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Abstract

Theoretical issues in bound state quantum electrodynam-
ics are discussed with emphasis on a unified derivation
of radiative and recoil corrections with the use of Green
functions.
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28.1 Introduction

Quantum electrodynamics (QED) is now understood to be
a component of the Standard Model, the theory which de-
scribes the strong, weak, and electromagnetic interactions in
the framework of quantum field theory (QFT). It was histor-
ically the first QFT, describing the interactions of electrons
and photons, consistently incorporating quantum mechanics
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and relativity. Many of the seminal papers on the subject
are collected in [1]. Corrections to the lowest order predi-
cations of the theory are proportional to powers of «, the
fine structure constant. However, difficulties are encountered
with ultraviolet divergent integrals when setting up pertur-
bation theory in this small (& 1/137) parameter, and while
the first papers on QED date from 1928, the difficulties were
not overcome until 1947 [2]. Once the modern renormalized
form of QED was established, work on the perturbation ex-
pansion in « could proceed, and efforts by many researchers
that continue to the present day have led to theoretical predic-
tions of unparalleled accuracy for a number of systems. The
hydrogen atom in particular plays a central role in QED tests,
and the breaking of the Dirac degeneracy between the 2s and
2p1» states, the Lamb shift, will be discussed in some detail
below. Along with the Lamb shift, corrections to the Dirac
equation’s prediction g = 2, first explained by Schwinger [3],
are of central importance in QED. As bound state issues are
emphasized here, we note only that this anomalous magnetic
moment of the electron was first detected in hydrogen hy-
perfine splitting and Zeeman effect experiments, and that its
present status is discussed in Chap. 29 “Tests of Fundamental
Physics” in this volume along with a number of other extraor-
dinarily high-precision tests of the theory.

It is the purpose of this chapter to discuss how the the-
ory is applied to bound state problems. While almost every
textbook on QFT describes the basic structure of QED, the
applications given are usually to calculate scattering cross
sections, the evaluation of one-loop radiative corrections, and
the implementation of the renormalization program. The free
electron propagator, which has a relatively simple form in
momentum space, is used in the one-loop calculations. How-
ever, most of the precision tests of QED involve electrons
that are bound, generally in a hydrogen-like atom. Even for
the anomalous magnetic moment of the electron, which is
calculated in terms of free Feynman diagrams, the electron
is, in fact, bound in the constant magnetic field of a Pen-
ning trap [4]. While most QED effects require the evaluation
of loop diagrams, these bound state calculations have rela-
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tively unfamiliar features that will be concentrated on here.
It is, of course, important to test free QED with scattering
experiments at the highest possible energies. To a large de-
gree these tests have now merged with tests of the Standard
Model. Experiments, for example, on electron—positron an-
nihilation into muon or tau pairs have to include both the
photon and the Z boson in the intermediate state along with
a unified treatment of radiative corrections [5].

The fact that QED is part of the Standard Model affects
bound states in two notable ways. Because of the weak in-
teractions, parity nonconserving transitions become possible
through Z boson exchange, as discussed elsewhere in this
volume. The strong interactions, which in principle describe
the nucleus of the bound state in terms of QCD, cannot yet
provide precise predictions for charge radii and other nuclear
properties. This leads to limitations on predictions for atomic
structure. In this case, if QED is understood well enough, and
accurate experiments are available, atomic spectroscopy can
be used to obtain information about nuclear properties. At the
time of this writing a prominent example of this is the case
of muonic hydrogen, where measurements imply a smaller
proton size than had been expected [6].

The Lamb shift in hydrogen is smaller than the atomic
unit of energy (1a.u. = m.c?a?) by a factor a*, under one
part per million (ppm). For almost all electromagnetically
bound states such a tiny correction is negligible compared to
the uncertainty in the energy when solving the many-electron
Schrédinger equation, HY = Evr, where

N ) N
p;  Zoahe hea
H=Y (£ S
- (2m r; )+ |r

i>j=I i =15l
W = W(rl,r2,...,rN) .

Solving for a particular bound state energy E, this way we
refer to as the Hamiltonian approach. For a single electron
bound to any positively charged nucleus (which will be re-
ferred to as hydrogen for simplicity in what follows) this
uncertainty is not present, and QED corrections are easily
identified. For many-electron atoms, however, the electron—
electron interaction term usually makes it too difficult to
solve for E, with the accuracy required to see such cor-
rections. The techniques used to deal with the many-body
problem are rather different from those used for QED cor-
rections. While attempts to create a unified approach have
been made [7], the most advanced atomic QED calculations
have been carried out for hydrogen [8, 9]. To study QED
in atoms with more than one electron accurate solutions to
the structure problem are required, which are available for
few electron atoms, particularly helium, and certain highly
charged ions, as will be discussed below.
The Coulomb potential of the nucleus in Eq. (28.1),

Zahce

Ve(r) =— >

(28.1)

(28.2)

is responsible for the dominant physics of binding. It is, thus,
very useful to incorporate it into bound state QED calcula-
tions, which we will do here when we introduce Furry picture
QED [10]. This is an example of an external field approxima-
tion [11]. Such approximations are very good for an electron
in a classical electric or magnetic field, as a single electron
has essentially no effect on the charge distributions and cur-
rents that create the external field. In an atom, the success of
the Schrodinger equation shows that even a single nucleus
effectively creates an external field. In this case, the fact that
the nucleus is a single particle leads to observable corrections
to the external field approximation. They are called recoil
corrections, and if the nucleus is taken to have mass my,
begin in order m/my. They vanish in the limit of infinite
nuclear mass, which is called the nonrecoil limit.

The first QED treatments of recoil corrections were by
Salpeter [12, 13], using the equation he had earlier derived
with Bethe [14]. They formed a field theoretic function of the
total energy of hydrogen E that had a pole at E = E,, with
recoil corrections identified as the difference of E, with its
nonrecoil limit.

This approach can also be used to calculate nonrecoil cor-
rections in bound state QED, and the central purpose of this
chapter is to show how this technique allows a unified treat-
ment of both types of QED correction. The treatment also
leads to a rigorous justification of the external field approxi-
mation for hydrogen.

Three central objects in the following are the electron
propagator for one electron, the electron—nucleus propagator,
and the many-electron propagator. While the terms propa-
gator and Green function are basically synonymous, it is
convenient to designate propagators as functions of time, and
Green functions as time Fourier transforms depending on
an energy E. We will show that the latter have poles when
E = E, and develop perturbation theory for QED using this
behavior. While QED has a Hamiltonian, the analysis that
will be described here is based on the Green functions of
the theory, and the approach is fundamentally different from
the Hamiltonian approach. While for most bound state prob-
lems the Hamiltonian approach suffices, there are situations
in which an approach grounded in field theory is absolutely
necessary.

This chapter is organized as follows. In the next section
free QED is set up in Coulomb gauge, and photon and elec-
tron propagators introduced. The perturbation expansion in
the interaction picture is described, and the connection with
Feynman gauge, which is particularly useful for calculating
loop corrections, is shown.

In the next section, the Green functions for the free and
bound electrons are formed as time Fourier transforms of the
propagators, and the field theory based analog of Rayleigh—
Schrodinger perturbation theory developed. The formulas for
the one-loop electron self-energy and vacuum polarization
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are derived and analyzed, and a short discussion of the two-
loop Lamb shift is given.

In the following section, the approach is extended to
electron—nucleus scattering, with emphasis placed on the
emergence of the bound electron propagator in the limit of
infinite nuclear mass. The perturbation theory for recoil cor-
rections is described.

We then turn to the generalization of the method to many-
electron atoms, and mention some applications of QED to
highly charged many-electron ions. In the final section an
alternative to the Bethe—Salpeter approach to recoil cor-
rections is given, and remarks about nonrelativistic QED
(NRQED) [15] are made.

28.2 Basic QED Formalism

In the following, we work in SI units, keeping all factors of
¢, h, and gy. The photon momentum ¢ is understood to be #
times the associated wavenumber k. The electron and proton
charges are denoted ¢, and g,. The elementary charge e is
understood to be positive, so g, = —e and g, = e. In cal-
culations, we will replace e? with 4y#icega. The charge and
mass of the nucleus are gy = Ze and my. Before treating
bound states, we set up QED for free electrons. The elec-
tron field will be understood to describe either an electron
or positron state, and the vacuum is the state with zero elec-
trons, positrons, and photons, indicated by

bs(p)|o> =0
df(p)|0> =0
a(g)|0) =0. (28.3)

The destruction operators above have creation operator coun-
terparts, and the only cases in which photon operators do not
commute, or electron operators do not anticommute, are

[ax,(q1).a"2,(42)] = 2¥)*8,,1,8 (4, — 42)
{bsl (Pl)v stz (Pz)} = {d51 (Pl)s dez (P2)}

= (29)°8,,,8°(p; — p2) . (28.4)

The electron field operator is given by

dp
v = / )

+ 7 (pyu(p.s)]

with p-x=E,t —p-x, E, = /(mc?)? + ¢2p%;u(p,s) and

v(p,s) are Dirac spinors that form the projection operators

mc? -
E h? Z[eﬂ“/ "by(p)u(p.s)
p s

(28.5)

Eyyo—cy - p +mc?

As(p) =) u(p.9)i(p.s) = E
r

s

Eyyo +cy - p—mc’

2E,

A_(p) =) _v(p.s)i(p.s) =

s

(28.6)

The noncovariant normalization u'(p,s)u(p,s’) =
8, 0T (p,s)v(p,s’) = 8 is used.
The charge density and current in terms of the electron

field operators are

plx.1) = ¥ (x.OY(x.1)

Jx.) =y (x, Dy (x, 1) . (28.7)

Normal ordering of the operators, in which destruction op-
erators are moved to the right and creation to the left, is left
implicit. The free electron Hamiltonian is

Hy(t) = /dx&(x,t)[—ihca -V 4+ mc?Bly(x, 1) ;
(28.8)
H, without ¢ dependence indicated refers to the operator in
square brackets.

Turning to the quantization of the electromagnetic field,
as we use Coulomb gauge,

V-A(x,1)=0. (28.9)

This gives a constraint when quantizing A (x,¢), so that
only the physical degrees of freedom of photons need be
dealt with, and the field operator is

1< dg
At = Vﬁfo;/(zwwzm

x [a( )@ +a' QL i@ |
(28.10)

The scalar potential, which is not quantized, is fixed by

2 __p(x’t)
Vig(x.1) = el

(28.11)
and the Hamiltonian describing the electrostatic energy is

)
/dx/dy
SWSQ

y Ui Oy 0y (y.0v(y. 1)
lx — y| '

He(t) =

(28.12)

If the negative energy summation is removed from , this
Hamiltonian can be used to organize atomic many-body
perturbation theory (MBPT) calculations [16]. Historically,
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although QED was developed first, the power of the diagram-
matic approach was later applied to many-electron atoms
starting with the work of Kelly [17].

The remaining part of the interaction Hamiltonian comes
from the minimal coupling replacement ce - p — co - (p —

qeA(x,1)),
Hr(t) = —qecfdxA(x,z)-W(x,z)oup(x,z), (28.13)

where the subscript T stands for transverse.

The sum of H¢(t) and Hy(t) is the interaction Hamil-
tonian H;(¢) and enters perturbation theory through its role
in the time evolution operator U(t,, ;). After transforming
from the Schrodinger to the interaction picture through

[y (1)) = O ys(r)) | (28.14)

itis given by

t

15 2 5
Ulty, 1)) =1+ .i/dtH,(z)+ i /dt
in ih
n

n
t
X /d[/HI(l)HI([/) + ...

4l

t 2t2
—1+i/dtH(t)+ii /dt
T ! 21\in

n

0

15)

X /dl/T(H](l)H](l/)) +...

4l

- T(e# I df”'“)) . (28.15)

Of particular importance is its value for #{ = —o00, f, = 00,
denoted S, and the matrix elements, the S-matrix,

S = U(oo, —00)

Sei = (fIS]i) . (28.16)
When one encounters the vacuum expectation value of
a product of operators, a theorem due to Wick allows one
to rearrange it in terms of creation and annihilation operators
multiplying factors of the electron and photon propagators,

Sp(x.y) = —i(0|T (Y (x,0)¥(y.1))|0) (28.17)

and

DY (x,y) = —i{0|T(A' (x.) A7 (y.£)|0) . (28.18)

Their form in momentum space is relatively simple,

e ip-(x=y)/h

Sr(x. ) 1 d*p
X, = 73 = = N
PP =5 | @) poyo—7 -5 —me +ie

]
DU (x.y) = —— [ d“_qefiq-ufy)/hw.
) = ] BT
gohc J (2y) 4o —q° +ie
(28.20)

, (28.19)

D/ (x,y) is called the transverse photon propagator.

The compact form for Sg(x, y) given above can be ex-
panded into a form that separates positive and negative
energy states,

A_(p)
po+ Ey/c—ie’
(28.21)

1 _ A (p)
p—mc+ie  po—E,/c+ie

which will be used later.
If one wants the S-matrix for electron—electron scattering,
for example, one chooses

li) = b¥(p1.51)b" (P2, 52)]0)

(/1 =(01b(p3.53)b(py. 54) (28.22)
(the states are properly antisymmetrized because the oper-
ators anticommute) and applies Wick’s theorem. This pro-
cedure is greatly facilitated by a set of rules introduced by
Feynman; they can be learned quickly, and correct QED ma-
trix elements can be set up in an automatic way.

Unless the initial and final states are identical, the first
contribution to Sy; comes from the term linear in Hc.
Another term with the same number of factors g, comes
from the quadratic term with two Hyz’s. The latter involves
a transverse photon propagator between the electrons. It is
convenient to introduce a corresponding Coulomb photon
propagator in order to rewrite the H¢ term so that it also
arises from a quadratic term. This can be done by including
with D%/ another propagator, D®. If one generalizes D/ to
D™, with D% = D® = 0 and

1 d¢ . .. 1
D%x,y) = — | — L ¢ =0/h __
e =0e ] aur© pe
St—1) h
= 28.23
P (2829)

one reproduces Sy; by using

Hi(t) = qec/dxA“(x,t)l/_/(x,t)y"l//(x,t) (28.24)

and using the photon propagator in Coulomb gauge de-
scribed above.
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This simpler form for H;(t) comes at the apparent cost
of the more complicated photon propagator just described,
but the photon propagator is always encountered in the form
A,(q)D* B,(q). If one requires g* A, = 0 and ¢* B, =0,
a short calculation shows

A(]B(] q2AB—Aqu_ AoBo—A'B
q> q*(q5 — 9% 95 — 4>
_ AB,g"
>
(28.25)

where we will suppress the ie in the following for brevity.
Because of this one can use the simpler Feynman gauge prop-
agator

4 v
V[ 49 g8
heeg J Qy)4 2

The requirement that A*g, = B*q, = 0 can be shown to
be satisfied as long as a gauge invariant set of diagrams are
evaluated together. In the following, we will use both gauges:
Coulomb gauge is useful for recoil calculations and Feynman
gauge for calculations involving loops with ultraviolet diver-
gences.

In cases when a fixed external electromagnetic potential
is present, one would decompose

DR (x,y) = (28.26)

A (x) — AL (x) + A*(x) . (28.27)
quantizing only the second term. This is the external field
approximation [11]. The part of H; involving the external
field can then be grouped with H(z) so that, restricting our
attention to external fields constant in time,

Hy(t) = [dwa(x, t)[—ihcot -V —geca - Ay (x)

+mc*B + V(x) |y (x.1), (28.28)
with g, A% (x) = V(x). If the removal of the quantized
part of Hj is carried out in this case, the interaction picture
is referred to as the Furry picture [10]. This form of QED
is extremely useful, as it builds in the dominant physics of
binding, although at the cost of a more complicated electron
propagator.

In Furry picture QED, the photon propagator is un-
changed, but the electron propagator now depends on both
x and y rather than only on their difference. We distinguish
the free electron propagator Sr(x, y) from the bound prop-
agator by including a suffix V/, and define the related Green
function through

dE o
Sy (x.y) =[—e_‘E(’_’)/hG(E,x,y)yo. (28.29)

2y

When V(r) is the Coulomb potential, we call S}/ (x,y) the
Coulomb propagator, and G(E, x, y) the Coulomb Green
function. In general, the Green function satisfies
[E—(Hy+ V(x)]G(E.x,y)=8(x—y). (2830)
All information about the energy eigenvalues and eigenfunc-

tions is contained in G(E, x, y). This is most clearly seen
when it is represented as a spectral decomposition,

¥
G(E,x,y) — Z El//m(x)l//m(y) (28.31)

—en(1—1i0)

In this form, one identifies the eigenvalues ¢, as the position
of simple poles of E, with the eigenvectors associated with
the residue of the pole. (If there is a continuous distribution
of energies, the pole is replaced with a branch cut.)

To isolate a particular pole m = v, we form the projection

Go(E) = / dx / dy Y (©)G(E. x. y)¥(y) . (28.32)

which collapses the sum over m in the spectral decomposi-
tion, giving

1
GunlE) = = (28.33)
The related identities
1
[t @GE x ) = vl )
1
[0r6E s e = e @83

will also be used.

For the free case, we denote the Green function as
Go(E, x,y). It satisfies Eq. (28.30) with V' = 0, and a useful
representation of it is

1 dp elp-(x=y)/h

73 2y)? EVO—C}'-p—mcz—i-isyO’

(28.35)

GO(E’x’y) =

The two functions are related by

G(Eaxay) = GO(E7x’y)

+/ero(E,x,r)V(r)G(E,r,y),
(28.36)
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which leads to the expansion

G(E“x’y) = GO(E,x,y)

+/deo(E.x,mV(rl)Go(E,my)

+/dr1/dr2G0(E,x,V1)V("1)

X G(](E,F],rz)V(rz)G(](E, Vz,y) +...
(28.37)

A characteristic difficulty of the atomic bound state prob-
lem is that going to the next order in the expansion of
G(E,x,y) does not always lead to additional powers of «.
Each term is nominally of the same order, and in many cases,
the series must be summed to all orders. However, the ex-
pansion remains very useful. One reason for this is that the
ultraviolet divergences of QED are generally associated with
the first and second terms of the expansion, and isolating
them allows manipulations to simplify loop calculations. As
those are carried out in momentum space, we will need the
momentum space version of the expansion of Eq. (28.37),

Q2y)*8(p —q)
Eyy—cy - p—mc?

G(E.p.q)yo = h3[

1 4y Zoc
+ 270 2
Eyo—cy-p—mc* " |p—q|
5 1
Eyy—cy-q —mc?
N 1 dk
Evo—cy-p—m"" ] @yp
X41ﬂZotc 1
|p—k|> Eyo—cy - p—mc?
y 4y Zac 1 .
Pk —qP Evo—cy-q-—m2 " ]

(28.38)

An interesting feature of the Furry picture is the role of
negative energy states for many electron atoms. For free elec-
trons, the unitary transformation to the interaction picture is
unambiguous, chosen to subtract H;, and the spinors u(p, s)
and v(p,s) that enter the electron field operator are also
unique. For hydrogen, the solutions are solutions to the Dirac
equation in a Coulomb field, which are also unambiguous.
However, for many electron atoms, an extended Furry rep-
resentation can be used in order to account for some portion
of electron screening, and this can be done using any local
potential U(x). This extension involves introducing an addi-
tional interaction Hamiltonian,

H(t) = —[de(x)W(x,z)w(x,z) (28.39)

along with changing V(x) — V(x) + U(x) in Eq. (28.28),
and will be used when we discuss many-electron calcula-
tions. The positive and negative energy solutions to the Dirac
equation now depend on the choice of the screening poten-
tial. For the positive energy solutions, one then faces the
same problem as in the Hamiltonian approach. Except for
atoms with only a few electrons, the only practical way to
even form a wave function is to assume that all electrons
move in the same potential, so that a lowest order approxima-
tion of the wave function as a Slater determinant of occupied
states can be formed. When the potential is modified to in-
corporate screening, a modification of the Furry picture leads
to a replacement of the Coulomb potential with the screened
potential, as will be discussed later. The associated negative
energy states also depend on the potential, so that form-
ing a general projection operator to remove them, a useful
approximation in relativistic many body physics, is problem-
atical.

28.3 Perturbation Theory with Green
Functions

We now introduce the basic approach to calculating energy
levels in QED, which is to form a function of an energy E
that has poles at the eigenvalue E,. We first generalize the
lowest order electron propagator that we have been dealing
with to its exact form. This is done by starting in Heisenberg
representation, defining

$2(x, ) = (O|T (W (x)¥u (1))10) , (28.40)
sometimes referred to as the two-point function. We then de-
fine the associated Green function,

GZ(E,x,y) = _%/‘dteiEt/h

X (O|T (Y (x, )Wy (v, 0))|0)e /™
(28.41)

We have set ¢ = 0 and introduced a convergence factor with
the understanding that the limit ¢ — 0 is to be taken.

We next note that a positive energy state ¥, that satisfies
Hvyr, = E ¥, leads to a pole at E = E, once the integral over
positive values of ¢ is carried out. This is because for such
values the operators are already time ordered, and a complete
set of states can be inserted between them, so that

oo
G,(E,x,y) = _% Z/dtefst/heiEt/h
m 0

X (0l (x, 1) [m) (m|yr (v, 0)[0)
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__! it (E—E,,+ie) /h
— > [are
oo
X (O] (x,0)[m) (m|¥(y.0)[0) . (28.42)
X X1 X2 y
We have used
. . Fig.28.1 The Green function for one-loop self-energy
Vi (x.1) = ey (e, 0)e (28.43)

to remove the time dependence from the electron field oper-
ator. This makes it possible to carry out the ¢ integration, so
for a particular state v

1

P~ e
v

(28.44)

We now have a way of finding E, through the analysis of
Gy (E,x,y), an object that is well defined in field theory.
Of course, determining E), is tantamount to exactly solving
QED, so in practice, some kind of perturbation expansion
must be made. Going to interaction representation allows the
expansion to be derived through expanding the time evo-
lution operator. However, while Feynman diagrams can be
used for the expansion, instead of generating S-matrix el-
ements we will find modifications of the Green function
involving double poles, and the energy shifts will be the fac-
tors multiplying them. An extremely thorough treatment of
this approach is given by Shabaev in [18]. The basic idea fol-
lows by considering the second term in the Taylor expansion
of

1 1
E—¢,—8E, E—g¢,

n SE, n
(E —&y)?

(28.45)

The third term in the expansion will give a term with a triple
pole, and so on, but to generalize first-order Rayleigh—
Schrodinger perturbation theory to field theory it suffices to
find terms with double poles and identify the factor with §E,,.
As emphasized by Yennie [19], this approach to QED pertur-
bation theory allows one to examine a limited set of Feynman
diagrams contributing to a Green function. To find the shift
of a state ¥, (x) with energy ¢, one projects out that state as
described above Eq. (28.33), and reads off the energy shift
from coefficients of 1/(E — &,)>.

Transforming from the Heisenberg to the interaction rep-
resentation is done by including a factor of U(co, —00) in the
two-point function and dividing by the vacuum expectation
value,

OIT WY (x.)F (3. 0)]0)

R = o1010]

(28.46)

The denominator term eliminates contributions involv-
ing disconnected diagrams. We have already shown in

Eq. (28.33) that in lowest order, the projected Green function
has a pole at the Dirac energies ¢,. In particular, the 2s and
2py/2 are degenerate. The experimental measurement of the
energy difference of the state by Lamb and Retherford [20]
was an important impetus for developing methods to calcu-
late 6E,.

The first nonvanishing term in the Taylor expansion when
using Feynman gauge is from second order, as one needs
at least a pair of photon fields to combine into a propaga-
tor. The six electron fields contract into three propagators in
two topologies, the self-energy (SE) and vacuum polarization
(VP). We start with the self-energy, shown in Fig. 28.1.

dE .
Gse(E) = / 'E’/h q /dm/d}u

2"
x Sp(x, xl)VuSF (Xl, )y SE (x2.y)
x DtV (x1, x3) . (28.47)
The “outside” propagators S} (x, x1) and S} (x,, y) are next
replaced with integrals over the variables E; and Ej3 of
G(E;,x,xy) and G(E3, x,,y) using Eq. (28.29), and rep-
resented as spectral decompositions as in Eq. (28.31). The
interior Green function is written as an integral over E, of
G(E,, x,,x1) and left in that form. We collapse the sums as
described earlier. The integral over ¢ involves only S(x, x;),
and carrying it out gives a delta function that puts £y = E.

The remaining integrals over #; and #, force £5 = E and
E, = E — cqo, and we have a double pole term,
1 i€2 c
Gsg(E), = ———— dxd
SE( )uu (E—SU)2 80 / xay
d*q eax=»/n
4 WU( )VM
Qy)* ¢*+1id
x G(E —cqo,x,y)yoy"¥u(y) . (28.48)

The factor multiplying the double pole is identified with the
self-energy part of the one-loop Lamb shift,

) d4q elq-(x—y)/h
Es.=—4 dxd _
sp = —4piac’ / * y/(zw)“ ¢+

X Yy (x)7,G(ey — cqo, X, Y)yoy" ¥ (y) , (28.49)

where we have replaced E with ¢, in the numerator of G.
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Because the integral over ¢ is ultraviolet infinite, E?,;
is not defined as it stands. If the d*q integral were Eu-
clidean, the radial part of the integral would go as ¢°dq:
the denominator at large ¢ goes as g3, so it is nominally lin-
early divergent. Before meaningful results can be calculated,
two steps are needed: regularization and renormalization.
Regularization involves making the integral a finite quan-
tity, for example by cutting the ¢ integral off at a large
momentum A. Renormalization then involves showing that
terms that diverge when A goes to infinity have the effect
of changing quantities like the electron mass and charge. In
a renormalizable theory such as QED, a limited number of
renormalizations lead to finite results, with residual terms de-
pending on the regularization vanishing in the limit.

An important breakthrough made in QED, which had ba-
sically been stalled for years by these infinities, was the
realization they were present for both free and bound elec-
trons. To show this, it is useful to present the self-energy term
in momentum space,

O _ _dyiac® [ d'q 1 [ dp, dp,
SE Ao Qtqr ] Qv ) @y
X Uy(p2) v Gey — €qo. Pr — 4. Py — q)

X yoy*¥ru(py) (28.50)

and examine the first two terms in the expansion of the Green
function given in Eq. (28.38).

Introducing a four-vector p = (g, /c, p), the first term, the
“zero potential” or OP term, can be written as

@ _ 1

or = 2 W — = (P)Z(P)Vu(p) .

(28.51)

where

. d*q 1
X(p) = —‘Wla/ Qo
(v —cqo)yo —cy - (p —q) + mc*
X Y
(g — p)* —m?c?

)

(28.52)
and the identity

p—lmc _ phme (28.53)

P2 —m2c?
has been used. (If, instead, Eq. (28.21) is used for the electron
propagator, it can be shown that there is a linear divergence
present in the two parts that cancels.) We proceed by com-
bining the denominators using

1

1 1
AB / ST BO—p (2859
0

and find

1
d*q
@9y / d
Yuly - (p q) + me)y*

[(q —xp)? —xm?c2(1 = (1 = x)p?/(mc)H)]|?
(28.55)

5(p) = ~aviac [

In this form, it is not hard to see that the divergence is log-
arithmic: the linear divergence, associated with the factor g s
vanishes by symmetry after transforming ¢ — g + xp.

A powerful technique to regulate these infinities is di-
mensional regularization [21], where d*q — dqod"q, with
r = 3 — ¢. With ¢ small but nonzero, the integrals above
can be done after transforming to a Euclidean form through
go — iq4. After defining a constant C = (4y)*/2I'(1 + ¢/2)
and then expanding the result to order &°, one has

3C ¢
20 =5 (5 + 1=y (5 +1Jeor-me
o 2 2
_@[dxlna—(l—x)p /(me)?)

x [me?(1 4 x) — (1 — x)(cp — mc?)] (28.56)
For an on-shell free electron, only the first term survives and
is termed the second-order electron self-mass, §m®. It has
the effect of shifting the electron mass from m to m 4+ §m®.
This is to be identified with the observed mass of the electron,
so if we use the observed mass in propagators, a renor-
malization counterterm must be included in the interaction
Hamiltonian.

For a bound electron, the counterterm also removes the
divergent self-mass term. The realization that a renormaliza-
tion process that accounted for the changed meaning of the
mass of free electrons would remove a divergence of bound
electrons was a crucial step in establishing the modern form
of QED. However, a divergence still remains for hydrogen.
It is also removed by another renormalization, but because
of an identity associated with current conservation, also di-
rectly cancels with a divergence from another part of the
self-energy, the one-potential (1P) term.

The 1P term comes from the second term in Eq. (28.37),
which is represented by the vertex diagram shown in
Fig. 28.3. If we now define the two four-vectors p; =
(ey/c, py) and p, = (g,/c, p,), this part of the self-energy
is

1 d d -
9= (2;; (233% (P To(p2. 1)
X Y (p) L2 (2857)

P2 P1|2’
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with
4
d*q iy“ 1
QY+ q?" pr—g—me
1
®, (28.58)

Iy(p2, p1) = —‘Wia/

XY m 4
As with X (p), I',(p2, p1), the one-loop vertex, is a standard
one-loop expression that can be evaluated independently of
the bound state problem. When it is sandwiched between on-
shell electron wave functions, it can be expressed in terms of
two form factors,

oy
y(p2p) = o Fi(@) + Pa@) 22 (28.59)
mc

where ¢ = p, — p;. Note that ¢> = —|p, — p,|>. While
we will concentrate on Fj(g?), we note that F»(g?) goes to
a /2y when ¢ is small compared to mc, which is the case
for atomic momenta. This gives a contribution to the leading
order Lamb shift, and in the case of the external field being
a magnetic field gives the Schwinger correction [3].

The F;(¢?) has two divergences, the first being the same
kind of ultraviolet divergence that dimensional regularization
controls, and the second an infrared divergence. Although
there is no infrared divergence in E f?, the requirement of
being on shell induces one in F|(g?). For small values of g,
one has

0 _ o (C o g m_cz_é)
Fl(q)_2¢(8+l)+3w(mc)2(ln e 8)°
(28.60)

where ¢ is a lower cutoff energy used to regulate the infrared
divergence. The ultraviolet divergence can be seen to cancel
with the OP term after using the Dirac equation.

After noting the cancelation of the ultraviolet divergences,
while the calculation of this term can be carried out numer-
ically, one can immediately determine important properties
of the energy shift by considering the form given above. In
particular, the term of order q2 in Fj, when put into E 1(;),
leads to a factor of the wave function at the origin squared,
as the p, and p, integrations are decoupled and can be car-
ried out separately. Using the nonrelativistic form, this leads
to a logarithmic term

mcta(Za)* 4 mc?

(2
Ep ~ n
1P yn3 3 &

(28.61)
The factor multiplying 4 /3 In mc? /e characterizes the basic
size of the Lamb shift. Compared to the scale of Bohr ener-
gies, mc2(Za)?, the effect is suppressed by a factor a(Za)?;
while less than a ppm effect at low Z, it can be of order of
a percent at high Z, as will be discussed later.

If the replacement & — m(Za)? is made, the cutoff form
factor term gives, for s-states,

mcla(Za)* 4

AE = -
yn3 3

In(Za)?2, (28.62)
the largest contribution, at 1334.801 MHz, to the Lamb shift
in hydrogen. As the measurement is about 1057 MHz, the
constant term is also important. It involves energies less than
the cutoff and is sensitive to atomic structure. It receives con-
tributions from each term in the expansion of the propagator
we have been using, but the sum of the terms, the Bethe log-
arithm, can be numerically evaluated to high precision [22].

While the lowest order contribution to the self-energy, of
order mc?a(Za)*, is understood, it is corrected by powers of
Z o along with logarithms of Za, referred to as binding cor-
rections. While the difficulty of the calculations increases as
the power increases, they have been carried out to the high or-
ders described elsewhere. However, for high Z this approach
breaks down, and a numerical calculation is needed. For this
reason, we now turn to a discussion of these calculations. We
note, however, the useful constraint of requiring that the nu-
merical methods, which work at any value of Z (although the
numerical difficulty increases as Z gets small), agree with
the power series expansion at low Z.

While the program began in 1955 [23, 23], numerical con-
trol to high accuracy was only relatively recently achieved.
To set the calculations up, one first carries out the d ¢ inte-
gration and does the Wick rotation gy — iu/c in Eq. (28.49).
Both the Coulomb Green function and the photon Green
function are expanded in partial waves. Using spherical sym-
metry allows the four angle integrations to be done, leaving
a sum over partial waves of a three-dimensional integral. The
main difficulty for the numerical approach is the fact the
summation over partial waves extends to infinity. The most
accurate values have been presented in [25], where acceler-
ation techniques are used to extrapolate the sum to infinity,
after which the radial and energy integrals are done. Highly
accurate results have been presented for then = 1 andn = 2
states for all Z in [26]. In this case, the integrations are car-
ried out before the partial wave expansion, but subtraction
techniques, to be discussed below, are used to make the par-
tial wave expansion converge very rapidly, so that fewer than
20 terms are needed [27].

All numerical approaches involve subtractions, which are
done in a number of ways. We have already examined the
first and second terms in Eq. (28.37). The finite terms left
over after the ultraviolet divergent terms have been canceled
can be accurately evaluated, so if we add and subtract Eé? +
E f?.) from the one-loop self-energy but express the subtracted
part in coordinate space, we have an ultraviolet finite coordi-
nate space term to deal with called the many-potential (MP)
term. It is called this since only the second-order and higher
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terms in Eq. (28.37) remain after the subtraction. This ap-
proach was suggested by Blundell and Snyderman [28] and
has been used extensively.

This procedure involves subtracting, using a shorthand
notation for the second term in Eq. (28.37), GV Gy. Origi-
nally, however, Mohr [29] instead subtracted a term G I7G0,
where, undoing the shorthand notation,

V(x2) + V(x1)
2
x/deo(E,xz,w)Go(E,w,xl). (28.63)

GyVGy =

The integral over w can be carried out using

/deO(E,xz,w)Go(E,w,xl)

/ Z 1pm(xZ)Wm(w) Z %(w)% (x1)

E—é¢p E —e¢,

Y (X2) U (1)
Z (E - Ep)?

d
= ——G(](E X2, X 1) R

28.64
1B ( )

and a much simpler function results. This allowed the first
accurate calculations of the self-energy for a range of Z [29].
The argument just given for two Green functions applies to
the product of any number of them, resulting in successively
higher derivatives of a single Green function. This was used
in [27] to form the subtractions mentioned above.

A set of corrections to the self-energy arise when it is
perturbed that illustrate other aspects of the Green function
perturbation theory expansion [30-32]. These corrections
must be evaluated, for example, when dealing with radiative
corrections to the Zeeman effect. For laboratory magnetic
fields, the energy shift of a bound electron in an atom, E,
need be treated only in first order. However, to include the
effect of the one-loop self-energy (which in the nonrela-
tivistic case is dominated by the Schwinger correction), one
must treat the diagrams of both figures (Figs. 28.2 and 28.3).
(For Fig. 28.2, the Green functions are understood to be
G(z,x, y) rather than Gy(z, x, y), and the vertical photon
line as the magnetic field rather than the Coulomb field of
the proton.) The latter diagrams have four electron propaga-
tors. We recall that for the one-loop self-energy, one of the
three propagators was not decomposed, and the other two
gave a double pole.

The same arguments apply to Fig. 28.2, and one leaves
both interior propagators unexpanded. For the diagrams of
Fig. 28.3, one encounters terms involving X (p), but with
argument E not replaced with ¢,, sandwiched with various
states. Because only one propagator is left “as is”, there is
a triple pole at £ = ¢,. The triple pole itself gives no new

Fig.28.2 GV G contribution

Fig. 28.3 Green functions leading to derivative and perturbed orbital
terms

energy shift, but there are two ways a residual double pole
can be generated. The first comes from expanding

Y(E)=Y(ey) + (E—e)) X (gy) + ... (28.65)
and is called the derivative term. The second comes from
restricting one of the “outside” propagators so that m # v,
which again leads to a double pole. (The excluded term
is associated with a cross term in the Taylor expansion of
1/(E—X,,— Ez).) This is referred to as a perturbed orbital
term, since one can form a state |0) and show that the term is
2i(ey) + Xy (ey). If written as

AEpo = Z[(vIEImHmIWz}) N (vIVIm)(m|2|v)} |

Em — €& &
m=v m v m

— &

(28.66)

the close relation of the term to second-order Rayleigh—
Schrodinger perturbation theory is seen.

The self-energy term discussed above has both the elec-
tron and the photon propagate from the same initial point
to the same final point. Another term in which the photon
propagates from x; to Xx,, but the electron propagates from
X, to the same point is present, called the vacuum polariza-
tion term. The diagram representing it is shown in Fig. 28.4.
If one expands the electron propagator using Eq. (28.37),
only terms with odd powers of V' contribute. The term lin-
ear in V gives the bulk of the effect and is called the Uehling
term. The exact calculation was considered in [33], where
it was shown that a partial wave expansion can be formed
of the difference of the full VP with the Uehling term. The
resulting Wichmann—Kroll terms are quite small. The fact
that the basic expression for vacuum polarization involves
G(E, x,,x;), which is very singular, was analyzed in [34]
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Fig.28.4 Green function for vacuum polarization

using an alternative to dimensional regularization, Pauli—
Villars regularization [35]. We present some details of the
calculation, which illustrates charge renormalization.

Following the same steps as with the self-energy, we note
that the energy of the photon line, cqy, is now forced to van-
ish, which allows the ¢ integration to be carried out, leading
to a double pole with factor

X 1)YoYuYv(x1)
|x1 — x5

E‘%l = iahc[dxldxzwv(

X / d—ZTr[y"G(z, X2, X2)Y0] - (28.67)
2Y

The ;1 = 0 component of this then describes the Coulomb

field of the charge density of the state v interacting with an

electron looping from the point of interaction back to the

same point.

Pauli and Villars [35] analyzed the ultraviolet infinities
of one-loop vacuum polarization and showed that they could
be regularized by introducing two similar expressions, but
with the electron mass (m = M) replaced by either M,
or M,. If the two expressions are multiplied by the factors
(M3 — M2)/(M3 — M) and (M? — M)/ (M7 — M), re-
spectively, and added to the original term, they showed the
ultraviolet infinities were eliminated, and explicitly finite ex-
pressions could be analyzed. It is of interest to show how the
calculation works for the case M| = 20M, and M, = 30M,,
even though they are understood to be taken to infinity after
renormalization.

If one starts by considering the energy of a positive charge
e in the Coulomb field of a fixed proton, one has Ey(r) =
hca/r. The effect of vacuum polarization on the energy
breaks into two parts. One part is proportional to the lowest
order energy,

1(}’) —7[C11H%+C21n£:|E0(}’)
= (Z3— D) E,y(r) . (28.68)

For the Pauli—Villars masses chosen, Z3; = 1.004 138. Even
though in the limit of infinite masses this so-called photon

renormalization constant is formally infinite, the smallness
of @ and the slow increase of the logarithm function make
this formally infinite term close to 1 for the values chosen.
As with the electron mass renormalization, one must real-
ize that this contribution is always present when two charges
interact. If one could somehow suppress the effect of vacuum
polarization, the effective elementary charge, which is called
the bare charge e, would be smaller. The effect of E(r) is to
renormalize e, to the observed charge e through e = eg/Z3.
Alternatively, one can simply work with the observed charge
and drop E;. In either case, the finite remainder is what of
interest. The Uehling term is the term independent of C and

C2 in
t4)

x [e* T 4 Cre? Ser + Che™? . ”] .
(28.69)

Es(r) =

121//2 Eo(r)/dl’v (

It plays a role in the Lamb shift, and by itself would act to
make the 2s state more strongly bound than the 2p,, state.
The other two terms are small and can be shown to vanish
quadratically for large values of the masses M, M.

Our using finite masses allows a central point about the
renormalization program to be emphasized. As long as one
works with renormalized quantities, finite calculations can be
carried out. As shown in the example here, there is some de-
pendence on the masses; however, there is little sensitivity
to it, technically because of a quadratic falloff. A renor-
malizable theory in this picture should be thought of as
insensitive to the high energy behavior: even if there is some
new physics associated with the large momentum part of the
loops, the predictions of a renormalizable theory like QED
will change very little.

An important, relatively recent advance in exact calcula-
tions is in the two-loop Lamb shift. As with the one-loop
case, both expansions in Z« and numerical treatments have
been made. An example of a contribution is the overlapping
loop diagram (Ov) shown in Fig. 28.5.

d*q; d*qp 11
Q14 924 5 2/dxdzdw
2y 2Y)* g7 45
xdy ¥, (x)y,G(ey — cqig, X, 2)
x y'G(e, — cqiy — Cqag, Z, W)

X Y1 G(ey — qag. w, Y)Yy P (p)ed /0
(28.70)

Egg(OV) =a’ct

A striking feature of the expansion in Z« was the discov-
ery of a very large coefficient by Pachucki [36], who found

mcla*(Za)*

@ _
Esg = v

[0.538941 —21.55447(Za) + .. ]

(28.71)
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Fig.28.5 Representative two-loop Lamb shift diagram

This emphasizes the need for the numerical approach for
even moderate values of Z, as the above function changes
sign by Z = 4. A recent discussion of the present status of
two-loop calculations can be found in [37].

28.4 Two-Particle Bound States

We have so far dealt with hydrogen using the external field
approximation, with the only role of the nucleus being the
creation of a static Coulomb potential. We now will treat
the nucleus dynamically, so that we must deal with two-
particle bound states. To firstly justify the approximation,
and secondly set up a perturbation theory to evaluate correc-
tions to it, specifically recoil corrections, we now generalize
G,(E, x,y) from Eq. (28.41) to

G4(E7x17x27)’17)’2)

oo

_ _% [ dre™E M (O T (g (31, 1) rr (x5,1)

—00

X U (¥1.0)¢r (v,,0))[0) .

Because the structure of the proton brings up issues not di-
rectly related to what we want to stress, it is convenient
to treat it as a positive muon, so the field ¢ denotes that
particle. No external field is now assumed, so the perturba-
tion expansion will involve the free electron propagator, with
mass denoted 7, and the free muon propagator, with mass
denoted m,.

The argument given previously for G,(E, x, y) showing
that a pole is present carries through almost unchanged. The
only difference is that to eliminate the time dependence from
the product of the two operators one writes, after choosing
t > 0 and inserting a complete set of states,

Olyu (x1, 1)pn (x2,1)|m)
— (O|eiHI/he_iH[/th(x1, t)ein/he—th/h

1Ht/helet/h

(28.72)

X ¢ (x2,1)e |m)

= {01y (x1, 00y (x2, 0)[m)e~Fn /7
This argument can clearly be extended to a string of any num-

ber of operators, and the conclusion that a pole at £ = E,, is
present is the same.

(28.73)

Fig.28.6 Two-rung ladder diagram

We again begin by transforming to the interaction picture,
but use Coulomb gauge rather than Feynman gauge. In low-
est order,

OITW (x1, D¢ (x2, )P (y,1)P(y5.1))[0)
= —[SF(xl,yl,t —[,)]1[SF(xZ,y2,l —[/)]2 R (2874)

and we introduce a free propagator

So(x1,%2,¥1. ¥2.8 = 1)abca
= [SF(xla y17[ - t/)]db[SF(x2a y27[ _t/)]c‘d . (2875)

Binding is associated with an infinite summation of Coulomb
photon exchanges described by the function, now taking t' =
O’

SL(xlvxZaylvyzv[)ah.cd
= So(xl,x27y17)’2,t)ab,cd

+/dwldw2dth0(xlax27 wi, w27[_tw)ae,cf

“Voeg Yori |SL(W17 W, Y1, Yo, tw)gbid -

(28.76)

|[w; — w,

Expanding this leads to a set of terms whose Feynman di-
agrams look like a ladder, with the Coulomb interaction
forming the rungs. A two-rung ladder is shown in Fig. 28.6.

Before analyzing S;, it is useful to form the Green func-
tion of Sy and analyze it. It is

GO(E7xl7x27yl7y2)

oo

i ‘
— [ dre S (x1,1,y,,00Y (x2,1, 5, 0)

—00
. o0
! [ dz[ dEy [ dE> sippykayn
P 2w | 2v
—00
X [Go(Er, x1, ¥ )Voli[Go(E2, X2, y,)Yol2

. [ dE
= —1/ 2—1//1[G0(E1,x1,y1))/0]1

X [Go(E — E1,x2,¥5)Y0l2 -

(28.77)
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Using Eq. (28.35) and the decomposition given in
Eq. (28.21) then gives

GO(E5x17x25y]7y2)

_ L (4B [ 4Py ey [ 4P2
me ) 2y ) @2y) 2y)?
X eipz~(xz—yz)/h|: A (py) A_(py) :|
El_Epl +18 El +Ep1 —18 1
% Ay (py) A_(p,y)
E—-E —E,+1is E—El—i-Epz—iSz'

(28.78)

Finally, using the Cauchy residue theorem to carry out the
E| integration gives

GO(E7xl5x27y17y2)
L[ 9P ety
he ] (2y)?
dp, eiP2(x2=y2)/h [AL(p))i[A+ ()]
2y)} E—E, —E,, +i6
_ [A(p)I[A-(p))]2
E+E, +E,—i§

(28.79)

The early calculations of recoil effects used this relatively
complicated Green function. However, one has the freedom
to work with simpler expressions, as long as the difference
between the Green functions is accounted for in perturbation
theory. The term with two factors of A__ is small and can be
dropped. We further note that one can avoid the need to use
the Cauchy residue theorem by the following manipulation.
The A, part of the muon propagator in Eq. (28.78) has
a denominator that can be rewritten as

1
E—E —E, +i

1 1
- |:E—E1—Ep2+i5_E—El—Epz—i8:|
1
E—E —E,,—if

+

1
Ei—E,, —i8
(28.80)

= “2Yi8(E| — (E = Epy)) + =—

This motivates using an approximation to the muon propaga-
tor,

[Go(E — E1, X2, y2)Yol2

s —2YAS(E — B)8(xs — y2)|:1 + %

2

} . (28.81)
2

where E = E — myc?. The term not involving the delta
function has been dropped because it has a pole that is on

the same side of the axis as the pole associated with the
electron’s positive projector term and, thus, fails to vanish
only for the electrons negative energy projector, which gives
a small result. For purposes of illustration, we have further
approximated E,, = myc? and A, = £, the m; — oo
limit, although for practical calculations, it is useful to retain
some parts of the muon propagator. When this approxima-
tion is made in the ladder diagrams, the muon propagators
essentially drop out of the calculation; the position variables
are all forced to all be at the same place, which we choose
as the origin. If one creates the Green function of S; from
Eq. (28.76), approximating the muon line as just described,
it now effectively depends only on the electron variables, and
one can show it satisfies

GL(valﬂyl)
= GO(E’x’y)VO
ahc
+[deO(E,x,w)yoﬁGL(E,w,y). (28.82)
w

The muon positive energy projector [(1 4+ yo)/2], is under-
stood as a common factor. Outside of that factor, this equa-
tion is identical to that satisfied by the Coulomb Green func-
tion, leading to the expansion previous given in Eq. (28.37)
when V' is a Coulomb potential. However, we know that
this Green function has poles at the Dirac eigenvalues, so
although we started with free propagators, we now have an
function of E that has poles at the nonrecoil values and can
now start building in the effect of recoil.

Once we have a Green function that has bound state poles
that approximate the full Green function, recoil corrections
can be found in the way we described previously. Since now
we can represent this approximated Green function as a spec-
tral representation of the form in Eq. (28.31), although with
the wave functions 1, we now have a muon component mul-
tiplied in, the goal (which involves some fairly complicated
manipulations that we will not show here) is to set up an
equation of the form

Gy =G + GLOKGy (28.83)
w here §K is formed from both pure “kernels”, diagrams
that cannot be split in two by a cut through the electron and
muon lines (unlike Fig. 28.6) and the effect of simplifying
the Green function. Approximating G4 with G on the right-
hand side can be seen to give a double pole, with an energy
shift equal to the matrix element of K.

An example of this kind of calculation applied to positro-
nium hyperfine splitting is given in [38, 39]. The heart of
the calculation involves the treatment of kernels with three
exchanged photons in Coulomb gauge. The calculation was
originally done by Pachucki [40], and while quite different
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in many details, requires the evaluation of the same set of
diagrams.

An important generalization of the Bethe—Salpeter ap-
proach is having the two bound particles being electrons in
helium and accounting for the nucleus by using the Furry
picture. This program was carried out by Araki [41] and
Sucher [42]. As with recoil calculations, the basic step is
consideration of an infinite ladder of Coulomb exchanges.
In place of free propagators between the rungs, one has
Coulomb Green functions. By carrying out approximations
valid in the nonrelativistic limit one can form a Green func-
tion with poles at the nonrelativistic energies known from
solving Eq. (28.1) for two electrons. As stressed earlier, be-
cause these lowest order energies can be determined with an
accuracy far exceeding the level at which QED corrections
enter, the study of these corrections is quite advanced. How-
ever, the present state-of-the-art calculations are carried out
in the framework of NRQED, and we defer the discussion of
helium to the concluding remarks.

28.5 Many-Electron Bound States

The incorporation of QED effects in many-electron bound
states is a problem of fundamental interest, although as em-
phasized earlier, it must be possible to solve the Schrodinger
equation with high accuracy. As a matter of principle,
though, we now wish to show that the use of Green func-
tions allows a QED approach to the many-electron problem.
It now has to describe both radiative corrections and the
exchange of photons between different electrons consis-
tently.

An active subfield of QED is the study of highly charged
ions, generally with two or more electrons remaining after
the others have been stripped from a high Z atom. Relativis-
tic and QED effects are enhanced in these ions, and a QED
treatment is needed. In highly charged ions, the dominant ef-
fect on electrons is their attraction to the nucleus, and it can
be shown that electron—electron interactions have a factor
1/Z and can be treated in perturbation theory. This can lead
to situations where one can, indeed, study the larger QED ef-
fects relatively free of structure uncertainty, and the study of
the spectra of some of these ions now provides tests of QED
in intense Coulomb fields.

A treatment of the QED alternative to the Green function
approach described here is afforded through S-matrix tech-
niques [43, 44]. In these calculations, an adiabatic factor &
plays a central role. It is used to “turn off” Hj at large pos-
itive and negative times. An example of how it works for
the sodium isoelectronic sequence is given in [45]. Here, we
show some of the features of the Green function approach.
To be specific we work with lithium-like ions and consider

a six-point Green function. One starts with

G6(E,x1,X2,%3,¥1,Y2,¥3)

oo

=—%}/dm“”ﬂmﬂwHubanuLowHuao

—00
XU (1. 0T (2. 0Tr(y3. 0)[0) . (28.84)
The formal treatment showing the presence of poles at £ =
E, is identical to the earlier discussion. To carry out calcu-
lations one uses the Furry or extended Furry picture, with
either a Coulomb potential or some screened potential defin-
ing the states.

With many electrons present, these states are Slater deter-
minants of occupied orbitals, and the starting point of QED
calculations is the same as for MBPT calculations. The non-
radiative QED terms, in fact, have a close relation to the
MBPT expansion. For the example here, if considering the
ground and first excited states, one would use

VY =bT,bT,b7]0) , (28.85)
with v being a 25, 2py /2, or 2p3,; state, and a and b the two
spin states of the 1s state.

In lowest order, the energy should be the sum of the three
energies of the populated states, in this case €, + 2¢,. It actu-
ally takes a little work to show that the energies add, but the
calculation is instructive. The lowest order Green function
has three electron propagators, with associated integrals over
E,, E,, and E;. The t integration then gives a delta function
of E — E| — E, — E5. Using it to eliminate E3, say, leaves
an integral over E| and E; of the form

dE, 1 1
29 Ey —e, +16 E, — &) + ie
1
X — .
E—EI—E2—SU+18

dE
2y

(28.86)

Because the three states all have positive energy, the E; and
E, integrations can be carried out with Cauchy’s residue the-
orem, giving the expected factor

1
E—FE,—E,—Ep

(28.87)

One can then proceed finding double poles to find the shift
of the energy.

The self-energy and vacuum polarization terms enter in
the same way as for hydrogen, with the other electrons
as “spectators”. If the extended Furry picture is used, the
Coulomb Green function cannot be used, and the Green func-
tion must be formed numerically. Unless the ion studied is
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hydrogenic, one must account for the interaction between
electrons. A perturbative treatment works well for highly
charged ions that have a simple electronic structure, particu-
larly ions with one valence electron and a filled core. In place
of the helium treatment, where the Coulomb interaction be-
tween the electrons was treated to all orders, one calculates
order by order, with diagrams roughly ordered by the number
of photons present.

An example of how QED has been tested is provided
by lithium-like bismuth. This is a case where QED calcu-
lations have been carried out [46, 47], and at the level of
the one-loop Lamb shift, one can see that extra physics must
be included. The accurate measurement required for QED
effects to be studied was provided by measurements in the
LLNL EBIT [48], where

E =2788.139(39) eV (28.88)
was found for the 2 p3/, — 2s splitting.

Before including the Lamb shift, calculations not includ-
ing it were carried out in a range of screening potentials.
Despite starting off differently, inclusion of up to three-
photon exchange diagrams led to a common answer of
2814.348 eV. As was mentioned above, the field theory treat-
ment of photon exchange has an interesting relationship to
MBPT. One photon exchange can be done in either Coulomb
or Feynman gauge, with the latter being more convenient
computationally. However, in Coulomb gauge, one can see
that exchange of a Coulomb photon is exactly equivalent to
first-order MBPT. Exchange of a transverse photon is again
equivalent to the MBPT treatment of the Breit interaction,
with retardation included. However, when two photons are
exchanged between two electrons, one encounters diagrams
of the form of Fig. 28.6, with the understanding that spec-
tator electrons are present. When both photons are Coulomb
photons, the same contour integral encountered in the recoil
discussion arises. It is well defined, with the two positive en-
ergy projectors giving a standard second-order MBPT term,
and the other part giving a small contribution. We stress
this point because this is a case where the use of field
theory automatically avoids a term that would arise if one
included negative energy states in MBPT perturbation the-
ory in a straightforward manner. In sums over states m and
n, MBPT would appear to include terms with m positive and
n negative energy, and those terms can have vanishing de-
nominators. They do not occur in the field theory calculation
because they have poles on the same side of the axis, and the
contour integration can be chosen to avoid them, giving zero.
The more complicated case of having two transverse pho-
tons is also of interest, having a history dating back to Breit’s
calculations of helium fine structure. The equation he used,
named after him, suffers from problems similar to those just

discussed, in particular leading to a term apparently of the
order of the fine structure that had to be artificially removed.
The integration is more complicated in this case, but the end
result is that the two transverse photon term that appeared to
be of the order of fine structure is reduced by a factor of «.
This aspect of QED in atomic physics is just as important as
the Lamb shift, although it does not require renormalization.

Because of the high charge of this ion, radiative correc-
tions are now a one percent effect. They are dominated by
the one-loop Lamb shift, which has to be treated with the nu-
merical methods described earlier. However, while it is of the
correct size, different potentials give differing answers. This
disparity is removed to a large extent by including a set of
“screening” diagrams, similar to Figs. 28.2 and 28.3, but with
the lower photon line connecting to another electron. Af-
ter including these (along with the effect of the counterterm
Eq. (28.39) on the self-energy if extended Furry picture is
used), a unique answer of —26.308 eV is found, taking theory
to 2788.040eV. This differs only slightly from experiment
and shows that QED works even in very intense Coulomb
fields. However, the experiment has sufficient accuracy to
show clearly that extra physics must be accounted for.

Two obvious sources of known physics can account for
the remaining discrepancy, recoil corrections and the two-
loop Lamb shift. Remarkably, even though the bismuth
nucleus is quite heavy, sophisticated recoil corrections are
needed before the actual two-loop Lamb shift can be treated.
These will be described in Sect. 28.6. After their removal
an effect expected to be dominated by the 2s two-loop Lamb
shift remains. As with the one-loop Lamb shift, an expansion
in Z o could not be expected to be reliable, and exact numeri-
cal calculations had to be carried out. The result is consistent
with experiment. The present status of that large-scale effort
is described in [37].

28.6 Recoil Corrections at High Z

The first recoil calculations were carried out in the con-
text of the Bethe—Salpeter equation. They relied heavily on
expanding in powers of Z«. For highly charged ions, Z«
is no longer a small parameter, so the calculation of re-
coil corrections in hydrogenic ions with high Z requires the
consideration of an infinite set of kernels rather than just
a few. The problem was treated by Grotch and Pachucki in
[49], and Bethe—Salpeter type calculations were done in [50]
and [51]. The combinatoric problems are considerable, but
the simplicity of the final expressions that result suggests
that a simpler approach is possible. Such an approach was,
indeed, found by Shabaev [52], and we describe it here.

The simplest way to derive the leading effect of the finite
mass of the nucleus can be found in the context of classi-
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cal mechanics, where in a system with N, light particles of
mass m (the electrons) and a heavy particle of mass M (the
nucleus), one considers the heavy particle’s nonrelativistic
kinetic energy,

D2
Py

Ty = -
N oM

(28.89)

and evaluates it in the center of mass system. In that frame,
one can eliminate 7 through

N,
Py —=>"ji. (28.90)
i=1

Adding this to the nonrelativistic kinetic energy of the elec-
trons (the first term in Eq. (28.1)) gives a total kinetic energy

N, ﬁ 2
Tiot = Z 2’;1
,

i=l

+ Hvp , (28.91)

where m, = m/(1 + m/M) is the reduced mass, and

(28.92)

is the mass polarization Hamiltonian. When this classical ar-
gument is extended to nonrelativistic quantum mechanics,
it incorporates recoil exactly. However, if one works in the
approximation of keeping only m /M corrections, extending
the classical argument described above to field theory allows
recoil to be treated relativistically for both one and many-
electron systems.

To generalize Eq. (28.90) to field theory, we first note that
the electron momentum is now described as a single field
operator,

Po = —ih [ Ex i)V (x) . (28.93)
We also must include the electromagnetic field with the nu-
clear momentum in the usual way, with Eq. (28.89) now
becoming

|Py + ZeA(0,1)[?
— .
oM

Ty (28.94)

The position of the nucleus is close to the origin, so A is

evaluated there. Now the operation of going to the center of

mass frame replaces Py with the negative of Eq. (28.93),
Py — —p. . (28.95)

and we see that including the kinetic energy of the nucleus
leads to three new interaction Hamiltonians, operators to be

added to H I,

Hy = Hr(CC) + Hx(CT) + Hr(TT).  (28.96)

with

H(CC) = —%/d% /d3y VX, 1)

x V&0 - v G oV, (2897
€)= 2R 36,0 [ @y G oT o,
(28.98)

and

Z2%% .
Hy(TT) = o= AD.0)- AD.1) .

(28.99)

We note the similarity of Hg(C C) with the Coulomb part of
the QED Hamiltonian H¢, Eq. (28.12).

Treating the new interaction Hamiltonians then to first
order will account for all m/M corrections to all order in
Zo. One can equally well extend the calculations to many-
electron ions, although accounting for the electron—electron
interaction requires including as many factors coming from
the initial interaction Hamilton as are required for conver-
gence.

28.7 Concluding Remarks

Precision QED is presently a quite active field, and we have
touched on only a few topics. Conferences on the subject are
frequent, with the biannual International Conference on Pre-
cision Atomic Physics being of note; the interested reader
should be able to access the talks given at them through
the internet. A particularly active field involves applica-
tions of NRQED, which has been developed to quite a high
level by a number of researchers. In these recent works,
dimensional regularization is used in conjunction with the
Foldy—Wouthuysen transformation along with powerful nu-
merical methods that allow treatment of Green functions
involving more than one electron. Of particular note is the
completion of the treatment of helium fine structure in [53] to
order mc2a”, which can be used to determine the fine struc-
ture constant. More recently, we note the very large-scale
calculation of the properties of singlet helium in [54]. What
we wish to emphasize in closing is that the basic framework
of QED as the theory underpinning our understanding of all
electromagnetically bound states is in some sense simple,
despite the extreme complexity of present calculations. We
have discussed the two basic propagators, that of the electron
and the photon, and the interaction Hamiltonian H;(¢) given
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in Eq. (28.24), and an approach based on a Feynman dia-
gram treatment of Green functions to calculate the energies
of bound states. That is all that is needed to describe a vast ar-
ray of systems, and when they are simple enough, agreement
with experiment at the ppm level is routinely found from just
a few basic assumptions.

Acknowledgements Donald Yennie was working on the basic idea of
using the Green function approach of the Bethe—Salpeter equation for
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