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Abstract

We describe recent developments in tests of quantum
electrodynamics (QED), the theory of the interactions of
matter with electromagnetic fields. The tests focus on con-
sistency in the determination of parameters or constants
within QED obtained via multiple independent means
and, in particular, by comparisons of precision measure-
ments with equivalently accurate theoretical calculations.
The most precise tests rely on a combination of the spec-
troscopy of atomic hydrogen, g-factor measurements of
a free electron as well as that of an electron bound in
a hydrogen-like ion, and finally the mass determination of
the ions through atom recoil experiments and mass spec-
trometry. These experiments determine the dimensionless
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fine-structure constant and the mass of the electron to
about ten significant digits, orders of magnitude better
than any other description of nature. We also show that
an international system of units (SI) based on fixed values
of the Planck constant and the charge of the electron (in
addition to the fixed value of the speed of light in vacuum)
modifies the interpretation of some of these tests.
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29.1 Introduction

Tests of the fundamental laws of nature are crucial for the
foundations of our knowledge of physics. The most precise
theory is quantum electrodynamics (QED), which describes
charged particles interacting with electromagnetic fields. It is
a well-verified theory with uncertainties of observables ap-
proaching a few parts in 1013 for the g-factor of the electron.
Our ability to test the theory is still improving with no sign of
a breakdown. For example, Fig. 29.1 shows that over the past
100 years the relative uncertainty of the dimensionless fine-
structure constant ˛ has seen an exponential improvement by
eight orders of magnitude to a 2014 relative uncertainty of
2 � 10�10. In some cases, the precision of the tests is now
limited by our understanding of another fundamental the-
ory, namely quantum chromodynamics (QCD). For example,
nuclear-structure effects limit the comparison between the-
ory and experiment for the hyperfine structure of hydrogen.

On May 20, 2019 the International System of Units
(SI) [2] was redefined based on fixing the values of funda-
mental constants that appear naturally in the laws of physics.
This continues a trend started in 1983 when the speed of light
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Fig. 29.1 Fractional uncertainty of the fine-structure constant ˛ over
the past 100 years, starting in 1916 with the introduction of ˛ by A. Som-
merfeld [1]

in vacuum, c, was fixed [3]. Now the reduced Planck constant
„, electron charge e, the Boltzmann constant k, and the Avo-
gadro constant NA have also been fixed. Although the laws
of nature are independent of the definitions of the units, the
transition to the revised SI does change our perspective on
the tests.

This chapter reviews comparisons between theory and ex-
periment that test our understanding of laws of nature. The
focus is on quantitative tests of QED through measurements
of hydrogen energy levels, the g-factors of the electron and
hydrogen-like ions, and atom recoil energies from photon in-
teractions. These measurements determine the fine-structure
constant ˛, the electron mass me, and atomic masses, and
demonstrate consistency of the theory. It is worth noting that
the dimensionless constant ˛ � e2=.4 �0„c/ is much less
than one, where �0 is the electric constant or permittivity of
vacuum. Recent reviews that cover topics in this chapter are
given in [4, 5]. Our values of inexactly-known fundamental
constants are the 2014 CODATA recommended values [5],
unless otherwise noted.

29.2 Consistency of Fundamental Physics

The most precise tests of quantum electrodynamics are inter-
twined with the determination of the fine-structure constant,
electron mass, and masses of atoms. In fact, the measure-

ments are determinations of transition frequencies in hydro-
gen, spin-flip and cyclotron frequencies of the free and bound
electron in a magnetic field, as well as atom recoil ener-
gies. They are compared to theoretical expressions for these
observables, which, generally, are functions of fundamental
constants.

For a hydrogen atom at rest, the energy of state i is

Ei D .mp Cme/c
2 � 1

2
mec

2˛2
�
1

n2i
C � � �

�

; (29.1)

where mp is the mass of the proton, and ni is the principal
quantum number of state i . It will be convenient to use the
Hartree energy Eh D mec

2˛2. The dots in this theoretical
expression indicate corrections that are small compared to
the leading term. Examples are contributions that are higher-
order in ˛, of order of the electron–protonmass ratiome=mp,
and of order of the ratio of the root-mean-square (rms) pro-
ton charge radius to the Bohr radius rp=a0. Equation (29.1)
also sets the mass of the hydrogen atom in state i , that is,
m.Hi / D Ei=c

2.
Many (angular) transition frequencies

! D Ej � Ei
„ (29.2)

have been measured over the decades. They primarily de-
termine the Hartree energy Eh (or equivalently the Rydberg
constant R1.) Often the experiments, such as those mea-
suring the energy differences between two S states, involve
two-photon transitions where ! is replaced by 2!. A second
class of transitions relevant for our purposes is that where the
contribution from the Bohr energies, proportional to 1=n2,
cancels. An example is the Lamb shift between the 2P1=2 and
2S1=2 states. In this case, the transition frequencies are pro-
portional to a higher power in ˛ than ˛2.

The frequency measurements provide a first example of
the change in perspective introduced by the revised SI. In
particular, in precise spectroscopy, photon frequencies ! are
measured from which energy differences „! are inferred. In
the SI in which „ is not exact, this inference leads to rela-
tively inaccurate energies in units of joules. In the revised SI,
there is no loss of accuracy in this conversion.

The second ingredient for our tests of QED is a measure-
ment of the anomaly ae of the g-factor of the free electron
placed in a homogeneous magnetic field EB [6]. The electron
undergoes cyclotron motion with angular frequency

!c D 2
�B

„ B (29.3)

and spin-flip transitions with frequency

!s D jgej�B

„ B ; (29.4)
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where �B D e„=.2me/ is the Bohr magneton, and the elec-
tron g-factor is ge D�2Œ1Cae.˛; : : :/�. The anomaly is then
extracted from a direct measurement of the difference of the
spin-flip and cyclotron frequencies, !s � !c and a measure-
ment of !c. That is,

!s � !c

!c

ˇ
ˇ
ˇ
ˇ
exp

D ae.˛; : : :/ D 1

2

˛

 
C : : : : (29.5)

The : : : indicate small corrections of higher order in ˛. Addi-
tional corrections are proportional to the mass ratio me=m�

for vacuum polarization corrections from virtual muon loops,
for example.

The hydrogen spectroscopy is, thus, a means to determine
mec

2˛2=„ (or equivalently me˛
2), while g-factor measure-

ments of the free electron determine ˛. Together, the two
experiments thus specify ˛ and me. This, however, does
not constitute a test of a fundamental theory. It only deter-
mines values of the constants. The required additional input
is achieved with atom recoil measurements.

The recoil energy of a neutral atom X of mass m.X/ ini-
tially at rest after absorption of a photon from a laser beam
with angular frequency !1 and subsequent (resonant) emis-
sion of a photon into a laser beam with a slightly-smaller
frequency !2 propagating in the opposite direction is

Erec D „.!1 � !2/ D .2„k/2
2m.X/

C : : : ; (29.6)

where the average momentum of the photons is „k, k D !=c

and ! D .!1 C !2/=2. The : : : represent small corrections
mainly due to the difference in momentum of the photons in
the two laser beams. (In actual realizations, many photons
are scattered from the atom in order to improve accuracy.)

Photon frequencies and their differences can be mea-
sured more accurately than any of the other parameters in
Eq. (29.6). Thus, we restate this equation as

!2

.!1 � !2/
ˇ
ˇ
ˇ
ˇ
exp

D 1

2

m.X/c2

„ C : : : : (29.7)

Hence, recoil measurements determine massm.X/ in the re-
vised SI as both c and „ are exactly defined. In the old SI, „
was not exact, and the experiment only measured m.X/=„.

A measurement of atomic mass does not immediately help
in testing fundamental theory. We can complete the story, il-
lustrated in Fig. 29.2, by determining the atom-to-electron
mass ratio m.X/=me and, thus, find an independent value
for the electron mass. To date this occurs in a two-step pro-
cess. First, mass spectrometry of atomic ions [7, 8] measures
mass ratios of low-charge-state ions of atoms X and Y . The
mass ratio of the corresponding neutral atom is then accu-
rately inferred by accounting for the appropriate number of
electron masses and ionization energies.

mec2α2

m(Y)

H spectroscopy

Atom recoil

m(X)

m(Y)/m(X)

me/m(Y)g factor of
H-like ions

Atomic mass
spectroscopy

g factor of
free electron

α

me

Fig. 29.2 Flow diagram for tests of QED based on the revised SI. Black
boxes on the left-hand side correspond to the five precision experiments
used to determine four fundamental constants in red boxes on the right-
hand side. Arrows describe one-way connections from experiments to
the constants. The constants are the fine-structure constant ˛, the elec-
tron mass me, and masses of various atoms, m.X/ and m.Y /. Most
experiments only measure products or ratios of the fundamental con-
stants shown as blue diamonds. For example, atomic mass spectrometry
only determines ratios of atomic masses. The relations among ˛, me,
and mec

2˛2 can be traversed in either direction

Second, g-factor measurements of the electron bound in
a hydrogen-like ion Y qC determine mass ratios m.Y qC/=me

through spin-flip and cyclotron frequency ratios of the ion in
a magnetic field and the relationship

!s.Y
qC/

!c.Y qC/

ˇ
ˇ
ˇ
ˇ
exp

D � 1

2q

m.Y qC/
me

gY .˛; : : :/ : (29.8)

Here, qDZY �1, ZY is the charge number of the nucleus of
the ion, and the theoretical (negative) g-factor gY can be cal-
culated with sufficient accuracy. The ratio m.Y /=me is then
inferred as in mass spectrometry measurements. It may seem
surprising that gY can be calculated accurately. The key is
that gY � �2 to lowest order in Dirac theory, and, therefore,
corrections need not be computed as accurately as for the
anomaly of a free electron.

This indirect approach to obtain m.X/=me is needed
as recoil experiments use atoms for which hydrogen-like
g-factor measurements are not available. Moreover, mass
differences between ionization stages of an atom, including
those due to the binding energy of the electrons, can only be
accurately accounted for in small-ZY ions.

The change in units from the old to the revised SI is also
reflected in our understanding of mass. Figure 29.3 shows the
contributions to and uncertainties of the mass of the ground-
state hydrogen atom, m.H/, in the SI unit of mass (kg) and
in the atomic mass unit (amu) mu D m.12C/=12, one twelfth
of the mass of a 12C atom. Clearly, the mass of the proton
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Fig. 29.3 Contributions to the mass of a 1S1=2 hydrogen atom, m.H/,
in kilograms (a) and atomic mass units (b) on a logarithmic scale. From
top to bottom, the red lines in each panel correspond to the mass of the
proton, electron, and the absolute value of the binding energy (divided
by c2), respectively. In (a), the black horizontal lines are the uncertain-
ties of the hydrogen mass, u.mH/, in the old and revised SI. The black
line in (b) shows u.mH/ in atomic mass units

is by far the largest contribution and, in fact, its uncertainty
fully determines the uncertainty in both units of mass. Nev-
ertheless, in units of mu, the hydrogen mass is known with
ten significant digits as it can be relatively easily compared
to the mass of a carbon atom. This has not changed in the re-
definition. We also observe that in the old SI, the uncertainty
of m.H/ in kg nearly coincides with the contribution from
the binding energy. With the redefinition, the uncertainty of
m.H/ in kg has improved by more than an order of mag-
nitude to 1 part in 109 and is mainly limited by our ability
to measure the fine-structure constant. This follows from ex-
pressing the hydrogen mass in terms of the atomic mass unit
and that of the electron, i.e.,

m.H/ D m.H/

mu

mu

me
me D Ar.H/

1

Ar.e/

�
Eh

„
�
1

˛2
„
c2
;

where Ar.X/ � m.X/=mu, and we used the definition of
the Hartree energy to rewrite the dependence on the electron
mass. The relative uncertainties in Ar.H/, Ar.e/, and Eh are
currently smaller than that of ˛.

In summary, we have described five experiments that de-
termine four quantities. This is an overdetermined data set and

checks for consistency. To date these checks are good to parts
in1010 and confirm the theory at this level.We stress, however,
that the tests of fundamental theory are more wide ranging
than suggested by the limited number of measurements. They
include at least two implicit assumptions that are worth men-
tioning. The first is energy conservation and leads to the fact
that the frequency of an emitted or absorbed photon equals the
frequency difference of energy levels of the atom. A second
assumption is that particles have a wave-like nature as well
or, more precisely, that the momentum p of a massive parti-
cle or massless photon is inversely proportional to its reduced
wavelength �. In fact, p D „k, where k D 1=� is the photon
wavenumber. This relation combined with energy-momen-
tum conservation underpins the atom recoil experiments.

29.3 Topics in This Review

The description of tests of QED in the previous section needs
to be refined to include the role of small corrections and
their parameters. For example, in hydrogen spectroscopy, the
mass and charge radius of the proton must be considered.
In g-factor measurements and hydrogen spectroscopy, vir-
tual vacuum polarization loops containing the heavier muon
and tau leptons, as well as quarks, lead to additional mass
dependencies. The next sections summarize how these de-
pendencies arise.

We only consider a subset of tests of QED. Some of the
omitted topics are the spectroscopy of positronium, QED
of highly-charged simple ions, Delbrück scattering of pho-
tons by nuclei, and helium fine structure. Positronium would
suffer less from corrections due to hadronic effects. The the-
ory, however, is more difficult due to the absence of a small
parameter, such as the electron-to-proton mass ratio. Highly-
charged ions are a means of studying strong field effects near
their nucleus. Photon scattering by nuclei can create virtual
lepton pairs in a domain beyond the Compton scattering pro-
cess. The heliummeasurements are an independent means of
determining the fine-structure constant. Some of these topics
are covered in other chapters of this book. Although these
topics may be considered equally important, our attention in
this chapter is focused on the most precise tests of QED.

The remainder of this article has the following structure.
Section 29.4 summarizes the required QED theory for the
g-factor of the free electron and our ability to extract ˛. Sec-
tion 29.5 then describes mass measurements by atom recoil
experiments and mass-ratio measurements by atomic mass
spectrometry for the heavier atoms. Mass-ratio determina-
tions m.Y /=me for light atoms are discussed in Sect. 29.6.
The section also summarizes the theory of the electron g-
factor in hydrogen-like ions. Combined, Sects. 29.5 and 29.6
lead to the most-accurate value for me. We finish with a dis-
cussion of QED theory for the hydrogen atom in Sect. 29.7.
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29.4 Electron g-Factor Anomaly

The theoretical expression for the anomaly of the electron
ae.th/ may be written as

ae.th/ D ae.QED/C ae.weak/C ae.had/ ; (29.9)

where the terms denoted by “QED”, “weak”, and “had” ac-
count for the purely quantum electrodynamic, predominantly
electroweak, and predominantly hadronic (that is, strong
interaction) contributions to ae, respectively. The QED con-
tribution may be written as

ae.QED/ D
1X

nD1
C .2n/
e

�˛

 

�n
; (29.10)

where index n corresponds to contributions with n virtual
photons. Here, n > 5 contributions can be neglected, and

C .2n/
e D A

.2n/
1 C A

.2n/
2 .xe�/C A

.2n/
2 .xe£/C : : : ; (29.11)

with coefficients A.2n/1 and functions A.2n/2 .x/ evaluated at
x D xeX � me=mX � 1 for lepton X D � or £. For n > 1,
the coefficients A.2n/1 include vacuum-polarization correc-

tions with virtual electron/positron pairs, while A.2n/2 .x/ are
vacuum-polarization corrections due to heavier leptons. For
x ! 0, we have A.4/2 .x/ D x2=45C O.x4/ and A.6/2 .x/ D
x2.b0 C b1 ln x/C O.x4/ with b0 D 0:593274: : : and b1 D
23=135 [9, 10]. The O.x4/ contributions are known and
included in the calculations but not reproduced here. The
functions A.8/2 .x/ and A

.10/
2 .x/ are also O.x2/ for small x

but are not reproduced here [11, 12]. Currently, vacuum-
polarization corrections for the free-electron anomaly that
depend on two lepton mass ratios can be neglected.
Table 29.1 lists the relevant coefficients as used in the 2014
CODATA adjustment. Uncertainties in parenthesis here and
elsewhere are combined one-standard-deviation statistical
and systematic uncertainties. Additional references to the

Table 29.1 Coefficients for the QED contributions to the electron
anomaly. The coefficients A.2n/1 and functions A.2n/2 .x/, evaluated at
x D xe� � me=m� and xe£ � me=m£ for the muon and tau leptons,
respectively, are listed with two significant digits for ease of compar-
ison; summed values C.2n/

e , based on the 2014 CODATA adjustment,
are listed as accurately as needed for the tests described in this article.
Missing values indicate that their contribution to the electron anomaly
is negligible

n A
.2n/
1 A

.2n/
2 .xe�/ A

.2n/
2 .xe£/ C

.2n/
e

1 1=2 0 0 0.5
2 �0:33 5:2 � 10�7 1:8 � 10�9 �0:32847844400: : :
3 1:2 �7:4 � 10�6 �6:6 � 10�8 1:181234017: : :

4 �1:9 9:2 � 10�4 7:4 � 10�6 �1:91206.84/
5 7:8 �3:8 � 10�3 7:79.34/
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Fig. 29.4 Fractional absolute values of the contributions to the theoret-
ical g-factor anomaly of the free electron. QED contributions are due
to the mass-independent A.2n/1 (black markers), to the muon-dependent
A
.2n/
2 .xe�/ (red markers), and to the tau-dependent A.2n/2 .xe£/ (blue

markers) corrections, respectively. Contributions due to the weak and
hadronic interactions are also shown. The horizontal orange line shows
the relative uncertainty in the determination of ae.th/. The graph is
based on the 2014 CODATA value for the fine-structure constant

original literature can be found in the paper on the adjust-
ment. It is worth noting that since 2014 the coefficient A.8/1
has been evaluated virtually exactly in a tremendous effort
described in [13], while A.10/2 has been updated, shifting its
value [14].

The electroweak contribution is

ae.weak/ D 0:02973.23/� 10�12 (29.12)

and is calculated as discussed in the 1998 CODATA adjust-
ment but with the 2014 values of the Fermi coupling constant
GF=.„c/3 and the weak mixing angle �W [15]. The total
hadronic contribution is

ae.had/ D 1:734.15/� 10�12 (29.13)

and is a sum of multiple vacuum-polarization contributions.
Figure 29.4 shows a graphical representation of con-

tributions to the electron anomaly. The QED corrections
decrease roughly exponentially in size with order n for both
mass-independent and dependent contributions. Contribu-
tions from virtual loops containing £ leptons are currently
negligible. Weak and hadronic contributions are more im-
portant. The theoretical uncertainty of the anomaly (absent
any uncertainty in the fine-structure constant) is dominated
by two contributions: the mass-independent nD 5 QED cor-
rection and the hadronic contribution. In fact, it is given by

uŒae.th/� D 0:037 � 10�12 D 0:32 � 10�10 ae (29.14)
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and is significantly smaller than the uncertainty of the most-
accurate experimental value of 2:4 � 10�10ae [6]. Conse-
quently, the relative uncertainty of the fine-structure constant
is essentially the same as the experimental relative uncer-
tainty. That is, equating the theoretical expression of ae.th/
and the experimental value yields

˛�1.ae/ D 137:035999160.33/ Œ2:4� 10�10� : (29.15)

The number in square brackets is the relative uncertainty of
the fine-structure constant, ur.˛/ D u.˛/=˛.

29.5 Atom Recoil Experiments
andMass Spectrometry

Atom recoil experiments are performed with the heavier
alkali-metal atoms, 87Rb and 133Cs. These atoms have easily
accessible atomic transitions in the optical frequency do-
main, with excited states that only decay back to the ground
state and can, thus, be brought to a near standstill by laser
cooling techniques. For the 2014 CODATA adjustment, the
most accurate measurement relied on the 87Rb isotope [16]
and gave

m.87Rb/

„ D 1;368;480;428:9.1:7/m�2 s Œ1:2 � 10�9� :
(29.16)

In the revised SI with a fixed reduced Planck constant, this
translates into an equally accurate measurement of m.87Rb/
in kg. A 2018 value for m.133Cs/=„ for atomic cesium with
a three times smaller relative uncertainty is reported in [17].

In mass spectrometry, the most accurate measurements
compare the mass of two or more low-charge-state ions. Over
the years, these measurements have been performed for most
stable and unstable atoms in the periodic table. After ac-
counting for the mass of the electrons and binding energies,
mass data for neutral atoms were collated in [18, 19] in the
atomic mass unit mu. For 87Rb and 28Si, this 2012 database
gives

Ar.
87Rb/D m.87Rb/

mu
D 86:9091805319.65/ Œ7:5�10�11� ;

(29.17)
and

Ar.
28Si/ D 27:97692653465.44/ Œ1:6� 10�11� ; (29.18)

respectively, which have a much smaller relative uncertainty
than that for masses determined by atom recoil measure-
ments. The improved 2016 evaluation can be found in [7, 20].

In any case, from this recoil measurement, we calculate

m.12C/ D m.87Rb/ � 12

Ar.87Rb/
(29.19)

in kg in the revised SI to determinem.12C/with a relative un-
certainty of 1:2 � 10�9 through error propagation. Similarly,
relationships can be used for the mass of 28Si.

29.6 Mass-RatioMeasurements Using
the g-Factor of Hydrogen-Like Ions

Measurements of the spin-flip and cyclotron frequencies of
ground-state hydrogen-like atomic ions in a homogeneous
magnetic field are currently the most accurate means to de-
termine atom-to-electron mass ratios. This method relies on
the ability of theorists to calculate the g-factor of the bound
electron accurately. This approach is competitive as long as
the trapped ion is relatively light. Accounting for the elec-
tron removal energies of ions becomes prohibitively hard for
heavy atoms. Similarly, computing the g-factor within the
framework of relativistic QED bound-state theory is more
complex for heavier hydrogen-like ions as corrections with
higher powers in Z˛ are more important. For nuclei with
zero nuclear spin, the mass ratio follows from rearranging
Eq. (29.8) to

m.Y qC/
me

D �2q 1

gY .˛; : : :/

!s.Y
qC/

!c.Y qC/

ˇ
ˇ
ˇ
ˇ
exp

(29.20)

and

m.Y /

me
D m.Y qC/

me
C q �

q�1X

mD0

EI.Y
mC/

mec2
; (29.21)

whereEI.Y
mC/ is the positive ionization energy of ion Y mC,

and we recall that q D ZY � 1.
A broad program involving researchers from a num-

ber of European laboratories has measured spin-flip and
cyclotron frequency ratios and calculated the g-factor for
different ions, most notably 12C5C and 28Si13C. The measure-
ments themselves were performed at the Max-Planck Institut
für Kernphysik (MPIK), Heidelberg, Germany. Recently re-
ported values are [21, 22]

!s


12C5C

�

!c.12C5C/
D 4376:21050087.12/ Œ2:8�10�11� ; (29.22)

and [23]

!s


28Si13C

�

!c


28Si13C

� D 3912:86606484.19/ Œ4:8� 10�11� :
(29.23)

These two frequency ratios are correlated with a correlation
coefficient r D 0:347 mainly due to image charge correc-
tions [24]. The authors of [24] also slightly reassessed the
values given in the original references. The reassessed val-
ues are quoted here.
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2. No-
tice the large difference in scale between the two panels. In practice,
ionization energies, EI, are reported in units of hc. The unit conver-
sion of the energies and their uncertainties is based on the identity
E=.mec

2/D ˛2=.2R1/�E=.hc/, where R1 is the Rydberg constant,
and we observe that ˛2=.2R1/, with a relative uncertainty of 5�10�10,
does not increase the uncertainty of the EI

The theoretical electron g-factors for 12C5C and 28Si13C

have a relative uncertainty of 1:3 � 10�11 and 8:5 � 10�10,
respectively, as explained in the next section. Hence, the rel-
ative uncertainty for the mass ratio mYqC=me is 3:0 � 10�11
and 8:5 � 10�10 for these two ions, respectively. Next, we
use Eq. (29.21) to determine the neutral atom to electron
mass ratio. Figure 29.5 shows the ionization energies and
their uncertainties for all charge states of 12C in units of
mec

2. We observe that, as expected, the ionization energy
increases with charge state, but that, possibly surprisingly,
the ionization energy with the largest uncertainty by far is
that for the singly charged carbon ion. The ionization ener-
gies are added to give the electron removal energy �EB D
1:0569819.18/� 10�3mec

2 from 12C to 12C5C.
We combine the results of Sects. 29.5 and 29.6 to find the

values

m.12C/

me
D 21;874:66183428.66/ Œ3:0� 10�11�

and

me

„ D me

m.12C/

m.12C/

m.87Rb/

m.87Rb/

„
D 8:637992726.11/� 103m�2 s Œ1:2 � 10�9� :

(29.24)
We observe that the removal energy �EB has a measurable
effect on the mass of the carbon-12 atom but that the un-
certainty of me=„ is currently limited by the atom recoil

experiment. An evaluation of me=„ based on 28Si data gives
a consistent value with only a slightly larger uncertainty. The
two values can be combined to find more accurate values for
m.12C/=me and me=„ as long as the strong correlations be-
tween the uncertainties of the g-factor, as well as those of the
frequency ratio !s=!c, are taken into account. With the 2018
atom recoil experiments with 133Cs [17], the uncertainty of
me=„ has improved by a factor of 3.

29.6.1 Theory for the g-Factor
of Hydrogen-Like Ions

We summarize the contributions to the theoretical descrip-
tion of the electron g-factor of ground S-state hydrogen-like
ions. The main contributions to the g-factor can be catego-
rized as

gY D gD C�grad C�grec C�gns C : : : ; (29.25)

where gD is the Dirac (relativistic) value, and �grad, �grec,
and�gns are due to radiative, recoil, and nuclear size correc-
tions, respectively. Other corrections, indicated by the dots,
are negligible at this time. Numerical results for the various
contributions are summarized in Table 29.2 for 12C5C and
Table 29.3 for 28Si13C.

The Dirac value is known exactly [25] from the Dirac
equation for an electron in the field of a fixed point charge of
magnitude Ze, where, for clarity, we omit subscript Y on Z
for the remainder of this section. Its value is

gD D �2
3

h
1C 2

p
1 � .Z˛/2

i
; (29.26)

with an uncertainty that is solely due to the uncertainty in ˛.
Radiative corrections may be written as

�grad D �2
X

nD1
C .2n/
e .Z˛/

�˛

 

�n
; (29.27)

where the functionsC .2n/
e .x/ are evaluated at xDZ˛, corre-

spond to contributions with n virtual photons, and are slowly
varying functions of x. They are related to the coefficients
for the free electron C .2n/

e , defined in Sect. 29.4, by

lim
x!0

C .2n/
e .x/ D C .2n/

e : (29.28)

The functionC .2/
e .x/ is computed as the sum of three con-

tributions. The first contribution is a self-energy correction
given by

C
.2/

e;SE.x/ D
1

2

�

1C 1

6
x2 C x4

�
32

9
ln.x�2/C 247

216

�8
9
ln k0 � 8

3
ln k3

�

C x5 RSE.x/

�

;

(29.29)
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where ln k0D2:984128556 and ln k3D3:272806545. Values
for the remainder function RSE.x/ are based on extrapola-
tions from numerical calculations at high Z. In particular,
RSE.6˛/ D 22:160.10/ and RSE.14˛/ D 20:999.2/ based
on the 2014 CODATA adjustment. In 2017, the values for
RSE.x/ were significantly improved [26].

The second and third contributions to C .2/
e .x/ are two

lowest-order vacuum-polarization corrections [27]. In the
second “wave function” correction, the vacuum polarization
loop modifies the interaction between the bound electron and
the Coulomb field of the nucleus, and in the third “poten-
tial” correction, the loop modifies the interaction between the
bound electron and the external magnetic field. The sum of
the one-photon vacuum polarization contributions are

C
.2/
e;VP.6˛/ D �0:000001832142.12/ ; (29.30)

and

C
.2/
e;VP.14˛/ D �0:0000505452.11/ ; (29.31)

for 12C5C and 28Si13C, respectively.
The n D 2 two-photon correction for the ground S-state

is [28, 29]

C .4/
e .x/ D

�

1C x2

6

	

C .4/
e

C x4
�
14

9
ln.x�2/C 991;343

155;520
� 2

9
ln k0 � 4

3
ln k3

C 679 2

12;960
� 1441 2

720
ln 2C 1441

480
�.3/

�

CO.x5/

D
(
�0:3285778.23/ for x D 6˛

�0:32917.15/ for x D 14˛
;

(29.32)
where �.z/ is the Riemann zeta function. The quoted uncer-
tainty is an estimate of uncalculated higher-order contribu-
tions given by [28]

u


C .4/
e .x/

� D 2
ˇ
ˇx5 C .4/

e RSE.x/
ˇ
ˇ : (29.33)

Since the remainder function differs only by about one per-
cent for carbon and silicon, the main Z (or x) dependence
of the uncertainty is given by x5, and we assume that the
uncertainty of the two-photon correction is completely cor-
related for the two ions. The authors of [30, 31] calculated
some of the two-loop vacuum polarization diagrams of or-
der x5 and found them to be on the order of the uncertainty
in Eq. (29.32). The authors of [32] computed an additional
light-by-light contribution to C .4/

e .x/, which shifts its value
within its uncertainty. It is not included here.

The leading binding correction to C .2n/
e .x/ is

C .2n/
e .x/ D

�

1C x2

6
C : : :

	

C .2n/
e ; (29.34)

for any n. This surprising result was derived in [33, 34], and
for n D 1 and 2 it is evident from Eqs. (29.29) and (29.32).
As the uncertainty due to uncalculated higher-order terms is
negligible we use C .2n/

e .x/! .1C x2=6/C
.2n/
e for the three,

four, and five (n D 3, 4, and 5) photon contributions with an
uncertainty solely determined by the uncertainty of C .2n/

e in
Table 29.1.

The corrections gD and�grad are based on the assumption
that nuclei have an infinite mass. The recoil correction to the
g-factor associated with a finite mass is

�grec D �g.0/rec C�g.2/rec ; (29.35)

corresponding to terms that are zero-order and first-order in
˛= , respectively. For �g.0/rec , we have

�g.0/rec D
(

�.Z˛/2C .Z˛/4

3Œ1Cp
1� .Z˛/2�2 � .Z˛/

5 P.Z˛/

)

� me

mN
C .1CZ/.Z˛/2

�
me

mN

	2
;

(29.36)
where mN is the mass of the nucleus. Mass ratios, based
on the 2014 adjustment values of the constants, are
me=m.

12C6C/ D 0:0000457275: : : and me=m.
28Si14C/ D

0:0000196136: : : The authors of [35] evaluated the function
P.x/ numerically for a discrete set of x < 1, with the result
P.6˛/D 10:49395.1/ for hydrogenic carbon. For silicon, we
use the interpolated value P.14˛/ D 7:16223.1/. For �g.2/rec ,
we have

�g.2/rec D
˛

 

.Z˛/2

3

me

mN
: (29.37)

The uncertainty in �g.2/rec is negligible compared to that of
�g

.2/

rad.
Finally, the finite size of the nucleus leads to a small cor-

rection to the g-factor given by [36]

�gns D �8
3
.Z˛/4

�
rN

�C

	2
C : : : ; (29.38)

where rN is the nuclear rms charge radius, and �C D„=.mec/

is the reduced Compton wavelength of the electron. The
authors of [37] calculated additional corrections but gave
numerical values for �gns based on early rN values. We in-
corporate their corrections using an .rN/2 scaling and the
updated rN D 2:4703.22/ fm and rN D 3:1223.24/ fm for
12C and 28Si, respectively [38].

The theoretical value for the g-factor of the electron in
hydrogen-like carbon 12 or silicon 28 is the sum of the in-
dividual contributions discussed above and summarized in
Tables 29.2 and 29.3. For each contribution the tables also list
the uncertainty. For both ions the uncertainty is dominated by
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Table 29.2 Theoretical contributions and total value for the g-factor
of hydrogenic carbon 12 based on the 2014 CODATA recommended
values of the constants and corresponding theory. The total g-factor has
a relative uncertainty of 1:3 � 10�11
Contribution Value Source
Dirac gD �1:9987213543921.6/ Eq. (29.26)

�g
.2/
SE �0:002323672435.4/ Eq. (29.29)

�g
.2/
VP 0:000000008511 Eq. (29.30)

�g.4/ 0:000003545677.25/ Eq. (29.32)
�g.6/ �0:000000029618 Eq. (29.34)
�g.8/ 0:000000000111 Eq. (29.34)
�g.10/ �0:000000000001 Eq. (29.34)
�grec �0:000000087629 Eq. (29.35)
�gns �0:000000000408.1/ Eq. (29.38)
g.12C5C/ �2:001041590183.26/

Table 29.3 Theoretical contributions and total value for the g-factor
of hydrogenic silicon 28 based on the 2014 CODATA recommended
values of the constants and corresponding theory. The total g-factor has
a relative uncertainty of 8:5 � 10�10
Contribution Value Source
Dirac gD �1:993023571557.3/ Eq. (29.26)

�g
.2/
SE �0:00232891747.5/ Eq. (29.29)

�g
.2/
VP 0:00000023481.1/ Eq. (29.31)

�g.4/ 0:0000035521.17/ Eq. (29.32)
�g.6/ �0:00000002966 Eq. (29.34)
�g.8/ 0:00000000011 Eq. (29.34)
�g.10/ �0:00000000000 Eq. (29.34)
�grec �0:00000020588 Eq. (29.35)
�gns �0:00000002053.3/ Eq. (29.38)
g.28Si13C/ �1:9953489581.17/

that of the two-photon n D 2 correction �g.4/. The relative
uncertainties of the 12C5C and 28Si13C values are 1:3� 10�11
and 8:5�10�10, respectively, sufficient for the purpose of de-
termining competitive atom-to-electron mass ratios. Finally,
the two g-factors have a correlation coefficient r D 0:79.

29.7 Hydrogen Atom Energy levels

Measurements of the hydrogen energy levels are currently
the most precise way to determine the Hartree energy di-
vided by the reduced Planck constant or, equivalently, the
Rydberg constant. The measurements also help determine ˛
and the proton charge radius. The eigenstates are labeled by
n j̀ , where n D 1; 2; : : : is the principal quantum number,
` D 0; 1; : : : ; n � 1 is the nonrelativistic angular momen-
tum quantum number, and j is the total angular momentum
quantum number. Their energies are denoted by E.n j̀ / and,
following the usual convention, we use S;P;D; : : : to denote
` D 0; 1; 2; : : : states. Our discussion will omit hyperfine ef-
fects from coupling of the electron to the magnetic and other
moments of the proton, as at 2014 accuracy levels they can
easily be accounted for.

The world’s best-known optical transition frequency is
that for the 1S1=2–2S1=2 Lyman-alpha line of hydrogen,
which has been obtained by an experimental group in Garch-
ing, Germany [39, 40]. They quote

!H.1S1=2–2S1=2/ D
2  � 2;466;061;413;187;035.10/ rad=s Œ4:2 � 10�15�

or

�H.1S1=2–2S1=2/ D 2;466;061;413;187;035.10/Hz

in 2011 and

!H.1S1=2–2S1=2/ D
2  � 2;466;061;413;187;018.11/ rad=s Œ4:4 � 10�15�

or

�H.1S1=2–2S1=2/ D 2;466;061;413;187;018.11/Hz

in 2013. The two values are correlated with a correlation co-
efficient r D 0:707 [41].

The frequency of this Lyman-alpha line is known to
almost 15 significant digits. The analytical, theoretical de-
termination of this transition frequency, which in its simplest
description by Bohr equals 3Eh=.8h/, is equally impressive,
although less accurate. It has 13 contributions ranging from
the Dirac eigenvalue, QED corrections with one or more vir-
tual photons and lepton-antilepton pairs, as well as nuclear
size and recoil effects. Figure 29.6a gives a visual represen-
tation of the size and uncertainties of these contributions. We
postpone the discussion of the name for and mathematical
form of each of the corrections until Sect. 29.7.1. The sizes of
the contributions vary by orders of magnitude, although size
is not necessarily an indication of its uncertainty. The uncer-
tainty of both the Dirac energy and the correction due to the
proton charge radius are the largest at � 10 kHz and reflect
the uncertainty of constants Eh=„ and rp, respectively. The
largest theoretical uncertainties are in the two-photon and
three-photon corrections and reflect uncomputed terms. (The
individual uncertainties of the Dirac energy and correction
due to the proton charge radius are large compared to that of
the experimental 1S1=2–2S1=2 transition frequency. As a re-
sult the uncertainties are highly correlated with a correlation
coefficient very close to one.)

The 2P1=2–2S1=2 transition, or Lamb shift, is equally im-
portant, because the Dirac or Bohr energies cancel, and
the dominant contribution by far is the self-energy correc-
tion, a QED correction where the bound electron emits and
absorbs a virtual photon. It is of order ˛3Eh as seen in
Sect. 29.7.1. The energy contributions to this transition are
shown in Fig. 29.6b, while the two best measurements of this
transition frequency are

�H.2P1=2–2S1=2/ D 1;057;845:0.9:0/ kHz Œ8:5 � 10�6�
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Fig. 29.6 Absolute value of the 13 contributions (gray bars) and their
uncertainty (red and orange bars) to the hydrogen 1S1=2–2S1=2 (a) and
2P1=2–2S1=2 (b) transition frequencies on a logarithmic scale. The val-
ues are sorted by the size of the contribution. The label next to each
contribution is defined in the text. The uncertainty of a contribution is
either fully due to the uncertainty of constants within QED theory, here
the Hartree frequency, Eh=„, and proton charge radius (orange bars),
or by the estimated value of missing or uncomputed terms (red bars).
The two transition frequencies have been measured to 10 and 9 kHz,
respectively

and

�H.2P1=2–2S1=2/ D 1;057;862.20/ kHz Œ1:9 � 10�5� ;

from research groups at Harvard University [42] and the Uni-
versity of Sussex [43], respectively. The theoretical value for
this transition from the 2014 CODATA least-squares adjust-
ment is

�H.2P1=2–2S1=2/ D 1;057;843:7.2:1/ kHz Œ2:0 � 10�6�

and is in agreement with the experiments. The largest contri-
bution to the theoretical uncertainty is due to the uncertainty

in the proton charge radius, while uncertainties from uncom-
puted terms in the two-photon and three-photon corrections
are much smaller than the experimental uncertainty.

In a naive least-squares adjustment that includes only
these two transitions, the Lyman-alpha line and Lamb shift
determine (relatively inaccurate) values for ˛ and me. Data
on other transitions and the measurements discussed in the
previous sections significantly decrease their uncertainties,
constrain the value for the proton charge radius, and check
for consistency. Indeed, the focus has shifted to comple-
mentary transitions in H [44, 45] and measurements on and
theory of muonic-hydrogen with the goal of resolving the
discrepancies in the determination of the charge radius of the
proton. In the 2014, CODATA adjustment muonic-hydrogen
data was not included.

29.7.1 Theory for the Hydrogen Energy Levels

Theoretical values for hydrogen energy levels as for the
bound-electron g-factor are determined by the Dirac eigen-
value, QED effects such as self-energy and vacuum polariza-
tion, and proton size and motion or recoil effects. Theoretical
energies of different states are correlated. For example, for
S-states, uncalculated contributions are primarily of the form
of an unknown constant divided by n3. This is taken into ac-
count by using covariances between levels in addition to the
uncertainties of the individual levels. Hence, we distinguish
between components of uncertainty that are proportional to
1=n3 and those that are uncorrelated, where necessary. They
are denoted by u0 and un, respectively.

We now consider each of the contributions to the energy
in turn, as well as explain how to combine the uncertainties
of the contributions. Table 29.4 gives a list of the contribu-
tions, their size both in terms of fundamental constants, as
well as order-of-magnitude numerical values for the 1S1=2–
2S1=2 transition.

Dirac Eigenvalue
The energy of an electron in a static Coulomb field with
charge Ze with infinite mass is predominantly determined
by the relativistic Dirac eigenvalue

ED D f .n; 
/mec
2 ; (29.39)

where

f .n; 
/ D
�

1C .Z˛/2

.n � ı/2
��1=2

; (29.40)

with defect ı D j
j �p

2 � .Z˛/2 and 
 is the angular

momentum-parity quantum number (
D�1; 1;�2, 2,�3 for
S1=2, P1=2, P3=2, D3=2, and D5=2-states, respectively). States
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Table 29.4 List of contributions and their main dependence on fun-
damental constants to the hydrogen transition frequencies ordered by
appearance in the text. The first two columns give the section in
Sec. 29.7.1 in which the contribution is described in detail and the name
of the contribution, respectively. The fundamental-constant dependence
of a contribution in the third column is given in terms of the Hartree en-
ergy Eh D mec

2˛2 and four dimensionless variables with values small
compared to one: the fine-structure constant ˛, the proton charge radius
divided by the reduced Compton wavelength rp=�C, and the mass ratios
me=m� and me=mp. The last column gives the order of magnitude of
each of the contributions in Hz for the 1S1=2–2S1=2 transition

Contribution Scaling �=h (Hz)
a Dirac energy Eh 1015

b Relativistic recoil .me=mp/˛
3 Eh 106

c Nuclear polarizability – 102

d Self-energy ˛3 Eh 1010

e Vacuum polarization ˛3 Eh 108

e Muon vacuum polarization .me=m�/
2˛3 Eh 104

e Hadronic vacuum pol. – 103

f Two-photon ˛4 Eh 106

g Three-photon ˛5 Eh 103

h Nuclear size .rp=�C/
2˛2 Eh 106

i Nucl. size on SE & VP .rp=�C/
2˛4 Eh 102

j Radiative recoil .me=mp/˛
4 Eh 104

k Nuclear self-energy .me=mp/
2˛3 Eh 103

with the same n and j D j
j�1=2 have degenerate eigenval-
ues. Finally, ` D j
 C 1=2j � 1=2, and we retain the atomic
number Z in the equations in order to classify the various
contributions to the energies.

Corrections to the Dirac eigenvalue that approximately
take into account the finite mass of the proton mp are in-
cluded in a more general expression for atomic energy levels.
That is, we replace Eq. (29.39) by [46, 47]

EM DMc2 C
�

f .n; 
/ � 1 � 1

2
Œf .n; 
/� 1�2mr

M

C1
2

1 � ı`0

.2`C 1/

.Z˛/4

n3
m2

r

m2
p

C : : :

)

mrc
2 ;

(29.41)

where M D me C mp and mr D memp=.me C mp/ is the
reduced mass. Note that in this equation, the energy of nS1=2-
states differs from that of nP1=2-states.

Relativistic Recoil
The leading relativistic-recoil correction, to lowest order in
Z˛ and all orders in me=mp, is [47, 48]

ES D m3
r

m2
emp

.Z˛/5

 n3
mec

2

�
�
1

3
ı`0 ln.Z˛/

�2 � 8

3
ln k0.n; `/� 1

9
ı`0 � 7

3
an

� 2

m2
p �m2

e

ı`0

�

m2
p ln

�me

mr

�
�m2

e ln
�mp

mr

���

;

(29.42)

Table 29.5 Values of the Bethe logarithms ln k0.n; `/. Missing entries
correspond to states for which no experimental measurements are avail-
able

n S P D
1 2:984128556

2 2:811769893 �0:030016709
3 2:767663612

4 2:749811840 �0:041954895 �0:006740939
6 2:735664207 �0:008147204
8 2:730267261 �0:008785043
12 �0:009342954

where an D�2 ln.2=n/� 2C 1=n� 2Pn
iD1 .1=i/ for `D 0

and anD1=Œ`.`C1/.2`C1/� otherwise. Values for the Bethe
logarithms ln k0.n; `/ are given in Table 29.5.

Additional contributions to lowest order in the mass ratio
and of higher order in Z˛ are

ER D me

mp

.Z˛/6

n3
mec

2


D60 CD72Z˛ ln

2 .Z˛/�2 C : : :
�
;

(29.43)
where D60 D 4 ln 2 � 7=2 for ` D 0 and D60 D
2


3 � `.`C 1/=n2

�
=Œ.2` � 1/.2` C 1/.2` C 3/� otherwise.

Finally, D72 D �11=.60 / ı`0. Recently, the coefficients
D71 and D70 have been computed [49, 50], where, in partic-
ular, the D71 was found to be surprisingly large. In [49], the
nuclear-size correction to ES CER was also computed.

The uncertainty in the relativistic recoil correction ES C
ER is

Œ0:1ı`0 C 0:01.1 � ı`0/�ER : (29.44)

Covariances follow from the 1=n3 scaling of the uncertainty.

Nuclear Polarizability
For the energy correction due to the nuclear polarizability in
hydrogen, we use

EP.H/ D �0:070.13/h ı`0
n3

kHz : (29.45)

The effect is neglected for states of higher `.

Self-Energy
The one-photon self-energy of an electron bound to a station-
ary point nucleus is

E
.2/
SE D ˛

 

.Z˛/4

n3
F.Z˛/mec

2 ; (29.46)

where the function

F.x/ D A41 ln.x
�2/C A40 C A50 x C A62 x

2 ln2.x�2/

C A61 x
2 ln.x�2/CGSE.x/ x

2 ;

(29.47)



444 E. Tiesinga and P. J. Mohr

with A41 D 4=3 ı`0, and A40 D �.4=3/ ln k0.n; `/ C 10=9

for `D 0 and�.4=3/ ln k0.n; `/�1=Œ2
.2`C1/� otherwise.
Next, A50 D .139=32� 2 ln 2/  ı`0, A62 D �ı`0, and

A61 D
�

4

�

1C 1

2
C � � � C 1

n

	

C 28

3
ln 2 � 4 lnn

�601
180

� 77

45n2

�

ı`0 C n2 � 1
n2

�
2

15
C 1

3
ıj 12

	

ı`1 ;

C


96n2 � 32`.`C 1/

�
.1 � ı`0/

3n2.2` � 1/.2`/.2`C 1/.2`C 2/.2`C 3/
:

Values for GSE.˛/ in Eq. (29.47) are listed in Table 29.6.
The uncertainty of the self-energy contribution is due to the
uncertainty of GSE.˛/ listed in the table and is taken to be
type un. See [51] for details.

Following convention, F.Z˛/ is multiplied by the factor
.mr=me/

3, except the magnetic moment term �1=Œ2
.2`C
1/� in A40, which is instead multiplied by the factor
.mr=me/

2, and the argument .Z˛/�2 of the logarithms is re-
placed by .me=mr/.Z˛/

�2.

Vacuum Polarization
The stationary point nucleus second-order vacuum-polar-
ization level shift is

E
.2/
VP D ˛

 

.Z˛/4

n3
H.Z˛/mec

2 ; (29.48)

whereH.x/ D H.1/.x/CH.R/.x/ with

H.1/.x/ D V40 C V50 x C V61 x
2 ln.x�2/C G

.1/
VP.x/ x

2 ;

with V40D�4=15 ı`0, V50D5 =48 ı`0, and V61D�2=15 ı`0.
Values of G.1/

VP.˛/ are given in Table 29.7. Moreover,

H.R/.x/ D G
.R/
VP .x/ x

2 with

G
.R/
VP .x/ D

19

45
�  2

27
C

�
1

16
� 31 2

2880

	

 x C : : : ; (29.49)

for ` D 0 and zero otherwise. Higher-order terms are neg-
ligible. We multiply Eq. (29.48) by .mr=me/

3 and include
a factor of .me=mr/ in the argument of the logarithm of the
term proportional to V61.

Vacuum polarization from �C�� pairs is

E
.2/
�VP D ˛

 

.Z˛/4

n3

�

� 4

15
ı`0

��
me

m�

	2�
mr

me

	3
mec

2 C : : : ;

(29.50)
while the hadronic vacuum polarization is given by

E
.2/

hadVP D 0:671.15/E
.2/
�VP : (29.51)

Uncertainties are of type u0. The muonic and hadronic
vacuum-polarization contributions are negligible for higher-
`-states.

Two-Photon Corrections
The two-photon correction is

E.4/ D
�˛

 

�2 .Z˛/4

n3
mec

2F .4/.Z˛/ ; (29.52)

where

F .4/.x/ D B40 C B50 x C B63 x
2 ln3.x�2/

C B62 x
2 ln2.x�2/C B61 x

2 ln.x�2/C B60 x
2

C B72 x
3 ln2.x�2/C B71 x

3 ln.x�2/C : : : ;

with

B40 D
�
3 2

2
ln 2 � 10 2

27
� 2179

648
� 9

4
�.3/

�

ı`0

C
�
 2 ln 2

2
�  2

12
� 197

144
� 3�.3/

4

�
1 � ı`0

.2`C 1/

;

B50 D �21:55447.13/ ı`0, B63 D �8=27 ı`0, and

B62 D 16

9

�
71

60
� ln 2C  .n/C � � ln n � 1

n
C 1

4n2

�

ı`0

C 4

27

n2 � 1
n2

ı`1 ;

with Euler’s constant � and Psi function  .z/.
Values and uncertainties for B61 and B60 are listed in Ta-

bles 29.8 and 29.9, respectively. For the S-state values, the
first number in parentheses for B60 is the state-dependent un-
certainty un.B60/, while the second number in parentheses is
the state-independent uncertainty u0.B60/. It is worth not-
ing that recently [32] computed an additional light-by-light
correction to B61 for S-states. It only shifts this coefficient
within its current uncertainty.

For S-states, the next term B72 is state independent, but its
value is not known. The B71 coefficient is state dependent,
although only the difference

�B71.nS/ D B71.nS/ �B71.1S/ D  

�
427

36
� 16

3
ln 2

	

�
�
3

4
� 1

n
C 1

4n2
C  .n/C � � lnn

�

C : : :

is known with a relative uncertainty un.�B71/ D 0:5�B71.
For our calculations, we use B71.1S/ D 0.

As with the one-photon correction, the two-photon cor-
rection is multiplied by the reduced-mass factor .mr=me/

3,
except the magnetic moment term proportional to 1=Œ
.2`C
1/� in B40, which is multiplied by the factor .mr=me/

2,
and the argument .Z˛/�2 of the logarithms is replaced by
.me=mr/.Z˛/

�2.
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Table 29.6 Values of the func-
tion GSE.˛/. Missing entries
correspond to states for which no
experimental measurements are
available

n S1=2 P1=2 P3=2 D3=2 D5=2
1 �30:290240.20/
2 �31:185150.90/ �0:97350.20/ �0:48650.20/
3 �31:04770.90/
4 �30:9120.40/ �1:1640.20/ �0:6090.20/ 0:03163.22/

6 �30:711.47/ 0:03417.26/

8 �30:606.47/ 0:007940.90/ 0:03484.22/

12 0:009130.90/ 0:03512.22/

Table 29.7 Values of the func-
tion G.1/

VP.˛/. No experimental
data is available for missing en-
tries. Zero values indicate that
their contributions are negligibly
small

n S1=2 P1=2 P3=2 D3=2 D5=2
1 �0:618724
2 �0:808872 �0:064006 �0:014132
3 �0:814530
4 �0:806579 �0:080007 �0:017666 �0:000000
6 �0:791450 �0:000000
8 �0:781197 �0:000000 �0:000000
12 �0:000000 �0:000000

Table 29.8 Values of B61 used
in the 2014 CODATA adjust-
ment. Zero values indicate that
their contributions are negligibly
small

n S1=2 P1=2 P3=2 D3=2 D5=2
1 48:95859024.1/

2 41:06216431.1/ 0:157775547.1/ �0:092224453.1/
3 38:904222.1/

4 37:909514.1/ 0:191192600.1/ �0:121307400.1/ 0:0.0/

6 36:963391.1/ 0:0.0/

8 36:504940.1/ 0:0.0/ 0:0.0/

12 0:0.0/ 0:0.0/

Table 29.9 Values of B60 used
in the 2014 CODATA adjust-
ment. The uncertainties of B60
for S-states are explained in the
text

n S1=2 P1=2 P3=2 D3=2 D5=2
1 �81:3.0:3/.19:7/
2 �66:2.0:3/.19:7/ �1:6.3/ �1:7.3/
3 �63:0.0:6/.19:7/
4 �61:3.0:8/.19:7/ �2:1.3/ �2:2.3/ �0:005.2/
6 �59:3.0:8/.19:7/ �0:008.4/
8 �58:3.2:0/.19:7/ 0:015.5/ �0:009.5/
12 0:014.7/ �0:010.7/

Three-Photon Corrections
The three-photon contribution in powers of Z˛ is

E.6/ D
�˛

 

�3 .Z˛/4

n3
mec

2ŒC40 C C50.Z˛/

CC63.Z˛/
2 ln3 .Z˛/�2 C : : :

�
:

(29.53)
The leading term C40 is

C40 D
�

� 568 a4

9
C 85 �.5/

24
� 121 2 �.3/

72
� 84;071 �.3/

2304

� 71 ln4 2

27
� 239 2 ln2 2

135
C 4787 2 ln 2

108

C 1591 4

3240
� 252;251 2

9720
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93;312

�

ı`0

C
�

� 100 a4

3
C 215 �.5/

24
� 83 2 �.3/

72
� 139 �.3/

18

� 25 ln4 2

18
C 25 2 ln2 2

18
C 298 2 ln 2

9

C 239 4

2160
� 17;101 2

810
� 28;259

5184

�
1 � ı`0

.2`C 1/

;

where a4 D P1
nD1 1=.2

n n4/ D 0:517479061: : :. Only par-
tial results for C50 have been obtained [52, 53]. We use
C50 D 0 with uncertainty u0.C50/ D 30ı`0. Finally, we use
C63 D 0 and un.C63/ D 1 for this unknown coefficient. Re-
cently, Karshenboim and Ivanov [54] determined several of
these coefficients. The dominant effect of the finite mass of
the nucleus is taken into account by multiplying the term pro-
portional to ı`0 by the reduced-mass factor .mr=me/

3 and
the term proportional to 1=Œ
.2` C 1/�, the magnetic mo-
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ment term, by the factor .mr=me/
2. The contribution from

four photons is expected to be negligible at the level of un-
certainty of current interest.

Finite Nuclear Size
For S-states, the leading and next-order correction to the
level shift due to the finite size of the nucleus is given by

ENS D ENS

(

1 � C� mr

me

rp

�C
Z˛ �

�

ln
�
mr

me

rp

�C

Z˛

n

	

C  .n/

C � � .5nC 9/.n � 1/
4n2

� C�
�

.Z˛/2

)

;

(29.54)
where

ENS D 2

3

�
mr

me

	3
.Z˛/2

n3
mec

2

�
Z˛ rp

�C

	2
: (29.55)

The coefficients C� and C� are constants that depend on the
charge distribution in the nucleus with values C� D 1:7.1/

and C� D 0:47.4/ for hydrogen.
For the P1=2-states in hydrogen, the leading term is

ENS D ENS
.Z˛/2.n2 � 1/

4n2
: (29.56)

For P3=2-states and higher-`-states, the nuclear-size contribu-
tion is negligible.

Nuclear-Size Correction to Self-Energy
and Vacuum Polarization
For the lowest-order self-energy and vacuum polarization,
the correction due to the finite size of the nucleus is

ENSE D
�

4 ln 2 � 23

4

	

˛.Z˛/ENSı`0 ; (29.57)

and

ENVP D 3

4
˛.Z˛/ENSı`0 ; (29.58)

respectively.

Radiative-Recoil Corrections
Corrections for radiative-recoil effects are

ERR D m3
r

m2
emp

˛.Z˛/5

 2 n3
mec

2ı`0

�
�

6 �.3/� 2 2 ln 2C 35 2

36
� 448

27

C 2

3
 .Z˛/ ln2 .Z˛/�2Cd61 .Z˛/ ln.Z˛/�2C : : :

�

:

(29.59)
The uncertainty is controlled by the unknown coefficient d61
inside the square brackets. We use d61D 0, u0.d61/D 10, and
un.d61/ D 1. Corrections for higher-`-states are negligible.

Nucleus Self-Energy
The nucleus self-energy correction for S-states of hydrogen
is

ESEN D 4Z2˛.Z˛/4

3 n3
m3

r

m2
p

c2

�
�

ln

�
mp

mr.Z˛/2

	

ı`0 � ln k0.n; `/

�

; (29.60)

with an uncertainty u0 given by Eq. (29.60), with the factor
in the square brackets replaced by 0.5. For higher-`-states,
the correction is negligible.

Total energy and uncertainty: the energyE.nlj / of a level
is the sum of the contributions listed above. Uncertainties in
the energy due to the fundamental constants, i.e., ˛, mec

2,
etc., are taken into account through a least-squares adjust-
ment. Uncertainties in the theory, i.e., from estimates of
missing and uncomputed terms in the contributions, are taken
into account with an energy correction ı.n j̀ /, with an un-
certainty that is the rms sum of the uncertainties of the
individual contributions

u2Œı.n j̀ /� D
X

i



u20i .n j̀ /C u2ni .n j̀ /

�
; (29.61)

where u0i .n j̀ / and uni .n j̀ / are the components of uncer-
tainty u0 and un of contribution i . Covariances of the ıs are

u


ı.n1 j̀ /; ı.n2 j̀ /

� D
X

i

u0i .n2 j̀ /u0i .n1 j̀ / : (29.62)

The corrections ı.n j̀ /, their uncertainties, and covariances
are input data in the least-squares adjustment. A value for
ı.n j̀ / returned by the adjustment that lies outside its un-
certainty indicates either an underestimate of the value of
uncomputed terms in the contributions or a role for unex-
pected physics beyond QED. No such discrepancies have
been found.
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