units can
relieve these problems and learn better graph representations. Third, consider
the proposed Qs-CNN and DGCNN, GTMN simplify the quantum walk proce-
dure, generalize the SortPool layer and obtain better performance. This empiri-
cally demonstrates the effectiveness of the proposed GTMN.

6 Conclusions

In this paper, we introduce a novel spatially-based GCN model, i.e., the Graph
Transformer with Mixed Network (GTMN), to learn the latent relations between
substructures without using the adjacency matrix and alleviate the problem of
over-smoothing. Unlike most existing spatially-based GCN models, we propose
an attention-based Graph Transformer with a Mixed Network to learn these
potential features and learn better graph representations. Experimental results
on graph benchmarks indicate the effectiveness of the proposed GTMN.

For future works, the proposed GTMN only combines SCN with DGCNN,
using the most original GCN operations and pooling methods. It would be inter-
esting to combine other existing methods through the proposed GT units. Also,
we do not consider the labels of edge and other graph data tasks. This could be
another future work.



148 B. Wang et al.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (Grant no. 61976235, 61602535, 61773415), Program for Innovation
Research in Central University of Finance and Economics, and the Youth Talent
Development Support Program by Central University of Finance and Economics, No.
QYP1908.

References

1. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in
Neural Information Processing Systems, pp. 1993–2001 (2016)

2. Bai, L., Cui, L., Jiao, Y., Rossi, L., Hancock, E.: Learning backtrackless aligned-
spatial graph convolutional networks for graph classification. IEEE Trans. Pattern
Anal. Mach. Intell. (2020)

3. Bai, L., Jiao, Y., Cui, L., Hancock, E.R.: Learning aligned-spatial graph convo-
lutional networks for graph classification. In: Brefeld, U., Fromont, E., Hotho,
A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS
(LNAI), vol. 11906, pp. 464–482. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-46150-8 28

4. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Fifth IEEE
International Conference on Data Mining (ICDM 2005), 8-pp. IEEE (2005)

5. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

6. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163 (2015)

7. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled
graphs. In: Proceedings of the 20th International Conference on Machine Learning
(ICML 2003), pp. 321–328 (2003)

8. Li, G., Muller, M., Thabet, A., Ghanem, B.: DeepGCNs: can GCNs go as deep as
CNNs? In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 9267–9276 (2019)

9. Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 338–348 (2020)

10. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.:
TUDataset: a collection of benchmark datasets for learning with graphs. In: ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020)
(2020). www.graphlearning.io

11. Nguyen, D.Q., Nguyen, T.D., Phung, D.: Universal self-attention network for graph
classification. arXiv preprint arXiv:1909.11855 (2019)

12. Rippel, O., Snoek, J., Adams, R.P.: Spectral representations for convolutional neu-
ral networks. In: Advances in Neural Information Processing Systems, pp. 2449–
2457 (2015)

13. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(9), 2539–2561
(2011)

14. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: Artificial Intelligence and
Statistics, pp. 488–495 (2009)

15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

https://doi.org/10.1007/978-3-030-46150-8_28
https://doi.org/10.1007/978-3-030-46150-8_28
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1506.05163
www.graphlearning.io
http://arxiv.org/abs/1909.11855


Graph Transformer: Learning Better Representations of GNNs 149

16. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21st
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1365–1374 (2015)

17. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks.
In: Advances in Neural Information Processing Systems, pp. 11983–11993 (2019)

18. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

19. Zhang, Z., Chen, D., Wang, J., Bai, L., Hancock, E.R.: Quantum-based subgraph
convolutional neural networks. Pattern Recogn. 88, 38–49 (2019)

20. Zhang, Z., Chen, D., Wang, Z., Li, H., Bai, L., Hancock, E.R.: Depth-based sub-
graph convolutional auto-encoder for network representation learning. Pattern
Recognit. 90, 363–376 (2019)



Graph-Theoretic Methods



Weighted Network Analysis Using
the Debye Model

Haoran Zhu1, Hui Wu1, Jianjia Wang1(B), and Edwin R. Hancock2

1 School of Computer Engineering and Science, Shanghai University,
Shanghai, China

jianjiawang@shu.edu.cn
2 Department of Computer Science, University of York, York, UK

Abstract. Statistical mechanics provides effective means for complex
network analysis, and in particular the classical Boltzmann partition
function has been extensively used to explore network structure. One
of the shortcomings of this model is that it is couched in terms of
unweighted edges. To overcome this problem and to extend the util-
ity of this type of analysis, in this paper, we explore how the Debye solid
model can be used to describe the probability density function for parti-
cles in such a system. According to our analogy the distribution of node
degree and edge-weight in the network can be derived from the distribu-
tion of molecular energy in the Debye model. This allows us to derive a
probability density function for nodes, and thus is identical to the degree
distribution for the case of uniformly weighted edges. We also consider
the case where the edge weights follow a distribution (non-uniformly
weighted edges). The corresponding network energy is the cumulative
distribution function for the node degree. This distribution reveals a
phase transition for the temperature dependence. The Debye model thus
provides a new way to describe the node degree distribution in both
unweighted and weighted networks.

Keywords: Debye’s solid model · Degree distribution · Weighted
networks

1 Introduction

The study of complex networks has attracted sustained interest since it allows
the otherwise intractable interactions between the different units of complex
systems to be represented and analysed [8]. This usually involves the study
of the unweighted or weighted “edges” between vertices using methods from
graph theory [4]. However, the node degree distribution also plays a critical
role, since it describes the topological structure of networks and may determine
the evolution characteristics of a network [2]. It is widely confirmed that many
different types of real-world network exhibit a power-law degree distribution
and this can be induced by a linear preferential evolution mechanism [1]. This
property illuminates the statistical nature of structural connections in a network.
c© Springer Nature Switzerland AG 2021
A. Torsello et al. (Eds.): S+SSPR 2020, LNCS 12644, pp. 153–163, 2021.
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However, the literature mainly focusses on the analysis of the degree distri-
bution for unweighted networks, and rarely considers the distribution of edge
weights. This limits the exploration of the nature of network structure based
on information concerning the distribution of edge degree combinations or edge-
weights. Recently, sophisticated tools from statistical physics have provided pow-
erful ways to extend this kind of analysis [5,6]. These computationally efficient
methods rely on thermodynamic analogies to describe the different structural or
topological properties of networks [3]. For example, the Boltzmann distribution
provides expressions for the macroscopic thermal characteristics such as temper-
ature, energy and entropy from a microcosmic point of view [7]. This provides a
novel framework to analyse and understand the statistical structural properties
in weighted networks.

This work aims to establish effective statistical mechanical methods for mea-
suring the probability density function for nodes (and node degree) in weighted
networks. We commence from a thermal analogy using Boltzmann statistics,
which provides a physical meaning of the temperature and energy states in a
network. This allows us to introduce and leverage the Debye solid model to
calculate the degree distribution.

The Debye solid model originates a statistical mechanical tool for the analysis
of the distribution of phonon energy lattice structures from solid state physics.
Specifically, it considers the vibrations (or phonons) of the atomic lattice. This
treats the solid as an ensemble of harmonic oscillators. The model exhibits similar
connectivity patterns to those found in complex networks. The connected nodes
are analogous to the atoms, and the edge weights can be regarded as the phonon
energies of the harmonic oscillators. Since, in this more general thermal analogy,
the degree in the network has two degrees of freedom, i.e., in-degree and out-
degree, the model builds on analogies with two a dimensional crystal.

Using this model, we find that, for a given distribution of edge weights, the
node probability in a weighted network not only depends on the node degree but
also on the global temperature parameter. Furthermore, the corresponding net-
work energy is just the cumulative distribution function for the node probability.
Moreover, this reveals a phase transition for the temperature dependence.

2 Graph Representation

2.1 Preliminaries

Let G(V,E) be an undirected graph with node set V and edge set E ⊆ V × V .
The edge-set can be represented by an adjacency A, with elements A(u, v) = 1
if (u, v) ∈ E and A(u, v) = 0 otherwise. The diagonal degree matrix D has
diagonal elements D(u, u) = d(u), where du =

∑
v∈V Auv is the degree of node

u, and off diagonal elements D(u, v) = 0 if u �= v. Then, the Laplacian matrix is
given by L = D − A.

For a weighted network Gw, the pair of nodes (u, v) has an associated real
non-negative weight w(u, v) for each edge, i.e., u ∈ V, v ∈ V , and u �= v. The
adjacency matrix Aw for a weighted network is given by
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Aw =

{
w(u, v) if (u, v) ∈ E

0 otherwise.
(1)

where, for the undirected network, the weighted adjacency is symmetric, i.e.,
w(u, v) = w(v, u) for all pairs of nodes such that (u, v) ∈ E, u �= v.

2.2 Thermodynamic Representation

Here to model networks using a thermal analogy based on Boltzmann statistics,
each network is regarded as an isolated system with a fixed number of both nodes
|V | and edges |E|. The nodes in the network are mapped onto the particles in the
thermal system. Each edge has a unit weight. The corresponding node degrees
are analogous to the discrete energy states and the energy associated with each
node is proportional to the node degree, that is

ωu = εk (2)

where ωu is the energy per node which is identical to the node weight; and ε = 1
for an unweighted network, k is the degree per node; and k ∈ Z which is a
positive integer or zero and equal to the number of edges connecting to the node
u. Thus, the occupation number of the energy states depends on the degree of
the nodes connected by edges.

According to the Boltzmann distribution, the probability for an individual
node to be at a particular energy state is given by the exponential function

Pu =
1
Z

e−βωu (3)

where Z is the partition function subject to the constraint of energy conservation
and given by

Z =
|V |∑

u=0

e−βωu (4)

The average energy then can be derived from the Boltzmann partition
function

Ū = − 1
Z

∂Z

∂β
= −∂ log Z

∂β
(5)

This allows us to treat a network as a statistical ensemble with associated
thermal properties such as a partition function and a total energy.

3 Statistical Ensembles

For a network subject to Boltzmann statistics and in thermal equilibrium with
a fixed number of nodes and edges, the entropy can be computed using Boltz-
mann’s law, i.e. S = κB log W (U), where W (U) is the multiplicity of states and
the total energy in the network is
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U = ε|E| (6)

which is an integer number equal to the total number of edges when the weight
is unity.

The entropy relates to the number of ways for choosing |E| edges among the
available U + |V | − 1 possibilities. This is given by the combinatorial formula in
terms of the factorials

W (U) =
(U + |V | − 1)!
U !(|V | − 1)!

(7)

When number of nodes and edges are large, then the expression log W (U)
can be simplified by using Stirling’s approximation log n! ≈ n log n and as a
result

S = κB lnW (8)
= log[(U + |V | − 1)!] − log(U !) − log[(|V | − 1)!]
= (U + |V | − 1) log(U + |V | − 1) − U log U − (|V | − 1) log(|V | − 1)

where κB is the Boltzmann constant.
For a thermodynamic system of constant volume, the temperature (or equiv-

alently the parameter β, i.e., the inverse temperature) is the rate of change of
energy with respect to entropy of the network. That is given by

β =
(

∂S

∂U

)

|V |
=

1
w

log
U + |V | − 1

U
(9)

Given the temperature the partition function for the equilibrium state of the
thermal network system can be represented by the series expansion

Z =
|V |∑

u=0

e−βωu =
1 − e−|V |βω

1 − e−βω
≈ 1

1 − e−βω
(10)

From Eq. (3), the probability for a given node at a particular energy state
depends on the node degree

P (du = k) =
1
Z

e−βωu =
(
1 − e−βω

)
e−βεk (11)

This leads to definitions of energy and entropy that associated with the network
structure.

4 The Debye Model

The above analysis makes the rather limiting assumption that the weight for each
edge is uniform and the energy states for each node are discrete. It effectively
assumes that the density of states is simply a delta function. It is better to
assume a distribution of edge weights to make the nodal energy continuous by
replacing a density distribution.
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4.1 Node Probability

Hence, we would like to incorporate a function g(ω) which describes the density
of edge weights to allow us to make a more detailed analysis. The number of edge
states with weights between ω and ω + dω is given by g(ω)dω and we require
that the total edge weights sums to the number of edges, i.e. is given by

∫

g(ω)dω = |E| (12)

Equation (2) is equivalent to assuming that the node energy corresponds to the
degree. Here, on the other hand, we allow a more complex vectorial represen-
tation which accommodates the more general case of directed networks, which
admits both node in-degree and out-degree.

For the space of node in-degree and out-degree, we require two integers to
specify each node, i.e. the probability density for each node is bivariate depending
on two variables kin and kout and is normalised by the sum order these two
integers or equivalently by an integral over the volume element dkin, dkout in the
node. The discrete summation can thus be rewritten as the integral, that is

∑

k

(· · · ) =
1
4

∫ ∞

0

2πkdk(· · · ) (13)

Then, the density of states per node as a function of k is given by

g(k)dk =
S

(2π)2
· 2πkdk · 2 =

Sk

π
dk (14)

where the nodes in a network are assumed to be the square of area S = |V |2
and the factor 2 corresponds to the two degrees of freedom for edges.

Thus, the corresponding density of weights for each node is given by

g(ω)dω =
S

πε2
ωdω (15)

To derive the thermal quantities in the Debye model as a function of temper-
ature, we begin by writing down the logarithm of partition function as follows,

log Z =
∫ ωT

0

g(ω)dω log
[

1
1 − e−βw

]

= −
∫ ωT

0

g(ω)dω log
[
1 − e−βw

]
(16)

Then, from Eq. (5), we can calculate the energy of the network using

U = −∂ log Z

∂β
=

∫ ωT

0

g(ω)dω · ω

eβω − 1
=

S

πε2

∫ ωT

0

ω2

eβω − 1
dω (17)

Substituting Eq. (2) into Eq. (17), the corresponding energy is related to the
degree and is given by
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U =
∫ ωT

0

Sε

π
· k2

eβεk − 1
dk =

∫ ωT

0

P (β, k)dk (18)

As a result the probability of each node given the degree k and temperature β is

P (β, k) =
Sε

π
· k2

eβεk − 1
=

|V |2
2π|E| · k2

eβεk − 1
(19)

where S = |V |2, U = 2|E|ε. This describes the degree distribution in the
weighted network. It not only relates to the node degree, but also depends on
the global temperature parameter as well.

4.2 Upper Weight Boundary

Because there is an limit on the total number of edges given the number of
nodes in the network, the weight distribution has an upper bound ωT . This is
defined by

∫ ωT

0

g(ω)dω = 2|E| (20)

which, using Eq. (15), implies that

ωT =
(

4π
|E|
|V |2

)1/2

ε (21)

This allows us to rewrite Eq. (15) as

g(ω)dω =
4|E|ω
ω2

T

dω (22)

Thus, we now have all the ingredients necessary to apply the Debye model
to derive the macroscopic thermal characterisations for the network.

4.3 High- and Low-Temperature Limits

Now we substitute Eq. (22) into Eq. (16) to write the logarithm of the partition
function as

log Z = −4|E|
ω2

T

∫ ωT

0

ω log
[
1 − e−βw

]
dω (23)

According to Eq. (7), the average energy is

Ū =
4|E|
ω2

T

∫ ωT

0

ω2

eβw − 1
dω =

4|E|
ω2

T β3

∫ xT
β

0

x2

ex − 1
dx (24)

where x = βω = βεk. This equation does not lead to a simple temperature
dependence of average energy. This is because a) exponential term is both degree
and temperature dependent, and b) the integral is degree dependent. However,
we can analyse and simplify the low and high temperature limits.
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High-Temperature Limits. At high temperature, β → 0 and hence ex →
1 + x. Hence, the average energy Ū behaves as

Ū → |V |2
πε2β3

∫ εk

0

xdx =
|V |2
2π

· k2

β
(25)

The corresponding node probability in Eq. (19) is

P (β, k) =
|V |2
2π|E| · k

β
∼ kβ−1 (26)

Low-Temperature Limits. At low temperature, β → ∞ and hence ex 	 1.
The average energy is given by

Ū → |V |2
πε2β3

∫ ∞

0

x2

ex
dx =

|V |2
πε2β3

IB(2) (27)

where IB(2) = ζ(3)Γ (3) is the Bose integral, where ζ(3) is a Riemann zeta
function and Γ (3) a gamma function.

Then, the corresponding node probability in Eq. (19) is

P (β, k) =
C

ε2β3
· 1
k2

T

∼ k−2
T β−3 (28)

where C = |V |2IB(2)/π is a constant, and kT = ωT /ε.

5 Experiments and Evaluations

5.1 Data Set

Data Set 1: Here we use real world complex networks from the KONECT
database. This database contains a variety of networks including

– The collaboration graph for authors of scientific papers from the arXiv’s High
Energy Physics-Theory (hep-th) section. Here an edge between two authors
represents a common publication [9]. There are 22,908 vertices and 2,763,133
edges in the network.

– Facebook friendships network is the undirected network containing friendship
of users. A node represents a user and an edge represents a friendship between
two users [10]. There are 63,731 vertices and 817,035 edges.

– The Orkut network is the social network of Orkut users and their connections.
There are 3,072,441 vertices and 117,185,083 edges [11].

– The PPIs dataset extracted from STRING consisting of networks which
describe the interaction relationships between histidine kinase and other pro-
teins [13]. There are 216 vertices and 5,389 edges in the network.
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Data Set 2: This data comes from the New York Stock Exchange. It consists
of the daily closing prices of 3,799 stocks traded continuously on the New York
Stock Exchange over 2619 trading days. The stock prices were obtained from
the Yahoo! financial database [12]. A total of 415 stock are selected with the
historical stock prices from the beginning of January 2010 to the end of June
2020. In the network representation, the nodes correspond to stock and the edges
indicate that there is a statistical similarity between the time series associated
with the stock closing prices.
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Fig. 1. The node probability varying with the degree k and inverse temperature
β in Eq. (19). (a) Node probability with degree; (b) node probability with inverse
temperature

5.2 Experimental Results

We first conduct a numerical analysis on the node probability in Eq. (19).
Figure 1 plots how the node probability varies with the degree k and inverse
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Fig. 2. Network energy varying with degree according to Eq. (18)
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temperature β, respectively. In Fig. 1(a), there is a phase transition for the prob-
ability varying with the node degree. When the value of inverse temperature β
increases, the peak corresponding to the phase transition shifts towards zero. In
Fig. 1(b), the node probability exponentially decays with the inverse tempera-
ture. The larger value of node degree, the faster the decay.

Fig. 3. Degree distributions for real-world networks. The red curves are the actual
degree distributions and the blue curves are the result of simulation using Eq. (11).
(Color figure online)

Next we analyse the behaviour of the energy given in Eq. (18) with respect
to both degree and temperature. The expression in Eq. (18) is quite complicated
and it is not obvious by inspection how energy depends on temperature. This
is because the exponential term is both degree and temperature dependent and
the integral is degree dependent. Figure 2 shows the full degree dependence for
the energy. The energy increases with the degree until reaching a plateaux value
when the node degree is large. The energy also decreases rapidly when the inverse
temperature β increases.

We now turn our attention to the real-world datasets. We examine the pre-
dictions of the node probability distribution in Eq. (11) for the complex network
dataset. Figure 3 shows four degree distributions for different complex networks.
The red curves are the actual degree distributions and the blue curves are the pre-
dictions of our model. The four real networks come from the KONECT dataset,
and are the arXiv hep-th network, the Facebook network, the Google Orkut
user network, and a protein-protein interaction network. It is clear that, instead
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Fig. 4. The average energy and inverse temperature in S&P500 Index Stock Data
(2010–2020) for original financial networks.

of following the power law degree distribution, many real world complex net-
works follow the exponential distribution that we derived in Eq. (11). Actually,
our model fits well at the low degree range, and at high-degree the power-law
applies.

Finally, we use the time evolving financial networks to evaluate the energy
and inverse temperature. Figure 4 plots the derived energy and inverse temper-
ature for the stock exchange networks over the past decade. The stock market
networks undergo rapid structural fluctuations during critical financial events.
These events are listed in the caption of the figure. Compared with the energy,
the temperature is more sensitive to the fluctuations of the financial markets.
Sharp peaks in both energy and temperature indicate significant changes in net-
work structure during the different financial events.

In summary, our derived expression for the degree distribution can therefore
be used to fit the degree distributions of real complex networks. The correspond-
ing energy and temperature associated with the network structure can also be
used to identify abrupt changes of the pattern of edge connectivity.

6 Conclusion

In this paper, we make use of the Debye model to describe the node probabil-
ity distribution in weighted networks. We commence from a thermal analogy
described by the classical Boltzmann distribution. The particles in this thermal
system are analogous to the nodes in a network. The energy is determined by
the edge weights and node degree, which provides a physical interpretation for
temperature. Then, the Debye solid model leads to an exponential expression
for the probability density function of node degree. This then depends on the
edge weights and the global temperature parameter, both related to the con-
figuration of nodes and edges. The node probability density functions together
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with the cumulative distribution function for energy reveal a phase transition for
both the degree and temperature dependence. Experimental results show that
the derived distribution can be used to fit the degree distribution in naturally
occurring networks and identify anomalous structure in time evolving networks.
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Abstract. The dimension of the space underlying real-world networks
has been shown to strongly influence the networks structural properties,
from the degree distribution to the way the networks respond to diffusion
and percolation processes. In this paper we propose a way to estimate the
dimension of the manifold underlying a network that is based on Weyl’s
law, a mathematical result that describes the asymptotic behaviour of
the eigenvalues of the graph Laplacian. For the case of manifold graphs,
the dimension we estimate is equivalent to the fractal dimension of the
network, a measure of structural self-similarity. Through an extensive set
of experiments on both synthetic and real-world networks we show that
our approach is able to correctly estimate the manifold dimension. We
compare this with alternative methods to compute the fractal dimension
and we show that our approach yields a better estimate on both synthetic
and real-world examples.

Keywords: Manifold dimension · Complex networks · Weyl law

1 Introduction

Graphs have long been used as natural representations for a variety of real-world
systems, from biological systems [7] to transportation networks [6] and human
interactions [2,10]. These graphs often display non-trivial topological features
and are hence referred to as complex networks. The ultimate goal when analysing
these networks is that of establishing a link between the structural properties
of the networks and their function. To this end, a large number of techniques,
from node centralities [9,13] to entropy measures [11], have been introduced to
capture the local and global structural properties of a network [14,15,17,18].

Many real-world networks are embedded in either a two-dimensional or a
three-dimensional space, such as the network of collaborations between software
developers across the world [10] or railway networks [6]. It has been shown that
the structural properties of these networks are strongly influenced by the geome-
try of the underlying space. In the case where the underlying space is hyperbolic,
Krioukov et al. [8] have shown that heterogeneous degree distributions and strong
c© Springer Nature Switzerland AG 2021
A. Torsello et al. (Eds.): S+SSPR 2020, LNCS 12644, pp. 164–173, 2021.
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clustering naturally emerge as consequences of the negative curvature and met-
ric property of the space. When the underlying space is Euclidean, the network
is often referred to as a spatially embedded network and it’s been observed that
the probability of establishing a connection between two nodes tends to decay
exponentially as the distance between them increases [5].

Daqing et al. [5] proposed a way to measure the dimension of spatially embed-
ded networks. This is achieved under the assumption that the Euclidean distance
between the nodes is known and it requires measuring the average distance
between the nodes of subgraphs of increasing radius centered around randomly
chosen seed nodes. What Daqing et al. compute is effectively the fractal dimen-
sion of the network [18], a measure of the self-similarity of the network struc-
ture. It’s easy to show that the fractal dimension of a network is equivalent to
the dimension of the embedding space on regular lattices or in general manifold
graphs, i.e., graphs that can be seen as discrete representations of the continuous
underlying manifold. Interestingly, Daqing et al. [5] showed that the dimension
of the network is intimately related to the properties of diffusion and percolation
processes on the network.

Song et al. [17] explored instead two alternative methods to estimate the
fractal dimension of a network. The first method is very similar to [5] and involves
repeatedly sampling a set of random nodes in the network which are used to grow
clusters of nodes whose size is used to ultimately estimate the fractal dimension
of the network. In practice, this approach is shown to perform poorly in networks
with inhomogeneous degree distributions. A second method estimates the fractal
dimension of a network based on the box covering algorithm. This is however an
NP-hard problem so heuristics are needed to find an approximate solution [17].

In this paper, we propose an alternative way to estimate the manifold dimen-
sion of a weighted network, where the weights are not restricted to represent
Euclidean distances between the nodes as in [5]. Specifically, we propose to esti-
mate the manifold dimension of a network using Weyl’s law [21]. In spectral
theory, Weyl’s law describes the asymptotic behaviour of the eigenvalues of the
Laplacian associated to a bounded domain Ω ∈ R

d, establishing a power-law
relation between the eigenvalues and their indices. Crucially, the exponent of
this power-law relation depends on the dimension of the underlying manifold.
As a result, given a network, we are able to estimate the dimension of the under-
lying manifold from the spectrum of its Laplacian.

The remainder of the paper is organised as follows: Sect. 2 provides a brief
overview of the two most commonly used approaches to compute the fractal
dimension of a graph. Section 3 reviews Weyl’s law and introduces our method-
ology for estimating the manifold dimension of a network, which is then evaluated
on both synthetic and real-world networks in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Background

Similarly to the more general concept of fractal dimension of a set, the fractal
dimension of a network tells us something about how the structure of the network
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changes as we view it under lenses of varying size. In other words, the fractal
dimension of a network is a measure of how invariant or self-similar a network
is under a length-scale transformation [18].

Existing approaches to estimate the fractal dimension of a network are based
either on the box counting method or the cluster growing method. For a given
network G and box size lB , the box counting method (also known as box covering
method) defines a box as a set of nodes such that the distance between any two
nodes in the set is smaller than lB . The number of boxes of size lB required to
cover the network is NB(lB) and the goal of the box counting method is to find
the minimum value of NB(lB) for any value of lB . As shown in [17], this problem
can be mapped to the NP-hard graph colouring problem, so it’s typically solved
using a number of different heuristics. Given the optimal values of NB(lB) for a
varying number of box sizes, the fractal dimension dB of the network is given by

NB(lB) ≈ l−dB

b . (1)

Note that, as a consequence of the heuristic nature of the algorithms used to
approximate the solution of the box covering problem, the minimum number of
boxes for a given size is likely to be overestimated and thus the fractal dimension
is instead underestimated.

The cluster growing method instead selects a number of seed nodes at ran-
dom. For each seed, a cluster is defined as the set of nodes a distance less or
equal to lC from the seed. For each cluster we compute the mass MC(lC) as the
number of nodes in the cluster. Then the fractional dimension dC is given by

MC(lC) ≈ ldC

C , (2)

where MC(lC) is the average mass of the clusters for a given value of lC [18].
The main drawback of this approach is that it performs poorly on networks
with inhomogeneous degree distributions. This is because by choosing the seeds
at random there is a high probability of including hubs in the clusters, leading
to a biased estimate of the fractal dimension [17].

3 Weyl’s Law and the Manifold Dimension of a Network

Let Ω ∈ R
d be a bounded domain and λj denote the j-th eigenvalue of the

Laplacian on this domain. Weyl’s law [21] states that

lim
λ→∞

N(λ)

λ
d
2

=
ωdvol(Ω)

(2π)d
(3)

where N(λ) = #{λj ≤ λ} is a function that counts the number of eigenvalues
less than or equal to λ and ωd is the volume of the unit ball in R

d. Equation 3
tells us that, for sufficiently large λ,

N(λ) ≈ kλ
d
2 (4)
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Fig. 1. Estimating the manifold dimension of a two-dimensional 20 × 20 grid graph.
The blue dots correspond to the (log N(λj), log λj/2) pairs computed on the eigenvalues
λ1, · · · , λ400 of the graph Laplacian. The manifold dimension is estimated on a selected
range of eigenvalues (highlighted in red) to take into account the conditions of Weyl’s
law and compensate for the boundary effects. (Color figure online)

where we used k to group the constants wrt to λ. Taking the logarithm of both
sides of Eq. 4 and ignoring the constant term, we get

log N(λ) ≈ d
log λ

2
. (5)

3.1 Estimating the Manifold Dimension of a Network

Let G be a manifold graph, or in other words a graph that accurately models
the topology of an underlying manifold of dimension d. Then Eq. 3 holds for
the eigenvalues of the Laplacian L of G and we can estimate the dimension d
from Eq. 5. Specifically, we use the slope of the regression line on the points
(log N(λj), log λj/2) as an estimate of d.

Figure 1 shows the values of the function in Eq. 5 sampled on the Laplacian
spectrum of a two-dimensional 20 × 20 grid graph. The slope of the regression
line in Fig. 1 is ∼2, confirming that in this instance our approach is able to
accurately capture the graph manifold dimension.

Note that the linear regression is best computed over a selected range of the
spectrum (highlighted in red in the toy example of Fig. 1) which excludes the
lowest and highest regions. This is because Eq. 3 doesn’t hold for low frequencies
and high frequencies end up capturing the local variations of the dimension near
the graph boundary.

Dealing with Edge Weights and Node Attributes. Our approach can eas-
ily take into account potential information on edge weights and node attributes
by incorporating them into the Laplacian. To this end, we turn distances and
dissimilarities between the nodes into similarities through a negative exponential
transformation.
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Fig. 2. Sample two-dimensional Delaunay graph (right) over 200 nodes and correspond-
ing log-log plot (left). The slope of the regression line is d = 2.08.

4 Experimental Evaluation

We perform an extensive set of experiments on both synthetic and real-world
networks to evaluate the proposed approach. We compare our results with those
obtained using the Maximum-Excluded-Mass-Burning (MEMB) algorithm of
Song et al. [17]. Specifically, we used the implementation made available by
Akiba et al. [1] at https://github.com/kenkoooo/graph-sketch-fractality. Unfor-
tunately we were unable to find any implementation of MEMB or alternative
algorithms that could take edge weights into account. To our understanding, it
should be relatively simple to extend MEMB and similar algorithms to deal with
networks where the distance between the nodes is available. Indeed Wei et al.
discuss such an extension in [20] but fail to provide an implementation of their
algorithm. For this reason, in the following experiments when comparing our
method with MEMB we show the results both with and without edge weights.

Finally, as discussed in Sect. 3, our method requires selecting a range of the
sorted eigenvalues to sample the values of the function in Eq. 5 and estimate the
manifold dimension. Unless otherwise stated, all the experiments in this paper
are performed keeping only the eigenvalues in the 7% to 20% range (see Fig. 1).

4.1 Synthetic Networks

Delaunay Graphs. We sampled 200 points uniformly on a two-dimensional plane
and we computed their Delaunay triangulation. We repeated this process 100
times and obtained 100 Delaunay graphs. Figure 2 shows one sample Delaunay
graph and the eigenvalues plot computed according to Eq. 5. The weights on
the edges of these graphs correspond to the Euclidean distance between the
corresponding pair of points. Note that these are manifold graphs embedded on
a two-dimensional space, so their manifold dimension is 2.

https://github.com/kenkoooo/graph-sketch-fractality
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Table 1. Manifold dimension estimated by our method and MEMB [17] for two-
dimensional Delaunay graphs and hypercubes of increasing dimension.

Network Delaunay (d=2) Hypercube (d=2) Hypercube (d=3) Hypercube (d=4)

Weyl 2.12 ± 0.01 2.00 3.07 4.05

MEMB 1.66 ± 0.01 1.32 1.83 2.16

Table 2. Manifold dimension estimated by our method and MEMB [17] on (u, v)-flower
networks with increasing fractal dimension.

Network (2, 2)-Flower (2, 3)-Flower (2, 4)-Flower (2, 5)-Flower (2, 6)-Flower

Weyl 2.01 1.91 1.74 1.67 1.62

MEMB 1.37 1.58 1.69 1.86 2.01

Hypercubes. We construct three hypercubes of increasing dimension: 1) one
two-dimensional hypercube of side 10, for a total of 100 nodes, 2) one three-
dimensional hypercube of side 8, for a total of 512 nodes, and 3) one four-
dimensional hypercube of side 6, for a total of 1296 nodes. The manifold dimen-
sion of the hypercubes is 2, 3, and 4, respectively.

Table 1 shows the values of the manifold dimension estimated by our method
and MEMB [17] on the synthetic datasets. For the Delaunay graphs we report
the average value of the dimension ± standard error. Note that MEMB con-
sistently underestimates the manifold dimension of the graphs. As explained in
Sect. 2, this is because computing the optimal box covering is NP-hard and thus
the solution found by heuristic approaches like MEMB is likely to overestimate
the number of boxes, leading to an underestimation of the manifold dimension.
The value estimated with our method, instead, consistently falls very close to
the ground truth. This is true even if we drop the edge weights in the Delau-
nay graphs. In this case, the average manifold dimension is estimated to be
2.31 ± 0.01.
(u, v)-Flowers. We also compare our method and MEMB on an additional set of
synthetic graphs where the fractal dimension can be computed analytically [16].
Starting from a cycle graph consisting of u + v nodes, new nodes and edges are
iteratively added by replacing each edge by two parallel paths, u and v edges long.
When 2 ≤ u < v, it can be shown that the network has a finite fractal dimension
equal to ln(u + v)/ ln(u). By fixing u = 2 and letting v grow, we can create
networks of increasing fractal dimension. While this trend is correctly captured
by MEMB, the dimension estimated with our method decreases as v increases,
as Table 2 shows. This isn’t surprising, as by fixing u and letting v grow we
are effectively creating a network that contains increasingly long unidimensional
string-like structures (see for example Fig. 2a in [16]). Indeed, the flower graphs
are fractal but not manifold, so our method cannot be applied.
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Fig. 3. Graphs (top) and corresponding log-log plots (bottom) for the urban street
networks of Bologna (d = 1.93), London (d = 2.11), New Delhi (d = 1.80), New York
(d = 2.09), Seoul (d = 2.03), and Venice (d = 2.00).

4.2 Urban Street Networks

We consider 6 urban street networks corresponding to 1-square mile maps of
Bologna (541 nodes and 771 edges), London (488 nodes and 729 edges), New
Delhi (252 nodes and 328 edges), New York (248 nodes and 418 edges), Seoul (869
nodes and 1,307 edges), and Venice (1,840 nodes and 2,397 edges) [4,9]. The edge
weights of these graphs correspond to the length of the road segment connecting
the two endpoints. Figure 3 shows the graph of the 6 cities and the corresponding
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Table 3. Manifold dimension estimated by our method and MEMB [17] on the urban
street networks of 6 cites around the world.

Network Bologna London New Delhi New York Seoul Venice

Weyl 1.93 (2.05 ) 2.11 (2.11 ) 1.80 (1.78 ) 2.09 (2.12 ) 2.03 (2.07 ) 2.00 (2.00 )

MEMB 1.60 1.55 1.56 1.52 1.59 1.50

log-log plots. Table 3 shows the value of the manifold dimension estimated by our
method and MEMB. In all 6 cases our method gives a result that is significantly
closer to what we expect to be ground truth for these networks (2), with New
Delhi having the lowest dimension. This in turn may be due to the particular
structure of the part of New Delhi captured in this dataset, with large areas
covered only by a small number of long roads, effectively lowering the estimated
dimensionality. As observed for the Delaunay graphs, removing the edge weights
has only a minimal effect on the estimate (italic in Table 3).

4.3 Other Real-World Networks

US Power Grid. This network represents the high-voltage power grid of the US
(Western states). The nodes (4,941) are transformers, substations, and gener-
ators, and the edges (6,594) represent transmission lines [19]. No edge weight
information or node coordinates were available for this network. The range of
the eigenvalues used to fit the regression line is 1% to 20%.

Dickens. This network represents the most commonly used adjectives and nouns
in the novel David Copperfield by Charles Dickens. The network has 112 nodes
with 425 edges connecting pairs of adjacent words in the text [12]. The edge
weights represent the Levenshtein distance between the words. The range of the
eigenvalues used to fit the regression line is 2% to 70%.

C. elegans. This is an unweighted network representing the Caenorhabditis ele-
gans neuronal network, consisting of 279 nodes representing nonpharyngeal neu-
rons and 2,287 edges representing synaptic connections [9,19]. The range of the
eigenvalues used to fit the regression line is 7% to 50%.

US Airports. This is the network of flight connections between the 500 US air-
ports with the highest traffic [3,9]. Each node (500) corresponds to an airport
and each edge (2,980) has an integer weight corresponding to the total number
of seats available on all the direct routes between the two endpoints within a
year. The range of the eigenvalues used to fit the regression line is 1% to 30%.

Figure 4 shows the log-log plots for these networks and Table 4 lists the esti-
mated manifold dimensions. While US power grid and Dickens are clearly man-
ifold, this is less obvious for C. elegans, where it is harder to distinguish between
boundary effects and non-manifold behaviour. The log-log plot for Airports, on
the other hand, shows at least two separate linear trends, suggesting that this
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Fig. 4. Log-log plots for the Powergrid (d = 2.13), Dickens (d = 1.65), C. elegans
(d = 3.75), and Airports networks (3.19).

Table 4. Manifold dimension estimated by our method and MEMB [17] on the Pow-
ergrid, Dickens, C. elegans, and Airports networks.

Network Powergrid Dickens C. elegans Airports

Weyl 2.13 1.65 (1.70 ) 3.75 3.19 (3.62 )

MEMB 2.34 2.58 2.98 2.93

is not a manifold network and thus our approach cannot be applied. In general,
note that the more manifold the graph is, the more robust the estimation of the
dimension wrt the chosen spectral range is.

5 Conclusion

We proposed a way to estimate the manifold dimension of a network using
Weyl’s law, a mathematical result that describes the asymptotic behaviour of
the eigenvalues of the graph Laplacian. We showed through an extensive set
of experiments on both synthetic and real-world networks that our approach is
able to correctly estimate the manifold dimension, yielding better estimates than
an alternative method based on box counting. Future work will investigate the
possibility of automatically selecting the spectral range to fit when estimating
the manifold dimension. Having access to larger urban networks, it would also
be interesting to see if the local manifold dimension of different subgraphs and
communities can be related to other quantities of interest.
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Abstract. Partial correlation is a popular and principled metric for
determining edges between nodes in a graph. However when the goal
is to both estimate network connectivity from sample data and subse-
quently partition the result, methods such as spectral clustering can be
applied much more efficiency and at larger scale. We derive a method
that can similarly partition partial correlation networks directly from
sample data. The method is closely related to spectral clustering, and
can be implemented with comparable efficiency. Our results also provide
new insight into the success of spectral clustering in many fields, as an
approximation to clustering of partial correlation networks.

Keywords: Partial correlation · Spectral clustering · Graphical
models · Graph partitioning

1 Introduction

Partial correlation is a natural choice for defining edges in a network. Unlike
edges based on affinity or distance, the partial correlation removes the effect of
indirect relationships [4] and measures the relationship based on the residual
only (Fig. 1). Gaussian graphical models [9] directly relate partial correlation
values to the inverse of the sample covariance matrix and to variable prediction
via linear regression [6]. Such computations are not efficient for large networks,
however; a separate regression problem must be solved for every variable. When
the goal is clustering or partitioning of the network, the problem is usually
approached, from a different perspective, with graphs formed simply via affinity
or univariate correlation. This is used as a starting point for graph-theoretical
approaches to partitioning such as spectral clustering [5], a continuous relaxation
of the normalized cut algorithm for partitioning graphs.

In simple terms, spectral clustering is typically computed by applying
k-means clustering to the rows of the last k eigenvectors of the Laplacian matrix
L. In cases where L must be computed first from a matrix of sample data A,
one can instead use the first k singular vectors of A [3]. As the first k singu-
lar vectors can be efficiently calculated for very large data sets, this provides
a means to directly estimate the partitioning of a network from sample data.
In such partitioning methods the relationships between nodes seems obfuscated
c© Springer Nature Switzerland AG 2021
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Fig. 1. Depiction of a network, where nodes e, f , and k are strongly interacting with
i, but only i is interacting with j; (a) the partial correlation ρi,j estimates edges by
removing contributions from e, f, k, identifying the outlier status of j. (b) edges based
on univariate tests such as affinity or distance result in a dense network where all nodes
appear connected.

under multiple approximations; first a crude univariate metric is used (Fig. 1);
second the partitioning of this graph is approximated with a continuous relax-
ation. Spectral clustering has empirically shown promise, even in areas where
partial correlation networks are preferred due to their sound statistical basis. In
[3] it was found that a spectral approach was empirically more generalizable than
simpler clustering methods, in terms of its ability to predict node relatedness for
held-out data. In [1], it is shown that spectral clustering can approximate the
community structure of a partial correlation network.

In this paper, we derive an algorithm for clustering of nodes in partial cor-
relation networks directly from sampled data. The result can be viewed as a
variant of spectral clustering with additional correction terms. We show that it
can be computed with comparable efficiency to spectral clustering and demon-
strate efficient computation for a dense network with roughly 100,000 nodes. We
find that the success of spectral clustering noted above can be attributed to the
small size of this correction term, particularly in situations where preprocessing
steps such as filter are applied to the data.

2 Method

We model the data signal at the ith node as the zero-mean Gaussian random
variable ai. The partial correlation ρi,j between ai and aj is the Pearson corre-
lation between the residuals after regressing out all other nodes except i and j
from both. These regression coefficients are defined as the solutions βi,j to the
linear regression problem

ai =
∑

k �=i

βi,kak + εi, (1)

where ai is the ith variable and εi is the residual. From these βi,j we can estimate
ρi,j as [6],

ρi,j = −βi,j

√
σi,i

σj,j
, (2)
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using the residual variances σi,i = (V ar(εi))−1. A common alternative formu-
lation exploits the symmetry of the partial correlation (i.e., that ρi,j = ρi,j by
definition) and uses the geometric mean to cancel the residual variances [7]

ρi,j = sign(βi,j)
√

βi,jβj,i. (3)

This also has the advantage of enforcing symmetry in sample estimates. If the
signs of βi,j and βj,i differ, ρi,j is typically set to zero.

To provide sample formulations of the above estimates, we define A as a
matrix containing data, with samples for ak in the kth column ak (which we will
assume has been standardized). The vector form of the solution to Eq. (1) can
be estimated as βi = A†

−iai, where A†
−i is the pseudoinverse of A after setting

its ith column to zeros. Equation (2) in terms of matrices becomes

P = DdBD−1
d , (4)

where Dd is a diagonal matrix with Di,i = di = ‖A−iβi − ai‖, and B is a
matrix with with βi as columns (where the ith element of βi is zero). P contains
our sample-based estimates of the partial correlations, with Pi,j describing the
partial correlation between nodes i and j. Again, we can avoid calculating the
residual variances using the method of Eq. (3) as follows,

P = sign(B) � (B � BT )◦ 1
2 , (5)

using the Hadamard (element-wise) product � and element-wise exponential ◦1
2 ,

and where the sign function is taken element-wise.

2.1 Efficient Regularized Estimation of Partial Correlation

Thus far we have merely converted sample estimates of partial correlations into
a matrix form. This direct formulation still requires a large amount of compu-
tation for each column of B (i.e., each node), by removing each column of A
in turn, then taking the pseudoinverse of the result. In this subsection we will
derive an efficient approach which only requires a single pseudoinverse for the
entire network estimate. We will also provide a general form which incorporates
regularization, often included as a heuristic data pre-processing step [2].

We incorporate regularization in the derivation by using the regularized pseu-
doinverse solution, βi = (A−i)

†
λ ai, where λ reflects the regularization parameter

used in calculating the pseudoinverse (e.g., the singular value cutoff used). In
order to remove the need for individual node pseudoinverses, we first define the
matrix B(0) with β

(0)
i as its ith column, B(0) = A†

λA = R, where A†
λ is the

regularized pseudoinverse of A, and where we have defined the (regularized)
resolution matrix R. For convenience we also define Ā−i as A−i with the ith
column (which is all zeros) removed. Then without loss of generality, we pre-
sume that A = (Ā−i,ai), in order to simplify the equations (i.e., the order of
the variables has been permuted so that the ith variable is last). With this we
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can write Aβ
(0)
i = (Ā−i,ai)β

(0)
i = ai. We similarly define β̄i as βi with the ith

element removed (recall βi was defined with a zero in the ith element). Then for
an �2-regularized pseudoinverse, the solution for β̄i is

β̄i = ĀT
−i

(
Ā−iĀT

−i + λI
)−1

ai (6)

= ĀT
−i

(
AAT + λI − aiaT

i

)−1
ai (7)

We employ the matrix inversion lemma to get

β̄i = ĀT
−i(AAT + λI)−1ai − ĀT

−i(AAT + λI)−1aiaT
i (AAT + λI)−1ai

−1 + aT
i (AAT + λI)−1ai

(8)

Meanwhile, the least-squares solution for β
(0)
i is,

β
(0)
i = AT

(
AAT + λI

)−1
ai =

(
r̄(λ)i

R
(λ)
i,i

)
, (9)

where r̄i is the ith column of the regularized resolution matrix with the ith
element removed, and Ri,i is the (i, i)th element. Utilizing these definitions in
Eq. (8) gives,

β̄i =
(

1
1 − Ri,i

)
r̄i (10)

To write the matrix version of this relation between B and R, we form
the matrix R−d defined as R with the values on the diagonal set to zero, and
perform the scaling as B = R−dDs where Ds is a diagonal matrix with Di,i =
si = (1 − Ri,i)−1. Inputting this into Eq. (4) gives

P(a) = DdR−dDsD−1
d . (11)

We can also write the d vector (the diagonal of Dd) as

di = ‖A−iβi − ai‖ =
∣∣∣ 1
1−Ri,i

∣∣∣
∥∥A

(
A†ai − ei

)∥∥ , (12)

where ei is the i column of the identity matrix.
We refer to Eq. (11) as the asymmetric version, as we ignore possible asym-

metries Pij �= Pji. Alternatively, we can extend the symmetric version of Eq. (5)
by plugging in B = R−dDs, to get,

P(s) = sign(1sT ) � (ssT )◦ 1
2 � R−d. (13)

where s is the vector with elements si = (1 − Ri,i)−1. In this version we set Pi,j

equal to zero when sign(si) �= sign(sj).
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1. Choose number of clusters K and initialize cluster centers ck, k = 1, ..., K;
while Convergence criterion not met do

2. Label each column as belonging to nearest cluster center:
lk = arg mini Dik, using minimum over distance Dik between every column
pk and every cluster center ci ;
3. Recalculate cluster centers as mean over data columns with same label:
ci = 1

|Si|
∑

j∈Si
aj , where Si = {k|lk = i} ;

end
Algorithm 1: k-means clustering of columns of P.

2.2 Efficient Clustering of P

Next we will show how to partition the partial correlation network directly using
the raw data A. A basic k-means clustering algorithm which could be used for
clustering the columns of P is given in Algorithm 1. Of course, for a large
network, P will be extremely large as it has one entry per edge, so N nodes
results in a matrix of size N × N . However, as we have eliminated the need for
node-specific pseudoinverses for each column, we can compute columns on-the-fly
as needed inside the clustering loop, as in

p(a)
i =

1
di(1 − Ri,i)

d � r−i

= d � (
A†αiai − Ri,iαiei

)
, (14)

where we have defined αi = [di(1 − Ri,i)]−1 and r−i is the ith column of R−d.
We can precompute one pseudoinverse, A†, the d vector from Eq. (12), and
the diagonal terms Ri,i of the resolution matrix. For the symmetric version we
compute columns on the fly with a similar form,

p(s)
i = sign(si)(sis)◦ 1

2 � r−i

= |s|◦ 1
2 � (A†σiai − Ri,iσiei), (15)

where σi = sign(si)|si| 1
2 = sign(1 − Ri,i)|1 − Ri,i|− 1

2 , which can also be precom-
puted. Generally we write either Eq. (15) or Eq. (14) as

pi = z � (A†ζiai − Ri,iζiei), (16)

for appropriate definitions of z and ζ.
The squared distances between a given center ci and a column pk of P can

be calculated as

D2
ik = ‖ci − pk‖22

= cT
i ci + pT

k pk − 2cT
i pk. (17)
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Since we are only concerned with the class index i of the cluster with the mini-
mum distance to each column, we can compute the labels as

lk = arg min
i

D2
ik

= arg min
i

{
cT

i ci − 2(ci � z)T (A†ζkak − Rk,kζkek)
}

. (18)

By forming a matrix Cz with weighted cluster centers ci � z as columns, and a
weighted data matrix Aζ with ζiai as columns, we can efficiently compute the
first part of the cross term for all i and k as (CT

z A†)Aζ , a K by n matrix. The
second part of the cross term can be computed by (element-wise) multiplying
each row of CT

z by a vector who’s kth element is Rk,kζk. Similar tactics can be
used to efficiently compute the mean over columns in each cluster, as

ci =
1

|S|
∑

j∈S

pj

=
1

|S|z �
⎛

⎝A† ∑

j∈S

ζjaj −
∑

j∈S

Rj,jζjej

⎞

⎠ (19)

So in general, we see that clustering of P can be implemented whenever we
are able to to implement k-means clustering of the original dataset A, taking
roughly double the storage space and computational resources.

In [2] we derived a similar algorithm for clustering columns of the matrix R;
in that case lk = arg mini

{
cT

i ci − 2cT
i A†ak

}
, and ci = 1

|S|A
† ∑

j∈S aj . In [3] we
showed that this algorithm could be viewed as a variant of spectral clustering.
So the corrections relating partial correlation clustering and spectral clustering
are due to the ζj and z scaling factors, plus the ej correction terms.

3 Results

First we produced an artificial dataset with a two-dimensional correlation struc-
ture. We generated 3000 samples for each of 300 random variables, with the kth
random variable defined as,

ak = xks0 + (1 − xk)s1 + ykt0 + (1 − yk)t1 + σnk,

where s0, s1, t0, and t1 and nk are independent unit-variance random variables,
and xk ∈ [0, 1] and yk ∈ [0, 1] are randomly-chosen points. Effectively, for vari-
ables with (xk, yk) nearer to each other, the signals ak are more correlated. We
expect a simple partitioning of the x, y domain as a result of clustering this
data. Simulated results are given in Fig. 2, using four clusters. By choosing the
regularization parameter at a level equivalent to choosing the first two nontriv-
ial eigenvectors, we achieved similar results for spectral and partial correlation
clustering even in the presence of high noise, while basic k-means clustering of
the noisy signals failed.
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KM =0 SC =0 PC =0 KM =5 SC =5 PC =5

Fig. 2. Simulated results for k-means(KM), spectral clustering (SC), and partial cor-
relation clustering (PC) of data with two-dimensional correlation structure, for noise
levels σ = 0 and 5.

Next we considered a high-dimensional real dataset. Figure 3 demonstrates
the algorithm applied to functional Magnetic Resonance Imaging (fMRI) scans
for a subject from the Human Connectome Project [8], compared to other clus-
tering approaches. The data was preprocessed by applying spatial smoothing
with a 5mm kernel, and regularization was used to achieve a cutoff of 30 percent
of singular values. The data contains 96854 time series with 1200 time samples
each, resulting in a data matrix A of size 1200 × 96854. Each column contains
a time-series describing the blood-oxygen-level dependent (BOLD) activity in
one voxel of the brain, so a network formed by comparing these signals pro-
vides an estimate of the functional connectivity of the brain. A clustering of
this network would produce an estimate of the modularity of function in the
brain. The network describing the relationships between all pairs of voxels, how-
ever, would require a P matrix of size 96854 × 96854, which is far too large
to fit in RAM. However the limited rank of this matrix means we only need
store the 96854 × 1200 pseudoinverse. In this case the clustering algorithm took
9 s on a desktop computer. We see that clustering of P produces much more
modular segmentation of the regions of the brain, particularly compared to the
conceptually-similar approach of clustering the network of univariate correlations
of the data instead.

Fig. 3. Clustering functional MRI data for single subject from the HCP project into 100
clusters; k-means clustering of the original time series (left); clustering of univariate
correlations between time series (middle); clustering of partial correlations between
time-series (right).

We tested the difference between spectral clustering and partial correlation
for this dataset. Using identical random initial clusters for both methods, we
plot the percentage of nodes which differ in the final clustering results in Fig. 4,
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as increasing amounts of spatial smoothing are applied. With spatial smoothing,
a common preprocessg step in many applications, the removal of the diagonal
terms will have less effect, as for example, the same information is increasingly
included in the neighboring variables.
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Fig. 4. Plot of difference between clustering partial correlation network versus spectral
clustering, showing close agreement between the methods, particularly with spatial
smoothing. Spectral clustering in this case uses the covariance matrix of the data as
weighted adjacency matrix.

4 Discussion

We derived an efficient approach to partitioning partial correlation networks and
demonstrated the approach on neuroimaging data, where we found a close sim-
ilarity to spectral clustering. This suggests another perspective on the success
of spectral clustering methods, as an approximation to clustering of a Gaus-
sian graphical model for the data. A benefit of the proposed approach is its
principled basis as a direct estimate for a partial correlation network. As our
simulation shows, the benefit of spectral clustering over basic k-means can be
viewed, at least in a low-dimensional setting, as resulting from the regularization
effect of truncating the eigenvectors. With the experimental data, we also see a
close agreement with spectral clustering in higher dimensions, particularly when
spatial smoothing is employed. In terms of numerical efficiency, our approach
provides a more efficient calculation compared to the brute-force approach of
solving a separate regression problem for each node.

The drawbacks of the proposed approach include the moderately increased
computational effort, and the potential need to address asymmetric signs in the
partial correlation matrix. Though our approach to address the latter (setting
them to zero based on a sign test) is the approach commonly used in bioinfor-
matics. There are a number of potential extensions to the approach. Instead of a
simple k-means stage, we might apply a more sophisticated clustering algorithm
such as fuzzy or hierarchical clustering. Also we could extend the distance calcu-
lation to other and more sophisticated statistics or more sophisticated statistical
tests.
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5 Appendix: Matlab Implementation of Clustering

In this appendix we provide efficient Matlab code for performing partial corre-
lation clustering.

A = randn(500,100000); % simulate data matrix

lambda = 1; % regularization parameter

k = 100; % number of clusters

[rows_A,cols_A] = size(A);

% standardize data columns

A = bsxfun(@minus,A,mean(A));

A = bsxfun(@times,A,1./sum(A.^2).^.5);

% compute diagonal of R via sum of squared eigenvectors

[uA,sA,vA] = svd(A,’econ’);

r = sum(vA(:,1:rank(A)).^2,2)’;

r = r(:);

% compute pseudoinverse efficiently (assuming fewer rows than columns)

iA_lambda = A’*inv(A*A’-lambda*eye(rows_A));

% compute scaling vectors (symmetric version)

s = 1./(1-r(:));

z = abs(s(:)).^.5;

zeta = sign(s).*abs(s(:)).^.5;

Az = bsxfun(@times,A,z(:)’); % precompute scaled version

% randomly assign columns to clusters initially

c = ceil(rand(cols_A,1)*k);

n_change = inf

while (n_change>0) % clustering loop

M = sparse(1:cols_A,c,1,cols_A,k,cols_A); % cols of M are masks of clusters

M = bsxfun(@times, M, 1./sum(M,1)); % now M is averaging operator

P_c_1 = iA_lambda*(Az*M); % first part of cluster center calc

P_c_2 = bsxfun(@times,M,r.*zeta); % second park (peak removal)

P_c = bsxfun(@times,P_c_1-P_c_2,z(:)); % cluster centers

Pz2_c = sum(P_c.^2,1); % squared term from distance

Cz = bsxfun(@times,P_c,z(:)); % weighted cluster centers

D_ct1 = (Cz’*iA_lambda)*Az; % first part of cross-term

D_ct2 = bsxfun(@times,Cz’,r’.*zeta(:)’); % second part of cross term

D_ct = D_ct1-D_ct2; % cross-term

Dz = bsxfun(@minus,D_ct,.5*Pz2_c’); % dist metric (sans unnecessary term)

c_old = c;

[D_max,c(:)] = max(Dz,[],1); % c is arg of max

n_change = sum(c~=c_old);

disp(n_change);

end;
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Abstract. Accurate identification of Mild Cognitive Impairment (MCI)
based on resting-state functional Magnetic Resonance Imaging (RS-
fMRI) is crucial for reducing the risk of developing Alzheimer’s disease
(AD). In the literature, functional connectivity (FC) is often used to
extract brain network features. However, it still remains challenging for
the estimation of FC because RS-fMRI data are often high-dimensional
and small in sample size. Although various Lasso-type sparse learning
feature selection methods have been adopted to identify the most dis-
criminative features for brain disease diagnosis, they suffer from two com-
mon drawbacks. First, Lasso is instable and not very satisfactory for the
high-dimensional and small sample size problem. Second, existing Lasso-
type feature selection methods have not simultaneously encapsulate the
joint correlations between pairwise features and the target, the correla-
tions between pairwise features, and the joint feature interaction into the
feature selection process, thus may lead to suboptimal solutions. To over-
come these issues, we propose a novel sparse learning feature selection
method for MCI classification in this work. It unifies the above measures
into a minimization problem associated with a least square error and an
Elastic Net regularizer. Experimental results demonstrate that the diag-
nosis accuracy for MCI subjects can be significantly improved using our
proposed feature selection method.

Keywords: Alzheimer’s disease · Feature selection · Elastic net

1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia in old people,
which severely interferes with their daily life and may eventually cause death [3].
Effective and accurate diagnosis of AD at its early stage may possess crucial
significance in preventing progression of detrimental symptoms [3]. Recently, the
identification of MCI subjects is important for reducing the risk of developing AD
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and has attracted much attention recently [11]. However, it is very challenging
to identify MCI subjects due to its mild clinical symptoms.

In the literature, MCI is generally believed to be associated with a disconnec-
tion syndrome within brain networks. Therefore, constructing brain functional
connectivity (FC) networks based on the resting-state fMRI (RS-fMRI) BOLD
signals of various brain regions has become promising for MCI classification.
In this paper, we use a sliding window approach [9] to partition the RS-fMRI
BOLD signal from each voxel into multiple overlapping segments, in order to
capture the time-varying interactions between different ROIs and obtain a series
of dynamic FC networks. We then extract the corresponding FC features for
the subsequent brain network analysis. However, the number of the extracted
features is much larger than that of the MCI subjects, and more importantly,
many features may be irrelevant to the classification task, thus leading to the
overfitting problem.

In pattern recognition and machine learning, feature selection are powerful
tools for identifying the most salient features from the original feature space and
alleviating the overfitting problem [10]. In this regard, various feature selection
methods have been widely applied to detect the most discriminative features for
AD prediction. In some early works, Chyzhyk et al. [4] proposed an evolution-
ary wrapper feature selection using Extreme Learning Machines to determine
the most salient features for AD diagnosis. However, wrapper methods are often
computational burdensome and the results are biased depending on the classi-
fier [6]. To overcome these issues, many efforts have been devoted to developing
LASSO-type feature selection methods for AD diagnosis. For instance, Suk et
al. [7] utilized a group sparse representation along with a structural equation
model to estimate FC from RS-fMRI. Wee et al. [9] proposed a fused sparse learn-
ing algorithm for early MCI identification. Chen et al. [3] developed a two-stage
feature selection procedure to select a subset of the original features for MCI
classification. However, existing LASSO-type feature selection methods for MCI
classification suffer from two common limitations. First, LASSO shows instabil-
ity and is not very satisfactory for high-dimensional small sample size problem.
Second, existing Lasso-type feature selection methods have not simultaneously
encapsulate the joint correlations between pairwise features and the target, the
correlations between pairwise features, and the joint feature interaction into the
feature selection process, thus may lead to suboptimal solutions.

To effectively tackle the issues of existing Lasso-type sparse learning feature
selection methods, we propose a new feature selection method, i.e., Tripple-EN
for MCI classification. We commence by defining three new information theoretic
criteria to measure: 1)the relevancy of pairwise features in relation to the target
feature, 2) the redundancy of pairwise features and 3)joint feature interaction.
With these measures to hand, we formulate the corresponding feature subset
selection problem as a least square regression model associated with an elastic
net regularizer to simultaneously maximize relevancy, minimize redundancy, and
maximize joint interaction of the selected features. An iterative optimization
algorithm based on the alternating direction method of multipliers (ADMM) [1]
is proposed to solve the optimization problem.
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The advantages of the proposed method are twofold. First, it encapsulates the
pairwise feature relevancy, feature redundancy and joint feature interaction into
a unified learning model to improve the performance of feature selection. Second,
by using the elastic net regularizer, the proposed method can ensure sparsity and
also promote a grouping effect of the features. Figure 1 shows an overview of the
framework of this paper, which consists of the following steps: (1) constructing
brain FC networks using a sliding window strategy, (2) identifying the most
discriminative features using a new sparse learning feature selection method,
and (3) implementing classification following the C-SVM method. Details of
each step are illustrated in the following sections.

Sliding Window on Raw fRMI Time Series

… …

…
…

…
…

Constructing Brain Functional Networks

Standard Deviation

Standard Deviation

…
…

Pearson’s Correlations

Pearson’s Correlations

FS from Tripple-EN

…
…

dynamic FC
Stationary FC Selected Connectivity

Stationary FC
dynamic FC

Selected Connectivity

C-SVM Classifier

Fig. 1. Framework of this paper.

This paper is organized as follows. Section 2 introduces the construction of
the functional connectivity networks from brain networks. Section 3 illustrates
the proposed sparse learning feature selection method for MCI classification.
Finally, Sect. 5 concludes this paper.

2 Constructing Functional Connectivity Networks

In this section, we will introduce how to construct the functional connectivity
networks, which mainly consists of two steps, i.e., generating functional networks
using RS-fMRI and feature extraction.

2.1 Generating FC Networks Using RS-fMRI

As in Fig. 1, the preprocessed RS-fMRI data was parcellated using the Auto-
mated Anatomical Labeling (AAL) atlas with 116 ROIs [3], which are repre-
sented by the time series curves of different colors. We use a sliding window
approach to partition the RS-fMRI BOLD signal from each voxel into multiple
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overlapping segments, in order to capture the time-varying interactions between
different ROIs. Specifically, denote the total length of image volumes as M and
the length of the sliding windows as N . Then, the total number of segments is
K = �(M − N)/s�. On each segment, within the GM, a regional mean BOLD
signal is computed by averaging the BOLD time series over all voxels inside
each ROI, which reflects the regional neural activity during a short period of
time. We use Ck

ij to denote the Pearson’s correlation coefficients between ROI
i and ROI j on the k-th sliding window. Then we can obtain the interregional
dynamic FC (dFC), denoted as dFCij = [C1

ij , ..., C
k
ij , ..., C

K
ij ], which measures

the time-varying interactions of FC between ROI i and ROI j. As shown in
Fig. 1, we can obtain a series of dynamic time-varying FC networks. Note that,
due to the symmetry of Pearson’s correlation, the number of dFC is equal to the
total number of ROI pairs.

2.2 Feature Extraction

To extract the features for further analysis, we calculate the standard devia-
tion of a series of dynamic FC networks and obtain one stationary FC net-
work for each subject. Specifically, the corresponding FC network for a series of
dynamic time varying networks is obtained by calculating the standard deviation

as
√∑K

k=1(C
k
ij−μ)2

K , where μ is the mean value of Ck
ij . With these FC networks to

hand, a total of 6670 features was generated. As shown in Fig. 1, for a series of
dynamic time-varying FC networks, we can construct a stationary FC network
for each subject, with each node representing a specific ROI and each edge repre-
senting the corresponding connection between pairwise ROIs, which incorporates
the information from a series of dynamic time-varying FC networks.

3 The Proposed Sparse Learning Feature Selection for
MCI Classification

In this section, we focus on the proposed sparse learning feature selection method
for identifying the most discriminative FC features. We commence by introduc-
ing the proposed information theoretic criteria for measuring the joint relevance
(significance) of different pairwise feature combinations with respect to target
labels, the redundancy of pairwise features, and the joint feature interaction,
respectively. Based on these measures, we develop the corresponding optimiza-
tion model for feature selection and sparse learning. Finally, an iterative opti-
mization algorithm based on ADMM is proposed to solve the feature selection
problem and identify the most discriminative feature subset.

3.1 Proposed Information Theoretic Criteria

Feature Relevancy. For a set of N features f1, . . . , fi, . . . , fN and the associated
target feature Y, the relevancy degree of each feature pair {fi, fj} in relation to
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the target feature is estimated through Pearson’s correlation coefficients, which
is defined as

W(fi,fj) = Cor(fi,Y) × Cor(fj ,Y). (1)

where Cor is the Pearson’s correlation measure. The first term Cor(fi,Y) mea-
sures the relevance of feature fi with respect to the target. Similarly, the second
term is the corresponding relevance of feature fj with respect to the target.
Therefore, W(fi,fj) is large if and only if both Cor(fi,Y) and Cor(fj ,Y) are
large (i.e., both fi and fj are informative themselves with respect to the target).

Additionally, it is desirable that strongly correlated features should not be in
the model together, i.e., the selected features should be less redundant. Therefore,
we propose the following criterion to measure the redundancy of pairwise features.

Feature Redundancy. For a set of N features f1, . . . , fi, . . . , fN , the redun-
dancy of the feature pair {fi, fj} is calculated as

U(fi,fj) = Cor(fj , fj) (2)

where Cor is the Pearson’s correlation measure.
Joint Feature Interaction. We propose to use the following criterion to

measure the joint interaction of different pairwise feature combinations with
respect to target labels. For a set of N features f1, . . . , fi, . . . , fj , . . . , fN and the
associated continuous target feature Y, the joint interaction degree of the feature
pair {fi, fj} is

Vfi,fj =
Cor(fi,Y) + Cor(fj ,Y)

Cor(fj , fj)
, (3)

where Cor is the Pearson’s correlation measure. The above measure consists of
three terms. The terms Cor(fi,Y) and Cor(fj ,Y) are the relevance degrees of
individual features fi and fj with respect to the target feature Y, respectively.
The term Cor(fj , fj) measures the relevance between the feature pair {fi, fi}.
Therefore, Vfi,fj is large if and only if both Cor(fi,Y) and Cor(fj ,Y) are large
(i.e., both fi and fj are informative themselves with respect to the target feature
representation Y) and Cor(fj , fj) is small (i.e., fi and fj are not correlated).

Furthermore, based on the proposed information theoretic measures, we con-
struct three interacted matrices denoted as W, U, and V respectively. Specif-
ically, each element Wi,j ∈ W represents the joint relevancy between a feature
pair {fi, fj} based on Eq. (1). Likewise, each element Ui,j ∈ U represents the
redundancy between a feature pair {fi, fj} based on Eq. (2). Moreover, each ele-
ment Vi,j ∈ V represents the joint interaction between a feature pair {fi, fj}
based on Eq. (3). Given W, U, V and the N -dimensional feature indicator vec-
tor β, where βi represents the coefficient for the i-th feature, we can identify
the informative feature subset by solving the following optimization problem
to ensure maximum joint relevancy, minimum redundancy, and maximum joint
interaction of the selected features,

max f(β) = maxβ∈�N νβTWβ − ωβTUβ + σβTVβ,
s.t. β ∈ �N , β ≥ 0.

(4)

where ν, ω and σ are the corresponding tuning parameters.
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3.2 A Novel Sparse Learning Feature Selection Approach

Our discriminative feature selection approach is motivated by the purpose to
ensure maximum joint relevancy, minimum redundancy, and maximum joint
interaction of the selected features. In addition, it should simultaneously promote
a sparse solution and a grouping effect of the highly correlated features. There-
fore, we unify the minimization problem of Eq. (4) with the elastic net regression
framework and propose the sparse learning feature selection method as

min
β∈�N

1
2
‖yT −βTX‖22 +λ1‖β‖1 +λ2‖β‖22 −λ3β

TWβ +λ4β
TUβ −λ5β

TVβ, (5)

where λ1 and λ2 are the tuning parameters for elastic net, λ3, λ4, and λ5 are the
tuning parameters for the relevancy matrix W, the redundancy matrix U, and
the joint interaction matrix V, respectively. The first term in Eq. (5) is the least
square error term, the second term and the third term encourage sparsity and
also promote a grouping effect of the selected feature as in the elastic net model.
The fourth term guarantees maximum joint relevancy of selected features. The
fifth term ensures minimum redundancy among selected features. Finally, the
last term ensures that the selected features are jointly more interacted with the
target class.

3.3 An Iterative Optimization Algorithm

To solve the optimization problem (5), we develop an iterative optimization
algorithm based on ADMM, which uses a decomposition-coordination procedure.
By using ADMM, the solutions to small local subproblems are coordinated to
find a solution to a large global problem. This algorithm can be viewed as an
attempt to blend the benefits of dual decomposition and augmented Lagrangian
methods for constrained optimization.

Firstly, we reformulate the proposed feature selection problem into an equiv-
alent constrained problem in the ADMM form,

min
β∈�N

1
2
‖yT − βTX‖22 + λ2‖β‖22 − λ3β

TWβ + λ4β
TUβ − λ5β

TVβ + λ1‖γ‖1
s.t. β = γ, (6)

where γ is an auxiliary variable, which can be regarded as a proxy for vector
β. In this way, the objective function can be divided into two separate parts
associated with two different variables, i.e., β and γ. This indicates that the hard
constrained problem can be solved separately. As in the method of multipliers,
we form the augmented Lagrangian function associated with the constrained
problem (5) as follows

Lρ(β, γ, z) =
1
2
‖yT − βTX‖22 + λ2‖β‖22 − λ3β

TWβ + λ4β
TUβ − λ5β

TVβ

+ λ1‖γ‖1+ < β − γ, z > +
ρ

2
‖β − γ‖22, (7)
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where 〈·, ·〉 is an Euclidean inner product, z is a dual variable (i.e.,the Lagrange
multiplier) associated with the equality constraint β = γ, and ρ is a positive
penalty parameter (step size for dual variable update). By introducing an addi-
tional variable γ and an additional constraint β − γ = 0, we have simplified the
optimization problem (5) by decoupling the objective function into two parts that
depend on two different variables. In other words, we can decompose the mini-
mization of Lρ(β, γ, z) into two simpler subproblems. Specifically, we solve the
original problem (5) by seeking for a saddle point of the augmented Lagrangian
by iteratively minimizing Lρ(β, γ, z) over β, γ, and z. Then the variables β, γ,
and z can be updated in an alternating or sequential fashion, which accounts for
the term alternating direction. This updating rule is shown as follows

(1) βk+1 = arg minβ∈�p L(β, γk, zk), //β-minimization
(2) γk+1 = arg minβ∈�p L(βk+1, γ, zk), //γ-minimization
(3) zk+1 = zk + ρ(βk+1 − γk+1), //z-update

Given the above updating rule, we need to resolve each sub-problem iteratively
until the termination criteria is satisfied. We perform the following calculation
steps at each iteration.

(a)Update β
In the (k + 1)-th iteration, in order to update βk, we need to solve the

following sub-problem, where the values of γk and zk are fixed

min
β∈�N

1
2
‖yT − βTX‖22 + λ2‖β‖22 − λ3β

TWβ + λ4β
TUβ − λ5β

TVβ

+ λ1‖γ‖1+ < β − γk, zk > +
ρ

2
‖β − γk‖22. (8)

Let the partial derivative with respect to β be equal to zero, we have

∂[minβ∈�N
1
2‖yT − βTX‖22 + λ2‖β‖22 − λ3β

TWβ + λ4β
TUβ − λ5β

TVβ]
∂β

+
∂[minβ∈�N λ1‖γ‖1+ < β − γk, zk > +ρ

2‖β − γk‖22]
∂β

= 0, (9)

because ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂( 1
2‖yT −βT X‖2

2)

∂β = −Xy + XXT β
∂(λ2‖β‖2

2)
∂β = λ2β

∂(−λ3βT Wβ)
∂β = −2λ3Wβ

∂(λ4βT Uβ)
∂β = 2λ4Uβ

∂(−λ5βT Vβ)
∂β = −2λ5Vβ

∂<β−γk,zk>
∂β = zk

∂( ρ
2 ‖β−γk‖2

2)

∂β = ρ(β − γk),

(10)
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we have

−Xy+XXT β + λ2β − 2λ3Wβ + 2λ4Uβ − 2λ5Vβ + zk + ρ(β − γk) = 0, (11)

that is,

βk+1 = (XXT + λ2I − 2λ3W + 2λ4U − 2λ5V + ρI)−1(Xy − zk + ργk). (12)

(b)Update γ
Based on the results, assume βk+1

i and zk
i are fixed, for i = 1, 2, ..., d, we

update γk+1
i by solving the following sub-optimization problem

min
γi

λ1

p∑
i=1

‖γi‖1 −
p∑

i=1

< γi, z
k
i > +

ρ

2

p∑
i=1

‖βk+1
i − γi‖22, (13)

∂[minγi
λ1

∑p
i=1 ‖γi‖1 − ∑p

i=1 < γi, z
k
i > +ρ

2

∑p
i=1 ‖βk+1

i − γi‖22]
∂γi

= 0. (14)

We therefore have the following results

γk+1
i =

⎧⎪⎨
⎪⎩

1
ρ (zk

i + ρβk+1
i − λ1), if zk

i + ρβk+1
i > λ1

1
ρ (zk

i + ρβk+1
i + λ1), if zk

i + ρβk+1
i < −λ1

0, if zk
i + ρβk+1

i ∈ [−λ1, λ1]
(15)

(c)Update z
Then, assume βk+1

i and γk+1
i are fixed, for i = 1, 2, ..., d, we update zk+1

i by
using the following equation

zk+1
i = zk

i + ρ(βk+1
i − γk+1

i ). (16)

Based on procedures (a), (b), and (c), we summarize the optimization algo-
rithm below

Input: X,y, β0, z0, λ1, λ2, λ3, λ4, λ5, ρ
Step1: While (not converged), do
Step2: Update βk+1 according to Eq. (12)
Step3: Update γk+1

i , i = 1, 2, ..., d according to Eq. (15)
Step4: Update βk+1

i , i = 1, 2, ..., d according to Eq. (16)
End While
Output: β∗.

Algorithm 1: The iterative optimization algorithm for the proposed Tripple-EN

method.
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4 Experimental Analysis

We evaluate the performance of the proposed feature selection method for
MCI classification on the public available Alzheimer’s Disease Neuroimaging
Initative (ANDI) database. Specifically, 54 MCI patients and 62 NC subjects
were selected from ADNI database. The images of each subject were acquired
using a 3.0T Philips scanners at centers in different places. The voxel size is
3.13 × 3.13 × 3.13mm3. SPM8 software package was applied to preprocess the
RS-fMRI data. To evaluate the discriminative capabilities of the information
captured by our method, we compare the classification results using the selected
features from our method (Mu-InElasticNet) with several state-of-the-art feature
selection methods, i.e., (a) Lasso [8], (b) ULasso [2], (c) Group Lasso [5], and (d)
Elastic Net [12]. For the experiments, due to limited samples, a Leave One Out
(LOO) cross-validation associated with C-SVM is applied to benchmark the gen-
eralization performance of different methods. Specifically, given N subjects, N-1
subjects are used as training data, and one subject is subsequently evaluated
in terms of the classification accuracy. We repeat the procedure L times, and
report the averaged classification result. Figure 2(a) exhibits that the C-SVM
associated with the proposed method can achieve the best classification accu-
racy, and the accuracy (y-axis) increases with the increasing number of selected
features (x-axis). Moreover, Table 1 shows the best classification accuracy (ACC)
for each method associated with the corresponding number of selected features,
as well as other four associated indices, i.e., sensitivity (SEN), specificity (SPE),
area under the receiver operating characteristic curve (AUC), and F-score. We
observe that the proposed method significantly outperforms the remaining meth-
ods on all indices. The reason for the effectiveness is that only our method can
simultaneously maximize relevancy and minimize redundancy of the selected
features. Finally, we also experimentally evaluate the convergence property of
the proposed method. Figure 2(b) indicates that the proposed method converges
quickly within 50 iterations tend to be stable after 150 iterations.

Table 1. Performance of different methods in MCI classification (NC vs MCI).

Methods Lasso ULasso GroupLasso ElasticNet Tripple-EN

ACC 0.6578 0.6842 0.7105 0.7192 0.7894

SEN 0.6663 0.6800 0.7143 0.7059 0.8261

SPE 0.6783 0.6875 0.7077 0.7143 0.7647

AUC 0.6723 0.6821 0.7110 0.7101 0.7954

F-score 0.6567 0.6538 0.6796 0.6857 0.7600

Feature numbers 60 features 80 features 70 features 80 features 80 features
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Fig. 2. Experiments for the proposed method.

5 Conclusion

In this paper, we have proposed a novel sparse learning feature selection method
for MCI classification for AD diagnosis. Specifically, we devised three information
theoretic measures to evaluate feature relevancy, feature redundancy and joint
feature interaction. These measures are further encapsulated into the least square
regression associated with an elastic net regularizer to simultaneously maximize
relevancy, minimize redundancy, and maximize joint interaction of the selected
features. Experiments demonstrated the effectiveness of our method on MCI
classification tasks.
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Abstract. In this paper, we propose a proxy of the R0 (reproductive
number) of COVID-19 by computing the entropy of the mobility graph
during the first peak of the pandemic. The study was performed by
the COVID-19 Data Science Task Force at the Comunidad Valenciana
(Spain) during 70 days. Since mobility graphs are naturally attributed,
directed and become more and more disconnected as more and more
non-pharmaceutical measures are implemented, we discarded spectral
complexity measures and classical ones such as network efficiency. Alter-
natively, we turned our attention to embeddings resulting from random
walks and their links with stochastic matrices. In our experiments, we
show that this leads to a powerful tool for predicting the spread of the
virus and to assess the effectiveness of the political interventions.

Keywords: Graph embeddings · Graph complexity · COVID-19

1 Introduction

Motivation. The outbreak of COVID-19 in Spain activated several research
groups addressed to propose non-pharmacologic measures such as: (a) track the
impact of global/local lockdowns and (b) model the impact of lockdowns in the
progress of the infection. These are part of the objectives of the COVID-19 Data
Science Task Force. This task force is formed by 20 interdisciplinar scientists
of the main universities of the Comunidad Valenciana (CV). Our mission is to
interpret, aggregate and make reports to policy makers. It has four areas: mobile
data analysis (collect and geolocate anonymized cell phone data), epidemiological
models (formulation and fitting of metapopulation models such as SIR or SEIR
and agents-based ones, state of hospitals and ICUs), predictive models (hotspot
detection, risk-priority maps, etc.) and citizen’s science (covid impact survey).
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Outline of the Paper. The purpose of this paper is to show the link between
the R0 number of the SARS-CoV-2 and the complexity of the mobility graph.
The R0 (basic reproduction number) quantifies how many infectious cases are
generated by a single one. Therefore for R0 > 1 we have a spreading infection.
The larger it is the more difficult is to control the infection. According to the
Imperial College’s Report on March 30, 20201, R0 ≈ 5 in Spain by March 9,
2020, when social distancing was implemented. This number was reduced to
R0 ≈ 1 after the complete lockdown.

Global or partial lockdowns address the point of stopping the spread of the
virus by reducing the mobility of people. This is why in the COVID-19 Data
Science Task Force we started to work with anonymized mobility data. One of
the objectives was to find a proxy of the spread of the virus by looking at mobility
graphs. In principle, we wanted to enrich the prediction power of our stochastic
epidemiological model (Sect. 2) where the effects of mobility where shadowed by
the big numbers of the metapopulation model.

Then, we turn our attention to look at the topology of the mobility graphs.
We followed two complementary strategies. One team studied the degree of frag-
mentation of the communities as the political measures were implemented. The
second team (ours) interpreted the graph in a different way. More precisely, we
looked at the stochastic matrices that encode the random walks potentially run-
ning on the network. Instead of dealing with a weighted digraph which is difficult
to analyze by spectral means, we looked at the powers of the transition matrices.
These matrices are the core to several recent embeddings such as node2vec [3],
Glove [5] and DeepWalk [8] among others. Their unifying principle is to extract
pairs of co-visited nodes and use these statistics (either by deep/shallow learning
or SVD factorization) to find vectorial representations of the nodes. With these
vectors at hand, one can use a vectorial complexity measure to find a correlation
between R0 and the topology of the graph. In Sect. 3 we show how the factor-
ization of the expected co-occurrence matrix leads to an informative embedding.
This information is given by the rank of the co-occurrence matrix and this rank
has deep implications in the complexity of several models of graphs. The key idea
here is to relate the rank with the degrees of freedom of the topology. Summariz-
ing, disconnected mobility graphs lead to low rank (i.e. redundant embeddings)
since the random walks running on them are too constrained (they perform a
few distinctive hitting patterns). However, more complex graphs are endowed
with high-rank embeddings. Herein, the use of vectorial entropy estimator is a
computational trick to bypass robust rank estimation.

In Sect. 4, we show our experiments with the SEIR model and the link
between R0 and the square of the vectorial entropy. In Sect. 5, we summarize
our conclusions.

1 https://spiral.imperial.ac.uk:8443/handle/10044/1/77731.

https://spiral.imperial.ac.uk:8443/handle/10044/1/77731
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2 Mobility in Epidemiological Models

We use cell-phone geolocation data2 to track the spread of the SARS-CoV-2
within the Comunidad Valenciana (CV) in Spain. We build mobility networks
to map 6.8 million people of 324 census block groups (CBGs) between March 15
and May 23, 2020. Each CBG has at least 5,000 people.

Stochastic SEIR. We overlay a metapopulation SEIR model in order to track
the infection trajectories, predict the R0 number and monitor the epidemiological
status of the 24 Health Departments of the CV. Each CBG maintains four sub-
population: susceptible (S), exposed (E), infectious (I), and removed (R). The
differential equations governing these sub-populations are:

St =
Xt

n

Et = St−1 − Xt

n
+

Yt

n

It = Et−1 − Xt

n
+

Zt

n

Rt = Rt−1 + It−1 − Zt

n
(1)

where X,Y and Z are binomial distributions:

Xt ∼ B(nSt−1, e
−βIt−1), Yt ∼ B(nEt−1, e

−σ), Zt ∼ B(nIt−1, e
−γ) . (2)

and: n is the population, σ = 1/5.1, γ = 1/12 and β = R0γ. The most impor-
tant parameter is R0, the reproduction rate (or reproduction number), which
indicates the expected number of infectious cases generated by one case. In
order to incorporate mobility to the model, we have to consider that the pop-
ulation is divided into N CBGs. As a result we have the conservation rule:
St + Et + It + Rt = S0 + E0 + I0 + R0 = 1 for all t and

St =
N∑

i=1

S
(i)
t , Et =

N∑

i=1

E
(i)
t , It =

N∑

i=1

I
(i)
t , Rt =

N∑

i=1

R
(i)
t . (3)

The above decomposition applies also for the binomial distributions and we have:

Xt =
N∑

i=1

X
(i→j)
t , Yt =

N∑

i=1

Y
(i→j)
t , Zt =

N∑

i=1

X
(i→j)
t , (4)

where the superscript (i → j) denotes how many movers in the corresponding
state for the i−th CBG move to the i−th CBG.

Using this model we predict the infectious cases for the whole CV (see Fig. 1).
2 Provided the INE (National Institute of Statistics) due to an agreement between

the Spanish Government and the main phone operators. These data are anonymized
and register displacements between INE-CBGs.
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Mobility Graphs and Radiation Model. The daily movers between CBGs
create a mobility graph Gt = (V, Et,Wt) where |V | = N , and an edge εij ∈ Et

exists when Wt(i, j) = Mt(i,j)∑
k Mt(i,k)

> 0, where Mt(i, j) are the movers from node
i to node j at time t.

However, as we have only 324 CGBs we must introduce as much information
as possible in order to model mobility fluxes properly. Therefore we use the
so called radiation model [11] which takes into account the populations of the
commuting CGBs as well as the populations of the CGBs in between. In this
model Wt(i, j) is multiplied by

Tij =
NiNj

(Ni + Sij)(Ni + Nj + Sij)
(5)

where: Ni and Nj are the populations of CGBs i and j, and Sij is the number
of people in a circle centered at i with radius rij . This model is parameter-
free (wrt to others such as the gravitational one) and it predicts better the
probability of observing a flux given the known distribution of the populations
(origin, destination, in-between).

0

200

400

600

800

mar 15 abr 01 abr 15 may 01 may 15
date

co
un

t

source

model

observation

population

Daily cases

Fig. 1. SEIR model: observed vs predicted cases
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3 Entropy of Mobility Graphs

3.1 Embeddings and Random Walks

0.0

0.1

0.2

0.3

mar 15 abr 01 abr 15 may 01 may 15
date

ra
te

source

entropy

milestones

Fig. 2. Correlation between R0 and graph entropy.

Expected Random Walks. Following the standard factorization approach for
network embedding [6], the latent representations for nodes of G = (V,E) are
obtained from the SVD of M̂G = log(max(MG, 1)), where MG is the Pointwise
Mutual Information (PMI) matrix. More recently, Qiu et al. [9] show that MG

can be posed in the following terms

MG =
vol(G)

b
SG, SG =

(
1
T

T∑

r=1

Pr
G

)
D−1

G , (6)

where PG = D−1
G WG is the transition matrix of G. This emphasizes the role of

the random walks (RWs) in the resulting embedding. For instance, following [2]
SG can be seen as the expectation of the co-ocurrence matrix OG ∈ R

N×N where
the OGij

entry contains the number of times nodes i and j are co-visited within
a context distance T , i.e. the number of times that a random walk starting an
any node hits both i and j at most T steps. The hyperparameter T is called the
window size and it controls the extent of a nodal context. Thus, for a fixed T
Abu-El-Haija et al. define:

E[OG;T ] =

(
T∑

r=1

Pr(c ≥ r)Pr
G

)
P0

G, (7)
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Fig. 3. Fitted (blue line) v real (black dots) graph entropy. (Color figure online)

where Pr(c ≥ r) is the probability that node c belonging to the context of any
anchor node is reached after r steps. Consequently, SG = E[O;T ] results from
assuming: (a) Pr(c ≥ r) = 1

T , and (b) P0
G = D−1

G . These simplifying assump-
tions lead respectively to: (a) Nodes within a context are chosen uniformly and
independently of how deep are the random walks, and (b) The probability that
a random walk starts at a given node i are inversely proportional to its degree
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di. Then, looking at SG we can interpret E[OG;T ] in light of the powers Pr
G of

the transition matrix. More precisely, since the embedding relies on the SVD of
SG, we herein propose to relate the entropy of G with the rank of SG.

Rank and Complexity. We commence by exploring random graphs G(N, ρ,Q)
with a community structure. The rank of E(PG) relies on that of E(AG) which
in turn is upper bounded by the rank of the K × K communicability matrix Q,
where K is the number of communities. The parameter ρ is a discrete probability
distribution, i.e.

∑K
k=1 ρk = 1, at it induces a node generator τ , where a given

node belongs to the k−th community with probability ρk. In addition, there is
an edge between two nodes i and j with probability Qτ(i),τ(j). This is the so
called Stochastic Block Model (SBM) [1] and its used for community detection.
We consider two cases:

(a) If Q is symmetric we have rank(E(AG)) ≤ K because the adjacency matrices
generated via SBMs have a block structure. One effective way of increasing
the latter upper bound is to minimize the entropy of ρ. This leads to (almost)
full-connected (complete) dis-assortative graphs with rank(E(AG)) ≈ N .
This includes ego-nets, that is networks that code social circles with a large
overlap between them such as the Facebook net [7].

(b) If Q is not symmetric it is the degree of asymmetry what determines whether
rank(E(AG)) ≈ N (the larger the better) or not, independently of the
entropy of ρ. This includes citation networks such as Cora [10]3, CiteSeer
for Document Classification [10]4, and Wiki5.

Summarizing, dense strictly directed graphs achieve the largest ranks for AG

and consequently for PG. This is the case of the mobility networks studied in
this paper. This is key, because usually rank(SG) ≤rank(PG) (matrix powers
and matrix addition do not preserve, in general, the rank).

The above facts lead us to interpret rank(SG) ≡ rank(E[OG;T ]) as a proxy
of the complexity of G:

(a) Low complexity. The rank determines the number of independent subspaces
of the expected co-ocurrence matrix. Thus, rank(E[OG;T ]) = p with p 	
N indicates that the hitting patterns of the RWs are highly redundant,
i.e. they collapse in a small number of p clusters, jointly visiting the same
nodes in each cluster. Such a redundancy reveals that the random walks are
constrained to hit the same subset of nodes independently of how far are
them from their anchors. As a result, low rank means also low transport
efficiency (and also low graph complexity) without relying on the inverse
lengths of the shortest paths.

3 Citation network containing 2708 scientific publications with 5278 links between
them. Each publication is classified into one of 7 categories.

4 Citation network containing 3312 scientific publications with 4676 links between
them. Each publication is classified into one of 6 categories.

5 Contains a network of 2405 web pages with 17981 links between them. Each page is
classified into one of 19 categories. https://github.com/thunlp/MMDW/.

https://github.com/thunlp/MMDW/
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(b) High complexity. When p is large (ideally p ≈ N) the co-occurrence patterns
are linearly independent because the RWs are less constrained. The absence
of bottlenecks favors transport efficiency due to the higher complexity of the
graph.

Rank and Entropy. Since rank estimation can be shadowed by numerical
errors [12], p typically over-estimates the number of real co-ocurrence clusters.
We herein address this problem by estimating the entropy of the embedding.
Therefore,

(1) Embedding. Let EG = Ud

√
Σd the embedding matrix given by the rank−d

approximation of log(max(MG, 1)) ≈ UdΣdVT
d where MG relies on SG (see

Eq. 6) i.e. on E[OG;T ]. Then, the i−th row ei of EG is the d−dimensional
embedding of the i − th node of G.

(2) Bypass Entropy. Given N d−dimensional points, their α−Rényi entropy Hα,
with α > 1 is consistently estimated by the following functional [4]:

Ĥα =
1

1 − α
log

Lp(F )
N1−p/d

, (8)

where: p = d(1 − α), F = (V, E) is a k−nn graph whose vertices are the
xi = ei the embedding vectors, the edges Eij are provided by the k-nn rule.
Therefore we have

Lp(F ) =
∑

Eij

||xi − xj ||2 (9)

and γ is a normalization constant that can be estimated by generating a large
sample of points in [0, 1]d and running the estimator in its k−nn graph.
Thus, given the embedding, the bypass entropy returns its entropy. It is
desirable to choose α ≈ 1 (close to the Shannon entropy). In this work we
set: α = 0.99, p = 2 and k = 4. The embedding vectors are also normalized
before computing the entropy.

4 Experiments

Setting: Mobility Flows. Following the INE protocol6, for each CBG, a cell
phone operator provides the number of terminals that are going to be consid-
ered as living population: owners of cell phone who spend most of the time at
that CBG from 00:00–6:00 am. This is the source CGB, whereas the destination
CGB is the most visited CGB from 10:00 am–16:00 pm if the owner is there at
least for 2 h. The operators (Telefónica, Orange, Vodafone) report the number
of movements to the destination CGB if there are at least 10–15 movements
(depending on the operator).

6 National Institute of Statistics: https://www.ine.es/covid/covid movilidad.htm
(Technical Project).

https://www.ine.es/covid/covid_movilidad.htm
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Predicting R0. Our stochastic SEIR model fits well the infection cases (see
Fig. 1). However, in absence of any other information the R0 parameter must
be adjusted daily and specially after imposing a non-pharmaceutical measure
(social distancing, lockdown). In practice, R0 can be seen as control parameter
that encodes all the measures implemented to slow down the propagation of
the virus. However, as most of these measures are somewhat related to mobility
we conjectured that there should be a mathematical relationship between the
entropy of the embedding (which reflects the degrees-of-freedom of mobility) and
R0. After experimentation, we found that

R0 ∝ (Hα)2 . (10)

as we show in Fig. 2, where we plot R0 and the above estimator at several
milestones during the lockdown. We give more details of the milestones and the
curve fitting of the entropy in Fig. 3. The quadratic relation R0 ∝ (Hα)2 seems
to rely on the L2 norm used to estimate Hα.

With this mathematical tool at hand we could monitor not only the global
evolution of the CV but also the evolution of each of its 24 Health Departments
during the first peak of the pandemic.

5 Conclusions

In this paper, we have proposed and successfully tested a proxy of the R0 number
via the complexity of the mobility graph. Such a complexity measure is closely
related to the rank of state-of-the-art matrices which encode co-visiting statistics.
The key idea is to relate the complexity of a graph with the degrees-of-freedom
of the random walks running on it. It these random walks are constrained then
the graph is simple (e.g. fragmented as it the COVID-19 mobility graph after
political interventions); otherwise the graph is complex.

Future work includes the validation of this model in larger graphs as well as
exploring the links between the proposed complexity and other alternatives. The
underlying idea is to make this proxy much closer to an early warning system. In
addition, the impact of entropy is being tested in a data-driven (Deep Network)
wrapping a SIR, feeded with data from 236 regions worldwide and applicable to
Comunitat Valenciana.
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Abstract. We are facing the challenge of rapidly increasing amounts
of data. Moreover, we observe that in many applications the underlying
data contains strongly related entities making graphs the most appropri-
ate structure for data modeling. When data is represented by means of a
graph, querying corresponds to a graph matching problem. The present
paper introduces a novel graph that models information from the medi-
cal domain with about 110,000 nodes and 220,000 edges. Additionally we
present several basic benchmark queries, i.e. specific subgraphs, from dif-
ferent categories that can be found multiple times in the medical graph.
Both the graph and the benchmark can be used to implement, test, and
compare novel graph matching algorithms in a real world scenario.

Keywords: Subgraph isomorphism · Graph matching · Graph
database

1 Introduction and Related Work

Many of the information repositories available are diverse, large, and often con-
tain strongly related entities. To cope with numerous and arbitrary relations
more efficiently, graph based databases are more and more recognized as versatile
alternative to relational databases [1]. In fact, in contrast with tabular structures
that use foreign keys for relationship modeling, graphs are able to represent not
only the values of entities, but can be used to explicitly model structural rela-
tions that might exist between different objects by means of edges [2,3]. More-
over, the user’s mental model of the data and the actual data structure stored on
a device are fully congruent. Hence, visualizations of graphs typically provide an
intuitive and clearly understandable overview of the underlying structures and
relationships.
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When a graph is employed for the purpose of data storage, the informa-
tion retrieved in response to a certain query is typically also a graph, which
may be, for instance, a subgraph of the underlying database graph [3]. In the
present paper, we employ the concept of subgraph isomorphism [4] for informa-
tion retrieval. Subgraph isomorphism indicates that a smaller graph is contained
in a larger graph. Let us assume that we represent a query by means of an
attributed graph q, termed query graph. Given q and the database graph G, we
can check whether the query graph q is contained in the underlying database G.

About a decade ago one of the authors of the present paper introduced a gen-
eralized form of graph isomorphism that is particularly well suited for informa-
tion retrieval from graphs [5]. This generalized subgraph isomorphism method-
ology allows to mask out attributes in query graphs that are irrelevant for a
particular question. Moreover, the algorithm also allows the definition of certain
variables in order to retrieve values of predefined attributes as well as the defini-
tion of constraints (for example variables that can assume only certain values).
In the meantime these basic concepts for subgraph matching in large graphs
have been implemented in many commercial software products (e.g. Neo4j or
Amazon Neptune, to name just two prominent examples).

Despite the fact that graph based databases have reached a mature level,
graph matching [6], information retrieval on graph-like structures [7], or human
interaction with graph models [8] are still active fields of research. The major
contribution of the present paper in this particular field is twofold. First, we
present a novel large graph that models heterogeneous information from the
medical domain by means of about 110,000 nodes and 220,000 edges. Second,
we present 21 benchmark queries, i.e. specific subgraphs, from seven different
categories that can be found multiple times in the large graph. These categories
represent important application scenarios and therefore we need to know how
efficiently they can be answered. The present paper is similar in spirit to [9–12]
where graphs and benchmark tasks for (sub)graph isomorphism or error-tolerant
graph matching are presented.

The remainder of the present paper is organized as follows. In Sect. 2 the basic
definitions are introduced. Next, in Sect. 3 the novel medical graph is introduced
and thoroughly described. Eventually, in Sect. 4, we define the benchmark tasks
in the form of subgraphs that can be found in the medical graph together with
the respective matching results and run times. Finally, in Sect. 5, we conclude
the paper and discuss some future work ideas.

2 Preliminary Definitions

We employ the property-graph-model in our approach. Formally, a graph is a
4-tuple g = (V,E, μ, ν), where

– V is the finite set of nodes
– E ⊆ V × V is the set of edges
– μ : V → {(t,x(t))|t ∈ Tnodes,x(t) ∈ (D1(t) × . . . × Dnt

(t))} is the node
property function

– ν : V × V → P({t|t ∈ Tedges}) \ ∅ is the edge type function.
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Through the node property function μ, each node u ∈ V in a graph is labeled
by a (type, property)-pair (t,x(t)). The first component, the type t, is an element
of a finite set of node types Tnodes. The node types group nodes together and
specify the roles they play within the graph. For example, some nodes could
represent objects of type Disease, while others represent nodes of type Symptom
or Treatment.

In our scenario, nodes also contain properties modeled by means of the second
component, i.e. x(t) = (x1, . . . , xnt

). In this property vector each attribute xi

belongs to some domain Di(t). The dimension of vector x(t), i.e. the number
nt of attributes, as well as each individual attribute domain Di(t) depends on
the actual type t of the node [5]. Possible properties for nodes of type Disease
would be, for instance, an ID, the name of the disease, or others.

Formally, edges are pairs of nodes, (u, v) ∈ V ×V and structure the graph. In
our scenario, edges are always directed and always connect exactly one start- with
one end-node. In some applications, however, it might be necessary to include
more than one edge between the same pair of nodes, because of the existence
of multiple relations. In the formal graph model provided above, this can be
accomplished by assigning several edge types to the same edge (u, v) by means
of the edge type function ν, i.e. ν(u, v) = {t1, . . . , tn}. Note that the range of
function ν is the power set of all edge types from the finite set Tedges. Assigning
n types {t1, . . . , tn} to edge (u, v) by means of ν is equivalent to providing n
individual edges from node u to node v [5]. In our scenario the edges do not
contain any further properties1.

A possible type of an edge between nodes of type Disease and Symptom
might be, for instance, causes. The adjacent nodes, the edge’s direction and the
label of the edge provide semantic clarity to the relationship.

3 Medical Graph

In the present paper we use the data structure g = (V,E, μ, ν) defined in the
previous section to model diverse information from the medical domain. To this
end, we automatically parse data from the following four public domains:

1. Wikidata: wikidata.org
2. SemMED: skr3.nlm.nih.gov/SemMed/
3. Medline: medlineplus.gov
4. DisGeNET: disgenet.org

From Wikidata we parse entities of five different types, viz. diseases, symp-
toms, treatments, behaviours (such as tobacco addiction or similar), and diag-
nostic tests. Next, we complement the set of diseases with entities extracted
from SemMED. From the same domain as well as from Medline we extract fur-
ther diagnostic tests (we select the most frequent diagnostic tests by means of a
simple heuristic). Also from SemMED we parse research papers and two patient

1 This can be generalized in a straightforward manner.
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characteristics (gender and age group) that might be typical for certain dis-
eases. The number of research papers is limited to eight papers per disease and
we require the title of the paper to include the name of the respective disease.
Finally, From DisGeNET we parse genes and proteins (we select genes with a
GeneSymbol-Score greater than, or equal to, 0.3).

All of these entities are modeled by means of nodes of different types and
with different sets of properties. In total 110,774 nodes of nine different types
are built by means of this procedure. In Table 1 the node types, the number
of nodes per type and the properties available in the different node types are
summarized.

Table 1. The node types, the number of nodes per type and the properties available
in the different node types.

Node type t ∈ Tnodes Count Properties x(t)

ResearchPaper 60,895 PMID, Abstract
Disease 28,000 CUID, Name, Description,

DOID
Protein 9,281 uniprodID
Gene 8,490 Name, GeneID, GeneSymbol

Score (level of evidence)
Treatment 1,606 CUID, Name
DiagnosticTest 1,384 CUID, Name
Symptom 588 CUID, Name
Behaviour 489 Name
PatientCharacteristic 41 CUID, Name
Total count 110,774

We use nine different edge types in order to connect the different nodes with
each other and build the graph (in total 221,920 edges are inserted). Actually,
we build a graph according to the star like scheme with nodes of type Disease
as most central nodes (see Fig. 1). In Table 2 the edge types, the number of edges
per type and the start- and end-node that are connected with the respective edge
are summarized. The complete graph is publicly available in a comma separated
file at https://github.com/kaspar-riesen/medical-graph.

4 Benchmark Tasks and Results

We divide our benchmark queries on the medical graph into the following seven
categories or patterns (see also Fig. 2): Single, Double, Triple, Triangle, Growing

https://github.com/kaspar-riesen/medical-graph
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Disease

Gene

associatedWith

Protein

falseStructureCauses

encodes

Behaviour

hasRiskFactor

PatientCharacteristic

isTypicalFor

Treatment

treats

ResearchPaper

mentions

DiagnosticTest indicates

Symptom

causes

Fig. 1. The nine types of nodes are connected by means of nine different edge types.

Table 2. The edge types, the number of edges per type and the start- and end-node
that are connected with the respective edge type.

Edge type t ∈ Tedges Count From To

mentions 62,940 ResearchPaper Disease
falseStructureCauses 43,088 Protein Disease
associatedWith 42,610 Disease Gene
indicates 29,702 DiagnosticTest Disease
isTypicalFor 26,671 Disease PatientCharacteristic
encodes 9281 Gene Protein
treats 5523 Treatment Disease
causes 1358 Disease Symptom
hasRiskFactor 747 Disease Behaviour
Total count 221,920

Star, Top Hub, and Max Overlap. Each category represents a different informa-
tion need ranging from finding information of a single symptom to differentiation
between diseases. For each pattern three different specific queries are defined and
described in the next paragraphs.

Single (see Fig. 3 (a)). We search for all nodes of . . .

Query 1 . . . type DiagnosticTest where the property name contains . . .
Query 2 . . . type Disease where the property name contains . . .
Query 3 . . . any type where any of the available properties contain . . .

. . .the search string liver.

Double (see Fig. 3 (b)). We search for all nodes of type. . .
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=
b
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type = y
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Fig. 2. The seven types of queries.

Query 4 . . . Treatment that are connected with an edge treats . . .
Query 5 . . . DiagnosticTest that are connected with an edge indicates . . .
Query 6 . . . Gene that are connected with an edge associatedWith . . .

. . .to a node of type Disease with the property name that contains the search
string breast cancer.

Triple (see Fig. 3 (c)). We search for all nodes of both types DiagnosticTest
and . . .

Query 7 . . . Symptom that are indirectly connected with two edges indicates
and causes via a node of type Disease whose property name contains the
search string deficiency.

Query 8 . . . Treatment that are indirectly connected with two edges indicates
and treats via a node of type Disease whose property name contains the
search string periodontitis.

Query 9 . . . Behaviour that are indirectly connected with two edges indicates
and hasRiskFactor via a node of type Disease whose property name contains
the search string arteriosclerosis.

Triangle (see Fig. 4 (a)). We search for all nodes of both types Protein or Gene
that are directly connected with an edge encodes with each other and simulta-
neously connected via edges associatedWith and falseStructureCauses with
a node of type Disease whose property name contains the search string . . .

Query 10 . . . type 1 diabetes.
Query 11 . . . hypothermia.
Query 12 . . . skin cancer.

Growing Star (see Fig. 4 (b)). We search for all nodes of type Disease that are
directly connected via edge causes with at least . . .
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name
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type = DiagnosticTest

Query 1

name

liver

type = Disease

Query 2
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liver

Query 3

(a) Queries of type Single

name
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cancer

type = Disease type = Treatment

Query 4

treats name

breast 
cancer

type = Disease type = DiagnosticTest
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Query 5

name
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cancer

type = Disease type = Gene
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Query 6

(b) Queries of type Double

type = DiagnosticTest

name

cy

type = Disease type = Symptom

Query 7

indicates causes

type = DiagnosticTest

name

periodo
ntitis

type = Disease type = Treatment

Query 8

indicates treats

type = DiagnosticTest

name

arterios
clerosis

type = Disease type = Behaviour

Query 9

indicates hasRiskFactor

(c) Queries of type Triple

Fig. 3. Queries of different types. Grey colored nodes represent the nodes being
searched for.

Query 13 . . . two nodes of type Symptom where the property name of the first and
second symptom contain the search string fever and fatigue, respectively.

Query 14 . . . three nodes of type Symptom where the property name of the first,
second, and third symptom contain the search string fever, fatigue, and
anorexia, respectively.

Query 15 . . . four nodes of type Symptom where the property name of the first,
second, third, and fourth symptom contain the search string fever, fatigue,
anorexia, and diarrhea, respectively.

Top Hub (see Fig. 4 (c)). We search for the five nodes of type Disease that have
the most edges of type . . .

Query 16 . . . treats (to nodes of type Treatment).
Query 17 . . . indicates (to nodes of type DiagnosticTest).
Query 18 . . . associatedWith (to nodes of type Gene).

Max Overlap (see Fig. 4 (d)). We search for maximum five nodes of type Disease
that share the most . . .

Query 19 . . . symptoms with a node of type Disease whose property name
contains the search string gastroenteritis.
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(d) Queries of type Max Overlap

Fig. 4. Queries of different types. Grey colored nodes represent the nodes being
searched for.

Query 20 . . . treatments with the node of type Disease whose property name
contains the search string hypertension.

Query 21 . . . mentions in research papers with the node of type Disease whose
property name contains the search string pulmonary.

In Table 3 the size of the result, i.e. the number of nodes that match the
given subgraphs, as well as the run time for the actual matching are shown for all
queries. We run our experiment on a Intel Core i7 with 16 GB RAM and we have
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implemented the graph model by means of the graph database implementation
Neo4j’s developer edition2. The size of the result sets varies from only one
node to more than 1,000 nodes per query. Also for the matching times quite
large differences are observable. The ground truth results for these matchings
can be found at https://github.com/kaspar-riesen/medical-graph.

Table 3. The result size and matching times of queries 1 to 21.

Query Size of result Time [ms]

1 7 nodes 3
2 90 nodes 77
3 1066 nodes 834
4 40 nodes 36
5 30 nodes 82
6 1089 nodes 276
7 19 nodes 7
8 45 nodes 13
9 10 nodes 7

10 6 nodes 155
11 14 nodes 114
12 59 nodes 112
13 18 nodes 12
14 7 nodes 4
15 2 nodes 7
16 5 nodes 84
17 5 nodes 7
18 5 nodes 40
19 5 nodes 3
20 5 nodes 12
21 1 node 41

5 Conclusions and Future Work

Several areas in science and industry are facing the challenge of rapidly increasing
amounts of data available, making scalable search methods inevitable. The vast
majority of efficient search methods are built for traditional, i.e. tabular data

2 One can define indexes on properties in Neo4j – however, we have omitted this
possibility in our evaluation.

https://github.com/kaspar-riesen/medical-graph
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representations. Yet, we observe that in many modern applications the under-
lying data is inherently complex, making this limited representation formalism
rather inappropriate. Graphs actually allow us to explicitly model relationships
between entities. When data is represented by means of a graph, a search for
information, or a pattern, exactly corresponds to a graph matching problem.
The present paper introduces a novel graph that models information from the
medical domain with about 110,000 nodes and 220,000 edges. Additionally we
present several basic benchmark queries, i.e. specific subgraphs, from seven dif-
ferent categories that can be found multiple times in the medical graph.

We see several rewarding avenues to be pursued in future work. First, we
invite the research community to test their own algorithms for subgraph isomor-
phism on the publicly available graph. Second, we see great potential to define
more complex and more time-consuming benchmark queries. Last but not least,
the medical graph could be substantially increased in the number of nodes and
edges by accessing and integrating further repositories.
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Abstract. The pre-image problem for graphs is increasingly attracting
attention owing to many promising applications. However, it is a chal-
lenging problem due to the complexity of graph structure. In this paper,
we propose a novel method to construct graph pre-images as median
graphs, by aligning graph edit distances (GEDs) in the graph space with
distances in the graph kernel space. The two metrics are aligned by opti-
mizing the edit costs of GEDs according to the distances between the
graphs within the space associated with a particular graph kernel. Then,
the graph pre-image can be estimated using a median graph method
founded on the GED. In particular, a recently introduced method to
compute generalized median graphs with iterative alternate minimiza-
tions is revisited for this purpose. Conducted experiments show very
promising results while opening the computation of graph pre-image to
any graph kernel and to graphs with non-symbolic attributes.

Keywords: Pre-image problem · Machine learning · Graph kernels ·
Graph edit distance.

1 Introduction

Graph structures have been increasingly attracting attention in pattern recog-
nition and machine learning. While they are able to represent a wide range of
data, from molecules to social networks, most machine learning methods oper-
ate on Euclidean data. Graph kernels allow bridging the gap between the graph
structure and machine learning thanks to the kernel trick. This trick consists in
implicitly embedding graphs into a Hilbert space, where kernel methods such
as Support Vector Machines can be easily operated. The reverse process of the
implicit embedding with kernels, namely the so-called pre-image, continues to
intrigue researchers. It corresponds to the mapping of elements from the kernel
space back to the input space. Many applications require computing the pre-
image, such as denoising or feature extraction with kernel principal component
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analysis [14]. The challenge of finding the pre-image lies in the fact that the
reverse mapping does not exist in general and that most elements in the kernel
space do not own valid pre-images in the input space. Consequently, various
methods have been developed to approximate the solution, namely, to solve the
pre-image problem. We refer interested readers to the tutorial [15].

Solving the pre-image problem for graphs opens the door to many interest-
ing applications, such as molecule synthesis and drug design. However, finding
the pre-image as a graph inherits the difficulties of traditional pre-image prob-
lems. Additionally, unlike inputs considered by traditional pre-image problems,
i.e. vectors which are usually lying in continuous spaces, graphs are discrete
structures with a variable and non-ordered number of vertices and edges. Fur-
thermore, multiple labels and attributes can be plugged into each vertex and
edge in a graph. Given these structure features, the graph pre-image problem is
more challenging to address.

Several pioneering works to construct graphs have been proposed. A method
based on the random search is proposed in [3]. It is simple to implement, but
has a very high computational complexity and is not applicable to continuous
real-valued labels, while the quality of the synthesized graph pre-images is not
guaranteed. The methods of [2] and [19] infer a graph from path frequency. How-
ever, these methods are either restricted to applying a specific sub-structure of
graphs or ignoring vertex and edge labels, which are important information for
graphs. All these studies do not fully benefit from discrete optimization that
needs to be carried out for graph pre-image. In this paper, we propose a novel
pre-image method for graphs. To this end, we bridge the gap between graph
edit distances (GEDs) and any given graph kernel, which allows uncovering the
relationship between graph space and kernel space. GED is a well-known dissim-
ilarity measure between graphs, based on elementary operations that transform
one graph to another. By optimizing the edit costs of these operations according
to distances between elements in the kernel space, the metrics of the two afore-
mentioned spaces are aligned, thus allowing constructing the graph pre-image
by a median graph method based on GEDs. Specifically, a pre-image problem
for the median graph of a graph set is addressed, based on the hypothesis that,
benefiting from the alignment of the two metrics, the median of the set of graphs
corresponds to the mean of their embeddings in the kernel space. We take advan-
tage of recent advances in GED to solve this problem, where an iterative alternate
minimization procedure to generate median graphs is adapted [7].

The remainder of the paper is organized as follows. The next section intro-
duces preliminaries for the paper. Section 3 presents the proposed method in two
folds, learning edit costs for GEDs by the distances in kernel space (Sect. 3.1)
and inferring the graph pre-image (Sect. 3.2). Section 4 gives experiments and
analyses. Finally, Sect. 5 concludes the paper.
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Fig. 1. A graph kernel maps graphs to a kernel space H, while the pre-image provides
the reverse procedure, by mapping elements from kernel space back to graphs.

2 Preliminaries

2.1 Graphs, Graph Kernels, and Graph Pre-images

A graph G = (V,E) is an ordered pair of disjoint sets, where V is the vertex set
and E ∈ V ×V is the edge set. A graph can have a label set L from a label space
and a labeling function � that assigns a label l ∈ L to each vertex and/or edge,
where l can be symbolic (i.e. discrete values) or non-symbolic (i.e. continuous
values). Let ϕ be the set of vertex labels, Φ the set of edge labels, and n the
number of vertices in graph G (n = |V |). See [22] for more details.

A positive semi-definite kernel is a symmetric bilinear function that satisfies∑n
i=1

∑n
j=1 ci cj k(xi, xj) ≥ 0, for all xi, . . . , xn and c1, . . . , cn ∈ R. These kernels

are simply denoted as kernels in this paper for conciseness. A kernel corresponds
to an inner product between implicit embeddings of input data into an Hilbert
space H (RKHS) thanks to an implicit mapping function φ : X → H.

Graph kernels are kernels defined on graphs. For a given graph kernel,
k(Gi, Gj) corresponds to an inner product between the two mapped graphs φ(Gi)
and φ(Gj) in the kernel space H. More details on graph kernels can be found
in [11–13,18]. Given a kernel, the mapping φ(·) remains implicit and is defined
by the kernel itself. It does not have to be explicitly known thanks to the kernel
trick. However, the reverse map may be interesting and is difficult to compute
in general. Indeed, most combinations ψ =

∑
i αiφ(Gi) do not have a valid pre-

image, namely a graph G� such that φ(G�) = ψ; The pre-image problem consists
in estimating an approximate solution, namely Ĝ such that φ(Ĝ) ≈ ψ (Fig. 1).
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2.2 Graph Edit Distance

The Graph Edit Distance (GED) between two graphs Gi and Gj is defined as
the cost of minimal transformation [21]:

dGED(Gi, Gj) = min
π∈Π(Gi,Gj)

C(π,Gi, Gj), (1)

where π(Gi, Gj) is a mapping between Vi ∪ε and Vj ∪ε encoding the transforma-
tion from Gi to Gj [8]. This transformation consists in a series of six elementary
operations: removing or inserting a vertex or an edge, and substituting a label of
a vertex or an edge by another label. C(π,Gi, Gj) measures the cost associated
to π:

C(π,Gi, Gj) =
∑

v∈V (Gj)

π−1(v)/∈V (Gi)

cvfi(ε, v) +
∑

u∈V (Gi)
π(u)/∈V (Gj)

cvfr(u, ε) +
∑

u∈V (Gi)
π(u)∈V (Gj)

cvfs(u, π(u))

+
∑

f∈E(Gj)

π−1(f)/∈E(Gi)

cefi(ε, f) +
∑

e∈E(Gi)
π(e)/∈E(Gj)

cefr(e, ε) +
∑

e∈E(Gi)
π(e)∈E(Gj)

cefs(e, π(e)),
(2)

where cvfr, cvfi, cvfs, cefr, cefi, cefs are the edit cost functions associated to the
six edit operations: respectively vertex removal, insertion, substitution and edge
removal, insertion and substitution. According to [17], the edit cost functions for
graphs with non-symbolic labels can be defined as:

{
cvfi(ε, v) = cvi, cefi(ε, e) = cei, cvfr(v, ε) = cvr, cefr(e, ε) = cer,

cvfs(u, v) = cvs‖�v(u) − �v(v)‖, cefs(e, f) = ces‖�e(e) − �e(f)‖,
(3)

where cvr, cvi, cvs, cer, cei, ces are the edit costs, namely the coefficients applied
to the edit operations. Let c = [cvr, cvi, cvs, cer, cei, ces]� be the edit cost vector.

By definition, the GED can be regarded as a distance measure between
graphs. However, the problem of computing the GED is NP-hard [4]. Many
methods have been proposed to approximate GED, such as bipartite [21] and
IPFP [8]. For more details on GEDs, we refer interested readers to [4,21].

3 Proposed Graph Pre-image Method

The main motivation of this work is to address the pre-image problem by building
connections between graph and kernel spaces. We propose to align the metrics
of the two spaces by optimizing the edit costs such that GEDs approximate the
distances in kernel space. Then, once GEDs and kernel distances are similar, we
propose to recast the pre-image problem as a graph generation problem, based
on the assumption that the median of a set of graphs corresponds to the mean
of their embeddings in the kernel space. An iterative alternate minimization
method is adapted for this purpose, in which the GEDs with the optimized edit
cost distances are used. These two steps are detailed next, and the proposed
method is summarized in Algorithm 1.
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Algorithm 1. Proposed method
Input: Dataset GN , graph kernel k, thresholds of stopping criteria (rmax, imax).
Output: The approximation of the pre-image.

1: Compute dH as in (7) for GN .
2: Initialize randomly c(0) = [c(0)vr , c

(0)
vi , c(0)vs , c(0)er , c

(0)
ei , c(0)es ]�.

3: Compute kernel distances dH of all pairs of graphs in GN with (4).
4: Let r = 0.
5: while r < rmax do
6: For fixed c(r), estimate W (r) by solving (7) using a GED heuristic (e.g. bipartite or IPFP).
7: For fixed W (r), estimate c(r+1) by solving (7) using constrained linear least square program-

ming (e.g. CVXPY).
8: r = r + 1.
9: end while
10: Find set-median ̂G(0) by (9).
11: Let i = 0.
12: while i < imax do
13: Compute transformation π̂(i+1)

p by (10) for ̂G(i) with c(r+1).
14: Generate ̂G(i+1) by (11) with π̂(i+1)

p and c(r+1).
15: end while
16: ̂G(i+1) is the graph pre-image.

3.1 Learn Edit Costs by Distances in Kernel Space

When computing GEDs, the choice of edit costs values is essential. In practice,
they are determined by domain experts for a given dataset. With our original
idea of aligning the GEDs to the kernel metric, we propose to learn the edit costs
by the distances of the elements in the kernel space.

On one hand, the distance in H between two elements φ(Gi) and φ(Gj) is:

dH(φ(Gi), φ(Gj)) =
√

k(Gi, Gi) + k(Gj , Gj) − 2k(Gi, Gj). (4)

On the other hand, considering Eq. (1) and the costs defined in Eq. (3), the GED
between Gi and Gj is given by:

dGED(Gi, Gj) = ω�c, (5)

with ω = [nvr, nvi, ωvs, ner, nei, ωes]�, where nvr, nvi, ner, nei are respectively
the numbers of vertex removals, insertions, and edge removals, insertions. ωvs =∑

u∈V (Gi),π(u)∈V (Gj)
‖�v(u)− �v(π(u))‖ is the sum of distances of labels between

all pairs of vertices; and ωes =
∑

e∈E(Gi),π(e)∈E(Gj)
‖�e(e) − �e(π(e)‖ is the sum

of distances of labels between all pairs of edges.
A major difficulty, which is not straightforward from (5), is that ω and c

are interdependent. For two different edit cost vectors, respective optimal ω may
not be equivalent since the costs influence the presence or absence of each edit
operation. In addition, ω influences also c since we want to fit GED with kernel
distances, i.e., dGED(Gi, Gj) ≈ dH(φ(Gi), φ(Gj)).

Given a graph space G of attributed graphs and a kernel space H, we propose
to align GEDs in G with distances in H between each pair of graphs. In other
words, we seek to learn the edit costs of the GED, so that the GED between
each pair of graphs in G is as close as possible to its corresponding distance in
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H. To achieve this goal, a least squares optimization on graph dataset GN =
{G1, G2, . . . , GN} ⊂ G is considered, namely

argmin
c,ω

N∑

i,j=1

(dGED(Gi, Gj) − dH(φ(Gi), φ(Gj)))
2
, (6)

with dGED depending on c and ω as given in (5), where ω exists for each pair of
graphs Gi and Gj in GN , which will be denoted as ω(i, j). Moreover, to ensure
that the minimum cost edit transformation π in (1) can be found, all edit costs
need to be positive, and substituting an element should not be more expensive
than removing and inserting it [21]. Thus, the optimization problem becomes:

argmin
c,W

‖W �c−dH‖2 subject to c > 0, cvr +cvi ≥ cvs and cer +cei ≥ ces, (7)

where W � ∈ R
N2×6 with rows ω(i, j)� and dH ∈ R

N2
encoding the GEDs for

each pair of graphs of GN . To solve this constrained optimization problem, we
propose an alternating optimization strategy over c and W . The optimization
problem over c, for a fixed W , is a constrained linear least square program
problem solved using CVXPY [1,10]. Once the edit costs obtained, the weights W
are computed by GED heuristics, such as bipartite and IPFP.

3.2 Generate Graph Pre-image

Given a set of graphs GN ⊂ G, its average point can be easily computed in the
kernel space, i.e., ψ =

∑N
i=1 αiφ(Gi) with αi = 1/N . Our objective is to estimate

its pre-image, namely the graph Ĝ whose image φ(Ĝ) is as close as possible to
ψ.

With the metric alignment principle (6), dGED(Gi, Gj) ≈ dH(φ(Gi), φ(Gj)),
for all Gi, Gj ∈ GN . Therefore, estimating the pre-image is equivalent to esti-
mating the graph median, which can be tackled as the minimization of the sum
of distances (SOD) to all the graphs of GN , namely

Ĝ = argmin
G∈G

∑

Gp′ ∈GN

dGED(G,Gp′). (8)

A first attempt to solve it is to restrict the solution to the set GN , namely

Ĝ = arg min
Gp∈GN

∑

Gp′ ∈GN

dGED(Gp, Gp′) = arg min
Gp∈GN

N∑

p′=1

min
πp′ ∈Π(Gp,Gp′ )

c(πp′ , Gp, Gp′),

(9)
where cost c(πp′ , Gp, Gp′) consists of two parts, cv(πp′ , ϕp, ϕp′) and
ce(πp′ , Ap, Φp, Ap′ , Φp′), which are costs of vertex and edge transformation,
respectively. This problem can be solved by computing all pairwise GEDs for
dataset GN . The computational complexity is in O(aN2), where a is the com-
plexity of computing a GED between two graphs (for instance, by bipartite or
IPFP). The resulting pre-image Ĝ is also known as the set-median of GN .
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Despite its simplicity, the set-median can only be chosen from the given
dataset GN , which strongly limits the results. To obtain the pre-image from a
bigger space, we take advantage of recent advances in [7] where the proposed
iterative alternate minimization procedure (IAM) allows generating new graphs.
Next, we revisit this method and adapt it for the pre-image problem. The pro-
posed strategy alternates the optimization over all the π̂p (i.e., transformations
from Ĝ to Gp) and over the pre-image estimate Ĝ, namely

π̂p = arg min
πp∈Π( ̂G,Gp)

c(πp, Ĝ, Gp) ∀p ∈ {1, . . . , N}; (10)

Ĝ = arg min
ϕ∈Hn̂

v

A∈{0,1}n̂×n̂

Φ∈Hn̂×n̂
e

N∑

p=1

cv(π̂p, ϕ, ϕp) + 1
2ce(π̂p, A, Φ,Ap, Φp). (11)

The resolution of (10) is carried out by solving the GED problem N times with
time complexity of O(aN), and the computation of (11) is detailed in [7], where
the vertices and edges are updated separately. The new non-symbolic labels
assigned for a vertex v (resp. an edge e) are given by the average values of the
corresponding labels of the vertices substituted to v (resp. edges substituted to
e). The obtained pre-image Ĝ is also known as the generalized median of GN .

4 Experiments

To perform experiments, we implemented1 Algorithm1 in Python. The C++
library GEDLIB2 and its Python interface gedlibpy are used as the core imple-
mentation to compute graph edit distances and perform IAM algorithm [5]. We
implemented a general edit cost function NonSymbolic3 for graphs containing
only non-symbolic vertex and/or edge labels and an edit cost function Letter2
specifically for dataset Letter-high based on NonSymbolic. In these functions, all
edit costs can be freely set, which is more convenient for the optimization pro-
posed in Sect. 3.1. We have modified the gedlibpy accordingly4. All experiments
were carried out on a computer with 8 CPU cores of Intel Core i7-7920HQ @
3.10GHz, 32GB memory, and 64-bit operating system Ubuntu 16.04.3 LTS.

Given the Letter-high dataset5, the goal is to compute, for a given kernel,
the pre-image of the average of each class of letters, namely ψ =

∑N
i=1 αiφ(Gi)

with αi = 1/N . Two graph kernels are considered, the shortest path (SP) kernel
[6] and the structural SP kernel [20], both being able to deal with non-symbolic
labels; see [16]. In each class (i.e., a set of distortions of a letter), all 150 graphs
are chosen to compose the graph set GN . To estimate the graph edit distances,
1 https://github.com/jajupmochi/graphkit-learn/tree/master/gklearn/preimage.
2 GEDLIB: https://github.com/dbblumenthal/gedlib.
3 https://github.com/jajupmochi/gedlib/tree/master/src/edit_costs.
4 gedlibpy (modified): https://github.com/jajupmochi/gedlibpy.
5 http://graphkernels.cs.tu-dortmund.de.

https://github.com/jajupmochi/graphkit-learn/tree/master/gklearn/preimage
https://github.com/dbblumenthal/gedlib
https://github.com/jajupmochi/gedlib/tree/master/src/edit_costs
https://github.com/jajupmochi/gedlibpy
http://graphkernels.cs.tu-dortmund.de
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Table 1. Distances in kernel space computed using different methods.

Graph kernels Algorithms dH GM Running Times (s)
Optimization Generation Total

Shortest path (SP) From median set 0.406 - - -
IAM: random costs 0.467 - 142.59 142.59
IAM: expert costs 0.451 - 30.31 30.31
IAM: optimized costs 0.460 5968.92 26.55 5995.47

Structural SP (SSP) From median set 0.413 - - -
IAM: random costs 0.435 - 30.22 30.22
IAM: expert costs 0.391 - 29.71 29.71
IAM: optimized costs 0.394 24.79 25.60 50.39

a multi-start counterpart of IPFP (i.e., mIPFP) is applied in both procedures of
producing set-median and generalized median, where 40 different solutions to
the LSAP are chosen [9]. The maximum number of iterations is set to rmax = 6.

Table 1 exhibits experimental results. Results of two sets of edit costs are
presented. The first set of constants is randomly generated for each class of
graphs, while the second set is given by domain experts, where cvi = cvr =
0.675, cei = cer = 0.425, cvs = 0.75 and ces = 0 [4]. It is worth noting that these
expert values take into account prior knowledge of the data, such as setting
ces to 0 as graphs in Letter-high do not contain edge labels. Moreover, we also
give as a baseline a method to generate median graphs (denoted “From median
set”), where the median graph is directly chosen from the median set GN whose
representation in kernel space is the closest to the true median’s (ψ). The average
results over all classes are presented for all methods. Column “dH GM” gives the
distances between the embedding of the computed pre-image and the element
we want to approximate in the kernel space (dH). The columns “Running Times”
give the time to optimize edit costs and generate pre-images.

For the structural SP kernel, when expert and optimized methods are given,
applying IAM provides better pre-images than choosing from the median set with
respect to dHs of the generalized medians. Compared to dH of pre-image choosing
from median sets, dH is respectively 5.33% and 4.60% smaller for algorithm with
expert and optimized costs. Moreover, dH of the algorithm with optimized costs
is 9.43% smaller than that with random costs and is almost the same as the
algorithm with expert costs, which is also the case for the SP kernel. These
results show that the algorithm with the optimized costs works better than
the one with random costs to generate pre-images as median graphs, and can
serve as a method to tune edit costs to help find expert costs, for both median
generation problems using IAM and general pre-image problems. Moreover, the
running times to optimize edit costs and generate pre-images are acceptable in
most cases.



224 L. Jia et al.

Fig. 2. Pre-images constructed by different algorithms for Letter-high, which corre-
spond to the eight rows of Table 1 row by row.

Although these improvements seem trivial, the advantage of our method can
be valuated from other aspects. Figure 2 presents the pre-images generated as
the median graphs for each letter of the Letter-high dataset using aforementioned
methods, which correspond to the eight rows of Table 1, row by row. Vertices
are drawn according to coordinates determined by their attributes “x” and “y”.
In this way, plots of graphs are able to display the letters that they represent,
which are possible to be recognized by human eyes. When using the SP kernel
(the first row to the fourth row), it can be seen that the pre-images chosen
directly from the median set (the first row) are illegible in almost all cases, while
the IAM with random costs provides more legible results, where letters A, K, Y
can be easily recognized (the second row). When the expert and optimized costs
are used, almost all letters are readable, despite that the pre-images of letter F
are slightly different (the third and fourth rows). The same conclusion can be
derived for the structure SP kernel as well (the fifth row to the eighth row).

This analysis indicates that even though the distances dH are similar, the
algorithms applying IAM are able to generate better pre-images, especially when
edit costs are optimized. This phenomenon may benefit from the nature of the
IAM algorithm. In the update procedure (11), the new non-symbolic labels
assigned for a vertex v is given by the average values of the corresponding labels
of the vertices substituted to v [7]. It provides a “direction” to construct pre-
images with respect to features and structures of graphs . For instance, the “x”
and “y” attributes on the vertices of the letter graphs presents the coordinates
of the vertices. To this end, it makes sense to compute their average values as
the new values of a vertex as the vertex will be re-positioned at the middle of
all vertices substituted to it.

5 Conclusion and Future Work

In this paper, we proposed a novel method to estimate graph pre-images. This
approach is based on the hypothesis that metrics in both kernel space and graph
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space can be aligned. We first proposed a method to align GEDs to distances
in the kernel space. Within the procedure, the edit costs are optimized. Then
the graph pre-image was generated by a new method to construct the graph
generalized median, where we revisited the IAM algorithm. Our method can
generate better pre-images than other methods, as demonstrated on the Letter-
high dataset. Future work includes generalizing our method to graphs with sym-
bolic labels and constructing pre-images as arbitrary graphs rather than median
graphs. The convergence proof of the iterative procedure will be conducted and
the non-constant edit costs will be considered. Using state-of-the-art generative
graph neural networks to solve the pre-image problem is also interesting.
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Abstract. This paper presents a multivalent graph matching problem
and proposes a max-min ant system for its resolution. Multivalent graph
matching is a very combinatorial problem where a node (edge) in one
graph can match with more than one node (edge) in the other graph. We
formalize this problem as an extended graph edit distance problem by
adding possibilities of splitting and merging operations. Then, we employ
an ant colony based optimization algorithm, the max-min ant system, to
solve this very combinatorial problem. A local search is also integrated to
enhance the solution quality. The efficiency of the proposed approach is
verified on a symbol data set in several aspects. The results show that the
proposed approach can be very useful in case of noise when the bijective
graph matching-based approaches are not usually robust.

Keywords: Multivalent graph matching · Extended graph edit
distance · Max-Min Ant System · Symbol recognition · Classification

1 Introduction

In real life, several applications, like medical analysis, symbol recognition,
demand determining an explainable similarity measure between objects rather
than a numerical value [6,7]. Among the existing approaches, graph matching-
based approach is promising since it can provide the matching correspondence
between sub-parts of objects besides the similarity measure.

Normally, GM problem is injective, which just allows one-to-one matching of
node (edge). However, in some cases, one feature in one object can correspond to
multiple features in the other object [1,4]. Furthermore, in pattern recognition
problems, distortions of the graph can occur and an error-tolerant graph match-
ing techniques should be used to allow node (edge) association even if they are
not exactly similar [5]. All these matching situations are special cases of mul-
tivalent matching. Therefore, multivalent GM can be seen as the most general
GM problem and we will contribute to bring solution to solve it in this work.

Through our literature review, we found very few works dealing with multi-
valent GM. In [1], the authors apply GED-based GM technique for recognizing
diatoms. The splitting and merging of node operations are added besides the
classical operations. However, the edge operations related to splitting/merging
c© Springer Nature Switzerland AG 2021
A. Torsello et al. (Eds.): S+SSPR 2020, LNCS 12644, pp. 227–237, 2021.
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on nodes have not been specified. In [3], the authors also propose a GED-based
approach with node merging to compare similarity between images. Likewise the
previous work, the edge relations related to node merging are still unclear. In [2],
the authors have continued the work of [3], but they define more specifically the
edge merging when there are node merging. In our opinion, the proposed method
is not enough robust and lacks of comparisons with other methods. In [4], a ran-
domized construction algorithm combined with local search is employed for a
non-bijective GM. Then, it is applied to search for the correspondence between
the model and its over-segmented images. Because of the context, the authors
suppose that there is only substitution for nodes and edges, and are not clear
about where are splitting and merging. In [10,11], the authors propose a general
similarity measure for multivalent GM and they utilize ant colony optimization
(ACO) and reactive tabu search to tackle the problem. Good results are found
with ACO in terms of solution quality but it is more time-consuming. Never-
theless, the measure is applied to a specific context and just works for symbolic
attributes. This leads to restrict the range of the applications.

From the mentioned works, we see that the GED-based approach is pretty
popular for a multivalent GM problem. This is done by adding extended oper-
ations like splitting and merging for nodes or edges. However, these works lack
of formal formulation for the GED-based approach. More precisely, the speci-
fication of edge operations in extended case either is not clear or depends on
the context. Therefore, in this work, we firstly present a formulation of multiva-
lent GM problem based on GED, called extended graph edit distance (ExGED)
(Sect. 2). Secondly, we propose a way to formalize the edit costs including split-
ting and merging operations on edges induced by the edit operations done on
nodes. All the considered costs are presented in several cost matrices. These
matrices integrate both local structure and semantic information of all nodes in
two compared graphs (Sect. 3). Thirdly, following the works [10,11], we decide
to use the ACO for the multivalent GM problem (Sect. 4). With the formulation
of ExGED, we are able to solve both numeric and symbolic attributes. More-
over, the introduction of cost matrices allows us to accelerate the computational
time for ACO. Specifically, the max-min ant system (MMAS) is applied to solve
the ExGED in this work. The feasibility of the proposed approach is presented
through the numerical experiments in Sect. 5. Finally, Sect. 6 concludes the paper
and prospects for future research directions.

2 From GED to ExGED Problem Formulation

2.1 Graph Edit Distance

Definition 1. An attributed graph contains 4-tuple G = (V,E, μ, ξ), where

V,E are sets of vertices and edges, respectively,
lV , lE are sets of vertex and edge labels, respectively
μ : V �→ lV : function that assigns labels to vertices
ξ : E �→ lE: function that assigns labels to edges.
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Definition 2. An edit path is a sequence of edit operations (edi) to transform
one graph to another graph, denoted λ(G1, G2) = {edi}. A valid edit path should
follow these conditions: 1) deleting a vertex implies deleting its related edges; 2)
inserting an edge is only permitted if the two vertices already exist; 3) inserting
an edge must not create more than one edge between two vertices (selfloops) [5].

Definition 3. Given two graphs G1 = (V1, E1), G2 = (V2, E2), the graph edit
distance (GED) is a dissimilarity measure between G1 and G2 and is defined by:

dmin(G1, G2) = min
λ∈Θ(G1,G2)

∑

edi∈λ

c(edi), (1)

where Θ(G1, G2) is the set containing all valid edit paths λ between G1 and G2,
c(edi) is the cost of each edit operation edi [5].

Classical edit operations are given in Table 1. The cost of each operation is
defined according to either the node or edge labels.

2.2 Extended Graph Edit Distance Problem Formulation

Extended graph edit distance (ExGED) is also a dissimilarity measure derived
from the costs of the edit operations. To consider multivalent GM, we add split-
ting and merging operations.

Definition 4. Given two attributed graphs G1 = (V1, E1, μ1, ξ1) and G2 =
(V2, E2, μ2, ξ2), we define:

– merging the set Smer = {ui ∈ V1, i ≥ 2} to v ∈ V2 is noted Smer → v
– splitting u ∈ V1 into the set Sspl = {vj ∈ V2, j ≥ 2} is noted u → Sspl

These two operators are also mentioned in Table 1. Usually, doing node merg-
ing and splitting can lead to edge splitting and merging, this will be discussed
more precisely when the cost of each operation will be detailed.

Table 1. Availability of edit operations for GED and ExGED (with u ∈ V1, v ∈
V2, e1 ∈ E1, e2 ∈ E2, ε the virtual vertex or edge). Smer and Sspl are subsets of V1 and
V2 defined in Definition 4.

Operation Notation Cost function notation GED ExGED

Vertex substitution u → v c(u → v) ✓ ✓

Vertex deletion u → ε c(u → ε) ✓ ✓

Vertex insertion ε → v c(ε → v) ✓ ✓

Edge substitution e1 → e2 c(e1 → e2) ✓ ✓

Edge deletion e1 → ε c(e1 → ε) ✓ ✓

Edge insertion ε → e2 c(ε → e2) ✓ ✓

Vertex merging Smer → v c(Smer → v) ✓

Vertex splitting u → Sspl c(u → Sspl) ✓
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3 Cost Matrices for ExGED

3.1 Definition of the Cost Matrix for Node Operations

Following the idea in [9], a cost matrix for ExGED is also constructed. Each block
presents each type of node edit operation and its corresponding cost. Formally,
given two attributed graphs G1, G2 as above, we denote that n = |V1|,m = |V2|.
Let P k

1 = {Si
mer} be set of all possibilities for merging of nodes in G1 and

h = |P k
1 |, and P k

2 = {Sj
spl} be set of all possibilities for splitting of nodes in

G2 and l = |P k
2 |. k is a parameter that describes the maximum number of

nodes that one node can be associated with. Then we can give the cost matrix:

C =

1 . . . m ε 1 . . . l
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

c1,1 . . . c1,m c1,ε c1,S1
spl

. . . c1,Sl
spl

1
...

. . .
...

...
...

. . .
...

...
cn,1 . . . cn,m cn,ε cn,S1

spl
. . . cn,Sl

spl
n

cε,1 . . . cε,m 0 ∞ . . . ∞ ε
cS1

mer,1 . . . cS1
mer,m ∞ ∞ . . . ∞ 1

...
. . .

...
...

...
. . .

...
...

cSh
mer,1 . . . cSh

mer,m ∞ ∞ . . . ∞ h

(2)

where ci,j denotes the cost of a node substitution (with (i, j) ∈ {1 . . . n} ×
{1 . . . m}), ci,ε denotes the cost of a node deletion, cε,j denotes the cost of a node
insertion, ci,Sspl

denotes the cost of a node splitting and cSmer,j denotes the cost
of a node merging.

From Eq. (2), the cost matrix C is not a square matrix like in GED case. A
reduction of dimension has been applied on deletion and insertion blocks, from
(n×n) to (n×1) for deletion, from (m×m) to (1×m) for insertion, respectively.
That is because a square matrix is not necessary for a MMAS solver. By this
way, we can decrease the computational time but still preserves the property of
a GED cost matrix. Moreover, by introducing splitting and merging operations,
the size of matrix C increases with h rows and l columns. h and l are strongly
influenced by k. The bigger k is, the higher values of h, l get. Consequently, the
size of C will grow up significantly. Thus, choosing the number of k would be
very important, especially in big graph. Regularly, the parameter k is problem-
dependent and based on expert knowledge.

3.2 Definition of the Costs for Edge Operations in Extended Case

In Eq. (2), only the costs of node operations are presented. To enrich C, we
integrate the estimated cost of edge operation related to each node operation.

– For node substitution ui → vj , two sets of incident edges of ui and vj are
computed, called Eui

and Evj
, respectively. Then, a square edge cost matrix

Ce is built from Eui
and Evj

based on the cost functions of edge operations
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in Table 2. The size of Ce is (|Eui
| + |Evj

|) × (|Eui
| + |Evj

|). Finally, the
Munkres’s algorithm is applied on Ce to find the minimum sum of edge
operation costs [9], or ci,j ← c(ui → vj) + Munkres(Ce).

– For node deletion, deleting a node ui will remove all its adjacent edges, or
ci,ε ← c(ui → ε) +

∑
e∈Eui

c(e → ε).
– For node insertion, inserting a node vj will insert all its adjacent edges, or

cε,j ← c(ε → vj) +
∑

e∈Evj
c(ε → e).

– For node merging Smer → v, two sets of incident edges to nodes in Smer and
v are computed first, denoted ESmer

and Ev, respectively. Let Eloop be the
set of edges connecting the nodes ui ∈ Smer. We have E′

Smer
= ESmer

\Eloop.
Then, an edge cost matrix Ce for two sets E′

Smer
and Ev is built similarly

as for node substitution. The Munkres’s algorithm is also used to find the
minimum cost for E′

Smer
and Ev. Finally, the total cost for node merging is

cSmer,v ← c(Smer → v) + Munkres(Ce) +
∑

e∈Eloop
c(e → ε).

– For node splitting ui → Sspl, the computational steps of edge cost is similar
to node merging: cu,Sspl

← c(u → Sspl) + Munkres(Ce) +
∑

e∈Eloop
c(ε → e).

3.3 Illustrative Example

Given two unlabelled graphs as in Fig. 1, we have n = 3 and m = 4. Suppose
that k = 2, here nodes which have common edges are considered for merging
and splitting. So, P 2

1 = {12, 23}, and P 2
2 = {ab, ac, bc, cd} are sets of merging

and splitting nodes in G1 and G2, respectively. Due to n < m, we restrict
deleting and merging nodes in G1 by setting high values for the costs involved
with these operations. Suppose that we encourage splitting of nodes in this case,
costs for node splitting and involved cost of edge operations will be small. All
cost functions are defined below.

Fig. 1. The example graphs with partial matching λ = {2 → b, c} (left) and the cost
functions of edit operations (right).

Let have a partial matching λ = {2 → b, c} (Fig. 1), then the sets of incident
edges to 2 and b, c are E2 = {12, 23} and Espl = Ebc = {ab, ac, bc, cd}. Eloop =
{bc} is set of edges connecting nodes b, c. So, E′

bc = Ebc \ Eloop = {ab, ac,
cd}. Then, the edge cost matrix Ce for E2 and E′

bc is computed in Eq. (3).
The total cost for the partial matching λ = {2 → b, c} is: c2,bc = c(2 → b, c) +
Munkres(Ce) + c(ε → bc) = 1 + 4 + 0 = 5.
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Ce =

ab ac cd ε12 ε23⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

12 c12,ab c12,ac c12,cd c12,ε ∞
23 c23,ab c23,ac c23,cd ∞ c23,ε

εab cε,ab ∞ ∞ 0 0
εac ∞ cε,ac ∞ 0 0
εcd ∞ ∞ cε,cd 0 0

=

ab ac cd ε12 ε23⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

12 1 1 1 10 ∞
23 1 1 1 ∞ 10
εab 2 ∞ ∞ 0 0
εac ∞ 2 ∞ 0 0
εcd ∞ ∞ 2 0 0

(3)

4 MMAS for ExGED

4.1 Algorithmic Scheme

The Max-Min Ant System (MMAS) is a variant of Ant Colony Optimization
(ACO) [12]. A colony of ants is used to generate solutions of the considered
problem in a parallel manner. At each iteration, each ant builds a complete
matching based on transition probabilities. A construction graph, denoted Gants,
is used to know the possibilities for one ant. Gants is corresponding to the search
space, i.e. the possible vertex matching between the 2 graphs. Each node in
Gants is corresponding to a possible edit operation done between nodes of G1

and G2. Edges in Gants will help to construct incrementally the best edit path.
Pheromones of natural ants are here corresponding to probabilities which are
shared among ants to build a solution. An initial pheromone value is associated
on each vertex of the construction graph. Pheromones are updated according to
the performance of the best found matching.

4.2 Construction Graph

The construction graph is complete and undirected. When a solution is built,
the ant chooses the next vertex vi ∈ Gants according to the previous partial
matching. For instance, if the partial matching is λ = {2 → b, c}, all candidates
related to these nodes will be pruned. That means the current ant could not
move on these vertices until the matching is complete.

4.3 Construction of a Complete Matching

At each iteration, every ant starts with an empty matching λ = {}. At each step,
it adds a candidate vi ∈ Gants to λ until λ is a complete matching. That means
λ contains all nodes in G1 and G2. The ant chooses the next candidate based on
the transition probability. This quantity is derived from two factors: the heuristic
and the pheromone. For ExGED problem, the heuristic is built from the cost
matrix C but the pheromone value is laid on the construction graph Gants. Let
τvi

, ηvi
be respectively the pheromone and heuristic values of the candidate vi;

cand = {v1, . . . , v|cand|} be the set of candidates of λ; α, β be respectively the
weights of τ and η, the transition probability is:

Prvi
=

[τvi
]α × [ηvi

]β
∑|cand|

j=1

[
τvj

]α × [
ηvj

]β
(4)
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4.4 Pheromone Update

Once all ants have built their solutions, pheromones on each vertex vi ∈ Gants are
updated: they are reinforced and evaporated as in Eq. (5). The reinforcement is
done only on the best solution of the current iteration (λitbest). The evaporation
is done for all nodes vi ∈ Gant according to the evaporation rate ρ ∈ [0, 1]. After
updating, the pheromone value will be adjusted in the interval [τmin, τmax] [12].

τvi
= (1 − ρ) ∗ τvi

+ Δvi
, Δvi

=
{ 1

1+c(λitbest)
if vi ∈ λitbest

0 otherwise
(5)

5 Experiments

The MMAS algorithm is utilized to find the best matching between two graphs.
This approach is used because the search space is huge and the combinatorial
underlying problem can not be solved exactly in a reasonable time [2]. But the
ACO based algorithms must be tuned according to the problem as they have
several parameters. All experiments are implemented in Python 3.7.1 and run
on Windows 10 Intel(R) Core(TM) i7-8750 CPU @ 2.20 GHz, RAM of 16.0 Go.

5.1 Data Set and Graph Representation

We use the SESYD data set which contains architectural and electrical symbols.
From the original symbols, we add noise to create deformed ones. The noise can
break one original line into several lines, rotate or scale the symbol1.

To transform symbols into graphs, each line is defined as a node and the
relations between lines are considered as edges. Each node has its relative length
(l). Each edge has its relative angle (θ) and type of relation (rel). The length
l is normalized regarding the longest line in each symbol. The rel includes T-
Junction (T), Parallel (P), Successive (S), L-Junction (L) and intersection (X)
[8]. We give an example in Fig. 2.

Fig. 2. The symbol (left) and its graph representation (right).

When the original line is deformed, it is possible that the ’S’ relation appears
(Fig. 6). So, we suppose that the nodes connected by the edges with ’S’ relation
are merged or split. Also, we set k = 3 based on the observation on the data set.
1 Data set link: http://www.rfai.lifat.univ-tours.fr/PublicData/ExGED/home.html.

http://www.rfai.lifat.univ-tours.fr/PublicData/ExGED/home.html
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5.2 Definition of Cost Functions for Edit Operations

From graph representation, costs of node operations depend on its length. Delet-
ing/inserting a long line should cost more than a shorter one. Merging of lines
that are split from the initial lines will cost less than the random lines. Because
l ∈ [0, 1], θ ∈ [0, 180], cost of edge operation related to θ should be normalized
to be compatible with other costs. Details of the cost functions are in Table 2.

5.3 Parameter Setting for MMAS

The impacts of principal parameters of MMAS and local search on the results
of GM problems are examined. Each study of each parameter is run 30 times.
The average results are presented. Figure 3 (log scale) presents the effect of the
parameters (α, β, ρ) and local search strategies to the final costs. In Fig. 3a,
better results are seen when combining both α and β. In Fig. 3b, the lowest cost
is obtained when value of ρ is not too high or too low. In Fig. 3c, a significant
improvement of the cost is achieved when integrating 3-opt local search with
MMAS. So, we choose α = 2, β = 1, ρ = 0.1, 3-opt local search, [τmin, τmax] =
[0.1, 2.0], nbants = 5, nbiters = 300 iterations for later experiments.

Table 2. Cost functions of edit operations for the data set (δ is a Dirac function).

Node operation cost Edge operation cost

c(u → v) = |lu − lv| c(e1 → e2) =
|θe1−θe2 |

max(θe1 ,θe2 )
+ δ(rele1 = rele2)

c(ε → v) = lv c(ε → e2) = 1

c(u → ε) = lu c(e1 → ε) = 1

c(Smer → v) = | ∑

ui∈Smer

lui − lv| c(e → ε) = 0, e ∈ Eloop

c(u → Sspl) = |lu − ∑

vi∈Sspl

lvi | c(ε → e) = 0, e ∈ Eloop

(a) α, β (b) ρ (c) Local search

Fig. 3. Influences of parameters and local search to the convergence of MMAS to
ExGED (with 5 ants, 300 iterations, [τmin, τmax] = [0.1, 2.0]).
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5.4 Matching Quality Analysis

In this part, matching between nodes and edges of two graphs are considered.
The result of MMAS-ExGED is compared to the one of bipartite approach for
GED [9], denoted BP-GED. We define a reasonable matching if it maps corre-
spondingly the initial lines in the symbol to their split lines in the distorted one.
A group of 6 symbols with 6 levels of distortions for each symbol are used for
this evaluation.

Figure 4 shows the average costs given by BP-GED and MMAS-ExGED in
terms of distortion levels. In almost cases, MMAS-ExGED obtains lower costs
than BP-GED. Go into low-level matching, we see that these biases are really
compatible with the obtained mappings. The MMAS-ExGED is able to find the
reasonable matching between the symbol and its distortions. An example is given
in Fig. 6 and Table 3.

5.5 Symbol Recognition

By Comparison to Perfect Models. We select 20 original symbols from
SESYD data set, denoted M = {Mi, . . . ,M20}. Each symbol has 20 levels of
distortions, i.e. Di = {Dj , . . . , D20}, ∀Mi ∈ M . Totally, we have 400 distorted
symbols. The distorted symbol is assigned to the model Mi if the distance (cost)
from it to this model Mi is minimal. The result shows that MMAS-ExGED
recognises well 360/400 distorted symbols. Also, we compute the average distance
from all distorted symbols to all the models. Some results are shown in Fig. 5.

Fig. 4. Average costs of BP-GED
and MMAS-GED in terms of distor-
tion levels.

Fig. 5. Dissimilarity between the sym-
bols and their distortions by MMAS-
ExGED.

Fig. 6. Drawing of nodes (in bold) and edges (dashed lines) on the symbol 032 and its
distortion levels. Ellipse indicates noise position.
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Table 3. Difference of node mappings at distorted positions between symbol and its
distortions in Fig. 6 given by BP-GED and MMAS-ExGED.

Methods Level 5 Level 10 Level 15

BP-GED ε → 9 1 → 5; ε → 9 2 → 14; ε → 15; 4 → 16; ε → 18

MMAS-ExGED ε → 8 1 → {5, 9} 2 → {14, 17}; 5 → 15, 4 → {16, 18}

We see that the average costs from the distorted symbols to their truth symbols
are the smallest (in bold).

By Using KNN. For classification problem, 160 difficult symbols of 8 classes
are selected. The training and the test sets have 80 symbols in each set. 1NN is
used as a classifier. The distances given by the GM algorithms are used to classify.
We compare the performance of MMAS for GED and ExGED problems. Table 4
shows that MMAS-ExGED achieves better result than MMAS-GED. However,
MMAS is quite time-consuming because the process of building one solution is
repeated several times to improve the solution quality.

Table 4. Results of symbol classification given by MMAS for GED and ExGED.

Methods MMAS-GED MMAS-ExGED

Classification rate (%) 76.25 77.50

Classification time (s) 56762.07 25563.74

6 Conclusion

In this paper, an ExGED-approach is proposed to solve a multivalent GM prob-
lem. Specifically, the ExGED is introduced by adding splitting and merging
operations to classical GED. The problem formulation of ExGED is presented
in detail based on concept of cost matrix. Then MMAS with a local search is uti-
lized to tackle the ExGED. The feasibility of the proposed method is shown on a
symbol data set. The results are evaluated through several aspects: through an
assessment of quality of the provided matching and through different classifica-
tion strategies. The positive results are obtained with MMAS-ExGED. However,
working on reduction of the computational time of MMAS-ExGED will be our
upcoming task.
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10. Sammoud, O., Solnon, C., Ghédira, K.: Ant algorithm for the graph matching
problem. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp.
213–223. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31996-
2 20

11. Sammoud, O., Sorlin, S., Solnon, C., Ghédira, K.: A comparative study of ant
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Abstract. Graph edit distance (GED) is a widely used dissimilarity
measure between graphs. It is a natural metric for comparing graphs and
respects the nature of the underlying space, and provides interpretability
for operations on graphs. As a key ingredient of the GED, the choice of
edit cost functions has a dramatic effect on the GED and therefore the
classification or regression performances. In this paper, in the spirit of
metric learning, we propose a strategy to optimize edit costs according
to a particular prediction task, which avoids the use of predefined costs.
An alternate iterative procedure is proposed to preserve the distances
in both the underlying spaces, where the update on edit costs obtained
by solving a constrained linear problem and a re-computation of the
optimal edit paths according to the newly computed costs are performed
alternately. Experiments show that regression using the optimized costs
yields better performances compared to random or expert costs.

Keywords: Graph edit distance · Edit costs · Metric learning

1 Introduction

Graphs provide a flexible representation framework to encode relationships
between elements. In addition, graphs come with an underlying powerful the-
ory. However, the graph space cannot be endowed with the mathematical tools
and properties associated with Euclidean spaces. This issue prevents the use of
classical machine learning methods mainly designed to operate on vector repre-
sentations. To learn models on graphs, several approaches have been designed to
leverage this flaw and among these, we can cite graph embeddings strategy [17],
graph kernels [3,28] and more recently graph neural networks [8]. Despite their
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state-of-the-art performances, they seldom operate directly in the graph space,
hence reducing the interpretability of the underlying operations.

To overcome these issues, one needs to preserve the property of the graph
space. For this purpose, one needs to define a dissimilarity measure in the graph
space, in order to constitute the minimal requirement to implement simple
machine learning algorithms like the k-nearest neighbors. The most used dis-
similarity measure between graphs is the graph edit distance (GED) [10,27].
The GED of two graphs G1 and G2 can be seen as the minimal amount of dis-
tortion required to transform G1 into G2. This distortion is encoded by a set of
edit operations whose sequence constitutes an edit path. These edit operations
include nodes and edges substitutions, removals, and insertions. Depending on
the context, each edit operation e included in an edit path γ is associated with
a non-negative cost c(e). The sum of all edit operation costs included within the
edit path defines the cost A(γ) associated with this edit path. The minimal cost1

among all edit paths Γ(G1, G2) defines the GED between G1 and G2, namely

ged(G1, G2) = min
γ∈Γ(G1,G2)

A(γ). (1)

Evaluating the GED is computationally costly and cannot be done in practice
for graphs having more than 20 nodes in general. To avoid this computational
burden, strategies to approximate the GED in a limited computational time have
been proposed [1] with acceptable classification or regression performances.

An essential ingredient of the GED is the underlying edit cost function c(e),
which quantifies the distortion carried by the edit operation e. The values of the
edit costs for each edit operation have a major impact on the computation of
GED and its performance. Thus, the cost edit function may be different depend-
ing on the data encoded by the graph and the one to predict. Generally, they are
fixed a priori by an expert of the domain, and are provided with the datasets.

However, these predefined costs are not optimal for any prediction tasks, in
the same spirit as the no free lunch theorems for machine learning and statistical
inference. In addition, these costs may have a great influence on both the pre-
diction performance and the computational time required to compute the graph
edit distance. In [9], the authors show that a particular set of edit costs may
reduce the problem of computing graph edit distance to well-known problems in
graphs like (sub)graph isomorphism or finding the maximum common subgraph
of a pair of graphs. This point shows again the importance of the underlying
cost function when computing a graph edit distance.

In this paper, we propose a simple strategy to optimize edit costs according
to a particular prediction task, and thus avoid the use of predefined costs. The
idea is to align the metric in the graph space (namely, the GED) to the prediction
space. While this idea has been largely used in machine learning (e.g. with the so-
called kernel-target alignment [15]), this is the first time that such a line of attack
is investigated to estimate the optimal edit cost. With this distance-preserving
principle, we provide a simple linear optimization procedure to optimize a set of

1 Note the GED will be null when comparing two isomorphic graphs.
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constant edit costs. The edit costs resulting from the optimization procedure can
then be analyzed to understand how the graph space is structured. The relevance
of the proposed method is demonstrated on two regression tasks, showing that
the optimized costs lead to a lower prediction error.

The remainder of the paper is organized as follows. Section 2 presents related
works that aim to compute costs associated with a particular task. Section 3
presents the problem formulation and describes the proposed optimization
method. Then, Sect. 4 presents results from conducted experiments. Finally, we
conclude and open perspectives on this work.

2 Related Works

As stated in the introduction, the choice of edit costs has a major impact on
the computation of graph edit distance, and thus on the performance associated
with the prediction task.

The first approach to design these costs is to set them manually, based on
the knowledge on a given dataset/task (when such knowledge is available). This
strategy leads, for instance, to the classical edit cost functions associated with
the IAM dataset [25]. However, it is interesting to challenge these predefined
settings and experiment how they can improve the prediction performance.

In order to fit a particular targeted property to predict, tuning the edit costs
and thus the GED can be seen as a subproblem of metric learning. Metric learn-
ing consists in learning a dissimilarity (or similarity) measure given a training
set composed of data instances and associated targeted properties. For the clas-
sical metric learning where each data instance is encoded by a real-valued vector,
the problem consists in learning a dissimilarity measure, which decreases (resp.
increases) where the vectors have similar (resp. different) targeted properties.
Many metric learning works focus on Euclidean data, while only a few addresses
this problem on structured data [5]. A complete review for general structured
data representation is given in [23]. In the following, we will focus on existing
studies to learn edit costs for graph edit distance.

A trivial approach to tune the edit costs is to use a grid search strategy
among a predefined range. However, the complexity required to compute graph
edit distance and the number of different edit costs forbid such an approach.

String edit distance constitutes a particular case of graph edit distance, asso-
ciated to a lower complexity, where graphs are restricted to be only linear and
sequential. In [26], the authors propose to learn edit costs using a stochastic app-
roach. This method shows a performance improvement, hence demonstrating the
interest to tune edit costs; it is however restricted to strings.

Another strategy is based on a probabilistic approach [20–22]. By providing a
probabilistic formulation for the common edition of two graphs, an Expectation-
Maximization algorithm is used to derive weights applied to each edit operation.
The tuning is then evaluated in an unsupervised manner. In [21], the strategy
consists in modifying the label space associated with nodes and edges such that
edit operations occurring more often will be associated to lower edit costs. Con-
versely, higher values will be associated with edit operations occurring less often.
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The learning process was validated on two datasets. However, this approach is
computationally too expensive when dealing with general graphs [4].

In [4], the authors propose an interesting way to evaluate whether a distance
is a “good” one. This criterion is based on the following concept:

a similarity function is (ε, γ, τ) − good if a 1 − ε proportion of examples
are on average 2γ more similar to reasonable examples of the same class
than to reasonable examples of the opposite class, where a τ proportion of
examples must be reasonable.

This principle is then derived to define an objective function to optimize. The
matrix encoding the edit costs minimizing this objective function is then used to
compute edit distances. However, this approach has only been adapted to strings
and trees, but not to general graphs.

Another set of methods that address the problem of learning edit costs for
GED is proposed in [13,14]. These methods propose to optimize edit costs to
maximize a ground truth mapping between nodes of graphs. This framework
requires thus a ground truth mapping, which is not available on many datasets
like chemoinformatics.

3 Proposed Method

3.1 Problem Formulation

In this section, we propose an optimization procedure to learn edit costs in the
context of regression tasks. Consider a dataset G of N graphs such that each
graph Gk = (Vk, Ek), for k = 1, 2, . . . N , where Vk represents the set of nodes of
Gk labeled by a function fv : V → Lv, and Ek encodes the set of edges of Gk,
namely eij = (vi, vj) ∈ Ek iff an edge connects nodes vi and vj in Gk.

The graph edit distance between two graphs is defined as the minimal cost
associated to an optimal edit path. Given two graphs G1 and G2, an edit path
between them is defined as a sequence of edit operations transforming G1 into
G2. An edit operation e can correspond to a node substitution e = (vi → vj),
deletion e = (vi → ε) or insertion e = (ε → vj). Similarly, for edges, we have
(eij → eab), (eij → ε), and (ε → eab). Each edit operation is associated with a
cost characterizing the distortion induced by this edit operation on the graph.
These costs can be encoded by a cost function c that associates a positive real
value to each edit operation, depending on the elements being transformed.

In this paper, we will restrict ourselves to only constant cost functions. There-
fore, we can associate each edit operation to a constant value. Let cns, cni, cnd,
ces, cei, ced ∈ R+ be the cost values associated with respectively node substitu-
tion, insertion, deletion and edge substitution, insertion, deletion.

As shown in [7], any edit path between two graphs G1 and G2 can be encoded
as two mapping functions. First, ϕ : V1 → V2 ∪ ε encodes the mapping of G1’s
nodes to nodes of G2. If a node vi is deleted, we have ϕ(vi) = ε. Similarly, we
denote as ϕ−1 the mapping of V2 to V1 ∪ ε. For the same edit path, we have
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thus ϕ(vi) = vj ⇒ ϕ−1(vj) = vi. Given a mapping and considering constant cost
functions, the cost associated to node operations of an edit path represented by
ϕ and ϕ−1 is given by:

Cv(ϕ, ϕ−1, G1, G2) =
∑

vi∈V1
ϕ(vi) �=ε

cns +
∑

vi∈V1
ϕ(vi)=ε

cni +
∑

vi∈V2
ϕ−1(vi)=ε

cnd. (2)

The cost associated with edge operations is defined as:

Ce(ϕ, ϕ−1, G1, G2) =
∑

e=(vi,vj)∈E1|
ϕ(vi) �=ε∧
ϕ(vj) �=ε∧

(ϕ(vi),ϕ(vj))∈E2

ces +
∑

e=(vi,vj)∈E1|
ϕ(vi)=ε∨
ϕ(vj)=ε∨

(ϕ(vi),ϕ(vj))/∈E2

cei +
∑

e=(vi,vj)∈E2|
ϕ−1(vi)=ε∨
ϕ−1(vj)=ε∨

(ϕ−1(vi),ϕ
−1(vj))/∈E1

ced. (3)

The final cost is given by:

C(ϕ, ϕ−1, G1, G2) = Cv(ϕ, ϕ−1, G1, G2) + Ce(ϕ, ϕ−1, G1, G2). (4)

Let #ns be the number of node substitutions, i.e., the cardinality of the
subset of V1 being mapped onto V2. This number is given by the number of
terms of the first sum in Eq. 2, i.e., #ns = |{vi ∈ V1 | ϕ(vi) �= ε}|. Similarly:

– The number of node deletions is #nd = |{vi ∈ V1 | ϕ(vi) = ε}|;
– The number of node insertions is #ni = |{vi ∈ V2 | ϕ−1(vi) = ε}|;
– The number of edge substitutions is #es = |{e = (vi, vj) ∈ E1 | ϕ(vi) �=

ε ∧ ϕ(vj) �= ε ∧ (ϕ(vi), ϕ(vj)) ∈ E2}|;
– The number of node deletions is #ei = |{e = (vi, vj) ∈ E1 | ϕ(vi) = ε ∨

ϕ(vj) = ε ∨ (ϕ(vi), ϕ(vj)) /∈ E2}|;
– The number of node insertions is #ed = |{e = (vi, vj) ∈ E2 | ϕ−1(vi) =

ε ∨ ϕ−1(vj) = ε ∨ (ϕ−1(vi), ϕ−1(vj)) /∈ E1}|.
Then, let x ∈ N

6 encode the number of each edit operation as x =
[#ns,#nd, #ni,#es,#ed,#ei]�. Note that these values depend on both graphs
being compared and a given mapping between nodes. Similarly, we define
a vector representation of the costs associated with each edit operation by
c = [cns, cnd, cni, ces, ced, cei]� ∈ R

6
+. Given these representations, the cost asso-

ciated with an edit path, as defined by Eq. 4, can be rewritten as:

C(ϕ, ϕ−1, G1, G2, c) = x�c. (5)

Therefore, the graph edit distance between two graphs is defined as:

ged(G1, G2, c) = argmin
ϕ,ϕ−1

C(ϕ,ϕ−1, G1, G2, c). (6)

3.2 Learning the Edit Costs

Consider that each graph Gk ∈ G is associated with a particular targeted prop-
erty yk ∈ Y, namely the target in regression tasks (e.g. Y ⊆ R for real-valued
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output regression). Furthermore, a distance dY : Y × Y → R
+ is defined on this

targeted property, such as the Euclidean distance when dealing with a vector
space Y, namely dY(yi, yj) = ‖yi − yj‖2.

The main idea behind the proposed method is that the best metric in the
graph space is the best aligned one to the target distances (i.e., dY). With this
distance-preserving principle, we seek to learn the edit cost vector c by fitting
the distances between graphs to the distances between their targeted properties.
Ideally, we seek to preserve the GED between any two graphs Gi and Gj and the
distance between their targeted properties. Considering the set of N available
graphs G1, . . . , GN and their corresponding targets y1, . . . , yN , we seek to have

ged(Gi, Gj , c) ≈ dY(yi, yj) for all i, j = 1, 2, . . . N. (7)

Let ω : G × G × R
6
+ → N

6 be the function that computes an optimal edit
path between Gi and Gj according to the cost vector c and returns the vector
x� ∈ R

6
+ of numbers of edit operations associated to this optimal edit path,

namely x� = ω(Gi, Gj , c). This function can be any method computing an exact
or sub-optimal graph edit distance [1,6].

For any pair of graphs (Gi, Gj), let xi,j be a vector encoding the number
of each edit operation. Let X ∈ N

N2×6 be the matrix of the numbers of edit
operations for each pair of graphs, namely its (iN + j)-th row is xT

i,j . Then, Xc
is the N2 × 1 vector composed of edit distances computed according to c and
X between all pairs of graphs. Let d ∈ R

N2

+ be a vector of the differences on
targeted properties according to dY , with d(iN + j) = dY(Gi, Gj). Therefore,
the optimization problem can be rewritten as:

argmin
c

L(Xc,d) subject to c > 0, (8)

where L denotes a loss function. Besides the constraint on c to avoid negative
costs, one can also add a constraint to satisfy the triangular inequality, or one
to ensure that a deletion cost is equal to an insertion cost [24].

In the case of regression problem, L can be defined as the sum squares of
differences between computed graph edit distances and dissimilarities of the
targeted property. Therefore, the final optimization problem is:

argmin
c

||Xc − d||22 subject to c > 0. (9)

Estimating c by solving this constrained optimization problem allows to linearly
fit graph edit distances to a particular targeted property according to the edit
paths initially given by ω. However, changing the edit costs may influence the
optimal edit path, and thus its description in terms of the numbers of edit
operations. There is thus an interdependence between the function ω computing
an optimal edit path according to c, and the objective function optimizing c
according to edit paths encoded within X. To solve this interdependence, we
propose an alternated optimization strategy, summarized in Algorithm1 where
Ω(G, c) denotes the computation of ω(Gi, Gj , c),∀i, j ∈ 1 . . . N . The two main
steps of the algorithm are described next:
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Algorithm 1. Main algorithm to optimize costs
1: c ← random(6)
2: X ← Ω(G, c)
3: while not converged do
4: c ← argminc ||Xc − d||22, subject to c > 0
5: X ← Ω(G, c)
6: end while

– Estimate c for fixed X (line 4): This optimization problem is a constrained lin-
ear problem that can be resolved using off-the-shelf solvers, such as cvxpy [16]
and scipy [29]. This optimization problem can also be viewed as a non-negative
least squares problem [19]. For a given set of edit operations between each
pair of graphs, this step linearly optimizes the constant costs to be applied
such that the difference between graph edit distances and distances between
targets is minimized.

– Estimate X for fixed c (line 5): The modification performed on costs in the
previous step may have an influence on the associated edit path. To address
this point, the optimization of costs is followed by a re-computation of the
optimal edit paths according to the newly computed c vector encoding the
edit costs. This step can be achieved by any method computing graph edit
distance. For the sake of computational time, one can choose an approximated
version of GED [6,7].

This alternated optimization is repeated to compute both edit costs and edit
operations. Since we do not have theoretical proof of the convergence of this
optimization scheme, we limit the number of iterations to 5 in our implementa-
tion.

4 Experiments

We conducted experiments2 on two well-known datasets in chemoinformatics,
both composed of molecules and their boiling points. The first dataset is com-
posed of 150 alkanes [11]. An alkane is an acyclic molecule solely composed
of carbons and hydrogens. A common representation of such data consists in
implicitly encoding hydrogen atoms using the valency of carbon atoms. Such an
encoding scheme allows to represent alkanes as acyclic unlabeled graphs. The
second dataset is composed of 185 acyclic molecules [12]. In contrast with the
previous dataset, these molecules contain several hetero atoms and are thus rep-
resented as acyclic labeled graphs.

To evaluate the predictive power of different settings of edit costs, we used a
k-nearest-neighbors regression [2] model, where k is the number of the neighbors
considered to predict a property. The performances are estimated on ten differ-
ent random splits. For each split, a test set representing 10% of the graphs in the

2 Code available at https://gitlab.insa-rouen.fr/bgauzere/fit-distances.

https://gitlab.insa-rouen.fr/bgauzere/fit-distances
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Fig. 1. Results on each dataset in terms of RMSE for the 10 splits

Table 1. Average and standard deviation of fitted edit costs values

Dataset cns cnd cni ces ced cei

Acyclic 10.74 ± 0.2 14.26 ± 0.7 14.8 ± 0.6 0.32 ± 0.01 0.23 ± 0.2 0.4 ± 0.2

Alkane – 26.22 ± 1.0 26.85 ± 0.8 – 0.16 ± 0.1 0.11 ± 0.1

dataset is randomly selected and used to measure the performance of the predic-
tion. The remaining 90% are used to optimize the edit costs and the value of k,
where k is optimized through a 5-fold cross-validation (CV) procedure over the
candidate values {3, 5, 7, 9, 11}. The number of iterations for the optimization of
the edit costs is fixed to 5.

The proposed optimization procedure is compared to two other edit costs
settings: a random set of edit costs and a predefined cost setting as given in
[1]; the latter is the so-called expert costs. Tables in Fig. 1 show the average
root mean squared errors (RMSE) obtained for each cost settings over the 10
splits, estimated on the training set and on the test set. The ± sign gives the
95% confidence interval computed over the 10 repetitions. Figures show a differ-
ent representation of the same results with error bars modeling the 95% confi-
dence interval. As expected, a clear and significant gain in accuracy is obtained
when using fitted costs on the two datasets. These promising results confirm
the hypothesis that ad-hoc edit costs may help the graph edit distance catch
better targeted properties that are associated to a graph, and thus improve the
prediction accuracy while still operating in the graph space.

The fitted values of edit costs are summarized in Table 1. From these results,
we can observe that insertion and deletion costs are almost similar, hence show-
ing the symmetry of these operations. Also, one can observe that deletion and
insertion costs are more important than substitution costs, which shows that the
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number of atoms is more important than the atom itself. This is coherent with
the chemistry theory [12]. Finally, we can note that costs associated with nodes
are higher to the ones associated with edges.

5 Conclusion and Future Work

In this paper, we introduced a new principle to define optimal graph edit costs of
a GED for a given regression task. Based on this principle, we defined the opti-
mization problem of fitting the edit costs to a particular metric, measured for
instance on a targeted property to predict. An alternated optimization strategy
was proposed to solve this optimization problem. The conducted experiments on
two well-known datasets showed that the optimization process leads to a GED
with a better predictive power compared to other methods. All these observa-
tions confirm that the proposed method helps to fit edit costs and outperforms
other methods. There are still several challenges to address in future work. First,
a clear and complete comparison to other methods cited in the introduction and
related works will be established. Second, we seek to examine other criteria than
the distance-preserving criterion, such as the conformal map for instance [18].
Third, from a theoretical point of view, we are interested in establishing conver-
gence proof on our alternated optimization strategy, and to extend these proofs
to approximate computations of graph edit distances. Fourth, this scheme will
be extended to classification problem and non-constant costs to be applicable
in most application domains. Considering non-constant costs will need to opti-
mize parametric functions rather than scalar values, hence complexifying the
procedure.
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Abstract. Subgraph isomorphism is one of the most challenging prob-
lems on graph-based representations. Despite many efficient sequential
algorithms have been proposed over the last decades, solving this prob-
lem on large graphs is still a time demanding task. For this reason, there
is a recently growing interest in realizing effective parallel algorithms
able to exploit at their best the modern multi-core architectures com-
monly available on servers and workstations. We propose a comparison of
four parallel algorithms derived from the state-of-the-art sequential algo-
rithm VF3-Light; two of them were presented in previous works, while
the other two are introduced in this paper. In order to evaluate strong
points and weaknesses of each algorithm, we performed a benchmark
over six datasets of random large and dense graphs, both labelled and
unlabelled, measuring memory usage, speed-up and efficiency. We also
add a comparison with a different parallel algorithm, named Glasgow,
that is not derived from VF3-Light.

Keywords: Exact graph matching · Subgraph isomorphism · Parallel
algorithms · VF3

1 Introduction

Graphs are mathematical structures aimed at representing sets of objects
together with their relationships formalized, as nodes and edges respectively.
Many real world domains cannot be entirely represented using vectors only; we
need graphs indeed, to have a proper understanding of connections, interactions
and relationships among the entities under analysis. Examples are social and
biological networks [3,5,8,9] where graphs are the most natural representation
for protein structures, gene interactions or social interactions. Unfortunately,
the great expressive power of structural representations is paid with the high
computational complexity required to perform even simple operations, such as
the comparison of two objects, as discussed in [10,12,22]. An important but
expensive task is the search for occurrences of pattern graphs as subgraphs of
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a larger target graph. This task is useful in many practical applications, from
motif search in biology to graph database querying, and is usually formalized as
subgraph isomorphism [10], a NP-Complete problem in the general case. Due to
its complexity, several sequential algorithms have been proposed over the last
twenty years [3,4,11,13,17,18,21]. However, because of the increasing quantity
of data collected, the graphs to be processed are becoming larger and larger,
making the problem extremely time consuming (days or weeks can be required)
even for the most effective algorithms, like VF3 [4] or RI [3].

Therefore, moving to parallel solutions is the way to speed up the algorithms
on large graphs and here is where the research is taking the next step. The
goal is exploiting at the best the modern multi-processor, multi-core and GPU-
based architectures. Although the latter are the most interesting in terms of
parallel computing, the modern GPUs are SIMD (Single Instruction Multiple
Data) architectures designed to be very effective on matrix operations, but less
general-purpose than a common multi-core CPU that provides a thread-level
parallelism. This makes very difficult to realize graph algorithms on GPUs that
are really efficient in using the underlying hardware, as discussed also in [14,23].
GPU-based algorithms have been proposed in [20,24]; they all approach the
problem using the filtering-and-joining [19], but differ from each other on the
representation adopted and the way they realize preprocessing phases, filtering
and join heuristics. The result is a significant speed-up that is, nevertheless, far
from being proportional to the number of processing units used, thus yielding a
low efficiency.

We decided to focus on the most diffused and affordable parallel architec-
ture, the multi-core CPUs. Although the level of hardware parallelism is not
comparable with GPUs, multi-core CPUs allow to design parallel algorithms
that achieve a very high efficiency and speed-up. In the recent literature, state-
of-the-art algorithms designed for multi-core architectures are Glasgow [1,16] a
parallel constraint programming approach based on the LAD (Local All Differ-
ent) algorithm by [18], MPMatch [15] a parallel formulation of CFL-Match [2],
and more recently VF3P [7] a parallel algorithm derived from VF3-Light [6].

The aim of this paper is to extend the analysis on the algorithms proposed
in [7] by adding two new algorithms based on VF3-Light [6] and moving to a
larger number of threads per algorithms, 8 and 16 respectively. To be fair in our
analysis we have also compared these algorithms with Glasgow, that approaches
the problem using constraint programming. The analysis has been performed on
six graph datasets, evaluating the speed-up, the efficiency and the memory usage,
both when enumerating all the solutions, and when stopping the algorithm after
the first solution is found.

2 Subgraph Isomorphism

A graph is defined as a pair G = (V,E), where V is the set of nodes and
E ⊂ V × V is the set of the edges. In addition to its structure, a graphs can
have semantic information through attributes (or labels) on edge and nodes.
Graph Matching is the problem of finding a mapping between the nodes of
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two graphs G1 and G2 that satisfies a given set of constraints. If all the
nodes of the first graph are involved, the mapping can be expressed as a map-
ping function, M : V1 → V2. The subgraph isomorphism [10] is the problem
of searching instances of a pattern graph inside a larger target one. In this
case the mapping function M must be injective and the corresponding nodes
must have the same structure, i.e. given two nodes u, u′ ∈ G1 and two node
v = M(u), v′ = M(u′) ∈ G2, the edge (u, u′) is in G1 if and only if (v, v′) is
in G2.

For over ten years, VF2 [11], VF3 [4] and recently VF3L [6] have demon-
strated to be among the most effective methods to deal with exact graph match-
ing problems. The overall approach is based on a depth-first search (DFS) with
backtracking over a tree-structured state space where each state represents a
partial matching between two graphs. More formally, each state s represents
a partial solution M(s) that maps a subset of nodes V1(s) ⊆ V1 to a subset
of nodes V2(s) ⊆ V2. The root state s0 has M(s0) = ∅. As shown in Fig. 1,
the algorithm iteratively adds a new couple of nodes (u, v) to the matching
M(s) of the currently visited state (see ExtendState) so as to obtain a new state
s′ such that M(s′) = M(s) ∪ (u, v). The algorithm has to search only those
states verifying the constraints imposed by the subgraph isomorphism (consis-
tent states). This process ends on the goal states where all the nodes of G1

have been mapped. The consistency of the visited states is ensured by the rules
introduced in VF2 [11], namely the feasibility rule, used to verify the necessary
and sufficient conditions for the subgraph isomorphism. When a consistent state
cannot be further extended to generate a new consistent one the algorithm back-
tracks (see RestoreState). Thus, the exploration stops when no more consistent
states have to be extended.

Fig. 1. Outline of the sequential matching procedure

3 Parallel Subgraph Isomorphism Solvers

Solving the subgraph isomorphism as a DFS over a state space allows to effec-
tively exploit a domain decomposition instead of a functional one. Indeed, the
search process can be performed by exploiting a state-grained parallelism where
each thread is responsible to visit a single state. Under the assumptions that the
subset of the state space explored by the threads are not overlapped and the
number of state is equally distributed over the threads, n threads will, ideally,
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explore n states in parallel. While the first assumption can be guaranteed using
an appropriate communication strategy among the threads, having a uniform
workload among the threads is hard to achieve in the case of subgraph isomor-
phism because it requires to know the distribution of the states over the search
space before starting the matching.

Realistically, the threads have to self-balance their workload and share with
each other the states to be explored; therefore, the communication among them
is a crucial point to realize an efficient algorithm. To this aim a stack, namely the
Global State Stack (GSS), is used by thread to share states with the others and
pull a state to be explored. Of course, this design choice entails a communication
overhead that grows together with the number of the threads. Hence, to reduce
this overhead, an additional private stack, namely the Local State Stack (LSS), is
used by each thread to explore autonomously a subset of the state space without
requiring to access the GSS (Fig. 2).

Fig. 2. Outline of the procedures executed by each thread.

The overall structure of the parallel algorithm is composed of a static thread-
pool so as to control the exact degree of parallelism, also considering the under-
lying hardware architecture, and avoid the overhead required to create threads
on-demand. Each thread executes the procedure Explore (see Algorithm 2),
where it checks if there are states to be explored, through a shared state counter
(StateCounter), then pulls a state from the GSS. It worths pointing out that the
use of such a shared counter is needed to keep track of all the states, both those
that have to be explored (stored in the GSS or in the LSS of each thread) and the
ones currently extracted from the one of the stacks that are under exploration.
Since the communication among the threads is performed only by sharing states
and there are no threads responsible to orchestrate the work, the information
carried by the shared state counter is essential for the threads to understand
when no more work is required. Indeed, when the state counter is zero a thread
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can safely stop: there are no more state to be explored and the other threads are
not exploring a state so they are not going to push new ones. The consistency
of this information is guaranteed by updating the counter both in the Explore

procedure and while pushing and pulling new states. The ExploreState proce-
dure is used to visit a state just retrieved from one of the stacks; it has the same
structure of the Match procedure used by the sequential algorithm, except for
the backtracking that is not used in the parallel exploration.

Table 1. Summary of all the strategies considered in the analysis.

Algorithm Policy LSS Description

V F3P GSS-only No The algorithm only uses the GSS

V F3PLS LSS with Limited Depth Yes The algorithm limits the maximum number of state

stored in the LSS. If the LSS is full, new states are

pushed into the GSS

V F3PDL LSS with Descendant Limit Yes The algorithm limits the maximum number of states

explored by a thread without using the GSS. Each

thread keeps a count of how many states were explored

since the last pull from the GSS; if this count is over a

threshold, new states are pushed into the GSS

V F3PAWS LSS with Active Work Sharing Yes The algorithm ensures that a thread periodically shares

part of its work using the GSS. Each thread checks

periodically if there are inactive threads; if so, it moves

some states from its LSS to the GSS

As discussed in [7], the policy adopted to balance the joint use of LSS and
GSS, can significantly affect the efficiency of the algorithm. In the same paper,
two policies have been proposed; the first is the very basic one that uses only the
GSS, while the other adopt the LSS by limiting its depth so as to set a maximum
number of states stored privately by each thread and push them to share the
surplus. Hereinafter we name these policies GSS-only (V F3P ) and LSS with
Limited Depth (V F3PLS) respectively. In addition to them, we propose to new
strategies to extend the analysis proposed in [7], both of them using the LSS.
The first approach, named LSS with Descendants Limit (V F3PDL), considers
each state extracted from the GSS as a root state than limits the number of
descendants states generated starting from a root state that have been stored
in the LSS. A private descendant counter is used by each thread to keep track
of the number of descendant pushed in the LSS; each descendant generated is
put in the LSS while the counter is under the limit, in the GSS otherwise. Since
each thread can manage a single root state, each time it pulls a state from the
GSS the descendant counter is reset. It is worth to note that differently for the
strategy using a depth limit for the LSS, the one adopted in V F3PDL does not
limit directly the maximum size of the LSS, but the maximum number of states
explored autonomously by a thread instead. Finally, the last policy is named LSS
with Active Work Sharing (V F3PAWS). It does not limit the maximum number
of states in the LSS, but forces each thread to share some states periodically.
Indeed, after having explored a given number of states a thread has to check if
there are some inactive threads waiting for work. If so, the thread moves from
its LSS to the GSS an amount of states equal to the number inactive workers.
A summary of all the considered policies is shown in Table 1.
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4 Experiments

In our experiments we have compared the four parallel tree-search strategies
discussed in Sect. 3 and the Glasgow algorithm [1], a recent constraint program-
ming method designed for multi-core architecture. The comparison has been
performed considering two performance measures widely adopted with parallel
algorithms: the speed-up (Sp), that is the improvement of the execution time
evaluated as the ratio between the run time Ts of the most efficient sequential
algorithm and Tp, and the efficiency (Ef) obtained as the speed-up on the num-
ber of CPUs. The computation of these measures requires a sequential algorithm
to be used as baseline, we have selected VF3-Light due to its proven efficiency
in solving the subgraph isomorphism and because, except for Glasgow, the com-
pared parallel algorithms have been derived from it.

To benchmark the algorithms we have used six challenging datasets selected
from the MIVIA LDG database, composed of large and dense Erdős and Rényi
graphs; in particular, we have used two datasets of unlabelled random graphs
having a density of 0.2, 0.3 respectively and target graph size ranging form 500
to 3000 nodes and four labelled random graphs of density 0.2 and 0.3 and size
from 500 to 10000. As discussed in [7], due to its complexity, these datasets are
suitable to stress the algorithms.

Table 2. Speed-up of the parallel algorithms over different target graph size and num-
ber of CPU cores employed.

All the solutions

Dataset V F3P V F3PLS V F3PDL V F3PAWS Glasgow

8 core 16 core 8 core 16 core 8 core 16 core 8 core 16 core 8 core 16 core

No Lab η = 0.2 5.16 8.77 6.23 11.74 5.67 10.33 1.71 3.06 2.68 2.96

η = 0.3 5.08 10.59 7.16 12.66 6.16 11.49 4.04 8.54 11.14 13.45

Unif η = 0.2 3.77 5.23 3.86 3.76 3.80 4.43 1.63 1.55 2.02e−03 2.07e−03

η = 0.3 4.72 8.60 5.81 5.63 5.44 9.41 3.35 5.07 2.78e−03 3.10e−03

NonUni η = 0.2 3.76 4.61 2.65 2.60 3.51 3.70 1.53 1.41 1.64e−03 1.73e−03

η = 0.3 4.75 8.66 4.16 3.95 5.62 9.32 3.56 5.31 2.35e−03 2.68e−03

First solution

Dataset V F3P V F3PLS V F3PDL V F3PAWS Glasgow

8 core 16 core 8 core 16 core 8 core 16 core 8 core 16 core 8 core 16 core

No Lab η = 0.2 0.56 0.94 1.49 2.46 4.37 8.07 2.74 3.82 0.46 0.48

η = 0.3 0.55 1.15 4.15 11.42 5.47 9.62 0.90 1.48 3.02 3.40

Unif η = 0.2 0.53 0.69 1.17 1.24 0.59 0.56 0.50 0.66 9.38e−04 9.05e−04

η = 0.3 0.52 0.94 4.15 4.75 1.49 1.98 0.68 1.06 1.41e−03 1.42e−03

NonUni η = 0.2 0.59 0.68 0.71 0.70 0.58 0.52 0.35 0.40 8.20e−04 8.47e−04

η = 0.3 0.52 0.93 1.6 1.50 1.43 1.70 0.57 0.77 1.26e−03 1.33e−03

Differently from [7], in this paper we are interested in analyzing both the
communication overhead and the capability of each policy to effectively balance
the work among the threads from the beginning of the search process. Therefore,
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we have performed the experiments considering a thread pool of 8 and 16 threads
respectively; then we have initialized the GSS by pushing only the empty state,
so letting thread that picks the first state to distribute the initial work to the
others. The different strategies have been compared using the best configuration
of parameters among all the experiments performed. In particular, we set the
limit of the LSS depth in V F3PLS to a tenth of the size of the pattern and the
limit to the number of descendants in V F3PLS to the size of the pattern. As for
V F3PAWS , we checked for inactive threads every 10 states.

The experiments have been performed on a server equipped with four Intel(R)
Xeon(R) Gold 5220, 72 cores in total, and 1 Tb of Ram. The hyperthreading has
been deactivated and 64 cores have been isolated so as to avoid the operating
system to allocate user processes, the left cores have been used to measure the
performance indices. In order to get unbiased measures of the speed-up and the
efficiency, each algorithm has a subset of cores reserved for the whole execution
time and each thread in the pool has been pinned to a core of such a set.

In Tables 2 and 3 we show the results in terms of speed-up and efficiency
respectively; due to space we have reported the average value computed over all
the graphs of each dataset. In every table we have highlighted the performance
achieved by the algorithms while searching for all the solutions and the first
one only. Despite the two problems are similar, the former requires to explore a
considerable higher number of states.

Before discussing the results it is important to point out that, since all the
four parallel algorithms proposed are derived from VF3-Light [6], given a couple
of graphs they all generates the same amount of states following the same order

Table 3. Efficiency of the parallel algorithms over different target graph size and
number of CPU cores employed.

All the solutions

Dataset V F3P V F3PLS V F3PDL V F3PAWS Glasgow

8 core 16 core 8 core 16 core 8 core 16 core 8 core 16 core 8 core 16 core

No Lab η = 0.2 0.64 0.54 0.78 0.73 0.70 0.65 0.21 0.19 0.33 0.18

η = 0.3 0.63 0.66 0.90 0.79 0.77 0.72 0.50 0.53 1.39 0.84

Unif η = 0.2 0.47 0.33 0.19 0.15 0.48 0.28 0.20 0.10 2.53e−04 1.29e−04

η = 0.3 0.59 0.54 0.73 0.35 0.68 0.59 0.42 0.32 3.48e−04 1.94e−04

NonUni η = 0.2 0.47 0.29 0.33 0.16 0.44 0.23 0.19 0.09 2.05e−04 1.08e−04

η = 0.3 0.59 0.54 0.52 0.25 0.70 0.58 0.45 0.33 2.94e−04 1.67e−04

First solution

Dataset V F3P V F3PLS V F3PDL V F3PAWS Glasgow

8 core 16 core 8 core 16 core 8 core 16 core 8 core 16 core 8 core 16 core

No Lab η = 0.2 0.07 0.05 0.19 0.15 0.54 0.50 0.34 0.23 0.05 0.03

η = 0.3 0.07 0.07 0.52 0.71 0.68 0.60 0.11 0.09 0.38 0.21

Unif η = 0.2 0.07 0.04 0.15 0.08 0.07 0.04 0.06 0.04 1.17e−04 5.66e−05

η = 0.3 0.06 0.06 0.52 0.30 0.19 0.12 0.08 0.07 1.76e−04 8.86e−05

NonUni η = 0.2 0.07 0.04 0.09 0.04 0.07 0.03 0.04 0.03 1.02e−04 5.29e−05

η = 0.3 0.06 0.06 0.20 0.09 0.18 0.11 0.07 0.05 1.58e−04 8.31e−05
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with respect to the pattern graph. This is due to the fact that the proposed
algorithms do not add any new heuristics to visit the state space but an effective
way to parallelize the exploration. Therefore, we can reasonably consider the
performance gap among them only related to the policy they use.

As shown in Table 2 for all the analyzed strategies the speed-up grows almost
linearly w.r.t the number of threads, among them the best two are V F3PLS and
V F3PDL. A similar result is evident while looking at the efficiency, in Table 3.
In particular, when we analyze the results achieved on the unlabelled graphs,
the improvement in efficiency is between the 5% and the 15% while searching
for all the solutions and it is higher than the 60% when the task is to find the
first solution. Dealing with labelled graphs is generally less challenging, but also
in this case the efficiency improvement is 25% and 35% while searching for all
the solutions on the graphs that are more dense.

Looking at the whole picture, it is not the LSS itself to provide a real advan-
tage to the algorithms, but the way it is used together with the GSS. Both
for V F3PLS and V F3PDL the use of the LSS has reduced the communication
overhead, but the main difference between them and V F3PAWS is how the LSS
affects the ability of the algorithm to balance the workload among the thread.
Indeed, the latter has achieved a very poor performance because, for most of the
time, only a subset of threads are fully involved in the exploration. A proof of
that is the very low efficiency achieved by V F3PAWS also in the most challeng-
ing situation (enumerating all the solution on unlabelled graphs). Therefore, we
can deduce that setting explicitly a limit to the capacity of the LSS allows the
algorithm to share the work among the thread more efficiently.

As for the memory requirements, we have reported the ratio between the
average memory usage peak of the parallel algorithm and that of the baseline.
Analyzing the results in Table 4 it is clear that, despite the lowest memory foot-
print is achieved by V F3P and V F3PLS , the difference among the algorithms is

Table 4. Average peak of memory usage while searching for all the solutions. The
memory usage of the baseline V F3L is reported in megabytes and for each parallel
algorithms we show the ratio between the memory usage of the parallel algorithm and
the baseline.

V F3L

No Lab Unif NonUni

η = 0.2 η = 0.3 η = 0.2 η = 0.3 η = 0.2 η = 0.3

57.56 48.16 551.12 726.58 539.09 747.96

Dataset
V F3P V F3PLS V F3PDL V F3PAWS Glasgow

8 core 16 core 8 core 16 core 8 core 16 core 8 core 16 core 8 core 16 core

Unl
η = 0.2 11.20 21.77 11.53 21.61 15.51 25.24 11.67 21.98 11.29 20.84

η = 0.3 13.64 26.67 14.28 26.45 22.51 35.42 13.68 26.49 17.36 30.16

Uni
η = 0.2 2.10 3.19 2.11 3.14 2.45 3.14 2.13 3.16 1.61 3.06

η = 0.3 1.83 2.64 1.86 2.64 3.09 3.70 1.85 2.63 1.34 2.59

NonUni
η = 0.2 2.13 3.23 2.14 3.18 2.29 3.15 2.15 3.21 1.73 3.44

η = 0.3 1.81 2.60 1.82 2.58 2.41 3.07 1.82 2.58 1.47 2.39
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minimal except for V F3PLS that in the case of unlabeled graphs. Since the algo-
rithms uses the same data structures and generates the same amount of states,
this difference can be justified by the fact that, in the average, more states are
stored in the LSSs of the threads used by V F3PLS .

Considering Glasgow, it has outperformed all the strategies only in the case
of unlabelled graphs with density η = 0.3, in all the other situations it showed
very poor performance. It is worth to point out that, in the case of labelled
graphs the results are referred to only half of the instances considered, the ones
that the algorithm has been able to complete; since it has a significant impact
on the average peak of memory usage reported in Table 4 we have highlighted
only the best results achieved by the other algorithms.

5 Conclusions

In this paper we have compared four different policies to manage the communi-
cation among the threads while solving the subgraph isomorphism using parallel
tree-search based algorithms derived from the state-of-the-art sequential algo-
rithm VF3-Light. In addition to the strategy proposed in [7] we have introduced
two novel approaches, V F3PLS and V F3PAWS , so as to further extend the anal-
ysis and evaluate the most effective way to balance the communication overhead
with a good level of work sharing among the threads. These four algorithms
have been compared with Glasgow, another very recent parallel algorithm based
on constraint programming. Two strategies, V F3PDL and V F3PLS , have been
proved to the most effective on six different database of large and dense random
graphs. The experimentation can be extended to other databases, for providing
a better characterization of the situations in which these strategies give the best
results.

References

1. Archibald, B., Dunlop, F., Hoffmann, R., McCreesh, C., Prosser, P., Trimble,
J.: Sequential and parallel solution-biased search for subgraph algorithms. In:
Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 20–
38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9 2

2. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph matching by post-
poning Cartesian products. In: Proceedings of the 2016 International Conference
on Management of Data. Association for Computing Machinery (2016). https://
doi.org/10.1145/2882903.2915236

3. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., Ferro, A.: A subgraph iso-
morphism algorithm and its application to biochemical data. BMC Bioinform. 14,
1–13 (2013)

4. Carletti, V., Foggia, P., Saggese, A., Vento, M.: Challenging the time complexity
of exact subgraph isomorphism for huge and dense graphs with VF3. IEEE Trans.
Pattern Anal. Mach. Intell. 40, 804–818 (2018)

https://doi.org/10.1007/978-3-030-19212-9_2
https://doi.org/10.1145/2882903.2915236
https://doi.org/10.1145/2882903.2915236


Parallel Subgraph Isomorphism on Multi-core Architectures 257

5. Carletti, V., Foggia, P., Vento, M., Jiang, X.: Report on the first contest on graph
matching algorithms for pattern search in biological databases. In: Liu, C.-L., Luo,
B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 178–187.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7 18

6. Carletti, V., Foggia, P., Greco, A., Saggese, A., Vento, M.: The VF3-light subgraph
isomorphism algorithm: when doing less is more effective. In: Bai, X., Hancock,
E.R., Ho, T.K., Wilson, R.C., Biggio, B., Robles-Kelly, A. (eds.) S+SSPR 2018.
LNCS, vol. 11004, pp. 315–325. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-97785-0 30

7. Carletti, V., Foggia, P., Ritrovato, P., Vento, M., Vigilante, V.: A parallel algorithm
for subgraph isomorphism. In: Conte, D., Ramel, J.-Y., Foggia, P. (eds.) GbRPR
2019. LNCS, vol. 11510, pp. 141–151. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20081-7 14

8. Carletti, V., Foggia, P., Vento, M.: Performance comparison of five exact graph
matching algorithms on biological databases. In: Petrosino, A., Maddalena, L.,
Pala, P. (eds.) ICIAP 2013. LNCS, vol. 8158, pp. 409–417. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41190-8 44

9. Carletti, V., Foggia, P., Vento, M.: VF2 plus: an improved version of VF2 for bio-
logical graphs. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR
2015. LNCS, vol. 9069, pp. 168–177. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18224-7 17

10. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18, 265–298 (2004)

11. Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26,
1367–1372 (2004)

12. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last ten years. Int. J. Patt. Recogn. Artif. Intell. 28, 1450001
(2014)

13. Han, W., Lee, J.h., Lee, J.: TurboISO: towards ultrafast and robust subgraph
isomorphism search in large graph databases. In: SIGMOD pp. 337–348 (2013)

14. Jenkins, J., Arkatkar, I., Owens, J.D., Choudhary, A., Samatova, N.F.: Lessons
learned from exploring the backtracking paradigm on the GPU. In: Jeannot, E.,
Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6853, pp. 425–437.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23397-5 42

15. Jin, X., Lai, L.: MPMatch: a multi-core parallel subgraph matching algorithm
(2019). https://doi.org/10.1109/ICDEW.2019.000-6

16. McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algo-
rithm using supplemental graphs. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255,
pp. 295–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-
5 21

17. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: An efficient
algorithm for testing subgraph isomorphism. Proc. VLDB Endow. 1(1), 364–375
(2008)

18. Solnon, C.: AllDifferent-based filtering for subgraph isomorphism. Artif. Intell.
174, 850–864 (2010)

19. Sun, Z., Wang, H., Wang, H., Shao, B., Li, J.: Efficient subgraph matching on bil-
lion node graphs. Proc. VLDB Endow. (2012). https://doi.org/10.14778/2311906.
2311907

https://doi.org/10.1007/978-3-319-18224-7_18
https://doi.org/10.1007/978-3-319-97785-0_30
https://doi.org/10.1007/978-3-319-97785-0_30
https://doi.org/10.1007/978-3-030-20081-7_14
https://doi.org/10.1007/978-3-030-20081-7_14
https://doi.org/10.1007/978-3-642-41190-8_44
https://doi.org/10.1007/978-3-319-18224-7_17
https://doi.org/10.1007/978-3-319-18224-7_17
https://doi.org/10.1007/978-3-642-23397-5_42
https://doi.org/10.1109/ICDEW.2019.000-6
https://doi.org/10.1007/978-3-319-23219-5_21
https://doi.org/10.1007/978-3-319-23219-5_21
https://doi.org/10.14778/2311906.2311907
https://doi.org/10.14778/2311906.2311907


258 V. Carletti et al.

20. Tran, H.-N., Kim, J., He, B.: Fast subgraph matching on large graphs using graph-
ics processors. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA
2015. LNCS, vol. 9049, pp. 299–315. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18120-2 18

21. Ullmann, J.R.: Bit-vector algorithms for binary constraint satisfaction and sub-
graph isomorphism. ACM J. Exp. Algorithmics 15 (2011). https://doi.org/10.
1145/1671970.1921702. Association for Computing Machinery

22. Vento, M.: A long trip in the charming world of graphs for pattern recognition.
Pattern Recogn. 48, 291–301 (2014)

23. Xu, Q., Jeon, H., Annavaram, M.: Graph processing on GPUS: where are the bot-
tlenecks. In: 2014 IEEE International Symposium on Workload Characterization
(2014)
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Abstract. Capturing, transferring, and storing high-resolution images
has become a serious issue in a wide range of fields, in which these pro-
cesses are costly, time-consuming, or even infeasible. As obtaining low-
resolution images may be easier in practice, enhancing their spatial reso-
lution is currently an active research area and encompasses both single-
and multiple-image super-resolution techniques. In this paper, we pro-
pose a deep learning approach for multiple-image super-resolution that
is independent from the number of available low-resolution images of the
scene. It is in contrast to other deep networks which are crafted to deal
with input stacks of a constant size, hence are not applicable once the
number of low-resolution images varies. The experiments showed that
our technique not only outperforms other single- and multiple-image
super-resolution algorithms, but also it is lightweight and delivers instant
operation, thus can be deployed in hardware-constrained environments.

Keywords: Super-resolution · Deep learning · Statistical features.

1 Introduction

Super-resolution reconstruction (SRR) is a process of enhancing the spatial res-
olution of an input image (or a stack of images presenting the same scene). In
single-image SR (SISR), we rely solely on one low-resolution (LR) image to per-
form the reconstruction, whereas multiple-image SR (MISR) takes advantage of
using a set of input images capturing the same spatial area, although with sub-
tle differences like sub-pixel shifts. SRR plays an increasingly important role in
many applications from various fields, including medical imaging, Earth observa-
tion, video processing and more, in which acquiring and storing high-resolution
(HR) image data is costly, time-consuming, or even impossible in practice [8].

The most basic SISR techniques exploit various interpolation methods [17],
hence are computationally lightweight. Edge-based methods are based on the
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assumption that edges are the most important factor when it comes to the per-
ception of image quality, but they often fail to effectively reconstruct texture
or fine-grained details. Finally, statistical algorithms utilize image properties
and benefit from the gradient distribution to recover a HR image. There exist
example-based machine learning-powered approaches which use LR-HR image
pairs to learn mapping functions that are later exploited to super-resolve LR
images. In this context, convolutional neural networks (CNNs) were initially
introduced, commonly coupled with interpolation techniques. Dong et al. pro-
posed Super-Resolution Convolutional Neural Network (SRCNN) [3], later re-
designed to accelerate its operation [4], and followed by other deep architec-
tures [10].

In MISR, we build upon a premise that each LR image was derived from its
HR counterpart using a given imaging model [8], therefore SR may be consid-
ered as a task of reversing this degradation process. Although there are methods
that exploit image processing and analysis approaches to super-resolve stacks of
LR images [5], deep learning algorithms for MISR have recently emerged as a
data-driven alternative which might capture fine-grained image characteristics
during the reconstruction [8,13]. Unfortunately, the existent deep architectures
are designed to work with fixed-size LR stacks, and cannot be seamlessly used
to super-resolve different numbers of LRs without re-training. It hampers the
exploitation of such methods in practice, as the number of available LRs (along-
side their quality) can vary across separate acquisitions.

We tackle the problem of MISR using deep learning, and propose a deep
model that is independent from the number of LRs that are fed as an input
image stack for SRR (Sect. 2). We benefit from statistical features extracted from
the co-registered LRs, which are later stacked together with a single LR during
the reconstruction. This approach makes our network applicable over LR stacks
of variable sizes. The experiments, backed up with thorough quantitative and
qualitative analysis, showed that not only does our method deliver high-quality
and plausible SR images and outperform other SISR and MISR techniques, but it
is also lightweight and infers very fast (Sect. 3). Therefore, it could be deployed in
constrained environments, e.g., on board an imaging satellite, as a pre-processing
step to enhance the spatial resolution of captured scenes.

2 Method

In this section, we discuss our deep CNN for MISR which benefits from the
statistical features extracted from an input stack of images (we refer to this
architecture as StatNet). In StatNet, we abstract from the number of images,
hence we can super-resolve image stacks of any size (greater or equal to two,
as we utilize feature maps that would be empty for a single-image case) with-
out updating the backbone deep model and re-training it. The architecture can
be separated into a couple of building blocks, including the statistical block
(Sect. 2.1), extraction block (Sect. 2.2), and recursive block (Sect. 2.3).
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Input LR images

Example feature maps produced by StatBlock

Example feature maps produced by the extraction block

Example feature maps produced by the recursive block

Fig. 1. Pivotal StatNet building blocks, alongside example feature maps (k—kernel
size, n—the number of kernels).
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2.1 Statistical Block

The statistical block (StatBlock, Fig. 1) transforms any number of input images
into six feature maps (the minimum, maximum, range, mean, median, and stan-
dard deviation of the pixel values at a given position within the stack of co-
registered input images; see examples in Fig. 1). These feature maps are stacked
together (always in the same order), and coupled with a random image1 from
the input set of images (we call it the reference image). There are no learnable
parts in this block, and its simplicity makes StatBlock computationally efficient.

2.2 Extraction Block

The extraction block (Fig. 1) is the first learnable part of the architecture that
comes right after the StatBlock. It is inspired by the Inception network [15]—it
was shown that using multiple smaller kernels of different sizes and concatenating
their results, instead of using larger kernels, can capture higher-quality deep
features, and improve the performance of the deep model. In StatNet, an input
to the extraction block is processed by two convolutional layers (both with 32
kernels, one having kernels of size 3 × 3, and the other of size 5 × 5) that are
stacked parallel to each other, and their outputs are concatenated. Therefore,
we extract 64 feature maps (see examples in Fig. 1) which capture higher-level
object characteristics, such as edges and textures.

2.3 Recursive Block

The recursive block (Fig. 1) is a sequence of convolutional layers that is re-
used many times during the forwards pass, i.e., its output is passed again as an
input for a pre-defined number of times. A similar approach was exploited in
LapSRN [10]—in StatNet, we do not employ deconvolution at the end of this
block. We use three convolutional layers inside the recursive block, each having
64 kernels of size 3 × 3. In [10], it was shown that while eight recursions provide
the best performance, the difference between a smaller number of recursions was
not significant. Here, we utilize only four recursions to reduce the inference time.
The feature maps produced by the recursive block are harder to interpret, but
we can observe that some of them resemble the object being reconstructed.

2.4 StatNet: Putting All Building Blocks Together

StatNet (Fig. 2) is built as a sequence of the aforementioned blocks (StatBlock,
extraction, and recursive blocks). The feature maps produced be the recursive
block are then aggregated by two convolutional layers (with 3 × 3 kernels) to
progressively reduce dimensionality before performing upscaling. The first one
combines 64 feature maps into 32, which are processed by the second convolution
that outputs four feature maps. All of the convolutional layers are followed by

1 In this work, we exploit the first image in the stack.



Super-Resolution Using Deep Learning and Statistical Features 265

Input to shuffle SR image HR image

Fig. 2. The StatNet architecture (k—kernel size, n—the number of kernels), with exam-
ple pixel shuffle layer’s inputs, resulting SR image, and the corresponding HR image.

leaky ReLUs (LReLUs), with a negative slope of 0.2, as suggested in [11]. It
was proven that LReLU is capable of increasing the network’s performance, and
accelerating the training process, when compared to ReLU [16]. The output of
the last convolutional layer is processed by the pixel shuffle layer [14], which does
the final upscaling. An example of the input pixel-shuffle feature maps, alongside
the resulting SR image and the corresponding HR image are presented in Fig. 2.

3 Experiments

To confront StatNet with the state of the art and investigate its abilities, we
compare it with four deep learning SR algorithms: SRCNN [3], FSRCNN [4],
LapSRN [10] (all SISR), and MFCNN [6] (MISR). Additionally, the bicubic
interpolation [9] is adopted to serve as a MISR baseline. Since SRCNN, FSR-
CNN, and LapSRN are the SISR methods, we generate four SR images (for each
LR image separately), and take the highest-quality SR—according to a given
metric—in the comparisons. To quantify the super-resolution quality2, we uti-
lized the mean absolute error (MAE, the smaller the value, the better, thus we
want to minimize it: ↓), peak signal-to-noise ratio (PSNR↑), structural similarity
index measure (SSIM↑), and gradient-based structural similarity index measure
(GSSIM↑). Each of these metrics is calculated and averaged over all images
for each test dataset. The experiments ran on a personal computer with an
AMD Ryzen 5 1600 Six-Core Processor (16 GB DDR4 2400 MHz), and NVIDIA
GeForce GTX 1060 GB.
2 For more details on the metrics used for evaluating SR algorithms, see [2].
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Table 1. The quantitative comparison of all methods across all datasets. The green
bold values show the best score, while the black bold are the second best scores.

Dataset Algorithm MAE↓ PSNR↑ SSIM↑ GSSIM↑
Set5 SRCNN 7.03 27.99 0.80 0.46

FSRCNN 6.80 28.26 0.81 0.49

LapSRN 6.25 28.84 0.83 0.52

Bicubic 7.29 28.16 0.78 0.47

MFCNN 17.62 21.48 0.74 0.46

StatNet 4.81 31.20 0.88 0.61

Set14 SRCNN 8.99 26.04 0.72 0.43

FSRCNN 9.13 25.25 0.73 0.44

LapSRN 8.72 25.48 0.75 0.48

Bicubic 8.81 26.49 0.73 0.47

MFCNN 19.89 20.72 0.67 0.39

StatNet 6.73 27.68 0.82 0.58

BSD100 SRCNN 9.55 25.62 0.69 0.40

FSRCNN 9.41 25.36 0.70 0.42

LapSRN 8.92 26.09 0.72 0.45

Bicubic 9.20 26.16 0.71 0.46

MFCNN 17.29 21.32 0.65 0.35

StatNet 7.07 27.92 0.80 0.58

Manga109 SRCNN 7.80 25.09 0.82 0.51

FSRCNN 8.31 22.39 0.82 0.53

LapSRN 6.96 24.91 0.86 0.58

Bicubic 8.45 26.56 0.77 0.44

MFCNN 31.19 16.90 0.77 0.47

StatNet 5.50 25.68 0.89 0.62

Urban100 SRCNN 10.79 23.91 0.73 0.48

FSRCNN 10.75 23.18 0.75 0.50

LapSRN 10.36 23.26 0.77 0.55

Bicubic 11.13 24.23 0.70 0.45

MFCNN 21.96 19.22 0.64 0.38

StatNet 7.66 25.40 0.84 0.64

In this work, we focus on 2× SR, and utilize DIV2K [1] to randomly sample
1280 training and 320 validation patches, and Set5, Set14, BSD100, Manga109,
and Urban100 [7,12] are used as test sets which were never seen during the
training process. As all of these datasets are single-image, we simulate the low-
resolution stacks of images for each HR (original) image by applying the following
pixel shifts: (1, 0), (0, 1), and (1, 1) in the HR domain, which results in sub-
pixel shifts in the LR domain, due to downsampling via bicubic interpolation.
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Table 2. Training and inference times for each investigated algorithm.

Training time

Algorithm → SRCNN FSRCNN LapSRN Bicubic MFCNN StatNet

Total (min) 31.00 60.76 116.70 – 63.92 29.16

Avg/epoch (sec) 13.78 12.53 42.44 – 28.43 33.01

Dataset ↓ Inference time (seconds)

Set5 0.08 0.07 0.52 0.07 0.04 0.70

Set14 0.42 0.29 2.84 0.04 0.21 0.39

BSD100 2.93 2.86 14.71 0.23 1.88 2.71

Manga109 13.15 7.26 87.58 1.65 6.27 12.41

Urban100 9.92 5.54 63.07 1.10 4.81 9.29

Additionally, we inject the Gaussian (with zero mean) and impulsive noise (using
a random noise map sampled from the uniform distribution) into LR images. For
simplicity, we convert all images to grayscale.

The quantitative results, obtained over all test datasets, are gathered in
Table 1. We can appreciate that StatNet outperforms other techniques in
the majority of cases (over all metrics). It is observable that LapSRN consis-
tently delivers high-quality SR images too, but it trains and infers much slower
(Table 2), as the number of its trainable parameters, together with the required
multiply-accumulate operations (Table 3) are significantly larger when compared
with StatNet. Therefore, StatNet not only elaborates higher-quality SR images,
but it is also more compact and easier to deploy in constrained execution envi-
ronments where real-time inference and memory/energy frugality are pivotal,
e.g., in Earth observation applications. In Fig. 3, we render example reconstruc-
tion results obtained using all investigated algorithms. StatNet produces more
plausible images with well-restored fine-grained image details (e.g., Lena and
Fish). Although there are images with visible artifacts (Manga), StatNet was
able to accurately restore detailed edge information in such cases.

Table 3. The number of trainable parameters, and required multiply-accumulate oper-
ations (MACs; the lower, the better) for each network.

Algorithm # parameters MACs (M)

SRCNN 0.81 · 104 407.88

FSRCNN 12.64 · 104 1317.01

LapSRN 25.15 · 104 87557.99

MFCNN 17.28 · 104 8594.19

StatNet 13.18 · 104 23647.94
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Fig. 3. Examples of SR images (three rows for each image) obtained using all meth-
ods for Butterfly (from the Set5 dataset), Lena (Set14), Fish (BSD100), and Manga
(Manga109). We zoom some interesting parts of the images in blue and red rectangles.
(Color figure online)
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Table 4. Evaluating StatNet using different numbers of input LR images (two and
three initial images from the input stack, and all images (StatNet2–StatNet4). The
green bold values show the best score, while the black bold are the second best scores.

Dataset Algorithm MAE↓ PSNR↑ SSIM↑ GSSIM↑
Set5 StatNet2 15.70 16.98 0.56 0.34

StatNet3 6.12 27.46 0.84 0.55

StatNet4 4.81 31.20 0.88 0.61

Set14 StatNet2 15.39 19.77 0.55 0.37

StatNet3 10.38 23.89 0.76 0.52

StatNet4 6.73 27.68 0.82 0.58

BSD100 StatNet2 14.47 20.59 0.53 0.36

StatNet3 9.68 24.22 0.74 0.51

StatNet4 7.07 27.92 0.80 0.58

Manga109 StatNet2 18.49 16.19 0.54 0.33

StatNet3 13.98 18.02 0.76 0.50

StatNet4 5.50 25.68 0.89 0.62

Urban100 StatNet2 18.19 17.55 0.54 0.38

StatNet3 11.01 21.55 0.77 0.54

StatNet4 7.66 25.40 0.84 0.64

Fig. 4. The Butterfly image (Set5) reconstructed using StatNet with two and three
initial images from the input stack, and all images (StatNet2–StatNet4).
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To better understand the abilities of StatNet in the context of super-resolving
image stacks of varying sizes, we processed test benchmarks3 by exploiting two
and three initial images from the generated LR stacks, and compared the result-
ing SR reconstructions with those obtained using all available LRs (Table 4). The
results obtained for two-image LR stacks are significantly worse than those elab-
orated for three- and four-image cases. However, Fig. 4 shows that the SR images
still present valid reconstruction, and increasing the number of LRs directly leads
to notably better SR images. Therefore, reducing the number of LR images
adversely affect the super-resolution performance of StatNet, but it can still be
successfully deployed in such scenarios, and can produce valid results.

4 Conclusion

We introduced a deep learning algorithm for MISR, referred to as StatNet, which
benefits from statistical features extracted from an input LR image stack, and is
independent from the number of available LRs. Our experiments, performed over
several benchmark datasets and coupled with quantitative and qualitative anal-
ysis, showed that StatNet outperforms other SISR and MISR approaches, also
including different deep learning techniques. The sensitivity analysis revealed
that StatNet can effectively super-resolve LR stacks of different sizes, it is
lightweight, and train and infer very fast, hence it could be deployed e.g., on
board imaging satellites where memory- and energy-frugality, together with real-
time processing are critical issues.
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Abstract. We propose a new fast fully unsupervised method to discover
semantic patterns. Our algorithm is able to hierarchically find visual
categories and produce a segmentation mask where previous methods
fail. Through the modeling of what is a visual pattern in an image,
we introduce the notion of “semantic levels” and devise a conceptual
framework along with measures and a dedicated benchmark dataset for
future comparisons. Our algorithm is composed by two phases. A filtering
phase, which selects semantical hotsposts by means of an accumulator
space, then a clustering phase which propagates the semantic properties
of the hotspots on a superpixels basis. We provide both qualitative and
quantitative experimental validation, achieving optimal results in terms
of robustness to noise and semantic consistency. We also made code and
dataset publicly available.

Keywords: Visual-pattern-detection · Semantic-discovery ·
Cosegmentation

1 Introduction

The extraction of semantic categories from images is a fundamental task in image
understanding [5,18,29]. While the task is one that has been widely investigated
in the community, most approaches are supervised, making use of labels to detect
semantic categories [2]. Comparatively less effort has been put to investigate
automatic procedures which enable an intelligent system to learn autonomously
extrapolating visual semantic categories without any a priori knowledge of the
context.

We observe the fact that in order to define what a visual pattern is, we need
to define a scale of analysis (objects, parts of objects etc.). We call these scales
semantic levels of the real world. Unfortunately most influential models arising
from deep learning approaches still show a limited ability over scale invariance
[13,25] which instead is common in nature. In fact, we don’t really care much
about scale, orientation or partial observability in the semantic world. For us,
it is way more important to preserve an “internal representation” that matches
reality [6,17].
c© Springer Nature Switzerland AG 2021
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Fig. 1. A real world example of unsupervised segmentation of a grocery shelf. Our
method can automatically discover both low-level coherent patterns (brands and logos)
and high-level compound objects (detergents) by controlling the semantic level of the
detection and segmentation process.

Our method leverages repetitions (Fig. 1) to capture the internal represen-
tation in the real world and then extrapolates categories at a specific semantic
level. We do this without continuous geometrical constraints on the visual pat-
tern disposition, which is common among other methodologies [8,10,21,22].

We also do not constrain ourselves to find only one visual pattern, which
is another very common assumption. Indeed, what if the image has more than
one visual pattern? One can observe that this is always the case. Each visual
repetition can be hierarchically decomposed in its smaller parts which, in turn,
repeat over different semantic levels. This peculiar observation allow our work
to contribute to the community as follows:

– A new pipeline able to capture semantic categories with the ability to hier-
archically span over semantic levels.

– A better conceptual framework to evaluate analogous works through the intro-
duction of the semantic levels notion along with a new metric.

– A new benchmark dataset of 208 labelled images for visual repetition
detection.

Code, dataset and notebooks are public and available at: https://git.io/
JT6UZ.

2 Related Works

Several works have been proposed to tackle visual pattern discovery and detec-
tion. While the paper by Leung and Malik [11] could be considered seminal,
many other works build on their basic approach, working by detecting con-
tiguous structures of similar patches by knowing the window size enclosing the
distinctive pattern.

One common procedure in order to describe what a pattern is, consists to
first extract descriptive features such as SIFT to perform a clustering in the
feature space and then model the group disposition over the image by exploiting
geometrical constraints, as in [21] and [4], or by relying only on appearance, as
in [7,14,27].

https://git.io/JT6UZ
https://git.io/JT6UZ
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The geometrical modeling of the repetitions usually is done by fitting a planar
2-D lattice, or a deformation of it [20], through RANSAC procedures as in [21,23]
or even by exploiting the mathematical theory of crystallographic groups as in
[15]. Shechtman and Irani [24], also exploited an active learning environment to
detect visual patterns in a semi-supervised fashion. For example Cheng et al. [3]
use input scribbles performed by a human to guide detection and extraction of
such repeated elements, while Huberman and Fattal [9] ask the user to detect
an object instance and then the detection is performed by exploiting correlation
of patches near the input area.

Recently, as a result of the new wave of AI-driven Computer Vision, a number
of Deep Leaning based approaches emerged, in particular Lettry et al. [10] argued
that filter activation in a model such as AlexNet can be exploited in order to
find regions of repeated elements over the image, thanks to the fact that filters
over different layers show regularity in the activations when convolved with the
repeated elements of the image. On top of the latter work, Rodŕıguez-Pardo
et al. [22] proposed a modification to perform the texture synthesis step.

A brief survey of visual pattern discovery in both video and image data,
up to 2013, is given by Wang et al. [28], unfortunately after that it seems that
the computer vision community lost interest in this challenging problem. We
point out that all the aforementioned methods look for only one particular visual
repetition except for [14] that can be considered the most direct competitor and
the main benchmark against which to compare our results.

3 Method Description

3.1 Features Localization and Extraction

We observe that any visual pattern is delimited by its contours. The first step of
our algorithm, in fact, consists in the extraction of a set C of contour keypoints
indicating a position cj in the image. To extract keypoints, we opted for the
Canny algorithm, for its simplicity and efficiency, although more recent and
better edge extractor could be used [16] to have a better overall procedure.

A descriptor dj is then computed for each selected cj ∈ C thus obtaining a
descriptor set D. In particular, we adopted the DAISY algorithm because of its
appealing dense matching properties that nicely fit our scenario. Again, here we
can replace this module of the pipeline with something more advanced such as
[19] at the cost of some computational time.

3.2 Semantic Hot Spots Detection

In order to detect self-similar patterns in the image we start by associating
the k most similar descriptors for each descriptor dj . We can visualize this
data structure as a star subgraph with k endpoints called splash “centered” on
descriptor dj . Figure 2(a) shows one.
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Fig. 2. (a) A splash in the image space with center in the keypoint cj . (b) H, with
the superimposed splash at the center, you can note the different levels of the vote
ordered by endpoint importance i.e. descriptor similarity. (c) 3D projection showing
the gaussian-like formations and the thresholding procedure of H. (d) Backprojection
through the set S.

Splashes potentially encode repeated patterns in the image and similar pat-
terns are then represented by similar splashes. The next step consists in sep-
arating these splashes from those that encode noise only, this is accomplished
through an accumulator space.

In particular, we consider a 2-D accumulator space H of size double the
image. We then superimpose each splash on the space H and cast k votes as
shown in Fig. 2(b). In order to take into account the noise present in the splashes,
we adopt a gaussian vote-casting procedure g(·). Similar superimposed splashes
contribute to similar locations on the accumulator space, resulting in peak for-
mations (Fig. 2(c)). We summarize the voting procedure as follows:

Hw = Hw + g(w,h(j)
i ) (1)

where h(j)
i is the i-th splash endpoint of descriptor dj in accumulator coordinates

and w is the size of the gaussian vote. We filter all the regions in H which are
above a certain threshold τ , to get a set S of the locations corresponding to the
peaks in H. The τ parameter acts as a coarse filter and is not a critical parameter
to the overall pipeline. A sufficient value is to set it to 0.05 · max(H). Lastly,
in order to visualize the semantic hotspots in the image plane we map splash
locations between H and the image plane by means of a backtracking structure V.

In summary, the key insight here is that similar visual regions share simi-
lar splashes, we discern noisy splashes from representative splashes through an
auxiliary structure, namely an accumulator. We then identify and backtrack in
the image plane the semantic hotspots that are candidate points part of a visual
repetition.
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3.3 Semantic Categories Definition and Extraction

While the first part previously described acts as a filter for noisy keypoints
allowing to obtain a good pool of candidates, we now transform the problem of
finding visual categories in a problem of dense subgraphs extraction.

We enclose semantic hotspots in superpixels, this extends the semantic sig-
nificance of such identified points to a broader, but coherent, area. To do so we
use the SLIC [1] algorithm which is a simple and one of the fastest approaches
to extract superpixels as pointed out in this recent survey [26]. Then we choose
the cardinality of the superpixels P to extract. This is the second and most
fundamental parameter that will allow us to span over different semantic levels.

Once the superpixels have been extracted, let G be an undirected weighted
graph where each node correspond to a superpixel p ∈ P. In order to put edges
between graph nodes (i.e. two superpixels), we exploit the splashes origin and
endpoints. In particular the strength of the connection between two vertices in
G is calculated with the number of splashes endpoints falling between the two
in a mutual coherent way. So to put a weight of 1 between two nodes we need
exactly 2 splashes endpoints falling with both origin and end point in the two
candidate superpixels.

With this construction scheme, the graph has clear dense subgraphs forma-
tions. Therefore, the last part simply computes a partition of G where each
connected component correspond to a cluster of similar superpixels. In order to
achieve such objective we optimize a function that is maximized when we parti-
tion the graph to represent so. To this end we define the following density score
that given G and a set K of connected components captures the optimality of
the clustering:

s(G,K) =
∑

k∈K

μ(k) − α |K| (2)

where μ(k) is a function that computes the average edge weight in a undirected
weighted graph.

The first term, in the score function, assign a high vote if each connected
component is dense. While the second term acts as a regulator for the number of
connected components. We also added a weighting factor α to better adjust the
procedure. As a proxy to maximize this function we devised an iterative algorithm
reported in Algorithm1 based on graph corrosion and with temporal complexity
of O(|E|2 + |E| |V |). At each step the procedure corrupts the graph edges by the
minimum edge weight of G. For each corroded version of the graph that we call
partition, we compute s to capture the density. Finally the algorithm selects the
corroded graph partition which maximizes the s and subsequently extracts the
node groups.

In brevity we first enclose semantic hotspots in superpixels and consider each
one as a node of a weighted graph. We then put edges with weight proportional
to the number of splashes falling between two superpixels. This results in a
graph with clear dense subgraphs formations that correspond to superpixels
clusters i.e. semantic categories. The semantic categories detection translates in
the extraction of dense subgraphs. To this end we devised an iterative algorithm
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Algorithm 1. Semantic categories extraction algorithm

Require: G weighted undirected graph
i = 0
s∗ = − inf
K∗ = ∅
while Gi is not fully disconnected do

i = i + 1
Compute Gi by corroding each edge with the minimum edge weight
Extract the set Ki of all connected components in Gi

s(Gi, Ki) =
∑

k∈Ki
μ(k) − α |Ki|

if s(Gi, Ki) > s∗ then
s∗ = s(Gi, Ki)
K∗ = Ki

return s∗, K∗

Fig. 3. (top) Analysis of measures as the number of superpixels |P| retrieved varies. The
rightmost figure shows the running time of the algorithm. We repeated the experiments
with the noisy version of the dataset but report only the mean since variation is almost
equal to the original one. (bottom) Distributions of the measures for the two semantic
levels, by varying the two main parameters r and |P|.

based on graph corrosion where we let the procedure select the corroded graph
partition that filters noisy edges and let dense subgraphs emerge. We do so by
maximizing score that captures the density of each connected component.

4 Experiments

Dataset. As we introduced in Sect. 1 one of the aims of this work is to provide a
better comparative framework for visual pattern detection. To do so we created
a public dataset by taking 104 pictures of store shelves. Each picture has been
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Fig. 4. Qualitative comparison between [10,14] and our algorithm. Our method detects
and segments more than one pattern and does not constrain itself to a particular
geometrical disposition.

took with a 5mpx camera with approximatively the same visual conditions. We
also rectified the images to eliminate visual distortions.

We manually segmented and labeled each repeating product in two different
semantic levels. In the first semantic level products made by the same company
share the same label. In the second semantic level visual repetitions consist
in the exact identical products. In total the dataset is composed by 208 ground
truth images, half in the first level and the rest for the second one.
µ-consistency. We devised a new measure that captures the semantic consis-
tency of a detected pattern that is a proxy of the average precision of detection.

In fact, we want to be sure that all pattern instances fall on similar ground
truth objects. First we introduce the concept of semantic consistency for a par-
ticular pattern p. Let P be the set of patterns discovered by the algorithm. Each
pattern p contains several instances pi. L is the set of ground truth categories,
each ground truth category l contain several objects instances li. Let us define
tp as the vector of ground truth labels touched by all instances of p. We say
that p is consistent if all its instances pi, i = 0 . . . |p| fall on ground truth regions
sharing the same label. In this case tp would be uniform and we consider p a
good detection. The worst scenario is when given a pattern p every pi falls on
objects with different label l i.e. all the values in tp are different.

To get an estimate of the overall consistency of the proposed detection, we
average the consistency for each p ∈ P giving us:

μ-consistency =
1

|P|
∑

p∈P

|mode (tp)|
|tp| (3)

Recall. The second measure is the classical recall over the objects retrieved
by the algorithm. Since our object detector outputs more than one pattern we
average the recall for each ground truth label by taking the best fitting pattern.

1
|L|

∑

l∈L

maxp∈P recall (p, l) (4)
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The last measure is the total recall, here we consider a hit if any of the
pattern falls in a labeled region. In general we expect this to be higher than the
recall.

We report the summary performances in Fig. 4. As can be seen the algorithm
achieves a very high μ-consistency while still able to retrieve the majority of the
ground truth patterns in both levels.

One can observe in Fig. 3 an inverse behaviour between recall and consis-
tency as the number of superpixels retrieved grows. This is expected since less
superpixels means bigger patterns, therefore it is more likely to retrieve more
ground truth patterns.

In order to study the robustness we repeated the same experiments with an
altered version of our dataset. In particular for each image we applied one of
the following corruptions: Additive Gaussian Noise (scale = 0.1∗255), Gaussian
Blur (σ = 3), Spline Distortions (grid affine), Brightness (+100), and Linear
Contrast (1.5).

Qualitative Validation. Firstly we begin the comparison by commenting on
[14]. One can observe that our approach has a significant advantage in terms of
how the visual pattern is modeled. While the authors model visual repetitions as
geometrical artifacts associating points, we output a higher order representation
of the visual pattern. Indeed the capability to provide a segmentation mask of
the repeated instance region together the ability to span over different levels
unlocks a wider range of use cases and applications.

As qualitative comparison we also added the latest (and only) deep learn-
ing based methodology [10] we found. This methodology is only able to find
a single instance of visual pattern, namely the most frequent and most signifi-
cant with respect to the filters weights. This means that the detection strongly
depends from the training set of the CNN backbone, while our algorithm is fully
unsupervised and data agnostic.

Quantitative Validation. We compared quantitatively our method against
[14] that constitutes, to the best of our knowledge, the only work developed
able to detect more than one visual pattern. We recreated the experimental
settings of the authors by using the Face dataset [12] as benchmark achieving
1.00 precision vs. 0.98 of [14] and 0.77 in recall vs. and 0.63. We considered a
miss on the object retrieval task, if more than 20% of a pattern total area falls
outside from the ground truth. The parameter used were |C| = 9000, k = 15,
r = 30, τ = 5, |P| = 150. We also fixed the window of the gaussian vote to be
11 × 11 pixels throughout all the experiments.

5 Conclusions

With this paper we introduced a fast and unsupervised method addressing the
problem of finding semantic categories by detecting consistent visual pattern
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repetitions at a given scale. The proposed pipeline hierarchically detects self-
similar regions represented by a segmentation mask.

As we demonstrated in the experimental evaluation, our approach retrieves
more than one pattern and achieves better performances with respect to com-
petitors methods. We also introduce the concept of semantic levels endowed with
a dedicated dataset and a new metric to provide to other researchers tools to
evaluate the consistency of their approaches.

Acknowledgments. We would like to express our gratitude to Alessandro Torci-
novich and Filippo Bergamasco for their suggestions to improve the work. We also
thank Mattia Mantoan for his work to produce the dataset labeling.
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Abstract. Early identification of deficits in emotion recognition and
expression skills may prevent low social functioning in adulthood. Deficits
in young children’s ability to recognize facial expressions can lead to
impairments in social functioning. Kids may need extra help learning to
read facial expressions. Most of the earlier efforts consider the problem
of emotion recognition in adults; however, ignore the child’s emotions,
especially in an unconstrained environment. In this paper, we present
progressive light residual learning to classify spontaneous emotion recog-
nition in children. Unlike earlier residual neural network, we reduce the
skip connection at the earlier part of the network and increase gradually
as the network go deeper. The progressive light residual network can
explore more feature space due to limiting the skip connection locally,
which makes the network more vulnerable to perturbations which help to
deal with overfitting problem for smaller data. Experimental results on
benchmark children emotions dataset show that the proposed approach
showed a considerable gain in performance compared to the state of the
art methods.

Keywords: Emotion recognition · Child expression · Facial
expression · Spontaneous expression · Residual learning

1 Introduction

From childhood to our lifespan, emotions are crucial for social interactions and
essential for communication. Emotions play a critical role in how we live our
lives, and we adapt our behaviour according to our feelings and reactions. How
we engage with others in our day to day lives to affecting the decisions we make
and our ability to understand What we feel and show our emotions are factors
of integration in the society at all era of our age. It is important to remember,
however, that no emotion is an island. Instead, the many emotions we experience
are nuanced and complex, working together to create the rich and varied fabric
of our emotional life [13–15]. At times, it may seem like these emotions rule us.
c© Springer Nature Switzerland AG 2021
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The choices we make, the actions we take, and our perceptions are all influenced
by the emotions we are experiencing at any given moment.

Facial expressions represent the most effective way to convey information on
one’s emotional state to others. Facial expression recognition (FER) is not only
important for social interactions but also effective communication. Deficits in
young children’s ability to recognize facial expressions can lead to impairments
in social functioning. Peer-rated popularity and academic achievement directly
correlated with the ability to recognize emotional expressions of others. For
decades, researchers have been fascinated by how humans respond to, detect,
and interpret emotional facial expressions. Much of the research in this area has
relied on controlled stimulus sets of adults posing various facial expressions.

Face expression recognition based on six common expressions of happiness,
anger, disgust, fear, surprise, and sadness has already existed since long. Many
works focus on developing novel methods, and there are several publicly available
datasets for common facial expression. However, research for spontaneous/natural
basic emotions is quite limited, especially in children’s expression, while, it has
been proved that spontaneous facial expressions differ substantially from posed
expression. This may be because the spontaneous facial expression is further chal-
lenging compared to relatively still and exhibit posed expressions due to large vari-
ations in face appearance and pose. Generally, real-world applications are spon-
taneous interactions such as meeting, person to person interactions, personality,
debates summarizing etc. Thus, there is a need of joint head-pose analysis for
facial expression identification. Lai et al. presented GAN-based face localization by
localizing the front face image and preserving the expression and identifying char-
acteristics [11]. The discriminator is used to differentiate the facial images from
real images. Similarly, Zhang et al. presented GAN based approach to generated
images with different facial expression under arbitrary pose [21]. In order to learn
the identity-invariant representation, Chen et al. presented privacy-preserving
representation-learning variational GAN by combining VAE, and GAN [3] which
is explicitly disentangled from identity information and generative for facial syn-
thesis expression preserving the image. Yang et al. presented identity-adaptive
generation that generates the face images of the same subject with variable facial
expressions using cGANs followed by facial expression recognition for single iden-
tify [20]. The recurrent neural network can drive information in sequential data as
nodes connections form directed graph along temporal sequence; thus, it exploits
the fact that features vectors are connected semantically. Long short term memory
(LSTM) can handle variable length with less computational complexity. Chanti
and Caplier applied 2D grid convolution that encode the spatial correlation fol-
lowed by LSTM that model the temporal relationship of facial expression sequence
[2]. Instead of 2D kernels along the time axis, Tran et al. applied 3D convolutional
kernels with shared weights [18], which has been widely applied on dynamic facial
expression recognition. Vielzeuf et al. extend it by applying weighted 3D convolu-
tional based on the structural score by extractingwindows from consecutive frames
in each facial expression sequence [19]. Cascaded deep network based on CNN and
LSTM has also been applied to involve the time-varying spontaneous facial expres-
sion sequential data [5,10].
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Recently, Khan et al. presented LIRIS-CSE first ever spontaneous children’s
facial expression dataset. The recurrent neural network can drive information
in sequential data as nodes connections form directed graph along temporal
sequence; thus, it exploits the fact that features vectors are connected seman-
tically. Long short term memory (LSTM) can handle variable length with less
computational complexity. Chanti and Caplier applied 2D grid convolution that
encode the spatial correlation followed by LSTM that model the temporal rela-
tionship of facial expression sequence [2]. Instead of 2D kernels along time axis,
Tran et al. applied 3D convolutional kernels with shared weights [18] which has
been widely applied on dynamic facial expression recognition [1,4,5,22]. Vielzeuf
et al. extend it by applying weighted 3D convolutional based on the structural
score by extracting windows from consecutive frames in each facial expression
sequence [19]. Cascaded deep network based on CNN and LSTM has also been
applied to involve the time-varying spontaneous facial expression sequential data
[5,10].

Early identification of deficits in emotion recognition and expression skills
may prevent poor social functioning in adulthood, thus, intending to identify
the child’s facial expression, we presented a novel end to end framework for
spontaneous children’s facial expression. We reduce the skip connection at the
earlier part of the network and increase gradually as the network go deeper.
The progressive light residual network can explore more feature space due to
limiting the skip connection locally, which makes the network more vulnerable
to perturbations which help to deal with overfitting problem for smaller data.
To validate the performance, we experimented on benchmark publicly available
dataset that showed considerable improvement in classification performance.

2 Spontaneous Child’s Expression Recognition

Though automatic FER has made substantial progress in the past few decades,
occlusion-robust and pose-invariant FER issues have received relatively less
attention, especially in real-world scenarios. Early identification of deficits in
emotion recognition and expression skills may prevent poor social functioning in
adulthood. In this work, we consider the problem of spontaneous facial expres-
sion recognition in children. We present progressive light residual network that
can explore more feature space due to limiting the skip connection locally, which
makes the network more vulnerable to perturbations which help to deal with
the over-fitting problem for smaller data. Unlike earlier residual neural network,
we reduce the skip connection at the earlier part of the network and increase
gradually as the network go deeper. In the following discussion, we first pro-
vide the proposed progressive light residual learning, followed by its application
for spontaneous facial expression recognition in children. Figure 1 describes the
proposed framework for emotion classification in children.
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2.1 Progressive Residual Learning

Many modern neural network architectures with over parameterized regime have
been used for emotion classification. Recent work showed that network, where the
hidden units are polynomially smaller in size, showed better performance than
over parameterized models. In DenseNet, each layer obtains additional inputs
from all preceding layers and passes on its own feature-maps to all subsequent
layers. In results, each layer is receiving a “collective knowledge” from all pre-
ceding layers. However, this results in a complex network, whereas ResNet is
over parameterize, and it is natural to expect the training loss to have numerous
global optima that perfectly interpolate the training data (Fig. 2).

Fig. 1. Architectures of proposed three stage progressive light residual network

In this study, we develop the progressive residual network with residual learn-
ing (PLResNe) by leveraging multistage deep residual learning with additional
transition layers to overcome the challenge as mentioned above. Unlike earlier
residual networks and its counter network [16], we have reduced the number of
residual connection at the earlier part of the network, resulting in better rep-
resentation comparatively. The proposed progressive residual-based architecture
consisting of 3 blocks, is shown in Fig. 1. PLResNe also considers the features
of the use of all complexity levels. Notice that the depth of network (number of
blocks) varies and depends on the dataset’s complexity and size. Large datasets
require more number of blocks where a complex task requires a small size of
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Fig. 2. Spontaneous facial expressions

initial blocks. The first stage consists of only one residual unit with identify
function followed by a transition block, which acts as a projection shortcut and
2nd stage consist of three residual units. This enables the network to extract
text features with semantic information by limiting the jump over at an earlier
stage. Thus, in the case of a complex task, the initial stages consist of fewer
residual skip units. We have increased each residual block’s size and numbers
with the network’s growth, which forces the network to learn basic features with
semantic information at the initial stage and high-level features at later stages.
In addition to this, it speeds up the learning by reducing the impact of vanishing
gradients, as there are only fewer layers to propagate through in each stage as
well as allows the network to capture the shallow information but not deep at
earlier stages thus it help to prevent over-fitting for smaller data.

The proposed PLResNe is divided into several stages and each stage consists
of the variable number of residual unit of different structure. Figure 1 shows the
proposed progressive light residual learning. Notice that the first stage consists
of the smaller residual unit and less number of skip connection. The progressive
light residual network built on constructs known from pyramidal cells in the
cerebral cortex and constructed small units in each block. It uses residual skip
connection to jump over layers with each small unit. Thus, the resultant network
is less complicated and make it possible to learn hundreds or even thousands
of layers without training loss and still achieves better performance. Figure 1
shows the proposed progressive light network architecture with residual learning
(PLResNet). Thus the error signal can be easily propagated to earlier blocks
more directly. Unlike ResNet, we have divided each individual block into several
subunits and adopted the residual learning thus our proposed PLResNet results
in learning collective knowledge from all preceding layers as well as substantial
deeper than ResNet and its counterpart. Notice that the error signal can be easily
propagated at stage level directly. This is a kind of implicit in-depth supervision
as earlier units can get direct supervision from the next stage. PLResNe has a
much smaller size than its counter ResNet.
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2.2 Child Facial Expression Recognition

In childhood and in adolescence, we learn to discriminate and produce facial
expression to gain the level of full potential. Children and adolescents with
emotion recognition skills showed better performance in their studies and excel
in social interaction comparatively [7,8,12]. Studies showed that understanding
children’s emotions is linked to various outcomes and is very important for their
cognitive development [17]. Early identification of deficits in emotion recogni-
tion and expression skills may prevent poor social functioning in adulthood. In
this work, we consider the problem of spontaneous facial expression recognition
in children. We present an end-to-end classification of emotion recognition that
does not rely on the pre-trained model and showed significant performance com-
pared to pre-trained models. In this work, we applied progressive light residual
learning for the task of children facial expression recognition. Figure 1 shows the
proposed framework of children facial expression recognition. The input images
are forwarded to the proposed network. Figure 1 shows the initial stage structure.
It consists of two residual units, followed by a transition layer. The progressive
light residual network offers several advantages over its counter network. For
example, it has low number of parameters, thus faster comparatively. Limiting
the residual skip connection at the earlier part of the network helps to learn
better features.

Table 1. Network parameter

Parameters Values

Number of epochs 35

Validation frequency 300

Initial learn rate 1 × 10−4

Momentum 0.9

Table 2. Evaluation (Precision, Recall, F1 Score) of proposed progressive light residual
network (%)

Precision Recall F1-score Support

Disgust 1.00 1.00 1.00 97

Fear 0.99 0.98 0.99 529

Happy 1.00 0.99 0.99 778

Sad 0.99 1.00 0.99 512

Surprise 0.98 0.99 0.98 546

Macro avg 0.99 0.99 0.99 2462

Weighted avg 0.9941 0.9925 0.9915 2462
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3 Experiment

This section presents the experimental results and evaluation of the proposed
progressive residual network on benchmark dataset LIRIS-CSE [9], which con-
sists of 26,000 frames of kids emotions. As kids were recorded in constraints free
environment i.e. there was no restriction on kids applied during dataset collection
while they were watching special build images, thus, their expression are natural
and spontaneous. To generalize the performance of the proposed approach, we
have performed 10-fold cross-validation.

Progressive light residual architecture consists of multiple residual units with
at each stage. The initial blocks are much smaller than the later blocks, which
force the network to learn better feature representation. For example, stage-1
contains of 2x convolution layers of with the kernel size of 64. Stage-2 consists of
3x residual units and each unit consists of 3x convolution layers with the kernel
size of 128, 128 and 512 respectively. Similarly, stage 3 consist of 4x residual
units and each unit consists of 4x convolution layers with the kernel size of 128,
128 and 512 respectively. The number of stages varies and depends upon dataset
size and complexity of the task. To learn best possible features, we have used
fewer residual units in earlier stages such as one unit and 2 units in stage 1
and stage 2 respectively. However, we have increased the number of residual
units in later stages such as four residual units in stage 3 and 6 in stage 4. We
initialize the weights as in [6] and train the network from scratch. To find the
best parameters, we have trained the network on a different set of parameters for
each block. We have set the momentum of (0.9) and learning rate to (1× 10−4).
We have stopped the training if there is no improvement in the validation set’s
error rate for 35 epochs. Table 1 describes the training parameters (Table 2).

Table 3. Comparative analysis of proposed progressive light residual learning with its
counter network (DenseNet, ResNet, SqueezNet, MobileNet and Inception)

Average Accu Average
precision

Average recall Average F1
score

Progressive
light residual

99.06 99.16 99.22 99.19

SqueezNet 86.92 89.25 82.20 84.46

DensNet121 87.65 86.95 86.94 86.78

ResNet101 90.37 89.98 84.28 86.41

Inception V3 89.27 90.26 88.83 89.45

MobileNet-v2 87.32 85.40 88.68 86.71

Deep-CNN [9] 77.23 69.43 77.88 81.44
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Table 4. Comparative evaluation (Precision, Recall, F1-Score) of proposed progressive
light residual network

Model Precision Recall F1-score

Proposed network 0.9941 0.9925 0.9915

DenseNet-Freeze 0.94 0.95 0.94

ResNet-Freeze 0.97 0.97 0.97

Inception-Freeze 0.97 0.97 0.97

MobileNet-Freeze 0.95 0.95 0.95

DenseNet-Fine-tuned 0.88 0.88 0.88

ResNet-Fine-tuned 0.90 0.89 0.89

Inception-Fine-tuned 0.90 0.90 0.90

MobileNet-Fine-tuned 0.88 0.87 0.87

Khan et al. [9] 0.81 0.82 0.83

We have performed experiments with different network parameters and net-
work variations. To generalize the results, we performed 10-fold cross-validation.
We have used different evaluation metrics such as the area under the curve
(AUC), sensitivity, specificity, precision and F-score. Table 3 describes the emo-
tion recognition results for each class. We have accuracy classify the disgust
emotions followed by ‘happy’ that showed 1 (precision), 0.99 (recall) and 0.99
(F1 score). A similar trend can be noticed for other emotions. Results show that
our proposed approach showed significant emotion classification performance.
We can notice performance is slightly poor for ‘fear’ expression (Table 4).

Table 5. Comparative analysis of proposed progressive light residual learning with
its counter network (DenseNet, ResNet, SqueezNet, MobileNet using Freeze based fine
tuning)

Average Accu Average precision Average recall Average F1 score

Progressive
light residual

99.06 99.16 99.22 99.19

SqueezNet 86.92 89.25 82.20 84.46

DensNet121 87.65 86.95 86.94 86.78

ResNet101 90.37 89.98 84.28 86.41

Inception V3 89.27 90.26 88.83 89.45

MobileNet-v2 87.32 85.40 88.68 86.71

Deep-CNN [9] 77.23 69.43 77.88 81.44
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Tables 3 and 5 showed that our proposed progressive light residual network
achieve best performance 0.99 (precision), 0.99 (recall), and 0.99 (F1 score)
on 2462 images. Confusion matrix showed that disgust and happy showed the
highest performance with no false rate. We have also applied transfer learn-
ing using several states of the art methods, especially counter networks such
as ResNet, MobileNet, Inception and DenseNet. We have considered both freeze
and fine turning in transfer learning. Proposed progressive light residual learning
showed significant improvement results compared to the baseline state of the art
methods.

4 Conclusion

In this paper, we present progressive light residual learning to classify sponta-
neous emotion recognition in children. Unlike earlier residual neural network,
we reduce the skip connection at the earlier part of the network and increase
gradually as the network go deeper. The progressive light residual network can
explore more feature space due to limiting the skip connection locally, which
makes the network more vulnerable to perturbations which help to deal with
overfitting problem for smaller data. Experimental results on benchmark chil-
dren emotions dataset show that our proposed network showed the significantly
better performance to 99.19% in comparison to 89.45%, 86.41 and 86.71% for
Inception, ResNet and MobileNet respectively. The gain in performance com-
pared to Resnet and its variants showed the robustness of the proposed network
for complex and relativity small dataset problems.
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Abstract. PCANet is a simple deep learning baseline for image clas-
sification, which learns the filters banks by PCA instead of stochastic
gradient descent (SGD) in each layer. It shows a good performance for
image classification tasks with only a few parameters and no backprop-
agation procedure. However, PCANet suffers from two main problems.
The first problem is the features explosion which limits its depth to
two layers. The second issue is the binarization process which leads to
discriminative information loss. To handle these problems, we adopted
CNN-like convolution layers to learn the PCA filter-bank and reduce
the number of dimensions. We also used second-order pooling with z-
score normalization to replace the histogram descriptor. The late fusion
method is used to combine the class posteriors generated each layer. The
proposed network has been tested on image classification tasks including
MNIST, Cifar10, Cifar100 and Tiny ImageNet databases. The experi-
mental results show that our model achieves better performance than
standard PCANet and is competitive with some CNN methods.

Keywords: PCANet · PCANet+ · PCANet II · CNN · Spatial
pyramid pooling · Second-order pooling · Fusion Neural Network

1 Introduction

Convolutional neural networks (CNNs) have witnessed immense success in image
classification since Alexnet won the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2012 [19]. Some of the famous CNNs include VGGNet
[23], ResNet [24] and in general, architectures have become complicated with
more layers. For example, one common realization of ResNet has 152 layers. The
filters learning process in CNNs relies on optimization via gradient descent using
backpropagation, making the whole process unexplainable and computationally
expensive, particularly with more layers.

As a response to this, PCANet [2] was proposed in 2015 as a simple baseline
for image classification problems. PCANet is trained using a closed-form non-
iterative and unsupervised procedure and is an order of magnitude faster to train
than a traditional CNN. Although the performance is not state-of-the-art, it is
remarkably effective for such a simple architecture. PCANet has led to a family
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of related techniques, and the network proposed in this paper is broadly part of
this family. While PCANet achieved good performance in various benchmarks,
it suffers from some problems:

– The network is shallow, potentially causing a loss of performance on more
complex datasets.

– Due to the way PCANet convolves the images and uses histogram-pooling,
there is an explosion in the number of features with more layers or filters.

– Feature binarization restricts the filter responses to only 1’s, and 0’s, leading
to discriminative-information loss.

– Since filter learning is unsupervised, later layers may not preserve important
classification information from earlier layers.

In this paper, we propose a new network with some innovations. Firstly, we
generate feature maps from all network layers and use late fusion to combine class
posteriors. This introduces an element of supervised learning while preserving the
single-pass strategy of PCANet. We are then able to preserve essential features
from early network layers. Secondly, to improve the amount of discriminative
information, we use second-order pooling which has recently become popular
in CNNs and is used in PCANet-II [11]. We refined the approach by using z-
score normalization to provide more stable and informative features. Finally,
we adopt multi-channel convolution layers typically used in CNNs (but not in
PCANet) and PCANet+ [1]. This helps to reduce the size of the feature maps.
The performance of this new network is good and comparable to old NNs-based
architectures but not the recent architectures.

2 Related Work

PCANet [2] is a simple feedforward network which does not require backprop-
agation to learn the filter-bank. Instead, they adopted the PCA eigenvectors
learnt from stacking patches of images to be their candidate filters. After several
convolutional layers, the features are encoded employing a binary hashing fol-
lowed by block-wise histograms. In fact, this network generates (unsupervised)
features, and the classification is left to a final stage. The filters were applied
on a one-channel basis, i.e. each filter operates on one channel and produces one
new grayscale image. As a result, the number of channels at the next level is
channels × filters and rises quickly. The histogram pooling also generates many
features, leading to a feature explosion if more layers are added.

The design of PCANet has led to other related variants. For example, DCT-
Net [20], LBP-Net [21] and ICANet [22] changed the type of filters used by
PCANet while pursuing with the same structure. PCANet-II [11] also used the
same PCANet architecture but replaced the histogram-pooling with the second-
order pooling to reduce the number of features. PCANet+ [1] tried to change
the PCANet filters’ topology by proposing PCA filter ensemble learning. Other
research such as [23] and [31] attempted to learn a non-linear representation of
the PCA filters using kernel methods.



294 M. Alotaibi and R. C. Wilson

3 Multi-layer PCA Network Structure

Assume we have a set of N training samples X(0) that feed into the network,
where X(0) = {{Xi}N1 : Xi ∈ R

m×n×d} and d ∈ {1, 3} represents the grayscale
and the coloured images respectively. Figure 1 describes the architecture of the
network. The first layers are convolution layers, where the input to each con-
volution layer (X(L−1)) is the previous layer’s output. The following equation
defines the output of each convolution layer (defined in the next section):

XL = WL ∗ X(L−1) (1)

Where XL represents the output of the layer (L), WL is the PCA-based filters
learned for the current layer (L), and (∗) is the convolution operator.

For every convolution layer’s output, we extract the features using the second-
order pooling and then, optionally, apply multi-level spatial pyramid pooling
(SPP) as in [2]. Finally, we run a classifier for each layer which outputs the class
posteriors and send the fused posteriors to a classifier for final prediction. Details
about the network structure are discussed in the following sections.

Fig. 1. Multi-layer PCA network architecture

3.1 PCA Convolution Layers

The PCA filters are calculated as in [1]. For N samples XL−1 = {Xi}N1 , where
Xi ∈ R

m×n×dL−1 , and dL−1 is the number of filters in the layer (L-1), or dL−1 ∈
{1, 3} for the input layer, we find the PCA filters as the following:

1. Extract all overlapping patches of size kL × kL × dL−1 in each image Xi and
subtract the mean-patch, where kL represents the filter’s size in layer (L).

2. Calculate X̄i ∈ R
k2
LdL−1×Nm̃ñ by concatenating all the vectorized zero-mean

patches from all sample images, where m̃ = (m−kL)+1 and ñ = (n−kL)+1
, m and n are the width and the height of the image.

3. Solve the following equation to find dL principle components of (X̄L−1

X̄L−1T ).

min
V ∈R(kL×kL)×dL−1

||X̄L−1 − V V T X̄L−1||2F , V TV = IdL−1 (2)

Where IdL−1 is the identity matrix of size dL−1 × dL−1 .
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4. The PCA filters can be expressed as the following:

WL
s = mat

kL×kL×dL−1
qs, s = 1, 2, . . . , dL. (3)

Where mat
kL×kL×dL−1

(v) is the function that maps the vector v ∈ R
k2
LdL−1 to

tensor W ∈ R
kL×kL×dL−1 , qs is the sth principal eigenvector of X̄L−1X̄L−1T

and dL is the number of filters chosen for the layer (L).
5. The output of each convolution layer is obtained by convolving each filter

with the sample images:

XL
i = X̄L−1

i ∗ WL
s ∈ R

m×n×dL (4)

where s = 1, 2, . . . , dL and X̄L−1
i is zero-padded to get the same image size.

3.2 Second-Order Features

Figure 2 illustrates the mechanism of calculating second-order features from
each convolution layer’s output. So, for each output XL

i ∈ R
m×n×dL , where

i = [1, 2, . . . , N ], N is the number of samples, and dL is the number of responses
in layer L. We first divide the tensors into patches of the same size and normalize
each patch using z-score normalization. Then, we find the channel-wise covari-
ance matrix for each patch, representing the second-order features related to that
position in the image (determined by the patch size). Details about covariance
calculation have been discussed in the following subsection.

Fig. 2. Second order features for every convolution output

Covariance Computation. Assume X ∈ R
M×d is sampled from the normal

distribution, where M is the number of instances, and d is the number of dimen-
sions. The following equation defines the covariance matrix of X.

Σ =
1
M

M
∑

k=1

(xk − μ)T (xk − μ) (5)

Where μ is the sample mean.
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The covariance matrix Σ is a symmetric positive definitive matrix that forms
a Riemannian manifold [5]. Most of the classifiers, such as SVM, deals with
Euclidean data so direct use of covariance matrix entries for features is not
ideal. We should first map Σ to the Euclidean tangent space using log matrix
log Σ [5], or square-root matrix Σ1/2 [3,4,6]. Empirically, the square-root matrix
seems to produce better performance than logarithmic matrix [3].

The covariance matrix is difficult to estimate robustly when the number of
samples is small compared to the number of dimensions [4,7], and so the square-
root covariance cannot be accurately calculated directly. Therefore, we used the
following equation as in [7] to estimate the covariance matrix.

˜Σ = Udiag(δi : i = 1, 2, . . . , d)UT , δi =

√

(

1 − α

2α

)2

+
λi

2α
− 1 − α

2α
(6)

Where U is the orthogonal matrix consisting of the eigenvectors, (λi, i = 1 . . . d)
are the eigenvalues in decreasing order, α is regularizing parameter and set to
be 1

2 in all experiments as in [4]. This gives ˜Σ as a regularized estimate of Σ1/2.
After computing the estimated covariance matrix, we combine the mean and the
estimated covariance using the following positive-definitive matrix as in [7].

N (μ, ˜Σ) ∼
(

˜Σ + μμT μ
μT 1

)

(7)

Where ˜Σ and μ are the estimated covariance and the sample mean, respectively.
Because this matrix is symmetric, the number of features for each convolution
layer is (dL + 1)(dL + 2)/2 − 1× the number of patches.

3.3 Late Fusion

The intermediate activations’ outputs could provide informative clues about the
images, including local parts, boundaries, and low-level textures. Therefore, inte-
grating information from all layers is essential for better performance and reliable
prediction [8]. Generally, there are two standard fusion methods, namely early
fusion and late fusion [9,10]. The difference between the two methods is explained
in Fig. 3. The early fusion works in the features level, where we fuse the features
first using one of the methods discussed in Table 1 and send the fused features
to a classifier to predict the classes’ labels. On the other hand, the late fusion
works by running a classifier each level, combine the posteriors using one of the
methods described in Table 1 and send them to the primary classifier for the
final prediction. The researchers [9,10] showed that the late fusion method could
provide comparable or better performance than the early fusion. We used the
late fusion method in our experiments, where the class posteriors were averaged
to predict the final results. This produces a large reduction in the number of
features used in the final classifier.
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Fig. 3. Late fusion versus early fusion

Table 1. Fusion methodology

Fusion method Definition

Concatenation f = [f1, f2, . . . , fN ], where fi ∈ R
di f ∈ R

∑N
k=1 dk

Max fk = maxd
i=1(f

i
k), where k = 1, . . . , N and f ∈ R

N

Sum fk =
∑d

i=1(f
i
k), where k = 1, . . . , N and f ∈ R

N

4 Experiments and Results

We investigated several architectures to test our model in 4 benchmarks: CIFAR-
10 [29], CIFAR-100 [29], MNIST [26] and Tiny ImageNet [30]. Table 2 presents
the best configurations we found for the four datasets. Each entry gives the
receptive field size and the number of output filters for that layer. The filter size
for all of our experiments has fixed to 3 × 3. The classifier we ran for every
convolution layer is the linear discriminant analysis (LDA), and the posteriors
generated of the LDA classifiers were averaged and sent to SVM [28] to produce
the final prediction. More details about these configurations and their accuracies
have been discussed in the following subsections.

Table 2. Configurations for CIFAR-10/100, MNIST and Tiny ImageNet

CIFAR-10 CIFAR-100 MNIST Tiny ImageNet

Input Image 32 × 32 × 3 Input Image 28 × 28 Input Image 64 × 64 × 3

3 × 3 conv-27 3 × 3 conv-9 3 × 3 conv-27

[3 × 3 conv-50] ×7 [3 × 3 conv-50] ×4 [3 × 3 conv-40] ×8 2 × 2 max-pooling, stride = 2

[3 × 3 conv-70] ×3

4.1 Experiment on CIFAR-10 Database

CIFAR-10 database [29] consists of 50,000 coloured images for training and
10,000 images for testing. Each class contains objects that come with differ-
ent angles and poses. The model used for testing CIFAR-10 as described in
Table 2 consists of 8 layers with 27 filters for the first layer and 50 for the rest.
We divided the feature maps of each layer into patches of size 8 × 8 with a
stride = 1. Each convolution layer’s second-order features are reduced using
3-levels SPP of 4 × 4, 2 × 2 and 1 × 1 subregions. The number of the first
convolution layer features is 8508, and 27825 from the remaining layers.
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Table 3 compares our model’s accuracy with PCANet-2 and the current state
of the art results (without data augmentation). The accuracy of our model
is 4.58% better than PCANet-2. While the current state of the art methods
achieved around 12% accuracy better than our model, our model is competi-
tive with some simpler deep learning methods and learns features in a one-pass
closed-form algorithm. So, the result is still promising.

Table 3. Comparison of the accuracy (%) of some methods on the CIFAR-10/CIFAR-
100 database with no data augmentation

Method CIFAR-10 CIFAR-100

Stochastic pooling [12] 84.87 57.49

Maxout network [13] 88.32 61.43

Network in network [14] 89.59 64.32

ALL-CNN [15] 90.2 –

Fractal network [16] 89.82 64.66

110 ResNet reported by [17,18] 86.82 55.26

ResNet stochastic depth [17] – 62.20

164-ResNet(pre-activation) reported by [18] – 64.42

Dense network(k = 24) [18] 94.08 76.58

Dense network-BC (k = 24)[18] 94.81 80.36

PCANet-2 [2] 77.14 51.62

PCANet-2 (combined) [2] 78.67 –

Multi-layer PCANet (ours) 81.72 57.86

4.2 Experiment on CIFAR-100 Database

CIFAR-100 database [29] is similar to CIFAR-10 but with 100 classes. The model
we used in this experiment is identical to the one we used for CIFAR-10 but with
5 convolutional layers. We choose the number of layers to be five because there
is no improvement in the accuracy when using eight layers as in CIFAR-10.

Table 3 compares the results achieved by our model with PCANet and other
neural networks-based models (without data augmentation) including Residual
network, Fractal network [16] network in network [14] and dense network [18].
The PCANet result has been achieved by running the same model used for
CIFAR-10 [2], but with the CIFAR-100 database. The results show that our 5-
layers PCANet accuracy is 6.24% better than the 2-layers PCANet and 2.60%
better than ResNet with 110 layers, and about the same error rate as the stochas-
tic pooling method [12]. The dense-network achieved the best performance with
an error rate of 22% less than our model. Again our method improves on PCANet
and is competitive with some older CNN-based methods, although it is not as
good as more recent ones.
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4.3 Experiment on the MNIST Database

The MNIST dataset [26] consists of 60,000 training examples and 10,000 test
samples organized into 10 classes. Testing on this dataset was also performed
without data augmentation. As described in Table 2, we used 9 convolutional
layers, with 9 filters for the first layer and 40 for the rest. The performance
reported here is the last convolution layer’s accuracy, where we divided the
40 feature-maps into patches of size = 7 × 7 and stride = 1. The number of
dimensions of the last layer has reduced using 3-level SPP of 16, 4 and 1 bins.
The classifier used here is also the LDA, and the number of dimensions is 18060.

Table 4 compares the results obtained in this study with those obtained by
PCANet [2]. The performance of our model is equivalent to those of PCANet-2,
LDANet-2 and PCANet-1 (k = 13). Our interpretation of this situation is that
the accuracy was good, and could not improve much by adding more layers.

Table 4. Comparison of cthe MNIST database with no data augmentation

Method Accuracy(%)

PCANet-1 [2] 99.06

PCANet-2 [2] 99.34

LDANet-1 [2] 99.02

LDANet-2 [2] 99.38

PCANet-1 (k = 13) [2] 99.38

Multi-layer PCANet (ours) 99.40

4.4 Experiment on Tiny ImageNet

Tiny ImageNet database [30] consists of 100,000 training images divided into
200 categories. The validation and the test sets contain 10,000 images each,
with 50 images per class. The test set is not labelled, and the results here are
reported on the validation set. The model used for this experiment, as described
in Table 2 consists of 4 convolution layers and one max-pooling layer with 27
filters generated from the first layer and 70 filters produced by the next layers. We
introduced the max-pooling layer here to reduce the size of the output images.
We divided the output images into patches of size 16 × 16 with stride = 1. The
first layer’s covariance features were pooled using 3-level SPP with 16, 4 and 1
bins. The next convolution layers have been connected to 2-level SPP with 4 and
1 bins. The number of features generated = 8508 from the first layer and 9450
from the remaining convolution layers.

Table 5 displays our model’s accuracy compared to PCANet-2, ResNet34
and ResNet-50 reported by [27] without data augmentation. We tried to choose
the best parameters to run PCANet-2 on 1TB memory. Therefore, PCANet-2
was trained with filter size k1 = k2 = 5, the number of filters L1 = 30, L2 =
8, and the block size = 16×16 with overlapping ratio = 0.5. To the best of our
knowledge, we obtained the best error rate with no data augmentation.
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Table 5. Comparison of the accuracy of some methods on the Tiny ImageNet database
with no data augmentation

Method ResNet-34 [27] ResNet-50 [27] PCANet-2 Multi-layer PCANet
(ours)

Accuracy(%) 33.50 26.20 30.00 40.87

5 Conclusions

In this paper, we have presented some new refinements to the PCANet family of
image classification methods to improve the performance and reduce the number
of features. We introduced late fusion to preserve the information from all lay-
ers, adopted multi-channel convolutional layers and used second-order pooling
with z-score normalisation. These substantially reduce the number of generated
features and allow us to use deeper networks. We have shown that this offers
improved performance over PCANet and results which are competitive with
some simpler CNN architectures. We believe this is promising for a method
where the features are unsupervised, but this is also a weakness of the architec-
ture because we cannot learn which features are important for classification. In
future work, we intend to study supervised convolutional layers where the filters
are learnt with simple closed-form solutions in the same spirit as PCANet.
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Abstract. Gesture recognition based on multimodal information plays
a significant role in the field of human-computer interaction. In recent
years, although many researchers devoted themselves to the related work
in this field, the correlation and complementarity of multimodal informa-
tion have not been explored and utilized fully. Consequently, this paper
proposes a multimodal fusion network based on the hybrid attention
mechanism for gesture recognition, where: 1. the cross-attention mecha-
nism is introduced to fuse and enhance multi-dimensional features mutu-
ally, such as video and audio features; 2. the single-attention mechanism
is employed to balance the correlation and redundancy between one-
dimensional representation and multi-dimensional representation, such
as skeleton and video features. The proposed network aims to excavate
the relationship between modalities from different perspectives, fuse var-
ious information in different fusion stages, and achieve high accuracy of
recognition. The method is evaluated on the publicly available datasets,
ChaLearn Montalbano dataset, and obtains 95.97% accuracy when fusing
video, skeleton, and audio modalities, which outperforms state-of-the-art
approaches.

Keywords: Gesture recognition · Multimodal fusion · Hybrid
attention mechanism

1 Introduction

Gesture recognition designed to explain human action is essential in the field of
human-computer interaction (HCI) [21], which has a wide range of applications,
such as virtual reality, intelligent navigation, sign language recognition, and other
aid systems [3]. In consequence, researchers have done many works in the field of
gesture recognition, which can be broadly divided into two categories, according
to the number of modalities. One category is based on one modality, and the
other is based on multimodal information.
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For the gesture recognition methods based on the single modality, most
approaches employ the extracted video features. Pigou et al. [13] proposed a
model with temporal convolutions for the gesture and sign recognition task.
Simonyan et al. [15] proposed a two-stream convolutional architecture including
spatial and temporal networks for action recognition. However, gesture recogni-
tion with high accuracy is a challenging task because of individual differences in
tempos and styles of gestures, the complex observation conditions, tiny gestures
that are hard to spot, and variation real-time performance [11].

Researchers have introduced multiple modality data to alleviate the bias
easily generated in the single modal and improve the robustness of the model.
Besides, the machine learning-based algorithms have made a tremendous impact
in lots of fields, such as computer vision [7], natural language processing [18] and
bioinformatics [14]. As a result, the Multimodal Machine Learning (MML) [2] is a
hot topic of current research, in which multimodal fusion is an essential procedure
[6]. Most studies have focused on hybrid multimodal fusion that allows fusing
multimodal information on different layers of the model [19]. Some works are
fusing multimodel information by concatenating low-level or high-level features
extracted by pre-trained models [1,12,17]. Some works are fusing multimodel
information by using attention mechanism [6,9,22].

For the gesture recognition methods based on multimodal information, Zhang
et al. [20] learned spatiotemporal features of RGB, depth, and optical flow data
by using 3DCNN and LSTM for gesture recognition. Besides, Molchanov et al.
[10] employed a recurrent three-dimensional convolutional neural network that
can detect and classify the dynamic hand gestures from multimodal data simul-
taneously. Neverova et al. [11] proposed a multimodal fusion method named
ModDrop for gesture detection based on multimodal deep learning. Li et al. [8]
introduced a multimodal fusion selection method based on stochastic regular-
ization and can get high accuracy in gesture recognition. However, the simple
concatenation may limit the ability of the model to dynamically determine the
relevance of each modality feature about the different task, because different
modalities may carry diverse task-relevant information. And most approaches
have not explored the correlations between multiple modalities fully.

This paper focuses on the research of multimodal fusion in the field of
gesture recognition. We propose a multimodal fusion modal based on the
hybrid attention mechanism. And two attention mechanisms are presented:
the cross-attention mechanism for fusing multi-dimensional representation; the
single-attention mechanism for fusing one-dimensional information and multi-
dimension-al information. We employ our methods in different fusion stages. In
video sub-modalities fusion stages, video and audio modalities, we apply the
cross-attention method. In video and skeleton fusion stages, audio and skele-
ton fusion stages, we employ the single-attention method. By employing the
attention mechanism, the most meaningful feature information for the task from
modalities can dynamically receive a stronger weight. Besides, the model can
detect interference and dynamically reduce the impact of unimportant informa-
tion. By the experiments on the ChaLearn Montalbano dataset, we get 95.97%
accuracy when fusing video, skeleton, and audio modalities, which is higher than
state-of-the-art approaches.
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2 Methodology

Fig. 1. The architecture of our network

In this section, we will illustrate our multimodal fusion method that is based
on the hybrid attention mechanism for gesture recognition. We employ the
same extracted feature method as [11], and finally get the video feauture (V ∈
R

C×Hv×Wv ), audio feature (A ∈ R
1×Ha×Wa), and skeleton feature (S ∈ R

1×Ws).
Then we use our method to fuse and enhance the extracted features of three
modalities and concatenate enhanced features to form a fusion layer with 784
dimensions. We send the fusion layer to the fully connected module and get the
output that is one of 21 gesture categories. The fully connected module contains
three layers with 120, 60, and 21 dimensions. And the network architecture
is shown in Fig. 1. The hybrid attention mechanism consists of two mecha-
nisms. For the mutual enhancement between multi-dimensional representations,
we apply the cross-attention mechanism, which will be introduced in Sect. 3.1.
For the enhancement between the multi-dimensional representation and the one-
dimensional representation, we employ the single-attention mechanism and will
be presented in Sect. 3.2.

2.1 The Cross-Attention Mechanism

The cross-attention mechanism is proposed to perform feature recalibration,
through using global information to selectively emphasize informative features
and depress less useful ones. The cross-attention can make multi-dimensional
data from different modalities refer to each other and enhance the meaningful
channel characteristics between modalities, as shown in Fig. 2. We use the multi-
dimensional feature maps extracted from the modality and denote it as X ∈
R

C×H×W = [x1, x2, ..., xc], xc ∈ R
H×W . To exploit the channel dependencies,

we squeeze the feature maps across their spatial dimensions (H × W ) by using
the global average pooling operation and get the channel descriptors Z ∈ R

C =
[z1, z2, ..., zc], zc ∈ R, as the Eq. 1. We capture channel-wise dependencies and
obtain the attention weights, denoted β ∈ R

C , according to the Eq. 2.
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Fig. 2. The cross-attention mechanism

zc =
1

H × W

H∑

h=1

W∑

w=1

xc (h,w) , (1)

β = softmax (W2Relu (W1Z)) , (2)

where W1 and W2 are the trainable parameters. As shown in Fig. 2, we use the
same way to get βx and βy for different modalities.

Then we rescale the feature map of other modalities to make full use of the
channel descriptors aggregated in the prior step and enhance the information
from the channel dimension. According to the Eq. 3 and Eq. 4, we apply the βx

to excite the feature map Y ∈ R
C×H×W , and use the βy to activate the feature

map X ∈ R
C×H×W , which can achieve mutual reinforcement between different

modalities.
Ỹ = F (βxY ) = βxY, (3)

X̃ = F (βyX) = βyX, (4)

where the F (∗) refers to channel-wise multiplication function.
In this way, we can employ the correlation of highly correlated modalities with

multi-dimensional representation to enhance each other from channel dimension
and improve the ability of the model to represent features.

2.2 The Single-Attention Mechanism

For the multi-dimensional representation X ∈ R
C×H×W1 and one-dimensional

information Y ∈ R
1×W2 , we employ the single-attention mechanism to improve

the representation of multi-dimensional data X, which is shown in Fig. 3. We
first transform the representation X ∈ R

C×H×W1 into Xr ∈ R
C×(H×W1). And

then we calculate the attention weights by the following formula:

Xx ∈ R
C×K = Relu (WxXr + bx) , (5)
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Fig. 3. The single-attention mechanism

Yy ∈ R
1×K = Relu (WyY + by) , (6)

α = tanh
(
XxY

T
y

)
, (7)

where Wx and Wy are the trainable parameters, bx and by are the bias and the
T is transpose operation. The weight value α ∈ R

C , which can be interpreted as
the attention scores for every channel. The final output is obtained by rescaling
the multi-dimensional representation with the value α, according to the Eq. 8
and Eq. 9:

x̃c = F (xc, αc) = xcαc, (8)

X̃ = [x̃1, x̃2, ..., x̃c], (9)

where X̃ means the latest representation after activation by using attention
score, and the F (xc, αc) refers to channel-wise multiplication between the scalar
α ∈ R

C and the feature maps X ∈ R
C×H×W .

By this method, we can apply the one-dimensional feature to enhance the
multi-dimensional information from channels, which makes use of the relation-
ship between various modalities with different dimensional features sufficiently.

Through the above attention mechanisms, the cross-reference between multi-
dimensional data can be achieved, the connection between various modalities
information can be enhanced, which improves the effectiveness of multimodal
data fusion and alleviates the interference between them.

3 Experiments

3.1 Datasets and Method of Data Processing

ChaLearn Montalbano Dataset. We evaluate our method on the ChaLearn
Montalbano dataset [5], which is the preprocessed version of the multimodal
gesture recognition dataset, Chalearn 2014 Looking at People Challenge track
3. This dataset is composed of four modalities: RGB video data, depth video
data, skeleton data, and audio data, and contains 20 Italian gesture categories
executed by 20 performers and one non-gesture category. Besides, we divide
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the gesture instances into the training set and the test set according to the
ratio of 9:1. Aiming to focus on the research of multimodal fusion, we use the
same method of data processing and feature extracting with ModDrop [11].
Training network for every modality, removing the output layer and employing
the extracted features by hidden layers for fusion.

Table 1. Parameters configuration of data preprocessing on Montalbano dataset

Video Skeleton Audio

Input-(36 * 36 * 5) Input-915 Input-(40 * 9)

CONV3D-(25 * 5 * 5 * 3) FC1-700 CONV2D-(25 * 5 * 5)

Maxpooling-(2 * 2 * 3) FC2-400 Maxpooling-(1 * 1)

CONV2D-(25 * 5 * 5) FC3-350 FC1-700

Maxpooling-(1 * 1) Output-21 FC2-350

FC1-900 – Output-21

FC2-450 – –

Output-21 – –

According to [11], the specific feature extraction methods for video, skeleton,
and audio modalities are shown in Table 1. In particular, for video modality,
every hand is localized relied on skeleton data and is extracted feature respec-
tively, rather than for the whole gesture. And the parameters of the right and
left-hand network of video modality are shared. The extracted feature opera-
tion of the RGB modality is the same as the depth modality. We first fuse the
RGB and depth modalities, then fuse the right and left hands modalities in our
experiments, as shown in the Fig. 4.

Fig. 4. The fusion of different video modalities
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3.2 Training Details

The training details of our method are described as follows. The learning is com-
pleted with 100 epochs and the batch size is 512 for the Montalbano dataset.
And the cross-entropy function is selected as the loss function. The stochastic
gradient descent method is used as the optimization algorithm to train the net-
works with learning rate decay, weight decay, and the momentum method. The
initial learning rate is 0.01 and the decay parameter of the learning rate is 0.9995.
The weight decay rate is 0.0002, and the parameter of momentum is 0.8. The
first two layers of the fully connected module use the tanh function as activation
function, each followed by a dropout [16] layer of rate 0.5. We employ accuracy
as the evaluation metric.

3.3 Experiment Results

We explore the hybrid attention method on ChaLearn Montalbano dataset and
choose ModDrop [11], Modout [8] and Block [4] as baselines. ModDrop is a
multi-scale multimodal fusion method based on the deep learning algorithm for
gesture recognition. Modout is a multimodal fusion model based on stochastic
regularization for gesture recognition. And Block is a new multimodal fusion
based on the block-superdiagonal tensor decomposition. We do three groups
of the experiment that fusing different numbers of modalities. Since the video
modality is the main data of this dataset, every group of experiments contains the
video modality. The experiments of various video modalities fusion are presented
firstly. Then the results of video and skeleton modalities fusion, video and audio
modalities fusion are discussed. Finally, the experiments of video, audio, and
skeleton modalities fusion are introduced.

The Results of Different Video Modalities Fusion. We explore the cross-
attention method on the situation fusing various video modalities. We use
the cross-attention mechanism between the RGB modality and depth modal-
ity (dubb-ed CD), and employ the same method between the right hand and left
hand (dubbed RL), since the representation of these four modalities is multi-
dimensional. The results are shown in Table 2. From the results, adding our
method on two fusion models of video modalities can get higher accuracy than
other baselines, 89.56%, and 89.45% respectively.

Table 2. The accuracy of fusing different video modalities

Methods ModDrop Modout Block Ours

CD 89.33% 87.82% 88.99% 89.56%

RL 89.33% 89.45% 89.31% 89.45%
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Table 3. The accuracy of fusing two modalities

Methods ModDrop Modout Block Ours

VS 94.17% 93.79% 94.20% 94.45%

VA 91.65% 91.62% 93.48% 92.05%

The Results of Two Modalities Fusion. We explore the hybrid attention
method on the situation fusing two modalities. Because the video features and
audio features are multi-dimensional, the skeleton features are one-dimensional,
we use the single-attention mechanism on fusing video and skeleton modalities
(dubbed VS) and employ the cross-attention mechanism on fusing video and
audio modalities (dubbed VA). The results are shown in Table 3.

When fusing video and skeleton data, the accuracy of our approach is the
highest in the table, 94.45%, which outperforms other methods. However, when
fusing video and audio data, our method has a 92.05% accuracy that exceeds
the baselines except for Block. The proposed method has a slight fluctuation in
this situation, because of the presence of noise in the audio modality.

The Results of Three Modalities Fusion. We also test the performance of
the hybrid attention mechanism when having video, skeleton, and audio modal-
ities. We use the cross-attention for fusing RGB and depth modalities (dubbed
CD), right and left modalities (dubbed RL), video and audio modalities (dubbed
VA), respectively, since their features are multi-dimensional. Besides, we employ
the single-attention on the skeleton and video modalities fusion (dubbed VS),
skeleton and audio modalities fusion (dubbed SA), respectively. The related
results are shown in Table 4. From the results, at each fusion stage in the table,
our method outperforms the others.

Table 4. The accuracy of fusing three modalities

Methods ModDrop Modout Block Ours

CD 95.15% 94.68% 94.80% 95.68%

RL 95.05% 95.11% 94.74% 95.77%

VS 95.00% 93.97% 93.91% 95.77%

SA 94.91% 94.22% 94.37% 95.35%

VA 95.10% 92.25% 95.60% 95.62%

Finally, We also explored the effects of using different fusion methods at
different fusion stages. For example, the cross-attention is used on the RGB and
depth, right and left hands fusion stages at the same time (dubbed CDRL). The
single-attention is employed on the skeleton and video fusion stages, the cross-
attention is used on the RGB and depth, right and left hands fusion stages at the
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same time (dubbed CDRLVS). Similarly, we can get the CDRLSA, CDRLVA,
CDRLVSA. And CDRLVSA means that using fusion methods on every fusion
level when fusing all modalities. These codes represent the fusion methods used
on the corresponding fusion stages and the results are shown in Table 5.

Table 5. The accuracy of multiple combinations on three modalities fusion

Methods ModDrop Modout Block Ours

CDRL 95.13% 94.54% 95.02% 96.05%

CDRLVS 95.10% 92.51% 94.34% 95.97%

CDRLSA 94.91% 94.40% 94.80% 95.02%

CDRLVA 95.12% 93.19% 94.48% 96.00%

CDRLVSA 95.17% 94.91% 94.45% 95.97%

As can be seen from Table 5, the better results can be obtained by using
our method on several different fusion stages at the same time, with the accu-
racy ranging from 95.97% to 96.05% except for CDRLSA. Among them, when
using the hybrid attention mechanism on every fusion stage (CDRLVSA), we
have 95.97% accuracy, which outperforms ModDrop 0.80%, exceed the Modout
by 1.06%, and is more than Block with 1.52%. The results illustrate that our
approach can make use of their relationship, excavate the useful information
between different modalities sufficiently, and achieve mutual reinforcement of
multimodal.

4 Conclusion

In this work, a multimodal fusion network based on the hybrid attention mech-
anism for gesture recognition is proposed. We explore different patterns for
the fusion of different modalities. Using the cross-attention approach for the
multi-dimensional features can achieve mutual enhancement between the mul-
tiple modalities with a high correlation. Employing the single-attention method
between one-dimensional representation and multi-dimensional information can
reinforce the useful parts of the multi-dimensional feature according to the one-
dimensional feature. Our approach balance the relationship between comple-
mentation and redundancy of multimodal, optimize the tradeoff between the
representation ability and complexity of the fusion model, and achieve fine inter-
actions between modalities. In addition, our approach can be applied to different
fusion stages and its effectiveness is also verified from the relevant experimental
results.
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Abstract. Image steganography refers to the process of hiding infor-
mation inside images. Steganalysis is the process of detecting a stegano-
graphic image. We introduce a steganalysis approach that uses an ensem-
ble color space model to obtain a weighted concatenated feature activa-
tion map. The concatenated map helps to obtain certain features explicit
to each color space. We use a levy-flight grey wolf optimization strategy
to reduce the number of features selected in the map. We then use these
features to classify the image into one of two classes: whether the given
image has secret information stored or not. Extensive experiments have
been done on a large scale dataset extracted from the Bossbase dataset.
Also, we show that the model can be transferred to different datasets
and perform extensive experiments on a mixture of datasets. Our results
show that the proposed approach outperforms the recent state of the art
deep learning steganalytical approaches by 2.32% on average for 0.2 bits
per channel (bpc) and 1.87% on average for 0.4 bpc.

Keywords: Steganalysis · Color spaces · Greywolf optimization ·
Concatenated feature maps

1 Introduction

Steganography is a means of covert communication in which secret information
is embedded into some form of digital media, such as an image, video or text
file [3]. Usually, this form of embedding is done such that there is no apparent
perceptible change in the embedding file. In multimedia security, steganography
forms a critical research topic [4]. The difference between steganography and
cryptography is that in cryptography data is encrypted and although difficult
to break, raises a doubt in the mind of an attacker about the presence of secret
information. Steganography, on the other hand, aims to reduce the risk of being
detected. In general, images are considered as the embedding medium due to
minute changes in an image being imperceptible to the human eye [4]. There are
three main properties that a steganographic algorithm should possess: security,
robustness, and capacity. In case of an image steganographic algorithm, security
would mean how securely the algorithm can hide information, i.e., how little
visual change is caused on an image using an image steganography algorithm.
c© Springer Nature Switzerland AG 2021
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Robustness refers to the invariability of the steganographic algorithm when an
image is subject of different transforms such as scaling, resizing, rotation, etc.
The capacity for a steganographic algorithm represents the amount of data that
can be embedded in an image before there is a noticeable visual change in the
image [5]. Steganalysis is the process of detecting if a given image has information
hidden in it or not [27]. In this regard, we can convert this problem into that of a
simple classification problem. To detect if an image is embedded with information
we propose the use of an ensemble color space model. Recently, it was seen an
ensemble colorspace model [1] obtained excellent results on large scale image
classification datasets such as imagenet [2]. Based on [1] we propose a novel
steganalysis approach.

Steganalysis is the process of detecting if a given image has information hid-
den in it or not. In this regard, we can convert this problem into that of a simple
classification problem. To detect if an image is embedded with information, we
propose the use of an ensemble color space model.

We do the following:

– We use a colorspace approach to determine if an image is hiding information
or not. We use ColorNet [1] and take the final activation map from each
colorspace.

– We use weighted averaging to obtain a single feature map from all the indi-
vidual feature maps that are generated by each colorspace. It was seen [1]
that each color space had features explicit to themselves and this would help
us detect minute changes in the image.

– We then use a levy-flight grey wolf optimization method (meta-heuristic app-
roach) to select a smaller subset of features. Using these features, we classify
the given image into one of two classes: containing concealed information or
not.

1.1 Steganography

Most steganography algorithms can be expressed in Fig. 1. An image is bro-
ken down to it’s RGB (Red Green Blue) channels and pixels in the individual
channels are modulated with some cost function ‘C’ which embeds information
into that channel. The most straightforward steganography algorithm is the LSB
(Least Significant Bit) algorithm. Here, as the name suggests the least significant
bit is taken, and one bit of information is stored (either as a 1 or a 0).

Steganography algorithms can be classified broadly into four categories: 1)
cover image size 2) embedding domain-based algorithms 3) nature of retrieval
based algorithms 4) adaptive steganographic algorithms. In the case of 2-D
images, the information is embedded onto the 2-D plane of the cover image.
This embedding can be done over transform domain coefficients (such as dis-
crete cosine transforms, Fourier transforms, etc.) or on the spatial domain (an
example is LSB). The 3-D approaches essentially follow the same general proce-
dure. However, the procedure is repeated on multiple planes (for instance RGB



StegColNet: Steganalysis Based on an Ensemble Colorspace Approach 315

Fig. 1. Pipeline of a standard steganography algorithm (Color figure online)

in a color image has 3 planes that can embed information). Image steganogra-
phy on 3-D images can be made in either geometrical domain [5], representation
domain [6] or topological domain [7].

Some of the transform-based steganographic algorithms include discrete
Fourier transform (DFT) [9], discrete cosine transform (DCT), discrete wavelet
transform [10], complex wavelet transform [11] among others. Here, frequency
coefficients obtained after applying transforms are used to hide secret bits. Along
with the security being improved, these algorithms are robust to image compres-
sion, cropping, scaling, etc. Off late, machine learning approaches have been pro-
posed such as SVM (Support Vector Machine)[12], genetic algorithm approaches
[13], neural network-based steganography [14]. Though these approaches are
black-box approaches, they have shown good results.

1.2 Steganalysis

Steganalysis is the method of trying to either determine a stego image (image
where information is hidden) or extract the secret information. Our method deals
with the former. We treat the problem at hand to be a classification problem,
wherein, each image either contains some hidden information or not.

There are two basic approaches to steganalysis: signature steganalysis and
statistical steganalysis. Signature steganalysis is the method wherein patterns,
or signatures relevant to various steganographic algorithms are searched for.
The presence of a pattern indicating that secret information is being hidden in
the image. The quintessential process here is the repetition of patterns due to
embedded secret information. The statistical approach searches for mathemati-
cal results to determine if the information is being hidden. Signature steganalysis
is further classified into specific embedding [16] and universal blind steganalysis
[15]. Specific embedding approaches are impractical because we need to know
what steganography approach has been used to embed information. Hence, uni-
versal blind steganalysis [8,17] is preferred. These approaches help in the extrac-
tion of high dimensional features. However, the curse of dimensionality occurs.
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Hence, a need to reduce feature size occurs. Some commonly used algorithms
to do the same include wrappers, filters, etc. Filters are less complex; however,
they perform poorly. Wrapper methods evaluate feature subset using predictive
models [18]. However, wrappers are complex and time-consuming.

To overcome this, meta-heuristic approaches have been deployed. These
approaches solve optimization problems by utilizing natural phenomena [19,20].
It was seen that Grey Wolf Optimization (GWO) performed better than other
metaheuristic approaches for solving non-linear problems in a multi-dimensional
space [19]. However, it has a slow convergence rate and gets trapped in local
optima at times. It has been seen that GWO can be optimized by modifying it’s
parameter A to obtain a quick convergence rate, better convergence precision
and higher agility for global searching.

2 Proposed Approach

2.1 Overall Architecture and Effect of Using Color Spaces

We consider steganalysis as a 2 class classification problem. The overall architec-
ture is described in Fig. 2. The experimental analysis along with details regarding
training set etc. are explained in the next section. Recently, the effect of color
spaces on image classification has been explored [1]. It was seen that individual
color spaces inherited classification features explicitly to themselves. This helped
us ponder about the ability to extract information in an image where there is
secret information being embedded. Colornet [1] being an ensemble model, that
could extract features specific to each colorspace, was an excellent choice to
utilize to help us in determining if an image could have information hidden in
it. The output of Colornet is a high-dimensional vector, which causes a com-
putationally intensive execution. To reduce the number of features selected we
have to use an optimization approach for feature selection. Figure 1 shows the
architecture of the model.

2.2 Optimization Process for Feature Selection

Feature Selection Using LF-Grey Wolf Optimization. In GWO, the head
of the pack is the α. The next level of the hierarchy is β, δ and finally followed by
ω. GWO models the social hierarchy and mathematically illustrates the hunting
procedure as an optimization problem. If Xp(t) and X(t) represent the position
of prey and wolf at iteration ‘t’, we can mathematically model the encircling pro-
cess [19] with two coefficients A and C as shown in (1). A and C are calculated
by (2).

D = |C.Xp(t) − X(t)|;X(t + 1) = Xp(t) − A.D (1)

A = 2a.r1 − a;C = 2.r2 (2)
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Fig. 2. Two phases involved in the overall architecture of the model: training the model
using colornet and detecting stego-image using feature map aggregation

Here, r1 and r2 are random vectors in [0,1], a is a parameter that decreases
linearly from 2 to 0 over iterations and also helps to control step size D of a grey
wolf. Implementation of the end of the hunting process is done by decreasing the
value of A which in turn depends on a. Once a turns zero, it means that the
wolves have stopped moving. The linear decrease in A helps to exploit search
space with minimal exploration. Hence, this traps a local optimum.

The size of the aggregated feature map creates an issue in terms of the
complexity of the algorithm and the overall time needed for execution. To deal
with this, we propose the use of levy flight-based grey wolf optimization (LF-
GWO) for feature selection based on Levy probability function in (3). Here, μ

represents position parameter, γ represents scale parameter and η represents the
collection of samples in the distribution. The above equation holds good for all
positive values of μ and 0 otherwise. The parameter A is modified by the Levy
flight function as A = L(S)*r1. This makes A take up values in a non-linear
decrease. S is the position of the wolf and r1 is a random vector.

L(η, γ, μ) =
√

γ

2π
exp[− γ

2(η − μ)
]

1

(η − μ)
3
2

(3)

The reason for selection of LF-GWO is based in the statistical results
obtained in [21]. It was seen that for 15 defined benchmark functions,
the wilcoxon rank sum test of LF-GWO outperforms existing optimization
approaches in terms of mean fitness values. For further technical analysis please
refer [21].

3 Experimental Analysis

3.1 Datasets and Training

Most commonly used steganalysis datasets are the Bossbase [22] and BOWS2
[23]. Each contains 10000 grayscale images. However, the approach proposed is
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dependent on color, and as such, we use a dataset with color images. Hence,
starting with the 10000 images of Bossbase [22] dataset, we generate a dataset
by following the process done in [24]. We downsampled the full-resolution images
to a size of 512 × 512. We then followed the process in [25], so that the train-
ing and testing scenarios were conducted in a similar environment. In [25], two
datasets were created by using two demosaicing algorithms: Patterned pixel
grouping (PPG) and Adaptive Homogeneity-Directed (AHD) and named BOSS-
PPG-LAN and BOSS-AHD-LAN correspondingly. Further, by removing the
down-sampling method, we can obtain two more datasets: BOSS-PPG-CRP and
BOSS-AHD-CRP. By pairing a demosaicing algorithm with bilinear or bicubic
kernels, we obtain four more datasets: BOSS-PPG-BIL, BOSS-AHD-BIL, BOSS-
AHD-BIL, and BOSS-AHD-BIC.

We train our model by utilizing mini-batch stochastic gradient descent with
the following parameters: learning rate: 0.0001, weight decay: 0.0005, step size:
5000, momentum: 0.75, gamma: 0.75, batch size: 32, maximum iterations: 40 ×
104. Testing of the trained model was done for every 5000 iterations and accuracy
in 40 × 104 iterations. HILL, SUNIWARD, CMD-C-SUNIWARD and CMD-C-
HILL: 4 state of the art color steganography algorithms, were used as attacking
targets for experimental analysis. The embedding payload was set to 0.2 bpc
(bits per channel/band pixel) and 0.4 bpc. In order to select the most challenging
scenarios and also follow similar conditions for result comparison, we followed
the process executed in WISERNet [25].

3.2 Results Comparison

To compare our results, we considered three deep learning approaches for color
steganalyzers, that are widely considered state of the art approaches: WISERNet
[25], Deep Hierarchical Representations (DHR) [26] and Deep-CNN [27]. Experi-
ments were conducted on the same datasets and using similar resources for a fair
comparison. Popular steganography methods such as SUNIWARD [28], MiPOD
[29], HILL [30] adopt an additive embedding distortion approach for minimizing
framework [31]. Recently, CMD-C was proposed [32] by improvising the CMD
approach for color images. We denote the CMD-C method using SUNIWARD
and HILL as CMD-C-SUNIWARD and CMD-C-HILL respectively. Although
DHR [26] and D-CNN [27] can be executed in channel-wise convolution, normal
convolution and input concatenation as seen in [25], we show results only for the
normal convolution as WiserNet [25] outperforms DHR and D-CNN in all cases.
We also compare results with channel gradient correlation (CGC) [34].

The parameters used in terms of batch size and iterations were the same
for all the comparisons. The other parameters were used as described in the
original paper. Each experiment constituted 75% training images, i.e., 7500
images and 2500 images were used for testing. All experiments were performed
10 times and the average accuracy of testing was used. Table 1 compares the
results of our approach with WISERNet (W-Net) [25], DHR [26], D-CNN [27],
on BOSS-PPG-LAN (B-P-L), BOSS-PPG-BIC (B-P-Bc), BOSS-PPG-BIL (B-
P-Bl), BOSS-AHD-BIC (B-A-Bc) and BOSS-AHD-BIL (B-A-Bl) with 0.2 bpc
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and Table 2 with 0.4 bpc. As can be seen, the proposed method outperforms
other state of the art methods for all but one case and also the percentage
increase in detection is significant when patterned pixel grouping is performed
on the datasets.

Table 1. Comparison of results for CMD-C-HILL stego images with 0.2 bpc. D-CNN
is executed with 30 fixed SRM kernels. The best results are represented in bold font.

Dataset DHR D-CNN W-Net CGC Proposed

B-P-L 0.6474 0.6562 0.7139 0.7231 0.7741

B-P-Bc 0.6589 0.7124 0.7318 0.7278 0.7912

B-P-Bl 0.7611 0.7487 0.8033 0.8120 0.8316

B-A-Bc 0.6614 0.6627 0.7369 0.7168 0.7368

B-A-Bl 0.7622 0.7647 0.8022 0.7981 0.8044

Table 2. Comparison of results for CMD-C-HILL stego images with 0.4 bpc. D-CNN
is executed with 30 fixed SRM kernels. The best results are represented in bold font.

Dataset DHR D-CNN W-Net CGC Proposed

B-P-L 0.7568 0.7941 0.8361 0.8268 0.8724

B-P-Bc 0.7732 0.8068 0.8435 0.8314 0.8814

B-P-Bl 0.87211 0.9045 0.9169 0.9165 0.9381

B-A-Bc 0.7728 0.8141 0.8448 0.8412 0.8468

B-A-Bl 0.8738 0.9067 0.9144 0.9044 0.9088

Further experimental analysis is done by mixing datasets as shown in [27].
Table 3 shows how the datasets were mixed. We further label the datasets in
roman numerals for simplicity to display in the comparison of steganalyzers in
Table 4 and 5. BPL, BPBc, BPBl, BABc, BABl, BAL are further abbreviations of
BOSS-PPG-LAN, BOSS-PPG-BIC, BOSS-PPG-BIL, BOSS-AHD-BIC, BOSS-
AHD-BIL and BOSS-AHD-LAN. Similarly to Tables 1 and 2, Table 4 compares
results on the above-mentioned mixture of datasets with 0.2 bpc. Table 5 com-
pares the results with 0.4 bpc. As can be seen, the proposed method outperforms
recent state of the art approaches, by a significant margin.
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Table 3. Representation of mixture of datasets. � implies dataset has been selected
and - implies otherwise.

Name BPL BPBc BPBl BABc BABl BAL

Set-I � � � – – –

Set-II – – – � � �
Set-III � – – – – �
Set-IV � � � � � �

Table 4. Comparison of results for CMD-C-HILL stego images with 0.2 bpc on mix-
ture of datasets. D-CNN is executed with 30 fixed SRM kernels. The best results are
represented in bold font.

Dataset DHR D-CNN W-Net CGC PVC Proposed

Set-I 0.7237 0.7259 0.7675 0.7712 0.7734 0.8029

Set-II 0.7214 0.7217 0.7714 0.7710 0.7684 0.8026

Set-III 0.6722 0.6865 0.7284 0.7412 0.7388 0.7648

Set-IV 0.7164 0.7182 0.7671 0.7782 0.7684 0.8048

Table 5. Comparison of results for CMD-C-HILL stego images with 0.4 bpc on mix-
ture of datasets. D-CNN is executed with 30 fixed SRM kernels. The best results are
represented in bold font.

Dataset DHR D-CNN W-Net CGC PVC Proposed

Set-I 0.8241 0.8289 0.8594 0.8788 0.8641 0.9041

Set-II 0.8231 0.8417 0.8806 0.8762 0.8661 0.9021

Set-III 0.7812 0.7892 0.8316 0.8411 0.8421 0.8598

Set-IV 0.8161 0.8214 0.8893 0.8796 0.8812 0.9013

4 Conclusion

With recent developments of color based steganography algorithms, the need for
a powerful steganalyzer is needed. We saw recently, that an ensemble model of
colorspaces has a significant impact on classification results. We propose StegCol-
Net as a powerful color image steganalyzer. We employ an ensemble colorspace
strategy to determine if an image is protecting information or not. We use Col-
orNet and take the final activation map from each colorspace. We use weighted
averaging to obtain a single feature map from all the feature maps that are
generated by each colorspace. We then use a levy-flight grey wolf optimization
method to select a smaller subset of features. Using these features, we classify
the given image into one of two classes: containing concealed information or not.
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Abstract. In a fundus image, Vessel local characteristics like direction,
illumination and noise vary considerably, making vessel segmentation a
challenging task. Methods based upon deep convolutional networks have
consistently yield state of the art performance. Despite effective, of the
drawbacks of these methods is their computational complexity, whereby
testing and training of these networks require substantial computational
resources and can be time consuming. Here we present a multi-scale ker-
nel based on fully convolutional layers that is quite lightweight and can
effectively segment large, medium, and thin vessels over a wide variations
of contrast, position and size of the optic disk. Moreover, the architecture
presented here makes use of these multi-scale kernels, reduced application
of pooling operations and skip connections to achieve faster training. We
illustrate the utility of our method for retinal vessel segmentation on the
DRIVE, CHASE DB and STARE data sets. We also compare the results
delivered by our method with a number of alternatives elsewhere in the
literature. In our experiments, our method always provides a margin of
improvement on specificity, accuracy, AUC and sensitivity with respect
to the alternative.

Keywords: Retinal vessel segmentation · Convolutional neural
networks · Diabetic retinopathy

1 Introduction

Retinal fundus images contain important features often used to diagnose eye-
related illnesses such as diabetic retinopathy (DR), glaucoma, age-related macu-
lar degeneration (AMD) and systemic illnesses such as arteriosclerosis and hyper-
tension. Among these diseases, DR and AMD are the major causes of blindness
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[1,2]. Fundus images, acquired during an ophthalmic exam, are used to inspect
and monitor DR and AMD disease progression. As a result, a computer-aided
diagnosis system that can significantly reduce the burden on the ophthalmolo-
gists and alleviate the inter and intra observer variability is highly desired.

Here, we focus on the segmentation of retinal blood vessels. These originate
from the centre of optic disc and spread over the other regions of the retina.
The blood vessels are responsible for supplying blood to the entire region of the
retina, whereby microaneurysm, hemorrhages and exudate lesions are formed in
the retinal image due to leakages taking place and appear as bright spots in
the fundus image. Recently, convolutional neural networks (CNNs) have gained
significant importance in semantic segmentation [3]. Methods such as those pre-
sented in [4–6] have yielded state of the art performance. Moreover, approaches
such as that in [7] are able to address the pixel-wise classification problem by
mapping low resolution features produced by the encoder back to the input res-
olution through a decoder. The advantage of such mapping resides in the fact
that they can preserve fine-grained information, which is of capital importance
for effective boundary detection.

As related to retinal vessel segmentation, the authors in [8] explore a deep
learning approach that focuses on the thickness of the retinal vasculature. In [9],
the authors present a skip connection encoder-decoder architecture that is quite
effective detecting vessel boundaries. Gu et al. [10] present a context encoder
for vessel segmentation network. Yan et al. [8] introduced a joint-loss including
both a pixel-wise and a segmentation-level cost. Despite the higher accuracy of
these deep learning methods, there are still many problems that demand signifi-
cant attention from researchers. One of the drawbacks of these methods is their
computational complexity, whereby both the pre-processing and post-processing
tasks needed for deep learning approaches require substantial computational
resources, training and testing times.

This paper presents a residual multiscale full convolutional network (RM-
FCN) for retinal vessel segmentation. The proposed method is quite lightweight
compared to other methods elsewhere in the literature, with only 6 convolutional
layers with 3 multi-scale fully convolutional kernels per layer. The proposed
model not only is able to accurately detect thick vessels but, when applied to the
thin ones, these are also segmented due to the use of our multi-scale architecture.
In our networks only two max-pooling operations are required and these are
paired with external skip-connections. This yields an architecture that makes
use of reduced convolutional layers, multi-scale kernels and reduced application
of pooling operations so as to achieve a faster training. The rest of the paper
is organized as follows. Our architecture is in Sect. 2. We then present results
for retinal image segmentation and compare to alternatives in Sect. 3. Finally,
in Sect. 4, we conclude on the developments presented here.

2 Residual Multiscale Network

Recall that, in retinal vessel segmentation applications, the vessel size may
vary considerably across patients with a variety of medical conditions. Diabetic
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Fig. 1. Block diagram of the proposed method

retinopathy can cause the swelling of the retinal vessels and can also encourage
the development of smaller, newer ones. Hypertensive retinopathy, in the other
hand, can cause the shrinkage of retinal vessels. As mentioned above, here we
employ multi-scale kernels to develop a neural network architecture that can
cope with large size variations.

Neural networks elsewhere in the literature often employ a single sized convo-
lutional kernel which often focuses in larger vessels and, therefore, is not quite
effective for the segmentation of smaller vascular structures. This accounts for
the notion that very thin vessels may not affect overly affect the overall perfor-
mance in terms. This is debatable since several diagnosis in medical applications
heavily rely upon small-sized vessels. Our multiscale kernels are based on 3 × 3,
5 × 5, and 7 × 7 convolutions for large, medium, and very small vessels, respec-
tively. The architecture of our RM-FCN is illustrated in Fig. 1.

To construct our network, we have used multiscale convolutional blocks with
important design concerns. The first of these is to keep to a minimum the use of
pooling layers which are used to reduce the dimension of the feature maps. This is
since these pooling operations also cause the loss of spatial information. Secondly,
we employ multi-scale kernels so as to account for the large variation in retinal
vessel sizes. Thirdly, we reduce the overall number of convolutions in the network.
These can also be responsible for spatial information loss. Finally, we employ fine-
grained information and residual skip paths to improve the segmentation results
and make training more computationally efficient. Figure 2 shows the overall archi-
tecture of our proposed multi-scale convolutional blocks within the network. The
network has six multi-scale convolutional blocks, where the first block is an input
one, followed by two down multi-scale blocks. There is an intermediate block which
connects down and up blocks. This is followed by the two up-multiscale convolu-
tional blocks with a final output one which is equipped with a softmax loss layer.

In Fig. 2 presents the example up multi-scale convolutional block, which
receives the feature map F from the pooling layer and distributes them to the
convolutions CA

3 , CA
5 , CA

7 and CA
1 . Note that CA

1 is, in fact, part of the skip
connection. These kernels have sizes 3 × 3, 5 × 5, 7 × 7, 1 × 1, respectively.
Each of the multi-scale convolutional kernels CA

3 , CA
5 , CA

7 outputs the features
Fa, Fb, Fc, respectively. These are given by
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Fig. 2. Block diagram of the proposed multiscale convolutional block.

Fa = F ∗ CA
3

Fb = F ∗ CA
5

Fc = F ∗ CA
7

(1)

which are then used to obtain S, which is given by

S = Fa + Fb + Fc (2)

Thus, S can be viewed as a combined feature map which can later be fed
into a ReLU and batch normalized. This is done after an additional convolution
CB

3 is applied so as to obtain the feature map S′ given by

S′ = S ∗ CB
3 (3)

where S′ is the multi-scale feature map. To further improve the feature map
quality S′ is combined with F ′, which arises from the skip path comprising CA

1 (a
1 × 1 convolutional kernel). This yield the feature map Z given by Z = F ′ + S′.

As shown it the figure, the encoder blocks generate the respective feature
maps using convolutions between the input image and a multi-scale filter bank.
Here, we have followed [11] and applied batch normalisation on the features
followed by a ReLU. For the down sampling blocks, the resulting feature maps
are fed to the a 2 × 2, non-overlapping max-pooling with a stride of size 2.
In this manner, the down-sampled feature maps created from the final down-
sampling block can be used for the up-sampling procedure. This is carried out
by using the indices of the max-pooling information. In our architecture, the
feature maps yielded by the down-sampling blocks are unpooled. These maps,
which are sparse in nature, are augmented in the up-sampling blocks by the
multi-scale filter banks. These dense feature maps are then normalized by using
batch normalization. The size of the feature maps yielded by the up-sampling
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blocks are identical to those obtained by the respective down-sampling blocks.
The only difference is in the final layer of the decoder, where a multi-channel
function map is obtained as an output compared to the three-channel RGB data
of the first encoder. At output, our network yields a final map where pixels are
labelled as vessels or not on the basis of a soft-max classifier.

Fig. 3. Segmentation results of the RM-FCN model on three noisy test images i.e.
image number 1, 3 and 8 from the DRIVE dataset. From left-to-right, we show the
input images, the ground truth segmentation map and that yielded by our method.

3 Experiments

3.1 Datasets

We now turn our attention to the evaluation of our method on three publicly
available retinal image databases. These are the CHASE [12]1, DRIVE [13]2 and
STARE [14]3 data sets. The DRIVE dataset covers a wide age range of diabetic

1 The dataset can found at https://blogs.kingston.ac.uk/retinal/chasedb1/.
2 The dataset is widely available at https://drive.grand-challenge.org/.
3 More information regarding the STARE project can be found at https://cecas.

clemson.edu/∼ahoover/stare/.

https://blogs.kingston.ac.uk/retinal/chasedb1/
https://drive.grand-challenge.org/
https://cecas.clemson.edu/~ahoover/stare/
https://cecas.clemson.edu/~ahoover/stare/
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patients and consists of 20 color images for training and 20 color images for
testing. The STARE dataset is a collection of 20 color retinal fundus images
captured at 35◦ FOV with an image size of 700 × 605 pixels. Out of these 20
images, 10 images contain pathologies. Two different manual segmentation as
ground truth are available. Here we employ the first experts segmentation as
ground truth where available. There is no dedicated test dataset available for
STARE. The CHASE dataset consists of 28 color images of 14 school children
in England. Two different manual segmentation maps are available as ground
truth. Again, here we employ the first experts segmentation for our experiments.
The CHASE dataset doesn’t contain any dedicated training or testing sets. Here
we have used the first 20 images for training and the last 8 images for testing.

Fig. 4. Segmentation results of the RM-FCN model on images number 5, 6 and 8 from
the CHASE DB dataset. From left-to-right, we show the input images, the ground
truth segmentation map and that yielded by our method.

3.2 Results and Comparison

Here we compare the results obtained by our approach on the three data sets
above with those yielded by a number of alternatives. For all the methods under
consideration we have used four common performance parameters. These are
Sensitivity (Se), Specificity (Sp), Accuracy (Acc) and AUC. These results are
shown in Tables 1, 2 and 3.
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Fig. 5. The segmentation results of the RM-FCN model on the two noisy test images
i.e. image number 1, 2 and 3 from the STARE dataset. From left-to-right, we show the
input images, the ground truth segmentation map and that yielded by our method.

We also show qualitative results in Figs. 3, 4 and 5 for the three data sets
under consideration. In all figures we show, from left-to-right the input imagery,
the segmentation ground truth provided by the hand-labeled vessel maps and

Table 1. Performance comparison of our RM-FCN on DRIVE data set with respect
to other methods elsewhere in the literature

Method Year Se Sp Acc AUC

Guo et al. [15] 2019 0.7891 0.9804 0.9561 0.9806

Ma et al. [16] 2019 0.7916 0.9811 0.9570 0.9810

Wang et al. [17] DU-Net 2019 0.7940 0.9816 0.9567 0.9772

Wu et al. [18] 2019 0.8038 0.9802 0.9578 0.9821

Gu et al. [10] CE-Net 2019 0.8309 – 0.9545 0.9779

Arsalan et al. [19] VessNet 2019 0.8022 0.9810 0.9655 0.9820

Wang et al. [20] 2020 0.7991 0.9813 0.9581 0.9823

Yin et al. [21] 2020 0.8038 0.9837 0.9578 0.9846

Segnet-Basic 2020 0.7949 0.9738 0.9579 0.9720

Our method 2020 0.8342 0.9825 0.9695 0.9830
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the results yielded by our method. From the figures, we can see that our method
can cope well with thinner vessels, preserving well the fine-grained detail while
being quite robust to different conditions, variations in contrast and optic disk
position and size.

From Table 1, it is clear that our method’s accuracy is the highest amongst
the alternatives for the DRIVE data set. The second best accuracy on the Drive
data set is that delivered by the method of Arsalan et al. [19]. In terms of sen-
sitivity, on the DRIVE dataset, our method also achieve the highest value. The
second best sensitivity on DRIVE dataset is that of the method in [10] (CE-Net).
Similarly, the results presented in Table 2 indicate that method proposed here
has the best overall performance on the CHASE data set across all the measures
used. The sensitivity achieved by the Arsalan et al. [19] is the second highest in
Table 2. The accuracy of Yin et al. [21] is the best among all the approaches under
consideration. Finally, Table 3 shows that is also the best performing method on
the STARE data set. The sensitivity achieved by the Arsalan et al. [19] is again
the second highest.

Table 2. Performance comparison of our RM-FCN on CHASE DB1 data set with
respect to other methods elsewhere in the literature

Method Year Se Sp Acc AUC

Zhang et al. [22] 2016 0.7626 0.9661 0.9452 0.9606

Khawaja et al. [23] 2019 0.7974 0.9697 0.9528 NA

Jin et al. [24] 2019 0.7595 0.9878 0.9641 0.9832

Arsalan et al. [19] VessNet 2019 0.8206 0.9800 0.9726 0.9800

Wang et al. [20] 2020 0.8186 0.9844 0.9673 0.9881

Yin et al. [21] 2020 0.7993 0.9868 0.9783 0.9869

Segnet-basic 2020 0.8190 0.9735 0.9638 0.9780

Our method 2020 0.8463 0.9828 0.9735 0.9810

Table 3. Performance comparison of our RM-FCN on STARE database with respect
to other methods elsewhere in the literature

Method Year Se Sp Acc AUC

Chen et al. [25] Deeplab v3++ 2018 0.8320 0.9760 0.9650 0.9735

Jin et al. [24] 2019 0.8155 0.9752 0.9610 0.9804

Guo et al. [15] 2019 0.7888 0.9801 0.9627 0.9840

Wang et al. [17] 2019 0.8074 0.9821 0.9661 0.9812

Wu et al. [18] 2019 0.8132 0.9814 0.9661 0.9860

Arsalan et al. [19] VessNet 2019 0.8526 0.9791 0.9697 0.9883

Wang et al. [20] 2020 0.8239 0.9813 0.9670 0.9871

SegNet-Basic 2020 0.8118 0.9738 0.9543 0.9728

Our method 2020 0.8565 0.9834 0.9739 0.9890
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4 Conclusions

In this paper we have presented a residual multi-scale network for retinal ves-
sel segmentation that employs skip connections, multiscale filters and a reduced
number of pooling operations so as to segment large, medium and thin vascu-
lature under large variations of contrast, optic disk position and size. We have
illustrated the utility of the method for the task in hand by performing experi-
ments on three publicly accessible databases, namely CHASE DB1, STARE and
DRIVE. In our experiments, our network outperformed a number of state-of-
the-art alternatives. For our comparison, we have used well-known measurement
parameters, namely sensitivity, balanced accuracy and accuracy.
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Abstract. Active learning (AL) has not received much attention in
deep learning (DL) for human pose estimation. In this paper, a practical
hybrid active learning strategy is proposed for training a human pose
estimation model, and it is tested in an industrial online environment.
The conducted experiments show that the active learning strategy to
select diverse samples to be annotated outperforms the baseline method
with random sampling. As a result, the strategy enables a significant
improvement in the performance of pose estimation.

Keywords: Active learning · Human pose estimation · Human in the
loop · Artificial intelligence

1 Introduction

DL has contributed to the significant interest to machine learning and its success
has been regularly seen in supervised learning tasks where a large amount of
labeled data is available [9,18,35]. For applications where the amount of data is
limited, methodological remedies exist in the form of data augmentation, transfer
learning and few-shot learning. Even with these approaches, however, a relatively
large amount of data is needed for rapid adaptation of deep models in complex
domains where the initial data is limited. In applications where the acquisition
of data and labelling them can be an expensive and laborious task, one may
consider an iterative approach to sample and label the data. AL is a family of
such techniques to appropriately select data samples to be annotated next [27].
These methods enable collaboration of a human and artificial intelligence (AI)
to annotate a subset of data without resorting to fully annotating the data or
purely random selection of samples.

The ultimate goal in AL is to reduce the annotation and training effort/cost
while making models as accurate as possible with less amount of data. To achieve
this, the data to be annotated is sampled by an acquisition function and is
brought to an oracle (human annotator) to review and perform the annotation.
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There are two settings where AL strategies can be applied and tested: 1)
online (live) and 2) offline (simulated) environments [16]. In offline environments,
there is already a pool of labeled data available and the goal is to evaluate the
performance of a AL strategy on this labeled data pool. Offline environments
are more common than the online ones in the AL research area.

An online environment is a setting where machine learning (ML) research
makes an impact on real-world problems. It connects research and applications
in real life to assess whether an improvement of a particular ML model makes a
difference outside the common benchmark data sets [33].

In this paper, an AL strategy is presented for an online environment involving
human pose estimation [8]. Compared to object detection and image classifica-
tion tasks, the annotation cost is much higher as labeling of a number of key-
points on a human body image is required. For instance, COCO-style keypoint
annotation requires 18 keypoints to be labeled [7].

To use active learning in this context, a hybrid approach combining model-
based uncertainty sampling and diversity sampling [2] is proposed in this study.
The method takes advantage of transfer learning and approximate nearest neigh-
bors as parts of the solution. The aims are as follows: 1) To improve the accuracy
of the pose estimation model with diversely picked data samples, 2) to avoid
adding another level of complexity, such as training another model for sampling,
to the AL pipeline, 3) to reduce the sampling time by using approximate nearest
neighbors instead of exhaustive search methods, and 4) to provide an analysis
of practical challenges in the online environment.

The paper is organized as follows: Sect. 2 reviews the studies of active learn-
ing and human pose detection. Section 3 covers the proposed method in detail.
Section 4 focuses on experiments with the results. The findings are further eval-
uated in Sect. 5 and Sect. 6 presents the conclusion1.

2 Related Work

Human pose estimation focuses on providing reliable estimates of human
poses in various applications, including person tracking and analysis of sports
activities [5,8]. In the literature, it is studied under two categories: 1) top-down,
and 2) bottom-up approaches. The top-down approaches first detect person can-
didates and then perform pose extraction. For instance, the regional multi-person
pose estimation framework [11] and the cascaded pyramid network [6] fall into
this category. On the other hand, the bottom-up approaches first extract fea-
tures from a given image and construct bipartite graphs to produce a human
pose estimate. A widely used framework in this category is OpenPose [4] that
is based on part affinity fields described in the work by Cao et al. [5]. Other
important studies apply long short term memory (LSTM) models [1] and differ-
ent variations of convolutional neural networks (CNNs) [14,34] to improve the
reliability of human pose estimation.
1 Initial results of this study have been presented in the 2nd ICML 2020 Workshop on

Human in the Loop Learning as a work-in-progress paper.
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Active learning is widely studied in the literature and the methods vary
depending on the application context [2,27]. For instance, [23] focuses on appli-
cations of active learning techniques in DL models in particular. The techniques
applied for active learning can be divided into two categories: 1) pool-based
strategies and 2) query synthesizing strategies [2,27].

The pool-based strategies utilize information, ensemble and uncertainty
based methods to select samples from an unlabeled data pool [2,27,28]. Bayesian
models are also studied among the pool-based methods [12]. As they embrace
Bayesian inference principles, they provide a natural basis for the uncertainty
estimation.

The strategies relying on query synthesis take advantage of generative adver-
sarial networks (GANs) [36] and variational autoencoders (VAEs) [21,29]. The
methods in this category are based on learning a latent representation for both
labeled and unlabeled data for a discriminator module to classify whether a
given data sample is from the labeled or unlabeled data pool. They are difficult
to generalize for an online setting [16], since the data distribution is prone to
change over time in online environments. Besides, this would add another level
of complexity and cost by requiring an additional model to be trained on both
labeled and unlabeled data pool, which this study aims to avoid.

Human Pose Estimation and Active Learning. In the field of computer
vision, active learning methods are mainly studied and tested on image classifi-
cation and object detection tasks [24,26]. There is a limited number of studies
that cover human pose estimation tasks. Liu et al. [19] studied active learning
for human pose detection. They applied uncertainty measurement and the prin-
ciple of influence [10] for sampling, and convolutional pose machine (CPM) [34]
was used as the pose model. One limitation of the CPM-based methods is that
they provide heatmaps with the same resolution as the image size. This causes
heatmaps to be diffuse making the application of non-maximum suppression
(NMC) more difficult. To solve this issue, in this paper, the model provides
low resolution heatmaps for each keypoint to extract peak points with NMC.
In addition to that, in contrast to greedy representative sampling strategy used
by Liu et al., approximate nearest neighbors approach [22] is applied to reduce
sampling time (more details are given in Sects. 3 and 4).

3 Methods

The proposed AL approach for human pose estimation is shown in Fig. 1. For
the development, OpenPose-plus [32] is used as the pose model, which is based
on the popular OpenPose framework [4]. It is an well-suited framework for our
study, since it provides real time pose estimation with simplicity and flexibil-
ity of switching between different backbones (MobileNet, Resnet18, VGG and
VGGTiny) stated in the repository. By considering the given inference time,
model size and accuracy in OpenPose-plus repo, the model with VGGTiny back-
bone is trained from scratch with initially annotated 2000 data samples.



A Practical Hybrid Active Learning Approach for Human Pose Estimation 337

Fig. 1. An overview of the active learning procedure.

3.1 Active Learning Framework

The OpenPose-plus model provides confidence maps (heatmaps) and part affin-
ity fields (PAFs). Heatmaps represent activations of the last layer of the model
as confidence scores, whereas PAFs represent connection vectors between the
keypoints. In total, there are 19 heatmaps (18 specific body points and one back-
ground). Based on the heatmap activations, AL is designed module-by-module as
follows2: (1) Uncertainty Sampling Module is responsible for filtering data
samples based on heatmap activations. Since the heatmaps correspond to con-
fidence scores, a lower activation value implies higher uncertainty. (2) Feature
Extraction Module takes filtered data from the uncertainty module and com-
putes embedding features using the pretrained Resnet50 model on ImageNet
data. Given the speed, accuracy level and amount of operations required for
a single forward pass in the Resnet50 model, it is chosen to extract embed-
ding features [3]. (3) Diversity Sampling Module takes the filtered data
with features from the preceding module and constructs an approximate nearest
neighbor tree [22] to apply diversity sampling. To shorten the sampling time on
high-dimensional embedding features, an approximate nearest neighbor search
is used. (4) Oracle is a human annotator who reviews and labels filtered data
from the diversity sampling module and updates the training set. (5) Training
Module resumes the training task with the updated training set.

As the model is deployed in an online environment, the whole procedure is an
iterative process and it repeats itself depending on the model performance, the
available unlabeled data size and available resources, such as the oracle and/or
hardware resources, to complete the task.

3.2 Baseline Method and Evaluation Metric

To compare the effectiveness of our model for human pose estimation, random
sampling is used as the baseline. For the evaluation of experiments, person count
accuracy vs. size of training set is chosen to report the results for comparing the
AL approach and the baseline method. Person count accuracy is a percentage of
correctly detected people out of the total number of people.

2 For a detailed flow of each module refer to Algorithm on https://github.com/
kaplansinan/S-SPRR2020ALpose.

https://github.com/kaplansinan/S-SPRR2020ALpose
https://github.com/kaplansinan/S-SPRR2020ALpose
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4 Experiments

The experiments run in an online environment are presented in this section. First,
the AL method is initially tested on the COCO validation set to qualitatively
assess whether the strategy selects diverse samples after the uncertainty sampling
procedure. Afterwards, experiments are run in the online environment and report
results for each training session. The experiments are conducted in collaboration
with PintaWorks Oy. The company provides solutions for person tracking and
activity recognition for the healthcare industry.

Data and Model. The data are provided by the company and there are
environment-dependent variations in the data, such as location, lighting con-
ditions and camera angle. The data consists of grayscale images with size of
368 × 368 (W × H). A limited amount of data (2000 samples) was available to
train the model, thus, data augmentation was used to increase the original data
set. The augmentation techniques applied are as follows: rotation with limit of
[−30, 30] degrees, translation with limit of [−0.62, 0.62] in width or height, scal-
ing factor with range of [0.6, 1.4], random brightness factor with limit of [0.7,
1.3], and random contrast factor with limit of [0.7, 1.3].

The OpenPose-plus model [32] is used with the VGGTiny backbone. Two
different libraries were experimented with for the approximate nearest neighbor
search: Annoy [31] and FLANN [20]. Based on initial tests with both of them,
as a major difference, Annoy was found faster than FLANN and it was selected
for the experiments.

Validation of AL Strategy. Before testing the proposed method, a qualitative
assessment was performed on a benchmark set to see whether it is capable of
selecting diverse samples. To do so, the trained model on the first batch of
the data provided by the company is used to apply uncertainty and diversity
sampling on the COCO validation set. In Fig. 2a, randomly picked samples from
the COCO validation set with low and high activations from the model outputs
are shown. The heatmap threshold thHM was set to 0.3 and the threshold for
the number of keypoints thKP was set to 6 after initial tests in the development
environment. After the uncertainty module, the embedding features of the size
of 1 × 2048 are extracted for each selected sample by the feature extraction
module. Next, 20% of the samples (2K images in total) are identified by the
diversity sampling module to be labeled. The chosen diverse samples from the
COCO validation set are shown in Fig. 2b. The figure reveals that the chosen
samples are scattered across the image set. Hence, it is viable that the proposed
strategy can identify diverse samples successfully.

Training Details. Tensorflow stack is used for training the models and monitor-
ing each training session. Experiments are conducted on NVIDIA GeForce GTX
1060 with 6 GB and CUDA Development Toolkit (CUDA 10.2). The data is
divided into training and validation sets at each session and the aforementioned
augmentation techniques are applied during training. Early stopping criteria is
used on validation set to halt the training when the model performance stops
improving.
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Fig. 2. (a) Examples of low and high heatmap activations. The first row shows an
image with corresponding low activation values and the second row demonstrates an
image with high activations. The first image will be filtered by uncertainty module
for annotation.; (b) The results from diversity sampling module on the COCO valida-
tion set. The images shown in color are the ones chosen for the annotation based on
approximate nearest neighbors search.

After initial tests with the training pipeline, the hyperparameters for each
training session are set as follows: batch size of 4, step decay learning rate sched-
uler with learningrate = 0.0001, early stopping patience 35, and Adam opti-
mizer [17] with learningrate = 0.0001, beta1 = 0.9, beta2 = 0.999.

Four training sessions were run for each method. It is important to note
that the baseline method with random sampling was evaluated twice to provide
information on the performance variation. This was necessary to see variation
within the baseline method. In total, 12 training sessions were executed. At each
training session, 1000 data samples are selected from the available unlabeled
data pool and added to the training set after annotated by the oracle. The next
training session continues from the previous one. Each training iteration takes
6–8 hours on our training setup above.

Testing Details and Results. The proposed AL method and the baseline
method were evaluated on the test set, separate from the training set. The eval-
uation was done based on the metric given in Sect. 3.2. The comparison of the
methods is shown in Fig. 3(A). The proposed method outperforms the baseline
method at each iteration with a clear margin based on the person count accuracy.
This is because of that the AL method can pick data samples to be annotated
diversely, which leads the pose model to generalize well on the data set. In other
words, the samples that the model underperforms at previous iterations are suc-
cessfully selected to be annotated for the next training iteration. On the other
hand, the baseline method without any guidance towards diverse samples suffers
from large performance variation especially in the case of small training sets.



340 S. Kaplan et al.

To test further the robustness of the proposed method under environmental
variations, also test time augmentations (TTAs) was utilized on the test set.
The variations in the data occur due to person size, lightning conditions, and
camera noise. Thus, the following TTAs were applied: blur with kernel size of 5
(BLUR), brightness factor of 1.3 (BRIGHT) and 0.7 (DARK), scale factor of 1.4
(ZOOM IN) and 0.6 (ZOOM OUT). The evaluations on each of these augmented
sets are presented in Fig. 3(B–F). One can observe the performance variation of
the baseline method in most of the cases, whereas the AL approach provides
consistent behaviour with the increasing training set size. Only in the test case
(ZOOM OUT) both approaches produce consistent results.

Fig. 3. Comparison of the AL method and the baseline method: (A) No Augmentations;
(B–F) Test time augmentations.

5 Discussion

Data labeling is a costly and time consuming process in the development and
training of human pose estimation models. For instance, COCO-style keypoint
annotations for a single person takes 15–20 seconds per one image. To shorten
this process in practical applications and get an accurate model with less data,
AL methods can be taken into use.
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In this study, an AL strategy was proposed to sample data for human pose
estimation. The proposition is a hybrid procedure that makes use of both uncer-
tainty and diversity sampling. To evaluate the method, it was compared with a
baseline method based on random sampling. The experiments showed that the
proposed method is able to select diverse data samples successfully and boost
the performance of the human pose estimation better than the baseline method.
The robustness of the method is further tested and proved in a production envi-
ronment of the company.

The main issue of the proposed AL method is adversarial data samples. For
instance, adversarial samples, in which an object resembles a human shape, are
discarded. Since they cause high activation values, the uncertainty sampling
module filters out these samples. To the best knowledge of the authors, this
issue has not been not studied as part of AL in deep models and it may bring
an advantage.

As this is an empirical study, it is equally important to state hidden gems and
issues encountered during training process. In terms of the training procedure,
the following methodologies were found useful: 1) learning rate finder [30] is an
important technique to use for getting starting value for the learning rate of
the optimizer, 2) weight initialization is an important factor to consider when
training DL methods from scratch. In this study, better success was achieved
with Glorot uniform [13] than Kaiming uniform [15], 3) Tensorflow Profiler is
quite helpful to identify data loading/pipeline bottlenecks during the training, 4)
One should not try an augmentation that cannot be observed in an environment,
where the model is in use. It reduces the generalization capability of the model,
and 5) as noted by Ruggero et al. [25], small person size and occlusions are two
main issues of human pose models that were encountered in the testing and
production pipeline.

Further development of the AL method will be focused on substituting the
diversity sampling module with a hierarchical clustering method. Also, it can be
worth using both local and global image features to perform diversity sampling.
One can combine global features, such as image hashes, with the local features
extracted by the feature extraction module. To improve uncertainty sampling
in catching hard negatives, it can help to use average of multiple TTAs as a
validation step (this is because of that true person detections likely have higher
activations than adversarial ones).

6 Conclusion

In this study, an active learning strategy for human pose estimation that is imple-
mented in an online development environment of the company was proposed. The
method combines both uncertainty and diversity sampling. The uncertainty sam-
pling is applied on the heatmap activations of the pose model, while the diversity
sampling is further carried with the embedding features extracted from the pre-
trained feature extraction model on ImageNet. To reduce sampling time on the
high dimensional embedding features, an approximate nearest neighbor method
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is used. The experiments revealed that the proposed AL strategy improves the
performance of the pose model by introducing a smart data sampling framework.
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Abstract. Deep learning-based detectors tend to produce duplicate detections
of the same objects. After that, the detections are filtered via a non-maximum
suppression algorithm (NMS) so that there remains only one bounding box per
object. This simple greedy scheme is sufficient for isolated objects. However, it
often fails in crowded environments since boxes for different objects should be
preserved and duplicate detections should be suppressed at the same time. In this
work, we propose to obtain predictions following iterative scheme called IterDet.
At each iteration, a new subset of objects is detected. Detected boxes from all the
previous iterations are considered at the current iteration to ensure that the same
object would not be detected twice. This iterative scheme can be applied to both
one-stage and two-stage deep learning-based detectors with minor modifications.
Through extensive evaluation on 4 diverse datasets with two different baseline
detectors, we prove our iterative scheme to achieve significant improvement over
the baseline. On CrowdHuman and WiderPerson datasets, we obtain state-of-the-
art results. The source code and the trained models are available at https://github.
com/saic-vul/iterdet.

1 Introduction

In recent years, deep learning-based methods of object detection have significantly
evolved and achieved solid improvements in terms of speed and accuracy [4,11,13,
14,21].

All deep learning-based detectors densely sample and independently evaluate can-
didate object locations. Accordingly, for a single object, they yield multiple similar
boxes of varying confidence. This redundant set of detected boxes is then filtered via
non-maximum suppression (NMS) or similar techniques to produce exactly one bound-
ing box per object. This greedy scheme is sufficient if instances of the same class do not
overlap in the image.

However, this is not always the case. Another possible scenario for object detec-
tion is so-called crowded environments that contain multiple overlapping objects of
the same class (e.g. people in the street or bacteria in microscopy images). Crowded
environments provide a challenging task for object detectors due to several reasons.
First, it is extremely difficult to distinguish whether two candidate boxes belong to
the same object or correspond to two overlapping objects. Second, weak visual cues of
c© Springer Nature Switzerland AG 2021
A. Torsello et al. (Eds.): S+SSPR 2020, LNCS 12644, pp. 344–354, 2021.
https://doi.org/10.1007/978-3-030-73973-7_33
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Fig. 1. The results of original Faster RCNN (left) and the proposed IterDet based on Faster RCNN
(right) for the same image from CrowdHuman test set with visible-body annotations. The boxes
found on the first and second iteration are marked in green and yellow, respectively. The metrics
for baseline and IterDet after the first and the second iterations are listed below the images. (Color
figure online)

heavily occluded instances can hardly provide sufficient information for accurate object
detection.

In several works, this problem has been addressed with various modifications of
the NMS algorithm [2,8,10,12,15,22]. By NMS, both duplicate detections of the same
object should be removed and the hard-to-detect occluded objects should be kept at
the same time. Therefore, there is a natural trade-off between precision and recall that
imposes severe restrictions on all these approaches.

In this work, we describe a novel iterative scheme (IterDet) for object detection.
Rather than detecting all objects in the image simultaneously, we propose to yield detec-
tions iteratively. At each iteration, a new subset of objects is detected. Object boxes that
have been already found at the previous iterations are passed to the neural network
at the current iteration, so duplicates can be avoided. The proposed iterative scheme
can be applied to any one-stage or two-stage object detection method with only minor
modifications.

Figure 1 demonstrates the results of IterDet for Faster RCNN [14] on a test image
from CrowdHuman dataset [17]. True positive boxes with scores above 0.1 are visual-
ized, and false positives are omitted for visual clarity. At the second iteration, 9 addi-
tional objects (shown in yellow) out of 137 are detected, overtaking the baseline Faster
RCNN by 5 true positives and 2.7% of average precision (AP). In the top-right corner
of the images, there is an example of two strongly overlapping objects detected with
IterDet yet missed by the baseline detector.

Recently, there have been introduced several neural architectures that handle image
context thus being more suitable for crowded environments [3,5,9]. For instance, [20]
proposed to use a special Hungarian loss function to train a convolutional-recurrent
model that yields strictly one detection per iteration. In comparison, our approach is
more computationally efficient. Moreover, instead of storing information about previ-
ously detected objects via LSTM, we explicitly pass it to the network in a form of
object masks. Our approach guarantees that no previously detected bounding boxes are
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accidentally forgotten. Furthermore, compared to [20] it allows incorporating the his-
tory of detections into deeper layers of a neural network.

In PS-RCNN [3], objects are also detected iteratively: simple objects are supposed
to be found on the first iteration while the second iteration is performed to explore
more difficult cases. This iterative approach can be applied only for RCNN-based detec-
tors. At the same time, our approach can be easily integrated into state-of-the-art object
detection methods.

We perform extensive experiments with both one-stage (RetinaNet [11]) and two-
stage (Faster RCNN [14]) object detectors on four challenging datasets (AdaptIS ToyV1
and ToyV2 [19], CrowdHuman [17], and WiderPerson [24]). To prove our ideas, we
evaluate IterDet against baseline models and compare the obtained results with the
results reported by competitors. On all datasets, IterDet outperforms baseline models
and sets new state-of-the-art on CrowdHuman and WiderPerson datasets.

2 Related Work

Standard Methods for Object Detection. Deep learning-based object detectors can
be classified as two-stage and one-stage detectors. Two-stage detectors are based on
proposal-driven mechanism [4,14]. They consist of two subnetworks: the first one out-
puts a sparse set of candidate object locations and the second one classifies these object
locations into one of the foreground classes or a background.

One-stage methods are applied over a regular, dense sampling of object locations,
scales, and aspect ratios [11,13]. Being much faster on inference than their two-stage
counterparts, recent one-stage methods achieve comparable accuracy on some datasets.
Moreover, anchor-free one-stage methods [21] are more agile and less limited com-
pared to their predecessors. However, two-stage methods still demonstrate state-of-the-
art accuracy on challenging datasets.

Overall, all detectors have certain pros and cons and are applicable under certain
conditions. To cover all possible scenarios, we design our iterative scheme so it can be
combined with both one-stage and two-stage object detectors.

For deep learning-based methods, the detection problem is formulated as a classi-
fication task. Namely, class probabilities are estimated independently for each location
for multiple candidate locations across an image. Differently, in our iterative scheme,
the history of detections from the previous iterations is passed to the detector at the
following iterations, providing the context for resolving ambiguities.

Modifications of NMS Algorithm. The standard NMS algorithm greedily selects
detections with a higher score and removes the less confident neighbors. Thus, a wide
suppression parameter improves the precision and the narrow suppression improves the
recall. Consequently, crowded environments are the most challenging case for NMS
since both wide and narrow suppression lead to errors. To address this, numerous mod-
ifications of the NMS algorithm have been proposed in the literature. Rothe et al. [15]
formulated NMS as a clustering problem. Hosang et al. [8] suggested decreasing the
confidence of detections that cover the already detected objects. In soft NMS [2], scores
for object proposals depend on their overlap with a target object. In adaptive NMS [12],
parameters of NMS are chosen according to the density of the objects estimated via
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an extra branch. Most recent R2NMS [10] simultaneously predicts the full and visible
boxes of an object.

Differently from all the listed methods, our proposed scheme is iterative that gives
more freedom and flexibility. More specifically, we might miss the more difficult objects
at the first iteration, since these objects can be detected later on. Accordingly, we do not
need to assure high recall at each iteration as we can set wider suppression parameters
to favor precision.

Neural Architectures for Crowded Environments. Several neural architectures for
object detection in crowded environments have been described in the literature. Stewart
et al. [20] used a Hungarian loss function to train an LSTM-based model that yields a
sequence of detections. LSTM was also used in [6] for iterative proposal refinement in
RPN-based detectors. However, performing the NMS step after all iterations negates all
the benefits in case of crowded environments. Hu et al. [9] proposed an object relation
module that processes a set of objects based on their visual appearance and geometry.
Ge et al. [3] introduced a modification of two-stage detectors called PS-RCNN. First,
it detects non-occluded objects with RCNN and then suppresses the detected instances
with object-shaped masks. At the second step, another RCNN detects occluded objects.

Compared to the aforementioned methods, our iterative scheme does not imply
changing neural architecture, therefore it is much easier to implement.

3 Proposed Method

The proposed iterative scheme is shown in Fig. 2. First, we introduce notation and
describe the inference process. Then, we describe the modified training procedure.

Fig. 2. Proposed iterative scheme. The unchanged meta-architecture of an arbitrary detector is
marked with blue. The single convolution layer for the history map is marked green. Out of the 4
overlapping objects in the image, 2 are in the history, where they were either randomly sampled
at the training step, or detected during previous iterations of the inference. The remaining 2 are
predicted by the detector. (Color figure online)
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Inference Process. A typical object detector D is an algorithm that maps image
I ∈ R

w×h×3 to a set of bounding boxes B = {(xk, yk, wk, hk)}nk=1. Each box is
represented by the coordinates of its top left corner (x, y), width w and height h. For
a given set of boxes B, we define a history image H ∈ Z

w×h of the same size as an
input image. In H ∈ Z

w×h, each pixel contains the number of already detected boxes
that cover that pixel:

Hxy =
|B|∑

k=1

1 xk≤x≤xk+wk, yk≤y≤yk+hk
(1)

Figure 2 shows an example of the history, where its values are color-coded. We can
make a detectorD′ history-aware if we pass the historyH along with the image I as its
inputs.

Let us now introduce the iterative scheme IterDet(D′), that, given an image I ,
produces a set of bounding boxes B in an iterative manner. At the first iteration t = 1
history H1 is empty and D′ maps an image I and H1 to a set of bounding boxes B1.
Second, B1 is mapped to historyH2.H2 is then mapped to B2 byD′ at iteration t = 2.
This process stops when the limit of iterations is reached or when |Bm| = 0 at some
iteration m. The final prediction of IterDet(D′) is B =

⋃m
t=1 Bt, where m denotes

the total number of iterations.
To implement the described scheme, two modifications should be implied: 1) an

arbitrary detectorD should be altered to become a history-aware detectorD′ and 2)D′

should be forced to predict different sets of objects Bt on each iteration t. Below, we
explain these alterations in detail.

Architecture of a History-Aware Detector. State-of-the-art deep learning-based object
detection pipelines start with passing an image to an already pre-trained backbone, e.g.
ResNet [7], VGG [18], etc. to obtain multi-level image features. These features are then
fed into trainable feature extractors, e.g. Region Proposal Network, Feature Pyramid
Network, etc. Their outputs are further passed to the head module predicting bounding
boxes. Finally, non-maximum suppression is applied. We aim to introduce minimal
changes to the original network architectures and incorporate history in the deepest
layers of the network.

The proposed architecture of the history-aware detector is simple yet efficient. The
history is processed via one convolution layer which output sums up with the output of
the first convolution layer of the backbone. This scheme can be applied to any backbone
without hyperparameter tuning. For ResNet-like backbone, the image is passed through
a convolution layer with 64 filters of size 7 and stride 2, Batch Normalization layer, and
ReLU activation layer. We follow the design choices of ResNet and use a convolution
layer with 64 filters of size 3 and stride 2.

Training Procedure. During training, we randomly split the set of ground truth bound-
ing boxes B̂ into two subsets Bold and Bnew such that Bold ∪ Bnew = B̂ and
Bold ∩ Bnew = ∅. We map Bold to a history H and force D′ to predict the bounding
boxes Bnew that are missing in history. Thus, we optimize the losses of D′ by back-
propagation of the error between the predicted boxes B and target boxes Bnew. We do
not describe losses since we do not modify this part of baseline detectors. On the one
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Table 1. Average number of objects and pair-wise overlap between two instances on the four
datasets used in our experiments.

Toy V1 Toy V2 CrowdHuman WiderPerson

Object/image 14.88 31.25 22.64 29.51

Pair/image

IoU > 0.3 3.67 7.12 9.02 9.21

IoU > 0.4 1.95 3.22 4.89 4.78

IoU > 0.5 0.95 1.25 2.40 2.15

IoU > 0.6 0.38 0.45 1.01 0.81

hand, this method of training forces the model to exploit the history and predict only
new objects at each iteration of inference. On the other hand, it provides an additional
source of augmentations by sampling different combinations of Bold and Bnew.

Several iterative methods predict only one object per iteration [1,20]. Our itera-
tive scheme is also able to predict one object per iteration e.g. by selecting the most
confident detection. However, in practice, such an approach would be inefficient since
inference time is proportional to the number of objects in the image. Our experiments in
Sect. 4 demonstrate that performing two iterations is enough to achieve the best accu-
racy. With increasing the number of iterations, the recall improves but the precision
degrades, worsening mMR and AP metrics.

4 Experiments

4.1 Datasets and Implementation Details

We evaluate our proposed iterative scheme on four datasets containing images of var-
ious crowded environments: AdaptIS ToyV1 and ToyV2 [19], CrowdHuman [17] and
WiderPerson [24].

AdaptIS. AdaptIS Toy V1 and Toy V2 are two synthetic datasets originally used for
instance segmentation task [19]. Each image contains about 30 objects on average, with
many of those severely overlapping. The datasets statistics are summarized in Table 1.
For Toy V1, training and validation splits contain 10000 and 2000 images of size 96 ×
96 pixels respectively. Toy V2 is split into training, validation, and test subsets with
25000, 1000, and 1000 images of size 128 × 128 pixels respectively. For both Toy
datasets, we chose AP as the main metric, and also provide recall values for consistency.
We do not report the mMR metric: if the average number of false positives per image is
less than 1 it turns zero, thus being not representative.

CrowdHuman. The recently introduced CrowdHuman dataset has the largest number
of persons per image and the largest number of pairs of intersecting bounding boxes
among all datasets for human detection, according to [17]. It contains 15000, 4370,
and 5000 images for training, validation, and testing, respectively. There are 23 people
presenting on an average image, each annotated with 3 boxes: full-body, visible-body
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Table 2. Experimental results on AdaptIS Toy V1 and Toy V2 dataset.

Method Detector Toy V1 Toy V2

Recall AP Recall AP

Baseline RetinaNet 95.46 94.46 96.27 95.62

IterDet, 1 iter. 95.21 95.31 96.27 94.17

IterDet, 2 iter. 99.56 97.71 99.35 97.27

Baseline Faster RCNN 94.05 93.96 94.88 94.81

IterDet, 1 iter. 94.34 94.27 94.97 94.89

IterDet, 2 iter. 99.60 99.25 99.29 99.00

Table 3. Experimental results on CrowdHuman dataset with full-body annotations.

Method Detector Recall AP mMR

Baseline [17] RetinaNet 93.80 80.83 63.33

IterDet, 1 iter. 79.68 76.78 53.03

IterDet, 2 iter. 91.49 84.77 56.21

Baseline [17] Faster RCNN 90.24 84.95 50.49

Soft NMS [2,12] 91.73 83.92 51.97

Adaptive NMS [12] 91.27 84.71 49.73

Repulsion Loss [3,23] 90.74 85.71 –

PS-RCNN [3] 93.77 86.05 –

IterDet, 1 iter. 88.94 84.43 49.12

IterDet, 2 iter. 95.80 88.08 49.44

and head box. The most challenging and most frequently used in other works is full-
body annotation, where the boxes not only overlap more strongly but also go beyond the
edges of the image. We also conduct experiments on visible-body annotation, training
models on the training part of the data, and benchmarking on the validation subset.

[17] also reports metrics for one-stage RetinaNet detector and the two-stage Faster
RCNN detector, both using ResNet-50 as a backbone. The mMR metric is proposed as
the major metric to evaluate detection quality. This metric is calculated as the logarithm
of missing rate averaged over 9 points ranging from 10−2 to 100 false positives per
image. Besides, recall and average precision (AP) are reported.

WiderPerson. WiderPerson [24] is another human detection dataset collected from
various sources. There are 8000, 1000, and 4382 images in train, validation, and test
subsets. It contains annotations for 5 classes: pedestrians, riders, partially visible per-
sons, crowd, and ignored regions. Following [3], we merge the last four types into one
category for both training and testing.
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Table 4. Experimental results on CrowdHuman dataset with visible-body annotations.

Method Detector Recall AP mMR

Baseline [17] RetinaNet 90.96 77.19 65.47

Feature NMS [16] – 68.65 75.35

IterDet, 1 iter. 86.91 81.24 58.78

IterDet, 2 iter. 89.63 82.32 59.19

Baseline [17] Faster RCNN 91.51 85.60 55.94

IterDet, 1 iter. 87.59 83.28 55.54

IterDet, 2 iter. 91.63 85.33 55.61

Table 5. Experimental results on WiderPerson dataset.

Method Detector Recall AP mMR

Baseline [24] RetinaNet – – 48.32

IterDet, 1 iter. 90.38 87.17 43.23

IterDet, 2 iter. 95.35 90.23 43.88

Baseline [24] Faster RCNN – – 46.06

Baseline [3] 93.60 88.89 –

PS-RCNN [3] 94.71 89.96 –

IterDet, 1 iter. 92.67 89.49 40.35

IterDet, 2 iter. 97.15 91.95 40.78

4.2 Results and Discussion

Results on AdaptIS Datasets. Table 2 summarizes IterDet and baseline metrics on
AdaptIS Toy V1 and Toy V2 datasets. For both datasets and detectors, IterDet substan-
tially increases AP. For Faster RCNN, this increase expands 4% bringing the final AP
up to 99%.

Results on CrowdHuman. Results on full-body and visible-body annotations of the
CrowdHuman dataset are presented in Tables 3 and 4 respectively. We compare the
proposed IterDet scheme to the methods that do not use additional data or annota-
tions during training. According to Table 3, we achieve a significant improvement in
terms of all metrics for the most challenging full-body annotation. More specifically,
IterDet improves recall by more than 5.5%, AP by 3.1% and mMR by 1.0% w.r.t. base-
line. These results remain solid even when compared to the previous state-of-the-art
approaches such as Adaptive NMS and PS-RCNN. In terms of mMR, IterDet outper-
forms all existing methods in all four scenarios: single- and two-stage detectors, visible-
and full-body annotations. For the RetinaNet detector, the quality gap exceeds 6% for
both types of annotations. Notice, that such an improvement of mMR value is achieved
even after the first iteration. We attribute this to the regularization provided by history-
aware training. Despite a slight degradation of mMR with an increasing number of



352 D. Rukhovich et al.

iterations, the growth of AP always remains significant. For RetinaNet, we outperform
the competitors by 3.9% AP for both types of annotations.

Results on WiderPerson. The results on WiderPerson dataset are summarized in
Table 5. We refer to [24] for results obtained on hard subset of annotations which con-
tains all the boxes larger than 20 pixels in height. Following the protocol from [3], we
do not limit height during testing which is an even more challenging task. For both
detectors, we achieve significantly better results in terms of recall, AP, and mMR.

We do not conduct experiments with a larger number of iterations due to the fol-
lowing reasons. First, IterDet already achieves state-of-the-art performance on Crowd-
Human and WiderPersons datasets after only 2 iterations. Second, the inference time of
the iterative scheme is proportional to the number of iterations, and for 3 iterations the
inference would be 3 times slower which is not acceptable in practice.

Figure 3 shows the results of IterDet based on Faster RCNN on the four datasets. In
all examples, there are strongly overlapping objects with IoU > 0.5 which are missed
by the baseline detector but found by IterDet with 2 iterations.

Fig. 3. IterDet results on ToyV1, ToyV2 (first row), CrowdHuman (with visible- and full-body
annotations, second row), and WiderPerson (third row). The boxes found on the first and second
iterations are marked in green and yellow respectively. The scores thresholded for visualization
are above 0.1. (Color figure online)

5 Conclusion

We present an iterative scheme (IterDet) of object detection designed for crowded envi-
ronments. It can be applied to both two-stage and one-stage object detectors. On chal-
lenging AdaptIS ToyV1 and ToyV2 datasets with multiple overlapping objects Iter-
Det achieves almost perfect accuracy. Through extensive evaluation on CrowdHuman



IterDet: Iterative Scheme for Object Detection in Crowded Environments 353

and WiderPerson benchmarks, we show that the proposed iterative scheme outperforms
existing methods when applied to either two-stage Faster RCNN or one-stage RetinaNet
detector.
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Abstract. We propose a multi-modal 3D human pose estimation app-
roach which combines a 2D human pose estimation network utilizing
RGB data with a 3D human pose estimation network utilizing the 2D
pose estimation results and depth information, in order to predict 3D
human poses. We improve upon the state-of-the-art by proposing the
use of a more accurate 2D human pose estimation network, as well as
by introducing squeeze-excite blocks into the architecture of the 3D pose
estimation network. More importantly, we focused on the challenging
application of 3D human pose estimation during collaborative tasks. In
that direction, we selected appropriate sub-sets that address collabo-
rative tasks from a large-scale multi-view RGB-D dataset and gener-
ated a novel one-view RGB-D dataset for training and testing respec-
tively. We achieved above state-of-the-art performance among RGB-D
approaches when tested on a novel benchmark RGB-D dataset on col-
laborative assembly that we have created and made publicly available.

Keywords: Multi-modal learning · 3D human pose estimation ·
Collaborative tasks · Deep learning · CNN

1 Introduction

Human pose estimation is a challenging problem, because there are many degrees
of freedom to be estimated, such as the body shape, the view point, the clothes
and occlusions. This is the reason that Deep Learning approaches have outper-
formed the traditional ones in recent years [16], since it is difficult to handcraft
features to account for all these variables. Deep Learning approaches rely on
large-scale datasets to implicitly learn these constraints. In recent years, large-
scale in-the-wild RGB datasets for 2D human pose estimation have been made
available [1,12], which enabled Deep Learning approaches to achieve impressive
performance [3,6]. However, 3D human pose estimation is a more demanding
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task, the difficulty of capturing such a ground-truth dataset in-the-wild means
that many of them are synthetically created [5,17]. The standard benchmark
dataset [9] is a real one, but it is constrained in indoor environments. Still, there
are many 3D human pose estimation implementations which infer 3D poses from
RGB images [13,14]. However, since they do not have any input depth informa-
tion, their predictions live in a scale and translation normalized frame or use
assumptions to resolve the depth ambiguity. A way to resolve this is to use
multi-modal RGB-D 3D pose estimation data.

Robotic applications require the inference of human poses in absolute units,
which necessitates the use of multi-modal RGB-D data in order for it to be scale
and translation invariant. An implementation which utilizes RGB-D data and
achieves state-of-the-art performance has been developed by Zimmermann et al.
[19], however their multi-modal training dataset has not been made available. It
predicts 2D human poses using a robust 2D human pose estimator, fuses the 2D
joint data with the input depth information and lifts these joints to 3D with a
fully convolutional network. The main contributions of the proposed approach,
which builds upon [19], are the following:

– it proposes a novel multi-modal 3D human pose estimator that achieves above
state-of-the-art performance

– it proposes training with task-specific datasets for boosting performance of
3D human pose estimation in collaborative tasks

– creation of a novel multi-modal RGB-D dataset of a collaborative assembly
task and making it publicly available.

2 Related Work

There are numerous methods that get as input just an RGB image and esti-
mate the 3D pose of the depicted subject. The simplest way to do this is to
train a network to directly regress 3D joint locations from an image [11]. Instead
of directly predicting 3D pose from image, the proposed method in [4] reasons
an intermediate 2D pose estimation exploiting the accuracy that deep neural
networks have achieved in 2D pose estimation as well as the public availabil-
ity of large 3D mocap datasets, utilised for lifting predicted 2D poses to 3D
through simple memorization. Zhou et al. [18] improved this two-stage pipeline
by proposing a weakly-supervised transfer learning method that uses mixed 2D
and 3D labels in a unified deep neural network that presents two-stage cascaded
structure. They achieved to exploit rich cues for 3D pose recovery included in the
original in-the-wild 2D image information that cannot be detected in common
3D datasets, captured by mocap systems in controlled lab environments. Mod-
ern 3D human pose estimation methods rely on deep networks, which require
vast amounts of data to be trained. Rhodin et al. [14] proposed a method that
overcomes this problem by learning a geometry-aware body representation from
multi-view images without annotations. An encoder-decoder is trained to predict
an image from one viewpoint given an image from another viewpoint, outper-
forming most state-of-the-art approaches which require a much deeper network
and therefore more training data.
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Little research has gone into approaches that incorporate both depth and
color modalities. Firstly, a pose estimation system was proposed in [2] which
benefits from using both color and depth data. Recently, a deep learning based
approach that estimates 3D human pose by combining color and depth into two
steps was proposed by Zimmermann et al. [19]. Initially, given a color image as
input, 2D human pose is predicted accurately by exploiting the discriminative
power of keypoint detectors trained on large scale datasets of color images. Sub-
sequently, additional information is retrieved from the depth map for calculating
the real world 3D coordinates.

3 Architecture

The proposed approach takes an RGB image and a registered depth map as input
and predicts 3D human poses in absolute units. It improves upon the Zimmer-
mann et al. [19] implementation. The first step of the multi-modal prediction
pipeline is to predict 2D human poses of K keypoints from an RGB image using
a 2D human pose estimation network. This result is combined with the depth
input to create a voxel grid of size S × S × S × (K + 1), which is the input to
the 3D human pose estimation network, where S is the size of each dimension.
The final prediction utilizes the predictions and confidences from both the 2D
and 3D networks to decide the output keypoints as detailed below.

3.1 2D Human Pose Estimation Network

AlphaPose [6] is a state-of-the-art multi-person 2D pose estimator on RGB
images. It achieves 82.1 and 72.3 mAP on MPII [1] and COCO [12] datasets
respectively, while OpenPose [3] used in Zimmermann et al. [19] reports 79.7
and 61.8 mAP. It is a top-down approach which first predicts bounding boxes
of humans and then runs single-person pose estimation on them. For an image
I εRH×W×3, we get a prediction matrix P εRK×2 which holds the location of
each keypoint and a confidence matrix C2D εRK×1 of each keypoint prediction.

3.2 2D Human Pose Estimation and Depth Data Fusion

The neck, right hip or left hip joint can be a root joint r, the one whose prediction
confidence is above a fixed threshold Cr > th is picked, where th = 0.5. A voxel
occupancy grid V εRS×S×S is then created whose center is the backprojection
br of the root keypoint pr to the closest depth value in the registered depth
map dr. The size of each voxel is set to v centimeters. The registered depth map
D εRH×W is transformed into a point cloud and the values of V are set to 1 if at
least one point is found inside a voxel, or 0 otherwise. Furthermore, a voxel grid
Vi εR

S×S×S , i εK with the same center and size is created for each predicted
keypoint. For each keypoint i, the prediction Pi is backprojected to the depth
value dr giving bi εR

3. The index li ε I3 is calculated by finding the voxel in
which bi is located and l′i ε I2 is calculated by keeping the x and y component of
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li. We create a smooth 2D scoremap Si
2D εRS×S by placing a gaussian function

with max = 1 and sigma = 3 ∗ v on each l′i. Vi is finally created by tiling the
scoremaps Si

2d along the z-axis. The input to the 3D human pose estimation
network is the concatenation (⊗) of all the voxel grids.

Vin = V ⊗ (V1 ⊗ V2 ⊗ ... ⊗ VK), Vin εRS×S×S×(1+K) (1)

Fig. 1. The blocks of the network with the input and output dimensions noted for
S = 64. Every encoder block consists of two 3D convolutional layers and a 3D max
pooling operation with dense connections. The decoder blocks consist of a transposed
3D convolutional layer to upsample their input, concatenate it with the skip connection
input (except for decoder block 3) and pass it through a 3D convolutional layer. The
conv upsample layers sequentially apply a 3D convolutional layer and a transposed
3D convolutional layer to the input providing the intermediate scoremaps Si

3D. S3D is
the element-wise addition of the intermediate scoremaps and the output of the final
decoder block.

3.3 3D Human Pose Estimation Network

The 3D human pose estimation network VoxelPoseNet-SE is an improvement
upon the VoxelPoseNet architecture proposed in [19] by incorporating squeeze
and excitation blocks [7] into this architecture. VoxelPoseNet is a Fully Convolu-
tional Neural Network with 3D convolutions, which is an encoder decoder archi-
tecture inspired by the U-net [15] that uses dense blocks [8] in the encoder. The
encoder and decoder consist of 3 blocks each with skip connections between the
ones with compatible input dimensions. Additionally, scorevolumes are predicted
from each block and added element-wise to produce the final 3D scoremaps S3D
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(Fig. 1). The original block is augmented by changing every convolutional oper-
ation to a squeeze and excitation block (Fig. 2). VoxelPoseNet-SE takes as input
Vin and outputs 3D scoremaps S3D εRS×S×S×K , the probability of each keypoint
being in the voxels of the voxel grid. The indexes of the maxima of the scoremaps
li3D = argmax(S3D[:, :, :, i]) ε I3,∀i εK are translated to real-world coordinates
pi3D εR3. The values of the maxima Ci

3D = max(S3D[:, :, :, i]) εR,∀i εK corre-
spond to the confidence of the 3D network for each prediction. The final 3d
keypoint estimation is calculated as follows:

pifin =
{

pi3D if Ci
3D ≥ Ci

2D

bi2D if Ci
3D < Ci

2D
, (2)

where b2D is the backprojection of the estimation of the 2D human pose estima-
tion network to the depths estimated by the 3D human pose estimation network
p3D [2].

Fig. 2. The output of the 3D convolutional layers (after the ReLU activation) are
passed through a squeeze and an excite operation, producing per-channel modulation
weights. These are applied to the identity of this output, allowing dynamic channel-
wise feature recalibration. We have used a reduction ratio of 4 in the squeeze-excite
block. The proposed changes are marked in light red color. (Color figure online)

3.4 Training Details

All the trainings run with size S = 64 and keypoints K = 18. The 18 keypoints
are the body landmarks of the COCO dataset [12]. The input image size H ×W
is 1080 × 1920, since the CMU dataset (see Sect. 4) is used for training, but
any image size can be used at inference time. The size of the voxel is randomly
sampled in the range [0, 0275 − 0, 04125] to encourage the network to learn the
3D representation for multiple scales and avoid overfitting. The Adam optimizer
is used with learning rate lr = 0.0001 with a decay rate of 0.1 every epoch. The
training runs for e = 5 epochs with batch size bs = 2. The loss consists of the
sum of l2 losses between the 3 intermediate and final predicted scorevolumes
Si
3D of the network (Fig. 1) and the ground-truth scorevolumes Sgt.

L =
∑
i

(
Si
3D − Sgt

)2 (3)

Si
gt εR64×64×64 is calculated by transforming the 3D ground-truth positions to

the voxel grid’s coordinates and then placing a 3D gaussian function on the index
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lc ε I3 of each keypoint with max = 1 and sigma = 3 ∗ v. Sgt is, finally, created
by tiling all Si

gt producing Sgt εR64×64×64×18.

4 Datasets

4.1 CMU Panoptic Dataset

The CMU panoptic is a massively multi-view capture consisting of 480 VGA
cameras, 31 HD cameras and 10 Kinect v2 RGB+D sensors, distributed over
the surface of a geodesic sphere maintained by the Carnegie Mellon University
[10]. Specifically, this dataset includes videos in which more than 60 subjects
participate, performing various scenarios in groups or alone. Also, the dataset
is provided with 3D human pose ground truth data. Concerning our experi-
ments, colored frames as well as depth frames, retrieved from the Kinect v2
RGB+D sensors, were utilized having a resolution of 1920 × 1080 and 512 × 424
respectively at 30 fps. Given that we are focusing on human-robot collaborative
applications, sequences that depict two subjects working cooperatively were pre-
ferred for training and testing purposes. Moreover, we sampled 1 frame every
10 frames and this resulted in 875 frames per camera view. The training set
consisted of a total of 7875 frames taken from 9 camera views and the testing
set consisted of 875 frames from the remaining camera view.

4.2 CERTH Dataset1

Besides the CMU Panoptic dataset, we created a new dataset, which comprises
2 actors performing a collaborative task and only 1 viewpoint. Specifically, it
shows 2 actors assembling an LCD-TV and it has to be mentioned that there
was no such sequence in the CMU Panoptic dataset. An Orbbec Astra (0.6 m–
8 m) was used in order to record both RGB (1280 × 720) and Depth (640 × 480)
data at 30 fps. The final dataset includes 700 frames and was utilized only as a
testing dataset, while 1 frame every 10 frames was sampled and was manually
annotated for evaluation purposes. Given that CERTH dataset is single-view,
we managed to manually annotate 70% of the total number of joints, whereas
the rest of them are deemed as occluded.

5 Results

All the tests were run with size S = 64 and keypoints K = 14, where the eyes
and ears keypoints were excluded because they are of lesser importance for the
task in hand. The size of the voxel was v = 0.034375.

1 https://doi.org/10.5281/zenodo.4475685

https://doi.org/10.5281/zenodo.4475685
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5.1 Evaluation Metrics

In order to evaluate our method, the most common metric mentioned in the
literature is the mean per joint position error, known as MPJPE. For a frame f
and a skeleton S, MPJPE is computed as

EMPJPE(f, S) =
1

NS

NS∑
i=0

‖m
(f)
f,S(i) − m

(f)
gt,S(i)‖2, (4)

where NS is the number of joints in skeleton S. For a set of frames the error
is the average over the MPJPEs of all frames. We also report the percentage
of bodies that were predicted out of the total ground-truth bodies. A body is
missed if any of its root joints can not be found during the 2D human pose
estimation, which means that all 3 joints’ (neck, left hip, right hip) predictions
had a confidence lower than th = 0.5.

5.2 CMU Test Dataset

The first benchmark is the held-out sequence from the CMU panoptic dataset.
Although it is set in the same environment and with the same people as the
training dataset, it is taken from a different view point. The tested models are the
baseline implementation [19], referred to from now on as “VoxelPoseNet-Op”, the
same trained on the CMU dataset, referred to as “VoxelPoseNet-Op-CMU”, an
implementation with AlphaPose and VoxelPoseNet trained on the CMU dataset,
“VoxelPoseNet-Ap-CMU”, and our final implementation with VoxelPoseNet-SE,
reffered to as “VoxelPoseNet-SE-Ap-CMU”.

Table 1. MPJPE on the CMU test dataset

MPJPE (m) Bodies found %

VoxelPoseNet-Op 0.197 97.0

VoxelPoseNet-Op-CMU 0.0912 97.0

VoxelPoseNet-Ap-CMU 0.0792 96.1

VoxelPoseNet-SE-Ap-CMU 0.0782 96.1

It is expected that training on the CMU dataset greatly improves the accu-
racy of the model, which explains the drop to more than half of the baseline
error (Table 1). Using Alphapose as a 2D human pose estimation network fur-
ther reduces the error by 13%, while predicting only 1% less bodies. Finally,
incorporating the squeeze-excite blocks further improves the error by 1% in the
CMU test dataset. A qualitative comparison can be seen in Fig. 3.
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Fig. 3. Qualitative comparison between VoxelPoseNet-Op and VoxelPoseNet-SE-Ap-
CMU on CMU dataset

5.3 CERTH Dataset

The second benchmark is the novel CERTH collaborative dataset. It is a different
task set in an unseen environment, with unseen people and is taken with a
different camera capturing smaller image resolution. Thus, it serves as the perfect
dataset to test the models’ generalization capability.

Table 2. MPJPE on the CERTH dataset

MPJPE (m) Bodies found %

VoxelPoseNet-Op 0.219 81.7

VoxelPoseNet-Op-CMU 0.0884 81.7

VoxelPoseNet-Ap-CMU 0.0781 88.0

VoxelPoseNet-SE-Ap-CMU 0.0709 88.0

Fig. 4. Qualitative comparison between VoxelPoseNet-Op and VoxelPoseNet-SE-Ap-
CMU on CERTH dataset

Training the model on the CMU dataset greatly reduces the error on the
CERTH dataset (59.6%) with respect to the baseline implementation (Table 2),
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even though less than half the number of training samples were used (7875 vs
18000). This is a strong indication that using the CMU dataset is a significant
contribution to the collaborative tasks, while helping the model generalize bet-
ter to other collaborative tasks. Using Alphapose as a 2D human pose estima-
tion network further decreases the error by 11.7% and at the same time predicts
6.3% more bodies. AlphaPose detects the poses with higher confidence than Open-
Pose in this challenging dataset, where the resolution is lower and the viewpoint
is different, which points to AlphaPose being more robust to diverse input. This
was not as evident in the CMU test dataset where the resolution was higher and
there were multiple view points. Finally, incorporating the squeeze-excite blocks
further improves the error by 9.2% compared to VoxelPoseNet-Ap-CMU. It is
important to note that the respective improvement in the CMU test dataset is
1%, which highlights the squeeze-excite modification’s contribution to the gener-
alization capability of the network. A qualitative comparison can be seen in Fig. 4.

6 Conclusion

In conclusion, we have utilized a large-scale multi-view dataset of 2 people per-
forming a collaborative task for 3D multi-modal human pose estimation training
and testing, created a novel one-view collaborative testing dataset and made it
publicly available. The former is large-scale and diverse enough to train models
that generalize well to other view points and datasets, while the latter serves
us a public benchmark for testing other 3D human pose estimation methods,
especially ones that target collaborative tasks. Furthermore, we have improved
threefold upon the state-of-the-art on RGB-D 3D human pose estimation, scor-
ing up to 67.6% reduction in MPJPE and 6.3% increase in predicted bodies in an
unseen collaborative testing dataset. This was achieved by utilizing a more accu-
rate 2D human pose estimator, by enriching the architecture of the 3D human
pose estimation network and by training on the novel extended dataset.
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Abstract. Topology plays an important role in computer vision by cap-
turing the structure of the objects. Nevertheless, its potential applications
have not been sufficiently developed yet. In this paper, we combine the
topological properties of an image with hierarchical approaches to build a
topology preserving irregular image pyramid (TIIP). The TIIP algorithm
uses combinatorial maps as data structure which implicitly capture the
structure of the image in terms of the critical points. Thus, we can achieve
a compact representation of an image, preserving the structure and topol-
ogy of its critical points (maxima, the minima and the saddles). The par-
allel algorithmic complexity of building the pyramid is O(log d) where d is
the diameter of the largest object. We achieve promising results for image
reconstruction using only a few color values and the structure of the image,
although preserving fine details including the texture of the image.

1 Introduction

Critical points and curves connecting them are an effective means of commu-
nicating topological information, which governs the structure of an image. An
image compact representation can be achieved by using a surface topology based
data structure as mentioned in [11]. For example, Nackman in [17] represented
a surface in form of graphs of critical points, subdividing the surface into slope
districts. Other approaches include: Reeb graphs [21], hierarchical decomposition
of Morse-Smale complexes into piecewise linear 2-manifolds [9].

Compact representation has become necessary with the increase of digital
data, resulting in down-sampling for compactness and up-sampling for sur-
face reconstruction/approximation. Gaussian and Laplacian pyramids [6] are the
most basic regular image pyramid methods. Irregular sampling and image pyra-
mids are an excellent tool for topological representation. Cerman et al., in [7],
developed a topology-based image segmentation algorithm. In [18], Maia et al.
use hierarchical watershed for image segmentation. The most common method
for topology simplification using graph representation is by repeated applica-
tion of the fundamental operation edge contraction [12]. Simplification of data
is broadly divided into two major types: the topological simplification and the
geometric simplification. Persistence measure is the most famous technique used
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in 2D to decide the priority for simplification [4,10]. For example, in [28], an effi-
cient image down-sampling and up-sampling technique based on interpolation is
developed. Other approaches include [8] and [13]. Besides down-sampling, up-
sampling is equally important for applications like image super-resolution, image
enhancement and denoising. In [22], the anchored neighborhood regression for
learning-based super-resolution is used. Other related researches related to image
super-resolution using simple functions are [25] and [26].

Motivation and Contribution: In this paper, we propose a Topology-
preserving Irregular Image Pyramid (TIIP) algorithm and a hierarchical method
to build an irregular image pyramid that preserves the critical points and their
connections. For a surface, the topology of its contours changes at the function
values of its critical points. For example, the surface contours will collapse to a
point at a non-degenerated extremum and multiple contours will intersect at a
saddle point. Therefore, we preserve the critical points and their function values
to preserve the topology of an image. The algorithm operates on combinatorial
maps [5] which implicitly encode the structure of the image on the higher level
of the pyramid with a compact representation. The use of combinatorial maps
supports parallel processing [23] with time complexity of O(log(d)), where d is
the diameter of the longest object in the image. The approach is reinforced by a
concrete theory of cellular decomposition into cells called slope regions1 [2,15].
The TIIP algorithm is explained in two distinct algorithms: (a) the bottom-
up construction of the pyramid (REDUCE) and (b) the top-down expansion of
the higher level of the pyramid (EXPAND), terminologies as introduced in [6].
The TIIP algorithm achieved a perceptually superior reconstruction especially
in the focused region and preserved the texture information maintaining struc-
ture and features similar to the original image. Thus an image can be efficiently
reconstructed by its structure and a few colors.

This paper is organized as follows: Sect. 2 introduces the basic definitions and
terminologies required together with the proposed TIIP algorithm. In Sect. 3, we
show results for image reconstruction and its comparison with other algorithms.
In Sect. 4, we end with some conclusions and future work.

2 Reduce and Expand Operations in the TIIP Algorithm

We introduce now a method to efficiently build an irregular image pyramid which
preserves structural and topological information. We first explain the bottom-
up REDUCE operation (TIIP Algorithm 1) for building the topology preserving
image pyramid. Later, the top-down EXPAND operation is explained, depending
on the application: (1) image segmentation and (2) image recovery.

A discrete 2D image P where the gray value of a pixel p is denoted by g(p),
can be represented as a 4-neighborhood graph G0(V,E). The labels of a segmen-
tation are often stored in form of a label image where each region has a distinct

1 Slope regions are the surfaces in which every pair of points can be connected by a
monotonic curve.
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label. The adjacencies of the regions are described by the region adjacency graph
(RAG) G = (V,E). Taking every pixel of the image as a (smallest) region, the
neighborhood graph can also be interpreted as a RAG. Every pixel p in the
image P corresponds to a vertex v ∈ V with gray value g(v) := g(p). Vertex v is
connected to its adjacent vertices2 by edges of G, being the degree of v, denoted
by degree(v), the number of edges incident to v. An edge e ∈ E is a boundary
edge if e is in the border of the unbounded face. The endpoints of a boundary
edge are boundary vertices. The orientation of an edge e = (v, w) ∈ E is directed
from vertex v ∈ V to vertex w ∈ V iff g(v) > g(w). When g(v) = g(w), the
edge e is not oriented. The weight of edge e is its contrast g(v) − g(w). A con-
nected subgraph of G having the same gray value for all the vertices is referred
to as a plateau region where every pair of vertices v, w ∈ V of the subgraph
satisfies g(v) = g(w). A path π(v1, v2, . . . , vr) = (Vπ, Eπ) is a non empty sub-
graph of G, where Vπ = {v1, v2, . . . , vr} ⊆ V and Eπ = {(v1, v2), (v2, v3), . . . ,
(vr−1, vr)} ⊆ E. The path π is monotonic if all the oriented edges of Eπ have
the same orientation, e.g. from v1 to vr or from vr to v1. The path π is a level
curve if g(vi) = g(vi+1) for all i. A level curve can be a part of monotonic paths.
A face is a slope region if the edges in its border can be divided in two disjoint
sets forming two monotonic paths with same orientation.

The orientation of edges can be used to categorize a vertex v ∈ V into
critical (maximum, minimum, saddle), or non-critical (slope). A vertex v ∈ V
is a local maximum (2-max) if all the edges incident to v are oriented outwards.
Analogously, a boundary vertex v ∈ V is a local boundary maximum (1-max)
if the two boundary edges incident to v are oriented outwards. A vertex v ∈ V
is a local minimum (2-min) if all the edges incident to v are oriented inwards.
Analogously, a boundary vertex v ∈ V is a local boundary minimum (1-min)
if the two boundary edges incident to v are oriented inwards. A vertex v ∈ V
is a degenerated critical vertex if all the edges incident to v are non-oriented. A
non-boundary vertex v ∈ V is a slope vertex if there are exactly two changes
in the orientation of edges incident to v, when traversed circularly (clockwise
or counter-clockwise direction). In this case, a slope vertex is a singular slope
vertex if all the oriented edges incident to v have the same orientation except
one. Otherwise, it is a regular slope vertex. Observe that degenerated critical
vertices always belong to plateau regions. A boundary vertex that is neither a
local boundary maximum nor a local boundary minimum is considered a singular
slope vertex. A vertex v ∈ V is a saddle vertex if it is not a local maximum, nor
a local minimum, neither a plateau nor a slope vertex.

REDUCE Operation. It basically comprises edge contraction [14] and edge
removal operations on the graph G0, forming a graph pyramid. Significance of
steps in Algorithm 1 (the enumerations are correlated to the algorithm step
numbers).

2 N (v) denotes the set of vertices adjacent to v.
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Algorithm 1. Topology preserving Irregular Image Pyramid
1: Input: A digital image P .
2: Initialize: Generate the 4-connected neighborhood graph G0.
3: Insertion of hidden saddle vertices.
4: Contraction of level curves connecting boundary vertices.
5: Contraction of plateau regions.
6: Categorising the vertices into critical and non-critical.
7: Replicating regular slope vertices.
8: while #non-critical vertices > 0 do
9: if #regular slope vertices > 0 then

10: replicate regular slope vertices.
11: end if
12: I. Select contraction kernel giving priority to edges with lowest weight.

II. Decide surviving vertices for edges connecting:
(a) non-critical - non-critical vertices.
(b) critical - non-critical vertices.

13: Edge contraction
14: Reduction function: Recomputing the edge weights.
15: Simplification: Edge removal such that the resulting region is a slope region.
16: end while
17: Contraction of edges connecting critical vertices (if required).
18: end

Fig. 1. Inserting a hidden saddle.

3. Insertion of Hidden Saddle Vertices:
If π = (Vπ, Eπ) being Vπ = {a, b, c, d} and
Eπ = {(a, b), (b, c), (c, d), (d, a)}, is a closed
path of G0, satisfying that g(a) < g(b), g(a) <
g(d), g(c) < g(b) and g(c) < g(d), then a new
vertex r called hidden saddle vertex together
with edges (r, a), (r, b), (r, c), (r, d) are added
to the RAG (see Fig. 1) with a new gray value
max(g(a), g(c)) < g(r) < min(g(b), g(d)) (see [7,16]).

4. Contraction of Level Curves Connecting Boundary Vertices:

(a) original (b) desirable (c) undesirable

Fig. 2. A plateau region and two contractions of it.

The shaded region in
Fig. 2.a exhibits a plateau
region. It connects two
disconnected parts of the
image boundary. In such
cases, contracting the plat-
eau region will result into
partitioning the image into
two regions connected through a single cut vertex as shown in Fig. 2.c. This result
is undesirable because the connections of all the vertices through the plateau
region is now concentrated in a single vertex and then the disconnected parts of
the image boundary are now connected. To avoid such undesirable occurrences,
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we first contract the level curves on the boundary and then proceed by contract-
ing the plateau region not allowing any two remaining vertices on the boundary
to be contracted. The resulting level, curve showed in Fig. 2.b, preserves the
connection through the plateau region.

5. Contraction of Plateau Regions: In this step (which is similar to the
superpixel hierarchy), we cluster the vertices with the same attribute (gray value)
and represent them by a single vertex. Details of the contraction of plateau
regions spread across the image are explained in [3, Section 2.1]. In the case of
binary images and segmented images, this step usually contains the maximum
number of edge contractions and will result in a connected component labelling.

6. Categorising the Vertices into Critical and Non-critical: To preserve
the topological properties, it is important to categorize the vertices into critical
(local maximum, local minimum, saddle) and non-critical (slope) vertices. This
step is executed after the contraction of plateau regions so that we avoid the
misclassification of the degenerated critical vertices. We use the orientation of
the edges incident to a vertex to categorize it as mentioned in Sect. 2.

7. Replicating the Regular Slope Vertices: The replication operation of a
regular slope vertex v consists of an edge de-contraction [23], i.e., replacing v by
an edge e with endpoints x and y having the same gray value than v (the edges
incident to v being now incident to one of the two endpoints of e) followed by the
removal of e. After the replication operation of v, the two vertices x and y are
also slope vertices with lower degrees. The process is repeated until all regular
slope vertices become singular slopes vertices.

12. I. Select the Contraction Kernel: With combinatorial maps as the data
structure, we can contract multiple edges in parallel, as a result of which we can
have larger contraction kernels consequently lowering the height of the pyramid.
The constraints for computation of the contraction kernels is application depen-
dent. For the contraction process, this paper gives priority to the edges with the
lower edge weight. This constraint can be included in the computation of the
contraction kernel. Contraction of edges with lower weights preserves the high
frequency components of the data preserving sharp edges and contours.

12. II. Decide Surviving Vertices: Below are the few aspects which we take
into account before the edge contraction operation:

(a) To guarantee that critical vertices are preserved and that the vertices do
not change from critical to non-critical or vice-versa, an edge is selected for
contraction if it is incident to a singular slope vertex v and have a different
orientation than the rest of the edges incident to v.

(b) Before contraction of an edge connecting a critical and a non-critical vertex,
we mark the critical vertex as the surviving vertex and the non-critical vertex
as the non-surviving vertex.

(c) Before contraction of an edge connecting two non-critical vertices, decision
of the surviving and the non-surviving vertex is rather application depen-
dent. For example, in the case of Connected Component Labelling (CCL) of
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a binary image, it is not significant to categorize the surviving and non-
surviving vertices. In contrast, for visualization and analysis, the vertex
closer to the centroid (visual center for concave polygon) would be the surviv-
ing vertex. As a result the vertex corresponding to the centroid will represent
the segment.

13. Edge Contraction: In this step, we contract the edges selected in step 12
of Algorithm 1. Given an edge e connecting two vertices s, n of a RAG Gk =
(Vk, Ek), the contraction of e will result in merging the survivor vertex s and the
non-survivor vertex n (see [14]). After the contraction of e, all the edges, except
e, previously incident to vertex n will now be incident to vertex s in graph Gk+1.

14. Reduction Function: It computes the weights of the edges previously
connected to the non-surviving vertices. While contracting an edge e = (s, n),
where s is a surviving vertex and n is a non-surviving vertex, if s is critical, we
preserve the gray value of s; if s is non-critical, we compute the gray value of s
by g(s): max{g(n) ≤ g(s)|n ∈ N (s)} ≤ g(s) < min{g(n) > g(s)|n ∈ N (s)}.

15. Simplification: The simplification operation removes the redundant edges
(merging the two respective faces sharing the same edge) which leads to an
increase in the degree of the faces in the RAG. The empty self-loops3 are always
removed. In [3], a more generalized version of of this step is shown. Edge removal
simplifies the graph for visualization and also eliminates the redundant informa-
tion. We do not remove boundary edges to preserve the image boundary.

17. Contraction of Edges Connecting Critical Vertices: Unlike edge con-
traction mentioned in steps 4, 5 and 13 of Algorithm 1, in this step we contract
the edges connecting the critical vertices. It is usually observed in a natural
image that approximately 30% of the total vertices at the base level of the
image pyramid are critical. For further reduction in information, we need to
contract edges connecting critical vertices, and this may affect the topology of
the data. The selection criteria for the contraction kernel depends on the applica-
tion. For example: if the given image is noiseless and smooth and the application
is segmentation, then the contraction of edges with lower weight is preferred. In
contrary, if the input is a natural image with salt and pepper noise, then the
edges with higher weight are preferred. Topological persistence can be used for
the selection process [10].

Fig. 3. Base and top level of a pyramid.

Graph of Critical Vertices Only: All
the faces in a RAG are slope regions.
Besides, faces after edge contraction,
edge removal and vertex replication con-
tinue to be slope regions. At the end
of the process, only critical vertices sur-
vive as the following result states. See the
naive example showed in Fig. 3.

3 An empty self-loop is a self-loop that does not encapsulate a subgraph inside.
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Theorem 1. Algorithm 1 (without step 17) computes a graph pyramid with the
property that all the vertices on the top are critical and the number of critical
vertices is constant along the pyramid after plateaus are contracted.

Proof. Let us prove that critical vertices are preserved in the all pyramid. Basi-
cally, there are three steps applied recursively to compute the graph pyramid,
namely, regular slope vertices replication, edge contraction (step 13) and simplifi-
cation. Let us see that these operations do not modify the critical vertices. With
edge contraction, the number of slope vertices is reduced, and hence, critical
vertices are not modified. With simplification, which is an edge removal between
two vertices which are not both critical, the degree of the two endpoints of the
removed edge decreases, with the possibility that such vertices change their cat-
egory to singular slope vertices and they can be removed in the next step in the
contraction process. With the replication process, which is applied on regular
slope vertices only and it does not modify critical vertices, a regular slope vertex
is divided in two slope vertices. It increases the number of slope vertices but
reduces their degrees (recall that the incident edges connected to the regular
slope vertex before the replication process are later distributed between the two
new slope vertices). Therefore a new singular slope can show up and be removed
in the next contraction step. Observe that given a regular slope vertex v, if n
edges incident to v are oriented inwards and m edges incident to v are oriented
outwards with n < m, then the replicating process can be applied n−1 times to
obtain n singular slope vertices that are contracted in the next step. Let Fk be
the number of edges of Gk with at least one endpoint being non-critical. Observe
that to obtain Gk+1, the replication process does not increase Fk whereas the
contraction process reduces Fk to one unit for each singular slope vertex. There-
fore, Fk+1 < Fk and the process finishes when there are no edges in the graph
with at least one endpoint being non-critical, then the graph has only critical
vertices and they are the original critical vertices because the applied operations
did not modify them during all the process. �
EXPAND Operation: In contrast to the REDUCE operation, in the EXPAND
operation, we project the information from the higher level to the lower level
of the pyramid. After eliminating the inserted hidden saddles (introduced in
step 3 of Algorithm 1), the RAG can be reconverted into a reconstructed image.
For the purpose of image reconstruction, we aim to reconstruct a perceptually
superior image with a high structural similarity as compared to the original
image. For the EXPAND operation, we define edge de-contraction and insertion
[7] which are the inverse operations for edge contraction and removal used in
the REDUCE operation. The top level of the pyramid conceives all the critical
vertices (as proved in Theorem 1) and the monotonic paths connecting critical
vertices. Knowing the fact that the monotonic paths are bounded by the critical
vertices, the monotonic path connecting two critical vertices can be interpolated
between the intensity range of the two critical vertices for promising recon-
structed images. To further reduce the error, the weights of the contracted edges
can be stored externally for a perfect reconstruction of an image as explained
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in Burt’s Laplacian pyramid [6]. Certainly there is a trade-off between accuracy
and required memory.

3 Experiments and Results

In this section we analyse the performance of our TIIP algorithm for image
reconstruction and compare it with the state-of-art CNN models for image super-
resolution. Since super resolution algorithms are tested by first down-scaling the
image through the regular pyramids and then up-scaling, it was closest to the
application of image reconstruction mention in this paper. Hence the TIIP algo-
rithm is compared with the super resolution algorithms. The methods for com-
parison include RCAN [29], DRLN+ [1], A+ANR [22], and EnhanceNet [20]. For
evaluations of a (regular grid based) down-scaling factor of 3× was adopted and
the parameters used in [1,22] are untouched. For TIIP algorithm, the irregular
pyramid was constructed until the surviving vertices were approximately 33%
of the total number of pixels in the original image. In this paper we have cho-
sen minimal contrast as the criteria for selection of the contraction kernels. The
chosen reduction function preserves the contrast between the endpoints of the
surviving edges. This choice preserves the critical vertices and the topology of
the image. The image was reconstructed by implementing the EXPAND oper-
ation on the reduced graph and the pixel intensity (RGB) information of the
surviving vertices only.

The algorithms were tested on all the 100 images of BSD100 - Berkeley
segmentation data set [19] which is widely used publicly available data set for
various image processing and computer vision tasks. For quality assessments,
we used Structural Similarity Index Measure (SSIM) [24] and Feature Similarity
Index Measure (FSIM) [27] which are perceptual metric based on the visible
structures in the image. In contrast to these assessment, to measure the global
degradation of image, we calculated Peak Signal to Noise Ratio (PSNR). Table 1
is showed to communicate the advantages of preserving the structural properties
through irregular pyramids over regular pyramids4.

Table 1. Quality assessment of reconstructed images on BSD100 (3×).

Quality measure\
method

A+ANR [22] EnchanceNet [20] RCAN [29] DRLN+ [1] TIIP

SSIM 0.75 0.73 0.811 0.812 0.92

FSIM 0.86 0.84 – – 0.93

PSNR 26.64 27.50 29.3 29.4 36.26

The example Leopard and Horses in Fig. 4 clearly shows that TIIP success-
fully preserves the high frequency texture information, such as the thin lines
4 Quality measures of RCAN and DRLN+ algorithms are not given because the code

did not compile. The FSIM measures are not mentioned in [1,29].
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Fig. 4. For each image, original (from BSD 100) and reconstructed images from
A+ANR [22], EnhanceNet [20] and TIIP algorithms with their zoom visuals.

due to hairs and the fencing. While, in the example of Penguin there appears
pastelized especially in the smooth areas where the focus is lower. The results
are also reflected in the Table 1 which shows that TIIP algorithm successfully
preserves the structure and the features of the image.

Observations from the Experiments: 1. Irregular pyramids are more suitable to
preserve and analyse the structural information of the image compared to regular
pyramids. In contrary, low resolution images cannot be displayed properly since
a non-grid graph is used to represent the image. 2. The TIIP algorithm performs
better on images (or patch of image) with high texture, because they contain
a higher number of critical points which are preserved by TIIP. In contrary,
there is a considerable amount of perceptual inconsistencies in smooth regions
of images which are out of focus. The inconsistent regions are usually comprised
of the background and homogeneous regions of an image.

4 Conclusions and Future Work

The most important steps, controlling the hierarchy in the proposed algorithm,
are the selection of the contraction kernels and the choice of the reduction func-
tion. In this paper, we have chosen minimal contrast for selecting the contrac-
tion kernels. The chosen reduction function preserves the contrast between the
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endpoints of the surviving edges. This choice allows us to preserve the criti-
cal vertices and the topology of the image. As a result, the algorithm generates
superior results by reconstructing the fine details and the high frequency texture
information of the image, which is typically lost after smoothing. Thus an image
is equivalent to the combination of its structure and few colors. The hierarchy
provides a (multi-resolution) structural overview of the image.

Future work includes speeding up the algorithm by implementing it on a
GPU. We also plan to derive application-specific constraints and combine them
with the TIIP algorithm to achieve better results for image segmentation, con-
nected component labelling, etc. By merging machine learning with the TIIP
algorithm, we anticipate learning the edge weights corresponding to the edges
and derive a promising contraction and removal kernel, thereby achieving even
better application-specific results.
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