Check for
updates

Computational Techniques

David Schultz

Contents

8.1 Representation of Functions . . .. ... ......... 132
8.1.1 Imterpolation . ... ................ ... ... 132
8.1.2 Fitting . .. ... ... 133
8.1.3  Fourier Analysis. .. ........... ... ........ 135
8.14  Approximating Integrals . . . .. ........ ... .... 135
8.1.5  Approximating Derivatives . . ... ... .......... 136
8.2 Differential and Integral Equations . . ......... 137
8.2.1  Ordinary Differential Equations . . ... .......... 137
8.2.2  Differencing Algorithms for Partial Differential Equations 138
8.2.3  Variational Methods . ... ......... ... .. .... 140
824 FiniteElements ... .......... ... ........ 140
8.2.5 Integral Equations . ...................... 142
8.3 Computational Linear Algebra . ... .......... 143
8.4 Monte Carlo Methods . . .................. 144
8.4.1 Random Numbers........................ 145
8.4.2  Distributions of Random Numbers . ............ 145
8.43  Monte Carlo Integration . . . ... .............. 146
References ... ........ ... ... .. ... ... . . .. ... 147

Abstract

Essential to atomic, molecular, and optical physics is the
ability to perform numerical computations accurately and
efficiently. Whether the specific approach involves per-
turbation theory, close coupling expansion, solution of
classical equations of motion, or fitting and smoothing
of data, basic computational techniques such as integra-
tion, differentiation, interpolation, matrix and eigenvalue
manipulation, Monte Carlo sampling, and solution of
differential equations must be among the standard tool
kit.

This chapter outlines a portion of this tool kit with the
aim of giving guidance and organization to a wide array
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of computational techniques. After having digested the
present overview, the reader is then referred to detailed
treatments given in many of the large number of texts
existing on numerical analysis and computational tech-
niques [1-6], mathematical functions [7-9], and mathe-
matical physics [10-18].

In addition to these excellent general references, in
the age of the internet, many resources are also available
through free publishing projects or research laboratory
resources made public. Many of these resources seek to
provide techniques and computer codes of high accu-
racy, portability, robustness, and efficiency, and often take
advantage of modern structured programming and com-
putational parallelism, going beyond the highly accessi-
ble, broadly applicable, but simple numerical recipes and
codes described in the classic texts. A list of such numeri-
cal analysis software is given on the Wikipedia, providing
very brief descriptions of the packages available [19], and
the journal Computer Physics Communications (CPC)
publishes computational physics research and applica-
tions software with many codes applicable to atomic,
molecular, and optical physics (see the CPC program
library maintained at Queen’s University Belfast [20]).
Especially in the sections that follow on differential equa-
tions and computational linear algebra, mention is made
of the role of software packages readily available to aid in
implementing practical solutions.

Finally, in this brief introduction to computational
techniques, we note the existence of commercial packages
for mathematics, including those for computer algebra,
performing numerical calculations and visualizing re-
sults through proprietary programming languages, and
even performing simulations through such tools as finite-
element analysis, including Mathematica, Maple, MAT-
LAB, Mathcad, and COMSOL, for example.
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8.1 Representation of Functions

The ability to represent functions in terms of polynomials
or other basic functions is the key to interpolating or fitting
data, and to approximating numerically the operations of in-
tegration and differentiation. In addition, using methods such
as Fourier analysis, knowledge of the properties of functions
beyond even their intermediate values, derivatives, and an-
tiderivatives may be determined (e.g., the spectral properties).

8.1.1 Interpolation
Given the value of a function f(x) at a set of points
X1, X2, ..., Xy, the function is often required at some other
values between these abscissas. The process known as inter-
polation seeks to estimate these unknown values by adjusting
the parameters of a known function to approximate the local
or global behavior of f(x). One of the most useful represen-
tations of a function for these purposes utilizes the algebraic
polynomials, P,(x) =ayg+a;x+---+a,x", where the coef-
ficients are real constants, and the exponents are nonnegative
integers. The utility stems from the fact that given any con-
tinuous function defined on a closed interval, there exists an
algebraic polynomial that is as close to that function as de-
sired (Weierstrass theorem).

One simple application of these polynomials is the power
series expansion of the function f(x) about some point, xg,
ie.,

) =) ar(x —xo) .

k=0

(8.1)

A familiar example is the Taylor expansion, in which the co-
efficients are given by

AGIED

R (8.2)

g
where f® indicates the k-th derivative of the function. This
form, although quite useful in the derivation of formal tech-
niques, is not very useful for interpolation, since it assumes
the function and its derivatives are known and since it is guar-
anteed to be a good approximation only very near the point
X¢ about which the expansion has been made.

Lagrange Interpolation
The polynomial of degree n — 1 that passes through all n

points [x1, f(x1)], [x2, f(x2)], ..., [xn, f(x,)] is given by

n n X — xj
P(x) =) f(x) (8.3)
1; izll:[;ék M
= > SO Lk (x) . (8.4)
k=1

where L, (x) are the Lagrange interpolating polynomials.
Perhaps the most familiar example is that of linear interpola-
tion between the points [x1, y; = f(x1)] and [x2, v, = f(x2)],

namely,
— X —Xx
P(x) = yi+ oy

X2 — X1

(8.5)

In practice, it is difficult to estimate the formal error bound
for this method, since it depends on knowledge of the (n +1)-
th derivative. Alternatively, one uses iterated interpolation,
in which successively higher-order approximations are tried
until appropriate agreement is obtained. Neville’s algorithm
defines a recursive procedure to yield an arbitrary order in-
terpolant from polynomials of lower order. This method and
subtle refinements of it form the basis for most recommended
polynomial interpolation schemes [3-5].

One important word of caution to bear in mind is that the
more points used in constructing the interpolant, and there-
fore the higher the polynomial order, the greater will be the
oscillation in the interpolating function. This highly oscillat-
ing polynomial most likely will not correspond more closely
to the desired function than polynomials of lower order. As
a general rule of thumb, fewer than six points should be used.

Cubic Splines

By dividing the interval of interest into a number of subin-
tervals and in each using a polynomial of only modest
order, one may avoid the oscillatory nature of high-order
(many-point) interpolants. This approach utilizes piecewise
polynomial functions, the simplest of which is just a linear
segment. However, such a straight line approximation has
a discontinuous derivative at the data points — a property
that one may wish to avoid, especially if the derivative of the
function is also desired — and which clearly does not provide
a smooth interpolant. The solution, therefore, is to choose the
polynomial of lowest order that has enough free parameters
(the constants ag, ay, ...) to satisfy the constraints that the
function and its derivative are continuous across the subin-
tervals, as well as specifying the derivative at the endpoints
Xo and Xx,,.

Piecewise cubic polynomials satisfy these constraints and
have a continuous second derivative as well. Cubic spline in-
terpolation does not, however, guarantee that the derivatives
of the interpolant agree with those of the function at the data
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points, much less globally. The cubic polynomial in each in-
terval has four undetermined coefficients,

Pi(x)=a; +b;(x —x;) +ci(x—xi)2+d,~(x—xi)3 , (8.6)

fori =0,1,...,n — 1. Applying the constraints, a system
of equations is found that may be solved once the endpoint
derivatives are specified. If the second derivatives at the end-
points are set to zero, then the result is termed a natural
spline, and its shape is like that which a long flexible rod
would take if forced to pass through all the data points.
A clamped spline results if the first derivatives are specified
at the endpoints, and is usually a better approximation since
it incorporates more information about the function (if one
has a reasonable way to determine or approximate these first
derivatives).

The set of equations in the unknowns, along with the
boundary conditions, constitute a tridiagonal system or
matrix, and is therefore amenable to solution by algo-
rithms designed for speed and efficiency for such systems
(Sect. 8.3; [1-5]). Other alternatives of potentially significant
utility are schemes based on the use of rational functions and
orthogonal polynomials.

Rational Function Interpolation

If the function that one seeks to interpolate has one or more
poles for real x, then polynomial approximations are not
good, and a better method is to use quotients of polynomi-
als, so-called rational functions. This occurs since the inverse
powers of the dependent variable will fit the region near the
pole better if the order is large enough. In fact, if the function
is free of poles on the real axis but its analytic continuation in
the complex plane has poles, the polynomial approximation
may also be poor. It is this property that slows or prevents
the convergence of power series. Numerical algorithms very
similar to those used to generate iterated polynomial inter-
polants exist [1, 3-5] and can be useful for functions that are
not amenable to polynomial interpolation. Rational function
interpolation is related to the method of Padé approximation
used to improve convergence of power series. This is a ratio-
nal function analog of Taylor expansion.

Orthogonal Function Interpolation

Interpolation using functions other than the algebraic poly-
nomials can be defined and are often useful. Particularly
worthy of mention are schemes based on orthogonal polyno-
mials since they play a central role in numerical quadrature.
A set of functions ¢ (x), ¢(x), ..., ¢, (x) defined on the in-
terval [a, b] is said to be orthogonal with respect to a weight
function "W (x), if the inner product defined by

b
(#116;) = / 6:(1)6; (X)W (x)dx 8.7)

is zero for i # j and positive for i = j. In this case, for any
polynomial P(x) of degree at most n, there exists unique
constants o such that

P(x) =) axdi(x). (8.8)
k=0

Among the more commonly used orthogonal polynomials
are Legendre, Laguerre, and Chebyshev polynomials.

Chebyshev Interpolation
The significant advantages of employing a representation of
a function in terms of Chebyshev polynomials, 7 (x), i.e.,

) =) aTi(x)

k=0

(8.9)

stems from the fact that (i) the expansion rapidly converges,
(ii) the polynomials have a simple form, and (iii) the polyno-
mial approximates the solution of the minimax problem very
closely. This latter property refers to the requirement that the
expansion minimizes the maximum magnitude of the error
of the approximation. In particular, the Chebyshev series ex-
pansion can be truncated, so that for a given n it yields the
most accurate approximation to the function. Thus, Cheby-
shev polynomial interpolation is essentially as good as one
can hope to do. Since these polynomials are defined on the
interval [—1, 1], if the endpoints of the interval in question
are a and b, the change of variable

1
- % (8.10)
2
will affect the proper transformation. Press et al. [3-5], for
example, give convenient and efficient routines for comput-
ing the Chebyshev expansion of a function. See [7, 10] for
tabulations, recurrence formulas, orthogonality properties,
etc., of these polynomials.

8.1.2 Fitting

Fitting of data stands in distinction from interpolation in that
the data may have some uncertainty. Therefore, simply de-
termining a polynomial that passes through the points may
not yield the best approximation of the underlying function.
In fitting, one is concerned with minimizing the deviations
of some model function from the data points in an optimal or
best-fit manner. For example, given a set of data points, even
a low-order interpolating polynomial might have significant
oscillation. In fact, if one accounts for the statistical uncer-
tainties in the data, the best fit may be obtained simply by
considering the points to lie on a line.
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In addition, most of the traditional methods of assigning
this quality of best fit to a particular set of parameters of the
model function rely on the assumption that the random de-
viations are described by a Gaussian (normal) distribution.
Results of physical measurements, for example the count-
ing of events, is often closer to a Poisson distribution, which
tends (not necessarily uniformly) to a Gaussian in the limit
of a large number of events, or may even contain outliers
that lie far outside a Gaussian distribution. In these cases,
fitting methods might significantly distort the parameters of
the model function in trying to force these different distri-
butions to the Gaussian form. Thus, the least-squares and
chi-square fitting procedures discussed below should be used
with this caveat in mind. Other techniques, often termed ro-
bust fitting [3-5, 21], should be used when the distribution is
not Gaussian or replete with outliers.

Least Squares

In this common approach to fitting, we wish to determine the
m parameters aq; of some function f(x;ay,as,...,a,), in
this example depending on one variable, x. In particular, we
seek to minimize the sum of the squares of the deviations

> ) = f(xiar.ar.....ap)) (8.11)
k=1

by adjusting the parameters, where the y(x;) are the n
data points. In the simplest case, the model function is just
a straight line, f(x;a;,a;) = a;x + a,. Elementary multi-
variate calculus implies that a minimum occurs if

n n n
a Yy X Aay xi=Y xiyi. (8.12)
k=1 k=1 k=1
n n
ary xitam=7) . (8.13)
k=1 k=1

which are called the normal equations. Solution of these
equations is straightforward, and an error estimate of the fit
can be found [3-5]. In particular, variances may be computed
for each parameter, as well as measures of the correlation be-
tween uncertainties and an overall estimate of the goodness
of fit of the data.

Chi-Square Fitting

If the data points each have associated with them a different
standard deviation, oy, the least-squares principle is modified
by minimizing the chi-square, defined as

vk — fxsanas, ... an) ]
r=3 . |

k=1

(8.14)

Assuming that the uncertainties in the data points are nor-
mally distributed, the chi-square value gives a measure of the

goodness of fit. If there are n data points and m adjustable
parameters, then the probability that y? should exceed a par-
ticular value purely by chance is

n—m y?
0-0("5"%).
where Q(a,x) = I'(a,x)/'(a) is the incomplete gamma
function. For small values of Q, the deviations of the fit from
the data are unlikely to be by chance, and values close to one
are indications of better fits. In terms of the chi-square, rea-
sonable fits often have y*> ~ n — m.

Other important applications of the chi-square method
include simulation and estimating standard deviations. For
example, if one has some idea of the actual (i.e., non-
Gaussian) distribution of uncertainties of the data points,
Monte Carlo simulation can be used to generate a set of test
data points subject to this presumed distribution, and then the
fitting procedure may be performed on the simulated data set.
This allows one to test the accuracy or applicability of the
model function chosen. In other situations, if the uncertain-
ties of the data points are unknown, one can assume that they
are all equal to some value, say o, fit using the chi-square
procedure, and solve for the value of o. Thus, some measure
of the uncertainty from this statistical point of view can be
provided.

(8.15)

General Least Squares

The least-squares procedure can be generalized, usually by
allowing any linear combination of basis functions to deter-
mine the model function

fleanaz,..an) =Y arpi(x) . (8.16)
=1

The basis functions need not be polynomials. Similarly, the
formula for chi-square can be generalized and normal equa-
tions determined through minimization. The equations may
be written in compact form by defining a matrix A with ele-

ments
Ay =4 (8.17)
Oi
and a column vector B with elements
B =2 (8.18)
Oi
Then the normal equations are [3-5]
m
Zakjaj = B, (8.19)
j=1
where
@] =A"4, [B]=4"B. (8.20)
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and a; are the adjustable parameters. These equations may be
solved using standard methods of computational linear alge-
bra such as Gauss—Jordan elimination. Difficulties involving
sensitivity to round-off errors can be avoided by using care-
fully developed codes to perform this solution [3-5]. We note
that elements of the inverse of the matrix « are related to the
variances associated with the free parameters and to the co-
variances relating them.

Statistical Analysis of Data

Data generated by an experiment, or from a Monte Carlo
simulation, have uncertainties due to the statistical, or ran-
dom, character of the processes by which they are acquired.
Therefore, one must be able to describe certain features of the
data statistically, such as their mean, variance and skewness,
and the degree to which correlations exist, either between
one portion of the data and another, or between the data and
some other standard or model distribution. A very readable
introduction to this type of analysis was given by Young [22],
while more comprehensive treatments are also available [23].

8.1.3 Fourier Analysis

The Fourier transform takes, for example, a function of time
into a function of frequency, or vice versa, namely

(w) = ‘/%‘”_i p(t)e'dr , (8.21)

1 [ ~ —iwt
o(t) = «/Tw_i o(w)edw . (8.22)

In this case, the time history of the function ¢(z) may be
termed the signal and ¢(w) the frequency spectrum. Also,
if the frequency is related to the energy by £ = hw, one
obtains an energy spectrum from a signal, and thus the name
spectral methods for techniques based on the Fourier analysis
of signals.

The Fourier transform also defines the relationship be-
tween the spatial and momentum representations of wave
functions, i.e.,

.
— lpx

~ 1 v .
= — —1px

(8.23)

Along with the closely related sine, cosine, and Laplace
transforms, the Fourier transform is an extraordinarily pow-
erful tool in the representation of functions, spectral analysis,

convolution of functions, filtering, and analysis of correla-
tion. Good introductions to these techniques with particular
attention to applications in physics can be found in [10, 16,
24]. To implement the Fourier transform numerically, the in-
tegral transform pair can be converted to sums

2N -1
H(w)) = —— il 8.25
o) = s kgjo o(ti)e (8.25)
2N -1
= — P(wj)e @il 8.26
o) = e ,X_; P(w))e (8.26)

where the functions are sampled at 2N points. These equa-
tions define the discrete Fourier transform (DFT). Two
cautions in using the DFT are as follows.

First, if a continuous function of time is sampled at, for
simplicity, uniformly spaced intervals, (i.e., ;1] = t; + A),
then there is a critical frequency w. = ¥/A, known as
the Nyquist frequency, which limits the fidelity of the DFT
of this function in that it is aliased. That is, components
outside the frequency range —w. to w. are falsely trans-
formed into this range due to the finite sampling. This effect
can be remediated by filtering or windowing techniques. If,
however, the function is bandwidth limited to frequencies
smaller than w,., then the DFT does not suffer from this
effect, and the signal is completely determined by its sam-
ples.

Second, implementing the DFT directly from the equa-
tions above would require approximately N2 multiplications
to perform the Fourier transform of a function sampled
at N points. A variety of fast Fourier transform (FFT) al-
gorithms have been developed (e.g., the Danielson—Lanczos
and Cooley—Tukey methods) that require only on the order
of (N/2)log, N multiplications. Thus, for even moderately
large sets of points, the FFT methods are, indeed, much faster
than the direct implementation of the DFT. Issues involved in
sampling, aliasing, and selection of algorithms for the FFT
are discussed in great detail, for example, in [3-5, 15, 25]. In
addition to basic computer codes with which to implement
the FFT and related tasks, given, for example, in Numeri-
cal Recipes [3-5], codes for real and complex valued FFTs
that have been implemented and benchmarked on a variety
of platforms including parallel computer systems are avail-
able, for example, the Fastest Fourier Transform in the West
(FFTW) [26].

8.1.4 Approximating Integrals

Polynomial Quadrature
Definite integrals may be approximated through a procedure
known as numerical quadrature by replacing the integral by
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an appropriate sum, i.e.,

b n
/ fO)dx = ar f(x) . (8.27)
4 k=0

Most formulas for such approximations are based on the in-
terpolating polynomials described in Sect. 8.1.1, especially
the Lagrange polynomials, in which case the coefficients ay
are given by

b

ap = [Lnk(xk)dx~

a

(8.28)

If first or second degree Lagrange polynomials are used with
a uniform spacing between the data points, one obtains the
trapezoidal and Simpson’s rules, i.e.,

b
1w~ Sir@+ s+ ols 0] @29

b
8 )
[roax =3[ @+ ar(3) + o] + ol o).
’ (8.30)

respectively, with § = b — a, and for some ¢ in [a, b].

Other commonly used formulas based on low-order poly-
nomials, generally referred to as Newton—Cotes formulas,
are described and discussed in detail in numerical analysis
texts [1, 2]. Since potentially unwanted rapid oscillations in
interpolants may arise, it is generally the case that increasing
the order of the quadrature scheme too greatly does not gen-
erally improve the accuracy of the approximation. Dividing
the interval [a, b] into a number of subintervals and sum-
ming the result of application of a low-order formula in each
subinterval is usually a much better approach. This proce-
dure, referred to as composite quadrature, may be combined
with choosing the data points at a nonuniform spacing, de-
creasing the spacing where the function varies rapidly, and
increasing the spacing for economy where the function is
smooth to construct an adaptive quadrature.

Gaussian Quadrature

If the function whose definite integral is to be approximated
can be evaluated explicitly, then the data points (abscissas)
can be chosen in a manner in which significantly greater ac-
curacy may be obtained than using Newton—Cotes formulas
of equal order. Gaussian quadrature is a procedure in which
the error in the approximation is minimized owing to this
freedom to choose both data points (abscissas) and coeffi-
cients. By utilizing orthogonal polynomials and choosing the
abscissas at the roots of the polynomials in the interval under

consideration, it can be shown that the coefficients may be
optimally chosen by solving a simple set of linear equations.
Thus, a Gaussian quadrature scheme approximates the
definite integral of a function multiplied by the weight func-
tion appropriate to the orthogonal polynomial being used as

(8.31)
k=1

b n
[ weo s~ Y acren

where the function is to be evaluated at the abscissas given
by the roots of the orthogonal polynomial, x. In this case,
the coefficients a; are often referred to as weights but should
not be confused with the weight function W (x) (Sect. 8.1.1).
Since the Legendre polynomials are orthogonal over the in-
terval [—1, 1] with respect to the weight function W(x) =1,
this equation has a particularly simple form, leading imme-
diately to the Gauss—Legendre quadrature. If f(x) contains
the weight function of another of the orthogonal polynomials
as a factor, the corresponding Gauss—Laguerre or Gauss—
Chebyshev quadrature should be used.

The roots and coefficients have been tabulated [7] for
many common choices of the orthogonal polynomials (e.g.,
Legendre, Laguerre, Chebyshev) and for various orders.
Simple computer subroutines are also available that conve-
niently compute them [3-5]. Since the various orthogonal
polynomials are defined over different intervals, use of the
change of variables such as that given in Eq. (8.10) may be
required. So, for Gauss—Legendre quadrature we make use
of the transformation

b 1
/f(x)dxz(b;a) /f((b_a)y+b+a)dy. (8.32)
a —1

2

Other Methods

Especially for multidimensional integrals that cannot be re-
duced analytically to separable or iterated integrals of lower
dimension, Monte Carlo integration may provide the only
means of finding a good approximation. This method is de-
scribed in Sect. 8.4.3. Also, a convenient quadrature scheme
can be devised based on the cubic spline interpolation de-
scribed in Sect. 8.1.1, since in each subinterval, the definite
integral of a cubic polynomial of known coefficients is evi-
dent.

8.1.5 Approximating Derivatives

Numerical Differentiation

The calculation of derivatives from a numerical representa-
tion of a function is generally less stable than the calculation
of integrals, because differentiation tends to enhance fluctua-
tions and worsen the convergence properties of power series.
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For example, if f(x) is twice continuously differentiable on
[a, b], then differentiation of the linear Lagrange interpola-
tion formula Eq. (8.5) yields

Sf(xo +8) — f(xo0)

f(l)(xo) = R

+0[52(0)]. (8.33)

for some x(y and ¢ in [a, b], where § = b — a. In the limit
8 — 0, Eq. (8.33) coincides with the definition of the deriva-
tive. However, in practical calculations with finite precision
arithmetic, § cannot be taken too small because of numerical
cancellation in the calculation of f(a + §) — f(a).

In practice, increasing the order of the polynomial used
decreases the truncation error, but at the expense of in-
creasing round-off error, the upshot being that three and
five-point approximations are usually the most useful. Var-
ious three and five-point formulas are given in standard
texts [2, 7, 9]. Two common five-point formulas (centered
and forward/backward) are

FO0) = [ F0 = 28) = 8f (o — )

+ 8/ (xo 4+ 8) — f(xo + 28)]

+0[8* 2] (8.34)
FO) = o[ = 257 () + 48/ + )

—36f(xo +28) + 16f(xo + 38)
—3f(xo+48)] + O[8* FO )] . 835)

The second formula is useful for evaluating the derivative
at the left or right endpoint of the interval, depending on
whether § is positive or negative, respectively.

Derivatives of Interpolated Functions

An interpolating function can be directly differentiated to
obtain the derivative at any desired point. For example, if
f(x) ~ ap+ a;x + ax?, then fV(x) = a, + 2a,x. How-
ever, this approach may fail to give the best approximation
to £ (x) if the original interpolation was optimized to give
the best possible representation of f(x).

8.2 Differential and Integral Equations

The subject of differential and integral equations is immense
in both richness and scope. The discussion here focuses on
techniques and algorithms, rather than the formal aspect of
the theory. Further information can be found elsewhere under
the broad categories of finite-element and finite-difference
methods. The Numerov method, which is particularly useful
in integrating the Schrodinger equation, is described in great
detail in [18].

8.2.1 Ordinary Differential Equations

An ordinary differential equation is an equation involving
an unknown function and one or more of its derivatives that
depend on only one independent variable [27]. The order of
a differential equation is the order of the highest derivative
appearing in the equation. A solution of a general differential
equation of order 7,
fty.y,....y") =0, (8.36)
is a real-valued function y(¢) having the following proper-
ties: (1) y(¢) and its first n derivatives exist, so y(¢f) and
its first n — 1 derivatives must be continuous, and (2) y(t)
satisfies the differential equation for all 7. A unique solu-
tion requires the specification of n conditions on y(¢) and
its derivatives. The conditions may be specified as n initial
conditions at a single ¢ to give an initial-value problem, or at
the end points of an interval to give a boundary value prob-
lem.
First consider solutions to the simple equation

y=fty). y@=A4. (8.37)
The methods discussed below can be extended to systems
of first-order differential equations and to higher-order dif-
ferential equations. The methods are referred to as discrete-
variable methods and generate a sequence of approximate
values for y(¢), y1, ¥2, V3, ... atpoints t1, t,, 3, . . .. For sim-
plicity, the discussion here assumes a constant spacing 5
between ¢ points. We shall first describe a class of meth-
ods known as one-step methods [28]. They have no memory
of the solutions at past times; given y;, there is a recipe for
v;+1 that depends only on information at #;. Errors enter into
numerical solutions from two sources. The first is the dis-
cretization error and depends on the method being used. The
second is the computational error that includes such things
as round-off error.

For a solution on the interval [a, b], let the ¢ points be
equally spaced; so for some positive integer n and h =
(b—a)/n,t;=a+ih,i =0,1,...,n.Ifa <b, his positive,
and the integration is forward; if a > b, h is negative, and the
integration is backward. The latter case could occur in solv-
ing for the initial point of a solution curve given the terminal
point. A general one-step method can then be written in the
form

Yie1 = yi +hAGG, yi) . Yo = y(to) , (8.38)
where A is a function that characterizes the method. Dif-
ferent A functions are displayed next, giving rise to the

Taylor-series methods and the Runge—Kutta methods.
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Taylor-Series Algorithm
To obtain an approximate solution of order p on [a, b], gen-
erate the sequence

o
Yitl = Vi +h[f(fi,yi) ot SOV ) ol } ,

l,'+1=[i+h, i=0,1,...,n—1, (839)
where #p = a, and yo = A. The Taylor method of order p =1

is known as Euler’s method:

Yie1r =Yyi +hf (. yi),
tiy1 =14 + h. (8.40)
Taylor-series methods can be quite effective if the total
derivatives of f are not too difficult to evaluate. Software
packages are available that perform exact differentiation
(ADIFOR, Maple, Mathematica, etc.), facilitating the use of
this approach.

Runge-Kutta Methods
Runge—Kutta methods are designed to approximate Taylor-
series methods [29] but have the advantage of not requiring
explicit evaluations of the derivatives of f(z, y). The basic
idea is to use a linear combination of values of f(z,y) to
approximate y(¢). This linear combination is matched up as
closely as possible with a Taylor series for y(f) to obtain
methods of the highest possible order p. Euler’s method is
an example using one function evaluation.

To obtain an approximate solution of order p =2, leth =
(b — a)/n and generate the sequences

Yiv1 =yi + h|:(1 ) fti.yi)

h h
+ J/f|:fi + 7, i + —f(fi,yi)ﬂ .
Y 2y

l,'+1=l,'+h, i=0,1,...,l’l—1, (841)
where y # 0,1y = a, yo = A.

Euler’s method is the special case, y = 0, and has order 1;
the improved Euler method has y = 1/2, and the Euler—

Cauchy method has y = 1.

The Adams-Bashforth and Adams-Moulton
Formulas

These formulas furnish important and widely used examples
of multistep methods [30]. On reaching a mesh point #; with
approximate solution y; = y(;), (usually) approximate so-
lutions y; 1 1—; = y(tj41—;) for j =2,3,..., p are available.
From the differential equation itself, approximations to the
derivatives y (#;+1—;) can be obtained.

An attractive feature of the approach is the form of the
underlying polynomial approximation, P(¢), to y(¢) because
it can be used to approximate y(¢) between mesh points

t

y(t) =y + / P(r)dr .

1

(8.42)

The lowest-order Adams—Bashforth formula arises from in-
terpolating the single value f; = f(¢,y;) by P(t). The in-
terpolating polynomial is constant, so its integration from ¢,
to t; 41 results in hf(¢,y;), and the first-order Adams—
Bashforth formula:

Yier = yi +hf(ti,yi) . (8.43)

This is just the forward Euler formula. For constant step
size h, the second-order Adams—Bashforth formula is

Yiv1 =yi + h[(%)f(ln%‘) - (%)f(til’yil)} .
(8.44)

The lowest-order Adams—Moulton formula involves interpo-
lating the single value f; 1 = f(x;11, yi+1) and leads to the
backward Euler formula

Yier = yi +hfEig1, Yig1) (8.45)

which defines y;;; implicitly. From its definition it is clear
that it has the same accuracy as the forward Euler method;
its advantage is vastly superior stability. The second-order
Adams—Moulton method also does not use previously com-
puted solution values; it is called the trapezoidal rule, be-
cause it generalizes the trapezoidal rule for integrals to
differential equations:

Yier = Yi + %[f(ti+17yi+l) + Syl (8.46)
The Adams—Moulton formula of order p is more accurate
than the Adams—Bashforth formula of the same order. Hence,
it can use a larger step size; the Adams—Moulton formula
is also more stable. A code based on such methods is more
complex than a Runge—Kutta code, because it must cope with
the difficulties of starting the integration and changing the
step size. Modern Adams codes attempt to select the most
efficient formula at each step, as well as to choose an optimal
step size & to achieve a specified accuracy.

8.2.2 Differencing Algorithms for Partial
Differential Equations

Differencing schemes, based on flux conservation meth-
ods [31], are the modern approach to solving partial differ-
ential equations describing the evolution of physical systems.
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One begins by writing the balance equations for a single cell
and subsequently applying quadratures and interpolation for-
mulas. Such approaches have been successful for the full
spectrum of hyperbolic, elliptic, and parabolic equations. For
simplicity, we begin by discussing systems involving only
one space variable.

As a prototype, consider the parabolic equation

82
c—u(x,t) =o—u(x,t),

o R (8.47)

where ¢ and o are constants, and u(x, ¢) is the solution. We
begin by establishing a grid of points on the xz-plane with
step size & in the x direction and step size k in the 7-direction.
Let spatial grid points be denoted by x,, = x¢ + nh and time
grid points by #; = fy + jk, where n and j are integers, and
(x0, ) is the origin of the space—time grid. The points &,_,
and &, are introduced to establish a control interval. We begin
with a conservation statement

&
[dX[r(x,tf+1)—r(x,[/)]
Sn—l

=/mw@4ﬁ—ﬂ&ok

L

(8.48)

This equation states that the change in the field density on
the interval (§,_1,§,) from time ¢ = ¢; to time ¢ = ¢; 1 is
given by the flux into this interval at &,_; minus the flux out
of the interval at &, from time ¢; to time ¢; . This expresses
the conservation of material in the case that no sources or
sinks are present. We relate the field variable u to the physical
variables (the density r and the flux ¢). We consider the case
in which the density is assumed to have the form

r(x,t) =cu(x,t) +b, (8.49)
with ¢ and b constants; thus
&n
c [dx [u(x.tj41) —u(x,1)]
aC-n—l
~ C[u(xn,tj+1)_u(xn,[j)]h N (850)

When developing conservation-law equations, there are two
commonly used strategies for approximating the right-hand-
side of Eq. (8.48): (i) left-end-point quadrature

/mw@wuﬂ—ﬂ&Jﬂ

L

~ g€ ty) — q(Ea 1) ]k (8.51)
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and (ii) right-end-point quadrature
i+l
[artatei10 = g0
]
~ (g€ tis1) —qEnntj1) |k (8.52)

Combining Eq. (8.48) with the respective approximations
yields: from (i) an explicit method

c[u(xn. tj41) —u(x,.1;) |k

~ (g1 t)) — Gt ]k (8.53)
and from (ii) an implicit method
clu(xn. t741) —u(x,. ;) ]k
~ [qEn-r.t751) —qEn.tjp) ]k (8.54)

Using centered-finite-difference formulas to approximate the
fluxes at the control points £, | and §, yields

u(xna tj) - u(xnfla tj)
h 9

qi-1,t) = —0 (8.55)

and

U(Xpg1,8) —u(xy, 1)
nv[' - — 5
CI(S _1) o 7

(8.56)

where o is a constant. We also obtain similar formulas for
the fluxes at time #; ;1.

We have used a lower case u to denote the continuous
field variable, u = u(x, t). Note that all of the quadrature and
difference formulas involving u are stated as approximate
equalities. In each of these approximate equality statements,
the amount by which the right-hand side differs from the
left-hand side is called the truncation error. If u is a well-
behaved function (has enough smooth derivatives), then it
can be shown that these truncation errors approach zero as
the grid spacings, & and k, approach zero.

If U, denotes the exact solution on the grid, from (i) we
have the result

(Ul - Ul = ok(U, + U/

g - 2U,{) . (8.57)

This is an explicit method, since it provides the solution to
the difference equation at time #; |, knowing the values at
time 7;.
If we use the numerical approximations (ii), we obtain the

result

(Uit — Ul )n? = ok (U,{j‘ + Ut - 2U,-{+1) . (8.58)
Note that this equation defines the solution at time ¢; | im-
plicitly, since a system of algebraic equations is required to
be satisfied.
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8.2.3 Variational Methods

A common problem in atomic, molecular, and optical
physics is to find the extrema or the stationary values of
functionals. For example, one might seek the eigenvalues and
eigenvectors of a Hamiltonian system, such as via the min-
imization of the expectation value of the energy of a trial
wave function to determine the ground state of an atom or
molecule, via so-called variational methods. We shall out-
line in detail the Rayleigh—Ritz method [32]. This method is
limited to boundary value problems that can be formulated in
terms of the minimization of a functional J [u]. For definite-
ness we consider the case of a differential operator defined
by

Lu(x) = f(x),

with x = x;,7 = 1,2,3 in R, for example, and with v = 0
on the boundary of R. The function f(x) is the source. It is
assumed that L is always nonsingular, and in addition, for
the Ritz method L is Hermitian. The real-valued functions u
are in the Hilbert space §2 of the operator L. We construct
the functional J [u] defined as

(8.59)

Ju]= /dx [u(x)Lu(x) —2u(x)f(x)]. (8.60)

Q
The variational ansatz considers a subspace of 2, £2,,

spanned by a class of functions ¢, (x), and we construct the
function u” ~ u as

n
w'(x) =Y cii(x) . (8.61)
i=1
We solve for the coefficients ¢; by minimizing J [u"]:
9, Ju" =0, i=1,....,n. (8.62)

These equations are cast into a set of well-behaved algebraic
equations

N/ (8.63)

n
ZAi.jCngi, i=1,...

Jj=1

with 4; ; = [, dx¢;(x)Lep; (x), and g; = [, dx¢; (x) f(x).

Under very general conditions, the functions u” converge
uniformly to u. The main drawback of the Ritz method lies
in the assumption of hermiticity of the operator L. For the
Galerkin method we relax this assumption with no other
changes. Thus, we obtain an identical set of equations as
above, with the exception that the function g is no longer
symmetric. The convergence of the sequence of solutions u"
to u is no longer guaranteed, unless the operator can be sep-
arated into a symmetric part Lo, L = Lo + K, so that L 'K
is bounded.

8.2.4 Finite Elements

As discussed in Sect. 8.2.2, in the finite-difference method
for classical partial differential equations, the solution do-
main is approximated by a grid of uniformly spaced nodes.
At each node, the governing differential equation is approx-
imated by an algebraic expression that references adjacent
grid points. A system of equations is obtained by evaluating
the previous algebraic approximations for each node in the
domain. Finally, the system is solved for each value of the
dependent variable at each node. The finite-element method
evolved from computational approaches to implementation
of the variational method and of potentially greater accuracy
and flexibility.

In the finite-element method [33], the solution domain can
be discretized into a number of uniform or nonuniform fi-
nite elements that are connected via nodes. The change of
the dependent variable with regard to location is approx-
imated within each element by an interpolation function.
The interpolation function is defined relative to the values
of the variable at the nodes associated with each element.
The original boundary value problem is then replaced with
an equivalent integral formulation. The interpolation func-
tions are substituted into the integral equation, integrated,
and combined with the results from all other elements in the
solution domain.

The results of this procedure can be reformulated into
a matrix equation of the form

n
ZAis./C/Zgi’ l=1,
=1

with 4; ; = [, dxei (x) L (x), and g; = [, ds (x) £ (x)
exactly as obtained in Sect. 8.2.3. The only difference arises
in the definitions of the support functions ¢; (x). In general,
if these functions are piecewise polynomials on some finite
domain, they are called finite elements or splines. Finite el-
ements make it possible to deal in a systematic fashion with
regions having curved boundaries of an arbitrary shape. Also,
one can systematically estimate the accuracy of the solution
in terms of the parameters that label the finite-element fam-
ily, and the solutions are no more difficult to generate than
more complex variational methods.

In one space dimension, the simplest finite-element family
begins with the set of step functions defined by

(8.64)

1,

1 xi1<x=<ux;
¢i(x) = '

) (8.65)
0 otherwise .

The use of these simple hat functions as a basis does
not provide any advantage over the usual finite-difference
schemes. However, for certain problems in two or more di-
mensions, finite-element methods have distinct advantages
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over other methods. Generally, the use of finite elements ifi = j + 1,
requires complex, sophisticated computer programs for im-
plementation. The use of higher-order polynomials, com- y — L
. . . (X xl*l)(xl X)
monly called splines, as a basis has been extensively used 0y = d 2
: . . - i (i —xi—1)
in atomic and molecular physics. An extensive literature is Xi_1
available [34, 35]. 1 )
We illustrate the use of the finite-element method by ap- - E(xi —Xi-1) : (8.71)
plying it to the Schrodinger equation. In this case, the linear .
operator L is H — E, where, as usual, E is the energy, and the and 0;; =0 9therw1se. . )
Hamiltonian H is the sum of the kinetic and potential ener- The potential energy is represented by the matrix
gies, thatis, L= H — E =T +V — E and Lu(x) = 0. N
We define the finite elements through support points, or
knots, given by the sequence {xi, x,, X3, ...}, which are not Vij = [ dx ¢ (x)V(x)9; (x) , (8.72)
necessarily spaced uniformly. Since the hat functions have 0
van.lshlng 'derlvatlves, .We employ the .next Fnor.e complex which may be well approximated by
basis, that is, fent functions, which are piecewise linear func-
tions given by oo
X — X;i_ Vij = V(x;) [ dx ¢; (x); (x) (8.73)
T X1 =XZ=X
Xi — Xi-1 —00
¢i(x) = Fir1 =X X; <X < X4 (8.66) = V(Xi)oij s
Xit1 = X -
0 otherwise . if x; — x; is small. The kinetic energy, T = —3d?/dx?, is
similarly given by
and for which the derivative is given by
o0
1 1 d?
——— X1 =X =X Tij =—= dx¢; (X)—2¢j (x) . (8.74)
Xi — Xji—1 2 dx
d -1 —00
dx i = A=At . . . .
Xip1 — X; which we compute by integrating by parts, since the tent
0 otherwise . functions have a singular second derivative

The functions have a maximum value of 1 at the midpoint
of the interval [x;_y, x; 4], with partially overlapping adja-
cent elements. In fact, the overlaps may be represented by
a matrix O with elements

o0

0y = /dx @i (x)p; (x) . (8.68)
—00
Thus, ifi = j,
Xi Xit1
(x —x;1)? / (x —x;)?
O0;; = / dx ——— + dx ——
l (xi —xj-1)? (xig1 — x;)?
Xi—1 X
1
= g(XiH —Xi—1) ; (8.69)
ifi=j—1,
Xi+1
0y = [ dx (¥ = ) (Xih ;x)
(xip1 —Xi)
Xi
= E(Xiﬂ —Xi); (8.70)

L[ (d d
7= [ gow)(5em).

(8.75)
—00
which in turn is evaluated to yield
X,'_H — Xji—1 . .
i=j
2(x; = xi—1)(Xip1 — Xi)
1 i
— 1 = ] —
T, = 206 = xig) (8.76)
' 1
_+ i
2(xj—1 — X;) S
0 otherwise .

Finally, since the Hamiltonian matrix is H,; = T;; + Vj;, the
solution vector u; (x) may be found by solving the eigenvalue
equation

[Hij — EOjj]ui(x) = 0. (8.77)

Going beyond this simple example, discrete variable rep-
resentation (DVR) methods, also known as pseudospectral
methods, and direct solution of the Schrodinger equation
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on numeral grids via finite-difference, finite-element, and
high-order interpolant methods, have been adopted broadly
in atomic, molecular, and optical physics as the power of
computational resources has grown in recent decades. An
introduction to DVR methods applied to solving the time-
dependent Schrodinger equation for quantum dynamics of
molecules, as an example, has been given by Light [36, 37].

8.2.5 Integral Equations
Central to much of practical and formal scattering theory
is the integral equation and techniques of its solution. For
example, in atomic collision theory, the Schrodinger differ-
ential equation

[E — Ho(r)ly (r) = V(r)y(r). (8.78)
where the Hamiltonian Hy = —(h?/2m)V? + V,, may be
solved by exploiting the solution for a delta function source,
ie.,

(E — Hy)G(r,r') = §(r —r') . (8.79)

In terms of this Green’s function G(r,r’), and any solution
x(r) of the homogeneous equation (i.e., with V' (r) = 0), the
general solution is

V() = x(r) + [ & G W () . (8.80)

for which, given a choice of the functions G(r, r’) and y(r),
particular boundary conditions are determined. This integral
equation is the Lippmann—Schwinger equation of potential
scattering. Further topics on scattering theory are covered
in other chapters (especially Chaps. 49 to 62) and in stan-
dard texts such as those by Joachain [38], Rodberg, and
Thaler [39], and Goldberger and Watson [40]. Owing es-
pecially to the wide variety of specialized techniques for
solving integral equations, we briefly survey only a few of
the most-frequently applied methods.

Integral Transforms

Certain classes of integral equations may be solved using in-
tegral transforms such as the Fourier or Laplace transforms.
These integral transforms typically have the form

fx) = /dx'K(x,x')g(x'), (8.81)

where f(x) is the integral transform of g(x’) by the ker-
nel K(x,x’). Such a pair of functions is the solution of
the Schrodinger equation (spatial wave function) and its
Fourier transform (momentum representation wave func-
tion). Arfken [10], Morse, and Feshbach [12], and Courant

and Hilbert [13] give other examples, as well as being excel-
lent references for the application of integral equations and
Green’s functions in mathematical physics. In their analytic
form, these transform methods provide a powerful method of
solving integral equations for special cases. In addition, they
may be implemented by performing the transform numeri-
cally.

Power Series Solution
For an equation of the form (in one dimension for simplicity)

V() = 2(r) + A [ &K )() . (882)

a solution may be found by iteration. That is, as a first ap-
proximation, set ¥o(r) = y(r) so that

Yi(r) = x(r) + )L/dr’K(r,r’))((r/) . (8.83)

This may be repeated to form a power series solution, i.e.,

Vulr) = D A0 (8.84)
k=0
where
Io(r) = x(r), (8.85)
ILi(r) = [dr’K(r, (', (8.86)
L(r) = [dr” /dr'K(r,r/)K(r',r”))((r”) , (8.87)

I,(r) = /dr/---/dr(") K@r,rYK(@r,r"y--- K(r®=D, rmy
(8.88)

If the series converges, then the solution v (r) is approached
by the expansion. When the Schrédinger equation is cast as
an integral equation for scattering in a potential, this iteration
scheme leads to the Born series, the first term of which is the
incident, unperturbed wave, and the second term is usually
referred to simply as the Born approximation.

Separable Kernels
If the kernel is separable, i.e.,

K(r.r'y =Y fir)gi(r), (8.89)
k=1

where n is finite, then substitution into the prototype integral
equation (8.82) yields

VO =20+ 2 YA [ @@ 590
k=1
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Multiplying by f;(r), integrating over r, and rearranging
yields the set of algebraic equations

¢ =bj +A> ajick .

(8.91)
k=1
where
= /dr/gk(r/)w(r') , (8.92)
b= [ @) (8.93)
ajr = /drgj(r)fk(r) , (8.94)

or, if ¢ and b denote vectors, and A denotes the matrix of
constants a j,

c=1-14)"p. (8.95)

The eigenvalues are the roots of the determinantal equation.
Substituting these into (1 — AA)c¢ = 0 yields the constants
¢y that determine the solution of the original equation. This
derivation may be found in the text by Arfken [10], along
with an explicit example. Even if the kernel is not exactly
separable, if it is approximately so, then this procedure can
yield a result that can be substituted into the original equation
as a first step in an iterative solution.

Numerical Integration

Perhaps the most straightforward method of solving an in-
tegral equation is to apply a numerical integration formula
such as Gaussian quadrature. An equation of the form

Y(r) = /dr/K(r,r’))((r/) (8.96)
can be approximated as
V() =Y wiK(ry, i) () (8.97)

k=1

where wy are quadrature weights, if the kernel is well be-
haved. However, such an approach is not without pitfalls. In
light of the previous section, this approach is equivalent to re-
placing the integral equation by a set of algebraic equations.
In this example, we have

V=D My s (8.98)
k=1

so that the solution of the equation is found by inverting the
matrix M . Since there is no guarantee that this matrix is not
ill conditioned, the numerical procedure may not produce
meaningful results. In particular, only certain classes of in-
tegral equations and kernels will lead to stable solutions.

8.3 Computational Linear Algebra

Previous sections of this chapter dealt with interpolation,
differential equations, and related topics. Generally, dis-
cretization methodologies lead to classes of algebraic equa-
tions. In recent decades, enormous progress has been made
in developing algorithms for solving linear-algebraic equa-
tions [41]. Many of the most widely adopted computational
linear algebra routines are available through Netlib [42], a
portal developed to facilitate the distribution of such soft-
ware for use in scientific computation. These routines include
packages such as the Basic Linear Algebra Subprograms
(BLAS) [42, 43], which performs vector addition, dot prod-
ucts, matrix multiplications, etc., and the Linear Algebra
Package (LAPACK, and ScaLAPACK its distributed mem-
ory implementation) [42, 44], which is used for solving linear
systems of equations, eigenvalue problems, factorizations,
and decompositions, etc.

Here, we discuss methods for solving systems of equa-
tions such as

anxi +apxy + -+ aux, =b,

anXxy + anxy + -+ ayx, = by,

aAmi X1 + amaXy + -+ AunXn = bm . (8.99)
In these equations, a;; and b; form the set of known quan-
tities, and x; must be determined. The solution to these
equations can be found if they are linearly independent. Nu-
merically, problems can arise due to truncation and round-off
errors that lead to an approximate linear dependence [45].
In this case, the set of equations are approximately singular,
and special methods must be invoked. Much of the complex-
ity of modern algorithms comes from minimizing the effects
of such errors. For relatively small sets of nonsingular equa-
tions, direct methods in which the solution is obtained after
a definite number of operations can work well. However, for
very large systems iterative techniques are preferable [46].

A great many algorithms are available for solving
Eq. (8.99), depending on the structure of the coefficients.
For example, if the matrix of coefficients A is dense, using
Gaussian elimination takes 2n°/3 operations; if A is also
symmetric and positive definite, using the Cholesky algo-
rithm takes a factor of 2 fewer operations. If A is triangular,
that is, either zero above the diagonal or zero below the diag-
onal, we can solve the above system by simple substitution
in only n? operations. For example, if 4 arises from solving
certain elliptic partial differential equations, such as Pois-
son’s equation, then Ax = b can be solved using multigrid
methods in only n operations.

We shall outline below how to solve Eq. (8.99) using
elementary Gaussian elimination. More advanced methods,
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such as the conjugate gradient, generalized minimum resid-
uals, and the Lanczos method are treated elsewhere [47].

To solve Ax = b, we first use Gaussian elimination to
factor the matrix A as PA = LU, where L is lower triangu-
lar, U is upper triangular, and P is a matrix that permutes the
rows of A. Then we solve the triangular system Ly = Pb and
Ux = y. These last two operations are easily performed us-
ing standard linear algebra libraries. The factorization PA =
LU takes most of the time. Reordering the rows of A with P
is called pivoting and is necessary for numerical stability. In
the standard partial pivoting scheme, L has 1s on its diag-
onal and other entries bounded in absolute value by 1. The
simplest version of Gaussian elimination involves adding
multiples of one row of A to others to zero out subdiagonal
entries, and overwriting A with L and U.

We first describe the decomposition of PA into a product
of upper and lower triangular matrices,

A =

LU , (8.100)

where the matrix A’ is defined by A" = PA. Writing out the
indices, we obtain

min(i, /)

> LUy .
k=1

(8.101)

We shall make the choice

Li; = 1. (8.102)
These equations have the remarkable property that the ele-
ments Aj; of each row can be scanned in turn, writing L;;
and U;; mto the locations A/ as we go. At each position
(i, ), only the current 4;; and already-calculated values of
L;j and Uy jr are required. To see how this works, consider
the first few rows. If i = 1,

A’lj = Uy, (8.103)
defining the first row of L and U. The U,; are written over
the A/ i which are no longer needed. If i = 2,

Ay = LUy, Jj=1

Ay = LUy + Uy, j22. (8.104)

The first line gives Ly and the second U,;, in terms of exist-
ing elements of L and U. The U,; and L, are written over
the A4) ;e (Remember that L;; = 1 by definition.) If i = 3,

A/31 = L31U11 s ] =1
Ay = Ly Upp + L3 Uy,
Agj = L31U1_,’ + L32U2j + U3j s j=3, (8.105)

yielding in turn L3, L3,, and Us;, which are written over A/ -

The algorithm should now be clear. At the i-th row,

=
Lij = U_/_fl(A;'j _ZLikUk/‘) oo J=i—l

= A — ZL,kUk, L =i (8.106)

We observe from the first line of these equations that the
algorithm may run into numerical inaccuracies if any U;; be-
comes very small. Now U;; = A}, while in general U;; =
Aj; —---. Thus the absolute values of the U;; are maximized
if the rows are rearranged so that the absolutely largest ele-
ments of A’ in each column lie on the diagonal. Note that the
solutions are unchanged by permuting the rows (same equa-
tions, different order).

The LU decomposition can now be used to solve the sys-
tem. This relies on the fact that the inversion of a triangular
matrix is a simple process of back substitution. We replace
Eq. (8.99) by two systems of equations. Written out in full,
the equations for a typical column of y look like

Ly, =by,
Loy + Lny, = b5,
L31y1 + L3y, + Lasys = by,

D (8.107)

where the vector b’ is p’ = Pb. Thus, from successive rows,
we obtain yi, y5, y3,... in turn

Unxi = Y1,
Uppxi +Upxs = ys,
Uizxi + Upxs + Uszxz = y3,

D (8.108)

and from successive rows of the latter, we obtain
X1, X2, X3, ... In turn.

Software libraries (Netlib [42], described above) also ex-
ists for evaluating all the error bounds for dense and band
matrices. Gaussian elimination with pivoting is almost al-
ways numerically stable, so the error bound one expects from
solving these equations is of the order of ne, where € is
related to the condition number of the matrix 4. A good dis-

cussion of errors and conditioning is given in [3-5].

8.4 Monte Carlo Methods

Owing to the continuing rapid development of computational
facilities and the ever-increasing desire to perform ab initio
calculations, the use of Monte Carlo methods is becoming
widespread as a means to evaluate previously intractable
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multidimensional integrals and to enable complex modeling
and simulation.

For example, a wide range of applications broadly clas-
sified as quantum Monte Carlo have been used to com-
pute, for example, the ground-state eigenfunctions of simple
molecules. Also, guided random walks have found applica-
tion in the computation of Green’s functions, and variables
chosen randomly, subject to particular constraints, have been
used to mimic the electronic distribution of atoms. The lat-
ter application, used in the classical trajectory Monte Carlo
technique (CTMC) described in Chap. 62, allows the sta-
tistical quasiquantal representation of ion—atom collisions.
CTMC is akin to another class of Monte Carlo simulations,
classical molecular dynamics, which is used to describe sys-
tems ranging from molecules to solids as being composed of
atoms whose movement is governed by classical mechanics
subject to quantum mechanically derived potentials.

Here, we summarize the basic tools needed in these
methods and how they may be used to produce specific
distributions and make tractable the evaluation of multidi-
mensional integrals with complicated boundaries. Detailed
descriptions of these methods can be found in [3-5, 18, 48].

8.4.1 Random Numbers
An essential ingredient of any Monte Carlo procedure is
the availability of a computer-generated sequence of random
numbers that is not periodic and is free of other significant
statistical correlations. Often, such numbers are termed pseu-
dorandom or quasirandom, in distinction to truly random
physical processes. While the quality of random number gen-
erators supplied with computers has greatly improved over
time, it is important to be aware of the potential dangers that
can be present. For example, many systems are supplied with
arandom number generator based on the linear congruential
method. Typically, a sequence of integers ny,n,,n3,... is
first produced between 0 and N — 1 by using the recurrence
relation

niy1 = (an; +b) mod N , 0<i<N-1, (8.109)
where a,b, N, and the seed value ng are positive integers.
Real numbers between 0 and (strictly) 1 are then obtained
by dividing by N. The period of this sequence is at most N
and depends on the judicious choice of the constants, with
N being limited by the word size of the computer. A user
who is unsure whether the character of the random numbers
generated on a particular computer platform is proper can
perform additional randomizing shuffles or use a portable
random number generator; both procedures are described in
detail in the texts by Knuth [6] and Press et al. [3-5], for ex-
ample. In addition, tests of random number sequences have

been developed, for example, the widely used tests published
by L’Ecuyer and Simard [49].

The need for such tests has grown in the present era of
parallel computing, relevant not only to use of parallel ran-
dom number generators on supercomputers and clusters but
also the use of personal computers and workstations em-
ploying multicore/multithread, computation. In fact, the scale
of Monte Carlo calculations possible on contemporary plat-
forms has exposed deficiencies of many commonly used
methods of generating random numbers, leading to develop-
ment of more robust techniques. These new methods seek to
ensure the quality of random numbers, first of all for large se-
quences within a single stream, as well as for multiple streams
(other threads on a single processing unit or across nodes
within a cluster). A widely used set of parallel random number
generators that pass robust tests was developed and described
by Srinivasan, Mascagni, and Ceperley [50], for example.

8.4.2 Distributions of Random Numbers

Most distributions of random numbers begin with sequences
generated uniformly between a lower and an upper limit, and
are therefore called uniform deviates. However, it is often
useful to draw the random numbers from other distributions,
such as the Gaussian, Poisson, exponential, gamma, or bino-
mial distributions. These are particularly useful in modeling
data or supplying input for an event generator or simulator. In
addition, as described below, choosing the random numbers
according to some weighting function can significantly im-
prove the efficiency of integration schemes based on Monte
Carlo sampling.

Perhaps the most direct way to produce the required distri-
bution is the transformation method. If we have a sequence
of uniform deviates x on (0, 1) and wish to find a new se-
quence y that is distributed with probability given by some
function f(y), it can be shown that the required transforma-
tion is given by

-1

y
) = / FO)dy (8.110)
0

Evidently, the indefinite integral must be both known and
invertible, either analytically or numerically. Since this is sel-
dom the case for distributions of interest, other less direct
methods are most often applied. However, even these other
methods often rely on the transformation method as one stage
of the procedure. The transformation method may also be
generalized to more than one dimension [3-5].

A more widely applicable approach is the rejection
method, also known as von Neumann rejection. In this case,
if one wishes to find a sequence y distributed according to
f(»), one first chooses another function f(y), called the
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comparison function, which is everywhere greater than f(y)
on the desired interval. In addition, a way must exist to gen-
erate y according to the comparison function, such as use of
the transformation method. Thus, the comparison function
must be simpler or better known than the distribution to be
found. One simple choice is a constant function that is larger
than the maximum value of f(y), but choices that are closer
to f(y) will be much more efficient.

To proceed, y is generated uniformly according to f (»),
and another deviate x is chosen uniformly on (0, 1). One then
rejects or accepts y, depending on whether x is greater than
or less than the ratio f(y)/ f (y), respectively. The fraction
of trial numbers accepted depends on the ratio of the area
under the desired function to that under the comparison func-
tion. Clearly, the efficiency of this scheme depends on how
few of the numbers initially generated must be rejected, and,
therefore, on how closely the comparison function approx-
imates the desired distribution. The Lorentzian distribution,
for which the inverse definite integral is known (the tangent
function), is a good comparison function for a variety of bell-
shaped distributions such as the Gaussian (normal), Poisson,
and gamma distributions.

Especially for distributions that are functions of more than
one variable and possess complicated boundaries, the rejec-
tion method is impractical, and the transformation method
simply inapplicable. In the 1950s, a method to generate
distributions for such situations was developed and applied
in the study of statistical mechanics, where multidimen-
sional integrals (e.g., the partition function) must often be
solved numerically. It is known as the Metropolis algo-
rithm. This procedure, or its variants, has more recently been
adopted to aid in the computation of eigenfunctions of com-
plicated Hamiltonians and scattering operators. In essence,
the Metropolis method generates a random walk through the
space of the dependent variables, and in the limit of a large
number of steps in the walk, the points visited approximate
the desired distribution.

In its simplest form, the Metropolis method generates this
distribution of points by stepping through this space, most
frequently taking a step downhill but sometimes taking a step
uphill. That is, given a set of coordinates ¢ and a desired
distribution function f(q), a trial step is taken from the i-th
configuration ¢; to the next, depending on whether the ratio
f(q;+1)/f(q;) is greater or less than 1. If the ratio is greater
than 1, the step is accepted, but if it is less than 1, the step is
accepted with a probability given by the ratio.

8.4.3 Monte Carlo Integration
The basic idea of Monte Carlo integration is that if a large

number of points is generated uniformly randomly in some
n-dimensional space, the number falling inside a given re-

gion is proportional to the volume, or definite integral, of the
function defining that region. Although this idea is as true
in one dimension as it is in 7, unless there is a large num-
ber (large could be as little as three) of dimensions or the
boundaries are quite complicated, the numerical quadrature
schemes described previously are more accurate and effi-
cient. However, since the Monte Carlo approach is based on
just sampling the function at representative points rather than
evaluating the function at a large number of finely spaced
quadrature points, its advantage for very large problems is
apparent.

For simplicity, consider the Monte Carlo method for inte-
grating a function of only one variable; the generalization to
n dimensions being straightforward. If we generate N ran-
dom points uniformly on (a, b), then in the limit of large N,
the integral is

b 2
[ oo ~ N( oy \/ (fz(x»];(f(x» s
where
1 N
(f(0) = 5 > fx) (8.112)

i=1
is the arithmetic mean. The probable error given is appro-
priately a statistical one rather than a rigorous error bound
and is the one standard error limit. From this, one can see
that the error decreases only as N 12 more slowly than the
rate of decrease for the quadrature schemes based on inter-
polation. Also, the accuracy is greater for relatively smooth
functions, since the Monte Carlo generation of points is un-
likely to sample narrowly peaked features of the integrand
well. To estimate the integral of a multidimensional function
with complicated boundaries, find an enclosing volume and
generate points uniformly randomly within it. Keeping the
enclosing volume as close as possible to the volume of in-
terest minimizes the number of points that fall outside, and
therefore increases the efficiency of the procedure.

The Monte Carlo integral is related to the techniques for
generating random numbers according to prescribed distri-
butions described in Sect. 8.4.2. If we consider a normalized
distribution w(x), known as the weight function, then with
the change of variables defined by

X

y(x) = [ w(x")dx’, (8.113)
the Monte Carlo estimate of the integral becomes
/f(x)d <f[x(y)]> (8.114)
N\wlx(y)]
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assuming that the transformation is invertible. Choosing
w(x) to behave approximately as f(x) allows a more ef-
ficient generation of points within the boundaries of the
integrand. This occurs since the uniform distribution of
points y results in values of x distributed according to w
and, therefore, close to f. This procedure, generally termed
the reduction of variance of the Monte Carlo integration, im-
proves the efficiency of the procedure to the extent that the
transformed function f/w can be made smooth, and that the
sampled region is as small as possible but still contains the
volume to be estimated.
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